tree.c, tree.h: Change tree_code_type, tree_code_length, and tree_code_name from...
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 88, 92-96, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include <setjmp.h>
38 #include "flags.h"
39 #include "tree.h"
40 #include "except.h"
41 #include "function.h"
42 #include "obstack.h"
43 #ifdef __STDC__
44 #include <stdarg.h>
45 #else
46 #include <varargs.h>
47 #endif
48 #include <stdio.h>
49
50 #ifdef HAVE_STDLIB_H
51 #include <stdlib.h>
52 #endif
53
54 #ifdef NEED_DECLARATION_FREE
55 extern void free PROTO((void *));
56 #endif
57
58 #ifdef HAVE_STDLIB_H
59 #include <stdlib.h>
60 #endif
61
62 #define obstack_chunk_alloc xmalloc
63 #define obstack_chunk_free free
64
65 /* Tree nodes of permanent duration are allocated in this obstack.
66 They are the identifier nodes, and everything outside of
67 the bodies and parameters of function definitions. */
68
69 struct obstack permanent_obstack;
70
71 /* The initial RTL, and all ..._TYPE nodes, in a function
72 are allocated in this obstack. Usually they are freed at the
73 end of the function, but if the function is inline they are saved.
74 For top-level functions, this is maybepermanent_obstack.
75 Separate obstacks are made for nested functions. */
76
77 struct obstack *function_maybepermanent_obstack;
78
79 /* This is the function_maybepermanent_obstack for top-level functions. */
80
81 struct obstack maybepermanent_obstack;
82
83 /* This is a list of function_maybepermanent_obstacks for top-level inline
84 functions that are compiled in the middle of compiling other functions. */
85
86 struct simple_obstack_stack *toplev_inline_obstacks;
87
88 /* Former elements of toplev_inline_obstacks that have been recycled. */
89
90 struct simple_obstack_stack *extra_inline_obstacks;
91
92 /* This is a list of function_maybepermanent_obstacks for inline functions
93 nested in the current function that were compiled in the middle of
94 compiling other functions. */
95
96 struct simple_obstack_stack *inline_obstacks;
97
98 /* The contents of the current function definition are allocated
99 in this obstack, and all are freed at the end of the function.
100 For top-level functions, this is temporary_obstack.
101 Separate obstacks are made for nested functions. */
102
103 struct obstack *function_obstack;
104
105 /* This is used for reading initializers of global variables. */
106
107 struct obstack temporary_obstack;
108
109 /* The tree nodes of an expression are allocated
110 in this obstack, and all are freed at the end of the expression. */
111
112 struct obstack momentary_obstack;
113
114 /* The tree nodes of a declarator are allocated
115 in this obstack, and all are freed when the declarator
116 has been parsed. */
117
118 static struct obstack temp_decl_obstack;
119
120 /* This points at either permanent_obstack
121 or the current function_maybepermanent_obstack. */
122
123 struct obstack *saveable_obstack;
124
125 /* This is same as saveable_obstack during parse and expansion phase;
126 it points to the current function's obstack during optimization.
127 This is the obstack to be used for creating rtl objects. */
128
129 struct obstack *rtl_obstack;
130
131 /* This points at either permanent_obstack or the current function_obstack. */
132
133 struct obstack *current_obstack;
134
135 /* This points at either permanent_obstack or the current function_obstack
136 or momentary_obstack. */
137
138 struct obstack *expression_obstack;
139
140 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
141
142 struct obstack_stack
143 {
144 struct obstack_stack *next;
145 struct obstack *current;
146 struct obstack *saveable;
147 struct obstack *expression;
148 struct obstack *rtl;
149 };
150
151 struct obstack_stack *obstack_stack;
152
153 /* Obstack for allocating struct obstack_stack entries. */
154
155 static struct obstack obstack_stack_obstack;
156
157 /* Addresses of first objects in some obstacks.
158 This is for freeing their entire contents. */
159 char *maybepermanent_firstobj;
160 char *temporary_firstobj;
161 char *momentary_firstobj;
162 char *temp_decl_firstobj;
163
164 /* This is used to preserve objects (mainly array initializers) that need to
165 live until the end of the current function, but no further. */
166 char *momentary_function_firstobj;
167
168 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
169
170 int all_types_permanent;
171
172 /* Stack of places to restore the momentary obstack back to. */
173
174 struct momentary_level
175 {
176 /* Pointer back to previous such level. */
177 struct momentary_level *prev;
178 /* First object allocated within this level. */
179 char *base;
180 /* Value of expression_obstack saved at entry to this level. */
181 struct obstack *obstack;
182 };
183
184 struct momentary_level *momentary_stack;
185
186 /* Table indexed by tree code giving a string containing a character
187 classifying the tree code. Possibilities are
188 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
189
190 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
191
192 char tree_code_type[MAX_TREE_CODES] = {
193 #include "tree.def"
194 };
195 #undef DEFTREECODE
196
197 /* Table indexed by tree code giving number of expression
198 operands beyond the fixed part of the node structure.
199 Not used for types or decls. */
200
201 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
202
203 int tree_code_length[MAX_TREE_CODES] = {
204 #include "tree.def"
205 };
206 #undef DEFTREECODE
207
208 /* Names of tree components.
209 Used for printing out the tree and error messages. */
210 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
211
212 char *tree_code_name[MAX_TREE_CODES] = {
213 #include "tree.def"
214 };
215 #undef DEFTREECODE
216
217 /* Statistics-gathering stuff. */
218 typedef enum
219 {
220 d_kind,
221 t_kind,
222 b_kind,
223 s_kind,
224 r_kind,
225 e_kind,
226 c_kind,
227 id_kind,
228 op_id_kind,
229 perm_list_kind,
230 temp_list_kind,
231 vec_kind,
232 x_kind,
233 lang_decl,
234 lang_type,
235 all_kinds
236 } tree_node_kind;
237
238 int tree_node_counts[(int)all_kinds];
239 int tree_node_sizes[(int)all_kinds];
240 int id_string_size = 0;
241
242 char *tree_node_kind_names[] = {
243 "decls",
244 "types",
245 "blocks",
246 "stmts",
247 "refs",
248 "exprs",
249 "constants",
250 "identifiers",
251 "op_identifiers",
252 "perm_tree_lists",
253 "temp_tree_lists",
254 "vecs",
255 "random kinds",
256 "lang_decl kinds",
257 "lang_type kinds"
258 };
259
260 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
261
262 #define MAX_HASH_TABLE 1009
263 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
264
265 /* 0 while creating built-in identifiers. */
266 static int do_identifier_warnings;
267
268 /* Unique id for next decl created. */
269 static int next_decl_uid;
270 /* Unique id for next type created. */
271 static int next_type_uid = 1;
272
273 /* Here is how primitive or already-canonicalized types' hash
274 codes are made. */
275 #define TYPE_HASH(TYPE) ((HOST_WIDE_INT) (TYPE) & 0777777)
276
277 extern char *mode_name[];
278
279 void gcc_obstack_init ();
280 \f
281 /* Init the principal obstacks. */
282
283 void
284 init_obstacks ()
285 {
286 gcc_obstack_init (&obstack_stack_obstack);
287 gcc_obstack_init (&permanent_obstack);
288
289 gcc_obstack_init (&temporary_obstack);
290 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
291 gcc_obstack_init (&momentary_obstack);
292 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
293 momentary_function_firstobj = momentary_firstobj;
294 gcc_obstack_init (&maybepermanent_obstack);
295 maybepermanent_firstobj
296 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
297 gcc_obstack_init (&temp_decl_obstack);
298 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
299
300 function_obstack = &temporary_obstack;
301 function_maybepermanent_obstack = &maybepermanent_obstack;
302 current_obstack = &permanent_obstack;
303 expression_obstack = &permanent_obstack;
304 rtl_obstack = saveable_obstack = &permanent_obstack;
305
306 /* Init the hash table of identifiers. */
307 bzero ((char *) hash_table, sizeof hash_table);
308 }
309
310 void
311 gcc_obstack_init (obstack)
312 struct obstack *obstack;
313 {
314 /* Let particular systems override the size of a chunk. */
315 #ifndef OBSTACK_CHUNK_SIZE
316 #define OBSTACK_CHUNK_SIZE 0
317 #endif
318 /* Let them override the alloc and free routines too. */
319 #ifndef OBSTACK_CHUNK_ALLOC
320 #define OBSTACK_CHUNK_ALLOC xmalloc
321 #endif
322 #ifndef OBSTACK_CHUNK_FREE
323 #define OBSTACK_CHUNK_FREE free
324 #endif
325 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
326 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
327 (void (*) ()) OBSTACK_CHUNK_FREE);
328 }
329
330 /* Save all variables describing the current status into the structure *P.
331 This is used before starting a nested function.
332
333 CONTEXT is the decl_function_context for the function we're about to
334 compile; if it isn't current_function_decl, we have to play some games. */
335
336 void
337 save_tree_status (p, context)
338 struct function *p;
339 tree context;
340 {
341 p->all_types_permanent = all_types_permanent;
342 p->momentary_stack = momentary_stack;
343 p->maybepermanent_firstobj = maybepermanent_firstobj;
344 p->temporary_firstobj = temporary_firstobj;
345 p->momentary_firstobj = momentary_firstobj;
346 p->momentary_function_firstobj = momentary_function_firstobj;
347 p->function_obstack = function_obstack;
348 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
349 p->current_obstack = current_obstack;
350 p->expression_obstack = expression_obstack;
351 p->saveable_obstack = saveable_obstack;
352 p->rtl_obstack = rtl_obstack;
353 p->inline_obstacks = inline_obstacks;
354
355 if (context == current_function_decl)
356 /* Objects that need to be saved in this function can be in the nonsaved
357 obstack of the enclosing function since they can't possibly be needed
358 once it has returned. */
359 function_maybepermanent_obstack = function_obstack;
360 else
361 {
362 /* We're compiling a function which isn't nested in the current
363 function. We need to create a new maybepermanent_obstack for this
364 function, since it can't go onto any of the existing obstacks. */
365 struct simple_obstack_stack **head;
366 struct simple_obstack_stack *current;
367
368 if (context == NULL_TREE)
369 head = &toplev_inline_obstacks;
370 else
371 {
372 struct function *f = find_function_data (context);
373 head = &f->inline_obstacks;
374 }
375
376 if (context == NULL_TREE && extra_inline_obstacks)
377 {
378 current = extra_inline_obstacks;
379 extra_inline_obstacks = current->next;
380 }
381 else
382 {
383 current = ((struct simple_obstack_stack *)
384 xmalloc (sizeof (struct simple_obstack_stack)));
385
386 current->obstack
387 = (struct obstack *) xmalloc (sizeof (struct obstack));
388 gcc_obstack_init (current->obstack);
389 }
390
391 function_maybepermanent_obstack = current->obstack;
392
393 current->next = *head;
394 *head = current;
395 }
396
397 maybepermanent_firstobj
398 = (char *) obstack_finish (function_maybepermanent_obstack);
399
400 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
401 gcc_obstack_init (function_obstack);
402
403 current_obstack = &permanent_obstack;
404 expression_obstack = &permanent_obstack;
405 rtl_obstack = saveable_obstack = &permanent_obstack;
406
407 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
408 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
409 momentary_function_firstobj = momentary_firstobj;
410 }
411
412 /* Restore all variables describing the current status from the structure *P.
413 This is used after a nested function. */
414
415 void
416 restore_tree_status (p, context)
417 struct function *p;
418 tree context;
419 {
420 all_types_permanent = p->all_types_permanent;
421 momentary_stack = p->momentary_stack;
422
423 obstack_free (&momentary_obstack, momentary_function_firstobj);
424
425 /* Free saveable storage used by the function just compiled and not
426 saved.
427
428 CAUTION: This is in function_obstack of the containing function.
429 So we must be sure that we never allocate from that obstack during
430 the compilation of a nested function if we expect it to survive
431 past the nested function's end. */
432 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
433
434 /* If we were compiling a toplevel function, we can free this space now. */
435 if (context == NULL_TREE)
436 {
437 obstack_free (&temporary_obstack, temporary_firstobj);
438 obstack_free (&momentary_obstack, momentary_function_firstobj);
439 }
440
441 /* If we were compiling a toplevel function that we don't actually want
442 to save anything from, return the obstack to the pool. */
443 if (context == NULL_TREE
444 && obstack_empty_p (function_maybepermanent_obstack))
445 {
446 struct simple_obstack_stack *current, **p = &toplev_inline_obstacks;
447
448 while ((*p)->obstack != function_maybepermanent_obstack)
449 p = &((*p)->next);
450 current = *p;
451 *p = current->next;
452
453 current->next = extra_inline_obstacks;
454 extra_inline_obstacks = current;
455 }
456
457 obstack_free (function_obstack, 0);
458 free (function_obstack);
459
460 temporary_firstobj = p->temporary_firstobj;
461 momentary_firstobj = p->momentary_firstobj;
462 momentary_function_firstobj = p->momentary_function_firstobj;
463 maybepermanent_firstobj = p->maybepermanent_firstobj;
464 function_obstack = p->function_obstack;
465 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
466 current_obstack = p->current_obstack;
467 expression_obstack = p->expression_obstack;
468 saveable_obstack = p->saveable_obstack;
469 rtl_obstack = p->rtl_obstack;
470 inline_obstacks = p->inline_obstacks;
471 }
472 \f
473 /* Start allocating on the temporary (per function) obstack.
474 This is done in start_function before parsing the function body,
475 and before each initialization at top level, and to go back
476 to temporary allocation after doing permanent_allocation. */
477
478 void
479 temporary_allocation ()
480 {
481 /* Note that function_obstack at top level points to temporary_obstack.
482 But within a nested function context, it is a separate obstack. */
483 current_obstack = function_obstack;
484 expression_obstack = function_obstack;
485 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
486 momentary_stack = 0;
487 inline_obstacks = 0;
488 }
489
490 /* Start allocating on the permanent obstack but don't
491 free the temporary data. After calling this, call
492 `permanent_allocation' to fully resume permanent allocation status. */
493
494 void
495 end_temporary_allocation ()
496 {
497 current_obstack = &permanent_obstack;
498 expression_obstack = &permanent_obstack;
499 rtl_obstack = saveable_obstack = &permanent_obstack;
500 }
501
502 /* Resume allocating on the temporary obstack, undoing
503 effects of `end_temporary_allocation'. */
504
505 void
506 resume_temporary_allocation ()
507 {
508 current_obstack = function_obstack;
509 expression_obstack = function_obstack;
510 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
511 }
512
513 /* While doing temporary allocation, switch to allocating in such a
514 way as to save all nodes if the function is inlined. Call
515 resume_temporary_allocation to go back to ordinary temporary
516 allocation. */
517
518 void
519 saveable_allocation ()
520 {
521 /* Note that function_obstack at top level points to temporary_obstack.
522 But within a nested function context, it is a separate obstack. */
523 expression_obstack = current_obstack = saveable_obstack;
524 }
525
526 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
527 recording the previously current obstacks on a stack.
528 This does not free any storage in any obstack. */
529
530 void
531 push_obstacks (current, saveable)
532 struct obstack *current, *saveable;
533 {
534 struct obstack_stack *p
535 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
536 (sizeof (struct obstack_stack)));
537
538 p->current = current_obstack;
539 p->saveable = saveable_obstack;
540 p->expression = expression_obstack;
541 p->rtl = rtl_obstack;
542 p->next = obstack_stack;
543 obstack_stack = p;
544
545 current_obstack = current;
546 expression_obstack = current;
547 rtl_obstack = saveable_obstack = saveable;
548 }
549
550 /* Save the current set of obstacks, but don't change them. */
551
552 void
553 push_obstacks_nochange ()
554 {
555 struct obstack_stack *p
556 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
557 (sizeof (struct obstack_stack)));
558
559 p->current = current_obstack;
560 p->saveable = saveable_obstack;
561 p->expression = expression_obstack;
562 p->rtl = rtl_obstack;
563 p->next = obstack_stack;
564 obstack_stack = p;
565 }
566
567 /* Pop the obstack selection stack. */
568
569 void
570 pop_obstacks ()
571 {
572 struct obstack_stack *p = obstack_stack;
573 obstack_stack = p->next;
574
575 current_obstack = p->current;
576 saveable_obstack = p->saveable;
577 expression_obstack = p->expression;
578 rtl_obstack = p->rtl;
579
580 obstack_free (&obstack_stack_obstack, p);
581 }
582
583 /* Nonzero if temporary allocation is currently in effect.
584 Zero if currently doing permanent allocation. */
585
586 int
587 allocation_temporary_p ()
588 {
589 return current_obstack != &permanent_obstack;
590 }
591
592 /* Go back to allocating on the permanent obstack
593 and free everything in the temporary obstack.
