re PR lto/89272 (r268728 caused FAIL: g++.dg/lto/pr65316 cp_lto_pr65316_0.o assemble)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70
71 /* Tree code classes. */
72
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82
83 /* Table indexed by tree code giving number of expression
84 operands beyond the fixed part of the node structure.
85 Not used for types or decls. */
86
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96
97 /* Names of tree components.
98 Used for printing out the tree and error messages. */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108
109 /* Each tree code class has an associated string representation.
110 These must correspond to the tree_code_class entries. */
111
112 const char *const tree_code_class_strings[] =
113 {
114 "exceptional",
115 "constant",
116 "type",
117 "declaration",
118 "reference",
119 "comparison",
120 "unary",
121 "binary",
122 "statement",
123 "vl_exp",
124 "expression"
125 };
126
127 /* obstack.[ch] explicitly declined to prototype this. */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129
130 /* Statistics-gathering stuff. */
131
132 static uint64_t tree_code_counts[MAX_TREE_CODES];
133 uint64_t tree_node_counts[(int) all_kinds];
134 uint64_t tree_node_sizes[(int) all_kinds];
135
136 /* Keep in sync with tree.h:enum tree_node_kind. */
137 static const char * const tree_node_kind_names[] = {
138 "decls",
139 "types",
140 "blocks",
141 "stmts",
142 "refs",
143 "exprs",
144 "constants",
145 "identifiers",
146 "vecs",
147 "binfos",
148 "ssa names",
149 "constructors",
150 "random kinds",
151 "lang_decl kinds",
152 "lang_type kinds",
153 "omp clauses",
154 };
155
156 /* Unique id for next decl created. */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created. */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created. Use negative numbers,
161 to catch erroneous uses. */
162 static GTY(()) int next_debug_decl_uid;
163
164 /* Since we cannot rehash a type after it is in the table, we have to
165 keep the hash code. */
166
167 struct GTY((for_user)) type_hash {
168 unsigned long hash;
169 tree type;
170 };
171
172 /* Initial size of the hash table (rounded to next prime). */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177 static hashval_t hash (type_hash *t) { return t->hash; }
178 static bool equal (type_hash *a, type_hash *b);
179
180 static int
181 keep_cache_entry (type_hash *&t)
182 {
183 return ggc_marked_p (t->type);
184 }
185 };
186
187 /* Now here is the hash table. When recording a type, it is added to
188 the slot whose index is the hash code. Note that the hash table is
189 used for several kinds of types (function types, array types and
190 array index range types, for now). While all these live in the
191 same table, they are completely independent, and the hash code is
192 computed differently for each of these. */
193
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195
196 /* Hash table and temporary node for larger integer const values. */
197 static GTY (()) tree int_cst_node;
198
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201 static hashval_t hash (tree t);
202 static bool equal (tree x, tree y);
203 };
204
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208 for a given value. */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211 typedef std::pair<tree, const poly_wide_int *> compare_type;
212 static hashval_t hash (tree t);
213 static bool equal (tree x, const compare_type &y);
214 };
215
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217
218 /* Hash table for optimization flags and target option flags. Use the same
219 hash table for both sets of options. Nodes for building the current
220 optimization and target option nodes. The assumption is most of the time
221 the options created will already be in the hash table, so we avoid
222 allocating and freeing up a node repeatably. */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228 static hashval_t hash (tree t);
229 static bool equal (tree x, tree y);
230 };
231
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233
234 /* General tree->tree mapping structure for use in hash tables. */
235
236
237 static GTY ((cache))
238 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239
240 static GTY ((cache))
241 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246
247 static bool
248 equal (tree_vec_map *a, tree_vec_map *b)
249 {
250 return a->base.from == b->base.from;
251 }
252
253 static int
254 keep_cache_entry (tree_vec_map *&m)
255 {
256 return ggc_marked_p (m->base.from);
257 }
258 };
259
260 static GTY ((cache))
261 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267
268 static tree build_array_type_1 (tree, tree, bool, bool);
269
270 tree global_trees[TI_MAX];
271 tree integer_types[itk_none];
272
273 bool int_n_enabled_p[NUM_INT_N_ENTS];
274 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
275
276 bool tree_contains_struct[MAX_TREE_CODES][64];
277
278 /* Number of operands for each OpenMP clause. */
279 unsigned const char omp_clause_num_ops[] =
280 {
281 0, /* OMP_CLAUSE_ERROR */
282 1, /* OMP_CLAUSE_PRIVATE */
283 1, /* OMP_CLAUSE_SHARED */
284 1, /* OMP_CLAUSE_FIRSTPRIVATE */
285 2, /* OMP_CLAUSE_LASTPRIVATE */
286 5, /* OMP_CLAUSE_REDUCTION */
287 5, /* OMP_CLAUSE_TASK_REDUCTION */
288 5, /* OMP_CLAUSE_IN_REDUCTION */
289 1, /* OMP_CLAUSE_COPYIN */
290 1, /* OMP_CLAUSE_COPYPRIVATE */
291 3, /* OMP_CLAUSE_LINEAR */
292 2, /* OMP_CLAUSE_ALIGNED */
293 1, /* OMP_CLAUSE_DEPEND */
294 1, /* OMP_CLAUSE_NONTEMPORAL */
295 1, /* OMP_CLAUSE_UNIFORM */
296 1, /* OMP_CLAUSE_TO_DECLARE */
297 1, /* OMP_CLAUSE_LINK */
298 2, /* OMP_CLAUSE_FROM */
299 2, /* OMP_CLAUSE_TO */
300 2, /* OMP_CLAUSE_MAP */
301 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
302 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
303 2, /* OMP_CLAUSE__CACHE_ */
304 2, /* OMP_CLAUSE_GANG */
305 1, /* OMP_CLAUSE_ASYNC */
306 1, /* OMP_CLAUSE_WAIT */
307 0, /* OMP_CLAUSE_AUTO */
308 0, /* OMP_CLAUSE_SEQ */
309 1, /* OMP_CLAUSE__LOOPTEMP_ */
310 1, /* OMP_CLAUSE__REDUCTEMP_ */
311 1, /* OMP_CLAUSE_IF */
312 1, /* OMP_CLAUSE_NUM_THREADS */
313 1, /* OMP_CLAUSE_SCHEDULE */
314 0, /* OMP_CLAUSE_NOWAIT */
315 1, /* OMP_CLAUSE_ORDERED */
316 0, /* OMP_CLAUSE_DEFAULT */
317 3, /* OMP_CLAUSE_COLLAPSE */
318 0, /* OMP_CLAUSE_UNTIED */
319 1, /* OMP_CLAUSE_FINAL */
320 0, /* OMP_CLAUSE_MERGEABLE */
321 1, /* OMP_CLAUSE_DEVICE */
322 1, /* OMP_CLAUSE_DIST_SCHEDULE */
323 0, /* OMP_CLAUSE_INBRANCH */
324 0, /* OMP_CLAUSE_NOTINBRANCH */
325 1, /* OMP_CLAUSE_NUM_TEAMS */
326 1, /* OMP_CLAUSE_THREAD_LIMIT */
327 0, /* OMP_CLAUSE_PROC_BIND */
328 1, /* OMP_CLAUSE_SAFELEN */
329 1, /* OMP_CLAUSE_SIMDLEN */
330 0, /* OMP_CLAUSE_FOR */
331 0, /* OMP_CLAUSE_PARALLEL */
332 0, /* OMP_CLAUSE_SECTIONS */
333 0, /* OMP_CLAUSE_TASKGROUP */
334 1, /* OMP_CLAUSE_PRIORITY */
335 1, /* OMP_CLAUSE_GRAINSIZE */
336 1, /* OMP_CLAUSE_NUM_TASKS */
337 0, /* OMP_CLAUSE_NOGROUP */
338 0, /* OMP_CLAUSE_THREADS */
339 0, /* OMP_CLAUSE_SIMD */
340 1, /* OMP_CLAUSE_HINT */
341 0, /* OMP_CLAUSE_DEFALTMAP */
342 1, /* OMP_CLAUSE__SIMDUID_ */
343 0, /* OMP_CLAUSE__SIMT_ */
344 0, /* OMP_CLAUSE_INDEPENDENT */
345 1, /* OMP_CLAUSE_WORKER */
346 1, /* OMP_CLAUSE_VECTOR */
347 1, /* OMP_CLAUSE_NUM_GANGS */
348 1, /* OMP_CLAUSE_NUM_WORKERS */
349 1, /* OMP_CLAUSE_VECTOR_LENGTH */
350 3, /* OMP_CLAUSE_TILE */
351 2, /* OMP_CLAUSE__GRIDDIM_ */
352 0, /* OMP_CLAUSE_IF_PRESENT */
353 0, /* OMP_CLAUSE_FINALIZE */
354 };
355
356 const char * const omp_clause_code_name[] =
357 {
358 "error_clause",
359 "private",
360 "shared",
361 "firstprivate",
362 "lastprivate",
363 "reduction",
364 "task_reduction",
365 "in_reduction",
366 "copyin",
367 "copyprivate",
368 "linear",
369 "aligned",
370 "depend",
371 "nontemporal",
372 "uniform",
373 "to",
374 "link",
375 "from",
376 "to",
377 "map",
378 "use_device_ptr",
379 "is_device_ptr",
380 "_cache_",
381 "gang",
382 "async",
383 "wait",
384 "auto",
385 "seq",
386 "_looptemp_",
387 "_reductemp_",
388 "if",
389 "num_threads",
390 "schedule",
391 "nowait",
392 "ordered",
393 "default",
394 "collapse",
395 "untied",
396 "final",
397 "mergeable",
398 "device",
399 "dist_schedule",
400 "inbranch",
401 "notinbranch",
402 "num_teams",
403 "thread_limit",
404 "proc_bind",
405 "safelen",
406 "simdlen",
407 "for",
408 "parallel",
409 "sections",
410 "taskgroup",
411 "priority",
412 "grainsize",
413 "num_tasks",
414 "nogroup",
415 "threads",
416 "simd",
417 "hint",
418 "defaultmap",
419 "_simduid_",
420 "_simt_",
421 "independent",
422 "worker",
423 "vector",
424 "num_gangs",
425 "num_workers",
426 "vector_length",
427 "tile",
428 "_griddim_",
429 "if_present",
430 "finalize",
431 };
432
433
434 /* Return the tree node structure used by tree code CODE. */
435
436 static inline enum tree_node_structure_enum
437 tree_node_structure_for_code (enum tree_code code)
438 {
439 switch (TREE_CODE_CLASS (code))
440 {
441 case tcc_declaration:
442 {
443 switch (code)
444 {
445 case FIELD_DECL:
446 return TS_FIELD_DECL;
447 case PARM_DECL:
448 return TS_PARM_DECL;
449 case VAR_DECL:
450 return TS_VAR_DECL;
451 case LABEL_DECL:
452 return TS_LABEL_DECL;
453 case RESULT_DECL:
454 return TS_RESULT_DECL;
455 case DEBUG_EXPR_DECL:
456 return TS_DECL_WRTL;
457 case CONST_DECL:
458 return TS_CONST_DECL;
459 case TYPE_DECL:
460 return TS_TYPE_DECL;
461 case FUNCTION_DECL:
462 return TS_FUNCTION_DECL;
463 case TRANSLATION_UNIT_DECL:
464 return TS_TRANSLATION_UNIT_DECL;
465 default:
466 return TS_DECL_NON_COMMON;
467 }
468 }
469 case tcc_type:
470 return TS_TYPE_NON_COMMON;
471 case tcc_reference:
472 case tcc_comparison:
473 case tcc_unary:
474 case tcc_binary:
475 case tcc_expression:
476 case tcc_statement:
477 case tcc_vl_exp:
478 return TS_EXP;
479 default: /* tcc_constant and tcc_exceptional */
480 break;
481 }
482 switch (code)
483 {
484 /* tcc_constant cases. */
485 case VOID_CST: return TS_TYPED;
486 case INTEGER_CST: return TS_INT_CST;
487 case POLY_INT_CST: return TS_POLY_INT_CST;
488 case REAL_CST: return TS_REAL_CST;
489 case FIXED_CST: return TS_FIXED_CST;
490 case COMPLEX_CST: return TS_COMPLEX;
491 case VECTOR_CST: return TS_VECTOR;
492 case STRING_CST: return TS_STRING;
493 /* tcc_exceptional cases. */
494 case ERROR_MARK: return TS_COMMON;
495 case IDENTIFIER_NODE: return TS_IDENTIFIER;
496 case TREE_LIST: return TS_LIST;
497 case TREE_VEC: return TS_VEC;
498 case SSA_NAME: return TS_SSA_NAME;
499 case PLACEHOLDER_EXPR: return TS_COMMON;
500 case STATEMENT_LIST: return TS_STATEMENT_LIST;
501 case BLOCK: return TS_BLOCK;
502 case CONSTRUCTOR: return TS_CONSTRUCTOR;
503 case TREE_BINFO: return TS_BINFO;
504 case OMP_CLAUSE: return TS_OMP_CLAUSE;
505 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
506 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
507
508 default:
509 gcc_unreachable ();
510 }
511 }
512
513
514 /* Initialize tree_contains_struct to describe the hierarchy of tree
515 nodes. */
516
517 static void
518 initialize_tree_contains_struct (void)
519 {
520 unsigned i;
521
522 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
523 {
524 enum tree_code code;
525 enum tree_node_structure_enum ts_code;
526
527 code = (enum tree_code) i;
528 ts_code = tree_node_structure_for_code (code);
529
530 /* Mark the TS structure itself. */
531 tree_contains_struct[code][ts_code] = 1;
532
533 /* Mark all the structures that TS is derived from. */
534 switch (ts_code)
535 {
536 case TS_TYPED:
537 case TS_BLOCK:
538 case TS_OPTIMIZATION:
539 case TS_TARGET_OPTION:
540 MARK_TS_BASE (code);
541 break;
542
543 case TS_COMMON:
544 case TS_INT_CST:
545 case TS_POLY_INT_CST:
546 case TS_REAL_CST:
547 case TS_FIXED_CST:
548 case TS_VECTOR:
549 case TS_STRING:
550 case TS_COMPLEX:
551 case TS_SSA_NAME:
552 case TS_CONSTRUCTOR:
553 case TS_EXP:
554 case TS_STATEMENT_LIST:
555 MARK_TS_TYPED (code);
556 break;
557
558 case TS_IDENTIFIER:
559 case TS_DECL_MINIMAL:
560 case TS_TYPE_COMMON:
561 case TS_LIST:
562 case TS_VEC:
563 case TS_BINFO:
564 case TS_OMP_CLAUSE:
565 MARK_TS_COMMON (code);
566 break;
567
568 case TS_TYPE_WITH_LANG_SPECIFIC:
569 MARK_TS_TYPE_COMMON (code);
570 break;
571
572 case TS_TYPE_NON_COMMON:
573 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
574 break;
575
576 case TS_DECL_COMMON:
577 MARK_TS_DECL_MINIMAL (code);
578 break;
579
580 case TS_DECL_WRTL:
581 case TS_CONST_DECL:
582 MARK_TS_DECL_COMMON (code);
583 break;
584
585 case TS_DECL_NON_COMMON:
586 MARK_TS_DECL_WITH_VIS (code);
587 break;
588
589 case TS_DECL_WITH_VIS:
590 case TS_PARM_DECL:
591 case TS_LABEL_DECL:
592 case TS_RESULT_DECL:
593 MARK_TS_DECL_WRTL (code);
594 break;
595
596 case TS_FIELD_DECL:
597 MARK_TS_DECL_COMMON (code);
598 break;
599
600 case TS_VAR_DECL:
601 MARK_TS_DECL_WITH_VIS (code);
602 break;
603
604 case TS_TYPE_DECL:
605 case TS_FUNCTION_DECL:
606 MARK_TS_DECL_NON_COMMON (code);
607 break;
608
609 case TS_TRANSLATION_UNIT_DECL:
610 MARK_TS_DECL_COMMON (code);
611 break;
612
613 default:
614 gcc_unreachable ();
615 }
616 }
617
618 /* Basic consistency checks for attributes used in fold. */
619 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
620 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
621 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
622 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
623 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
624 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
625 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
626 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
627 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
628 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
629 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
630 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
631 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
632 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
633 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
634 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
635 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
636 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
637 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
638 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
639 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
640 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
641 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
642 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
643 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
644 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
645 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
646 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
647 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
648 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
649 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
650 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
651 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
652 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
653 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
654 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
655 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
656 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
657 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
658 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
659 }
660
661
662 /* Init tree.c. */
663
664 void
665 init_ttree (void)
666 {
667 /* Initialize the hash table of types. */
668 type_hash_table
669 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
670
671 debug_expr_for_decl
672 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
673
674 value_expr_for_decl
675 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
676
677 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
678
679 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
680
681 int_cst_node = make_int_cst (1, 1);
682
683 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
684
685 cl_optimization_node = make_node (OPTIMIZATION_NODE);
686 cl_target_option_node = make_node (TARGET_OPTION_NODE);
687
688 /* Initialize the tree_contains_struct array. */
689 initialize_tree_contains_struct ();
690 lang_hooks.init_ts ();
691 }
692
693 \f
694 /* The name of the object as the assembler will see it (but before any
695 translations made by ASM_OUTPUT_LABELREF). Often this is the same
696 as DECL_NAME. It is an IDENTIFIER_NODE. */
697 tree
698 decl_assembler_name (tree decl)
699 {
700 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
701 lang_hooks.set_decl_assembler_name (decl);
702 return DECL_ASSEMBLER_NAME_RAW (decl);
703 }
704
705 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
706 (either of which may be NULL). Inform the FE, if this changes the
707 name. */
708
709 void
710 overwrite_decl_assembler_name (tree decl, tree name)
711 {
712 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
713 lang_hooks.overwrite_decl_assembler_name (decl, name);
714 }
715
716 /* When the target supports COMDAT groups, this indicates which group the
717 DECL is associated with. This can be either an IDENTIFIER_NODE or a
718 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
719 tree
720 decl_comdat_group (const_tree node)
721 {
722 struct symtab_node *snode = symtab_node::get (node);
723 if (!snode)
724 return NULL;
725 return snode->get_comdat_group ();
726 }
727
728 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
729 tree
730 decl_comdat_group_id (const_tree node)
731 {
732 struct symtab_node *snode = symtab_node::get (node);
733 if (!snode)
734 return NULL;
735 return snode->get_comdat_group_id ();
736 }
737
738 /* When the target supports named section, return its name as IDENTIFIER_NODE
739 or NULL if it is in no section. */
740 const char *
741 decl_section_name (const_tree node)
742 {
743 struct symtab_node *snode = symtab_node::get (node);
744 if (!snode)
745 return NULL;
746 return snode->get_section ();
747 }
748
749 /* Set section name of NODE to VALUE (that is expected to be
750 identifier node) */
751 void
752 set_decl_section_name (tree node, const char *value)
753 {
754 struct symtab_node *snode;
755
756 if (value == NULL)
757 {
758 snode = symtab_node::get (node);
759 if (!snode)
760 return;
761 }
762 else if (VAR_P (node))
763 snode = varpool_node::get_create (node);
764 else
765 snode = cgraph_node::get_create (node);
766 snode->set_section (value);
767 }
768
769 /* Return TLS model of a variable NODE. */
770 enum tls_model
771 decl_tls_model (const_tree node)
772 {
773 struct varpool_node *snode = varpool_node::get (node);
774 if (!snode)
775 return TLS_MODEL_NONE;
776 return snode->tls_model;
777 }
778
779 /* Set TLS model of variable NODE to MODEL. */
780 void
781 set_decl_tls_model (tree node, enum tls_model model)
782 {
783 struct varpool_node *vnode;
784
785 if (model == TLS_MODEL_NONE)
786 {
787 vnode = varpool_node::get (node);
788 if (!vnode)
789 return;
790 }
791 else
792 vnode = varpool_node::get_create (node);
793 vnode->tls_model = model;
794 }
795
796 /* Compute the number of bytes occupied by a tree with code CODE.
797 This function cannot be used for nodes that have variable sizes,
798 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
799 size_t
800 tree_code_size (enum tree_code code)
801 {
802 switch (TREE_CODE_CLASS (code))
803 {
804 case tcc_declaration: /* A decl node */
805 switch (code)
806 {
807 case FIELD_DECL: return sizeof (tree_field_decl);
808 case PARM_DECL: return sizeof (tree_parm_decl);
809 case VAR_DECL: return sizeof (tree_var_decl);
810 case LABEL_DECL: return sizeof (tree_label_decl);
811 case RESULT_DECL: return sizeof (tree_result_decl);
812 case CONST_DECL: return sizeof (tree_const_decl);
813 case TYPE_DECL: return sizeof (tree_type_decl);
814 case FUNCTION_DECL: return sizeof (tree_function_decl);
815 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
816 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
817 case NAMESPACE_DECL:
818 case IMPORTED_DECL:
819 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
820 default:
821 gcc_checking_assert (code >= NUM_TREE_CODES);
822 return lang_hooks.tree_size (code);
823 }
824
825 case tcc_type: /* a type node */
826 switch (code)
827 {
828 case OFFSET_TYPE:
829 case ENUMERAL_TYPE:
830 case BOOLEAN_TYPE:
831 case INTEGER_TYPE:
832 case REAL_TYPE:
833 case POINTER_TYPE:
834 case REFERENCE_TYPE:
835 case NULLPTR_TYPE:
836 case FIXED_POINT_TYPE:
837 case COMPLEX_TYPE:
838 case VECTOR_TYPE:
839 case ARRAY_TYPE:
840 case RECORD_TYPE:
841 case UNION_TYPE:
842 case QUAL_UNION_TYPE:
843 case VOID_TYPE:
844 case FUNCTION_TYPE:
845 case METHOD_TYPE:
846 case LANG_TYPE: return sizeof (tree_type_non_common);
847 default:
848 gcc_checking_assert (code >= NUM_TREE_CODES);
849 return lang_hooks.tree_size (code);
850 }
851
852 case tcc_reference: /* a reference */
853 case tcc_expression: /* an expression */
854 case tcc_statement: /* an expression with side effects */
855 case tcc_comparison: /* a comparison expression */
856 case tcc_unary: /* a unary arithmetic expression */
857 case tcc_binary: /* a binary arithmetic expression */
858 return (sizeof (struct tree_exp)
859 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
860
861 case tcc_constant: /* a constant */
862 switch (code)
863 {
864 case VOID_CST: return sizeof (tree_typed);
865 case INTEGER_CST: gcc_unreachable ();
866 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
867 case REAL_CST: return sizeof (tree_real_cst);
868 case FIXED_CST: return sizeof (tree_fixed_cst);
869 case COMPLEX_CST: return sizeof (tree_complex);
870 case VECTOR_CST: gcc_unreachable ();
871 case STRING_CST: gcc_unreachable ();
872 default:
873 gcc_checking_assert (code >= NUM_TREE_CODES);
874 return lang_hooks.tree_size (code);
875 }
876
877 case tcc_exceptional: /* something random, like an identifier. */
878 switch (code)
879 {
880 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
881 case TREE_LIST: return sizeof (tree_list);
882
883 case ERROR_MARK:
884 case PLACEHOLDER_EXPR: return sizeof (tree_common);
885
886 case TREE_VEC: gcc_unreachable ();
887 case OMP_CLAUSE: gcc_unreachable ();
888
889 case SSA_NAME: return sizeof (tree_ssa_name);
890
891 case STATEMENT_LIST: return sizeof (tree_statement_list);
892 case BLOCK: return sizeof (struct tree_block);
893 case CONSTRUCTOR: return sizeof (tree_constructor);
894 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
895 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
896
897 default:
898 gcc_checking_assert (code >= NUM_TREE_CODES);
899 return lang_hooks.tree_size (code);
900 }
901
902 default:
903 gcc_unreachable ();
904 }
905 }
906
907 /* Compute the number of bytes occupied by NODE. This routine only
908 looks at TREE_CODE, except for those nodes that have variable sizes. */
909 size_t
910 tree_size (const_tree node)
911 {
912 const enum tree_code code = TREE_CODE (node);
913 switch (code)
914 {
915 case INTEGER_CST:
916 return (sizeof (struct tree_int_cst)
917 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
918
919 case TREE_BINFO:
920 return (offsetof (struct tree_binfo, base_binfos)
921 + vec<tree, va_gc>
922 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
923
924 case TREE_VEC:
925 return (sizeof (struct tree_vec)
926 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
927
928 case VECTOR_CST:
929 return (sizeof (struct tree_vector)
930 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
931
932 case STRING_CST:
933 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
934
935 case OMP_CLAUSE:
936 return (sizeof (struct tree_omp_clause)
937 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
938 * sizeof (tree));
939
940 default:
941 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
942 return (sizeof (struct tree_exp)
943 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
944 else
945 return tree_code_size (code);
946 }
947 }
948
949 /* Return tree node kind based on tree CODE. */
950
951 static tree_node_kind
952 get_stats_node_kind (enum tree_code code)
953 {
954 enum tree_code_class type = TREE_CODE_CLASS (code);
955
956 switch (type)
957 {
958 case tcc_declaration: /* A decl node */
959 return d_kind;
960 case tcc_type: /* a type node */
961 return t_kind;
962 case tcc_statement: /* an expression with side effects */
963 return s_kind;
964 case tcc_reference: /* a reference */
965 return r_kind;
966 case tcc_expression: /* an expression */
967 case tcc_comparison: /* a comparison expression */
968 case tcc_unary: /* a unary arithmetic expression */
969 case tcc_binary: /* a binary arithmetic expression */
970 return e_kind;
971 case tcc_constant: /* a constant */
972 return c_kind;
973 case tcc_exceptional: /* something random, like an identifier. */
974 switch (code)
975 {
976 case IDENTIFIER_NODE:
977 return id_kind;
978 case TREE_VEC:
979 return vec_kind;
980 case TREE_BINFO:
981 return binfo_kind;
982 case SSA_NAME:
983 return ssa_name_kind;
984 case BLOCK:
985 return b_kind;
986 case CONSTRUCTOR:
987 return constr_kind;
988 case OMP_CLAUSE:
989 return omp_clause_kind;
990 default:
991 return x_kind;
992 }
993 break;
994 case tcc_vl_exp:
995 return e_kind;
996 default:
997 gcc_unreachable ();
998 }
999 }
1000
1001 /* Record interesting allocation statistics for a tree node with CODE
1002 and LENGTH. */
1003
1004 static void
1005 record_node_allocation_statistics (enum tree_code code, size_t length)
1006 {
1007 if (!GATHER_STATISTICS)
1008 return;
1009
1010 tree_node_kind kind = get_stats_node_kind (code);
1011
1012 tree_code_counts[(int) code]++;
1013 tree_node_counts[(int) kind]++;
1014 tree_node_sizes[(int) kind] += length;
1015 }
1016
1017 /* Allocate and return a new UID from the DECL_UID namespace. */
1018
1019 int
1020 allocate_decl_uid (void)
1021 {
1022 return next_decl_uid++;
1023 }
1024
1025 /* Return a newly allocated node of code CODE. For decl and type
1026 nodes, some other fields are initialized. The rest of the node is
1027 initialized to zero. This function cannot be used for TREE_VEC,
1028 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1029 tree_code_size.
1030
1031 Achoo! I got a code in the node. */
1032
1033 tree
1034 make_node (enum tree_code code MEM_STAT_DECL)
1035 {
1036 tree t;
1037 enum tree_code_class type = TREE_CODE_CLASS (code);
1038 size_t length = tree_code_size (code);
1039
1040 record_node_allocation_statistics (code, length);
1041
1042 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1043 TREE_SET_CODE (t, code);
1044
1045 switch (type)
1046 {
1047 case tcc_statement:
1048 if (code != DEBUG_BEGIN_STMT)
1049 TREE_SIDE_EFFECTS (t) = 1;
1050 break;
1051
1052 case tcc_declaration:
1053 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1054 {
1055 if (code == FUNCTION_DECL)
1056 {
1057 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1058 SET_DECL_MODE (t, FUNCTION_MODE);
1059 }
1060 else
1061 SET_DECL_ALIGN (t, 1);
1062 }
1063 DECL_SOURCE_LOCATION (t) = input_location;
1064 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1065 DECL_UID (t) = --next_debug_decl_uid;
1066 else
1067 {
1068 DECL_UID (t) = allocate_decl_uid ();
1069 SET_DECL_PT_UID (t, -1);
1070 }
1071 if (TREE_CODE (t) == LABEL_DECL)
1072 LABEL_DECL_UID (t) = -1;
1073
1074 break;
1075
1076 case tcc_type:
1077 TYPE_UID (t) = next_type_uid++;
1078 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1079 TYPE_USER_ALIGN (t) = 0;
1080 TYPE_MAIN_VARIANT (t) = t;
1081 TYPE_CANONICAL (t) = t;
1082
1083 /* Default to no attributes for type, but let target change that. */
1084 TYPE_ATTRIBUTES (t) = NULL_TREE;
1085 targetm.set_default_type_attributes (t);
1086
1087 /* We have not yet computed the alias set for this type. */
1088 TYPE_ALIAS_SET (t) = -1;
1089 break;
1090
1091 case tcc_constant:
1092 TREE_CONSTANT (t) = 1;
1093 break;
1094
1095 case tcc_expression:
1096 switch (code)
1097 {
1098 case INIT_EXPR:
1099 case MODIFY_EXPR:
1100 case VA_ARG_EXPR:
1101 case PREDECREMENT_EXPR:
1102 case PREINCREMENT_EXPR:
1103 case POSTDECREMENT_EXPR:
1104 case POSTINCREMENT_EXPR:
1105 /* All of these have side-effects, no matter what their
1106 operands are. */
1107 TREE_SIDE_EFFECTS (t) = 1;
1108 break;
1109
1110 default:
1111 break;
1112 }
1113 break;
1114
1115 case tcc_exceptional:
1116 switch (code)
1117 {
1118 case TARGET_OPTION_NODE:
1119 TREE_TARGET_OPTION(t)
1120 = ggc_cleared_alloc<struct cl_target_option> ();
1121 break;
1122
1123 case OPTIMIZATION_NODE:
1124 TREE_OPTIMIZATION (t)
1125 = ggc_cleared_alloc<struct cl_optimization> ();
1126 break;
1127
1128 default:
1129 break;
1130 }
1131 break;
1132
1133 default:
1134 /* Other classes need no special treatment. */
1135 break;
1136 }
1137
1138 return t;
1139 }
1140
1141 /* Free tree node. */
1142
1143 void
1144 free_node (tree node)
1145 {
1146 enum tree_code code = TREE_CODE (node);
1147 if (GATHER_STATISTICS)
1148 {
1149 enum tree_node_kind kind = get_stats_node_kind (code);
1150
1151 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1152 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1153 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1154
1155 tree_code_counts[(int) TREE_CODE (node)]--;
1156 tree_node_counts[(int) kind]--;
1157 tree_node_sizes[(int) kind] -= tree_size (node);
1158 }
1159 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1160 vec_free (CONSTRUCTOR_ELTS (node));
1161 else if (code == BLOCK)
1162 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1163 else if (code == TREE_BINFO)
1164 vec_free (BINFO_BASE_ACCESSES (node));
1165 ggc_free (node);
1166 }
1167 \f
1168 /* Return a new node with the same contents as NODE except that its
1169 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1170
1171 tree
1172 copy_node (tree node MEM_STAT_DECL)
1173 {
1174 tree t;
1175 enum tree_code code = TREE_CODE (node);
1176 size_t length;
1177
1178 gcc_assert (code != STATEMENT_LIST);
1179
1180 length = tree_size (node);
1181 record_node_allocation_statistics (code, length);
1182 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1183 memcpy (t, node, length);
1184
1185 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1186 TREE_CHAIN (t) = 0;
1187 TREE_ASM_WRITTEN (t) = 0;
1188 TREE_VISITED (t) = 0;
1189
1190 if (TREE_CODE_CLASS (code) == tcc_declaration)
1191 {
1192 if (code == DEBUG_EXPR_DECL)
1193 DECL_UID (t) = --next_debug_decl_uid;
1194 else
1195 {
1196 DECL_UID (t) = allocate_decl_uid ();
1197 if (DECL_PT_UID_SET_P (node))
1198 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1199 }
1200 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1201 && DECL_HAS_VALUE_EXPR_P (node))
1202 {
1203 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1204 DECL_HAS_VALUE_EXPR_P (t) = 1;
1205 }
1206 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1207 if (VAR_P (node))
1208 {
1209 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1210 t->decl_with_vis.symtab_node = NULL;
1211 }
1212 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1213 {
1214 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1215 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1216 }
1217 if (TREE_CODE (node) == FUNCTION_DECL)
1218 {
1219 DECL_STRUCT_FUNCTION (t) = NULL;
1220 t->decl_with_vis.symtab_node = NULL;
1221 }
1222 }
1223 else if (TREE_CODE_CLASS (code) == tcc_type)
1224 {
1225 TYPE_UID (t) = next_type_uid++;
1226 /* The following is so that the debug code for
1227 the copy is different from the original type.
1228 The two statements usually duplicate each other
1229 (because they clear fields of the same union),
1230 but the optimizer should catch that. */
1231 TYPE_SYMTAB_ADDRESS (t) = 0;
1232 TYPE_SYMTAB_DIE (t) = 0;
1233
1234 /* Do not copy the values cache. */
1235 if (TYPE_CACHED_VALUES_P (t))
1236 {
1237 TYPE_CACHED_VALUES_P (t) = 0;
1238 TYPE_CACHED_VALUES (t) = NULL_TREE;
1239 }
1240 }
1241 else if (code == TARGET_OPTION_NODE)
1242 {
1243 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1244 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1245 sizeof (struct cl_target_option));
1246 }
1247 else if (code == OPTIMIZATION_NODE)
1248 {
1249 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1250 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1251 sizeof (struct cl_optimization));
1252 }
1253
1254 return t;
1255 }
1256
1257 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1258 For example, this can copy a list made of TREE_LIST nodes. */
1259
1260 tree
1261 copy_list (tree list)
1262 {
1263 tree head;
1264 tree prev, next;
1265
1266 if (list == 0)
1267 return 0;
1268
1269 head = prev = copy_node (list);
1270 next = TREE_CHAIN (list);
1271 while (next)
1272 {
1273 TREE_CHAIN (prev) = copy_node (next);
1274 prev = TREE_CHAIN (prev);
1275 next = TREE_CHAIN (next);
1276 }
1277 return head;
1278 }
1279
1280 \f
1281 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1282 INTEGER_CST with value CST and type TYPE. */
1283
1284 static unsigned int
1285 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1286 {
1287 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1288 /* We need extra HWIs if CST is an unsigned integer with its
1289 upper bit set. */
1290 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1291 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1292 return cst.get_len ();
1293 }
1294
1295 /* Return a new INTEGER_CST with value CST and type TYPE. */
1296
1297 static tree
1298 build_new_int_cst (tree type, const wide_int &cst)
1299 {
1300 unsigned int len = cst.get_len ();
1301 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1302 tree nt = make_int_cst (len, ext_len);
1303
1304 if (len < ext_len)
1305 {
1306 --ext_len;
1307 TREE_INT_CST_ELT (nt, ext_len)
1308 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1309 for (unsigned int i = len; i < ext_len; ++i)
1310 TREE_INT_CST_ELT (nt, i) = -1;
1311 }
1312 else if (TYPE_UNSIGNED (type)
1313 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1314 {
1315 len--;
1316 TREE_INT_CST_ELT (nt, len)
1317 = zext_hwi (cst.elt (len),
1318 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1319 }
1320
1321 for (unsigned int i = 0; i < len; i++)
1322 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1323 TREE_TYPE (nt) = type;
1324 return nt;
1325 }
1326
1327 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1328
1329 static tree
1330 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1331 CXX_MEM_STAT_INFO)
1332 {
1333 size_t length = sizeof (struct tree_poly_int_cst);
1334 record_node_allocation_statistics (POLY_INT_CST, length);
1335
1336 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1337
1338 TREE_SET_CODE (t, POLY_INT_CST);
1339 TREE_CONSTANT (t) = 1;
1340 TREE_TYPE (t) = type;
1341 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1342 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1343 return t;
1344 }
1345
1346 /* Create a constant tree that contains CST sign-extended to TYPE. */
1347
1348 tree
1349 build_int_cst (tree type, poly_int64 cst)
1350 {
1351 /* Support legacy code. */
1352 if (!type)
1353 type = integer_type_node;
1354
1355 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1356 }
1357
1358 /* Create a constant tree that contains CST zero-extended to TYPE. */
1359
1360 tree
1361 build_int_cstu (tree type, poly_uint64 cst)
1362 {
1363 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1364 }
1365
1366 /* Create a constant tree that contains CST sign-extended to TYPE. */
1367
1368 tree
1369 build_int_cst_type (tree type, poly_int64 cst)
1370 {
1371 gcc_assert (type);
1372 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1373 }
1374
1375 /* Constructs tree in type TYPE from with value given by CST. Signedness
1376 of CST is assumed to be the same as the signedness of TYPE. */
1377
1378 tree
1379 double_int_to_tree (tree type, double_int cst)
1380 {
1381 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1382 }
1383
1384 /* We force the wide_int CST to the range of the type TYPE by sign or
1385 zero extending it. OVERFLOWABLE indicates if we are interested in
1386 overflow of the value, when >0 we are only interested in signed
1387 overflow, for <0 we are interested in any overflow. OVERFLOWED
1388 indicates whether overflow has already occurred. CONST_OVERFLOWED
1389 indicates whether constant overflow has already occurred. We force
1390 T's value to be within range of T's type (by setting to 0 or 1 all
1391 the bits outside the type's range). We set TREE_OVERFLOWED if,
1392 OVERFLOWED is nonzero,
1393 or OVERFLOWABLE is >0 and signed overflow occurs
1394 or OVERFLOWABLE is <0 and any overflow occurs
1395 We return a new tree node for the extended wide_int. The node
1396 is shared if no overflow flags are set. */
1397
1398
1399 tree
1400 force_fit_type (tree type, const poly_wide_int_ref &cst,
1401 int overflowable, bool overflowed)
1402 {
1403 signop sign = TYPE_SIGN (type);
1404
1405 /* If we need to set overflow flags, return a new unshared node. */
1406 if (overflowed || !wi::fits_to_tree_p (cst, type))
1407 {
1408 if (overflowed
1409 || overflowable < 0
1410 || (overflowable > 0 && sign == SIGNED))
1411 {
1412 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1413 sign);
1414 tree t;
1415 if (tmp.is_constant ())
1416 t = build_new_int_cst (type, tmp.coeffs[0]);
1417 else
1418 {
1419 tree coeffs[NUM_POLY_INT_COEFFS];
1420 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1421 {
1422 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1423 TREE_OVERFLOW (coeffs[i]) = 1;
1424 }
1425 t = build_new_poly_int_cst (type, coeffs);
1426 }
1427 TREE_OVERFLOW (t) = 1;
1428 return t;
1429 }
1430 }
1431
1432 /* Else build a shared node. */
1433 return wide_int_to_tree (type, cst);
1434 }
1435
1436 /* These are the hash table functions for the hash table of INTEGER_CST
1437 nodes of a sizetype. */
1438
1439 /* Return the hash code X, an INTEGER_CST. */
1440
1441 hashval_t
1442 int_cst_hasher::hash (tree x)
1443 {
1444 const_tree const t = x;
1445 hashval_t code = TYPE_UID (TREE_TYPE (t));
1446 int i;
1447
1448 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1449 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1450
1451 return code;
1452 }
1453
1454 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1455 is the same as that given by *Y, which is the same. */
1456
1457 bool
1458 int_cst_hasher::equal (tree x, tree y)
1459 {
1460 const_tree const xt = x;
1461 const_tree const yt = y;
1462
1463 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1464 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1465 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1466 return false;
1467
1468 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1469 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1470 return false;
1471
1472 return true;
1473 }
1474
1475 /* Create an INT_CST node of TYPE and value CST.
1476 The returned node is always shared. For small integers we use a
1477 per-type vector cache, for larger ones we use a single hash table.
1478 The value is extended from its precision according to the sign of
1479 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1480 the upper bits and ensures that hashing and value equality based
1481 upon the underlying HOST_WIDE_INTs works without masking. */
1482
1483 static tree
1484 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1485 {
1486 tree t;
1487 int ix = -1;
1488 int limit = 0;
1489
1490 gcc_assert (type);
1491 unsigned int prec = TYPE_PRECISION (type);
1492 signop sgn = TYPE_SIGN (type);
1493
1494 /* Verify that everything is canonical. */
1495 int l = pcst.get_len ();
1496 if (l > 1)
1497 {
1498 if (pcst.elt (l - 1) == 0)
1499 gcc_checking_assert (pcst.elt (l - 2) < 0);
1500 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1501 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1502 }
1503
1504 wide_int cst = wide_int::from (pcst, prec, sgn);
1505 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1506
1507 if (ext_len == 1)
1508 {
1509 /* We just need to store a single HOST_WIDE_INT. */
1510 HOST_WIDE_INT hwi;
1511 if (TYPE_UNSIGNED (type))
1512 hwi = cst.to_uhwi ();
1513 else
1514 hwi = cst.to_shwi ();
1515
1516 switch (TREE_CODE (type))
1517 {
1518 case NULLPTR_TYPE:
1519 gcc_assert (hwi == 0);
1520 /* Fallthru. */
1521
1522 case POINTER_TYPE:
1523 case REFERENCE_TYPE:
1524 /* Cache NULL pointer and zero bounds. */
1525 if (hwi == 0)
1526 {
1527 limit = 1;
1528 ix = 0;
1529 }
1530 break;
1531
1532 case BOOLEAN_TYPE:
1533 /* Cache false or true. */
1534 limit = 2;
1535 if (IN_RANGE (hwi, 0, 1))
1536 ix = hwi;
1537 break;
1538
1539 case INTEGER_TYPE:
1540 case OFFSET_TYPE:
1541 if (TYPE_SIGN (type) == UNSIGNED)
1542 {
1543 /* Cache [0, N). */
1544 limit = INTEGER_SHARE_LIMIT;
1545 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1546 ix = hwi;
1547 }
1548 else
1549 {
1550 /* Cache [-1, N). */
1551 limit = INTEGER_SHARE_LIMIT + 1;
1552 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1553 ix = hwi + 1;
1554 }
1555 break;
1556
1557 case ENUMERAL_TYPE:
1558 break;
1559
1560 default:
1561 gcc_unreachable ();
1562 }
1563
1564 if (ix >= 0)
1565 {
1566 /* Look for it in the type's vector of small shared ints. */
1567 if (!TYPE_CACHED_VALUES_P (type))
1568 {
1569 TYPE_CACHED_VALUES_P (type) = 1;
1570 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1571 }
1572
1573 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1574 if (t)
1575 /* Make sure no one is clobbering the shared constant. */
1576 gcc_checking_assert (TREE_TYPE (t) == type
1577 && TREE_INT_CST_NUNITS (t) == 1
1578 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1579 && TREE_INT_CST_EXT_NUNITS (t) == 1
1580 && TREE_INT_CST_ELT (t, 0) == hwi);
1581 else
1582 {
1583 /* Create a new shared int. */
1584 t = build_new_int_cst (type, cst);
1585 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1586 }
1587 }
1588 else
1589 {
1590 /* Use the cache of larger shared ints, using int_cst_node as
1591 a temporary. */
1592
1593 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1594 TREE_TYPE (int_cst_node) = type;
1595
1596 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1597 t = *slot;
1598 if (!t)
1599 {
1600 /* Insert this one into the hash table. */
1601 t = int_cst_node;
1602 *slot = t;
1603 /* Make a new node for next time round. */
1604 int_cst_node = make_int_cst (1, 1);
1605 }
1606 }
1607 }
1608 else
1609 {
1610 /* The value either hashes properly or we drop it on the floor
1611 for the gc to take care of. There will not be enough of them
1612 to worry about. */
1613
1614 tree nt = build_new_int_cst (type, cst);
1615 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1616 t = *slot;
1617 if (!t)
1618 {
1619 /* Insert this one into the hash table. */
1620 t = nt;
1621 *slot = t;
1622 }
1623 else
1624 ggc_free (nt);
1625 }
1626
1627 return t;
1628 }
1629
1630 hashval_t
1631 poly_int_cst_hasher::hash (tree t)
1632 {
1633 inchash::hash hstate;
1634
1635 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1636 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1637 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1638
1639 return hstate.end ();
1640 }
1641
1642 bool
1643 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1644 {
1645 if (TREE_TYPE (x) != y.first)
1646 return false;
1647 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1648 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1649 return false;
1650 return true;
1651 }
1652
1653 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1654 The elements must also have type TYPE. */
1655
1656 tree
1657 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1658 {
1659 unsigned int prec = TYPE_PRECISION (type);
1660 gcc_assert (prec <= values.coeffs[0].get_precision ());
1661 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1662
1663 inchash::hash h;
1664 h.add_int (TYPE_UID (type));
1665 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1666 h.add_wide_int (c.coeffs[i]);
1667 poly_int_cst_hasher::compare_type comp (type, &c);
1668 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1669 INSERT);
1670 if (*slot == NULL_TREE)
1671 {
1672 tree coeffs[NUM_POLY_INT_COEFFS];
1673 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1674 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1675 *slot = build_new_poly_int_cst (type, coeffs);
1676 }
1677 return *slot;
1678 }
1679
1680 /* Create a constant tree with value VALUE in type TYPE. */
1681
1682 tree
1683 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1684 {
1685 if (value.is_constant ())
1686 return wide_int_to_tree_1 (type, value.coeffs[0]);
1687 return build_poly_int_cst (type, value);
1688 }
1689
1690 void
1691 cache_integer_cst (tree t)
1692 {
1693 tree type = TREE_TYPE (t);
1694 int ix = -1;
1695 int limit = 0;
1696 int prec = TYPE_PRECISION (type);
1697
1698 gcc_assert (!TREE_OVERFLOW (t));
1699
1700 switch (TREE_CODE (type))
1701 {
1702 case NULLPTR_TYPE:
1703 gcc_assert (integer_zerop (t));
1704 /* Fallthru. */
1705
1706 case POINTER_TYPE:
1707 case REFERENCE_TYPE:
1708 /* Cache NULL pointer. */
1709 if (integer_zerop (t))
1710 {
1711 limit = 1;
1712 ix = 0;
1713 }
1714 break;
1715
1716 case BOOLEAN_TYPE:
1717 /* Cache false or true. */
1718 limit = 2;
1719 if (wi::ltu_p (wi::to_wide (t), 2))
1720 ix = TREE_INT_CST_ELT (t, 0);
1721 break;
1722
1723 case INTEGER_TYPE:
1724 case OFFSET_TYPE:
1725 if (TYPE_UNSIGNED (type))
1726 {
1727 /* Cache 0..N */
1728 limit = INTEGER_SHARE_LIMIT;
1729
1730 /* This is a little hokie, but if the prec is smaller than
1731 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1732 obvious test will not get the correct answer. */
1733 if (prec < HOST_BITS_PER_WIDE_INT)
1734 {
1735 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1736 ix = tree_to_uhwi (t);
1737 }
1738 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1739 ix = tree_to_uhwi (t);
1740 }
1741 else
1742 {
1743 /* Cache -1..N */
1744 limit = INTEGER_SHARE_LIMIT + 1;
1745
1746 if (integer_minus_onep (t))
1747 ix = 0;
1748 else if (!wi::neg_p (wi::to_wide (t)))
1749 {
1750 if (prec < HOST_BITS_PER_WIDE_INT)
1751 {
1752 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1753 ix = tree_to_shwi (t) + 1;
1754 }
1755 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1756 ix = tree_to_shwi (t) + 1;
1757 }
1758 }
1759 break;
1760
1761 case ENUMERAL_TYPE:
1762 break;
1763
1764 default:
1765 gcc_unreachable ();
1766 }
1767
1768 if (ix >= 0)
1769 {
1770 /* Look for it in the type's vector of small shared ints. */
1771 if (!TYPE_CACHED_VALUES_P (type))
1772 {
1773 TYPE_CACHED_VALUES_P (type) = 1;
1774 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1775 }
1776
1777 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1778 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1779 }
1780 else
1781 {
1782 /* Use the cache of larger shared ints. */
1783 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1784 /* If there is already an entry for the number verify it's the
1785 same. */
1786 if (*slot)
1787 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1788 else
1789 /* Otherwise insert this one into the hash table. */
1790 *slot = t;
1791 }
1792 }
1793
1794
1795 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1796 and the rest are zeros. */
1797
1798 tree
1799 build_low_bits_mask (tree type, unsigned bits)
1800 {
1801 gcc_assert (bits <= TYPE_PRECISION (type));
1802
1803 return wide_int_to_tree (type, wi::mask (bits, false,
1804 TYPE_PRECISION (type)));
1805 }
1806
1807 /* Checks that X is integer constant that can be expressed in (unsigned)
1808 HOST_WIDE_INT without loss of precision. */
1809
1810 bool
1811 cst_and_fits_in_hwi (const_tree x)
1812 {
1813 return (TREE_CODE (x) == INTEGER_CST
1814 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1815 }
1816
1817 /* Build a newly constructed VECTOR_CST with the given values of
1818 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1819
1820 tree
1821 make_vector (unsigned log2_npatterns,
1822 unsigned int nelts_per_pattern MEM_STAT_DECL)
1823 {
1824 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1825 tree t;
1826 unsigned npatterns = 1 << log2_npatterns;
1827 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1828 unsigned length = (sizeof (struct tree_vector)
1829 + (encoded_nelts - 1) * sizeof (tree));
1830
1831 record_node_allocation_statistics (VECTOR_CST, length);
1832
1833 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1834
1835 TREE_SET_CODE (t, VECTOR_CST);
1836 TREE_CONSTANT (t) = 1;
1837 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1838 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1839
1840 return t;
1841 }
1842
1843 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1844 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1845
1846 tree
1847 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1848 {
1849 unsigned HOST_WIDE_INT idx, nelts;
1850 tree value;
1851
1852 /* We can't construct a VECTOR_CST for a variable number of elements. */
1853 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1854 tree_vector_builder vec (type, nelts, 1);
1855 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1856 {
1857 if (TREE_CODE (value) == VECTOR_CST)
1858 {
1859 /* If NELTS is constant then this must be too. */
1860 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1861 for (unsigned i = 0; i < sub_nelts; ++i)
1862 vec.quick_push (VECTOR_CST_ELT (value, i));
1863 }
1864 else
1865 vec.quick_push (value);
1866 }
1867 while (vec.length () < nelts)
1868 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1869
1870 return vec.build ();
1871 }
1872
1873 /* Build a vector of type VECTYPE where all the elements are SCs. */
1874 tree
1875 build_vector_from_val (tree vectype, tree sc)
1876 {
1877 unsigned HOST_WIDE_INT i, nunits;
1878
1879 if (sc == error_mark_node)
1880 return sc;
1881
1882 /* Verify that the vector type is suitable for SC. Note that there
1883 is some inconsistency in the type-system with respect to restrict
1884 qualifications of pointers. Vector types always have a main-variant
1885 element type and the qualification is applied to the vector-type.
