tree.c (build_array_type_1): Add SET_CANONICAL parameter and compute TYPE_CANONICAL...
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "langhooks-def.h"
58 #include "tree-diagnostic.h"
59 #include "except.h"
60 #include "builtins.h"
61 #include "print-tree.h"
62 #include "ipa-utils.h"
63 #include "selftest.h"
64 #include "stringpool.h"
65 #include "attribs.h"
66 #include "rtl.h"
67 #include "regs.h"
68 #include "tree-vector-builder.h"
69 #include "gimple-fold.h"
70 #include "escaped_string.h"
71
72 /* Tree code classes. */
73
74 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
75 #define END_OF_BASE_TREE_CODES tcc_exceptional,
76
77 const enum tree_code_class tree_code_type[] = {
78 #include "all-tree.def"
79 };
80
81 #undef DEFTREECODE
82 #undef END_OF_BASE_TREE_CODES
83
84 /* Table indexed by tree code giving number of expression
85 operands beyond the fixed part of the node structure.
86 Not used for types or decls. */
87
88 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
89 #define END_OF_BASE_TREE_CODES 0,
90
91 const unsigned char tree_code_length[] = {
92 #include "all-tree.def"
93 };
94
95 #undef DEFTREECODE
96 #undef END_OF_BASE_TREE_CODES
97
98 /* Names of tree components.
99 Used for printing out the tree and error messages. */
100 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
101 #define END_OF_BASE_TREE_CODES "@dummy",
102
103 static const char *const tree_code_name[] = {
104 #include "all-tree.def"
105 };
106
107 #undef DEFTREECODE
108 #undef END_OF_BASE_TREE_CODES
109
110 /* Each tree code class has an associated string representation.
111 These must correspond to the tree_code_class entries. */
112
113 const char *const tree_code_class_strings[] =
114 {
115 "exceptional",
116 "constant",
117 "type",
118 "declaration",
119 "reference",
120 "comparison",
121 "unary",
122 "binary",
123 "statement",
124 "vl_exp",
125 "expression"
126 };
127
128 /* obstack.[ch] explicitly declined to prototype this. */
129 extern int _obstack_allocated_p (struct obstack *h, void *obj);
130
131 /* Statistics-gathering stuff. */
132
133 static uint64_t tree_code_counts[MAX_TREE_CODES];
134 uint64_t tree_node_counts[(int) all_kinds];
135 uint64_t tree_node_sizes[(int) all_kinds];
136
137 /* Keep in sync with tree.h:enum tree_node_kind. */
138 static const char * const tree_node_kind_names[] = {
139 "decls",
140 "types",
141 "blocks",
142 "stmts",
143 "refs",
144 "exprs",
145 "constants",
146 "identifiers",
147 "vecs",
148 "binfos",
149 "ssa names",
150 "constructors",
151 "random kinds",
152 "lang_decl kinds",
153 "lang_type kinds",
154 "omp clauses",
155 };
156
157 /* Unique id for next decl created. */
158 static GTY(()) int next_decl_uid;
159 /* Unique id for next type created. */
160 static GTY(()) unsigned next_type_uid = 1;
161 /* Unique id for next debug decl created. Use negative numbers,
162 to catch erroneous uses. */
163 static GTY(()) int next_debug_decl_uid;
164
165 /* Since we cannot rehash a type after it is in the table, we have to
166 keep the hash code. */
167
168 struct GTY((for_user)) type_hash {
169 unsigned long hash;
170 tree type;
171 };
172
173 /* Initial size of the hash table (rounded to next prime). */
174 #define TYPE_HASH_INITIAL_SIZE 1000
175
176 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
177 {
178 static hashval_t hash (type_hash *t) { return t->hash; }
179 static bool equal (type_hash *a, type_hash *b);
180
181 static int
182 keep_cache_entry (type_hash *&t)
183 {
184 return ggc_marked_p (t->type);
185 }
186 };
187
188 /* Now here is the hash table. When recording a type, it is added to
189 the slot whose index is the hash code. Note that the hash table is
190 used for several kinds of types (function types, array types and
191 array index range types, for now). While all these live in the
192 same table, they are completely independent, and the hash code is
193 computed differently for each of these. */
194
195 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
196
197 /* Hash table and temporary node for larger integer const values. */
198 static GTY (()) tree int_cst_node;
199
200 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
201 {
202 static hashval_t hash (tree t);
203 static bool equal (tree x, tree y);
204 };
205
206 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
207
208 /* Class and variable for making sure that there is a single POLY_INT_CST
209 for a given value. */
210 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
211 {
212 typedef std::pair<tree, const poly_wide_int *> compare_type;
213 static hashval_t hash (tree t);
214 static bool equal (tree x, const compare_type &y);
215 };
216
217 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
218
219 /* Hash table for optimization flags and target option flags. Use the same
220 hash table for both sets of options. Nodes for building the current
221 optimization and target option nodes. The assumption is most of the time
222 the options created will already be in the hash table, so we avoid
223 allocating and freeing up a node repeatably. */
224 static GTY (()) tree cl_optimization_node;
225 static GTY (()) tree cl_target_option_node;
226
227 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
228 {
229 static hashval_t hash (tree t);
230 static bool equal (tree x, tree y);
231 };
232
233 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
234
235 /* General tree->tree mapping structure for use in hash tables. */
236
237
238 static GTY ((cache))
239 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
240
241 static GTY ((cache))
242 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
243
244 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
245 {
246 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
247
248 static bool
249 equal (tree_vec_map *a, tree_vec_map *b)
250 {
251 return a->base.from == b->base.from;
252 }
253
254 static int
255 keep_cache_entry (tree_vec_map *&m)
256 {
257 return ggc_marked_p (m->base.from);
258 }
259 };
260
261 static GTY ((cache))
262 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
263
264 static void set_type_quals (tree, int);
265 static void print_type_hash_statistics (void);
266 static void print_debug_expr_statistics (void);
267 static void print_value_expr_statistics (void);
268
269 static tree build_array_type_1 (tree, tree, bool, bool, bool);
270
271 tree global_trees[TI_MAX];
272 tree integer_types[itk_none];
273
274 bool int_n_enabled_p[NUM_INT_N_ENTS];
275 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
276
277 bool tree_contains_struct[MAX_TREE_CODES][64];
278
279 /* Number of operands for each OpenMP clause. */
280 unsigned const char omp_clause_num_ops[] =
281 {
282 0, /* OMP_CLAUSE_ERROR */
283 1, /* OMP_CLAUSE_PRIVATE */
284 1, /* OMP_CLAUSE_SHARED */
285 1, /* OMP_CLAUSE_FIRSTPRIVATE */
286 2, /* OMP_CLAUSE_LASTPRIVATE */
287 5, /* OMP_CLAUSE_REDUCTION */
288 5, /* OMP_CLAUSE_TASK_REDUCTION */
289 5, /* OMP_CLAUSE_IN_REDUCTION */
290 1, /* OMP_CLAUSE_COPYIN */
291 1, /* OMP_CLAUSE_COPYPRIVATE */
292 3, /* OMP_CLAUSE_LINEAR */
293 2, /* OMP_CLAUSE_ALIGNED */
294 1, /* OMP_CLAUSE_DEPEND */
295 1, /* OMP_CLAUSE_NONTEMPORAL */
296 1, /* OMP_CLAUSE_UNIFORM */
297 1, /* OMP_CLAUSE_TO_DECLARE */
298 1, /* OMP_CLAUSE_LINK */
299 2, /* OMP_CLAUSE_FROM */
300 2, /* OMP_CLAUSE_TO */
301 2, /* OMP_CLAUSE_MAP */
302 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
303 1, /* OMP_CLAUSE_USE_DEVICE_ADDR */
304 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
305 1, /* OMP_CLAUSE_INCLUSIVE */
306 1, /* OMP_CLAUSE_EXCLUSIVE */
307 2, /* OMP_CLAUSE__CACHE_ */
308 2, /* OMP_CLAUSE_GANG */
309 1, /* OMP_CLAUSE_ASYNC */
310 1, /* OMP_CLAUSE_WAIT */
311 0, /* OMP_CLAUSE_AUTO */
312 0, /* OMP_CLAUSE_SEQ */
313 1, /* OMP_CLAUSE__LOOPTEMP_ */
314 1, /* OMP_CLAUSE__REDUCTEMP_ */
315 1, /* OMP_CLAUSE__CONDTEMP_ */
316 1, /* OMP_CLAUSE__SCANTEMP_ */
317 1, /* OMP_CLAUSE_IF */
318 1, /* OMP_CLAUSE_NUM_THREADS */
319 1, /* OMP_CLAUSE_SCHEDULE */
320 0, /* OMP_CLAUSE_NOWAIT */
321 1, /* OMP_CLAUSE_ORDERED */
322 0, /* OMP_CLAUSE_DEFAULT */
323 3, /* OMP_CLAUSE_COLLAPSE */
324 0, /* OMP_CLAUSE_UNTIED */
325 1, /* OMP_CLAUSE_FINAL */
326 0, /* OMP_CLAUSE_MERGEABLE */
327 1, /* OMP_CLAUSE_DEVICE */
328 1, /* OMP_CLAUSE_DIST_SCHEDULE */
329 0, /* OMP_CLAUSE_INBRANCH */
330 0, /* OMP_CLAUSE_NOTINBRANCH */
331 1, /* OMP_CLAUSE_NUM_TEAMS */
332 1, /* OMP_CLAUSE_THREAD_LIMIT */
333 0, /* OMP_CLAUSE_PROC_BIND */
334 1, /* OMP_CLAUSE_SAFELEN */
335 1, /* OMP_CLAUSE_SIMDLEN */
336 0, /* OMP_CLAUSE_DEVICE_TYPE */
337 0, /* OMP_CLAUSE_FOR */
338 0, /* OMP_CLAUSE_PARALLEL */
339 0, /* OMP_CLAUSE_SECTIONS */
340 0, /* OMP_CLAUSE_TASKGROUP */
341 1, /* OMP_CLAUSE_PRIORITY */
342 1, /* OMP_CLAUSE_GRAINSIZE */
343 1, /* OMP_CLAUSE_NUM_TASKS */
344 0, /* OMP_CLAUSE_NOGROUP */
345 0, /* OMP_CLAUSE_THREADS */
346 0, /* OMP_CLAUSE_SIMD */
347 1, /* OMP_CLAUSE_HINT */
348 0, /* OMP_CLAUSE_DEFAULTMAP */
349 0, /* OMP_CLAUSE_ORDER */
350 0, /* OMP_CLAUSE_BIND */
351 1, /* OMP_CLAUSE__SIMDUID_ */
352 0, /* OMP_CLAUSE__SIMT_ */
353 0, /* OMP_CLAUSE_INDEPENDENT */
354 1, /* OMP_CLAUSE_WORKER */
355 1, /* OMP_CLAUSE_VECTOR */
356 1, /* OMP_CLAUSE_NUM_GANGS */
357 1, /* OMP_CLAUSE_NUM_WORKERS */
358 1, /* OMP_CLAUSE_VECTOR_LENGTH */
359 3, /* OMP_CLAUSE_TILE */
360 2, /* OMP_CLAUSE__GRIDDIM_ */
361 0, /* OMP_CLAUSE_IF_PRESENT */
362 0, /* OMP_CLAUSE_FINALIZE */
363 };
364
365 const char * const omp_clause_code_name[] =
366 {
367 "error_clause",
368 "private",
369 "shared",
370 "firstprivate",
371 "lastprivate",
372 "reduction",
373 "task_reduction",
374 "in_reduction",
375 "copyin",
376 "copyprivate",
377 "linear",
378 "aligned",
379 "depend",
380 "nontemporal",
381 "uniform",
382 "to",
383 "link",
384 "from",
385 "to",
386 "map",
387 "use_device_ptr",
388 "use_device_addr",
389 "is_device_ptr",
390 "inclusive",
391 "exclusive",
392 "_cache_",
393 "gang",
394 "async",
395 "wait",
396 "auto",
397 "seq",
398 "_looptemp_",
399 "_reductemp_",
400 "_condtemp_",
401 "_scantemp_",
402 "if",
403 "num_threads",
404 "schedule",
405 "nowait",
406 "ordered",
407 "default",
408 "collapse",
409 "untied",
410 "final",
411 "mergeable",
412 "device",
413 "dist_schedule",
414 "inbranch",
415 "notinbranch",
416 "num_teams",
417 "thread_limit",
418 "proc_bind",
419 "safelen",
420 "simdlen",
421 "device_type",
422 "for",
423 "parallel",
424 "sections",
425 "taskgroup",
426 "priority",
427 "grainsize",
428 "num_tasks",
429 "nogroup",
430 "threads",
431 "simd",
432 "hint",
433 "defaultmap",
434 "order",
435 "bind",
436 "_simduid_",
437 "_simt_",
438 "independent",
439 "worker",
440 "vector",
441 "num_gangs",
442 "num_workers",
443 "vector_length",
444 "tile",
445 "_griddim_",
446 "if_present",
447 "finalize",
448 };
449
450
451 /* Return the tree node structure used by tree code CODE. */
452
453 static inline enum tree_node_structure_enum
454 tree_node_structure_for_code (enum tree_code code)
455 {
456 switch (TREE_CODE_CLASS (code))
457 {
458 case tcc_declaration:
459 switch (code)
460 {
461 case CONST_DECL: return TS_CONST_DECL;
462 case DEBUG_EXPR_DECL: return TS_DECL_WRTL;
463 case FIELD_DECL: return TS_FIELD_DECL;
464 case FUNCTION_DECL: return TS_FUNCTION_DECL;
465 case LABEL_DECL: return TS_LABEL_DECL;
466 case PARM_DECL: return TS_PARM_DECL;
467 case RESULT_DECL: return TS_RESULT_DECL;
468 case TRANSLATION_UNIT_DECL: return TS_TRANSLATION_UNIT_DECL;
469 case TYPE_DECL: return TS_TYPE_DECL;
470 case VAR_DECL: return TS_VAR_DECL;
471 default: return TS_DECL_NON_COMMON;
472 }
473
474 case tcc_type: return TS_TYPE_NON_COMMON;
475
476 case tcc_binary:
477 case tcc_comparison:
478 case tcc_expression:
479 case tcc_reference:
480 case tcc_statement:
481 case tcc_unary:
482 case tcc_vl_exp: return TS_EXP;
483
484 default: /* tcc_constant and tcc_exceptional */
485 break;
486 }
487
488 switch (code)
489 {
490 /* tcc_constant cases. */
491 case COMPLEX_CST: return TS_COMPLEX;
492 case FIXED_CST: return TS_FIXED_CST;
493 case INTEGER_CST: return TS_INT_CST;
494 case POLY_INT_CST: return TS_POLY_INT_CST;
495 case REAL_CST: return TS_REAL_CST;
496 case STRING_CST: return TS_STRING;
497 case VECTOR_CST: return TS_VECTOR;
498 case VOID_CST: return TS_TYPED;
499
500 /* tcc_exceptional cases. */
501 case BLOCK: return TS_BLOCK;
502 case CONSTRUCTOR: return TS_CONSTRUCTOR;
503 case ERROR_MARK: return TS_COMMON;
504 case IDENTIFIER_NODE: return TS_IDENTIFIER;
505 case OMP_CLAUSE: return TS_OMP_CLAUSE;
506 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
507 case PLACEHOLDER_EXPR: return TS_COMMON;
508 case SSA_NAME: return TS_SSA_NAME;
509 case STATEMENT_LIST: return TS_STATEMENT_LIST;
510 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
511 case TREE_BINFO: return TS_BINFO;
512 case TREE_LIST: return TS_LIST;
513 case TREE_VEC: return TS_VEC;
514
515 default:
516 gcc_unreachable ();
517 }
518 }
519
520
521 /* Initialize tree_contains_struct to describe the hierarchy of tree
522 nodes. */
523
524 static void
525 initialize_tree_contains_struct (void)
526 {
527 unsigned i;
528
529 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
530 {
531 enum tree_code code;
532 enum tree_node_structure_enum ts_code;
533
534 code = (enum tree_code) i;
535 ts_code = tree_node_structure_for_code (code);
536
537 /* Mark the TS structure itself. */
538 tree_contains_struct[code][ts_code] = 1;
539
540 /* Mark all the structures that TS is derived from. */
541 switch (ts_code)
542 {
543 case TS_TYPED:
544 case TS_BLOCK:
545 case TS_OPTIMIZATION:
546 case TS_TARGET_OPTION:
547 MARK_TS_BASE (code);
548 break;
549
550 case TS_COMMON:
551 case TS_INT_CST:
552 case TS_POLY_INT_CST:
553 case TS_REAL_CST:
554 case TS_FIXED_CST:
555 case TS_VECTOR:
556 case TS_STRING:
557 case TS_COMPLEX:
558 case TS_SSA_NAME:
559 case TS_CONSTRUCTOR:
560 case TS_EXP:
561 case TS_STATEMENT_LIST:
562 MARK_TS_TYPED (code);
563 break;
564
565 case TS_IDENTIFIER:
566 case TS_DECL_MINIMAL:
567 case TS_TYPE_COMMON:
568 case TS_LIST:
569 case TS_VEC:
570 case TS_BINFO:
571 case TS_OMP_CLAUSE:
572 MARK_TS_COMMON (code);
573 break;
574
575 case TS_TYPE_WITH_LANG_SPECIFIC:
576 MARK_TS_TYPE_COMMON (code);
577 break;
578
579 case TS_TYPE_NON_COMMON:
580 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
581 break;
582
583 case TS_DECL_COMMON:
584 MARK_TS_DECL_MINIMAL (code);
585 break;
586
587 case TS_DECL_WRTL:
588 case TS_CONST_DECL:
589 MARK_TS_DECL_COMMON (code);
590 break;
591
592 case TS_DECL_NON_COMMON:
593 MARK_TS_DECL_WITH_VIS (code);
594 break;
595
596 case TS_DECL_WITH_VIS:
597 case TS_PARM_DECL:
598 case TS_LABEL_DECL:
599 case TS_RESULT_DECL:
600 MARK_TS_DECL_WRTL (code);
601 break;
602
603 case TS_FIELD_DECL:
604 MARK_TS_DECL_COMMON (code);
605 break;
606
607 case TS_VAR_DECL:
608 MARK_TS_DECL_WITH_VIS (code);
609 break;
610
611 case TS_TYPE_DECL:
612 case TS_FUNCTION_DECL:
613 MARK_TS_DECL_NON_COMMON (code);
614 break;
615
616 case TS_TRANSLATION_UNIT_DECL:
617 MARK_TS_DECL_COMMON (code);
618 break;
619
620 default:
621 gcc_unreachable ();
622 }
623 }
624
625 /* Basic consistency checks for attributes used in fold. */
626 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
627 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
628 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
629 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
630 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
631 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
632 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
633 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
634 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
635 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
636 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
637 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
638 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
639 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
640 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
641 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
642 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
643 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
644 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
645 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
646 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
647 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
648 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
649 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
650 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
651 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
652 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
653 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
654 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
655 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
656 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
657 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
658 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
659 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
660 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
661 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
662 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
663 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
664 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
665 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
666 }
667
668
669 /* Init tree.c. */
670
671 void
672 init_ttree (void)
673 {
674 /* Initialize the hash table of types. */
675 type_hash_table
676 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
677
678 debug_expr_for_decl
679 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
680
681 value_expr_for_decl
682 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
683
684 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
685
686 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
687
688 int_cst_node = make_int_cst (1, 1);
689
690 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
691
692 cl_optimization_node = make_node (OPTIMIZATION_NODE);
693 cl_target_option_node = make_node (TARGET_OPTION_NODE);
694
695 /* Initialize the tree_contains_struct array. */
696 initialize_tree_contains_struct ();
697 lang_hooks.init_ts ();
698 }
699
700 \f
701 /* The name of the object as the assembler will see it (but before any
702 translations made by ASM_OUTPUT_LABELREF). Often this is the same
703 as DECL_NAME. It is an IDENTIFIER_NODE. */
704 tree
705 decl_assembler_name (tree decl)
706 {
707 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
708 lang_hooks.set_decl_assembler_name (decl);
709 return DECL_ASSEMBLER_NAME_RAW (decl);
710 }
711
712 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
713 (either of which may be NULL). Inform the FE, if this changes the
714 name. */
715
716 void
717 overwrite_decl_assembler_name (tree decl, tree name)
718 {
719 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
720 lang_hooks.overwrite_decl_assembler_name (decl, name);
721 }
722
723 /* When the target supports COMDAT groups, this indicates which group the
724 DECL is associated with. This can be either an IDENTIFIER_NODE or a
725 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
726 tree
727 decl_comdat_group (const_tree node)
728 {
729 struct symtab_node *snode = symtab_node::get (node);
730 if (!snode)
731 return NULL;
732 return snode->get_comdat_group ();
733 }
734
735 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
736 tree
737 decl_comdat_group_id (const_tree node)
738 {
739 struct symtab_node *snode = symtab_node::get (node);
740 if (!snode)
741 return NULL;
742 return snode->get_comdat_group_id ();
743 }
744
745 /* When the target supports named section, return its name as IDENTIFIER_NODE
746 or NULL if it is in no section. */
747 const char *
748 decl_section_name (const_tree node)
749 {
750 struct symtab_node *snode = symtab_node::get (node);
751 if (!snode)
752 return NULL;
753 return snode->get_section ();
754 }
755
756 /* Set section name of NODE to VALUE (that is expected to be
757 identifier node) */
758 void
759 set_decl_section_name (tree node, const char *value)
760 {
761 struct symtab_node *snode;
762
763 if (value == NULL)
764 {
765 snode = symtab_node::get (node);
766 if (!snode)
767 return;
768 }
769 else if (VAR_P (node))
770 snode = varpool_node::get_create (node);
771 else
772 snode = cgraph_node::get_create (node);
773 snode->set_section (value);
774 }
775
776 /* Return TLS model of a variable NODE. */
777 enum tls_model
778 decl_tls_model (const_tree node)
779 {
780 struct varpool_node *snode = varpool_node::get (node);
781 if (!snode)
782 return TLS_MODEL_NONE;
783 return snode->tls_model;
784 }
785
786 /* Set TLS model of variable NODE to MODEL. */
787 void
788 set_decl_tls_model (tree node, enum tls_model model)
789 {
790 struct varpool_node *vnode;
791
792 if (model == TLS_MODEL_NONE)
793 {
794 vnode = varpool_node::get (node);
795 if (!vnode)
796 return;
797 }
798 else
799 vnode = varpool_node::get_create (node);
800 vnode->tls_model = model;
801 }
802
803 /* Compute the number of bytes occupied by a tree with code CODE.
804 This function cannot be used for nodes that have variable sizes,
805 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
806 size_t
807 tree_code_size (enum tree_code code)
808 {
809 switch (TREE_CODE_CLASS (code))
810 {
811 case tcc_declaration: /* A decl node */
812 switch (code)
813 {
814 case FIELD_DECL: return sizeof (tree_field_decl);
815 case PARM_DECL: return sizeof (tree_parm_decl);
816 case VAR_DECL: return sizeof (tree_var_decl);
817 case LABEL_DECL: return sizeof (tree_label_decl);
818 case RESULT_DECL: return sizeof (tree_result_decl);
819 case CONST_DECL: return sizeof (tree_const_decl);
820 case TYPE_DECL: return sizeof (tree_type_decl);
821 case FUNCTION_DECL: return sizeof (tree_function_decl);
822 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
823 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
824 case NAMESPACE_DECL:
825 case IMPORTED_DECL:
826 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
827 default:
828 gcc_checking_assert (code >= NUM_TREE_CODES);
829 return lang_hooks.tree_size (code);
830 }
831
832 case tcc_type: /* a type node */
833 switch (code)
834 {
835 case OFFSET_TYPE:
836 case ENUMERAL_TYPE:
837 case BOOLEAN_TYPE:
838 case INTEGER_TYPE:
839 case REAL_TYPE:
840 case POINTER_TYPE:
841 case REFERENCE_TYPE:
842 case NULLPTR_TYPE:
843 case FIXED_POINT_TYPE:
844 case COMPLEX_TYPE:
845 case VECTOR_TYPE:
846 case ARRAY_TYPE:
847 case RECORD_TYPE:
848 case UNION_TYPE:
849 case QUAL_UNION_TYPE:
850 case VOID_TYPE:
851 case FUNCTION_TYPE:
852 case METHOD_TYPE:
853 case LANG_TYPE: return sizeof (tree_type_non_common);
854 default:
855 gcc_checking_assert (code >= NUM_TREE_CODES);
856 return lang_hooks.tree_size (code);
857 }
858
859 case tcc_reference: /* a reference */
860 case tcc_expression: /* an expression */
861 case tcc_statement: /* an expression with side effects */
862 case tcc_comparison: /* a comparison expression */
863 case tcc_unary: /* a unary arithmetic expression */
864 case tcc_binary: /* a binary arithmetic expression */
865 return (sizeof (struct tree_exp)
866 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
867
868 case tcc_constant: /* a constant */
869 switch (code)
870 {
871 case VOID_CST: return sizeof (tree_typed);
872 case INTEGER_CST: gcc_unreachable ();
873 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
874 case REAL_CST: return sizeof (tree_real_cst);
875 case FIXED_CST: return sizeof (tree_fixed_cst);
876 case COMPLEX_CST: return sizeof (tree_complex);
877 case VECTOR_CST: gcc_unreachable ();
878 case STRING_CST: gcc_unreachable ();
879 default:
880 gcc_checking_assert (code >= NUM_TREE_CODES);
881 return lang_hooks.tree_size (code);
882 }
883
884 case tcc_exceptional: /* something random, like an identifier. */
885 switch (code)
886 {
887 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
888 case TREE_LIST: return sizeof (tree_list);
889
890 case ERROR_MARK:
891 case PLACEHOLDER_EXPR: return sizeof (tree_common);
892
893 case TREE_VEC: gcc_unreachable ();
894 case OMP_CLAUSE: gcc_unreachable ();
895
896 case SSA_NAME: return sizeof (tree_ssa_name);
897
898 case STATEMENT_LIST: return sizeof (tree_statement_list);
899 case BLOCK: return sizeof (struct tree_block);
900 case CONSTRUCTOR: return sizeof (tree_constructor);
901 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
902 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
903
904 default:
905 gcc_checking_assert (code >= NUM_TREE_CODES);
906 return lang_hooks.tree_size (code);
907 }
908
909 default:
910 gcc_unreachable ();
911 }
912 }
913
914 /* Compute the number of bytes occupied by NODE. This routine only
915 looks at TREE_CODE, except for those nodes that have variable sizes. */
916 size_t
917 tree_size (const_tree node)
918 {
919 const enum tree_code code = TREE_CODE (node);
920 switch (code)
921 {
922 case INTEGER_CST:
923 return (sizeof (struct tree_int_cst)
924 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
925
926 case TREE_BINFO:
927 return (offsetof (struct tree_binfo, base_binfos)
928 + vec<tree, va_gc>
929 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
930
931 case TREE_VEC:
932 return (sizeof (struct tree_vec)
933 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
934
935 case VECTOR_CST:
936 return (sizeof (struct tree_vector)
937 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
938
939 case STRING_CST:
940 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
941
942 case OMP_CLAUSE:
943 return (sizeof (struct tree_omp_clause)
944 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
945 * sizeof (tree));
946
947 default:
948 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
949 return (sizeof (struct tree_exp)
950 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
951 else
952 return tree_code_size (code);
953 }
954 }
955
956 /* Return tree node kind based on tree CODE. */
957
958 static tree_node_kind
959 get_stats_node_kind (enum tree_code code)
960 {
961 enum tree_code_class type = TREE_CODE_CLASS (code);
962
963 switch (type)
964 {
965 case tcc_declaration: /* A decl node */
966 return d_kind;
967 case tcc_type: /* a type node */
968 return t_kind;
969 case tcc_statement: /* an expression with side effects */
970 return s_kind;
971 case tcc_reference: /* a reference */
972 return r_kind;
973 case tcc_expression: /* an expression */
974 case tcc_comparison: /* a comparison expression */
975 case tcc_unary: /* a unary arithmetic expression */
976 case tcc_binary: /* a binary arithmetic expression */
977 return e_kind;
978 case tcc_constant: /* a constant */
979 return c_kind;
980 case tcc_exceptional: /* something random, like an identifier. */
981 switch (code)
982 {
983 case IDENTIFIER_NODE:
984 return id_kind;
985 case TREE_VEC:
986 return vec_kind;
987 case TREE_BINFO:
988 return binfo_kind;
989 case SSA_NAME:
990 return ssa_name_kind;
991 case BLOCK:
992 return b_kind;
993 case CONSTRUCTOR:
994 return constr_kind;
995 case OMP_CLAUSE:
996 return omp_clause_kind;
997 default:
998 return x_kind;
999 }
1000 break;
1001 case tcc_vl_exp:
1002 return e_kind;
1003 default:
1004 gcc_unreachable ();
1005 }
1006 }
1007
1008 /* Record interesting allocation statistics for a tree node with CODE
1009 and LENGTH. */
1010
1011 static void
1012 record_node_allocation_statistics (enum tree_code code, size_t length)
1013 {
1014 if (!GATHER_STATISTICS)
1015 return;
1016
1017 tree_node_kind kind = get_stats_node_kind (code);
1018
1019 tree_code_counts[(int) code]++;
1020 tree_node_counts[(int) kind]++;
1021 tree_node_sizes[(int) kind] += length;
1022 }
1023
1024 /* Allocate and return a new UID from the DECL_UID namespace. */
1025
1026 int
1027 allocate_decl_uid (void)
1028 {
1029 return next_decl_uid++;
1030 }
1031
1032 /* Return a newly allocated node of code CODE. For decl and type
1033 nodes, some other fields are initialized. The rest of the node is
1034 initialized to zero. This function cannot be used for TREE_VEC,
1035 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1036 tree_code_size.
1037
1038 Achoo! I got a code in the node. */
1039
1040 tree
1041 make_node (enum tree_code code MEM_STAT_DECL)
1042 {
1043 tree t;
1044 enum tree_code_class type = TREE_CODE_CLASS (code);
1045 size_t length = tree_code_size (code);
1046
1047 record_node_allocation_statistics (code, length);
1048
1049 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1050 TREE_SET_CODE (t, code);
1051
1052 switch (type)
1053 {
1054 case tcc_statement:
1055 if (code != DEBUG_BEGIN_STMT)
1056 TREE_SIDE_EFFECTS (t) = 1;
1057 break;
1058
1059 case tcc_declaration:
1060 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1061 {
1062 if (code == FUNCTION_DECL)
1063 {
1064 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1065 SET_DECL_MODE (t, FUNCTION_MODE);
1066 }
1067 else
1068 SET_DECL_ALIGN (t, 1);
1069 }
1070 DECL_SOURCE_LOCATION (t) = input_location;
1071 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1072 DECL_UID (t) = --next_debug_decl_uid;
1073 else
1074 {
1075 DECL_UID (t) = allocate_decl_uid ();
1076 SET_DECL_PT_UID (t, -1);
1077 }
1078 if (TREE_CODE (t) == LABEL_DECL)
1079 LABEL_DECL_UID (t) = -1;
1080
1081 break;
1082
1083 case tcc_type:
1084 TYPE_UID (t) = next_type_uid++;
1085 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1086 TYPE_USER_ALIGN (t) = 0;
1087 TYPE_MAIN_VARIANT (t) = t;
1088 TYPE_CANONICAL (t) = t;
1089
1090 /* Default to no attributes for type, but let target change that. */
1091 TYPE_ATTRIBUTES (t) = NULL_TREE;
1092 targetm.set_default_type_attributes (t);
1093
1094 /* We have not yet computed the alias set for this type. */
1095 TYPE_ALIAS_SET (t) = -1;
1096 break;
1097
1098 case tcc_constant:
1099 TREE_CONSTANT (t) = 1;
1100 break;
1101
1102 case tcc_expression:
1103 switch (code)
1104 {
1105 case INIT_EXPR:
1106 case MODIFY_EXPR:
1107 case VA_ARG_EXPR:
1108 case PREDECREMENT_EXPR:
1109 case PREINCREMENT_EXPR:
1110 case POSTDECREMENT_EXPR:
1111 case POSTINCREMENT_EXPR:
1112 /* All of these have side-effects, no matter what their
1113 operands are. */
1114 TREE_SIDE_EFFECTS (t) = 1;
1115 break;
1116
1117 default:
1118 break;
1119 }
1120 break;
1121
1122 case tcc_exceptional:
1123 switch (code)
1124 {
1125 case TARGET_OPTION_NODE:
1126 TREE_TARGET_OPTION(t)
1127 = ggc_cleared_alloc<struct cl_target_option> ();
1128 break;
1129
1130 case OPTIMIZATION_NODE:
1131 TREE_OPTIMIZATION (t)
1132 = ggc_cleared_alloc<struct cl_optimization> ();
1133 break;
1134
1135 default:
1136 break;
1137 }
1138 break;
1139
1140 default:
1141 /* Other classes need no special treatment. */
1142 break;
1143 }
1144
1145 return t;
1146 }
1147
1148 /* Free tree node. */
1149
1150 void
1151 free_node (tree node)
1152 {
1153 enum tree_code code = TREE_CODE (node);
1154 if (GATHER_STATISTICS)
1155 {
1156 enum tree_node_kind kind = get_stats_node_kind (code);
1157
1158 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1159 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1160 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1161
1162 tree_code_counts[(int) TREE_CODE (node)]--;
1163 tree_node_counts[(int) kind]--;
1164 tree_node_sizes[(int) kind] -= tree_size (node);
1165 }
1166 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1167 vec_free (CONSTRUCTOR_ELTS (node));
1168 else if (code == BLOCK)
1169 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1170 else if (code == TREE_BINFO)
1171 vec_free (BINFO_BASE_ACCESSES (node));
1172 else if (code == OPTIMIZATION_NODE)
1173 cl_optimization_option_free (TREE_OPTIMIZATION (node));
1174 else if (code == TARGET_OPTION_NODE)
1175 cl_target_option_free (TREE_TARGET_OPTION (node));
1176 ggc_free (node);
1177 }
1178 \f
1179 /* Return a new node with the same contents as NODE except that its
1180 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1181
1182 tree
1183 copy_node (tree node MEM_STAT_DECL)
1184 {
1185 tree t;
1186 enum tree_code code = TREE_CODE (node);
1187 size_t length;
1188
1189 gcc_assert (code != STATEMENT_LIST);
1190
1191 length = tree_size (node);
1192 record_node_allocation_statistics (code, length);
1193 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1194 memcpy (t, node, length);
1195
1196 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1197 TREE_CHAIN (t) = 0;
1198 TREE_ASM_WRITTEN (t) = 0;
1199 TREE_VISITED (t) = 0;
1200
1201 if (TREE_CODE_CLASS (code) == tcc_declaration)
1202 {
1203 if (code == DEBUG_EXPR_DECL)
1204 DECL_UID (t) = --next_debug_decl_uid;
1205 else
1206 {
1207 DECL_UID (t) = allocate_decl_uid ();
1208 if (DECL_PT_UID_SET_P (node))
1209 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1210 }
1211 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1212 && DECL_HAS_VALUE_EXPR_P (node))
1213 {
1214 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1215 DECL_HAS_VALUE_EXPR_P (t) = 1;
1216 }
1217 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1218 if (VAR_P (node))
1219 {
1220 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1221 t->decl_with_vis.symtab_node = NULL;
1222 }
1223 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1224 {
1225 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1226 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1227 }
1228 if (TREE_CODE (node) == FUNCTION_DECL)
1229 {
1230 DECL_STRUCT_FUNCTION (t) = NULL;
1231 t->decl_with_vis.symtab_node = NULL;
1232 }
1233 }
1234 else if (TREE_CODE_CLASS (code) == tcc_type)
1235 {
1236 TYPE_UID (t) = next_type_uid++;
1237 /* The following is so that the debug code for
1238 the copy is different from the original type.
1239 The two statements usually duplicate each other
1240 (because they clear fields of the same union),
1241 but the optimizer should catch that. */
1242 TYPE_SYMTAB_ADDRESS (t) = 0;
1243 TYPE_SYMTAB_DIE (t) = 0;
1244
1245 /* Do not copy the values cache. */
1246 if (TYPE_CACHED_VALUES_P (t))
1247 {
1248 TYPE_CACHED_VALUES_P (t) = 0;
1249 TYPE_CACHED_VALUES (t) = NULL_TREE;
1250 }
1251 }
1252 else if (code == TARGET_OPTION_NODE)
1253 {
1254 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1255 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1256 sizeof (struct cl_target_option));
1257 }
1258 else if (code == OPTIMIZATION_NODE)
1259 {
1260 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1261 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1262 sizeof (struct cl_optimization));
1263 }
1264
1265 return t;
1266 }
1267
1268 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1269 For example, this can copy a list made of TREE_LIST nodes. */
1270
1271 tree
1272 copy_list (tree list)
1273 {
1274 tree head;
1275 tree prev, next;
1276
1277 if (list == 0)
1278 return 0;
1279
1280 head = prev = copy_node (list);
1281 next = TREE_CHAIN (list);
1282 while (next)
1283 {
1284 TREE_CHAIN (prev) = copy_node (next);
1285 prev = TREE_CHAIN (prev);
1286 next = TREE_CHAIN (next);
1287 }
1288 return head;
1289 }
1290
1291 \f
1292 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1293 INTEGER_CST with value CST and type TYPE. */
1294
1295 static unsigned int
1296 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1297 {
1298 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1299 /* We need extra HWIs if CST is an unsigned integer with its
1300 upper bit set. */
1301 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1302 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1303 return cst.get_len ();
1304 }
1305
1306 /* Return a new INTEGER_CST with value CST and type TYPE. */
1307
1308 static tree
1309 build_new_int_cst (tree type, const wide_int &cst)
1310 {
1311 unsigned int len = cst.get_len ();
1312 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1313 tree nt = make_int_cst (len, ext_len);
1314
1315 if (len < ext_len)
1316 {
1317 --ext_len;
1318 TREE_INT_CST_ELT (nt, ext_len)
1319 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1320 for (unsigned int i = len; i < ext_len; ++i)
1321 TREE_INT_CST_ELT (nt, i) = -1;
1322 }
1323 else if (TYPE_UNSIGNED (type)
1324 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1325 {
1326 len--;
1327 TREE_INT_CST_ELT (nt, len)
1328 = zext_hwi (cst.elt (len),
1329 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1330 }
1331
1332 for (unsigned int i = 0; i < len; i++)
1333 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1334 TREE_TYPE (nt) = type;
1335 return nt;
1336 }
1337
1338 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1339
1340 static tree
1341 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1342 CXX_MEM_STAT_INFO)
1343 {
1344 size_t length = sizeof (struct tree_poly_int_cst);
1345 record_node_allocation_statistics (POLY_INT_CST, length);
1346
1347 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1348
1349 TREE_SET_CODE (t, POLY_INT_CST);
1350 TREE_CONSTANT (t) = 1;
1351 TREE_TYPE (t) = type;
1352 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1353 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1354 return t;
1355 }
1356
1357 /* Create a constant tree that contains CST sign-extended to TYPE. */
1358
1359 tree
1360 build_int_cst (tree type, poly_int64 cst)
1361 {
1362 /* Support legacy code. */
1363 if (!type)
1364 type = integer_type_node;
1365
1366 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1367 }
1368
1369 /* Create a constant tree that contains CST zero-extended to TYPE. */
1370
1371 tree
1372 build_int_cstu (tree type, poly_uint64 cst)
1373 {
1374 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1375 }
1376
1377 /* Create a constant tree that contains CST sign-extended to TYPE. */
1378
1379 tree
1380 build_int_cst_type (tree type, poly_int64 cst)
1381 {
1382 gcc_assert (type);
1383 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1384 }
1385
1386 /* Constructs tree in type TYPE from with value given by CST. Signedness
1387 of CST is assumed to be the same as the signedness of TYPE. */
1388
1389 tree
1390 double_int_to_tree (tree type, double_int cst)
1391 {
1392 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1393 }
1394
1395 /* We force the wide_int CST to the range of the type TYPE by sign or
1396 zero extending it. OVERFLOWABLE indicates if we are interested in
1397 overflow of the value, when >0 we are only interested in signed
1398 overflow, for <0 we are interested in any overflow. OVERFLOWED
1399 indicates whether overflow has already occurred. CONST_OVERFLOWED
1400 indicates whether constant overflow has already occurred. We force
1401 T's value to be within range of T's type (by setting to 0 or 1 all
1402 the bits outside the type's range). We set TREE_OVERFLOWED if,
1403 OVERFLOWED is nonzero,
1404 or OVERFLOWABLE is >0 and signed overflow occurs
1405 or OVERFLOWABLE is <0 and any overflow occurs
1406 We return a new tree node for the extended wide_int. The node
1407 is shared if no overflow flags are set. */
1408
1409
1410 tree
1411 force_fit_type (tree type, const poly_wide_int_ref &cst,
1412 int overflowable, bool overflowed)
1413 {
1414 signop sign = TYPE_SIGN (type);
1415
1416 /* If we need to set overflow flags, return a new unshared node. */
1417 if (overflowed || !wi::fits_to_tree_p (cst, type))
1418 {
1419 if (overflowed
1420 || overflowable < 0
1421 || (overflowable > 0 && sign == SIGNED))
1422 {
1423 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1424 sign);
1425 tree t;
1426 if (tmp.is_constant ())
1427 t = build_new_int_cst (type, tmp.coeffs[0]);
1428 else
1429 {
1430 tree coeffs[NUM_POLY_INT_COEFFS];
1431 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1432 {
1433 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1434 TREE_OVERFLOW (coeffs[i]) = 1;
1435 }
1436 t = build_new_poly_int_cst (type, coeffs);
1437 }
1438 TREE_OVERFLOW (t) = 1;
1439 return t;
1440 }
1441 }
1442
1443 /* Else build a shared node. */
1444 return wide_int_to_tree (type, cst);
1445 }
1446
1447 /* These are the hash table functions for the hash table of INTEGER_CST
1448 nodes of a sizetype. */
1449
1450 /* Return the hash code X, an INTEGER_CST. */
1451
1452 hashval_t
1453 int_cst_hasher::hash (tree x)
1454 {
1455 const_tree const t = x;
1456 hashval_t code = TYPE_UID (TREE_TYPE (t));
1457 int i;
1458
1459 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1460 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1461
1462 return code;
1463 }
1464
1465 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1466 is the same as that given by *Y, which is the same. */
1467
1468 bool
1469 int_cst_hasher::equal (tree x, tree y)
1470 {
1471 const_tree const xt = x;
1472 const_tree const yt = y;
1473
1474 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1475 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1476 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1477 return false;
1478
1479 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1480 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1481 return false;
1482
1483 return true;
1484 }
1485
1486 /* Create an INT_CST node of TYPE and value CST.
1487 The returned node is always shared. For small integers we use a
1488 per-type vector cache, for larger ones we use a single hash table.
1489 The value is extended from its precision according to the sign of
1490 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1491 the upper bits and ensures that hashing and value equality based
1492 upon the underlying HOST_WIDE_INTs works without masking. */
1493
1494 static tree
1495 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1496 {
1497 tree t;
1498 int ix = -1;
1499 int limit = 0;
1500
1501 gcc_assert (type);
1502 unsigned int prec = TYPE_PRECISION (type);
1503 signop sgn = TYPE_SIGN (type);
1504
1505 /* Verify that everything is canonical. */
1506 int l = pcst.get_len ();
1507 if (l > 1)
1508 {
1509 if (pcst.elt (l - 1) == 0)
1510 gcc_checking_assert (pcst.elt (l - 2) < 0);
1511 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1512 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1513 }
1514
1515 wide_int cst = wide_int::from (pcst, prec, sgn);
1516 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1517
1518 if (ext_len == 1)
1519 {
1520 /* We just need to store a single HOST_WIDE_INT. */
1521 HOST_WIDE_INT hwi;
1522 if (TYPE_UNSIGNED (type))
1523 hwi = cst.to_uhwi ();
1524 else
1525 hwi = cst.to_shwi ();
1526
1527 switch (TREE_CODE (type))
1528 {
1529 case NULLPTR_TYPE:
1530 gcc_assert (hwi == 0);
1531 /* Fallthru. */
1532
1533 case POINTER_TYPE:
1534 case REFERENCE_TYPE:
1535 /* Cache NULL pointer and zero bounds. */
1536 if (hwi == 0)
1537 {
1538 limit = 1;
1539 ix = 0;
1540 }
1541 break;
1542
1543 case BOOLEAN_TYPE:
1544 /* Cache false or true. */
1545 limit = 2;
1546 if (IN_RANGE (hwi, 0, 1))
1547 ix = hwi;
1548 break;
1549
1550 case INTEGER_TYPE:
1551 case OFFSET_TYPE:
1552 if (TYPE_SIGN (type) == UNSIGNED)
1553 {
1554 /* Cache [0, N). */
1555 limit = param_integer_share_limit;
1556 if (IN_RANGE (hwi, 0, param_integer_share_limit - 1))
1557 ix = hwi;
1558 }
1559 else
1560 {
1561 /* Cache [-1, N). */
1562 limit = param_integer_share_limit + 1;
1563 if (IN_RANGE (hwi, -1, param_integer_share_limit - 1))
1564 ix = hwi + 1;
1565 }
1566 break;
1567
1568 case ENUMERAL_TYPE:
1569 break;
1570
1571 default:
1572 gcc_unreachable ();
1573 }
1574
1575 if (ix >= 0)
1576 {
1577 /* Look for it in the type's vector of small shared ints. */
1578 if (!TYPE_CACHED_VALUES_P (type))
1579 {
1580 TYPE_CACHED_VALUES_P (type) = 1;
1581 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1582 }
1583
1584 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1585 if (t)
1586 /* Make sure no one is clobbering the shared constant. */
1587 gcc_checking_assert (TREE_TYPE (t) == type
1588 && TREE_INT_CST_NUNITS (t) == 1
1589 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1590 && TREE_INT_CST_EXT_NUNITS (t) == 1
1591 && TREE_INT_CST_ELT (t, 0) == hwi);
1592 else
1593 {
1594 /* Create a new shared int. */
1595 t = build_new_int_cst (type, cst);
1596 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1597 }
1598 }
1599 else
1600 {
1601 /* Use the cache of larger shared ints, using int_cst_node as
1602 a temporary. */
1603
1604 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1605 TREE_TYPE (int_cst_node) = type;
1606
1607 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1608 t = *slot;
1609 if (!t)
1610 {
1611 /* Insert this one into the hash table. */
1612 t = int_cst_node;
1613 *slot = t;
1614 /* Make a new node for next time round. */
1615 int_cst_node = make_int_cst (1, 1);
1616 }
1617 }
1618 }
1619 else
1620 {
1621 /* The value either hashes properly or we drop it on the floor
1622 for the gc to take care of. There will not be enough of them
1623 to worry about. */
1624
1625 tree nt = build_new_int_cst (type, cst);
1626 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1627 t = *slot;
1628 if (!t)
1629 {
1630 /* Insert this one into the hash table. */
1631 t = nt;
1632 *slot = t;
1633 }
1634 else
1635 ggc_free (nt);
1636 }
1637
1638 return t;
1639 }
1640
1641 hashval_t
1642 poly_int_cst_hasher::hash (tree t)
1643 {
1644 inchash::hash hstate;
1645
1646 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1647 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1648 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1649
1650 return hstate.end ();
1651 }
1652
1653 bool
1654 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1655 {
1656 if (TREE_TYPE (x) != y.first)
1657 return false;
1658 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1659 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1660 return false;
1661 return true;
1662 }
1663
1664 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1665 The elements must also have type TYPE. */
1666
1667 tree
1668 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1669 {
1670 unsigned int prec = TYPE_PRECISION (type);
1671 gcc_assert (prec <= values.coeffs[0].get_precision ());
1672 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1673
1674 inchash::hash h;
1675 h.add_int (TYPE_UID (type));
1676 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1677 h.add_wide_int (c.coeffs[i]);
1678 poly_int_cst_hasher::compare_type comp (type, &c);
1679 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1680 INSERT);
1681 if (*slot == NULL_TREE)
1682 {
1683 tree coeffs[NUM_POLY_INT_COEFFS];
1684 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1685 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1686 *slot = build_new_poly_int_cst (type, coeffs);
1687 }
1688 return *slot;
1689 }
1690
1691 /* Create a constant tree with value VALUE in type TYPE. */
1692
1693 tree
1694 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1695 {
1696 if (value.is_constant ())
1697 return wide_int_to_tree_1 (type, value.coeffs[0]);
1698 return build_poly_int_cst (type, value);
1699 }
1700
1701 void
1702 cache_integer_cst (tree t)
1703 {
1704 tree type = TREE_TYPE (t);
1705 int ix = -1;
1706 int limit = 0;
1707 int prec = TYPE_PRECISION (type);
1708
1709 gcc_assert (!TREE_OVERFLOW (t));
1710
1711 switch (TREE_CODE (type))
1712 {
1713 case NULLPTR_TYPE:
1714 gcc_assert (integer_zerop (t));
1715 /* Fallthru. */
1716
1717 case POINTER_TYPE:
1718 case REFERENCE_TYPE:
1719 /* Cache NULL pointer. */
1720 if (integer_zerop (t))
1721 {
1722 limit = 1;
1723 ix = 0;
1724 }
1725 break;
1726
1727 case BOOLEAN_TYPE:
1728 /* Cache false or true. */
1729 limit = 2;
1730 if (wi::ltu_p (wi::to_wide (t), 2))
1731 ix = TREE_INT_CST_ELT (t, 0);
1732 break;
1733
1734 case INTEGER_TYPE:
1735 case OFFSET_TYPE:
1736 if (TYPE_UNSIGNED (type))
1737 {
1738 /* Cache 0..N */
1739 limit = param_integer_share_limit;
1740
1741 /* This is a little hokie, but if the prec is smaller than
1742 what is necessary to hold param_integer_share_limit, then the
1743 obvious test will not get the correct answer. */
1744 if (prec < HOST_BITS_PER_WIDE_INT)
1745 {
1746 if (tree_to_uhwi (t)
1747 < (unsigned HOST_WIDE_INT) param_integer_share_limit)
1748 ix = tree_to_uhwi (t);
1749 }
1750 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1751 ix = tree_to_uhwi (t);
1752 }
1753 else
1754 {
1755 /* Cache -1..N */
1756 limit = param_integer_share_limit + 1;
1757
1758 if (integer_minus_onep (t))
1759 ix = 0;
1760 else if (!wi::neg_p (wi::to_wide (t)))
1761 {
1762 if (prec < HOST_BITS_PER_WIDE_INT)
1763 {
1764 if (tree_to_shwi (t) < param_integer_share_limit)
1765 ix = tree_to_shwi (t) + 1;
1766 }
1767 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1768 ix = tree_to_shwi (t) + 1;
1769 }
1770 }
1771 break;
1772
1773 case ENUMERAL_TYPE:
1774 break;
1775
1776 default:
1777 gcc_unreachable ();
1778 }
1779
1780 if (ix >= 0)
1781 {
1782 /* Look for it in the type's vector of small shared ints. */
1783 if (!TYPE_CACHED_VALUES_P (type))
1784 {
1785 TYPE_CACHED_VALUES_P (type) = 1;
1786 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1787 }
1788
1789 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1790 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1791 }
1792 else
1793 {
1794 /* Use the cache of larger shared ints. */
1795 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1796 /* If there is already an entry for the number verify it's the
1797 same. */
1798 if (*slot)
1799 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1800 else
1801 /* Otherwise insert this one into the hash table. */
1802 *slot = t;
1803 }
1804 }
1805
1806
1807 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1808 and the rest are zeros. */
1809
1810 tree
1811 build_low_bits_mask (tree type, unsigned bits)
1812 {
1813 gcc_assert (bits <= TYPE_PRECISION (type));
1814
1815 return wide_int_to_tree (type, wi::mask (bits, false,
1816 TYPE_PRECISION (type)));
1817 }
1818
1819 /* Checks that X is integer constant that can be expressed in (unsigned)
1820 HOST_WIDE_INT without loss of precision. */
1821
1822 bool
1823 cst_and_fits_in_hwi (const_tree x)
1824 {
1825 return (TREE_CODE (x) == INTEGER_CST
1826 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1827 }
1828
1829 /* Build a newly constructed VECTOR_CST with the given values of
1830 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1831
1832 tree
1833 make_vector (unsigned log2_npatterns,
1834 unsigned int nelts_per_pattern MEM_STAT_DECL)
1835 {
1836 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1837 tree t;
1838 unsigned npatterns = 1 << log2_npatterns;
1839 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1840 unsigned length = (sizeof (struct tree_vector)
1841 + (encoded_nelts - 1) * sizeof (tree));
1842
1843 record_node_allocation_statistics (VECTOR_CST, length);
1844
1845 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1846
1847 TREE_SET_CODE (t, VECTOR_CST);
1848 TREE_CONSTANT (t) = 1;
1849 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1850 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1851
1852 return t;
1853 }
1854
1855 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1856 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1857
1858 tree
1859 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1860 {
1861 if (vec_safe_length (v) == 0)
1862 return build_zero_cst (type);
1863
1864 unsigned HOST_WIDE_INT idx, nelts;
1865 tree value;
1866
1867 /* We can't construct a VECTOR_CST for a variable number of elements. */
1868 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1869 tree_vector_builder vec (type, nelts, 1);
1870 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1871 {
1872 if (TREE_CODE (value) == VECTOR_CST)
1873 {
1874 /* If NELTS is constant then this must be too. */
1875 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1876 for (unsigned i = 0; i < sub_nelts; ++i)
1877 vec.quick_push (VECTOR_CST_ELT (value, i));
1878 }
1879 else
1880 vec.quick_push (value);
1881 }
1882 while (vec.length () < nelts)
1883 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1884
1885 return vec.build ();
1886 }
1887
1888 /* Build a vector of type VECTYPE where all the elements are SCs. */
1889 tree
1890 build_vector_from_val (tree vectype, tree sc)
1891 {
1892 unsigned HOST_WIDE_INT i, nunits;
1893
1894 if (sc == error_mark_node)
1895 return sc;
1896
1897 /* Verify that the vector type is suitable for SC. Note that there
1898 is some inconsistency in the type-system with respect to restrict
1899 qualifications of pointers. Vector types always have a main-variant
1900 element type and the qualification is applied to the vector-type.
1901 So TREE_TYPE (vector-type) does not return a properly qualified
1902 vector element-type. */
1903 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1904 TREE_TYPE (vectype)));
1905
1906 if (CONSTANT_CLASS_P (sc))
1907 {
1908 tree_vector_builder v (vectype, 1, 1);
1909 v.quick_push (sc);
1910 return v.build ();
1911 }
1912 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1913 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1914 else
1915 {
1916 vec<constructor_elt, va_gc> *v;
1917 vec_alloc (v, nunits);
1918 for (i = 0; i < nunits; ++i)
1919 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1920 return build_constructor (vectype, v);
1921 }
1922 }
1923
1924 /* If TYPE is not a vector type, just return SC, otherwise return
1925 build_vector_from_val (TYPE, SC). */
1926
1927 tree
1928 build_uniform_cst (tree type, tree sc)
1929 {
1930 if (!VECTOR_TYPE_P (type))
1931 return sc;
1932
1933 return build_vector_from_val (type, sc);
1934 }
1935
1936 /* Build a vector series of type TYPE in which element I has the value
1937 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1938 and a VEC_SERIES_EXPR otherwise. */
1939
1940 tree
1941 build_vec_series (tree type, tree base, tree step)
1942 {
1943 if (integer_zerop (step))
1944 return build_vector_from_val (type, base);
1945 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1946 {
1947 tree_vector_builder builder (type, 1, 3);
1948 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1949 wi::to_wide (base) + wi::to_wide (step));
1950 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1951 wi::to_wide (elt1) + wi::to_wide (step));
1952 builder.quick_push (base);
1953 builder.quick_push (elt1);
1954 builder.quick_push (elt2);
1955 return builder.build ();
1956 }
1957 return build2 (VEC_SERIES_EXPR, type, base, step);
1958 }
1959
1960 /* Return a vector with the same number of units and number of bits
1961 as VEC_TYPE, but in which the elements are a linear series of unsigned
1962 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1963
1964 tree
1965 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1966 {
1967 tree index_vec_type = vec_type;
1968 tree index_elt_type = TREE_TYPE (vec_type);
1969 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1970 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1971 {
1972 index_elt_type = build_nonstandard_integer_type
1973 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1974 index_vec_type = build_vector_type (index_elt_type, nunits);
1975 }
1976
1977 tree_vector_builder v (index_vec_type, 1, 3);
1978 for (unsigned int i = 0; i < 3; ++i)
1979 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1980 return v.build ();
1981 }
1982
1983 /* Return a VECTOR_CST of type VEC_TYPE in which the first NUM_A
1984 elements are A and the rest are B. */
1985
1986 tree
1987 build_vector_a_then_b (tree vec_type, unsigned int num_a, tree a, tree b)
1988 {
1989 gcc_assert (known_le (num_a, TYPE_VECTOR_SUBPARTS (vec_type)));
1990 unsigned int count = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_type));
1991 /* Optimize the constant case. */
1992 if ((count & 1) == 0 && TYPE_VECTOR_SUBPARTS (vec_type).is_constant ())
1993 count /= 2;
1994 tree_vector_builder builder (vec_type, count, 2);
1995 for (unsigned int i = 0; i < count * 2; ++i)
1996 builder.quick_push (i < num_a ? a : b);
1997 return builder.build ();
1998 }
1999
2000 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
2001 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
2002
2003 void
2004 recompute_constructor_flags (tree c)
2005 {
2006 unsigned int i;
2007 tree val;
2008 bool constant_p = true;
2009 bool side_effects_p = false;
2010 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2011
2012 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2013 {
2014 /* Mostly ctors will have elts that don't have side-effects, so
2015 the usual case is to scan all the elements. Hence a single
2016 loop for both const and side effects, rather than one loop
2017 each (with early outs). */
2018 if (!TREE_CONSTANT (val))
2019 constant_p = false;
2020 if (TREE_SIDE_EFFECTS (val))
2021 side_effects_p = true;
2022 }
2023
2024 TREE_SIDE_EFFECTS (c) = side_effects_p;
2025 TREE_CONSTANT (c) = constant_p;
2026 }
2027
2028 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
2029 CONSTRUCTOR C. */
2030
2031 void
2032 verify_constructor_flags (tree c)
2033 {
2034 unsigned int i;
2035 tree val;
2036 bool constant_p = TREE_CONSTANT (c);
2037 bool side_effects_p = TREE_SIDE_EFFECTS (c);
2038 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2039
2040 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2041 {
2042 if (constant_p && !TREE_CONSTANT (val))
2043 internal_error ("non-constant element in constant CONSTRUCTOR");
2044 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
2045 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
2046 }
2047 }
2048
2049 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2050 are in the vec pointed to by VALS. */
2051 tree
2052 build_constructor (tree type, vec<constructor_elt, va_gc> *vals MEM_STAT_DECL)
2053 {
2054 tree c = make_node (CONSTRUCTOR PASS_MEM_STAT);
2055
2056 TREE_TYPE (c) = type;
2057 CONSTRUCTOR_ELTS (c) = vals;
2058
2059 recompute_constructor_flags (c);
2060
2061 return c;
2062 }
2063
2064 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2065 INDEX and VALUE. */
2066 tree
2067 build_constructor_single (tree type, tree index, tree value)
2068 {
2069 vec<constructor_elt, va_gc> *v;
2070 constructor_elt elt = {index, value};
2071
2072 vec_alloc (v, 1);
2073 v->quick_push (elt);
2074
2075 return build_constructor (type, v);
2076 }
2077
2078
2079 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2080 are in a list pointed to by VALS. */
2081 tree
2082 build_constructor_from_list (tree type, tree vals)
2083 {
2084 tree t;
2085 vec<constructor_elt, va_gc> *v = NULL;
2086
2087 if (vals)
2088 {
2089 vec_alloc (v, list_length (vals));
2090 for (t = vals; t; t = TREE_CHAIN (t))
2091 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2092 }
2093
2094 return build_constructor (type, v);
2095 }
2096
2097 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2098 of elements, provided as index/value pairs. */
2099
2100 tree
2101 build_constructor_va (tree type, int nelts, ...)
