flags.h (flag_random_seed): Remove declaration, in favor of...
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file contains the low level primitives for operating on tree nodes,
24 including allocation, list operations, interning of identifiers,
25 construction of data type nodes and statement nodes,
26 and construction of type conversion nodes. It also contains
27 tables index by tree code that describe how to take apart
28 nodes of that code.
29
30 It is intended to be language-independent, but occasionally
31 calls language-dependent routines defined (for C) in typecheck.c. */
32
33 #include "config.h"
34 #include "system.h"
35 #include "coretypes.h"
36 #include "tm.h"
37 #include "flags.h"
38 #include "tree.h"
39 #include "real.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54
55 /* Each tree code class has an associated string representation.
56 These must correspond to the tree_code_class entries. */
57
58 const char *const tree_code_class_strings[] =
59 {
60 "exceptional",
61 "constant",
62 "type",
63 "declaration",
64 "reference",
65 "comparison",
66 "unary",
67 "binary",
68 "statement",
69 "vl_exp",
70 "expression",
71 "gimple_stmt"
72 };
73
74 /* obstack.[ch] explicitly declined to prototype this. */
75 extern int _obstack_allocated_p (struct obstack *h, void *obj);
76
77 #ifdef GATHER_STATISTICS
78 /* Statistics-gathering stuff. */
79
80 int tree_node_counts[(int) all_kinds];
81 int tree_node_sizes[(int) all_kinds];
82
83 /* Keep in sync with tree.h:enum tree_node_kind. */
84 static const char * const tree_node_kind_names[] = {
85 "decls",
86 "types",
87 "blocks",
88 "stmts",
89 "refs",
90 "exprs",
91 "constants",
92 "identifiers",
93 "perm_tree_lists",
94 "temp_tree_lists",
95 "vecs",
96 "binfos",
97 "phi_nodes",
98 "ssa names",
99 "constructors",
100 "random kinds",
101 "lang_decl kinds",
102 "lang_type kinds",
103 "omp clauses",
104 "gimple statements"
105 };
106 #endif /* GATHER_STATISTICS */
107
108 /* Unique id for next decl created. */
109 static GTY(()) int next_decl_uid;
110 /* Unique id for next type created. */
111 static GTY(()) int next_type_uid = 1;
112
113 /* Since we cannot rehash a type after it is in the table, we have to
114 keep the hash code. */
115
116 struct type_hash GTY(())
117 {
118 unsigned long hash;
119 tree type;
120 };
121
122 /* Initial size of the hash table (rounded to next prime). */
123 #define TYPE_HASH_INITIAL_SIZE 1000
124
125 /* Now here is the hash table. When recording a type, it is added to
126 the slot whose index is the hash code. Note that the hash table is
127 used for several kinds of types (function types, array types and
128 array index range types, for now). While all these live in the
129 same table, they are completely independent, and the hash code is
130 computed differently for each of these. */
131
132 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
133 htab_t type_hash_table;
134
135 /* Hash table and temporary node for larger integer const values. */
136 static GTY (()) tree int_cst_node;
137 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
138 htab_t int_cst_hash_table;
139
140 /* General tree->tree mapping structure for use in hash tables. */
141
142
143 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
144 htab_t debug_expr_for_decl;
145
146 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
147 htab_t value_expr_for_decl;
148
149 static GTY ((if_marked ("tree_priority_map_marked_p"),
150 param_is (struct tree_priority_map)))
151 htab_t init_priority_for_decl;
152
153 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
154 htab_t restrict_base_for_decl;
155
156 static void set_type_quals (tree, int);
157 static int type_hash_eq (const void *, const void *);
158 static hashval_t type_hash_hash (const void *);
159 static hashval_t int_cst_hash_hash (const void *);
160 static int int_cst_hash_eq (const void *, const void *);
161 static void print_type_hash_statistics (void);
162 static void print_debug_expr_statistics (void);
163 static void print_value_expr_statistics (void);
164 static int type_hash_marked_p (const void *);
165 static unsigned int type_hash_list (tree, hashval_t);
166 static unsigned int attribute_hash_list (tree, hashval_t);
167
168 tree global_trees[TI_MAX];
169 tree integer_types[itk_none];
170
171 unsigned char tree_contains_struct[256][64];
172
173 /* Number of operands for each OpenMP clause. */
174 unsigned const char omp_clause_num_ops[] =
175 {
176 0, /* OMP_CLAUSE_ERROR */
177 1, /* OMP_CLAUSE_PRIVATE */
178 1, /* OMP_CLAUSE_SHARED */
179 1, /* OMP_CLAUSE_FIRSTPRIVATE */
180 1, /* OMP_CLAUSE_LASTPRIVATE */
181 4, /* OMP_CLAUSE_REDUCTION */
182 1, /* OMP_CLAUSE_COPYIN */
183 1, /* OMP_CLAUSE_COPYPRIVATE */
184 1, /* OMP_CLAUSE_IF */
185 1, /* OMP_CLAUSE_NUM_THREADS */
186 1, /* OMP_CLAUSE_SCHEDULE */
187 0, /* OMP_CLAUSE_NOWAIT */
188 0, /* OMP_CLAUSE_ORDERED */
189 0 /* OMP_CLAUSE_DEFAULT */
190 };
191
192 const char * const omp_clause_code_name[] =
193 {
194 "error_clause",
195 "private",
196 "shared",
197 "firstprivate",
198 "lastprivate",
199 "reduction",
200 "copyin",
201 "copyprivate",
202 "if",
203 "num_threads",
204 "schedule",
205 "nowait",
206 "ordered",
207 "default"
208 };
209 \f
210 /* Init tree.c. */
211
212 void
213 init_ttree (void)
214 {
215 /* Initialize the hash table of types. */
216 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
217 type_hash_eq, 0);
218
219 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
220 tree_map_eq, 0);
221
222 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
223 tree_map_eq, 0);
224 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
225 tree_priority_map_eq, 0);
226 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
227 tree_map_eq, 0);
228
229 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
230 int_cst_hash_eq, NULL);
231
232 int_cst_node = make_node (INTEGER_CST);
233
234 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
235 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
236 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
237
238
239 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
240 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
241 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
242 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
243 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
244 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
245 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
246 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
247 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
248
249
250 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
251 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
252 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
253 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
254 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
255 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
256
257 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
258 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
259 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
260 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
261 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
262 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
263 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
264 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
265 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
266 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
267 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
268 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
269 tree_contains_struct[MEMORY_PARTITION_TAG][TS_DECL_MINIMAL] = 1;
270
271 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
272 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
273 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
274 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_TAG] = 1;
275
276 tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
277 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_PARTITION_TAG] = 1;
278
279 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
280 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
281 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
282 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
283
284 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
285 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
286 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
287 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
288 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
289 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
290 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
291 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
292
293 lang_hooks.init_ts ();
294 }
295
296 \f
297 /* The name of the object as the assembler will see it (but before any
298 translations made by ASM_OUTPUT_LABELREF). Often this is the same
299 as DECL_NAME. It is an IDENTIFIER_NODE. */
300 tree
301 decl_assembler_name (tree decl)
302 {
303 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
304 lang_hooks.set_decl_assembler_name (decl);
305 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
306 }
307
308 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
309
310 bool
311 decl_assembler_name_equal (tree decl, tree asmname)
312 {
313 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
314
315 if (decl_asmname == asmname)
316 return true;
317
318 /* If the target assembler name was set by the user, things are trickier.
319 We have a leading '*' to begin with. After that, it's arguable what
320 is the correct thing to do with -fleading-underscore. Arguably, we've
321 historically been doing the wrong thing in assemble_alias by always
322 printing the leading underscore. Since we're not changing that, make
323 sure user_label_prefix follows the '*' before matching. */
324 if (IDENTIFIER_POINTER (decl_asmname)[0] == '*')
325 {
326 const char *decl_str = IDENTIFIER_POINTER (decl_asmname) + 1;
327 size_t ulp_len = strlen (user_label_prefix);
328
329 if (ulp_len == 0)
330 ;
331 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
332 decl_str += ulp_len;
333 else
334 return false;
335
336 return strcmp (decl_str, IDENTIFIER_POINTER (asmname)) == 0;
337 }
338
339 return false;
340 }
341
342 /* Compute the number of bytes occupied by a tree with code CODE.
343 This function cannot be used for nodes that have variable sizes,
344 including TREE_VEC, PHI_NODE, STRING_CST, and CALL_EXPR. */
345 size_t
346 tree_code_size (enum tree_code code)
347 {
348 switch (TREE_CODE_CLASS (code))
349 {
350 case tcc_declaration: /* A decl node */
351 {
352 switch (code)
353 {
354 case FIELD_DECL:
355 return sizeof (struct tree_field_decl);
356 case PARM_DECL:
357 return sizeof (struct tree_parm_decl);
358 case VAR_DECL:
359 return sizeof (struct tree_var_decl);
360 case LABEL_DECL:
361 return sizeof (struct tree_label_decl);
362 case RESULT_DECL:
363 return sizeof (struct tree_result_decl);
364 case CONST_DECL:
365 return sizeof (struct tree_const_decl);
366 case TYPE_DECL:
367 return sizeof (struct tree_type_decl);
368 case FUNCTION_DECL:
369 return sizeof (struct tree_function_decl);
370 case NAME_MEMORY_TAG:
371 case SYMBOL_MEMORY_TAG:
372 return sizeof (struct tree_memory_tag);
373 case STRUCT_FIELD_TAG:
374 return sizeof (struct tree_struct_field_tag);
375 case MEMORY_PARTITION_TAG:
376 return sizeof (struct tree_memory_partition_tag);
377 default:
378 return sizeof (struct tree_decl_non_common);
379 }
380 }
381
382 case tcc_type: /* a type node */
383 return sizeof (struct tree_type);
384
385 case tcc_reference: /* a reference */
386 case tcc_expression: /* an expression */
387 case tcc_statement: /* an expression with side effects */
388 case tcc_comparison: /* a comparison expression */
389 case tcc_unary: /* a unary arithmetic expression */
390 case tcc_binary: /* a binary arithmetic expression */
391 return (sizeof (struct tree_exp)
392 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
393
394 case tcc_gimple_stmt:
395 return (sizeof (struct gimple_stmt)
396 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
397
398 case tcc_constant: /* a constant */
399 switch (code)
400 {
401 case INTEGER_CST: return sizeof (struct tree_int_cst);
402 case REAL_CST: return sizeof (struct tree_real_cst);
403 case COMPLEX_CST: return sizeof (struct tree_complex);
404 case VECTOR_CST: return sizeof (struct tree_vector);
405 case STRING_CST: gcc_unreachable ();
406 default:
407 return lang_hooks.tree_size (code);
408 }
409
410 case tcc_exceptional: /* something random, like an identifier. */
411 switch (code)
412 {
413 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
414 case TREE_LIST: return sizeof (struct tree_list);
415
416 case ERROR_MARK:
417 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
418
419 case TREE_VEC:
420 case OMP_CLAUSE:
421 case PHI_NODE: gcc_unreachable ();
422
423 case SSA_NAME: return sizeof (struct tree_ssa_name);
424
425 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
426 case BLOCK: return sizeof (struct tree_block);
427 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
428 case CONSTRUCTOR: return sizeof (struct tree_constructor);
429
430 default:
431 return lang_hooks.tree_size (code);
432 }
433
434 default:
435 gcc_unreachable ();
436 }
437 }
438
439 /* Compute the number of bytes occupied by NODE. This routine only
440 looks at TREE_CODE, except for those nodes that have variable sizes. */
441 size_t
442 tree_size (tree node)
443 {
444 enum tree_code code = TREE_CODE (node);
445 switch (code)
446 {
447 case PHI_NODE:
448 return (sizeof (struct tree_phi_node)
449 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
450
451 case TREE_BINFO:
452 return (offsetof (struct tree_binfo, base_binfos)
453 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
454
455 case TREE_VEC:
456 return (sizeof (struct tree_vec)
457 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
458
459 case STRING_CST:
460 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
461
462 case OMP_CLAUSE:
463 return (sizeof (struct tree_omp_clause)
464 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
465 * sizeof (tree));
466
467 default:
468 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
469 return (sizeof (struct tree_exp)
470 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
471 else
472 return tree_code_size (code);
473 }
474 }
475
476 /* Return a newly allocated node of code CODE. For decl and type
477 nodes, some other fields are initialized. The rest of the node is
478 initialized to zero. This function cannot be used for PHI_NODE,
479 TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
480 tree_code_size.
481
482 Achoo! I got a code in the node. */
483
484 tree
485 make_node_stat (enum tree_code code MEM_STAT_DECL)
486 {
487 tree t;
488 enum tree_code_class type = TREE_CODE_CLASS (code);
489 size_t length = tree_code_size (code);
490 #ifdef GATHER_STATISTICS
491 tree_node_kind kind;
492
493 switch (type)
494 {
495 case tcc_declaration: /* A decl node */
496 kind = d_kind;
497 break;
498
499 case tcc_type: /* a type node */
500 kind = t_kind;
501 break;
502
503 case tcc_statement: /* an expression with side effects */
504 kind = s_kind;
505 break;
506
507 case tcc_reference: /* a reference */
508 kind = r_kind;
509 break;
510
511 case tcc_expression: /* an expression */
512 case tcc_comparison: /* a comparison expression */
513 case tcc_unary: /* a unary arithmetic expression */
514 case tcc_binary: /* a binary arithmetic expression */
515 kind = e_kind;
516 break;
517
518 case tcc_constant: /* a constant */
519 kind = c_kind;
520 break;
521
522 case tcc_gimple_stmt:
523 kind = gimple_stmt_kind;
524 break;
525
526 case tcc_exceptional: /* something random, like an identifier. */
527 switch (code)
528 {
529 case IDENTIFIER_NODE:
530 kind = id_kind;
531 break;
532
533 case TREE_VEC:
534 kind = vec_kind;
535 break;
536
537 case TREE_BINFO:
538 kind = binfo_kind;
539 break;
540
541 case PHI_NODE:
542 kind = phi_kind;
543 break;
544
545 case SSA_NAME:
546 kind = ssa_name_kind;
547 break;
548
549 case BLOCK:
550 kind = b_kind;
551 break;
552
553 case CONSTRUCTOR:
554 kind = constr_kind;
555 break;
556
557 default:
558 kind = x_kind;
559 break;
560 }
561 break;
562
563 default:
564 gcc_unreachable ();
565 }
566
567 tree_node_counts[(int) kind]++;
568 tree_node_sizes[(int) kind] += length;
569 #endif
570
571 if (code == IDENTIFIER_NODE)
572 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
573 else
574 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
575
576 memset (t, 0, length);
577
578 TREE_SET_CODE (t, code);
579
580 switch (type)
581 {
582 case tcc_statement:
583 TREE_SIDE_EFFECTS (t) = 1;
584 break;
585
586 case tcc_declaration:
587 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
588 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
589 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
590 {
591 if (code != FUNCTION_DECL)
592 DECL_ALIGN (t) = 1;
593 DECL_USER_ALIGN (t) = 0;
594 /* We have not yet computed the alias set for this declaration. */
595 DECL_POINTER_ALIAS_SET (t) = -1;
596 }
597 DECL_SOURCE_LOCATION (t) = input_location;
598 DECL_UID (t) = next_decl_uid++;
599
600 break;
601
602 case tcc_type:
603 TYPE_UID (t) = next_type_uid++;
604 TYPE_ALIGN (t) = BITS_PER_UNIT;
605 TYPE_USER_ALIGN (t) = 0;
606 TYPE_MAIN_VARIANT (t) = t;
607 TYPE_CANONICAL (t) = t;
608
609 /* Default to no attributes for type, but let target change that. */
610 TYPE_ATTRIBUTES (t) = NULL_TREE;
611 targetm.set_default_type_attributes (t);
612
613 /* We have not yet computed the alias set for this type. */
614 TYPE_ALIAS_SET (t) = -1;
615 break;
616
617 case tcc_constant:
618 TREE_CONSTANT (t) = 1;
619 TREE_INVARIANT (t) = 1;
620 break;
621
622 case tcc_expression:
623 switch (code)
624 {
625 case INIT_EXPR:
626 case MODIFY_EXPR:
627 case VA_ARG_EXPR:
628 case PREDECREMENT_EXPR:
629 case PREINCREMENT_EXPR:
630 case POSTDECREMENT_EXPR:
631 case POSTINCREMENT_EXPR:
632 /* All of these have side-effects, no matter what their
633 operands are. */
634 TREE_SIDE_EFFECTS (t) = 1;
635 break;
636
637 default:
638 break;
639 }
640 break;
641
642 case tcc_gimple_stmt:
643 switch (code)
644 {
645 case GIMPLE_MODIFY_STMT:
646 TREE_SIDE_EFFECTS (t) = 1;
647 break;
648
649 default:
650 break;
651 }
652
653 default:
654 /* Other classes need no special treatment. */
655 break;
656 }
657
658 return t;
659 }
660 \f
661 /* Return a new node with the same contents as NODE except that its
662 TREE_CHAIN is zero and it has a fresh uid. */
663
664 tree
665 copy_node_stat (tree node MEM_STAT_DECL)
666 {
667 tree t;
668 enum tree_code code = TREE_CODE (node);
669 size_t length;
670
671 gcc_assert (code != STATEMENT_LIST);
672
673 length = tree_size (node);
674 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
675 memcpy (t, node, length);
676
677 if (!GIMPLE_TUPLE_P (node))
678 TREE_CHAIN (t) = 0;
679 TREE_ASM_WRITTEN (t) = 0;
680 TREE_VISITED (t) = 0;
681 t->base.ann = 0;
682
683 if (TREE_CODE_CLASS (code) == tcc_declaration)
684 {
685 DECL_UID (t) = next_decl_uid++;
686 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
687 && DECL_HAS_VALUE_EXPR_P (node))
688 {
689 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
690 DECL_HAS_VALUE_EXPR_P (t) = 1;
691 }
692 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
693 {
694 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
695 DECL_HAS_INIT_PRIORITY_P (t) = 1;
696 }
697 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
698 {
699 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
700 DECL_BASED_ON_RESTRICT_P (t) = 1;
701 }
702 }
703 else if (TREE_CODE_CLASS (code) == tcc_type)
704 {
705 TYPE_UID (t) = next_type_uid++;
706 /* The following is so that the debug code for
707 the copy is different from the original type.
708 The two statements usually duplicate each other
709 (because they clear fields of the same union),
710 but the optimizer should catch that. */
711 TYPE_SYMTAB_POINTER (t) = 0;
712 TYPE_SYMTAB_ADDRESS (t) = 0;
713
714 /* Do not copy the values cache. */
715 if (TYPE_CACHED_VALUES_P(t))
716 {
717 TYPE_CACHED_VALUES_P (t) = 0;
718 TYPE_CACHED_VALUES (t) = NULL_TREE;
719 }
720 }
721
722 return t;
723 }
724
725 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
726 For example, this can copy a list made of TREE_LIST nodes. */
727
728 tree
729 copy_list (tree list)
730 {
731 tree head;
732 tree prev, next;
733
734 if (list == 0)
735 return 0;
736
737 head = prev = copy_node (list);
738 next = TREE_CHAIN (list);
739 while (next)
740 {
741 TREE_CHAIN (prev) = copy_node (next);
742 prev = TREE_CHAIN (prev);
743 next = TREE_CHAIN (next);
744 }
745 return head;
746 }
747
748 \f
749 /* Create an INT_CST node with a LOW value sign extended. */
750
751 tree
752 build_int_cst (tree type, HOST_WIDE_INT low)
753 {
754 /* Support legacy code. */
755 if (!type)
756 type = integer_type_node;
757
758 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
759 }
760
761 /* Create an INT_CST node with a LOW value zero extended. */
762
763 tree
764 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
765 {
766 return build_int_cst_wide (type, low, 0);
767 }
768
769 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
770 if it is negative. This function is similar to build_int_cst, but
771 the extra bits outside of the type precision are cleared. Constants
772 with these extra bits may confuse the fold so that it detects overflows
773 even in cases when they do not occur, and in general should be avoided.
774 We cannot however make this a default behavior of build_int_cst without
775 more intrusive changes, since there are parts of gcc that rely on the extra
776 precision of the integer constants. */
777
778 tree
779 build_int_cst_type (tree type, HOST_WIDE_INT low)
780 {
781 unsigned HOST_WIDE_INT low1;
782 HOST_WIDE_INT hi;
783
784 gcc_assert (type);
785
786 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
787
788 return build_int_cst_wide (type, low1, hi);
789 }
790
791 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
792 and sign extended according to the value range of TYPE. */
793
794 tree
795 build_int_cst_wide_type (tree type,
796 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
797 {
798 fit_double_type (low, high, &low, &high, type);
799 return build_int_cst_wide (type, low, high);
800 }
801
802 /* These are the hash table functions for the hash table of INTEGER_CST
803 nodes of a sizetype. */
804
805 /* Return the hash code code X, an INTEGER_CST. */
806
807 static hashval_t
808 int_cst_hash_hash (const void *x)
809 {
810 tree t = (tree) x;
811
812 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
813 ^ htab_hash_pointer (TREE_TYPE (t)));
814 }
815
816 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
817 is the same as that given by *Y, which is the same. */
818
819 static int
820 int_cst_hash_eq (const void *x, const void *y)
821 {
822 tree xt = (tree) x;
823 tree yt = (tree) y;
824
825 return (TREE_TYPE (xt) == TREE_TYPE (yt)
826 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
827 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
828 }
829
830 /* Create an INT_CST node of TYPE and value HI:LOW.
831 The returned node is always shared. For small integers we use a
832 per-type vector cache, for larger ones we use a single hash table. */
833
834 tree
835 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
836 {
837 tree t;
838 int ix = -1;
839 int limit = 0;
840
841 gcc_assert (type);
842
843 switch (TREE_CODE (type))
844 {
845 case POINTER_TYPE:
846 case REFERENCE_TYPE:
847 /* Cache NULL pointer. */
848 if (!hi && !low)
849 {
850 limit = 1;
851 ix = 0;
852 }
853 break;
854
855 case BOOLEAN_TYPE:
856 /* Cache false or true. */
857 limit = 2;
858 if (!hi && low < 2)
859 ix = low;
860 break;
861
862 case INTEGER_TYPE:
863 case OFFSET_TYPE:
864 if (TYPE_UNSIGNED (type))
865 {
866 /* Cache 0..N */
867 limit = INTEGER_SHARE_LIMIT;
868 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
869 ix = low;
870 }
871 else
872 {
873 /* Cache -1..N */
874 limit = INTEGER_SHARE_LIMIT + 1;
875 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
876 ix = low + 1;
877 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
878 ix = 0;
879 }
880 break;
881
882 case ENUMERAL_TYPE:
883 break;
884
885 default:
886 gcc_unreachable ();
887 }
888
889 if (ix >= 0)
890 {
891 /* Look for it in the type's vector of small shared ints. */
892 if (!TYPE_CACHED_VALUES_P (type))
893 {
894 TYPE_CACHED_VALUES_P (type) = 1;
895 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
896 }
897
898 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
899 if (t)
900 {
901 /* Make sure no one is clobbering the shared constant. */
902 gcc_assert (TREE_TYPE (t) == type);
903 gcc_assert (TREE_INT_CST_LOW (t) == low);
904 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
905 }
906 else
907 {
908 /* Create a new shared int. */
909 t = make_node (INTEGER_CST);
910
911 TREE_INT_CST_LOW (t) = low;
912 TREE_INT_CST_HIGH (t) = hi;
913 TREE_TYPE (t) = type;
914
915 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
916 }
917 }
918 else
919 {
920 /* Use the cache of larger shared ints. */
921 void **slot;
922
923 TREE_INT_CST_LOW (int_cst_node) = low;
924 TREE_INT_CST_HIGH (int_cst_node) = hi;
925 TREE_TYPE (int_cst_node) = type;
926
927 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
928 t = *slot;
929 if (!t)
930 {
931 /* Insert this one into the hash table. */
932 t = int_cst_node;
933 *slot = t;
934 /* Make a new node for next time round. */
935 int_cst_node = make_node (INTEGER_CST);
936 }
937 }
938
939 return t;
940 }
941
942 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
943 and the rest are zeros. */
944
945 tree
946 build_low_bits_mask (tree type, unsigned bits)
947 {
948 unsigned HOST_WIDE_INT low;
949 HOST_WIDE_INT high;
950 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
951
952 gcc_assert (bits <= TYPE_PRECISION (type));
953
954 if (bits == TYPE_PRECISION (type)
955 && !TYPE_UNSIGNED (type))
956 {
957 /* Sign extended all-ones mask. */
958 low = all_ones;
959 high = -1;
960 }
961 else if (bits <= HOST_BITS_PER_WIDE_INT)
962 {
963 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
964 high = 0;
965 }
966 else
967 {
968 bits -= HOST_BITS_PER_WIDE_INT;
969 low = all_ones;
970 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
971 }
972
973 return build_int_cst_wide (type, low, high);
974 }
975
976 /* Checks that X is integer constant that can be expressed in (unsigned)
977 HOST_WIDE_INT without loss of precision. */
978
979 bool
980 cst_and_fits_in_hwi (tree x)
981 {
982 if (TREE_CODE (x) != INTEGER_CST)
983 return false;
984
985 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
986 return false;
987
988 return (TREE_INT_CST_HIGH (x) == 0
989 || TREE_INT_CST_HIGH (x) == -1);
990 }
991
992 /* Return a new VECTOR_CST node whose type is TYPE and whose values
993 are in a list pointed to by VALS. */
994
995 tree
996 build_vector (tree type, tree vals)
997 {
998 tree v = make_node (VECTOR_CST);
999 int over = 0;
1000 tree link;
1001
1002 TREE_VECTOR_CST_ELTS (v) = vals;
1003 TREE_TYPE (v) = type;
1004
1005 /* Iterate through elements and check for overflow. */
1006 for (link = vals; link; link = TREE_CHAIN (link))
1007 {
1008 tree value = TREE_VALUE (link);
1009
1010 /* Don't crash if we get an address constant. */
1011 if (!CONSTANT_CLASS_P (value))
1012 continue;
1013
1014 over |= TREE_OVERFLOW (value);
1015 }
1016
1017 TREE_OVERFLOW (v) = over;
1018 return v;
1019 }
1020
1021 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1022 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1023
1024 tree
1025 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1026 {
1027 tree list = NULL_TREE;
1028 unsigned HOST_WIDE_INT idx;
1029 tree value;
1030
1031 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1032 list = tree_cons (NULL_TREE, value, list);
1033 return build_vector (type, nreverse (list));
1034 }
1035
1036 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1037 are in the VEC pointed to by VALS. */
1038 tree
1039 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1040 {
1041 tree c = make_node (CONSTRUCTOR);
1042 TREE_TYPE (c) = type;
1043 CONSTRUCTOR_ELTS (c) = vals;
1044 return c;
1045 }
1046
1047 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1048 INDEX and VALUE. */
1049 tree
1050 build_constructor_single (tree type, tree index, tree value)
1051 {
1052 VEC(constructor_elt,gc) *v;
1053 constructor_elt *elt;
1054 tree t;
1055
1056 v = VEC_alloc (constructor_elt, gc, 1);
1057 elt = VEC_quick_push (constructor_elt, v, NULL);
1058 elt->index = index;
1059 elt->value = value;
1060
1061 t = build_constructor (type, v);
1062 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1063 return t;
1064 }
1065
1066
1067 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1068 are in a list pointed to by VALS. */
1069 tree
1070 build_constructor_from_list (tree type, tree vals)
1071 {
1072 tree t, val;
1073 VEC(constructor_elt,gc) *v = NULL;
1074 bool constant_p = true;
1075
1076 if (vals)
1077 {
1078 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1079 for (t = vals; t; t = TREE_CHAIN (t))
1080 {
1081 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1082 val = TREE_VALUE (t);
1083 elt->index = TREE_PURPOSE (t);
1084 elt->value = val;
1085 if (!TREE_CONSTANT (val))
1086 constant_p = false;
1087 }
1088 }
1089
1090 t = build_constructor (type, v);
1091 TREE_CONSTANT (t) = constant_p;
1092 return t;
1093 }
1094
1095
1096 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1097
1098 tree
1099 build_real (tree type, REAL_VALUE_TYPE d)
1100 {
1101 tree v;
1102 REAL_VALUE_TYPE *dp;
1103 int overflow = 0;
1104
1105 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1106 Consider doing it via real_convert now. */
1107
1108 v = make_node (REAL_CST);
1109 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1110 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1111
1112 TREE_TYPE (v) = type;
1113 TREE_REAL_CST_PTR (v) = dp;
1114 TREE_OVERFLOW (v) = overflow;
1115 return v;
1116 }
1117
1118 /* Return a new REAL_CST node whose type is TYPE
1119 and whose value is the integer value of the INTEGER_CST node I. */
1120
1121 REAL_VALUE_TYPE
1122 real_value_from_int_cst (tree type, tree i)
1123 {
1124 REAL_VALUE_TYPE d;
1125
1126 /* Clear all bits of the real value type so that we can later do
1127 bitwise comparisons to see if two values are the same. */
1128 memset (&d, 0, sizeof d);
1129
1130 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1131 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1132 TYPE_UNSIGNED (TREE_TYPE (i)));
1133 return d;
1134 }
1135
1136 /* Given a tree representing an integer constant I, return a tree
1137 representing the same value as a floating-point constant of type TYPE. */
1138
1139 tree
1140 build_real_from_int_cst (tree type, tree i)
1141 {
1142 tree v;
1143 int overflow = TREE_OVERFLOW (i);
1144
1145 v = build_real (type, real_value_from_int_cst (type, i));
1146
1147 TREE_OVERFLOW (v) |= overflow;
1148 return v;
1149 }
1150
1151 /* Return a newly constructed STRING_CST node whose value is
1152 the LEN characters at STR.
