system.h (USE_MAPPED_LOCATION): Poison.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "fixed-value.h"
54
55 /* Each tree code class has an associated string representation.
56 These must correspond to the tree_code_class entries. */
57
58 const char *const tree_code_class_strings[] =
59 {
60 "exceptional",
61 "constant",
62 "type",
63 "declaration",
64 "reference",
65 "comparison",
66 "unary",
67 "binary",
68 "statement",
69 "vl_exp",
70 "expression",
71 "gimple_stmt"
72 };
73
74 /* obstack.[ch] explicitly declined to prototype this. */
75 extern int _obstack_allocated_p (struct obstack *h, void *obj);
76
77 #ifdef GATHER_STATISTICS
78 /* Statistics-gathering stuff. */
79
80 int tree_node_counts[(int) all_kinds];
81 int tree_node_sizes[(int) all_kinds];
82
83 /* Keep in sync with tree.h:enum tree_node_kind. */
84 static const char * const tree_node_kind_names[] = {
85 "decls",
86 "types",
87 "blocks",
88 "stmts",
89 "refs",
90 "exprs",
91 "constants",
92 "identifiers",
93 "perm_tree_lists",
94 "temp_tree_lists",
95 "vecs",
96 "binfos",
97 "phi_nodes",
98 "ssa names",
99 "constructors",
100 "random kinds",
101 "lang_decl kinds",
102 "lang_type kinds",
103 "omp clauses",
104 "gimple statements"
105 };
106 #endif /* GATHER_STATISTICS */
107
108 /* Unique id for next decl created. */
109 static GTY(()) int next_decl_uid;
110 /* Unique id for next type created. */
111 static GTY(()) int next_type_uid = 1;
112
113 /* Mapping from unique DECL_UID to the decl tree node. */
114 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
115 htab_t decl_for_uid_map;
116
117 static void insert_decl_to_uid_decl_map (tree);
118
119 /* Since we cannot rehash a type after it is in the table, we have to
120 keep the hash code. */
121
122 struct type_hash GTY(())
123 {
124 unsigned long hash;
125 tree type;
126 };
127
128 /* Initial size of the hash table (rounded to next prime). */
129 #define TYPE_HASH_INITIAL_SIZE 1000
130
131 /* Now here is the hash table. When recording a type, it is added to
132 the slot whose index is the hash code. Note that the hash table is
133 used for several kinds of types (function types, array types and
134 array index range types, for now). While all these live in the
135 same table, they are completely independent, and the hash code is
136 computed differently for each of these. */
137
138 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
139 htab_t type_hash_table;
140
141 /* Hash table and temporary node for larger integer const values. */
142 static GTY (()) tree int_cst_node;
143 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
144 htab_t int_cst_hash_table;
145
146 /* General tree->tree mapping structure for use in hash tables. */
147
148
149 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
150 htab_t debug_expr_for_decl;
151
152 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
153 htab_t value_expr_for_decl;
154
155 static GTY ((if_marked ("tree_priority_map_marked_p"),
156 param_is (struct tree_priority_map)))
157 htab_t init_priority_for_decl;
158
159 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
160 htab_t restrict_base_for_decl;
161
162 static void set_type_quals (tree, int);
163 static int type_hash_eq (const void *, const void *);
164 static hashval_t type_hash_hash (const void *);
165 static hashval_t int_cst_hash_hash (const void *);
166 static int int_cst_hash_eq (const void *, const void *);
167 static void print_type_hash_statistics (void);
168 static void print_debug_expr_statistics (void);
169 static void print_value_expr_statistics (void);
170 static int type_hash_marked_p (const void *);
171 static unsigned int type_hash_list (const_tree, hashval_t);
172 static unsigned int attribute_hash_list (const_tree, hashval_t);
173
174 tree global_trees[TI_MAX];
175 tree integer_types[itk_none];
176
177 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
178
179 /* Number of operands for each OpenMP clause. */
180 unsigned const char omp_clause_num_ops[] =
181 {
182 0, /* OMP_CLAUSE_ERROR */
183 1, /* OMP_CLAUSE_PRIVATE */
184 1, /* OMP_CLAUSE_SHARED */
185 1, /* OMP_CLAUSE_FIRSTPRIVATE */
186 1, /* OMP_CLAUSE_LASTPRIVATE */
187 4, /* OMP_CLAUSE_REDUCTION */
188 1, /* OMP_CLAUSE_COPYIN */
189 1, /* OMP_CLAUSE_COPYPRIVATE */
190 1, /* OMP_CLAUSE_IF */
191 1, /* OMP_CLAUSE_NUM_THREADS */
192 1, /* OMP_CLAUSE_SCHEDULE */
193 0, /* OMP_CLAUSE_NOWAIT */
194 0, /* OMP_CLAUSE_ORDERED */
195 0 /* OMP_CLAUSE_DEFAULT */
196 };
197
198 const char * const omp_clause_code_name[] =
199 {
200 "error_clause",
201 "private",
202 "shared",
203 "firstprivate",
204 "lastprivate",
205 "reduction",
206 "copyin",
207 "copyprivate",
208 "if",
209 "num_threads",
210 "schedule",
211 "nowait",
212 "ordered",
213 "default"
214 };
215 \f
216 /* Init tree.c. */
217
218 void
219 init_ttree (void)
220 {
221 /* Initialize the hash table of types. */
222 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
223 type_hash_eq, 0);
224
225 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
226 tree_map_eq, 0);
227
228 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
229 tree_map_eq, 0);
230 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
231 tree_priority_map_eq, 0);
232 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
233 tree_map_eq, 0);
234
235 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
236 int_cst_hash_eq, NULL);
237
238 int_cst_node = make_node (INTEGER_CST);
239
240 decl_for_uid_map = htab_create_ggc (4093, uid_decl_map_hash,
241 uid_decl_map_eq, NULL);
242
243 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
244 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
245 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
246
247
248 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
249 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
250 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
251 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
252 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
253 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
254 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
255 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
256 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
257
258
259 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
260 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
261 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
262 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
263 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
264 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
265
266 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
267 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
268 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
269 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
270 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
271 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
272 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
273 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
274 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
275 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
276 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
277 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
278 tree_contains_struct[MEMORY_PARTITION_TAG][TS_DECL_MINIMAL] = 1;
279
280 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
281 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
282 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
283 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_TAG] = 1;
284
285 tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
286 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_PARTITION_TAG] = 1;
287
288 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
289 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
290 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
291 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
292
293 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
294 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
295 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
296 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
297 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
298 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
299 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
300 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
301
302 lang_hooks.init_ts ();
303 }
304
305 \f
306 /* The name of the object as the assembler will see it (but before any
307 translations made by ASM_OUTPUT_LABELREF). Often this is the same
308 as DECL_NAME. It is an IDENTIFIER_NODE. */
309 tree
310 decl_assembler_name (tree decl)
311 {
312 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
313 lang_hooks.set_decl_assembler_name (decl);
314 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
315 }
316
317 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
318
319 bool
320 decl_assembler_name_equal (tree decl, tree asmname)
321 {
322 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
323
324 if (decl_asmname == asmname)
325 return true;
326
327 /* If the target assembler name was set by the user, things are trickier.
328 We have a leading '*' to begin with. After that, it's arguable what
329 is the correct thing to do with -fleading-underscore. Arguably, we've
330 historically been doing the wrong thing in assemble_alias by always
331 printing the leading underscore. Since we're not changing that, make
332 sure user_label_prefix follows the '*' before matching. */
333 if (IDENTIFIER_POINTER (decl_asmname)[0] == '*')
334 {
335 const char *decl_str = IDENTIFIER_POINTER (decl_asmname) + 1;
336 size_t ulp_len = strlen (user_label_prefix);
337
338 if (ulp_len == 0)
339 ;
340 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
341 decl_str += ulp_len;
342 else
343 return false;
344
345 return strcmp (decl_str, IDENTIFIER_POINTER (asmname)) == 0;
346 }
347
348 return false;
349 }
350
351 /* Compute the number of bytes occupied by a tree with code CODE.
352 This function cannot be used for nodes that have variable sizes,
353 including TREE_VEC, PHI_NODE, STRING_CST, and CALL_EXPR. */
354 size_t
355 tree_code_size (enum tree_code code)
356 {
357 switch (TREE_CODE_CLASS (code))
358 {
359 case tcc_declaration: /* A decl node */
360 {
361 switch (code)
362 {
363 case FIELD_DECL:
364 return sizeof (struct tree_field_decl);
365 case PARM_DECL:
366 return sizeof (struct tree_parm_decl);
367 case VAR_DECL:
368 return sizeof (struct tree_var_decl);
369 case LABEL_DECL:
370 return sizeof (struct tree_label_decl);
371 case RESULT_DECL:
372 return sizeof (struct tree_result_decl);
373 case CONST_DECL:
374 return sizeof (struct tree_const_decl);
375 case TYPE_DECL:
376 return sizeof (struct tree_type_decl);
377 case FUNCTION_DECL:
378 return sizeof (struct tree_function_decl);
379 case NAME_MEMORY_TAG:
380 case SYMBOL_MEMORY_TAG:
381 return sizeof (struct tree_memory_tag);
382 case STRUCT_FIELD_TAG:
383 return sizeof (struct tree_struct_field_tag);
384 case MEMORY_PARTITION_TAG:
385 return sizeof (struct tree_memory_partition_tag);
386 default:
387 return sizeof (struct tree_decl_non_common);
388 }
389 }
390
391 case tcc_type: /* a type node */
392 return sizeof (struct tree_type);
393
394 case tcc_reference: /* a reference */
395 case tcc_expression: /* an expression */
396 case tcc_statement: /* an expression with side effects */
397 case tcc_comparison: /* a comparison expression */
398 case tcc_unary: /* a unary arithmetic expression */
399 case tcc_binary: /* a binary arithmetic expression */
400 return (sizeof (struct tree_exp)
401 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
402
403 case tcc_gimple_stmt:
404 return (sizeof (struct gimple_stmt)
405 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
406
407 case tcc_constant: /* a constant */
408 switch (code)
409 {
410 case INTEGER_CST: return sizeof (struct tree_int_cst);
411 case REAL_CST: return sizeof (struct tree_real_cst);
412 case FIXED_CST: return sizeof (struct tree_fixed_cst);
413 case COMPLEX_CST: return sizeof (struct tree_complex);
414 case VECTOR_CST: return sizeof (struct tree_vector);
415 case STRING_CST: gcc_unreachable ();
416 default:
417 return lang_hooks.tree_size (code);
418 }
419
420 case tcc_exceptional: /* something random, like an identifier. */
421 switch (code)
422 {
423 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
424 case TREE_LIST: return sizeof (struct tree_list);
425
426 case ERROR_MARK:
427 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
428
429 case TREE_VEC:
430 case OMP_CLAUSE:
431 case PHI_NODE: gcc_unreachable ();
432
433 case SSA_NAME: return sizeof (struct tree_ssa_name);
434
435 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
436 case BLOCK: return sizeof (struct tree_block);
437 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
438 case CONSTRUCTOR: return sizeof (struct tree_constructor);
439
440 default:
441 return lang_hooks.tree_size (code);
442 }
443
444 default:
445 gcc_unreachable ();
446 }
447 }
448
449 /* Compute the number of bytes occupied by NODE. This routine only
450 looks at TREE_CODE, except for those nodes that have variable sizes. */
451 size_t
452 tree_size (const_tree node)
453 {
454 const enum tree_code code = TREE_CODE (node);
455 switch (code)
456 {
457 case PHI_NODE:
458 return (sizeof (struct tree_phi_node)
459 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
460
461 case TREE_BINFO:
462 return (offsetof (struct tree_binfo, base_binfos)
463 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
464
465 case TREE_VEC:
466 return (sizeof (struct tree_vec)
467 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
468
469 case STRING_CST:
470 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
471
472 case OMP_CLAUSE:
473 return (sizeof (struct tree_omp_clause)
474 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
475 * sizeof (tree));
476
477 default:
478 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
479 return (sizeof (struct tree_exp)
480 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
481 else
482 return tree_code_size (code);
483 }
484 }
485
486 /* Return a newly allocated node of code CODE. For decl and type
487 nodes, some other fields are initialized. The rest of the node is
488 initialized to zero. This function cannot be used for PHI_NODE,
489 TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
490 tree_code_size.
491
492 Achoo! I got a code in the node. */
493
494 tree
495 make_node_stat (enum tree_code code MEM_STAT_DECL)
496 {
497 tree t;
498 enum tree_code_class type = TREE_CODE_CLASS (code);
499 size_t length = tree_code_size (code);
500 #ifdef GATHER_STATISTICS
501 tree_node_kind kind;
502
503 switch (type)
504 {
505 case tcc_declaration: /* A decl node */
506 kind = d_kind;
507 break;
508
509 case tcc_type: /* a type node */
510 kind = t_kind;
511 break;
512
513 case tcc_statement: /* an expression with side effects */
514 kind = s_kind;
515 break;
516
517 case tcc_reference: /* a reference */
518 kind = r_kind;
519 break;
520
521 case tcc_expression: /* an expression */
522 case tcc_comparison: /* a comparison expression */
523 case tcc_unary: /* a unary arithmetic expression */
524 case tcc_binary: /* a binary arithmetic expression */
525 kind = e_kind;
526 break;
527
528 case tcc_constant: /* a constant */
529 kind = c_kind;
530 break;
531
532 case tcc_gimple_stmt:
533 kind = gimple_stmt_kind;
534 break;
535
536 case tcc_exceptional: /* something random, like an identifier. */
537 switch (code)
538 {
539 case IDENTIFIER_NODE:
540 kind = id_kind;
541 break;
542
543 case TREE_VEC:
544 kind = vec_kind;
545 break;
546
547 case TREE_BINFO:
548 kind = binfo_kind;
549 break;
550
551 case PHI_NODE:
552 kind = phi_kind;
553 break;
554
555 case SSA_NAME:
556 kind = ssa_name_kind;
557 break;
558
559 case BLOCK:
560 kind = b_kind;
561 break;
562
563 case CONSTRUCTOR:
564 kind = constr_kind;
565 break;
566
567 default:
568 kind = x_kind;
569 break;
570 }
571 break;
572
573 default:
574 gcc_unreachable ();
575 }
576
577 tree_node_counts[(int) kind]++;
578 tree_node_sizes[(int) kind] += length;
579 #endif
580
581 if (code == IDENTIFIER_NODE)
582 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
583 else
584 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
585
586 memset (t, 0, length);
587
588 TREE_SET_CODE (t, code);
589
590 switch (type)
591 {
592 case tcc_statement:
593 TREE_SIDE_EFFECTS (t) = 1;
594 break;
595
596 case tcc_declaration:
597 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
598 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
599 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
600 {
601 if (code == FUNCTION_DECL)
602 {
603 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
604 DECL_MODE (t) = FUNCTION_MODE;
605 }
606 else
607 DECL_ALIGN (t) = 1;
608 /* We have not yet computed the alias set for this declaration. */
609 DECL_POINTER_ALIAS_SET (t) = -1;
610 }
611 DECL_SOURCE_LOCATION (t) = input_location;
612 DECL_UID (t) = next_decl_uid++;
613 insert_decl_to_uid_decl_map (t);
614
615 break;
616
617 case tcc_type:
618 TYPE_UID (t) = next_type_uid++;
619 TYPE_ALIGN (t) = BITS_PER_UNIT;
620 TYPE_USER_ALIGN (t) = 0;
621 TYPE_MAIN_VARIANT (t) = t;
622 TYPE_CANONICAL (t) = t;
623
624 /* Default to no attributes for type, but let target change that. */
625 TYPE_ATTRIBUTES (t) = NULL_TREE;
626 targetm.set_default_type_attributes (t);
627
628 /* We have not yet computed the alias set for this type. */
629 TYPE_ALIAS_SET (t) = -1;
630 break;
631
632 case tcc_constant:
633 TREE_CONSTANT (t) = 1;
634 TREE_INVARIANT (t) = 1;
635 break;
636
637 case tcc_expression:
638 switch (code)
639 {
640 case INIT_EXPR:
641 case MODIFY_EXPR:
642 case VA_ARG_EXPR:
643 case PREDECREMENT_EXPR:
644 case PREINCREMENT_EXPR:
645 case POSTDECREMENT_EXPR:
646 case POSTINCREMENT_EXPR:
647 /* All of these have side-effects, no matter what their
648 operands are. */
649 TREE_SIDE_EFFECTS (t) = 1;
650 break;
651
652 default:
653 break;
654 }
655 break;
656
657 case tcc_gimple_stmt:
658 switch (code)
659 {
660 case GIMPLE_MODIFY_STMT:
661 TREE_SIDE_EFFECTS (t) = 1;
662 break;
663
664 default:
665 break;
666 }
667
668 default:
669 /* Other classes need no special treatment. */
670 break;
671 }
672
673 return t;
674 }
675 \f
676 /* Return a new node with the same contents as NODE except that its
677 TREE_CHAIN is zero and it has a fresh uid. */
678
679 tree
680 copy_node_stat (tree node MEM_STAT_DECL)
681 {
682 tree t;
683 enum tree_code code = TREE_CODE (node);
684 size_t length;
685
686 gcc_assert (code != STATEMENT_LIST);
687
688 length = tree_size (node);
689 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
690 memcpy (t, node, length);
691
692 if (!GIMPLE_TUPLE_P (node))
693 TREE_CHAIN (t) = 0;
694 TREE_ASM_WRITTEN (t) = 0;
695 TREE_VISITED (t) = 0;
696 t->base.ann = 0;
697
698 if (TREE_CODE_CLASS (code) == tcc_declaration)
699 {
700 DECL_UID (t) = next_decl_uid++;
701 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
702 && DECL_HAS_VALUE_EXPR_P (node))
703 {
704 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
705 DECL_HAS_VALUE_EXPR_P (t) = 1;
706 }
707 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
708 {
709 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
710 DECL_HAS_INIT_PRIORITY_P (t) = 1;
711 }
712 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
713 {
714 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
715 DECL_BASED_ON_RESTRICT_P (t) = 1;
716 }
717 insert_decl_to_uid_decl_map (t);
718 }
719 else if (TREE_CODE_CLASS (code) == tcc_type)
720 {
721 TYPE_UID (t) = next_type_uid++;
722 /* The following is so that the debug code for
723 the copy is different from the original type.
724 The two statements usually duplicate each other
725 (because they clear fields of the same union),
726 but the optimizer should catch that. */
727 TYPE_SYMTAB_POINTER (t) = 0;
728 TYPE_SYMTAB_ADDRESS (t) = 0;
729
730 /* Do not copy the values cache. */
731 if (TYPE_CACHED_VALUES_P(t))
732 {
733 TYPE_CACHED_VALUES_P (t) = 0;
734 TYPE_CACHED_VALUES (t) = NULL_TREE;
735 }
736 }
737
738 return t;
739 }
740
741 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
742 For example, this can copy a list made of TREE_LIST nodes. */
743
744 tree
745 copy_list (tree list)
746 {
747 tree head;
748 tree prev, next;
749
750 if (list == 0)
751 return 0;
752
753 head = prev = copy_node (list);
754 next = TREE_CHAIN (list);
755 while (next)
756 {
757 TREE_CHAIN (prev) = copy_node (next);
758 prev = TREE_CHAIN (prev);
759 next = TREE_CHAIN (next);
760 }
761 return head;
762 }
763
764 \f
765 /* Create an INT_CST node with a LOW value sign extended. */
766
767 tree
768 build_int_cst (tree type, HOST_WIDE_INT low)
769 {
770 /* Support legacy code. */
771 if (!type)
772 type = integer_type_node;
773
774 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
775 }
776
777 /* Create an INT_CST node with a LOW value zero extended. */
778
779 tree
780 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
781 {
782 return build_int_cst_wide (type, low, 0);
783 }
784
785 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
786 if it is negative. This function is similar to build_int_cst, but
787 the extra bits outside of the type precision are cleared. Constants
788 with these extra bits may confuse the fold so that it detects overflows
789 even in cases when they do not occur, and in general should be avoided.
790 We cannot however make this a default behavior of build_int_cst without
791 more intrusive changes, since there are parts of gcc that rely on the extra
792 precision of the integer constants. */
793
794 tree
795 build_int_cst_type (tree type, HOST_WIDE_INT low)
796 {
797 unsigned HOST_WIDE_INT low1;
798 HOST_WIDE_INT hi;
799
800 gcc_assert (type);
801
802 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
803
804 return build_int_cst_wide (type, low1, hi);
805 }
806
807 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
808 and sign extended according to the value range of TYPE. */
809
810 tree
811 build_int_cst_wide_type (tree type,
812 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
813 {
814 fit_double_type (low, high, &low, &high, type);
815 return build_int_cst_wide (type, low, high);
816 }
817
818 /* These are the hash table functions for the hash table of INTEGER_CST
819 nodes of a sizetype. */
820
821 /* Return the hash code code X, an INTEGER_CST. */
822
823 static hashval_t
824 int_cst_hash_hash (const void *x)
825 {
826 const_tree const t = (const_tree) x;
827
828 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
829 ^ htab_hash_pointer (TREE_TYPE (t)));
830 }
831
832 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
833 is the same as that given by *Y, which is the same. */
834
835 static int
836 int_cst_hash_eq (const void *x, const void *y)
837 {
838 const_tree const xt = (const_tree) x;
839 const_tree const yt = (const_tree) y;
840
841 return (TREE_TYPE (xt) == TREE_TYPE (yt)
842 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
843 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
844 }
845
846 /* Create an INT_CST node of TYPE and value HI:LOW.
847 The returned node is always shared. For small integers we use a
848 per-type vector cache, for larger ones we use a single hash table. */
849
850 tree
851 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
852 {
853 tree t;
854 int ix = -1;
855 int limit = 0;
856
857 gcc_assert (type);
858
859 switch (TREE_CODE (type))
860 {
861 case POINTER_TYPE:
862 case REFERENCE_TYPE:
863 /* Cache NULL pointer. */
864 if (!hi && !low)
865 {
866 limit = 1;
867 ix = 0;
868 }
869 break;
870
871 case BOOLEAN_TYPE:
872 /* Cache false or true. */
873 limit = 2;
874 if (!hi && low < 2)
875 ix = low;
876 break;
877
878 case INTEGER_TYPE:
879 case OFFSET_TYPE:
880 if (TYPE_UNSIGNED (type))
881 {
882 /* Cache 0..N */
883 limit = INTEGER_SHARE_LIMIT;
884 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
885 ix = low;
886 }
887 else
888 {
889 /* Cache -1..N */
890 limit = INTEGER_SHARE_LIMIT + 1;
891 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
892 ix = low + 1;
893 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
894 ix = 0;
895 }
896 break;
897
898 case ENUMERAL_TYPE:
899 break;
900
901 default:
902 gcc_unreachable ();
903 }
904
905 if (ix >= 0)
906 {
907 /* Look for it in the type's vector of small shared ints. */
908 if (!TYPE_CACHED_VALUES_P (type))
909 {
910 TYPE_CACHED_VALUES_P (type) = 1;
911 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
912 }
913
914 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
915 if (t)
916 {
917 /* Make sure no one is clobbering the shared constant. */
918 gcc_assert (TREE_TYPE (t) == type);
919 gcc_assert (TREE_INT_CST_LOW (t) == low);
920 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
921 }
922 else
923 {
924 /* Create a new shared int. */
925 t = make_node (INTEGER_CST);
926
927 TREE_INT_CST_LOW (t) = low;
928 TREE_INT_CST_HIGH (t) = hi;
929 TREE_TYPE (t) = type;
930
931 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
932 }
933 }
934 else
935 {
936 /* Use the cache of larger shared ints. */
937 void **slot;
938
939 TREE_INT_CST_LOW (int_cst_node) = low;
940 TREE_INT_CST_HIGH (int_cst_node) = hi;
941 TREE_TYPE (int_cst_node) = type;
942
943 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
944 t = *slot;
945 if (!t)
946 {
947 /* Insert this one into the hash table. */
948 t = int_cst_node;
949 *slot = t;
950 /* Make a new node for next time round. */
951 int_cst_node = make_node (INTEGER_CST);
952 }
953 }
954
955 return t;
956 }
957
958 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
959 and the rest are zeros. */
960
961 tree
962 build_low_bits_mask (tree type, unsigned bits)
963 {
964 unsigned HOST_WIDE_INT low;
965 HOST_WIDE_INT high;
966 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
967
968 gcc_assert (bits <= TYPE_PRECISION (type));
969
970 if (bits == TYPE_PRECISION (type)
971 && !TYPE_UNSIGNED (type))
972 {
973 /* Sign extended all-ones mask. */
974 low = all_ones;
975 high = -1;
976 }
977 else if (bits <= HOST_BITS_PER_WIDE_INT)
978 {
979 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
980 high = 0;
981 }
982 else
983 {
984 bits -= HOST_BITS_PER_WIDE_INT;
985 low = all_ones;
986 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
987 }
988
989 return build_int_cst_wide (type, low, high);
990 }
991
992 /* Checks that X is integer constant that can be expressed in (unsigned)
993 HOST_WIDE_INT without loss of precision. */
994
995 bool
996 cst_and_fits_in_hwi (const_tree x)
997 {
998 if (TREE_CODE (x) != INTEGER_CST)
999 return false;
1000
1001 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1002 return false;
1003
1004 return (TREE_INT_CST_HIGH (x) == 0
1005 || TREE_INT_CST_HIGH (x) == -1);
1006 }
1007
1008 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1009 are in a list pointed to by VALS. */
1010
1011 tree
1012 build_vector (tree type, tree vals)
1013 {
1014 tree v = make_node (VECTOR_CST);
1015 int over = 0;
1016 tree link;
1017
1018 TREE_VECTOR_CST_ELTS (v) = vals;
1019 TREE_TYPE (v) = type;
1020
1021 /* Iterate through elements and check for overflow. */
1022 for (link = vals; link; link = TREE_CHAIN (link))
1023 {
1024 tree value = TREE_VALUE (link);
1025
1026 /* Don't crash if we get an address constant. */
1027 if (!CONSTANT_CLASS_P (value))
1028 continue;
1029
1030 over |= TREE_OVERFLOW (value);
1031 }
1032
1033 TREE_OVERFLOW (v) = over;
1034 return v;
1035 }
1036
1037 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1038 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1039
1040 tree
1041 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1042 {
1043 tree list = NULL_TREE;
1044 unsigned HOST_WIDE_INT idx;
1045 tree value;
1046
1047 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1048 list = tree_cons (NULL_TREE, value, list);
1049 return build_vector (type, nreverse (list));
1050 }
1051
1052 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1053 are in the VEC pointed to by VALS. */
1054 tree
1055 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1056 {
1057 tree c = make_node (CONSTRUCTOR);
1058 TREE_TYPE (c) = type;
1059 CONSTRUCTOR_ELTS (c) = vals;
1060 return c;
1061 }
1062
1063 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1064 INDEX and VALUE. */
1065 tree
1066 build_constructor_single (tree type, tree index, tree value)
1067 {
1068 VEC(constructor_elt,gc) *v;
1069 constructor_elt *elt;
1070 tree t;
1071
1072 v = VEC_alloc (constructor_elt, gc, 1);
1073 elt = VEC_quick_push (constructor_elt, v, NULL);
1074 elt->index = index;
1075 elt->value = value;
1076
1077 t = build_constructor (type, v);
1078 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1079 return t;
1080 }
1081
1082
1083 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1084 are in a list pointed to by VALS. */
1085 tree
1086 build_constructor_from_list (tree type, tree vals)
1087 {
1088 tree t, val;
1089 VEC(constructor_elt,gc) *v = NULL;
1090 bool constant_p = true;
1091
1092 if (vals)
1093 {
1094 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1095 for (t = vals; t; t = TREE_CHAIN (t))
1096 {
1097 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1098 val = TREE_VALUE (t);
1099 elt->index = TREE_PURPOSE (t);
1100 elt->value = val;
1101 if (!TREE_CONSTANT (val))
1102 constant_p = false;
1103 }
1104 }
1105
1106 t = build_constructor (type, v);
1107 TREE_CONSTANT (t) = constant_p;
1108 return t;
1109 }
1110
1111 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1112
1113 tree
1114 build_fixed (tree type, FIXED_VALUE_TYPE f)
1115 {
1116 tree v;
1117 FIXED_VALUE_TYPE *fp;
1118
1119 v = make_node (FIXED_CST);
1120 fp = ggc_alloc (sizeof (FIXED_VALUE_TYPE));
1121 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1122
1123 TREE_TYPE (v) = type;
1124 TREE_FIXED_CST_PTR (v) = fp;
1125 return v;
1126 }
1127
1128 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1129
1130 tree
1131 build_real (tree type, REAL_VALUE_TYPE d)
1132 {
1133 tree v;
1134 REAL_VALUE_TYPE *dp;
1135 int overflow = 0;
1136
1137 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1138 Consider doing it via real_convert now. */
1139
1140 v = make_node (REAL_CST);
1141 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1142 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1143
1144 TREE_TYPE (v) = type;
1145 TREE_REAL_CST_PTR (v) = dp;
1146 TREE_OVERFLOW (v) = overflow;
1147 return v;
1148 }
1149
1150 /* Return a new REAL_CST node whose type is TYPE
1151 and whose value is the integer value of the INTEGER_CST node I. */
1152
1153 REAL_VALUE_TYPE
1154 real_value_from_int_cst (const_tree type, const_tree i)
1155 {
1156 REAL_VALUE_TYPE d;
1157
1158 /* Clear all bits of the real value type so that we can later do
1159 bitwise comparisons to see if two values are the same. */
1160 memset (&d, 0, sizeof d);
1161
1162 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1163 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1164 TYPE_UNSIGNED (TREE_TYPE (i)));
1165 return d;
1166 }
1167
1168 /* Given a tree representing an integer constant I, return a tree
1169 representing the same value as a floating-point constant of type TYPE. */
1170
1171 tree
1172 build_real_from_int_cst (tree type, const_tree i)
1173 {
1174 tree v;
1175 int overflow = TREE_OVERFLOW (i);
1176
1177 v = build_real (type, real_value_from_int_cst (type, i));
1178
1179 TREE_OVERFLOW (v) |= overflow;
1180 return v;
1181 }
1182
1183 /* Return a newly constructed STRING_CST node whose value is
1184 the LEN characters at STR.
1185 The TREE_TYPE is not initialized. */
1186
1187 tree
1188 build_string (int len, const char *str)
1189 {
1190 tree s;
1191 size_t length;
1192
1193 /* Do not waste bytes provided by padding of struct tree_string. */
1194 length = len + offsetof (struct tree_string, str) + 1;
1195
1196 #ifdef GATHER_STATISTICS
1197 tree_node_counts[(int) c_kind]++;
1198 tree_node_sizes[(int) c_kind] += length;
1199 #endif
1200
1201 s = ggc_alloc_tree (length);
1202
1203 memset (s, 0, sizeof (struct tree_common));
1204 TREE_SET_CODE (s, STRING_CST);
1205 TREE_CONSTANT (s) = 1;
1206 TREE_INVARIANT (s) = 1;
1207 TREE_STRING_LENGTH (s) = len;
1208 memcpy (s->string.str, str, len);
1209 s->string.str[len] = '\0';
1210
1211 return s;
1212 }
1213
1214 /* Return a newly constructed COMPLEX_CST node whose value is
1215 specified by the real and imaginary parts REAL and IMAG.
