c-common.c (c_common_type_for_mode): Build vector types on demand.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack *h, void *obj);
51
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
54
55 int tree_node_counts[(int) all_kinds];
56 int tree_node_sizes[(int) all_kinds];
57
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names[] = {
60 "decls",
61 "types",
62 "blocks",
63 "stmts",
64 "refs",
65 "exprs",
66 "constants",
67 "identifiers",
68 "perm_tree_lists",
69 "temp_tree_lists",
70 "vecs",
71 "random kinds",
72 "lang_decl kinds",
73 "lang_type kinds"
74 };
75 #endif /* GATHER_STATISTICS */
76
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid = 1;
81
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
84
85 struct type_hash GTY(())
86 {
87 unsigned long hash;
88 tree type;
89 };
90
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
93
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
100
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
102 htab_t type_hash_table;
103
104 static void set_type_quals (tree, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree);
109 static int type_hash_marked_p (const void *);
110 static unsigned int type_hash_list (tree, hashval_t);
111 static unsigned int attribute_hash_list (tree, hashval_t);
112
113 tree global_trees[TI_MAX];
114 tree integer_types[itk_none];
115 \f
116 /* Init tree.c. */
117
118 void
119 init_ttree (void)
120 {
121 /* Initialize the hash table of types. */
122 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
123 type_hash_eq, 0);
124 }
125
126 \f
127 /* The name of the object as the assembler will see it (but before any
128 translations made by ASM_OUTPUT_LABELREF). Often this is the same
129 as DECL_NAME. It is an IDENTIFIER_NODE. */
130 tree
131 decl_assembler_name (tree decl)
132 {
133 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
134 lang_hooks.set_decl_assembler_name (decl);
135 return DECL_CHECK (decl)->decl.assembler_name;
136 }
137
138 /* Compute the number of bytes occupied by 'node'. This routine only
139 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
140 size_t
141 tree_size (tree node)
142 {
143 enum tree_code code = TREE_CODE (node);
144
145 switch (TREE_CODE_CLASS (code))
146 {
147 case 'd': /* A decl node */
148 return sizeof (struct tree_decl);
149
150 case 't': /* a type node */
151 return sizeof (struct tree_type);
152
153 case 'b': /* a lexical block node */
154 return sizeof (struct tree_block);
155
156 case 'r': /* a reference */
157 case 'e': /* an expression */
158 case 's': /* an expression with side effects */
159 case '<': /* a comparison expression */
160 case '1': /* a unary arithmetic expression */
161 case '2': /* a binary arithmetic expression */
162 return (sizeof (struct tree_exp)
163 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
164
165 case 'c': /* a constant */
166 switch (code)
167 {
168 case INTEGER_CST: return sizeof (struct tree_int_cst);
169 case REAL_CST: return sizeof (struct tree_real_cst);
170 case COMPLEX_CST: return sizeof (struct tree_complex);
171 case VECTOR_CST: return sizeof (struct tree_vector);
172 case STRING_CST: return sizeof (struct tree_string);
173 default:
174 return lang_hooks.tree_size (code);
175 }
176
177 case 'x': /* something random, like an identifier. */
178 switch (code)
179 {
180 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
181 case TREE_LIST: return sizeof (struct tree_list);
182 case TREE_VEC: return (sizeof (struct tree_vec)
183 + TREE_VEC_LENGTH(node) * sizeof(char *)
184 - sizeof (char *));
185
186 case ERROR_MARK:
187 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
188
189 default:
190 return lang_hooks.tree_size (code);
191 }
192
193 default:
194 abort ();
195 }
196 }
197
198 /* Return a newly allocated node of code CODE.
199 For decl and type nodes, some other fields are initialized.
200 The rest of the node is initialized to zero.
201
202 Achoo! I got a code in the node. */
203
204 tree
205 make_node_stat (enum tree_code code MEM_STAT_DECL)
206 {
207 tree t;
208 int type = TREE_CODE_CLASS (code);
209 size_t length;
210 #ifdef GATHER_STATISTICS
211 tree_node_kind kind;
212 #endif
213 struct tree_common ttmp;
214
215 /* We can't allocate a TREE_VEC without knowing how many elements
216 it will have. */
217 if (code == TREE_VEC)
218 abort ();
219
220 TREE_SET_CODE ((tree)&ttmp, code);
221 length = tree_size ((tree)&ttmp);
222
223 #ifdef GATHER_STATISTICS
224 switch (type)
225 {
226 case 'd': /* A decl node */
227 kind = d_kind;
228 break;
229
230 case 't': /* a type node */
231 kind = t_kind;
232 break;
233
234 case 'b': /* a lexical block */
235 kind = b_kind;
236 break;
237
238 case 's': /* an expression with side effects */
239 kind = s_kind;
240 break;
241
242 case 'r': /* a reference */
243 kind = r_kind;
244 break;
245
246 case 'e': /* an expression */
247 case '<': /* a comparison expression */
248 case '1': /* a unary arithmetic expression */
249 case '2': /* a binary arithmetic expression */
250 kind = e_kind;
251 break;
252
253 case 'c': /* a constant */
254 kind = c_kind;
255 break;
256
257 case 'x': /* something random, like an identifier. */
258 if (code == IDENTIFIER_NODE)
259 kind = id_kind;
260 else if (code == TREE_VEC)
261 kind = vec_kind;
262 else
263 kind = x_kind;
264 break;
265
266 default:
267 abort ();
268 }
269
270 tree_node_counts[(int) kind]++;
271 tree_node_sizes[(int) kind] += length;
272 #endif
273
274 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
275
276 memset (t, 0, length);
277
278 TREE_SET_CODE (t, code);
279
280 switch (type)
281 {
282 case 's':
283 TREE_SIDE_EFFECTS (t) = 1;
284 break;
285
286 case 'd':
287 if (code != FUNCTION_DECL)
288 DECL_ALIGN (t) = 1;
289 DECL_USER_ALIGN (t) = 0;
290 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
291 DECL_SOURCE_LOCATION (t) = input_location;
292 DECL_UID (t) = next_decl_uid++;
293
294 /* We have not yet computed the alias set for this declaration. */
295 DECL_POINTER_ALIAS_SET (t) = -1;
296 break;
297
298 case 't':
299 TYPE_UID (t) = next_type_uid++;
300 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
301 TYPE_USER_ALIGN (t) = 0;
302 TYPE_MAIN_VARIANT (t) = t;
303
304 /* Default to no attributes for type, but let target change that. */
305 TYPE_ATTRIBUTES (t) = NULL_TREE;
306 (*targetm.set_default_type_attributes) (t);
307
308 /* We have not yet computed the alias set for this type. */
309 TYPE_ALIAS_SET (t) = -1;
310 break;
311
312 case 'c':
313 TREE_CONSTANT (t) = 1;
314 break;
315
316 case 'e':
317 switch (code)
318 {
319 case INIT_EXPR:
320 case MODIFY_EXPR:
321 case VA_ARG_EXPR:
322 case RTL_EXPR:
323 case PREDECREMENT_EXPR:
324 case PREINCREMENT_EXPR:
325 case POSTDECREMENT_EXPR:
326 case POSTINCREMENT_EXPR:
327 /* All of these have side-effects, no matter what their
328 operands are. */
329 TREE_SIDE_EFFECTS (t) = 1;
330 break;
331
332 default:
333 break;
334 }
335 break;
336 }
337
338 return t;
339 }
340 \f
341 /* Return a new node with the same contents as NODE except that its
342 TREE_CHAIN is zero and it has a fresh uid. */
343
344 tree
345 copy_node_stat (tree node MEM_STAT_DECL)
346 {
347 tree t;
348 enum tree_code code = TREE_CODE (node);
349 size_t length;
350
351 length = tree_size (node);
352 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
353 memcpy (t, node, length);
354
355 TREE_CHAIN (t) = 0;
356 TREE_ASM_WRITTEN (t) = 0;
357
358 if (TREE_CODE_CLASS (code) == 'd')
359 DECL_UID (t) = next_decl_uid++;
360 else if (TREE_CODE_CLASS (code) == 't')
361 {
362 TYPE_UID (t) = next_type_uid++;
363 /* The following is so that the debug code for
364 the copy is different from the original type.
365 The two statements usually duplicate each other
366 (because they clear fields of the same union),
367 but the optimizer should catch that. */
368 TYPE_SYMTAB_POINTER (t) = 0;
369 TYPE_SYMTAB_ADDRESS (t) = 0;
370 }
371
372 return t;
373 }
374
375 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
376 For example, this can copy a list made of TREE_LIST nodes. */
377
378 tree
379 copy_list (tree list)
380 {
381 tree head;
382 tree prev, next;
383
384 if (list == 0)
385 return 0;
386
387 head = prev = copy_node (list);
388 next = TREE_CHAIN (list);
389 while (next)
390 {
391 TREE_CHAIN (prev) = copy_node (next);
392 prev = TREE_CHAIN (prev);
393 next = TREE_CHAIN (next);
394 }
395 return head;
396 }
397
398 \f
399 /* Return a newly constructed INTEGER_CST node whose constant value
400 is specified by the two ints LOW and HI.
401 The TREE_TYPE is set to `int'.
402
403 This function should be used via the `build_int_2' macro. */
404
405 tree
406 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
407 {
408 tree t = make_node (INTEGER_CST);
409
410 TREE_INT_CST_LOW (t) = low;
411 TREE_INT_CST_HIGH (t) = hi;
412 TREE_TYPE (t) = integer_type_node;
413 return t;
414 }
415
416 /* Return a new VECTOR_CST node whose type is TYPE and whose values
417 are in a list pointed by VALS. */
418
419 tree
420 build_vector (tree type, tree vals)
421 {
422 tree v = make_node (VECTOR_CST);
423 int over1 = 0, over2 = 0;
424 tree link;
425
426 TREE_VECTOR_CST_ELTS (v) = vals;
427 TREE_TYPE (v) = type;
428
429 /* Iterate through elements and check for overflow. */
430 for (link = vals; link; link = TREE_CHAIN (link))
431 {
432 tree value = TREE_VALUE (link);
433
434 over1 |= TREE_OVERFLOW (value);
435 over2 |= TREE_CONSTANT_OVERFLOW (value);
436 }
437
438 TREE_OVERFLOW (v) = over1;
439 TREE_CONSTANT_OVERFLOW (v) = over2;
440
441 return v;
442 }
443
444 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
445 are in a list pointed to by VALS. */
446 tree
447 build_constructor (tree type, tree vals)
448 {
449 tree c = make_node (CONSTRUCTOR);
450 TREE_TYPE (c) = type;
451 CONSTRUCTOR_ELTS (c) = vals;
452
453 /* ??? May not be necessary. Mirrors what build does. */
454 if (vals)
455 {
456 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
457 TREE_READONLY (c) = TREE_READONLY (vals);
458 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
459 }
460 else
461 TREE_CONSTANT (c) = 0; /* safe side */
462
463 return c;
464 }
465
466 /* Return a new REAL_CST node whose type is TYPE and value is D. */
467
468 tree
469 build_real (tree type, REAL_VALUE_TYPE d)
470 {
471 tree v;
472 REAL_VALUE_TYPE *dp;
473 int overflow = 0;
474
475 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
476 Consider doing it via real_convert now. */
477
478 v = make_node (REAL_CST);
479 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
480 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
481
482 TREE_TYPE (v) = type;
483 TREE_REAL_CST_PTR (v) = dp;
484 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
485 return v;
486 }
487
488 /* Return a new REAL_CST node whose type is TYPE
489 and whose value is the integer value of the INTEGER_CST node I. */
490
491 REAL_VALUE_TYPE
492 real_value_from_int_cst (tree type, tree i)
493 {
494 REAL_VALUE_TYPE d;
495
496 /* Clear all bits of the real value type so that we can later do
497 bitwise comparisons to see if two values are the same. */
498 memset (&d, 0, sizeof d);
499
500 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
501 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
502 TREE_UNSIGNED (TREE_TYPE (i)));
503 return d;
504 }
505
506 /* Given a tree representing an integer constant I, return a tree
507 representing the same value as a floating-point constant of type TYPE. */
508
509 tree
510 build_real_from_int_cst (tree type, tree i)
511 {
512 tree v;
513 int overflow = TREE_OVERFLOW (i);
514
515 v = build_real (type, real_value_from_int_cst (type, i));
516
517 TREE_OVERFLOW (v) |= overflow;
518 TREE_CONSTANT_OVERFLOW (v) |= overflow;
519 return v;
520 }
521
522 /* Return a newly constructed STRING_CST node whose value is
523 the LEN characters at STR.
524 The TREE_TYPE is not initialized. */
525
526 tree
527 build_string (int len, const char *str)
528 {
529 tree s = make_node (STRING_CST);
530
531 TREE_STRING_LENGTH (s) = len;
532 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
533
534 return s;
535 }
536
537 /* Return a newly constructed COMPLEX_CST node whose value is
538 specified by the real and imaginary parts REAL and IMAG.
539 Both REAL and IMAG should be constant nodes. TYPE, if specified,
540 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
541
542 tree
543 build_complex (tree type, tree real, tree imag)
544 {
545 tree t = make_node (COMPLEX_CST);
546
547 TREE_REALPART (t) = real;
548 TREE_IMAGPART (t) = imag;
549 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
550 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
551 TREE_CONSTANT_OVERFLOW (t)
552 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
553 return t;
554 }
555
556 /* Build a newly constructed TREE_VEC node of length LEN. */
557
558 tree
559 make_tree_vec_stat (int len MEM_STAT_DECL)
560 {
561 tree t;
562 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
563
564 #ifdef GATHER_STATISTICS
565 tree_node_counts[(int) vec_kind]++;
566 tree_node_sizes[(int) vec_kind] += length;
567 #endif
568
569 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
570
571 memset (t, 0, length);
572
573 TREE_SET_CODE (t, TREE_VEC);
574 TREE_VEC_LENGTH (t) = len;
575
576 return t;
577 }
578 \f
579 /* Return 1 if EXPR is the integer constant zero or a complex constant
580 of zero. */
581
582 int
583 integer_zerop (tree expr)
584 {
585 STRIP_NOPS (expr);
586
587 return ((TREE_CODE (expr) == INTEGER_CST
588 && ! TREE_CONSTANT_OVERFLOW (expr)
589 && TREE_INT_CST_LOW (expr) == 0
590 && TREE_INT_CST_HIGH (expr) == 0)
591 || (TREE_CODE (expr) == COMPLEX_CST
592 && integer_zerop (TREE_REALPART (expr))
593 && integer_zerop (TREE_IMAGPART (expr))));
594 }
595
596 /* Return 1 if EXPR is the integer constant one or the corresponding
597 complex constant. */
598
599 int
600 integer_onep (tree expr)
601 {
602 STRIP_NOPS (expr);
603
604 return ((TREE_CODE (expr) == INTEGER_CST
605 && ! TREE_CONSTANT_OVERFLOW (expr)
606 && TREE_INT_CST_LOW (expr) == 1
607 && TREE_INT_CST_HIGH (expr) == 0)
608 || (TREE_CODE (expr) == COMPLEX_CST
609 && integer_onep (TREE_REALPART (expr))
610 && integer_zerop (TREE_IMAGPART (expr))));
611 }
612
613 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
614 it contains. Likewise for the corresponding complex constant. */
615
616 int
617 integer_all_onesp (tree expr)
618 {
619 int prec;
620 int uns;
621
622 STRIP_NOPS (expr);
623
624 if (TREE_CODE (expr) == COMPLEX_CST
625 && integer_all_onesp (TREE_REALPART (expr))
626 && integer_zerop (TREE_IMAGPART (expr)))
627 return 1;
628
629 else if (TREE_CODE (expr) != INTEGER_CST
630 || TREE_CONSTANT_OVERFLOW (expr))
631 return 0;
632
633 uns = TREE_UNSIGNED (TREE_TYPE (expr));
634 if (!uns)
635 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
636 && TREE_INT_CST_HIGH (expr) == -1);
637
638 /* Note that using TYPE_PRECISION here is wrong. We care about the
639 actual bits, not the (arbitrary) range of the type. */
640 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
641 if (prec >= HOST_BITS_PER_WIDE_INT)
642 {
643 HOST_WIDE_INT high_value;
644 int shift_amount;
645
646 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
647
648 if (shift_amount > HOST_BITS_PER_WIDE_INT)
649 /* Can not handle precisions greater than twice the host int size. */
650 abort ();
651 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
652 /* Shifting by the host word size is undefined according to the ANSI
653 standard, so we must handle this as a special case. */
654 high_value = -1;
655 else
656 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
657
658 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
659 && TREE_INT_CST_HIGH (expr) == high_value);
660 }
661 else
662 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
663 }
664
665 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
666 one bit on). */
667
668 int
669 integer_pow2p (tree expr)
670 {
671 int prec;
672 HOST_WIDE_INT high, low;
673
674 STRIP_NOPS (expr);
675
676 if (TREE_CODE (expr) == COMPLEX_CST
677 && integer_pow2p (TREE_REALPART (expr))
678 && integer_zerop (TREE_IMAGPART (expr)))
679 return 1;
680
681 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
682 return 0;
683
684 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
685 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
686 high = TREE_INT_CST_HIGH (expr);
687 low = TREE_INT_CST_LOW (expr);
688
689 /* First clear all bits that are beyond the type's precision in case
690 we've been sign extended. */
691
692 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
693 ;
694 else if (prec > HOST_BITS_PER_WIDE_INT)
695 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
696 else
697 {
698 high = 0;
699 if (prec < HOST_BITS_PER_WIDE_INT)
700 low &= ~((HOST_WIDE_INT) (-1) << prec);
701 }
702
703 if (high == 0 && low == 0)
704 return 0;
705
706 return ((high == 0 && (low & (low - 1)) == 0)
707 || (low == 0 && (high & (high - 1)) == 0));
708 }
709
710 /* Return 1 if EXPR is an integer constant other than zero or a
711 complex constant other than zero. */
712
713 int
714 integer_nonzerop (tree expr)
715 {
716 STRIP_NOPS (expr);
717
718 return ((TREE_CODE (expr) == INTEGER_CST
719 && ! TREE_CONSTANT_OVERFLOW (expr)
720 && (TREE_INT_CST_LOW (expr) != 0
721 || TREE_INT_CST_HIGH (expr) != 0))
722 || (TREE_CODE (expr) == COMPLEX_CST
723 && (integer_nonzerop (TREE_REALPART (expr))
724 || integer_nonzerop (TREE_IMAGPART (expr)))));
725 }
726
727 /* Return the power of two represented by a tree node known to be a
728 power of two. */
729
730 int
731 tree_log2 (tree expr)
732 {
733 int prec;
734 HOST_WIDE_INT high, low;
735
736 STRIP_NOPS (expr);
737
738 if (TREE_CODE (expr) == COMPLEX_CST)
739 return tree_log2 (TREE_REALPART (expr));
740
741 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
742 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
743
744 high = TREE_INT_CST_HIGH (expr);
745 low = TREE_INT_CST_LOW (expr);
746
747 /* First clear all bits that are beyond the type's precision in case
748 we've been sign extended. */
749
750 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
751 ;
752 else if (prec > HOST_BITS_PER_WIDE_INT)
753 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
754 else
755 {
756 high = 0;
757 if (prec < HOST_BITS_PER_WIDE_INT)
758 low &= ~((HOST_WIDE_INT) (-1) << prec);
759 }
760
761 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
762 : exact_log2 (low));
763 }
764
765 /* Similar, but return the largest integer Y such that 2 ** Y is less
766 than or equal to EXPR. */
767
768 int
769 tree_floor_log2 (tree expr)
770 {
771 int prec;
772 HOST_WIDE_INT high, low;
773
774 STRIP_NOPS (expr);
775
776 if (TREE_CODE (expr) == COMPLEX_CST)
777 return tree_log2 (TREE_REALPART (expr));
778
779 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
780 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
781
782 high = TREE_INT_CST_HIGH (expr);
783 low = TREE_INT_CST_LOW (expr);
784
785 /* First clear all bits that are beyond the type's precision in case
786 we've been sign extended. Ignore if type's precision hasn't been set
787 since what we are doing is setting it. */
788
789 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
790 ;
791 else if (prec > HOST_BITS_PER_WIDE_INT)
792 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
793 else
794 {
795 high = 0;
796 if (prec < HOST_BITS_PER_WIDE_INT)
797 low &= ~((HOST_WIDE_INT) (-1) << prec);
798 }
799
800 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
801 : floor_log2 (low));
802 }
803
804 /* Return 1 if EXPR is the real constant zero. */
805
806 int
807 real_zerop (tree expr)
808 {
809 STRIP_NOPS (expr);
810
811 return ((TREE_CODE (expr) == REAL_CST
812 && ! TREE_CONSTANT_OVERFLOW (expr)
813 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
814 || (TREE_CODE (expr) == COMPLEX_CST
815 && real_zerop (TREE_REALPART (expr))
816 && real_zerop (TREE_IMAGPART (expr))));
817 }
818
819 /* Return 1 if EXPR is the real constant one in real or complex form. */
820
821 int
822 real_onep (tree expr)
823 {
824 STRIP_NOPS (expr);
825
826 return ((TREE_CODE (expr) == REAL_CST
827 && ! TREE_CONSTANT_OVERFLOW (expr)
828 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
829 || (TREE_CODE (expr) == COMPLEX_CST
830 && real_onep (TREE_REALPART (expr))
831 && real_zerop (TREE_IMAGPART (expr))));
832 }
833
834 /* Return 1 if EXPR is the real constant two. */
835
836 int
837 real_twop (tree expr)
838 {
839 STRIP_NOPS (expr);
840
841 return ((TREE_CODE (expr) == REAL_CST
842 && ! TREE_CONSTANT_OVERFLOW (expr)
843 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
844 || (TREE_CODE (expr) == COMPLEX_CST
845 && real_twop (TREE_REALPART (expr))
846 && real_zerop (TREE_IMAGPART (expr))));
847 }
848
849 /* Return 1 if EXPR is the real constant minus one. */
850
851 int
852 real_minus_onep (tree expr)
853 {
854 STRIP_NOPS (expr);
855
856 return ((TREE_CODE (expr) == REAL_CST
857 && ! TREE_CONSTANT_OVERFLOW (expr)
858 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
859 || (TREE_CODE (expr) == COMPLEX_CST
860 && real_minus_onep (TREE_REALPART (expr))
861 && real_zerop (TREE_IMAGPART (expr))));
862 }
863
864 /* Nonzero if EXP is a constant or a cast of a constant. */
865
866 int
867 really_constant_p (tree exp)
868 {
869 /* This is not quite the same as STRIP_NOPS. It does more. */
870 while (TREE_CODE (exp) == NOP_EXPR
871 || TREE_CODE (exp) == CONVERT_EXPR
872 || TREE_CODE (exp) == NON_LVALUE_EXPR)
873 exp = TREE_OPERAND (exp, 0);
874 return TREE_CONSTANT (exp);
875 }
876 \f
877 /* Return first list element whose TREE_VALUE is ELEM.