1153 The TREE_TYPE is not initialized. */
1154
1155 tree
1156 build_string (int len, const char *str)
1157 {
1158 tree s;
1159 size_t length;
1160
1161 /* Do not waste bytes provided by padding of struct tree_string. */
1162 length = len + offsetof (struct tree_string, str) + 1;
1163
1164 #ifdef GATHER_STATISTICS
1165 tree_node_counts[(int) c_kind]++;
1166 tree_node_sizes[(int) c_kind] += length;
1167 #endif
1168
1169 s = ggc_alloc_tree (length);
1170
1171 memset (s, 0, sizeof (struct tree_common));
1172 TREE_SET_CODE (s, STRING_CST);
1173 TREE_CONSTANT (s) = 1;
1174 TREE_INVARIANT (s) = 1;
1175 TREE_STRING_LENGTH (s) = len;
1176 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1177 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1178
1179 return s;
1180 }
1181
1182 /* Return a newly constructed COMPLEX_CST node whose value is
1183 specified by the real and imaginary parts REAL and IMAG.
1184 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1185 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1186
1187 tree
1188 build_complex (tree type, tree real, tree imag)
1189 {
1190 tree t = make_node (COMPLEX_CST);
1191
1192 TREE_REALPART (t) = real;
1193 TREE_IMAGPART (t) = imag;
1194 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1195 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1196 return t;
1197 }
1198
1199 /* Return a constant of arithmetic type TYPE which is the
1200 multiplicative identity of the set TYPE. */
1201
1202 tree
1203 build_one_cst (tree type)
1204 {
1205 switch (TREE_CODE (type))
1206 {
1207 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1208 case POINTER_TYPE: case REFERENCE_TYPE:
1209 case OFFSET_TYPE:
1210 return build_int_cst (type, 1);
1211
1212 case REAL_TYPE:
1213 return build_real (type, dconst1);
1214
1215 case VECTOR_TYPE:
1216 {
1217 tree scalar, cst;
1218 int i;
1219
1220 scalar = build_one_cst (TREE_TYPE (type));
1221
1222 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1223 cst = NULL_TREE;
1224 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1225 cst = tree_cons (NULL_TREE, scalar, cst);
1226
1227 return build_vector (type, cst);
1228 }
1229
1230 case COMPLEX_TYPE:
1231 return build_complex (type,
1232 build_one_cst (TREE_TYPE (type)),
1233 fold_convert (TREE_TYPE (type), integer_zero_node));
1234
1235 default:
1236 gcc_unreachable ();
1237 }
1238 }
1239
1240 /* Build a BINFO with LEN language slots. */
1241
1242 tree
1243 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1244 {
1245 tree t;
1246 size_t length = (offsetof (struct tree_binfo, base_binfos)
1247 + VEC_embedded_size (tree, base_binfos));
1248
1249 #ifdef GATHER_STATISTICS
1250 tree_node_counts[(int) binfo_kind]++;
1251 tree_node_sizes[(int) binfo_kind] += length;
1252 #endif
1253
1254 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1255
1256 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1257
1258 TREE_SET_CODE (t, TREE_BINFO);
1259
1260 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1261
1262 return t;
1263 }
1264
1265
1266 /* Build a newly constructed TREE_VEC node of length LEN. */
1267
1268 tree
1269 make_tree_vec_stat (int len MEM_STAT_DECL)
1270 {
1271 tree t;
1272 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1273
1274 #ifdef GATHER_STATISTICS
1275 tree_node_counts[(int) vec_kind]++;
1276 tree_node_sizes[(int) vec_kind] += length;
1277 #endif
1278
1279 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1280
1281 memset (t, 0, length);
1282
1283 TREE_SET_CODE (t, TREE_VEC);
1284 TREE_VEC_LENGTH (t) = len;
1285
1286 return t;
1287 }
1288 \f
1289 /* Return 1 if EXPR is the integer constant zero or a complex constant
1290 of zero. */
1291
1292 int
1293 integer_zerop (tree expr)
1294 {
1295 STRIP_NOPS (expr);
1296
1297 return ((TREE_CODE (expr) == INTEGER_CST
1298 && TREE_INT_CST_LOW (expr) == 0
1299 && TREE_INT_CST_HIGH (expr) == 0)
1300 || (TREE_CODE (expr) == COMPLEX_CST
1301 && integer_zerop (TREE_REALPART (expr))
1302 && integer_zerop (TREE_IMAGPART (expr))));
1303 }
1304
1305 /* Return 1 if EXPR is the integer constant one or the corresponding
1306 complex constant. */
1307
1308 int
1309 integer_onep (tree expr)
1310 {
1311 STRIP_NOPS (expr);
1312
1313 return ((TREE_CODE (expr) == INTEGER_CST
1314 && TREE_INT_CST_LOW (expr) == 1
1315 && TREE_INT_CST_HIGH (expr) == 0)
1316 || (TREE_CODE (expr) == COMPLEX_CST
1317 && integer_onep (TREE_REALPART (expr))
1318 && integer_zerop (TREE_IMAGPART (expr))));
1319 }
1320
1321 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1322 it contains. Likewise for the corresponding complex constant. */
1323
1324 int
1325 integer_all_onesp (tree expr)
1326 {
1327 int prec;
1328 int uns;
1329
1330 STRIP_NOPS (expr);
1331
1332 if (TREE_CODE (expr) == COMPLEX_CST
1333 && integer_all_onesp (TREE_REALPART (expr))
1334 && integer_zerop (TREE_IMAGPART (expr)))
1335 return 1;
1336
1337 else if (TREE_CODE (expr) != INTEGER_CST)
1338 return 0;
1339
1340 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1341 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1342 && TREE_INT_CST_HIGH (expr) == -1)
1343 return 1;
1344 if (!uns)
1345 return 0;
1346
1347 /* Note that using TYPE_PRECISION here is wrong. We care about the
1348 actual bits, not the (arbitrary) range of the type. */
1349 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1350 if (prec >= HOST_BITS_PER_WIDE_INT)
1351 {
1352 HOST_WIDE_INT high_value;
1353 int shift_amount;
1354
1355 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1356
1357 /* Can not handle precisions greater than twice the host int size. */
1358 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1359 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1360 /* Shifting by the host word size is undefined according to the ANSI
1361 standard, so we must handle this as a special case. */
1362 high_value = -1;
1363 else
1364 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1365
1366 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1367 && TREE_INT_CST_HIGH (expr) == high_value);
1368 }
1369 else
1370 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1371 }
1372
1373 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1374 one bit on). */
1375
1376 int
1377 integer_pow2p (tree expr)
1378 {
1379 int prec;
1380 HOST_WIDE_INT high, low;
1381
1382 STRIP_NOPS (expr);
1383
1384 if (TREE_CODE (expr) == COMPLEX_CST
1385 && integer_pow2p (TREE_REALPART (expr))
1386 && integer_zerop (TREE_IMAGPART (expr)))
1387 return 1;
1388
1389 if (TREE_CODE (expr) != INTEGER_CST)
1390 return 0;
1391
1392 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1393 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1394 high = TREE_INT_CST_HIGH (expr);
1395 low = TREE_INT_CST_LOW (expr);
1396
1397 /* First clear all bits that are beyond the type's precision in case
1398 we've been sign extended. */
1399
1400 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1401 ;
1402 else if (prec > HOST_BITS_PER_WIDE_INT)
1403 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1404 else
1405 {
1406 high = 0;
1407 if (prec < HOST_BITS_PER_WIDE_INT)
1408 low &= ~((HOST_WIDE_INT) (-1) << prec);
1409 }
1410
1411 if (high == 0 && low == 0)
1412 return 0;
1413
1414 return ((high == 0 && (low & (low - 1)) == 0)
1415 || (low == 0 && (high & (high - 1)) == 0));
1416 }
1417
1418 /* Return 1 if EXPR is an integer constant other than zero or a
1419 complex constant other than zero. */
1420
1421 int
1422 integer_nonzerop (tree expr)
1423 {
1424 STRIP_NOPS (expr);
1425
1426 return ((TREE_CODE (expr) == INTEGER_CST
1427 && (TREE_INT_CST_LOW (expr) != 0
1428 || TREE_INT_CST_HIGH (expr) != 0))
1429 || (TREE_CODE (expr) == COMPLEX_CST
1430 && (integer_nonzerop (TREE_REALPART (expr))
1431 || integer_nonzerop (TREE_IMAGPART (expr)))));
1432 }
1433
1434 /* Return the power of two represented by a tree node known to be a
1435 power of two. */
1436
1437 int
1438 tree_log2 (tree expr)
1439 {
1440 int prec;
1441 HOST_WIDE_INT high, low;
1442
1443 STRIP_NOPS (expr);
1444
1445 if (TREE_CODE (expr) == COMPLEX_CST)
1446 return tree_log2 (TREE_REALPART (expr));
1447
1448 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1449 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1450
1451 high = TREE_INT_CST_HIGH (expr);
1452 low = TREE_INT_CST_LOW (expr);
1453
1454 /* First clear all bits that are beyond the type's precision in case
1455 we've been sign extended. */
1456
1457 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1458 ;
1459 else if (prec > HOST_BITS_PER_WIDE_INT)
1460 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1461 else
1462 {
1463 high = 0;
1464 if (prec < HOST_BITS_PER_WIDE_INT)
1465 low &= ~((HOST_WIDE_INT) (-1) << prec);
1466 }
1467
1468 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1469 : exact_log2 (low));
1470 }
1471
1472 /* Similar, but return the largest integer Y such that 2 ** Y is less
1473 than or equal to EXPR. */
1474
1475 int
1476 tree_floor_log2 (tree expr)
1477 {
1478 int prec;
1479 HOST_WIDE_INT high, low;
1480
1481 STRIP_NOPS (expr);
1482
1483 if (TREE_CODE (expr) == COMPLEX_CST)
1484 return tree_log2 (TREE_REALPART (expr));
1485
1486 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1487 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1488
1489 high = TREE_INT_CST_HIGH (expr);
1490 low = TREE_INT_CST_LOW (expr);
1491
1492 /* First clear all bits that are beyond the type's precision in case
1493 we've been sign extended. Ignore if type's precision hasn't been set
1494 since what we are doing is setting it. */
1495
1496 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1497 ;
1498 else if (prec > HOST_BITS_PER_WIDE_INT)
1499 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1500 else
1501 {
1502 high = 0;
1503 if (prec < HOST_BITS_PER_WIDE_INT)
1504 low &= ~((HOST_WIDE_INT) (-1) << prec);
1505 }
1506
1507 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1508 : floor_log2 (low));
1509 }
1510
1511 /* Return 1 if EXPR is the real constant zero. */
1512
1513 int
1514 real_zerop (tree expr)
1515 {
1516 STRIP_NOPS (expr);
1517
1518 return ((TREE_CODE (expr) == REAL_CST
1519 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1520 || (TREE_CODE (expr) == COMPLEX_CST
1521 && real_zerop (TREE_REALPART (expr))
1522 && real_zerop (TREE_IMAGPART (expr))));
1523 }
1524
1525 /* Return 1 if EXPR is the real constant one in real or complex form. */
1526
1527 int
1528 real_onep (tree expr)
1529 {
1530 STRIP_NOPS (expr);
1531
1532 return ((TREE_CODE (expr) == REAL_CST
1533 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1534 || (TREE_CODE (expr) == COMPLEX_CST
1535 && real_onep (TREE_REALPART (expr))
1536 && real_zerop (TREE_IMAGPART (expr))));
1537 }
1538
1539 /* Return 1 if EXPR is the real constant two. */
1540
1541 int
1542 real_twop (tree expr)
1543 {
1544 STRIP_NOPS (expr);
1545
1546 return ((TREE_CODE (expr) == REAL_CST
1547 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1548 || (TREE_CODE (expr) == COMPLEX_CST
1549 && real_twop (TREE_REALPART (expr))
1550 && real_zerop (TREE_IMAGPART (expr))));
1551 }
1552
1553 /* Return 1 if EXPR is the real constant minus one. */
1554
1555 int
1556 real_minus_onep (tree expr)
1557 {
1558 STRIP_NOPS (expr);
1559
1560 return ((TREE_CODE (expr) == REAL_CST
1561 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1562 || (TREE_CODE (expr) == COMPLEX_CST
1563 && real_minus_onep (TREE_REALPART (expr))
1564 && real_zerop (TREE_IMAGPART (expr))));
1565 }
1566
1567 /* Nonzero if EXP is a constant or a cast of a constant. */
1568
1569 int
1570 really_constant_p (tree exp)
1571 {
1572 /* This is not quite the same as STRIP_NOPS. It does more. */
1573 while (TREE_CODE (exp) == NOP_EXPR
1574 || TREE_CODE (exp) == CONVERT_EXPR
1575 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1576 exp = TREE_OPERAND (exp, 0);
1577 return TREE_CONSTANT (exp);
1578 }
1579 \f
1580 /* Return first list element whose TREE_VALUE is ELEM.
1581 Return 0 if ELEM is not in LIST. */
1582
1583 tree
1584 value_member (tree elem, tree list)
1585 {
1586 while (list)
1587 {
1588 if (elem == TREE_VALUE (list))
1589 return list;
1590 list = TREE_CHAIN (list);
1591 }
1592 return NULL_TREE;
1593 }
1594
1595 /* Return first list element whose TREE_PURPOSE is ELEM.
1596 Return 0 if ELEM is not in LIST. */
1597
1598 tree
1599 purpose_member (tree elem, tree list)
1600 {
1601 while (list)
1602 {
1603 if (elem == TREE_PURPOSE (list))
1604 return list;
1605 list = TREE_CHAIN (list);
1606 }
1607 return NULL_TREE;
1608 }
1609
1610 /* Return nonzero if ELEM is part of the chain CHAIN. */
1611
1612 int
1613 chain_member (tree elem, tree chain)
1614 {
1615 while (chain)
1616 {
1617 if (elem == chain)
1618 return 1;
1619 chain = TREE_CHAIN (chain);
1620 }
1621
1622 return 0;
1623 }
1624
1625 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1626 We expect a null pointer to mark the end of the chain.
1627 This is the Lisp primitive `length'. */
1628
1629 int
1630 list_length (tree t)
1631 {
1632 tree p = t;
1633 #ifdef ENABLE_TREE_CHECKING
1634 tree q = t;
1635 #endif
1636 int len = 0;
1637
1638 while (p)
1639 {
1640 p = TREE_CHAIN (p);
1641 #ifdef ENABLE_TREE_CHECKING
1642 if (len % 2)
1643 q = TREE_CHAIN (q);
1644 gcc_assert (p != q);
1645 #endif
1646 len++;
1647 }
1648
1649 return len;
1650 }
1651
1652 /* Returns the number of FIELD_DECLs in TYPE. */
1653
1654 int
1655 fields_length (tree type)
1656 {
1657 tree t = TYPE_FIELDS (type);
1658 int count = 0;
1659
1660 for (; t; t = TREE_CHAIN (t))
1661 if (TREE_CODE (t) == FIELD_DECL)
1662 ++count;
1663
1664 return count;
1665 }
1666
1667 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1668 by modifying the last node in chain 1 to point to chain 2.
1669 This is the Lisp primitive `nconc'. */
1670
1671 tree
1672 chainon (tree op1, tree op2)
1673 {
1674 tree t1;
1675
1676 if (!op1)
1677 return op2;
1678 if (!op2)
1679 return op1;
1680
1681 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1682 continue;
1683 TREE_CHAIN (t1) = op2;
1684
1685 #ifdef ENABLE_TREE_CHECKING
1686 {
1687 tree t2;
1688 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1689 gcc_assert (t2 != t1);
1690 }
1691 #endif
1692
1693 return op1;
1694 }
1695
1696 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1697
1698 tree
1699 tree_last (tree chain)
1700 {
1701 tree next;
1702 if (chain)
1703 while ((next = TREE_CHAIN (chain)))
1704 chain = next;
1705 return chain;
1706 }
1707
1708 /* Reverse the order of elements in the chain T,
1709 and return the new head of the chain (old last element). */
1710
1711 tree
1712 nreverse (tree t)
1713 {
1714 tree prev = 0, decl, next;
1715 for (decl = t; decl; decl = next)
1716 {
1717 next = TREE_CHAIN (decl);
1718 TREE_CHAIN (decl) = prev;
1719 prev = decl;
1720 }
1721 return prev;
1722 }
1723 \f
1724 /* Return a newly created TREE_LIST node whose
1725 purpose and value fields are PARM and VALUE. */
1726
1727 tree
1728 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1729 {
1730 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1731 TREE_PURPOSE (t) = parm;
1732 TREE_VALUE (t) = value;
1733 return t;
1734 }
1735
1736 /* Return a newly created TREE_LIST node whose
1737 purpose and value fields are PURPOSE and VALUE
1738 and whose TREE_CHAIN is CHAIN. */
1739
1740 tree
1741 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1742 {
1743 tree node;
1744
1745 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1746
1747 memset (node, 0, sizeof (struct tree_common));
1748
1749 #ifdef GATHER_STATISTICS
1750 tree_node_counts[(int) x_kind]++;
1751 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1752 #endif
1753
1754 TREE_SET_CODE (node, TREE_LIST);
1755 TREE_CHAIN (node) = chain;
1756 TREE_PURPOSE (node) = purpose;
1757 TREE_VALUE (node) = value;
1758 return node;
1759 }
1760
1761 \f
1762 /* Return the size nominally occupied by an object of type TYPE
1763 when it resides in memory. The value is measured in units of bytes,
1764 and its data type is that normally used for type sizes
1765 (which is the first type created by make_signed_type or
1766 make_unsigned_type). */
1767
1768 tree
1769 size_in_bytes (tree type)
1770 {
1771 tree t;
1772
1773 if (type == error_mark_node)
1774 return integer_zero_node;
1775
1776 type = TYPE_MAIN_VARIANT (type);
1777 t = TYPE_SIZE_UNIT (type);
1778
1779 if (t == 0)
1780 {
1781 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1782 return size_zero_node;
1783 }
1784
1785 return t;
1786 }
1787
1788 /* Return the size of TYPE (in bytes) as a wide integer
1789 or return -1 if the size can vary or is larger than an integer. */
1790
1791 HOST_WIDE_INT
1792 int_size_in_bytes (tree type)
1793 {
1794 tree t;
1795
1796 if (type == error_mark_node)
1797 return 0;
1798
1799 type = TYPE_MAIN_VARIANT (type);
1800 t = TYPE_SIZE_UNIT (type);
1801 if (t == 0
1802 || TREE_CODE (t) != INTEGER_CST
1803 || TREE_INT_CST_HIGH (t) != 0
1804 /* If the result would appear negative, it's too big to represent. */
1805 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1806 return -1;
1807
1808 return TREE_INT_CST_LOW (t);
1809 }
1810
1811 /* Return the maximum size of TYPE (in bytes) as a wide integer
1812 or return -1 if the size can vary or is larger than an integer. */
1813
1814 HOST_WIDE_INT
1815 max_int_size_in_bytes (tree type)
1816 {
1817 HOST_WIDE_INT size = -1;
1818 tree size_tree;
1819
1820 /* If this is an array type, check for a possible MAX_SIZE attached. */
1821
1822 if (TREE_CODE (type) == ARRAY_TYPE)
1823 {
1824 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1825
1826 if (size_tree && host_integerp (size_tree, 1))
1827 size = tree_low_cst (size_tree, 1);
1828 }
1829
1830 /* If we still haven't been able to get a size, see if the language
1831 can compute a maximum size. */
1832
1833 if (size == -1)
1834 {
1835 size_tree = lang_hooks.types.max_size (type);
1836
1837 if (size_tree && host_integerp (size_tree, 1))
1838 size = tree_low_cst (size_tree, 1);
1839 }
1840
1841 return size;
1842 }
1843 \f
1844 /* Return the bit position of FIELD, in bits from the start of the record.
1845 This is a tree of type bitsizetype. */
1846
1847 tree
1848 bit_position (tree field)
1849 {
1850 return bit_from_pos (DECL_FIELD_OFFSET (field),
1851 DECL_FIELD_BIT_OFFSET (field));
1852 }
1853
1854 /* Likewise, but return as an integer. It must be representable in
1855 that way (since it could be a signed value, we don't have the
1856 option of returning -1 like int_size_in_byte can. */
1857
1858 HOST_WIDE_INT
1859 int_bit_position (tree field)
1860 {
1861 return tree_low_cst (bit_position (field), 0);
1862 }
1863 \f
1864 /* Return the byte position of FIELD, in bytes from the start of the record.
1865 This is a tree of type sizetype. */
1866
1867 tree
1868 byte_position (tree field)
1869 {
1870 return byte_from_pos (DECL_FIELD_OFFSET (field),
1871 DECL_FIELD_BIT_OFFSET (field));
1872 }
1873
1874 /* Likewise, but return as an integer. It must be representable in
1875 that way (since it could be a signed value, we don't have the
1876 option of returning -1 like int_size_in_byte can. */
1877
1878 HOST_WIDE_INT
1879 int_byte_position (tree field)
1880 {
1881 return tree_low_cst (byte_position (field), 0);
1882 }
1883 \f
1884 /* Return the strictest alignment, in bits, that T is known to have. */
1885
1886 unsigned int
1887 expr_align (tree t)
1888 {
1889 unsigned int align0, align1;
1890
1891 switch (TREE_CODE (t))
1892 {
1893 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1894 /* If we have conversions, we know that the alignment of the
1895 object must meet each of the alignments of the types. */
1896 align0 = expr_align (TREE_OPERAND (t, 0));
1897 align1 = TYPE_ALIGN (TREE_TYPE (t));
1898 return MAX (align0, align1);
1899
1900 case GIMPLE_MODIFY_STMT:
1901 /* We should never ask for the alignment of a gimple statement. */
1902 gcc_unreachable ();
1903
1904 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1905 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1906 case CLEANUP_POINT_EXPR:
1907 /* These don't change the alignment of an object. */
1908 return expr_align (TREE_OPERAND (t, 0));
1909
1910 case COND_EXPR:
1911 /* The best we can do is say that the alignment is the least aligned
1912 of the two arms. */
1913 align0 = expr_align (TREE_OPERAND (t, 1));
1914 align1 = expr_align (TREE_OPERAND (t, 2));
1915 return MIN (align0, align1);
1916
1917 case LABEL_DECL: case CONST_DECL:
1918 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1919 if (DECL_ALIGN (t) != 0)
1920 return DECL_ALIGN (t);
1921 break;
1922
1923 case FUNCTION_DECL:
1924 return FUNCTION_BOUNDARY;
1925
1926 default:
1927 break;
1928 }
1929
1930 /* Otherwise take the alignment from that of the type. */
1931 return TYPE_ALIGN (TREE_TYPE (t));
1932 }
1933 \f
1934 /* Return, as a tree node, the number of elements for TYPE (which is an
1935 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1936
1937 tree
1938 array_type_nelts (tree type)
1939 {
1940 tree index_type, min, max;
1941
1942 /* If they did it with unspecified bounds, then we should have already
1943 given an error about it before we got here. */
1944 if (! TYPE_DOMAIN (type))
1945 return error_mark_node;
1946
1947 index_type = TYPE_DOMAIN (type);
1948 min = TYPE_MIN_VALUE (index_type);
1949 max = TYPE_MAX_VALUE (index_type);
1950
1951 return (integer_zerop (min)
1952 ? max
1953 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1954 }
1955 \f
1956 /* If arg is static -- a reference to an object in static storage -- then
1957 return the object. This is not the same as the C meaning of `static'.
1958 If arg isn't static, return NULL. */
1959
1960 tree
1961 staticp (tree arg)
1962 {
1963 switch (TREE_CODE (arg))
1964 {
1965 case FUNCTION_DECL:
1966 /* Nested functions are static, even though taking their address will
1967 involve a trampoline as we unnest the nested function and create
1968 the trampoline on the tree level. */
1969 return arg;
1970
1971 case VAR_DECL:
1972 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1973 && ! DECL_THREAD_LOCAL_P (arg)
1974 && ! DECL_DLLIMPORT_P (arg)
1975 ? arg : NULL);
1976
1977 case CONST_DECL:
1978 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1979 ? arg : NULL);
1980
1981 case CONSTRUCTOR:
1982 return TREE_STATIC (arg) ? arg : NULL;
1983
1984 case LABEL_DECL:
1985 case STRING_CST:
1986 return arg;
1987
1988 case COMPONENT_REF:
1989 /* If the thing being referenced is not a field, then it is
1990 something language specific. */
1991 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1992 return (*lang_hooks.staticp) (arg);
1993
1994 /* If we are referencing a bitfield, we can't evaluate an
1995 ADDR_EXPR at compile time and so it isn't a constant. */
1996 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1997 return NULL;
1998
1999 return staticp (TREE_OPERAND (arg, 0));
2000
2001 case BIT_FIELD_REF:
2002 return NULL;
2003
2004 case MISALIGNED_INDIRECT_REF:
2005 case ALIGN_INDIRECT_REF:
2006 case INDIRECT_REF:
2007 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2008
2009 case ARRAY_REF:
2010 case ARRAY_RANGE_REF:
2011 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2012 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2013 return staticp (TREE_OPERAND (arg, 0));
2014 else
2015 return false;
2016
2017 default:
2018 if ((unsigned int) TREE_CODE (arg)
2019 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
2020 return lang_hooks.staticp (arg);
2021 else
2022 return NULL;
2023 }
2024 }
2025 \f
2026 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2027 Do this to any expression which may be used in more than one place,
2028 but must be evaluated only once.
2029
2030 Normally, expand_expr would reevaluate the expression each time.
2031 Calling save_expr produces something that is evaluated and recorded
2032 the first time expand_expr is called on it. Subsequent calls to
2033 expand_expr just reuse the recorded value.
2034
2035 The call to expand_expr that generates code that actually computes
2036 the value is the first call *at compile time*. Subsequent calls
2037 *at compile time* generate code to use the saved value.
2038 This produces correct result provided that *at run time* control
2039 always flows through the insns made by the first expand_expr
2040 before reaching the other places where the save_expr was evaluated.
2041 You, the caller of save_expr, must make sure this is so.
2042
2043 Constants, and certain read-only nodes, are returned with no
2044 SAVE_EXPR because that is safe. Expressions containing placeholders
2045 are not touched; see tree.def for an explanation of what these
2046 are used for. */
2047
2048 tree
2049 save_expr (tree expr)
2050 {
2051 tree t = fold (expr);
2052 tree inner;
2053
2054 /* If the tree evaluates to a constant, then we don't want to hide that
2055 fact (i.e. this allows further folding, and direct checks for constants).
2056 However, a read-only object that has side effects cannot be bypassed.
2057 Since it is no problem to reevaluate literals, we just return the
2058 literal node. */
2059 inner = skip_simple_arithmetic (t);
2060
2061 if (TREE_INVARIANT (inner)
2062 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2063 || TREE_CODE (inner) == SAVE_EXPR
2064 || TREE_CODE (inner) == ERROR_MARK)
2065 return t;
2066
2067 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2068 it means that the size or offset of some field of an object depends on
2069 the value within another field.