594
595 FUNCTION_END is true only if we have just finished compiling a function.
596 In that case, we also free preserved initial values on the momentary
597 obstack. */
598
599 void
600 permanent_allocation (function_end)
601 int function_end;
602 {
603 /* Free up previous temporary obstack data */
604 obstack_free (&temporary_obstack, temporary_firstobj);
605 if (function_end)
606 {
607 obstack_free (&momentary_obstack, momentary_function_firstobj);
608 momentary_firstobj = momentary_function_firstobj;
609 }
610 else
611 obstack_free (&momentary_obstack, momentary_firstobj);
612 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
613 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
614
615 /* Free up the maybepermanent_obstacks for any of our nested functions
616 which were compiled at a lower level. */
617 while (inline_obstacks)
618 {
619 struct simple_obstack_stack *current = inline_obstacks;
620 inline_obstacks = current->next;
621 obstack_free (current->obstack, 0);
622 free (current->obstack);
623 free (current);
624 }
625
626 current_obstack = &permanent_obstack;
627 expression_obstack = &permanent_obstack;
628 rtl_obstack = saveable_obstack = &permanent_obstack;
629 }
630
631 /* Save permanently everything on the maybepermanent_obstack. */
632
633 void
634 preserve_data ()
635 {
636 maybepermanent_firstobj
637 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
638 }
639
640 void
641 preserve_initializer ()
642 {
643 struct momentary_level *tem;
644 char *old_momentary;
645
646 temporary_firstobj
647 = (char *) obstack_alloc (&temporary_obstack, 0);
648 maybepermanent_firstobj
649 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
650
651 old_momentary = momentary_firstobj;
652 momentary_firstobj
653 = (char *) obstack_alloc (&momentary_obstack, 0);
654 if (momentary_firstobj != old_momentary)
655 for (tem = momentary_stack; tem; tem = tem->prev)
656 tem->base = momentary_firstobj;
657 }
658
659 /* Start allocating new rtl in current_obstack.
660 Use resume_temporary_allocation
661 to go back to allocating rtl in saveable_obstack. */
662
663 void
664 rtl_in_current_obstack ()
665 {
666 rtl_obstack = current_obstack;
667 }
668
669 /* Start allocating rtl from saveable_obstack. Intended to be used after
670 a call to push_obstacks_nochange. */
671
672 void
673 rtl_in_saveable_obstack ()
674 {
675 rtl_obstack = saveable_obstack;
676 }
677 \f
678 /* Allocate SIZE bytes in the current obstack
679 and return a pointer to them.
680 In practice the current obstack is always the temporary one. */
681
682 char *
683 oballoc (size)
684 int size;
685 {
686 return (char *) obstack_alloc (current_obstack, size);
687 }
688
689 /* Free the object PTR in the current obstack
690 as well as everything allocated since PTR.
691 In practice the current obstack is always the temporary one. */
692
693 void
694 obfree (ptr)
695 char *ptr;
696 {
697 obstack_free (current_obstack, ptr);
698 }
699
700 /* Allocate SIZE bytes in the permanent obstack
701 and return a pointer to them. */
702
703 char *
704 permalloc (size)
705 int size;
706 {
707 return (char *) obstack_alloc (&permanent_obstack, size);
708 }
709
710 /* Allocate NELEM items of SIZE bytes in the permanent obstack
711 and return a pointer to them. The storage is cleared before
712 returning the value. */
713
714 char *
715 perm_calloc (nelem, size)
716 int nelem;
717 long size;
718 {
719 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
720 bzero (rval, nelem * size);
721 return rval;
722 }
723
724 /* Allocate SIZE bytes in the saveable obstack
725 and return a pointer to them. */
726
727 char *
728 savealloc (size)
729 int size;
730 {
731 return (char *) obstack_alloc (saveable_obstack, size);
732 }
733
734 /* Allocate SIZE bytes in the expression obstack
735 and return a pointer to them. */
736
737 char *
738 expralloc (size)
739 int size;
740 {
741 return (char *) obstack_alloc (expression_obstack, size);
742 }
743 \f
744 /* Print out which obstack an object is in. */
745
746 void
747 print_obstack_name (object, file, prefix)
748 char *object;
749 FILE *file;
750 char *prefix;
751 {
752 struct obstack *obstack = NULL;
753 char *obstack_name = NULL;
754 struct function *p;
755
756 for (p = outer_function_chain; p; p = p->next)
757 {
758 if (_obstack_allocated_p (p->function_obstack, object))
759 {
760 obstack = p->function_obstack;
761 obstack_name = "containing function obstack";
762 }
763 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
764 {
765 obstack = p->function_maybepermanent_obstack;
766 obstack_name = "containing function maybepermanent obstack";
767 }
768 }
769
770 if (_obstack_allocated_p (&obstack_stack_obstack, object))
771 {
772 obstack = &obstack_stack_obstack;
773 obstack_name = "obstack_stack_obstack";
774 }
775 else if (_obstack_allocated_p (function_obstack, object))
776 {
777 obstack = function_obstack;
778 obstack_name = "function obstack";
779 }
780 else if (_obstack_allocated_p (&permanent_obstack, object))
781 {
782 obstack = &permanent_obstack;
783 obstack_name = "permanent_obstack";
784 }
785 else if (_obstack_allocated_p (&momentary_obstack, object))
786 {
787 obstack = &momentary_obstack;
788 obstack_name = "momentary_obstack";
789 }
790 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
791 {
792 obstack = function_maybepermanent_obstack;
793 obstack_name = "function maybepermanent obstack";
794 }
795 else if (_obstack_allocated_p (&temp_decl_obstack, object))
796 {
797 obstack = &temp_decl_obstack;
798 obstack_name = "temp_decl_obstack";
799 }
800
801 /* Check to see if the object is in the free area of the obstack. */
802 if (obstack != NULL)
803 {
804 if (object >= obstack->next_free
805 && object < obstack->chunk_limit)
806 fprintf (file, "%s in free portion of obstack %s",
807 prefix, obstack_name);
808 else
809 fprintf (file, "%s allocated from %s", prefix, obstack_name);
810 }
811 else
812 fprintf (file, "%s not allocated from any obstack", prefix);
813 }
814
815 void
816 debug_obstack (object)
817 char *object;
818 {
819 print_obstack_name (object, stderr, "object");
820 fprintf (stderr, ".\n");
821 }
822
823 /* Return 1 if OBJ is in the permanent obstack.
824 This is slow, and should be used only for debugging.
825 Use TREE_PERMANENT for other purposes. */
826
827 int
828 object_permanent_p (obj)
829 tree obj;
830 {
831 return _obstack_allocated_p (&permanent_obstack, obj);
832 }
833 \f
834 /* Start a level of momentary allocation.
835 In C, each compound statement has its own level
836 and that level is freed at the end of each statement.
837 All expression nodes are allocated in the momentary allocation level. */
838
839 void
840 push_momentary ()
841 {
842 struct momentary_level *tem
843 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
844 sizeof (struct momentary_level));
845 tem->prev = momentary_stack;
846 tem->base = (char *) obstack_base (&momentary_obstack);
847 tem->obstack = expression_obstack;
848 momentary_stack = tem;
849 expression_obstack = &momentary_obstack;
850 }
851
852 /* Set things up so the next clear_momentary will only clear memory
853 past our present position in momentary_obstack. */
854
855 void
856 preserve_momentary ()
857 {
858 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
859 }
860
861 /* Free all the storage in the current momentary-allocation level.
862 In C, this happens at the end of each statement. */
863
864 void
865 clear_momentary ()
866 {
867 obstack_free (&momentary_obstack, momentary_stack->base);
868 }
869
870 /* Discard a level of momentary allocation.
871 In C, this happens at the end of each compound statement.
872 Restore the status of expression node allocation
873 that was in effect before this level was created. */
874
875 void
876 pop_momentary ()
877 {
878 struct momentary_level *tem = momentary_stack;
879 momentary_stack = tem->prev;
880 expression_obstack = tem->obstack;
881 /* We can't free TEM from the momentary_obstack, because there might
882 be objects above it which have been saved. We can free back to the
883 stack of the level we are popping off though. */
884 obstack_free (&momentary_obstack, tem->base);
885 }
886
887 /* Pop back to the previous level of momentary allocation,
888 but don't free any momentary data just yet. */
889
890 void
891 pop_momentary_nofree ()
892 {
893 struct momentary_level *tem = momentary_stack;
894 momentary_stack = tem->prev;
895 expression_obstack = tem->obstack;
896 }
897
898 /* Call when starting to parse a declaration:
899 make expressions in the declaration last the length of the function.
900 Returns an argument that should be passed to resume_momentary later. */
901
902 int
903 suspend_momentary ()
904 {
905 register int tem = expression_obstack == &momentary_obstack;
906 expression_obstack = saveable_obstack;
907 return tem;
908 }
909
910 /* Call when finished parsing a declaration:
911 restore the treatment of node-allocation that was
912 in effect before the suspension.
913 YES should be the value previously returned by suspend_momentary. */
914
915 void
916 resume_momentary (yes)
917 int yes;
918 {
919 if (yes)
920 expression_obstack = &momentary_obstack;
921 }
922 \f
923 /* Init the tables indexed by tree code.
924 Note that languages can add to these tables to define their own codes. */
925
926 void
927 init_tree_codes ()
928 {
929
930 }
931
932 /* Return a newly allocated node of code CODE.
933 Initialize the node's unique id and its TREE_PERMANENT flag.
934 For decl and type nodes, some other fields are initialized.
935 The rest of the node is initialized to zero.
936
937 Achoo! I got a code in the node. */
938
939 tree
940 make_node (code)
941 enum tree_code code;
942 {
943 register tree t;
944 register int type = TREE_CODE_CLASS (code);
945 register int length;
946 register struct obstack *obstack = current_obstack;
947 register int i;
948 register tree_node_kind kind;
949
950 switch (type)
951 {
952 case 'd': /* A decl node */
953 #ifdef GATHER_STATISTICS
954 kind = d_kind;
955 #endif
956 length = sizeof (struct tree_decl);
957 /* All decls in an inline function need to be saved. */
958 if (obstack != &permanent_obstack)
959 obstack = saveable_obstack;
960
961 /* PARM_DECLs go on the context of the parent. If this is a nested
962 function, then we must allocate the PARM_DECL on the parent's
963 obstack, so that they will live to the end of the parent's
964 closing brace. This is necessary in case we try to inline the
965 function into its parent.
966
967 PARM_DECLs of top-level functions do not have this problem. However,
968 we allocate them where we put the FUNCTION_DECL for languages such as
969 Ada that need to consult some flags in the PARM_DECLs of the function
970 when calling it.
971
972 See comment in restore_tree_status for why we can't put this
973 in function_obstack. */
974 if (code == PARM_DECL && obstack != &permanent_obstack)
975 {
976 tree context = 0;
977 if (current_function_decl)
978 context = decl_function_context (current_function_decl);
979
980 if (context)
981 obstack
982 = find_function_data (context)->function_maybepermanent_obstack;
983 }
984 break;
985
986 case 't': /* a type node */
987 #ifdef GATHER_STATISTICS
988 kind = t_kind;
989 #endif
990 length = sizeof (struct tree_type);
991 /* All data types are put where we can preserve them if nec. */
992 if (obstack != &permanent_obstack)
993 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
994 break;
995
996 case 'b': /* a lexical block */
997 #ifdef GATHER_STATISTICS
998 kind = b_kind;
999 #endif
1000 length = sizeof (struct tree_block);
1001 /* All BLOCK nodes are put where we can preserve them if nec. */
1002 if (obstack != &permanent_obstack)
1003 obstack = saveable_obstack;
1004 break;
1005
1006 case 's': /* an expression with side effects */
1007 #ifdef GATHER_STATISTICS
1008 kind = s_kind;
1009 goto usual_kind;
1010 #endif
1011 case 'r': /* a reference */
1012 #ifdef GATHER_STATISTICS
1013 kind = r_kind;
1014 goto usual_kind;
1015 #endif
1016 case 'e': /* an expression */
1017 case '<': /* a comparison expression */
1018 case '1': /* a unary arithmetic expression */
1019 case '2': /* a binary arithmetic expression */
1020 #ifdef GATHER_STATISTICS
1021 kind = e_kind;
1022 usual_kind:
1023 #endif
1024 obstack = expression_obstack;
1025 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
1026 if (code == BIND_EXPR && obstack != &permanent_obstack)
1027 obstack = saveable_obstack;
1028 length = sizeof (struct tree_exp)
1029 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1030 break;
1031
1032 case 'c': /* a constant */
1033 #ifdef GATHER_STATISTICS
1034 kind = c_kind;
1035 #endif
1036 obstack = expression_obstack;
1037
1038 /* We can't use tree_code_length for INTEGER_CST, since the number of
1039 words is machine-dependent due to varying length of HOST_WIDE_INT,
1040 which might be wider than a pointer (e.g., long long). Similarly
1041 for REAL_CST, since the number of words is machine-dependent due
1042 to varying size and alignment of `double'. */
1043
1044 if (code == INTEGER_CST)
1045 length = sizeof (struct tree_int_cst);
1046 else if (code == REAL_CST)
1047 length = sizeof (struct tree_real_cst);
1048 else
1049 length = sizeof (struct tree_common)
1050 + tree_code_length[(int) code] * sizeof (char *);
1051 break;
1052
1053 case 'x': /* something random, like an identifier. */
1054 #ifdef GATHER_STATISTICS
1055 if (code == IDENTIFIER_NODE)
1056 kind = id_kind;
1057 else if (code == OP_IDENTIFIER)
1058 kind = op_id_kind;
1059 else if (code == TREE_VEC)
1060 kind = vec_kind;
1061 else
1062 kind = x_kind;
1063 #endif
1064 length = sizeof (struct tree_common)
1065 + tree_code_length[(int) code] * sizeof (char *);
1066 /* Identifier nodes are always permanent since they are
1067 unique in a compiler run. */
1068 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1069 break;
1070
1071 default:
1072 abort ();
1073 }
1074
1075 t = (tree) obstack_alloc (obstack, length);
1076
1077 #ifdef GATHER_STATISTICS
1078 tree_node_counts[(int)kind]++;
1079 tree_node_sizes[(int)kind] += length;
1080 #endif
1081
1082 /* Clear a word at a time. */
1083 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1084 ((int *) t)[i] = 0;
1085 /* Clear any extra bytes. */
1086 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1087 ((char *) t)[i] = 0;
1088
1089 TREE_SET_CODE (t, code);
1090 if (obstack == &permanent_obstack)
1091 TREE_PERMANENT (t) = 1;
1092
1093 switch (type)
1094 {
1095 case 's':
1096 TREE_SIDE_EFFECTS (t) = 1;
1097 TREE_TYPE (t) = void_type_node;
1098 break;
1099
1100 case 'd':
1101 if (code != FUNCTION_DECL)
1102 DECL_ALIGN (t) = 1;
1103 DECL_IN_SYSTEM_HEADER (t)
1104 = in_system_header && (obstack == &permanent_obstack);
1105 DECL_SOURCE_LINE (t) = lineno;
1106 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
1107 DECL_UID (t) = next_decl_uid++;
1108 break;
1109
1110 case 't':
1111 TYPE_UID (t) = next_type_uid++;
1112 TYPE_ALIGN (t) = 1;
1113 TYPE_MAIN_VARIANT (t) = t;
1114 TYPE_OBSTACK (t) = obstack;
1115 TYPE_ATTRIBUTES (t) = NULL_TREE;
1116 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1117 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1118 #endif
1119 break;
1120
1121 case 'c':
1122 TREE_CONSTANT (t) = 1;
1123 break;
1124 }
1125
1126 return t;
1127 }
1128 \f
1129 /* Return a new node with the same contents as NODE
1130 except that its TREE_CHAIN is zero and it has a fresh uid. */
1131
1132 tree
1133 copy_node (node)
1134 tree node;
1135 {
1136 register tree t;
1137 register enum tree_code code = TREE_CODE (node);
1138 register int length;
1139 register int i;
1140
1141 switch (TREE_CODE_CLASS (code))
1142 {
1143 case 'd': /* A decl node */
1144 length = sizeof (struct tree_decl);
1145 break;
1146
1147 case 't': /* a type node */
1148 length = sizeof (struct tree_type);
1149 break;
1150
1151 case 'b': /* a lexical block node */
1152 length = sizeof (struct tree_block);
1153 break;
1154
1155 case 'r': /* a reference */
1156 case 'e': /* an expression */
1157 case 's': /* an expression with side effects */
1158 case '<': /* a comparison expression */
1159 case '1': /* a unary arithmetic expression */
1160 case '2': /* a binary arithmetic expression */
1161 length = sizeof (struct tree_exp)
1162 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1163 break;
1164
1165 case 'c': /* a constant */
1166 /* We can't use tree_code_length for INTEGER_CST, since the number of
1167 words is machine-dependent due to varying length of HOST_WIDE_INT,
1168 which might be wider than a pointer (e.g., long long). Similarly
1169 for REAL_CST, since the number of words is machine-dependent due
1170 to varying size and alignment of `double'. */
1171 if (code == INTEGER_CST)
1172 length = sizeof (struct tree_int_cst);
1173 else if (code == REAL_CST)
1174 length = sizeof (struct tree_real_cst);
1175 else
1176 length = (sizeof (struct tree_common)
1177 + tree_code_length[(int) code] * sizeof (char *));
1178 break;
1179
1180 case 'x': /* something random, like an identifier. */
1181 length = sizeof (struct tree_common)
1182 + tree_code_length[(int) code] * sizeof (char *);
1183 if (code == TREE_VEC)
1184 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1185 }
1186
1187 t = (tree) obstack_alloc (current_obstack, length);
1188
1189 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1190 ((int *) t)[i] = ((int *) node)[i];
1191 /* Clear any extra bytes. */
1192 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1193 ((char *) t)[i] = ((char *) node)[i];
1194
1195 TREE_CHAIN (t) = 0;
1196 TREE_ASM_WRITTEN (t) = 0;
1197
1198 if (TREE_CODE_CLASS (code) == 'd')
1199 DECL_UID (t) = next_decl_uid++;
1200 else if (TREE_CODE_CLASS (code) == 't')
1201 {
1202 TYPE_UID (t) = next_type_uid++;
1203 TYPE_OBSTACK (t) = current_obstack;
1204
1205 /* The following is so that the debug code for
1206 the copy is different from the original type.