1216 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1217 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1218
1219 tree
1220 build_complex (tree type, tree real, tree imag)
1221 {
1222 tree t = make_node (COMPLEX_CST);
1223
1224 TREE_REALPART (t) = real;
1225 TREE_IMAGPART (t) = imag;
1226 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1227 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1228 return t;
1229 }
1230
1231 /* Return a constant of arithmetic type TYPE which is the
1232 multiplicative identity of the set TYPE. */
1233
1234 tree
1235 build_one_cst (tree type)
1236 {
1237 switch (TREE_CODE (type))
1238 {
1239 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1240 case POINTER_TYPE: case REFERENCE_TYPE:
1241 case OFFSET_TYPE:
1242 return build_int_cst (type, 1);
1243
1244 case REAL_TYPE:
1245 return build_real (type, dconst1);
1246
1247 case FIXED_POINT_TYPE:
1248 /* We can only generate 1 for accum types. */
1249 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1250 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1251
1252 case VECTOR_TYPE:
1253 {
1254 tree scalar, cst;
1255 int i;
1256
1257 scalar = build_one_cst (TREE_TYPE (type));
1258
1259 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1260 cst = NULL_TREE;
1261 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1262 cst = tree_cons (NULL_TREE, scalar, cst);
1263
1264 return build_vector (type, cst);
1265 }
1266
1267 case COMPLEX_TYPE:
1268 return build_complex (type,
1269 build_one_cst (TREE_TYPE (type)),
1270 fold_convert (TREE_TYPE (type), integer_zero_node));
1271
1272 default:
1273 gcc_unreachable ();
1274 }
1275 }
1276
1277 /* Build a BINFO with LEN language slots. */
1278
1279 tree
1280 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1281 {
1282 tree t;
1283 size_t length = (offsetof (struct tree_binfo, base_binfos)
1284 + VEC_embedded_size (tree, base_binfos));
1285
1286 #ifdef GATHER_STATISTICS
1287 tree_node_counts[(int) binfo_kind]++;
1288 tree_node_sizes[(int) binfo_kind] += length;
1289 #endif
1290
1291 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1292
1293 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1294
1295 TREE_SET_CODE (t, TREE_BINFO);
1296
1297 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1298
1299 return t;
1300 }
1301
1302
1303 /* Build a newly constructed TREE_VEC node of length LEN. */
1304
1305 tree
1306 make_tree_vec_stat (int len MEM_STAT_DECL)
1307 {
1308 tree t;
1309 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1310
1311 #ifdef GATHER_STATISTICS
1312 tree_node_counts[(int) vec_kind]++;
1313 tree_node_sizes[(int) vec_kind] += length;
1314 #endif
1315
1316 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1317
1318 memset (t, 0, length);
1319
1320 TREE_SET_CODE (t, TREE_VEC);
1321 TREE_VEC_LENGTH (t) = len;
1322
1323 return t;
1324 }
1325 \f
1326 /* Return 1 if EXPR is the integer constant zero or a complex constant
1327 of zero. */
1328
1329 int
1330 integer_zerop (const_tree expr)
1331 {
1332 STRIP_NOPS (expr);
1333
1334 return ((TREE_CODE (expr) == INTEGER_CST
1335 && TREE_INT_CST_LOW (expr) == 0
1336 && TREE_INT_CST_HIGH (expr) == 0)
1337 || (TREE_CODE (expr) == COMPLEX_CST
1338 && integer_zerop (TREE_REALPART (expr))
1339 && integer_zerop (TREE_IMAGPART (expr))));
1340 }
1341
1342 /* Return 1 if EXPR is the integer constant one or the corresponding
1343 complex constant. */
1344
1345 int
1346 integer_onep (const_tree expr)
1347 {
1348 STRIP_NOPS (expr);
1349
1350 return ((TREE_CODE (expr) == INTEGER_CST
1351 && TREE_INT_CST_LOW (expr) == 1
1352 && TREE_INT_CST_HIGH (expr) == 0)
1353 || (TREE_CODE (expr) == COMPLEX_CST
1354 && integer_onep (TREE_REALPART (expr))
1355 && integer_zerop (TREE_IMAGPART (expr))));
1356 }
1357
1358 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1359 it contains. Likewise for the corresponding complex constant. */
1360
1361 int
1362 integer_all_onesp (const_tree expr)
1363 {
1364 int prec;
1365 int uns;
1366
1367 STRIP_NOPS (expr);
1368
1369 if (TREE_CODE (expr) == COMPLEX_CST
1370 && integer_all_onesp (TREE_REALPART (expr))
1371 && integer_zerop (TREE_IMAGPART (expr)))
1372 return 1;
1373
1374 else if (TREE_CODE (expr) != INTEGER_CST)
1375 return 0;
1376
1377 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1378 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1379 && TREE_INT_CST_HIGH (expr) == -1)
1380 return 1;
1381 if (!uns)
1382 return 0;
1383
1384 /* Note that using TYPE_PRECISION here is wrong. We care about the
1385 actual bits, not the (arbitrary) range of the type. */
1386 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1387 if (prec >= HOST_BITS_PER_WIDE_INT)
1388 {
1389 HOST_WIDE_INT high_value;
1390 int shift_amount;
1391
1392 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1393
1394 /* Can not handle precisions greater than twice the host int size. */
1395 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1396 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1397 /* Shifting by the host word size is undefined according to the ANSI
1398 standard, so we must handle this as a special case. */
1399 high_value = -1;
1400 else
1401 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1402
1403 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1404 && TREE_INT_CST_HIGH (expr) == high_value);
1405 }
1406 else
1407 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1408 }
1409
1410 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1411 one bit on). */
1412
1413 int
1414 integer_pow2p (const_tree expr)
1415 {
1416 int prec;
1417 HOST_WIDE_INT high, low;
1418
1419 STRIP_NOPS (expr);
1420
1421 if (TREE_CODE (expr) == COMPLEX_CST
1422 && integer_pow2p (TREE_REALPART (expr))
1423 && integer_zerop (TREE_IMAGPART (expr)))
1424 return 1;
1425
1426 if (TREE_CODE (expr) != INTEGER_CST)
1427 return 0;
1428
1429 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1430 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1431 high = TREE_INT_CST_HIGH (expr);
1432 low = TREE_INT_CST_LOW (expr);
1433
1434 /* First clear all bits that are beyond the type's precision in case
1435 we've been sign extended. */
1436
1437 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1438 ;
1439 else if (prec > HOST_BITS_PER_WIDE_INT)
1440 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1441 else
1442 {
1443 high = 0;
1444 if (prec < HOST_BITS_PER_WIDE_INT)
1445 low &= ~((HOST_WIDE_INT) (-1) << prec);
1446 }
1447
1448 if (high == 0 && low == 0)
1449 return 0;
1450
1451 return ((high == 0 && (low & (low - 1)) == 0)
1452 || (low == 0 && (high & (high - 1)) == 0));
1453 }
1454
1455 /* Return 1 if EXPR is an integer constant other than zero or a
1456 complex constant other than zero. */
1457
1458 int
1459 integer_nonzerop (const_tree expr)
1460 {
1461 STRIP_NOPS (expr);
1462
1463 return ((TREE_CODE (expr) == INTEGER_CST
1464 && (TREE_INT_CST_LOW (expr) != 0
1465 || TREE_INT_CST_HIGH (expr) != 0))
1466 || (TREE_CODE (expr) == COMPLEX_CST
1467 && (integer_nonzerop (TREE_REALPART (expr))
1468 || integer_nonzerop (TREE_IMAGPART (expr)))));
1469 }
1470
1471 /* Return 1 if EXPR is the fixed-point constant zero. */
1472
1473 int
1474 fixed_zerop (const_tree expr)
1475 {
1476 return (TREE_CODE (expr) == FIXED_CST
1477 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1478 }
1479
1480 /* Return the power of two represented by a tree node known to be a
1481 power of two. */
1482
1483 int
1484 tree_log2 (const_tree expr)
1485 {
1486 int prec;
1487 HOST_WIDE_INT high, low;
1488
1489 STRIP_NOPS (expr);
1490
1491 if (TREE_CODE (expr) == COMPLEX_CST)
1492 return tree_log2 (TREE_REALPART (expr));
1493
1494 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1495 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1496
1497 high = TREE_INT_CST_HIGH (expr);
1498 low = TREE_INT_CST_LOW (expr);
1499
1500 /* First clear all bits that are beyond the type's precision in case
1501 we've been sign extended. */
1502
1503 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1504 ;
1505 else if (prec > HOST_BITS_PER_WIDE_INT)
1506 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1507 else
1508 {
1509 high = 0;
1510 if (prec < HOST_BITS_PER_WIDE_INT)
1511 low &= ~((HOST_WIDE_INT) (-1) << prec);
1512 }
1513
1514 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1515 : exact_log2 (low));
1516 }
1517
1518 /* Similar, but return the largest integer Y such that 2 ** Y is less
1519 than or equal to EXPR. */
1520
1521 int
1522 tree_floor_log2 (const_tree expr)
1523 {
1524 int prec;
1525 HOST_WIDE_INT high, low;
1526
1527 STRIP_NOPS (expr);
1528
1529 if (TREE_CODE (expr) == COMPLEX_CST)
1530 return tree_log2 (TREE_REALPART (expr));
1531
1532 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1533 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1534
1535 high = TREE_INT_CST_HIGH (expr);
1536 low = TREE_INT_CST_LOW (expr);
1537
1538 /* First clear all bits that are beyond the type's precision in case
1539 we've been sign extended. Ignore if type's precision hasn't been set
1540 since what we are doing is setting it. */
1541
1542 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1543 ;
1544 else if (prec > HOST_BITS_PER_WIDE_INT)
1545 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1546 else
1547 {
1548 high = 0;
1549 if (prec < HOST_BITS_PER_WIDE_INT)
1550 low &= ~((HOST_WIDE_INT) (-1) << prec);
1551 }
1552
1553 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1554 : floor_log2 (low));
1555 }
1556
1557 /* Return 1 if EXPR is the real constant zero. */
1558
1559 int
1560 real_zerop (const_tree expr)
1561 {
1562 STRIP_NOPS (expr);
1563
1564 return ((TREE_CODE (expr) == REAL_CST
1565 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1566 || (TREE_CODE (expr) == COMPLEX_CST
1567 && real_zerop (TREE_REALPART (expr))
1568 && real_zerop (TREE_IMAGPART (expr))));
1569 }
1570
1571 /* Return 1 if EXPR is the real constant one in real or complex form. */
1572
1573 int
1574 real_onep (const_tree expr)
1575 {
1576 STRIP_NOPS (expr);
1577
1578 return ((TREE_CODE (expr) == REAL_CST
1579 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1580 || (TREE_CODE (expr) == COMPLEX_CST
1581 && real_onep (TREE_REALPART (expr))
1582 && real_zerop (TREE_IMAGPART (expr))));
1583 }
1584
1585 /* Return 1 if EXPR is the real constant two. */
1586
1587 int
1588 real_twop (const_tree expr)
1589 {
1590 STRIP_NOPS (expr);
1591
1592 return ((TREE_CODE (expr) == REAL_CST
1593 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1594 || (TREE_CODE (expr) == COMPLEX_CST
1595 && real_twop (TREE_REALPART (expr))
1596 && real_zerop (TREE_IMAGPART (expr))));
1597 }
1598
1599 /* Return 1 if EXPR is the real constant minus one. */
1600
1601 int
1602 real_minus_onep (const_tree expr)
1603 {
1604 STRIP_NOPS (expr);
1605
1606 return ((TREE_CODE (expr) == REAL_CST
1607 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1608 || (TREE_CODE (expr) == COMPLEX_CST
1609 && real_minus_onep (TREE_REALPART (expr))
1610 && real_zerop (TREE_IMAGPART (expr))));
1611 }
1612
1613 /* Nonzero if EXP is a constant or a cast of a constant. */
1614
1615 int
1616 really_constant_p (const_tree exp)
1617 {
1618 /* This is not quite the same as STRIP_NOPS. It does more. */
1619 while (TREE_CODE (exp) == NOP_EXPR
1620 || TREE_CODE (exp) == CONVERT_EXPR
1621 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1622 exp = TREE_OPERAND (exp, 0);
1623 return TREE_CONSTANT (exp);
1624 }
1625 \f
1626 /* Return first list element whose TREE_VALUE is ELEM.
1627 Return 0 if ELEM is not in LIST. */
1628
1629 tree
1630 value_member (tree elem, tree list)
1631 {
1632 while (list)
1633 {
1634 if (elem == TREE_VALUE (list))
1635 return list;
1636 list = TREE_CHAIN (list);
1637 }
1638 return NULL_TREE;
1639 }
1640
1641 /* Return first list element whose TREE_PURPOSE is ELEM.
1642 Return 0 if ELEM is not in LIST. */
1643
1644 tree
1645 purpose_member (const_tree elem, tree list)
1646 {
1647 while (list)
1648 {
1649 if (elem == TREE_PURPOSE (list))
1650 return list;
1651 list = TREE_CHAIN (list);
1652 }
1653 return NULL_TREE;
1654 }
1655
1656 /* Return nonzero if ELEM is part of the chain CHAIN. */
1657
1658 int
1659 chain_member (const_tree elem, const_tree chain)
1660 {
1661 while (chain)
1662 {
1663 if (elem == chain)
1664 return 1;
1665 chain = TREE_CHAIN (chain);
1666 }
1667
1668 return 0;
1669 }
1670
1671 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1672 We expect a null pointer to mark the end of the chain.
1673 This is the Lisp primitive `length'. */
1674
1675 int
1676 list_length (const_tree t)
1677 {
1678 const_tree p = t;
1679 #ifdef ENABLE_TREE_CHECKING
1680 const_tree q = t;
1681 #endif
1682 int len = 0;
1683
1684 while (p)
1685 {
1686 p = TREE_CHAIN (p);
1687 #ifdef ENABLE_TREE_CHECKING
1688 if (len % 2)
1689 q = TREE_CHAIN (q);
1690 gcc_assert (p != q);
1691 #endif
1692 len++;
1693 }
1694
1695 return len;
1696 }
1697
1698 /* Returns the number of FIELD_DECLs in TYPE. */
1699
1700 int
1701 fields_length (const_tree type)
1702 {
1703 tree t = TYPE_FIELDS (type);
1704 int count = 0;
1705
1706 for (; t; t = TREE_CHAIN (t))
1707 if (TREE_CODE (t) == FIELD_DECL)
1708 ++count;
1709
1710 return count;
1711 }
1712
1713 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1714 by modifying the last node in chain 1 to point to chain 2.
1715 This is the Lisp primitive `nconc'. */
1716
1717 tree
1718 chainon (tree op1, tree op2)
1719 {
1720 tree t1;
1721
1722 if (!op1)
1723 return op2;
1724 if (!op2)
1725 return op1;
1726
1727 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1728 continue;
1729 TREE_CHAIN (t1) = op2;
1730
1731 #ifdef ENABLE_TREE_CHECKING
1732 {
1733 tree t2;
1734 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1735 gcc_assert (t2 != t1);
1736 }
1737 #endif
1738
1739 return op1;
1740 }
1741
1742 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1743
1744 tree
1745 tree_last (tree chain)
1746 {
1747 tree next;
1748 if (chain)
1749 while ((next = TREE_CHAIN (chain)))
1750 chain = next;
1751 return chain;
1752 }
1753
1754 /* Reverse the order of elements in the chain T,
1755 and return the new head of the chain (old last element). */
1756
1757 tree
1758 nreverse (tree t)
1759 {
1760 tree prev = 0, decl, next;
1761 for (decl = t; decl; decl = next)
1762 {
1763 next = TREE_CHAIN (decl);
1764 TREE_CHAIN (decl) = prev;
1765 prev = decl;
1766 }
1767 return prev;
1768 }
1769 \f
1770 /* Return a newly created TREE_LIST node whose
1771 purpose and value fields are PARM and VALUE. */
1772
1773 tree
1774 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1775 {
1776 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1777 TREE_PURPOSE (t) = parm;
1778 TREE_VALUE (t) = value;
1779 return t;
1780 }
1781
1782 /* Return a newly created TREE_LIST node whose
1783 purpose and value fields are PURPOSE and VALUE
1784 and whose TREE_CHAIN is CHAIN. */
1785
1786 tree
1787 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1788 {
1789 tree node;
1790
1791 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1792
1793 memset (node, 0, sizeof (struct tree_common));
1794
1795 #ifdef GATHER_STATISTICS
1796 tree_node_counts[(int) x_kind]++;
1797 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1798 #endif
1799
1800 TREE_SET_CODE (node, TREE_LIST);
1801 TREE_CHAIN (node) = chain;
1802 TREE_PURPOSE (node) = purpose;
1803 TREE_VALUE (node) = value;
1804 return node;
1805 }
1806
1807 \f
1808 /* Return the size nominally occupied by an object of type TYPE
1809 when it resides in memory. The value is measured in units of bytes,
1810 and its data type is that normally used for type sizes
1811 (which is the first type created by make_signed_type or
1812 make_unsigned_type). */
1813
1814 tree
1815 size_in_bytes (const_tree type)
1816 {
1817 tree t;
1818
1819 if (type == error_mark_node)
1820 return integer_zero_node;
1821
1822 type = TYPE_MAIN_VARIANT (type);
1823 t = TYPE_SIZE_UNIT (type);
1824
1825 if (t == 0)
1826 {
1827 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1828 return size_zero_node;
1829 }
1830
1831 return t;
1832 }
1833
1834 /* Return the size of TYPE (in bytes) as a wide integer
1835 or return -1 if the size can vary or is larger than an integer. */
1836
1837 HOST_WIDE_INT
1838 int_size_in_bytes (const_tree type)
1839 {
1840 tree t;
1841
1842 if (type == error_mark_node)
1843 return 0;
1844
1845 type = TYPE_MAIN_VARIANT (type);
1846 t = TYPE_SIZE_UNIT (type);
1847 if (t == 0
1848 || TREE_CODE (t) != INTEGER_CST
1849 || TREE_INT_CST_HIGH (t) != 0
1850 /* If the result would appear negative, it's too big to represent. */
1851 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1852 return -1;
1853
1854 return TREE_INT_CST_LOW (t);
1855 }
1856
1857 /* Return the maximum size of TYPE (in bytes) as a wide integer
1858 or return -1 if the size can vary or is larger than an integer. */
1859
1860 HOST_WIDE_INT
1861 max_int_size_in_bytes (const_tree type)
1862 {
1863 HOST_WIDE_INT size = -1;
1864 tree size_tree;
1865
1866 /* If this is an array type, check for a possible MAX_SIZE attached. */
1867
1868 if (TREE_CODE (type) == ARRAY_TYPE)
1869 {
1870 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1871
1872 if (size_tree && host_integerp (size_tree, 1))
1873 size = tree_low_cst (size_tree, 1);
1874 }
1875
1876 /* If we still haven't been able to get a size, see if the language
1877 can compute a maximum size. */
1878
1879 if (size == -1)
1880 {
1881 size_tree = lang_hooks.types.max_size (type);
1882
1883 if (size_tree && host_integerp (size_tree, 1))
1884 size = tree_low_cst (size_tree, 1);
1885 }
1886
1887 return size;
1888 }
1889 \f
1890 /* Return the bit position of FIELD, in bits from the start of the record.
1891 This is a tree of type bitsizetype. */
1892
1893 tree
1894 bit_position (const_tree field)
1895 {
1896 return bit_from_pos (DECL_FIELD_OFFSET (field),
1897 DECL_FIELD_BIT_OFFSET (field));
1898 }
1899
1900 /* Likewise, but return as an integer. It must be representable in
1901 that way (since it could be a signed value, we don't have the
1902 option of returning -1 like int_size_in_byte can. */
1903
1904 HOST_WIDE_INT
1905 int_bit_position (const_tree field)
1906 {
1907 return tree_low_cst (bit_position (field), 0);
1908 }
1909 \f
1910 /* Return the byte position of FIELD, in bytes from the start of the record.
1911 This is a tree of type sizetype. */
1912
1913 tree
1914 byte_position (const_tree field)
1915 {
1916 return byte_from_pos (DECL_FIELD_OFFSET (field),
1917 DECL_FIELD_BIT_OFFSET (field));
1918 }
1919
1920 /* Likewise, but return as an integer. It must be representable in
1921 that way (since it could be a signed value, we don't have the
1922 option of returning -1 like int_size_in_byte can. */
1923
1924 HOST_WIDE_INT
1925 int_byte_position (const_tree field)
1926 {
1927 return tree_low_cst (byte_position (field), 0);
1928 }
1929 \f
1930 /* Return the strictest alignment, in bits, that T is known to have. */
1931
1932 unsigned int
1933 expr_align (const_tree t)
1934 {
1935 unsigned int align0, align1;
1936
1937 switch (TREE_CODE (t))
1938 {
1939 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1940 /* If we have conversions, we know that the alignment of the
1941 object must meet each of the alignments of the types. */
1942 align0 = expr_align (TREE_OPERAND (t, 0));
1943 align1 = TYPE_ALIGN (TREE_TYPE (t));
1944 return MAX (align0, align1);
1945
1946 case GIMPLE_MODIFY_STMT:
1947 /* We should never ask for the alignment of a gimple statement. */
1948 gcc_unreachable ();
1949
1950 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1951 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1952 case CLEANUP_POINT_EXPR:
1953 /* These don't change the alignment of an object. */
1954 return expr_align (TREE_OPERAND (t, 0));
1955
1956 case COND_EXPR:
1957 /* The best we can do is say that the alignment is the least aligned
1958 of the two arms. */
1959 align0 = expr_align (TREE_OPERAND (t, 1));
1960 align1 = expr_align (TREE_OPERAND (t, 2));
1961 return MIN (align0, align1);
1962
1963 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
1964 meaningfully, it's always 1. */
1965 case LABEL_DECL: case CONST_DECL:
1966 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1967 case FUNCTION_DECL:
1968 gcc_assert (DECL_ALIGN (t) != 0);
1969 return DECL_ALIGN (t);
1970
1971 default:
1972 break;
1973 }
1974
1975 /* Otherwise take the alignment from that of the type. */
1976 return TYPE_ALIGN (TREE_TYPE (t));
1977 }
1978 \f
1979 /* Return, as a tree node, the number of elements for TYPE (which is an
1980 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1981
1982 tree
1983 array_type_nelts (const_tree type)
1984 {
1985 tree index_type, min, max;
1986
1987 /* If they did it with unspecified bounds, then we should have already
1988 given an error about it before we got here. */
1989 if (! TYPE_DOMAIN (type))
1990 return error_mark_node;
1991
1992 index_type = TYPE_DOMAIN (type);
1993 min = TYPE_MIN_VALUE (index_type);
1994 max = TYPE_MAX_VALUE (index_type);
1995
1996 return (integer_zerop (min)
1997 ? max
1998 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1999 }
2000 \f
2001 /* If arg is static -- a reference to an object in static storage -- then
2002 return the object. This is not the same as the C meaning of `static'.
2003 If arg isn't static, return NULL. */
2004
2005 tree
2006 staticp (tree arg)
2007 {
2008 switch (TREE_CODE (arg))
2009 {
2010 case FUNCTION_DECL:
2011 /* Nested functions are static, even though taking their address will
2012 involve a trampoline as we unnest the nested function and create
2013 the trampoline on the tree level. */
2014 return arg;
2015
2016 case VAR_DECL:
2017 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2018 && ! DECL_THREAD_LOCAL_P (arg)
2019 && ! DECL_DLLIMPORT_P (arg)
2020 ? arg : NULL);
2021
2022 case CONST_DECL:
2023 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2024 ? arg : NULL);
2025
2026 case CONSTRUCTOR:
2027 return TREE_STATIC (arg) ? arg : NULL;
2028
2029 case LABEL_DECL:
2030 case STRING_CST:
2031 return arg;
2032
2033 case COMPONENT_REF:
2034 /* If the thing being referenced is not a field, then it is
2035 something language specific. */
2036 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
2037 return (*lang_hooks.staticp) (arg);
2038
2039 /* If we are referencing a bitfield, we can't evaluate an
2040 ADDR_EXPR at compile time and so it isn't a constant. */
2041 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2042 return NULL;
2043
2044 return staticp (TREE_OPERAND (arg, 0));
2045
2046 case BIT_FIELD_REF:
2047 return NULL;
2048
2049 case MISALIGNED_INDIRECT_REF:
2050 case ALIGN_INDIRECT_REF:
2051 case INDIRECT_REF:
2052 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2053
2054 case ARRAY_REF:
2055 case ARRAY_RANGE_REF:
2056 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2057 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2058 return staticp (TREE_OPERAND (arg, 0));
2059 else
2060 return false;
2061
2062 default:
2063 if ((unsigned int) TREE_CODE (arg)
2064 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
2065 return lang_hooks.staticp (arg);
2066 else
2067 return NULL;
2068 }
2069 }
2070 \f
2071 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2072 Do this to any expression which may be used in more than one place,
2073 but must be evaluated only once.
2074
2075 Normally, expand_expr would reevaluate the expression each time.
2076 Calling save_expr produces something that is evaluated and recorded
2077 the first time expand_expr is called on it. Subsequent calls to
2078 expand_expr just reuse the recorded value.
2079
2080 The call to expand_expr that generates code that actually computes
2081 the value is the first call *at compile time*. Subsequent calls
2082 *at compile time* generate code to use the saved value.
2083 This produces correct result provided that *at run time* control
2084 always flows through the insns made by the first expand_expr
2085 before reaching the other places where the save_expr was evaluated.
2086 You, the caller of save_expr, must make sure this is so.
2087
2088 Constants, and certain read-only nodes, are returned with no
2089 SAVE_EXPR because that is safe. Expressions containing placeholders
2090 are not touched; see tree.def for an explanation of what these
2091 are used for. */
2092
2093 tree
2094 save_expr (tree expr)
2095 {
2096 tree t = fold (expr);
2097 tree inner;
2098
2099 /* If the tree evaluates to a constant, then we don't want to hide that
2100 fact (i.e. this allows further folding, and direct checks for constants).
2101 However, a read-only object that has side effects cannot be bypassed.
2102 Since it is no problem to reevaluate literals, we just return the
2103 literal node. */
2104 inner = skip_simple_arithmetic (t);
2105
2106 if (TREE_INVARIANT (inner)
2107 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2108 || TREE_CODE (inner) == SAVE_EXPR
2109 || TREE_CODE (inner) == ERROR_MARK)
2110 return t;
2111
2112 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2113 it means that the size or offset of some field of an object depends on
2114 the value within another field.
2115
2116 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2117 and some variable since it would then need to be both evaluated once and
2118 evaluated more than once. Front-ends must assure this case cannot
2119 happen by surrounding any such subexpressions in their own SAVE_EXPR
2120 and forcing evaluation at the proper time. */
2121 if (contains_placeholder_p (inner))
2122 return t;
2123
2124 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2125
2126 /* This expression might be placed ahead of a jump to ensure that the
2127 value was computed on both sides of the jump. So make sure it isn't
2128 eliminated as dead. */
2129 TREE_SIDE_EFFECTS (t) = 1;
2130 TREE_INVARIANT (t) = 1;
2131 return t;
2132 }
2133
2134 /* Look inside EXPR and into any simple arithmetic operations. Return
2135 the innermost non-arithmetic node. */
2136
2137 tree
2138 skip_simple_arithmetic (tree expr)
2139 {
2140 tree inner;
2141
2142 /* We don't care about whether this can be used as an lvalue in this
2143 context. */
2144 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2145 expr = TREE_OPERAND (expr, 0);
2146
2147 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2148 a constant, it will be more efficient to not make another SAVE_EXPR since
2149 it will allow better simplification and GCSE will be able to merge the
2150 computations if they actually occur. */
2151 inner = expr;
2152 while (1)
2153 {
2154 if (UNARY_CLASS_P (inner))
2155 inner = TREE_OPERAND (inner, 0);
2156 else if (BINARY_CLASS_P (inner))
2157 {
2158 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2159 inner = TREE_OPERAND (inner, 0);
2160 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2161 inner = TREE_OPERAND (inner, 1);
2162 else
2163 break;
2164 }
2165 else
2166 break;
2167 }
2168
2169 return inner;
2170 }
2171
2172 /* Return which tree structure is used by T. */
2173
2174 enum tree_node_structure_enum
2175 tree_node_structure (const_tree t)
2176 {
2177 const enum tree_code code = TREE_CODE (t);
2178
2179 switch (TREE_CODE_CLASS (code))
2180 {
2181 case tcc_declaration:
2182 {
2183 switch (code)
2184 {
2185 case FIELD_DECL:
2186 return TS_FIELD_DECL;
2187 case PARM_DECL:
2188 return TS_PARM_DECL;
2189 case VAR_DECL:
2190 return TS_VAR_DECL;
2191 case LABEL_DECL:
2192 return TS_LABEL_DECL;
2193 case RESULT_DECL:
2194 return TS_RESULT_DECL;
2195 case CONST_DECL:
2196 return TS_CONST_DECL;
2197 case TYPE_DECL:
2198 return TS_TYPE_DECL;
2199 case FUNCTION_DECL:
2200 return TS_FUNCTION_DECL;
2201 case SYMBOL_MEMORY_TAG:
2202 case NAME_MEMORY_TAG:
2203 case STRUCT_FIELD_TAG:
2204 case MEMORY_PARTITION_TAG:
2205 return TS_MEMORY_TAG;
2206 default:
2207 return TS_DECL_NON_COMMON;
2208 }
2209 }
2210 case tcc_type:
2211 return TS_TYPE;
2212 case tcc_reference:
2213 case tcc_comparison:
2214 case tcc_unary:
2215 case tcc_binary:
2216 case tcc_expression:
2217 case tcc_statement:
2218 case tcc_vl_exp:
2219 return TS_EXP;
2220 case tcc_gimple_stmt:
2221 return TS_GIMPLE_STATEMENT;
2222 default: /* tcc_constant and tcc_exceptional */
2223 break;
2224 }
2225 switch (code)
2226 {
2227 /* tcc_constant cases. */
2228 case INTEGER_CST: return TS_INT_CST;
2229 case REAL_CST: return TS_REAL_CST;
2230 case FIXED_CST: return TS_FIXED_CST;
2231 case COMPLEX_CST: return TS_COMPLEX;
2232 case VECTOR_CST: return TS_VECTOR;
2233 case STRING_CST: return TS_STRING;
2234 /* tcc_exceptional cases. */
2235 /* FIXME tuples: eventually this should be TS_BASE. For now, nothing
2236 returns TS_BASE. */
2237 case ERROR_MARK: return TS_COMMON;
2238 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2239 case TREE_LIST: return TS_LIST;
2240 case TREE_VEC: return TS_VEC;
2241 case PHI_NODE: return TS_PHI_NODE;
2242 case SSA_NAME: return TS_SSA_NAME;
2243 case PLACEHOLDER_EXPR: return TS_COMMON;
2244 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2245 case BLOCK: return TS_BLOCK;
2246 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2247 case TREE_BINFO: return TS_BINFO;
2248 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2249 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2250
2251 default:
2252 gcc_unreachable ();
2253 }
2254 }
2255 \f
2256 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2257 or offset that depends on a field within a record. */
2258
2259 bool
2260 contains_placeholder_p (const_tree exp)
2261 {
2262 enum tree_code code;
2263
2264 if (!exp)
2265 return 0;
2266
2267 code = TREE_CODE (exp);
2268 if (code == PLACEHOLDER_EXPR)
2269 return 1;
2270
2271 switch (TREE_CODE_CLASS (code))
2272 {
2273 case tcc_reference:
2274 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2275 position computations since they will be converted into a
2276 WITH_RECORD_EXPR involving the reference, which will assume
2277 here will be valid. */
2278 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2279
2280 case tcc_exceptional:
2281 if (code == TREE_LIST)
2282 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2283 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2284 break;
2285
2286 case tcc_unary:
2287 case tcc_binary:
2288 case tcc_comparison:
2289 case tcc_expression:
2290 switch (code)
2291 {
2292 case COMPOUND_EXPR:
2293 /* Ignoring the first operand isn't quite right, but works best. */
2294 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2295
2296 case COND_EXPR:
2297 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2298 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2299 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2300
2301 default:
2302 break;
2303 }
2304
2305 switch (TREE_CODE_LENGTH (code))
2306 {
2307 case 1:
2308 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2309 case 2:
2310 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2311 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2312 default:
2313 return 0;
2314 }
2315
2316 case tcc_vl_exp:
2317 switch (code)
2318 {
2319 case CALL_EXPR:
2320 {
2321 const_tree arg;
2322 const_call_expr_arg_iterator iter;
2323 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2324 if (CONTAINS_PLACEHOLDER_P (arg))
2325 return 1;
2326 return 0;
2327 }
2328 default:
2329 return 0;
2330 }
2331
2332 default:
2333 return 0;
2334 }
2335 return 0;
2336 }
2337
2338 /* Return true if any part of the computation of TYPE involves a
2339 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2340 (for QUAL_UNION_TYPE) and field positions. */
2341
2342 static bool
2343 type_contains_placeholder_1 (const_tree type)
2344 {
2345 /* If the size contains a placeholder or the parent type (component type in
2346 the case of arrays) type involves a placeholder, this type does. */
2347 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2348 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2349 || (TREE_TYPE (type) != 0
2350 && type_contains_placeholder_p (TREE_TYPE (type))))
2351 return true;
2352
2353 /* Now do type-specific checks. Note that the last part of the check above
2354 greatly limits what we have to do below. */
2355 switch (TREE_CODE (type))
2356 {
2357 case VOID_TYPE:
2358 case COMPLEX_TYPE:
2359 case ENUMERAL_TYPE:
2360 case BOOLEAN_TYPE:
2361 case POINTER_TYPE:
2362 case OFFSET_TYPE:
2363 case REFERENCE_TYPE:
2364 case METHOD_TYPE:
2365 case FUNCTION_TYPE:
2366 case VECTOR_TYPE:
2367 return false;
2368
2369 case INTEGER_TYPE:
2370 case REAL_TYPE:
2371 case FIXED_POINT_TYPE:
2372 /* Here we just check the bounds. */
2373 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2374 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2375
2376 case ARRAY_TYPE:
2377 /* We're already checked the component type (TREE_TYPE), so just check
2378 the index type. */
2379 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2380
2381 case RECORD_TYPE:
2382 case UNION_TYPE:
2383 case QUAL_UNION_TYPE:
2384 {
2385 tree field;
2386
2387 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2388 if (TREE_CODE (field) == FIELD_DECL
2389 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2390 || (TREE_CODE (type) == QUAL_UNION_TYPE
2391 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2392 || type_contains_placeholder_p (TREE_TYPE (field))))
2393 return true;
2394
2395 return false;
2396 }
2397
2398 default:
2399 gcc_unreachable ();
2400 }
2401 }
2402
2403 bool
2404 type_contains_placeholder_p (tree type)
2405 {
2406 bool result;
2407
2408 /* If the contains_placeholder_bits field has been initialized,
2409 then we know the answer. */
2410 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2411 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2412
2413 /* Indicate that we've seen this type node, and the answer is false.