2070
2071 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2072 and some variable since it would then need to be both evaluated once and
2073 evaluated more than once. Front-ends must assure this case cannot
2074 happen by surrounding any such subexpressions in their own SAVE_EXPR
2075 and forcing evaluation at the proper time. */
2076 if (contains_placeholder_p (inner))
2077 return t;
2078
2079 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2080
2081 /* This expression might be placed ahead of a jump to ensure that the
2082 value was computed on both sides of the jump. So make sure it isn't
2083 eliminated as dead. */
2084 TREE_SIDE_EFFECTS (t) = 1;
2085 TREE_INVARIANT (t) = 1;
2086 return t;
2087 }
2088
2089 /* Look inside EXPR and into any simple arithmetic operations. Return
2090 the innermost non-arithmetic node. */
2091
2092 tree
2093 skip_simple_arithmetic (tree expr)
2094 {
2095 tree inner;
2096
2097 /* We don't care about whether this can be used as an lvalue in this
2098 context. */
2099 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2100 expr = TREE_OPERAND (expr, 0);
2101
2102 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2103 a constant, it will be more efficient to not make another SAVE_EXPR since
2104 it will allow better simplification and GCSE will be able to merge the
2105 computations if they actually occur. */
2106 inner = expr;
2107 while (1)
2108 {
2109 if (UNARY_CLASS_P (inner))
2110 inner = TREE_OPERAND (inner, 0);
2111 else if (BINARY_CLASS_P (inner))
2112 {
2113 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2114 inner = TREE_OPERAND (inner, 0);
2115 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2116 inner = TREE_OPERAND (inner, 1);
2117 else
2118 break;
2119 }
2120 else
2121 break;
2122 }
2123
2124 return inner;
2125 }
2126
2127 /* Return which tree structure is used by T. */
2128
2129 enum tree_node_structure_enum
2130 tree_node_structure (tree t)
2131 {
2132 enum tree_code code = TREE_CODE (t);
2133
2134 switch (TREE_CODE_CLASS (code))
2135 {
2136 case tcc_declaration:
2137 {
2138 switch (code)
2139 {
2140 case FIELD_DECL:
2141 return TS_FIELD_DECL;
2142 case PARM_DECL:
2143 return TS_PARM_DECL;
2144 case VAR_DECL:
2145 return TS_VAR_DECL;
2146 case LABEL_DECL:
2147 return TS_LABEL_DECL;
2148 case RESULT_DECL:
2149 return TS_RESULT_DECL;
2150 case CONST_DECL:
2151 return TS_CONST_DECL;
2152 case TYPE_DECL:
2153 return TS_TYPE_DECL;
2154 case FUNCTION_DECL:
2155 return TS_FUNCTION_DECL;
2156 case SYMBOL_MEMORY_TAG:
2157 case NAME_MEMORY_TAG:
2158 case STRUCT_FIELD_TAG:
2159 case MEMORY_PARTITION_TAG:
2160 return TS_MEMORY_TAG;
2161 default:
2162 return TS_DECL_NON_COMMON;
2163 }
2164 }
2165 case tcc_type:
2166 return TS_TYPE;
2167 case tcc_reference:
2168 case tcc_comparison:
2169 case tcc_unary:
2170 case tcc_binary:
2171 case tcc_expression:
2172 case tcc_statement:
2173 case tcc_vl_exp:
2174 return TS_EXP;
2175 case tcc_gimple_stmt:
2176 return TS_GIMPLE_STATEMENT;
2177 default: /* tcc_constant and tcc_exceptional */
2178 break;
2179 }
2180 switch (code)
2181 {
2182 /* tcc_constant cases. */
2183 case INTEGER_CST: return TS_INT_CST;
2184 case REAL_CST: return TS_REAL_CST;
2185 case COMPLEX_CST: return TS_COMPLEX;
2186 case VECTOR_CST: return TS_VECTOR;
2187 case STRING_CST: return TS_STRING;
2188 /* tcc_exceptional cases. */
2189 /* FIXME tuples: eventually this should be TS_BASE. For now, nothing
2190 returns TS_BASE. */
2191 case ERROR_MARK: return TS_COMMON;
2192 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2193 case TREE_LIST: return TS_LIST;
2194 case TREE_VEC: return TS_VEC;
2195 case PHI_NODE: return TS_PHI_NODE;
2196 case SSA_NAME: return TS_SSA_NAME;
2197 case PLACEHOLDER_EXPR: return TS_COMMON;
2198 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2199 case BLOCK: return TS_BLOCK;
2200 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2201 case TREE_BINFO: return TS_BINFO;
2202 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2203 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2204
2205 default:
2206 gcc_unreachable ();
2207 }
2208 }
2209 \f
2210 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2211 or offset that depends on a field within a record. */
2212
2213 bool
2214 contains_placeholder_p (tree exp)
2215 {
2216 enum tree_code code;
2217
2218 if (!exp)
2219 return 0;
2220
2221 code = TREE_CODE (exp);
2222 if (code == PLACEHOLDER_EXPR)
2223 return 1;
2224
2225 switch (TREE_CODE_CLASS (code))
2226 {
2227 case tcc_reference:
2228 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2229 position computations since they will be converted into a
2230 WITH_RECORD_EXPR involving the reference, which will assume
2231 here will be valid. */
2232 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2233
2234 case tcc_exceptional:
2235 if (code == TREE_LIST)
2236 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2237 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2238 break;
2239
2240 case tcc_unary:
2241 case tcc_binary:
2242 case tcc_comparison:
2243 case tcc_expression:
2244 switch (code)
2245 {
2246 case COMPOUND_EXPR:
2247 /* Ignoring the first operand isn't quite right, but works best. */
2248 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2249
2250 case COND_EXPR:
2251 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2252 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2253 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2254
2255 default:
2256 break;
2257 }
2258
2259 switch (TREE_CODE_LENGTH (code))
2260 {
2261 case 1:
2262 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2263 case 2:
2264 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2265 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2266 default:
2267 return 0;
2268 }
2269
2270 case tcc_vl_exp:
2271 switch (code)
2272 {
2273 case CALL_EXPR:
2274 {
2275 tree arg;
2276 call_expr_arg_iterator iter;
2277 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2278 if (CONTAINS_PLACEHOLDER_P (arg))
2279 return 1;
2280 return 0;
2281 }
2282 default:
2283 return 0;
2284 }
2285
2286 default:
2287 return 0;
2288 }
2289 return 0;
2290 }
2291
2292 /* Return true if any part of the computation of TYPE involves a
2293 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2294 (for QUAL_UNION_TYPE) and field positions. */
2295
2296 static bool
2297 type_contains_placeholder_1 (tree type)
2298 {
2299 /* If the size contains a placeholder or the parent type (component type in
2300 the case of arrays) type involves a placeholder, this type does. */
2301 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2302 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2303 || (TREE_TYPE (type) != 0
2304 && type_contains_placeholder_p (TREE_TYPE (type))))
2305 return true;
2306
2307 /* Now do type-specific checks. Note that the last part of the check above
2308 greatly limits what we have to do below. */
2309 switch (TREE_CODE (type))
2310 {
2311 case VOID_TYPE:
2312 case COMPLEX_TYPE:
2313 case ENUMERAL_TYPE:
2314 case BOOLEAN_TYPE:
2315 case POINTER_TYPE:
2316 case OFFSET_TYPE:
2317 case REFERENCE_TYPE:
2318 case METHOD_TYPE:
2319 case FUNCTION_TYPE:
2320 case VECTOR_TYPE:
2321 return false;
2322
2323 case INTEGER_TYPE:
2324 case REAL_TYPE:
2325 /* Here we just check the bounds. */
2326 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2327 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2328
2329 case ARRAY_TYPE:
2330 /* We're already checked the component type (TREE_TYPE), so just check
2331 the index type. */
2332 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2333
2334 case RECORD_TYPE:
2335 case UNION_TYPE:
2336 case QUAL_UNION_TYPE:
2337 {
2338 tree field;
2339
2340 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2341 if (TREE_CODE (field) == FIELD_DECL
2342 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2343 || (TREE_CODE (type) == QUAL_UNION_TYPE
2344 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2345 || type_contains_placeholder_p (TREE_TYPE (field))))
2346 return true;
2347
2348 return false;
2349 }
2350
2351 default:
2352 gcc_unreachable ();
2353 }
2354 }
2355
2356 bool
2357 type_contains_placeholder_p (tree type)
2358 {
2359 bool result;
2360
2361 /* If the contains_placeholder_bits field has been initialized,
2362 then we know the answer. */
2363 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2364 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2365
2366 /* Indicate that we've seen this type node, and the answer is false.
2367 This is what we want to return if we run into recursion via fields. */
2368 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2369
2370 /* Compute the real value. */
2371 result = type_contains_placeholder_1 (type);
2372
2373 /* Store the real value. */
2374 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2375
2376 return result;
2377 }
2378 \f
2379 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2380 return a tree with all occurrences of references to F in a
2381 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2382 contains only arithmetic expressions or a CALL_EXPR with a
2383 PLACEHOLDER_EXPR occurring only in its arglist. */
2384
2385 tree
2386 substitute_in_expr (tree exp, tree f, tree r)
2387 {
2388 enum tree_code code = TREE_CODE (exp);
2389 tree op0, op1, op2, op3;
2390 tree new;
2391 tree inner;
2392
2393 /* We handle TREE_LIST and COMPONENT_REF separately. */
2394 if (code == TREE_LIST)
2395 {
2396 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2397 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2398 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2399 return exp;
2400
2401 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2402 }
2403 else if (code == COMPONENT_REF)
2404 {
2405 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2406 and it is the right field, replace it with R. */
2407 for (inner = TREE_OPERAND (exp, 0);
2408 REFERENCE_CLASS_P (inner);
2409 inner = TREE_OPERAND (inner, 0))
2410 ;
2411 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2412 && TREE_OPERAND (exp, 1) == f)
2413 return r;
2414
2415 /* If this expression hasn't been completed let, leave it alone. */
2416 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2417 return exp;
2418
2419 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2420 if (op0 == TREE_OPERAND (exp, 0))
2421 return exp;
2422
2423 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2424 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2425 }
2426 else
2427 switch (TREE_CODE_CLASS (code))
2428 {
2429 case tcc_constant:
2430 case tcc_declaration:
2431 return exp;
2432
2433 case tcc_exceptional:
2434 case tcc_unary:
2435 case tcc_binary:
2436 case tcc_comparison:
2437 case tcc_expression:
2438 case tcc_reference:
2439 switch (TREE_CODE_LENGTH (code))
2440 {
2441 case 0:
2442 return exp;
2443
2444 case 1:
2445 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2446 if (op0 == TREE_OPERAND (exp, 0))
2447 return exp;
2448
2449 new = fold_build1 (code, TREE_TYPE (exp), op0);
2450 break;
2451
2452 case 2:
2453 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2454 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2455
2456 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2457 return exp;
2458
2459 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2460 break;
2461
2462 case 3:
2463 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2464 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2465 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2466
2467 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2468 && op2 == TREE_OPERAND (exp, 2))
2469 return exp;
2470
2471 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2472 break;
2473
2474 case 4:
2475 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2476 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2477 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2478 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2479
2480 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2481 && op2 == TREE_OPERAND (exp, 2)
2482 && op3 == TREE_OPERAND (exp, 3))
2483 return exp;
2484
2485 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2486 break;
2487
2488 default:
2489 gcc_unreachable ();
2490 }
2491 break;
2492
2493 case tcc_vl_exp:
2494 {
2495 tree copy = NULL_TREE;
2496 int i;
2497 int n = TREE_OPERAND_LENGTH (exp);
2498 for (i = 1; i < n; i++)
2499 {
2500 tree op = TREE_OPERAND (exp, i);
2501 tree newop = SUBSTITUTE_IN_EXPR (op, f, r);
2502 if (newop != op)
2503 {
2504 copy = copy_node (exp);
2505 TREE_OPERAND (copy, i) = newop;
2506 }
2507 }
2508 if (copy)
2509 new = fold (copy);
2510 else
2511 return exp;
2512 }
2513
2514 default:
2515 gcc_unreachable ();
2516 }
2517
2518 TREE_READONLY (new) = TREE_READONLY (exp);
2519 return new;
2520 }
2521
2522 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2523 for it within OBJ, a tree that is an object or a chain of references. */
2524
2525 tree
2526 substitute_placeholder_in_expr (tree exp, tree obj)
2527 {
2528 enum tree_code code = TREE_CODE (exp);
2529 tree op0, op1, op2, op3;
2530
2531 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2532 in the chain of OBJ. */
2533 if (code == PLACEHOLDER_EXPR)
2534 {
2535 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2536 tree elt;
2537
2538 for (elt = obj; elt != 0;
2539 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2540 || TREE_CODE (elt) == COND_EXPR)
2541 ? TREE_OPERAND (elt, 1)
2542 : (REFERENCE_CLASS_P (elt)
2543 || UNARY_CLASS_P (elt)
2544 || BINARY_CLASS_P (elt)
2545 || VL_EXP_CLASS_P (elt)
2546 || EXPRESSION_CLASS_P (elt))
2547 ? TREE_OPERAND (elt, 0) : 0))
2548 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2549 return elt;
2550
2551 for (elt = obj; elt != 0;
2552 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2553 || TREE_CODE (elt) == COND_EXPR)
2554 ? TREE_OPERAND (elt, 1)
2555 : (REFERENCE_CLASS_P (elt)
2556 || UNARY_CLASS_P (elt)
2557 || BINARY_CLASS_P (elt)
2558 || VL_EXP_CLASS_P (elt)
2559 || EXPRESSION_CLASS_P (elt))
2560 ? TREE_OPERAND (elt, 0) : 0))
2561 if (POINTER_TYPE_P (TREE_TYPE (elt))
2562 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2563 == need_type))
2564 return fold_build1 (INDIRECT_REF, need_type, elt);
2565
2566 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2567 survives until RTL generation, there will be an error. */
2568 return exp;
2569 }
2570
2571 /* TREE_LIST is special because we need to look at TREE_VALUE
2572 and TREE_CHAIN, not TREE_OPERANDS. */
2573 else if (code == TREE_LIST)
2574 {
2575 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2576 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2577 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2578 return exp;
2579
2580 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2581 }
2582 else
2583 switch (TREE_CODE_CLASS (code))
2584 {
2585 case tcc_constant:
2586 case tcc_declaration:
2587 return exp;
2588
2589 case tcc_exceptional:
2590 case tcc_unary:
2591 case tcc_binary:
2592 case tcc_comparison:
2593 case tcc_expression:
2594 case tcc_reference:
2595 case tcc_statement:
2596 switch (TREE_CODE_LENGTH (code))
2597 {
2598 case 0:
2599 return exp;
2600
2601 case 1:
2602 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2603 if (op0 == TREE_OPERAND (exp, 0))
2604 return exp;
2605 else
2606 return fold_build1 (code, TREE_TYPE (exp), op0);
2607
2608 case 2:
2609 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2610 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2611
2612 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2613 return exp;
2614 else
2615 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2616
2617 case 3:
2618 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2619 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2620 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2621
2622 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2623 && op2 == TREE_OPERAND (exp, 2))
2624 return exp;
2625 else
2626 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2627
2628 case 4:
2629 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2630 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2631 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2632 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2633
2634 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2635 && op2 == TREE_OPERAND (exp, 2)
2636 && op3 == TREE_OPERAND (exp, 3))
2637 return exp;
2638 else
2639 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2640
2641 default:
2642 gcc_unreachable ();
2643 }
2644 break;
2645
2646 case tcc_vl_exp:
2647 {
2648 tree copy = NULL_TREE;
2649 int i;
2650 int n = TREE_OPERAND_LENGTH (exp);
2651 for (i = 1; i < n; i++)
2652 {
2653 tree op = TREE_OPERAND (exp, i);
2654 tree newop = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
2655 if (newop != op)
2656 {
2657 if (!copy)
2658 copy = copy_node (exp);
2659 TREE_OPERAND (copy, i) = newop;
2660 }
2661 }
2662 if (copy)
2663 return fold (copy);
2664 else
2665 return exp;
2666 }
2667
2668 default:
2669 gcc_unreachable ();
2670 }
2671 }
2672 \f
2673 /* Stabilize a reference so that we can use it any number of times
2674 without causing its operands to be evaluated more than once.
2675 Returns the stabilized reference. This works by means of save_expr,
2676 so see the caveats in the comments about save_expr.
2677
2678 Also allows conversion expressions whose operands are references.
2679 Any other kind of expression is returned unchanged. */
2680
2681 tree
2682 stabilize_reference (tree ref)
2683 {
2684 tree result;
2685 enum tree_code code = TREE_CODE (ref);
2686
2687 switch (code)
2688 {
2689 case VAR_DECL:
2690 case PARM_DECL:
2691 case RESULT_DECL:
2692 /* No action is needed in this case. */
2693 return ref;
2694
2695 case NOP_EXPR:
2696 case CONVERT_EXPR:
2697 case FLOAT_EXPR:
2698 case FIX_TRUNC_EXPR:
2699 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2700 break;
2701
2702 case INDIRECT_REF:
2703 result = build_nt (INDIRECT_REF,
2704 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2705 break;
2706
2707 case COMPONENT_REF:
2708 result = build_nt (COMPONENT_REF,
2709 stabilize_reference (TREE_OPERAND (ref, 0)),
2710 TREE_OPERAND (ref, 1), NULL_TREE);
2711 break;
2712
2713 case BIT_FIELD_REF:
2714 result = build_nt (BIT_FIELD_REF,
2715 stabilize_reference (TREE_OPERAND (ref, 0)),
2716 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2717 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2718 break;
2719
2720 case ARRAY_REF:
2721 result = build_nt (ARRAY_REF,
2722 stabilize_reference (TREE_OPERAND (ref, 0)),
2723 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2724 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2725 break;
2726
2727 case ARRAY_RANGE_REF:
2728 result = build_nt (ARRAY_RANGE_REF,
2729 stabilize_reference (TREE_OPERAND (ref, 0)),
2730 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2731 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2732 break;
2733
2734 case COMPOUND_EXPR:
2735 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2736 it wouldn't be ignored. This matters when dealing with
2737 volatiles. */
2738 return stabilize_reference_1 (ref);
2739
2740 /* If arg isn't a kind of lvalue we recognize, make no change.
2741 Caller should recognize the error for an invalid lvalue. */
2742 default:
2743 return ref;
2744
2745 case ERROR_MARK:
2746 return error_mark_node;
2747 }
2748
2749 TREE_TYPE (result) = TREE_TYPE (ref);
2750 TREE_READONLY (result) = TREE_READONLY (ref);
2751 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2752 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2753
2754 return result;
2755 }
2756
2757 /* Subroutine of stabilize_reference; this is called for subtrees of
2758 references. Any expression with side-effects must be put in a SAVE_EXPR
2759 to ensure that it is only evaluated once.
2760
2761 We don't put SAVE_EXPR nodes around everything, because assigning very
2762 simple expressions to temporaries causes us to miss good opportunities
2763 for optimizations. Among other things, the opportunity to fold in the
2764 addition of a constant into an addressing mode often gets lost, e.g.
2765 "y[i+1] += x;". In general, we take the approach that we should not make
2766 an assignment unless we are forced into it - i.e., that any non-side effect
2767 operator should be allowed, and that cse should take care of coalescing
2768 multiple utterances of the same expression should that prove fruitful. */
2769
2770 tree
2771 stabilize_reference_1 (tree e)
2772 {
2773 tree result;
2774 enum tree_code code = TREE_CODE (e);
2775
2776 /* We cannot ignore const expressions because it might be a reference
2777 to a const array but whose index contains side-effects. But we can
2778 ignore things that are actual constant or that already have been
2779 handled by this function. */
2780
2781 if (TREE_INVARIANT (e))
2782 return e;
2783
2784 switch (TREE_CODE_CLASS (code))
2785 {
2786 case tcc_exceptional:
2787 case tcc_type:
2788 case tcc_declaration:
2789 case tcc_comparison:
2790 case tcc_statement:
2791 case tcc_expression:
2792 case tcc_reference:
2793 case tcc_vl_exp:
2794 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2795 so that it will only be evaluated once. */
2796 /* The reference (r) and comparison (<) classes could be handled as
2797 below, but it is generally faster to only evaluate them once. */
2798 if (TREE_SIDE_EFFECTS (e))
2799 return save_expr (e);
2800 return e;
2801
2802 case tcc_constant:
2803 /* Constants need no processing. In fact, we should never reach
2804 here. */
2805 return e;
2806
2807 case tcc_binary:
2808 /* Division is slow and tends to be compiled with jumps,
2809 especially the division by powers of 2 that is often
2810 found inside of an array reference. So do it just once. */
2811 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2812 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2813 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2814 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2815 return save_expr (e);
2816 /* Recursively stabilize each operand. */
2817 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2818 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2819 break;
2820
2821 case tcc_unary:
2822 /* Recursively stabilize each operand. */
2823 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2824 break;
2825
2826 default:
2827 gcc_unreachable ();
2828 }
2829
2830 TREE_TYPE (result) = TREE_TYPE (e);
2831 TREE_READONLY (result) = TREE_READONLY (e);
2832 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2833 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2834 TREE_INVARIANT (result) = 1;
2835
2836 return result;
2837 }
2838 \f
2839 /* Low-level constructors for expressions. */
2840
2841 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2842 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2843
2844 void
2845 recompute_tree_invariant_for_addr_expr (tree t)
2846 {
2847 tree node;
2848 bool tc = true, ti = true, se = false;
2849
2850 /* We started out assuming this address is both invariant and constant, but
2851 does not have side effects. Now go down any handled components and see if
2852 any of them involve offsets that are either non-constant or non-invariant.
2853 Also check for side-effects.
2854
2855 ??? Note that this code makes no attempt to deal with the case where
2856 taking the address of something causes a copy due to misalignment. */
2857
2858 #define UPDATE_TITCSE(NODE) \
2859 do { tree _node = (NODE); \
2860 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2861 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2862 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2863
2864 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2865 node = TREE_OPERAND (node, 0))
2866 {
2867 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2868 array reference (probably made temporarily by the G++ front end),
2869 so ignore all the operands. */
2870 if ((TREE_CODE (node) == ARRAY_REF
2871 || TREE_CODE (node) == ARRAY_RANGE_REF)
2872 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2873 {
2874 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2875 if (TREE_OPERAND (node, 2))
2876 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2877 if (TREE_OPERAND (node, 3))
2878 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2879 }
2880 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2881 FIELD_DECL, apparently. The G++ front end can put something else
2882 there, at least temporarily. */
2883 else if (TREE_CODE (node) == COMPONENT_REF
2884 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2885 {
2886 if (TREE_OPERAND (node, 2))
2887 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2888 }
2889 else if (TREE_CODE (node) == BIT_FIELD_REF)
2890 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2891 }
2892
2893 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2894
2895 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2896 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2897 invariant and constant if the decl is static. It's also invariant if it's
2898 a decl in the current function. Taking the address of a volatile variable
2899 is not volatile. If it's a constant, the address is both invariant and
2900 constant. Otherwise it's neither. */
2901 if (TREE_CODE (node) == INDIRECT_REF)
2902 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2903 else if (DECL_P (node))
2904 {
2905 if (staticp (node))
2906 ;
2907 else if (decl_function_context (node) == current_function_decl
2908 /* Addresses of thread-local variables are invariant. */
2909 || (TREE_CODE (node) == VAR_DECL
2910 && DECL_THREAD_LOCAL_P (node)))
2911 tc = false;
2912 else
2913 ti = tc = false;
2914 }
2915 else if (CONSTANT_CLASS_P (node))
2916 ;
2917 else
2918 {
2919 ti = tc = false;
2920 se |= TREE_SIDE_EFFECTS (node);
2921 }
2922
2923 TREE_CONSTANT (t) = tc;
2924 TREE_INVARIANT (t) = ti;
2925 TREE_SIDE_EFFECTS (t) = se;
2926 #undef UPDATE_TITCSE
2927 }
2928
2929 /* Build an expression of code CODE, data type TYPE, and operands as
2930 specified. Expressions and reference nodes can be created this way.
2931 Constants, decls, types and misc nodes cannot be.
2932
2933 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2934 enough for all extant tree codes. */
2935
2936 tree
2937 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2938 {
2939 tree t;
2940
2941 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2942
2943 t = make_node_stat (code PASS_MEM_STAT);
2944 TREE_TYPE (t) = tt;
2945
2946 return t;
2947 }
2948
2949 tree
2950 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2951 {
2952 int length = sizeof (struct tree_exp);
2953 #ifdef GATHER_STATISTICS
2954 tree_node_kind kind;
2955 #endif
2956 tree t;
2957
2958 #ifdef GATHER_STATISTICS
2959 switch (TREE_CODE_CLASS (code))
2960 {
2961 case tcc_statement: /* an expression with side effects */
2962 kind = s_kind;
2963 break;
2964 case tcc_reference: /* a reference */
2965 kind = r_kind;
2966 break;
2967 default:
2968 kind = e_kind;
2969 break;
2970 }
2971
2972 tree_node_counts[(int) kind]++;
2973 tree_node_sizes[(int) kind] += length;
2974 #endif
2975
2976 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2977
2978 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2979
2980 memset (t, 0, sizeof (struct tree_common));
2981
2982 TREE_SET_CODE (t, code);
2983
2984 TREE_TYPE (t) = type;
2985 #ifdef USE_MAPPED_LOCATION
2986 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2987 #else
2988 SET_EXPR_LOCUS (t, NULL);
2989 #endif
2990 TREE_OPERAND (t, 0) = node;
2991 TREE_BLOCK (t) = NULL_TREE;
2992 if (node && !TYPE_P (node))
2993 {
2994 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2995 TREE_READONLY (t) = TREE_READONLY (node);
2996 }
2997
2998 if (TREE_CODE_CLASS (code) == tcc_statement)
2999 TREE_SIDE_EFFECTS (t) = 1;
3000 else switch (code)
3001 {
3002 case VA_ARG_EXPR:
3003 /* All of these have side-effects, no matter what their
3004 operands are. */
3005 TREE_SIDE_EFFECTS (t) = 1;
3006 TREE_READONLY (t) = 0;
3007 break;
3008
3009 case MISALIGNED_INDIRECT_REF:
3010 case ALIGN_INDIRECT_REF:
3011 case INDIRECT_REF:
3012 /* Whether a dereference is readonly has nothing to do with whether
3013 its operand is readonly. */
3014 TREE_READONLY (t) = 0;
3015 break;
3016
3017 case ADDR_EXPR:
3018 if (node)
3019 recompute_tree_invariant_for_addr_expr (t);
3020 break;
3021
3022 default:
3023 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3024 && node && !TYPE_P (node)
3025 && TREE_CONSTANT (node))
3026 TREE_CONSTANT (t) = 1;
3027 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3028 && node && TREE_INVARIANT (node))
3029 TREE_INVARIANT (t) = 1;
3030 if (TREE_CODE_CLASS (code) == tcc_reference
3031 && node && TREE_THIS_VOLATILE (node))
3032 TREE_THIS_VOLATILE (t) = 1;
3033 break;
3034 }
3035
3036 return t;
3037 }
3038
3039 #define PROCESS_ARG(N) \
3040 do { \
3041 TREE_OPERAND (t, N) = arg##N; \
3042 if (arg##N &&!TYPE_P (arg##N)) \
3043 { \
3044 if (TREE_SIDE_EFFECTS (arg##N)) \
3045 side_effects = 1; \
3046 if (!TREE_READONLY (arg##N)) \
3047 read_only = 0; \
3048 if (!TREE_CONSTANT (arg##N)) \
3049 constant = 0; \
3050 if (!TREE_INVARIANT (arg##N)) \
3051 invariant = 0; \
3052 } \
3053 } while (0)
3054
3055 tree
3056 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3057 {
3058 bool constant, read_only, side_effects, invariant;
3059 tree t;
3060
3061 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3062
3063 #if 1
3064 /* FIXME tuples: Statement's aren't expressions! */
3065 if (code == GIMPLE_MODIFY_STMT)
3066 return build_gimple_modify_stmt_stat (arg0, arg1 PASS_MEM_STAT);
3067 #else
3068 /* Must use build_gimple_modify_stmt to construct GIMPLE_MODIFY_STMTs. */
3069 gcc_assert (code != GIMPLE_MODIFY_STMT);
3070 #endif
3071
3072 t = make_node_stat (code PASS_MEM_STAT);
3073 TREE_TYPE (t) = tt;
3074
3075 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3076 result based on those same flags for the arguments. But if the
3077 arguments aren't really even `tree' expressions, we shouldn't be trying
3078 to do this. */
3079
3080 /* Expressions without side effects may be constant if their
3081 arguments are as well. */
3082 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3083 || TREE_CODE_CLASS (code) == tcc_binary);
3084 read_only = 1;
3085 side_effects = TREE_SIDE_EFFECTS (t);
3086 invariant = constant;
3087
3088 PROCESS_ARG(0);
3089 PROCESS_ARG(1);
3090
3091 TREE_READONLY (t) = read_only;
3092 TREE_CONSTANT (t) = constant;
3093 TREE_INVARIANT (t) = invariant;
3094 TREE_SIDE_EFFECTS (t) = side_effects;
3095 TREE_THIS_VOLATILE (t)
3096 = (TREE_CODE_CLASS (code) == tcc_reference
3097 && arg0 && TREE_THIS_VOLATILE (arg0));
3098
3099 return t;
3100 }
3101
3102
3103 /* Build a GIMPLE_MODIFY_STMT node. This tree code doesn't have a
3104 type, so we can't use build2 (a.k.a. build2_stat). */
3105
3106 tree
3107 build_gimple_modify_stmt_stat (tree arg0, tree arg1 MEM_STAT_DECL)
3108 {
3109 tree t;
3110
3111 t = make_node_stat (GIMPLE_MODIFY_STMT PASS_MEM_STAT);
3112 /* ?? We don't care about setting flags for tuples... */
3113 GIMPLE_STMT_OPERAND (t, 0) = arg0;
3114 GIMPLE_STMT_OPERAND (t, 1) = arg1;
3115 return t;
3116 }
3117
3118 tree
3119 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3120 tree arg2 MEM_STAT_DECL)
3121 {
3122 bool constant, read_only, side_effects, invariant;
3123 tree t;
3124
3125 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3126 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3127
3128 t = make_node_stat (code PASS_MEM_STAT);
3129 TREE_TYPE (t) = tt;
3130
3131 side_effects = TREE_SIDE_EFFECTS (t);
3132
3133 PROCESS_ARG(0);
3134 PROCESS_ARG(1);
3135 PROCESS_ARG(2);
3136
3137 TREE_SIDE_EFFECTS (t) = side_effects;
3138 TREE_THIS_VOLATILE (t)
3139 = (TREE_CODE_CLASS (code) == tcc_reference
3140 && arg0 && TREE_THIS_VOLATILE (arg0));
3141
3142 return t;
3143 }
3144
3145 tree
3146 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3147 tree arg2, tree arg3 MEM_STAT_DECL)
3148 {
3149 bool constant, read_only, side_effects, invariant;
3150 tree t;
3151
3152 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3153
3154 t = make_node_stat (code PASS_MEM_STAT);
3155 TREE_TYPE (t) = tt;
3156
3157 side_effects = TREE_SIDE_EFFECTS (t);
3158
3159 PROCESS_ARG(0);
3160 PROCESS_ARG(1);
3161 PROCESS_ARG(2);
3162 PROCESS_ARG(3);
3163
3164 TREE_SIDE_EFFECTS (t) = side_effects;
3165 TREE_THIS_VOLATILE (t)
3166 = (TREE_CODE_CLASS (code) == tcc_reference
3167 && arg0 && TREE_THIS_VOLATILE (arg0));
3168
3169 return t;
3170 }
3171
3172 tree
3173 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3174 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3175 {
3176 bool constant, read_only, side_effects, invariant;
3177 tree t;
3178
3179 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3180
3181 t = make_node_stat (code PASS_MEM_STAT);
3182 TREE_TYPE (t) = tt;
3183
3184 side_effects = TREE_SIDE_EFFECTS (t);
3185
3186 PROCESS_ARG(0);
3187 PROCESS_ARG(1);
3188 PROCESS_ARG(2);
3189 PROCESS_ARG(3);
3190 PROCESS_ARG(4);
3191
3192 TREE_SIDE_EFFECTS (t) = side_effects;
3193 TREE_THIS_VOLATILE (t)
3194 = (TREE_CODE_CLASS (code) == tcc_reference
3195 && arg0 && TREE_THIS_VOLATILE (arg0));
3196
3197 return t;
3198 }
3199
3200 tree
3201 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3202 tree arg2, tree arg3, tree arg4, tree arg5,
3203 tree arg6 MEM_STAT_DECL)
3204 {
3205 bool constant, read_only, side_effects, invariant;
3206 tree t;
3207
3208 gcc_assert (code == TARGET_MEM_REF);
3209
3210 t = make_node_stat (code PASS_MEM_STAT);
3211 TREE_TYPE (t) = tt;
3212
3213 side_effects = TREE_SIDE_EFFECTS (t);
3214
3215 PROCESS_ARG(0);
3216 PROCESS_ARG(1);
3217 PROCESS_ARG(2);
3218 PROCESS_ARG(3);
3219 PROCESS_ARG(4);
3220 PROCESS_ARG(5);
3221 PROCESS_ARG(6);
3222
3223 TREE_SIDE_EFFECTS (t) = side_effects;
3224 TREE_THIS_VOLATILE (t) = 0;
3225
3226 return t;
3227 }
3228
3229 /* Similar except don't specify the TREE_TYPE
3230 and leave the TREE_SIDE_EFFECTS as 0.
