tree.c (expr_last): New fn.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
51
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
54 typedef enum
55 {
56 d_kind,
57 t_kind,
58 b_kind,
59 s_kind,
60 r_kind,
61 e_kind,
62 c_kind,
63 id_kind,
64 perm_list_kind,
65 temp_list_kind,
66 vec_kind,
67 x_kind,
68 lang_decl,
69 lang_type,
70 all_kinds
71 } tree_node_kind;
72
73 int tree_node_counts[(int) all_kinds];
74 int tree_node_sizes[(int) all_kinds];
75
76 static const char * const tree_node_kind_names[] = {
77 "decls",
78 "types",
79 "blocks",
80 "stmts",
81 "refs",
82 "exprs",
83 "constants",
84 "identifiers",
85 "perm_tree_lists",
86 "temp_tree_lists",
87 "vecs",
88 "random kinds",
89 "lang_decl kinds",
90 "lang_type kinds"
91 };
92 #endif /* GATHER_STATISTICS */
93
94 /* Unique id for next decl created. */
95 static GTY(()) int next_decl_uid;
96 /* Unique id for next type created. */
97 static GTY(()) int next_type_uid = 1;
98
99 /* Since we cannot rehash a type after it is in the table, we have to
100 keep the hash code. */
101
102 struct type_hash GTY(())
103 {
104 unsigned long hash;
105 tree type;
106 };
107
108 /* Initial size of the hash table (rounded to next prime). */
109 #define TYPE_HASH_INITIAL_SIZE 1000
110
111 /* Now here is the hash table. When recording a type, it is added to
112 the slot whose index is the hash code. Note that the hash table is
113 used for several kinds of types (function types, array types and
114 array index range types, for now). While all these live in the
115 same table, they are completely independent, and the hash code is
116 computed differently for each of these. */
117
118 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
119 htab_t type_hash_table;
120
121 static void set_type_quals PARAMS ((tree, int));
122 static void append_random_chars PARAMS ((char *));
123 static int type_hash_eq PARAMS ((const void *, const void *));
124 static hashval_t type_hash_hash PARAMS ((const void *));
125 static void print_type_hash_statistics PARAMS((void));
126 static void finish_vector_type PARAMS((tree));
127 static tree make_vector PARAMS ((enum machine_mode, tree, int));
128 static int type_hash_marked_p PARAMS ((const void *));
129
130 tree global_trees[TI_MAX];
131 tree integer_types[itk_none];
132 \f
133 /* Init tree.c. */
134
135 void
136 init_ttree ()
137 {
138 /* Initialize the hash table of types. */
139 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
140 type_hash_eq, 0);
141 }
142
143 \f
144 /* The name of the object as the assembler will see it (but before any
145 translations made by ASM_OUTPUT_LABELREF). Often this is the same
146 as DECL_NAME. It is an IDENTIFIER_NODE. */
147 tree
148 decl_assembler_name (decl)
149 tree decl;
150 {
151 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
152 (*lang_hooks.set_decl_assembler_name) (decl);
153 return DECL_CHECK (decl)->decl.assembler_name;
154 }
155
156 /* Compute the number of bytes occupied by 'node'. This routine only
157 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
158 size_t
159 tree_size (node)
160 tree node;
161 {
162 enum tree_code code = TREE_CODE (node);
163
164 switch (TREE_CODE_CLASS (code))
165 {
166 case 'd': /* A decl node */
167 return sizeof (struct tree_decl);
168
169 case 't': /* a type node */
170 return sizeof (struct tree_type);
171
172 case 'b': /* a lexical block node */
173 return sizeof (struct tree_block);
174
175 case 'r': /* a reference */
176 case 'e': /* an expression */
177 case 's': /* an expression with side effects */
178 case '<': /* a comparison expression */
179 case '1': /* a unary arithmetic expression */
180 case '2': /* a binary arithmetic expression */
181 return (sizeof (struct tree_exp)
182 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
183
184 case 'c': /* a constant */
185 switch (code)
186 {
187 case INTEGER_CST: return sizeof (struct tree_int_cst);
188 case REAL_CST: return sizeof (struct tree_real_cst);
189 case COMPLEX_CST: return sizeof (struct tree_complex);
190 case VECTOR_CST: return sizeof (struct tree_vector);
191 case STRING_CST: return sizeof (struct tree_string);
192 default:
193 return (*lang_hooks.tree_size) (code);
194 }
195
196 case 'x': /* something random, like an identifier. */
197 switch (code)
198 {
199 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
200 case TREE_LIST: return sizeof (struct tree_list);
201 case TREE_VEC: return (sizeof (struct tree_vec)
202 + TREE_VEC_LENGTH(node) * sizeof(char *)
203 - sizeof (char *));
204
205 case ERROR_MARK:
206 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
207
208 default:
209 return (*lang_hooks.tree_size) (code);
210 }
211
212 default:
213 abort ();
214 }
215 }
216
217 /* Return a newly allocated node of code CODE.
218 For decl and type nodes, some other fields are initialized.
219 The rest of the node is initialized to zero.
220
221 Achoo! I got a code in the node. */
222
223 tree
224 make_node (code)
225 enum tree_code code;
226 {
227 tree t;
228 int type = TREE_CODE_CLASS (code);
229 size_t length;
230 #ifdef GATHER_STATISTICS
231 tree_node_kind kind;
232 #endif
233 struct tree_common ttmp;
234
235 /* We can't allocate a TREE_VEC without knowing how many elements
236 it will have. */
237 if (code == TREE_VEC)
238 abort ();
239
240 TREE_SET_CODE ((tree)&ttmp, code);
241 length = tree_size ((tree)&ttmp);
242
243 #ifdef GATHER_STATISTICS
244 switch (type)
245 {
246 case 'd': /* A decl node */
247 kind = d_kind;
248 break;
249
250 case 't': /* a type node */
251 kind = t_kind;
252 break;
253
254 case 'b': /* a lexical block */
255 kind = b_kind;
256 break;
257
258 case 's': /* an expression with side effects */
259 kind = s_kind;
260 break;
261
262 case 'r': /* a reference */
263 kind = r_kind;
264 break;
265
266 case 'e': /* an expression */
267 case '<': /* a comparison expression */
268 case '1': /* a unary arithmetic expression */
269 case '2': /* a binary arithmetic expression */
270 kind = e_kind;
271 break;
272
273 case 'c': /* a constant */
274 kind = c_kind;
275 break;
276
277 case 'x': /* something random, like an identifier. */
278 if (code == IDENTIFIER_NODE)
279 kind = id_kind;
280 else if (code == TREE_VEC)
281 kind = vec_kind;
282 else
283 kind = x_kind;
284 break;
285
286 default:
287 abort ();
288 }
289
290 tree_node_counts[(int) kind]++;
291 tree_node_sizes[(int) kind] += length;
292 #endif
293
294 t = ggc_alloc_tree (length);
295
296 memset ((PTR) t, 0, length);
297
298 TREE_SET_CODE (t, code);
299
300 switch (type)
301 {
302 case 's':
303 TREE_SIDE_EFFECTS (t) = 1;
304 break;
305
306 case 'd':
307 if (code != FUNCTION_DECL)
308 DECL_ALIGN (t) = 1;
309 DECL_USER_ALIGN (t) = 0;
310 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
311 DECL_SOURCE_LINE (t) = input_line;
312 DECL_SOURCE_FILE (t) =
313 (input_filename) ? input_filename : "<built-in>";
314 DECL_UID (t) = next_decl_uid++;
315
316 /* We have not yet computed the alias set for this declaration. */
317 DECL_POINTER_ALIAS_SET (t) = -1;
318 break;
319
320 case 't':
321 TYPE_UID (t) = next_type_uid++;
322 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
323 TYPE_USER_ALIGN (t) = 0;
324 TYPE_MAIN_VARIANT (t) = t;
325
326 /* Default to no attributes for type, but let target change that. */
327 TYPE_ATTRIBUTES (t) = NULL_TREE;
328 (*targetm.set_default_type_attributes) (t);
329
330 /* We have not yet computed the alias set for this type. */
331 TYPE_ALIAS_SET (t) = -1;
332 break;
333
334 case 'c':
335 TREE_CONSTANT (t) = 1;
336 break;
337
338 case 'e':
339 switch (code)
340 {
341 case INIT_EXPR:
342 case MODIFY_EXPR:
343 case VA_ARG_EXPR:
344 case RTL_EXPR:
345 case PREDECREMENT_EXPR:
346 case PREINCREMENT_EXPR:
347 case POSTDECREMENT_EXPR:
348 case POSTINCREMENT_EXPR:
349 /* All of these have side-effects, no matter what their
350 operands are. */
351 TREE_SIDE_EFFECTS (t) = 1;
352 break;
353
354 default:
355 break;
356 }
357 break;
358 }
359
360 return t;
361 }
362 \f
363 /* Return a new node with the same contents as NODE except that its
364 TREE_CHAIN is zero and it has a fresh uid. */
365
366 tree
367 copy_node (node)
368 tree node;
369 {
370 tree t;
371 enum tree_code code = TREE_CODE (node);
372 size_t length;
373
374 length = tree_size (node);
375 t = ggc_alloc_tree (length);
376 memcpy (t, node, length);
377
378 TREE_CHAIN (t) = 0;
379 TREE_ASM_WRITTEN (t) = 0;
380
381 if (TREE_CODE_CLASS (code) == 'd')
382 DECL_UID (t) = next_decl_uid++;
383 else if (TREE_CODE_CLASS (code) == 't')
384 {
385 TYPE_UID (t) = next_type_uid++;
386 /* The following is so that the debug code for
387 the copy is different from the original type.
388 The two statements usually duplicate each other
389 (because they clear fields of the same union),
390 but the optimizer should catch that. */
391 TYPE_SYMTAB_POINTER (t) = 0;
392 TYPE_SYMTAB_ADDRESS (t) = 0;
393 }
394
395 return t;
396 }
397
398 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
399 For example, this can copy a list made of TREE_LIST nodes. */
400
401 tree
402 copy_list (list)
403 tree list;
404 {
405 tree head;
406 tree prev, next;
407
408 if (list == 0)
409 return 0;
410
411 head = prev = copy_node (list);
412 next = TREE_CHAIN (list);
413 while (next)
414 {
415 TREE_CHAIN (prev) = copy_node (next);
416 prev = TREE_CHAIN (prev);
417 next = TREE_CHAIN (next);
418 }
419 return head;
420 }
421
422 \f
423 /* Return a newly constructed INTEGER_CST node whose constant value
424 is specified by the two ints LOW and HI.
425 The TREE_TYPE is set to `int'.
426
427 This function should be used via the `build_int_2' macro. */
428
429 tree
430 build_int_2_wide (low, hi)
431 unsigned HOST_WIDE_INT low;
432 HOST_WIDE_INT hi;
433 {
434 tree t = make_node (INTEGER_CST);
435
436 TREE_INT_CST_LOW (t) = low;
437 TREE_INT_CST_HIGH (t) = hi;
438 TREE_TYPE (t) = integer_type_node;
439 return t;
440 }
441
442 /* Return a new VECTOR_CST node whose type is TYPE and whose values
443 are in a list pointed by VALS. */
444
445 tree
446 build_vector (type, vals)
447 tree type, vals;
448 {
449 tree v = make_node (VECTOR_CST);
450 int over1 = 0, over2 = 0;
451 tree link;
452
453 TREE_VECTOR_CST_ELTS (v) = vals;
454 TREE_TYPE (v) = type;
455
456 /* Iterate through elements and check for overflow. */
457 for (link = vals; link; link = TREE_CHAIN (link))
458 {
459 tree value = TREE_VALUE (link);
460
461 over1 |= TREE_OVERFLOW (value);
462 over2 |= TREE_CONSTANT_OVERFLOW (value);
463 }
464
465 TREE_OVERFLOW (v) = over1;
466 TREE_CONSTANT_OVERFLOW (v) = over2;
467
468 return v;
469 }
470
471 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
472 are in a list pointed to by VALS. */
473 tree
474 build_constructor (type, vals)
475 tree type, vals;
476 {
477 tree c = make_node (CONSTRUCTOR);
478 TREE_TYPE (c) = type;
479 CONSTRUCTOR_ELTS (c) = vals;
480
481 /* ??? May not be necessary. Mirrors what build does. */
482 if (vals)
483 {
484 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
485 TREE_READONLY (c) = TREE_READONLY (vals);
486 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
487 }
488 else
489 TREE_CONSTANT (c) = 0; /* safe side */
490
491 return c;
492 }
493
494 /* Return a new REAL_CST node whose type is TYPE and value is D. */
495
496 tree
497 build_real (type, d)
498 tree type;
499 REAL_VALUE_TYPE d;
500 {
501 tree v;
502 REAL_VALUE_TYPE *dp;
503 int overflow = 0;
504
505 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
506 Consider doing it via real_convert now. */
507
508 v = make_node (REAL_CST);
509 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
510 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
511
512 TREE_TYPE (v) = type;
513 TREE_REAL_CST_PTR (v) = dp;
514 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
515 return v;
516 }
517
518 /* Return a new REAL_CST node whose type is TYPE
519 and whose value is the integer value of the INTEGER_CST node I. */
520
521 REAL_VALUE_TYPE
522 real_value_from_int_cst (type, i)
523 tree type ATTRIBUTE_UNUSED, i;
524 {
525 REAL_VALUE_TYPE d;
526
527 /* Clear all bits of the real value type so that we can later do
528 bitwise comparisons to see if two values are the same. */
529 memset ((char *) &d, 0, sizeof d);
530
531 if (! TREE_UNSIGNED (TREE_TYPE (i)))
532 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
533 TYPE_MODE (type));
534 else
535 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
536 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
537 return d;
538 }
539
540 /* Given a tree representing an integer constant I, return a tree
541 representing the same value as a floating-point constant of type TYPE. */
542
543 tree
544 build_real_from_int_cst (type, i)
545 tree type;
546 tree i;
547 {
548 tree v;
549 int overflow = TREE_OVERFLOW (i);
550
551 v = build_real (type, real_value_from_int_cst (type, i));
552
553 TREE_OVERFLOW (v) |= overflow;
554 TREE_CONSTANT_OVERFLOW (v) |= overflow;
555 return v;
556 }
557
558 /* Return a newly constructed STRING_CST node whose value is
559 the LEN characters at STR.
560 The TREE_TYPE is not initialized. */
561
562 tree
563 build_string (len, str)
564 int len;
565 const char *str;
566 {
567 tree s = make_node (STRING_CST);
568
569 TREE_STRING_LENGTH (s) = len;
570 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
571
572 return s;
573 }
574
575 /* Return a newly constructed COMPLEX_CST node whose value is
576 specified by the real and imaginary parts REAL and IMAG.
