re PR c++/48069 (FAIL: g++.old-deja/g++.pt/spec26.C)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "vecs",
140 "binfos",
141 "ssa names",
142 "constructors",
143 "random kinds",
144 "lang_decl kinds",
145 "lang_type kinds",
146 "omp clauses",
147 };
148 #endif /* GATHER_STATISTICS */
149
150 /* Unique id for next decl created. */
151 static GTY(()) int next_decl_uid;
152 /* Unique id for next type created. */
153 static GTY(()) int next_type_uid = 1;
154 /* Unique id for next debug decl created. Use negative numbers,
155 to catch erroneous uses. */
156 static GTY(()) int next_debug_decl_uid;
157
158 /* Since we cannot rehash a type after it is in the table, we have to
159 keep the hash code. */
160
161 struct GTY(()) type_hash {
162 unsigned long hash;
163 tree type;
164 };
165
166 /* Initial size of the hash table (rounded to next prime). */
167 #define TYPE_HASH_INITIAL_SIZE 1000
168
169 /* Now here is the hash table. When recording a type, it is added to
170 the slot whose index is the hash code. Note that the hash table is
171 used for several kinds of types (function types, array types and
172 array index range types, for now). While all these live in the
173 same table, they are completely independent, and the hash code is
174 computed differently for each of these. */
175
176 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
177 htab_t type_hash_table;
178
179 /* Hash table and temporary node for larger integer const values. */
180 static GTY (()) tree int_cst_node;
181 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
182 htab_t int_cst_hash_table;
183
184 /* Hash table for optimization flags and target option flags. Use the same
185 hash table for both sets of options. Nodes for building the current
186 optimization and target option nodes. The assumption is most of the time
187 the options created will already be in the hash table, so we avoid
188 allocating and freeing up a node repeatably. */
189 static GTY (()) tree cl_optimization_node;
190 static GTY (()) tree cl_target_option_node;
191 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
192 htab_t cl_option_hash_table;
193
194 /* General tree->tree mapping structure for use in hash tables. */
195
196
197 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
198 htab_t debug_expr_for_decl;
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t value_expr_for_decl;
202
203 static GTY ((if_marked ("tree_priority_map_marked_p"),
204 param_is (struct tree_priority_map)))
205 htab_t init_priority_for_decl;
206
207 static void set_type_quals (tree, int);
208 static int type_hash_eq (const void *, const void *);
209 static hashval_t type_hash_hash (const void *);
210 static hashval_t int_cst_hash_hash (const void *);
211 static int int_cst_hash_eq (const void *, const void *);
212 static hashval_t cl_option_hash_hash (const void *);
213 static int cl_option_hash_eq (const void *, const void *);
214 static void print_type_hash_statistics (void);
215 static void print_debug_expr_statistics (void);
216 static void print_value_expr_statistics (void);
217 static int type_hash_marked_p (const void *);
218 static unsigned int type_hash_list (const_tree, hashval_t);
219 static unsigned int attribute_hash_list (const_tree, hashval_t);
220
221 tree global_trees[TI_MAX];
222 tree integer_types[itk_none];
223
224 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
225
226 /* Number of operands for each OpenMP clause. */
227 unsigned const char omp_clause_num_ops[] =
228 {
229 0, /* OMP_CLAUSE_ERROR */
230 1, /* OMP_CLAUSE_PRIVATE */
231 1, /* OMP_CLAUSE_SHARED */
232 1, /* OMP_CLAUSE_FIRSTPRIVATE */
233 2, /* OMP_CLAUSE_LASTPRIVATE */
234 4, /* OMP_CLAUSE_REDUCTION */
235 1, /* OMP_CLAUSE_COPYIN */
236 1, /* OMP_CLAUSE_COPYPRIVATE */
237 1, /* OMP_CLAUSE_IF */
238 1, /* OMP_CLAUSE_NUM_THREADS */
239 1, /* OMP_CLAUSE_SCHEDULE */
240 0, /* OMP_CLAUSE_NOWAIT */
241 0, /* OMP_CLAUSE_ORDERED */
242 0, /* OMP_CLAUSE_DEFAULT */
243 3, /* OMP_CLAUSE_COLLAPSE */
244 0 /* OMP_CLAUSE_UNTIED */
245 };
246
247 const char * const omp_clause_code_name[] =
248 {
249 "error_clause",
250 "private",
251 "shared",
252 "firstprivate",
253 "lastprivate",
254 "reduction",
255 "copyin",
256 "copyprivate",
257 "if",
258 "num_threads",
259 "schedule",
260 "nowait",
261 "ordered",
262 "default",
263 "collapse",
264 "untied"
265 };
266
267
268 /* Return the tree node structure used by tree code CODE. */
269
270 static inline enum tree_node_structure_enum
271 tree_node_structure_for_code (enum tree_code code)
272 {
273 switch (TREE_CODE_CLASS (code))
274 {
275 case tcc_declaration:
276 {
277 switch (code)
278 {
279 case FIELD_DECL:
280 return TS_FIELD_DECL;
281 case PARM_DECL:
282 return TS_PARM_DECL;
283 case VAR_DECL:
284 return TS_VAR_DECL;
285 case LABEL_DECL:
286 return TS_LABEL_DECL;
287 case RESULT_DECL:
288 return TS_RESULT_DECL;
289 case DEBUG_EXPR_DECL:
290 return TS_DECL_WRTL;
291 case CONST_DECL:
292 return TS_CONST_DECL;
293 case TYPE_DECL:
294 return TS_TYPE_DECL;
295 case FUNCTION_DECL:
296 return TS_FUNCTION_DECL;
297 case TRANSLATION_UNIT_DECL:
298 return TS_TRANSLATION_UNIT_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 case TS_TRANSLATION_UNIT_DECL:
470 MARK_TS_DECL_COMMON (code);
471 break;
472
473 default:
474 gcc_unreachable ();
475 }
476 }
477
478 /* Basic consistency checks for attributes used in fold. */
479 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
480 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
481 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
488 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
489 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
490 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
494 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
495 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
496 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
503 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
504 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
505 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
507 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
508 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
509 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
510 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
511 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
512 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
513 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
514 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
515 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
516 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
517 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
518
519 #undef MARK_TS_BASE
520 #undef MARK_TS_COMMON
521 #undef MARK_TS_DECL_MINIMAL
522 #undef MARK_TS_DECL_COMMON
523 #undef MARK_TS_DECL_WRTL
524 #undef MARK_TS_DECL_WITH_VIS
525 #undef MARK_TS_DECL_NON_COMMON
526 }
527
528
529 /* Init tree.c. */
530
531 void
532 init_ttree (void)
533 {
534 /* Initialize the hash table of types. */
535 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
536 type_hash_eq, 0);
537
538 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
539 tree_decl_map_eq, 0);
540
541 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
542 tree_decl_map_eq, 0);
543 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
544 tree_priority_map_eq, 0);
545
546 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
547 int_cst_hash_eq, NULL);
548
549 int_cst_node = make_node (INTEGER_CST);
550
551 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
552 cl_option_hash_eq, NULL);
553
554 cl_optimization_node = make_node (OPTIMIZATION_NODE);
555 cl_target_option_node = make_node (TARGET_OPTION_NODE);
556
557 /* Initialize the tree_contains_struct array. */
558 initialize_tree_contains_struct ();
559 lang_hooks.init_ts ();
560 }
561
562 \f
563 /* The name of the object as the assembler will see it (but before any
564 translations made by ASM_OUTPUT_LABELREF). Often this is the same
565 as DECL_NAME. It is an IDENTIFIER_NODE. */
566 tree
567 decl_assembler_name (tree decl)
568 {
569 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
570 lang_hooks.set_decl_assembler_name (decl);
571 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
572 }
573
574 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
575
576 bool
577 decl_assembler_name_equal (tree decl, const_tree asmname)
578 {
579 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
580 const char *decl_str;
581 const char *asmname_str;
582 bool test = false;
583
584 if (decl_asmname == asmname)
585 return true;
586
587 decl_str = IDENTIFIER_POINTER (decl_asmname);
588 asmname_str = IDENTIFIER_POINTER (asmname);
589
590
591 /* If the target assembler name was set by the user, things are trickier.
592 We have a leading '*' to begin with. After that, it's arguable what
593 is the correct thing to do with -fleading-underscore. Arguably, we've
594 historically been doing the wrong thing in assemble_alias by always
595 printing the leading underscore. Since we're not changing that, make
596 sure user_label_prefix follows the '*' before matching. */
597 if (decl_str[0] == '*')
598 {
599 size_t ulp_len = strlen (user_label_prefix);
600
601 decl_str ++;
602
603 if (ulp_len == 0)
604 test = true;
605 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
606 decl_str += ulp_len, test=true;
607 else
608 decl_str --;
609 }
610 if (asmname_str[0] == '*')
611 {
612 size_t ulp_len = strlen (user_label_prefix);
613
614 asmname_str ++;
615
616 if (ulp_len == 0)
617 test = true;
618 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
619 asmname_str += ulp_len, test=true;
620 else
621 asmname_str --;
622 }
623
624 if (!test)
625 return false;
626 return strcmp (decl_str, asmname_str) == 0;
627 }
628
629 /* Hash asmnames ignoring the user specified marks. */
630
631 hashval_t
632 decl_assembler_name_hash (const_tree asmname)
633 {
634 if (IDENTIFIER_POINTER (asmname)[0] == '*')
635 {
636 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
637 size_t ulp_len = strlen (user_label_prefix);
638
639 if (ulp_len == 0)
640 ;
641 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
642 decl_str += ulp_len;
643
644 return htab_hash_string (decl_str);
645 }
646
647 return htab_hash_string (IDENTIFIER_POINTER (asmname));
648 }
649
650 /* Compute the number of bytes occupied by a tree with code CODE.
651 This function cannot be used for nodes that have variable sizes,
652 including TREE_VEC, STRING_CST, and CALL_EXPR. */
653 size_t
654 tree_code_size (enum tree_code code)
655 {
656 switch (TREE_CODE_CLASS (code))
657 {
658 case tcc_declaration: /* A decl node */
659 {
660 switch (code)
661 {
662 case FIELD_DECL:
663 return sizeof (struct tree_field_decl);
664 case PARM_DECL:
665 return sizeof (struct tree_parm_decl);
666 case VAR_DECL:
667 return sizeof (struct tree_var_decl);
668 case LABEL_DECL:
669 return sizeof (struct tree_label_decl);
670 case RESULT_DECL:
671 return sizeof (struct tree_result_decl);
672 case CONST_DECL:
673 return sizeof (struct tree_const_decl);
674 case TYPE_DECL:
675 return sizeof (struct tree_type_decl);
676 case FUNCTION_DECL:
677 return sizeof (struct tree_function_decl);
678 case DEBUG_EXPR_DECL:
679 return sizeof (struct tree_decl_with_rtl);
680 default:
681 return sizeof (struct tree_decl_non_common);
682 }
683 }
684
685 case tcc_type: /* a type node */
686 return sizeof (struct tree_type);
687
688 case tcc_reference: /* a reference */
689 case tcc_expression: /* an expression */
690 case tcc_statement: /* an expression with side effects */
691 case tcc_comparison: /* a comparison expression */
692 case tcc_unary: /* a unary arithmetic expression */
693 case tcc_binary: /* a binary arithmetic expression */
694 return (sizeof (struct tree_exp)
695 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
696
697 case tcc_constant: /* a constant */
698 switch (code)
699 {
700 case INTEGER_CST: return sizeof (struct tree_int_cst);
701 case REAL_CST: return sizeof (struct tree_real_cst);
702 case FIXED_CST: return sizeof (struct tree_fixed_cst);
703 case COMPLEX_CST: return sizeof (struct tree_complex);
704 case VECTOR_CST: return sizeof (struct tree_vector);
705 case STRING_CST: gcc_unreachable ();
706 default:
707 return lang_hooks.tree_size (code);
708 }
709
710 case tcc_exceptional: /* something random, like an identifier. */
711 switch (code)
712 {
713 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
714 case TREE_LIST: return sizeof (struct tree_list);
715
716 case ERROR_MARK:
717 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
718
719 case TREE_VEC:
720 case OMP_CLAUSE: gcc_unreachable ();
721
722 case SSA_NAME: return sizeof (struct tree_ssa_name);
723
724 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
725 case BLOCK: return sizeof (struct tree_block);
726 case CONSTRUCTOR: return sizeof (struct tree_constructor);
727 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
728 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
729
730 default:
731 return lang_hooks.tree_size (code);
732 }
733
734 default:
735 gcc_unreachable ();
736 }
737 }
738
739 /* Compute the number of bytes occupied by NODE. This routine only
740 looks at TREE_CODE, except for those nodes that have variable sizes. */
741 size_t
742 tree_size (const_tree node)
743 {
744 const enum tree_code code = TREE_CODE (node);
745 switch (code)
746 {
747 case TREE_BINFO:
748 return (offsetof (struct tree_binfo, base_binfos)
749 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
750
751 case TREE_VEC:
752 return (sizeof (struct tree_vec)
753 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
754
755 case STRING_CST:
756 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
757
758 case OMP_CLAUSE:
759 return (sizeof (struct tree_omp_clause)
760 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
761 * sizeof (tree));
762
763 default:
764 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
765 return (sizeof (struct tree_exp)
766 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
767 else
768 return tree_code_size (code);
769 }
770 }
771
772 /* Return a newly allocated node of code CODE. For decl and type
773 nodes, some other fields are initialized. The rest of the node is
774 initialized to zero. This function cannot be used for TREE_VEC or
775 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
776
777 Achoo! I got a code in the node. */
778
779 tree
780 make_node_stat (enum tree_code code MEM_STAT_DECL)
781 {
782 tree t;
783 enum tree_code_class type = TREE_CODE_CLASS (code);
784 size_t length = tree_code_size (code);
785 #ifdef GATHER_STATISTICS
786 tree_node_kind kind;
787
788 switch (type)
789 {
790 case tcc_declaration: /* A decl node */
791 kind = d_kind;
792 break;
793
794 case tcc_type: /* a type node */
795 kind = t_kind;
796 break;
797
798 case tcc_statement: /* an expression with side effects */
799 kind = s_kind;
800 break;
801
802 case tcc_reference: /* a reference */
803 kind = r_kind;
804 break;
805
806 case tcc_expression: /* an expression */
807 case tcc_comparison: /* a comparison expression */
808 case tcc_unary: /* a unary arithmetic expression */
809 case tcc_binary: /* a binary arithmetic expression */
810 kind = e_kind;
811 break;
812
813 case tcc_constant: /* a constant */
814 kind = c_kind;
815 break;
816
817 case tcc_exceptional: /* something random, like an identifier. */
818 switch (code)
819 {
820 case IDENTIFIER_NODE:
821 kind = id_kind;
822 break;
823
824 case TREE_VEC:
825 kind = vec_kind;
826 break;
827
828 case TREE_BINFO:
829 kind = binfo_kind;
830 break;
831
832 case SSA_NAME:
833 kind = ssa_name_kind;
834 break;
835
836 case BLOCK:
837 kind = b_kind;
838 break;
839
840 case CONSTRUCTOR:
841 kind = constr_kind;
842 break;
843
844 default:
845 kind = x_kind;
846 break;
847 }
848 break;
849
850 default:
851 gcc_unreachable ();
852 }
853
854 tree_node_counts[(int) kind]++;
855 tree_node_sizes[(int) kind] += length;
856 #endif
857
858 t = ggc_alloc_zone_cleared_tree_node_stat (
859 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
860 length PASS_MEM_STAT);
861 TREE_SET_CODE (t, code);
862
863 switch (type)
864 {
865 case tcc_statement:
866 TREE_SIDE_EFFECTS (t) = 1;
867 break;
868
869 case tcc_declaration:
870 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
871 {
872 if (code == FUNCTION_DECL)
873 {
874 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
875 DECL_MODE (t) = FUNCTION_MODE;
876 }
877 else
878 DECL_ALIGN (t) = 1;
879 }
880 DECL_SOURCE_LOCATION (t) = input_location;
881 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
882 DECL_UID (t) = --next_debug_decl_uid;
883 else
884 {
885 DECL_UID (t) = next_decl_uid++;
886 SET_DECL_PT_UID (t, -1);
887 }
888 if (TREE_CODE (t) == LABEL_DECL)
889 LABEL_DECL_UID (t) = -1;
890
891 break;
892
893 case tcc_type:
894 TYPE_UID (t) = next_type_uid++;
895 TYPE_ALIGN (t) = BITS_PER_UNIT;
896 TYPE_USER_ALIGN (t) = 0;
897 TYPE_MAIN_VARIANT (t) = t;
898 TYPE_CANONICAL (t) = t;
899
900 /* Default to no attributes for type, but let target change that. */
901 TYPE_ATTRIBUTES (t) = NULL_TREE;
902 targetm.set_default_type_attributes (t);
903
904 /* We have not yet computed the alias set for this type. */
905 TYPE_ALIAS_SET (t) = -1;
906 break;
907
908 case tcc_constant:
909 TREE_CONSTANT (t) = 1;
910 break;
911
912 case tcc_expression:
913 switch (code)
914 {
915 case INIT_EXPR:
916 case MODIFY_EXPR:
917 case VA_ARG_EXPR:
918 case PREDECREMENT_EXPR:
919 case PREINCREMENT_EXPR:
920 case POSTDECREMENT_EXPR:
921 case POSTINCREMENT_EXPR:
922 /* All of these have side-effects, no matter what their
923 operands are. */
924 TREE_SIDE_EFFECTS (t) = 1;
925 break;
926
927 default:
928 break;
929 }
930 break;
931
932 default:
933 /* Other classes need no special treatment. */
934 break;
935 }
936
937 return t;
938 }
939 \f
940 /* Return a new node with the same contents as NODE except that its
941 TREE_CHAIN is zero and it has a fresh uid. */
942
943 tree
944 copy_node_stat (tree node MEM_STAT_DECL)
945 {
946 tree t;
947 enum tree_code code = TREE_CODE (node);
948 size_t length;
949
950 gcc_assert (code != STATEMENT_LIST);
951
952 length = tree_size (node);
953 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
954 memcpy (t, node, length);
955
956 TREE_CHAIN (t) = 0;
957 TREE_ASM_WRITTEN (t) = 0;
958 TREE_VISITED (t) = 0;
959 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
960 *DECL_VAR_ANN_PTR (t) = 0;
961
962 if (TREE_CODE_CLASS (code) == tcc_declaration)
963 {
964 if (code == DEBUG_EXPR_DECL)
965 DECL_UID (t) = --next_debug_decl_uid;
966 else
967 {
968 DECL_UID (t) = next_decl_uid++;
969 if (DECL_PT_UID_SET_P (node))
970 SET_DECL_PT_UID (t, DECL_PT_UID (node));
971 }
972 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
973 && DECL_HAS_VALUE_EXPR_P (node))
974 {
975 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
976 DECL_HAS_VALUE_EXPR_P (t) = 1;
977 }
978 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
979 {
980 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
981 DECL_HAS_INIT_PRIORITY_P (t) = 1;
982 }
983 }
984 else if (TREE_CODE_CLASS (code) == tcc_type)
985 {
986 TYPE_UID (t) = next_type_uid++;
987 /* The following is so that the debug code for
988 the copy is different from the original type.
989 The two statements usually duplicate each other
990 (because they clear fields of the same union),
991 but the optimizer should catch that. */
992 TYPE_SYMTAB_POINTER (t) = 0;
993 TYPE_SYMTAB_ADDRESS (t) = 0;
994
995 /* Do not copy the values cache. */
996 if (TYPE_CACHED_VALUES_P(t))
997 {
998 TYPE_CACHED_VALUES_P (t) = 0;
999 TYPE_CACHED_VALUES (t) = NULL_TREE;
1000 }
1001 }
1002
1003 return t;
1004 }
1005
1006 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1007 For example, this can copy a list made of TREE_LIST nodes. */
1008
1009 tree
1010 copy_list (tree list)
1011 {
1012 tree head;
1013 tree prev, next;
1014
1015 if (list == 0)
1016 return 0;
1017
1018 head = prev = copy_node (list);
1019 next = TREE_CHAIN (list);
1020 while (next)
1021 {
1022 TREE_CHAIN (prev) = copy_node (next);
1023 prev = TREE_CHAIN (prev);
1024 next = TREE_CHAIN (next);
1025 }
1026 return head;
1027 }
1028
1029 \f
1030 /* Create an INT_CST node with a LOW value sign extended. */
1031
1032 tree
1033 build_int_cst (tree type, HOST_WIDE_INT low)
1034 {
1035 /* Support legacy code. */
1036 if (!type)
1037 type = integer_type_node;
1038
1039 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1040 }
1041
1042 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1043 if it is negative. This function is similar to build_int_cst, but
1044 the extra bits outside of the type precision are cleared. Constants
1045 with these extra bits may confuse the fold so that it detects overflows
1046 even in cases when they do not occur, and in general should be avoided.
1047 We cannot however make this a default behavior of build_int_cst without
1048 more intrusive changes, since there are parts of gcc that rely on the extra
1049 precision of the integer constants. */
1050
1051 tree
1052 build_int_cst_type (tree type, HOST_WIDE_INT low)
1053 {
1054 gcc_assert (type);
1055
1056 return double_int_to_tree (type, shwi_to_double_int (low));
1057 }
1058
1059 /* Constructs tree in type TYPE from with value given by CST. Signedness
1060 of CST is assumed to be the same as the signedness of TYPE. */
1061
1062 tree
1063 double_int_to_tree (tree type, double_int cst)
1064 {
1065 /* Size types *are* sign extended. */
1066 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1067 || (TREE_CODE (type) == INTEGER_TYPE
1068 && TYPE_IS_SIZETYPE (type)));
1069
1070 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1071
1072 return build_int_cst_wide (type, cst.low, cst.high);
1073 }
1074
1075 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1076 to be the same as the signedness of TYPE. */
1077
1078 bool
1079 double_int_fits_to_tree_p (const_tree type, double_int cst)
1080 {
1081 /* Size types *are* sign extended. */
1082 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1083 || (TREE_CODE (type) == INTEGER_TYPE
1084 && TYPE_IS_SIZETYPE (type)));
1085
1086 double_int ext
1087 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1088
1089 return double_int_equal_p (cst, ext);
1090 }
1091
1092 /* We force the double_int CST to the range of the type TYPE by sign or
1093 zero extending it. OVERFLOWABLE indicates if we are interested in
1094 overflow of the value, when >0 we are only interested in signed
1095 overflow, for <0 we are interested in any overflow. OVERFLOWED
1096 indicates whether overflow has already occurred. CONST_OVERFLOWED
1097 indicates whether constant overflow has already occurred. We force
1098 T's value to be within range of T's type (by setting to 0 or 1 all
1099 the bits outside the type's range). We set TREE_OVERFLOWED if,
1100 OVERFLOWED is nonzero,
1101 or OVERFLOWABLE is >0 and signed overflow occurs
1102 or OVERFLOWABLE is <0 and any overflow occurs
1103 We return a new tree node for the extended double_int. The node
1104 is shared if no overflow flags are set. */
1105
1106
1107 tree
1108 force_fit_type_double (tree type, double_int cst, int overflowable,
1109 bool overflowed)
1110 {
1111 bool sign_extended_type;
1112
1113 /* Size types *are* sign extended. */
1114 sign_extended_type = (!TYPE_UNSIGNED (type)
1115 || (TREE_CODE (type) == INTEGER_TYPE
1116 && TYPE_IS_SIZETYPE (type)));
1117
1118 /* If we need to set overflow flags, return a new unshared node. */
1119 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1120 {
1121 if (overflowed
1122 || overflowable < 0
1123 || (overflowable > 0 && sign_extended_type))
1124 {
1125 tree t = make_node (INTEGER_CST);
1126 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1127 !sign_extended_type);
1128 TREE_TYPE (t) = type;
1129 TREE_OVERFLOW (t) = 1;
1130 return t;
1131 }
1132 }
1133
1134 /* Else build a shared node. */
1135 return double_int_to_tree (type, cst);
1136 }
1137
1138 /* These are the hash table functions for the hash table of INTEGER_CST
1139 nodes of a sizetype. */
1140
1141 /* Return the hash code code X, an INTEGER_CST. */
1142
1143 static hashval_t
1144 int_cst_hash_hash (const void *x)
1145 {
1146 const_tree const t = (const_tree) x;
1147
1148 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1149 ^ htab_hash_pointer (TREE_TYPE (t)));
1150 }
1151
1152 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1153 is the same as that given by *Y, which is the same. */
1154
1155 static int
1156 int_cst_hash_eq (const void *x, const void *y)
1157 {
1158 const_tree const xt = (const_tree) x;
1159 const_tree const yt = (const_tree) y;
1160
1161 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1162 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1163 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1164 }
1165
1166 /* Create an INT_CST node of TYPE and value HI:LOW.
1167 The returned node is always shared. For small integers we use a
1168 per-type vector cache, for larger ones we use a single hash table. */
1169
1170 tree
1171 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1172 {
1173 tree t;
1174 int ix = -1;
1175 int limit = 0;
1176
1177 gcc_assert (type);
1178
1179 switch (TREE_CODE (type))
1180 {
1181 case NULLPTR_TYPE:
1182 gcc_assert (hi == 0 && low == 0);
1183 /* Fallthru. */
1184
1185 case POINTER_TYPE:
1186 case REFERENCE_TYPE:
1187 /* Cache NULL pointer. */
1188 if (!hi && !low)
1189 {
1190 limit = 1;
1191 ix = 0;
1192 }
1193 break;
1194
1195 case BOOLEAN_TYPE:
1196 /* Cache false or true. */
1197 limit = 2;
1198 if (!hi && low < 2)
1199 ix = low;
1200 break;
1201
1202 case INTEGER_TYPE:
1203 case OFFSET_TYPE:
1204 if (TYPE_UNSIGNED (type))
1205 {
1206 /* Cache 0..N */
1207 limit = INTEGER_SHARE_LIMIT;
1208 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1209 ix = low;
1210 }
1211 else
1212 {
1213 /* Cache -1..N */
1214 limit = INTEGER_SHARE_LIMIT + 1;
1215 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1216 ix = low + 1;
1217 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1218 ix = 0;
1219 }
1220 break;
1221
1222 case ENUMERAL_TYPE:
1223 break;
1224
1225 default:
1226 gcc_unreachable ();
1227 }
1228
1229 if (ix >= 0)
1230 {
1231 /* Look for it in the type's vector of small shared ints. */
1232 if (!TYPE_CACHED_VALUES_P (type))
1233 {
1234 TYPE_CACHED_VALUES_P (type) = 1;
1235 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1236 }
1237
1238 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1239 if (t)
1240 {
1241 /* Make sure no one is clobbering the shared constant. */
1242 gcc_assert (TREE_TYPE (t) == type);
1243 gcc_assert (TREE_INT_CST_LOW (t) == low);
1244 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1245 }
1246 else
1247 {
1248 /* Create a new shared int. */
1249 t = make_node (INTEGER_CST);
1250
1251 TREE_INT_CST_LOW (t) = low;
1252 TREE_INT_CST_HIGH (t) = hi;
1253 TREE_TYPE (t) = type;
1254
1255 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1256 }
1257 }
1258 else
1259 {
1260 /* Use the cache of larger shared ints. */
1261 void **slot;
1262
1263 TREE_INT_CST_LOW (int_cst_node) = low;
1264 TREE_INT_CST_HIGH (int_cst_node) = hi;
1265 TREE_TYPE (int_cst_node) = type;
1266
1267 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1268 t = (tree) *slot;
1269 if (!t)
1270 {
1271 /* Insert this one into the hash table. */
1272 t = int_cst_node;
1273 *slot = t;
1274 /* Make a new node for next time round. */
1275 int_cst_node = make_node (INTEGER_CST);
1276 }
1277 }
1278
1279 return t;
1280 }
1281
1282 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1283 and the rest are zeros. */
1284
1285 tree
1286 build_low_bits_mask (tree type, unsigned bits)
1287 {
1288 double_int mask;
1289
1290 gcc_assert (bits <= TYPE_PRECISION (type));
1291
1292 if (bits == TYPE_PRECISION (type)
1293 && !TYPE_UNSIGNED (type))
1294 /* Sign extended all-ones mask. */
1295 mask = double_int_minus_one;
1296 else
1297 mask = double_int_mask (bits);
1298
1299 return build_int_cst_wide (type, mask.low, mask.high);
1300 }
1301
1302 /* Checks that X is integer constant that can be expressed in (unsigned)
1303 HOST_WIDE_INT without loss of precision. */
1304
1305 bool
1306 cst_and_fits_in_hwi (const_tree x)
1307 {
1308 if (TREE_CODE (x) != INTEGER_CST)
1309 return false;
1310
1311 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1312 return false;
1313
1314 return (TREE_INT_CST_HIGH (x) == 0
1315 || TREE_INT_CST_HIGH (x) == -1);
1316 }
1317
1318 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1319 are in a list pointed to by VALS. */
1320
1321 tree
1322 build_vector (tree type, tree vals)
1323 {
1324 tree v = make_node (VECTOR_CST);
1325 int over = 0;
1326 tree link;
1327 unsigned cnt = 0;
1328
1329 TREE_VECTOR_CST_ELTS (v) = vals;
1330 TREE_TYPE (v) = type;
1331
1332 /* Iterate through elements and check for overflow. */
1333 for (link = vals; link; link = TREE_CHAIN (link))
1334 {
1335 tree value = TREE_VALUE (link);
1336 cnt++;
1337
1338 /* Don't crash if we get an address constant. */
1339 if (!CONSTANT_CLASS_P (value))
1340 continue;
1341
1342 over |= TREE_OVERFLOW (value);
1343 }
1344
1345 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1346
1347 TREE_OVERFLOW (v) = over;
1348 return v;
1349 }
1350
1351 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1352 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1353
1354 tree
1355 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1356 {
1357 tree list = NULL_TREE;
1358 unsigned HOST_WIDE_INT idx;
1359 tree value;
1360
1361 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1362 list = tree_cons (NULL_TREE, value, list);
1363 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1364 list = tree_cons (NULL_TREE,
1365 build_zero_cst (TREE_TYPE (type)), list);
1366 return build_vector (type, nreverse (list));
1367 }
1368
1369 /* Build a vector of type VECTYPE where all the elements are SCs. */
1370 tree
1371 build_vector_from_val (tree vectype, tree sc)
1372 {
1373 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1374 VEC(constructor_elt, gc) *v = NULL;
1375
1376 if (sc == error_mark_node)
1377 return sc;
1378
1379 gcc_assert (useless_type_conversion_p (TREE_TYPE (sc),
1380 TREE_TYPE (vectype)));
1381
1382 v = VEC_alloc (constructor_elt, gc, nunits);
1383 for (i = 0; i < nunits; ++i)
1384 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1385
1386 if (CONSTANT_CLASS_P (sc))
1387 return build_vector_from_ctor (vectype, v);
1388 else
1389 return build_constructor (vectype, v);
1390 }
1391
1392 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1393 are in the VEC pointed to by VALS. */
1394 tree
1395 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1396 {
1397 tree c = make_node (CONSTRUCTOR);
1398 unsigned int i;
1399 constructor_elt *elt;
1400 bool constant_p = true;
1401
1402 TREE_TYPE (c) = type;
1403 CONSTRUCTOR_ELTS (c) = vals;
1404
1405 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1406 if (!TREE_CONSTANT (elt->value))
1407 {
1408 constant_p = false;
1409 break;
1410 }
1411
1412 TREE_CONSTANT (c) = constant_p;
1413
1414 return c;
1415 }
1416
1417 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1418 INDEX and VALUE. */
1419 tree
1420 build_constructor_single (tree type, tree index, tree value)
1421 {
1422 VEC(constructor_elt,gc) *v;
1423 constructor_elt *elt;
1424
1425 v = VEC_alloc (constructor_elt, gc, 1);
1426 elt = VEC_quick_push (constructor_elt, v, NULL);
1427 elt->index = index;
1428 elt->value = value;
1429
1430 return build_constructor (type, v);
1431 }
1432
1433
1434 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1435 are in a list pointed to by VALS. */
1436 tree
1437 build_constructor_from_list (tree type, tree vals)
1438 {
1439 tree t;
1440 VEC(constructor_elt,gc) *v = NULL;
1441
1442 if (vals)
1443 {
1444 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1445 for (t = vals; t; t = TREE_CHAIN (t))
1446 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1447 }
1448
1449 return build_constructor (type, v);
1450 }
1451
1452 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1453
1454 tree
1455 build_fixed (tree type, FIXED_VALUE_TYPE f)
1456 {
1457 tree v;
1458 FIXED_VALUE_TYPE *fp;
1459
1460 v = make_node (FIXED_CST);
1461 fp = ggc_alloc_fixed_value ();
1462 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1463
1464 TREE_TYPE (v) = type;
1465 TREE_FIXED_CST_PTR (v) = fp;
1466 return v;
1467 }
1468
1469 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1470
1471 tree
1472 build_real (tree type, REAL_VALUE_TYPE d)
1473 {
1474 tree v;
1475 REAL_VALUE_TYPE *dp;
1476 int overflow = 0;
1477
1478 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1479 Consider doing it via real_convert now. */
1480
1481 v = make_node (REAL_CST);
1482 dp = ggc_alloc_real_value ();
1483 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1484
1485 TREE_TYPE (v) = type;
1486 TREE_REAL_CST_PTR (v) = dp;
1487 TREE_OVERFLOW (v) = overflow;
1488 return v;
1489 }
1490
1491 /* Return a new REAL_CST node whose type is TYPE
1492 and whose value is the integer value of the INTEGER_CST node I. */
1493
1494 REAL_VALUE_TYPE
1495 real_value_from_int_cst (const_tree type, const_tree i)
1496 {
1497 REAL_VALUE_TYPE d;
1498
1499 /* Clear all bits of the real value type so that we can later do
1500 bitwise comparisons to see if two values are the same. */
1501 memset (&d, 0, sizeof d);
1502
1503 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1504 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1505 TYPE_UNSIGNED (TREE_TYPE (i)));
1506 return d;
1507 }
1508
1509 /* Given a tree representing an integer constant I, return a tree
1510 representing the same value as a floating-point constant of type TYPE. */
1511
1512 tree
1513 build_real_from_int_cst (tree type, const_tree i)
1514 {
1515 tree v;
1516 int overflow = TREE_OVERFLOW (i);
1517
1518 v = build_real (type, real_value_from_int_cst (type, i));
1519
1520 TREE_OVERFLOW (v) |= overflow;
1521 return v;
1522 }
1523
1524 /* Return a newly constructed STRING_CST node whose value is
1525 the LEN characters at STR.
1526 The TREE_TYPE is not initialized. */
1527
1528 tree
1529 build_string (int len, const char *str)
1530 {
1531 tree s;
1532 size_t length;
1533
1534 /* Do not waste bytes provided by padding of struct tree_string. */
1535 length = len + offsetof (struct tree_string, str) + 1;
1536
1537 #ifdef GATHER_STATISTICS
1538 tree_node_counts[(int) c_kind]++;
1539 tree_node_sizes[(int) c_kind] += length;
1540 #endif
1541
1542 s = ggc_alloc_tree_node (length);
1543
1544 memset (s, 0, sizeof (struct tree_common));
1545 TREE_SET_CODE (s, STRING_CST);
1546 TREE_CONSTANT (s) = 1;
1547 TREE_STRING_LENGTH (s) = len;
1548 memcpy (s->string.str, str, len);
1549 s->string.str[len] = '\0';
1550
1551 return s;
1552 }
1553
1554 /* Return a newly constructed COMPLEX_CST node whose value is
1555 specified by the real and imaginary parts REAL and IMAG.