2102 {
2103 vec<constructor_elt, va_gc> *v = NULL;
2104 va_list p;
2105
2106 va_start (p, nelts);
2107 vec_alloc (v, nelts);
2108 while (nelts--)
2109 {
2110 tree index = va_arg (p, tree);
2111 tree value = va_arg (p, tree);
2112 CONSTRUCTOR_APPEND_ELT (v, index, value);
2113 }
2114 va_end (p);
2115 return build_constructor (type, v);
2116 }
2117
2118 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2119
2120 tree
2121 build_clobber (tree type)
2122 {
2123 tree clobber = build_constructor (type, NULL);
2124 TREE_THIS_VOLATILE (clobber) = true;
2125 return clobber;
2126 }
2127
2128 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2129
2130 tree
2131 build_fixed (tree type, FIXED_VALUE_TYPE f)
2132 {
2133 tree v;
2134 FIXED_VALUE_TYPE *fp;
2135
2136 v = make_node (FIXED_CST);
2137 fp = ggc_alloc<fixed_value> ();
2138 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2139
2140 TREE_TYPE (v) = type;
2141 TREE_FIXED_CST_PTR (v) = fp;
2142 return v;
2143 }
2144
2145 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2146
2147 tree
2148 build_real (tree type, REAL_VALUE_TYPE d)
2149 {
2150 tree v;
2151 REAL_VALUE_TYPE *dp;
2152 int overflow = 0;
2153
2154 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2155 Consider doing it via real_convert now. */
2156
2157 v = make_node (REAL_CST);
2158 dp = ggc_alloc<real_value> ();
2159 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2160
2161 TREE_TYPE (v) = type;
2162 TREE_REAL_CST_PTR (v) = dp;
2163 TREE_OVERFLOW (v) = overflow;
2164 return v;
2165 }
2166
2167 /* Like build_real, but first truncate D to the type. */
2168
2169 tree
2170 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2171 {
2172 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2173 }
2174
2175 /* Return a new REAL_CST node whose type is TYPE
2176 and whose value is the integer value of the INTEGER_CST node I. */
2177
2178 REAL_VALUE_TYPE
2179 real_value_from_int_cst (const_tree type, const_tree i)
2180 {
2181 REAL_VALUE_TYPE d;
2182
2183 /* Clear all bits of the real value type so that we can later do
2184 bitwise comparisons to see if two values are the same. */
2185 memset (&d, 0, sizeof d);
2186
2187 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2188 TYPE_SIGN (TREE_TYPE (i)));
2189 return d;
2190 }
2191
2192 /* Given a tree representing an integer constant I, return a tree
2193 representing the same value as a floating-point constant of type TYPE. */
2194
2195 tree
2196 build_real_from_int_cst (tree type, const_tree i)
2197 {
2198 tree v;
2199 int overflow = TREE_OVERFLOW (i);
2200
2201 v = build_real (type, real_value_from_int_cst (type, i));
2202
2203 TREE_OVERFLOW (v) |= overflow;
2204 return v;
2205 }
2206
2207 /* Return a newly constructed STRING_CST node whose value is
2208 the LEN characters at STR.
2209 Note that for a C string literal, LEN should include the trailing NUL.
2210 The TREE_TYPE is not initialized. */
2211
2212 tree
2213 build_string (int len, const char *str)
2214 {
2215 tree s;
2216 size_t length;
2217
2218 /* Do not waste bytes provided by padding of struct tree_string. */
2219 length = len + offsetof (struct tree_string, str) + 1;
2220
2221 record_node_allocation_statistics (STRING_CST, length);
2222
2223 s = (tree) ggc_internal_alloc (length);
2224
2225 memset (s, 0, sizeof (struct tree_typed));
2226 TREE_SET_CODE (s, STRING_CST);
2227 TREE_CONSTANT (s) = 1;
2228 TREE_STRING_LENGTH (s) = len;
2229 memcpy (s->string.str, str, len);
2230 s->string.str[len] = '\0';
2231
2232 return s;
2233 }
2234
2235 /* Return a newly constructed COMPLEX_CST node whose value is
2236 specified by the real and imaginary parts REAL and IMAG.
2237 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2238 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2239
2240 tree
2241 build_complex (tree type, tree real, tree imag)
2242 {
2243 gcc_assert (CONSTANT_CLASS_P (real));
2244 gcc_assert (CONSTANT_CLASS_P (imag));
2245
2246 tree t = make_node (COMPLEX_CST);
2247
2248 TREE_REALPART (t) = real;
2249 TREE_IMAGPART (t) = imag;
2250 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2251 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2252 return t;
2253 }
2254
2255 /* Build a complex (inf +- 0i), such as for the result of cproj.
2256 TYPE is the complex tree type of the result. If NEG is true, the
2257 imaginary zero is negative. */
2258
2259 tree
2260 build_complex_inf (tree type, bool neg)
2261 {
2262 REAL_VALUE_TYPE rinf, rzero = dconst0;
2263
2264 real_inf (&rinf);
2265 rzero.sign = neg;
2266 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2267 build_real (TREE_TYPE (type), rzero));
2268 }
2269
2270 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2271 element is set to 1. In particular, this is 1 + i for complex types. */
2272
2273 tree
2274 build_each_one_cst (tree type)
2275 {
2276 if (TREE_CODE (type) == COMPLEX_TYPE)
2277 {
2278 tree scalar = build_one_cst (TREE_TYPE (type));
2279 return build_complex (type, scalar, scalar);
2280 }
2281 else
2282 return build_one_cst (type);
2283 }
2284
2285 /* Return a constant of arithmetic type TYPE which is the
2286 multiplicative identity of the set TYPE. */
2287
2288 tree
2289 build_one_cst (tree type)
2290 {
2291 switch (TREE_CODE (type))
2292 {
2293 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2294 case POINTER_TYPE: case REFERENCE_TYPE:
2295 case OFFSET_TYPE:
2296 return build_int_cst (type, 1);
2297
2298 case REAL_TYPE:
2299 return build_real (type, dconst1);
2300
2301 case FIXED_POINT_TYPE:
2302 /* We can only generate 1 for accum types. */
2303 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2304 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2305
2306 case VECTOR_TYPE:
2307 {
2308 tree scalar = build_one_cst (TREE_TYPE (type));
2309
2310 return build_vector_from_val (type, scalar);
2311 }
2312
2313 case COMPLEX_TYPE:
2314 return build_complex (type,
2315 build_one_cst (TREE_TYPE (type)),
2316 build_zero_cst (TREE_TYPE (type)));
2317
2318 default:
2319 gcc_unreachable ();
2320 }
2321 }
2322
2323 /* Return an integer of type TYPE containing all 1's in as much precision as
2324 it contains, or a complex or vector whose subparts are such integers. */
2325
2326 tree
2327 build_all_ones_cst (tree type)
2328 {
2329 if (TREE_CODE (type) == COMPLEX_TYPE)
2330 {
2331 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2332 return build_complex (type, scalar, scalar);
2333 }
2334 else
2335 return build_minus_one_cst (type);
2336 }
2337
2338 /* Return a constant of arithmetic type TYPE which is the
2339 opposite of the multiplicative identity of the set TYPE. */
2340
2341 tree
2342 build_minus_one_cst (tree type)
2343 {
2344 switch (TREE_CODE (type))
2345 {
2346 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2347 case POINTER_TYPE: case REFERENCE_TYPE:
2348 case OFFSET_TYPE:
2349 return build_int_cst (type, -1);
2350
2351 case REAL_TYPE:
2352 return build_real (type, dconstm1);
2353
2354 case FIXED_POINT_TYPE:
2355 /* We can only generate 1 for accum types. */
2356 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2357 return build_fixed (type,
2358 fixed_from_double_int (double_int_minus_one,
2359 SCALAR_TYPE_MODE (type)));
2360
2361 case VECTOR_TYPE:
2362 {
2363 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2364
2365 return build_vector_from_val (type, scalar);
2366 }
2367
2368 case COMPLEX_TYPE:
2369 return build_complex (type,
2370 build_minus_one_cst (TREE_TYPE (type)),
2371 build_zero_cst (TREE_TYPE (type)));
2372
2373 default:
2374 gcc_unreachable ();
2375 }
2376 }
2377
2378 /* Build 0 constant of type TYPE. This is used by constructor folding
2379 and thus the constant should be represented in memory by
2380 zero(es). */
2381
2382 tree
2383 build_zero_cst (tree type)
2384 {
2385 switch (TREE_CODE (type))
2386 {
2387 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2388 case POINTER_TYPE: case REFERENCE_TYPE:
2389 case OFFSET_TYPE: case NULLPTR_TYPE:
2390 return build_int_cst (type, 0);
2391
2392 case REAL_TYPE:
2393 return build_real (type, dconst0);
2394
2395 case FIXED_POINT_TYPE:
2396 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2397
2398 case VECTOR_TYPE:
2399 {
2400 tree scalar = build_zero_cst (TREE_TYPE (type));
2401
2402 return build_vector_from_val (type, scalar);
2403 }
2404
2405 case COMPLEX_TYPE:
2406 {
2407 tree zero = build_zero_cst (TREE_TYPE (type));
2408
2409 return build_complex (type, zero, zero);
2410 }
2411
2412 default:
2413 if (!AGGREGATE_TYPE_P (type))
2414 return fold_convert (type, integer_zero_node);
2415 return build_constructor (type, NULL);
2416 }
2417 }
2418
2419
2420 /* Build a BINFO with LEN language slots. */
2421
2422 tree
2423 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2424 {
2425 tree t;
2426 size_t length = (offsetof (struct tree_binfo, base_binfos)
2427 + vec<tree, va_gc>::embedded_size (base_binfos));
2428
2429 record_node_allocation_statistics (TREE_BINFO, length);
2430
2431 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2432
2433 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2434
2435 TREE_SET_CODE (t, TREE_BINFO);
2436
2437 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2438
2439 return t;
2440 }
2441
2442 /* Create a CASE_LABEL_EXPR tree node and return it. */
2443
2444 tree
2445 build_case_label (tree low_value, tree high_value, tree label_decl)
2446 {
2447 tree t = make_node (CASE_LABEL_EXPR);
2448
2449 TREE_TYPE (t) = void_type_node;
2450 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2451
2452 CASE_LOW (t) = low_value;
2453 CASE_HIGH (t) = high_value;
2454 CASE_LABEL (t) = label_decl;
2455 CASE_CHAIN (t) = NULL_TREE;
2456
2457 return t;
2458 }
2459
2460 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2461 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2462 The latter determines the length of the HOST_WIDE_INT vector. */
2463
2464 tree
2465 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2466 {
2467 tree t;
2468 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2469 + sizeof (struct tree_int_cst));
2470
2471 gcc_assert (len);
2472 record_node_allocation_statistics (INTEGER_CST, length);
2473
2474 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2475
2476 TREE_SET_CODE (t, INTEGER_CST);
2477 TREE_INT_CST_NUNITS (t) = len;
2478 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2479 /* to_offset can only be applied to trees that are offset_int-sized
2480 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2481 must be exactly the precision of offset_int and so LEN is correct. */
2482 if (ext_len <= OFFSET_INT_ELTS)
2483 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2484 else
2485 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2486
2487 TREE_CONSTANT (t) = 1;
2488
2489 return t;
2490 }
2491
2492 /* Build a newly constructed TREE_VEC node of length LEN. */
2493
2494 tree
2495 make_tree_vec (int len MEM_STAT_DECL)
2496 {
2497 tree t;
2498 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2499
2500 record_node_allocation_statistics (TREE_VEC, length);
2501
2502 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2503
2504 TREE_SET_CODE (t, TREE_VEC);
2505 TREE_VEC_LENGTH (t) = len;
2506
2507 return t;
2508 }
2509
2510 /* Grow a TREE_VEC node to new length LEN. */
2511
2512 tree
2513 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2514 {
2515 gcc_assert (TREE_CODE (v) == TREE_VEC);
2516
2517 int oldlen = TREE_VEC_LENGTH (v);
2518 gcc_assert (len > oldlen);
2519
2520 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2521 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2522
2523 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2524
2525 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2526
2527 TREE_VEC_LENGTH (v) = len;
2528
2529 return v;
2530 }
2531 \f
2532 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2533 fixed, and scalar, complex or vector. */
2534
2535 bool
2536 zerop (const_tree expr)
2537 {
2538 return (integer_zerop (expr)
2539 || real_zerop (expr)
2540 || fixed_zerop (expr));
2541 }
2542
2543 /* Return 1 if EXPR is the integer constant zero or a complex constant
2544 of zero, or a location wrapper for such a constant. */
2545
2546 bool
2547 integer_zerop (const_tree expr)
2548 {
2549 STRIP_ANY_LOCATION_WRAPPER (expr);
2550
2551 switch (TREE_CODE (expr))
2552 {
2553 case INTEGER_CST:
2554 return wi::to_wide (expr) == 0;
2555 case COMPLEX_CST:
2556 return (integer_zerop (TREE_REALPART (expr))
2557 && integer_zerop (TREE_IMAGPART (expr)));
2558 case VECTOR_CST:
2559 return (VECTOR_CST_NPATTERNS (expr) == 1
2560 && VECTOR_CST_DUPLICATE_P (expr)
2561 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2562 default:
2563 return false;
2564 }
2565 }
2566
2567 /* Return 1 if EXPR is the integer constant one or the corresponding
2568 complex constant, or a location wrapper for such a constant. */
2569
2570 bool
2571 integer_onep (const_tree expr)
2572 {
2573 STRIP_ANY_LOCATION_WRAPPER (expr);
2574
2575 switch (TREE_CODE (expr))
2576 {
2577 case INTEGER_CST:
2578 return wi::eq_p (wi::to_widest (expr), 1);
2579 case COMPLEX_CST:
2580 return (integer_onep (TREE_REALPART (expr))
2581 && integer_zerop (TREE_IMAGPART (expr)));
2582 case VECTOR_CST:
2583 return (VECTOR_CST_NPATTERNS (expr) == 1
2584 && VECTOR_CST_DUPLICATE_P (expr)
2585 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2586 default:
2587 return false;
2588 }
2589 }
2590
2591 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2592 return 1 if every piece is the integer constant one.
2593 Also return 1 for location wrappers for such a constant. */
2594
2595 bool
2596 integer_each_onep (const_tree expr)
2597 {
2598 STRIP_ANY_LOCATION_WRAPPER (expr);
2599
2600 if (TREE_CODE (expr) == COMPLEX_CST)
2601 return (integer_onep (TREE_REALPART (expr))
2602 && integer_onep (TREE_IMAGPART (expr)));
2603 else
2604 return integer_onep (expr);
2605 }
2606
2607 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2608 it contains, or a complex or vector whose subparts are such integers,
2609 or a location wrapper for such a constant. */
2610
2611 bool
2612 integer_all_onesp (const_tree expr)
2613 {
2614 STRIP_ANY_LOCATION_WRAPPER (expr);
2615
2616 if (TREE_CODE (expr) == COMPLEX_CST
2617 && integer_all_onesp (TREE_REALPART (expr))
2618 && integer_all_onesp (TREE_IMAGPART (expr)))
2619 return true;
2620
2621 else if (TREE_CODE (expr) == VECTOR_CST)
2622 return (VECTOR_CST_NPATTERNS (expr) == 1
2623 && VECTOR_CST_DUPLICATE_P (expr)
2624 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2625
2626 else if (TREE_CODE (expr) != INTEGER_CST)
2627 return false;
2628
2629 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2630 == wi::to_wide (expr));
2631 }
2632
2633 /* Return 1 if EXPR is the integer constant minus one, or a location wrapper
2634 for such a constant. */
2635
2636 bool
2637 integer_minus_onep (const_tree expr)
2638 {
2639 STRIP_ANY_LOCATION_WRAPPER (expr);
2640
2641 if (TREE_CODE (expr) == COMPLEX_CST)
2642 return (integer_all_onesp (TREE_REALPART (expr))
2643 && integer_zerop (TREE_IMAGPART (expr)));
2644 else
2645 return integer_all_onesp (expr);
2646 }
2647
2648 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2649 one bit on), or a location wrapper for such a constant. */
2650
2651 bool
2652 integer_pow2p (const_tree expr)
2653 {
2654 STRIP_ANY_LOCATION_WRAPPER (expr);
2655
2656 if (TREE_CODE (expr) == COMPLEX_CST
2657 && integer_pow2p (TREE_REALPART (expr))
2658 && integer_zerop (TREE_IMAGPART (expr)))
2659 return true;
2660
2661 if (TREE_CODE (expr) != INTEGER_CST)
2662 return false;
2663
2664 return wi::popcount (wi::to_wide (expr)) == 1;
2665 }
2666
2667 /* Return 1 if EXPR is an integer constant other than zero or a
2668 complex constant other than zero, or a location wrapper for such a
2669 constant. */
2670
2671 bool
2672 integer_nonzerop (const_tree expr)
2673 {
2674 STRIP_ANY_LOCATION_WRAPPER (expr);
2675
2676 return ((TREE_CODE (expr) == INTEGER_CST
2677 && wi::to_wide (expr) != 0)
2678 || (TREE_CODE (expr) == COMPLEX_CST
2679 && (integer_nonzerop (TREE_REALPART (expr))
2680 || integer_nonzerop (TREE_IMAGPART (expr)))));
2681 }
2682
2683 /* Return 1 if EXPR is the integer constant one. For vector,
2684 return 1 if every piece is the integer constant minus one
2685 (representing the value TRUE).
2686 Also return 1 for location wrappers for such a constant. */
2687
2688 bool
2689 integer_truep (const_tree expr)
2690 {
2691 STRIP_ANY_LOCATION_WRAPPER (expr);
2692
2693 if (TREE_CODE (expr) == VECTOR_CST)
2694 return integer_all_onesp (expr);
2695 return integer_onep (expr);
2696 }
2697
2698 /* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper
2699 for such a constant. */
2700
2701 bool
2702 fixed_zerop (const_tree expr)
2703 {
2704 STRIP_ANY_LOCATION_WRAPPER (expr);
2705
2706 return (TREE_CODE (expr) == FIXED_CST
2707 && TREE_FIXED_CST (expr).data.is_zero ());
2708 }
2709
2710 /* Return the power of two represented by a tree node known to be a
2711 power of two. */
2712
2713 int
2714 tree_log2 (const_tree expr)
2715 {
2716 if (TREE_CODE (expr) == COMPLEX_CST)
2717 return tree_log2 (TREE_REALPART (expr));
2718
2719 return wi::exact_log2 (wi::to_wide (expr));
2720 }
2721
2722 /* Similar, but return the largest integer Y such that 2 ** Y is less
2723 than or equal to EXPR. */
2724
2725 int
2726 tree_floor_log2 (const_tree expr)
2727 {
2728 if (TREE_CODE (expr) == COMPLEX_CST)
2729 return tree_log2 (TREE_REALPART (expr));
2730
2731 return wi::floor_log2 (wi::to_wide (expr));
2732 }
2733
2734 /* Return number of known trailing zero bits in EXPR, or, if the value of
2735 EXPR is known to be zero, the precision of it's type. */
2736
2737 unsigned int
2738 tree_ctz (const_tree expr)
2739 {
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2741 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2742 return 0;
2743
2744 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2745 switch (TREE_CODE (expr))
2746 {
2747 case INTEGER_CST:
2748 ret1 = wi::ctz (wi::to_wide (expr));
2749 return MIN (ret1, prec);
2750 case SSA_NAME:
2751 ret1 = wi::ctz (get_nonzero_bits (expr));
2752 return MIN (ret1, prec);
2753 case PLUS_EXPR:
2754 case MINUS_EXPR:
2755 case BIT_IOR_EXPR:
2756 case BIT_XOR_EXPR:
2757 case MIN_EXPR:
2758 case MAX_EXPR:
2759 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2760 if (ret1 == 0)
2761 return ret1;
2762 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2763 return MIN (ret1, ret2);
2764 case POINTER_PLUS_EXPR:
2765 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2766 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2767 /* Second operand is sizetype, which could be in theory
2768 wider than pointer's precision. Make sure we never
2769 return more than prec. */
2770 ret2 = MIN (ret2, prec);
2771 return MIN (ret1, ret2);
2772 case BIT_AND_EXPR:
2773 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2774 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2775 return MAX (ret1, ret2);
2776 case MULT_EXPR:
2777 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2778 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2779 return MIN (ret1 + ret2, prec);
2780 case LSHIFT_EXPR:
2781 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2782 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2783 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2784 {
2785 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2786 return MIN (ret1 + ret2, prec);
2787 }
2788 return ret1;
2789 case RSHIFT_EXPR:
2790 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2791 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2792 {
2793 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2794 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2795 if (ret1 > ret2)
2796 return ret1 - ret2;
2797 }
2798 return 0;
2799 case TRUNC_DIV_EXPR:
2800 case CEIL_DIV_EXPR:
2801 case FLOOR_DIV_EXPR:
2802 case ROUND_DIV_EXPR:
2803 case EXACT_DIV_EXPR:
2804 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2805 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2806 {
2807 int l = tree_log2 (TREE_OPERAND (expr, 1));
2808 if (l >= 0)
2809 {
2810 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2811 ret2 = l;
2812 if (ret1 > ret2)
2813 return ret1 - ret2;
2814 }
2815 }
2816 return 0;
2817 CASE_CONVERT:
2818 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2819 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2820 ret1 = prec;
2821 return MIN (ret1, prec);
2822 case SAVE_EXPR:
2823 return tree_ctz (TREE_OPERAND (expr, 0));
2824 case COND_EXPR:
2825 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2826 if (ret1 == 0)
2827 return 0;
2828 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2829 return MIN (ret1, ret2);
2830 case COMPOUND_EXPR:
2831 return tree_ctz (TREE_OPERAND (expr, 1));
2832 case ADDR_EXPR:
2833 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2834 if (ret1 > BITS_PER_UNIT)
2835 {
2836 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2837 return MIN (ret1, prec);
2838 }
2839 return 0;
2840 default:
2841 return 0;
2842 }
2843 }
2844
2845 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2846 decimal float constants, so don't return 1 for them.
2847 Also return 1 for location wrappers around such a constant. */
2848
2849 bool
2850 real_zerop (const_tree expr)
2851 {
2852 STRIP_ANY_LOCATION_WRAPPER (expr);
2853
2854 switch (TREE_CODE (expr))
2855 {
2856 case REAL_CST:
2857 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2858 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2859 case COMPLEX_CST:
2860 return real_zerop (TREE_REALPART (expr))
2861 && real_zerop (TREE_IMAGPART (expr));
2862 case VECTOR_CST:
2863 {
2864 /* Don't simply check for a duplicate because the predicate
2865 accepts both +0.0 and -0.0. */
2866 unsigned count = vector_cst_encoded_nelts (expr);
2867 for (unsigned int i = 0; i < count; ++i)
2868 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2869 return false;
2870 return true;
2871 }
2872 default:
2873 return false;
2874 }
2875 }
2876
2877 /* Return 1 if EXPR is the real constant one in real or complex form.
2878 Trailing zeroes matter for decimal float constants, so don't return
2879 1 for them.
2880 Also return 1 for location wrappers around such a constant. */
2881
2882 bool
2883 real_onep (const_tree expr)
2884 {
2885 STRIP_ANY_LOCATION_WRAPPER (expr);
2886
2887 switch (TREE_CODE (expr))
2888 {
2889 case REAL_CST:
2890 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2891 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2892 case COMPLEX_CST:
2893 return real_onep (TREE_REALPART (expr))
2894 && real_zerop (TREE_IMAGPART (expr));
2895 case VECTOR_CST:
2896 return (VECTOR_CST_NPATTERNS (expr) == 1
2897 && VECTOR_CST_DUPLICATE_P (expr)
2898 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2899 default:
2900 return false;
2901 }
2902 }
2903
2904 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2905 matter for decimal float constants, so don't return 1 for them.
2906 Also return 1 for location wrappers around such a constant. */
2907
2908 bool
2909 real_minus_onep (const_tree expr)
2910 {
2911 STRIP_ANY_LOCATION_WRAPPER (expr);
2912
2913 switch (TREE_CODE (expr))
2914 {
2915 case REAL_CST:
2916 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2917 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2918 case COMPLEX_CST:
2919 return real_minus_onep (TREE_REALPART (expr))
2920 && real_zerop (TREE_IMAGPART (expr));
2921 case VECTOR_CST:
2922 return (VECTOR_CST_NPATTERNS (expr) == 1
2923 && VECTOR_CST_DUPLICATE_P (expr)
2924 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2925 default:
2926 return false;
2927 }
2928 }
2929
2930 /* Nonzero if EXP is a constant or a cast of a constant. */
2931
2932 bool
2933 really_constant_p (const_tree exp)
2934 {
2935 /* This is not quite the same as STRIP_NOPS. It does more. */
2936 while (CONVERT_EXPR_P (exp)
2937 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2938 exp = TREE_OPERAND (exp, 0);
2939 return TREE_CONSTANT (exp);
2940 }
2941
2942 /* Return true if T holds a polynomial pointer difference, storing it in
2943 *VALUE if so. A true return means that T's precision is no greater
2944 than 64 bits, which is the largest address space we support, so *VALUE
2945 never loses precision. However, the signedness of the result does
2946 not necessarily match the signedness of T: sometimes an unsigned type
2947 like sizetype is used to encode a value that is actually negative. */
2948
2949 bool
2950 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2951 {
2952 if (!t)
2953 return false;
2954 if (TREE_CODE (t) == INTEGER_CST)
2955 {
2956 if (!cst_and_fits_in_hwi (t))
2957 return false;
2958 *value = int_cst_value (t);
2959 return true;
2960 }
2961 if (POLY_INT_CST_P (t))
2962 {
2963 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2964 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2965 return false;
2966 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2967 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2968 return true;
2969 }
2970 return false;
2971 }
2972
2973 poly_int64
2974 tree_to_poly_int64 (const_tree t)
2975 {
2976 gcc_assert (tree_fits_poly_int64_p (t));
2977 if (POLY_INT_CST_P (t))
2978 return poly_int_cst_value (t).force_shwi ();
2979 return TREE_INT_CST_LOW (t);
2980 }
2981
2982 poly_uint64
2983 tree_to_poly_uint64 (const_tree t)
2984 {
2985 gcc_assert (tree_fits_poly_uint64_p (t));
2986 if (POLY_INT_CST_P (t))
2987 return poly_int_cst_value (t).force_uhwi ();
2988 return TREE_INT_CST_LOW (t);
2989 }
2990 \f
2991 /* Return first list element whose TREE_VALUE is ELEM.
2992 Return 0 if ELEM is not in LIST. */
2993
2994 tree
2995 value_member (tree elem, tree list)
2996 {
2997 while (list)
2998 {
2999 if (elem == TREE_VALUE (list))
3000 return list;
3001 list = TREE_CHAIN (list);
3002 }
3003 return NULL_TREE;
3004 }
3005
3006 /* Return first list element whose TREE_PURPOSE is ELEM.
3007 Return 0 if ELEM is not in LIST. */
3008
3009 tree
3010 purpose_member (const_tree elem, tree list)
3011 {
3012 while (list)
3013 {
3014 if (elem == TREE_PURPOSE (list))
3015 return list;
3016 list = TREE_CHAIN (list);
3017 }
3018 return NULL_TREE;
3019 }
3020
3021 /* Return true if ELEM is in V. */
3022
3023 bool
3024 vec_member (const_tree elem, vec<tree, va_gc> *v)
3025 {
3026 unsigned ix;
3027 tree t;
3028 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
3029 if (elem == t)
3030 return true;
3031 return false;
3032 }
3033
3034 /* Returns element number IDX (zero-origin) of chain CHAIN, or
3035 NULL_TREE. */
3036
3037 tree
3038 chain_index (int idx, tree chain)
3039 {
3040 for (; chain && idx > 0; --idx)
3041 chain = TREE_CHAIN (chain);
3042 return chain;
3043 }
3044
3045 /* Return nonzero if ELEM is part of the chain CHAIN. */
3046
3047 bool
3048 chain_member (const_tree elem, const_tree chain)
3049 {
3050 while (chain)
3051 {
3052 if (elem == chain)
3053 return true;
3054 chain = DECL_CHAIN (chain);
3055 }
3056
3057 return false;
3058 }
3059
3060 /* Return the length of a chain of nodes chained through TREE_CHAIN.
3061 We expect a null pointer to mark the end of the chain.
3062 This is the Lisp primitive `length'. */
3063
3064 int
3065 list_length (const_tree t)
3066 {
3067 const_tree p = t;
3068 #ifdef ENABLE_TREE_CHECKING
3069 const_tree q = t;
3070 #endif
3071 int len = 0;
3072
3073 while (p)
3074 {
3075 p = TREE_CHAIN (p);
3076 #ifdef ENABLE_TREE_CHECKING
3077 if (len % 2)
3078 q = TREE_CHAIN (q);
3079 gcc_assert (p != q);
3080 #endif
3081 len++;
3082 }
3083
3084 return len;
3085 }
3086
3087 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3088 UNION_TYPE TYPE, or NULL_TREE if none. */
3089
3090 tree
3091 first_field (const_tree type)
3092 {
3093 tree t = TYPE_FIELDS (type);
3094 while (t && TREE_CODE (t) != FIELD_DECL)
3095 t = TREE_CHAIN (t);
3096 return t;
3097 }
3098
3099 /* Returns the last FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3100 UNION_TYPE TYPE, or NULL_TREE if none. */
3101
3102 tree
3103 last_field (const_tree type)
3104 {
3105 tree last = NULL_TREE;
3106
3107 for (tree fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
3108 {
3109 if (TREE_CODE (fld) != FIELD_DECL)
3110 continue;
3111
3112 last = fld;
3113 }
3114
3115 return last;
3116 }
3117
3118 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3119 by modifying the last node in chain 1 to point to chain 2.
3120 This is the Lisp primitive `nconc'. */
3121
3122 tree
3123 chainon (tree op1, tree op2)
3124 {
3125 tree t1;
3126
3127 if (!op1)
3128 return op2;
3129 if (!op2)
3130 return op1;
3131
3132 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3133 continue;
3134 TREE_CHAIN (t1) = op2;
3135
3136 #ifdef ENABLE_TREE_CHECKING
3137 {
3138 tree t2;
3139 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3140 gcc_assert (t2 != t1);
3141 }
3142 #endif
3143
3144 return op1;
3145 }
3146
3147 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3148
3149 tree
3150 tree_last (tree chain)
3151 {
3152 tree next;
3153 if (chain)
3154 while ((next = TREE_CHAIN (chain)))
3155 chain = next;
3156 return chain;
3157 }
3158
3159 /* Reverse the order of elements in the chain T,
3160 and return the new head of the chain (old last element). */
3161
3162 tree
3163 nreverse (tree t)
3164 {
3165 tree prev = 0, decl, next;
3166 for (decl = t; decl; decl = next)
3167 {
3168 /* We shouldn't be using this function to reverse BLOCK chains; we
3169 have blocks_nreverse for that. */
3170 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3171 next = TREE_CHAIN (decl);
3172 TREE_CHAIN (decl) = prev;
3173 prev = decl;
3174 }
3175 return prev;
3176 }
3177 \f
3178 /* Return a newly created TREE_LIST node whose
3179 purpose and value fields are PARM and VALUE. */
3180
3181 tree
3182 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3183 {
3184 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3185 TREE_PURPOSE (t) = parm;
3186 TREE_VALUE (t) = value;
3187 return t;
3188 }
3189
3190 /* Build a chain of TREE_LIST nodes from a vector. */
3191
3192 tree
3193 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3194 {
3195 tree ret = NULL_TREE;
3196 tree *pp = &ret;
3197 unsigned int i;
3198 tree t;
3199 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3200 {
3201 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3202 pp = &TREE_CHAIN (*pp);
3203 }
3204 return ret;
3205 }
3206
3207 /* Return a newly created TREE_LIST node whose
3208 purpose and value fields are PURPOSE and VALUE
3209 and whose TREE_CHAIN is CHAIN. */
3210
3211 tree
3212 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3213 {
3214 tree node;
3215
3216 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3217 memset (node, 0, sizeof (struct tree_common));
3218
3219 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3220
3221 TREE_SET_CODE (node, TREE_LIST);
3222 TREE_CHAIN (node) = chain;
3223 TREE_PURPOSE (node) = purpose;
3224 TREE_VALUE (node) = value;
3225 return node;
3226 }
3227
3228 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3229 trees. */
3230
3231 vec<tree, va_gc> *
3232 ctor_to_vec (tree ctor)
3233 {
3234 vec<tree, va_gc> *vec;
3235 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3236 unsigned int ix;
3237 tree val;
3238
3239 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3240 vec->quick_push (val);
3241
3242 return vec;
3243 }
3244 \f
3245 /* Return the size nominally occupied by an object of type TYPE
3246 when it resides in memory. The value is measured in units of bytes,
3247 and its data type is that normally used for type sizes
3248 (which is the first type created by make_signed_type or
3249 make_unsigned_type). */
3250
3251 tree
3252 size_in_bytes_loc (location_t loc, const_tree type)
3253 {
3254 tree t;
3255
3256 if (type == error_mark_node)
3257 return integer_zero_node;
3258
3259 type = TYPE_MAIN_VARIANT (type);
3260 t = TYPE_SIZE_UNIT (type);
3261
3262 if (t == 0)
3263 {
3264 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3265 return size_zero_node;
3266 }
3267
3268 return t;
3269 }
3270
3271 /* Return the size of TYPE (in bytes) as a wide integer
3272 or return -1 if the size can vary or is larger than an integer. */
3273
3274 HOST_WIDE_INT
3275 int_size_in_bytes (const_tree type)
3276 {
3277 tree t;
3278
3279 if (type == error_mark_node)
3280 return 0;
3281
3282 type = TYPE_MAIN_VARIANT (type);
3283 t = TYPE_SIZE_UNIT (type);
3284
3285 if (t && tree_fits_uhwi_p (t))
3286 return TREE_INT_CST_LOW (t);
3287 else
3288 return -1;
3289 }
3290
3291 /* Return the maximum size of TYPE (in bytes) as a wide integer
3292 or return -1 if the size can vary or is larger than an integer. */
3293
3294 HOST_WIDE_INT
3295 max_int_size_in_bytes (const_tree type)
3296 {
3297 HOST_WIDE_INT size = -1;
3298 tree size_tree;
3299
3300 /* If this is an array type, check for a possible MAX_SIZE attached. */
3301
3302 if (TREE_CODE (type) == ARRAY_TYPE)
3303 {
3304 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3305
3306 if (size_tree && tree_fits_uhwi_p (size_tree))
3307 size = tree_to_uhwi (size_tree);
3308 }
3309
3310 /* If we still haven't been able to get a size, see if the language
3311 can compute a maximum size. */
3312
3313 if (size == -1)
3314 {
3315 size_tree = lang_hooks.types.max_size (type);
3316
3317 if (size_tree && tree_fits_uhwi_p (size_tree))
3318 size = tree_to_uhwi (size_tree);
3319 }
3320
3321 return size;
3322 }
3323 \f
3324 /* Return the bit position of FIELD, in bits from the start of the record.
3325 This is a tree of type bitsizetype. */
3326
3327 tree
3328 bit_position (const_tree field)
3329 {
3330 return bit_from_pos (DECL_FIELD_OFFSET (field),
3331 DECL_FIELD_BIT_OFFSET (field));
3332 }
3333 \f
3334 /* Return the byte position of FIELD, in bytes from the start of the record.
3335 This is a tree of type sizetype. */
3336
3337 tree
3338 byte_position (const_tree field)
3339 {
3340 return byte_from_pos (DECL_FIELD_OFFSET (field),
3341 DECL_FIELD_BIT_OFFSET (field));
3342 }
3343
3344 /* Likewise, but return as an integer. It must be representable in
3345 that way (since it could be a signed value, we don't have the
3346 option of returning -1 like int_size_in_byte can. */
3347
3348 HOST_WIDE_INT
3349 int_byte_position (const_tree field)
3350 {
3351 return tree_to_shwi (byte_position (field));
3352 }
3353 \f
3354 /* Return the strictest alignment, in bits, that T is known to have. */
3355
3356 unsigned int
3357 expr_align (const_tree t)
3358 {
3359 unsigned int align0, align1;
3360
3361 switch (TREE_CODE (t))
3362 {
3363 CASE_CONVERT: case NON_LVALUE_EXPR:
3364 /* If we have conversions, we know that the alignment of the
3365 object must meet each of the alignments of the types. */
3366 align0 = expr_align (TREE_OPERAND (t, 0));
3367 align1 = TYPE_ALIGN (TREE_TYPE (t));
3368 return MAX (align0, align1);
3369
3370 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3371 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3372 case CLEANUP_POINT_EXPR:
3373 /* These don't change the alignment of an object. */
3374 return expr_align (TREE_OPERAND (t, 0));
3375
3376 case COND_EXPR:
3377 /* The best we can do is say that the alignment is the least aligned
3378 of the two arms. */
3379 align0 = expr_align (TREE_OPERAND (t, 1));
3380 align1 = expr_align (TREE_OPERAND (t, 2));
3381 return MIN (align0, align1);
3382
3383 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3384 meaningfully, it's always 1. */
3385 case LABEL_DECL: case CONST_DECL:
3386 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3387 case FUNCTION_DECL:
3388 gcc_assert (DECL_ALIGN (t) != 0);
3389 return DECL_ALIGN (t);
3390
3391 default:
3392 break;
3393 }
3394
3395 /* Otherwise take the alignment from that of the type. */
3396 return TYPE_ALIGN (TREE_TYPE (t));
3397 }
3398 \f
3399 /* Return, as a tree node, the number of elements for TYPE (which is an
3400 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3401
3402 tree
3403 array_type_nelts (const_tree type)
3404 {
3405 tree index_type, min, max;
3406
3407 /* If they did it with unspecified bounds, then we should have already
3408 given an error about it before we got here. */
3409 if (! TYPE_DOMAIN (type))
3410 return error_mark_node;
3411
3412 index_type = TYPE_DOMAIN (type);
3413 min = TYPE_MIN_VALUE (index_type);
3414 max = TYPE_MAX_VALUE (index_type);
3415
3416 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3417 if (!max)
3418 return error_mark_node;
3419
3420 return (integer_zerop (min)
3421 ? max
3422 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3423 }
3424 \f
3425 /* If arg is static -- a reference to an object in static storage -- then
3426 return the object. This is not the same as the C meaning of `static'.
3427 If arg isn't static, return NULL. */
3428
3429 tree
3430 staticp (tree arg)
3431 {
3432 switch (TREE_CODE (arg))
3433 {
3434 case FUNCTION_DECL:
3435 /* Nested functions are static, even though taking their address will
3436 involve a trampoline as we unnest the nested function and create
3437 the trampoline on the tree level. */
3438 return arg;
3439
3440 case VAR_DECL:
3441 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3442 && ! DECL_THREAD_LOCAL_P (arg)
3443 && ! DECL_DLLIMPORT_P (arg)
3444 ? arg : NULL);
3445
3446 case CONST_DECL:
3447 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3448 ? arg : NULL);
3449
3450 case CONSTRUCTOR:
3451 return TREE_STATIC (arg) ? arg : NULL;
3452
3453 case LABEL_DECL:
3454 case STRING_CST:
3455 return arg;
3456
3457 case COMPONENT_REF:
3458 /* If the thing being referenced is not a field, then it is
3459 something language specific. */
3460 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3461
3462 /* If we are referencing a bitfield, we can't evaluate an
3463 ADDR_EXPR at compile time and so it isn't a constant. */
3464 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3465 return NULL;
3466
3467 return staticp (TREE_OPERAND (arg, 0));
3468
3469 case BIT_FIELD_REF:
3470 return NULL;
3471
3472 case INDIRECT_REF:
3473 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3474
3475 case ARRAY_REF:
3476 case ARRAY_RANGE_REF:
3477 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3478 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3479 return staticp (TREE_OPERAND (arg, 0));
3480 else
3481 return NULL;
3482
3483 case COMPOUND_LITERAL_EXPR:
3484 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3485
3486 default:
3487 return NULL;
3488 }
3489 }
3490
3491 \f
3492
3493
3494 /* Return whether OP is a DECL whose address is function-invariant. */
3495
3496 bool
3497 decl_address_invariant_p (const_tree op)
3498 {
3499 /* The conditions below are slightly less strict than the one in
3500 staticp. */
3501
3502 switch (TREE_CODE (op))
3503 {
3504 case PARM_DECL:
3505 case RESULT_DECL:
3506 case LABEL_DECL:
3507 case FUNCTION_DECL:
3508 return true;
3509
3510 case VAR_DECL:
3511 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3512 || DECL_THREAD_LOCAL_P (op)
3513 || DECL_CONTEXT (op) == current_function_decl
3514 || decl_function_context (op) == current_function_decl)
3515 return true;
3516 break;
3517
3518 case CONST_DECL:
3519 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3520 || decl_function_context (op) == current_function_decl)
3521 return true;
3522 break;
3523
3524 default:
3525 break;
3526 }
3527
3528 return false;
3529 }
3530
3531 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3532
3533 bool
3534 decl_address_ip_invariant_p (const_tree op)
3535 {
3536 /* The conditions below are slightly less strict than the one in
3537 staticp. */
3538
3539 switch (TREE_CODE (op))
3540 {
3541 case LABEL_DECL:
3542 case FUNCTION_DECL:
3543 case STRING_CST:
3544 return true;
3545
3546 case VAR_DECL:
3547 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3548 && !DECL_DLLIMPORT_P (op))
3549 || DECL_THREAD_LOCAL_P (op))
3550 return true;
3551 break;
3552
3553 case CONST_DECL:
3554 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3555 return true;
3556 break;
3557
3558 default:
3559 break;
3560 }
3561
3562 return false;
3563 }
3564
3565
3566 /* Return true if T is function-invariant (internal function, does
3567 not handle arithmetic; that's handled in skip_simple_arithmetic and
3568 tree_invariant_p). */
3569
3570 static bool
3571 tree_invariant_p_1 (tree t)
3572 {
3573 tree op;
3574
3575 if (TREE_CONSTANT (t)
3576 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3577 return true;
3578
3579 switch (TREE_CODE (t))
3580 {
3581 case SAVE_EXPR:
3582 return true;
3583
3584 case ADDR_EXPR:
3585 op = TREE_OPERAND (t, 0);
3586 while (handled_component_p (op))
3587 {
3588 switch (TREE_CODE (op))
3589 {
3590 case ARRAY_REF:
3591 case ARRAY_RANGE_REF:
3592 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3593 || TREE_OPERAND (op, 2) != NULL_TREE
3594 || TREE_OPERAND (op, 3) != NULL_TREE)
3595 return false;
3596 break;
3597
3598 case COMPONENT_REF:
3599 if (TREE_OPERAND (op, 2) != NULL_TREE)
3600 return false;
3601 break;
3602
3603 default:;
3604 }
3605 op = TREE_OPERAND (op, 0);
3606 }
3607
3608 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3609
3610 default:
3611 break;
3612 }
3613
3614 return false;
3615 }
3616
3617 /* Return true if T is function-invariant. */
3618
3619 bool
3620 tree_invariant_p (tree t)
3621 {
3622 tree inner = skip_simple_arithmetic (t);
3623 return tree_invariant_p_1 (inner);
3624 }
3625
3626 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3627 Do this to any expression which may be used in more than one place,
3628 but must be evaluated only once.
3629
3630 Normally, expand_expr would reevaluate the expression each time.
3631 Calling save_expr produces something that is evaluated and recorded
3632 the first time expand_expr is called on it. Subsequent calls to
3633 expand_expr just reuse the recorded value.
3634
3635 The call to expand_expr that generates code that actually computes
3636 the value is the first call *at compile time*. Subsequent calls
3637 *at compile time* generate code to use the saved value.
3638 This produces correct result provided that *at run time* control
3639 always flows through the insns made by the first expand_expr
3640 before reaching the other places where the save_expr was evaluated.
3641 You, the caller of save_expr, must make sure this is so.
3642
3643 Constants, and certain read-only nodes, are returned with no
3644 SAVE_EXPR because that is safe. Expressions containing placeholders
3645 are not touched; see tree.def for an explanation of what these
3646 are used for. */
3647
3648 tree
3649 save_expr (tree expr)
3650 {
3651 tree inner;
3652
3653 /* If the tree evaluates to a constant, then we don't want to hide that
3654 fact (i.e. this allows further folding, and direct checks for constants).
3655 However, a read-only object that has side effects cannot be bypassed.
3656 Since it is no problem to reevaluate literals, we just return the
3657 literal node. */
3658 inner = skip_simple_arithmetic (expr);
3659 if (TREE_CODE (inner) == ERROR_MARK)
3660 return inner;
3661
3662 if (tree_invariant_p_1 (inner))
3663 return expr;
3664
3665 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3666 it means that the size or offset of some field of an object depends on
3667 the value within another field.
3668
3669 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3670 and some variable since it would then need to be both evaluated once and
3671 evaluated more than once. Front-ends must assure this case cannot
3672 happen by surrounding any such subexpressions in their own SAVE_EXPR
3673 and forcing evaluation at the proper time. */
3674 if (contains_placeholder_p (inner))
3675 return expr;
3676
3677 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3678
3679 /* This expression might be placed ahead of a jump to ensure that the
3680 value was computed on both sides of the jump. So make sure it isn't
3681 eliminated as dead. */
3682 TREE_SIDE_EFFECTS (expr) = 1;
3683 return expr;
3684 }
3685
3686 /* Look inside EXPR into any simple arithmetic operations. Return the
3687 outermost non-arithmetic or non-invariant node. */
3688
3689 tree
3690 skip_simple_arithmetic (tree expr)
3691 {
3692 /* We don't care about whether this can be used as an lvalue in this
3693 context. */
3694 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3695 expr = TREE_OPERAND (expr, 0);
3696
3697 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3698 a constant, it will be more efficient to not make another SAVE_EXPR since
3699 it will allow better simplification and GCSE will be able to merge the
3700 computations if they actually occur. */
3701 while (true)
3702 {
3703 if (UNARY_CLASS_P (expr))
3704 expr = TREE_OPERAND (expr, 0);
3705 else if (BINARY_CLASS_P (expr))
3706 {
3707 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3708 expr = TREE_OPERAND (expr, 0);
3709 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3710 expr = TREE_OPERAND (expr, 1);
3711 else
3712 break;
3713 }
3714 else
3715 break;
3716 }
3717
3718 return expr;
3719 }
3720
3721 /* Look inside EXPR into simple arithmetic operations involving constants.
3722 Return the outermost non-arithmetic or non-constant node. */
3723
3724 tree
3725 skip_simple_constant_arithmetic (tree expr)
3726 {
3727 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3728 expr = TREE_OPERAND (expr, 0);
3729
3730 while (true)
3731 {
3732 if (UNARY_CLASS_P (expr))
3733 expr = TREE_OPERAND (expr, 0);
3734 else if (BINARY_CLASS_P (expr))
3735 {
3736 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3737 expr = TREE_OPERAND (expr, 0);
3738 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3739 expr = TREE_OPERAND (expr, 1);
3740 else
3741 break;
3742 }
3743 else
3744 break;
3745 }
3746
3747 return expr;
3748 }
3749
3750 /* Return which tree structure is used by T. */
3751
3752 enum tree_node_structure_enum
3753 tree_node_structure (const_tree t)
3754 {
3755 const enum tree_code code = TREE_CODE (t);
3756 return tree_node_structure_for_code (code);
3757 }
3758
3759 /* Set various status flags when building a CALL_EXPR object T. */
3760
3761 static void
3762 process_call_operands (tree t)
3763 {
3764 bool side_effects = TREE_SIDE_EFFECTS (t);
3765 bool read_only = false;
3766 int i = call_expr_flags (t);
3767
3768 /* Calls have side-effects, except those to const or pure functions. */
3769 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3770 side_effects = true;
3771 /* Propagate TREE_READONLY of arguments for const functions. */
3772 if (i & ECF_CONST)
3773 read_only = true;
3774
3775 if (!side_effects || read_only)
3776 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3777 {
3778 tree op = TREE_OPERAND (t, i);
3779 if (op && TREE_SIDE_EFFECTS (op))
3780 side_effects = true;
3781 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3782 read_only = false;
3783 }
3784
3785 TREE_SIDE_EFFECTS (t) = side_effects;
3786 TREE_READONLY (t) = read_only;
3787 }
3788 \f
3789 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3790 size or offset that depends on a field within a record. */
3791
3792 bool
3793 contains_placeholder_p (const_tree exp)
3794 {
3795 enum tree_code code;
3796
3797 if (!exp)
3798 return 0;
3799
3800 code = TREE_CODE (exp);
3801 if (code == PLACEHOLDER_EXPR)
3802 return 1;
3803
3804 switch (TREE_CODE_CLASS (code))
3805 {
3806 case tcc_reference:
3807 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3808 position computations since they will be converted into a
3809 WITH_RECORD_EXPR involving the reference, which will assume
3810 here will be valid. */
3811 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3812
3813 case tcc_exceptional:
3814 if (code == TREE_LIST)
3815 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3816 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3817 break;
3818
3819 case tcc_unary:
3820 case tcc_binary:
3821 case tcc_comparison:
3822 case tcc_expression:
3823 switch (code)
3824 {
3825 case COMPOUND_EXPR:
3826 /* Ignoring the first operand isn't quite right, but works best. */
3827 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3828
3829 case COND_EXPR:
3830 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3831 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3832 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3833
3834 case SAVE_EXPR:
3835 /* The save_expr function never wraps anything containing
3836 a PLACEHOLDER_EXPR. */
3837 return 0;
3838
3839 default:
3840 break;
3841 }
3842
3843 switch (TREE_CODE_LENGTH (code))
3844 {
3845 case 1:
3846 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3847 case 2:
3848 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3849 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3850 default:
3851 return 0;
3852 }
3853
3854 case tcc_vl_exp:
3855 switch (code)
3856 {
3857 case CALL_EXPR:
3858 {
3859 const_tree arg;
3860 const_call_expr_arg_iterator iter;
3861 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3862 if (CONTAINS_PLACEHOLDER_P (arg))
3863 return 1;
3864 return 0;
3865 }
3866 default:
3867 return 0;
3868 }
3869
3870 default:
3871 return 0;
3872 }
3873 return 0;
3874 }
3875
3876 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3877 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3878 field positions. */
3879
3880 static bool
3881 type_contains_placeholder_1 (const_tree type)
3882 {
3883 /* If the size contains a placeholder or the parent type (component type in
3884 the case of arrays) type involves a placeholder, this type does. */
3885 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3886 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3887 || (!POINTER_TYPE_P (type)
3888 && TREE_TYPE (type)
3889 && type_contains_placeholder_p (TREE_TYPE (type))))
3890 return true;
3891
3892 /* Now do type-specific checks. Note that the last part of the check above
3893 greatly limits what we have to do below. */
3894 switch (TREE_CODE (type))
3895 {
3896 case VOID_TYPE:
3897 case COMPLEX_TYPE:
3898 case ENUMERAL_TYPE:
3899 case BOOLEAN_TYPE:
3900 case POINTER_TYPE:
3901 case OFFSET_TYPE:
3902 case REFERENCE_TYPE:
3903 case METHOD_TYPE:
3904 case FUNCTION_TYPE:
3905 case VECTOR_TYPE:
3906 case NULLPTR_TYPE:
3907 return false;
3908
3909 case INTEGER_TYPE:
3910 case REAL_TYPE:
3911 case FIXED_POINT_TYPE:
3912 /* Here we just check the bounds. */
3913 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3914 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3915
3916 case ARRAY_TYPE:
3917 /* We have already checked the component type above, so just check
3918 the domain type. Flexible array members have a null domain. */
3919 return TYPE_DOMAIN (type) ?
3920 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3921
3922 case RECORD_TYPE:
3923 case UNION_TYPE:
3924 case QUAL_UNION_TYPE:
3925 {
3926 tree field;
3927
3928 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3929 if (TREE_CODE (field) == FIELD_DECL
3930 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3931 || (TREE_CODE (type) == QUAL_UNION_TYPE
3932 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3933 || type_contains_placeholder_p (TREE_TYPE (field))))
3934 return true;
3935
3936 return false;
3937 }
3938
3939 default:
3940 gcc_unreachable ();
3941 }
3942 }
3943
3944 /* Wrapper around above function used to cache its result. */
3945
3946 bool
3947 type_contains_placeholder_p (tree type)
3948 {
3949 bool result;
3950
3951 /* If the contains_placeholder_bits field has been initialized,
3952 then we know the answer. */
3953 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3954 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3955
3956 /* Indicate that we've seen this type node, and the answer is false.
3957 This is what we want to return if we run into recursion via fields. */
3958 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3959
3960 /* Compute the real value. */
3961 result = type_contains_placeholder_1 (type);
3962
3963 /* Store the real value. */
3964 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3965
3966 return result;
3967 }
3968 \f
3969 /* Push tree EXP onto vector QUEUE if it is not already present. */
3970
3971 static void
3972 push_without_duplicates (tree exp, vec<tree> *queue)
3973 {
3974 unsigned int i;
3975 tree iter;
3976
3977 FOR_EACH_VEC_ELT (*queue, i, iter)
3978 if (simple_cst_equal (iter, exp) == 1)
3979 break;
3980
3981 if (!iter)
3982 queue->safe_push (exp);
3983 }
3984
3985 /* Given a tree EXP, find all occurrences of references to fields
3986 in a PLACEHOLDER_EXPR and place them in vector REFS without
3987 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3988 we assume here that EXP contains only arithmetic expressions
3989 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3990 argument list. */
3991
3992 void
3993 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3994 {
3995 enum tree_code code = TREE_CODE (exp);
3996 tree inner;
3997 int i;
3998
3999 /* We handle TREE_LIST and COMPONENT_REF separately. */
4000 if (code == TREE_LIST)
4001 {
4002 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
4003 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
4004 }
4005 else if (code == COMPONENT_REF)
4006 {
4007 for (inner = TREE_OPERAND (exp, 0);
4008 REFERENCE_CLASS_P (inner);
4009 inner = TREE_OPERAND (inner, 0))
4010 ;
4011
4012 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
4013 push_without_duplicates (exp, refs);
4014 else
4015 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
4016 }
4017 else
4018 switch (TREE_CODE_CLASS (code))
4019 {
4020 case tcc_constant:
4021 break;
4022
4023 case tcc_declaration:
4024 /* Variables allocated to static storage can stay. */
4025 if (!TREE_STATIC (exp))
4026 push_without_duplicates (exp, refs);
4027 break;
4028
4029 case tcc_expression:
4030 /* This is the pattern built in ada/make_aligning_type. */
4031 if (code == ADDR_EXPR
4032 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
4033 {
4034 push_without_duplicates (exp, refs);
4035 break;
4036 }
4037
4038 /* Fall through. */
4039
4040 case tcc_exceptional:
4041 case tcc_unary:
4042 case tcc_binary:
4043 case tcc_comparison:
4044 case tcc_reference:
4045 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
4046 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4047 break;
4048
4049 case tcc_vl_exp:
4050 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4051 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4052 break;
4053
4054 default:
4055 gcc_unreachable ();
4056 }
4057 }
4058
4059 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
4060 return a tree with all occurrences of references to F in a
4061 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
4062 CONST_DECLs. Note that we assume here that EXP contains only
4063 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
4064 occurring only in their argument list. */
4065
4066 tree
4067 substitute_in_expr (tree exp, tree f, tree r)
4068 {
4069 enum tree_code code = TREE_CODE (exp);
4070 tree op0, op1, op2, op3;
4071 tree new_tree;
4072
4073 /* We handle TREE_LIST and COMPONENT_REF separately. */
4074 if (code == TREE_LIST)
4075 {
4076 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
4077 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
4078 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4079 return exp;
4080
4081 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4082 }
4083 else if (code == COMPONENT_REF)
4084 {
4085 tree inner;
4086
4087 /* If this expression is getting a value from a PLACEHOLDER_EXPR
4088 and it is the right field, replace it with R. */
4089 for (inner = TREE_OPERAND (exp, 0);
4090 REFERENCE_CLASS_P (inner);
4091 inner = TREE_OPERAND (inner, 0))
4092 ;
4093
4094 /* The field. */
4095 op1 = TREE_OPERAND (exp, 1);
4096
4097 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
4098 return r;
4099
4100 /* If this expression hasn't been completed let, leave it alone. */
4101 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
4102 return exp;
4103
4104 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4105 if (op0 == TREE_OPERAND (exp, 0))
4106 return exp;
4107
4108 new_tree
4109 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4110 }
4111 else
4112 switch (TREE_CODE_CLASS (code))
4113 {
4114 case tcc_constant:
4115 return exp;
4116
4117 case tcc_declaration:
4118 if (exp == f)
4119 return r;
4120 else
4121 return exp;
4122
4123 case tcc_expression:
4124 if (exp == f)
4125 return r;
4126
4127 /* Fall through. */
4128
4129 case tcc_exceptional:
4130 case tcc_unary:
4131 case tcc_binary:
4132 case tcc_comparison:
4133 case tcc_reference:
4134 switch (TREE_CODE_LENGTH (code))
4135 {
4136 case 0:
4137 return exp;
4138
4139 case 1:
4140 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4141 if (op0 == TREE_OPERAND (exp, 0))
4142 return exp;
4143
4144 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4145 break;
4146
4147 case 2:
4148 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4149 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4150
4151 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4152 return exp;
4153
4154 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4155 break;
4156
4157 case 3:
4158 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4159 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4160 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4161
4162 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4163 && op2 == TREE_OPERAND (exp, 2))
4164 return exp;
4165
4166 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4167 break;
4168
4169 case 4:
4170 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4171 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4172 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4173 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4174
4175 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4176 && op2 == TREE_OPERAND (exp, 2)
4177 && op3 == TREE_OPERAND (exp, 3))
4178 return exp;
4179
4180 new_tree
4181 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4182 break;
4183
4184 default:
4185 gcc_unreachable ();
4186 }
4187 break;
4188
4189 case tcc_vl_exp:
4190 {
4191 int i;
4192
4193 new_tree = NULL_TREE;
4194
4195 /* If we are trying to replace F with a constant or with another
4196 instance of one of the arguments of the call, inline back
4197 functions which do nothing else than computing a value from
4198 the arguments they are passed. This makes it possible to
4199 fold partially or entirely the replacement expression. */
4200 if (code == CALL_EXPR)
4201 {
4202 bool maybe_inline = false;
4203 if (CONSTANT_CLASS_P (r))
4204 maybe_inline = true;
4205 else
4206 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4207 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4208 {
4209 maybe_inline = true;
4210 break;
4211 }
4212 if (maybe_inline)
4213 {
4214 tree t = maybe_inline_call_in_expr (exp);
4215 if (t)
4216 return SUBSTITUTE_IN_EXPR (t, f, r);
4217 }
4218 }
4219
4220 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4221 {
4222 tree op = TREE_OPERAND (exp, i);
4223 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4224 if (new_op != op)
4225 {
4226 if (!new_tree)
4227 new_tree = copy_node (exp);
4228 TREE_OPERAND (new_tree, i) = new_op;
4229 }
4230 }
4231
4232 if (new_tree)
4233 {
4234 new_tree = fold (new_tree);
4235 if (TREE_CODE (new_tree) == CALL_EXPR)
4236 process_call_operands (new_tree);
4237 }
4238 else
4239 return exp;
4240 }
4241 break;
4242
4243 default:
4244 gcc_unreachable ();
4245 }
4246
4247 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4248
4249 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4250 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4251
4252 return new_tree;
4253 }
4254
4255 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4256 for it within OBJ, a tree that is an object or a chain of references. */
4257
4258 tree
4259 substitute_placeholder_in_expr (tree exp, tree obj)
4260 {
4261 enum tree_code code = TREE_CODE (exp);
4262 tree op0, op1, op2, op3;
4263 tree new_tree;
4264
4265 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4266 in the chain of OBJ. */
4267 if (code == PLACEHOLDER_EXPR)
4268 {
4269 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4270 tree elt;
4271
4272 for (elt = obj; elt != 0;
4273 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4274 || TREE_CODE (elt) == COND_EXPR)
4275 ? TREE_OPERAND (elt, 1)
4276 : (REFERENCE_CLASS_P (elt)
4277 || UNARY_CLASS_P (elt)
4278 || BINARY_CLASS_P (elt)
4279 || VL_EXP_CLASS_P (elt)
4280 || EXPRESSION_CLASS_P (elt))
4281 ? TREE_OPERAND (elt, 0) : 0))
4282 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4283 return elt;
4284
4285 for (elt = obj; elt != 0;
4286 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4287 || TREE_CODE (elt) == COND_EXPR)
4288 ? TREE_OPERAND (elt, 1)
4289 : (REFERENCE_CLASS_P (elt)
4290 || UNARY_CLASS_P (elt)
4291 || BINARY_CLASS_P (elt)
4292 || VL_EXP_CLASS_P (elt)
4293 || EXPRESSION_CLASS_P (elt))
4294 ? TREE_OPERAND (elt, 0) : 0))
4295 if (POINTER_TYPE_P (TREE_TYPE (elt))
4296 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4297 == need_type))
4298 return fold_build1 (INDIRECT_REF, need_type, elt);
4299
4300 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4301 survives until RTL generation, there will be an error. */
4302 return exp;
4303 }
4304
4305 /* TREE_LIST is special because we need to look at TREE_VALUE
4306 and TREE_CHAIN, not TREE_OPERANDS. */
4307 else if (code == TREE_LIST)
4308 {
4309 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4310 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4311 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4312 return exp;
4313
4314 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4315 }
4316 else
4317 switch (TREE_CODE_CLASS (code))
4318 {
4319 case tcc_constant:
4320 case tcc_declaration:
4321 return exp;
4322
4323 case tcc_exceptional:
4324 case tcc_unary:
4325 case tcc_binary:
4326 case tcc_comparison:
4327 case tcc_expression:
4328 case tcc_reference:
4329 case tcc_statement:
4330 switch (TREE_CODE_LENGTH (code))
4331 {
4332 case 0:
4333 return exp;
4334
4335 case 1:
4336 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4337 if (op0 == TREE_OPERAND (exp, 0))
4338 return exp;
4339
4340 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4341 break;
4342
4343 case 2:
4344 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4345 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4346
4347 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4348 return exp;
4349
4350 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4351 break;
4352
4353 case 3:
4354 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4355 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4356 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4357
4358 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4359 && op2 == TREE_OPERAND (exp, 2))
4360 return exp;
4361
4362 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4363 break;
4364
4365 case 4:
4366 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4367 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4368 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4369 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4370
4371 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4372 && op2 == TREE_OPERAND (exp, 2)
4373 && op3 == TREE_OPERAND (exp, 3))
4374 return exp;
4375
4376 new_tree
4377 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4378 break;
4379
4380 default:
4381 gcc_unreachable ();
4382 }
4383 break;
4384
4385 case tcc_vl_exp:
4386 {
4387 int i;
4388
4389 new_tree = NULL_TREE;
4390
4391 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4392 {
4393 tree op = TREE_OPERAND (exp, i);
4394 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4395 if (new_op != op)
4396 {
4397 if (!new_tree)
4398 new_tree = copy_node (exp);
4399 TREE_OPERAND (new_tree, i) = new_op;
4400 }
4401 }
4402
4403 if (new_tree)
4404 {
4405 new_tree = fold (new_tree);
4406 if (TREE_CODE (new_tree) == CALL_EXPR)
4407 process_call_operands (new_tree);
4408 }
4409 else
4410 return exp;
4411 }
4412 break;
4413
4414 default:
4415 gcc_unreachable ();
4416 }
4417
4418 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4419
4420 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4421 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4422
4423 return new_tree;
4424 }
4425 \f
4426
4427 /* Subroutine of stabilize_reference; this is called for subtrees of
4428 references. Any expression with side-effects must be put in a SAVE_EXPR
4429 to ensure that it is only evaluated once.