577 Both REAL and IMAG should be constant nodes. TYPE, if specified,
578 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
579
580 tree
581 build_complex (type, real, imag)
582 tree type;
583 tree real, imag;
584 {
585 tree t = make_node (COMPLEX_CST);
586
587 TREE_REALPART (t) = real;
588 TREE_IMAGPART (t) = imag;
589 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
590 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
591 TREE_CONSTANT_OVERFLOW (t)
592 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
593 return t;
594 }
595
596 /* Build a newly constructed TREE_VEC node of length LEN. */
597
598 tree
599 make_tree_vec (len)
600 int len;
601 {
602 tree t;
603 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
604
605 #ifdef GATHER_STATISTICS
606 tree_node_counts[(int) vec_kind]++;
607 tree_node_sizes[(int) vec_kind] += length;
608 #endif
609
610 t = ggc_alloc_tree (length);
611
612 memset ((PTR) t, 0, length);
613 TREE_SET_CODE (t, TREE_VEC);
614 TREE_VEC_LENGTH (t) = len;
615
616 return t;
617 }
618 \f
619 /* Return 1 if EXPR is the integer constant zero or a complex constant
620 of zero. */
621
622 int
623 integer_zerop (expr)
624 tree expr;
625 {
626 STRIP_NOPS (expr);
627
628 return ((TREE_CODE (expr) == INTEGER_CST
629 && ! TREE_CONSTANT_OVERFLOW (expr)
630 && TREE_INT_CST_LOW (expr) == 0
631 && TREE_INT_CST_HIGH (expr) == 0)
632 || (TREE_CODE (expr) == COMPLEX_CST
633 && integer_zerop (TREE_REALPART (expr))
634 && integer_zerop (TREE_IMAGPART (expr))));
635 }
636
637 /* Return 1 if EXPR is the integer constant one or the corresponding
638 complex constant. */
639
640 int
641 integer_onep (expr)
642 tree expr;
643 {
644 STRIP_NOPS (expr);
645
646 return ((TREE_CODE (expr) == INTEGER_CST
647 && ! TREE_CONSTANT_OVERFLOW (expr)
648 && TREE_INT_CST_LOW (expr) == 1
649 && TREE_INT_CST_HIGH (expr) == 0)
650 || (TREE_CODE (expr) == COMPLEX_CST
651 && integer_onep (TREE_REALPART (expr))
652 && integer_zerop (TREE_IMAGPART (expr))));
653 }
654
655 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
656 it contains. Likewise for the corresponding complex constant. */
657
658 int
659 integer_all_onesp (expr)
660 tree expr;
661 {
662 int prec;
663 int uns;
664
665 STRIP_NOPS (expr);
666
667 if (TREE_CODE (expr) == COMPLEX_CST
668 && integer_all_onesp (TREE_REALPART (expr))
669 && integer_zerop (TREE_IMAGPART (expr)))
670 return 1;
671
672 else if (TREE_CODE (expr) != INTEGER_CST
673 || TREE_CONSTANT_OVERFLOW (expr))
674 return 0;
675
676 uns = TREE_UNSIGNED (TREE_TYPE (expr));
677 if (!uns)
678 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
679 && TREE_INT_CST_HIGH (expr) == -1);
680
681 /* Note that using TYPE_PRECISION here is wrong. We care about the
682 actual bits, not the (arbitrary) range of the type. */
683 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
684 if (prec >= HOST_BITS_PER_WIDE_INT)
685 {
686 HOST_WIDE_INT high_value;
687 int shift_amount;
688
689 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
690
691 if (shift_amount > HOST_BITS_PER_WIDE_INT)
692 /* Can not handle precisions greater than twice the host int size. */
693 abort ();
694 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
695 /* Shifting by the host word size is undefined according to the ANSI
696 standard, so we must handle this as a special case. */
697 high_value = -1;
698 else
699 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
700
701 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
702 && TREE_INT_CST_HIGH (expr) == high_value);
703 }
704 else
705 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
706 }
707
708 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
709 one bit on). */
710
711 int
712 integer_pow2p (expr)
713 tree expr;
714 {
715 int prec;
716 HOST_WIDE_INT high, low;
717
718 STRIP_NOPS (expr);
719
720 if (TREE_CODE (expr) == COMPLEX_CST
721 && integer_pow2p (TREE_REALPART (expr))
722 && integer_zerop (TREE_IMAGPART (expr)))
723 return 1;
724
725 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
726 return 0;
727
728 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
729 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
730 high = TREE_INT_CST_HIGH (expr);
731 low = TREE_INT_CST_LOW (expr);
732
733 /* First clear all bits that are beyond the type's precision in case
734 we've been sign extended. */
735
736 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
737 ;
738 else if (prec > HOST_BITS_PER_WIDE_INT)
739 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
740 else
741 {
742 high = 0;
743 if (prec < HOST_BITS_PER_WIDE_INT)
744 low &= ~((HOST_WIDE_INT) (-1) << prec);
745 }
746
747 if (high == 0 && low == 0)
748 return 0;
749
750 return ((high == 0 && (low & (low - 1)) == 0)
751 || (low == 0 && (high & (high - 1)) == 0));
752 }
753
754 /* Return 1 if EXPR is an integer constant other than zero or a
755 complex constant other than zero. */
756
757 int
758 integer_nonzerop (expr)
759 tree expr;
760 {
761 STRIP_NOPS (expr);
762
763 return ((TREE_CODE (expr) == INTEGER_CST
764 && ! TREE_CONSTANT_OVERFLOW (expr)
765 && (TREE_INT_CST_LOW (expr) != 0
766 || TREE_INT_CST_HIGH (expr) != 0))
767 || (TREE_CODE (expr) == COMPLEX_CST
768 && (integer_nonzerop (TREE_REALPART (expr))
769 || integer_nonzerop (TREE_IMAGPART (expr)))));
770 }
771
772 /* Return the power of two represented by a tree node known to be a
773 power of two. */
774
775 int
776 tree_log2 (expr)
777 tree expr;
778 {
779 int prec;
780 HOST_WIDE_INT high, low;
781
782 STRIP_NOPS (expr);
783
784 if (TREE_CODE (expr) == COMPLEX_CST)
785 return tree_log2 (TREE_REALPART (expr));
786
787 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
788 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
789
790 high = TREE_INT_CST_HIGH (expr);
791 low = TREE_INT_CST_LOW (expr);
792
793 /* First clear all bits that are beyond the type's precision in case
794 we've been sign extended. */
795
796 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
797 ;
798 else if (prec > HOST_BITS_PER_WIDE_INT)
799 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
800 else
801 {
802 high = 0;
803 if (prec < HOST_BITS_PER_WIDE_INT)
804 low &= ~((HOST_WIDE_INT) (-1) << prec);
805 }
806
807 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
808 : exact_log2 (low));
809 }
810
811 /* Similar, but return the largest integer Y such that 2 ** Y is less
812 than or equal to EXPR. */
813
814 int
815 tree_floor_log2 (expr)
816 tree expr;
817 {
818 int prec;
819 HOST_WIDE_INT high, low;
820
821 STRIP_NOPS (expr);
822
823 if (TREE_CODE (expr) == COMPLEX_CST)
824 return tree_log2 (TREE_REALPART (expr));
825
826 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
827 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
828
829 high = TREE_INT_CST_HIGH (expr);
830 low = TREE_INT_CST_LOW (expr);
831
832 /* First clear all bits that are beyond the type's precision in case
833 we've been sign extended. Ignore if type's precision hasn't been set
834 since what we are doing is setting it. */
835
836 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
837 ;
838 else if (prec > HOST_BITS_PER_WIDE_INT)
839 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
840 else
841 {
842 high = 0;
843 if (prec < HOST_BITS_PER_WIDE_INT)
844 low &= ~((HOST_WIDE_INT) (-1) << prec);
845 }
846
847 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
848 : floor_log2 (low));
849 }
850
851 /* Return 1 if EXPR is the real constant zero. */
852
853 int
854 real_zerop (expr)
855 tree expr;
856 {
857 STRIP_NOPS (expr);
858
859 return ((TREE_CODE (expr) == REAL_CST
860 && ! TREE_CONSTANT_OVERFLOW (expr)
861 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
862 || (TREE_CODE (expr) == COMPLEX_CST
863 && real_zerop (TREE_REALPART (expr))
864 && real_zerop (TREE_IMAGPART (expr))));
865 }
866
867 /* Return 1 if EXPR is the real constant one in real or complex form. */
868
869 int
870 real_onep (expr)
871 tree expr;
872 {
873 STRIP_NOPS (expr);
874
875 return ((TREE_CODE (expr) == REAL_CST
876 && ! TREE_CONSTANT_OVERFLOW (expr)
877 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
878 || (TREE_CODE (expr) == COMPLEX_CST
879 && real_onep (TREE_REALPART (expr))
880 && real_zerop (TREE_IMAGPART (expr))));
881 }
882
883 /* Return 1 if EXPR is the real constant two. */
884
885 int
886 real_twop (expr)
887 tree expr;
888 {
889 STRIP_NOPS (expr);
890
891 return ((TREE_CODE (expr) == REAL_CST
892 && ! TREE_CONSTANT_OVERFLOW (expr)
893 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
894 || (TREE_CODE (expr) == COMPLEX_CST
895 && real_twop (TREE_REALPART (expr))
896 && real_zerop (TREE_IMAGPART (expr))));
897 }
898
899 /* Return 1 if EXPR is the real constant minus one. */
900
901 int
902 real_minus_onep (expr)
903 tree expr;
904 {
905 STRIP_NOPS (expr);
906
907 return ((TREE_CODE (expr) == REAL_CST
908 && ! TREE_CONSTANT_OVERFLOW (expr)
909 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
910 || (TREE_CODE (expr) == COMPLEX_CST
911 && real_minus_onep (TREE_REALPART (expr))
912 && real_zerop (TREE_IMAGPART (expr))));
913 }
914
915 /* Nonzero if EXP is a constant or a cast of a constant. */
916
917 int
918 really_constant_p (exp)
919 tree exp;
920 {
921 /* This is not quite the same as STRIP_NOPS. It does more. */
922 while (TREE_CODE (exp) == NOP_EXPR
923 || TREE_CODE (exp) == CONVERT_EXPR
924 || TREE_CODE (exp) == NON_LVALUE_EXPR)
925 exp = TREE_OPERAND (exp, 0);
926 return TREE_CONSTANT (exp);
927 }
928 \f
929 /* Return first list element whose TREE_VALUE is ELEM.
930 Return 0 if ELEM is not in LIST. */
931
932 tree
933 value_member (elem, list)
934 tree elem, list;
935 {
936 while (list)
937 {
938 if (elem == TREE_VALUE (list))
939 return list;
940 list = TREE_CHAIN (list);
941 }
942 return NULL_TREE;
943 }
944
945 /* Return first list element whose TREE_PURPOSE is ELEM.
946 Return 0 if ELEM is not in LIST. */
947
948 tree
949 purpose_member (elem, list)
950 tree elem, list;
951 {
952 while (list)
953 {
954 if (elem == TREE_PURPOSE (list))
955 return list;
956 list = TREE_CHAIN (list);
957 }
958 return NULL_TREE;
959 }
960
961 /* Return first list element whose BINFO_TYPE is ELEM.
962 Return 0 if ELEM is not in LIST. */
963
964 tree
965 binfo_member (elem, list)
966 tree elem, list;
967 {
968 while (list)
969 {
970 if (elem == BINFO_TYPE (list))
971 return list;
972 list = TREE_CHAIN (list);
973 }
974 return NULL_TREE;
975 }
976
977 /* Return nonzero if ELEM is part of the chain CHAIN. */
978
979 int
980 chain_member (elem, chain)
981 tree elem, chain;
982 {
983 while (chain)
984 {
985 if (elem == chain)
986 return 1;
987 chain = TREE_CHAIN (chain);
988 }
989
990 return 0;
991 }
992
993 /* Return the length of a chain of nodes chained through TREE_CHAIN.
994 We expect a null pointer to mark the end of the chain.
995 This is the Lisp primitive `length'. */
996
997 int
998 list_length (t)
999 tree t;
1000 {
1001 tree tail;
1002 int len = 0;
1003
1004 for (tail = t; tail; tail = TREE_CHAIN (tail))
1005 len++;
1006
1007 return len;
1008 }
1009
1010 /* Returns the number of FIELD_DECLs in TYPE. */
1011
1012 int
1013 fields_length (type)
1014 tree type;
1015 {
1016 tree t = TYPE_FIELDS (type);
1017 int count = 0;
1018
1019 for (; t; t = TREE_CHAIN (t))
1020 if (TREE_CODE (t) == FIELD_DECL)
1021 ++count;
1022
1023 return count;
1024 }
1025
1026 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1027 by modifying the last node in chain 1 to point to chain 2.
1028 This is the Lisp primitive `nconc'. */
1029
1030 tree
1031 chainon (op1, op2)
1032 tree op1, op2;
1033 {
1034 tree t1;
1035
1036 if (!op1)
1037 return op2;
1038 if (!op2)
1039 return op1;
1040
1041 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1042 continue;
1043 TREE_CHAIN (t1) = op2;
1044
1045 #ifdef ENABLE_TREE_CHECKING
1046 {
1047 tree t2;
1048 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1049 if (t2 == t1)
1050 abort (); /* Circularity created. */
1051 }
1052 #endif
1053
1054 return op1;
1055 }
1056
1057 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1058
1059 tree
1060 tree_last (chain)
1061 tree chain;
1062 {
1063 tree next;
1064 if (chain)
1065 while ((next = TREE_CHAIN (chain)))
1066 chain = next;
1067 return chain;
1068 }
1069
1070 /* Reverse the order of elements in the chain T,
1071 and return the new head of the chain (old last element). */
1072
1073 tree
1074 nreverse (t)
1075 tree t;
1076 {
1077 tree prev = 0, decl, next;
1078 for (decl = t; decl; decl = next)
1079 {
1080 next = TREE_CHAIN (decl);
1081 TREE_CHAIN (decl) = prev;
1082 prev = decl;
1083 }
1084 return prev;
1085 }
1086 \f
1087 /* Return a newly created TREE_LIST node whose
1088 purpose and value fields are PARM and VALUE. */
1089
1090 tree
1091 build_tree_list (parm, value)
1092 tree parm, value;
1093 {
1094 tree t = make_node (TREE_LIST);
1095 TREE_PURPOSE (t) = parm;
1096 TREE_VALUE (t) = value;
1097 return t;
1098 }
1099
1100 /* Return a newly created TREE_LIST node whose
1101 purpose and value fields are PURPOSE and VALUE
1102 and whose TREE_CHAIN is CHAIN. */
1103
1104 tree
1105 tree_cons (purpose, value, chain)
1106 tree purpose, value, chain;
1107 {
1108 tree node;
1109
1110 node = ggc_alloc_tree (sizeof (struct tree_list));
1111
1112 memset (node, 0, sizeof (struct tree_common));
1113
1114 #ifdef GATHER_STATISTICS
1115 tree_node_counts[(int) x_kind]++;
1116 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1117 #endif
1118
1119 TREE_SET_CODE (node, TREE_LIST);
1120 TREE_CHAIN (node) = chain;
1121 TREE_PURPOSE (node) = purpose;
1122 TREE_VALUE (node) = value;
1123 return node;
1124 }
1125
1126 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1127
1128 tree
1129 expr_last (expr)
1130 tree expr;
1131 {
1132 if (expr == NULL_TREE)
1133 return expr;
1134 while (TREE_CODE (expr) == COMPOUND_EXPR)
1135 expr = TREE_OPERAND (expr, 1);
1136 return expr;
1137 }
1138 \f
1139 /* Return the size nominally occupied by an object of type TYPE
1140 when it resides in memory. The value is measured in units of bytes,
1141 and its data type is that normally used for type sizes
1142 (which is the first type created by make_signed_type or
1143 make_unsigned_type). */
1144
1145 tree
1146 size_in_bytes (type)
1147 tree type;
1148 {
1149 tree t;
1150
1151 if (type == error_mark_node)
1152 return integer_zero_node;
1153
1154 type = TYPE_MAIN_VARIANT (type);
1155 t = TYPE_SIZE_UNIT (type);
1156
1157 if (t == 0)
1158 {
1159 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1160 return size_zero_node;
1161 }
1162
1163 if (TREE_CODE (t) == INTEGER_CST)
1164 force_fit_type (t, 0);
1165
1166 return t;
1167 }
1168
1169 /* Return the size of TYPE (in bytes) as a wide integer
1170 or return -1 if the size can vary or is larger than an integer. */
1171
1172 HOST_WIDE_INT
1173 int_size_in_bytes (type)
1174 tree type;
1175 {
1176 tree t;
1177
1178 if (type == error_mark_node)
1179 return 0;
1180
1181 type = TYPE_MAIN_VARIANT (type);
1182 t = TYPE_SIZE_UNIT (type);
1183 if (t == 0
1184 || TREE_CODE (t) != INTEGER_CST
1185 || TREE_OVERFLOW (t)
1186 || TREE_INT_CST_HIGH (t) != 0
1187 /* If the result would appear negative, it's too big to represent. */
1188 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1189 return -1;
1190
1191 return TREE_INT_CST_LOW (t);
1192 }
1193 \f
1194 /* Return the bit position of FIELD, in bits from the start of the record.
1195 This is a tree of type bitsizetype. */
1196
1197 tree
1198 bit_position (field)
1199 tree field;
1200 {
1201 return bit_from_pos (DECL_FIELD_OFFSET (field),
1202 DECL_FIELD_BIT_OFFSET (field));
1203 }
1204
1205 /* Likewise, but return as an integer. Abort if it cannot be represented
1206 in that way (since it could be a signed value, we don't have the option
1207 of returning -1 like int_size_in_byte can. */
1208
1209 HOST_WIDE_INT
1210 int_bit_position (field)
1211 tree field;
1212 {
1213 return tree_low_cst (bit_position (field), 0);
1214 }
1215 \f
1216 /* Return the byte position of FIELD, in bytes from the start of the record.
1217 This is a tree of type sizetype. */
1218
1219 tree
1220 byte_position (field)
1221 tree field;
1222 {
1223 return byte_from_pos (DECL_FIELD_OFFSET (field),
1224 DECL_FIELD_BIT_OFFSET (field));
1225 }
1226
1227 /* Likewise, but return as an integer. Abort if it cannot be represented
1228 in that way (since it could be a signed value, we don't have the option
1229 of returning -1 like int_size_in_byte can. */
1230
1231 HOST_WIDE_INT
1232 int_byte_position (field)
1233 tree field;
1234 {
1235 return tree_low_cst (byte_position (field), 0);
1236 }
1237 \f
1238 /* Return the strictest alignment, in bits, that T is known to have. */
1239
1240 unsigned int
1241 expr_align (t)
1242 tree t;
1243 {
1244 unsigned int align0, align1;
1245
1246 switch (TREE_CODE (t))
1247 {
1248 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1249 /* If we have conversions, we know that the alignment of the
1250 object must meet each of the alignments of the types. */
1251 align0 = expr_align (TREE_OPERAND (t, 0));
1252 align1 = TYPE_ALIGN (TREE_TYPE (t));
1253 return MAX (align0, align1);
1254
1255 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1256 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1257 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1258 /* These don't change the alignment of an object. */
1259 return expr_align (TREE_OPERAND (t, 0));
1260
1261 case COND_EXPR:
1262 /* The best we can do is say that the alignment is the least aligned
1263 of the two arms. */
1264 align0 = expr_align (TREE_OPERAND (t, 1));
1265 align1 = expr_align (TREE_OPERAND (t, 2));
1266 return MIN (align0, align1);
1267
1268 case LABEL_DECL: case CONST_DECL:
1269 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1270 if (DECL_ALIGN (t) != 0)
1271 return DECL_ALIGN (t);
1272 break;
1273
1274 case FUNCTION_DECL:
1275 return FUNCTION_BOUNDARY;
1276
1277 default:
1278 break;
1279 }
1280
1281 /* Otherwise take the alignment from that of the type. */
1282 return TYPE_ALIGN (TREE_TYPE (t));
1283 }
1284 \f
1285 /* Return, as a tree node, the number of elements for TYPE (which is an
1286 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1287
1288 tree
1289 array_type_nelts (type)
1290 tree type;
1291 {
1292 tree index_type, min, max;
1293
1294 /* If they did it with unspecified bounds, then we should have already
1295 given an error about it before we got here. */
1296 if (! TYPE_DOMAIN (type))
1297 return error_mark_node;
1298
1299 index_type = TYPE_DOMAIN (type);
1300 min = TYPE_MIN_VALUE (index_type);
1301 max = TYPE_MAX_VALUE (index_type);
1302
1303 return (integer_zerop (min)
1304 ? max
1305 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1306 }
1307 \f
1308 /* Return nonzero if arg is static -- a reference to an object in
1309 static storage. This is not the same as the C meaning of `static'. */
1310
1311 int
1312 staticp (arg)
1313 tree arg;
1314 {
1315 switch (TREE_CODE (arg))
1316 {
1317 case FUNCTION_DECL:
1318 /* Nested functions aren't static, since taking their address
1319 involves a trampoline. */
1320 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1321 && ! DECL_NON_ADDR_CONST_P (arg));
1322
1323 case VAR_DECL:
1324 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1325 && ! DECL_THREAD_LOCAL (arg)
1326 && ! DECL_NON_ADDR_CONST_P (arg));
1327
1328 case CONSTRUCTOR:
1329 return TREE_STATIC (arg);
1330
1331 case LABEL_DECL:
1332 case STRING_CST:
1333 return 1;
1334
1335 /* If we are referencing a bitfield, we can't evaluate an
1336 ADDR_EXPR at compile time and so it isn't a constant. */
1337 case COMPONENT_REF:
1338 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1339 && staticp (TREE_OPERAND (arg, 0)));
1340
1341 case BIT_FIELD_REF:
1342 return 0;
1343
1344 #if 0
1345 /* This case is technically correct, but results in setting
1346 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1347 compile time. */
1348 case INDIRECT_REF:
1349 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1350 #endif
1351
1352 case ARRAY_REF:
1353 case ARRAY_RANGE_REF:
1354 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1355 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1356 return staticp (TREE_OPERAND (arg, 0));
1357
1358 default:
1359 if ((unsigned int) TREE_CODE (arg)
1360 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1361 return (*lang_hooks.staticp) (arg);
1362 else
1363 return 0;
1364 }
1365 }
1366 \f
1367 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1368 Do this to any expression which may be used in more than one place,
1369 but must be evaluated only once.