1886 So TREE_TYPE (vector-type) does not return a properly qualified
1887 vector element-type. */
1888 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1889 TREE_TYPE (vectype)));
1890
1891 if (CONSTANT_CLASS_P (sc))
1892 {
1893 tree_vector_builder v (vectype, 1, 1);
1894 v.quick_push (sc);
1895 return v.build ();
1896 }
1897 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1898 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1899 else
1900 {
1901 vec<constructor_elt, va_gc> *v;
1902 vec_alloc (v, nunits);
1903 for (i = 0; i < nunits; ++i)
1904 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1905 return build_constructor (vectype, v);
1906 }
1907 }
1908
1909 /* If TYPE is not a vector type, just return SC, otherwise return
1910 build_vector_from_val (TYPE, SC). */
1911
1912 tree
1913 build_uniform_cst (tree type, tree sc)
1914 {
1915 if (!VECTOR_TYPE_P (type))
1916 return sc;
1917
1918 return build_vector_from_val (type, sc);
1919 }
1920
1921 /* Build a vector series of type TYPE in which element I has the value
1922 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1923 and a VEC_SERIES_EXPR otherwise. */
1924
1925 tree
1926 build_vec_series (tree type, tree base, tree step)
1927 {
1928 if (integer_zerop (step))
1929 return build_vector_from_val (type, base);
1930 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1931 {
1932 tree_vector_builder builder (type, 1, 3);
1933 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1934 wi::to_wide (base) + wi::to_wide (step));
1935 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1936 wi::to_wide (elt1) + wi::to_wide (step));
1937 builder.quick_push (base);
1938 builder.quick_push (elt1);
1939 builder.quick_push (elt2);
1940 return builder.build ();
1941 }
1942 return build2 (VEC_SERIES_EXPR, type, base, step);
1943 }
1944
1945 /* Return a vector with the same number of units and number of bits
1946 as VEC_TYPE, but in which the elements are a linear series of unsigned
1947 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1948
1949 tree
1950 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1951 {
1952 tree index_vec_type = vec_type;
1953 tree index_elt_type = TREE_TYPE (vec_type);
1954 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1955 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1956 {
1957 index_elt_type = build_nonstandard_integer_type
1958 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1959 index_vec_type = build_vector_type (index_elt_type, nunits);
1960 }
1961
1962 tree_vector_builder v (index_vec_type, 1, 3);
1963 for (unsigned int i = 0; i < 3; ++i)
1964 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1965 return v.build ();
1966 }
1967
1968 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1969 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1970
1971 void
1972 recompute_constructor_flags (tree c)
1973 {
1974 unsigned int i;
1975 tree val;
1976 bool constant_p = true;
1977 bool side_effects_p = false;
1978 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1979
1980 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1981 {
1982 /* Mostly ctors will have elts that don't have side-effects, so
1983 the usual case is to scan all the elements. Hence a single
1984 loop for both const and side effects, rather than one loop
1985 each (with early outs). */
1986 if (!TREE_CONSTANT (val))
1987 constant_p = false;
1988 if (TREE_SIDE_EFFECTS (val))
1989 side_effects_p = true;
1990 }
1991
1992 TREE_SIDE_EFFECTS (c) = side_effects_p;
1993 TREE_CONSTANT (c) = constant_p;
1994 }
1995
1996 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1997 CONSTRUCTOR C. */
1998
1999 void
2000 verify_constructor_flags (tree c)
2001 {
2002 unsigned int i;
2003 tree val;
2004 bool constant_p = TREE_CONSTANT (c);
2005 bool side_effects_p = TREE_SIDE_EFFECTS (c);
2006 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2007
2008 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2009 {
2010 if (constant_p && !TREE_CONSTANT (val))
2011 internal_error ("non-constant element in constant CONSTRUCTOR");
2012 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
2013 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
2014 }
2015 }
2016
2017 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2018 are in the vec pointed to by VALS. */
2019 tree
2020 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
2021 {
2022 tree c = make_node (CONSTRUCTOR);
2023
2024 TREE_TYPE (c) = type;
2025 CONSTRUCTOR_ELTS (c) = vals;
2026
2027 recompute_constructor_flags (c);
2028
2029 return c;
2030 }
2031
2032 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2033 INDEX and VALUE. */
2034 tree
2035 build_constructor_single (tree type, tree index, tree value)
2036 {
2037 vec<constructor_elt, va_gc> *v;
2038 constructor_elt elt = {index, value};
2039
2040 vec_alloc (v, 1);
2041 v->quick_push (elt);
2042
2043 return build_constructor (type, v);
2044 }
2045
2046
2047 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2048 are in a list pointed to by VALS. */
2049 tree
2050 build_constructor_from_list (tree type, tree vals)
2051 {
2052 tree t;
2053 vec<constructor_elt, va_gc> *v = NULL;
2054
2055 if (vals)
2056 {
2057 vec_alloc (v, list_length (vals));
2058 for (t = vals; t; t = TREE_CHAIN (t))
2059 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2060 }
2061
2062 return build_constructor (type, v);
2063 }
2064
2065 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2066 of elements, provided as index/value pairs. */
2067
2068 tree
2069 build_constructor_va (tree type, int nelts, ...)
2070 {
2071 vec<constructor_elt, va_gc> *v = NULL;
2072 va_list p;
2073
2074 va_start (p, nelts);
2075 vec_alloc (v, nelts);
2076 while (nelts--)
2077 {
2078 tree index = va_arg (p, tree);
2079 tree value = va_arg (p, tree);
2080 CONSTRUCTOR_APPEND_ELT (v, index, value);
2081 }
2082 va_end (p);
2083 return build_constructor (type, v);
2084 }
2085
2086 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2087
2088 tree
2089 build_clobber (tree type)
2090 {
2091 tree clobber = build_constructor (type, NULL);
2092 TREE_THIS_VOLATILE (clobber) = true;
2093 return clobber;
2094 }
2095
2096 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2097
2098 tree
2099 build_fixed (tree type, FIXED_VALUE_TYPE f)
2100 {
2101 tree v;
2102 FIXED_VALUE_TYPE *fp;
2103
2104 v = make_node (FIXED_CST);
2105 fp = ggc_alloc<fixed_value> ();
2106 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2107
2108 TREE_TYPE (v) = type;
2109 TREE_FIXED_CST_PTR (v) = fp;
2110 return v;
2111 }
2112
2113 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2114
2115 tree
2116 build_real (tree type, REAL_VALUE_TYPE d)
2117 {
2118 tree v;
2119 REAL_VALUE_TYPE *dp;
2120 int overflow = 0;
2121
2122 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2123 Consider doing it via real_convert now. */
2124
2125 v = make_node (REAL_CST);
2126 dp = ggc_alloc<real_value> ();
2127 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2128
2129 TREE_TYPE (v) = type;
2130 TREE_REAL_CST_PTR (v) = dp;
2131 TREE_OVERFLOW (v) = overflow;
2132 return v;
2133 }
2134
2135 /* Like build_real, but first truncate D to the type. */
2136
2137 tree
2138 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2139 {
2140 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2141 }
2142
2143 /* Return a new REAL_CST node whose type is TYPE
2144 and whose value is the integer value of the INTEGER_CST node I. */
2145
2146 REAL_VALUE_TYPE
2147 real_value_from_int_cst (const_tree type, const_tree i)
2148 {
2149 REAL_VALUE_TYPE d;
2150
2151 /* Clear all bits of the real value type so that we can later do
2152 bitwise comparisons to see if two values are the same. */
2153 memset (&d, 0, sizeof d);
2154
2155 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2156 TYPE_SIGN (TREE_TYPE (i)));
2157 return d;
2158 }
2159
2160 /* Given a tree representing an integer constant I, return a tree
2161 representing the same value as a floating-point constant of type TYPE. */
2162
2163 tree
2164 build_real_from_int_cst (tree type, const_tree i)
2165 {
2166 tree v;
2167 int overflow = TREE_OVERFLOW (i);
2168
2169 v = build_real (type, real_value_from_int_cst (type, i));
2170
2171 TREE_OVERFLOW (v) |= overflow;
2172 return v;
2173 }
2174
2175 /* Return a newly constructed STRING_CST node whose value is
2176 the LEN characters at STR.
2177 Note that for a C string literal, LEN should include the trailing NUL.
2178 The TREE_TYPE is not initialized. */
2179
2180 tree
2181 build_string (int len, const char *str)
2182 {
2183 tree s;
2184 size_t length;
2185
2186 /* Do not waste bytes provided by padding of struct tree_string. */
2187 length = len + offsetof (struct tree_string, str) + 1;
2188
2189 record_node_allocation_statistics (STRING_CST, length);
2190
2191 s = (tree) ggc_internal_alloc (length);
2192
2193 memset (s, 0, sizeof (struct tree_typed));
2194 TREE_SET_CODE (s, STRING_CST);
2195 TREE_CONSTANT (s) = 1;
2196 TREE_STRING_LENGTH (s) = len;
2197 memcpy (s->string.str, str, len);
2198 s->string.str[len] = '\0';
2199
2200 return s;
2201 }
2202
2203 /* Return a newly constructed COMPLEX_CST node whose value is
2204 specified by the real and imaginary parts REAL and IMAG.
2205 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2206 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2207
2208 tree
2209 build_complex (tree type, tree real, tree imag)
2210 {
2211 gcc_assert (CONSTANT_CLASS_P (real));
2212 gcc_assert (CONSTANT_CLASS_P (imag));
2213
2214 tree t = make_node (COMPLEX_CST);
2215
2216 TREE_REALPART (t) = real;
2217 TREE_IMAGPART (t) = imag;
2218 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2219 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2220 return t;
2221 }
2222
2223 /* Build a complex (inf +- 0i), such as for the result of cproj.
2224 TYPE is the complex tree type of the result. If NEG is true, the
2225 imaginary zero is negative. */
2226
2227 tree
2228 build_complex_inf (tree type, bool neg)
2229 {
2230 REAL_VALUE_TYPE rinf, rzero = dconst0;
2231
2232 real_inf (&rinf);
2233 rzero.sign = neg;
2234 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2235 build_real (TREE_TYPE (type), rzero));
2236 }
2237
2238 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2239 element is set to 1. In particular, this is 1 + i for complex types. */
2240
2241 tree
2242 build_each_one_cst (tree type)
2243 {
2244 if (TREE_CODE (type) == COMPLEX_TYPE)
2245 {
2246 tree scalar = build_one_cst (TREE_TYPE (type));
2247 return build_complex (type, scalar, scalar);
2248 }
2249 else
2250 return build_one_cst (type);
2251 }
2252
2253 /* Return a constant of arithmetic type TYPE which is the
2254 multiplicative identity of the set TYPE. */
2255
2256 tree
2257 build_one_cst (tree type)
2258 {
2259 switch (TREE_CODE (type))
2260 {
2261 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2262 case POINTER_TYPE: case REFERENCE_TYPE:
2263 case OFFSET_TYPE:
2264 return build_int_cst (type, 1);
2265
2266 case REAL_TYPE:
2267 return build_real (type, dconst1);
2268
2269 case FIXED_POINT_TYPE:
2270 /* We can only generate 1 for accum types. */
2271 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2272 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2273
2274 case VECTOR_TYPE:
2275 {
2276 tree scalar = build_one_cst (TREE_TYPE (type));
2277
2278 return build_vector_from_val (type, scalar);
2279 }
2280
2281 case COMPLEX_TYPE:
2282 return build_complex (type,
2283 build_one_cst (TREE_TYPE (type)),
2284 build_zero_cst (TREE_TYPE (type)));
2285
2286 default:
2287 gcc_unreachable ();
2288 }
2289 }
2290
2291 /* Return an integer of type TYPE containing all 1's in as much precision as
2292 it contains, or a complex or vector whose subparts are such integers. */
2293
2294 tree
2295 build_all_ones_cst (tree type)
2296 {
2297 if (TREE_CODE (type) == COMPLEX_TYPE)
2298 {
2299 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2300 return build_complex (type, scalar, scalar);
2301 }
2302 else
2303 return build_minus_one_cst (type);
2304 }
2305
2306 /* Return a constant of arithmetic type TYPE which is the
2307 opposite of the multiplicative identity of the set TYPE. */
2308
2309 tree
2310 build_minus_one_cst (tree type)
2311 {
2312 switch (TREE_CODE (type))
2313 {
2314 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2315 case POINTER_TYPE: case REFERENCE_TYPE:
2316 case OFFSET_TYPE:
2317 return build_int_cst (type, -1);
2318
2319 case REAL_TYPE:
2320 return build_real (type, dconstm1);
2321
2322 case FIXED_POINT_TYPE:
2323 /* We can only generate 1 for accum types. */
2324 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2325 return build_fixed (type,
2326 fixed_from_double_int (double_int_minus_one,
2327 SCALAR_TYPE_MODE (type)));
2328
2329 case VECTOR_TYPE:
2330 {
2331 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2332
2333 return build_vector_from_val (type, scalar);
2334 }
2335
2336 case COMPLEX_TYPE:
2337 return build_complex (type,
2338 build_minus_one_cst (TREE_TYPE (type)),
2339 build_zero_cst (TREE_TYPE (type)));
2340
2341 default:
2342 gcc_unreachable ();
2343 }
2344 }
2345
2346 /* Build 0 constant of type TYPE. This is used by constructor folding
2347 and thus the constant should be represented in memory by
2348 zero(es). */
2349
2350 tree
2351 build_zero_cst (tree type)
2352 {
2353 switch (TREE_CODE (type))
2354 {
2355 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2356 case POINTER_TYPE: case REFERENCE_TYPE:
2357 case OFFSET_TYPE: case NULLPTR_TYPE:
2358 return build_int_cst (type, 0);
2359
2360 case REAL_TYPE:
2361 return build_real (type, dconst0);
2362
2363 case FIXED_POINT_TYPE:
2364 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2365
2366 case VECTOR_TYPE:
2367 {
2368 tree scalar = build_zero_cst (TREE_TYPE (type));
2369
2370 return build_vector_from_val (type, scalar);
2371 }
2372
2373 case COMPLEX_TYPE:
2374 {
2375 tree zero = build_zero_cst (TREE_TYPE (type));
2376
2377 return build_complex (type, zero, zero);
2378 }
2379
2380 default:
2381 if (!AGGREGATE_TYPE_P (type))
2382 return fold_convert (type, integer_zero_node);
2383 return build_constructor (type, NULL);
2384 }
2385 }
2386
2387
2388 /* Build a BINFO with LEN language slots. */
2389
2390 tree
2391 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2392 {
2393 tree t;
2394 size_t length = (offsetof (struct tree_binfo, base_binfos)
2395 + vec<tree, va_gc>::embedded_size (base_binfos));
2396
2397 record_node_allocation_statistics (TREE_BINFO, length);
2398
2399 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2400
2401 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2402
2403 TREE_SET_CODE (t, TREE_BINFO);
2404
2405 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2406
2407 return t;
2408 }
2409
2410 /* Create a CASE_LABEL_EXPR tree node and return it. */
2411
2412 tree
2413 build_case_label (tree low_value, tree high_value, tree label_decl)
2414 {
2415 tree t = make_node (CASE_LABEL_EXPR);
2416
2417 TREE_TYPE (t) = void_type_node;
2418 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2419
2420 CASE_LOW (t) = low_value;
2421 CASE_HIGH (t) = high_value;
2422 CASE_LABEL (t) = label_decl;
2423 CASE_CHAIN (t) = NULL_TREE;
2424
2425 return t;
2426 }
2427
2428 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2429 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2430 The latter determines the length of the HOST_WIDE_INT vector. */
2431
2432 tree
2433 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2434 {
2435 tree t;
2436 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2437 + sizeof (struct tree_int_cst));
2438
2439 gcc_assert (len);
2440 record_node_allocation_statistics (INTEGER_CST, length);
2441
2442 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2443
2444 TREE_SET_CODE (t, INTEGER_CST);
2445 TREE_INT_CST_NUNITS (t) = len;
2446 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2447 /* to_offset can only be applied to trees that are offset_int-sized
2448 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2449 must be exactly the precision of offset_int and so LEN is correct. */
2450 if (ext_len <= OFFSET_INT_ELTS)
2451 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2452 else
2453 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2454
2455 TREE_CONSTANT (t) = 1;
2456
2457 return t;
2458 }
2459
2460 /* Build a newly constructed TREE_VEC node of length LEN. */
2461
2462 tree
2463 make_tree_vec (int len MEM_STAT_DECL)
2464 {
2465 tree t;
2466 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2467
2468 record_node_allocation_statistics (TREE_VEC, length);
2469
2470 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2471
2472 TREE_SET_CODE (t, TREE_VEC);
2473 TREE_VEC_LENGTH (t) = len;
2474
2475 return t;
2476 }
2477
2478 /* Grow a TREE_VEC node to new length LEN. */
2479
2480 tree
2481 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2482 {
2483 gcc_assert (TREE_CODE (v) == TREE_VEC);
2484
2485 int oldlen = TREE_VEC_LENGTH (v);
2486 gcc_assert (len > oldlen);
2487
2488 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2489 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2490
2491 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2492
2493 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2494
2495 TREE_VEC_LENGTH (v) = len;
2496
2497 return v;
2498 }
2499 \f
2500 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2501 fixed, and scalar, complex or vector. */
2502
2503 bool
2504 zerop (const_tree expr)
2505 {
2506 return (integer_zerop (expr)
2507 || real_zerop (expr)
2508 || fixed_zerop (expr));
2509 }
2510
2511 /* Return 1 if EXPR is the integer constant zero or a complex constant
2512 of zero, or a location wrapper for such a constant. */
2513
2514 bool
2515 integer_zerop (const_tree expr)
2516 {
2517 STRIP_ANY_LOCATION_WRAPPER (expr);
2518
2519 switch (TREE_CODE (expr))
2520 {
2521 case INTEGER_CST:
2522 return wi::to_wide (expr) == 0;
2523 case COMPLEX_CST:
2524 return (integer_zerop (TREE_REALPART (expr))
2525 && integer_zerop (TREE_IMAGPART (expr)));
2526 case VECTOR_CST:
2527 return (VECTOR_CST_NPATTERNS (expr) == 1
2528 && VECTOR_CST_DUPLICATE_P (expr)
2529 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2530 default:
2531 return false;
2532 }
2533 }
2534
2535 /* Return 1 if EXPR is the integer constant one or the corresponding
2536 complex constant, or a location wrapper for such a constant. */
2537
2538 bool
2539 integer_onep (const_tree expr)
2540 {
2541 STRIP_ANY_LOCATION_WRAPPER (expr);
2542
2543 switch (TREE_CODE (expr))
2544 {
2545 case INTEGER_CST:
2546 return wi::eq_p (wi::to_widest (expr), 1);
2547 case COMPLEX_CST:
2548 return (integer_onep (TREE_REALPART (expr))
2549 && integer_zerop (TREE_IMAGPART (expr)));
2550 case VECTOR_CST:
2551 return (VECTOR_CST_NPATTERNS (expr) == 1
2552 && VECTOR_CST_DUPLICATE_P (expr)
2553 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2554 default:
2555 return false;
2556 }
2557 }
2558
2559 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2560 return 1 if every piece is the integer constant one.
2561 Also return 1 for location wrappers for such a constant. */
2562
2563 bool
2564 integer_each_onep (const_tree expr)
2565 {
2566 STRIP_ANY_LOCATION_WRAPPER (expr);
2567
2568 if (TREE_CODE (expr) == COMPLEX_CST)
2569 return (integer_onep (TREE_REALPART (expr))
2570 && integer_onep (TREE_IMAGPART (expr)));
2571 else
2572 return integer_onep (expr);
2573 }
2574
2575 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2576 it contains, or a complex or vector whose subparts are such integers,
2577 or a location wrapper for such a constant. */
2578
2579 bool
2580 integer_all_onesp (const_tree expr)
2581 {
2582 STRIP_ANY_LOCATION_WRAPPER (expr);
2583
2584 if (TREE_CODE (expr) == COMPLEX_CST
2585 && integer_all_onesp (TREE_REALPART (expr))
2586 && integer_all_onesp (TREE_IMAGPART (expr)))
2587 return true;
2588
2589 else if (TREE_CODE (expr) == VECTOR_CST)
2590 return (VECTOR_CST_NPATTERNS (expr) == 1
2591 && VECTOR_CST_DUPLICATE_P (expr)
2592 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2593
2594 else if (TREE_CODE (expr) != INTEGER_CST)
2595 return false;
2596
2597 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2598 == wi::to_wide (expr));
2599 }
2600
2601 /* Return 1 if EXPR is the integer constant minus one, or a location wrapper
2602 for such a constant. */
2603
2604 bool
2605 integer_minus_onep (const_tree expr)
2606 {
2607 STRIP_ANY_LOCATION_WRAPPER (expr);
2608
2609 if (TREE_CODE (expr) == COMPLEX_CST)
2610 return (integer_all_onesp (TREE_REALPART (expr))
2611 && integer_zerop (TREE_IMAGPART (expr)));
2612 else
2613 return integer_all_onesp (expr);
2614 }
2615
2616 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2617 one bit on), or a location wrapper for such a constant. */
2618
2619 bool
2620 integer_pow2p (const_tree expr)
2621 {
2622 STRIP_ANY_LOCATION_WRAPPER (expr);
2623
2624 if (TREE_CODE (expr) == COMPLEX_CST
2625 && integer_pow2p (TREE_REALPART (expr))
2626 && integer_zerop (TREE_IMAGPART (expr)))
2627 return true;
2628
2629 if (TREE_CODE (expr) != INTEGER_CST)
2630 return false;
2631
2632 return wi::popcount (wi::to_wide (expr)) == 1;
2633 }
2634
2635 /* Return 1 if EXPR is an integer constant other than zero or a
2636 complex constant other than zero, or a location wrapper for such a
2637 constant. */
2638
2639 bool
2640 integer_nonzerop (const_tree expr)
2641 {
2642 STRIP_ANY_LOCATION_WRAPPER (expr);
2643
2644 return ((TREE_CODE (expr) == INTEGER_CST
2645 && wi::to_wide (expr) != 0)
2646 || (TREE_CODE (expr) == COMPLEX_CST
2647 && (integer_nonzerop (TREE_REALPART (expr))
2648 || integer_nonzerop (TREE_IMAGPART (expr)))));
2649 }
2650
2651 /* Return 1 if EXPR is the integer constant one. For vector,
2652 return 1 if every piece is the integer constant minus one
2653 (representing the value TRUE).
2654 Also return 1 for location wrappers for such a constant. */
2655
2656 bool
2657 integer_truep (const_tree expr)
2658 {
2659 STRIP_ANY_LOCATION_WRAPPER (expr);
2660
2661 if (TREE_CODE (expr) == VECTOR_CST)
2662 return integer_all_onesp (expr);
2663 return integer_onep (expr);
2664 }
2665
2666 /* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper
2667 for such a constant. */
2668
2669 bool
2670 fixed_zerop (const_tree expr)
2671 {
2672 STRIP_ANY_LOCATION_WRAPPER (expr);
2673
2674 return (TREE_CODE (expr) == FIXED_CST
2675 && TREE_FIXED_CST (expr).data.is_zero ());
2676 }
2677
2678 /* Return the power of two represented by a tree node known to be a
2679 power of two. */
2680
2681 int
2682 tree_log2 (const_tree expr)
2683 {
2684 if (TREE_CODE (expr) == COMPLEX_CST)
2685 return tree_log2 (TREE_REALPART (expr));
2686
2687 return wi::exact_log2 (wi::to_wide (expr));
2688 }
2689
2690 /* Similar, but return the largest integer Y such that 2 ** Y is less
2691 than or equal to EXPR. */
2692
2693 int
2694 tree_floor_log2 (const_tree expr)
2695 {
2696 if (TREE_CODE (expr) == COMPLEX_CST)
2697 return tree_log2 (TREE_REALPART (expr));
2698
2699 return wi::floor_log2 (wi::to_wide (expr));
2700 }
2701
2702 /* Return number of known trailing zero bits in EXPR, or, if the value of
2703 EXPR is known to be zero, the precision of it's type. */
2704
2705 unsigned int
2706 tree_ctz (const_tree expr)
2707 {
2708 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2709 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2710 return 0;
2711
2712 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2713 switch (TREE_CODE (expr))
2714 {
2715 case INTEGER_CST:
2716 ret1 = wi::ctz (wi::to_wide (expr));
2717 return MIN (ret1, prec);
2718 case SSA_NAME:
2719 ret1 = wi::ctz (get_nonzero_bits (expr));
2720 return MIN (ret1, prec);
2721 case PLUS_EXPR:
2722 case MINUS_EXPR:
2723 case BIT_IOR_EXPR:
2724 case BIT_XOR_EXPR:
2725 case MIN_EXPR:
2726 case MAX_EXPR:
2727 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2728 if (ret1 == 0)
2729 return ret1;
2730 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2731 return MIN (ret1, ret2);
2732 case POINTER_PLUS_EXPR:
2733 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2734 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2735 /* Second operand is sizetype, which could be in theory
2736 wider than pointer's precision. Make sure we never
2737 return more than prec. */
2738 ret2 = MIN (ret2, prec);
2739 return MIN (ret1, ret2);
2740 case BIT_AND_EXPR:
2741 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2742 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2743 return MAX (ret1, ret2);
2744 case MULT_EXPR:
2745 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2746 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2747 return MIN (ret1 + ret2, prec);
2748 case LSHIFT_EXPR:
2749 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2750 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2751 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2752 {
2753 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2754 return MIN (ret1 + ret2, prec);
2755 }
2756 return ret1;
2757 case RSHIFT_EXPR:
2758 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2759 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2760 {
2761 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2762 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2763 if (ret1 > ret2)
2764 return ret1 - ret2;
2765 }
2766 return 0;
2767 case TRUNC_DIV_EXPR:
2768 case CEIL_DIV_EXPR:
2769 case FLOOR_DIV_EXPR:
2770 case ROUND_DIV_EXPR:
2771 case EXACT_DIV_EXPR:
2772 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2773 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2774 {
2775 int l = tree_log2 (TREE_OPERAND (expr, 1));
2776 if (l >= 0)
2777 {
2778 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2779 ret2 = l;
2780 if (ret1 > ret2)
2781 return ret1 - ret2;
2782 }
2783 }
2784 return 0;
2785 CASE_CONVERT:
2786 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2787 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2788 ret1 = prec;
2789 return MIN (ret1, prec);
2790 case SAVE_EXPR:
2791 return tree_ctz (TREE_OPERAND (expr, 0));
2792 case COND_EXPR:
2793 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2794 if (ret1 == 0)
2795 return 0;
2796 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2797 return MIN (ret1, ret2);
2798 case COMPOUND_EXPR:
2799 return tree_ctz (TREE_OPERAND (expr, 1));
2800 case ADDR_EXPR:
2801 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2802 if (ret1 > BITS_PER_UNIT)
2803 {
2804 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2805 return MIN (ret1, prec);
2806 }
2807 return 0;
2808 default:
2809 return 0;
2810 }
2811 }
2812
2813 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2814 decimal float constants, so don't return 1 for them.
2815 Also return 1 for location wrappers around such a constant. */
2816
2817 bool
2818 real_zerop (const_tree expr)
2819 {
2820 STRIP_ANY_LOCATION_WRAPPER (expr);
2821
2822 switch (TREE_CODE (expr))
2823 {
2824 case REAL_CST:
2825 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2826 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2827 case COMPLEX_CST:
2828 return real_zerop (TREE_REALPART (expr))
2829 && real_zerop (TREE_IMAGPART (expr));
2830 case VECTOR_CST:
2831 {
2832 /* Don't simply check for a duplicate because the predicate
2833 accepts both +0.0 and -0.0. */
2834 unsigned count = vector_cst_encoded_nelts (expr);
2835 for (unsigned int i = 0; i < count; ++i)
2836 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2837 return false;
2838 return true;
2839 }
2840 default:
2841 return false;
2842 }
2843 }
2844
2845 /* Return 1 if EXPR is the real constant one in real or complex form.
2846 Trailing zeroes matter for decimal float constants, so don't return
2847 1 for them.
2848 Also return 1 for location wrappers around such a constant. */
2849
2850 bool
2851 real_onep (const_tree expr)
2852 {
2853 STRIP_ANY_LOCATION_WRAPPER (expr);
2854
2855 switch (TREE_CODE (expr))
2856 {
2857 case REAL_CST:
2858 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2859 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2860 case COMPLEX_CST:
2861 return real_onep (TREE_REALPART (expr))
2862 && real_zerop (TREE_IMAGPART (expr));
2863 case VECTOR_CST:
2864 return (VECTOR_CST_NPATTERNS (expr) == 1
2865 && VECTOR_CST_DUPLICATE_P (expr)
2866 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2867 default:
2868 return false;
2869 }
2870 }
2871
2872 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2873 matter for decimal float constants, so don't return 1 for them.
2874 Also return 1 for location wrappers around such a constant. */
2875
2876 bool
2877 real_minus_onep (const_tree expr)
2878 {
2879 STRIP_ANY_LOCATION_WRAPPER (expr);
2880
2881 switch (TREE_CODE (expr))
2882 {
2883 case REAL_CST:
2884 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2885 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2886 case COMPLEX_CST:
2887 return real_minus_onep (TREE_REALPART (expr))
2888 && real_zerop (TREE_IMAGPART (expr));
2889 case VECTOR_CST:
2890 return (VECTOR_CST_NPATTERNS (expr) == 1
2891 && VECTOR_CST_DUPLICATE_P (expr)
2892 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2893 default:
2894 return false;
2895 }
2896 }
2897
2898 /* Nonzero if EXP is a constant or a cast of a constant. */
2899
2900 bool
2901 really_constant_p (const_tree exp)
2902 {
2903 /* This is not quite the same as STRIP_NOPS. It does more. */
2904 while (CONVERT_EXPR_P (exp)
2905 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2906 exp = TREE_OPERAND (exp, 0);
2907 return TREE_CONSTANT (exp);
2908 }
2909
2910 /* Return true if T holds a polynomial pointer difference, storing it in
2911 *VALUE if so. A true return means that T's precision is no greater
2912 than 64 bits, which is the largest address space we support, so *VALUE
2913 never loses precision. However, the signedness of the result does
2914 not necessarily match the signedness of T: sometimes an unsigned type
2915 like sizetype is used to encode a value that is actually negative. */
2916
2917 bool
2918 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2919 {
2920 if (!t)
2921 return false;
2922 if (TREE_CODE (t) == INTEGER_CST)
2923 {
2924 if (!cst_and_fits_in_hwi (t))
2925 return false;
2926 *value = int_cst_value (t);
2927 return true;
2928 }
2929 if (POLY_INT_CST_P (t))
2930 {
2931 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2932 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2933 return false;
2934 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2935 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2936 return true;
2937 }
2938 return false;
2939 }
2940
2941 poly_int64
2942 tree_to_poly_int64 (const_tree t)
2943 {
2944 gcc_assert (tree_fits_poly_int64_p (t));
2945 if (POLY_INT_CST_P (t))
2946 return poly_int_cst_value (t).force_shwi ();
2947 return TREE_INT_CST_LOW (t);
2948 }
2949
2950 poly_uint64
2951 tree_to_poly_uint64 (const_tree t)
2952 {
2953 gcc_assert (tree_fits_poly_uint64_p (t));
2954 if (POLY_INT_CST_P (t))
2955 return poly_int_cst_value (t).force_uhwi ();
2956 return TREE_INT_CST_LOW (t);
2957 }
2958 \f
2959 /* Return first list element whose TREE_VALUE is ELEM.
2960 Return 0 if ELEM is not in LIST. */
2961
2962 tree
2963 value_member (tree elem, tree list)
2964 {
2965 while (list)
2966 {
2967 if (elem == TREE_VALUE (list))
2968 return list;
2969 list = TREE_CHAIN (list);
2970 }
2971 return NULL_TREE;
2972 }
2973
2974 /* Return first list element whose TREE_PURPOSE is ELEM.
2975 Return 0 if ELEM is not in LIST. */
2976
2977 tree
2978 purpose_member (const_tree elem, tree list)
2979 {
2980 while (list)
2981 {
2982 if (elem == TREE_PURPOSE (list))
2983 return list;
2984 list = TREE_CHAIN (list);
2985 }
2986 return NULL_TREE;
2987 }
2988
2989 /* Return true if ELEM is in V. */
2990
2991 bool
2992 vec_member (const_tree elem, vec<tree, va_gc> *v)
2993 {
2994 unsigned ix;
2995 tree t;
2996 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2997 if (elem == t)
2998 return true;
2999 return false;
3000 }
3001
3002 /* Returns element number IDX (zero-origin) of chain CHAIN, or
3003 NULL_TREE. */
3004
3005 tree
3006 chain_index (int idx, tree chain)
3007 {
3008 for (; chain && idx > 0; --idx)
3009 chain = TREE_CHAIN (chain);
3010 return chain;
3011 }
3012
3013 /* Return nonzero if ELEM is part of the chain CHAIN. */
3014
3015 bool
3016 chain_member (const_tree elem, const_tree chain)
3017 {
3018 while (chain)
3019 {
3020 if (elem == chain)
3021 return true;
3022 chain = DECL_CHAIN (chain);
3023 }
3024
3025 return false;
3026 }
3027
3028 /* Return the length of a chain of nodes chained through TREE_CHAIN.
3029 We expect a null pointer to mark the end of the chain.
3030 This is the Lisp primitive `length'. */
3031
3032 int
3033 list_length (const_tree t)
3034 {
3035 const_tree p = t;
3036 #ifdef ENABLE_TREE_CHECKING
3037 const_tree q = t;
3038 #endif
3039 int len = 0;
3040
3041 while (p)
3042 {
3043 p = TREE_CHAIN (p);
3044 #ifdef ENABLE_TREE_CHECKING
3045 if (len % 2)
3046 q = TREE_CHAIN (q);
3047 gcc_assert (p != q);
3048 #endif
3049 len++;
3050 }
3051
3052 return len;
3053 }
3054
3055 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3056 UNION_TYPE TYPE, or NULL_TREE if none. */
3057
3058 tree
3059 first_field (const_tree type)
3060 {
3061 tree t = TYPE_FIELDS (type);
3062 while (t && TREE_CODE (t) != FIELD_DECL)
3063 t = TREE_CHAIN (t);
3064 return t;
3065 }
3066
3067 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3068 by modifying the last node in chain 1 to point to chain 2.
3069 This is the Lisp primitive `nconc'. */
3070
3071 tree
3072 chainon (tree op1, tree op2)
3073 {
3074 tree t1;
3075
3076 if (!op1)
3077 return op2;
3078 if (!op2)
3079 return op1;
3080
3081 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3082 continue;
3083 TREE_CHAIN (t1) = op2;
3084
3085 #ifdef ENABLE_TREE_CHECKING
3086 {
3087 tree t2;
3088 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3089 gcc_assert (t2 != t1);
3090 }
3091 #endif
3092
3093 return op1;
3094 }
3095
3096 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3097
3098 tree
3099 tree_last (tree chain)
3100 {
3101 tree next;
3102 if (chain)
3103 while ((next = TREE_CHAIN (chain)))
3104 chain = next;
3105 return chain;
3106 }
3107
3108 /* Reverse the order of elements in the chain T,
3109 and return the new head of the chain (old last element). */
3110
3111 tree
3112 nreverse (tree t)
3113 {
3114 tree prev = 0, decl, next;
3115 for (decl = t; decl; decl = next)
3116 {
3117 /* We shouldn't be using this function to reverse BLOCK chains; we
3118 have blocks_nreverse for that. */
3119 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3120 next = TREE_CHAIN (decl);
3121 TREE_CHAIN (decl) = prev;
3122 prev = decl;
3123 }
3124 return prev;
3125 }
3126 \f
3127 /* Return a newly created TREE_LIST node whose
3128 purpose and value fields are PARM and VALUE. */
3129
3130 tree
3131 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3132 {
3133 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3134 TREE_PURPOSE (t) = parm;
3135 TREE_VALUE (t) = value;
3136 return t;
3137 }
3138
3139 /* Build a chain of TREE_LIST nodes from a vector. */
3140
3141 tree
3142 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3143 {
3144 tree ret = NULL_TREE;
3145 tree *pp = &ret;
3146 unsigned int i;
3147 tree t;
3148 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3149 {
3150 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3151 pp = &TREE_CHAIN (*pp);
3152 }
3153 return ret;
3154 }
3155
3156 /* Return a newly created TREE_LIST node whose
3157 purpose and value fields are PURPOSE and VALUE
3158 and whose TREE_CHAIN is CHAIN. */
3159
3160 tree
3161 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3162 {
3163 tree node;
3164
3165 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3166 memset (node, 0, sizeof (struct tree_common));
3167
3168 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3169
3170 TREE_SET_CODE (node, TREE_LIST);
3171 TREE_CHAIN (node) = chain;
3172 TREE_PURPOSE (node) = purpose;
3173 TREE_VALUE (node) = value;
3174 return node;
3175 }
3176
3177 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3178 trees. */
3179
3180 vec<tree, va_gc> *
3181 ctor_to_vec (tree ctor)
3182 {
3183 vec<tree, va_gc> *vec;
3184 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3185 unsigned int ix;
3186 tree val;
3187
3188 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3189 vec->quick_push (val);
3190
3191 return vec;
3192 }
3193 \f
3194 /* Return the size nominally occupied by an object of type TYPE
3195 when it resides in memory. The value is measured in units of bytes,
3196 and its data type is that normally used for type sizes
3197 (which is the first type created by make_signed_type or
3198 make_unsigned_type). */
3199
3200 tree
3201 size_in_bytes_loc (location_t loc, const_tree type)
3202 {
3203 tree t;
3204
3205 if (type == error_mark_node)
3206 return integer_zero_node;
3207
3208 type = TYPE_MAIN_VARIANT (type);
3209 t = TYPE_SIZE_UNIT (type);
3210
3211 if (t == 0)
3212 {
3213 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3214 return size_zero_node;
3215 }
3216
3217 return t;
3218 }
3219
3220 /* Return the size of TYPE (in bytes) as a wide integer
3221 or return -1 if the size can vary or is larger than an integer. */
3222
3223 HOST_WIDE_INT
3224 int_size_in_bytes (const_tree type)
3225 {
3226 tree t;
3227
3228 if (type == error_mark_node)
3229 return 0;
3230
3231 type = TYPE_MAIN_VARIANT (type);
3232 t = TYPE_SIZE_UNIT (type);
3233
3234 if (t && tree_fits_uhwi_p (t))
3235 return TREE_INT_CST_LOW (t);
3236 else
3237 return -1;
3238 }
3239
3240 /* Return the maximum size of TYPE (in bytes) as a wide integer
3241 or return -1 if the size can vary or is larger than an integer. */
3242
3243 HOST_WIDE_INT
3244 max_int_size_in_bytes (const_tree type)
3245 {
3246 HOST_WIDE_INT size = -1;
3247 tree size_tree;
3248
3249 /* If this is an array type, check for a possible MAX_SIZE attached. */
3250
3251 if (TREE_CODE (type) == ARRAY_TYPE)
3252 {
3253 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3254
3255 if (size_tree && tree_fits_uhwi_p (size_tree))
3256 size = tree_to_uhwi (size_tree);
3257 }
3258
3259 /* If we still haven't been able to get a size, see if the language
3260 can compute a maximum size. */
3261
3262 if (size == -1)
3263 {
3264 size_tree = lang_hooks.types.max_size (type);
3265
3266 if (size_tree && tree_fits_uhwi_p (size_tree))
3267 size = tree_to_uhwi (size_tree);
3268 }
3269
3270 return size;
3271 }
3272 \f
3273 /* Return the bit position of FIELD, in bits from the start of the record.
3274 This is a tree of type bitsizetype. */
3275
3276 tree
3277 bit_position (const_tree field)
3278 {
3279 return bit_from_pos (DECL_FIELD_OFFSET (field),
3280 DECL_FIELD_BIT_OFFSET (field));
3281 }
3282 \f
3283 /* Return the byte position of FIELD, in bytes from the start of the record.
3284 This is a tree of type sizetype. */
3285
3286 tree
3287 byte_position (const_tree field)
3288 {
3289 return byte_from_pos (DECL_FIELD_OFFSET (field),
3290 DECL_FIELD_BIT_OFFSET (field));
3291 }
3292
3293 /* Likewise, but return as an integer. It must be representable in
3294 that way (since it could be a signed value, we don't have the
3295 option of returning -1 like int_size_in_byte can. */
3296
3297 HOST_WIDE_INT
3298 int_byte_position (const_tree field)
3299 {
3300 return tree_to_shwi (byte_position (field));
3301 }
3302 \f
3303 /* Return the strictest alignment, in bits, that T is known to have. */
3304
3305 unsigned int
3306 expr_align (const_tree t)
3307 {
3308 unsigned int align0, align1;
3309
3310 switch (TREE_CODE (t))
3311 {
3312 CASE_CONVERT: case NON_LVALUE_EXPR:
3313 /* If we have conversions, we know that the alignment of the
3314 object must meet each of the alignments of the types. */
3315 align0 = expr_align (TREE_OPERAND (t, 0));
3316 align1 = TYPE_ALIGN (TREE_TYPE (t));
3317 return MAX (align0, align1);
3318
3319 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3320 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3321 case CLEANUP_POINT_EXPR:
3322 /* These don't change the alignment of an object. */
3323 return expr_align (TREE_OPERAND (t, 0));
3324
3325 case COND_EXPR:
3326 /* The best we can do is say that the alignment is the least aligned
3327 of the two arms. */
3328 align0 = expr_align (TREE_OPERAND (t, 1));
3329 align1 = expr_align (TREE_OPERAND (t, 2));
3330 return MIN (align0, align1);
3331
3332 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3333 meaningfully, it's always 1. */
3334 case LABEL_DECL: case CONST_DECL:
3335 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3336 case FUNCTION_DECL:
3337 gcc_assert (DECL_ALIGN (t) != 0);
3338 return DECL_ALIGN (t);
3339
3340 default:
3341 break;
3342 }
3343
3344 /* Otherwise take the alignment from that of the type. */
3345 return TYPE_ALIGN (TREE_TYPE (t));
3346 }
3347 \f
3348 /* Return, as a tree node, the number of elements for TYPE (which is an
3349 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3350
3351 tree
3352 array_type_nelts (const_tree type)
3353 {
3354 tree index_type, min, max;
3355
3356 /* If they did it with unspecified bounds, then we should have already
3357 given an error about it before we got here. */
3358 if (! TYPE_DOMAIN (type))
3359 return error_mark_node;
3360
3361 index_type = TYPE_DOMAIN (type);
3362 min = TYPE_MIN_VALUE (index_type);
3363 max = TYPE_MAX_VALUE (index_type);
3364
3365 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3366 if (!max)
3367 return error_mark_node;
3368
3369 return (integer_zerop (min)
3370 ? max
3371 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3372 }
3373 \f
3374 /* If arg is static -- a reference to an object in static storage -- then
3375 return the object. This is not the same as the C meaning of `static'.
3376 If arg isn't static, return NULL. */
3377
3378 tree
3379 staticp (tree arg)
3380 {
3381 switch (TREE_CODE (arg))
3382 {
3383 case FUNCTION_DECL:
3384 /* Nested functions are static, even though taking their address will
3385 involve a trampoline as we unnest the nested function and create
3386 the trampoline on the tree level. */
3387 return arg;
3388
3389 case VAR_DECL:
3390 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3391 && ! DECL_THREAD_LOCAL_P (arg)
3392 && ! DECL_DLLIMPORT_P (arg)
3393 ? arg : NULL);
3394
3395 case CONST_DECL:
3396 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3397 ? arg : NULL);
3398
3399 case CONSTRUCTOR:
3400 return TREE_STATIC (arg) ? arg : NULL;
3401
3402 case LABEL_DECL:
3403 case STRING_CST:
3404 return arg;
3405
3406 case COMPONENT_REF:
3407 /* If the thing being referenced is not a field, then it is
3408 something language specific. */
3409 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3410
3411 /* If we are referencing a bitfield, we can't evaluate an
3412 ADDR_EXPR at compile time and so it isn't a constant. */
3413 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3414 return NULL;
3415
3416 return staticp (TREE_OPERAND (arg, 0));
3417
3418 case BIT_FIELD_REF:
3419 return NULL;
3420
3421 case INDIRECT_REF:
3422 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3423
3424 case ARRAY_REF:
3425 case ARRAY_RANGE_REF:
3426 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3427 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3428 return staticp (TREE_OPERAND (arg, 0));
3429 else
3430 return NULL;
3431
3432 case COMPOUND_LITERAL_EXPR:
3433 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3434
3435 default:
3436 return NULL;
3437 }
3438 }
3439
3440 \f
3441
3442
3443 /* Return whether OP is a DECL whose address is function-invariant. */
3444
3445 bool
3446 decl_address_invariant_p (const_tree op)
3447 {
3448 /* The conditions below are slightly less strict than the one in
3449 staticp. */
3450
3451 switch (TREE_CODE (op))
3452 {
3453 case PARM_DECL:
3454 case RESULT_DECL:
3455 case LABEL_DECL:
3456 case FUNCTION_DECL:
3457 return true;
3458
3459 case VAR_DECL:
3460 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3461 || DECL_THREAD_LOCAL_P (op)
3462 || DECL_CONTEXT (op) == current_function_decl
3463 || decl_function_context (op) == current_function_decl)
3464 return true;
3465 break;
3466
3467 case CONST_DECL:
3468 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3469 || decl_function_context (op) == current_function_decl)
3470 return true;
3471 break;
3472
3473 default:
3474 break;
3475 }
3476
3477 return false;
3478 }
3479
3480 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3481
3482 bool
3483 decl_address_ip_invariant_p (const_tree op)
3484 {
3485 /* The conditions below are slightly less strict than the one in
3486 staticp. */
3487
3488 switch (TREE_CODE (op))
3489 {
3490 case LABEL_DECL:
3491 case FUNCTION_DECL:
3492 case STRING_CST:
3493 return true;
3494
3495 case VAR_DECL:
3496 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3497 && !DECL_DLLIMPORT_P (op))
3498 || DECL_THREAD_LOCAL_P (op))
3499 return true;
3500 break;
3501
3502 case CONST_DECL:
3503 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3504 return true;
3505 break;
3506
3507 default:
3508 break;
3509 }
3510
3511 return false;
3512 }
3513
3514
3515 /* Return true if T is function-invariant (internal function, does
3516 not handle arithmetic; that's handled in skip_simple_arithmetic and
3517 tree_invariant_p). */
3518
3519 static bool
3520 tree_invariant_p_1 (tree t)
3521 {
3522 tree op;
3523
3524 if (TREE_CONSTANT (t)
3525 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3526 return true;
3527
3528 switch (TREE_CODE (t))
3529 {
3530 case SAVE_EXPR:
3531 return true;
3532
3533 case ADDR_EXPR:
3534 op = TREE_OPERAND (t, 0);
3535 while (handled_component_p (op))
3536 {
3537 switch (TREE_CODE (op))
3538 {
3539 case ARRAY_REF:
3540 case ARRAY_RANGE_REF:
3541 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3542 || TREE_OPERAND (op, 2) != NULL_TREE
3543 || TREE_OPERAND (op, 3) != NULL_TREE)
3544 return false;
3545 break;
3546
3547 case COMPONENT_REF:
3548 if (TREE_OPERAND (op, 2) != NULL_TREE)
3549 return false;
3550 break;
3551
3552 default:;
3553 }
3554 op = TREE_OPERAND (op, 0);
3555 }
3556
3557 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3558
3559 default:
3560 break;
3561 }
3562
3563 return false;
3564 }
3565
3566 /* Return true if T is function-invariant. */
3567
3568 bool
3569 tree_invariant_p (tree t)
3570 {
3571 tree inner = skip_simple_arithmetic (t);
3572 return tree_invariant_p_1 (inner);
3573 }
3574
3575 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3576 Do this to any expression which may be used in more than one place,
3577 but must be evaluated only once.
3578
3579 Normally, expand_expr would reevaluate the expression each time.
3580 Calling save_expr produces something that is evaluated and recorded
3581 the first time expand_expr is called on it. Subsequent calls to
3582 expand_expr just reuse the recorded value.
3583
3584 The call to expand_expr that generates code that actually computes
3585 the value is the first call *at compile time*. Subsequent calls
3586 *at compile time* generate code to use the saved value.
3587 This produces correct result provided that *at run time* control
3588 always flows through the insns made by the first expand_expr
3589 before reaching the other places where the save_expr was evaluated.
3590 You, the caller of save_expr, must make sure this is so.
3591
3592 Constants, and certain read-only nodes, are returned with no
3593 SAVE_EXPR because that is safe. Expressions containing placeholders
3594 are not touched; see tree.def for an explanation of what these
3595 are used for. */
3596
3597 tree
3598 save_expr (tree expr)
3599 {
3600 tree inner;
3601
3602 /* If the tree evaluates to a constant, then we don't want to hide that
3603 fact (i.e. this allows further folding, and direct checks for constants).
3604 However, a read-only object that has side effects cannot be bypassed.
3605 Since it is no problem to reevaluate literals, we just return the
3606 literal node. */
3607 inner = skip_simple_arithmetic (expr);
3608 if (TREE_CODE (inner) == ERROR_MARK)
3609 return inner;
3610
3611 if (tree_invariant_p_1 (inner))
3612 return expr;
3613
3614 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3615 it means that the size or offset of some field of an object depends on
3616 the value within another field.
3617
3618 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3619 and some variable since it would then need to be both evaluated once and
3620 evaluated more than once. Front-ends must assure this case cannot
3621 happen by surrounding any such subexpressions in their own SAVE_EXPR
3622 and forcing evaluation at the proper time. */
3623 if (contains_placeholder_p (inner))
3624 return expr;
3625
3626 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3627
3628 /* This expression might be placed ahead of a jump to ensure that the
3629 value was computed on both sides of the jump. So make sure it isn't
3630 eliminated as dead. */
3631 TREE_SIDE_EFFECTS (expr) = 1;
3632 return expr;
3633 }
3634
3635 /* Look inside EXPR into any simple arithmetic operations. Return the
3636 outermost non-arithmetic or non-invariant node. */
3637
3638 tree
3639 skip_simple_arithmetic (tree expr)
3640 {
3641 /* We don't care about whether this can be used as an lvalue in this
3642 context. */
3643 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3644 expr = TREE_OPERAND (expr, 0);
3645
3646 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3647 a constant, it will be more efficient to not make another SAVE_EXPR since
3648 it will allow better simplification and GCSE will be able to merge the
3649 computations if they actually occur. */
3650 while (true)
3651 {
3652 if (UNARY_CLASS_P (expr))
3653 expr = TREE_OPERAND (expr, 0);
3654 else if (BINARY_CLASS_P (expr))
3655 {
3656 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3657 expr = TREE_OPERAND (expr, 0);
3658 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3659 expr = TREE_OPERAND (expr, 1);
3660 else
3661 break;
3662 }
3663 else
3664 break;
3665 }
3666
3667 return expr;
3668 }
3669
3670 /* Look inside EXPR into simple arithmetic operations involving constants.