878 Return 0 if ELEM is not in LIST. */
879
880 tree
881 value_member (tree elem, tree list)
882 {
883 while (list)
884 {
885 if (elem == TREE_VALUE (list))
886 return list;
887 list = TREE_CHAIN (list);
888 }
889 return NULL_TREE;
890 }
891
892 /* Return first list element whose TREE_PURPOSE is ELEM.
893 Return 0 if ELEM is not in LIST. */
894
895 tree
896 purpose_member (tree elem, tree list)
897 {
898 while (list)
899 {
900 if (elem == TREE_PURPOSE (list))
901 return list;
902 list = TREE_CHAIN (list);
903 }
904 return NULL_TREE;
905 }
906
907 /* Return first list element whose BINFO_TYPE is ELEM.
908 Return 0 if ELEM is not in LIST. */
909
910 tree
911 binfo_member (tree elem, tree list)
912 {
913 while (list)
914 {
915 if (elem == BINFO_TYPE (list))
916 return list;
917 list = TREE_CHAIN (list);
918 }
919 return NULL_TREE;
920 }
921
922 /* Return nonzero if ELEM is part of the chain CHAIN. */
923
924 int
925 chain_member (tree elem, tree chain)
926 {
927 while (chain)
928 {
929 if (elem == chain)
930 return 1;
931 chain = TREE_CHAIN (chain);
932 }
933
934 return 0;
935 }
936
937 /* Return the length of a chain of nodes chained through TREE_CHAIN.
938 We expect a null pointer to mark the end of the chain.
939 This is the Lisp primitive `length'. */
940
941 int
942 list_length (tree t)
943 {
944 tree tail;
945 int len = 0;
946
947 for (tail = t; tail; tail = TREE_CHAIN (tail))
948 len++;
949
950 return len;
951 }
952
953 /* Returns the number of FIELD_DECLs in TYPE. */
954
955 int
956 fields_length (tree type)
957 {
958 tree t = TYPE_FIELDS (type);
959 int count = 0;
960
961 for (; t; t = TREE_CHAIN (t))
962 if (TREE_CODE (t) == FIELD_DECL)
963 ++count;
964
965 return count;
966 }
967
968 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
969 by modifying the last node in chain 1 to point to chain 2.
970 This is the Lisp primitive `nconc'. */
971
972 tree
973 chainon (tree op1, tree op2)
974 {
975 tree t1;
976
977 if (!op1)
978 return op2;
979 if (!op2)
980 return op1;
981
982 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
983 continue;
984 TREE_CHAIN (t1) = op2;
985
986 #ifdef ENABLE_TREE_CHECKING
987 {
988 tree t2;
989 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
990 if (t2 == t1)
991 abort (); /* Circularity created. */
992 }
993 #endif
994
995 return op1;
996 }
997
998 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
999
1000 tree
1001 tree_last (tree chain)
1002 {
1003 tree next;
1004 if (chain)
1005 while ((next = TREE_CHAIN (chain)))
1006 chain = next;
1007 return chain;
1008 }
1009
1010 /* Reverse the order of elements in the chain T,
1011 and return the new head of the chain (old last element). */
1012
1013 tree
1014 nreverse (tree t)
1015 {
1016 tree prev = 0, decl, next;
1017 for (decl = t; decl; decl = next)
1018 {
1019 next = TREE_CHAIN (decl);
1020 TREE_CHAIN (decl) = prev;
1021 prev = decl;
1022 }
1023 return prev;
1024 }
1025 \f
1026 /* Return a newly created TREE_LIST node whose
1027 purpose and value fields are PARM and VALUE. */
1028
1029 tree
1030 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1031 {
1032 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1033 TREE_PURPOSE (t) = parm;
1034 TREE_VALUE (t) = value;
1035 return t;
1036 }
1037
1038 /* Return a newly created TREE_LIST node whose
1039 purpose and value fields are PURPOSE and VALUE
1040 and whose TREE_CHAIN is CHAIN. */
1041
1042 tree
1043 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1044 {
1045 tree node;
1046
1047 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1048 tree_zone PASS_MEM_STAT);
1049
1050 memset (node, 0, sizeof (struct tree_common));
1051
1052 #ifdef GATHER_STATISTICS
1053 tree_node_counts[(int) x_kind]++;
1054 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1055 #endif
1056
1057 TREE_SET_CODE (node, TREE_LIST);
1058 TREE_CHAIN (node) = chain;
1059 TREE_PURPOSE (node) = purpose;
1060 TREE_VALUE (node) = value;
1061 return node;
1062 }
1063
1064 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1065
1066 tree
1067 expr_first (tree expr)
1068 {
1069 if (expr == NULL_TREE)
1070 return expr;
1071 while (TREE_CODE (expr) == COMPOUND_EXPR)
1072 expr = TREE_OPERAND (expr, 0);
1073 return expr;
1074 }
1075
1076 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1077
1078 tree
1079 expr_last (tree expr)
1080 {
1081 if (expr == NULL_TREE)
1082 return expr;
1083 while (TREE_CODE (expr) == COMPOUND_EXPR)
1084 expr = TREE_OPERAND (expr, 1);
1085 return expr;
1086 }
1087
1088 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1089
1090 int
1091 expr_length (tree expr)
1092 {
1093 int len = 0;
1094
1095 if (expr == NULL_TREE)
1096 return 0;
1097 for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
1098 len += expr_length (TREE_OPERAND (expr, 0));
1099 ++len;
1100 return len;
1101 }
1102 \f
1103 /* Return the size nominally occupied by an object of type TYPE
1104 when it resides in memory. The value is measured in units of bytes,
1105 and its data type is that normally used for type sizes
1106 (which is the first type created by make_signed_type or
1107 make_unsigned_type). */
1108
1109 tree
1110 size_in_bytes (tree type)
1111 {
1112 tree t;
1113
1114 if (type == error_mark_node)
1115 return integer_zero_node;
1116
1117 type = TYPE_MAIN_VARIANT (type);
1118 t = TYPE_SIZE_UNIT (type);
1119
1120 if (t == 0)
1121 {
1122 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1123 return size_zero_node;
1124 }
1125
1126 if (TREE_CODE (t) == INTEGER_CST)
1127 force_fit_type (t, 0);
1128
1129 return t;
1130 }
1131
1132 /* Return the size of TYPE (in bytes) as a wide integer
1133 or return -1 if the size can vary or is larger than an integer. */
1134
1135 HOST_WIDE_INT
1136 int_size_in_bytes (tree type)
1137 {
1138 tree t;
1139
1140 if (type == error_mark_node)
1141 return 0;
1142
1143 type = TYPE_MAIN_VARIANT (type);
1144 t = TYPE_SIZE_UNIT (type);
1145 if (t == 0
1146 || TREE_CODE (t) != INTEGER_CST
1147 || TREE_OVERFLOW (t)
1148 || TREE_INT_CST_HIGH (t) != 0
1149 /* If the result would appear negative, it's too big to represent. */
1150 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1151 return -1;
1152
1153 return TREE_INT_CST_LOW (t);
1154 }
1155 \f
1156 /* Return the bit position of FIELD, in bits from the start of the record.
1157 This is a tree of type bitsizetype. */
1158
1159 tree
1160 bit_position (tree field)
1161 {
1162 return bit_from_pos (DECL_FIELD_OFFSET (field),
1163 DECL_FIELD_BIT_OFFSET (field));
1164 }
1165
1166 /* Likewise, but return as an integer. Abort if it cannot be represented
1167 in that way (since it could be a signed value, we don't have the option
1168 of returning -1 like int_size_in_byte can. */
1169
1170 HOST_WIDE_INT
1171 int_bit_position (tree field)
1172 {
1173 return tree_low_cst (bit_position (field), 0);
1174 }
1175 \f
1176 /* Return the byte position of FIELD, in bytes from the start of the record.
1177 This is a tree of type sizetype. */
1178
1179 tree
1180 byte_position (tree field)
1181 {
1182 return byte_from_pos (DECL_FIELD_OFFSET (field),
1183 DECL_FIELD_BIT_OFFSET (field));
1184 }
1185
1186 /* Likewise, but return as an integer. Abort if it cannot be represented
1187 in that way (since it could be a signed value, we don't have the option
1188 of returning -1 like int_size_in_byte can. */
1189
1190 HOST_WIDE_INT
1191 int_byte_position (tree field)
1192 {
1193 return tree_low_cst (byte_position (field), 0);
1194 }
1195 \f
1196 /* Return the strictest alignment, in bits, that T is known to have. */
1197
1198 unsigned int
1199 expr_align (tree t)
1200 {
1201 unsigned int align0, align1;
1202
1203 switch (TREE_CODE (t))
1204 {
1205 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1206 /* If we have conversions, we know that the alignment of the
1207 object must meet each of the alignments of the types. */
1208 align0 = expr_align (TREE_OPERAND (t, 0));
1209 align1 = TYPE_ALIGN (TREE_TYPE (t));
1210 return MAX (align0, align1);
1211
1212 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1213 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1214 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1215 /* These don't change the alignment of an object. */
1216 return expr_align (TREE_OPERAND (t, 0));
1217
1218 case COND_EXPR:
1219 /* The best we can do is say that the alignment is the least aligned
1220 of the two arms. */
1221 align0 = expr_align (TREE_OPERAND (t, 1));
1222 align1 = expr_align (TREE_OPERAND (t, 2));
1223 return MIN (align0, align1);
1224
1225 case LABEL_DECL: case CONST_DECL:
1226 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1227 if (DECL_ALIGN (t) != 0)
1228 return DECL_ALIGN (t);
1229 break;
1230
1231 case FUNCTION_DECL:
1232 return FUNCTION_BOUNDARY;
1233
1234 default:
1235 break;
1236 }
1237
1238 /* Otherwise take the alignment from that of the type. */
1239 return TYPE_ALIGN (TREE_TYPE (t));
1240 }
1241 \f
1242 /* Return, as a tree node, the number of elements for TYPE (which is an
1243 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1244
1245 tree
1246 array_type_nelts (tree type)
1247 {
1248 tree index_type, min, max;
1249
1250 /* If they did it with unspecified bounds, then we should have already
1251 given an error about it before we got here. */
1252 if (! TYPE_DOMAIN (type))
1253 return error_mark_node;
1254
1255 index_type = TYPE_DOMAIN (type);
1256 min = TYPE_MIN_VALUE (index_type);
1257 max = TYPE_MAX_VALUE (index_type);
1258
1259 return (integer_zerop (min)
1260 ? max
1261 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1262 }
1263 \f
1264 /* Return nonzero if arg is static -- a reference to an object in
1265 static storage. This is not the same as the C meaning of `static'. */
1266
1267 int
1268 staticp (tree arg)
1269 {
1270 switch (TREE_CODE (arg))
1271 {
1272 case FUNCTION_DECL:
1273 /* Nested functions aren't static, since taking their address
1274 involves a trampoline. */
1275 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1276 && ! DECL_NON_ADDR_CONST_P (arg));
1277
1278 case VAR_DECL:
1279 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1280 && ! DECL_THREAD_LOCAL (arg)
1281 && ! DECL_NON_ADDR_CONST_P (arg));
1282
1283 case CONSTRUCTOR:
1284 return TREE_STATIC (arg);
1285
1286 case LABEL_DECL:
1287 case STRING_CST:
1288 return 1;
1289
1290 /* If we are referencing a bitfield, we can't evaluate an
1291 ADDR_EXPR at compile time and so it isn't a constant. */
1292 case COMPONENT_REF:
1293 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1294 && staticp (TREE_OPERAND (arg, 0)));
1295
1296 case BIT_FIELD_REF:
1297 return 0;
1298
1299 #if 0
1300 /* This case is technically correct, but results in setting
1301 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1302 compile time. */
1303 case INDIRECT_REF:
1304 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1305 #endif
1306
1307 case ARRAY_REF:
1308 case ARRAY_RANGE_REF:
1309 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1310 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1311 return staticp (TREE_OPERAND (arg, 0));
1312
1313 default:
1314 if ((unsigned int) TREE_CODE (arg)
1315 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1316 return lang_hooks.staticp (arg);
1317 else
1318 return 0;
1319 }
1320 }
1321 \f
1322 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1323 Do this to any expression which may be used in more than one place,
1324 but must be evaluated only once.
1325
1326 Normally, expand_expr would reevaluate the expression each time.
1327 Calling save_expr produces something that is evaluated and recorded
1328 the first time expand_expr is called on it. Subsequent calls to
1329 expand_expr just reuse the recorded value.
1330
1331 The call to expand_expr that generates code that actually computes
1332 the value is the first call *at compile time*. Subsequent calls
1333 *at compile time* generate code to use the saved value.
1334 This produces correct result provided that *at run time* control
1335 always flows through the insns made by the first expand_expr
1336 before reaching the other places where the save_expr was evaluated.
1337 You, the caller of save_expr, must make sure this is so.
1338
1339 Constants, and certain read-only nodes, are returned with no
1340 SAVE_EXPR because that is safe. Expressions containing placeholders
1341 are not touched; see tree.def for an explanation of what these
1342 are used for. */
1343
1344 tree
1345 save_expr (tree expr)
1346 {
1347 tree t = fold (expr);
1348 tree inner;
1349
1350 /* If the tree evaluates to a constant, then we don't want to hide that
1351 fact (i.e. this allows further folding, and direct checks for constants).
1352 However, a read-only object that has side effects cannot be bypassed.
1353 Since it is no problem to reevaluate literals, we just return the
1354 literal node. */
1355 inner = skip_simple_arithmetic (t);
1356 if (TREE_CONSTANT (inner)
1357 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1358 || TREE_CODE (inner) == SAVE_EXPR
1359 || TREE_CODE (inner) == ERROR_MARK)
1360 return t;
1361
1362 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1363 it means that the size or offset of some field of an object depends on
1364 the value within another field.