1207 The two statements usually duplicate each other
1208 (because they clear fields of the same union),
1209 but the optimizer should catch that. */
1210 TYPE_SYMTAB_POINTER (t) = 0;
1211 TYPE_SYMTAB_ADDRESS (t) = 0;
1212 }
1213
1214 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
1215
1216 return t;
1217 }
1218
1219 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1220 For example, this can copy a list made of TREE_LIST nodes. */
1221
1222 tree
1223 copy_list (list)
1224 tree list;
1225 {
1226 tree head;
1227 register tree prev, next;
1228
1229 if (list == 0)
1230 return 0;
1231
1232 head = prev = copy_node (list);
1233 next = TREE_CHAIN (list);
1234 while (next)
1235 {
1236 TREE_CHAIN (prev) = copy_node (next);
1237 prev = TREE_CHAIN (prev);
1238 next = TREE_CHAIN (next);
1239 }
1240 return head;
1241 }
1242 \f
1243 #define HASHBITS 30
1244
1245 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1246 If an identifier with that name has previously been referred to,
1247 the same node is returned this time. */
1248
1249 tree
1250 get_identifier (text)
1251 register char *text;
1252 {
1253 register int hi;
1254 register int i;
1255 register tree idp;
1256 register int len, hash_len;
1257
1258 /* Compute length of text in len. */
1259 for (len = 0; text[len]; len++);
1260
1261 /* Decide how much of that length to hash on */
1262 hash_len = len;
1263 if (warn_id_clash && len > id_clash_len)
1264 hash_len = id_clash_len;
1265
1266 /* Compute hash code */
1267 hi = hash_len * 613 + (unsigned) text[0];
1268 for (i = 1; i < hash_len; i += 2)
1269 hi = ((hi * 613) + (unsigned) (text[i]));
1270
1271 hi &= (1 << HASHBITS) - 1;
1272 hi %= MAX_HASH_TABLE;
1273
1274 /* Search table for identifier */
1275 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1276 if (IDENTIFIER_LENGTH (idp) == len
1277 && IDENTIFIER_POINTER (idp)[0] == text[0]
1278 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1279 return idp; /* <-- return if found */
1280
1281 /* Not found; optionally warn about a similar identifier */
1282 if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
1283 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1284 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1285 {
1286 warning ("`%s' and `%s' identical in first %d characters",
1287 IDENTIFIER_POINTER (idp), text, id_clash_len);
1288 break;
1289 }
1290
1291 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1292 abort (); /* set_identifier_size hasn't been called. */
1293
1294 /* Not found, create one, add to chain */
1295 idp = make_node (IDENTIFIER_NODE);
1296 IDENTIFIER_LENGTH (idp) = len;
1297 #ifdef GATHER_STATISTICS
1298 id_string_size += len;
1299 #endif
1300
1301 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1302
1303 TREE_CHAIN (idp) = hash_table[hi];
1304 hash_table[hi] = idp;
1305 return idp; /* <-- return if created */
1306 }
1307
1308 /* If an identifier with the name TEXT (a null-terminated string) has
1309 previously been referred to, return that node; otherwise return
1310 NULL_TREE. */
1311
1312 tree
1313 maybe_get_identifier (text)
1314 register char *text;
1315 {
1316 register int hi;
1317 register int i;
1318 register tree idp;
1319 register int len, hash_len;
1320
1321 /* Compute length of text in len. */
1322 for (len = 0; text[len]; len++);
1323
1324 /* Decide how much of that length to hash on */
1325 hash_len = len;
1326 if (warn_id_clash && len > id_clash_len)
1327 hash_len = id_clash_len;
1328
1329 /* Compute hash code */
1330 hi = hash_len * 613 + (unsigned) text[0];
1331 for (i = 1; i < hash_len; i += 2)
1332 hi = ((hi * 613) + (unsigned) (text[i]));
1333
1334 hi &= (1 << HASHBITS) - 1;
1335 hi %= MAX_HASH_TABLE;
1336
1337 /* Search table for identifier */
1338 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1339 if (IDENTIFIER_LENGTH (idp) == len
1340 && IDENTIFIER_POINTER (idp)[0] == text[0]
1341 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1342 return idp; /* <-- return if found */
1343
1344 return NULL_TREE;
1345 }
1346
1347 /* Enable warnings on similar identifiers (if requested).
1348 Done after the built-in identifiers are created. */
1349
1350 void
1351 start_identifier_warnings ()
1352 {
1353 do_identifier_warnings = 1;
1354 }
1355
1356 /* Record the size of an identifier node for the language in use.
1357 SIZE is the total size in bytes.
1358 This is called by the language-specific files. This must be
1359 called before allocating any identifiers. */
1360
1361 void
1362 set_identifier_size (size)
1363 int size;
1364 {
1365 tree_code_length[(int) IDENTIFIER_NODE]
1366 = (size - sizeof (struct tree_common)) / sizeof (tree);
1367 }
1368 \f
1369 /* Return a newly constructed INTEGER_CST node whose constant value
1370 is specified by the two ints LOW and HI.
1371 The TREE_TYPE is set to `int'.
1372
1373 This function should be used via the `build_int_2' macro. */
1374
1375 tree
1376 build_int_2_wide (low, hi)
1377 HOST_WIDE_INT low, hi;
1378 {
1379 register tree t = make_node (INTEGER_CST);
1380 TREE_INT_CST_LOW (t) = low;
1381 TREE_INT_CST_HIGH (t) = hi;
1382 TREE_TYPE (t) = integer_type_node;
1383 return t;
1384 }
1385
1386 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1387
1388 tree
1389 build_real (type, d)
1390 tree type;
1391 REAL_VALUE_TYPE d;
1392 {
1393 tree v;
1394 int overflow = 0;
1395
1396 /* Check for valid float value for this type on this target machine;
1397 if not, can print error message and store a valid value in D. */
1398 #ifdef CHECK_FLOAT_VALUE
1399 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1400 #endif
1401
1402 v = make_node (REAL_CST);
1403 TREE_TYPE (v) = type;
1404 TREE_REAL_CST (v) = d;
1405 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1406 return v;
1407 }
1408
1409 /* Return a new REAL_CST node whose type is TYPE
1410 and whose value is the integer value of the INTEGER_CST node I. */
1411
1412 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1413
1414 REAL_VALUE_TYPE
1415 real_value_from_int_cst (type, i)
1416 tree type, i;
1417 {
1418 REAL_VALUE_TYPE d;
1419 REAL_VALUE_TYPE e;
1420 /* Some 386 compilers mishandle unsigned int to float conversions,
1421 so introduce a temporary variable E to avoid those bugs. */
1422
1423 #ifdef REAL_ARITHMETIC
1424 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1425 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1426 TYPE_MODE (type));
1427 else
1428 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
1429 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
1430 #else /* not REAL_ARITHMETIC */
1431 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1432 {
1433 d = (double) (~ TREE_INT_CST_HIGH (i));
1434 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1435 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1436 d *= e;
1437 e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1438 d += e;
1439 d = (- d - 1.0);
1440 }
1441 else
1442 {
1443 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1444 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1445 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1446 d *= e;
1447 e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1448 d += e;
1449 }
1450 #endif /* not REAL_ARITHMETIC */
1451 return d;
1452 }
1453
1454 /* This function can't be implemented if we can't do arithmetic
1455 on the float representation. */
1456
1457 tree
1458 build_real_from_int_cst (type, i)
1459 tree type;
1460 tree i;
1461 {
1462 tree v;
1463 int overflow = TREE_OVERFLOW (i);
1464 REAL_VALUE_TYPE d;
1465 jmp_buf float_error;
1466
1467 v = make_node (REAL_CST);
1468 TREE_TYPE (v) = type;
1469
1470 if (setjmp (float_error))
1471 {
1472 d = dconst0;
1473 overflow = 1;
1474 goto got_it;
1475 }
1476
1477 set_float_handler (float_error);
1478
1479 #ifdef REAL_ARITHMETIC
1480 d = real_value_from_int_cst (type, i);
1481 #else
1482 d = REAL_VALUE_TRUNCATE (TYPE_MODE (type),
1483 real_value_from_int_cst (type, i));
1484 #endif
1485
1486 /* Check for valid float value for this type on this target machine. */
1487
1488 got_it:
1489 set_float_handler (NULL_PTR);
1490
1491 #ifdef CHECK_FLOAT_VALUE
1492 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1493 #endif
1494
1495 TREE_REAL_CST (v) = d;
1496 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1497 return v;
1498 }
1499
1500 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1501
1502 /* Return a newly constructed STRING_CST node whose value is
1503 the LEN characters at STR.
1504 The TREE_TYPE is not initialized. */
1505
1506 tree
1507 build_string (len, str)
1508 int len;
1509 char *str;
1510 {
1511 /* Put the string in saveable_obstack since it will be placed in the RTL
1512 for an "asm" statement and will also be kept around a while if
1513 deferring constant output in varasm.c. */
1514
1515 register tree s = make_node (STRING_CST);
1516 TREE_STRING_LENGTH (s) = len;
1517 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1518 return s;
1519 }
1520
1521 /* Return a newly constructed COMPLEX_CST node whose value is
1522 specified by the real and imaginary parts REAL and IMAG.
1523 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1524 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1525
1526 tree
1527 build_complex (type, real, imag)
1528 tree type;
1529 tree real, imag;
1530 {
1531 register tree t = make_node (COMPLEX_CST);
1532
1533 TREE_REALPART (t) = real;
1534 TREE_IMAGPART (t) = imag;
1535 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1536 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1537 TREE_CONSTANT_OVERFLOW (t)
1538 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1539 return t;
1540 }
1541
1542 /* Build a newly constructed TREE_VEC node of length LEN. */
1543
1544 tree
1545 make_tree_vec (len)
1546 int len;
1547 {
1548 register tree t;
1549 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1550 register struct obstack *obstack = current_obstack;
1551 register int i;
1552
1553 #ifdef GATHER_STATISTICS
1554 tree_node_counts[(int)vec_kind]++;
1555 tree_node_sizes[(int)vec_kind] += length;
1556 #endif
1557
1558 t = (tree) obstack_alloc (obstack, length);
1559
1560 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1561 ((int *) t)[i] = 0;
1562
1563 TREE_SET_CODE (t, TREE_VEC);
1564 TREE_VEC_LENGTH (t) = len;
1565 if (obstack == &permanent_obstack)
1566 TREE_PERMANENT (t) = 1;
1567
1568 return t;
1569 }
1570 \f
1571 /* Return 1 if EXPR is the integer constant zero or a complex constant
1572 of zero. */
1573
1574 int
1575 integer_zerop (expr)
1576 tree expr;
1577 {
1578 STRIP_NOPS (expr);
1579
1580 return ((TREE_CODE (expr) == INTEGER_CST
1581 && ! TREE_CONSTANT_OVERFLOW (expr)
1582 && TREE_INT_CST_LOW (expr) == 0
1583 && TREE_INT_CST_HIGH (expr) == 0)
1584 || (TREE_CODE (expr) == COMPLEX_CST
1585 && integer_zerop (TREE_REALPART (expr))
1586 && integer_zerop (TREE_IMAGPART (expr))));
1587 }
1588
1589 /* Return 1 if EXPR is the integer constant one or the corresponding
1590 complex constant. */
1591
1592 int
1593 integer_onep (expr)
1594 tree expr;
1595 {
1596 STRIP_NOPS (expr);
1597
1598 return ((TREE_CODE (expr) == INTEGER_CST
1599 && ! TREE_CONSTANT_OVERFLOW (expr)
1600 && TREE_INT_CST_LOW (expr) == 1
1601 && TREE_INT_CST_HIGH (expr) == 0)
1602 || (TREE_CODE (expr) == COMPLEX_CST
1603 && integer_onep (TREE_REALPART (expr))
1604 && integer_zerop (TREE_IMAGPART (expr))));
1605 }
1606
1607 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1608 it contains. Likewise for the corresponding complex constant. */
1609
1610 int
1611 integer_all_onesp (expr)
1612 tree expr;
1613 {
1614 register int prec;
1615 register int uns;
1616
1617 STRIP_NOPS (expr);
1618
1619 if (TREE_CODE (expr) == COMPLEX_CST
1620 && integer_all_onesp (TREE_REALPART (expr))
1621 && integer_zerop (TREE_IMAGPART (expr)))
1622 return 1;
1623
1624 else if (TREE_CODE (expr) != INTEGER_CST
1625 || TREE_CONSTANT_OVERFLOW (expr))
1626 return 0;
1627
1628 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1629 if (!uns)
1630 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1631
1632 /* Note that using TYPE_PRECISION here is wrong. We care about the
1633 actual bits, not the (arbitrary) range of the type. */
1634 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1635 if (prec >= HOST_BITS_PER_WIDE_INT)
1636 {
1637 int high_value, shift_amount;
1638
1639 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1640
1641 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1642 /* Can not handle precisions greater than twice the host int size. */
1643 abort ();
1644 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1645 /* Shifting by the host word size is undefined according to the ANSI
1646 standard, so we must handle this as a special case. */
1647 high_value = -1;
1648 else
1649 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1650
1651 return TREE_INT_CST_LOW (expr) == -1
1652 && TREE_INT_CST_HIGH (expr) == high_value;
1653 }
1654 else
1655 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1656 }
1657
1658 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1659 one bit on). */
1660
1661 int
1662 integer_pow2p (expr)
1663 tree expr;
1664 {
1665 int prec;
1666 HOST_WIDE_INT high, low;
1667
1668 STRIP_NOPS (expr);
1669
1670 if (TREE_CODE (expr) == COMPLEX_CST
1671 && integer_pow2p (TREE_REALPART (expr))
1672 && integer_zerop (TREE_IMAGPART (expr)))
1673 return 1;
1674
1675 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1676 return 0;
1677
1678 prec = (TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE
1679 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1680 high = TREE_INT_CST_HIGH (expr);
1681 low = TREE_INT_CST_LOW (expr);
1682
1683 /* First clear all bits that are beyond the type's precision in case
1684 we've been sign extended. */
1685
1686 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1687 ;
1688 else if (prec > HOST_BITS_PER_WIDE_INT)
1689 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1690 else
1691 {
1692 high = 0;
1693 if (prec < HOST_BITS_PER_WIDE_INT)
1694 low &= ~((HOST_WIDE_INT) (-1) << prec);
1695 }
1696
1697 if (high == 0 && low == 0)
1698 return 0;
1699
1700 return ((high == 0 && (low & (low - 1)) == 0)
1701 || (low == 0 && (high & (high - 1)) == 0));
1702 }
1703
1704 /* Return the power of two represented by a tree node known to be a
1705 power of two. */
1706
1707 int
1708 tree_log2 (expr)
1709 tree expr;
1710 {
1711 int prec;
1712 HOST_WIDE_INT high, low;
1713
1714 STRIP_NOPS (expr);
1715
1716 if (TREE_CODE (expr) == COMPLEX_CST)
1717 return tree_log2 (TREE_REALPART (expr));
1718
1719 prec = (TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE
1720 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1721
1722 high = TREE_INT_CST_HIGH (expr);
1723 low = TREE_INT_CST_LOW (expr);
1724
1725 /* First clear all bits that are beyond the type's precision in case
1726 we've been sign extended. */
1727
1728 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1729 ;
1730 else if (prec > HOST_BITS_PER_WIDE_INT)
1731 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1732 else
1733 {
1734 high = 0;
1735 if (prec < HOST_BITS_PER_WIDE_INT)
1736 low &= ~((HOST_WIDE_INT) (-1) << prec);
1737 }
1738
1739 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1740 : exact_log2 (low));
1741 }
1742
1743 /* Return 1 if EXPR is the real constant zero. */
1744
1745 int
1746 real_zerop (expr)
1747 tree expr;
1748 {
1749 STRIP_NOPS (expr);
1750
1751 return ((TREE_CODE (expr) == REAL_CST
1752 && ! TREE_CONSTANT_OVERFLOW (expr)
1753 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1754 || (TREE_CODE (expr) == COMPLEX_CST
1755 && real_zerop (TREE_REALPART (expr))
1756 && real_zerop (TREE_IMAGPART (expr))));
1757 }
1758
1759 /* Return 1 if EXPR is the real constant one in real or complex form. */
1760
1761 int
1762 real_onep (expr)
1763 tree expr;
1764 {
1765 STRIP_NOPS (expr);
1766
1767 return ((TREE_CODE (expr) == REAL_CST
1768 && ! TREE_CONSTANT_OVERFLOW (expr)
1769 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1770 || (TREE_CODE (expr) == COMPLEX_CST
1771 && real_onep (TREE_REALPART (expr))
1772 && real_zerop (TREE_IMAGPART (expr))));
1773 }
1774
1775 /* Return 1 if EXPR is the real constant two. */
1776
1777 int
1778 real_twop (expr)
1779 tree expr;
1780 {
1781 STRIP_NOPS (expr);
1782
1783 return ((TREE_CODE (expr) == REAL_CST
1784 && ! TREE_CONSTANT_OVERFLOW (expr)
1785 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1786 || (TREE_CODE (expr) == COMPLEX_CST
1787 && real_twop (TREE_REALPART (expr))
1788 && real_zerop (TREE_IMAGPART (expr))));
1789 }
1790
1791 /* Nonzero if EXP is a constant or a cast of a constant. */
1792
1793 int
1794 really_constant_p (exp)
1795 tree exp;
1796 {
1797 /* This is not quite the same as STRIP_NOPS. It does more. */
1798 while (TREE_CODE (exp) == NOP_EXPR
1799 || TREE_CODE (exp) == CONVERT_EXPR
1800 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1801 exp = TREE_OPERAND (exp, 0);
1802 return TREE_CONSTANT (exp);
1803 }
1804 \f
1805 /* Return first list element whose TREE_VALUE is ELEM.