3671 Return the outermost non-arithmetic or non-constant node. */
3672
3673 tree
3674 skip_simple_constant_arithmetic (tree expr)
3675 {
3676 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3677 expr = TREE_OPERAND (expr, 0);
3678
3679 while (true)
3680 {
3681 if (UNARY_CLASS_P (expr))
3682 expr = TREE_OPERAND (expr, 0);
3683 else if (BINARY_CLASS_P (expr))
3684 {
3685 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3686 expr = TREE_OPERAND (expr, 0);
3687 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3688 expr = TREE_OPERAND (expr, 1);
3689 else
3690 break;
3691 }
3692 else
3693 break;
3694 }
3695
3696 return expr;
3697 }
3698
3699 /* Return which tree structure is used by T. */
3700
3701 enum tree_node_structure_enum
3702 tree_node_structure (const_tree t)
3703 {
3704 const enum tree_code code = TREE_CODE (t);
3705 return tree_node_structure_for_code (code);
3706 }
3707
3708 /* Set various status flags when building a CALL_EXPR object T. */
3709
3710 static void
3711 process_call_operands (tree t)
3712 {
3713 bool side_effects = TREE_SIDE_EFFECTS (t);
3714 bool read_only = false;
3715 int i = call_expr_flags (t);
3716
3717 /* Calls have side-effects, except those to const or pure functions. */
3718 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3719 side_effects = true;
3720 /* Propagate TREE_READONLY of arguments for const functions. */
3721 if (i & ECF_CONST)
3722 read_only = true;
3723
3724 if (!side_effects || read_only)
3725 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3726 {
3727 tree op = TREE_OPERAND (t, i);
3728 if (op && TREE_SIDE_EFFECTS (op))
3729 side_effects = true;
3730 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3731 read_only = false;
3732 }
3733
3734 TREE_SIDE_EFFECTS (t) = side_effects;
3735 TREE_READONLY (t) = read_only;
3736 }
3737 \f
3738 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3739 size or offset that depends on a field within a record. */
3740
3741 bool
3742 contains_placeholder_p (const_tree exp)
3743 {
3744 enum tree_code code;
3745
3746 if (!exp)
3747 return 0;
3748
3749 code = TREE_CODE (exp);
3750 if (code == PLACEHOLDER_EXPR)
3751 return 1;
3752
3753 switch (TREE_CODE_CLASS (code))
3754 {
3755 case tcc_reference:
3756 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3757 position computations since they will be converted into a
3758 WITH_RECORD_EXPR involving the reference, which will assume
3759 here will be valid. */
3760 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3761
3762 case tcc_exceptional:
3763 if (code == TREE_LIST)
3764 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3765 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3766 break;
3767
3768 case tcc_unary:
3769 case tcc_binary:
3770 case tcc_comparison:
3771 case tcc_expression:
3772 switch (code)
3773 {
3774 case COMPOUND_EXPR:
3775 /* Ignoring the first operand isn't quite right, but works best. */
3776 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3777
3778 case COND_EXPR:
3779 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3780 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3781 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3782
3783 case SAVE_EXPR:
3784 /* The save_expr function never wraps anything containing
3785 a PLACEHOLDER_EXPR. */
3786 return 0;
3787
3788 default:
3789 break;
3790 }
3791
3792 switch (TREE_CODE_LENGTH (code))
3793 {
3794 case 1:
3795 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3796 case 2:
3797 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3798 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3799 default:
3800 return 0;
3801 }
3802
3803 case tcc_vl_exp:
3804 switch (code)
3805 {
3806 case CALL_EXPR:
3807 {
3808 const_tree arg;
3809 const_call_expr_arg_iterator iter;
3810 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3811 if (CONTAINS_PLACEHOLDER_P (arg))
3812 return 1;
3813 return 0;
3814 }
3815 default:
3816 return 0;
3817 }
3818
3819 default:
3820 return 0;
3821 }
3822 return 0;
3823 }
3824
3825 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3826 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3827 field positions. */
3828
3829 static bool
3830 type_contains_placeholder_1 (const_tree type)
3831 {
3832 /* If the size contains a placeholder or the parent type (component type in
3833 the case of arrays) type involves a placeholder, this type does. */
3834 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3835 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3836 || (!POINTER_TYPE_P (type)
3837 && TREE_TYPE (type)
3838 && type_contains_placeholder_p (TREE_TYPE (type))))
3839 return true;
3840
3841 /* Now do type-specific checks. Note that the last part of the check above
3842 greatly limits what we have to do below. */
3843 switch (TREE_CODE (type))
3844 {
3845 case VOID_TYPE:
3846 case COMPLEX_TYPE:
3847 case ENUMERAL_TYPE:
3848 case BOOLEAN_TYPE:
3849 case POINTER_TYPE:
3850 case OFFSET_TYPE:
3851 case REFERENCE_TYPE:
3852 case METHOD_TYPE:
3853 case FUNCTION_TYPE:
3854 case VECTOR_TYPE:
3855 case NULLPTR_TYPE:
3856 return false;
3857
3858 case INTEGER_TYPE:
3859 case REAL_TYPE:
3860 case FIXED_POINT_TYPE:
3861 /* Here we just check the bounds. */
3862 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3863 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3864
3865 case ARRAY_TYPE:
3866 /* We have already checked the component type above, so just check
3867 the domain type. Flexible array members have a null domain. */
3868 return TYPE_DOMAIN (type) ?
3869 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3870
3871 case RECORD_TYPE:
3872 case UNION_TYPE:
3873 case QUAL_UNION_TYPE:
3874 {
3875 tree field;
3876
3877 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3878 if (TREE_CODE (field) == FIELD_DECL
3879 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3880 || (TREE_CODE (type) == QUAL_UNION_TYPE
3881 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3882 || type_contains_placeholder_p (TREE_TYPE (field))))
3883 return true;
3884
3885 return false;
3886 }
3887
3888 default:
3889 gcc_unreachable ();
3890 }
3891 }
3892
3893 /* Wrapper around above function used to cache its result. */
3894
3895 bool
3896 type_contains_placeholder_p (tree type)
3897 {
3898 bool result;
3899
3900 /* If the contains_placeholder_bits field has been initialized,
3901 then we know the answer. */
3902 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3903 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3904
3905 /* Indicate that we've seen this type node, and the answer is false.
3906 This is what we want to return if we run into recursion via fields. */
3907 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3908
3909 /* Compute the real value. */
3910 result = type_contains_placeholder_1 (type);
3911
3912 /* Store the real value. */
3913 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3914
3915 return result;
3916 }
3917 \f
3918 /* Push tree EXP onto vector QUEUE if it is not already present. */
3919
3920 static void
3921 push_without_duplicates (tree exp, vec<tree> *queue)
3922 {
3923 unsigned int i;
3924 tree iter;
3925
3926 FOR_EACH_VEC_ELT (*queue, i, iter)
3927 if (simple_cst_equal (iter, exp) == 1)
3928 break;
3929
3930 if (!iter)
3931 queue->safe_push (exp);
3932 }
3933
3934 /* Given a tree EXP, find all occurrences of references to fields
3935 in a PLACEHOLDER_EXPR and place them in vector REFS without
3936 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3937 we assume here that EXP contains only arithmetic expressions
3938 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3939 argument list. */
3940
3941 void
3942 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3943 {
3944 enum tree_code code = TREE_CODE (exp);
3945 tree inner;
3946 int i;
3947
3948 /* We handle TREE_LIST and COMPONENT_REF separately. */
3949 if (code == TREE_LIST)
3950 {
3951 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3952 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3953 }
3954 else if (code == COMPONENT_REF)
3955 {
3956 for (inner = TREE_OPERAND (exp, 0);
3957 REFERENCE_CLASS_P (inner);
3958 inner = TREE_OPERAND (inner, 0))
3959 ;
3960
3961 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3962 push_without_duplicates (exp, refs);
3963 else
3964 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3965 }
3966 else
3967 switch (TREE_CODE_CLASS (code))
3968 {
3969 case tcc_constant:
3970 break;
3971
3972 case tcc_declaration:
3973 /* Variables allocated to static storage can stay. */
3974 if (!TREE_STATIC (exp))
3975 push_without_duplicates (exp, refs);
3976 break;
3977
3978 case tcc_expression:
3979 /* This is the pattern built in ada/make_aligning_type. */
3980 if (code == ADDR_EXPR
3981 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3982 {
3983 push_without_duplicates (exp, refs);
3984 break;
3985 }
3986
3987 /* Fall through. */
3988
3989 case tcc_exceptional:
3990 case tcc_unary:
3991 case tcc_binary:
3992 case tcc_comparison:
3993 case tcc_reference:
3994 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3995 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3996 break;
3997
3998 case tcc_vl_exp:
3999 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4000 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4001 break;
4002
4003 default:
4004 gcc_unreachable ();
4005 }
4006 }
4007
4008 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
4009 return a tree with all occurrences of references to F in a
4010 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
4011 CONST_DECLs. Note that we assume here that EXP contains only
4012 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
4013 occurring only in their argument list. */
4014
4015 tree
4016 substitute_in_expr (tree exp, tree f, tree r)
4017 {
4018 enum tree_code code = TREE_CODE (exp);
4019 tree op0, op1, op2, op3;
4020 tree new_tree;
4021
4022 /* We handle TREE_LIST and COMPONENT_REF separately. */
4023 if (code == TREE_LIST)
4024 {
4025 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
4026 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
4027 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4028 return exp;
4029
4030 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4031 }
4032 else if (code == COMPONENT_REF)
4033 {
4034 tree inner;
4035
4036 /* If this expression is getting a value from a PLACEHOLDER_EXPR
4037 and it is the right field, replace it with R. */
4038 for (inner = TREE_OPERAND (exp, 0);
4039 REFERENCE_CLASS_P (inner);
4040 inner = TREE_OPERAND (inner, 0))
4041 ;
4042
4043 /* The field. */
4044 op1 = TREE_OPERAND (exp, 1);
4045
4046 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
4047 return r;
4048
4049 /* If this expression hasn't been completed let, leave it alone. */
4050 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
4051 return exp;
4052
4053 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4054 if (op0 == TREE_OPERAND (exp, 0))
4055 return exp;
4056
4057 new_tree
4058 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4059 }
4060 else
4061 switch (TREE_CODE_CLASS (code))
4062 {
4063 case tcc_constant:
4064 return exp;
4065
4066 case tcc_declaration:
4067 if (exp == f)
4068 return r;
4069 else
4070 return exp;
4071
4072 case tcc_expression:
4073 if (exp == f)
4074 return r;
4075
4076 /* Fall through. */
4077
4078 case tcc_exceptional:
4079 case tcc_unary:
4080 case tcc_binary:
4081 case tcc_comparison:
4082 case tcc_reference:
4083 switch (TREE_CODE_LENGTH (code))
4084 {
4085 case 0:
4086 return exp;
4087
4088 case 1:
4089 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4090 if (op0 == TREE_OPERAND (exp, 0))
4091 return exp;
4092
4093 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4094 break;
4095
4096 case 2:
4097 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4098 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4099
4100 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4101 return exp;
4102
4103 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4104 break;
4105
4106 case 3:
4107 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4108 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4109 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4110
4111 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4112 && op2 == TREE_OPERAND (exp, 2))
4113 return exp;
4114
4115 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4116 break;
4117
4118 case 4:
4119 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4120 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4121 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4122 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4123
4124 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4125 && op2 == TREE_OPERAND (exp, 2)
4126 && op3 == TREE_OPERAND (exp, 3))
4127 return exp;
4128
4129 new_tree
4130 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4131 break;
4132
4133 default:
4134 gcc_unreachable ();
4135 }
4136 break;
4137
4138 case tcc_vl_exp:
4139 {
4140 int i;
4141
4142 new_tree = NULL_TREE;
4143
4144 /* If we are trying to replace F with a constant or with another
4145 instance of one of the arguments of the call, inline back
4146 functions which do nothing else than computing a value from
4147 the arguments they are passed. This makes it possible to
4148 fold partially or entirely the replacement expression. */
4149 if (code == CALL_EXPR)
4150 {
4151 bool maybe_inline = false;
4152 if (CONSTANT_CLASS_P (r))
4153 maybe_inline = true;
4154 else
4155 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4156 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4157 {
4158 maybe_inline = true;
4159 break;
4160 }
4161 if (maybe_inline)
4162 {
4163 tree t = maybe_inline_call_in_expr (exp);
4164 if (t)
4165 return SUBSTITUTE_IN_EXPR (t, f, r);
4166 }
4167 }
4168
4169 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4170 {
4171 tree op = TREE_OPERAND (exp, i);
4172 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4173 if (new_op != op)
4174 {
4175 if (!new_tree)
4176 new_tree = copy_node (exp);
4177 TREE_OPERAND (new_tree, i) = new_op;
4178 }
4179 }
4180
4181 if (new_tree)
4182 {
4183 new_tree = fold (new_tree);
4184 if (TREE_CODE (new_tree) == CALL_EXPR)
4185 process_call_operands (new_tree);
4186 }
4187 else
4188 return exp;
4189 }
4190 break;
4191
4192 default:
4193 gcc_unreachable ();
4194 }
4195
4196 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4197
4198 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4199 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4200
4201 return new_tree;
4202 }
4203
4204 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4205 for it within OBJ, a tree that is an object or a chain of references. */
4206
4207 tree
4208 substitute_placeholder_in_expr (tree exp, tree obj)
4209 {
4210 enum tree_code code = TREE_CODE (exp);
4211 tree op0, op1, op2, op3;
4212 tree new_tree;
4213
4214 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4215 in the chain of OBJ. */
4216 if (code == PLACEHOLDER_EXPR)
4217 {
4218 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4219 tree elt;
4220
4221 for (elt = obj; elt != 0;
4222 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4223 || TREE_CODE (elt) == COND_EXPR)
4224 ? TREE_OPERAND (elt, 1)
4225 : (REFERENCE_CLASS_P (elt)
4226 || UNARY_CLASS_P (elt)
4227 || BINARY_CLASS_P (elt)
4228 || VL_EXP_CLASS_P (elt)
4229 || EXPRESSION_CLASS_P (elt))
4230 ? TREE_OPERAND (elt, 0) : 0))
4231 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4232 return elt;
4233
4234 for (elt = obj; elt != 0;
4235 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4236 || TREE_CODE (elt) == COND_EXPR)
4237 ? TREE_OPERAND (elt, 1)
4238 : (REFERENCE_CLASS_P (elt)
4239 || UNARY_CLASS_P (elt)
4240 || BINARY_CLASS_P (elt)
4241 || VL_EXP_CLASS_P (elt)
4242 || EXPRESSION_CLASS_P (elt))
4243 ? TREE_OPERAND (elt, 0) : 0))
4244 if (POINTER_TYPE_P (TREE_TYPE (elt))
4245 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4246 == need_type))
4247 return fold_build1 (INDIRECT_REF, need_type, elt);
4248
4249 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4250 survives until RTL generation, there will be an error. */
4251 return exp;
4252 }
4253
4254 /* TREE_LIST is special because we need to look at TREE_VALUE
4255 and TREE_CHAIN, not TREE_OPERANDS. */
4256 else if (code == TREE_LIST)
4257 {
4258 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4259 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4260 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4261 return exp;
4262
4263 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4264 }
4265 else
4266 switch (TREE_CODE_CLASS (code))
4267 {
4268 case tcc_constant:
4269 case tcc_declaration:
4270 return exp;
4271
4272 case tcc_exceptional:
4273 case tcc_unary:
4274 case tcc_binary:
4275 case tcc_comparison:
4276 case tcc_expression:
4277 case tcc_reference:
4278 case tcc_statement:
4279 switch (TREE_CODE_LENGTH (code))
4280 {
4281 case 0:
4282 return exp;
4283
4284 case 1:
4285 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4286 if (op0 == TREE_OPERAND (exp, 0))
4287 return exp;
4288
4289 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4290 break;
4291
4292 case 2:
4293 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4294 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4295
4296 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4297 return exp;
4298
4299 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4300 break;
4301
4302 case 3:
4303 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4304 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4305 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4306
4307 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4308 && op2 == TREE_OPERAND (exp, 2))
4309 return exp;
4310
4311 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4312 break;
4313
4314 case 4:
4315 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4316 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4317 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4318 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4319
4320 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4321 && op2 == TREE_OPERAND (exp, 2)
4322 && op3 == TREE_OPERAND (exp, 3))
4323 return exp;
4324
4325 new_tree
4326 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4327 break;
4328
4329 default:
4330 gcc_unreachable ();
4331 }
4332 break;
4333
4334 case tcc_vl_exp:
4335 {
4336 int i;
4337
4338 new_tree = NULL_TREE;
4339
4340 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4341 {
4342 tree op = TREE_OPERAND (exp, i);
4343 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4344 if (new_op != op)
4345 {
4346 if (!new_tree)
4347 new_tree = copy_node (exp);
4348 TREE_OPERAND (new_tree, i) = new_op;
4349 }
4350 }
4351
4352 if (new_tree)
4353 {
4354 new_tree = fold (new_tree);
4355 if (TREE_CODE (new_tree) == CALL_EXPR)
4356 process_call_operands (new_tree);
4357 }
4358 else
4359 return exp;
4360 }
4361 break;
4362
4363 default:
4364 gcc_unreachable ();
4365 }
4366
4367 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4368
4369 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4370 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4371
4372 return new_tree;
4373 }
4374 \f
4375
4376 /* Subroutine of stabilize_reference; this is called for subtrees of
4377 references. Any expression with side-effects must be put in a SAVE_EXPR
4378 to ensure that it is only evaluated once.
4379
4380 We don't put SAVE_EXPR nodes around everything, because assigning very
4381 simple expressions to temporaries causes us to miss good opportunities
4382 for optimizations. Among other things, the opportunity to fold in the
4383 addition of a constant into an addressing mode often gets lost, e.g.
4384 "y[i+1] += x;". In general, we take the approach that we should not make
4385 an assignment unless we are forced into it - i.e., that any non-side effect
4386 operator should be allowed, and that cse should take care of coalescing
4387 multiple utterances of the same expression should that prove fruitful. */
4388
4389 static tree
4390 stabilize_reference_1 (tree e)
4391 {
4392 tree result;
4393 enum tree_code code = TREE_CODE (e);
4394
4395 /* We cannot ignore const expressions because it might be a reference
4396 to a const array but whose index contains side-effects. But we can
4397 ignore things that are actual constant or that already have been
4398 handled by this function. */
4399
4400 if (tree_invariant_p (e))
4401 return e;
4402
4403 switch (TREE_CODE_CLASS (code))
4404 {
4405 case tcc_exceptional:
4406 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4407 have side-effects. */
4408 if (code == STATEMENT_LIST)
4409 return save_expr (e);
4410 /* FALLTHRU */
4411 case tcc_type:
4412 case tcc_declaration:
4413 case tcc_comparison:
4414 case tcc_statement:
4415 case tcc_expression:
4416 case tcc_reference:
4417 case tcc_vl_exp:
4418 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4419 so that it will only be evaluated once. */
4420 /* The reference (r) and comparison (<) classes could be handled as
4421 below, but it is generally faster to only evaluate them once. */
4422 if (TREE_SIDE_EFFECTS (e))
4423 return save_expr (e);
4424 return e;
4425
4426 case tcc_constant:
4427 /* Constants need no processing. In fact, we should never reach
4428 here. */
4429 return e;
4430
4431 case tcc_binary:
4432 /* Division is slow and tends to be compiled with jumps,
4433 especially the division by powers of 2 that is often
4434 found inside of an array reference. So do it just once. */
4435 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4436 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4437 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4438 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4439 return save_expr (e);
4440 /* Recursively stabilize each operand. */
4441 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4442 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4443 break;
4444
4445 case tcc_unary:
4446 /* Recursively stabilize each operand. */
4447 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4448 break;
4449
4450 default:
4451 gcc_unreachable ();
4452 }
4453
4454 TREE_TYPE (result) = TREE_TYPE (e);
4455 TREE_READONLY (result) = TREE_READONLY (e);
4456 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4457 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4458
4459 return result;
4460 }
4461
4462 /* Stabilize a reference so that we can use it any number of times
4463 without causing its operands to be evaluated more than once.
4464 Returns the stabilized reference. This works by means of save_expr,
4465 so see the caveats in the comments about save_expr.
4466
4467 Also allows conversion expressions whose operands are references.
4468 Any other kind of expression is returned unchanged. */
4469
4470 tree
4471 stabilize_reference (tree ref)
4472 {
4473 tree result;
4474 enum tree_code code = TREE_CODE (ref);
4475
4476 switch (code)
4477 {
4478 case VAR_DECL:
4479 case PARM_DECL:
4480 case RESULT_DECL:
4481 /* No action is needed in this case. */
4482 return ref;
4483
4484 CASE_CONVERT:
4485 case FLOAT_EXPR:
4486 case FIX_TRUNC_EXPR:
4487 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4488 break;
4489
4490 case INDIRECT_REF:
4491 result = build_nt (INDIRECT_REF,
4492 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4493 break;
4494
4495 case COMPONENT_REF:
4496 result = build_nt (COMPONENT_REF,
4497 stabilize_reference (TREE_OPERAND (ref, 0)),
4498 TREE_OPERAND (ref, 1), NULL_TREE);
4499 break;
4500
4501 case BIT_FIELD_REF:
4502 result = build_nt (BIT_FIELD_REF,
4503 stabilize_reference (TREE_OPERAND (ref, 0)),
4504 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4505 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4506 break;
4507
4508 case ARRAY_REF:
4509 result = build_nt (ARRAY_REF,
4510 stabilize_reference (TREE_OPERAND (ref, 0)),
4511 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4512 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4513 break;
4514
4515 case ARRAY_RANGE_REF:
4516 result = build_nt (ARRAY_RANGE_REF,
4517 stabilize_reference (TREE_OPERAND (ref, 0)),
4518 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4519 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4520 break;
4521
4522 case COMPOUND_EXPR:
4523 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4524 it wouldn't be ignored. This matters when dealing with
4525 volatiles. */
4526 return stabilize_reference_1 (ref);
4527
4528 /* If arg isn't a kind of lvalue we recognize, make no change.
4529 Caller should recognize the error for an invalid lvalue. */
4530 default:
4531 return ref;
4532
4533 case ERROR_MARK:
4534 return error_mark_node;
4535 }
4536
4537 TREE_TYPE (result) = TREE_TYPE (ref);
4538 TREE_READONLY (result) = TREE_READONLY (ref);
4539 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4540 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4541
4542 return result;
4543 }
4544 \f
4545 /* Low-level constructors for expressions. */
4546
4547 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4548 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4549
4550 void
4551 recompute_tree_invariant_for_addr_expr (tree t)
4552 {
4553 tree node;
4554 bool tc = true, se = false;
4555
4556 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4557
4558 /* We started out assuming this address is both invariant and constant, but
4559 does not have side effects. Now go down any handled components and see if
4560 any of them involve offsets that are either non-constant or non-invariant.
4561 Also check for side-effects.
4562
4563 ??? Note that this code makes no attempt to deal with the case where
4564 taking the address of something causes a copy due to misalignment. */
4565
4566 #define UPDATE_FLAGS(NODE) \
4567 do { tree _node = (NODE); \
4568 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4569 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4570
4571 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4572 node = TREE_OPERAND (node, 0))
4573 {
4574 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4575 array reference (probably made temporarily by the G++ front end),
4576 so ignore all the operands. */
4577 if ((TREE_CODE (node) == ARRAY_REF
4578 || TREE_CODE (node) == ARRAY_RANGE_REF)
4579 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4580 {
4581 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4582 if (TREE_OPERAND (node, 2))
4583 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4584 if (TREE_OPERAND (node, 3))
4585 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4586 }
4587 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4588 FIELD_DECL, apparently. The G++ front end can put something else
4589 there, at least temporarily. */
4590 else if (TREE_CODE (node) == COMPONENT_REF
4591 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4592 {
4593 if (TREE_OPERAND (node, 2))
4594 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4595 }
4596 }
4597
4598 node = lang_hooks.expr_to_decl (node, &tc, &se);
4599
4600 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4601 the address, since &(*a)->b is a form of addition. If it's a constant, the
4602 address is constant too. If it's a decl, its address is constant if the
4603 decl is static. Everything else is not constant and, furthermore,
4604 taking the address of a volatile variable is not volatile. */
4605 if (TREE_CODE (node) == INDIRECT_REF
4606 || TREE_CODE (node) == MEM_REF)
4607 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4608 else if (CONSTANT_CLASS_P (node))
4609 ;
4610 else if (DECL_P (node))
4611 tc &= (staticp (node) != NULL_TREE);
4612 else
4613 {
4614 tc = false;
4615 se |= TREE_SIDE_EFFECTS (node);
4616 }
4617
4618
4619 TREE_CONSTANT (t) = tc;
4620 TREE_SIDE_EFFECTS (t) = se;
4621 #undef UPDATE_FLAGS
4622 }
4623
4624 /* Build an expression of code CODE, data type TYPE, and operands as
4625 specified. Expressions and reference nodes can be created this way.
4626 Constants, decls, types and misc nodes cannot be.
4627
4628 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4629 enough for all extant tree codes. */
4630
4631 tree
4632 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4633 {
4634 tree t;
4635
4636 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4637
4638 t = make_node (code PASS_MEM_STAT);
4639 TREE_TYPE (t) = tt;
4640
4641 return t;
4642 }
4643
4644 tree
4645 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4646 {
4647 int length = sizeof (struct tree_exp);
4648 tree t;
4649
4650 record_node_allocation_statistics (code, length);
4651
4652 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4653
4654 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4655
4656 memset (t, 0, sizeof (struct tree_common));
4657
4658 TREE_SET_CODE (t, code);
4659
4660 TREE_TYPE (t) = type;
4661 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4662 TREE_OPERAND (t, 0) = node;
4663 if (node && !TYPE_P (node))
4664 {
4665 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4666 TREE_READONLY (t) = TREE_READONLY (node);
4667 }
4668
4669 if (TREE_CODE_CLASS (code) == tcc_statement)
4670 {
4671 if (code != DEBUG_BEGIN_STMT)
4672 TREE_SIDE_EFFECTS (t) = 1;
4673 }
4674 else switch (code)
4675 {
4676 case VA_ARG_EXPR:
4677 /* All of these have side-effects, no matter what their
4678 operands are. */
4679 TREE_SIDE_EFFECTS (t) = 1;
4680 TREE_READONLY (t) = 0;
4681 break;
4682
4683 case INDIRECT_REF:
4684 /* Whether a dereference is readonly has nothing to do with whether
4685 its operand is readonly. */
4686 TREE_READONLY (t) = 0;
4687 break;
4688
4689 case ADDR_EXPR:
4690 if (node)
4691 recompute_tree_invariant_for_addr_expr (t);
4692 break;
4693
4694 default:
4695 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4696 && node && !TYPE_P (node)
4697 && TREE_CONSTANT (node))
4698 TREE_CONSTANT (t) = 1;
4699 if (TREE_CODE_CLASS (code) == tcc_reference
4700 && node && TREE_THIS_VOLATILE (node))
4701 TREE_THIS_VOLATILE (t) = 1;
4702 break;
4703 }
4704
4705 return t;
4706 }
4707
4708 #define PROCESS_ARG(N) \
4709 do { \
4710 TREE_OPERAND (t, N) = arg##N; \
4711 if (arg##N &&!TYPE_P (arg##N)) \
4712 { \
4713 if (TREE_SIDE_EFFECTS (arg##N)) \
4714 side_effects = 1; \
4715 if (!TREE_READONLY (arg##N) \
4716 && !CONSTANT_CLASS_P (arg##N)) \
4717 (void) (read_only = 0); \
4718 if (!TREE_CONSTANT (arg##N)) \
4719 (void) (constant = 0); \
4720 } \
4721 } while (0)
4722
4723 tree
4724 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4725 {
4726 bool constant, read_only, side_effects, div_by_zero;
4727 tree t;
4728
4729 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4730
4731 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4732 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4733 /* When sizetype precision doesn't match that of pointers
4734 we need to be able to build explicit extensions or truncations
4735 of the offset argument. */
4736 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4737 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4738 && TREE_CODE (arg1) == INTEGER_CST);
4739
4740 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4741 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4742 && ptrofftype_p (TREE_TYPE (arg1)));
4743
4744 t = make_node (code PASS_MEM_STAT);
4745 TREE_TYPE (t) = tt;
4746
4747 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4748 result based on those same flags for the arguments. But if the
4749 arguments aren't really even `tree' expressions, we shouldn't be trying
4750 to do this. */
4751
4752 /* Expressions without side effects may be constant if their
4753 arguments are as well. */
4754 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4755 || TREE_CODE_CLASS (code) == tcc_binary);
4756 read_only = 1;
4757 side_effects = TREE_SIDE_EFFECTS (t);
4758
4759 switch (code)
4760 {
4761 case TRUNC_DIV_EXPR:
4762 case CEIL_DIV_EXPR:
4763 case FLOOR_DIV_EXPR:
4764 case ROUND_DIV_EXPR:
4765 case EXACT_DIV_EXPR:
4766 case CEIL_MOD_EXPR:
4767 case FLOOR_MOD_EXPR:
4768 case ROUND_MOD_EXPR:
4769 case TRUNC_MOD_EXPR:
4770 div_by_zero = integer_zerop (arg1);
4771 break;
4772 default:
4773 div_by_zero = false;
4774 }
4775
4776 PROCESS_ARG (0);
4777 PROCESS_ARG (1);
4778
4779 TREE_SIDE_EFFECTS (t) = side_effects;
4780 if (code == MEM_REF)
4781 {
4782 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4783 {
4784 tree o = TREE_OPERAND (arg0, 0);
4785 TREE_READONLY (t) = TREE_READONLY (o);
4786 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4787 }
4788 }
4789 else
4790 {
4791 TREE_READONLY (t) = read_only;
4792 /* Don't mark X / 0 as constant. */
4793 TREE_CONSTANT (t) = constant && !div_by_zero;
4794 TREE_THIS_VOLATILE (t)
4795 = (TREE_CODE_CLASS (code) == tcc_reference
4796 && arg0 && TREE_THIS_VOLATILE (arg0));
4797 }
4798
4799 return t;
4800 }
4801
4802
4803 tree
4804 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4805 tree arg2 MEM_STAT_DECL)
4806 {
4807 bool constant, read_only, side_effects;
4808 tree t;
4809
4810 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4811 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4812
4813 t = make_node (code PASS_MEM_STAT);
4814 TREE_TYPE (t) = tt;
4815
4816 read_only = 1;
4817
4818 /* As a special exception, if COND_EXPR has NULL branches, we
4819 assume that it is a gimple statement and always consider
4820 it to have side effects. */
4821 if (code == COND_EXPR
4822 && tt == void_type_node
4823 && arg1 == NULL_TREE
4824 && arg2 == NULL_TREE)
4825 side_effects = true;
4826 else
4827 side_effects = TREE_SIDE_EFFECTS (t);
4828
4829 PROCESS_ARG (0);
4830 PROCESS_ARG (1);
4831 PROCESS_ARG (2);
4832
4833 if (code == COND_EXPR)
4834 TREE_READONLY (t) = read_only;
4835
4836 TREE_SIDE_EFFECTS (t) = side_effects;
4837 TREE_THIS_VOLATILE (t)
4838 = (TREE_CODE_CLASS (code) == tcc_reference
4839 && arg0 && TREE_THIS_VOLATILE (arg0));
4840
4841 return t;
4842 }
4843
4844 tree
4845 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4846 tree arg2, tree arg3 MEM_STAT_DECL)
4847 {
4848 bool constant, read_only, side_effects;
4849 tree t;
4850
4851 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4852
4853 t = make_node (code PASS_MEM_STAT);
4854 TREE_TYPE (t) = tt;
4855
4856 side_effects = TREE_SIDE_EFFECTS (t);
4857
4858 PROCESS_ARG (0);
4859 PROCESS_ARG (1);
4860 PROCESS_ARG (2);
4861 PROCESS_ARG (3);
4862
4863 TREE_SIDE_EFFECTS (t) = side_effects;
4864 TREE_THIS_VOLATILE (t)
4865 = (TREE_CODE_CLASS (code) == tcc_reference
4866 && arg0 && TREE_THIS_VOLATILE (arg0));
4867
4868 return t;
4869 }
4870
4871 tree
4872 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4873 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4874 {
4875 bool constant, read_only, side_effects;
4876 tree t;
4877
4878 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4879
4880 t = make_node (code PASS_MEM_STAT);
4881 TREE_TYPE (t) = tt;
4882
4883 side_effects = TREE_SIDE_EFFECTS (t);
4884
4885 PROCESS_ARG (0);
4886 PROCESS_ARG (1);
4887 PROCESS_ARG (2);
4888 PROCESS_ARG (3);
4889 PROCESS_ARG (4);
4890
4891 TREE_SIDE_EFFECTS (t) = side_effects;
4892 if (code == TARGET_MEM_REF)
4893 {
4894 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4895 {
4896 tree o = TREE_OPERAND (arg0, 0);
4897 TREE_READONLY (t) = TREE_READONLY (o);
4898 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4899 }
4900 }
4901 else
4902 TREE_THIS_VOLATILE (t)
4903 = (TREE_CODE_CLASS (code) == tcc_reference
4904 && arg0 && TREE_THIS_VOLATILE (arg0));
4905
4906 return t;
4907 }
4908
4909 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4910 on the pointer PTR. */
4911
4912 tree
4913 build_simple_mem_ref_loc (location_t loc, tree ptr)
4914 {
4915 poly_int64 offset = 0;
4916 tree ptype = TREE_TYPE (ptr);
4917 tree tem;
4918 /* For convenience allow addresses that collapse to a simple base
4919 and offset. */
4920 if (TREE_CODE (ptr) == ADDR_EXPR
4921 && (handled_component_p (TREE_OPERAND (ptr, 0))
4922 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4923 {
4924 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4925 gcc_assert (ptr);
4926 if (TREE_CODE (ptr) == MEM_REF)
4927 {
4928 offset += mem_ref_offset (ptr).force_shwi ();
4929 ptr = TREE_OPERAND (ptr, 0);
4930 }
4931 else
4932 ptr = build_fold_addr_expr (ptr);
4933 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4934 }
4935 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4936 ptr, build_int_cst (ptype, offset));
4937 SET_EXPR_LOCATION (tem, loc);
4938 return tem;
4939 }
4940
4941 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4942
4943 poly_offset_int
4944 mem_ref_offset (const_tree t)
4945 {
4946 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4947 SIGNED);
4948 }
4949
4950 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4951 offsetted by OFFSET units. */
4952
4953 tree
4954 build_invariant_address (tree type, tree base, poly_int64 offset)
4955 {
4956 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4957 build_fold_addr_expr (base),
4958 build_int_cst (ptr_type_node, offset));
4959 tree addr = build1 (ADDR_EXPR, type, ref);
4960 recompute_tree_invariant_for_addr_expr (addr);
4961 return addr;
4962 }
4963
4964 /* Similar except don't specify the TREE_TYPE
4965 and leave the TREE_SIDE_EFFECTS as 0.
4966 It is permissible for arguments to be null,
4967 or even garbage if their values do not matter. */
4968
4969 tree
4970 build_nt (enum tree_code code, ...)
4971 {
4972 tree t;
4973 int length;
4974 int i;
4975 va_list p;
4976
4977 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4978
4979 va_start (p, code);
4980
4981 t = make_node (code);
4982 length = TREE_CODE_LENGTH (code);
4983
4984 for (i = 0; i < length; i++)
4985 TREE_OPERAND (t, i) = va_arg (p, tree);
4986
4987 va_end (p);
4988 return t;
4989 }
4990
4991 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4992 tree vec. */
4993
4994 tree
4995 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4996 {
4997 tree ret, t;
4998 unsigned int ix;
4999
5000 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
5001 CALL_EXPR_FN (ret) = fn;
5002 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
5003 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
5004 CALL_EXPR_ARG (ret, ix) = t;
5005 return ret;
5006 }
5007 \f
5008 /* Create a DECL_... node of code CODE, name NAME (if non-null)
5009 and data type TYPE.
5010 We do NOT enter this node in any sort of symbol table.
5011
5012 LOC is the location of the decl.
5013
5014 layout_decl is used to set up the decl's storage layout.
5015 Other slots are initialized to 0 or null pointers. */
5016
5017 tree
5018 build_decl (location_t loc, enum tree_code code, tree name,
5019 tree type MEM_STAT_DECL)
5020 {
5021 tree t;
5022
5023 t = make_node (code PASS_MEM_STAT);
5024 DECL_SOURCE_LOCATION (t) = loc;
5025
5026 /* if (type == error_mark_node)
5027 type = integer_type_node; */
5028 /* That is not done, deliberately, so that having error_mark_node
5029 as the type can suppress useless errors in the use of this variable. */
5030
5031 DECL_NAME (t) = name;
5032 TREE_TYPE (t) = type;
5033
5034 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
5035 layout_decl (t, 0);
5036
5037 return t;
5038 }
5039
5040 /* Builds and returns function declaration with NAME and TYPE. */
5041
5042 tree
5043 build_fn_decl (const char *name, tree type)
5044 {
5045 tree id = get_identifier (name);
5046 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
5047
5048 DECL_EXTERNAL (decl) = 1;
5049 TREE_PUBLIC (decl) = 1;
5050 DECL_ARTIFICIAL (decl) = 1;
5051 TREE_NOTHROW (decl) = 1;
5052
5053 return decl;
5054 }
5055
5056 vec<tree, va_gc> *all_translation_units;
5057
5058 /* Builds a new translation-unit decl with name NAME, queues it in the
5059 global list of translation-unit decls and returns it. */
5060
5061 tree
5062 build_translation_unit_decl (tree name)
5063 {
5064 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5065 name, NULL_TREE);
5066 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5067 vec_safe_push (all_translation_units, tu);
5068 return tu;
5069 }
5070
5071 \f
5072 /* BLOCK nodes are used to represent the structure of binding contours
5073 and declarations, once those contours have been exited and their contents
5074 compiled. This information is used for outputting debugging info. */
5075
5076 tree
5077 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5078 {
5079 tree block = make_node (BLOCK);
5080
5081 BLOCK_VARS (block) = vars;
5082 BLOCK_SUBBLOCKS (block) = subblocks;
5083 BLOCK_SUPERCONTEXT (block) = supercontext;
5084 BLOCK_CHAIN (block) = chain;
5085 return block;
5086 }
5087
5088 \f
5089 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5090
5091 LOC is the location to use in tree T. */
5092
5093 void
5094 protected_set_expr_location (tree t, location_t loc)
5095 {
5096 if (CAN_HAVE_LOCATION_P (t))
5097 SET_EXPR_LOCATION (t, loc);
5098 }
5099
5100 /* Data used when collecting DECLs and TYPEs for language data removal. */
5101
5102 struct free_lang_data_d
5103 {
5104 free_lang_data_d () : decls (100), types (100) {}
5105
5106 /* Worklist to avoid excessive recursion. */
5107 auto_vec<tree> worklist;
5108
5109 /* Set of traversed objects. Used to avoid duplicate visits. */
5110 hash_set<tree> pset;
5111
5112 /* Array of symbols to process with free_lang_data_in_decl. */
5113 auto_vec<tree> decls;
5114
5115 /* Array of types to process with free_lang_data_in_type. */
5116 auto_vec<tree> types;
5117 };
5118
5119
5120 /* Add type or decl T to one of the list of tree nodes that need their
5121 language data removed. The lists are held inside FLD. */
5122
5123 static void
5124 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5125 {
5126 if (DECL_P (t))
5127 fld->decls.safe_push (t);
5128 else if (TYPE_P (t))
5129 fld->types.safe_push (t);
5130 else
5131 gcc_unreachable ();
5132 }
5133
5134 /* Push tree node T into FLD->WORKLIST. */
5135
5136 static inline void
5137 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5138 {
5139 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5140 fld->worklist.safe_push ((t));
5141 }
5142
5143
5144 \f
5145 /* Return simplified TYPE_NAME of TYPE. */
5146
5147 static tree
5148 fld_simplified_type_name (tree type)
5149 {
5150 if (!TYPE_NAME (type) || TREE_CODE (TYPE_NAME (type)) != TYPE_DECL)
5151 return TYPE_NAME (type);
5152 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5153 TYPE_DECL if the type doesn't have linkage.
5154 this must match fld_ */
5155 if (type != TYPE_MAIN_VARIANT (type)
5156 || (!DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (type))
5157 && (TREE_CODE (type) != RECORD_TYPE
5158 || !TYPE_BINFO (type)
5159 || !BINFO_VTABLE (TYPE_BINFO (type)))))
5160 return DECL_NAME (TYPE_NAME (type));
5161 return TYPE_NAME (type);
5162 }
5163
5164 /* Do same comparsion as check_qualified_type skipping lang part of type
5165 and be more permissive about type names: we only care that names are
5166 same (for diagnostics) and that ODR names are the same.
5167 If INNER_TYPE is non-NULL, be sure that TREE_TYPE match it. */
5168
5169 static bool
5170 fld_type_variant_equal_p (tree t, tree v, tree inner_type)
5171 {
5172 if (TYPE_QUALS (t) != TYPE_QUALS (v)
5173 /* We want to match incomplete variants with complete types.
5174 In this case we need to ignore alignment. */
5175 || ((!RECORD_OR_UNION_TYPE_P (t) || COMPLETE_TYPE_P (v))
5176 && (TYPE_ALIGN (t) != TYPE_ALIGN (v)
5177 || TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (v)))
5178 || fld_simplified_type_name (t) != fld_simplified_type_name (v)
5179 || !attribute_list_equal (TYPE_ATTRIBUTES (t),
5180 TYPE_ATTRIBUTES (v))
5181 || (inner_type && TREE_TYPE (v) != inner_type))
5182 return false;
5183
5184 return true;
5185 }
5186
5187 /* Find variant of FIRST that match T and create new one if necessary.
5188 Set TREE_TYPE to INNER_TYPE if non-NULL. */
5189
5190 static tree
5191 fld_type_variant (tree first, tree t, struct free_lang_data_d *fld,
5192 tree inner_type = NULL)
5193 {
5194 if (first == TYPE_MAIN_VARIANT (t))
5195 return t;
5196 for (tree v = first; v; v = TYPE_NEXT_VARIANT (v))
5197 if (fld_type_variant_equal_p (t, v, inner_type))
5198 return v;
5199 tree v = build_variant_type_copy (first);
5200 TYPE_READONLY (v) = TYPE_READONLY (t);
5201 TYPE_VOLATILE (v) = TYPE_VOLATILE (t);
5202 TYPE_ATOMIC (v) = TYPE_ATOMIC (t);
5203 TYPE_RESTRICT (v) = TYPE_RESTRICT (t);
5204 TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t);
5205 TYPE_NAME (v) = TYPE_NAME (t);
5206 TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t);
5207 TYPE_CANONICAL (v) = TYPE_CANONICAL (t);
5208 /* Variants of incomplete types should have alignment
5209 set to BITS_PER_UNIT. Do not copy the actual alignment. */
5210 if (!RECORD_OR_UNION_TYPE_P (v) || COMPLETE_TYPE_P (v))
5211 {
5212 SET_TYPE_ALIGN (v, TYPE_ALIGN (t));
5213 TYPE_USER_ALIGN (v) = TYPE_USER_ALIGN (t);
5214 }
5215 if (inner_type)
5216 TREE_TYPE (v) = inner_type;
5217 gcc_checking_assert (fld_type_variant_equal_p (t,v, inner_type));
5218 add_tree_to_fld_list (v, fld);
5219 return v;
5220 }
5221
5222 /* Map complete types to incomplete types. */
5223
5224 static hash_map<tree, tree> *fld_incomplete_types;
5225
5226 /* Map types to simplified types. */
5227
5228 static hash_map<tree, tree> *fld_simplified_types;
5229
5230 /* Produce variant of T whose TREE_TYPE is T2. If it is main variant,
5231 use MAP to prevent duplicates. */
5232
5233 static tree
5234 fld_process_array_type (tree t, tree t2, hash_map<tree, tree> *map,
5235 struct free_lang_data_d *fld)
5236 {
5237 if (TREE_TYPE (t) == t2)
5238 return t;
5239
5240 if (TYPE_MAIN_VARIANT (t) != t)
5241 {
5242 return fld_type_variant
5243 (fld_process_array_type (TYPE_MAIN_VARIANT (t),
5244 TYPE_MAIN_VARIANT (t2), map, fld),
5245 t, fld, t2);
5246 }
5247
5248 bool existed;
5249 tree &array
5250 = map->get_or_insert (t, &existed);
5251 if (!existed)
5252 {
5253 array = build_array_type_1 (t2, TYPE_DOMAIN (t),
5254 TYPE_TYPELESS_STORAGE (t), false);
5255 TYPE_CANONICAL (array) = TYPE_CANONICAL (t);
5256 add_tree_to_fld_list (array, fld);
5257 }
5258 return array;
5259 }
5260
5261 /* Return CTX after removal of contexts that are not relevant */
5262
5263 static tree
5264 fld_decl_context (tree ctx)
5265 {
5266 /* Variably modified types are needed for tree_is_indexable to decide
5267 whether the type needs to go to local or global section.
5268 This code is semi-broken but for now it is easiest to keep contexts
5269 as expected. */
5270 if (ctx && TYPE_P (ctx)
5271 && !variably_modified_type_p (ctx, NULL_TREE))
5272 {
5273 while (ctx && TYPE_P (ctx))
5274 ctx = TYPE_CONTEXT (ctx);
5275 }
5276 return ctx;
5277 }
5278
5279 /* For T being aggregate type try to turn it into a incomplete variant.
5280 Return T if no simplification is possible. */
5281
5282 static tree
5283 fld_incomplete_type_of (tree t, struct free_lang_data_d *fld)
5284 {
5285 if (!t)
5286 return NULL;
5287 if (POINTER_TYPE_P (t))
5288 {
5289 tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld);
5290 if (t2 != TREE_TYPE (t))
5291 {
5292 tree first;
5293 if (TREE_CODE (t) == POINTER_TYPE)
5294 first = build_pointer_type_for_mode (t2, TYPE_MODE (t),
5295 TYPE_REF_CAN_ALIAS_ALL (t));
5296 else
5297 first = build_reference_type_for_mode (t2, TYPE_MODE (t),
5298 TYPE_REF_CAN_ALIAS_ALL (t));
5299 gcc_assert (TYPE_CANONICAL (t2) != t2
5300 && TYPE_CANONICAL (t2) == TYPE_CANONICAL (TREE_TYPE (t)));
5301 add_tree_to_fld_list (first, fld);
5302 return fld_type_variant (first, t, fld);
5303 }
5304 return t;
5305 }
5306 if (TREE_CODE (t) == ARRAY_TYPE)
5307 return fld_process_array_type (t,
5308 fld_incomplete_type_of (TREE_TYPE (t), fld),
5309 fld_incomplete_types, fld);
5310 if ((!RECORD_OR_UNION_TYPE_P (t) && TREE_CODE (t) != ENUMERAL_TYPE)
5311 || !COMPLETE_TYPE_P (t))
5312 return t;
5313 if (TYPE_MAIN_VARIANT (t) == t)
5314 {
5315 bool existed;
5316 tree &copy
5317 = fld_incomplete_types->get_or_insert (t, &existed);
5318
5319 if (!existed)
5320 {
5321 copy = build_distinct_type_copy (t);
5322
5323 /* It is possible that type was not seen by free_lang_data yet. */
5324 add_tree_to_fld_list (copy, fld);
5325 TYPE_SIZE (copy) = NULL;
5326 TYPE_USER_ALIGN (copy) = 0;
5327 TYPE_SIZE_UNIT (copy) = NULL;
5328 TYPE_CANONICAL (copy) = TYPE_CANONICAL (t);
5329 TREE_ADDRESSABLE (copy) = 0;
5330 if (AGGREGATE_TYPE_P (t))
5331 {
5332 SET_TYPE_MODE (copy, VOIDmode);
5333 SET_TYPE_ALIGN (copy, BITS_PER_UNIT);
5334 TYPE_TYPELESS_STORAGE (copy) = 0;
5335 TYPE_FIELDS (copy) = NULL;
5336 TYPE_BINFO (copy) = NULL;
5337 }
5338 else
5339 TYPE_VALUES (copy) = NULL;
5340
5341 /* Build copy of TYPE_DECL in TYPE_NAME if necessary.
5342 This is needed for ODR violation warnings to come out right (we
5343 want duplicate TYPE_DECLs whenever the type is duplicated because
5344 of ODR violation. Because lang data in the TYPE_DECL may not
5345 have been freed yet, rebuild it from scratch and copy relevant
5346 fields. */
5347 TYPE_NAME (copy) = fld_simplified_type_name (copy);
5348 tree name = TYPE_NAME (copy);
5349
5350 if (name && TREE_CODE (name) == TYPE_DECL)
5351 {
5352 gcc_checking_assert (TREE_TYPE (name) == t);
5353 tree name2 = build_decl (DECL_SOURCE_LOCATION (name), TYPE_DECL,
5354 DECL_NAME (name), copy);
5355 if (DECL_ASSEMBLER_NAME_SET_P (name))
5356 SET_DECL_ASSEMBLER_NAME (name2, DECL_ASSEMBLER_NAME (name));
5357 SET_DECL_ALIGN (name2, 0);
5358 DECL_CONTEXT (name2) = fld_decl_context
5359 (DECL_CONTEXT (name));
5360 TYPE_NAME (copy) = name2;
5361 }
5362 }
5363 return copy;
5364 }
5365 return (fld_type_variant
5366 (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld));
5367 }
5368
5369 /* Simplify type T for scenarios where we do not need complete pointer
5370 types. */
5371
5372 static tree
5373 fld_simplified_type (tree t, struct free_lang_data_d *fld)
5374 {
5375 if (!t)
5376 return t;
5377 if (POINTER_TYPE_P (t))
5378 return fld_incomplete_type_of (t, fld);
5379 /* FIXME: This triggers verification error, see PR88140. */
5380 if (TREE_CODE (t) == ARRAY_TYPE && 0)
5381 return fld_process_array_type (t, fld_simplified_type (TREE_TYPE (t), fld),
5382 fld_simplified_types, fld);
5383 return t;
5384 }
5385
5386 /* Reset the expression *EXPR_P, a size or position.
5387
5388 ??? We could reset all non-constant sizes or positions. But it's cheap
5389 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5390
5391 We need to reset self-referential sizes or positions because they cannot
5392 be gimplified and thus can contain a CALL_EXPR after the gimplification
5393 is finished, which will run afoul of LTO streaming. And they need to be
5394 reset to something essentially dummy but not constant, so as to preserve
5395 the properties of the object they are attached to. */
5396
5397 static inline void
5398 free_lang_data_in_one_sizepos (tree *expr_p)
5399 {
5400 tree expr = *expr_p;
5401 if (CONTAINS_PLACEHOLDER_P (expr))
5402 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5403 }
5404
5405
5406 /* Reset all the fields in a binfo node BINFO. We only keep
5407 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5408
5409 static void
5410 free_lang_data_in_binfo (tree binfo)
5411 {
5412 unsigned i;
5413 tree t;
5414
5415 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5416
5417 BINFO_VIRTUALS (binfo) = NULL_TREE;
5418 BINFO_BASE_ACCESSES (binfo) = NULL;
5419 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5420 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5421 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5422
5423 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5424 free_lang_data_in_binfo (t);
5425 }
5426
5427
5428 /* Reset all language specific information still present in TYPE. */
5429
5430 static void
5431 free_lang_data_in_type (tree type, struct free_lang_data_d *fld)
5432 {
5433 gcc_assert (TYPE_P (type));
5434
5435 /* Give the FE a chance to remove its own data first. */
5436 lang_hooks.free_lang_data (type);
5437
5438 TREE_LANG_FLAG_0 (type) = 0;
5439 TREE_LANG_FLAG_1 (type) = 0;
5440 TREE_LANG_FLAG_2 (type) = 0;
5441 TREE_LANG_FLAG_3 (type) = 0;
5442 TREE_LANG_FLAG_4 (type) = 0;
5443 TREE_LANG_FLAG_5 (type) = 0;
5444 TREE_LANG_FLAG_6 (type) = 0;
5445
5446 TYPE_NEEDS_CONSTRUCTING (type) = 0;
5447
5448 if (TREE_CODE (type) == FUNCTION_TYPE)
5449 {
5450 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5451 /* Remove the const and volatile qualifiers from arguments. The
5452 C++ front end removes them, but the C front end does not,
5453 leading to false ODR violation errors when merging two
5454 instances of the same function signature compiled by
5455 different front ends. */
5456 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5457 {
5458 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5459 tree arg_type = TREE_VALUE (p);
5460
5461 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5462 {
5463 int quals = TYPE_QUALS (arg_type)
5464 & ~TYPE_QUAL_CONST
5465 & ~TYPE_QUAL_VOLATILE;
5466 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5467 free_lang_data_in_type (TREE_VALUE (p), fld);
5468 }
5469 /* C++ FE uses TREE_PURPOSE to store initial values. */
5470 TREE_PURPOSE (p) = NULL;
5471 }
5472 }
5473 else if (TREE_CODE (type) == METHOD_TYPE)
5474 {
5475 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5476 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5477 {
5478 /* C++ FE uses TREE_PURPOSE to store initial values. */
5479 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5480 TREE_PURPOSE (p) = NULL;
5481 }
5482 }
5483 else if (RECORD_OR_UNION_TYPE_P (type))
5484 {
5485 /* Remove members that are not FIELD_DECLs from the field list
5486 of an aggregate. These occur in C++. */
5487 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5488 if (TREE_CODE (member) == FIELD_DECL)
5489 prev = &DECL_CHAIN (member);
5490 else
5491 *prev = DECL_CHAIN (member);
5492
5493 TYPE_VFIELD (type) = NULL_TREE;
5494
5495 if (TYPE_BINFO (type))
5496 {
5497 free_lang_data_in_binfo (TYPE_BINFO (type));
5498 /* We need to preserve link to bases and virtual table for all
5499 polymorphic types to make devirtualization machinery working. */
5500 if (!BINFO_VTABLE (TYPE_BINFO (type))
5501 || !flag_devirtualize)
5502 TYPE_BINFO (type) = NULL;
5503 }
5504 }
5505 else if (INTEGRAL_TYPE_P (type)
5506 || SCALAR_FLOAT_TYPE_P (type)
5507 || FIXED_POINT_TYPE_P (type))
5508 {
5509 if (TREE_CODE (type) == ENUMERAL_TYPE)
5510 {
5511 /* Type values are used only for C++ ODR checking. Drop them
5512 for all type variants and non-ODR types.