1370
1371 Normally, expand_expr would reevaluate the expression each time.
1372 Calling save_expr produces something that is evaluated and recorded
1373 the first time expand_expr is called on it. Subsequent calls to
1374 expand_expr just reuse the recorded value.
1375
1376 The call to expand_expr that generates code that actually computes
1377 the value is the first call *at compile time*. Subsequent calls
1378 *at compile time* generate code to use the saved value.
1379 This produces correct result provided that *at run time* control
1380 always flows through the insns made by the first expand_expr
1381 before reaching the other places where the save_expr was evaluated.
1382 You, the caller of save_expr, must make sure this is so.
1383
1384 Constants, and certain read-only nodes, are returned with no
1385 SAVE_EXPR because that is safe. Expressions containing placeholders
1386 are not touched; see tree.def for an explanation of what these
1387 are used for. */
1388
1389 tree
1390 save_expr (expr)
1391 tree expr;
1392 {
1393 tree t = expr;
1394 tree inner;
1395
1396 /* Don't fold a COMPONENT_EXPR: if the operand was a CONSTRUCTOR (the
1397 only time it will fold), it can cause problems with PLACEHOLDER_EXPRs
1398 in Ada. Moreover, it isn't at all clear why we fold here at all. */
1399 if (TREE_CODE (t) != COMPONENT_REF)
1400 t = fold (t);
1401
1402 /* If the tree evaluates to a constant, then we don't want to hide that
1403 fact (i.e. this allows further folding, and direct checks for constants).
1404 However, a read-only object that has side effects cannot be bypassed.
1405 Since it is no problem to reevaluate literals, we just return the
1406 literal node. */
1407 inner = skip_simple_arithmetic (t);
1408 if (TREE_CONSTANT (inner)
1409 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1410 || TREE_CODE (inner) == SAVE_EXPR
1411 || TREE_CODE (inner) == ERROR_MARK)
1412 return t;
1413
1414 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1415 it means that the size or offset of some field of an object depends on
1416 the value within another field.
1417
1418 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1419 and some variable since it would then need to be both evaluated once and
1420 evaluated more than once. Front-ends must assure this case cannot
1421 happen by surrounding any such subexpressions in their own SAVE_EXPR
1422 and forcing evaluation at the proper time. */
1423 if (contains_placeholder_p (inner))
1424 return t;
1425
1426 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1427
1428 /* This expression might be placed ahead of a jump to ensure that the
1429 value was computed on both sides of the jump. So make sure it isn't
1430 eliminated as dead. */
1431 TREE_SIDE_EFFECTS (t) = 1;
1432 TREE_READONLY (t) = 1;
1433 return t;
1434 }
1435
1436 /* Look inside EXPR and into any simple arithmetic operations. Return
1437 the innermost non-arithmetic node. */
1438
1439 tree
1440 skip_simple_arithmetic (expr)
1441 tree expr;
1442 {
1443 tree inner;
1444
1445 /* We don't care about whether this can be used as an lvalue in this
1446 context. */
1447 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1448 expr = TREE_OPERAND (expr, 0);
1449
1450 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1451 a constant, it will be more efficient to not make another SAVE_EXPR since
1452 it will allow better simplification and GCSE will be able to merge the
1453 computations if they actually occur. */
1454 inner = expr;
1455 while (1)
1456 {
1457 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1458 inner = TREE_OPERAND (inner, 0);
1459 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1460 {
1461 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1462 inner = TREE_OPERAND (inner, 0);
1463 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1464 inner = TREE_OPERAND (inner, 1);
1465 else
1466 break;
1467 }
1468 else
1469 break;
1470 }
1471
1472 return inner;
1473 }
1474
1475 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1476 SAVE_EXPR. Return FALSE otherwise. */
1477
1478 bool
1479 saved_expr_p (expr)
1480 tree expr;
1481 {
1482 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1483 }
1484
1485 /* Arrange for an expression to be expanded multiple independent
1486 times. This is useful for cleanup actions, as the backend can
1487 expand them multiple times in different places. */
1488
1489 tree
1490 unsave_expr (expr)
1491 tree expr;
1492 {
1493 tree t;
1494
1495 /* If this is already protected, no sense in protecting it again. */
1496 if (TREE_CODE (expr) == UNSAVE_EXPR)
1497 return expr;
1498
1499 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1500 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1501 return t;
1502 }
1503
1504 /* Returns the index of the first non-tree operand for CODE, or the number
1505 of operands if all are trees. */
1506
1507 int
1508 first_rtl_op (code)
1509 enum tree_code code;
1510 {
1511 switch (code)
1512 {
1513 case SAVE_EXPR:
1514 return 2;
1515 case GOTO_SUBROUTINE_EXPR:
1516 case RTL_EXPR:
1517 return 0;
1518 case WITH_CLEANUP_EXPR:
1519 return 2;
1520 case METHOD_CALL_EXPR:
1521 return 3;
1522 default:
1523 return TREE_CODE_LENGTH (code);
1524 }
1525 }
1526
1527 /* Return which tree structure is used by T. */
1528
1529 enum tree_node_structure_enum
1530 tree_node_structure (t)
1531 tree t;
1532 {
1533 enum tree_code code = TREE_CODE (t);
1534
1535 switch (TREE_CODE_CLASS (code))
1536 {
1537 case 'd': return TS_DECL;
1538 case 't': return TS_TYPE;
1539 case 'b': return TS_BLOCK;
1540 case 'r': case '<': case '1': case '2': case 'e': case 's':
1541 return TS_EXP;
1542 default: /* 'c' and 'x' */
1543 break;
1544 }
1545 switch (code)
1546 {
1547 /* 'c' cases. */
1548 case INTEGER_CST: return TS_INT_CST;
1549 case REAL_CST: return TS_REAL_CST;
1550 case COMPLEX_CST: return TS_COMPLEX;
1551 case VECTOR_CST: return TS_VECTOR;
1552 case STRING_CST: return TS_STRING;
1553 /* 'x' cases. */
1554 case ERROR_MARK: return TS_COMMON;
1555 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1556 case TREE_LIST: return TS_LIST;
1557 case TREE_VEC: return TS_VEC;
1558 case PLACEHOLDER_EXPR: return TS_COMMON;
1559
1560 default:
1561 abort ();
1562 }
1563 }
1564
1565 /* Perform any modifications to EXPR required when it is unsaved. Does
1566 not recurse into EXPR's subtrees. */
1567
1568 void
1569 unsave_expr_1 (expr)
1570 tree expr;
1571 {
1572 switch (TREE_CODE (expr))
1573 {
1574 case SAVE_EXPR:
1575 if (! SAVE_EXPR_PERSISTENT_P (expr))
1576 SAVE_EXPR_RTL (expr) = 0;
1577 break;
1578
1579 case TARGET_EXPR:
1580 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1581 It's OK for this to happen if it was part of a subtree that
1582 isn't immediately expanded, such as operand 2 of another
1583 TARGET_EXPR. */
1584 if (TREE_OPERAND (expr, 1))
1585 break;
1586
1587 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1588 TREE_OPERAND (expr, 3) = NULL_TREE;
1589 break;
1590
1591 case RTL_EXPR:
1592 /* I don't yet know how to emit a sequence multiple times. */
1593 if (RTL_EXPR_SEQUENCE (expr) != 0)
1594 abort ();
1595 break;
1596
1597 default:
1598 break;
1599 }
1600 }
1601
1602 /* Default lang hook for "unsave_expr_now". */
1603
1604 tree
1605 lhd_unsave_expr_now (expr)
1606 tree expr;
1607 {
1608 enum tree_code code;
1609
1610 /* There's nothing to do for NULL_TREE. */
1611 if (expr == 0)
1612 return expr;
1613
1614 unsave_expr_1 (expr);
1615
1616 code = TREE_CODE (expr);
1617 switch (TREE_CODE_CLASS (code))
1618 {
1619 case 'c': /* a constant */
1620 case 't': /* a type node */
1621 case 'd': /* A decl node */
1622 case 'b': /* A block node */
1623 break;
1624
1625 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1626 if (code == TREE_LIST)
1627 {
1628 lhd_unsave_expr_now (TREE_VALUE (expr));
1629 lhd_unsave_expr_now (TREE_CHAIN (expr));
1630 }
1631 break;
1632
1633 case 'e': /* an expression */
1634 case 'r': /* a reference */
1635 case 's': /* an expression with side effects */
1636 case '<': /* a comparison expression */
1637 case '2': /* a binary arithmetic expression */
1638 case '1': /* a unary arithmetic expression */
1639 {
1640 int i;
1641
1642 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1643 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1644 }
1645 break;
1646
1647 default:
1648 abort ();
1649 }
1650
1651 return expr;
1652 }
1653
1654 /* Return 0 if it is safe to evaluate EXPR multiple times,
1655 return 1 if it is safe if EXPR is unsaved afterward, or
1656 return 2 if it is completely unsafe.
1657
1658 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1659 an expression tree, so that it safe to unsave them and the surrounding
1660 context will be correct.
1661
1662 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1663 occasionally across the whole of a function. It is therefore only
1664 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1665 below the UNSAVE_EXPR.
1666
1667 RTL_EXPRs consume their rtl during evaluation. It is therefore
1668 never possible to unsave them. */
1669
1670 int
1671 unsafe_for_reeval (expr)
1672 tree expr;
1673 {
1674 int unsafeness = 0;
1675 enum tree_code code;
1676 int i, tmp, tmp2;
1677 tree exp;
1678 int first_rtl;
1679
1680 if (expr == NULL_TREE)
1681 return 1;
1682
1683 code = TREE_CODE (expr);
1684 first_rtl = first_rtl_op (code);
1685
1686 switch (code)
1687 {
1688 case SAVE_EXPR:
1689 case RTL_EXPR:
1690 return 2;
1691
1692 case TREE_LIST:
1693 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1694 {
1695 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1696 unsafeness = MAX (tmp, unsafeness);
1697 }
1698
1699 return unsafeness;
1700
1701 case CALL_EXPR:
1702 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1703 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1704 return MAX (MAX (tmp, 1), tmp2);
1705
1706 case TARGET_EXPR:
1707 unsafeness = 1;
1708 break;
1709
1710 default:
1711 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1712 if (tmp >= 0)
1713 return tmp;
1714 break;
1715 }
1716
1717 switch (TREE_CODE_CLASS (code))
1718 {
1719 case 'c': /* a constant */
1720 case 't': /* a type node */
1721 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1722 case 'd': /* A decl node */
1723 case 'b': /* A block node */
1724 return 0;
1725
1726 case 'e': /* an expression */
1727 case 'r': /* a reference */
1728 case 's': /* an expression with side effects */
1729 case '<': /* a comparison expression */
1730 case '2': /* a binary arithmetic expression */
1731 case '1': /* a unary arithmetic expression */
1732 for (i = first_rtl - 1; i >= 0; i--)
1733 {
1734 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1735 unsafeness = MAX (tmp, unsafeness);
1736 }
1737
1738 return unsafeness;
1739
1740 default:
1741 return 2;
1742 }
1743 }
1744 \f
1745 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1746 or offset that depends on a field within a record. */
1747
1748 int
1749 contains_placeholder_p (exp)
1750 tree exp;
1751 {
1752 enum tree_code code;
1753 int result;
1754
1755 if (!exp)
1756 return 0;
1757
1758 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1759 in it since it is supplying a value for it. */
1760 code = TREE_CODE (exp);
1761 if (code == WITH_RECORD_EXPR)
1762 return 0;
1763 else if (code == PLACEHOLDER_EXPR)
1764 return 1;
1765
1766 switch (TREE_CODE_CLASS (code))
1767 {
1768 case 'r':
1769 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1770 position computations since they will be converted into a
1771 WITH_RECORD_EXPR involving the reference, which will assume
1772 here will be valid. */
1773 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1774
1775 case 'x':
1776 if (code == TREE_LIST)
1777 return (contains_placeholder_p (TREE_VALUE (exp))
1778 || (TREE_CHAIN (exp) != 0
1779 && contains_placeholder_p (TREE_CHAIN (exp))));
1780 break;
1781
1782 case '1':
1783 case '2': case '<':
1784 case 'e':
1785 switch (code)
1786 {
1787 case COMPOUND_EXPR:
1788 /* Ignoring the first operand isn't quite right, but works best. */
1789 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1790
1791 case RTL_EXPR:
1792 case CONSTRUCTOR:
1793 return 0;
1794
1795 case COND_EXPR:
1796 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1797 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1798 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1799
1800 case SAVE_EXPR:
1801 /* If we already know this doesn't have a placeholder, don't
1802 check again. */
1803 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1804 return 0;
1805
1806 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1807 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1808 if (result)
1809 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1810
1811 return result;
1812
1813 case CALL_EXPR:
1814 return (TREE_OPERAND (exp, 1) != 0
1815 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1816
1817 default:
1818 break;
1819 }
1820
1821 switch (TREE_CODE_LENGTH (code))
1822 {
1823 case 1:
1824 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1825 case 2:
1826 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1827 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1828 default:
1829 return 0;
1830 }
1831
1832 default:
1833 return 0;
1834 }
1835 return 0;
1836 }
1837
1838 /* Return 1 if EXP contains any expressions that produce cleanups for an
1839 outer scope to deal with. Used by fold. */
1840
1841 int
1842 has_cleanups (exp)
1843 tree exp;
1844 {
1845 int i, nops, cmp;
1846
1847 if (! TREE_SIDE_EFFECTS (exp))
1848 return 0;
1849
1850 switch (TREE_CODE (exp))
1851 {
1852 case TARGET_EXPR:
1853 case GOTO_SUBROUTINE_EXPR:
1854 case WITH_CLEANUP_EXPR:
1855 return 1;
1856
1857 case CLEANUP_POINT_EXPR:
1858 return 0;
1859
1860 case CALL_EXPR:
1861 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1862 {
1863 cmp = has_cleanups (TREE_VALUE (exp));
1864 if (cmp)
1865 return cmp;
1866 }
1867 return 0;
1868
1869 default:
1870 break;
1871 }
1872
1873 /* This general rule works for most tree codes. All exceptions should be
1874 handled above. If this is a language-specific tree code, we can't
1875 trust what might be in the operand, so say we don't know
1876 the situation. */
1877 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1878 return -1;
1879
1880 nops = first_rtl_op (TREE_CODE (exp));
1881 for (i = 0; i < nops; i++)
1882 if (TREE_OPERAND (exp, i) != 0)
1883 {
1884 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1885 if (type == 'e' || type == '<' || type == '1' || type == '2'
1886 || type == 'r' || type == 's')
1887 {
1888 cmp = has_cleanups (TREE_OPERAND (exp, i));
1889 if (cmp)
1890 return cmp;
1891 }
1892 }
1893
1894 return 0;
1895 }
1896 \f
1897 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1898 return a tree with all occurrences of references to F in a
1899 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1900 contains only arithmetic expressions or a CALL_EXPR with a
1901 PLACEHOLDER_EXPR occurring only in its arglist. */
1902
1903 tree
1904 substitute_in_expr (exp, f, r)
1905 tree exp;
1906 tree f;
1907 tree r;
1908 {
1909 enum tree_code code = TREE_CODE (exp);
1910 tree op0, op1, op2;
1911 tree new;
1912 tree inner;
1913
1914 switch (TREE_CODE_CLASS (code))
1915 {
1916 case 'c':
1917 case 'd':
1918 return exp;
1919
1920 case 'x':
1921 if (code == PLACEHOLDER_EXPR)
1922 return exp;
1923 else if (code == TREE_LIST)
1924 {
1925 op0 = (TREE_CHAIN (exp) == 0
1926 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1927 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1928 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1929 return exp;
1930
1931 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1932 }
1933
1934 abort ();
1935
1936 case '1':
1937 case '2':
1938 case '<':
1939 case 'e':
1940 switch (TREE_CODE_LENGTH (code))
1941 {
1942 case 1:
1943 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1944 if (op0 == TREE_OPERAND (exp, 0))
1945 return exp;
1946
1947 if (code == NON_LVALUE_EXPR)
1948 return op0;
1949
1950 new = fold (build1 (code, TREE_TYPE (exp), op0));
1951 break;
1952
1953 case 2:
1954 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1955 could, but we don't support it. */
1956 if (code == RTL_EXPR)
1957 return exp;
1958 else if (code == CONSTRUCTOR)
1959 abort ();
1960
1961 op0 = TREE_OPERAND (exp, 0);
1962 op1 = TREE_OPERAND (exp, 1);
1963 if (contains_placeholder_p (op0))
1964 op0 = substitute_in_expr (op0, f, r);
1965 if (contains_placeholder_p (op1))
1966 op1 = substitute_in_expr (op1, f, r);
1967
1968 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1969 return exp;
1970
1971 new = fold (build (code, TREE_TYPE (exp), op0, op1));
1972 break;
1973
1974 case 3:
1975 /* It cannot be that anything inside a SAVE_EXPR contains a
1976 PLACEHOLDER_EXPR. */
1977 if (code == SAVE_EXPR)
1978 return exp;
1979
1980 else if (code == CALL_EXPR)
1981 {
1982 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1983 if (op1 == TREE_OPERAND (exp, 1))
1984 return exp;
1985
1986 return build (code, TREE_TYPE (exp),
1987 TREE_OPERAND (exp, 0), op1, NULL_TREE);
1988 }
1989
1990 else if (code != COND_EXPR)
1991 abort ();
1992
1993 op0 = TREE_OPERAND (exp, 0);
1994 op1 = TREE_OPERAND (exp, 1);
1995 op2 = TREE_OPERAND (exp, 2);
1996
1997 if (contains_placeholder_p (op0))
1998 op0 = substitute_in_expr (op0, f, r);
1999 if (contains_placeholder_p (op1))
2000 op1 = substitute_in_expr (op1, f, r);
2001 if (contains_placeholder_p (op2))
2002 op2 = substitute_in_expr (op2, f, r);
2003
2004 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2005 && op2 == TREE_OPERAND (exp, 2))
2006 return exp;
2007
2008 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2009 break;
2010
2011 default:
2012 abort ();
2013 }
2014
2015 break;
2016
2017 case 'r':
2018 switch (code)
2019 {
2020 case COMPONENT_REF:
2021 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2022 and it is the right field, replace it with R. */
2023 for (inner = TREE_OPERAND (exp, 0);
2024 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2025 inner = TREE_OPERAND (inner, 0))
2026 ;
2027 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2028 && TREE_OPERAND (exp, 1) == f)
2029 return r;
2030
2031 /* If this expression hasn't been completed let, leave it
2032 alone. */
2033 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2034 && TREE_TYPE (inner) == 0)
2035 return exp;
2036
2037 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2038 if (op0 == TREE_OPERAND (exp, 0))
2039 return exp;
2040
2041 new = fold (build (code, TREE_TYPE (exp), op0,
2042 TREE_OPERAND (exp, 1)));
2043 break;
2044
2045 case BIT_FIELD_REF:
2046 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2047 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2048 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2049 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2050 && op2 == TREE_OPERAND (exp, 2))
2051 return exp;
2052
2053 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2054 break;
2055
2056 case INDIRECT_REF:
2057 case BUFFER_REF:
2058 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2059 if (op0 == TREE_OPERAND (exp, 0))
2060 return exp;
2061
2062 new = fold (build1 (code, TREE_TYPE (exp), op0));
2063 break;
2064
2065 default:
2066 abort ();
2067 }
2068 break;
2069
2070 default:
2071 abort ();
2072 }
2073
2074 TREE_READONLY (new) = TREE_READONLY (exp);
2075 return new;
2076 }
2077 \f
2078 /* Stabilize a reference so that we can use it any number of times
2079 without causing its operands to be evaluated more than once.