1806 Return 0 if ELEM is not in LIST. */
1807
1808 tree
1809 value_member (elem, list)
1810 tree elem, list;
1811 {
1812 while (list)
1813 {
1814 if (elem == TREE_VALUE (list))
1815 return list;
1816 list = TREE_CHAIN (list);
1817 }
1818 return NULL_TREE;
1819 }
1820
1821 /* Return first list element whose TREE_PURPOSE is ELEM.
1822 Return 0 if ELEM is not in LIST. */
1823
1824 tree
1825 purpose_member (elem, list)
1826 tree elem, list;
1827 {
1828 while (list)
1829 {
1830 if (elem == TREE_PURPOSE (list))
1831 return list;
1832 list = TREE_CHAIN (list);
1833 }
1834 return NULL_TREE;
1835 }
1836
1837 /* Return first list element whose BINFO_TYPE is ELEM.
1838 Return 0 if ELEM is not in LIST. */
1839
1840 tree
1841 binfo_member (elem, list)
1842 tree elem, list;
1843 {
1844 while (list)
1845 {
1846 if (elem == BINFO_TYPE (list))
1847 return list;
1848 list = TREE_CHAIN (list);
1849 }
1850 return NULL_TREE;
1851 }
1852
1853 /* Return nonzero if ELEM is part of the chain CHAIN. */
1854
1855 int
1856 chain_member (elem, chain)
1857 tree elem, chain;
1858 {
1859 while (chain)
1860 {
1861 if (elem == chain)
1862 return 1;
1863 chain = TREE_CHAIN (chain);
1864 }
1865
1866 return 0;
1867 }
1868
1869 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1870 chain CHAIN. */
1871 /* ??? This function was added for machine specific attributes but is no
1872 longer used. It could be deleted if we could confirm all front ends
1873 don't use it. */
1874
1875 int
1876 chain_member_value (elem, chain)
1877 tree elem, chain;
1878 {
1879 while (chain)
1880 {
1881 if (elem == TREE_VALUE (chain))
1882 return 1;
1883 chain = TREE_CHAIN (chain);
1884 }
1885
1886 return 0;
1887 }
1888
1889 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1890 for any piece of chain CHAIN. */
1891 /* ??? This function was added for machine specific attributes but is no
1892 longer used. It could be deleted if we could confirm all front ends
1893 don't use it. */
1894
1895 int
1896 chain_member_purpose (elem, chain)
1897 tree elem, chain;
1898 {
1899 while (chain)
1900 {
1901 if (elem == TREE_PURPOSE (chain))
1902 return 1;
1903 chain = TREE_CHAIN (chain);
1904 }
1905
1906 return 0;
1907 }
1908
1909 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1910 We expect a null pointer to mark the end of the chain.
1911 This is the Lisp primitive `length'. */
1912
1913 int
1914 list_length (t)
1915 tree t;
1916 {
1917 register tree tail;
1918 register int len = 0;
1919
1920 for (tail = t; tail; tail = TREE_CHAIN (tail))
1921 len++;
1922
1923 return len;
1924 }
1925
1926 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1927 by modifying the last node in chain 1 to point to chain 2.
1928 This is the Lisp primitive `nconc'. */
1929
1930 tree
1931 chainon (op1, op2)
1932 tree op1, op2;
1933 {
1934
1935 if (op1)
1936 {
1937 register tree t1;
1938 register tree t2;
1939
1940 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1941 ;
1942 TREE_CHAIN (t1) = op2;
1943 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1944 if (t2 == t1)
1945 abort (); /* Circularity created. */
1946 return op1;
1947 }
1948 else return op2;
1949 }
1950
1951 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1952
1953 tree
1954 tree_last (chain)
1955 register tree chain;
1956 {
1957 register tree next;
1958 if (chain)
1959 while (next = TREE_CHAIN (chain))
1960 chain = next;
1961 return chain;
1962 }
1963
1964 /* Reverse the order of elements in the chain T,
1965 and return the new head of the chain (old last element). */
1966
1967 tree
1968 nreverse (t)
1969 tree t;
1970 {
1971 register tree prev = 0, decl, next;
1972 for (decl = t; decl; decl = next)
1973 {
1974 next = TREE_CHAIN (decl);
1975 TREE_CHAIN (decl) = prev;
1976 prev = decl;
1977 }
1978 return prev;
1979 }
1980
1981 /* Given a chain CHAIN of tree nodes,
1982 construct and return a list of those nodes. */
1983
1984 tree
1985 listify (chain)
1986 tree chain;
1987 {
1988 tree result = NULL_TREE;
1989 tree in_tail = chain;
1990 tree out_tail = NULL_TREE;
1991
1992 while (in_tail)
1993 {
1994 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1995 if (out_tail)
1996 TREE_CHAIN (out_tail) = next;
1997 else
1998 result = next;
1999 out_tail = next;
2000 in_tail = TREE_CHAIN (in_tail);
2001 }
2002
2003 return result;
2004 }
2005 \f
2006 /* Return a newly created TREE_LIST node whose
2007 purpose and value fields are PARM and VALUE. */
2008
2009 tree
2010 build_tree_list (parm, value)
2011 tree parm, value;
2012 {
2013 register tree t = make_node (TREE_LIST);
2014 TREE_PURPOSE (t) = parm;
2015 TREE_VALUE (t) = value;
2016 return t;
2017 }
2018
2019 /* Similar, but build on the temp_decl_obstack. */
2020
2021 tree
2022 build_decl_list (parm, value)
2023 tree parm, value;
2024 {
2025 register tree node;
2026 register struct obstack *ambient_obstack = current_obstack;
2027 current_obstack = &temp_decl_obstack;
2028 node = build_tree_list (parm, value);
2029 current_obstack = ambient_obstack;
2030 return node;
2031 }
2032
2033 /* Similar, but build on the expression_obstack. */
2034
2035 tree
2036 build_expr_list (parm, value)
2037 tree parm, value;
2038 {
2039 register tree node;
2040 register struct obstack *ambient_obstack = current_obstack;
2041 current_obstack = expression_obstack;
2042 node = build_tree_list (parm, value);
2043 current_obstack = ambient_obstack;
2044 return node;
2045 }
2046
2047 /* Return a newly created TREE_LIST node whose
2048 purpose and value fields are PARM and VALUE
2049 and whose TREE_CHAIN is CHAIN. */
2050
2051 tree
2052 tree_cons (purpose, value, chain)
2053 tree purpose, value, chain;
2054 {
2055 #if 0
2056 register tree node = make_node (TREE_LIST);
2057 #else
2058 register int i;
2059 register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
2060 #ifdef GATHER_STATISTICS
2061 tree_node_counts[(int)x_kind]++;
2062 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
2063 #endif
2064
2065 for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
2066 ((int *) node)[i] = 0;
2067
2068 TREE_SET_CODE (node, TREE_LIST);
2069 if (current_obstack == &permanent_obstack)
2070 TREE_PERMANENT (node) = 1;
2071 #endif
2072
2073 TREE_CHAIN (node) = chain;
2074 TREE_PURPOSE (node) = purpose;
2075 TREE_VALUE (node) = value;
2076 return node;
2077 }
2078
2079 /* Similar, but build on the temp_decl_obstack. */
2080
2081 tree
2082 decl_tree_cons (purpose, value, chain)
2083 tree purpose, value, chain;
2084 {
2085 register tree node;
2086 register struct obstack *ambient_obstack = current_obstack;
2087 current_obstack = &temp_decl_obstack;
2088 node = tree_cons (purpose, value, chain);
2089 current_obstack = ambient_obstack;
2090 return node;
2091 }
2092
2093 /* Similar, but build on the expression_obstack. */
2094
2095 tree
2096 expr_tree_cons (purpose, value, chain)
2097 tree purpose, value, chain;
2098 {
2099 register tree node;
2100 register struct obstack *ambient_obstack = current_obstack;
2101 current_obstack = expression_obstack;
2102 node = tree_cons (purpose, value, chain);
2103 current_obstack = ambient_obstack;
2104 return node;
2105 }
2106
2107 /* Same as `tree_cons' but make a permanent object. */
2108
2109 tree
2110 perm_tree_cons (purpose, value, chain)
2111 tree purpose, value, chain;
2112 {
2113 register tree node;
2114 register struct obstack *ambient_obstack = current_obstack;
2115 current_obstack = &permanent_obstack;
2116
2117 node = tree_cons (purpose, value, chain);
2118 current_obstack = ambient_obstack;
2119 return node;
2120 }
2121
2122 /* Same as `tree_cons', but make this node temporary, regardless. */
2123
2124 tree
2125 temp_tree_cons (purpose, value, chain)
2126 tree purpose, value, chain;
2127 {
2128 register tree node;
2129 register struct obstack *ambient_obstack = current_obstack;
2130 current_obstack = &temporary_obstack;
2131
2132 node = tree_cons (purpose, value, chain);
2133 current_obstack = ambient_obstack;
2134 return node;
2135 }
2136
2137 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
2138
2139 tree
2140 saveable_tree_cons (purpose, value, chain)
2141 tree purpose, value, chain;
2142 {
2143 register tree node;
2144 register struct obstack *ambient_obstack = current_obstack;
2145 current_obstack = saveable_obstack;
2146
2147 node = tree_cons (purpose, value, chain);
2148 current_obstack = ambient_obstack;
2149 return node;
2150 }
2151 \f
2152 /* Return the size nominally occupied by an object of type TYPE
2153 when it resides in memory. The value is measured in units of bytes,
2154 and its data type is that normally used for type sizes
2155 (which is the first type created by make_signed_type or
2156 make_unsigned_type). */
2157
2158 tree
2159 size_in_bytes (type)
2160 tree type;
2161 {
2162 tree t;
2163
2164 if (type == error_mark_node)
2165 return integer_zero_node;
2166 type = TYPE_MAIN_VARIANT (type);
2167 if (TYPE_SIZE (type) == 0)
2168 {
2169 incomplete_type_error (NULL_TREE, type);
2170 return integer_zero_node;
2171 }
2172 t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
2173 size_int (BITS_PER_UNIT));
2174 if (TREE_CODE (t) == INTEGER_CST)
2175 force_fit_type (t, 0);
2176 return t;
2177 }
2178
2179 /* Return the size of TYPE (in bytes) as an integer,
2180 or return -1 if the size can vary. */
2181
2182 int
2183 int_size_in_bytes (type)
2184 tree type;
2185 {
2186 unsigned int size;
2187 if (type == error_mark_node)
2188 return 0;
2189 type = TYPE_MAIN_VARIANT (type);
2190 if (TYPE_SIZE (type) == 0)
2191 return -1;
2192 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2193 return -1;
2194 if (TREE_INT_CST_HIGH (TYPE_SIZE (type)) != 0)
2195 {
2196 tree t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
2197 size_int (BITS_PER_UNIT));
2198 return TREE_INT_CST_LOW (t);
2199 }
2200 size = TREE_INT_CST_LOW (TYPE_SIZE (type));
2201 return (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
2202 }
2203 \f
2204 /* Return, as a tree node, the number of elements for TYPE (which is an
2205 ARRAY_TYPE) minus one. This counts only elements of the top array.
2206
2207 Don't let any SAVE_EXPRs escape; if we are called as part of a cleanup
2208 action, they would get unsaved. */
2209
2210 tree
2211 array_type_nelts (type)
2212 tree type;
2213 {
2214 tree index_type, min, max;
2215
2216 /* If they did it with unspecified bounds, then we should have already
2217 given an error about it before we got here. */
2218 if (! TYPE_DOMAIN (type))
2219 return error_mark_node;
2220
2221 index_type = TYPE_DOMAIN (type);
2222 min = TYPE_MIN_VALUE (index_type);
2223 max = TYPE_MAX_VALUE (index_type);
2224
2225 if (! TREE_CONSTANT (min))
2226 {
2227 STRIP_NOPS (min);
2228 if (TREE_CODE (min) == SAVE_EXPR)
2229 min = build (RTL_EXPR, TREE_TYPE (TYPE_MIN_VALUE (index_type)), 0,
2230 SAVE_EXPR_RTL (min));
2231 else
2232 min = TYPE_MIN_VALUE (index_type);
2233 }
2234
2235 if (! TREE_CONSTANT (max))
2236 {
2237 STRIP_NOPS (max);
2238 if (TREE_CODE (max) == SAVE_EXPR)
2239 max = build (RTL_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)), 0,
2240 SAVE_EXPR_RTL (max));
2241 else
2242 max = TYPE_MAX_VALUE (index_type);
2243 }
2244
2245 return (integer_zerop (min)
2246 ? max
2247 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
2248 }
2249 \f
2250 /* Return nonzero if arg is static -- a reference to an object in
2251 static storage. This is not the same as the C meaning of `static'. */
2252
2253 int
2254 staticp (arg)
2255 tree arg;
2256 {
2257 switch (TREE_CODE (arg))
2258 {
2259 case FUNCTION_DECL:
2260 /* Nested functions aren't static, since taking their address
2261 involves a trampoline. */
2262 return decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg);
2263 case VAR_DECL:
2264 return TREE_STATIC (arg) || DECL_EXTERNAL (arg);
2265
2266 case CONSTRUCTOR:
2267 return TREE_STATIC (arg);
2268
2269 case STRING_CST:
2270 return 1;
2271
2272 /* If we are referencing a bitfield, we can't evaluate an
2273 ADDR_EXPR at compile time and so it isn't a constant. */
2274 case COMPONENT_REF:
2275 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
2276 && staticp (TREE_OPERAND (arg, 0)));
2277
2278 case BIT_FIELD_REF:
2279 return 0;
2280
2281 #if 0
2282 /* This case is technically correct, but results in setting
2283 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
2284 compile time. */
2285 case INDIRECT_REF:
2286 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2287 #endif
2288
2289 case ARRAY_REF:
2290 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2291 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2292 return staticp (TREE_OPERAND (arg, 0));
2293
2294 default:
2295 return 0;
2296 }
2297 }
2298 \f
2299 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2300 Do this to any expression which may be used in more than one place,
2301 but must be evaluated only once.
2302
2303 Normally, expand_expr would reevaluate the expression each time.
2304 Calling save_expr produces something that is evaluated and recorded
2305 the first time expand_expr is called on it. Subsequent calls to
2306 expand_expr just reuse the recorded value.
2307
2308 The call to expand_expr that generates code that actually computes
2309 the value is the first call *at compile time*. Subsequent calls
2310 *at compile time* generate code to use the saved value.
2311 This produces correct result provided that *at run time* control
2312 always flows through the insns made by the first expand_expr
2313 before reaching the other places where the save_expr was evaluated.
2314 You, the caller of save_expr, must make sure this is so.
2315
2316 Constants, and certain read-only nodes, are returned with no
2317 SAVE_EXPR because that is safe. Expressions containing placeholders
2318 are not touched; see tree.def for an explanation of what these
2319 are used for. */
2320
2321 tree
2322 save_expr (expr)
2323 tree expr;
2324 {
2325 register tree t = fold (expr);
2326
2327 /* We don't care about whether this can be used as an lvalue in this
2328 context. */
2329 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2330 t = TREE_OPERAND (t, 0);
2331
2332 /* If the tree evaluates to a constant, then we don't want to hide that
2333 fact (i.e. this allows further folding, and direct checks for constants).
2334 However, a read-only object that has side effects cannot be bypassed.
2335 Since it is no problem to reevaluate literals, we just return the
2336 literal node. */
2337
2338 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2339 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
2340 return t;
2341
2342 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2343 it means that the size or offset of some field of an object depends on
2344 the value within another field.