3231 It is permissible for arguments to be null,
3232 or even garbage if their values do not matter. */
3233
3234 tree
3235 build_nt (enum tree_code code, ...)
3236 {
3237 tree t;
3238 int length;
3239 int i;
3240 va_list p;
3241
3242 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3243
3244 va_start (p, code);
3245
3246 t = make_node (code);
3247 length = TREE_CODE_LENGTH (code);
3248
3249 for (i = 0; i < length; i++)
3250 TREE_OPERAND (t, i) = va_arg (p, tree);
3251
3252 va_end (p);
3253 return t;
3254 }
3255
3256 /* Similar to build_nt, but for creating a CALL_EXPR object with
3257 ARGLIST passed as a list. */
3258
3259 tree
3260 build_nt_call_list (tree fn, tree arglist)
3261 {
3262 tree t;
3263 int i;
3264
3265 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3266 CALL_EXPR_FN (t) = fn;
3267 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3268 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3269 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3270 return t;
3271 }
3272 \f
3273 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3274 We do NOT enter this node in any sort of symbol table.
3275
3276 layout_decl is used to set up the decl's storage layout.
3277 Other slots are initialized to 0 or null pointers. */
3278
3279 tree
3280 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3281 {
3282 tree t;
3283
3284 t = make_node_stat (code PASS_MEM_STAT);
3285
3286 /* if (type == error_mark_node)
3287 type = integer_type_node; */
3288 /* That is not done, deliberately, so that having error_mark_node
3289 as the type can suppress useless errors in the use of this variable. */
3290
3291 DECL_NAME (t) = name;
3292 TREE_TYPE (t) = type;
3293
3294 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3295 layout_decl (t, 0);
3296 else if (code == FUNCTION_DECL)
3297 DECL_MODE (t) = FUNCTION_MODE;
3298
3299 return t;
3300 }
3301
3302 /* Builds and returns function declaration with NAME and TYPE. */
3303
3304 tree
3305 build_fn_decl (const char *name, tree type)
3306 {
3307 tree id = get_identifier (name);
3308 tree decl = build_decl (FUNCTION_DECL, id, type);
3309
3310 DECL_EXTERNAL (decl) = 1;
3311 TREE_PUBLIC (decl) = 1;
3312 DECL_ARTIFICIAL (decl) = 1;
3313 TREE_NOTHROW (decl) = 1;
3314
3315 return decl;
3316 }
3317
3318 \f
3319 /* BLOCK nodes are used to represent the structure of binding contours
3320 and declarations, once those contours have been exited and their contents
3321 compiled. This information is used for outputting debugging info. */
3322
3323 tree
3324 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3325 {
3326 tree block = make_node (BLOCK);
3327
3328 BLOCK_VARS (block) = vars;
3329 BLOCK_SUBBLOCKS (block) = subblocks;
3330 BLOCK_SUPERCONTEXT (block) = supercontext;
3331 BLOCK_CHAIN (block) = chain;
3332 return block;
3333 }
3334
3335 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3336 /* ??? gengtype doesn't handle conditionals */
3337 static GTY(()) source_locus last_annotated_node;
3338 #endif
3339
3340 #ifdef USE_MAPPED_LOCATION
3341
3342 expanded_location
3343 expand_location (source_location loc)
3344 {
3345 expanded_location xloc;
3346 if (loc == 0)
3347 {
3348 xloc.file = NULL;
3349 xloc.line = 0;
3350 xloc.column = 0;
3351 }
3352 else
3353 {
3354 const struct line_map *map = linemap_lookup (&line_table, loc);
3355 xloc.file = map->to_file;
3356 xloc.line = SOURCE_LINE (map, loc);
3357 xloc.column = SOURCE_COLUMN (map, loc);
3358 };
3359 return xloc;
3360 }
3361
3362 #else
3363
3364 /* Record the exact location where an expression or an identifier were
3365 encountered. */
3366
3367 void
3368 annotate_with_file_line (tree node, const char *file, int line)
3369 {
3370 /* Roughly one percent of the calls to this function are to annotate
3371 a node with the same information already attached to that node!
3372 Just return instead of wasting memory. */
3373 if (EXPR_LOCUS (node)
3374 && EXPR_LINENO (node) == line
3375 && (EXPR_FILENAME (node) == file
3376 || !strcmp (EXPR_FILENAME (node), file)))
3377 {
3378 last_annotated_node = EXPR_LOCUS (node);
3379 return;
3380 }
3381
3382 /* In heavily macroized code (such as GCC itself) this single
3383 entry cache can reduce the number of allocations by more
3384 than half. */
3385 if (last_annotated_node
3386 && last_annotated_node->line == line
3387 && (last_annotated_node->file == file
3388 || !strcmp (last_annotated_node->file, file)))
3389 {
3390 SET_EXPR_LOCUS (node, last_annotated_node);
3391 return;
3392 }
3393
3394 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3395 EXPR_LINENO (node) = line;
3396 EXPR_FILENAME (node) = file;
3397 last_annotated_node = EXPR_LOCUS (node);
3398 }
3399
3400 void
3401 annotate_with_locus (tree node, location_t locus)
3402 {
3403 annotate_with_file_line (node, locus.file, locus.line);
3404 }
3405 #endif
3406 \f
3407 /* Source location accessor functions. */
3408
3409
3410 /* The source location of this expression. Non-tree_exp nodes such as
3411 decls and constants can be shared among multiple locations, so
3412 return nothing. */
3413 location_t
3414 expr_location (tree node)
3415 {
3416 #ifdef USE_MAPPED_LOCATION
3417 if (GIMPLE_STMT_P (node))
3418 return GIMPLE_STMT_LOCUS (node);
3419 return EXPR_P (node) ? node->exp.locus : UNKNOWN_LOCATION;
3420 #else
3421 if (GIMPLE_STMT_P (node))
3422 return EXPR_HAS_LOCATION (node)
3423 ? *GIMPLE_STMT_LOCUS (node) : UNKNOWN_LOCATION;
3424 return EXPR_HAS_LOCATION (node) ? *node->exp.locus : UNKNOWN_LOCATION;
3425 #endif
3426 }
3427
3428 void
3429 set_expr_location (tree node, location_t locus)
3430 {
3431 #ifdef USE_MAPPED_LOCATION
3432 if (GIMPLE_STMT_P (node))
3433 GIMPLE_STMT_LOCUS (node) = locus;
3434 else
3435 EXPR_CHECK (node)->exp.locus = locus;
3436 #else
3437 annotate_with_locus (node, locus);
3438 #endif
3439 }
3440
3441 bool
3442 expr_has_location (tree node)
3443 {
3444 #ifdef USE_MAPPED_LOCATION
3445 return expr_location (node) != UNKNOWN_LOCATION;
3446 #else
3447 return expr_locus (node) != NULL;
3448 #endif
3449 }
3450
3451 #ifdef USE_MAPPED_LOCATION
3452 source_location *
3453 #else
3454 source_locus
3455 #endif
3456 expr_locus (tree node)
3457 {
3458 #ifdef USE_MAPPED_LOCATION
3459 if (GIMPLE_STMT_P (node))
3460 return &GIMPLE_STMT_LOCUS (node);
3461 return EXPR_P (node) ? &node->exp.locus : (location_t *) NULL;
3462 #else
3463 if (GIMPLE_STMT_P (node))
3464 return GIMPLE_STMT_LOCUS (node);
3465 /* ?? The cast below was originally "(location_t *)" in the macro,
3466 but that makes no sense. ?? */
3467 return EXPR_P (node) ? node->exp.locus : (source_locus) NULL;
3468 #endif
3469 }
3470
3471 void
3472 set_expr_locus (tree node,
3473 #ifdef USE_MAPPED_LOCATION
3474 source_location *loc
3475 #else
3476 source_locus loc
3477 #endif
3478 )
3479 {
3480 #ifdef USE_MAPPED_LOCATION
3481 if (loc == NULL)
3482 {
3483 if (GIMPLE_STMT_P (node))
3484 GIMPLE_STMT_LOCUS (node) = UNKNOWN_LOCATION;
3485 else
3486 EXPR_CHECK (node)->exp.locus = UNKNOWN_LOCATION;
3487 }
3488 else
3489 {
3490 if (GIMPLE_STMT_P (node))
3491 GIMPLE_STMT_LOCUS (node) = *loc;
3492 else
3493 EXPR_CHECK (node)->exp.locus = *loc;
3494 }
3495 #else
3496 if (GIMPLE_STMT_P (node))
3497 GIMPLE_STMT_LOCUS (node) = loc;
3498 else
3499 EXPR_CHECK (node)->exp.locus = loc;
3500 #endif
3501 }
3502
3503 const char **
3504 expr_filename (tree node)
3505 {
3506 #ifdef USE_MAPPED_LOCATION
3507 if (GIMPLE_STMT_P (node))
3508 return &LOCATION_FILE (GIMPLE_STMT_LOCUS (node));
3509 return &LOCATION_FILE (EXPR_CHECK (node)->exp.locus);
3510 #else
3511 if (GIMPLE_STMT_P (node))
3512 return &GIMPLE_STMT_LOCUS (node)->file;
3513 return &(EXPR_CHECK (node)->exp.locus->file);
3514 #endif
3515 }
3516
3517 int *
3518 expr_lineno (tree node)
3519 {
3520 #ifdef USE_MAPPED_LOCATION
3521 if (GIMPLE_STMT_P (node))
3522 return &LOCATION_LINE (GIMPLE_STMT_LOCUS (node));
3523 return &LOCATION_LINE (EXPR_CHECK (node)->exp.locus);
3524 #else
3525 if (GIMPLE_STMT_P (node))
3526 return &GIMPLE_STMT_LOCUS (node)->line;
3527 return &EXPR_CHECK (node)->exp.locus->line;
3528 #endif
3529 }
3530 \f
3531 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3532 is ATTRIBUTE. */
3533
3534 tree
3535 build_decl_attribute_variant (tree ddecl, tree attribute)
3536 {
3537 DECL_ATTRIBUTES (ddecl) = attribute;
3538 return ddecl;
3539 }
3540
3541 /* Borrowed from hashtab.c iterative_hash implementation. */
3542 #define mix(a,b,c) \
3543 { \
3544 a -= b; a -= c; a ^= (c>>13); \
3545 b -= c; b -= a; b ^= (a<< 8); \
3546 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3547 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3548 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3549 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3550 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3551 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3552 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3553 }
3554
3555
3556 /* Produce good hash value combining VAL and VAL2. */
3557 static inline hashval_t
3558 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3559 {
3560 /* the golden ratio; an arbitrary value. */
3561 hashval_t a = 0x9e3779b9;
3562
3563 mix (a, val, val2);
3564 return val2;
3565 }
3566
3567 /* Produce good hash value combining PTR and VAL2. */
3568 static inline hashval_t
3569 iterative_hash_pointer (void *ptr, hashval_t val2)
3570 {
3571 if (sizeof (ptr) == sizeof (hashval_t))
3572 return iterative_hash_hashval_t ((size_t) ptr, val2);
3573 else
3574 {
3575 hashval_t a = (hashval_t) (size_t) ptr;
3576 /* Avoid warnings about shifting of more than the width of the type on
3577 hosts that won't execute this path. */
3578 int zero = 0;
3579 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3580 mix (a, b, val2);
3581 return val2;
3582 }
3583 }
3584
3585 /* Produce good hash value combining VAL and VAL2. */
3586 static inline hashval_t
3587 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3588 {
3589 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3590 return iterative_hash_hashval_t (val, val2);
3591 else
3592 {
3593 hashval_t a = (hashval_t) val;
3594 /* Avoid warnings about shifting of more than the width of the type on
3595 hosts that won't execute this path. */
3596 int zero = 0;
3597 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3598 mix (a, b, val2);
3599 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3600 {
3601 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3602 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3603 mix (a, b, val2);
3604 }
3605 return val2;
3606 }
3607 }
3608
3609 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3610 is ATTRIBUTE and its qualifiers are QUALS.
3611
3612 Record such modified types already made so we don't make duplicates. */
3613
3614 static tree
3615 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3616 {
3617 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3618 {
3619 hashval_t hashcode = 0;
3620 tree ntype;
3621 enum tree_code code = TREE_CODE (ttype);
3622
3623 ntype = copy_node (ttype);
3624
3625 TYPE_POINTER_TO (ntype) = 0;
3626 TYPE_REFERENCE_TO (ntype) = 0;
3627 TYPE_ATTRIBUTES (ntype) = attribute;
3628
3629 if (TYPE_STRUCTURAL_EQUALITY_P (ttype))
3630 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3631 else
3632 TYPE_CANONICAL (ntype)
3633 = build_qualified_type (TYPE_CANONICAL (ttype), quals);
3634
3635 /* Create a new main variant of TYPE. */
3636 TYPE_MAIN_VARIANT (ntype) = ntype;
3637 TYPE_NEXT_VARIANT (ntype) = 0;
3638 set_type_quals (ntype, TYPE_UNQUALIFIED);
3639
3640 hashcode = iterative_hash_object (code, hashcode);
3641 if (TREE_TYPE (ntype))
3642 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3643 hashcode);
3644 hashcode = attribute_hash_list (attribute, hashcode);
3645
3646 switch (TREE_CODE (ntype))
3647 {
3648 case FUNCTION_TYPE:
3649 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3650 break;
3651 case ARRAY_TYPE:
3652 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3653 hashcode);
3654 break;
3655 case INTEGER_TYPE:
3656 hashcode = iterative_hash_object
3657 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3658 hashcode = iterative_hash_object
3659 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3660 break;
3661 case REAL_TYPE:
3662 {
3663 unsigned int precision = TYPE_PRECISION (ntype);
3664 hashcode = iterative_hash_object (precision, hashcode);
3665 }
3666 break;
3667 default:
3668 break;
3669 }
3670
3671 ntype = type_hash_canon (hashcode, ntype);
3672
3673 /* If the target-dependent attributes make NTYPE different from
3674 its canonical type, we will need to use structural equality
3675 checks for this qualified type. */
3676 if (!targetm.comp_type_attributes (ntype, ttype))
3677 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3678
3679 ttype = build_qualified_type (ntype, quals);
3680 }
3681
3682 return ttype;
3683 }
3684
3685
3686 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3687 is ATTRIBUTE.
3688
3689 Record such modified types already made so we don't make duplicates. */
3690
3691 tree
3692 build_type_attribute_variant (tree ttype, tree attribute)
3693 {
3694 return build_type_attribute_qual_variant (ttype, attribute,
3695 TYPE_QUALS (ttype));
3696 }
3697
3698 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3699 or zero if not.
3700
3701 We try both `text' and `__text__', ATTR may be either one. */
3702 /* ??? It might be a reasonable simplification to require ATTR to be only
3703 `text'. One might then also require attribute lists to be stored in
3704 their canonicalized form. */
3705
3706 static int
3707 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3708 {
3709 int ident_len;
3710 const char *p;
3711
3712 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3713 return 0;
3714
3715 p = IDENTIFIER_POINTER (ident);
3716 ident_len = IDENTIFIER_LENGTH (ident);
3717
3718 if (ident_len == attr_len
3719 && strcmp (attr, p) == 0)
3720 return 1;
3721
3722 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3723 if (attr[0] == '_')
3724 {
3725 gcc_assert (attr[1] == '_');
3726 gcc_assert (attr[attr_len - 2] == '_');
3727 gcc_assert (attr[attr_len - 1] == '_');
3728 if (ident_len == attr_len - 4
3729 && strncmp (attr + 2, p, attr_len - 4) == 0)
3730 return 1;
3731 }
3732 else
3733 {
3734 if (ident_len == attr_len + 4
3735 && p[0] == '_' && p[1] == '_'
3736 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3737 && strncmp (attr, p + 2, attr_len) == 0)
3738 return 1;
3739 }
3740
3741 return 0;
3742 }
3743
3744 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3745 or zero if not.
3746
3747 We try both `text' and `__text__', ATTR may be either one. */
3748
3749 int
3750 is_attribute_p (const char *attr, tree ident)
3751 {
3752 return is_attribute_with_length_p (attr, strlen (attr), ident);
3753 }
3754
3755 /* Given an attribute name and a list of attributes, return a pointer to the
3756 attribute's list element if the attribute is part of the list, or NULL_TREE
3757 if not found. If the attribute appears more than once, this only
3758 returns the first occurrence; the TREE_CHAIN of the return value should
3759 be passed back in if further occurrences are wanted. */
3760
3761 tree
3762 lookup_attribute (const char *attr_name, tree list)
3763 {
3764 tree l;
3765 size_t attr_len = strlen (attr_name);
3766
3767 for (l = list; l; l = TREE_CHAIN (l))
3768 {
3769 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3770 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3771 return l;
3772 }
3773
3774 return NULL_TREE;
3775 }
3776
3777 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3778 modified list. */
3779
3780 tree
3781 remove_attribute (const char *attr_name, tree list)
3782 {
3783 tree *p;
3784 size_t attr_len = strlen (attr_name);
3785
3786 for (p = &list; *p; )
3787 {
3788 tree l = *p;
3789 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3790 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3791 *p = TREE_CHAIN (l);
3792 else
3793 p = &TREE_CHAIN (l);
3794 }
3795
3796 return list;
3797 }
3798
3799 /* Return an attribute list that is the union of a1 and a2. */
3800
3801 tree
3802 merge_attributes (tree a1, tree a2)
3803 {
3804 tree attributes;
3805
3806 /* Either one unset? Take the set one. */
3807
3808 if ((attributes = a1) == 0)
3809 attributes = a2;
3810
3811 /* One that completely contains the other? Take it. */
3812
3813 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3814 {
3815 if (attribute_list_contained (a2, a1))
3816 attributes = a2;
3817 else
3818 {
3819 /* Pick the longest list, and hang on the other list. */
3820
3821 if (list_length (a1) < list_length (a2))
3822 attributes = a2, a2 = a1;
3823
3824 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3825 {
3826 tree a;
3827 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3828 attributes);
3829 a != NULL_TREE;
3830 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3831 TREE_CHAIN (a)))
3832 {
3833 if (TREE_VALUE (a) != NULL
3834 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3835 && TREE_VALUE (a2) != NULL
3836 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3837 {
3838 if (simple_cst_list_equal (TREE_VALUE (a),
3839 TREE_VALUE (a2)) == 1)
3840 break;
3841 }
3842 else if (simple_cst_equal (TREE_VALUE (a),
3843 TREE_VALUE (a2)) == 1)
3844 break;
3845 }
3846 if (a == NULL_TREE)
3847 {
3848 a1 = copy_node (a2);
3849 TREE_CHAIN (a1) = attributes;
3850 attributes = a1;
3851 }
3852 }
3853 }
3854 }
3855 return attributes;
3856 }
3857
3858 /* Given types T1 and T2, merge their attributes and return
3859 the result. */
3860
3861 tree
3862 merge_type_attributes (tree t1, tree t2)
3863 {
3864 return merge_attributes (TYPE_ATTRIBUTES (t1),
3865 TYPE_ATTRIBUTES (t2));
3866 }
3867
3868 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3869 the result. */
3870
3871 tree
3872 merge_decl_attributes (tree olddecl, tree newdecl)
3873 {
3874 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3875 DECL_ATTRIBUTES (newdecl));
3876 }
3877
3878 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3879
3880 /* Specialization of merge_decl_attributes for various Windows targets.
3881
3882 This handles the following situation:
3883
3884 __declspec (dllimport) int foo;
3885 int foo;
3886
3887 The second instance of `foo' nullifies the dllimport. */
3888
3889 tree
3890 merge_dllimport_decl_attributes (tree old, tree new)
3891 {
3892 tree a;
3893 int delete_dllimport_p = 1;
3894
3895 /* What we need to do here is remove from `old' dllimport if it doesn't
3896 appear in `new'. dllimport behaves like extern: if a declaration is
3897 marked dllimport and a definition appears later, then the object
3898 is not dllimport'd. We also remove a `new' dllimport if the old list
3899 contains dllexport: dllexport always overrides dllimport, regardless
3900 of the order of declaration. */
3901 if (!VAR_OR_FUNCTION_DECL_P (new))
3902 delete_dllimport_p = 0;
3903 else if (DECL_DLLIMPORT_P (new)
3904 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3905 {
3906 DECL_DLLIMPORT_P (new) = 0;
3907 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3908 "dllimport ignored", new);
3909 }
3910 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3911 {
3912 /* Warn about overriding a symbol that has already been used. eg:
3913 extern int __attribute__ ((dllimport)) foo;
3914 int* bar () {return &foo;}
3915 int foo;
3916 */
3917 if (TREE_USED (old))
3918 {
3919 warning (0, "%q+D redeclared without dllimport attribute "
3920 "after being referenced with dll linkage", new);
3921 /* If we have used a variable's address with dllimport linkage,
3922 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3923 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3924 computed.
3925 We still remove the attribute so that assembler code refers
3926 to '&foo rather than '_imp__foo'. */
3927 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3928 DECL_DLLIMPORT_P (new) = 1;
3929 }
3930
3931 /* Let an inline definition silently override the external reference,
3932 but otherwise warn about attribute inconsistency. */
3933 else if (TREE_CODE (new) == VAR_DECL
3934 || !DECL_DECLARED_INLINE_P (new))
3935 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3936 "previous dllimport ignored", new);
3937 }
3938 else
3939 delete_dllimport_p = 0;
3940
3941 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3942
3943 if (delete_dllimport_p)
3944 {
3945 tree prev, t;
3946 const size_t attr_len = strlen ("dllimport");
3947
3948 /* Scan the list for dllimport and delete it. */
3949 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3950 {
3951 if (is_attribute_with_length_p ("dllimport", attr_len,
3952 TREE_PURPOSE (t)))
3953 {
3954 if (prev == NULL_TREE)
3955 a = TREE_CHAIN (a);
3956 else
3957 TREE_CHAIN (prev) = TREE_CHAIN (t);
3958 break;
3959 }
3960 }
3961 }
3962
3963 return a;
3964 }
3965
3966 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3967 struct attribute_spec.handler. */
3968
3969 tree
3970 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3971 bool *no_add_attrs)
3972 {
3973 tree node = *pnode;
3974
3975 /* These attributes may apply to structure and union types being created,
3976 but otherwise should pass to the declaration involved. */
3977 if (!DECL_P (node))
3978 {
3979 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3980 | (int) ATTR_FLAG_ARRAY_NEXT))
3981 {
3982 *no_add_attrs = true;
3983 return tree_cons (name, args, NULL_TREE);
3984 }
3985 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3986 {
3987 warning (OPT_Wattributes, "%qs attribute ignored",
3988 IDENTIFIER_POINTER (name));
3989 *no_add_attrs = true;
3990 }
3991
3992 return NULL_TREE;
3993 }
3994
3995 if (TREE_CODE (node) != FUNCTION_DECL
3996 && TREE_CODE (node) != VAR_DECL)
3997 {
3998 *no_add_attrs = true;
3999 warning (OPT_Wattributes, "%qs attribute ignored",
4000 IDENTIFIER_POINTER (name));
4001 return NULL_TREE;
4002 }
4003
4004 /* Report error on dllimport ambiguities seen now before they cause
4005 any damage. */
4006 else if (is_attribute_p ("dllimport", name))
4007 {
4008 /* Honor any target-specific overrides. */
4009 if (!targetm.valid_dllimport_attribute_p (node))
4010 *no_add_attrs = true;
4011
4012 else if (TREE_CODE (node) == FUNCTION_DECL
4013 && DECL_DECLARED_INLINE_P (node))
4014 {
4015 warning (OPT_Wattributes, "inline function %q+D declared as "
4016 " dllimport: attribute ignored", node);
4017 *no_add_attrs = true;
4018 }
4019 /* Like MS, treat definition of dllimported variables and
4020 non-inlined functions on declaration as syntax errors. */
4021 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
4022 {
4023 error ("function %q+D definition is marked dllimport", node);
4024 *no_add_attrs = true;
4025 }
4026
4027 else if (TREE_CODE (node) == VAR_DECL)
4028 {
4029 if (DECL_INITIAL (node))
4030 {
4031 error ("variable %q+D definition is marked dllimport",
4032 node);
4033 *no_add_attrs = true;
4034 }
4035
4036 /* `extern' needn't be specified with dllimport.