2414 This is what we want to return if we run into recursion via fields. */
2415 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2416
2417 /* Compute the real value. */
2418 result = type_contains_placeholder_1 (type);
2419
2420 /* Store the real value. */
2421 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2422
2423 return result;
2424 }
2425 \f
2426 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2427 return a tree with all occurrences of references to F in a
2428 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2429 contains only arithmetic expressions or a CALL_EXPR with a
2430 PLACEHOLDER_EXPR occurring only in its arglist. */
2431
2432 tree
2433 substitute_in_expr (tree exp, tree f, tree r)
2434 {
2435 enum tree_code code = TREE_CODE (exp);
2436 tree op0, op1, op2, op3;
2437 tree new;
2438 tree inner;
2439
2440 /* We handle TREE_LIST and COMPONENT_REF separately. */
2441 if (code == TREE_LIST)
2442 {
2443 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2444 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2445 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2446 return exp;
2447
2448 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2449 }
2450 else if (code == COMPONENT_REF)
2451 {
2452 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2453 and it is the right field, replace it with R. */
2454 for (inner = TREE_OPERAND (exp, 0);
2455 REFERENCE_CLASS_P (inner);
2456 inner = TREE_OPERAND (inner, 0))
2457 ;
2458 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2459 && TREE_OPERAND (exp, 1) == f)
2460 return r;
2461
2462 /* If this expression hasn't been completed let, leave it alone. */
2463 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2464 return exp;
2465
2466 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2467 if (op0 == TREE_OPERAND (exp, 0))
2468 return exp;
2469
2470 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2471 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2472 }
2473 else
2474 switch (TREE_CODE_CLASS (code))
2475 {
2476 case tcc_constant:
2477 case tcc_declaration:
2478 return exp;
2479
2480 case tcc_exceptional:
2481 case tcc_unary:
2482 case tcc_binary:
2483 case tcc_comparison:
2484 case tcc_expression:
2485 case tcc_reference:
2486 switch (TREE_CODE_LENGTH (code))
2487 {
2488 case 0:
2489 return exp;
2490
2491 case 1:
2492 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2493 if (op0 == TREE_OPERAND (exp, 0))
2494 return exp;
2495
2496 new = fold_build1 (code, TREE_TYPE (exp), op0);
2497 break;
2498
2499 case 2:
2500 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2501 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2502
2503 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2504 return exp;
2505
2506 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2507 break;
2508
2509 case 3:
2510 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2511 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2512 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2513
2514 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2515 && op2 == TREE_OPERAND (exp, 2))
2516 return exp;
2517
2518 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2519 break;
2520
2521 case 4:
2522 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2523 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2524 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2525 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2526
2527 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2528 && op2 == TREE_OPERAND (exp, 2)
2529 && op3 == TREE_OPERAND (exp, 3))
2530 return exp;
2531
2532 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2533 break;
2534
2535 default:
2536 gcc_unreachable ();
2537 }
2538 break;
2539
2540 case tcc_vl_exp:
2541 {
2542 tree copy = NULL_TREE;
2543 int i;
2544
2545 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2546 {
2547 tree op = TREE_OPERAND (exp, i);
2548 tree newop = SUBSTITUTE_IN_EXPR (op, f, r);
2549 if (newop != op)
2550 {
2551 copy = copy_node (exp);
2552 TREE_OPERAND (copy, i) = newop;
2553 }
2554 }
2555 if (copy)
2556 new = fold (copy);
2557 else
2558 return exp;
2559 }
2560 break;
2561
2562 default:
2563 gcc_unreachable ();
2564 }
2565
2566 TREE_READONLY (new) = TREE_READONLY (exp);
2567 return new;
2568 }
2569
2570 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2571 for it within OBJ, a tree that is an object or a chain of references. */
2572
2573 tree
2574 substitute_placeholder_in_expr (tree exp, tree obj)
2575 {
2576 enum tree_code code = TREE_CODE (exp);
2577 tree op0, op1, op2, op3;
2578
2579 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2580 in the chain of OBJ. */
2581 if (code == PLACEHOLDER_EXPR)
2582 {
2583 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2584 tree elt;
2585
2586 for (elt = obj; elt != 0;
2587 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2588 || TREE_CODE (elt) == COND_EXPR)
2589 ? TREE_OPERAND (elt, 1)
2590 : (REFERENCE_CLASS_P (elt)
2591 || UNARY_CLASS_P (elt)
2592 || BINARY_CLASS_P (elt)
2593 || VL_EXP_CLASS_P (elt)
2594 || EXPRESSION_CLASS_P (elt))
2595 ? TREE_OPERAND (elt, 0) : 0))
2596 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2597 return elt;
2598
2599 for (elt = obj; elt != 0;
2600 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2601 || TREE_CODE (elt) == COND_EXPR)
2602 ? TREE_OPERAND (elt, 1)
2603 : (REFERENCE_CLASS_P (elt)
2604 || UNARY_CLASS_P (elt)
2605 || BINARY_CLASS_P (elt)
2606 || VL_EXP_CLASS_P (elt)
2607 || EXPRESSION_CLASS_P (elt))
2608 ? TREE_OPERAND (elt, 0) : 0))
2609 if (POINTER_TYPE_P (TREE_TYPE (elt))
2610 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2611 == need_type))
2612 return fold_build1 (INDIRECT_REF, need_type, elt);
2613
2614 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2615 survives until RTL generation, there will be an error. */
2616 return exp;
2617 }
2618
2619 /* TREE_LIST is special because we need to look at TREE_VALUE
2620 and TREE_CHAIN, not TREE_OPERANDS. */
2621 else if (code == TREE_LIST)
2622 {
2623 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2624 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2625 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2626 return exp;
2627
2628 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2629 }
2630 else
2631 switch (TREE_CODE_CLASS (code))
2632 {
2633 case tcc_constant:
2634 case tcc_declaration:
2635 return exp;
2636
2637 case tcc_exceptional:
2638 case tcc_unary:
2639 case tcc_binary:
2640 case tcc_comparison:
2641 case tcc_expression:
2642 case tcc_reference:
2643 case tcc_statement:
2644 switch (TREE_CODE_LENGTH (code))
2645 {
2646 case 0:
2647 return exp;
2648
2649 case 1:
2650 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2651 if (op0 == TREE_OPERAND (exp, 0))
2652 return exp;
2653 else
2654 return fold_build1 (code, TREE_TYPE (exp), op0);
2655
2656 case 2:
2657 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2658 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2659
2660 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2661 return exp;
2662 else
2663 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2664
2665 case 3:
2666 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2667 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2668 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2669
2670 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2671 && op2 == TREE_OPERAND (exp, 2))
2672 return exp;
2673 else
2674 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2675
2676 case 4:
2677 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2678 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2679 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2680 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2681
2682 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2683 && op2 == TREE_OPERAND (exp, 2)
2684 && op3 == TREE_OPERAND (exp, 3))
2685 return exp;
2686 else
2687 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2688
2689 default:
2690 gcc_unreachable ();
2691 }
2692 break;
2693
2694 case tcc_vl_exp:
2695 {
2696 tree copy = NULL_TREE;
2697 int i;
2698 int n = TREE_OPERAND_LENGTH (exp);
2699 for (i = 1; i < n; i++)
2700 {
2701 tree op = TREE_OPERAND (exp, i);
2702 tree newop = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
2703 if (newop != op)
2704 {
2705 if (!copy)
2706 copy = copy_node (exp);
2707 TREE_OPERAND (copy, i) = newop;
2708 }
2709 }
2710 if (copy)
2711 return fold (copy);
2712 else
2713 return exp;
2714 }
2715
2716 default:
2717 gcc_unreachable ();
2718 }
2719 }
2720 \f
2721 /* Stabilize a reference so that we can use it any number of times
2722 without causing its operands to be evaluated more than once.
2723 Returns the stabilized reference. This works by means of save_expr,
2724 so see the caveats in the comments about save_expr.
2725
2726 Also allows conversion expressions whose operands are references.
2727 Any other kind of expression is returned unchanged. */
2728
2729 tree
2730 stabilize_reference (tree ref)
2731 {
2732 tree result;
2733 enum tree_code code = TREE_CODE (ref);
2734
2735 switch (code)
2736 {
2737 case VAR_DECL:
2738 case PARM_DECL:
2739 case RESULT_DECL:
2740 /* No action is needed in this case. */
2741 return ref;
2742
2743 case NOP_EXPR:
2744 case CONVERT_EXPR:
2745 case FLOAT_EXPR:
2746 case FIX_TRUNC_EXPR:
2747 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2748 break;
2749
2750 case INDIRECT_REF:
2751 result = build_nt (INDIRECT_REF,
2752 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2753 break;
2754
2755 case COMPONENT_REF:
2756 result = build_nt (COMPONENT_REF,
2757 stabilize_reference (TREE_OPERAND (ref, 0)),
2758 TREE_OPERAND (ref, 1), NULL_TREE);
2759 break;
2760
2761 case BIT_FIELD_REF:
2762 result = build_nt (BIT_FIELD_REF,
2763 stabilize_reference (TREE_OPERAND (ref, 0)),
2764 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2765 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2766 break;
2767
2768 case ARRAY_REF:
2769 result = build_nt (ARRAY_REF,
2770 stabilize_reference (TREE_OPERAND (ref, 0)),
2771 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2772 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2773 break;
2774
2775 case ARRAY_RANGE_REF:
2776 result = build_nt (ARRAY_RANGE_REF,
2777 stabilize_reference (TREE_OPERAND (ref, 0)),
2778 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2779 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2780 break;
2781
2782 case COMPOUND_EXPR:
2783 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2784 it wouldn't be ignored. This matters when dealing with
2785 volatiles. */
2786 return stabilize_reference_1 (ref);
2787
2788 /* If arg isn't a kind of lvalue we recognize, make no change.
2789 Caller should recognize the error for an invalid lvalue. */
2790 default:
2791 return ref;
2792
2793 case ERROR_MARK:
2794 return error_mark_node;
2795 }
2796
2797 TREE_TYPE (result) = TREE_TYPE (ref);
2798 TREE_READONLY (result) = TREE_READONLY (ref);
2799 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2800 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2801
2802 return result;
2803 }
2804
2805 /* Subroutine of stabilize_reference; this is called for subtrees of
2806 references. Any expression with side-effects must be put in a SAVE_EXPR
2807 to ensure that it is only evaluated once.
2808
2809 We don't put SAVE_EXPR nodes around everything, because assigning very
2810 simple expressions to temporaries causes us to miss good opportunities
2811 for optimizations. Among other things, the opportunity to fold in the
2812 addition of a constant into an addressing mode often gets lost, e.g.
2813 "y[i+1] += x;". In general, we take the approach that we should not make
2814 an assignment unless we are forced into it - i.e., that any non-side effect
2815 operator should be allowed, and that cse should take care of coalescing
2816 multiple utterances of the same expression should that prove fruitful. */
2817
2818 tree
2819 stabilize_reference_1 (tree e)
2820 {
2821 tree result;
2822 enum tree_code code = TREE_CODE (e);
2823
2824 /* We cannot ignore const expressions because it might be a reference
2825 to a const array but whose index contains side-effects. But we can
2826 ignore things that are actual constant or that already have been
2827 handled by this function. */
2828
2829 if (TREE_INVARIANT (e))
2830 return e;
2831
2832 switch (TREE_CODE_CLASS (code))
2833 {
2834 case tcc_exceptional:
2835 case tcc_type:
2836 case tcc_declaration:
2837 case tcc_comparison:
2838 case tcc_statement:
2839 case tcc_expression:
2840 case tcc_reference:
2841 case tcc_vl_exp:
2842 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2843 so that it will only be evaluated once. */
2844 /* The reference (r) and comparison (<) classes could be handled as
2845 below, but it is generally faster to only evaluate them once. */
2846 if (TREE_SIDE_EFFECTS (e))
2847 return save_expr (e);
2848 return e;
2849
2850 case tcc_constant:
2851 /* Constants need no processing. In fact, we should never reach
2852 here. */
2853 return e;
2854
2855 case tcc_binary:
2856 /* Division is slow and tends to be compiled with jumps,
2857 especially the division by powers of 2 that is often
2858 found inside of an array reference. So do it just once. */
2859 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2860 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2861 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2862 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2863 return save_expr (e);
2864 /* Recursively stabilize each operand. */
2865 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2866 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2867 break;
2868
2869 case tcc_unary:
2870 /* Recursively stabilize each operand. */
2871 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2872 break;
2873
2874 default:
2875 gcc_unreachable ();
2876 }
2877
2878 TREE_TYPE (result) = TREE_TYPE (e);
2879 TREE_READONLY (result) = TREE_READONLY (e);
2880 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2881 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2882 TREE_INVARIANT (result) = 1;
2883
2884 return result;
2885 }
2886 \f
2887 /* Low-level constructors for expressions. */
2888
2889 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2890 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2891
2892 void
2893 recompute_tree_invariant_for_addr_expr (tree t)
2894 {
2895 tree node;
2896 bool tc = true, ti = true, se = false;
2897
2898 /* We started out assuming this address is both invariant and constant, but
2899 does not have side effects. Now go down any handled components and see if
2900 any of them involve offsets that are either non-constant or non-invariant.
2901 Also check for side-effects.
2902
2903 ??? Note that this code makes no attempt to deal with the case where
2904 taking the address of something causes a copy due to misalignment. */
2905
2906 #define UPDATE_TITCSE(NODE) \
2907 do { tree _node = (NODE); \
2908 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2909 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2910 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2911
2912 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2913 node = TREE_OPERAND (node, 0))
2914 {
2915 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2916 array reference (probably made temporarily by the G++ front end),
2917 so ignore all the operands. */
2918 if ((TREE_CODE (node) == ARRAY_REF
2919 || TREE_CODE (node) == ARRAY_RANGE_REF)
2920 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2921 {
2922 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2923 if (TREE_OPERAND (node, 2))
2924 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2925 if (TREE_OPERAND (node, 3))
2926 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2927 }
2928 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2929 FIELD_DECL, apparently. The G++ front end can put something else
2930 there, at least temporarily. */
2931 else if (TREE_CODE (node) == COMPONENT_REF
2932 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2933 {
2934 if (TREE_OPERAND (node, 2))
2935 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2936 }
2937 else if (TREE_CODE (node) == BIT_FIELD_REF)
2938 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2939 }
2940
2941 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2942
2943 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2944 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2945 invariant and constant if the decl is static. It's also invariant if it's
2946 a decl in the current function. Taking the address of a volatile variable
2947 is not volatile. If it's a constant, the address is both invariant and
2948 constant. Otherwise it's neither. */
2949 if (TREE_CODE (node) == INDIRECT_REF)
2950 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2951 else if (DECL_P (node))
2952 {
2953 if (staticp (node))
2954 ;
2955 else if (decl_function_context (node) == current_function_decl
2956 /* Addresses of thread-local variables are invariant. */
2957 || (TREE_CODE (node) == VAR_DECL
2958 && DECL_THREAD_LOCAL_P (node)))
2959 tc = false;
2960 else
2961 ti = tc = false;
2962 }
2963 else if (CONSTANT_CLASS_P (node))
2964 ;
2965 else
2966 {
2967 ti = tc = false;
2968 se |= TREE_SIDE_EFFECTS (node);
2969 }
2970
2971 TREE_CONSTANT (t) = tc;
2972 TREE_INVARIANT (t) = ti;
2973 TREE_SIDE_EFFECTS (t) = se;
2974 #undef UPDATE_TITCSE
2975 }
2976
2977 /* Build an expression of code CODE, data type TYPE, and operands as
2978 specified. Expressions and reference nodes can be created this way.
2979 Constants, decls, types and misc nodes cannot be.
2980
2981 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2982 enough for all extant tree codes. */
2983
2984 tree
2985 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2986 {
2987 tree t;
2988
2989 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2990
2991 t = make_node_stat (code PASS_MEM_STAT);
2992 TREE_TYPE (t) = tt;
2993
2994 return t;
2995 }
2996
2997 tree
2998 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2999 {
3000 int length = sizeof (struct tree_exp);
3001 #ifdef GATHER_STATISTICS
3002 tree_node_kind kind;
3003 #endif
3004 tree t;
3005
3006 #ifdef GATHER_STATISTICS
3007 switch (TREE_CODE_CLASS (code))
3008 {
3009 case tcc_statement: /* an expression with side effects */
3010 kind = s_kind;
3011 break;
3012 case tcc_reference: /* a reference */
3013 kind = r_kind;
3014 break;
3015 default:
3016 kind = e_kind;
3017 break;
3018 }
3019
3020 tree_node_counts[(int) kind]++;
3021 tree_node_sizes[(int) kind] += length;
3022 #endif
3023
3024 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3025
3026 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
3027
3028 memset (t, 0, sizeof (struct tree_common));
3029
3030 TREE_SET_CODE (t, code);
3031
3032 TREE_TYPE (t) = type;
3033 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3034 TREE_OPERAND (t, 0) = node;
3035 TREE_BLOCK (t) = NULL_TREE;
3036 if (node && !TYPE_P (node))
3037 {
3038 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3039 TREE_READONLY (t) = TREE_READONLY (node);
3040 }
3041
3042 if (TREE_CODE_CLASS (code) == tcc_statement)
3043 TREE_SIDE_EFFECTS (t) = 1;
3044 else switch (code)
3045 {
3046 case VA_ARG_EXPR:
3047 /* All of these have side-effects, no matter what their
3048 operands are. */
3049 TREE_SIDE_EFFECTS (t) = 1;
3050 TREE_READONLY (t) = 0;
3051 break;
3052
3053 case MISALIGNED_INDIRECT_REF:
3054 case ALIGN_INDIRECT_REF:
3055 case INDIRECT_REF:
3056 /* Whether a dereference is readonly has nothing to do with whether
3057 its operand is readonly. */
3058 TREE_READONLY (t) = 0;
3059 break;
3060
3061 case ADDR_EXPR:
3062 if (node)
3063 recompute_tree_invariant_for_addr_expr (t);
3064 break;
3065
3066 default:
3067 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3068 && node && !TYPE_P (node)
3069 && TREE_CONSTANT (node))
3070 TREE_CONSTANT (t) = 1;
3071 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3072 && node && TREE_INVARIANT (node))
3073 TREE_INVARIANT (t) = 1;
3074 if (TREE_CODE_CLASS (code) == tcc_reference
3075 && node && TREE_THIS_VOLATILE (node))
3076 TREE_THIS_VOLATILE (t) = 1;
3077 break;
3078 }
3079
3080 return t;
3081 }
3082
3083 #define PROCESS_ARG(N) \
3084 do { \
3085 TREE_OPERAND (t, N) = arg##N; \
3086 if (arg##N &&!TYPE_P (arg##N)) \
3087 { \
3088 if (TREE_SIDE_EFFECTS (arg##N)) \
3089 side_effects = 1; \
3090 if (!TREE_READONLY (arg##N)) \
3091 read_only = 0; \
3092 if (!TREE_CONSTANT (arg##N)) \
3093 constant = 0; \
3094 if (!TREE_INVARIANT (arg##N)) \
3095 invariant = 0; \
3096 } \
3097 } while (0)
3098
3099 tree
3100 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3101 {
3102 bool constant, read_only, side_effects, invariant;
3103 tree t;
3104
3105 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3106
3107 #if 1
3108 /* FIXME tuples: Statement's aren't expressions! */
3109 if (code == GIMPLE_MODIFY_STMT)
3110 return build_gimple_modify_stmt_stat (arg0, arg1 PASS_MEM_STAT);
3111 #else
3112 /* Must use build_gimple_modify_stmt to construct GIMPLE_MODIFY_STMTs. */
3113 gcc_assert (code != GIMPLE_MODIFY_STMT);
3114 #endif
3115
3116 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3117 && arg0 && arg1 && tt && POINTER_TYPE_P (tt))
3118 gcc_assert (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST);
3119
3120 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3121 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3122 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3123 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3124
3125 t = make_node_stat (code PASS_MEM_STAT);
3126 TREE_TYPE (t) = tt;
3127
3128 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3129 result based on those same flags for the arguments. But if the
3130 arguments aren't really even `tree' expressions, we shouldn't be trying
3131 to do this. */
3132
3133 /* Expressions without side effects may be constant if their
3134 arguments are as well. */
3135 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3136 || TREE_CODE_CLASS (code) == tcc_binary);
3137 read_only = 1;
3138 side_effects = TREE_SIDE_EFFECTS (t);
3139 invariant = constant;
3140
3141 PROCESS_ARG(0);
3142 PROCESS_ARG(1);
3143
3144 TREE_READONLY (t) = read_only;
3145 TREE_CONSTANT (t) = constant;
3146 TREE_INVARIANT (t) = invariant;
3147 TREE_SIDE_EFFECTS (t) = side_effects;
3148 TREE_THIS_VOLATILE (t)
3149 = (TREE_CODE_CLASS (code) == tcc_reference
3150 && arg0 && TREE_THIS_VOLATILE (arg0));
3151
3152 return t;
3153 }
3154
3155
3156 /* Build a GIMPLE_MODIFY_STMT node. This tree code doesn't have a
3157 type, so we can't use build2 (a.k.a. build2_stat). */
3158
3159 tree
3160 build_gimple_modify_stmt_stat (tree arg0, tree arg1 MEM_STAT_DECL)
3161 {
3162 tree t;
3163
3164 t = make_node_stat (GIMPLE_MODIFY_STMT PASS_MEM_STAT);
3165 /* ?? We don't care about setting flags for tuples... */
3166 GIMPLE_STMT_OPERAND (t, 0) = arg0;
3167 GIMPLE_STMT_OPERAND (t, 1) = arg1;
3168 return t;
3169 }
3170
3171 tree
3172 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3173 tree arg2 MEM_STAT_DECL)
3174 {
3175 bool constant, read_only, side_effects, invariant;
3176 tree t;
3177
3178 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3179 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3180
3181 t = make_node_stat (code PASS_MEM_STAT);
3182 TREE_TYPE (t) = tt;
3183
3184 /* As a special exception, if COND_EXPR has NULL branches, we
3185 assume that it is a gimple statement and always consider
3186 it to have side effects. */
3187 if (code == COND_EXPR
3188 && tt == void_type_node
3189 && arg1 == NULL_TREE
3190 && arg2 == NULL_TREE)
3191 side_effects = true;
3192 else
3193 side_effects = TREE_SIDE_EFFECTS (t);
3194
3195 PROCESS_ARG(0);
3196 PROCESS_ARG(1);
3197 PROCESS_ARG(2);
3198
3199 TREE_SIDE_EFFECTS (t) = side_effects;
3200 TREE_THIS_VOLATILE (t)
3201 = (TREE_CODE_CLASS (code) == tcc_reference
3202 && arg0 && TREE_THIS_VOLATILE (arg0));
3203
3204 return t;
3205 }
3206
3207 tree
3208 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3209 tree arg2, tree arg3 MEM_STAT_DECL)
3210 {
3211 bool constant, read_only, side_effects, invariant;
3212 tree t;
3213
3214 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3215
3216 t = make_node_stat (code PASS_MEM_STAT);
3217 TREE_TYPE (t) = tt;
3218
3219 side_effects = TREE_SIDE_EFFECTS (t);
3220
3221 PROCESS_ARG(0);
3222 PROCESS_ARG(1);
3223 PROCESS_ARG(2);
3224 PROCESS_ARG(3);
3225
3226 TREE_SIDE_EFFECTS (t) = side_effects;
3227 TREE_THIS_VOLATILE (t)
3228 = (TREE_CODE_CLASS (code) == tcc_reference
3229 && arg0 && TREE_THIS_VOLATILE (arg0));
3230
3231 return t;
3232 }
3233
3234 tree
3235 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3236 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3237 {
3238 bool constant, read_only, side_effects, invariant;
3239 tree t;
3240
3241 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3242
3243 t = make_node_stat (code PASS_MEM_STAT);
3244 TREE_TYPE (t) = tt;
3245
3246 side_effects = TREE_SIDE_EFFECTS (t);
3247
3248 PROCESS_ARG(0);
3249 PROCESS_ARG(1);
3250 PROCESS_ARG(2);
3251 PROCESS_ARG(3);
3252 PROCESS_ARG(4);
3253
3254 TREE_SIDE_EFFECTS (t) = side_effects;
3255 TREE_THIS_VOLATILE (t)
3256 = (TREE_CODE_CLASS (code) == tcc_reference
3257 && arg0 && TREE_THIS_VOLATILE (arg0));
3258
3259 return t;
3260 }
3261
3262 tree
3263 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3264 tree arg2, tree arg3, tree arg4, tree arg5,
3265 tree arg6 MEM_STAT_DECL)
3266 {
3267 bool constant, read_only, side_effects, invariant;
3268 tree t;
3269
3270 gcc_assert (code == TARGET_MEM_REF);
3271
3272 t = make_node_stat (code PASS_MEM_STAT);
3273 TREE_TYPE (t) = tt;
3274
3275 side_effects = TREE_SIDE_EFFECTS (t);
3276
3277 PROCESS_ARG(0);
3278 PROCESS_ARG(1);
3279 PROCESS_ARG(2);
3280 PROCESS_ARG(3);
3281 PROCESS_ARG(4);
3282 PROCESS_ARG(5);
3283 PROCESS_ARG(6);
3284
3285 TREE_SIDE_EFFECTS (t) = side_effects;
3286 TREE_THIS_VOLATILE (t) = 0;
3287
3288 return t;
3289 }
3290
3291 /* Similar except don't specify the TREE_TYPE
3292 and leave the TREE_SIDE_EFFECTS as 0.
3293 It is permissible for arguments to be null,
3294 or even garbage if their values do not matter. */
3295
3296 tree
3297 build_nt (enum tree_code code, ...)
3298 {
3299 tree t;
3300 int length;
3301 int i;
3302 va_list p;
3303
3304 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3305
3306 va_start (p, code);
3307
3308 t = make_node (code);
3309 length = TREE_CODE_LENGTH (code);
3310
3311 for (i = 0; i < length; i++)
3312 TREE_OPERAND (t, i) = va_arg (p, tree);
3313
3314 va_end (p);
3315 return t;
3316 }
3317
3318 /* Similar to build_nt, but for creating a CALL_EXPR object with
3319 ARGLIST passed as a list. */
3320
3321 tree
3322 build_nt_call_list (tree fn, tree arglist)
3323 {
3324 tree t;
3325 int i;
3326
3327 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3328 CALL_EXPR_FN (t) = fn;
3329 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3330 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3331 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3332 return t;
3333 }
3334 \f
3335 /* Return true if the DECL_UID in both trees are equal. */
3336
3337 int
3338 uid_decl_map_eq (const void *va, const void *vb)
3339 {
3340 const_tree a = (const_tree) va;
3341 const_tree b = (const_tree) vb;
3342 return (a->decl_minimal.uid == b->decl_minimal.uid);
3343 }
3344
3345 /* Hash a tree in a uid_decl_map. */
3346
3347 unsigned int
3348 uid_decl_map_hash (const void *item)
3349 {
3350 return ((const_tree)item)->decl_minimal.uid;
3351 }
3352
3353 /* Insert the declaration NODE into the map mapping its unique uid
3354 back to the tree. */
3355
3356 static void
3357 insert_decl_to_uid_decl_map (tree node)
3358 {
3359 void **slot;
3360 struct tree_decl_minimal key;
3361
3362 key.uid = DECL_UID (node);
3363 slot = htab_find_slot_with_hash (decl_for_uid_map,
3364 &key, DECL_UID (node), INSERT);
3365
3366 /* We should never try to re-insert a decl with the same uid.
3367 ??? The C++ frontend breaks this invariant. Hopefully in a
3368 non-fatal way, so just overwrite the slot in this case. */
3369 #if 0
3370 gcc_assert (!*slot);
3371 #endif
3372
3373 *(tree *)slot = node;
3374 }
3375
3376 /* Lookup the declaration tree from its unique DECL_UID UID. Returns
3377 the tree node with DECL_UID UID or NULL, if this node was collected. */
3378
3379 tree
3380 lookup_decl_from_uid (int uid)
3381 {
3382 struct tree_decl_minimal key;
3383
3384 key.uid = uid;
3385 return (tree) htab_find_with_hash (decl_for_uid_map, &key, uid);
3386 }
3387
3388 /* Remove the declaration tree DECL from the global UID to decl map.
3389 This needs to be called if you ggc_free a decl tree, otherwise
3390 garbage collection will take care of it. */
3391
3392 void
3393 remove_decl_from_map (tree decl)
3394 {
3395 struct tree_decl_minimal key;
3396
3397 key.uid = DECL_UID (decl);
3398 #if ENABLE_CHECKING
3399 gcc_assert (decl == htab_find_with_hash (decl_for_uid_map, &key, key.uid));
3400 #endif
3401 htab_remove_elt_with_hash (decl_for_uid_map, &key, key.uid);
3402 }
3403
3404 /* Print out the statistics for the decl_for_uid_map hash table. */
3405
3406 static void
3407 print_decl_for_uid_map_statistics (void)
3408 {
3409 fprintf (stderr, "DECL_FOR_UID_MAP hash: size %ld, %ld elements, %f collisions\n",
3410 (long) htab_size (decl_for_uid_map),
3411 (long) htab_elements (decl_for_uid_map),
3412 htab_collisions (decl_for_uid_map));
3413 }
3414
3415 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3416 We do NOT enter this node in any sort of symbol table.