1556 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1557 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1558
1559 tree
1560 build_complex (tree type, tree real, tree imag)
1561 {
1562 tree t = make_node (COMPLEX_CST);
1563
1564 TREE_REALPART (t) = real;
1565 TREE_IMAGPART (t) = imag;
1566 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1567 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1568 return t;
1569 }
1570
1571 /* Return a constant of arithmetic type TYPE which is the
1572 multiplicative identity of the set TYPE. */
1573
1574 tree
1575 build_one_cst (tree type)
1576 {
1577 switch (TREE_CODE (type))
1578 {
1579 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1580 case POINTER_TYPE: case REFERENCE_TYPE:
1581 case OFFSET_TYPE:
1582 return build_int_cst (type, 1);
1583
1584 case REAL_TYPE:
1585 return build_real (type, dconst1);
1586
1587 case FIXED_POINT_TYPE:
1588 /* We can only generate 1 for accum types. */
1589 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1590 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1591
1592 case VECTOR_TYPE:
1593 {
1594 tree scalar = build_one_cst (TREE_TYPE (type));
1595
1596 return build_vector_from_val (type, scalar);
1597 }
1598
1599 case COMPLEX_TYPE:
1600 return build_complex (type,
1601 build_one_cst (TREE_TYPE (type)),
1602 build_zero_cst (TREE_TYPE (type)));
1603
1604 default:
1605 gcc_unreachable ();
1606 }
1607 }
1608
1609 /* Build 0 constant of type TYPE. This is used by constructor folding
1610 and thus the constant should be represented in memory by
1611 zero(es). */
1612
1613 tree
1614 build_zero_cst (tree type)
1615 {
1616 switch (TREE_CODE (type))
1617 {
1618 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1619 case POINTER_TYPE: case REFERENCE_TYPE:
1620 case OFFSET_TYPE:
1621 return build_int_cst (type, 0);
1622
1623 case REAL_TYPE:
1624 return build_real (type, dconst0);
1625
1626 case FIXED_POINT_TYPE:
1627 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1628
1629 case VECTOR_TYPE:
1630 {
1631 tree scalar = build_zero_cst (TREE_TYPE (type));
1632
1633 return build_vector_from_val (type, scalar);
1634 }
1635
1636 case COMPLEX_TYPE:
1637 {
1638 tree zero = build_zero_cst (TREE_TYPE (type));
1639
1640 return build_complex (type, zero, zero);
1641 }
1642
1643 default:
1644 if (!AGGREGATE_TYPE_P (type))
1645 return fold_convert (type, integer_zero_node);
1646 return build_constructor (type, NULL);
1647 }
1648 }
1649
1650
1651 /* Build a BINFO with LEN language slots. */
1652
1653 tree
1654 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1655 {
1656 tree t;
1657 size_t length = (offsetof (struct tree_binfo, base_binfos)
1658 + VEC_embedded_size (tree, base_binfos));
1659
1660 #ifdef GATHER_STATISTICS
1661 tree_node_counts[(int) binfo_kind]++;
1662 tree_node_sizes[(int) binfo_kind] += length;
1663 #endif
1664
1665 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1666
1667 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1668
1669 TREE_SET_CODE (t, TREE_BINFO);
1670
1671 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1672
1673 return t;
1674 }
1675
1676
1677 /* Build a newly constructed TREE_VEC node of length LEN. */
1678
1679 tree
1680 make_tree_vec_stat (int len MEM_STAT_DECL)
1681 {
1682 tree t;
1683 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1684
1685 #ifdef GATHER_STATISTICS
1686 tree_node_counts[(int) vec_kind]++;
1687 tree_node_sizes[(int) vec_kind] += length;
1688 #endif
1689
1690 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1691
1692 TREE_SET_CODE (t, TREE_VEC);
1693 TREE_VEC_LENGTH (t) = len;
1694
1695 return t;
1696 }
1697 \f
1698 /* Return 1 if EXPR is the integer constant zero or a complex constant
1699 of zero. */
1700
1701 int
1702 integer_zerop (const_tree expr)
1703 {
1704 STRIP_NOPS (expr);
1705
1706 return ((TREE_CODE (expr) == INTEGER_CST
1707 && TREE_INT_CST_LOW (expr) == 0
1708 && TREE_INT_CST_HIGH (expr) == 0)
1709 || (TREE_CODE (expr) == COMPLEX_CST
1710 && integer_zerop (TREE_REALPART (expr))
1711 && integer_zerop (TREE_IMAGPART (expr))));
1712 }
1713
1714 /* Return 1 if EXPR is the integer constant one or the corresponding
1715 complex constant. */
1716
1717 int
1718 integer_onep (const_tree expr)
1719 {
1720 STRIP_NOPS (expr);
1721
1722 return ((TREE_CODE (expr) == INTEGER_CST
1723 && TREE_INT_CST_LOW (expr) == 1
1724 && TREE_INT_CST_HIGH (expr) == 0)
1725 || (TREE_CODE (expr) == COMPLEX_CST
1726 && integer_onep (TREE_REALPART (expr))
1727 && integer_zerop (TREE_IMAGPART (expr))));
1728 }
1729
1730 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1731 it contains. Likewise for the corresponding complex constant. */
1732
1733 int
1734 integer_all_onesp (const_tree expr)
1735 {
1736 int prec;
1737 int uns;
1738
1739 STRIP_NOPS (expr);
1740
1741 if (TREE_CODE (expr) == COMPLEX_CST
1742 && integer_all_onesp (TREE_REALPART (expr))
1743 && integer_zerop (TREE_IMAGPART (expr)))
1744 return 1;
1745
1746 else if (TREE_CODE (expr) != INTEGER_CST)
1747 return 0;
1748
1749 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1750 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1751 && TREE_INT_CST_HIGH (expr) == -1)
1752 return 1;
1753 if (!uns)
1754 return 0;
1755
1756 /* Note that using TYPE_PRECISION here is wrong. We care about the
1757 actual bits, not the (arbitrary) range of the type. */
1758 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1759 if (prec >= HOST_BITS_PER_WIDE_INT)
1760 {
1761 HOST_WIDE_INT high_value;
1762 int shift_amount;
1763
1764 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1765
1766 /* Can not handle precisions greater than twice the host int size. */
1767 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1768 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1769 /* Shifting by the host word size is undefined according to the ANSI
1770 standard, so we must handle this as a special case. */
1771 high_value = -1;
1772 else
1773 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1774
1775 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1776 && TREE_INT_CST_HIGH (expr) == high_value);
1777 }
1778 else
1779 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1780 }
1781
1782 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1783 one bit on). */
1784
1785 int
1786 integer_pow2p (const_tree expr)
1787 {
1788 int prec;
1789 HOST_WIDE_INT high, low;
1790
1791 STRIP_NOPS (expr);
1792
1793 if (TREE_CODE (expr) == COMPLEX_CST
1794 && integer_pow2p (TREE_REALPART (expr))
1795 && integer_zerop (TREE_IMAGPART (expr)))
1796 return 1;
1797
1798 if (TREE_CODE (expr) != INTEGER_CST)
1799 return 0;
1800
1801 prec = TYPE_PRECISION (TREE_TYPE (expr));
1802 high = TREE_INT_CST_HIGH (expr);
1803 low = TREE_INT_CST_LOW (expr);
1804
1805 /* First clear all bits that are beyond the type's precision in case
1806 we've been sign extended. */
1807
1808 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1809 ;
1810 else if (prec > HOST_BITS_PER_WIDE_INT)
1811 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1812 else
1813 {
1814 high = 0;
1815 if (prec < HOST_BITS_PER_WIDE_INT)
1816 low &= ~((HOST_WIDE_INT) (-1) << prec);
1817 }
1818
1819 if (high == 0 && low == 0)
1820 return 0;
1821
1822 return ((high == 0 && (low & (low - 1)) == 0)
1823 || (low == 0 && (high & (high - 1)) == 0));
1824 }
1825
1826 /* Return 1 if EXPR is an integer constant other than zero or a
1827 complex constant other than zero. */
1828
1829 int
1830 integer_nonzerop (const_tree expr)
1831 {
1832 STRIP_NOPS (expr);
1833
1834 return ((TREE_CODE (expr) == INTEGER_CST
1835 && (TREE_INT_CST_LOW (expr) != 0
1836 || TREE_INT_CST_HIGH (expr) != 0))
1837 || (TREE_CODE (expr) == COMPLEX_CST
1838 && (integer_nonzerop (TREE_REALPART (expr))
1839 || integer_nonzerop (TREE_IMAGPART (expr)))));
1840 }
1841
1842 /* Return 1 if EXPR is the fixed-point constant zero. */
1843
1844 int
1845 fixed_zerop (const_tree expr)
1846 {
1847 return (TREE_CODE (expr) == FIXED_CST
1848 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1849 }
1850
1851 /* Return the power of two represented by a tree node known to be a
1852 power of two. */
1853
1854 int
1855 tree_log2 (const_tree expr)
1856 {
1857 int prec;
1858 HOST_WIDE_INT high, low;
1859
1860 STRIP_NOPS (expr);
1861
1862 if (TREE_CODE (expr) == COMPLEX_CST)
1863 return tree_log2 (TREE_REALPART (expr));
1864
1865 prec = TYPE_PRECISION (TREE_TYPE (expr));
1866 high = TREE_INT_CST_HIGH (expr);
1867 low = TREE_INT_CST_LOW (expr);
1868
1869 /* First clear all bits that are beyond the type's precision in case
1870 we've been sign extended. */
1871
1872 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1873 ;
1874 else if (prec > HOST_BITS_PER_WIDE_INT)
1875 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1876 else
1877 {
1878 high = 0;
1879 if (prec < HOST_BITS_PER_WIDE_INT)
1880 low &= ~((HOST_WIDE_INT) (-1) << prec);
1881 }
1882
1883 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1884 : exact_log2 (low));
1885 }
1886
1887 /* Similar, but return the largest integer Y such that 2 ** Y is less
1888 than or equal to EXPR. */
1889
1890 int
1891 tree_floor_log2 (const_tree expr)
1892 {
1893 int prec;
1894 HOST_WIDE_INT high, low;
1895
1896 STRIP_NOPS (expr);
1897
1898 if (TREE_CODE (expr) == COMPLEX_CST)
1899 return tree_log2 (TREE_REALPART (expr));
1900
1901 prec = TYPE_PRECISION (TREE_TYPE (expr));
1902 high = TREE_INT_CST_HIGH (expr);
1903 low = TREE_INT_CST_LOW (expr);
1904
1905 /* First clear all bits that are beyond the type's precision in case
1906 we've been sign extended. Ignore if type's precision hasn't been set
1907 since what we are doing is setting it. */
1908
1909 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1910 ;
1911 else if (prec > HOST_BITS_PER_WIDE_INT)
1912 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1913 else
1914 {
1915 high = 0;
1916 if (prec < HOST_BITS_PER_WIDE_INT)
1917 low &= ~((HOST_WIDE_INT) (-1) << prec);
1918 }
1919
1920 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1921 : floor_log2 (low));
1922 }
1923
1924 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1925 decimal float constants, so don't return 1 for them. */
1926
1927 int
1928 real_zerop (const_tree expr)
1929 {
1930 STRIP_NOPS (expr);
1931
1932 return ((TREE_CODE (expr) == REAL_CST
1933 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1934 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1935 || (TREE_CODE (expr) == COMPLEX_CST
1936 && real_zerop (TREE_REALPART (expr))
1937 && real_zerop (TREE_IMAGPART (expr))));
1938 }
1939
1940 /* Return 1 if EXPR is the real constant one in real or complex form.
1941 Trailing zeroes matter for decimal float constants, so don't return
1942 1 for them. */
1943
1944 int
1945 real_onep (const_tree expr)
1946 {
1947 STRIP_NOPS (expr);
1948
1949 return ((TREE_CODE (expr) == REAL_CST
1950 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1951 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1952 || (TREE_CODE (expr) == COMPLEX_CST
1953 && real_onep (TREE_REALPART (expr))
1954 && real_zerop (TREE_IMAGPART (expr))));
1955 }
1956
1957 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1958 for decimal float constants, so don't return 1 for them. */
1959
1960 int
1961 real_twop (const_tree expr)
1962 {
1963 STRIP_NOPS (expr);
1964
1965 return ((TREE_CODE (expr) == REAL_CST
1966 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1967 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1968 || (TREE_CODE (expr) == COMPLEX_CST
1969 && real_twop (TREE_REALPART (expr))
1970 && real_zerop (TREE_IMAGPART (expr))));
1971 }
1972
1973 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1974 matter for decimal float constants, so don't return 1 for them. */
1975
1976 int
1977 real_minus_onep (const_tree expr)
1978 {
1979 STRIP_NOPS (expr);
1980
1981 return ((TREE_CODE (expr) == REAL_CST
1982 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1983 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1984 || (TREE_CODE (expr) == COMPLEX_CST
1985 && real_minus_onep (TREE_REALPART (expr))
1986 && real_zerop (TREE_IMAGPART (expr))));
1987 }
1988
1989 /* Nonzero if EXP is a constant or a cast of a constant. */
1990
1991 int
1992 really_constant_p (const_tree exp)
1993 {
1994 /* This is not quite the same as STRIP_NOPS. It does more. */
1995 while (CONVERT_EXPR_P (exp)
1996 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1997 exp = TREE_OPERAND (exp, 0);
1998 return TREE_CONSTANT (exp);
1999 }
2000 \f
2001 /* Return first list element whose TREE_VALUE is ELEM.
2002 Return 0 if ELEM is not in LIST. */
2003
2004 tree
2005 value_member (tree elem, tree list)
2006 {
2007 while (list)
2008 {
2009 if (elem == TREE_VALUE (list))
2010 return list;
2011 list = TREE_CHAIN (list);
2012 }
2013 return NULL_TREE;
2014 }
2015
2016 /* Return first list element whose TREE_PURPOSE is ELEM.
2017 Return 0 if ELEM is not in LIST. */
2018
2019 tree
2020 purpose_member (const_tree elem, tree list)
2021 {
2022 while (list)
2023 {
2024 if (elem == TREE_PURPOSE (list))
2025 return list;
2026 list = TREE_CHAIN (list);
2027 }
2028 return NULL_TREE;
2029 }
2030
2031 /* Return true if ELEM is in V. */
2032
2033 bool
2034 vec_member (const_tree elem, VEC(tree,gc) *v)
2035 {
2036 unsigned ix;
2037 tree t;
2038 FOR_EACH_VEC_ELT (tree, v, ix, t)
2039 if (elem == t)
2040 return true;
2041 return false;
2042 }
2043
2044 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2045 NULL_TREE. */
2046
2047 tree
2048 chain_index (int idx, tree chain)
2049 {
2050 for (; chain && idx > 0; --idx)
2051 chain = TREE_CHAIN (chain);
2052 return chain;
2053 }
2054
2055 /* Return nonzero if ELEM is part of the chain CHAIN. */
2056
2057 int
2058 chain_member (const_tree elem, const_tree chain)
2059 {
2060 while (chain)
2061 {
2062 if (elem == chain)
2063 return 1;
2064 chain = DECL_CHAIN (chain);
2065 }
2066
2067 return 0;
2068 }
2069
2070 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2071 We expect a null pointer to mark the end of the chain.
2072 This is the Lisp primitive `length'. */
2073
2074 int
2075 list_length (const_tree t)
2076 {
2077 const_tree p = t;
2078 #ifdef ENABLE_TREE_CHECKING
2079 const_tree q = t;
2080 #endif
2081 int len = 0;
2082
2083 while (p)
2084 {
2085 p = TREE_CHAIN (p);
2086 #ifdef ENABLE_TREE_CHECKING
2087 if (len % 2)
2088 q = TREE_CHAIN (q);
2089 gcc_assert (p != q);
2090 #endif
2091 len++;
2092 }
2093
2094 return len;
2095 }
2096
2097 /* Returns the number of FIELD_DECLs in TYPE. */
2098
2099 int
2100 fields_length (const_tree type)
2101 {
2102 tree t = TYPE_FIELDS (type);
2103 int count = 0;
2104
2105 for (; t; t = DECL_CHAIN (t))
2106 if (TREE_CODE (t) == FIELD_DECL)
2107 ++count;
2108
2109 return count;
2110 }
2111
2112 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2113 UNION_TYPE TYPE, or NULL_TREE if none. */
2114
2115 tree
2116 first_field (const_tree type)
2117 {
2118 tree t = TYPE_FIELDS (type);
2119 while (t && TREE_CODE (t) != FIELD_DECL)
2120 t = TREE_CHAIN (t);
2121 return t;
2122 }
2123
2124 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2125 by modifying the last node in chain 1 to point to chain 2.
2126 This is the Lisp primitive `nconc'. */
2127
2128 tree
2129 chainon (tree op1, tree op2)
2130 {
2131 tree t1;
2132
2133 if (!op1)
2134 return op2;
2135 if (!op2)
2136 return op1;
2137
2138 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2139 continue;
2140 TREE_CHAIN (t1) = op2;
2141
2142 #ifdef ENABLE_TREE_CHECKING
2143 {
2144 tree t2;
2145 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2146 gcc_assert (t2 != t1);
2147 }
2148 #endif
2149
2150 return op1;
2151 }
2152
2153 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2154
2155 tree
2156 tree_last (tree chain)
2157 {
2158 tree next;
2159 if (chain)
2160 while ((next = TREE_CHAIN (chain)))
2161 chain = next;
2162 return chain;
2163 }
2164
2165 /* Reverse the order of elements in the chain T,
2166 and return the new head of the chain (old last element). */
2167
2168 tree
2169 nreverse (tree t)
2170 {
2171 tree prev = 0, decl, next;
2172 for (decl = t; decl; decl = next)
2173 {
2174 /* We shouldn't be using this function to reverse BLOCK chains; we
2175 have blocks_nreverse for that. */
2176 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2177 next = TREE_CHAIN (decl);
2178 TREE_CHAIN (decl) = prev;
2179 prev = decl;
2180 }
2181 return prev;
2182 }
2183 \f
2184 /* Return a newly created TREE_LIST node whose
2185 purpose and value fields are PARM and VALUE. */
2186
2187 tree
2188 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2189 {
2190 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2191 TREE_PURPOSE (t) = parm;
2192 TREE_VALUE (t) = value;
2193 return t;
2194 }
2195
2196 /* Build a chain of TREE_LIST nodes from a vector. */
2197
2198 tree
2199 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2200 {
2201 tree ret = NULL_TREE;
2202 tree *pp = &ret;
2203 unsigned int i;
2204 tree t;
2205 FOR_EACH_VEC_ELT (tree, vec, i, t)
2206 {
2207 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2208 pp = &TREE_CHAIN (*pp);
2209 }
2210 return ret;
2211 }
2212
2213 /* Return a newly created TREE_LIST node whose
2214 purpose and value fields are PURPOSE and VALUE
2215 and whose TREE_CHAIN is CHAIN. */
2216
2217 tree
2218 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2219 {
2220 tree node;
2221
2222 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2223 PASS_MEM_STAT);
2224 memset (node, 0, sizeof (struct tree_common));
2225
2226 #ifdef GATHER_STATISTICS
2227 tree_node_counts[(int) x_kind]++;
2228 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2229 #endif
2230
2231 TREE_SET_CODE (node, TREE_LIST);
2232 TREE_CHAIN (node) = chain;
2233 TREE_PURPOSE (node) = purpose;
2234 TREE_VALUE (node) = value;
2235 return node;
2236 }
2237
2238 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2239 trees. */
2240
2241 VEC(tree,gc) *
2242 ctor_to_vec (tree ctor)
2243 {
2244 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2245 unsigned int ix;
2246 tree val;
2247
2248 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2249 VEC_quick_push (tree, vec, val);
2250
2251 return vec;
2252 }
2253 \f
2254 /* Return the size nominally occupied by an object of type TYPE
2255 when it resides in memory. The value is measured in units of bytes,
2256 and its data type is that normally used for type sizes
2257 (which is the first type created by make_signed_type or
2258 make_unsigned_type). */
2259
2260 tree
2261 size_in_bytes (const_tree type)
2262 {
2263 tree t;
2264
2265 if (type == error_mark_node)
2266 return integer_zero_node;
2267
2268 type = TYPE_MAIN_VARIANT (type);
2269 t = TYPE_SIZE_UNIT (type);
2270
2271 if (t == 0)
2272 {
2273 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2274 return size_zero_node;
2275 }
2276
2277 return t;
2278 }
2279
2280 /* Return the size of TYPE (in bytes) as a wide integer
2281 or return -1 if the size can vary or is larger than an integer. */
2282
2283 HOST_WIDE_INT
2284 int_size_in_bytes (const_tree type)
2285 {
2286 tree t;
2287
2288 if (type == error_mark_node)
2289 return 0;
2290
2291 type = TYPE_MAIN_VARIANT (type);
2292 t = TYPE_SIZE_UNIT (type);
2293 if (t == 0
2294 || TREE_CODE (t) != INTEGER_CST
2295 || TREE_INT_CST_HIGH (t) != 0
2296 /* If the result would appear negative, it's too big to represent. */
2297 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2298 return -1;
2299
2300 return TREE_INT_CST_LOW (t);
2301 }
2302
2303 /* Return the maximum size of TYPE (in bytes) as a wide integer
2304 or return -1 if the size can vary or is larger than an integer. */
2305
2306 HOST_WIDE_INT
2307 max_int_size_in_bytes (const_tree type)
2308 {
2309 HOST_WIDE_INT size = -1;
2310 tree size_tree;
2311
2312 /* If this is an array type, check for a possible MAX_SIZE attached. */
2313
2314 if (TREE_CODE (type) == ARRAY_TYPE)
2315 {
2316 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2317
2318 if (size_tree && host_integerp (size_tree, 1))
2319 size = tree_low_cst (size_tree, 1);
2320 }
2321
2322 /* If we still haven't been able to get a size, see if the language
2323 can compute a maximum size. */
2324
2325 if (size == -1)
2326 {
2327 size_tree = lang_hooks.types.max_size (type);
2328
2329 if (size_tree && host_integerp (size_tree, 1))
2330 size = tree_low_cst (size_tree, 1);
2331 }
2332
2333 return size;
2334 }
2335
2336 /* Returns a tree for the size of EXP in bytes. */
2337
2338 tree
2339 tree_expr_size (const_tree exp)
2340 {
2341 if (DECL_P (exp)
2342 && DECL_SIZE_UNIT (exp) != 0)
2343 return DECL_SIZE_UNIT (exp);
2344 else
2345 return size_in_bytes (TREE_TYPE (exp));
2346 }
2347 \f
2348 /* Return the bit position of FIELD, in bits from the start of the record.
2349 This is a tree of type bitsizetype. */
2350
2351 tree
2352 bit_position (const_tree field)
2353 {
2354 return bit_from_pos (DECL_FIELD_OFFSET (field),
2355 DECL_FIELD_BIT_OFFSET (field));
2356 }
2357
2358 /* Likewise, but return as an integer. It must be representable in
2359 that way (since it could be a signed value, we don't have the
2360 option of returning -1 like int_size_in_byte can. */
2361
2362 HOST_WIDE_INT
2363 int_bit_position (const_tree field)
2364 {
2365 return tree_low_cst (bit_position (field), 0);
2366 }
2367 \f
2368 /* Return the byte position of FIELD, in bytes from the start of the record.
2369 This is a tree of type sizetype. */
2370
2371 tree
2372 byte_position (const_tree field)
2373 {
2374 return byte_from_pos (DECL_FIELD_OFFSET (field),
2375 DECL_FIELD_BIT_OFFSET (field));
2376 }
2377
2378 /* Likewise, but return as an integer. It must be representable in
2379 that way (since it could be a signed value, we don't have the
2380 option of returning -1 like int_size_in_byte can. */
2381
2382 HOST_WIDE_INT
2383 int_byte_position (const_tree field)
2384 {
2385 return tree_low_cst (byte_position (field), 0);
2386 }
2387 \f
2388 /* Return the strictest alignment, in bits, that T is known to have. */
2389
2390 unsigned int
2391 expr_align (const_tree t)
2392 {
2393 unsigned int align0, align1;
2394
2395 switch (TREE_CODE (t))
2396 {
2397 CASE_CONVERT: case NON_LVALUE_EXPR:
2398 /* If we have conversions, we know that the alignment of the
2399 object must meet each of the alignments of the types. */
2400 align0 = expr_align (TREE_OPERAND (t, 0));
2401 align1 = TYPE_ALIGN (TREE_TYPE (t));
2402 return MAX (align0, align1);
2403
2404 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2405 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2406 case CLEANUP_POINT_EXPR:
2407 /* These don't change the alignment of an object. */
2408 return expr_align (TREE_OPERAND (t, 0));
2409
2410 case COND_EXPR:
2411 /* The best we can do is say that the alignment is the least aligned
2412 of the two arms. */
2413 align0 = expr_align (TREE_OPERAND (t, 1));
2414 align1 = expr_align (TREE_OPERAND (t, 2));
2415 return MIN (align0, align1);
2416
2417 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2418 meaningfully, it's always 1. */
2419 case LABEL_DECL: case CONST_DECL:
2420 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2421 case FUNCTION_DECL:
2422 gcc_assert (DECL_ALIGN (t) != 0);
2423 return DECL_ALIGN (t);
2424
2425 default:
2426 break;
2427 }
2428
2429 /* Otherwise take the alignment from that of the type. */
2430 return TYPE_ALIGN (TREE_TYPE (t));
2431 }
2432 \f
2433 /* Return, as a tree node, the number of elements for TYPE (which is an
2434 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2435
2436 tree
2437 array_type_nelts (const_tree type)
2438 {
2439 tree index_type, min, max;
2440
2441 /* If they did it with unspecified bounds, then we should have already
2442 given an error about it before we got here. */
2443 if (! TYPE_DOMAIN (type))
2444 return error_mark_node;
2445
2446 index_type = TYPE_DOMAIN (type);
2447 min = TYPE_MIN_VALUE (index_type);
2448 max = TYPE_MAX_VALUE (index_type);
2449
2450 return (integer_zerop (min)
2451 ? max
2452 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2453 }
2454 \f
2455 /* If arg is static -- a reference to an object in static storage -- then
2456 return the object. This is not the same as the C meaning of `static'.
2457 If arg isn't static, return NULL. */
2458
2459 tree
2460 staticp (tree arg)
2461 {
2462 switch (TREE_CODE (arg))
2463 {
2464 case FUNCTION_DECL:
2465 /* Nested functions are static, even though taking their address will
2466 involve a trampoline as we unnest the nested function and create
2467 the trampoline on the tree level. */
2468 return arg;
2469
2470 case VAR_DECL:
2471 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2472 && ! DECL_THREAD_LOCAL_P (arg)
2473 && ! DECL_DLLIMPORT_P (arg)
2474 ? arg : NULL);
2475
2476 case CONST_DECL:
2477 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2478 ? arg : NULL);
2479
2480 case CONSTRUCTOR:
2481 return TREE_STATIC (arg) ? arg : NULL;
2482
2483 case LABEL_DECL:
2484 case STRING_CST:
2485 return arg;
2486
2487 case COMPONENT_REF:
2488 /* If the thing being referenced is not a field, then it is
2489 something language specific. */
2490 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2491
2492 /* If we are referencing a bitfield, we can't evaluate an
2493 ADDR_EXPR at compile time and so it isn't a constant. */
2494 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2495 return NULL;
2496
2497 return staticp (TREE_OPERAND (arg, 0));
2498
2499 case BIT_FIELD_REF:
2500 return NULL;
2501
2502 case INDIRECT_REF:
2503 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2504
2505 case ARRAY_REF:
2506 case ARRAY_RANGE_REF:
2507 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2508 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2509 return staticp (TREE_OPERAND (arg, 0));
2510 else
2511 return NULL;
2512
2513 case COMPOUND_LITERAL_EXPR:
2514 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2515
2516 default:
2517 return NULL;
2518 }
2519 }
2520
2521 \f
2522
2523
2524 /* Return whether OP is a DECL whose address is function-invariant. */
2525
2526 bool
2527 decl_address_invariant_p (const_tree op)
2528 {
2529 /* The conditions below are slightly less strict than the one in
2530 staticp. */
2531
2532 switch (TREE_CODE (op))
2533 {
2534 case PARM_DECL:
2535 case RESULT_DECL:
2536 case LABEL_DECL:
2537 case FUNCTION_DECL:
2538 return true;
2539
2540 case VAR_DECL:
2541 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2542 || DECL_THREAD_LOCAL_P (op)
2543 || DECL_CONTEXT (op) == current_function_decl
2544 || decl_function_context (op) == current_function_decl)
2545 return true;
2546 break;
2547
2548 case CONST_DECL:
2549 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2550 || decl_function_context (op) == current_function_decl)
2551 return true;
2552 break;
2553
2554 default:
2555 break;
2556 }
2557
2558 return false;
2559 }
2560
2561 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2562
2563 bool
2564 decl_address_ip_invariant_p (const_tree op)
2565 {
2566 /* The conditions below are slightly less strict than the one in
2567 staticp. */
2568
2569 switch (TREE_CODE (op))
2570 {
2571 case LABEL_DECL:
2572 case FUNCTION_DECL:
2573 case STRING_CST:
2574 return true;
2575
2576 case VAR_DECL:
2577 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2578 && !DECL_DLLIMPORT_P (op))
2579 || DECL_THREAD_LOCAL_P (op))
2580 return true;
2581 break;
2582
2583 case CONST_DECL:
2584 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2585 return true;
2586 break;
2587
2588 default:
2589 break;
2590 }
2591
2592 return false;
2593 }
2594
2595
2596 /* Return true if T is function-invariant (internal function, does
2597 not handle arithmetic; that's handled in skip_simple_arithmetic and
2598 tree_invariant_p). */
2599
2600 static bool tree_invariant_p (tree t);
2601
2602 static bool
2603 tree_invariant_p_1 (tree t)
2604 {
2605 tree op;
2606
2607 if (TREE_CONSTANT (t)
2608 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2609 return true;
2610
2611 switch (TREE_CODE (t))
2612 {
2613 case SAVE_EXPR:
2614 return true;
2615
2616 case ADDR_EXPR:
2617 op = TREE_OPERAND (t, 0);
2618 while (handled_component_p (op))
2619 {
2620 switch (TREE_CODE (op))
2621 {
2622 case ARRAY_REF:
2623 case ARRAY_RANGE_REF:
2624 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2625 || TREE_OPERAND (op, 2) != NULL_TREE
2626 || TREE_OPERAND (op, 3) != NULL_TREE)
2627 return false;
2628 break;
2629
2630 case COMPONENT_REF:
2631 if (TREE_OPERAND (op, 2) != NULL_TREE)
2632 return false;
2633 break;
2634
2635 default:;
2636 }
2637 op = TREE_OPERAND (op, 0);
2638 }
2639
2640 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2641
2642 default:
2643 break;
2644 }
2645
2646 return false;
2647 }
2648
2649 /* Return true if T is function-invariant. */
2650
2651 static bool
2652 tree_invariant_p (tree t)
2653 {
2654 tree inner = skip_simple_arithmetic (t);
2655 return tree_invariant_p_1 (inner);
2656 }
2657
2658 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2659 Do this to any expression which may be used in more than one place,
2660 but must be evaluated only once.
2661
2662 Normally, expand_expr would reevaluate the expression each time.
2663 Calling save_expr produces something that is evaluated and recorded
2664 the first time expand_expr is called on it. Subsequent calls to
2665 expand_expr just reuse the recorded value.
2666
2667 The call to expand_expr that generates code that actually computes
2668 the value is the first call *at compile time*. Subsequent calls
2669 *at compile time* generate code to use the saved value.
2670 This produces correct result provided that *at run time* control
2671 always flows through the insns made by the first expand_expr
2672 before reaching the other places where the save_expr was evaluated.
2673 You, the caller of save_expr, must make sure this is so.
2674
2675 Constants, and certain read-only nodes, are returned with no
2676 SAVE_EXPR because that is safe. Expressions containing placeholders
2677 are not touched; see tree.def for an explanation of what these
2678 are used for. */
2679
2680 tree
2681 save_expr (tree expr)
2682 {
2683 tree t = fold (expr);
2684 tree inner;
2685
2686 /* If the tree evaluates to a constant, then we don't want to hide that
2687 fact (i.e. this allows further folding, and direct checks for constants).
2688 However, a read-only object that has side effects cannot be bypassed.
2689 Since it is no problem to reevaluate literals, we just return the
2690 literal node. */
2691 inner = skip_simple_arithmetic (t);
2692 if (TREE_CODE (inner) == ERROR_MARK)
2693 return inner;
2694
2695 if (tree_invariant_p_1 (inner))
2696 return t;
2697
2698 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2699 it means that the size or offset of some field of an object depends on
2700 the value within another field.
2701
2702 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2703 and some variable since it would then need to be both evaluated once and
2704 evaluated more than once. Front-ends must assure this case cannot
2705 happen by surrounding any such subexpressions in their own SAVE_EXPR
2706 and forcing evaluation at the proper time. */
2707 if (contains_placeholder_p (inner))
2708 return t;
2709
2710 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2711 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2712
2713 /* This expression might be placed ahead of a jump to ensure that the
2714 value was computed on both sides of the jump. So make sure it isn't
2715 eliminated as dead. */
2716 TREE_SIDE_EFFECTS (t) = 1;
2717 return t;
2718 }
2719
2720 /* Look inside EXPR and into any simple arithmetic operations. Return
2721 the innermost non-arithmetic node. */
2722
2723 tree
2724 skip_simple_arithmetic (tree expr)
2725 {
2726 tree inner;
2727
2728 /* We don't care about whether this can be used as an lvalue in this
2729 context. */
2730 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2731 expr = TREE_OPERAND (expr, 0);
2732
2733 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2734 a constant, it will be more efficient to not make another SAVE_EXPR since
2735 it will allow better simplification and GCSE will be able to merge the
2736 computations if they actually occur. */
2737 inner = expr;
2738 while (1)
2739 {
2740 if (UNARY_CLASS_P (inner))
2741 inner = TREE_OPERAND (inner, 0);
2742 else if (BINARY_CLASS_P (inner))
2743 {
2744 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2745 inner = TREE_OPERAND (inner, 0);
2746 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2747 inner = TREE_OPERAND (inner, 1);
2748 else
2749 break;
2750 }
2751 else
2752 break;
2753 }
2754
2755 return inner;
2756 }
2757
2758
2759 /* Return which tree structure is used by T. */
2760
2761 enum tree_node_structure_enum
2762 tree_node_structure (const_tree t)
2763 {
2764 const enum tree_code code = TREE_CODE (t);
2765 return tree_node_structure_for_code (code);
2766 }
2767
2768 /* Set various status flags when building a CALL_EXPR object T. */
2769
2770 static void
2771 process_call_operands (tree t)
2772 {
2773 bool side_effects = TREE_SIDE_EFFECTS (t);
2774 bool read_only = false;
2775 int i = call_expr_flags (t);
2776
2777 /* Calls have side-effects, except those to const or pure functions. */
2778 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2779 side_effects = true;
2780 /* Propagate TREE_READONLY of arguments for const functions. */
2781 if (i & ECF_CONST)
2782 read_only = true;
2783
2784 if (!side_effects || read_only)
2785 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2786 {
2787 tree op = TREE_OPERAND (t, i);
2788 if (op && TREE_SIDE_EFFECTS (op))
2789 side_effects = true;
2790 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2791 read_only = false;
2792 }
2793
2794 TREE_SIDE_EFFECTS (t) = side_effects;
2795 TREE_READONLY (t) = read_only;
2796 }
2797 \f
2798 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2799 size or offset that depends on a field within a record. */
2800
2801 bool
2802 contains_placeholder_p (const_tree exp)
2803 {
2804 enum tree_code code;
2805
2806 if (!exp)
2807 return 0;
2808
2809 code = TREE_CODE (exp);
2810 if (code == PLACEHOLDER_EXPR)
2811 return 1;
2812
2813 switch (TREE_CODE_CLASS (code))
2814 {
2815 case tcc_reference:
2816 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2817 position computations since they will be converted into a
2818 WITH_RECORD_EXPR involving the reference, which will assume
2819 here will be valid. */
2820 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2821
2822 case tcc_exceptional:
2823 if (code == TREE_LIST)
2824 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2825 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2826 break;
2827
2828 case tcc_unary:
2829 case tcc_binary:
2830 case tcc_comparison:
2831 case tcc_expression:
2832 switch (code)
2833 {
2834 case COMPOUND_EXPR:
2835 /* Ignoring the first operand isn't quite right, but works best. */
2836 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2837
2838 case COND_EXPR:
2839 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2840 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2841 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2842
2843 case SAVE_EXPR:
2844 /* The save_expr function never wraps anything containing
2845 a PLACEHOLDER_EXPR. */
2846 return 0;
2847
2848 default:
2849 break;
2850 }
2851
2852 switch (TREE_CODE_LENGTH (code))
2853 {
2854 case 1:
2855 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2856 case 2:
2857 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2858 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2859 default:
2860 return 0;
2861 }
2862
2863 case tcc_vl_exp:
2864 switch (code)
2865 {
2866 case CALL_EXPR:
2867 {
2868 const_tree arg;
2869 const_call_expr_arg_iterator iter;
2870 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2871 if (CONTAINS_PLACEHOLDER_P (arg))
2872 return 1;
2873 return 0;
2874 }
2875 default:
2876 return 0;
2877 }
2878
2879 default:
2880 return 0;
2881 }
2882 return 0;
2883 }
2884
2885 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
2886 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
2887 field positions. */
2888
2889 static bool
2890 type_contains_placeholder_1 (const_tree type)
2891 {
2892 /* If the size contains a placeholder or the parent type (component type in
2893 the case of arrays) type involves a placeholder, this type does. */
2894 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2895 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2896 || (!POINTER_TYPE_P (type)
2897 && TREE_TYPE (type)
2898 && type_contains_placeholder_p (TREE_TYPE (type))))
2899 return true;
2900
2901 /* Now do type-specific checks. Note that the last part of the check above
2902 greatly limits what we have to do below. */
2903 switch (TREE_CODE (type))
2904 {
2905 case VOID_TYPE:
2906 case COMPLEX_TYPE:
2907 case ENUMERAL_TYPE:
2908 case BOOLEAN_TYPE:
2909 case POINTER_TYPE:
2910 case OFFSET_TYPE:
2911 case REFERENCE_TYPE:
2912 case METHOD_TYPE:
2913 case FUNCTION_TYPE:
2914 case VECTOR_TYPE:
2915 return false;
2916
2917 case INTEGER_TYPE:
2918 case REAL_TYPE:
2919 case FIXED_POINT_TYPE:
2920 /* Here we just check the bounds. */
2921 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2922 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2923
2924 case ARRAY_TYPE:
2925 /* We have already checked the component type above, so just check the
2926 domain type. */
2927 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2928
2929 case RECORD_TYPE:
2930 case UNION_TYPE:
2931 case QUAL_UNION_TYPE:
2932 {
2933 tree field;
2934
2935 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2936 if (TREE_CODE (field) == FIELD_DECL
2937 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2938 || (TREE_CODE (type) == QUAL_UNION_TYPE
2939 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2940 || type_contains_placeholder_p (TREE_TYPE (field))))
2941 return true;
2942
2943 return false;
2944 }
2945
2946 default:
2947 gcc_unreachable ();
2948 }
2949 }
2950
2951 /* Wrapper around above function used to cache its result. */
2952
2953 bool
2954 type_contains_placeholder_p (tree type)
2955 {
2956 bool result;
2957
2958 /* If the contains_placeholder_bits field has been initialized,
2959 then we know the answer. */
2960 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2961 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2962
2963 /* Indicate that we've seen this type node, and the answer is false.
