tree.h (BLOCK_TYPE_TAGS): Remove.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45
46 #define obstack_chunk_alloc xmalloc
47 #define obstack_chunk_free free
48 /* obstack.[ch] explicitly declined to prototype this. */
49 extern int _obstack_allocated_p PROTO ((struct obstack *h, PTR obj));
50
51 /* Tree nodes of permanent duration are allocated in this obstack.
52 They are the identifier nodes, and everything outside of
53 the bodies and parameters of function definitions. */
54
55 struct obstack permanent_obstack;
56
57 /* The initial RTL, and all ..._TYPE nodes, in a function
58 are allocated in this obstack. Usually they are freed at the
59 end of the function, but if the function is inline they are saved.
60 For top-level functions, this is maybepermanent_obstack.
61 Separate obstacks are made for nested functions. */
62
63 struct obstack *function_maybepermanent_obstack;
64
65 /* This is the function_maybepermanent_obstack for top-level functions. */
66
67 struct obstack maybepermanent_obstack;
68
69 /* The contents of the current function definition are allocated
70 in this obstack, and all are freed at the end of the function.
71 For top-level functions, this is temporary_obstack.
72 Separate obstacks are made for nested functions. */
73
74 struct obstack *function_obstack;
75
76 /* This is used for reading initializers of global variables. */
77
78 struct obstack temporary_obstack;
79
80 /* The tree nodes of an expression are allocated
81 in this obstack, and all are freed at the end of the expression. */
82
83 struct obstack momentary_obstack;
84
85 /* The tree nodes of a declarator are allocated
86 in this obstack, and all are freed when the declarator
87 has been parsed. */
88
89 static struct obstack temp_decl_obstack;
90
91 /* This points at either permanent_obstack
92 or the current function_maybepermanent_obstack. */
93
94 struct obstack *saveable_obstack;
95
96 /* This is same as saveable_obstack during parse and expansion phase;
97 it points to the current function's obstack during optimization.
98 This is the obstack to be used for creating rtl objects. */
99
100 struct obstack *rtl_obstack;
101
102 /* This points at either permanent_obstack or the current function_obstack. */
103
104 struct obstack *current_obstack;
105
106 /* This points at either permanent_obstack or the current function_obstack
107 or momentary_obstack. */
108
109 struct obstack *expression_obstack;
110
111 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
112
113 struct obstack_stack
114 {
115 struct obstack_stack *next;
116 struct obstack *current;
117 struct obstack *saveable;
118 struct obstack *expression;
119 struct obstack *rtl;
120 };
121
122 struct obstack_stack *obstack_stack;
123
124 /* Obstack for allocating struct obstack_stack entries. */
125
126 static struct obstack obstack_stack_obstack;
127
128 /* Addresses of first objects in some obstacks.
129 This is for freeing their entire contents. */
130 char *maybepermanent_firstobj;
131 char *temporary_firstobj;
132 char *momentary_firstobj;
133 char *temp_decl_firstobj;
134
135 /* This is used to preserve objects (mainly array initializers) that need to
136 live until the end of the current function, but no further. */
137 char *momentary_function_firstobj;
138
139 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
140
141 int all_types_permanent;
142
143 /* Stack of places to restore the momentary obstack back to. */
144
145 struct momentary_level
146 {
147 /* Pointer back to previous such level. */
148 struct momentary_level *prev;
149 /* First object allocated within this level. */
150 char *base;
151 /* Value of expression_obstack saved at entry to this level. */
152 struct obstack *obstack;
153 };
154
155 struct momentary_level *momentary_stack;
156
157 /* Table indexed by tree code giving a string containing a character
158 classifying the tree code. Possibilities are
159 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
160
161 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
162
163 char tree_code_type[MAX_TREE_CODES] = {
164 #include "tree.def"
165 };
166 #undef DEFTREECODE
167
168 /* Table indexed by tree code giving number of expression
169 operands beyond the fixed part of the node structure.
170 Not used for types or decls. */
171
172 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
173
174 int tree_code_length[MAX_TREE_CODES] = {
175 #include "tree.def"
176 };
177 #undef DEFTREECODE
178
179 /* Names of tree components.
180 Used for printing out the tree and error messages. */
181 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
182
183 const char *tree_code_name[MAX_TREE_CODES] = {
184 #include "tree.def"
185 };
186 #undef DEFTREECODE
187
188 /* Statistics-gathering stuff. */
189 typedef enum
190 {
191 d_kind,
192 t_kind,
193 b_kind,
194 s_kind,
195 r_kind,
196 e_kind,
197 c_kind,
198 id_kind,
199 op_id_kind,
200 perm_list_kind,
201 temp_list_kind,
202 vec_kind,
203 x_kind,
204 lang_decl,
205 lang_type,
206 all_kinds
207 } tree_node_kind;
208
209 int tree_node_counts[(int)all_kinds];
210 int tree_node_sizes[(int)all_kinds];
211 int id_string_size = 0;
212
213 static const char * const tree_node_kind_names[] = {
214 "decls",
215 "types",
216 "blocks",
217 "stmts",
218 "refs",
219 "exprs",
220 "constants",
221 "identifiers",
222 "op_identifiers",
223 "perm_tree_lists",
224 "temp_tree_lists",
225 "vecs",
226 "random kinds",
227 "lang_decl kinds",
228 "lang_type kinds"
229 };
230
231 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
232
233 #define MAX_HASH_TABLE 1009
234 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
235
236 /* 0 while creating built-in identifiers. */
237 static int do_identifier_warnings;
238
239 /* Unique id for next decl created. */
240 static int next_decl_uid;
241 /* Unique id for next type created. */
242 static int next_type_uid = 1;
243
244 /* The language-specific function for alias analysis. If NULL, the
245 language does not do any special alias analysis. */
246 int (*lang_get_alias_set) PROTO((tree));
247
248 /* Here is how primitive or already-canonicalized types' hash
249 codes are made. */
250 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
251
252 /* Each hash table slot is a bucket containing a chain
253 of these structures. */
254
255 struct type_hash
256 {
257 struct type_hash *next; /* Next structure in the bucket. */
258 int hashcode; /* Hash code of this type. */
259 tree type; /* The type recorded here. */
260 };
261
262 /* Now here is the hash table. When recording a type, it is added
263 to the slot whose index is the hash code mod the table size.
264 Note that the hash table is used for several kinds of types
265 (function types, array types and array index range types, for now).
266 While all these live in the same table, they are completely independent,
267 and the hash code is computed differently for each of these. */
268
269 #define TYPE_HASH_SIZE 59
270 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
271
272 static void set_type_quals PROTO((tree, int));
273 static void append_random_chars PROTO((char *));
274 static void build_real_from_int_cst_1 PROTO((PTR));
275 static void mark_type_hash PROTO ((void *));
276 static void fix_sizetype PROTO ((tree));
277
278 /* If non-null, a language specific helper for unsave_expr_now. */
279
280 void (*lang_unsave_expr_now) PROTO((tree));
281
282 /* The string used as a placeholder instead of a source file name for
283 built-in tree nodes. The variable, which is dynamically allocated,
284 should be used; the macro is only used to initialize it. */
285
286 static char *built_in_filename;
287 #define BUILT_IN_FILENAME ("<built-in>")
288 \f
289 tree global_trees[TI_MAX];
290 \f
291 /* Init the principal obstacks. */
292
293 void
294 init_obstacks ()
295 {
296 gcc_obstack_init (&obstack_stack_obstack);
297 gcc_obstack_init (&permanent_obstack);
298
299 gcc_obstack_init (&temporary_obstack);
300 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
301 gcc_obstack_init (&momentary_obstack);
302 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
303 momentary_function_firstobj = momentary_firstobj;
304 gcc_obstack_init (&maybepermanent_obstack);
305 maybepermanent_firstobj
306 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
307 gcc_obstack_init (&temp_decl_obstack);
308 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
309
310 function_obstack = &temporary_obstack;
311 function_maybepermanent_obstack = &maybepermanent_obstack;
312 current_obstack = &permanent_obstack;
313 expression_obstack = &permanent_obstack;
314 rtl_obstack = saveable_obstack = &permanent_obstack;
315
316 /* Init the hash table of identifiers. */
317 bzero ((char *) hash_table, sizeof hash_table);
318
319 ggc_add_tree_root (hash_table, MAX_HASH_TABLE);
320 ggc_add_root (type_hash_table, TYPE_HASH_SIZE,
321 sizeof(struct type_hash *),
322 mark_type_hash);
323 ggc_add_tree_root (global_trees, TI_MAX);
324 }
325
326 void
327 gcc_obstack_init (obstack)
328 struct obstack *obstack;
329 {
330 /* Let particular systems override the size of a chunk. */
331 #ifndef OBSTACK_CHUNK_SIZE
332 #define OBSTACK_CHUNK_SIZE 0
333 #endif
334 /* Let them override the alloc and free routines too. */
335 #ifndef OBSTACK_CHUNK_ALLOC
336 #define OBSTACK_CHUNK_ALLOC xmalloc
337 #endif
338 #ifndef OBSTACK_CHUNK_FREE
339 #define OBSTACK_CHUNK_FREE free
340 #endif
341 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
342 (void *(*) PROTO ((long))) OBSTACK_CHUNK_ALLOC,
343 (void (*) PROTO ((void *))) OBSTACK_CHUNK_FREE);
344 }
345
346 /* Save all variables describing the current status into the structure
347 *P. This function is called whenever we start compiling one
348 function in the midst of compiling another. For example, when
349 compiling a nested function, or, in C++, a template instantiation
350 that is required by the function we are currently compiling.
351
352 CONTEXT is the decl_function_context for the function we're about to
353 compile; if it isn't current_function_decl, we have to play some games. */
354
355 void
356 save_tree_status (p)
357 struct function *p;
358 {
359 p->all_types_permanent = all_types_permanent;
360 p->momentary_stack = momentary_stack;
361 p->maybepermanent_firstobj = maybepermanent_firstobj;
362 p->temporary_firstobj = temporary_firstobj;
363 p->momentary_firstobj = momentary_firstobj;
364 p->momentary_function_firstobj = momentary_function_firstobj;
365 p->function_obstack = function_obstack;
366 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
367 p->current_obstack = current_obstack;
368 p->expression_obstack = expression_obstack;
369 p->saveable_obstack = saveable_obstack;
370 p->rtl_obstack = rtl_obstack;
371
372 function_maybepermanent_obstack
373 = (struct obstack *) xmalloc (sizeof (struct obstack));
374 gcc_obstack_init (function_maybepermanent_obstack);
375 maybepermanent_firstobj
376 = (char *) obstack_finish (function_maybepermanent_obstack);
377
378 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
379 gcc_obstack_init (function_obstack);
380
381 current_obstack = &permanent_obstack;
382 expression_obstack = &permanent_obstack;
383 rtl_obstack = saveable_obstack = &permanent_obstack;
384
385 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
386 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
387 momentary_function_firstobj = momentary_firstobj;
388 }
389
390 /* Restore all variables describing the current status from the structure *P.
391 This is used after a nested function. */
392
393 void
394 restore_tree_status (p)
395 struct function *p;
396 {
397 all_types_permanent = p->all_types_permanent;
398 momentary_stack = p->momentary_stack;
399
400 obstack_free (&momentary_obstack, momentary_function_firstobj);
401
402 /* Free saveable storage used by the function just compiled and not
403 saved. */
404 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
405 if (obstack_empty_p (function_maybepermanent_obstack))
406 {
407 obstack_free (function_maybepermanent_obstack, NULL);
408 free (function_maybepermanent_obstack);
409 }
410
411 obstack_free (&temporary_obstack, temporary_firstobj);
412 obstack_free (&momentary_obstack, momentary_function_firstobj);
413
414 obstack_free (function_obstack, NULL);
415 free (function_obstack);
416
417 temporary_firstobj = p->temporary_firstobj;
418 momentary_firstobj = p->momentary_firstobj;
419 momentary_function_firstobj = p->momentary_function_firstobj;
420 maybepermanent_firstobj = p->maybepermanent_firstobj;
421 function_obstack = p->function_obstack;
422 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
423 current_obstack = p->current_obstack;
424 expression_obstack = p->expression_obstack;
425 saveable_obstack = p->saveable_obstack;
426 rtl_obstack = p->rtl_obstack;
427 }
428 \f
429 /* Start allocating on the temporary (per function) obstack.
430 This is done in start_function before parsing the function body,
431 and before each initialization at top level, and to go back
432 to temporary allocation after doing permanent_allocation. */
433
434 void
435 temporary_allocation ()
436 {
437 /* Note that function_obstack at top level points to temporary_obstack.
438 But within a nested function context, it is a separate obstack. */
439 current_obstack = function_obstack;
440 expression_obstack = function_obstack;
441 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
442 momentary_stack = 0;
443 }
444
445 /* Start allocating on the permanent obstack but don't
446 free the temporary data. After calling this, call
447 `permanent_allocation' to fully resume permanent allocation status. */
448
449 void
450 end_temporary_allocation ()
451 {
452 current_obstack = &permanent_obstack;
453 expression_obstack = &permanent_obstack;
454 rtl_obstack = saveable_obstack = &permanent_obstack;
455 }
456
457 /* Resume allocating on the temporary obstack, undoing
458 effects of `end_temporary_allocation'. */
459
460 void
461 resume_temporary_allocation ()
462 {
463 current_obstack = function_obstack;
464 expression_obstack = function_obstack;
465 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
466 }
467
468 /* While doing temporary allocation, switch to allocating in such a
469 way as to save all nodes if the function is inlined. Call
470 resume_temporary_allocation to go back to ordinary temporary
471 allocation. */
472
473 void
474 saveable_allocation ()
475 {
476 /* Note that function_obstack at top level points to temporary_obstack.
477 But within a nested function context, it is a separate obstack. */
478 expression_obstack = current_obstack = saveable_obstack;
479 }
480
481 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
482 recording the previously current obstacks on a stack.
483 This does not free any storage in any obstack. */
484
485 void
486 push_obstacks (current, saveable)
487 struct obstack *current, *saveable;
488 {
489 struct obstack_stack *p;
490
491 p = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
492 (sizeof (struct obstack_stack)));
493
494 p->current = current_obstack;
495 p->saveable = saveable_obstack;
496 p->expression = expression_obstack;
497 p->rtl = rtl_obstack;
498 p->next = obstack_stack;
499 obstack_stack = p;
500
501 current_obstack = current;
502 expression_obstack = current;
503 rtl_obstack = saveable_obstack = saveable;
504 }
505
506 /* Save the current set of obstacks, but don't change them. */
507
508 void
509 push_obstacks_nochange ()
510 {
511 struct obstack_stack *p;
512
513 p = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
514 (sizeof (struct obstack_stack)));
515
516 p->current = current_obstack;
517 p->saveable = saveable_obstack;
518 p->expression = expression_obstack;
519 p->rtl = rtl_obstack;
520 p->next = obstack_stack;
521 obstack_stack = p;
522 }
523
524 /* Pop the obstack selection stack. */
525
526 void
527 pop_obstacks ()
528 {
529 struct obstack_stack *p;
530
531 p = obstack_stack;
532 obstack_stack = p->next;
533
534 current_obstack = p->current;
535 saveable_obstack = p->saveable;
536 expression_obstack = p->expression;
537 rtl_obstack = p->rtl;
538
539 obstack_free (&obstack_stack_obstack, p);
540 }
541
542 /* Nonzero if temporary allocation is currently in effect.
543 Zero if currently doing permanent allocation. */
544
545 int
546 allocation_temporary_p ()
547 {
548 return current_obstack != &permanent_obstack;
549 }
550
551 /* Go back to allocating on the permanent obstack
552 and free everything in the temporary obstack.
553
554 FUNCTION_END is true only if we have just finished compiling a function.
555 In that case, we also free preserved initial values on the momentary
556 obstack. */
557
558 void
559 permanent_allocation (function_end)
560 int function_end;
561 {
562 /* Free up previous temporary obstack data */
563 obstack_free (&temporary_obstack, temporary_firstobj);
564 if (function_end)
565 {
566 obstack_free (&momentary_obstack, momentary_function_firstobj);
567 momentary_firstobj = momentary_function_firstobj;
568 }
569 else
570 obstack_free (&momentary_obstack, momentary_firstobj);
571 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
572 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
573
574 current_obstack = &permanent_obstack;
575 expression_obstack = &permanent_obstack;
576 rtl_obstack = saveable_obstack = &permanent_obstack;
577 }
578
579 /* Save permanently everything on the maybepermanent_obstack. */
580
581 void
582 preserve_data ()
583 {
584 maybepermanent_firstobj
585 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
586 }
587
588 void
589 preserve_initializer ()
590 {
591 struct momentary_level *tem;
592 char *old_momentary;
593
594 temporary_firstobj
595 = (char *) obstack_alloc (&temporary_obstack, 0);
596 maybepermanent_firstobj
597 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
598
599 old_momentary = momentary_firstobj;
600 momentary_firstobj
601 = (char *) obstack_alloc (&momentary_obstack, 0);
602 if (momentary_firstobj != old_momentary)
603 for (tem = momentary_stack; tem; tem = tem->prev)
604 tem->base = momentary_firstobj;
605 }
606
607 /* Start allocating new rtl in current_obstack.
608 Use resume_temporary_allocation
609 to go back to allocating rtl in saveable_obstack. */
610
611 void
612 rtl_in_current_obstack ()
613 {
614 rtl_obstack = current_obstack;
615 }
616
617 /* Start allocating rtl from saveable_obstack. Intended to be used after
618 a call to push_obstacks_nochange. */
619
620 void
621 rtl_in_saveable_obstack ()
622 {
623 rtl_obstack = saveable_obstack;
624 }
625 \f
626 /* Allocate SIZE bytes in the current obstack
627 and return a pointer to them.
628 In practice the current obstack is always the temporary one. */
629
630 char *
631 oballoc (size)
632 int size;
633 {
634 return (char *) obstack_alloc (current_obstack, size);
635 }
636
637 /* Free the object PTR in the current obstack
638 as well as everything allocated since PTR.