3417
3418 layout_decl is used to set up the decl's storage layout.
3419 Other slots are initialized to 0 or null pointers. */
3420
3421 tree
3422 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3423 {
3424 tree t;
3425
3426 t = make_node_stat (code PASS_MEM_STAT);
3427
3428 /* if (type == error_mark_node)
3429 type = integer_type_node; */
3430 /* That is not done, deliberately, so that having error_mark_node
3431 as the type can suppress useless errors in the use of this variable. */
3432
3433 DECL_NAME (t) = name;
3434 TREE_TYPE (t) = type;
3435
3436 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3437 layout_decl (t, 0);
3438
3439 return t;
3440 }
3441
3442 /* Builds and returns function declaration with NAME and TYPE. */
3443
3444 tree
3445 build_fn_decl (const char *name, tree type)
3446 {
3447 tree id = get_identifier (name);
3448 tree decl = build_decl (FUNCTION_DECL, id, type);
3449
3450 DECL_EXTERNAL (decl) = 1;
3451 TREE_PUBLIC (decl) = 1;
3452 DECL_ARTIFICIAL (decl) = 1;
3453 TREE_NOTHROW (decl) = 1;
3454
3455 return decl;
3456 }
3457
3458 \f
3459 /* BLOCK nodes are used to represent the structure of binding contours
3460 and declarations, once those contours have been exited and their contents
3461 compiled. This information is used for outputting debugging info. */
3462
3463 tree
3464 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3465 {
3466 tree block = make_node (BLOCK);
3467
3468 BLOCK_VARS (block) = vars;
3469 BLOCK_SUBBLOCKS (block) = subblocks;
3470 BLOCK_SUPERCONTEXT (block) = supercontext;
3471 BLOCK_CHAIN (block) = chain;
3472 return block;
3473 }
3474
3475 expanded_location
3476 expand_location (source_location loc)
3477 {
3478 expanded_location xloc;
3479 if (loc == 0)
3480 {
3481 xloc.file = NULL;
3482 xloc.line = 0;
3483 xloc.column = 0;
3484 }
3485 else
3486 {
3487 const struct line_map *map = linemap_lookup (line_table, loc);
3488 xloc.file = map->to_file;
3489 xloc.line = SOURCE_LINE (map, loc);
3490 xloc.column = SOURCE_COLUMN (map, loc);
3491 };
3492 return xloc;
3493 }
3494
3495 \f
3496 /* Source location accessor functions. */
3497
3498
3499 /* The source location of this expression. Non-tree_exp nodes such as
3500 decls and constants can be shared among multiple locations, so
3501 return nothing. */
3502 location_t
3503 expr_location (const_tree node)
3504 {
3505 if (GIMPLE_STMT_P (node))
3506 return GIMPLE_STMT_LOCUS (node);
3507 return EXPR_P (node) ? node->exp.locus : UNKNOWN_LOCATION;
3508 }
3509
3510 void
3511 set_expr_location (tree node, location_t locus)
3512 {
3513 if (GIMPLE_STMT_P (node))
3514 GIMPLE_STMT_LOCUS (node) = locus;
3515 else
3516 EXPR_CHECK (node)->exp.locus = locus;
3517 }
3518
3519 bool
3520 expr_has_location (const_tree node)
3521 {
3522 return expr_location (node) != UNKNOWN_LOCATION;
3523 }
3524
3525 source_location *
3526 expr_locus (const_tree node)
3527 {
3528 if (GIMPLE_STMT_P (node))
3529 return CONST_CAST (source_location *, &GIMPLE_STMT_LOCUS (node));
3530 return (EXPR_P (node)
3531 ? CONST_CAST (source_location *, &node->exp.locus)
3532 : (source_location *) NULL);
3533 }
3534
3535 void
3536 set_expr_locus (tree node, source_location *loc)
3537 {
3538 if (loc == NULL)
3539 {
3540 if (GIMPLE_STMT_P (node))
3541 GIMPLE_STMT_LOCUS (node) = UNKNOWN_LOCATION;
3542 else
3543 EXPR_CHECK (node)->exp.locus = UNKNOWN_LOCATION;
3544 }
3545 else
3546 {
3547 if (GIMPLE_STMT_P (node))
3548 GIMPLE_STMT_LOCUS (node) = *loc;
3549 else
3550 EXPR_CHECK (node)->exp.locus = *loc;
3551 }
3552 }
3553
3554 /* Return the file name of the location of NODE. */
3555 const char *
3556 expr_filename (const_tree node)
3557 {
3558 if (GIMPLE_STMT_P (node))
3559 return LOCATION_FILE (GIMPLE_STMT_LOCUS (node));
3560 return LOCATION_FILE (EXPR_CHECK (node)->exp.locus);
3561 }
3562
3563 /* Return the line number of the location of NODE. */
3564 int
3565 expr_lineno (const_tree node)
3566 {
3567 if (GIMPLE_STMT_P (node))
3568 return LOCATION_LINE (GIMPLE_STMT_LOCUS (node));
3569 return LOCATION_LINE (EXPR_CHECK (node)->exp.locus);
3570 }
3571
3572 \f
3573 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3574 is ATTRIBUTE. */
3575
3576 tree
3577 build_decl_attribute_variant (tree ddecl, tree attribute)
3578 {
3579 DECL_ATTRIBUTES (ddecl) = attribute;
3580 return ddecl;
3581 }
3582
3583 /* Borrowed from hashtab.c iterative_hash implementation. */
3584 #define mix(a,b,c) \
3585 { \
3586 a -= b; a -= c; a ^= (c>>13); \
3587 b -= c; b -= a; b ^= (a<< 8); \
3588 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3589 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3590 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3591 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3592 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3593 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3594 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3595 }
3596
3597
3598 /* Produce good hash value combining VAL and VAL2. */
3599 static inline hashval_t
3600 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3601 {
3602 /* the golden ratio; an arbitrary value. */
3603 hashval_t a = 0x9e3779b9;
3604
3605 mix (a, val, val2);
3606 return val2;
3607 }
3608
3609 /* Produce good hash value combining PTR and VAL2. */
3610 static inline hashval_t
3611 iterative_hash_pointer (const void *ptr, hashval_t val2)
3612 {
3613 if (sizeof (ptr) == sizeof (hashval_t))
3614 return iterative_hash_hashval_t ((size_t) ptr, val2);
3615 else
3616 {
3617 hashval_t a = (hashval_t) (size_t) ptr;
3618 /* Avoid warnings about shifting of more than the width of the type on
3619 hosts that won't execute this path. */
3620 int zero = 0;
3621 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3622 mix (a, b, val2);
3623 return val2;
3624 }
3625 }
3626
3627 /* Produce good hash value combining VAL and VAL2. */
3628 static inline hashval_t
3629 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3630 {
3631 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3632 return iterative_hash_hashval_t (val, val2);
3633 else
3634 {
3635 hashval_t a = (hashval_t) val;
3636 /* Avoid warnings about shifting of more than the width of the type on
3637 hosts that won't execute this path. */
3638 int zero = 0;
3639 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3640 mix (a, b, val2);
3641 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3642 {
3643 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3644 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3645 mix (a, b, val2);
3646 }
3647 return val2;
3648 }
3649 }
3650
3651 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3652 is ATTRIBUTE and its qualifiers are QUALS.
3653
3654 Record such modified types already made so we don't make duplicates. */
3655
3656 static tree
3657 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3658 {
3659 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3660 {
3661 hashval_t hashcode = 0;
3662 tree ntype;
3663 enum tree_code code = TREE_CODE (ttype);
3664
3665 /* Building a distinct copy of a tagged type is inappropriate; it
3666 causes breakage in code that expects there to be a one-to-one
3667 relationship between a struct and its fields.
3668 build_duplicate_type is another solution (as used in
3669 handle_transparent_union_attribute), but that doesn't play well
3670 with the stronger C++ type identity model. */
3671 if (TREE_CODE (ttype) == RECORD_TYPE
3672 || TREE_CODE (ttype) == UNION_TYPE
3673 || TREE_CODE (ttype) == QUAL_UNION_TYPE
3674 || TREE_CODE (ttype) == ENUMERAL_TYPE)
3675 {
3676 warning (OPT_Wattributes,
3677 "ignoring attributes applied to %qT after definition",
3678 TYPE_MAIN_VARIANT (ttype));
3679 return build_qualified_type (ttype, quals);
3680 }
3681
3682 ntype = build_distinct_type_copy (ttype);
3683
3684 TYPE_ATTRIBUTES (ntype) = attribute;
3685 set_type_quals (ntype, TYPE_UNQUALIFIED);
3686
3687 hashcode = iterative_hash_object (code, hashcode);
3688 if (TREE_TYPE (ntype))
3689 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3690 hashcode);
3691 hashcode = attribute_hash_list (attribute, hashcode);
3692
3693 switch (TREE_CODE (ntype))
3694 {
3695 case FUNCTION_TYPE:
3696 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3697 break;
3698 case ARRAY_TYPE:
3699 if (TYPE_DOMAIN (ntype))
3700 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3701 hashcode);
3702 break;
3703 case INTEGER_TYPE:
3704 hashcode = iterative_hash_object
3705 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3706 hashcode = iterative_hash_object
3707 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3708 break;
3709 case REAL_TYPE:
3710 case FIXED_POINT_TYPE:
3711 {
3712 unsigned int precision = TYPE_PRECISION (ntype);
3713 hashcode = iterative_hash_object (precision, hashcode);
3714 }
3715 break;
3716 default:
3717 break;
3718 }
3719
3720 ntype = type_hash_canon (hashcode, ntype);
3721
3722 /* If the target-dependent attributes make NTYPE different from
3723 its canonical type, we will need to use structural equality
3724 checks for this qualified type. */
3725 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
3726 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
3727 || !targetm.comp_type_attributes (ntype, ttype))
3728 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3729 else
3730 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
3731
3732 ttype = build_qualified_type (ntype, quals);
3733 }
3734 else if (TYPE_QUALS (ttype) != quals)
3735 ttype = build_qualified_type (ttype, quals);
3736
3737 return ttype;
3738 }
3739
3740
3741 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3742 is ATTRIBUTE.
3743
3744 Record such modified types already made so we don't make duplicates. */
3745
3746 tree
3747 build_type_attribute_variant (tree ttype, tree attribute)
3748 {
3749 return build_type_attribute_qual_variant (ttype, attribute,
3750 TYPE_QUALS (ttype));
3751 }
3752
3753 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3754 or zero if not.
3755
3756 We try both `text' and `__text__', ATTR may be either one. */
3757 /* ??? It might be a reasonable simplification to require ATTR to be only
3758 `text'. One might then also require attribute lists to be stored in
3759 their canonicalized form. */
3760
3761 static int
3762 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
3763 {
3764 int ident_len;
3765 const char *p;
3766
3767 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3768 return 0;
3769
3770 p = IDENTIFIER_POINTER (ident);
3771 ident_len = IDENTIFIER_LENGTH (ident);
3772
3773 if (ident_len == attr_len
3774 && strcmp (attr, p) == 0)
3775 return 1;
3776
3777 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3778 if (attr[0] == '_')
3779 {
3780 gcc_assert (attr[1] == '_');
3781 gcc_assert (attr[attr_len - 2] == '_');
3782 gcc_assert (attr[attr_len - 1] == '_');
3783 if (ident_len == attr_len - 4
3784 && strncmp (attr + 2, p, attr_len - 4) == 0)
3785 return 1;
3786 }
3787 else
3788 {
3789 if (ident_len == attr_len + 4
3790 && p[0] == '_' && p[1] == '_'
3791 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3792 && strncmp (attr, p + 2, attr_len) == 0)
3793 return 1;
3794 }
3795
3796 return 0;
3797 }
3798
3799 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3800 or zero if not.
3801
3802 We try both `text' and `__text__', ATTR may be either one. */
3803
3804 int
3805 is_attribute_p (const char *attr, const_tree ident)
3806 {
3807 return is_attribute_with_length_p (attr, strlen (attr), ident);
3808 }
3809
3810 /* Given an attribute name and a list of attributes, return a pointer to the
3811 attribute's list element if the attribute is part of the list, or NULL_TREE
3812 if not found. If the attribute appears more than once, this only
3813 returns the first occurrence; the TREE_CHAIN of the return value should
3814 be passed back in if further occurrences are wanted. */
3815
3816 tree
3817 lookup_attribute (const char *attr_name, tree list)
3818 {
3819 tree l;
3820 size_t attr_len = strlen (attr_name);
3821
3822 for (l = list; l; l = TREE_CHAIN (l))
3823 {
3824 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3825 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3826 return l;
3827 }
3828 return NULL_TREE;
3829 }
3830
3831 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3832 modified list. */
3833
3834 tree
3835 remove_attribute (const char *attr_name, tree list)
3836 {
3837 tree *p;
3838 size_t attr_len = strlen (attr_name);
3839
3840 for (p = &list; *p; )
3841 {
3842 tree l = *p;
3843 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3844 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3845 *p = TREE_CHAIN (l);
3846 else
3847 p = &TREE_CHAIN (l);
3848 }
3849
3850 return list;
3851 }
3852
3853 /* Return an attribute list that is the union of a1 and a2. */
3854
3855 tree
3856 merge_attributes (tree a1, tree a2)
3857 {
3858 tree attributes;
3859
3860 /* Either one unset? Take the set one. */
3861
3862 if ((attributes = a1) == 0)
3863 attributes = a2;
3864
3865 /* One that completely contains the other? Take it. */
3866
3867 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3868 {
3869 if (attribute_list_contained (a2, a1))
3870 attributes = a2;
3871 else
3872 {
3873 /* Pick the longest list, and hang on the other list. */
3874
3875 if (list_length (a1) < list_length (a2))
3876 attributes = a2, a2 = a1;
3877
3878 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3879 {
3880 tree a;
3881 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3882 attributes);
3883 a != NULL_TREE;
3884 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3885 TREE_CHAIN (a)))
3886 {
3887 if (TREE_VALUE (a) != NULL
3888 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3889 && TREE_VALUE (a2) != NULL
3890 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3891 {
3892 if (simple_cst_list_equal (TREE_VALUE (a),
3893 TREE_VALUE (a2)) == 1)
3894 break;
3895 }
3896 else if (simple_cst_equal (TREE_VALUE (a),
3897 TREE_VALUE (a2)) == 1)
3898 break;
3899 }
3900 if (a == NULL_TREE)
3901 {
3902 a1 = copy_node (a2);
3903 TREE_CHAIN (a1) = attributes;
3904 attributes = a1;
3905 }
3906 }
3907 }
3908 }
3909 return attributes;
3910 }
3911
3912 /* Given types T1 and T2, merge their attributes and return
3913 the result. */
3914
3915 tree
3916 merge_type_attributes (tree t1, tree t2)
3917 {
3918 return merge_attributes (TYPE_ATTRIBUTES (t1),
3919 TYPE_ATTRIBUTES (t2));
3920 }
3921
3922 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3923 the result. */
3924
3925 tree
3926 merge_decl_attributes (tree olddecl, tree newdecl)
3927 {
3928 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3929 DECL_ATTRIBUTES (newdecl));
3930 }
3931
3932 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3933
3934 /* Specialization of merge_decl_attributes for various Windows targets.
3935
3936 This handles the following situation:
3937
3938 __declspec (dllimport) int foo;
3939 int foo;
3940
3941 The second instance of `foo' nullifies the dllimport. */
3942
3943 tree
3944 merge_dllimport_decl_attributes (tree old, tree new)
3945 {
3946 tree a;
3947 int delete_dllimport_p = 1;
3948
3949 /* What we need to do here is remove from `old' dllimport if it doesn't
3950 appear in `new'. dllimport behaves like extern: if a declaration is
3951 marked dllimport and a definition appears later, then the object
3952 is not dllimport'd. We also remove a `new' dllimport if the old list
3953 contains dllexport: dllexport always overrides dllimport, regardless
3954 of the order of declaration. */
3955 if (!VAR_OR_FUNCTION_DECL_P (new))
3956 delete_dllimport_p = 0;
3957 else if (DECL_DLLIMPORT_P (new)
3958 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3959 {
3960 DECL_DLLIMPORT_P (new) = 0;
3961 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3962 "dllimport ignored", new);
3963 }
3964 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3965 {
3966 /* Warn about overriding a symbol that has already been used. eg:
3967 extern int __attribute__ ((dllimport)) foo;
3968 int* bar () {return &foo;}
3969 int foo;
3970 */
3971 if (TREE_USED (old))
3972 {
3973 warning (0, "%q+D redeclared without dllimport attribute "
3974 "after being referenced with dll linkage", new);
3975 /* If we have used a variable's address with dllimport linkage,
3976 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3977 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3978 computed.
3979 We still remove the attribute so that assembler code refers
3980 to '&foo rather than '_imp__foo'. */
3981 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3982 DECL_DLLIMPORT_P (new) = 1;
3983 }
3984
3985 /* Let an inline definition silently override the external reference,
3986 but otherwise warn about attribute inconsistency. */
3987 else if (TREE_CODE (new) == VAR_DECL
3988 || !DECL_DECLARED_INLINE_P (new))
3989 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3990 "previous dllimport ignored", new);
3991 }
3992 else
3993 delete_dllimport_p = 0;
3994
3995 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3996
3997 if (delete_dllimport_p)
3998 {
3999 tree prev, t;
4000 const size_t attr_len = strlen ("dllimport");
4001
4002 /* Scan the list for dllimport and delete it. */
4003 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
4004 {
4005 if (is_attribute_with_length_p ("dllimport", attr_len,
4006 TREE_PURPOSE (t)))
4007 {
4008 if (prev == NULL_TREE)
4009 a = TREE_CHAIN (a);
4010 else
4011 TREE_CHAIN (prev) = TREE_CHAIN (t);
4012 break;
4013 }
4014 }
4015 }
4016
4017 return a;
4018 }
4019
4020 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
4021 struct attribute_spec.handler. */
4022
4023 tree
4024 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
4025 bool *no_add_attrs)
4026 {
4027 tree node = *pnode;
4028
4029 /* These attributes may apply to structure and union types being created,
4030 but otherwise should pass to the declaration involved. */
4031 if (!DECL_P (node))
4032 {
4033 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
4034 | (int) ATTR_FLAG_ARRAY_NEXT))
4035 {
4036 *no_add_attrs = true;
4037 return tree_cons (name, args, NULL_TREE);
4038 }
4039 if (TREE_CODE (node) == RECORD_TYPE
4040 || TREE_CODE (node) == UNION_TYPE)
4041 {
4042 node = TYPE_NAME (node);
4043 if (!node)
4044 return NULL_TREE;
4045 }
4046 else
4047 {
4048 warning (OPT_Wattributes, "%qs attribute ignored",
4049 IDENTIFIER_POINTER (name));
4050 *no_add_attrs = true;
4051 return NULL_TREE;
4052 }
4053 }
4054
4055 if (TREE_CODE (node) != FUNCTION_DECL
4056 && TREE_CODE (node) != VAR_DECL
4057 && TREE_CODE (node) != TYPE_DECL)
4058 {
4059 *no_add_attrs = true;
4060 warning (OPT_Wattributes, "%qs attribute ignored",
4061 IDENTIFIER_POINTER (name));
4062 return NULL_TREE;
4063 }
4064
4065 /* Report error on dllimport ambiguities seen now before they cause
4066 any damage. */
4067 else if (is_attribute_p ("dllimport", name))
4068 {
4069 /* Honor any target-specific overrides. */
4070 if (!targetm.valid_dllimport_attribute_p (node))
4071 *no_add_attrs = true;
4072
4073 else if (TREE_CODE (node) == FUNCTION_DECL
4074 && DECL_DECLARED_INLINE_P (node))
4075 {
4076 warning (OPT_Wattributes, "inline function %q+D declared as "
4077 " dllimport: attribute ignored", node);
4078 *no_add_attrs = true;
4079 }
4080 /* Like MS, treat definition of dllimported variables and
4081 non-inlined functions on declaration as syntax errors. */
4082 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
4083 {
4084 error ("function %q+D definition is marked dllimport", node);
4085 *no_add_attrs = true;
4086 }
4087
4088 else if (TREE_CODE (node) == VAR_DECL)
4089 {
4090 if (DECL_INITIAL (node))
4091 {
4092 error ("variable %q+D definition is marked dllimport",
4093 node);
4094 *no_add_attrs = true;
4095 }
4096
4097 /* `extern' needn't be specified with dllimport.
4098 Specify `extern' now and hope for the best. Sigh. */
4099 DECL_EXTERNAL (node) = 1;
4100 /* Also, implicitly give dllimport'd variables declared within
4101 a function global scope, unless declared static. */
4102 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
4103 TREE_PUBLIC (node) = 1;
4104 }
4105
4106 if (*no_add_attrs == false)
4107 DECL_DLLIMPORT_P (node) = 1;
4108 }
4109
4110 /* Report error if symbol is not accessible at global scope. */
4111 if (!TREE_PUBLIC (node)
4112 && (TREE_CODE (node) == VAR_DECL
4113 || TREE_CODE (node) == FUNCTION_DECL))
4114 {
4115 error ("external linkage required for symbol %q+D because of "
4116 "%qs attribute", node, IDENTIFIER_POINTER (name));
4117 *no_add_attrs = true;
4118 }
4119
4120 /* A dllexport'd entity must have default visibility so that other
4121 program units (shared libraries or the main executable) can see
4122 it. A dllimport'd entity must have default visibility so that
4123 the linker knows that undefined references within this program
4124 unit can be resolved by the dynamic linker. */
4125 if (!*no_add_attrs)
4126 {
4127 if (DECL_VISIBILITY_SPECIFIED (node)
4128 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
4129 error ("%qs implies default visibility, but %qD has already "
4130 "been declared with a different visibility",
4131 IDENTIFIER_POINTER (name), node);
4132 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
4133 DECL_VISIBILITY_SPECIFIED (node) = 1;
4134 }
4135
4136 return NULL_TREE;
4137 }
4138
4139 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
4140 \f
4141 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
4142 of the various TYPE_QUAL values. */
4143
4144 static void
4145 set_type_quals (tree type, int type_quals)
4146 {
4147 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
4148 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
4149 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
4150 }
4151
4152 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
4153
4154 bool
4155 check_qualified_type (const_tree cand, const_tree base, int type_quals)
4156 {
4157 return (TYPE_QUALS (cand) == type_quals
4158 && TYPE_NAME (cand) == TYPE_NAME (base)
4159 /* Apparently this is needed for Objective-C. */
4160 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
4161 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
4162 TYPE_ATTRIBUTES (base)));
4163 }
4164
4165 /* Return a version of the TYPE, qualified as indicated by the
4166 TYPE_QUALS, if one exists. If no qualified version exists yet,
4167 return NULL_TREE. */
4168
4169 tree
4170 get_qualified_type (tree type, int type_quals)
4171 {
4172 tree t;
4173
4174 if (TYPE_QUALS (type) == type_quals)
4175 return type;
4176
4177 /* Search the chain of variants to see if there is already one there just
4178 like the one we need to have. If so, use that existing one. We must
4179 preserve the TYPE_NAME, since there is code that depends on this. */
4180 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
4181 if (check_qualified_type (t, type, type_quals))
4182 return t;
4183
4184 return NULL_TREE;
4185 }
4186
4187 /* Like get_qualified_type, but creates the type if it does not
4188 exist. This function never returns NULL_TREE. */
4189
4190 tree
4191 build_qualified_type (tree type, int type_quals)
4192 {
4193 tree t;
4194
4195 /* See if we already have the appropriate qualified variant. */
4196 t = get_qualified_type (type, type_quals);
4197
4198 /* If not, build it. */
4199 if (!t)
4200 {
4201 t = build_variant_type_copy (type);
4202 set_type_quals (t, type_quals);
4203
4204 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4205 /* Propagate structural equality. */
4206 SET_TYPE_STRUCTURAL_EQUALITY (t);
4207 else if (TYPE_CANONICAL (type) != type)
4208 /* Build the underlying canonical type, since it is different
4209 from TYPE. */
4210 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
4211 type_quals);
4212 else
4213 /* T is its own canonical type. */
4214 TYPE_CANONICAL (t) = t;
4215
4216 }
4217
4218 return t;
4219 }
4220
4221 /* Create a new distinct copy of TYPE. The new type is made its own
4222 MAIN_VARIANT. If TYPE requires structural equality checks, the
4223 resulting type requires structural equality checks; otherwise, its
4224 TYPE_CANONICAL points to itself. */
4225
4226 tree
4227 build_distinct_type_copy (tree type)
4228 {
4229 tree t = copy_node (type);
4230
4231 TYPE_POINTER_TO (t) = 0;
4232 TYPE_REFERENCE_TO (t) = 0;
4233
4234 /* Set the canonical type either to a new equivalence class, or
4235 propagate the need for structural equality checks. */
4236 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4237 SET_TYPE_STRUCTURAL_EQUALITY (t);
4238 else
4239 TYPE_CANONICAL (t) = t;
4240
4241 /* Make it its own variant. */
4242 TYPE_MAIN_VARIANT (t) = t;
4243 TYPE_NEXT_VARIANT (t) = 0;
4244
4245 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
4246 whose TREE_TYPE is not t. This can also happen in the Ada
4247 frontend when using subtypes. */
4248
4249 return t;
4250 }
4251
4252 /* Create a new variant of TYPE, equivalent but distinct. This is so
4253 the caller can modify it. TYPE_CANONICAL for the return type will
4254 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
4255 are considered equal by the language itself (or that both types
4256 require structural equality checks). */
4257
4258 tree
4259 build_variant_type_copy (tree type)
4260 {
4261 tree t, m = TYPE_MAIN_VARIANT (type);
4262
4263 t = build_distinct_type_copy (type);
4264
4265 /* Since we're building a variant, assume that it is a non-semantic
4266 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
4267 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
4268
4269 /* Add the new type to the chain of variants of TYPE. */
4270 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
4271 TYPE_NEXT_VARIANT (m) = t;
4272 TYPE_MAIN_VARIANT (t) = m;
4273
4274 return t;
4275 }
4276 \f
4277 /* Return true if the from tree in both tree maps are equal. */
4278
4279 int
4280 tree_map_base_eq (const void *va, const void *vb)
4281 {
4282 const struct tree_map_base *const a = va, *const b = vb;
4283 return (a->from == b->from);
4284 }
4285
4286 /* Hash a from tree in a tree_map. */
4287
4288 unsigned int
4289 tree_map_base_hash (const void *item)
4290 {
4291 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
4292 }
4293
4294 /* Return true if this tree map structure is marked for garbage collection
4295 purposes. We simply return true if the from tree is marked, so that this
4296 structure goes away when the from tree goes away. */
4297
4298 int
4299 tree_map_base_marked_p (const void *p)
4300 {
4301 return ggc_marked_p (((const struct tree_map_base *) p)->from);
4302 }
4303
4304 unsigned int
4305 tree_map_hash (const void *item)
4306 {
4307 return (((const struct tree_map *) item)->hash);
4308 }
4309
4310 /* Return the initialization priority for DECL. */
4311
4312 priority_type
4313 decl_init_priority_lookup (tree decl)
4314 {
4315 struct tree_priority_map *h;
4316 struct tree_map_base in;
4317
4318 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4319 in.from = decl;
4320 h = htab_find (init_priority_for_decl, &in);
4321 return h ? h->init : DEFAULT_INIT_PRIORITY;
4322 }
4323
4324 /* Return the finalization priority for DECL. */
4325
4326 priority_type
4327 decl_fini_priority_lookup (tree decl)
4328 {
4329 struct tree_priority_map *h;
4330 struct tree_map_base in;
4331
4332 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4333 in.from = decl;
4334 h = htab_find (init_priority_for_decl, &in);
4335 return h ? h->fini : DEFAULT_INIT_PRIORITY;
4336 }
4337
4338 /* Return the initialization and finalization priority information for
4339 DECL. If there is no previous priority information, a freshly
4340 allocated structure is returned. */
4341
4342 static struct tree_priority_map *
4343 decl_priority_info (tree decl)
4344 {
4345 struct tree_priority_map in;
4346 struct tree_priority_map *h;
4347 void **loc;
4348
4349 in.base.from = decl;
4350 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
4351 h = *loc;
4352 if (!h)
4353 {
4354 h = GGC_CNEW (struct tree_priority_map);
4355 *loc = h;
4356 h->base.from = decl;
4357 h->init = DEFAULT_INIT_PRIORITY;
4358 h->fini = DEFAULT_INIT_PRIORITY;
4359 }
4360
4361 return h;
4362 }
4363
4364 /* Set the initialization priority for DECL to PRIORITY. */
4365
4366 void
4367 decl_init_priority_insert (tree decl, priority_type priority)
4368 {
4369 struct tree_priority_map *h;
4370
4371 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4372 h = decl_priority_info (decl);
4373 h->init = priority;
4374 }
4375
4376 /* Set the finalization priority for DECL to PRIORITY. */
4377
4378 void
4379 decl_fini_priority_insert (tree decl, priority_type priority)
4380 {
4381 struct tree_priority_map *h;
4382
4383 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4384 h = decl_priority_info (decl);
4385 h->fini = priority;
4386 }
4387
4388 /* Look up a restrict qualified base decl for FROM. */
4389
4390 tree
4391 decl_restrict_base_lookup (tree from)
4392 {
4393 struct tree_map *h;
4394 struct tree_map in;
4395
4396 in.base.from = from;
4397 h = htab_find_with_hash (restrict_base_for_decl, &in,
4398 htab_hash_pointer (from));
4399 return h ? h->to : NULL_TREE;
4400 }
4401
4402 /* Record the restrict qualified base TO for FROM. */
4403
4404 void
4405 decl_restrict_base_insert (tree from, tree to)
4406 {
4407 struct tree_map *h;
4408 void **loc;
4409
4410 h = ggc_alloc (sizeof (struct tree_map));
4411 h->hash = htab_hash_pointer (from);
4412 h->base.from = from;
4413 h->to = to;
4414 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4415 *(struct tree_map **) loc = h;
4416 }
4417
4418 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4419
4420 static void
4421 print_debug_expr_statistics (void)
4422 {
4423 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4424 (long) htab_size (debug_expr_for_decl),
4425 (long) htab_elements (debug_expr_for_decl),
4426 htab_collisions (debug_expr_for_decl));
4427 }
4428
4429 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4430
4431 static void
4432 print_value_expr_statistics (void)
4433 {
4434 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4435 (long) htab_size (value_expr_for_decl),
4436 (long) htab_elements (value_expr_for_decl),
4437 htab_collisions (value_expr_for_decl));
4438 }
4439
4440 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4441 don't print anything if the table is empty. */
4442
4443 static void
4444 print_restrict_base_statistics (void)
4445 {
4446 if (htab_elements (restrict_base_for_decl) != 0)
4447 fprintf (stderr,
4448 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4449 (long) htab_size (restrict_base_for_decl),
4450 (long) htab_elements (restrict_base_for_decl),
4451 htab_collisions (restrict_base_for_decl));
4452 }
4453
4454 /* Lookup a debug expression for FROM, and return it if we find one. */
4455
4456 tree
4457 decl_debug_expr_lookup (tree from)
4458 {
4459 struct tree_map *h, in;
4460 in.base.from = from;
4461
4462 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4463 if (h)
4464 return h->to;
4465 return NULL_TREE;
4466 }
4467
4468 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4469
4470 void
4471 decl_debug_expr_insert (tree from, tree to)
4472 {
4473 struct tree_map *h;
4474 void **loc;
4475
4476 h = ggc_alloc (sizeof (struct tree_map));
4477 h->hash = htab_hash_pointer (from);
4478 h->base.from = from;
4479 h->to = to;
4480 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4481 *(struct tree_map **) loc = h;
4482 }
4483
4484 /* Lookup a value expression for FROM, and return it if we find one. */
4485
4486 tree
4487 decl_value_expr_lookup (tree from)
4488 {
4489 struct tree_map *h, in;
4490 in.base.from = from;
4491
4492 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4493 if (h)
4494 return h->to;
4495 return NULL_TREE;
4496 }
4497
4498 /* Insert a mapping FROM->TO in the value expression hashtable. */
4499
4500 void
4501 decl_value_expr_insert (tree from, tree to)
4502 {
4503 struct tree_map *h;
4504 void **loc;
4505
4506 h = ggc_alloc (sizeof (struct tree_map));
4507 h->hash = htab_hash_pointer (from);
4508 h->base.from = from;
4509 h->to = to;
4510 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4511 *(struct tree_map **) loc = h;
4512 }
4513
4514 /* Hashing of types so that we don't make duplicates.