2345
2346 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2347 and some variable since it would then need to be both evaluated once and
2348 evaluated more than once. Front-ends must assure this case cannot
2349 happen by surrounding any such subexpressions in their own SAVE_EXPR
2350 and forcing evaluation at the proper time. */
2351 if (contains_placeholder_p (t))
2352 return t;
2353
2354 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2355
2356 /* This expression might be placed ahead of a jump to ensure that the
2357 value was computed on both sides of the jump. So make sure it isn't
2358 eliminated as dead. */
2359 TREE_SIDE_EFFECTS (t) = 1;
2360 return t;
2361 }
2362
2363 /* Arrange for an expression to be expanded multiple independent
2364 times. This is useful for cleanup actions, as the backend can
2365 expand them multiple times in different places. */
2366
2367 tree
2368 unsave_expr (expr)
2369 tree expr;
2370 {
2371 tree t;
2372
2373 /* If this is already protected, no sense in protecting it again. */
2374 if (TREE_CODE (expr) == UNSAVE_EXPR)
2375 return expr;
2376
2377 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
2378 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
2379 return t;
2380 }
2381
2382 /* Modify a tree in place so that all the evaluate only once things
2383 are cleared out. Return the EXPR given. */
2384
2385 tree
2386 unsave_expr_now (expr)
2387 tree expr;
2388 {
2389 enum tree_code code;
2390 register int i;
2391 int first_rtl;
2392
2393 if (expr == NULL_TREE)
2394 return expr;
2395
2396 code = TREE_CODE (expr);
2397 first_rtl = tree_code_length [(int) code];
2398 switch (code)
2399 {
2400 case SAVE_EXPR:
2401 SAVE_EXPR_RTL (expr) = 0;
2402 first_rtl = 2;
2403 break;
2404
2405 case TARGET_EXPR:
2406 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
2407 TREE_OPERAND (expr, 3) = NULL_TREE;
2408 break;
2409
2410 case RTL_EXPR:
2411 /* I don't yet know how to emit a sequence multiple times. */
2412 if (RTL_EXPR_SEQUENCE (expr) != 0)
2413 abort ();
2414 first_rtl = 0;
2415 break;
2416
2417 case CALL_EXPR:
2418 CALL_EXPR_RTL (expr) = 0;
2419 if (TREE_OPERAND (expr, 1)
2420 && TREE_CODE (TREE_OPERAND (expr, 1)) == TREE_LIST)
2421 {
2422 tree exp = TREE_OPERAND (expr, 1);
2423 while (exp)
2424 {
2425 unsave_expr_now (TREE_VALUE (exp));
2426 exp = TREE_CHAIN (exp);
2427 }
2428 }
2429 first_rtl = 2;
2430 break;
2431
2432 case WITH_CLEANUP_EXPR:
2433 /* Should be defined to be 2. */
2434 first_rtl = 1;
2435 break;
2436
2437 case METHOD_CALL_EXPR:
2438 first_rtl = 3;
2439 break;
2440
2441 default:
2442 break;
2443 }
2444
2445 switch (TREE_CODE_CLASS (code))
2446 {
2447 case 'c': /* a constant */
2448 case 't': /* a type node */
2449 case 'x': /* something random, like an identifier or an ERROR_MARK. */
2450 case 'd': /* A decl node */
2451 case 'b': /* A block node */
2452 return expr;
2453
2454 case 'e': /* an expression */
2455 case 'r': /* a reference */
2456 case 's': /* an expression with side effects */
2457 case '<': /* a comparison expression */
2458 case '2': /* a binary arithmetic expression */
2459 case '1': /* a unary arithmetic expression */
2460 for (i = first_rtl - 1; i >= 0; i--)
2461 unsave_expr_now (TREE_OPERAND (expr, i));
2462 return expr;
2463
2464 default:
2465 abort ();
2466 }
2467 }
2468 \f
2469 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2470 or offset that depends on a field within a record. */
2471
2472 int
2473 contains_placeholder_p (exp)
2474 tree exp;
2475 {
2476 register enum tree_code code = TREE_CODE (exp);
2477 int result;
2478
2479 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2480 in it since it is supplying a value for it. */
2481 if (code == WITH_RECORD_EXPR)
2482 return 0;
2483 else if (code == PLACEHOLDER_EXPR)
2484 return 1;
2485
2486 switch (TREE_CODE_CLASS (code))
2487 {
2488 case 'r':
2489 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2490 position computations since they will be converted into a
2491 WITH_RECORD_EXPR involving the reference, which will assume
2492 here will be valid. */
2493 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2494
2495 case 'x':
2496 if (code == TREE_LIST)
2497 return (contains_placeholder_p (TREE_VALUE (exp))
2498 || (TREE_CHAIN (exp) != 0
2499 && contains_placeholder_p (TREE_CHAIN (exp))));
2500 break;
2501
2502 case '1':
2503 case '2': case '<':
2504 case 'e':
2505 switch (code)
2506 {
2507 case COMPOUND_EXPR:
2508 /* Ignoring the first operand isn't quite right, but works best. */
2509 return contains_placeholder_p (TREE_OPERAND (exp, 1));
2510
2511 case RTL_EXPR:
2512 case CONSTRUCTOR:
2513 return 0;
2514
2515 case COND_EXPR:
2516 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2517 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2518 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
2519
2520 case SAVE_EXPR:
2521 /* If we already know this doesn't have a placeholder, don't
2522 check again. */
2523 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
2524 return 0;
2525
2526 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
2527 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
2528 if (result)
2529 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
2530
2531 return result;
2532
2533 case CALL_EXPR:
2534 return (TREE_OPERAND (exp, 1) != 0
2535 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
2536
2537 default:
2538 break;
2539 }
2540
2541 switch (tree_code_length[(int) code])
2542 {
2543 case 1:
2544 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2545 case 2:
2546 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2547 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
2548 default:
2549 return 0;
2550 }
2551
2552 default:
2553 return 0;
2554 }
2555 }
2556 \f
2557 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2558 return a tree with all occurrences of references to F in a
2559 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2560 contains only arithmetic expressions or a CALL_EXPR with a
2561 PLACEHOLDER_EXPR occurring only in its arglist. */
2562
2563 tree
2564 substitute_in_expr (exp, f, r)
2565 tree exp;
2566 tree f;
2567 tree r;
2568 {
2569 enum tree_code code = TREE_CODE (exp);
2570 tree op0, op1, op2;
2571 tree new;
2572 tree inner;
2573
2574 switch (TREE_CODE_CLASS (code))
2575 {
2576 case 'c':
2577 case 'd':
2578 return exp;
2579
2580 case 'x':
2581 if (code == PLACEHOLDER_EXPR)
2582 return exp;
2583 else if (code == TREE_LIST)
2584 {
2585 op0 = (TREE_CHAIN (exp) == 0
2586 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2587 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2588 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2589 return exp;
2590
2591 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2592 }
2593
2594 abort ();
2595
2596 case '1':
2597 case '2':
2598 case '<':
2599 case 'e':
2600 switch (tree_code_length[(int) code])
2601 {
2602 case 1:
2603 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2604 if (op0 == TREE_OPERAND (exp, 0))
2605 return exp;
2606
2607 new = fold (build1 (code, TREE_TYPE (exp), op0));
2608 break;
2609
2610 case 2:
2611 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2612 could, but we don't support it. */
2613 if (code == RTL_EXPR)
2614 return exp;
2615 else if (code == CONSTRUCTOR)
2616 abort ();
2617
2618 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2619 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2620 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2621 return exp;
2622
2623 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2624 break;
2625
2626 case 3:
2627 /* It cannot be that anything inside a SAVE_EXPR contains a
2628 PLACEHOLDER_EXPR. */
2629 if (code == SAVE_EXPR)
2630 return exp;
2631
2632 else if (code == CALL_EXPR)
2633 {
2634 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2635 if (op1 == TREE_OPERAND (exp, 1))
2636 return exp;
2637
2638 return build (code, TREE_TYPE (exp),
2639 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2640 }
2641
2642 else if (code != COND_EXPR)
2643 abort ();
2644
2645 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2646 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2647 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2648 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2649 && op2 == TREE_OPERAND (exp, 2))
2650 return exp;
2651
2652 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2653 break;
2654
2655 default:
2656 abort ();
2657 }
2658
2659 break;
2660
2661 case 'r':
2662 switch (code)
2663 {
2664 case COMPONENT_REF:
2665 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2666 and it is the right field, replace it with R. */
2667 for (inner = TREE_OPERAND (exp, 0);
2668 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2669 inner = TREE_OPERAND (inner, 0))
2670 ;
2671 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2672 && TREE_OPERAND (exp, 1) == f)
2673 return r;
2674
2675 /* If this expression hasn't been completed let, leave it
2676 alone. */
2677 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2678 && TREE_TYPE (inner) == 0)
2679 return exp;
2680
2681 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2682 if (op0 == TREE_OPERAND (exp, 0))
2683 return exp;
2684
2685 new = fold (build (code, TREE_TYPE (exp), op0,
2686 TREE_OPERAND (exp, 1)));
2687 break;
2688
2689 case BIT_FIELD_REF:
2690 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2691 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2692 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2693 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2694 && op2 == TREE_OPERAND (exp, 2))
2695 return exp;
2696
2697 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2698 break;
2699
2700 case INDIRECT_REF:
2701 case BUFFER_REF:
2702 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2703 if (op0 == TREE_OPERAND (exp, 0))
2704 return exp;
2705
2706 new = fold (build1 (code, TREE_TYPE (exp), op0));
2707 break;
2708
2709 default:
2710 abort ();
2711 }
2712 break;
2713
2714 default:
2715 abort ();
2716 }
2717
2718 TREE_READONLY (new) = TREE_READONLY (exp);
2719 return new;
2720 }
2721 \f
2722 /* Stabilize a reference so that we can use it any number of times
2723 without causing its operands to be evaluated more than once.
2724 Returns the stabilized reference. This works by means of save_expr,
2725 so see the caveats in the comments about save_expr.
2726
2727 Also allows conversion expressions whose operands are references.
2728 Any other kind of expression is returned unchanged. */
2729
2730 tree
2731 stabilize_reference (ref)
2732 tree ref;
2733 {
2734 register tree result;
2735 register enum tree_code code = TREE_CODE (ref);
2736
2737 switch (code)
2738 {
2739 case VAR_DECL:
2740 case PARM_DECL:
2741 case RESULT_DECL:
2742 /* No action is needed in this case. */
2743 return ref;
2744
2745 case NOP_EXPR:
2746 case CONVERT_EXPR:
2747 case FLOAT_EXPR:
2748 case FIX_TRUNC_EXPR:
2749 case FIX_FLOOR_EXPR:
2750 case FIX_ROUND_EXPR:
2751 case FIX_CEIL_EXPR:
2752 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2753 break;
2754
2755 case INDIRECT_REF:
2756 result = build_nt (INDIRECT_REF,
2757 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2758 break;
2759
2760 case COMPONENT_REF:
2761 result = build_nt (COMPONENT_REF,
2762 stabilize_reference (TREE_OPERAND (ref, 0)),
2763 TREE_OPERAND (ref, 1));
2764 break;
2765
2766 case BIT_FIELD_REF:
2767 result = build_nt (BIT_FIELD_REF,
2768 stabilize_reference (TREE_OPERAND (ref, 0)),
2769 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2770 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2771 break;
2772
2773 case ARRAY_REF:
2774 result = build_nt (ARRAY_REF,
2775 stabilize_reference (TREE_OPERAND (ref, 0)),
2776 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2777 break;
2778
2779 case COMPOUND_EXPR:
2780 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2781 it wouldn't be ignored. This matters when dealing with
2782 volatiles. */
2783 return stabilize_reference_1 (ref);
2784
2785 case RTL_EXPR:
2786 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2787 save_expr (build1 (ADDR_EXPR,
2788 build_pointer_type (TREE_TYPE (ref)),
2789 ref)));
2790 break;
2791
2792
2793 /* If arg isn't a kind of lvalue we recognize, make no change.
2794 Caller should recognize the error for an invalid lvalue. */
2795 default:
2796 return ref;
2797
2798 case ERROR_MARK:
2799 return error_mark_node;
2800 }
2801
2802 TREE_TYPE (result) = TREE_TYPE (ref);
2803 TREE_READONLY (result) = TREE_READONLY (ref);
2804 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2805 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2806 TREE_RAISES (result) = TREE_RAISES (ref);
2807
2808 return result;
2809 }
2810
2811 /* Subroutine of stabilize_reference; this is called for subtrees of
2812 references. Any expression with side-effects must be put in a SAVE_EXPR
2813 to ensure that it is only evaluated once.
2814
2815 We don't put SAVE_EXPR nodes around everything, because assigning very
2816 simple expressions to temporaries causes us to miss good opportunities
2817 for optimizations. Among other things, the opportunity to fold in the
2818 addition of a constant into an addressing mode often gets lost, e.g.
2819 "y[i+1] += x;". In general, we take the approach that we should not make
2820 an assignment unless we are forced into it - i.e., that any non-side effect
2821 operator should be allowed, and that cse should take care of coalescing
2822 multiple utterances of the same expression should that prove fruitful. */
2823
2824 tree
2825 stabilize_reference_1 (e)
2826 tree e;
2827 {
2828 register tree result;
2829 register enum tree_code code = TREE_CODE (e);
2830
2831 /* We cannot ignore const expressions because it might be a reference
2832 to a const array but whose index contains side-effects. But we can
2833 ignore things that are actual constant or that already have been
2834 handled by this function. */
2835
2836 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2837 return e;
2838
2839 switch (TREE_CODE_CLASS (code))
2840 {
2841 case 'x':
2842 case 't':
2843 case 'd':
2844 case 'b':
2845 case '<':
2846 case 's':
2847 case 'e':
2848 case 'r':
2849 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2850 so that it will only be evaluated once. */
2851 /* The reference (r) and comparison (<) classes could be handled as
2852 below, but it is generally faster to only evaluate them once. */
2853 if (TREE_SIDE_EFFECTS (e))
2854 return save_expr (e);
2855 return e;
2856
2857 case 'c':
2858 /* Constants need no processing. In fact, we should never reach
2859 here. */
2860 return e;
2861
2862 case '2':
2863 /* Division is slow and tends to be compiled with jumps,
2864 especially the division by powers of 2 that is often
2865 found inside of an array reference. So do it just once. */
2866 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2867 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2868 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2869 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2870 return save_expr (e);
2871 /* Recursively stabilize each operand. */
2872 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2873 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2874 break;
2875
2876 case '1':
2877 /* Recursively stabilize each operand. */
2878 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2879 break;
2880
2881 default:
2882 abort ();
2883 }
2884
2885 TREE_TYPE (result) = TREE_TYPE (e);
2886 TREE_READONLY (result) = TREE_READONLY (e);
2887 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2888 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2889 TREE_RAISES (result) = TREE_RAISES (e);
2890
2891 return result;
2892 }
2893 \f
2894 /* Low-level constructors for expressions. */
2895
2896 /* Build an expression of code CODE, data type TYPE,
2897 and operands as specified by the arguments ARG1 and following arguments.
2898 Expressions and reference nodes can be created this way.
2899 Constants, decls, types and misc nodes cannot be. */
2900
2901 tree
2902 build VPROTO((enum tree_code code, tree tt, ...))
2903 {
2904 #ifndef __STDC__
2905 enum tree_code code;
2906 tree tt;
2907 #endif
2908 va_list p;
2909 register tree t;
2910 register int length;
2911 register int i;
2912
2913 VA_START (p, tt);
2914
2915 #ifndef __STDC__
2916 code = va_arg (p, enum tree_code);
2917 tt = va_arg (p, tree);
2918 #endif
2919
2920 t = make_node (code);
2921 length = tree_code_length[(int) code];
2922 TREE_TYPE (t) = tt;
2923
2924 if (length == 2)
2925 {
2926 /* This is equivalent to the loop below, but faster. */
2927 register tree arg0 = va_arg (p, tree);
2928 register tree arg1 = va_arg (p, tree);
2929 TREE_OPERAND (t, 0) = arg0;
2930 TREE_OPERAND (t, 1) = arg1;
2931 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
2932 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
2933 TREE_SIDE_EFFECTS (t) = 1;
2934 TREE_RAISES (t)
2935 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
2936 }
2937 else if (length == 1)
2938 {
2939 register tree arg0 = va_arg (p, tree);
2940
2941 /* Call build1 for this! */
2942 if (TREE_CODE_CLASS (code) != 's')
2943 abort ();
2944 TREE_OPERAND (t, 0) = arg0;
2945 if (arg0 && TREE_SIDE_EFFECTS (arg0))
2946 TREE_SIDE_EFFECTS (t) = 1;
2947 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
2948 }
2949 else
2950 {
2951 for (i = 0; i < length; i++)
2952 {
2953 register tree operand = va_arg (p, tree);
2954 TREE_OPERAND (t, i) = operand;
2955 if (operand)
2956 {
2957 if (TREE_SIDE_EFFECTS (operand))
2958 TREE_SIDE_EFFECTS (t) = 1;
2959 if (TREE_RAISES (operand))
2960 TREE_RAISES (t) = 1;
2961 }
2962 }
2963 }
2964 va_end (p);
2965 return t;
2966 }
2967
2968 /* Same as above, but only builds for unary operators.
2969 Saves lions share of calls to `build'; cuts down use
2970 of varargs, which is expensive for RISC machines. */
2971
2972 tree
2973 build1 (code, type, node)
2974 enum tree_code code;
2975 tree type;
2976 tree node;
2977 {
2978 register struct obstack *obstack = expression_obstack;
2979 register int i, length;
2980 register tree_node_kind kind;
2981 register tree t;
2982
2983 #ifdef GATHER_STATISTICS
2984 if (TREE_CODE_CLASS (code) == 'r')
2985 kind = r_kind;
2986 else
2987 kind = e_kind;
2988 #endif
2989
2990 length = sizeof (struct tree_exp);
2991
2992 t = (tree) obstack_alloc (obstack, length);
2993
2994 #ifdef GATHER_STATISTICS
2995 tree_node_counts[(int)kind]++;
2996 tree_node_sizes[(int)kind] += length;
2997 #endif
2998
2999 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
3000 ((int *) t)[i] = 0;
3001
3002 TREE_TYPE (t) = type;
3003 TREE_SET_CODE (t, code);
3004
3005 if (obstack == &permanent_obstack)
3006 TREE_PERMANENT (t) = 1;
3007
3008 TREE_OPERAND (t, 0) = node;
3009 if (node)
3010 {
3011 if (TREE_SIDE_EFFECTS (node))
3012 TREE_SIDE_EFFECTS (t) = 1;
3013 if (TREE_RAISES (node))
3014 TREE_RAISES (t) = 1;
3015 }
3016
3017 return t;
3018 }
3019
3020 /* Similar except don't specify the TREE_TYPE
3021 and leave the TREE_SIDE_EFFECTS as 0.
3022 It is permissible for arguments to be null,
3023 or even garbage if their values do not matter. */
3024
3025 tree
3026 build_nt VPROTO((enum tree_code code, ...))