639 In practice the current obstack is always the temporary one. */
640
641 void
642 obfree (ptr)
643 char *ptr;
644 {
645 obstack_free (current_obstack, ptr);
646 }
647
648 /* Allocate SIZE bytes in the permanent obstack
649 and return a pointer to them. */
650
651 char *
652 permalloc (size)
653 int size;
654 {
655 return (char *) obstack_alloc (&permanent_obstack, size);
656 }
657
658 /* Allocate NELEM items of SIZE bytes in the permanent obstack
659 and return a pointer to them. The storage is cleared before
660 returning the value. */
661
662 char *
663 perm_calloc (nelem, size)
664 int nelem;
665 long size;
666 {
667 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
668 bzero (rval, nelem * size);
669 return rval;
670 }
671
672 /* Allocate SIZE bytes in the saveable obstack
673 and return a pointer to them. */
674
675 char *
676 savealloc (size)
677 int size;
678 {
679 return (char *) obstack_alloc (saveable_obstack, size);
680 }
681
682 /* Allocate SIZE bytes in the expression obstack
683 and return a pointer to them. */
684
685 char *
686 expralloc (size)
687 int size;
688 {
689 return (char *) obstack_alloc (expression_obstack, size);
690 }
691 \f
692 /* Print out which obstack an object is in. */
693
694 void
695 print_obstack_name (object, file, prefix)
696 char *object;
697 FILE *file;
698 const char *prefix;
699 {
700 struct obstack *obstack = NULL;
701 const char *obstack_name = NULL;
702 struct function *p;
703
704 for (p = outer_function_chain; p; p = p->next)
705 {
706 if (_obstack_allocated_p (p->function_obstack, object))
707 {
708 obstack = p->function_obstack;
709 obstack_name = "containing function obstack";
710 }
711 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
712 {
713 obstack = p->function_maybepermanent_obstack;
714 obstack_name = "containing function maybepermanent obstack";
715 }
716 }
717
718 if (_obstack_allocated_p (&obstack_stack_obstack, object))
719 {
720 obstack = &obstack_stack_obstack;
721 obstack_name = "obstack_stack_obstack";
722 }
723 else if (_obstack_allocated_p (function_obstack, object))
724 {
725 obstack = function_obstack;
726 obstack_name = "function obstack";
727 }
728 else if (_obstack_allocated_p (&permanent_obstack, object))
729 {
730 obstack = &permanent_obstack;
731 obstack_name = "permanent_obstack";
732 }
733 else if (_obstack_allocated_p (&momentary_obstack, object))
734 {
735 obstack = &momentary_obstack;
736 obstack_name = "momentary_obstack";
737 }
738 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
739 {
740 obstack = function_maybepermanent_obstack;
741 obstack_name = "function maybepermanent obstack";
742 }
743 else if (_obstack_allocated_p (&temp_decl_obstack, object))
744 {
745 obstack = &temp_decl_obstack;
746 obstack_name = "temp_decl_obstack";
747 }
748
749 /* Check to see if the object is in the free area of the obstack. */
750 if (obstack != NULL)
751 {
752 if (object >= obstack->next_free
753 && object < obstack->chunk_limit)
754 fprintf (file, "%s in free portion of obstack %s",
755 prefix, obstack_name);
756 else
757 fprintf (file, "%s allocated from %s", prefix, obstack_name);
758 }
759 else
760 fprintf (file, "%s not allocated from any obstack", prefix);
761 }
762
763 void
764 debug_obstack (object)
765 char *object;
766 {
767 print_obstack_name (object, stderr, "object");
768 fprintf (stderr, ".\n");
769 }
770
771 /* Return 1 if OBJ is in the permanent obstack.
772 This is slow, and should be used only for debugging.
773 Use TREE_PERMANENT for other purposes. */
774
775 int
776 object_permanent_p (obj)
777 tree obj;
778 {
779 return _obstack_allocated_p (&permanent_obstack, obj);
780 }
781 \f
782 /* Start a level of momentary allocation.
783 In C, each compound statement has its own level
784 and that level is freed at the end of each statement.
785 All expression nodes are allocated in the momentary allocation level. */
786
787 void
788 push_momentary ()
789 {
790 struct momentary_level *tem
791 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
792 sizeof (struct momentary_level));
793 tem->prev = momentary_stack;
794 tem->base = (char *) obstack_base (&momentary_obstack);
795 tem->obstack = expression_obstack;
796 momentary_stack = tem;
797 expression_obstack = &momentary_obstack;
798 }
799
800 /* Set things up so the next clear_momentary will only clear memory
801 past our present position in momentary_obstack. */
802
803 void
804 preserve_momentary ()
805 {
806 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
807 }
808
809 /* Free all the storage in the current momentary-allocation level.
810 In C, this happens at the end of each statement. */
811
812 void
813 clear_momentary ()
814 {
815 obstack_free (&momentary_obstack, momentary_stack->base);
816 }
817
818 /* Discard a level of momentary allocation.
819 In C, this happens at the end of each compound statement.
820 Restore the status of expression node allocation
821 that was in effect before this level was created. */
822
823 void
824 pop_momentary ()
825 {
826 struct momentary_level *tem = momentary_stack;
827 momentary_stack = tem->prev;
828 expression_obstack = tem->obstack;
829 /* We can't free TEM from the momentary_obstack, because there might
830 be objects above it which have been saved. We can free back to the
831 stack of the level we are popping off though. */
832 obstack_free (&momentary_obstack, tem->base);
833 }
834
835 /* Pop back to the previous level of momentary allocation,
836 but don't free any momentary data just yet. */
837
838 void
839 pop_momentary_nofree ()
840 {
841 struct momentary_level *tem = momentary_stack;
842 momentary_stack = tem->prev;
843 expression_obstack = tem->obstack;
844 }
845
846 /* Call when starting to parse a declaration:
847 make expressions in the declaration last the length of the function.
848 Returns an argument that should be passed to resume_momentary later. */
849
850 int
851 suspend_momentary ()
852 {
853 register int tem = expression_obstack == &momentary_obstack;
854 expression_obstack = saveable_obstack;
855 return tem;
856 }
857
858 /* Call when finished parsing a declaration:
859 restore the treatment of node-allocation that was
860 in effect before the suspension.
861 YES should be the value previously returned by suspend_momentary. */
862
863 void
864 resume_momentary (yes)
865 int yes;
866 {
867 if (yes)
868 expression_obstack = &momentary_obstack;
869 }
870 \f
871 /* Init the tables indexed by tree code.
872 Note that languages can add to these tables to define their own codes. */
873
874 void
875 init_tree_codes ()
876 {
877 built_in_filename =
878 ggc_alloc_string (BUILT_IN_FILENAME, sizeof (BUILT_IN_FILENAME));
879 ggc_add_string_root (&built_in_filename, 1);
880 }
881
882 /* Return a newly allocated node of code CODE.
883 Initialize the node's unique id and its TREE_PERMANENT flag.
884 For decl and type nodes, some other fields are initialized.
885 The rest of the node is initialized to zero.
886
887 Achoo! I got a code in the node. */
888
889 tree
890 make_node (code)
891 enum tree_code code;
892 {
893 register tree t;
894 register int type = TREE_CODE_CLASS (code);
895 register int length = 0;
896 register struct obstack *obstack = current_obstack;
897 #ifdef GATHER_STATISTICS
898 register tree_node_kind kind;
899 #endif
900
901 switch (type)
902 {
903 case 'd': /* A decl node */
904 #ifdef GATHER_STATISTICS
905 kind = d_kind;
906 #endif
907 length = sizeof (struct tree_decl);
908 /* All decls in an inline function need to be saved. */
909 if (obstack != &permanent_obstack)
910 obstack = saveable_obstack;
911
912 /* PARM_DECLs go on the context of the parent. If this is a nested
913 function, then we must allocate the PARM_DECL on the parent's
914 obstack, so that they will live to the end of the parent's
915 closing brace. This is necessary in case we try to inline the
916 function into its parent.
917
918 PARM_DECLs of top-level functions do not have this problem. However,
919 we allocate them where we put the FUNCTION_DECL for languages such as
920 Ada that need to consult some flags in the PARM_DECLs of the function
921 when calling it.
922
923 See comment in restore_tree_status for why we can't put this
924 in function_obstack. */
925 if (code == PARM_DECL && obstack != &permanent_obstack)
926 {
927 tree context = 0;
928 if (current_function_decl)
929 context = decl_function_context (current_function_decl);
930
931 if (context)
932 obstack
933 = find_function_data (context)->function_maybepermanent_obstack;
934 }
935 break;
936
937 case 't': /* a type node */
938 #ifdef GATHER_STATISTICS
939 kind = t_kind;
940 #endif
941 length = sizeof (struct tree_type);
942 /* All data types are put where we can preserve them if nec. */
943 if (obstack != &permanent_obstack)
944 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
945 break;
946
947 case 'b': /* a lexical block */
948 #ifdef GATHER_STATISTICS
949 kind = b_kind;
950 #endif
951 length = sizeof (struct tree_block);
952 /* All BLOCK nodes are put where we can preserve them if nec. */
953 if (obstack != &permanent_obstack)
954 obstack = saveable_obstack;
955 break;
956
957 case 's': /* an expression with side effects */
958 #ifdef GATHER_STATISTICS
959 kind = s_kind;
960 goto usual_kind;
961 #endif
962 case 'r': /* a reference */
963 #ifdef GATHER_STATISTICS
964 kind = r_kind;
965 goto usual_kind;
966 #endif
967 case 'e': /* an expression */
968 case '<': /* a comparison expression */
969 case '1': /* a unary arithmetic expression */
970 case '2': /* a binary arithmetic expression */
971 #ifdef GATHER_STATISTICS
972 kind = e_kind;
973 usual_kind:
974 #endif
975 obstack = expression_obstack;
976 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
977 if (code == BIND_EXPR && obstack != &permanent_obstack)
978 obstack = saveable_obstack;
979 length = sizeof (struct tree_exp)
980 + (tree_code_length[(int) code] - 1) * sizeof (char *);
981 break;
982
983 case 'c': /* a constant */
984 #ifdef GATHER_STATISTICS
985 kind = c_kind;
986 #endif
987 obstack = expression_obstack;
988
989 /* We can't use tree_code_length for INTEGER_CST, since the number of
990 words is machine-dependent due to varying length of HOST_WIDE_INT,
991 which might be wider than a pointer (e.g., long long). Similarly
992 for REAL_CST, since the number of words is machine-dependent due
993 to varying size and alignment of `double'. */
994
995 if (code == INTEGER_CST)
996 length = sizeof (struct tree_int_cst);
997 else if (code == REAL_CST)
998 length = sizeof (struct tree_real_cst);
999 else
1000 length = sizeof (struct tree_common)
1001 + tree_code_length[(int) code] * sizeof (char *);
1002 break;
1003
1004 case 'x': /* something random, like an identifier. */
1005 #ifdef GATHER_STATISTICS
1006 if (code == IDENTIFIER_NODE)
1007 kind = id_kind;
1008 else if (code == OP_IDENTIFIER)
1009 kind = op_id_kind;
1010 else if (code == TREE_VEC)
1011 kind = vec_kind;
1012 else
1013 kind = x_kind;
1014 #endif
1015 length = sizeof (struct tree_common)
1016 + tree_code_length[(int) code] * sizeof (char *);
1017 /* Identifier nodes are always permanent since they are
1018 unique in a compiler run. */
1019 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1020 break;
1021
1022 default:
1023 abort ();
1024 }
1025
1026 if (ggc_p)
1027 t = ggc_alloc_tree (length);
1028 else
1029 {
1030 t = (tree) obstack_alloc (obstack, length);
1031 memset ((PTR) t, 0, length);
1032 }
1033
1034 #ifdef GATHER_STATISTICS
1035 tree_node_counts[(int)kind]++;
1036 tree_node_sizes[(int)kind] += length;
1037 #endif
1038
1039 TREE_SET_CODE (t, code);
1040 if (obstack == &permanent_obstack)
1041 TREE_PERMANENT (t) = 1;
1042
1043 switch (type)
1044 {
1045 case 's':
1046 TREE_SIDE_EFFECTS (t) = 1;
1047 TREE_TYPE (t) = void_type_node;
1048 break;
1049
1050 case 'd':
1051 if (code != FUNCTION_DECL)
1052 DECL_ALIGN (t) = 1;
1053 DECL_IN_SYSTEM_HEADER (t)
1054 = in_system_header && (obstack == &permanent_obstack);
1055 DECL_SOURCE_LINE (t) = lineno;
1056 DECL_SOURCE_FILE (t) =
1057 (input_filename) ? input_filename : built_in_filename;
1058 DECL_UID (t) = next_decl_uid++;
1059 /* Note that we have not yet computed the alias set for this
1060 declaration. */
1061 DECL_POINTER_ALIAS_SET (t) = -1;
1062 break;
1063
1064 case 't':
1065 TYPE_UID (t) = next_type_uid++;
1066 TYPE_ALIGN (t) = 1;
1067 TYPE_MAIN_VARIANT (t) = t;
1068 TYPE_OBSTACK (t) = obstack;
1069 TYPE_ATTRIBUTES (t) = NULL_TREE;
1070 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1071 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1072 #endif
1073 /* Note that we have not yet computed the alias set for this
1074 type. */
1075 TYPE_ALIAS_SET (t) = -1;
1076 break;
1077
1078 case 'c':
1079 TREE_CONSTANT (t) = 1;
1080 break;
1081
1082 case 'e':
1083 switch (code)
1084 {
1085 case INIT_EXPR:
1086 case MODIFY_EXPR:
1087 case VA_ARG_EXPR:
1088 case RTL_EXPR:
1089 case PREDECREMENT_EXPR:
1090 case PREINCREMENT_EXPR:
1091 case POSTDECREMENT_EXPR:
1092 case POSTINCREMENT_EXPR:
1093 /* All of these have side-effects, no matter what their
1094 operands are. */
1095 TREE_SIDE_EFFECTS (t) = 1;
1096 break;
1097
1098 default:
1099 break;
1100 }
1101 break;
1102 }
1103
1104 return t;
1105 }
1106
1107 /* A front-end can reset this to an appropriate function if types need
1108 special handling. */
1109
1110 tree (*make_lang_type_fn) PROTO((enum tree_code)) = make_node;
1111
1112 /* Return a new type (with the indicated CODE), doing whatever
1113 language-specific processing is required. */
1114
1115 tree
1116 make_lang_type (code)
1117 enum tree_code code;
1118 {
1119 return (*make_lang_type_fn) (code);
1120 }
1121 \f
1122 /* Return a new node with the same contents as NODE except that its
1123 TREE_CHAIN is zero and it has a fresh uid. Unlike make_node, this
1124 function always performs the allocation on the CURRENT_OBSTACK;
1125 it's up to the caller to pick the right obstack before calling this
1126 function. */
1127
1128 tree
1129 copy_node (node)
1130 tree node;
1131 {
1132 register tree t;
1133 register enum tree_code code = TREE_CODE (node);
1134 register int length = 0;
1135
1136 switch (TREE_CODE_CLASS (code))
1137 {
1138 case 'd': /* A decl node */
1139 length = sizeof (struct tree_decl);
1140 break;
1141
1142 case 't': /* a type node */
1143 length = sizeof (struct tree_type);
1144 break;
1145
1146 case 'b': /* a lexical block node */
1147 length = sizeof (struct tree_block);
1148 break;
1149
1150 case 'r': /* a reference */
1151 case 'e': /* an expression */
1152 case 's': /* an expression with side effects */
1153 case '<': /* a comparison expression */
1154 case '1': /* a unary arithmetic expression */
1155 case '2': /* a binary arithmetic expression */
1156 length = sizeof (struct tree_exp)
1157 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1158 break;
1159
1160 case 'c': /* a constant */
1161 /* We can't use tree_code_length for INTEGER_CST, since the number of
1162 words is machine-dependent due to varying length of HOST_WIDE_INT,
1163 which might be wider than a pointer (e.g., long long). Similarly
1164 for REAL_CST, since the number of words is machine-dependent due
1165 to varying size and alignment of `double'. */
1166 if (code == INTEGER_CST)
1167 length = sizeof (struct tree_int_cst);
1168 else if (code == REAL_CST)
1169 length = sizeof (struct tree_real_cst);
1170 else
1171 length = (sizeof (struct tree_common)
1172 + tree_code_length[(int) code] * sizeof (char *));
1173 break;
1174
1175 case 'x': /* something random, like an identifier. */
1176 length = sizeof (struct tree_common)
1177 + tree_code_length[(int) code] * sizeof (char *);
1178 if (code == TREE_VEC)
1179 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1180 }
1181
1182 if (ggc_p)
1183 t = ggc_alloc_tree (length);
1184 else
1185 t = (tree) obstack_alloc (current_obstack, length);
1186 memcpy (t, node, length);
1187
1188 /* EXPR_WITH_FILE_LOCATION must keep filename info stored in TREE_CHAIN */
1189 if (TREE_CODE (node) != EXPR_WITH_FILE_LOCATION)
1190 TREE_CHAIN (t) = 0;
1191 TREE_ASM_WRITTEN (t) = 0;
1192
1193 if (TREE_CODE_CLASS (code) == 'd')
1194 DECL_UID (t) = next_decl_uid++;
1195 else if (TREE_CODE_CLASS (code) == 't')
1196 {
1197 TYPE_UID (t) = next_type_uid++;
1198 TYPE_OBSTACK (t) = current_obstack;
1199
1200 /* The following is so that the debug code for
1201 the copy is different from the original type.
1202 The two statements usually duplicate each other
1203 (because they clear fields of the same union),
1204 but the optimizer should catch that. */
1205 TYPE_SYMTAB_POINTER (t) = 0;
1206 TYPE_SYMTAB_ADDRESS (t) = 0;
1207 }
1208
1209 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
1210
1211 return t;
1212 }
1213
1214 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1215 For example, this can copy a list made of TREE_LIST nodes. */
1216
1217 tree
1218 copy_list (list)
1219 tree list;
1220 {
1221 tree head;
1222 register tree prev, next;
1223
1224 if (list == 0)
1225 return 0;
1226
1227 head = prev = copy_node (list);
1228 next = TREE_CHAIN (list);
1229 while (next)
1230 {
1231 TREE_CHAIN (prev) = copy_node (next);
1232 prev = TREE_CHAIN (prev);
1233 next = TREE_CHAIN (next);
1234 }
1235 return head;
1236 }
1237 \f
1238 #define HASHBITS 30
1239
1240 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1241 If an identifier with that name has previously been referred to,
1242 the same node is returned this time. */
1243
1244 tree
1245 get_identifier (text)
1246 register const char *text;
1247 {
1248 register int hi;
1249 register int i;
1250 register tree idp;
1251 register int len, hash_len;
1252
1253 /* Compute length of text in len. */
1254 len = strlen (text);
1255
1256 /* Decide how much of that length to hash on */
1257 hash_len = len;
1258 if (warn_id_clash && (unsigned)len > id_clash_len)
1259 hash_len = id_clash_len;
1260
1261 /* Compute hash code */
1262 hi = hash_len * 613 + (unsigned) text[0];
1263 for (i = 1; i < hash_len; i += 2)
1264 hi = ((hi * 613) + (unsigned) (text[i]));
1265
1266 hi &= (1 << HASHBITS) - 1;
1267 hi %= MAX_HASH_TABLE;
1268
1269 /* Search table for identifier */
1270 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1271 if (IDENTIFIER_LENGTH (idp) == len
1272 && IDENTIFIER_POINTER (idp)[0] == text[0]
1273 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1274 return idp; /* <-- return if found */
1275
1276 /* Not found; optionally warn about a similar identifier */
1277 if (warn_id_clash && do_identifier_warnings && (unsigned)len >= id_clash_len)
1278 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1279 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1280 {
1281 warning ("`%s' and `%s' identical in first %d characters",
1282 IDENTIFIER_POINTER (idp), text, id_clash_len);
1283 break;
1284 }
1285
1286 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1287 abort (); /* set_identifier_size hasn't been called. */
1288
1289 /* Not found, create one, add to chain */
1290 idp = make_node (IDENTIFIER_NODE);
1291 IDENTIFIER_LENGTH (idp) = len;
1292 #ifdef GATHER_STATISTICS
1293 id_string_size += len;
1294 #endif
1295
1296 if (ggc_p)
1297 IDENTIFIER_POINTER (idp) = ggc_alloc_string (text, len);
1298 else
1299 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1300
1301 TREE_CHAIN (idp) = hash_table[hi];
1302 hash_table[hi] = idp;
1303 return idp; /* <-- return if created */
1304 }
1305
1306 /* If an identifier with the name TEXT (a null-terminated string) has
1307 previously been referred to, return that node; otherwise return
1308 NULL_TREE. */
1309
1310 tree
1311 maybe_get_identifier (text)
1312 register const char *text;
1313 {
1314 register int hi;
1315 register int i;
1316 register tree idp;
1317 register int len, hash_len;
1318
1319 /* Compute length of text in len. */
1320 len = strlen (text);
1321
1322 /* Decide how much of that length to hash on */
1323 hash_len = len;
1324 if (warn_id_clash && (unsigned)len > id_clash_len)
1325 hash_len = id_clash_len;
1326
1327 /* Compute hash code */
1328 hi = hash_len * 613 + (unsigned) text[0];
1329 for (i = 1; i < hash_len; i += 2)
1330 hi = ((hi * 613) + (unsigned) (text[i]));
1331
1332 hi &= (1 << HASHBITS) - 1;
1333 hi %= MAX_HASH_TABLE;
1334
1335 /* Search table for identifier */
1336 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1337 if (IDENTIFIER_LENGTH (idp) == len
1338 && IDENTIFIER_POINTER (idp)[0] == text[0]
1339 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1340 return idp; /* <-- return if found */
1341
1342 return NULL_TREE;
1343 }
1344
1345 /* Enable warnings on similar identifiers (if requested).