4515 The entry point is `type_hash_canon'. */
4516
4517 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4518 with types in the TREE_VALUE slots), by adding the hash codes
4519 of the individual types. */
4520
4521 static unsigned int
4522 type_hash_list (const_tree list, hashval_t hashcode)
4523 {
4524 const_tree tail;
4525
4526 for (tail = list; tail; tail = TREE_CHAIN (tail))
4527 if (TREE_VALUE (tail) != error_mark_node)
4528 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4529 hashcode);
4530
4531 return hashcode;
4532 }
4533
4534 /* These are the Hashtable callback functions. */
4535
4536 /* Returns true iff the types are equivalent. */
4537
4538 static int
4539 type_hash_eq (const void *va, const void *vb)
4540 {
4541 const struct type_hash *const a = va, *const b = vb;
4542
4543 /* First test the things that are the same for all types. */
4544 if (a->hash != b->hash
4545 || TREE_CODE (a->type) != TREE_CODE (b->type)
4546 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4547 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4548 TYPE_ATTRIBUTES (b->type))
4549 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4550 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4551 return 0;
4552
4553 switch (TREE_CODE (a->type))
4554 {
4555 case VOID_TYPE:
4556 case COMPLEX_TYPE:
4557 case POINTER_TYPE:
4558 case REFERENCE_TYPE:
4559 return 1;
4560
4561 case VECTOR_TYPE:
4562 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4563
4564 case ENUMERAL_TYPE:
4565 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4566 && !(TYPE_VALUES (a->type)
4567 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4568 && TYPE_VALUES (b->type)
4569 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4570 && type_list_equal (TYPE_VALUES (a->type),
4571 TYPE_VALUES (b->type))))
4572 return 0;
4573
4574 /* ... fall through ... */
4575
4576 case INTEGER_TYPE:
4577 case REAL_TYPE:
4578 case BOOLEAN_TYPE:
4579 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4580 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4581 TYPE_MAX_VALUE (b->type)))
4582 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4583 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4584 TYPE_MIN_VALUE (b->type))));
4585
4586 case FIXED_POINT_TYPE:
4587 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
4588
4589 case OFFSET_TYPE:
4590 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4591
4592 case METHOD_TYPE:
4593 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4594 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4595 || (TYPE_ARG_TYPES (a->type)
4596 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4597 && TYPE_ARG_TYPES (b->type)
4598 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4599 && type_list_equal (TYPE_ARG_TYPES (a->type),
4600 TYPE_ARG_TYPES (b->type)))));
4601
4602 case ARRAY_TYPE:
4603 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4604
4605 case RECORD_TYPE:
4606 case UNION_TYPE:
4607 case QUAL_UNION_TYPE:
4608 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4609 || (TYPE_FIELDS (a->type)
4610 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4611 && TYPE_FIELDS (b->type)
4612 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4613 && type_list_equal (TYPE_FIELDS (a->type),
4614 TYPE_FIELDS (b->type))));
4615
4616 case FUNCTION_TYPE:
4617 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4618 || (TYPE_ARG_TYPES (a->type)
4619 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4620 && TYPE_ARG_TYPES (b->type)
4621 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4622 && type_list_equal (TYPE_ARG_TYPES (a->type),
4623 TYPE_ARG_TYPES (b->type))))
4624 break;
4625 return 0;
4626
4627 default:
4628 return 0;
4629 }
4630
4631 if (lang_hooks.types.type_hash_eq != NULL)
4632 return lang_hooks.types.type_hash_eq (a->type, b->type);
4633
4634 return 1;
4635 }
4636
4637 /* Return the cached hash value. */
4638
4639 static hashval_t
4640 type_hash_hash (const void *item)
4641 {
4642 return ((const struct type_hash *) item)->hash;
4643 }
4644
4645 /* Look in the type hash table for a type isomorphic to TYPE.
4646 If one is found, return it. Otherwise return 0. */
4647
4648 tree
4649 type_hash_lookup (hashval_t hashcode, tree type)
4650 {
4651 struct type_hash *h, in;
4652
4653 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4654 must call that routine before comparing TYPE_ALIGNs. */
4655 layout_type (type);
4656
4657 in.hash = hashcode;
4658 in.type = type;
4659
4660 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4661 if (h)
4662 return h->type;
4663 return NULL_TREE;
4664 }
4665
4666 /* Add an entry to the type-hash-table
4667 for a type TYPE whose hash code is HASHCODE. */
4668
4669 void
4670 type_hash_add (hashval_t hashcode, tree type)
4671 {
4672 struct type_hash *h;
4673 void **loc;
4674
4675 h = ggc_alloc (sizeof (struct type_hash));
4676 h->hash = hashcode;
4677 h->type = type;
4678 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4679 *loc = (void *)h;
4680 }
4681
4682 /* Given TYPE, and HASHCODE its hash code, return the canonical
4683 object for an identical type if one already exists.
4684 Otherwise, return TYPE, and record it as the canonical object.
4685
4686 To use this function, first create a type of the sort you want.
4687 Then compute its hash code from the fields of the type that
4688 make it different from other similar types.
4689 Then call this function and use the value. */
4690
4691 tree
4692 type_hash_canon (unsigned int hashcode, tree type)
4693 {
4694 tree t1;
4695
4696 /* The hash table only contains main variants, so ensure that's what we're
4697 being passed. */
4698 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4699
4700 if (!lang_hooks.types.hash_types)
4701 return type;
4702
4703 /* See if the type is in the hash table already. If so, return it.
4704 Otherwise, add the type. */
4705 t1 = type_hash_lookup (hashcode, type);
4706 if (t1 != 0)
4707 {
4708 #ifdef GATHER_STATISTICS
4709 tree_node_counts[(int) t_kind]--;
4710 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4711 #endif
4712 return t1;
4713 }
4714 else
4715 {
4716 type_hash_add (hashcode, type);
4717 return type;
4718 }
4719 }
4720
4721 /* See if the data pointed to by the type hash table is marked. We consider
4722 it marked if the type is marked or if a debug type number or symbol
4723 table entry has been made for the type. This reduces the amount of
4724 debugging output and eliminates that dependency of the debug output on
4725 the number of garbage collections. */
4726
4727 static int
4728 type_hash_marked_p (const void *p)
4729 {
4730 const_tree const type = ((const struct type_hash *) p)->type;
4731
4732 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4733 }
4734
4735 static void
4736 print_type_hash_statistics (void)
4737 {
4738 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4739 (long) htab_size (type_hash_table),
4740 (long) htab_elements (type_hash_table),
4741 htab_collisions (type_hash_table));
4742 }
4743
4744 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4745 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4746 by adding the hash codes of the individual attributes. */
4747
4748 static unsigned int
4749 attribute_hash_list (const_tree list, hashval_t hashcode)
4750 {
4751 const_tree tail;
4752
4753 for (tail = list; tail; tail = TREE_CHAIN (tail))
4754 /* ??? Do we want to add in TREE_VALUE too? */
4755 hashcode = iterative_hash_object
4756 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4757 return hashcode;
4758 }
4759
4760 /* Given two lists of attributes, return true if list l2 is
4761 equivalent to l1. */
4762
4763 int
4764 attribute_list_equal (const_tree l1, const_tree l2)
4765 {
4766 return attribute_list_contained (l1, l2)
4767 && attribute_list_contained (l2, l1);
4768 }
4769
4770 /* Given two lists of attributes, return true if list L2 is
4771 completely contained within L1. */
4772 /* ??? This would be faster if attribute names were stored in a canonicalized
4773 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4774 must be used to show these elements are equivalent (which they are). */
4775 /* ??? It's not clear that attributes with arguments will always be handled
4776 correctly. */
4777
4778 int
4779 attribute_list_contained (const_tree l1, const_tree l2)
4780 {
4781 const_tree t1, t2;
4782
4783 /* First check the obvious, maybe the lists are identical. */
4784 if (l1 == l2)
4785 return 1;
4786
4787 /* Maybe the lists are similar. */
4788 for (t1 = l1, t2 = l2;
4789 t1 != 0 && t2 != 0
4790 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4791 && TREE_VALUE (t1) == TREE_VALUE (t2);
4792 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4793
4794 /* Maybe the lists are equal. */
4795 if (t1 == 0 && t2 == 0)
4796 return 1;
4797
4798 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4799 {
4800 const_tree attr;
4801 /* This CONST_CAST is okay because lookup_attribute does not
4802 modify its argument and the return value is assigned to a
4803 const_tree. */
4804 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4805 CONST_CAST_TREE(l1));
4806 attr != NULL_TREE;
4807 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4808 TREE_CHAIN (attr)))
4809 {
4810 if (TREE_VALUE (t2) != NULL
4811 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4812 && TREE_VALUE (attr) != NULL
4813 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4814 {
4815 if (simple_cst_list_equal (TREE_VALUE (t2),
4816 TREE_VALUE (attr)) == 1)
4817 break;
4818 }
4819 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4820 break;
4821 }
4822
4823 if (attr == 0)
4824 return 0;
4825 }
4826
4827 return 1;
4828 }
4829
4830 /* Given two lists of types
4831 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4832 return 1 if the lists contain the same types in the same order.
4833 Also, the TREE_PURPOSEs must match. */
4834
4835 int
4836 type_list_equal (const_tree l1, const_tree l2)
4837 {
4838 const_tree t1, t2;
4839
4840 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4841 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4842 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4843 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4844 && (TREE_TYPE (TREE_PURPOSE (t1))
4845 == TREE_TYPE (TREE_PURPOSE (t2))))))
4846 return 0;
4847
4848 return t1 == t2;
4849 }
4850
4851 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4852 given by TYPE. If the argument list accepts variable arguments,
4853 then this function counts only the ordinary arguments. */
4854
4855 int
4856 type_num_arguments (const_tree type)
4857 {
4858 int i = 0;
4859 tree t;
4860
4861 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4862 /* If the function does not take a variable number of arguments,
4863 the last element in the list will have type `void'. */
4864 if (VOID_TYPE_P (TREE_VALUE (t)))
4865 break;
4866 else
4867 ++i;
4868
4869 return i;
4870 }
4871
4872 /* Nonzero if integer constants T1 and T2
4873 represent the same constant value. */
4874
4875 int
4876 tree_int_cst_equal (const_tree t1, const_tree t2)
4877 {
4878 if (t1 == t2)
4879 return 1;
4880
4881 if (t1 == 0 || t2 == 0)
4882 return 0;
4883
4884 if (TREE_CODE (t1) == INTEGER_CST
4885 && TREE_CODE (t2) == INTEGER_CST
4886 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4887 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4888 return 1;
4889
4890 return 0;
4891 }
4892
4893 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4894 The precise way of comparison depends on their data type. */
4895
4896 int
4897 tree_int_cst_lt (const_tree t1, const_tree t2)
4898 {
4899 if (t1 == t2)
4900 return 0;
4901
4902 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4903 {
4904 int t1_sgn = tree_int_cst_sgn (t1);
4905 int t2_sgn = tree_int_cst_sgn (t2);
4906
4907 if (t1_sgn < t2_sgn)
4908 return 1;
4909 else if (t1_sgn > t2_sgn)
4910 return 0;
4911 /* Otherwise, both are non-negative, so we compare them as
4912 unsigned just in case one of them would overflow a signed
4913 type. */
4914 }
4915 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4916 return INT_CST_LT (t1, t2);
4917
4918 return INT_CST_LT_UNSIGNED (t1, t2);
4919 }
4920
4921 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4922
4923 int
4924 tree_int_cst_compare (const_tree t1, const_tree t2)
4925 {
4926 if (tree_int_cst_lt (t1, t2))
4927 return -1;
4928 else if (tree_int_cst_lt (t2, t1))
4929 return 1;
4930 else
4931 return 0;
4932 }
4933
4934 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4935 the host. If POS is zero, the value can be represented in a single
4936 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4937 be represented in a single unsigned HOST_WIDE_INT. */
4938
4939 int
4940 host_integerp (const_tree t, int pos)
4941 {
4942 return (TREE_CODE (t) == INTEGER_CST
4943 && ((TREE_INT_CST_HIGH (t) == 0
4944 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4945 || (! pos && TREE_INT_CST_HIGH (t) == -1
4946 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4947 && (!TYPE_UNSIGNED (TREE_TYPE (t))
4948 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
4949 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
4950 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4951 }
4952
4953 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4954 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4955 be non-negative. We must be able to satisfy the above conditions. */
4956
4957 HOST_WIDE_INT
4958 tree_low_cst (const_tree t, int pos)
4959 {
4960 gcc_assert (host_integerp (t, pos));
4961 return TREE_INT_CST_LOW (t);
4962 }
4963
4964 /* Return the most significant bit of the integer constant T. */
4965
4966 int
4967 tree_int_cst_msb (const_tree t)
4968 {
4969 int prec;
4970 HOST_WIDE_INT h;
4971 unsigned HOST_WIDE_INT l;
4972
4973 /* Note that using TYPE_PRECISION here is wrong. We care about the
4974 actual bits, not the (arbitrary) range of the type. */
4975 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4976 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4977 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4978 return (l & 1) == 1;
4979 }
4980
4981 /* Return an indication of the sign of the integer constant T.
4982 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4983 Note that -1 will never be returned if T's type is unsigned. */
4984
4985 int
4986 tree_int_cst_sgn (const_tree t)
4987 {
4988 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4989 return 0;
4990 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4991 return 1;
4992 else if (TREE_INT_CST_HIGH (t) < 0)
4993 return -1;
4994 else
4995 return 1;
4996 }
4997
4998 /* Compare two constructor-element-type constants. Return 1 if the lists
4999 are known to be equal; otherwise return 0. */
5000
5001 int
5002 simple_cst_list_equal (const_tree l1, const_tree l2)
5003 {
5004 while (l1 != NULL_TREE && l2 != NULL_TREE)
5005 {
5006 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
5007 return 0;
5008
5009 l1 = TREE_CHAIN (l1);
5010 l2 = TREE_CHAIN (l2);
5011 }
5012
5013 return l1 == l2;
5014 }
5015
5016 /* Return truthvalue of whether T1 is the same tree structure as T2.
5017 Return 1 if they are the same.
5018 Return 0 if they are understandably different.
5019 Return -1 if either contains tree structure not understood by
5020 this function. */
5021
5022 int
5023 simple_cst_equal (const_tree t1, const_tree t2)
5024 {
5025 enum tree_code code1, code2;
5026 int cmp;
5027 int i;
5028
5029 if (t1 == t2)
5030 return 1;
5031 if (t1 == 0 || t2 == 0)
5032 return 0;
5033
5034 code1 = TREE_CODE (t1);
5035 code2 = TREE_CODE (t2);
5036
5037 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
5038 {
5039 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
5040 || code2 == NON_LVALUE_EXPR)
5041 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5042 else
5043 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
5044 }
5045
5046 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
5047 || code2 == NON_LVALUE_EXPR)
5048 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
5049
5050 if (code1 != code2)
5051 return 0;
5052
5053 switch (code1)
5054 {
5055 case INTEGER_CST:
5056 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
5057 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
5058
5059 case REAL_CST:
5060 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
5061
5062 case FIXED_CST:
5063 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
5064
5065 case STRING_CST:
5066 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
5067 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
5068 TREE_STRING_LENGTH (t1)));
5069
5070 case CONSTRUCTOR:
5071 {
5072 unsigned HOST_WIDE_INT idx;
5073 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
5074 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
5075
5076 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
5077 return false;
5078
5079 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
5080 /* ??? Should we handle also fields here? */
5081 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
5082 VEC_index (constructor_elt, v2, idx)->value))
5083 return false;
5084 return true;
5085 }
5086
5087 case SAVE_EXPR:
5088 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5089
5090 case CALL_EXPR:
5091 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
5092 if (cmp <= 0)
5093 return cmp;
5094 if (call_expr_nargs (t1) != call_expr_nargs (t2))
5095 return 0;
5096 {
5097 const_tree arg1, arg2;
5098 const_call_expr_arg_iterator iter1, iter2;
5099 for (arg1 = first_const_call_expr_arg (t1, &iter1),
5100 arg2 = first_const_call_expr_arg (t2, &iter2);
5101 arg1 && arg2;
5102 arg1 = next_const_call_expr_arg (&iter1),
5103 arg2 = next_const_call_expr_arg (&iter2))
5104 {
5105 cmp = simple_cst_equal (arg1, arg2);
5106 if (cmp <= 0)
5107 return cmp;
5108 }
5109 return arg1 == arg2;
5110 }
5111
5112 case TARGET_EXPR:
5113 /* Special case: if either target is an unallocated VAR_DECL,
5114 it means that it's going to be unified with whatever the
5115 TARGET_EXPR is really supposed to initialize, so treat it
5116 as being equivalent to anything. */
5117 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
5118 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
5119 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
5120 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
5121 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
5122 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
5123 cmp = 1;
5124 else
5125 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5126
5127 if (cmp <= 0)
5128 return cmp;
5129
5130 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
5131
5132 case WITH_CLEANUP_EXPR:
5133 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5134 if (cmp <= 0)
5135 return cmp;
5136
5137 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
5138
5139 case COMPONENT_REF:
5140 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
5141 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5142
5143 return 0;
5144
5145 case VAR_DECL:
5146 case PARM_DECL:
5147 case CONST_DECL:
5148 case FUNCTION_DECL:
5149 return 0;
5150
5151 default:
5152 break;
5153 }
5154
5155 /* This general rule works for most tree codes. All exceptions should be
5156 handled above. If this is a language-specific tree code, we can't
5157 trust what might be in the operand, so say we don't know
5158 the situation. */
5159 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
5160 return -1;
5161
5162 switch (TREE_CODE_CLASS (code1))
5163 {
5164 case tcc_unary:
5165 case tcc_binary:
5166 case tcc_comparison:
5167 case tcc_expression:
5168 case tcc_reference:
5169 case tcc_statement:
5170 cmp = 1;
5171 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
5172 {
5173 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
5174 if (cmp <= 0)
5175 return cmp;
5176 }
5177
5178 return cmp;
5179
5180 default:
5181 return -1;
5182 }
5183 }
5184
5185 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
5186 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
5187 than U, respectively. */
5188
5189 int
5190 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
5191 {
5192 if (tree_int_cst_sgn (t) < 0)
5193 return -1;
5194 else if (TREE_INT_CST_HIGH (t) != 0)
5195 return 1;
5196 else if (TREE_INT_CST_LOW (t) == u)
5197 return 0;
5198 else if (TREE_INT_CST_LOW (t) < u)
5199 return -1;
5200 else
5201 return 1;
5202 }
5203
5204 /* Return true if CODE represents an associative tree code. Otherwise
5205 return false. */
5206 bool
5207 associative_tree_code (enum tree_code code)
5208 {
5209 switch (code)
5210 {
5211 case BIT_IOR_EXPR:
5212 case BIT_AND_EXPR:
5213 case BIT_XOR_EXPR:
5214 case PLUS_EXPR:
5215 case MULT_EXPR:
5216 case MIN_EXPR:
5217 case MAX_EXPR:
5218 return true;
5219
5220 default:
5221 break;
5222 }
5223 return false;
5224 }
5225
5226 /* Return true if CODE represents a commutative tree code. Otherwise
5227 return false. */
5228 bool
5229 commutative_tree_code (enum tree_code code)
5230 {
5231 switch (code)
5232 {
5233 case PLUS_EXPR:
5234 case MULT_EXPR:
5235 case MIN_EXPR:
5236 case MAX_EXPR:
5237 case BIT_IOR_EXPR:
5238 case BIT_XOR_EXPR:
5239 case BIT_AND_EXPR:
5240 case NE_EXPR:
5241 case EQ_EXPR:
5242 case UNORDERED_EXPR:
5243 case ORDERED_EXPR:
5244 case UNEQ_EXPR:
5245 case LTGT_EXPR:
5246 case TRUTH_AND_EXPR:
5247 case TRUTH_XOR_EXPR:
5248 case TRUTH_OR_EXPR:
5249 return true;
5250
5251 default:
5252 break;
5253 }
5254 return false;
5255 }
5256
5257 /* Generate a hash value for an expression. This can be used iteratively
5258 by passing a previous result as the "val" argument.
5259
5260 This function is intended to produce the same hash for expressions which
5261 would compare equal using operand_equal_p. */
5262
5263 hashval_t
5264 iterative_hash_expr (const_tree t, hashval_t val)
5265 {
5266 int i;
5267 enum tree_code code;
5268 char class;
5269
5270 if (t == NULL_TREE)
5271 return iterative_hash_pointer (t, val);
5272
5273 code = TREE_CODE (t);
5274
5275 switch (code)
5276 {
5277 /* Alas, constants aren't shared, so we can't rely on pointer
5278 identity. */
5279 case INTEGER_CST:
5280 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
5281 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
5282 case REAL_CST:
5283 {
5284 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
5285
5286 return iterative_hash_hashval_t (val2, val);
5287 }
5288 case FIXED_CST:
5289 {
5290 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
5291
5292 return iterative_hash_hashval_t (val2, val);
5293 }
5294 case STRING_CST:
5295 return iterative_hash (TREE_STRING_POINTER (t),
5296 TREE_STRING_LENGTH (t), val);
5297 case COMPLEX_CST:
5298 val = iterative_hash_expr (TREE_REALPART (t), val);
5299 return iterative_hash_expr (TREE_IMAGPART (t), val);
5300 case VECTOR_CST:
5301 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
5302
5303 case SSA_NAME:
5304 case VALUE_HANDLE:
5305 /* we can just compare by pointer. */
5306 return iterative_hash_pointer (t, val);
5307
5308 case TREE_LIST:
5309 /* A list of expressions, for a CALL_EXPR or as the elements of a
5310 VECTOR_CST. */
5311 for (; t; t = TREE_CHAIN (t))
5312 val = iterative_hash_expr (TREE_VALUE (t), val);
5313 return val;
5314 case CONSTRUCTOR:
5315 {
5316 unsigned HOST_WIDE_INT idx;
5317 tree field, value;
5318 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
5319 {
5320 val = iterative_hash_expr (field, val);
5321 val = iterative_hash_expr (value, val);
5322 }
5323 return val;
5324 }
5325 case FUNCTION_DECL:
5326 /* When referring to a built-in FUNCTION_DECL, use the
5327 __builtin__ form. Otherwise nodes that compare equal
5328 according to operand_equal_p might get different
5329 hash codes. */
5330 if (DECL_BUILT_IN (t))
5331 {
5332 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
5333 val);
5334 return val;
5335 }
5336 /* else FALL THROUGH */
5337 default:
5338 class = TREE_CODE_CLASS (code);
5339
5340 if (class == tcc_declaration)
5341 {
5342 /* DECL's have a unique ID */
5343 val = iterative_hash_host_wide_int (DECL_UID (t), val);
5344 }
5345 else
5346 {
5347 gcc_assert (IS_EXPR_CODE_CLASS (class));
5348
5349 val = iterative_hash_object (code, val);
5350
5351 /* Don't hash the type, that can lead to having nodes which
5352 compare equal according to operand_equal_p, but which
5353 have different hash codes. */
5354 if (code == NOP_EXPR
5355 || code == CONVERT_EXPR
5356 || code == NON_LVALUE_EXPR)
5357 {
5358 /* Make sure to include signness in the hash computation. */
5359 val += TYPE_UNSIGNED (TREE_TYPE (t));
5360 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
5361 }
5362
5363 else if (commutative_tree_code (code))
5364 {
5365 /* It's a commutative expression. We want to hash it the same
5366 however it appears. We do this by first hashing both operands
5367 and then rehashing based on the order of their independent
5368 hashes. */
5369 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
5370 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
5371 hashval_t t;
5372
5373 if (one > two)
5374 t = one, one = two, two = t;
5375
5376 val = iterative_hash_hashval_t (one, val);
5377 val = iterative_hash_hashval_t (two, val);
5378 }
5379 else
5380 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
5381 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
5382 }
5383 return val;
5384 break;
5385 }
5386 }
5387 \f
5388 /* Constructors for pointer, array and function types.
5389 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
5390 constructed by language-dependent code, not here.) */
5391
5392 /* Construct, lay out and return the type of pointers to TO_TYPE with
5393 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
5394 reference all of memory. If such a type has already been
5395 constructed, reuse it. */
5396
5397 tree
5398 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
5399 bool can_alias_all)
5400 {
5401 tree t;
5402
5403 if (to_type == error_mark_node)
5404 return error_mark_node;
5405
5406 /* In some cases, languages will have things that aren't a POINTER_TYPE
5407 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
5408 In that case, return that type without regard to the rest of our
5409 operands.
5410
5411 ??? This is a kludge, but consistent with the way this function has
5412 always operated and there doesn't seem to be a good way to avoid this
5413 at the moment. */
5414 if (TYPE_POINTER_TO (to_type) != 0
5415 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
5416 return TYPE_POINTER_TO (to_type);
5417
5418 /* First, if we already have a type for pointers to TO_TYPE and it's
5419 the proper mode, use it. */
5420 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
5421 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5422 return t;
5423
5424 t = make_node (POINTER_TYPE);
5425
5426 TREE_TYPE (t) = to_type;
5427 TYPE_MODE (t) = mode;
5428 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5429 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5430 TYPE_POINTER_TO (to_type) = t;
5431
5432 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5433 SET_TYPE_STRUCTURAL_EQUALITY (t);
5434 else if (TYPE_CANONICAL (to_type) != to_type)
5435 TYPE_CANONICAL (t)
5436 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
5437 mode, can_alias_all);
5438
5439 /* Lay out the type. This function has many callers that are concerned
5440 with expression-construction, and this simplifies them all. */
5441 layout_type (t);
5442
5443 return t;
5444 }
5445
5446 /* By default build pointers in ptr_mode. */
5447
5448 tree
5449 build_pointer_type (tree to_type)
5450 {
5451 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5452 }
5453
5454 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5455
5456 tree
5457 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5458 bool can_alias_all)
5459 {
5460 tree t;
5461
5462 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5463 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5464 In that case, return that type without regard to the rest of our
5465 operands.
5466
5467 ??? This is a kludge, but consistent with the way this function has
5468 always operated and there doesn't seem to be a good way to avoid this
5469 at the moment. */
5470 if (TYPE_REFERENCE_TO (to_type) != 0
5471 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5472 return TYPE_REFERENCE_TO (to_type);
5473
5474 /* First, if we already have a type for pointers to TO_TYPE and it's
5475 the proper mode, use it. */
5476 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5477 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5478 return t;
5479
5480 t = make_node (REFERENCE_TYPE);
5481
5482 TREE_TYPE (t) = to_type;
5483 TYPE_MODE (t) = mode;
5484 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5485 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5486 TYPE_REFERENCE_TO (to_type) = t;
5487
5488 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5489 SET_TYPE_STRUCTURAL_EQUALITY (t);
5490 else if (TYPE_CANONICAL (to_type) != to_type)
5491 TYPE_CANONICAL (t)
5492 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
5493 mode, can_alias_all);
5494
5495 layout_type (t);
5496
5497 return t;
5498 }
5499
5500
5501 /* Build the node for the type of references-to-TO_TYPE by default
5502 in ptr_mode. */
5503
5504 tree
5505 build_reference_type (tree to_type)
5506 {
5507 return build_reference_type_for_mode (to_type, ptr_mode, false);
5508 }
5509
5510 /* Build a type that is compatible with t but has no cv quals anywhere
5511 in its type, thus
5512
5513 const char *const *const * -> char ***. */
5514
5515 tree
5516 build_type_no_quals (tree t)
5517 {
5518 switch (TREE_CODE (t))
5519 {
5520 case POINTER_TYPE:
5521 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5522 TYPE_MODE (t),
5523 TYPE_REF_CAN_ALIAS_ALL (t));
5524 case REFERENCE_TYPE:
5525 return
5526 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5527 TYPE_MODE (t),
5528 TYPE_REF_CAN_ALIAS_ALL (t));
5529 default:
5530 return TYPE_MAIN_VARIANT (t);
5531 }
5532 }
5533
5534 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5535 MAXVAL should be the maximum value in the domain
5536 (one less than the length of the array).
5537
5538 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5539 We don't enforce this limit, that is up to caller (e.g. language front end).
5540 The limit exists because the result is a signed type and we don't handle
5541 sizes that use more than one HOST_WIDE_INT. */
5542
5543 tree
5544 build_index_type (tree maxval)
5545 {
5546 tree itype = make_node (INTEGER_TYPE);
5547
5548 TREE_TYPE (itype) = sizetype;
5549 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5550 TYPE_MIN_VALUE (itype) = size_zero_node;
5551 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5552 TYPE_MODE (itype) = TYPE_MODE (sizetype);
5553 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5554 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5555 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5556 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5557
5558 if (host_integerp (maxval, 1))
5559 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5560 else
5561 {
5562 /* Since we cannot hash this type, we need to compare it using
5563 structural equality checks. */
5564 SET_TYPE_STRUCTURAL_EQUALITY (itype);
5565 return itype;
5566 }
5567 }
5568
5569 /* Builds a signed or unsigned integer type of precision PRECISION.
5570 Used for C bitfields whose precision does not match that of
5571 built-in target types. */
5572 tree
5573 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5574 int unsignedp)
5575 {
5576 tree itype = make_node (INTEGER_TYPE);
5577
5578 TYPE_PRECISION (itype) = precision;
5579
5580 if (unsignedp)
5581 fixup_unsigned_type (itype);
5582 else
5583 fixup_signed_type (itype);
5584
5585 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5586 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5587
5588 return itype;
5589 }
5590
5591 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5592 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5593 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5594
5595 tree
5596 build_range_type (tree type, tree lowval, tree highval)
5597 {
5598 tree itype = make_node (INTEGER_TYPE);
5599
5600 TREE_TYPE (itype) = type;
5601 if (type == NULL_TREE)
5602 type = sizetype;
5603
5604 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5605 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5606
5607 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5608 TYPE_MODE (itype) = TYPE_MODE (type);
5609 TYPE_SIZE (itype) = TYPE_SIZE (type);
5610 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5611 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5612 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5613
5614 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5615 return type_hash_canon (tree_low_cst (highval, 0)
5616 - tree_low_cst (lowval, 0),
5617 itype);
5618 else
5619 return itype;
5620 }
5621
5622 /* Just like build_index_type, but takes lowval and highval instead
5623 of just highval (maxval). */
5624
5625 tree
5626 build_index_2_type (tree lowval, tree highval)
5627 {
5628 return build_range_type (sizetype, lowval, highval);
5629 }
5630
5631 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5632 and number of elements specified by the range of values of INDEX_TYPE.