4430
4431 We don't put SAVE_EXPR nodes around everything, because assigning very
4432 simple expressions to temporaries causes us to miss good opportunities
4433 for optimizations. Among other things, the opportunity to fold in the
4434 addition of a constant into an addressing mode often gets lost, e.g.
4435 "y[i+1] += x;". In general, we take the approach that we should not make
4436 an assignment unless we are forced into it - i.e., that any non-side effect
4437 operator should be allowed, and that cse should take care of coalescing
4438 multiple utterances of the same expression should that prove fruitful. */
4439
4440 static tree
4441 stabilize_reference_1 (tree e)
4442 {
4443 tree result;
4444 enum tree_code code = TREE_CODE (e);
4445
4446 /* We cannot ignore const expressions because it might be a reference
4447 to a const array but whose index contains side-effects. But we can
4448 ignore things that are actual constant or that already have been
4449 handled by this function. */
4450
4451 if (tree_invariant_p (e))
4452 return e;
4453
4454 switch (TREE_CODE_CLASS (code))
4455 {
4456 case tcc_exceptional:
4457 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4458 have side-effects. */
4459 if (code == STATEMENT_LIST)
4460 return save_expr (e);
4461 /* FALLTHRU */
4462 case tcc_type:
4463 case tcc_declaration:
4464 case tcc_comparison:
4465 case tcc_statement:
4466 case tcc_expression:
4467 case tcc_reference:
4468 case tcc_vl_exp:
4469 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4470 so that it will only be evaluated once. */
4471 /* The reference (r) and comparison (<) classes could be handled as
4472 below, but it is generally faster to only evaluate them once. */
4473 if (TREE_SIDE_EFFECTS (e))
4474 return save_expr (e);
4475 return e;
4476
4477 case tcc_constant:
4478 /* Constants need no processing. In fact, we should never reach
4479 here. */
4480 return e;
4481
4482 case tcc_binary:
4483 /* Division is slow and tends to be compiled with jumps,
4484 especially the division by powers of 2 that is often
4485 found inside of an array reference. So do it just once. */
4486 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4487 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4488 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4489 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4490 return save_expr (e);
4491 /* Recursively stabilize each operand. */
4492 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4493 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4494 break;
4495
4496 case tcc_unary:
4497 /* Recursively stabilize each operand. */
4498 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4499 break;
4500
4501 default:
4502 gcc_unreachable ();
4503 }
4504
4505 TREE_TYPE (result) = TREE_TYPE (e);
4506 TREE_READONLY (result) = TREE_READONLY (e);
4507 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4508 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4509
4510 return result;
4511 }
4512
4513 /* Stabilize a reference so that we can use it any number of times
4514 without causing its operands to be evaluated more than once.
4515 Returns the stabilized reference. This works by means of save_expr,
4516 so see the caveats in the comments about save_expr.
4517
4518 Also allows conversion expressions whose operands are references.
4519 Any other kind of expression is returned unchanged. */
4520
4521 tree
4522 stabilize_reference (tree ref)
4523 {
4524 tree result;
4525 enum tree_code code = TREE_CODE (ref);
4526
4527 switch (code)
4528 {
4529 case VAR_DECL:
4530 case PARM_DECL:
4531 case RESULT_DECL:
4532 /* No action is needed in this case. */
4533 return ref;
4534
4535 CASE_CONVERT:
4536 case FLOAT_EXPR:
4537 case FIX_TRUNC_EXPR:
4538 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4539 break;
4540
4541 case INDIRECT_REF:
4542 result = build_nt (INDIRECT_REF,
4543 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4544 break;
4545
4546 case COMPONENT_REF:
4547 result = build_nt (COMPONENT_REF,
4548 stabilize_reference (TREE_OPERAND (ref, 0)),
4549 TREE_OPERAND (ref, 1), NULL_TREE);
4550 break;
4551
4552 case BIT_FIELD_REF:
4553 result = build_nt (BIT_FIELD_REF,
4554 stabilize_reference (TREE_OPERAND (ref, 0)),
4555 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4556 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4557 break;
4558
4559 case ARRAY_REF:
4560 result = build_nt (ARRAY_REF,
4561 stabilize_reference (TREE_OPERAND (ref, 0)),
4562 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4563 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4564 break;
4565
4566 case ARRAY_RANGE_REF:
4567 result = build_nt (ARRAY_RANGE_REF,
4568 stabilize_reference (TREE_OPERAND (ref, 0)),
4569 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4570 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4571 break;
4572
4573 case COMPOUND_EXPR:
4574 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4575 it wouldn't be ignored. This matters when dealing with
4576 volatiles. */
4577 return stabilize_reference_1 (ref);
4578
4579 /* If arg isn't a kind of lvalue we recognize, make no change.
4580 Caller should recognize the error for an invalid lvalue. */
4581 default:
4582 return ref;
4583
4584 case ERROR_MARK:
4585 return error_mark_node;
4586 }
4587
4588 TREE_TYPE (result) = TREE_TYPE (ref);
4589 TREE_READONLY (result) = TREE_READONLY (ref);
4590 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4591 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4592
4593 return result;
4594 }
4595 \f
4596 /* Low-level constructors for expressions. */
4597
4598 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4599 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4600
4601 void
4602 recompute_tree_invariant_for_addr_expr (tree t)
4603 {
4604 tree node;
4605 bool tc = true, se = false;
4606
4607 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4608
4609 /* We started out assuming this address is both invariant and constant, but
4610 does not have side effects. Now go down any handled components and see if
4611 any of them involve offsets that are either non-constant or non-invariant.
4612 Also check for side-effects.
4613
4614 ??? Note that this code makes no attempt to deal with the case where
4615 taking the address of something causes a copy due to misalignment. */
4616
4617 #define UPDATE_FLAGS(NODE) \
4618 do { tree _node = (NODE); \
4619 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4620 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4621
4622 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4623 node = TREE_OPERAND (node, 0))
4624 {
4625 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4626 array reference (probably made temporarily by the G++ front end),
4627 so ignore all the operands. */
4628 if ((TREE_CODE (node) == ARRAY_REF
4629 || TREE_CODE (node) == ARRAY_RANGE_REF)
4630 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4631 {
4632 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4633 if (TREE_OPERAND (node, 2))
4634 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4635 if (TREE_OPERAND (node, 3))
4636 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4637 }
4638 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4639 FIELD_DECL, apparently. The G++ front end can put something else
4640 there, at least temporarily. */
4641 else if (TREE_CODE (node) == COMPONENT_REF
4642 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4643 {
4644 if (TREE_OPERAND (node, 2))
4645 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4646 }
4647 }
4648
4649 node = lang_hooks.expr_to_decl (node, &tc, &se);
4650
4651 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4652 the address, since &(*a)->b is a form of addition. If it's a constant, the
4653 address is constant too. If it's a decl, its address is constant if the
4654 decl is static. Everything else is not constant and, furthermore,
4655 taking the address of a volatile variable is not volatile. */
4656 if (TREE_CODE (node) == INDIRECT_REF
4657 || TREE_CODE (node) == MEM_REF)
4658 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4659 else if (CONSTANT_CLASS_P (node))
4660 ;
4661 else if (DECL_P (node))
4662 tc &= (staticp (node) != NULL_TREE);
4663 else
4664 {
4665 tc = false;
4666 se |= TREE_SIDE_EFFECTS (node);
4667 }
4668
4669
4670 TREE_CONSTANT (t) = tc;
4671 TREE_SIDE_EFFECTS (t) = se;
4672 #undef UPDATE_FLAGS
4673 }
4674
4675 /* Build an expression of code CODE, data type TYPE, and operands as
4676 specified. Expressions and reference nodes can be created this way.
4677 Constants, decls, types and misc nodes cannot be.
4678
4679 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4680 enough for all extant tree codes. */
4681
4682 tree
4683 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4684 {
4685 tree t;
4686
4687 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4688
4689 t = make_node (code PASS_MEM_STAT);
4690 TREE_TYPE (t) = tt;
4691
4692 return t;
4693 }
4694
4695 tree
4696 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4697 {
4698 int length = sizeof (struct tree_exp);
4699 tree t;
4700
4701 record_node_allocation_statistics (code, length);
4702
4703 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4704
4705 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4706
4707 memset (t, 0, sizeof (struct tree_common));
4708
4709 TREE_SET_CODE (t, code);
4710
4711 TREE_TYPE (t) = type;
4712 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4713 TREE_OPERAND (t, 0) = node;
4714 if (node && !TYPE_P (node))
4715 {
4716 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4717 TREE_READONLY (t) = TREE_READONLY (node);
4718 }
4719
4720 if (TREE_CODE_CLASS (code) == tcc_statement)
4721 {
4722 if (code != DEBUG_BEGIN_STMT)
4723 TREE_SIDE_EFFECTS (t) = 1;
4724 }
4725 else switch (code)
4726 {
4727 case VA_ARG_EXPR:
4728 /* All of these have side-effects, no matter what their
4729 operands are. */
4730 TREE_SIDE_EFFECTS (t) = 1;
4731 TREE_READONLY (t) = 0;
4732 break;
4733
4734 case INDIRECT_REF:
4735 /* Whether a dereference is readonly has nothing to do with whether
4736 its operand is readonly. */
4737 TREE_READONLY (t) = 0;
4738 break;
4739
4740 case ADDR_EXPR:
4741 if (node)
4742 recompute_tree_invariant_for_addr_expr (t);
4743 break;
4744
4745 default:
4746 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4747 && node && !TYPE_P (node)
4748 && TREE_CONSTANT (node))
4749 TREE_CONSTANT (t) = 1;
4750 if (TREE_CODE_CLASS (code) == tcc_reference
4751 && node && TREE_THIS_VOLATILE (node))
4752 TREE_THIS_VOLATILE (t) = 1;
4753 break;
4754 }
4755
4756 return t;
4757 }
4758
4759 #define PROCESS_ARG(N) \
4760 do { \
4761 TREE_OPERAND (t, N) = arg##N; \
4762 if (arg##N &&!TYPE_P (arg##N)) \
4763 { \
4764 if (TREE_SIDE_EFFECTS (arg##N)) \
4765 side_effects = 1; \
4766 if (!TREE_READONLY (arg##N) \
4767 && !CONSTANT_CLASS_P (arg##N)) \
4768 (void) (read_only = 0); \
4769 if (!TREE_CONSTANT (arg##N)) \
4770 (void) (constant = 0); \
4771 } \
4772 } while (0)
4773
4774 tree
4775 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4776 {
4777 bool constant, read_only, side_effects, div_by_zero;
4778 tree t;
4779
4780 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4781
4782 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4783 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4784 /* When sizetype precision doesn't match that of pointers
4785 we need to be able to build explicit extensions or truncations
4786 of the offset argument. */
4787 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4788 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4789 && TREE_CODE (arg1) == INTEGER_CST);
4790
4791 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4792 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4793 && ptrofftype_p (TREE_TYPE (arg1)));
4794
4795 t = make_node (code PASS_MEM_STAT);
4796 TREE_TYPE (t) = tt;
4797
4798 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4799 result based on those same flags for the arguments. But if the
4800 arguments aren't really even `tree' expressions, we shouldn't be trying
4801 to do this. */
4802
4803 /* Expressions without side effects may be constant if their
4804 arguments are as well. */
4805 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4806 || TREE_CODE_CLASS (code) == tcc_binary);
4807 read_only = 1;
4808 side_effects = TREE_SIDE_EFFECTS (t);
4809
4810 switch (code)
4811 {
4812 case TRUNC_DIV_EXPR:
4813 case CEIL_DIV_EXPR:
4814 case FLOOR_DIV_EXPR:
4815 case ROUND_DIV_EXPR:
4816 case EXACT_DIV_EXPR:
4817 case CEIL_MOD_EXPR:
4818 case FLOOR_MOD_EXPR:
4819 case ROUND_MOD_EXPR:
4820 case TRUNC_MOD_EXPR:
4821 div_by_zero = integer_zerop (arg1);
4822 break;
4823 default:
4824 div_by_zero = false;
4825 }
4826
4827 PROCESS_ARG (0);
4828 PROCESS_ARG (1);
4829
4830 TREE_SIDE_EFFECTS (t) = side_effects;
4831 if (code == MEM_REF)
4832 {
4833 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4834 {
4835 tree o = TREE_OPERAND (arg0, 0);
4836 TREE_READONLY (t) = TREE_READONLY (o);
4837 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4838 }
4839 }
4840 else
4841 {
4842 TREE_READONLY (t) = read_only;
4843 /* Don't mark X / 0 as constant. */
4844 TREE_CONSTANT (t) = constant && !div_by_zero;
4845 TREE_THIS_VOLATILE (t)
4846 = (TREE_CODE_CLASS (code) == tcc_reference
4847 && arg0 && TREE_THIS_VOLATILE (arg0));
4848 }
4849
4850 return t;
4851 }
4852
4853
4854 tree
4855 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4856 tree arg2 MEM_STAT_DECL)
4857 {
4858 bool constant, read_only, side_effects;
4859 tree t;
4860
4861 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4862 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4863
4864 t = make_node (code PASS_MEM_STAT);
4865 TREE_TYPE (t) = tt;
4866
4867 read_only = 1;
4868
4869 /* As a special exception, if COND_EXPR has NULL branches, we
4870 assume that it is a gimple statement and always consider
4871 it to have side effects. */
4872 if (code == COND_EXPR
4873 && tt == void_type_node
4874 && arg1 == NULL_TREE
4875 && arg2 == NULL_TREE)
4876 side_effects = true;
4877 else
4878 side_effects = TREE_SIDE_EFFECTS (t);
4879
4880 PROCESS_ARG (0);
4881 PROCESS_ARG (1);
4882 PROCESS_ARG (2);
4883
4884 if (code == COND_EXPR)
4885 TREE_READONLY (t) = read_only;
4886
4887 TREE_SIDE_EFFECTS (t) = side_effects;
4888 TREE_THIS_VOLATILE (t)
4889 = (TREE_CODE_CLASS (code) == tcc_reference
4890 && arg0 && TREE_THIS_VOLATILE (arg0));
4891
4892 return t;
4893 }
4894
4895 tree
4896 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4897 tree arg2, tree arg3 MEM_STAT_DECL)
4898 {
4899 bool constant, read_only, side_effects;
4900 tree t;
4901
4902 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4903
4904 t = make_node (code PASS_MEM_STAT);
4905 TREE_TYPE (t) = tt;
4906
4907 side_effects = TREE_SIDE_EFFECTS (t);
4908
4909 PROCESS_ARG (0);
4910 PROCESS_ARG (1);
4911 PROCESS_ARG (2);
4912 PROCESS_ARG (3);
4913
4914 TREE_SIDE_EFFECTS (t) = side_effects;
4915 TREE_THIS_VOLATILE (t)
4916 = (TREE_CODE_CLASS (code) == tcc_reference
4917 && arg0 && TREE_THIS_VOLATILE (arg0));
4918
4919 return t;
4920 }
4921
4922 tree
4923 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4924 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4925 {
4926 bool constant, read_only, side_effects;
4927 tree t;
4928
4929 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4930
4931 t = make_node (code PASS_MEM_STAT);
4932 TREE_TYPE (t) = tt;
4933
4934 side_effects = TREE_SIDE_EFFECTS (t);
4935
4936 PROCESS_ARG (0);
4937 PROCESS_ARG (1);
4938 PROCESS_ARG (2);
4939 PROCESS_ARG (3);
4940 PROCESS_ARG (4);
4941
4942 TREE_SIDE_EFFECTS (t) = side_effects;
4943 if (code == TARGET_MEM_REF)
4944 {
4945 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4946 {
4947 tree o = TREE_OPERAND (arg0, 0);
4948 TREE_READONLY (t) = TREE_READONLY (o);
4949 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4950 }
4951 }
4952 else
4953 TREE_THIS_VOLATILE (t)
4954 = (TREE_CODE_CLASS (code) == tcc_reference
4955 && arg0 && TREE_THIS_VOLATILE (arg0));
4956
4957 return t;
4958 }
4959
4960 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4961 on the pointer PTR. */
4962
4963 tree
4964 build_simple_mem_ref_loc (location_t loc, tree ptr)
4965 {
4966 poly_int64 offset = 0;
4967 tree ptype = TREE_TYPE (ptr);
4968 tree tem;
4969 /* For convenience allow addresses that collapse to a simple base
4970 and offset. */
4971 if (TREE_CODE (ptr) == ADDR_EXPR
4972 && (handled_component_p (TREE_OPERAND (ptr, 0))
4973 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4974 {
4975 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4976 gcc_assert (ptr);
4977 if (TREE_CODE (ptr) == MEM_REF)
4978 {
4979 offset += mem_ref_offset (ptr).force_shwi ();
4980 ptr = TREE_OPERAND (ptr, 0);
4981 }
4982 else
4983 ptr = build_fold_addr_expr (ptr);
4984 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4985 }
4986 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4987 ptr, build_int_cst (ptype, offset));
4988 SET_EXPR_LOCATION (tem, loc);
4989 return tem;
4990 }
4991
4992 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4993
4994 poly_offset_int
4995 mem_ref_offset (const_tree t)
4996 {
4997 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4998 SIGNED);
4999 }
5000
5001 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
5002 offsetted by OFFSET units. */
5003
5004 tree
5005 build_invariant_address (tree type, tree base, poly_int64 offset)
5006 {
5007 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
5008 build_fold_addr_expr (base),
5009 build_int_cst (ptr_type_node, offset));
5010 tree addr = build1 (ADDR_EXPR, type, ref);
5011 recompute_tree_invariant_for_addr_expr (addr);
5012 return addr;
5013 }
5014
5015 /* Similar except don't specify the TREE_TYPE
5016 and leave the TREE_SIDE_EFFECTS as 0.
5017 It is permissible for arguments to be null,
5018 or even garbage if their values do not matter. */
5019
5020 tree
5021 build_nt (enum tree_code code, ...)
5022 {
5023 tree t;
5024 int length;
5025 int i;
5026 va_list p;
5027
5028 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
5029
5030 va_start (p, code);
5031
5032 t = make_node (code);
5033 length = TREE_CODE_LENGTH (code);
5034
5035 for (i = 0; i < length; i++)
5036 TREE_OPERAND (t, i) = va_arg (p, tree);
5037
5038 va_end (p);
5039 return t;
5040 }
5041
5042 /* Similar to build_nt, but for creating a CALL_EXPR object with a
5043 tree vec. */
5044
5045 tree
5046 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
5047 {
5048 tree ret, t;
5049 unsigned int ix;
5050
5051 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
5052 CALL_EXPR_FN (ret) = fn;
5053 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
5054 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
5055 CALL_EXPR_ARG (ret, ix) = t;
5056 return ret;
5057 }
5058 \f
5059 /* Create a DECL_... node of code CODE, name NAME (if non-null)
5060 and data type TYPE.
5061 We do NOT enter this node in any sort of symbol table.
5062
5063 LOC is the location of the decl.
5064
5065 layout_decl is used to set up the decl's storage layout.
5066 Other slots are initialized to 0 or null pointers. */
5067
5068 tree
5069 build_decl (location_t loc, enum tree_code code, tree name,
5070 tree type MEM_STAT_DECL)
5071 {
5072 tree t;
5073
5074 t = make_node (code PASS_MEM_STAT);
5075 DECL_SOURCE_LOCATION (t) = loc;
5076
5077 /* if (type == error_mark_node)
5078 type = integer_type_node; */
5079 /* That is not done, deliberately, so that having error_mark_node
5080 as the type can suppress useless errors in the use of this variable. */
5081
5082 DECL_NAME (t) = name;
5083 TREE_TYPE (t) = type;
5084
5085 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
5086 layout_decl (t, 0);
5087
5088 return t;
5089 }
5090
5091 /* Builds and returns function declaration with NAME and TYPE. */
5092
5093 tree
5094 build_fn_decl (const char *name, tree type)
5095 {
5096 tree id = get_identifier (name);
5097 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
5098
5099 DECL_EXTERNAL (decl) = 1;
5100 TREE_PUBLIC (decl) = 1;
5101 DECL_ARTIFICIAL (decl) = 1;
5102 TREE_NOTHROW (decl) = 1;
5103
5104 return decl;
5105 }
5106
5107 vec<tree, va_gc> *all_translation_units;
5108
5109 /* Builds a new translation-unit decl with name NAME, queues it in the
5110 global list of translation-unit decls and returns it. */
5111
5112 tree
5113 build_translation_unit_decl (tree name)
5114 {
5115 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5116 name, NULL_TREE);
5117 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5118 vec_safe_push (all_translation_units, tu);
5119 return tu;
5120 }
5121
5122 \f
5123 /* BLOCK nodes are used to represent the structure of binding contours
5124 and declarations, once those contours have been exited and their contents
5125 compiled. This information is used for outputting debugging info. */
5126
5127 tree
5128 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5129 {
5130 tree block = make_node (BLOCK);
5131
5132 BLOCK_VARS (block) = vars;
5133 BLOCK_SUBBLOCKS (block) = subblocks;
5134 BLOCK_SUPERCONTEXT (block) = supercontext;
5135 BLOCK_CHAIN (block) = chain;
5136 return block;
5137 }
5138
5139 \f
5140 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5141
5142 LOC is the location to use in tree T. */
5143
5144 void
5145 protected_set_expr_location (tree t, location_t loc)
5146 {
5147 if (CAN_HAVE_LOCATION_P (t))
5148 SET_EXPR_LOCATION (t, loc);
5149 }
5150
5151 /* Data used when collecting DECLs and TYPEs for language data removal. */
5152
5153 class free_lang_data_d
5154 {
5155 public:
5156 free_lang_data_d () : decls (100), types (100) {}
5157
5158 /* Worklist to avoid excessive recursion. */
5159 auto_vec<tree> worklist;
5160
5161 /* Set of traversed objects. Used to avoid duplicate visits. */
5162 hash_set<tree> pset;
5163
5164 /* Array of symbols to process with free_lang_data_in_decl. */
5165 auto_vec<tree> decls;
5166
5167 /* Array of types to process with free_lang_data_in_type. */
5168 auto_vec<tree> types;
5169 };
5170
5171
5172 /* Add type or decl T to one of the list of tree nodes that need their
5173 language data removed. The lists are held inside FLD. */
5174
5175 static void
5176 add_tree_to_fld_list (tree t, class free_lang_data_d *fld)
5177 {
5178 if (DECL_P (t))
5179 fld->decls.safe_push (t);
5180 else if (TYPE_P (t))
5181 fld->types.safe_push (t);
5182 else
5183 gcc_unreachable ();
5184 }
5185
5186 /* Push tree node T into FLD->WORKLIST. */
5187
5188 static inline void
5189 fld_worklist_push (tree t, class free_lang_data_d *fld)
5190 {
5191 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5192 fld->worklist.safe_push ((t));
5193 }
5194
5195
5196 \f
5197 /* Return simplified TYPE_NAME of TYPE. */
5198
5199 static tree
5200 fld_simplified_type_name (tree type)
5201 {
5202 if (!TYPE_NAME (type) || TREE_CODE (TYPE_NAME (type)) != TYPE_DECL)
5203 return TYPE_NAME (type);
5204 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5205 TYPE_DECL if the type doesn't have linkage.
5206 this must match fld_ */
5207 if (type != TYPE_MAIN_VARIANT (type)
5208 || (!DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (type))
5209 && (TREE_CODE (type) != RECORD_TYPE
5210 || !TYPE_BINFO (type)
5211 || !BINFO_VTABLE (TYPE_BINFO (type)))))
5212 return DECL_NAME (TYPE_NAME (type));
5213 return TYPE_NAME (type);
5214 }
5215
5216 /* Do same comparsion as check_qualified_type skipping lang part of type
5217 and be more permissive about type names: we only care that names are
5218 same (for diagnostics) and that ODR names are the same.
5219 If INNER_TYPE is non-NULL, be sure that TREE_TYPE match it. */
5220
5221 static bool
5222 fld_type_variant_equal_p (tree t, tree v, tree inner_type)
5223 {
5224 if (TYPE_QUALS (t) != TYPE_QUALS (v)
5225 /* We want to match incomplete variants with complete types.
5226 In this case we need to ignore alignment. */
5227 || ((!RECORD_OR_UNION_TYPE_P (t) || COMPLETE_TYPE_P (v))
5228 && (TYPE_ALIGN (t) != TYPE_ALIGN (v)
5229 || TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (v)))
5230 || fld_simplified_type_name (t) != fld_simplified_type_name (v)
5231 || !attribute_list_equal (TYPE_ATTRIBUTES (t),
5232 TYPE_ATTRIBUTES (v))
5233 || (inner_type && TREE_TYPE (v) != inner_type))
5234 return false;
5235
5236 return true;
5237 }
5238
5239 /* Find variant of FIRST that match T and create new one if necessary.
5240 Set TREE_TYPE to INNER_TYPE if non-NULL. */
5241
5242 static tree
5243 fld_type_variant (tree first, tree t, class free_lang_data_d *fld,
5244 tree inner_type = NULL)
5245 {
5246 if (first == TYPE_MAIN_VARIANT (t))
5247 return t;
5248 for (tree v = first; v; v = TYPE_NEXT_VARIANT (v))
5249 if (fld_type_variant_equal_p (t, v, inner_type))
5250 return v;
5251 tree v = build_variant_type_copy (first);
5252 TYPE_READONLY (v) = TYPE_READONLY (t);
5253 TYPE_VOLATILE (v) = TYPE_VOLATILE (t);
5254 TYPE_ATOMIC (v) = TYPE_ATOMIC (t);
5255 TYPE_RESTRICT (v) = TYPE_RESTRICT (t);
5256 TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t);
5257 TYPE_NAME (v) = TYPE_NAME (t);
5258 TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t);
5259 TYPE_CANONICAL (v) = TYPE_CANONICAL (t);
5260 /* Variants of incomplete types should have alignment
5261 set to BITS_PER_UNIT. Do not copy the actual alignment. */
5262 if (!RECORD_OR_UNION_TYPE_P (v) || COMPLETE_TYPE_P (v))
5263 {
5264 SET_TYPE_ALIGN (v, TYPE_ALIGN (t));
5265 TYPE_USER_ALIGN (v) = TYPE_USER_ALIGN (t);
5266 }
5267 if (inner_type)
5268 TREE_TYPE (v) = inner_type;
5269 gcc_checking_assert (fld_type_variant_equal_p (t,v, inner_type));
5270 if (!fld->pset.add (v))
5271 add_tree_to_fld_list (v, fld);
5272 return v;
5273 }
5274
5275 /* Map complete types to incomplete types. */
5276
5277 static hash_map<tree, tree> *fld_incomplete_types;
5278
5279 /* Map types to simplified types. */
5280
5281 static hash_map<tree, tree> *fld_simplified_types;
5282
5283 /* Produce variant of T whose TREE_TYPE is T2. If it is main variant,
5284 use MAP to prevent duplicates. */
5285
5286 static tree
5287 fld_process_array_type (tree t, tree t2, hash_map<tree, tree> *map,
5288 class free_lang_data_d *fld)
5289 {
5290 if (TREE_TYPE (t) == t2)
5291 return t;
5292
5293 if (TYPE_MAIN_VARIANT (t) != t)
5294 {
5295 return fld_type_variant
5296 (fld_process_array_type (TYPE_MAIN_VARIANT (t),
5297 TYPE_MAIN_VARIANT (t2), map, fld),
5298 t, fld, t2);
5299 }
5300
5301 bool existed;
5302 tree &array
5303 = map->get_or_insert (t, &existed);
5304 if (!existed)
5305 {
5306 array
5307 = build_array_type_1 (t2, TYPE_DOMAIN (t), TYPE_TYPELESS_STORAGE (t),
5308 false, false);
5309 TYPE_CANONICAL (array) = TYPE_CANONICAL (t);
5310 if (!fld->pset.add (array))
5311 add_tree_to_fld_list (array, fld);
5312 }
5313 return array;
5314 }
5315
5316 /* Return CTX after removal of contexts that are not relevant */
5317
5318 static tree
5319 fld_decl_context (tree ctx)
5320 {
5321 /* Variably modified types are needed for tree_is_indexable to decide
5322 whether the type needs to go to local or global section.
5323 This code is semi-broken but for now it is easiest to keep contexts
5324 as expected. */
5325 if (ctx && TYPE_P (ctx)
5326 && !variably_modified_type_p (ctx, NULL_TREE))
5327 {
5328 while (ctx && TYPE_P (ctx))
5329 ctx = TYPE_CONTEXT (ctx);
5330 }
5331 return ctx;
5332 }
5333
5334 /* For T being aggregate type try to turn it into a incomplete variant.
5335 Return T if no simplification is possible. */
5336
5337 static tree
5338 fld_incomplete_type_of (tree t, class free_lang_data_d *fld)
5339 {
5340 if (!t)
5341 return NULL;
5342 if (POINTER_TYPE_P (t))
5343 {
5344 tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld);
5345 if (t2 != TREE_TYPE (t))
5346 {
5347 tree first;
5348 if (TREE_CODE (t) == POINTER_TYPE)
5349 first = build_pointer_type_for_mode (t2, TYPE_MODE (t),
5350 TYPE_REF_CAN_ALIAS_ALL (t));
5351 else
5352 first = build_reference_type_for_mode (t2, TYPE_MODE (t),
5353 TYPE_REF_CAN_ALIAS_ALL (t));
5354 gcc_assert (TYPE_CANONICAL (t2) != t2
5355 && TYPE_CANONICAL (t2) == TYPE_CANONICAL (TREE_TYPE (t)));
5356 if (!fld->pset.add (first))
5357 add_tree_to_fld_list (first, fld);
5358 return fld_type_variant (first, t, fld);
5359 }
5360 return t;
5361 }
5362 if (TREE_CODE (t) == ARRAY_TYPE)
5363 return fld_process_array_type (t,
5364 fld_incomplete_type_of (TREE_TYPE (t), fld),
5365 fld_incomplete_types, fld);
5366 if ((!RECORD_OR_UNION_TYPE_P (t) && TREE_CODE (t) != ENUMERAL_TYPE)
5367 || !COMPLETE_TYPE_P (t))
5368 return t;
5369 if (TYPE_MAIN_VARIANT (t) == t)
5370 {
5371 bool existed;
5372 tree &copy
5373 = fld_incomplete_types->get_or_insert (t, &existed);
5374
5375 if (!existed)
5376 {
5377 copy = build_distinct_type_copy (t);
5378
5379 /* It is possible that type was not seen by free_lang_data yet. */
5380 if (!fld->pset.add (copy))
5381 add_tree_to_fld_list (copy, fld);
5382 TYPE_SIZE (copy) = NULL;
5383 TYPE_USER_ALIGN (copy) = 0;
5384 TYPE_SIZE_UNIT (copy) = NULL;
5385 TYPE_CANONICAL (copy) = TYPE_CANONICAL (t);
5386 TREE_ADDRESSABLE (copy) = 0;
5387 if (AGGREGATE_TYPE_P (t))
5388 {
5389 SET_TYPE_MODE (copy, VOIDmode);
5390 SET_TYPE_ALIGN (copy, BITS_PER_UNIT);
5391 TYPE_TYPELESS_STORAGE (copy) = 0;
5392 TYPE_FIELDS (copy) = NULL;
5393 TYPE_BINFO (copy) = NULL;
5394 TYPE_FINAL_P (copy) = 0;
5395 TYPE_EMPTY_P (copy) = 0;
5396 }
5397 else
5398 {
5399 TYPE_VALUES (copy) = NULL;
5400 ENUM_IS_OPAQUE (copy) = 0;
5401 ENUM_IS_SCOPED (copy) = 0;
5402 }
5403
5404 /* Build copy of TYPE_DECL in TYPE_NAME if necessary.
5405 This is needed for ODR violation warnings to come out right (we
5406 want duplicate TYPE_DECLs whenever the type is duplicated because
5407 of ODR violation. Because lang data in the TYPE_DECL may not
5408 have been freed yet, rebuild it from scratch and copy relevant
5409 fields. */
5410 TYPE_NAME (copy) = fld_simplified_type_name (copy);
5411 tree name = TYPE_NAME (copy);
5412
5413 if (name && TREE_CODE (name) == TYPE_DECL)
5414 {
5415 gcc_checking_assert (TREE_TYPE (name) == t);
5416 tree name2 = build_decl (DECL_SOURCE_LOCATION (name), TYPE_DECL,
5417 DECL_NAME (name), copy);
5418 if (DECL_ASSEMBLER_NAME_SET_P (name))
5419 SET_DECL_ASSEMBLER_NAME (name2, DECL_ASSEMBLER_NAME (name));
5420 SET_DECL_ALIGN (name2, 0);
5421 DECL_CONTEXT (name2) = fld_decl_context
5422 (DECL_CONTEXT (name));
5423 TYPE_NAME (copy) = name2;
5424 }
5425 }
5426 return copy;
5427 }
5428 return (fld_type_variant
5429 (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld));
5430 }
5431
5432 /* Simplify type T for scenarios where we do not need complete pointer
5433 types. */
5434
5435 static tree
5436 fld_simplified_type (tree t, class free_lang_data_d *fld)
5437 {
5438 if (!t)
5439 return t;
5440 if (POINTER_TYPE_P (t))
5441 return fld_incomplete_type_of (t, fld);
5442 /* FIXME: This triggers verification error, see PR88140. */
5443 if (TREE_CODE (t) == ARRAY_TYPE && 0)
5444 return fld_process_array_type (t, fld_simplified_type (TREE_TYPE (t), fld),
5445 fld_simplified_types, fld);
5446 return t;
5447 }
5448
5449 /* Reset the expression *EXPR_P, a size or position.
5450
5451 ??? We could reset all non-constant sizes or positions. But it's cheap
5452 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5453
5454 We need to reset self-referential sizes or positions because they cannot
5455 be gimplified and thus can contain a CALL_EXPR after the gimplification
5456 is finished, which will run afoul of LTO streaming. And they need to be
5457 reset to something essentially dummy but not constant, so as to preserve
5458 the properties of the object they are attached to. */
5459
5460 static inline void
5461 free_lang_data_in_one_sizepos (tree *expr_p)
5462 {
5463 tree expr = *expr_p;
5464 if (CONTAINS_PLACEHOLDER_P (expr))
5465 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5466 }
5467
5468
5469 /* Reset all the fields in a binfo node BINFO. We only keep
5470 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5471
5472 static void
5473 free_lang_data_in_binfo (tree binfo)
5474 {
5475 unsigned i;
5476 tree t;
5477
5478 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5479
5480 BINFO_VIRTUALS (binfo) = NULL_TREE;
5481 BINFO_BASE_ACCESSES (binfo) = NULL;
5482 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5483 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5484 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5485 TREE_PUBLIC (binfo) = 0;
5486
5487 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5488 free_lang_data_in_binfo (t);
5489 }
5490
5491
5492 /* Reset all language specific information still present in TYPE. */
5493
5494 static void
5495 free_lang_data_in_type (tree type, class free_lang_data_d *fld)
5496 {
5497 gcc_assert (TYPE_P (type));
5498
5499 /* Give the FE a chance to remove its own data first. */
5500 lang_hooks.free_lang_data (type);
5501
5502 TREE_LANG_FLAG_0 (type) = 0;
5503 TREE_LANG_FLAG_1 (type) = 0;
5504 TREE_LANG_FLAG_2 (type) = 0;
5505 TREE_LANG_FLAG_3 (type) = 0;
5506 TREE_LANG_FLAG_4 (type) = 0;
5507 TREE_LANG_FLAG_5 (type) = 0;
5508 TREE_LANG_FLAG_6 (type) = 0;
5509
5510 TYPE_NEEDS_CONSTRUCTING (type) = 0;
5511
5512 /* Purge non-marked variants from the variants chain, so that they
5513 don't reappear in the IL after free_lang_data. */
5514 while (TYPE_NEXT_VARIANT (type)
5515 && !fld->pset.contains (TYPE_NEXT_VARIANT (type)))
5516 {
5517 tree t = TYPE_NEXT_VARIANT (type);
5518 TYPE_NEXT_VARIANT (type) = TYPE_NEXT_VARIANT (t);
5519 /* Turn the removed types into distinct types. */
5520 TYPE_MAIN_VARIANT (t) = t;
5521 TYPE_NEXT_VARIANT (t) = NULL_TREE;
5522 }
5523
5524 if (TREE_CODE (type) == FUNCTION_TYPE)
5525 {
5526 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5527 /* Remove the const and volatile qualifiers from arguments. The
5528 C++ front end removes them, but the C front end does not,
5529 leading to false ODR violation errors when merging two
5530 instances of the same function signature compiled by
5531 different front ends. */
5532 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5533 {
5534 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5535 tree arg_type = TREE_VALUE (p);
5536
5537 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5538 {
5539 int quals = TYPE_QUALS (arg_type)
5540 & ~TYPE_QUAL_CONST
5541 & ~TYPE_QUAL_VOLATILE;
5542 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5543 if (!fld->pset.add (TREE_VALUE (p)))
5544 free_lang_data_in_type (TREE_VALUE (p), fld);
5545 }
5546 /* C++ FE uses TREE_PURPOSE to store initial values. */
5547 TREE_PURPOSE (p) = NULL;
5548 }
5549 }
5550 else if (TREE_CODE (type) == METHOD_TYPE)
5551 {
5552 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5553 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5554 {
5555 /* C++ FE uses TREE_PURPOSE to store initial values. */
5556 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5557 TREE_PURPOSE (p) = NULL;
5558 }
5559 }
5560 else if (RECORD_OR_UNION_TYPE_P (type))
5561 {
5562 /* Remove members that are not FIELD_DECLs from the field list
5563 of an aggregate. These occur in C++. */
5564 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5565 if (TREE_CODE (member) == FIELD_DECL)
5566 prev = &DECL_CHAIN (member);
5567 else
5568 *prev = DECL_CHAIN (member);
5569
5570 TYPE_VFIELD (type) = NULL_TREE;
5571
5572 if (TYPE_BINFO (type))
5573 {
5574 free_lang_data_in_binfo (TYPE_BINFO (type));
5575 /* We need to preserve link to bases and virtual table for all
5576 polymorphic types to make devirtualization machinery working. */
5577 if (!BINFO_VTABLE (TYPE_BINFO (type)))
5578 TYPE_BINFO (type) = NULL;
5579 }
5580 }
5581 else if (INTEGRAL_TYPE_P (type)
5582 || SCALAR_FLOAT_TYPE_P (type)
5583 || FIXED_POINT_TYPE_P (type))
5584 {
5585 if (TREE_CODE (type) == ENUMERAL_TYPE)
5586 {
5587 ENUM_IS_OPAQUE (type) = 0;
5588 ENUM_IS_SCOPED (type) = 0;
5589 /* Type values are used only for C++ ODR checking. Drop them
5590 for all type variants and non-ODR types.
5591 For ODR types the data is freed in free_odr_warning_data. */
5592 if (TYPE_MAIN_VARIANT (type) != type
5593 || !type_with_linkage_p (type))
5594 TYPE_VALUES (type) = NULL;
5595 else
5596 /* Simplify representation by recording only values rather
5597 than const decls. */
5598 for (tree e = TYPE_VALUES (type); e; e = TREE_CHAIN (e))
5599 if (TREE_CODE (TREE_VALUE (e)) == CONST_DECL)
5600 TREE_VALUE (e) = DECL_INITIAL (TREE_VALUE (e));
5601 }
5602 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5603 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5604 }
5605
5606 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5607
5608 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5609 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5610
5611 if (TYPE_CONTEXT (type)
5612 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5613 {
5614 tree ctx = TYPE_CONTEXT (type);
5615 do
5616 {
5617 ctx = BLOCK_SUPERCONTEXT (ctx);
5618 }
5619 while (ctx && TREE_CODE (ctx) == BLOCK);
5620 TYPE_CONTEXT (type) = ctx;
5621 }
5622
5623 TYPE_STUB_DECL (type) = NULL;
5624 TYPE_NAME (type) = fld_simplified_type_name (type);
5625 }
5626
5627
5628 /* Return true if DECL may need an assembler name to be set. */
5629
5630 static inline bool
5631 need_assembler_name_p (tree decl)
5632 {
5633 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5634 Rule merging. This makes type_odr_p to return true on those types during
5635 LTO and by comparing the mangled name, we can say what types are intended
5636 to be equivalent across compilation unit.
5637
5638 We do not store names of type_in_anonymous_namespace_p.
5639
5640 Record, union and enumeration type have linkage that allows use
5641 to check type_in_anonymous_namespace_p. We do not mangle compound types
5642 that always can be compared structurally.
5643
5644 Similarly for builtin types, we compare properties of their main variant.
5645 A special case are integer types where mangling do make differences
5646 between char/signed char/unsigned char etc. Storing name for these makes
5647 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5648 See cp/mangle.c:write_builtin_type for details. */
5649
5650 if (TREE_CODE (decl) == TYPE_DECL)
5651 {
5652 if (DECL_NAME (decl)
5653 && decl == TYPE_NAME (TREE_TYPE (decl))
5654 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5655 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5656 && ((TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
5657 && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE)
5658 || TYPE_CXX_ODR_P (TREE_TYPE (decl)))
5659 && (type_with_linkage_p (TREE_TYPE (decl))
5660 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5661 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5662 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5663 return false;
5664 }
5665 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5666 if (!VAR_OR_FUNCTION_DECL_P (decl))
5667 return false;
5668
5669 /* If DECL already has its assembler name set, it does not need a
5670 new one. */
5671 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5672 || DECL_ASSEMBLER_NAME_SET_P (decl))
5673 return false;
5674
5675 /* Abstract decls do not need an assembler name. */
5676 if (DECL_ABSTRACT_P (decl))
5677 return false;
5678
5679 /* For VAR_DECLs, only static, public and external symbols need an
5680 assembler name. */
5681 if (VAR_P (decl)
5682 && !TREE_STATIC (decl)
5683 && !TREE_PUBLIC (decl)
5684 && !DECL_EXTERNAL (decl))
5685 return false;
5686
5687 if (TREE_CODE (decl) == FUNCTION_DECL)
5688 {
5689 /* Do not set assembler name on builtins. Allow RTL expansion to
5690 decide whether to expand inline or via a regular call. */
5691 if (fndecl_built_in_p (decl)
5692 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5693 return false;
5694
5695 /* Functions represented in the callgraph need an assembler name. */
5696 if (cgraph_node::get (decl) != NULL)
5697 return true;
5698
5699 /* Unused and not public functions don't need an assembler name. */
5700 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5701 return false;
5702 }
5703
5704 return true;
5705 }
5706
5707
5708 /* Reset all language specific information still present in symbol
5709 DECL. */
5710
5711 static void
5712 free_lang_data_in_decl (tree decl, class free_lang_data_d *fld)
5713 {
5714 gcc_assert (DECL_P (decl));
5715
5716 /* Give the FE a chance to remove its own data first. */
5717 lang_hooks.free_lang_data (decl);
5718
5719 TREE_LANG_FLAG_0 (decl) = 0;
5720 TREE_LANG_FLAG_1 (decl) = 0;
5721 TREE_LANG_FLAG_2 (decl) = 0;
5722 TREE_LANG_FLAG_3 (decl) = 0;
5723 TREE_LANG_FLAG_4 (decl) = 0;
5724 TREE_LANG_FLAG_5 (decl) = 0;
5725 TREE_LANG_FLAG_6 (decl) = 0;
5726
5727 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5728 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5729 if (TREE_CODE (decl) == FIELD_DECL)
5730 {
5731 DECL_FCONTEXT (decl) = NULL;
5732 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5733 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5734 DECL_QUALIFIER (decl) = NULL_TREE;
5735 }
5736
5737 if (TREE_CODE (decl) == FUNCTION_DECL)
5738 {
5739 struct cgraph_node *node;
5740 /* Frontends do not set TREE_ADDRESSABLE on public variables even though
5741 the address may be taken in other unit, so this flag has no practical
5742 use for middle-end.
5743
5744 It would make more sense if frontends set TREE_ADDRESSABLE to 0 only
5745 for public objects that indeed cannot be adressed, but it is not
5746 the case. Set the flag to true so we do not get merge failures for
5747 i.e. virtual tables between units that take address of it and
5748 units that don't. */
5749 if (TREE_PUBLIC (decl))
5750 TREE_ADDRESSABLE (decl) = true;
5751 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5752 if (!(node = cgraph_node::get (decl))
5753 || (!node->definition && !node->clones))
5754 {
5755 if (node)
5756 node->release_body ();
5757 else
5758 {
5759 release_function_body (decl);
5760 DECL_ARGUMENTS (decl) = NULL;
5761 DECL_RESULT (decl) = NULL;
5762 DECL_INITIAL (decl) = error_mark_node;
5763 }
5764 }
5765 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5766 {
5767 tree t;
5768
5769 /* If DECL has a gimple body, then the context for its
5770 arguments must be DECL. Otherwise, it doesn't really
5771 matter, as we will not be emitting any code for DECL. In
5772 general, there may be other instances of DECL created by
5773 the front end and since PARM_DECLs are generally shared,
5774 their DECL_CONTEXT changes as the replicas of DECL are
5775 created. The only time where DECL_CONTEXT is important
5776 is for the FUNCTION_DECLs that have a gimple body (since
5777 the PARM_DECL will be used in the function's body). */
5778 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5779 DECL_CONTEXT (t) = decl;
5780 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5781 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5782 = target_option_default_node;
5783 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5784 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5785 = optimization_default_node;
5786 }
5787
5788 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5789 At this point, it is not needed anymore. */
5790 DECL_SAVED_TREE (decl) = NULL_TREE;
5791
5792 /* Clear the abstract origin if it refers to a method.
5793 Otherwise dwarf2out.c will ICE as we splice functions out of
5794 TYPE_FIELDS and thus the origin will not be output
5795 correctly. */
5796 if (DECL_ABSTRACT_ORIGIN (decl)
5797 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5798 && RECORD_OR_UNION_TYPE_P
5799 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5800 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5801
5802 DECL_VINDEX (decl) = NULL_TREE;
5803 }
5804 else if (VAR_P (decl))
5805 {
5806 /* See comment above why we set the flag for functoins. */
5807 if (TREE_PUBLIC (decl))
5808 TREE_ADDRESSABLE (decl) = true;
5809 if ((DECL_EXTERNAL (decl)
5810 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5811 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5812 DECL_INITIAL (decl) = NULL_TREE;
5813 }
5814 else if (TREE_CODE (decl) == TYPE_DECL)
5815 {
5816 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5817 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5818 TREE_PUBLIC (decl) = 0;
5819 TREE_PRIVATE (decl) = 0;
5820 DECL_ARTIFICIAL (decl) = 0;
5821 TYPE_DECL_SUPPRESS_DEBUG (decl) = 0;
5822 DECL_INITIAL (decl) = NULL_TREE;
5823 DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5824 DECL_MODE (decl) = VOIDmode;
5825 SET_DECL_ALIGN (decl, 0);
5826 /* TREE_TYPE is cleared at WPA time in free_odr_warning_data. */
5827 }
5828 else if (TREE_CODE (decl) == FIELD_DECL)
5829 {
5830 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5831 DECL_INITIAL (decl) = NULL_TREE;
5832 }
5833 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5834 && DECL_INITIAL (decl)
5835 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5836 {
5837 /* Strip builtins from the translation-unit BLOCK. We still have targets
5838 without builtin_decl_explicit support and also builtins are shared
5839 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5840 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5841 while (*nextp)
5842 {
5843 tree var = *nextp;
5844 if (TREE_CODE (var) == FUNCTION_DECL
5845 && fndecl_built_in_p (var))
5846 *nextp = TREE_CHAIN (var);
5847 else
5848 nextp = &TREE_CHAIN (var);
5849 }
5850 }
5851 /* We need to keep field decls associated with their trees. Otherwise tree
5852 merging may merge some fileds and keep others disjoint wich in turn will
5853 not do well with TREE_CHAIN pointers linking them.
5854
5855 Also do not drop containing types for virtual methods and tables because
5856 these are needed by devirtualization.
5857 C++ destructors are special because C++ frontends sometimes produces
5858 virtual destructor as an alias of non-virtual destructor. In
5859 devirutalization code we always walk through aliases and we need
5860 context to be preserved too. See PR89335 */
5861 if (TREE_CODE (decl) != FIELD_DECL
5862 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5863 || (!DECL_VIRTUAL_P (decl)
5864 && (TREE_CODE (decl) != FUNCTION_DECL
5865 || !DECL_CXX_DESTRUCTOR_P (decl)))))
5866 DECL_CONTEXT (decl) = fld_decl_context (DECL_CONTEXT (decl));
5867 }
5868
5869
5870 /* Operand callback helper for free_lang_data_in_node. *TP is the
5871 subtree operand being considered. */
5872
5873 static tree
5874 find_decls_types_r (tree *tp, int *ws, void *data)
5875 {
5876 tree t = *tp;
5877 class free_lang_data_d *fld = (class free_lang_data_d *) data;
5878
5879 if (TREE_CODE (t) == TREE_LIST)
5880 return NULL_TREE;
5881
5882 /* Language specific nodes will be removed, so there is no need
5883 to gather anything under them. */
5884 if (is_lang_specific (t))
5885 {
5886 *ws = 0;
5887 return NULL_TREE;
5888 }
5889
5890 if (DECL_P (t))
5891 {
5892 /* Note that walk_tree does not traverse every possible field in
5893 decls, so we have to do our own traversals here. */
5894 add_tree_to_fld_list (t, fld);
5895
5896 fld_worklist_push (DECL_NAME (t), fld);
5897 fld_worklist_push (DECL_CONTEXT (t), fld);
5898 fld_worklist_push (DECL_SIZE (t), fld);
5899 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5900
5901 /* We are going to remove everything under DECL_INITIAL for
5902 TYPE_DECLs. No point walking them. */
5903 if (TREE_CODE (t) != TYPE_DECL)
5904 fld_worklist_push (DECL_INITIAL (t), fld);
5905
5906 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5907 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5908
5909 if (TREE_CODE (t) == FUNCTION_DECL)
5910 {
5911 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5912 fld_worklist_push (DECL_RESULT (t), fld);
5913 }
5914 else if (TREE_CODE (t) == FIELD_DECL)
5915 {
5916 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5917 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5918 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5919 fld_worklist_push (DECL_FCONTEXT (t), fld);
5920 }
5921
5922 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5923 && DECL_HAS_VALUE_EXPR_P (t))
5924 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5925
5926 if (TREE_CODE (t) != FIELD_DECL
5927 && TREE_CODE (t) != TYPE_DECL)
5928 fld_worklist_push (TREE_CHAIN (t), fld);
5929 *ws = 0;
5930 }
5931 else if (TYPE_P (t))
5932 {
5933 /* Note that walk_tree does not traverse every possible field in
5934 types, so we have to do our own traversals here. */
5935 add_tree_to_fld_list (t, fld);
5936
5937 if (!RECORD_OR_UNION_TYPE_P (t))
5938 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5939 fld_worklist_push (TYPE_SIZE (t), fld);
5940 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5941 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5942 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5943 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5944 fld_worklist_push (TYPE_NAME (t), fld);
5945 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
5946 lists, we may look types up in these lists and use them while
5947 optimizing the function body. Thus we need to free lang data
5948 in them. */
5949 if (TREE_CODE (t) == POINTER_TYPE)
5950 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
5951 if (TREE_CODE (t) == REFERENCE_TYPE)
5952 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
5953 if (!POINTER_TYPE_P (t))
5954 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5955 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5956 if (!RECORD_OR_UNION_TYPE_P (t))
5957 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5958 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5959 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5960 do not and want not to reach unused variants this way. */
5961 if (TYPE_CONTEXT (t))
5962 {
5963 tree ctx = TYPE_CONTEXT (t);
5964 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5965 So push that instead. */
5966 while (ctx && TREE_CODE (ctx) == BLOCK)
5967 ctx = BLOCK_SUPERCONTEXT (ctx);
5968 fld_worklist_push (ctx, fld);
5969 }
5970 fld_worklist_push (TYPE_CANONICAL (t), fld);
5971
5972 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5973 {
5974 unsigned i;
5975 tree tem;
5976 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5977 fld_worklist_push (TREE_TYPE (tem), fld);
5978 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5979 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5980 }
5981 if (RECORD_OR_UNION_TYPE_P (t))
5982 {
5983 tree tem;
5984 /* Push all TYPE_FIELDS - there can be interleaving interesting
5985 and non-interesting things. */
5986 tem = TYPE_FIELDS (t);
5987 while (tem)
5988 {
5989 if (TREE_CODE (tem) == FIELD_DECL)
5990 fld_worklist_push (tem, fld);
5991 tem = TREE_CHAIN (tem);
5992 }
5993 }
5994 if (FUNC_OR_METHOD_TYPE_P (t))
5995 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5996
5997 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5998 *ws = 0;
5999 }
6000 else if (TREE_CODE (t) == BLOCK)
6001 {
6002 for (tree *tem = &BLOCK_VARS (t); *tem; )
6003 {
6004 if (TREE_CODE (*tem) != LABEL_DECL
6005 && (TREE_CODE (*tem) != VAR_DECL
6006 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem))))
6007 {
6008 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
6009 && TREE_CODE (*tem) != PARM_DECL);
6010 *tem = TREE_CHAIN (*tem);
6011 }
6012 else
6013 {
6014 fld_worklist_push (*tem, fld);
6015 tem = &TREE_CHAIN (*tem);
6016 }
6017 }
6018 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
6019 fld_worklist_push (tem, fld);
6020 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
6021 }
6022
6023 if (TREE_CODE (t) != IDENTIFIER_NODE
6024 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
6025 fld_worklist_push (TREE_TYPE (t), fld);
6026
6027 return NULL_TREE;
6028 }
6029
6030
6031 /* Find decls and types in T. */
6032
6033 static void
6034 find_decls_types (tree t, class free_lang_data_d *fld)
6035 {
6036 while (1)
6037 {
6038 if (!fld->pset.contains (t))
6039 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
6040 if (fld->worklist.is_empty ())
6041 break;
6042 t = fld->worklist.pop ();
6043 }
6044 }
6045
6046 /* Translate all the types in LIST with the corresponding runtime
6047 types. */
6048
6049 static tree
6050 get_eh_types_for_runtime (tree list)
6051 {
6052 tree head, prev;
6053
6054 if (list == NULL_TREE)
6055 return NULL_TREE;
6056
6057 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6058 prev = head;
6059 list = TREE_CHAIN (list);
6060 while (list)
6061 {
6062 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6063 TREE_CHAIN (prev) = n;
6064 prev = TREE_CHAIN (prev);
6065 list = TREE_CHAIN (list);
6066 }
6067
6068 return head;
6069 }
6070
6071
6072 /* Find decls and types referenced in EH region R and store them in
6073 FLD->DECLS and FLD->TYPES. */
6074
6075 static void
6076 find_decls_types_in_eh_region (eh_region r, class free_lang_data_d *fld)
6077 {
6078 switch (r->type)
6079 {
6080 case ERT_CLEANUP:
6081 break;
6082
6083 case ERT_TRY:
6084 {
6085 eh_catch c;
6086
6087 /* The types referenced in each catch must first be changed to the
6088 EH types used at runtime. This removes references to FE types
6089 in the region. */
6090 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
6091 {
6092 c->type_list = get_eh_types_for_runtime (c->type_list);
6093 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
6094 }
6095 }
6096 break;
6097
6098 case ERT_ALLOWED_EXCEPTIONS:
6099 r->u.allowed.type_list
6100 = get_eh_types_for_runtime (r->u.allowed.type_list);
6101 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
6102 break;
6103
6104 case ERT_MUST_NOT_THROW:
6105 walk_tree (&r->u.must_not_throw.failure_decl,
6106 find_decls_types_r, fld, &fld->pset);
6107 break;
6108 }
6109 }
6110
6111
6112 /* Find decls and types referenced in cgraph node N and store them in
6113 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6114 look for *every* kind of DECL and TYPE node reachable from N,
6115 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6116 NAMESPACE_DECLs, etc). */
6117
6118 static void
6119 find_decls_types_in_node (struct cgraph_node *n, class free_lang_data_d *fld)
6120 {
6121 basic_block bb;
6122 struct function *fn;
6123 unsigned ix;
6124 tree t;
6125
6126 find_decls_types (n->decl, fld);
6127
6128 if (!gimple_has_body_p (n->decl))
6129 return;
6130
6131 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
6132
6133 fn = DECL_STRUCT_FUNCTION (n->decl);
6134
6135 /* Traverse locals. */
6136 FOR_EACH_LOCAL_DECL (fn, ix, t)
6137 find_decls_types (t, fld);
6138
6139 /* Traverse EH regions in FN. */
6140 {
6141 eh_region r;
6142 FOR_ALL_EH_REGION_FN (r, fn)
6143 find_decls_types_in_eh_region (r, fld);
6144 }
6145
6146 /* Traverse every statement in FN. */
6147 FOR_EACH_BB_FN (bb, fn)
6148 {
6149 gphi_iterator psi;
6150 gimple_stmt_iterator si;
6151 unsigned i;
6152
6153 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
6154 {
6155 gphi *phi = psi.phi ();
6156
6157 for (i = 0; i < gimple_phi_num_args (phi); i++)
6158 {
6159 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
6160 find_decls_types (*arg_p, fld);
6161 }
6162 }
6163
6164 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6165 {
6166 gimple *stmt = gsi_stmt (si);
6167
6168 if (is_gimple_call (stmt))
6169 find_decls_types (gimple_call_fntype (stmt), fld);
6170
6171 for (i = 0; i < gimple_num_ops (stmt); i++)
6172 {
6173 tree arg = gimple_op (stmt, i);
6174 find_decls_types (arg, fld);
6175 /* find_decls_types doesn't walk TREE_PURPOSE of TREE_LISTs,
6176 which we need for asm stmts. */
6177 if (arg
6178 && TREE_CODE (arg) == TREE_LIST
6179 && TREE_PURPOSE (arg)
6180 && gimple_code (stmt) == GIMPLE_ASM)
6181 find_decls_types (TREE_PURPOSE (arg), fld);
6182 }
6183 }
6184 }
6185 }
6186
6187
6188 /* Find decls and types referenced in varpool node N and store them in
6189 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6190 look for *every* kind of DECL and TYPE node reachable from N,
6191 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6192 NAMESPACE_DECLs, etc). */
6193
6194 static void
6195 find_decls_types_in_var (varpool_node *v, class free_lang_data_d *fld)
6196 {
6197 find_decls_types (v->decl, fld);
6198 }
6199
6200 /* If T needs an assembler name, have one created for it. */
6201
6202 void
6203 assign_assembler_name_if_needed (tree t)
6204 {
6205 if (need_assembler_name_p (t))
6206 {
6207 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
6208 diagnostics that use input_location to show locus
6209 information. The problem here is that, at this point,
6210 input_location is generally anchored to the end of the file
6211 (since the parser is long gone), so we don't have a good
6212 position to pin it to.