1365
1366 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1367 and some variable since it would then need to be both evaluated once and
1368 evaluated more than once. Front-ends must assure this case cannot
1369 happen by surrounding any such subexpressions in their own SAVE_EXPR
1370 and forcing evaluation at the proper time. */
1371 if (contains_placeholder_p (inner))
1372 return t;
1373
1374 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1375
1376 /* This expression might be placed ahead of a jump to ensure that the
1377 value was computed on both sides of the jump. So make sure it isn't
1378 eliminated as dead. */
1379 TREE_SIDE_EFFECTS (t) = 1;
1380 TREE_READONLY (t) = 1;
1381 return t;
1382 }
1383
1384 /* Look inside EXPR and into any simple arithmetic operations. Return
1385 the innermost non-arithmetic node. */
1386
1387 tree
1388 skip_simple_arithmetic (tree expr)
1389 {
1390 tree inner;
1391
1392 /* We don't care about whether this can be used as an lvalue in this
1393 context. */
1394 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1395 expr = TREE_OPERAND (expr, 0);
1396
1397 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1398 a constant, it will be more efficient to not make another SAVE_EXPR since
1399 it will allow better simplification and GCSE will be able to merge the
1400 computations if they actually occur. */
1401 inner = expr;
1402 while (1)
1403 {
1404 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1405 inner = TREE_OPERAND (inner, 0);
1406 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1407 {
1408 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1409 inner = TREE_OPERAND (inner, 0);
1410 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1411 inner = TREE_OPERAND (inner, 1);
1412 else
1413 break;
1414 }
1415 else
1416 break;
1417 }
1418
1419 return inner;
1420 }
1421
1422 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1423 SAVE_EXPR. Return FALSE otherwise. */
1424
1425 bool
1426 saved_expr_p (tree expr)
1427 {
1428 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1429 }
1430
1431 /* Arrange for an expression to be expanded multiple independent
1432 times. This is useful for cleanup actions, as the backend can
1433 expand them multiple times in different places. */
1434
1435 tree
1436 unsave_expr (tree expr)
1437 {
1438 tree t;
1439
1440 /* If this is already protected, no sense in protecting it again. */
1441 if (TREE_CODE (expr) == UNSAVE_EXPR)
1442 return expr;
1443
1444 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1445 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1446 return t;
1447 }
1448
1449 /* Returns the index of the first non-tree operand for CODE, or the number
1450 of operands if all are trees. */
1451
1452 int
1453 first_rtl_op (enum tree_code code)
1454 {
1455 switch (code)
1456 {
1457 case SAVE_EXPR:
1458 return 2;
1459 case GOTO_SUBROUTINE_EXPR:
1460 case RTL_EXPR:
1461 return 0;
1462 case WITH_CLEANUP_EXPR:
1463 return 2;
1464 default:
1465 return TREE_CODE_LENGTH (code);
1466 }
1467 }
1468
1469 /* Return which tree structure is used by T. */
1470
1471 enum tree_node_structure_enum
1472 tree_node_structure (tree t)
1473 {
1474 enum tree_code code = TREE_CODE (t);
1475
1476 switch (TREE_CODE_CLASS (code))
1477 {
1478 case 'd': return TS_DECL;
1479 case 't': return TS_TYPE;
1480 case 'b': return TS_BLOCK;
1481 case 'r': case '<': case '1': case '2': case 'e': case 's':
1482 return TS_EXP;
1483 default: /* 'c' and 'x' */
1484 break;
1485 }
1486 switch (code)
1487 {
1488 /* 'c' cases. */
1489 case INTEGER_CST: return TS_INT_CST;
1490 case REAL_CST: return TS_REAL_CST;
1491 case COMPLEX_CST: return TS_COMPLEX;
1492 case VECTOR_CST: return TS_VECTOR;
1493 case STRING_CST: return TS_STRING;
1494 /* 'x' cases. */
1495 case ERROR_MARK: return TS_COMMON;
1496 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1497 case TREE_LIST: return TS_LIST;
1498 case TREE_VEC: return TS_VEC;
1499 case PLACEHOLDER_EXPR: return TS_COMMON;
1500
1501 default:
1502 abort ();
1503 }
1504 }
1505
1506 /* Perform any modifications to EXPR required when it is unsaved. Does
1507 not recurse into EXPR's subtrees. */
1508
1509 void
1510 unsave_expr_1 (tree expr)
1511 {
1512 switch (TREE_CODE (expr))
1513 {
1514 case SAVE_EXPR:
1515 if (! SAVE_EXPR_PERSISTENT_P (expr))
1516 SAVE_EXPR_RTL (expr) = 0;
1517 break;
1518
1519 case TARGET_EXPR:
1520 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1521 It's OK for this to happen if it was part of a subtree that
1522 isn't immediately expanded, such as operand 2 of another
1523 TARGET_EXPR. */
1524 if (TREE_OPERAND (expr, 1))
1525 break;
1526
1527 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1528 TREE_OPERAND (expr, 3) = NULL_TREE;
1529 break;
1530
1531 case RTL_EXPR:
1532 /* I don't yet know how to emit a sequence multiple times. */
1533 if (RTL_EXPR_SEQUENCE (expr) != 0)
1534 abort ();
1535 break;
1536
1537 default:
1538 break;
1539 }
1540 }
1541
1542 /* Default lang hook for "unsave_expr_now". */
1543
1544 tree
1545 lhd_unsave_expr_now (tree expr)
1546 {
1547 enum tree_code code;
1548
1549 /* There's nothing to do for NULL_TREE. */
1550 if (expr == 0)
1551 return expr;
1552
1553 unsave_expr_1 (expr);
1554
1555 code = TREE_CODE (expr);
1556 switch (TREE_CODE_CLASS (code))
1557 {
1558 case 'c': /* a constant */
1559 case 't': /* a type node */
1560 case 'd': /* A decl node */
1561 case 'b': /* A block node */
1562 break;
1563
1564 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1565 if (code == TREE_LIST)
1566 {
1567 lhd_unsave_expr_now (TREE_VALUE (expr));
1568 lhd_unsave_expr_now (TREE_CHAIN (expr));
1569 }
1570 break;
1571
1572 case 'e': /* an expression */
1573 case 'r': /* a reference */
1574 case 's': /* an expression with side effects */
1575 case '<': /* a comparison expression */
1576 case '2': /* a binary arithmetic expression */
1577 case '1': /* a unary arithmetic expression */
1578 {
1579 int i;
1580
1581 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1582 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1583 }
1584 break;
1585
1586 default:
1587 abort ();
1588 }
1589
1590 return expr;
1591 }
1592
1593 /* Return 0 if it is safe to evaluate EXPR multiple times,
1594 return 1 if it is safe if EXPR is unsaved afterward, or
1595 return 2 if it is completely unsafe.
1596
1597 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1598 an expression tree, so that it safe to unsave them and the surrounding
1599 context will be correct.
1600
1601 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1602 occasionally across the whole of a function. It is therefore only
1603 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1604 below the UNSAVE_EXPR.
1605
1606 RTL_EXPRs consume their rtl during evaluation. It is therefore
1607 never possible to unsave them. */
1608
1609 int
1610 unsafe_for_reeval (tree expr)
1611 {
1612 int unsafeness = 0;
1613 enum tree_code code;
1614 int i, tmp, tmp2;
1615 tree exp;
1616 int first_rtl;
1617
1618 if (expr == NULL_TREE)
1619 return 1;
1620
1621 code = TREE_CODE (expr);
1622 first_rtl = first_rtl_op (code);
1623
1624 switch (code)
1625 {
1626 case SAVE_EXPR:
1627 case RTL_EXPR:
1628 return 2;
1629
1630 case TREE_LIST:
1631 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1632 {
1633 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1634 unsafeness = MAX (tmp, unsafeness);
1635 }
1636
1637 return unsafeness;
1638
1639 case CALL_EXPR:
1640 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1641 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1642 return MAX (MAX (tmp, 1), tmp2);
1643
1644 case TARGET_EXPR:
1645 unsafeness = 1;
1646 break;
1647
1648 case EXIT_BLOCK_EXPR:
1649 /* EXIT_BLOCK_LABELED_BLOCK, a.k.a. TREE_OPERAND (expr, 0), holds
1650 a reference to an ancestor LABELED_BLOCK, so we need to avoid
1651 unbounded recursion in the 'e' traversal code below. */
1652 exp = EXIT_BLOCK_RETURN (expr);
1653 return exp ? unsafe_for_reeval (exp) : 0;
1654
1655 default:
1656 tmp = lang_hooks.unsafe_for_reeval (expr);
1657 if (tmp >= 0)
1658 return tmp;
1659 break;
1660 }
1661
1662 switch (TREE_CODE_CLASS (code))
1663 {
1664 case 'c': /* a constant */
1665 case 't': /* a type node */
1666 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1667 case 'd': /* A decl node */
1668 case 'b': /* A block node */
1669 return 0;
1670
1671 case 'e': /* an expression */
1672 case 'r': /* a reference */
1673 case 's': /* an expression with side effects */
1674 case '<': /* a comparison expression */
1675 case '2': /* a binary arithmetic expression */
1676 case '1': /* a unary arithmetic expression */
1677 for (i = first_rtl - 1; i >= 0; i--)
1678 {
1679 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1680 unsafeness = MAX (tmp, unsafeness);
1681 }
1682
1683 return unsafeness;
1684
1685 default:
1686 return 2;
1687 }
1688 }
1689 \f
1690 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1691 or offset that depends on a field within a record. */
1692
1693 bool
1694 contains_placeholder_p (tree exp)
1695 {
1696 enum tree_code code;
1697 int result;
1698
1699 if (!exp)
1700 return 0;
1701
1702 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1703 in it since it is supplying a value for it. */
1704 code = TREE_CODE (exp);
1705 if (code == WITH_RECORD_EXPR)
1706 return 0;
1707 else if (code == PLACEHOLDER_EXPR)
1708 return 1;
1709
1710 switch (TREE_CODE_CLASS (code))
1711 {
1712 case 'r':
1713 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1714 position computations since they will be converted into a
1715 WITH_RECORD_EXPR involving the reference, which will assume
1716 here will be valid. */
1717 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1718
1719 case 'x':
1720 if (code == TREE_LIST)
1721 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1722 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1723 break;
1724
1725 case '1':
1726 case '2': case '<':
1727 case 'e':
1728 switch (code)
1729 {
1730 case COMPOUND_EXPR:
1731 /* Ignoring the first operand isn't quite right, but works best. */
1732 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1733
1734 case RTL_EXPR:
1735 case CONSTRUCTOR:
1736 return 0;
1737
1738 case COND_EXPR:
1739 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1740 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1741 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1742
1743 case SAVE_EXPR:
1744 /* If we already know this doesn't have a placeholder, don't
1745 check again. */
1746 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1747 return 0;
1748
1749 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1750 result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1751 if (result)
1752 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1753
1754 return result;
1755
1756 case CALL_EXPR:
1757 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1758
1759 default:
1760 break;
1761 }
1762
1763 switch (TREE_CODE_LENGTH (code))
1764 {
1765 case 1:
1766 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1767 case 2:
1768 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1769 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1770 default:
1771 return 0;
1772 }
1773
1774 default:
1775 return 0;
1776 }
1777 return 0;
1778 }
1779
1780 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1781 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1782 positions. */
1783
1784 bool
1785 type_contains_placeholder_p (tree type)
1786 {
1787 /* If the size contains a placeholder or the parent type (component type in
1788 the case of arrays) type involves a placeholder, this type does. */
1789 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1790 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1791 || (TREE_TYPE (type) != 0
1792 && type_contains_placeholder_p (TREE_TYPE (type))))
1793 return 1;
1794
1795 /* Now do type-specific checks. Note that the last part of the check above
1796 greatly limits what we have to do below. */
1797 switch (TREE_CODE (type))
1798 {
1799 case VOID_TYPE:
1800 case COMPLEX_TYPE:
1801 case VECTOR_TYPE:
1802 case ENUMERAL_TYPE:
1803 case BOOLEAN_TYPE:
1804 case CHAR_TYPE:
1805 case POINTER_TYPE:
1806 case OFFSET_TYPE:
1807 case REFERENCE_TYPE:
1808 case METHOD_TYPE:
1809 case FILE_TYPE:
1810 case FUNCTION_TYPE:
1811 return 0;
1812
1813 case INTEGER_TYPE:
1814 case REAL_TYPE:
1815 /* Here we just check the bounds. */
1816 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1817 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1818
1819 case ARRAY_TYPE:
1820 case SET_TYPE:
1821 /* We're already checked the component type (TREE_TYPE), so just check
1822 the index type. */
1823 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1824
1825 case RECORD_TYPE:
1826 case UNION_TYPE:
1827 case QUAL_UNION_TYPE:
1828 {
1829 static tree seen_types = 0;
1830 tree field;
1831 bool ret = 0;
1832
1833 /* We have to be careful here that we don't end up in infinite
1834 recursions due to a field of a type being a pointer to that type
1835 or to a mutually-recursive type. So we store a list of record
1836 types that we've seen and see if this type is in them. To save
1837 memory, we don't use a list for just one type. Here we check
1838 whether we've seen this type before and store it if not. */
1839 if (seen_types == 0)
1840 seen_types = type;
1841 else if (TREE_CODE (seen_types) != TREE_LIST)
1842 {
1843 if (seen_types == type)
1844 return 0;
1845
1846 seen_types = tree_cons (NULL_TREE, type,
1847 build_tree_list (NULL_TREE, seen_types));
1848 }
1849 else
1850 {
1851 if (value_member (type, seen_types) != 0)
1852 return 0;
1853
1854 seen_types = tree_cons (NULL_TREE, type, seen_types);
1855 }
1856
1857 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1858 if (TREE_CODE (field) == FIELD_DECL
1859 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1860 || (TREE_CODE (type) == QUAL_UNION_TYPE
1861 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1862 || type_contains_placeholder_p (TREE_TYPE (field))))
1863 {
1864 ret = true;
1865 break;
1866 }
1867
1868 /* Now remove us from seen_types and return the result. */
1869 if (seen_types == type)
1870 seen_types = 0;
1871 else
1872 seen_types = TREE_CHAIN (seen_types);
1873
1874 return ret;
1875 }
1876
1877 default:
1878 abort ();
1879 }
1880 }
1881
1882 /* Return 1 if EXP contains any expressions that produce cleanups for an
1883 outer scope to deal with. Used by fold. */
1884
1885 int
1886 has_cleanups (tree exp)
1887 {
1888 int i, nops, cmp;
1889
1890 if (! TREE_SIDE_EFFECTS (exp))
1891 return 0;
1892
1893 switch (TREE_CODE (exp))
1894 {
1895 case TARGET_EXPR:
1896 case GOTO_SUBROUTINE_EXPR:
1897 case WITH_CLEANUP_EXPR:
1898 return 1;
1899
1900 case CLEANUP_POINT_EXPR:
1901 return 0;
1902
1903 case CALL_EXPR:
1904 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1905 {
1906 cmp = has_cleanups (TREE_VALUE (exp));
1907 if (cmp)
1908 return cmp;
1909 }
1910 return 0;
1911
1912 default:
1913 break;
1914 }
1915
1916 /* This general rule works for most tree codes. All exceptions should be
1917 handled above. If this is a language-specific tree code, we can't
1918 trust what might be in the operand, so say we don't know
1919 the situation. */
1920 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1921 return -1;
1922
1923 nops = first_rtl_op (TREE_CODE (exp));
1924 for (i = 0; i < nops; i++)
1925 if (TREE_OPERAND (exp, i) != 0)
1926 {
1927 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1928 if (type == 'e' || type == '<' || type == '1' || type == '2'
1929 || type == 'r' || type == 's')
1930 {
1931 cmp = has_cleanups (TREE_OPERAND (exp, i));
1932 if (cmp)
1933 return cmp;
1934 }
1935 }
1936
1937 return 0;
1938 }
1939 \f
1940 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1941 return a tree with all occurrences of references to F in a
1942 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1943 contains only arithmetic expressions or a CALL_EXPR with a
1944 PLACEHOLDER_EXPR occurring only in its arglist. */
1945
1946 tree
1947 substitute_in_expr (tree exp, tree f, tree r)
1948 {
1949 enum tree_code code = TREE_CODE (exp);
1950 tree op0, op1, op2;
1951 tree new;
1952 tree inner;
1953
1954 switch (TREE_CODE_CLASS (code))
1955 {
1956 case 'c':
1957 case 'd':
1958 return exp;
1959
1960 case 'x':
1961 if (code == PLACEHOLDER_EXPR)
1962 return exp;
1963 else if (code == TREE_LIST)
1964 {
1965 op0 = (TREE_CHAIN (exp) == 0
1966 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1967 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1968 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1969 return exp;
1970
1971 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1972 }
1973
1974 abort ();
1975
1976 case '1':
1977 case '2':
1978 case '<':
1979 case 'e':
1980 switch (TREE_CODE_LENGTH (code))
1981 {
1982 case 1:
1983 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1984 if (op0 == TREE_OPERAND (exp, 0))
1985 return exp;
1986
1987 if (code == NON_LVALUE_EXPR)
1988 return op0;
1989
1990 new = fold (build1 (code, TREE_TYPE (exp), op0));
1991 break;
1992
1993 case 2:
1994 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1995 could, but we don't support it. */
1996 if (code == RTL_EXPR)
1997 return exp;
1998 else if (code == CONSTRUCTOR)
1999 abort ();
2000
2001 op0 = TREE_OPERAND (exp, 0);
2002 op1 = TREE_OPERAND (exp, 1);
2003 if (CONTAINS_PLACEHOLDER_P (op0))
2004 op0 = substitute_in_expr (op0, f, r);
2005 if (CONTAINS_PLACEHOLDER_P (op1))
2006 op1 = substitute_in_expr (op1, f, r);
2007
2008 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2009 return exp;
2010
2011 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2012 break;
2013
2014 case 3:
2015 /* It cannot be that anything inside a SAVE_EXPR contains a
2016 PLACEHOLDER_EXPR. */
2017 if (code == SAVE_EXPR)
2018 return exp;
2019
2020 else if (code == CALL_EXPR)
2021 {
2022 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2023 if (op1 == TREE_OPERAND (exp, 1))
2024 return exp;
2025
2026 return build (code, TREE_TYPE (exp),
2027 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2028 }
2029
2030 else if (code != COND_EXPR)
2031 abort ();
2032
2033 op0 = TREE_OPERAND (exp, 0);
2034 op1 = TREE_OPERAND (exp, 1);
2035 op2 = TREE_OPERAND (exp, 2);
2036
2037 if (CONTAINS_PLACEHOLDER_P (op0))
2038 op0 = substitute_in_expr (op0, f, r);
2039 if (CONTAINS_PLACEHOLDER_P (op1))
2040 op1 = substitute_in_expr (op1, f, r);
2041 if (CONTAINS_PLACEHOLDER_P (op2))
2042 op2 = substitute_in_expr (op2, f, r);
2043
2044 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2045 && op2 == TREE_OPERAND (exp, 2))
2046 return exp;
2047
2048 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2049 break;
2050
2051 default:
2052 abort ();
2053 }
2054
2055 break;
2056
2057 case 'r':
2058 switch (code)
2059 {
2060 case COMPONENT_REF:
2061 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2062 and it is the right field, replace it with R. */
2063 for (inner = TREE_OPERAND (exp, 0);
2064 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2065 inner = TREE_OPERAND (inner, 0))
2066 ;
2067 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2068 && TREE_OPERAND (exp, 1) == f)
2069 return r;
2070
2071 /* If this expression hasn't been completed let, leave it
2072 alone. */
2073 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2074 && TREE_TYPE (inner) == 0)
2075 return exp;
2076
2077 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2078 if (op0 == TREE_OPERAND (exp, 0))
2079 return exp;
2080
2081 new = fold (build (code, TREE_TYPE (exp), op0,
2082 TREE_OPERAND (exp, 1)));
2083 break;
2084
2085 case BIT_FIELD_REF:
2086 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2087 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2088 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2089 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2090 && op2 == TREE_OPERAND (exp, 2))
2091 return exp;
2092
2093 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2094 break;
2095
2096 case INDIRECT_REF:
2097 case BUFFER_REF:
2098 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2099 if (op0 == TREE_OPERAND (exp, 0))
2100 return exp;
2101
2102 new = fold (build1 (code, TREE_TYPE (exp), op0));
2103 break;
2104
2105 default:
2106 abort ();
2107 }
2108 break;
2109
2110 default:
2111 abort ();
2112 }
2113
2114 TREE_READONLY (new) = TREE_READONLY (exp);
2115 return new;
2116 }
2117 \f
2118 /* Stabilize a reference so that we can use it any number of times
2119 without causing its operands to be evaluated more than once.