2080 Returns the stabilized reference. This works by means of save_expr,
2081 so see the caveats in the comments about save_expr.
2082
2083 Also allows conversion expressions whose operands are references.
2084 Any other kind of expression is returned unchanged. */
2085
2086 tree
2087 stabilize_reference (ref)
2088 tree ref;
2089 {
2090 tree result;
2091 enum tree_code code = TREE_CODE (ref);
2092
2093 switch (code)
2094 {
2095 case VAR_DECL:
2096 case PARM_DECL:
2097 case RESULT_DECL:
2098 /* No action is needed in this case. */
2099 return ref;
2100
2101 case NOP_EXPR:
2102 case CONVERT_EXPR:
2103 case FLOAT_EXPR:
2104 case FIX_TRUNC_EXPR:
2105 case FIX_FLOOR_EXPR:
2106 case FIX_ROUND_EXPR:
2107 case FIX_CEIL_EXPR:
2108 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2109 break;
2110
2111 case INDIRECT_REF:
2112 result = build_nt (INDIRECT_REF,
2113 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2114 break;
2115
2116 case COMPONENT_REF:
2117 result = build_nt (COMPONENT_REF,
2118 stabilize_reference (TREE_OPERAND (ref, 0)),
2119 TREE_OPERAND (ref, 1));
2120 break;
2121
2122 case BIT_FIELD_REF:
2123 result = build_nt (BIT_FIELD_REF,
2124 stabilize_reference (TREE_OPERAND (ref, 0)),
2125 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2126 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2127 break;
2128
2129 case ARRAY_REF:
2130 result = build_nt (ARRAY_REF,
2131 stabilize_reference (TREE_OPERAND (ref, 0)),
2132 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2133 break;
2134
2135 case ARRAY_RANGE_REF:
2136 result = build_nt (ARRAY_RANGE_REF,
2137 stabilize_reference (TREE_OPERAND (ref, 0)),
2138 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2139 break;
2140
2141 case COMPOUND_EXPR:
2142 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2143 it wouldn't be ignored. This matters when dealing with
2144 volatiles. */
2145 return stabilize_reference_1 (ref);
2146
2147 case RTL_EXPR:
2148 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2149 save_expr (build1 (ADDR_EXPR,
2150 build_pointer_type (TREE_TYPE (ref)),
2151 ref)));
2152 break;
2153
2154 /* If arg isn't a kind of lvalue we recognize, make no change.
2155 Caller should recognize the error for an invalid lvalue. */
2156 default:
2157 return ref;
2158
2159 case ERROR_MARK:
2160 return error_mark_node;
2161 }
2162
2163 TREE_TYPE (result) = TREE_TYPE (ref);
2164 TREE_READONLY (result) = TREE_READONLY (ref);
2165 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2166 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2167
2168 return result;
2169 }
2170
2171 /* Subroutine of stabilize_reference; this is called for subtrees of
2172 references. Any expression with side-effects must be put in a SAVE_EXPR
2173 to ensure that it is only evaluated once.
2174
2175 We don't put SAVE_EXPR nodes around everything, because assigning very
2176 simple expressions to temporaries causes us to miss good opportunities
2177 for optimizations. Among other things, the opportunity to fold in the
2178 addition of a constant into an addressing mode often gets lost, e.g.
2179 "y[i+1] += x;". In general, we take the approach that we should not make
2180 an assignment unless we are forced into it - i.e., that any non-side effect
2181 operator should be allowed, and that cse should take care of coalescing
2182 multiple utterances of the same expression should that prove fruitful. */
2183
2184 tree
2185 stabilize_reference_1 (e)
2186 tree e;
2187 {
2188 tree result;
2189 enum tree_code code = TREE_CODE (e);
2190
2191 /* We cannot ignore const expressions because it might be a reference
2192 to a const array but whose index contains side-effects. But we can
2193 ignore things that are actual constant or that already have been
2194 handled by this function. */
2195
2196 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2197 return e;
2198
2199 switch (TREE_CODE_CLASS (code))
2200 {
2201 case 'x':
2202 case 't':
2203 case 'd':
2204 case 'b':
2205 case '<':
2206 case 's':
2207 case 'e':
2208 case 'r':
2209 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2210 so that it will only be evaluated once. */
2211 /* The reference (r) and comparison (<) classes could be handled as
2212 below, but it is generally faster to only evaluate them once. */
2213 if (TREE_SIDE_EFFECTS (e))
2214 return save_expr (e);
2215 return e;
2216
2217 case 'c':
2218 /* Constants need no processing. In fact, we should never reach
2219 here. */
2220 return e;
2221
2222 case '2':
2223 /* Division is slow and tends to be compiled with jumps,
2224 especially the division by powers of 2 that is often
2225 found inside of an array reference. So do it just once. */
2226 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2227 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2228 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2229 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2230 return save_expr (e);
2231 /* Recursively stabilize each operand. */
2232 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2233 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2234 break;
2235
2236 case '1':
2237 /* Recursively stabilize each operand. */
2238 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2239 break;
2240
2241 default:
2242 abort ();
2243 }
2244
2245 TREE_TYPE (result) = TREE_TYPE (e);
2246 TREE_READONLY (result) = TREE_READONLY (e);
2247 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2248 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2249
2250 return result;
2251 }
2252 \f
2253 /* Low-level constructors for expressions. */
2254
2255 /* Build an expression of code CODE, data type TYPE,
2256 and operands as specified by the arguments ARG1 and following arguments.
2257 Expressions and reference nodes can be created this way.
2258 Constants, decls, types and misc nodes cannot be. */
2259
2260 tree
2261 build (enum tree_code code, tree tt, ...)
2262 {
2263 tree t;
2264 int length;
2265 int i;
2266 int fro;
2267 int constant;
2268 va_list p;
2269
2270 va_start (p, tt);
2271
2272 t = make_node (code);
2273 length = TREE_CODE_LENGTH (code);
2274 TREE_TYPE (t) = tt;
2275
2276 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2277 result based on those same flags for the arguments. But if the
2278 arguments aren't really even `tree' expressions, we shouldn't be trying
2279 to do this. */
2280 fro = first_rtl_op (code);
2281
2282 /* Expressions without side effects may be constant if their
2283 arguments are as well. */
2284 constant = (TREE_CODE_CLASS (code) == '<'
2285 || TREE_CODE_CLASS (code) == '1'
2286 || TREE_CODE_CLASS (code) == '2'
2287 || TREE_CODE_CLASS (code) == 'c');
2288
2289 if (length == 2)
2290 {
2291 /* This is equivalent to the loop below, but faster. */
2292 tree arg0 = va_arg (p, tree);
2293 tree arg1 = va_arg (p, tree);
2294
2295 TREE_OPERAND (t, 0) = arg0;
2296 TREE_OPERAND (t, 1) = arg1;
2297 TREE_READONLY (t) = 1;
2298 if (arg0 && fro > 0)
2299 {
2300 if (TREE_SIDE_EFFECTS (arg0))
2301 TREE_SIDE_EFFECTS (t) = 1;
2302 if (!TREE_READONLY (arg0))
2303 TREE_READONLY (t) = 0;
2304 if (!TREE_CONSTANT (arg0))
2305 constant = 0;
2306 }
2307
2308 if (arg1 && fro > 1)
2309 {
2310 if (TREE_SIDE_EFFECTS (arg1))
2311 TREE_SIDE_EFFECTS (t) = 1;
2312 if (!TREE_READONLY (arg1))
2313 TREE_READONLY (t) = 0;
2314 if (!TREE_CONSTANT (arg1))
2315 constant = 0;
2316 }
2317 }
2318 else if (length == 1)
2319 {
2320 tree arg0 = va_arg (p, tree);
2321
2322 /* The only one-operand cases we handle here are those with side-effects.
2323 Others are handled with build1. So don't bother checked if the
2324 arg has side-effects since we'll already have set it.
2325
2326 ??? This really should use build1 too. */
2327 if (TREE_CODE_CLASS (code) != 's')
2328 abort ();
2329 TREE_OPERAND (t, 0) = arg0;
2330 }
2331 else
2332 {
2333 for (i = 0; i < length; i++)
2334 {
2335 tree operand = va_arg (p, tree);
2336
2337 TREE_OPERAND (t, i) = operand;
2338 if (operand && fro > i)
2339 {
2340 if (TREE_SIDE_EFFECTS (operand))
2341 TREE_SIDE_EFFECTS (t) = 1;
2342 if (!TREE_CONSTANT (operand))
2343 constant = 0;
2344 }
2345 }
2346 }
2347 va_end (p);
2348
2349 TREE_CONSTANT (t) = constant;
2350 return t;
2351 }
2352
2353 /* Same as above, but only builds for unary operators.
2354 Saves lions share of calls to `build'; cuts down use
2355 of varargs, which is expensive for RISC machines. */
2356
2357 tree
2358 build1 (code, type, node)
2359 enum tree_code code;
2360 tree type;
2361 tree node;
2362 {
2363 int length = sizeof (struct tree_exp);
2364 #ifdef GATHER_STATISTICS
2365 tree_node_kind kind;
2366 #endif
2367 tree t;
2368
2369 #ifdef GATHER_STATISTICS
2370 switch (TREE_CODE_CLASS (code))
2371 {
2372 case 's': /* an expression with side effects */
2373 kind = s_kind;
2374 break;
2375 case 'r': /* a reference */
2376 kind = r_kind;
2377 break;
2378 default:
2379 kind = e_kind;
2380 break;
2381 }
2382
2383 tree_node_counts[(int) kind]++;
2384 tree_node_sizes[(int) kind] += length;
2385 #endif
2386
2387 #ifdef ENABLE_CHECKING
2388 if (TREE_CODE_CLASS (code) == '2'
2389 || TREE_CODE_CLASS (code) == '<'
2390 || TREE_CODE_LENGTH (code) != 1)
2391 abort ();
2392 #endif /* ENABLE_CHECKING */
2393
2394 t = ggc_alloc_tree (length);
2395
2396 memset ((PTR) t, 0, sizeof (struct tree_common));
2397
2398 TREE_SET_CODE (t, code);
2399
2400 TREE_TYPE (t) = type;
2401 TREE_COMPLEXITY (t) = 0;
2402 TREE_OPERAND (t, 0) = node;
2403 if (node && first_rtl_op (code) != 0)
2404 {
2405 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2406 TREE_READONLY (t) = TREE_READONLY (node);
2407 }
2408
2409 if (TREE_CODE_CLASS (code) == 's')
2410 TREE_SIDE_EFFECTS (t) = 1;
2411 else switch (code)
2412 {
2413 case INIT_EXPR:
2414 case MODIFY_EXPR:
2415 case VA_ARG_EXPR:
2416 case RTL_EXPR:
2417 case PREDECREMENT_EXPR:
2418 case PREINCREMENT_EXPR:
2419 case POSTDECREMENT_EXPR:
2420 case POSTINCREMENT_EXPR:
2421 /* All of these have side-effects, no matter what their
2422 operands are. */
2423 TREE_SIDE_EFFECTS (t) = 1;
2424 TREE_READONLY (t) = 0;
2425 break;
2426
2427 case INDIRECT_REF:
2428 /* Whether a dereference is readonly has nothing to do with whether
2429 its operand is readonly. */
2430 TREE_READONLY (t) = 0;
2431 break;
2432
2433 default:
2434 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2435 TREE_CONSTANT (t) = 1;
2436 break;
2437 }
2438
2439 return t;
2440 }
2441
2442 /* Similar except don't specify the TREE_TYPE
2443 and leave the TREE_SIDE_EFFECTS as 0.
2444 It is permissible for arguments to be null,
2445 or even garbage if their values do not matter. */
2446
2447 tree
2448 build_nt (enum tree_code code, ...)
2449 {
2450 tree t;
2451 int length;
2452 int i;
2453 va_list p;
2454
2455 va_start (p, code);
2456
2457 t = make_node (code);
2458 length = TREE_CODE_LENGTH (code);
2459
2460 for (i = 0; i < length; i++)
2461 TREE_OPERAND (t, i) = va_arg (p, tree);
2462
2463 va_end (p);
2464 return t;
2465 }
2466 \f
2467 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2468 We do NOT enter this node in any sort of symbol table.
2469
2470 layout_decl is used to set up the decl's storage layout.
2471 Other slots are initialized to 0 or null pointers. */
2472
2473 tree
2474 build_decl (code, name, type)
2475 enum tree_code code;
2476 tree name, type;
2477 {
2478 tree t;
2479
2480 t = make_node (code);
2481
2482 /* if (type == error_mark_node)
2483 type = integer_type_node; */
2484 /* That is not done, deliberately, so that having error_mark_node
2485 as the type can suppress useless errors in the use of this variable. */
2486
2487 DECL_NAME (t) = name;
2488 TREE_TYPE (t) = type;
2489
2490 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2491 layout_decl (t, 0);
2492 else if (code == FUNCTION_DECL)
2493 DECL_MODE (t) = FUNCTION_MODE;
2494
2495 return t;
2496 }
2497 \f
2498 /* BLOCK nodes are used to represent the structure of binding contours
2499 and declarations, once those contours have been exited and their contents
2500 compiled. This information is used for outputting debugging info. */
2501
2502 tree
2503 build_block (vars, tags, subblocks, supercontext, chain)
2504 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2505 {
2506 tree block = make_node (BLOCK);
2507
2508 BLOCK_VARS (block) = vars;
2509 BLOCK_SUBBLOCKS (block) = subblocks;
2510 BLOCK_SUPERCONTEXT (block) = supercontext;
2511 BLOCK_CHAIN (block) = chain;
2512 return block;
2513 }
2514
2515 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2516 location where an expression or an identifier were encountered. It
2517 is necessary for languages where the frontend parser will handle
2518 recursively more than one file (Java is one of them). */
2519
2520 tree
2521 build_expr_wfl (node, file, line, col)
2522 tree node;
2523 const char *file;
2524 int line, col;
2525 {
2526 static const char *last_file = 0;
2527 static tree last_filenode = NULL_TREE;
2528 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2529
2530 EXPR_WFL_NODE (wfl) = node;
2531 EXPR_WFL_SET_LINECOL (wfl, line, col);
2532 if (file != last_file)
2533 {
2534 last_file = file;
2535 last_filenode = file ? get_identifier (file) : NULL_TREE;
2536 }
2537
2538 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2539 if (node)
2540 {
2541 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2542 TREE_TYPE (wfl) = TREE_TYPE (node);
2543 }
2544
2545 return wfl;
2546 }
2547 \f
2548 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2549 is ATTRIBUTE. */
2550
2551 tree
2552 build_decl_attribute_variant (ddecl, attribute)
2553 tree ddecl, attribute;
2554 {
2555 DECL_ATTRIBUTES (ddecl) = attribute;
2556 return ddecl;
2557 }
2558
2559 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2560 is ATTRIBUTE.