5513 For ODR types the data is freed in free_odr_warning_data. */
5514 if (TYPE_MAIN_VARIANT (type) != type
5515 || !type_with_linkage_p (type))
5516 TYPE_VALUES (type) = NULL;
5517 else
5518 /* Simplify representation by recording only values rather
5519 than const decls. */
5520 for (tree e = TYPE_VALUES (type); e; e = TREE_CHAIN (e))
5521 if (TREE_CODE (TREE_VALUE (e)) == CONST_DECL)
5522 TREE_VALUE (e) = DECL_INITIAL (TREE_VALUE (e));
5523 }
5524 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5525 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5526 }
5527
5528 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5529
5530 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5531 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5532
5533 if (TYPE_CONTEXT (type)
5534 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5535 {
5536 tree ctx = TYPE_CONTEXT (type);
5537 do
5538 {
5539 ctx = BLOCK_SUPERCONTEXT (ctx);
5540 }
5541 while (ctx && TREE_CODE (ctx) == BLOCK);
5542 TYPE_CONTEXT (type) = ctx;
5543 }
5544
5545 TYPE_STUB_DECL (type) = NULL;
5546 TYPE_NAME (type) = fld_simplified_type_name (type);
5547 }
5548
5549
5550 /* Return true if DECL may need an assembler name to be set. */
5551
5552 static inline bool
5553 need_assembler_name_p (tree decl)
5554 {
5555 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5556 Rule merging. This makes type_odr_p to return true on those types during
5557 LTO and by comparing the mangled name, we can say what types are intended
5558 to be equivalent across compilation unit.
5559
5560 We do not store names of type_in_anonymous_namespace_p.
5561
5562 Record, union and enumeration type have linkage that allows use
5563 to check type_in_anonymous_namespace_p. We do not mangle compound types
5564 that always can be compared structurally.
5565
5566 Similarly for builtin types, we compare properties of their main variant.
5567 A special case are integer types where mangling do make differences
5568 between char/signed char/unsigned char etc. Storing name for these makes
5569 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5570 See cp/mangle.c:write_builtin_type for details. */
5571
5572 if (TREE_CODE (decl) == TYPE_DECL)
5573 {
5574 if (flag_lto_odr_type_mering
5575 && DECL_NAME (decl)
5576 && decl == TYPE_NAME (TREE_TYPE (decl))
5577 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5578 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5579 && (type_with_linkage_p (TREE_TYPE (decl))
5580 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5581 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5582 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5583 return false;
5584 }
5585 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5586 if (!VAR_OR_FUNCTION_DECL_P (decl))
5587 return false;
5588
5589 /* If DECL already has its assembler name set, it does not need a
5590 new one. */
5591 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5592 || DECL_ASSEMBLER_NAME_SET_P (decl))
5593 return false;
5594
5595 /* Abstract decls do not need an assembler name. */
5596 if (DECL_ABSTRACT_P (decl))
5597 return false;
5598
5599 /* For VAR_DECLs, only static, public and external symbols need an
5600 assembler name. */
5601 if (VAR_P (decl)
5602 && !TREE_STATIC (decl)
5603 && !TREE_PUBLIC (decl)
5604 && !DECL_EXTERNAL (decl))
5605 return false;
5606
5607 if (TREE_CODE (decl) == FUNCTION_DECL)
5608 {
5609 /* Do not set assembler name on builtins. Allow RTL expansion to
5610 decide whether to expand inline or via a regular call. */
5611 if (fndecl_built_in_p (decl)
5612 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5613 return false;
5614
5615 /* Functions represented in the callgraph need an assembler name. */
5616 if (cgraph_node::get (decl) != NULL)
5617 return true;
5618
5619 /* Unused and not public functions don't need an assembler name. */
5620 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5621 return false;
5622 }
5623
5624 return true;
5625 }
5626
5627
5628 /* Reset all language specific information still present in symbol
5629 DECL. */
5630
5631 static void
5632 free_lang_data_in_decl (tree decl, struct free_lang_data_d *fld)
5633 {
5634 gcc_assert (DECL_P (decl));
5635
5636 /* Give the FE a chance to remove its own data first. */
5637 lang_hooks.free_lang_data (decl);
5638
5639 TREE_LANG_FLAG_0 (decl) = 0;
5640 TREE_LANG_FLAG_1 (decl) = 0;
5641 TREE_LANG_FLAG_2 (decl) = 0;
5642 TREE_LANG_FLAG_3 (decl) = 0;
5643 TREE_LANG_FLAG_4 (decl) = 0;
5644 TREE_LANG_FLAG_5 (decl) = 0;
5645 TREE_LANG_FLAG_6 (decl) = 0;
5646
5647 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5648 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5649 if (TREE_CODE (decl) == FIELD_DECL)
5650 {
5651 DECL_FCONTEXT (decl) = NULL;
5652 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5653 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5654 DECL_QUALIFIER (decl) = NULL_TREE;
5655 }
5656
5657 if (TREE_CODE (decl) == FUNCTION_DECL)
5658 {
5659 struct cgraph_node *node;
5660 /* Frontends do not set TREE_ADDRESSABLE on public variables even though
5661 the address may be taken in other unit, so this flag has no practical
5662 use for middle-end.
5663
5664 It would make more sense if frontends set TREE_ADDRESSABLE to 0 only
5665 for public objects that indeed cannot be adressed, but it is not
5666 the case. Set the flag to true so we do not get merge failures for
5667 i.e. virtual tables between units that take address of it and
5668 units that don't. */
5669 if (TREE_PUBLIC (decl))
5670 TREE_ADDRESSABLE (decl) = true;
5671 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5672 if (!(node = cgraph_node::get (decl))
5673 || (!node->definition && !node->clones))
5674 {
5675 if (node)
5676 node->release_body ();
5677 else
5678 {
5679 release_function_body (decl);
5680 DECL_ARGUMENTS (decl) = NULL;
5681 DECL_RESULT (decl) = NULL;
5682 DECL_INITIAL (decl) = error_mark_node;
5683 }
5684 }
5685 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5686 {
5687 tree t;
5688
5689 /* If DECL has a gimple body, then the context for its
5690 arguments must be DECL. Otherwise, it doesn't really
5691 matter, as we will not be emitting any code for DECL. In
5692 general, there may be other instances of DECL created by
5693 the front end and since PARM_DECLs are generally shared,
5694 their DECL_CONTEXT changes as the replicas of DECL are
5695 created. The only time where DECL_CONTEXT is important
5696 is for the FUNCTION_DECLs that have a gimple body (since
5697 the PARM_DECL will be used in the function's body). */
5698 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5699 DECL_CONTEXT (t) = decl;
5700 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5701 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5702 = target_option_default_node;
5703 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5704 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5705 = optimization_default_node;
5706 }
5707
5708 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5709 At this point, it is not needed anymore. */
5710 DECL_SAVED_TREE (decl) = NULL_TREE;
5711
5712 /* Clear the abstract origin if it refers to a method.
5713 Otherwise dwarf2out.c will ICE as we splice functions out of
5714 TYPE_FIELDS and thus the origin will not be output
5715 correctly. */
5716 if (DECL_ABSTRACT_ORIGIN (decl)
5717 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5718 && RECORD_OR_UNION_TYPE_P
5719 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5720 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5721
5722 DECL_VINDEX (decl) = NULL_TREE;
5723 }
5724 else if (VAR_P (decl))
5725 {
5726 /* See comment above why we set the flag for functoins. */
5727 if (TREE_PUBLIC (decl))
5728 TREE_ADDRESSABLE (decl) = true;
5729 if ((DECL_EXTERNAL (decl)
5730 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5731 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5732 DECL_INITIAL (decl) = NULL_TREE;
5733 }
5734 else if (TREE_CODE (decl) == TYPE_DECL)
5735 {
5736 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5737 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5738 TREE_PUBLIC (decl) = 0;
5739 TREE_PRIVATE (decl) = 0;
5740 DECL_ARTIFICIAL (decl) = 0;
5741 TYPE_DECL_SUPPRESS_DEBUG (decl) = 0;
5742 DECL_INITIAL (decl) = NULL_TREE;
5743 DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5744 DECL_MODE (decl) = VOIDmode;
5745 SET_DECL_ALIGN (decl, 0);
5746 /* TREE_TYPE is cleared at WPA time in free_odr_warning_data. */
5747 }
5748 else if (TREE_CODE (decl) == FIELD_DECL)
5749 {
5750 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5751 DECL_INITIAL (decl) = NULL_TREE;
5752 }
5753 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5754 && DECL_INITIAL (decl)
5755 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5756 {
5757 /* Strip builtins from the translation-unit BLOCK. We still have targets
5758 without builtin_decl_explicit support and also builtins are shared
5759 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5760 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5761 while (*nextp)
5762 {
5763 tree var = *nextp;
5764 if (fndecl_built_in_p (var))
5765 *nextp = TREE_CHAIN (var);
5766 else
5767 nextp = &TREE_CHAIN (var);
5768 }
5769 }
5770 /* We need to keep field decls associated with their trees. Otherwise tree
5771 merging may merge some fileds and keep others disjoint wich in turn will
5772 not do well with TREE_CHAIN pointers linking them.
5773
5774 Also do not drop containing types for virtual methods and tables because
5775 these are needed by devirtualization. */
5776 if (TREE_CODE (decl) != FIELD_DECL
5777 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5778 || !DECL_VIRTUAL_P (decl)))
5779 DECL_CONTEXT (decl) = fld_decl_context (DECL_CONTEXT (decl));
5780 }
5781
5782
5783 /* Operand callback helper for free_lang_data_in_node. *TP is the
5784 subtree operand being considered. */
5785
5786 static tree
5787 find_decls_types_r (tree *tp, int *ws, void *data)
5788 {
5789 tree t = *tp;
5790 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5791
5792 if (TREE_CODE (t) == TREE_LIST)
5793 return NULL_TREE;
5794
5795 /* Language specific nodes will be removed, so there is no need
5796 to gather anything under them. */
5797 if (is_lang_specific (t))
5798 {
5799 *ws = 0;
5800 return NULL_TREE;
5801 }
5802
5803 if (DECL_P (t))
5804 {
5805 /* Note that walk_tree does not traverse every possible field in
5806 decls, so we have to do our own traversals here. */
5807 add_tree_to_fld_list (t, fld);
5808
5809 fld_worklist_push (DECL_NAME (t), fld);
5810 fld_worklist_push (DECL_CONTEXT (t), fld);
5811 fld_worklist_push (DECL_SIZE (t), fld);
5812 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5813
5814 /* We are going to remove everything under DECL_INITIAL for
5815 TYPE_DECLs. No point walking them. */
5816 if (TREE_CODE (t) != TYPE_DECL)
5817 fld_worklist_push (DECL_INITIAL (t), fld);
5818
5819 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5820 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5821
5822 if (TREE_CODE (t) == FUNCTION_DECL)
5823 {
5824 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5825 fld_worklist_push (DECL_RESULT (t), fld);
5826 }
5827 else if (TREE_CODE (t) == FIELD_DECL)
5828 {
5829 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5830 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5831 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5832 fld_worklist_push (DECL_FCONTEXT (t), fld);
5833 }
5834
5835 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5836 && DECL_HAS_VALUE_EXPR_P (t))
5837 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5838
5839 if (TREE_CODE (t) != FIELD_DECL
5840 && TREE_CODE (t) != TYPE_DECL)
5841 fld_worklist_push (TREE_CHAIN (t), fld);
5842 *ws = 0;
5843 }
5844 else if (TYPE_P (t))
5845 {
5846 /* Note that walk_tree does not traverse every possible field in
5847 types, so we have to do our own traversals here. */
5848 add_tree_to_fld_list (t, fld);
5849
5850 if (!RECORD_OR_UNION_TYPE_P (t))
5851 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5852 fld_worklist_push (TYPE_SIZE (t), fld);
5853 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5854 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5855 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5856 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5857 fld_worklist_push (TYPE_NAME (t), fld);
5858 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
5859 lists, we may look types up in these lists and use them while
5860 optimizing the function body. Thus we need to free lang data
5861 in them. */
5862 if (TREE_CODE (t) == POINTER_TYPE)
5863 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
5864 if (TREE_CODE (t) == REFERENCE_TYPE)
5865 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
5866 if (!POINTER_TYPE_P (t))
5867 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5868 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5869 if (!RECORD_OR_UNION_TYPE_P (t))
5870 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5871 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5872 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5873 do not and want not to reach unused variants this way. */
5874 if (TYPE_CONTEXT (t))
5875 {
5876 tree ctx = TYPE_CONTEXT (t);
5877 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5878 So push that instead. */
5879 while (ctx && TREE_CODE (ctx) == BLOCK)
5880 ctx = BLOCK_SUPERCONTEXT (ctx);
5881 fld_worklist_push (ctx, fld);
5882 }
5883 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5884 and want not to reach unused types this way. */
5885
5886 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5887 {
5888 unsigned i;
5889 tree tem;
5890 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5891 fld_worklist_push (TREE_TYPE (tem), fld);
5892 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5893 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5894 }
5895 if (RECORD_OR_UNION_TYPE_P (t))
5896 {
5897 tree tem;
5898 /* Push all TYPE_FIELDS - there can be interleaving interesting
5899 and non-interesting things. */
5900 tem = TYPE_FIELDS (t);
5901 while (tem)
5902 {
5903 if (TREE_CODE (tem) == FIELD_DECL)
5904 fld_worklist_push (tem, fld);
5905 tem = TREE_CHAIN (tem);
5906 }
5907 }
5908 if (FUNC_OR_METHOD_TYPE_P (t))
5909 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5910
5911 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5912 *ws = 0;
5913 }
5914 else if (TREE_CODE (t) == BLOCK)
5915 {
5916 for (tree *tem = &BLOCK_VARS (t); *tem; )
5917 {
5918 if (TREE_CODE (*tem) != VAR_DECL
5919 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem)))
5920 {
5921 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
5922 && TREE_CODE (*tem) != PARM_DECL);
5923 *tem = TREE_CHAIN (*tem);
5924 }
5925 else
5926 {
5927 fld_worklist_push (*tem, fld);
5928 tem = &TREE_CHAIN (*tem);
5929 }
5930 }
5931 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5932 fld_worklist_push (tem, fld);
5933 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5934 }
5935
5936 if (TREE_CODE (t) != IDENTIFIER_NODE
5937 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5938 fld_worklist_push (TREE_TYPE (t), fld);
5939
5940 return NULL_TREE;
5941 }
5942
5943
5944 /* Find decls and types in T. */
5945
5946 static void
5947 find_decls_types (tree t, struct free_lang_data_d *fld)
5948 {
5949 while (1)
5950 {
5951 if (!fld->pset.contains (t))
5952 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5953 if (fld->worklist.is_empty ())
5954 break;
5955 t = fld->worklist.pop ();
5956 }
5957 }
5958
5959 /* Translate all the types in LIST with the corresponding runtime
5960 types. */
5961
5962 static tree
5963 get_eh_types_for_runtime (tree list)
5964 {
5965 tree head, prev;
5966
5967 if (list == NULL_TREE)
5968 return NULL_TREE;
5969
5970 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5971 prev = head;
5972 list = TREE_CHAIN (list);
5973 while (list)
5974 {
5975 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5976 TREE_CHAIN (prev) = n;
5977 prev = TREE_CHAIN (prev);
5978 list = TREE_CHAIN (list);
5979 }
5980
5981 return head;
5982 }
5983
5984
5985 /* Find decls and types referenced in EH region R and store them in
5986 FLD->DECLS and FLD->TYPES. */
5987
5988 static void
5989 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5990 {
5991 switch (r->type)
5992 {
5993 case ERT_CLEANUP:
5994 break;
5995
5996 case ERT_TRY:
5997 {
5998 eh_catch c;
5999
6000 /* The types referenced in each catch must first be changed to the
6001 EH types used at runtime. This removes references to FE types
6002 in the region. */
6003 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
6004 {
6005 c->type_list = get_eh_types_for_runtime (c->type_list);
6006 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
6007 }
6008 }
6009 break;
6010
6011 case ERT_ALLOWED_EXCEPTIONS:
6012 r->u.allowed.type_list
6013 = get_eh_types_for_runtime (r->u.allowed.type_list);
6014 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
6015 break;
6016
6017 case ERT_MUST_NOT_THROW:
6018 walk_tree (&r->u.must_not_throw.failure_decl,
6019 find_decls_types_r, fld, &fld->pset);
6020 break;
6021 }
6022 }
6023
6024
6025 /* Find decls and types referenced in cgraph node N and store them in
6026 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6027 look for *every* kind of DECL and TYPE node reachable from N,
6028 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6029 NAMESPACE_DECLs, etc). */
6030
6031 static void
6032 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
6033 {
6034 basic_block bb;
6035 struct function *fn;
6036 unsigned ix;
6037 tree t;
6038
6039 find_decls_types (n->decl, fld);
6040
6041 if (!gimple_has_body_p (n->decl))
6042 return;
6043
6044 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
6045
6046 fn = DECL_STRUCT_FUNCTION (n->decl);
6047
6048 /* Traverse locals. */
6049 FOR_EACH_LOCAL_DECL (fn, ix, t)
6050 find_decls_types (t, fld);
6051
6052 /* Traverse EH regions in FN. */
6053 {
6054 eh_region r;
6055 FOR_ALL_EH_REGION_FN (r, fn)
6056 find_decls_types_in_eh_region (r, fld);
6057 }
6058
6059 /* Traverse every statement in FN. */
6060 FOR_EACH_BB_FN (bb, fn)
6061 {
6062 gphi_iterator psi;
6063 gimple_stmt_iterator si;
6064 unsigned i;
6065
6066 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
6067 {
6068 gphi *phi = psi.phi ();
6069
6070 for (i = 0; i < gimple_phi_num_args (phi); i++)
6071 {
6072 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
6073 find_decls_types (*arg_p, fld);
6074 }
6075 }
6076
6077 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6078 {
6079 gimple *stmt = gsi_stmt (si);
6080
6081 if (is_gimple_call (stmt))
6082 find_decls_types (gimple_call_fntype (stmt), fld);
6083
6084 for (i = 0; i < gimple_num_ops (stmt); i++)
6085 {
6086 tree arg = gimple_op (stmt, i);
6087 find_decls_types (arg, fld);
6088 }
6089 }
6090 }
6091 }
6092
6093
6094 /* Find decls and types referenced in varpool node N and store them in
6095 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6096 look for *every* kind of DECL and TYPE node reachable from N,
6097 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6098 NAMESPACE_DECLs, etc). */
6099
6100 static void
6101 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
6102 {
6103 find_decls_types (v->decl, fld);
6104 }
6105
6106 /* If T needs an assembler name, have one created for it. */
6107
6108 void
6109 assign_assembler_name_if_needed (tree t)
6110 {
6111 if (need_assembler_name_p (t))
6112 {
6113 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
6114 diagnostics that use input_location to show locus
6115 information. The problem here is that, at this point,
6116 input_location is generally anchored to the end of the file
6117 (since the parser is long gone), so we don't have a good
6118 position to pin it to.
6119
6120 To alleviate this problem, this uses the location of T's
6121 declaration. Examples of this are
6122 testsuite/g++.dg/template/cond2.C and
6123 testsuite/g++.dg/template/pr35240.C. */
6124 location_t saved_location = input_location;
6125 input_location = DECL_SOURCE_LOCATION (t);
6126
6127 decl_assembler_name (t);
6128
6129 input_location = saved_location;
6130 }
6131 }
6132
6133
6134 /* Free language specific information for every operand and expression
6135 in every node of the call graph. This process operates in three stages:
6136
6137 1- Every callgraph node and varpool node is traversed looking for
6138 decls and types embedded in them. This is a more exhaustive
6139 search than that done by find_referenced_vars, because it will
6140 also collect individual fields, decls embedded in types, etc.
6141
6142 2- All the decls found are sent to free_lang_data_in_decl.
6143
6144 3- All the types found are sent to free_lang_data_in_type.
6145
6146 The ordering between decls and types is important because
6147 free_lang_data_in_decl sets assembler names, which includes
6148 mangling. So types cannot be freed up until assembler names have
6149 been set up. */
6150
6151 static void
6152 free_lang_data_in_cgraph (struct free_lang_data_d *fld)
6153 {
6154 struct cgraph_node *n;
6155 varpool_node *v;
6156 tree t;
6157 unsigned i;
6158 alias_pair *p;
6159
6160 /* Find decls and types in the body of every function in the callgraph. */
6161 FOR_EACH_FUNCTION (n)
6162 find_decls_types_in_node (n, fld);
6163
6164 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
6165 find_decls_types (p->decl, fld);
6166
6167 /* Find decls and types in every varpool symbol. */
6168 FOR_EACH_VARIABLE (v)
6169 find_decls_types_in_var (v, fld);
6170
6171 /* Set the assembler name on every decl found. We need to do this
6172 now because free_lang_data_in_decl will invalidate data needed
6173 for mangling. This breaks mangling on interdependent decls. */
6174 FOR_EACH_VEC_ELT (fld->decls, i, t)
6175 assign_assembler_name_if_needed (t);
6176
6177 /* Traverse every decl found freeing its language data. */
6178 FOR_EACH_VEC_ELT (fld->decls, i, t)
6179 free_lang_data_in_decl (t, fld);
6180
6181 /* Traverse every type found freeing its language data. */
6182 FOR_EACH_VEC_ELT (fld->types, i, t)
6183 free_lang_data_in_type (t, fld);
6184 }
6185
6186
6187 /* Free resources that are used by FE but are not needed once they are done. */
6188
6189 static unsigned
6190 free_lang_data (void)
6191 {
6192 unsigned i;
6193 struct free_lang_data_d fld;
6194
6195 /* If we are the LTO frontend we have freed lang-specific data already. */
6196 if (in_lto_p
6197 || (!flag_generate_lto && !flag_generate_offload))
6198 {
6199 /* Rebuild type inheritance graph even when not doing LTO to get
6200 consistent profile data. */
6201 rebuild_type_inheritance_graph ();
6202 return 0;
6203 }
6204
6205 fld_incomplete_types = new hash_map<tree, tree>;
6206 fld_simplified_types = new hash_map<tree, tree>;
6207
6208 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
6209 if (vec_safe_is_empty (all_translation_units))
6210 build_translation_unit_decl (NULL_TREE);
6211
6212 /* Allocate and assign alias sets to the standard integer types
6213 while the slots are still in the way the frontends generated them. */
6214 for (i = 0; i < itk_none; ++i)
6215 if (integer_types[i])
6216 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
6217
6218 /* Traverse the IL resetting language specific information for
6219 operands, expressions, etc. */
6220 free_lang_data_in_cgraph (&fld);
6221
6222 /* Create gimple variants for common types. */
6223 for (unsigned i = 0;
6224 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
6225 ++i)
6226 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
6227
6228 /* Reset some langhooks. Do not reset types_compatible_p, it may
6229 still be used indirectly via the get_alias_set langhook. */
6230 lang_hooks.dwarf_name = lhd_dwarf_name;
6231 lang_hooks.decl_printable_name = gimple_decl_printable_name;
6232 lang_hooks.gimplify_expr = lhd_gimplify_expr;
6233 lang_hooks.overwrite_decl_assembler_name = lhd_overwrite_decl_assembler_name;
6234 lang_hooks.print_xnode = lhd_print_tree_nothing;
6235 lang_hooks.print_decl = lhd_print_tree_nothing;
6236 lang_hooks.print_type = lhd_print_tree_nothing;
6237 lang_hooks.print_identifier = lhd_print_tree_nothing;
6238
6239 lang_hooks.tree_inlining.var_mod_type_p = hook_bool_tree_tree_false;
6240
6241 if (flag_checking)
6242 {
6243 int i;
6244 tree t;
6245
6246 FOR_EACH_VEC_ELT (fld.types, i, t)
6247 verify_type (t);
6248 }
6249
6250 /* We do not want the default decl_assembler_name implementation,
6251 rather if we have fixed everything we want a wrapper around it
6252 asserting that all non-local symbols already got their assembler
6253 name and only produce assembler names for local symbols. Or rather
6254 make sure we never call decl_assembler_name on local symbols and
6255 devise a separate, middle-end private scheme for it. */
6256
6257 /* Reset diagnostic machinery. */
6258 tree_diagnostics_defaults (global_dc);
6259
6260 rebuild_type_inheritance_graph ();
6261
6262 delete fld_incomplete_types;
6263 delete fld_simplified_types;
6264
6265 return 0;
6266 }
6267
6268
6269 namespace {
6270
6271 const pass_data pass_data_ipa_free_lang_data =
6272 {
6273 SIMPLE_IPA_PASS, /* type */
6274 "*free_lang_data", /* name */
6275 OPTGROUP_NONE, /* optinfo_flags */
6276 TV_IPA_FREE_LANG_DATA, /* tv_id */
6277 0, /* properties_required */
6278 0, /* properties_provided */
6279 0, /* properties_destroyed */
6280 0, /* todo_flags_start */
6281 0, /* todo_flags_finish */
6282 };
6283
6284 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6285 {
6286 public:
6287 pass_ipa_free_lang_data (gcc::context *ctxt)
6288 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6289 {}
6290
6291 /* opt_pass methods: */
6292 virtual unsigned int execute (function *) { return free_lang_data (); }
6293
6294 }; // class pass_ipa_free_lang_data
6295
6296 } // anon namespace
6297
6298 simple_ipa_opt_pass *
6299 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6300 {
6301 return new pass_ipa_free_lang_data (ctxt);
6302 }
6303 \f
6304 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6305 of the various TYPE_QUAL values. */
6306
6307 static void
6308 set_type_quals (tree type, int type_quals)
6309 {
6310 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6311 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6312 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6313 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6314 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6315 }
6316
6317 /* Returns true iff CAND and BASE have equivalent language-specific
6318 qualifiers. */
6319
6320 bool
6321 check_lang_type (const_tree cand, const_tree base)
6322 {
6323 if (lang_hooks.types.type_hash_eq == NULL)
6324 return true;
6325 /* type_hash_eq currently only applies to these types. */
6326 if (TREE_CODE (cand) != FUNCTION_TYPE
6327 && TREE_CODE (cand) != METHOD_TYPE)
6328 return true;
6329 return lang_hooks.types.type_hash_eq (cand, base);
6330 }
6331
6332 /* Returns true iff unqualified CAND and BASE are equivalent. */
6333
6334 bool
6335 check_base_type (const_tree cand, const_tree base)
6336 {
6337 return (TYPE_NAME (cand) == TYPE_NAME (base)
6338 /* Apparently this is needed for Objective-C. */
6339 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6340 /* Check alignment. */
6341 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6342 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6343 TYPE_ATTRIBUTES (base)));
6344 }
6345
6346 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6347
6348 bool
6349 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6350 {
6351 return (TYPE_QUALS (cand) == type_quals
6352 && check_base_type (cand, base)
6353 && check_lang_type (cand, base));
6354 }
6355
6356 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6357
6358 static bool
6359 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6360 {
6361 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6362 && TYPE_NAME (cand) == TYPE_NAME (base)
6363 /* Apparently this is needed for Objective-C. */
6364 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6365 /* Check alignment. */
6366 && TYPE_ALIGN (cand) == align
6367 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6368 TYPE_ATTRIBUTES (base))
6369 && check_lang_type (cand, base));
6370 }
6371
6372 /* This function checks to see if TYPE matches the size one of the built-in
6373 atomic types, and returns that core atomic type. */
6374
6375 static tree
6376 find_atomic_core_type (tree type)
6377 {
6378 tree base_atomic_type;
6379
6380 /* Only handle complete types. */
6381 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6382 return NULL_TREE;
6383
6384 switch (tree_to_uhwi (TYPE_SIZE (type)))
6385 {
6386 case 8:
6387 base_atomic_type = atomicQI_type_node;
6388 break;
6389
6390 case 16:
6391 base_atomic_type = atomicHI_type_node;
6392 break;
6393
6394 case 32:
6395 base_atomic_type = atomicSI_type_node;
6396 break;
6397
6398 case 64:
6399 base_atomic_type = atomicDI_type_node;
6400 break;
6401
6402 case 128:
6403 base_atomic_type = atomicTI_type_node;
6404 break;
6405
6406 default:
6407 base_atomic_type = NULL_TREE;
6408 }
6409
6410 return base_atomic_type;
6411 }
6412
6413 /* Return a version of the TYPE, qualified as indicated by the
6414 TYPE_QUALS, if one exists. If no qualified version exists yet,
6415 return NULL_TREE. */
6416
6417 tree
6418 get_qualified_type (tree type, int type_quals)
6419 {
6420 tree t;
6421
6422 if (TYPE_QUALS (type) == type_quals)
6423 return type;
6424
6425 /* Search the chain of variants to see if there is already one there just
6426 like the one we need to have. If so, use that existing one. We must
6427 preserve the TYPE_NAME, since there is code that depends on this. */
6428 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6429 if (check_qualified_type (t, type, type_quals))
6430 return t;
6431
6432 return NULL_TREE;
6433 }
6434
6435 /* Like get_qualified_type, but creates the type if it does not
6436 exist. This function never returns NULL_TREE. */
6437
6438 tree
6439 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6440 {
6441 tree t;
6442
6443 /* See if we already have the appropriate qualified variant. */
6444 t = get_qualified_type (type, type_quals);
6445
6446 /* If not, build it. */
6447 if (!t)
6448 {
6449 t = build_variant_type_copy (type PASS_MEM_STAT);
6450 set_type_quals (t, type_quals);
6451
6452 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6453 {
6454 /* See if this object can map to a basic atomic type. */
6455 tree atomic_type = find_atomic_core_type (type);
6456 if (atomic_type)
6457 {
6458 /* Ensure the alignment of this type is compatible with
6459 the required alignment of the atomic type. */
6460 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6461 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6462 }
6463 }
6464
6465 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6466 /* Propagate structural equality. */
6467 SET_TYPE_STRUCTURAL_EQUALITY (t);
6468 else if (TYPE_CANONICAL (type) != type)
6469 /* Build the underlying canonical type, since it is different
6470 from TYPE. */
6471 {
6472 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6473 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6474 }
6475 else
6476 /* T is its own canonical type. */
6477 TYPE_CANONICAL (t) = t;
6478
6479 }
6480
6481 return t;
6482 }
6483
6484 /* Create a variant of type T with alignment ALIGN. */
6485
6486 tree
6487 build_aligned_type (tree type, unsigned int align)
6488 {
6489 tree t;
6490
6491 if (TYPE_PACKED (type)
6492 || TYPE_ALIGN (type) == align)
6493 return type;
6494
6495 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6496 if (check_aligned_type (t, type, align))
6497 return t;
6498
6499 t = build_variant_type_copy (type);
6500 SET_TYPE_ALIGN (t, align);
6501 TYPE_USER_ALIGN (t) = 1;
6502
6503 return t;
6504 }
6505
6506 /* Create a new distinct copy of TYPE. The new type is made its own
6507 MAIN_VARIANT. If TYPE requires structural equality checks, the
6508 resulting type requires structural equality checks; otherwise, its
6509 TYPE_CANONICAL points to itself. */
6510
6511 tree
6512 build_distinct_type_copy (tree type MEM_STAT_DECL)
6513 {
6514 tree t = copy_node (type PASS_MEM_STAT);
6515
6516 TYPE_POINTER_TO (t) = 0;
6517 TYPE_REFERENCE_TO (t) = 0;
6518
6519 /* Set the canonical type either to a new equivalence class, or
6520 propagate the need for structural equality checks. */
6521 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6522 SET_TYPE_STRUCTURAL_EQUALITY (t);
6523 else
6524 TYPE_CANONICAL (t) = t;
6525
6526 /* Make it its own variant. */
6527 TYPE_MAIN_VARIANT (t) = t;
6528 TYPE_NEXT_VARIANT (t) = 0;
6529
6530 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6531 whose TREE_TYPE is not t. This can also happen in the Ada
6532 frontend when using subtypes. */
6533
6534 return t;
6535 }
6536
6537 /* Create a new variant of TYPE, equivalent but distinct. This is so
6538 the caller can modify it. TYPE_CANONICAL for the return type will
6539 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6540 are considered equal by the language itself (or that both types
6541 require structural equality checks). */
6542
6543 tree
6544 build_variant_type_copy (tree type MEM_STAT_DECL)
6545 {
6546 tree t, m = TYPE_MAIN_VARIANT (type);
6547
6548 t = build_distinct_type_copy (type PASS_MEM_STAT);
6549
6550 /* Since we're building a variant, assume that it is a non-semantic
6551 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6552 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6553 /* Type variants have no alias set defined. */
6554 TYPE_ALIAS_SET (t) = -1;
6555
6556 /* Add the new type to the chain of variants of TYPE. */
6557 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6558 TYPE_NEXT_VARIANT (m) = t;
6559 TYPE_MAIN_VARIANT (t) = m;
6560
6561 return t;
6562 }
6563 \f
6564 /* Return true if the from tree in both tree maps are equal. */
6565
6566 int
6567 tree_map_base_eq (const void *va, const void *vb)
6568 {
6569 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6570 *const b = (const struct tree_map_base *) vb;
6571 return (a->from == b->from);
6572 }
6573
6574 /* Hash a from tree in a tree_base_map. */
6575
6576 unsigned int
6577 tree_map_base_hash (const void *item)
6578 {
6579 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6580 }
6581
6582 /* Return true if this tree map structure is marked for garbage collection
6583 purposes. We simply return true if the from tree is marked, so that this
6584 structure goes away when the from tree goes away. */
6585
6586 int
6587 tree_map_base_marked_p (const void *p)
6588 {
6589 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6590 }
6591
6592 /* Hash a from tree in a tree_map. */
6593
6594 unsigned int
6595 tree_map_hash (const void *item)
6596 {
6597 return (((const struct tree_map *) item)->hash);
6598 }
6599
6600 /* Hash a from tree in a tree_decl_map. */
6601
6602 unsigned int
6603 tree_decl_map_hash (const void *item)
6604 {
6605 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6606 }
6607
6608 /* Return the initialization priority for DECL. */
6609
6610 priority_type
6611 decl_init_priority_lookup (tree decl)
6612 {
6613 symtab_node *snode = symtab_node::get (decl);
6614
6615 if (!snode)
6616 return DEFAULT_INIT_PRIORITY;
6617 return
6618 snode->get_init_priority ();
6619 }
6620
6621 /* Return the finalization priority for DECL. */
6622
6623 priority_type
6624 decl_fini_priority_lookup (tree decl)
6625 {
6626 cgraph_node *node = cgraph_node::get (decl);
6627
6628 if (!node)
6629 return DEFAULT_INIT_PRIORITY;
6630 return
6631 node->get_fini_priority ();
6632 }
6633
6634 /* Set the initialization priority for DECL to PRIORITY. */
6635
6636 void
6637 decl_init_priority_insert (tree decl, priority_type priority)
6638 {
6639 struct symtab_node *snode;
6640
6641 if (priority == DEFAULT_INIT_PRIORITY)
6642 {
6643 snode = symtab_node::get (decl);
6644 if (!snode)
6645 return;
6646 }
6647 else if (VAR_P (decl))
6648 snode = varpool_node::get_create (decl);
6649 else
6650 snode = cgraph_node::get_create (decl);
6651 snode->set_init_priority (priority);
6652 }
6653
6654 /* Set the finalization priority for DECL to PRIORITY. */
6655
6656 void
6657 decl_fini_priority_insert (tree decl, priority_type priority)
6658 {
6659 struct cgraph_node *node;
6660
6661 if (priority == DEFAULT_INIT_PRIORITY)
6662 {
6663 node = cgraph_node::get (decl);
6664 if (!node)
6665 return;
6666 }
6667 else
6668 node = cgraph_node::get_create (decl);
6669 node->set_fini_priority (priority);
6670 }
6671
6672 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6673
6674 static void
6675 print_debug_expr_statistics (void)
6676 {
6677 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6678 (long) debug_expr_for_decl->size (),
6679 (long) debug_expr_for_decl->elements (),
6680 debug_expr_for_decl->collisions ());
6681 }
6682
6683 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6684
6685 static void
6686 print_value_expr_statistics (void)
6687 {
6688 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6689 (long) value_expr_for_decl->size (),
6690 (long) value_expr_for_decl->elements (),
6691 value_expr_for_decl->collisions ());
6692 }
6693
6694 /* Lookup a debug expression for FROM, and return it if we find one. */
6695
6696 tree
6697 decl_debug_expr_lookup (tree from)
6698 {
6699 struct tree_decl_map *h, in;
6700 in.base.from = from;
6701
6702 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6703 if (h)
6704 return h->to;
6705 return NULL_TREE;
6706 }
6707
6708 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6709
6710 void
6711 decl_debug_expr_insert (tree from, tree to)
6712 {
6713 struct tree_decl_map *h;
6714
6715 h = ggc_alloc<tree_decl_map> ();
6716 h->base.from = from;
6717 h->to = to;
6718 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6719 }
6720
6721 /* Lookup a value expression for FROM, and return it if we find one. */
6722
6723 tree
6724 decl_value_expr_lookup (tree from)
6725 {
6726 struct tree_decl_map *h, in;
6727 in.base.from = from;
6728
6729 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6730 if (h)
6731 return h->to;
6732 return NULL_TREE;
6733 }
6734
6735 /* Insert a mapping FROM->TO in the value expression hashtable. */
6736
6737 void
6738 decl_value_expr_insert (tree from, tree to)
6739 {
6740 struct tree_decl_map *h;
6741
6742 h = ggc_alloc<tree_decl_map> ();
6743 h->base.from = from;
6744 h->to = to;
6745 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6746 }
6747
6748 /* Lookup a vector of debug arguments for FROM, and return it if we
6749 find one. */
6750
6751 vec<tree, va_gc> **
6752 decl_debug_args_lookup (tree from)
6753 {
6754 struct tree_vec_map *h, in;
6755
6756 if (!DECL_HAS_DEBUG_ARGS_P (from))
6757 return NULL;
6758 gcc_checking_assert (debug_args_for_decl != NULL);
6759 in.base.from = from;
6760 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6761 if (h)
6762 return &h->to;
6763 return NULL;
6764 }
6765
6766 /* Insert a mapping FROM->empty vector of debug arguments in the value
6767 expression hashtable. */
6768
6769 vec<tree, va_gc> **
6770 decl_debug_args_insert (tree from)
6771 {
6772 struct tree_vec_map *h;
6773 tree_vec_map **loc;
6774
6775 if (DECL_HAS_DEBUG_ARGS_P (from))
6776 return decl_debug_args_lookup (from);
6777 if (debug_args_for_decl == NULL)
6778 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6779 h = ggc_alloc<tree_vec_map> ();
6780 h->base.from = from;
6781 h->to = NULL;
6782 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6783 *loc = h;
6784 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6785 return &h->to;
6786 }
6787
6788 /* Hashing of types so that we don't make duplicates.
6789 The entry point is `type_hash_canon'. */
6790
6791 /* Generate the default hash code for TYPE. This is designed for
6792 speed, rather than maximum entropy. */
6793
6794 hashval_t
6795 type_hash_canon_hash (tree type)
6796 {
6797 inchash::hash hstate;
6798
6799 hstate.add_int (TREE_CODE (type));
6800
6801 if (TREE_TYPE (type))
6802 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6803
6804 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6805 /* Just the identifier is adequate to distinguish. */
6806 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6807
6808 switch (TREE_CODE (type))
6809 {
6810 case METHOD_TYPE:
6811 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6812 /* FALLTHROUGH. */
6813 case FUNCTION_TYPE:
6814 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6815 if (TREE_VALUE (t) != error_mark_node)
6816 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6817 break;
6818
6819 case OFFSET_TYPE:
6820 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6821 break;
6822
6823 case ARRAY_TYPE:
6824 {
6825 if (TYPE_DOMAIN (type))
6826 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6827 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6828 {
6829 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6830 hstate.add_object (typeless);
6831 }
6832 }
6833 break;
6834
6835 case INTEGER_TYPE:
6836 {
6837 tree t = TYPE_MAX_VALUE (type);
6838 if (!t)
6839 t = TYPE_MIN_VALUE (type);
6840 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6841 hstate.add_object (TREE_INT_CST_ELT (t, i));
6842 break;
6843 }
6844
6845 case REAL_TYPE:
6846 case FIXED_POINT_TYPE:
6847 {
6848 unsigned prec = TYPE_PRECISION (type);
6849 hstate.add_object (prec);
6850 break;
6851 }
6852
6853 case VECTOR_TYPE:
6854 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6855 break;
6856
6857 default:
6858 break;
6859 }
6860
6861 return hstate.end ();
6862 }
6863
6864 /* These are the Hashtable callback functions. */
6865
6866 /* Returns true iff the types are equivalent. */
6867
6868 bool
6869 type_cache_hasher::equal (type_hash *a, type_hash *b)
6870 {
6871 /* First test the things that are the same for all types. */
6872 if (a->hash != b->hash
6873 || TREE_CODE (a->type) != TREE_CODE (b->type)
6874 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6875 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6876 TYPE_ATTRIBUTES (b->type))
6877 || (TREE_CODE (a->type) != COMPLEX_TYPE
6878 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6879 return 0;
6880
6881 /* Be careful about comparing arrays before and after the element type
6882 has been completed; don't compare TYPE_ALIGN unless both types are
6883 complete. */
6884 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6885 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6886 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6887 return 0;
6888
6889 switch (TREE_CODE (a->type))
6890 {
6891 case VOID_TYPE:
6892 case COMPLEX_TYPE:
6893 case POINTER_TYPE:
6894 case REFERENCE_TYPE:
6895 case NULLPTR_TYPE:
6896 return 1;
6897
6898 case VECTOR_TYPE:
6899 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6900 TYPE_VECTOR_SUBPARTS (b->type));
6901
6902 case ENUMERAL_TYPE:
6903 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6904 && !(TYPE_VALUES (a->type)
6905 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6906 && TYPE_VALUES (b->type)
6907 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6908 && type_list_equal (TYPE_VALUES (a->type),
6909 TYPE_VALUES (b->type))))
6910 return 0;
6911
6912 /* fall through */
6913
6914 case INTEGER_TYPE:
6915 case REAL_TYPE:
6916 case BOOLEAN_TYPE:
6917 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6918 return false;
6919 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6920 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6921 TYPE_MAX_VALUE (b->type)))
6922 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6923 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6924 TYPE_MIN_VALUE (b->type))));
6925
6926 case FIXED_POINT_TYPE:
6927 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6928
6929 case OFFSET_TYPE:
6930 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6931
6932 case METHOD_TYPE:
6933 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6934 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6935 || (TYPE_ARG_TYPES (a->type)
6936 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6937 && TYPE_ARG_TYPES (b->type)
6938 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6939 && type_list_equal (TYPE_ARG_TYPES (a->type),
6940 TYPE_ARG_TYPES (b->type)))))
6941 break;
6942 return 0;
6943 case ARRAY_TYPE:
6944 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6945 where the flag should be inherited from the element type
6946 and can change after ARRAY_TYPEs are created; on non-aggregates
6947 compare it and hash it, scalars will never have that flag set
6948 and we need to differentiate between arrays created by different
6949 front-ends or middle-end created arrays. */
6950 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6951 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6952 || (TYPE_TYPELESS_STORAGE (a->type)
6953 == TYPE_TYPELESS_STORAGE (b->type))));
6954
6955 case RECORD_TYPE:
6956 case UNION_TYPE:
6957 case QUAL_UNION_TYPE:
6958 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6959 || (TYPE_FIELDS (a->type)
6960 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6961 && TYPE_FIELDS (b->type)
6962 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6963 && type_list_equal (TYPE_FIELDS (a->type),
6964 TYPE_FIELDS (b->type))));
6965
6966 case FUNCTION_TYPE:
6967 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6968 || (TYPE_ARG_TYPES (a->type)
6969 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6970 && TYPE_ARG_TYPES (b->type)
6971 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6972 && type_list_equal (TYPE_ARG_TYPES (a->type),
6973 TYPE_ARG_TYPES (b->type))))
6974 break;
6975 return 0;
6976
6977 default:
6978 return 0;
6979 }
6980
6981 if (lang_hooks.types.type_hash_eq != NULL)
6982 return lang_hooks.types.type_hash_eq (a->type, b->type);
6983
6984 return 1;
6985 }
6986
6987 /* Given TYPE, and HASHCODE its hash code, return the canonical
6988 object for an identical type if one already exists.
6989 Otherwise, return TYPE, and record it as the canonical object.
6990
6991 To use this function, first create a type of the sort you want.
6992 Then compute its hash code from the fields of the type that
6993 make it different from other similar types.
6994 Then call this function and use the value. */
6995
6996 tree
6997 type_hash_canon (unsigned int hashcode, tree type)
6998 {
6999 type_hash in;
7000 type_hash **loc;
7001
7002 /* The hash table only contains main variants, so ensure that's what we're
7003 being passed. */
7004 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
7005
7006 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
7007 must call that routine before comparing TYPE_ALIGNs. */
7008 layout_type (type);
7009
7010 in.hash = hashcode;
7011 in.type = type;
7012
7013 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
7014 if (*loc)
7015 {
7016 tree t1 = ((type_hash *) *loc)->type;
7017 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
7018 && t1 != type);
7019 if (TYPE_UID (type) + 1 == next_type_uid)
7020 --next_type_uid;
7021 /* Free also min/max values and the cache for integer
7022 types. This can't be done in free_node, as LTO frees
7023 those on its own. */
7024 if (TREE_CODE (type) == INTEGER_TYPE)
7025 {
7026 if (TYPE_MIN_VALUE (type)
7027 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
7028 {
7029 /* Zero is always in TYPE_CACHED_VALUES. */
7030 if (! TYPE_UNSIGNED (type))
7031 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
7032 ggc_free (TYPE_MIN_VALUE (type));
7033 }
7034 if (TYPE_MAX_VALUE (type)
7035 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
7036 {
7037 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
7038 ggc_free (TYPE_MAX_VALUE (type));
7039 }
7040 if (TYPE_CACHED_VALUES_P (type))
7041 ggc_free (TYPE_CACHED_VALUES (type));
7042 }
7043 free_node (type);
7044 return t1;
7045 }
7046 else
7047 {
7048 struct type_hash *h;
7049
7050 h = ggc_alloc<type_hash> ();
7051 h->hash = hashcode;
7052 h->type = type;
7053 *loc = h;
7054
7055 return type;
7056 }
7057 }
7058
7059 static void
7060 print_type_hash_statistics (void)
7061 {
7062 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
7063 (long) type_hash_table->size (),
7064 (long) type_hash_table->elements (),
7065 type_hash_table->collisions ());
7066 }
7067
7068 /* Given two lists of types
7069 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
7070 return 1 if the lists contain the same types in the same order.
7071 Also, the TREE_PURPOSEs must match. */
7072
7073 bool
7074 type_list_equal (const_tree l1, const_tree l2)
7075 {
7076 const_tree t1, t2;
7077
7078 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
7079 if (TREE_VALUE (t1) != TREE_VALUE (t2)
7080 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
7081 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
7082 && (TREE_TYPE (TREE_PURPOSE (t1))
7083 == TREE_TYPE (TREE_PURPOSE (t2))))))
7084 return false;
7085
7086 return t1 == t2;
7087 }
7088
7089 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
7090 given by TYPE. If the argument list accepts variable arguments,
7091 then this function counts only the ordinary arguments. */
7092
7093 int
7094 type_num_arguments (const_tree fntype)
7095 {
7096 int i = 0;
7097
7098 for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
7099 /* If the function does not take a variable number of arguments,
7100 the last element in the list will have type `void'. */
7101 if (VOID_TYPE_P (TREE_VALUE (t)))
7102 break;
7103 else
7104 ++i;
7105
7106 return i;
7107 }
7108
7109 /* Return the type of the function TYPE's argument ARGNO if known.
7110 For vararg function's where ARGNO refers to one of the variadic
7111 arguments return null. Otherwise, return a void_type_node for
7112 out-of-bounds ARGNO. */
7113
7114 tree
7115 type_argument_type (const_tree fntype, unsigned argno)
7116 {
7117 /* Treat zero the same as an out-of-bounds argument number. */
7118 if (!argno)
7119 return void_type_node;
7120
7121 function_args_iterator iter;
7122
7123 tree argtype;
7124 unsigned i = 1;
7125 FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
7126 {
7127 /* A vararg function's argument list ends in a null. Otherwise,
7128 an ordinary function's argument list ends with void. Return
7129 null if ARGNO refers to a vararg argument, void_type_node if
7130 it's out of bounds, and the formal argument type otherwise. */
7131 if (!argtype)
7132 break;
7133
7134 if (i == argno || VOID_TYPE_P (argtype))
7135 return argtype;
7136
7137 ++i;
7138 }
7139
7140 return NULL_TREE;
7141 }
7142
7143 /* Nonzero if integer constants T1 and T2
7144 represent the same constant value. */
7145
7146 int
7147 tree_int_cst_equal (const_tree t1, const_tree t2)
7148 {
7149 if (t1 == t2)
7150 return 1;
7151
7152 if (t1 == 0 || t2 == 0)
7153 return 0;
7154
7155 STRIP_ANY_LOCATION_WRAPPER (t1);
7156 STRIP_ANY_LOCATION_WRAPPER (t2);
7157
7158 if (TREE_CODE (t1) == INTEGER_CST
7159 && TREE_CODE (t2) == INTEGER_CST
7160 && wi::to_widest (t1) == wi::to_widest (t2))
7161 return 1;
7162
7163 return 0;
7164 }
7165
7166 /* Return true if T is an INTEGER_CST whose numerical value (extended
7167 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7168
7169 bool
7170 tree_fits_shwi_p (const_tree t)
7171 {
7172 return (t != NULL_TREE
7173 && TREE_CODE (t) == INTEGER_CST
7174 && wi::fits_shwi_p (wi::to_widest (t)));
7175 }
7176
7177 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7178 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
7179
7180 bool
7181 tree_fits_poly_int64_p (const_tree t)
7182 {
7183 if (t == NULL_TREE)
7184 return false;
7185 if (POLY_INT_CST_P (t))
7186 {
7187 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7188 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
7189 return false;
7190 return true;
7191 }
7192 return (TREE_CODE (t) == INTEGER_CST
7193 && wi::fits_shwi_p (wi::to_widest (t)));
7194 }
7195
7196 /* Return true if T is an INTEGER_CST whose numerical value (extended
7197 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7198
7199 bool
7200 tree_fits_uhwi_p (const_tree t)
7201 {
7202 return (t != NULL_TREE
7203 && TREE_CODE (t) == INTEGER_CST
7204 && wi::fits_uhwi_p (wi::to_widest (t)));
7205 }
7206
7207 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7208 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
7209
7210 bool
7211 tree_fits_poly_uint64_p (const_tree t)
7212 {
7213 if (t == NULL_TREE)
7214 return false;
7215 if (POLY_INT_CST_P (t))
7216 {
7217 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7218 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
7219 return false;
7220 return true;
7221 }
7222 return (TREE_CODE (t) == INTEGER_CST
7223 && wi::fits_uhwi_p (wi::to_widest (t)));
7224 }
7225
7226 /* T is an INTEGER_CST whose numerical value (extended according to
7227 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7228 HOST_WIDE_INT. */
7229
7230 HOST_WIDE_INT
7231 tree_to_shwi (const_tree t)
7232 {
7233 gcc_assert (tree_fits_shwi_p (t));
7234 return TREE_INT_CST_LOW (t);
7235 }
7236
7237 /* T is an INTEGER_CST whose numerical value (extended according to
7238 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7239 HOST_WIDE_INT. */
7240
7241 unsigned HOST_WIDE_INT
7242 tree_to_uhwi (const_tree t)
7243 {
7244 gcc_assert (tree_fits_uhwi_p (t));
7245 return TREE_INT_CST_LOW (t);
7246 }
7247
7248 /* Return the most significant (sign) bit of T. */
7249
7250 int
7251 tree_int_cst_sign_bit (const_tree t)
7252 {
7253 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7254
7255 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
7256 }
7257
7258 /* Return an indication of the sign of the integer constant T.