1346 Done after the built-in identifiers are created. */
1347
1348 void
1349 start_identifier_warnings ()
1350 {
1351 do_identifier_warnings = 1;
1352 }
1353
1354 /* Record the size of an identifier node for the language in use.
1355 SIZE is the total size in bytes.
1356 This is called by the language-specific files. This must be
1357 called before allocating any identifiers. */
1358
1359 void
1360 set_identifier_size (size)
1361 int size;
1362 {
1363 tree_code_length[(int) IDENTIFIER_NODE]
1364 = (size - sizeof (struct tree_common)) / sizeof (tree);
1365 }
1366 \f
1367 /* Return a newly constructed INTEGER_CST node whose constant value
1368 is specified by the two ints LOW and HI.
1369 The TREE_TYPE is set to `int'.
1370
1371 This function should be used via the `build_int_2' macro. */
1372
1373 tree
1374 build_int_2_wide (low, hi)
1375 HOST_WIDE_INT low, hi;
1376 {
1377 register tree t = make_node (INTEGER_CST);
1378 TREE_INT_CST_LOW (t) = low;
1379 TREE_INT_CST_HIGH (t) = hi;
1380 TREE_TYPE (t) = integer_type_node;
1381 return t;
1382 }
1383
1384 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1385
1386 tree
1387 build_real (type, d)
1388 tree type;
1389 REAL_VALUE_TYPE d;
1390 {
1391 tree v;
1392 int overflow = 0;
1393
1394 /* Check for valid float value for this type on this target machine;
1395 if not, can print error message and store a valid value in D. */
1396 #ifdef CHECK_FLOAT_VALUE
1397 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1398 #endif
1399
1400 v = make_node (REAL_CST);
1401 TREE_TYPE (v) = type;
1402 TREE_REAL_CST (v) = d;
1403 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1404 return v;
1405 }
1406
1407 /* Return a new REAL_CST node whose type is TYPE
1408 and whose value is the integer value of the INTEGER_CST node I. */
1409
1410 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1411
1412 REAL_VALUE_TYPE
1413 real_value_from_int_cst (type, i)
1414 tree type, i;
1415 {
1416 REAL_VALUE_TYPE d;
1417
1418 #ifdef REAL_ARITHMETIC
1419 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1420 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1421 TYPE_MODE (type));
1422 else
1423 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
1424 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
1425 #else /* not REAL_ARITHMETIC */
1426 /* Some 386 compilers mishandle unsigned int to float conversions,
1427 so introduce a temporary variable E to avoid those bugs. */
1428 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1429 {
1430 REAL_VALUE_TYPE e;
1431
1432 d = (double) (~ TREE_INT_CST_HIGH (i));
1433 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1434 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1435 d *= e;
1436 e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1437 d += e;
1438 d = (- d - 1.0);
1439 }
1440 else
1441 {
1442 REAL_VALUE_TYPE e;
1443
1444 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1445 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1446 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1447 d *= e;
1448 e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1449 d += e;
1450 }
1451 #endif /* not REAL_ARITHMETIC */
1452 return d;
1453 }
1454
1455 struct brfic_args
1456 {
1457 /* Input */
1458 tree type, i;
1459 /* Output */
1460 REAL_VALUE_TYPE d;
1461 };
1462
1463 static void
1464 build_real_from_int_cst_1 (data)
1465 PTR data;
1466 {
1467 struct brfic_args * args = (struct brfic_args *) data;
1468
1469 #ifdef REAL_ARITHMETIC
1470 args->d = real_value_from_int_cst (args->type, args->i);
1471 #else
1472 args->d =
1473 REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
1474 real_value_from_int_cst (args->type, args->i));
1475 #endif
1476 }
1477
1478 /* This function can't be implemented if we can't do arithmetic
1479 on the float representation. */
1480
1481 tree
1482 build_real_from_int_cst (type, i)
1483 tree type;
1484 tree i;
1485 {
1486 tree v;
1487 int overflow = TREE_OVERFLOW (i);
1488 REAL_VALUE_TYPE d;
1489 struct brfic_args args;
1490
1491 v = make_node (REAL_CST);
1492 TREE_TYPE (v) = type;
1493
1494 /* Setup input for build_real_from_int_cst_1() */
1495 args.type = type;
1496 args.i = i;
1497
1498 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
1499 {
1500 /* Receive output from build_real_from_int_cst_1() */
1501 d = args.d;
1502 }
1503 else
1504 {
1505 /* We got an exception from build_real_from_int_cst_1() */
1506 d = dconst0;
1507 overflow = 1;
1508 }
1509
1510 /* Check for valid float value for this type on this target machine. */
1511
1512 #ifdef CHECK_FLOAT_VALUE
1513 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1514 #endif
1515
1516 TREE_REAL_CST (v) = d;
1517 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1518 return v;
1519 }
1520
1521 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1522
1523 /* Return a newly constructed STRING_CST node whose value is
1524 the LEN characters at STR.
1525 The TREE_TYPE is not initialized. */
1526
1527 tree
1528 build_string (len, str)
1529 int len;
1530 const char *str;
1531 {
1532 /* Put the string in saveable_obstack since it will be placed in the RTL
1533 for an "asm" statement and will also be kept around a while if
1534 deferring constant output in varasm.c. */
1535
1536 register tree s = make_node (STRING_CST);
1537 TREE_STRING_LENGTH (s) = len;
1538 if (ggc_p)
1539 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
1540 else
1541 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1542 return s;
1543 }
1544
1545 /* Return a newly constructed COMPLEX_CST node whose value is
1546 specified by the real and imaginary parts REAL and IMAG.
1547 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1548 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1549
1550 tree
1551 build_complex (type, real, imag)
1552 tree type;
1553 tree real, imag;
1554 {
1555 register tree t = make_node (COMPLEX_CST);
1556
1557 TREE_REALPART (t) = real;
1558 TREE_IMAGPART (t) = imag;
1559 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1560 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1561 TREE_CONSTANT_OVERFLOW (t)
1562 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1563 return t;
1564 }
1565
1566 /* Build a newly constructed TREE_VEC node of length LEN. */
1567
1568 tree
1569 make_tree_vec (len)
1570 int len;
1571 {
1572 register tree t;
1573 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1574 register struct obstack *obstack = current_obstack;
1575
1576 #ifdef GATHER_STATISTICS
1577 tree_node_counts[(int)vec_kind]++;
1578 tree_node_sizes[(int)vec_kind] += length;
1579 #endif
1580
1581 if (ggc_p)
1582 t = ggc_alloc_tree (length);
1583 else
1584 {
1585 t = (tree) obstack_alloc (obstack, length);
1586 bzero ((PTR) t, length);
1587 }
1588
1589 TREE_SET_CODE (t, TREE_VEC);
1590 TREE_VEC_LENGTH (t) = len;
1591 if (obstack == &permanent_obstack)
1592 TREE_PERMANENT (t) = 1;
1593
1594 return t;
1595 }
1596 \f
1597 /* Return 1 if EXPR is the integer constant zero or a complex constant
1598 of zero. */
1599
1600 int
1601 integer_zerop (expr)
1602 tree expr;
1603 {
1604 STRIP_NOPS (expr);
1605
1606 return ((TREE_CODE (expr) == INTEGER_CST
1607 && ! TREE_CONSTANT_OVERFLOW (expr)
1608 && TREE_INT_CST_LOW (expr) == 0
1609 && TREE_INT_CST_HIGH (expr) == 0)
1610 || (TREE_CODE (expr) == COMPLEX_CST
1611 && integer_zerop (TREE_REALPART (expr))
1612 && integer_zerop (TREE_IMAGPART (expr))));
1613 }
1614
1615 /* Return 1 if EXPR is the integer constant one or the corresponding
1616 complex constant. */
1617
1618 int
1619 integer_onep (expr)
1620 tree expr;
1621 {
1622 STRIP_NOPS (expr);
1623
1624 return ((TREE_CODE (expr) == INTEGER_CST
1625 && ! TREE_CONSTANT_OVERFLOW (expr)
1626 && TREE_INT_CST_LOW (expr) == 1
1627 && TREE_INT_CST_HIGH (expr) == 0)
1628 || (TREE_CODE (expr) == COMPLEX_CST
1629 && integer_onep (TREE_REALPART (expr))
1630 && integer_zerop (TREE_IMAGPART (expr))));
1631 }
1632
1633 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1634 it contains. Likewise for the corresponding complex constant. */
1635
1636 int
1637 integer_all_onesp (expr)
1638 tree expr;
1639 {
1640 register int prec;
1641 register int uns;
1642
1643 STRIP_NOPS (expr);
1644
1645 if (TREE_CODE (expr) == COMPLEX_CST
1646 && integer_all_onesp (TREE_REALPART (expr))
1647 && integer_zerop (TREE_IMAGPART (expr)))
1648 return 1;
1649
1650 else if (TREE_CODE (expr) != INTEGER_CST
1651 || TREE_CONSTANT_OVERFLOW (expr))
1652 return 0;
1653
1654 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1655 if (!uns)
1656 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1657
1658 /* Note that using TYPE_PRECISION here is wrong. We care about the
1659 actual bits, not the (arbitrary) range of the type. */
1660 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1661 if (prec >= HOST_BITS_PER_WIDE_INT)
1662 {
1663 int high_value, shift_amount;
1664
1665 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1666
1667 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1668 /* Can not handle precisions greater than twice the host int size. */
1669 abort ();
1670 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1671 /* Shifting by the host word size is undefined according to the ANSI
1672 standard, so we must handle this as a special case. */
1673 high_value = -1;
1674 else
1675 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1676
1677 return TREE_INT_CST_LOW (expr) == -1
1678 && TREE_INT_CST_HIGH (expr) == high_value;
1679 }
1680 else
1681 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1682 }
1683
1684 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1685 one bit on). */
1686
1687 int
1688 integer_pow2p (expr)
1689 tree expr;
1690 {
1691 int prec;
1692 HOST_WIDE_INT high, low;
1693
1694 STRIP_NOPS (expr);
1695
1696 if (TREE_CODE (expr) == COMPLEX_CST
1697 && integer_pow2p (TREE_REALPART (expr))
1698 && integer_zerop (TREE_IMAGPART (expr)))
1699 return 1;
1700
1701 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1702 return 0;
1703
1704 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1705 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1706 high = TREE_INT_CST_HIGH (expr);
1707 low = TREE_INT_CST_LOW (expr);
1708
1709 /* First clear all bits that are beyond the type's precision in case
1710 we've been sign extended. */
1711
1712 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1713 ;
1714 else if (prec > HOST_BITS_PER_WIDE_INT)
1715 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1716 else
1717 {
1718 high = 0;
1719 if (prec < HOST_BITS_PER_WIDE_INT)
1720 low &= ~((HOST_WIDE_INT) (-1) << prec);
1721 }
1722
1723 if (high == 0 && low == 0)
1724 return 0;
1725
1726 return ((high == 0 && (low & (low - 1)) == 0)
1727 || (low == 0 && (high & (high - 1)) == 0));
1728 }
1729
1730 /* Return the power of two represented by a tree node known to be a
1731 power of two. */
1732
1733 int
1734 tree_log2 (expr)
1735 tree expr;
1736 {
1737 int prec;
1738 HOST_WIDE_INT high, low;
1739
1740 STRIP_NOPS (expr);
1741
1742 if (TREE_CODE (expr) == COMPLEX_CST)
1743 return tree_log2 (TREE_REALPART (expr));
1744
1745 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1746 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1747
1748 high = TREE_INT_CST_HIGH (expr);
1749 low = TREE_INT_CST_LOW (expr);
1750
1751 /* First clear all bits that are beyond the type's precision in case
1752 we've been sign extended. */
1753
1754 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1755 ;
1756 else if (prec > HOST_BITS_PER_WIDE_INT)
1757 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1758 else
1759 {
1760 high = 0;
1761 if (prec < HOST_BITS_PER_WIDE_INT)
1762 low &= ~((HOST_WIDE_INT) (-1) << prec);
1763 }
1764
1765 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1766 : exact_log2 (low));
1767 }
1768
1769 /* Return 1 if EXPR is the real constant zero. */
1770
1771 int
1772 real_zerop (expr)
1773 tree expr;
1774 {
1775 STRIP_NOPS (expr);
1776
1777 return ((TREE_CODE (expr) == REAL_CST
1778 && ! TREE_CONSTANT_OVERFLOW (expr)
1779 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1780 || (TREE_CODE (expr) == COMPLEX_CST
1781 && real_zerop (TREE_REALPART (expr))
1782 && real_zerop (TREE_IMAGPART (expr))));
1783 }
1784
1785 /* Return 1 if EXPR is the real constant one in real or complex form. */
1786
1787 int
1788 real_onep (expr)
1789 tree expr;
1790 {
1791 STRIP_NOPS (expr);
1792
1793 return ((TREE_CODE (expr) == REAL_CST
1794 && ! TREE_CONSTANT_OVERFLOW (expr)
1795 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1796 || (TREE_CODE (expr) == COMPLEX_CST
1797 && real_onep (TREE_REALPART (expr))
1798 && real_zerop (TREE_IMAGPART (expr))));
1799 }
1800
1801 /* Return 1 if EXPR is the real constant two. */
1802
1803 int
1804 real_twop (expr)
1805 tree expr;
1806 {
1807 STRIP_NOPS (expr);
1808
1809 return ((TREE_CODE (expr) == REAL_CST
1810 && ! TREE_CONSTANT_OVERFLOW (expr)
1811 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1812 || (TREE_CODE (expr) == COMPLEX_CST
1813 && real_twop (TREE_REALPART (expr))
1814 && real_zerop (TREE_IMAGPART (expr))));
1815 }
1816
1817 /* Nonzero if EXP is a constant or a cast of a constant. */
1818
1819 int
1820 really_constant_p (exp)
1821 tree exp;
1822 {
1823 /* This is not quite the same as STRIP_NOPS. It does more. */
1824 while (TREE_CODE (exp) == NOP_EXPR
1825 || TREE_CODE (exp) == CONVERT_EXPR
1826 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1827 exp = TREE_OPERAND (exp, 0);
1828 return TREE_CONSTANT (exp);
1829 }
1830 \f
1831 /* Return first list element whose TREE_VALUE is ELEM.
1832 Return 0 if ELEM is not in LIST. */
1833
1834 tree
1835 value_member (elem, list)
1836 tree elem, list;
1837 {
1838 while (list)
1839 {
1840 if (elem == TREE_VALUE (list))
1841 return list;
1842 list = TREE_CHAIN (list);
1843 }
1844 return NULL_TREE;
1845 }
1846
1847 /* Return first list element whose TREE_PURPOSE is ELEM.
1848 Return 0 if ELEM is not in LIST. */
1849
1850 tree
1851 purpose_member (elem, list)
1852 tree elem, list;
1853 {
1854 while (list)
1855 {
1856 if (elem == TREE_PURPOSE (list))
1857 return list;
1858 list = TREE_CHAIN (list);
1859 }
1860 return NULL_TREE;
1861 }
1862
1863 /* Return first list element whose BINFO_TYPE is ELEM.
1864 Return 0 if ELEM is not in LIST. */
1865
1866 tree
1867 binfo_member (elem, list)
1868 tree elem, list;
1869 {
1870 while (list)
1871 {
1872 if (elem == BINFO_TYPE (list))
1873 return list;
1874 list = TREE_CHAIN (list);
1875 }
1876 return NULL_TREE;
1877 }
1878
1879 /* Return nonzero if ELEM is part of the chain CHAIN. */
1880
1881 int
1882 chain_member (elem, chain)
1883 tree elem, chain;
1884 {
1885 while (chain)
1886 {
1887 if (elem == chain)
1888 return 1;
1889 chain = TREE_CHAIN (chain);
1890 }
1891
1892 return 0;
1893 }
1894
1895 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1896 chain CHAIN. */
1897 /* ??? This function was added for machine specific attributes but is no
1898 longer used. It could be deleted if we could confirm all front ends
1899 don't use it. */
1900
1901 int
1902 chain_member_value (elem, chain)
1903 tree elem, chain;
1904 {
1905 while (chain)
1906 {
1907 if (elem == TREE_VALUE (chain))
1908 return 1;
1909 chain = TREE_CHAIN (chain);
1910 }
1911
1912 return 0;
1913 }
1914
1915 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1916 for any piece of chain CHAIN. */
1917 /* ??? This function was added for machine specific attributes but is no
1918 longer used. It could be deleted if we could confirm all front ends
1919 don't use it. */
1920
1921 int
1922 chain_member_purpose (elem, chain)
1923 tree elem, chain;
1924 {
1925 while (chain)
1926 {
1927 if (elem == TREE_PURPOSE (chain))
1928 return 1;
1929 chain = TREE_CHAIN (chain);
1930 }
1931
1932 return 0;
1933 }
1934
1935 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1936 We expect a null pointer to mark the end of the chain.
1937 This is the Lisp primitive `length'. */
1938
1939 int
1940 list_length (t)
1941 tree t;
1942 {
1943 register tree tail;
1944 register int len = 0;
1945
1946 for (tail = t; tail; tail = TREE_CHAIN (tail))
1947 len++;
1948
1949 return len;
1950 }
1951
1952 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1953 by modifying the last node in chain 1 to point to chain 2.