2120 Returns the stabilized reference. This works by means of save_expr,
2121 so see the caveats in the comments about save_expr.
2122
2123 Also allows conversion expressions whose operands are references.
2124 Any other kind of expression is returned unchanged. */
2125
2126 tree
2127 stabilize_reference (tree ref)
2128 {
2129 tree result;
2130 enum tree_code code = TREE_CODE (ref);
2131
2132 switch (code)
2133 {
2134 case VAR_DECL:
2135 case PARM_DECL:
2136 case RESULT_DECL:
2137 /* No action is needed in this case. */
2138 return ref;
2139
2140 case NOP_EXPR:
2141 case CONVERT_EXPR:
2142 case FLOAT_EXPR:
2143 case FIX_TRUNC_EXPR:
2144 case FIX_FLOOR_EXPR:
2145 case FIX_ROUND_EXPR:
2146 case FIX_CEIL_EXPR:
2147 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2148 break;
2149
2150 case INDIRECT_REF:
2151 result = build_nt (INDIRECT_REF,
2152 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2153 break;
2154
2155 case COMPONENT_REF:
2156 result = build_nt (COMPONENT_REF,
2157 stabilize_reference (TREE_OPERAND (ref, 0)),
2158 TREE_OPERAND (ref, 1));
2159 break;
2160
2161 case BIT_FIELD_REF:
2162 result = build_nt (BIT_FIELD_REF,
2163 stabilize_reference (TREE_OPERAND (ref, 0)),
2164 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2165 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2166 break;
2167
2168 case ARRAY_REF:
2169 result = build_nt (ARRAY_REF,
2170 stabilize_reference (TREE_OPERAND (ref, 0)),
2171 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2172 break;
2173
2174 case ARRAY_RANGE_REF:
2175 result = build_nt (ARRAY_RANGE_REF,
2176 stabilize_reference (TREE_OPERAND (ref, 0)),
2177 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2178 break;
2179
2180 case COMPOUND_EXPR:
2181 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2182 it wouldn't be ignored. This matters when dealing with
2183 volatiles. */
2184 return stabilize_reference_1 (ref);
2185
2186 case RTL_EXPR:
2187 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2188 save_expr (build1 (ADDR_EXPR,
2189 build_pointer_type (TREE_TYPE (ref)),
2190 ref)));
2191 break;
2192
2193 /* If arg isn't a kind of lvalue we recognize, make no change.
2194 Caller should recognize the error for an invalid lvalue. */
2195 default:
2196 return ref;
2197
2198 case ERROR_MARK:
2199 return error_mark_node;
2200 }
2201
2202 TREE_TYPE (result) = TREE_TYPE (ref);
2203 TREE_READONLY (result) = TREE_READONLY (ref);
2204 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2205 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2206
2207 return result;
2208 }
2209
2210 /* Subroutine of stabilize_reference; this is called for subtrees of
2211 references. Any expression with side-effects must be put in a SAVE_EXPR
2212 to ensure that it is only evaluated once.
2213
2214 We don't put SAVE_EXPR nodes around everything, because assigning very
2215 simple expressions to temporaries causes us to miss good opportunities
2216 for optimizations. Among other things, the opportunity to fold in the
2217 addition of a constant into an addressing mode often gets lost, e.g.
2218 "y[i+1] += x;". In general, we take the approach that we should not make
2219 an assignment unless we are forced into it - i.e., that any non-side effect
2220 operator should be allowed, and that cse should take care of coalescing
2221 multiple utterances of the same expression should that prove fruitful. */
2222
2223 tree
2224 stabilize_reference_1 (tree e)
2225 {
2226 tree result;
2227 enum tree_code code = TREE_CODE (e);
2228
2229 /* We cannot ignore const expressions because it might be a reference
2230 to a const array but whose index contains side-effects. But we can
2231 ignore things that are actual constant or that already have been
2232 handled by this function. */
2233
2234 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2235 return e;
2236
2237 switch (TREE_CODE_CLASS (code))
2238 {
2239 case 'x':
2240 case 't':
2241 case 'd':
2242 case 'b':
2243 case '<':
2244 case 's':
2245 case 'e':
2246 case 'r':
2247 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2248 so that it will only be evaluated once. */
2249 /* The reference (r) and comparison (<) classes could be handled as
2250 below, but it is generally faster to only evaluate them once. */
2251 if (TREE_SIDE_EFFECTS (e))
2252 return save_expr (e);
2253 return e;
2254
2255 case 'c':
2256 /* Constants need no processing. In fact, we should never reach
2257 here. */
2258 return e;
2259
2260 case '2':
2261 /* Division is slow and tends to be compiled with jumps,
2262 especially the division by powers of 2 that is often
2263 found inside of an array reference. So do it just once. */
2264 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2265 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2266 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2267 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2268 return save_expr (e);
2269 /* Recursively stabilize each operand. */
2270 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2271 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2272 break;
2273
2274 case '1':
2275 /* Recursively stabilize each operand. */
2276 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2277 break;
2278
2279 default:
2280 abort ();
2281 }
2282
2283 TREE_TYPE (result) = TREE_TYPE (e);
2284 TREE_READONLY (result) = TREE_READONLY (e);
2285 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2286 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2287
2288 return result;
2289 }
2290 \f
2291 /* Low-level constructors for expressions. */
2292
2293 /* Build an expression of code CODE, data type TYPE, and operands as
2294 specified. Expressions and reference nodes can be created this way.
2295 Constants, decls, types and misc nodes cannot be.
2296
2297 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2298 enough for all extant tree codes. These functions can be called
2299 directly (preferably!), but can also be obtained via GCC preprocessor
2300 magic within the build macro. */
2301
2302 tree
2303 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2304 {
2305 tree t;
2306
2307 #ifdef ENABLE_CHECKING
2308 if (TREE_CODE_LENGTH (code) != 0)
2309 abort ();
2310 #endif
2311
2312 t = make_node_stat (code PASS_MEM_STAT);
2313 TREE_TYPE (t) = tt;
2314
2315 return t;
2316 }
2317
2318 tree
2319 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2320 {
2321 int length = sizeof (struct tree_exp);
2322 #ifdef GATHER_STATISTICS
2323 tree_node_kind kind;
2324 #endif
2325 tree t;
2326
2327 #ifdef GATHER_STATISTICS
2328 switch (TREE_CODE_CLASS (code))
2329 {
2330 case 's': /* an expression with side effects */
2331 kind = s_kind;
2332 break;
2333 case 'r': /* a reference */
2334 kind = r_kind;
2335 break;
2336 default:
2337 kind = e_kind;
2338 break;
2339 }
2340
2341 tree_node_counts[(int) kind]++;
2342 tree_node_sizes[(int) kind] += length;
2343 #endif
2344
2345 #ifdef ENABLE_CHECKING
2346 if (TREE_CODE_LENGTH (code) != 1)
2347 abort ();
2348 #endif /* ENABLE_CHECKING */
2349
2350 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2351
2352 memset (t, 0, sizeof (struct tree_common));
2353
2354 TREE_SET_CODE (t, code);
2355
2356 TREE_TYPE (t) = type;
2357 TREE_COMPLEXITY (t) = 0;
2358 TREE_OPERAND (t, 0) = node;
2359 if (node && first_rtl_op (code) != 0)
2360 {
2361 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2362 TREE_READONLY (t) = TREE_READONLY (node);
2363 }
2364
2365 if (TREE_CODE_CLASS (code) == 's')
2366 TREE_SIDE_EFFECTS (t) = 1;
2367 else switch (code)
2368 {
2369 case INIT_EXPR:
2370 case MODIFY_EXPR:
2371 case VA_ARG_EXPR:
2372 case RTL_EXPR:
2373 case PREDECREMENT_EXPR:
2374 case PREINCREMENT_EXPR:
2375 case POSTDECREMENT_EXPR:
2376 case POSTINCREMENT_EXPR:
2377 /* All of these have side-effects, no matter what their
2378 operands are. */
2379 TREE_SIDE_EFFECTS (t) = 1;
2380 TREE_READONLY (t) = 0;
2381 break;
2382
2383 case INDIRECT_REF:
2384 /* Whether a dereference is readonly has nothing to do with whether
2385 its operand is readonly. */
2386 TREE_READONLY (t) = 0;
2387 break;
2388
2389 case ADDR_EXPR:
2390 if (node)
2391 {
2392 /* The address of a volatile decl or reference does not have
2393 side-effects. But be careful not to ignore side-effects from
2394 other sources deeper in the expression--if node is a _REF and
2395 one of its operands has side-effects, so do we. */
2396 if (TREE_THIS_VOLATILE (node))
2397 {
2398 TREE_SIDE_EFFECTS (t) = 0;
2399 if (!DECL_P (node))
2400 {
2401 int i = first_rtl_op (TREE_CODE (node)) - 1;
2402 for (; i >= 0; --i)
2403 {
2404 if (TREE_SIDE_EFFECTS (TREE_OPERAND (node, i)))
2405 TREE_SIDE_EFFECTS (t) = 1;
2406 }
2407 }
2408 }
2409 }
2410 break;
2411
2412 default:
2413 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2414 TREE_CONSTANT (t) = 1;
2415 break;
2416 }
2417
2418 return t;
2419 }
2420
2421 #define PROCESS_ARG(N) \
2422 do { \
2423 TREE_OPERAND (t, N) = arg##N; \
2424 if (arg##N && fro > N) \
2425 { \
2426 if (TREE_SIDE_EFFECTS (arg##N)) \
2427 side_effects = 1; \
2428 if (!TREE_READONLY (arg##N)) \
2429 read_only = 0; \
2430 if (!TREE_CONSTANT (arg##N)) \
2431 constant = 0; \
2432 } \
2433 } while (0)
2434
2435 tree
2436 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2437 {
2438 bool constant, read_only, side_effects;
2439 tree t;
2440 int fro;
2441
2442 #ifdef ENABLE_CHECKING
2443 if (TREE_CODE_LENGTH (code) != 2)
2444 abort ();
2445 #endif
2446
2447 t = make_node_stat (code PASS_MEM_STAT);
2448 TREE_TYPE (t) = tt;
2449
2450 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2451 result based on those same flags for the arguments. But if the
2452 arguments aren't really even `tree' expressions, we shouldn't be trying
2453 to do this. */
2454 fro = first_rtl_op (code);
2455
2456 /* Expressions without side effects may be constant if their
2457 arguments are as well. */
2458 constant = (TREE_CODE_CLASS (code) == '<'
2459 || TREE_CODE_CLASS (code) == '2');
2460 read_only = 1;
2461 side_effects = TREE_SIDE_EFFECTS (t);
2462
2463 PROCESS_ARG(0);
2464 PROCESS_ARG(1);
2465
2466 if (code == CALL_EXPR && !side_effects)
2467 {
2468 tree node;
2469 int i;
2470
2471 /* Calls have side-effects, except those to const or
2472 pure functions. */
2473 i = call_expr_flags (t);
2474 if (!(i & (ECF_CONST | ECF_PURE)))
2475 side_effects = 1;
2476
2477 /* And even those have side-effects if their arguments do. */
2478 else for (node = TREE_OPERAND (t, 1); node; node = TREE_CHAIN (node))
2479 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2480 {
2481 side_effects = 1;
2482 break;
2483 }
2484 }
2485
2486 TREE_READONLY (t) = read_only;
2487 TREE_CONSTANT (t) = constant;
2488 TREE_SIDE_EFFECTS (t) = side_effects;
2489
2490 return t;
2491 }
2492
2493 tree
2494 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2495 tree arg2 MEM_STAT_DECL)
2496 {
2497 bool constant, read_only, side_effects;
2498 tree t;
2499 int fro;
2500
2501 /* ??? Quite a lot of existing code passes one too many arguments to
2502 CALL_EXPR. Not going to fix them, because CALL_EXPR is about to
2503 grow a new argument, so it would just mean changing them back. */
2504 if (code == CALL_EXPR)
2505 {
2506 if (arg2 != NULL_TREE)
2507 abort ();
2508 return build2 (code, tt, arg0, arg1);
2509 }
2510
2511 #ifdef ENABLE_CHECKING
2512 if (TREE_CODE_LENGTH (code) != 3)
2513 abort ();
2514 #endif
2515
2516 t = make_node_stat (code PASS_MEM_STAT);
2517 TREE_TYPE (t) = tt;
2518
2519 fro = first_rtl_op (code);
2520
2521 side_effects = TREE_SIDE_EFFECTS (t);
2522
2523 PROCESS_ARG(0);
2524 PROCESS_ARG(1);
2525 PROCESS_ARG(2);
2526
2527 TREE_SIDE_EFFECTS (t) = side_effects;
2528
2529 return t;
2530 }
2531
2532 tree
2533 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2534 tree arg2, tree arg3 MEM_STAT_DECL)
2535 {
2536 bool constant, read_only, side_effects;
2537 tree t;
2538 int fro;
2539
2540 #ifdef ENABLE_CHECKING
2541 if (TREE_CODE_LENGTH (code) != 4)
2542 abort ();
2543 #endif
2544
2545 t = make_node_stat (code PASS_MEM_STAT);
2546 TREE_TYPE (t) = tt;
2547
2548 fro = first_rtl_op (code);
2549
2550 side_effects = TREE_SIDE_EFFECTS (t);
2551
2552 PROCESS_ARG(0);
2553 PROCESS_ARG(1);
2554 PROCESS_ARG(2);
2555 PROCESS_ARG(3);
2556
2557 TREE_SIDE_EFFECTS (t) = side_effects;
2558
2559 return t;
2560 }
2561
2562 /* Backup definition for non-gcc build compilers. */
2563
2564 tree
2565 (build) (enum tree_code code, tree tt, ...)
2566 {
2567 tree t, arg0, arg1, arg2, arg3;
2568 int length = TREE_CODE_LENGTH (code);
2569 va_list p;
2570
2571 va_start (p, tt);
2572 switch (length)
2573 {
2574 case 0:
2575 t = build0 (code, tt);
2576 break;
2577 case 1:
2578 arg0 = va_arg (p, tree);
2579 t = build1 (code, tt, arg0);
2580 break;
2581 case 2:
2582 arg0 = va_arg (p, tree);
2583 arg1 = va_arg (p, tree);
2584 t = build2 (code, tt, arg0, arg1);
2585 break;
2586 case 3:
2587 arg0 = va_arg (p, tree);
2588 arg1 = va_arg (p, tree);
2589 arg2 = va_arg (p, tree);
2590 t = build3 (code, tt, arg0, arg1, arg2);
2591 break;
2592 case 4:
2593 arg0 = va_arg (p, tree);
2594 arg1 = va_arg (p, tree);
2595 arg2 = va_arg (p, tree);
2596 arg3 = va_arg (p, tree);
2597 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2598 break;
2599 default:
2600 abort ();
2601 }
2602 va_end (p);
2603
2604 return t;
2605 }
2606
2607 /* Similar except don't specify the TREE_TYPE
2608 and leave the TREE_SIDE_EFFECTS as 0.
2609 It is permissible for arguments to be null,
2610 or even garbage if their values do not matter. */
2611
2612 tree
2613 build_nt (enum tree_code code, ...)
2614 {
2615 tree t;
2616 int length;
2617 int i;
2618 va_list p;
2619
2620 va_start (p, code);
2621
2622 t = make_node (code);
2623 length = TREE_CODE_LENGTH (code);
2624
2625 for (i = 0; i < length; i++)
2626 TREE_OPERAND (t, i) = va_arg (p, tree);
2627
2628 va_end (p);
2629 return t;
2630 }
2631 \f
2632 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2633 We do NOT enter this node in any sort of symbol table.
2634
2635 layout_decl is used to set up the decl's storage layout.