4037 Specify `extern' now and hope for the best. Sigh. */
4038 DECL_EXTERNAL (node) = 1;
4039 /* Also, implicitly give dllimport'd variables declared within
4040 a function global scope, unless declared static. */
4041 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
4042 TREE_PUBLIC (node) = 1;
4043 }
4044
4045 if (*no_add_attrs == false)
4046 DECL_DLLIMPORT_P (node) = 1;
4047 }
4048
4049 /* Report error if symbol is not accessible at global scope. */
4050 if (!TREE_PUBLIC (node)
4051 && (TREE_CODE (node) == VAR_DECL
4052 || TREE_CODE (node) == FUNCTION_DECL))
4053 {
4054 error ("external linkage required for symbol %q+D because of "
4055 "%qs attribute", node, IDENTIFIER_POINTER (name));
4056 *no_add_attrs = true;
4057 }
4058
4059 return NULL_TREE;
4060 }
4061
4062 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
4063 \f
4064 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
4065 of the various TYPE_QUAL values. */
4066
4067 static void
4068 set_type_quals (tree type, int type_quals)
4069 {
4070 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
4071 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
4072 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
4073 }
4074
4075 /* Returns true iff cand is equivalent to base with type_quals. */
4076
4077 bool
4078 check_qualified_type (tree cand, tree base, int type_quals)
4079 {
4080 return (TYPE_QUALS (cand) == type_quals
4081 && TYPE_NAME (cand) == TYPE_NAME (base)
4082 /* Apparently this is needed for Objective-C. */
4083 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
4084 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
4085 TYPE_ATTRIBUTES (base)));
4086 }
4087
4088 /* Return a version of the TYPE, qualified as indicated by the
4089 TYPE_QUALS, if one exists. If no qualified version exists yet,
4090 return NULL_TREE. */
4091
4092 tree
4093 get_qualified_type (tree type, int type_quals)
4094 {
4095 tree t;
4096
4097 if (TYPE_QUALS (type) == type_quals)
4098 return type;
4099
4100 /* Search the chain of variants to see if there is already one there just
4101 like the one we need to have. If so, use that existing one. We must
4102 preserve the TYPE_NAME, since there is code that depends on this. */
4103 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
4104 if (check_qualified_type (t, type, type_quals))
4105 return t;
4106
4107 return NULL_TREE;
4108 }
4109
4110 /* Like get_qualified_type, but creates the type if it does not
4111 exist. This function never returns NULL_TREE. */
4112
4113 tree
4114 build_qualified_type (tree type, int type_quals)
4115 {
4116 tree t;
4117
4118 /* See if we already have the appropriate qualified variant. */
4119 t = get_qualified_type (type, type_quals);
4120
4121 /* If not, build it. */
4122 if (!t)
4123 {
4124 t = build_variant_type_copy (type);
4125 set_type_quals (t, type_quals);
4126
4127 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4128 /* Propagate structural equality. */
4129 SET_TYPE_STRUCTURAL_EQUALITY (t);
4130 else if (TYPE_CANONICAL (type) != type)
4131 /* Build the underlying canonical type, since it is different
4132 from TYPE. */
4133 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
4134 type_quals);
4135 else
4136 /* T is its own canonical type. */
4137 TYPE_CANONICAL (t) = t;
4138
4139 }
4140
4141 return t;
4142 }
4143
4144 /* Create a new distinct copy of TYPE. The new type is made its own
4145 MAIN_VARIANT. If TYPE requires structural equality checks, the
4146 resulting type requires structural equality checks; otherwise, its
4147 TYPE_CANONICAL points to itself. */
4148
4149 tree
4150 build_distinct_type_copy (tree type)
4151 {
4152 tree t = copy_node (type);
4153
4154 TYPE_POINTER_TO (t) = 0;
4155 TYPE_REFERENCE_TO (t) = 0;
4156
4157 /* Set the canonical type either to a new equivalence class, or
4158 propagate the need for structural equality checks. */
4159 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4160 SET_TYPE_STRUCTURAL_EQUALITY (t);
4161 else
4162 TYPE_CANONICAL (t) = t;
4163
4164 /* Make it its own variant. */
4165 TYPE_MAIN_VARIANT (t) = t;
4166 TYPE_NEXT_VARIANT (t) = 0;
4167
4168 return t;
4169 }
4170
4171 /* Create a new variant of TYPE, equivalent but distinct. This is so
4172 the caller can modify it. TYPE_CANONICAL for the return type will
4173 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
4174 are considered equal by the language itself (or that both types
4175 require structural equality checks). */
4176
4177 tree
4178 build_variant_type_copy (tree type)
4179 {
4180 tree t, m = TYPE_MAIN_VARIANT (type);
4181
4182 t = build_distinct_type_copy (type);
4183
4184 /* Since we're building a variant, assume that it is a non-semantic
4185 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
4186 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
4187
4188 /* Add the new type to the chain of variants of TYPE. */
4189 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
4190 TYPE_NEXT_VARIANT (m) = t;
4191 TYPE_MAIN_VARIANT (t) = m;
4192
4193 return t;
4194 }
4195 \f
4196 /* Return true if the from tree in both tree maps are equal. */
4197
4198 int
4199 tree_map_base_eq (const void *va, const void *vb)
4200 {
4201 const struct tree_map_base *a = va, *b = vb;
4202 return (a->from == b->from);
4203 }
4204
4205 /* Hash a from tree in a tree_map. */
4206
4207 unsigned int
4208 tree_map_base_hash (const void *item)
4209 {
4210 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
4211 }
4212
4213 /* Return true if this tree map structure is marked for garbage collection
4214 purposes. We simply return true if the from tree is marked, so that this
4215 structure goes away when the from tree goes away. */
4216
4217 int
4218 tree_map_base_marked_p (const void *p)
4219 {
4220 return ggc_marked_p (((struct tree_map_base *) p)->from);
4221 }
4222
4223 unsigned int
4224 tree_map_hash (const void *item)
4225 {
4226 return (((const struct tree_map *) item)->hash);
4227 }
4228
4229 /* Return the initialization priority for DECL. */
4230
4231 priority_type
4232 decl_init_priority_lookup (tree decl)
4233 {
4234 struct tree_priority_map *h;
4235 struct tree_map_base in;
4236
4237 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4238 gcc_assert (TREE_CODE (decl) == VAR_DECL
4239 ? DECL_HAS_INIT_PRIORITY_P (decl)
4240 : DECL_STATIC_CONSTRUCTOR (decl));
4241 in.from = decl;
4242 h = htab_find (init_priority_for_decl, &in);
4243 return h ? h->init : DEFAULT_INIT_PRIORITY;
4244 }
4245
4246 /* Return the finalization priority for DECL. */
4247
4248 priority_type
4249 decl_fini_priority_lookup (tree decl)
4250 {
4251 struct tree_priority_map *h;
4252 struct tree_map_base in;
4253
4254 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4255 gcc_assert (DECL_STATIC_DESTRUCTOR (decl));
4256 in.from = decl;
4257 h = htab_find (init_priority_for_decl, &in);
4258 return h ? h->fini : DEFAULT_INIT_PRIORITY;
4259 }
4260
4261 /* Return the initialization and finalization priority information for
4262 DECL. If there is no previous priority information, a freshly
4263 allocated structure is returned. */
4264
4265 static struct tree_priority_map *
4266 decl_priority_info (tree decl)
4267 {
4268 struct tree_priority_map in;
4269 struct tree_priority_map *h;
4270 void **loc;
4271
4272 in.base.from = decl;
4273 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
4274 h = *loc;
4275 if (!h)
4276 {
4277 h = GGC_CNEW (struct tree_priority_map);
4278 *loc = h;
4279 h->base.from = decl;
4280 h->init = DEFAULT_INIT_PRIORITY;
4281 h->fini = DEFAULT_INIT_PRIORITY;
4282 }
4283
4284 return h;
4285 }
4286
4287 /* Set the initialization priority for DECL to PRIORITY. */
4288
4289 void
4290 decl_init_priority_insert (tree decl, priority_type priority)
4291 {
4292 struct tree_priority_map *h;
4293
4294 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4295 h = decl_priority_info (decl);
4296 h->init = priority;
4297 }
4298
4299 /* Set the finalization priority for DECL to PRIORITY. */
4300
4301 void
4302 decl_fini_priority_insert (tree decl, priority_type priority)
4303 {
4304 struct tree_priority_map *h;
4305
4306 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4307 h = decl_priority_info (decl);
4308 h->fini = priority;
4309 }
4310
4311 /* Look up a restrict qualified base decl for FROM. */
4312
4313 tree
4314 decl_restrict_base_lookup (tree from)
4315 {
4316 struct tree_map *h;
4317 struct tree_map in;
4318
4319 in.base.from = from;
4320 h = htab_find_with_hash (restrict_base_for_decl, &in,
4321 htab_hash_pointer (from));
4322 return h ? h->to : NULL_TREE;
4323 }
4324
4325 /* Record the restrict qualified base TO for FROM. */
4326
4327 void
4328 decl_restrict_base_insert (tree from, tree to)
4329 {
4330 struct tree_map *h;
4331 void **loc;
4332
4333 h = ggc_alloc (sizeof (struct tree_map));
4334 h->hash = htab_hash_pointer (from);
4335 h->base.from = from;
4336 h->to = to;
4337 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4338 *(struct tree_map **) loc = h;
4339 }
4340
4341 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4342
4343 static void
4344 print_debug_expr_statistics (void)
4345 {
4346 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4347 (long) htab_size (debug_expr_for_decl),
4348 (long) htab_elements (debug_expr_for_decl),
4349 htab_collisions (debug_expr_for_decl));
4350 }
4351
4352 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4353
4354 static void
4355 print_value_expr_statistics (void)
4356 {
4357 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4358 (long) htab_size (value_expr_for_decl),
4359 (long) htab_elements (value_expr_for_decl),
4360 htab_collisions (value_expr_for_decl));
4361 }
4362
4363 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4364 don't print anything if the table is empty. */
4365
4366 static void
4367 print_restrict_base_statistics (void)
4368 {
4369 if (htab_elements (restrict_base_for_decl) != 0)
4370 fprintf (stderr,
4371 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4372 (long) htab_size (restrict_base_for_decl),
4373 (long) htab_elements (restrict_base_for_decl),
4374 htab_collisions (restrict_base_for_decl));
4375 }
4376
4377 /* Lookup a debug expression for FROM, and return it if we find one. */
4378
4379 tree
4380 decl_debug_expr_lookup (tree from)
4381 {
4382 struct tree_map *h, in;
4383 in.base.from = from;
4384
4385 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4386 if (h)
4387 return h->to;
4388 return NULL_TREE;
4389 }
4390
4391 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4392
4393 void
4394 decl_debug_expr_insert (tree from, tree to)
4395 {
4396 struct tree_map *h;
4397 void **loc;
4398
4399 h = ggc_alloc (sizeof (struct tree_map));
4400 h->hash = htab_hash_pointer (from);
4401 h->base.from = from;
4402 h->to = to;
4403 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4404 *(struct tree_map **) loc = h;
4405 }
4406
4407 /* Lookup a value expression for FROM, and return it if we find one. */
4408
4409 tree
4410 decl_value_expr_lookup (tree from)
4411 {
4412 struct tree_map *h, in;
4413 in.base.from = from;
4414
4415 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4416 if (h)
4417 return h->to;
4418 return NULL_TREE;
4419 }
4420
4421 /* Insert a mapping FROM->TO in the value expression hashtable. */
4422
4423 void
4424 decl_value_expr_insert (tree from, tree to)
4425 {
4426 struct tree_map *h;
4427 void **loc;
4428
4429 h = ggc_alloc (sizeof (struct tree_map));
4430 h->hash = htab_hash_pointer (from);
4431 h->base.from = from;
4432 h->to = to;
4433 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4434 *(struct tree_map **) loc = h;
4435 }
4436
4437 /* Hashing of types so that we don't make duplicates.
4438 The entry point is `type_hash_canon'. */
4439
4440 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4441 with types in the TREE_VALUE slots), by adding the hash codes
4442 of the individual types. */
4443
4444 unsigned int
4445 type_hash_list (tree list, hashval_t hashcode)
4446 {
4447 tree tail;
4448
4449 for (tail = list; tail; tail = TREE_CHAIN (tail))
4450 if (TREE_VALUE (tail) != error_mark_node)
4451 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4452 hashcode);
4453
4454 return hashcode;
4455 }
4456
4457 /* These are the Hashtable callback functions. */
4458
4459 /* Returns true iff the types are equivalent. */
4460
4461 static int
4462 type_hash_eq (const void *va, const void *vb)
4463 {
4464 const struct type_hash *a = va, *b = vb;
4465
4466 /* First test the things that are the same for all types. */
4467 if (a->hash != b->hash
4468 || TREE_CODE (a->type) != TREE_CODE (b->type)
4469 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4470 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4471 TYPE_ATTRIBUTES (b->type))
4472 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4473 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4474 return 0;
4475
4476 switch (TREE_CODE (a->type))
4477 {
4478 case VOID_TYPE:
4479 case COMPLEX_TYPE:
4480 case POINTER_TYPE:
4481 case REFERENCE_TYPE:
4482 return 1;
4483
4484 case VECTOR_TYPE:
4485 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4486
4487 case ENUMERAL_TYPE:
4488 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4489 && !(TYPE_VALUES (a->type)
4490 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4491 && TYPE_VALUES (b->type)
4492 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4493 && type_list_equal (TYPE_VALUES (a->type),
4494 TYPE_VALUES (b->type))))
4495 return 0;
4496
4497 /* ... fall through ... */
4498
4499 case INTEGER_TYPE:
4500 case REAL_TYPE:
4501 case BOOLEAN_TYPE:
4502 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4503 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4504 TYPE_MAX_VALUE (b->type)))
4505 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4506 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4507 TYPE_MIN_VALUE (b->type))));
4508
4509 case OFFSET_TYPE:
4510 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4511
4512 case METHOD_TYPE:
4513 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4514 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4515 || (TYPE_ARG_TYPES (a->type)
4516 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4517 && TYPE_ARG_TYPES (b->type)
4518 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4519 && type_list_equal (TYPE_ARG_TYPES (a->type),
4520 TYPE_ARG_TYPES (b->type)))));
4521
4522 case ARRAY_TYPE:
4523 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4524
4525 case RECORD_TYPE:
4526 case UNION_TYPE:
4527 case QUAL_UNION_TYPE:
4528 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4529 || (TYPE_FIELDS (a->type)
4530 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4531 && TYPE_FIELDS (b->type)
4532 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4533 && type_list_equal (TYPE_FIELDS (a->type),
4534 TYPE_FIELDS (b->type))));
4535
4536 case FUNCTION_TYPE:
4537 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4538 || (TYPE_ARG_TYPES (a->type)
4539 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4540 && TYPE_ARG_TYPES (b->type)
4541 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4542 && type_list_equal (TYPE_ARG_TYPES (a->type),
4543 TYPE_ARG_TYPES (b->type))));
4544
4545 default:
4546 return 0;
4547 }
4548 }
4549
4550 /* Return the cached hash value. */
4551
4552 static hashval_t
4553 type_hash_hash (const void *item)
4554 {
4555 return ((const struct type_hash *) item)->hash;
4556 }
4557
4558 /* Look in the type hash table for a type isomorphic to TYPE.
4559 If one is found, return it. Otherwise return 0. */
4560
4561 tree
4562 type_hash_lookup (hashval_t hashcode, tree type)
4563 {
4564 struct type_hash *h, in;
4565
4566 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4567 must call that routine before comparing TYPE_ALIGNs. */
4568 layout_type (type);
4569
4570 in.hash = hashcode;
4571 in.type = type;
4572
4573 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4574 if (h)
4575 return h->type;
4576 return NULL_TREE;
4577 }
4578
4579 /* Add an entry to the type-hash-table
4580 for a type TYPE whose hash code is HASHCODE. */
4581
4582 void
4583 type_hash_add (hashval_t hashcode, tree type)
4584 {
4585 struct type_hash *h;
4586 void **loc;
4587
4588 h = ggc_alloc (sizeof (struct type_hash));
4589 h->hash = hashcode;
4590 h->type = type;
4591 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4592 *(struct type_hash **) loc = h;
4593 }
4594
4595 /* Given TYPE, and HASHCODE its hash code, return the canonical
4596 object for an identical type if one already exists.
4597 Otherwise, return TYPE, and record it as the canonical object.
4598
4599 To use this function, first create a type of the sort you want.
4600 Then compute its hash code from the fields of the type that
4601 make it different from other similar types.
4602 Then call this function and use the value. */
4603
4604 tree
4605 type_hash_canon (unsigned int hashcode, tree type)
4606 {
4607 tree t1;
4608
4609 /* The hash table only contains main variants, so ensure that's what we're
4610 being passed. */
4611 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4612
4613 if (!lang_hooks.types.hash_types)
4614 return type;
4615
4616 /* See if the type is in the hash table already. If so, return it.
4617 Otherwise, add the type. */
4618 t1 = type_hash_lookup (hashcode, type);
4619 if (t1 != 0)
4620 {
4621 #ifdef GATHER_STATISTICS
4622 tree_node_counts[(int) t_kind]--;
4623 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4624 #endif
4625 return t1;
4626 }
4627 else
4628 {
4629 type_hash_add (hashcode, type);
4630 return type;
4631 }
4632 }
4633
4634 /* See if the data pointed to by the type hash table is marked. We consider
4635 it marked if the type is marked or if a debug type number or symbol
4636 table entry has been made for the type. This reduces the amount of
4637 debugging output and eliminates that dependency of the debug output on
4638 the number of garbage collections. */
4639
4640 static int
4641 type_hash_marked_p (const void *p)
4642 {
4643 tree type = ((struct type_hash *) p)->type;
4644
4645 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4646 }
4647
4648 static void
4649 print_type_hash_statistics (void)
4650 {
4651 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4652 (long) htab_size (type_hash_table),
4653 (long) htab_elements (type_hash_table),
4654 htab_collisions (type_hash_table));
4655 }
4656
4657 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4658 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4659 by adding the hash codes of the individual attributes. */
4660
4661 unsigned int
4662 attribute_hash_list (tree list, hashval_t hashcode)
4663 {
4664 tree tail;
4665
4666 for (tail = list; tail; tail = TREE_CHAIN (tail))
4667 /* ??? Do we want to add in TREE_VALUE too? */
4668 hashcode = iterative_hash_object
4669 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4670 return hashcode;
4671 }
4672
4673 /* Given two lists of attributes, return true if list l2 is
4674 equivalent to l1. */
4675
4676 int
4677 attribute_list_equal (tree l1, tree l2)
4678 {
4679 return attribute_list_contained (l1, l2)
4680 && attribute_list_contained (l2, l1);
4681 }
4682
4683 /* Given two lists of attributes, return true if list L2 is
4684 completely contained within L1. */
4685 /* ??? This would be faster if attribute names were stored in a canonicalized
4686 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4687 must be used to show these elements are equivalent (which they are). */
4688 /* ??? It's not clear that attributes with arguments will always be handled
4689 correctly. */
4690
4691 int
4692 attribute_list_contained (tree l1, tree l2)
4693 {
4694 tree t1, t2;
4695
4696 /* First check the obvious, maybe the lists are identical. */
4697 if (l1 == l2)
4698 return 1;
4699
4700 /* Maybe the lists are similar. */
4701 for (t1 = l1, t2 = l2;
4702 t1 != 0 && t2 != 0
4703 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4704 && TREE_VALUE (t1) == TREE_VALUE (t2);
4705 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4706
4707 /* Maybe the lists are equal. */
4708 if (t1 == 0 && t2 == 0)
4709 return 1;
4710
4711 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4712 {
4713 tree attr;
4714 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4715 attr != NULL_TREE;
4716 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4717 TREE_CHAIN (attr)))
4718 {
4719 if (TREE_VALUE (t2) != NULL
4720 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4721 && TREE_VALUE (attr) != NULL
4722 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4723 {
4724 if (simple_cst_list_equal (TREE_VALUE (t2),
4725 TREE_VALUE (attr)) == 1)
4726 break;
4727 }
4728 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4729 break;
4730 }
4731
4732 if (attr == 0)
4733 return 0;
4734 }
4735
4736 return 1;
4737 }
4738
4739 /* Given two lists of types
4740 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4741 return 1 if the lists contain the same types in the same order.
4742 Also, the TREE_PURPOSEs must match. */
4743
4744 int
4745 type_list_equal (tree l1, tree l2)
4746 {
4747 tree t1, t2;
4748
4749 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4750 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4751 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4752 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4753 && (TREE_TYPE (TREE_PURPOSE (t1))
4754 == TREE_TYPE (TREE_PURPOSE (t2))))))
4755 return 0;
4756
4757 return t1 == t2;
4758 }
4759
4760 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4761 given by TYPE. If the argument list accepts variable arguments,
4762 then this function counts only the ordinary arguments. */
4763
4764 int
4765 type_num_arguments (tree type)
4766 {
4767 int i = 0;
4768 tree t;
4769
4770 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4771 /* If the function does not take a variable number of arguments,
4772 the last element in the list will have type `void'. */
4773 if (VOID_TYPE_P (TREE_VALUE (t)))
4774 break;
4775 else
4776 ++i;
4777
4778 return i;
4779 }
4780
4781 /* Nonzero if integer constants T1 and T2
4782 represent the same constant value. */
4783
4784 int
4785 tree_int_cst_equal (tree t1, tree t2)
4786 {
4787 if (t1 == t2)
4788 return 1;
4789
4790 if (t1 == 0 || t2 == 0)
4791 return 0;
4792
4793 if (TREE_CODE (t1) == INTEGER_CST
4794 && TREE_CODE (t2) == INTEGER_CST
4795 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4796 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4797 return 1;
4798
4799 return 0;
4800 }
4801
4802 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4803 The precise way of comparison depends on their data type. */
4804
4805 int
4806 tree_int_cst_lt (tree t1, tree t2)
4807 {
4808 if (t1 == t2)
4809 return 0;
4810
4811 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4812 {
4813 int t1_sgn = tree_int_cst_sgn (t1);
4814 int t2_sgn = tree_int_cst_sgn (t2);
4815
4816 if (t1_sgn < t2_sgn)
4817 return 1;
4818 else if (t1_sgn > t2_sgn)
4819 return 0;
4820 /* Otherwise, both are non-negative, so we compare them as
4821 unsigned just in case one of them would overflow a signed
4822 type. */
4823 }
4824 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4825 return INT_CST_LT (t1, t2);
4826
4827 return INT_CST_LT_UNSIGNED (t1, t2);
4828 }
4829
4830 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4831
4832 int
4833 tree_int_cst_compare (tree t1, tree t2)
4834 {
4835 if (tree_int_cst_lt (t1, t2))
4836 return -1;
4837 else if (tree_int_cst_lt (t2, t1))
4838 return 1;
4839 else
4840 return 0;
4841 }
4842
4843 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4844 the host. If POS is zero, the value can be represented in a single
4845 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4846 be represented in a single unsigned HOST_WIDE_INT. */
4847
4848 int
4849 host_integerp (tree t, int pos)
4850 {
4851 return (TREE_CODE (t) == INTEGER_CST
4852 && ((TREE_INT_CST_HIGH (t) == 0
4853 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4854 || (! pos && TREE_INT_CST_HIGH (t) == -1
4855 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4856 && !TYPE_UNSIGNED (TREE_TYPE (t)))
4857 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4858 }
4859
4860 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4861 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4862 be non-negative. We must be able to satisfy the above conditions. */
4863
4864 HOST_WIDE_INT
4865 tree_low_cst (tree t, int pos)
4866 {
4867 gcc_assert (host_integerp (t, pos));
4868 return TREE_INT_CST_LOW (t);
4869 }
4870
4871 /* Return the most significant bit of the integer constant T. */
4872
4873 int
4874 tree_int_cst_msb (tree t)
4875 {
4876 int prec;
4877 HOST_WIDE_INT h;
4878 unsigned HOST_WIDE_INT l;
4879
4880 /* Note that using TYPE_PRECISION here is wrong. We care about the
4881 actual bits, not the (arbitrary) range of the type. */
4882 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4883 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4884 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4885 return (l & 1) == 1;
4886 }
4887
4888 /* Return an indication of the sign of the integer constant T.
4889 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4890 Note that -1 will never be returned if T's type is unsigned. */
4891
4892 int
4893 tree_int_cst_sgn (tree t)
4894 {
4895 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4896 return 0;
4897 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4898 return 1;
4899 else if (TREE_INT_CST_HIGH (t) < 0)
4900 return -1;
4901 else
4902 return 1;
4903 }
4904
4905 /* Compare two constructor-element-type constants. Return 1 if the lists
4906 are known to be equal; otherwise return 0. */
4907
4908 int
4909 simple_cst_list_equal (tree l1, tree l2)
4910 {
4911 while (l1 != NULL_TREE && l2 != NULL_TREE)
4912 {
4913 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4914 return 0;
4915
4916 l1 = TREE_CHAIN (l1);
4917 l2 = TREE_CHAIN (l2);
4918 }
4919
4920 return l1 == l2;
4921 }
4922
4923 /* Return truthvalue of whether T1 is the same tree structure as T2.
4924 Return 1 if they are the same.
4925 Return 0 if they are understandably different.
4926 Return -1 if either contains tree structure not understood by
4927 this function. */
4928
4929 int
4930 simple_cst_equal (tree t1, tree t2)
4931 {
4932 enum tree_code code1, code2;
4933 int cmp;
4934 int i;
4935
4936 if (t1 == t2)
4937 return 1;
4938 if (t1 == 0 || t2 == 0)
4939 return 0;
4940
4941 code1 = TREE_CODE (t1);
4942 code2 = TREE_CODE (t2);
4943
4944 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4945 {
4946 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4947 || code2 == NON_LVALUE_EXPR)
4948 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4949 else
4950 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4951 }
4952
4953 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4954 || code2 == NON_LVALUE_EXPR)
4955 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4956
4957 if (code1 != code2)
4958 return 0;
4959
4960 switch (code1)
4961 {
4962 case INTEGER_CST:
4963 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4964 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4965
4966 case REAL_CST:
4967 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4968
4969 case STRING_CST:
4970 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4971 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4972 TREE_STRING_LENGTH (t1)));
4973
4974 case CONSTRUCTOR:
4975 {
4976 unsigned HOST_WIDE_INT idx;
4977 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4978 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4979
4980 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4981 return false;
4982
4983 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4984 /* ??? Should we handle also fields here? */
4985 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
4986 VEC_index (constructor_elt, v2, idx)->value))
4987 return false;
4988 return true;
4989 }
4990
4991 case SAVE_EXPR:
4992 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4993
4994 case CALL_EXPR:
4995 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
4996 if (cmp <= 0)
4997 return cmp;
4998 if (call_expr_nargs (t1) != call_expr_nargs (t2))
4999 return 0;
5000 {
5001 tree arg1, arg2;
5002 call_expr_arg_iterator iter1, iter2;
5003 for (arg1 = first_call_expr_arg (t1, &iter1),
5004 arg2 = first_call_expr_arg (t2, &iter2);
5005 arg1 && arg2;
5006 arg1 = next_call_expr_arg (&iter1),
5007 arg2 = next_call_expr_arg (&iter2))
5008 {
5009 cmp = simple_cst_equal (arg1, arg2);
5010 if (cmp <= 0)
5011 return cmp;
5012 }
5013 return arg1 == arg2;
5014 }
5015
5016 case TARGET_EXPR:
5017 /* Special case: if either target is an unallocated VAR_DECL,
5018 it means that it's going to be unified with whatever the
5019 TARGET_EXPR is really supposed to initialize, so treat it
5020 as being equivalent to anything. */
5021 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
5022 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
5023 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
5024 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
5025 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
5026 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
5027 cmp = 1;
5028 else
5029 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5030
5031 if (cmp <= 0)
5032 return cmp;
5033
5034 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
5035
5036 case WITH_CLEANUP_EXPR:
5037 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5038 if (cmp <= 0)
5039 return cmp;
5040
5041 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
5042
5043 case COMPONENT_REF:
5044 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
5045 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5046
5047 return 0;
5048
5049 case VAR_DECL:
5050 case PARM_DECL:
5051 case CONST_DECL:
5052 case FUNCTION_DECL:
5053 return 0;
5054
5055 default:
5056 break;
5057 }
5058
5059 /* This general rule works for most tree codes. All exceptions should be
5060 handled above. If this is a language-specific tree code, we can't
5061 trust what might be in the operand, so say we don't know
5062 the situation. */
5063 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
5064 return -1;
5065
5066 switch (TREE_CODE_CLASS (code1))
5067 {
5068 case tcc_unary:
5069 case tcc_binary:
5070 case tcc_comparison:
5071 case tcc_expression:
5072 case tcc_reference:
5073 case tcc_statement:
5074 cmp = 1;
5075 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
5076 {
5077 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
5078 if (cmp <= 0)
5079 return cmp;
5080 }
5081
5082 return cmp;
5083
5084 default:
5085 return -1;
5086 }
5087 }
5088
5089 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
5090 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
5091 than U, respectively. */
5092
5093 int
5094 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
5095 {
5096 if (tree_int_cst_sgn (t) < 0)
5097 return -1;
5098 else if (TREE_INT_CST_HIGH (t) != 0)
5099 return 1;
5100 else if (TREE_INT_CST_LOW (t) == u)
5101 return 0;
5102 else if (TREE_INT_CST_LOW (t) < u)
5103 return -1;
5104 else
5105 return 1;
5106 }
5107
5108 /* Return true if CODE represents an associative tree code. Otherwise
5109 return false. */
5110 bool
5111 associative_tree_code (enum tree_code code)
5112 {
5113 switch (code)
5114 {
5115 case BIT_IOR_EXPR:
5116 case BIT_AND_EXPR:
5117 case BIT_XOR_EXPR:
5118 case PLUS_EXPR:
5119 case MULT_EXPR:
5120 case MIN_EXPR:
5121 case MAX_EXPR:
5122 return true;
5123
5124 default:
5125 break;
5126 }
5127 return false;
5128 }
5129
5130 /* Return true if CODE represents a commutative tree code. Otherwise
5131 return false. */
5132 bool
5133 commutative_tree_code (enum tree_code code)
5134 {
5135 switch (code)
5136 {
5137 case PLUS_EXPR:
5138 case MULT_EXPR:
5139 case MIN_EXPR:
5140 case MAX_EXPR:
5141 case BIT_IOR_EXPR:
5142 case BIT_XOR_EXPR:
5143 case BIT_AND_EXPR:
5144 case NE_EXPR:
5145 case EQ_EXPR:
5146 case UNORDERED_EXPR:
5147 case ORDERED_EXPR:
5148 case UNEQ_EXPR:
5149 case LTGT_EXPR:
5150 case TRUTH_AND_EXPR:
5151 case TRUTH_XOR_EXPR:
5152 case TRUTH_OR_EXPR:
5153 return true;
5154
5155 default:
5156 break;
5157 }
5158 return false;
5159 }
5160
5161 /* Generate a hash value for an expression. This can be used iteratively
5162 by passing a previous result as the "val" argument.
5163
5164 This function is intended to produce the same hash for expressions which
5165 would compare equal using operand_equal_p. */
5166
5167 hashval_t
5168 iterative_hash_expr (tree t, hashval_t val)
5169 {
5170 int i;
5171 enum tree_code code;
5172 char class;
5173
5174 if (t == NULL_TREE)
5175 return iterative_hash_pointer (t, val);
5176
5177 code = TREE_CODE (t);
5178
5179 switch (code)
5180 {
5181 /* Alas, constants aren't shared, so we can't rely on pointer
5182 identity. */
5183 case INTEGER_CST:
5184 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
5185 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
5186 case REAL_CST:
5187 {
5188 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
5189
5190 return iterative_hash_hashval_t (val2, val);
5191 }
5192 case STRING_CST:
5193 return iterative_hash (TREE_STRING_POINTER (t),
5194 TREE_STRING_LENGTH (t), val);
5195 case COMPLEX_CST:
5196 val = iterative_hash_expr (TREE_REALPART (t), val);
5197 return iterative_hash_expr (TREE_IMAGPART (t), val);
5198 case VECTOR_CST:
5199 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
5200
5201 case SSA_NAME:
5202 case VALUE_HANDLE:
5203 /* we can just compare by pointer. */
5204 return iterative_hash_pointer (t, val);
5205
5206 case TREE_LIST:
5207 /* A list of expressions, for a CALL_EXPR or as the elements of a
5208 VECTOR_CST. */
5209 for (; t; t = TREE_CHAIN (t))
5210 val = iterative_hash_expr (TREE_VALUE (t), val);
5211 return val;
5212 case CONSTRUCTOR:
5213 {
5214 unsigned HOST_WIDE_INT idx;
5215 tree field, value;
5216 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
5217 {
5218 val = iterative_hash_expr (field, val);
5219 val = iterative_hash_expr (value, val);
5220 }
5221 return val;
5222 }
5223 case FUNCTION_DECL:
5224 /* When referring to a built-in FUNCTION_DECL, use the
5225 __builtin__ form. Otherwise nodes that compare equal
5226 according to operand_equal_p might get different
5227 hash codes. */
5228 if (DECL_BUILT_IN (t))
5229 {
5230 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
5231 val);
5232 return val;
5233 }
5234 /* else FALL THROUGH */
5235 default:
5236 class = TREE_CODE_CLASS (code);
5237
5238 if (class == tcc_declaration)
5239 {
5240 /* DECL's have a unique ID */
5241 val = iterative_hash_host_wide_int (DECL_UID (t), val);
5242 }
5243 else
5244 {
5245 gcc_assert (IS_EXPR_CODE_CLASS (class));
5246
5247 val = iterative_hash_object (code, val);
5248
5249 /* Don't hash the type, that can lead to having nodes which
5250 compare equal according to operand_equal_p, but which
5251 have different hash codes. */
5252 if (code == NOP_EXPR
5253 || code == CONVERT_EXPR
5254 || code == NON_LVALUE_EXPR)
5255 {
5256 /* Make sure to include signness in the hash computation. */
5257 val += TYPE_UNSIGNED (TREE_TYPE (t));
5258 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
5259 }
5260
5261 else if (commutative_tree_code (code))
5262 {
5263 /* It's a commutative expression. We want to hash it the same
5264 however it appears. We do this by first hashing both operands
5265 and then rehashing based on the order of their independent
5266 hashes. */
5267 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
5268 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
5269 hashval_t t;
5270
5271 if (one > two)
5272 t = one, one = two, two = t;
5273
5274 val = iterative_hash_hashval_t (one, val);
5275 val = iterative_hash_hashval_t (two, val);
5276 }
5277 else
5278 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
5279 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
5280 }
5281 return val;
5282 break;
5283 }
5284 }
5285 \f
5286 /* Constructors for pointer, array and function types.