1954 This is the Lisp primitive `nconc'. */
1955
1956 tree
1957 chainon (op1, op2)
1958 tree op1, op2;
1959 {
1960
1961 if (op1)
1962 {
1963 register tree t1;
1964 #ifdef ENABLE_CHECKING
1965 register tree t2;
1966 #endif
1967
1968 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1969 ;
1970 TREE_CHAIN (t1) = op2;
1971 #ifdef ENABLE_CHECKING
1972 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1973 if (t2 == t1)
1974 abort (); /* Circularity created. */
1975 #endif
1976 return op1;
1977 }
1978 else return op2;
1979 }
1980
1981 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1982
1983 tree
1984 tree_last (chain)
1985 register tree chain;
1986 {
1987 register tree next;
1988 if (chain)
1989 while ((next = TREE_CHAIN (chain)))
1990 chain = next;
1991 return chain;
1992 }
1993
1994 /* Reverse the order of elements in the chain T,
1995 and return the new head of the chain (old last element). */
1996
1997 tree
1998 nreverse (t)
1999 tree t;
2000 {
2001 register tree prev = 0, decl, next;
2002 for (decl = t; decl; decl = next)
2003 {
2004 next = TREE_CHAIN (decl);
2005 TREE_CHAIN (decl) = prev;
2006 prev = decl;
2007 }
2008 return prev;
2009 }
2010
2011 /* Given a chain CHAIN of tree nodes,
2012 construct and return a list of those nodes. */
2013
2014 tree
2015 listify (chain)
2016 tree chain;
2017 {
2018 tree result = NULL_TREE;
2019 tree in_tail = chain;
2020 tree out_tail = NULL_TREE;
2021
2022 while (in_tail)
2023 {
2024 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
2025 if (out_tail)
2026 TREE_CHAIN (out_tail) = next;
2027 else
2028 result = next;
2029 out_tail = next;
2030 in_tail = TREE_CHAIN (in_tail);
2031 }
2032
2033 return result;
2034 }
2035 \f
2036 /* Return a newly created TREE_LIST node whose
2037 purpose and value fields are PARM and VALUE. */
2038
2039 tree
2040 build_tree_list (parm, value)
2041 tree parm, value;
2042 {
2043 register tree t = make_node (TREE_LIST);
2044 TREE_PURPOSE (t) = parm;
2045 TREE_VALUE (t) = value;
2046 return t;
2047 }
2048
2049 /* Similar, but build on the temp_decl_obstack. */
2050
2051 tree
2052 build_decl_list (parm, value)
2053 tree parm, value;
2054 {
2055 register tree node;
2056 register struct obstack *ambient_obstack = current_obstack;
2057 current_obstack = &temp_decl_obstack;
2058 node = build_tree_list (parm, value);
2059 current_obstack = ambient_obstack;
2060 return node;
2061 }
2062
2063 /* Similar, but build on the expression_obstack. */
2064
2065 tree
2066 build_expr_list (parm, value)
2067 tree parm, value;
2068 {
2069 register tree node;
2070 register struct obstack *ambient_obstack = current_obstack;
2071 current_obstack = expression_obstack;
2072 node = build_tree_list (parm, value);
2073 current_obstack = ambient_obstack;
2074 return node;
2075 }
2076
2077 /* Return a newly created TREE_LIST node whose
2078 purpose and value fields are PARM and VALUE
2079 and whose TREE_CHAIN is CHAIN. */
2080
2081 tree
2082 tree_cons (purpose, value, chain)
2083 tree purpose, value, chain;
2084 {
2085 #if 0
2086 register tree node = make_node (TREE_LIST);
2087 #else
2088 register tree node;
2089
2090 if (ggc_p)
2091 node = ggc_alloc_tree (sizeof (struct tree_list));
2092 else
2093 {
2094 node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
2095 memset (node, 0, sizeof (struct tree_common));
2096 }
2097
2098 #ifdef GATHER_STATISTICS
2099 tree_node_counts[(int)x_kind]++;
2100 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
2101 #endif
2102
2103
2104 TREE_SET_CODE (node, TREE_LIST);
2105 if (current_obstack == &permanent_obstack)
2106 TREE_PERMANENT (node) = 1;
2107 #endif
2108
2109 TREE_CHAIN (node) = chain;
2110 TREE_PURPOSE (node) = purpose;
2111 TREE_VALUE (node) = value;
2112 return node;
2113 }
2114
2115 /* Similar, but build on the temp_decl_obstack. */
2116
2117 tree
2118 decl_tree_cons (purpose, value, chain)
2119 tree purpose, value, chain;
2120 {
2121 register tree node;
2122 register struct obstack *ambient_obstack = current_obstack;
2123 current_obstack = &temp_decl_obstack;
2124 node = tree_cons (purpose, value, chain);
2125 current_obstack = ambient_obstack;
2126 return node;
2127 }
2128
2129 /* Similar, but build on the expression_obstack. */
2130
2131 tree
2132 expr_tree_cons (purpose, value, chain)
2133 tree purpose, value, chain;
2134 {
2135 register tree node;
2136 register struct obstack *ambient_obstack = current_obstack;
2137 current_obstack = expression_obstack;
2138 node = tree_cons (purpose, value, chain);
2139 current_obstack = ambient_obstack;
2140 return node;
2141 }
2142
2143 /* Same as `tree_cons' but make a permanent object. */
2144
2145 tree
2146 perm_tree_cons (purpose, value, chain)
2147 tree purpose, value, chain;
2148 {
2149 register tree node;
2150 register struct obstack *ambient_obstack = current_obstack;
2151 current_obstack = &permanent_obstack;
2152
2153 node = tree_cons (purpose, value, chain);
2154 current_obstack = ambient_obstack;
2155 return node;
2156 }
2157
2158 /* Same as `tree_cons', but make this node temporary, regardless. */
2159
2160 tree
2161 temp_tree_cons (purpose, value, chain)
2162 tree purpose, value, chain;
2163 {
2164 register tree node;
2165 register struct obstack *ambient_obstack = current_obstack;
2166 current_obstack = &temporary_obstack;
2167
2168 node = tree_cons (purpose, value, chain);
2169 current_obstack = ambient_obstack;
2170 return node;
2171 }
2172
2173 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
2174
2175 tree
2176 saveable_tree_cons (purpose, value, chain)
2177 tree purpose, value, chain;
2178 {
2179 register tree node;
2180 register struct obstack *ambient_obstack = current_obstack;
2181 current_obstack = saveable_obstack;
2182
2183 node = tree_cons (purpose, value, chain);
2184 current_obstack = ambient_obstack;
2185 return node;
2186 }
2187 \f
2188 /* Return the size nominally occupied by an object of type TYPE
2189 when it resides in memory. The value is measured in units of bytes,
2190 and its data type is that normally used for type sizes
2191 (which is the first type created by make_signed_type or
2192 make_unsigned_type). */
2193
2194 tree
2195 size_in_bytes (type)
2196 tree type;
2197 {
2198 tree t;
2199
2200 if (type == error_mark_node)
2201 return integer_zero_node;
2202
2203 type = TYPE_MAIN_VARIANT (type);
2204 t = TYPE_SIZE_UNIT (type);
2205 if (t == 0)
2206 {
2207 incomplete_type_error (NULL_TREE, type);
2208 return integer_zero_node;
2209 }
2210 if (TREE_CODE (t) == INTEGER_CST)
2211 force_fit_type (t, 0);
2212
2213 return t;
2214 }
2215
2216 /* Return the size of TYPE (in bytes) as a wide integer
2217 or return -1 if the size can vary or is larger than an integer. */
2218
2219 HOST_WIDE_INT
2220 int_size_in_bytes (type)
2221 tree type;
2222 {
2223 tree t;
2224
2225 if (type == error_mark_node)
2226 return 0;
2227
2228 type = TYPE_MAIN_VARIANT (type);
2229 t = TYPE_SIZE_UNIT (type);
2230 if (t == 0
2231 || TREE_CODE (t) != INTEGER_CST
2232 || TREE_INT_CST_HIGH (t) != 0)
2233 return -1;
2234
2235 return TREE_INT_CST_LOW (t);
2236 }
2237 \f
2238 /* Return, as a tree node, the number of elements for TYPE (which is an
2239 ARRAY_TYPE) minus one. This counts only elements of the top array.
2240
2241 Don't let any SAVE_EXPRs escape; if we are called as part of a cleanup
2242 action, they would get unsaved. */
2243
2244 tree
2245 array_type_nelts (type)
2246 tree type;
2247 {
2248 tree index_type, min, max;
2249
2250 /* If they did it with unspecified bounds, then we should have already
2251 given an error about it before we got here. */
2252 if (! TYPE_DOMAIN (type))
2253 return error_mark_node;
2254
2255 index_type = TYPE_DOMAIN (type);
2256 min = TYPE_MIN_VALUE (index_type);
2257 max = TYPE_MAX_VALUE (index_type);
2258
2259 if (! TREE_CONSTANT (min))
2260 {
2261 STRIP_NOPS (min);
2262 if (TREE_CODE (min) == SAVE_EXPR && SAVE_EXPR_RTL (min))
2263 min = build (RTL_EXPR, TREE_TYPE (TYPE_MIN_VALUE (index_type)), 0,
2264 SAVE_EXPR_RTL (min));
2265 else
2266 min = TYPE_MIN_VALUE (index_type);
2267 }
2268
2269 if (! TREE_CONSTANT (max))
2270 {
2271 STRIP_NOPS (max);
2272 if (TREE_CODE (max) == SAVE_EXPR && SAVE_EXPR_RTL (max))
2273 max = build (RTL_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)), 0,
2274 SAVE_EXPR_RTL (max));
2275 else
2276 max = TYPE_MAX_VALUE (index_type);
2277 }
2278
2279 return (integer_zerop (min)
2280 ? max
2281 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
2282 }
2283 \f
2284 /* Return nonzero if arg is static -- a reference to an object in
2285 static storage. This is not the same as the C meaning of `static'. */
2286
2287 int
2288 staticp (arg)
2289 tree arg;
2290 {
2291 switch (TREE_CODE (arg))
2292 {
2293 case FUNCTION_DECL:
2294 /* Nested functions aren't static, since taking their address
2295 involves a trampoline. */
2296 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
2297 && ! DECL_NON_ADDR_CONST_P (arg);
2298
2299 case VAR_DECL:
2300 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2301 && ! DECL_NON_ADDR_CONST_P (arg);
2302
2303 case CONSTRUCTOR:
2304 return TREE_STATIC (arg);
2305
2306 case STRING_CST:
2307 return 1;
2308
2309 /* If we are referencing a bitfield, we can't evaluate an
2310 ADDR_EXPR at compile time and so it isn't a constant. */
2311 case COMPONENT_REF:
2312 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
2313 && staticp (TREE_OPERAND (arg, 0)));
2314
2315 case BIT_FIELD_REF:
2316 return 0;
2317
2318 #if 0
2319 /* This case is technically correct, but results in setting
2320 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
2321 compile time. */
2322 case INDIRECT_REF:
2323 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2324 #endif
2325
2326 case ARRAY_REF:
2327 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2328 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2329 return staticp (TREE_OPERAND (arg, 0));
2330
2331 default:
2332 return 0;
2333 }
2334 }
2335 \f
2336 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2337 Do this to any expression which may be used in more than one place,
2338 but must be evaluated only once.
2339
2340 Normally, expand_expr would reevaluate the expression each time.
2341 Calling save_expr produces something that is evaluated and recorded
2342 the first time expand_expr is called on it. Subsequent calls to
2343 expand_expr just reuse the recorded value.
2344
2345 The call to expand_expr that generates code that actually computes
2346 the value is the first call *at compile time*. Subsequent calls
2347 *at compile time* generate code to use the saved value.
2348 This produces correct result provided that *at run time* control
2349 always flows through the insns made by the first expand_expr
2350 before reaching the other places where the save_expr was evaluated.
2351 You, the caller of save_expr, must make sure this is so.
2352
2353 Constants, and certain read-only nodes, are returned with no
2354 SAVE_EXPR because that is safe. Expressions containing placeholders
2355 are not touched; see tree.def for an explanation of what these
2356 are used for. */
2357
2358 tree
2359 save_expr (expr)
2360 tree expr;
2361 {
2362 register tree t = fold (expr);
2363
2364 /* We don't care about whether this can be used as an lvalue in this
2365 context. */
2366 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2367 t = TREE_OPERAND (t, 0);
2368
2369 /* If the tree evaluates to a constant, then we don't want to hide that
2370 fact (i.e. this allows further folding, and direct checks for constants).
2371 However, a read-only object that has side effects cannot be bypassed.
2372 Since it is no problem to reevaluate literals, we just return the
2373 literal node. */
2374
2375 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2376 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
2377 return t;
2378
2379 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2380 it means that the size or offset of some field of an object depends on
2381 the value within another field.
2382
2383 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2384 and some variable since it would then need to be both evaluated once and
2385 evaluated more than once. Front-ends must assure this case cannot
2386 happen by surrounding any such subexpressions in their own SAVE_EXPR
2387 and forcing evaluation at the proper time. */
2388 if (contains_placeholder_p (t))
2389 return t;
2390
2391 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2392
2393 /* This expression might be placed ahead of a jump to ensure that the
2394 value was computed on both sides of the jump. So make sure it isn't
2395 eliminated as dead. */
2396 TREE_SIDE_EFFECTS (t) = 1;
2397 return t;
2398 }
2399
2400 /* Arrange for an expression to be expanded multiple independent
2401 times. This is useful for cleanup actions, as the backend can
2402 expand them multiple times in different places. */
2403
2404 tree
2405 unsave_expr (expr)
2406 tree expr;
2407 {
2408 tree t;
2409
2410 /* If this is already protected, no sense in protecting it again. */
2411 if (TREE_CODE (expr) == UNSAVE_EXPR)
2412 return expr;
2413
2414 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
2415 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
2416 return t;
2417 }
2418
2419 /* Returns the index of the first non-tree operand for CODE, or the number
2420 of operands if all are trees. */
2421
2422 int
2423 first_rtl_op (code)
2424 enum tree_code code;
2425 {
2426 switch (code)
2427 {
2428 case SAVE_EXPR:
2429 return 2;
2430 case GOTO_SUBROUTINE_EXPR:
2431 case RTL_EXPR:
2432 return 0;
2433 case CALL_EXPR:
2434 return 2;
2435 case WITH_CLEANUP_EXPR:
2436 /* Should be defined to be 2. */
2437 return 1;
2438 case METHOD_CALL_EXPR:
2439 return 3;
2440 default:
2441 return tree_code_length [(int) code];
2442 }
2443 }
2444
2445 /* Modify a tree in place so that all the evaluate only once things
2446 are cleared out. Return the EXPR given.
2447
2448 LANG_UNSAVE_EXPR_NOW, if set, is a pointer to a function to handle
2449 language specific nodes.
2450 */
2451
2452 tree
2453 unsave_expr_now (expr)
2454 tree expr;
2455 {
2456 enum tree_code code;
2457 register int i;
2458 int first_rtl;
2459
2460 if (expr == NULL_TREE)
2461 return expr;
2462
2463 code = TREE_CODE (expr);
2464 first_rtl = first_rtl_op (code);
2465 switch (code)
2466 {
2467 case SAVE_EXPR:
2468 SAVE_EXPR_RTL (expr) = 0;
2469 break;
2470
2471 case TARGET_EXPR:
2472 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
2473 TREE_OPERAND (expr, 3) = NULL_TREE;
2474 break;
2475
2476 case RTL_EXPR:
2477 /* I don't yet know how to emit a sequence multiple times. */
2478 if (RTL_EXPR_SEQUENCE (expr) != 0)
2479 abort ();
2480 break;
2481
2482 case CALL_EXPR:
2483 CALL_EXPR_RTL (expr) = 0;
2484 if (TREE_OPERAND (expr, 1)
2485 && TREE_CODE (TREE_OPERAND (expr, 1)) == TREE_LIST)
2486 {
2487 tree exp = TREE_OPERAND (expr, 1);
2488 while (exp)
2489 {
2490 unsave_expr_now (TREE_VALUE (exp));
2491 exp = TREE_CHAIN (exp);
2492 }
2493 }
2494 break;
2495
2496 default:
2497 if (lang_unsave_expr_now)
2498 (*lang_unsave_expr_now) (expr);
2499 break;
2500 }
2501
2502 switch (TREE_CODE_CLASS (code))
2503 {
2504 case 'c': /* a constant */
2505 case 't': /* a type node */
2506 case 'x': /* something random, like an identifier or an ERROR_MARK. */
2507 case 'd': /* A decl node */
2508 case 'b': /* A block node */
2509 return expr;
2510
2511 case 'e': /* an expression */
2512 case 'r': /* a reference */
2513 case 's': /* an expression with side effects */
2514 case '<': /* a comparison expression */
2515 case '2': /* a binary arithmetic expression */
2516 case '1': /* a unary arithmetic expression */
2517 for (i = first_rtl - 1; i >= 0; i--)
2518 unsave_expr_now (TREE_OPERAND (expr, i));
2519 return expr;
2520
2521 default:
2522 abort ();
2523 }
2524 }
2525 \f
2526 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2527 or offset that depends on a field within a record. */
2528
2529 int
2530 contains_placeholder_p (exp)
2531 tree exp;
2532 {
2533 register enum tree_code code = TREE_CODE (exp);
2534 int result;
2535
2536 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2537 in it since it is supplying a value for it. */
2538 if (code == WITH_RECORD_EXPR)
2539 return 0;
2540 else if (code == PLACEHOLDER_EXPR)
2541 return 1;
2542
2543 switch (TREE_CODE_CLASS (code))
2544 {
2545 case 'r':
2546 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2547 position computations since they will be converted into a
2548 WITH_RECORD_EXPR involving the reference, which will assume
2549 here will be valid. */
2550 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2551
2552 case 'x':
2553 if (code == TREE_LIST)
2554 return (contains_placeholder_p (TREE_VALUE (exp))
2555 || (TREE_CHAIN (exp) != 0
2556 && contains_placeholder_p (TREE_CHAIN (exp))));
2557 break;
2558
2559 case '1':
2560 case '2': case '<':
2561 case 'e':
2562 switch (code)
2563 {
2564 case COMPOUND_EXPR:
2565 /* Ignoring the first operand isn't quite right, but works best. */
2566 return contains_placeholder_p (TREE_OPERAND (exp, 1));
2567
2568 case RTL_EXPR:
2569 case CONSTRUCTOR:
2570 return 0;
2571
2572 case COND_EXPR:
2573 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2574 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2575 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
2576
2577 case SAVE_EXPR:
2578 /* If we already know this doesn't have a placeholder, don't
2579 check again. */
2580 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
2581 return 0;
2582
2583 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
2584 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
2585 if (result)
2586 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
2587
2588 return result;
2589
2590 case CALL_EXPR:
2591 return (TREE_OPERAND (exp, 1) != 0
2592 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
2593
2594 default:
2595 break;
2596 }
2597
2598 switch (tree_code_length[(int) code])
2599 {
2600 case 1:
2601 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2602 case 2:
2603 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2604 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
2605 default:
2606 return 0;
2607 }
2608
2609 default:
2610 return 0;
2611 }
2612 return 0;
2613 }
2614
2615 /* Return 1 if EXP contains any expressions that produce cleanups for an
2616 outer scope to deal with. Used by fold. */
2617
2618 int
2619 has_cleanups (exp)
2620 tree exp;
2621 {
2622 int i, nops, cmp;
2623
2624 if (! TREE_SIDE_EFFECTS (exp))
2625 return 0;
2626
2627 switch (TREE_CODE (exp))
2628 {
2629 case TARGET_EXPR:
2630 case GOTO_SUBROUTINE_EXPR:
2631 case WITH_CLEANUP_EXPR:
2632 return 1;
2633
2634 case CLEANUP_POINT_EXPR:
2635 return 0;
2636
2637 case CALL_EXPR:
2638 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
2639 {
2640 cmp = has_cleanups (TREE_VALUE (exp));
2641 if (cmp)
2642 return cmp;
2643 }
2644 return 0;
2645
2646 default:
2647 break;
2648 }
2649
2650 /* This general rule works for most tree codes. All exceptions should be
2651 handled above. If this is a language-specific tree code, we can't
2652 trust what might be in the operand, so say we don't know
2653 the situation. */
2654 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
2655 return -1;
2656
2657 nops = first_rtl_op (TREE_CODE (exp));
2658 for (i = 0; i < nops; i++)
2659 if (TREE_OPERAND (exp, i) != 0)
2660 {
2661 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
2662 if (type == 'e' || type == '<' || type == '1' || type == '2'
2663 || type == 'r' || type == 's')
2664 {
2665 cmp = has_cleanups (TREE_OPERAND (exp, i));
2666 if (cmp)
2667 return cmp;
2668 }
2669 }
2670
2671 return 0;
2672 }
2673 \f
2674 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2675 return a tree with all occurrences of references to F in a
2676 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2677 contains only arithmetic expressions or a CALL_EXPR with a
2678 PLACEHOLDER_EXPR occurring only in its arglist. */
2679
2680 tree
2681 substitute_in_expr (exp, f, r)
2682 tree exp;
2683 tree f;
2684 tree r;
2685 {
2686 enum tree_code code = TREE_CODE (exp);
2687 tree op0, op1, op2;
2688 tree new;
2689 tree inner;
2690
2691 switch (TREE_CODE_CLASS (code))
2692 {
2693 case 'c':
2694 case 'd':
2695 return exp;
2696
2697 case 'x':
2698 if (code == PLACEHOLDER_EXPR)
2699 return exp;
2700 else if (code == TREE_LIST)
2701 {
2702 op0 = (TREE_CHAIN (exp) == 0
2703 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2704 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2705 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2706 return exp;
2707
2708 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2709 }
2710
2711 abort ();
2712
2713 case '1':
2714 case '2':
2715 case '<':
2716 case 'e':
2717 switch (tree_code_length[(int) code])
2718 {
2719 case 1:
2720 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2721 if (op0 == TREE_OPERAND (exp, 0))
2722 return exp;
2723
2724 new = fold (build1 (code, TREE_TYPE (exp), op0));
2725 break;
2726
2727 case 2:
2728 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2729 could, but we don't support it. */
2730 if (code == RTL_EXPR)
2731 return exp;
2732 else if (code == CONSTRUCTOR)
2733 abort ();
2734
2735 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2736 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2737 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2738 return exp;
2739
2740 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2741 break;
2742
2743 case 3:
2744 /* It cannot be that anything inside a SAVE_EXPR contains a
2745 PLACEHOLDER_EXPR. */
2746 if (code == SAVE_EXPR)
2747 return exp;
2748
2749 else if (code == CALL_EXPR)
2750 {
2751 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2752 if (op1 == TREE_OPERAND (exp, 1))
2753 return exp;
2754
2755 return build (code, TREE_TYPE (exp),
2756 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2757 }
2758
2759 else if (code != COND_EXPR)
2760 abort ();
2761
2762 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2763 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2764 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2765 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2766 && op2 == TREE_OPERAND (exp, 2))
2767 return exp;
2768
2769 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2770 break;
2771
2772 default:
2773 abort ();
2774 }
2775
2776 break;
2777
2778 case 'r':
2779 switch (code)
2780 {
2781 case COMPONENT_REF:
2782 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2783 and it is the right field, replace it with R. */
2784 for (inner = TREE_OPERAND (exp, 0);
2785 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2786 inner = TREE_OPERAND (inner, 0))
2787 ;
2788 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2789 && TREE_OPERAND (exp, 1) == f)
2790 return r;
2791
2792 /* If this expression hasn't been completed let, leave it
2793 alone. */
2794 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2795 && TREE_TYPE (inner) == 0)
2796 return exp;
2797
2798 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2799 if (op0 == TREE_OPERAND (exp, 0))
2800 return exp;
2801
2802 new = fold (build (code, TREE_TYPE (exp), op0,
2803 TREE_OPERAND (exp, 1)));
2804 break;
2805
2806 case BIT_FIELD_REF:
2807 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2808 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2809 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2810 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2811 && op2 == TREE_OPERAND (exp, 2))
2812 return exp;
2813
2814 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2815 break;
2816
2817 case INDIRECT_REF:
2818 case BUFFER_REF:
2819 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2820 if (op0 == TREE_OPERAND (exp, 0))
2821 return exp;
2822
2823 new = fold (build1 (code, TREE_TYPE (exp), op0));
2824 break;
2825
2826 default:
2827 abort ();
2828 }
2829 break;
2830
2831 default:
2832 abort ();
2833 }
2834
2835 TREE_READONLY (new) = TREE_READONLY (exp);
2836 return new;
2837 }
2838 \f
2839 /* Stabilize a reference so that we can use it any number of times
2840 without causing its operands to be evaluated more than once.