6213
6214 To alleviate this problem, this uses the location of T's
6215 declaration. Examples of this are
6216 testsuite/g++.dg/template/cond2.C and
6217 testsuite/g++.dg/template/pr35240.C. */
6218 location_t saved_location = input_location;
6219 input_location = DECL_SOURCE_LOCATION (t);
6220
6221 decl_assembler_name (t);
6222
6223 input_location = saved_location;
6224 }
6225 }
6226
6227
6228 /* Free language specific information for every operand and expression
6229 in every node of the call graph. This process operates in three stages:
6230
6231 1- Every callgraph node and varpool node is traversed looking for
6232 decls and types embedded in them. This is a more exhaustive
6233 search than that done by find_referenced_vars, because it will
6234 also collect individual fields, decls embedded in types, etc.
6235
6236 2- All the decls found are sent to free_lang_data_in_decl.
6237
6238 3- All the types found are sent to free_lang_data_in_type.
6239
6240 The ordering between decls and types is important because
6241 free_lang_data_in_decl sets assembler names, which includes
6242 mangling. So types cannot be freed up until assembler names have
6243 been set up. */
6244
6245 static void
6246 free_lang_data_in_cgraph (class free_lang_data_d *fld)
6247 {
6248 struct cgraph_node *n;
6249 varpool_node *v;
6250 tree t;
6251 unsigned i;
6252 alias_pair *p;
6253
6254 /* Find decls and types in the body of every function in the callgraph. */
6255 FOR_EACH_FUNCTION (n)
6256 find_decls_types_in_node (n, fld);
6257
6258 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
6259 find_decls_types (p->decl, fld);
6260
6261 /* Find decls and types in every varpool symbol. */
6262 FOR_EACH_VARIABLE (v)
6263 find_decls_types_in_var (v, fld);
6264
6265 /* Set the assembler name on every decl found. We need to do this
6266 now because free_lang_data_in_decl will invalidate data needed
6267 for mangling. This breaks mangling on interdependent decls. */
6268 FOR_EACH_VEC_ELT (fld->decls, i, t)
6269 assign_assembler_name_if_needed (t);
6270
6271 /* Traverse every decl found freeing its language data. */
6272 FOR_EACH_VEC_ELT (fld->decls, i, t)
6273 free_lang_data_in_decl (t, fld);
6274
6275 /* Traverse every type found freeing its language data. */
6276 FOR_EACH_VEC_ELT (fld->types, i, t)
6277 free_lang_data_in_type (t, fld);
6278 }
6279
6280
6281 /* Free resources that are used by FE but are not needed once they are done. */
6282
6283 static unsigned
6284 free_lang_data (void)
6285 {
6286 unsigned i;
6287 class free_lang_data_d fld;
6288
6289 /* If we are the LTO frontend we have freed lang-specific data already. */
6290 if (in_lto_p
6291 || (!flag_generate_lto && !flag_generate_offload))
6292 {
6293 /* Rebuild type inheritance graph even when not doing LTO to get
6294 consistent profile data. */
6295 rebuild_type_inheritance_graph ();
6296 return 0;
6297 }
6298
6299 fld_incomplete_types = new hash_map<tree, tree>;
6300 fld_simplified_types = new hash_map<tree, tree>;
6301
6302 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
6303 if (vec_safe_is_empty (all_translation_units))
6304 build_translation_unit_decl (NULL_TREE);
6305
6306 /* Allocate and assign alias sets to the standard integer types
6307 while the slots are still in the way the frontends generated them. */
6308 for (i = 0; i < itk_none; ++i)
6309 if (integer_types[i])
6310 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
6311
6312 /* Traverse the IL resetting language specific information for
6313 operands, expressions, etc. */
6314 free_lang_data_in_cgraph (&fld);
6315
6316 /* Create gimple variants for common types. */
6317 for (unsigned i = 0;
6318 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
6319 ++i)
6320 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
6321
6322 /* Reset some langhooks. Do not reset types_compatible_p, it may
6323 still be used indirectly via the get_alias_set langhook. */
6324 lang_hooks.dwarf_name = lhd_dwarf_name;
6325 lang_hooks.decl_printable_name = gimple_decl_printable_name;
6326 lang_hooks.gimplify_expr = lhd_gimplify_expr;
6327 lang_hooks.overwrite_decl_assembler_name = lhd_overwrite_decl_assembler_name;
6328 lang_hooks.print_xnode = lhd_print_tree_nothing;
6329 lang_hooks.print_decl = lhd_print_tree_nothing;
6330 lang_hooks.print_type = lhd_print_tree_nothing;
6331 lang_hooks.print_identifier = lhd_print_tree_nothing;
6332
6333 lang_hooks.tree_inlining.var_mod_type_p = hook_bool_tree_tree_false;
6334
6335 if (flag_checking)
6336 {
6337 int i;
6338 tree t;
6339
6340 FOR_EACH_VEC_ELT (fld.types, i, t)
6341 verify_type (t);
6342 }
6343
6344 /* We do not want the default decl_assembler_name implementation,
6345 rather if we have fixed everything we want a wrapper around it
6346 asserting that all non-local symbols already got their assembler
6347 name and only produce assembler names for local symbols. Or rather
6348 make sure we never call decl_assembler_name on local symbols and
6349 devise a separate, middle-end private scheme for it. */
6350
6351 /* Reset diagnostic machinery. */
6352 tree_diagnostics_defaults (global_dc);
6353
6354 rebuild_type_inheritance_graph ();
6355
6356 delete fld_incomplete_types;
6357 delete fld_simplified_types;
6358
6359 return 0;
6360 }
6361
6362
6363 namespace {
6364
6365 const pass_data pass_data_ipa_free_lang_data =
6366 {
6367 SIMPLE_IPA_PASS, /* type */
6368 "*free_lang_data", /* name */
6369 OPTGROUP_NONE, /* optinfo_flags */
6370 TV_IPA_FREE_LANG_DATA, /* tv_id */
6371 0, /* properties_required */
6372 0, /* properties_provided */
6373 0, /* properties_destroyed */
6374 0, /* todo_flags_start */
6375 0, /* todo_flags_finish */
6376 };
6377
6378 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6379 {
6380 public:
6381 pass_ipa_free_lang_data (gcc::context *ctxt)
6382 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6383 {}
6384
6385 /* opt_pass methods: */
6386 virtual unsigned int execute (function *) { return free_lang_data (); }
6387
6388 }; // class pass_ipa_free_lang_data
6389
6390 } // anon namespace
6391
6392 simple_ipa_opt_pass *
6393 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6394 {
6395 return new pass_ipa_free_lang_data (ctxt);
6396 }
6397 \f
6398 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6399 of the various TYPE_QUAL values. */
6400
6401 static void
6402 set_type_quals (tree type, int type_quals)
6403 {
6404 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6405 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6406 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6407 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6408 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6409 }
6410
6411 /* Returns true iff CAND and BASE have equivalent language-specific
6412 qualifiers. */
6413
6414 bool
6415 check_lang_type (const_tree cand, const_tree base)
6416 {
6417 if (lang_hooks.types.type_hash_eq == NULL)
6418 return true;
6419 /* type_hash_eq currently only applies to these types. */
6420 if (TREE_CODE (cand) != FUNCTION_TYPE
6421 && TREE_CODE (cand) != METHOD_TYPE)
6422 return true;
6423 return lang_hooks.types.type_hash_eq (cand, base);
6424 }
6425
6426 /* This function checks to see if TYPE matches the size one of the built-in
6427 atomic types, and returns that core atomic type. */
6428
6429 static tree
6430 find_atomic_core_type (const_tree type)
6431 {
6432 tree base_atomic_type;
6433
6434 /* Only handle complete types. */
6435 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6436 return NULL_TREE;
6437
6438 switch (tree_to_uhwi (TYPE_SIZE (type)))
6439 {
6440 case 8:
6441 base_atomic_type = atomicQI_type_node;
6442 break;
6443
6444 case 16:
6445 base_atomic_type = atomicHI_type_node;
6446 break;
6447
6448 case 32:
6449 base_atomic_type = atomicSI_type_node;
6450 break;
6451
6452 case 64:
6453 base_atomic_type = atomicDI_type_node;
6454 break;
6455
6456 case 128:
6457 base_atomic_type = atomicTI_type_node;
6458 break;
6459
6460 default:
6461 base_atomic_type = NULL_TREE;
6462 }
6463
6464 return base_atomic_type;
6465 }
6466
6467 /* Returns true iff unqualified CAND and BASE are equivalent. */
6468
6469 bool
6470 check_base_type (const_tree cand, const_tree base)
6471 {
6472 if (TYPE_NAME (cand) != TYPE_NAME (base)
6473 /* Apparently this is needed for Objective-C. */
6474 || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base)
6475 || !attribute_list_equal (TYPE_ATTRIBUTES (cand),
6476 TYPE_ATTRIBUTES (base)))
6477 return false;
6478 /* Check alignment. */
6479 if (TYPE_ALIGN (cand) == TYPE_ALIGN (base))
6480 return true;
6481 /* Atomic types increase minimal alignment. We must to do so as well
6482 or we get duplicated canonical types. See PR88686. */
6483 if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC))
6484 {
6485 /* See if this object can map to a basic atomic type. */
6486 tree atomic_type = find_atomic_core_type (cand);
6487 if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand))
6488 return true;
6489 }
6490 return false;
6491 }
6492
6493 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6494
6495 bool
6496 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6497 {
6498 return (TYPE_QUALS (cand) == type_quals
6499 && check_base_type (cand, base)
6500 && check_lang_type (cand, base));
6501 }
6502
6503 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6504
6505 static bool
6506 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6507 {
6508 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6509 && TYPE_NAME (cand) == TYPE_NAME (base)
6510 /* Apparently this is needed for Objective-C. */
6511 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6512 /* Check alignment. */
6513 && TYPE_ALIGN (cand) == align
6514 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6515 TYPE_ATTRIBUTES (base))
6516 && check_lang_type (cand, base));
6517 }
6518
6519 /* Return a version of the TYPE, qualified as indicated by the
6520 TYPE_QUALS, if one exists. If no qualified version exists yet,
6521 return NULL_TREE. */
6522
6523 tree
6524 get_qualified_type (tree type, int type_quals)
6525 {
6526 if (TYPE_QUALS (type) == type_quals)
6527 return type;
6528
6529 tree mv = TYPE_MAIN_VARIANT (type);
6530 if (check_qualified_type (mv, type, type_quals))
6531 return mv;
6532
6533 /* Search the chain of variants to see if there is already one there just
6534 like the one we need to have. If so, use that existing one. We must
6535 preserve the TYPE_NAME, since there is code that depends on this. */
6536 for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp))
6537 if (check_qualified_type (*tp, type, type_quals))
6538 {
6539 /* Put the found variant at the head of the variant list so
6540 frequently searched variants get found faster. The C++ FE
6541 benefits greatly from this. */
6542 tree t = *tp;
6543 *tp = TYPE_NEXT_VARIANT (t);
6544 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
6545 TYPE_NEXT_VARIANT (mv) = t;
6546 return t;
6547 }
6548
6549 return NULL_TREE;
6550 }
6551
6552 /* Like get_qualified_type, but creates the type if it does not
6553 exist. This function never returns NULL_TREE. */
6554
6555 tree
6556 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6557 {
6558 tree t;
6559
6560 /* See if we already have the appropriate qualified variant. */
6561 t = get_qualified_type (type, type_quals);
6562
6563 /* If not, build it. */
6564 if (!t)
6565 {
6566 t = build_variant_type_copy (type PASS_MEM_STAT);
6567 set_type_quals (t, type_quals);
6568
6569 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6570 {
6571 /* See if this object can map to a basic atomic type. */
6572 tree atomic_type = find_atomic_core_type (type);
6573 if (atomic_type)
6574 {
6575 /* Ensure the alignment of this type is compatible with
6576 the required alignment of the atomic type. */
6577 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6578 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6579 }
6580 }
6581
6582 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6583 /* Propagate structural equality. */
6584 SET_TYPE_STRUCTURAL_EQUALITY (t);
6585 else if (TYPE_CANONICAL (type) != type)
6586 /* Build the underlying canonical type, since it is different
6587 from TYPE. */
6588 {
6589 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6590 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6591 }
6592 else
6593 /* T is its own canonical type. */
6594 TYPE_CANONICAL (t) = t;
6595
6596 }
6597
6598 return t;
6599 }
6600
6601 /* Create a variant of type T with alignment ALIGN. */
6602
6603 tree
6604 build_aligned_type (tree type, unsigned int align)
6605 {
6606 tree t;
6607
6608 if (TYPE_PACKED (type)
6609 || TYPE_ALIGN (type) == align)
6610 return type;
6611
6612 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6613 if (check_aligned_type (t, type, align))
6614 return t;
6615
6616 t = build_variant_type_copy (type);
6617 SET_TYPE_ALIGN (t, align);
6618 TYPE_USER_ALIGN (t) = 1;
6619
6620 return t;
6621 }
6622
6623 /* Create a new distinct copy of TYPE. The new type is made its own
6624 MAIN_VARIANT. If TYPE requires structural equality checks, the
6625 resulting type requires structural equality checks; otherwise, its
6626 TYPE_CANONICAL points to itself. */
6627
6628 tree
6629 build_distinct_type_copy (tree type MEM_STAT_DECL)
6630 {
6631 tree t = copy_node (type PASS_MEM_STAT);
6632
6633 TYPE_POINTER_TO (t) = 0;
6634 TYPE_REFERENCE_TO (t) = 0;
6635
6636 /* Set the canonical type either to a new equivalence class, or
6637 propagate the need for structural equality checks. */
6638 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6639 SET_TYPE_STRUCTURAL_EQUALITY (t);
6640 else
6641 TYPE_CANONICAL (t) = t;
6642
6643 /* Make it its own variant. */
6644 TYPE_MAIN_VARIANT (t) = t;
6645 TYPE_NEXT_VARIANT (t) = 0;
6646
6647 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6648 whose TREE_TYPE is not t. This can also happen in the Ada
6649 frontend when using subtypes. */
6650
6651 return t;
6652 }
6653
6654 /* Create a new variant of TYPE, equivalent but distinct. This is so
6655 the caller can modify it. TYPE_CANONICAL for the return type will
6656 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6657 are considered equal by the language itself (or that both types
6658 require structural equality checks). */
6659
6660 tree
6661 build_variant_type_copy (tree type MEM_STAT_DECL)
6662 {
6663 tree t, m = TYPE_MAIN_VARIANT (type);
6664
6665 t = build_distinct_type_copy (type PASS_MEM_STAT);
6666
6667 /* Since we're building a variant, assume that it is a non-semantic
6668 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6669 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6670 /* Type variants have no alias set defined. */
6671 TYPE_ALIAS_SET (t) = -1;
6672
6673 /* Add the new type to the chain of variants of TYPE. */
6674 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6675 TYPE_NEXT_VARIANT (m) = t;
6676 TYPE_MAIN_VARIANT (t) = m;
6677
6678 return t;
6679 }
6680 \f
6681 /* Return true if the from tree in both tree maps are equal. */
6682
6683 int
6684 tree_map_base_eq (const void *va, const void *vb)
6685 {
6686 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6687 *const b = (const struct tree_map_base *) vb;
6688 return (a->from == b->from);
6689 }
6690
6691 /* Hash a from tree in a tree_base_map. */
6692
6693 unsigned int
6694 tree_map_base_hash (const void *item)
6695 {
6696 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6697 }
6698
6699 /* Return true if this tree map structure is marked for garbage collection
6700 purposes. We simply return true if the from tree is marked, so that this
6701 structure goes away when the from tree goes away. */
6702
6703 int
6704 tree_map_base_marked_p (const void *p)
6705 {
6706 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6707 }
6708
6709 /* Hash a from tree in a tree_map. */
6710
6711 unsigned int
6712 tree_map_hash (const void *item)
6713 {
6714 return (((const struct tree_map *) item)->hash);
6715 }
6716
6717 /* Hash a from tree in a tree_decl_map. */
6718
6719 unsigned int
6720 tree_decl_map_hash (const void *item)
6721 {
6722 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6723 }
6724
6725 /* Return the initialization priority for DECL. */
6726
6727 priority_type
6728 decl_init_priority_lookup (tree decl)
6729 {
6730 symtab_node *snode = symtab_node::get (decl);
6731
6732 if (!snode)
6733 return DEFAULT_INIT_PRIORITY;
6734 return
6735 snode->get_init_priority ();
6736 }
6737
6738 /* Return the finalization priority for DECL. */
6739
6740 priority_type
6741 decl_fini_priority_lookup (tree decl)
6742 {
6743 cgraph_node *node = cgraph_node::get (decl);
6744
6745 if (!node)
6746 return DEFAULT_INIT_PRIORITY;
6747 return
6748 node->get_fini_priority ();
6749 }
6750
6751 /* Set the initialization priority for DECL to PRIORITY. */
6752
6753 void
6754 decl_init_priority_insert (tree decl, priority_type priority)
6755 {
6756 struct symtab_node *snode;
6757
6758 if (priority == DEFAULT_INIT_PRIORITY)
6759 {
6760 snode = symtab_node::get (decl);
6761 if (!snode)
6762 return;
6763 }
6764 else if (VAR_P (decl))
6765 snode = varpool_node::get_create (decl);
6766 else
6767 snode = cgraph_node::get_create (decl);
6768 snode->set_init_priority (priority);
6769 }
6770
6771 /* Set the finalization priority for DECL to PRIORITY. */
6772
6773 void
6774 decl_fini_priority_insert (tree decl, priority_type priority)
6775 {
6776 struct cgraph_node *node;
6777
6778 if (priority == DEFAULT_INIT_PRIORITY)
6779 {
6780 node = cgraph_node::get (decl);
6781 if (!node)
6782 return;
6783 }
6784 else
6785 node = cgraph_node::get_create (decl);
6786 node->set_fini_priority (priority);
6787 }
6788
6789 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6790
6791 static void
6792 print_debug_expr_statistics (void)
6793 {
6794 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6795 (long) debug_expr_for_decl->size (),
6796 (long) debug_expr_for_decl->elements (),
6797 debug_expr_for_decl->collisions ());
6798 }
6799
6800 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6801
6802 static void
6803 print_value_expr_statistics (void)
6804 {
6805 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6806 (long) value_expr_for_decl->size (),
6807 (long) value_expr_for_decl->elements (),
6808 value_expr_for_decl->collisions ());
6809 }
6810
6811 /* Lookup a debug expression for FROM, and return it if we find one. */
6812
6813 tree
6814 decl_debug_expr_lookup (tree from)
6815 {
6816 struct tree_decl_map *h, in;
6817 in.base.from = from;
6818
6819 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6820 if (h)
6821 return h->to;
6822 return NULL_TREE;
6823 }
6824
6825 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6826
6827 void
6828 decl_debug_expr_insert (tree from, tree to)
6829 {
6830 struct tree_decl_map *h;
6831
6832 h = ggc_alloc<tree_decl_map> ();
6833 h->base.from = from;
6834 h->to = to;
6835 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6836 }
6837
6838 /* Lookup a value expression for FROM, and return it if we find one. */
6839
6840 tree
6841 decl_value_expr_lookup (tree from)
6842 {
6843 struct tree_decl_map *h, in;
6844 in.base.from = from;
6845
6846 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6847 if (h)
6848 return h->to;
6849 return NULL_TREE;
6850 }
6851
6852 /* Insert a mapping FROM->TO in the value expression hashtable. */
6853
6854 void
6855 decl_value_expr_insert (tree from, tree to)
6856 {
6857 struct tree_decl_map *h;
6858
6859 h = ggc_alloc<tree_decl_map> ();
6860 h->base.from = from;
6861 h->to = to;
6862 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6863 }
6864
6865 /* Lookup a vector of debug arguments for FROM, and return it if we
6866 find one. */
6867
6868 vec<tree, va_gc> **
6869 decl_debug_args_lookup (tree from)
6870 {
6871 struct tree_vec_map *h, in;
6872
6873 if (!DECL_HAS_DEBUG_ARGS_P (from))
6874 return NULL;
6875 gcc_checking_assert (debug_args_for_decl != NULL);
6876 in.base.from = from;
6877 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6878 if (h)
6879 return &h->to;
6880 return NULL;
6881 }
6882
6883 /* Insert a mapping FROM->empty vector of debug arguments in the value
6884 expression hashtable. */
6885
6886 vec<tree, va_gc> **
6887 decl_debug_args_insert (tree from)
6888 {
6889 struct tree_vec_map *h;
6890 tree_vec_map **loc;
6891
6892 if (DECL_HAS_DEBUG_ARGS_P (from))
6893 return decl_debug_args_lookup (from);
6894 if (debug_args_for_decl == NULL)
6895 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6896 h = ggc_alloc<tree_vec_map> ();
6897 h->base.from = from;
6898 h->to = NULL;
6899 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6900 *loc = h;
6901 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6902 return &h->to;
6903 }
6904
6905 /* Hashing of types so that we don't make duplicates.
6906 The entry point is `type_hash_canon'. */
6907
6908 /* Generate the default hash code for TYPE. This is designed for
6909 speed, rather than maximum entropy. */
6910
6911 hashval_t
6912 type_hash_canon_hash (tree type)
6913 {
6914 inchash::hash hstate;
6915
6916 hstate.add_int (TREE_CODE (type));
6917
6918 if (TREE_TYPE (type))
6919 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6920
6921 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6922 /* Just the identifier is adequate to distinguish. */
6923 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6924
6925 switch (TREE_CODE (type))
6926 {
6927 case METHOD_TYPE:
6928 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6929 /* FALLTHROUGH. */
6930 case FUNCTION_TYPE:
6931 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6932 if (TREE_VALUE (t) != error_mark_node)
6933 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6934 break;
6935
6936 case OFFSET_TYPE:
6937 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6938 break;
6939
6940 case ARRAY_TYPE:
6941 {
6942 if (TYPE_DOMAIN (type))
6943 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6944 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6945 {
6946 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6947 hstate.add_object (typeless);
6948 }
6949 }
6950 break;
6951
6952 case INTEGER_TYPE:
6953 {
6954 tree t = TYPE_MAX_VALUE (type);
6955 if (!t)
6956 t = TYPE_MIN_VALUE (type);
6957 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6958 hstate.add_object (TREE_INT_CST_ELT (t, i));
6959 break;
6960 }
6961
6962 case REAL_TYPE:
6963 case FIXED_POINT_TYPE:
6964 {
6965 unsigned prec = TYPE_PRECISION (type);
6966 hstate.add_object (prec);
6967 break;
6968 }
6969
6970 case VECTOR_TYPE:
6971 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6972 break;
6973
6974 default:
6975 break;
6976 }
6977
6978 return hstate.end ();
6979 }
6980
6981 /* These are the Hashtable callback functions. */
6982
6983 /* Returns true iff the types are equivalent. */
6984
6985 bool
6986 type_cache_hasher::equal (type_hash *a, type_hash *b)
6987 {
6988 /* First test the things that are the same for all types. */
6989 if (a->hash != b->hash
6990 || TREE_CODE (a->type) != TREE_CODE (b->type)
6991 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6992 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6993 TYPE_ATTRIBUTES (b->type))
6994 || (TREE_CODE (a->type) != COMPLEX_TYPE
6995 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6996 return 0;
6997
6998 /* Be careful about comparing arrays before and after the element type
6999 has been completed; don't compare TYPE_ALIGN unless both types are
7000 complete. */
7001 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
7002 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
7003 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
7004 return 0;
7005
7006 switch (TREE_CODE (a->type))
7007 {
7008 case VOID_TYPE:
7009 case COMPLEX_TYPE:
7010 case POINTER_TYPE:
7011 case REFERENCE_TYPE:
7012 case NULLPTR_TYPE:
7013 return 1;
7014
7015 case VECTOR_TYPE:
7016 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
7017 TYPE_VECTOR_SUBPARTS (b->type));
7018
7019 case ENUMERAL_TYPE:
7020 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
7021 && !(TYPE_VALUES (a->type)
7022 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
7023 && TYPE_VALUES (b->type)
7024 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
7025 && type_list_equal (TYPE_VALUES (a->type),
7026 TYPE_VALUES (b->type))))
7027 return 0;
7028
7029 /* fall through */
7030
7031 case INTEGER_TYPE:
7032 case REAL_TYPE:
7033 case BOOLEAN_TYPE:
7034 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
7035 return false;
7036 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
7037 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
7038 TYPE_MAX_VALUE (b->type)))
7039 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
7040 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
7041 TYPE_MIN_VALUE (b->type))));
7042
7043 case FIXED_POINT_TYPE:
7044 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
7045
7046 case OFFSET_TYPE:
7047 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
7048
7049 case METHOD_TYPE:
7050 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
7051 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7052 || (TYPE_ARG_TYPES (a->type)
7053 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7054 && TYPE_ARG_TYPES (b->type)
7055 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7056 && type_list_equal (TYPE_ARG_TYPES (a->type),
7057 TYPE_ARG_TYPES (b->type)))))
7058 break;
7059 return 0;
7060 case ARRAY_TYPE:
7061 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
7062 where the flag should be inherited from the element type
7063 and can change after ARRAY_TYPEs are created; on non-aggregates
7064 compare it and hash it, scalars will never have that flag set
7065 and we need to differentiate between arrays created by different
7066 front-ends or middle-end created arrays. */
7067 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
7068 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
7069 || (TYPE_TYPELESS_STORAGE (a->type)
7070 == TYPE_TYPELESS_STORAGE (b->type))));
7071
7072 case RECORD_TYPE:
7073 case UNION_TYPE:
7074 case QUAL_UNION_TYPE:
7075 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
7076 || (TYPE_FIELDS (a->type)
7077 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
7078 && TYPE_FIELDS (b->type)
7079 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
7080 && type_list_equal (TYPE_FIELDS (a->type),
7081 TYPE_FIELDS (b->type))));
7082
7083 case FUNCTION_TYPE:
7084 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7085 || (TYPE_ARG_TYPES (a->type)
7086 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7087 && TYPE_ARG_TYPES (b->type)
7088 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7089 && type_list_equal (TYPE_ARG_TYPES (a->type),
7090 TYPE_ARG_TYPES (b->type))))
7091 break;
7092 return 0;
7093
7094 default:
7095 return 0;
7096 }
7097
7098 if (lang_hooks.types.type_hash_eq != NULL)
7099 return lang_hooks.types.type_hash_eq (a->type, b->type);
7100
7101 return 1;
7102 }
7103
7104 /* Given TYPE, and HASHCODE its hash code, return the canonical
7105 object for an identical type if one already exists.
7106 Otherwise, return TYPE, and record it as the canonical object.
7107
7108 To use this function, first create a type of the sort you want.
7109 Then compute its hash code from the fields of the type that
7110 make it different from other similar types.
7111 Then call this function and use the value. */
7112
7113 tree
7114 type_hash_canon (unsigned int hashcode, tree type)
7115 {
7116 type_hash in;
7117 type_hash **loc;
7118
7119 /* The hash table only contains main variants, so ensure that's what we're
7120 being passed. */
7121 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
7122
7123 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
7124 must call that routine before comparing TYPE_ALIGNs. */
7125 layout_type (type);
7126
7127 in.hash = hashcode;
7128 in.type = type;
7129
7130 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
7131 if (*loc)
7132 {
7133 tree t1 = ((type_hash *) *loc)->type;
7134 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
7135 && t1 != type);
7136 if (TYPE_UID (type) + 1 == next_type_uid)
7137 --next_type_uid;
7138 /* Free also min/max values and the cache for integer
7139 types. This can't be done in free_node, as LTO frees
7140 those on its own. */
7141 if (TREE_CODE (type) == INTEGER_TYPE)
7142 {
7143 if (TYPE_MIN_VALUE (type)
7144 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
7145 {
7146 /* Zero is always in TYPE_CACHED_VALUES. */
7147 if (! TYPE_UNSIGNED (type))
7148 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
7149 ggc_free (TYPE_MIN_VALUE (type));
7150 }
7151 if (TYPE_MAX_VALUE (type)
7152 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
7153 {
7154 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
7155 ggc_free (TYPE_MAX_VALUE (type));
7156 }
7157 if (TYPE_CACHED_VALUES_P (type))
7158 ggc_free (TYPE_CACHED_VALUES (type));
7159 }
7160 free_node (type);
7161 return t1;
7162 }
7163 else
7164 {
7165 struct type_hash *h;
7166
7167 h = ggc_alloc<type_hash> ();
7168 h->hash = hashcode;
7169 h->type = type;
7170 *loc = h;
7171
7172 return type;
7173 }
7174 }
7175
7176 static void
7177 print_type_hash_statistics (void)
7178 {
7179 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
7180 (long) type_hash_table->size (),
7181 (long) type_hash_table->elements (),
7182 type_hash_table->collisions ());
7183 }
7184
7185 /* Given two lists of types
7186 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
7187 return 1 if the lists contain the same types in the same order.
7188 Also, the TREE_PURPOSEs must match. */
7189
7190 bool
7191 type_list_equal (const_tree l1, const_tree l2)
7192 {
7193 const_tree t1, t2;
7194
7195 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
7196 if (TREE_VALUE (t1) != TREE_VALUE (t2)
7197 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
7198 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
7199 && (TREE_TYPE (TREE_PURPOSE (t1))
7200 == TREE_TYPE (TREE_PURPOSE (t2))))))
7201 return false;
7202
7203 return t1 == t2;
7204 }
7205
7206 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
7207 given by TYPE. If the argument list accepts variable arguments,
7208 then this function counts only the ordinary arguments. */
7209
7210 int
7211 type_num_arguments (const_tree fntype)
7212 {
7213 int i = 0;
7214
7215 for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
7216 /* If the function does not take a variable number of arguments,
7217 the last element in the list will have type `void'. */
7218 if (VOID_TYPE_P (TREE_VALUE (t)))
7219 break;
7220 else
7221 ++i;
7222
7223 return i;
7224 }
7225
7226 /* Return the type of the function TYPE's argument ARGNO if known.
7227 For vararg function's where ARGNO refers to one of the variadic
7228 arguments return null. Otherwise, return a void_type_node for
7229 out-of-bounds ARGNO. */
7230
7231 tree
7232 type_argument_type (const_tree fntype, unsigned argno)
7233 {
7234 /* Treat zero the same as an out-of-bounds argument number. */
7235 if (!argno)
7236 return void_type_node;
7237
7238 function_args_iterator iter;
7239
7240 tree argtype;
7241 unsigned i = 1;
7242 FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
7243 {
7244 /* A vararg function's argument list ends in a null. Otherwise,
7245 an ordinary function's argument list ends with void. Return
7246 null if ARGNO refers to a vararg argument, void_type_node if
7247 it's out of bounds, and the formal argument type otherwise. */
7248 if (!argtype)
7249 break;
7250
7251 if (i == argno || VOID_TYPE_P (argtype))
7252 return argtype;
7253
7254 ++i;
7255 }
7256
7257 return NULL_TREE;
7258 }
7259
7260 /* Nonzero if integer constants T1 and T2
7261 represent the same constant value. */
7262
7263 int
7264 tree_int_cst_equal (const_tree t1, const_tree t2)
7265 {
7266 if (t1 == t2)
7267 return 1;
7268
7269 if (t1 == 0 || t2 == 0)
7270 return 0;
7271
7272 STRIP_ANY_LOCATION_WRAPPER (t1);
7273 STRIP_ANY_LOCATION_WRAPPER (t2);
7274
7275 if (TREE_CODE (t1) == INTEGER_CST
7276 && TREE_CODE (t2) == INTEGER_CST
7277 && wi::to_widest (t1) == wi::to_widest (t2))
7278 return 1;
7279
7280 return 0;
7281 }
7282
7283 /* Return true if T is an INTEGER_CST whose numerical value (extended
7284 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7285
7286 bool
7287 tree_fits_shwi_p (const_tree t)
7288 {
7289 return (t != NULL_TREE
7290 && TREE_CODE (t) == INTEGER_CST
7291 && wi::fits_shwi_p (wi::to_widest (t)));
7292 }
7293
7294 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7295 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
7296
7297 bool
7298 tree_fits_poly_int64_p (const_tree t)
7299 {
7300 if (t == NULL_TREE)
7301 return false;
7302 if (POLY_INT_CST_P (t))
7303 {
7304 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7305 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
7306 return false;
7307 return true;
7308 }
7309 return (TREE_CODE (t) == INTEGER_CST
7310 && wi::fits_shwi_p (wi::to_widest (t)));
7311 }
7312
7313 /* Return true if T is an INTEGER_CST whose numerical value (extended
7314 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7315
7316 bool
7317 tree_fits_uhwi_p (const_tree t)
7318 {
7319 return (t != NULL_TREE
7320 && TREE_CODE (t) == INTEGER_CST
7321 && wi::fits_uhwi_p (wi::to_widest (t)));
7322 }
7323
7324 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7325 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
7326
7327 bool
7328 tree_fits_poly_uint64_p (const_tree t)
7329 {
7330 if (t == NULL_TREE)
7331 return false;
7332 if (POLY_INT_CST_P (t))
7333 {
7334 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7335 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
7336 return false;
7337 return true;
7338 }
7339 return (TREE_CODE (t) == INTEGER_CST
7340 && wi::fits_uhwi_p (wi::to_widest (t)));
7341 }
7342
7343 /* T is an INTEGER_CST whose numerical value (extended according to
7344 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7345 HOST_WIDE_INT. */
7346
7347 HOST_WIDE_INT
7348 tree_to_shwi (const_tree t)
7349 {
7350 gcc_assert (tree_fits_shwi_p (t));
7351 return TREE_INT_CST_LOW (t);
7352 }
7353
7354 /* T is an INTEGER_CST whose numerical value (extended according to
7355 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7356 HOST_WIDE_INT. */
7357
7358 unsigned HOST_WIDE_INT
7359 tree_to_uhwi (const_tree t)
7360 {
7361 gcc_assert (tree_fits_uhwi_p (t));
7362 return TREE_INT_CST_LOW (t);
7363 }
7364
7365 /* Return the most significant (sign) bit of T. */
7366
7367 int
7368 tree_int_cst_sign_bit (const_tree t)
7369 {
7370 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7371
7372 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
7373 }
7374
7375 /* Return an indication of the sign of the integer constant T.
7376 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7377 Note that -1 will never be returned if T's type is unsigned. */
7378
7379 int
7380 tree_int_cst_sgn (const_tree t)
7381 {
7382 if (wi::to_wide (t) == 0)
7383 return 0;
7384 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7385 return 1;
7386 else if (wi::neg_p (wi::to_wide (t)))
7387 return -1;
7388 else
7389 return 1;
7390 }
7391
7392 /* Return the minimum number of bits needed to represent VALUE in a
7393 signed or unsigned type, UNSIGNEDP says which. */
7394
7395 unsigned int
7396 tree_int_cst_min_precision (tree value, signop sgn)
7397 {
7398 /* If the value is negative, compute its negative minus 1. The latter
7399 adjustment is because the absolute value of the largest negative value
7400 is one larger than the largest positive value. This is equivalent to
7401 a bit-wise negation, so use that operation instead. */
7402
7403 if (tree_int_cst_sgn (value) < 0)
7404 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7405
7406 /* Return the number of bits needed, taking into account the fact
7407 that we need one more bit for a signed than unsigned type.
7408 If value is 0 or -1, the minimum precision is 1 no matter
7409 whether unsignedp is true or false. */
7410
7411 if (integer_zerop (value))
7412 return 1;
7413 else
7414 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7415 }
7416
7417 /* Return truthvalue of whether T1 is the same tree structure as T2.
7418 Return 1 if they are the same.
7419 Return 0 if they are understandably different.
7420 Return -1 if either contains tree structure not understood by
7421 this function. */
7422
7423 int
7424 simple_cst_equal (const_tree t1, const_tree t2)
7425 {
7426 enum tree_code code1, code2;
7427 int cmp;
7428 int i;
7429
7430 if (t1 == t2)
7431 return 1;
7432 if (t1 == 0 || t2 == 0)
7433 return 0;
7434
7435 /* For location wrappers to be the same, they must be at the same
7436 source location (and wrap the same thing). */
7437 if (location_wrapper_p (t1) && location_wrapper_p (t2))
7438 {
7439 if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
7440 return 0;
7441 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7442 }
7443
7444 code1 = TREE_CODE (t1);
7445 code2 = TREE_CODE (t2);
7446
7447 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7448 {
7449 if (CONVERT_EXPR_CODE_P (code2)
7450 || code2 == NON_LVALUE_EXPR)
7451 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7452 else
7453 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7454 }
7455
7456 else if (CONVERT_EXPR_CODE_P (code2)
7457 || code2 == NON_LVALUE_EXPR)
7458 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7459
7460 if (code1 != code2)
7461 return 0;
7462
7463 switch (code1)
7464 {
7465 case INTEGER_CST:
7466 return wi::to_widest (t1) == wi::to_widest (t2);
7467
7468 case REAL_CST:
7469 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7470
7471 case FIXED_CST:
7472 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7473
7474 case STRING_CST:
7475 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7476 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7477 TREE_STRING_LENGTH (t1)));
7478
7479 case CONSTRUCTOR:
7480 {
7481 unsigned HOST_WIDE_INT idx;
7482 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7483 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7484
7485 if (vec_safe_length (v1) != vec_safe_length (v2))
7486 return false;
7487
7488 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7489 /* ??? Should we handle also fields here? */
7490 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7491 return false;
7492 return true;
7493 }
7494
7495 case SAVE_EXPR:
7496 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7497
7498 case CALL_EXPR:
7499 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7500 if (cmp <= 0)
7501 return cmp;
7502 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7503 return 0;
7504 {
7505 const_tree arg1, arg2;
7506 const_call_expr_arg_iterator iter1, iter2;
7507 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7508 arg2 = first_const_call_expr_arg (t2, &iter2);
7509 arg1 && arg2;
7510 arg1 = next_const_call_expr_arg (&iter1),
7511 arg2 = next_const_call_expr_arg (&iter2))
7512 {
7513 cmp = simple_cst_equal (arg1, arg2);
7514 if (cmp <= 0)
7515 return cmp;
7516 }
7517 return arg1 == arg2;
7518 }
7519
7520 case TARGET_EXPR:
7521 /* Special case: if either target is an unallocated VAR_DECL,
7522 it means that it's going to be unified with whatever the
7523 TARGET_EXPR is really supposed to initialize, so treat it
7524 as being equivalent to anything. */
7525 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7526 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7527 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7528 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7529 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7530 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7531 cmp = 1;
7532 else
7533 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7534
7535 if (cmp <= 0)
7536 return cmp;
7537
7538 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7539
7540 case WITH_CLEANUP_EXPR:
7541 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7542 if (cmp <= 0)
7543 return cmp;
7544
7545 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7546
7547 case COMPONENT_REF:
7548 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7549 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7550
7551 return 0;
7552
7553 case VAR_DECL:
7554 case PARM_DECL:
7555 case CONST_DECL:
7556 case FUNCTION_DECL:
7557 return 0;
7558
7559 default:
7560 if (POLY_INT_CST_P (t1))
7561 /* A false return means maybe_ne rather than known_ne. */
7562 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7563 TYPE_SIGN (TREE_TYPE (t1))),
7564 poly_widest_int::from (poly_int_cst_value (t2),
7565 TYPE_SIGN (TREE_TYPE (t2))));
7566 break;
7567 }
7568
7569 /* This general rule works for most tree codes. All exceptions should be
7570 handled above. If this is a language-specific tree code, we can't
7571 trust what might be in the operand, so say we don't know
7572 the situation. */
7573 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7574 return -1;
7575
7576 switch (TREE_CODE_CLASS (code1))
7577 {
7578 case tcc_unary:
7579 case tcc_binary:
7580 case tcc_comparison:
7581 case tcc_expression:
7582 case tcc_reference:
7583 case tcc_statement:
7584 cmp = 1;
7585 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7586 {
7587 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7588 if (cmp <= 0)
7589 return cmp;
7590 }
7591
7592 return cmp;
7593
7594 default:
7595 return -1;
7596 }
7597 }
7598
7599 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7600 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7601 than U, respectively. */
7602
7603 int
7604 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7605 {
7606 if (tree_int_cst_sgn (t) < 0)
7607 return -1;
7608 else if (!tree_fits_uhwi_p (t))
7609 return 1;
7610 else if (TREE_INT_CST_LOW (t) == u)
7611 return 0;
7612 else if (TREE_INT_CST_LOW (t) < u)
7613 return -1;
7614 else
7615 return 1;
7616 }
7617
7618 /* Return true if SIZE represents a constant size that is in bounds of
7619 what the middle-end and the backend accepts (covering not more than
7620 half of the address-space).
7621 When PERR is non-null, set *PERR on failure to the description of
7622 why SIZE is not valid. */
7623
7624 bool
7625 valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */)
7626 {
7627 if (POLY_INT_CST_P (size))
7628 {
7629 if (TREE_OVERFLOW (size))
7630 return false;
7631 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7632 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7633 return false;
7634 return true;
7635 }
7636
7637 cst_size_error error;
7638 if (!perr)
7639 perr = &error;
7640
7641 if (TREE_CODE (size) != INTEGER_CST)
7642 {
7643 *perr = cst_size_not_constant;
7644 return false;
7645 }
7646
7647 if (TREE_OVERFLOW_P (size))
7648 {
7649 *perr = cst_size_overflow;
7650 return false;
7651 }
7652
7653 if (tree_int_cst_sgn (size) < 0)
7654 {
7655 *perr = cst_size_negative;
7656 return false;
7657 }
7658 if (!tree_fits_uhwi_p (size)
7659 || (wi::to_widest (TYPE_MAX_VALUE (sizetype))
7660 < wi::to_widest (size) * 2))
7661 {
7662 *perr = cst_size_too_big;
7663 return false;
7664 }
7665
7666 return true;
7667 }
7668
7669 /* Return the precision of the type, or for a complex or vector type the
7670 precision of the type of its elements. */
7671
7672 unsigned int
7673 element_precision (const_tree type)
7674 {
7675 if (!TYPE_P (type))
7676 type = TREE_TYPE (type);
7677 enum tree_code code = TREE_CODE (type);
7678 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7679 type = TREE_TYPE (type);
7680
7681 return TYPE_PRECISION (type);
7682 }
7683
7684 /* Return true if CODE represents an associative tree code. Otherwise
7685 return false. */
7686 bool
7687 associative_tree_code (enum tree_code code)
7688 {
7689 switch (code)
7690 {
7691 case BIT_IOR_EXPR:
7692 case BIT_AND_EXPR:
7693 case BIT_XOR_EXPR:
7694 case PLUS_EXPR:
7695 case MULT_EXPR:
7696 case MIN_EXPR:
7697 case MAX_EXPR:
7698 return true;
7699
7700 default:
7701 break;
7702 }
7703 return false;
7704 }
7705
7706 /* Return true if CODE represents a commutative tree code. Otherwise
7707 return false. */
7708 bool
7709 commutative_tree_code (enum tree_code code)
7710 {
7711 switch (code)
7712 {
7713 case PLUS_EXPR:
7714 case MULT_EXPR:
7715 case MULT_HIGHPART_EXPR:
7716 case MIN_EXPR:
7717 case MAX_EXPR:
7718 case BIT_IOR_EXPR:
7719 case BIT_XOR_EXPR:
7720 case BIT_AND_EXPR:
7721 case NE_EXPR:
7722 case EQ_EXPR:
7723 case UNORDERED_EXPR:
7724 case ORDERED_EXPR:
7725 case UNEQ_EXPR:
7726 case LTGT_EXPR:
7727 case TRUTH_AND_EXPR:
7728 case TRUTH_XOR_EXPR:
7729 case TRUTH_OR_EXPR:
7730 case WIDEN_MULT_EXPR:
7731 case VEC_WIDEN_MULT_HI_EXPR:
7732 case VEC_WIDEN_MULT_LO_EXPR:
7733 case VEC_WIDEN_MULT_EVEN_EXPR:
7734 case VEC_WIDEN_MULT_ODD_EXPR:
7735 return true;
7736
7737 default:
7738 break;
7739 }
7740 return false;
7741 }
7742
7743 /* Return true if CODE represents a ternary tree code for which the
7744 first two operands are commutative. Otherwise return false. */
7745 bool
7746 commutative_ternary_tree_code (enum tree_code code)
7747 {
7748 switch (code)
7749 {
7750 case WIDEN_MULT_PLUS_EXPR:
7751 case WIDEN_MULT_MINUS_EXPR:
7752 case DOT_PROD_EXPR:
7753 return true;
7754
7755 default:
7756 break;
7757 }
7758 return false;
7759 }
7760
7761 /* Returns true if CODE can overflow. */
7762
7763 bool
7764 operation_can_overflow (enum tree_code code)
7765 {
7766 switch (code)
7767 {
7768 case PLUS_EXPR:
7769 case MINUS_EXPR:
7770 case MULT_EXPR:
7771 case LSHIFT_EXPR:
7772 /* Can overflow in various ways. */
7773 return true;
7774 case TRUNC_DIV_EXPR:
7775 case EXACT_DIV_EXPR:
7776 case FLOOR_DIV_EXPR:
7777 case CEIL_DIV_EXPR:
7778 /* For INT_MIN / -1. */
7779 return true;
7780 case NEGATE_EXPR:
7781 case ABS_EXPR:
7782 /* For -INT_MIN. */
7783 return true;
7784 default:
7785 /* These operators cannot overflow. */
7786 return false;
7787 }
7788 }
7789
7790 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7791 ftrapv doesn't generate trapping insns for CODE. */
7792
7793 bool
7794 operation_no_trapping_overflow (tree type, enum tree_code code)
7795 {
7796 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7797
7798 /* We don't generate instructions that trap on overflow for complex or vector
7799 types. */
7800 if (!INTEGRAL_TYPE_P (type))
7801 return true;
7802
7803 if (!TYPE_OVERFLOW_TRAPS (type))
7804 return true;
7805
7806 switch (code)
7807 {
7808 case PLUS_EXPR:
7809 case MINUS_EXPR:
7810 case MULT_EXPR:
7811 case NEGATE_EXPR:
7812 case ABS_EXPR:
7813 /* These operators can overflow, and -ftrapv generates trapping code for
7814 these. */
7815 return false;
7816 case TRUNC_DIV_EXPR:
7817 case EXACT_DIV_EXPR:
7818 case FLOOR_DIV_EXPR:
7819 case CEIL_DIV_EXPR:
7820 case LSHIFT_EXPR:
7821 /* These operators can overflow, but -ftrapv does not generate trapping
7822 code for these. */
7823 return true;
7824 default:
7825 /* These operators cannot overflow. */
7826 return true;
7827 }
7828 }
7829
7830 /* Constructors for pointer, array and function types.
7831 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7832 constructed by language-dependent code, not here.) */
7833
7834 /* Construct, lay out and return the type of pointers to TO_TYPE with
7835 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7836 reference all of memory. If such a type has already been
7837 constructed, reuse it. */
7838
7839 tree
7840 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7841 bool can_alias_all)
7842 {
7843 tree t;
7844 bool could_alias = can_alias_all;
7845
7846 if (to_type == error_mark_node)
7847 return error_mark_node;
7848
7849 /* If the pointed-to type has the may_alias attribute set, force
7850 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7851 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7852 can_alias_all = true;
7853
7854 /* In some cases, languages will have things that aren't a POINTER_TYPE
7855 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7856 In that case, return that type without regard to the rest of our
7857 operands.
7858
7859 ??? This is a kludge, but consistent with the way this function has
7860 always operated and there doesn't seem to be a good way to avoid this
7861 at the moment. */
7862 if (TYPE_POINTER_TO (to_type) != 0
7863 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7864 return TYPE_POINTER_TO (to_type);
7865
7866 /* First, if we already have a type for pointers to TO_TYPE and it's
7867 the proper mode, use it. */
7868 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7869 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7870 return t;
7871
7872 t = make_node (POINTER_TYPE);
7873
7874 TREE_TYPE (t) = to_type;
7875 SET_TYPE_MODE (t, mode);
7876 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7877 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7878 TYPE_POINTER_TO (to_type) = t;
7879
7880 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7881 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7882 SET_TYPE_STRUCTURAL_EQUALITY (t);
7883 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7884 TYPE_CANONICAL (t)
7885 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7886 mode, false);
7887
7888 /* Lay out the type. This function has many callers that are concerned
7889 with expression-construction, and this simplifies them all. */
7890 layout_type (t);
7891
7892 return t;
7893 }
7894
7895 /* By default build pointers in ptr_mode. */
7896
7897 tree
7898 build_pointer_type (tree to_type)
7899 {
7900 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7901 : TYPE_ADDR_SPACE (to_type);
7902 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7903 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7904 }
7905
7906 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7907
7908 tree
7909 build_reference_type_for_mode (tree to_type, machine_mode mode,
7910 bool can_alias_all)
7911 {
7912 tree t;
7913 bool could_alias = can_alias_all;
7914
7915 if (to_type == error_mark_node)
7916 return error_mark_node;
7917
7918 /* If the pointed-to type has the may_alias attribute set, force
7919 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7920 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7921 can_alias_all = true;
7922
7923 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7924 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7925 In that case, return that type without regard to the rest of our
7926 operands.
7927
7928 ??? This is a kludge, but consistent with the way this function has
7929 always operated and there doesn't seem to be a good way to avoid this
7930 at the moment. */
7931 if (TYPE_REFERENCE_TO (to_type) != 0
7932 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7933 return TYPE_REFERENCE_TO (to_type);
7934
7935 /* First, if we already have a type for pointers to TO_TYPE and it's
7936 the proper mode, use it. */
7937 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7938 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7939 return t;
7940
7941 t = make_node (REFERENCE_TYPE);
7942
7943 TREE_TYPE (t) = to_type;
7944 SET_TYPE_MODE (t, mode);
7945 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7946 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7947 TYPE_REFERENCE_TO (to_type) = t;
7948
7949 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7950 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7951 SET_TYPE_STRUCTURAL_EQUALITY (t);
7952 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7953 TYPE_CANONICAL (t)
7954 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7955 mode, false);
7956
7957 layout_type (t);
7958
7959 return t;
7960 }
7961
7962
7963 /* Build the node for the type of references-to-TO_TYPE by default
7964 in ptr_mode. */
7965
7966 tree
7967 build_reference_type (tree to_type)
7968 {
7969 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7970 : TYPE_ADDR_SPACE (to_type);
7971 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7972 return build_reference_type_for_mode (to_type, pointer_mode, false);
7973 }
7974
7975 #define MAX_INT_CACHED_PREC \
7976 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7977 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7978
7979 /* Builds a signed or unsigned integer type of precision PRECISION.
7980 Used for C bitfields whose precision does not match that of
7981 built-in target types. */
7982 tree
7983 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7984 int unsignedp)
7985 {
7986 tree itype, ret;
7987
7988 if (unsignedp)
7989 unsignedp = MAX_INT_CACHED_PREC + 1;
7990
7991 if (precision <= MAX_INT_CACHED_PREC)
7992 {
7993 itype = nonstandard_integer_type_cache[precision + unsignedp];
7994 if (itype)
7995 return itype;
7996 }
7997
7998 itype = make_node (INTEGER_TYPE);
7999 TYPE_PRECISION (itype) = precision;
8000
8001 if (unsignedp)
8002 fixup_unsigned_type (itype);
8003 else
8004 fixup_signed_type (itype);
8005
8006 inchash::hash hstate;
8007 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
8008 ret = type_hash_canon (hstate.end (), itype);
8009 if (precision <= MAX_INT_CACHED_PREC)
8010 nonstandard_integer_type_cache[precision + unsignedp] = ret;
8011
8012 return ret;
8013 }
8014
8015 #define MAX_BOOL_CACHED_PREC \
8016 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8017 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
8018
8019 /* Builds a boolean type of precision PRECISION.
8020 Used for boolean vectors to choose proper vector element size. */
8021 tree
8022 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
8023 {
8024 tree type;
8025
8026 if (precision <= MAX_BOOL_CACHED_PREC)
8027 {
8028 type = nonstandard_boolean_type_cache[precision];
8029 if (type)
8030 return type;
8031 }
8032
8033 type = make_node (BOOLEAN_TYPE);
8034 TYPE_PRECISION (type) = precision;
8035 fixup_signed_type (type);
8036
8037 if (precision <= MAX_INT_CACHED_PREC)
8038 nonstandard_boolean_type_cache[precision] = type;
8039
8040 return type;
8041 }
8042
8043 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
8044 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
8045 is true, reuse such a type that has already been constructed. */
8046
8047 static tree
8048 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
8049 {
8050 tree itype = make_node (INTEGER_TYPE);
8051
8052 TREE_TYPE (itype) = type;
8053
8054 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
8055 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
8056
8057 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
8058 SET_TYPE_MODE (itype, TYPE_MODE (type));
8059 TYPE_SIZE (itype) = TYPE_SIZE (type);
8060 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
8061 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
8062 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
8063 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
8064
8065 if (!shared)
8066 return itype;
8067
8068 if ((TYPE_MIN_VALUE (itype)
8069 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
8070 || (TYPE_MAX_VALUE (itype)
8071 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
8072 {
8073 /* Since we cannot reliably merge this type, we need to compare it using
8074 structural equality checks. */
8075 SET_TYPE_STRUCTURAL_EQUALITY (itype);
8076 return itype;
8077 }
8078
8079 hashval_t hash = type_hash_canon_hash (itype);
8080 itype = type_hash_canon (hash, itype);
8081
8082 return itype;
8083 }
8084
8085 /* Wrapper around build_range_type_1 with SHARED set to true. */
8086
8087 tree
8088 build_range_type (tree type, tree lowval, tree highval)
8089 {
8090 return build_range_type_1 (type, lowval, highval, true);
8091 }
8092
8093 /* Wrapper around build_range_type_1 with SHARED set to false. */
8094
8095 tree
8096 build_nonshared_range_type (tree type, tree lowval, tree highval)
8097 {
8098 return build_range_type_1 (type, lowval, highval, false);
8099 }
8100
8101 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
8102 MAXVAL should be the maximum value in the domain
8103 (one less than the length of the array).
8104
8105 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
8106 We don't enforce this limit, that is up to caller (e.g. language front end).
8107 The limit exists because the result is a signed type and we don't handle
8108 sizes that use more than one HOST_WIDE_INT. */
8109
8110 tree
8111 build_index_type (tree maxval)
8112 {
8113 return build_range_type (sizetype, size_zero_node, maxval);
8114 }
8115
8116 /* Return true if the debug information for TYPE, a subtype, should be emitted
8117 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
8118 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
8119 debug info and doesn't reflect the source code. */
8120
8121 bool
8122 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
8123 {
8124 tree base_type = TREE_TYPE (type), low, high;
8125
8126 /* Subrange types have a base type which is an integral type. */
8127 if (!INTEGRAL_TYPE_P (base_type))
8128 return false;
8129
8130 /* Get the real bounds of the subtype. */
8131 if (lang_hooks.types.get_subrange_bounds)
8132 lang_hooks.types.get_subrange_bounds (type, &low, &high);
8133 else
8134 {
8135 low = TYPE_MIN_VALUE (type);
8136 high = TYPE_MAX_VALUE (type);
8137 }
8138
8139 /* If the type and its base type have the same representation and the same
8140 name, then the type is not a subrange but a copy of the base type. */
8141 if ((TREE_CODE (base_type) == INTEGER_TYPE
8142 || TREE_CODE (base_type) == BOOLEAN_TYPE)
8143 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
8144 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
8145 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
8146 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
8147 return false;
8148
8149 if (lowval)
8150 *lowval = low;
8151 if (highval)
8152 *highval = high;
8153 return true;
8154 }
8155
8156 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8157 and number of elements specified by the range of values of INDEX_TYPE.