2964 This is what we want to return if we run into recursion via fields. */
2965 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2966
2967 /* Compute the real value. */
2968 result = type_contains_placeholder_1 (type);
2969
2970 /* Store the real value. */
2971 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2972
2973 return result;
2974 }
2975 \f
2976 /* Push tree EXP onto vector QUEUE if it is not already present. */
2977
2978 static void
2979 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2980 {
2981 unsigned int i;
2982 tree iter;
2983
2984 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2985 if (simple_cst_equal (iter, exp) == 1)
2986 break;
2987
2988 if (!iter)
2989 VEC_safe_push (tree, heap, *queue, exp);
2990 }
2991
2992 /* Given a tree EXP, find all occurences of references to fields
2993 in a PLACEHOLDER_EXPR and place them in vector REFS without
2994 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2995 we assume here that EXP contains only arithmetic expressions
2996 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2997 argument list. */
2998
2999 void
3000 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
3001 {
3002 enum tree_code code = TREE_CODE (exp);
3003 tree inner;
3004 int i;
3005
3006 /* We handle TREE_LIST and COMPONENT_REF separately. */
3007 if (code == TREE_LIST)
3008 {
3009 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3010 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3011 }
3012 else if (code == COMPONENT_REF)
3013 {
3014 for (inner = TREE_OPERAND (exp, 0);
3015 REFERENCE_CLASS_P (inner);
3016 inner = TREE_OPERAND (inner, 0))
3017 ;
3018
3019 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3020 push_without_duplicates (exp, refs);
3021 else
3022 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3023 }
3024 else
3025 switch (TREE_CODE_CLASS (code))
3026 {
3027 case tcc_constant:
3028 break;
3029
3030 case tcc_declaration:
3031 /* Variables allocated to static storage can stay. */
3032 if (!TREE_STATIC (exp))
3033 push_without_duplicates (exp, refs);
3034 break;
3035
3036 case tcc_expression:
3037 /* This is the pattern built in ada/make_aligning_type. */
3038 if (code == ADDR_EXPR
3039 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3040 {
3041 push_without_duplicates (exp, refs);
3042 break;
3043 }
3044
3045 /* Fall through... */
3046
3047 case tcc_exceptional:
3048 case tcc_unary:
3049 case tcc_binary:
3050 case tcc_comparison:
3051 case tcc_reference:
3052 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3053 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3054 break;
3055
3056 case tcc_vl_exp:
3057 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3058 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3059 break;
3060
3061 default:
3062 gcc_unreachable ();
3063 }
3064 }
3065
3066 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3067 return a tree with all occurrences of references to F in a
3068 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3069 CONST_DECLs. Note that we assume here that EXP contains only
3070 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3071 occurring only in their argument list. */
3072
3073 tree
3074 substitute_in_expr (tree exp, tree f, tree r)
3075 {
3076 enum tree_code code = TREE_CODE (exp);
3077 tree op0, op1, op2, op3;
3078 tree new_tree;
3079
3080 /* We handle TREE_LIST and COMPONENT_REF separately. */
3081 if (code == TREE_LIST)
3082 {
3083 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3084 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3085 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3086 return exp;
3087
3088 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3089 }
3090 else if (code == COMPONENT_REF)
3091 {
3092 tree inner;
3093
3094 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3095 and it is the right field, replace it with R. */
3096 for (inner = TREE_OPERAND (exp, 0);
3097 REFERENCE_CLASS_P (inner);
3098 inner = TREE_OPERAND (inner, 0))
3099 ;
3100
3101 /* The field. */
3102 op1 = TREE_OPERAND (exp, 1);
3103
3104 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3105 return r;
3106
3107 /* If this expression hasn't been completed let, leave it alone. */
3108 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3109 return exp;
3110
3111 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3112 if (op0 == TREE_OPERAND (exp, 0))
3113 return exp;
3114
3115 new_tree
3116 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3117 }
3118 else
3119 switch (TREE_CODE_CLASS (code))
3120 {
3121 case tcc_constant:
3122 return exp;
3123
3124 case tcc_declaration:
3125 if (exp == f)
3126 return r;
3127 else
3128 return exp;
3129
3130 case tcc_expression:
3131 if (exp == f)
3132 return r;
3133
3134 /* Fall through... */
3135
3136 case tcc_exceptional:
3137 case tcc_unary:
3138 case tcc_binary:
3139 case tcc_comparison:
3140 case tcc_reference:
3141 switch (TREE_CODE_LENGTH (code))
3142 {
3143 case 0:
3144 return exp;
3145
3146 case 1:
3147 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3148 if (op0 == TREE_OPERAND (exp, 0))
3149 return exp;
3150
3151 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3152 break;
3153
3154 case 2:
3155 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3156 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3157
3158 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3159 return exp;
3160
3161 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3162 break;
3163
3164 case 3:
3165 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3166 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3167 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3168
3169 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3170 && op2 == TREE_OPERAND (exp, 2))
3171 return exp;
3172
3173 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3174 break;
3175
3176 case 4:
3177 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3178 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3179 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3180 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3181
3182 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3183 && op2 == TREE_OPERAND (exp, 2)
3184 && op3 == TREE_OPERAND (exp, 3))
3185 return exp;
3186
3187 new_tree
3188 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3189 break;
3190
3191 default:
3192 gcc_unreachable ();
3193 }
3194 break;
3195
3196 case tcc_vl_exp:
3197 {
3198 int i;
3199
3200 new_tree = NULL_TREE;
3201
3202 /* If we are trying to replace F with a constant, inline back
3203 functions which do nothing else than computing a value from
3204 the arguments they are passed. This makes it possible to
3205 fold partially or entirely the replacement expression. */
3206 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3207 {
3208 tree t = maybe_inline_call_in_expr (exp);
3209 if (t)
3210 return SUBSTITUTE_IN_EXPR (t, f, r);
3211 }
3212
3213 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3214 {
3215 tree op = TREE_OPERAND (exp, i);
3216 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3217 if (new_op != op)
3218 {
3219 if (!new_tree)
3220 new_tree = copy_node (exp);
3221 TREE_OPERAND (new_tree, i) = new_op;
3222 }
3223 }
3224
3225 if (new_tree)
3226 {
3227 new_tree = fold (new_tree);
3228 if (TREE_CODE (new_tree) == CALL_EXPR)
3229 process_call_operands (new_tree);
3230 }
3231 else
3232 return exp;
3233 }
3234 break;
3235
3236 default:
3237 gcc_unreachable ();
3238 }
3239
3240 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3241
3242 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3243 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3244
3245 return new_tree;
3246 }
3247
3248 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3249 for it within OBJ, a tree that is an object or a chain of references. */
3250
3251 tree
3252 substitute_placeholder_in_expr (tree exp, tree obj)
3253 {
3254 enum tree_code code = TREE_CODE (exp);
3255 tree op0, op1, op2, op3;
3256 tree new_tree;
3257
3258 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3259 in the chain of OBJ. */
3260 if (code == PLACEHOLDER_EXPR)
3261 {
3262 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3263 tree elt;
3264
3265 for (elt = obj; elt != 0;
3266 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3267 || TREE_CODE (elt) == COND_EXPR)
3268 ? TREE_OPERAND (elt, 1)
3269 : (REFERENCE_CLASS_P (elt)
3270 || UNARY_CLASS_P (elt)
3271 || BINARY_CLASS_P (elt)
3272 || VL_EXP_CLASS_P (elt)
3273 || EXPRESSION_CLASS_P (elt))
3274 ? TREE_OPERAND (elt, 0) : 0))
3275 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3276 return elt;
3277
3278 for (elt = obj; elt != 0;
3279 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3280 || TREE_CODE (elt) == COND_EXPR)
3281 ? TREE_OPERAND (elt, 1)
3282 : (REFERENCE_CLASS_P (elt)
3283 || UNARY_CLASS_P (elt)
3284 || BINARY_CLASS_P (elt)
3285 || VL_EXP_CLASS_P (elt)
3286 || EXPRESSION_CLASS_P (elt))
3287 ? TREE_OPERAND (elt, 0) : 0))
3288 if (POINTER_TYPE_P (TREE_TYPE (elt))
3289 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3290 == need_type))
3291 return fold_build1 (INDIRECT_REF, need_type, elt);
3292
3293 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3294 survives until RTL generation, there will be an error. */
3295 return exp;
3296 }
3297
3298 /* TREE_LIST is special because we need to look at TREE_VALUE
3299 and TREE_CHAIN, not TREE_OPERANDS. */
3300 else if (code == TREE_LIST)
3301 {
3302 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3303 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3304 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3305 return exp;
3306
3307 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3308 }
3309 else
3310 switch (TREE_CODE_CLASS (code))
3311 {
3312 case tcc_constant:
3313 case tcc_declaration:
3314 return exp;
3315
3316 case tcc_exceptional:
3317 case tcc_unary:
3318 case tcc_binary:
3319 case tcc_comparison:
3320 case tcc_expression:
3321 case tcc_reference:
3322 case tcc_statement:
3323 switch (TREE_CODE_LENGTH (code))
3324 {
3325 case 0:
3326 return exp;
3327
3328 case 1:
3329 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3330 if (op0 == TREE_OPERAND (exp, 0))
3331 return exp;
3332
3333 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3334 break;
3335
3336 case 2:
3337 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3338 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3339
3340 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3341 return exp;
3342
3343 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3344 break;
3345
3346 case 3:
3347 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3348 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3349 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3350
3351 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3352 && op2 == TREE_OPERAND (exp, 2))
3353 return exp;
3354
3355 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3356 break;
3357
3358 case 4:
3359 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3360 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3361 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3362 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3363
3364 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3365 && op2 == TREE_OPERAND (exp, 2)
3366 && op3 == TREE_OPERAND (exp, 3))
3367 return exp;
3368
3369 new_tree
3370 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3371 break;
3372
3373 default:
3374 gcc_unreachable ();
3375 }
3376 break;
3377
3378 case tcc_vl_exp:
3379 {
3380 int i;
3381
3382 new_tree = NULL_TREE;
3383
3384 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3385 {
3386 tree op = TREE_OPERAND (exp, i);
3387 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3388 if (new_op != op)
3389 {
3390 if (!new_tree)
3391 new_tree = copy_node (exp);
3392 TREE_OPERAND (new_tree, i) = new_op;
3393 }
3394 }
3395
3396 if (new_tree)
3397 {
3398 new_tree = fold (new_tree);
3399 if (TREE_CODE (new_tree) == CALL_EXPR)
3400 process_call_operands (new_tree);
3401 }
3402 else
3403 return exp;
3404 }
3405 break;
3406
3407 default:
3408 gcc_unreachable ();
3409 }
3410
3411 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3412
3413 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3414 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3415
3416 return new_tree;
3417 }
3418 \f
3419 /* Stabilize a reference so that we can use it any number of times
3420 without causing its operands to be evaluated more than once.
3421 Returns the stabilized reference. This works by means of save_expr,
3422 so see the caveats in the comments about save_expr.
3423
3424 Also allows conversion expressions whose operands are references.
3425 Any other kind of expression is returned unchanged. */
3426
3427 tree
3428 stabilize_reference (tree ref)
3429 {
3430 tree result;
3431 enum tree_code code = TREE_CODE (ref);
3432
3433 switch (code)
3434 {
3435 case VAR_DECL:
3436 case PARM_DECL:
3437 case RESULT_DECL:
3438 /* No action is needed in this case. */
3439 return ref;
3440
3441 CASE_CONVERT:
3442 case FLOAT_EXPR:
3443 case FIX_TRUNC_EXPR:
3444 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3445 break;
3446
3447 case INDIRECT_REF:
3448 result = build_nt (INDIRECT_REF,
3449 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3450 break;
3451
3452 case COMPONENT_REF:
3453 result = build_nt (COMPONENT_REF,
3454 stabilize_reference (TREE_OPERAND (ref, 0)),
3455 TREE_OPERAND (ref, 1), NULL_TREE);
3456 break;
3457
3458 case BIT_FIELD_REF:
3459 result = build_nt (BIT_FIELD_REF,
3460 stabilize_reference (TREE_OPERAND (ref, 0)),
3461 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3462 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3463 break;
3464
3465 case ARRAY_REF:
3466 result = build_nt (ARRAY_REF,
3467 stabilize_reference (TREE_OPERAND (ref, 0)),
3468 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3469 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3470 break;
3471
3472 case ARRAY_RANGE_REF:
3473 result = build_nt (ARRAY_RANGE_REF,
3474 stabilize_reference (TREE_OPERAND (ref, 0)),
3475 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3476 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3477 break;
3478
3479 case COMPOUND_EXPR:
3480 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3481 it wouldn't be ignored. This matters when dealing with
3482 volatiles. */
3483 return stabilize_reference_1 (ref);
3484
3485 /* If arg isn't a kind of lvalue we recognize, make no change.
3486 Caller should recognize the error for an invalid lvalue. */
3487 default:
3488 return ref;
3489
3490 case ERROR_MARK:
3491 return error_mark_node;
3492 }
3493
3494 TREE_TYPE (result) = TREE_TYPE (ref);
3495 TREE_READONLY (result) = TREE_READONLY (ref);
3496 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3497 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3498
3499 return result;
3500 }
3501
3502 /* Subroutine of stabilize_reference; this is called for subtrees of
3503 references. Any expression with side-effects must be put in a SAVE_EXPR
3504 to ensure that it is only evaluated once.
3505
3506 We don't put SAVE_EXPR nodes around everything, because assigning very
3507 simple expressions to temporaries causes us to miss good opportunities
3508 for optimizations. Among other things, the opportunity to fold in the
3509 addition of a constant into an addressing mode often gets lost, e.g.
3510 "y[i+1] += x;". In general, we take the approach that we should not make
3511 an assignment unless we are forced into it - i.e., that any non-side effect
3512 operator should be allowed, and that cse should take care of coalescing
3513 multiple utterances of the same expression should that prove fruitful. */
3514
3515 tree
3516 stabilize_reference_1 (tree e)
3517 {
3518 tree result;
3519 enum tree_code code = TREE_CODE (e);
3520
3521 /* We cannot ignore const expressions because it might be a reference
3522 to a const array but whose index contains side-effects. But we can
3523 ignore things that are actual constant or that already have been
3524 handled by this function. */
3525
3526 if (tree_invariant_p (e))
3527 return e;
3528
3529 switch (TREE_CODE_CLASS (code))
3530 {
3531 case tcc_exceptional:
3532 case tcc_type:
3533 case tcc_declaration:
3534 case tcc_comparison:
3535 case tcc_statement:
3536 case tcc_expression:
3537 case tcc_reference:
3538 case tcc_vl_exp:
3539 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3540 so that it will only be evaluated once. */
3541 /* The reference (r) and comparison (<) classes could be handled as
3542 below, but it is generally faster to only evaluate them once. */
3543 if (TREE_SIDE_EFFECTS (e))
3544 return save_expr (e);
3545 return e;
3546
3547 case tcc_constant:
3548 /* Constants need no processing. In fact, we should never reach
3549 here. */
3550 return e;
3551
3552 case tcc_binary:
3553 /* Division is slow and tends to be compiled with jumps,
3554 especially the division by powers of 2 that is often
3555 found inside of an array reference. So do it just once. */
3556 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3557 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3558 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3559 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3560 return save_expr (e);
3561 /* Recursively stabilize each operand. */
3562 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3563 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3564 break;
3565
3566 case tcc_unary:
3567 /* Recursively stabilize each operand. */
3568 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3569 break;
3570
3571 default:
3572 gcc_unreachable ();
3573 }
3574
3575 TREE_TYPE (result) = TREE_TYPE (e);
3576 TREE_READONLY (result) = TREE_READONLY (e);
3577 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3578 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3579
3580 return result;
3581 }
3582 \f
3583 /* Low-level constructors for expressions. */
3584
3585 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3586 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3587
3588 void
3589 recompute_tree_invariant_for_addr_expr (tree t)
3590 {
3591 tree node;
3592 bool tc = true, se = false;
3593
3594 /* We started out assuming this address is both invariant and constant, but
3595 does not have side effects. Now go down any handled components and see if
3596 any of them involve offsets that are either non-constant or non-invariant.
3597 Also check for side-effects.
3598
3599 ??? Note that this code makes no attempt to deal with the case where
3600 taking the address of something causes a copy due to misalignment. */
3601
3602 #define UPDATE_FLAGS(NODE) \
3603 do { tree _node = (NODE); \
3604 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3605 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3606
3607 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3608 node = TREE_OPERAND (node, 0))
3609 {
3610 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3611 array reference (probably made temporarily by the G++ front end),
3612 so ignore all the operands. */
3613 if ((TREE_CODE (node) == ARRAY_REF
3614 || TREE_CODE (node) == ARRAY_RANGE_REF)
3615 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3616 {
3617 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3618 if (TREE_OPERAND (node, 2))
3619 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3620 if (TREE_OPERAND (node, 3))
3621 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3622 }
3623 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3624 FIELD_DECL, apparently. The G++ front end can put something else
3625 there, at least temporarily. */
3626 else if (TREE_CODE (node) == COMPONENT_REF
3627 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3628 {
3629 if (TREE_OPERAND (node, 2))
3630 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3631 }
3632 else if (TREE_CODE (node) == BIT_FIELD_REF)
3633 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3634 }
3635
3636 node = lang_hooks.expr_to_decl (node, &tc, &se);
3637
3638 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3639 the address, since &(*a)->b is a form of addition. If it's a constant, the
3640 address is constant too. If it's a decl, its address is constant if the
3641 decl is static. Everything else is not constant and, furthermore,
3642 taking the address of a volatile variable is not volatile. */
3643 if (TREE_CODE (node) == INDIRECT_REF
3644 || TREE_CODE (node) == MEM_REF)
3645 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3646 else if (CONSTANT_CLASS_P (node))
3647 ;
3648 else if (DECL_P (node))
3649 tc &= (staticp (node) != NULL_TREE);
3650 else
3651 {
3652 tc = false;
3653 se |= TREE_SIDE_EFFECTS (node);
3654 }
3655
3656
3657 TREE_CONSTANT (t) = tc;
3658 TREE_SIDE_EFFECTS (t) = se;
3659 #undef UPDATE_FLAGS
3660 }
3661
3662 /* Build an expression of code CODE, data type TYPE, and operands as
3663 specified. Expressions and reference nodes can be created this way.
3664 Constants, decls, types and misc nodes cannot be.
3665
3666 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3667 enough for all extant tree codes. */
3668
3669 tree
3670 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3671 {
3672 tree t;
3673
3674 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3675
3676 t = make_node_stat (code PASS_MEM_STAT);
3677 TREE_TYPE (t) = tt;
3678
3679 return t;
3680 }
3681
3682 tree
3683 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3684 {
3685 int length = sizeof (struct tree_exp);
3686 #ifdef GATHER_STATISTICS
3687 tree_node_kind kind;
3688 #endif
3689 tree t;
3690
3691 #ifdef GATHER_STATISTICS
3692 switch (TREE_CODE_CLASS (code))
3693 {
3694 case tcc_statement: /* an expression with side effects */
3695 kind = s_kind;
3696 break;
3697 case tcc_reference: /* a reference */
3698 kind = r_kind;
3699 break;
3700 default:
3701 kind = e_kind;
3702 break;
3703 }
3704
3705 tree_node_counts[(int) kind]++;
3706 tree_node_sizes[(int) kind] += length;
3707 #endif
3708
3709 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3710
3711 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3712
3713 memset (t, 0, sizeof (struct tree_common));
3714
3715 TREE_SET_CODE (t, code);
3716
3717 TREE_TYPE (t) = type;
3718 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3719 TREE_OPERAND (t, 0) = node;
3720 TREE_BLOCK (t) = NULL_TREE;
3721 if (node && !TYPE_P (node))
3722 {
3723 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3724 TREE_READONLY (t) = TREE_READONLY (node);
3725 }
3726
3727 if (TREE_CODE_CLASS (code) == tcc_statement)
3728 TREE_SIDE_EFFECTS (t) = 1;
3729 else switch (code)
3730 {
3731 case VA_ARG_EXPR:
3732 /* All of these have side-effects, no matter what their
3733 operands are. */
3734 TREE_SIDE_EFFECTS (t) = 1;
3735 TREE_READONLY (t) = 0;
3736 break;
3737
3738 case INDIRECT_REF:
3739 /* Whether a dereference is readonly has nothing to do with whether
3740 its operand is readonly. */
3741 TREE_READONLY (t) = 0;
3742 break;
3743
3744 case ADDR_EXPR:
3745 if (node)
3746 recompute_tree_invariant_for_addr_expr (t);
3747 break;
3748
3749 default:
3750 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3751 && node && !TYPE_P (node)
3752 && TREE_CONSTANT (node))
3753 TREE_CONSTANT (t) = 1;
3754 if (TREE_CODE_CLASS (code) == tcc_reference
3755 && node && TREE_THIS_VOLATILE (node))
3756 TREE_THIS_VOLATILE (t) = 1;
3757 break;
3758 }
3759
3760 return t;
3761 }
3762
3763 #define PROCESS_ARG(N) \
3764 do { \
3765 TREE_OPERAND (t, N) = arg##N; \
3766 if (arg##N &&!TYPE_P (arg##N)) \
3767 { \
3768 if (TREE_SIDE_EFFECTS (arg##N)) \
3769 side_effects = 1; \
3770 if (!TREE_READONLY (arg##N) \
3771 && !CONSTANT_CLASS_P (arg##N)) \
3772 (void) (read_only = 0); \
3773 if (!TREE_CONSTANT (arg##N)) \
3774 (void) (constant = 0); \
3775 } \
3776 } while (0)
3777
3778 tree
3779 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3780 {
3781 bool constant, read_only, side_effects;
3782 tree t;
3783
3784 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3785
3786 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3787 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3788 /* When sizetype precision doesn't match that of pointers
3789 we need to be able to build explicit extensions or truncations
3790 of the offset argument. */
3791 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3792 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3793 && TREE_CODE (arg1) == INTEGER_CST);
3794
3795 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3796 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3797 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3798 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3799
3800 t = make_node_stat (code PASS_MEM_STAT);
3801 TREE_TYPE (t) = tt;
3802
3803 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3804 result based on those same flags for the arguments. But if the
3805 arguments aren't really even `tree' expressions, we shouldn't be trying
3806 to do this. */
3807
3808 /* Expressions without side effects may be constant if their
3809 arguments are as well. */
3810 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3811 || TREE_CODE_CLASS (code) == tcc_binary);
3812 read_only = 1;
3813 side_effects = TREE_SIDE_EFFECTS (t);
3814
3815 PROCESS_ARG(0);
3816 PROCESS_ARG(1);
3817
3818 TREE_READONLY (t) = read_only;
3819 TREE_CONSTANT (t) = constant;
3820 TREE_SIDE_EFFECTS (t) = side_effects;
3821 TREE_THIS_VOLATILE (t)
3822 = (TREE_CODE_CLASS (code) == tcc_reference
3823 && arg0 && TREE_THIS_VOLATILE (arg0));
3824
3825 return t;
3826 }
3827
3828
3829 tree
3830 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3831 tree arg2 MEM_STAT_DECL)
3832 {
3833 bool constant, read_only, side_effects;
3834 tree t;
3835
3836 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3837 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3838
3839 t = make_node_stat (code PASS_MEM_STAT);
3840 TREE_TYPE (t) = tt;
3841
3842 read_only = 1;
3843
3844 /* As a special exception, if COND_EXPR has NULL branches, we
3845 assume that it is a gimple statement and always consider
3846 it to have side effects. */
3847 if (code == COND_EXPR
3848 && tt == void_type_node
3849 && arg1 == NULL_TREE
3850 && arg2 == NULL_TREE)
3851 side_effects = true;
3852 else
3853 side_effects = TREE_SIDE_EFFECTS (t);
3854
3855 PROCESS_ARG(0);
3856 PROCESS_ARG(1);
3857 PROCESS_ARG(2);
3858
3859 if (code == COND_EXPR)
3860 TREE_READONLY (t) = read_only;
3861
3862 TREE_SIDE_EFFECTS (t) = side_effects;
3863 TREE_THIS_VOLATILE (t)
3864 = (TREE_CODE_CLASS (code) == tcc_reference
3865 && arg0 && TREE_THIS_VOLATILE (arg0));
3866
3867 return t;
3868 }
3869
3870 tree
3871 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3872 tree arg2, tree arg3 MEM_STAT_DECL)
3873 {
3874 bool constant, read_only, side_effects;
3875 tree t;
3876
3877 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3878
3879 t = make_node_stat (code PASS_MEM_STAT);
3880 TREE_TYPE (t) = tt;
3881
3882 side_effects = TREE_SIDE_EFFECTS (t);
3883
3884 PROCESS_ARG(0);
3885 PROCESS_ARG(1);
3886 PROCESS_ARG(2);
3887 PROCESS_ARG(3);
3888
3889 TREE_SIDE_EFFECTS (t) = side_effects;
3890 TREE_THIS_VOLATILE (t)
3891 = (TREE_CODE_CLASS (code) == tcc_reference
3892 && arg0 && TREE_THIS_VOLATILE (arg0));
3893
3894 return t;
3895 }
3896
3897 tree
3898 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3899 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3900 {
3901 bool constant, read_only, side_effects;
3902 tree t;
3903
3904 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3905
3906 t = make_node_stat (code PASS_MEM_STAT);
3907 TREE_TYPE (t) = tt;
3908
3909 side_effects = TREE_SIDE_EFFECTS (t);
3910
3911 PROCESS_ARG(0);
3912 PROCESS_ARG(1);
3913 PROCESS_ARG(2);
3914 PROCESS_ARG(3);
3915 PROCESS_ARG(4);
3916
3917 TREE_SIDE_EFFECTS (t) = side_effects;
3918 TREE_THIS_VOLATILE (t)
3919 = (TREE_CODE_CLASS (code) == tcc_reference
3920 && arg0 && TREE_THIS_VOLATILE (arg0));
3921
3922 return t;
3923 }
3924
3925 tree
3926 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3927 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3928 {
3929 bool constant, read_only, side_effects;
3930 tree t;
3931
3932 gcc_assert (code == TARGET_MEM_REF);
3933
3934 t = make_node_stat (code PASS_MEM_STAT);
3935 TREE_TYPE (t) = tt;
3936
3937 side_effects = TREE_SIDE_EFFECTS (t);
3938
3939 PROCESS_ARG(0);
3940 PROCESS_ARG(1);
3941 PROCESS_ARG(2);
3942 PROCESS_ARG(3);
3943 PROCESS_ARG(4);
3944 if (code == TARGET_MEM_REF)
3945 side_effects = 0;
3946 PROCESS_ARG(5);
3947
3948 TREE_SIDE_EFFECTS (t) = side_effects;
3949 TREE_THIS_VOLATILE (t)
3950 = (code == TARGET_MEM_REF
3951 && arg5 && TREE_THIS_VOLATILE (arg5));
3952
3953 return t;
3954 }
3955
3956 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3957 on the pointer PTR. */
3958
3959 tree
3960 build_simple_mem_ref_loc (location_t loc, tree ptr)
3961 {
3962 HOST_WIDE_INT offset = 0;
3963 tree ptype = TREE_TYPE (ptr);
3964 tree tem;
3965 /* For convenience allow addresses that collapse to a simple base
3966 and offset. */
3967 if (TREE_CODE (ptr) == ADDR_EXPR
3968 && (handled_component_p (TREE_OPERAND (ptr, 0))
3969 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3970 {
3971 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3972 gcc_assert (ptr);
3973 ptr = build_fold_addr_expr (ptr);
3974 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3975 }
3976 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3977 ptr, build_int_cst (ptype, offset));
3978 SET_EXPR_LOCATION (tem, loc);
3979 return tem;
3980 }
3981
3982 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3983
3984 double_int
3985 mem_ref_offset (const_tree t)
3986 {
3987 tree toff = TREE_OPERAND (t, 1);
3988 return double_int_sext (tree_to_double_int (toff),
3989 TYPE_PRECISION (TREE_TYPE (toff)));
3990 }
3991
3992 /* Return the pointer-type relevant for TBAA purposes from the
3993 gimple memory reference tree T. This is the type to be used for
3994 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3995
3996 tree
3997 reference_alias_ptr_type (const_tree t)
3998 {
3999 const_tree base = t;
4000 while (handled_component_p (base))
4001 base = TREE_OPERAND (base, 0);
4002 if (TREE_CODE (base) == MEM_REF)
4003 return TREE_TYPE (TREE_OPERAND (base, 1));
4004 else if (TREE_CODE (base) == TARGET_MEM_REF)
4005 return TREE_TYPE (TMR_OFFSET (base));
4006 else
4007 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
4008 }
4009
4010 /* Similar except don't specify the TREE_TYPE
4011 and leave the TREE_SIDE_EFFECTS as 0.
4012 It is permissible for arguments to be null,
4013 or even garbage if their values do not matter. */
4014
4015 tree
4016 build_nt (enum tree_code code, ...)
4017 {
4018 tree t;
4019 int length;
4020 int i;
4021 va_list p;
4022
4023 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4024
4025 va_start (p, code);
4026
4027 t = make_node (code);
4028 length = TREE_CODE_LENGTH (code);
4029
4030 for (i = 0; i < length; i++)
4031 TREE_OPERAND (t, i) = va_arg (p, tree);
4032
4033 va_end (p);
4034 return t;
4035 }
4036
4037 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4038 tree VEC. */
4039
4040 tree
4041 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
4042 {
4043 tree ret, t;
4044 unsigned int ix;
4045
4046 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
4047 CALL_EXPR_FN (ret) = fn;
4048 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4049 FOR_EACH_VEC_ELT (tree, args, ix, t)
4050 CALL_EXPR_ARG (ret, ix) = t;
4051 return ret;
4052 }
4053 \f
4054 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4055 We do NOT enter this node in any sort of symbol table.
4056
4057 LOC is the location of the decl.
4058
4059 layout_decl is used to set up the decl's storage layout.
4060 Other slots are initialized to 0 or null pointers. */
4061
4062 tree
4063 build_decl_stat (location_t loc, enum tree_code code, tree name,
4064 tree type MEM_STAT_DECL)
4065 {
4066 tree t;
4067
4068 t = make_node_stat (code PASS_MEM_STAT);
4069 DECL_SOURCE_LOCATION (t) = loc;
4070
4071 /* if (type == error_mark_node)
4072 type = integer_type_node; */
4073 /* That is not done, deliberately, so that having error_mark_node
4074 as the type can suppress useless errors in the use of this variable. */
4075
4076 DECL_NAME (t) = name;
4077 TREE_TYPE (t) = type;
4078
4079 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4080 layout_decl (t, 0);
4081
4082 return t;
4083 }
4084
4085 /* Builds and returns function declaration with NAME and TYPE. */
4086
4087 tree
4088 build_fn_decl (const char *name, tree type)
4089 {
4090 tree id = get_identifier (name);
4091 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4092
4093 DECL_EXTERNAL (decl) = 1;
4094 TREE_PUBLIC (decl) = 1;
4095 DECL_ARTIFICIAL (decl) = 1;
4096 TREE_NOTHROW (decl) = 1;
4097
4098 return decl;
4099 }
4100
4101 VEC(tree,gc) *all_translation_units;
4102
4103 /* Builds a new translation-unit decl with name NAME, queues it in the
4104 global list of translation-unit decls and returns it. */
4105
4106 tree
4107 build_translation_unit_decl (tree name)
4108 {
4109 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4110 name, NULL_TREE);
4111 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4112 VEC_safe_push (tree, gc, all_translation_units, tu);
4113 return tu;
4114 }
4115
4116 \f
4117 /* BLOCK nodes are used to represent the structure of binding contours
4118 and declarations, once those contours have been exited and their contents
4119 compiled. This information is used for outputting debugging info. */
4120
4121 tree
4122 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4123 {
4124 tree block = make_node (BLOCK);
4125
4126 BLOCK_VARS (block) = vars;
4127 BLOCK_SUBBLOCKS (block) = subblocks;
4128 BLOCK_SUPERCONTEXT (block) = supercontext;
4129 BLOCK_CHAIN (block) = chain;
4130 return block;
4131 }
4132
4133 \f
4134 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4135
4136 LOC is the location to use in tree T. */
4137
4138 void
4139 protected_set_expr_location (tree t, location_t loc)
4140 {
4141 if (t && CAN_HAVE_LOCATION_P (t))
4142 SET_EXPR_LOCATION (t, loc);
4143 }
4144 \f
4145 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4146 is ATTRIBUTE. */
4147
4148 tree
4149 build_decl_attribute_variant (tree ddecl, tree attribute)
4150 {
4151 DECL_ATTRIBUTES (ddecl) = attribute;
4152 return ddecl;
4153 }
4154
4155 /* Borrowed from hashtab.c iterative_hash implementation. */
4156 #define mix(a,b,c) \
4157 { \
4158 a -= b; a -= c; a ^= (c>>13); \
4159 b -= c; b -= a; b ^= (a<< 8); \
4160 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4161 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4162 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4163 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4164 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4165 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4166 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4167 }
4168
4169
4170 /* Produce good hash value combining VAL and VAL2. */
4171 hashval_t
4172 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4173 {
4174 /* the golden ratio; an arbitrary value. */
4175 hashval_t a = 0x9e3779b9;
4176
4177 mix (a, val, val2);
4178 return val2;
4179 }
4180
4181 /* Produce good hash value combining VAL and VAL2. */
4182 hashval_t
4183 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4184 {
4185 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4186 return iterative_hash_hashval_t (val, val2);
4187 else
4188 {
4189 hashval_t a = (hashval_t) val;
4190 /* Avoid warnings about shifting of more than the width of the type on
4191 hosts that won't execute this path. */
4192 int zero = 0;
4193 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4194 mix (a, b, val2);
4195 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4196 {
4197 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4198 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4199 mix (a, b, val2);
4200 }
4201 return val2;
4202 }
4203 }
4204
4205 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4206 is ATTRIBUTE and its qualifiers are QUALS.
4207
4208 Record such modified types already made so we don't make duplicates. */
4209
4210 tree
4211 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4212 {
4213 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4214 {
4215 hashval_t hashcode = 0;
4216 tree ntype;
4217 enum tree_code code = TREE_CODE (ttype);
4218
4219 /* Building a distinct copy of a tagged type is inappropriate; it
4220 causes breakage in code that expects there to be a one-to-one
4221 relationship between a struct and its fields.
4222 build_duplicate_type is another solution (as used in
4223 handle_transparent_union_attribute), but that doesn't play well
4224 with the stronger C++ type identity model. */
4225 if (TREE_CODE (ttype) == RECORD_TYPE
4226 || TREE_CODE (ttype) == UNION_TYPE
4227 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4228 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4229 {
4230 warning (OPT_Wattributes,
4231 "ignoring attributes applied to %qT after definition",
4232 TYPE_MAIN_VARIANT (ttype));
4233 return build_qualified_type (ttype, quals);
4234 }
4235
4236 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4237 ntype = build_distinct_type_copy (ttype);
4238
4239 TYPE_ATTRIBUTES (ntype) = attribute;
4240
4241 hashcode = iterative_hash_object (code, hashcode);
4242 if (TREE_TYPE (ntype))
4243 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4244 hashcode);
4245 hashcode = attribute_hash_list (attribute, hashcode);
4246
4247 switch (TREE_CODE (ntype))
4248 {
4249 case FUNCTION_TYPE:
4250 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4251 break;
4252 case ARRAY_TYPE:
4253 if (TYPE_DOMAIN (ntype))
4254 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4255 hashcode);
4256 break;
4257 case INTEGER_TYPE:
4258 hashcode = iterative_hash_object
4259 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4260 hashcode = iterative_hash_object
4261 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4262 break;
4263 case REAL_TYPE:
4264 case FIXED_POINT_TYPE:
4265 {
4266 unsigned int precision = TYPE_PRECISION (ntype);
4267 hashcode = iterative_hash_object (precision, hashcode);
4268 }
4269 break;
4270 default:
4271 break;
4272 }
4273
4274 ntype = type_hash_canon (hashcode, ntype);
4275
4276 /* If the target-dependent attributes make NTYPE different from
4277 its canonical type, we will need to use structural equality
4278 checks for this type. */
4279 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4280 || !targetm.comp_type_attributes (ntype, ttype))
4281 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4282 else if (TYPE_CANONICAL (ntype) == ntype)
4283 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4284
4285 ttype = build_qualified_type (ntype, quals);
4286 }
4287 else if (TYPE_QUALS (ttype) != quals)
4288 ttype = build_qualified_type (ttype, quals);
4289
4290 return ttype;
4291 }
4292
4293
4294 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4295 is ATTRIBUTE.
4296
4297 Record such modified types already made so we don't make duplicates. */
4298
4299 tree
4300 build_type_attribute_variant (tree ttype, tree attribute)
4301 {
4302 return build_type_attribute_qual_variant (ttype, attribute,
4303 TYPE_QUALS (ttype));
4304 }
4305
4306
4307 /* Reset the expression *EXPR_P, a size or position.
4308
4309 ??? We could reset all non-constant sizes or positions. But it's cheap
4310 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4311
4312 We need to reset self-referential sizes or positions because they cannot
4313 be gimplified and thus can contain a CALL_EXPR after the gimplification
4314 is finished, which will run afoul of LTO streaming. And they need to be
4315 reset to something essentially dummy but not constant, so as to preserve
4316 the properties of the object they are attached to. */
4317
4318 static inline void
4319 free_lang_data_in_one_sizepos (tree *expr_p)
4320 {
4321 tree expr = *expr_p;
4322 if (CONTAINS_PLACEHOLDER_P (expr))
4323 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4324 }
4325
4326
4327 /* Reset all the fields in a binfo node BINFO. We only keep
4328 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4329
4330 static void
4331 free_lang_data_in_binfo (tree binfo)
4332 {
4333 unsigned i;
4334 tree t;
4335
4336 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4337
4338 BINFO_VTABLE (binfo) = NULL_TREE;
4339 BINFO_BASE_ACCESSES (binfo) = NULL;
4340 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4341 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4342
4343 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4344 free_lang_data_in_binfo (t);
4345 }
4346
4347
4348 /* Reset all language specific information still present in TYPE. */
4349
4350 static void
4351 free_lang_data_in_type (tree type)
4352 {
4353 gcc_assert (TYPE_P (type));
4354
4355 /* Give the FE a chance to remove its own data first. */
4356 lang_hooks.free_lang_data (type);
4357
4358 TREE_LANG_FLAG_0 (type) = 0;
4359 TREE_LANG_FLAG_1 (type) = 0;
4360 TREE_LANG_FLAG_2 (type) = 0;
4361 TREE_LANG_FLAG_3 (type) = 0;
4362 TREE_LANG_FLAG_4 (type) = 0;
4363 TREE_LANG_FLAG_5 (type) = 0;
4364 TREE_LANG_FLAG_6 (type) = 0;
4365
4366 if (TREE_CODE (type) == FUNCTION_TYPE)
4367 {
4368 /* Remove the const and volatile qualifiers from arguments. The
4369 C++ front end removes them, but the C front end does not,
4370 leading to false ODR violation errors when merging two
4371 instances of the same function signature compiled by
4372 different front ends. */
4373 tree p;
4374
4375 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4376 {
4377 tree arg_type = TREE_VALUE (p);
4378
4379 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4380 {
4381 int quals = TYPE_QUALS (arg_type)
4382 & ~TYPE_QUAL_CONST
4383 & ~TYPE_QUAL_VOLATILE;
4384 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4385 free_lang_data_in_type (TREE_VALUE (p));
4386 }
4387 }
4388 }
4389
4390 /* Remove members that are not actually FIELD_DECLs from the field
4391 list of an aggregate. These occur in C++. */
4392 if (RECORD_OR_UNION_TYPE_P (type))
4393 {
4394 tree prev, member;
4395
4396 /* Note that TYPE_FIELDS can be shared across distinct
4397 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4398 to be removed, we cannot set its TREE_CHAIN to NULL.