3027 {
3028 #ifndef __STDC__
3029 enum tree_code code;
3030 #endif
3031 va_list p;
3032 register tree t;
3033 register int length;
3034 register int i;
3035
3036 VA_START (p, code);
3037
3038 #ifndef __STDC__
3039 code = va_arg (p, enum tree_code);
3040 #endif
3041
3042 t = make_node (code);
3043 length = tree_code_length[(int) code];
3044
3045 for (i = 0; i < length; i++)
3046 TREE_OPERAND (t, i) = va_arg (p, tree);
3047
3048 va_end (p);
3049 return t;
3050 }
3051
3052 /* Similar to `build_nt', except we build
3053 on the temp_decl_obstack, regardless. */
3054
3055 tree
3056 build_parse_node VPROTO((enum tree_code code, ...))
3057 {
3058 #ifndef __STDC__
3059 enum tree_code code;
3060 #endif
3061 register struct obstack *ambient_obstack = expression_obstack;
3062 va_list p;
3063 register tree t;
3064 register int length;
3065 register int i;
3066
3067 VA_START (p, code);
3068
3069 #ifndef __STDC__
3070 code = va_arg (p, enum tree_code);
3071 #endif
3072
3073 expression_obstack = &temp_decl_obstack;
3074
3075 t = make_node (code);
3076 length = tree_code_length[(int) code];
3077
3078 for (i = 0; i < length; i++)
3079 TREE_OPERAND (t, i) = va_arg (p, tree);
3080
3081 va_end (p);
3082 expression_obstack = ambient_obstack;
3083 return t;
3084 }
3085
3086 #if 0
3087 /* Commented out because this wants to be done very
3088 differently. See cp-lex.c. */
3089 tree
3090 build_op_identifier (op1, op2)
3091 tree op1, op2;
3092 {
3093 register tree t = make_node (OP_IDENTIFIER);
3094 TREE_PURPOSE (t) = op1;
3095 TREE_VALUE (t) = op2;
3096 return t;
3097 }
3098 #endif
3099 \f
3100 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3101 We do NOT enter this node in any sort of symbol table.
3102
3103 layout_decl is used to set up the decl's storage layout.
3104 Other slots are initialized to 0 or null pointers. */
3105
3106 tree
3107 build_decl (code, name, type)
3108 enum tree_code code;
3109 tree name, type;
3110 {
3111 register tree t;
3112
3113 t = make_node (code);
3114
3115 /* if (type == error_mark_node)
3116 type = integer_type_node; */
3117 /* That is not done, deliberately, so that having error_mark_node
3118 as the type can suppress useless errors in the use of this variable. */
3119
3120 DECL_NAME (t) = name;
3121 DECL_ASSEMBLER_NAME (t) = name;
3122 TREE_TYPE (t) = type;
3123
3124 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3125 layout_decl (t, 0);
3126 else if (code == FUNCTION_DECL)
3127 DECL_MODE (t) = FUNCTION_MODE;
3128
3129 return t;
3130 }
3131 \f
3132 /* BLOCK nodes are used to represent the structure of binding contours
3133 and declarations, once those contours have been exited and their contents
3134 compiled. This information is used for outputting debugging info. */
3135
3136 tree
3137 build_block (vars, tags, subblocks, supercontext, chain)
3138 tree vars, tags, subblocks, supercontext, chain;
3139 {
3140 register tree block = make_node (BLOCK);
3141 BLOCK_VARS (block) = vars;
3142 BLOCK_TYPE_TAGS (block) = tags;
3143 BLOCK_SUBBLOCKS (block) = subblocks;
3144 BLOCK_SUPERCONTEXT (block) = supercontext;
3145 BLOCK_CHAIN (block) = chain;
3146 return block;
3147 }
3148 \f
3149 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
3150 is ATTRIBUTE. */
3151
3152 tree
3153 build_decl_attribute_variant (ddecl, attribute)
3154 tree ddecl, attribute;
3155 {
3156 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
3157 return ddecl;
3158 }
3159
3160 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3161 is ATTRIBUTE.
3162
3163 Record such modified types already made so we don't make duplicates. */
3164
3165 tree
3166 build_type_attribute_variant (ttype, attribute)
3167 tree ttype, attribute;
3168 {
3169 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3170 {
3171 register int hashcode;
3172 register struct obstack *ambient_obstack = current_obstack;
3173 tree ntype;
3174
3175 if (ambient_obstack != &permanent_obstack)
3176 current_obstack = TYPE_OBSTACK (ttype);
3177
3178 ntype = copy_node (ttype);
3179 current_obstack = ambient_obstack;
3180
3181 TYPE_POINTER_TO (ntype) = 0;
3182 TYPE_REFERENCE_TO (ntype) = 0;
3183 TYPE_ATTRIBUTES (ntype) = attribute;
3184
3185 /* Create a new main variant of TYPE. */
3186 TYPE_MAIN_VARIANT (ntype) = ntype;
3187 TYPE_NEXT_VARIANT (ntype) = 0;
3188 TYPE_READONLY (ntype) = TYPE_VOLATILE (ntype) = 0;
3189
3190 hashcode = TYPE_HASH (TREE_CODE (ntype))
3191 + TYPE_HASH (TREE_TYPE (ntype))
3192 + attribute_hash_list (attribute);
3193
3194 switch (TREE_CODE (ntype))
3195 {
3196 case FUNCTION_TYPE:
3197 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
3198 break;
3199 case ARRAY_TYPE:
3200 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
3201 break;
3202 case INTEGER_TYPE:
3203 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
3204 break;
3205 case REAL_TYPE:
3206 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
3207 break;
3208 default:
3209 break;
3210 }
3211
3212 ntype = type_hash_canon (hashcode, ntype);
3213 ttype = build_type_variant (ntype, TYPE_READONLY (ttype),
3214 TYPE_VOLATILE (ttype));
3215 }
3216
3217 return ttype;
3218 }
3219
3220 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
3221 or type TYPE and 0 otherwise. Validity is determined the configuration
3222 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
3223
3224 int
3225 valid_machine_attribute (attr_name, attr_args, decl, type)
3226 tree attr_name, attr_args;
3227 tree decl;
3228 tree type;
3229 {
3230 int valid = 0;
3231 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
3232 tree type_attr_list = TYPE_ATTRIBUTES (type);
3233
3234 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
3235 abort ();
3236
3237 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3238 if (decl != 0
3239 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
3240 {
3241 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3242 decl_attr_list);
3243
3244 if (attr != NULL_TREE)
3245 {
3246 /* Override existing arguments. Declarations are unique so we can
3247 modify this in place. */
3248 TREE_VALUE (attr) = attr_args;
3249 }
3250 else
3251 {
3252 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
3253 decl = build_decl_attribute_variant (decl, decl_attr_list);
3254 }
3255
3256 valid = 1;
3257 }
3258 #endif
3259
3260 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3261 if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name, attr_args))
3262 {
3263 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3264 type_attr_list);
3265
3266 if (attr != NULL_TREE)
3267 {
3268 /* Override existing arguments.
3269 ??? This currently works since attribute arguments are not
3270 included in `attribute_hash_list'. Something more complicated
3271 may be needed in the future. */
3272 TREE_VALUE (attr) = attr_args;
3273 }
3274 else
3275 {
3276 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3277 type = build_type_attribute_variant (type, type_attr_list);
3278 }
3279 if (decl != 0)
3280 TREE_TYPE (decl) = type;
3281 valid = 1;
3282 }
3283
3284 /* Handle putting a type attribute on pointer-to-function-type by putting
3285 the attribute on the function type. */
3286 else if (TREE_CODE (type) == POINTER_TYPE
3287 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3288 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3289 attr_name, attr_args))
3290 {
3291 tree inner_type = TREE_TYPE (type);
3292 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3293 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3294 type_attr_list);
3295
3296 if (attr != NULL_TREE)
3297 TREE_VALUE (attr) = attr_args;
3298 else
3299 {
3300 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3301 inner_type = build_type_attribute_variant (inner_type,
3302 inner_attr_list);
3303 }
3304
3305 if (decl != 0)
3306 TREE_TYPE (decl) = build_pointer_type (inner_type);
3307
3308 valid = 1;
3309 }
3310 #endif
3311
3312 return valid;
3313 }
3314
3315 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3316 or zero if not.
3317
3318 We try both `text' and `__text__', ATTR may be either one. */
3319 /* ??? It might be a reasonable simplification to require ATTR to be only
3320 `text'. One might then also require attribute lists to be stored in
3321 their canonicalized form. */
3322
3323 int
3324 is_attribute_p (attr, ident)
3325 char *attr;
3326 tree ident;
3327 {
3328 int ident_len, attr_len;
3329 char *p;
3330
3331 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3332 return 0;
3333
3334 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3335 return 1;
3336
3337 p = IDENTIFIER_POINTER (ident);
3338 ident_len = strlen (p);
3339 attr_len = strlen (attr);
3340
3341 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3342 if (attr[0] == '_')
3343 {
3344 if (attr[1] != '_'
3345 || attr[attr_len - 2] != '_'
3346 || attr[attr_len - 1] != '_')
3347 abort ();
3348 if (ident_len == attr_len - 4
3349 && strncmp (attr + 2, p, attr_len - 4) == 0)
3350 return 1;
3351 }
3352 else
3353 {
3354 if (ident_len == attr_len + 4
3355 && p[0] == '_' && p[1] == '_'
3356 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3357 && strncmp (attr, p + 2, attr_len) == 0)
3358 return 1;
3359 }
3360
3361 return 0;
3362 }
3363
3364 /* Given an attribute name and a list of attributes, return a pointer to the
3365 attribute's list element if the attribute is part of the list, or NULL_TREE
3366 if not found. */
3367
3368 tree
3369 lookup_attribute (attr_name, list)
3370 char *attr_name;
3371 tree list;
3372 {
3373 tree l;
3374
3375 for (l = list; l; l = TREE_CHAIN (l))
3376 {
3377 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3378 abort ();
3379 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3380 return l;
3381 }
3382
3383 return NULL_TREE;
3384 }
3385
3386 /* Return an attribute list that is the union of a1 and a2. */
3387
3388 tree
3389 merge_attributes (a1, a2)
3390 register tree a1, a2;
3391 {
3392 tree attributes;
3393
3394 /* Either one unset? Take the set one. */
3395
3396 if (! (attributes = a1))
3397 attributes = a2;
3398
3399 /* One that completely contains the other? Take it. */
3400
3401 else if (a2 && ! attribute_list_contained (a1, a2))
3402 if (attribute_list_contained (a2, a1))
3403 attributes = a2;
3404 else
3405 {
3406 /* Pick the longest list, and hang on the other list. */
3407 /* ??? For the moment we punt on the issue of attrs with args. */
3408
3409 if (list_length (a1) < list_length (a2))
3410 attributes = a2, a2 = a1;
3411
3412 for (; a2; a2 = TREE_CHAIN (a2))
3413 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3414 attributes) == NULL_TREE)
3415 {
3416 a1 = copy_node (a2);
3417 TREE_CHAIN (a1) = attributes;
3418 attributes = a1;
3419 }
3420 }
3421 return attributes;
3422 }
3423 \f
3424 /* Return a type like TYPE except that its TYPE_READONLY is CONSTP
3425 and its TYPE_VOLATILE is VOLATILEP.
3426
3427 Such variant types already made are recorded so that duplicates
3428 are not made.
3429
3430 A variant types should never be used as the type of an expression.
3431 Always copy the variant information into the TREE_READONLY
3432 and TREE_THIS_VOLATILE of the expression, and then give the expression
3433 as its type the "main variant", the variant whose TYPE_READONLY
3434 and TYPE_VOLATILE are zero. Use TYPE_MAIN_VARIANT to find the
3435 main variant. */
3436
3437 tree
3438 build_type_variant (type, constp, volatilep)
3439 tree type;
3440 int constp, volatilep;
3441 {
3442 register tree t;
3443
3444 /* Treat any nonzero argument as 1. */
3445 constp = !!constp;
3446 volatilep = !!volatilep;
3447
3448 /* Search the chain of variants to see if there is already one there just
3449 like the one we need to have. If so, use that existing one. We must
3450 preserve the TYPE_NAME, since there is code that depends on this. */
3451
3452 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3453 if (constp == TYPE_READONLY (t) && volatilep == TYPE_VOLATILE (t)
3454 && TYPE_NAME (t) == TYPE_NAME (type))
3455 return t;
3456
3457 /* We need a new one. */
3458
3459 t = build_type_copy (type);
3460 TYPE_READONLY (t) = constp;
3461 TYPE_VOLATILE (t) = volatilep;
3462
3463 return t;
3464 }
3465
3466 /* Create a new variant of TYPE, equivalent but distinct.
3467 This is so the caller can modify it. */
3468
3469 tree
3470 build_type_copy (type)
3471 tree type;
3472 {
3473 register tree t, m = TYPE_MAIN_VARIANT (type);
3474 register struct obstack *ambient_obstack = current_obstack;
3475
3476 current_obstack = TYPE_OBSTACK (type);
3477 t = copy_node (type);
3478 current_obstack = ambient_obstack;
3479
3480 TYPE_POINTER_TO (t) = 0;
3481 TYPE_REFERENCE_TO (t) = 0;
3482
3483 /* Add this type to the chain of variants of TYPE. */
3484 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3485 TYPE_NEXT_VARIANT (m) = t;
3486
3487 return t;
3488 }
3489 \f
3490 /* Hashing of types so that we don't make duplicates.
3491 The entry point is `type_hash_canon'. */
3492
3493 /* Each hash table slot is a bucket containing a chain
3494 of these structures. */
3495
3496 struct type_hash
3497 {
3498 struct type_hash *next; /* Next structure in the bucket. */
3499 int hashcode; /* Hash code of this type. */
3500 tree type; /* The type recorded here. */
3501 };
3502
3503 /* Now here is the hash table. When recording a type, it is added
3504 to the slot whose index is the hash code mod the table size.
3505 Note that the hash table is used for several kinds of types
3506 (function types, array types and array index range types, for now).
3507 While all these live in the same table, they are completely independent,
3508 and the hash code is computed differently for each of these. */
3509
3510 #define TYPE_HASH_SIZE 59
3511 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
3512
3513 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3514 with types in the TREE_VALUE slots), by adding the hash codes
3515 of the individual types. */
3516
3517 int
3518 type_hash_list (list)
3519 tree list;
3520 {
3521 register int hashcode;
3522 register tree tail;
3523 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3524 hashcode += TYPE_HASH (TREE_VALUE (tail));
3525 return hashcode;
3526 }
3527
3528 /* Look in the type hash table for a type isomorphic to TYPE.
3529 If one is found, return it. Otherwise return 0. */
3530
3531 tree
3532 type_hash_lookup (hashcode, type)
3533 int hashcode;
3534 tree type;
3535 {
3536 register struct type_hash *h;
3537 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3538 if (h->hashcode == hashcode
3539 && TREE_CODE (h->type) == TREE_CODE (type)
3540 && TREE_TYPE (h->type) == TREE_TYPE (type)
3541 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3542 TYPE_ATTRIBUTES (type))
3543 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3544 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3545 TYPE_MAX_VALUE (type)))
3546 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3547 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3548 TYPE_MIN_VALUE (type)))
3549 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3550 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3551 || (TYPE_DOMAIN (h->type)
3552 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3553 && TYPE_DOMAIN (type)
3554 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3555 && type_list_equal (TYPE_DOMAIN (h->type),
3556 TYPE_DOMAIN (type)))))
3557 return h->type;
3558 return 0;
3559 }
3560
3561 /* Add an entry to the type-hash-table
3562 for a type TYPE whose hash code is HASHCODE. */
3563
3564 void
3565 type_hash_add (hashcode, type)
3566 int hashcode;
3567 tree type;
3568 {
3569 register struct type_hash *h;
3570
3571 h = (struct type_hash *) oballoc (sizeof (struct type_hash));
3572 h->hashcode = hashcode;
3573 h->type = type;
3574 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3575 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3576 }
3577
3578 /* Given TYPE, and HASHCODE its hash code, return the canonical
3579 object for an identical type if one already exists.
3580 Otherwise, return TYPE, and record it as the canonical object
3581 if it is a permanent object.
3582
3583 To use this function, first create a type of the sort you want.
3584 Then compute its hash code from the fields of the type that
3585 make it different from other similar types.