5287 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
5288 constructed by language-dependent code, not here.) */
5289
5290 /* Construct, lay out and return the type of pointers to TO_TYPE with
5291 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
5292 reference all of memory. If such a type has already been
5293 constructed, reuse it. */
5294
5295 tree
5296 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
5297 bool can_alias_all)
5298 {
5299 tree t;
5300
5301 if (to_type == error_mark_node)
5302 return error_mark_node;
5303
5304 /* In some cases, languages will have things that aren't a POINTER_TYPE
5305 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
5306 In that case, return that type without regard to the rest of our
5307 operands.
5308
5309 ??? This is a kludge, but consistent with the way this function has
5310 always operated and there doesn't seem to be a good way to avoid this
5311 at the moment. */
5312 if (TYPE_POINTER_TO (to_type) != 0
5313 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
5314 return TYPE_POINTER_TO (to_type);
5315
5316 /* First, if we already have a type for pointers to TO_TYPE and it's
5317 the proper mode, use it. */
5318 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
5319 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5320 return t;
5321
5322 t = make_node (POINTER_TYPE);
5323
5324 TREE_TYPE (t) = to_type;
5325 TYPE_MODE (t) = mode;
5326 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5327 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5328 TYPE_POINTER_TO (to_type) = t;
5329
5330 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5331 SET_TYPE_STRUCTURAL_EQUALITY (t);
5332 else if (TYPE_CANONICAL (to_type) != to_type)
5333 TYPE_CANONICAL (t)
5334 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
5335 mode, can_alias_all);
5336
5337 /* Lay out the type. This function has many callers that are concerned
5338 with expression-construction, and this simplifies them all. */
5339 layout_type (t);
5340
5341 return t;
5342 }
5343
5344 /* By default build pointers in ptr_mode. */
5345
5346 tree
5347 build_pointer_type (tree to_type)
5348 {
5349 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5350 }
5351
5352 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5353
5354 tree
5355 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5356 bool can_alias_all)
5357 {
5358 tree t;
5359
5360 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5361 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5362 In that case, return that type without regard to the rest of our
5363 operands.
5364
5365 ??? This is a kludge, but consistent with the way this function has
5366 always operated and there doesn't seem to be a good way to avoid this
5367 at the moment. */
5368 if (TYPE_REFERENCE_TO (to_type) != 0
5369 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5370 return TYPE_REFERENCE_TO (to_type);
5371
5372 /* First, if we already have a type for pointers to TO_TYPE and it's
5373 the proper mode, use it. */
5374 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5375 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5376 return t;
5377
5378 t = make_node (REFERENCE_TYPE);
5379
5380 TREE_TYPE (t) = to_type;
5381 TYPE_MODE (t) = mode;
5382 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5383 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5384 TYPE_REFERENCE_TO (to_type) = t;
5385
5386 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5387 SET_TYPE_STRUCTURAL_EQUALITY (t);
5388 else if (TYPE_CANONICAL (to_type) != to_type)
5389 TYPE_CANONICAL (t)
5390 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
5391 mode, can_alias_all);
5392
5393 layout_type (t);
5394
5395 return t;
5396 }
5397
5398
5399 /* Build the node for the type of references-to-TO_TYPE by default
5400 in ptr_mode. */
5401
5402 tree
5403 build_reference_type (tree to_type)
5404 {
5405 return build_reference_type_for_mode (to_type, ptr_mode, false);
5406 }
5407
5408 /* Build a type that is compatible with t but has no cv quals anywhere
5409 in its type, thus
5410
5411 const char *const *const * -> char ***. */
5412
5413 tree
5414 build_type_no_quals (tree t)
5415 {
5416 switch (TREE_CODE (t))
5417 {
5418 case POINTER_TYPE:
5419 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5420 TYPE_MODE (t),
5421 TYPE_REF_CAN_ALIAS_ALL (t));
5422 case REFERENCE_TYPE:
5423 return
5424 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5425 TYPE_MODE (t),
5426 TYPE_REF_CAN_ALIAS_ALL (t));
5427 default:
5428 return TYPE_MAIN_VARIANT (t);
5429 }
5430 }
5431
5432 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5433 MAXVAL should be the maximum value in the domain
5434 (one less than the length of the array).
5435
5436 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5437 We don't enforce this limit, that is up to caller (e.g. language front end).
5438 The limit exists because the result is a signed type and we don't handle
5439 sizes that use more than one HOST_WIDE_INT. */
5440
5441 tree
5442 build_index_type (tree maxval)
5443 {
5444 tree itype = make_node (INTEGER_TYPE);
5445
5446 TREE_TYPE (itype) = sizetype;
5447 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5448 TYPE_MIN_VALUE (itype) = size_zero_node;
5449 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5450 TYPE_MODE (itype) = TYPE_MODE (sizetype);
5451 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5452 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5453 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5454 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5455
5456 if (host_integerp (maxval, 1))
5457 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5458 else
5459 {
5460 /* Since we cannot hash this type, we need to compare it using
5461 structural equality checks. */
5462 SET_TYPE_STRUCTURAL_EQUALITY (itype);
5463 return itype;
5464 }
5465 }
5466
5467 /* Builds a signed or unsigned integer type of precision PRECISION.
5468 Used for C bitfields whose precision does not match that of
5469 built-in target types. */
5470 tree
5471 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5472 int unsignedp)
5473 {
5474 tree itype = make_node (INTEGER_TYPE);
5475
5476 TYPE_PRECISION (itype) = precision;
5477
5478 if (unsignedp)
5479 fixup_unsigned_type (itype);
5480 else
5481 fixup_signed_type (itype);
5482
5483 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5484 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5485
5486 return itype;
5487 }
5488
5489 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5490 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5491 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5492
5493 tree
5494 build_range_type (tree type, tree lowval, tree highval)
5495 {
5496 tree itype = make_node (INTEGER_TYPE);
5497
5498 TREE_TYPE (itype) = type;
5499 if (type == NULL_TREE)
5500 type = sizetype;
5501
5502 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5503 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5504
5505 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5506 TYPE_MODE (itype) = TYPE_MODE (type);
5507 TYPE_SIZE (itype) = TYPE_SIZE (type);
5508 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5509 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5510 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5511
5512 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5513 return type_hash_canon (tree_low_cst (highval, 0)
5514 - tree_low_cst (lowval, 0),
5515 itype);
5516 else
5517 return itype;
5518 }
5519
5520 /* Just like build_index_type, but takes lowval and highval instead
5521 of just highval (maxval). */
5522
5523 tree
5524 build_index_2_type (tree lowval, tree highval)
5525 {
5526 return build_range_type (sizetype, lowval, highval);
5527 }
5528
5529 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5530 and number of elements specified by the range of values of INDEX_TYPE.
5531 If such a type has already been constructed, reuse it. */
5532
5533 tree
5534 build_array_type (tree elt_type, tree index_type)
5535 {
5536 tree t;
5537 hashval_t hashcode = 0;
5538
5539 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5540 {
5541 error ("arrays of functions are not meaningful");
5542 elt_type = integer_type_node;
5543 }
5544
5545 t = make_node (ARRAY_TYPE);
5546 TREE_TYPE (t) = elt_type;
5547 TYPE_DOMAIN (t) = index_type;
5548
5549 if (index_type == 0)
5550 {
5551 tree save = t;
5552 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5553 t = type_hash_canon (hashcode, t);
5554 if (save == t)
5555 layout_type (t);
5556
5557 if (TYPE_CANONICAL (t) == t)
5558 {
5559 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
5560 SET_TYPE_STRUCTURAL_EQUALITY (t);
5561 else if (TYPE_CANONICAL (elt_type) != elt_type)
5562 TYPE_CANONICAL (t)
5563 = build_array_type (TYPE_CANONICAL (elt_type), index_type);
5564 }
5565
5566 return t;
5567 }
5568
5569 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5570 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5571 t = type_hash_canon (hashcode, t);
5572
5573 if (!COMPLETE_TYPE_P (t))
5574 layout_type (t);
5575
5576 if (TYPE_CANONICAL (t) == t)
5577 {
5578 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
5579 || TYPE_STRUCTURAL_EQUALITY_P (index_type))
5580 SET_TYPE_STRUCTURAL_EQUALITY (t);
5581 else if (TYPE_CANONICAL (elt_type) != elt_type
5582 || TYPE_CANONICAL (index_type) != index_type)
5583 TYPE_CANONICAL (t)
5584 = build_array_type (TYPE_CANONICAL (elt_type),
5585 TYPE_CANONICAL (index_type));
5586 }
5587
5588 return t;
5589 }
5590
5591 /* Return the TYPE of the elements comprising
5592 the innermost dimension of ARRAY. */
5593
5594 tree
5595 get_inner_array_type (tree array)
5596 {
5597 tree type = TREE_TYPE (array);
5598
5599 while (TREE_CODE (type) == ARRAY_TYPE)
5600 type = TREE_TYPE (type);
5601
5602 return type;
5603 }
5604
5605 /* Construct, lay out and return
5606 the type of functions returning type VALUE_TYPE
5607 given arguments of types ARG_TYPES.
5608 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5609 are data type nodes for the arguments of the function.
5610 If such a type has already been constructed, reuse it. */
5611
5612 tree
5613 build_function_type (tree value_type, tree arg_types)
5614 {
5615 tree t;
5616 hashval_t hashcode = 0;
5617
5618 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5619 {
5620 error ("function return type cannot be function");
5621 value_type = integer_type_node;
5622 }
5623
5624 /* Make a node of the sort we want. */
5625 t = make_node (FUNCTION_TYPE);
5626 TREE_TYPE (t) = value_type;
5627 TYPE_ARG_TYPES (t) = arg_types;
5628
5629 /* We don't have canonicalization of function types, yet. */
5630 SET_TYPE_STRUCTURAL_EQUALITY (t);
5631
5632 /* If we already have such a type, use the old one. */
5633 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5634 hashcode = type_hash_list (arg_types, hashcode);
5635 t = type_hash_canon (hashcode, t);
5636
5637 if (!COMPLETE_TYPE_P (t))
5638 layout_type (t);
5639 return t;
5640 }
5641
5642 /* Build a function type. The RETURN_TYPE is the type returned by the
5643 function. If additional arguments are provided, they are
5644 additional argument types. The list of argument types must always
5645 be terminated by NULL_TREE. */
5646
5647 tree
5648 build_function_type_list (tree return_type, ...)
5649 {
5650 tree t, args, last;
5651 va_list p;
5652
5653 va_start (p, return_type);
5654
5655 t = va_arg (p, tree);
5656 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5657 args = tree_cons (NULL_TREE, t, args);
5658
5659 if (args == NULL_TREE)
5660 args = void_list_node;
5661 else
5662 {
5663 last = args;
5664 args = nreverse (args);
5665 TREE_CHAIN (last) = void_list_node;
5666 }
5667 args = build_function_type (return_type, args);
5668
5669 va_end (p);
5670 return args;
5671 }
5672
5673 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5674 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5675 for the method. An implicit additional parameter (of type
5676 pointer-to-BASETYPE) is added to the ARGTYPES. */
5677
5678 tree
5679 build_method_type_directly (tree basetype,
5680 tree rettype,
5681 tree argtypes)
5682 {
5683 tree t;
5684 tree ptype;
5685 int hashcode = 0;
5686
5687 /* Make a node of the sort we want. */
5688 t = make_node (METHOD_TYPE);
5689
5690 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5691 TREE_TYPE (t) = rettype;
5692 ptype = build_pointer_type (basetype);
5693
5694 /* The actual arglist for this function includes a "hidden" argument
5695 which is "this". Put it into the list of argument types. */
5696 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5697 TYPE_ARG_TYPES (t) = argtypes;
5698
5699 /* We don't have canonicalization of method types yet. */
5700 SET_TYPE_STRUCTURAL_EQUALITY (t);
5701
5702 /* If we already have such a type, use the old one. */
5703 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5704 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5705 hashcode = type_hash_list (argtypes, hashcode);
5706 t = type_hash_canon (hashcode, t);
5707
5708 if (!COMPLETE_TYPE_P (t))
5709 layout_type (t);
5710
5711 return t;
5712 }
5713
5714 /* Construct, lay out and return the type of methods belonging to class
5715 BASETYPE and whose arguments and values are described by TYPE.
5716 If that type exists already, reuse it.
5717 TYPE must be a FUNCTION_TYPE node. */
5718
5719 tree
5720 build_method_type (tree basetype, tree type)
5721 {
5722 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5723
5724 return build_method_type_directly (basetype,
5725 TREE_TYPE (type),
5726 TYPE_ARG_TYPES (type));
5727 }
5728
5729 /* Construct, lay out and return the type of offsets to a value
5730 of type TYPE, within an object of type BASETYPE.
5731 If a suitable offset type exists already, reuse it. */
5732
5733 tree
5734 build_offset_type (tree basetype, tree type)
5735 {
5736 tree t;
5737 hashval_t hashcode = 0;
5738
5739 /* Make a node of the sort we want. */
5740 t = make_node (OFFSET_TYPE);
5741
5742 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5743 TREE_TYPE (t) = type;
5744
5745 /* If we already have such a type, use the old one. */
5746 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5747 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5748 t = type_hash_canon (hashcode, t);
5749
5750 if (!COMPLETE_TYPE_P (t))
5751 layout_type (t);
5752
5753 if (TYPE_CANONICAL (t) == t)
5754 {
5755 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5756 || TYPE_STRUCTURAL_EQUALITY_P (type))
5757 SET_TYPE_STRUCTURAL_EQUALITY (t);
5758 else if (TYPE_CANONICAL (basetype) != basetype
5759 || TYPE_CANONICAL (type) != type)
5760 TYPE_CANONICAL (t)
5761 = build_offset_type (TYPE_CANONICAL (basetype),
5762 TYPE_CANONICAL (type));
5763 }
5764
5765 return t;
5766 }
5767
5768 /* Create a complex type whose components are COMPONENT_TYPE. */
5769
5770 tree
5771 build_complex_type (tree component_type)
5772 {
5773 tree t;
5774 hashval_t hashcode;
5775
5776 /* Make a node of the sort we want. */
5777 t = make_node (COMPLEX_TYPE);
5778
5779 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5780
5781 /* If we already have such a type, use the old one. */
5782 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5783 t = type_hash_canon (hashcode, t);
5784
5785 if (!COMPLETE_TYPE_P (t))
5786 layout_type (t);
5787
5788 if (TYPE_CANONICAL (t) == t)
5789 {
5790 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
5791 SET_TYPE_STRUCTURAL_EQUALITY (t);
5792 else if (TYPE_CANONICAL (component_type) != component_type)
5793 TYPE_CANONICAL (t)
5794 = build_complex_type (TYPE_CANONICAL (component_type));
5795 }
5796
5797 /* If we are writing Dwarf2 output we need to create a name,
5798 since complex is a fundamental type. */
5799 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5800 && ! TYPE_NAME (t))
5801 {
5802 const char *name;
5803 if (component_type == char_type_node)
5804 name = "complex char";
5805 else if (component_type == signed_char_type_node)
5806 name = "complex signed char";
5807 else if (component_type == unsigned_char_type_node)
5808 name = "complex unsigned char";
5809 else if (component_type == short_integer_type_node)
5810 name = "complex short int";
5811 else if (component_type == short_unsigned_type_node)
5812 name = "complex short unsigned int";
5813 else if (component_type == integer_type_node)
5814 name = "complex int";
5815 else if (component_type == unsigned_type_node)
5816 name = "complex unsigned int";
5817 else if (component_type == long_integer_type_node)
5818 name = "complex long int";
5819 else if (component_type == long_unsigned_type_node)
5820 name = "complex long unsigned int";
5821 else if (component_type == long_long_integer_type_node)
5822 name = "complex long long int";
5823 else if (component_type == long_long_unsigned_type_node)
5824 name = "complex long long unsigned int";
5825 else
5826 name = 0;
5827
5828 if (name != 0)
5829 TYPE_NAME (t) = get_identifier (name);
5830 }
5831
5832 return build_qualified_type (t, TYPE_QUALS (component_type));
5833 }
5834 \f
5835 /* Return OP, stripped of any conversions to wider types as much as is safe.
5836 Converting the value back to OP's type makes a value equivalent to OP.
5837
5838 If FOR_TYPE is nonzero, we return a value which, if converted to
5839 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5840
5841 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5842 narrowest type that can hold the value, even if they don't exactly fit.
5843 Otherwise, bit-field references are changed to a narrower type
5844 only if they can be fetched directly from memory in that type.
5845
5846 OP must have integer, real or enumeral type. Pointers are not allowed!
5847
5848 There are some cases where the obvious value we could return
5849 would regenerate to OP if converted to OP's type,
5850 but would not extend like OP to wider types.
5851 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5852 For example, if OP is (unsigned short)(signed char)-1,
5853 we avoid returning (signed char)-1 if FOR_TYPE is int,
5854 even though extending that to an unsigned short would regenerate OP,
5855 since the result of extending (signed char)-1 to (int)
5856 is different from (int) OP. */
5857
5858 tree
5859 get_unwidened (tree op, tree for_type)
5860 {
5861 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
5862 tree type = TREE_TYPE (op);
5863 unsigned final_prec
5864 = TYPE_PRECISION (for_type != 0 ? for_type : type);
5865 int uns
5866 = (for_type != 0 && for_type != type
5867 && final_prec > TYPE_PRECISION (type)
5868 && TYPE_UNSIGNED (type));
5869 tree win = op;
5870
5871 while (TREE_CODE (op) == NOP_EXPR
5872 || TREE_CODE (op) == CONVERT_EXPR)
5873 {
5874 int bitschange;
5875
5876 /* TYPE_PRECISION on vector types has different meaning
5877 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5878 so avoid them here. */
5879 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5880 break;
5881
5882 bitschange = TYPE_PRECISION (TREE_TYPE (op))
5883 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5884
5885 /* Truncations are many-one so cannot be removed.
5886 Unless we are later going to truncate down even farther. */
5887 if (bitschange < 0
5888 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5889 break;
5890
5891 /* See what's inside this conversion. If we decide to strip it,
5892 we will set WIN. */
5893 op = TREE_OPERAND (op, 0);
5894
5895 /* If we have not stripped any zero-extensions (uns is 0),
5896 we can strip any kind of extension.
5897 If we have previously stripped a zero-extension,
5898 only zero-extensions can safely be stripped.
5899 Any extension can be stripped if the bits it would produce
5900 are all going to be discarded later by truncating to FOR_TYPE. */
5901
5902 if (bitschange > 0)
5903 {
5904 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5905 win = op;
5906 /* TYPE_UNSIGNED says whether this is a zero-extension.
5907 Let's avoid computing it if it does not affect WIN
5908 and if UNS will not be needed again. */
5909 if ((uns
5910 || TREE_CODE (op) == NOP_EXPR
5911 || TREE_CODE (op) == CONVERT_EXPR)
5912 && TYPE_UNSIGNED (TREE_TYPE (op)))
5913 {
5914 uns = 1;
5915 win = op;
5916 }
5917 }
5918 }
5919
5920 if (TREE_CODE (op) == COMPONENT_REF
5921 /* Since type_for_size always gives an integer type. */
5922 && TREE_CODE (type) != REAL_TYPE
5923 /* Don't crash if field not laid out yet. */
5924 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5925 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5926 {
5927 unsigned int innerprec
5928 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5929 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5930 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5931 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5932
5933 /* We can get this structure field in the narrowest type it fits in.
5934 If FOR_TYPE is 0, do this only for a field that matches the
5935 narrower type exactly and is aligned for it
5936 The resulting extension to its nominal type (a fullword type)
5937 must fit the same conditions as for other extensions. */
5938
5939 if (type != 0
5940 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5941 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5942 && (! uns || final_prec <= innerprec || unsignedp))
5943 {
5944 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5945 TREE_OPERAND (op, 1), NULL_TREE);
5946 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5947 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5948 }
5949 }
5950
5951 return win;
5952 }
5953 \f
5954 /* Return OP or a simpler expression for a narrower value
5955 which can be sign-extended or zero-extended to give back OP.
5956 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5957 or 0 if the value should be sign-extended. */
5958
5959 tree
5960 get_narrower (tree op, int *unsignedp_ptr)
5961 {
5962 int uns = 0;
5963 int first = 1;
5964 tree win = op;
5965 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5966
5967 while (TREE_CODE (op) == NOP_EXPR)
5968 {
5969 int bitschange
5970 = (TYPE_PRECISION (TREE_TYPE (op))
5971 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5972
5973 /* Truncations are many-one so cannot be removed. */
5974 if (bitschange < 0)
5975 break;
5976
5977 /* See what's inside this conversion. If we decide to strip it,
5978 we will set WIN. */
5979
5980 if (bitschange > 0)
5981 {
5982 op = TREE_OPERAND (op, 0);
5983 /* An extension: the outermost one can be stripped,
5984 but remember whether it is zero or sign extension. */
5985 if (first)
5986 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5987 /* Otherwise, if a sign extension has been stripped,
5988 only sign extensions can now be stripped;
5989 if a zero extension has been stripped, only zero-extensions. */
5990 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
5991 break;
5992 first = 0;
5993 }
5994 else /* bitschange == 0 */
5995 {
5996 /* A change in nominal type can always be stripped, but we must
5997 preserve the unsignedness. */
5998 if (first)
5999 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6000 first = 0;
6001 op = TREE_OPERAND (op, 0);
6002 /* Keep trying to narrow, but don't assign op to win if it
6003 would turn an integral type into something else. */
6004 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
6005 continue;
6006 }
6007
6008 win = op;
6009 }
6010
6011 if (TREE_CODE (op) == COMPONENT_REF
6012 /* Since type_for_size always gives an integer type. */
6013 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
6014 /* Ensure field is laid out already. */
6015 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6016 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6017 {
6018 unsigned HOST_WIDE_INT innerprec
6019 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6020 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6021 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6022 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6023
6024 /* We can get this structure field in a narrower type that fits it,
6025 but the resulting extension to its nominal type (a fullword type)
6026 must satisfy the same conditions as for other extensions.
6027
6028 Do this only for fields that are aligned (not bit-fields),
6029 because when bit-field insns will be used there is no
6030 advantage in doing this. */
6031
6032 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
6033 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
6034 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
6035 && type != 0)
6036 {
6037 if (first)
6038 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
6039 win = fold_convert (type, op);
6040 }
6041 }
6042
6043 *unsignedp_ptr = uns;
6044 return win;
6045 }
6046 \f
6047 /* Nonzero if integer constant C has a value that is permissible
6048 for type TYPE (an INTEGER_TYPE). */
6049
6050 int
6051 int_fits_type_p (tree c, tree type)
6052 {
6053 tree type_low_bound = TYPE_MIN_VALUE (type);
6054 tree type_high_bound = TYPE_MAX_VALUE (type);
6055 bool ok_for_low_bound, ok_for_high_bound;
6056 unsigned HOST_WIDE_INT low;
6057 HOST_WIDE_INT high;
6058
6059 /* If at least one bound of the type is a constant integer, we can check
6060 ourselves and maybe make a decision. If no such decision is possible, but
6061 this type is a subtype, try checking against that. Otherwise, use
6062 fit_double_type, which checks against the precision.
6063
6064 Compute the status for each possibly constant bound, and return if we see
6065 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
6066 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
6067 for "constant known to fit". */
6068
6069 /* Check if C >= type_low_bound. */
6070 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
6071 {
6072 if (tree_int_cst_lt (c, type_low_bound))
6073 return 0;
6074 ok_for_low_bound = true;
6075 }
6076 else
6077 ok_for_low_bound = false;
6078
6079 /* Check if c <= type_high_bound. */
6080 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
6081 {
6082 if (tree_int_cst_lt (type_high_bound, c))
6083 return 0;
6084 ok_for_high_bound = true;
6085 }
6086 else
6087 ok_for_high_bound = false;
6088
6089 /* If the constant fits both bounds, the result is known. */
6090 if (ok_for_low_bound && ok_for_high_bound)
6091 return 1;
6092
6093 /* Perform some generic filtering which may allow making a decision
6094 even if the bounds are not constant. First, negative integers
6095 never fit in unsigned types, */
6096 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
6097 return 0;
6098
6099 /* Second, narrower types always fit in wider ones. */
6100 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
6101 return 1;
6102
6103 /* Third, unsigned integers with top bit set never fit signed types. */
6104 if (! TYPE_UNSIGNED (type)
6105 && TYPE_UNSIGNED (TREE_TYPE (c))
6106 && tree_int_cst_msb (c))
6107 return 0;
6108
6109 /* If we haven't been able to decide at this point, there nothing more we
6110 can check ourselves here. Look at the base type if we have one and it
6111 has the same precision. */
6112 if (TREE_CODE (type) == INTEGER_TYPE
6113 && TREE_TYPE (type) != 0
6114 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
6115 return int_fits_type_p (c, TREE_TYPE (type));
6116
6117 /* Or to fit_double_type, if nothing else. */
6118 low = TREE_INT_CST_LOW (c);
6119 high = TREE_INT_CST_HIGH (c);
6120 return !fit_double_type (low, high, &low, &high, type);
6121 }
6122
6123 /* Subprogram of following function. Called by walk_tree.
6124
6125 Return *TP if it is an automatic variable or parameter of the
6126 function passed in as DATA. */
6127
6128 static tree
6129 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
6130 {
6131 tree fn = (tree) data;
6132
6133 if (TYPE_P (*tp))
6134 *walk_subtrees = 0;
6135
6136 else if (DECL_P (*tp)
6137 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
6138 return *tp;
6139
6140 return NULL_TREE;
6141 }
6142
6143 /* Returns true if T is, contains, or refers to a type with variable
6144 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
6145 arguments, but not the return type. If FN is nonzero, only return
6146 true if a modifier of the type or position of FN is a variable or
6147 parameter inside FN.
6148
6149 This concept is more general than that of C99 'variably modified types':
6150 in C99, a struct type is never variably modified because a VLA may not
6151 appear as a structure member. However, in GNU C code like:
6152
6153 struct S { int i[f()]; };
6154
6155 is valid, and other languages may define similar constructs. */
6156
6157 bool
6158 variably_modified_type_p (tree type, tree fn)
6159 {
6160 tree t;
6161
6162 /* Test if T is either variable (if FN is zero) or an expression containing
6163 a variable in FN. */
6164 #define RETURN_TRUE_IF_VAR(T) \
6165 do { tree _t = (T); \
6166 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
6167 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
6168 return true; } while (0)
6169
6170 if (type == error_mark_node)
6171 return false;
6172
6173 /* If TYPE itself has variable size, it is variably modified. */
6174 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
6175 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
6176
6177 switch (TREE_CODE (type))
6178 {
6179 case POINTER_TYPE:
6180 case REFERENCE_TYPE:
6181 case VECTOR_TYPE:
6182 if (variably_modified_type_p (TREE_TYPE (type), fn))
6183 return true;
6184 break;
6185
6186 case FUNCTION_TYPE:
6187 case METHOD_TYPE:
6188 /* If TYPE is a function type, it is variably modified if the
6189 return type is variably modified. */
6190 if (variably_modified_type_p (TREE_TYPE (type), fn))
6191 return true;
6192 break;
6193
6194 case INTEGER_TYPE:
6195 case REAL_TYPE:
6196 case ENUMERAL_TYPE:
6197 case BOOLEAN_TYPE:
6198 /* Scalar types are variably modified if their end points
6199 aren't constant. */
6200 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
6201 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
6202 break;
6203
6204 case RECORD_TYPE:
6205 case UNION_TYPE:
6206 case QUAL_UNION_TYPE:
6207 /* We can't see if any of the fields are variably-modified by the
6208 definition we normally use, since that would produce infinite
6209 recursion via pointers. */
6210 /* This is variably modified if some field's type is. */
6211 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
6212 if (TREE_CODE (t) == FIELD_DECL)
6213 {
6214 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
6215 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
6216 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
6217
6218 if (TREE_CODE (type) == QUAL_UNION_TYPE)
6219 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
6220 }
6221 break;
6222
6223 case ARRAY_TYPE:
6224 /* Do not call ourselves to avoid infinite recursion. This is
6225 variably modified if the element type is. */
6226 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
6227 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
6228 break;
6229
6230 default:
6231 break;
6232 }
6233
6234 /* The current language may have other cases to check, but in general,
6235 all other types are not variably modified. */
6236 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
6237
6238 #undef RETURN_TRUE_IF_VAR
6239 }
6240
6241 /* Given a DECL or TYPE, return the scope in which it was declared, or
6242 NULL_TREE if there is no containing scope. */
6243
6244 tree
6245 get_containing_scope (tree t)
6246 {
6247 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
6248 }
6249
6250 /* Return the innermost context enclosing DECL that is
6251 a FUNCTION_DECL, or zero if none. */
6252
6253 tree
6254 decl_function_context (tree decl)
6255 {
6256 tree context;
6257
6258 if (TREE_CODE (decl) == ERROR_MARK)
6259 return 0;
6260
6261 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
6262 where we look up the function at runtime. Such functions always take
6263 a first argument of type 'pointer to real context'.