4399 Otherwise, we would not be able to find all the other fields
4400 in the other instances of this TREE_TYPE.
4401
4402 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4403 prev = NULL_TREE;
4404 member = TYPE_FIELDS (type);
4405 while (member)
4406 {
4407 if (TREE_CODE (member) == FIELD_DECL)
4408 {
4409 if (prev)
4410 TREE_CHAIN (prev) = member;
4411 else
4412 TYPE_FIELDS (type) = member;
4413 prev = member;
4414 }
4415
4416 member = TREE_CHAIN (member);
4417 }
4418
4419 if (prev)
4420 TREE_CHAIN (prev) = NULL_TREE;
4421 else
4422 TYPE_FIELDS (type) = NULL_TREE;
4423
4424 TYPE_METHODS (type) = NULL_TREE;
4425 if (TYPE_BINFO (type))
4426 free_lang_data_in_binfo (TYPE_BINFO (type));
4427 }
4428 else
4429 {
4430 /* For non-aggregate types, clear out the language slot (which
4431 overloads TYPE_BINFO). */
4432 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4433
4434 if (INTEGRAL_TYPE_P (type)
4435 || SCALAR_FLOAT_TYPE_P (type)
4436 || FIXED_POINT_TYPE_P (type))
4437 {
4438 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4439 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4440 }
4441 }
4442
4443 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4444 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4445
4446 if (debug_info_level < DINFO_LEVEL_TERSE
4447 || (TYPE_CONTEXT (type)
4448 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4449 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4450 TYPE_CONTEXT (type) = NULL_TREE;
4451
4452 if (debug_info_level < DINFO_LEVEL_TERSE)
4453 TYPE_STUB_DECL (type) = NULL_TREE;
4454 }
4455
4456
4457 /* Return true if DECL may need an assembler name to be set. */
4458
4459 static inline bool
4460 need_assembler_name_p (tree decl)
4461 {
4462 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4463 if (TREE_CODE (decl) != FUNCTION_DECL
4464 && TREE_CODE (decl) != VAR_DECL)
4465 return false;
4466
4467 /* If DECL already has its assembler name set, it does not need a
4468 new one. */
4469 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4470 || DECL_ASSEMBLER_NAME_SET_P (decl))
4471 return false;
4472
4473 /* Abstract decls do not need an assembler name. */
4474 if (DECL_ABSTRACT (decl))
4475 return false;
4476
4477 /* For VAR_DECLs, only static, public and external symbols need an
4478 assembler name. */
4479 if (TREE_CODE (decl) == VAR_DECL
4480 && !TREE_STATIC (decl)
4481 && !TREE_PUBLIC (decl)
4482 && !DECL_EXTERNAL (decl))
4483 return false;
4484
4485 if (TREE_CODE (decl) == FUNCTION_DECL)
4486 {
4487 /* Do not set assembler name on builtins. Allow RTL expansion to
4488 decide whether to expand inline or via a regular call. */
4489 if (DECL_BUILT_IN (decl)
4490 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4491 return false;
4492
4493 /* Functions represented in the callgraph need an assembler name. */
4494 if (cgraph_get_node (decl) != NULL)
4495 return true;
4496
4497 /* Unused and not public functions don't need an assembler name. */
4498 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4499 return false;
4500 }
4501
4502 return true;
4503 }
4504
4505
4506 /* Reset all language specific information still present in symbol
4507 DECL. */
4508
4509 static void
4510 free_lang_data_in_decl (tree decl)
4511 {
4512 gcc_assert (DECL_P (decl));
4513
4514 /* Give the FE a chance to remove its own data first. */
4515 lang_hooks.free_lang_data (decl);
4516
4517 TREE_LANG_FLAG_0 (decl) = 0;
4518 TREE_LANG_FLAG_1 (decl) = 0;
4519 TREE_LANG_FLAG_2 (decl) = 0;
4520 TREE_LANG_FLAG_3 (decl) = 0;
4521 TREE_LANG_FLAG_4 (decl) = 0;
4522 TREE_LANG_FLAG_5 (decl) = 0;
4523 TREE_LANG_FLAG_6 (decl) = 0;
4524
4525 /* Identifiers need not have a type. */
4526 if (DECL_NAME (decl))
4527 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4528
4529 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4530 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4531 if (TREE_CODE (decl) == FIELD_DECL)
4532 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4533
4534 /* DECL_FCONTEXT is only used for debug info generation. */
4535 if (TREE_CODE (decl) == FIELD_DECL
4536 && debug_info_level < DINFO_LEVEL_TERSE)
4537 DECL_FCONTEXT (decl) = NULL_TREE;
4538
4539 if (TREE_CODE (decl) == FUNCTION_DECL)
4540 {
4541 if (gimple_has_body_p (decl))
4542 {
4543 tree t;
4544
4545 /* If DECL has a gimple body, then the context for its
4546 arguments must be DECL. Otherwise, it doesn't really
4547 matter, as we will not be emitting any code for DECL. In
4548 general, there may be other instances of DECL created by
4549 the front end and since PARM_DECLs are generally shared,
4550 their DECL_CONTEXT changes as the replicas of DECL are
4551 created. The only time where DECL_CONTEXT is important
4552 is for the FUNCTION_DECLs that have a gimple body (since
4553 the PARM_DECL will be used in the function's body). */
4554 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4555 DECL_CONTEXT (t) = decl;
4556 }
4557
4558 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4559 At this point, it is not needed anymore. */
4560 DECL_SAVED_TREE (decl) = NULL_TREE;
4561
4562 /* Clear the abstract origin if it refers to a method. Otherwise
4563 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4564 origin will not be output correctly. */
4565 if (DECL_ABSTRACT_ORIGIN (decl)
4566 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4567 && RECORD_OR_UNION_TYPE_P
4568 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4569 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4570 }
4571 else if (TREE_CODE (decl) == VAR_DECL)
4572 {
4573 if ((DECL_EXTERNAL (decl)
4574 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4575 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4576 DECL_INITIAL (decl) = NULL_TREE;
4577 }
4578 else if (TREE_CODE (decl) == TYPE_DECL)
4579 DECL_INITIAL (decl) = NULL_TREE;
4580 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4581 && DECL_INITIAL (decl)
4582 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4583 {
4584 /* Strip builtins from the translation-unit BLOCK. We still have
4585 targets without builtin_decl support and also builtins are
4586 shared nodes and thus we can't use TREE_CHAIN in multiple
4587 lists. */
4588 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4589 while (*nextp)
4590 {
4591 tree var = *nextp;
4592 if (TREE_CODE (var) == FUNCTION_DECL
4593 && DECL_BUILT_IN (var))
4594 *nextp = TREE_CHAIN (var);
4595 else
4596 nextp = &TREE_CHAIN (var);
4597 }
4598 }
4599 }
4600
4601
4602 /* Data used when collecting DECLs and TYPEs for language data removal. */
4603
4604 struct free_lang_data_d
4605 {
4606 /* Worklist to avoid excessive recursion. */
4607 VEC(tree,heap) *worklist;
4608
4609 /* Set of traversed objects. Used to avoid duplicate visits. */
4610 struct pointer_set_t *pset;
4611
4612 /* Array of symbols to process with free_lang_data_in_decl. */
4613 VEC(tree,heap) *decls;
4614
4615 /* Array of types to process with free_lang_data_in_type. */
4616 VEC(tree,heap) *types;
4617 };
4618
4619
4620 /* Save all language fields needed to generate proper debug information
4621 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4622
4623 static void
4624 save_debug_info_for_decl (tree t)
4625 {
4626 /*struct saved_debug_info_d *sdi;*/
4627
4628 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4629
4630 /* FIXME. Partial implementation for saving debug info removed. */
4631 }
4632
4633
4634 /* Save all language fields needed to generate proper debug information
4635 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4636
4637 static void
4638 save_debug_info_for_type (tree t)
4639 {
4640 /*struct saved_debug_info_d *sdi;*/
4641
4642 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4643
4644 /* FIXME. Partial implementation for saving debug info removed. */
4645 }
4646
4647
4648 /* Add type or decl T to one of the list of tree nodes that need their
4649 language data removed. The lists are held inside FLD. */
4650
4651 static void
4652 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4653 {
4654 if (DECL_P (t))
4655 {
4656 VEC_safe_push (tree, heap, fld->decls, t);
4657 if (debug_info_level > DINFO_LEVEL_TERSE)
4658 save_debug_info_for_decl (t);
4659 }
4660 else if (TYPE_P (t))
4661 {
4662 VEC_safe_push (tree, heap, fld->types, t);
4663 if (debug_info_level > DINFO_LEVEL_TERSE)
4664 save_debug_info_for_type (t);
4665 }
4666 else
4667 gcc_unreachable ();
4668 }
4669
4670 /* Push tree node T into FLD->WORKLIST. */
4671
4672 static inline void
4673 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4674 {
4675 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4676 VEC_safe_push (tree, heap, fld->worklist, (t));
4677 }
4678
4679
4680 /* Operand callback helper for free_lang_data_in_node. *TP is the
4681 subtree operand being considered. */
4682
4683 static tree
4684 find_decls_types_r (tree *tp, int *ws, void *data)
4685 {
4686 tree t = *tp;
4687 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4688
4689 if (TREE_CODE (t) == TREE_LIST)
4690 return NULL_TREE;
4691
4692 /* Language specific nodes will be removed, so there is no need
4693 to gather anything under them. */
4694 if (is_lang_specific (t))
4695 {
4696 *ws = 0;
4697 return NULL_TREE;
4698 }
4699
4700 if (DECL_P (t))
4701 {
4702 /* Note that walk_tree does not traverse every possible field in
4703 decls, so we have to do our own traversals here. */
4704 add_tree_to_fld_list (t, fld);
4705
4706 fld_worklist_push (DECL_NAME (t), fld);
4707 fld_worklist_push (DECL_CONTEXT (t), fld);
4708 fld_worklist_push (DECL_SIZE (t), fld);
4709 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4710
4711 /* We are going to remove everything under DECL_INITIAL for
4712 TYPE_DECLs. No point walking them. */
4713 if (TREE_CODE (t) != TYPE_DECL)
4714 fld_worklist_push (DECL_INITIAL (t), fld);
4715
4716 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4717 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4718
4719 if (TREE_CODE (t) == FUNCTION_DECL)
4720 {
4721 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4722 fld_worklist_push (DECL_RESULT (t), fld);
4723 }
4724 else if (TREE_CODE (t) == TYPE_DECL)
4725 {
4726 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4727 fld_worklist_push (DECL_VINDEX (t), fld);
4728 }
4729 else if (TREE_CODE (t) == FIELD_DECL)
4730 {
4731 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4732 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4733 fld_worklist_push (DECL_QUALIFIER (t), fld);
4734 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4735 fld_worklist_push (DECL_FCONTEXT (t), fld);
4736 }
4737 else if (TREE_CODE (t) == VAR_DECL)
4738 {
4739 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4740 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4741 }
4742
4743 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4744 && DECL_HAS_VALUE_EXPR_P (t))
4745 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4746
4747 if (TREE_CODE (t) != FIELD_DECL
4748 && TREE_CODE (t) != TYPE_DECL)
4749 fld_worklist_push (TREE_CHAIN (t), fld);
4750 *ws = 0;
4751 }
4752 else if (TYPE_P (t))
4753 {
4754 /* Note that walk_tree does not traverse every possible field in
4755 types, so we have to do our own traversals here. */
4756 add_tree_to_fld_list (t, fld);
4757
4758 if (!RECORD_OR_UNION_TYPE_P (t))
4759 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4760 fld_worklist_push (TYPE_SIZE (t), fld);
4761 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4762 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4763 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4764 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4765 fld_worklist_push (TYPE_NAME (t), fld);
4766 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4767 them and thus do not and want not to reach unused pointer types
4768 this way. */
4769 if (!POINTER_TYPE_P (t))
4770 fld_worklist_push (TYPE_MINVAL (t), fld);
4771 if (!RECORD_OR_UNION_TYPE_P (t))
4772 fld_worklist_push (TYPE_MAXVAL (t), fld);
4773 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4774 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4775 do not and want not to reach unused variants this way. */
4776 fld_worklist_push (TYPE_CONTEXT (t), fld);
4777 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4778 and want not to reach unused types this way. */
4779
4780 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4781 {
4782 unsigned i;
4783 tree tem;
4784 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4785 i, tem); ++i)
4786 fld_worklist_push (TREE_TYPE (tem), fld);
4787 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4788 if (tem
4789 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4790 && TREE_CODE (tem) == TREE_LIST)
4791 do
4792 {
4793 fld_worklist_push (TREE_VALUE (tem), fld);
4794 tem = TREE_CHAIN (tem);
4795 }
4796 while (tem);
4797 }
4798 if (RECORD_OR_UNION_TYPE_P (t))
4799 {
4800 tree tem;
4801 /* Push all TYPE_FIELDS - there can be interleaving interesting
4802 and non-interesting things. */
4803 tem = TYPE_FIELDS (t);
4804 while (tem)
4805 {
4806 if (TREE_CODE (tem) == FIELD_DECL)
4807 fld_worklist_push (tem, fld);
4808 tem = TREE_CHAIN (tem);
4809 }
4810 }
4811
4812 fld_worklist_push (TREE_CHAIN (t), fld);
4813 *ws = 0;
4814 }
4815 else if (TREE_CODE (t) == BLOCK)
4816 {
4817 tree tem;
4818 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4819 fld_worklist_push (tem, fld);
4820 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4821 fld_worklist_push (tem, fld);
4822 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4823 }
4824
4825 fld_worklist_push (TREE_TYPE (t), fld);
4826
4827 return NULL_TREE;
4828 }
4829
4830
4831 /* Find decls and types in T. */
4832
4833 static void
4834 find_decls_types (tree t, struct free_lang_data_d *fld)
4835 {
4836 while (1)
4837 {
4838 if (!pointer_set_contains (fld->pset, t))
4839 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4840 if (VEC_empty (tree, fld->worklist))
4841 break;
4842 t = VEC_pop (tree, fld->worklist);
4843 }
4844 }
4845
4846 /* Translate all the types in LIST with the corresponding runtime
4847 types. */
4848
4849 static tree
4850 get_eh_types_for_runtime (tree list)
4851 {
4852 tree head, prev;
4853
4854 if (list == NULL_TREE)
4855 return NULL_TREE;
4856
4857 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4858 prev = head;
4859 list = TREE_CHAIN (list);
4860 while (list)
4861 {
4862 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4863 TREE_CHAIN (prev) = n;
4864 prev = TREE_CHAIN (prev);
4865 list = TREE_CHAIN (list);
4866 }
4867
4868 return head;
4869 }
4870
4871
4872 /* Find decls and types referenced in EH region R and store them in
4873 FLD->DECLS and FLD->TYPES. */
4874
4875 static void
4876 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4877 {
4878 switch (r->type)
4879 {
4880 case ERT_CLEANUP:
4881 break;
4882
4883 case ERT_TRY:
4884 {
4885 eh_catch c;
4886
4887 /* The types referenced in each catch must first be changed to the
4888 EH types used at runtime. This removes references to FE types
4889 in the region. */
4890 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4891 {
4892 c->type_list = get_eh_types_for_runtime (c->type_list);
4893 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4894 }
4895 }
4896 break;
4897
4898 case ERT_ALLOWED_EXCEPTIONS:
4899 r->u.allowed.type_list
4900 = get_eh_types_for_runtime (r->u.allowed.type_list);
4901 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4902 break;
4903
4904 case ERT_MUST_NOT_THROW:
4905 walk_tree (&r->u.must_not_throw.failure_decl,
4906 find_decls_types_r, fld, fld->pset);
4907 break;
4908 }
4909 }
4910
4911
4912 /* Find decls and types referenced in cgraph node N and store them in
4913 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4914 look for *every* kind of DECL and TYPE node reachable from N,
4915 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4916 NAMESPACE_DECLs, etc). */
4917
4918 static void
4919 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4920 {
4921 basic_block bb;
4922 struct function *fn;
4923 unsigned ix;
4924 tree t;
4925
4926 find_decls_types (n->decl, fld);
4927
4928 if (!gimple_has_body_p (n->decl))
4929 return;
4930
4931 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4932
4933 fn = DECL_STRUCT_FUNCTION (n->decl);
4934
4935 /* Traverse locals. */
4936 FOR_EACH_LOCAL_DECL (fn, ix, t)
4937 find_decls_types (t, fld);
4938
4939 /* Traverse EH regions in FN. */
4940 {
4941 eh_region r;
4942 FOR_ALL_EH_REGION_FN (r, fn)
4943 find_decls_types_in_eh_region (r, fld);
4944 }
4945
4946 /* Traverse every statement in FN. */
4947 FOR_EACH_BB_FN (bb, fn)
4948 {
4949 gimple_stmt_iterator si;
4950 unsigned i;
4951
4952 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4953 {
4954 gimple phi = gsi_stmt (si);
4955
4956 for (i = 0; i < gimple_phi_num_args (phi); i++)
4957 {
4958 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4959 find_decls_types (*arg_p, fld);
4960 }
4961 }
4962
4963 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4964 {
4965 gimple stmt = gsi_stmt (si);
4966
4967 for (i = 0; i < gimple_num_ops (stmt); i++)
4968 {
4969 tree arg = gimple_op (stmt, i);
4970 find_decls_types (arg, fld);
4971 }
4972 }
4973 }
4974 }
4975
4976
4977 /* Find decls and types referenced in varpool node N and store them in
4978 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4979 look for *every* kind of DECL and TYPE node reachable from N,
4980 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4981 NAMESPACE_DECLs, etc). */
4982
4983 static void
4984 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4985 {
4986 find_decls_types (v->decl, fld);
4987 }
4988
4989 /* If T needs an assembler name, have one created for it. */
4990
4991 void
4992 assign_assembler_name_if_neeeded (tree t)
4993 {
4994 if (need_assembler_name_p (t))
4995 {
4996 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4997 diagnostics that use input_location to show locus
4998 information. The problem here is that, at this point,
4999 input_location is generally anchored to the end of the file
5000 (since the parser is long gone), so we don't have a good
5001 position to pin it to.
5002
5003 To alleviate this problem, this uses the location of T's
5004 declaration. Examples of this are
5005 testsuite/g++.dg/template/cond2.C and
5006 testsuite/g++.dg/template/pr35240.C. */
5007 location_t saved_location = input_location;
5008 input_location = DECL_SOURCE_LOCATION (t);
5009
5010 decl_assembler_name (t);
5011
5012 input_location = saved_location;
5013 }
5014 }
5015
5016
5017 /* Free language specific information for every operand and expression
5018 in every node of the call graph. This process operates in three stages:
5019
5020 1- Every callgraph node and varpool node is traversed looking for
5021 decls and types embedded in them. This is a more exhaustive
5022 search than that done by find_referenced_vars, because it will
5023 also collect individual fields, decls embedded in types, etc.
5024
5025 2- All the decls found are sent to free_lang_data_in_decl.
5026
5027 3- All the types found are sent to free_lang_data_in_type.
5028
5029 The ordering between decls and types is important because
5030 free_lang_data_in_decl sets assembler names, which includes
5031 mangling. So types cannot be freed up until assembler names have
5032 been set up. */
5033
5034 static void
5035 free_lang_data_in_cgraph (void)
5036 {
5037 struct cgraph_node *n;
5038 struct varpool_node *v;
5039 struct free_lang_data_d fld;
5040 tree t;
5041 unsigned i;
5042 alias_pair *p;
5043
5044 /* Initialize sets and arrays to store referenced decls and types. */
5045 fld.pset = pointer_set_create ();
5046 fld.worklist = NULL;
5047 fld.decls = VEC_alloc (tree, heap, 100);
5048 fld.types = VEC_alloc (tree, heap, 100);
5049
5050 /* Find decls and types in the body of every function in the callgraph. */
5051 for (n = cgraph_nodes; n; n = n->next)
5052 find_decls_types_in_node (n, &fld);
5053
5054 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5055 find_decls_types (p->decl, &fld);
5056
5057 /* Find decls and types in every varpool symbol. */
5058 for (v = varpool_nodes; v; v = v->next)
5059 find_decls_types_in_var (v, &fld);
5060
5061 /* Set the assembler name on every decl found. We need to do this
5062 now because free_lang_data_in_decl will invalidate data needed
5063 for mangling. This breaks mangling on interdependent decls. */
5064 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5065 assign_assembler_name_if_neeeded (t);
5066
5067 /* Traverse every decl found freeing its language data. */
5068 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5069 free_lang_data_in_decl (t);
5070
5071 /* Traverse every type found freeing its language data. */
5072 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5073 free_lang_data_in_type (t);
5074
5075 pointer_set_destroy (fld.pset);
5076 VEC_free (tree, heap, fld.worklist);
5077 VEC_free (tree, heap, fld.decls);
5078 VEC_free (tree, heap, fld.types);
5079 }
5080
5081
5082 /* Free resources that are used by FE but are not needed once they are done. */
5083
5084 static unsigned
5085 free_lang_data (void)
5086 {
5087 unsigned i;
5088
5089 /* If we are the LTO frontend we have freed lang-specific data already. */
5090 if (in_lto_p
5091 || !flag_generate_lto)
5092 return 0;
5093
5094 /* Allocate and assign alias sets to the standard integer types
5095 while the slots are still in the way the frontends generated them. */
5096 for (i = 0; i < itk_none; ++i)
5097 if (integer_types[i])
5098 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5099
5100 /* Traverse the IL resetting language specific information for
5101 operands, expressions, etc. */
5102 free_lang_data_in_cgraph ();
5103
5104 /* Create gimple variants for common types. */
5105 ptrdiff_type_node = integer_type_node;
5106 fileptr_type_node = ptr_type_node;
5107 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
5108 || (TYPE_MODE (boolean_type_node)
5109 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
5110 || TYPE_PRECISION (boolean_type_node) != 1
5111 || !TYPE_UNSIGNED (boolean_type_node))
5112 {
5113 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5114 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5115 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5116 TYPE_PRECISION (boolean_type_node) = 1;
5117 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5118 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5119 }
5120
5121 /* Unify char_type_node with its properly signed variant. */
5122 if (TYPE_UNSIGNED (char_type_node))
5123 unsigned_char_type_node = char_type_node;
5124 else
5125 signed_char_type_node = char_type_node;
5126
5127 /* Reset some langhooks. Do not reset types_compatible_p, it may
5128 still be used indirectly via the get_alias_set langhook. */
5129 lang_hooks.callgraph.analyze_expr = NULL;
5130 lang_hooks.dwarf_name = lhd_dwarf_name;
5131 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5132 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
5133
5134 /* Reset diagnostic machinery. */
5135 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5136 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5137 diagnostic_format_decoder (global_dc) = default_tree_printer;
5138
5139 return 0;
5140 }
5141
5142
5143 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5144 {
5145 {
5146 SIMPLE_IPA_PASS,
5147 "*free_lang_data", /* name */
5148 NULL, /* gate */
5149 free_lang_data, /* execute */
5150 NULL, /* sub */
5151 NULL, /* next */
5152 0, /* static_pass_number */
5153 TV_IPA_FREE_LANG_DATA, /* tv_id */
5154 0, /* properties_required */
5155 0, /* properties_provided */
5156 0, /* properties_destroyed */
5157 0, /* todo_flags_start */
5158 TODO_ggc_collect /* todo_flags_finish */
5159 }
5160 };
5161
5162 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5163 or zero if not.
5164
5165 We try both `text' and `__text__', ATTR may be either one. */
5166 /* ??? It might be a reasonable simplification to require ATTR to be only
5167 `text'. One might then also require attribute lists to be stored in
5168 their canonicalized form. */
5169
5170 static int
5171 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5172 {
5173 int ident_len;
5174 const char *p;
5175
5176 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5177 return 0;
5178
5179 p = IDENTIFIER_POINTER (ident);
5180 ident_len = IDENTIFIER_LENGTH (ident);
5181
5182 if (ident_len == attr_len
5183 && strcmp (attr, p) == 0)
5184 return 1;
5185
5186 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5187 if (attr[0] == '_')
5188 {
5189 gcc_assert (attr[1] == '_');
5190 gcc_assert (attr[attr_len - 2] == '_');
5191 gcc_assert (attr[attr_len - 1] == '_');
5192 if (ident_len == attr_len - 4
5193 && strncmp (attr + 2, p, attr_len - 4) == 0)
5194 return 1;
5195 }
5196 else
5197 {
5198 if (ident_len == attr_len + 4
5199 && p[0] == '_' && p[1] == '_'
5200 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5201 && strncmp (attr, p + 2, attr_len) == 0)
5202 return 1;
5203 }
5204
5205 return 0;
5206 }
5207
5208 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5209 or zero if not.
5210
5211 We try both `text' and `__text__', ATTR may be either one. */
5212
5213 int
5214 is_attribute_p (const char *attr, const_tree ident)
5215 {
5216 return is_attribute_with_length_p (attr, strlen (attr), ident);
5217 }
5218
5219 /* Given an attribute name and a list of attributes, return a pointer to the
5220 attribute's list element if the attribute is part of the list, or NULL_TREE
5221 if not found. If the attribute appears more than once, this only
5222 returns the first occurrence; the TREE_CHAIN of the return value should
5223 be passed back in if further occurrences are wanted. */
5224
5225 tree
5226 lookup_attribute (const char *attr_name, tree list)
5227 {
5228 tree l;
5229 size_t attr_len = strlen (attr_name);
5230
5231 for (l = list; l; l = TREE_CHAIN (l))
5232 {
5233 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5234 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5235 return l;
5236 }
5237 return NULL_TREE;
5238 }
5239
5240 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5241 modified list. */
5242
5243 tree
5244 remove_attribute (const char *attr_name, tree list)
5245 {
5246 tree *p;
5247 size_t attr_len = strlen (attr_name);
5248
5249 for (p = &list; *p; )
5250 {
5251 tree l = *p;
5252 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5253 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5254 *p = TREE_CHAIN (l);
5255 else
5256 p = &TREE_CHAIN (l);
5257 }
5258
5259 return list;
5260 }
5261
5262 /* Return an attribute list that is the union of a1 and a2. */
5263
5264 tree
5265 merge_attributes (tree a1, tree a2)
5266 {
5267 tree attributes;
5268
5269 /* Either one unset? Take the set one. */
5270
5271 if ((attributes = a1) == 0)
5272 attributes = a2;
5273
5274 /* One that completely contains the other? Take it. */
5275
5276 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5277 {
5278 if (attribute_list_contained (a2, a1))
5279 attributes = a2;
5280 else
5281 {
5282 /* Pick the longest list, and hang on the other list. */
5283
5284 if (list_length (a1) < list_length (a2))
5285 attributes = a2, a2 = a1;
5286
5287 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5288 {
5289 tree a;
5290 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5291 attributes);
5292 a != NULL_TREE;
5293 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5294 TREE_CHAIN (a)))
5295 {
5296 if (TREE_VALUE (a) != NULL
5297 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5298 && TREE_VALUE (a2) != NULL
5299 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5300 {
5301 if (simple_cst_list_equal (TREE_VALUE (a),
5302 TREE_VALUE (a2)) == 1)
5303 break;
5304 }
5305 else if (simple_cst_equal (TREE_VALUE (a),
5306 TREE_VALUE (a2)) == 1)
5307 break;
5308 }
5309 if (a == NULL_TREE)
5310 {
5311 a1 = copy_node (a2);
5312 TREE_CHAIN (a1) = attributes;
5313 attributes = a1;
5314 }
5315 }
5316 }
5317 }
5318 return attributes;
5319 }
5320
5321 /* Given types T1 and T2, merge their attributes and return
5322 the result. */
5323
5324 tree
5325 merge_type_attributes (tree t1, tree t2)
5326 {
5327 return merge_attributes (TYPE_ATTRIBUTES (t1),
5328 TYPE_ATTRIBUTES (t2));
5329 }
5330
5331 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5332 the result. */
5333
5334 tree
5335 merge_decl_attributes (tree olddecl, tree newdecl)
5336 {
5337 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5338 DECL_ATTRIBUTES (newdecl));
5339 }
5340
5341 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5342
5343 /* Specialization of merge_decl_attributes for various Windows targets.
5344
5345 This handles the following situation:
5346
5347 __declspec (dllimport) int foo;
5348 int foo;
5349
5350 The second instance of `foo' nullifies the dllimport. */
5351
5352 tree
5353 merge_dllimport_decl_attributes (tree old, tree new_tree)
5354 {
5355 tree a;
5356 int delete_dllimport_p = 1;
5357
5358 /* What we need to do here is remove from `old' dllimport if it doesn't
5359 appear in `new'. dllimport behaves like extern: if a declaration is
5360 marked dllimport and a definition appears later, then the object
5361 is not dllimport'd. We also remove a `new' dllimport if the old list
5362 contains dllexport: dllexport always overrides dllimport, regardless
5363 of the order of declaration. */
5364 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5365 delete_dllimport_p = 0;
5366 else if (DECL_DLLIMPORT_P (new_tree)
5367 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5368 {
5369 DECL_DLLIMPORT_P (new_tree) = 0;
5370 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5371 "dllimport ignored", new_tree);
5372 }
5373 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5374 {
5375 /* Warn about overriding a symbol that has already been used, e.g.:
5376 extern int __attribute__ ((dllimport)) foo;
5377 int* bar () {return &foo;}
5378 int foo;
5379 */
5380 if (TREE_USED (old))
5381 {
5382 warning (0, "%q+D redeclared without dllimport attribute "
5383 "after being referenced with dll linkage", new_tree);
5384 /* If we have used a variable's address with dllimport linkage,
5385 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5386 decl may already have had TREE_CONSTANT computed.
5387 We still remove the attribute so that assembler code refers
5388 to '&foo rather than '_imp__foo'. */
5389 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5390 DECL_DLLIMPORT_P (new_tree) = 1;
5391 }
5392
5393 /* Let an inline definition silently override the external reference,
5394 but otherwise warn about attribute inconsistency. */
5395 else if (TREE_CODE (new_tree) == VAR_DECL
5396 || !DECL_DECLARED_INLINE_P (new_tree))
5397 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5398 "previous dllimport ignored", new_tree);
5399 }
5400 else
5401 delete_dllimport_p = 0;
5402
5403 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5404
5405 if (delete_dllimport_p)
5406 {
5407 tree prev, t;
5408 const size_t attr_len = strlen ("dllimport");
5409
5410 /* Scan the list for dllimport and delete it. */
5411 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5412 {
5413 if (is_attribute_with_length_p ("dllimport", attr_len,
5414 TREE_PURPOSE (t)))
5415 {
5416 if (prev == NULL_TREE)
5417 a = TREE_CHAIN (a);
5418 else
5419 TREE_CHAIN (prev) = TREE_CHAIN (t);
5420 break;
5421 }
5422 }
5423 }
5424
5425 return a;
5426 }
5427
5428 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5429 struct attribute_spec.handler. */
5430
5431 tree
5432 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5433 bool *no_add_attrs)
5434 {
5435 tree node = *pnode;
5436 bool is_dllimport;
5437
5438 /* These attributes may apply to structure and union types being created,
5439 but otherwise should pass to the declaration involved. */
5440 if (!DECL_P (node))
5441 {
5442 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5443 | (int) ATTR_FLAG_ARRAY_NEXT))
5444 {
5445 *no_add_attrs = true;
5446 return tree_cons (name, args, NULL_TREE);
5447 }
5448 if (TREE_CODE (node) == RECORD_TYPE
5449 || TREE_CODE (node) == UNION_TYPE)
5450 {
5451 node = TYPE_NAME (node);
5452 if (!node)
5453 return NULL_TREE;
5454 }
5455 else
5456 {
5457 warning (OPT_Wattributes, "%qE attribute ignored",
5458 name);
5459 *no_add_attrs = true;
5460 return NULL_TREE;
5461 }
5462 }
5463
5464 if (TREE_CODE (node) != FUNCTION_DECL
5465 && TREE_CODE (node) != VAR_DECL
5466 && TREE_CODE (node) != TYPE_DECL)
5467 {
5468 *no_add_attrs = true;
5469 warning (OPT_Wattributes, "%qE attribute ignored",
5470 name);
5471 return NULL_TREE;
5472 }
5473
5474 if (TREE_CODE (node) == TYPE_DECL
5475 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5476 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5477 {
5478 *no_add_attrs = true;
5479 warning (OPT_Wattributes, "%qE attribute ignored",
5480 name);
5481 return NULL_TREE;
5482 }
5483
5484 is_dllimport = is_attribute_p ("dllimport", name);
5485
5486 /* Report error on dllimport ambiguities seen now before they cause
5487 any damage. */
5488 if (is_dllimport)
5489 {
5490 /* Honor any target-specific overrides. */
5491 if (!targetm.valid_dllimport_attribute_p (node))
5492 *no_add_attrs = true;
5493
5494 else if (TREE_CODE (node) == FUNCTION_DECL
5495 && DECL_DECLARED_INLINE_P (node))
5496 {
5497 warning (OPT_Wattributes, "inline function %q+D declared as "
5498 " dllimport: attribute ignored", node);
5499 *no_add_attrs = true;
5500 }
5501 /* Like MS, treat definition of dllimported variables and
5502 non-inlined functions on declaration as syntax errors. */
5503 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5504 {
5505 error ("function %q+D definition is marked dllimport", node);
5506 *no_add_attrs = true;
5507 }
5508
5509 else if (TREE_CODE (node) == VAR_DECL)
5510 {
5511 if (DECL_INITIAL (node))
5512 {
5513 error ("variable %q+D definition is marked dllimport",
5514 node);
5515 *no_add_attrs = true;
5516 }
5517
5518 /* `extern' needn't be specified with dllimport.