3586 Then call this function and use the value.
3587 This function frees the type you pass in if it is a duplicate. */
3588
3589 /* Set to 1 to debug without canonicalization. Never set by program. */
3590 int debug_no_type_hash = 0;
3591
3592 tree
3593 type_hash_canon (hashcode, type)
3594 int hashcode;
3595 tree type;
3596 {
3597 tree t1;
3598
3599 if (debug_no_type_hash)
3600 return type;
3601
3602 t1 = type_hash_lookup (hashcode, type);
3603 if (t1 != 0)
3604 {
3605 obstack_free (TYPE_OBSTACK (type), type);
3606 #ifdef GATHER_STATISTICS
3607 tree_node_counts[(int)t_kind]--;
3608 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3609 #endif
3610 return t1;
3611 }
3612
3613 /* If this is a permanent type, record it for later reuse. */
3614 if (TREE_PERMANENT (type))
3615 type_hash_add (hashcode, type);
3616
3617 return type;
3618 }
3619
3620 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3621 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3622 by adding the hash codes of the individual attributes. */
3623
3624 int
3625 attribute_hash_list (list)
3626 tree list;
3627 {
3628 register int hashcode;
3629 register tree tail;
3630 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3631 /* ??? Do we want to add in TREE_VALUE too? */
3632 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3633 return hashcode;
3634 }
3635
3636 /* Given two lists of attributes, return true if list l2 is
3637 equivalent to l1. */
3638
3639 int
3640 attribute_list_equal (l1, l2)
3641 tree l1, l2;
3642 {
3643 return attribute_list_contained (l1, l2)
3644 && attribute_list_contained (l2, l1);
3645 }
3646
3647 /* Given two lists of attributes, return true if list L2 is
3648 completely contained within L1. */
3649 /* ??? This would be faster if attribute names were stored in a canonicalized
3650 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3651 must be used to show these elements are equivalent (which they are). */
3652 /* ??? It's not clear that attributes with arguments will always be handled
3653 correctly. */
3654
3655 int
3656 attribute_list_contained (l1, l2)
3657 tree l1, l2;
3658 {
3659 register tree t1, t2;
3660
3661 /* First check the obvious, maybe the lists are identical. */
3662 if (l1 == l2)
3663 return 1;
3664
3665 /* Maybe the lists are similar. */
3666 for (t1 = l1, t2 = l2;
3667 t1 && t2
3668 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3669 && TREE_VALUE (t1) == TREE_VALUE (t2);
3670 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3671
3672 /* Maybe the lists are equal. */
3673 if (t1 == 0 && t2 == 0)
3674 return 1;
3675
3676 for (; t2; t2 = TREE_CHAIN (t2))
3677 {
3678 tree attr
3679 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3680
3681 if (attr == NULL_TREE)
3682 return 0;
3683 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3684 return 0;
3685 }
3686
3687 return 1;
3688 }
3689
3690 /* Given two lists of types
3691 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3692 return 1 if the lists contain the same types in the same order.
3693 Also, the TREE_PURPOSEs must match. */
3694
3695 int
3696 type_list_equal (l1, l2)
3697 tree l1, l2;
3698 {
3699 register tree t1, t2;
3700
3701 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3702 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3703 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3704 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3705 && (TREE_TYPE (TREE_PURPOSE (t1))
3706 == TREE_TYPE (TREE_PURPOSE (t2))))))
3707 return 0;
3708
3709 return t1 == t2;
3710 }
3711
3712 /* Nonzero if integer constants T1 and T2
3713 represent the same constant value. */
3714
3715 int
3716 tree_int_cst_equal (t1, t2)
3717 tree t1, t2;
3718 {
3719 if (t1 == t2)
3720 return 1;
3721 if (t1 == 0 || t2 == 0)
3722 return 0;
3723 if (TREE_CODE (t1) == INTEGER_CST
3724 && TREE_CODE (t2) == INTEGER_CST
3725 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3726 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3727 return 1;
3728 return 0;
3729 }
3730
3731 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3732 The precise way of comparison depends on their data type. */
3733
3734 int
3735 tree_int_cst_lt (t1, t2)
3736 tree t1, t2;
3737 {
3738 if (t1 == t2)
3739 return 0;
3740
3741 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
3742 return INT_CST_LT (t1, t2);
3743 return INT_CST_LT_UNSIGNED (t1, t2);
3744 }
3745
3746 /* Return an indication of the sign of the integer constant T.
3747 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3748 Note that -1 will never be returned it T's type is unsigned. */
3749
3750 int
3751 tree_int_cst_sgn (t)
3752 tree t;
3753 {
3754 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3755 return 0;
3756 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3757 return 1;
3758 else if (TREE_INT_CST_HIGH (t) < 0)
3759 return -1;
3760 else
3761 return 1;
3762 }
3763
3764 /* Compare two constructor-element-type constants. Return 1 if the lists
3765 are known to be equal; otherwise return 0. */
3766
3767 int
3768 simple_cst_list_equal (l1, l2)
3769 tree l1, l2;
3770 {
3771 while (l1 != NULL_TREE && l2 != NULL_TREE)
3772 {
3773 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3774 return 0;
3775
3776 l1 = TREE_CHAIN (l1);
3777 l2 = TREE_CHAIN (l2);
3778 }
3779
3780 return (l1 == l2);
3781 }
3782
3783 /* Return truthvalue of whether T1 is the same tree structure as T2.
3784 Return 1 if they are the same.
3785 Return 0 if they are understandably different.
3786 Return -1 if either contains tree structure not understood by
3787 this function. */
3788
3789 int
3790 simple_cst_equal (t1, t2)
3791 tree t1, t2;
3792 {
3793 register enum tree_code code1, code2;
3794 int cmp;
3795
3796 if (t1 == t2)
3797 return 1;
3798 if (t1 == 0 || t2 == 0)
3799 return 0;
3800
3801 code1 = TREE_CODE (t1);
3802 code2 = TREE_CODE (t2);
3803
3804 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3805 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR || code2 == NON_LVALUE_EXPR)
3806 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3807 else
3808 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3809 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3810 || code2 == NON_LVALUE_EXPR)
3811 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3812
3813 if (code1 != code2)
3814 return 0;
3815
3816 switch (code1)
3817 {
3818 case INTEGER_CST:
3819 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3820 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
3821
3822 case REAL_CST:
3823 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3824
3825 case STRING_CST:
3826 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3827 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3828 TREE_STRING_LENGTH (t1));
3829
3830 case CONSTRUCTOR:
3831 abort ();
3832
3833 case SAVE_EXPR:
3834 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3835
3836 case CALL_EXPR:
3837 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3838 if (cmp <= 0)
3839 return cmp;
3840 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3841
3842 case TARGET_EXPR:
3843 /* Special case: if either target is an unallocated VAR_DECL,
3844 it means that it's going to be unified with whatever the
3845 TARGET_EXPR is really supposed to initialize, so treat it
3846 as being equivalent to anything. */
3847 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3848 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3849 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
3850 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3851 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3852 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
3853 cmp = 1;
3854 else
3855 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3856 if (cmp <= 0)
3857 return cmp;
3858 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3859
3860 case WITH_CLEANUP_EXPR:
3861 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3862 if (cmp <= 0)
3863 return cmp;
3864 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
3865
3866 case COMPONENT_REF:
3867 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3868 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3869 return 0;
3870
3871 case VAR_DECL:
3872 case PARM_DECL:
3873 case CONST_DECL:
3874 case FUNCTION_DECL:
3875 return 0;
3876
3877 default:
3878 break;
3879 }
3880
3881 /* This general rule works for most tree codes. All exceptions should be
3882 handled above. If this is a language-specific tree code, we can't
3883 trust what might be in the operand, so say we don't know
3884 the situation. */
3885 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3886 return -1;
3887
3888 switch (TREE_CODE_CLASS (code1))
3889 {
3890 int i;
3891 case '1':
3892 case '2':
3893 case '<':
3894 case 'e':
3895 case 'r':
3896 case 's':
3897 cmp = 1;
3898 for (i=0; i<tree_code_length[(int) code1]; ++i)
3899 {
3900 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3901 if (cmp <= 0)
3902 return cmp;
3903 }
3904 return cmp;
3905
3906 default:
3907 return -1;
3908 }
3909 }
3910 \f
3911 /* Constructors for pointer, array and function types.
3912 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3913 constructed by language-dependent code, not here.) */
3914
3915 /* Construct, lay out and return the type of pointers to TO_TYPE.
3916 If such a type has already been constructed, reuse it. */
3917
3918 tree
3919 build_pointer_type (to_type)
3920 tree to_type;
3921 {
3922 register tree t = TYPE_POINTER_TO (to_type);
3923
3924 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3925
3926 if (t)
3927 return t;
3928
3929 /* We need a new one. Put this in the same obstack as TO_TYPE. */
3930 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
3931 t = make_node (POINTER_TYPE);
3932 pop_obstacks ();
3933
3934 TREE_TYPE (t) = to_type;
3935
3936 /* Record this type as the pointer to TO_TYPE. */
3937 TYPE_POINTER_TO (to_type) = t;
3938
3939 /* Lay out the type. This function has many callers that are concerned
3940 with expression-construction, and this simplifies them all.
3941 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3942 layout_type (t);
3943
3944 return t;
3945 }
3946
3947 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3948 MAXVAL should be the maximum value in the domain
3949 (one less than the length of the array).
3950
3951 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3952 We don't enforce this limit, that is up to caller (e.g. language front end).
3953 The limit exists because the result is a signed type and we don't handle
3954 sizes that use more than one HOST_WIDE_INT. */
3955
3956 tree
3957 build_index_type (maxval)
3958 tree maxval;
3959 {
3960 register tree itype = make_node (INTEGER_TYPE);
3961
3962 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3963 TYPE_MIN_VALUE (itype) = size_zero_node;
3964
3965 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
3966 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3967 pop_obstacks ();
3968
3969 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3970 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3971 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3972 if (TREE_CODE (maxval) == INTEGER_CST)
3973 {
3974 int maxint = (int) TREE_INT_CST_LOW (maxval);
3975 /* If the domain should be empty, make sure the maxval
3976 remains -1 and is not spoiled by truncation. */
3977 if (INT_CST_LT (maxval, integer_zero_node))
3978 {
3979 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
3980 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
3981 }
3982 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
3983 }
3984 else
3985 return itype;
3986 }
3987
3988 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3989 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3990 low bound LOWVAL and high bound HIGHVAL.
3991 if TYPE==NULL_TREE, sizetype is used. */
3992
3993 tree
3994 build_range_type (type, lowval, highval)
3995 tree type, lowval, highval;
3996 {
3997 register tree itype = make_node (INTEGER_TYPE);
3998
3999 TREE_TYPE (itype) = type;
4000 if (type == NULL_TREE)
4001 type = sizetype;
4002
4003 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4004 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4005 TYPE_MAX_VALUE (itype) = convert (type, highval);
4006 pop_obstacks ();
4007
4008 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4009 TYPE_MODE (itype) = TYPE_MODE (type);
4010 TYPE_SIZE (itype) = TYPE_SIZE (type);
4011 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4012 if ((TREE_CODE (lowval) == INTEGER_CST)
4013 && (TREE_CODE (highval) == INTEGER_CST))
4014 {
4015 HOST_WIDE_INT highint = TREE_INT_CST_LOW (highval);
4016 HOST_WIDE_INT lowint = TREE_INT_CST_LOW (lowval);
4017 int maxint = (int) (highint - lowint);
4018 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4019 }
4020 else
4021 return itype;
4022 }
4023
4024 /* Just like build_index_type, but takes lowval and highval instead
4025 of just highval (maxval). */
4026
4027 tree
4028 build_index_2_type (lowval,highval)
4029 tree lowval, highval;
4030 {
4031 return build_range_type (NULL_TREE, lowval, highval);
4032 }
4033
4034 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
4035 Needed because when index types are not hashed, equal index types
4036 built at different times appear distinct, even though structurally,
4037 they are not. */
4038
4039 int
4040 index_type_equal (itype1, itype2)
4041 tree itype1, itype2;
4042 {
4043 if (TREE_CODE (itype1) != TREE_CODE (itype2))
4044 return 0;
4045 if (TREE_CODE (itype1) == INTEGER_TYPE)
4046 {
4047 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
4048 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
4049 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
4050 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
4051 return 0;
4052 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
4053 TYPE_MIN_VALUE (itype2))
4054 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
4055 TYPE_MAX_VALUE (itype2)))
4056 return 1;
4057 }
4058
4059 return 0;
4060 }
4061
4062 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4063 and number of elements specified by the range of values of INDEX_TYPE.
4064 If such a type has already been constructed, reuse it. */
4065
4066 tree
4067 build_array_type (elt_type, index_type)
4068 tree elt_type, index_type;
4069 {
4070 register tree t;
4071 int hashcode;
4072
4073 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4074 {
4075 error ("arrays of functions are not meaningful");
4076 elt_type = integer_type_node;
4077 }
4078
4079 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
4080 build_pointer_type (elt_type);
4081
4082 /* Allocate the array after the pointer type,
4083 in case we free it in type_hash_canon. */
4084 t = make_node (ARRAY_TYPE);
4085 TREE_TYPE (t) = elt_type;
4086 TYPE_DOMAIN (t) = index_type;
4087
4088 if (index_type == 0)
4089 {
4090 return t;
4091 }
4092
4093 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
4094 t = type_hash_canon (hashcode, t);
4095
4096 if (TYPE_SIZE (t) == 0)
4097 layout_type (t);
4098 return t;
4099 }
4100
4101 /* Construct, lay out and return
4102 the type of functions returning type VALUE_TYPE
4103 given arguments of types ARG_TYPES.
4104 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4105 are data type nodes for the arguments of the function.
4106 If such a type has already been constructed, reuse it. */
4107
4108 tree
4109 build_function_type (value_type, arg_types)
4110 tree value_type, arg_types;
4111 {
4112 register tree t;
4113 int hashcode;
4114
4115 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4116 {
4117 error ("function return type cannot be function");
4118 value_type = integer_type_node;
4119 }
4120
4121 /* Make a node of the sort we want. */
4122 t = make_node (FUNCTION_TYPE);
4123 TREE_TYPE (t) = value_type;
4124 TYPE_ARG_TYPES (t) = arg_types;
4125
4126 /* If we already have such a type, use the old one and free this one. */
4127 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
4128 t = type_hash_canon (hashcode, t);
4129
4130 if (TYPE_SIZE (t) == 0)
4131 layout_type (t);
4132 return t;
4133 }
4134
4135 /* Build the node for the type of references-to-TO_TYPE. */
4136
4137 tree
4138 build_reference_type (to_type)
4139 tree to_type;
4140 {
4141 register tree t = TYPE_REFERENCE_TO (to_type);
4142 register struct obstack *ambient_obstack = current_obstack;
4143 register struct obstack *ambient_saveable_obstack = saveable_obstack;
4144
4145 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4146
4147 if (t)
4148 return t;
4149
4150 /* We need a new one. If TO_TYPE is permanent, make this permanent too. */
4151 if (TREE_PERMANENT (to_type))
4152 {
4153 current_obstack = &permanent_obstack;
4154 saveable_obstack = &permanent_obstack;
4155 }
4156
4157 t = make_node (REFERENCE_TYPE);
4158 TREE_TYPE (t) = to_type;
4159
4160 /* Record this type as the pointer to TO_TYPE. */
4161 TYPE_REFERENCE_TO (to_type) = t;
4162
4163 layout_type (t);
4164
4165 current_obstack = ambient_obstack;
4166 saveable_obstack = ambient_saveable_obstack;
4167 return t;
4168 }
4169
4170 /* Construct, lay out and return the type of methods belonging to class
4171 BASETYPE and whose arguments and values are described by TYPE.
4172 If that type exists already, reuse it.
4173 TYPE must be a FUNCTION_TYPE node. */
4174
4175 tree
4176 build_method_type (basetype, type)
4177 tree basetype, type;
4178 {
4179 register tree t;
4180 int hashcode;
4181
4182 /* Make a node of the sort we want. */
4183 t = make_node (METHOD_TYPE);
4184
4185 if (TREE_CODE (type) != FUNCTION_TYPE)
4186 abort ();
4187
4188 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4189 TREE_TYPE (t) = TREE_TYPE (type);
4190
4191 /* The actual arglist for this function includes a "hidden" argument
4192 which is "this". Put it into the list of argument types. */
4193
4194 TYPE_ARG_TYPES (t)
4195 = tree_cons (NULL_TREE,
4196 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4197
4198 /* If we already have such a type, use the old one and free this one. */
4199 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4200 t = type_hash_canon (hashcode, t);
4201
4202 if (TYPE_SIZE (t) == 0)
4203 layout_type (t);
4204
4205 return t;
4206 }
4207
4208 /* Construct, lay out and return the type of offsets to a value
4209 of type TYPE, within an object of type BASETYPE.
4210 If a suitable offset type exists already, reuse it. */
4211
4212 tree
4213 build_offset_type (basetype, type)
4214 tree basetype, type;
4215 {
4216 register tree t;
4217 int hashcode;
4218
4219 /* Make a node of the sort we want. */
4220 t = make_node (OFFSET_TYPE);
4221
4222 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4223 TREE_TYPE (t) = type;
4224
4225 /* If we already have such a type, use the old one and free this one. */
4226 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4227 t = type_hash_canon (hashcode, t);
4228
4229 if (TYPE_SIZE (t) == 0)
4230 layout_type (t);
4231
4232 return t;
4233 }
4234
4235 /* Create a complex type whose components are COMPONENT_TYPE. */
4236
4237 tree
4238 build_complex_type (component_type)
4239 tree component_type;
4240 {
4241 register tree t;
4242 int hashcode;
4243
4244 /* Make a node of the sort we want. */
4245 t = make_node (COMPLEX_TYPE);
4246
4247 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4248 TYPE_VOLATILE (t) = TYPE_VOLATILE (component_type);
4249 TYPE_READONLY (t) = TYPE_READONLY (component_type);
4250
4251 /* If we already have such a type, use the old one and free this one. */
4252 hashcode = TYPE_HASH (component_type);
4253 t = type_hash_canon (hashcode, t);
4254
4255 if (TYPE_SIZE (t) == 0)
4256 layout_type (t);
4257
4258 return t;
4259 }
4260 \f
4261 /* Return OP, stripped of any conversions to wider types as much as is safe.
4262 Converting the value back to OP's type makes a value equivalent to OP.
4263
4264 If FOR_TYPE is nonzero, we return a value which, if converted to
4265 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4266
4267 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4268 narrowest type that can hold the value, even if they don't exactly fit.