2636 Other slots are initialized to 0 or null pointers. */
2637
2638 tree
2639 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2640 {
2641 tree t;
2642
2643 t = make_node_stat (code PASS_MEM_STAT);
2644
2645 /* if (type == error_mark_node)
2646 type = integer_type_node; */
2647 /* That is not done, deliberately, so that having error_mark_node
2648 as the type can suppress useless errors in the use of this variable. */
2649
2650 DECL_NAME (t) = name;
2651 TREE_TYPE (t) = type;
2652
2653 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2654 layout_decl (t, 0);
2655 else if (code == FUNCTION_DECL)
2656 DECL_MODE (t) = FUNCTION_MODE;
2657
2658 return t;
2659 }
2660 \f
2661 /* BLOCK nodes are used to represent the structure of binding contours
2662 and declarations, once those contours have been exited and their contents
2663 compiled. This information is used for outputting debugging info. */
2664
2665 tree
2666 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2667 tree supercontext, tree chain)
2668 {
2669 tree block = make_node (BLOCK);
2670
2671 BLOCK_VARS (block) = vars;
2672 BLOCK_SUBBLOCKS (block) = subblocks;
2673 BLOCK_SUPERCONTEXT (block) = supercontext;
2674 BLOCK_CHAIN (block) = chain;
2675 return block;
2676 }
2677
2678 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2679 location where an expression or an identifier were encountered. It
2680 is necessary for languages where the frontend parser will handle
2681 recursively more than one file (Java is one of them). */
2682
2683 tree
2684 build_expr_wfl (tree node, const char *file, int line, int col)
2685 {
2686 static const char *last_file = 0;
2687 static tree last_filenode = NULL_TREE;
2688 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2689
2690 EXPR_WFL_NODE (wfl) = node;
2691 EXPR_WFL_SET_LINECOL (wfl, line, col);
2692 if (file != last_file)
2693 {
2694 last_file = file;
2695 last_filenode = file ? get_identifier (file) : NULL_TREE;
2696 }
2697
2698 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2699 if (node)
2700 {
2701 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2702 TREE_TYPE (wfl) = TREE_TYPE (node);
2703 }
2704
2705 return wfl;
2706 }
2707 \f
2708 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2709 is ATTRIBUTE. */
2710
2711 tree
2712 build_decl_attribute_variant (tree ddecl, tree attribute)
2713 {
2714 DECL_ATTRIBUTES (ddecl) = attribute;
2715 return ddecl;
2716 }
2717
2718 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2719 is ATTRIBUTE.
2720
2721 Record such modified types already made so we don't make duplicates. */
2722
2723 tree
2724 build_type_attribute_variant (tree ttype, tree attribute)
2725 {
2726 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2727 {
2728 hashval_t hashcode = 0;
2729 tree ntype;
2730 enum tree_code code = TREE_CODE (ttype);
2731
2732 ntype = copy_node (ttype);
2733
2734 TYPE_POINTER_TO (ntype) = 0;
2735 TYPE_REFERENCE_TO (ntype) = 0;
2736 TYPE_ATTRIBUTES (ntype) = attribute;
2737
2738 /* Create a new main variant of TYPE. */
2739 TYPE_MAIN_VARIANT (ntype) = ntype;
2740 TYPE_NEXT_VARIANT (ntype) = 0;
2741 set_type_quals (ntype, TYPE_UNQUALIFIED);
2742
2743 hashcode = iterative_hash_object (code, hashcode);
2744 if (TREE_TYPE (ntype))
2745 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2746 hashcode);
2747 hashcode = attribute_hash_list (attribute, hashcode);
2748
2749 switch (TREE_CODE (ntype))
2750 {
2751 case FUNCTION_TYPE:
2752 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
2753 break;
2754 case ARRAY_TYPE:
2755 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
2756 hashcode);
2757 break;
2758 case INTEGER_TYPE:
2759 hashcode = iterative_hash_object
2760 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
2761 hashcode = iterative_hash_object
2762 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
2763 break;
2764 case REAL_TYPE:
2765 {
2766 unsigned int precision = TYPE_PRECISION (ntype);
2767 hashcode = iterative_hash_object (precision, hashcode);
2768 }
2769 break;
2770 default:
2771 break;
2772 }
2773
2774 ntype = type_hash_canon (hashcode, ntype);
2775 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2776 }
2777
2778 return ttype;
2779 }
2780
2781 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2782 or zero if not.
2783
2784 We try both `text' and `__text__', ATTR may be either one. */
2785 /* ??? It might be a reasonable simplification to require ATTR to be only
2786 `text'. One might then also require attribute lists to be stored in
2787 their canonicalized form. */
2788
2789 int
2790 is_attribute_p (const char *attr, tree ident)
2791 {
2792 int ident_len, attr_len;
2793 const char *p;
2794
2795 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2796 return 0;
2797
2798 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2799 return 1;
2800
2801 p = IDENTIFIER_POINTER (ident);
2802 ident_len = strlen (p);
2803 attr_len = strlen (attr);
2804
2805 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2806 if (attr[0] == '_')
2807 {
2808 if (attr[1] != '_'
2809 || attr[attr_len - 2] != '_'
2810 || attr[attr_len - 1] != '_')
2811 abort ();
2812 if (ident_len == attr_len - 4
2813 && strncmp (attr + 2, p, attr_len - 4) == 0)
2814 return 1;
2815 }
2816 else
2817 {
2818 if (ident_len == attr_len + 4
2819 && p[0] == '_' && p[1] == '_'
2820 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2821 && strncmp (attr, p + 2, attr_len) == 0)
2822 return 1;
2823 }
2824
2825 return 0;
2826 }
2827
2828 /* Given an attribute name and a list of attributes, return a pointer to the
2829 attribute's list element if the attribute is part of the list, or NULL_TREE
2830 if not found. If the attribute appears more than once, this only
2831 returns the first occurrence; the TREE_CHAIN of the return value should
2832 be passed back in if further occurrences are wanted. */
2833
2834 tree
2835 lookup_attribute (const char *attr_name, tree list)
2836 {
2837 tree l;
2838
2839 for (l = list; l; l = TREE_CHAIN (l))
2840 {
2841 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2842 abort ();
2843 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2844 return l;
2845 }
2846
2847 return NULL_TREE;
2848 }
2849
2850 /* Return an attribute list that is the union of a1 and a2. */
2851
2852 tree
2853 merge_attributes (tree a1, tree a2)
2854 {
2855 tree attributes;
2856
2857 /* Either one unset? Take the set one. */
2858
2859 if ((attributes = a1) == 0)
2860 attributes = a2;
2861
2862 /* One that completely contains the other? Take it. */
2863
2864 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2865 {
2866 if (attribute_list_contained (a2, a1))
2867 attributes = a2;
2868 else
2869 {
2870 /* Pick the longest list, and hang on the other list. */
2871
2872 if (list_length (a1) < list_length (a2))
2873 attributes = a2, a2 = a1;
2874
2875 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2876 {
2877 tree a;
2878 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2879 attributes);
2880 a != NULL_TREE;
2881 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2882 TREE_CHAIN (a)))
2883 {
2884 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2885 break;
2886 }
2887 if (a == NULL_TREE)
2888 {
2889 a1 = copy_node (a2);
2890 TREE_CHAIN (a1) = attributes;
2891 attributes = a1;
2892 }
2893 }
2894 }
2895 }
2896 return attributes;
2897 }
2898
2899 /* Given types T1 and T2, merge their attributes and return
2900 the result. */
2901
2902 tree
2903 merge_type_attributes (tree t1, tree t2)
2904 {
2905 return merge_attributes (TYPE_ATTRIBUTES (t1),
2906 TYPE_ATTRIBUTES (t2));
2907 }
2908
2909 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2910 the result. */
2911
2912 tree
2913 merge_decl_attributes (tree olddecl, tree newdecl)
2914 {
2915 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2916 DECL_ATTRIBUTES (newdecl));
2917 }
2918
2919 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2920
2921 /* Specialization of merge_decl_attributes for various Windows targets.
2922
2923 This handles the following situation:
2924
2925 __declspec (dllimport) int foo;
2926 int foo;
2927
2928 The second instance of `foo' nullifies the dllimport. */
2929
2930 tree
2931 merge_dllimport_decl_attributes (tree old, tree new)
2932 {
2933 tree a;
2934 int delete_dllimport_p;
2935
2936 old = DECL_ATTRIBUTES (old);
2937 new = DECL_ATTRIBUTES (new);
2938
2939 /* What we need to do here is remove from `old' dllimport if it doesn't
2940 appear in `new'. dllimport behaves like extern: if a declaration is
2941 marked dllimport and a definition appears later, then the object
2942 is not dllimport'd. */
2943 if (lookup_attribute ("dllimport", old) != NULL_TREE
2944 && lookup_attribute ("dllimport", new) == NULL_TREE)
2945 delete_dllimport_p = 1;
2946 else
2947 delete_dllimport_p = 0;
2948
2949 a = merge_attributes (old, new);
2950
2951 if (delete_dllimport_p)
2952 {
2953 tree prev, t;
2954
2955 /* Scan the list for dllimport and delete it. */
2956 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2957 {
2958 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2959 {
2960 if (prev == NULL_TREE)
2961 a = TREE_CHAIN (a);
2962 else
2963 TREE_CHAIN (prev) = TREE_CHAIN (t);
2964 break;
2965 }
2966 }
2967 }
2968
2969 return a;
2970 }
2971
2972 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2973 \f
2974 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2975 of the various TYPE_QUAL values. */
2976
2977 static void
2978 set_type_quals (tree type, int type_quals)
2979 {
2980 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2981 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2982 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2983 }
2984
2985 /* Returns true iff cand is equivalent to base with type_quals. */
2986
2987 bool
2988 check_qualified_type (tree cand, tree base, int type_quals)
2989 {
2990 return (TYPE_QUALS (cand) == type_quals
2991 && TYPE_NAME (cand) == TYPE_NAME (base)
2992 /* Apparently this is needed for Objective-C. */
2993 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
2994 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
2995 TYPE_ATTRIBUTES (base)));
2996 }
2997
2998 /* Return a version of the TYPE, qualified as indicated by the
2999 TYPE_QUALS, if one exists. If no qualified version exists yet,
3000 return NULL_TREE. */
3001
3002 tree
3003 get_qualified_type (tree type, int type_quals)
3004 {
3005 tree t;
3006
3007 if (TYPE_QUALS (type) == type_quals)
3008 return type;
3009
3010 /* Search the chain of variants to see if there is already one there just
3011 like the one we need to have. If so, use that existing one. We must
3012 preserve the TYPE_NAME, since there is code that depends on this. */
3013 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3014 if (check_qualified_type (t, type, type_quals))
3015 return t;
3016
3017 return NULL_TREE;
3018 }
3019
3020 /* Like get_qualified_type, but creates the type if it does not
3021 exist. This function never returns NULL_TREE. */
3022
3023 tree
3024 build_qualified_type (tree type, int type_quals)
3025 {
3026 tree t;
3027
3028 /* See if we already have the appropriate qualified variant. */
3029 t = get_qualified_type (type, type_quals);
3030
3031 /* If not, build it. */
3032 if (!t)
3033 {
3034 t = build_type_copy (type);
3035 set_type_quals (t, type_quals);
3036 }
3037
3038 return t;
3039 }
3040
3041 /* Create a new variant of TYPE, equivalent but distinct.
3042 This is so the caller can modify it. */
3043
3044 tree
3045 build_type_copy (tree type)
3046 {
3047 tree t, m = TYPE_MAIN_VARIANT (type);
3048
3049 t = copy_node (type);
3050
3051 TYPE_POINTER_TO (t) = 0;
3052 TYPE_REFERENCE_TO (t) = 0;
3053
3054 /* Add this type to the chain of variants of TYPE. */
3055 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3056 TYPE_NEXT_VARIANT (m) = t;
3057
3058 return t;
3059 }
3060 \f
3061 /* Hashing of types so that we don't make duplicates.
3062 The entry point is `type_hash_canon'. */
3063
3064 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3065 with types in the TREE_VALUE slots), by adding the hash codes
3066 of the individual types. */
3067
3068 unsigned int
3069 type_hash_list (tree list, hashval_t hashcode)
3070 {
3071 tree tail;
3072
3073 for (tail = list; tail; tail = TREE_CHAIN (tail))
3074 if (TREE_VALUE (tail) != error_mark_node)
3075 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3076 hashcode);
3077
3078 return hashcode;
3079 }
3080
3081 /* These are the Hashtable callback functions. */
3082
3083 /* Returns true if the types are equal. */
3084
3085 static int
3086 type_hash_eq (const void *va, const void *vb)
3087 {
3088 const struct type_hash *a = va, *b = vb;
3089 if (a->hash == b->hash
3090 && TREE_CODE (a->type) == TREE_CODE (b->type)
3091 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
3092 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3093 TYPE_ATTRIBUTES (b->type))
3094 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
3095 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3096 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3097 TYPE_MAX_VALUE (b->type)))
3098 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3099 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3100 TYPE_MIN_VALUE (b->type)))
3101 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3102 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
3103 || (TYPE_DOMAIN (a->type)
3104 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
3105 && TYPE_DOMAIN (b->type)
3106 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
3107 && type_list_equal (TYPE_DOMAIN (a->type),
3108 TYPE_DOMAIN (b->type)))))
3109 return 1;
3110 return 0;
3111 }
3112
3113 /* Return the cached hash value. */
3114
3115 static hashval_t
3116 type_hash_hash (const void *item)
3117 {
3118 return ((const struct type_hash *) item)->hash;
3119 }
3120
3121 /* Look in the type hash table for a type isomorphic to TYPE.
3122 If one is found, return it. Otherwise return 0. */
3123
3124 tree
3125 type_hash_lookup (hashval_t hashcode, tree type)
3126 {
3127 struct type_hash *h, in;
3128
3129 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3130 must call that routine before comparing TYPE_ALIGNs. */
3131 layout_type (type);
3132
3133 in.hash = hashcode;
3134 in.type = type;
3135
3136 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3137 if (h)
3138 return h->type;
3139 return NULL_TREE;
3140 }
3141
3142 /* Add an entry to the type-hash-table
3143 for a type TYPE whose hash code is HASHCODE. */
3144
3145 void
3146 type_hash_add (hashval_t hashcode, tree type)
3147 {
3148 struct type_hash *h;
3149 void **loc;
3150
3151 h = ggc_alloc (sizeof (struct type_hash));
3152 h->hash = hashcode;
3153 h->type = type;
3154 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3155 *(struct type_hash **) loc = h;
3156 }
3157
3158 /* Given TYPE, and HASHCODE its hash code, return the canonical
3159 object for an identical type if one already exists.
3160 Otherwise, return TYPE, and record it as the canonical object
3161 if it is a permanent object.
3162
3163 To use this function, first create a type of the sort you want.
3164 Then compute its hash code from the fields of the type that
3165 make it different from other similar types.
3166 Then call this function and use the value.
3167 This function frees the type you pass in if it is a duplicate. */
3168
3169 /* Set to 1 to debug without canonicalization. Never set by program. */
3170 int debug_no_type_hash = 0;
3171
3172 tree
3173 type_hash_canon (unsigned int hashcode, tree type)
3174 {
3175 tree t1;
3176
3177 if (debug_no_type_hash)
3178 return type;
3179
3180 /* See if the type is in the hash table already. If so, return it.
3181 Otherwise, add the type. */
3182 t1 = type_hash_lookup (hashcode, type);
3183 if (t1 != 0)
3184 {
3185 #ifdef GATHER_STATISTICS
3186 tree_node_counts[(int) t_kind]--;
3187 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3188 #endif
3189 return t1;
3190 }
3191 else
3192 {
3193 type_hash_add (hashcode, type);
3194 return type;
3195 }
3196 }
3197
3198 /* See if the data pointed to by the type hash table is marked. We consider
3199 it marked if the type is marked or if a debug type number or symbol
3200 table entry has been made for the type. This reduces the amount of
3201 debugging output and eliminates that dependency of the debug output on
3202 the number of garbage collections. */
3203
3204 static int
3205 type_hash_marked_p (const void *p)
3206 {
3207 tree type = ((struct type_hash *) p)->type;
3208
3209 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3210 }
3211
3212 static void
3213 print_type_hash_statistics (void)
3214 {
3215 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3216 (long) htab_size (type_hash_table),
3217 (long) htab_elements (type_hash_table),
3218 htab_collisions (type_hash_table));
3219 }
3220
3221 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3222 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3223 by adding the hash codes of the individual attributes. */
3224
3225 unsigned int
3226 attribute_hash_list (tree list, hashval_t hashcode)
3227 {
3228 tree tail;
3229
3230 for (tail = list; tail; tail = TREE_CHAIN (tail))
3231 /* ??? Do we want to add in TREE_VALUE too? */
3232 hashcode = iterative_hash_object
3233 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3234 return hashcode;
3235 }
3236
3237 /* Given two lists of attributes, return true if list l2 is
3238 equivalent to l1. */
3239
3240 int
3241 attribute_list_equal (tree l1, tree l2)
3242 {
3243 return attribute_list_contained (l1, l2)
3244 && attribute_list_contained (l2, l1);
3245 }
3246
3247 /* Given two lists of attributes, return true if list L2 is
3248 completely contained within L1. */
3249 /* ??? This would be faster if attribute names were stored in a canonicalized
3250 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3251 must be used to show these elements are equivalent (which they are). */
3252 /* ??? It's not clear that attributes with arguments will always be handled
3253 correctly. */
3254
3255 int
3256 attribute_list_contained (tree l1, tree l2)
3257 {
3258 tree t1, t2;
3259
3260 /* First check the obvious, maybe the lists are identical. */
3261 if (l1 == l2)
3262 return 1;
3263
3264 /* Maybe the lists are similar. */
3265 for (t1 = l1, t2 = l2;
3266 t1 != 0 && t2 != 0
3267 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3268 && TREE_VALUE (t1) == TREE_VALUE (t2);
3269 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3270
3271 /* Maybe the lists are equal. */
3272 if (t1 == 0 && t2 == 0)
3273 return 1;
3274
3275 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3276 {
3277 tree attr;
3278 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3279 attr != NULL_TREE;
3280 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3281 TREE_CHAIN (attr)))
3282 {
3283 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3284 break;
3285 }
3286
3287 if (attr == 0)
3288 return 0;
3289
3290 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3291 return 0;
3292 }
3293
3294 return 1;
3295 }
3296
3297 /* Given two lists of types
3298 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3299 return 1 if the lists contain the same types in the same order.