2561
2562 Record such modified types already made so we don't make duplicates. */
2563
2564 tree
2565 build_type_attribute_variant (ttype, attribute)
2566 tree ttype, attribute;
2567 {
2568 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2569 {
2570 unsigned int hashcode;
2571 tree ntype;
2572
2573 ntype = copy_node (ttype);
2574
2575 TYPE_POINTER_TO (ntype) = 0;
2576 TYPE_REFERENCE_TO (ntype) = 0;
2577 TYPE_ATTRIBUTES (ntype) = attribute;
2578
2579 /* Create a new main variant of TYPE. */
2580 TYPE_MAIN_VARIANT (ntype) = ntype;
2581 TYPE_NEXT_VARIANT (ntype) = 0;
2582 set_type_quals (ntype, TYPE_UNQUALIFIED);
2583
2584 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2585 + TYPE_HASH (TREE_TYPE (ntype))
2586 + attribute_hash_list (attribute));
2587
2588 switch (TREE_CODE (ntype))
2589 {
2590 case FUNCTION_TYPE:
2591 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2592 break;
2593 case ARRAY_TYPE:
2594 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2595 break;
2596 case INTEGER_TYPE:
2597 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2598 break;
2599 case REAL_TYPE:
2600 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2601 break;
2602 default:
2603 break;
2604 }
2605
2606 ntype = type_hash_canon (hashcode, ntype);
2607 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2608 }
2609
2610 return ttype;
2611 }
2612
2613 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2614 or zero if not.
2615
2616 We try both `text' and `__text__', ATTR may be either one. */
2617 /* ??? It might be a reasonable simplification to require ATTR to be only
2618 `text'. One might then also require attribute lists to be stored in
2619 their canonicalized form. */
2620
2621 int
2622 is_attribute_p (attr, ident)
2623 const char *attr;
2624 tree ident;
2625 {
2626 int ident_len, attr_len;
2627 const char *p;
2628
2629 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2630 return 0;
2631
2632 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2633 return 1;
2634
2635 p = IDENTIFIER_POINTER (ident);
2636 ident_len = strlen (p);
2637 attr_len = strlen (attr);
2638
2639 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2640 if (attr[0] == '_')
2641 {
2642 if (attr[1] != '_'
2643 || attr[attr_len - 2] != '_'
2644 || attr[attr_len - 1] != '_')
2645 abort ();
2646 if (ident_len == attr_len - 4
2647 && strncmp (attr + 2, p, attr_len - 4) == 0)
2648 return 1;
2649 }
2650 else
2651 {
2652 if (ident_len == attr_len + 4
2653 && p[0] == '_' && p[1] == '_'
2654 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2655 && strncmp (attr, p + 2, attr_len) == 0)
2656 return 1;
2657 }
2658
2659 return 0;
2660 }
2661
2662 /* Given an attribute name and a list of attributes, return a pointer to the
2663 attribute's list element if the attribute is part of the list, or NULL_TREE
2664 if not found. If the attribute appears more than once, this only
2665 returns the first occurrence; the TREE_CHAIN of the return value should
2666 be passed back in if further occurrences are wanted. */
2667
2668 tree
2669 lookup_attribute (attr_name, list)
2670 const char *attr_name;
2671 tree list;
2672 {
2673 tree l;
2674
2675 for (l = list; l; l = TREE_CHAIN (l))
2676 {
2677 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2678 abort ();
2679 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2680 return l;
2681 }
2682
2683 return NULL_TREE;
2684 }
2685
2686 /* Return an attribute list that is the union of a1 and a2. */
2687
2688 tree
2689 merge_attributes (a1, a2)
2690 tree a1, a2;
2691 {
2692 tree attributes;
2693
2694 /* Either one unset? Take the set one. */
2695
2696 if ((attributes = a1) == 0)
2697 attributes = a2;
2698
2699 /* One that completely contains the other? Take it. */
2700
2701 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2702 {
2703 if (attribute_list_contained (a2, a1))
2704 attributes = a2;
2705 else
2706 {
2707 /* Pick the longest list, and hang on the other list. */
2708
2709 if (list_length (a1) < list_length (a2))
2710 attributes = a2, a2 = a1;
2711
2712 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2713 {
2714 tree a;
2715 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2716 attributes);
2717 a != NULL_TREE;
2718 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2719 TREE_CHAIN (a)))
2720 {
2721 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2722 break;
2723 }
2724 if (a == NULL_TREE)
2725 {
2726 a1 = copy_node (a2);
2727 TREE_CHAIN (a1) = attributes;
2728 attributes = a1;
2729 }
2730 }
2731 }
2732 }
2733 return attributes;
2734 }
2735
2736 /* Given types T1 and T2, merge their attributes and return
2737 the result. */
2738
2739 tree
2740 merge_type_attributes (t1, t2)
2741 tree t1, t2;
2742 {
2743 return merge_attributes (TYPE_ATTRIBUTES (t1),
2744 TYPE_ATTRIBUTES (t2));
2745 }
2746
2747 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2748 the result. */
2749
2750 tree
2751 merge_decl_attributes (olddecl, newdecl)
2752 tree olddecl, newdecl;
2753 {
2754 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2755 DECL_ATTRIBUTES (newdecl));
2756 }
2757
2758 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2759
2760 /* Specialization of merge_decl_attributes for various Windows targets.
2761
2762 This handles the following situation:
2763
2764 __declspec (dllimport) int foo;
2765 int foo;
2766
2767 The second instance of `foo' nullifies the dllimport. */
2768
2769 tree
2770 merge_dllimport_decl_attributes (old, new)
2771 tree old;
2772 tree new;
2773 {
2774 tree a;
2775 int delete_dllimport_p;
2776
2777 old = DECL_ATTRIBUTES (old);
2778 new = DECL_ATTRIBUTES (new);
2779
2780 /* What we need to do here is remove from `old' dllimport if it doesn't
2781 appear in `new'. dllimport behaves like extern: if a declaration is
2782 marked dllimport and a definition appears later, then the object
2783 is not dllimport'd. */
2784 if (lookup_attribute ("dllimport", old) != NULL_TREE
2785 && lookup_attribute ("dllimport", new) == NULL_TREE)
2786 delete_dllimport_p = 1;
2787 else
2788 delete_dllimport_p = 0;
2789
2790 a = merge_attributes (old, new);
2791
2792 if (delete_dllimport_p)
2793 {
2794 tree prev, t;
2795
2796 /* Scan the list for dllimport and delete it. */
2797 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2798 {
2799 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2800 {
2801 if (prev == NULL_TREE)
2802 a = TREE_CHAIN (a);
2803 else
2804 TREE_CHAIN (prev) = TREE_CHAIN (t);
2805 break;
2806 }
2807 }
2808 }
2809
2810 return a;
2811 }
2812
2813 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2814 \f
2815 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2816 of the various TYPE_QUAL values. */
2817
2818 static void
2819 set_type_quals (type, type_quals)
2820 tree type;
2821 int type_quals;
2822 {
2823 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2824 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2825 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2826 }
2827
2828 /* Return a version of the TYPE, qualified as indicated by the
2829 TYPE_QUALS, if one exists. If no qualified version exists yet,
2830 return NULL_TREE. */
2831
2832 tree
2833 get_qualified_type (type, type_quals)
2834 tree type;
2835 int type_quals;
2836 {
2837 tree t;
2838
2839 /* Search the chain of variants to see if there is already one there just
2840 like the one we need to have. If so, use that existing one. We must
2841 preserve the TYPE_NAME, since there is code that depends on this. */
2842 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2843 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2844 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
2845 return t;
2846
2847 return NULL_TREE;
2848 }
2849
2850 /* Like get_qualified_type, but creates the type if it does not
2851 exist. This function never returns NULL_TREE. */
2852
2853 tree
2854 build_qualified_type (type, type_quals)
2855 tree type;
2856 int type_quals;
2857 {
2858 tree t;
2859
2860 /* See if we already have the appropriate qualified variant. */
2861 t = get_qualified_type (type, type_quals);
2862
2863 /* If not, build it. */
2864 if (!t)
2865 {
2866 t = build_type_copy (type);
2867 set_type_quals (t, type_quals);
2868 }
2869
2870 return t;
2871 }
2872
2873 /* Create a new variant of TYPE, equivalent but distinct.
2874 This is so the caller can modify it. */
2875
2876 tree
2877 build_type_copy (type)
2878 tree type;
2879 {
2880 tree t, m = TYPE_MAIN_VARIANT (type);
2881
2882 t = copy_node (type);
2883
2884 TYPE_POINTER_TO (t) = 0;
2885 TYPE_REFERENCE_TO (t) = 0;
2886
2887 /* Add this type to the chain of variants of TYPE. */
2888 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2889 TYPE_NEXT_VARIANT (m) = t;
2890
2891 return t;
2892 }
2893 \f
2894 /* Hashing of types so that we don't make duplicates.
2895 The entry point is `type_hash_canon'. */
2896
2897 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2898 with types in the TREE_VALUE slots), by adding the hash codes
2899 of the individual types. */
2900
2901 unsigned int
2902 type_hash_list (list)
2903 tree list;
2904 {
2905 unsigned int hashcode;
2906 tree tail;
2907
2908 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2909 hashcode += TYPE_HASH (TREE_VALUE (tail));
2910
2911 return hashcode;
2912 }
2913
2914 /* These are the Hashtable callback functions. */
2915
2916 /* Returns true if the types are equal. */
2917
2918 static int
2919 type_hash_eq (va, vb)
2920 const void *va;
2921 const void *vb;
2922 {
2923 const struct type_hash *a = va, *b = vb;
2924 if (a->hash == b->hash
2925 && TREE_CODE (a->type) == TREE_CODE (b->type)
2926 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2927 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2928 TYPE_ATTRIBUTES (b->type))
2929 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2930 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2931 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2932 TYPE_MAX_VALUE (b->type)))
2933 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2934 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2935 TYPE_MIN_VALUE (b->type)))
2936 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2937 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2938 || (TYPE_DOMAIN (a->type)
2939 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2940 && TYPE_DOMAIN (b->type)
2941 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2942 && type_list_equal (TYPE_DOMAIN (a->type),
2943 TYPE_DOMAIN (b->type)))))
2944 return 1;
2945 return 0;
2946 }
2947
2948 /* Return the cached hash value. */
2949
2950 static hashval_t
2951 type_hash_hash (item)
2952 const void *item;
2953 {
2954 return ((const struct type_hash *) item)->hash;
2955 }
2956
2957 /* Look in the type hash table for a type isomorphic to TYPE.
2958 If one is found, return it. Otherwise return 0. */
2959
2960 tree
2961 type_hash_lookup (hashcode, type)
2962 unsigned int hashcode;
2963 tree type;
2964 {
2965 struct type_hash *h, in;
2966
2967 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2968 must call that routine before comparing TYPE_ALIGNs. */
2969 layout_type (type);
2970
2971 in.hash = hashcode;
2972 in.type = type;
2973
2974 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2975 if (h)
2976 return h->type;
2977 return NULL_TREE;
2978 }
2979
2980 /* Add an entry to the type-hash-table
2981 for a type TYPE whose hash code is HASHCODE. */
2982
2983 void
2984 type_hash_add (hashcode, type)
2985 unsigned int hashcode;
2986 tree type;
2987 {
2988 struct type_hash *h;
2989 void **loc;
2990
2991 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
2992 h->hash = hashcode;
2993 h->type = type;
2994 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
2995 *(struct type_hash **) loc = h;
2996 }
2997
2998 /* Given TYPE, and HASHCODE its hash code, return the canonical
2999 object for an identical type if one already exists.
3000 Otherwise, return TYPE, and record it as the canonical object
3001 if it is a permanent object.
3002
3003 To use this function, first create a type of the sort you want.
3004 Then compute its hash code from the fields of the type that
3005 make it different from other similar types.
3006 Then call this function and use the value.
3007 This function frees the type you pass in if it is a duplicate. */
3008
3009 /* Set to 1 to debug without canonicalization. Never set by program. */
3010 int debug_no_type_hash = 0;
3011
3012 tree
3013 type_hash_canon (hashcode, type)
3014 unsigned int hashcode;
3015 tree type;
3016 {
3017 tree t1;
3018
3019 if (debug_no_type_hash)
3020 return type;
3021
3022 /* See if the type is in the hash table already. If so, return it.
3023 Otherwise, add the type. */
3024 t1 = type_hash_lookup (hashcode, type);
3025 if (t1 != 0)
3026 {
3027 #ifdef GATHER_STATISTICS
3028 tree_node_counts[(int) t_kind]--;
3029 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3030 #endif
3031 return t1;
3032 }
3033 else
3034 {
3035 type_hash_add (hashcode, type);
3036 return type;
3037 }
3038 }
3039
3040 /* See if the data pointed to by the type hash table is marked. We consider
3041 it marked if the type is marked or if a debug type number or symbol
3042 table entry has been made for the type. This reduces the amount of
3043 debugging output and eliminates that dependency of the debug output on
3044 the number of garbage collections. */
3045
3046 static int
3047 type_hash_marked_p (p)
3048 const void *p;
3049 {
3050 tree type = ((struct type_hash *) p)->type;
3051
3052 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3053 }
3054
3055 static void
3056 print_type_hash_statistics ()
3057 {
3058 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3059 (long) htab_size (type_hash_table),
3060 (long) htab_elements (type_hash_table),
3061 htab_collisions (type_hash_table));
3062 }
3063
3064 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3065 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3066 by adding the hash codes of the individual attributes. */
3067
3068 unsigned int
3069 attribute_hash_list (list)
3070 tree list;
3071 {
3072 unsigned int hashcode;
3073 tree tail;
3074
3075 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3076 /* ??? Do we want to add in TREE_VALUE too? */
3077 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3078 return hashcode;
3079 }
3080
3081 /* Given two lists of attributes, return true if list l2 is
3082 equivalent to l1. */
3083
3084 int
3085 attribute_list_equal (l1, l2)
3086 tree l1, l2;
3087 {
3088 return attribute_list_contained (l1, l2)
3089 && attribute_list_contained (l2, l1);
3090 }
3091
3092 /* Given two lists of attributes, return true if list L2 is
3093 completely contained within L1. */
3094 /* ??? This would be faster if attribute names were stored in a canonicalized
3095 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3096 must be used to show these elements are equivalent (which they are). */
3097 /* ??? It's not clear that attributes with arguments will always be handled
3098 correctly. */
3099
3100 int
3101 attribute_list_contained (l1, l2)
3102 tree l1, l2;
3103 {
3104 tree t1, t2;
3105
3106 /* First check the obvious, maybe the lists are identical. */
3107 if (l1 == l2)
3108 return 1;
3109
3110 /* Maybe the lists are similar. */
3111 for (t1 = l1, t2 = l2;
3112 t1 != 0 && t2 != 0
3113 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3114 && TREE_VALUE (t1) == TREE_VALUE (t2);
3115 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3116
3117 /* Maybe the lists are equal. */
3118 if (t1 == 0 && t2 == 0)
3119 return 1;
3120
3121 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3122 {
3123 tree attr;
3124 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3125 attr != NULL_TREE;
3126 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3127 TREE_CHAIN (attr)))
3128 {
3129 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3130 break;
3131 }
3132
3133 if (attr == 0)
3134 return 0;
3135
3136 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3137 return 0;
3138 }
3139
3140 return 1;
3141 }
3142
3143 /* Given two lists of types
3144 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3145 return 1 if the lists contain the same types in the same order.