2841 Returns the stabilized reference. This works by means of save_expr,
2842 so see the caveats in the comments about save_expr.
2843
2844 Also allows conversion expressions whose operands are references.
2845 Any other kind of expression is returned unchanged. */
2846
2847 tree
2848 stabilize_reference (ref)
2849 tree ref;
2850 {
2851 register tree result;
2852 register enum tree_code code = TREE_CODE (ref);
2853
2854 switch (code)
2855 {
2856 case VAR_DECL:
2857 case PARM_DECL:
2858 case RESULT_DECL:
2859 /* No action is needed in this case. */
2860 return ref;
2861
2862 case NOP_EXPR:
2863 case CONVERT_EXPR:
2864 case FLOAT_EXPR:
2865 case FIX_TRUNC_EXPR:
2866 case FIX_FLOOR_EXPR:
2867 case FIX_ROUND_EXPR:
2868 case FIX_CEIL_EXPR:
2869 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2870 break;
2871
2872 case INDIRECT_REF:
2873 result = build_nt (INDIRECT_REF,
2874 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2875 break;
2876
2877 case COMPONENT_REF:
2878 result = build_nt (COMPONENT_REF,
2879 stabilize_reference (TREE_OPERAND (ref, 0)),
2880 TREE_OPERAND (ref, 1));
2881 break;
2882
2883 case BIT_FIELD_REF:
2884 result = build_nt (BIT_FIELD_REF,
2885 stabilize_reference (TREE_OPERAND (ref, 0)),
2886 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2887 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2888 break;
2889
2890 case ARRAY_REF:
2891 result = build_nt (ARRAY_REF,
2892 stabilize_reference (TREE_OPERAND (ref, 0)),
2893 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2894 break;
2895
2896 case COMPOUND_EXPR:
2897 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2898 it wouldn't be ignored. This matters when dealing with
2899 volatiles. */
2900 return stabilize_reference_1 (ref);
2901
2902 case RTL_EXPR:
2903 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2904 save_expr (build1 (ADDR_EXPR,
2905 build_pointer_type (TREE_TYPE (ref)),
2906 ref)));
2907 break;
2908
2909
2910 /* If arg isn't a kind of lvalue we recognize, make no change.
2911 Caller should recognize the error for an invalid lvalue. */
2912 default:
2913 return ref;
2914
2915 case ERROR_MARK:
2916 return error_mark_node;
2917 }
2918
2919 TREE_TYPE (result) = TREE_TYPE (ref);
2920 TREE_READONLY (result) = TREE_READONLY (ref);
2921 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2922 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2923 TREE_RAISES (result) = TREE_RAISES (ref);
2924
2925 return result;
2926 }
2927
2928 /* Subroutine of stabilize_reference; this is called for subtrees of
2929 references. Any expression with side-effects must be put in a SAVE_EXPR
2930 to ensure that it is only evaluated once.
2931
2932 We don't put SAVE_EXPR nodes around everything, because assigning very
2933 simple expressions to temporaries causes us to miss good opportunities
2934 for optimizations. Among other things, the opportunity to fold in the
2935 addition of a constant into an addressing mode often gets lost, e.g.
2936 "y[i+1] += x;". In general, we take the approach that we should not make
2937 an assignment unless we are forced into it - i.e., that any non-side effect
2938 operator should be allowed, and that cse should take care of coalescing
2939 multiple utterances of the same expression should that prove fruitful. */
2940
2941 tree
2942 stabilize_reference_1 (e)
2943 tree e;
2944 {
2945 register tree result;
2946 register enum tree_code code = TREE_CODE (e);
2947
2948 /* We cannot ignore const expressions because it might be a reference
2949 to a const array but whose index contains side-effects. But we can
2950 ignore things that are actual constant or that already have been
2951 handled by this function. */
2952
2953 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2954 return e;
2955
2956 switch (TREE_CODE_CLASS (code))
2957 {
2958 case 'x':
2959 case 't':
2960 case 'd':
2961 case 'b':
2962 case '<':
2963 case 's':
2964 case 'e':
2965 case 'r':
2966 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2967 so that it will only be evaluated once. */
2968 /* The reference (r) and comparison (<) classes could be handled as
2969 below, but it is generally faster to only evaluate them once. */
2970 if (TREE_SIDE_EFFECTS (e))
2971 return save_expr (e);
2972 return e;
2973
2974 case 'c':
2975 /* Constants need no processing. In fact, we should never reach
2976 here. */
2977 return e;
2978
2979 case '2':
2980 /* Division is slow and tends to be compiled with jumps,
2981 especially the division by powers of 2 that is often
2982 found inside of an array reference. So do it just once. */
2983 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2984 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2985 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2986 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2987 return save_expr (e);
2988 /* Recursively stabilize each operand. */
2989 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2990 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2991 break;
2992
2993 case '1':
2994 /* Recursively stabilize each operand. */
2995 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2996 break;
2997
2998 default:
2999 abort ();
3000 }
3001
3002 TREE_TYPE (result) = TREE_TYPE (e);
3003 TREE_READONLY (result) = TREE_READONLY (e);
3004 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3005 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3006 TREE_RAISES (result) = TREE_RAISES (e);
3007
3008 return result;
3009 }
3010 \f
3011 /* Low-level constructors for expressions. */
3012
3013 /* Build an expression of code CODE, data type TYPE,
3014 and operands as specified by the arguments ARG1 and following arguments.
3015 Expressions and reference nodes can be created this way.
3016 Constants, decls, types and misc nodes cannot be. */
3017
3018 tree
3019 build VPROTO((enum tree_code code, tree tt, ...))
3020 {
3021 #ifndef ANSI_PROTOTYPES
3022 enum tree_code code;
3023 tree tt;
3024 #endif
3025 va_list p;
3026 register tree t;
3027 register int length;
3028 register int i;
3029 int fro;
3030
3031 VA_START (p, tt);
3032
3033 #ifndef ANSI_PROTOTYPES
3034 code = va_arg (p, enum tree_code);
3035 tt = va_arg (p, tree);
3036 #endif
3037
3038 t = make_node (code);
3039 length = tree_code_length[(int) code];
3040 TREE_TYPE (t) = tt;
3041
3042 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_RAISED for
3043 the result based on those same flags for the arguments. But, if
3044 the arguments aren't really even `tree' expressions, we shouldn't
3045 be trying to do this. */
3046 fro = first_rtl_op (code);
3047
3048 if (length == 2)
3049 {
3050 /* This is equivalent to the loop below, but faster. */
3051 register tree arg0 = va_arg (p, tree);
3052 register tree arg1 = va_arg (p, tree);
3053 TREE_OPERAND (t, 0) = arg0;
3054 TREE_OPERAND (t, 1) = arg1;
3055 if (arg0 && fro > 0)
3056 {
3057 if (TREE_SIDE_EFFECTS (arg0))
3058 TREE_SIDE_EFFECTS (t) = 1;
3059 if (TREE_RAISES (arg0))
3060 TREE_RAISES (t) = 1;
3061 }
3062 if (arg1 && fro > 1)
3063 {
3064 if (TREE_SIDE_EFFECTS (arg1))
3065 TREE_SIDE_EFFECTS (t) = 1;
3066 if (TREE_RAISES (arg1))
3067 TREE_RAISES (t) = 1;
3068 }
3069 }
3070 else if (length == 1)
3071 {
3072 register tree arg0 = va_arg (p, tree);
3073
3074 /* Call build1 for this! */
3075 if (TREE_CODE_CLASS (code) != 's')
3076 abort ();
3077 TREE_OPERAND (t, 0) = arg0;
3078 if (fro > 0)
3079 {
3080 if (arg0 && TREE_SIDE_EFFECTS (arg0))
3081 TREE_SIDE_EFFECTS (t) = 1;
3082 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
3083 }
3084 }
3085 else
3086 {
3087 for (i = 0; i < length; i++)
3088 {
3089 register tree operand = va_arg (p, tree);
3090 TREE_OPERAND (t, i) = operand;
3091 if (operand && fro > i)
3092 {
3093 if (TREE_SIDE_EFFECTS (operand))
3094 TREE_SIDE_EFFECTS (t) = 1;
3095 if (TREE_RAISES (operand))
3096 TREE_RAISES (t) = 1;
3097 }
3098 }
3099 }
3100 va_end (p);
3101 return t;
3102 }
3103
3104 /* Same as above, but only builds for unary operators.
3105 Saves lions share of calls to `build'; cuts down use
3106 of varargs, which is expensive for RISC machines. */
3107
3108 tree
3109 build1 (code, type, node)
3110 enum tree_code code;
3111 tree type;
3112 tree node;
3113 {
3114 register struct obstack *obstack = expression_obstack;
3115 register int length;
3116 #ifdef GATHER_STATISTICS
3117 register tree_node_kind kind;
3118 #endif
3119 register tree t;
3120
3121 #ifdef GATHER_STATISTICS
3122 if (TREE_CODE_CLASS (code) == 'r')
3123 kind = r_kind;
3124 else
3125 kind = e_kind;
3126 #endif
3127
3128 length = sizeof (struct tree_exp);
3129
3130 if (ggc_p)
3131 t = ggc_alloc_tree (length);
3132 else
3133 {
3134 t = (tree) obstack_alloc (obstack, length);
3135 memset ((PTR) t, 0, length);
3136 }
3137
3138 #ifdef GATHER_STATISTICS
3139 tree_node_counts[(int)kind]++;
3140 tree_node_sizes[(int)kind] += length;
3141 #endif
3142
3143 TREE_TYPE (t) = type;
3144 TREE_SET_CODE (t, code);
3145
3146 if (obstack == &permanent_obstack)
3147 TREE_PERMANENT (t) = 1;
3148
3149 TREE_OPERAND (t, 0) = node;
3150 if (node && first_rtl_op (code) != 0)
3151 {
3152 if (TREE_SIDE_EFFECTS (node))
3153 TREE_SIDE_EFFECTS (t) = 1;
3154 if (TREE_RAISES (node))
3155 TREE_RAISES (t) = 1;
3156 }
3157
3158 switch (code)
3159 {
3160 case INIT_EXPR:
3161 case MODIFY_EXPR:
3162 case VA_ARG_EXPR:
3163 case RTL_EXPR:
3164 case PREDECREMENT_EXPR:
3165 case PREINCREMENT_EXPR:
3166 case POSTDECREMENT_EXPR:
3167 case POSTINCREMENT_EXPR:
3168 /* All of these have side-effects, no matter what their
3169 operands are. */
3170 TREE_SIDE_EFFECTS (t) = 1;
3171 break;
3172
3173 default:
3174 break;
3175 }
3176
3177 return t;
3178 }
3179
3180 /* Similar except don't specify the TREE_TYPE
3181 and leave the TREE_SIDE_EFFECTS as 0.
3182 It is permissible for arguments to be null,
3183 or even garbage if their values do not matter. */
3184
3185 tree
3186 build_nt VPROTO((enum tree_code code, ...))
3187 {
3188 #ifndef ANSI_PROTOTYPES
3189 enum tree_code code;
3190 #endif
3191 va_list p;
3192 register tree t;
3193 register int length;
3194 register int i;
3195
3196 VA_START (p, code);
3197
3198 #ifndef ANSI_PROTOTYPES
3199 code = va_arg (p, enum tree_code);
3200 #endif
3201
3202 t = make_node (code);
3203 length = tree_code_length[(int) code];
3204
3205 for (i = 0; i < length; i++)
3206 TREE_OPERAND (t, i) = va_arg (p, tree);
3207
3208 va_end (p);
3209 return t;
3210 }
3211
3212 /* Similar to `build_nt', except we build
3213 on the temp_decl_obstack, regardless. */
3214
3215 tree
3216 build_parse_node VPROTO((enum tree_code code, ...))
3217 {
3218 #ifndef ANSI_PROTOTYPES
3219 enum tree_code code;
3220 #endif
3221 register struct obstack *ambient_obstack = expression_obstack;
3222 va_list p;
3223 register tree t;
3224 register int length;
3225 register int i;
3226
3227 VA_START (p, code);
3228
3229 #ifndef ANSI_PROTOTYPES
3230 code = va_arg (p, enum tree_code);
3231 #endif
3232
3233 expression_obstack = &temp_decl_obstack;
3234
3235 t = make_node (code);
3236 length = tree_code_length[(int) code];
3237
3238 for (i = 0; i < length; i++)
3239 TREE_OPERAND (t, i) = va_arg (p, tree);
3240
3241 va_end (p);
3242 expression_obstack = ambient_obstack;
3243 return t;
3244 }
3245
3246 #if 0
3247 /* Commented out because this wants to be done very
3248 differently. See cp-lex.c. */
3249 tree
3250 build_op_identifier (op1, op2)
3251 tree op1, op2;
3252 {
3253 register tree t = make_node (OP_IDENTIFIER);
3254 TREE_PURPOSE (t) = op1;
3255 TREE_VALUE (t) = op2;
3256 return t;
3257 }
3258 #endif
3259 \f
3260 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3261 We do NOT enter this node in any sort of symbol table.
3262
3263 layout_decl is used to set up the decl's storage layout.
3264 Other slots are initialized to 0 or null pointers. */
3265
3266 tree
3267 build_decl (code, name, type)
3268 enum tree_code code;
3269 tree name, type;
3270 {
3271 register tree t;
3272
3273 t = make_node (code);
3274
3275 /* if (type == error_mark_node)
3276 type = integer_type_node; */
3277 /* That is not done, deliberately, so that having error_mark_node
3278 as the type can suppress useless errors in the use of this variable. */
3279
3280 DECL_NAME (t) = name;
3281 DECL_ASSEMBLER_NAME (t) = name;
3282 TREE_TYPE (t) = type;
3283
3284 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3285 layout_decl (t, 0);
3286 else if (code == FUNCTION_DECL)
3287 DECL_MODE (t) = FUNCTION_MODE;
3288
3289 return t;
3290 }
3291 \f
3292 /* BLOCK nodes are used to represent the structure of binding contours
3293 and declarations, once those contours have been exited and their contents
3294 compiled. This information is used for outputting debugging info. */
3295
3296 tree
3297 build_block (vars, tags, subblocks, supercontext, chain)
3298 tree vars, tags, subblocks, supercontext, chain;
3299 {
3300 register tree block = make_node (BLOCK);
3301 BLOCK_VARS (block) = vars;
3302 BLOCK_SUBBLOCKS (block) = subblocks;
3303 BLOCK_SUPERCONTEXT (block) = supercontext;
3304 BLOCK_CHAIN (block) = chain;
3305 return block;
3306 }
3307
3308 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
3309 location where an expression or an identifier were encountered. It
3310 is necessary for languages where the frontend parser will handle
3311 recursively more than one file (Java is one of them). */
3312
3313 tree
3314 build_expr_wfl (node, file, line, col)
3315 tree node;
3316 const char *file;
3317 int line, col;
3318 {
3319 static const char *last_file = 0;
3320 static tree last_filenode = NULL_TREE;
3321 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
3322
3323 EXPR_WFL_NODE (wfl) = node;
3324 EXPR_WFL_SET_LINECOL (wfl, line, col);
3325 if (file != last_file)
3326 {
3327 last_file = file;
3328 last_filenode = file ? get_identifier (file) : NULL_TREE;
3329 }
3330 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
3331 if (node)
3332 {
3333 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
3334 TREE_TYPE (wfl) = TREE_TYPE (node);
3335 }
3336 return wfl;
3337 }
3338 \f
3339 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
3340 is ATTRIBUTE. */
3341
3342 tree
3343 build_decl_attribute_variant (ddecl, attribute)
3344 tree ddecl, attribute;
3345 {
3346 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
3347 return ddecl;
3348 }
3349
3350 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3351 is ATTRIBUTE.