6264
6265 C++ should really be fixed to use DECL_CONTEXT for the real context,
6266 and use something else for the "virtual context". */
6267 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
6268 context
6269 = TYPE_MAIN_VARIANT
6270 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6271 else
6272 context = DECL_CONTEXT (decl);
6273
6274 while (context && TREE_CODE (context) != FUNCTION_DECL)
6275 {
6276 if (TREE_CODE (context) == BLOCK)
6277 context = BLOCK_SUPERCONTEXT (context);
6278 else
6279 context = get_containing_scope (context);
6280 }
6281
6282 return context;
6283 }
6284
6285 /* Return the innermost context enclosing DECL that is
6286 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
6287 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
6288
6289 tree
6290 decl_type_context (tree decl)
6291 {
6292 tree context = DECL_CONTEXT (decl);
6293
6294 while (context)
6295 switch (TREE_CODE (context))
6296 {
6297 case NAMESPACE_DECL:
6298 case TRANSLATION_UNIT_DECL:
6299 return NULL_TREE;
6300
6301 case RECORD_TYPE:
6302 case UNION_TYPE:
6303 case QUAL_UNION_TYPE:
6304 return context;
6305
6306 case TYPE_DECL:
6307 case FUNCTION_DECL:
6308 context = DECL_CONTEXT (context);
6309 break;
6310
6311 case BLOCK:
6312 context = BLOCK_SUPERCONTEXT (context);
6313 break;
6314
6315 default:
6316 gcc_unreachable ();
6317 }
6318
6319 return NULL_TREE;
6320 }
6321
6322 /* CALL is a CALL_EXPR. Return the declaration for the function
6323 called, or NULL_TREE if the called function cannot be
6324 determined. */
6325
6326 tree
6327 get_callee_fndecl (tree call)
6328 {
6329 tree addr;
6330
6331 if (call == error_mark_node)
6332 return call;
6333
6334 /* It's invalid to call this function with anything but a
6335 CALL_EXPR. */
6336 gcc_assert (TREE_CODE (call) == CALL_EXPR);
6337
6338 /* The first operand to the CALL is the address of the function
6339 called. */
6340 addr = CALL_EXPR_FN (call);
6341
6342 STRIP_NOPS (addr);
6343
6344 /* If this is a readonly function pointer, extract its initial value. */
6345 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
6346 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
6347 && DECL_INITIAL (addr))
6348 addr = DECL_INITIAL (addr);
6349
6350 /* If the address is just `&f' for some function `f', then we know
6351 that `f' is being called. */
6352 if (TREE_CODE (addr) == ADDR_EXPR
6353 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
6354 return TREE_OPERAND (addr, 0);
6355
6356 /* We couldn't figure out what was being called. Maybe the front
6357 end has some idea. */
6358 return lang_hooks.lang_get_callee_fndecl (call);
6359 }
6360
6361 /* Print debugging information about tree nodes generated during the compile,
6362 and any language-specific information. */
6363
6364 void
6365 dump_tree_statistics (void)
6366 {
6367 #ifdef GATHER_STATISTICS
6368 int i;
6369 int total_nodes, total_bytes;
6370 #endif
6371
6372 fprintf (stderr, "\n??? tree nodes created\n\n");
6373 #ifdef GATHER_STATISTICS
6374 fprintf (stderr, "Kind Nodes Bytes\n");
6375 fprintf (stderr, "---------------------------------------\n");
6376 total_nodes = total_bytes = 0;
6377 for (i = 0; i < (int) all_kinds; i++)
6378 {
6379 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
6380 tree_node_counts[i], tree_node_sizes[i]);
6381 total_nodes += tree_node_counts[i];
6382 total_bytes += tree_node_sizes[i];
6383 }
6384 fprintf (stderr, "---------------------------------------\n");
6385 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
6386 fprintf (stderr, "---------------------------------------\n");
6387 ssanames_print_statistics ();
6388 phinodes_print_statistics ();
6389 #else
6390 fprintf (stderr, "(No per-node statistics)\n");
6391 #endif
6392 print_type_hash_statistics ();
6393 print_debug_expr_statistics ();
6394 print_value_expr_statistics ();
6395 print_restrict_base_statistics ();
6396 lang_hooks.print_statistics ();
6397 }
6398 \f
6399 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6400
6401 /* Generate a crc32 of a string. */
6402
6403 unsigned
6404 crc32_string (unsigned chksum, const char *string)
6405 {
6406 do
6407 {
6408 unsigned value = *string << 24;
6409 unsigned ix;
6410
6411 for (ix = 8; ix--; value <<= 1)
6412 {
6413 unsigned feedback;
6414
6415 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6416 chksum <<= 1;
6417 chksum ^= feedback;
6418 }
6419 }
6420 while (*string++);
6421 return chksum;
6422 }
6423
6424 /* P is a string that will be used in a symbol. Mask out any characters
6425 that are not valid in that context. */
6426
6427 void
6428 clean_symbol_name (char *p)
6429 {
6430 for (; *p; p++)
6431 if (! (ISALNUM (*p)
6432 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6433 || *p == '$'
6434 #endif
6435 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6436 || *p == '.'
6437 #endif
6438 ))
6439 *p = '_';
6440 }
6441
6442 /* Generate a name for a special-purpose function function.
6443 The generated name may need to be unique across the whole link.
6444 TYPE is some string to identify the purpose of this function to the
6445 linker or collect2; it must start with an uppercase letter,
6446 one of:
6447 I - for constructors
6448 D - for destructors
6449 N - for C++ anonymous namespaces
6450 F - for DWARF unwind frame information. */
6451
6452 tree
6453 get_file_function_name (const char *type)
6454 {
6455 char *buf;
6456 const char *p;
6457 char *q;
6458
6459 /* If we already have a name we know to be unique, just use that. */
6460 if (first_global_object_name)
6461 p = first_global_object_name;
6462 /* If the target is handling the constructors/destructors, they
6463 will be local to this file and the name is only necessary for
6464 debugging purposes. */
6465 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6466 {
6467 const char *file = main_input_filename;
6468 if (! file)
6469 file = input_filename;
6470 /* Just use the file's basename, because the full pathname
6471 might be quite long. */
6472 p = strrchr (file, '/');
6473 if (p)
6474 p++;
6475 else
6476 p = file;
6477 p = q = ASTRDUP (p);
6478 clean_symbol_name (q);
6479 }
6480 else
6481 {
6482 /* Otherwise, the name must be unique across the entire link.
6483 We don't have anything that we know to be unique to this translation
6484 unit, so use what we do have and throw in some randomness. */
6485 unsigned len;
6486 const char *name = weak_global_object_name;
6487 const char *file = main_input_filename;
6488
6489 if (! name)
6490 name = "";
6491 if (! file)
6492 file = input_filename;
6493
6494 len = strlen (file);
6495 q = alloca (9 * 2 + len + 1);
6496 memcpy (q, file, len + 1);
6497 clean_symbol_name (q);
6498
6499 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6500 crc32_string (0, get_random_seed (false)));
6501
6502 p = q;
6503 }
6504
6505 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6506
6507 /* Set up the name of the file-level functions we may need.
6508 Use a global object (which is already required to be unique over
6509 the program) rather than the file name (which imposes extra
6510 constraints). */
6511 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6512
6513 return get_identifier (buf);
6514 }
6515 \f
6516 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6517
6518 /* Complain that the tree code of NODE does not match the expected 0
6519 terminated list of trailing codes. The trailing code list can be
6520 empty, for a more vague error message. FILE, LINE, and FUNCTION
6521 are of the caller. */
6522
6523 void
6524 tree_check_failed (const tree node, const char *file,
6525 int line, const char *function, ...)
6526 {
6527 va_list args;
6528 char *buffer;
6529 unsigned length = 0;
6530 int code;
6531
6532 va_start (args, function);
6533 while ((code = va_arg (args, int)))
6534 length += 4 + strlen (tree_code_name[code]);
6535 va_end (args);
6536 if (length)
6537 {
6538 va_start (args, function);
6539 length += strlen ("expected ");
6540 buffer = alloca (length);
6541 length = 0;
6542 while ((code = va_arg (args, int)))
6543 {
6544 const char *prefix = length ? " or " : "expected ";
6545
6546 strcpy (buffer + length, prefix);
6547 length += strlen (prefix);
6548 strcpy (buffer + length, tree_code_name[code]);
6549 length += strlen (tree_code_name[code]);
6550 }
6551 va_end (args);
6552 }
6553 else
6554 buffer = (char *)"unexpected node";
6555
6556 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6557 buffer, tree_code_name[TREE_CODE (node)],
6558 function, trim_filename (file), line);
6559 }
6560
6561 /* Complain that the tree code of NODE does match the expected 0
6562 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6563 the caller. */
6564
6565 void
6566 tree_not_check_failed (const tree node, const char *file,
6567 int line, const char *function, ...)
6568 {
6569 va_list args;
6570 char *buffer;
6571 unsigned length = 0;
6572 int code;
6573
6574 va_start (args, function);
6575 while ((code = va_arg (args, int)))
6576 length += 4 + strlen (tree_code_name[code]);
6577 va_end (args);
6578 va_start (args, function);
6579 buffer = alloca (length);
6580 length = 0;
6581 while ((code = va_arg (args, int)))
6582 {
6583 if (length)
6584 {
6585 strcpy (buffer + length, " or ");
6586 length += 4;
6587 }
6588 strcpy (buffer + length, tree_code_name[code]);
6589 length += strlen (tree_code_name[code]);
6590 }
6591 va_end (args);
6592
6593 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6594 buffer, tree_code_name[TREE_CODE (node)],
6595 function, trim_filename (file), line);
6596 }
6597
6598 /* Similar to tree_check_failed, except that we check for a class of tree
6599 code, given in CL. */
6600
6601 void
6602 tree_class_check_failed (const tree node, const enum tree_code_class cl,
6603 const char *file, int line, const char *function)
6604 {
6605 internal_error
6606 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6607 TREE_CODE_CLASS_STRING (cl),
6608 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6609 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6610 }
6611
6612 /* Similar to tree_check_failed, except that instead of specifying a
6613 dozen codes, use the knowledge that they're all sequential. */
6614
6615 void
6616 tree_range_check_failed (const tree node, const char *file, int line,
6617 const char *function, enum tree_code c1,
6618 enum tree_code c2)
6619 {
6620 char *buffer;
6621 unsigned length = 0;
6622 enum tree_code c;
6623
6624 for (c = c1; c <= c2; ++c)
6625 length += 4 + strlen (tree_code_name[c]);
6626
6627 length += strlen ("expected ");
6628 buffer = alloca (length);
6629 length = 0;
6630
6631 for (c = c1; c <= c2; ++c)
6632 {
6633 const char *prefix = length ? " or " : "expected ";
6634
6635 strcpy (buffer + length, prefix);
6636 length += strlen (prefix);
6637 strcpy (buffer + length, tree_code_name[c]);
6638 length += strlen (tree_code_name[c]);
6639 }
6640
6641 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6642 buffer, tree_code_name[TREE_CODE (node)],
6643 function, trim_filename (file), line);
6644 }
6645
6646
6647 /* Similar to tree_check_failed, except that we check that a tree does
6648 not have the specified code, given in CL. */
6649
6650 void
6651 tree_not_class_check_failed (const tree node, const enum tree_code_class cl,
6652 const char *file, int line, const char *function)
6653 {
6654 internal_error
6655 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6656 TREE_CODE_CLASS_STRING (cl),
6657 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6658 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6659 }
6660
6661
6662 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
6663
6664 void
6665 omp_clause_check_failed (const tree node, const char *file, int line,
6666 const char *function, enum omp_clause_code code)
6667 {
6668 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6669 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6670 function, trim_filename (file), line);
6671 }
6672
6673
6674 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
6675
6676 void
6677 omp_clause_range_check_failed (const tree node, const char *file, int line,
6678 const char *function, enum omp_clause_code c1,
6679 enum omp_clause_code c2)
6680 {
6681 char *buffer;
6682 unsigned length = 0;
6683 enum omp_clause_code c;
6684
6685 for (c = c1; c <= c2; ++c)
6686 length += 4 + strlen (omp_clause_code_name[c]);
6687
6688 length += strlen ("expected ");
6689 buffer = alloca (length);
6690 length = 0;
6691
6692 for (c = c1; c <= c2; ++c)
6693 {
6694 const char *prefix = length ? " or " : "expected ";
6695
6696 strcpy (buffer + length, prefix);
6697 length += strlen (prefix);
6698 strcpy (buffer + length, omp_clause_code_name[c]);
6699 length += strlen (omp_clause_code_name[c]);
6700 }
6701
6702 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6703 buffer, omp_clause_code_name[TREE_CODE (node)],
6704 function, trim_filename (file), line);
6705 }
6706
6707
6708 #undef DEFTREESTRUCT
6709 #define DEFTREESTRUCT(VAL, NAME) NAME,
6710
6711 static const char *ts_enum_names[] = {
6712 #include "treestruct.def"
6713 };
6714 #undef DEFTREESTRUCT
6715
6716 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6717
6718 /* Similar to tree_class_check_failed, except that we check for
6719 whether CODE contains the tree structure identified by EN. */
6720
6721 void
6722 tree_contains_struct_check_failed (const tree node,
6723 const enum tree_node_structure_enum en,
6724 const char *file, int line,
6725 const char *function)
6726 {
6727 internal_error
6728 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6729 TS_ENUM_NAME(en),
6730 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6731 }
6732
6733
6734 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6735 (dynamically sized) vector. */
6736
6737 void
6738 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6739 const char *function)
6740 {
6741 internal_error
6742 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6743 idx + 1, len, function, trim_filename (file), line);
6744 }
6745
6746 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6747 (dynamically sized) vector. */
6748
6749 void
6750 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6751 const char *function)
6752 {
6753 internal_error
6754 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6755 idx + 1, len, function, trim_filename (file), line);
6756 }
6757
6758 /* Similar to above, except that the check is for the bounds of the operand
6759 vector of an expression node EXP. */
6760
6761 void
6762 tree_operand_check_failed (int idx, tree exp, const char *file,
6763 int line, const char *function)
6764 {
6765 int code = TREE_CODE (exp);
6766 internal_error
6767 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6768 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
6769 function, trim_filename (file), line);
6770 }
6771
6772 /* Similar to above, except that the check is for the number of
6773 operands of an OMP_CLAUSE node. */
6774
6775 void
6776 omp_clause_operand_check_failed (int idx, tree t, const char *file,
6777 int line, const char *function)
6778 {
6779 internal_error
6780 ("tree check: accessed operand %d of omp_clause %s with %d operands "
6781 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6782 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6783 trim_filename (file), line);
6784 }
6785 #endif /* ENABLE_TREE_CHECKING */
6786 \f
6787 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6788 and mapped to the machine mode MODE. Initialize its fields and build
6789 the information necessary for debugging output. */
6790
6791 static tree
6792 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6793 {
6794 tree t;
6795 hashval_t hashcode = 0;
6796
6797 /* Build a main variant, based on the main variant of the inner type, then
6798 use it to build the variant we return. */
6799 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6800 && TYPE_MAIN_VARIANT (innertype) != innertype)
6801 return build_type_attribute_qual_variant (
6802 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6803 TYPE_ATTRIBUTES (innertype),
6804 TYPE_QUALS (innertype));
6805
6806 t = make_node (VECTOR_TYPE);
6807 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6808 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6809 TYPE_MODE (t) = mode;
6810 TYPE_READONLY (t) = TYPE_READONLY (innertype);
6811 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6812
6813 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
6814 SET_TYPE_STRUCTURAL_EQUALITY (t);
6815 else if (TYPE_CANONICAL (innertype) != innertype
6816 || mode != VOIDmode)
6817 TYPE_CANONICAL (t)
6818 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
6819
6820 layout_type (t);
6821
6822 {
6823 tree index = build_int_cst (NULL_TREE, nunits - 1);
6824 tree array = build_array_type (innertype, build_index_type (index));
6825 tree rt = make_node (RECORD_TYPE);
6826
6827 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6828 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6829 layout_type (rt);
6830 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6831 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
6832 the representation type, and we want to find that die when looking up
6833 the vector type. This is most easily achieved by making the TYPE_UID
6834 numbers equal. */
6835 TYPE_UID (rt) = TYPE_UID (t);
6836 }
6837
6838 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6839 hashcode = iterative_hash_host_wide_int (mode, hashcode);
6840 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6841 return type_hash_canon (hashcode, t);
6842 }
6843
6844 static tree
6845 make_or_reuse_type (unsigned size, int unsignedp)
6846 {
6847 if (size == INT_TYPE_SIZE)
6848 return unsignedp ? unsigned_type_node : integer_type_node;
6849 if (size == CHAR_TYPE_SIZE)
6850 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6851 if (size == SHORT_TYPE_SIZE)
6852 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6853 if (size == LONG_TYPE_SIZE)
6854 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6855 if (size == LONG_LONG_TYPE_SIZE)
6856 return (unsignedp ? long_long_unsigned_type_node
6857 : long_long_integer_type_node);
6858
6859 if (unsignedp)
6860 return make_unsigned_type (size);
6861 else
6862 return make_signed_type (size);
6863 }
6864
6865 /* Create nodes for all integer types (and error_mark_node) using the sizes
6866 of C datatypes. The caller should call set_sizetype soon after calling
6867 this function to select one of the types as sizetype. */
6868
6869 void
6870 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6871 {
6872 error_mark_node = make_node (ERROR_MARK);
6873 TREE_TYPE (error_mark_node) = error_mark_node;
6874
6875 initialize_sizetypes (signed_sizetype);
6876
6877 /* Define both `signed char' and `unsigned char'. */
6878 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6879 TYPE_STRING_FLAG (signed_char_type_node) = 1;
6880 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6881 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
6882
6883 /* Define `char', which is like either `signed char' or `unsigned char'
6884 but not the same as either. */
6885 char_type_node
6886 = (signed_char
6887 ? make_signed_type (CHAR_TYPE_SIZE)
6888 : make_unsigned_type (CHAR_TYPE_SIZE));
6889 TYPE_STRING_FLAG (char_type_node) = 1;
6890
6891 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6892 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6893 integer_type_node = make_signed_type (INT_TYPE_SIZE);
6894 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6895 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6896 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6897 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6898 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6899
6900 /* Define a boolean type. This type only represents boolean values but
6901 may be larger than char depending on the value of BOOL_TYPE_SIZE.
6902 Front ends which want to override this size (i.e. Java) can redefine
6903 boolean_type_node before calling build_common_tree_nodes_2. */
6904 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6905 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6906 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6907 TYPE_PRECISION (boolean_type_node) = 1;
6908
6909 /* Fill in the rest of the sized types. Reuse existing type nodes
6910 when possible. */
6911 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6912 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6913 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6914 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6915 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6916
6917 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6918 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6919 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6920 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6921 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6922
6923 access_public_node = get_identifier ("public");
6924 access_protected_node = get_identifier ("protected");
6925 access_private_node = get_identifier ("private");
6926 }
6927
6928 /* Call this function after calling build_common_tree_nodes and set_sizetype.
6929 It will create several other common tree nodes. */
6930
6931 void
6932 build_common_tree_nodes_2 (int short_double)
6933 {
6934 /* Define these next since types below may used them. */
6935 integer_zero_node = build_int_cst (NULL_TREE, 0);
6936 integer_one_node = build_int_cst (NULL_TREE, 1);
6937 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6938
6939 size_zero_node = size_int (0);
6940 size_one_node = size_int (1);
6941 bitsize_zero_node = bitsize_int (0);
6942 bitsize_one_node = bitsize_int (1);
6943 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6944
6945 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6946 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6947
6948 void_type_node = make_node (VOID_TYPE);
6949 layout_type (void_type_node);
6950
6951 /* We are not going to have real types in C with less than byte alignment,
6952 so we might as well not have any types that claim to have it. */
6953 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6954 TYPE_USER_ALIGN (void_type_node) = 0;
6955
6956 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6957 layout_type (TREE_TYPE (null_pointer_node));
6958
6959 ptr_type_node = build_pointer_type (void_type_node);
6960 const_ptr_type_node
6961 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6962 fileptr_type_node = ptr_type_node;
6963
6964 float_type_node = make_node (REAL_TYPE);
6965 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6966 layout_type (float_type_node);
6967
6968 double_type_node = make_node (REAL_TYPE);
6969 if (short_double)
6970 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6971 else
6972 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6973 layout_type (double_type_node);
6974
6975 long_double_type_node = make_node (REAL_TYPE);
6976 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6977 layout_type (long_double_type_node);
6978
6979 float_ptr_type_node = build_pointer_type (float_type_node);
6980 double_ptr_type_node = build_pointer_type (double_type_node);
6981 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
6982 integer_ptr_type_node = build_pointer_type (integer_type_node);
6983
6984 /* Fixed size integer types. */
6985 uint32_type_node = build_nonstandard_integer_type (32, true);
6986 uint64_type_node = build_nonstandard_integer_type (64, true);
6987
6988 /* Decimal float types. */
6989 dfloat32_type_node = make_node (REAL_TYPE);
6990 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
6991 layout_type (dfloat32_type_node);
6992 TYPE_MODE (dfloat32_type_node) = SDmode;
6993 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
6994
6995 dfloat64_type_node = make_node (REAL_TYPE);
6996 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
6997 layout_type (dfloat64_type_node);
6998 TYPE_MODE (dfloat64_type_node) = DDmode;
6999 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
7000
7001 dfloat128_type_node = make_node (REAL_TYPE);
7002 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
7003 layout_type (dfloat128_type_node);
7004 TYPE_MODE (dfloat128_type_node) = TDmode;
7005 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
7006
7007 complex_integer_type_node = make_node (COMPLEX_TYPE);
7008 TREE_TYPE (complex_integer_type_node) = integer_type_node;
7009 layout_type (complex_integer_type_node);
7010
7011 complex_float_type_node = make_node (COMPLEX_TYPE);
7012 TREE_TYPE (complex_float_type_node) = float_type_node;
7013 layout_type (complex_float_type_node);
7014
7015 complex_double_type_node = make_node (COMPLEX_TYPE);
7016 TREE_TYPE (complex_double_type_node) = double_type_node;
7017 layout_type (complex_double_type_node);
7018
7019 complex_long_double_type_node = make_node (COMPLEX_TYPE);
7020 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
7021 layout_type (complex_long_double_type_node);
7022
7023 {
7024 tree t = targetm.build_builtin_va_list ();
7025
7026 /* Many back-ends define record types without setting TYPE_NAME.
7027 If we copied the record type here, we'd keep the original
7028 record type without a name. This breaks name mangling. So,
7029 don't copy record types and let c_common_nodes_and_builtins()
7030 declare the type to be __builtin_va_list. */
7031 if (TREE_CODE (t) != RECORD_TYPE)
7032 t = build_variant_type_copy (t);
7033
7034 va_list_type_node = t;
7035 }
7036 }
7037
7038 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
7039
7040 static void
7041 local_define_builtin (const char *name, tree type, enum built_in_function code,
7042 const char *library_name, int ecf_flags)
7043 {
7044 tree decl;
7045
7046 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
7047 library_name, NULL_TREE);
7048 if (ecf_flags & ECF_CONST)
7049 TREE_READONLY (decl) = 1;
7050 if (ecf_flags & ECF_PURE)
7051 DECL_IS_PURE (decl) = 1;
7052 if (ecf_flags & ECF_NORETURN)
7053 TREE_THIS_VOLATILE (decl) = 1;
7054 if (ecf_flags & ECF_NOTHROW)
7055 TREE_NOTHROW (decl) = 1;
7056 if (ecf_flags & ECF_MALLOC)
7057 DECL_IS_MALLOC (decl) = 1;
7058
7059 built_in_decls[code] = decl;
7060 implicit_built_in_decls[code] = decl;
7061 }
7062
7063 /* Call this function after instantiating all builtins that the language
7064 front end cares about. This will build the rest of the builtins that
7065 are relied upon by the tree optimizers and the middle-end. */
7066
7067 void
7068 build_common_builtin_nodes (void)
7069 {
7070 tree tmp, ftype;
7071
7072 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
7073 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7074 {
7075 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7076 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7077 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7078 ftype = build_function_type (ptr_type_node, tmp);
7079
7080 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
7081 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
7082 "memcpy", ECF_NOTHROW);
7083 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7084 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
7085 "memmove", ECF_NOTHROW);
7086 }
7087
7088 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
7089 {
7090 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7091 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7092 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7093 ftype = build_function_type (integer_type_node, tmp);
7094 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
7095 "memcmp", ECF_PURE | ECF_NOTHROW);
7096 }
7097
7098 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
7099 {
7100 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7101 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
7102 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7103 ftype = build_function_type (ptr_type_node, tmp);
7104 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
7105 "memset", ECF_NOTHROW);
7106 }
7107
7108 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
7109 {
7110 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7111 ftype = build_function_type (ptr_type_node, tmp);
7112 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
7113 "alloca", ECF_NOTHROW | ECF_MALLOC);
7114 }
7115
7116 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7117 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7118 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7119 ftype = build_function_type (void_type_node, tmp);
7120 local_define_builtin ("__builtin_init_trampoline", ftype,
7121 BUILT_IN_INIT_TRAMPOLINE,
7122 "__builtin_init_trampoline", ECF_NOTHROW);
7123
7124 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7125 ftype = build_function_type (ptr_type_node, tmp);
7126 local_define_builtin ("__builtin_adjust_trampoline", ftype,
7127 BUILT_IN_ADJUST_TRAMPOLINE,
7128 "__builtin_adjust_trampoline",
7129 ECF_CONST | ECF_NOTHROW);
7130
7131 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7132 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7133 ftype = build_function_type (void_type_node, tmp);
7134 local_define_builtin ("__builtin_nonlocal_goto", ftype,
7135 BUILT_IN_NONLOCAL_GOTO,
7136 "__builtin_nonlocal_goto",
7137 ECF_NORETURN | ECF_NOTHROW);
7138
7139 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7140 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7141 ftype = build_function_type (void_type_node, tmp);
7142 local_define_builtin ("__builtin_setjmp_setup", ftype,
7143 BUILT_IN_SETJMP_SETUP,
7144 "__builtin_setjmp_setup", ECF_NOTHROW);
7145
7146 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7147 ftype = build_function_type (ptr_type_node, tmp);
7148 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
7149 BUILT_IN_SETJMP_DISPATCHER,
7150 "__builtin_setjmp_dispatcher",
7151 ECF_PURE | ECF_NOTHROW);
7152
7153 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7154 ftype = build_function_type (void_type_node, tmp);
7155 local_define_builtin ("__builtin_setjmp_receiver", ftype,
7156 BUILT_IN_SETJMP_RECEIVER,
7157 "__builtin_setjmp_receiver", ECF_NOTHROW);
7158
7159 ftype = build_function_type (ptr_type_node, void_list_node);
7160 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
7161 "__builtin_stack_save", ECF_NOTHROW);
7162
7163 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7164 ftype = build_function_type (void_type_node, tmp);
7165 local_define_builtin ("__builtin_stack_restore", ftype,
7166 BUILT_IN_STACK_RESTORE,
7167 "__builtin_stack_restore", ECF_NOTHROW);
7168
7169 ftype = build_function_type (void_type_node, void_list_node);
7170 local_define_builtin ("__builtin_profile_func_enter", ftype,
7171 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
7172 local_define_builtin ("__builtin_profile_func_exit", ftype,
7173 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
7174
7175 /* Complex multiplication and division. These are handled as builtins
7176 rather than optabs because emit_library_call_value doesn't support
7177 complex. Further, we can do slightly better with folding these
7178 beasties if the real and complex parts of the arguments are separate. */
7179 {
7180 enum machine_mode mode;
7181
7182 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
7183 {
7184 char mode_name_buf[4], *q;
7185 const char *p;
7186 enum built_in_function mcode, dcode;
7187 tree type, inner_type;
7188
7189 type = lang_hooks.types.type_for_mode (mode, 0);
7190 if (type == NULL)
7191 continue;
7192 inner_type = TREE_TYPE (type);
7193
7194 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
7195 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7196 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7197 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7198 ftype = build_function_type (type, tmp);
7199
7200 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7201 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7202
7203 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
7204 *q = TOLOWER (*p);
7205 *q = '\0';
7206
7207 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
7208 local_define_builtin (built_in_names[mcode], ftype, mcode,
7209 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
7210
7211 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
7212 local_define_builtin (built_in_names[dcode], ftype, dcode,
7213 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
7214 }
7215 }
7216 }
7217
7218 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
7219 better way.
7220
7221 If we requested a pointer to a vector, build up the pointers that
7222 we stripped off while looking for the inner type. Similarly for
7223 return values from functions.