3300 Also, the TREE_PURPOSEs must match. */
3301
3302 int
3303 type_list_equal (tree l1, tree l2)
3304 {
3305 tree t1, t2;
3306
3307 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3308 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3309 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3310 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3311 && (TREE_TYPE (TREE_PURPOSE (t1))
3312 == TREE_TYPE (TREE_PURPOSE (t2))))))
3313 return 0;
3314
3315 return t1 == t2;
3316 }
3317
3318 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3319 given by TYPE. If the argument list accepts variable arguments,
3320 then this function counts only the ordinary arguments. */
3321
3322 int
3323 type_num_arguments (tree type)
3324 {
3325 int i = 0;
3326 tree t;
3327
3328 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3329 /* If the function does not take a variable number of arguments,
3330 the last element in the list will have type `void'. */
3331 if (VOID_TYPE_P (TREE_VALUE (t)))
3332 break;
3333 else
3334 ++i;
3335
3336 return i;
3337 }
3338
3339 /* Nonzero if integer constants T1 and T2
3340 represent the same constant value. */
3341
3342 int
3343 tree_int_cst_equal (tree t1, tree t2)
3344 {
3345 if (t1 == t2)
3346 return 1;
3347
3348 if (t1 == 0 || t2 == 0)
3349 return 0;
3350
3351 if (TREE_CODE (t1) == INTEGER_CST
3352 && TREE_CODE (t2) == INTEGER_CST
3353 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3354 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3355 return 1;
3356
3357 return 0;
3358 }
3359
3360 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3361 The precise way of comparison depends on their data type. */
3362
3363 int
3364 tree_int_cst_lt (tree t1, tree t2)
3365 {
3366 if (t1 == t2)
3367 return 0;
3368
3369 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3370 {
3371 int t1_sgn = tree_int_cst_sgn (t1);
3372 int t2_sgn = tree_int_cst_sgn (t2);
3373
3374 if (t1_sgn < t2_sgn)
3375 return 1;
3376 else if (t1_sgn > t2_sgn)
3377 return 0;
3378 /* Otherwise, both are non-negative, so we compare them as
3379 unsigned just in case one of them would overflow a signed
3380 type. */
3381 }
3382 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3383 return INT_CST_LT (t1, t2);
3384
3385 return INT_CST_LT_UNSIGNED (t1, t2);
3386 }
3387
3388 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3389
3390 int
3391 tree_int_cst_compare (tree t1, tree t2)
3392 {
3393 if (tree_int_cst_lt (t1, t2))
3394 return -1;
3395 else if (tree_int_cst_lt (t2, t1))
3396 return 1;
3397 else
3398 return 0;
3399 }
3400
3401 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3402 the host. If POS is zero, the value can be represented in a single
3403 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3404 be represented in a single unsigned HOST_WIDE_INT. */
3405
3406 int
3407 host_integerp (tree t, int pos)
3408 {
3409 return (TREE_CODE (t) == INTEGER_CST
3410 && ! TREE_OVERFLOW (t)
3411 && ((TREE_INT_CST_HIGH (t) == 0
3412 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3413 || (! pos && TREE_INT_CST_HIGH (t) == -1
3414 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3415 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3416 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3417 }
3418
3419 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3420 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3421 be positive. Abort if we cannot satisfy the above conditions. */
3422
3423 HOST_WIDE_INT
3424 tree_low_cst (tree t, int pos)
3425 {
3426 if (host_integerp (t, pos))
3427 return TREE_INT_CST_LOW (t);
3428 else
3429 abort ();
3430 }
3431
3432 /* Return the most significant bit of the integer constant T. */
3433
3434 int
3435 tree_int_cst_msb (tree t)
3436 {
3437 int prec;
3438 HOST_WIDE_INT h;
3439 unsigned HOST_WIDE_INT l;
3440
3441 /* Note that using TYPE_PRECISION here is wrong. We care about the
3442 actual bits, not the (arbitrary) range of the type. */
3443 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3444 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3445 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3446 return (l & 1) == 1;
3447 }
3448
3449 /* Return an indication of the sign of the integer constant T.
3450 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3451 Note that -1 will never be returned it T's type is unsigned. */
3452
3453 int
3454 tree_int_cst_sgn (tree t)
3455 {
3456 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3457 return 0;
3458 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3459 return 1;
3460 else if (TREE_INT_CST_HIGH (t) < 0)
3461 return -1;
3462 else
3463 return 1;
3464 }
3465
3466 /* Compare two constructor-element-type constants. Return 1 if the lists
3467 are known to be equal; otherwise return 0. */
3468
3469 int
3470 simple_cst_list_equal (tree l1, tree l2)
3471 {
3472 while (l1 != NULL_TREE && l2 != NULL_TREE)
3473 {
3474 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3475 return 0;
3476
3477 l1 = TREE_CHAIN (l1);
3478 l2 = TREE_CHAIN (l2);
3479 }
3480
3481 return l1 == l2;
3482 }
3483
3484 /* Return truthvalue of whether T1 is the same tree structure as T2.
3485 Return 1 if they are the same.
3486 Return 0 if they are understandably different.
3487 Return -1 if either contains tree structure not understood by
3488 this function. */
3489
3490 int
3491 simple_cst_equal (tree t1, tree t2)
3492 {
3493 enum tree_code code1, code2;
3494 int cmp;
3495 int i;
3496
3497 if (t1 == t2)
3498 return 1;
3499 if (t1 == 0 || t2 == 0)
3500 return 0;
3501
3502 code1 = TREE_CODE (t1);
3503 code2 = TREE_CODE (t2);
3504
3505 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3506 {
3507 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3508 || code2 == NON_LVALUE_EXPR)
3509 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3510 else
3511 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3512 }
3513
3514 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3515 || code2 == NON_LVALUE_EXPR)
3516 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3517
3518 if (code1 != code2)
3519 return 0;
3520
3521 switch (code1)
3522 {
3523 case INTEGER_CST:
3524 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3525 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3526
3527 case REAL_CST:
3528 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3529
3530 case STRING_CST:
3531 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3532 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3533 TREE_STRING_LENGTH (t1)));
3534
3535 case CONSTRUCTOR:
3536 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3537 return 1;
3538 else
3539 abort ();
3540
3541 case SAVE_EXPR:
3542 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3543
3544 case CALL_EXPR:
3545 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3546 if (cmp <= 0)
3547 return cmp;
3548 return
3549 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3550
3551 case TARGET_EXPR:
3552 /* Special case: if either target is an unallocated VAR_DECL,
3553 it means that it's going to be unified with whatever the
3554 TARGET_EXPR is really supposed to initialize, so treat it
3555 as being equivalent to anything. */
3556 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3557 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3558 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3559 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3560 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3561 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3562 cmp = 1;
3563 else
3564 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3565
3566 if (cmp <= 0)
3567 return cmp;
3568
3569 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3570
3571 case WITH_CLEANUP_EXPR:
3572 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3573 if (cmp <= 0)
3574 return cmp;
3575
3576 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3577
3578 case COMPONENT_REF:
3579 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3580 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3581
3582 return 0;
3583
3584 case VAR_DECL:
3585 case PARM_DECL:
3586 case CONST_DECL:
3587 case FUNCTION_DECL:
3588 return 0;
3589
3590 default:
3591 break;
3592 }
3593
3594 /* This general rule works for most tree codes. All exceptions should be
3595 handled above. If this is a language-specific tree code, we can't
3596 trust what might be in the operand, so say we don't know
3597 the situation. */
3598 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3599 return -1;
3600
3601 switch (TREE_CODE_CLASS (code1))
3602 {
3603 case '1':
3604 case '2':
3605 case '<':
3606 case 'e':
3607 case 'r':
3608 case 's':
3609 cmp = 1;
3610 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3611 {
3612 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3613 if (cmp <= 0)
3614 return cmp;
3615 }
3616
3617 return cmp;
3618
3619 default:
3620 return -1;
3621 }
3622 }
3623
3624 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3625 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3626 than U, respectively. */
3627
3628 int
3629 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3630 {
3631 if (tree_int_cst_sgn (t) < 0)
3632 return -1;
3633 else if (TREE_INT_CST_HIGH (t) != 0)
3634 return 1;
3635 else if (TREE_INT_CST_LOW (t) == u)
3636 return 0;
3637 else if (TREE_INT_CST_LOW (t) < u)
3638 return -1;
3639 else
3640 return 1;
3641 }
3642
3643 /* Return true if CODE represents an associative tree code. Otherwise
3644 return false. */
3645 bool
3646 associative_tree_code (enum tree_code code)
3647 {
3648 switch (code)
3649 {
3650 case BIT_IOR_EXPR:
3651 case BIT_AND_EXPR:
3652 case BIT_XOR_EXPR:
3653 case PLUS_EXPR:
3654 case MINUS_EXPR:
3655 case MULT_EXPR:
3656 case LSHIFT_EXPR:
3657 case RSHIFT_EXPR:
3658 case MIN_EXPR:
3659 case MAX_EXPR:
3660 return true;
3661
3662 default:
3663 break;
3664 }
3665 return false;
3666 }
3667
3668 /* Return true if CODE represents an commutative tree code. Otherwise
3669 return false. */
3670 bool
3671 commutative_tree_code (enum tree_code code)
3672 {
3673 switch (code)
3674 {
3675 case PLUS_EXPR:
3676 case MULT_EXPR:
3677 case MIN_EXPR:
3678 case MAX_EXPR:
3679 case BIT_IOR_EXPR:
3680 case BIT_XOR_EXPR:
3681 case BIT_AND_EXPR:
3682 case NE_EXPR:
3683 case EQ_EXPR:
3684 return true;
3685
3686 default:
3687 break;
3688 }
3689 return false;
3690 }
3691
3692 /* Generate a hash value for an expression. This can be used iteratively
3693 by passing a previous result as the "val" argument.
3694
3695 This function is intended to produce the same hash for expressions which
3696 would compare equal using operand_equal_p. */
3697
3698 hashval_t
3699 iterative_hash_expr (tree t, hashval_t val)
3700 {
3701 int i;
3702 enum tree_code code;
3703 char class;
3704
3705 if (t == NULL_TREE)
3706 return iterative_hash_object (t, val);
3707
3708 code = TREE_CODE (t);
3709 class = TREE_CODE_CLASS (code);
3710
3711 if (class == 'd')
3712 {
3713 /* Decls we can just compare by pointer. */
3714 val = iterative_hash_object (t, val);
3715 }
3716 else if (class == 'c')
3717 {
3718 /* Alas, constants aren't shared, so we can't rely on pointer
3719 identity. */
3720 if (code == INTEGER_CST)
3721 {
3722 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3723 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3724 }
3725 else if (code == REAL_CST)
3726 val = iterative_hash (TREE_REAL_CST_PTR (t),
3727 sizeof (REAL_VALUE_TYPE), val);
3728 else if (code == STRING_CST)
3729 val = iterative_hash (TREE_STRING_POINTER (t),
3730 TREE_STRING_LENGTH (t), val);
3731 else if (code == COMPLEX_CST)
3732 {
3733 val = iterative_hash_expr (TREE_REALPART (t), val);
3734 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3735 }
3736 else if (code == VECTOR_CST)
3737 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3738 else
3739 abort ();
3740 }
3741 else if (IS_EXPR_CODE_CLASS (class))
3742 {
3743 val = iterative_hash_object (code, val);
3744
3745 if (code == NOP_EXPR || code == CONVERT_EXPR
3746 || code == NON_LVALUE_EXPR)
3747 val = iterative_hash_object (TREE_TYPE (t), val);
3748
3749 if (commutative_tree_code (code))
3750 {
3751 /* It's a commutative expression. We want to hash it the same
3752 however it appears. We do this by first hashing both operands
3753 and then rehashing based on the order of their independent
3754 hashes. */
3755 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3756 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3757 hashval_t t;
3758
3759 if (one > two)
3760 t = one, one = two, two = t;
3761
3762 val = iterative_hash_object (one, val);
3763 val = iterative_hash_object (two, val);
3764 }
3765 else
3766 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3767 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3768 }
3769 else if (code == TREE_LIST)
3770 {
3771 /* A list of expressions, for a CALL_EXPR or as the elements of a
3772 VECTOR_CST. */
3773 for (; t; t = TREE_CHAIN (t))
3774 val = iterative_hash_expr (TREE_VALUE (t), val);
3775 }
3776 else
3777 abort ();
3778
3779 return val;
3780 }
3781 \f
3782 /* Constructors for pointer, array and function types.
3783 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3784 constructed by language-dependent code, not here.) */
3785
3786 /* Construct, lay out and return the type of pointers to TO_TYPE
3787 with mode MODE. If such a type has already been constructed,
3788 reuse it. */
3789
3790 tree
3791 build_pointer_type_for_mode (tree to_type, enum machine_mode mode)
3792 {
3793 tree t = TYPE_POINTER_TO (to_type);
3794
3795 /* First, if we already have a type for pointers to TO_TYPE and it's
3796 the proper mode, use it. */
3797 if (t != 0 && mode == ptr_mode)
3798 return t;
3799
3800 t = make_node (POINTER_TYPE);
3801
3802 TREE_TYPE (t) = to_type;
3803 TYPE_MODE (t) = mode;
3804
3805 /* We can only record one type as "the" pointer to TO_TYPE. We choose to
3806 record the pointer whose mode is ptr_mode. */
3807 if (mode == ptr_mode)
3808 TYPE_POINTER_TO (to_type) = t;
3809
3810 /* Lay out the type. This function has many callers that are concerned
3811 with expression-construction, and this simplifies them all. */
3812 layout_type (t);
3813
3814 return t;
3815 }
3816
3817 /* By default build pointers in ptr_mode. */
3818
3819 tree
3820 build_pointer_type (tree to_type)
3821 {
3822 return build_pointer_type_for_mode (to_type, ptr_mode);
3823 }
3824
3825 /* Construct, lay out and return the type of references to TO_TYPE
3826 with mode MODE. If such a type has already been constructed,
3827 reuse it. */
3828
3829 tree
3830 build_reference_type_for_mode (tree to_type, enum machine_mode mode)
3831 {
3832 tree t = TYPE_REFERENCE_TO (to_type);
3833
3834 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3835 if (t != 0 && mode == ptr_mode)
3836 return t;
3837
3838 t = make_node (REFERENCE_TYPE);
3839
3840 TREE_TYPE (t) = to_type;
3841 TYPE_MODE (t) = mode;
3842
3843 /* Record this type as the pointer to TO_TYPE. */
3844 if (mode == ptr_mode)
3845 TYPE_REFERENCE_TO (to_type) = t;
3846
3847 layout_type (t);
3848
3849 return t;
3850 }
3851
3852
3853 /* Build the node for the type of references-to-TO_TYPE by default
3854 in ptr_mode. */
3855
3856 tree
3857 build_reference_type (tree to_type)
3858 {
3859 return build_reference_type_for_mode (to_type, ptr_mode);
3860 }
3861
3862 /* Build a type that is compatible with t but has no cv quals anywhere
3863 in its type, thus
3864
3865 const char *const *const * -> char ***. */
3866
3867 tree
3868 build_type_no_quals (tree t)
3869 {
3870 switch (TREE_CODE (t))
3871 {
3872 case POINTER_TYPE:
3873 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3874 case REFERENCE_TYPE:
3875 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3876 default:
3877 return TYPE_MAIN_VARIANT (t);
3878 }
3879 }
3880
3881 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3882 MAXVAL should be the maximum value in the domain
3883 (one less than the length of the array).
3884
3885 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3886 We don't enforce this limit, that is up to caller (e.g. language front end).
3887 The limit exists because the result is a signed type and we don't handle
3888 sizes that use more than one HOST_WIDE_INT. */
3889
3890 tree
3891 build_index_type (tree maxval)
3892 {
3893 tree itype = make_node (INTEGER_TYPE);
3894
3895 TREE_TYPE (itype) = sizetype;
3896 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3897 TYPE_MIN_VALUE (itype) = size_zero_node;
3898 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3899 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3900 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3901 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3902 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3903 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3904
3905 if (host_integerp (maxval, 1))
3906 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3907 else
3908 return itype;
3909 }
3910
3911 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3912 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3913 low bound LOWVAL and high bound HIGHVAL.
3914 if TYPE==NULL_TREE, sizetype is used. */
3915
3916 tree
3917 build_range_type (tree type, tree lowval, tree highval)
3918 {
3919 tree itype = make_node (INTEGER_TYPE);
3920
3921 TREE_TYPE (itype) = type;
3922 if (type == NULL_TREE)
3923 type = sizetype;
3924
3925 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3926 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3927
3928 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3929 TYPE_MODE (itype) = TYPE_MODE (type);
3930 TYPE_SIZE (itype) = TYPE_SIZE (type);
3931 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3932 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3933 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3934
3935 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3936 return type_hash_canon (tree_low_cst (highval, 0)
3937 - tree_low_cst (lowval, 0),
3938 itype);
3939 else
3940 return itype;
3941 }
3942
3943 /* Just like build_index_type, but takes lowval and highval instead
3944 of just highval (maxval). */
3945
3946 tree
3947 build_index_2_type (tree lowval, tree highval)
3948 {
3949 return build_range_type (sizetype, lowval, highval);
3950 }
3951
3952 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3953 and number of elements specified by the range of values of INDEX_TYPE.
3954 If such a type has already been constructed, reuse it. */
3955
3956 tree
3957 build_array_type (tree elt_type, tree index_type)
3958 {
3959 tree t;
3960 hashval_t hashcode = 0;
3961
3962 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3963 {
3964 error ("arrays of functions are not meaningful");
3965 elt_type = integer_type_node;
3966 }
3967
3968 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3969 build_pointer_type (elt_type);
3970
3971 /* Allocate the array after the pointer type,
3972 in case we free it in type_hash_canon. */
3973 t = make_node (ARRAY_TYPE);
3974 TREE_TYPE (t) = elt_type;
3975 TYPE_DOMAIN (t) = index_type;
3976
3977 if (index_type == 0)
3978 {
3979 return t;
3980 }
3981
3982 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
3983 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
3984 t = type_hash_canon (hashcode, t);
3985
3986 if (!COMPLETE_TYPE_P (t))
3987 layout_type (t);
3988 return t;
3989 }
3990
3991 /* Return the TYPE of the elements comprising
3992 the innermost dimension of ARRAY. */
3993
3994 tree
3995 get_inner_array_type (tree array)
3996 {
3997 tree type = TREE_TYPE (array);
3998
3999 while (TREE_CODE (type) == ARRAY_TYPE)
4000 type = TREE_TYPE (type);
4001
4002 return type;
4003 }
4004
4005 /* Construct, lay out and return
4006 the type of functions returning type VALUE_TYPE
4007 given arguments of types ARG_TYPES.