5519 Specify `extern' now and hope for the best. Sigh. */
5520 DECL_EXTERNAL (node) = 1;
5521 /* Also, implicitly give dllimport'd variables declared within
5522 a function global scope, unless declared static. */
5523 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5524 TREE_PUBLIC (node) = 1;
5525 }
5526
5527 if (*no_add_attrs == false)
5528 DECL_DLLIMPORT_P (node) = 1;
5529 }
5530 else if (TREE_CODE (node) == FUNCTION_DECL
5531 && DECL_DECLARED_INLINE_P (node)
5532 && flag_keep_inline_dllexport)
5533 /* An exported function, even if inline, must be emitted. */
5534 DECL_EXTERNAL (node) = 0;
5535
5536 /* Report error if symbol is not accessible at global scope. */
5537 if (!TREE_PUBLIC (node)
5538 && (TREE_CODE (node) == VAR_DECL
5539 || TREE_CODE (node) == FUNCTION_DECL))
5540 {
5541 error ("external linkage required for symbol %q+D because of "
5542 "%qE attribute", node, name);
5543 *no_add_attrs = true;
5544 }
5545
5546 /* A dllexport'd entity must have default visibility so that other
5547 program units (shared libraries or the main executable) can see
5548 it. A dllimport'd entity must have default visibility so that
5549 the linker knows that undefined references within this program
5550 unit can be resolved by the dynamic linker. */
5551 if (!*no_add_attrs)
5552 {
5553 if (DECL_VISIBILITY_SPECIFIED (node)
5554 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5555 error ("%qE implies default visibility, but %qD has already "
5556 "been declared with a different visibility",
5557 name, node);
5558 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5559 DECL_VISIBILITY_SPECIFIED (node) = 1;
5560 }
5561
5562 return NULL_TREE;
5563 }
5564
5565 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5566 \f
5567 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5568 of the various TYPE_QUAL values. */
5569
5570 static void
5571 set_type_quals (tree type, int type_quals)
5572 {
5573 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5574 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5575 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5576 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5577 }
5578
5579 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5580
5581 bool
5582 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5583 {
5584 return (TYPE_QUALS (cand) == type_quals
5585 && TYPE_NAME (cand) == TYPE_NAME (base)
5586 /* Apparently this is needed for Objective-C. */
5587 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5588 /* Check alignment. */
5589 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5590 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5591 TYPE_ATTRIBUTES (base)));
5592 }
5593
5594 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5595
5596 static bool
5597 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5598 {
5599 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5600 && TYPE_NAME (cand) == TYPE_NAME (base)
5601 /* Apparently this is needed for Objective-C. */
5602 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5603 /* Check alignment. */
5604 && TYPE_ALIGN (cand) == align
5605 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5606 TYPE_ATTRIBUTES (base)));
5607 }
5608
5609 /* Return a version of the TYPE, qualified as indicated by the
5610 TYPE_QUALS, if one exists. If no qualified version exists yet,
5611 return NULL_TREE. */
5612
5613 tree
5614 get_qualified_type (tree type, int type_quals)
5615 {
5616 tree t;
5617
5618 if (TYPE_QUALS (type) == type_quals)
5619 return type;
5620
5621 /* Search the chain of variants to see if there is already one there just
5622 like the one we need to have. If so, use that existing one. We must
5623 preserve the TYPE_NAME, since there is code that depends on this. */
5624 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5625 if (check_qualified_type (t, type, type_quals))
5626 return t;
5627
5628 return NULL_TREE;
5629 }
5630
5631 /* Like get_qualified_type, but creates the type if it does not
5632 exist. This function never returns NULL_TREE. */
5633
5634 tree
5635 build_qualified_type (tree type, int type_quals)
5636 {
5637 tree t;
5638
5639 /* See if we already have the appropriate qualified variant. */
5640 t = get_qualified_type (type, type_quals);
5641
5642 /* If not, build it. */
5643 if (!t)
5644 {
5645 t = build_variant_type_copy (type);
5646 set_type_quals (t, type_quals);
5647
5648 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5649 /* Propagate structural equality. */
5650 SET_TYPE_STRUCTURAL_EQUALITY (t);
5651 else if (TYPE_CANONICAL (type) != type)
5652 /* Build the underlying canonical type, since it is different
5653 from TYPE. */
5654 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5655 type_quals);
5656 else
5657 /* T is its own canonical type. */
5658 TYPE_CANONICAL (t) = t;
5659
5660 }
5661
5662 return t;
5663 }
5664
5665 /* Create a variant of type T with alignment ALIGN. */
5666
5667 tree
5668 build_aligned_type (tree type, unsigned int align)
5669 {
5670 tree t;
5671
5672 if (TYPE_PACKED (type)
5673 || TYPE_ALIGN (type) == align)
5674 return type;
5675
5676 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5677 if (check_aligned_type (t, type, align))
5678 return t;
5679
5680 t = build_variant_type_copy (type);
5681 TYPE_ALIGN (t) = align;
5682
5683 return t;
5684 }
5685
5686 /* Create a new distinct copy of TYPE. The new type is made its own
5687 MAIN_VARIANT. If TYPE requires structural equality checks, the
5688 resulting type requires structural equality checks; otherwise, its
5689 TYPE_CANONICAL points to itself. */
5690
5691 tree
5692 build_distinct_type_copy (tree type)
5693 {
5694 tree t = copy_node (type);
5695
5696 TYPE_POINTER_TO (t) = 0;
5697 TYPE_REFERENCE_TO (t) = 0;
5698
5699 /* Set the canonical type either to a new equivalence class, or
5700 propagate the need for structural equality checks. */
5701 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5702 SET_TYPE_STRUCTURAL_EQUALITY (t);
5703 else
5704 TYPE_CANONICAL (t) = t;
5705
5706 /* Make it its own variant. */
5707 TYPE_MAIN_VARIANT (t) = t;
5708 TYPE_NEXT_VARIANT (t) = 0;
5709
5710 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5711 whose TREE_TYPE is not t. This can also happen in the Ada
5712 frontend when using subtypes. */
5713
5714 return t;
5715 }
5716
5717 /* Create a new variant of TYPE, equivalent but distinct. This is so
5718 the caller can modify it. TYPE_CANONICAL for the return type will
5719 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5720 are considered equal by the language itself (or that both types
5721 require structural equality checks). */
5722
5723 tree
5724 build_variant_type_copy (tree type)
5725 {
5726 tree t, m = TYPE_MAIN_VARIANT (type);
5727
5728 t = build_distinct_type_copy (type);
5729
5730 /* Since we're building a variant, assume that it is a non-semantic
5731 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5732 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5733
5734 /* Add the new type to the chain of variants of TYPE. */
5735 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5736 TYPE_NEXT_VARIANT (m) = t;
5737 TYPE_MAIN_VARIANT (t) = m;
5738
5739 return t;
5740 }
5741 \f
5742 /* Return true if the from tree in both tree maps are equal. */
5743
5744 int
5745 tree_map_base_eq (const void *va, const void *vb)
5746 {
5747 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5748 *const b = (const struct tree_map_base *) vb;
5749 return (a->from == b->from);
5750 }
5751
5752 /* Hash a from tree in a tree_base_map. */
5753
5754 unsigned int
5755 tree_map_base_hash (const void *item)
5756 {
5757 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5758 }
5759
5760 /* Return true if this tree map structure is marked for garbage collection
5761 purposes. We simply return true if the from tree is marked, so that this
5762 structure goes away when the from tree goes away. */
5763
5764 int
5765 tree_map_base_marked_p (const void *p)
5766 {
5767 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5768 }
5769
5770 /* Hash a from tree in a tree_map. */
5771
5772 unsigned int
5773 tree_map_hash (const void *item)
5774 {
5775 return (((const struct tree_map *) item)->hash);
5776 }
5777
5778 /* Hash a from tree in a tree_decl_map. */
5779
5780 unsigned int
5781 tree_decl_map_hash (const void *item)
5782 {
5783 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5784 }
5785
5786 /* Return the initialization priority for DECL. */
5787
5788 priority_type
5789 decl_init_priority_lookup (tree decl)
5790 {
5791 struct tree_priority_map *h;
5792 struct tree_map_base in;
5793
5794 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5795 in.from = decl;
5796 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5797 return h ? h->init : DEFAULT_INIT_PRIORITY;
5798 }
5799
5800 /* Return the finalization priority for DECL. */
5801
5802 priority_type
5803 decl_fini_priority_lookup (tree decl)
5804 {
5805 struct tree_priority_map *h;
5806 struct tree_map_base in;
5807
5808 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5809 in.from = decl;
5810 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5811 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5812 }
5813
5814 /* Return the initialization and finalization priority information for
5815 DECL. If there is no previous priority information, a freshly
5816 allocated structure is returned. */
5817
5818 static struct tree_priority_map *
5819 decl_priority_info (tree decl)
5820 {
5821 struct tree_priority_map in;
5822 struct tree_priority_map *h;
5823 void **loc;
5824
5825 in.base.from = decl;
5826 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5827 h = (struct tree_priority_map *) *loc;
5828 if (!h)
5829 {
5830 h = ggc_alloc_cleared_tree_priority_map ();
5831 *loc = h;
5832 h->base.from = decl;
5833 h->init = DEFAULT_INIT_PRIORITY;
5834 h->fini = DEFAULT_INIT_PRIORITY;
5835 }
5836
5837 return h;
5838 }
5839
5840 /* Set the initialization priority for DECL to PRIORITY. */
5841
5842 void
5843 decl_init_priority_insert (tree decl, priority_type priority)
5844 {
5845 struct tree_priority_map *h;
5846
5847 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5848 h = decl_priority_info (decl);
5849 h->init = priority;
5850 }
5851
5852 /* Set the finalization priority for DECL to PRIORITY. */
5853
5854 void
5855 decl_fini_priority_insert (tree decl, priority_type priority)
5856 {
5857 struct tree_priority_map *h;
5858
5859 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5860 h = decl_priority_info (decl);
5861 h->fini = priority;
5862 }
5863
5864 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5865
5866 static void
5867 print_debug_expr_statistics (void)
5868 {
5869 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5870 (long) htab_size (debug_expr_for_decl),
5871 (long) htab_elements (debug_expr_for_decl),
5872 htab_collisions (debug_expr_for_decl));
5873 }
5874
5875 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5876
5877 static void
5878 print_value_expr_statistics (void)
5879 {
5880 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5881 (long) htab_size (value_expr_for_decl),
5882 (long) htab_elements (value_expr_for_decl),
5883 htab_collisions (value_expr_for_decl));
5884 }
5885
5886 /* Lookup a debug expression for FROM, and return it if we find one. */
5887
5888 tree
5889 decl_debug_expr_lookup (tree from)
5890 {
5891 struct tree_decl_map *h, in;
5892 in.base.from = from;
5893
5894 h = (struct tree_decl_map *)
5895 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5896 if (h)
5897 return h->to;
5898 return NULL_TREE;
5899 }
5900
5901 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5902
5903 void
5904 decl_debug_expr_insert (tree from, tree to)
5905 {
5906 struct tree_decl_map *h;
5907 void **loc;
5908
5909 h = ggc_alloc_tree_decl_map ();
5910 h->base.from = from;
5911 h->to = to;
5912 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5913 INSERT);
5914 *(struct tree_decl_map **) loc = h;
5915 }
5916
5917 /* Lookup a value expression for FROM, and return it if we find one. */
5918
5919 tree
5920 decl_value_expr_lookup (tree from)
5921 {
5922 struct tree_decl_map *h, in;
5923 in.base.from = from;
5924
5925 h = (struct tree_decl_map *)
5926 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5927 if (h)
5928 return h->to;
5929 return NULL_TREE;
5930 }
5931
5932 /* Insert a mapping FROM->TO in the value expression hashtable. */
5933
5934 void
5935 decl_value_expr_insert (tree from, tree to)
5936 {
5937 struct tree_decl_map *h;
5938 void **loc;
5939
5940 h = ggc_alloc_tree_decl_map ();
5941 h->base.from = from;
5942 h->to = to;
5943 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
5944 INSERT);
5945 *(struct tree_decl_map **) loc = h;
5946 }
5947
5948 /* Hashing of types so that we don't make duplicates.
5949 The entry point is `type_hash_canon'. */
5950
5951 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5952 with types in the TREE_VALUE slots), by adding the hash codes
5953 of the individual types. */
5954
5955 static unsigned int
5956 type_hash_list (const_tree list, hashval_t hashcode)
5957 {
5958 const_tree tail;
5959
5960 for (tail = list; tail; tail = TREE_CHAIN (tail))
5961 if (TREE_VALUE (tail) != error_mark_node)
5962 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5963 hashcode);
5964
5965 return hashcode;
5966 }
5967
5968 /* These are the Hashtable callback functions. */
5969
5970 /* Returns true iff the types are equivalent. */
5971
5972 static int
5973 type_hash_eq (const void *va, const void *vb)
5974 {
5975 const struct type_hash *const a = (const struct type_hash *) va,
5976 *const b = (const struct type_hash *) vb;
5977
5978 /* First test the things that are the same for all types. */
5979 if (a->hash != b->hash
5980 || TREE_CODE (a->type) != TREE_CODE (b->type)
5981 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5982 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5983 TYPE_ATTRIBUTES (b->type))
5984 || (TREE_CODE (a->type) != COMPLEX_TYPE
5985 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5986 return 0;
5987
5988 /* Be careful about comparing arrays before and after the element type
5989 has been completed; don't compare TYPE_ALIGN unless both types are
5990 complete. */
5991 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
5992 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5993 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
5994 return 0;
5995
5996 switch (TREE_CODE (a->type))
5997 {
5998 case VOID_TYPE:
5999 case COMPLEX_TYPE:
6000 case POINTER_TYPE:
6001 case REFERENCE_TYPE:
6002 return 1;
6003
6004 case VECTOR_TYPE:
6005 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6006
6007 case ENUMERAL_TYPE:
6008 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6009 && !(TYPE_VALUES (a->type)
6010 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6011 && TYPE_VALUES (b->type)
6012 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6013 && type_list_equal (TYPE_VALUES (a->type),
6014 TYPE_VALUES (b->type))))
6015 return 0;
6016
6017 /* ... fall through ... */
6018
6019 case INTEGER_TYPE:
6020 case REAL_TYPE:
6021 case BOOLEAN_TYPE:
6022 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6023 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6024 TYPE_MAX_VALUE (b->type)))
6025 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6026 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6027 TYPE_MIN_VALUE (b->type))));
6028
6029 case FIXED_POINT_TYPE:
6030 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6031
6032 case OFFSET_TYPE:
6033 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6034
6035 case METHOD_TYPE:
6036 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6037 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6038 || (TYPE_ARG_TYPES (a->type)
6039 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6040 && TYPE_ARG_TYPES (b->type)
6041 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6042 && type_list_equal (TYPE_ARG_TYPES (a->type),
6043 TYPE_ARG_TYPES (b->type)))))
6044 break;
6045 return 0;
6046 case ARRAY_TYPE:
6047 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6048
6049 case RECORD_TYPE:
6050 case UNION_TYPE:
6051 case QUAL_UNION_TYPE:
6052 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6053 || (TYPE_FIELDS (a->type)
6054 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6055 && TYPE_FIELDS (b->type)
6056 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6057 && type_list_equal (TYPE_FIELDS (a->type),
6058 TYPE_FIELDS (b->type))));
6059
6060 case FUNCTION_TYPE:
6061 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6062 || (TYPE_ARG_TYPES (a->type)
6063 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6064 && TYPE_ARG_TYPES (b->type)
6065 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6066 && type_list_equal (TYPE_ARG_TYPES (a->type),
6067 TYPE_ARG_TYPES (b->type))))
6068 break;
6069 return 0;
6070
6071 default:
6072 return 0;
6073 }
6074
6075 if (lang_hooks.types.type_hash_eq != NULL)
6076 return lang_hooks.types.type_hash_eq (a->type, b->type);
6077
6078 return 1;
6079 }
6080
6081 /* Return the cached hash value. */
6082
6083 static hashval_t
6084 type_hash_hash (const void *item)
6085 {
6086 return ((const struct type_hash *) item)->hash;
6087 }
6088
6089 /* Look in the type hash table for a type isomorphic to TYPE.
6090 If one is found, return it. Otherwise return 0. */
6091
6092 tree
6093 type_hash_lookup (hashval_t hashcode, tree type)
6094 {
6095 struct type_hash *h, in;
6096
6097 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6098 must call that routine before comparing TYPE_ALIGNs. */
6099 layout_type (type);
6100
6101 in.hash = hashcode;
6102 in.type = type;
6103
6104 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6105 hashcode);
6106 if (h)
6107 return h->type;
6108 return NULL_TREE;
6109 }
6110
6111 /* Add an entry to the type-hash-table
6112 for a type TYPE whose hash code is HASHCODE. */
6113
6114 void
6115 type_hash_add (hashval_t hashcode, tree type)
6116 {
6117 struct type_hash *h;
6118 void **loc;
6119
6120 h = ggc_alloc_type_hash ();
6121 h->hash = hashcode;
6122 h->type = type;
6123 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6124 *loc = (void *)h;
6125 }
6126
6127 /* Given TYPE, and HASHCODE its hash code, return the canonical
6128 object for an identical type if one already exists.
6129 Otherwise, return TYPE, and record it as the canonical object.
6130
6131 To use this function, first create a type of the sort you want.
6132 Then compute its hash code from the fields of the type that
6133 make it different from other similar types.
6134 Then call this function and use the value. */
6135
6136 tree
6137 type_hash_canon (unsigned int hashcode, tree type)
6138 {
6139 tree t1;
6140
6141 /* The hash table only contains main variants, so ensure that's what we're
6142 being passed. */
6143 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6144
6145 /* See if the type is in the hash table already. If so, return it.
6146 Otherwise, add the type. */
6147 t1 = type_hash_lookup (hashcode, type);
6148 if (t1 != 0)
6149 {
6150 #ifdef GATHER_STATISTICS
6151 tree_node_counts[(int) t_kind]--;
6152 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
6153 #endif
6154 return t1;
6155 }
6156 else
6157 {
6158 type_hash_add (hashcode, type);
6159 return type;
6160 }
6161 }
6162
6163 /* See if the data pointed to by the type hash table is marked. We consider
6164 it marked if the type is marked or if a debug type number or symbol
6165 table entry has been made for the type. */
6166
6167 static int
6168 type_hash_marked_p (const void *p)
6169 {
6170 const_tree const type = ((const struct type_hash *) p)->type;
6171
6172 return ggc_marked_p (type);
6173 }
6174
6175 static void
6176 print_type_hash_statistics (void)
6177 {
6178 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6179 (long) htab_size (type_hash_table),
6180 (long) htab_elements (type_hash_table),
6181 htab_collisions (type_hash_table));
6182 }
6183
6184 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6185 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6186 by adding the hash codes of the individual attributes. */
6187
6188 static unsigned int
6189 attribute_hash_list (const_tree list, hashval_t hashcode)
6190 {
6191 const_tree tail;
6192
6193 for (tail = list; tail; tail = TREE_CHAIN (tail))
6194 /* ??? Do we want to add in TREE_VALUE too? */
6195 hashcode = iterative_hash_object
6196 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6197 return hashcode;
6198 }
6199
6200 /* Given two lists of attributes, return true if list l2 is
6201 equivalent to l1. */
6202
6203 int
6204 attribute_list_equal (const_tree l1, const_tree l2)
6205 {
6206 return attribute_list_contained (l1, l2)
6207 && attribute_list_contained (l2, l1);
6208 }
6209
6210 /* Given two lists of attributes, return true if list L2 is
6211 completely contained within L1. */
6212 /* ??? This would be faster if attribute names were stored in a canonicalized
6213 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6214 must be used to show these elements are equivalent (which they are). */
6215 /* ??? It's not clear that attributes with arguments will always be handled
6216 correctly. */
6217
6218 int
6219 attribute_list_contained (const_tree l1, const_tree l2)
6220 {
6221 const_tree t1, t2;
6222
6223 /* First check the obvious, maybe the lists are identical. */
6224 if (l1 == l2)
6225 return 1;
6226
6227 /* Maybe the lists are similar. */
6228 for (t1 = l1, t2 = l2;
6229 t1 != 0 && t2 != 0
6230 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6231 && TREE_VALUE (t1) == TREE_VALUE (t2);
6232 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6233
6234 /* Maybe the lists are equal. */
6235 if (t1 == 0 && t2 == 0)
6236 return 1;
6237
6238 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6239 {
6240 const_tree attr;
6241 /* This CONST_CAST is okay because lookup_attribute does not
6242 modify its argument and the return value is assigned to a
6243 const_tree. */
6244 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6245 CONST_CAST_TREE(l1));
6246 attr != NULL_TREE;
6247 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6248 TREE_CHAIN (attr)))
6249 {
6250 if (TREE_VALUE (t2) != NULL
6251 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6252 && TREE_VALUE (attr) != NULL
6253 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6254 {
6255 if (simple_cst_list_equal (TREE_VALUE (t2),
6256 TREE_VALUE (attr)) == 1)
6257 break;
6258 }
6259 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6260 break;
6261 }
6262
6263 if (attr == 0)
6264 return 0;
6265 }
6266
6267 return 1;
6268 }
6269
6270 /* Given two lists of types
6271 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6272 return 1 if the lists contain the same types in the same order.
6273 Also, the TREE_PURPOSEs must match. */
6274
6275 int
6276 type_list_equal (const_tree l1, const_tree l2)
6277 {
6278 const_tree t1, t2;
6279
6280 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6281 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6282 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6283 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6284 && (TREE_TYPE (TREE_PURPOSE (t1))
6285 == TREE_TYPE (TREE_PURPOSE (t2))))))
6286 return 0;
6287
6288 return t1 == t2;
6289 }
6290
6291 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6292 given by TYPE. If the argument list accepts variable arguments,
6293 then this function counts only the ordinary arguments. */
6294
6295 int
6296 type_num_arguments (const_tree type)
6297 {
6298 int i = 0;
6299 tree t;
6300
6301 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6302 /* If the function does not take a variable number of arguments,
6303 the last element in the list will have type `void'. */
6304 if (VOID_TYPE_P (TREE_VALUE (t)))
6305 break;
6306 else
6307 ++i;
6308
6309 return i;
6310 }
6311
6312 /* Nonzero if integer constants T1 and T2
6313 represent the same constant value. */
6314
6315 int
6316 tree_int_cst_equal (const_tree t1, const_tree t2)
6317 {
6318 if (t1 == t2)
6319 return 1;
6320
6321 if (t1 == 0 || t2 == 0)
6322 return 0;
6323
6324 if (TREE_CODE (t1) == INTEGER_CST
6325 && TREE_CODE (t2) == INTEGER_CST
6326 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6327 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6328 return 1;
6329
6330 return 0;
6331 }
6332
6333 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6334 The precise way of comparison depends on their data type. */
6335
6336 int
6337 tree_int_cst_lt (const_tree t1, const_tree t2)
6338 {
6339 if (t1 == t2)
6340 return 0;
6341
6342 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6343 {
6344 int t1_sgn = tree_int_cst_sgn (t1);
6345 int t2_sgn = tree_int_cst_sgn (t2);
6346
6347 if (t1_sgn < t2_sgn)
6348 return 1;
6349 else if (t1_sgn > t2_sgn)
6350 return 0;
6351 /* Otherwise, both are non-negative, so we compare them as
6352 unsigned just in case one of them would overflow a signed
6353 type. */
6354 }
6355 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6356 return INT_CST_LT (t1, t2);
6357
6358 return INT_CST_LT_UNSIGNED (t1, t2);
6359 }
6360
6361 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6362
6363 int
6364 tree_int_cst_compare (const_tree t1, const_tree t2)
6365 {
6366 if (tree_int_cst_lt (t1, t2))
6367 return -1;
6368 else if (tree_int_cst_lt (t2, t1))
6369 return 1;
6370 else
6371 return 0;
6372 }
6373
6374 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6375 the host. If POS is zero, the value can be represented in a single
6376 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6377 be represented in a single unsigned HOST_WIDE_INT. */
6378
6379 int
6380 host_integerp (const_tree t, int pos)
6381 {
6382 if (t == NULL_TREE)
6383 return 0;
6384
6385 return (TREE_CODE (t) == INTEGER_CST
6386 && ((TREE_INT_CST_HIGH (t) == 0
6387 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6388 || (! pos && TREE_INT_CST_HIGH (t) == -1
6389 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6390 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6391 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6392 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6393 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6394 }
6395
6396 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6397 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6398 be non-negative. We must be able to satisfy the above conditions. */
6399
6400 HOST_WIDE_INT
6401 tree_low_cst (const_tree t, int pos)
6402 {
6403 gcc_assert (host_integerp (t, pos));
6404 return TREE_INT_CST_LOW (t);
6405 }
6406
6407 /* Return the most significant bit of the integer constant T. */
6408
6409 int
6410 tree_int_cst_msb (const_tree t)
6411 {
6412 int prec;
6413 HOST_WIDE_INT h;
6414 unsigned HOST_WIDE_INT l;
6415
6416 /* Note that using TYPE_PRECISION here is wrong. We care about the
6417 actual bits, not the (arbitrary) range of the type. */
6418 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6419 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6420 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6421 return (l & 1) == 1;
6422 }
6423
6424 /* Return an indication of the sign of the integer constant T.
6425 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6426 Note that -1 will never be returned if T's type is unsigned. */
6427
6428 int
6429 tree_int_cst_sgn (const_tree t)
6430 {
6431 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6432 return 0;
6433 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6434 return 1;
6435 else if (TREE_INT_CST_HIGH (t) < 0)
6436 return -1;
6437 else
6438 return 1;
6439 }
6440
6441 /* Return the minimum number of bits needed to represent VALUE in a
6442 signed or unsigned type, UNSIGNEDP says which. */
6443
6444 unsigned int
6445 tree_int_cst_min_precision (tree value, bool unsignedp)
6446 {
6447 int log;
6448
6449 /* If the value is negative, compute its negative minus 1. The latter
6450 adjustment is because the absolute value of the largest negative value
6451 is one larger than the largest positive value. This is equivalent to
6452 a bit-wise negation, so use that operation instead. */
6453
6454 if (tree_int_cst_sgn (value) < 0)
6455 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6456
6457 /* Return the number of bits needed, taking into account the fact
6458 that we need one more bit for a signed than unsigned type. */
6459
6460 if (integer_zerop (value))
6461 log = 0;
6462 else
6463 log = tree_floor_log2 (value);
6464
6465 return log + 1 + !unsignedp;
6466 }
6467
6468 /* Compare two constructor-element-type constants. Return 1 if the lists
6469 are known to be equal; otherwise return 0. */
6470
6471 int
6472 simple_cst_list_equal (const_tree l1, const_tree l2)
6473 {
6474 while (l1 != NULL_TREE && l2 != NULL_TREE)
6475 {
6476 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6477 return 0;
6478
6479 l1 = TREE_CHAIN (l1);
6480 l2 = TREE_CHAIN (l2);
6481 }
6482
6483 return l1 == l2;
6484 }
6485
6486 /* Return truthvalue of whether T1 is the same tree structure as T2.
6487 Return 1 if they are the same.
6488 Return 0 if they are understandably different.
6489 Return -1 if either contains tree structure not understood by
6490 this function. */
6491
6492 int
6493 simple_cst_equal (const_tree t1, const_tree t2)
6494 {
6495 enum tree_code code1, code2;
6496 int cmp;
6497 int i;
6498
6499 if (t1 == t2)
6500 return 1;
6501 if (t1 == 0 || t2 == 0)
6502 return 0;
6503
6504 code1 = TREE_CODE (t1);
6505 code2 = TREE_CODE (t2);
6506
6507 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6508 {
6509 if (CONVERT_EXPR_CODE_P (code2)
6510 || code2 == NON_LVALUE_EXPR)
6511 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6512 else
6513 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6514 }
6515
6516 else if (CONVERT_EXPR_CODE_P (code2)
6517 || code2 == NON_LVALUE_EXPR)
6518 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6519
6520 if (code1 != code2)
6521 return 0;
6522
6523 switch (code1)
6524 {
6525 case INTEGER_CST:
6526 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6527 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6528
6529 case REAL_CST:
6530 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6531
6532 case FIXED_CST:
6533 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6534
6535 case STRING_CST:
6536 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6537 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6538 TREE_STRING_LENGTH (t1)));
6539
6540 case CONSTRUCTOR:
6541 {
6542 unsigned HOST_WIDE_INT idx;
6543 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6544 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6545
6546 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6547 return false;
6548
6549 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6550 /* ??? Should we handle also fields here? */
6551 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6552 VEC_index (constructor_elt, v2, idx)->value))
6553 return false;
6554 return true;
6555 }
6556
6557 case SAVE_EXPR:
6558 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6559
6560 case CALL_EXPR:
6561 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6562 if (cmp <= 0)
6563 return cmp;
6564 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6565 return 0;
6566 {
6567 const_tree arg1, arg2;
6568 const_call_expr_arg_iterator iter1, iter2;
6569 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6570 arg2 = first_const_call_expr_arg (t2, &iter2);
6571 arg1 && arg2;
6572 arg1 = next_const_call_expr_arg (&iter1),
6573 arg2 = next_const_call_expr_arg (&iter2))
6574 {
6575 cmp = simple_cst_equal (arg1, arg2);
6576 if (cmp <= 0)
6577 return cmp;
6578 }
6579 return arg1 == arg2;
6580 }
6581
6582 case TARGET_EXPR:
6583 /* Special case: if either target is an unallocated VAR_DECL,
6584 it means that it's going to be unified with whatever the
6585 TARGET_EXPR is really supposed to initialize, so treat it
6586 as being equivalent to anything. */
6587 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6588 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6589 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6590 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6591 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6592 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6593 cmp = 1;
6594 else
6595 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6596
6597 if (cmp <= 0)
6598 return cmp;
6599
6600 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6601
6602 case WITH_CLEANUP_EXPR:
6603 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6604 if (cmp <= 0)
6605 return cmp;
6606
6607 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6608
6609 case COMPONENT_REF:
6610 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6611 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6612
6613 return 0;
6614
6615 case VAR_DECL:
6616 case PARM_DECL:
6617 case CONST_DECL:
6618 case FUNCTION_DECL:
6619 return 0;
6620
6621 default:
6622 break;
6623 }
6624
6625 /* This general rule works for most tree codes. All exceptions should be
6626 handled above. If this is a language-specific tree code, we can't
6627 trust what might be in the operand, so say we don't know
6628 the situation. */
6629 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6630 return -1;
6631
6632 switch (TREE_CODE_CLASS (code1))
6633 {
6634 case tcc_unary:
6635 case tcc_binary:
6636 case tcc_comparison:
6637 case tcc_expression:
6638 case tcc_reference:
6639 case tcc_statement:
6640 cmp = 1;
6641 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6642 {
6643 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6644 if (cmp <= 0)
6645 return cmp;
6646 }
6647
6648 return cmp;
6649
6650 default:
6651 return -1;
6652 }
6653 }
6654
6655 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6656 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6657 than U, respectively. */
6658
6659 int
6660 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6661 {
6662 if (tree_int_cst_sgn (t) < 0)
6663 return -1;
6664 else if (TREE_INT_CST_HIGH (t) != 0)
6665 return 1;
6666 else if (TREE_INT_CST_LOW (t) == u)
6667 return 0;
6668 else if (TREE_INT_CST_LOW (t) < u)
6669 return -1;
6670 else
6671 return 1;
6672 }
6673
6674 /* Return true if CODE represents an associative tree code. Otherwise
6675 return false. */
6676 bool
6677 associative_tree_code (enum tree_code code)
6678 {
6679 switch (code)
6680 {
6681 case BIT_IOR_EXPR:
6682 case BIT_AND_EXPR:
6683 case BIT_XOR_EXPR:
6684 case PLUS_EXPR:
6685 case MULT_EXPR:
6686 case MIN_EXPR:
6687 case MAX_EXPR:
6688 return true;
6689
6690 default:
6691 break;
6692 }
6693 return false;
6694 }
6695
6696 /* Return true if CODE represents a commutative tree code. Otherwise
6697 return false. */
6698 bool
6699 commutative_tree_code (enum tree_code code)
6700 {
6701 switch (code)
6702 {
6703 case PLUS_EXPR:
6704 case MULT_EXPR:
6705 case MIN_EXPR:
6706 case MAX_EXPR:
6707 case BIT_IOR_EXPR:
6708 case BIT_XOR_EXPR:
6709 case BIT_AND_EXPR:
6710 case NE_EXPR:
6711 case EQ_EXPR:
6712 case UNORDERED_EXPR:
6713 case ORDERED_EXPR:
6714 case UNEQ_EXPR:
6715 case LTGT_EXPR:
6716 case TRUTH_AND_EXPR:
6717 case TRUTH_XOR_EXPR:
6718 case TRUTH_OR_EXPR:
6719 return true;
6720
6721 default:
6722 break;
6723 }
6724 return false;
6725 }
6726
6727 /* Return true if CODE represents a ternary tree code for which the
6728 first two operands are commutative. Otherwise return false. */
6729 bool
6730 commutative_ternary_tree_code (enum tree_code code)
6731 {
6732 switch (code)
6733 {
6734 case WIDEN_MULT_PLUS_EXPR:
6735 case WIDEN_MULT_MINUS_EXPR:
6736 return true;
6737
6738 default:
6739 break;
6740 }
6741 return false;
6742 }
6743
6744 /* Generate a hash value for an expression. This can be used iteratively
6745 by passing a previous result as the VAL argument.
6746
6747 This function is intended to produce the same hash for expressions which
6748 would compare equal using operand_equal_p. */
6749
6750 hashval_t
6751 iterative_hash_expr (const_tree t, hashval_t val)
6752 {
6753 int i;
6754 enum tree_code code;
6755 char tclass;
6756
6757 if (t == NULL_TREE)
6758 return iterative_hash_hashval_t (0, val);
6759
6760 code = TREE_CODE (t);
6761
6762 switch (code)
6763 {
6764 /* Alas, constants aren't shared, so we can't rely on pointer
6765 identity. */
6766 case INTEGER_CST:
6767 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6768 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6769 case REAL_CST:
6770 {
6771 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6772
6773 return iterative_hash_hashval_t (val2, val);
6774 }
6775 case FIXED_CST:
6776 {
6777 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6778
6779 return iterative_hash_hashval_t (val2, val);
6780 }
6781 case STRING_CST:
6782 return iterative_hash (TREE_STRING_POINTER (t),
6783 TREE_STRING_LENGTH (t), val);
6784 case COMPLEX_CST:
6785 val = iterative_hash_expr (TREE_REALPART (t), val);
6786 return iterative_hash_expr (TREE_IMAGPART (t), val);
6787 case VECTOR_CST:
6788 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6789 case SSA_NAME:
6790 /* We can just compare by pointer. */
6791 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6792 case PLACEHOLDER_EXPR:
6793 /* The node itself doesn't matter. */
6794 return val;
6795 case TREE_LIST:
6796 /* A list of expressions, for a CALL_EXPR or as the elements of a
6797 VECTOR_CST. */
6798 for (; t; t = TREE_CHAIN (t))
6799 val = iterative_hash_expr (TREE_VALUE (t), val);
6800 return val;
6801 case CONSTRUCTOR:
6802 {
6803 unsigned HOST_WIDE_INT idx;
6804 tree field, value;
6805 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6806 {
6807 val = iterative_hash_expr (field, val);
6808 val = iterative_hash_expr (value, val);
6809 }
6810 return val;
6811 }
6812 case MEM_REF:
6813 {
6814 /* The type of the second operand is relevant, except for
6815 its top-level qualifiers. */
6816 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6817
6818 val = iterative_hash_object (TYPE_HASH (type), val);
6819
6820 /* We could use the standard hash computation from this point
6821 on. */
6822 val = iterative_hash_object (code, val);
6823 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6824 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6825 return val;
6826 }
6827 case FUNCTION_DECL:
6828 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6829 Otherwise nodes that compare equal according to operand_equal_p might
6830 get different hash codes. However, don't do this for machine specific
6831 or front end builtins, since the function code is overloaded in those
6832 cases. */
6833 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6834 && built_in_decls[DECL_FUNCTION_CODE (t)])
6835 {
6836 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6837 code = TREE_CODE (t);
6838 }
6839 /* FALL THROUGH */
6840 default:
6841 tclass = TREE_CODE_CLASS (code);
6842
6843 if (tclass == tcc_declaration)
6844 {
6845 /* DECL's have a unique ID */
6846 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6847 }
6848 else
6849 {
6850 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6851
6852 val = iterative_hash_object (code, val);
6853
6854 /* Don't hash the type, that can lead to having nodes which
6855 compare equal according to operand_equal_p, but which
6856 have different hash codes. */
6857 if (CONVERT_EXPR_CODE_P (code)
6858 || code == NON_LVALUE_EXPR)
6859 {
6860 /* Make sure to include signness in the hash computation. */
6861 val += TYPE_UNSIGNED (TREE_TYPE (t));
6862 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6863 }
6864
6865 else if (commutative_tree_code (code))
6866 {
6867 /* It's a commutative expression. We want to hash it the same
6868 however it appears. We do this by first hashing both operands
6869 and then rehashing based on the order of their independent
6870 hashes. */
6871 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6872 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6873 hashval_t t;
6874
6875 if (one > two)
6876 t = one, one = two, two = t;
6877
6878 val = iterative_hash_hashval_t (one, val);
6879 val = iterative_hash_hashval_t (two, val);
6880 }
6881 else
6882 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6883 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6884 }
6885 return val;
6886 break;
6887 }
6888 }
6889
6890 /* Generate a hash value for a pair of expressions. This can be used
6891 iteratively by passing a previous result as the VAL argument.
6892
6893 The same hash value is always returned for a given pair of expressions,
6894 regardless of the order in which they are presented. This is useful in
6895 hashing the operands of commutative functions. */
6896
6897 hashval_t
6898 iterative_hash_exprs_commutative (const_tree t1,
6899 const_tree t2, hashval_t val)
6900 {
6901 hashval_t one = iterative_hash_expr (t1, 0);
6902 hashval_t two = iterative_hash_expr (t2, 0);
6903 hashval_t t;
6904
6905 if (one > two)
6906 t = one, one = two, two = t;
6907 val = iterative_hash_hashval_t (one, val);
6908 val = iterative_hash_hashval_t (two, val);
6909
6910 return val;
6911 }
6912 \f
6913 /* Constructors for pointer, array and function types.
6914 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6915 constructed by language-dependent code, not here.) */
6916
6917 /* Construct, lay out and return the type of pointers to TO_TYPE with
6918 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6919 reference all of memory. If such a type has already been
6920 constructed, reuse it. */
6921
6922 tree
6923 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6924 bool can_alias_all)
6925 {
6926 tree t;
6927
6928 if (to_type == error_mark_node)
6929 return error_mark_node;
6930
6931 /* If the pointed-to type has the may_alias attribute set, force
6932 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6933 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6934 can_alias_all = true;
6935
6936 /* In some cases, languages will have things that aren't a POINTER_TYPE
6937 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6938 In that case, return that type without regard to the rest of our
6939 operands.
6940
6941 ??? This is a kludge, but consistent with the way this function has
6942 always operated and there doesn't seem to be a good way to avoid this
6943 at the moment. */
6944 if (TYPE_POINTER_TO (to_type) != 0
6945 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6946 return TYPE_POINTER_TO (to_type);
6947
6948 /* First, if we already have a type for pointers to TO_TYPE and it's
6949 the proper mode, use it. */
6950 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6951 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6952 return t;
6953
6954 t = make_node (POINTER_TYPE);
6955
6956 TREE_TYPE (t) = to_type;
6957 SET_TYPE_MODE (t, mode);
6958 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6959 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6960 TYPE_POINTER_TO (to_type) = t;
6961
6962 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6963 SET_TYPE_STRUCTURAL_EQUALITY (t);
6964 else if (TYPE_CANONICAL (to_type) != to_type)
6965 TYPE_CANONICAL (t)
6966 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6967 mode, can_alias_all);
6968
6969 /* Lay out the type. This function has many callers that are concerned
6970 with expression-construction, and this simplifies them all. */
6971 layout_type (t);
6972
6973 return t;
6974 }
6975
6976 /* By default build pointers in ptr_mode. */
6977
6978 tree
6979 build_pointer_type (tree to_type)
6980 {
6981 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6982 : TYPE_ADDR_SPACE (to_type);
6983 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6984 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6985 }
6986
6987 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6988
6989 tree
6990 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6991 bool can_alias_all)
6992 {
6993 tree t;
6994
6995 if (to_type == error_mark_node)
6996 return error_mark_node;
6997
6998 /* If the pointed-to type has the may_alias attribute set, force
6999 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7000 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7001 can_alias_all = true;
7002
7003 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7004 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7005 In that case, return that type without regard to the rest of our
7006 operands.
7007
7008 ??? This is a kludge, but consistent with the way this function has
7009 always operated and there doesn't seem to be a good way to avoid this
7010 at the moment. */
7011 if (TYPE_REFERENCE_TO (to_type) != 0
7012 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7013 return TYPE_REFERENCE_TO (to_type);
7014
7015 /* First, if we already have a type for pointers to TO_TYPE and it's
7016 the proper mode, use it. */
7017 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7018 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7019 return t;
7020
7021 t = make_node (REFERENCE_TYPE);
7022
7023 TREE_TYPE (t) = to_type;
7024 SET_TYPE_MODE (t, mode);
7025 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7026 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7027 TYPE_REFERENCE_TO (to_type) = t;
7028
7029 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7030 SET_TYPE_STRUCTURAL_EQUALITY (t);
7031 else if (TYPE_CANONICAL (to_type) != to_type)
7032 TYPE_CANONICAL (t)
7033 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7034 mode, can_alias_all);
7035
7036 layout_type (t);
7037
7038 return t;
7039 }
7040
7041
7042 /* Build the node for the type of references-to-TO_TYPE by default
7043 in ptr_mode. */
7044
7045 tree
7046 build_reference_type (tree to_type)
7047 {
7048 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7049 : TYPE_ADDR_SPACE (to_type);
7050 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7051 return build_reference_type_for_mode (to_type, pointer_mode, false);
7052 }
7053
7054 /* Build a type that is compatible with t but has no cv quals anywhere
7055 in its type, thus
7056
7057 const char *const *const * -> char ***. */
7058
7059 tree
7060 build_type_no_quals (tree t)
7061 {
7062 switch (TREE_CODE (t))
7063 {
7064 case POINTER_TYPE:
7065 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7066 TYPE_MODE (t),
7067 TYPE_REF_CAN_ALIAS_ALL (t));
7068 case REFERENCE_TYPE:
7069 return
7070 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7071 TYPE_MODE (t),
7072 TYPE_REF_CAN_ALIAS_ALL (t));
7073 default:
7074 return TYPE_MAIN_VARIANT (t);
7075 }
7076 }
7077
7078 #define MAX_INT_CACHED_PREC \
7079 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7080 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7081
7082 /* Builds a signed or unsigned integer type of precision PRECISION.