7224
7225 The argument TYPE is the top of the chain, and BOTTOM is the
7226 new type which we will point to. */
7227
7228 tree
7229 reconstruct_complex_type (tree type, tree bottom)
7230 {
7231 tree inner, outer;
7232
7233 if (POINTER_TYPE_P (type))
7234 {
7235 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7236 outer = build_pointer_type (inner);
7237 }
7238 else if (TREE_CODE (type) == ARRAY_TYPE)
7239 {
7240 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7241 outer = build_array_type (inner, TYPE_DOMAIN (type));
7242 }
7243 else if (TREE_CODE (type) == FUNCTION_TYPE)
7244 {
7245 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7246 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
7247 }
7248 else if (TREE_CODE (type) == METHOD_TYPE)
7249 {
7250 tree argtypes;
7251 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7252 /* The build_method_type_directly() routine prepends 'this' to argument list,
7253 so we must compensate by getting rid of it. */
7254 argtypes = TYPE_ARG_TYPES (type);
7255 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
7256 inner,
7257 TYPE_ARG_TYPES (type));
7258 TYPE_ARG_TYPES (outer) = argtypes;
7259 }
7260 else
7261 return bottom;
7262
7263 TYPE_READONLY (outer) = TYPE_READONLY (type);
7264 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
7265
7266 return outer;
7267 }
7268
7269 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
7270 the inner type. */
7271 tree
7272 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
7273 {
7274 int nunits;
7275
7276 switch (GET_MODE_CLASS (mode))
7277 {
7278 case MODE_VECTOR_INT:
7279 case MODE_VECTOR_FLOAT:
7280 nunits = GET_MODE_NUNITS (mode);
7281 break;
7282
7283 case MODE_INT:
7284 /* Check that there are no leftover bits. */
7285 gcc_assert (GET_MODE_BITSIZE (mode)
7286 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
7287
7288 nunits = GET_MODE_BITSIZE (mode)
7289 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
7290 break;
7291
7292 default:
7293 gcc_unreachable ();
7294 }
7295
7296 return make_vector_type (innertype, nunits, mode);
7297 }
7298
7299 /* Similarly, but takes the inner type and number of units, which must be
7300 a power of two. */
7301
7302 tree
7303 build_vector_type (tree innertype, int nunits)
7304 {
7305 return make_vector_type (innertype, nunits, VOIDmode);
7306 }
7307
7308
7309 /* Build RESX_EXPR with given REGION_NUMBER. */
7310 tree
7311 build_resx (int region_number)
7312 {
7313 tree t;
7314 t = build1 (RESX_EXPR, void_type_node,
7315 build_int_cst (NULL_TREE, region_number));
7316 return t;
7317 }
7318
7319 /* Given an initializer INIT, return TRUE if INIT is zero or some
7320 aggregate of zeros. Otherwise return FALSE. */
7321 bool
7322 initializer_zerop (tree init)
7323 {
7324 tree elt;
7325
7326 STRIP_NOPS (init);
7327
7328 switch (TREE_CODE (init))
7329 {
7330 case INTEGER_CST:
7331 return integer_zerop (init);
7332
7333 case REAL_CST:
7334 /* ??? Note that this is not correct for C4X float formats. There,
7335 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
7336 negative exponent. */
7337 return real_zerop (init)
7338 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
7339
7340 case COMPLEX_CST:
7341 return integer_zerop (init)
7342 || (real_zerop (init)
7343 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
7344 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
7345
7346 case VECTOR_CST:
7347 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
7348 if (!initializer_zerop (TREE_VALUE (elt)))
7349 return false;
7350 return true;
7351
7352 case CONSTRUCTOR:
7353 {
7354 unsigned HOST_WIDE_INT idx;
7355
7356 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
7357 if (!initializer_zerop (elt))
7358 return false;
7359 return true;
7360 }
7361
7362 default:
7363 return false;
7364 }
7365 }
7366
7367 /* Build an empty statement. */
7368
7369 tree
7370 build_empty_stmt (void)
7371 {
7372 return build1 (NOP_EXPR, void_type_node, size_zero_node);
7373 }
7374
7375
7376 /* Build an OpenMP clause with code CODE. */
7377
7378 tree
7379 build_omp_clause (enum omp_clause_code code)
7380 {
7381 tree t;
7382 int size, length;
7383
7384 length = omp_clause_num_ops[code];
7385 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
7386
7387 t = ggc_alloc (size);
7388 memset (t, 0, size);
7389 TREE_SET_CODE (t, OMP_CLAUSE);
7390 OMP_CLAUSE_SET_CODE (t, code);
7391
7392 #ifdef GATHER_STATISTICS
7393 tree_node_counts[(int) omp_clause_kind]++;
7394 tree_node_sizes[(int) omp_clause_kind] += size;
7395 #endif
7396
7397 return t;
7398 }
7399
7400 /* Set various status flags when building a CALL_EXPR object T. */
7401
7402 static void
7403 process_call_operands (tree t)
7404 {
7405 bool side_effects;
7406
7407 side_effects = TREE_SIDE_EFFECTS (t);
7408 if (!side_effects)
7409 {
7410 int i, n;
7411 n = TREE_OPERAND_LENGTH (t);
7412 for (i = 1; i < n; i++)
7413 {
7414 tree op = TREE_OPERAND (t, i);
7415 if (op && TREE_SIDE_EFFECTS (op))
7416 {
7417 side_effects = 1;
7418 break;
7419 }
7420 }
7421 }
7422 if (!side_effects)
7423 {
7424 int i;
7425
7426 /* Calls have side-effects, except those to const or
7427 pure functions. */
7428 i = call_expr_flags (t);
7429 if (!(i & (ECF_CONST | ECF_PURE)))
7430 side_effects = 1;
7431 }
7432 TREE_SIDE_EFFECTS (t) = side_effects;
7433 }
7434
7435 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
7436 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
7437 Except for the CODE and operand count field, other storage for the
7438 object is initialized to zeros. */
7439
7440 tree
7441 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
7442 {
7443 tree t;
7444 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
7445
7446 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
7447 gcc_assert (len >= 1);
7448
7449 #ifdef GATHER_STATISTICS
7450 tree_node_counts[(int) e_kind]++;
7451 tree_node_sizes[(int) e_kind] += length;
7452 #endif
7453
7454 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
7455
7456 memset (t, 0, length);
7457
7458 TREE_SET_CODE (t, code);
7459
7460 /* Can't use TREE_OPERAND to store the length because if checking is
7461 enabled, it will try to check the length before we store it. :-P */
7462 t->exp.operands[0] = build_int_cst (sizetype, len);
7463
7464 return t;
7465 }
7466
7467
7468 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
7469 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
7470 arguments. */
7471
7472 tree
7473 build_call_list (tree return_type, tree fn, tree arglist)
7474 {
7475 tree t;
7476 int i;
7477
7478 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
7479 TREE_TYPE (t) = return_type;
7480 CALL_EXPR_FN (t) = fn;
7481 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7482 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
7483 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
7484 process_call_operands (t);
7485 return t;
7486 }
7487
7488 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7489 FN and a null static chain slot. NARGS is the number of call arguments
7490 which are specified as "..." arguments. */
7491
7492 tree
7493 build_call_nary (tree return_type, tree fn, int nargs, ...)
7494 {
7495 tree ret;
7496 va_list args;
7497 va_start (args, nargs);
7498 ret = build_call_valist (return_type, fn, nargs, args);
7499 va_end (args);
7500 return ret;
7501 }
7502
7503 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7504 FN and a null static chain slot. NARGS is the number of call arguments
7505 which are specified as a va_list ARGS. */
7506
7507 tree
7508 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
7509 {
7510 tree t;
7511 int i;
7512
7513 t = build_vl_exp (CALL_EXPR, nargs + 3);
7514 TREE_TYPE (t) = return_type;
7515 CALL_EXPR_FN (t) = fn;
7516 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7517 for (i = 0; i < nargs; i++)
7518 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
7519 process_call_operands (t);
7520 return t;
7521 }
7522
7523 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7524 FN and a null static chain slot. NARGS is the number of call arguments
7525 which are specified as a tree array ARGS. */
7526
7527 tree
7528 build_call_array (tree return_type, tree fn, int nargs, tree *args)
7529 {
7530 tree t;
7531 int i;
7532
7533 t = build_vl_exp (CALL_EXPR, nargs + 3);
7534 TREE_TYPE (t) = return_type;
7535 CALL_EXPR_FN (t) = fn;
7536 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7537 for (i = 0; i < nargs; i++)
7538 CALL_EXPR_ARG (t, i) = args[i];
7539 process_call_operands (t);
7540 return t;
7541 }
7542
7543
7544 /* Returns true if it is possible to prove that the index of
7545 an array access REF (an ARRAY_REF expression) falls into the
7546 array bounds. */
7547
7548 bool
7549 in_array_bounds_p (tree ref)
7550 {
7551 tree idx = TREE_OPERAND (ref, 1);
7552 tree min, max;
7553
7554 if (TREE_CODE (idx) != INTEGER_CST)
7555 return false;
7556
7557 min = array_ref_low_bound (ref);
7558 max = array_ref_up_bound (ref);
7559 if (!min
7560 || !max
7561 || TREE_CODE (min) != INTEGER_CST
7562 || TREE_CODE (max) != INTEGER_CST)
7563 return false;
7564
7565 if (tree_int_cst_lt (idx, min)
7566 || tree_int_cst_lt (max, idx))
7567 return false;
7568
7569 return true;
7570 }
7571
7572 /* Returns true if it is possible to prove that the range of
7573 an array access REF (an ARRAY_RANGE_REF expression) falls
7574 into the array bounds. */
7575
7576 bool
7577 range_in_array_bounds_p (tree ref)
7578 {
7579 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7580 tree range_min, range_max, min, max;
7581
7582 range_min = TYPE_MIN_VALUE (domain_type);
7583 range_max = TYPE_MAX_VALUE (domain_type);
7584 if (!range_min
7585 || !range_max
7586 || TREE_CODE (range_min) != INTEGER_CST
7587 || TREE_CODE (range_max) != INTEGER_CST)
7588 return false;
7589
7590 min = array_ref_low_bound (ref);
7591 max = array_ref_up_bound (ref);
7592 if (!min
7593 || !max
7594 || TREE_CODE (min) != INTEGER_CST
7595 || TREE_CODE (max) != INTEGER_CST)
7596 return false;
7597
7598 if (tree_int_cst_lt (range_min, min)
7599 || tree_int_cst_lt (max, range_max))
7600 return false;
7601
7602 return true;
7603 }
7604
7605 /* Return true if T (assumed to be a DECL) is a global variable. */
7606
7607 bool
7608 is_global_var (tree t)
7609 {
7610 if (MTAG_P (t))
7611 return (TREE_STATIC (t) || MTAG_GLOBAL (t));
7612 else
7613 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
7614 }
7615
7616 /* Return true if T (assumed to be a DECL) must be assigned a memory
7617 location. */
7618
7619 bool
7620 needs_to_live_in_memory (tree t)
7621 {
7622 if (TREE_CODE (t) == SSA_NAME)
7623 t = SSA_NAME_VAR (t);
7624
7625 return (TREE_ADDRESSABLE (t)
7626 || is_global_var (t)
7627 || (TREE_CODE (t) == RESULT_DECL
7628 && aggregate_value_p (t, current_function_decl)));
7629 }
7630
7631 /* There are situations in which a language considers record types
7632 compatible which have different field lists. Decide if two fields
7633 are compatible. It is assumed that the parent records are compatible. */
7634
7635 bool
7636 fields_compatible_p (tree f1, tree f2)
7637 {
7638 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7639 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7640 return false;
7641
7642 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7643 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7644 return false;
7645
7646 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7647 return false;
7648
7649 return true;
7650 }
7651
7652 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
7653
7654 tree
7655 find_compatible_field (tree record, tree orig_field)
7656 {
7657 tree f;
7658
7659 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7660 if (TREE_CODE (f) == FIELD_DECL
7661 && fields_compatible_p (f, orig_field))
7662 return f;
7663
7664 /* ??? Why isn't this on the main fields list? */
7665 f = TYPE_VFIELD (record);
7666 if (f && TREE_CODE (f) == FIELD_DECL
7667 && fields_compatible_p (f, orig_field))
7668 return f;
7669
7670 /* ??? We should abort here, but Java appears to do Bad Things
7671 with inherited fields. */
7672 return orig_field;
7673 }
7674
7675 /* Return value of a constant X. */
7676
7677 HOST_WIDE_INT
7678 int_cst_value (tree x)
7679 {
7680 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7681 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7682 bool negative = ((val >> (bits - 1)) & 1) != 0;
7683
7684 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
7685
7686 if (negative)
7687 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7688 else
7689 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7690
7691 return val;
7692 }
7693
7694
7695 /* Returns unsigned variant of TYPE. */
7696
7697 tree
7698 unsigned_type_for (tree type)
7699 {
7700 if (POINTER_TYPE_P (type))
7701 return lang_hooks.types.unsigned_type (size_type_node);
7702 return lang_hooks.types.unsigned_type (type);
7703 }
7704
7705 /* Returns signed variant of TYPE. */
7706
7707 tree
7708 signed_type_for (tree type)
7709 {
7710 if (POINTER_TYPE_P (type))
7711 return lang_hooks.types.signed_type (size_type_node);
7712 return lang_hooks.types.signed_type (type);
7713 }
7714
7715 /* Returns the largest value obtainable by casting something in INNER type to
7716 OUTER type. */
7717
7718 tree
7719 upper_bound_in_type (tree outer, tree inner)
7720 {
7721 unsigned HOST_WIDE_INT lo, hi;
7722 unsigned int det = 0;
7723 unsigned oprec = TYPE_PRECISION (outer);
7724 unsigned iprec = TYPE_PRECISION (inner);
7725 unsigned prec;
7726
7727 /* Compute a unique number for every combination. */
7728 det |= (oprec > iprec) ? 4 : 0;
7729 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7730 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7731
7732 /* Determine the exponent to use. */
7733 switch (det)
7734 {
7735 case 0:
7736 case 1:
7737 /* oprec <= iprec, outer: signed, inner: don't care. */
7738 prec = oprec - 1;
7739 break;
7740 case 2:
7741 case 3:
7742 /* oprec <= iprec, outer: unsigned, inner: don't care. */
7743 prec = oprec;
7744 break;
7745 case 4:
7746 /* oprec > iprec, outer: signed, inner: signed. */
7747 prec = iprec - 1;
7748 break;
7749 case 5:
7750 /* oprec > iprec, outer: signed, inner: unsigned. */
7751 prec = iprec;
7752 break;
7753 case 6:
7754 /* oprec > iprec, outer: unsigned, inner: signed. */
7755 prec = oprec;
7756 break;
7757 case 7:
7758 /* oprec > iprec, outer: unsigned, inner: unsigned. */
7759 prec = iprec;
7760 break;
7761 default:
7762 gcc_unreachable ();
7763 }
7764
7765 /* Compute 2^^prec - 1. */
7766 if (prec <= HOST_BITS_PER_WIDE_INT)
7767 {
7768 hi = 0;
7769 lo = ((~(unsigned HOST_WIDE_INT) 0)
7770 >> (HOST_BITS_PER_WIDE_INT - prec));
7771 }
7772 else
7773 {
7774 hi = ((~(unsigned HOST_WIDE_INT) 0)
7775 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
7776 lo = ~(unsigned HOST_WIDE_INT) 0;
7777 }
7778
7779 return build_int_cst_wide (outer, lo, hi);
7780 }
7781
7782 /* Returns the smallest value obtainable by casting something in INNER type to
7783 OUTER type. */
7784
7785 tree
7786 lower_bound_in_type (tree outer, tree inner)
7787 {
7788 unsigned HOST_WIDE_INT lo, hi;
7789 unsigned oprec = TYPE_PRECISION (outer);
7790 unsigned iprec = TYPE_PRECISION (inner);
7791
7792 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
7793 and obtain 0. */
7794 if (TYPE_UNSIGNED (outer)
7795 /* If we are widening something of an unsigned type, OUTER type
7796 contains all values of INNER type. In particular, both INNER
7797 and OUTER types have zero in common. */
7798 || (oprec > iprec && TYPE_UNSIGNED (inner)))
7799 lo = hi = 0;
7800 else
7801 {
7802 /* If we are widening a signed type to another signed type, we
7803 want to obtain -2^^(iprec-1). If we are keeping the
7804 precision or narrowing to a signed type, we want to obtain
7805 -2^(oprec-1). */
7806 unsigned prec = oprec > iprec ? iprec : oprec;
7807
7808 if (prec <= HOST_BITS_PER_WIDE_INT)
7809 {
7810 hi = ~(unsigned HOST_WIDE_INT) 0;
7811 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
7812 }
7813 else
7814 {
7815 hi = ((~(unsigned HOST_WIDE_INT) 0)
7816 << (prec - HOST_BITS_PER_WIDE_INT - 1));
7817 lo = 0;
7818 }
7819 }
7820
7821 return build_int_cst_wide (outer, lo, hi);
7822 }
7823
7824 /* Return nonzero if two operands that are suitable for PHI nodes are
7825 necessarily equal. Specifically, both ARG0 and ARG1 must be either
7826 SSA_NAME or invariant. Note that this is strictly an optimization.
7827 That is, callers of this function can directly call operand_equal_p
7828 and get the same result, only slower. */
7829
7830 int
7831 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
7832 {
7833 if (arg0 == arg1)
7834 return 1;
7835 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
7836 return 0;
7837 return operand_equal_p (arg0, arg1, 0);
7838 }
7839
7840 /* Returns number of zeros at the end of binary representation of X.
7841
7842 ??? Use ffs if available? */
7843
7844 tree
7845 num_ending_zeros (tree x)
7846 {
7847 unsigned HOST_WIDE_INT fr, nfr;
7848 unsigned num, abits;
7849 tree type = TREE_TYPE (x);
7850
7851 if (TREE_INT_CST_LOW (x) == 0)
7852 {
7853 num = HOST_BITS_PER_WIDE_INT;
7854 fr = TREE_INT_CST_HIGH (x);
7855 }
7856 else
7857 {
7858 num = 0;
7859 fr = TREE_INT_CST_LOW (x);
7860 }
7861
7862 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
7863 {
7864 nfr = fr >> abits;
7865 if (nfr << abits == fr)
7866 {
7867 num += abits;
7868 fr = nfr;
7869 }
7870 }
7871
7872 if (num > TYPE_PRECISION (type))
7873 num = TYPE_PRECISION (type);
7874
7875 return build_int_cst_type (type, num);
7876 }
7877
7878
7879 #define WALK_SUBTREE(NODE) \
7880 do \
7881 { \
7882 result = walk_tree (&(NODE), func, data, pset); \
7883 if (result) \
7884 return result; \
7885 } \
7886 while (0)
7887
7888 /* This is a subroutine of walk_tree that walks field of TYPE that are to
7889 be walked whenever a type is seen in the tree. Rest of operands and return
7890 value are as for walk_tree. */
7891
7892 static tree
7893 walk_type_fields (tree type, walk_tree_fn func, void *data,
7894 struct pointer_set_t *pset)
7895 {
7896 tree result = NULL_TREE;
7897
7898 switch (TREE_CODE (type))
7899 {
7900 case POINTER_TYPE:
7901 case REFERENCE_TYPE:
7902 /* We have to worry about mutually recursive pointers. These can't
7903 be written in C. They can in Ada. It's pathological, but
7904 there's an ACATS test (c38102a) that checks it. Deal with this
7905 by checking if we're pointing to another pointer, that one
7906 points to another pointer, that one does too, and we have no htab.
7907 If so, get a hash table. We check three levels deep to avoid
7908 the cost of the hash table if we don't need one. */
7909 if (POINTER_TYPE_P (TREE_TYPE (type))
7910 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7911 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7912 && !pset)
7913 {
7914 result = walk_tree_without_duplicates (&TREE_TYPE (type),
7915 func, data);
7916 if (result)
7917 return result;
7918
7919 break;
7920 }
7921
7922 /* ... fall through ... */
7923
7924 case COMPLEX_TYPE:
7925 WALK_SUBTREE (TREE_TYPE (type));
7926 break;
7927
7928 case METHOD_TYPE:
7929 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7930
7931 /* Fall through. */
7932
7933 case FUNCTION_TYPE:
7934 WALK_SUBTREE (TREE_TYPE (type));
7935 {
7936 tree arg;
7937
7938 /* We never want to walk into default arguments. */
7939 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7940 WALK_SUBTREE (TREE_VALUE (arg));
7941 }
7942 break;
7943
7944 case ARRAY_TYPE:
7945 /* Don't follow this nodes's type if a pointer for fear that
7946 we'll have infinite recursion. If we have a PSET, then we
7947 need not fear. */
7948 if (pset
7949 || (!POINTER_TYPE_P (TREE_TYPE (type))
7950 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
7951 WALK_SUBTREE (TREE_TYPE (type));
7952 WALK_SUBTREE (TYPE_DOMAIN (type));
7953 break;
7954
7955 case OFFSET_TYPE:
7956 WALK_SUBTREE (TREE_TYPE (type));
7957 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7958 break;
7959
7960 default:
7961 break;
7962 }
7963
7964 return NULL_TREE;
7965 }
7966
7967 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
7968 called with the DATA and the address of each sub-tree. If FUNC returns a
7969 non-NULL value, the traversal is stopped, and the value returned by FUNC
7970 is returned. If PSET is non-NULL it is used to record the nodes visited,
7971 and to avoid visiting a node more than once. */
7972
7973 tree
7974 walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7975 {
7976 enum tree_code code;
7977 int walk_subtrees;
7978 tree result;
7979
7980 #define WALK_SUBTREE_TAIL(NODE) \
7981 do \
7982 { \
7983 tp = & (NODE); \
7984 goto tail_recurse; \
7985 } \
7986 while (0)
7987
7988 tail_recurse:
7989 /* Skip empty subtrees. */
7990 if (!*tp)
7991 return NULL_TREE;
7992
7993 /* Don't walk the same tree twice, if the user has requested
7994 that we avoid doing so. */
7995 if (pset && pointer_set_insert (pset, *tp))
7996 return NULL_TREE;
7997
7998 /* Call the function. */
7999 walk_subtrees = 1;
8000 result = (*func) (tp, &walk_subtrees, data);
8001
8002 /* If we found something, return it. */
8003 if (result)
8004 return result;
8005
8006 code = TREE_CODE (*tp);
8007
8008 /* Even if we didn't, FUNC may have decided that there was nothing
8009 interesting below this point in the tree. */
8010 if (!walk_subtrees)
8011 {
8012 /* But we still need to check our siblings. */
8013 if (code == TREE_LIST)
8014 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8015 else if (code == OMP_CLAUSE)
8016 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8017 else
8018 return NULL_TREE;
8019 }
8020
8021 result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
8022 data, pset);
8023 if (result || !walk_subtrees)
8024 return result;
8025
8026 switch (code)
8027 {
8028 case ERROR_MARK:
8029 case IDENTIFIER_NODE:
8030 case INTEGER_CST:
8031 case REAL_CST:
8032 case VECTOR_CST:
8033 case STRING_CST:
8034 case BLOCK:
8035 case PLACEHOLDER_EXPR:
8036 case SSA_NAME:
8037 case FIELD_DECL:
8038 case RESULT_DECL:
8039 /* None of these have subtrees other than those already walked
8040 above. */
8041 break;
8042
8043 case TREE_LIST:
8044 WALK_SUBTREE (TREE_VALUE (*tp));
8045 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8046 break;
8047
8048 case TREE_VEC:
8049 {
8050 int len = TREE_VEC_LENGTH (*tp);
8051
8052 if (len == 0)
8053 break;
8054
8055 /* Walk all elements but the first. */
8056 while (--len)
8057 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
8058
8059 /* Now walk the first one as a tail call. */
8060 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
8061 }
8062
8063 case COMPLEX_CST:
8064 WALK_SUBTREE (TREE_REALPART (*tp));
8065 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
8066
8067 case CONSTRUCTOR:
8068 {
8069 unsigned HOST_WIDE_INT idx;
8070 constructor_elt *ce;
8071
8072 for (idx = 0;
8073 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
8074 idx++)
8075 WALK_SUBTREE (ce->value);
8076 }
8077 break;
8078
8079 case SAVE_EXPR:
8080 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
8081
8082 case BIND_EXPR:
8083 {
8084 tree decl;
8085 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
8086 {
8087 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
8088 into declarations that are just mentioned, rather than
8089 declared; they don't really belong to this part of the tree.
8090 And, we can see cycles: the initializer for a declaration
8091 can refer to the declaration itself. */
8092 WALK_SUBTREE (DECL_INITIAL (decl));
8093 WALK_SUBTREE (DECL_SIZE (decl));
8094 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
8095 }
8096 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
8097 }
8098
8099 case STATEMENT_LIST:
8100 {
8101 tree_stmt_iterator i;
8102 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
8103 WALK_SUBTREE (*tsi_stmt_ptr (i));
8104 }
8105 break;
8106
8107 case OMP_CLAUSE:
8108 switch (OMP_CLAUSE_CODE (*tp))
8109 {
8110 case OMP_CLAUSE_PRIVATE:
8111 case OMP_CLAUSE_SHARED:
8112 case OMP_CLAUSE_FIRSTPRIVATE:
8113 case OMP_CLAUSE_LASTPRIVATE:
8114 case OMP_CLAUSE_COPYIN:
8115 case OMP_CLAUSE_COPYPRIVATE:
8116 case OMP_CLAUSE_IF:
8117 case OMP_CLAUSE_NUM_THREADS:
8118 case OMP_CLAUSE_SCHEDULE:
8119 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
8120 /* FALLTHRU */
8121
8122 case OMP_CLAUSE_NOWAIT:
8123 case OMP_CLAUSE_ORDERED:
8124 case OMP_CLAUSE_DEFAULT:
8125 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8126
8127 case OMP_CLAUSE_REDUCTION:
8128 {
8129 int i;
8130 for (i = 0; i < 4; i++)
8131 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
8132 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8133 }
8134
8135 default:
8136 gcc_unreachable ();
8137 }
8138 break;
8139
8140 case TARGET_EXPR:
8141 {
8142 int i, len;
8143
8144 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
8145 But, we only want to walk once. */
8146 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
8147 for (i = 0; i < len; ++i)
8148 WALK_SUBTREE (TREE_OPERAND (*tp, i));
8149 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
8150 }
8151
8152 case DECL_EXPR:
8153 /* If this is a TYPE_DECL, walk into the fields of the type that it's
8154 defining. We only want to walk into these fields of a type in this
8155 case and not in the general case of a mere reference to the type.
8156
8157 The criterion is as follows: if the field can be an expression, it
8158 must be walked only here. This should be in keeping with the fields
8159 that are directly gimplified in gimplify_type_sizes in order for the
8160 mark/copy-if-shared/unmark machinery of the gimplifier to work with
8161 variable-sized types.
8162
8163 Note that DECLs get walked as part of processing the BIND_EXPR. */
8164 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
8165 {
8166 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
8167 if (TREE_CODE (*type_p) == ERROR_MARK)
8168 return NULL_TREE;
8169
8170 /* Call the function for the type. See if it returns anything or
8171 doesn't want us to continue. If we are to continue, walk both
8172 the normal fields and those for the declaration case. */
8173 result = (*func) (type_p, &walk_subtrees, data);
8174 if (result || !walk_subtrees)
8175 return result;
8176
8177 result = walk_type_fields (*type_p, func, data, pset);
8178 if (result)
8179 return result;
8180
8181 /* If this is a record type, also walk the fields. */
8182 if (TREE_CODE (*type_p) == RECORD_TYPE
8183 || TREE_CODE (*type_p) == UNION_TYPE
8184 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8185 {
8186 tree field;
8187
8188 for (field = TYPE_FIELDS (*type_p); field;
8189 field = TREE_CHAIN (field))
8190 {
8191 /* We'd like to look at the type of the field, but we can
8192 easily get infinite recursion. So assume it's pointed
8193 to elsewhere in the tree. Also, ignore things that
8194 aren't fields. */
8195 if (TREE_CODE (field) != FIELD_DECL)
8196 continue;
8197
8198 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
8199 WALK_SUBTREE (DECL_SIZE (field));
8200 WALK_SUBTREE (DECL_SIZE_UNIT (field));
8201 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8202 WALK_SUBTREE (DECL_QUALIFIER (field));
8203 }
8204 }
8205
8206 /* Same for scalar types. */
8207 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
8208 || TREE_CODE (*type_p) == ENUMERAL_TYPE
8209 || TREE_CODE (*type_p) == INTEGER_TYPE
8210 || TREE_CODE (*type_p) == REAL_TYPE)
8211 {
8212 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
8213 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
8214 }
8215
8216 WALK_SUBTREE (TYPE_SIZE (*type_p));
8217 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
8218 }
8219 /* FALLTHRU */
8220
8221 default:
8222 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
8223 || IS_GIMPLE_STMT_CODE_CLASS (TREE_CODE_CLASS (code)))
8224 {
8225 int i, len;
8226
8227 /* Walk over all the sub-trees of this operand. */
8228 len = TREE_OPERAND_LENGTH (*tp);
8229
8230 /* Go through the subtrees. We need to do this in forward order so
8231 that the scope of a FOR_EXPR is handled properly. */
8232 if (len)
8233 {
8234 for (i = 0; i < len - 1; ++i)
8235 WALK_SUBTREE (GENERIC_TREE_OPERAND (*tp, i));
8236 WALK_SUBTREE_TAIL (GENERIC_TREE_OPERAND (*tp, len - 1));
8237 }
8238 }
8239 /* If this is a type, walk the needed fields in the type. */
8240 else if (TYPE_P (*tp))
8241 return walk_type_fields (*tp, func, data, pset);
8242 break;
8243 }
8244
8245 /* We didn't find what we were looking for. */
8246 return NULL_TREE;
8247
8248 #undef WALK_SUBTREE_TAIL
8249 }
8250 #undef WALK_SUBTREE
8251
8252 /* Like walk_tree, but does not walk duplicate nodes more than once. */
8253
8254 tree
8255 walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
8256 {
8257 tree result;
8258 struct pointer_set_t *pset;
8259
8260 pset = pointer_set_create ();
8261 result = walk_tree (tp, func, data, pset);
8262 pointer_set_destroy (pset);
8263 return result;
8264 }
8265
8266
8267 /* Return true if STMT is an empty statement or contains nothing but
8268 empty statements. */
8269
8270 bool
8271 empty_body_p (tree stmt)
8272 {
8273 tree_stmt_iterator i;
8274 tree body;
8275
8276 if (IS_EMPTY_STMT (stmt))
8277 return true;
8278 else if (TREE_CODE (stmt) == BIND_EXPR)
8279 body = BIND_EXPR_BODY (stmt);
8280 else if (TREE_CODE (stmt) == STATEMENT_LIST)
8281 body = stmt;
8282 else
8283 return false;
8284
8285 for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
8286 if (!empty_body_p (tsi_stmt (i)))
8287 return false;
8288
8289 return true;
8290 }
8291
8292 tree *
8293 tree_block (tree t)
8294 {
8295 char const c = TREE_CODE_CLASS (TREE_CODE (t));
8296
8297 if (IS_EXPR_CODE_CLASS (c))
8298 return &t->exp.block;
8299 else if (IS_GIMPLE_STMT_CODE_CLASS (c))
8300 return &GIMPLE_STMT_BLOCK (t);
8301 gcc_unreachable ();
8302 return NULL;
8303 }
8304
8305 tree *
8306 generic_tree_operand (tree node, int i)
8307 {
8308 if (GIMPLE_STMT_P (node))
8309 return &GIMPLE_STMT_OPERAND (node, i);
8310 return &TREE_OPERAND (node, i);
8311 }
8312
8313 tree *
8314 generic_tree_type (tree node)
8315 {
8316 if (GIMPLE_STMT_P (node))
8317 return &void_type_node;
8318 return &TREE_TYPE (node);
8319 }
8320
8321 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
8322 FIXME: don't use this function. It exists for compatibility with
8323 the old representation of CALL_EXPRs where a list was used to hold the
8324 arguments. Places that currently extract the arglist from a CALL_EXPR
8325 ought to be rewritten to use the CALL_EXPR itself. */
8326 tree
8327 call_expr_arglist (tree exp)
8328 {
8329 tree arglist = NULL_TREE;
8330 int i;
8331 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
8332 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
8333 return arglist;
8334 }
8335
8336 #include "gt-tree.h"