4008 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4009 are data type nodes for the arguments of the function.
4010 If such a type has already been constructed, reuse it. */
4011
4012 tree
4013 build_function_type (tree value_type, tree arg_types)
4014 {
4015 tree t;
4016 hashval_t hashcode = 0;
4017
4018 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4019 {
4020 error ("function return type cannot be function");
4021 value_type = integer_type_node;
4022 }
4023
4024 /* Make a node of the sort we want. */
4025 t = make_node (FUNCTION_TYPE);
4026 TREE_TYPE (t) = value_type;
4027 TYPE_ARG_TYPES (t) = arg_types;
4028
4029 /* If we already have such a type, use the old one and free this one. */
4030 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4031 hashcode = type_hash_list (arg_types, hashcode);
4032 t = type_hash_canon (hashcode, t);
4033
4034 if (!COMPLETE_TYPE_P (t))
4035 layout_type (t);
4036 return t;
4037 }
4038
4039 /* Build a function type. The RETURN_TYPE is the type returned by the
4040 function. If additional arguments are provided, they are
4041 additional argument types. The list of argument types must always
4042 be terminated by NULL_TREE. */
4043
4044 tree
4045 build_function_type_list (tree return_type, ...)
4046 {
4047 tree t, args, last;
4048 va_list p;
4049
4050 va_start (p, return_type);
4051
4052 t = va_arg (p, tree);
4053 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4054 args = tree_cons (NULL_TREE, t, args);
4055
4056 last = args;
4057 args = nreverse (args);
4058 TREE_CHAIN (last) = void_list_node;
4059 args = build_function_type (return_type, args);
4060
4061 va_end (p);
4062 return args;
4063 }
4064
4065 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4066 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4067 for the method. An implicit additional parameter (of type
4068 pointer-to-BASETYPE) is added to the ARGTYPES. */
4069
4070 tree
4071 build_method_type_directly (tree basetype,
4072 tree rettype,
4073 tree argtypes)
4074 {
4075 tree t;
4076 tree ptype;
4077 int hashcode = 0;
4078
4079 /* Make a node of the sort we want. */
4080 t = make_node (METHOD_TYPE);
4081
4082 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4083 TREE_TYPE (t) = rettype;
4084 ptype = build_pointer_type (basetype);
4085
4086 /* The actual arglist for this function includes a "hidden" argument
4087 which is "this". Put it into the list of argument types. */
4088 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4089 TYPE_ARG_TYPES (t) = argtypes;
4090
4091 /* If we already have such a type, use the old one and free this one.
4092 Note that it also frees up the above cons cell if found. */
4093 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4094 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4095 hashcode = type_hash_list (argtypes, hashcode);
4096
4097 t = type_hash_canon (hashcode, t);
4098
4099 if (!COMPLETE_TYPE_P (t))
4100 layout_type (t);
4101
4102 return t;
4103 }
4104
4105 /* Construct, lay out and return the type of methods belonging to class
4106 BASETYPE and whose arguments and values are described by TYPE.
4107 If that type exists already, reuse it.
4108 TYPE must be a FUNCTION_TYPE node. */
4109
4110 tree
4111 build_method_type (tree basetype, tree type)
4112 {
4113 if (TREE_CODE (type) != FUNCTION_TYPE)
4114 abort ();
4115
4116 return build_method_type_directly (basetype,
4117 TREE_TYPE (type),
4118 TYPE_ARG_TYPES (type));
4119 }
4120
4121 /* Construct, lay out and return the type of offsets to a value
4122 of type TYPE, within an object of type BASETYPE.
4123 If a suitable offset type exists already, reuse it. */
4124
4125 tree
4126 build_offset_type (tree basetype, tree type)
4127 {
4128 tree t;
4129 hashval_t hashcode = 0;
4130
4131 /* Make a node of the sort we want. */
4132 t = make_node (OFFSET_TYPE);
4133
4134 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4135 TREE_TYPE (t) = type;
4136
4137 /* If we already have such a type, use the old one and free this one. */
4138 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4139 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4140 t = type_hash_canon (hashcode, t);
4141
4142 if (!COMPLETE_TYPE_P (t))
4143 layout_type (t);
4144
4145 return t;
4146 }
4147
4148 /* Create a complex type whose components are COMPONENT_TYPE. */
4149
4150 tree
4151 build_complex_type (tree component_type)
4152 {
4153 tree t;
4154 hashval_t hashcode;
4155
4156 /* Make a node of the sort we want. */
4157 t = make_node (COMPLEX_TYPE);
4158
4159 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4160 set_type_quals (t, TYPE_QUALS (component_type));
4161
4162 /* If we already have such a type, use the old one and free this one. */
4163 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4164 t = type_hash_canon (hashcode, t);
4165
4166 if (!COMPLETE_TYPE_P (t))
4167 layout_type (t);
4168
4169 /* If we are writing Dwarf2 output we need to create a name,
4170 since complex is a fundamental type. */
4171 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4172 && ! TYPE_NAME (t))
4173 {
4174 const char *name;
4175 if (component_type == char_type_node)
4176 name = "complex char";
4177 else if (component_type == signed_char_type_node)
4178 name = "complex signed char";
4179 else if (component_type == unsigned_char_type_node)
4180 name = "complex unsigned char";
4181 else if (component_type == short_integer_type_node)
4182 name = "complex short int";
4183 else if (component_type == short_unsigned_type_node)
4184 name = "complex short unsigned int";
4185 else if (component_type == integer_type_node)
4186 name = "complex int";
4187 else if (component_type == unsigned_type_node)
4188 name = "complex unsigned int";
4189 else if (component_type == long_integer_type_node)
4190 name = "complex long int";
4191 else if (component_type == long_unsigned_type_node)
4192 name = "complex long unsigned int";
4193 else if (component_type == long_long_integer_type_node)
4194 name = "complex long long int";
4195 else if (component_type == long_long_unsigned_type_node)
4196 name = "complex long long unsigned int";
4197 else
4198 name = 0;
4199
4200 if (name != 0)
4201 TYPE_NAME (t) = get_identifier (name);
4202 }
4203
4204 return t;
4205 }
4206 \f
4207 /* Return OP, stripped of any conversions to wider types as much as is safe.
4208 Converting the value back to OP's type makes a value equivalent to OP.
4209
4210 If FOR_TYPE is nonzero, we return a value which, if converted to
4211 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4212
4213 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4214 narrowest type that can hold the value, even if they don't exactly fit.
4215 Otherwise, bit-field references are changed to a narrower type
4216 only if they can be fetched directly from memory in that type.
4217
4218 OP must have integer, real or enumeral type. Pointers are not allowed!
4219
4220 There are some cases where the obvious value we could return
4221 would regenerate to OP if converted to OP's type,
4222 but would not extend like OP to wider types.
4223 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4224 For example, if OP is (unsigned short)(signed char)-1,
4225 we avoid returning (signed char)-1 if FOR_TYPE is int,
4226 even though extending that to an unsigned short would regenerate OP,
4227 since the result of extending (signed char)-1 to (int)
4228 is different from (int) OP. */
4229
4230 tree
4231 get_unwidened (tree op, tree for_type)
4232 {
4233 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4234 tree type = TREE_TYPE (op);
4235 unsigned final_prec
4236 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4237 int uns
4238 = (for_type != 0 && for_type != type
4239 && final_prec > TYPE_PRECISION (type)
4240 && TREE_UNSIGNED (type));
4241 tree win = op;
4242
4243 while (TREE_CODE (op) == NOP_EXPR)
4244 {
4245 int bitschange
4246 = TYPE_PRECISION (TREE_TYPE (op))
4247 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4248
4249 /* Truncations are many-one so cannot be removed.
4250 Unless we are later going to truncate down even farther. */
4251 if (bitschange < 0
4252 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4253 break;
4254
4255 /* See what's inside this conversion. If we decide to strip it,
4256 we will set WIN. */
4257 op = TREE_OPERAND (op, 0);
4258
4259 /* If we have not stripped any zero-extensions (uns is 0),
4260 we can strip any kind of extension.
4261 If we have previously stripped a zero-extension,
4262 only zero-extensions can safely be stripped.
4263 Any extension can be stripped if the bits it would produce
4264 are all going to be discarded later by truncating to FOR_TYPE. */
4265
4266 if (bitschange > 0)
4267 {
4268 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4269 win = op;
4270 /* TREE_UNSIGNED says whether this is a zero-extension.
4271 Let's avoid computing it if it does not affect WIN
4272 and if UNS will not be needed again. */
4273 if ((uns || TREE_CODE (op) == NOP_EXPR)
4274 && TREE_UNSIGNED (TREE_TYPE (op)))
4275 {
4276 uns = 1;
4277 win = op;
4278 }
4279 }
4280 }
4281
4282 if (TREE_CODE (op) == COMPONENT_REF
4283 /* Since type_for_size always gives an integer type. */
4284 && TREE_CODE (type) != REAL_TYPE
4285 /* Don't crash if field not laid out yet. */
4286 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4287 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4288 {
4289 unsigned int innerprec
4290 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4291 int unsignedp = (TREE_UNSIGNED (TREE_OPERAND (op, 1))
4292 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4293 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4294
4295 /* We can get this structure field in the narrowest type it fits in.
4296 If FOR_TYPE is 0, do this only for a field that matches the
4297 narrower type exactly and is aligned for it
4298 The resulting extension to its nominal type (a fullword type)
4299 must fit the same conditions as for other extensions. */
4300
4301 if (type != 0
4302 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4303 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4304 && (! uns || final_prec <= innerprec || unsignedp))
4305 {
4306 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4307 TREE_OPERAND (op, 1));
4308 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4309 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4310 }
4311 }
4312
4313 return win;
4314 }
4315 \f
4316 /* Return OP or a simpler expression for a narrower value
4317 which can be sign-extended or zero-extended to give back OP.
4318 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4319 or 0 if the value should be sign-extended. */
4320
4321 tree
4322 get_narrower (tree op, int *unsignedp_ptr)
4323 {
4324 int uns = 0;
4325 int first = 1;
4326 tree win = op;
4327
4328 while (TREE_CODE (op) == NOP_EXPR)
4329 {
4330 int bitschange
4331 = (TYPE_PRECISION (TREE_TYPE (op))
4332 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4333
4334 /* Truncations are many-one so cannot be removed. */
4335 if (bitschange < 0)
4336 break;
4337
4338 /* See what's inside this conversion. If we decide to strip it,
4339 we will set WIN. */
4340
4341 if (bitschange > 0)
4342 {
4343 op = TREE_OPERAND (op, 0);
4344 /* An extension: the outermost one can be stripped,
4345 but remember whether it is zero or sign extension. */
4346 if (first)
4347 uns = TREE_UNSIGNED (TREE_TYPE (op));
4348 /* Otherwise, if a sign extension has been stripped,
4349 only sign extensions can now be stripped;
4350 if a zero extension has been stripped, only zero-extensions. */
4351 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4352 break;
4353 first = 0;
4354 }
4355 else /* bitschange == 0 */
4356 {
4357 /* A change in nominal type can always be stripped, but we must
4358 preserve the unsignedness. */
4359 if (first)
4360 uns = TREE_UNSIGNED (TREE_TYPE (op));
4361 first = 0;
4362 op = TREE_OPERAND (op, 0);
4363 }
4364
4365 win = op;
4366 }
4367
4368 if (TREE_CODE (op) == COMPONENT_REF
4369 /* Since type_for_size always gives an integer type. */
4370 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4371 /* Ensure field is laid out already. */
4372 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4373 {
4374 unsigned HOST_WIDE_INT innerprec
4375 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4376 int unsignedp = (TREE_UNSIGNED (TREE_OPERAND (op, 1))
4377 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4378 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4379
4380 /* We can get this structure field in a narrower type that fits it,
4381 but the resulting extension to its nominal type (a fullword type)
4382 must satisfy the same conditions as for other extensions.
4383
4384 Do this only for fields that are aligned (not bit-fields),
4385 because when bit-field insns will be used there is no
4386 advantage in doing this. */
4387
4388 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4389 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4390 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4391 && type != 0)
4392 {
4393 if (first)
4394 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4395 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4396 TREE_OPERAND (op, 1));
4397 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4398 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4399 }
4400 }
4401 *unsignedp_ptr = uns;
4402 return win;
4403 }
4404 \f
4405 /* Nonzero if integer constant C has a value that is permissible
4406 for type TYPE (an INTEGER_TYPE). */
4407
4408 int
4409 int_fits_type_p (tree c, tree type)
4410 {
4411 tree type_low_bound = TYPE_MIN_VALUE (type);
4412 tree type_high_bound = TYPE_MAX_VALUE (type);
4413 int ok_for_low_bound, ok_for_high_bound;
4414
4415 /* Perform some generic filtering first, which may allow making a decision
4416 even if the bounds are not constant. First, negative integers never fit
4417 in unsigned types, */
4418 if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4419 /* Also, unsigned integers with top bit set never fit signed types. */
4420 || (! TREE_UNSIGNED (type)
4421 && TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4422 return 0;
4423
4424 /* If at least one bound of the type is a constant integer, we can check
4425 ourselves and maybe make a decision. If no such decision is possible, but
4426 this type is a subtype, try checking against that. Otherwise, use
4427 force_fit_type, which checks against the precision.
4428
4429 Compute the status for each possibly constant bound, and return if we see
4430 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4431 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4432 for "constant known to fit". */
4433
4434 ok_for_low_bound = -1;
4435 ok_for_high_bound = -1;
4436
4437 /* Check if C >= type_low_bound. */
4438 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4439 {
4440 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4441 if (! ok_for_low_bound)
4442 return 0;
4443 }
4444
4445 /* Check if c <= type_high_bound. */
4446 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4447 {
4448 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4449 if (! ok_for_high_bound)
4450 return 0;
4451 }
4452
4453 /* If the constant fits both bounds, the result is known. */
4454 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4455 return 1;
4456
4457 /* If we haven't been able to decide at this point, there nothing more we
4458 can check ourselves here. Look at the base type if we have one. */
4459 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4460 return int_fits_type_p (c, TREE_TYPE (type));
4461
4462 /* Or to force_fit_type, if nothing else. */
4463 else
4464 {
4465 c = copy_node (c);
4466 TREE_TYPE (c) = type;
4467 return !force_fit_type (c, 0);
4468 }
4469 }
4470
4471 /* Returns true if T is, contains, or refers to a type with variable
4472 size. This concept is more general than that of C99 'variably
4473 modified types': in C99, a struct type is never variably modified
4474 because a VLA may not appear as a structure member. However, in
4475 GNU C code like:
4476
4477 struct S { int i[f()]; };
4478
4479 is valid, and other languages may define similar constructs. */
4480
4481 bool
4482 variably_modified_type_p (tree type)
4483 {
4484 tree t;
4485
4486 if (type == error_mark_node)
4487 return false;
4488
4489 /* If TYPE itself has variable size, it is variably modified.
4490
4491 We do not yet have a representation of the C99 '[*]' syntax.
4492 When a representation is chosen, this function should be modified
4493 to test for that case as well. */
4494 t = TYPE_SIZE (type);
4495 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4496 return true;
4497
4498 switch (TREE_CODE (type))
4499 {
4500 case POINTER_TYPE:
4501 case REFERENCE_TYPE:
4502 case ARRAY_TYPE:
4503 /* If TYPE is a pointer or reference, it is variably modified if
4504 the type pointed to is variably modified. Similarly for arrays;
4505 note that VLAs are handled by the TYPE_SIZE check above. */
4506 return variably_modified_type_p (TREE_TYPE (type));
4507
4508 case FUNCTION_TYPE:
4509 case METHOD_TYPE:
4510 /* If TYPE is a function type, it is variably modified if any of the
4511 parameters or the return type are variably modified. */
4512 {
4513 tree parm;
4514
4515 if (variably_modified_type_p (TREE_TYPE (type)))
4516 return true;
4517 for (parm = TYPE_ARG_TYPES (type);
4518 parm && parm != void_list_node;
4519 parm = TREE_CHAIN (parm))
4520 if (variably_modified_type_p (TREE_VALUE (parm)))
4521 return true;
4522 }
4523 break;
4524
4525 case INTEGER_TYPE:
4526 /* Scalar types are variably modified if their end points
4527 aren't constant. */
4528 t = TYPE_MIN_VALUE (type);
4529 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4530 return true;
4531 t = TYPE_MAX_VALUE (type);
4532 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4533 return true;
4534 return false;
4535
4536 default:
4537 break;
4538 }
4539
4540 /* The current language may have other cases to check, but in general,
4541 all other types are not variably modified. */
4542 return lang_hooks.tree_inlining.var_mod_type_p (type);
4543 }
4544
4545 /* Given a DECL or TYPE, return the scope in which it was declared, or
4546 NULL_TREE if there is no containing scope. */
4547
4548 tree
4549 get_containing_scope (tree t)
4550 {
4551 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4552 }
4553
4554 /* Return the innermost context enclosing DECL that is
4555 a FUNCTION_DECL, or zero if none. */
4556
4557 tree
4558 decl_function_context (tree decl)
4559 {
4560 tree context;
4561
4562 if (TREE_CODE (decl) == ERROR_MARK)
4563 return 0;
4564
4565 if (TREE_CODE (decl) == SAVE_EXPR)
4566 context = SAVE_EXPR_CONTEXT (decl);
4567
4568 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4569 where we look up the function at runtime. Such functions always take
4570 a first argument of type 'pointer to real context'.