7083 Used for C bitfields whose precision does not match that of
7084 built-in target types. */
7085 tree
7086 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7087 int unsignedp)
7088 {
7089 tree itype, ret;
7090
7091 if (unsignedp)
7092 unsignedp = MAX_INT_CACHED_PREC + 1;
7093
7094 if (precision <= MAX_INT_CACHED_PREC)
7095 {
7096 itype = nonstandard_integer_type_cache[precision + unsignedp];
7097 if (itype)
7098 return itype;
7099 }
7100
7101 itype = make_node (INTEGER_TYPE);
7102 TYPE_PRECISION (itype) = precision;
7103
7104 if (unsignedp)
7105 fixup_unsigned_type (itype);
7106 else
7107 fixup_signed_type (itype);
7108
7109 ret = itype;
7110 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7111 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7112 if (precision <= MAX_INT_CACHED_PREC)
7113 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7114
7115 return ret;
7116 }
7117
7118 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7119 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7120 is true, reuse such a type that has already been constructed. */
7121
7122 static tree
7123 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7124 {
7125 tree itype = make_node (INTEGER_TYPE);
7126 hashval_t hashcode = 0;
7127
7128 TREE_TYPE (itype) = type;
7129
7130 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7131 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7132
7133 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7134 SET_TYPE_MODE (itype, TYPE_MODE (type));
7135 TYPE_SIZE (itype) = TYPE_SIZE (type);
7136 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7137 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7138 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7139
7140 if (!shared)
7141 return itype;
7142
7143 if ((TYPE_MIN_VALUE (itype)
7144 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7145 || (TYPE_MAX_VALUE (itype)
7146 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7147 {
7148 /* Since we cannot reliably merge this type, we need to compare it using
7149 structural equality checks. */
7150 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7151 return itype;
7152 }
7153
7154 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7155 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7156 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7157 itype = type_hash_canon (hashcode, itype);
7158
7159 return itype;
7160 }
7161
7162 /* Wrapper around build_range_type_1 with SHARED set to true. */
7163
7164 tree
7165 build_range_type (tree type, tree lowval, tree highval)
7166 {
7167 return build_range_type_1 (type, lowval, highval, true);
7168 }
7169
7170 /* Wrapper around build_range_type_1 with SHARED set to false. */
7171
7172 tree
7173 build_nonshared_range_type (tree type, tree lowval, tree highval)
7174 {
7175 return build_range_type_1 (type, lowval, highval, false);
7176 }
7177
7178 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7179 MAXVAL should be the maximum value in the domain
7180 (one less than the length of the array).
7181
7182 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7183 We don't enforce this limit, that is up to caller (e.g. language front end).
7184 The limit exists because the result is a signed type and we don't handle
7185 sizes that use more than one HOST_WIDE_INT. */
7186
7187 tree
7188 build_index_type (tree maxval)
7189 {
7190 return build_range_type (sizetype, size_zero_node, maxval);
7191 }
7192
7193 /* Return true if the debug information for TYPE, a subtype, should be emitted
7194 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7195 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7196 debug info and doesn't reflect the source code. */
7197
7198 bool
7199 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7200 {
7201 tree base_type = TREE_TYPE (type), low, high;
7202
7203 /* Subrange types have a base type which is an integral type. */
7204 if (!INTEGRAL_TYPE_P (base_type))
7205 return false;
7206
7207 /* Get the real bounds of the subtype. */
7208 if (lang_hooks.types.get_subrange_bounds)
7209 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7210 else
7211 {
7212 low = TYPE_MIN_VALUE (type);
7213 high = TYPE_MAX_VALUE (type);
7214 }
7215
7216 /* If the type and its base type have the same representation and the same
7217 name, then the type is not a subrange but a copy of the base type. */
7218 if ((TREE_CODE (base_type) == INTEGER_TYPE
7219 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7220 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7221 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7222 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7223 {
7224 tree type_name = TYPE_NAME (type);
7225 tree base_type_name = TYPE_NAME (base_type);
7226
7227 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7228 type_name = DECL_NAME (type_name);
7229
7230 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7231 base_type_name = DECL_NAME (base_type_name);
7232
7233 if (type_name == base_type_name)
7234 return false;
7235 }
7236
7237 if (lowval)
7238 *lowval = low;
7239 if (highval)
7240 *highval = high;
7241 return true;
7242 }
7243
7244 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7245 and number of elements specified by the range of values of INDEX_TYPE.
7246 If SHARED is true, reuse such a type that has already been constructed. */
7247
7248 static tree
7249 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7250 {
7251 tree t;
7252
7253 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7254 {
7255 error ("arrays of functions are not meaningful");
7256 elt_type = integer_type_node;
7257 }
7258
7259 t = make_node (ARRAY_TYPE);
7260 TREE_TYPE (t) = elt_type;
7261 TYPE_DOMAIN (t) = index_type;
7262 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7263 layout_type (t);
7264
7265 /* If the element type is incomplete at this point we get marked for
7266 structural equality. Do not record these types in the canonical
7267 type hashtable. */
7268 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7269 return t;
7270
7271 if (shared)
7272 {
7273 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7274 if (index_type)
7275 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7276 t = type_hash_canon (hashcode, t);
7277 }
7278
7279 if (TYPE_CANONICAL (t) == t)
7280 {
7281 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7282 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7283 SET_TYPE_STRUCTURAL_EQUALITY (t);
7284 else if (TYPE_CANONICAL (elt_type) != elt_type
7285 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7286 TYPE_CANONICAL (t)
7287 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7288 index_type
7289 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7290 shared);
7291 }
7292
7293 return t;
7294 }
7295
7296 /* Wrapper around build_array_type_1 with SHARED set to true. */
7297
7298 tree
7299 build_array_type (tree elt_type, tree index_type)
7300 {
7301 return build_array_type_1 (elt_type, index_type, true);
7302 }
7303
7304 /* Wrapper around build_array_type_1 with SHARED set to false. */
7305
7306 tree
7307 build_nonshared_array_type (tree elt_type, tree index_type)
7308 {
7309 return build_array_type_1 (elt_type, index_type, false);
7310 }
7311
7312 /* Recursively examines the array elements of TYPE, until a non-array
7313 element type is found. */
7314
7315 tree
7316 strip_array_types (tree type)
7317 {
7318 while (TREE_CODE (type) == ARRAY_TYPE)
7319 type = TREE_TYPE (type);
7320
7321 return type;
7322 }
7323
7324 /* Computes the canonical argument types from the argument type list
7325 ARGTYPES.
7326
7327 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7328 on entry to this function, or if any of the ARGTYPES are
7329 structural.
7330
7331 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7332 true on entry to this function, or if any of the ARGTYPES are
7333 non-canonical.
7334
7335 Returns a canonical argument list, which may be ARGTYPES when the
7336 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7337 true) or would not differ from ARGTYPES. */
7338
7339 static tree
7340 maybe_canonicalize_argtypes(tree argtypes,
7341 bool *any_structural_p,
7342 bool *any_noncanonical_p)
7343 {
7344 tree arg;
7345 bool any_noncanonical_argtypes_p = false;
7346
7347 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7348 {
7349 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7350 /* Fail gracefully by stating that the type is structural. */
7351 *any_structural_p = true;
7352 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7353 *any_structural_p = true;
7354 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7355 || TREE_PURPOSE (arg))
7356 /* If the argument has a default argument, we consider it
7357 non-canonical even though the type itself is canonical.
7358 That way, different variants of function and method types
7359 with default arguments will all point to the variant with
7360 no defaults as their canonical type. */
7361 any_noncanonical_argtypes_p = true;
7362 }
7363
7364 if (*any_structural_p)
7365 return argtypes;
7366
7367 if (any_noncanonical_argtypes_p)
7368 {
7369 /* Build the canonical list of argument types. */
7370 tree canon_argtypes = NULL_TREE;
7371 bool is_void = false;
7372
7373 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7374 {
7375 if (arg == void_list_node)
7376 is_void = true;
7377 else
7378 canon_argtypes = tree_cons (NULL_TREE,
7379 TYPE_CANONICAL (TREE_VALUE (arg)),
7380 canon_argtypes);
7381 }
7382
7383 canon_argtypes = nreverse (canon_argtypes);
7384 if (is_void)
7385 canon_argtypes = chainon (canon_argtypes, void_list_node);
7386
7387 /* There is a non-canonical type. */
7388 *any_noncanonical_p = true;
7389 return canon_argtypes;
7390 }
7391
7392 /* The canonical argument types are the same as ARGTYPES. */
7393 return argtypes;
7394 }
7395
7396 /* Construct, lay out and return
7397 the type of functions returning type VALUE_TYPE
7398 given arguments of types ARG_TYPES.
7399 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7400 are data type nodes for the arguments of the function.
7401 If such a type has already been constructed, reuse it. */
7402
7403 tree
7404 build_function_type (tree value_type, tree arg_types)
7405 {
7406 tree t;
7407 hashval_t hashcode = 0;
7408 bool any_structural_p, any_noncanonical_p;
7409 tree canon_argtypes;
7410
7411 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7412 {
7413 error ("function return type cannot be function");
7414 value_type = integer_type_node;
7415 }
7416
7417 /* Make a node of the sort we want. */
7418 t = make_node (FUNCTION_TYPE);
7419 TREE_TYPE (t) = value_type;
7420 TYPE_ARG_TYPES (t) = arg_types;
7421
7422 /* If we already have such a type, use the old one. */
7423 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7424 hashcode = type_hash_list (arg_types, hashcode);
7425 t = type_hash_canon (hashcode, t);
7426
7427 /* Set up the canonical type. */
7428 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7429 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7430 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7431 &any_structural_p,
7432 &any_noncanonical_p);
7433 if (any_structural_p)
7434 SET_TYPE_STRUCTURAL_EQUALITY (t);
7435 else if (any_noncanonical_p)
7436 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7437 canon_argtypes);
7438
7439 if (!COMPLETE_TYPE_P (t))
7440 layout_type (t);
7441 return t;
7442 }
7443
7444 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7445
7446 tree
7447 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7448 {
7449 tree new_type = NULL;
7450 tree args, new_args = NULL, t;
7451 tree new_reversed;
7452 int i = 0;
7453
7454 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7455 args = TREE_CHAIN (args), i++)
7456 if (!bitmap_bit_p (args_to_skip, i))
7457 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7458
7459 new_reversed = nreverse (new_args);
7460 if (args)
7461 {
7462 if (new_reversed)
7463 TREE_CHAIN (new_args) = void_list_node;
7464 else
7465 new_reversed = void_list_node;
7466 }
7467
7468 /* Use copy_node to preserve as much as possible from original type
7469 (debug info, attribute lists etc.)
7470 Exception is METHOD_TYPEs must have THIS argument.
7471 When we are asked to remove it, we need to build new FUNCTION_TYPE
7472 instead. */
7473 if (TREE_CODE (orig_type) != METHOD_TYPE
7474 || !bitmap_bit_p (args_to_skip, 0))
7475 {
7476 new_type = build_distinct_type_copy (orig_type);
7477 TYPE_ARG_TYPES (new_type) = new_reversed;
7478 }
7479 else
7480 {
7481 new_type
7482 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7483 new_reversed));
7484 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7485 }
7486
7487 /* This is a new type, not a copy of an old type. Need to reassociate
7488 variants. We can handle everything except the main variant lazily. */
7489 t = TYPE_MAIN_VARIANT (orig_type);
7490 if (orig_type != t)
7491 {
7492 TYPE_MAIN_VARIANT (new_type) = t;
7493 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7494 TYPE_NEXT_VARIANT (t) = new_type;
7495 }
7496 else
7497 {
7498 TYPE_MAIN_VARIANT (new_type) = new_type;
7499 TYPE_NEXT_VARIANT (new_type) = NULL;
7500 }
7501 return new_type;
7502 }
7503
7504 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7505
7506 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7507 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7508 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7509
7510 tree
7511 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7512 {
7513 tree new_decl = copy_node (orig_decl);
7514 tree new_type;
7515
7516 new_type = TREE_TYPE (orig_decl);
7517 if (prototype_p (new_type))
7518 new_type = build_function_type_skip_args (new_type, args_to_skip);
7519 TREE_TYPE (new_decl) = new_type;
7520
7521 /* For declarations setting DECL_VINDEX (i.e. methods)
7522 we expect first argument to be THIS pointer. */
7523 if (bitmap_bit_p (args_to_skip, 0))
7524 DECL_VINDEX (new_decl) = NULL_TREE;
7525
7526 /* When signature changes, we need to clear builtin info. */
7527 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7528 {
7529 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7530 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7531 }
7532 return new_decl;
7533 }
7534
7535 /* Build a function type. The RETURN_TYPE is the type returned by the
7536 function. If VAARGS is set, no void_type_node is appended to the
7537 the list. ARGP must be always be terminated be a NULL_TREE. */
7538
7539 static tree
7540 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7541 {
7542 tree t, args, last;
7543
7544 t = va_arg (argp, tree);
7545 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7546 args = tree_cons (NULL_TREE, t, args);
7547
7548 if (vaargs)
7549 {
7550 last = args;
7551 if (args != NULL_TREE)
7552 args = nreverse (args);
7553 gcc_assert (last != void_list_node);
7554 }
7555 else if (args == NULL_TREE)
7556 args = void_list_node;
7557 else
7558 {
7559 last = args;
7560 args = nreverse (args);
7561 TREE_CHAIN (last) = void_list_node;
7562 }
7563 args = build_function_type (return_type, args);
7564
7565 return args;
7566 }
7567
7568 /* Build a function type. The RETURN_TYPE is the type returned by the
7569 function. If additional arguments are provided, they are
7570 additional argument types. The list of argument types must always
7571 be terminated by NULL_TREE. */
7572
7573 tree
7574 build_function_type_list (tree return_type, ...)
7575 {
7576 tree args;
7577 va_list p;
7578
7579 va_start (p, return_type);
7580 args = build_function_type_list_1 (false, return_type, p);
7581 va_end (p);
7582 return args;
7583 }
7584
7585 /* Build a variable argument function type. The RETURN_TYPE is the
7586 type returned by the function. If additional arguments are provided,
7587 they are additional argument types. The list of argument types must
7588 always be terminated by NULL_TREE. */
7589
7590 tree
7591 build_varargs_function_type_list (tree return_type, ...)
7592 {
7593 tree args;
7594 va_list p;
7595
7596 va_start (p, return_type);
7597 args = build_function_type_list_1 (true, return_type, p);
7598 va_end (p);
7599
7600 return args;
7601 }
7602
7603 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7604 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7605 for the method. An implicit additional parameter (of type
7606 pointer-to-BASETYPE) is added to the ARGTYPES. */
7607
7608 tree
7609 build_method_type_directly (tree basetype,
7610 tree rettype,
7611 tree argtypes)
7612 {
7613 tree t;
7614 tree ptype;
7615 int hashcode = 0;
7616 bool any_structural_p, any_noncanonical_p;
7617 tree canon_argtypes;
7618
7619 /* Make a node of the sort we want. */
7620 t = make_node (METHOD_TYPE);
7621
7622 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7623 TREE_TYPE (t) = rettype;
7624 ptype = build_pointer_type (basetype);
7625
7626 /* The actual arglist for this function includes a "hidden" argument
7627 which is "this". Put it into the list of argument types. */
7628 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7629 TYPE_ARG_TYPES (t) = argtypes;
7630
7631 /* If we already have such a type, use the old one. */
7632 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7633 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7634 hashcode = type_hash_list (argtypes, hashcode);
7635 t = type_hash_canon (hashcode, t);
7636
7637 /* Set up the canonical type. */
7638 any_structural_p
7639 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7640 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7641 any_noncanonical_p
7642 = (TYPE_CANONICAL (basetype) != basetype
7643 || TYPE_CANONICAL (rettype) != rettype);
7644 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7645 &any_structural_p,
7646 &any_noncanonical_p);
7647 if (any_structural_p)
7648 SET_TYPE_STRUCTURAL_EQUALITY (t);
7649 else if (any_noncanonical_p)
7650 TYPE_CANONICAL (t)
7651 = build_method_type_directly (TYPE_CANONICAL (basetype),
7652 TYPE_CANONICAL (rettype),
7653 canon_argtypes);
7654 if (!COMPLETE_TYPE_P (t))
7655 layout_type (t);
7656
7657 return t;
7658 }
7659
7660 /* Construct, lay out and return the type of methods belonging to class
7661 BASETYPE and whose arguments and values are described by TYPE.
7662 If that type exists already, reuse it.
7663 TYPE must be a FUNCTION_TYPE node. */
7664
7665 tree
7666 build_method_type (tree basetype, tree type)
7667 {
7668 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7669
7670 return build_method_type_directly (basetype,
7671 TREE_TYPE (type),
7672 TYPE_ARG_TYPES (type));
7673 }
7674
7675 /* Construct, lay out and return the type of offsets to a value
7676 of type TYPE, within an object of type BASETYPE.
7677 If a suitable offset type exists already, reuse it. */
7678
7679 tree
7680 build_offset_type (tree basetype, tree type)
7681 {
7682 tree t;
7683 hashval_t hashcode = 0;
7684
7685 /* Make a node of the sort we want. */
7686 t = make_node (OFFSET_TYPE);
7687
7688 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7689 TREE_TYPE (t) = type;
7690
7691 /* If we already have such a type, use the old one. */
7692 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7693 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7694 t = type_hash_canon (hashcode, t);
7695
7696 if (!COMPLETE_TYPE_P (t))
7697 layout_type (t);
7698
7699 if (TYPE_CANONICAL (t) == t)
7700 {
7701 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7702 || TYPE_STRUCTURAL_EQUALITY_P (type))
7703 SET_TYPE_STRUCTURAL_EQUALITY (t);
7704 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7705 || TYPE_CANONICAL (type) != type)
7706 TYPE_CANONICAL (t)
7707 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7708 TYPE_CANONICAL (type));
7709 }
7710
7711 return t;
7712 }
7713
7714 /* Create a complex type whose components are COMPONENT_TYPE. */
7715
7716 tree
7717 build_complex_type (tree component_type)
7718 {
7719 tree t;
7720 hashval_t hashcode;
7721
7722 gcc_assert (INTEGRAL_TYPE_P (component_type)
7723 || SCALAR_FLOAT_TYPE_P (component_type)
7724 || FIXED_POINT_TYPE_P (component_type));
7725
7726 /* Make a node of the sort we want. */
7727 t = make_node (COMPLEX_TYPE);
7728
7729 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7730
7731 /* If we already have such a type, use the old one. */
7732 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7733 t = type_hash_canon (hashcode, t);
7734
7735 if (!COMPLETE_TYPE_P (t))
7736 layout_type (t);
7737
7738 if (TYPE_CANONICAL (t) == t)
7739 {
7740 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7741 SET_TYPE_STRUCTURAL_EQUALITY (t);
7742 else if (TYPE_CANONICAL (component_type) != component_type)
7743 TYPE_CANONICAL (t)
7744 = build_complex_type (TYPE_CANONICAL (component_type));
7745 }
7746
7747 /* We need to create a name, since complex is a fundamental type. */
7748 if (! TYPE_NAME (t))
7749 {
7750 const char *name;
7751 if (component_type == char_type_node)
7752 name = "complex char";
7753 else if (component_type == signed_char_type_node)
7754 name = "complex signed char";
7755 else if (component_type == unsigned_char_type_node)
7756 name = "complex unsigned char";
7757 else if (component_type == short_integer_type_node)
7758 name = "complex short int";
7759 else if (component_type == short_unsigned_type_node)
7760 name = "complex short unsigned int";
7761 else if (component_type == integer_type_node)
7762 name = "complex int";
7763 else if (component_type == unsigned_type_node)
7764 name = "complex unsigned int";
7765 else if (component_type == long_integer_type_node)
7766 name = "complex long int";
7767 else if (component_type == long_unsigned_type_node)
7768 name = "complex long unsigned int";
7769 else if (component_type == long_long_integer_type_node)
7770 name = "complex long long int";
7771 else if (component_type == long_long_unsigned_type_node)
7772 name = "complex long long unsigned int";
7773 else
7774 name = 0;
7775
7776 if (name != 0)
7777 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7778 get_identifier (name), t);
7779 }
7780
7781 return build_qualified_type (t, TYPE_QUALS (component_type));
7782 }
7783
7784 /* If TYPE is a real or complex floating-point type and the target
7785 does not directly support arithmetic on TYPE then return the wider
7786 type to be used for arithmetic on TYPE. Otherwise, return
7787 NULL_TREE. */
7788
7789 tree
7790 excess_precision_type (tree type)
7791 {
7792 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7793 {
7794 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7795 switch (TREE_CODE (type))
7796 {
7797 case REAL_TYPE:
7798 switch (flt_eval_method)
7799 {
7800 case 1:
7801 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7802 return double_type_node;
7803 break;
7804 case 2:
7805 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7806 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7807 return long_double_type_node;
7808 break;
7809 default:
7810 gcc_unreachable ();
7811 }
7812 break;
7813 case COMPLEX_TYPE:
7814 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7815 return NULL_TREE;
7816 switch (flt_eval_method)
7817 {
7818 case 1:
7819 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7820 return complex_double_type_node;
7821 break;
7822 case 2:
7823 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7824 || (TYPE_MODE (TREE_TYPE (type))
7825 == TYPE_MODE (double_type_node)))
7826 return complex_long_double_type_node;
7827 break;
7828 default:
7829 gcc_unreachable ();
7830 }
7831 break;
7832 default:
7833 break;
7834 }
7835 }
7836 return NULL_TREE;
7837 }
7838 \f
7839 /* Return OP, stripped of any conversions to wider types as much as is safe.
7840 Converting the value back to OP's type makes a value equivalent to OP.
7841
7842 If FOR_TYPE is nonzero, we return a value which, if converted to
7843 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7844
7845 OP must have integer, real or enumeral type. Pointers are not allowed!
7846
7847 There are some cases where the obvious value we could return
7848 would regenerate to OP if converted to OP's type,
7849 but would not extend like OP to wider types.
7850 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7851 For example, if OP is (unsigned short)(signed char)-1,
7852 we avoid returning (signed char)-1 if FOR_TYPE is int,
7853 even though extending that to an unsigned short would regenerate OP,
7854 since the result of extending (signed char)-1 to (int)
7855 is different from (int) OP. */
7856
7857 tree
7858 get_unwidened (tree op, tree for_type)
7859 {
7860 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7861 tree type = TREE_TYPE (op);
7862 unsigned final_prec
7863 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7864 int uns
7865 = (for_type != 0 && for_type != type
7866 && final_prec > TYPE_PRECISION (type)
7867 && TYPE_UNSIGNED (type));
7868 tree win = op;
7869
7870 while (CONVERT_EXPR_P (op))
7871 {
7872 int bitschange;
7873
7874 /* TYPE_PRECISION on vector types has different meaning
7875 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7876 so avoid them here. */
7877 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7878 break;
7879
7880 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7881 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7882
7883 /* Truncations are many-one so cannot be removed.
7884 Unless we are later going to truncate down even farther. */
7885 if (bitschange < 0
7886 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7887 break;
7888
7889 /* See what's inside this conversion. If we decide to strip it,
7890 we will set WIN. */
7891 op = TREE_OPERAND (op, 0);
7892
7893 /* If we have not stripped any zero-extensions (uns is 0),
7894 we can strip any kind of extension.
7895 If we have previously stripped a zero-extension,
7896 only zero-extensions can safely be stripped.
7897 Any extension can be stripped if the bits it would produce
7898 are all going to be discarded later by truncating to FOR_TYPE. */
7899
7900 if (bitschange > 0)
7901 {
7902 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7903 win = op;
7904 /* TYPE_UNSIGNED says whether this is a zero-extension.
7905 Let's avoid computing it if it does not affect WIN
7906 and if UNS will not be needed again. */
7907 if ((uns
7908 || CONVERT_EXPR_P (op))
7909 && TYPE_UNSIGNED (TREE_TYPE (op)))
7910 {
7911 uns = 1;
7912 win = op;
7913 }
7914 }
7915 }
7916
7917 /* If we finally reach a constant see if it fits in for_type and
7918 in that case convert it. */
7919 if (for_type
7920 && TREE_CODE (win) == INTEGER_CST
7921 && TREE_TYPE (win) != for_type
7922 && int_fits_type_p (win, for_type))
7923 win = fold_convert (for_type, win);
7924
7925 return win;
7926 }
7927 \f
7928 /* Return OP or a simpler expression for a narrower value
7929 which can be sign-extended or zero-extended to give back OP.
7930 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7931 or 0 if the value should be sign-extended. */
7932
7933 tree
7934 get_narrower (tree op, int *unsignedp_ptr)
7935 {
7936 int uns = 0;
7937 int first = 1;
7938 tree win = op;
7939 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7940
7941 while (TREE_CODE (op) == NOP_EXPR)
7942 {
7943 int bitschange
7944 = (TYPE_PRECISION (TREE_TYPE (op))
7945 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7946
7947 /* Truncations are many-one so cannot be removed. */
7948 if (bitschange < 0)
7949 break;
7950
7951 /* See what's inside this conversion. If we decide to strip it,
7952 we will set WIN. */
7953
7954 if (bitschange > 0)
7955 {
7956 op = TREE_OPERAND (op, 0);
7957 /* An extension: the outermost one can be stripped,
7958 but remember whether it is zero or sign extension. */
7959 if (first)
7960 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7961 /* Otherwise, if a sign extension has been stripped,
7962 only sign extensions can now be stripped;
7963 if a zero extension has been stripped, only zero-extensions. */
7964 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7965 break;
7966 first = 0;
7967 }
7968 else /* bitschange == 0 */
7969 {
7970 /* A change in nominal type can always be stripped, but we must
7971 preserve the unsignedness. */
7972 if (first)
7973 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7974 first = 0;
7975 op = TREE_OPERAND (op, 0);
7976 /* Keep trying to narrow, but don't assign op to win if it
7977 would turn an integral type into something else. */
7978 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7979 continue;
7980 }
7981
7982 win = op;
7983 }
7984
7985 if (TREE_CODE (op) == COMPONENT_REF
7986 /* Since type_for_size always gives an integer type. */
7987 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7988 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7989 /* Ensure field is laid out already. */
7990 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7991 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7992 {
7993 unsigned HOST_WIDE_INT innerprec
7994 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7995 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7996 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7997 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7998
7999 /* We can get this structure field in a narrower type that fits it,
8000 but the resulting extension to its nominal type (a fullword type)
8001 must satisfy the same conditions as for other extensions.
8002
8003 Do this only for fields that are aligned (not bit-fields),
8004 because when bit-field insns will be used there is no
8005 advantage in doing this. */
8006
8007 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8008 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8009 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8010 && type != 0)
8011 {
8012 if (first)
8013 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8014 win = fold_convert (type, op);
8015 }
8016 }
8017
8018 *unsignedp_ptr = uns;
8019 return win;
8020 }
8021 \f
8022 /* Returns true if integer constant C has a value that is permissible
8023 for type TYPE (an INTEGER_TYPE). */
8024
8025 bool
8026 int_fits_type_p (const_tree c, const_tree type)
8027 {
8028 tree type_low_bound, type_high_bound;
8029 bool ok_for_low_bound, ok_for_high_bound, unsc;
8030 double_int dc, dd;
8031
8032 dc = tree_to_double_int (c);
8033 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8034
8035 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
8036 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
8037 && unsc)
8038 /* So c is an unsigned integer whose type is sizetype and type is not.
8039 sizetype'd integers are sign extended even though they are
8040 unsigned. If the integer value fits in the lower end word of c,
8041 and if the higher end word has all its bits set to 1, that
8042 means the higher end bits are set to 1 only for sign extension.
8043 So let's convert c into an equivalent zero extended unsigned
8044 integer. */
8045 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
8046
8047 retry:
8048 type_low_bound = TYPE_MIN_VALUE (type);
8049 type_high_bound = TYPE_MAX_VALUE (type);
8050
8051 /* If at least one bound of the type is a constant integer, we can check
8052 ourselves and maybe make a decision. If no such decision is possible, but
8053 this type is a subtype, try checking against that. Otherwise, use
8054 double_int_fits_to_tree_p, which checks against the precision.
8055
8056 Compute the status for each possibly constant bound, and return if we see
8057 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8058 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8059 for "constant known to fit". */
8060
8061 /* Check if c >= type_low_bound. */
8062 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8063 {
8064 dd = tree_to_double_int (type_low_bound);
8065 if (TREE_CODE (type) == INTEGER_TYPE
8066 && TYPE_IS_SIZETYPE (type)
8067 && TYPE_UNSIGNED (type))
8068 dd = double_int_zext (dd, TYPE_PRECISION (type));
8069 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8070 {
8071 int c_neg = (!unsc && double_int_negative_p (dc));
8072 int t_neg = (unsc && double_int_negative_p (dd));
8073
8074 if (c_neg && !t_neg)
8075 return false;
8076 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8077 return false;
8078 }
8079 else if (double_int_cmp (dc, dd, unsc) < 0)
8080 return false;
8081 ok_for_low_bound = true;
8082 }
8083 else
8084 ok_for_low_bound = false;
8085
8086 /* Check if c <= type_high_bound. */
8087 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8088 {
8089 dd = tree_to_double_int (type_high_bound);
8090 if (TREE_CODE (type) == INTEGER_TYPE
8091 && TYPE_IS_SIZETYPE (type)
8092 && TYPE_UNSIGNED (type))
8093 dd = double_int_zext (dd, TYPE_PRECISION (type));
8094 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8095 {
8096 int c_neg = (!unsc && double_int_negative_p (dc));
8097 int t_neg = (unsc && double_int_negative_p (dd));
8098
8099 if (t_neg && !c_neg)
8100 return false;
8101 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8102 return false;
8103 }
8104 else if (double_int_cmp (dc, dd, unsc) > 0)
8105 return false;
8106 ok_for_high_bound = true;
8107 }
8108 else
8109 ok_for_high_bound = false;
8110
8111 /* If the constant fits both bounds, the result is known. */
8112 if (ok_for_low_bound && ok_for_high_bound)
8113 return true;
8114
8115 /* Perform some generic filtering which may allow making a decision
8116 even if the bounds are not constant. First, negative integers
8117 never fit in unsigned types, */
8118 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8119 return false;
8120
8121 /* Second, narrower types always fit in wider ones. */
8122 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8123 return true;
8124
8125 /* Third, unsigned integers with top bit set never fit signed types. */
8126 if (! TYPE_UNSIGNED (type) && unsc)
8127 {
8128 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8129 if (prec < HOST_BITS_PER_WIDE_INT)
8130 {
8131 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8132 return false;
8133 }
8134 else if (((((unsigned HOST_WIDE_INT) 1)
8135 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8136 return false;
8137 }
8138
8139 /* If we haven't been able to decide at this point, there nothing more we
8140 can check ourselves here. Look at the base type if we have one and it
8141 has the same precision. */
8142 if (TREE_CODE (type) == INTEGER_TYPE
8143 && TREE_TYPE (type) != 0
8144 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8145 {
8146 type = TREE_TYPE (type);
8147 goto retry;
8148 }
8149
8150 /* Or to double_int_fits_to_tree_p, if nothing else. */
8151 return double_int_fits_to_tree_p (type, dc);
8152 }
8153
8154 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8155 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8156 represented (assuming two's-complement arithmetic) within the bit
8157 precision of the type are returned instead. */
8158
8159 void
8160 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8161 {
8162 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8163 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8164 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8165 TYPE_UNSIGNED (type));
8166 else
8167 {
8168 if (TYPE_UNSIGNED (type))
8169 mpz_set_ui (min, 0);
8170 else
8171 {
8172 double_int mn;
8173 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8174 mn = double_int_sext (double_int_add (mn, double_int_one),
8175 TYPE_PRECISION (type));
8176 mpz_set_double_int (min, mn, false);
8177 }
8178 }
8179
8180 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8181 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8182 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8183 TYPE_UNSIGNED (type));
8184 else
8185 {
8186 if (TYPE_UNSIGNED (type))
8187 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8188 true);
8189 else
8190 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8191 true);
8192 }
8193 }
8194
8195 /* Return true if VAR is an automatic variable defined in function FN. */
8196
8197 bool
8198 auto_var_in_fn_p (const_tree var, const_tree fn)
8199 {
8200 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8201 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8202 || TREE_CODE (var) == PARM_DECL)
8203 && ! TREE_STATIC (var))
8204 || TREE_CODE (var) == LABEL_DECL
8205 || TREE_CODE (var) == RESULT_DECL));
8206 }
8207
8208 /* Subprogram of following function. Called by walk_tree.
8209
8210 Return *TP if it is an automatic variable or parameter of the
8211 function passed in as DATA. */
8212
8213 static tree
8214 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8215 {
8216 tree fn = (tree) data;
8217
8218 if (TYPE_P (*tp))
8219 *walk_subtrees = 0;
8220
8221 else if (DECL_P (*tp)
8222 && auto_var_in_fn_p (*tp, fn))
8223 return *tp;
8224
8225 return NULL_TREE;
8226 }
8227
8228 /* Returns true if T is, contains, or refers to a type with variable
8229 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8230 arguments, but not the return type. If FN is nonzero, only return
8231 true if a modifier of the type or position of FN is a variable or
8232 parameter inside FN.
8233
8234 This concept is more general than that of C99 'variably modified types':
8235 in C99, a struct type is never variably modified because a VLA may not
8236 appear as a structure member. However, in GNU C code like:
8237
8238 struct S { int i[f()]; };
8239
8240 is valid, and other languages may define similar constructs. */
8241
8242 bool
8243 variably_modified_type_p (tree type, tree fn)
8244 {
8245 tree t;
8246
8247 /* Test if T is either variable (if FN is zero) or an expression containing
8248 a variable in FN. */
8249 #define RETURN_TRUE_IF_VAR(T) \
8250 do { tree _t = (T); \
8251 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8252 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8253 return true; } while (0)
8254
8255 if (type == error_mark_node)
8256 return false;
8257
8258 /* If TYPE itself has variable size, it is variably modified. */
8259 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8260 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8261
8262 switch (TREE_CODE (type))
8263 {
8264 case POINTER_TYPE:
8265 case REFERENCE_TYPE:
8266 case VECTOR_TYPE:
8267 if (variably_modified_type_p (TREE_TYPE (type), fn))
8268 return true;
8269 break;
8270
8271 case FUNCTION_TYPE:
8272 case METHOD_TYPE:
8273 /* If TYPE is a function type, it is variably modified if the
8274 return type is variably modified. */
8275 if (variably_modified_type_p (TREE_TYPE (type), fn))
8276 return true;
8277 break;
8278
8279 case INTEGER_TYPE:
8280 case REAL_TYPE:
8281 case FIXED_POINT_TYPE:
8282 case ENUMERAL_TYPE:
8283 case BOOLEAN_TYPE:
8284 /* Scalar types are variably modified if their end points
8285 aren't constant. */
8286 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8287 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8288 break;
8289
8290 case RECORD_TYPE:
8291 case UNION_TYPE:
8292 case QUAL_UNION_TYPE:
8293 /* We can't see if any of the fields are variably-modified by the
8294 definition we normally use, since that would produce infinite
8295 recursion via pointers. */
8296 /* This is variably modified if some field's type is. */
8297 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8298 if (TREE_CODE (t) == FIELD_DECL)
8299 {
8300 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8301 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8302 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8303
8304 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8305 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8306 }
8307 break;
8308
8309 case ARRAY_TYPE:
8310 /* Do not call ourselves to avoid infinite recursion. This is
8311 variably modified if the element type is. */
8312 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8313 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8314 break;
8315
8316 default:
8317 break;
8318 }
8319
8320 /* The current language may have other cases to check, but in general,
8321 all other types are not variably modified. */
8322 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8323
8324 #undef RETURN_TRUE_IF_VAR
8325 }
8326
8327 /* Given a DECL or TYPE, return the scope in which it was declared, or
8328 NULL_TREE if there is no containing scope. */
8329
8330 tree
8331 get_containing_scope (const_tree t)
8332 {
8333 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8334 }
8335
8336 /* Return the innermost context enclosing DECL that is
8337 a FUNCTION_DECL, or zero if none. */
8338
8339 tree
8340 decl_function_context (const_tree decl)
8341 {
8342 tree context;
8343
8344 if (TREE_CODE (decl) == ERROR_MARK)
8345 return 0;
8346
8347 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8348 where we look up the function at runtime. Such functions always take
8349 a first argument of type 'pointer to real context'.