5633 If such a type has already been constructed, reuse it. */
5634
5635 tree
5636 build_array_type (tree elt_type, tree index_type)
5637 {
5638 tree t;
5639 hashval_t hashcode = 0;
5640
5641 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5642 {
5643 error ("arrays of functions are not meaningful");
5644 elt_type = integer_type_node;
5645 }
5646
5647 t = make_node (ARRAY_TYPE);
5648 TREE_TYPE (t) = elt_type;
5649 TYPE_DOMAIN (t) = index_type;
5650
5651 if (index_type == 0)
5652 {
5653 tree save = t;
5654 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5655 t = type_hash_canon (hashcode, t);
5656 if (save == t)
5657 layout_type (t);
5658
5659 if (TYPE_CANONICAL (t) == t)
5660 {
5661 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
5662 SET_TYPE_STRUCTURAL_EQUALITY (t);
5663 else if (TYPE_CANONICAL (elt_type) != elt_type)
5664 TYPE_CANONICAL (t)
5665 = build_array_type (TYPE_CANONICAL (elt_type), index_type);
5666 }
5667
5668 return t;
5669 }
5670
5671 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5672 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5673 t = type_hash_canon (hashcode, t);
5674
5675 if (!COMPLETE_TYPE_P (t))
5676 layout_type (t);
5677
5678 if (TYPE_CANONICAL (t) == t)
5679 {
5680 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
5681 || TYPE_STRUCTURAL_EQUALITY_P (index_type))
5682 SET_TYPE_STRUCTURAL_EQUALITY (t);
5683 else if (TYPE_CANONICAL (elt_type) != elt_type
5684 || TYPE_CANONICAL (index_type) != index_type)
5685 TYPE_CANONICAL (t)
5686 = build_array_type (TYPE_CANONICAL (elt_type),
5687 TYPE_CANONICAL (index_type));
5688 }
5689
5690 return t;
5691 }
5692
5693 /* Return the TYPE of the elements comprising
5694 the innermost dimension of ARRAY. */
5695
5696 tree
5697 get_inner_array_type (const_tree array)
5698 {
5699 tree type = TREE_TYPE (array);
5700
5701 while (TREE_CODE (type) == ARRAY_TYPE)
5702 type = TREE_TYPE (type);
5703
5704 return type;
5705 }
5706
5707 /* Computes the canonical argument types from the argument type list
5708 ARGTYPES.
5709
5710 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
5711 on entry to this function, or if any of the ARGTYPES are
5712 structural.
5713
5714 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
5715 true on entry to this function, or if any of the ARGTYPES are
5716 non-canonical.
5717
5718 Returns a canonical argument list, which may be ARGTYPES when the
5719 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
5720 true) or would not differ from ARGTYPES. */
5721
5722 static tree
5723 maybe_canonicalize_argtypes(tree argtypes,
5724 bool *any_structural_p,
5725 bool *any_noncanonical_p)
5726 {
5727 tree arg;
5728 bool any_noncanonical_argtypes_p = false;
5729
5730 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
5731 {
5732 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
5733 /* Fail gracefully by stating that the type is structural. */
5734 *any_structural_p = true;
5735 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
5736 *any_structural_p = true;
5737 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
5738 || TREE_PURPOSE (arg))
5739 /* If the argument has a default argument, we consider it
5740 non-canonical even though the type itself is canonical.
5741 That way, different variants of function and method types
5742 with default arguments will all point to the variant with
5743 no defaults as their canonical type. */
5744 any_noncanonical_argtypes_p = true;
5745 }
5746
5747 if (*any_structural_p)
5748 return argtypes;
5749
5750 if (any_noncanonical_argtypes_p)
5751 {
5752 /* Build the canonical list of argument types. */
5753 tree canon_argtypes = NULL_TREE;
5754 bool is_void = false;
5755
5756 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
5757 {
5758 if (arg == void_list_node)
5759 is_void = true;
5760 else
5761 canon_argtypes = tree_cons (NULL_TREE,
5762 TYPE_CANONICAL (TREE_VALUE (arg)),
5763 canon_argtypes);
5764 }
5765
5766 canon_argtypes = nreverse (canon_argtypes);
5767 if (is_void)
5768 canon_argtypes = chainon (canon_argtypes, void_list_node);
5769
5770 /* There is a non-canonical type. */
5771 *any_noncanonical_p = true;
5772 return canon_argtypes;
5773 }
5774
5775 /* The canonical argument types are the same as ARGTYPES. */
5776 return argtypes;
5777 }
5778
5779 /* Construct, lay out and return
5780 the type of functions returning type VALUE_TYPE
5781 given arguments of types ARG_TYPES.
5782 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5783 are data type nodes for the arguments of the function.
5784 If such a type has already been constructed, reuse it. */
5785
5786 tree
5787 build_function_type (tree value_type, tree arg_types)
5788 {
5789 tree t;
5790 hashval_t hashcode = 0;
5791 bool any_structural_p, any_noncanonical_p;
5792 tree canon_argtypes;
5793
5794 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5795 {
5796 error ("function return type cannot be function");
5797 value_type = integer_type_node;
5798 }
5799
5800 /* Make a node of the sort we want. */
5801 t = make_node (FUNCTION_TYPE);
5802 TREE_TYPE (t) = value_type;
5803 TYPE_ARG_TYPES (t) = arg_types;
5804
5805 /* If we already have such a type, use the old one. */
5806 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5807 hashcode = type_hash_list (arg_types, hashcode);
5808 t = type_hash_canon (hashcode, t);
5809
5810 /* Set up the canonical type. */
5811 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
5812 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
5813 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
5814 &any_structural_p,
5815 &any_noncanonical_p);
5816 if (any_structural_p)
5817 SET_TYPE_STRUCTURAL_EQUALITY (t);
5818 else if (any_noncanonical_p)
5819 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
5820 canon_argtypes);
5821
5822 if (!COMPLETE_TYPE_P (t))
5823 layout_type (t);
5824 return t;
5825 }
5826
5827 /* Build a function type. The RETURN_TYPE is the type returned by the
5828 function. If additional arguments are provided, they are
5829 additional argument types. The list of argument types must always
5830 be terminated by NULL_TREE. */
5831
5832 tree
5833 build_function_type_list (tree return_type, ...)
5834 {
5835 tree t, args, last;
5836 va_list p;
5837
5838 va_start (p, return_type);
5839
5840 t = va_arg (p, tree);
5841 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5842 args = tree_cons (NULL_TREE, t, args);
5843
5844 if (args == NULL_TREE)
5845 args = void_list_node;
5846 else
5847 {
5848 last = args;
5849 args = nreverse (args);
5850 TREE_CHAIN (last) = void_list_node;
5851 }
5852 args = build_function_type (return_type, args);
5853
5854 va_end (p);
5855 return args;
5856 }
5857
5858 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5859 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5860 for the method. An implicit additional parameter (of type
5861 pointer-to-BASETYPE) is added to the ARGTYPES. */
5862
5863 tree
5864 build_method_type_directly (tree basetype,
5865 tree rettype,
5866 tree argtypes)
5867 {
5868 tree t;
5869 tree ptype;
5870 int hashcode = 0;
5871 bool any_structural_p, any_noncanonical_p;
5872 tree canon_argtypes;
5873
5874 /* Make a node of the sort we want. */
5875 t = make_node (METHOD_TYPE);
5876
5877 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5878 TREE_TYPE (t) = rettype;
5879 ptype = build_pointer_type (basetype);
5880
5881 /* The actual arglist for this function includes a "hidden" argument
5882 which is "this". Put it into the list of argument types. */
5883 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5884 TYPE_ARG_TYPES (t) = argtypes;
5885
5886 /* If we already have such a type, use the old one. */
5887 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5888 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5889 hashcode = type_hash_list (argtypes, hashcode);
5890 t = type_hash_canon (hashcode, t);
5891
5892 /* Set up the canonical type. */
5893 any_structural_p
5894 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5895 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
5896 any_noncanonical_p
5897 = (TYPE_CANONICAL (basetype) != basetype
5898 || TYPE_CANONICAL (rettype) != rettype);
5899 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
5900 &any_structural_p,
5901 &any_noncanonical_p);
5902 if (any_structural_p)
5903 SET_TYPE_STRUCTURAL_EQUALITY (t);
5904 else if (any_noncanonical_p)
5905 TYPE_CANONICAL (t)
5906 = build_method_type_directly (TYPE_CANONICAL (basetype),
5907 TYPE_CANONICAL (rettype),
5908 canon_argtypes);
5909 if (!COMPLETE_TYPE_P (t))
5910 layout_type (t);
5911
5912 return t;
5913 }
5914
5915 /* Construct, lay out and return the type of methods belonging to class
5916 BASETYPE and whose arguments and values are described by TYPE.
5917 If that type exists already, reuse it.
5918 TYPE must be a FUNCTION_TYPE node. */
5919
5920 tree
5921 build_method_type (tree basetype, tree type)
5922 {
5923 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5924
5925 return build_method_type_directly (basetype,
5926 TREE_TYPE (type),
5927 TYPE_ARG_TYPES (type));
5928 }
5929
5930 /* Construct, lay out and return the type of offsets to a value
5931 of type TYPE, within an object of type BASETYPE.
5932 If a suitable offset type exists already, reuse it. */
5933
5934 tree
5935 build_offset_type (tree basetype, tree type)
5936 {
5937 tree t;
5938 hashval_t hashcode = 0;
5939
5940 /* Make a node of the sort we want. */
5941 t = make_node (OFFSET_TYPE);
5942
5943 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5944 TREE_TYPE (t) = type;
5945
5946 /* If we already have such a type, use the old one. */
5947 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5948 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5949 t = type_hash_canon (hashcode, t);
5950
5951 if (!COMPLETE_TYPE_P (t))
5952 layout_type (t);
5953
5954 if (TYPE_CANONICAL (t) == t)
5955 {
5956 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5957 || TYPE_STRUCTURAL_EQUALITY_P (type))
5958 SET_TYPE_STRUCTURAL_EQUALITY (t);
5959 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
5960 || TYPE_CANONICAL (type) != type)
5961 TYPE_CANONICAL (t)
5962 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
5963 TYPE_CANONICAL (type));
5964 }
5965
5966 return t;
5967 }
5968
5969 /* Create a complex type whose components are COMPONENT_TYPE. */
5970
5971 tree
5972 build_complex_type (tree component_type)
5973 {
5974 tree t;
5975 hashval_t hashcode;
5976
5977 /* Make a node of the sort we want. */
5978 t = make_node (COMPLEX_TYPE);
5979
5980 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5981
5982 /* If we already have such a type, use the old one. */
5983 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5984 t = type_hash_canon (hashcode, t);
5985
5986 if (!COMPLETE_TYPE_P (t))
5987 layout_type (t);
5988
5989 if (TYPE_CANONICAL (t) == t)
5990 {
5991 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
5992 SET_TYPE_STRUCTURAL_EQUALITY (t);
5993 else if (TYPE_CANONICAL (component_type) != component_type)
5994 TYPE_CANONICAL (t)
5995 = build_complex_type (TYPE_CANONICAL (component_type));
5996 }
5997
5998 /* We need to create a name, since complex is a fundamental type. */
5999 if (! TYPE_NAME (t))
6000 {
6001 const char *name;
6002 if (component_type == char_type_node)
6003 name = "complex char";
6004 else if (component_type == signed_char_type_node)
6005 name = "complex signed char";
6006 else if (component_type == unsigned_char_type_node)
6007 name = "complex unsigned char";
6008 else if (component_type == short_integer_type_node)
6009 name = "complex short int";
6010 else if (component_type == short_unsigned_type_node)
6011 name = "complex short unsigned int";
6012 else if (component_type == integer_type_node)
6013 name = "complex int";
6014 else if (component_type == unsigned_type_node)
6015 name = "complex unsigned int";
6016 else if (component_type == long_integer_type_node)
6017 name = "complex long int";
6018 else if (component_type == long_unsigned_type_node)
6019 name = "complex long unsigned int";
6020 else if (component_type == long_long_integer_type_node)
6021 name = "complex long long int";
6022 else if (component_type == long_long_unsigned_type_node)
6023 name = "complex long long unsigned int";
6024 else
6025 name = 0;
6026
6027 if (name != 0)
6028 TYPE_NAME (t) = build_decl (TYPE_DECL, get_identifier (name), t);
6029 }
6030
6031 return build_qualified_type (t, TYPE_QUALS (component_type));
6032 }
6033 \f
6034 /* Return OP, stripped of any conversions to wider types as much as is safe.
6035 Converting the value back to OP's type makes a value equivalent to OP.
6036
6037 If FOR_TYPE is nonzero, we return a value which, if converted to
6038 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
6039
6040 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
6041 narrowest type that can hold the value, even if they don't exactly fit.
6042 Otherwise, bit-field references are changed to a narrower type
6043 only if they can be fetched directly from memory in that type.
6044
6045 OP must have integer, real or enumeral type. Pointers are not allowed!
6046
6047 There are some cases where the obvious value we could return
6048 would regenerate to OP if converted to OP's type,
6049 but would not extend like OP to wider types.
6050 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
6051 For example, if OP is (unsigned short)(signed char)-1,
6052 we avoid returning (signed char)-1 if FOR_TYPE is int,
6053 even though extending that to an unsigned short would regenerate OP,
6054 since the result of extending (signed char)-1 to (int)
6055 is different from (int) OP. */
6056
6057 tree
6058 get_unwidened (tree op, tree for_type)
6059 {
6060 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
6061 tree type = TREE_TYPE (op);
6062 unsigned final_prec
6063 = TYPE_PRECISION (for_type != 0 ? for_type : type);
6064 int uns
6065 = (for_type != 0 && for_type != type
6066 && final_prec > TYPE_PRECISION (type)
6067 && TYPE_UNSIGNED (type));
6068 tree win = op;
6069
6070 while (TREE_CODE (op) == NOP_EXPR
6071 || TREE_CODE (op) == CONVERT_EXPR)
6072 {
6073 int bitschange;
6074
6075 /* TYPE_PRECISION on vector types has different meaning
6076 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
6077 so avoid them here. */
6078 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
6079 break;
6080
6081 bitschange = TYPE_PRECISION (TREE_TYPE (op))
6082 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
6083
6084 /* Truncations are many-one so cannot be removed.
6085 Unless we are later going to truncate down even farther. */
6086 if (bitschange < 0
6087 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
6088 break;
6089
6090 /* See what's inside this conversion. If we decide to strip it,
6091 we will set WIN. */
6092 op = TREE_OPERAND (op, 0);
6093
6094 /* If we have not stripped any zero-extensions (uns is 0),
6095 we can strip any kind of extension.
6096 If we have previously stripped a zero-extension,
6097 only zero-extensions can safely be stripped.
6098 Any extension can be stripped if the bits it would produce
6099 are all going to be discarded later by truncating to FOR_TYPE. */
6100
6101 if (bitschange > 0)
6102 {
6103 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
6104 win = op;
6105 /* TYPE_UNSIGNED says whether this is a zero-extension.
6106 Let's avoid computing it if it does not affect WIN
6107 and if UNS will not be needed again. */
6108 if ((uns
6109 || TREE_CODE (op) == NOP_EXPR
6110 || TREE_CODE (op) == CONVERT_EXPR)
6111 && TYPE_UNSIGNED (TREE_TYPE (op)))
6112 {
6113 uns = 1;
6114 win = op;
6115 }
6116 }
6117 }
6118
6119 if (TREE_CODE (op) == COMPONENT_REF
6120 /* Since type_for_size always gives an integer type. */
6121 && TREE_CODE (type) != REAL_TYPE
6122 && TREE_CODE (type) != FIXED_POINT_TYPE
6123 /* Don't crash if field not laid out yet. */
6124 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6125 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6126 {
6127 unsigned int innerprec
6128 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6129 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6130 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6131 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6132
6133 /* We can get this structure field in the narrowest type it fits in.
6134 If FOR_TYPE is 0, do this only for a field that matches the
6135 narrower type exactly and is aligned for it
6136 The resulting extension to its nominal type (a fullword type)
6137 must fit the same conditions as for other extensions. */
6138
6139 if (type != 0
6140 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
6141 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
6142 && (! uns || final_prec <= innerprec || unsignedp))
6143 {
6144 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
6145 TREE_OPERAND (op, 1), NULL_TREE);
6146 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
6147 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
6148 }
6149 }
6150
6151 return win;
6152 }
6153 \f
6154 /* Return OP or a simpler expression for a narrower value
6155 which can be sign-extended or zero-extended to give back OP.
6156 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
6157 or 0 if the value should be sign-extended. */
6158
6159 tree
6160 get_narrower (tree op, int *unsignedp_ptr)
6161 {
6162 int uns = 0;
6163 int first = 1;
6164 tree win = op;
6165 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
6166
6167 while (TREE_CODE (op) == NOP_EXPR)
6168 {
6169 int bitschange
6170 = (TYPE_PRECISION (TREE_TYPE (op))
6171 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
6172
6173 /* Truncations are many-one so cannot be removed. */
6174 if (bitschange < 0)
6175 break;
6176
6177 /* See what's inside this conversion. If we decide to strip it,
6178 we will set WIN. */
6179
6180 if (bitschange > 0)
6181 {
6182 op = TREE_OPERAND (op, 0);
6183 /* An extension: the outermost one can be stripped,
6184 but remember whether it is zero or sign extension. */
6185 if (first)
6186 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6187 /* Otherwise, if a sign extension has been stripped,
6188 only sign extensions can now be stripped;
6189 if a zero extension has been stripped, only zero-extensions. */
6190 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
6191 break;
6192 first = 0;
6193 }
6194 else /* bitschange == 0 */
6195 {
6196 /* A change in nominal type can always be stripped, but we must
6197 preserve the unsignedness. */
6198 if (first)
6199 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6200 first = 0;
6201 op = TREE_OPERAND (op, 0);
6202 /* Keep trying to narrow, but don't assign op to win if it
6203 would turn an integral type into something else. */
6204 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
6205 continue;
6206 }
6207
6208 win = op;
6209 }
6210
6211 if (TREE_CODE (op) == COMPONENT_REF
6212 /* Since type_for_size always gives an integer type. */
6213 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
6214 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
6215 /* Ensure field is laid out already. */
6216 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6217 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6218 {
6219 unsigned HOST_WIDE_INT innerprec
6220 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6221 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6222 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6223 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6224
6225 /* We can get this structure field in a narrower type that fits it,
6226 but the resulting extension to its nominal type (a fullword type)
6227 must satisfy the same conditions as for other extensions.
6228
6229 Do this only for fields that are aligned (not bit-fields),
6230 because when bit-field insns will be used there is no
6231 advantage in doing this. */
6232
6233 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
6234 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
6235 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
6236 && type != 0)
6237 {
6238 if (first)
6239 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
6240 win = fold_convert (type, op);
6241 }
6242 }
6243
6244 *unsignedp_ptr = uns;
6245 return win;
6246 }
6247 \f
6248 /* Nonzero if integer constant C has a value that is permissible
6249 for type TYPE (an INTEGER_TYPE). */
6250
6251 int
6252 int_fits_type_p (const_tree c, const_tree type)
6253 {
6254 tree type_low_bound = TYPE_MIN_VALUE (type);
6255 tree type_high_bound = TYPE_MAX_VALUE (type);
6256 bool ok_for_low_bound, ok_for_high_bound;
6257 unsigned HOST_WIDE_INT low;
6258 HOST_WIDE_INT high;
6259
6260 /* If at least one bound of the type is a constant integer, we can check
6261 ourselves and maybe make a decision. If no such decision is possible, but
6262 this type is a subtype, try checking against that. Otherwise, use
6263 fit_double_type, which checks against the precision.
6264
6265 Compute the status for each possibly constant bound, and return if we see
6266 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
6267 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
6268 for "constant known to fit". */
6269
6270 /* Check if C >= type_low_bound. */
6271 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
6272 {
6273 if (tree_int_cst_lt (c, type_low_bound))
6274 return 0;
6275 ok_for_low_bound = true;
6276 }
6277 else
6278 ok_for_low_bound = false;
6279
6280 /* Check if c <= type_high_bound. */
6281 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
6282 {
6283 if (tree_int_cst_lt (type_high_bound, c))
6284 return 0;
6285 ok_for_high_bound = true;
6286 }
6287 else
6288 ok_for_high_bound = false;
6289
6290 /* If the constant fits both bounds, the result is known. */
6291 if (ok_for_low_bound && ok_for_high_bound)
6292 return 1;
6293
6294 /* Perform some generic filtering which may allow making a decision
6295 even if the bounds are not constant. First, negative integers
6296 never fit in unsigned types, */
6297 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
6298 return 0;
6299
6300 /* Second, narrower types always fit in wider ones. */
6301 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
6302 return 1;
6303
6304 /* Third, unsigned integers with top bit set never fit signed types. */
6305 if (! TYPE_UNSIGNED (type)
6306 && TYPE_UNSIGNED (TREE_TYPE (c))
6307 && tree_int_cst_msb (c))
6308 return 0;
6309
6310 /* If we haven't been able to decide at this point, there nothing more we
6311 can check ourselves here. Look at the base type if we have one and it
6312 has the same precision. */
6313 if (TREE_CODE (type) == INTEGER_TYPE
6314 && TREE_TYPE (type) != 0
6315 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
6316 return int_fits_type_p (c, TREE_TYPE (type));
6317
6318 /* Or to fit_double_type, if nothing else. */
6319 low = TREE_INT_CST_LOW (c);
6320 high = TREE_INT_CST_HIGH (c);
6321 return !fit_double_type (low, high, &low, &high, type);
6322 }
6323
6324 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
6325 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
6326 represented (assuming two's-complement arithmetic) within the bit
6327 precision of the type are returned instead. */
6328
6329 void
6330 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
6331 {
6332 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
6333 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
6334 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
6335 TYPE_UNSIGNED (type));
6336 else
6337 {
6338 if (TYPE_UNSIGNED (type))
6339 mpz_set_ui (min, 0);
6340 else
6341 {
6342 double_int mn;
6343 mn = double_int_mask (TYPE_PRECISION (type) - 1);
6344 mn = double_int_sext (double_int_add (mn, double_int_one),
6345 TYPE_PRECISION (type));
6346 mpz_set_double_int (min, mn, false);
6347 }
6348 }
6349
6350 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
6351 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
6352 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
6353 TYPE_UNSIGNED (type));
6354 else
6355 {
6356 if (TYPE_UNSIGNED (type))
6357 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
6358 true);
6359 else
6360 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
6361 true);
6362 }
6363 }
6364
6365 /* auto_var_in_fn_p is called to determine whether VAR is an automatic
6366 variable defined in function FN. */
6367
6368 bool
6369 auto_var_in_fn_p (const_tree var, const_tree fn)
6370 {
6371 return (DECL_P (var) && DECL_CONTEXT (var) == fn
6372 && (((TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
6373 && ! TREE_STATIC (var))
6374 || TREE_CODE (var) == LABEL_DECL
6375 || TREE_CODE (var) == RESULT_DECL));
6376 }
6377
6378 /* Subprogram of following function. Called by walk_tree.
6379
6380 Return *TP if it is an automatic variable or parameter of the
6381 function passed in as DATA. */
6382
6383 static tree
6384 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
6385 {
6386 tree fn = (tree) data;
6387
6388 if (TYPE_P (*tp))
6389 *walk_subtrees = 0;
6390
6391 else if (DECL_P (*tp)
6392 && auto_var_in_fn_p (*tp, fn))
6393 return *tp;
6394
6395 return NULL_TREE;
6396 }
6397
6398 /* Returns true if T is, contains, or refers to a type with variable
6399 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
6400 arguments, but not the return type. If FN is nonzero, only return
6401 true if a modifier of the type or position of FN is a variable or
6402 parameter inside FN.
6403
6404 This concept is more general than that of C99 'variably modified types':
6405 in C99, a struct type is never variably modified because a VLA may not
6406 appear as a structure member. However, in GNU C code like:
6407
6408 struct S { int i[f()]; };
6409
6410 is valid, and other languages may define similar constructs. */
6411
6412 bool
6413 variably_modified_type_p (tree type, tree fn)
6414 {
6415 tree t;
6416
6417 /* Test if T is either variable (if FN is zero) or an expression containing
6418 a variable in FN. */
6419 #define RETURN_TRUE_IF_VAR(T) \
6420 do { tree _t = (T); \
6421 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
6422 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
6423 return true; } while (0)
6424
6425 if (type == error_mark_node)
6426 return false;
6427
6428 /* If TYPE itself has variable size, it is variably modified. */
6429 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
6430 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
6431
6432 switch (TREE_CODE (type))
6433 {
6434 case POINTER_TYPE:
6435 case REFERENCE_TYPE:
6436 case VECTOR_TYPE:
6437 if (variably_modified_type_p (TREE_TYPE (type), fn))
6438 return true;
6439 break;
6440
6441 case FUNCTION_TYPE:
6442 case METHOD_TYPE:
6443 /* If TYPE is a function type, it is variably modified if the
6444 return type is variably modified. */
6445 if (variably_modified_type_p (TREE_TYPE (type), fn))
6446 return true;
6447 break;
6448
6449 case INTEGER_TYPE:
6450 case REAL_TYPE:
6451 case FIXED_POINT_TYPE:
6452 case ENUMERAL_TYPE:
6453 case BOOLEAN_TYPE:
6454 /* Scalar types are variably modified if their end points
6455 aren't constant. */
6456 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
6457 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
6458 break;
6459
6460 case RECORD_TYPE:
6461 case UNION_TYPE:
6462 case QUAL_UNION_TYPE:
6463 /* We can't see if any of the fields are variably-modified by the
6464 definition we normally use, since that would produce infinite
6465 recursion via pointers. */
6466 /* This is variably modified if some field's type is. */
6467 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
6468 if (TREE_CODE (t) == FIELD_DECL)
6469 {
6470 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
6471 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
6472 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
6473
6474 if (TREE_CODE (type) == QUAL_UNION_TYPE)
6475 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
6476 }
6477 break;
6478
6479 case ARRAY_TYPE:
6480 /* Do not call ourselves to avoid infinite recursion. This is
6481 variably modified if the element type is. */
6482 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
6483 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
6484 break;
6485
6486 default:
6487 break;
6488 }
6489
6490 /* The current language may have other cases to check, but in general,
6491 all other types are not variably modified. */
6492 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
6493
6494 #undef RETURN_TRUE_IF_VAR
6495 }
6496
6497 /* Given a DECL or TYPE, return the scope in which it was declared, or
6498 NULL_TREE if there is no containing scope. */
6499
6500 tree
6501 get_containing_scope (const_tree t)
6502 {
6503 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
6504 }
6505
6506 /* Return the innermost context enclosing DECL that is
6507 a FUNCTION_DECL, or zero if none. */
6508
6509 tree
6510 decl_function_context (const_tree decl)
6511 {
6512 tree context;
6513
6514 if (TREE_CODE (decl) == ERROR_MARK)
6515 return 0;
6516
6517 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
6518 where we look up the function at runtime. Such functions always take
6519 a first argument of type 'pointer to real context'.
6520
6521 C++ should really be fixed to use DECL_CONTEXT for the real context,
6522 and use something else for the "virtual context". */
6523 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
6524 context
6525 = TYPE_MAIN_VARIANT
6526 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6527 else
6528 context = DECL_CONTEXT (decl);
6529
6530 while (context && TREE_CODE (context) != FUNCTION_DECL)
6531 {
6532 if (TREE_CODE (context) == BLOCK)
6533 context = BLOCK_SUPERCONTEXT (context);
6534 else
6535 context = get_containing_scope (context);
6536 }
6537
6538 return context;
6539 }
6540
6541 /* Return the innermost context enclosing DECL that is
6542 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
6543 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
6544
6545 tree
6546 decl_type_context (const_tree decl)
6547 {
6548 tree context = DECL_CONTEXT (decl);
6549
6550 while (context)
6551 switch (TREE_CODE (context))
6552 {
6553 case NAMESPACE_DECL:
6554 case TRANSLATION_UNIT_DECL:
6555 return NULL_TREE;
6556
6557 case RECORD_TYPE:
6558 case UNION_TYPE:
6559 case QUAL_UNION_TYPE:
6560 return context;
6561
6562 case TYPE_DECL:
6563 case FUNCTION_DECL:
6564 context = DECL_CONTEXT (context);
6565 break;
6566
6567 case BLOCK:
6568 context = BLOCK_SUPERCONTEXT (context);
6569 break;
6570
6571 default:
6572 gcc_unreachable ();
6573 }
6574
6575 return NULL_TREE;
6576 }
6577
6578 /* CALL is a CALL_EXPR. Return the declaration for the function
6579 called, or NULL_TREE if the called function cannot be
6580 determined. */
6581
6582 tree
6583 get_callee_fndecl (const_tree call)
6584 {
6585 tree addr;
6586
6587 if (call == error_mark_node)
6588 return error_mark_node;
6589
6590 /* It's invalid to call this function with anything but a
6591 CALL_EXPR. */
6592 gcc_assert (TREE_CODE (call) == CALL_EXPR);
6593
6594 /* The first operand to the CALL is the address of the function
6595 called. */
6596 addr = CALL_EXPR_FN (call);
6597
6598 STRIP_NOPS (addr);
6599
6600 /* If this is a readonly function pointer, extract its initial value. */
6601 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
6602 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
6603 && DECL_INITIAL (addr))
6604 addr = DECL_INITIAL (addr);
6605
6606 /* If the address is just `&f' for some function `f', then we know
6607 that `f' is being called. */
6608 if (TREE_CODE (addr) == ADDR_EXPR
6609 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
6610 return TREE_OPERAND (addr, 0);
6611
6612 /* We couldn't figure out what was being called. Maybe the front
6613 end has some idea. */
6614 return lang_hooks.lang_get_callee_fndecl (call);
6615 }
6616
6617 /* Print debugging information about tree nodes generated during the compile,
6618 and any language-specific information. */
6619
6620 void
6621 dump_tree_statistics (void)
6622 {
6623 #ifdef GATHER_STATISTICS
6624 int i;
6625 int total_nodes, total_bytes;
6626 #endif
6627
6628 fprintf (stderr, "\n??? tree nodes created\n\n");
6629 #ifdef GATHER_STATISTICS
6630 fprintf (stderr, "Kind Nodes Bytes\n");
6631 fprintf (stderr, "---------------------------------------\n");
6632 total_nodes = total_bytes = 0;
6633 for (i = 0; i < (int) all_kinds; i++)
6634 {
6635 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
6636 tree_node_counts[i], tree_node_sizes[i]);
6637 total_nodes += tree_node_counts[i];
6638 total_bytes += tree_node_sizes[i];
6639 }
6640 fprintf (stderr, "---------------------------------------\n");
6641 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
6642 fprintf (stderr, "---------------------------------------\n");
6643 ssanames_print_statistics ();
6644 phinodes_print_statistics ();
6645 #else
6646 fprintf (stderr, "(No per-node statistics)\n");
6647 #endif
6648 print_type_hash_statistics ();
6649 print_debug_expr_statistics ();
6650 print_value_expr_statistics ();
6651 print_restrict_base_statistics ();
6652 print_decl_for_uid_map_statistics ();
6653 lang_hooks.print_statistics ();
6654 }
6655 \f
6656 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6657
6658 /* Generate a crc32 of a string. */
6659
6660 unsigned
6661 crc32_string (unsigned chksum, const char *string)
6662 {
6663 do
6664 {
6665 unsigned value = *string << 24;
6666 unsigned ix;
6667
6668 for (ix = 8; ix--; value <<= 1)
6669 {
6670 unsigned feedback;
6671
6672 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6673 chksum <<= 1;
6674 chksum ^= feedback;
6675 }
6676 }
6677 while (*string++);
6678 return chksum;
6679 }
6680
6681 /* P is a string that will be used in a symbol. Mask out any characters
6682 that are not valid in that context. */
6683
6684 void
6685 clean_symbol_name (char *p)
6686 {
6687 for (; *p; p++)
6688 if (! (ISALNUM (*p)
6689 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6690 || *p == '$'
6691 #endif
6692 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6693 || *p == '.'