7259 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7260 Note that -1 will never be returned if T's type is unsigned. */
7261
7262 int
7263 tree_int_cst_sgn (const_tree t)
7264 {
7265 if (wi::to_wide (t) == 0)
7266 return 0;
7267 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7268 return 1;
7269 else if (wi::neg_p (wi::to_wide (t)))
7270 return -1;
7271 else
7272 return 1;
7273 }
7274
7275 /* Return the minimum number of bits needed to represent VALUE in a
7276 signed or unsigned type, UNSIGNEDP says which. */
7277
7278 unsigned int
7279 tree_int_cst_min_precision (tree value, signop sgn)
7280 {
7281 /* If the value is negative, compute its negative minus 1. The latter
7282 adjustment is because the absolute value of the largest negative value
7283 is one larger than the largest positive value. This is equivalent to
7284 a bit-wise negation, so use that operation instead. */
7285
7286 if (tree_int_cst_sgn (value) < 0)
7287 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7288
7289 /* Return the number of bits needed, taking into account the fact
7290 that we need one more bit for a signed than unsigned type.
7291 If value is 0 or -1, the minimum precision is 1 no matter
7292 whether unsignedp is true or false. */
7293
7294 if (integer_zerop (value))
7295 return 1;
7296 else
7297 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7298 }
7299
7300 /* Return truthvalue of whether T1 is the same tree structure as T2.
7301 Return 1 if they are the same.
7302 Return 0 if they are understandably different.
7303 Return -1 if either contains tree structure not understood by
7304 this function. */
7305
7306 int
7307 simple_cst_equal (const_tree t1, const_tree t2)
7308 {
7309 enum tree_code code1, code2;
7310 int cmp;
7311 int i;
7312
7313 if (t1 == t2)
7314 return 1;
7315 if (t1 == 0 || t2 == 0)
7316 return 0;
7317
7318 /* For location wrappers to be the same, they must be at the same
7319 source location (and wrap the same thing). */
7320 if (location_wrapper_p (t1) && location_wrapper_p (t2))
7321 {
7322 if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
7323 return 0;
7324 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7325 }
7326
7327 code1 = TREE_CODE (t1);
7328 code2 = TREE_CODE (t2);
7329
7330 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7331 {
7332 if (CONVERT_EXPR_CODE_P (code2)
7333 || code2 == NON_LVALUE_EXPR)
7334 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7335 else
7336 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7337 }
7338
7339 else if (CONVERT_EXPR_CODE_P (code2)
7340 || code2 == NON_LVALUE_EXPR)
7341 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7342
7343 if (code1 != code2)
7344 return 0;
7345
7346 switch (code1)
7347 {
7348 case INTEGER_CST:
7349 return wi::to_widest (t1) == wi::to_widest (t2);
7350
7351 case REAL_CST:
7352 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7353
7354 case FIXED_CST:
7355 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7356
7357 case STRING_CST:
7358 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7359 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7360 TREE_STRING_LENGTH (t1)));
7361
7362 case CONSTRUCTOR:
7363 {
7364 unsigned HOST_WIDE_INT idx;
7365 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7366 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7367
7368 if (vec_safe_length (v1) != vec_safe_length (v2))
7369 return false;
7370
7371 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7372 /* ??? Should we handle also fields here? */
7373 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7374 return false;
7375 return true;
7376 }
7377
7378 case SAVE_EXPR:
7379 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7380
7381 case CALL_EXPR:
7382 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7383 if (cmp <= 0)
7384 return cmp;
7385 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7386 return 0;
7387 {
7388 const_tree arg1, arg2;
7389 const_call_expr_arg_iterator iter1, iter2;
7390 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7391 arg2 = first_const_call_expr_arg (t2, &iter2);
7392 arg1 && arg2;
7393 arg1 = next_const_call_expr_arg (&iter1),
7394 arg2 = next_const_call_expr_arg (&iter2))
7395 {
7396 cmp = simple_cst_equal (arg1, arg2);
7397 if (cmp <= 0)
7398 return cmp;
7399 }
7400 return arg1 == arg2;
7401 }
7402
7403 case TARGET_EXPR:
7404 /* Special case: if either target is an unallocated VAR_DECL,
7405 it means that it's going to be unified with whatever the
7406 TARGET_EXPR is really supposed to initialize, so treat it
7407 as being equivalent to anything. */
7408 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7409 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7410 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7411 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7412 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7413 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7414 cmp = 1;
7415 else
7416 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7417
7418 if (cmp <= 0)
7419 return cmp;
7420
7421 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7422
7423 case WITH_CLEANUP_EXPR:
7424 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7425 if (cmp <= 0)
7426 return cmp;
7427
7428 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7429
7430 case COMPONENT_REF:
7431 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7432 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7433
7434 return 0;
7435
7436 case VAR_DECL:
7437 case PARM_DECL:
7438 case CONST_DECL:
7439 case FUNCTION_DECL:
7440 return 0;
7441
7442 default:
7443 if (POLY_INT_CST_P (t1))
7444 /* A false return means maybe_ne rather than known_ne. */
7445 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7446 TYPE_SIGN (TREE_TYPE (t1))),
7447 poly_widest_int::from (poly_int_cst_value (t2),
7448 TYPE_SIGN (TREE_TYPE (t2))));
7449 break;
7450 }
7451
7452 /* This general rule works for most tree codes. All exceptions should be
7453 handled above. If this is a language-specific tree code, we can't
7454 trust what might be in the operand, so say we don't know
7455 the situation. */
7456 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7457 return -1;
7458
7459 switch (TREE_CODE_CLASS (code1))
7460 {
7461 case tcc_unary:
7462 case tcc_binary:
7463 case tcc_comparison:
7464 case tcc_expression:
7465 case tcc_reference:
7466 case tcc_statement:
7467 cmp = 1;
7468 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7469 {
7470 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7471 if (cmp <= 0)
7472 return cmp;
7473 }
7474
7475 return cmp;
7476
7477 default:
7478 return -1;
7479 }
7480 }
7481
7482 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7483 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7484 than U, respectively. */
7485
7486 int
7487 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7488 {
7489 if (tree_int_cst_sgn (t) < 0)
7490 return -1;
7491 else if (!tree_fits_uhwi_p (t))
7492 return 1;
7493 else if (TREE_INT_CST_LOW (t) == u)
7494 return 0;
7495 else if (TREE_INT_CST_LOW (t) < u)
7496 return -1;
7497 else
7498 return 1;
7499 }
7500
7501 /* Return true if SIZE represents a constant size that is in bounds of
7502 what the middle-end and the backend accepts (covering not more than
7503 half of the address-space). */
7504
7505 bool
7506 valid_constant_size_p (const_tree size)
7507 {
7508 if (POLY_INT_CST_P (size))
7509 {
7510 if (TREE_OVERFLOW (size))
7511 return false;
7512 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7513 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7514 return false;
7515 return true;
7516 }
7517 if (! tree_fits_uhwi_p (size)
7518 || TREE_OVERFLOW (size)
7519 || tree_int_cst_sign_bit (size) != 0)
7520 return false;
7521 return true;
7522 }
7523
7524 /* Return the precision of the type, or for a complex or vector type the
7525 precision of the type of its elements. */
7526
7527 unsigned int
7528 element_precision (const_tree type)
7529 {
7530 if (!TYPE_P (type))
7531 type = TREE_TYPE (type);
7532 enum tree_code code = TREE_CODE (type);
7533 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7534 type = TREE_TYPE (type);
7535
7536 return TYPE_PRECISION (type);
7537 }
7538
7539 /* Return true if CODE represents an associative tree code. Otherwise
7540 return false. */
7541 bool
7542 associative_tree_code (enum tree_code code)
7543 {
7544 switch (code)
7545 {
7546 case BIT_IOR_EXPR:
7547 case BIT_AND_EXPR:
7548 case BIT_XOR_EXPR:
7549 case PLUS_EXPR:
7550 case MULT_EXPR:
7551 case MIN_EXPR:
7552 case MAX_EXPR:
7553 return true;
7554
7555 default:
7556 break;
7557 }
7558 return false;
7559 }
7560
7561 /* Return true if CODE represents a commutative tree code. Otherwise
7562 return false. */
7563 bool
7564 commutative_tree_code (enum tree_code code)
7565 {
7566 switch (code)
7567 {
7568 case PLUS_EXPR:
7569 case MULT_EXPR:
7570 case MULT_HIGHPART_EXPR:
7571 case MIN_EXPR:
7572 case MAX_EXPR:
7573 case BIT_IOR_EXPR:
7574 case BIT_XOR_EXPR:
7575 case BIT_AND_EXPR:
7576 case NE_EXPR:
7577 case EQ_EXPR:
7578 case UNORDERED_EXPR:
7579 case ORDERED_EXPR:
7580 case UNEQ_EXPR:
7581 case LTGT_EXPR:
7582 case TRUTH_AND_EXPR:
7583 case TRUTH_XOR_EXPR:
7584 case TRUTH_OR_EXPR:
7585 case WIDEN_MULT_EXPR:
7586 case VEC_WIDEN_MULT_HI_EXPR:
7587 case VEC_WIDEN_MULT_LO_EXPR:
7588 case VEC_WIDEN_MULT_EVEN_EXPR:
7589 case VEC_WIDEN_MULT_ODD_EXPR:
7590 return true;
7591
7592 default:
7593 break;
7594 }
7595 return false;
7596 }
7597
7598 /* Return true if CODE represents a ternary tree code for which the
7599 first two operands are commutative. Otherwise return false. */
7600 bool
7601 commutative_ternary_tree_code (enum tree_code code)
7602 {
7603 switch (code)
7604 {
7605 case WIDEN_MULT_PLUS_EXPR:
7606 case WIDEN_MULT_MINUS_EXPR:
7607 case DOT_PROD_EXPR:
7608 return true;
7609
7610 default:
7611 break;
7612 }
7613 return false;
7614 }
7615
7616 /* Returns true if CODE can overflow. */
7617
7618 bool
7619 operation_can_overflow (enum tree_code code)
7620 {
7621 switch (code)
7622 {
7623 case PLUS_EXPR:
7624 case MINUS_EXPR:
7625 case MULT_EXPR:
7626 case LSHIFT_EXPR:
7627 /* Can overflow in various ways. */
7628 return true;
7629 case TRUNC_DIV_EXPR:
7630 case EXACT_DIV_EXPR:
7631 case FLOOR_DIV_EXPR:
7632 case CEIL_DIV_EXPR:
7633 /* For INT_MIN / -1. */
7634 return true;
7635 case NEGATE_EXPR:
7636 case ABS_EXPR:
7637 /* For -INT_MIN. */
7638 return true;
7639 default:
7640 /* These operators cannot overflow. */
7641 return false;
7642 }
7643 }
7644
7645 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7646 ftrapv doesn't generate trapping insns for CODE. */
7647
7648 bool
7649 operation_no_trapping_overflow (tree type, enum tree_code code)
7650 {
7651 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7652
7653 /* We don't generate instructions that trap on overflow for complex or vector
7654 types. */
7655 if (!INTEGRAL_TYPE_P (type))
7656 return true;
7657
7658 if (!TYPE_OVERFLOW_TRAPS (type))
7659 return true;
7660
7661 switch (code)
7662 {
7663 case PLUS_EXPR:
7664 case MINUS_EXPR:
7665 case MULT_EXPR:
7666 case NEGATE_EXPR:
7667 case ABS_EXPR:
7668 /* These operators can overflow, and -ftrapv generates trapping code for
7669 these. */
7670 return false;
7671 case TRUNC_DIV_EXPR:
7672 case EXACT_DIV_EXPR:
7673 case FLOOR_DIV_EXPR:
7674 case CEIL_DIV_EXPR:
7675 case LSHIFT_EXPR:
7676 /* These operators can overflow, but -ftrapv does not generate trapping
7677 code for these. */
7678 return true;
7679 default:
7680 /* These operators cannot overflow. */
7681 return true;
7682 }
7683 }
7684
7685 namespace inchash
7686 {
7687
7688 /* Generate a hash value for an expression. This can be used iteratively
7689 by passing a previous result as the HSTATE argument.
7690
7691 This function is intended to produce the same hash for expressions which
7692 would compare equal using operand_equal_p. */
7693 void
7694 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7695 {
7696 int i;
7697 enum tree_code code;
7698 enum tree_code_class tclass;
7699
7700 if (t == NULL_TREE || t == error_mark_node)
7701 {
7702 hstate.merge_hash (0);
7703 return;
7704 }
7705
7706 if (!(flags & OEP_ADDRESS_OF))
7707 STRIP_NOPS (t);
7708
7709 code = TREE_CODE (t);
7710
7711 switch (code)
7712 {
7713 /* Alas, constants aren't shared, so we can't rely on pointer
7714 identity. */
7715 case VOID_CST:
7716 hstate.merge_hash (0);
7717 return;
7718 case INTEGER_CST:
7719 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7720 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7721 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7722 return;
7723 case REAL_CST:
7724 {
7725 unsigned int val2;
7726 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7727 val2 = rvc_zero;
7728 else
7729 val2 = real_hash (TREE_REAL_CST_PTR (t));
7730 hstate.merge_hash (val2);
7731 return;
7732 }
7733 case FIXED_CST:
7734 {
7735 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7736 hstate.merge_hash (val2);
7737 return;
7738 }
7739 case STRING_CST:
7740 hstate.add ((const void *) TREE_STRING_POINTER (t),
7741 TREE_STRING_LENGTH (t));
7742 return;
7743 case COMPLEX_CST:
7744 inchash::add_expr (TREE_REALPART (t), hstate, flags);
7745 inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7746 return;
7747 case VECTOR_CST:
7748 {
7749 hstate.add_int (VECTOR_CST_NPATTERNS (t));
7750 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7751 unsigned int count = vector_cst_encoded_nelts (t);
7752 for (unsigned int i = 0; i < count; ++i)
7753 inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7754 return;
7755 }
7756 case SSA_NAME:
7757 /* We can just compare by pointer. */
7758 hstate.add_hwi (SSA_NAME_VERSION (t));
7759 return;
7760 case PLACEHOLDER_EXPR:
7761 /* The node itself doesn't matter. */
7762 return;
7763 case BLOCK:
7764 case OMP_CLAUSE:
7765 /* Ignore. */
7766 return;
7767 case TREE_LIST:
7768 /* A list of expressions, for a CALL_EXPR or as the elements of a
7769 VECTOR_CST. */
7770 for (; t; t = TREE_CHAIN (t))
7771 inchash::add_expr (TREE_VALUE (t), hstate, flags);
7772 return;
7773 case CONSTRUCTOR:
7774 {
7775 unsigned HOST_WIDE_INT idx;
7776 tree field, value;
7777 flags &= ~OEP_ADDRESS_OF;
7778 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7779 {
7780 inchash::add_expr (field, hstate, flags);
7781 inchash::add_expr (value, hstate, flags);
7782 }
7783 return;
7784 }
7785 case STATEMENT_LIST:
7786 {
7787 tree_stmt_iterator i;
7788 for (i = tsi_start (CONST_CAST_TREE (t));
7789 !tsi_end_p (i); tsi_next (&i))
7790 inchash::add_expr (tsi_stmt (i), hstate, flags);
7791 return;
7792 }
7793 case TREE_VEC:
7794 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7795 inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7796 return;
7797 case IDENTIFIER_NODE:
7798 hstate.add_object (IDENTIFIER_HASH_VALUE (t));
7799 return;
7800 case FUNCTION_DECL:
7801 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7802 Otherwise nodes that compare equal according to operand_equal_p might
7803 get different hash codes. However, don't do this for machine specific
7804 or front end builtins, since the function code is overloaded in those
7805 cases. */
7806 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7807 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7808 {
7809 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7810 code = TREE_CODE (t);
7811 }
7812 /* FALL THROUGH */
7813 default:
7814 if (POLY_INT_CST_P (t))
7815 {
7816 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7817 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7818 return;
7819 }
7820 tclass = TREE_CODE_CLASS (code);
7821
7822 if (tclass == tcc_declaration)
7823 {
7824 /* DECL's have a unique ID */
7825 hstate.add_hwi (DECL_UID (t));
7826 }
7827 else if (tclass == tcc_comparison && !commutative_tree_code (code))
7828 {
7829 /* For comparisons that can be swapped, use the lower
7830 tree code. */
7831 enum tree_code ccode = swap_tree_comparison (code);
7832 if (code < ccode)
7833 ccode = code;
7834 hstate.add_object (ccode);
7835 inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7836 inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7837 }
7838 else if (CONVERT_EXPR_CODE_P (code))
7839 {
7840 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7841 operand_equal_p. */
7842 enum tree_code ccode = NOP_EXPR;
7843 hstate.add_object (ccode);
7844
7845 /* Don't hash the type, that can lead to having nodes which
7846 compare equal according to operand_equal_p, but which
7847 have different hash codes. Make sure to include signedness
7848 in the hash computation. */
7849 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7850 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7851 }
7852 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7853 else if (code == MEM_REF
7854 && (flags & OEP_ADDRESS_OF) != 0
7855 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7856 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7857 && integer_zerop (TREE_OPERAND (t, 1)))
7858 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7859 hstate, flags);
7860 /* Don't ICE on FE specific trees, or their arguments etc.
7861 during operand_equal_p hash verification. */
7862 else if (!IS_EXPR_CODE_CLASS (tclass))
7863 gcc_assert (flags & OEP_HASH_CHECK);
7864 else
7865 {
7866 unsigned int sflags = flags;
7867
7868 hstate.add_object (code);
7869
7870 switch (code)
7871 {
7872 case ADDR_EXPR:
7873 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7874 flags |= OEP_ADDRESS_OF;
7875 sflags = flags;
7876 break;
7877
7878 case INDIRECT_REF:
7879 case MEM_REF:
7880 case TARGET_MEM_REF:
7881 flags &= ~OEP_ADDRESS_OF;
7882 sflags = flags;
7883 break;
7884
7885 case ARRAY_REF:
7886 case ARRAY_RANGE_REF:
7887 case COMPONENT_REF:
7888 case BIT_FIELD_REF:
7889 sflags &= ~OEP_ADDRESS_OF;
7890 break;
7891
7892 case COND_EXPR:
7893 flags &= ~OEP_ADDRESS_OF;
7894 break;
7895
7896 case WIDEN_MULT_PLUS_EXPR:
7897 case WIDEN_MULT_MINUS_EXPR:
7898 {
7899 /* The multiplication operands are commutative. */
7900 inchash::hash one, two;
7901 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7902 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7903 hstate.add_commutative (one, two);
7904 inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7905 return;
7906 }
7907
7908 case CALL_EXPR:
7909 if (CALL_EXPR_FN (t) == NULL_TREE)
7910 hstate.add_int (CALL_EXPR_IFN (t));
7911 break;
7912
7913 case TARGET_EXPR:
7914 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7915 Usually different TARGET_EXPRs just should use
7916 different temporaries in their slots. */
7917 inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7918 return;
7919
7920 default:
7921 break;
7922 }
7923
7924 /* Don't hash the type, that can lead to having nodes which
7925 compare equal according to operand_equal_p, but which
7926 have different hash codes. */
7927 if (code == NON_LVALUE_EXPR)
7928 {
7929 /* Make sure to include signness in the hash computation. */
7930 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7931 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7932 }
7933
7934 else if (commutative_tree_code (code))
7935 {
7936 /* It's a commutative expression. We want to hash it the same
7937 however it appears. We do this by first hashing both operands
7938 and then rehashing based on the order of their independent
7939 hashes. */
7940 inchash::hash one, two;
7941 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7942 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7943 hstate.add_commutative (one, two);
7944 }
7945 else
7946 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7947 inchash::add_expr (TREE_OPERAND (t, i), hstate,
7948 i == 0 ? flags : sflags);
7949 }
7950 return;
7951 }
7952 }
7953
7954 }
7955
7956 /* Constructors for pointer, array and function types.
7957 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7958 constructed by language-dependent code, not here.) */
7959
7960 /* Construct, lay out and return the type of pointers to TO_TYPE with
7961 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7962 reference all of memory. If such a type has already been
7963 constructed, reuse it. */
7964
7965 tree
7966 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7967 bool can_alias_all)
7968 {
7969 tree t;
7970 bool could_alias = can_alias_all;
7971
7972 if (to_type == error_mark_node)
7973 return error_mark_node;
7974
7975 /* If the pointed-to type has the may_alias attribute set, force
7976 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7977 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7978 can_alias_all = true;
7979
7980 /* In some cases, languages will have things that aren't a POINTER_TYPE
7981 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7982 In that case, return that type without regard to the rest of our
7983 operands.
7984
7985 ??? This is a kludge, but consistent with the way this function has
7986 always operated and there doesn't seem to be a good way to avoid this
7987 at the moment. */
7988 if (TYPE_POINTER_TO (to_type) != 0
7989 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7990 return TYPE_POINTER_TO (to_type);
7991
7992 /* First, if we already have a type for pointers to TO_TYPE and it's
7993 the proper mode, use it. */
7994 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7995 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7996 return t;
7997
7998 t = make_node (POINTER_TYPE);
7999
8000 TREE_TYPE (t) = to_type;
8001 SET_TYPE_MODE (t, mode);
8002 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
8003 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
8004 TYPE_POINTER_TO (to_type) = t;
8005
8006 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
8007 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
8008 SET_TYPE_STRUCTURAL_EQUALITY (t);
8009 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
8010 TYPE_CANONICAL (t)
8011 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
8012 mode, false);
8013
8014 /* Lay out the type. This function has many callers that are concerned
8015 with expression-construction, and this simplifies them all. */
8016 layout_type (t);
8017
8018 return t;
8019 }
8020
8021 /* By default build pointers in ptr_mode. */
8022
8023 tree
8024 build_pointer_type (tree to_type)
8025 {
8026 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
8027 : TYPE_ADDR_SPACE (to_type);
8028 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
8029 return build_pointer_type_for_mode (to_type, pointer_mode, false);
8030 }
8031
8032 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
8033
8034 tree
8035 build_reference_type_for_mode (tree to_type, machine_mode mode,
8036 bool can_alias_all)
8037 {
8038 tree t;
8039 bool could_alias = can_alias_all;
8040
8041 if (to_type == error_mark_node)
8042 return error_mark_node;
8043
8044 /* If the pointed-to type has the may_alias attribute set, force
8045 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
8046 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
8047 can_alias_all = true;
8048
8049 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
8050 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
8051 In that case, return that type without regard to the rest of our
8052 operands.
8053
8054 ??? This is a kludge, but consistent with the way this function has
8055 always operated and there doesn't seem to be a good way to avoid this
8056 at the moment. */
8057 if (TYPE_REFERENCE_TO (to_type) != 0
8058 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
8059 return TYPE_REFERENCE_TO (to_type);
8060
8061 /* First, if we already have a type for pointers to TO_TYPE and it's
8062 the proper mode, use it. */
8063 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
8064 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
8065 return t;
8066
8067 t = make_node (REFERENCE_TYPE);
8068
8069 TREE_TYPE (t) = to_type;
8070 SET_TYPE_MODE (t, mode);
8071 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
8072 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
8073 TYPE_REFERENCE_TO (to_type) = t;
8074
8075 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
8076 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
8077 SET_TYPE_STRUCTURAL_EQUALITY (t);
8078 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
8079 TYPE_CANONICAL (t)
8080 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
8081 mode, false);
8082
8083 layout_type (t);
8084
8085 return t;
8086 }
8087
8088
8089 /* Build the node for the type of references-to-TO_TYPE by default
8090 in ptr_mode. */
8091
8092 tree
8093 build_reference_type (tree to_type)
8094 {
8095 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
8096 : TYPE_ADDR_SPACE (to_type);
8097 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
8098 return build_reference_type_for_mode (to_type, pointer_mode, false);
8099 }
8100
8101 #define MAX_INT_CACHED_PREC \
8102 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8103 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
8104
8105 /* Builds a signed or unsigned integer type of precision PRECISION.
8106 Used for C bitfields whose precision does not match that of
8107 built-in target types. */
8108 tree
8109 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
8110 int unsignedp)
8111 {
8112 tree itype, ret;
8113
8114 if (unsignedp)
8115 unsignedp = MAX_INT_CACHED_PREC + 1;
8116
8117 if (precision <= MAX_INT_CACHED_PREC)
8118 {
8119 itype = nonstandard_integer_type_cache[precision + unsignedp];
8120 if (itype)
8121 return itype;
8122 }
8123
8124 itype = make_node (INTEGER_TYPE);
8125 TYPE_PRECISION (itype) = precision;
8126
8127 if (unsignedp)
8128 fixup_unsigned_type (itype);
8129 else
8130 fixup_signed_type (itype);
8131
8132 ret = itype;
8133
8134 inchash::hash hstate;
8135 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
8136 ret = type_hash_canon (hstate.end (), itype);
8137 if (precision <= MAX_INT_CACHED_PREC)
8138 nonstandard_integer_type_cache[precision + unsignedp] = ret;
8139
8140 return ret;
8141 }
8142
8143 #define MAX_BOOL_CACHED_PREC \
8144 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8145 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
8146
8147 /* Builds a boolean type of precision PRECISION.
8148 Used for boolean vectors to choose proper vector element size. */
8149 tree
8150 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
8151 {
8152 tree type;
8153
8154 if (precision <= MAX_BOOL_CACHED_PREC)
8155 {
8156 type = nonstandard_boolean_type_cache[precision];
8157 if (type)
8158 return type;
8159 }
8160
8161 type = make_node (BOOLEAN_TYPE);
8162 TYPE_PRECISION (type) = precision;
8163 fixup_signed_type (type);
8164
8165 if (precision <= MAX_INT_CACHED_PREC)
8166 nonstandard_boolean_type_cache[precision] = type;
8167
8168 return type;
8169 }
8170
8171 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
8172 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
8173 is true, reuse such a type that has already been constructed. */
8174
8175 static tree
8176 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
8177 {
8178 tree itype = make_node (INTEGER_TYPE);
8179
8180 TREE_TYPE (itype) = type;
8181
8182 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
8183 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
8184
8185 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
8186 SET_TYPE_MODE (itype, TYPE_MODE (type));
8187 TYPE_SIZE (itype) = TYPE_SIZE (type);
8188 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
8189 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
8190 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
8191 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
8192
8193 if (!shared)
8194 return itype;
8195
8196 if ((TYPE_MIN_VALUE (itype)
8197 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
8198 || (TYPE_MAX_VALUE (itype)
8199 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
8200 {
8201 /* Since we cannot reliably merge this type, we need to compare it using
8202 structural equality checks. */
8203 SET_TYPE_STRUCTURAL_EQUALITY (itype);
8204 return itype;
8205 }
8206
8207 hashval_t hash = type_hash_canon_hash (itype);
8208 itype = type_hash_canon (hash, itype);
8209
8210 return itype;
8211 }
8212
8213 /* Wrapper around build_range_type_1 with SHARED set to true. */
8214
8215 tree
8216 build_range_type (tree type, tree lowval, tree highval)
8217 {
8218 return build_range_type_1 (type, lowval, highval, true);
8219 }
8220
8221 /* Wrapper around build_range_type_1 with SHARED set to false. */
8222
8223 tree
8224 build_nonshared_range_type (tree type, tree lowval, tree highval)
8225 {
8226 return build_range_type_1 (type, lowval, highval, false);
8227 }
8228
8229 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
8230 MAXVAL should be the maximum value in the domain
8231 (one less than the length of the array).
8232
8233 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
8234 We don't enforce this limit, that is up to caller (e.g. language front end).
8235 The limit exists because the result is a signed type and we don't handle
8236 sizes that use more than one HOST_WIDE_INT. */
8237
8238 tree
8239 build_index_type (tree maxval)
8240 {
8241 return build_range_type (sizetype, size_zero_node, maxval);
8242 }
8243
8244 /* Return true if the debug information for TYPE, a subtype, should be emitted
8245 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
8246 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
8247 debug info and doesn't reflect the source code. */
8248
8249 bool
8250 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
8251 {
8252 tree base_type = TREE_TYPE (type), low, high;
8253
8254 /* Subrange types have a base type which is an integral type. */
8255 if (!INTEGRAL_TYPE_P (base_type))
8256 return false;
8257
8258 /* Get the real bounds of the subtype. */
8259 if (lang_hooks.types.get_subrange_bounds)
8260 lang_hooks.types.get_subrange_bounds (type, &low, &high);
8261 else
8262 {
8263 low = TYPE_MIN_VALUE (type);
8264 high = TYPE_MAX_VALUE (type);
8265 }
8266
8267 /* If the type and its base type have the same representation and the same
8268 name, then the type is not a subrange but a copy of the base type. */
8269 if ((TREE_CODE (base_type) == INTEGER_TYPE
8270 || TREE_CODE (base_type) == BOOLEAN_TYPE)
8271 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
8272 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
8273 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
8274 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
8275 return false;
8276
8277 if (lowval)
8278 *lowval = low;
8279 if (highval)
8280 *highval = high;
8281 return true;
8282 }
8283
8284 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8285 and number of elements specified by the range of values of INDEX_TYPE.
8286 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
8287 If SHARED is true, reuse such a type that has already been constructed. */
8288
8289 static tree
8290 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
8291 bool shared)
8292 {
8293 tree t;
8294
8295 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8296 {
8297 error ("arrays of functions are not meaningful");
8298 elt_type = integer_type_node;
8299 }
8300
8301 t = make_node (ARRAY_TYPE);
8302 TREE_TYPE (t) = elt_type;
8303 TYPE_DOMAIN (t) = index_type;
8304 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8305 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
8306 layout_type (t);
8307
8308 /* If the element type is incomplete at this point we get marked for
8309 structural equality. Do not record these types in the canonical
8310 type hashtable. */
8311 if (TYPE_STRUCTURAL_EQUALITY_P (t))
8312 return t;
8313
8314 if (shared)
8315 {
8316 hashval_t hash = type_hash_canon_hash (t);
8317 t = type_hash_canon (hash, t);
8318 }
8319
8320 if (TYPE_CANONICAL (t) == t)
8321 {
8322 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8323 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8324 || in_lto_p)
8325 SET_TYPE_STRUCTURAL_EQUALITY (t);
8326 else if (TYPE_CANONICAL (elt_type) != elt_type
8327 || (index_type && TYPE_CANONICAL (index_type) != index_type))
8328 TYPE_CANONICAL (t)
8329 = build_array_type_1 (TYPE_CANONICAL (elt_type),
8330 index_type
8331 ? TYPE_CANONICAL (index_type) : NULL_TREE,
8332 typeless_storage, shared);
8333 }
8334
8335 return t;
8336 }
8337
8338 /* Wrapper around build_array_type_1 with SHARED set to true. */
8339
8340 tree
8341 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
8342 {
8343 return build_array_type_1 (elt_type, index_type, typeless_storage, true);
8344 }
8345
8346 /* Wrapper around build_array_type_1 with SHARED set to false. */
8347
8348 tree
8349 build_nonshared_array_type (tree elt_type, tree index_type)
8350 {
8351 return build_array_type_1 (elt_type, index_type, false, false);
8352 }
8353
8354 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8355 sizetype. */
8356
8357 tree
8358 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
8359 {
8360 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8361 }
8362
8363 /* Recursively examines the array elements of TYPE, until a non-array
8364 element type is found. */
8365
8366 tree
8367 strip_array_types (tree type)
8368 {
8369 while (TREE_CODE (type) == ARRAY_TYPE)
8370 type = TREE_TYPE (type);
8371
8372 return type;
8373 }
8374
8375 /* Computes the canonical argument types from the argument type list
8376 ARGTYPES.
8377
8378 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8379 on entry to this function, or if any of the ARGTYPES are
8380 structural.
8381
8382 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8383 true on entry to this function, or if any of the ARGTYPES are
8384 non-canonical.
8385
8386 Returns a canonical argument list, which may be ARGTYPES when the
8387 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8388 true) or would not differ from ARGTYPES. */
8389
8390 static tree
8391 maybe_canonicalize_argtypes (tree argtypes,
8392 bool *any_structural_p,
8393 bool *any_noncanonical_p)
8394 {
8395 tree arg;
8396 bool any_noncanonical_argtypes_p = false;
8397
8398 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8399 {
8400 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8401 /* Fail gracefully by stating that the type is structural. */
8402 *any_structural_p = true;
8403 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8404 *any_structural_p = true;
8405 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8406 || TREE_PURPOSE (arg))
8407 /* If the argument has a default argument, we consider it
8408 non-canonical even though the type itself is canonical.
8409 That way, different variants of function and method types
8410 with default arguments will all point to the variant with
8411 no defaults as their canonical type. */
8412 any_noncanonical_argtypes_p = true;
8413 }
8414
8415 if (*any_structural_p)
8416 return argtypes;
8417
8418 if (any_noncanonical_argtypes_p)
8419 {
8420 /* Build the canonical list of argument types. */
8421 tree canon_argtypes = NULL_TREE;
8422 bool is_void = false;
8423
8424 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8425 {
8426 if (arg == void_list_node)
8427 is_void = true;
8428 else
8429 canon_argtypes = tree_cons (NULL_TREE,
8430 TYPE_CANONICAL (TREE_VALUE (arg)),
8431 canon_argtypes);
8432 }
8433
8434 canon_argtypes = nreverse (canon_argtypes);
8435 if (is_void)
8436 canon_argtypes = chainon (canon_argtypes, void_list_node);
8437
8438 /* There is a non-canonical type. */
8439 *any_noncanonical_p = true;
8440 return canon_argtypes;
8441 }
8442
8443 /* The canonical argument types are the same as ARGTYPES. */
8444 return argtypes;
8445 }
8446
8447 /* Construct, lay out and return
8448 the type of functions returning type VALUE_TYPE
8449 given arguments of types ARG_TYPES.
8450 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8451 are data type nodes for the arguments of the function.
8452 If such a type has already been constructed, reuse it. */
8453
8454 tree
8455 build_function_type (tree value_type, tree arg_types)
8456 {
8457 tree t;
8458 inchash::hash hstate;
8459 bool any_structural_p, any_noncanonical_p;
8460 tree canon_argtypes;
8461
8462 gcc_assert (arg_types != error_mark_node);
8463
8464 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8465 {
8466 error ("function return type cannot be function");
8467 value_type = integer_type_node;
8468 }
8469
8470 /* Make a node of the sort we want. */
8471 t = make_node (FUNCTION_TYPE);
8472 TREE_TYPE (t) = value_type;
8473 TYPE_ARG_TYPES (t) = arg_types;
8474
8475 /* If we already have such a type, use the old one. */
8476 hashval_t hash = type_hash_canon_hash (t);
8477 t = type_hash_canon (hash, t);
8478
8479 /* Set up the canonical type. */
8480 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8481 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8482 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8483 &any_structural_p,
8484 &any_noncanonical_p);
8485 if (any_structural_p)
8486 SET_TYPE_STRUCTURAL_EQUALITY (t);
8487 else if (any_noncanonical_p)
8488 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8489 canon_argtypes);
8490
8491 if (!COMPLETE_TYPE_P (t))
8492 layout_type (t);
8493 return t;
8494 }
8495
8496 /* Build a function type. The RETURN_TYPE is the type returned by the
8497 function. If VAARGS is set, no void_type_node is appended to the
8498 list. ARGP must be always be terminated be a NULL_TREE. */
8499
8500 static tree
8501 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8502 {
8503 tree t, args, last;
8504
8505 t = va_arg (argp, tree);
8506 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8507 args = tree_cons (NULL_TREE, t, args);
8508
8509 if (vaargs)
8510 {
8511 last = args;
8512 if (args != NULL_TREE)
8513 args = nreverse (args);
8514 gcc_assert (last != void_list_node);
8515 }
8516 else if (args == NULL_TREE)
8517 args = void_list_node;
8518 else
8519 {
8520 last = args;
8521 args = nreverse (args);
8522 TREE_CHAIN (last) = void_list_node;
8523 }
8524 args = build_function_type (return_type, args);
8525
8526 return args;
8527 }
8528
8529 /* Build a function type. The RETURN_TYPE is the type returned by the
8530 function. If additional arguments are provided, they are
8531 additional argument types. The list of argument types must always
8532 be terminated by NULL_TREE. */
8533
8534 tree
8535 build_function_type_list (tree return_type, ...)
8536 {
8537 tree args;
8538 va_list p;
8539
8540 va_start (p, return_type);
8541 args = build_function_type_list_1 (false, return_type, p);
8542 va_end (p);
8543 return args;
8544 }
8545
8546 /* Build a variable argument function type. The RETURN_TYPE is the
8547 type returned by the function. If additional arguments are provided,
8548 they are additional argument types. The list of argument types must
8549 always be terminated by NULL_TREE. */
8550
8551 tree
8552 build_varargs_function_type_list (tree return_type, ...)
8553 {
8554 tree args;
8555 va_list p;
8556
8557 va_start (p, return_type);
8558 args = build_function_type_list_1 (true, return_type, p);
8559 va_end (p);
8560
8561 return args;
8562 }
8563
8564 /* Build a function type. RETURN_TYPE is the type returned by the
8565 function; VAARGS indicates whether the function takes varargs. The
8566 function takes N named arguments, the types of which are provided in
8567 ARG_TYPES. */
8568
8569 static tree
8570 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8571 tree *arg_types)
8572 {
8573 int i;
8574 tree t = vaargs ? NULL_TREE : void_list_node;
8575
8576 for (i = n - 1; i >= 0; i--)
8577 t = tree_cons (NULL_TREE, arg_types[i], t);
8578
8579 return build_function_type (return_type, t);
8580 }
8581
8582 /* Build a function type. RETURN_TYPE is the type returned by the
8583 function. The function takes N named arguments, the types of which
8584 are provided in ARG_TYPES. */
8585
8586 tree
8587 build_function_type_array (tree return_type, int n, tree *arg_types)
8588 {
8589 return build_function_type_array_1 (false, return_type, n, arg_types);
8590 }
8591
8592 /* Build a variable argument function type. RETURN_TYPE is the type
8593 returned by the function. The function takes N named arguments, the
8594 types of which are provided in ARG_TYPES. */
8595
8596 tree
8597 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8598 {
8599 return build_function_type_array_1 (true, return_type, n, arg_types);
8600 }
8601
8602 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8603 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8604 for the method. An implicit additional parameter (of type
8605 pointer-to-BASETYPE) is added to the ARGTYPES. */
8606
8607 tree
8608 build_method_type_directly (tree basetype,
8609 tree rettype,
8610 tree argtypes)
8611 {
8612 tree t;
8613 tree ptype;
8614 bool any_structural_p, any_noncanonical_p;
8615 tree canon_argtypes;
8616
8617 /* Make a node of the sort we want. */
8618 t = make_node (METHOD_TYPE);
8619
8620 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8621 TREE_TYPE (t) = rettype;
8622 ptype = build_pointer_type (basetype);
8623
8624 /* The actual arglist for this function includes a "hidden" argument
8625 which is "this". Put it into the list of argument types. */
8626 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8627 TYPE_ARG_TYPES (t) = argtypes;
8628
8629 /* If we already have such a type, use the old one. */
8630 hashval_t hash = type_hash_canon_hash (t);
8631 t = type_hash_canon (hash, t);
8632
8633 /* Set up the canonical type. */
8634 any_structural_p
8635 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8636 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8637 any_noncanonical_p
8638 = (TYPE_CANONICAL (basetype) != basetype
8639 || TYPE_CANONICAL (rettype) != rettype);
8640 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8641 &any_structural_p,
8642 &any_noncanonical_p);
8643 if (any_structural_p)
8644 SET_TYPE_STRUCTURAL_EQUALITY (t);
8645 else if (any_noncanonical_p)
8646 TYPE_CANONICAL (t)
8647 = build_method_type_directly (TYPE_CANONICAL (basetype),
8648 TYPE_CANONICAL (rettype),
8649 canon_argtypes);
8650 if (!COMPLETE_TYPE_P (t))
8651 layout_type (t);
8652
8653 return t;
8654 }
8655
8656 /* Construct, lay out and return the type of methods belonging to class
8657 BASETYPE and whose arguments and values are described by TYPE.
8658 If that type exists already, reuse it.
8659 TYPE must be a FUNCTION_TYPE node. */
8660
8661 tree
8662 build_method_type (tree basetype, tree type)
8663 {
8664 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8665
8666 return build_method_type_directly (basetype,
8667 TREE_TYPE (type),
8668 TYPE_ARG_TYPES (type));
8669 }
8670
8671 /* Construct, lay out and return the type of offsets to a value
8672 of type TYPE, within an object of type BASETYPE.
8673 If a suitable offset type exists already, reuse it. */
8674
8675 tree
8676 build_offset_type (tree basetype, tree type)
8677 {
8678 tree t;
8679
8680 /* Make a node of the sort we want. */
8681 t = make_node (OFFSET_TYPE);
8682
8683 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8684 TREE_TYPE (t) = type;
8685
8686 /* If we already have such a type, use the old one. */
8687 hashval_t hash = type_hash_canon_hash (t);
8688 t = type_hash_canon (hash, t);
8689
8690 if (!COMPLETE_TYPE_P (t))
8691 layout_type (t);
8692
8693 if (TYPE_CANONICAL (t) == t)
8694 {
8695 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8696 || TYPE_STRUCTURAL_EQUALITY_P (type))
8697 SET_TYPE_STRUCTURAL_EQUALITY (t);
8698 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8699 || TYPE_CANONICAL (type) != type)
8700 TYPE_CANONICAL (t)
8701 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8702 TYPE_CANONICAL (type));
8703 }
8704
8705 return t;
8706 }
8707
8708 /* Create a complex type whose components are COMPONENT_TYPE.
8709
8710 If NAMED is true, the type is given a TYPE_NAME. We do not always
8711 do so because this creates a DECL node and thus make the DECL_UIDs
8712 dependent on the type canonicalization hashtable, which is GC-ed,
8713 so the DECL_UIDs would not be stable wrt garbage collection. */
8714
8715 tree
8716 build_complex_type (tree component_type, bool named)
8717 {
8718 gcc_assert (INTEGRAL_TYPE_P (component_type)
8719 || SCALAR_FLOAT_TYPE_P (component_type)
8720 || FIXED_POINT_TYPE_P (component_type));
8721
8722 /* Make a node of the sort we want. */
8723 tree probe = make_node (COMPLEX_TYPE);
8724
8725 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8726
8727 /* If we already have such a type, use the old one. */
8728 hashval_t hash = type_hash_canon_hash (probe);
8729 tree t = type_hash_canon (hash, probe);
8730
8731 if (t == probe)
8732 {
8733 /* We created a new type. The hash insertion will have laid
8734 out the type. We need to check the canonicalization and
8735 maybe set the name. */
8736 gcc_checking_assert (COMPLETE_TYPE_P (t)
8737 && !TYPE_NAME (t)
8738 && TYPE_CANONICAL (t) == t);
8739
8740 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8741 SET_TYPE_STRUCTURAL_EQUALITY (t);
8742 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8743 TYPE_CANONICAL (t)
8744 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8745
8746 /* We need to create a name, since complex is a fundamental type. */
8747 if (named)
8748 {
8749 const char *name = NULL;
8750
8751 if (TREE_TYPE (t) == char_type_node)
8752 name = "complex char";
8753 else if (TREE_TYPE (t) == signed_char_type_node)
8754 name = "complex signed char";
8755 else if (TREE_TYPE (t) == unsigned_char_type_node)
8756 name = "complex unsigned char";
8757 else if (TREE_TYPE (t) == short_integer_type_node)
8758 name = "complex short int";
8759 else if (TREE_TYPE (t) == short_unsigned_type_node)
8760 name = "complex short unsigned int";
8761 else if (TREE_TYPE (t) == integer_type_node)
8762 name = "complex int";
8763 else if (TREE_TYPE (t) == unsigned_type_node)
8764 name = "complex unsigned int";
8765 else if (TREE_TYPE (t) == long_integer_type_node)
8766 name = "complex long int";
8767 else if (TREE_TYPE (t) == long_unsigned_type_node)
8768 name = "complex long unsigned int";
8769 else if (TREE_TYPE (t) == long_long_integer_type_node)
8770 name = "complex long long int";
8771 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8772 name = "complex long long unsigned int";
8773
8774 if (name != NULL)
8775 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8776 get_identifier (name), t);
8777 }
8778 }
8779
8780 return build_qualified_type (t, TYPE_QUALS (component_type));
8781 }
8782
8783 /* If TYPE is a real or complex floating-point type and the target
8784 does not directly support arithmetic on TYPE then return the wider
8785 type to be used for arithmetic on TYPE. Otherwise, return
8786 NULL_TREE. */
8787
8788 tree
8789 excess_precision_type (tree type)
8790 {
8791 /* The target can give two different responses to the question of
8792 which excess precision mode it would like depending on whether we
8793 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8794
8795 enum excess_precision_type requested_type
8796 = (flag_excess_precision == EXCESS_PRECISION_FAST
8797 ? EXCESS_PRECISION_TYPE_FAST
8798 : EXCESS_PRECISION_TYPE_STANDARD);
8799
8800 enum flt_eval_method target_flt_eval_method
8801 = targetm.c.excess_precision (requested_type);
8802
8803 /* The target should not ask for unpredictable float evaluation (though
8804 it might advertise that implicitly the evaluation is unpredictable,
8805 but we don't care about that here, it will have been reported
8806 elsewhere). If it does ask for unpredictable evaluation, we have
8807 nothing to do here. */
8808 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8809
8810 /* Nothing to do. The target has asked for all types we know about
8811 to be computed with their native precision and range. */
8812 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8813 return NULL_TREE;
8814
8815 /* The target will promote this type in a target-dependent way, so excess
8816 precision ought to leave it alone. */
8817 if (targetm.promoted_type (type) != NULL_TREE)
8818 return NULL_TREE;
8819
8820 machine_mode float16_type_mode = (float16_type_node
8821 ? TYPE_MODE (float16_type_node)
8822 : VOIDmode);
8823 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8824 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8825
8826 switch (TREE_CODE (type))
8827 {
8828 case REAL_TYPE:
8829 {
8830 machine_mode type_mode = TYPE_MODE (type);
8831 switch (target_flt_eval_method)
8832 {
8833 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8834 if (type_mode == float16_type_mode)
8835 return float_type_node;
8836 break;
8837 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8838 if (type_mode == float16_type_mode
8839 || type_mode == float_type_mode)
8840 return double_type_node;
8841 break;
8842 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8843 if (type_mode == float16_type_mode
8844 || type_mode == float_type_mode
8845 || type_mode == double_type_mode)
8846 return long_double_type_node;
8847 break;
8848 default:
8849 gcc_unreachable ();
8850 }
8851 break;
8852 }
8853 case COMPLEX_TYPE:
8854 {
8855 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8856 return NULL_TREE;
8857 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8858 switch (target_flt_eval_method)
8859 {
8860 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8861 if (type_mode == float16_type_mode)
8862 return complex_float_type_node;
8863 break;
8864 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8865 if (type_mode == float16_type_mode
8866 || type_mode == float_type_mode)
8867 return complex_double_type_node;
8868 break;
8869 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8870 if (type_mode == float16_type_mode
8871 || type_mode == float_type_mode
8872 || type_mode == double_type_mode)
8873 return complex_long_double_type_node;
8874 break;
8875 default:
8876 gcc_unreachable ();
8877 }
8878 break;
8879 }
8880 default:
8881 break;
8882 }
8883
8884 return NULL_TREE;
8885 }
8886 \f
8887 /* Return OP, stripped of any conversions to wider types as much as is safe.
8888 Converting the value back to OP's type makes a value equivalent to OP.
8889
8890 If FOR_TYPE is nonzero, we return a value which, if converted to
8891 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8892
8893 OP must have integer, real or enumeral type. Pointers are not allowed!
8894
8895 There are some cases where the obvious value we could return
8896 would regenerate to OP if converted to OP's type,
8897 but would not extend like OP to wider types.
8898 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8899 For example, if OP is (unsigned short)(signed char)-1,
8900 we avoid returning (signed char)-1 if FOR_TYPE is int,
8901 even though extending that to an unsigned short would regenerate OP,
8902 since the result of extending (signed char)-1 to (int)
8903 is different from (int) OP. */
8904
8905 tree
8906 get_unwidened (tree op, tree for_type)
8907 {
8908 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8909 tree type = TREE_TYPE (op);
8910 unsigned final_prec
8911 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8912 int uns
8913 = (for_type != 0 && for_type != type
8914 && final_prec > TYPE_PRECISION (type)
8915 && TYPE_UNSIGNED (type));
8916 tree win = op;
8917
8918 while (CONVERT_EXPR_P (op))
8919 {
8920 int bitschange;
8921
8922 /* TYPE_PRECISION on vector types has different meaning
8923 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8924 so avoid them here. */
8925 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8926 break;
8927
8928 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8929 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8930
8931 /* Truncations are many-one so cannot be removed.
8932 Unless we are later going to truncate down even farther. */
8933 if (bitschange < 0
8934 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8935 break;
8936
8937 /* See what's inside this conversion. If we decide to strip it,
8938 we will set WIN. */
8939 op = TREE_OPERAND (op, 0);
8940
8941 /* If we have not stripped any zero-extensions (uns is 0),
8942 we can strip any kind of extension.
8943 If we have previously stripped a zero-extension,
8944 only zero-extensions can safely be stripped.
8945 Any extension can be stripped if the bits it would produce
8946 are all going to be discarded later by truncating to FOR_TYPE. */
8947
8948 if (bitschange > 0)
8949 {
8950 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8951 win = op;
8952 /* TYPE_UNSIGNED says whether this is a zero-extension.
8953 Let's avoid computing it if it does not affect WIN
8954 and if UNS will not be needed again. */
8955 if ((uns
8956 || CONVERT_EXPR_P (op))
8957 && TYPE_UNSIGNED (TREE_TYPE (op)))
8958 {
8959 uns = 1;
8960 win = op;
8961 }
8962 }
8963 }
8964
8965 /* If we finally reach a constant see if it fits in sth smaller and
8966 in that case convert it. */
8967 if (TREE_CODE (win) == INTEGER_CST)
8968 {
8969 tree wtype = TREE_TYPE (win);
8970 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8971 if (for_type)
8972 prec = MAX (prec, final_prec);
8973 if (prec < TYPE_PRECISION (wtype))
8974 {
8975 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8976 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8977 win = fold_convert (t, win);
8978 }
8979 }
8980
8981 return win;
8982 }
8983 \f
8984 /* Return OP or a simpler expression for a narrower value
8985 which can be sign-extended or zero-extended to give back OP.
8986 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8987 or 0 if the value should be sign-extended. */
8988
8989 tree
8990 get_narrower (tree op, int *unsignedp_ptr)
8991 {
8992 int uns = 0;
8993 int first = 1;
8994 tree win = op;
8995 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8996
8997 while (TREE_CODE (op) == NOP_EXPR)
8998 {
8999 int bitschange
9000 = (TYPE_PRECISION (TREE_TYPE (op))
9001 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
9002
9003 /* Truncations are many-one so cannot be removed. */
9004 if (bitschange < 0)
9005 break;
9006
9007 /* See what's inside this conversion. If we decide to strip it,
9008 we will set WIN. */
9009
9010 if (bitschange > 0)
9011 {
9012 op = TREE_OPERAND (op, 0);
9013 /* An extension: the outermost one can be stripped,
9014 but remember whether it is zero or sign extension. */
9015 if (first)
9016 uns = TYPE_UNSIGNED (TREE_TYPE (op));
9017 /* Otherwise, if a sign extension has been stripped,
9018 only sign extensions can now be stripped;
9019 if a zero extension has been stripped, only zero-extensions. */
9020 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
9021 break;
9022 first = 0;
9023 }
9024 else /* bitschange == 0 */
9025 {
9026 /* A change in nominal type can always be stripped, but we must
9027 preserve the unsignedness. */
9028 if (first)
9029 uns = TYPE_UNSIGNED (TREE_TYPE (op));
9030 first = 0;
9031 op = TREE_OPERAND (op, 0);
9032 /* Keep trying to narrow, but don't assign op to win if it
9033 would turn an integral type into something else. */
9034 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
9035 continue;
9036 }
9037
9038 win = op;
9039 }
9040
9041 if (TREE_CODE (op) == COMPONENT_REF
9042 /* Since type_for_size always gives an integer type. */
9043 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
9044 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
9045 /* Ensure field is laid out already. */
9046 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
9047 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
9048 {
9049 unsigned HOST_WIDE_INT innerprec
9050 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
9051 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
9052 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
9053 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
9054
9055 /* We can get this structure field in a narrower type that fits it,
9056 but the resulting extension to its nominal type (a fullword type)
9057 must satisfy the same conditions as for other extensions.