8350
8351 C++ should really be fixed to use DECL_CONTEXT for the real context,
8352 and use something else for the "virtual context". */
8353 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8354 context
8355 = TYPE_MAIN_VARIANT
8356 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8357 else
8358 context = DECL_CONTEXT (decl);
8359
8360 while (context && TREE_CODE (context) != FUNCTION_DECL)
8361 {
8362 if (TREE_CODE (context) == BLOCK)
8363 context = BLOCK_SUPERCONTEXT (context);
8364 else
8365 context = get_containing_scope (context);
8366 }
8367
8368 return context;
8369 }
8370
8371 /* Return the innermost context enclosing DECL that is
8372 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8373 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8374
8375 tree
8376 decl_type_context (const_tree decl)
8377 {
8378 tree context = DECL_CONTEXT (decl);
8379
8380 while (context)
8381 switch (TREE_CODE (context))
8382 {
8383 case NAMESPACE_DECL:
8384 case TRANSLATION_UNIT_DECL:
8385 return NULL_TREE;
8386
8387 case RECORD_TYPE:
8388 case UNION_TYPE:
8389 case QUAL_UNION_TYPE:
8390 return context;
8391
8392 case TYPE_DECL:
8393 case FUNCTION_DECL:
8394 context = DECL_CONTEXT (context);
8395 break;
8396
8397 case BLOCK:
8398 context = BLOCK_SUPERCONTEXT (context);
8399 break;
8400
8401 default:
8402 gcc_unreachable ();
8403 }
8404
8405 return NULL_TREE;
8406 }
8407
8408 /* CALL is a CALL_EXPR. Return the declaration for the function
8409 called, or NULL_TREE if the called function cannot be
8410 determined. */
8411
8412 tree
8413 get_callee_fndecl (const_tree call)
8414 {
8415 tree addr;
8416
8417 if (call == error_mark_node)
8418 return error_mark_node;
8419
8420 /* It's invalid to call this function with anything but a
8421 CALL_EXPR. */
8422 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8423
8424 /* The first operand to the CALL is the address of the function
8425 called. */
8426 addr = CALL_EXPR_FN (call);
8427
8428 STRIP_NOPS (addr);
8429
8430 /* If this is a readonly function pointer, extract its initial value. */
8431 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8432 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8433 && DECL_INITIAL (addr))
8434 addr = DECL_INITIAL (addr);
8435
8436 /* If the address is just `&f' for some function `f', then we know
8437 that `f' is being called. */
8438 if (TREE_CODE (addr) == ADDR_EXPR
8439 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8440 return TREE_OPERAND (addr, 0);
8441
8442 /* We couldn't figure out what was being called. */
8443 return NULL_TREE;
8444 }
8445
8446 /* Print debugging information about tree nodes generated during the compile,
8447 and any language-specific information. */
8448
8449 void
8450 dump_tree_statistics (void)
8451 {
8452 #ifdef GATHER_STATISTICS
8453 int i;
8454 int total_nodes, total_bytes;
8455 #endif
8456
8457 fprintf (stderr, "\n??? tree nodes created\n\n");
8458 #ifdef GATHER_STATISTICS
8459 fprintf (stderr, "Kind Nodes Bytes\n");
8460 fprintf (stderr, "---------------------------------------\n");
8461 total_nodes = total_bytes = 0;
8462 for (i = 0; i < (int) all_kinds; i++)
8463 {
8464 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8465 tree_node_counts[i], tree_node_sizes[i]);
8466 total_nodes += tree_node_counts[i];
8467 total_bytes += tree_node_sizes[i];
8468 }
8469 fprintf (stderr, "---------------------------------------\n");
8470 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8471 fprintf (stderr, "---------------------------------------\n");
8472 ssanames_print_statistics ();
8473 phinodes_print_statistics ();
8474 #else
8475 fprintf (stderr, "(No per-node statistics)\n");
8476 #endif
8477 print_type_hash_statistics ();
8478 print_debug_expr_statistics ();
8479 print_value_expr_statistics ();
8480 lang_hooks.print_statistics ();
8481 }
8482 \f
8483 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8484
8485 /* Generate a crc32 of a string. */
8486
8487 unsigned
8488 crc32_string (unsigned chksum, const char *string)
8489 {
8490 do
8491 {
8492 unsigned value = *string << 24;
8493 unsigned ix;
8494
8495 for (ix = 8; ix--; value <<= 1)
8496 {
8497 unsigned feedback;
8498
8499 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8500 chksum <<= 1;
8501 chksum ^= feedback;
8502 }
8503 }
8504 while (*string++);
8505 return chksum;
8506 }
8507
8508 /* P is a string that will be used in a symbol. Mask out any characters
8509 that are not valid in that context. */
8510
8511 void
8512 clean_symbol_name (char *p)
8513 {
8514 for (; *p; p++)
8515 if (! (ISALNUM (*p)
8516 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8517 || *p == '$'
8518 #endif
8519 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8520 || *p == '.'
8521 #endif
8522 ))
8523 *p = '_';
8524 }
8525
8526 /* Generate a name for a special-purpose function function.
8527 The generated name may need to be unique across the whole link.
8528 TYPE is some string to identify the purpose of this function to the
8529 linker or collect2; it must start with an uppercase letter,
8530 one of:
8531 I - for constructors
8532 D - for destructors
8533 N - for C++ anonymous namespaces
8534 F - for DWARF unwind frame information. */
8535
8536 tree
8537 get_file_function_name (const char *type)
8538 {
8539 char *buf;
8540 const char *p;
8541 char *q;
8542
8543 /* If we already have a name we know to be unique, just use that. */
8544 if (first_global_object_name)
8545 p = q = ASTRDUP (first_global_object_name);
8546 /* If the target is handling the constructors/destructors, they
8547 will be local to this file and the name is only necessary for
8548 debugging purposes.
8549 We also assign sub_I and sub_D sufixes to constructors called from
8550 the global static constructors. These are always local. */
8551 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8552 || (strncmp (type, "sub_", 4) == 0
8553 && (type[4] == 'I' || type[4] == 'D')))
8554 {
8555 const char *file = main_input_filename;
8556 if (! file)
8557 file = input_filename;
8558 /* Just use the file's basename, because the full pathname
8559 might be quite long. */
8560 p = strrchr (file, '/');
8561 if (p)
8562 p++;
8563 else
8564 p = file;
8565 p = q = ASTRDUP (p);
8566 }
8567 else
8568 {
8569 /* Otherwise, the name must be unique across the entire link.
8570 We don't have anything that we know to be unique to this translation
8571 unit, so use what we do have and throw in some randomness. */
8572 unsigned len;
8573 const char *name = weak_global_object_name;
8574 const char *file = main_input_filename;
8575
8576 if (! name)
8577 name = "";
8578 if (! file)
8579 file = input_filename;
8580
8581 len = strlen (file);
8582 q = (char *) alloca (9 * 2 + len + 1);
8583 memcpy (q, file, len + 1);
8584
8585 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8586 crc32_string (0, get_random_seed (false)));
8587
8588 p = q;
8589 }
8590
8591 clean_symbol_name (q);
8592 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8593 + strlen (type));
8594
8595 /* Set up the name of the file-level functions we may need.
8596 Use a global object (which is already required to be unique over
8597 the program) rather than the file name (which imposes extra
8598 constraints). */
8599 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8600
8601 return get_identifier (buf);
8602 }
8603 \f
8604 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8605
8606 /* Complain that the tree code of NODE does not match the expected 0
8607 terminated list of trailing codes. The trailing code list can be
8608 empty, for a more vague error message. FILE, LINE, and FUNCTION
8609 are of the caller. */
8610
8611 void
8612 tree_check_failed (const_tree node, const char *file,
8613 int line, const char *function, ...)
8614 {
8615 va_list args;
8616 const char *buffer;
8617 unsigned length = 0;
8618 int code;
8619
8620 va_start (args, function);
8621 while ((code = va_arg (args, int)))
8622 length += 4 + strlen (tree_code_name[code]);
8623 va_end (args);
8624 if (length)
8625 {
8626 char *tmp;
8627 va_start (args, function);
8628 length += strlen ("expected ");
8629 buffer = tmp = (char *) alloca (length);
8630 length = 0;
8631 while ((code = va_arg (args, int)))
8632 {
8633 const char *prefix = length ? " or " : "expected ";
8634
8635 strcpy (tmp + length, prefix);
8636 length += strlen (prefix);
8637 strcpy (tmp + length, tree_code_name[code]);
8638 length += strlen (tree_code_name[code]);
8639 }
8640 va_end (args);
8641 }
8642 else
8643 buffer = "unexpected node";
8644
8645 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8646 buffer, tree_code_name[TREE_CODE (node)],
8647 function, trim_filename (file), line);
8648 }
8649
8650 /* Complain that the tree code of NODE does match the expected 0
8651 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8652 the caller. */
8653
8654 void
8655 tree_not_check_failed (const_tree node, const char *file,
8656 int line, const char *function, ...)
8657 {
8658 va_list args;
8659 char *buffer;
8660 unsigned length = 0;
8661 int code;
8662
8663 va_start (args, function);
8664 while ((code = va_arg (args, int)))
8665 length += 4 + strlen (tree_code_name[code]);
8666 va_end (args);
8667 va_start (args, function);
8668 buffer = (char *) alloca (length);
8669 length = 0;
8670 while ((code = va_arg (args, int)))
8671 {
8672 if (length)
8673 {
8674 strcpy (buffer + length, " or ");
8675 length += 4;
8676 }
8677 strcpy (buffer + length, tree_code_name[code]);
8678 length += strlen (tree_code_name[code]);
8679 }
8680 va_end (args);
8681
8682 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8683 buffer, tree_code_name[TREE_CODE (node)],
8684 function, trim_filename (file), line);
8685 }
8686
8687 /* Similar to tree_check_failed, except that we check for a class of tree
8688 code, given in CL. */
8689
8690 void
8691 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8692 const char *file, int line, const char *function)
8693 {
8694 internal_error
8695 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8696 TREE_CODE_CLASS_STRING (cl),
8697 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8698 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8699 }
8700
8701 /* Similar to tree_check_failed, except that instead of specifying a
8702 dozen codes, use the knowledge that they're all sequential. */
8703
8704 void
8705 tree_range_check_failed (const_tree node, const char *file, int line,
8706 const char *function, enum tree_code c1,
8707 enum tree_code c2)
8708 {
8709 char *buffer;
8710 unsigned length = 0;
8711 unsigned int c;
8712
8713 for (c = c1; c <= c2; ++c)
8714 length += 4 + strlen (tree_code_name[c]);
8715
8716 length += strlen ("expected ");
8717 buffer = (char *) alloca (length);
8718 length = 0;
8719
8720 for (c = c1; c <= c2; ++c)
8721 {
8722 const char *prefix = length ? " or " : "expected ";
8723
8724 strcpy (buffer + length, prefix);
8725 length += strlen (prefix);
8726 strcpy (buffer + length, tree_code_name[c]);
8727 length += strlen (tree_code_name[c]);
8728 }
8729
8730 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8731 buffer, tree_code_name[TREE_CODE (node)],
8732 function, trim_filename (file), line);
8733 }
8734
8735
8736 /* Similar to tree_check_failed, except that we check that a tree does
8737 not have the specified code, given in CL. */
8738
8739 void
8740 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8741 const char *file, int line, const char *function)
8742 {
8743 internal_error
8744 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8745 TREE_CODE_CLASS_STRING (cl),
8746 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8747 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8748 }
8749
8750
8751 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8752
8753 void
8754 omp_clause_check_failed (const_tree node, const char *file, int line,
8755 const char *function, enum omp_clause_code code)
8756 {
8757 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8758 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8759 function, trim_filename (file), line);
8760 }
8761
8762
8763 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8764
8765 void
8766 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8767 const char *function, enum omp_clause_code c1,
8768 enum omp_clause_code c2)
8769 {
8770 char *buffer;
8771 unsigned length = 0;
8772 unsigned int c;
8773
8774 for (c = c1; c <= c2; ++c)
8775 length += 4 + strlen (omp_clause_code_name[c]);
8776
8777 length += strlen ("expected ");
8778 buffer = (char *) alloca (length);
8779 length = 0;
8780
8781 for (c = c1; c <= c2; ++c)
8782 {
8783 const char *prefix = length ? " or " : "expected ";
8784
8785 strcpy (buffer + length, prefix);
8786 length += strlen (prefix);
8787 strcpy (buffer + length, omp_clause_code_name[c]);
8788 length += strlen (omp_clause_code_name[c]);
8789 }
8790
8791 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8792 buffer, omp_clause_code_name[TREE_CODE (node)],
8793 function, trim_filename (file), line);
8794 }
8795
8796
8797 #undef DEFTREESTRUCT
8798 #define DEFTREESTRUCT(VAL, NAME) NAME,
8799
8800 static const char *ts_enum_names[] = {
8801 #include "treestruct.def"
8802 };
8803 #undef DEFTREESTRUCT
8804
8805 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8806
8807 /* Similar to tree_class_check_failed, except that we check for
8808 whether CODE contains the tree structure identified by EN. */
8809
8810 void
8811 tree_contains_struct_check_failed (const_tree node,
8812 const enum tree_node_structure_enum en,
8813 const char *file, int line,
8814 const char *function)
8815 {
8816 internal_error
8817 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8818 TS_ENUM_NAME(en),
8819 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8820 }
8821
8822
8823 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8824 (dynamically sized) vector. */
8825
8826 void
8827 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8828 const char *function)
8829 {
8830 internal_error
8831 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8832 idx + 1, len, function, trim_filename (file), line);
8833 }
8834
8835 /* Similar to above, except that the check is for the bounds of the operand
8836 vector of an expression node EXP. */
8837
8838 void
8839 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8840 int line, const char *function)
8841 {
8842 int code = TREE_CODE (exp);
8843 internal_error
8844 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8845 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8846 function, trim_filename (file), line);
8847 }
8848
8849 /* Similar to above, except that the check is for the number of
8850 operands of an OMP_CLAUSE node. */
8851
8852 void
8853 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8854 int line, const char *function)
8855 {
8856 internal_error
8857 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8858 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8859 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8860 trim_filename (file), line);
8861 }
8862 #endif /* ENABLE_TREE_CHECKING */
8863 \f
8864 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8865 and mapped to the machine mode MODE. Initialize its fields and build
8866 the information necessary for debugging output. */
8867
8868 static tree
8869 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8870 {
8871 tree t;
8872 hashval_t hashcode = 0;
8873
8874 t = make_node (VECTOR_TYPE);
8875 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8876 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8877 SET_TYPE_MODE (t, mode);
8878
8879 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8880 SET_TYPE_STRUCTURAL_EQUALITY (t);
8881 else if (TYPE_CANONICAL (innertype) != innertype
8882 || mode != VOIDmode)
8883 TYPE_CANONICAL (t)
8884 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8885
8886 layout_type (t);
8887
8888 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8889 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8890 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8891 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8892 t = type_hash_canon (hashcode, t);
8893
8894 /* We have built a main variant, based on the main variant of the
8895 inner type. Use it to build the variant we return. */
8896 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8897 && TREE_TYPE (t) != innertype)
8898 return build_type_attribute_qual_variant (t,
8899 TYPE_ATTRIBUTES (innertype),
8900 TYPE_QUALS (innertype));
8901
8902 return t;
8903 }
8904
8905 static tree
8906 make_or_reuse_type (unsigned size, int unsignedp)
8907 {
8908 if (size == INT_TYPE_SIZE)
8909 return unsignedp ? unsigned_type_node : integer_type_node;
8910 if (size == CHAR_TYPE_SIZE)
8911 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8912 if (size == SHORT_TYPE_SIZE)
8913 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8914 if (size == LONG_TYPE_SIZE)
8915 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8916 if (size == LONG_LONG_TYPE_SIZE)
8917 return (unsignedp ? long_long_unsigned_type_node
8918 : long_long_integer_type_node);
8919 if (size == 128 && int128_integer_type_node)
8920 return (unsignedp ? int128_unsigned_type_node
8921 : int128_integer_type_node);
8922
8923 if (unsignedp)
8924 return make_unsigned_type (size);
8925 else
8926 return make_signed_type (size);
8927 }
8928
8929 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8930
8931 static tree
8932 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8933 {
8934 if (satp)
8935 {
8936 if (size == SHORT_FRACT_TYPE_SIZE)
8937 return unsignedp ? sat_unsigned_short_fract_type_node
8938 : sat_short_fract_type_node;
8939 if (size == FRACT_TYPE_SIZE)
8940 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8941 if (size == LONG_FRACT_TYPE_SIZE)
8942 return unsignedp ? sat_unsigned_long_fract_type_node
8943 : sat_long_fract_type_node;
8944 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8945 return unsignedp ? sat_unsigned_long_long_fract_type_node
8946 : sat_long_long_fract_type_node;
8947 }
8948 else
8949 {
8950 if (size == SHORT_FRACT_TYPE_SIZE)
8951 return unsignedp ? unsigned_short_fract_type_node
8952 : short_fract_type_node;
8953 if (size == FRACT_TYPE_SIZE)
8954 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8955 if (size == LONG_FRACT_TYPE_SIZE)
8956 return unsignedp ? unsigned_long_fract_type_node
8957 : long_fract_type_node;
8958 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8959 return unsignedp ? unsigned_long_long_fract_type_node
8960 : long_long_fract_type_node;
8961 }
8962
8963 return make_fract_type (size, unsignedp, satp);
8964 }
8965
8966 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8967
8968 static tree
8969 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8970 {
8971 if (satp)
8972 {
8973 if (size == SHORT_ACCUM_TYPE_SIZE)
8974 return unsignedp ? sat_unsigned_short_accum_type_node
8975 : sat_short_accum_type_node;
8976 if (size == ACCUM_TYPE_SIZE)
8977 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8978 if (size == LONG_ACCUM_TYPE_SIZE)
8979 return unsignedp ? sat_unsigned_long_accum_type_node
8980 : sat_long_accum_type_node;
8981 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8982 return unsignedp ? sat_unsigned_long_long_accum_type_node
8983 : sat_long_long_accum_type_node;
8984 }
8985 else
8986 {
8987 if (size == SHORT_ACCUM_TYPE_SIZE)
8988 return unsignedp ? unsigned_short_accum_type_node
8989 : short_accum_type_node;
8990 if (size == ACCUM_TYPE_SIZE)
8991 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8992 if (size == LONG_ACCUM_TYPE_SIZE)
8993 return unsignedp ? unsigned_long_accum_type_node
8994 : long_accum_type_node;
8995 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8996 return unsignedp ? unsigned_long_long_accum_type_node
8997 : long_long_accum_type_node;
8998 }
8999
9000 return make_accum_type (size, unsignedp, satp);
9001 }
9002
9003 /* Create nodes for all integer types (and error_mark_node) using the sizes
9004 of C datatypes. The caller should call set_sizetype soon after calling
9005 this function to select one of the types as sizetype. */
9006
9007 void
9008 build_common_tree_nodes (bool signed_char)
9009 {
9010 error_mark_node = make_node (ERROR_MARK);
9011 TREE_TYPE (error_mark_node) = error_mark_node;
9012
9013 initialize_sizetypes ();
9014
9015 /* Define both `signed char' and `unsigned char'. */
9016 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9017 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9018 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9019 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9020
9021 /* Define `char', which is like either `signed char' or `unsigned char'
9022 but not the same as either. */
9023 char_type_node
9024 = (signed_char
9025 ? make_signed_type (CHAR_TYPE_SIZE)
9026 : make_unsigned_type (CHAR_TYPE_SIZE));
9027 TYPE_STRING_FLAG (char_type_node) = 1;
9028
9029 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9030 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9031 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9032 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9033 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9034 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9035 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9036 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9037 #if HOST_BITS_PER_WIDE_INT >= 64
9038 /* TODO: This isn't correct, but as logic depends at the moment on
9039 host's instead of target's wide-integer.
9040 If there is a target not supporting TImode, but has an 128-bit
9041 integer-scalar register, this target check needs to be adjusted. */
9042 if (targetm.scalar_mode_supported_p (TImode))
9043 {
9044 int128_integer_type_node = make_signed_type (128);
9045 int128_unsigned_type_node = make_unsigned_type (128);
9046 }
9047 #endif
9048 /* Define a boolean type. This type only represents boolean values but
9049 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9050 Front ends which want to override this size (i.e. Java) can redefine
9051 boolean_type_node before calling build_common_tree_nodes_2. */
9052 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9053 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9054 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9055 TYPE_PRECISION (boolean_type_node) = 1;
9056
9057 /* Fill in the rest of the sized types. Reuse existing type nodes
9058 when possible. */
9059 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9060 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9061 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9062 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9063 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9064
9065 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9066 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9067 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9068 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9069 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9070
9071 access_public_node = get_identifier ("public");
9072 access_protected_node = get_identifier ("protected");
9073 access_private_node = get_identifier ("private");
9074 }
9075
9076 /* Call this function after calling build_common_tree_nodes and set_sizetype.
9077 It will create several other common tree nodes. */
9078
9079 void
9080 build_common_tree_nodes_2 (int short_double)
9081 {
9082 /* Define these next since types below may used them. */
9083 integer_zero_node = build_int_cst (integer_type_node, 0);
9084 integer_one_node = build_int_cst (integer_type_node, 1);
9085 integer_three_node = build_int_cst (integer_type_node, 3);
9086 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9087
9088 size_zero_node = size_int (0);
9089 size_one_node = size_int (1);
9090 bitsize_zero_node = bitsize_int (0);
9091 bitsize_one_node = bitsize_int (1);
9092 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9093
9094 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9095 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9096
9097 void_type_node = make_node (VOID_TYPE);
9098 layout_type (void_type_node);
9099
9100 /* We are not going to have real types in C with less than byte alignment,
9101 so we might as well not have any types that claim to have it. */
9102 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9103 TYPE_USER_ALIGN (void_type_node) = 0;
9104
9105 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9106 layout_type (TREE_TYPE (null_pointer_node));
9107
9108 ptr_type_node = build_pointer_type (void_type_node);
9109 const_ptr_type_node
9110 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9111 fileptr_type_node = ptr_type_node;
9112
9113 float_type_node = make_node (REAL_TYPE);
9114 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9115 layout_type (float_type_node);
9116
9117 double_type_node = make_node (REAL_TYPE);
9118 if (short_double)
9119 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9120 else
9121 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9122 layout_type (double_type_node);
9123
9124 long_double_type_node = make_node (REAL_TYPE);
9125 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9126 layout_type (long_double_type_node);
9127
9128 float_ptr_type_node = build_pointer_type (float_type_node);
9129 double_ptr_type_node = build_pointer_type (double_type_node);
9130 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9131 integer_ptr_type_node = build_pointer_type (integer_type_node);
9132
9133 /* Fixed size integer types. */
9134 uint32_type_node = build_nonstandard_integer_type (32, true);
9135 uint64_type_node = build_nonstandard_integer_type (64, true);
9136
9137 /* Decimal float types. */
9138 dfloat32_type_node = make_node (REAL_TYPE);
9139 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9140 layout_type (dfloat32_type_node);
9141 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9142 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9143
9144 dfloat64_type_node = make_node (REAL_TYPE);
9145 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9146 layout_type (dfloat64_type_node);
9147 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9148 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9149
9150 dfloat128_type_node = make_node (REAL_TYPE);
9151 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9152 layout_type (dfloat128_type_node);
9153 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9154 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9155
9156 complex_integer_type_node = build_complex_type (integer_type_node);
9157 complex_float_type_node = build_complex_type (float_type_node);
9158 complex_double_type_node = build_complex_type (double_type_node);
9159 complex_long_double_type_node = build_complex_type (long_double_type_node);
9160
9161 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9162 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9163 sat_ ## KIND ## _type_node = \
9164 make_sat_signed_ ## KIND ## _type (SIZE); \
9165 sat_unsigned_ ## KIND ## _type_node = \
9166 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9167 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9168 unsigned_ ## KIND ## _type_node = \
9169 make_unsigned_ ## KIND ## _type (SIZE);
9170
9171 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9172 sat_ ## WIDTH ## KIND ## _type_node = \
9173 make_sat_signed_ ## KIND ## _type (SIZE); \
9174 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9175 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9176 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9177 unsigned_ ## WIDTH ## KIND ## _type_node = \
9178 make_unsigned_ ## KIND ## _type (SIZE);
9179
9180 /* Make fixed-point type nodes based on four different widths. */
9181 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9182 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9183 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9184 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9185 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9186
9187 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9188 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9189 NAME ## _type_node = \
9190 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9191 u ## NAME ## _type_node = \
9192 make_or_reuse_unsigned_ ## KIND ## _type \
9193 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9194 sat_ ## NAME ## _type_node = \
9195 make_or_reuse_sat_signed_ ## KIND ## _type \
9196 (GET_MODE_BITSIZE (MODE ## mode)); \
9197 sat_u ## NAME ## _type_node = \
9198 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9199 (GET_MODE_BITSIZE (U ## MODE ## mode));
9200
9201 /* Fixed-point type and mode nodes. */
9202 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9203 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9204 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9205 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9206 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9207 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9208 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9209 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9210 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9211 MAKE_FIXED_MODE_NODE (accum, da, DA)
9212 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9213
9214 {
9215 tree t = targetm.build_builtin_va_list ();
9216
9217 /* Many back-ends define record types without setting TYPE_NAME.
9218 If we copied the record type here, we'd keep the original
9219 record type without a name. This breaks name mangling. So,
9220 don't copy record types and let c_common_nodes_and_builtins()
9221 declare the type to be __builtin_va_list. */
9222 if (TREE_CODE (t) != RECORD_TYPE)
9223 t = build_variant_type_copy (t);
9224
9225 va_list_type_node = t;
9226 }
9227 }
9228
9229 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9230
9231 static void
9232 local_define_builtin (const char *name, tree type, enum built_in_function code,
9233 const char *library_name, int ecf_flags)
9234 {
9235 tree decl;
9236
9237 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9238 library_name, NULL_TREE);
9239 if (ecf_flags & ECF_CONST)
9240 TREE_READONLY (decl) = 1;
9241 if (ecf_flags & ECF_PURE)
9242 DECL_PURE_P (decl) = 1;
9243 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9244 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9245 if (ecf_flags & ECF_NORETURN)
9246 TREE_THIS_VOLATILE (decl) = 1;
9247 if (ecf_flags & ECF_NOTHROW)
9248 TREE_NOTHROW (decl) = 1;
9249 if (ecf_flags & ECF_MALLOC)
9250 DECL_IS_MALLOC (decl) = 1;
9251 if (ecf_flags & ECF_LEAF)
9252 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9253 NULL, DECL_ATTRIBUTES (decl));
9254
9255 built_in_decls[code] = decl;
9256 implicit_built_in_decls[code] = decl;
9257 }
9258
9259 /* Call this function after instantiating all builtins that the language
9260 front end cares about. This will build the rest of the builtins that
9261 are relied upon by the tree optimizers and the middle-end. */
9262
9263 void
9264 build_common_builtin_nodes (void)
9265 {
9266 tree tmp, ftype;
9267
9268 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9269 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9270 {
9271 ftype = build_function_type_list (ptr_type_node,
9272 ptr_type_node, const_ptr_type_node,
9273 size_type_node, NULL_TREE);
9274
9275 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9276 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9277 "memcpy", ECF_NOTHROW | ECF_LEAF);
9278 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9279 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9280 "memmove", ECF_NOTHROW | ECF_LEAF);
9281 }
9282
9283 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9284 {
9285 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9286 const_ptr_type_node, size_type_node,
9287 NULL_TREE);
9288 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9289 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9290 }
9291
9292 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9293 {
9294 ftype = build_function_type_list (ptr_type_node,
9295 ptr_type_node, integer_type_node,
9296 size_type_node, NULL_TREE);
9297 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9298 "memset", ECF_NOTHROW | ECF_LEAF);
9299 }
9300
9301 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9302 {
9303 ftype = build_function_type_list (ptr_type_node,
9304 size_type_node, NULL_TREE);
9305 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9306 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9307 }
9308
9309 /* If we're checking the stack, `alloca' can throw. */
9310 if (flag_stack_check)
9311 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9312
9313 ftype = build_function_type_list (void_type_node,
9314 ptr_type_node, ptr_type_node,
9315 ptr_type_node, NULL_TREE);
9316 local_define_builtin ("__builtin_init_trampoline", ftype,
9317 BUILT_IN_INIT_TRAMPOLINE,
9318 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9319
9320 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9321 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9322 BUILT_IN_ADJUST_TRAMPOLINE,
9323 "__builtin_adjust_trampoline",
9324 ECF_CONST | ECF_NOTHROW);
9325
9326 ftype = build_function_type_list (void_type_node,
9327 ptr_type_node, ptr_type_node, NULL_TREE);
9328 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9329 BUILT_IN_NONLOCAL_GOTO,
9330 "__builtin_nonlocal_goto",
9331 ECF_NORETURN | ECF_NOTHROW);
9332
9333 ftype = build_function_type_list (void_type_node,
9334 ptr_type_node, ptr_type_node, NULL_TREE);
9335 local_define_builtin ("__builtin_setjmp_setup", ftype,
9336 BUILT_IN_SETJMP_SETUP,
9337 "__builtin_setjmp_setup", ECF_NOTHROW);
9338
9339 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9340 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9341 BUILT_IN_SETJMP_DISPATCHER,
9342 "__builtin_setjmp_dispatcher",
9343 ECF_PURE | ECF_NOTHROW);
9344
9345 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9346 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9347 BUILT_IN_SETJMP_RECEIVER,
9348 "__builtin_setjmp_receiver", ECF_NOTHROW);
9349
9350 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9351 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9352 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9353
9354 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9355 local_define_builtin ("__builtin_stack_restore", ftype,
9356 BUILT_IN_STACK_RESTORE,
9357 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9358
9359 /* If there's a possibility that we might use the ARM EABI, build the
9360 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9361 if (targetm.arm_eabi_unwinder)
9362 {
9363 ftype = build_function_type_list (void_type_node, NULL_TREE);
9364 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9365 BUILT_IN_CXA_END_CLEANUP,
9366 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9367 }
9368
9369 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9370 local_define_builtin ("__builtin_unwind_resume", ftype,
9371 BUILT_IN_UNWIND_RESUME,
9372 ((targetm.except_unwind_info (&global_options)
9373 == UI_SJLJ)
9374 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9375 ECF_NORETURN);
9376
9377 /* The exception object and filter values from the runtime. The argument
9378 must be zero before exception lowering, i.e. from the front end. After
9379 exception lowering, it will be the region number for the exception
9380 landing pad. These functions are PURE instead of CONST to prevent
9381 them from being hoisted past the exception edge that will initialize
9382 its value in the landing pad. */
9383 ftype = build_function_type_list (ptr_type_node,
9384 integer_type_node, NULL_TREE);
9385 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9386 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9387
9388 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9389 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9390 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9391 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9392
9393 ftype = build_function_type_list (void_type_node,
9394 integer_type_node, integer_type_node,
9395 NULL_TREE);
9396 local_define_builtin ("__builtin_eh_copy_values", ftype,
9397 BUILT_IN_EH_COPY_VALUES,
9398 "__builtin_eh_copy_values", ECF_NOTHROW);
9399
9400 /* Complex multiplication and division. These are handled as builtins
9401 rather than optabs because emit_library_call_value doesn't support
9402 complex. Further, we can do slightly better with folding these
9403 beasties if the real and complex parts of the arguments are separate. */
9404 {
9405 int mode;
9406
9407 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9408 {
9409 char mode_name_buf[4], *q;
9410 const char *p;
9411 enum built_in_function mcode, dcode;
9412 tree type, inner_type;
9413
9414 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9415 if (type == NULL)
9416 continue;
9417 inner_type = TREE_TYPE (type);
9418
9419 ftype = build_function_type_list (type, inner_type, inner_type,
9420 inner_type, inner_type, NULL_TREE);
9421
9422 mcode = ((enum built_in_function)
9423 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9424 dcode = ((enum built_in_function)
9425 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9426
9427 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9428 *q = TOLOWER (*p);
9429 *q = '\0';
9430
9431 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9432 local_define_builtin (built_in_names[mcode], ftype, mcode,
9433 built_in_names[mcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9434
9435 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9436 local_define_builtin (built_in_names[dcode], ftype, dcode,
9437 built_in_names[dcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9438 }
9439 }
9440 }
9441
9442 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9443 better way.
9444
9445 If we requested a pointer to a vector, build up the pointers that
9446 we stripped off while looking for the inner type. Similarly for
9447 return values from functions.
9448
9449 The argument TYPE is the top of the chain, and BOTTOM is the
9450 new type which we will point to. */
9451
9452 tree
9453 reconstruct_complex_type (tree type, tree bottom)
9454 {
9455 tree inner, outer;
9456
9457 if (TREE_CODE (type) == POINTER_TYPE)
9458 {
9459 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9460 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9461 TYPE_REF_CAN_ALIAS_ALL (type));
9462 }
9463 else if (TREE_CODE (type) == REFERENCE_TYPE)
9464 {
9465 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9466 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9467 TYPE_REF_CAN_ALIAS_ALL (type));
9468 }
9469 else if (TREE_CODE (type) == ARRAY_TYPE)
9470 {
9471 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9472 outer = build_array_type (inner, TYPE_DOMAIN (type));
9473 }
9474 else if (TREE_CODE (type) == FUNCTION_TYPE)
9475 {
9476 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9477 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9478 }
9479 else if (TREE_CODE (type) == METHOD_TYPE)
9480 {
9481 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9482 /* The build_method_type_directly() routine prepends 'this' to argument list,
9483 so we must compensate by getting rid of it. */
9484 outer
9485 = build_method_type_directly
9486 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9487 inner,
9488 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9489 }
9490 else if (TREE_CODE (type) == OFFSET_TYPE)
9491 {
9492 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9493 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9494 }
9495 else
9496 return bottom;
9497
9498 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9499 TYPE_QUALS (type));
9500 }
9501
9502 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9503 the inner type. */
9504 tree
9505 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9506 {
9507 int nunits;
9508
9509 switch (GET_MODE_CLASS (mode))
9510 {
9511 case MODE_VECTOR_INT:
9512 case MODE_VECTOR_FLOAT:
9513 case MODE_VECTOR_FRACT:
9514 case MODE_VECTOR_UFRACT:
9515 case MODE_VECTOR_ACCUM:
9516 case MODE_VECTOR_UACCUM:
9517 nunits = GET_MODE_NUNITS (mode);
9518 break;
9519
9520 case MODE_INT:
9521 /* Check that there are no leftover bits. */
9522 gcc_assert (GET_MODE_BITSIZE (mode)
9523 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9524
9525 nunits = GET_MODE_BITSIZE (mode)
9526 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9527 break;
9528
9529 default:
9530 gcc_unreachable ();
9531 }
9532
9533 return make_vector_type (innertype, nunits, mode);
9534 }
9535
9536 /* Similarly, but takes the inner type and number of units, which must be
9537 a power of two. */
9538
9539 tree
9540 build_vector_type (tree innertype, int nunits)
9541 {
9542 return make_vector_type (innertype, nunits, VOIDmode);
9543 }
9544
9545 /* Similarly, but takes the inner type and number of units, which must be
9546 a power of two. */
9547
9548 tree
9549 build_opaque_vector_type (tree innertype, int nunits)
9550 {
9551 tree t;
9552 innertype = build_distinct_type_copy (innertype);
9553 t = make_vector_type (innertype, nunits, VOIDmode);
9554 TYPE_VECTOR_OPAQUE (t) = true;
9555 return t;
9556 }
9557
9558
9559 /* Given an initializer INIT, return TRUE if INIT is zero or some
9560 aggregate of zeros. Otherwise return FALSE. */
9561 bool
9562 initializer_zerop (const_tree init)
9563 {
9564 tree elt;
9565
9566 STRIP_NOPS (init);
9567
9568 switch (TREE_CODE (init))
9569 {
9570 case INTEGER_CST:
9571 return integer_zerop (init);
9572
9573 case REAL_CST:
9574 /* ??? Note that this is not correct for C4X float formats. There,
9575 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9576 negative exponent. */
9577 return real_zerop (init)
9578 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9579
9580 case FIXED_CST:
9581 return fixed_zerop (init);
9582
9583 case COMPLEX_CST:
9584 return integer_zerop (init)
9585 || (real_zerop (init)
9586 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9587 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9588
9589 case VECTOR_CST:
9590 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9591 if (!initializer_zerop (TREE_VALUE (elt)))
9592 return false;
9593 return true;
9594
9595 case CONSTRUCTOR:
9596 {
9597 unsigned HOST_WIDE_INT idx;
9598
9599 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9600 if (!initializer_zerop (elt))
9601 return false;
9602 return true;
9603 }
9604
9605 case STRING_CST:
9606 {
9607 int i;
9608
9609 /* We need to loop through all elements to handle cases like
9610 "\0" and "\0foobar". */
9611 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9612 if (TREE_STRING_POINTER (init)[i] != '\0')
9613 return false;
9614
9615 return true;
9616 }
9617
9618 default:
9619 return false;
9620 }
9621 }
9622
9623 /* Build an empty statement at location LOC. */
9624
9625 tree
9626 build_empty_stmt (location_t loc)
9627 {
9628 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9629 SET_EXPR_LOCATION (t, loc);
9630 return t;
9631 }
9632
9633
9634 /* Build an OpenMP clause with code CODE. LOC is the location of the
9635 clause. */
9636
9637 tree
9638 build_omp_clause (location_t loc, enum omp_clause_code code)
9639 {
9640 tree t;
9641 int size, length;
9642
9643 length = omp_clause_num_ops[code];
9644 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9645
9646 t = ggc_alloc_tree_node (size);
9647 memset (t, 0, size);
9648 TREE_SET_CODE (t, OMP_CLAUSE);
9649 OMP_CLAUSE_SET_CODE (t, code);
9650 OMP_CLAUSE_LOCATION (t) = loc;
9651
9652 #ifdef GATHER_STATISTICS
9653 tree_node_counts[(int) omp_clause_kind]++;
9654 tree_node_sizes[(int) omp_clause_kind] += size;
9655 #endif
9656
9657 return t;
9658 }
9659
9660 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9661 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9662 Except for the CODE and operand count field, other storage for the
9663 object is initialized to zeros. */
9664
9665 tree
9666 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9667 {
9668 tree t;
9669 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9670
9671 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9672 gcc_assert (len >= 1);
9673
9674 #ifdef GATHER_STATISTICS
9675 tree_node_counts[(int) e_kind]++;
9676 tree_node_sizes[(int) e_kind] += length;
9677 #endif
9678
9679 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9680
9681 TREE_SET_CODE (t, code);
9682
9683 /* Can't use TREE_OPERAND to store the length because if checking is
9684 enabled, it will try to check the length before we store it. :-P */
9685 t->exp.operands[0] = build_int_cst (sizetype, len);
9686
9687 return t;
9688 }
9689
9690 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9691 FN and a null static chain slot. NARGS is the number of call arguments
9692 which are specified as "..." arguments. */
9693
9694 tree
9695 build_call_nary (tree return_type, tree fn, int nargs, ...)