8158 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
8159 If SHARED is true, reuse such a type that has already been constructed.
8160 If SET_CANONICAL is true, compute TYPE_CANONICAL from the element type. */
8161
8162 static tree
8163 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
8164 bool shared, bool set_canonical)
8165 {
8166 tree t;
8167
8168 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8169 {
8170 error ("arrays of functions are not meaningful");
8171 elt_type = integer_type_node;
8172 }
8173
8174 t = make_node (ARRAY_TYPE);
8175 TREE_TYPE (t) = elt_type;
8176 TYPE_DOMAIN (t) = index_type;
8177 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8178 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
8179 layout_type (t);
8180
8181 if (shared)
8182 {
8183 hashval_t hash = type_hash_canon_hash (t);
8184 t = type_hash_canon (hash, t);
8185 }
8186
8187 if (TYPE_CANONICAL (t) == t && set_canonical)
8188 {
8189 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8190 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8191 || in_lto_p)
8192 SET_TYPE_STRUCTURAL_EQUALITY (t);
8193 else if (TYPE_CANONICAL (elt_type) != elt_type
8194 || (index_type && TYPE_CANONICAL (index_type) != index_type))
8195 TYPE_CANONICAL (t)
8196 = build_array_type_1 (TYPE_CANONICAL (elt_type),
8197 index_type
8198 ? TYPE_CANONICAL (index_type) : NULL_TREE,
8199 typeless_storage, shared, set_canonical);
8200 }
8201
8202 return t;
8203 }
8204
8205 /* Wrapper around build_array_type_1 with SHARED set to true. */
8206
8207 tree
8208 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
8209 {
8210 return
8211 build_array_type_1 (elt_type, index_type, typeless_storage, true, true);
8212 }
8213
8214 /* Wrapper around build_array_type_1 with SHARED set to false. */
8215
8216 tree
8217 build_nonshared_array_type (tree elt_type, tree index_type)
8218 {
8219 return build_array_type_1 (elt_type, index_type, false, false, true);
8220 }
8221
8222 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8223 sizetype. */
8224
8225 tree
8226 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
8227 {
8228 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8229 }
8230
8231 /* Recursively examines the array elements of TYPE, until a non-array
8232 element type is found. */
8233
8234 tree
8235 strip_array_types (tree type)
8236 {
8237 while (TREE_CODE (type) == ARRAY_TYPE)
8238 type = TREE_TYPE (type);
8239
8240 return type;
8241 }
8242
8243 /* Computes the canonical argument types from the argument type list
8244 ARGTYPES.
8245
8246 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8247 on entry to this function, or if any of the ARGTYPES are
8248 structural.
8249
8250 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8251 true on entry to this function, or if any of the ARGTYPES are
8252 non-canonical.
8253
8254 Returns a canonical argument list, which may be ARGTYPES when the
8255 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8256 true) or would not differ from ARGTYPES. */
8257
8258 static tree
8259 maybe_canonicalize_argtypes (tree argtypes,
8260 bool *any_structural_p,
8261 bool *any_noncanonical_p)
8262 {
8263 tree arg;
8264 bool any_noncanonical_argtypes_p = false;
8265
8266 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8267 {
8268 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8269 /* Fail gracefully by stating that the type is structural. */
8270 *any_structural_p = true;
8271 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8272 *any_structural_p = true;
8273 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8274 || TREE_PURPOSE (arg))
8275 /* If the argument has a default argument, we consider it
8276 non-canonical even though the type itself is canonical.
8277 That way, different variants of function and method types
8278 with default arguments will all point to the variant with
8279 no defaults as their canonical type. */
8280 any_noncanonical_argtypes_p = true;
8281 }
8282
8283 if (*any_structural_p)
8284 return argtypes;
8285
8286 if (any_noncanonical_argtypes_p)
8287 {
8288 /* Build the canonical list of argument types. */
8289 tree canon_argtypes = NULL_TREE;
8290 bool is_void = false;
8291
8292 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8293 {
8294 if (arg == void_list_node)
8295 is_void = true;
8296 else
8297 canon_argtypes = tree_cons (NULL_TREE,
8298 TYPE_CANONICAL (TREE_VALUE (arg)),
8299 canon_argtypes);
8300 }
8301
8302 canon_argtypes = nreverse (canon_argtypes);
8303 if (is_void)
8304 canon_argtypes = chainon (canon_argtypes, void_list_node);
8305
8306 /* There is a non-canonical type. */
8307 *any_noncanonical_p = true;
8308 return canon_argtypes;
8309 }
8310
8311 /* The canonical argument types are the same as ARGTYPES. */
8312 return argtypes;
8313 }
8314
8315 /* Construct, lay out and return
8316 the type of functions returning type VALUE_TYPE
8317 given arguments of types ARG_TYPES.
8318 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8319 are data type nodes for the arguments of the function.
8320 If such a type has already been constructed, reuse it. */
8321
8322 tree
8323 build_function_type (tree value_type, tree arg_types)
8324 {
8325 tree t;
8326 inchash::hash hstate;
8327 bool any_structural_p, any_noncanonical_p;
8328 tree canon_argtypes;
8329
8330 gcc_assert (arg_types != error_mark_node);
8331
8332 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8333 {
8334 error ("function return type cannot be function");
8335 value_type = integer_type_node;
8336 }
8337
8338 /* Make a node of the sort we want. */
8339 t = make_node (FUNCTION_TYPE);
8340 TREE_TYPE (t) = value_type;
8341 TYPE_ARG_TYPES (t) = arg_types;
8342
8343 /* If we already have such a type, use the old one. */
8344 hashval_t hash = type_hash_canon_hash (t);
8345 t = type_hash_canon (hash, t);
8346
8347 /* Set up the canonical type. */
8348 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8349 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8350 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8351 &any_structural_p,
8352 &any_noncanonical_p);
8353 if (any_structural_p)
8354 SET_TYPE_STRUCTURAL_EQUALITY (t);
8355 else if (any_noncanonical_p)
8356 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8357 canon_argtypes);
8358
8359 if (!COMPLETE_TYPE_P (t))
8360 layout_type (t);
8361 return t;
8362 }
8363
8364 /* Build a function type. The RETURN_TYPE is the type returned by the
8365 function. If VAARGS is set, no void_type_node is appended to the
8366 list. ARGP must be always be terminated be a NULL_TREE. */
8367
8368 static tree
8369 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8370 {
8371 tree t, args, last;
8372
8373 t = va_arg (argp, tree);
8374 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8375 args = tree_cons (NULL_TREE, t, args);
8376
8377 if (vaargs)
8378 {
8379 last = args;
8380 if (args != NULL_TREE)
8381 args = nreverse (args);
8382 gcc_assert (last != void_list_node);
8383 }
8384 else if (args == NULL_TREE)
8385 args = void_list_node;
8386 else
8387 {
8388 last = args;
8389 args = nreverse (args);
8390 TREE_CHAIN (last) = void_list_node;
8391 }
8392 args = build_function_type (return_type, args);
8393
8394 return args;
8395 }
8396
8397 /* Build a function type. The RETURN_TYPE is the type returned by the
8398 function. If additional arguments are provided, they are
8399 additional argument types. The list of argument types must always
8400 be terminated by NULL_TREE. */
8401
8402 tree
8403 build_function_type_list (tree return_type, ...)
8404 {
8405 tree args;
8406 va_list p;
8407
8408 va_start (p, return_type);
8409 args = build_function_type_list_1 (false, return_type, p);
8410 va_end (p);
8411 return args;
8412 }
8413
8414 /* Build a variable argument function type. The RETURN_TYPE is the
8415 type returned by the function. If additional arguments are provided,
8416 they are additional argument types. The list of argument types must
8417 always be terminated by NULL_TREE. */
8418
8419 tree
8420 build_varargs_function_type_list (tree return_type, ...)
8421 {
8422 tree args;
8423 va_list p;
8424
8425 va_start (p, return_type);
8426 args = build_function_type_list_1 (true, return_type, p);
8427 va_end (p);
8428
8429 return args;
8430 }
8431
8432 /* Build a function type. RETURN_TYPE is the type returned by the
8433 function; VAARGS indicates whether the function takes varargs. The
8434 function takes N named arguments, the types of which are provided in
8435 ARG_TYPES. */
8436
8437 static tree
8438 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8439 tree *arg_types)
8440 {
8441 int i;
8442 tree t = vaargs ? NULL_TREE : void_list_node;
8443
8444 for (i = n - 1; i >= 0; i--)
8445 t = tree_cons (NULL_TREE, arg_types[i], t);
8446
8447 return build_function_type (return_type, t);
8448 }
8449
8450 /* Build a function type. RETURN_TYPE is the type returned by the
8451 function. The function takes N named arguments, the types of which
8452 are provided in ARG_TYPES. */
8453
8454 tree
8455 build_function_type_array (tree return_type, int n, tree *arg_types)
8456 {
8457 return build_function_type_array_1 (false, return_type, n, arg_types);
8458 }
8459
8460 /* Build a variable argument function type. RETURN_TYPE is the type
8461 returned by the function. The function takes N named arguments, the
8462 types of which are provided in ARG_TYPES. */
8463
8464 tree
8465 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8466 {
8467 return build_function_type_array_1 (true, return_type, n, arg_types);
8468 }
8469
8470 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8471 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8472 for the method. An implicit additional parameter (of type
8473 pointer-to-BASETYPE) is added to the ARGTYPES. */
8474
8475 tree
8476 build_method_type_directly (tree basetype,
8477 tree rettype,
8478 tree argtypes)
8479 {
8480 tree t;
8481 tree ptype;
8482 bool any_structural_p, any_noncanonical_p;
8483 tree canon_argtypes;
8484
8485 /* Make a node of the sort we want. */
8486 t = make_node (METHOD_TYPE);
8487
8488 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8489 TREE_TYPE (t) = rettype;
8490 ptype = build_pointer_type (basetype);
8491
8492 /* The actual arglist for this function includes a "hidden" argument
8493 which is "this". Put it into the list of argument types. */
8494 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8495 TYPE_ARG_TYPES (t) = argtypes;
8496
8497 /* If we already have such a type, use the old one. */
8498 hashval_t hash = type_hash_canon_hash (t);
8499 t = type_hash_canon (hash, t);
8500
8501 /* Set up the canonical type. */
8502 any_structural_p
8503 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8504 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8505 any_noncanonical_p
8506 = (TYPE_CANONICAL (basetype) != basetype
8507 || TYPE_CANONICAL (rettype) != rettype);
8508 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8509 &any_structural_p,
8510 &any_noncanonical_p);
8511 if (any_structural_p)
8512 SET_TYPE_STRUCTURAL_EQUALITY (t);
8513 else if (any_noncanonical_p)
8514 TYPE_CANONICAL (t)
8515 = build_method_type_directly (TYPE_CANONICAL (basetype),
8516 TYPE_CANONICAL (rettype),
8517 canon_argtypes);
8518 if (!COMPLETE_TYPE_P (t))
8519 layout_type (t);
8520
8521 return t;
8522 }
8523
8524 /* Construct, lay out and return the type of methods belonging to class
8525 BASETYPE and whose arguments and values are described by TYPE.
8526 If that type exists already, reuse it.
8527 TYPE must be a FUNCTION_TYPE node. */
8528
8529 tree
8530 build_method_type (tree basetype, tree type)
8531 {
8532 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8533
8534 return build_method_type_directly (basetype,
8535 TREE_TYPE (type),
8536 TYPE_ARG_TYPES (type));
8537 }
8538
8539 /* Construct, lay out and return the type of offsets to a value
8540 of type TYPE, within an object of type BASETYPE.
8541 If a suitable offset type exists already, reuse it. */
8542
8543 tree
8544 build_offset_type (tree basetype, tree type)
8545 {
8546 tree t;
8547
8548 /* Make a node of the sort we want. */
8549 t = make_node (OFFSET_TYPE);
8550
8551 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8552 TREE_TYPE (t) = type;
8553
8554 /* If we already have such a type, use the old one. */
8555 hashval_t hash = type_hash_canon_hash (t);
8556 t = type_hash_canon (hash, t);
8557
8558 if (!COMPLETE_TYPE_P (t))
8559 layout_type (t);
8560
8561 if (TYPE_CANONICAL (t) == t)
8562 {
8563 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8564 || TYPE_STRUCTURAL_EQUALITY_P (type))
8565 SET_TYPE_STRUCTURAL_EQUALITY (t);
8566 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8567 || TYPE_CANONICAL (type) != type)
8568 TYPE_CANONICAL (t)
8569 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8570 TYPE_CANONICAL (type));
8571 }
8572
8573 return t;
8574 }
8575
8576 /* Create a complex type whose components are COMPONENT_TYPE.
8577
8578 If NAMED is true, the type is given a TYPE_NAME. We do not always
8579 do so because this creates a DECL node and thus make the DECL_UIDs
8580 dependent on the type canonicalization hashtable, which is GC-ed,
8581 so the DECL_UIDs would not be stable wrt garbage collection. */
8582
8583 tree
8584 build_complex_type (tree component_type, bool named)
8585 {
8586 gcc_assert (INTEGRAL_TYPE_P (component_type)
8587 || SCALAR_FLOAT_TYPE_P (component_type)
8588 || FIXED_POINT_TYPE_P (component_type));
8589
8590 /* Make a node of the sort we want. */
8591 tree probe = make_node (COMPLEX_TYPE);
8592
8593 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8594
8595 /* If we already have such a type, use the old one. */
8596 hashval_t hash = type_hash_canon_hash (probe);
8597 tree t = type_hash_canon (hash, probe);
8598
8599 if (t == probe)
8600 {
8601 /* We created a new type. The hash insertion will have laid
8602 out the type. We need to check the canonicalization and
8603 maybe set the name. */
8604 gcc_checking_assert (COMPLETE_TYPE_P (t)
8605 && !TYPE_NAME (t)
8606 && TYPE_CANONICAL (t) == t);
8607
8608 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8609 SET_TYPE_STRUCTURAL_EQUALITY (t);
8610 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8611 TYPE_CANONICAL (t)
8612 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8613
8614 /* We need to create a name, since complex is a fundamental type. */
8615 if (named)
8616 {
8617 const char *name = NULL;
8618
8619 if (TREE_TYPE (t) == char_type_node)
8620 name = "complex char";
8621 else if (TREE_TYPE (t) == signed_char_type_node)
8622 name = "complex signed char";
8623 else if (TREE_TYPE (t) == unsigned_char_type_node)
8624 name = "complex unsigned char";
8625 else if (TREE_TYPE (t) == short_integer_type_node)
8626 name = "complex short int";
8627 else if (TREE_TYPE (t) == short_unsigned_type_node)
8628 name = "complex short unsigned int";
8629 else if (TREE_TYPE (t) == integer_type_node)
8630 name = "complex int";
8631 else if (TREE_TYPE (t) == unsigned_type_node)
8632 name = "complex unsigned int";
8633 else if (TREE_TYPE (t) == long_integer_type_node)
8634 name = "complex long int";
8635 else if (TREE_TYPE (t) == long_unsigned_type_node)
8636 name = "complex long unsigned int";
8637 else if (TREE_TYPE (t) == long_long_integer_type_node)
8638 name = "complex long long int";
8639 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8640 name = "complex long long unsigned int";
8641
8642 if (name != NULL)
8643 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8644 get_identifier (name), t);
8645 }
8646 }
8647
8648 return build_qualified_type (t, TYPE_QUALS (component_type));
8649 }
8650
8651 /* If TYPE is a real or complex floating-point type and the target
8652 does not directly support arithmetic on TYPE then return the wider
8653 type to be used for arithmetic on TYPE. Otherwise, return
8654 NULL_TREE. */
8655
8656 tree
8657 excess_precision_type (tree type)
8658 {
8659 /* The target can give two different responses to the question of
8660 which excess precision mode it would like depending on whether we
8661 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8662
8663 enum excess_precision_type requested_type
8664 = (flag_excess_precision == EXCESS_PRECISION_FAST
8665 ? EXCESS_PRECISION_TYPE_FAST
8666 : EXCESS_PRECISION_TYPE_STANDARD);
8667
8668 enum flt_eval_method target_flt_eval_method
8669 = targetm.c.excess_precision (requested_type);
8670
8671 /* The target should not ask for unpredictable float evaluation (though
8672 it might advertise that implicitly the evaluation is unpredictable,
8673 but we don't care about that here, it will have been reported
8674 elsewhere). If it does ask for unpredictable evaluation, we have
8675 nothing to do here. */
8676 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8677
8678 /* Nothing to do. The target has asked for all types we know about
8679 to be computed with their native precision and range. */
8680 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8681 return NULL_TREE;
8682
8683 /* The target will promote this type in a target-dependent way, so excess
8684 precision ought to leave it alone. */
8685 if (targetm.promoted_type (type) != NULL_TREE)
8686 return NULL_TREE;
8687
8688 machine_mode float16_type_mode = (float16_type_node
8689 ? TYPE_MODE (float16_type_node)
8690 : VOIDmode);
8691 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8692 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8693
8694 switch (TREE_CODE (type))
8695 {
8696 case REAL_TYPE:
8697 {
8698 machine_mode type_mode = TYPE_MODE (type);
8699 switch (target_flt_eval_method)
8700 {
8701 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8702 if (type_mode == float16_type_mode)
8703 return float_type_node;
8704 break;
8705 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8706 if (type_mode == float16_type_mode
8707 || type_mode == float_type_mode)
8708 return double_type_node;
8709 break;
8710 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8711 if (type_mode == float16_type_mode
8712 || type_mode == float_type_mode
8713 || type_mode == double_type_mode)
8714 return long_double_type_node;
8715 break;
8716 default:
8717 gcc_unreachable ();
8718 }
8719 break;
8720 }
8721 case COMPLEX_TYPE:
8722 {
8723 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8724 return NULL_TREE;
8725 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8726 switch (target_flt_eval_method)
8727 {
8728 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8729 if (type_mode == float16_type_mode)
8730 return complex_float_type_node;
8731 break;
8732 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8733 if (type_mode == float16_type_mode
8734 || type_mode == float_type_mode)
8735 return complex_double_type_node;
8736 break;
8737 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8738 if (type_mode == float16_type_mode
8739 || type_mode == float_type_mode
8740 || type_mode == double_type_mode)
8741 return complex_long_double_type_node;
8742 break;
8743 default:
8744 gcc_unreachable ();
8745 }
8746 break;
8747 }
8748 default:
8749 break;
8750 }
8751
8752 return NULL_TREE;
8753 }
8754 \f
8755 /* Return OP, stripped of any conversions to wider types as much as is safe.
8756 Converting the value back to OP's type makes a value equivalent to OP.
8757
8758 If FOR_TYPE is nonzero, we return a value which, if converted to
8759 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8760
8761 OP must have integer, real or enumeral type. Pointers are not allowed!
8762
8763 There are some cases where the obvious value we could return
8764 would regenerate to OP if converted to OP's type,
8765 but would not extend like OP to wider types.
8766 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8767 For example, if OP is (unsigned short)(signed char)-1,
8768 we avoid returning (signed char)-1 if FOR_TYPE is int,
8769 even though extending that to an unsigned short would regenerate OP,
8770 since the result of extending (signed char)-1 to (int)
8771 is different from (int) OP. */
8772
8773 tree
8774 get_unwidened (tree op, tree for_type)
8775 {
8776 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8777 tree type = TREE_TYPE (op);
8778 unsigned final_prec
8779 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8780 int uns
8781 = (for_type != 0 && for_type != type
8782 && final_prec > TYPE_PRECISION (type)
8783 && TYPE_UNSIGNED (type));
8784 tree win = op;
8785
8786 while (CONVERT_EXPR_P (op))
8787 {
8788 int bitschange;
8789
8790 /* TYPE_PRECISION on vector types has different meaning
8791 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8792 so avoid them here. */
8793 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8794 break;
8795
8796 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8797 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8798
8799 /* Truncations are many-one so cannot be removed.
8800 Unless we are later going to truncate down even farther. */
8801 if (bitschange < 0
8802 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8803 break;
8804
8805 /* See what's inside this conversion. If we decide to strip it,
8806 we will set WIN. */
8807 op = TREE_OPERAND (op, 0);
8808
8809 /* If we have not stripped any zero-extensions (uns is 0),
8810 we can strip any kind of extension.
8811 If we have previously stripped a zero-extension,
8812 only zero-extensions can safely be stripped.
8813 Any extension can be stripped if the bits it would produce
8814 are all going to be discarded later by truncating to FOR_TYPE. */
8815
8816 if (bitschange > 0)
8817 {
8818 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8819 win = op;
8820 /* TYPE_UNSIGNED says whether this is a zero-extension.
8821 Let's avoid computing it if it does not affect WIN
8822 and if UNS will not be needed again. */
8823 if ((uns
8824 || CONVERT_EXPR_P (op))
8825 && TYPE_UNSIGNED (TREE_TYPE (op)))
8826 {
8827 uns = 1;
8828 win = op;
8829 }
8830 }
8831 }
8832
8833 /* If we finally reach a constant see if it fits in sth smaller and
8834 in that case convert it. */
8835 if (TREE_CODE (win) == INTEGER_CST)
8836 {
8837 tree wtype = TREE_TYPE (win);
8838 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8839 if (for_type)
8840 prec = MAX (prec, final_prec);
8841 if (prec < TYPE_PRECISION (wtype))
8842 {
8843 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8844 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8845 win = fold_convert (t, win);
8846 }
8847 }
8848
8849 return win;
8850 }
8851 \f
8852 /* Return OP or a simpler expression for a narrower value
8853 which can be sign-extended or zero-extended to give back OP.
8854 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8855 or 0 if the value should be sign-extended. */
8856
8857 tree
8858 get_narrower (tree op, int *unsignedp_ptr)
8859 {
8860 int uns = 0;
8861 int first = 1;
8862 tree win = op;
8863 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8864
8865 while (TREE_CODE (op) == NOP_EXPR)
8866 {
8867 int bitschange
8868 = (TYPE_PRECISION (TREE_TYPE (op))
8869 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8870
8871 /* Truncations are many-one so cannot be removed. */
8872 if (bitschange < 0)
8873 break;
8874
8875 /* See what's inside this conversion. If we decide to strip it,
8876 we will set WIN. */
8877
8878 if (bitschange > 0)
8879 {
8880 op = TREE_OPERAND (op, 0);
8881 /* An extension: the outermost one can be stripped,
8882 but remember whether it is zero or sign extension. */
8883 if (first)
8884 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8885 /* Otherwise, if a sign extension has been stripped,
8886 only sign extensions can now be stripped;
8887 if a zero extension has been stripped, only zero-extensions. */
8888 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8889 break;
8890 first = 0;
8891 }
8892 else /* bitschange == 0 */
8893 {
8894 /* A change in nominal type can always be stripped, but we must
8895 preserve the unsignedness. */
8896 if (first)
8897 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8898 first = 0;
8899 op = TREE_OPERAND (op, 0);
8900 /* Keep trying to narrow, but don't assign op to win if it
8901 would turn an integral type into something else. */
8902 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8903 continue;
8904 }
8905
8906 win = op;
8907 }
8908
8909 if (TREE_CODE (op) == COMPONENT_REF
8910 /* Since type_for_size always gives an integer type. */
8911 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8912 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8913 /* Ensure field is laid out already. */
8914 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8915 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8916 {
8917 unsigned HOST_WIDE_INT innerprec
8918 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8919 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8920 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8921 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8922
8923 /* We can get this structure field in a narrower type that fits it,
8924 but the resulting extension to its nominal type (a fullword type)
8925 must satisfy the same conditions as for other extensions.
8926
8927 Do this only for fields that are aligned (not bit-fields),
8928 because when bit-field insns will be used there is no
8929 advantage in doing this. */
8930
8931 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8932 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8933 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8934 && type != 0)
8935 {
8936 if (first)
8937 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8938 win = fold_convert (type, op);
8939 }
8940 }
8941
8942 *unsignedp_ptr = uns;
8943 return win;
8944 }
8945 \f
8946 /* Return true if integer constant C has a value that is permissible
8947 for TYPE, an integral type. */
8948
8949 bool
8950 int_fits_type_p (const_tree c, const_tree type)
8951 {
8952 tree type_low_bound, type_high_bound;
8953 bool ok_for_low_bound, ok_for_high_bound;
8954 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8955
8956 /* Non-standard boolean types can have arbitrary precision but various
8957 transformations assume that they can only take values 0 and +/-1. */
8958 if (TREE_CODE (type) == BOOLEAN_TYPE)
8959 return wi::fits_to_boolean_p (wi::to_wide (c), type);
8960
8961 retry:
8962 type_low_bound = TYPE_MIN_VALUE (type);
8963 type_high_bound = TYPE_MAX_VALUE (type);
8964
8965 /* If at least one bound of the type is a constant integer, we can check
8966 ourselves and maybe make a decision. If no such decision is possible, but
8967 this type is a subtype, try checking against that. Otherwise, use
8968 fits_to_tree_p, which checks against the precision.
8969
8970 Compute the status for each possibly constant bound, and return if we see
8971 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8972 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8973 for "constant known to fit". */
8974
8975 /* Check if c >= type_low_bound. */
8976 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8977 {
8978 if (tree_int_cst_lt (c, type_low_bound))
8979 return false;
8980 ok_for_low_bound = true;
8981 }
8982 else
8983 ok_for_low_bound = false;
8984
8985 /* Check if c <= type_high_bound. */
8986 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8987 {
8988 if (tree_int_cst_lt (type_high_bound, c))
8989 return false;
8990 ok_for_high_bound = true;
8991 }
8992 else
8993 ok_for_high_bound = false;
8994
8995 /* If the constant fits both bounds, the result is known. */
8996 if (ok_for_low_bound && ok_for_high_bound)
8997 return true;
8998
8999 /* Perform some generic filtering which may allow making a decision
9000 even if the bounds are not constant. First, negative integers
9001 never fit in unsigned types, */
9002 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
9003 return false;
9004
9005 /* Second, narrower types always fit in wider ones. */
9006 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
9007 return true;
9008
9009 /* Third, unsigned integers with top bit set never fit signed types. */
9010 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
9011 {
9012 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
9013 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
9014 {
9015 /* When a tree_cst is converted to a wide-int, the precision
9016 is taken from the type. However, if the precision of the
9017 mode underneath the type is smaller than that, it is
9018 possible that the value will not fit. The test below
9019 fails if any bit is set between the sign bit of the
9020 underlying mode and the top bit of the type. */
9021 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
9022 return false;
9023 }
9024 else if (wi::neg_p (wi::to_wide (c)))
9025 return false;
9026 }
9027
9028 /* If we haven't been able to decide at this point, there nothing more we
9029 can check ourselves here. Look at the base type if we have one and it
9030 has the same precision. */
9031 if (TREE_CODE (type) == INTEGER_TYPE
9032 && TREE_TYPE (type) != 0
9033 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
9034 {
9035 type = TREE_TYPE (type);
9036 goto retry;
9037 }
9038
9039 /* Or to fits_to_tree_p, if nothing else. */
9040 return wi::fits_to_tree_p (wi::to_wide (c), type);
9041 }
9042
9043 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
9044 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
9045 represented (assuming two's-complement arithmetic) within the bit
9046 precision of the type are returned instead. */
9047
9048 void
9049 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
9050 {
9051 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
9052 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
9053 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
9054 else
9055 {
9056 if (TYPE_UNSIGNED (type))
9057 mpz_set_ui (min, 0);
9058 else
9059 {
9060 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
9061 wi::to_mpz (mn, min, SIGNED);
9062 }
9063 }
9064
9065 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
9066 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
9067 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
9068 else
9069 {
9070 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
9071 wi::to_mpz (mn, max, TYPE_SIGN (type));
9072 }
9073 }
9074
9075 /* Return true if VAR is an automatic variable. */
9076
9077 bool
9078 auto_var_p (const_tree var)
9079 {
9080 return ((((VAR_P (var) && ! DECL_EXTERNAL (var))
9081 || TREE_CODE (var) == PARM_DECL)
9082 && ! TREE_STATIC (var))
9083 || TREE_CODE (var) == RESULT_DECL);
9084 }
9085
9086 /* Return true if VAR is an automatic variable defined in function FN. */
9087
9088 bool
9089 auto_var_in_fn_p (const_tree var, const_tree fn)
9090 {
9091 return (DECL_P (var) && DECL_CONTEXT (var) == fn
9092 && (auto_var_p (var)
9093 || TREE_CODE (var) == LABEL_DECL));
9094 }
9095
9096 /* Subprogram of following function. Called by walk_tree.
9097
9098 Return *TP if it is an automatic variable or parameter of the
9099 function passed in as DATA. */
9100
9101 static tree
9102 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
9103 {
9104 tree fn = (tree) data;
9105
9106 if (TYPE_P (*tp))
9107 *walk_subtrees = 0;
9108
9109 else if (DECL_P (*tp)
9110 && auto_var_in_fn_p (*tp, fn))
9111 return *tp;
9112
9113 return NULL_TREE;
9114 }
9115
9116 /* Returns true if T is, contains, or refers to a type with variable
9117 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
9118 arguments, but not the return type. If FN is nonzero, only return
9119 true if a modifier of the type or position of FN is a variable or
9120 parameter inside FN.
9121
9122 This concept is more general than that of C99 'variably modified types':
9123 in C99, a struct type is never variably modified because a VLA may not
9124 appear as a structure member. However, in GNU C code like:
9125
9126 struct S { int i[f()]; };
9127
9128 is valid, and other languages may define similar constructs. */
9129
9130 bool
9131 variably_modified_type_p (tree type, tree fn)
9132 {
9133 tree t;
9134
9135 /* Test if T is either variable (if FN is zero) or an expression containing
9136 a variable in FN. If TYPE isn't gimplified, return true also if
9137 gimplify_one_sizepos would gimplify the expression into a local
9138 variable. */
9139 #define RETURN_TRUE_IF_VAR(T) \
9140 do { tree _t = (T); \
9141 if (_t != NULL_TREE \
9142 && _t != error_mark_node \
9143 && !CONSTANT_CLASS_P (_t) \
9144 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
9145 && (!fn \
9146 || (!TYPE_SIZES_GIMPLIFIED (type) \
9147 && (TREE_CODE (_t) != VAR_DECL \
9148 && !CONTAINS_PLACEHOLDER_P (_t))) \
9149 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
9150 return true; } while (0)
9151
9152 if (type == error_mark_node)
9153 return false;
9154
9155 /* If TYPE itself has variable size, it is variably modified. */
9156 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9157 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9158
9159 switch (TREE_CODE (type))
9160 {
9161 case POINTER_TYPE:
9162 case REFERENCE_TYPE:
9163 case VECTOR_TYPE:
9164 /* Ada can have pointer types refering to themselves indirectly. */
9165 if (TREE_VISITED (type))
9166 return false;
9167 TREE_VISITED (type) = true;
9168 if (variably_modified_type_p (TREE_TYPE (type), fn))
9169 {
9170 TREE_VISITED (type) = false;
9171 return true;
9172 }
9173 TREE_VISITED (type) = false;
9174 break;
9175
9176 case FUNCTION_TYPE:
9177 case METHOD_TYPE:
9178 /* If TYPE is a function type, it is variably modified if the
9179 return type is variably modified. */
9180 if (variably_modified_type_p (TREE_TYPE (type), fn))
9181 return true;
9182 break;
9183
9184 case INTEGER_TYPE:
9185 case REAL_TYPE:
9186 case FIXED_POINT_TYPE:
9187 case ENUMERAL_TYPE:
9188 case BOOLEAN_TYPE:
9189 /* Scalar types are variably modified if their end points
9190 aren't constant. */
9191 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9192 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9193 break;
9194
9195 case RECORD_TYPE:
9196 case UNION_TYPE:
9197 case QUAL_UNION_TYPE:
9198 /* We can't see if any of the fields are variably-modified by the
9199 definition we normally use, since that would produce infinite
9200 recursion via pointers. */
9201 /* This is variably modified if some field's type is. */
9202 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9203 if (TREE_CODE (t) == FIELD_DECL)
9204 {
9205 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9206 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9207 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9208
9209 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9210 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9211 }
9212 break;
9213
9214 case ARRAY_TYPE:
9215 /* Do not call ourselves to avoid infinite recursion. This is
9216 variably modified if the element type is. */
9217 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9218 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9219 break;
9220
9221 default:
9222 break;
9223 }
9224
9225 /* The current language may have other cases to check, but in general,
9226 all other types are not variably modified. */
9227 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9228
9229 #undef RETURN_TRUE_IF_VAR
9230 }
9231
9232 /* Given a DECL or TYPE, return the scope in which it was declared, or
9233 NULL_TREE if there is no containing scope. */
9234
9235 tree
9236 get_containing_scope (const_tree t)
9237 {
9238 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9239 }
9240
9241 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
9242
9243 const_tree
9244 get_ultimate_context (const_tree decl)
9245 {
9246 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
9247 {
9248 if (TREE_CODE (decl) == BLOCK)
9249 decl = BLOCK_SUPERCONTEXT (decl);
9250 else
9251 decl = get_containing_scope (decl);
9252 }
9253 return decl;
9254 }
9255
9256 /* Return the innermost context enclosing DECL that is
9257 a FUNCTION_DECL, or zero if none. */
9258
9259 tree
9260 decl_function_context (const_tree decl)
9261 {
9262 tree context;
9263
9264 if (TREE_CODE (decl) == ERROR_MARK)
9265 return 0;
9266
9267 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9268 where we look up the function at runtime. Such functions always take
9269 a first argument of type 'pointer to real context'.
9270
9271 C++ should really be fixed to use DECL_CONTEXT for the real context,
9272 and use something else for the "virtual context". */
9273 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
9274 context
9275 = TYPE_MAIN_VARIANT
9276 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9277 else
9278 context = DECL_CONTEXT (decl);
9279
9280 while (context && TREE_CODE (context) != FUNCTION_DECL)
9281 {
9282 if (TREE_CODE (context) == BLOCK)
9283 context = BLOCK_SUPERCONTEXT (context);
9284 else
9285 context = get_containing_scope (context);
9286 }
9287
9288 return context;
9289 }
9290
9291 /* Return the innermost context enclosing DECL that is
9292 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9293 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9294
9295 tree
9296 decl_type_context (const_tree decl)
9297 {
9298 tree context = DECL_CONTEXT (decl);
9299
9300 while (context)
9301 switch (TREE_CODE (context))
9302 {
9303 case NAMESPACE_DECL:
9304 case TRANSLATION_UNIT_DECL:
9305 return NULL_TREE;
9306
9307 case RECORD_TYPE:
9308 case UNION_TYPE:
9309 case QUAL_UNION_TYPE:
9310 return context;
9311
9312 case TYPE_DECL:
9313 case FUNCTION_DECL:
9314 context = DECL_CONTEXT (context);
9315 break;
9316
9317 case BLOCK:
9318 context = BLOCK_SUPERCONTEXT (context);
9319 break;
9320
9321 default:
9322 gcc_unreachable ();
9323 }
9324
9325 return NULL_TREE;
9326 }
9327
9328 /* CALL is a CALL_EXPR. Return the declaration for the function
9329 called, or NULL_TREE if the called function cannot be
9330 determined. */
9331
9332 tree
9333 get_callee_fndecl (const_tree call)
9334 {
9335 tree addr;
9336
9337 if (call == error_mark_node)
9338 return error_mark_node;
9339
9340 /* It's invalid to call this function with anything but a
9341 CALL_EXPR. */
9342 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9343
9344 /* The first operand to the CALL is the address of the function
9345 called. */
9346 addr = CALL_EXPR_FN (call);
9347
9348 /* If there is no function, return early. */
9349 if (addr == NULL_TREE)
9350 return NULL_TREE;
9351
9352 STRIP_NOPS (addr);
9353
9354 /* If this is a readonly function pointer, extract its initial value. */
9355 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9356 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9357 && DECL_INITIAL (addr))
9358 addr = DECL_INITIAL (addr);
9359
9360 /* If the address is just `&f' for some function `f', then we know
9361 that `f' is being called. */
9362 if (TREE_CODE (addr) == ADDR_EXPR
9363 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9364 return TREE_OPERAND (addr, 0);
9365
9366 /* We couldn't figure out what was being called. */
9367 return NULL_TREE;
9368 }
9369
9370 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9371 return the associated function code, otherwise return CFN_LAST. */
9372
9373 combined_fn
9374 get_call_combined_fn (const_tree call)
9375 {
9376 /* It's invalid to call this function with anything but a CALL_EXPR. */
9377 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9378
9379 if (!CALL_EXPR_FN (call))
9380 return as_combined_fn (CALL_EXPR_IFN (call));
9381
9382 tree fndecl = get_callee_fndecl (call);
9383 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9384 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9385
9386 return CFN_LAST;
9387 }
9388
9389 /* Comparator of indices based on tree_node_counts. */
9390
9391 static int
9392 tree_nodes_cmp (const void *p1, const void *p2)
9393 {
9394 const unsigned *n1 = (const unsigned *)p1;
9395 const unsigned *n2 = (const unsigned *)p2;
9396
9397 return tree_node_counts[*n1] - tree_node_counts[*n2];
9398 }
9399
9400 /* Comparator of indices based on tree_code_counts. */
9401
9402 static int
9403 tree_codes_cmp (const void *p1, const void *p2)
9404 {
9405 const unsigned *n1 = (const unsigned *)p1;
9406 const unsigned *n2 = (const unsigned *)p2;
9407
9408 return tree_code_counts[*n1] - tree_code_counts[*n2];
9409 }
9410
9411 #define TREE_MEM_USAGE_SPACES 40
9412
9413 /* Print debugging information about tree nodes generated during the compile,
9414 and any language-specific information. */
9415
9416 void
9417 dump_tree_statistics (void)
9418 {
9419 if (GATHER_STATISTICS)
9420 {
9421 uint64_t total_nodes, total_bytes;
9422 fprintf (stderr, "\nKind Nodes Bytes\n");
9423 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9424 total_nodes = total_bytes = 0;
9425
9426 {
9427 auto_vec<unsigned> indices (all_kinds);
9428 for (unsigned i = 0; i < all_kinds; i++)
9429 indices.quick_push (i);
9430 indices.qsort (tree_nodes_cmp);
9431
9432 for (unsigned i = 0; i < (int) all_kinds; i++)
9433 {
9434 unsigned j = indices[i];
9435 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
9436 tree_node_kind_names[j], SIZE_AMOUNT (tree_node_counts[j]),
9437 SIZE_AMOUNT (tree_node_sizes[j]));
9438 total_nodes += tree_node_counts[j];
9439 total_bytes += tree_node_sizes[j];
9440 }
9441 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9442 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
9443 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
9444 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9445 }
9446
9447 {
9448 fprintf (stderr, "Code Nodes\n");
9449 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9450
9451 auto_vec<unsigned> indices (MAX_TREE_CODES);
9452 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9453 indices.quick_push (i);
9454 indices.qsort (tree_codes_cmp);
9455
9456 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9457 {
9458 unsigned j = indices[i];
9459 fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
9460 get_tree_code_name ((enum tree_code) j),
9461 SIZE_AMOUNT (tree_code_counts[j]));
9462 }
9463 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9464 fprintf (stderr, "\n");
9465 ssanames_print_statistics ();
9466 fprintf (stderr, "\n");
9467 phinodes_print_statistics ();
9468 fprintf (stderr, "\n");
9469 }
9470 }
9471 else
9472 fprintf (stderr, "(No per-node statistics)\n");
9473
9474 print_type_hash_statistics ();
9475 print_debug_expr_statistics ();
9476 print_value_expr_statistics ();
9477 lang_hooks.print_statistics ();
9478 }
9479 \f
9480 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9481
9482 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9483
9484 unsigned
9485 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9486 {
9487 /* This relies on the raw feedback's top 4 bits being zero. */
9488 #define FEEDBACK(X) ((X) * 0x04c11db7)
9489 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9490 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9491 static const unsigned syndromes[16] =
9492 {
9493 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9494 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9495 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9496 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9497 };
9498 #undef FEEDBACK
9499 #undef SYNDROME
9500
9501 value <<= (32 - bytes * 8);
9502 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9503 {
9504 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9505
9506 chksum = (chksum << 4) ^ feedback;
9507 }
9508
9509 return chksum;
9510 }
9511
9512 /* Generate a crc32 of a string. */
9513
9514 unsigned
9515 crc32_string (unsigned chksum, const char *string)
9516 {
9517 do
9518 chksum = crc32_byte (chksum, *string);
9519 while (*string++);
9520 return chksum;
9521 }
9522
9523 /* P is a string that will be used in a symbol. Mask out any characters
9524 that are not valid in that context. */
9525
9526 void
9527 clean_symbol_name (char *p)
9528 {
9529 for (; *p; p++)
9530 if (! (ISALNUM (*p)
9531 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9532 || *p == '$'
9533 #endif
9534 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9535 || *p == '.'
9536 #endif
9537 ))
9538 *p = '_';
9539 }
9540
9541 static GTY(()) unsigned anon_cnt = 0; /* Saved for PCH. */
9542
9543 /* Create a unique anonymous identifier. The identifier is still a
9544 valid assembly label. */
9545
9546 tree
9547 make_anon_name ()
9548 {
9549 const char *fmt =
9550 #if !defined (NO_DOT_IN_LABEL)
9551 "."
9552 #elif !defined (NO_DOLLAR_IN_LABEL)
9553 "$"
9554 #else
9555 "_"
9556 #endif
9557 "_anon_%d";
9558
9559 char buf[24];
9560 int len = snprintf (buf, sizeof (buf), fmt, anon_cnt++);
9561 gcc_checking_assert (len < int (sizeof (buf)));
9562
9563 tree id = get_identifier_with_length (buf, len);
9564 IDENTIFIER_ANON_P (id) = true;
9565
9566 return id;
9567 }
9568
9569 /* Generate a name for a special-purpose function.
9570 The generated name may need to be unique across the whole link.
9571 Changes to this function may also require corresponding changes to
9572 xstrdup_mask_random.
9573 TYPE is some string to identify the purpose of this function to the
9574 linker or collect2; it must start with an uppercase letter,
9575 one of:
9576 I - for constructors
9577 D - for destructors
9578 N - for C++ anonymous namespaces
9579 F - for DWARF unwind frame information. */
9580
9581 tree
9582 get_file_function_name (const char *type)
9583 {
9584 char *buf;
9585 const char *p;
9586 char *q;
9587
9588 /* If we already have a name we know to be unique, just use that. */
9589 if (first_global_object_name)
9590 p = q = ASTRDUP (first_global_object_name);
9591 /* If the target is handling the constructors/destructors, they
9592 will be local to this file and the name is only necessary for
9593 debugging purposes.
9594 We also assign sub_I and sub_D sufixes to constructors called from
9595 the global static constructors. These are always local. */
9596 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9597 || (strncmp (type, "sub_", 4) == 0
9598 && (type[4] == 'I' || type[4] == 'D')))
9599 {
9600 const char *file = main_input_filename;
9601 if (! file)
9602 file = LOCATION_FILE (input_location);
9603 /* Just use the file's basename, because the full pathname
9604 might be quite long. */
9605 p = q = ASTRDUP (lbasename (file));
9606 }
9607 else
9608 {
9609 /* Otherwise, the name must be unique across the entire link.
9610 We don't have anything that we know to be unique to this translation
9611 unit, so use what we do have and throw in some randomness. */
9612 unsigned len;
9613 const char *name = weak_global_object_name;
9614 const char *file = main_input_filename;
9615
9616 if (! name)
9617 name = "";
9618 if (! file)
9619 file = LOCATION_FILE (input_location);
9620
9621 len = strlen (file);
9622 q = (char *) alloca (9 + 19 + len + 1);
9623 memcpy (q, file, len + 1);
9624
9625 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9626 crc32_string (0, name), get_random_seed (false));
9627
9628 p = q;
9629 }
9630
9631 clean_symbol_name (q);
9632 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9633 + strlen (type));
9634
9635 /* Set up the name of the file-level functions we may need.
9636 Use a global object (which is already required to be unique over
9637 the program) rather than the file name (which imposes extra
9638 constraints). */
9639 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9640
9641 return get_identifier (buf);
9642 }
9643 \f
9644 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9645
9646 /* Complain that the tree code of NODE does not match the expected 0
9647 terminated list of trailing codes. The trailing code list can be
9648 empty, for a more vague error message. FILE, LINE, and FUNCTION
9649 are of the caller. */
9650
9651 void
9652 tree_check_failed (const_tree node, const char *file,
9653 int line, const char *function, ...)
9654 {
9655 va_list args;
9656 const char *buffer;
9657 unsigned length = 0;
9658 enum tree_code code;
9659
9660 va_start (args, function);
9661 while ((code = (enum tree_code) va_arg (args, int)))
9662 length += 4 + strlen (get_tree_code_name (code));
9663 va_end (args);
9664 if (length)
9665 {
9666 char *tmp;
9667 va_start (args, function);
9668 length += strlen ("expected ");
9669 buffer = tmp = (char *) alloca (length);
9670 length = 0;
9671 while ((code = (enum tree_code) va_arg (args, int)))
9672 {
9673 const char *prefix = length ? " or " : "expected ";
9674
9675 strcpy (tmp + length, prefix);
9676 length += strlen (prefix);
9677 strcpy (tmp + length, get_tree_code_name (code));
9678 length += strlen (get_tree_code_name (code));
9679 }
9680 va_end (args);
9681 }
9682 else
9683 buffer = "unexpected node";
9684
9685 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9686 buffer, get_tree_code_name (TREE_CODE (node)),
9687 function, trim_filename (file), line);
9688 }
9689
9690 /* Complain that the tree code of NODE does match the expected 0
9691 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9692 the caller. */
9693
9694 void
9695 tree_not_check_failed (const_tree node, const char *file,
9696 int line, const char *function, ...)
9697 {
9698 va_list args;
9699 char *buffer;
9700 unsigned length = 0;
9701 enum tree_code code;
9702
9703 va_start (args, function);
9704 while ((code = (enum tree_code) va_arg (args, int)))
9705 length += 4 + strlen (get_tree_code_name (code));
9706 va_end (args);
9707 va_start (args, function);
9708 buffer = (char *) alloca (length);
9709 length = 0;
9710 while ((code = (enum tree_code) va_arg (args, int)))
9711 {
9712 if (length)
9713 {
9714 strcpy (buffer + length, " or ");
9715 length += 4;
9716 }
9717 strcpy (buffer + length, get_tree_code_name (code));
9718 length += strlen (get_tree_code_name (code));
9719 }
9720 va_end (args);
9721
9722 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9723 buffer, get_tree_code_name (TREE_CODE (node)),
9724 function, trim_filename (file), line);
9725 }
9726
9727 /* Similar to tree_check_failed, except that we check for a class of tree
9728 code, given in CL. */
9729
9730 void
9731 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9732 const char *file, int line, const char *function)
9733 {
9734 internal_error
9735 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9736 TREE_CODE_CLASS_STRING (cl),
9737 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9738 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9739 }
9740
9741 /* Similar to tree_check_failed, except that instead of specifying a
9742 dozen codes, use the knowledge that they're all sequential. */
9743
9744 void
9745 tree_range_check_failed (const_tree node, const char *file, int line,
9746 const char *function, enum tree_code c1,
9747 enum tree_code c2)
9748 {
9749 char *buffer;
9750 unsigned length = 0;
9751 unsigned int c;
9752
9753 for (c = c1; c <= c2; ++c)
9754 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9755
9756 length += strlen ("expected ");
9757 buffer = (char *) alloca (length);
9758 length = 0;
9759
9760 for (c = c1; c <= c2; ++c)
9761 {
9762 const char *prefix = length ? " or " : "expected ";
9763
9764 strcpy (buffer + length, prefix);
9765 length += strlen (prefix);
9766 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9767 length += strlen (get_tree_code_name ((enum tree_code) c));
9768 }
9769
9770 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9771 buffer, get_tree_code_name (TREE_CODE (node)),
9772 function, trim_filename (file), line);
9773 }
9774
9775
9776 /* Similar to tree_check_failed, except that we check that a tree does
9777 not have the specified code, given in CL. */
9778
9779 void
9780 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9781 const char *file, int line, const char *function)
9782 {
9783 internal_error
9784 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9785 TREE_CODE_CLASS_STRING (cl),
9786 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9787 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9788 }
9789
9790
9791 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9792
9793 void
9794 omp_clause_check_failed (const_tree node, const char *file, int line,
9795 const char *function, enum omp_clause_code code)
9796 {
9797 internal_error ("tree check: expected %<omp_clause %s%>, have %qs "
9798 "in %s, at %s:%d",
9799 omp_clause_code_name[code],
9800 get_tree_code_name (TREE_CODE (node)),
9801 function, trim_filename (file), line);
9802 }
9803
9804
9805 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9806
9807 void
9808 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9809 const char *function, enum omp_clause_code c1,
9810 enum omp_clause_code c2)
9811 {
9812 char *buffer;
9813 unsigned length = 0;
9814 unsigned int c;
9815
9816 for (c = c1; c <= c2; ++c)
9817 length += 4 + strlen (omp_clause_code_name[c]);
9818
9819 length += strlen ("expected ");
9820 buffer = (char *) alloca (length);
9821 length = 0;
9822
9823 for (c = c1; c <= c2; ++c)
9824 {
9825 const char *prefix = length ? " or " : "expected ";
9826
9827 strcpy (buffer + length, prefix);
9828 length += strlen (prefix);
9829 strcpy (buffer + length, omp_clause_code_name[c]);
9830 length += strlen (omp_clause_code_name[c]);
9831 }
9832
9833 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9834 buffer, omp_clause_code_name[TREE_CODE (node)],
9835 function, trim_filename (file), line);
9836 }
9837
9838
9839 #undef DEFTREESTRUCT
9840 #define DEFTREESTRUCT(VAL, NAME) NAME,
9841
9842 static const char *ts_enum_names[] = {
9843 #include "treestruct.def"
9844 };
9845 #undef DEFTREESTRUCT
9846
9847 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9848
9849 /* Similar to tree_class_check_failed, except that we check for
9850 whether CODE contains the tree structure identified by EN. */
9851
9852 void
9853 tree_contains_struct_check_failed (const_tree node,
9854 const enum tree_node_structure_enum en,
9855 const char *file, int line,
9856 const char *function)
9857 {
9858 internal_error
9859 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9860 TS_ENUM_NAME (en),
9861 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9862 }
9863
9864
9865 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9866 (dynamically sized) vector. */
9867
9868 void
9869 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9870 const char *function)
9871 {
9872 internal_error
9873 ("tree check: accessed elt %d of %<tree_int_cst%> with %d elts in %s, "
9874 "at %s:%d",
9875 idx + 1, len, function, trim_filename (file), line);
9876 }
9877
9878 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9879 (dynamically sized) vector. */
9880
9881 void
9882 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9883 const char *function)
9884 {
9885 internal_error
9886 ("tree check: accessed elt %d of %<tree_vec%> with %d elts in %s, at %s:%d",
9887 idx + 1, len, function, trim_filename (file), line);
9888 }
9889
9890 /* Similar to above, except that the check is for the bounds of the operand
9891 vector of an expression node EXP. */
9892
9893 void
9894 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9895 int line, const char *function)
9896 {
9897 enum tree_code code = TREE_CODE (exp);
9898 internal_error
9899 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9900 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9901 function, trim_filename (file), line);
9902 }
9903
9904 /* Similar to above, except that the check is for the number of
9905 operands of an OMP_CLAUSE node. */
9906
9907 void
9908 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9909 int line, const char *function)
9910 {
9911 internal_error
9912 ("tree check: accessed operand %d of %<omp_clause %s%> with %d operands "
9913 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9914 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9915 trim_filename (file), line);
9916 }
9917 #endif /* ENABLE_TREE_CHECKING */
9918 \f
9919 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9920 and mapped to the machine mode MODE. Initialize its fields and build
9921 the information necessary for debugging output. */
9922
9923 static tree
9924 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9925 {
9926 tree t;
9927 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9928
9929 t = make_node (VECTOR_TYPE);
9930 TREE_TYPE (t) = mv_innertype;
9931 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9932 SET_TYPE_MODE (t, mode);
9933
9934 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9935 SET_TYPE_STRUCTURAL_EQUALITY (t);
9936 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9937 || mode != VOIDmode)
9938 && !VECTOR_BOOLEAN_TYPE_P (t))
9939 TYPE_CANONICAL (t)
9940 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9941
9942 layout_type (t);
9943
9944 hashval_t hash = type_hash_canon_hash (t);
9945 t = type_hash_canon (hash, t);
9946
9947 /* We have built a main variant, based on the main variant of the
9948 inner type. Use it to build the variant we return. */
9949 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9950 && TREE_TYPE (t) != innertype)
9951 return build_type_attribute_qual_variant (t,
9952 TYPE_ATTRIBUTES (innertype),
9953 TYPE_QUALS (innertype));
9954
9955 return t;
9956 }
9957
9958 static tree
9959 make_or_reuse_type (unsigned size, int unsignedp)
9960 {
9961 int i;
9962
9963 if (size == INT_TYPE_SIZE)
9964 return unsignedp ? unsigned_type_node : integer_type_node;
9965 if (size == CHAR_TYPE_SIZE)
9966 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9967 if (size == SHORT_TYPE_SIZE)
9968 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9969 if (size == LONG_TYPE_SIZE)
9970 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9971 if (size == LONG_LONG_TYPE_SIZE)
9972 return (unsignedp ? long_long_unsigned_type_node
9973 : long_long_integer_type_node);
9974
9975 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9976 if (size == int_n_data[i].bitsize
9977 && int_n_enabled_p[i])
9978 return (unsignedp ? int_n_trees[i].unsigned_type
9979 : int_n_trees[i].signed_type);
9980
9981 if (unsignedp)
9982 return make_unsigned_type (size);
9983 else
9984 return make_signed_type (size);
9985 }
9986
9987 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9988
9989 static tree
9990 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9991 {
9992 if (satp)
9993 {
9994 if (size == SHORT_FRACT_TYPE_SIZE)
9995 return unsignedp ? sat_unsigned_short_fract_type_node
9996 : sat_short_fract_type_node;
9997 if (size == FRACT_TYPE_SIZE)
9998 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9999 if (size == LONG_FRACT_TYPE_SIZE)
10000 return unsignedp ? sat_unsigned_long_fract_type_node
10001 : sat_long_fract_type_node;
10002 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10003 return unsignedp ? sat_unsigned_long_long_fract_type_node
10004 : sat_long_long_fract_type_node;
10005 }
10006 else
10007 {
10008 if (size == SHORT_FRACT_TYPE_SIZE)
10009 return unsignedp ? unsigned_short_fract_type_node
10010 : short_fract_type_node;
10011 if (size == FRACT_TYPE_SIZE)
10012 return unsignedp ? unsigned_fract_type_node : fract_type_node;
10013 if (size == LONG_FRACT_TYPE_SIZE)
10014 return unsignedp ? unsigned_long_fract_type_node
10015 : long_fract_type_node;
10016 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10017 return unsignedp ? unsigned_long_long_fract_type_node
10018 : long_long_fract_type_node;
10019 }
10020
10021 return make_fract_type (size, unsignedp, satp);
10022 }
10023
10024 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
10025
10026 static tree
10027 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
10028 {
10029 if (satp)
10030 {
10031 if (size == SHORT_ACCUM_TYPE_SIZE)
10032 return unsignedp ? sat_unsigned_short_accum_type_node
10033 : sat_short_accum_type_node;
10034 if (size == ACCUM_TYPE_SIZE)
10035 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
10036 if (size == LONG_ACCUM_TYPE_SIZE)
10037 return unsignedp ? sat_unsigned_long_accum_type_node
10038 : sat_long_accum_type_node;
10039 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10040 return unsignedp ? sat_unsigned_long_long_accum_type_node
10041 : sat_long_long_accum_type_node;
10042 }
10043 else
10044 {
10045 if (size == SHORT_ACCUM_TYPE_SIZE)
10046 return unsignedp ? unsigned_short_accum_type_node
10047 : short_accum_type_node;
10048 if (size == ACCUM_TYPE_SIZE)
10049 return unsignedp ? unsigned_accum_type_node : accum_type_node;
10050 if (size == LONG_ACCUM_TYPE_SIZE)
10051 return unsignedp ? unsigned_long_accum_type_node
10052 : long_accum_type_node;
10053 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10054 return unsignedp ? unsigned_long_long_accum_type_node
10055 : long_long_accum_type_node;
10056 }
10057
10058 return make_accum_type (size, unsignedp, satp);
10059 }
10060
10061
10062 /* Create an atomic variant node for TYPE. This routine is called
10063 during initialization of data types to create the 5 basic atomic
10064 types. The generic build_variant_type function requires these to
10065 already be set up in order to function properly, so cannot be
10066 called from there. If ALIGN is non-zero, then ensure alignment is
10067 overridden to this value. */
10068
10069 static tree
10070 build_atomic_base (tree type, unsigned int align)
10071 {
10072 tree t;
10073
10074 /* Make sure its not already registered. */
10075 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
10076 return t;
10077
10078 t = build_variant_type_copy (type);
10079 set_type_quals (t, TYPE_QUAL_ATOMIC);
10080
10081 if (align)
10082 SET_TYPE_ALIGN (t, align);
10083
10084 return t;
10085 }
10086
10087 /* Information about the _FloatN and _FloatNx types. This must be in
10088 the same order as the corresponding TI_* enum values. */
10089 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
10090 {
10091 { 16, false },
10092 { 32, false },
10093 { 64, false },
10094 { 128, false },
10095 { 32, true },
10096 { 64, true },
10097 { 128, true },
10098 };
10099
10100
10101 /* Create nodes for all integer types (and error_mark_node) using the sizes
10102 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
10103
10104 void
10105 build_common_tree_nodes (bool signed_char)
10106 {
10107 int i;
10108
10109 error_mark_node = make_node (ERROR_MARK);
10110 TREE_TYPE (error_mark_node) = error_mark_node;
10111
10112 initialize_sizetypes ();
10113
10114 /* Define both `signed char' and `unsigned char'. */
10115 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
10116 TYPE_STRING_FLAG (signed_char_type_node) = 1;
10117 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
10118 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
10119
10120 /* Define `char', which is like either `signed char' or `unsigned char'
10121 but not the same as either. */
10122 char_type_node
10123 = (signed_char
10124 ? make_signed_type (CHAR_TYPE_SIZE)
10125 : make_unsigned_type (CHAR_TYPE_SIZE));
10126 TYPE_STRING_FLAG (char_type_node) = 1;
10127
10128 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
10129 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
10130 integer_type_node = make_signed_type (INT_TYPE_SIZE);
10131 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
10132 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
10133 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
10134 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
10135 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
10136
10137 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10138 {
10139 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
10140 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
10141
10142 if (int_n_enabled_p[i])
10143 {
10144 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
10145 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
10146 }
10147 }
10148
10149 /* Define a boolean type. This type only represents boolean values but
10150 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
10151 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
10152 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
10153 TYPE_PRECISION (boolean_type_node) = 1;
10154 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
10155
10156 /* Define what type to use for size_t. */
10157 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
10158 size_type_node = unsigned_type_node;
10159 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
10160 size_type_node = long_unsigned_type_node;
10161 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
10162 size_type_node = long_long_unsigned_type_node;
10163 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
10164 size_type_node = short_unsigned_type_node;
10165 else
10166 {
10167 int i;
10168
10169 size_type_node = NULL_TREE;
10170 for (i = 0; i < NUM_INT_N_ENTS; i++)
10171 if (int_n_enabled_p[i])
10172 {
10173 char name[50], altname[50];
10174 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
10175 sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
10176
10177 if (strcmp (name, SIZE_TYPE) == 0
10178 || strcmp (altname, SIZE_TYPE) == 0)
10179 {
10180 size_type_node = int_n_trees[i].unsigned_type;
10181 }
10182 }
10183 if (size_type_node == NULL_TREE)
10184 gcc_unreachable ();
10185 }
10186
10187 /* Define what type to use for ptrdiff_t. */
10188 if (strcmp (PTRDIFF_TYPE, "int") == 0)
10189 ptrdiff_type_node = integer_type_node;
10190 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
10191 ptrdiff_type_node = long_integer_type_node;
10192 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
10193 ptrdiff_type_node = long_long_integer_type_node;
10194 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
10195 ptrdiff_type_node = short_integer_type_node;
10196 else
10197 {
10198 ptrdiff_type_node = NULL_TREE;
10199 for (int i = 0; i < NUM_INT_N_ENTS; i++)
10200 if (int_n_enabled_p[i])
10201 {
10202 char name[50], altname[50];
10203 sprintf (name, "__int%d", int_n_data[i].bitsize);
10204 sprintf (altname, "__int%d__", int_n_data[i].bitsize);
10205
10206 if (strcmp (name, PTRDIFF_TYPE) == 0
10207 || strcmp (altname, PTRDIFF_TYPE) == 0)
10208 ptrdiff_type_node = int_n_trees[i].signed_type;
10209 }
10210 if (ptrdiff_type_node == NULL_TREE)
10211 gcc_unreachable ();
10212 }
10213
10214 /* Fill in the rest of the sized types. Reuse existing type nodes
10215 when possible. */
10216 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10217 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10218 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10219 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10220 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10221
10222 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10223 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10224 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10225 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10226 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10227
10228 /* Don't call build_qualified type for atomics. That routine does
10229 special processing for atomics, and until they are initialized
10230 it's better not to make that call.