3352
3353 Record such modified types already made so we don't make duplicates. */
3354
3355 tree
3356 build_type_attribute_variant (ttype, attribute)
3357 tree ttype, attribute;
3358 {
3359 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3360 {
3361 register int hashcode;
3362 register struct obstack *ambient_obstack = current_obstack;
3363 tree ntype;
3364
3365 if (ambient_obstack != &permanent_obstack)
3366 current_obstack = TYPE_OBSTACK (ttype);
3367
3368 ntype = copy_node (ttype);
3369
3370 TYPE_POINTER_TO (ntype) = 0;
3371 TYPE_REFERENCE_TO (ntype) = 0;
3372 TYPE_ATTRIBUTES (ntype) = attribute;
3373
3374 /* Create a new main variant of TYPE. */
3375 TYPE_MAIN_VARIANT (ntype) = ntype;
3376 TYPE_NEXT_VARIANT (ntype) = 0;
3377 set_type_quals (ntype, TYPE_UNQUALIFIED);
3378
3379 hashcode = TYPE_HASH (TREE_CODE (ntype))
3380 + TYPE_HASH (TREE_TYPE (ntype))
3381 + attribute_hash_list (attribute);
3382
3383 switch (TREE_CODE (ntype))
3384 {
3385 case FUNCTION_TYPE:
3386 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
3387 break;
3388 case ARRAY_TYPE:
3389 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
3390 break;
3391 case INTEGER_TYPE:
3392 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
3393 break;
3394 case REAL_TYPE:
3395 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
3396 break;
3397 default:
3398 break;
3399 }
3400
3401 ntype = type_hash_canon (hashcode, ntype);
3402 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3403
3404 /* We must restore the current obstack after the type_hash_canon call,
3405 because type_hash_canon calls type_hash_add for permanent types, and
3406 then type_hash_add calls oballoc expecting to get something permanent
3407 back. */
3408 current_obstack = ambient_obstack;
3409 }
3410
3411 return ttype;
3412 }
3413
3414 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
3415 or type TYPE and 0 otherwise. Validity is determined the configuration
3416 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
3417
3418 int
3419 valid_machine_attribute (attr_name, attr_args, decl, type)
3420 tree attr_name;
3421 tree attr_args ATTRIBUTE_UNUSED;
3422 tree decl ATTRIBUTE_UNUSED;
3423 tree type ATTRIBUTE_UNUSED;
3424 {
3425 int validated = 0;
3426 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3427 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
3428 #endif
3429 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3430 tree type_attr_list = TYPE_ATTRIBUTES (type);
3431 #endif
3432
3433 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
3434 abort ();
3435
3436 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3437 if (decl != 0
3438 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
3439 {
3440 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3441 decl_attr_list);
3442
3443 if (attr != NULL_TREE)
3444 {
3445 /* Override existing arguments. Declarations are unique so we can
3446 modify this in place. */
3447 TREE_VALUE (attr) = attr_args;
3448 }
3449 else
3450 {
3451 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
3452 decl = build_decl_attribute_variant (decl, decl_attr_list);
3453 }
3454
3455 validated = 1;
3456 }
3457 #endif
3458
3459 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3460 if (validated)
3461 /* Don't apply the attribute to both the decl and the type. */;
3462 else if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name,
3463 attr_args))
3464 {
3465 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3466 type_attr_list);
3467
3468 if (attr != NULL_TREE)
3469 {
3470 /* Override existing arguments.
3471 ??? This currently works since attribute arguments are not
3472 included in `attribute_hash_list'. Something more complicated
3473 may be needed in the future. */
3474 TREE_VALUE (attr) = attr_args;
3475 }
3476 else
3477 {
3478 /* If this is part of a declaration, create a type variant,
3479 otherwise, this is part of a type definition, so add it
3480 to the base type. */
3481 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3482 if (decl != 0)
3483 type = build_type_attribute_variant (type, type_attr_list);
3484 else
3485 TYPE_ATTRIBUTES (type) = type_attr_list;
3486 }
3487 if (decl != 0)
3488 TREE_TYPE (decl) = type;
3489 validated = 1;
3490 }
3491
3492 /* Handle putting a type attribute on pointer-to-function-type by putting
3493 the attribute on the function type. */
3494 else if (POINTER_TYPE_P (type)
3495 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3496 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3497 attr_name, attr_args))
3498 {
3499 tree inner_type = TREE_TYPE (type);
3500 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3501 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3502 type_attr_list);
3503
3504 if (attr != NULL_TREE)
3505 TREE_VALUE (attr) = attr_args;
3506 else
3507 {
3508 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3509 inner_type = build_type_attribute_variant (inner_type,
3510 inner_attr_list);
3511 }
3512
3513 if (decl != 0)
3514 TREE_TYPE (decl) = build_pointer_type (inner_type);
3515 else
3516 {
3517 /* Clear TYPE_POINTER_TO for the old inner type, since
3518 `type' won't be pointing to it anymore. */
3519 TYPE_POINTER_TO (TREE_TYPE (type)) = NULL_TREE;
3520 TREE_TYPE (type) = inner_type;
3521 }
3522
3523 validated = 1;
3524 }
3525 #endif
3526
3527 return validated;
3528 }
3529
3530 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3531 or zero if not.
3532
3533 We try both `text' and `__text__', ATTR may be either one. */
3534 /* ??? It might be a reasonable simplification to require ATTR to be only
3535 `text'. One might then also require attribute lists to be stored in
3536 their canonicalized form. */
3537
3538 int
3539 is_attribute_p (attr, ident)
3540 const char *attr;
3541 tree ident;
3542 {
3543 int ident_len, attr_len;
3544 char *p;
3545
3546 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3547 return 0;
3548
3549 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3550 return 1;
3551
3552 p = IDENTIFIER_POINTER (ident);
3553 ident_len = strlen (p);
3554 attr_len = strlen (attr);
3555
3556 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3557 if (attr[0] == '_')
3558 {
3559 if (attr[1] != '_'
3560 || attr[attr_len - 2] != '_'
3561 || attr[attr_len - 1] != '_')
3562 abort ();
3563 if (ident_len == attr_len - 4
3564 && strncmp (attr + 2, p, attr_len - 4) == 0)
3565 return 1;
3566 }
3567 else
3568 {
3569 if (ident_len == attr_len + 4
3570 && p[0] == '_' && p[1] == '_'
3571 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3572 && strncmp (attr, p + 2, attr_len) == 0)
3573 return 1;
3574 }
3575
3576 return 0;
3577 }
3578
3579 /* Given an attribute name and a list of attributes, return a pointer to the
3580 attribute's list element if the attribute is part of the list, or NULL_TREE
3581 if not found. */
3582
3583 tree
3584 lookup_attribute (attr_name, list)
3585 const char *attr_name;
3586 tree list;
3587 {
3588 tree l;
3589
3590 for (l = list; l; l = TREE_CHAIN (l))
3591 {
3592 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3593 abort ();
3594 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3595 return l;
3596 }
3597
3598 return NULL_TREE;
3599 }
3600
3601 /* Return an attribute list that is the union of a1 and a2. */
3602
3603 tree
3604 merge_attributes (a1, a2)
3605 register tree a1, a2;
3606 {
3607 tree attributes;
3608
3609 /* Either one unset? Take the set one. */
3610
3611 if (! (attributes = a1))
3612 attributes = a2;
3613
3614 /* One that completely contains the other? Take it. */
3615
3616 else if (a2 && ! attribute_list_contained (a1, a2))
3617 {
3618 if (attribute_list_contained (a2, a1))
3619 attributes = a2;
3620 else
3621 {
3622 /* Pick the longest list, and hang on the other list. */
3623 /* ??? For the moment we punt on the issue of attrs with args. */
3624
3625 if (list_length (a1) < list_length (a2))
3626 attributes = a2, a2 = a1;
3627
3628 for (; a2; a2 = TREE_CHAIN (a2))
3629 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3630 attributes) == NULL_TREE)
3631 {
3632 a1 = copy_node (a2);
3633 TREE_CHAIN (a1) = attributes;
3634 attributes = a1;
3635 }
3636 }
3637 }
3638 return attributes;
3639 }
3640
3641 /* Given types T1 and T2, merge their attributes and return
3642 the result. */
3643
3644 tree
3645 merge_machine_type_attributes (t1, t2)
3646 tree t1, t2;
3647 {
3648 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
3649 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
3650 #else
3651 return merge_attributes (TYPE_ATTRIBUTES (t1),
3652 TYPE_ATTRIBUTES (t2));
3653 #endif
3654 }
3655
3656 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3657 the result. */
3658
3659 tree
3660 merge_machine_decl_attributes (olddecl, newdecl)
3661 tree olddecl, newdecl;
3662 {
3663 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
3664 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
3665 #else
3666 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
3667 DECL_MACHINE_ATTRIBUTES (newdecl));
3668 #endif
3669 }
3670 \f
3671 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3672 of the various TYPE_QUAL values. */
3673
3674 static void
3675 set_type_quals (type, type_quals)
3676 tree type;
3677 int type_quals;
3678 {
3679 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3680 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3681 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3682 }
3683
3684 /* Given a type node TYPE and a TYPE_QUALIFIER_SET, return a type for
3685 the same kind of data as TYPE describes. Variants point to the
3686 "main variant" (which has no qualifiers set) via TYPE_MAIN_VARIANT,
3687 and it points to a chain of other variants so that duplicate
3688 variants are never made. Only main variants should ever appear as
3689 types of expressions. */
3690
3691 tree
3692 build_qualified_type (type, type_quals)
3693 tree type;
3694 int type_quals;
3695 {
3696 register tree t;
3697
3698 /* Search the chain of variants to see if there is already one there just
3699 like the one we need to have. If so, use that existing one. We must
3700 preserve the TYPE_NAME, since there is code that depends on this. */
3701
3702 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3703 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
3704 return t;
3705
3706 /* We need a new one. */
3707 t = build_type_copy (type);
3708 set_type_quals (t, type_quals);
3709 return t;
3710 }
3711
3712 /* Create a new variant of TYPE, equivalent but distinct.
3713 This is so the caller can modify it. */
3714
3715 tree
3716 build_type_copy (type)
3717 tree type;
3718 {
3719 register tree t, m = TYPE_MAIN_VARIANT (type);
3720 register struct obstack *ambient_obstack = current_obstack;
3721
3722 current_obstack = TYPE_OBSTACK (type);
3723 t = copy_node (type);
3724 current_obstack = ambient_obstack;
3725
3726 TYPE_POINTER_TO (t) = 0;
3727 TYPE_REFERENCE_TO (t) = 0;
3728
3729 /* Add this type to the chain of variants of TYPE. */
3730 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3731 TYPE_NEXT_VARIANT (m) = t;
3732
3733 return t;
3734 }
3735 \f
3736 /* Hashing of types so that we don't make duplicates.
3737 The entry point is `type_hash_canon'. */
3738
3739 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3740 with types in the TREE_VALUE slots), by adding the hash codes
3741 of the individual types. */
3742
3743 int
3744 type_hash_list (list)
3745 tree list;
3746 {
3747 register int hashcode;
3748 register tree tail;
3749 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3750 hashcode += TYPE_HASH (TREE_VALUE (tail));
3751 return hashcode;
3752 }
3753
3754 /* Look in the type hash table for a type isomorphic to TYPE.
3755 If one is found, return it. Otherwise return 0. */
3756
3757 tree
3758 type_hash_lookup (hashcode, type)
3759 int hashcode;
3760 tree type;
3761 {
3762 register struct type_hash *h;
3763
3764 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3765 must call that routine before comparing TYPE_ALIGNs. */
3766 layout_type (type);
3767
3768 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3769 if (h->hashcode == hashcode
3770 && TREE_CODE (h->type) == TREE_CODE (type)
3771 && TREE_TYPE (h->type) == TREE_TYPE (type)
3772 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3773 TYPE_ATTRIBUTES (type))
3774 && TYPE_ALIGN (h->type) == TYPE_ALIGN (type)
3775 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3776 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3777 TYPE_MAX_VALUE (type)))
3778 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3779 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3780 TYPE_MIN_VALUE (type)))
3781 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3782 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3783 || (TYPE_DOMAIN (h->type)
3784 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3785 && TYPE_DOMAIN (type)
3786 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3787 && type_list_equal (TYPE_DOMAIN (h->type),
3788 TYPE_DOMAIN (type)))))
3789 return h->type;
3790 return 0;
3791 }
3792
3793 /* Add an entry to the type-hash-table
3794 for a type TYPE whose hash code is HASHCODE. */
3795
3796 void
3797 type_hash_add (hashcode, type)
3798 int hashcode;
3799 tree type;
3800 {
3801 register struct type_hash *h;
3802
3803 h = (struct type_hash *) permalloc (sizeof (struct type_hash));
3804 h->hashcode = hashcode;
3805 h->type = type;
3806 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3807 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3808 }
3809
3810 /* Given TYPE, and HASHCODE its hash code, return the canonical
3811 object for an identical type if one already exists.
3812 Otherwise, return TYPE, and record it as the canonical object
3813 if it is a permanent object.
3814
3815 To use this function, first create a type of the sort you want.
3816 Then compute its hash code from the fields of the type that
3817 make it different from other similar types.
3818 Then call this function and use the value.
3819 This function frees the type you pass in if it is a duplicate. */
3820
3821 /* Set to 1 to debug without canonicalization. Never set by program. */
3822 int debug_no_type_hash = 0;
3823
3824 tree
3825 type_hash_canon (hashcode, type)
3826 int hashcode;
3827 tree type;
3828 {
3829 tree t1;
3830
3831 if (debug_no_type_hash)
3832 return type;
3833
3834 t1 = type_hash_lookup (hashcode, type);
3835 if (t1 != 0)
3836 {
3837 if (!ggc_p)
3838 obstack_free (TYPE_OBSTACK (type), type);
3839 #ifdef GATHER_STATISTICS
3840 tree_node_counts[(int)t_kind]--;
3841 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3842 #endif
3843 return t1;
3844 }
3845
3846 /* If this is a permanent type, record it for later reuse. */
3847 if (ggc_p || TREE_PERMANENT (type))
3848 type_hash_add (hashcode, type);
3849
3850 return type;
3851 }
3852
3853 /* Mark ARG (which is really a struct type_hash **) for GC. */
3854
3855 static void
3856 mark_type_hash (arg)
3857 void *arg;
3858 {
3859 struct type_hash *t = *(struct type_hash **) arg;
3860
3861 while (t)
3862 {
3863 ggc_mark_tree (t->type);
3864 t = t->next;
3865 }
3866 }
3867
3868 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3869 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3870 by adding the hash codes of the individual attributes. */
3871
3872 int
3873 attribute_hash_list (list)
3874 tree list;
3875 {
3876 register int hashcode;
3877 register tree tail;
3878 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3879 /* ??? Do we want to add in TREE_VALUE too? */
3880 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3881 return hashcode;
3882 }
3883
3884 /* Given two lists of attributes, return true if list l2 is
3885 equivalent to l1. */
3886
3887 int
3888 attribute_list_equal (l1, l2)
3889 tree l1, l2;
3890 {
3891 return attribute_list_contained (l1, l2)
3892 && attribute_list_contained (l2, l1);
3893 }
3894
3895 /* Given two lists of attributes, return true if list L2 is
3896 completely contained within L1. */
3897 /* ??? This would be faster if attribute names were stored in a canonicalized
3898 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3899 must be used to show these elements are equivalent (which they are). */
3900 /* ??? It's not clear that attributes with arguments will always be handled
3901 correctly. */
3902
3903 int
3904 attribute_list_contained (l1, l2)
3905 tree l1, l2;
3906 {
3907 register tree t1, t2;
3908
3909 /* First check the obvious, maybe the lists are identical. */
3910 if (l1 == l2)
3911 return 1;
3912
3913 /* Maybe the lists are similar. */
3914 for (t1 = l1, t2 = l2;
3915 t1 && t2
3916 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3917 && TREE_VALUE (t1) == TREE_VALUE (t2);
3918 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3919
3920 /* Maybe the lists are equal. */
3921 if (t1 == 0 && t2 == 0)
3922 return 1;
3923
3924 for (; t2; t2 = TREE_CHAIN (t2))
3925 {
3926 tree attr
3927 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3928
3929 if (attr == NULL_TREE)
3930 return 0;
3931 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3932 return 0;
3933 }
3934
3935 return 1;
3936 }
3937
3938 /* Given two lists of types
3939 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3940 return 1 if the lists contain the same types in the same order.
3941 Also, the TREE_PURPOSEs must match. */
3942
3943 int
3944 type_list_equal (l1, l2)
3945 tree l1, l2;
3946 {
3947 register tree t1, t2;
3948
3949 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3950 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3951 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3952 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3953 && (TREE_TYPE (TREE_PURPOSE (t1))
3954 == TREE_TYPE (TREE_PURPOSE (t2))))))
3955 return 0;
3956
3957 return t1 == t2;
3958 }
3959
3960 /* Nonzero if integer constants T1 and T2
3961 represent the same constant value. */
3962
3963 int
3964 tree_int_cst_equal (t1, t2)
3965 tree t1, t2;
3966 {
3967 if (t1 == t2)
3968 return 1;
3969 if (t1 == 0 || t2 == 0)
3970 return 0;
3971 if (TREE_CODE (t1) == INTEGER_CST
3972 && TREE_CODE (t2) == INTEGER_CST
3973 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3974 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3975 return 1;
3976 return 0;
3977 }
3978
3979 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3980 The precise way of comparison depends on their data type. */
3981
3982 int
3983 tree_int_cst_lt (t1, t2)
3984 tree t1, t2;
3985 {
3986 if (t1 == t2)
3987 return 0;
3988
3989 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
3990 return INT_CST_LT (t1, t2);
3991 return INT_CST_LT_UNSIGNED (t1, t2);
3992 }
3993
3994 /* Return an indication of the sign of the integer constant T.
3995 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3996 Note that -1 will never be returned it T's type is unsigned. */
3997
3998 int
3999 tree_int_cst_sgn (t)
4000 tree t;
4001 {
4002 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4003 return 0;
4004 else if (TREE_UNSIGNED (TREE_TYPE (t)))
4005 return 1;
4006 else if (TREE_INT_CST_HIGH (t) < 0)
4007 return -1;
4008 else
4009 return 1;
4010 }
4011
4012 /* Compare two constructor-element-type constants. Return 1 if the lists
4013 are known to be equal; otherwise return 0. */
4014
4015 int
4016 simple_cst_list_equal (l1, l2)
4017 tree l1, l2;
4018 {
4019 while (l1 != NULL_TREE && l2 != NULL_TREE)
4020 {
4021 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4022 return 0;
4023
4024 l1 = TREE_CHAIN (l1);
4025 l2 = TREE_CHAIN (l2);
4026 }
4027
4028 return (l1 == l2);
4029 }
4030
4031 /* Return truthvalue of whether T1 is the same tree structure as T2.