4571
4572 C++ should really be fixed to use DECL_CONTEXT for the real context,
4573 and use something else for the "virtual context". */
4574 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4575 context
4576 = TYPE_MAIN_VARIANT
4577 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4578 else
4579 context = DECL_CONTEXT (decl);
4580
4581 while (context && TREE_CODE (context) != FUNCTION_DECL)
4582 {
4583 if (TREE_CODE (context) == BLOCK)
4584 context = BLOCK_SUPERCONTEXT (context);
4585 else
4586 context = get_containing_scope (context);
4587 }
4588
4589 return context;
4590 }
4591
4592 /* Return the innermost context enclosing DECL that is
4593 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4594 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4595
4596 tree
4597 decl_type_context (tree decl)
4598 {
4599 tree context = DECL_CONTEXT (decl);
4600
4601 while (context)
4602 switch (TREE_CODE (context))
4603 {
4604 case NAMESPACE_DECL:
4605 case TRANSLATION_UNIT_DECL:
4606 return NULL_TREE;
4607
4608 case RECORD_TYPE:
4609 case UNION_TYPE:
4610 case QUAL_UNION_TYPE:
4611 return context;
4612
4613 case TYPE_DECL:
4614 case FUNCTION_DECL:
4615 context = DECL_CONTEXT (context);
4616 break;
4617
4618 case BLOCK:
4619 context = BLOCK_SUPERCONTEXT (context);
4620 break;
4621
4622 default:
4623 abort ();
4624 }
4625
4626 return NULL_TREE;
4627 }
4628
4629 /* CALL is a CALL_EXPR. Return the declaration for the function
4630 called, or NULL_TREE if the called function cannot be
4631 determined. */
4632
4633 tree
4634 get_callee_fndecl (tree call)
4635 {
4636 tree addr;
4637
4638 /* It's invalid to call this function with anything but a
4639 CALL_EXPR. */
4640 if (TREE_CODE (call) != CALL_EXPR)
4641 abort ();
4642
4643 /* The first operand to the CALL is the address of the function
4644 called. */
4645 addr = TREE_OPERAND (call, 0);
4646
4647 STRIP_NOPS (addr);
4648
4649 /* If this is a readonly function pointer, extract its initial value. */
4650 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4651 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4652 && DECL_INITIAL (addr))
4653 addr = DECL_INITIAL (addr);
4654
4655 /* If the address is just `&f' for some function `f', then we know
4656 that `f' is being called. */
4657 if (TREE_CODE (addr) == ADDR_EXPR
4658 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4659 return TREE_OPERAND (addr, 0);
4660
4661 /* We couldn't figure out what was being called. Maybe the front
4662 end has some idea. */
4663 return lang_hooks.lang_get_callee_fndecl (call);
4664 }
4665
4666 /* Print debugging information about tree nodes generated during the compile,
4667 and any language-specific information. */
4668
4669 void
4670 dump_tree_statistics (void)
4671 {
4672 #ifdef GATHER_STATISTICS
4673 int i;
4674 int total_nodes, total_bytes;
4675 #endif
4676
4677 fprintf (stderr, "\n??? tree nodes created\n\n");
4678 #ifdef GATHER_STATISTICS
4679 fprintf (stderr, "Kind Nodes Bytes\n");
4680 fprintf (stderr, "---------------------------------------\n");
4681 total_nodes = total_bytes = 0;
4682 for (i = 0; i < (int) all_kinds; i++)
4683 {
4684 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
4685 tree_node_counts[i], tree_node_sizes[i]);
4686 total_nodes += tree_node_counts[i];
4687 total_bytes += tree_node_sizes[i];
4688 }
4689 fprintf (stderr, "---------------------------------------\n");
4690 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
4691 fprintf (stderr, "---------------------------------------\n");
4692 #else
4693 fprintf (stderr, "(No per-node statistics)\n");
4694 #endif
4695 print_type_hash_statistics ();
4696 lang_hooks.print_statistics ();
4697 }
4698 \f
4699 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4700
4701 /* Generate a crc32 of a string. */
4702
4703 unsigned
4704 crc32_string (unsigned chksum, const char *string)
4705 {
4706 do
4707 {
4708 unsigned value = *string << 24;
4709 unsigned ix;
4710
4711 for (ix = 8; ix--; value <<= 1)
4712 {
4713 unsigned feedback;
4714
4715 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4716 chksum <<= 1;
4717 chksum ^= feedback;
4718 }
4719 }
4720 while (*string++);
4721 return chksum;
4722 }
4723
4724 /* P is a string that will be used in a symbol. Mask out any characters
4725 that are not valid in that context. */
4726
4727 void
4728 clean_symbol_name (char *p)
4729 {
4730 for (; *p; p++)
4731 if (! (ISALNUM (*p)
4732 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4733 || *p == '$'
4734 #endif
4735 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4736 || *p == '.'
4737 #endif
4738 ))
4739 *p = '_';
4740 }
4741
4742 /* Generate a name for a function unique to this translation unit.
4743 TYPE is some string to identify the purpose of this function to the
4744 linker or collect2. */
4745
4746 tree
4747 get_file_function_name_long (const char *type)
4748 {
4749 char *buf;
4750 const char *p;
4751 char *q;
4752
4753 if (first_global_object_name)
4754 p = first_global_object_name;
4755 else
4756 {
4757 /* We don't have anything that we know to be unique to this translation
4758 unit, so use what we do have and throw in some randomness. */
4759 unsigned len;
4760 const char *name = weak_global_object_name;
4761 const char *file = main_input_filename;
4762
4763 if (! name)
4764 name = "";
4765 if (! file)
4766 file = input_filename;
4767
4768 len = strlen (file);
4769 q = alloca (9 * 2 + len + 1);
4770 memcpy (q, file, len + 1);
4771 clean_symbol_name (q);
4772
4773 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
4774 crc32_string (0, flag_random_seed));
4775
4776 p = q;
4777 }
4778
4779 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
4780
4781 /* Set up the name of the file-level functions we may need.
4782 Use a global object (which is already required to be unique over
4783 the program) rather than the file name (which imposes extra
4784 constraints). */
4785 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4786
4787 return get_identifier (buf);
4788 }
4789
4790 /* If KIND=='I', return a suitable global initializer (constructor) name.
4791 If KIND=='D', return a suitable global clean-up (destructor) name. */
4792
4793 tree
4794 get_file_function_name (int kind)
4795 {
4796 char p[2];
4797
4798 p[0] = kind;
4799 p[1] = 0;
4800
4801 return get_file_function_name_long (p);
4802 }
4803 \f
4804 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4805 The result is placed in BUFFER (which has length BIT_SIZE),
4806 with one bit in each char ('\000' or '\001').
4807
4808 If the constructor is constant, NULL_TREE is returned.
4809 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4810
4811 tree
4812 get_set_constructor_bits (tree init, char *buffer, int bit_size)
4813 {
4814 int i;
4815 tree vals;
4816 HOST_WIDE_INT domain_min
4817 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4818 tree non_const_bits = NULL_TREE;
4819
4820 for (i = 0; i < bit_size; i++)
4821 buffer[i] = 0;
4822
4823 for (vals = TREE_OPERAND (init, 1);
4824 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4825 {
4826 if (!host_integerp (TREE_VALUE (vals), 0)
4827 || (TREE_PURPOSE (vals) != NULL_TREE
4828 && !host_integerp (TREE_PURPOSE (vals), 0)))
4829 non_const_bits
4830 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4831 else if (TREE_PURPOSE (vals) != NULL_TREE)
4832 {
4833 /* Set a range of bits to ones. */
4834 HOST_WIDE_INT lo_index
4835 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4836 HOST_WIDE_INT hi_index
4837 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4838
4839 if (lo_index < 0 || lo_index >= bit_size
4840 || hi_index < 0 || hi_index >= bit_size)
4841 abort ();
4842 for (; lo_index <= hi_index; lo_index++)
4843 buffer[lo_index] = 1;
4844 }
4845 else
4846 {
4847 /* Set a single bit to one. */
4848 HOST_WIDE_INT index
4849 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4850 if (index < 0 || index >= bit_size)
4851 {
4852 error ("invalid initializer for bit string");
4853 return NULL_TREE;
4854 }
4855 buffer[index] = 1;
4856 }
4857 }
4858 return non_const_bits;
4859 }
4860
4861 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4862 The result is placed in BUFFER (which is an array of bytes).
4863 If the constructor is constant, NULL_TREE is returned.
4864 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4865
4866 tree
4867 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
4868 {
4869 int i;
4870 int set_word_size = BITS_PER_UNIT;
4871 int bit_size = wd_size * set_word_size;
4872 int bit_pos = 0;
4873 unsigned char *bytep = buffer;
4874 char *bit_buffer = alloca (bit_size);
4875 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4876
4877 for (i = 0; i < wd_size; i++)
4878 buffer[i] = 0;
4879
4880 for (i = 0; i < bit_size; i++)
4881 {
4882 if (bit_buffer[i])
4883 {
4884 if (BYTES_BIG_ENDIAN)
4885 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4886 else
4887 *bytep |= 1 << bit_pos;
4888 }
4889 bit_pos++;
4890 if (bit_pos >= set_word_size)
4891 bit_pos = 0, bytep++;
4892 }
4893 return non_const_bits;
4894 }
4895 \f
4896 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4897 /* Complain that the tree code of NODE does not match the expected CODE.
4898 FILE, LINE, and FUNCTION are of the caller. */
4899
4900 void
4901 tree_check_failed (const tree node, enum tree_code code, const char *file,
4902 int line, const char *function)
4903 {
4904 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4905 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4906 function, trim_filename (file), line);
4907 }
4908
4909 /* Similar to above, except that we check for a class of tree
4910 code, given in CL. */
4911
4912 void
4913 tree_class_check_failed (const tree node, int cl, const char *file,
4914 int line, const char *function)
4915 {
4916 internal_error
4917 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4918 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4919 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4920 }
4921
4922 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4923 (dynamically sized) vector. */
4924
4925 void
4926 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
4927 const char *function)
4928 {
4929 internal_error
4930 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4931 idx + 1, len, function, trim_filename (file), line);
4932 }
4933
4934 /* Similar to above, except that the check is for the bounds of the operand
4935 vector of an expression node. */
4936
4937 void
4938 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
4939 int line, const char *function)
4940 {
4941 internal_error
4942 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4943 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
4944 function, trim_filename (file), line);
4945 }
4946 #endif /* ENABLE_TREE_CHECKING */
4947 \f
4948 /* For a new vector type node T, build the information necessary for
4949 debugging output. */
4950
4951 static void
4952 finish_vector_type (tree t)
4953 {
4954 layout_type (t);
4955
4956 {
4957 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4958 tree array = build_array_type (TREE_TYPE (t),
4959 build_index_type (index));
4960 tree rt = make_node (RECORD_TYPE);
4961
4962 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4963 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4964 layout_type (rt);
4965 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4966 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4967 the representation type, and we want to find that die when looking up
4968 the vector type. This is most easily achieved by making the TYPE_UID
4969 numbers equal. */
4970 TYPE_UID (rt) = TYPE_UID (t);
4971 }
4972 }
4973
4974 /* Create nodes for all integer types (and error_mark_node) using the sizes
4975 of C datatypes. The caller should call set_sizetype soon after calling
4976 this function to select one of the types as sizetype. */
4977
4978 void
4979 build_common_tree_nodes (int signed_char)
4980 {
4981 error_mark_node = make_node (ERROR_MARK);
4982 TREE_TYPE (error_mark_node) = error_mark_node;
4983
4984 initialize_sizetypes ();
4985
4986 /* Define both `signed char' and `unsigned char'. */
4987 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4988 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4989
4990 /* Define `char', which is like either `signed char' or `unsigned char'
4991 but not the same as either. */
4992 char_type_node
4993 = (signed_char
4994 ? make_signed_type (CHAR_TYPE_SIZE)
4995 : make_unsigned_type (CHAR_TYPE_SIZE));
4996
4997 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4998 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4999 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5000 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5001 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5002 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5003 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5004 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5005
5006 /* Define a boolean type. This type only represents boolean values but
5007 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5008 Front ends which want to override this size (i.e. Java) can redefine
5009 boolean_type_node before calling build_common_tree_nodes_2. */
5010 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5011 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5012 TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
5013 TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
5014 TYPE_PRECISION (boolean_type_node) = 1;
5015
5016 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
5017 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
5018 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
5019 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
5020 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
5021
5022 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
5023 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
5024 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
5025 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
5026 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
5027
5028 access_public_node = get_identifier ("public");
5029 access_protected_node = get_identifier ("protected");
5030 access_private_node = get_identifier ("private");
5031 }
5032
5033 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5034 It will create several other common tree nodes. */
5035
5036 void
5037 build_common_tree_nodes_2 (int short_double)
5038 {
5039 /* Define these next since types below may used them. */
5040 integer_zero_node = build_int_2 (0, 0);
5041 integer_one_node = build_int_2 (1, 0);
5042 integer_minus_one_node = build_int_2 (-1, -1);
5043
5044 size_zero_node = size_int (0);
5045 size_one_node = size_int (1);
5046 bitsize_zero_node = bitsize_int (0);
5047 bitsize_one_node = bitsize_int (1);
5048 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5049
5050 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5051 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5052
5053 void_type_node = make_node (VOID_TYPE);
5054 layout_type (void_type_node);
5055
5056 /* We are not going to have real types in C with less than byte alignment,
5057 so we might as well not have any types that claim to have it. */
5058 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5059 TYPE_USER_ALIGN (void_type_node) = 0;
5060
5061 null_pointer_node = build_int_2 (0, 0);
5062 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
5063 layout_type (TREE_TYPE (null_pointer_node));
5064
5065 ptr_type_node = build_pointer_type (void_type_node);
5066 const_ptr_type_node
5067 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5068
5069 float_type_node = make_node (REAL_TYPE);
5070 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5071 layout_type (float_type_node);
5072
5073 double_type_node = make_node (REAL_TYPE);
5074 if (short_double)
5075 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5076 else
5077 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5078 layout_type (double_type_node);
5079
5080 long_double_type_node = make_node (REAL_TYPE);
5081 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5082 layout_type (long_double_type_node);
5083
5084 float_ptr_type_node = build_pointer_type (float_type_node);
5085 double_ptr_type_node = build_pointer_type (double_type_node);
5086 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5087 integer_ptr_type_node = build_pointer_type (integer_type_node);
5088
5089 complex_integer_type_node = make_node (COMPLEX_TYPE);
5090 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5091 layout_type (complex_integer_type_node);
5092
5093 complex_float_type_node = make_node (COMPLEX_TYPE);
5094 TREE_TYPE (complex_float_type_node) = float_type_node;
5095 layout_type (complex_float_type_node);
5096
5097 complex_double_type_node = make_node (COMPLEX_TYPE);
5098 TREE_TYPE (complex_double_type_node) = double_type_node;
5099 layout_type (complex_double_type_node);
5100
5101 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5102 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5103 layout_type (complex_long_double_type_node);
5104
5105 {
5106 tree t = (*targetm.build_builtin_va_list) ();
5107
5108 /* Many back-ends define record types without setting TYPE_NAME.
5109 If we copied the record type here, we'd keep the original
5110 record type without a name. This breaks name mangling. So,
5111 don't copy record types and let c_common_nodes_and_builtins()
5112 declare the type to be __builtin_va_list. */
5113 if (TREE_CODE (t) != RECORD_TYPE)
5114 t = build_type_copy (t);
5115
5116 va_list_type_node = t;
5117 }
5118 }
5119
5120 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5121 better way.
5122
5123 If we requested a pointer to a vector, build up the pointers that
5124 we stripped off while looking for the inner type. Similarly for
5125 return values from functions.
5126
5127 The argument TYPE is the top of the chain, and BOTTOM is the
5128 new type which we will point to. */
5129
5130 tree
5131 reconstruct_complex_type (tree type, tree bottom)
5132 {
5133 tree inner, outer;
5134
5135 if (POINTER_TYPE_P (type))
5136 {
5137 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5138 outer = build_pointer_type (inner);
5139 }
5140 else if (TREE_CODE (type) == ARRAY_TYPE)
5141 {
5142 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5143 outer = build_array_type (inner, TYPE_DOMAIN (type));
5144 }
5145 else if (TREE_CODE (type) == FUNCTION_TYPE)
5146 {
5147 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5148 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5149 }
5150 else if (TREE_CODE (type) == METHOD_TYPE)
5151 {
5152 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5153 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5154 inner,
5155 TYPE_ARG_TYPES (type));
5156 }
5157 else
5158 return bottom;
5159
5160 TREE_READONLY (outer) = TREE_READONLY (type);
5161 TREE_THIS_VOLATILE (outer) = TREE_THIS_VOLATILE (type);
5162
5163 return outer;
5164 }
5165
5166 /* Returns a vector tree node given a vector mode and inner type. */
5167 tree
5168 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5169 {
5170 tree t;
5171 t = make_node (VECTOR_TYPE);
5172 TREE_TYPE (t) = innertype;
5173 TYPE_MODE (t) = mode;
5174 TREE_UNSIGNED (t) = TREE_UNSIGNED (innertype);
5175 finish_vector_type (t);
5176 return t;
5177 }
5178
5179 /* Similarly, but takes inner type and units. */
5180
5181 tree
5182 build_vector_type (tree innertype, int nunits)
5183 {
5184 enum machine_mode innermode = TYPE_MODE (innertype);
5185 enum machine_mode mode;
5186
5187 if (GET_MODE_CLASS (innermode) == MODE_FLOAT)
5188 mode = MIN_MODE_VECTOR_FLOAT;
5189 else
5190 mode = MIN_MODE_VECTOR_INT;
5191
5192 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
5193 if (GET_MODE_NUNITS (mode) == nunits && GET_MODE_INNER (mode) == innermode)
5194 return build_vector_type_for_mode (innertype, mode);
5195
5196 return NULL_TREE;
5197 }
5198
5199 /* Given an initializer INIT, return TRUE if INIT is zero or some
5200 aggregate of zeros. Otherwise return FALSE. */
5201 bool
5202 initializer_zerop (tree init)
5203 {
5204 STRIP_NOPS (init);
5205
5206 switch (TREE_CODE (init))
5207 {
5208 case INTEGER_CST:
5209 return integer_zerop (init);
5210 case REAL_CST:
5211 return real_zerop (init)
5212 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5213 case COMPLEX_CST:
5214 return integer_zerop (init)
5215 || (real_zerop (init)
5216 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5217 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5218 case CONSTRUCTOR:
5219 {
5220 /* Set is empty if it has no elements. */
5221 if ((TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5222 && CONSTRUCTOR_ELTS (init))
5223 return false;
5224
5225 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
5226 {
5227 tree aggr_init = CONSTRUCTOR_ELTS (init);
5228
5229 while (aggr_init)
5230 {
5231 if (! initializer_zerop (TREE_VALUE (aggr_init)))
5232 return false;
5233 aggr_init = TREE_CHAIN (aggr_init);
5234 }
5235 return true;
5236 }
5237 return false;
5238 }
5239 default:
5240 return false;
5241 }
5242 }
5243
5244 #include "gt-tree.h"