10231
10232 Check to see if there is a target override for atomic types. */
10233
10234 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10235 targetm.atomic_align_for_mode (QImode));
10236 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10237 targetm.atomic_align_for_mode (HImode));
10238 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10239 targetm.atomic_align_for_mode (SImode));
10240 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10241 targetm.atomic_align_for_mode (DImode));
10242 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10243 targetm.atomic_align_for_mode (TImode));
10244
10245 access_public_node = get_identifier ("public");
10246 access_protected_node = get_identifier ("protected");
10247 access_private_node = get_identifier ("private");
10248
10249 /* Define these next since types below may used them. */
10250 integer_zero_node = build_int_cst (integer_type_node, 0);
10251 integer_one_node = build_int_cst (integer_type_node, 1);
10252 integer_three_node = build_int_cst (integer_type_node, 3);
10253 integer_minus_one_node = build_int_cst (integer_type_node, -1);
10254
10255 size_zero_node = size_int (0);
10256 size_one_node = size_int (1);
10257 bitsize_zero_node = bitsize_int (0);
10258 bitsize_one_node = bitsize_int (1);
10259 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10260
10261 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10262 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10263
10264 void_type_node = make_node (VOID_TYPE);
10265 layout_type (void_type_node);
10266
10267 /* We are not going to have real types in C with less than byte alignment,
10268 so we might as well not have any types that claim to have it. */
10269 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
10270 TYPE_USER_ALIGN (void_type_node) = 0;
10271
10272 void_node = make_node (VOID_CST);
10273 TREE_TYPE (void_node) = void_type_node;
10274
10275 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10276 layout_type (TREE_TYPE (null_pointer_node));
10277
10278 ptr_type_node = build_pointer_type (void_type_node);
10279 const_ptr_type_node
10280 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10281 for (unsigned i = 0;
10282 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
10283 ++i)
10284 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
10285
10286 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10287
10288 float_type_node = make_node (REAL_TYPE);
10289 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10290 layout_type (float_type_node);
10291
10292 double_type_node = make_node (REAL_TYPE);
10293 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10294 layout_type (double_type_node);
10295
10296 long_double_type_node = make_node (REAL_TYPE);
10297 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10298 layout_type (long_double_type_node);
10299
10300 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10301 {
10302 int n = floatn_nx_types[i].n;
10303 bool extended = floatn_nx_types[i].extended;
10304 scalar_float_mode mode;
10305 if (!targetm.floatn_mode (n, extended).exists (&mode))
10306 continue;
10307 int precision = GET_MODE_PRECISION (mode);
10308 /* Work around the rs6000 KFmode having precision 113 not
10309 128. */
10310 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
10311 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
10312 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
10313 if (!extended)
10314 gcc_assert (min_precision == n);
10315 if (precision < min_precision)
10316 precision = min_precision;
10317 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
10318 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
10319 layout_type (FLOATN_NX_TYPE_NODE (i));
10320 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
10321 }
10322
10323 float_ptr_type_node = build_pointer_type (float_type_node);
10324 double_ptr_type_node = build_pointer_type (double_type_node);
10325 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10326 integer_ptr_type_node = build_pointer_type (integer_type_node);
10327
10328 /* Fixed size integer types. */
10329 uint16_type_node = make_or_reuse_type (16, 1);
10330 uint32_type_node = make_or_reuse_type (32, 1);
10331 uint64_type_node = make_or_reuse_type (64, 1);
10332
10333 /* Decimal float types. */
10334 if (targetm.decimal_float_supported_p ())
10335 {
10336 dfloat32_type_node = make_node (REAL_TYPE);
10337 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10338 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10339 layout_type (dfloat32_type_node);
10340
10341 dfloat64_type_node = make_node (REAL_TYPE);
10342 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10343 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10344 layout_type (dfloat64_type_node);
10345
10346 dfloat128_type_node = make_node (REAL_TYPE);
10347 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10348 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10349 layout_type (dfloat128_type_node);
10350 }
10351
10352 complex_integer_type_node = build_complex_type (integer_type_node, true);
10353 complex_float_type_node = build_complex_type (float_type_node, true);
10354 complex_double_type_node = build_complex_type (double_type_node, true);
10355 complex_long_double_type_node = build_complex_type (long_double_type_node,
10356 true);
10357
10358 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10359 {
10360 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10361 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10362 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10363 }
10364
10365 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10366 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10367 sat_ ## KIND ## _type_node = \
10368 make_sat_signed_ ## KIND ## _type (SIZE); \
10369 sat_unsigned_ ## KIND ## _type_node = \
10370 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10371 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10372 unsigned_ ## KIND ## _type_node = \
10373 make_unsigned_ ## KIND ## _type (SIZE);
10374
10375 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10376 sat_ ## WIDTH ## KIND ## _type_node = \
10377 make_sat_signed_ ## KIND ## _type (SIZE); \
10378 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10379 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10380 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10381 unsigned_ ## WIDTH ## KIND ## _type_node = \
10382 make_unsigned_ ## KIND ## _type (SIZE);
10383
10384 /* Make fixed-point type nodes based on four different widths. */
10385 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10386 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10387 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10388 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10389 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10390
10391 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10392 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10393 NAME ## _type_node = \
10394 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10395 u ## NAME ## _type_node = \
10396 make_or_reuse_unsigned_ ## KIND ## _type \
10397 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10398 sat_ ## NAME ## _type_node = \
10399 make_or_reuse_sat_signed_ ## KIND ## _type \
10400 (GET_MODE_BITSIZE (MODE ## mode)); \
10401 sat_u ## NAME ## _type_node = \
10402 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10403 (GET_MODE_BITSIZE (U ## MODE ## mode));
10404
10405 /* Fixed-point type and mode nodes. */
10406 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10407 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10408 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10409 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10410 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10411 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10412 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10413 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10414 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10415 MAKE_FIXED_MODE_NODE (accum, da, DA)
10416 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10417
10418 {
10419 tree t = targetm.build_builtin_va_list ();
10420
10421 /* Many back-ends define record types without setting TYPE_NAME.
10422 If we copied the record type here, we'd keep the original
10423 record type without a name. This breaks name mangling. So,
10424 don't copy record types and let c_common_nodes_and_builtins()
10425 declare the type to be __builtin_va_list. */
10426 if (TREE_CODE (t) != RECORD_TYPE)
10427 t = build_variant_type_copy (t);
10428
10429 va_list_type_node = t;
10430 }
10431
10432 /* SCEV analyzer global shared trees. */
10433 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
10434 TREE_TYPE (chrec_dont_know) = void_type_node;
10435 chrec_known = make_node (SCEV_KNOWN);
10436 TREE_TYPE (chrec_known) = void_type_node;
10437 }
10438
10439 /* Modify DECL for given flags.
10440 TM_PURE attribute is set only on types, so the function will modify
10441 DECL's type when ECF_TM_PURE is used. */
10442
10443 void
10444 set_call_expr_flags (tree decl, int flags)
10445 {
10446 if (flags & ECF_NOTHROW)
10447 TREE_NOTHROW (decl) = 1;
10448 if (flags & ECF_CONST)
10449 TREE_READONLY (decl) = 1;
10450 if (flags & ECF_PURE)
10451 DECL_PURE_P (decl) = 1;
10452 if (flags & ECF_LOOPING_CONST_OR_PURE)
10453 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10454 if (flags & ECF_NOVOPS)
10455 DECL_IS_NOVOPS (decl) = 1;
10456 if (flags & ECF_NORETURN)
10457 TREE_THIS_VOLATILE (decl) = 1;
10458 if (flags & ECF_MALLOC)
10459 DECL_IS_MALLOC (decl) = 1;
10460 if (flags & ECF_RETURNS_TWICE)
10461 DECL_IS_RETURNS_TWICE (decl) = 1;
10462 if (flags & ECF_LEAF)
10463 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10464 NULL, DECL_ATTRIBUTES (decl));
10465 if (flags & ECF_COLD)
10466 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10467 NULL, DECL_ATTRIBUTES (decl));
10468 if (flags & ECF_RET1)
10469 DECL_ATTRIBUTES (decl)
10470 = tree_cons (get_identifier ("fn spec"),
10471 build_tree_list (NULL_TREE, build_string (1, "1")),
10472 DECL_ATTRIBUTES (decl));
10473 if ((flags & ECF_TM_PURE) && flag_tm)
10474 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10475 /* Looping const or pure is implied by noreturn.
10476 There is currently no way to declare looping const or looping pure alone. */
10477 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10478 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10479 }
10480
10481
10482 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10483
10484 static void
10485 local_define_builtin (const char *name, tree type, enum built_in_function code,
10486 const char *library_name, int ecf_flags)
10487 {
10488 tree decl;
10489
10490 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10491 library_name, NULL_TREE);
10492 set_call_expr_flags (decl, ecf_flags);
10493
10494 set_builtin_decl (code, decl, true);
10495 }
10496
10497 /* Call this function after instantiating all builtins that the language
10498 front end cares about. This will build the rest of the builtins
10499 and internal functions that are relied upon by the tree optimizers and
10500 the middle-end. */
10501
10502 void
10503 build_common_builtin_nodes (void)
10504 {
10505 tree tmp, ftype;
10506 int ecf_flags;
10507
10508 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10509 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10510 {
10511 ftype = build_function_type (void_type_node, void_list_node);
10512 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10513 local_define_builtin ("__builtin_unreachable", ftype,
10514 BUILT_IN_UNREACHABLE,
10515 "__builtin_unreachable",
10516 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10517 | ECF_CONST | ECF_COLD);
10518 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10519 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10520 "abort",
10521 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10522 }
10523
10524 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10525 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10526 {
10527 ftype = build_function_type_list (ptr_type_node,
10528 ptr_type_node, const_ptr_type_node,
10529 size_type_node, NULL_TREE);
10530
10531 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10532 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10533 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10534 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10535 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10536 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10537 }
10538
10539 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10540 {
10541 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10542 const_ptr_type_node, size_type_node,
10543 NULL_TREE);
10544 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10545 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10546 }
10547
10548 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10549 {
10550 ftype = build_function_type_list (ptr_type_node,
10551 ptr_type_node, integer_type_node,
10552 size_type_node, NULL_TREE);
10553 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10554 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10555 }
10556
10557 /* If we're checking the stack, `alloca' can throw. */
10558 const int alloca_flags
10559 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10560
10561 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10562 {
10563 ftype = build_function_type_list (ptr_type_node,
10564 size_type_node, NULL_TREE);
10565 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10566 "alloca", alloca_flags);
10567 }
10568
10569 ftype = build_function_type_list (ptr_type_node, size_type_node,
10570 size_type_node, NULL_TREE);
10571 local_define_builtin ("__builtin_alloca_with_align", ftype,
10572 BUILT_IN_ALLOCA_WITH_ALIGN,
10573 "__builtin_alloca_with_align",
10574 alloca_flags);
10575
10576 ftype = build_function_type_list (ptr_type_node, size_type_node,
10577 size_type_node, size_type_node, NULL_TREE);
10578 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10579 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10580 "__builtin_alloca_with_align_and_max",
10581 alloca_flags);
10582
10583 ftype = build_function_type_list (void_type_node,
10584 ptr_type_node, ptr_type_node,
10585 ptr_type_node, NULL_TREE);
10586 local_define_builtin ("__builtin_init_trampoline", ftype,
10587 BUILT_IN_INIT_TRAMPOLINE,
10588 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10589 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10590 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10591 "__builtin_init_heap_trampoline",
10592 ECF_NOTHROW | ECF_LEAF);
10593 local_define_builtin ("__builtin_init_descriptor", ftype,
10594 BUILT_IN_INIT_DESCRIPTOR,
10595 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10596
10597 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10598 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10599 BUILT_IN_ADJUST_TRAMPOLINE,
10600 "__builtin_adjust_trampoline",
10601 ECF_CONST | ECF_NOTHROW);
10602 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10603 BUILT_IN_ADJUST_DESCRIPTOR,
10604 "__builtin_adjust_descriptor",
10605 ECF_CONST | ECF_NOTHROW);
10606
10607 ftype = build_function_type_list (void_type_node,
10608 ptr_type_node, ptr_type_node, NULL_TREE);
10609 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10610 BUILT_IN_NONLOCAL_GOTO,
10611 "__builtin_nonlocal_goto",
10612 ECF_NORETURN | ECF_NOTHROW);
10613
10614 ftype = build_function_type_list (void_type_node,
10615 ptr_type_node, ptr_type_node, NULL_TREE);
10616 local_define_builtin ("__builtin_setjmp_setup", ftype,
10617 BUILT_IN_SETJMP_SETUP,
10618 "__builtin_setjmp_setup", ECF_NOTHROW);
10619
10620 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10621 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10622 BUILT_IN_SETJMP_RECEIVER,
10623 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10624
10625 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10626 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10627 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10628
10629 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10630 local_define_builtin ("__builtin_stack_restore", ftype,
10631 BUILT_IN_STACK_RESTORE,
10632 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10633
10634 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10635 const_ptr_type_node, size_type_node,
10636 NULL_TREE);
10637 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10638 "__builtin_memcmp_eq",
10639 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10640
10641 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10642 "__builtin_strncmp_eq",
10643 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10644
10645 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10646 "__builtin_strcmp_eq",
10647 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10648
10649 /* If there's a possibility that we might use the ARM EABI, build the
10650 alternate __cxa_end_cleanup node used to resume from C++. */
10651 if (targetm.arm_eabi_unwinder)
10652 {
10653 ftype = build_function_type_list (void_type_node, NULL_TREE);
10654 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10655 BUILT_IN_CXA_END_CLEANUP,
10656 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10657 }
10658
10659 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10660 local_define_builtin ("__builtin_unwind_resume", ftype,
10661 BUILT_IN_UNWIND_RESUME,
10662 ((targetm_common.except_unwind_info (&global_options)
10663 == UI_SJLJ)
10664 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10665 ECF_NORETURN);
10666
10667 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10668 {
10669 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10670 NULL_TREE);
10671 local_define_builtin ("__builtin_return_address", ftype,
10672 BUILT_IN_RETURN_ADDRESS,
10673 "__builtin_return_address",
10674 ECF_NOTHROW);
10675 }
10676
10677 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10678 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10679 {
10680 ftype = build_function_type_list (void_type_node, ptr_type_node,
10681 ptr_type_node, NULL_TREE);
10682 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10683 local_define_builtin ("__cyg_profile_func_enter", ftype,
10684 BUILT_IN_PROFILE_FUNC_ENTER,
10685 "__cyg_profile_func_enter", 0);
10686 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10687 local_define_builtin ("__cyg_profile_func_exit", ftype,
10688 BUILT_IN_PROFILE_FUNC_EXIT,
10689 "__cyg_profile_func_exit", 0);
10690 }
10691
10692 /* The exception object and filter values from the runtime. The argument
10693 must be zero before exception lowering, i.e. from the front end. After
10694 exception lowering, it will be the region number for the exception
10695 landing pad. These functions are PURE instead of CONST to prevent
10696 them from being hoisted past the exception edge that will initialize
10697 its value in the landing pad. */
10698 ftype = build_function_type_list (ptr_type_node,
10699 integer_type_node, NULL_TREE);
10700 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10701 /* Only use TM_PURE if we have TM language support. */
10702 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10703 ecf_flags |= ECF_TM_PURE;
10704 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10705 "__builtin_eh_pointer", ecf_flags);
10706
10707 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10708 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10709 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10710 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10711
10712 ftype = build_function_type_list (void_type_node,
10713 integer_type_node, integer_type_node,
10714 NULL_TREE);
10715 local_define_builtin ("__builtin_eh_copy_values", ftype,
10716 BUILT_IN_EH_COPY_VALUES,
10717 "__builtin_eh_copy_values", ECF_NOTHROW);
10718
10719 /* Complex multiplication and division. These are handled as builtins
10720 rather than optabs because emit_library_call_value doesn't support
10721 complex. Further, we can do slightly better with folding these
10722 beasties if the real and complex parts of the arguments are separate. */
10723 {
10724 int mode;
10725
10726 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10727 {
10728 char mode_name_buf[4], *q;
10729 const char *p;
10730 enum built_in_function mcode, dcode;
10731 tree type, inner_type;
10732 const char *prefix = "__";
10733
10734 if (targetm.libfunc_gnu_prefix)
10735 prefix = "__gnu_";
10736
10737 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10738 if (type == NULL)
10739 continue;
10740 inner_type = TREE_TYPE (type);
10741
10742 ftype = build_function_type_list (type, inner_type, inner_type,
10743 inner_type, inner_type, NULL_TREE);
10744
10745 mcode = ((enum built_in_function)
10746 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10747 dcode = ((enum built_in_function)
10748 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10749
10750 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10751 *q = TOLOWER (*p);
10752 *q = '\0';
10753
10754 /* For -ftrapping-math these should throw from a former
10755 -fnon-call-exception stmt. */
10756 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10757 NULL);
10758 local_define_builtin (built_in_names[mcode], ftype, mcode,
10759 built_in_names[mcode],
10760 ECF_CONST | ECF_LEAF);
10761
10762 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10763 NULL);
10764 local_define_builtin (built_in_names[dcode], ftype, dcode,
10765 built_in_names[dcode],
10766 ECF_CONST | ECF_LEAF);
10767 }
10768 }
10769
10770 init_internal_fns ();
10771 }
10772
10773 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10774 better way.
10775
10776 If we requested a pointer to a vector, build up the pointers that
10777 we stripped off while looking for the inner type. Similarly for
10778 return values from functions.
10779
10780 The argument TYPE is the top of the chain, and BOTTOM is the
10781 new type which we will point to. */
10782
10783 tree
10784 reconstruct_complex_type (tree type, tree bottom)
10785 {
10786 tree inner, outer;
10787
10788 if (TREE_CODE (type) == POINTER_TYPE)
10789 {
10790 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10791 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10792 TYPE_REF_CAN_ALIAS_ALL (type));
10793 }
10794 else if (TREE_CODE (type) == REFERENCE_TYPE)
10795 {
10796 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10797 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10798 TYPE_REF_CAN_ALIAS_ALL (type));
10799 }
10800 else if (TREE_CODE (type) == ARRAY_TYPE)
10801 {
10802 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10803 outer = build_array_type (inner, TYPE_DOMAIN (type));
10804 }
10805 else if (TREE_CODE (type) == FUNCTION_TYPE)
10806 {
10807 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10808 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10809 }
10810 else if (TREE_CODE (type) == METHOD_TYPE)
10811 {
10812 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10813 /* The build_method_type_directly() routine prepends 'this' to argument list,
10814 so we must compensate by getting rid of it. */
10815 outer
10816 = build_method_type_directly
10817 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10818 inner,
10819 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10820 }
10821 else if (TREE_CODE (type) == OFFSET_TYPE)
10822 {
10823 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10824 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10825 }
10826 else
10827 return bottom;
10828
10829 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10830 TYPE_QUALS (type));
10831 }
10832
10833 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10834 the inner type. */
10835 tree
10836 build_vector_type_for_mode (tree innertype, machine_mode mode)
10837 {
10838 poly_int64 nunits;
10839 unsigned int bitsize;
10840
10841 switch (GET_MODE_CLASS (mode))
10842 {
10843 case MODE_VECTOR_BOOL:
10844 case MODE_VECTOR_INT:
10845 case MODE_VECTOR_FLOAT:
10846 case MODE_VECTOR_FRACT:
10847 case MODE_VECTOR_UFRACT:
10848 case MODE_VECTOR_ACCUM:
10849 case MODE_VECTOR_UACCUM:
10850 nunits = GET_MODE_NUNITS (mode);
10851 break;
10852
10853 case MODE_INT:
10854 /* Check that there are no leftover bits. */
10855 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10856 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10857 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10858 break;
10859
10860 default:
10861 gcc_unreachable ();
10862 }
10863
10864 return make_vector_type (innertype, nunits, mode);
10865 }
10866
10867 /* Similarly, but takes the inner type and number of units, which must be
10868 a power of two. */
10869
10870 tree
10871 build_vector_type (tree innertype, poly_int64 nunits)
10872 {
10873 return make_vector_type (innertype, nunits, VOIDmode);
10874 }
10875
10876 /* Build a truth vector with NUNITS units, giving it mode MASK_MODE. */
10877
10878 tree
10879 build_truth_vector_type_for_mode (poly_uint64 nunits, machine_mode mask_mode)
10880 {
10881 gcc_assert (mask_mode != BLKmode);
10882
10883 poly_uint64 vsize = GET_MODE_BITSIZE (mask_mode);
10884 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10885 tree bool_type = build_nonstandard_boolean_type (esize);
10886
10887 return make_vector_type (bool_type, nunits, mask_mode);
10888 }
10889
10890 /* Build a vector type that holds one boolean result for each element of
10891 vector type VECTYPE. The public interface for this operation is
10892 truth_type_for. */
10893
10894 static tree
10895 build_truth_vector_type_for (tree vectype)
10896 {
10897 machine_mode vector_mode = TYPE_MODE (vectype);
10898 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
10899
10900 machine_mode mask_mode;
10901 if (VECTOR_MODE_P (vector_mode)
10902 && targetm.vectorize.get_mask_mode (vector_mode).exists (&mask_mode))
10903 return build_truth_vector_type_for_mode (nunits, mask_mode);
10904
10905 poly_uint64 vsize = tree_to_poly_uint64 (TYPE_SIZE (vectype));
10906 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10907 tree bool_type = build_nonstandard_boolean_type (esize);
10908
10909 return make_vector_type (bool_type, nunits, BLKmode);
10910 }
10911
10912 /* Like build_vector_type, but builds a variant type with TYPE_VECTOR_OPAQUE
10913 set. */
10914
10915 tree
10916 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10917 {
10918 tree t = make_vector_type (innertype, nunits, VOIDmode);
10919 tree cand;
10920 /* We always build the non-opaque variant before the opaque one,
10921 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10922 cand = TYPE_NEXT_VARIANT (t);
10923 if (cand
10924 && TYPE_VECTOR_OPAQUE (cand)
10925 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10926 return cand;
10927 /* Othewise build a variant type and make sure to queue it after
10928 the non-opaque type. */
10929 cand = build_distinct_type_copy (t);
10930 TYPE_VECTOR_OPAQUE (cand) = true;
10931 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10932 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10933 TYPE_NEXT_VARIANT (t) = cand;
10934 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10935 return cand;
10936 }
10937
10938 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10939
10940 wide_int
10941 vector_cst_int_elt (const_tree t, unsigned int i)
10942 {
10943 /* First handle elements that are directly encoded. */
10944 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10945 if (i < encoded_nelts)
10946 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10947
10948 /* Identify the pattern that contains element I and work out the index of
10949 the last encoded element for that pattern. */
10950 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10951 unsigned int pattern = i % npatterns;
10952 unsigned int count = i / npatterns;
10953 unsigned int final_i = encoded_nelts - npatterns + pattern;
10954
10955 /* If there are no steps, the final encoded value is the right one. */
10956 if (!VECTOR_CST_STEPPED_P (t))
10957 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10958
10959 /* Otherwise work out the value from the last two encoded elements. */
10960 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10961 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10962 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10963 return wi::to_wide (v2) + (count - 2) * diff;
10964 }
10965
10966 /* Return the value of element I of VECTOR_CST T. */
10967
10968 tree
10969 vector_cst_elt (const_tree t, unsigned int i)
10970 {
10971 /* First handle elements that are directly encoded. */
10972 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10973 if (i < encoded_nelts)
10974 return VECTOR_CST_ENCODED_ELT (t, i);
10975
10976 /* If there are no steps, the final encoded value is the right one. */
10977 if (!VECTOR_CST_STEPPED_P (t))
10978 {
10979 /* Identify the pattern that contains element I and work out the index of
10980 the last encoded element for that pattern. */
10981 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10982 unsigned int pattern = i % npatterns;
10983 unsigned int final_i = encoded_nelts - npatterns + pattern;
10984 return VECTOR_CST_ENCODED_ELT (t, final_i);
10985 }
10986
10987 /* Otherwise work out the value from the last two encoded elements. */
10988 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
10989 vector_cst_int_elt (t, i));
10990 }
10991
10992 /* Given an initializer INIT, return TRUE if INIT is zero or some
10993 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
10994 null, set *NONZERO if and only if INIT is known not to be all
10995 zeros. The combination of return value of false and *NONZERO
10996 false implies that INIT may but need not be all zeros. Other
10997 combinations indicate definitive answers. */
10998
10999 bool
11000 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
11001 {
11002 bool dummy;
11003 if (!nonzero)
11004 nonzero = &dummy;
11005
11006 /* Conservatively clear NONZERO and set it only if INIT is definitely
11007 not all zero. */
11008 *nonzero = false;
11009
11010 STRIP_NOPS (init);
11011
11012 unsigned HOST_WIDE_INT off = 0;
11013
11014 switch (TREE_CODE (init))
11015 {
11016 case INTEGER_CST:
11017 if (integer_zerop (init))
11018 return true;
11019
11020 *nonzero = true;
11021 return false;
11022
11023 case REAL_CST:
11024 /* ??? Note that this is not correct for C4X float formats. There,
11025 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
11026 negative exponent. */
11027 if (real_zerop (init)
11028 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
11029 return true;
11030
11031 *nonzero = true;
11032 return false;
11033
11034 case FIXED_CST:
11035 if (fixed_zerop (init))
11036 return true;
11037
11038 *nonzero = true;
11039 return false;
11040
11041 case COMPLEX_CST:
11042 if (integer_zerop (init)
11043 || (real_zerop (init)
11044 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
11045 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
11046 return true;
11047
11048 *nonzero = true;
11049 return false;
11050
11051 case VECTOR_CST:
11052 if (VECTOR_CST_NPATTERNS (init) == 1
11053 && VECTOR_CST_DUPLICATE_P (init)
11054 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
11055 return true;
11056
11057 *nonzero = true;
11058 return false;
11059
11060 case CONSTRUCTOR:
11061 {
11062 if (TREE_CLOBBER_P (init))
11063 return false;
11064
11065 unsigned HOST_WIDE_INT idx;
11066 tree elt;
11067
11068 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
11069 if (!initializer_zerop (elt, nonzero))
11070 return false;
11071
11072 return true;
11073 }
11074
11075 case MEM_REF:
11076 {
11077 tree arg = TREE_OPERAND (init, 0);
11078 if (TREE_CODE (arg) != ADDR_EXPR)
11079 return false;
11080 tree offset = TREE_OPERAND (init, 1);
11081 if (TREE_CODE (offset) != INTEGER_CST
11082 || !tree_fits_uhwi_p (offset))
11083 return false;
11084 off = tree_to_uhwi (offset);
11085 if (INT_MAX < off)
11086 return false;
11087 arg = TREE_OPERAND (arg, 0);
11088 if (TREE_CODE (arg) != STRING_CST)
11089 return false;
11090 init = arg;
11091 }
11092 /* Fall through. */
11093
11094 case STRING_CST:
11095 {
11096 gcc_assert (off <= INT_MAX);
11097
11098 int i = off;
11099 int n = TREE_STRING_LENGTH (init);
11100 if (n <= i)
11101 return false;
11102
11103 /* We need to loop through all elements to handle cases like
11104 "\0" and "\0foobar". */
11105 for (i = 0; i < n; ++i)
11106 if (TREE_STRING_POINTER (init)[i] != '\0')
11107 {
11108 *nonzero = true;
11109 return false;
11110 }
11111
11112 return true;
11113 }
11114
11115 default:
11116 return false;
11117 }
11118 }
11119
11120 /* Return true if EXPR is an initializer expression in which every element
11121 is a constant that is numerically equal to 0 or 1. The elements do not
11122 need to be equal to each other. */
11123
11124 bool
11125 initializer_each_zero_or_onep (const_tree expr)
11126 {
11127 STRIP_ANY_LOCATION_WRAPPER (expr);
11128
11129 switch (TREE_CODE (expr))
11130 {
11131 case INTEGER_CST:
11132 return integer_zerop (expr) || integer_onep (expr);
11133
11134 case REAL_CST:
11135 return real_zerop (expr) || real_onep (expr);
11136
11137 case VECTOR_CST:
11138 {
11139 unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
11140 if (VECTOR_CST_STEPPED_P (expr)
11141 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
11142 return false;
11143
11144 for (unsigned int i = 0; i < nelts; ++i)
11145 {
11146 tree elt = vector_cst_elt (expr, i);
11147 if (!initializer_each_zero_or_onep (elt))
11148 return false;
11149 }
11150
11151 return true;
11152 }
11153
11154 default:
11155 return false;
11156 }
11157 }
11158
11159 /* Check if vector VEC consists of all the equal elements and
11160 that the number of elements corresponds to the type of VEC.
11161 The function returns first element of the vector
11162 or NULL_TREE if the vector is not uniform. */
11163 tree
11164 uniform_vector_p (const_tree vec)
11165 {
11166 tree first, t;
11167 unsigned HOST_WIDE_INT i, nelts;
11168
11169 if (vec == NULL_TREE)
11170 return NULL_TREE;
11171
11172 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
11173
11174 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
11175 return TREE_OPERAND (vec, 0);
11176
11177 else if (TREE_CODE (vec) == VECTOR_CST)
11178 {
11179 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
11180 return VECTOR_CST_ENCODED_ELT (vec, 0);
11181 return NULL_TREE;
11182 }
11183
11184 else if (TREE_CODE (vec) == CONSTRUCTOR
11185 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
11186 {
11187 first = error_mark_node;
11188
11189 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
11190 {
11191 if (i == 0)
11192 {
11193 first = t;
11194 continue;
11195 }
11196 if (!operand_equal_p (first, t, 0))
11197 return NULL_TREE;
11198 }
11199 if (i != nelts)
11200 return NULL_TREE;
11201
11202 return first;
11203 }
11204
11205 return NULL_TREE;
11206 }
11207
11208 /* If the argument is INTEGER_CST, return it. If the argument is vector
11209 with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise
11210 return NULL_TREE.
11211 Look through location wrappers. */
11212
11213 tree
11214 uniform_integer_cst_p (tree t)
11215 {
11216 STRIP_ANY_LOCATION_WRAPPER (t);
11217
11218 if (TREE_CODE (t) == INTEGER_CST)
11219 return t;
11220
11221 if (VECTOR_TYPE_P (TREE_TYPE (t)))
11222 {
11223 t = uniform_vector_p (t);
11224 if (t && TREE_CODE (t) == INTEGER_CST)
11225 return t;
11226 }
11227
11228 return NULL_TREE;
11229 }
11230
11231 /* If VECTOR_CST T has a single nonzero element, return the index of that
11232 element, otherwise return -1. */
11233
11234 int
11235 single_nonzero_element (const_tree t)
11236 {
11237 unsigned HOST_WIDE_INT nelts;
11238 unsigned int repeat_nelts;
11239 if (VECTOR_CST_NELTS (t).is_constant (&nelts))
11240 repeat_nelts = nelts;
11241 else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
11242 {
11243 nelts = vector_cst_encoded_nelts (t);
11244 repeat_nelts = VECTOR_CST_NPATTERNS (t);
11245 }
11246 else
11247 return -1;
11248
11249 int res = -1;
11250 for (unsigned int i = 0; i < nelts; ++i)
11251 {
11252 tree elt = vector_cst_elt (t, i);
11253 if (!integer_zerop (elt) && !real_zerop (elt))
11254 {
11255 if (res >= 0 || i >= repeat_nelts)
11256 return -1;
11257 res = i;
11258 }
11259 }
11260 return res;
11261 }
11262
11263 /* Build an empty statement at location LOC. */
11264
11265 tree
11266 build_empty_stmt (location_t loc)
11267 {
11268 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
11269 SET_EXPR_LOCATION (t, loc);
11270 return t;
11271 }
11272
11273
11274 /* Build an OpenMP clause with code CODE. LOC is the location of the
11275 clause. */
11276
11277 tree
11278 build_omp_clause (location_t loc, enum omp_clause_code code)
11279 {
11280 tree t;
11281 int size, length;
11282
11283 length = omp_clause_num_ops[code];
11284 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
11285
11286 record_node_allocation_statistics (OMP_CLAUSE, size);
11287
11288 t = (tree) ggc_internal_alloc (size);
11289 memset (t, 0, size);
11290 TREE_SET_CODE (t, OMP_CLAUSE);
11291 OMP_CLAUSE_SET_CODE (t, code);
11292 OMP_CLAUSE_LOCATION (t) = loc;
11293
11294 return t;
11295 }
11296
11297 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
11298 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
11299 Except for the CODE and operand count field, other storage for the
11300 object is initialized to zeros. */
11301
11302 tree
11303 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
11304 {
11305 tree t;
11306 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
11307
11308 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
11309 gcc_assert (len >= 1);
11310
11311 record_node_allocation_statistics (code, length);
11312
11313 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
11314
11315 TREE_SET_CODE (t, code);
11316
11317 /* Can't use TREE_OPERAND to store the length because if checking is
11318 enabled, it will try to check the length before we store it. :-P */
11319 t->exp.operands[0] = build_int_cst (sizetype, len);
11320
11321 return t;
11322 }
11323
11324 /* Helper function for build_call_* functions; build a CALL_EXPR with
11325 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
11326 the argument slots. */
11327
11328 static tree
11329 build_call_1 (tree return_type, tree fn, int nargs)
11330 {
11331 tree t;
11332
11333 t = build_vl_exp (CALL_EXPR, nargs + 3);
11334 TREE_TYPE (t) = return_type;
11335 CALL_EXPR_FN (t) = fn;
11336 CALL_EXPR_STATIC_CHAIN (t) = NULL;
11337
11338 return t;
11339 }
11340
11341 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11342 FN and a null static chain slot. NARGS is the number of call arguments
11343 which are specified as "..." arguments. */
11344
11345 tree
11346 build_call_nary (tree return_type, tree fn, int nargs, ...)
11347 {
11348 tree ret;
11349 va_list args;
11350 va_start (args, nargs);
11351 ret = build_call_valist (return_type, fn, nargs, args);
11352 va_end (args);
11353 return ret;
11354 }
11355
11356 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11357 FN and a null static chain slot. NARGS is the number of call arguments
11358 which are specified as a va_list ARGS. */
11359
11360 tree
11361 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
11362 {
11363 tree t;
11364 int i;
11365
11366 t = build_call_1 (return_type, fn, nargs);
11367 for (i = 0; i < nargs; i++)
11368 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
11369 process_call_operands (t);
11370 return t;
11371 }
11372
11373 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11374 FN and a null static chain slot. NARGS is the number of call arguments
11375 which are specified as a tree array ARGS. */
11376
11377 tree
11378 build_call_array_loc (location_t loc, tree return_type, tree fn,
11379 int nargs, const tree *args)
11380 {
11381 tree t;
11382 int i;
11383
11384 t = build_call_1 (return_type, fn, nargs);
11385 for (i = 0; i < nargs; i++)
11386 CALL_EXPR_ARG (t, i) = args[i];
11387 process_call_operands (t);
11388 SET_EXPR_LOCATION (t, loc);
11389 return t;
11390 }
11391
11392 /* Like build_call_array, but takes a vec. */
11393
11394 tree
11395 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
11396 {
11397 tree ret, t;
11398 unsigned int ix;
11399
11400 ret = build_call_1 (return_type, fn, vec_safe_length (args));
11401 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
11402 CALL_EXPR_ARG (ret, ix) = t;
11403 process_call_operands (ret);
11404 return ret;
11405 }
11406
11407 /* Conveniently construct a function call expression. FNDECL names the
11408 function to be called and N arguments are passed in the array
11409 ARGARRAY. */
11410
11411 tree
11412 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11413 {
11414 tree fntype = TREE_TYPE (fndecl);
11415 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11416
11417 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11418 }
11419
11420 /* Conveniently construct a function call expression. FNDECL names the
11421 function to be called and the arguments are passed in the vector
11422 VEC. */
11423
11424 tree
11425 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11426 {
11427 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11428 vec_safe_address (vec));
11429 }
11430
11431
11432 /* Conveniently construct a function call expression. FNDECL names the
11433 function to be called, N is the number of arguments, and the "..."
11434 parameters are the argument expressions. */
11435
11436 tree
11437 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11438 {
11439 va_list ap;
11440 tree *argarray = XALLOCAVEC (tree, n);
11441 int i;
11442
11443 va_start (ap, n);
11444 for (i = 0; i < n; i++)
11445 argarray[i] = va_arg (ap, tree);
11446 va_end (ap);
11447 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11448 }
11449
11450 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11451 varargs macros aren't supported by all bootstrap compilers. */
11452
11453 tree
11454 build_call_expr (tree fndecl, int n, ...)
11455 {
11456 va_list ap;
11457 tree *argarray = XALLOCAVEC (tree, n);
11458 int i;
11459
11460 va_start (ap, n);
11461 for (i = 0; i < n; i++)
11462 argarray[i] = va_arg (ap, tree);
11463 va_end (ap);
11464 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11465 }
11466
11467 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11468 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11469 It will get gimplified later into an ordinary internal function. */
11470
11471 tree
11472 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11473 tree type, int n, const tree *args)
11474 {
11475 tree t = build_call_1 (type, NULL_TREE, n);
11476 for (int i = 0; i < n; ++i)
11477 CALL_EXPR_ARG (t, i) = args[i];
11478 SET_EXPR_LOCATION (t, loc);
11479 CALL_EXPR_IFN (t) = ifn;
11480 return t;
11481 }
11482
11483 /* Build internal call expression. This is just like CALL_EXPR, except
11484 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11485 internal function. */
11486
11487 tree
11488 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11489 tree type, int n, ...)
11490 {
11491 va_list ap;
11492 tree *argarray = XALLOCAVEC (tree, n);
11493 int i;
11494
11495 va_start (ap, n);
11496 for (i = 0; i < n; i++)
11497 argarray[i] = va_arg (ap, tree);
11498 va_end (ap);
11499 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11500 }
11501
11502 /* Return a function call to FN, if the target is guaranteed to support it,
11503 or null otherwise.
11504
11505 N is the number of arguments, passed in the "...", and TYPE is the
11506 type of the return value. */
11507
11508 tree
11509 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11510 int n, ...)
11511 {
11512 va_list ap;
11513 tree *argarray = XALLOCAVEC (tree, n);
11514 int i;
11515
11516 va_start (ap, n);
11517 for (i = 0; i < n; i++)
11518 argarray[i] = va_arg (ap, tree);
11519 va_end (ap);
11520 if (internal_fn_p (fn))
11521 {
11522 internal_fn ifn = as_internal_fn (fn);
11523 if (direct_internal_fn_p (ifn))
11524 {
11525 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11526 if (!direct_internal_fn_supported_p (ifn, types,
11527 OPTIMIZE_FOR_BOTH))
11528 return NULL_TREE;
11529 }
11530 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11531 }
11532 else
11533 {
11534 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11535 if (!fndecl)
11536 return NULL_TREE;
11537 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11538 }
11539 }
11540
11541 /* Return a function call to the appropriate builtin alloca variant.
11542
11543 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11544 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11545 bound for SIZE in case it is not a fixed value. */
11546
11547 tree
11548 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11549 {
11550 if (max_size >= 0)
11551 {
11552 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11553 return
11554 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11555 }
11556 else if (align > 0)
11557 {
11558 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11559 return build_call_expr (t, 2, size, size_int (align));
11560 }
11561 else
11562 {
11563 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11564 return build_call_expr (t, 1, size);
11565 }
11566 }
11567
11568 /* Create a new constant string literal of type ELTYPE[SIZE] (or LEN
11569 if SIZE == -1) and return a tree node representing char* pointer to
11570 it as an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). The STRING_CST value
11571 is the LEN bytes at STR (the representation of the string, which may
11572 be wide). */
11573
11574 tree
11575 build_string_literal (int len, const char *str,
11576 tree eltype /* = char_type_node */,
11577 unsigned HOST_WIDE_INT size /* = -1 */)
11578 {
11579 tree t = build_string (len, str);
11580 /* Set the maximum valid index based on the string length or SIZE. */
11581 unsigned HOST_WIDE_INT maxidx
11582 = (size == HOST_WIDE_INT_M1U ? len : size) - 1;
11583
11584 tree index = build_index_type (size_int (maxidx));
11585 eltype = build_type_variant (eltype, 1, 0);
11586 tree type = build_array_type (eltype, index);
11587 TREE_TYPE (t) = type;
11588 TREE_CONSTANT (t) = 1;
11589 TREE_READONLY (t) = 1;
11590 TREE_STATIC (t) = 1;
11591
11592 type = build_pointer_type (eltype);
11593 t = build1 (ADDR_EXPR, type,
11594 build4 (ARRAY_REF, eltype,
11595 t, integer_zero_node, NULL_TREE, NULL_TREE));
11596 return t;
11597 }
11598
11599
11600
11601 /* Return true if T (assumed to be a DECL) must be assigned a memory
11602 location. */
11603
11604 bool
11605 needs_to_live_in_memory (const_tree t)
11606 {
11607 return (TREE_ADDRESSABLE (t)
11608 || is_global_var (t)
11609 || (TREE_CODE (t) == RESULT_DECL
11610 && !DECL_BY_REFERENCE (t)
11611 && aggregate_value_p (t, current_function_decl)));
11612 }
11613
11614 /* Return value of a constant X and sign-extend it. */
11615
11616 HOST_WIDE_INT
11617 int_cst_value (const_tree x)
11618 {
11619 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11620 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11621
11622 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11623 gcc_assert (cst_and_fits_in_hwi (x));
11624
11625 if (bits < HOST_BITS_PER_WIDE_INT)
11626 {
11627 bool negative = ((val >> (bits - 1)) & 1) != 0;
11628 if (negative)
11629 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11630 else
11631 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11632 }
11633
11634 return val;
11635 }
11636
11637 /* If TYPE is an integral or pointer type, return an integer type with
11638 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11639 if TYPE is already an integer type of signedness UNSIGNEDP.
11640 If TYPE is a floating-point type, return an integer type with the same
11641 bitsize and with the signedness given by UNSIGNEDP; this is useful
11642 when doing bit-level operations on a floating-point value. */
11643
11644 tree
11645 signed_or_unsigned_type_for (int unsignedp, tree type)
11646 {
11647 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11648 return type;
11649
11650 if (TREE_CODE (type) == VECTOR_TYPE)
11651 {
11652 tree inner = TREE_TYPE (type);
11653 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11654 if (!inner2)
11655 return NULL_TREE;
11656 if (inner == inner2)
11657 return type;
11658 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11659 }
11660
11661 if (TREE_CODE (type) == COMPLEX_TYPE)
11662 {
11663 tree inner = TREE_TYPE (type);
11664 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11665 if (!inner2)
11666 return NULL_TREE;
11667 if (inner == inner2)
11668 return type;
11669 return build_complex_type (inner2);
11670 }
11671
11672 unsigned int bits;
11673 if (INTEGRAL_TYPE_P (type)
11674 || POINTER_TYPE_P (type)
11675 || TREE_CODE (type) == OFFSET_TYPE)
11676 bits = TYPE_PRECISION (type);
11677 else if (TREE_CODE (type) == REAL_TYPE)
11678 bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
11679 else
11680 return NULL_TREE;
11681
11682 return build_nonstandard_integer_type (bits, unsignedp);
11683 }
11684
11685 /* If TYPE is an integral or pointer type, return an integer type with
11686 the same precision which is unsigned, or itself if TYPE is already an
11687 unsigned integer type. If TYPE is a floating-point type, return an
11688 unsigned integer type with the same bitsize as TYPE. */
11689
11690 tree
11691 unsigned_type_for (tree type)
11692 {
11693 return signed_or_unsigned_type_for (1, type);
11694 }
11695
11696 /* If TYPE is an integral or pointer type, return an integer type with
11697 the same precision which is signed, or itself if TYPE is already a
11698 signed integer type. If TYPE is a floating-point type, return a
11699 signed integer type with the same bitsize as TYPE. */
11700
11701 tree
11702 signed_type_for (tree type)
11703 {
11704 return signed_or_unsigned_type_for (0, type);
11705 }
11706
11707 /* If TYPE is a vector type, return a signed integer vector type with the
11708 same width and number of subparts. Otherwise return boolean_type_node. */
11709
11710 tree
11711 truth_type_for (tree type)
11712 {
11713 if (TREE_CODE (type) == VECTOR_TYPE)
11714 {
11715 if (VECTOR_BOOLEAN_TYPE_P (type))
11716 return type;
11717 return build_truth_vector_type_for (type);
11718 }
11719 else
11720 return boolean_type_node;
11721 }
11722
11723 /* Returns the largest value obtainable by casting something in INNER type to
11724 OUTER type. */
11725
11726 tree
11727 upper_bound_in_type (tree outer, tree inner)
11728 {
11729 unsigned int det = 0;
11730 unsigned oprec = TYPE_PRECISION (outer);
11731 unsigned iprec = TYPE_PRECISION (inner);
11732 unsigned prec;
11733
11734 /* Compute a unique number for every combination. */
11735 det |= (oprec > iprec) ? 4 : 0;
11736 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11737 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11738
11739 /* Determine the exponent to use. */
11740 switch (det)
11741 {
11742 case 0:
11743 case 1:
11744 /* oprec <= iprec, outer: signed, inner: don't care. */
11745 prec = oprec - 1;
11746 break;
11747 case 2:
11748 case 3:
11749 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11750 prec = oprec;
11751 break;
11752 case 4:
11753 /* oprec > iprec, outer: signed, inner: signed. */
11754 prec = iprec - 1;
11755 break;
11756 case 5:
11757 /* oprec > iprec, outer: signed, inner: unsigned. */
11758 prec = iprec;
11759 break;
11760 case 6:
11761 /* oprec > iprec, outer: unsigned, inner: signed. */
11762 prec = oprec;
11763 break;
11764 case 7:
11765 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11766 prec = iprec;
11767 break;
11768 default:
11769 gcc_unreachable ();
11770 }
11771
11772 return wide_int_to_tree (outer,
11773 wi::mask (prec, false, TYPE_PRECISION (outer)));
11774 }
11775
11776 /* Returns the smallest value obtainable by casting something in INNER type to
11777 OUTER type. */
11778
11779 tree
11780 lower_bound_in_type (tree outer, tree inner)
11781 {
11782 unsigned oprec = TYPE_PRECISION (outer);
11783 unsigned iprec = TYPE_PRECISION (inner);
11784
11785 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11786 and obtain 0. */
11787 if (TYPE_UNSIGNED (outer)
11788 /* If we are widening something of an unsigned type, OUTER type
11789 contains all values of INNER type. In particular, both INNER
11790 and OUTER types have zero in common. */
11791 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11792 return build_int_cst (outer, 0);
11793 else
11794 {
11795 /* If we are widening a signed type to another signed type, we
11796 want to obtain -2^^(iprec-1). If we are keeping the
11797 precision or narrowing to a signed type, we want to obtain
11798 -2^(oprec-1). */
11799 unsigned prec = oprec > iprec ? iprec : oprec;
11800 return wide_int_to_tree (outer,
11801 wi::mask (prec - 1, true,
11802 TYPE_PRECISION (outer)));
11803 }
11804 }
11805
11806 /* Return nonzero if two operands that are suitable for PHI nodes are
11807 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11808 SSA_NAME or invariant. Note that this is strictly an optimization.
11809 That is, callers of this function can directly call operand_equal_p
11810 and get the same result, only slower. */
11811
11812 int
11813 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11814 {
11815 if (arg0 == arg1)
11816 return 1;
11817 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11818 return 0;
11819 return operand_equal_p (arg0, arg1, 0);
11820 }
11821
11822 /* Returns number of zeros at the end of binary representation of X. */
11823
11824 tree
11825 num_ending_zeros (const_tree x)
11826 {
11827 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11828 }
11829
11830
11831 #define WALK_SUBTREE(NODE) \
11832 do \
11833 { \
11834 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11835 if (result) \
11836 return result; \
11837 } \
11838 while (0)
11839
11840 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11841 be walked whenever a type is seen in the tree. Rest of operands and return
11842 value are as for walk_tree. */
11843
11844 static tree
11845 walk_type_fields (tree type, walk_tree_fn func, void *data,
11846 hash_set<tree> *pset, walk_tree_lh lh)
11847 {
11848 tree result = NULL_TREE;
11849
11850 switch (TREE_CODE (type))
11851 {
11852 case POINTER_TYPE:
11853 case REFERENCE_TYPE:
11854 case VECTOR_TYPE:
11855 /* We have to worry about mutually recursive pointers. These can't
11856 be written in C. They can in Ada. It's pathological, but
11857 there's an ACATS test (c38102a) that checks it. Deal with this
11858 by checking if we're pointing to another pointer, that one
11859 points to another pointer, that one does too, and we have no htab.
11860 If so, get a hash table. We check three levels deep to avoid
11861 the cost of the hash table if we don't need one. */
11862 if (POINTER_TYPE_P (TREE_TYPE (type))
11863 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11864 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11865 && !pset)
11866 {
11867 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11868 func, data);
11869 if (result)
11870 return result;
11871
11872 break;
11873 }
11874
11875 /* fall through */
11876
11877 case COMPLEX_TYPE:
11878 WALK_SUBTREE (TREE_TYPE (type));
11879 break;
11880
11881 case METHOD_TYPE:
11882 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11883
11884 /* Fall through. */
11885
11886 case FUNCTION_TYPE:
11887 WALK_SUBTREE (TREE_TYPE (type));
11888 {
11889 tree arg;
11890
11891 /* We never want to walk into default arguments. */
11892 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11893 WALK_SUBTREE (TREE_VALUE (arg));
11894 }
11895 break;
11896
11897 case ARRAY_TYPE:
11898 /* Don't follow this nodes's type if a pointer for fear that
11899 we'll have infinite recursion. If we have a PSET, then we
11900 need not fear. */
11901 if (pset
11902 || (!POINTER_TYPE_P (TREE_TYPE (type))
11903 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11904 WALK_SUBTREE (TREE_TYPE (type));
11905 WALK_SUBTREE (TYPE_DOMAIN (type));
11906 break;
11907
11908 case OFFSET_TYPE:
11909 WALK_SUBTREE (TREE_TYPE (type));
11910 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11911 break;
11912
11913 default:
11914 break;
11915 }
11916
11917 return NULL_TREE;
11918 }
11919
11920 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11921 called with the DATA and the address of each sub-tree. If FUNC returns a
11922 non-NULL value, the traversal is stopped, and the value returned by FUNC
11923 is returned. If PSET is non-NULL it is used to record the nodes visited,
11924 and to avoid visiting a node more than once. */
11925
11926 tree
11927 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11928 hash_set<tree> *pset, walk_tree_lh lh)
11929 {
11930 enum tree_code code;
11931 int walk_subtrees;
11932 tree result;
11933
11934 #define WALK_SUBTREE_TAIL(NODE) \
11935 do \
11936 { \
11937 tp = & (NODE); \
11938 goto tail_recurse; \
11939 } \
11940 while (0)
11941
11942 tail_recurse:
11943 /* Skip empty subtrees. */
11944 if (!*tp)
11945 return NULL_TREE;
11946
11947 /* Don't walk the same tree twice, if the user has requested
11948 that we avoid doing so. */
11949 if (pset && pset->add (*tp))
11950 return NULL_TREE;
11951
11952 /* Call the function. */
11953 walk_subtrees = 1;
11954 result = (*func) (tp, &walk_subtrees, data);
11955
11956 /* If we found something, return it. */
11957 if (result)
11958 return result;
11959
11960 code = TREE_CODE (*tp);
11961
11962 /* Even if we didn't, FUNC may have decided that there was nothing
11963 interesting below this point in the tree. */
11964 if (!walk_subtrees)
11965 {
11966 /* But we still need to check our siblings. */
11967 if (code == TREE_LIST)
11968 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11969 else if (code == OMP_CLAUSE)
11970 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11971 else
11972 return NULL_TREE;
11973 }
11974
11975 if (lh)
11976 {
11977 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11978 if (result || !walk_subtrees)
11979 return result;
11980 }
11981
11982 switch (code)
11983 {
11984 case ERROR_MARK:
11985 case IDENTIFIER_NODE:
11986 case INTEGER_CST:
11987 case REAL_CST:
11988 case FIXED_CST:
11989 case VECTOR_CST:
11990 case STRING_CST:
11991 case BLOCK:
11992 case PLACEHOLDER_EXPR:
11993 case SSA_NAME:
11994 case FIELD_DECL:
11995 case RESULT_DECL:
11996 /* None of these have subtrees other than those already walked
11997 above. */
11998 break;
11999
12000 case TREE_LIST:
12001 WALK_SUBTREE (TREE_VALUE (*tp));
12002 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12003 break;
12004
12005 case TREE_VEC:
12006 {
12007 int len = TREE_VEC_LENGTH (*tp);
12008
12009 if (len == 0)
12010 break;
12011
12012 /* Walk all elements but the first. */
12013 while (--len)
12014 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
12015
12016 /* Now walk the first one as a tail call. */
12017 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
12018 }
12019
12020 case COMPLEX_CST:
12021 WALK_SUBTREE (TREE_REALPART (*tp));
12022 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
12023
12024 case CONSTRUCTOR:
12025 {
12026 unsigned HOST_WIDE_INT idx;
12027 constructor_elt *ce;
12028
12029 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
12030 idx++)
12031 WALK_SUBTREE (ce->value);
12032 }
12033 break;
12034
12035 case SAVE_EXPR:
12036 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
12037
12038 case BIND_EXPR:
12039 {
12040 tree decl;
12041 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
12042 {
12043 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
12044 into declarations that are just mentioned, rather than
12045 declared; they don't really belong to this part of the tree.
12046 And, we can see cycles: the initializer for a declaration
12047 can refer to the declaration itself. */
12048 WALK_SUBTREE (DECL_INITIAL (decl));
12049 WALK_SUBTREE (DECL_SIZE (decl));
12050 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
12051 }
12052 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
12053 }
12054
12055 case STATEMENT_LIST:
12056 {
12057 tree_stmt_iterator i;
12058 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
12059 WALK_SUBTREE (*tsi_stmt_ptr (i));
12060 }
12061 break;
12062
12063 case OMP_CLAUSE:
12064 switch (OMP_CLAUSE_CODE (*tp))
12065 {
12066 case OMP_CLAUSE_GANG:
12067 case OMP_CLAUSE__GRIDDIM_:
12068 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12069 /* FALLTHRU */
12070
12071 case OMP_CLAUSE_ASYNC:
12072 case OMP_CLAUSE_WAIT:
12073 case OMP_CLAUSE_WORKER:
12074 case OMP_CLAUSE_VECTOR:
12075 case OMP_CLAUSE_NUM_GANGS:
12076 case OMP_CLAUSE_NUM_WORKERS:
12077 case OMP_CLAUSE_VECTOR_LENGTH:
12078 case OMP_CLAUSE_PRIVATE:
12079 case OMP_CLAUSE_SHARED:
12080 case OMP_CLAUSE_FIRSTPRIVATE:
12081 case OMP_CLAUSE_COPYIN:
12082 case OMP_CLAUSE_COPYPRIVATE:
12083 case OMP_CLAUSE_FINAL:
12084 case OMP_CLAUSE_IF:
12085 case OMP_CLAUSE_NUM_THREADS:
12086 case OMP_CLAUSE_SCHEDULE:
12087 case OMP_CLAUSE_UNIFORM:
12088 case OMP_CLAUSE_DEPEND:
12089 case OMP_CLAUSE_NONTEMPORAL:
12090 case OMP_CLAUSE_NUM_TEAMS:
12091 case OMP_CLAUSE_THREAD_LIMIT:
12092 case OMP_CLAUSE_DEVICE:
12093 case OMP_CLAUSE_DIST_SCHEDULE:
12094 case OMP_CLAUSE_SAFELEN:
12095 case OMP_CLAUSE_SIMDLEN:
12096 case OMP_CLAUSE_ORDERED:
12097 case OMP_CLAUSE_PRIORITY:
12098 case OMP_CLAUSE_GRAINSIZE:
12099 case OMP_CLAUSE_NUM_TASKS:
12100 case OMP_CLAUSE_HINT:
12101 case OMP_CLAUSE_TO_DECLARE:
12102 case OMP_CLAUSE_LINK:
12103 case OMP_CLAUSE_USE_DEVICE_PTR:
12104 case OMP_CLAUSE_USE_DEVICE_ADDR:
12105 case OMP_CLAUSE_IS_DEVICE_PTR:
12106 case OMP_CLAUSE_INCLUSIVE:
12107 case OMP_CLAUSE_EXCLUSIVE:
12108 case OMP_CLAUSE__LOOPTEMP_:
12109 case OMP_CLAUSE__REDUCTEMP_:
12110 case OMP_CLAUSE__CONDTEMP_:
12111 case OMP_CLAUSE__SCANTEMP_:
12112 case OMP_CLAUSE__SIMDUID_:
12113 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
12114 /* FALLTHRU */
12115
12116 case OMP_CLAUSE_INDEPENDENT:
12117 case OMP_CLAUSE_NOWAIT:
12118 case OMP_CLAUSE_DEFAULT:
12119 case OMP_CLAUSE_UNTIED:
12120 case OMP_CLAUSE_MERGEABLE:
12121 case OMP_CLAUSE_PROC_BIND:
12122 case OMP_CLAUSE_DEVICE_TYPE:
12123 case OMP_CLAUSE_INBRANCH:
12124 case OMP_CLAUSE_NOTINBRANCH:
12125 case OMP_CLAUSE_FOR:
12126 case OMP_CLAUSE_PARALLEL:
12127 case OMP_CLAUSE_SECTIONS:
12128 case OMP_CLAUSE_TASKGROUP:
12129 case OMP_CLAUSE_NOGROUP:
12130 case OMP_CLAUSE_THREADS:
12131 case OMP_CLAUSE_SIMD:
12132 case OMP_CLAUSE_DEFAULTMAP:
12133 case OMP_CLAUSE_ORDER:
12134 case OMP_CLAUSE_BIND:
12135 case OMP_CLAUSE_AUTO:
12136 case OMP_CLAUSE_SEQ:
12137 case OMP_CLAUSE_TILE:
12138 case OMP_CLAUSE__SIMT_:
12139 case OMP_CLAUSE_IF_PRESENT:
12140 case OMP_CLAUSE_FINALIZE:
12141 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12142
12143 case OMP_CLAUSE_LASTPRIVATE:
12144 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12145 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
12146 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12147
12148 case OMP_CLAUSE_COLLAPSE:
12149 {
12150 int i;
12151 for (i = 0; i < 3; i++)
12152 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12153 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12154 }
12155
12156 case OMP_CLAUSE_LINEAR:
12157 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12158 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
12159 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
12160 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12161
12162 case OMP_CLAUSE_ALIGNED:
12163 case OMP_CLAUSE_FROM:
12164 case OMP_CLAUSE_TO:
12165 case OMP_CLAUSE_MAP:
12166 case OMP_CLAUSE__CACHE_:
12167 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12168 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12169 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12170
12171 case OMP_CLAUSE_REDUCTION:
12172 case OMP_CLAUSE_TASK_REDUCTION:
12173 case OMP_CLAUSE_IN_REDUCTION:
12174 {
12175 int i;
12176 for (i = 0; i < 5; i++)
12177 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12178 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12179 }
12180
12181 default:
12182 gcc_unreachable ();
12183 }
12184 break;
12185
12186 case TARGET_EXPR:
12187 {
12188 int i, len;
12189
12190 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
12191 But, we only want to walk once. */
12192 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
12193 for (i = 0; i < len; ++i)
12194 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12195 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
12196 }
12197
12198 case DECL_EXPR:
12199 /* If this is a TYPE_DECL, walk into the fields of the type that it's
12200 defining. We only want to walk into these fields of a type in this
12201 case and not in the general case of a mere reference to the type.