9058
9059 Do this only for fields that are aligned (not bit-fields),
9060 because when bit-field insns will be used there is no
9061 advantage in doing this. */
9062
9063 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
9064 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
9065 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
9066 && type != 0)
9067 {
9068 if (first)
9069 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
9070 win = fold_convert (type, op);
9071 }
9072 }
9073
9074 *unsignedp_ptr = uns;
9075 return win;
9076 }
9077 \f
9078 /* Return true if integer constant C has a value that is permissible
9079 for TYPE, an integral type. */
9080
9081 bool
9082 int_fits_type_p (const_tree c, const_tree type)
9083 {
9084 tree type_low_bound, type_high_bound;
9085 bool ok_for_low_bound, ok_for_high_bound;
9086 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
9087
9088 /* Non-standard boolean types can have arbitrary precision but various
9089 transformations assume that they can only take values 0 and +/-1. */
9090 if (TREE_CODE (type) == BOOLEAN_TYPE)
9091 return wi::fits_to_boolean_p (wi::to_wide (c), type);
9092
9093 retry:
9094 type_low_bound = TYPE_MIN_VALUE (type);
9095 type_high_bound = TYPE_MAX_VALUE (type);
9096
9097 /* If at least one bound of the type is a constant integer, we can check
9098 ourselves and maybe make a decision. If no such decision is possible, but
9099 this type is a subtype, try checking against that. Otherwise, use
9100 fits_to_tree_p, which checks against the precision.
9101
9102 Compute the status for each possibly constant bound, and return if we see
9103 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
9104 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
9105 for "constant known to fit". */
9106
9107 /* Check if c >= type_low_bound. */
9108 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
9109 {
9110 if (tree_int_cst_lt (c, type_low_bound))
9111 return false;
9112 ok_for_low_bound = true;
9113 }
9114 else
9115 ok_for_low_bound = false;
9116
9117 /* Check if c <= type_high_bound. */
9118 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
9119 {
9120 if (tree_int_cst_lt (type_high_bound, c))
9121 return false;
9122 ok_for_high_bound = true;
9123 }
9124 else
9125 ok_for_high_bound = false;
9126
9127 /* If the constant fits both bounds, the result is known. */
9128 if (ok_for_low_bound && ok_for_high_bound)
9129 return true;
9130
9131 /* Perform some generic filtering which may allow making a decision
9132 even if the bounds are not constant. First, negative integers
9133 never fit in unsigned types, */
9134 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
9135 return false;
9136
9137 /* Second, narrower types always fit in wider ones. */
9138 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
9139 return true;
9140
9141 /* Third, unsigned integers with top bit set never fit signed types. */
9142 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
9143 {
9144 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
9145 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
9146 {
9147 /* When a tree_cst is converted to a wide-int, the precision
9148 is taken from the type. However, if the precision of the
9149 mode underneath the type is smaller than that, it is
9150 possible that the value will not fit. The test below
9151 fails if any bit is set between the sign bit of the
9152 underlying mode and the top bit of the type. */
9153 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
9154 return false;
9155 }
9156 else if (wi::neg_p (wi::to_wide (c)))
9157 return false;
9158 }
9159
9160 /* If we haven't been able to decide at this point, there nothing more we
9161 can check ourselves here. Look at the base type if we have one and it
9162 has the same precision. */
9163 if (TREE_CODE (type) == INTEGER_TYPE
9164 && TREE_TYPE (type) != 0
9165 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
9166 {
9167 type = TREE_TYPE (type);
9168 goto retry;
9169 }
9170
9171 /* Or to fits_to_tree_p, if nothing else. */
9172 return wi::fits_to_tree_p (wi::to_wide (c), type);
9173 }
9174
9175 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
9176 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
9177 represented (assuming two's-complement arithmetic) within the bit
9178 precision of the type are returned instead. */
9179
9180 void
9181 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
9182 {
9183 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
9184 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
9185 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
9186 else
9187 {
9188 if (TYPE_UNSIGNED (type))
9189 mpz_set_ui (min, 0);
9190 else
9191 {
9192 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
9193 wi::to_mpz (mn, min, SIGNED);
9194 }
9195 }
9196
9197 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
9198 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
9199 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
9200 else
9201 {
9202 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
9203 wi::to_mpz (mn, max, TYPE_SIGN (type));
9204 }
9205 }
9206
9207 /* Return true if VAR is an automatic variable defined in function FN. */
9208
9209 bool
9210 auto_var_in_fn_p (const_tree var, const_tree fn)
9211 {
9212 return (DECL_P (var) && DECL_CONTEXT (var) == fn
9213 && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
9214 || TREE_CODE (var) == PARM_DECL)
9215 && ! TREE_STATIC (var))
9216 || TREE_CODE (var) == LABEL_DECL
9217 || TREE_CODE (var) == RESULT_DECL));
9218 }
9219
9220 /* Subprogram of following function. Called by walk_tree.
9221
9222 Return *TP if it is an automatic variable or parameter of the
9223 function passed in as DATA. */
9224
9225 static tree
9226 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
9227 {
9228 tree fn = (tree) data;
9229
9230 if (TYPE_P (*tp))
9231 *walk_subtrees = 0;
9232
9233 else if (DECL_P (*tp)
9234 && auto_var_in_fn_p (*tp, fn))
9235 return *tp;
9236
9237 return NULL_TREE;
9238 }
9239
9240 /* Returns true if T is, contains, or refers to a type with variable
9241 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
9242 arguments, but not the return type. If FN is nonzero, only return
9243 true if a modifier of the type or position of FN is a variable or
9244 parameter inside FN.
9245
9246 This concept is more general than that of C99 'variably modified types':
9247 in C99, a struct type is never variably modified because a VLA may not
9248 appear as a structure member. However, in GNU C code like:
9249
9250 struct S { int i[f()]; };
9251
9252 is valid, and other languages may define similar constructs. */
9253
9254 bool
9255 variably_modified_type_p (tree type, tree fn)
9256 {
9257 tree t;
9258
9259 /* Test if T is either variable (if FN is zero) or an expression containing
9260 a variable in FN. If TYPE isn't gimplified, return true also if
9261 gimplify_one_sizepos would gimplify the expression into a local
9262 variable. */
9263 #define RETURN_TRUE_IF_VAR(T) \
9264 do { tree _t = (T); \
9265 if (_t != NULL_TREE \
9266 && _t != error_mark_node \
9267 && !CONSTANT_CLASS_P (_t) \
9268 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
9269 && (!fn \
9270 || (!TYPE_SIZES_GIMPLIFIED (type) \
9271 && (TREE_CODE (_t) != VAR_DECL \
9272 && !CONTAINS_PLACEHOLDER_P (_t))) \
9273 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
9274 return true; } while (0)
9275
9276 if (type == error_mark_node)
9277 return false;
9278
9279 /* If TYPE itself has variable size, it is variably modified. */
9280 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9281 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9282
9283 switch (TREE_CODE (type))
9284 {
9285 case POINTER_TYPE:
9286 case REFERENCE_TYPE:
9287 case VECTOR_TYPE:
9288 /* Ada can have pointer types refering to themselves indirectly. */
9289 if (TREE_VISITED (type))
9290 return false;
9291 TREE_VISITED (type) = true;
9292 if (variably_modified_type_p (TREE_TYPE (type), fn))
9293 {
9294 TREE_VISITED (type) = false;
9295 return true;
9296 }
9297 TREE_VISITED (type) = false;
9298 break;
9299
9300 case FUNCTION_TYPE:
9301 case METHOD_TYPE:
9302 /* If TYPE is a function type, it is variably modified if the
9303 return type is variably modified. */
9304 if (variably_modified_type_p (TREE_TYPE (type), fn))
9305 return true;
9306 break;
9307
9308 case INTEGER_TYPE:
9309 case REAL_TYPE:
9310 case FIXED_POINT_TYPE:
9311 case ENUMERAL_TYPE:
9312 case BOOLEAN_TYPE:
9313 /* Scalar types are variably modified if their end points
9314 aren't constant. */
9315 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9316 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9317 break;
9318
9319 case RECORD_TYPE:
9320 case UNION_TYPE:
9321 case QUAL_UNION_TYPE:
9322 /* We can't see if any of the fields are variably-modified by the
9323 definition we normally use, since that would produce infinite
9324 recursion via pointers. */
9325 /* This is variably modified if some field's type is. */
9326 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9327 if (TREE_CODE (t) == FIELD_DECL)
9328 {
9329 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9330 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9331 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9332
9333 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9334 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9335 }
9336 break;
9337
9338 case ARRAY_TYPE:
9339 /* Do not call ourselves to avoid infinite recursion. This is
9340 variably modified if the element type is. */
9341 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9342 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9343 break;
9344
9345 default:
9346 break;
9347 }
9348
9349 /* The current language may have other cases to check, but in general,
9350 all other types are not variably modified. */
9351 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9352
9353 #undef RETURN_TRUE_IF_VAR
9354 }
9355
9356 /* Given a DECL or TYPE, return the scope in which it was declared, or
9357 NULL_TREE if there is no containing scope. */
9358
9359 tree
9360 get_containing_scope (const_tree t)
9361 {
9362 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9363 }
9364
9365 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
9366
9367 const_tree
9368 get_ultimate_context (const_tree decl)
9369 {
9370 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
9371 {
9372 if (TREE_CODE (decl) == BLOCK)
9373 decl = BLOCK_SUPERCONTEXT (decl);
9374 else
9375 decl = get_containing_scope (decl);
9376 }
9377 return decl;
9378 }
9379
9380 /* Return the innermost context enclosing DECL that is
9381 a FUNCTION_DECL, or zero if none. */
9382
9383 tree
9384 decl_function_context (const_tree decl)
9385 {
9386 tree context;
9387
9388 if (TREE_CODE (decl) == ERROR_MARK)
9389 return 0;
9390
9391 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9392 where we look up the function at runtime. Such functions always take
9393 a first argument of type 'pointer to real context'.
9394
9395 C++ should really be fixed to use DECL_CONTEXT for the real context,
9396 and use something else for the "virtual context". */
9397 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
9398 context
9399 = TYPE_MAIN_VARIANT
9400 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9401 else
9402 context = DECL_CONTEXT (decl);
9403
9404 while (context && TREE_CODE (context) != FUNCTION_DECL)
9405 {
9406 if (TREE_CODE (context) == BLOCK)
9407 context = BLOCK_SUPERCONTEXT (context);
9408 else
9409 context = get_containing_scope (context);
9410 }
9411
9412 return context;
9413 }
9414
9415 /* Return the innermost context enclosing DECL that is
9416 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9417 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9418
9419 tree
9420 decl_type_context (const_tree decl)
9421 {
9422 tree context = DECL_CONTEXT (decl);
9423
9424 while (context)
9425 switch (TREE_CODE (context))
9426 {
9427 case NAMESPACE_DECL:
9428 case TRANSLATION_UNIT_DECL:
9429 return NULL_TREE;
9430
9431 case RECORD_TYPE:
9432 case UNION_TYPE:
9433 case QUAL_UNION_TYPE:
9434 return context;
9435
9436 case TYPE_DECL:
9437 case FUNCTION_DECL:
9438 context = DECL_CONTEXT (context);
9439 break;
9440
9441 case BLOCK:
9442 context = BLOCK_SUPERCONTEXT (context);
9443 break;
9444
9445 default:
9446 gcc_unreachable ();
9447 }
9448
9449 return NULL_TREE;
9450 }
9451
9452 /* CALL is a CALL_EXPR. Return the declaration for the function
9453 called, or NULL_TREE if the called function cannot be
9454 determined. */
9455
9456 tree
9457 get_callee_fndecl (const_tree call)
9458 {
9459 tree addr;
9460
9461 if (call == error_mark_node)
9462 return error_mark_node;
9463
9464 /* It's invalid to call this function with anything but a
9465 CALL_EXPR. */
9466 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9467
9468 /* The first operand to the CALL is the address of the function
9469 called. */
9470 addr = CALL_EXPR_FN (call);
9471
9472 /* If there is no function, return early. */
9473 if (addr == NULL_TREE)
9474 return NULL_TREE;
9475
9476 STRIP_NOPS (addr);
9477
9478 /* If this is a readonly function pointer, extract its initial value. */
9479 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9480 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9481 && DECL_INITIAL (addr))
9482 addr = DECL_INITIAL (addr);
9483
9484 /* If the address is just `&f' for some function `f', then we know
9485 that `f' is being called. */
9486 if (TREE_CODE (addr) == ADDR_EXPR
9487 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9488 return TREE_OPERAND (addr, 0);
9489
9490 /* We couldn't figure out what was being called. */
9491 return NULL_TREE;
9492 }
9493
9494 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9495 return the associated function code, otherwise return CFN_LAST. */
9496
9497 combined_fn
9498 get_call_combined_fn (const_tree call)
9499 {
9500 /* It's invalid to call this function with anything but a CALL_EXPR. */
9501 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9502
9503 if (!CALL_EXPR_FN (call))
9504 return as_combined_fn (CALL_EXPR_IFN (call));
9505
9506 tree fndecl = get_callee_fndecl (call);
9507 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9508 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9509
9510 return CFN_LAST;
9511 }
9512
9513 /* Comparator of indices based on tree_node_counts. */
9514
9515 static int
9516 tree_nodes_cmp (const void *p1, const void *p2)
9517 {
9518 const unsigned *n1 = (const unsigned *)p1;
9519 const unsigned *n2 = (const unsigned *)p2;
9520
9521 return tree_node_counts[*n1] - tree_node_counts[*n2];
9522 }
9523
9524 /* Comparator of indices based on tree_code_counts. */
9525
9526 static int
9527 tree_codes_cmp (const void *p1, const void *p2)
9528 {
9529 const unsigned *n1 = (const unsigned *)p1;
9530 const unsigned *n2 = (const unsigned *)p2;
9531
9532 return tree_code_counts[*n1] - tree_code_counts[*n2];
9533 }
9534
9535 #define TREE_MEM_USAGE_SPACES 40
9536
9537 /* Print debugging information about tree nodes generated during the compile,
9538 and any language-specific information. */
9539
9540 void
9541 dump_tree_statistics (void)
9542 {
9543 if (GATHER_STATISTICS)
9544 {
9545 uint64_t total_nodes, total_bytes;
9546 fprintf (stderr, "\nKind Nodes Bytes\n");
9547 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9548 total_nodes = total_bytes = 0;
9549
9550 {
9551 auto_vec<unsigned> indices (all_kinds);
9552 for (unsigned i = 0; i < all_kinds; i++)
9553 indices.quick_push (i);
9554 indices.qsort (tree_nodes_cmp);
9555
9556 for (unsigned i = 0; i < (int) all_kinds; i++)
9557 {
9558 unsigned j = indices[i];
9559 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
9560 tree_node_kind_names[i], SIZE_AMOUNT (tree_node_counts[j]),
9561 SIZE_AMOUNT (tree_node_sizes[j]));
9562 total_nodes += tree_node_counts[j];
9563 total_bytes += tree_node_sizes[j];
9564 }
9565 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9566 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
9567 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
9568 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9569 }
9570
9571 {
9572 fprintf (stderr, "Code Nodes\n");
9573 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9574
9575 auto_vec<unsigned> indices (MAX_TREE_CODES);
9576 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9577 indices.quick_push (i);
9578 indices.qsort (tree_codes_cmp);
9579
9580 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9581 {
9582 unsigned j = indices[i];
9583 fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
9584 get_tree_code_name ((enum tree_code) j),
9585 SIZE_AMOUNT (tree_code_counts[j]));
9586 }
9587 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9588 fprintf (stderr, "\n");
9589 ssanames_print_statistics ();
9590 fprintf (stderr, "\n");
9591 phinodes_print_statistics ();
9592 fprintf (stderr, "\n");
9593 }
9594 }
9595 else
9596 fprintf (stderr, "(No per-node statistics)\n");
9597
9598 print_type_hash_statistics ();
9599 print_debug_expr_statistics ();
9600 print_value_expr_statistics ();
9601 lang_hooks.print_statistics ();
9602 }
9603 \f
9604 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9605
9606 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9607
9608 unsigned
9609 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9610 {
9611 /* This relies on the raw feedback's top 4 bits being zero. */
9612 #define FEEDBACK(X) ((X) * 0x04c11db7)
9613 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9614 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9615 static const unsigned syndromes[16] =
9616 {
9617 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9618 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9619 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9620 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9621 };
9622 #undef FEEDBACK
9623 #undef SYNDROME
9624
9625 value <<= (32 - bytes * 8);
9626 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9627 {
9628 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9629
9630 chksum = (chksum << 4) ^ feedback;
9631 }
9632
9633 return chksum;
9634 }
9635
9636 /* Generate a crc32 of a string. */
9637
9638 unsigned
9639 crc32_string (unsigned chksum, const char *string)
9640 {
9641 do
9642 chksum = crc32_byte (chksum, *string);
9643 while (*string++);
9644 return chksum;
9645 }
9646
9647 /* P is a string that will be used in a symbol. Mask out any characters
9648 that are not valid in that context. */
9649
9650 void
9651 clean_symbol_name (char *p)
9652 {
9653 for (; *p; p++)
9654 if (! (ISALNUM (*p)
9655 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9656 || *p == '$'
9657 #endif
9658 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9659 || *p == '.'
9660 #endif
9661 ))
9662 *p = '_';
9663 }
9664
9665 /* For anonymous aggregate types, we need some sort of name to
9666 hold on to. In practice, this should not appear, but it should
9667 not be harmful if it does. */
9668 bool
9669 anon_aggrname_p(const_tree id_node)
9670 {
9671 #ifndef NO_DOT_IN_LABEL
9672 return (IDENTIFIER_POINTER (id_node)[0] == '.'
9673 && IDENTIFIER_POINTER (id_node)[1] == '_');
9674 #else /* NO_DOT_IN_LABEL */
9675 #ifndef NO_DOLLAR_IN_LABEL
9676 return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9677 && IDENTIFIER_POINTER (id_node)[1] == '_');
9678 #else /* NO_DOLLAR_IN_LABEL */
9679 #define ANON_AGGRNAME_PREFIX "__anon_"
9680 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9681 sizeof (ANON_AGGRNAME_PREFIX) - 1));
9682 #endif /* NO_DOLLAR_IN_LABEL */
9683 #endif /* NO_DOT_IN_LABEL */
9684 }
9685
9686 /* Return a format for an anonymous aggregate name. */
9687 const char *
9688 anon_aggrname_format()
9689 {
9690 #ifndef NO_DOT_IN_LABEL
9691 return "._%d";
9692 #else /* NO_DOT_IN_LABEL */
9693 #ifndef NO_DOLLAR_IN_LABEL
9694 return "$_%d";
9695 #else /* NO_DOLLAR_IN_LABEL */
9696 return "__anon_%d";
9697 #endif /* NO_DOLLAR_IN_LABEL */
9698 #endif /* NO_DOT_IN_LABEL */
9699 }
9700
9701 /* Generate a name for a special-purpose function.
9702 The generated name may need to be unique across the whole link.
9703 Changes to this function may also require corresponding changes to
9704 xstrdup_mask_random.
9705 TYPE is some string to identify the purpose of this function to the
9706 linker or collect2; it must start with an uppercase letter,
9707 one of:
9708 I - for constructors
9709 D - for destructors
9710 N - for C++ anonymous namespaces
9711 F - for DWARF unwind frame information. */
9712
9713 tree
9714 get_file_function_name (const char *type)
9715 {
9716 char *buf;
9717 const char *p;
9718 char *q;
9719
9720 /* If we already have a name we know to be unique, just use that. */
9721 if (first_global_object_name)
9722 p = q = ASTRDUP (first_global_object_name);
9723 /* If the target is handling the constructors/destructors, they
9724 will be local to this file and the name is only necessary for
9725 debugging purposes.
9726 We also assign sub_I and sub_D sufixes to constructors called from
9727 the global static constructors. These are always local. */
9728 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9729 || (strncmp (type, "sub_", 4) == 0
9730 && (type[4] == 'I' || type[4] == 'D')))
9731 {
9732 const char *file = main_input_filename;
9733 if (! file)
9734 file = LOCATION_FILE (input_location);
9735 /* Just use the file's basename, because the full pathname
9736 might be quite long. */
9737 p = q = ASTRDUP (lbasename (file));
9738 }
9739 else
9740 {
9741 /* Otherwise, the name must be unique across the entire link.
9742 We don't have anything that we know to be unique to this translation
9743 unit, so use what we do have and throw in some randomness. */
9744 unsigned len;
9745 const char *name = weak_global_object_name;
9746 const char *file = main_input_filename;
9747
9748 if (! name)
9749 name = "";
9750 if (! file)
9751 file = LOCATION_FILE (input_location);
9752
9753 len = strlen (file);
9754 q = (char *) alloca (9 + 19 + len + 1);
9755 memcpy (q, file, len + 1);
9756
9757 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9758 crc32_string (0, name), get_random_seed (false));
9759
9760 p = q;
9761 }
9762
9763 clean_symbol_name (q);
9764 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9765 + strlen (type));
9766
9767 /* Set up the name of the file-level functions we may need.
9768 Use a global object (which is already required to be unique over
9769 the program) rather than the file name (which imposes extra
9770 constraints). */
9771 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9772
9773 return get_identifier (buf);
9774 }
9775 \f
9776 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9777
9778 /* Complain that the tree code of NODE does not match the expected 0
9779 terminated list of trailing codes. The trailing code list can be
9780 empty, for a more vague error message. FILE, LINE, and FUNCTION
9781 are of the caller. */
9782
9783 void
9784 tree_check_failed (const_tree node, const char *file,
9785 int line, const char *function, ...)
9786 {
9787 va_list args;
9788 const char *buffer;
9789 unsigned length = 0;
9790 enum tree_code code;
9791
9792 va_start (args, function);
9793 while ((code = (enum tree_code) va_arg (args, int)))
9794 length += 4 + strlen (get_tree_code_name (code));
9795 va_end (args);
9796 if (length)
9797 {
9798 char *tmp;
9799 va_start (args, function);
9800 length += strlen ("expected ");
9801 buffer = tmp = (char *) alloca (length);
9802 length = 0;
9803 while ((code = (enum tree_code) va_arg (args, int)))
9804 {
9805 const char *prefix = length ? " or " : "expected ";
9806
9807 strcpy (tmp + length, prefix);
9808 length += strlen (prefix);
9809 strcpy (tmp + length, get_tree_code_name (code));
9810 length += strlen (get_tree_code_name (code));
9811 }
9812 va_end (args);
9813 }
9814 else
9815 buffer = "unexpected node";
9816
9817 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9818 buffer, get_tree_code_name (TREE_CODE (node)),
9819 function, trim_filename (file), line);
9820 }
9821
9822 /* Complain that the tree code of NODE does match the expected 0
9823 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9824 the caller. */
9825
9826 void
9827 tree_not_check_failed (const_tree node, const char *file,
9828 int line, const char *function, ...)
9829 {
9830 va_list args;
9831 char *buffer;
9832 unsigned length = 0;
9833 enum tree_code code;
9834
9835 va_start (args, function);
9836 while ((code = (enum tree_code) va_arg (args, int)))
9837 length += 4 + strlen (get_tree_code_name (code));
9838 va_end (args);
9839 va_start (args, function);
9840 buffer = (char *) alloca (length);
9841 length = 0;
9842 while ((code = (enum tree_code) va_arg (args, int)))
9843 {
9844 if (length)
9845 {
9846 strcpy (buffer + length, " or ");
9847 length += 4;
9848 }
9849 strcpy (buffer + length, get_tree_code_name (code));
9850 length += strlen (get_tree_code_name (code));
9851 }
9852 va_end (args);
9853
9854 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9855 buffer, get_tree_code_name (TREE_CODE (node)),
9856 function, trim_filename (file), line);
9857 }
9858
9859 /* Similar to tree_check_failed, except that we check for a class of tree
9860 code, given in CL. */
9861
9862 void
9863 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9864 const char *file, int line, const char *function)
9865 {
9866 internal_error
9867 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9868 TREE_CODE_CLASS_STRING (cl),
9869 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9870 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9871 }
9872
9873 /* Similar to tree_check_failed, except that instead of specifying a
9874 dozen codes, use the knowledge that they're all sequential. */
9875
9876 void
9877 tree_range_check_failed (const_tree node, const char *file, int line,
9878 const char *function, enum tree_code c1,
9879 enum tree_code c2)
9880 {
9881 char *buffer;
9882 unsigned length = 0;
9883 unsigned int c;
9884
9885 for (c = c1; c <= c2; ++c)
9886 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9887
9888 length += strlen ("expected ");
9889 buffer = (char *) alloca (length);
9890 length = 0;
9891
9892 for (c = c1; c <= c2; ++c)
9893 {
9894 const char *prefix = length ? " or " : "expected ";
9895
9896 strcpy (buffer + length, prefix);
9897 length += strlen (prefix);
9898 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9899 length += strlen (get_tree_code_name ((enum tree_code) c));
9900 }
9901
9902 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9903 buffer, get_tree_code_name (TREE_CODE (node)),
9904 function, trim_filename (file), line);
9905 }
9906
9907
9908 /* Similar to tree_check_failed, except that we check that a tree does
9909 not have the specified code, given in CL. */
9910
9911 void
9912 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9913 const char *file, int line, const char *function)
9914 {
9915 internal_error
9916 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9917 TREE_CODE_CLASS_STRING (cl),
9918 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9919 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9920 }
9921
9922
9923 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9924
9925 void
9926 omp_clause_check_failed (const_tree node, const char *file, int line,
9927 const char *function, enum omp_clause_code code)
9928 {
9929 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9930 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9931 function, trim_filename (file), line);
9932 }
9933
9934
9935 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9936
9937 void
9938 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9939 const char *function, enum omp_clause_code c1,
9940 enum omp_clause_code c2)
9941 {
9942 char *buffer;
9943 unsigned length = 0;
9944 unsigned int c;
9945
9946 for (c = c1; c <= c2; ++c)
9947 length += 4 + strlen (omp_clause_code_name[c]);
9948
9949 length += strlen ("expected ");
9950 buffer = (char *) alloca (length);
9951 length = 0;
9952
9953 for (c = c1; c <= c2; ++c)
9954 {
9955 const char *prefix = length ? " or " : "expected ";
9956
9957 strcpy (buffer + length, prefix);
9958 length += strlen (prefix);
9959 strcpy (buffer + length, omp_clause_code_name[c]);
9960 length += strlen (omp_clause_code_name[c]);
9961 }
9962
9963 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9964 buffer, omp_clause_code_name[TREE_CODE (node)],
9965 function, trim_filename (file), line);
9966 }
9967
9968
9969 #undef DEFTREESTRUCT
9970 #define DEFTREESTRUCT(VAL, NAME) NAME,
9971
9972 static const char *ts_enum_names[] = {
9973 #include "treestruct.def"
9974 };
9975 #undef DEFTREESTRUCT
9976
9977 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9978
9979 /* Similar to tree_class_check_failed, except that we check for
9980 whether CODE contains the tree structure identified by EN. */
9981
9982 void
9983 tree_contains_struct_check_failed (const_tree node,
9984 const enum tree_node_structure_enum en,
9985 const char *file, int line,
9986 const char *function)
9987 {
9988 internal_error
9989 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9990 TS_ENUM_NAME (en),
9991 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9992 }
9993
9994
9995 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9996 (dynamically sized) vector. */
9997
9998 void
9999 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
10000 const char *function)
10001 {
10002 internal_error
10003 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
10004 idx + 1, len, function, trim_filename (file), line);
10005 }
10006
10007 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
10008 (dynamically sized) vector. */
10009
10010 void
10011 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
10012 const char *function)
10013 {
10014 internal_error
10015 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
10016 idx + 1, len, function, trim_filename (file), line);
10017 }
10018
10019 /* Similar to above, except that the check is for the bounds of the operand
10020 vector of an expression node EXP. */
10021
10022 void
10023 tree_operand_check_failed (int idx, const_tree exp, const char *file,
10024 int line, const char *function)
10025 {
10026 enum tree_code code = TREE_CODE (exp);
10027 internal_error
10028 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
10029 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
10030 function, trim_filename (file), line);
10031 }
10032
10033 /* Similar to above, except that the check is for the number of
10034 operands of an OMP_CLAUSE node. */
10035
10036 void
10037 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
10038 int line, const char *function)
10039 {
10040 internal_error
10041 ("tree check: accessed operand %d of omp_clause %s with %d operands "
10042 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
10043 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
10044 trim_filename (file), line);
10045 }
10046 #endif /* ENABLE_TREE_CHECKING */
10047 \f
10048 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
10049 and mapped to the machine mode MODE. Initialize its fields and build
10050 the information necessary for debugging output. */
10051
10052 static tree
10053 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
10054 {
10055 tree t;
10056 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
10057
10058 t = make_node (VECTOR_TYPE);
10059 TREE_TYPE (t) = mv_innertype;
10060 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
10061 SET_TYPE_MODE (t, mode);
10062
10063 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
10064 SET_TYPE_STRUCTURAL_EQUALITY (t);
10065 else if ((TYPE_CANONICAL (mv_innertype) != innertype
10066 || mode != VOIDmode)
10067 && !VECTOR_BOOLEAN_TYPE_P (t))
10068 TYPE_CANONICAL (t)
10069 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
10070
10071 layout_type (t);
10072
10073 hashval_t hash = type_hash_canon_hash (t);
10074 t = type_hash_canon (hash, t);
10075
10076 /* We have built a main variant, based on the main variant of the
10077 inner type. Use it to build the variant we return. */
10078 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
10079 && TREE_TYPE (t) != innertype)
10080 return build_type_attribute_qual_variant (t,
10081 TYPE_ATTRIBUTES (innertype),
10082 TYPE_QUALS (innertype));
10083
10084 return t;
10085 }
10086
10087 static tree
10088 make_or_reuse_type (unsigned size, int unsignedp)
10089 {
10090 int i;
10091
10092 if (size == INT_TYPE_SIZE)
10093 return unsignedp ? unsigned_type_node : integer_type_node;
10094 if (size == CHAR_TYPE_SIZE)
10095 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
10096 if (size == SHORT_TYPE_SIZE)
10097 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
10098 if (size == LONG_TYPE_SIZE)
10099 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
10100 if (size == LONG_LONG_TYPE_SIZE)
10101 return (unsignedp ? long_long_unsigned_type_node
10102 : long_long_integer_type_node);
10103
10104 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10105 if (size == int_n_data[i].bitsize
10106 && int_n_enabled_p[i])
10107 return (unsignedp ? int_n_trees[i].unsigned_type
10108 : int_n_trees[i].signed_type);
10109
10110 if (unsignedp)
10111 return make_unsigned_type (size);
10112 else
10113 return make_signed_type (size);
10114 }
10115
10116 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
10117
10118 static tree
10119 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
10120 {
10121 if (satp)
10122 {
10123 if (size == SHORT_FRACT_TYPE_SIZE)
10124 return unsignedp ? sat_unsigned_short_fract_type_node
10125 : sat_short_fract_type_node;
10126 if (size == FRACT_TYPE_SIZE)
10127 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
10128 if (size == LONG_FRACT_TYPE_SIZE)
10129 return unsignedp ? sat_unsigned_long_fract_type_node
10130 : sat_long_fract_type_node;
10131 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10132 return unsignedp ? sat_unsigned_long_long_fract_type_node
10133 : sat_long_long_fract_type_node;
10134 }
10135 else
10136 {
10137 if (size == SHORT_FRACT_TYPE_SIZE)
10138 return unsignedp ? unsigned_short_fract_type_node
10139 : short_fract_type_node;
10140 if (size == FRACT_TYPE_SIZE)
10141 return unsignedp ? unsigned_fract_type_node : fract_type_node;
10142 if (size == LONG_FRACT_TYPE_SIZE)
10143 return unsignedp ? unsigned_long_fract_type_node
10144 : long_fract_type_node;
10145 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10146 return unsignedp ? unsigned_long_long_fract_type_node
10147 : long_long_fract_type_node;
10148 }
10149
10150 return make_fract_type (size, unsignedp, satp);
10151 }
10152
10153 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
10154
10155 static tree
10156 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
10157 {
10158 if (satp)
10159 {
10160 if (size == SHORT_ACCUM_TYPE_SIZE)
10161 return unsignedp ? sat_unsigned_short_accum_type_node
10162 : sat_short_accum_type_node;
10163 if (size == ACCUM_TYPE_SIZE)
10164 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
10165 if (size == LONG_ACCUM_TYPE_SIZE)
10166 return unsignedp ? sat_unsigned_long_accum_type_node
10167 : sat_long_accum_type_node;
10168 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10169 return unsignedp ? sat_unsigned_long_long_accum_type_node
10170 : sat_long_long_accum_type_node;
10171 }
10172 else
10173 {
10174 if (size == SHORT_ACCUM_TYPE_SIZE)
10175 return unsignedp ? unsigned_short_accum_type_node
10176 : short_accum_type_node;
10177 if (size == ACCUM_TYPE_SIZE)
10178 return unsignedp ? unsigned_accum_type_node : accum_type_node;
10179 if (size == LONG_ACCUM_TYPE_SIZE)
10180 return unsignedp ? unsigned_long_accum_type_node
10181 : long_accum_type_node;
10182 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10183 return unsignedp ? unsigned_long_long_accum_type_node
10184 : long_long_accum_type_node;
10185 }
10186
10187 return make_accum_type (size, unsignedp, satp);
10188 }
10189
10190
10191 /* Create an atomic variant node for TYPE. This routine is called
10192 during initialization of data types to create the 5 basic atomic
10193 types. The generic build_variant_type function requires these to
10194 already be set up in order to function properly, so cannot be
10195 called from there. If ALIGN is non-zero, then ensure alignment is
10196 overridden to this value. */
10197
10198 static tree
10199 build_atomic_base (tree type, unsigned int align)
10200 {
10201 tree t;
10202
10203 /* Make sure its not already registered. */
10204 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
10205 return t;
10206
10207 t = build_variant_type_copy (type);
10208 set_type_quals (t, TYPE_QUAL_ATOMIC);
10209
10210 if (align)
10211 SET_TYPE_ALIGN (t, align);
10212
10213 return t;
10214 }
10215
10216 /* Information about the _FloatN and _FloatNx types. This must be in
10217 the same order as the corresponding TI_* enum values. */
10218 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
10219 {
10220 { 16, false },
10221 { 32, false },
10222 { 64, false },
10223 { 128, false },
10224 { 32, true },
10225 { 64, true },
10226 { 128, true },
10227 };
10228
10229
10230 /* Create nodes for all integer types (and error_mark_node) using the sizes
10231 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
10232
10233 void
10234 build_common_tree_nodes (bool signed_char)
10235 {
10236 int i;
10237
10238 error_mark_node = make_node (ERROR_MARK);
10239 TREE_TYPE (error_mark_node) = error_mark_node;
10240
10241 initialize_sizetypes ();
10242
10243 /* Define both `signed char' and `unsigned char'. */
10244 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
10245 TYPE_STRING_FLAG (signed_char_type_node) = 1;
10246 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
10247 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
10248
10249 /* Define `char', which is like either `signed char' or `unsigned char'
10250 but not the same as either. */
10251 char_type_node
10252 = (signed_char
10253 ? make_signed_type (CHAR_TYPE_SIZE)
10254 : make_unsigned_type (CHAR_TYPE_SIZE));
10255 TYPE_STRING_FLAG (char_type_node) = 1;
10256
10257 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
10258 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
10259 integer_type_node = make_signed_type (INT_TYPE_SIZE);
10260 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
10261 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
10262 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
10263 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
10264 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
10265
10266 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10267 {
10268 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
10269 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
10270
10271 if (int_n_enabled_p[i])
10272 {
10273 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
10274 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
10275 }
10276 }
10277
10278 /* Define a boolean type. This type only represents boolean values but
10279 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
10280 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
10281 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
10282 TYPE_PRECISION (boolean_type_node) = 1;
10283 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
10284
10285 /* Define what type to use for size_t. */
10286 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
10287 size_type_node = unsigned_type_node;
10288 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
10289 size_type_node = long_unsigned_type_node;
10290 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
10291 size_type_node = long_long_unsigned_type_node;
10292 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
10293 size_type_node = short_unsigned_type_node;
10294 else
10295 {
10296 int i;
10297
10298 size_type_node = NULL_TREE;
10299 for (i = 0; i < NUM_INT_N_ENTS; i++)
10300 if (int_n_enabled_p[i])
10301 {
10302 char name[50];
10303 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
10304
10305 if (strcmp (name, SIZE_TYPE) == 0)
10306 {
10307 size_type_node = int_n_trees[i].unsigned_type;
10308 }
10309 }
10310 if (size_type_node == NULL_TREE)
10311 gcc_unreachable ();
10312 }
10313
10314 /* Define what type to use for ptrdiff_t. */
10315 if (strcmp (PTRDIFF_TYPE, "int") == 0)
10316 ptrdiff_type_node = integer_type_node;
10317 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
10318 ptrdiff_type_node = long_integer_type_node;
10319 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
10320 ptrdiff_type_node = long_long_integer_type_node;
10321 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
10322 ptrdiff_type_node = short_integer_type_node;
10323 else
10324 {
10325 ptrdiff_type_node = NULL_TREE;
10326 for (int i = 0; i < NUM_INT_N_ENTS; i++)
10327 if (int_n_enabled_p[i])
10328 {
10329 char name[50];
10330 sprintf (name, "__int%d", int_n_data[i].bitsize);
10331 if (strcmp (name, PTRDIFF_TYPE) == 0)
10332 ptrdiff_type_node = int_n_trees[i].signed_type;
10333 }
10334 if (ptrdiff_type_node == NULL_TREE)
10335 gcc_unreachable ();
10336 }
10337
10338 /* Fill in the rest of the sized types. Reuse existing type nodes
10339 when possible. */
10340 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10341 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10342 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10343 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10344 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10345
10346 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10347 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10348 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10349 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10350 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10351
10352 /* Don't call build_qualified type for atomics. That routine does
10353 special processing for atomics, and until they are initialized
10354 it's better not to make that call.
10355
10356 Check to see if there is a target override for atomic types. */
10357
10358 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10359 targetm.atomic_align_for_mode (QImode));
10360 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10361 targetm.atomic_align_for_mode (HImode));
10362 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10363 targetm.atomic_align_for_mode (SImode));
10364 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10365 targetm.atomic_align_for_mode (DImode));
10366 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10367 targetm.atomic_align_for_mode (TImode));
10368
10369 access_public_node = get_identifier ("public");
10370 access_protected_node = get_identifier ("protected");
10371 access_private_node = get_identifier ("private");
10372
10373 /* Define these next since types below may used them. */
10374 integer_zero_node = build_int_cst (integer_type_node, 0);
10375 integer_one_node = build_int_cst (integer_type_node, 1);
10376 integer_three_node = build_int_cst (integer_type_node, 3);
10377 integer_minus_one_node = build_int_cst (integer_type_node, -1);
10378
10379 size_zero_node = size_int (0);
10380 size_one_node = size_int (1);
10381 bitsize_zero_node = bitsize_int (0);
10382 bitsize_one_node = bitsize_int (1);
10383 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10384
10385 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10386 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10387
10388 void_type_node = make_node (VOID_TYPE);
10389 layout_type (void_type_node);
10390
10391 /* We are not going to have real types in C with less than byte alignment,
10392 so we might as well not have any types that claim to have it. */
10393 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
10394 TYPE_USER_ALIGN (void_type_node) = 0;
10395
10396 void_node = make_node (VOID_CST);
10397 TREE_TYPE (void_node) = void_type_node;
10398
10399 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10400 layout_type (TREE_TYPE (null_pointer_node));
10401
10402 ptr_type_node = build_pointer_type (void_type_node);
10403 const_ptr_type_node
10404 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10405 for (unsigned i = 0;
10406 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
10407 ++i)
10408 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
10409
10410 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10411
10412 float_type_node = make_node (REAL_TYPE);
10413 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10414 layout_type (float_type_node);
10415
10416 double_type_node = make_node (REAL_TYPE);
10417 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10418 layout_type (double_type_node);
10419
10420 long_double_type_node = make_node (REAL_TYPE);
10421 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10422 layout_type (long_double_type_node);
10423
10424 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10425 {
10426 int n = floatn_nx_types[i].n;
10427 bool extended = floatn_nx_types[i].extended;
10428 scalar_float_mode mode;
10429 if (!targetm.floatn_mode (n, extended).exists (&mode))
10430 continue;
10431 int precision = GET_MODE_PRECISION (mode);
10432 /* Work around the rs6000 KFmode having precision 113 not
10433 128. */
10434 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
10435 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
10436 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
10437 if (!extended)
10438 gcc_assert (min_precision == n);
10439 if (precision < min_precision)
10440 precision = min_precision;
10441 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
10442 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
10443 layout_type (FLOATN_NX_TYPE_NODE (i));
10444 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
10445 }
10446
10447 float_ptr_type_node = build_pointer_type (float_type_node);
10448 double_ptr_type_node = build_pointer_type (double_type_node);
10449 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10450 integer_ptr_type_node = build_pointer_type (integer_type_node);
10451
10452 /* Fixed size integer types. */
10453 uint16_type_node = make_or_reuse_type (16, 1);
10454 uint32_type_node = make_or_reuse_type (32, 1);
10455 uint64_type_node = make_or_reuse_type (64, 1);
10456
10457 /* Decimal float types. */
10458 dfloat32_type_node = make_node (REAL_TYPE);
10459 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10460 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10461 layout_type (dfloat32_type_node);
10462 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
10463
10464 dfloat64_type_node = make_node (REAL_TYPE);
10465 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10466 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10467 layout_type (dfloat64_type_node);
10468 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
10469
10470 dfloat128_type_node = make_node (REAL_TYPE);
10471 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10472 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10473 layout_type (dfloat128_type_node);
10474 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
10475
10476 complex_integer_type_node = build_complex_type (integer_type_node, true);
10477 complex_float_type_node = build_complex_type (float_type_node, true);
10478 complex_double_type_node = build_complex_type (double_type_node, true);
10479 complex_long_double_type_node = build_complex_type (long_double_type_node,
10480 true);
10481
10482 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10483 {
10484 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10485 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10486 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10487 }
10488
10489 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10490 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10491 sat_ ## KIND ## _type_node = \
10492 make_sat_signed_ ## KIND ## _type (SIZE); \
10493 sat_unsigned_ ## KIND ## _type_node = \
10494 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10495 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10496 unsigned_ ## KIND ## _type_node = \
10497 make_unsigned_ ## KIND ## _type (SIZE);
10498
10499 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10500 sat_ ## WIDTH ## KIND ## _type_node = \
10501 make_sat_signed_ ## KIND ## _type (SIZE); \
10502 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10503 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10504 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10505 unsigned_ ## WIDTH ## KIND ## _type_node = \
10506 make_unsigned_ ## KIND ## _type (SIZE);
10507
10508 /* Make fixed-point type nodes based on four different widths. */
10509 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10510 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10511 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10512 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10513 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10514
10515 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10516 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10517 NAME ## _type_node = \
10518 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10519 u ## NAME ## _type_node = \
10520 make_or_reuse_unsigned_ ## KIND ## _type \
10521 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10522 sat_ ## NAME ## _type_node = \
10523 make_or_reuse_sat_signed_ ## KIND ## _type \
10524 (GET_MODE_BITSIZE (MODE ## mode)); \
10525 sat_u ## NAME ## _type_node = \
10526 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10527 (GET_MODE_BITSIZE (U ## MODE ## mode));
10528
10529 /* Fixed-point type and mode nodes. */
10530 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10531 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10532 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10533 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10534 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10535 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10536 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10537 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10538 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10539 MAKE_FIXED_MODE_NODE (accum, da, DA)
10540 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10541
10542 {
10543 tree t = targetm.build_builtin_va_list ();
10544
10545 /* Many back-ends define record types without setting TYPE_NAME.
10546 If we copied the record type here, we'd keep the original
10547 record type without a name. This breaks name mangling. So,
10548 don't copy record types and let c_common_nodes_and_builtins()
10549 declare the type to be __builtin_va_list. */
10550 if (TREE_CODE (t) != RECORD_TYPE)
10551 t = build_variant_type_copy (t);
10552
10553 va_list_type_node = t;
10554 }
10555 }
10556
10557 /* Modify DECL for given flags.
10558 TM_PURE attribute is set only on types, so the function will modify
10559 DECL's type when ECF_TM_PURE is used. */
10560
10561 void
10562 set_call_expr_flags (tree decl, int flags)
10563 {
10564 if (flags & ECF_NOTHROW)
10565 TREE_NOTHROW (decl) = 1;
10566 if (flags & ECF_CONST)
10567 TREE_READONLY (decl) = 1;
10568 if (flags & ECF_PURE)
10569 DECL_PURE_P (decl) = 1;
10570 if (flags & ECF_LOOPING_CONST_OR_PURE)
10571 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10572 if (flags & ECF_NOVOPS)
10573 DECL_IS_NOVOPS (decl) = 1;
10574 if (flags & ECF_NORETURN)
10575 TREE_THIS_VOLATILE (decl) = 1;
10576 if (flags & ECF_MALLOC)
10577 DECL_IS_MALLOC (decl) = 1;
10578 if (flags & ECF_RETURNS_TWICE)
10579 DECL_IS_RETURNS_TWICE (decl) = 1;
10580 if (flags & ECF_LEAF)
10581 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10582 NULL, DECL_ATTRIBUTES (decl));
10583 if (flags & ECF_COLD)
10584 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10585 NULL, DECL_ATTRIBUTES (decl));
10586 if (flags & ECF_RET1)
10587 DECL_ATTRIBUTES (decl)
10588 = tree_cons (get_identifier ("fn spec"),
10589 build_tree_list (NULL_TREE, build_string (1, "1")),
10590 DECL_ATTRIBUTES (decl));
10591 if ((flags & ECF_TM_PURE) && flag_tm)
10592 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10593 /* Looping const or pure is implied by noreturn.
10594 There is currently no way to declare looping const or looping pure alone. */
10595 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10596 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10597 }
10598
10599
10600 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10601
10602 static void
10603 local_define_builtin (const char *name, tree type, enum built_in_function code,
10604 const char *library_name, int ecf_flags)
10605 {
10606 tree decl;
10607
10608 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10609 library_name, NULL_TREE);
10610 set_call_expr_flags (decl, ecf_flags);
10611
10612 set_builtin_decl (code, decl, true);
10613 }
10614
10615 /* Call this function after instantiating all builtins that the language
10616 front end cares about. This will build the rest of the builtins
10617 and internal functions that are relied upon by the tree optimizers and
10618 the middle-end. */
10619
10620 void
10621 build_common_builtin_nodes (void)
10622 {
10623 tree tmp, ftype;
10624 int ecf_flags;
10625
10626 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10627 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10628 {
10629 ftype = build_function_type (void_type_node, void_list_node);
10630 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10631 local_define_builtin ("__builtin_unreachable", ftype,
10632 BUILT_IN_UNREACHABLE,
10633 "__builtin_unreachable",
10634 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10635 | ECF_CONST | ECF_COLD);
10636 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10637 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10638 "abort",
10639 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10640 }
10641
10642 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10643 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10644 {
10645 ftype = build_function_type_list (ptr_type_node,
10646 ptr_type_node, const_ptr_type_node,
10647 size_type_node, NULL_TREE);
10648
10649 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10650 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10651 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10652 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10653 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10654 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10655 }
10656
10657 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10658 {
10659 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10660 const_ptr_type_node, size_type_node,
10661 NULL_TREE);
10662 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10663 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10664 }
10665
10666 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10667 {
10668 ftype = build_function_type_list (ptr_type_node,
10669 ptr_type_node, integer_type_node,
10670 size_type_node, NULL_TREE);
10671 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10672 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10673 }
10674
10675 /* If we're checking the stack, `alloca' can throw. */
10676 const int alloca_flags
10677 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10678
10679 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10680 {
10681 ftype = build_function_type_list (ptr_type_node,
10682 size_type_node, NULL_TREE);
10683 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10684 "alloca", alloca_flags);
10685 }
10686
10687 ftype = build_function_type_list (ptr_type_node, size_type_node,
10688 size_type_node, NULL_TREE);
10689 local_define_builtin ("__builtin_alloca_with_align", ftype,
10690 BUILT_IN_ALLOCA_WITH_ALIGN,
10691 "__builtin_alloca_with_align",
10692 alloca_flags);
10693
10694 ftype = build_function_type_list (ptr_type_node, size_type_node,
10695 size_type_node, size_type_node, NULL_TREE);
10696 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10697 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10698 "__builtin_alloca_with_align_and_max",
10699 alloca_flags);
10700
10701 ftype = build_function_type_list (void_type_node,
10702 ptr_type_node, ptr_type_node,
10703 ptr_type_node, NULL_TREE);
10704 local_define_builtin ("__builtin_init_trampoline", ftype,
10705 BUILT_IN_INIT_TRAMPOLINE,
10706 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10707 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10708 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10709 "__builtin_init_heap_trampoline",
10710 ECF_NOTHROW | ECF_LEAF);
10711 local_define_builtin ("__builtin_init_descriptor", ftype,
10712 BUILT_IN_INIT_DESCRIPTOR,
10713 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10714
10715 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10716 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10717 BUILT_IN_ADJUST_TRAMPOLINE,
10718 "__builtin_adjust_trampoline",
10719 ECF_CONST | ECF_NOTHROW);
10720 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10721 BUILT_IN_ADJUST_DESCRIPTOR,
10722 "__builtin_adjust_descriptor",
10723 ECF_CONST | ECF_NOTHROW);
10724
10725 ftype = build_function_type_list (void_type_node,
10726 ptr_type_node, ptr_type_node, NULL_TREE);
10727 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10728 BUILT_IN_NONLOCAL_GOTO,
10729 "__builtin_nonlocal_goto",
10730 ECF_NORETURN | ECF_NOTHROW);
10731
10732 ftype = build_function_type_list (void_type_node,
10733 ptr_type_node, ptr_type_node, NULL_TREE);
10734 local_define_builtin ("__builtin_setjmp_setup", ftype,
10735 BUILT_IN_SETJMP_SETUP,
10736 "__builtin_setjmp_setup", ECF_NOTHROW);
10737
10738 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10739 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10740 BUILT_IN_SETJMP_RECEIVER,
10741 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10742
10743 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10744 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10745 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10746
10747 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10748 local_define_builtin ("__builtin_stack_restore", ftype,
10749 BUILT_IN_STACK_RESTORE,
10750 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10751
10752 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10753 const_ptr_type_node, size_type_node,
10754 NULL_TREE);
10755 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10756 "__builtin_memcmp_eq",
10757 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10758
10759 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10760 "__builtin_strncmp_eq",
10761 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10762
10763 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10764 "__builtin_strcmp_eq",
10765 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10766
10767 /* If there's a possibility that we might use the ARM EABI, build the
10768 alternate __cxa_end_cleanup node used to resume from C++. */
10769 if (targetm.arm_eabi_unwinder)
10770 {
10771 ftype = build_function_type_list (void_type_node, NULL_TREE);
10772 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10773 BUILT_IN_CXA_END_CLEANUP,
10774 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10775 }
10776
10777 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10778 local_define_builtin ("__builtin_unwind_resume", ftype,
10779 BUILT_IN_UNWIND_RESUME,
10780 ((targetm_common.except_unwind_info (&global_options)
10781 == UI_SJLJ)
10782 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10783 ECF_NORETURN);
10784
10785 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10786 {
10787 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10788 NULL_TREE);
10789 local_define_builtin ("__builtin_return_address", ftype,
10790 BUILT_IN_RETURN_ADDRESS,
10791 "__builtin_return_address",
10792 ECF_NOTHROW);
10793 }
10794
10795 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10796 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10797 {
10798 ftype = build_function_type_list (void_type_node, ptr_type_node,
10799 ptr_type_node, NULL_TREE);
10800 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10801 local_define_builtin ("__cyg_profile_func_enter", ftype,
10802 BUILT_IN_PROFILE_FUNC_ENTER,
10803 "__cyg_profile_func_enter", 0);
10804 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10805 local_define_builtin ("__cyg_profile_func_exit", ftype,
10806 BUILT_IN_PROFILE_FUNC_EXIT,
10807 "__cyg_profile_func_exit", 0);
10808 }
10809
10810 /* The exception object and filter values from the runtime. The argument
10811 must be zero before exception lowering, i.e. from the front end. After
10812 exception lowering, it will be the region number for the exception
10813 landing pad. These functions are PURE instead of CONST to prevent
10814 them from being hoisted past the exception edge that will initialize
10815 its value in the landing pad. */
10816 ftype = build_function_type_list (ptr_type_node,
10817 integer_type_node, NULL_TREE);
10818 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10819 /* Only use TM_PURE if we have TM language support. */
10820 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10821 ecf_flags |= ECF_TM_PURE;
10822 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10823 "__builtin_eh_pointer", ecf_flags);
10824
10825 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10826 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10827 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10828 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10829
10830 ftype = build_function_type_list (void_type_node,
10831 integer_type_node, integer_type_node,
10832 NULL_TREE);
10833 local_define_builtin ("__builtin_eh_copy_values", ftype,
10834 BUILT_IN_EH_COPY_VALUES,
10835 "__builtin_eh_copy_values", ECF_NOTHROW);
10836
10837 /* Complex multiplication and division. These are handled as builtins
10838 rather than optabs because emit_library_call_value doesn't support
10839 complex. Further, we can do slightly better with folding these
10840 beasties if the real and complex parts of the arguments are separate. */
10841 {
10842 int mode;
10843
10844 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10845 {
10846 char mode_name_buf[4], *q;
10847 const char *p;
10848 enum built_in_function mcode, dcode;
10849 tree type, inner_type;
10850 const char *prefix = "__";
10851
10852 if (targetm.libfunc_gnu_prefix)
10853 prefix = "__gnu_";
10854
10855 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10856 if (type == NULL)
10857 continue;
10858 inner_type = TREE_TYPE (type);
10859
10860 ftype = build_function_type_list (type, inner_type, inner_type,
10861 inner_type, inner_type, NULL_TREE);
10862
10863 mcode = ((enum built_in_function)
10864 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10865 dcode = ((enum built_in_function)
10866 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10867
10868 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10869 *q = TOLOWER (*p);
10870 *q = '\0';
10871
10872 /* For -ftrapping-math these should throw from a former
10873 -fnon-call-exception stmt. */
10874 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10875 NULL);
10876 local_define_builtin (built_in_names[mcode], ftype, mcode,
10877 built_in_names[mcode],
10878 ECF_CONST | ECF_LEAF);
10879
10880 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10881 NULL);
10882 local_define_builtin (built_in_names[dcode], ftype, dcode,
10883 built_in_names[dcode],
10884 ECF_CONST | ECF_LEAF);
10885 }
10886 }
10887
10888 init_internal_fns ();
10889 }
10890
10891 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10892 better way.