3146 Also, the TREE_PURPOSEs must match. */
3147
3148 int
3149 type_list_equal (l1, l2)
3150 tree l1, l2;
3151 {
3152 tree t1, t2;
3153
3154 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3155 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3156 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3157 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3158 && (TREE_TYPE (TREE_PURPOSE (t1))
3159 == TREE_TYPE (TREE_PURPOSE (t2))))))
3160 return 0;
3161
3162 return t1 == t2;
3163 }
3164
3165 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3166 given by TYPE. If the argument list accepts variable arguments,
3167 then this function counts only the ordinary arguments. */
3168
3169 int
3170 type_num_arguments (type)
3171 tree type;
3172 {
3173 int i = 0;
3174 tree t;
3175
3176 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3177 /* If the function does not take a variable number of arguments,
3178 the last element in the list will have type `void'. */
3179 if (VOID_TYPE_P (TREE_VALUE (t)))
3180 break;
3181 else
3182 ++i;
3183
3184 return i;
3185 }
3186
3187 /* Nonzero if integer constants T1 and T2
3188 represent the same constant value. */
3189
3190 int
3191 tree_int_cst_equal (t1, t2)
3192 tree t1, t2;
3193 {
3194 if (t1 == t2)
3195 return 1;
3196
3197 if (t1 == 0 || t2 == 0)
3198 return 0;
3199
3200 if (TREE_CODE (t1) == INTEGER_CST
3201 && TREE_CODE (t2) == INTEGER_CST
3202 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3203 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3204 return 1;
3205
3206 return 0;
3207 }
3208
3209 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3210 The precise way of comparison depends on their data type. */
3211
3212 int
3213 tree_int_cst_lt (t1, t2)
3214 tree t1, t2;
3215 {
3216 if (t1 == t2)
3217 return 0;
3218
3219 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3220 {
3221 int t1_sgn = tree_int_cst_sgn (t1);
3222 int t2_sgn = tree_int_cst_sgn (t2);
3223
3224 if (t1_sgn < t2_sgn)
3225 return 1;
3226 else if (t1_sgn > t2_sgn)
3227 return 0;
3228 /* Otherwise, both are non-negative, so we compare them as
3229 unsigned just in case one of them would overflow a signed
3230 type. */
3231 }
3232 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3233 return INT_CST_LT (t1, t2);
3234
3235 return INT_CST_LT_UNSIGNED (t1, t2);
3236 }
3237
3238 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3239
3240 int
3241 tree_int_cst_compare (t1, t2)
3242 tree t1;
3243 tree t2;
3244 {
3245 if (tree_int_cst_lt (t1, t2))
3246 return -1;
3247 else if (tree_int_cst_lt (t2, t1))
3248 return 1;
3249 else
3250 return 0;
3251 }
3252
3253 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3254 the host. If POS is zero, the value can be represented in a single
3255 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3256 be represented in a single unsigned HOST_WIDE_INT. */
3257
3258 int
3259 host_integerp (t, pos)
3260 tree t;
3261 int pos;
3262 {
3263 return (TREE_CODE (t) == INTEGER_CST
3264 && ! TREE_OVERFLOW (t)
3265 && ((TREE_INT_CST_HIGH (t) == 0
3266 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3267 || (! pos && TREE_INT_CST_HIGH (t) == -1
3268 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3269 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3270 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3271 }
3272
3273 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3274 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3275 be positive. Abort if we cannot satisfy the above conditions. */
3276
3277 HOST_WIDE_INT
3278 tree_low_cst (t, pos)
3279 tree t;
3280 int pos;
3281 {
3282 if (host_integerp (t, pos))
3283 return TREE_INT_CST_LOW (t);
3284 else
3285 abort ();
3286 }
3287
3288 /* Return the most significant bit of the integer constant T. */
3289
3290 int
3291 tree_int_cst_msb (t)
3292 tree t;
3293 {
3294 int prec;
3295 HOST_WIDE_INT h;
3296 unsigned HOST_WIDE_INT l;
3297
3298 /* Note that using TYPE_PRECISION here is wrong. We care about the
3299 actual bits, not the (arbitrary) range of the type. */
3300 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3301 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3302 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3303 return (l & 1) == 1;
3304 }
3305
3306 /* Return an indication of the sign of the integer constant T.
3307 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3308 Note that -1 will never be returned it T's type is unsigned. */
3309
3310 int
3311 tree_int_cst_sgn (t)
3312 tree t;
3313 {
3314 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3315 return 0;
3316 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3317 return 1;
3318 else if (TREE_INT_CST_HIGH (t) < 0)
3319 return -1;
3320 else
3321 return 1;
3322 }
3323
3324 /* Compare two constructor-element-type constants. Return 1 if the lists
3325 are known to be equal; otherwise return 0. */
3326
3327 int
3328 simple_cst_list_equal (l1, l2)
3329 tree l1, l2;
3330 {
3331 while (l1 != NULL_TREE && l2 != NULL_TREE)
3332 {
3333 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3334 return 0;
3335
3336 l1 = TREE_CHAIN (l1);
3337 l2 = TREE_CHAIN (l2);
3338 }
3339
3340 return l1 == l2;
3341 }
3342
3343 /* Return truthvalue of whether T1 is the same tree structure as T2.
3344 Return 1 if they are the same.
3345 Return 0 if they are understandably different.
3346 Return -1 if either contains tree structure not understood by
3347 this function. */
3348
3349 int
3350 simple_cst_equal (t1, t2)
3351 tree t1, t2;
3352 {
3353 enum tree_code code1, code2;
3354 int cmp;
3355 int i;
3356
3357 if (t1 == t2)
3358 return 1;
3359 if (t1 == 0 || t2 == 0)
3360 return 0;
3361
3362 code1 = TREE_CODE (t1);
3363 code2 = TREE_CODE (t2);
3364
3365 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3366 {
3367 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3368 || code2 == NON_LVALUE_EXPR)
3369 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3370 else
3371 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3372 }
3373
3374 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3375 || code2 == NON_LVALUE_EXPR)
3376 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3377
3378 if (code1 != code2)
3379 return 0;
3380
3381 switch (code1)
3382 {
3383 case INTEGER_CST:
3384 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3385 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3386
3387 case REAL_CST:
3388 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3389
3390 case STRING_CST:
3391 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3392 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3393 TREE_STRING_LENGTH (t1)));
3394
3395 case CONSTRUCTOR:
3396 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3397 return 1;
3398 else
3399 abort ();
3400
3401 case SAVE_EXPR:
3402 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3403
3404 case CALL_EXPR:
3405 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3406 if (cmp <= 0)
3407 return cmp;
3408 return
3409 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3410
3411 case TARGET_EXPR:
3412 /* Special case: if either target is an unallocated VAR_DECL,
3413 it means that it's going to be unified with whatever the
3414 TARGET_EXPR is really supposed to initialize, so treat it
3415 as being equivalent to anything. */
3416 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3417 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3418 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3419 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3420 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3421 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3422 cmp = 1;
3423 else
3424 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3425
3426 if (cmp <= 0)
3427 return cmp;
3428
3429 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3430
3431 case WITH_CLEANUP_EXPR:
3432 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3433 if (cmp <= 0)
3434 return cmp;
3435
3436 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3437
3438 case COMPONENT_REF:
3439 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3440 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3441
3442 return 0;
3443
3444 case VAR_DECL:
3445 case PARM_DECL:
3446 case CONST_DECL:
3447 case FUNCTION_DECL:
3448 return 0;
3449
3450 default:
3451 break;
3452 }
3453
3454 /* This general rule works for most tree codes. All exceptions should be
3455 handled above. If this is a language-specific tree code, we can't
3456 trust what might be in the operand, so say we don't know
3457 the situation. */
3458 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3459 return -1;
3460
3461 switch (TREE_CODE_CLASS (code1))
3462 {
3463 case '1':
3464 case '2':
3465 case '<':
3466 case 'e':
3467 case 'r':
3468 case 's':
3469 cmp = 1;
3470 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3471 {
3472 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3473 if (cmp <= 0)
3474 return cmp;
3475 }
3476
3477 return cmp;
3478
3479 default:
3480 return -1;
3481 }
3482 }
3483
3484 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3485 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3486 than U, respectively. */
3487
3488 int
3489 compare_tree_int (t, u)
3490 tree t;
3491 unsigned HOST_WIDE_INT u;
3492 {
3493 if (tree_int_cst_sgn (t) < 0)
3494 return -1;
3495 else if (TREE_INT_CST_HIGH (t) != 0)
3496 return 1;
3497 else if (TREE_INT_CST_LOW (t) == u)
3498 return 0;
3499 else if (TREE_INT_CST_LOW (t) < u)
3500 return -1;
3501 else
3502 return 1;
3503 }
3504
3505 /* Generate a hash value for an expression. This can be used iteratively
3506 by passing a previous result as the "val" argument.
3507
3508 This function is intended to produce the same hash for expressions which
3509 would compare equal using operand_equal_p. */
3510
3511 hashval_t
3512 iterative_hash_expr (tree t, hashval_t val)
3513 {
3514 int i;
3515 enum tree_code code;
3516 char class;
3517
3518 if (t == NULL_TREE)
3519 return iterative_hash_object (t, val);
3520
3521 code = TREE_CODE (t);
3522 class = TREE_CODE_CLASS (code);
3523
3524 if (class == 'd')
3525 {
3526 /* Decls we can just compare by pointer. */
3527 val = iterative_hash_object (t, val);
3528 }
3529 else if (class == 'c')
3530 {
3531 /* Alas, constants aren't shared, so we can't rely on pointer
3532 identity. */
3533 if (code == INTEGER_CST)
3534 {
3535 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3536 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3537 }
3538 else if (code == REAL_CST)
3539 val = iterative_hash (TREE_REAL_CST_PTR (t),
3540 sizeof (REAL_VALUE_TYPE), val);
3541 else if (code == STRING_CST)
3542 val = iterative_hash (TREE_STRING_POINTER (t),
3543 TREE_STRING_LENGTH (t), val);
3544 else if (code == COMPLEX_CST)
3545 {
3546 val = iterative_hash_expr (TREE_REALPART (t), val);
3547 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3548 }
3549 else if (code == VECTOR_CST)
3550 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3551 else
3552 abort ();
3553 }
3554 else if (IS_EXPR_CODE_CLASS (class) || class == 'r')
3555 {
3556 val = iterative_hash_object (code, val);
3557
3558 if (code == NOP_EXPR || code == CONVERT_EXPR
3559 || code == NON_LVALUE_EXPR)
3560 val = iterative_hash_object (TREE_TYPE (t), val);
3561
3562 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3563 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3564 }
3565 else if (code == TREE_LIST)
3566 {
3567 /* A list of expressions, for a CALL_EXPR or as the elements of a
3568 VECTOR_CST. */
3569 for (; t; t = TREE_CHAIN (t))
3570 val = iterative_hash_expr (TREE_VALUE (t), val);
3571 }
3572 else
3573 abort ();
3574
3575 return val;
3576 }
3577 \f
3578 /* Constructors for pointer, array and function types.
3579 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3580 constructed by language-dependent code, not here.) */
3581
3582 /* Construct, lay out and return the type of pointers to TO_TYPE
3583 with mode MODE. If such a type has already been constructed,
3584 reuse it. */
3585
3586 tree
3587 build_pointer_type_for_mode (to_type, mode)
3588 tree to_type;
3589 enum machine_mode mode;
3590 {
3591 tree t = TYPE_POINTER_TO (to_type);
3592
3593 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3594 if (t != 0 && mode == ptr_mode)
3595 return t;
3596
3597 t = make_node (POINTER_TYPE);
3598
3599 TREE_TYPE (t) = to_type;
3600 TYPE_MODE (t) = mode;
3601
3602 /* Record this type as the pointer to TO_TYPE. */
3603 if (mode == ptr_mode)
3604 TYPE_POINTER_TO (to_type) = t;
3605
3606 /* Lay out the type. This function has many callers that are concerned
3607 with expression-construction, and this simplifies them all.
3608 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3609 layout_type (t);
3610
3611 return t;
3612 }
3613
3614 /* By default build pointers in ptr_mode. */
3615
3616 tree
3617 build_pointer_type (to_type)
3618 tree to_type;
3619 {
3620 return build_pointer_type_for_mode (to_type, ptr_mode);
3621 }
3622
3623 /* Construct, lay out and return the type of references to TO_TYPE
3624 with mode MODE. If such a type has already been constructed,
3625 reuse it. */
3626
3627 tree
3628 build_reference_type_for_mode (to_type, mode)
3629 tree to_type;
3630 enum machine_mode mode;
3631 {
3632 tree t = TYPE_REFERENCE_TO (to_type);
3633
3634 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3635 if (t != 0 && mode == ptr_mode)
3636 return t;
3637
3638 t = make_node (REFERENCE_TYPE);
3639
3640 TREE_TYPE (t) = to_type;
3641 TYPE_MODE (t) = mode;
3642
3643 /* Record this type as the pointer to TO_TYPE. */
3644 if (mode == ptr_mode)
3645 TYPE_REFERENCE_TO (to_type) = t;
3646
3647 layout_type (t);
3648
3649 return t;
3650 }
3651
3652
3653 /* Build the node for the type of references-to-TO_TYPE by default
3654 in ptr_mode. */
3655
3656 tree
3657 build_reference_type (to_type)
3658 tree to_type;
3659 {
3660 return build_reference_type_for_mode (to_type, ptr_mode);
3661 }
3662
3663 /* Build a type that is compatible with t but has no cv quals anywhere
3664 in its type, thus
3665
3666 const char *const *const * -> char ***. */
3667
3668 tree
3669 build_type_no_quals (t)
3670 tree t;
3671 {
3672 switch (TREE_CODE (t))
3673 {
3674 case POINTER_TYPE:
3675 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3676 case REFERENCE_TYPE:
3677 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3678 default:
3679 return TYPE_MAIN_VARIANT (t);
3680 }
3681 }
3682
3683 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3684 MAXVAL should be the maximum value in the domain
3685 (one less than the length of the array).
3686
3687 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3688 We don't enforce this limit, that is up to caller (e.g. language front end).
3689 The limit exists because the result is a signed type and we don't handle
3690 sizes that use more than one HOST_WIDE_INT. */
3691
3692 tree
3693 build_index_type (maxval)
3694 tree maxval;
3695 {
3696 tree itype = make_node (INTEGER_TYPE);
3697
3698 TREE_TYPE (itype) = sizetype;
3699 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3700 TYPE_MIN_VALUE (itype) = size_zero_node;
3701 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3702 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3703 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3704 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3705 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3706 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3707
3708 if (host_integerp (maxval, 1))
3709 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3710 else
3711 return itype;
3712 }
3713
3714 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3715 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3716 low bound LOWVAL and high bound HIGHVAL.
3717 if TYPE==NULL_TREE, sizetype is used. */
3718
3719 tree
3720 build_range_type (type, lowval, highval)
3721 tree type, lowval, highval;
3722 {
3723 tree itype = make_node (INTEGER_TYPE);
3724
3725 TREE_TYPE (itype) = type;
3726 if (type == NULL_TREE)
3727 type = sizetype;
3728
3729 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3730 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3731
3732 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3733 TYPE_MODE (itype) = TYPE_MODE (type);
3734 TYPE_SIZE (itype) = TYPE_SIZE (type);
3735 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3736 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3737 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3738
3739 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3740 return type_hash_canon (tree_low_cst (highval, 0)
3741 - tree_low_cst (lowval, 0),
3742 itype);
3743 else
3744 return itype;
3745 }
3746
3747 /* Just like build_index_type, but takes lowval and highval instead
3748 of just highval (maxval). */
3749
3750 tree
3751 build_index_2_type (lowval, highval)
3752 tree lowval, highval;
3753 {
3754 return build_range_type (sizetype, lowval, highval);
3755 }
3756
3757 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3758 and number of elements specified by the range of values of INDEX_TYPE.
3759 If such a type has already been constructed, reuse it. */
3760
3761 tree
3762 build_array_type (elt_type, index_type)
3763 tree elt_type, index_type;
3764 {
3765 tree t;
3766 unsigned int hashcode;
3767
3768 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3769 {
3770 error ("arrays of functions are not meaningful");
3771 elt_type = integer_type_node;
3772 }
3773
3774 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3775 build_pointer_type (elt_type);
3776
3777 /* Allocate the array after the pointer type,
3778 in case we free it in type_hash_canon. */
3779 t = make_node (ARRAY_TYPE);
3780 TREE_TYPE (t) = elt_type;
3781 TYPE_DOMAIN (t) = index_type;
3782
3783 if (index_type == 0)
3784 {
3785 return t;
3786 }
3787
3788 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3789 t = type_hash_canon (hashcode, t);
3790
3791 if (!COMPLETE_TYPE_P (t))
3792 layout_type (t);
3793 return t;
3794 }
3795
3796 /* Return the TYPE of the elements comprising
3797 the innermost dimension of ARRAY. */
3798
3799 tree
3800 get_inner_array_type (array)
3801 tree array;
3802 {
3803 tree type = TREE_TYPE (array);
3804
3805 while (TREE_CODE (type) == ARRAY_TYPE)
3806 type = TREE_TYPE (type);
3807
3808 return type;
3809 }
3810
3811 /* Construct, lay out and return
3812 the type of functions returning type VALUE_TYPE
3813 given arguments of types ARG_TYPES.
3814 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3815 are data type nodes for the arguments of the function.
3816 If such a type has already been constructed, reuse it. */
3817
3818 tree
3819 build_function_type (value_type, arg_types)
3820 tree value_type, arg_types;
3821 {
3822 tree t;
3823 unsigned int hashcode;
3824
3825 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3826 {
3827 error ("function return type cannot be function");
3828 value_type = integer_type_node;
3829 }
3830
3831 /* Make a node of the sort we want. */
3832 t = make_node (FUNCTION_TYPE);
3833 TREE_TYPE (t) = value_type;
3834 TYPE_ARG_TYPES (t) = arg_types;
3835
3836 /* If we already have such a type, use the old one and free this one. */
3837 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3838 t = type_hash_canon (hashcode, t);
3839
3840 if (!COMPLETE_TYPE_P (t))
3841 layout_type (t);
3842 return t;
3843 }
3844
3845 /* Build a function type. The RETURN_TYPE is the type retured by the
3846 function. If additional arguments are provided, they are
3847 additional argument types. The list of argument types must always
3848 be terminated by NULL_TREE. */
3849
3850 tree
3851 build_function_type_list (tree return_type, ...)