12202
12203 The criterion is as follows: if the field can be an expression, it
12204 must be walked only here. This should be in keeping with the fields
12205 that are directly gimplified in gimplify_type_sizes in order for the
12206 mark/copy-if-shared/unmark machinery of the gimplifier to work with
12207 variable-sized types.
12208
12209 Note that DECLs get walked as part of processing the BIND_EXPR. */
12210 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
12211 {
12212 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
12213 if (TREE_CODE (*type_p) == ERROR_MARK)
12214 return NULL_TREE;
12215
12216 /* Call the function for the type. See if it returns anything or
12217 doesn't want us to continue. If we are to continue, walk both
12218 the normal fields and those for the declaration case. */
12219 result = (*func) (type_p, &walk_subtrees, data);
12220 if (result || !walk_subtrees)
12221 return result;
12222
12223 /* But do not walk a pointed-to type since it may itself need to
12224 be walked in the declaration case if it isn't anonymous. */
12225 if (!POINTER_TYPE_P (*type_p))
12226 {
12227 result = walk_type_fields (*type_p, func, data, pset, lh);
12228 if (result)
12229 return result;
12230 }
12231
12232 /* If this is a record type, also walk the fields. */
12233 if (RECORD_OR_UNION_TYPE_P (*type_p))
12234 {
12235 tree field;
12236
12237 for (field = TYPE_FIELDS (*type_p); field;
12238 field = DECL_CHAIN (field))
12239 {
12240 /* We'd like to look at the type of the field, but we can
12241 easily get infinite recursion. So assume it's pointed
12242 to elsewhere in the tree. Also, ignore things that
12243 aren't fields. */
12244 if (TREE_CODE (field) != FIELD_DECL)
12245 continue;
12246
12247 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
12248 WALK_SUBTREE (DECL_SIZE (field));
12249 WALK_SUBTREE (DECL_SIZE_UNIT (field));
12250 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
12251 WALK_SUBTREE (DECL_QUALIFIER (field));
12252 }
12253 }
12254
12255 /* Same for scalar types. */
12256 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
12257 || TREE_CODE (*type_p) == ENUMERAL_TYPE
12258 || TREE_CODE (*type_p) == INTEGER_TYPE
12259 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
12260 || TREE_CODE (*type_p) == REAL_TYPE)
12261 {
12262 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
12263 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
12264 }
12265
12266 WALK_SUBTREE (TYPE_SIZE (*type_p));
12267 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
12268 }
12269 /* FALLTHRU */
12270
12271 default:
12272 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
12273 {
12274 int i, len;
12275
12276 /* Walk over all the sub-trees of this operand. */
12277 len = TREE_OPERAND_LENGTH (*tp);
12278
12279 /* Go through the subtrees. We need to do this in forward order so
12280 that the scope of a FOR_EXPR is handled properly. */
12281 if (len)
12282 {
12283 for (i = 0; i < len - 1; ++i)
12284 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12285 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
12286 }
12287 }
12288 /* If this is a type, walk the needed fields in the type. */
12289 else if (TYPE_P (*tp))
12290 return walk_type_fields (*tp, func, data, pset, lh);
12291 break;
12292 }
12293
12294 /* We didn't find what we were looking for. */
12295 return NULL_TREE;
12296
12297 #undef WALK_SUBTREE_TAIL
12298 }
12299 #undef WALK_SUBTREE
12300
12301 /* Like walk_tree, but does not walk duplicate nodes more than once. */
12302
12303 tree
12304 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
12305 walk_tree_lh lh)
12306 {
12307 tree result;
12308
12309 hash_set<tree> pset;
12310 result = walk_tree_1 (tp, func, data, &pset, lh);
12311 return result;
12312 }
12313
12314
12315 tree
12316 tree_block (tree t)
12317 {
12318 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12319
12320 if (IS_EXPR_CODE_CLASS (c))
12321 return LOCATION_BLOCK (t->exp.locus);
12322 gcc_unreachable ();
12323 return NULL;
12324 }
12325
12326 void
12327 tree_set_block (tree t, tree b)
12328 {
12329 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12330
12331 if (IS_EXPR_CODE_CLASS (c))
12332 {
12333 t->exp.locus = set_block (t->exp.locus, b);
12334 }
12335 else
12336 gcc_unreachable ();
12337 }
12338
12339 /* Create a nameless artificial label and put it in the current
12340 function context. The label has a location of LOC. Returns the
12341 newly created label. */
12342
12343 tree
12344 create_artificial_label (location_t loc)
12345 {
12346 tree lab = build_decl (loc,
12347 LABEL_DECL, NULL_TREE, void_type_node);
12348
12349 DECL_ARTIFICIAL (lab) = 1;
12350 DECL_IGNORED_P (lab) = 1;
12351 DECL_CONTEXT (lab) = current_function_decl;
12352 return lab;
12353 }
12354
12355 /* Given a tree, try to return a useful variable name that we can use
12356 to prefix a temporary that is being assigned the value of the tree.
12357 I.E. given <temp> = &A, return A. */
12358
12359 const char *
12360 get_name (tree t)
12361 {
12362 tree stripped_decl;
12363
12364 stripped_decl = t;
12365 STRIP_NOPS (stripped_decl);
12366 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
12367 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
12368 else if (TREE_CODE (stripped_decl) == SSA_NAME)
12369 {
12370 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
12371 if (!name)
12372 return NULL;
12373 return IDENTIFIER_POINTER (name);
12374 }
12375 else
12376 {
12377 switch (TREE_CODE (stripped_decl))
12378 {
12379 case ADDR_EXPR:
12380 return get_name (TREE_OPERAND (stripped_decl, 0));
12381 default:
12382 return NULL;
12383 }
12384 }
12385 }
12386
12387 /* Return true if TYPE has a variable argument list. */
12388
12389 bool
12390 stdarg_p (const_tree fntype)
12391 {
12392 function_args_iterator args_iter;
12393 tree n = NULL_TREE, t;
12394
12395 if (!fntype)
12396 return false;
12397
12398 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
12399 {
12400 n = t;
12401 }
12402
12403 return n != NULL_TREE && n != void_type_node;
12404 }
12405
12406 /* Return true if TYPE has a prototype. */
12407
12408 bool
12409 prototype_p (const_tree fntype)
12410 {
12411 tree t;
12412
12413 gcc_assert (fntype != NULL_TREE);
12414
12415 t = TYPE_ARG_TYPES (fntype);
12416 return (t != NULL_TREE);
12417 }
12418
12419 /* If BLOCK is inlined from an __attribute__((__artificial__))
12420 routine, return pointer to location from where it has been
12421 called. */
12422 location_t *
12423 block_nonartificial_location (tree block)
12424 {
12425 location_t *ret = NULL;
12426
12427 while (block && TREE_CODE (block) == BLOCK
12428 && BLOCK_ABSTRACT_ORIGIN (block))
12429 {
12430 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12431 if (TREE_CODE (ao) == FUNCTION_DECL)
12432 {
12433 /* If AO is an artificial inline, point RET to the
12434 call site locus at which it has been inlined and continue
12435 the loop, in case AO's caller is also an artificial
12436 inline. */
12437 if (DECL_DECLARED_INLINE_P (ao)
12438 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
12439 ret = &BLOCK_SOURCE_LOCATION (block);
12440 else
12441 break;
12442 }
12443 else if (TREE_CODE (ao) != BLOCK)
12444 break;
12445
12446 block = BLOCK_SUPERCONTEXT (block);
12447 }
12448 return ret;
12449 }
12450
12451
12452 /* If EXP is inlined from an __attribute__((__artificial__))
12453 function, return the location of the original call expression. */
12454
12455 location_t
12456 tree_nonartificial_location (tree exp)
12457 {
12458 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12459
12460 if (loc)
12461 return *loc;
12462 else
12463 return EXPR_LOCATION (exp);
12464 }
12465
12466
12467 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12468 nodes. */
12469
12470 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12471
12472 hashval_t
12473 cl_option_hasher::hash (tree x)
12474 {
12475 const_tree const t = x;
12476 const char *p;
12477 size_t i;
12478 size_t len = 0;
12479 hashval_t hash = 0;
12480
12481 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12482 {
12483 p = (const char *)TREE_OPTIMIZATION (t);
12484 len = sizeof (struct cl_optimization);
12485 }
12486
12487 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12488 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12489
12490 else
12491 gcc_unreachable ();
12492
12493 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12494 something else. */
12495 for (i = 0; i < len; i++)
12496 if (p[i])
12497 hash = (hash << 4) ^ ((i << 2) | p[i]);
12498
12499 return hash;
12500 }
12501
12502 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12503 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12504 same. */
12505
12506 bool
12507 cl_option_hasher::equal (tree x, tree y)
12508 {
12509 const_tree const xt = x;
12510 const_tree const yt = y;
12511
12512 if (TREE_CODE (xt) != TREE_CODE (yt))
12513 return 0;
12514
12515 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12516 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12517 TREE_OPTIMIZATION (yt));
12518 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12519 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12520 TREE_TARGET_OPTION (yt));
12521 else
12522 gcc_unreachable ();
12523 }
12524
12525 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
12526
12527 tree
12528 build_optimization_node (struct gcc_options *opts)
12529 {
12530 tree t;
12531
12532 /* Use the cache of optimization nodes. */
12533
12534 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12535 opts);
12536
12537 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12538 t = *slot;
12539 if (!t)
12540 {
12541 /* Insert this one into the hash table. */
12542 t = cl_optimization_node;
12543 *slot = t;
12544
12545 /* Make a new node for next time round. */
12546 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12547 }
12548
12549 return t;
12550 }
12551
12552 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12553
12554 tree
12555 build_target_option_node (struct gcc_options *opts)
12556 {
12557 tree t;
12558
12559 /* Use the cache of optimization nodes. */
12560
12561 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12562 opts);
12563
12564 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12565 t = *slot;
12566 if (!t)
12567 {
12568 /* Insert this one into the hash table. */
12569 t = cl_target_option_node;
12570 *slot = t;
12571
12572 /* Make a new node for next time round. */
12573 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12574 }
12575
12576 return t;
12577 }
12578
12579 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12580 so that they aren't saved during PCH writing. */
12581
12582 void
12583 prepare_target_option_nodes_for_pch (void)
12584 {
12585 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12586 for (; iter != cl_option_hash_table->end (); ++iter)
12587 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12588 TREE_TARGET_GLOBALS (*iter) = NULL;
12589 }
12590
12591 /* Determine the "ultimate origin" of a block. */
12592
12593 tree
12594 block_ultimate_origin (const_tree block)
12595 {
12596 tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12597
12598 if (origin == NULL_TREE)
12599 return NULL_TREE;
12600 else
12601 {
12602 gcc_checking_assert ((DECL_P (origin)
12603 && DECL_ORIGIN (origin) == origin)
12604 || BLOCK_ORIGIN (origin) == origin);
12605 return origin;
12606 }
12607 }
12608
12609 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12610 no instruction. */
12611
12612 bool
12613 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12614 {
12615 /* Do not strip casts into or out of differing address spaces. */
12616 if (POINTER_TYPE_P (outer_type)
12617 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12618 {
12619 if (!POINTER_TYPE_P (inner_type)
12620 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12621 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12622 return false;
12623 }
12624 else if (POINTER_TYPE_P (inner_type)
12625 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12626 {
12627 /* We already know that outer_type is not a pointer with
12628 a non-generic address space. */
12629 return false;
12630 }
12631
12632 /* Use precision rather then machine mode when we can, which gives
12633 the correct answer even for submode (bit-field) types. */
12634 if ((INTEGRAL_TYPE_P (outer_type)
12635 || POINTER_TYPE_P (outer_type)
12636 || TREE_CODE (outer_type) == OFFSET_TYPE)
12637 && (INTEGRAL_TYPE_P (inner_type)
12638 || POINTER_TYPE_P (inner_type)
12639 || TREE_CODE (inner_type) == OFFSET_TYPE))
12640 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12641
12642 /* Otherwise fall back on comparing machine modes (e.g. for
12643 aggregate types, floats). */
12644 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12645 }
12646
12647 /* Return true iff conversion in EXP generates no instruction. Mark
12648 it inline so that we fully inline into the stripping functions even
12649 though we have two uses of this function. */
12650
12651 static inline bool
12652 tree_nop_conversion (const_tree exp)
12653 {
12654 tree outer_type, inner_type;
12655
12656 if (location_wrapper_p (exp))
12657 return true;
12658 if (!CONVERT_EXPR_P (exp)
12659 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12660 return false;
12661
12662 outer_type = TREE_TYPE (exp);
12663 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12664 if (!inner_type || inner_type == error_mark_node)
12665 return false;
12666
12667 return tree_nop_conversion_p (outer_type, inner_type);
12668 }
12669
12670 /* Return true iff conversion in EXP generates no instruction. Don't
12671 consider conversions changing the signedness. */
12672
12673 static bool
12674 tree_sign_nop_conversion (const_tree exp)
12675 {
12676 tree outer_type, inner_type;
12677
12678 if (!tree_nop_conversion (exp))
12679 return false;
12680
12681 outer_type = TREE_TYPE (exp);
12682 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12683
12684 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12685 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12686 }
12687
12688 /* Strip conversions from EXP according to tree_nop_conversion and
12689 return the resulting expression. */
12690
12691 tree
12692 tree_strip_nop_conversions (tree exp)
12693 {
12694 while (tree_nop_conversion (exp))
12695 exp = TREE_OPERAND (exp, 0);
12696 return exp;
12697 }
12698
12699 /* Strip conversions from EXP according to tree_sign_nop_conversion
12700 and return the resulting expression. */
12701
12702 tree
12703 tree_strip_sign_nop_conversions (tree exp)
12704 {
12705 while (tree_sign_nop_conversion (exp))
12706 exp = TREE_OPERAND (exp, 0);
12707 return exp;
12708 }
12709
12710 /* Avoid any floating point extensions from EXP. */
12711 tree
12712 strip_float_extensions (tree exp)
12713 {
12714 tree sub, expt, subt;
12715
12716 /* For floating point constant look up the narrowest type that can hold
12717 it properly and handle it like (type)(narrowest_type)constant.
12718 This way we can optimize for instance a=a*2.0 where "a" is float
12719 but 2.0 is double constant. */
12720 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12721 {
12722 REAL_VALUE_TYPE orig;
12723 tree type = NULL;
12724
12725 orig = TREE_REAL_CST (exp);
12726 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12727 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12728 type = float_type_node;
12729 else if (TYPE_PRECISION (TREE_TYPE (exp))
12730 > TYPE_PRECISION (double_type_node)
12731 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12732 type = double_type_node;
12733 if (type)
12734 return build_real_truncate (type, orig);
12735 }
12736
12737 if (!CONVERT_EXPR_P (exp))
12738 return exp;
12739
12740 sub = TREE_OPERAND (exp, 0);
12741 subt = TREE_TYPE (sub);
12742 expt = TREE_TYPE (exp);
12743
12744 if (!FLOAT_TYPE_P (subt))
12745 return exp;
12746
12747 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12748 return exp;
12749
12750 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12751 return exp;
12752
12753 return strip_float_extensions (sub);
12754 }
12755
12756 /* Strip out all handled components that produce invariant
12757 offsets. */
12758
12759 const_tree
12760 strip_invariant_refs (const_tree op)
12761 {
12762 while (handled_component_p (op))
12763 {
12764 switch (TREE_CODE (op))
12765 {
12766 case ARRAY_REF:
12767 case ARRAY_RANGE_REF:
12768 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12769 || TREE_OPERAND (op, 2) != NULL_TREE
12770 || TREE_OPERAND (op, 3) != NULL_TREE)
12771 return NULL;
12772 break;
12773
12774 case COMPONENT_REF:
12775 if (TREE_OPERAND (op, 2) != NULL_TREE)
12776 return NULL;
12777 break;
12778
12779 default:;
12780 }
12781 op = TREE_OPERAND (op, 0);
12782 }
12783
12784 return op;
12785 }
12786
12787 static GTY(()) tree gcc_eh_personality_decl;
12788
12789 /* Return the GCC personality function decl. */
12790
12791 tree
12792 lhd_gcc_personality (void)
12793 {
12794 if (!gcc_eh_personality_decl)
12795 gcc_eh_personality_decl = build_personality_function ("gcc");
12796 return gcc_eh_personality_decl;
12797 }
12798
12799 /* TARGET is a call target of GIMPLE call statement
12800 (obtained by gimple_call_fn). Return true if it is
12801 OBJ_TYPE_REF representing an virtual call of C++ method.
12802 (As opposed to OBJ_TYPE_REF representing objc calls
12803 through a cast where middle-end devirtualization machinery
12804 can't apply.) */
12805
12806 bool
12807 virtual_method_call_p (const_tree target)
12808 {
12809 if (TREE_CODE (target) != OBJ_TYPE_REF)
12810 return false;
12811 tree t = TREE_TYPE (target);
12812 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12813 t = TREE_TYPE (t);
12814 if (TREE_CODE (t) == FUNCTION_TYPE)
12815 return false;
12816 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12817 /* If we do not have BINFO associated, it means that type was built
12818 without devirtualization enabled. Do not consider this a virtual
12819 call. */
12820 if (!TYPE_BINFO (obj_type_ref_class (target)))
12821 return false;
12822 return true;
12823 }
12824
12825 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12826
12827 static tree
12828 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12829 {
12830 unsigned int i;
12831 tree base_binfo, b;
12832
12833 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12834 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12835 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12836 return base_binfo;
12837 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12838 return b;
12839 return NULL;
12840 }
12841
12842 /* Try to find a base info of BINFO that would have its field decl at offset
12843 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12844 found, return, otherwise return NULL_TREE. */
12845
12846 tree
12847 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12848 {
12849 tree type = BINFO_TYPE (binfo);
12850
12851 while (true)
12852 {
12853 HOST_WIDE_INT pos, size;
12854 tree fld;
12855 int i;
12856
12857 if (types_same_for_odr (type, expected_type))
12858 return binfo;
12859 if (maybe_lt (offset, 0))
12860 return NULL_TREE;
12861
12862 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12863 {
12864 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12865 continue;
12866
12867 pos = int_bit_position (fld);
12868 size = tree_to_uhwi (DECL_SIZE (fld));
12869 if (known_in_range_p (offset, pos, size))
12870 break;
12871 }
12872 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12873 return NULL_TREE;
12874
12875 /* Offset 0 indicates the primary base, whose vtable contents are
12876 represented in the binfo for the derived class. */
12877 else if (maybe_ne (offset, 0))
12878 {
12879 tree found_binfo = NULL, base_binfo;
12880 /* Offsets in BINFO are in bytes relative to the whole structure
12881 while POS is in bits relative to the containing field. */
12882 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12883 / BITS_PER_UNIT);
12884
12885 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12886 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12887 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12888 {
12889 found_binfo = base_binfo;
12890 break;
12891 }
12892 if (found_binfo)
12893 binfo = found_binfo;
12894 else
12895 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12896 binfo_offset);
12897 }
12898
12899 type = TREE_TYPE (fld);
12900 offset -= pos;
12901 }
12902 }
12903
12904 /* Returns true if X is a typedef decl. */
12905
12906 bool
12907 is_typedef_decl (const_tree x)
12908 {
12909 return (x && TREE_CODE (x) == TYPE_DECL
12910 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12911 }
12912
12913 /* Returns true iff TYPE is a type variant created for a typedef. */
12914
12915 bool
12916 typedef_variant_p (const_tree type)
12917 {
12918 return is_typedef_decl (TYPE_NAME (type));
12919 }
12920
12921 /* PR 84195: Replace control characters in "unescaped" with their
12922 escaped equivalents. Allow newlines if -fmessage-length has
12923 been set to a non-zero value. This is done here, rather than
12924 where the attribute is recorded as the message length can
12925 change between these two locations. */
12926
12927 void
12928 escaped_string::escape (const char *unescaped)
12929 {
12930 char *escaped;
12931 size_t i, new_i, len;
12932
12933 if (m_owned)
12934 free (m_str);
12935
12936 m_str = const_cast<char *> (unescaped);
12937 m_owned = false;
12938
12939 if (unescaped == NULL || *unescaped == 0)
12940 return;
12941
12942 len = strlen (unescaped);
12943 escaped = NULL;
12944 new_i = 0;
12945
12946 for (i = 0; i < len; i++)
12947 {
12948 char c = unescaped[i];
12949
12950 if (!ISCNTRL (c))
12951 {
12952 if (escaped)
12953 escaped[new_i++] = c;
12954 continue;
12955 }
12956
12957 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
12958 {
12959 if (escaped == NULL)
12960 {
12961 /* We only allocate space for a new string if we
12962 actually encounter a control character that
12963 needs replacing. */
12964 escaped = (char *) xmalloc (len * 2 + 1);
12965 strncpy (escaped, unescaped, i);
12966 new_i = i;
12967 }
12968
12969 escaped[new_i++] = '\\';
12970
12971 switch (c)
12972 {
12973 case '\a': escaped[new_i++] = 'a'; break;
12974 case '\b': escaped[new_i++] = 'b'; break;
12975 case '\f': escaped[new_i++] = 'f'; break;
12976 case '\n': escaped[new_i++] = 'n'; break;
12977 case '\r': escaped[new_i++] = 'r'; break;
12978 case '\t': escaped[new_i++] = 't'; break;
12979 case '\v': escaped[new_i++] = 'v'; break;
12980 default: escaped[new_i++] = '?'; break;
12981 }
12982 }
12983 else if (escaped)
12984 escaped[new_i++] = c;
12985 }
12986
12987 if (escaped)
12988 {
12989 escaped[new_i] = 0;
12990 m_str = escaped;
12991 m_owned = true;
12992 }
12993 }
12994
12995 /* Warn about a use of an identifier which was marked deprecated. Returns
12996 whether a warning was given. */
12997
12998 bool
12999 warn_deprecated_use (tree node, tree attr)
13000 {
13001 escaped_string msg;
13002
13003 if (node == 0 || !warn_deprecated_decl)
13004 return false;
13005
13006 if (!attr)
13007 {
13008 if (DECL_P (node))
13009 attr = DECL_ATTRIBUTES (node);
13010 else if (TYPE_P (node))
13011 {
13012 tree decl = TYPE_STUB_DECL (node);
13013 if (decl)
13014 attr = lookup_attribute ("deprecated",
13015 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
13016 }
13017 }
13018
13019 if (attr)
13020 attr = lookup_attribute ("deprecated", attr);
13021
13022 if (attr)
13023 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
13024
13025 bool w = false;
13026 if (DECL_P (node))
13027 {
13028 auto_diagnostic_group d;
13029 if (msg)
13030 w = warning (OPT_Wdeprecated_declarations,
13031 "%qD is deprecated: %s", node, (const char *) msg);
13032 else
13033 w = warning (OPT_Wdeprecated_declarations,
13034 "%qD is deprecated", node);
13035 if (w)
13036 inform (DECL_SOURCE_LOCATION (node), "declared here");
13037 }
13038 else if (TYPE_P (node))
13039 {
13040 tree what = NULL_TREE;
13041 tree decl = TYPE_STUB_DECL (node);
13042
13043 if (TYPE_NAME (node))
13044 {
13045 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
13046 what = TYPE_NAME (node);
13047 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
13048 && DECL_NAME (TYPE_NAME (node)))
13049 what = DECL_NAME (TYPE_NAME (node));
13050 }
13051
13052 auto_diagnostic_group d;
13053 if (what)
13054 {
13055 if (msg)
13056 w = warning (OPT_Wdeprecated_declarations,
13057 "%qE is deprecated: %s", what, (const char *) msg);
13058 else
13059 w = warning (OPT_Wdeprecated_declarations,
13060 "%qE is deprecated", what);
13061 }
13062 else
13063 {
13064 if (msg)
13065 w = warning (OPT_Wdeprecated_declarations,
13066 "type is deprecated: %s", (const char *) msg);
13067 else
13068 w = warning (OPT_Wdeprecated_declarations,
13069 "type is deprecated");
13070 }
13071
13072 if (w && decl)
13073 inform (DECL_SOURCE_LOCATION (decl), "declared here");
13074 }
13075
13076 return w;
13077 }
13078
13079 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
13080 somewhere in it. */
13081
13082 bool
13083 contains_bitfld_component_ref_p (const_tree ref)
13084 {
13085 while (handled_component_p (ref))
13086 {
13087 if (TREE_CODE (ref) == COMPONENT_REF
13088 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
13089 return true;
13090 ref = TREE_OPERAND (ref, 0);
13091 }
13092
13093 return false;
13094 }
13095
13096 /* Try to determine whether a TRY_CATCH expression can fall through.
13097 This is a subroutine of block_may_fallthru. */
13098
13099 static bool
13100 try_catch_may_fallthru (const_tree stmt)
13101 {
13102 tree_stmt_iterator i;
13103
13104 /* If the TRY block can fall through, the whole TRY_CATCH can
13105 fall through. */
13106 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
13107 return true;
13108
13109 i = tsi_start (TREE_OPERAND (stmt, 1));
13110 switch (TREE_CODE (tsi_stmt (i)))
13111 {
13112 case CATCH_EXPR:
13113 /* We expect to see a sequence of CATCH_EXPR trees, each with a
13114 catch expression and a body. The whole TRY_CATCH may fall
13115 through iff any of the catch bodies falls through. */
13116 for (; !tsi_end_p (i); tsi_next (&i))
13117 {
13118 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
13119 return true;
13120 }
13121 return false;
13122
13123 case EH_FILTER_EXPR:
13124 /* The exception filter expression only matters if there is an
13125 exception. If the exception does not match EH_FILTER_TYPES,
13126 we will execute EH_FILTER_FAILURE, and we will fall through
13127 if that falls through. If the exception does match
13128 EH_FILTER_TYPES, the stack unwinder will continue up the
13129 stack, so we will not fall through. We don't know whether we
13130 will throw an exception which matches EH_FILTER_TYPES or not,
13131 so we just ignore EH_FILTER_TYPES and assume that we might
13132 throw an exception which doesn't match. */
13133 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
13134
13135 default:
13136 /* This case represents statements to be executed when an
13137 exception occurs. Those statements are implicitly followed
13138 by a RESX statement to resume execution after the exception.
13139 So in this case the TRY_CATCH never falls through. */
13140 return false;
13141 }
13142 }
13143
13144 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
13145 need not be 100% accurate; simply be conservative and return true if we
13146 don't know. This is used only to avoid stupidly generating extra code.
13147 If we're wrong, we'll just delete the extra code later. */
13148
13149 bool
13150 block_may_fallthru (const_tree block)
13151 {
13152 /* This CONST_CAST is okay because expr_last returns its argument
13153 unmodified and we assign it to a const_tree. */
13154 const_tree stmt = expr_last (CONST_CAST_TREE (block));
13155
13156 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
13157 {
13158 case GOTO_EXPR:
13159 case RETURN_EXPR:
13160 /* Easy cases. If the last statement of the block implies
13161 control transfer, then we can't fall through. */
13162 return false;
13163
13164 case SWITCH_EXPR:
13165 /* If there is a default: label or case labels cover all possible
13166 SWITCH_COND values, then the SWITCH_EXPR will transfer control
13167 to some case label in all cases and all we care is whether the
13168 SWITCH_BODY falls through. */
13169 if (SWITCH_ALL_CASES_P (stmt))
13170 return block_may_fallthru (SWITCH_BODY (stmt));
13171 return true;
13172
13173 case COND_EXPR:
13174 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
13175 return true;
13176 return block_may_fallthru (COND_EXPR_ELSE (stmt));
13177
13178 case BIND_EXPR:
13179 return block_may_fallthru (BIND_EXPR_BODY (stmt));
13180
13181 case TRY_CATCH_EXPR:
13182 return try_catch_may_fallthru (stmt);
13183
13184 case TRY_FINALLY_EXPR:
13185 /* The finally clause is always executed after the try clause,
13186 so if it does not fall through, then the try-finally will not
13187 fall through. Otherwise, if the try clause does not fall
13188 through, then when the finally clause falls through it will
13189 resume execution wherever the try clause was going. So the
13190 whole try-finally will only fall through if both the try
13191 clause and the finally clause fall through. */
13192 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
13193 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
13194
13195 case EH_ELSE_EXPR:
13196 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13197
13198 case MODIFY_EXPR:
13199 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
13200 stmt = TREE_OPERAND (stmt, 1);
13201 else
13202 return true;
13203 /* FALLTHRU */
13204
13205 case CALL_EXPR:
13206 /* Functions that do not return do not fall through. */
13207 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
13208
13209 case CLEANUP_POINT_EXPR:
13210 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13211
13212 case TARGET_EXPR:
13213 return block_may_fallthru (TREE_OPERAND (stmt, 1));
13214
13215 case ERROR_MARK:
13216 return true;
13217
13218 default:
13219 return lang_hooks.block_may_fallthru (stmt);
13220 }
13221 }
13222
13223 /* True if we are using EH to handle cleanups. */
13224 static bool using_eh_for_cleanups_flag = false;
13225
13226 /* This routine is called from front ends to indicate eh should be used for
13227 cleanups. */
13228 void
13229 using_eh_for_cleanups (void)
13230 {
13231 using_eh_for_cleanups_flag = true;
13232 }
13233
13234 /* Query whether EH is used for cleanups. */
13235 bool
13236 using_eh_for_cleanups_p (void)
13237 {
13238 return using_eh_for_cleanups_flag;
13239 }
13240
13241 /* Wrapper for tree_code_name to ensure that tree code is valid */
13242 const char *
13243 get_tree_code_name (enum tree_code code)
13244 {
13245 const char *invalid = "<invalid tree code>";
13246
13247 if (code >= MAX_TREE_CODES)
13248 {
13249 if (code == 0xa5a5)
13250 return "ggc_freed";
13251 return invalid;
13252 }
13253
13254 return tree_code_name[code];
13255 }
13256
13257 /* Drops the TREE_OVERFLOW flag from T. */
13258
13259 tree
13260 drop_tree_overflow (tree t)
13261 {
13262 gcc_checking_assert (TREE_OVERFLOW (t));
13263
13264 /* For tree codes with a sharing machinery re-build the result. */
13265 if (poly_int_tree_p (t))
13266 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
13267
13268 /* For VECTOR_CST, remove the overflow bits from the encoded elements
13269 and canonicalize the result. */
13270 if (TREE_CODE (t) == VECTOR_CST)
13271 {
13272 tree_vector_builder builder;
13273 builder.new_unary_operation (TREE_TYPE (t), t, true);
13274 unsigned int count = builder.encoded_nelts ();
13275 for (unsigned int i = 0; i < count; ++i)
13276 {
13277 tree elt = VECTOR_CST_ELT (t, i);
13278 if (TREE_OVERFLOW (elt))
13279 elt = drop_tree_overflow (elt);
13280 builder.quick_push (elt);
13281 }
13282 return builder.build ();
13283 }
13284
13285 /* Otherwise, as all tcc_constants are possibly shared, copy the node
13286 and drop the flag. */
13287 t = copy_node (t);
13288 TREE_OVERFLOW (t) = 0;
13289
13290 /* For constants that contain nested constants, drop the flag
13291 from those as well. */
13292 if (TREE_CODE (t) == COMPLEX_CST)
13293 {
13294 if (TREE_OVERFLOW (TREE_REALPART (t)))
13295 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
13296 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
13297 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
13298 }
13299
13300 return t;
13301 }
13302
13303 /* Given a memory reference expression T, return its base address.
13304 The base address of a memory reference expression is the main
13305 object being referenced. For instance, the base address for
13306 'array[i].fld[j]' is 'array'. You can think of this as stripping
13307 away the offset part from a memory address.
13308
13309 This function calls handled_component_p to strip away all the inner
13310 parts of the memory reference until it reaches the base object. */
13311
13312 tree
13313 get_base_address (tree t)
13314 {
13315 while (handled_component_p (t))
13316 t = TREE_OPERAND (t, 0);
13317
13318 if ((TREE_CODE (t) == MEM_REF
13319 || TREE_CODE (t) == TARGET_MEM_REF)
13320 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
13321 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
13322
13323 /* ??? Either the alias oracle or all callers need to properly deal
13324 with WITH_SIZE_EXPRs before we can look through those. */
13325 if (TREE_CODE (t) == WITH_SIZE_EXPR)
13326 return NULL_TREE;
13327
13328 return t;
13329 }
13330
13331 /* Return a tree of sizetype representing the size, in bytes, of the element
13332 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13333
13334 tree
13335 array_ref_element_size (tree exp)
13336 {
13337 tree aligned_size = TREE_OPERAND (exp, 3);
13338 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
13339 location_t loc = EXPR_LOCATION (exp);
13340
13341 /* If a size was specified in the ARRAY_REF, it's the size measured
13342 in alignment units of the element type. So multiply by that value. */
13343 if (aligned_size)
13344 {
13345 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13346 sizetype from another type of the same width and signedness. */
13347 if (TREE_TYPE (aligned_size) != sizetype)
13348 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
13349 return size_binop_loc (loc, MULT_EXPR, aligned_size,
13350 size_int (TYPE_ALIGN_UNIT (elmt_type)));
13351 }
13352
13353 /* Otherwise, take the size from that of the element type. Substitute
13354 any PLACEHOLDER_EXPR that we have. */
13355 else
13356 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
13357 }
13358
13359 /* Return a tree representing the lower bound of the array mentioned in
13360 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13361
13362 tree
13363 array_ref_low_bound (tree exp)
13364 {
13365 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13366
13367 /* If a lower bound is specified in EXP, use it. */
13368 if (TREE_OPERAND (exp, 2))
13369 return TREE_OPERAND (exp, 2);
13370
13371 /* Otherwise, if there is a domain type and it has a lower bound, use it,
13372 substituting for a PLACEHOLDER_EXPR as needed. */
13373 if (domain_type && TYPE_MIN_VALUE (domain_type))
13374 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
13375
13376 /* Otherwise, return a zero of the appropriate type. */
13377 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
13378 }
13379
13380 /* Return a tree representing the upper bound of the array mentioned in
13381 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13382
13383 tree
13384 array_ref_up_bound (tree exp)
13385 {
13386 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13387
13388 /* If there is a domain type and it has an upper bound, use it, substituting
13389 for a PLACEHOLDER_EXPR as needed. */
13390 if (domain_type && TYPE_MAX_VALUE (domain_type))
13391 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
13392
13393 /* Otherwise fail. */
13394 return NULL_TREE;
13395 }
13396
13397 /* Returns true if REF is an array reference, component reference,
13398 or memory reference to an array at the end of a structure.
13399 If this is the case, the array may be allocated larger
13400 than its upper bound implies. */
13401
13402 bool
13403 array_at_struct_end_p (tree ref)
13404 {
13405 tree atype;
13406
13407 if (TREE_CODE (ref) == ARRAY_REF
13408 || TREE_CODE (ref) == ARRAY_RANGE_REF)
13409 {
13410 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13411 ref = TREE_OPERAND (ref, 0);
13412 }
13413 else if (TREE_CODE (ref) == COMPONENT_REF
13414 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13415 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13416 else if (TREE_CODE (ref) == MEM_REF)
13417 {
13418 tree arg = TREE_OPERAND (ref, 0);
13419 if (TREE_CODE (arg) == ADDR_EXPR)
13420 arg = TREE_OPERAND (arg, 0);
13421 tree argtype = TREE_TYPE (arg);
13422 if (TREE_CODE (argtype) == RECORD_TYPE)
13423 {
13424 if (tree fld = last_field (argtype))
13425 {
13426 atype = TREE_TYPE (fld);
13427 if (TREE_CODE (atype) != ARRAY_TYPE)
13428 return false;
13429 if (VAR_P (arg) && DECL_SIZE (fld))
13430 return false;
13431 }
13432 else
13433 return false;
13434 }
13435 else
13436 return false;
13437 }
13438 else
13439 return false;
13440
13441 if (TREE_CODE (ref) == STRING_CST)
13442 return false;
13443
13444 tree ref_to_array = ref;
13445 while (handled_component_p (ref))
13446 {
13447 /* If the reference chain contains a component reference to a
13448 non-union type and there follows another field the reference
13449 is not at the end of a structure. */
13450 if (TREE_CODE (ref) == COMPONENT_REF)
13451 {
13452 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13453 {
13454 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13455 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13456 nextf = DECL_CHAIN (nextf);
13457 if (nextf)
13458 return false;
13459 }
13460 }
13461 /* If we have a multi-dimensional array we do not consider
13462 a non-innermost dimension as flex array if the whole
13463 multi-dimensional array is at struct end.
13464 Same for an array of aggregates with a trailing array
13465 member. */
13466 else if (TREE_CODE (ref) == ARRAY_REF)
13467 return false;
13468 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13469 ;
13470 /* If we view an underlying object as sth else then what we
13471 gathered up to now is what we have to rely on. */
13472 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13473 break;
13474 else
13475 gcc_unreachable ();
13476
13477 ref = TREE_OPERAND (ref, 0);
13478 }
13479
13480 /* The array now is at struct end. Treat flexible arrays as
13481 always subject to extend, even into just padding constrained by
13482 an underlying decl. */
13483 if (! TYPE_SIZE (atype)
13484 || ! TYPE_DOMAIN (atype)
13485 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13486 return true;
13487
13488 if (TREE_CODE (ref) == MEM_REF
13489 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13490 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13491
13492 /* If the reference is based on a declared entity, the size of the array
13493 is constrained by its given domain. (Do not trust commons PR/69368). */
13494 if (DECL_P (ref)
13495 && !(flag_unconstrained_commons
13496 && VAR_P (ref) && DECL_COMMON (ref))
13497 && DECL_SIZE_UNIT (ref)
13498 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13499 {
13500 /* Check whether the array domain covers all of the available
13501 padding. */
13502 poly_int64 offset;
13503 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13504 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13505 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13506 return true;
13507 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13508 return true;
13509
13510 /* If at least one extra element fits it is a flexarray. */
13511 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13512 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13513 + 2)
13514 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13515 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13516 return true;
13517
13518 return false;
13519 }
13520
13521 return true;
13522 }
13523
13524 /* Return a tree representing the offset, in bytes, of the field referenced
13525 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13526
13527 tree
13528 component_ref_field_offset (tree exp)
13529 {
13530 tree aligned_offset = TREE_OPERAND (exp, 2);
13531 tree field = TREE_OPERAND (exp, 1);
13532 location_t loc = EXPR_LOCATION (exp);
13533
13534 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13535 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13536 value. */
13537 if (aligned_offset)
13538 {
13539 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13540 sizetype from another type of the same width and signedness. */
13541 if (TREE_TYPE (aligned_offset) != sizetype)
13542 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13543 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13544 size_int (DECL_OFFSET_ALIGN (field)
13545 / BITS_PER_UNIT));
13546 }
13547
13548 /* Otherwise, take the offset from that of the field. Substitute
13549 any PLACEHOLDER_EXPR that we have. */
13550 else
13551 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13552 }
13553
13554 /* Given the initializer INIT, return the initializer for the field
13555 DECL if it exists, otherwise null. Used to obtain the initializer
13556 for a flexible array member and determine its size. */
13557
13558 static tree
13559 get_initializer_for (tree init, tree decl)
13560 {
13561 STRIP_NOPS (init);
13562
13563 tree fld, fld_init;
13564 unsigned HOST_WIDE_INT i;
13565 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), i, fld, fld_init)
13566 {
13567 if (decl == fld)
13568 return fld_init;
13569
13570 if (TREE_CODE (fld) == CONSTRUCTOR)
13571 {
13572 fld_init = get_initializer_for (fld_init, decl);
13573 if (fld_init)
13574 return fld_init;
13575 }
13576 }
13577
13578 return NULL_TREE;
13579 }
13580
13581 /* Determines the size of the member referenced by the COMPONENT_REF
13582 REF, using its initializer expression if necessary in order to
13583 determine the size of an initialized flexible array member.
13584 If non-null, *INTERIOR_ZERO_LENGTH is set when REF refers to
13585 an interior zero-length array.
13586 Returns the size (which might be zero for an object with
13587 an uninitialized flexible array member) or null if the size
13588 cannot be determined. */
13589
13590 tree
13591 component_ref_size (tree ref, bool *interior_zero_length /* = NULL */)
13592 {
13593 gcc_assert (TREE_CODE (ref) == COMPONENT_REF);
13594
13595 bool int_0_len = false;
13596 if (!interior_zero_length)
13597 interior_zero_length = &int_0_len;
13598
13599 tree member = TREE_OPERAND (ref, 1);
13600
13601 tree memsize = DECL_SIZE_UNIT (member);
13602 if (memsize)
13603 {
13604 tree memtype = TREE_TYPE (member);
13605 if (TREE_CODE (memtype) != ARRAY_TYPE)
13606 return memsize;
13607
13608 bool trailing = array_at_struct_end_p (ref);
13609 bool zero_length = integer_zerop (memsize);
13610 if (!trailing && (!interior_zero_length || !zero_length))
13611 /* MEMBER is either an interior array or is an array with
13612 more than one element. */
13613 return memsize;
13614
13615 *interior_zero_length = zero_length && !trailing;
13616 if (*interior_zero_length)
13617 memsize = NULL_TREE;
13618
13619 if (!zero_length)
13620 if (tree dom = TYPE_DOMAIN (memtype))
13621 if (tree min = TYPE_MIN_VALUE (dom))
13622 if (tree max = TYPE_MAX_VALUE (dom))
13623 if (TREE_CODE (min) == INTEGER_CST
13624 && TREE_CODE (max) == INTEGER_CST)
13625 {
13626 offset_int minidx = wi::to_offset (min);
13627 offset_int maxidx = wi::to_offset (max);
13628 if (maxidx - minidx > 0)
13629 /* MEMBER is an array with more than 1 element. */
13630 return memsize;
13631 }
13632 }
13633
13634 /* MEMBER is either a bona fide flexible array member, or a zero-length
13635 array member, or an array of length one treated as such. */
13636
13637 /* If the reference is to a declared object and the member a true
13638 flexible array, try to determine its size from its initializer. */
13639 poly_int64 baseoff = 0;
13640 tree base = get_addr_base_and_unit_offset (ref, &baseoff);
13641 if (!base || !VAR_P (base))
13642 {
13643 if (!*interior_zero_length)
13644 return NULL_TREE;
13645
13646 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
13647 return NULL_TREE;
13648
13649 base = TREE_OPERAND (ref, 0);
13650 while (TREE_CODE (base) == COMPONENT_REF)
13651 base = TREE_OPERAND (base, 0);
13652 baseoff = tree_to_poly_int64 (byte_position (TREE_OPERAND (ref, 1)));
13653 }
13654
13655 /* BASE is the declared object of which MEMBER is either a member
13656 or that is is cast to REFTYPE (e.g., a char buffer used to store
13657 a REFTYPE object). */
13658 tree reftype = TREE_TYPE (TREE_OPERAND (ref, 0));
13659 tree basetype = TREE_TYPE (base);
13660
13661 /* Determine the base type of the referenced object. If it's
13662 the same as REFTYPE and MEMBER has a known size, return it. */
13663 tree bt = basetype;
13664 if (!*interior_zero_length)
13665 while (TREE_CODE (bt) == ARRAY_TYPE)
13666 bt = TREE_TYPE (bt);
13667 bool typematch = useless_type_conversion_p (reftype, bt);
13668 if (memsize && typematch)
13669 return memsize;
13670
13671 memsize = NULL_TREE;
13672
13673 if (typematch)
13674 /* MEMBER is a true flexible array member. Compute its size from
13675 the initializer of the BASE object if it has one. */
13676 if (tree init = DECL_P (base) ? DECL_INITIAL (base) : NULL_TREE)
13677 {
13678 init = get_initializer_for (init, member);
13679 if (init)
13680 {
13681 memsize = TYPE_SIZE_UNIT (TREE_TYPE (init));
13682 if (tree refsize = TYPE_SIZE_UNIT (reftype))
13683 {
13684 /* Use the larger of the initializer size and the tail
13685 padding in the enclosing struct. */
13686 poly_int64 rsz = tree_to_poly_int64 (refsize);
13687 rsz -= baseoff;
13688 if (known_lt (tree_to_poly_int64 (memsize), rsz))
13689 memsize = wide_int_to_tree (TREE_TYPE (memsize), rsz);
13690 }
13691
13692 baseoff = 0;
13693 }
13694 }
13695
13696 if (!memsize)
13697 {
13698 if (typematch)
13699 {
13700 if (DECL_P (base)
13701 && DECL_EXTERNAL (base)
13702 && bt == basetype
13703 && !*interior_zero_length)
13704 /* The size of a flexible array member of an extern struct
13705 with no initializer cannot be determined (it's defined
13706 in another translation unit and can have an initializer
13707 with an arbitrary number of elements). */
13708 return NULL_TREE;
13709
13710 /* Use the size of the base struct or, for interior zero-length
13711 arrays, the size of the enclosing type. */
13712 memsize = TYPE_SIZE_UNIT (bt);
13713 }
13714 else if (DECL_P (base))
13715 /* Use the size of the BASE object (possibly an array of some
13716 other type such as char used to store the struct). */
13717 memsize = DECL_SIZE_UNIT (base);
13718 else
13719 return NULL_TREE;
13720 }
13721
13722 /* If the flexible array member has a known size use the greater
13723 of it and the tail padding in the enclosing struct.
13724 Otherwise, when the size of the flexible array member is unknown
13725 and the referenced object is not a struct, use the size of its
13726 type when known. This detects sizes of array buffers when cast
13727 to struct types with flexible array members. */
13728 if (memsize)
13729 {
13730 poly_int64 memsz64 = memsize ? tree_to_poly_int64 (memsize) : 0;
13731 if (known_lt (baseoff, memsz64))
13732 {
13733 memsz64 -= baseoff;
13734 return wide_int_to_tree (TREE_TYPE (memsize), memsz64);
13735 }
13736 return integer_zero_node;
13737 }
13738
13739 /* Return "don't know" for an external non-array object since its
13740 flexible array member can be initialized to have any number of
13741 elements. Otherwise, return zero because the flexible array
13742 member has no elements. */
13743 return (DECL_P (base)
13744 && DECL_EXTERNAL (base)
13745 && (!typematch
13746 || TREE_CODE (basetype) != ARRAY_TYPE)
13747 ? NULL_TREE : integer_zero_node);
13748 }
13749
13750 /* Return the machine mode of T. For vectors, returns the mode of the
13751 inner type. The main use case is to feed the result to HONOR_NANS,
13752 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13753
13754 machine_mode
13755 element_mode (const_tree t)
13756 {
13757 if (!TYPE_P (t))
13758 t = TREE_TYPE (t);
13759 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13760 t = TREE_TYPE (t);
13761 return TYPE_MODE (t);
13762 }
13763
13764 /* Vector types need to re-check the target flags each time we report
13765 the machine mode. We need to do this because attribute target can
13766 change the result of vector_mode_supported_p and have_regs_of_mode
13767 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13768 change on a per-function basis. */
13769 /* ??? Possibly a better solution is to run through all the types
13770 referenced by a function and re-compute the TYPE_MODE once, rather
13771 than make the TYPE_MODE macro call a function. */
13772
13773 machine_mode
13774 vector_type_mode (const_tree t)
13775 {
13776 machine_mode mode;
13777
13778 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13779
13780 mode = t->type_common.mode;
13781 if (VECTOR_MODE_P (mode)
13782 && (!targetm.vector_mode_supported_p (mode)
13783 || !have_regs_of_mode[mode]))
13784 {
13785 scalar_int_mode innermode;
13786
13787 /* For integers, try mapping it to a same-sized scalar mode. */
13788 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13789 {
13790 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13791 * GET_MODE_BITSIZE (innermode));
13792 scalar_int_mode mode;
13793 if (int_mode_for_size (size, 0).exists (&mode)
13794 && have_regs_of_mode[mode])
13795 return mode;
13796 }
13797
13798 return BLKmode;
13799 }
13800
13801 return mode;
13802 }
13803
13804 /* Verify that basic properties of T match TV and thus T can be a variant of
13805 TV. TV should be the more specified variant (i.e. the main variant). */
13806
13807 static bool
13808 verify_type_variant (const_tree t, tree tv)
13809 {
13810 /* Type variant can differ by:
13811
13812 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13813 ENCODE_QUAL_ADDR_SPACE.
13814 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13815 in this case some values may not be set in the variant types
13816 (see TYPE_COMPLETE_P checks).
13817 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13818 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13819 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13820 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13821 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13822 this is necessary to make it possible to merge types form different TUs
13823 - arrays, pointers and references may have TREE_TYPE that is a variant
13824 of TREE_TYPE of their main variants.
13825 - aggregates may have new TYPE_FIELDS list that list variants of
13826 the main variant TYPE_FIELDS.
13827 - vector types may differ by TYPE_VECTOR_OPAQUE
13828 */
13829
13830 /* Convenience macro for matching individual fields. */
13831 #define verify_variant_match(flag) \
13832 do { \
13833 if (flag (tv) != flag (t)) \
13834 { \
13835 error ("type variant differs by %s", #flag); \
13836 debug_tree (tv); \
13837 return false; \
13838 } \
13839 } while (false)
13840
13841 /* tree_base checks. */
13842
13843 verify_variant_match (TREE_CODE);
13844 /* FIXME: Ada builds non-artificial variants of artificial types. */
13845 if (TYPE_ARTIFICIAL (tv) && 0)
13846 verify_variant_match (TYPE_ARTIFICIAL);
13847 if (POINTER_TYPE_P (tv))
13848 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13849 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13850 verify_variant_match (TYPE_UNSIGNED);
13851 verify_variant_match (TYPE_PACKED);
13852 if (TREE_CODE (t) == REFERENCE_TYPE)
13853 verify_variant_match (TYPE_REF_IS_RVALUE);
13854 if (AGGREGATE_TYPE_P (t))
13855 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13856 else
13857 verify_variant_match (TYPE_SATURATING);
13858 /* FIXME: This check trigger during libstdc++ build. */
13859 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13860 verify_variant_match (TYPE_FINAL_P);
13861
13862 /* tree_type_common checks. */
13863
13864 if (COMPLETE_TYPE_P (t))
13865 {
13866 verify_variant_match (TYPE_MODE);
13867 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13868 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13869 verify_variant_match (TYPE_SIZE);
13870 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13871 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13872 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13873 {
13874 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13875 TYPE_SIZE_UNIT (tv), 0));
13876 error ("type variant has different %<TYPE_SIZE_UNIT%>");
13877 debug_tree (tv);
13878 error ("type variant%'s %<TYPE_SIZE_UNIT%>");
13879 debug_tree (TYPE_SIZE_UNIT (tv));
13880 error ("type%'s %<TYPE_SIZE_UNIT%>");
13881 debug_tree (TYPE_SIZE_UNIT (t));
13882 return false;
13883 }
13884 }
13885 verify_variant_match (TYPE_PRECISION);
13886 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13887 if (RECORD_OR_UNION_TYPE_P (t))
13888 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13889 else if (TREE_CODE (t) == ARRAY_TYPE)
13890 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13891 /* During LTO we merge variant lists from diferent translation units
13892 that may differ BY TYPE_CONTEXT that in turn may point
13893 to TRANSLATION_UNIT_DECL.
13894 Ada also builds variants of types with different TYPE_CONTEXT. */
13895 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13896 verify_variant_match (TYPE_CONTEXT);
13897 if (TREE_CODE (t) == ARRAY_TYPE || TREE_CODE (t) == INTEGER_TYPE)
13898 verify_variant_match (TYPE_STRING_FLAG);
13899 if (TREE_CODE (t) == RECORD_TYPE || TREE_CODE (t) == UNION_TYPE)
13900 verify_variant_match (TYPE_CXX_ODR_P);
13901 if (TYPE_ALIAS_SET_KNOWN_P (t))
13902 {
13903 error ("type variant with %<TYPE_ALIAS_SET_KNOWN_P%>");
13904 debug_tree (tv);
13905 return false;
13906 }
13907
13908 /* tree_type_non_common checks. */
13909
13910 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13911 and dangle the pointer from time to time. */
13912 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13913 && (in_lto_p || !TYPE_VFIELD (tv)
13914 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13915 {
13916 error ("type variant has different %<TYPE_VFIELD%>");
13917 debug_tree (tv);
13918 return false;
13919 }
13920 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13921 || TREE_CODE (t) == INTEGER_TYPE
13922 || TREE_CODE (t) == BOOLEAN_TYPE
13923 || TREE_CODE (t) == REAL_TYPE
13924 || TREE_CODE (t) == FIXED_POINT_TYPE)
13925 {
13926 verify_variant_match (TYPE_MAX_VALUE);
13927 verify_variant_match (TYPE_MIN_VALUE);
13928 }
13929 if (TREE_CODE (t) == METHOD_TYPE)
13930 verify_variant_match (TYPE_METHOD_BASETYPE);
13931 if (TREE_CODE (t) == OFFSET_TYPE)
13932 verify_variant_match (TYPE_OFFSET_BASETYPE);
13933 if (TREE_CODE (t) == ARRAY_TYPE)
13934 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13935 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13936 or even type's main variant. This is needed to make bootstrap pass
13937 and the bug seems new in GCC 5.
13938 C++ FE should be updated to make this consistent and we should check
13939 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13940 is a match with main variant.
13941
13942 Also disable the check for Java for now because of parser hack that builds
13943 first an dummy BINFO and then sometimes replace it by real BINFO in some
13944 of the copies. */
13945 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13946 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13947 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13948 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13949 at LTO time only. */
13950 && (in_lto_p && odr_type_p (t)))
13951 {
13952 error ("type variant has different %<TYPE_BINFO%>");
13953 debug_tree (tv);
13954 error ("type variant%'s %<TYPE_BINFO%>");
13955 debug_tree (TYPE_BINFO (tv));
13956 error ("type%'s %<TYPE_BINFO%>");
13957 debug_tree (TYPE_BINFO (t));
13958 return false;
13959 }
13960
13961 /* Check various uses of TYPE_VALUES_RAW. */
13962 if (TREE_CODE (t) == ENUMERAL_TYPE
13963 && TYPE_VALUES (t))
13964 verify_variant_match (TYPE_VALUES);
13965 else if (TREE_CODE (t) == ARRAY_TYPE)
13966 verify_variant_match (TYPE_DOMAIN);
13967 /* Permit incomplete variants of complete type. While FEs may complete
13968 all variants, this does not happen for C++ templates in all cases. */
13969 else if (RECORD_OR_UNION_TYPE_P (t)
13970 && COMPLETE_TYPE_P (t)
13971 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13972 {
13973 tree f1, f2;
13974
13975 /* Fortran builds qualified variants as new records with items of
13976 qualified type. Verify that they looks same. */
13977 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13978 f1 && f2;
13979 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13980 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13981 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13982 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13983 /* FIXME: gfc_nonrestricted_type builds all types as variants
13984 with exception of pointer types. It deeply copies the type
13985 which means that we may end up with a variant type
13986 referring non-variant pointer. We may change it to
13987 produce types as variants, too, like
13988 objc_get_protocol_qualified_type does. */
13989 && !POINTER_TYPE_P (TREE_TYPE (f1)))
13990 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13991 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13992 break;
13993 if (f1 || f2)
13994 {
13995 error ("type variant has different %<TYPE_FIELDS%>");
13996 debug_tree (tv);
13997 error ("first mismatch is field");
13998 debug_tree (f1);
13999 error ("and field");
14000 debug_tree (f2);
14001 return false;
14002 }
14003 }
14004 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
14005 verify_variant_match (TYPE_ARG_TYPES);
14006 /* For C++ the qualified variant of array type is really an array type
14007 of qualified TREE_TYPE.
14008 objc builds variants of pointer where pointer to type is a variant, too
14009 in objc_get_protocol_qualified_type. */
14010 if (TREE_TYPE (t) != TREE_TYPE (tv)
14011 && ((TREE_CODE (t) != ARRAY_TYPE
14012 && !POINTER_TYPE_P (t))
14013 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
14014 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
14015 {
14016 error ("type variant has different %<TREE_TYPE%>");
14017 debug_tree (tv);
14018 error ("type variant%'s %<TREE_TYPE%>");
14019 debug_tree (TREE_TYPE (tv));
14020 error ("type%'s %<TREE_TYPE%>");
14021 debug_tree (TREE_TYPE (t));
14022 return false;
14023 }
14024 if (type_with_alias_set_p (t)
14025 && !gimple_canonical_types_compatible_p (t, tv, false))
14026 {
14027 error ("type is not compatible with its variant");
14028 debug_tree (tv);
14029 error ("type variant%'s %<TREE_TYPE%>");
14030 debug_tree (TREE_TYPE (tv));
14031 error ("type%'s %<TREE_TYPE%>");
14032 debug_tree (TREE_TYPE (t));
14033 return false;
14034 }
14035 return true;
14036 #undef verify_variant_match
14037 }
14038
14039
14040 /* The TYPE_CANONICAL merging machinery. It should closely resemble
14041 the middle-end types_compatible_p function. It needs to avoid
14042 claiming types are different for types that should be treated
14043 the same with respect to TBAA. Canonical types are also used
14044 for IL consistency checks via the useless_type_conversion_p
14045 predicate which does not handle all type kinds itself but falls
14046 back to pointer-comparison of TYPE_CANONICAL for aggregates
14047 for example. */
14048
14049 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
14050 type calculation because we need to allow inter-operability between signed
14051 and unsigned variants. */
14052
14053 bool
14054 type_with_interoperable_signedness (const_tree type)
14055 {
14056 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
14057 signed char and unsigned char. Similarly fortran FE builds
14058 C_SIZE_T as signed type, while C defines it unsigned. */
14059
14060 return tree_code_for_canonical_type_merging (TREE_CODE (type))
14061 == INTEGER_TYPE
14062 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
14063 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
14064 }
14065
14066 /* Return true iff T1 and T2 are structurally identical for what
14067 TBAA is concerned.
14068 This function is used both by lto.c canonical type merging and by the
14069 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
14070 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
14071 only for LTO because only in these cases TYPE_CANONICAL equivalence
14072 correspond to one defined by gimple_canonical_types_compatible_p. */
14073
14074 bool
14075 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
14076 bool trust_type_canonical)
14077 {
14078 /* Type variants should be same as the main variant. When not doing sanity
14079 checking to verify this fact, go to main variants and save some work. */
14080 if (trust_type_canonical)
14081 {
14082 t1 = TYPE_MAIN_VARIANT (t1);
14083 t2 = TYPE_MAIN_VARIANT (t2);
14084 }
14085
14086 /* Check first for the obvious case of pointer identity. */
14087 if (t1 == t2)
14088 return true;
14089
14090 /* Check that we have two types to compare. */
14091 if (t1 == NULL_TREE || t2 == NULL_TREE)
14092 return false;
14093
14094 /* We consider complete types always compatible with incomplete type.