10893
10894 If we requested a pointer to a vector, build up the pointers that
10895 we stripped off while looking for the inner type. Similarly for
10896 return values from functions.
10897
10898 The argument TYPE is the top of the chain, and BOTTOM is the
10899 new type which we will point to. */
10900
10901 tree
10902 reconstruct_complex_type (tree type, tree bottom)
10903 {
10904 tree inner, outer;
10905
10906 if (TREE_CODE (type) == POINTER_TYPE)
10907 {
10908 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10909 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10910 TYPE_REF_CAN_ALIAS_ALL (type));
10911 }
10912 else if (TREE_CODE (type) == REFERENCE_TYPE)
10913 {
10914 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10915 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10916 TYPE_REF_CAN_ALIAS_ALL (type));
10917 }
10918 else if (TREE_CODE (type) == ARRAY_TYPE)
10919 {
10920 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10921 outer = build_array_type (inner, TYPE_DOMAIN (type));
10922 }
10923 else if (TREE_CODE (type) == FUNCTION_TYPE)
10924 {
10925 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10926 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10927 }
10928 else if (TREE_CODE (type) == METHOD_TYPE)
10929 {
10930 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10931 /* The build_method_type_directly() routine prepends 'this' to argument list,
10932 so we must compensate by getting rid of it. */
10933 outer
10934 = build_method_type_directly
10935 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10936 inner,
10937 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10938 }
10939 else if (TREE_CODE (type) == OFFSET_TYPE)
10940 {
10941 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10942 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10943 }
10944 else
10945 return bottom;
10946
10947 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10948 TYPE_QUALS (type));
10949 }
10950
10951 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10952 the inner type. */
10953 tree
10954 build_vector_type_for_mode (tree innertype, machine_mode mode)
10955 {
10956 poly_int64 nunits;
10957 unsigned int bitsize;
10958
10959 switch (GET_MODE_CLASS (mode))
10960 {
10961 case MODE_VECTOR_BOOL:
10962 case MODE_VECTOR_INT:
10963 case MODE_VECTOR_FLOAT:
10964 case MODE_VECTOR_FRACT:
10965 case MODE_VECTOR_UFRACT:
10966 case MODE_VECTOR_ACCUM:
10967 case MODE_VECTOR_UACCUM:
10968 nunits = GET_MODE_NUNITS (mode);
10969 break;
10970
10971 case MODE_INT:
10972 /* Check that there are no leftover bits. */
10973 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10974 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10975 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10976 break;
10977
10978 default:
10979 gcc_unreachable ();
10980 }
10981
10982 return make_vector_type (innertype, nunits, mode);
10983 }
10984
10985 /* Similarly, but takes the inner type and number of units, which must be
10986 a power of two. */
10987
10988 tree
10989 build_vector_type (tree innertype, poly_int64 nunits)
10990 {
10991 return make_vector_type (innertype, nunits, VOIDmode);
10992 }
10993
10994 /* Build truth vector with specified length and number of units. */
10995
10996 tree
10997 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
10998 {
10999 machine_mode mask_mode
11000 = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
11001
11002 poly_uint64 vsize;
11003 if (mask_mode == BLKmode)
11004 vsize = vector_size * BITS_PER_UNIT;
11005 else
11006 vsize = GET_MODE_BITSIZE (mask_mode);
11007
11008 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
11009
11010 tree bool_type = build_nonstandard_boolean_type (esize);
11011
11012 return make_vector_type (bool_type, nunits, mask_mode);
11013 }
11014
11015 /* Returns a vector type corresponding to a comparison of VECTYPE. */
11016
11017 tree
11018 build_same_sized_truth_vector_type (tree vectype)
11019 {
11020 if (VECTOR_BOOLEAN_TYPE_P (vectype))
11021 return vectype;
11022
11023 poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
11024
11025 if (known_eq (size, 0U))
11026 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
11027
11028 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
11029 }
11030
11031 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
11032
11033 tree
11034 build_opaque_vector_type (tree innertype, poly_int64 nunits)
11035 {
11036 tree t = make_vector_type (innertype, nunits, VOIDmode);
11037 tree cand;
11038 /* We always build the non-opaque variant before the opaque one,
11039 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
11040 cand = TYPE_NEXT_VARIANT (t);
11041 if (cand
11042 && TYPE_VECTOR_OPAQUE (cand)
11043 && check_qualified_type (cand, t, TYPE_QUALS (t)))
11044 return cand;
11045 /* Othewise build a variant type and make sure to queue it after
11046 the non-opaque type. */
11047 cand = build_distinct_type_copy (t);
11048 TYPE_VECTOR_OPAQUE (cand) = true;
11049 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
11050 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
11051 TYPE_NEXT_VARIANT (t) = cand;
11052 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
11053 return cand;
11054 }
11055
11056 /* Return the value of element I of VECTOR_CST T as a wide_int. */
11057
11058 wide_int
11059 vector_cst_int_elt (const_tree t, unsigned int i)
11060 {
11061 /* First handle elements that are directly encoded. */
11062 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
11063 if (i < encoded_nelts)
11064 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
11065
11066 /* Identify the pattern that contains element I and work out the index of
11067 the last encoded element for that pattern. */
11068 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11069 unsigned int pattern = i % npatterns;
11070 unsigned int count = i / npatterns;
11071 unsigned int final_i = encoded_nelts - npatterns + pattern;
11072
11073 /* If there are no steps, the final encoded value is the right one. */
11074 if (!VECTOR_CST_STEPPED_P (t))
11075 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
11076
11077 /* Otherwise work out the value from the last two encoded elements. */
11078 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
11079 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
11080 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
11081 return wi::to_wide (v2) + (count - 2) * diff;
11082 }
11083
11084 /* Return the value of element I of VECTOR_CST T. */
11085
11086 tree
11087 vector_cst_elt (const_tree t, unsigned int i)
11088 {
11089 /* First handle elements that are directly encoded. */
11090 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
11091 if (i < encoded_nelts)
11092 return VECTOR_CST_ENCODED_ELT (t, i);
11093
11094 /* If there are no steps, the final encoded value is the right one. */
11095 if (!VECTOR_CST_STEPPED_P (t))
11096 {
11097 /* Identify the pattern that contains element I and work out the index of
11098 the last encoded element for that pattern. */
11099 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11100 unsigned int pattern = i % npatterns;
11101 unsigned int final_i = encoded_nelts - npatterns + pattern;
11102 return VECTOR_CST_ENCODED_ELT (t, final_i);
11103 }
11104
11105 /* Otherwise work out the value from the last two encoded elements. */
11106 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
11107 vector_cst_int_elt (t, i));
11108 }
11109
11110 /* Given an initializer INIT, return TRUE if INIT is zero or some
11111 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
11112 null, set *NONZERO if and only if INIT is known not to be all
11113 zeros. The combination of return value of false and *NONZERO
11114 false implies that INIT may but need not be all zeros. Other
11115 combinations indicate definitive answers. */
11116
11117 bool
11118 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
11119 {
11120 bool dummy;
11121 if (!nonzero)
11122 nonzero = &dummy;
11123
11124 /* Conservatively clear NONZERO and set it only if INIT is definitely
11125 not all zero. */
11126 *nonzero = false;
11127
11128 STRIP_NOPS (init);
11129
11130 unsigned HOST_WIDE_INT off = 0;
11131
11132 switch (TREE_CODE (init))
11133 {
11134 case INTEGER_CST:
11135 if (integer_zerop (init))
11136 return true;
11137
11138 *nonzero = true;
11139 return false;
11140
11141 case REAL_CST:
11142 /* ??? Note that this is not correct for C4X float formats. There,
11143 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
11144 negative exponent. */
11145 if (real_zerop (init)
11146 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
11147 return true;
11148
11149 *nonzero = true;
11150 return false;
11151
11152 case FIXED_CST:
11153 if (fixed_zerop (init))
11154 return true;
11155
11156 *nonzero = true;
11157 return false;
11158
11159 case COMPLEX_CST:
11160 if (integer_zerop (init)
11161 || (real_zerop (init)
11162 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
11163 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
11164 return true;
11165
11166 *nonzero = true;
11167 return false;
11168
11169 case VECTOR_CST:
11170 if (VECTOR_CST_NPATTERNS (init) == 1
11171 && VECTOR_CST_DUPLICATE_P (init)
11172 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
11173 return true;
11174
11175 *nonzero = true;
11176 return false;
11177
11178 case CONSTRUCTOR:
11179 {
11180 if (TREE_CLOBBER_P (init))
11181 return false;
11182
11183 unsigned HOST_WIDE_INT idx;
11184 tree elt;
11185
11186 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
11187 if (!initializer_zerop (elt, nonzero))
11188 return false;
11189
11190 return true;
11191 }
11192
11193 case MEM_REF:
11194 {
11195 tree arg = TREE_OPERAND (init, 0);
11196 if (TREE_CODE (arg) != ADDR_EXPR)
11197 return false;
11198 tree offset = TREE_OPERAND (init, 1);
11199 if (TREE_CODE (offset) != INTEGER_CST
11200 || !tree_fits_uhwi_p (offset))
11201 return false;
11202 off = tree_to_uhwi (offset);
11203 if (INT_MAX < off)
11204 return false;
11205 arg = TREE_OPERAND (arg, 0);
11206 if (TREE_CODE (arg) != STRING_CST)
11207 return false;
11208 init = arg;
11209 }
11210 /* Fall through. */
11211
11212 case STRING_CST:
11213 {
11214 gcc_assert (off <= INT_MAX);
11215
11216 int i = off;
11217 int n = TREE_STRING_LENGTH (init);
11218 if (n <= i)
11219 return false;
11220
11221 /* We need to loop through all elements to handle cases like
11222 "\0" and "\0foobar". */
11223 for (i = 0; i < n; ++i)
11224 if (TREE_STRING_POINTER (init)[i] != '\0')
11225 {
11226 *nonzero = true;
11227 return false;
11228 }
11229
11230 return true;
11231 }
11232
11233 default:
11234 return false;
11235 }
11236 }
11237
11238 /* Return true if EXPR is an initializer expression in which every element
11239 is a constant that is numerically equal to 0 or 1. The elements do not
11240 need to be equal to each other. */
11241
11242 bool
11243 initializer_each_zero_or_onep (const_tree expr)
11244 {
11245 STRIP_ANY_LOCATION_WRAPPER (expr);
11246
11247 switch (TREE_CODE (expr))
11248 {
11249 case INTEGER_CST:
11250 return integer_zerop (expr) || integer_onep (expr);
11251
11252 case REAL_CST:
11253 return real_zerop (expr) || real_onep (expr);
11254
11255 case VECTOR_CST:
11256 {
11257 unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
11258 if (VECTOR_CST_STEPPED_P (expr)
11259 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
11260 return false;
11261
11262 for (unsigned int i = 0; i < nelts; ++i)
11263 {
11264 tree elt = vector_cst_elt (expr, i);
11265 if (!initializer_each_zero_or_onep (elt))
11266 return false;
11267 }
11268
11269 return true;
11270 }
11271
11272 default:
11273 return false;
11274 }
11275 }
11276
11277 /* Check if vector VEC consists of all the equal elements and
11278 that the number of elements corresponds to the type of VEC.
11279 The function returns first element of the vector
11280 or NULL_TREE if the vector is not uniform. */
11281 tree
11282 uniform_vector_p (const_tree vec)
11283 {
11284 tree first, t;
11285 unsigned HOST_WIDE_INT i, nelts;
11286
11287 if (vec == NULL_TREE)
11288 return NULL_TREE;
11289
11290 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
11291
11292 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
11293 return TREE_OPERAND (vec, 0);
11294
11295 else if (TREE_CODE (vec) == VECTOR_CST)
11296 {
11297 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
11298 return VECTOR_CST_ENCODED_ELT (vec, 0);
11299 return NULL_TREE;
11300 }
11301
11302 else if (TREE_CODE (vec) == CONSTRUCTOR
11303 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
11304 {
11305 first = error_mark_node;
11306
11307 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
11308 {
11309 if (i == 0)
11310 {
11311 first = t;
11312 continue;
11313 }
11314 if (!operand_equal_p (first, t, 0))
11315 return NULL_TREE;
11316 }
11317 if (i != nelts)
11318 return NULL_TREE;
11319
11320 return first;
11321 }
11322
11323 return NULL_TREE;
11324 }
11325
11326 /* If the argument is INTEGER_CST, return it. If the argument is vector
11327 with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise
11328 return NULL_TREE.
11329 Look through location wrappers. */
11330
11331 tree
11332 uniform_integer_cst_p (tree t)
11333 {
11334 STRIP_ANY_LOCATION_WRAPPER (t);
11335
11336 if (TREE_CODE (t) == INTEGER_CST)
11337 return t;
11338
11339 if (VECTOR_TYPE_P (TREE_TYPE (t)))
11340 {
11341 t = uniform_vector_p (t);
11342 if (t && TREE_CODE (t) == INTEGER_CST)
11343 return t;
11344 }
11345
11346 return NULL_TREE;
11347 }
11348
11349 /* If VECTOR_CST T has a single nonzero element, return the index of that
11350 element, otherwise return -1. */
11351
11352 int
11353 single_nonzero_element (const_tree t)
11354 {
11355 unsigned HOST_WIDE_INT nelts;
11356 unsigned int repeat_nelts;
11357 if (VECTOR_CST_NELTS (t).is_constant (&nelts))
11358 repeat_nelts = nelts;
11359 else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
11360 {
11361 nelts = vector_cst_encoded_nelts (t);
11362 repeat_nelts = VECTOR_CST_NPATTERNS (t);
11363 }
11364 else
11365 return -1;
11366
11367 int res = -1;
11368 for (unsigned int i = 0; i < nelts; ++i)
11369 {
11370 tree elt = vector_cst_elt (t, i);
11371 if (!integer_zerop (elt) && !real_zerop (elt))
11372 {
11373 if (res >= 0 || i >= repeat_nelts)
11374 return -1;
11375 res = i;
11376 }
11377 }
11378 return res;
11379 }
11380
11381 /* Build an empty statement at location LOC. */
11382
11383 tree
11384 build_empty_stmt (location_t loc)
11385 {
11386 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
11387 SET_EXPR_LOCATION (t, loc);
11388 return t;
11389 }
11390
11391
11392 /* Build an OpenMP clause with code CODE. LOC is the location of the
11393 clause. */
11394
11395 tree
11396 build_omp_clause (location_t loc, enum omp_clause_code code)
11397 {
11398 tree t;
11399 int size, length;
11400
11401 length = omp_clause_num_ops[code];
11402 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
11403
11404 record_node_allocation_statistics (OMP_CLAUSE, size);
11405
11406 t = (tree) ggc_internal_alloc (size);
11407 memset (t, 0, size);
11408 TREE_SET_CODE (t, OMP_CLAUSE);
11409 OMP_CLAUSE_SET_CODE (t, code);
11410 OMP_CLAUSE_LOCATION (t) = loc;
11411
11412 return t;
11413 }
11414
11415 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
11416 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
11417 Except for the CODE and operand count field, other storage for the
11418 object is initialized to zeros. */
11419
11420 tree
11421 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
11422 {
11423 tree t;
11424 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
11425
11426 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
11427 gcc_assert (len >= 1);
11428
11429 record_node_allocation_statistics (code, length);
11430
11431 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
11432
11433 TREE_SET_CODE (t, code);
11434
11435 /* Can't use TREE_OPERAND to store the length because if checking is
11436 enabled, it will try to check the length before we store it. :-P */
11437 t->exp.operands[0] = build_int_cst (sizetype, len);
11438
11439 return t;
11440 }
11441
11442 /* Helper function for build_call_* functions; build a CALL_EXPR with
11443 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
11444 the argument slots. */
11445
11446 static tree
11447 build_call_1 (tree return_type, tree fn, int nargs)
11448 {
11449 tree t;
11450
11451 t = build_vl_exp (CALL_EXPR, nargs + 3);
11452 TREE_TYPE (t) = return_type;
11453 CALL_EXPR_FN (t) = fn;
11454 CALL_EXPR_STATIC_CHAIN (t) = NULL;
11455
11456 return t;
11457 }
11458
11459 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11460 FN and a null static chain slot. NARGS is the number of call arguments
11461 which are specified as "..." arguments. */
11462
11463 tree
11464 build_call_nary (tree return_type, tree fn, int nargs, ...)
11465 {
11466 tree ret;
11467 va_list args;
11468 va_start (args, nargs);
11469 ret = build_call_valist (return_type, fn, nargs, args);
11470 va_end (args);
11471 return ret;
11472 }
11473
11474 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11475 FN and a null static chain slot. NARGS is the number of call arguments
11476 which are specified as a va_list ARGS. */
11477
11478 tree
11479 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
11480 {
11481 tree t;
11482 int i;
11483
11484 t = build_call_1 (return_type, fn, nargs);
11485 for (i = 0; i < nargs; i++)
11486 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
11487 process_call_operands (t);
11488 return t;
11489 }
11490
11491 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11492 FN and a null static chain slot. NARGS is the number of call arguments
11493 which are specified as a tree array ARGS. */
11494
11495 tree
11496 build_call_array_loc (location_t loc, tree return_type, tree fn,
11497 int nargs, const tree *args)
11498 {
11499 tree t;
11500 int i;
11501
11502 t = build_call_1 (return_type, fn, nargs);
11503 for (i = 0; i < nargs; i++)
11504 CALL_EXPR_ARG (t, i) = args[i];
11505 process_call_operands (t);
11506 SET_EXPR_LOCATION (t, loc);
11507 return t;
11508 }
11509
11510 /* Like build_call_array, but takes a vec. */
11511
11512 tree
11513 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
11514 {
11515 tree ret, t;
11516 unsigned int ix;
11517
11518 ret = build_call_1 (return_type, fn, vec_safe_length (args));
11519 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
11520 CALL_EXPR_ARG (ret, ix) = t;
11521 process_call_operands (ret);
11522 return ret;
11523 }
11524
11525 /* Conveniently construct a function call expression. FNDECL names the
11526 function to be called and N arguments are passed in the array
11527 ARGARRAY. */
11528
11529 tree
11530 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11531 {
11532 tree fntype = TREE_TYPE (fndecl);
11533 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11534
11535 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11536 }
11537
11538 /* Conveniently construct a function call expression. FNDECL names the
11539 function to be called and the arguments are passed in the vector
11540 VEC. */
11541
11542 tree
11543 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11544 {
11545 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11546 vec_safe_address (vec));
11547 }
11548
11549
11550 /* Conveniently construct a function call expression. FNDECL names the
11551 function to be called, N is the number of arguments, and the "..."
11552 parameters are the argument expressions. */
11553
11554 tree
11555 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11556 {
11557 va_list ap;
11558 tree *argarray = XALLOCAVEC (tree, n);
11559 int i;
11560
11561 va_start (ap, n);
11562 for (i = 0; i < n; i++)
11563 argarray[i] = va_arg (ap, tree);
11564 va_end (ap);
11565 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11566 }
11567
11568 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11569 varargs macros aren't supported by all bootstrap compilers. */
11570
11571 tree
11572 build_call_expr (tree fndecl, int n, ...)
11573 {
11574 va_list ap;
11575 tree *argarray = XALLOCAVEC (tree, n);
11576 int i;
11577
11578 va_start (ap, n);
11579 for (i = 0; i < n; i++)
11580 argarray[i] = va_arg (ap, tree);
11581 va_end (ap);
11582 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11583 }
11584
11585 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11586 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11587 It will get gimplified later into an ordinary internal function. */
11588
11589 tree
11590 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11591 tree type, int n, const tree *args)
11592 {
11593 tree t = build_call_1 (type, NULL_TREE, n);
11594 for (int i = 0; i < n; ++i)
11595 CALL_EXPR_ARG (t, i) = args[i];
11596 SET_EXPR_LOCATION (t, loc);
11597 CALL_EXPR_IFN (t) = ifn;
11598 return t;
11599 }
11600
11601 /* Build internal call expression. This is just like CALL_EXPR, except
11602 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11603 internal function. */
11604
11605 tree
11606 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11607 tree type, int n, ...)
11608 {
11609 va_list ap;
11610 tree *argarray = XALLOCAVEC (tree, n);
11611 int i;
11612
11613 va_start (ap, n);
11614 for (i = 0; i < n; i++)
11615 argarray[i] = va_arg (ap, tree);
11616 va_end (ap);
11617 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11618 }
11619
11620 /* Return a function call to FN, if the target is guaranteed to support it,
11621 or null otherwise.
11622
11623 N is the number of arguments, passed in the "...", and TYPE is the
11624 type of the return value. */
11625
11626 tree
11627 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11628 int n, ...)
11629 {
11630 va_list ap;
11631 tree *argarray = XALLOCAVEC (tree, n);
11632 int i;
11633
11634 va_start (ap, n);
11635 for (i = 0; i < n; i++)
11636 argarray[i] = va_arg (ap, tree);
11637 va_end (ap);
11638 if (internal_fn_p (fn))
11639 {
11640 internal_fn ifn = as_internal_fn (fn);
11641 if (direct_internal_fn_p (ifn))
11642 {
11643 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11644 if (!direct_internal_fn_supported_p (ifn, types,
11645 OPTIMIZE_FOR_BOTH))
11646 return NULL_TREE;
11647 }
11648 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11649 }
11650 else
11651 {
11652 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11653 if (!fndecl)
11654 return NULL_TREE;
11655 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11656 }
11657 }
11658
11659 /* Return a function call to the appropriate builtin alloca variant.
11660
11661 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11662 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11663 bound for SIZE in case it is not a fixed value. */
11664
11665 tree
11666 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11667 {
11668 if (max_size >= 0)
11669 {
11670 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11671 return
11672 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11673 }
11674 else if (align > 0)
11675 {
11676 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11677 return build_call_expr (t, 2, size, size_int (align));
11678 }
11679 else
11680 {
11681 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11682 return build_call_expr (t, 1, size);
11683 }
11684 }
11685
11686 /* Create a new constant string literal consisting of elements of type
11687 ELTYPE and return a tree node representing char* pointer to it as
11688 an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). The STRING_CST value is
11689 the LEN bytes at STR (the representation of the string, which may
11690 be wide). */
11691
11692 tree
11693 build_string_literal (int len, const char *str,
11694 tree eltype /* = char_type_node */)
11695 {
11696 tree t = build_string (len, str);
11697 tree index = build_index_type (size_int (len - 1));
11698 eltype = build_type_variant (eltype, 1, 0);
11699 tree type = build_array_type (eltype, index);
11700 TREE_TYPE (t) = type;
11701 TREE_CONSTANT (t) = 1;
11702 TREE_READONLY (t) = 1;
11703 TREE_STATIC (t) = 1;
11704
11705 type = build_pointer_type (eltype);
11706 t = build1 (ADDR_EXPR, type,
11707 build4 (ARRAY_REF, eltype,
11708 t, integer_zero_node, NULL_TREE, NULL_TREE));
11709 return t;
11710 }
11711
11712
11713
11714 /* Return true if T (assumed to be a DECL) must be assigned a memory
11715 location. */
11716
11717 bool
11718 needs_to_live_in_memory (const_tree t)
11719 {
11720 return (TREE_ADDRESSABLE (t)
11721 || is_global_var (t)
11722 || (TREE_CODE (t) == RESULT_DECL
11723 && !DECL_BY_REFERENCE (t)
11724 && aggregate_value_p (t, current_function_decl)));
11725 }
11726
11727 /* Return value of a constant X and sign-extend it. */
11728
11729 HOST_WIDE_INT
11730 int_cst_value (const_tree x)
11731 {
11732 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11733 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11734
11735 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11736 gcc_assert (cst_and_fits_in_hwi (x));
11737
11738 if (bits < HOST_BITS_PER_WIDE_INT)
11739 {
11740 bool negative = ((val >> (bits - 1)) & 1) != 0;
11741 if (negative)
11742 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11743 else
11744 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11745 }
11746
11747 return val;
11748 }
11749
11750 /* If TYPE is an integral or pointer type, return an integer type with
11751 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11752 if TYPE is already an integer type of signedness UNSIGNEDP.
11753 If TYPE is a floating-point type, return an integer type with the same
11754 bitsize and with the signedness given by UNSIGNEDP; this is useful
11755 when doing bit-level operations on a floating-point value. */
11756
11757 tree
11758 signed_or_unsigned_type_for (int unsignedp, tree type)
11759 {
11760 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11761 return type;
11762
11763 if (TREE_CODE (type) == VECTOR_TYPE)
11764 {
11765 tree inner = TREE_TYPE (type);
11766 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11767 if (!inner2)
11768 return NULL_TREE;
11769 if (inner == inner2)
11770 return type;
11771 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11772 }
11773
11774 if (TREE_CODE (type) == COMPLEX_TYPE)
11775 {
11776 tree inner = TREE_TYPE (type);
11777 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11778 if (!inner2)
11779 return NULL_TREE;
11780 if (inner == inner2)
11781 return type;
11782 return build_complex_type (inner2);
11783 }
11784
11785 unsigned int bits;
11786 if (INTEGRAL_TYPE_P (type)
11787 || POINTER_TYPE_P (type)
11788 || TREE_CODE (type) == OFFSET_TYPE)
11789 bits = TYPE_PRECISION (type);
11790 else if (TREE_CODE (type) == REAL_TYPE)
11791 bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
11792 else
11793 return NULL_TREE;
11794
11795 return build_nonstandard_integer_type (bits, unsignedp);
11796 }
11797
11798 /* If TYPE is an integral or pointer type, return an integer type with
11799 the same precision which is unsigned, or itself if TYPE is already an
11800 unsigned integer type. If TYPE is a floating-point type, return an
11801 unsigned integer type with the same bitsize as TYPE. */
11802
11803 tree
11804 unsigned_type_for (tree type)
11805 {
11806 return signed_or_unsigned_type_for (1, type);
11807 }
11808
11809 /* If TYPE is an integral or pointer type, return an integer type with
11810 the same precision which is signed, or itself if TYPE is already a
11811 signed integer type. If TYPE is a floating-point type, return a
11812 signed integer type with the same bitsize as TYPE. */
11813
11814 tree
11815 signed_type_for (tree type)
11816 {
11817 return signed_or_unsigned_type_for (0, type);
11818 }
11819
11820 /* If TYPE is a vector type, return a signed integer vector type with the
11821 same width and number of subparts. Otherwise return boolean_type_node. */
11822
11823 tree
11824 truth_type_for (tree type)
11825 {
11826 if (TREE_CODE (type) == VECTOR_TYPE)
11827 {
11828 if (VECTOR_BOOLEAN_TYPE_P (type))
11829 return type;
11830 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11831 GET_MODE_SIZE (TYPE_MODE (type)));
11832 }
11833 else
11834 return boolean_type_node;
11835 }
11836
11837 /* Returns the largest value obtainable by casting something in INNER type to
11838 OUTER type. */
11839
11840 tree
11841 upper_bound_in_type (tree outer, tree inner)
11842 {
11843 unsigned int det = 0;
11844 unsigned oprec = TYPE_PRECISION (outer);
11845 unsigned iprec = TYPE_PRECISION (inner);
11846 unsigned prec;
11847
11848 /* Compute a unique number for every combination. */
11849 det |= (oprec > iprec) ? 4 : 0;
11850 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11851 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11852
11853 /* Determine the exponent to use. */
11854 switch (det)
11855 {
11856 case 0:
11857 case 1:
11858 /* oprec <= iprec, outer: signed, inner: don't care. */
11859 prec = oprec - 1;
11860 break;
11861 case 2:
11862 case 3:
11863 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11864 prec = oprec;
11865 break;
11866 case 4:
11867 /* oprec > iprec, outer: signed, inner: signed. */
11868 prec = iprec - 1;
11869 break;
11870 case 5:
11871 /* oprec > iprec, outer: signed, inner: unsigned. */
11872 prec = iprec;
11873 break;
11874 case 6:
11875 /* oprec > iprec, outer: unsigned, inner: signed. */
11876 prec = oprec;
11877 break;
11878 case 7:
11879 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11880 prec = iprec;
11881 break;
11882 default:
11883 gcc_unreachable ();
11884 }
11885
11886 return wide_int_to_tree (outer,
11887 wi::mask (prec, false, TYPE_PRECISION (outer)));
11888 }
11889
11890 /* Returns the smallest value obtainable by casting something in INNER type to
11891 OUTER type. */
11892
11893 tree
11894 lower_bound_in_type (tree outer, tree inner)
11895 {
11896 unsigned oprec = TYPE_PRECISION (outer);
11897 unsigned iprec = TYPE_PRECISION (inner);
11898
11899 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11900 and obtain 0. */
11901 if (TYPE_UNSIGNED (outer)
11902 /* If we are widening something of an unsigned type, OUTER type
11903 contains all values of INNER type. In particular, both INNER
11904 and OUTER types have zero in common. */
11905 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11906 return build_int_cst (outer, 0);
11907 else
11908 {
11909 /* If we are widening a signed type to another signed type, we
11910 want to obtain -2^^(iprec-1). If we are keeping the
11911 precision or narrowing to a signed type, we want to obtain
11912 -2^(oprec-1). */
11913 unsigned prec = oprec > iprec ? iprec : oprec;
11914 return wide_int_to_tree (outer,
11915 wi::mask (prec - 1, true,
11916 TYPE_PRECISION (outer)));
11917 }
11918 }
11919
11920 /* Return nonzero if two operands that are suitable for PHI nodes are
11921 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11922 SSA_NAME or invariant. Note that this is strictly an optimization.
11923 That is, callers of this function can directly call operand_equal_p
11924 and get the same result, only slower. */
11925
11926 int
11927 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11928 {
11929 if (arg0 == arg1)
11930 return 1;
11931 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11932 return 0;
11933 return operand_equal_p (arg0, arg1, 0);
11934 }
11935
11936 /* Returns number of zeros at the end of binary representation of X. */
11937
11938 tree
11939 num_ending_zeros (const_tree x)
11940 {
11941 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11942 }
11943
11944
11945 #define WALK_SUBTREE(NODE) \
11946 do \
11947 { \
11948 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11949 if (result) \
11950 return result; \
11951 } \
11952 while (0)
11953
11954 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11955 be walked whenever a type is seen in the tree. Rest of operands and return
11956 value are as for walk_tree. */
11957
11958 static tree
11959 walk_type_fields (tree type, walk_tree_fn func, void *data,
11960 hash_set<tree> *pset, walk_tree_lh lh)
11961 {
11962 tree result = NULL_TREE;
11963
11964 switch (TREE_CODE (type))
11965 {
11966 case POINTER_TYPE:
11967 case REFERENCE_TYPE:
11968 case VECTOR_TYPE:
11969 /* We have to worry about mutually recursive pointers. These can't
11970 be written in C. They can in Ada. It's pathological, but
11971 there's an ACATS test (c38102a) that checks it. Deal with this
11972 by checking if we're pointing to another pointer, that one
11973 points to another pointer, that one does too, and we have no htab.
11974 If so, get a hash table. We check three levels deep to avoid
11975 the cost of the hash table if we don't need one. */
11976 if (POINTER_TYPE_P (TREE_TYPE (type))
11977 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11978 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11979 && !pset)
11980 {
11981 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11982 func, data);
11983 if (result)
11984 return result;
11985
11986 break;
11987 }
11988
11989 /* fall through */
11990
11991 case COMPLEX_TYPE:
11992 WALK_SUBTREE (TREE_TYPE (type));
11993 break;
11994
11995 case METHOD_TYPE:
11996 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11997
11998 /* Fall through. */
11999
12000 case FUNCTION_TYPE:
12001 WALK_SUBTREE (TREE_TYPE (type));
12002 {
12003 tree arg;
12004
12005 /* We never want to walk into default arguments. */
12006 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
12007 WALK_SUBTREE (TREE_VALUE (arg));
12008 }
12009 break;
12010
12011 case ARRAY_TYPE:
12012 /* Don't follow this nodes's type if a pointer for fear that
12013 we'll have infinite recursion. If we have a PSET, then we
12014 need not fear. */
12015 if (pset
12016 || (!POINTER_TYPE_P (TREE_TYPE (type))
12017 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
12018 WALK_SUBTREE (TREE_TYPE (type));
12019 WALK_SUBTREE (TYPE_DOMAIN (type));
12020 break;
12021
12022 case OFFSET_TYPE:
12023 WALK_SUBTREE (TREE_TYPE (type));
12024 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
12025 break;
12026
12027 default:
12028 break;
12029 }
12030
12031 return NULL_TREE;
12032 }
12033
12034 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
12035 called with the DATA and the address of each sub-tree. If FUNC returns a
12036 non-NULL value, the traversal is stopped, and the value returned by FUNC
12037 is returned. If PSET is non-NULL it is used to record the nodes visited,
12038 and to avoid visiting a node more than once. */
12039
12040 tree
12041 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
12042 hash_set<tree> *pset, walk_tree_lh lh)
12043 {
12044 enum tree_code code;
12045 int walk_subtrees;
12046 tree result;
12047
12048 #define WALK_SUBTREE_TAIL(NODE) \
12049 do \
12050 { \
12051 tp = & (NODE); \
12052 goto tail_recurse; \
12053 } \
12054 while (0)
12055
12056 tail_recurse:
12057 /* Skip empty subtrees. */
12058 if (!*tp)
12059 return NULL_TREE;
12060
12061 /* Don't walk the same tree twice, if the user has requested
12062 that we avoid doing so. */
12063 if (pset && pset->add (*tp))
12064 return NULL_TREE;
12065
12066 /* Call the function. */
12067 walk_subtrees = 1;
12068 result = (*func) (tp, &walk_subtrees, data);
12069
12070 /* If we found something, return it. */
12071 if (result)
12072 return result;
12073
12074 code = TREE_CODE (*tp);
12075
12076 /* Even if we didn't, FUNC may have decided that there was nothing
12077 interesting below this point in the tree. */
12078 if (!walk_subtrees)
12079 {
12080 /* But we still need to check our siblings. */
12081 if (code == TREE_LIST)
12082 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12083 else if (code == OMP_CLAUSE)
12084 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12085 else
12086 return NULL_TREE;
12087 }
12088
12089 if (lh)
12090 {
12091 result = (*lh) (tp, &walk_subtrees, func, data, pset);
12092 if (result || !walk_subtrees)
12093 return result;
12094 }
12095
12096 switch (code)
12097 {
12098 case ERROR_MARK:
12099 case IDENTIFIER_NODE:
12100 case INTEGER_CST:
12101 case REAL_CST:
12102 case FIXED_CST:
12103 case VECTOR_CST:
12104 case STRING_CST:
12105 case BLOCK:
12106 case PLACEHOLDER_EXPR:
12107 case SSA_NAME:
12108 case FIELD_DECL:
12109 case RESULT_DECL:
12110 /* None of these have subtrees other than those already walked
12111 above. */
12112 break;
12113
12114 case TREE_LIST:
12115 WALK_SUBTREE (TREE_VALUE (*tp));
12116 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12117 break;
12118
12119 case TREE_VEC:
12120 {
12121 int len = TREE_VEC_LENGTH (*tp);
12122
12123 if (len == 0)
12124 break;
12125
12126 /* Walk all elements but the first. */
12127 while (--len)
12128 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
12129
12130 /* Now walk the first one as a tail call. */
12131 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
12132 }
12133
12134 case COMPLEX_CST:
12135 WALK_SUBTREE (TREE_REALPART (*tp));
12136 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
12137
12138 case CONSTRUCTOR:
12139 {
12140 unsigned HOST_WIDE_INT idx;
12141 constructor_elt *ce;
12142
12143 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
12144 idx++)
12145 WALK_SUBTREE (ce->value);
12146 }
12147 break;
12148
12149 case SAVE_EXPR:
12150 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
12151
12152 case BIND_EXPR:
12153 {
12154 tree decl;
12155 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
12156 {
12157 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
12158 into declarations that are just mentioned, rather than
12159 declared; they don't really belong to this part of the tree.
12160 And, we can see cycles: the initializer for a declaration
12161 can refer to the declaration itself. */
12162 WALK_SUBTREE (DECL_INITIAL (decl));
12163 WALK_SUBTREE (DECL_SIZE (decl));
12164 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
12165 }
12166 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
12167 }
12168
12169 case STATEMENT_LIST:
12170 {
12171 tree_stmt_iterator i;
12172 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
12173 WALK_SUBTREE (*tsi_stmt_ptr (i));
12174 }
12175 break;
12176
12177 case OMP_CLAUSE:
12178 switch (OMP_CLAUSE_CODE (*tp))
12179 {
12180 case OMP_CLAUSE_GANG:
12181 case OMP_CLAUSE__GRIDDIM_:
12182 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12183 /* FALLTHRU */
12184
12185 case OMP_CLAUSE_ASYNC:
12186 case OMP_CLAUSE_WAIT:
12187 case OMP_CLAUSE_WORKER:
12188 case OMP_CLAUSE_VECTOR:
12189 case OMP_CLAUSE_NUM_GANGS:
12190 case OMP_CLAUSE_NUM_WORKERS:
12191 case OMP_CLAUSE_VECTOR_LENGTH:
12192 case OMP_CLAUSE_PRIVATE:
12193 case OMP_CLAUSE_SHARED:
12194 case OMP_CLAUSE_FIRSTPRIVATE:
12195 case OMP_CLAUSE_COPYIN:
12196 case OMP_CLAUSE_COPYPRIVATE:
12197 case OMP_CLAUSE_FINAL:
12198 case OMP_CLAUSE_IF:
12199 case OMP_CLAUSE_NUM_THREADS:
12200 case OMP_CLAUSE_SCHEDULE:
12201 case OMP_CLAUSE_UNIFORM:
12202 case OMP_CLAUSE_DEPEND:
12203 case OMP_CLAUSE_NONTEMPORAL:
12204 case OMP_CLAUSE_NUM_TEAMS:
12205 case OMP_CLAUSE_THREAD_LIMIT:
12206 case OMP_CLAUSE_DEVICE:
12207 case OMP_CLAUSE_DIST_SCHEDULE:
12208 case OMP_CLAUSE_SAFELEN:
12209 case OMP_CLAUSE_SIMDLEN:
12210 case OMP_CLAUSE_ORDERED:
12211 case OMP_CLAUSE_PRIORITY:
12212 case OMP_CLAUSE_GRAINSIZE:
12213 case OMP_CLAUSE_NUM_TASKS:
12214 case OMP_CLAUSE_HINT:
12215 case OMP_CLAUSE_TO_DECLARE:
12216 case OMP_CLAUSE_LINK:
12217 case OMP_CLAUSE_USE_DEVICE_PTR:
12218 case OMP_CLAUSE_IS_DEVICE_PTR:
12219 case OMP_CLAUSE__LOOPTEMP_:
12220 case OMP_CLAUSE__REDUCTEMP_:
12221 case OMP_CLAUSE__SIMDUID_:
12222 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
12223 /* FALLTHRU */
12224
12225 case OMP_CLAUSE_INDEPENDENT:
12226 case OMP_CLAUSE_NOWAIT:
12227 case OMP_CLAUSE_DEFAULT:
12228 case OMP_CLAUSE_UNTIED:
12229 case OMP_CLAUSE_MERGEABLE:
12230 case OMP_CLAUSE_PROC_BIND:
12231 case OMP_CLAUSE_INBRANCH:
12232 case OMP_CLAUSE_NOTINBRANCH:
12233 case OMP_CLAUSE_FOR:
12234 case OMP_CLAUSE_PARALLEL:
12235 case OMP_CLAUSE_SECTIONS:
12236 case OMP_CLAUSE_TASKGROUP:
12237 case OMP_CLAUSE_NOGROUP:
12238 case OMP_CLAUSE_THREADS:
12239 case OMP_CLAUSE_SIMD:
12240 case OMP_CLAUSE_DEFAULTMAP:
12241 case OMP_CLAUSE_AUTO:
12242 case OMP_CLAUSE_SEQ:
12243 case OMP_CLAUSE_TILE:
12244 case OMP_CLAUSE__SIMT_:
12245 case OMP_CLAUSE_IF_PRESENT:
12246 case OMP_CLAUSE_FINALIZE:
12247 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12248
12249 case OMP_CLAUSE_LASTPRIVATE:
12250 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12251 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
12252 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12253
12254 case OMP_CLAUSE_COLLAPSE:
12255 {
12256 int i;
12257 for (i = 0; i < 3; i++)
12258 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12259 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12260 }
12261
12262 case OMP_CLAUSE_LINEAR:
12263 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12264 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
12265 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
12266 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12267
12268 case OMP_CLAUSE_ALIGNED:
12269 case OMP_CLAUSE_FROM:
12270 case OMP_CLAUSE_TO:
12271 case OMP_CLAUSE_MAP:
12272 case OMP_CLAUSE__CACHE_:
12273 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12274 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12275 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12276
12277 case OMP_CLAUSE_REDUCTION:
12278 case OMP_CLAUSE_TASK_REDUCTION:
12279 case OMP_CLAUSE_IN_REDUCTION:
12280 {
12281 int i;
12282 for (i = 0; i < 5; i++)
12283 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12284 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12285 }
12286
12287 default:
12288 gcc_unreachable ();
12289 }
12290 break;
12291
12292 case TARGET_EXPR:
12293 {
12294 int i, len;
12295
12296 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
12297 But, we only want to walk once. */
12298 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
12299 for (i = 0; i < len; ++i)
12300 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12301 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
12302 }
12303
12304 case DECL_EXPR:
12305 /* If this is a TYPE_DECL, walk into the fields of the type that it's
12306 defining. We only want to walk into these fields of a type in this
12307 case and not in the general case of a mere reference to the type.
12308
12309 The criterion is as follows: if the field can be an expression, it
12310 must be walked only here. This should be in keeping with the fields
12311 that are directly gimplified in gimplify_type_sizes in order for the
12312 mark/copy-if-shared/unmark machinery of the gimplifier to work with
12313 variable-sized types.
12314
12315 Note that DECLs get walked as part of processing the BIND_EXPR. */
12316 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
12317 {
12318 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
12319 if (TREE_CODE (*type_p) == ERROR_MARK)
12320 return NULL_TREE;
12321
12322 /* Call the function for the type. See if it returns anything or
12323 doesn't want us to continue. If we are to continue, walk both
12324 the normal fields and those for the declaration case. */
12325 result = (*func) (type_p, &walk_subtrees, data);
12326 if (result || !walk_subtrees)
12327 return result;
12328
12329 /* But do not walk a pointed-to type since it may itself need to
12330 be walked in the declaration case if it isn't anonymous. */
12331 if (!POINTER_TYPE_P (*type_p))
12332 {
12333 result = walk_type_fields (*type_p, func, data, pset, lh);
12334 if (result)
12335 return result;
12336 }
12337
12338 /* If this is a record type, also walk the fields. */
12339 if (RECORD_OR_UNION_TYPE_P (*type_p))
12340 {
12341 tree field;
12342
12343 for (field = TYPE_FIELDS (*type_p); field;
12344 field = DECL_CHAIN (field))
12345 {
12346 /* We'd like to look at the type of the field, but we can
12347 easily get infinite recursion. So assume it's pointed
12348 to elsewhere in the tree. Also, ignore things that
12349 aren't fields. */
12350 if (TREE_CODE (field) != FIELD_DECL)
12351 continue;
12352
12353 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
12354 WALK_SUBTREE (DECL_SIZE (field));
12355 WALK_SUBTREE (DECL_SIZE_UNIT (field));
12356 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
12357 WALK_SUBTREE (DECL_QUALIFIER (field));
12358 }
12359 }
12360
12361 /* Same for scalar types. */
12362 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
12363 || TREE_CODE (*type_p) == ENUMERAL_TYPE
12364 || TREE_CODE (*type_p) == INTEGER_TYPE
12365 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
12366 || TREE_CODE (*type_p) == REAL_TYPE)
12367 {
12368 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
12369 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
12370 }
12371
12372 WALK_SUBTREE (TYPE_SIZE (*type_p));
12373 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
12374 }
12375 /* FALLTHRU */
12376
12377 default:
12378 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
12379 {
12380 int i, len;
12381
12382 /* Walk over all the sub-trees of this operand. */
12383 len = TREE_OPERAND_LENGTH (*tp);
12384
12385 /* Go through the subtrees. We need to do this in forward order so
12386 that the scope of a FOR_EXPR is handled properly. */
12387 if (len)
12388 {
12389 for (i = 0; i < len - 1; ++i)
12390 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12391 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
12392 }
12393 }
12394 /* If this is a type, walk the needed fields in the type. */
12395 else if (TYPE_P (*tp))
12396 return walk_type_fields (*tp, func, data, pset, lh);
12397 break;
12398 }
12399
12400 /* We didn't find what we were looking for. */
12401 return NULL_TREE;
12402
12403 #undef WALK_SUBTREE_TAIL
12404 }
12405 #undef WALK_SUBTREE
12406
12407 /* Like walk_tree, but does not walk duplicate nodes more than once. */
12408
12409 tree
12410 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
12411 walk_tree_lh lh)
12412 {
12413 tree result;
12414
12415 hash_set<tree> pset;
12416 result = walk_tree_1 (tp, func, data, &pset, lh);
12417 return result;
12418 }
12419
12420
12421 tree
12422 tree_block (tree t)
12423 {
12424 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12425
12426 if (IS_EXPR_CODE_CLASS (c))
12427 return LOCATION_BLOCK (t->exp.locus);
12428 gcc_unreachable ();
12429 return NULL;
12430 }
12431
12432 void
12433 tree_set_block (tree t, tree b)
12434 {
12435 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12436
12437 if (IS_EXPR_CODE_CLASS (c))
12438 {
12439 t->exp.locus = set_block (t->exp.locus, b);
12440 }
12441 else
12442 gcc_unreachable ();
12443 }
12444
12445 /* Create a nameless artificial label and put it in the current
12446 function context. The label has a location of LOC. Returns the
12447 newly created label. */
12448
12449 tree
12450 create_artificial_label (location_t loc)
12451 {
12452 tree lab = build_decl (loc,
12453 LABEL_DECL, NULL_TREE, void_type_node);
12454
12455 DECL_ARTIFICIAL (lab) = 1;
12456 DECL_IGNORED_P (lab) = 1;
12457 DECL_CONTEXT (lab) = current_function_decl;
12458 return lab;
12459 }
12460
12461 /* Given a tree, try to return a useful variable name that we can use
12462 to prefix a temporary that is being assigned the value of the tree.