9696 {
9697 tree ret;
9698 va_list args;
9699 va_start (args, nargs);
9700 ret = build_call_valist (return_type, fn, nargs, args);
9701 va_end (args);
9702 return ret;
9703 }
9704
9705 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9706 FN and a null static chain slot. NARGS is the number of call arguments
9707 which are specified as a va_list ARGS. */
9708
9709 tree
9710 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9711 {
9712 tree t;
9713 int i;
9714
9715 t = build_vl_exp (CALL_EXPR, nargs + 3);
9716 TREE_TYPE (t) = return_type;
9717 CALL_EXPR_FN (t) = fn;
9718 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9719 for (i = 0; i < nargs; i++)
9720 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9721 process_call_operands (t);
9722 return t;
9723 }
9724
9725 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9726 FN and a null static chain slot. NARGS is the number of call arguments
9727 which are specified as a tree array ARGS. */
9728
9729 tree
9730 build_call_array_loc (location_t loc, tree return_type, tree fn,
9731 int nargs, const tree *args)
9732 {
9733 tree t;
9734 int i;
9735
9736 t = build_vl_exp (CALL_EXPR, nargs + 3);
9737 TREE_TYPE (t) = return_type;
9738 CALL_EXPR_FN (t) = fn;
9739 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9740 for (i = 0; i < nargs; i++)
9741 CALL_EXPR_ARG (t, i) = args[i];
9742 process_call_operands (t);
9743 SET_EXPR_LOCATION (t, loc);
9744 return t;
9745 }
9746
9747 /* Like build_call_array, but takes a VEC. */
9748
9749 tree
9750 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9751 {
9752 tree ret, t;
9753 unsigned int ix;
9754
9755 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9756 TREE_TYPE (ret) = return_type;
9757 CALL_EXPR_FN (ret) = fn;
9758 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9759 FOR_EACH_VEC_ELT (tree, args, ix, t)
9760 CALL_EXPR_ARG (ret, ix) = t;
9761 process_call_operands (ret);
9762 return ret;
9763 }
9764
9765
9766 /* Returns true if it is possible to prove that the index of
9767 an array access REF (an ARRAY_REF expression) falls into the
9768 array bounds. */
9769
9770 bool
9771 in_array_bounds_p (tree ref)
9772 {
9773 tree idx = TREE_OPERAND (ref, 1);
9774 tree min, max;
9775
9776 if (TREE_CODE (idx) != INTEGER_CST)
9777 return false;
9778
9779 min = array_ref_low_bound (ref);
9780 max = array_ref_up_bound (ref);
9781 if (!min
9782 || !max
9783 || TREE_CODE (min) != INTEGER_CST
9784 || TREE_CODE (max) != INTEGER_CST)
9785 return false;
9786
9787 if (tree_int_cst_lt (idx, min)
9788 || tree_int_cst_lt (max, idx))
9789 return false;
9790
9791 return true;
9792 }
9793
9794 /* Returns true if it is possible to prove that the range of
9795 an array access REF (an ARRAY_RANGE_REF expression) falls
9796 into the array bounds. */
9797
9798 bool
9799 range_in_array_bounds_p (tree ref)
9800 {
9801 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9802 tree range_min, range_max, min, max;
9803
9804 range_min = TYPE_MIN_VALUE (domain_type);
9805 range_max = TYPE_MAX_VALUE (domain_type);
9806 if (!range_min
9807 || !range_max
9808 || TREE_CODE (range_min) != INTEGER_CST
9809 || TREE_CODE (range_max) != INTEGER_CST)
9810 return false;
9811
9812 min = array_ref_low_bound (ref);
9813 max = array_ref_up_bound (ref);
9814 if (!min
9815 || !max
9816 || TREE_CODE (min) != INTEGER_CST
9817 || TREE_CODE (max) != INTEGER_CST)
9818 return false;
9819
9820 if (tree_int_cst_lt (range_min, min)
9821 || tree_int_cst_lt (max, range_max))
9822 return false;
9823
9824 return true;
9825 }
9826
9827 /* Return true if T (assumed to be a DECL) must be assigned a memory
9828 location. */
9829
9830 bool
9831 needs_to_live_in_memory (const_tree t)
9832 {
9833 if (TREE_CODE (t) == SSA_NAME)
9834 t = SSA_NAME_VAR (t);
9835
9836 return (TREE_ADDRESSABLE (t)
9837 || is_global_var (t)
9838 || (TREE_CODE (t) == RESULT_DECL
9839 && !DECL_BY_REFERENCE (t)
9840 && aggregate_value_p (t, current_function_decl)));
9841 }
9842
9843 /* There are situations in which a language considers record types
9844 compatible which have different field lists. Decide if two fields
9845 are compatible. It is assumed that the parent records are compatible. */
9846
9847 bool
9848 fields_compatible_p (const_tree f1, const_tree f2)
9849 {
9850 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9851 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9852 return false;
9853
9854 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9855 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9856 return false;
9857
9858 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9859 return false;
9860
9861 return true;
9862 }
9863
9864 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9865
9866 tree
9867 find_compatible_field (tree record, tree orig_field)
9868 {
9869 tree f;
9870
9871 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9872 if (TREE_CODE (f) == FIELD_DECL
9873 && fields_compatible_p (f, orig_field))
9874 return f;
9875
9876 /* ??? Why isn't this on the main fields list? */
9877 f = TYPE_VFIELD (record);
9878 if (f && TREE_CODE (f) == FIELD_DECL
9879 && fields_compatible_p (f, orig_field))
9880 return f;
9881
9882 /* ??? We should abort here, but Java appears to do Bad Things
9883 with inherited fields. */
9884 return orig_field;
9885 }
9886
9887 /* Return value of a constant X and sign-extend it. */
9888
9889 HOST_WIDE_INT
9890 int_cst_value (const_tree x)
9891 {
9892 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9893 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9894
9895 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9896 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9897 || TREE_INT_CST_HIGH (x) == -1);
9898
9899 if (bits < HOST_BITS_PER_WIDE_INT)
9900 {
9901 bool negative = ((val >> (bits - 1)) & 1) != 0;
9902 if (negative)
9903 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9904 else
9905 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9906 }
9907
9908 return val;
9909 }
9910
9911 /* Return value of a constant X and sign-extend it. */
9912
9913 HOST_WIDEST_INT
9914 widest_int_cst_value (const_tree x)
9915 {
9916 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9917 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9918
9919 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9920 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9921 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9922 << HOST_BITS_PER_WIDE_INT);
9923 #else
9924 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9925 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9926 || TREE_INT_CST_HIGH (x) == -1);
9927 #endif
9928
9929 if (bits < HOST_BITS_PER_WIDEST_INT)
9930 {
9931 bool negative = ((val >> (bits - 1)) & 1) != 0;
9932 if (negative)
9933 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9934 else
9935 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9936 }
9937
9938 return val;
9939 }
9940
9941 /* If TYPE is an integral type, return an equivalent type which is
9942 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9943 return TYPE itself. */
9944
9945 tree
9946 signed_or_unsigned_type_for (int unsignedp, tree type)
9947 {
9948 tree t = type;
9949 if (POINTER_TYPE_P (type))
9950 {
9951 /* If the pointer points to the normal address space, use the
9952 size_type_node. Otherwise use an appropriate size for the pointer
9953 based on the named address space it points to. */
9954 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9955 t = size_type_node;
9956 else
9957 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9958 }
9959
9960 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9961 return t;
9962
9963 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9964 }
9965
9966 /* Returns unsigned variant of TYPE. */
9967
9968 tree
9969 unsigned_type_for (tree type)
9970 {
9971 return signed_or_unsigned_type_for (1, type);
9972 }
9973
9974 /* Returns signed variant of TYPE. */
9975
9976 tree
9977 signed_type_for (tree type)
9978 {
9979 return signed_or_unsigned_type_for (0, type);
9980 }
9981
9982 /* Returns the largest value obtainable by casting something in INNER type to
9983 OUTER type. */
9984
9985 tree
9986 upper_bound_in_type (tree outer, tree inner)
9987 {
9988 unsigned HOST_WIDE_INT lo, hi;
9989 unsigned int det = 0;
9990 unsigned oprec = TYPE_PRECISION (outer);
9991 unsigned iprec = TYPE_PRECISION (inner);
9992 unsigned prec;
9993
9994 /* Compute a unique number for every combination. */
9995 det |= (oprec > iprec) ? 4 : 0;
9996 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9997 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9998
9999 /* Determine the exponent to use. */
10000 switch (det)
10001 {
10002 case 0:
10003 case 1:
10004 /* oprec <= iprec, outer: signed, inner: don't care. */
10005 prec = oprec - 1;
10006 break;
10007 case 2:
10008 case 3:
10009 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10010 prec = oprec;
10011 break;
10012 case 4:
10013 /* oprec > iprec, outer: signed, inner: signed. */
10014 prec = iprec - 1;
10015 break;
10016 case 5:
10017 /* oprec > iprec, outer: signed, inner: unsigned. */
10018 prec = iprec;
10019 break;
10020 case 6:
10021 /* oprec > iprec, outer: unsigned, inner: signed. */
10022 prec = oprec;
10023 break;
10024 case 7:
10025 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10026 prec = iprec;
10027 break;
10028 default:
10029 gcc_unreachable ();
10030 }
10031
10032 /* Compute 2^^prec - 1. */
10033 if (prec <= HOST_BITS_PER_WIDE_INT)
10034 {
10035 hi = 0;
10036 lo = ((~(unsigned HOST_WIDE_INT) 0)
10037 >> (HOST_BITS_PER_WIDE_INT - prec));
10038 }
10039 else
10040 {
10041 hi = ((~(unsigned HOST_WIDE_INT) 0)
10042 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
10043 lo = ~(unsigned HOST_WIDE_INT) 0;
10044 }
10045
10046 return build_int_cst_wide (outer, lo, hi);
10047 }
10048
10049 /* Returns the smallest value obtainable by casting something in INNER type to
10050 OUTER type. */
10051
10052 tree
10053 lower_bound_in_type (tree outer, tree inner)
10054 {
10055 unsigned HOST_WIDE_INT lo, hi;
10056 unsigned oprec = TYPE_PRECISION (outer);
10057 unsigned iprec = TYPE_PRECISION (inner);
10058
10059 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10060 and obtain 0. */
10061 if (TYPE_UNSIGNED (outer)
10062 /* If we are widening something of an unsigned type, OUTER type
10063 contains all values of INNER type. In particular, both INNER
10064 and OUTER types have zero in common. */
10065 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10066 lo = hi = 0;
10067 else
10068 {
10069 /* If we are widening a signed type to another signed type, we
10070 want to obtain -2^^(iprec-1). If we are keeping the
10071 precision or narrowing to a signed type, we want to obtain
10072 -2^(oprec-1). */
10073 unsigned prec = oprec > iprec ? iprec : oprec;
10074
10075 if (prec <= HOST_BITS_PER_WIDE_INT)
10076 {
10077 hi = ~(unsigned HOST_WIDE_INT) 0;
10078 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10079 }
10080 else
10081 {
10082 hi = ((~(unsigned HOST_WIDE_INT) 0)
10083 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10084 lo = 0;
10085 }
10086 }
10087
10088 return build_int_cst_wide (outer, lo, hi);
10089 }
10090
10091 /* Return nonzero if two operands that are suitable for PHI nodes are
10092 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10093 SSA_NAME or invariant. Note that this is strictly an optimization.
10094 That is, callers of this function can directly call operand_equal_p
10095 and get the same result, only slower. */
10096
10097 int
10098 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10099 {
10100 if (arg0 == arg1)
10101 return 1;
10102 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10103 return 0;
10104 return operand_equal_p (arg0, arg1, 0);
10105 }
10106
10107 /* Returns number of zeros at the end of binary representation of X.
10108
10109 ??? Use ffs if available? */
10110
10111 tree
10112 num_ending_zeros (const_tree x)
10113 {
10114 unsigned HOST_WIDE_INT fr, nfr;
10115 unsigned num, abits;
10116 tree type = TREE_TYPE (x);
10117
10118 if (TREE_INT_CST_LOW (x) == 0)
10119 {
10120 num = HOST_BITS_PER_WIDE_INT;
10121 fr = TREE_INT_CST_HIGH (x);
10122 }
10123 else
10124 {
10125 num = 0;
10126 fr = TREE_INT_CST_LOW (x);
10127 }
10128
10129 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10130 {
10131 nfr = fr >> abits;
10132 if (nfr << abits == fr)
10133 {
10134 num += abits;
10135 fr = nfr;
10136 }
10137 }
10138
10139 if (num > TYPE_PRECISION (type))
10140 num = TYPE_PRECISION (type);
10141
10142 return build_int_cst_type (type, num);
10143 }
10144
10145
10146 #define WALK_SUBTREE(NODE) \
10147 do \
10148 { \
10149 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10150 if (result) \
10151 return result; \
10152 } \
10153 while (0)
10154
10155 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10156 be walked whenever a type is seen in the tree. Rest of operands and return
10157 value are as for walk_tree. */
10158
10159 static tree
10160 walk_type_fields (tree type, walk_tree_fn func, void *data,
10161 struct pointer_set_t *pset, walk_tree_lh lh)
10162 {
10163 tree result = NULL_TREE;
10164
10165 switch (TREE_CODE (type))
10166 {
10167 case POINTER_TYPE:
10168 case REFERENCE_TYPE:
10169 /* We have to worry about mutually recursive pointers. These can't
10170 be written in C. They can in Ada. It's pathological, but
10171 there's an ACATS test (c38102a) that checks it. Deal with this
10172 by checking if we're pointing to another pointer, that one
10173 points to another pointer, that one does too, and we have no htab.
10174 If so, get a hash table. We check three levels deep to avoid
10175 the cost of the hash table if we don't need one. */
10176 if (POINTER_TYPE_P (TREE_TYPE (type))
10177 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10178 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10179 && !pset)
10180 {
10181 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10182 func, data);
10183 if (result)
10184 return result;
10185
10186 break;
10187 }
10188
10189 /* ... fall through ... */
10190
10191 case COMPLEX_TYPE:
10192 WALK_SUBTREE (TREE_TYPE (type));
10193 break;
10194
10195 case METHOD_TYPE:
10196 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10197
10198 /* Fall through. */
10199
10200 case FUNCTION_TYPE:
10201 WALK_SUBTREE (TREE_TYPE (type));
10202 {
10203 tree arg;
10204
10205 /* We never want to walk into default arguments. */
10206 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10207 WALK_SUBTREE (TREE_VALUE (arg));
10208 }
10209 break;
10210
10211 case ARRAY_TYPE:
10212 /* Don't follow this nodes's type if a pointer for fear that
10213 we'll have infinite recursion. If we have a PSET, then we
10214 need not fear. */
10215 if (pset
10216 || (!POINTER_TYPE_P (TREE_TYPE (type))
10217 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10218 WALK_SUBTREE (TREE_TYPE (type));
10219 WALK_SUBTREE (TYPE_DOMAIN (type));
10220 break;
10221
10222 case OFFSET_TYPE:
10223 WALK_SUBTREE (TREE_TYPE (type));
10224 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10225 break;
10226
10227 default:
10228 break;
10229 }
10230
10231 return NULL_TREE;
10232 }
10233
10234 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10235 called with the DATA and the address of each sub-tree. If FUNC returns a
10236 non-NULL value, the traversal is stopped, and the value returned by FUNC
10237 is returned. If PSET is non-NULL it is used to record the nodes visited,
10238 and to avoid visiting a node more than once. */
10239
10240 tree
10241 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10242 struct pointer_set_t *pset, walk_tree_lh lh)
10243 {
10244 enum tree_code code;
10245 int walk_subtrees;
10246 tree result;
10247
10248 #define WALK_SUBTREE_TAIL(NODE) \
10249 do \
10250 { \
10251 tp = & (NODE); \
10252 goto tail_recurse; \
10253 } \
10254 while (0)
10255
10256 tail_recurse:
10257 /* Skip empty subtrees. */
10258 if (!*tp)
10259 return NULL_TREE;
10260
10261 /* Don't walk the same tree twice, if the user has requested
10262 that we avoid doing so. */
10263 if (pset && pointer_set_insert (pset, *tp))
10264 return NULL_TREE;
10265
10266 /* Call the function. */
10267 walk_subtrees = 1;
10268 result = (*func) (tp, &walk_subtrees, data);
10269
10270 /* If we found something, return it. */
10271 if (result)
10272 return result;
10273
10274 code = TREE_CODE (*tp);
10275
10276 /* Even if we didn't, FUNC may have decided that there was nothing
10277 interesting below this point in the tree. */
10278 if (!walk_subtrees)
10279 {
10280 /* But we still need to check our siblings. */
10281 if (code == TREE_LIST)
10282 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10283 else if (code == OMP_CLAUSE)
10284 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10285 else
10286 return NULL_TREE;
10287 }
10288
10289 if (lh)
10290 {
10291 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10292 if (result || !walk_subtrees)
10293 return result;
10294 }
10295
10296 switch (code)
10297 {
10298 case ERROR_MARK:
10299 case IDENTIFIER_NODE:
10300 case INTEGER_CST:
10301 case REAL_CST:
10302 case FIXED_CST:
10303 case VECTOR_CST:
10304 case STRING_CST:
10305 case BLOCK:
10306 case PLACEHOLDER_EXPR:
10307 case SSA_NAME:
10308 case FIELD_DECL:
10309 case RESULT_DECL:
10310 /* None of these have subtrees other than those already walked
10311 above. */
10312 break;
10313
10314 case TREE_LIST:
10315 WALK_SUBTREE (TREE_VALUE (*tp));
10316 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10317 break;
10318
10319 case TREE_VEC:
10320 {
10321 int len = TREE_VEC_LENGTH (*tp);
10322
10323 if (len == 0)
10324 break;
10325
10326 /* Walk all elements but the first. */
10327 while (--len)
10328 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10329
10330 /* Now walk the first one as a tail call. */
10331 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10332 }
10333
10334 case COMPLEX_CST:
10335 WALK_SUBTREE (TREE_REALPART (*tp));
10336 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10337
10338 case CONSTRUCTOR:
10339 {
10340 unsigned HOST_WIDE_INT idx;
10341 constructor_elt *ce;
10342
10343 for (idx = 0;
10344 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10345 idx++)
10346 WALK_SUBTREE (ce->value);
10347 }
10348 break;
10349
10350 case SAVE_EXPR:
10351 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10352
10353 case BIND_EXPR:
10354 {
10355 tree decl;
10356 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10357 {
10358 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10359 into declarations that are just mentioned, rather than
10360 declared; they don't really belong to this part of the tree.
10361 And, we can see cycles: the initializer for a declaration
10362 can refer to the declaration itself. */
10363 WALK_SUBTREE (DECL_INITIAL (decl));
10364 WALK_SUBTREE (DECL_SIZE (decl));
10365 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10366 }
10367 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10368 }
10369
10370 case STATEMENT_LIST:
10371 {
10372 tree_stmt_iterator i;
10373 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10374 WALK_SUBTREE (*tsi_stmt_ptr (i));
10375 }
10376 break;
10377
10378 case OMP_CLAUSE:
10379 switch (OMP_CLAUSE_CODE (*tp))
10380 {
10381 case OMP_CLAUSE_PRIVATE:
10382 case OMP_CLAUSE_SHARED:
10383 case OMP_CLAUSE_FIRSTPRIVATE:
10384 case OMP_CLAUSE_COPYIN:
10385 case OMP_CLAUSE_COPYPRIVATE:
10386 case OMP_CLAUSE_IF:
10387 case OMP_CLAUSE_NUM_THREADS:
10388 case OMP_CLAUSE_SCHEDULE:
10389 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10390 /* FALLTHRU */
10391
10392 case OMP_CLAUSE_NOWAIT:
10393 case OMP_CLAUSE_ORDERED:
10394 case OMP_CLAUSE_DEFAULT:
10395 case OMP_CLAUSE_UNTIED:
10396 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10397
10398 case OMP_CLAUSE_LASTPRIVATE:
10399 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10400 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10401 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10402
10403 case OMP_CLAUSE_COLLAPSE:
10404 {
10405 int i;
10406 for (i = 0; i < 3; i++)
10407 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10408 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10409 }
10410
10411 case OMP_CLAUSE_REDUCTION:
10412 {
10413 int i;
10414 for (i = 0; i < 4; i++)
10415 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10416 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10417 }
10418
10419 default:
10420 gcc_unreachable ();
10421 }
10422 break;
10423
10424 case TARGET_EXPR:
10425 {
10426 int i, len;
10427
10428 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10429 But, we only want to walk once. */
10430 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10431 for (i = 0; i < len; ++i)
10432 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10433 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10434 }
10435
10436 case DECL_EXPR:
10437 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10438 defining. We only want to walk into these fields of a type in this
10439 case and not in the general case of a mere reference to the type.
10440
10441 The criterion is as follows: if the field can be an expression, it
10442 must be walked only here. This should be in keeping with the fields
10443 that are directly gimplified in gimplify_type_sizes in order for the
10444 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10445 variable-sized types.
10446
10447 Note that DECLs get walked as part of processing the BIND_EXPR. */
10448 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10449 {
10450 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10451 if (TREE_CODE (*type_p) == ERROR_MARK)
10452 return NULL_TREE;
10453
10454 /* Call the function for the type. See if it returns anything or
10455 doesn't want us to continue. If we are to continue, walk both
10456 the normal fields and those for the declaration case. */
10457 result = (*func) (type_p, &walk_subtrees, data);
10458 if (result || !walk_subtrees)
10459 return result;
10460
10461 result = walk_type_fields (*type_p, func, data, pset, lh);
10462 if (result)
10463 return result;
10464
10465 /* If this is a record type, also walk the fields. */
10466 if (RECORD_OR_UNION_TYPE_P (*type_p))
10467 {
10468 tree field;
10469
10470 for (field = TYPE_FIELDS (*type_p); field;
10471 field = DECL_CHAIN (field))
10472 {
10473 /* We'd like to look at the type of the field, but we can
10474 easily get infinite recursion. So assume it's pointed
10475 to elsewhere in the tree. Also, ignore things that
10476 aren't fields. */
10477 if (TREE_CODE (field) != FIELD_DECL)
10478 continue;
10479
10480 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10481 WALK_SUBTREE (DECL_SIZE (field));
10482 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10483 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10484 WALK_SUBTREE (DECL_QUALIFIER (field));
10485 }
10486 }
10487
10488 /* Same for scalar types. */
10489 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10490 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10491 || TREE_CODE (*type_p) == INTEGER_TYPE
10492 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10493 || TREE_CODE (*type_p) == REAL_TYPE)
10494 {
10495 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10496 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10497 }
10498
10499 WALK_SUBTREE (TYPE_SIZE (*type_p));
10500 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10501 }
10502 /* FALLTHRU */
10503
10504 default:
10505 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10506 {
10507 int i, len;
10508
10509 /* Walk over all the sub-trees of this operand. */
10510 len = TREE_OPERAND_LENGTH (*tp);
10511
10512 /* Go through the subtrees. We need to do this in forward order so
10513 that the scope of a FOR_EXPR is handled properly. */
10514 if (len)
10515 {
10516 for (i = 0; i < len - 1; ++i)
10517 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10518 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10519 }
10520 }
10521 /* If this is a type, walk the needed fields in the type. */
10522 else if (TYPE_P (*tp))
10523 return walk_type_fields (*tp, func, data, pset, lh);
10524 break;
10525 }
10526
10527 /* We didn't find what we were looking for. */
10528 return NULL_TREE;
10529
10530 #undef WALK_SUBTREE_TAIL
10531 }
10532 #undef WALK_SUBTREE
10533
10534 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10535
10536 tree
10537 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10538 walk_tree_lh lh)
10539 {
10540 tree result;
10541 struct pointer_set_t *pset;
10542
10543 pset = pointer_set_create ();
10544 result = walk_tree_1 (tp, func, data, pset, lh);
10545 pointer_set_destroy (pset);
10546 return result;
10547 }
10548
10549
10550 tree *
10551 tree_block (tree t)
10552 {
10553 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10554
10555 if (IS_EXPR_CODE_CLASS (c))
10556 return &t->exp.block;
10557 gcc_unreachable ();
10558 return NULL;
10559 }
10560
10561 /* Create a nameless artificial label and put it in the current
10562 function context. The label has a location of LOC. Returns the
10563 newly created label. */
10564
10565 tree
10566 create_artificial_label (location_t loc)
10567 {
10568 tree lab = build_decl (loc,
10569 LABEL_DECL, NULL_TREE, void_type_node);
10570
10571 DECL_ARTIFICIAL (lab) = 1;
10572 DECL_IGNORED_P (lab) = 1;
10573 DECL_CONTEXT (lab) = current_function_decl;
10574 return lab;
10575 }
10576
10577 /* Given a tree, try to return a useful variable name that we can use
10578 to prefix a temporary that is being assigned the value of the tree.
10579 I.E. given <temp> = &A, return A. */
10580
10581 const char *
10582 get_name (tree t)
10583 {
10584 tree stripped_decl;
10585
10586 stripped_decl = t;
10587 STRIP_NOPS (stripped_decl);
10588 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10589 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10590 else
10591 {
10592 switch (TREE_CODE (stripped_decl))
10593 {
10594 case ADDR_EXPR:
10595 return get_name (TREE_OPERAND (stripped_decl, 0));
10596 default:
10597 return NULL;
10598 }
10599 }
10600 }
10601
10602 /* Return true if TYPE has a variable argument list. */
10603
10604 bool
10605 stdarg_p (const_tree fntype)
10606 {
10607 function_args_iterator args_iter;
10608 tree n = NULL_TREE, t;
10609
10610 if (!fntype)
10611 return false;
10612
10613 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10614 {
10615 n = t;
10616 }
10617
10618 return n != NULL_TREE && n != void_type_node;
10619 }
10620
10621 /* Return true if TYPE has a prototype. */
10622
10623 bool
10624 prototype_p (tree fntype)
10625 {
10626 tree t;
10627
10628 gcc_assert (fntype != NULL_TREE);
10629
10630 t = TYPE_ARG_TYPES (fntype);
10631 return (t != NULL_TREE);
10632 }
10633
10634 /* If BLOCK is inlined from an __attribute__((__artificial__))
10635 routine, return pointer to location from where it has been
10636 called. */
10637 location_t *
10638 block_nonartificial_location (tree block)
10639 {
10640 location_t *ret = NULL;
10641
10642 while (block && TREE_CODE (block) == BLOCK
10643 && BLOCK_ABSTRACT_ORIGIN (block))
10644 {
10645 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10646
10647 while (TREE_CODE (ao) == BLOCK
10648 && BLOCK_ABSTRACT_ORIGIN (ao)
10649 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10650 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10651
10652 if (TREE_CODE (ao) == FUNCTION_DECL)
10653 {
10654 /* If AO is an artificial inline, point RET to the
10655 call site locus at which it has been inlined and continue
10656 the loop, in case AO's caller is also an artificial
10657 inline. */
10658 if (DECL_DECLARED_INLINE_P (ao)
10659 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10660 ret = &BLOCK_SOURCE_LOCATION (block);
10661 else
10662 break;
10663 }
10664 else if (TREE_CODE (ao) != BLOCK)
10665 break;
10666
10667 block = BLOCK_SUPERCONTEXT (block);
10668 }
10669 return ret;
10670 }
10671
10672
10673 /* If EXP is inlined from an __attribute__((__artificial__))
10674 function, return the location of the original call expression. */
10675
10676 location_t
10677 tree_nonartificial_location (tree exp)
10678 {
10679 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10680
10681 if (loc)
10682 return *loc;
10683 else
10684 return EXPR_LOCATION (exp);
10685 }
10686
10687
10688 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10689 nodes. */
10690
10691 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10692
10693 static hashval_t
10694 cl_option_hash_hash (const void *x)
10695 {
10696 const_tree const t = (const_tree) x;
10697 const char *p;
10698 size_t i;
10699 size_t len = 0;
10700 hashval_t hash = 0;
10701
10702 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10703 {
10704 p = (const char *)TREE_OPTIMIZATION (t);
10705 len = sizeof (struct cl_optimization);
10706 }
10707
10708 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10709 {
10710 p = (const char *)TREE_TARGET_OPTION (t);
10711 len = sizeof (struct cl_target_option);
10712 }
10713
10714 else
10715 gcc_unreachable ();
10716
10717 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10718 something else. */
10719 for (i = 0; i < len; i++)
10720 if (p[i])
10721 hash = (hash << 4) ^ ((i << 2) | p[i]);
10722
10723 return hash;
10724 }
10725
10726 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10727 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10728 same. */
10729
10730 static int
10731 cl_option_hash_eq (const void *x, const void *y)
10732 {
10733 const_tree const xt = (const_tree) x;
10734 const_tree const yt = (const_tree) y;
10735 const char *xp;
10736 const char *yp;
10737 size_t len;
10738
10739 if (TREE_CODE (xt) != TREE_CODE (yt))
10740 return 0;
10741
10742 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10743 {
10744 xp = (const char *)TREE_OPTIMIZATION (xt);
10745 yp = (const char *)TREE_OPTIMIZATION (yt);
10746 len = sizeof (struct cl_optimization);
10747 }
10748
10749 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10750 {
10751 xp = (const char *)TREE_TARGET_OPTION (xt);
10752 yp = (const char *)TREE_TARGET_OPTION (yt);
10753 len = sizeof (struct cl_target_option);
10754 }
10755
10756 else
10757 gcc_unreachable ();
10758
10759 return (memcmp (xp, yp, len) == 0);
10760 }
10761
10762 /* Build an OPTIMIZATION_NODE based on the current options. */
10763
10764 tree
10765 build_optimization_node (void)
10766 {
10767 tree t;
10768 void **slot;
10769
10770 /* Use the cache of optimization nodes. */
10771
10772 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
10773 &global_options);
10774
10775 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10776 t = (tree) *slot;
10777 if (!t)
10778 {
10779 /* Insert this one into the hash table. */
10780 t = cl_optimization_node;
10781 *slot = t;
10782
10783 /* Make a new node for next time round. */
10784 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10785 }
10786
10787 return t;
10788 }
10789
10790 /* Build a TARGET_OPTION_NODE based on the current options. */
10791
10792 tree
10793 build_target_option_node (void)
10794 {
10795 tree t;
10796 void **slot;
10797
10798 /* Use the cache of optimization nodes. */
10799
10800 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
10801 &global_options);
10802
10803 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10804 t = (tree) *slot;
10805 if (!t)
10806 {
10807 /* Insert this one into the hash table. */
10808 t = cl_target_option_node;
10809 *slot = t;
10810
10811 /* Make a new node for next time round. */
10812 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10813 }
10814
10815 return t;
10816 }
10817
10818 /* Determine the "ultimate origin" of a block. The block may be an inlined
10819 instance of an inlined instance of a block which is local to an inline
10820 function, so we have to trace all of the way back through the origin chain
10821 to find out what sort of node actually served as the original seed for the
10822 given block. */
10823
10824 tree
10825 block_ultimate_origin (const_tree block)
10826 {
10827 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10828
10829 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10830 nodes in the function to point to themselves; ignore that if
10831 we're trying to output the abstract instance of this function. */
10832 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10833 return NULL_TREE;
10834
10835 if (immediate_origin == NULL_TREE)
10836 return NULL_TREE;
10837 else
10838 {
10839 tree ret_val;
10840 tree lookahead = immediate_origin;
10841
10842 do
10843 {
10844 ret_val = lookahead;
10845 lookahead = (TREE_CODE (ret_val) == BLOCK
10846 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10847 }
10848 while (lookahead != NULL && lookahead != ret_val);
10849
10850 /* The block's abstract origin chain may not be the *ultimate* origin of
10851 the block. It could lead to a DECL that has an abstract origin set.
10852 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10853 will give us if it has one). Note that DECL's abstract origins are
10854 supposed to be the most distant ancestor (or so decl_ultimate_origin
10855 claims), so we don't need to loop following the DECL origins. */
10856 if (DECL_P (ret_val))
10857 return DECL_ORIGIN (ret_val);
10858
10859 return ret_val;
10860 }
10861 }
10862
10863 /* Return true if T1 and T2 are equivalent lists. */
10864
10865 bool
10866 list_equal_p (const_tree t1, const_tree t2)
10867 {
10868 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10869 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10870 return false;
10871 return !t1 && !t2;
10872 }
10873
10874 /* Return true iff conversion in EXP generates no instruction. Mark
10875 it inline so that we fully inline into the stripping functions even
10876 though we have two uses of this function. */
10877
10878 static inline bool
10879 tree_nop_conversion (const_tree exp)
10880 {
10881 tree outer_type, inner_type;
10882
10883 if (!CONVERT_EXPR_P (exp)
10884 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10885 return false;
10886 if (TREE_OPERAND (exp, 0) == error_mark_node)
10887 return false;
10888
10889 outer_type = TREE_TYPE (exp);
10890 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10891
10892 if (!inner_type)
10893 return false;
10894
10895 /* Use precision rather then machine mode when we can, which gives
10896 the correct answer even for submode (bit-field) types. */
10897 if ((INTEGRAL_TYPE_P (outer_type)
10898 || POINTER_TYPE_P (outer_type)
10899 || TREE_CODE (outer_type) == OFFSET_TYPE)
10900 && (INTEGRAL_TYPE_P (inner_type)
10901 || POINTER_TYPE_P (inner_type)
10902 || TREE_CODE (inner_type) == OFFSET_TYPE))
10903 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10904
10905 /* Otherwise fall back on comparing machine modes (e.g. for
10906 aggregate types, floats). */
10907 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10908 }
10909
10910 /* Return true iff conversion in EXP generates no instruction. Don't
10911 consider conversions changing the signedness. */
10912
10913 static bool
10914 tree_sign_nop_conversion (const_tree exp)
10915 {
10916 tree outer_type, inner_type;
10917
10918 if (!tree_nop_conversion (exp))
10919 return false;
10920
10921 outer_type = TREE_TYPE (exp);
10922 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10923
10924 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10925 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10926 }
10927
10928 /* Strip conversions from EXP according to tree_nop_conversion and
10929 return the resulting expression. */
10930
10931 tree
10932 tree_strip_nop_conversions (tree exp)
10933 {
10934 while (tree_nop_conversion (exp))
10935 exp = TREE_OPERAND (exp, 0);
10936 return exp;
10937 }
10938
10939 /* Strip conversions from EXP according to tree_sign_nop_conversion
10940 and return the resulting expression. */
10941
10942 tree
10943 tree_strip_sign_nop_conversions (tree exp)
10944 {
10945 while (tree_sign_nop_conversion (exp))
10946 exp = TREE_OPERAND (exp, 0);
10947 return exp;
10948 }
10949
10950 static GTY(()) tree gcc_eh_personality_decl;
10951
10952 /* Return the GCC personality function decl. */
10953
10954 tree
10955 lhd_gcc_personality (void)
10956 {
10957 if (!gcc_eh_personality_decl)
10958 gcc_eh_personality_decl = build_personality_function ("gcc");
10959 return gcc_eh_personality_decl;
10960 }
10961
10962 /* Try to find a base info of BINFO that would have its field decl at offset
10963 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10964 found, return, otherwise return NULL_TREE. */
10965
10966 tree
10967 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10968 {
10969 tree type = BINFO_TYPE (binfo);
10970
10971 while (true)
10972 {
10973 HOST_WIDE_INT pos, size;
10974 tree fld;
10975 int i;
10976
10977 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
10978 return binfo;
10979 if (offset < 0)
10980 return NULL_TREE;
10981
10982 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
10983 {
10984 if (TREE_CODE (fld) != FIELD_DECL)
10985 continue;
10986
10987 pos = int_bit_position (fld);
10988 size = tree_low_cst (DECL_SIZE (fld), 1);
10989 if (pos <= offset && (pos + size) > offset)
10990 break;
10991 }
10992 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
10993 return NULL_TREE;
10994
10995 if (!DECL_ARTIFICIAL (fld))
10996 {
10997 binfo = TYPE_BINFO (TREE_TYPE (fld));
10998 if (!binfo)
10999 return NULL_TREE;
11000 }
11001 /* Offset 0 indicates the primary base, whose vtable contents are
11002 represented in the binfo for the derived class. */
11003 else if (offset != 0)
11004 {
11005 tree base_binfo, found_binfo = NULL_TREE;
11006 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11007 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
11008 {
11009 found_binfo = base_binfo;
11010 break;
11011 }
11012 if (!found_binfo)
11013 return NULL_TREE;
11014 binfo = found_binfo;
11015 }
11016
11017 type = TREE_TYPE (fld);
11018 offset -= pos;
11019 }
11020 }
11021
11022 /* Returns true if X is a typedef decl. */
11023
11024 bool
11025 is_typedef_decl (tree x)
11026 {
11027 return (x && TREE_CODE (x) == TYPE_DECL
11028 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11029 }
11030
11031 /* Returns true iff TYPE is a type variant created for a typedef. */
11032
11033 bool
11034 typedef_variant_p (tree type)
11035 {
11036 return is_typedef_decl (TYPE_NAME (type));
11037 }
11038
11039 /* Warn about a use of an identifier which was marked deprecated. */
11040 void
11041 warn_deprecated_use (tree node, tree attr)
11042 {
11043 const char *msg;
11044
11045 if (node == 0 || !warn_deprecated_decl)
11046 return;
11047
11048 if (!attr)
11049 {
11050 if (DECL_P (node))
11051 attr = DECL_ATTRIBUTES (node);
11052 else if (TYPE_P (node))
11053 {
11054 tree decl = TYPE_STUB_DECL (node);
11055 if (decl)
11056 attr = lookup_attribute ("deprecated",
11057 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11058 }
11059 }
11060
11061 if (attr)
11062 attr = lookup_attribute ("deprecated", attr);
11063
11064 if (attr)
11065 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11066 else
11067 msg = NULL;
11068
11069 if (DECL_P (node))
11070 {
11071 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11072 if (msg)
11073 warning (OPT_Wdeprecated_declarations,
11074 "%qD is deprecated (declared at %s:%d): %s",
11075 node, xloc.file, xloc.line, msg);
11076 else
11077 warning (OPT_Wdeprecated_declarations,
11078 "%qD is deprecated (declared at %s:%d)",
11079 node, xloc.file, xloc.line);
11080 }
11081 else if (TYPE_P (node))
11082 {
11083 tree what = NULL_TREE;
11084 tree decl = TYPE_STUB_DECL (node);
11085
11086 if (TYPE_NAME (node))
11087 {
11088 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11089 what = TYPE_NAME (node);
11090 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11091 && DECL_NAME (TYPE_NAME (node)))
11092 what = DECL_NAME (TYPE_NAME (node));
11093 }
11094
11095 if (decl)
11096 {
11097 expanded_location xloc
11098 = expand_location (DECL_SOURCE_LOCATION (decl));
11099 if (what)
11100 {
11101 if (msg)
11102 warning (OPT_Wdeprecated_declarations,
11103 "%qE is deprecated (declared at %s:%d): %s",
11104 what, xloc.file, xloc.line, msg);
11105 else
11106 warning (OPT_Wdeprecated_declarations,
11107 "%qE is deprecated (declared at %s:%d)", what,
11108 xloc.file, xloc.line);
11109 }
11110 else
11111 {
11112 if (msg)
11113 warning (OPT_Wdeprecated_declarations,
11114 "type is deprecated (declared at %s:%d): %s",
11115 xloc.file, xloc.line, msg);
11116 else
11117 warning (OPT_Wdeprecated_declarations,
11118 "type is deprecated (declared at %s:%d)",
11119 xloc.file, xloc.line);
11120 }
11121 }
11122 else
11123 {
11124 if (what)
11125 {
11126 if (msg)
11127 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11128 what, msg);
11129 else
11130 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11131 }
11132 else
11133 {
11134 if (msg)
11135 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11136 msg);
11137 else
11138 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11139 }
11140 }
11141 }
11142 }
11143
11144 #include "gt-tree.h"