4032 Return 1 if they are the same.
4033 Return 0 if they are understandably different.
4034 Return -1 if either contains tree structure not understood by
4035 this function. */
4036
4037 int
4038 simple_cst_equal (t1, t2)
4039 tree t1, t2;
4040 {
4041 register enum tree_code code1, code2;
4042 int cmp;
4043
4044 if (t1 == t2)
4045 return 1;
4046 if (t1 == 0 || t2 == 0)
4047 return 0;
4048
4049 code1 = TREE_CODE (t1);
4050 code2 = TREE_CODE (t2);
4051
4052 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4053 {
4054 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4055 || code2 == NON_LVALUE_EXPR)
4056 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4057 else
4058 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4059 }
4060 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4061 || code2 == NON_LVALUE_EXPR)
4062 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4063
4064 if (code1 != code2)
4065 return 0;
4066
4067 switch (code1)
4068 {
4069 case INTEGER_CST:
4070 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4071 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
4072
4073 case REAL_CST:
4074 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4075
4076 case STRING_CST:
4077 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4078 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4079 TREE_STRING_LENGTH (t1));
4080
4081 case CONSTRUCTOR:
4082 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
4083 return 1;
4084 else
4085 abort ();
4086
4087 case SAVE_EXPR:
4088 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4089
4090 case CALL_EXPR:
4091 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4092 if (cmp <= 0)
4093 return cmp;
4094 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4095
4096 case TARGET_EXPR:
4097 /* Special case: if either target is an unallocated VAR_DECL,
4098 it means that it's going to be unified with whatever the
4099 TARGET_EXPR is really supposed to initialize, so treat it
4100 as being equivalent to anything. */
4101 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4102 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4103 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
4104 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4105 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4106 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
4107 cmp = 1;
4108 else
4109 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4110 if (cmp <= 0)
4111 return cmp;
4112 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4113
4114 case WITH_CLEANUP_EXPR:
4115 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4116 if (cmp <= 0)
4117 return cmp;
4118 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
4119
4120 case COMPONENT_REF:
4121 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4122 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4123 return 0;
4124
4125 case VAR_DECL:
4126 case PARM_DECL:
4127 case CONST_DECL:
4128 case FUNCTION_DECL:
4129 return 0;
4130
4131 default:
4132 break;
4133 }
4134
4135 /* This general rule works for most tree codes. All exceptions should be
4136 handled above. If this is a language-specific tree code, we can't
4137 trust what might be in the operand, so say we don't know
4138 the situation. */
4139 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4140 return -1;
4141
4142 switch (TREE_CODE_CLASS (code1))
4143 {
4144 int i;
4145 case '1':
4146 case '2':
4147 case '<':
4148 case 'e':
4149 case 'r':
4150 case 's':
4151 cmp = 1;
4152 for (i=0; i<tree_code_length[(int) code1]; ++i)
4153 {
4154 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4155 if (cmp <= 0)
4156 return cmp;
4157 }
4158 return cmp;
4159
4160 default:
4161 return -1;
4162 }
4163 }
4164 \f
4165 /* Constructors for pointer, array and function types.
4166 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4167 constructed by language-dependent code, not here.) */
4168
4169 /* Construct, lay out and return the type of pointers to TO_TYPE.
4170 If such a type has already been constructed, reuse it. */
4171
4172 tree
4173 build_pointer_type (to_type)
4174 tree to_type;
4175 {
4176 register tree t = TYPE_POINTER_TO (to_type);
4177
4178 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4179
4180 if (t)
4181 return t;
4182
4183 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4184 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4185 t = make_node (POINTER_TYPE);
4186 pop_obstacks ();
4187
4188 TREE_TYPE (t) = to_type;
4189
4190 /* Record this type as the pointer to TO_TYPE. */
4191 TYPE_POINTER_TO (to_type) = t;
4192
4193 /* Lay out the type. This function has many callers that are concerned
4194 with expression-construction, and this simplifies them all.
4195 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
4196 layout_type (t);
4197
4198 return t;
4199 }
4200
4201 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4202 MAXVAL should be the maximum value in the domain
4203 (one less than the length of the array).
4204
4205 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4206 We don't enforce this limit, that is up to caller (e.g. language front end).
4207 The limit exists because the result is a signed type and we don't handle
4208 sizes that use more than one HOST_WIDE_INT. */
4209
4210 tree
4211 build_index_type (maxval)
4212 tree maxval;
4213 {
4214 register tree itype = make_node (INTEGER_TYPE);
4215
4216 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4217 TYPE_MIN_VALUE (itype) = size_zero_node;
4218
4219 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4220 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4221 pop_obstacks ();
4222
4223 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4224 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4225 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4226 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4227 if (TREE_CODE (maxval) == INTEGER_CST)
4228 {
4229 int maxint = (int) TREE_INT_CST_LOW (maxval);
4230 /* If the domain should be empty, make sure the maxval
4231 remains -1 and is not spoiled by truncation. */
4232 if (INT_CST_LT (maxval, integer_zero_node))
4233 {
4234 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
4235 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
4236 }
4237 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4238 }
4239 else
4240 return itype;
4241 }
4242
4243 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4244 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4245 low bound LOWVAL and high bound HIGHVAL.
4246 if TYPE==NULL_TREE, sizetype is used. */
4247
4248 tree
4249 build_range_type (type, lowval, highval)
4250 tree type, lowval, highval;
4251 {
4252 register tree itype = make_node (INTEGER_TYPE);
4253
4254 TREE_TYPE (itype) = type;
4255 if (type == NULL_TREE)
4256 type = sizetype;
4257
4258 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4259 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4260 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4261 pop_obstacks ();
4262
4263 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4264 TYPE_MODE (itype) = TYPE_MODE (type);
4265 TYPE_SIZE (itype) = TYPE_SIZE (type);
4266 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4267 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4268 if (TREE_CODE (lowval) == INTEGER_CST)
4269 {
4270 HOST_WIDE_INT lowint, highint;
4271 int maxint;
4272
4273 lowint = TREE_INT_CST_LOW (lowval);
4274 if (highval && TREE_CODE (highval) == INTEGER_CST)
4275 highint = TREE_INT_CST_LOW (highval);
4276 else
4277 highint = (~(unsigned HOST_WIDE_INT)0) >> 1;
4278
4279 maxint = (int) (highint - lowint);
4280 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4281 }
4282 else
4283 return itype;
4284 }
4285
4286 /* Just like build_index_type, but takes lowval and highval instead
4287 of just highval (maxval). */
4288
4289 tree
4290 build_index_2_type (lowval,highval)
4291 tree lowval, highval;
4292 {
4293 return build_range_type (NULL_TREE, lowval, highval);
4294 }
4295
4296 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
4297 Needed because when index types are not hashed, equal index types
4298 built at different times appear distinct, even though structurally,
4299 they are not. */
4300
4301 int
4302 index_type_equal (itype1, itype2)
4303 tree itype1, itype2;
4304 {
4305 if (TREE_CODE (itype1) != TREE_CODE (itype2))
4306 return 0;
4307 if (TREE_CODE (itype1) == INTEGER_TYPE)
4308 {
4309 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
4310 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
4311 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
4312 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
4313 return 0;
4314 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
4315 TYPE_MIN_VALUE (itype2))
4316 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
4317 TYPE_MAX_VALUE (itype2)))
4318 return 1;
4319 }
4320
4321 return 0;
4322 }
4323
4324 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4325 and number of elements specified by the range of values of INDEX_TYPE.
4326 If such a type has already been constructed, reuse it. */
4327
4328 tree
4329 build_array_type (elt_type, index_type)
4330 tree elt_type, index_type;
4331 {
4332 register tree t;
4333 int hashcode;
4334
4335 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4336 {
4337 error ("arrays of functions are not meaningful");
4338 elt_type = integer_type_node;
4339 }
4340
4341 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
4342 build_pointer_type (elt_type);
4343
4344 /* Allocate the array after the pointer type,
4345 in case we free it in type_hash_canon. */
4346 t = make_node (ARRAY_TYPE);
4347 TREE_TYPE (t) = elt_type;
4348 TYPE_DOMAIN (t) = index_type;
4349
4350 if (index_type == 0)
4351 {
4352 return t;
4353 }
4354
4355 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
4356 t = type_hash_canon (hashcode, t);
4357
4358 if (TYPE_SIZE (t) == 0)
4359 layout_type (t);
4360 return t;
4361 }
4362
4363 /* Return the TYPE of the elements comprising
4364 the innermost dimension of ARRAY. */
4365
4366 tree
4367 get_inner_array_type (array)
4368 tree array;
4369 {
4370 tree type = TREE_TYPE (array);
4371
4372 while (TREE_CODE (type) == ARRAY_TYPE)
4373 type = TREE_TYPE (type);
4374
4375 return type;
4376 }
4377
4378 /* Construct, lay out and return
4379 the type of functions returning type VALUE_TYPE
4380 given arguments of types ARG_TYPES.
4381 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4382 are data type nodes for the arguments of the function.
4383 If such a type has already been constructed, reuse it. */
4384
4385 tree
4386 build_function_type (value_type, arg_types)
4387 tree value_type, arg_types;
4388 {
4389 register tree t;
4390 int hashcode;
4391
4392 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4393 {
4394 error ("function return type cannot be function");
4395 value_type = integer_type_node;
4396 }
4397
4398 /* Make a node of the sort we want. */
4399 t = make_node (FUNCTION_TYPE);
4400 TREE_TYPE (t) = value_type;
4401 TYPE_ARG_TYPES (t) = arg_types;
4402
4403 /* If we already have such a type, use the old one and free this one. */
4404 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
4405 t = type_hash_canon (hashcode, t);
4406
4407 if (TYPE_SIZE (t) == 0)
4408 layout_type (t);
4409 return t;
4410 }
4411
4412 /* Build the node for the type of references-to-TO_TYPE. */
4413
4414 tree
4415 build_reference_type (to_type)
4416 tree to_type;
4417 {
4418 register tree t = TYPE_REFERENCE_TO (to_type);
4419
4420 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4421
4422 if (t)
4423 return t;
4424
4425 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4426 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4427 t = make_node (REFERENCE_TYPE);
4428 pop_obstacks ();
4429
4430 TREE_TYPE (t) = to_type;
4431
4432 /* Record this type as the pointer to TO_TYPE. */
4433 TYPE_REFERENCE_TO (to_type) = t;
4434
4435 layout_type (t);
4436
4437 return t;
4438 }
4439
4440 /* Construct, lay out and return the type of methods belonging to class
4441 BASETYPE and whose arguments and values are described by TYPE.
4442 If that type exists already, reuse it.
4443 TYPE must be a FUNCTION_TYPE node. */
4444
4445 tree
4446 build_method_type (basetype, type)
4447 tree basetype, type;
4448 {
4449 register tree t;
4450 int hashcode;
4451
4452 /* Make a node of the sort we want. */
4453 t = make_node (METHOD_TYPE);
4454
4455 if (TREE_CODE (type) != FUNCTION_TYPE)
4456 abort ();
4457
4458 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4459 TREE_TYPE (t) = TREE_TYPE (type);
4460
4461 /* The actual arglist for this function includes a "hidden" argument
4462 which is "this". Put it into the list of argument types. */
4463
4464 TYPE_ARG_TYPES (t)
4465 = tree_cons (NULL_TREE,
4466 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4467
4468 /* If we already have such a type, use the old one and free this one. */
4469 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4470 t = type_hash_canon (hashcode, t);
4471
4472 if (TYPE_SIZE (t) == 0)
4473 layout_type (t);
4474
4475 return t;
4476 }
4477
4478 /* Construct, lay out and return the type of offsets to a value
4479 of type TYPE, within an object of type BASETYPE.
4480 If a suitable offset type exists already, reuse it. */
4481
4482 tree
4483 build_offset_type (basetype, type)
4484 tree basetype, type;
4485 {
4486 register tree t;
4487 int hashcode;
4488
4489 /* Make a node of the sort we want. */
4490 t = make_node (OFFSET_TYPE);
4491
4492 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4493 TREE_TYPE (t) = type;
4494
4495 /* If we already have such a type, use the old one and free this one. */
4496 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4497 t = type_hash_canon (hashcode, t);
4498
4499 if (TYPE_SIZE (t) == 0)
4500 layout_type (t);
4501
4502 return t;
4503 }
4504
4505 /* Create a complex type whose components are COMPONENT_TYPE. */
4506
4507 tree
4508 build_complex_type (component_type)
4509 tree component_type;
4510 {
4511 register tree t;
4512 int hashcode;
4513
4514 /* Make a node of the sort we want. */
4515 t = make_node (COMPLEX_TYPE);
4516
4517 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4518 set_type_quals (t, TYPE_QUALS (component_type));
4519
4520 /* If we already have such a type, use the old one and free this one. */
4521 hashcode = TYPE_HASH (component_type);
4522 t = type_hash_canon (hashcode, t);
4523
4524 if (TYPE_SIZE (t) == 0)
4525 layout_type (t);
4526
4527 /* If we are writing Dwarf2 output we need to create a name,
4528 since complex is a fundamental type. */
4529 if (write_symbols == DWARF2_DEBUG && ! TYPE_NAME (t))
4530 {
4531 char *name;
4532 if (component_type == char_type_node)
4533 name = "complex char";
4534 else if (component_type == signed_char_type_node)
4535 name = "complex signed char";
4536 else if (component_type == unsigned_char_type_node)
4537 name = "complex unsigned char";
4538 else if (component_type == short_integer_type_node)
4539 name = "complex short int";
4540 else if (component_type == short_unsigned_type_node)
4541 name = "complex short unsigned int";
4542 else if (component_type == integer_type_node)
4543 name = "complex int";
4544 else if (component_type == unsigned_type_node)
4545 name = "complex unsigned int";
4546 else if (component_type == long_integer_type_node)
4547 name = "complex long int";
4548 else if (component_type == long_unsigned_type_node)
4549 name = "complex long unsigned int";
4550 else if (component_type == long_long_integer_type_node)
4551 name = "complex long long int";
4552 else if (component_type == long_long_unsigned_type_node)
4553 name = "complex long long unsigned int";
4554 else
4555 name = (char *)0;
4556
4557 if (name)
4558 TYPE_NAME (t) = get_identifier (name);
4559 }
4560
4561 return t;
4562 }
4563 \f
4564 /* Return OP, stripped of any conversions to wider types as much as is safe.
4565 Converting the value back to OP's type makes a value equivalent to OP.
4566
4567 If FOR_TYPE is nonzero, we return a value which, if converted to
4568 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4569
4570 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4571 narrowest type that can hold the value, even if they don't exactly fit.
4572 Otherwise, bit-field references are changed to a narrower type
4573 only if they can be fetched directly from memory in that type.
4574
4575 OP must have integer, real or enumeral type. Pointers are not allowed!
4576
4577 There are some cases where the obvious value we could return
4578 would regenerate to OP if converted to OP's type,
4579 but would not extend like OP to wider types.
4580 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4581 For example, if OP is (unsigned short)(signed char)-1,
4582 we avoid returning (signed char)-1 if FOR_TYPE is int,
4583 even though extending that to an unsigned short would regenerate OP,
4584 since the result of extending (signed char)-1 to (int)
4585 is different from (int) OP. */
4586
4587 tree
4588 get_unwidened (op, for_type)
4589 register tree op;
4590 tree for_type;
4591 {
4592 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4593 register tree type = TREE_TYPE (op);
4594 register unsigned final_prec
4595 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4596 register int uns
4597 = (for_type != 0 && for_type != type
4598 && final_prec > TYPE_PRECISION (type)
4599 && TREE_UNSIGNED (type));
4600 register tree win = op;
4601
4602 while (TREE_CODE (op) == NOP_EXPR)
4603 {
4604 register int bitschange
4605 = TYPE_PRECISION (TREE_TYPE (op))
4606 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4607
4608 /* Truncations are many-one so cannot be removed.
4609 Unless we are later going to truncate down even farther. */
4610 if (bitschange < 0
4611 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4612 break;
4613
4614 /* See what's inside this conversion. If we decide to strip it,
4615 we will set WIN. */
4616 op = TREE_OPERAND (op, 0);
4617
4618 /* If we have not stripped any zero-extensions (uns is 0),
4619 we can strip any kind of extension.
4620 If we have previously stripped a zero-extension,
4621 only zero-extensions can safely be stripped.
4622 Any extension can be stripped if the bits it would produce
4623 are all going to be discarded later by truncating to FOR_TYPE. */
4624
4625 if (bitschange > 0)
4626 {
4627 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4628 win = op;
4629 /* TREE_UNSIGNED says whether this is a zero-extension.
4630 Let's avoid computing it if it does not affect WIN
4631 and if UNS will not be needed again. */
4632 if ((uns || TREE_CODE (op) == NOP_EXPR)
4633 && TREE_UNSIGNED (TREE_TYPE (op)))
4634 {
4635 uns = 1;
4636 win = op;
4637 }
4638 }
4639 }
4640
4641 if (TREE_CODE (op) == COMPONENT_REF
4642 /* Since type_for_size always gives an integer type. */
4643 && TREE_CODE (type) != REAL_TYPE
4644 /* Don't crash if field not laid out yet. */
4645 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4646 {
4647 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4648 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4649
4650 /* We can get this structure field in the narrowest type it fits in.
4651 If FOR_TYPE is 0, do this only for a field that matches the
4652 narrower type exactly and is aligned for it
4653 The resulting extension to its nominal type (a fullword type)
4654 must fit the same conditions as for other extensions. */
4655
4656 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4657 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4658 && (! uns || final_prec <= innerprec
4659 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4660 && type != 0)
4661 {
4662 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4663 TREE_OPERAND (op, 1));
4664 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4665 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4666 TREE_RAISES (win) = TREE_RAISES (op);
4667 }
4668 }
4669 return win;
4670 }
4671 \f
4672 /* Return OP or a simpler expression for a narrower value
4673 which can be sign-extended or zero-extended to give back OP.
4674 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4675 or 0 if the value should be sign-extended. */
4676
4677 tree
4678 get_narrower (op, unsignedp_ptr)
4679 register tree op;
4680 int *unsignedp_ptr;
4681 {
4682 register int uns = 0;
4683 int first = 1;
4684 register tree win = op;
4685
4686 while (TREE_CODE (op) == NOP_EXPR)
4687 {
4688 register int bitschange
4689 = TYPE_PRECISION (TREE_TYPE (op))
4690 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4691
4692 /* Truncations are many-one so cannot be removed. */
4693 if (bitschange < 0)
4694 break;
4695
4696 /* See what's inside this conversion. If we decide to strip it,
4697 we will set WIN. */
4698 op = TREE_OPERAND (op, 0);
4699
4700 if (bitschange > 0)
4701 {
4702 /* An extension: the outermost one can be stripped,
4703 but remember whether it is zero or sign extension. */
4704 if (first)
4705 uns = TREE_UNSIGNED (TREE_TYPE (op));
4706 /* Otherwise, if a sign extension has been stripped,
4707 only sign extensions can now be stripped;
4708 if a zero extension has been stripped, only zero-extensions. */
4709 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4710 break;
4711 first = 0;
4712 }
4713 else /* bitschange == 0 */
4714 {
4715 /* A change in nominal type can always be stripped, but we must
4716 preserve the unsignedness. */
4717 if (first)
4718 uns = TREE_UNSIGNED (TREE_TYPE (op));
4719 first = 0;
4720 }
4721
4722 win = op;
4723 }
4724
4725 if (TREE_CODE (op) == COMPONENT_REF
4726 /* Since type_for_size always gives an integer type. */
4727 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4728 {
4729 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4730 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4731
4732 /* We can get this structure field in a narrower type that fits it,
4733 but the resulting extension to its nominal type (a fullword type)
4734 must satisfy the same conditions as for other extensions.