3852 {
3853 tree t, args, last;
3854 va_list p;
3855
3856 va_start (p, return_type);
3857
3858 t = va_arg (p, tree);
3859 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3860 args = tree_cons (NULL_TREE, t, args);
3861
3862 last = args;
3863 args = nreverse (args);
3864 TREE_CHAIN (last) = void_list_node;
3865 args = build_function_type (return_type, args);
3866
3867 va_end (p);
3868 return args;
3869 }
3870
3871 /* Construct, lay out and return the type of methods belonging to class
3872 BASETYPE and whose arguments and values are described by TYPE.
3873 If that type exists already, reuse it.
3874 TYPE must be a FUNCTION_TYPE node. */
3875
3876 tree
3877 build_method_type (basetype, type)
3878 tree basetype, type;
3879 {
3880 tree t;
3881 unsigned int hashcode;
3882
3883 /* Make a node of the sort we want. */
3884 t = make_node (METHOD_TYPE);
3885
3886 if (TREE_CODE (type) != FUNCTION_TYPE)
3887 abort ();
3888
3889 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3890 TREE_TYPE (t) = TREE_TYPE (type);
3891
3892 /* The actual arglist for this function includes a "hidden" argument
3893 which is "this". Put it into the list of argument types. */
3894
3895 TYPE_ARG_TYPES (t)
3896 = tree_cons (NULL_TREE,
3897 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3898
3899 /* If we already have such a type, use the old one and free this one. */
3900 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3901 t = type_hash_canon (hashcode, t);
3902
3903 if (!COMPLETE_TYPE_P (t))
3904 layout_type (t);
3905
3906 return t;
3907 }
3908
3909 /* Construct, lay out and return the type of offsets to a value
3910 of type TYPE, within an object of type BASETYPE.
3911 If a suitable offset type exists already, reuse it. */
3912
3913 tree
3914 build_offset_type (basetype, type)
3915 tree basetype, type;
3916 {
3917 tree t;
3918 unsigned int hashcode;
3919
3920 /* Make a node of the sort we want. */
3921 t = make_node (OFFSET_TYPE);
3922
3923 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3924 TREE_TYPE (t) = type;
3925
3926 /* If we already have such a type, use the old one and free this one. */
3927 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3928 t = type_hash_canon (hashcode, t);
3929
3930 if (!COMPLETE_TYPE_P (t))
3931 layout_type (t);
3932
3933 return t;
3934 }
3935
3936 /* Create a complex type whose components are COMPONENT_TYPE. */
3937
3938 tree
3939 build_complex_type (component_type)
3940 tree component_type;
3941 {
3942 tree t;
3943 unsigned int hashcode;
3944
3945 /* Make a node of the sort we want. */
3946 t = make_node (COMPLEX_TYPE);
3947
3948 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3949 set_type_quals (t, TYPE_QUALS (component_type));
3950
3951 /* If we already have such a type, use the old one and free this one. */
3952 hashcode = TYPE_HASH (component_type);
3953 t = type_hash_canon (hashcode, t);
3954
3955 if (!COMPLETE_TYPE_P (t))
3956 layout_type (t);
3957
3958 /* If we are writing Dwarf2 output we need to create a name,
3959 since complex is a fundamental type. */
3960 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3961 && ! TYPE_NAME (t))
3962 {
3963 const char *name;
3964 if (component_type == char_type_node)
3965 name = "complex char";
3966 else if (component_type == signed_char_type_node)
3967 name = "complex signed char";
3968 else if (component_type == unsigned_char_type_node)
3969 name = "complex unsigned char";
3970 else if (component_type == short_integer_type_node)
3971 name = "complex short int";
3972 else if (component_type == short_unsigned_type_node)
3973 name = "complex short unsigned int";
3974 else if (component_type == integer_type_node)
3975 name = "complex int";
3976 else if (component_type == unsigned_type_node)
3977 name = "complex unsigned int";
3978 else if (component_type == long_integer_type_node)
3979 name = "complex long int";
3980 else if (component_type == long_unsigned_type_node)
3981 name = "complex long unsigned int";
3982 else if (component_type == long_long_integer_type_node)
3983 name = "complex long long int";
3984 else if (component_type == long_long_unsigned_type_node)
3985 name = "complex long long unsigned int";
3986 else
3987 name = 0;
3988
3989 if (name != 0)
3990 TYPE_NAME (t) = get_identifier (name);
3991 }
3992
3993 return t;
3994 }
3995 \f
3996 /* Return OP, stripped of any conversions to wider types as much as is safe.
3997 Converting the value back to OP's type makes a value equivalent to OP.
3998
3999 If FOR_TYPE is nonzero, we return a value which, if converted to
4000 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4001
4002 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4003 narrowest type that can hold the value, even if they don't exactly fit.
4004 Otherwise, bit-field references are changed to a narrower type
4005 only if they can be fetched directly from memory in that type.
4006
4007 OP must have integer, real or enumeral type. Pointers are not allowed!
4008
4009 There are some cases where the obvious value we could return
4010 would regenerate to OP if converted to OP's type,
4011 but would not extend like OP to wider types.
4012 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4013 For example, if OP is (unsigned short)(signed char)-1,
4014 we avoid returning (signed char)-1 if FOR_TYPE is int,
4015 even though extending that to an unsigned short would regenerate OP,
4016 since the result of extending (signed char)-1 to (int)
4017 is different from (int) OP. */
4018
4019 tree
4020 get_unwidened (op, for_type)
4021 tree op;
4022 tree for_type;
4023 {
4024 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4025 tree type = TREE_TYPE (op);
4026 unsigned final_prec
4027 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4028 int uns
4029 = (for_type != 0 && for_type != type
4030 && final_prec > TYPE_PRECISION (type)
4031 && TREE_UNSIGNED (type));
4032 tree win = op;
4033
4034 while (TREE_CODE (op) == NOP_EXPR)
4035 {
4036 int bitschange
4037 = TYPE_PRECISION (TREE_TYPE (op))
4038 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4039
4040 /* Truncations are many-one so cannot be removed.
4041 Unless we are later going to truncate down even farther. */
4042 if (bitschange < 0
4043 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4044 break;
4045
4046 /* See what's inside this conversion. If we decide to strip it,
4047 we will set WIN. */
4048 op = TREE_OPERAND (op, 0);
4049
4050 /* If we have not stripped any zero-extensions (uns is 0),
4051 we can strip any kind of extension.
4052 If we have previously stripped a zero-extension,
4053 only zero-extensions can safely be stripped.
4054 Any extension can be stripped if the bits it would produce
4055 are all going to be discarded later by truncating to FOR_TYPE. */
4056
4057 if (bitschange > 0)
4058 {
4059 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4060 win = op;
4061 /* TREE_UNSIGNED says whether this is a zero-extension.
4062 Let's avoid computing it if it does not affect WIN
4063 and if UNS will not be needed again. */
4064 if ((uns || TREE_CODE (op) == NOP_EXPR)
4065 && TREE_UNSIGNED (TREE_TYPE (op)))
4066 {
4067 uns = 1;
4068 win = op;
4069 }
4070 }
4071 }
4072
4073 if (TREE_CODE (op) == COMPONENT_REF
4074 /* Since type_for_size always gives an integer type. */
4075 && TREE_CODE (type) != REAL_TYPE
4076 /* Don't crash if field not laid out yet. */
4077 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4078 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4079 {
4080 unsigned int innerprec
4081 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4082 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4083 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4084
4085 /* We can get this structure field in the narrowest type it fits in.
4086 If FOR_TYPE is 0, do this only for a field that matches the
4087 narrower type exactly and is aligned for it
4088 The resulting extension to its nominal type (a fullword type)
4089 must fit the same conditions as for other extensions. */
4090
4091 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4092 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4093 && (! uns || final_prec <= innerprec || unsignedp)
4094 && type != 0)
4095 {
4096 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4097 TREE_OPERAND (op, 1));
4098 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4099 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4100 }
4101 }
4102
4103 return win;
4104 }
4105 \f
4106 /* Return OP or a simpler expression for a narrower value
4107 which can be sign-extended or zero-extended to give back OP.
4108 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4109 or 0 if the value should be sign-extended. */
4110
4111 tree
4112 get_narrower (op, unsignedp_ptr)
4113 tree op;
4114 int *unsignedp_ptr;
4115 {
4116 int uns = 0;
4117 int first = 1;
4118 tree win = op;
4119
4120 while (TREE_CODE (op) == NOP_EXPR)
4121 {
4122 int bitschange
4123 = (TYPE_PRECISION (TREE_TYPE (op))
4124 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4125
4126 /* Truncations are many-one so cannot be removed. */
4127 if (bitschange < 0)
4128 break;
4129
4130 /* See what's inside this conversion. If we decide to strip it,
4131 we will set WIN. */
4132
4133 if (bitschange > 0)
4134 {
4135 op = TREE_OPERAND (op, 0);
4136 /* An extension: the outermost one can be stripped,
4137 but remember whether it is zero or sign extension. */
4138 if (first)
4139 uns = TREE_UNSIGNED (TREE_TYPE (op));
4140 /* Otherwise, if a sign extension has been stripped,
4141 only sign extensions can now be stripped;
4142 if a zero extension has been stripped, only zero-extensions. */
4143 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4144 break;
4145 first = 0;
4146 }
4147 else /* bitschange == 0 */
4148 {
4149 /* A change in nominal type can always be stripped, but we must
4150 preserve the unsignedness. */
4151 if (first)
4152 uns = TREE_UNSIGNED (TREE_TYPE (op));
4153 first = 0;
4154 op = TREE_OPERAND (op, 0);
4155 }
4156
4157 win = op;
4158 }
4159
4160 if (TREE_CODE (op) == COMPONENT_REF
4161 /* Since type_for_size always gives an integer type. */
4162 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4163 /* Ensure field is laid out already. */
4164 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4165 {
4166 unsigned HOST_WIDE_INT innerprec
4167 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4168 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4169 TREE_UNSIGNED (op));
4170
4171 /* We can get this structure field in a narrower type that fits it,
4172 but the resulting extension to its nominal type (a fullword type)
4173 must satisfy the same conditions as for other extensions.
4174
4175 Do this only for fields that are aligned (not bit-fields),
4176 because when bit-field insns will be used there is no
4177 advantage in doing this. */
4178
4179 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4180 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4181 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4182 && type != 0)
4183 {
4184 if (first)
4185 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4186 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4187 TREE_OPERAND (op, 1));
4188 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4189 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4190 }
4191 }
4192 *unsignedp_ptr = uns;
4193 return win;
4194 }
4195 \f
4196 /* Nonzero if integer constant C has a value that is permissible
4197 for type TYPE (an INTEGER_TYPE). */
4198
4199 int
4200 int_fits_type_p (c, type)
4201 tree c, type;
4202 {
4203 tree type_low_bound = TYPE_MIN_VALUE (type);
4204 tree type_high_bound = TYPE_MAX_VALUE (type);
4205 int ok_for_low_bound, ok_for_high_bound;
4206
4207 /* Perform some generic filtering first, which may allow making a decision
4208 even if the bounds are not constant. First, negative integers never fit
4209 in unsigned types, */
4210 if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4211 /* Also, unsigned integers with top bit set never fit signed types. */
4212 || (! TREE_UNSIGNED (type)
4213 && TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4214 return 0;
4215
4216 /* If at least one bound of the type is a constant integer, we can check
4217 ourselves and maybe make a decision. If no such decision is possible, but
4218 this type is a subtype, try checking against that. Otherwise, use
4219 force_fit_type, which checks against the precision.
4220
4221 Compute the status for each possibly constant bound, and return if we see
4222 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4223 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4224 for "constant known to fit". */
4225
4226 ok_for_low_bound = -1;
4227 ok_for_high_bound = -1;
4228
4229 /* Check if C >= type_low_bound. */
4230 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4231 {
4232 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4233 if (! ok_for_low_bound)
4234 return 0;
4235 }
4236
4237 /* Check if c <= type_high_bound. */
4238 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4239 {
4240 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4241 if (! ok_for_high_bound)
4242 return 0;
4243 }
4244
4245 /* If the constant fits both bounds, the result is known. */
4246 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4247 return 1;
4248
4249 /* If we haven't been able to decide at this point, there nothing more we
4250 can check ourselves here. Look at the base type if we have one. */
4251 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4252 return int_fits_type_p (c, TREE_TYPE (type));
4253
4254 /* Or to force_fit_type, if nothing else. */
4255 else
4256 {
4257 c = copy_node (c);
4258 TREE_TYPE (c) = type;
4259 return !force_fit_type (c, 0);
4260 }
4261 }
4262
4263 /* Returns true if T is, contains, or refers to a type with variable
4264 size. This concept is more general than that of C99 'variably
4265 modified types': in C99, a struct type is never variably modified
4266 because a VLA may not appear as a structure member. However, in
4267 GNU C code like:
4268
4269 struct S { int i[f()]; };
4270
4271 is valid, and other languages may define similar constructs. */
4272
4273 bool
4274 variably_modified_type_p (type)
4275 tree type;
4276 {
4277 if (type == error_mark_node)
4278 return false;
4279
4280 /* If TYPE itself has variable size, it is variably modified.
4281
4282 We do not yet have a representation of the C99 '[*]' syntax.
4283 When a representation is chosen, this function should be modified
4284 to test for that case as well. */
4285 if (TYPE_SIZE (type)
4286 && TYPE_SIZE (type) != error_mark_node
4287 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4288 return true;
4289
4290 /* If TYPE is a pointer or reference, it is variably modified if
4291 the type pointed to is variably modified. */
4292 if ((TREE_CODE (type) == POINTER_TYPE
4293 || TREE_CODE (type) == REFERENCE_TYPE)
4294 && variably_modified_type_p (TREE_TYPE (type)))
4295 return true;
4296
4297 /* If TYPE is an array, it is variably modified if the array
4298 elements are. (Note that the VLA case has already been checked
4299 above.) */
4300 if (TREE_CODE (type) == ARRAY_TYPE
4301 && variably_modified_type_p (TREE_TYPE (type)))
4302 return true;
4303
4304 /* If TYPE is a function type, it is variably modified if any of the
4305 parameters or the return type are variably modified. */
4306 if (TREE_CODE (type) == FUNCTION_TYPE
4307 || TREE_CODE (type) == METHOD_TYPE)
4308 {
4309 tree parm;
4310
4311 if (variably_modified_type_p (TREE_TYPE (type)))
4312 return true;
4313 for (parm = TYPE_ARG_TYPES (type);
4314 parm && parm != void_list_node;
4315 parm = TREE_CHAIN (parm))
4316 if (variably_modified_type_p (TREE_VALUE (parm)))
4317 return true;
4318 }
4319
4320 /* The current language may have other cases to check, but in general,
4321 all other types are not variably modified. */
4322 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4323 }
4324
4325 /* Given a DECL or TYPE, return the scope in which it was declared, or
4326 NULL_TREE if there is no containing scope. */
4327
4328 tree
4329 get_containing_scope (t)
4330 tree t;
4331 {
4332 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4333 }
4334
4335 /* Return the innermost context enclosing DECL that is
4336 a FUNCTION_DECL, or zero if none. */
4337
4338 tree
4339 decl_function_context (decl)
4340 tree decl;
4341 {
4342 tree context;
4343
4344 if (TREE_CODE (decl) == ERROR_MARK)
4345 return 0;
4346
4347 if (TREE_CODE (decl) == SAVE_EXPR)
4348 context = SAVE_EXPR_CONTEXT (decl);
4349
4350 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4351 where we look up the function at runtime. Such functions always take
4352 a first argument of type 'pointer to real context'.