6694 #endif
6695 ))
6696 *p = '_';
6697 }
6698
6699 /* Generate a name for a special-purpose function function.
6700 The generated name may need to be unique across the whole link.
6701 TYPE is some string to identify the purpose of this function to the
6702 linker or collect2; it must start with an uppercase letter,
6703 one of:
6704 I - for constructors
6705 D - for destructors
6706 N - for C++ anonymous namespaces
6707 F - for DWARF unwind frame information. */
6708
6709 tree
6710 get_file_function_name (const char *type)
6711 {
6712 char *buf;
6713 const char *p;
6714 char *q;
6715
6716 /* If we already have a name we know to be unique, just use that. */
6717 if (first_global_object_name)
6718 p = first_global_object_name;
6719 /* If the target is handling the constructors/destructors, they
6720 will be local to this file and the name is only necessary for
6721 debugging purposes. */
6722 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6723 {
6724 const char *file = main_input_filename;
6725 if (! file)
6726 file = input_filename;
6727 /* Just use the file's basename, because the full pathname
6728 might be quite long. */
6729 p = strrchr (file, '/');
6730 if (p)
6731 p++;
6732 else
6733 p = file;
6734 p = q = ASTRDUP (p);
6735 clean_symbol_name (q);
6736 }
6737 else
6738 {
6739 /* Otherwise, the name must be unique across the entire link.
6740 We don't have anything that we know to be unique to this translation
6741 unit, so use what we do have and throw in some randomness. */
6742 unsigned len;
6743 const char *name = weak_global_object_name;
6744 const char *file = main_input_filename;
6745
6746 if (! name)
6747 name = "";
6748 if (! file)
6749 file = input_filename;
6750
6751 len = strlen (file);
6752 q = alloca (9 * 2 + len + 1);
6753 memcpy (q, file, len + 1);
6754 clean_symbol_name (q);
6755
6756 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6757 crc32_string (0, get_random_seed (false)));
6758
6759 p = q;
6760 }
6761
6762 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6763
6764 /* Set up the name of the file-level functions we may need.
6765 Use a global object (which is already required to be unique over
6766 the program) rather than the file name (which imposes extra
6767 constraints). */
6768 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6769
6770 return get_identifier (buf);
6771 }
6772 \f
6773 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6774
6775 /* Complain that the tree code of NODE does not match the expected 0
6776 terminated list of trailing codes. The trailing code list can be
6777 empty, for a more vague error message. FILE, LINE, and FUNCTION
6778 are of the caller. */
6779
6780 void
6781 tree_check_failed (const_tree node, const char *file,
6782 int line, const char *function, ...)
6783 {
6784 va_list args;
6785 const char *buffer;
6786 unsigned length = 0;
6787 int code;
6788
6789 va_start (args, function);
6790 while ((code = va_arg (args, int)))
6791 length += 4 + strlen (tree_code_name[code]);
6792 va_end (args);
6793 if (length)
6794 {
6795 char *tmp;
6796 va_start (args, function);
6797 length += strlen ("expected ");
6798 buffer = tmp = alloca (length);
6799 length = 0;
6800 while ((code = va_arg (args, int)))
6801 {
6802 const char *prefix = length ? " or " : "expected ";
6803
6804 strcpy (tmp + length, prefix);
6805 length += strlen (prefix);
6806 strcpy (tmp + length, tree_code_name[code]);
6807 length += strlen (tree_code_name[code]);
6808 }
6809 va_end (args);
6810 }
6811 else
6812 buffer = "unexpected node";
6813
6814 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6815 buffer, tree_code_name[TREE_CODE (node)],
6816 function, trim_filename (file), line);
6817 }
6818
6819 /* Complain that the tree code of NODE does match the expected 0
6820 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6821 the caller. */
6822
6823 void
6824 tree_not_check_failed (const_tree node, const char *file,
6825 int line, const char *function, ...)
6826 {
6827 va_list args;
6828 char *buffer;
6829 unsigned length = 0;
6830 int code;
6831
6832 va_start (args, function);
6833 while ((code = va_arg (args, int)))
6834 length += 4 + strlen (tree_code_name[code]);
6835 va_end (args);
6836 va_start (args, function);
6837 buffer = alloca (length);
6838 length = 0;
6839 while ((code = va_arg (args, int)))
6840 {
6841 if (length)
6842 {
6843 strcpy (buffer + length, " or ");
6844 length += 4;
6845 }
6846 strcpy (buffer + length, tree_code_name[code]);
6847 length += strlen (tree_code_name[code]);
6848 }
6849 va_end (args);
6850
6851 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6852 buffer, tree_code_name[TREE_CODE (node)],
6853 function, trim_filename (file), line);
6854 }
6855
6856 /* Similar to tree_check_failed, except that we check for a class of tree
6857 code, given in CL. */
6858
6859 void
6860 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
6861 const char *file, int line, const char *function)
6862 {
6863 internal_error
6864 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6865 TREE_CODE_CLASS_STRING (cl),
6866 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6867 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6868 }
6869
6870 /* Similar to tree_check_failed, except that instead of specifying a
6871 dozen codes, use the knowledge that they're all sequential. */
6872
6873 void
6874 tree_range_check_failed (const_tree node, const char *file, int line,
6875 const char *function, enum tree_code c1,
6876 enum tree_code c2)
6877 {
6878 char *buffer;
6879 unsigned length = 0;
6880 enum tree_code c;
6881
6882 for (c = c1; c <= c2; ++c)
6883 length += 4 + strlen (tree_code_name[c]);
6884
6885 length += strlen ("expected ");
6886 buffer = alloca (length);
6887 length = 0;
6888
6889 for (c = c1; c <= c2; ++c)
6890 {
6891 const char *prefix = length ? " or " : "expected ";
6892
6893 strcpy (buffer + length, prefix);
6894 length += strlen (prefix);
6895 strcpy (buffer + length, tree_code_name[c]);
6896 length += strlen (tree_code_name[c]);
6897 }
6898
6899 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6900 buffer, tree_code_name[TREE_CODE (node)],
6901 function, trim_filename (file), line);
6902 }
6903
6904
6905 /* Similar to tree_check_failed, except that we check that a tree does
6906 not have the specified code, given in CL. */
6907
6908 void
6909 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
6910 const char *file, int line, const char *function)
6911 {
6912 internal_error
6913 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6914 TREE_CODE_CLASS_STRING (cl),
6915 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6916 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6917 }
6918
6919
6920 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
6921
6922 void
6923 omp_clause_check_failed (const_tree node, const char *file, int line,
6924 const char *function, enum omp_clause_code code)
6925 {
6926 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6927 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6928 function, trim_filename (file), line);
6929 }
6930
6931
6932 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
6933
6934 void
6935 omp_clause_range_check_failed (const_tree node, const char *file, int line,
6936 const char *function, enum omp_clause_code c1,
6937 enum omp_clause_code c2)
6938 {
6939 char *buffer;
6940 unsigned length = 0;
6941 enum omp_clause_code c;
6942
6943 for (c = c1; c <= c2; ++c)
6944 length += 4 + strlen (omp_clause_code_name[c]);
6945
6946 length += strlen ("expected ");
6947 buffer = alloca (length);
6948 length = 0;
6949
6950 for (c = c1; c <= c2; ++c)
6951 {
6952 const char *prefix = length ? " or " : "expected ";
6953
6954 strcpy (buffer + length, prefix);
6955 length += strlen (prefix);
6956 strcpy (buffer + length, omp_clause_code_name[c]);
6957 length += strlen (omp_clause_code_name[c]);
6958 }
6959
6960 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6961 buffer, omp_clause_code_name[TREE_CODE (node)],
6962 function, trim_filename (file), line);
6963 }
6964
6965
6966 #undef DEFTREESTRUCT
6967 #define DEFTREESTRUCT(VAL, NAME) NAME,
6968
6969 static const char *ts_enum_names[] = {
6970 #include "treestruct.def"
6971 };
6972 #undef DEFTREESTRUCT
6973
6974 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6975
6976 /* Similar to tree_class_check_failed, except that we check for
6977 whether CODE contains the tree structure identified by EN. */
6978
6979 void
6980 tree_contains_struct_check_failed (const_tree node,
6981 const enum tree_node_structure_enum en,
6982 const char *file, int line,
6983 const char *function)
6984 {
6985 internal_error
6986 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6987 TS_ENUM_NAME(en),
6988 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6989 }
6990
6991
6992 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6993 (dynamically sized) vector. */
6994
6995 void
6996 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6997 const char *function)
6998 {
6999 internal_error
7000 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
7001 idx + 1, len, function, trim_filename (file), line);
7002 }
7003
7004 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
7005 (dynamically sized) vector. */
7006
7007 void
7008 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
7009 const char *function)
7010 {
7011 internal_error
7012 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
7013 idx + 1, len, function, trim_filename (file), line);
7014 }
7015
7016 /* Similar to above, except that the check is for the bounds of the operand
7017 vector of an expression node EXP. */
7018
7019 void
7020 tree_operand_check_failed (int idx, const_tree exp, const char *file,
7021 int line, const char *function)
7022 {
7023 int code = TREE_CODE (exp);
7024 internal_error
7025 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
7026 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
7027 function, trim_filename (file), line);
7028 }
7029
7030 /* Similar to above, except that the check is for the number of
7031 operands of an OMP_CLAUSE node. */
7032
7033 void
7034 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
7035 int line, const char *function)
7036 {
7037 internal_error
7038 ("tree check: accessed operand %d of omp_clause %s with %d operands "
7039 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
7040 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
7041 trim_filename (file), line);
7042 }
7043 #endif /* ENABLE_TREE_CHECKING */
7044 \f
7045 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
7046 and mapped to the machine mode MODE. Initialize its fields and build
7047 the information necessary for debugging output. */
7048
7049 static tree
7050 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
7051 {
7052 tree t;
7053 hashval_t hashcode = 0;
7054
7055 /* Build a main variant, based on the main variant of the inner type, then
7056 use it to build the variant we return. */
7057 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
7058 && TYPE_MAIN_VARIANT (innertype) != innertype)
7059 return build_type_attribute_qual_variant (
7060 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
7061 TYPE_ATTRIBUTES (innertype),
7062 TYPE_QUALS (innertype));
7063
7064 t = make_node (VECTOR_TYPE);
7065 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
7066 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
7067 TYPE_MODE (t) = mode;
7068 TYPE_READONLY (t) = TYPE_READONLY (innertype);
7069 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
7070
7071 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
7072 SET_TYPE_STRUCTURAL_EQUALITY (t);
7073 else if (TYPE_CANONICAL (innertype) != innertype
7074 || mode != VOIDmode)
7075 TYPE_CANONICAL (t)
7076 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
7077
7078 layout_type (t);
7079
7080 {
7081 tree index = build_int_cst (NULL_TREE, nunits - 1);
7082 tree array = build_array_type (innertype, build_index_type (index));
7083 tree rt = make_node (RECORD_TYPE);
7084
7085 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
7086 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
7087 layout_type (rt);
7088 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
7089 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
7090 the representation type, and we want to find that die when looking up
7091 the vector type. This is most easily achieved by making the TYPE_UID
7092 numbers equal. */
7093 TYPE_UID (rt) = TYPE_UID (t);
7094 }
7095
7096 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
7097 hashcode = iterative_hash_host_wide_int (mode, hashcode);
7098 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
7099 return type_hash_canon (hashcode, t);
7100 }
7101
7102 static tree
7103 make_or_reuse_type (unsigned size, int unsignedp)
7104 {
7105 if (size == INT_TYPE_SIZE)
7106 return unsignedp ? unsigned_type_node : integer_type_node;
7107 if (size == CHAR_TYPE_SIZE)
7108 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
7109 if (size == SHORT_TYPE_SIZE)
7110 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
7111 if (size == LONG_TYPE_SIZE)
7112 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
7113 if (size == LONG_LONG_TYPE_SIZE)
7114 return (unsignedp ? long_long_unsigned_type_node
7115 : long_long_integer_type_node);
7116
7117 if (unsignedp)
7118 return make_unsigned_type (size);
7119 else
7120 return make_signed_type (size);
7121 }
7122
7123 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
7124
7125 static tree
7126 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
7127 {
7128 if (satp)
7129 {
7130 if (size == SHORT_FRACT_TYPE_SIZE)
7131 return unsignedp ? sat_unsigned_short_fract_type_node
7132 : sat_short_fract_type_node;
7133 if (size == FRACT_TYPE_SIZE)
7134 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
7135 if (size == LONG_FRACT_TYPE_SIZE)
7136 return unsignedp ? sat_unsigned_long_fract_type_node
7137 : sat_long_fract_type_node;
7138 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7139 return unsignedp ? sat_unsigned_long_long_fract_type_node
7140 : sat_long_long_fract_type_node;
7141 }
7142 else
7143 {
7144 if (size == SHORT_FRACT_TYPE_SIZE)
7145 return unsignedp ? unsigned_short_fract_type_node
7146 : short_fract_type_node;
7147 if (size == FRACT_TYPE_SIZE)
7148 return unsignedp ? unsigned_fract_type_node : fract_type_node;
7149 if (size == LONG_FRACT_TYPE_SIZE)
7150 return unsignedp ? unsigned_long_fract_type_node
7151 : long_fract_type_node;
7152 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7153 return unsignedp ? unsigned_long_long_fract_type_node
7154 : long_long_fract_type_node;
7155 }
7156
7157 return make_fract_type (size, unsignedp, satp);
7158 }
7159
7160 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
7161
7162 static tree
7163 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
7164 {
7165 if (satp)
7166 {
7167 if (size == SHORT_ACCUM_TYPE_SIZE)
7168 return unsignedp ? sat_unsigned_short_accum_type_node
7169 : sat_short_accum_type_node;
7170 if (size == ACCUM_TYPE_SIZE)
7171 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
7172 if (size == LONG_ACCUM_TYPE_SIZE)
7173 return unsignedp ? sat_unsigned_long_accum_type_node
7174 : sat_long_accum_type_node;
7175 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7176 return unsignedp ? sat_unsigned_long_long_accum_type_node
7177 : sat_long_long_accum_type_node;
7178 }
7179 else
7180 {
7181 if (size == SHORT_ACCUM_TYPE_SIZE)
7182 return unsignedp ? unsigned_short_accum_type_node
7183 : short_accum_type_node;
7184 if (size == ACCUM_TYPE_SIZE)
7185 return unsignedp ? unsigned_accum_type_node : accum_type_node;
7186 if (size == LONG_ACCUM_TYPE_SIZE)
7187 return unsignedp ? unsigned_long_accum_type_node
7188 : long_accum_type_node;
7189 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7190 return unsignedp ? unsigned_long_long_accum_type_node
7191 : long_long_accum_type_node;
7192 }
7193
7194 return make_accum_type (size, unsignedp, satp);
7195 }
7196
7197 /* Create nodes for all integer types (and error_mark_node) using the sizes
7198 of C datatypes. The caller should call set_sizetype soon after calling
7199 this function to select one of the types as sizetype. */
7200
7201 void
7202 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
7203 {
7204 error_mark_node = make_node (ERROR_MARK);
7205 TREE_TYPE (error_mark_node) = error_mark_node;
7206
7207 initialize_sizetypes (signed_sizetype);
7208
7209 /* Define both `signed char' and `unsigned char'. */
7210 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
7211 TYPE_STRING_FLAG (signed_char_type_node) = 1;
7212 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
7213 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
7214
7215 /* Define `char', which is like either `signed char' or `unsigned char'
7216 but not the same as either. */
7217 char_type_node
7218 = (signed_char
7219 ? make_signed_type (CHAR_TYPE_SIZE)
7220 : make_unsigned_type (CHAR_TYPE_SIZE));
7221 TYPE_STRING_FLAG (char_type_node) = 1;
7222
7223 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
7224 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
7225 integer_type_node = make_signed_type (INT_TYPE_SIZE);
7226 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
7227 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
7228 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
7229 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
7230 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
7231
7232 /* Define a boolean type. This type only represents boolean values but
7233 may be larger than char depending on the value of BOOL_TYPE_SIZE.
7234 Front ends which want to override this size (i.e. Java) can redefine
7235 boolean_type_node before calling build_common_tree_nodes_2. */
7236 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
7237 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
7238 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
7239 TYPE_PRECISION (boolean_type_node) = 1;
7240
7241 /* Fill in the rest of the sized types. Reuse existing type nodes
7242 when possible. */
7243 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
7244 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
7245 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
7246 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
7247 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
7248
7249 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
7250 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
7251 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
7252 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
7253 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
7254
7255 access_public_node = get_identifier ("public");
7256 access_protected_node = get_identifier ("protected");
7257 access_private_node = get_identifier ("private");
7258 }
7259
7260 /* Call this function after calling build_common_tree_nodes and set_sizetype.
7261 It will create several other common tree nodes. */
7262
7263 void
7264 build_common_tree_nodes_2 (int short_double)
7265 {
7266 /* Define these next since types below may used them. */
7267 integer_zero_node = build_int_cst (NULL_TREE, 0);
7268 integer_one_node = build_int_cst (NULL_TREE, 1);
7269 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
7270
7271 size_zero_node = size_int (0);
7272 size_one_node = size_int (1);
7273 bitsize_zero_node = bitsize_int (0);
7274 bitsize_one_node = bitsize_int (1);
7275 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
7276
7277 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
7278 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
7279
7280 void_type_node = make_node (VOID_TYPE);
7281 layout_type (void_type_node);
7282
7283 /* We are not going to have real types in C with less than byte alignment,
7284 so we might as well not have any types that claim to have it. */
7285 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
7286 TYPE_USER_ALIGN (void_type_node) = 0;
7287
7288 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
7289 layout_type (TREE_TYPE (null_pointer_node));
7290
7291 ptr_type_node = build_pointer_type (void_type_node);
7292 const_ptr_type_node
7293 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
7294 fileptr_type_node = ptr_type_node;
7295
7296 float_type_node = make_node (REAL_TYPE);
7297 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
7298 layout_type (float_type_node);
7299
7300 double_type_node = make_node (REAL_TYPE);
7301 if (short_double)
7302 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
7303 else
7304 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
7305 layout_type (double_type_node);
7306
7307 long_double_type_node = make_node (REAL_TYPE);
7308 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
7309 layout_type (long_double_type_node);
7310
7311 float_ptr_type_node = build_pointer_type (float_type_node);
7312 double_ptr_type_node = build_pointer_type (double_type_node);
7313 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
7314 integer_ptr_type_node = build_pointer_type (integer_type_node);
7315
7316 /* Fixed size integer types. */
7317 uint32_type_node = build_nonstandard_integer_type (32, true);
7318 uint64_type_node = build_nonstandard_integer_type (64, true);
7319
7320 /* Decimal float types. */
7321 dfloat32_type_node = make_node (REAL_TYPE);
7322 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
7323 layout_type (dfloat32_type_node);
7324 TYPE_MODE (dfloat32_type_node) = SDmode;
7325 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
7326
7327 dfloat64_type_node = make_node (REAL_TYPE);
7328 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
7329 layout_type (dfloat64_type_node);
7330 TYPE_MODE (dfloat64_type_node) = DDmode;
7331 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
7332
7333 dfloat128_type_node = make_node (REAL_TYPE);
7334 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
7335 layout_type (dfloat128_type_node);
7336 TYPE_MODE (dfloat128_type_node) = TDmode;
7337 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
7338
7339 complex_integer_type_node = build_complex_type (integer_type_node);
7340 complex_float_type_node = build_complex_type (float_type_node);
7341 complex_double_type_node = build_complex_type (double_type_node);
7342 complex_long_double_type_node = build_complex_type (long_double_type_node);
7343
7344 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
7345 #define MAKE_FIXED_TYPE_NODE(KIND,WIDTH,SIZE) \
7346 sat_ ## WIDTH ## KIND ## _type_node = \
7347 make_sat_signed_ ## KIND ## _type (SIZE); \
7348 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
7349 make_sat_unsigned_ ## KIND ## _type (SIZE); \
7350 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
7351 unsigned_ ## WIDTH ## KIND ## _type_node = \
7352 make_unsigned_ ## KIND ## _type (SIZE);
7353
7354 /* Make fixed-point type nodes based on four different widths. */
7355 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
7356 MAKE_FIXED_TYPE_NODE (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
7357 MAKE_FIXED_TYPE_NODE (N1, , N2 ## _TYPE_SIZE) \
7358 MAKE_FIXED_TYPE_NODE (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
7359 MAKE_FIXED_TYPE_NODE (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
7360
7361 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
7362 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
7363 NAME ## _type_node = \
7364 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
7365 u ## NAME ## _type_node = \
7366 make_or_reuse_unsigned_ ## KIND ## _type \
7367 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
7368 sat_ ## NAME ## _type_node = \
7369 make_or_reuse_sat_signed_ ## KIND ## _type \
7370 (GET_MODE_BITSIZE (MODE ## mode)); \
7371 sat_u ## NAME ## _type_node = \
7372 make_or_reuse_sat_unsigned_ ## KIND ## _type \
7373 (GET_MODE_BITSIZE (U ## MODE ## mode));
7374
7375 /* Fixed-point type and mode nodes. */
7376 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
7377 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
7378 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
7379 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
7380 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
7381 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
7382 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
7383 MAKE_FIXED_MODE_NODE (accum, ha, HA)
7384 MAKE_FIXED_MODE_NODE (accum, sa, SA)
7385 MAKE_FIXED_MODE_NODE (accum, da, DA)
7386 MAKE_FIXED_MODE_NODE (accum, ta, TA)
7387
7388 {
7389 tree t = targetm.build_builtin_va_list ();
7390
7391 /* Many back-ends define record types without setting TYPE_NAME.
7392 If we copied the record type here, we'd keep the original
7393 record type without a name. This breaks name mangling. So,
7394 don't copy record types and let c_common_nodes_and_builtins()
7395 declare the type to be __builtin_va_list. */
7396 if (TREE_CODE (t) != RECORD_TYPE)
7397 t = build_variant_type_copy (t);
7398
7399 va_list_type_node = t;
7400 }
7401 }
7402
7403 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
7404
7405 static void
7406 local_define_builtin (const char *name, tree type, enum built_in_function code,
7407 const char *library_name, int ecf_flags)
7408 {
7409 tree decl;
7410
7411 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
7412 library_name, NULL_TREE);
7413 if (ecf_flags & ECF_CONST)
7414 TREE_READONLY (decl) = 1;
7415 if (ecf_flags & ECF_PURE)
7416 DECL_IS_PURE (decl) = 1;
7417 if (ecf_flags & ECF_NORETURN)
7418 TREE_THIS_VOLATILE (decl) = 1;
7419 if (ecf_flags & ECF_NOTHROW)
7420 TREE_NOTHROW (decl) = 1;
7421 if (ecf_flags & ECF_MALLOC)
7422 DECL_IS_MALLOC (decl) = 1;
7423
7424 built_in_decls[code] = decl;
7425 implicit_built_in_decls[code] = decl;
7426 }
7427
7428 /* Call this function after instantiating all builtins that the language
7429 front end cares about. This will build the rest of the builtins that
7430 are relied upon by the tree optimizers and the middle-end. */
7431
7432 void
7433 build_common_builtin_nodes (void)
7434 {
7435 tree tmp, ftype;
7436
7437 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
7438 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7439 {
7440 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7441 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7442 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7443 ftype = build_function_type (ptr_type_node, tmp);
7444
7445 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
7446 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
7447 "memcpy", ECF_NOTHROW);
7448 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7449 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
7450 "memmove", ECF_NOTHROW);
7451 }
7452
7453 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
7454 {
7455 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7456 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7457 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7458 ftype = build_function_type (integer_type_node, tmp);
7459 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
7460 "memcmp", ECF_PURE | ECF_NOTHROW);
7461 }
7462
7463 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
7464 {
7465 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7466 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
7467 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7468 ftype = build_function_type (ptr_type_node, tmp);
7469 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
7470 "memset", ECF_NOTHROW);
7471 }
7472
7473 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
7474 {
7475 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7476 ftype = build_function_type (ptr_type_node, tmp);
7477 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
7478 "alloca", ECF_NOTHROW | ECF_MALLOC);
7479 }
7480
7481 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7482 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7483 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7484 ftype = build_function_type (void_type_node, tmp);
7485 local_define_builtin ("__builtin_init_trampoline", ftype,
7486 BUILT_IN_INIT_TRAMPOLINE,
7487 "__builtin_init_trampoline", ECF_NOTHROW);
7488
7489 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7490 ftype = build_function_type (ptr_type_node, tmp);
7491 local_define_builtin ("__builtin_adjust_trampoline", ftype,
7492 BUILT_IN_ADJUST_TRAMPOLINE,
7493 "__builtin_adjust_trampoline",
7494 ECF_CONST | ECF_NOTHROW);
7495
7496 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7497 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7498 ftype = build_function_type (void_type_node, tmp);
7499 local_define_builtin ("__builtin_nonlocal_goto", ftype,
7500 BUILT_IN_NONLOCAL_GOTO,
7501 "__builtin_nonlocal_goto",
7502 ECF_NORETURN | ECF_NOTHROW);
7503
7504 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7505 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7506 ftype = build_function_type (void_type_node, tmp);
7507 local_define_builtin ("__builtin_setjmp_setup", ftype,
7508 BUILT_IN_SETJMP_SETUP,
7509 "__builtin_setjmp_setup", ECF_NOTHROW);
7510
7511 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7512 ftype = build_function_type (ptr_type_node, tmp);
7513 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
7514 BUILT_IN_SETJMP_DISPATCHER,
7515 "__builtin_setjmp_dispatcher",
7516 ECF_PURE | ECF_NOTHROW);
7517
7518 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7519 ftype = build_function_type (void_type_node, tmp);
7520 local_define_builtin ("__builtin_setjmp_receiver", ftype,
7521 BUILT_IN_SETJMP_RECEIVER,
7522 "__builtin_setjmp_receiver", ECF_NOTHROW);
7523
7524 ftype = build_function_type (ptr_type_node, void_list_node);
7525 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
7526 "__builtin_stack_save", ECF_NOTHROW);
7527
7528 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7529 ftype = build_function_type (void_type_node, tmp);
7530 local_define_builtin ("__builtin_stack_restore", ftype,
7531 BUILT_IN_STACK_RESTORE,
7532 "__builtin_stack_restore", ECF_NOTHROW);
7533
7534 ftype = build_function_type (void_type_node, void_list_node);
7535 local_define_builtin ("__builtin_profile_func_enter", ftype,
7536 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
7537 local_define_builtin ("__builtin_profile_func_exit", ftype,
7538 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
7539
7540 /* Complex multiplication and division. These are handled as builtins
7541 rather than optabs because emit_library_call_value doesn't support
7542 complex. Further, we can do slightly better with folding these
7543 beasties if the real and complex parts of the arguments are separate. */
7544 {
7545 enum machine_mode mode;
7546
7547 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
7548 {
7549 char mode_name_buf[4], *q;
7550 const char *p;
7551 enum built_in_function mcode, dcode;
7552 tree type, inner_type;
7553
7554 type = lang_hooks.types.type_for_mode (mode, 0);
7555 if (type == NULL)
7556 continue;
7557 inner_type = TREE_TYPE (type);
7558
7559 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
7560 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7561 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7562 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7563 ftype = build_function_type (type, tmp);
7564
7565 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7566 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7567
7568 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
7569 *q = TOLOWER (*p);
7570 *q = '\0';
7571
7572 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
7573 local_define_builtin (built_in_names[mcode], ftype, mcode,
7574 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
7575
7576 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
7577 local_define_builtin (built_in_names[dcode], ftype, dcode,
7578 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
7579 }
7580 }
7581 }
7582
7583 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
7584 better way.
7585
7586 If we requested a pointer to a vector, build up the pointers that
7587 we stripped off while looking for the inner type. Similarly for
7588 return values from functions.
7589
7590 The argument TYPE is the top of the chain, and BOTTOM is the
7591 new type which we will point to. */
7592
7593 tree
7594 reconstruct_complex_type (tree type, tree bottom)
7595 {
7596 tree inner, outer;
7597
7598 if (TREE_CODE (type) == POINTER_TYPE)
7599 {
7600 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7601 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
7602 TYPE_REF_CAN_ALIAS_ALL (type));
7603 }
7604 else if (TREE_CODE (type) == REFERENCE_TYPE)
7605 {
7606 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7607 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
7608 TYPE_REF_CAN_ALIAS_ALL (type));
7609 }
7610 else if (TREE_CODE (type) == ARRAY_TYPE)
7611 {
7612 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7613 outer = build_array_type (inner, TYPE_DOMAIN (type));
7614 }
7615 else if (TREE_CODE (type) == FUNCTION_TYPE)
7616 {
7617 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7618 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
7619 }
7620 else if (TREE_CODE (type) == METHOD_TYPE)
7621 {
7622 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7623 /* The build_method_type_directly() routine prepends 'this' to argument list,
7624 so we must compensate by getting rid of it. */
7625 outer
7626 = build_method_type_directly
7627 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
7628 inner,
7629 TREE_CHAIN (TYPE_ARG_TYPES (type)));
7630 }
7631 else if (TREE_CODE (type) == OFFSET_TYPE)
7632 {
7633 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7634 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
7635 }
7636 else
7637 return bottom;
7638
7639 return build_qualified_type (outer, TYPE_QUALS (type));
7640 }
7641
7642 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
7643 the inner type. */
7644 tree
7645 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
7646 {
7647 int nunits;
7648
7649 switch (GET_MODE_CLASS (mode))
7650 {
7651 case MODE_VECTOR_INT:
7652 case MODE_VECTOR_FLOAT:
7653 case MODE_VECTOR_FRACT:
7654 case MODE_VECTOR_UFRACT:
7655 case MODE_VECTOR_ACCUM:
7656 case MODE_VECTOR_UACCUM:
7657 nunits = GET_MODE_NUNITS (mode);
7658 break;
7659
7660 case MODE_INT:
7661 /* Check that there are no leftover bits. */
7662 gcc_assert (GET_MODE_BITSIZE (mode)
7663 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
7664
7665 nunits = GET_MODE_BITSIZE (mode)
7666 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
7667 break;
7668
7669 default:
7670 gcc_unreachable ();
7671 }
7672
7673 return make_vector_type (innertype, nunits, mode);
7674 }
7675
7676 /* Similarly, but takes the inner type and number of units, which must be
7677 a power of two. */
7678
7679 tree
7680 build_vector_type (tree innertype, int nunits)
7681 {
7682 return make_vector_type (innertype, nunits, VOIDmode);
7683 }
7684
7685
7686 /* Build RESX_EXPR with given REGION_NUMBER. */
7687 tree
7688 build_resx (int region_number)
7689 {
7690 tree t;
7691 t = build1 (RESX_EXPR, void_type_node,
7692 build_int_cst (NULL_TREE, region_number));
7693 return t;
7694 }
7695
7696 /* Given an initializer INIT, return TRUE if INIT is zero or some
7697 aggregate of zeros. Otherwise return FALSE. */
7698 bool
7699 initializer_zerop (const_tree init)
7700 {
7701 tree elt;
7702
7703 STRIP_NOPS (init);
7704
7705 switch (TREE_CODE (init))
7706 {
7707 case INTEGER_CST:
7708 return integer_zerop (init);
7709
7710 case REAL_CST:
7711 /* ??? Note that this is not correct for C4X float formats. There,
7712 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
7713 negative exponent. */
7714 return real_zerop (init)
7715 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
7716
7717 case FIXED_CST:
7718 return fixed_zerop (init);
7719
7720 case COMPLEX_CST:
7721 return integer_zerop (init)
7722 || (real_zerop (init)
7723 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
7724 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
7725
7726 case VECTOR_CST:
7727 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
7728 if (!initializer_zerop (TREE_VALUE (elt)))
7729 return false;
7730 return true;
7731
7732 case CONSTRUCTOR:
7733 {
7734 unsigned HOST_WIDE_INT idx;
7735
7736 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
7737 if (!initializer_zerop (elt))
7738 return false;
7739 return true;
7740 }
7741
7742 default:
7743 return false;
7744 }
7745 }
7746
7747 /* Build an empty statement. */
7748
7749 tree
7750 build_empty_stmt (void)
7751 {
7752 return build1 (NOP_EXPR, void_type_node, size_zero_node);
7753 }
7754
7755
7756 /* Build an OpenMP clause with code CODE. */
7757
7758 tree
7759 build_omp_clause (enum omp_clause_code code)
7760 {
7761 tree t;
7762 int size, length;
7763
7764 length = omp_clause_num_ops[code];
7765 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
7766
7767 t = ggc_alloc (size);
7768 memset (t, 0, size);
7769 TREE_SET_CODE (t, OMP_CLAUSE);
7770 OMP_CLAUSE_SET_CODE (t, code);
7771
7772 #ifdef GATHER_STATISTICS
7773 tree_node_counts[(int) omp_clause_kind]++;
7774 tree_node_sizes[(int) omp_clause_kind] += size;
7775 #endif
7776
7777 return t;
7778 }
7779
7780 /* Set various status flags when building a CALL_EXPR object T. */
7781
7782 static void
7783 process_call_operands (tree t)
7784 {
7785 bool side_effects;
7786
7787 side_effects = TREE_SIDE_EFFECTS (t);
7788 if (!side_effects)
7789 {
7790 int i, n;
7791 n = TREE_OPERAND_LENGTH (t);
7792 for (i = 1; i < n; i++)
7793 {
7794 tree op = TREE_OPERAND (t, i);
7795 if (op && TREE_SIDE_EFFECTS (op))
7796 {
7797 side_effects = 1;
7798 break;
7799 }
7800 }
7801 }
7802 if (!side_effects)
7803 {
7804 int i;
7805
7806 /* Calls have side-effects, except those to const or
7807 pure functions. */
7808 i = call_expr_flags (t);
7809 if (!(i & (ECF_CONST | ECF_PURE)))
7810 side_effects = 1;
7811 }
7812 TREE_SIDE_EFFECTS (t) = side_effects;
7813 }
7814
7815 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
7816 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
7817 Except for the CODE and operand count field, other storage for the
7818 object is initialized to zeros. */
7819
7820 tree
7821 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
7822 {
7823 tree t;
7824 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
7825
7826 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
7827 gcc_assert (len >= 1);
7828
7829 #ifdef GATHER_STATISTICS
7830 tree_node_counts[(int) e_kind]++;
7831 tree_node_sizes[(int) e_kind] += length;
7832 #endif
7833
7834 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
7835
7836 memset (t, 0, length);
7837
7838 TREE_SET_CODE (t, code);
7839
7840 /* Can't use TREE_OPERAND to store the length because if checking is
7841 enabled, it will try to check the length before we store it. :-P */
7842 t->exp.operands[0] = build_int_cst (sizetype, len);
7843
7844 return t;
7845 }
7846
7847
7848 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
7849 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
7850 arguments. */
7851
7852 tree
7853 build_call_list (tree return_type, tree fn, tree arglist)
7854 {
7855 tree t;
7856 int i;
7857
7858 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
7859 TREE_TYPE (t) = return_type;
7860 CALL_EXPR_FN (t) = fn;
7861 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7862 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
7863 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
7864 process_call_operands (t);
7865 return t;
7866 }
7867
7868 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7869 FN and a null static chain slot. NARGS is the number of call arguments
7870 which are specified as "..." arguments. */
7871
7872 tree
7873 build_call_nary (tree return_type, tree fn, int nargs, ...)