14095 This does not make sense for canonical type calculation and thus we
14096 need to ensure that we are never called on it.
14097
14098 FIXME: For more correctness the function probably should have three modes
14099 1) mode assuming that types are complete mathcing their structure
14100 2) mode allowing incomplete types but producing equivalence classes
14101 and thus ignoring all info from complete types
14102 3) mode allowing incomplete types to match complete but checking
14103 compatibility between complete types.
14104
14105 1 and 2 can be used for canonical type calculation. 3 is the real
14106 definition of type compatibility that can be used i.e. for warnings during
14107 declaration merging. */
14108
14109 gcc_assert (!trust_type_canonical
14110 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
14111
14112 /* If the types have been previously registered and found equal
14113 they still are. */
14114
14115 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
14116 && trust_type_canonical)
14117 {
14118 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
14119 they are always NULL, but they are set to non-NULL for types
14120 constructed by build_pointer_type and variants. In this case the
14121 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
14122 all pointers are considered equal. Be sure to not return false
14123 negatives. */
14124 gcc_checking_assert (canonical_type_used_p (t1)
14125 && canonical_type_used_p (t2));
14126 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
14127 }
14128
14129 /* For types where we do ODR based TBAA the canonical type is always
14130 set correctly, so we know that types are different if their
14131 canonical types does not match. */
14132 if (trust_type_canonical
14133 && (odr_type_p (t1) && odr_based_tbaa_p (t1))
14134 != (odr_type_p (t2) && odr_based_tbaa_p (t2)))
14135 return false;
14136
14137 /* Can't be the same type if the types don't have the same code. */
14138 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
14139 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
14140 return false;
14141
14142 /* Qualifiers do not matter for canonical type comparison purposes. */
14143
14144 /* Void types and nullptr types are always the same. */
14145 if (TREE_CODE (t1) == VOID_TYPE
14146 || TREE_CODE (t1) == NULLPTR_TYPE)
14147 return true;
14148
14149 /* Can't be the same type if they have different mode. */
14150 if (TYPE_MODE (t1) != TYPE_MODE (t2))
14151 return false;
14152
14153 /* Non-aggregate types can be handled cheaply. */
14154 if (INTEGRAL_TYPE_P (t1)
14155 || SCALAR_FLOAT_TYPE_P (t1)
14156 || FIXED_POINT_TYPE_P (t1)
14157 || TREE_CODE (t1) == VECTOR_TYPE
14158 || TREE_CODE (t1) == COMPLEX_TYPE
14159 || TREE_CODE (t1) == OFFSET_TYPE
14160 || POINTER_TYPE_P (t1))
14161 {
14162 /* Can't be the same type if they have different recision. */
14163 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
14164 return false;
14165
14166 /* In some cases the signed and unsigned types are required to be
14167 inter-operable. */
14168 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
14169 && !type_with_interoperable_signedness (t1))
14170 return false;
14171
14172 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
14173 interoperable with "signed char". Unless all frontends are revisited
14174 to agree on these types, we must ignore the flag completely. */
14175
14176 /* Fortran standard define C_PTR type that is compatible with every
14177 C pointer. For this reason we need to glob all pointers into one.
14178 Still pointers in different address spaces are not compatible. */
14179 if (POINTER_TYPE_P (t1))
14180 {
14181 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
14182 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
14183 return false;
14184 }
14185
14186 /* Tail-recurse to components. */
14187 if (TREE_CODE (t1) == VECTOR_TYPE
14188 || TREE_CODE (t1) == COMPLEX_TYPE)
14189 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
14190 TREE_TYPE (t2),
14191 trust_type_canonical);
14192
14193 return true;
14194 }
14195
14196 /* Do type-specific comparisons. */
14197 switch (TREE_CODE (t1))
14198 {
14199 case ARRAY_TYPE:
14200 /* Array types are the same if the element types are the same and
14201 the number of elements are the same. */
14202 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14203 trust_type_canonical)
14204 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
14205 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
14206 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
14207 return false;
14208 else
14209 {
14210 tree i1 = TYPE_DOMAIN (t1);
14211 tree i2 = TYPE_DOMAIN (t2);
14212
14213 /* For an incomplete external array, the type domain can be
14214 NULL_TREE. Check this condition also. */
14215 if (i1 == NULL_TREE && i2 == NULL_TREE)
14216 return true;
14217 else if (i1 == NULL_TREE || i2 == NULL_TREE)
14218 return false;
14219 else
14220 {
14221 tree min1 = TYPE_MIN_VALUE (i1);
14222 tree min2 = TYPE_MIN_VALUE (i2);
14223 tree max1 = TYPE_MAX_VALUE (i1);
14224 tree max2 = TYPE_MAX_VALUE (i2);
14225
14226 /* The minimum/maximum values have to be the same. */
14227 if ((min1 == min2
14228 || (min1 && min2
14229 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
14230 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
14231 || operand_equal_p (min1, min2, 0))))
14232 && (max1 == max2
14233 || (max1 && max2
14234 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
14235 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
14236 || operand_equal_p (max1, max2, 0)))))
14237 return true;
14238 else
14239 return false;
14240 }
14241 }
14242
14243 case METHOD_TYPE:
14244 case FUNCTION_TYPE:
14245 /* Function types are the same if the return type and arguments types
14246 are the same. */
14247 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14248 trust_type_canonical))
14249 return false;
14250
14251 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
14252 return true;
14253 else
14254 {
14255 tree parms1, parms2;
14256
14257 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
14258 parms1 && parms2;
14259 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
14260 {
14261 if (!gimple_canonical_types_compatible_p
14262 (TREE_VALUE (parms1), TREE_VALUE (parms2),
14263 trust_type_canonical))
14264 return false;
14265 }
14266
14267 if (parms1 || parms2)
14268 return false;
14269
14270 return true;
14271 }
14272
14273 case RECORD_TYPE:
14274 case UNION_TYPE:
14275 case QUAL_UNION_TYPE:
14276 {
14277 tree f1, f2;
14278
14279 /* Don't try to compare variants of an incomplete type, before
14280 TYPE_FIELDS has been copied around. */
14281 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
14282 return true;
14283
14284
14285 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
14286 return false;
14287
14288 /* For aggregate types, all the fields must be the same. */
14289 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
14290 f1 || f2;
14291 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14292 {
14293 /* Skip non-fields and zero-sized fields. */
14294 while (f1 && (TREE_CODE (f1) != FIELD_DECL
14295 || (DECL_SIZE (f1)
14296 && integer_zerop (DECL_SIZE (f1)))))
14297 f1 = TREE_CHAIN (f1);
14298 while (f2 && (TREE_CODE (f2) != FIELD_DECL
14299 || (DECL_SIZE (f2)
14300 && integer_zerop (DECL_SIZE (f2)))))
14301 f2 = TREE_CHAIN (f2);
14302 if (!f1 || !f2)
14303 break;
14304 /* The fields must have the same name, offset and type. */
14305 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
14306 || !gimple_compare_field_offset (f1, f2)
14307 || !gimple_canonical_types_compatible_p
14308 (TREE_TYPE (f1), TREE_TYPE (f2),
14309 trust_type_canonical))
14310 return false;
14311 }
14312
14313 /* If one aggregate has more fields than the other, they
14314 are not the same. */
14315 if (f1 || f2)
14316 return false;
14317
14318 return true;
14319 }
14320
14321 default:
14322 /* Consider all types with language specific trees in them mutually
14323 compatible. This is executed only from verify_type and false
14324 positives can be tolerated. */
14325 gcc_assert (!in_lto_p);
14326 return true;
14327 }
14328 }
14329
14330 /* Verify type T. */
14331
14332 void
14333 verify_type (const_tree t)
14334 {
14335 bool error_found = false;
14336 tree mv = TYPE_MAIN_VARIANT (t);
14337 if (!mv)
14338 {
14339 error ("main variant is not defined");
14340 error_found = true;
14341 }
14342 else if (mv != TYPE_MAIN_VARIANT (mv))
14343 {
14344 error ("%<TYPE_MAIN_VARIANT%> has different %<TYPE_MAIN_VARIANT%>");
14345 debug_tree (mv);
14346 error_found = true;
14347 }
14348 else if (t != mv && !verify_type_variant (t, mv))
14349 error_found = true;
14350
14351 tree ct = TYPE_CANONICAL (t);
14352 if (!ct)
14353 ;
14354 else if (TYPE_CANONICAL (t) != ct)
14355 {
14356 error ("%<TYPE_CANONICAL%> has different %<TYPE_CANONICAL%>");
14357 debug_tree (ct);
14358 error_found = true;
14359 }
14360 /* Method and function types cannot be used to address memory and thus
14361 TYPE_CANONICAL really matters only for determining useless conversions.
14362
14363 FIXME: C++ FE produce declarations of builtin functions that are not
14364 compatible with main variants. */
14365 else if (TREE_CODE (t) == FUNCTION_TYPE)
14366 ;
14367 else if (t != ct
14368 /* FIXME: gimple_canonical_types_compatible_p cannot compare types
14369 with variably sized arrays because their sizes possibly
14370 gimplified to different variables. */
14371 && !variably_modified_type_p (ct, NULL)
14372 && !gimple_canonical_types_compatible_p (t, ct, false)
14373 && COMPLETE_TYPE_P (t))
14374 {
14375 error ("%<TYPE_CANONICAL%> is not compatible");
14376 debug_tree (ct);
14377 error_found = true;
14378 }
14379
14380 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
14381 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
14382 {
14383 error ("%<TYPE_MODE%> of %<TYPE_CANONICAL%> is not compatible");
14384 debug_tree (ct);
14385 error_found = true;
14386 }
14387 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
14388 {
14389 error ("%<TYPE_CANONICAL%> of main variant is not main variant");
14390 debug_tree (ct);
14391 debug_tree (TYPE_MAIN_VARIANT (ct));
14392 error_found = true;
14393 }
14394
14395
14396 /* Check various uses of TYPE_MIN_VALUE_RAW. */
14397 if (RECORD_OR_UNION_TYPE_P (t))
14398 {
14399 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
14400 and danagle the pointer from time to time. */
14401 if (TYPE_VFIELD (t)
14402 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
14403 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
14404 {
14405 error ("%<TYPE_VFIELD%> is not %<FIELD_DECL%> nor %<TREE_LIST%>");
14406 debug_tree (TYPE_VFIELD (t));
14407 error_found = true;
14408 }
14409 }
14410 else if (TREE_CODE (t) == POINTER_TYPE)
14411 {
14412 if (TYPE_NEXT_PTR_TO (t)
14413 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
14414 {
14415 error ("%<TYPE_NEXT_PTR_TO%> is not %<POINTER_TYPE%>");
14416 debug_tree (TYPE_NEXT_PTR_TO (t));
14417 error_found = true;
14418 }
14419 }
14420 else if (TREE_CODE (t) == REFERENCE_TYPE)
14421 {
14422 if (TYPE_NEXT_REF_TO (t)
14423 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
14424 {
14425 error ("%<TYPE_NEXT_REF_TO%> is not %<REFERENCE_TYPE%>");
14426 debug_tree (TYPE_NEXT_REF_TO (t));
14427 error_found = true;
14428 }
14429 }
14430 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14431 || TREE_CODE (t) == FIXED_POINT_TYPE)
14432 {
14433 /* FIXME: The following check should pass:
14434 useless_type_conversion_p (const_cast <tree> (t),
14435 TREE_TYPE (TYPE_MIN_VALUE (t))
14436 but does not for C sizetypes in LTO. */
14437 }
14438
14439 /* Check various uses of TYPE_MAXVAL_RAW. */
14440 if (RECORD_OR_UNION_TYPE_P (t))
14441 {
14442 if (!TYPE_BINFO (t))
14443 ;
14444 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
14445 {
14446 error ("%<TYPE_BINFO%> is not %<TREE_BINFO%>");
14447 debug_tree (TYPE_BINFO (t));
14448 error_found = true;
14449 }
14450 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
14451 {
14452 error ("%<TYPE_BINFO%> type is not %<TYPE_MAIN_VARIANT%>");
14453 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
14454 error_found = true;
14455 }
14456 }
14457 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14458 {
14459 if (TYPE_METHOD_BASETYPE (t)
14460 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
14461 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
14462 {
14463 error ("%<TYPE_METHOD_BASETYPE%> is not record nor union");
14464 debug_tree (TYPE_METHOD_BASETYPE (t));
14465 error_found = true;
14466 }
14467 }
14468 else if (TREE_CODE (t) == OFFSET_TYPE)
14469 {
14470 if (TYPE_OFFSET_BASETYPE (t)
14471 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
14472 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
14473 {
14474 error ("%<TYPE_OFFSET_BASETYPE%> is not record nor union");
14475 debug_tree (TYPE_OFFSET_BASETYPE (t));
14476 error_found = true;
14477 }
14478 }
14479 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14480 || TREE_CODE (t) == FIXED_POINT_TYPE)
14481 {
14482 /* FIXME: The following check should pass:
14483 useless_type_conversion_p (const_cast <tree> (t),
14484 TREE_TYPE (TYPE_MAX_VALUE (t))
14485 but does not for C sizetypes in LTO. */
14486 }
14487 else if (TREE_CODE (t) == ARRAY_TYPE)
14488 {
14489 if (TYPE_ARRAY_MAX_SIZE (t)
14490 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
14491 {
14492 error ("%<TYPE_ARRAY_MAX_SIZE%> not %<INTEGER_CST%>");
14493 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
14494 error_found = true;
14495 }
14496 }
14497 else if (TYPE_MAX_VALUE_RAW (t))
14498 {
14499 error ("%<TYPE_MAX_VALUE_RAW%> non-NULL");
14500 debug_tree (TYPE_MAX_VALUE_RAW (t));
14501 error_found = true;
14502 }
14503
14504 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
14505 {
14506 error ("%<TYPE_LANG_SLOT_1 (binfo)%> field is non-NULL");
14507 debug_tree (TYPE_LANG_SLOT_1 (t));
14508 error_found = true;
14509 }
14510
14511 /* Check various uses of TYPE_VALUES_RAW. */
14512 if (TREE_CODE (t) == ENUMERAL_TYPE)
14513 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
14514 {
14515 tree value = TREE_VALUE (l);
14516 tree name = TREE_PURPOSE (l);
14517
14518 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
14519 CONST_DECL of ENUMERAL TYPE. */
14520 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
14521 {
14522 error ("enum value is not %<CONST_DECL%> or %<INTEGER_CST%>");
14523 debug_tree (value);
14524 debug_tree (name);
14525 error_found = true;
14526 }
14527 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
14528 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
14529 {
14530 error ("enum value type is not %<INTEGER_TYPE%> nor convertible "
14531 "to the enum");
14532 debug_tree (value);
14533 debug_tree (name);
14534 error_found = true;
14535 }
14536 if (TREE_CODE (name) != IDENTIFIER_NODE)
14537 {
14538 error ("enum value name is not %<IDENTIFIER_NODE%>");
14539 debug_tree (value);
14540 debug_tree (name);
14541 error_found = true;
14542 }
14543 }
14544 else if (TREE_CODE (t) == ARRAY_TYPE)
14545 {
14546 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14547 {
14548 error ("array %<TYPE_DOMAIN%> is not integer type");
14549 debug_tree (TYPE_DOMAIN (t));
14550 error_found = true;
14551 }
14552 }
14553 else if (RECORD_OR_UNION_TYPE_P (t))
14554 {
14555 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14556 {
14557 error ("%<TYPE_FIELDS%> defined in incomplete type");
14558 error_found = true;
14559 }
14560 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14561 {
14562 /* TODO: verify properties of decls. */
14563 if (TREE_CODE (fld) == FIELD_DECL)
14564 ;
14565 else if (TREE_CODE (fld) == TYPE_DECL)
14566 ;
14567 else if (TREE_CODE (fld) == CONST_DECL)
14568 ;
14569 else if (VAR_P (fld))
14570 ;
14571 else if (TREE_CODE (fld) == TEMPLATE_DECL)
14572 ;
14573 else if (TREE_CODE (fld) == USING_DECL)
14574 ;
14575 else if (TREE_CODE (fld) == FUNCTION_DECL)
14576 ;
14577 else
14578 {
14579 error ("wrong tree in %<TYPE_FIELDS%> list");
14580 debug_tree (fld);
14581 error_found = true;
14582 }
14583 }
14584 }
14585 else if (TREE_CODE (t) == INTEGER_TYPE
14586 || TREE_CODE (t) == BOOLEAN_TYPE
14587 || TREE_CODE (t) == OFFSET_TYPE
14588 || TREE_CODE (t) == REFERENCE_TYPE
14589 || TREE_CODE (t) == NULLPTR_TYPE
14590 || TREE_CODE (t) == POINTER_TYPE)
14591 {
14592 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14593 {
14594 error ("%<TYPE_CACHED_VALUES_P%> is %i while %<TYPE_CACHED_VALUES%> "
14595 "is %p",
14596 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14597 error_found = true;
14598 }
14599 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14600 {
14601 error ("%<TYPE_CACHED_VALUES%> is not %<TREE_VEC%>");
14602 debug_tree (TYPE_CACHED_VALUES (t));
14603 error_found = true;
14604 }
14605 /* Verify just enough of cache to ensure that no one copied it to new type.
14606 All copying should go by copy_node that should clear it. */
14607 else if (TYPE_CACHED_VALUES_P (t))
14608 {
14609 int i;
14610 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14611 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14612 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14613 {
14614 error ("wrong %<TYPE_CACHED_VALUES%> entry");
14615 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14616 error_found = true;
14617 break;
14618 }
14619 }
14620 }
14621 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14622 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14623 {
14624 /* C++ FE uses TREE_PURPOSE to store initial values. */
14625 if (TREE_PURPOSE (l) && in_lto_p)
14626 {
14627 error ("%<TREE_PURPOSE%> is non-NULL in %<TYPE_ARG_TYPES%> list");
14628 debug_tree (l);
14629 error_found = true;
14630 }
14631 if (!TYPE_P (TREE_VALUE (l)))
14632 {
14633 error ("wrong entry in %<TYPE_ARG_TYPES%> list");
14634 debug_tree (l);
14635 error_found = true;
14636 }
14637 }
14638 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14639 {
14640 error ("%<TYPE_VALUES_RAW%> field is non-NULL");
14641 debug_tree (TYPE_VALUES_RAW (t));
14642 error_found = true;
14643 }
14644 if (TREE_CODE (t) != INTEGER_TYPE
14645 && TREE_CODE (t) != BOOLEAN_TYPE
14646 && TREE_CODE (t) != OFFSET_TYPE
14647 && TREE_CODE (t) != REFERENCE_TYPE
14648 && TREE_CODE (t) != NULLPTR_TYPE
14649 && TREE_CODE (t) != POINTER_TYPE
14650 && TYPE_CACHED_VALUES_P (t))
14651 {
14652 error ("%<TYPE_CACHED_VALUES_P%> is set while it should not be");
14653 error_found = true;
14654 }
14655
14656 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14657 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14658 of a type. */
14659 if (TREE_CODE (t) == METHOD_TYPE
14660 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14661 {
14662 error ("%<TYPE_METHOD_BASETYPE%> is not main variant");
14663 error_found = true;
14664 }
14665
14666 if (error_found)
14667 {
14668 debug_tree (const_cast <tree> (t));
14669 internal_error ("%qs failed", __func__);
14670 }
14671 }
14672
14673
14674 /* Return 1 if ARG interpreted as signed in its precision is known to be
14675 always positive or 2 if ARG is known to be always negative, or 3 if
14676 ARG may be positive or negative. */
14677
14678 int
14679 get_range_pos_neg (tree arg)
14680 {
14681 if (arg == error_mark_node)
14682 return 3;
14683
14684 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14685 int cnt = 0;
14686 if (TREE_CODE (arg) == INTEGER_CST)
14687 {
14688 wide_int w = wi::sext (wi::to_wide (arg), prec);
14689 if (wi::neg_p (w))
14690 return 2;
14691 else
14692 return 1;
14693 }
14694 while (CONVERT_EXPR_P (arg)
14695 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14696 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14697 {
14698 arg = TREE_OPERAND (arg, 0);
14699 /* Narrower value zero extended into wider type
14700 will always result in positive values. */
14701 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14702 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14703 return 1;
14704 prec = TYPE_PRECISION (TREE_TYPE (arg));
14705 if (++cnt > 30)
14706 return 3;
14707 }
14708
14709 if (TREE_CODE (arg) != SSA_NAME)
14710 return 3;
14711 wide_int arg_min, arg_max;
14712 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14713 {
14714 gimple *g = SSA_NAME_DEF_STMT (arg);
14715 if (is_gimple_assign (g)
14716 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14717 {
14718 tree t = gimple_assign_rhs1 (g);
14719 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14720 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14721 {
14722 if (TYPE_UNSIGNED (TREE_TYPE (t))
14723 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14724 return 1;
14725 prec = TYPE_PRECISION (TREE_TYPE (t));
14726 arg = t;
14727 if (++cnt > 30)
14728 return 3;
14729 continue;
14730 }
14731 }
14732 return 3;
14733 }
14734 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14735 {
14736 /* For unsigned values, the "positive" range comes
14737 below the "negative" range. */
14738 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14739 return 1;
14740 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14741 return 2;
14742 }
14743 else
14744 {
14745 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14746 return 1;
14747 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14748 return 2;
14749 }
14750 return 3;
14751 }
14752
14753
14754
14755
14756 /* Return true if ARG is marked with the nonnull attribute in the
14757 current function signature. */
14758
14759 bool
14760 nonnull_arg_p (const_tree arg)
14761 {
14762 tree t, attrs, fntype;
14763 unsigned HOST_WIDE_INT arg_num;
14764
14765 gcc_assert (TREE_CODE (arg) == PARM_DECL
14766 && (POINTER_TYPE_P (TREE_TYPE (arg))
14767 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14768
14769 /* The static chain decl is always non null. */
14770 if (arg == cfun->static_chain_decl)
14771 return true;
14772
14773 /* THIS argument of method is always non-NULL. */
14774 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14775 && arg == DECL_ARGUMENTS (cfun->decl)
14776 && flag_delete_null_pointer_checks)
14777 return true;
14778
14779 /* Values passed by reference are always non-NULL. */
14780 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14781 && flag_delete_null_pointer_checks)
14782 return true;
14783
14784 fntype = TREE_TYPE (cfun->decl);
14785 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14786 {
14787 attrs = lookup_attribute ("nonnull", attrs);
14788
14789 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14790 if (attrs == NULL_TREE)
14791 return false;
14792
14793 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14794 if (TREE_VALUE (attrs) == NULL_TREE)
14795 return true;
14796
14797 /* Get the position number for ARG in the function signature. */
14798 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14799 t;
14800 t = DECL_CHAIN (t), arg_num++)
14801 {
14802 if (t == arg)
14803 break;
14804 }
14805
14806 gcc_assert (t == arg);
14807
14808 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14809 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14810 {
14811 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14812 return true;
14813 }
14814 }
14815
14816 return false;
14817 }
14818
14819 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14820 information. */
14821
14822 location_t
14823 set_block (location_t loc, tree block)
14824 {
14825 location_t pure_loc = get_pure_location (loc);
14826 source_range src_range = get_range_from_loc (line_table, loc);
14827 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14828 }
14829
14830 location_t
14831 set_source_range (tree expr, location_t start, location_t finish)
14832 {
14833 source_range src_range;
14834 src_range.m_start = start;
14835 src_range.m_finish = finish;
14836 return set_source_range (expr, src_range);
14837 }
14838
14839 location_t
14840 set_source_range (tree expr, source_range src_range)
14841 {
14842 if (!EXPR_P (expr))
14843 return UNKNOWN_LOCATION;
14844
14845 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14846 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14847 pure_loc,
14848 src_range,
14849 NULL);
14850 SET_EXPR_LOCATION (expr, adhoc);
14851 return adhoc;
14852 }
14853
14854 /* Return EXPR, potentially wrapped with a node expression LOC,
14855 if !CAN_HAVE_LOCATION_P (expr).
14856
14857 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14858 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14859
14860 Wrapper nodes can be identified using location_wrapper_p. */
14861
14862 tree
14863 maybe_wrap_with_location (tree expr, location_t loc)
14864 {
14865 if (expr == NULL)
14866 return NULL;
14867 if (loc == UNKNOWN_LOCATION)
14868 return expr;
14869 if (CAN_HAVE_LOCATION_P (expr))
14870 return expr;
14871 /* We should only be adding wrappers for constants and for decls,
14872 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14873 gcc_assert (CONSTANT_CLASS_P (expr)
14874 || DECL_P (expr)
14875 || EXCEPTIONAL_CLASS_P (expr));
14876
14877 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14878 any impact of the wrapper nodes. */
14879 if (EXCEPTIONAL_CLASS_P (expr))
14880 return expr;
14881
14882 /* If any auto_suppress_location_wrappers are active, don't create
14883 wrappers. */
14884 if (suppress_location_wrappers > 0)
14885 return expr;
14886
14887 tree_code code
14888 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14889 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14890 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14891 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14892 /* Mark this node as being a wrapper. */
14893 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14894 return wrapper;
14895 }
14896
14897 int suppress_location_wrappers;
14898
14899 /* Return the name of combined function FN, for debugging purposes. */
14900
14901 const char *
14902 combined_fn_name (combined_fn fn)
14903 {
14904 if (builtin_fn_p (fn))
14905 {
14906 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14907 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14908 }
14909 else
14910 return internal_fn_name (as_internal_fn (fn));
14911 }
14912
14913 /* Return a bitmap with a bit set corresponding to each argument in
14914 a function call type FNTYPE declared with attribute nonnull,
14915 or null if none of the function's argument are nonnull. The caller
14916 must free the bitmap. */
14917
14918 bitmap
14919 get_nonnull_args (const_tree fntype)
14920 {
14921 if (fntype == NULL_TREE)
14922 return NULL;
14923
14924 tree attrs = TYPE_ATTRIBUTES (fntype);
14925 if (!attrs)
14926 return NULL;
14927
14928 bitmap argmap = NULL;
14929
14930 /* A function declaration can specify multiple attribute nonnull,
14931 each with zero or more arguments. The loop below creates a bitmap
14932 representing a union of all the arguments. An empty (but non-null)
14933 bitmap means that all arguments have been declaraed nonnull. */
14934 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14935 {
14936 attrs = lookup_attribute ("nonnull", attrs);
14937 if (!attrs)
14938 break;
14939
14940 if (!argmap)
14941 argmap = BITMAP_ALLOC (NULL);
14942
14943 if (!TREE_VALUE (attrs))
14944 {
14945 /* Clear the bitmap in case a previous attribute nonnull
14946 set it and this one overrides it for all arguments. */
14947 bitmap_clear (argmap);
14948 return argmap;
14949 }
14950
14951 /* Iterate over the indices of the format arguments declared nonnull
14952 and set a bit for each. */
14953 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14954 {
14955 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14956 bitmap_set_bit (argmap, val);
14957 }
14958 }
14959
14960 return argmap;
14961 }
14962
14963 /* Returns true if TYPE is a type where it and all of its subobjects
14964 (recursively) are of structure, union, or array type. */
14965
14966 static bool
14967 default_is_empty_type (tree type)
14968 {
14969 if (RECORD_OR_UNION_TYPE_P (type))
14970 {
14971 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14972 if (TREE_CODE (field) == FIELD_DECL
14973 && !DECL_PADDING_P (field)
14974 && !default_is_empty_type (TREE_TYPE (field)))
14975 return false;
14976 return true;
14977 }
14978 else if (TREE_CODE (type) == ARRAY_TYPE)
14979 return (integer_minus_onep (array_type_nelts (type))
14980 || TYPE_DOMAIN (type) == NULL_TREE
14981 || default_is_empty_type (TREE_TYPE (type)));
14982 return false;
14983 }
14984
14985 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14986 that shouldn't be passed via stack. */
14987
14988 bool
14989 default_is_empty_record (const_tree type)
14990 {
14991 if (!abi_version_at_least (12))
14992 return false;
14993
14994 if (type == error_mark_node)
14995 return false;
14996
14997 if (TREE_ADDRESSABLE (type))
14998 return false;
14999
15000 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
15001 }
15002
15003 /* Determine whether TYPE is a structure with a flexible array member,
15004 or a union containing such a structure (possibly recursively). */
15005
15006 bool
15007 flexible_array_type_p (const_tree type)
15008 {
15009 tree x, last;
15010 switch (TREE_CODE (type))
15011 {
15012 case RECORD_TYPE:
15013 last = NULL_TREE;
15014 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
15015 if (TREE_CODE (x) == FIELD_DECL)
15016 last = x;
15017 if (last == NULL_TREE)
15018 return false;
15019 if (TREE_CODE (TREE_TYPE (last)) == ARRAY_TYPE
15020 && TYPE_SIZE (TREE_TYPE (last)) == NULL_TREE
15021 && TYPE_DOMAIN (TREE_TYPE (last)) != NULL_TREE
15022 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (last))) == NULL_TREE)
15023 return true;
15024 return false;
15025 case UNION_TYPE:
15026 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
15027 {
15028 if (TREE_CODE (x) == FIELD_DECL
15029 && flexible_array_type_p (TREE_TYPE (x)))
15030 return true;
15031 }
15032 return false;
15033 default:
15034 return false;
15035 }
15036 }
15037
15038 /* Like int_size_in_bytes, but handle empty records specially. */
15039
15040 HOST_WIDE_INT
15041 arg_int_size_in_bytes (const_tree type)
15042 {
15043 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
15044 }
15045
15046 /* Like size_in_bytes, but handle empty records specially. */
15047
15048 tree
15049 arg_size_in_bytes (const_tree type)
15050 {
15051 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
15052 }
15053
15054 /* Return true if an expression with CODE has to have the same result type as
15055 its first operand. */
15056
15057 bool
15058 expr_type_first_operand_type_p (tree_code code)
15059 {
15060 switch (code)
15061 {
15062 case NEGATE_EXPR:
15063 case ABS_EXPR:
15064 case BIT_NOT_EXPR:
15065 case PAREN_EXPR:
15066 case CONJ_EXPR:
15067
15068 case PLUS_EXPR:
15069 case MINUS_EXPR:
15070 case MULT_EXPR:
15071 case TRUNC_DIV_EXPR:
15072 case CEIL_DIV_EXPR:
15073 case FLOOR_DIV_EXPR:
15074 case ROUND_DIV_EXPR:
15075 case TRUNC_MOD_EXPR:
15076 case CEIL_MOD_EXPR:
15077 case FLOOR_MOD_EXPR:
15078 case ROUND_MOD_EXPR:
15079 case RDIV_EXPR:
15080 case EXACT_DIV_EXPR:
15081 case MIN_EXPR:
15082 case MAX_EXPR:
15083 case BIT_IOR_EXPR:
15084 case BIT_XOR_EXPR:
15085 case BIT_AND_EXPR:
15086
15087 case LSHIFT_EXPR:
15088 case RSHIFT_EXPR:
15089 case LROTATE_EXPR:
15090 case RROTATE_EXPR:
15091 return true;
15092
15093 default:
15094 return false;
15095 }
15096 }
15097
15098 /* Return a typenode for the "standard" C type with a given name. */
15099 tree
15100 get_typenode_from_name (const char *name)
15101 {
15102 if (name == NULL || *name == '\0')
15103 return NULL_TREE;
15104
15105 if (strcmp (name, "char") == 0)
15106 return char_type_node;
15107 if (strcmp (name, "unsigned char") == 0)
15108 return unsigned_char_type_node;
15109 if (strcmp (name, "signed char") == 0)
15110 return signed_char_type_node;
15111
15112 if (strcmp (name, "short int") == 0)
15113 return short_integer_type_node;
15114 if (strcmp (name, "short unsigned int") == 0)
15115 return short_unsigned_type_node;
15116
15117 if (strcmp (name, "int") == 0)
15118 return integer_type_node;
15119 if (strcmp (name, "unsigned int") == 0)
15120 return unsigned_type_node;
15121
15122 if (strcmp (name, "long int") == 0)
15123 return long_integer_type_node;
15124 if (strcmp (name, "long unsigned int") == 0)
15125 return long_unsigned_type_node;
15126
15127 if (strcmp (name, "long long int") == 0)
15128 return long_long_integer_type_node;
15129 if (strcmp (name, "long long unsigned int") == 0)
15130 return long_long_unsigned_type_node;
15131
15132 gcc_unreachable ();
15133 }
15134
15135 /* List of pointer types used to declare builtins before we have seen their
15136 real declaration.
15137
15138 Keep the size up to date in tree.h ! */
15139 const builtin_structptr_type builtin_structptr_types[6] =
15140 {
15141 { fileptr_type_node, ptr_type_node, "FILE" },
15142 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
15143 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
15144 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
15145 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
15146 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
15147 };
15148
15149 /* Return the maximum object size. */
15150
15151 tree
15152 max_object_size (void)
15153 {
15154 /* To do: Make this a configurable parameter. */
15155 return TYPE_MAX_VALUE (ptrdiff_type_node);
15156 }
15157
15158 /* A wrapper around TARGET_VERIFY_TYPE_CONTEXT that makes the silent_p
15159 parameter default to false and that weeds out error_mark_node. */
15160
15161 bool
15162 verify_type_context (location_t loc, type_context_kind context,
15163 const_tree type, bool silent_p)
15164 {
15165 if (type == error_mark_node)
15166 return true;
15167
15168 gcc_assert (TYPE_P (type));
15169 return (!targetm.verify_type_context
15170 || targetm.verify_type_context (loc, context, type, silent_p));
15171 }
15172
15173 #if CHECKING_P
15174
15175 namespace selftest {
15176
15177 /* Selftests for tree. */
15178
15179 /* Verify that integer constants are sane. */
15180
15181 static void
15182 test_integer_constants ()
15183 {
15184 ASSERT_TRUE (integer_type_node != NULL);
15185 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
15186
15187 tree type = integer_type_node;
15188
15189 tree zero = build_zero_cst (type);
15190 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
15191 ASSERT_EQ (type, TREE_TYPE (zero));
15192
15193 tree one = build_int_cst (type, 1);
15194 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
15195 ASSERT_EQ (type, TREE_TYPE (zero));
15196 }
15197
15198 /* Verify identifiers. */
15199
15200 static void
15201 test_identifiers ()
15202 {
15203 tree identifier = get_identifier ("foo");
15204 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
15205 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
15206 }
15207
15208 /* Verify LABEL_DECL. */
15209
15210 static void
15211 test_labels ()
15212 {
15213 tree identifier = get_identifier ("err");
15214 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
15215 identifier, void_type_node);
15216 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
15217 ASSERT_FALSE (FORCED_LABEL (label_decl));
15218 }
15219
15220 /* Return a new VECTOR_CST node whose type is TYPE and whose values
15221 are given by VALS. */
15222
15223 static tree
15224 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
15225 {
15226 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
15227 tree_vector_builder builder (type, vals.length (), 1);
15228 builder.splice (vals);
15229 return builder.build ();
15230 }
15231
15232 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
15233
15234 static void
15235 check_vector_cst (vec<tree> expected, tree actual)
15236 {
15237 ASSERT_KNOWN_EQ (expected.length (),
15238 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
15239 for (unsigned int i = 0; i < expected.length (); ++i)
15240 ASSERT_EQ (wi::to_wide (expected[i]),
15241 wi::to_wide (vector_cst_elt (actual, i)));
15242 }
15243
15244 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
15245 and that its elements match EXPECTED. */
15246
15247 static void
15248 check_vector_cst_duplicate (vec<tree> expected, tree actual,
15249 unsigned int npatterns)
15250 {
15251 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15252 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
15253 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
15254 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
15255 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15256 check_vector_cst (expected, actual);
15257 }
15258
15259 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
15260 and NPATTERNS background elements, and that its elements match
15261 EXPECTED. */
15262
15263 static void
15264 check_vector_cst_fill (vec<tree> expected, tree actual,
15265 unsigned int npatterns)
15266 {
15267 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15268 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
15269 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
15270 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15271 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15272 check_vector_cst (expected, actual);
15273 }
15274
15275 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
15276 and that its elements match EXPECTED. */
15277
15278 static void
15279 check_vector_cst_stepped (vec<tree> expected, tree actual,
15280 unsigned int npatterns)
15281 {
15282 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15283 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
15284 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
15285 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15286 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
15287 check_vector_cst (expected, actual);
15288 }
15289
15290 /* Test the creation of VECTOR_CSTs. */
15291
15292 static void
15293 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
15294 {
15295 auto_vec<tree, 8> elements (8);
15296 elements.quick_grow (8);
15297 tree element_type = build_nonstandard_integer_type (16, true);
15298 tree vector_type = build_vector_type (element_type, 8);
15299
15300 /* Test a simple linear series with a base of 0 and a step of 1:
15301 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
15302 for (unsigned int i = 0; i < 8; ++i)
15303 elements[i] = build_int_cst (element_type, i);
15304 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
15305 check_vector_cst_stepped (elements, vector, 1);
15306
15307 /* Try the same with the first element replaced by 100:
15308 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
15309 elements[0] = build_int_cst (element_type, 100);
15310 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15311 check_vector_cst_stepped (elements, vector, 1);
15312
15313 /* Try a series that wraps around.
15314 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
15315 for (unsigned int i = 1; i < 8; ++i)
15316 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
15317 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15318 check_vector_cst_stepped (elements, vector, 1);
15319
15320 /* Try a downward series:
15321 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
15322 for (unsigned int i = 1; i < 8; ++i)
15323 elements[i] = build_int_cst (element_type, 80 - i);
15324 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15325 check_vector_cst_stepped (elements, vector, 1);
15326
15327 /* Try two interleaved series with different bases and steps:
15328 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
15329 elements[1] = build_int_cst (element_type, 53);
15330 for (unsigned int i = 2; i < 8; i += 2)
15331 {
15332 elements[i] = build_int_cst (element_type, 70 - i * 2);
15333 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
15334 }
15335 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15336 check_vector_cst_stepped (elements, vector, 2);
15337
15338 /* Try a duplicated value:
15339 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
15340 for (unsigned int i = 1; i < 8; ++i)
15341 elements[i] = elements[0];
15342 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15343 check_vector_cst_duplicate (elements, vector, 1);
15344
15345 /* Try an interleaved duplicated value:
15346 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
15347 elements[1] = build_int_cst (element_type, 55);
15348 for (unsigned int i = 2; i < 8; ++i)
15349 elements[i] = elements[i - 2];
15350 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15351 check_vector_cst_duplicate (elements, vector, 2);
15352
15353 /* Try a duplicated value with 2 exceptions
15354 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
15355 elements[0] = build_int_cst (element_type, 41);
15356 elements[1] = build_int_cst (element_type, 97);
15357 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15358 check_vector_cst_fill (elements, vector, 2);
15359
15360 /* Try with and without a step
15361 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
15362 for (unsigned int i = 3; i < 8; i += 2)
15363 elements[i] = build_int_cst (element_type, i * 7);
15364 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15365 check_vector_cst_stepped (elements, vector, 2);
15366
15367 /* Try a fully-general constant:
15368 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
15369 elements[5] = build_int_cst (element_type, 9990);
15370 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15371 check_vector_cst_fill (elements, vector, 4);
15372 }
15373
15374 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
15375 Helper function for test_location_wrappers, to deal with STRIP_NOPS
15376 modifying its argument in-place. */
15377
15378 static void
15379 check_strip_nops (tree node, tree expected)
15380 {
15381 STRIP_NOPS (node);
15382 ASSERT_EQ (expected, node);
15383 }
15384
15385 /* Verify location wrappers. */
15386
15387 static void
15388 test_location_wrappers ()
15389 {
15390 location_t loc = BUILTINS_LOCATION;
15391
15392 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
15393
15394 /* Wrapping a constant. */
15395 tree int_cst = build_int_cst (integer_type_node, 42);
15396 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
15397 ASSERT_FALSE (location_wrapper_p (int_cst));
15398
15399 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
15400 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
15401 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
15402 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
15403
15404 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
15405 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
15406
15407 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
15408 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
15409 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
15410 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
15411
15412 /* Wrapping a STRING_CST. */
15413 tree string_cst = build_string (4, "foo");
15414 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
15415 ASSERT_FALSE (location_wrapper_p (string_cst));
15416
15417 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
15418 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
15419 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
15420 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
15421 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
15422
15423
15424 /* Wrapping a variable. */
15425 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
15426 get_identifier ("some_int_var"),
15427 integer_type_node);
15428 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
15429 ASSERT_FALSE (location_wrapper_p (int_var));
15430
15431 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
15432 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
15433 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
15434 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
15435
15436 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
15437 wrapper. */
15438 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
15439 ASSERT_FALSE (location_wrapper_p (r_cast));
15440 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
15441
15442 /* Verify that STRIP_NOPS removes wrappers. */
15443 check_strip_nops (wrapped_int_cst, int_cst);
15444 check_strip_nops (wrapped_string_cst, string_cst);
15445 check_strip_nops (wrapped_int_var, int_var);
15446 }
15447
15448 /* Test various tree predicates. Verify that location wrappers don't
15449 affect the results. */
15450
15451 static void
15452 test_predicates ()
15453 {
15454 /* Build various constants and wrappers around them. */
15455
15456 location_t loc = BUILTINS_LOCATION;
15457
15458 tree i_0 = build_int_cst (integer_type_node, 0);
15459 tree wr_i_0 = maybe_wrap_with_location (i_0, loc);
15460
15461 tree i_1 = build_int_cst (integer_type_node, 1);
15462 tree wr_i_1 = maybe_wrap_with_location (i_1, loc);
15463
15464 tree i_m1 = build_int_cst (integer_type_node, -1);
15465 tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);
15466
15467 tree f_0 = build_real_from_int_cst (float_type_node, i_0);
15468 tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
15469 tree f_1 = build_real_from_int_cst (float_type_node, i_1);
15470 tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
15471 tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
15472 tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);
15473
15474 tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
15475 tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
15476 tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);
15477
15478 tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
15479 tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
15480 tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);
15481
15482 /* TODO: vector constants. */
15483
15484 /* Test integer_onep. */
15485 ASSERT_FALSE (integer_onep (i_0));
15486 ASSERT_FALSE (integer_onep (wr_i_0));
15487 ASSERT_TRUE (integer_onep (i_1));
15488 ASSERT_TRUE (integer_onep (wr_i_1));
15489 ASSERT_FALSE (integer_onep (i_m1));
15490 ASSERT_FALSE (integer_onep (wr_i_m1));
15491 ASSERT_FALSE (integer_onep (f_0));
15492 ASSERT_FALSE (integer_onep (wr_f_0));
15493 ASSERT_FALSE (integer_onep (f_1));
15494 ASSERT_FALSE (integer_onep (wr_f_1));
15495 ASSERT_FALSE (integer_onep (f_m1));
15496 ASSERT_FALSE (integer_onep (wr_f_m1));
15497 ASSERT_FALSE (integer_onep (c_i_0));
15498 ASSERT_TRUE (integer_onep (c_i_1));
15499 ASSERT_FALSE (integer_onep (c_i_m1));
15500 ASSERT_FALSE (integer_onep (c_f_0));
15501 ASSERT_FALSE (integer_onep (c_f_1));
15502 ASSERT_FALSE (integer_onep (c_f_m1));
15503
15504 /* Test integer_zerop. */
15505 ASSERT_TRUE (integer_zerop (i_0));
15506 ASSERT_TRUE (integer_zerop (wr_i_0));
15507 ASSERT_FALSE (integer_zerop (i_1));
15508 ASSERT_FALSE (integer_zerop (wr_i_1));
15509 ASSERT_FALSE (integer_zerop (i_m1));
15510 ASSERT_FALSE (integer_zerop (wr_i_m1));
15511 ASSERT_FALSE (integer_zerop (f_0));
15512 ASSERT_FALSE (integer_zerop (wr_f_0));
15513 ASSERT_FALSE (integer_zerop (f_1));
15514 ASSERT_FALSE (integer_zerop (wr_f_1));
15515 ASSERT_FALSE (integer_zerop (f_m1));
15516 ASSERT_FALSE (integer_zerop (wr_f_m1));
15517 ASSERT_TRUE (integer_zerop (c_i_0));
15518 ASSERT_FALSE (integer_zerop (c_i_1));
15519 ASSERT_FALSE (integer_zerop (c_i_m1));
15520 ASSERT_FALSE (integer_zerop (c_f_0));
15521 ASSERT_FALSE (integer_zerop (c_f_1));
15522 ASSERT_FALSE (integer_zerop (c_f_m1));
15523
15524 /* Test integer_all_onesp. */
15525 ASSERT_FALSE (integer_all_onesp (i_0));
15526 ASSERT_FALSE (integer_all_onesp (wr_i_0));
15527 ASSERT_FALSE (integer_all_onesp (i_1));
15528 ASSERT_FALSE (integer_all_onesp (wr_i_1));
15529 ASSERT_TRUE (integer_all_onesp (i_m1));
15530 ASSERT_TRUE (integer_all_onesp (wr_i_m1));
15531 ASSERT_FALSE (integer_all_onesp (f_0));
15532 ASSERT_FALSE (integer_all_onesp (wr_f_0));
15533 ASSERT_FALSE (integer_all_onesp (f_1));
15534 ASSERT_FALSE (integer_all_onesp (wr_f_1));
15535 ASSERT_FALSE (integer_all_onesp (f_m1));
15536 ASSERT_FALSE (integer_all_onesp (wr_f_m1));
15537 ASSERT_FALSE (integer_all_onesp (c_i_0));
15538 ASSERT_FALSE (integer_all_onesp (c_i_1));
15539 ASSERT_FALSE (integer_all_onesp (c_i_m1));
15540 ASSERT_FALSE (integer_all_onesp (c_f_0));
15541 ASSERT_FALSE (integer_all_onesp (c_f_1));
15542 ASSERT_FALSE (integer_all_onesp (c_f_m1));
15543
15544 /* Test integer_minus_onep. */
15545 ASSERT_FALSE (integer_minus_onep (i_0));
15546 ASSERT_FALSE (integer_minus_onep (wr_i_0));
15547 ASSERT_FALSE (integer_minus_onep (i_1));
15548 ASSERT_FALSE (integer_minus_onep (wr_i_1));
15549 ASSERT_TRUE (integer_minus_onep (i_m1));
15550 ASSERT_TRUE (integer_minus_onep (wr_i_m1));
15551 ASSERT_FALSE (integer_minus_onep (f_0));
15552 ASSERT_FALSE (integer_minus_onep (wr_f_0));
15553 ASSERT_FALSE (integer_minus_onep (f_1));
15554 ASSERT_FALSE (integer_minus_onep (wr_f_1));
15555 ASSERT_FALSE (integer_minus_onep (f_m1));
15556 ASSERT_FALSE (integer_minus_onep (wr_f_m1));
15557 ASSERT_FALSE (integer_minus_onep (c_i_0));
15558 ASSERT_FALSE (integer_minus_onep (c_i_1));
15559 ASSERT_TRUE (integer_minus_onep (c_i_m1));
15560 ASSERT_FALSE (integer_minus_onep (c_f_0));
15561 ASSERT_FALSE (integer_minus_onep (c_f_1));
15562 ASSERT_FALSE (integer_minus_onep (c_f_m1));
15563
15564 /* Test integer_each_onep. */
15565 ASSERT_FALSE (integer_each_onep (i_0));
15566 ASSERT_FALSE (integer_each_onep (wr_i_0));
15567 ASSERT_TRUE (integer_each_onep (i_1));
15568 ASSERT_TRUE (integer_each_onep (wr_i_1));
15569 ASSERT_FALSE (integer_each_onep (i_m1));
15570 ASSERT_FALSE (integer_each_onep (wr_i_m1));
15571 ASSERT_FALSE (integer_each_onep (f_0));
15572 ASSERT_FALSE (integer_each_onep (wr_f_0));
15573 ASSERT_FALSE (integer_each_onep (f_1));
15574 ASSERT_FALSE (integer_each_onep (wr_f_1));
15575 ASSERT_FALSE (integer_each_onep (f_m1));
15576 ASSERT_FALSE (integer_each_onep (wr_f_m1));
15577 ASSERT_FALSE (integer_each_onep (c_i_0));
15578 ASSERT_FALSE (integer_each_onep (c_i_1));
15579 ASSERT_FALSE (integer_each_onep (c_i_m1));
15580 ASSERT_FALSE (integer_each_onep (c_f_0));
15581 ASSERT_FALSE (integer_each_onep (c_f_1));
15582 ASSERT_FALSE (integer_each_onep (c_f_m1));
15583
15584 /* Test integer_truep. */
15585 ASSERT_FALSE (integer_truep (i_0));
15586 ASSERT_FALSE (integer_truep (wr_i_0));
15587 ASSERT_TRUE (integer_truep (i_1));
15588 ASSERT_TRUE (integer_truep (wr_i_1));
15589 ASSERT_FALSE (integer_truep (i_m1));
15590 ASSERT_FALSE (integer_truep (wr_i_m1));
15591 ASSERT_FALSE (integer_truep (f_0));
15592 ASSERT_FALSE (integer_truep (wr_f_0));
15593 ASSERT_FALSE (integer_truep (f_1));
15594 ASSERT_FALSE (integer_truep (wr_f_1));
15595 ASSERT_FALSE (integer_truep (f_m1));
15596 ASSERT_FALSE (integer_truep (wr_f_m1));
15597 ASSERT_FALSE (integer_truep (c_i_0));
15598 ASSERT_TRUE (integer_truep (c_i_1));
15599 ASSERT_FALSE (integer_truep (c_i_m1));
15600 ASSERT_FALSE (integer_truep (c_f_0));
15601 ASSERT_FALSE (integer_truep (c_f_1));
15602 ASSERT_FALSE (integer_truep (c_f_m1));
15603
15604 /* Test integer_nonzerop. */
15605 ASSERT_FALSE (integer_nonzerop (i_0));
15606 ASSERT_FALSE (integer_nonzerop (wr_i_0));
15607 ASSERT_TRUE (integer_nonzerop (i_1));
15608 ASSERT_TRUE (integer_nonzerop (wr_i_1));
15609 ASSERT_TRUE (integer_nonzerop (i_m1));
15610 ASSERT_TRUE (integer_nonzerop (wr_i_m1));
15611 ASSERT_FALSE (integer_nonzerop (f_0));
15612 ASSERT_FALSE (integer_nonzerop (wr_f_0));
15613 ASSERT_FALSE (integer_nonzerop (f_1));
15614 ASSERT_FALSE (integer_nonzerop (wr_f_1));
15615 ASSERT_FALSE (integer_nonzerop (f_m1));
15616 ASSERT_FALSE (integer_nonzerop (wr_f_m1));
15617 ASSERT_FALSE (integer_nonzerop (c_i_0));
15618 ASSERT_TRUE (integer_nonzerop (c_i_1));
15619 ASSERT_TRUE (integer_nonzerop (c_i_m1));
15620 ASSERT_FALSE (integer_nonzerop (c_f_0));
15621 ASSERT_FALSE (integer_nonzerop (c_f_1));
15622 ASSERT_FALSE (integer_nonzerop (c_f_m1));
15623
15624 /* Test real_zerop. */
15625 ASSERT_FALSE (real_zerop (i_0));
15626 ASSERT_FALSE (real_zerop (wr_i_0));
15627 ASSERT_FALSE (real_zerop (i_1));
15628 ASSERT_FALSE (real_zerop (wr_i_1));
15629 ASSERT_FALSE (real_zerop (i_m1));
15630 ASSERT_FALSE (real_zerop (wr_i_m1));
15631 ASSERT_TRUE (real_zerop (f_0));
15632 ASSERT_TRUE (real_zerop (wr_f_0));
15633 ASSERT_FALSE (real_zerop (f_1));
15634 ASSERT_FALSE (real_zerop (wr_f_1));
15635 ASSERT_FALSE (real_zerop (f_m1));
15636 ASSERT_FALSE (real_zerop (wr_f_m1));
15637 ASSERT_FALSE (real_zerop (c_i_0));
15638 ASSERT_FALSE (real_zerop (c_i_1));
15639 ASSERT_FALSE (real_zerop (c_i_m1));
15640 ASSERT_TRUE (real_zerop (c_f_0));
15641 ASSERT_FALSE (real_zerop (c_f_1));
15642 ASSERT_FALSE (real_zerop (c_f_m1));
15643
15644 /* Test real_onep. */
15645 ASSERT_FALSE (real_onep (i_0));
15646 ASSERT_FALSE (real_onep (wr_i_0));
15647 ASSERT_FALSE (real_onep (i_1));
15648 ASSERT_FALSE (real_onep (wr_i_1));
15649 ASSERT_FALSE (real_onep (i_m1));
15650 ASSERT_FALSE (real_onep (wr_i_m1));
15651 ASSERT_FALSE (real_onep (f_0));
15652 ASSERT_FALSE (real_onep (wr_f_0));
15653 ASSERT_TRUE (real_onep (f_1));
15654 ASSERT_TRUE (real_onep (wr_f_1));
15655 ASSERT_FALSE (real_onep (f_m1));
15656 ASSERT_FALSE (real_onep (wr_f_m1));
15657 ASSERT_FALSE (real_onep (c_i_0));
15658 ASSERT_FALSE (real_onep (c_i_1));
15659 ASSERT_FALSE (real_onep (c_i_m1));
15660 ASSERT_FALSE (real_onep (c_f_0));
15661 ASSERT_TRUE (real_onep (c_f_1));
15662 ASSERT_FALSE (real_onep (c_f_m1));
15663
15664 /* Test real_minus_onep. */
15665 ASSERT_FALSE (real_minus_onep (i_0));
15666 ASSERT_FALSE (real_minus_onep (wr_i_0));
15667 ASSERT_FALSE (real_minus_onep (i_1));
15668 ASSERT_FALSE (real_minus_onep (wr_i_1));
15669 ASSERT_FALSE (real_minus_onep (i_m1));
15670 ASSERT_FALSE (real_minus_onep (wr_i_m1));
15671 ASSERT_FALSE (real_minus_onep (f_0));
15672 ASSERT_FALSE (real_minus_onep (wr_f_0));
15673 ASSERT_FALSE (real_minus_onep (f_1));
15674 ASSERT_FALSE (real_minus_onep (wr_f_1));
15675 ASSERT_TRUE (real_minus_onep (f_m1));
15676 ASSERT_TRUE (real_minus_onep (wr_f_m1));
15677 ASSERT_FALSE (real_minus_onep (c_i_0));
15678 ASSERT_FALSE (real_minus_onep (c_i_1));
15679 ASSERT_FALSE (real_minus_onep (c_i_m1));
15680 ASSERT_FALSE (real_minus_onep (c_f_0));
15681 ASSERT_FALSE (real_minus_onep (c_f_1));
15682 ASSERT_TRUE (real_minus_onep (c_f_m1));
15683
15684 /* Test zerop. */
15685 ASSERT_TRUE (zerop (i_0));
15686 ASSERT_TRUE (zerop (wr_i_0));
15687 ASSERT_FALSE (zerop (i_1));
15688 ASSERT_FALSE (zerop (wr_i_1));
15689 ASSERT_FALSE (zerop (i_m1));
15690 ASSERT_FALSE (zerop (wr_i_m1));
15691 ASSERT_TRUE (zerop (f_0));
15692 ASSERT_TRUE (zerop (wr_f_0));
15693 ASSERT_FALSE (zerop (f_1));
15694 ASSERT_FALSE (zerop (wr_f_1));
15695 ASSERT_FALSE (zerop (f_m1));
15696 ASSERT_FALSE (zerop (wr_f_m1));
15697 ASSERT_TRUE (zerop (c_i_0));
15698 ASSERT_FALSE (zerop (c_i_1));
15699 ASSERT_FALSE (zerop (c_i_m1));
15700 ASSERT_TRUE (zerop (c_f_0));
15701 ASSERT_FALSE (zerop (c_f_1));
15702 ASSERT_FALSE (zerop (c_f_m1));
15703
15704 /* Test tree_expr_nonnegative_p. */
15705 ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
15706 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
15707 ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
15708 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
15709 ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
15710 ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
15711 ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
15712 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
15713 ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
15714 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
15715 ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
15716 ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
15717 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
15718 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
15719 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
15720 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
15721 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
15722 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));
15723
15724 /* Test tree_expr_nonzero_p. */
15725 ASSERT_FALSE (tree_expr_nonzero_p (i_0));
15726 ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
15727 ASSERT_TRUE (tree_expr_nonzero_p (i_1));
15728 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
15729 ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
15730 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));
15731
15732 /* Test integer_valued_real_p. */
15733 ASSERT_FALSE (integer_valued_real_p (i_0));
15734 ASSERT_TRUE (integer_valued_real_p (f_0));
15735 ASSERT_TRUE (integer_valued_real_p (wr_f_0));
15736 ASSERT_TRUE (integer_valued_real_p (f_1));
15737 ASSERT_TRUE (integer_valued_real_p (wr_f_1));
15738
15739 /* Test integer_pow2p. */
15740 ASSERT_FALSE (integer_pow2p (i_0));
15741 ASSERT_TRUE (integer_pow2p (i_1));
15742 ASSERT_TRUE (integer_pow2p (wr_i_1));
15743
15744 /* Test uniform_integer_cst_p. */
15745 ASSERT_TRUE (uniform_integer_cst_p (i_0));
15746 ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
15747 ASSERT_TRUE (uniform_integer_cst_p (i_1));
15748 ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
15749 ASSERT_TRUE (uniform_integer_cst_p (i_m1));
15750 ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
15751 ASSERT_FALSE (uniform_integer_cst_p (f_0));
15752 ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
15753 ASSERT_FALSE (uniform_integer_cst_p (f_1));
15754 ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
15755 ASSERT_FALSE (uniform_integer_cst_p (f_m1));
15756 ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
15757 ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
15758 ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
15759 ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
15760 ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
15761 ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
15762 ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
15763 }
15764
15765 /* Check that string escaping works correctly. */
15766
15767 static void
15768 test_escaped_strings (void)
15769 {
15770 int saved_cutoff;
15771 escaped_string msg;
15772
15773 msg.escape (NULL);
15774 /* ASSERT_STREQ does not accept NULL as a valid test
15775 result, so we have to use ASSERT_EQ instead. */
15776 ASSERT_EQ (NULL, (const char *) msg);
15777
15778 msg.escape ("");
15779 ASSERT_STREQ ("", (const char *) msg);
15780
15781 msg.escape ("foobar");
15782 ASSERT_STREQ ("foobar", (const char *) msg);
15783
15784 /* Ensure that we have -fmessage-length set to 0. */
15785 saved_cutoff = pp_line_cutoff (global_dc->printer);
15786 pp_line_cutoff (global_dc->printer) = 0;
15787
15788 msg.escape ("foo\nbar");
15789 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
15790
15791 msg.escape ("\a\b\f\n\r\t\v");
15792 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
15793
15794 /* Now repeat the tests with -fmessage-length set to 5. */
15795 pp_line_cutoff (global_dc->printer) = 5;
15796
15797 /* Note that the newline is not translated into an escape. */
15798 msg.escape ("foo\nbar");
15799 ASSERT_STREQ ("foo\nbar", (const char *) msg);
15800
15801 msg.escape ("\a\b\f\n\r\t\v");
15802 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
15803
15804 /* Restore the original message length setting. */
15805 pp_line_cutoff (global_dc->printer) = saved_cutoff;
15806 }
15807
15808 /* Run all of the selftests within this file. */
15809
15810 void
15811 tree_c_tests ()
15812 {
15813 test_integer_constants ();
15814 test_identifiers ();
15815 test_labels ();
15816 test_vector_cst_patterns ();
15817 test_location_wrappers ();
15818 test_predicates ();
15819 test_escaped_strings ();
15820 }
15821
15822 } // namespace selftest
15823
15824 #endif /* CHECKING_P */
15825
15826 #include "gt-tree.h"