4735
4736 Do this only for fields that are aligned (not bit-fields),
4737 because when bit-field insns will be used there is no
4738 advantage in doing this. */
4739
4740 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4741 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4742 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4743 && type != 0)
4744 {
4745 if (first)
4746 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4747 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4748 TREE_OPERAND (op, 1));
4749 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4750 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4751 TREE_RAISES (win) = TREE_RAISES (op);
4752 }
4753 }
4754 *unsignedp_ptr = uns;
4755 return win;
4756 }
4757 \f
4758 /* Nonzero if integer constant C has a value that is permissible
4759 for type TYPE (an INTEGER_TYPE). */
4760
4761 int
4762 int_fits_type_p (c, type)
4763 tree c, type;
4764 {
4765 if (TREE_UNSIGNED (type))
4766 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4767 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4768 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4769 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)))
4770 /* Negative ints never fit unsigned types. */
4771 && ! (TREE_INT_CST_HIGH (c) < 0
4772 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4773 else
4774 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4775 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4776 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4777 && INT_CST_LT (c, TYPE_MIN_VALUE (type)))
4778 /* Unsigned ints with top bit set never fit signed types. */
4779 && ! (TREE_INT_CST_HIGH (c) < 0
4780 && TREE_UNSIGNED (TREE_TYPE (c))));
4781 }
4782
4783 /* Return the innermost context enclosing DECL that is
4784 a FUNCTION_DECL, or zero if none. */
4785
4786 tree
4787 decl_function_context (decl)
4788 tree decl;
4789 {
4790 tree context;
4791
4792 if (TREE_CODE (decl) == ERROR_MARK)
4793 return 0;
4794
4795 if (TREE_CODE (decl) == SAVE_EXPR)
4796 context = SAVE_EXPR_CONTEXT (decl);
4797 else
4798 context = DECL_CONTEXT (decl);
4799
4800 while (context && TREE_CODE (context) != FUNCTION_DECL)
4801 {
4802 if (TREE_CODE_CLASS (TREE_CODE (context)) == 't')
4803 context = TYPE_CONTEXT (context);
4804 else if (TREE_CODE_CLASS (TREE_CODE (context)) == 'd')
4805 context = DECL_CONTEXT (context);
4806 else if (TREE_CODE (context) == BLOCK)
4807 context = BLOCK_SUPERCONTEXT (context);
4808 else
4809 /* Unhandled CONTEXT !? */
4810 abort ();
4811 }
4812
4813 return context;
4814 }
4815
4816 /* Return the innermost context enclosing DECL that is
4817 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4818 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4819
4820 tree
4821 decl_type_context (decl)
4822 tree decl;
4823 {
4824 tree context = DECL_CONTEXT (decl);
4825
4826 while (context)
4827 {
4828 if (TREE_CODE (context) == RECORD_TYPE
4829 || TREE_CODE (context) == UNION_TYPE
4830 || TREE_CODE (context) == QUAL_UNION_TYPE)
4831 return context;
4832 if (TREE_CODE (context) == TYPE_DECL
4833 || TREE_CODE (context) == FUNCTION_DECL)
4834 context = DECL_CONTEXT (context);
4835 else if (TREE_CODE (context) == BLOCK)
4836 context = BLOCK_SUPERCONTEXT (context);
4837 else
4838 /* Unhandled CONTEXT!? */
4839 abort ();
4840 }
4841 return NULL_TREE;
4842 }
4843
4844 /* Print debugging information about the obstack O, named STR. */
4845
4846 void
4847 print_obstack_statistics (str, o)
4848 const char *str;
4849 struct obstack *o;
4850 {
4851 struct _obstack_chunk *chunk = o->chunk;
4852 int n_chunks = 1;
4853 int n_alloc = 0;
4854
4855 n_alloc += o->next_free - chunk->contents;
4856 chunk = chunk->prev;
4857 while (chunk)
4858 {
4859 n_chunks += 1;
4860 n_alloc += chunk->limit - &chunk->contents[0];
4861 chunk = chunk->prev;
4862 }
4863 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4864 str, n_alloc, n_chunks);
4865 }
4866
4867 /* Print debugging information about tree nodes generated during the compile,
4868 and any language-specific information. */
4869
4870 void
4871 dump_tree_statistics ()
4872 {
4873 #ifdef GATHER_STATISTICS
4874 int i;
4875 int total_nodes, total_bytes;
4876 #endif
4877
4878 fprintf (stderr, "\n??? tree nodes created\n\n");
4879 #ifdef GATHER_STATISTICS
4880 fprintf (stderr, "Kind Nodes Bytes\n");
4881 fprintf (stderr, "-------------------------------------\n");
4882 total_nodes = total_bytes = 0;
4883 for (i = 0; i < (int) all_kinds; i++)
4884 {
4885 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4886 tree_node_counts[i], tree_node_sizes[i]);
4887 total_nodes += tree_node_counts[i];
4888 total_bytes += tree_node_sizes[i];
4889 }
4890 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4891 fprintf (stderr, "-------------------------------------\n");
4892 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4893 fprintf (stderr, "-------------------------------------\n");
4894 #else
4895 fprintf (stderr, "(No per-node statistics)\n");
4896 #endif
4897 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4898 print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
4899 print_obstack_statistics ("temporary_obstack", &temporary_obstack);
4900 print_obstack_statistics ("momentary_obstack", &momentary_obstack);
4901 print_obstack_statistics ("temp_decl_obstack", &temp_decl_obstack);
4902 print_lang_statistics ();
4903 }
4904 \f
4905 #define FILE_FUNCTION_PREFIX_LEN 9
4906
4907 #ifndef NO_DOLLAR_IN_LABEL
4908 #define FILE_FUNCTION_FORMAT "_GLOBAL_$%s$%s"
4909 #else /* NO_DOLLAR_IN_LABEL */
4910 #ifndef NO_DOT_IN_LABEL
4911 #define FILE_FUNCTION_FORMAT "_GLOBAL_.%s.%s"
4912 #else /* NO_DOT_IN_LABEL */
4913 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4914 #endif /* NO_DOT_IN_LABEL */
4915 #endif /* NO_DOLLAR_IN_LABEL */
4916
4917 extern char * first_global_object_name;
4918 extern char * weak_global_object_name;
4919
4920 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4921 clashes in cases where we can't reliably choose a unique name.
4922
4923 Derived from mkstemp.c in libiberty. */
4924
4925 static void
4926 append_random_chars (template)
4927 char *template;
4928 {
4929 static const char letters[]
4930 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4931 static unsigned HOST_WIDE_INT value;
4932 unsigned HOST_WIDE_INT v;
4933
4934 #ifdef HAVE_GETTIMEOFDAY
4935 struct timeval tv;
4936 #endif
4937
4938 template += strlen (template);
4939
4940 #ifdef HAVE_GETTIMEOFDAY
4941 /* Get some more or less random data. */
4942 gettimeofday (&tv, NULL);
4943 value += ((unsigned HOST_WIDE_INT) tv.tv_usec << 16) ^ tv.tv_sec ^ getpid ();
4944 #else
4945 value += getpid ();
4946 #endif
4947
4948 v = value;
4949
4950 /* Fill in the random bits. */
4951 template[0] = letters[v % 62];
4952 v /= 62;
4953 template[1] = letters[v % 62];
4954 v /= 62;
4955 template[2] = letters[v % 62];
4956 v /= 62;
4957 template[3] = letters[v % 62];
4958 v /= 62;
4959 template[4] = letters[v % 62];
4960 v /= 62;
4961 template[5] = letters[v % 62];
4962
4963 template[6] = '\0';
4964 }
4965
4966 /* Generate a name for a function unique to this translation unit.
4967 TYPE is some string to identify the purpose of this function to the
4968 linker or collect2. */
4969
4970 tree
4971 get_file_function_name_long (type)
4972 const char *type;
4973 {
4974 char *buf;
4975 register char *p;
4976
4977 if (first_global_object_name)
4978 p = first_global_object_name;
4979 else
4980 {
4981 /* We don't have anything that we know to be unique to this translation
4982 unit, so use what we do have and throw in some randomness. */
4983
4984 const char *name = weak_global_object_name;
4985 const char *file = main_input_filename;
4986
4987 if (! name)
4988 name = "";
4989 if (! file)
4990 file = input_filename;
4991
4992 p = (char *) alloca (7 + strlen (name) + strlen (file));
4993
4994 sprintf (p, "%s%s", name, file);
4995 append_random_chars (p);
4996 }
4997
4998 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4999 + strlen (type));
5000
5001 /* Set up the name of the file-level functions we may need. */
5002 /* Use a global object (which is already required to be unique over
5003 the program) rather than the file name (which imposes extra
5004 constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
5005 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5006
5007 /* Don't need to pull weird characters out of global names. */
5008 if (p != first_global_object_name)
5009 {
5010 for (p = buf+11; *p; p++)
5011 if (! ( ISDIGIT(*p)
5012 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
5013 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
5014 || *p == '.'
5015 #endif
5016 #endif
5017 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5018 || *p == '$'
5019 #endif
5020 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5021 || *p == '.'
5022 #endif
5023 || ISUPPER(*p)
5024 || ISLOWER(*p)))
5025 *p = '_';
5026 }
5027
5028 return get_identifier (buf);
5029 }
5030
5031 /* If KIND=='I', return a suitable global initializer (constructor) name.
5032 If KIND=='D', return a suitable global clean-up (destructor) name. */
5033
5034 tree
5035 get_file_function_name (kind)
5036 int kind;
5037 {
5038 char p[2];
5039 p[0] = kind;
5040 p[1] = 0;
5041
5042 return get_file_function_name_long (p);
5043 }
5044
5045 \f
5046 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5047 The result is placed in BUFFER (which has length BIT_SIZE),
5048 with one bit in each char ('\000' or '\001').
5049
5050 If the constructor is constant, NULL_TREE is returned.
5051 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5052
5053 tree
5054 get_set_constructor_bits (init, buffer, bit_size)
5055 tree init;
5056 char *buffer;
5057 int bit_size;
5058 {
5059 int i;
5060 tree vals;
5061 HOST_WIDE_INT domain_min
5062 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
5063 tree non_const_bits = NULL_TREE;
5064 for (i = 0; i < bit_size; i++)
5065 buffer[i] = 0;
5066
5067 for (vals = TREE_OPERAND (init, 1);
5068 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5069 {
5070 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
5071 || (TREE_PURPOSE (vals) != NULL_TREE
5072 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
5073 non_const_bits
5074 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5075 else if (TREE_PURPOSE (vals) != NULL_TREE)
5076 {
5077 /* Set a range of bits to ones. */
5078 HOST_WIDE_INT lo_index
5079 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
5080 HOST_WIDE_INT hi_index
5081 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
5082 if (lo_index < 0 || lo_index >= bit_size
5083 || hi_index < 0 || hi_index >= bit_size)
5084 abort ();
5085 for ( ; lo_index <= hi_index; lo_index++)
5086 buffer[lo_index] = 1;
5087 }
5088 else
5089 {
5090 /* Set a single bit to one. */
5091 HOST_WIDE_INT index
5092 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
5093 if (index < 0 || index >= bit_size)
5094 {
5095 error ("invalid initializer for bit string");
5096 return NULL_TREE;
5097 }
5098 buffer[index] = 1;
5099 }
5100 }
5101 return non_const_bits;
5102 }
5103
5104 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5105 The result is placed in BUFFER (which is an array of bytes).
5106 If the constructor is constant, NULL_TREE is returned.
5107 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5108
5109 tree
5110 get_set_constructor_bytes (init, buffer, wd_size)
5111 tree init;
5112 unsigned char *buffer;
5113 int wd_size;
5114 {
5115 int i;
5116 int set_word_size = BITS_PER_UNIT;
5117 int bit_size = wd_size * set_word_size;
5118 int bit_pos = 0;
5119 unsigned char *bytep = buffer;
5120 char *bit_buffer = (char *) alloca(bit_size);
5121 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5122
5123 for (i = 0; i < wd_size; i++)
5124 buffer[i] = 0;
5125
5126 for (i = 0; i < bit_size; i++)
5127 {
5128 if (bit_buffer[i])
5129 {
5130 if (BYTES_BIG_ENDIAN)
5131 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5132 else
5133 *bytep |= 1 << bit_pos;
5134 }
5135 bit_pos++;
5136 if (bit_pos >= set_word_size)
5137 bit_pos = 0, bytep++;
5138 }
5139 return non_const_bits;
5140 }
5141 \f
5142 #if defined ENABLE_CHECKING && HAVE_GCC_VERSION(2,7)
5143 /* Complain that the tree code of NODE does not match the expected CODE.
5144 FILE, LINE, and FUNCTION are of the caller. */
5145 void
5146 tree_check_failed (node, code, file, line, function)
5147 const tree node;
5148 enum tree_code code;
5149 const char *file;
5150 int line;
5151 const char *function;
5152 {
5153 error ("Tree check: expected %s, have %s",
5154 tree_code_name[code], tree_code_name[TREE_CODE (node)]);
5155 fancy_abort (file, line, function);
5156 }
5157
5158 /* Similar to above, except that we check for a class of tree
5159 code, given in CL. */
5160 void
5161 tree_class_check_failed (node, cl, file, line, function)
5162 const tree node;
5163 char cl;
5164 const char *file;
5165 int line;
5166 const char *function;
5167 {
5168 error ("Tree check: expected class '%c', have '%c' (%s)",
5169 cl, TREE_CODE_CLASS (TREE_CODE (node)),
5170 tree_code_name[TREE_CODE (node)]);
5171 fancy_abort (file, line, function);
5172 }
5173
5174 #endif /* ENABLE_CHECKING */
5175
5176 /* Return the alias set for T, which may be either a type or an
5177 expression. */
5178
5179 int
5180 get_alias_set (t)
5181 tree t;
5182 {
5183 if (!flag_strict_aliasing || !lang_get_alias_set)
5184 /* If we're not doing any lanaguage-specific alias analysis, just
5185 assume everything aliases everything else. */
5186 return 0;
5187 else
5188 return (*lang_get_alias_set) (t);
5189 }
5190
5191 /* Return a brand-new alias set. */
5192
5193 int
5194 new_alias_set ()
5195 {
5196 static int last_alias_set;
5197 if (flag_strict_aliasing)
5198 return ++last_alias_set;
5199 else
5200 return 0;
5201 }
5202 \f
5203 #ifndef CHAR_TYPE_SIZE
5204 #define CHAR_TYPE_SIZE BITS_PER_UNIT
5205 #endif
5206
5207 #ifndef SHORT_TYPE_SIZE
5208 #define SHORT_TYPE_SIZE (BITS_PER_UNIT * MIN ((UNITS_PER_WORD + 1) / 2, 2))
5209 #endif
5210
5211 #ifndef INT_TYPE_SIZE
5212 #define INT_TYPE_SIZE BITS_PER_WORD
5213 #endif
5214
5215 #ifndef LONG_TYPE_SIZE
5216 #define LONG_TYPE_SIZE BITS_PER_WORD
5217 #endif
5218
5219 #ifndef LONG_LONG_TYPE_SIZE
5220 #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
5221 #endif
5222
5223 #ifndef FLOAT_TYPE_SIZE
5224 #define FLOAT_TYPE_SIZE BITS_PER_WORD
5225 #endif
5226
5227 #ifndef DOUBLE_TYPE_SIZE
5228 #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
5229 #endif
5230
5231 #ifndef LONG_DOUBLE_TYPE_SIZE
5232 #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
5233 #endif
5234
5235 /* Create nodes for all integer types (and error_mark_node) using the sizes
5236 of C datatypes. The caller should call set_sizetype soon after calling
5237 this function to select one of the types as sizetype. */
5238
5239 void
5240 build_common_tree_nodes (signed_char)
5241 int signed_char;
5242 {
5243 error_mark_node = make_node (ERROR_MARK);
5244 TREE_TYPE (error_mark_node) = error_mark_node;
5245
5246 /* Define both `signed char' and `unsigned char'. */
5247 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5248 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5249
5250 /* Define `char', which is like either `signed char' or `unsigned char'
5251 but not the same as either. */
5252 char_type_node
5253 = (signed_char
5254 ? make_signed_type (CHAR_TYPE_SIZE)
5255 : make_unsigned_type (CHAR_TYPE_SIZE));
5256
5257 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5258 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5259 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5260 /* Define an unsigned integer first. make_unsigned_type and make_signed_type
5261 both call set_sizetype for the first type that we create, and we want this
5262 to be large enough to hold the sizes of various types until we switch to
5263 the real sizetype. */
5264 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5265 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5266 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5267 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5268 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5269
5270 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
5271 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
5272 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
5273 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
5274 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
5275
5276 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
5277 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
5278 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
5279 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
5280 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
5281 }
5282
5283 /* For type TYPE, fill in the proper type for TYPE_SIZE and
5284 TYPE_SIZE_UNIT. */
5285 static void
5286 fix_sizetype (type)
5287 tree type;
5288 {
5289 TREE_TYPE (TYPE_SIZE (type)) = bitsizetype;
5290 TREE_TYPE (TYPE_SIZE_UNIT (type)) = sizetype;
5291 }
5292
5293 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5294 It will fix the previously made nodes to have proper references to
5295 sizetype, and it will create several other common tree nodes. */
5296 void
5297 build_common_tree_nodes_2 (short_double)
5298 int short_double;
5299 {
5300 fix_sizetype (signed_char_type_node);
5301 fix_sizetype (unsigned_char_type_node);
5302 fix_sizetype (char_type_node);
5303 fix_sizetype (short_integer_type_node);
5304 fix_sizetype (short_unsigned_type_node);
5305 fix_sizetype (integer_type_node);
5306 fix_sizetype (unsigned_type_node);
5307 fix_sizetype (long_unsigned_type_node);
5308 fix_sizetype (long_integer_type_node);
5309 fix_sizetype (long_long_integer_type_node);
5310 fix_sizetype (long_long_unsigned_type_node);
5311
5312 fix_sizetype (intQI_type_node);
5313 fix_sizetype (intHI_type_node);
5314 fix_sizetype (intSI_type_node);
5315 fix_sizetype (intDI_type_node);
5316 fix_sizetype (intTI_type_node);
5317 fix_sizetype (unsigned_intQI_type_node);
5318 fix_sizetype (unsigned_intHI_type_node);
5319 fix_sizetype (unsigned_intSI_type_node);
5320 fix_sizetype (unsigned_intDI_type_node);
5321 fix_sizetype (unsigned_intTI_type_node);
5322
5323 integer_zero_node = build_int_2 (0, 0);
5324 TREE_TYPE (integer_zero_node) = integer_type_node;
5325 integer_one_node = build_int_2 (1, 0);
5326 TREE_TYPE (integer_one_node) = integer_type_node;
5327
5328 size_zero_node = build_int_2 (0, 0);
5329 TREE_TYPE (size_zero_node) = sizetype;
5330 size_one_node = build_int_2 (1, 0);
5331 TREE_TYPE (size_one_node) = sizetype;
5332
5333 void_type_node = make_node (VOID_TYPE);
5334 layout_type (void_type_node); /* Uses size_zero_node */
5335 /* We are not going to have real types in C with less than byte alignment,
5336 so we might as well not have any types that claim to have it. */
5337 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5338
5339 null_pointer_node = build_int_2 (0, 0);
5340 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
5341 layout_type (TREE_TYPE (null_pointer_node));
5342
5343 ptr_type_node = build_pointer_type (void_type_node);
5344 const_ptr_type_node
5345 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5346
5347 float_type_node = make_node (REAL_TYPE);
5348 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5349 layout_type (float_type_node);
5350
5351 double_type_node = make_node (REAL_TYPE);
5352 if (short_double)
5353 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5354 else
5355 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5356 layout_type (double_type_node);
5357
5358 long_double_type_node = make_node (REAL_TYPE);
5359 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5360 layout_type (long_double_type_node);
5361
5362 complex_integer_type_node = make_node (COMPLEX_TYPE);
5363 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5364 layout_type (complex_integer_type_node);
5365
5366 complex_float_type_node = make_node (COMPLEX_TYPE);
5367 TREE_TYPE (complex_float_type_node) = float_type_node;
5368 layout_type (complex_float_type_node);
5369
5370 complex_double_type_node = make_node (COMPLEX_TYPE);
5371 TREE_TYPE (complex_double_type_node) = double_type_node;
5372 layout_type (complex_double_type_node);
5373
5374 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5375 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5376 layout_type (complex_long_double_type_node);
5377
5378 #ifdef BUILD_VA_LIST_TYPE
5379 BUILD_VA_LIST_TYPE(va_list_type_node);
5380 #else
5381 va_list_type_node = ptr_type_node;
5382 #endif
5383 }