7874 {
7875 tree ret;
7876 va_list args;
7877 va_start (args, nargs);
7878 ret = build_call_valist (return_type, fn, nargs, args);
7879 va_end (args);
7880 return ret;
7881 }
7882
7883 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7884 FN and a null static chain slot. NARGS is the number of call arguments
7885 which are specified as a va_list ARGS. */
7886
7887 tree
7888 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
7889 {
7890 tree t;
7891 int i;
7892
7893 t = build_vl_exp (CALL_EXPR, nargs + 3);
7894 TREE_TYPE (t) = return_type;
7895 CALL_EXPR_FN (t) = fn;
7896 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7897 for (i = 0; i < nargs; i++)
7898 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
7899 process_call_operands (t);
7900 return t;
7901 }
7902
7903 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7904 FN and a null static chain slot. NARGS is the number of call arguments
7905 which are specified as a tree array ARGS. */
7906
7907 tree
7908 build_call_array (tree return_type, tree fn, int nargs, tree *args)
7909 {
7910 tree t;
7911 int i;
7912
7913 t = build_vl_exp (CALL_EXPR, nargs + 3);
7914 TREE_TYPE (t) = return_type;
7915 CALL_EXPR_FN (t) = fn;
7916 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7917 for (i = 0; i < nargs; i++)
7918 CALL_EXPR_ARG (t, i) = args[i];
7919 process_call_operands (t);
7920 return t;
7921 }
7922
7923
7924 /* Returns true if it is possible to prove that the index of
7925 an array access REF (an ARRAY_REF expression) falls into the
7926 array bounds. */
7927
7928 bool
7929 in_array_bounds_p (tree ref)
7930 {
7931 tree idx = TREE_OPERAND (ref, 1);
7932 tree min, max;
7933
7934 if (TREE_CODE (idx) != INTEGER_CST)
7935 return false;
7936
7937 min = array_ref_low_bound (ref);
7938 max = array_ref_up_bound (ref);
7939 if (!min
7940 || !max
7941 || TREE_CODE (min) != INTEGER_CST
7942 || TREE_CODE (max) != INTEGER_CST)
7943 return false;
7944
7945 if (tree_int_cst_lt (idx, min)
7946 || tree_int_cst_lt (max, idx))
7947 return false;
7948
7949 return true;
7950 }
7951
7952 /* Returns true if it is possible to prove that the range of
7953 an array access REF (an ARRAY_RANGE_REF expression) falls
7954 into the array bounds. */
7955
7956 bool
7957 range_in_array_bounds_p (tree ref)
7958 {
7959 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7960 tree range_min, range_max, min, max;
7961
7962 range_min = TYPE_MIN_VALUE (domain_type);
7963 range_max = TYPE_MAX_VALUE (domain_type);
7964 if (!range_min
7965 || !range_max
7966 || TREE_CODE (range_min) != INTEGER_CST
7967 || TREE_CODE (range_max) != INTEGER_CST)
7968 return false;
7969
7970 min = array_ref_low_bound (ref);
7971 max = array_ref_up_bound (ref);
7972 if (!min
7973 || !max
7974 || TREE_CODE (min) != INTEGER_CST
7975 || TREE_CODE (max) != INTEGER_CST)
7976 return false;
7977
7978 if (tree_int_cst_lt (range_min, min)
7979 || tree_int_cst_lt (max, range_max))
7980 return false;
7981
7982 return true;
7983 }
7984
7985 /* Return true if T (assumed to be a DECL) must be assigned a memory
7986 location. */
7987
7988 bool
7989 needs_to_live_in_memory (const_tree t)
7990 {
7991 if (TREE_CODE (t) == SSA_NAME)
7992 t = SSA_NAME_VAR (t);
7993
7994 return (TREE_ADDRESSABLE (t)
7995 || is_global_var (t)
7996 || (TREE_CODE (t) == RESULT_DECL
7997 && aggregate_value_p (t, current_function_decl)));
7998 }
7999
8000 /* There are situations in which a language considers record types
8001 compatible which have different field lists. Decide if two fields
8002 are compatible. It is assumed that the parent records are compatible. */
8003
8004 bool
8005 fields_compatible_p (const_tree f1, const_tree f2)
8006 {
8007 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
8008 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
8009 return false;
8010
8011 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
8012 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
8013 return false;
8014
8015 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
8016 return false;
8017
8018 return true;
8019 }
8020
8021 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
8022
8023 tree
8024 find_compatible_field (tree record, tree orig_field)
8025 {
8026 tree f;
8027
8028 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
8029 if (TREE_CODE (f) == FIELD_DECL
8030 && fields_compatible_p (f, orig_field))
8031 return f;
8032
8033 /* ??? Why isn't this on the main fields list? */
8034 f = TYPE_VFIELD (record);
8035 if (f && TREE_CODE (f) == FIELD_DECL
8036 && fields_compatible_p (f, orig_field))
8037 return f;
8038
8039 /* ??? We should abort here, but Java appears to do Bad Things
8040 with inherited fields. */
8041 return orig_field;
8042 }
8043
8044 /* Return value of a constant X and sign-extend it. */
8045
8046 HOST_WIDE_INT
8047 int_cst_value (const_tree x)
8048 {
8049 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
8050 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
8051
8052 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
8053 gcc_assert (TREE_INT_CST_HIGH (x) == 0
8054 || TREE_INT_CST_HIGH (x) == -1);
8055
8056 if (bits < HOST_BITS_PER_WIDE_INT)
8057 {
8058 bool negative = ((val >> (bits - 1)) & 1) != 0;
8059 if (negative)
8060 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
8061 else
8062 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
8063 }
8064
8065 return val;
8066 }
8067
8068 /* If TYPE is an integral type, return an equivalent type which is
8069 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
8070 return TYPE itself. */
8071
8072 tree
8073 signed_or_unsigned_type_for (int unsignedp, tree type)
8074 {
8075 tree t = type;
8076 if (POINTER_TYPE_P (type))
8077 t = size_type_node;
8078
8079 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
8080 return t;
8081
8082 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
8083 }
8084
8085 /* Returns unsigned variant of TYPE. */
8086
8087 tree
8088 unsigned_type_for (tree type)
8089 {
8090 return signed_or_unsigned_type_for (1, type);
8091 }
8092
8093 /* Returns signed variant of TYPE. */
8094
8095 tree
8096 signed_type_for (tree type)
8097 {
8098 return signed_or_unsigned_type_for (0, type);
8099 }
8100
8101 /* Returns the largest value obtainable by casting something in INNER type to
8102 OUTER type. */
8103
8104 tree
8105 upper_bound_in_type (tree outer, tree inner)
8106 {
8107 unsigned HOST_WIDE_INT lo, hi;
8108 unsigned int det = 0;
8109 unsigned oprec = TYPE_PRECISION (outer);
8110 unsigned iprec = TYPE_PRECISION (inner);
8111 unsigned prec;
8112
8113 /* Compute a unique number for every combination. */
8114 det |= (oprec > iprec) ? 4 : 0;
8115 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
8116 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
8117
8118 /* Determine the exponent to use. */
8119 switch (det)
8120 {
8121 case 0:
8122 case 1:
8123 /* oprec <= iprec, outer: signed, inner: don't care. */
8124 prec = oprec - 1;
8125 break;
8126 case 2:
8127 case 3:
8128 /* oprec <= iprec, outer: unsigned, inner: don't care. */
8129 prec = oprec;
8130 break;
8131 case 4:
8132 /* oprec > iprec, outer: signed, inner: signed. */
8133 prec = iprec - 1;
8134 break;
8135 case 5:
8136 /* oprec > iprec, outer: signed, inner: unsigned. */
8137 prec = iprec;
8138 break;
8139 case 6:
8140 /* oprec > iprec, outer: unsigned, inner: signed. */
8141 prec = oprec;
8142 break;
8143 case 7:
8144 /* oprec > iprec, outer: unsigned, inner: unsigned. */
8145 prec = iprec;
8146 break;
8147 default:
8148 gcc_unreachable ();
8149 }
8150
8151 /* Compute 2^^prec - 1. */
8152 if (prec <= HOST_BITS_PER_WIDE_INT)
8153 {
8154 hi = 0;
8155 lo = ((~(unsigned HOST_WIDE_INT) 0)
8156 >> (HOST_BITS_PER_WIDE_INT - prec));
8157 }
8158 else
8159 {
8160 hi = ((~(unsigned HOST_WIDE_INT) 0)
8161 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
8162 lo = ~(unsigned HOST_WIDE_INT) 0;
8163 }
8164
8165 return build_int_cst_wide (outer, lo, hi);
8166 }
8167
8168 /* Returns the smallest value obtainable by casting something in INNER type to
8169 OUTER type. */
8170
8171 tree
8172 lower_bound_in_type (tree outer, tree inner)
8173 {
8174 unsigned HOST_WIDE_INT lo, hi;
8175 unsigned oprec = TYPE_PRECISION (outer);
8176 unsigned iprec = TYPE_PRECISION (inner);
8177
8178 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
8179 and obtain 0. */
8180 if (TYPE_UNSIGNED (outer)
8181 /* If we are widening something of an unsigned type, OUTER type
8182 contains all values of INNER type. In particular, both INNER
8183 and OUTER types have zero in common. */
8184 || (oprec > iprec && TYPE_UNSIGNED (inner)))
8185 lo = hi = 0;
8186 else
8187 {
8188 /* If we are widening a signed type to another signed type, we
8189 want to obtain -2^^(iprec-1). If we are keeping the
8190 precision or narrowing to a signed type, we want to obtain
8191 -2^(oprec-1). */
8192 unsigned prec = oprec > iprec ? iprec : oprec;
8193
8194 if (prec <= HOST_BITS_PER_WIDE_INT)
8195 {
8196 hi = ~(unsigned HOST_WIDE_INT) 0;
8197 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
8198 }
8199 else
8200 {
8201 hi = ((~(unsigned HOST_WIDE_INT) 0)
8202 << (prec - HOST_BITS_PER_WIDE_INT - 1));
8203 lo = 0;
8204 }
8205 }
8206
8207 return build_int_cst_wide (outer, lo, hi);
8208 }
8209
8210 /* Return nonzero if two operands that are suitable for PHI nodes are
8211 necessarily equal. Specifically, both ARG0 and ARG1 must be either
8212 SSA_NAME or invariant. Note that this is strictly an optimization.
8213 That is, callers of this function can directly call operand_equal_p
8214 and get the same result, only slower. */
8215
8216 int
8217 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
8218 {
8219 if (arg0 == arg1)
8220 return 1;
8221 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
8222 return 0;
8223 return operand_equal_p (arg0, arg1, 0);
8224 }
8225
8226 /* Returns number of zeros at the end of binary representation of X.
8227
8228 ??? Use ffs if available? */
8229
8230 tree
8231 num_ending_zeros (const_tree x)
8232 {
8233 unsigned HOST_WIDE_INT fr, nfr;
8234 unsigned num, abits;
8235 tree type = TREE_TYPE (x);
8236
8237 if (TREE_INT_CST_LOW (x) == 0)
8238 {
8239 num = HOST_BITS_PER_WIDE_INT;
8240 fr = TREE_INT_CST_HIGH (x);
8241 }
8242 else
8243 {
8244 num = 0;
8245 fr = TREE_INT_CST_LOW (x);
8246 }
8247
8248 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
8249 {
8250 nfr = fr >> abits;
8251 if (nfr << abits == fr)
8252 {
8253 num += abits;
8254 fr = nfr;
8255 }
8256 }
8257
8258 if (num > TYPE_PRECISION (type))
8259 num = TYPE_PRECISION (type);
8260
8261 return build_int_cst_type (type, num);
8262 }
8263
8264
8265 #define WALK_SUBTREE(NODE) \
8266 do \
8267 { \
8268 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
8269 if (result) \
8270 return result; \
8271 } \
8272 while (0)
8273
8274 /* This is a subroutine of walk_tree that walks field of TYPE that are to
8275 be walked whenever a type is seen in the tree. Rest of operands and return
8276 value are as for walk_tree. */
8277
8278 static tree
8279 walk_type_fields (tree type, walk_tree_fn func, void *data,
8280 struct pointer_set_t *pset, walk_tree_lh lh)
8281 {
8282 tree result = NULL_TREE;
8283
8284 switch (TREE_CODE (type))
8285 {
8286 case POINTER_TYPE:
8287 case REFERENCE_TYPE:
8288 /* We have to worry about mutually recursive pointers. These can't
8289 be written in C. They can in Ada. It's pathological, but
8290 there's an ACATS test (c38102a) that checks it. Deal with this
8291 by checking if we're pointing to another pointer, that one
8292 points to another pointer, that one does too, and we have no htab.
8293 If so, get a hash table. We check three levels deep to avoid
8294 the cost of the hash table if we don't need one. */
8295 if (POINTER_TYPE_P (TREE_TYPE (type))
8296 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
8297 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
8298 && !pset)
8299 {
8300 result = walk_tree_without_duplicates (&TREE_TYPE (type),
8301 func, data);
8302 if (result)
8303 return result;
8304
8305 break;
8306 }
8307
8308 /* ... fall through ... */
8309
8310 case COMPLEX_TYPE:
8311 WALK_SUBTREE (TREE_TYPE (type));
8312 break;
8313
8314 case METHOD_TYPE:
8315 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
8316
8317 /* Fall through. */
8318
8319 case FUNCTION_TYPE:
8320 WALK_SUBTREE (TREE_TYPE (type));
8321 {
8322 tree arg;
8323
8324 /* We never want to walk into default arguments. */
8325 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
8326 WALK_SUBTREE (TREE_VALUE (arg));
8327 }
8328 break;
8329
8330 case ARRAY_TYPE:
8331 /* Don't follow this nodes's type if a pointer for fear that
8332 we'll have infinite recursion. If we have a PSET, then we
8333 need not fear. */
8334 if (pset
8335 || (!POINTER_TYPE_P (TREE_TYPE (type))
8336 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
8337 WALK_SUBTREE (TREE_TYPE (type));
8338 WALK_SUBTREE (TYPE_DOMAIN (type));
8339 break;
8340
8341 case OFFSET_TYPE:
8342 WALK_SUBTREE (TREE_TYPE (type));
8343 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
8344 break;
8345
8346 default:
8347 break;
8348 }
8349
8350 return NULL_TREE;
8351 }
8352
8353 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
8354 called with the DATA and the address of each sub-tree. If FUNC returns a
8355 non-NULL value, the traversal is stopped, and the value returned by FUNC
8356 is returned. If PSET is non-NULL it is used to record the nodes visited,
8357 and to avoid visiting a node more than once. */
8358
8359 tree
8360 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
8361 struct pointer_set_t *pset, walk_tree_lh lh)
8362 {
8363 enum tree_code code;
8364 int walk_subtrees;
8365 tree result;
8366
8367 #define WALK_SUBTREE_TAIL(NODE) \
8368 do \
8369 { \
8370 tp = & (NODE); \
8371 goto tail_recurse; \
8372 } \
8373 while (0)
8374
8375 tail_recurse:
8376 /* Skip empty subtrees. */
8377 if (!*tp)
8378 return NULL_TREE;
8379
8380 /* Don't walk the same tree twice, if the user has requested
8381 that we avoid doing so. */
8382 if (pset && pointer_set_insert (pset, *tp))
8383 return NULL_TREE;
8384
8385 /* Call the function. */
8386 walk_subtrees = 1;
8387 result = (*func) (tp, &walk_subtrees, data);
8388
8389 /* If we found something, return it. */
8390 if (result)
8391 return result;
8392
8393 code = TREE_CODE (*tp);
8394
8395 /* Even if we didn't, FUNC may have decided that there was nothing
8396 interesting below this point in the tree. */
8397 if (!walk_subtrees)
8398 {
8399 /* But we still need to check our siblings. */
8400 if (code == TREE_LIST)
8401 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8402 else if (code == OMP_CLAUSE)
8403 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8404 else
8405 return NULL_TREE;
8406 }
8407
8408 if (lh)
8409 {
8410 result = (*lh) (tp, &walk_subtrees, func, data, pset);
8411 if (result || !walk_subtrees)
8412 return result;
8413 }
8414
8415 switch (code)
8416 {
8417 case ERROR_MARK:
8418 case IDENTIFIER_NODE:
8419 case INTEGER_CST:
8420 case REAL_CST:
8421 case FIXED_CST:
8422 case VECTOR_CST:
8423 case STRING_CST:
8424 case BLOCK:
8425 case PLACEHOLDER_EXPR:
8426 case SSA_NAME:
8427 case FIELD_DECL:
8428 case RESULT_DECL:
8429 /* None of these have subtrees other than those already walked
8430 above. */
8431 break;
8432
8433 case TREE_LIST:
8434 WALK_SUBTREE (TREE_VALUE (*tp));
8435 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8436 break;
8437
8438 case TREE_VEC:
8439 {
8440 int len = TREE_VEC_LENGTH (*tp);
8441
8442 if (len == 0)
8443 break;
8444
8445 /* Walk all elements but the first. */
8446 while (--len)
8447 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
8448
8449 /* Now walk the first one as a tail call. */
8450 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
8451 }
8452
8453 case COMPLEX_CST:
8454 WALK_SUBTREE (TREE_REALPART (*tp));
8455 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
8456
8457 case CONSTRUCTOR:
8458 {
8459 unsigned HOST_WIDE_INT idx;
8460 constructor_elt *ce;
8461
8462 for (idx = 0;
8463 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
8464 idx++)
8465 WALK_SUBTREE (ce->value);
8466 }
8467 break;
8468
8469 case SAVE_EXPR:
8470 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
8471
8472 case BIND_EXPR:
8473 {
8474 tree decl;
8475 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
8476 {
8477 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
8478 into declarations that are just mentioned, rather than
8479 declared; they don't really belong to this part of the tree.
8480 And, we can see cycles: the initializer for a declaration
8481 can refer to the declaration itself. */
8482 WALK_SUBTREE (DECL_INITIAL (decl));
8483 WALK_SUBTREE (DECL_SIZE (decl));
8484 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
8485 }
8486 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
8487 }
8488
8489 case STATEMENT_LIST:
8490 {
8491 tree_stmt_iterator i;
8492 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
8493 WALK_SUBTREE (*tsi_stmt_ptr (i));
8494 }
8495 break;
8496
8497 case OMP_CLAUSE:
8498 switch (OMP_CLAUSE_CODE (*tp))
8499 {
8500 case OMP_CLAUSE_PRIVATE:
8501 case OMP_CLAUSE_SHARED:
8502 case OMP_CLAUSE_FIRSTPRIVATE:
8503 case OMP_CLAUSE_LASTPRIVATE:
8504 case OMP_CLAUSE_COPYIN:
8505 case OMP_CLAUSE_COPYPRIVATE:
8506 case OMP_CLAUSE_IF:
8507 case OMP_CLAUSE_NUM_THREADS:
8508 case OMP_CLAUSE_SCHEDULE:
8509 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
8510 /* FALLTHRU */
8511
8512 case OMP_CLAUSE_NOWAIT:
8513 case OMP_CLAUSE_ORDERED:
8514 case OMP_CLAUSE_DEFAULT:
8515 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8516
8517 case OMP_CLAUSE_REDUCTION:
8518 {
8519 int i;
8520 for (i = 0; i < 4; i++)
8521 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
8522 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8523 }
8524
8525 default:
8526 gcc_unreachable ();
8527 }
8528 break;
8529
8530 case TARGET_EXPR:
8531 {
8532 int i, len;
8533
8534 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
8535 But, we only want to walk once. */
8536 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
8537 for (i = 0; i < len; ++i)
8538 WALK_SUBTREE (TREE_OPERAND (*tp, i));
8539 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
8540 }
8541
8542 case DECL_EXPR:
8543 /* If this is a TYPE_DECL, walk into the fields of the type that it's
8544 defining. We only want to walk into these fields of a type in this
8545 case and not in the general case of a mere reference to the type.
8546
8547 The criterion is as follows: if the field can be an expression, it
8548 must be walked only here. This should be in keeping with the fields
8549 that are directly gimplified in gimplify_type_sizes in order for the
8550 mark/copy-if-shared/unmark machinery of the gimplifier to work with
8551 variable-sized types.
8552
8553 Note that DECLs get walked as part of processing the BIND_EXPR. */
8554 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
8555 {
8556 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
8557 if (TREE_CODE (*type_p) == ERROR_MARK)
8558 return NULL_TREE;
8559
8560 /* Call the function for the type. See if it returns anything or
8561 doesn't want us to continue. If we are to continue, walk both
8562 the normal fields and those for the declaration case. */
8563 result = (*func) (type_p, &walk_subtrees, data);
8564 if (result || !walk_subtrees)
8565 return result;
8566
8567 result = walk_type_fields (*type_p, func, data, pset, lh);
8568 if (result)
8569 return result;
8570
8571 /* If this is a record type, also walk the fields. */
8572 if (TREE_CODE (*type_p) == RECORD_TYPE
8573 || TREE_CODE (*type_p) == UNION_TYPE
8574 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8575 {
8576 tree field;
8577
8578 for (field = TYPE_FIELDS (*type_p); field;
8579 field = TREE_CHAIN (field))
8580 {
8581 /* We'd like to look at the type of the field, but we can
8582 easily get infinite recursion. So assume it's pointed
8583 to elsewhere in the tree. Also, ignore things that
8584 aren't fields. */
8585 if (TREE_CODE (field) != FIELD_DECL)
8586 continue;
8587
8588 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
8589 WALK_SUBTREE (DECL_SIZE (field));
8590 WALK_SUBTREE (DECL_SIZE_UNIT (field));
8591 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8592 WALK_SUBTREE (DECL_QUALIFIER (field));
8593 }
8594 }
8595
8596 /* Same for scalar types. */
8597 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
8598 || TREE_CODE (*type_p) == ENUMERAL_TYPE
8599 || TREE_CODE (*type_p) == INTEGER_TYPE
8600 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
8601 || TREE_CODE (*type_p) == REAL_TYPE)
8602 {
8603 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
8604 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
8605 }
8606
8607 WALK_SUBTREE (TYPE_SIZE (*type_p));
8608 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
8609 }
8610 /* FALLTHRU */
8611
8612 default:
8613 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
8614 || IS_GIMPLE_STMT_CODE_CLASS (TREE_CODE_CLASS (code)))
8615 {
8616 int i, len;
8617
8618 /* Walk over all the sub-trees of this operand. */
8619 len = TREE_OPERAND_LENGTH (*tp);
8620
8621 /* Go through the subtrees. We need to do this in forward order so
8622 that the scope of a FOR_EXPR is handled properly. */
8623 if (len)
8624 {
8625 for (i = 0; i < len - 1; ++i)
8626 WALK_SUBTREE (GENERIC_TREE_OPERAND (*tp, i));
8627 WALK_SUBTREE_TAIL (GENERIC_TREE_OPERAND (*tp, len - 1));
8628 }
8629 }
8630 /* If this is a type, walk the needed fields in the type. */
8631 else if (TYPE_P (*tp))
8632 return walk_type_fields (*tp, func, data, pset, lh);
8633 break;
8634 }
8635
8636 /* We didn't find what we were looking for. */
8637 return NULL_TREE;
8638
8639 #undef WALK_SUBTREE_TAIL
8640 }
8641 #undef WALK_SUBTREE
8642
8643 /* Like walk_tree, but does not walk duplicate nodes more than once. */
8644
8645 tree
8646 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
8647 walk_tree_lh lh)
8648 {
8649 tree result;
8650 struct pointer_set_t *pset;
8651
8652 pset = pointer_set_create ();
8653 result = walk_tree_1 (tp, func, data, pset, lh);
8654 pointer_set_destroy (pset);
8655 return result;
8656 }
8657
8658
8659 /* Return true if STMT is an empty statement or contains nothing but
8660 empty statements. */
8661
8662 bool
8663 empty_body_p (tree stmt)
8664 {
8665 tree_stmt_iterator i;
8666 tree body;
8667
8668 if (IS_EMPTY_STMT (stmt))
8669 return true;
8670 else if (TREE_CODE (stmt) == BIND_EXPR)
8671 body = BIND_EXPR_BODY (stmt);
8672 else if (TREE_CODE (stmt) == STATEMENT_LIST)
8673 body = stmt;
8674 else
8675 return false;
8676
8677 for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
8678 if (!empty_body_p (tsi_stmt (i)))
8679 return false;
8680
8681 return true;
8682 }
8683
8684 tree *
8685 tree_block (tree t)
8686 {
8687 char const c = TREE_CODE_CLASS (TREE_CODE (t));
8688
8689 if (IS_EXPR_CODE_CLASS (c))
8690 return &t->exp.block;
8691 else if (IS_GIMPLE_STMT_CODE_CLASS (c))
8692 return &GIMPLE_STMT_BLOCK (t);
8693 gcc_unreachable ();
8694 return NULL;
8695 }
8696
8697 tree *
8698 generic_tree_operand (tree node, int i)
8699 {
8700 if (GIMPLE_STMT_P (node))
8701 return &GIMPLE_STMT_OPERAND (node, i);
8702 return &TREE_OPERAND (node, i);
8703 }
8704
8705 tree *
8706 generic_tree_type (tree node)
8707 {
8708 if (GIMPLE_STMT_P (node))
8709 return &void_type_node;
8710 return &TREE_TYPE (node);
8711 }
8712
8713 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
8714 FIXME: don't use this function. It exists for compatibility with
8715 the old representation of CALL_EXPRs where a list was used to hold the
8716 arguments. Places that currently extract the arglist from a CALL_EXPR
8717 ought to be rewritten to use the CALL_EXPR itself. */
8718 tree
8719 call_expr_arglist (tree exp)
8720 {
8721 tree arglist = NULL_TREE;
8722 int i;
8723 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
8724 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
8725 return arglist;
8726 }
8727
8728 /* Return true if TYPE has a variable argument list. */
8729
8730 bool
8731 stdarg_p (tree fntype)
8732 {
8733 function_args_iterator args_iter;
8734 tree n = NULL_TREE, t;
8735
8736 if (!fntype)
8737 return false;
8738
8739 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
8740 {
8741 n = t;
8742 }
8743
8744 return n != NULL_TREE && n != void_type_node;
8745 }
8746
8747 /* Return true if TYPE has a prototype. */
8748
8749 bool
8750 prototype_p (tree fntype)
8751 {
8752 tree t;
8753
8754 gcc_assert (fntype != NULL_TREE);
8755
8756 t = TYPE_ARG_TYPES (fntype);
8757 return (t != NULL_TREE);
8758 }
8759
8760 /* Return the number of arguments that a function has. */
8761
8762 int
8763 function_args_count (tree fntype)
8764 {
8765 function_args_iterator args_iter;
8766 tree t;
8767 int num = 0;
8768
8769 if (fntype)
8770 {
8771 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
8772 {
8773 num++;
8774 }
8775 }
8776
8777 return num;
8778 }
8779
8780 /* If BLOCK is inlined from an __attribute__((__artificial__))
8781 routine, return pointer to location from where it has been
8782 called. */
8783 location_t *
8784 block_nonartificial_location (tree block)
8785 {
8786 location_t *ret = NULL;
8787
8788 while (block && TREE_CODE (block) == BLOCK
8789 && BLOCK_ABSTRACT_ORIGIN (block))
8790 {
8791 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
8792
8793 while (TREE_CODE (ao) == BLOCK && BLOCK_ABSTRACT_ORIGIN (ao))
8794 ao = BLOCK_ABSTRACT_ORIGIN (ao);
8795
8796 if (TREE_CODE (ao) == FUNCTION_DECL)
8797 {
8798 /* If AO is an artificial inline, point RET to the
8799 call site locus at which it has been inlined and continue
8800 the loop, in case AO's caller is also an artificial
8801 inline. */
8802 if (DECL_DECLARED_INLINE_P (ao)
8803 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
8804 ret = &BLOCK_SOURCE_LOCATION (block);
8805 else
8806 break;
8807 }
8808 else if (TREE_CODE (ao) != BLOCK)
8809 break;
8810
8811 block = BLOCK_SUPERCONTEXT (block);
8812 }
8813 return ret;
8814 }
8815
8816 #include "gt-tree.h"