4269 Otherwise, bit-field references are changed to a narrower type
4270 only if they can be fetched directly from memory in that type.
4271
4272 OP must have integer, real or enumeral type. Pointers are not allowed!
4273
4274 There are some cases where the obvious value we could return
4275 would regenerate to OP if converted to OP's type,
4276 but would not extend like OP to wider types.
4277 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4278 For example, if OP is (unsigned short)(signed char)-1,
4279 we avoid returning (signed char)-1 if FOR_TYPE is int,
4280 even though extending that to an unsigned short would regenerate OP,
4281 since the result of extending (signed char)-1 to (int)
4282 is different from (int) OP. */
4283
4284 tree
4285 get_unwidened (op, for_type)
4286 register tree op;
4287 tree for_type;
4288 {
4289 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4290 /* TYPE_PRECISION is safe in place of type_precision since
4291 pointer types are not allowed. */
4292 register tree type = TREE_TYPE (op);
4293 register unsigned final_prec
4294 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4295 register int uns
4296 = (for_type != 0 && for_type != type
4297 && final_prec > TYPE_PRECISION (type)
4298 && TREE_UNSIGNED (type));
4299 register tree win = op;
4300
4301 while (TREE_CODE (op) == NOP_EXPR)
4302 {
4303 register int bitschange
4304 = TYPE_PRECISION (TREE_TYPE (op))
4305 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4306
4307 /* Truncations are many-one so cannot be removed.
4308 Unless we are later going to truncate down even farther. */
4309 if (bitschange < 0
4310 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4311 break;
4312
4313 /* See what's inside this conversion. If we decide to strip it,
4314 we will set WIN. */
4315 op = TREE_OPERAND (op, 0);
4316
4317 /* If we have not stripped any zero-extensions (uns is 0),
4318 we can strip any kind of extension.
4319 If we have previously stripped a zero-extension,
4320 only zero-extensions can safely be stripped.
4321 Any extension can be stripped if the bits it would produce
4322 are all going to be discarded later by truncating to FOR_TYPE. */
4323
4324 if (bitschange > 0)
4325 {
4326 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4327 win = op;
4328 /* TREE_UNSIGNED says whether this is a zero-extension.
4329 Let's avoid computing it if it does not affect WIN
4330 and if UNS will not be needed again. */
4331 if ((uns || TREE_CODE (op) == NOP_EXPR)
4332 && TREE_UNSIGNED (TREE_TYPE (op)))
4333 {
4334 uns = 1;
4335 win = op;
4336 }
4337 }
4338 }
4339
4340 if (TREE_CODE (op) == COMPONENT_REF
4341 /* Since type_for_size always gives an integer type. */
4342 && TREE_CODE (type) != REAL_TYPE
4343 /* Don't crash if field not laid out yet. */
4344 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4345 {
4346 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4347 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4348
4349 /* We can get this structure field in the narrowest type it fits in.
4350 If FOR_TYPE is 0, do this only for a field that matches the
4351 narrower type exactly and is aligned for it
4352 The resulting extension to its nominal type (a fullword type)
4353 must fit the same conditions as for other extensions. */
4354
4355 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4356 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4357 && (! uns || final_prec <= innerprec
4358 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4359 && type != 0)
4360 {
4361 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4362 TREE_OPERAND (op, 1));
4363 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4364 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4365 TREE_RAISES (win) = TREE_RAISES (op);
4366 }
4367 }
4368 return win;
4369 }
4370 \f
4371 /* Return OP or a simpler expression for a narrower value
4372 which can be sign-extended or zero-extended to give back OP.
4373 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4374 or 0 if the value should be sign-extended. */
4375
4376 tree
4377 get_narrower (op, unsignedp_ptr)
4378 register tree op;
4379 int *unsignedp_ptr;
4380 {
4381 register int uns = 0;
4382 int first = 1;
4383 register tree win = op;
4384
4385 while (TREE_CODE (op) == NOP_EXPR)
4386 {
4387 register int bitschange
4388 = TYPE_PRECISION (TREE_TYPE (op))
4389 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4390
4391 /* Truncations are many-one so cannot be removed. */
4392 if (bitschange < 0)
4393 break;
4394
4395 /* See what's inside this conversion. If we decide to strip it,
4396 we will set WIN. */
4397 op = TREE_OPERAND (op, 0);
4398
4399 if (bitschange > 0)
4400 {
4401 /* An extension: the outermost one can be stripped,
4402 but remember whether it is zero or sign extension. */
4403 if (first)
4404 uns = TREE_UNSIGNED (TREE_TYPE (op));
4405 /* Otherwise, if a sign extension has been stripped,
4406 only sign extensions can now be stripped;
4407 if a zero extension has been stripped, only zero-extensions. */
4408 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4409 break;
4410 first = 0;
4411 }
4412 else /* bitschange == 0 */
4413 {
4414 /* A change in nominal type can always be stripped, but we must
4415 preserve the unsignedness. */
4416 if (first)
4417 uns = TREE_UNSIGNED (TREE_TYPE (op));
4418 first = 0;
4419 }
4420
4421 win = op;
4422 }
4423
4424 if (TREE_CODE (op) == COMPONENT_REF
4425 /* Since type_for_size always gives an integer type. */
4426 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4427 {
4428 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4429 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4430
4431 /* We can get this structure field in a narrower type that fits it,
4432 but the resulting extension to its nominal type (a fullword type)
4433 must satisfy the same conditions as for other extensions.
4434
4435 Do this only for fields that are aligned (not bit-fields),
4436 because when bit-field insns will be used there is no
4437 advantage in doing this. */
4438
4439 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4440 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4441 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4442 && type != 0)
4443 {
4444 if (first)
4445 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4446 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4447 TREE_OPERAND (op, 1));
4448 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4449 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4450 TREE_RAISES (win) = TREE_RAISES (op);
4451 }
4452 }
4453 *unsignedp_ptr = uns;
4454 return win;
4455 }
4456 \f
4457 /* Return the precision of a type, for arithmetic purposes.
4458 Supports all types on which arithmetic is possible
4459 (including pointer types).
4460 It's not clear yet what will be right for complex types. */
4461
4462 int
4463 type_precision (type)
4464 register tree type;
4465 {
4466 return ((TREE_CODE (type) == INTEGER_TYPE
4467 || TREE_CODE (type) == ENUMERAL_TYPE
4468 || TREE_CODE (type) == REAL_TYPE)
4469 ? TYPE_PRECISION (type) : POINTER_SIZE);
4470 }
4471
4472 /* Nonzero if integer constant C has a value that is permissible
4473 for type TYPE (an INTEGER_TYPE). */
4474
4475 int
4476 int_fits_type_p (c, type)
4477 tree c, type;
4478 {
4479 if (TREE_UNSIGNED (type))
4480 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4481 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4482 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4483 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)))
4484 /* Negative ints never fit unsigned types. */
4485 && ! (TREE_INT_CST_HIGH (c) < 0
4486 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4487 else
4488 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4489 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4490 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4491 && INT_CST_LT (c, TYPE_MIN_VALUE (type)))
4492 /* Unsigned ints with top bit set never fit signed types. */
4493 && ! (TREE_INT_CST_HIGH (c) < 0
4494 && TREE_UNSIGNED (TREE_TYPE (c))));
4495 }
4496
4497 /* Return the innermost context enclosing DECL that is
4498 a FUNCTION_DECL, or zero if none. */
4499
4500 tree
4501 decl_function_context (decl)
4502 tree decl;
4503 {
4504 tree context;
4505
4506 if (TREE_CODE (decl) == ERROR_MARK)
4507 return 0;
4508
4509 if (TREE_CODE (decl) == SAVE_EXPR)
4510 context = SAVE_EXPR_CONTEXT (decl);
4511 else
4512 context = DECL_CONTEXT (decl);
4513
4514 while (context && TREE_CODE (context) != FUNCTION_DECL)
4515 {
4516 if (TREE_CODE (context) == RECORD_TYPE
4517 || TREE_CODE (context) == UNION_TYPE
4518 || TREE_CODE (context) == QUAL_UNION_TYPE)
4519 context = TYPE_CONTEXT (context);
4520 else if (TREE_CODE (context) == TYPE_DECL)
4521 context = DECL_CONTEXT (context);
4522 else if (TREE_CODE (context) == BLOCK)
4523 context = BLOCK_SUPERCONTEXT (context);
4524 else
4525 /* Unhandled CONTEXT !? */
4526 abort ();
4527 }
4528
4529 return context;
4530 }
4531
4532 /* Return the innermost context enclosing DECL that is
4533 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4534 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4535
4536 tree
4537 decl_type_context (decl)
4538 tree decl;
4539 {
4540 tree context = DECL_CONTEXT (decl);
4541
4542 while (context)
4543 {
4544 if (TREE_CODE (context) == RECORD_TYPE
4545 || TREE_CODE (context) == UNION_TYPE
4546 || TREE_CODE (context) == QUAL_UNION_TYPE)
4547 return context;
4548 if (TREE_CODE (context) == TYPE_DECL
4549 || TREE_CODE (context) == FUNCTION_DECL)
4550 context = DECL_CONTEXT (context);
4551 else if (TREE_CODE (context) == BLOCK)
4552 context = BLOCK_SUPERCONTEXT (context);
4553 else
4554 /* Unhandled CONTEXT!? */
4555 abort ();
4556 }
4557 return NULL_TREE;
4558 }
4559
4560 /* Print debugging information about the size of the
4561 toplev_inline_obstacks. */
4562
4563 void
4564 print_inline_obstack_statistics ()
4565 {
4566 struct simple_obstack_stack *current = toplev_inline_obstacks;
4567 int n_obstacks = 0;
4568 int n_alloc = 0;
4569 int n_chunks = 0;
4570
4571 for (; current; current = current->next, ++n_obstacks)
4572 {
4573 struct obstack *o = current->obstack;
4574 struct _obstack_chunk *chunk = o->chunk;
4575
4576 n_alloc += o->next_free - chunk->contents;
4577 chunk = chunk->prev;
4578 ++n_chunks;
4579 for (; chunk; chunk = chunk->prev, ++n_chunks)
4580 n_alloc += chunk->limit - &chunk->contents[0];
4581 }
4582 fprintf (stderr, "inline obstacks: %d obstacks, %d bytes, %d chunks\n",
4583 n_obstacks, n_alloc, n_chunks);
4584 }
4585
4586 /* Print debugging information about the obstack O, named STR. */
4587
4588 void
4589 print_obstack_statistics (str, o)
4590 char *str;
4591 struct obstack *o;
4592 {
4593 struct _obstack_chunk *chunk = o->chunk;
4594 int n_chunks = 1;
4595 int n_alloc = 0;
4596
4597 n_alloc += o->next_free - chunk->contents;
4598 chunk = chunk->prev;
4599 while (chunk)
4600 {
4601 n_chunks += 1;
4602 n_alloc += chunk->limit - &chunk->contents[0];
4603 chunk = chunk->prev;
4604 }
4605 fprintf (stderr, "obstack %s: %lu bytes, %d chunks\n",
4606 str, n_alloc, n_chunks);
4607 }
4608
4609 /* Print debugging information about tree nodes generated during the compile,
4610 and any language-specific information. */
4611
4612 void
4613 dump_tree_statistics ()
4614 {
4615 int i;
4616 int total_nodes, total_bytes;
4617
4618 fprintf (stderr, "\n??? tree nodes created\n\n");
4619 #ifdef GATHER_STATISTICS
4620 fprintf (stderr, "Kind Nodes Bytes\n");
4621 fprintf (stderr, "-------------------------------------\n");
4622 total_nodes = total_bytes = 0;
4623 for (i = 0; i < (int) all_kinds; i++)
4624 {
4625 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4626 tree_node_counts[i], tree_node_sizes[i]);
4627 total_nodes += tree_node_counts[i];
4628 total_bytes += tree_node_sizes[i];
4629 }
4630 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4631 fprintf (stderr, "-------------------------------------\n");
4632 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4633 fprintf (stderr, "-------------------------------------\n");
4634 #else
4635 fprintf (stderr, "(No per-node statistics)\n");
4636 #endif
4637 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4638 print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
4639 print_obstack_statistics ("temporary_obstack", &temporary_obstack);
4640 print_obstack_statistics ("momentary_obstack", &momentary_obstack);
4641 print_obstack_statistics ("temp_decl_obstack", &temp_decl_obstack);
4642 print_inline_obstack_statistics ();
4643 print_lang_statistics ();
4644 }
4645 \f
4646 #define FILE_FUNCTION_PREFIX_LEN 9
4647
4648 #ifndef NO_DOLLAR_IN_LABEL
4649 #define FILE_FUNCTION_FORMAT "_GLOBAL_$D$%s"
4650 #else /* NO_DOLLAR_IN_LABEL */
4651 #ifndef NO_DOT_IN_LABEL
4652 #define FILE_FUNCTION_FORMAT "_GLOBAL_.D.%s"
4653 #else /* NO_DOT_IN_LABEL */
4654 #define FILE_FUNCTION_FORMAT "_GLOBAL__D_%s"
4655 #endif /* NO_DOT_IN_LABEL */
4656 #endif /* NO_DOLLAR_IN_LABEL */
4657
4658 extern char * first_global_object_name;
4659
4660 /* If KIND=='I', return a suitable global initializer (constructor) name.
4661 If KIND=='D', return a suitable global clean-up (destructor) name. */
4662
4663 tree
4664 get_file_function_name (kind)
4665 int kind;
4666 {
4667 char *buf;
4668 register char *p;
4669
4670 if (first_global_object_name)
4671 p = first_global_object_name;
4672 else if (main_input_filename)
4673 p = main_input_filename;
4674 else
4675 p = input_filename;
4676
4677 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p));
4678
4679 /* Set up the name of the file-level functions we may need. */
4680 /* Use a global object (which is already required to be unique over
4681 the program) rather than the file name (which imposes extra
4682 constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
4683 sprintf (buf, FILE_FUNCTION_FORMAT, p);
4684
4685 /* Don't need to pull weird characters out of global names. */
4686 if (p != first_global_object_name)
4687 {
4688 for (p = buf+11; *p; p++)
4689 if (! ((*p >= '0' && *p <= '9')
4690 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
4691 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
4692 || *p == '.'
4693 #endif
4694 #endif
4695 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4696 || *p == '$'
4697 #endif
4698 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4699 || *p == '.'
4700 #endif
4701 || (*p >= 'A' && *p <= 'Z')
4702 || (*p >= 'a' && *p <= 'z')))
4703 *p = '_';
4704 }
4705
4706 buf[FILE_FUNCTION_PREFIX_LEN] = kind;
4707
4708 return get_identifier (buf);
4709 }
4710 \f
4711 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4712 The result is placed in BUFFER (which has length BIT_SIZE),
4713 with one bit in each char ('\000' or '\001').
4714
4715 If the constructor is constant, NULL_TREE is returned.
4716 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4717
4718 tree
4719 get_set_constructor_bits (init, buffer, bit_size)
4720 tree init;
4721 char *buffer;
4722 int bit_size;
4723 {
4724 int i;
4725 tree vals;
4726 HOST_WIDE_INT domain_min
4727 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
4728 tree non_const_bits = NULL_TREE;
4729 for (i = 0; i < bit_size; i++)
4730 buffer[i] = 0;
4731
4732 for (vals = TREE_OPERAND (init, 1);
4733 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4734 {
4735 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
4736 || (TREE_PURPOSE (vals) != NULL_TREE
4737 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
4738 non_const_bits
4739 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4740 else if (TREE_PURPOSE (vals) != NULL_TREE)
4741 {
4742 /* Set a range of bits to ones. */
4743 HOST_WIDE_INT lo_index
4744 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
4745 HOST_WIDE_INT hi_index
4746 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4747 if (lo_index < 0 || lo_index >= bit_size
4748 || hi_index < 0 || hi_index >= bit_size)
4749 abort ();
4750 for ( ; lo_index <= hi_index; lo_index++)
4751 buffer[lo_index] = 1;
4752 }
4753 else
4754 {
4755 /* Set a single bit to one. */
4756 HOST_WIDE_INT index
4757 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4758 if (index < 0 || index >= bit_size)
4759 {
4760 error ("invalid initializer for bit string");
4761 return NULL_TREE;
4762 }
4763 buffer[index] = 1;
4764 }
4765 }
4766 return non_const_bits;
4767 }
4768
4769 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4770 The result is placed in BUFFER (which is an array of bytes).
4771 If the constructor is constant, NULL_TREE is returned.
4772 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4773
4774 tree
4775 get_set_constructor_bytes (init, buffer, wd_size)
4776 tree init;
4777 unsigned char *buffer;
4778 int wd_size;
4779 {
4780 int i;
4781 tree vals = TREE_OPERAND (init, 1);
4782 int set_word_size = BITS_PER_UNIT;
4783 int bit_size = wd_size * set_word_size;
4784 int bit_pos = 0;
4785 unsigned char *bytep = buffer;
4786 char *bit_buffer = (char *) alloca(bit_size);
4787 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4788
4789 for (i = 0; i < wd_size; i++)
4790 buffer[i] = 0;
4791
4792 for (i = 0; i < bit_size; i++)
4793 {
4794 if (bit_buffer[i])
4795 {
4796 if (BYTES_BIG_ENDIAN)
4797 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4798 else
4799 *bytep |= 1 << bit_pos;
4800 }
4801 bit_pos++;
4802 if (bit_pos >= set_word_size)
4803 bit_pos = 0, bytep++;
4804 }
4805 return non_const_bits;
4806 }