4353
4354 C++ should really be fixed to use DECL_CONTEXT for the real context,
4355 and use something else for the "virtual context". */
4356 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4357 context
4358 = TYPE_MAIN_VARIANT
4359 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4360 else
4361 context = DECL_CONTEXT (decl);
4362
4363 while (context && TREE_CODE (context) != FUNCTION_DECL)
4364 {
4365 if (TREE_CODE (context) == BLOCK)
4366 context = BLOCK_SUPERCONTEXT (context);
4367 else
4368 context = get_containing_scope (context);
4369 }
4370
4371 return context;
4372 }
4373
4374 /* Return the innermost context enclosing DECL that is
4375 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4376 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4377
4378 tree
4379 decl_type_context (decl)
4380 tree decl;
4381 {
4382 tree context = DECL_CONTEXT (decl);
4383
4384 while (context)
4385 {
4386 if (TREE_CODE (context) == NAMESPACE_DECL)
4387 return NULL_TREE;
4388
4389 if (TREE_CODE (context) == RECORD_TYPE
4390 || TREE_CODE (context) == UNION_TYPE
4391 || TREE_CODE (context) == QUAL_UNION_TYPE)
4392 return context;
4393
4394 if (TREE_CODE (context) == TYPE_DECL
4395 || TREE_CODE (context) == FUNCTION_DECL)
4396 context = DECL_CONTEXT (context);
4397
4398 else if (TREE_CODE (context) == BLOCK)
4399 context = BLOCK_SUPERCONTEXT (context);
4400
4401 else
4402 /* Unhandled CONTEXT!? */
4403 abort ();
4404 }
4405 return NULL_TREE;
4406 }
4407
4408 /* CALL is a CALL_EXPR. Return the declaration for the function
4409 called, or NULL_TREE if the called function cannot be
4410 determined. */
4411
4412 tree
4413 get_callee_fndecl (call)
4414 tree call;
4415 {
4416 tree addr;
4417
4418 /* It's invalid to call this function with anything but a
4419 CALL_EXPR. */
4420 if (TREE_CODE (call) != CALL_EXPR)
4421 abort ();
4422
4423 /* The first operand to the CALL is the address of the function
4424 called. */
4425 addr = TREE_OPERAND (call, 0);
4426
4427 STRIP_NOPS (addr);
4428
4429 /* If this is a readonly function pointer, extract its initial value. */
4430 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4431 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4432 && DECL_INITIAL (addr))
4433 addr = DECL_INITIAL (addr);
4434
4435 /* If the address is just `&f' for some function `f', then we know
4436 that `f' is being called. */
4437 if (TREE_CODE (addr) == ADDR_EXPR
4438 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4439 return TREE_OPERAND (addr, 0);
4440
4441 /* We couldn't figure out what was being called. */
4442 return NULL_TREE;
4443 }
4444
4445 /* Print debugging information about tree nodes generated during the compile,
4446 and any language-specific information. */
4447
4448 void
4449 dump_tree_statistics ()
4450 {
4451 #ifdef GATHER_STATISTICS
4452 int i;
4453 int total_nodes, total_bytes;
4454 #endif
4455
4456 fprintf (stderr, "\n??? tree nodes created\n\n");
4457 #ifdef GATHER_STATISTICS
4458 fprintf (stderr, "Kind Nodes Bytes\n");
4459 fprintf (stderr, "-------------------------------------\n");
4460 total_nodes = total_bytes = 0;
4461 for (i = 0; i < (int) all_kinds; i++)
4462 {
4463 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4464 tree_node_counts[i], tree_node_sizes[i]);
4465 total_nodes += tree_node_counts[i];
4466 total_bytes += tree_node_sizes[i];
4467 }
4468 fprintf (stderr, "-------------------------------------\n");
4469 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4470 fprintf (stderr, "-------------------------------------\n");
4471 #else
4472 fprintf (stderr, "(No per-node statistics)\n");
4473 #endif
4474 print_type_hash_statistics ();
4475 (*lang_hooks.print_statistics) ();
4476 }
4477 \f
4478 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4479
4480 const char *flag_random_seed;
4481
4482 /* Set up a default flag_random_seed value, if there wasn't one already. */
4483
4484 void
4485 default_flag_random_seed (void)
4486 {
4487 unsigned HOST_WIDE_INT value;
4488 char *new_random_seed;
4489
4490 if (flag_random_seed != NULL)
4491 return;
4492
4493 /* Get some more or less random data. */
4494 #ifdef HAVE_GETTIMEOFDAY
4495 {
4496 struct timeval tv;
4497
4498 gettimeofday (&tv, NULL);
4499 value = (((unsigned HOST_WIDE_INT) tv.tv_usec << 16)
4500 ^ tv.tv_sec ^ getpid ());
4501 }
4502 #else
4503 value = getpid ();
4504 #endif
4505
4506 /* This slightly overestimates the space required. */
4507 new_random_seed = xmalloc (HOST_BITS_PER_WIDE_INT / 3 + 2);
4508 sprintf (new_random_seed, HOST_WIDE_INT_PRINT_UNSIGNED, value);
4509 flag_random_seed = new_random_seed;
4510 }
4511
4512 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4513 clashes in cases where we can't reliably choose a unique name.
4514
4515 Derived from mkstemp.c in libiberty. */
4516
4517 static void
4518 append_random_chars (template)
4519 char *template;
4520 {
4521 static const char letters[]
4522 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4523 unsigned HOST_WIDE_INT v;
4524 size_t i;
4525
4526 default_flag_random_seed ();
4527
4528 /* This isn't a very good hash, but it does guarantee no collisions
4529 when the random string is generated by the code above and the time
4530 delta is small. */
4531 v = 0;
4532 for (i = 0; i < strlen (flag_random_seed); i++)
4533 v = (v << 4) ^ (v >> (HOST_BITS_PER_WIDE_INT - 4)) ^ flag_random_seed[i];
4534
4535 template += strlen (template);
4536
4537 /* Fill in the random bits. */
4538 template[0] = letters[v % 62];
4539 v /= 62;
4540 template[1] = letters[v % 62];
4541 v /= 62;
4542 template[2] = letters[v % 62];
4543 v /= 62;
4544 template[3] = letters[v % 62];
4545 v /= 62;
4546 template[4] = letters[v % 62];
4547 v /= 62;
4548 template[5] = letters[v % 62];
4549
4550 template[6] = '\0';
4551 }
4552
4553 /* P is a string that will be used in a symbol. Mask out any characters
4554 that are not valid in that context. */
4555
4556 void
4557 clean_symbol_name (p)
4558 char *p;
4559 {
4560 for (; *p; p++)
4561 if (! (ISALNUM (*p)
4562 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4563 || *p == '$'
4564 #endif
4565 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4566 || *p == '.'
4567 #endif
4568 ))
4569 *p = '_';
4570 }
4571
4572 /* Generate a name for a function unique to this translation unit.
4573 TYPE is some string to identify the purpose of this function to the
4574 linker or collect2. */
4575
4576 tree
4577 get_file_function_name_long (type)
4578 const char *type;
4579 {
4580 char *buf;
4581 const char *p;
4582 char *q;
4583
4584 if (first_global_object_name)
4585 p = first_global_object_name;
4586 else
4587 {
4588 /* We don't have anything that we know to be unique to this translation
4589 unit, so use what we do have and throw in some randomness. */
4590
4591 const char *name = weak_global_object_name;
4592 const char *file = main_input_filename;
4593
4594 if (! name)
4595 name = "";
4596 if (! file)
4597 file = input_filename;
4598
4599 q = (char *) alloca (7 + strlen (name) + strlen (file));
4600
4601 sprintf (q, "%s%s", name, file);
4602 append_random_chars (q);
4603 p = q;
4604 }
4605
4606 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4607 + strlen (type));
4608
4609 /* Set up the name of the file-level functions we may need.
4610 Use a global object (which is already required to be unique over
4611 the program) rather than the file name (which imposes extra
4612 constraints). */
4613 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4614
4615 /* Don't need to pull weird characters out of global names. */
4616 if (p != first_global_object_name)
4617 clean_symbol_name (buf + 11);
4618
4619 return get_identifier (buf);
4620 }
4621
4622 /* If KIND=='I', return a suitable global initializer (constructor) name.
4623 If KIND=='D', return a suitable global clean-up (destructor) name. */
4624
4625 tree
4626 get_file_function_name (kind)
4627 int kind;
4628 {
4629 char p[2];
4630
4631 p[0] = kind;
4632 p[1] = 0;
4633
4634 return get_file_function_name_long (p);
4635 }
4636 \f
4637 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4638 The result is placed in BUFFER (which has length BIT_SIZE),
4639 with one bit in each char ('\000' or '\001').
4640
4641 If the constructor is constant, NULL_TREE is returned.
4642 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4643
4644 tree
4645 get_set_constructor_bits (init, buffer, bit_size)
4646 tree init;
4647 char *buffer;
4648 int bit_size;
4649 {
4650 int i;
4651 tree vals;
4652 HOST_WIDE_INT domain_min
4653 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4654 tree non_const_bits = NULL_TREE;
4655
4656 for (i = 0; i < bit_size; i++)
4657 buffer[i] = 0;
4658
4659 for (vals = TREE_OPERAND (init, 1);
4660 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4661 {
4662 if (!host_integerp (TREE_VALUE (vals), 0)
4663 || (TREE_PURPOSE (vals) != NULL_TREE
4664 && !host_integerp (TREE_PURPOSE (vals), 0)))
4665 non_const_bits
4666 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4667 else if (TREE_PURPOSE (vals) != NULL_TREE)
4668 {
4669 /* Set a range of bits to ones. */
4670 HOST_WIDE_INT lo_index
4671 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4672 HOST_WIDE_INT hi_index
4673 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4674
4675 if (lo_index < 0 || lo_index >= bit_size
4676 || hi_index < 0 || hi_index >= bit_size)
4677 abort ();
4678 for (; lo_index <= hi_index; lo_index++)
4679 buffer[lo_index] = 1;
4680 }
4681 else
4682 {
4683 /* Set a single bit to one. */
4684 HOST_WIDE_INT index
4685 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4686 if (index < 0 || index >= bit_size)
4687 {
4688 error ("invalid initializer for bit string");
4689 return NULL_TREE;
4690 }
4691 buffer[index] = 1;
4692 }
4693 }
4694 return non_const_bits;
4695 }
4696
4697 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4698 The result is placed in BUFFER (which is an array of bytes).
4699 If the constructor is constant, NULL_TREE is returned.
4700 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4701
4702 tree
4703 get_set_constructor_bytes (init, buffer, wd_size)
4704 tree init;
4705 unsigned char *buffer;
4706 int wd_size;
4707 {
4708 int i;
4709 int set_word_size = BITS_PER_UNIT;
4710 int bit_size = wd_size * set_word_size;
4711 int bit_pos = 0;
4712 unsigned char *bytep = buffer;
4713 char *bit_buffer = (char *) alloca (bit_size);
4714 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4715
4716 for (i = 0; i < wd_size; i++)
4717 buffer[i] = 0;
4718
4719 for (i = 0; i < bit_size; i++)
4720 {
4721 if (bit_buffer[i])
4722 {
4723 if (BYTES_BIG_ENDIAN)
4724 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4725 else
4726 *bytep |= 1 << bit_pos;
4727 }
4728 bit_pos++;
4729 if (bit_pos >= set_word_size)
4730 bit_pos = 0, bytep++;
4731 }
4732 return non_const_bits;
4733 }
4734 \f
4735 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4736 /* Complain that the tree code of NODE does not match the expected CODE.
4737 FILE, LINE, and FUNCTION are of the caller. */
4738
4739 void
4740 tree_check_failed (node, code, file, line, function)
4741 const tree node;
4742 enum tree_code code;
4743 const char *file;
4744 int line;
4745 const char *function;
4746 {
4747 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4748 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4749 function, trim_filename (file), line);
4750 }
4751
4752 /* Similar to above, except that we check for a class of tree
4753 code, given in CL. */
4754
4755 void
4756 tree_class_check_failed (node, cl, file, line, function)
4757 const tree node;
4758 int cl;
4759 const char *file;
4760 int line;
4761 const char *function;
4762 {
4763 internal_error
4764 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4765 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4766 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4767 }
4768
4769 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4770 (dynamically sized) vector. */
4771
4772 void
4773 tree_vec_elt_check_failed (idx, len, file, line, function)
4774 int idx;
4775 int len;
4776 const char *file;
4777 int line;
4778 const char *function;
4779 {
4780 internal_error
4781 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4782 idx + 1, len, function, trim_filename (file), line);
4783 }
4784
4785 /* Similar to above, except that the check is for the bounds of the operand
4786 vector of an expression node. */
4787
4788 void
4789 tree_operand_check_failed (idx, code, file, line, function)
4790 int idx;
4791 enum tree_code code;
4792 const char *file;
4793 int line;
4794 const char *function;
4795 {
4796 internal_error
4797 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4798 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
4799 function, trim_filename (file), line);
4800 }
4801 #endif /* ENABLE_TREE_CHECKING */
4802 \f
4803 /* For a new vector type node T, build the information necessary for
4804 debugging output. */
4805
4806 static void
4807 finish_vector_type (t)
4808 tree t;
4809 {
4810 layout_type (t);
4811
4812 {
4813 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4814 tree array = build_array_type (TREE_TYPE (t),
4815 build_index_type (index));
4816 tree rt = make_node (RECORD_TYPE);
4817
4818 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4819 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4820 layout_type (rt);
4821 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4822 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4823 the representation type, and we want to find that die when looking up
4824 the vector type. This is most easily achieved by making the TYPE_UID
4825 numbers equal. */
4826 TYPE_UID (rt) = TYPE_UID (t);
4827 }
4828 }
4829
4830 /* Create nodes for all integer types (and error_mark_node) using the sizes
4831 of C datatypes. The caller should call set_sizetype soon after calling
4832 this function to select one of the types as sizetype. */
4833
4834 void
4835 build_common_tree_nodes (signed_char)
4836 int signed_char;
4837 {
4838 error_mark_node = make_node (ERROR_MARK);
4839 TREE_TYPE (error_mark_node) = error_mark_node;
4840
4841 initialize_sizetypes ();
4842
4843 /* Define both `signed char' and `unsigned char'. */
4844 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4845 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4846
4847 /* Define `char', which is like either `signed char' or `unsigned char'
4848 but not the same as either. */
4849 char_type_node
4850 = (signed_char
4851 ? make_signed_type (CHAR_TYPE_SIZE)
4852 : make_unsigned_type (CHAR_TYPE_SIZE));
4853
4854 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4855 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4856 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4857 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4858 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4859 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4860 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4861 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4862
4863 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4864 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4865 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4866 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4867 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4868
4869 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4870 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4871 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4872 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4873 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4874 }
4875
4876 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4877 It will create several other common tree nodes. */
4878
4879 void
4880 build_common_tree_nodes_2 (short_double)
4881 int short_double;
4882 {
4883 /* Define these next since types below may used them. */
4884 integer_zero_node = build_int_2 (0, 0);
4885 integer_one_node = build_int_2 (1, 0);
4886 integer_minus_one_node = build_int_2 (-1, -1);
4887
4888 size_zero_node = size_int (0);
4889 size_one_node = size_int (1);
4890 bitsize_zero_node = bitsize_int (0);
4891 bitsize_one_node = bitsize_int (1);
4892 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4893
4894 void_type_node = make_node (VOID_TYPE);
4895 layout_type (void_type_node);
4896
4897 /* We are not going to have real types in C with less than byte alignment,
4898 so we might as well not have any types that claim to have it. */
4899 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4900 TYPE_USER_ALIGN (void_type_node) = 0;
4901
4902 null_pointer_node = build_int_2 (0, 0);
4903 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4904 layout_type (TREE_TYPE (null_pointer_node));
4905
4906 ptr_type_node = build_pointer_type (void_type_node);
4907 const_ptr_type_node
4908 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4909
4910 float_type_node = make_node (REAL_TYPE);
4911 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4912 layout_type (float_type_node);
4913
4914 double_type_node = make_node (REAL_TYPE);
4915 if (short_double)
4916 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4917 else
4918 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4919 layout_type (double_type_node);
4920
4921 long_double_type_node = make_node (REAL_TYPE);
4922 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4923 layout_type (long_double_type_node);
4924
4925 complex_integer_type_node = make_node (COMPLEX_TYPE);
4926 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4927 layout_type (complex_integer_type_node);
4928
4929 complex_float_type_node = make_node (COMPLEX_TYPE);
4930 TREE_TYPE (complex_float_type_node) = float_type_node;
4931 layout_type (complex_float_type_node);
4932
4933 complex_double_type_node = make_node (COMPLEX_TYPE);
4934 TREE_TYPE (complex_double_type_node) = double_type_node;
4935 layout_type (complex_double_type_node);
4936
4937 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4938 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4939 layout_type (complex_long_double_type_node);
4940
4941 {
4942 tree t;
4943 BUILD_VA_LIST_TYPE (t);
4944
4945 /* Many back-ends define record types without seting TYPE_NAME.
4946 If we copied the record type here, we'd keep the original
4947 record type without a name. This breaks name mangling. So,
4948 don't copy record types and let c_common_nodes_and_builtins()
4949 declare the type to be __builtin_va_list. */
4950 if (TREE_CODE (t) != RECORD_TYPE)
4951 t = build_type_copy (t);
4952
4953 va_list_type_node = t;
4954 }
4955
4956 unsigned_V4SI_type_node
4957 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4958 unsigned_V2HI_type_node
4959 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
4960 unsigned_V2SI_type_node
4961 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4962 unsigned_V2DI_type_node
4963 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4964 unsigned_V4HI_type_node
4965 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4966 unsigned_V8QI_type_node
4967 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4968 unsigned_V8HI_type_node
4969 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4970 unsigned_V16QI_type_node
4971 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4972 unsigned_V1DI_type_node
4973 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4974
4975 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4976 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4977 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4978 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
4979 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4980 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4981 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4982 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4983 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4984 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4985 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4986 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4987 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4988 }
4989
4990 /* Returns a vector tree node given a vector mode, the inner type, and
4991 the signness. */
4992
4993 static tree
4994 make_vector (mode, innertype, unsignedp)
4995 enum machine_mode mode;
4996 tree innertype;
4997 int unsignedp;
4998 {
4999 tree t;
5000
5001 t = make_node (VECTOR_TYPE);
5002 TREE_TYPE (t) = innertype;
5003 TYPE_MODE (t) = mode;
5004 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
5005 finish_vector_type (t);
5006
5007 return t;
5008 }
5009
5010 /* Given an initializer INIT, return TRUE if INIT is zero or some
5011 aggregate of zeros. Otherwise return FALSE. */
5012
5013 bool
5014 initializer_zerop (init)
5015 tree init;
5016 {
5017 STRIP_NOPS (init);
5018
5019 switch (TREE_CODE (init))
5020 {
5021 case INTEGER_CST:
5022 return integer_zerop (init);
5023 case REAL_CST:
5024 return real_zerop (init)
5025 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5026 case COMPLEX_CST:
5027 return integer_zerop (init)
5028 || (real_zerop (init)
5029 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5030 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5031 case CONSTRUCTOR:
5032 {
5033 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
5034 {
5035 tree aggr_init = CONSTRUCTOR_ELTS (init);
5036
5037 while (aggr_init)
5038 {
5039 if (! initializer_zerop (TREE_VALUE (aggr_init)))
5040 return false;
5041 aggr_init = TREE_CHAIN (aggr_init);
5042 }
5043 return true;
5044 }
5045 return false;
5046 }
5047 default:
5048 return false;
5049 }
5050 }
5051
5052 #include "gt-tree.h"