12463 I.E. given <temp> = &A, return A. */
12464
12465 const char *
12466 get_name (tree t)
12467 {
12468 tree stripped_decl;
12469
12470 stripped_decl = t;
12471 STRIP_NOPS (stripped_decl);
12472 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
12473 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
12474 else if (TREE_CODE (stripped_decl) == SSA_NAME)
12475 {
12476 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
12477 if (!name)
12478 return NULL;
12479 return IDENTIFIER_POINTER (name);
12480 }
12481 else
12482 {
12483 switch (TREE_CODE (stripped_decl))
12484 {
12485 case ADDR_EXPR:
12486 return get_name (TREE_OPERAND (stripped_decl, 0));
12487 default:
12488 return NULL;
12489 }
12490 }
12491 }
12492
12493 /* Return true if TYPE has a variable argument list. */
12494
12495 bool
12496 stdarg_p (const_tree fntype)
12497 {
12498 function_args_iterator args_iter;
12499 tree n = NULL_TREE, t;
12500
12501 if (!fntype)
12502 return false;
12503
12504 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
12505 {
12506 n = t;
12507 }
12508
12509 return n != NULL_TREE && n != void_type_node;
12510 }
12511
12512 /* Return true if TYPE has a prototype. */
12513
12514 bool
12515 prototype_p (const_tree fntype)
12516 {
12517 tree t;
12518
12519 gcc_assert (fntype != NULL_TREE);
12520
12521 t = TYPE_ARG_TYPES (fntype);
12522 return (t != NULL_TREE);
12523 }
12524
12525 /* If BLOCK is inlined from an __attribute__((__artificial__))
12526 routine, return pointer to location from where it has been
12527 called. */
12528 location_t *
12529 block_nonartificial_location (tree block)
12530 {
12531 location_t *ret = NULL;
12532
12533 while (block && TREE_CODE (block) == BLOCK
12534 && BLOCK_ABSTRACT_ORIGIN (block))
12535 {
12536 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12537 if (TREE_CODE (ao) == FUNCTION_DECL)
12538 {
12539 /* If AO is an artificial inline, point RET to the
12540 call site locus at which it has been inlined and continue
12541 the loop, in case AO's caller is also an artificial
12542 inline. */
12543 if (DECL_DECLARED_INLINE_P (ao)
12544 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
12545 ret = &BLOCK_SOURCE_LOCATION (block);
12546 else
12547 break;
12548 }
12549 else if (TREE_CODE (ao) != BLOCK)
12550 break;
12551
12552 block = BLOCK_SUPERCONTEXT (block);
12553 }
12554 return ret;
12555 }
12556
12557
12558 /* If EXP is inlined from an __attribute__((__artificial__))
12559 function, return the location of the original call expression. */
12560
12561 location_t
12562 tree_nonartificial_location (tree exp)
12563 {
12564 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12565
12566 if (loc)
12567 return *loc;
12568 else
12569 return EXPR_LOCATION (exp);
12570 }
12571
12572
12573 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12574 nodes. */
12575
12576 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12577
12578 hashval_t
12579 cl_option_hasher::hash (tree x)
12580 {
12581 const_tree const t = x;
12582 const char *p;
12583 size_t i;
12584 size_t len = 0;
12585 hashval_t hash = 0;
12586
12587 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12588 {
12589 p = (const char *)TREE_OPTIMIZATION (t);
12590 len = sizeof (struct cl_optimization);
12591 }
12592
12593 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12594 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12595
12596 else
12597 gcc_unreachable ();
12598
12599 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12600 something else. */
12601 for (i = 0; i < len; i++)
12602 if (p[i])
12603 hash = (hash << 4) ^ ((i << 2) | p[i]);
12604
12605 return hash;
12606 }
12607
12608 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12609 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12610 same. */
12611
12612 bool
12613 cl_option_hasher::equal (tree x, tree y)
12614 {
12615 const_tree const xt = x;
12616 const_tree const yt = y;
12617
12618 if (TREE_CODE (xt) != TREE_CODE (yt))
12619 return 0;
12620
12621 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12622 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12623 TREE_OPTIMIZATION (yt));
12624 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12625 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12626 TREE_TARGET_OPTION (yt));
12627 else
12628 gcc_unreachable ();
12629 }
12630
12631 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
12632
12633 tree
12634 build_optimization_node (struct gcc_options *opts)
12635 {
12636 tree t;
12637
12638 /* Use the cache of optimization nodes. */
12639
12640 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12641 opts);
12642
12643 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12644 t = *slot;
12645 if (!t)
12646 {
12647 /* Insert this one into the hash table. */
12648 t = cl_optimization_node;
12649 *slot = t;
12650
12651 /* Make a new node for next time round. */
12652 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12653 }
12654
12655 return t;
12656 }
12657
12658 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12659
12660 tree
12661 build_target_option_node (struct gcc_options *opts)
12662 {
12663 tree t;
12664
12665 /* Use the cache of optimization nodes. */
12666
12667 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12668 opts);
12669
12670 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12671 t = *slot;
12672 if (!t)
12673 {
12674 /* Insert this one into the hash table. */
12675 t = cl_target_option_node;
12676 *slot = t;
12677
12678 /* Make a new node for next time round. */
12679 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12680 }
12681
12682 return t;
12683 }
12684
12685 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12686 so that they aren't saved during PCH writing. */
12687
12688 void
12689 prepare_target_option_nodes_for_pch (void)
12690 {
12691 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12692 for (; iter != cl_option_hash_table->end (); ++iter)
12693 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12694 TREE_TARGET_GLOBALS (*iter) = NULL;
12695 }
12696
12697 /* Determine the "ultimate origin" of a block. */
12698
12699 tree
12700 block_ultimate_origin (const_tree block)
12701 {
12702 tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12703
12704 if (origin == NULL_TREE)
12705 return NULL_TREE;
12706 else
12707 {
12708 gcc_checking_assert ((DECL_P (origin)
12709 && DECL_ORIGIN (origin) == origin)
12710 || BLOCK_ORIGIN (origin) == origin);
12711 return origin;
12712 }
12713 }
12714
12715 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12716 no instruction. */
12717
12718 bool
12719 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12720 {
12721 /* Do not strip casts into or out of differing address spaces. */
12722 if (POINTER_TYPE_P (outer_type)
12723 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12724 {
12725 if (!POINTER_TYPE_P (inner_type)
12726 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12727 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12728 return false;
12729 }
12730 else if (POINTER_TYPE_P (inner_type)
12731 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12732 {
12733 /* We already know that outer_type is not a pointer with
12734 a non-generic address space. */
12735 return false;
12736 }
12737
12738 /* Use precision rather then machine mode when we can, which gives
12739 the correct answer even for submode (bit-field) types. */
12740 if ((INTEGRAL_TYPE_P (outer_type)
12741 || POINTER_TYPE_P (outer_type)
12742 || TREE_CODE (outer_type) == OFFSET_TYPE)
12743 && (INTEGRAL_TYPE_P (inner_type)
12744 || POINTER_TYPE_P (inner_type)
12745 || TREE_CODE (inner_type) == OFFSET_TYPE))
12746 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12747
12748 /* Otherwise fall back on comparing machine modes (e.g. for
12749 aggregate types, floats). */
12750 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12751 }
12752
12753 /* Return true iff conversion in EXP generates no instruction. Mark
12754 it inline so that we fully inline into the stripping functions even
12755 though we have two uses of this function. */
12756
12757 static inline bool
12758 tree_nop_conversion (const_tree exp)
12759 {
12760 tree outer_type, inner_type;
12761
12762 if (location_wrapper_p (exp))
12763 return true;
12764 if (!CONVERT_EXPR_P (exp)
12765 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12766 return false;
12767 if (TREE_OPERAND (exp, 0) == error_mark_node)
12768 return false;
12769
12770 outer_type = TREE_TYPE (exp);
12771 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12772
12773 if (!inner_type)
12774 return false;
12775
12776 return tree_nop_conversion_p (outer_type, inner_type);
12777 }
12778
12779 /* Return true iff conversion in EXP generates no instruction. Don't
12780 consider conversions changing the signedness. */
12781
12782 static bool
12783 tree_sign_nop_conversion (const_tree exp)
12784 {
12785 tree outer_type, inner_type;
12786
12787 if (!tree_nop_conversion (exp))
12788 return false;
12789
12790 outer_type = TREE_TYPE (exp);
12791 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12792
12793 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12794 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12795 }
12796
12797 /* Strip conversions from EXP according to tree_nop_conversion and
12798 return the resulting expression. */
12799
12800 tree
12801 tree_strip_nop_conversions (tree exp)
12802 {
12803 while (tree_nop_conversion (exp))
12804 exp = TREE_OPERAND (exp, 0);
12805 return exp;
12806 }
12807
12808 /* Strip conversions from EXP according to tree_sign_nop_conversion
12809 and return the resulting expression. */
12810
12811 tree
12812 tree_strip_sign_nop_conversions (tree exp)
12813 {
12814 while (tree_sign_nop_conversion (exp))
12815 exp = TREE_OPERAND (exp, 0);
12816 return exp;
12817 }
12818
12819 /* Avoid any floating point extensions from EXP. */
12820 tree
12821 strip_float_extensions (tree exp)
12822 {
12823 tree sub, expt, subt;
12824
12825 /* For floating point constant look up the narrowest type that can hold
12826 it properly and handle it like (type)(narrowest_type)constant.
12827 This way we can optimize for instance a=a*2.0 where "a" is float
12828 but 2.0 is double constant. */
12829 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12830 {
12831 REAL_VALUE_TYPE orig;
12832 tree type = NULL;
12833
12834 orig = TREE_REAL_CST (exp);
12835 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12836 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12837 type = float_type_node;
12838 else if (TYPE_PRECISION (TREE_TYPE (exp))
12839 > TYPE_PRECISION (double_type_node)
12840 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12841 type = double_type_node;
12842 if (type)
12843 return build_real_truncate (type, orig);
12844 }
12845
12846 if (!CONVERT_EXPR_P (exp))
12847 return exp;
12848
12849 sub = TREE_OPERAND (exp, 0);
12850 subt = TREE_TYPE (sub);
12851 expt = TREE_TYPE (exp);
12852
12853 if (!FLOAT_TYPE_P (subt))
12854 return exp;
12855
12856 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12857 return exp;
12858
12859 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12860 return exp;
12861
12862 return strip_float_extensions (sub);
12863 }
12864
12865 /* Strip out all handled components that produce invariant
12866 offsets. */
12867
12868 const_tree
12869 strip_invariant_refs (const_tree op)
12870 {
12871 while (handled_component_p (op))
12872 {
12873 switch (TREE_CODE (op))
12874 {
12875 case ARRAY_REF:
12876 case ARRAY_RANGE_REF:
12877 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12878 || TREE_OPERAND (op, 2) != NULL_TREE
12879 || TREE_OPERAND (op, 3) != NULL_TREE)
12880 return NULL;
12881 break;
12882
12883 case COMPONENT_REF:
12884 if (TREE_OPERAND (op, 2) != NULL_TREE)
12885 return NULL;
12886 break;
12887
12888 default:;
12889 }
12890 op = TREE_OPERAND (op, 0);
12891 }
12892
12893 return op;
12894 }
12895
12896 static GTY(()) tree gcc_eh_personality_decl;
12897
12898 /* Return the GCC personality function decl. */
12899
12900 tree
12901 lhd_gcc_personality (void)
12902 {
12903 if (!gcc_eh_personality_decl)
12904 gcc_eh_personality_decl = build_personality_function ("gcc");
12905 return gcc_eh_personality_decl;
12906 }
12907
12908 /* TARGET is a call target of GIMPLE call statement
12909 (obtained by gimple_call_fn). Return true if it is
12910 OBJ_TYPE_REF representing an virtual call of C++ method.
12911 (As opposed to OBJ_TYPE_REF representing objc calls
12912 through a cast where middle-end devirtualization machinery
12913 can't apply.) */
12914
12915 bool
12916 virtual_method_call_p (const_tree target)
12917 {
12918 if (TREE_CODE (target) != OBJ_TYPE_REF)
12919 return false;
12920 tree t = TREE_TYPE (target);
12921 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12922 t = TREE_TYPE (t);
12923 if (TREE_CODE (t) == FUNCTION_TYPE)
12924 return false;
12925 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12926 /* If we do not have BINFO associated, it means that type was built
12927 without devirtualization enabled. Do not consider this a virtual
12928 call. */
12929 if (!TYPE_BINFO (obj_type_ref_class (target)))
12930 return false;
12931 return true;
12932 }
12933
12934 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12935
12936 static tree
12937 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12938 {
12939 unsigned int i;
12940 tree base_binfo, b;
12941
12942 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12943 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12944 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12945 return base_binfo;
12946 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12947 return b;
12948 return NULL;
12949 }
12950
12951 /* Try to find a base info of BINFO that would have its field decl at offset
12952 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12953 found, return, otherwise return NULL_TREE. */
12954
12955 tree
12956 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12957 {
12958 tree type = BINFO_TYPE (binfo);
12959
12960 while (true)
12961 {
12962 HOST_WIDE_INT pos, size;
12963 tree fld;
12964 int i;
12965
12966 if (types_same_for_odr (type, expected_type))
12967 return binfo;
12968 if (maybe_lt (offset, 0))
12969 return NULL_TREE;
12970
12971 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12972 {
12973 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12974 continue;
12975
12976 pos = int_bit_position (fld);
12977 size = tree_to_uhwi (DECL_SIZE (fld));
12978 if (known_in_range_p (offset, pos, size))
12979 break;
12980 }
12981 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12982 return NULL_TREE;
12983
12984 /* Offset 0 indicates the primary base, whose vtable contents are
12985 represented in the binfo for the derived class. */
12986 else if (maybe_ne (offset, 0))
12987 {
12988 tree found_binfo = NULL, base_binfo;
12989 /* Offsets in BINFO are in bytes relative to the whole structure
12990 while POS is in bits relative to the containing field. */
12991 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12992 / BITS_PER_UNIT);
12993
12994 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12995 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12996 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12997 {
12998 found_binfo = base_binfo;
12999 break;
13000 }
13001 if (found_binfo)
13002 binfo = found_binfo;
13003 else
13004 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
13005 binfo_offset);
13006 }
13007
13008 type = TREE_TYPE (fld);
13009 offset -= pos;
13010 }
13011 }
13012
13013 /* Returns true if X is a typedef decl. */
13014
13015 bool
13016 is_typedef_decl (const_tree x)
13017 {
13018 return (x && TREE_CODE (x) == TYPE_DECL
13019 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
13020 }
13021
13022 /* Returns true iff TYPE is a type variant created for a typedef. */
13023
13024 bool
13025 typedef_variant_p (const_tree type)
13026 {
13027 return is_typedef_decl (TYPE_NAME (type));
13028 }
13029
13030 /* A class to handle converting a string that might contain
13031 control characters, (eg newline, form-feed, etc), into one
13032 in which contains escape sequences instead. */
13033
13034 class escaped_string
13035 {
13036 public:
13037 escaped_string () { m_owned = false; m_str = NULL; };
13038 ~escaped_string () { if (m_owned) free (m_str); }
13039 operator const char *() const { return (const char *) m_str; }
13040 void escape (const char *);
13041 private:
13042 char *m_str;
13043 bool m_owned;
13044 };
13045
13046 /* PR 84195: Replace control characters in "unescaped" with their
13047 escaped equivalents. Allow newlines if -fmessage-length has
13048 been set to a non-zero value. This is done here, rather than
13049 where the attribute is recorded as the message length can
13050 change between these two locations. */
13051
13052 void
13053 escaped_string::escape (const char *unescaped)
13054 {
13055 char *escaped;
13056 size_t i, new_i, len;
13057
13058 if (m_owned)
13059 free (m_str);
13060
13061 m_str = const_cast<char *> (unescaped);
13062 m_owned = false;
13063
13064 if (unescaped == NULL || *unescaped == 0)
13065 return;
13066
13067 len = strlen (unescaped);
13068 escaped = NULL;
13069 new_i = 0;
13070
13071 for (i = 0; i < len; i++)
13072 {
13073 char c = unescaped[i];
13074
13075 if (!ISCNTRL (c))
13076 {
13077 if (escaped)
13078 escaped[new_i++] = c;
13079 continue;
13080 }
13081
13082 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
13083 {
13084 if (escaped == NULL)
13085 {
13086 /* We only allocate space for a new string if we
13087 actually encounter a control character that
13088 needs replacing. */
13089 escaped = (char *) xmalloc (len * 2 + 1);
13090 strncpy (escaped, unescaped, i);
13091 new_i = i;
13092 }
13093
13094 escaped[new_i++] = '\\';
13095
13096 switch (c)
13097 {
13098 case '\a': escaped[new_i++] = 'a'; break;
13099 case '\b': escaped[new_i++] = 'b'; break;
13100 case '\f': escaped[new_i++] = 'f'; break;
13101 case '\n': escaped[new_i++] = 'n'; break;
13102 case '\r': escaped[new_i++] = 'r'; break;
13103 case '\t': escaped[new_i++] = 't'; break;
13104 case '\v': escaped[new_i++] = 'v'; break;
13105 default: escaped[new_i++] = '?'; break;
13106 }
13107 }
13108 else if (escaped)
13109 escaped[new_i++] = c;
13110 }
13111
13112 if (escaped)
13113 {
13114 escaped[new_i] = 0;
13115 m_str = escaped;
13116 m_owned = true;
13117 }
13118 }
13119
13120 /* Warn about a use of an identifier which was marked deprecated. Returns
13121 whether a warning was given. */
13122
13123 bool
13124 warn_deprecated_use (tree node, tree attr)
13125 {
13126 escaped_string msg;
13127
13128 if (node == 0 || !warn_deprecated_decl)
13129 return false;
13130
13131 if (!attr)
13132 {
13133 if (DECL_P (node))
13134 attr = DECL_ATTRIBUTES (node);
13135 else if (TYPE_P (node))
13136 {
13137 tree decl = TYPE_STUB_DECL (node);
13138 if (decl)
13139 attr = lookup_attribute ("deprecated",
13140 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
13141 }
13142 }
13143
13144 if (attr)
13145 attr = lookup_attribute ("deprecated", attr);
13146
13147 if (attr)
13148 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
13149
13150 bool w = false;
13151 if (DECL_P (node))
13152 {
13153 auto_diagnostic_group d;
13154 if (msg)
13155 w = warning (OPT_Wdeprecated_declarations,
13156 "%qD is deprecated: %s", node, (const char *) msg);
13157 else
13158 w = warning (OPT_Wdeprecated_declarations,
13159 "%qD is deprecated", node);
13160 if (w)
13161 inform (DECL_SOURCE_LOCATION (node), "declared here");
13162 }
13163 else if (TYPE_P (node))
13164 {
13165 tree what = NULL_TREE;
13166 tree decl = TYPE_STUB_DECL (node);
13167
13168 if (TYPE_NAME (node))
13169 {
13170 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
13171 what = TYPE_NAME (node);
13172 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
13173 && DECL_NAME (TYPE_NAME (node)))
13174 what = DECL_NAME (TYPE_NAME (node));
13175 }
13176
13177 auto_diagnostic_group d;
13178 if (what)
13179 {
13180 if (msg)
13181 w = warning (OPT_Wdeprecated_declarations,
13182 "%qE is deprecated: %s", what, (const char *) msg);
13183 else
13184 w = warning (OPT_Wdeprecated_declarations,
13185 "%qE is deprecated", what);
13186 }
13187 else
13188 {
13189 if (msg)
13190 w = warning (OPT_Wdeprecated_declarations,
13191 "type is deprecated: %s", (const char *) msg);
13192 else
13193 w = warning (OPT_Wdeprecated_declarations,
13194 "type is deprecated");
13195 }
13196
13197 if (w && decl)
13198 inform (DECL_SOURCE_LOCATION (decl), "declared here");
13199 }
13200
13201 return w;
13202 }
13203
13204 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
13205 somewhere in it. */
13206
13207 bool
13208 contains_bitfld_component_ref_p (const_tree ref)
13209 {
13210 while (handled_component_p (ref))
13211 {
13212 if (TREE_CODE (ref) == COMPONENT_REF
13213 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
13214 return true;
13215 ref = TREE_OPERAND (ref, 0);
13216 }
13217
13218 return false;
13219 }
13220
13221 /* Try to determine whether a TRY_CATCH expression can fall through.
13222 This is a subroutine of block_may_fallthru. */
13223
13224 static bool
13225 try_catch_may_fallthru (const_tree stmt)
13226 {
13227 tree_stmt_iterator i;
13228
13229 /* If the TRY block can fall through, the whole TRY_CATCH can
13230 fall through. */
13231 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
13232 return true;
13233
13234 i = tsi_start (TREE_OPERAND (stmt, 1));
13235 switch (TREE_CODE (tsi_stmt (i)))
13236 {
13237 case CATCH_EXPR:
13238 /* We expect to see a sequence of CATCH_EXPR trees, each with a
13239 catch expression and a body. The whole TRY_CATCH may fall
13240 through iff any of the catch bodies falls through. */
13241 for (; !tsi_end_p (i); tsi_next (&i))
13242 {
13243 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
13244 return true;
13245 }
13246 return false;
13247
13248 case EH_FILTER_EXPR:
13249 /* The exception filter expression only matters if there is an
13250 exception. If the exception does not match EH_FILTER_TYPES,
13251 we will execute EH_FILTER_FAILURE, and we will fall through
13252 if that falls through. If the exception does match
13253 EH_FILTER_TYPES, the stack unwinder will continue up the
13254 stack, so we will not fall through. We don't know whether we
13255 will throw an exception which matches EH_FILTER_TYPES or not,
13256 so we just ignore EH_FILTER_TYPES and assume that we might
13257 throw an exception which doesn't match. */
13258 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
13259
13260 default:
13261 /* This case represents statements to be executed when an
13262 exception occurs. Those statements are implicitly followed
13263 by a RESX statement to resume execution after the exception.
13264 So in this case the TRY_CATCH never falls through. */
13265 return false;
13266 }
13267 }
13268
13269 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
13270 need not be 100% accurate; simply be conservative and return true if we
13271 don't know. This is used only to avoid stupidly generating extra code.
13272 If we're wrong, we'll just delete the extra code later. */
13273
13274 bool
13275 block_may_fallthru (const_tree block)
13276 {
13277 /* This CONST_CAST is okay because expr_last returns its argument
13278 unmodified and we assign it to a const_tree. */
13279 const_tree stmt = expr_last (CONST_CAST_TREE (block));
13280
13281 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
13282 {
13283 case GOTO_EXPR:
13284 case RETURN_EXPR:
13285 /* Easy cases. If the last statement of the block implies
13286 control transfer, then we can't fall through. */
13287 return false;
13288
13289 case SWITCH_EXPR:
13290 /* If there is a default: label or case labels cover all possible
13291 SWITCH_COND values, then the SWITCH_EXPR will transfer control
13292 to some case label in all cases and all we care is whether the
13293 SWITCH_BODY falls through. */
13294 if (SWITCH_ALL_CASES_P (stmt))
13295 return block_may_fallthru (SWITCH_BODY (stmt));
13296 return true;
13297
13298 case COND_EXPR:
13299 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
13300 return true;
13301 return block_may_fallthru (COND_EXPR_ELSE (stmt));
13302
13303 case BIND_EXPR:
13304 return block_may_fallthru (BIND_EXPR_BODY (stmt));
13305
13306 case TRY_CATCH_EXPR:
13307 return try_catch_may_fallthru (stmt);
13308
13309 case TRY_FINALLY_EXPR:
13310 /* The finally clause is always executed after the try clause,
13311 so if it does not fall through, then the try-finally will not
13312 fall through. Otherwise, if the try clause does not fall
13313 through, then when the finally clause falls through it will
13314 resume execution wherever the try clause was going. So the
13315 whole try-finally will only fall through if both the try
13316 clause and the finally clause fall through. */
13317 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
13318 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
13319
13320 case MODIFY_EXPR:
13321 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
13322 stmt = TREE_OPERAND (stmt, 1);
13323 else
13324 return true;
13325 /* FALLTHRU */
13326
13327 case CALL_EXPR:
13328 /* Functions that do not return do not fall through. */
13329 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
13330
13331 case CLEANUP_POINT_EXPR:
13332 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13333
13334 case TARGET_EXPR:
13335 return block_may_fallthru (TREE_OPERAND (stmt, 1));
13336
13337 case ERROR_MARK:
13338 return true;
13339
13340 default:
13341 return lang_hooks.block_may_fallthru (stmt);
13342 }
13343 }
13344
13345 /* True if we are using EH to handle cleanups. */
13346 static bool using_eh_for_cleanups_flag = false;
13347
13348 /* This routine is called from front ends to indicate eh should be used for
13349 cleanups. */
13350 void
13351 using_eh_for_cleanups (void)
13352 {
13353 using_eh_for_cleanups_flag = true;
13354 }
13355
13356 /* Query whether EH is used for cleanups. */
13357 bool
13358 using_eh_for_cleanups_p (void)
13359 {
13360 return using_eh_for_cleanups_flag;
13361 }
13362
13363 /* Wrapper for tree_code_name to ensure that tree code is valid */
13364 const char *
13365 get_tree_code_name (enum tree_code code)
13366 {
13367 const char *invalid = "<invalid tree code>";
13368
13369 if (code >= MAX_TREE_CODES)
13370 return invalid;
13371
13372 return tree_code_name[code];
13373 }
13374
13375 /* Drops the TREE_OVERFLOW flag from T. */
13376
13377 tree
13378 drop_tree_overflow (tree t)
13379 {
13380 gcc_checking_assert (TREE_OVERFLOW (t));
13381
13382 /* For tree codes with a sharing machinery re-build the result. */
13383 if (poly_int_tree_p (t))
13384 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
13385
13386 /* For VECTOR_CST, remove the overflow bits from the encoded elements
13387 and canonicalize the result. */
13388 if (TREE_CODE (t) == VECTOR_CST)
13389 {
13390 tree_vector_builder builder;
13391 builder.new_unary_operation (TREE_TYPE (t), t, true);
13392 unsigned int count = builder.encoded_nelts ();
13393 for (unsigned int i = 0; i < count; ++i)
13394 {
13395 tree elt = VECTOR_CST_ELT (t, i);
13396 if (TREE_OVERFLOW (elt))
13397 elt = drop_tree_overflow (elt);
13398 builder.quick_push (elt);
13399 }
13400 return builder.build ();
13401 }
13402
13403 /* Otherwise, as all tcc_constants are possibly shared, copy the node
13404 and drop the flag. */
13405 t = copy_node (t);
13406 TREE_OVERFLOW (t) = 0;
13407
13408 /* For constants that contain nested constants, drop the flag
13409 from those as well. */
13410 if (TREE_CODE (t) == COMPLEX_CST)
13411 {
13412 if (TREE_OVERFLOW (TREE_REALPART (t)))
13413 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
13414 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
13415 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
13416 }
13417
13418 return t;
13419 }
13420
13421 /* Given a memory reference expression T, return its base address.
13422 The base address of a memory reference expression is the main
13423 object being referenced. For instance, the base address for
13424 'array[i].fld[j]' is 'array'. You can think of this as stripping
13425 away the offset part from a memory address.
13426
13427 This function calls handled_component_p to strip away all the inner
13428 parts of the memory reference until it reaches the base object. */
13429
13430 tree
13431 get_base_address (tree t)
13432 {
13433 while (handled_component_p (t))
13434 t = TREE_OPERAND (t, 0);
13435
13436 if ((TREE_CODE (t) == MEM_REF
13437 || TREE_CODE (t) == TARGET_MEM_REF)
13438 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
13439 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
13440
13441 /* ??? Either the alias oracle or all callers need to properly deal
13442 with WITH_SIZE_EXPRs before we can look through those. */
13443 if (TREE_CODE (t) == WITH_SIZE_EXPR)
13444 return NULL_TREE;
13445
13446 return t;
13447 }
13448
13449 /* Return a tree of sizetype representing the size, in bytes, of the element
13450 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13451
13452 tree
13453 array_ref_element_size (tree exp)
13454 {
13455 tree aligned_size = TREE_OPERAND (exp, 3);
13456 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
13457 location_t loc = EXPR_LOCATION (exp);
13458
13459 /* If a size was specified in the ARRAY_REF, it's the size measured
13460 in alignment units of the element type. So multiply by that value. */
13461 if (aligned_size)
13462 {
13463 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13464 sizetype from another type of the same width and signedness. */
13465 if (TREE_TYPE (aligned_size) != sizetype)
13466 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
13467 return size_binop_loc (loc, MULT_EXPR, aligned_size,
13468 size_int (TYPE_ALIGN_UNIT (elmt_type)));
13469 }
13470
13471 /* Otherwise, take the size from that of the element type. Substitute
13472 any PLACEHOLDER_EXPR that we have. */
13473 else
13474 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
13475 }
13476
13477 /* Return a tree representing the lower bound of the array mentioned in
13478 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13479
13480 tree
13481 array_ref_low_bound (tree exp)
13482 {
13483 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13484
13485 /* If a lower bound is specified in EXP, use it. */
13486 if (TREE_OPERAND (exp, 2))
13487 return TREE_OPERAND (exp, 2);
13488
13489 /* Otherwise, if there is a domain type and it has a lower bound, use it,
13490 substituting for a PLACEHOLDER_EXPR as needed. */
13491 if (domain_type && TYPE_MIN_VALUE (domain_type))
13492 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
13493
13494 /* Otherwise, return a zero of the appropriate type. */
13495 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
13496 }
13497
13498 /* Return a tree representing the upper bound of the array mentioned in
13499 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13500
13501 tree
13502 array_ref_up_bound (tree exp)
13503 {
13504 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13505
13506 /* If there is a domain type and it has an upper bound, use it, substituting
13507 for a PLACEHOLDER_EXPR as needed. */
13508 if (domain_type && TYPE_MAX_VALUE (domain_type))
13509 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
13510
13511 /* Otherwise fail. */
13512 return NULL_TREE;
13513 }
13514
13515 /* Returns true if REF is an array reference or a component reference
13516 to an array at the end of a structure.
13517 If this is the case, the array may be allocated larger
13518 than its upper bound implies. */
13519
13520 bool
13521 array_at_struct_end_p (tree ref)
13522 {
13523 tree atype;
13524
13525 if (TREE_CODE (ref) == ARRAY_REF
13526 || TREE_CODE (ref) == ARRAY_RANGE_REF)
13527 {
13528 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13529 ref = TREE_OPERAND (ref, 0);
13530 }
13531 else if (TREE_CODE (ref) == COMPONENT_REF
13532 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13533 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13534 else
13535 return false;
13536
13537 if (TREE_CODE (ref) == STRING_CST)
13538 return false;
13539
13540 tree ref_to_array = ref;
13541 while (handled_component_p (ref))
13542 {
13543 /* If the reference chain contains a component reference to a
13544 non-union type and there follows another field the reference
13545 is not at the end of a structure. */
13546 if (TREE_CODE (ref) == COMPONENT_REF)
13547 {
13548 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13549 {
13550 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13551 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13552 nextf = DECL_CHAIN (nextf);
13553 if (nextf)
13554 return false;
13555 }
13556 }
13557 /* If we have a multi-dimensional array we do not consider
13558 a non-innermost dimension as flex array if the whole
13559 multi-dimensional array is at struct end.
13560 Same for an array of aggregates with a trailing array
13561 member. */
13562 else if (TREE_CODE (ref) == ARRAY_REF)
13563 return false;
13564 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13565 ;
13566 /* If we view an underlying object as sth else then what we
13567 gathered up to now is what we have to rely on. */
13568 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13569 break;
13570 else
13571 gcc_unreachable ();
13572
13573 ref = TREE_OPERAND (ref, 0);
13574 }
13575
13576 /* The array now is at struct end. Treat flexible arrays as
13577 always subject to extend, even into just padding constrained by
13578 an underlying decl. */
13579 if (! TYPE_SIZE (atype)
13580 || ! TYPE_DOMAIN (atype)
13581 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13582 return true;
13583
13584 if (TREE_CODE (ref) == MEM_REF
13585 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13586 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13587
13588 /* If the reference is based on a declared entity, the size of the array
13589 is constrained by its given domain. (Do not trust commons PR/69368). */
13590 if (DECL_P (ref)
13591 && !(flag_unconstrained_commons
13592 && VAR_P (ref) && DECL_COMMON (ref))
13593 && DECL_SIZE_UNIT (ref)
13594 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13595 {
13596 /* Check whether the array domain covers all of the available
13597 padding. */
13598 poly_int64 offset;
13599 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13600 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13601 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13602 return true;
13603 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13604 return true;
13605
13606 /* If at least one extra element fits it is a flexarray. */
13607 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13608 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13609 + 2)
13610 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13611 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13612 return true;
13613
13614 return false;
13615 }
13616
13617 return true;
13618 }
13619
13620 /* Return a tree representing the offset, in bytes, of the field referenced
13621 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13622
13623 tree
13624 component_ref_field_offset (tree exp)
13625 {
13626 tree aligned_offset = TREE_OPERAND (exp, 2);
13627 tree field = TREE_OPERAND (exp, 1);
13628 location_t loc = EXPR_LOCATION (exp);
13629
13630 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13631 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13632 value. */
13633 if (aligned_offset)
13634 {
13635 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13636 sizetype from another type of the same width and signedness. */
13637 if (TREE_TYPE (aligned_offset) != sizetype)
13638 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13639 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13640 size_int (DECL_OFFSET_ALIGN (field)
13641 / BITS_PER_UNIT));
13642 }
13643
13644 /* Otherwise, take the offset from that of the field. Substitute
13645 any PLACEHOLDER_EXPR that we have. */
13646 else
13647 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13648 }
13649
13650 /* Return the machine mode of T. For vectors, returns the mode of the
13651 inner type. The main use case is to feed the result to HONOR_NANS,
13652 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13653
13654 machine_mode
13655 element_mode (const_tree t)
13656 {
13657 if (!TYPE_P (t))
13658 t = TREE_TYPE (t);
13659 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13660 t = TREE_TYPE (t);
13661 return TYPE_MODE (t);
13662 }
13663
13664 /* Vector types need to re-check the target flags each time we report
13665 the machine mode. We need to do this because attribute target can
13666 change the result of vector_mode_supported_p and have_regs_of_mode
13667 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13668 change on a per-function basis. */
13669 /* ??? Possibly a better solution is to run through all the types
13670 referenced by a function and re-compute the TYPE_MODE once, rather
13671 than make the TYPE_MODE macro call a function. */
13672
13673 machine_mode
13674 vector_type_mode (const_tree t)
13675 {
13676 machine_mode mode;
13677
13678 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13679
13680 mode = t->type_common.mode;
13681 if (VECTOR_MODE_P (mode)
13682 && (!targetm.vector_mode_supported_p (mode)
13683 || !have_regs_of_mode[mode]))
13684 {
13685 scalar_int_mode innermode;
13686
13687 /* For integers, try mapping it to a same-sized scalar mode. */
13688 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13689 {
13690 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13691 * GET_MODE_BITSIZE (innermode));
13692 scalar_int_mode mode;
13693 if (int_mode_for_size (size, 0).exists (&mode)
13694 && have_regs_of_mode[mode])
13695 return mode;
13696 }
13697
13698 return BLKmode;
13699 }
13700
13701 return mode;
13702 }
13703
13704 /* Verify that basic properties of T match TV and thus T can be a variant of
13705 TV. TV should be the more specified variant (i.e. the main variant). */
13706
13707 static bool
13708 verify_type_variant (const_tree t, tree tv)
13709 {
13710 /* Type variant can differ by:
13711
13712 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13713 ENCODE_QUAL_ADDR_SPACE.
13714 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13715 in this case some values may not be set in the variant types
13716 (see TYPE_COMPLETE_P checks).
13717 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13718 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13719 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13720 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13721 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13722 this is necessary to make it possible to merge types form different TUs
13723 - arrays, pointers and references may have TREE_TYPE that is a variant
13724 of TREE_TYPE of their main variants.
13725 - aggregates may have new TYPE_FIELDS list that list variants of
13726 the main variant TYPE_FIELDS.
13727 - vector types may differ by TYPE_VECTOR_OPAQUE
13728 */
13729
13730 /* Convenience macro for matching individual fields. */
13731 #define verify_variant_match(flag) \
13732 do { \
13733 if (flag (tv) != flag (t)) \
13734 { \
13735 error ("type variant differs by %s", #flag); \
13736 debug_tree (tv); \
13737 return false; \
13738 } \
13739 } while (false)
13740
13741 /* tree_base checks. */
13742
13743 verify_variant_match (TREE_CODE);
13744 /* FIXME: Ada builds non-artificial variants of artificial types. */
13745 if (TYPE_ARTIFICIAL (tv) && 0)
13746 verify_variant_match (TYPE_ARTIFICIAL);
13747 if (POINTER_TYPE_P (tv))
13748 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13749 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13750 verify_variant_match (TYPE_UNSIGNED);
13751 verify_variant_match (TYPE_PACKED);
13752 if (TREE_CODE (t) == REFERENCE_TYPE)
13753 verify_variant_match (TYPE_REF_IS_RVALUE);
13754 if (AGGREGATE_TYPE_P (t))
13755 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13756 else
13757 verify_variant_match (TYPE_SATURATING);
13758 /* FIXME: This check trigger during libstdc++ build. */
13759 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13760 verify_variant_match (TYPE_FINAL_P);
13761
13762 /* tree_type_common checks. */
13763
13764 if (COMPLETE_TYPE_P (t))
13765 {
13766 verify_variant_match (TYPE_MODE);
13767 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13768 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13769 verify_variant_match (TYPE_SIZE);
13770 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13771 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13772 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13773 {
13774 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13775 TYPE_SIZE_UNIT (tv), 0));
13776 error ("type variant has different TYPE_SIZE_UNIT");
13777 debug_tree (tv);
13778 error ("type variant's TYPE_SIZE_UNIT");
13779 debug_tree (TYPE_SIZE_UNIT (tv));
13780 error ("type's TYPE_SIZE_UNIT");
13781 debug_tree (TYPE_SIZE_UNIT (t));
13782 return false;
13783 }
13784 }
13785 verify_variant_match (TYPE_PRECISION);
13786 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13787 if (RECORD_OR_UNION_TYPE_P (t))
13788 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13789 else if (TREE_CODE (t) == ARRAY_TYPE)
13790 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13791 /* During LTO we merge variant lists from diferent translation units
13792 that may differ BY TYPE_CONTEXT that in turn may point
13793 to TRANSLATION_UNIT_DECL.
13794 Ada also builds variants of types with different TYPE_CONTEXT. */
13795 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13796 verify_variant_match (TYPE_CONTEXT);
13797 verify_variant_match (TYPE_STRING_FLAG);
13798 if (TYPE_ALIAS_SET_KNOWN_P (t))
13799 {
13800 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13801 debug_tree (tv);
13802 return false;
13803 }
13804
13805 /* tree_type_non_common checks. */
13806
13807 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13808 and dangle the pointer from time to time. */
13809 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13810 && (in_lto_p || !TYPE_VFIELD (tv)
13811 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13812 {
13813 error ("type variant has different TYPE_VFIELD");
13814 debug_tree (tv);
13815 return false;
13816 }
13817 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13818 || TREE_CODE (t) == INTEGER_TYPE
13819 || TREE_CODE (t) == BOOLEAN_TYPE
13820 || TREE_CODE (t) == REAL_TYPE
13821 || TREE_CODE (t) == FIXED_POINT_TYPE)
13822 {
13823 verify_variant_match (TYPE_MAX_VALUE);
13824 verify_variant_match (TYPE_MIN_VALUE);
13825 }
13826 if (TREE_CODE (t) == METHOD_TYPE)
13827 verify_variant_match (TYPE_METHOD_BASETYPE);
13828 if (TREE_CODE (t) == OFFSET_TYPE)
13829 verify_variant_match (TYPE_OFFSET_BASETYPE);
13830 if (TREE_CODE (t) == ARRAY_TYPE)
13831 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13832 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13833 or even type's main variant. This is needed to make bootstrap pass
13834 and the bug seems new in GCC 5.
13835 C++ FE should be updated to make this consistent and we should check
13836 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13837 is a match with main variant.
13838
13839 Also disable the check for Java for now because of parser hack that builds
13840 first an dummy BINFO and then sometimes replace it by real BINFO in some
13841 of the copies. */
13842 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13843 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13844 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13845 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13846 at LTO time only. */
13847 && (in_lto_p && odr_type_p (t)))
13848 {
13849 error ("type variant has different TYPE_BINFO");
13850 debug_tree (tv);
13851 error ("type variant's TYPE_BINFO");
13852 debug_tree (TYPE_BINFO (tv));
13853 error ("type's TYPE_BINFO");
13854 debug_tree (TYPE_BINFO (t));
13855 return false;
13856 }
13857
13858 /* Check various uses of TYPE_VALUES_RAW. */
13859 if (TREE_CODE (t) == ENUMERAL_TYPE
13860 && TYPE_VALUES (t))
13861 verify_variant_match (TYPE_VALUES);
13862 else if (TREE_CODE (t) == ARRAY_TYPE)
13863 verify_variant_match (TYPE_DOMAIN);
13864 /* Permit incomplete variants of complete type. While FEs may complete
13865 all variants, this does not happen for C++ templates in all cases. */
13866 else if (RECORD_OR_UNION_TYPE_P (t)
13867 && COMPLETE_TYPE_P (t)
13868 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13869 {
13870 tree f1, f2;
13871
13872 /* Fortran builds qualified variants as new records with items of
13873 qualified type. Verify that they looks same. */
13874 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13875 f1 && f2;
13876 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13877 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13878 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13879 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13880 /* FIXME: gfc_nonrestricted_type builds all types as variants
13881 with exception of pointer types. It deeply copies the type
13882 which means that we may end up with a variant type
13883 referring non-variant pointer. We may change it to
13884 produce types as variants, too, like
13885 objc_get_protocol_qualified_type does. */
13886 && !POINTER_TYPE_P (TREE_TYPE (f1)))
13887 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13888 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13889 break;
13890 if (f1 || f2)
13891 {
13892 error ("type variant has different TYPE_FIELDS");
13893 debug_tree (tv);
13894 error ("first mismatch is field");
13895 debug_tree (f1);
13896 error ("and field");
13897 debug_tree (f2);
13898 return false;
13899 }
13900 }
13901 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13902 verify_variant_match (TYPE_ARG_TYPES);
13903 /* For C++ the qualified variant of array type is really an array type
13904 of qualified TREE_TYPE.
13905 objc builds variants of pointer where pointer to type is a variant, too
13906 in objc_get_protocol_qualified_type. */
13907 if (TREE_TYPE (t) != TREE_TYPE (tv)
13908 && ((TREE_CODE (t) != ARRAY_TYPE
13909 && !POINTER_TYPE_P (t))
13910 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13911 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13912 {
13913 error ("type variant has different TREE_TYPE");
13914 debug_tree (tv);
13915 error ("type variant's TREE_TYPE");
13916 debug_tree (TREE_TYPE (tv));
13917 error ("type's TREE_TYPE");
13918 debug_tree (TREE_TYPE (t));
13919 return false;
13920 }
13921 if (type_with_alias_set_p (t)
13922 && !gimple_canonical_types_compatible_p (t, tv, false))
13923 {
13924 error ("type is not compatible with its variant");
13925 debug_tree (tv);
13926 error ("type variant's TREE_TYPE");
13927 debug_tree (TREE_TYPE (tv));
13928 error ("type's TREE_TYPE");
13929 debug_tree (TREE_TYPE (t));
13930 return false;
13931 }
13932 return true;
13933 #undef verify_variant_match
13934 }
13935
13936
13937 /* The TYPE_CANONICAL merging machinery. It should closely resemble
13938 the middle-end types_compatible_p function. It needs to avoid
13939 claiming types are different for types that should be treated
13940 the same with respect to TBAA. Canonical types are also used
13941 for IL consistency checks via the useless_type_conversion_p
13942 predicate which does not handle all type kinds itself but falls
13943 back to pointer-comparison of TYPE_CANONICAL for aggregates
13944 for example. */
13945
13946 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13947 type calculation because we need to allow inter-operability between signed
13948 and unsigned variants. */
13949
13950 bool
13951 type_with_interoperable_signedness (const_tree type)
13952 {
13953 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13954 signed char and unsigned char. Similarly fortran FE builds
13955 C_SIZE_T as signed type, while C defines it unsigned. */
13956
13957 return tree_code_for_canonical_type_merging (TREE_CODE (type))
13958 == INTEGER_TYPE
13959 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13960 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13961 }
13962
13963 /* Return true iff T1 and T2 are structurally identical for what
13964 TBAA is concerned.
13965 This function is used both by lto.c canonical type merging and by the
13966 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
13967 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
13968 only for LTO because only in these cases TYPE_CANONICAL equivalence
13969 correspond to one defined by gimple_canonical_types_compatible_p. */
13970
13971 bool
13972 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
13973 bool trust_type_canonical)
13974 {
13975 /* Type variants should be same as the main variant. When not doing sanity
13976 checking to verify this fact, go to main variants and save some work. */
13977 if (trust_type_canonical)
13978 {
13979 t1 = TYPE_MAIN_VARIANT (t1);
13980 t2 = TYPE_MAIN_VARIANT (t2);
13981 }
13982
13983 /* Check first for the obvious case of pointer identity. */
13984 if (t1 == t2)
13985 return true;
13986
13987 /* Check that we have two types to compare. */
13988 if (t1 == NULL_TREE || t2 == NULL_TREE)
13989 return false;
13990
13991 /* We consider complete types always compatible with incomplete type.
13992 This does not make sense for canonical type calculation and thus we
13993 need to ensure that we are never called on it.
13994
13995 FIXME: For more correctness the function probably should have three modes
13996 1) mode assuming that types are complete mathcing their structure
13997 2) mode allowing incomplete types but producing equivalence classes
13998 and thus ignoring all info from complete types
13999 3) mode allowing incomplete types to match complete but checking
14000 compatibility between complete types.
14001
14002 1 and 2 can be used for canonical type calculation. 3 is the real
14003 definition of type compatibility that can be used i.e. for warnings during
14004 declaration merging. */
14005
14006 gcc_assert (!trust_type_canonical
14007 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
14008 /* If the types have been previously registered and found equal
14009 they still are. */
14010
14011 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
14012 && trust_type_canonical)
14013 {
14014 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
14015 they are always NULL, but they are set to non-NULL for types
14016 constructed by build_pointer_type and variants. In this case the
14017 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
14018 all pointers are considered equal. Be sure to not return false
14019 negatives. */
14020 gcc_checking_assert (canonical_type_used_p (t1)
14021 && canonical_type_used_p (t2));
14022 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
14023 }
14024
14025 /* Can't be the same type if the types don't have the same code. */
14026 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
14027 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
14028 return false;
14029
14030 /* Qualifiers do not matter for canonical type comparison purposes. */
14031
14032 /* Void types and nullptr types are always the same. */
14033 if (TREE_CODE (t1) == VOID_TYPE
14034 || TREE_CODE (t1) == NULLPTR_TYPE)
14035 return true;
14036
14037 /* Can't be the same type if they have different mode. */
14038 if (TYPE_MODE (t1) != TYPE_MODE (t2))
14039 return false;
14040
14041 /* Non-aggregate types can be handled cheaply. */
14042 if (INTEGRAL_TYPE_P (t1)
14043 || SCALAR_FLOAT_TYPE_P (t1)
14044 || FIXED_POINT_TYPE_P (t1)
14045 || TREE_CODE (t1) == VECTOR_TYPE
14046 || TREE_CODE (t1) == COMPLEX_TYPE
14047 || TREE_CODE (t1) == OFFSET_TYPE
14048 || POINTER_TYPE_P (t1))
14049 {
14050 /* Can't be the same type if they have different recision. */
14051 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
14052 return false;
14053
14054 /* In some cases the signed and unsigned types are required to be
14055 inter-operable. */
14056 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
14057 && !type_with_interoperable_signedness (t1))
14058 return false;
14059
14060 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
14061 interoperable with "signed char". Unless all frontends are revisited
14062 to agree on these types, we must ignore the flag completely. */
14063
14064 /* Fortran standard define C_PTR type that is compatible with every
14065 C pointer. For this reason we need to glob all pointers into one.
14066 Still pointers in different address spaces are not compatible. */
14067 if (POINTER_TYPE_P (t1))
14068 {
14069 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
14070 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
14071 return false;
14072 }
14073
14074 /* Tail-recurse to components. */
14075 if (TREE_CODE (t1) == VECTOR_TYPE
14076 || TREE_CODE (t1) == COMPLEX_TYPE)
14077 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
14078 TREE_TYPE (t2),
14079 trust_type_canonical);
14080
14081 return true;
14082 }
14083
14084 /* Do type-specific comparisons. */
14085 switch (TREE_CODE (t1))
14086 {
14087 case ARRAY_TYPE:
14088 /* Array types are the same if the element types are the same and
14089 the number of elements are the same. */
14090 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14091 trust_type_canonical)
14092 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
14093 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
14094 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
14095 return false;
14096 else
14097 {
14098 tree i1 = TYPE_DOMAIN (t1);
14099 tree i2 = TYPE_DOMAIN (t2);
14100
14101 /* For an incomplete external array, the type domain can be
14102 NULL_TREE. Check this condition also. */
14103 if (i1 == NULL_TREE && i2 == NULL_TREE)
14104 return true;
14105 else if (i1 == NULL_TREE || i2 == NULL_TREE)
14106 return false;
14107 else
14108 {
14109 tree min1 = TYPE_MIN_VALUE (i1);
14110 tree min2 = TYPE_MIN_VALUE (i2);
14111 tree max1 = TYPE_MAX_VALUE (i1);
14112 tree max2 = TYPE_MAX_VALUE (i2);
14113
14114 /* The minimum/maximum values have to be the same. */
14115 if ((min1 == min2
14116 || (min1 && min2
14117 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
14118 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
14119 || operand_equal_p (min1, min2, 0))))
14120 && (max1 == max2
14121 || (max1 && max2
14122 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
14123 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
14124 || operand_equal_p (max1, max2, 0)))))
14125 return true;
14126 else
14127 return false;
14128 }
14129 }
14130
14131 case METHOD_TYPE:
14132 case FUNCTION_TYPE:
14133 /* Function types are the same if the return type and arguments types
14134 are the same. */
14135 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14136 trust_type_canonical))
14137 return false;
14138
14139 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
14140 return true;
14141 else
14142 {
14143 tree parms1, parms2;
14144
14145 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
14146 parms1 && parms2;
14147 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
14148 {
14149 if (!gimple_canonical_types_compatible_p
14150 (TREE_VALUE (parms1), TREE_VALUE (parms2),
14151 trust_type_canonical))
14152 return false;
14153 }
14154
14155 if (parms1 || parms2)
14156 return false;
14157
14158 return true;
14159 }
14160
14161 case RECORD_TYPE:
14162 case UNION_TYPE:
14163 case QUAL_UNION_TYPE:
14164 {
14165 tree f1, f2;
14166
14167 /* Don't try to compare variants of an incomplete type, before
14168 TYPE_FIELDS has been copied around. */
14169 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
14170 return true;
14171
14172
14173 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
14174 return false;
14175
14176 /* For aggregate types, all the fields must be the same. */
14177 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
14178 f1 || f2;
14179 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14180 {
14181 /* Skip non-fields and zero-sized fields. */
14182 while (f1 && (TREE_CODE (f1) != FIELD_DECL
14183 || (DECL_SIZE (f1)
14184 && integer_zerop (DECL_SIZE (f1)))))
14185 f1 = TREE_CHAIN (f1);
14186 while (f2 && (TREE_CODE (f2) != FIELD_DECL
14187 || (DECL_SIZE (f2)
14188 && integer_zerop (DECL_SIZE (f2)))))
14189 f2 = TREE_CHAIN (f2);
14190 if (!f1 || !f2)
14191 break;
14192 /* The fields must have the same name, offset and type. */
14193 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
14194 || !gimple_compare_field_offset (f1, f2)
14195 || !gimple_canonical_types_compatible_p
14196 (TREE_TYPE (f1), TREE_TYPE (f2),
14197 trust_type_canonical))
14198 return false;
14199 }
14200
14201 /* If one aggregate has more fields than the other, they
14202 are not the same. */
14203 if (f1 || f2)
14204 return false;
14205
14206 return true;
14207 }
14208
14209 default:
14210 /* Consider all types with language specific trees in them mutually
14211 compatible. This is executed only from verify_type and false
14212 positives can be tolerated. */
14213 gcc_assert (!in_lto_p);
14214 return true;
14215 }
14216 }
14217
14218 /* Verify type T. */
14219
14220 void
14221 verify_type (const_tree t)
14222 {
14223 bool error_found = false;
14224 tree mv = TYPE_MAIN_VARIANT (t);
14225 if (!mv)
14226 {
14227 error ("Main variant is not defined");
14228 error_found = true;
14229 }
14230 else if (mv != TYPE_MAIN_VARIANT (mv))
14231 {
14232 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
14233 debug_tree (mv);
14234 error_found = true;
14235 }
14236 else if (t != mv && !verify_type_variant (t, mv))
14237 error_found = true;
14238
14239 tree ct = TYPE_CANONICAL (t);
14240 if (!ct)
14241 ;
14242 else if (TYPE_CANONICAL (t) != ct)
14243 {
14244 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
14245 debug_tree (ct);
14246 error_found = true;
14247 }
14248 /* Method and function types cannot be used to address memory and thus
14249 TYPE_CANONICAL really matters only for determining useless conversions.
14250
14251 FIXME: C++ FE produce declarations of builtin functions that are not
14252 compatible with main variants. */
14253 else if (TREE_CODE (t) == FUNCTION_TYPE)
14254 ;
14255 else if (t != ct
14256 /* FIXME: gimple_canonical_types_compatible_p cannot compare types
14257 with variably sized arrays because their sizes possibly
14258 gimplified to different variables. */
14259 && !variably_modified_type_p (ct, NULL)
14260 && !gimple_canonical_types_compatible_p (t, ct, false)
14261 && COMPLETE_TYPE_P (t))
14262 {
14263 error ("TYPE_CANONICAL is not compatible");
14264 debug_tree (ct);
14265 error_found = true;
14266 }
14267
14268 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
14269 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
14270 {
14271 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
14272 debug_tree (ct);
14273 error_found = true;
14274 }
14275 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
14276 {
14277 error ("TYPE_CANONICAL of main variant is not main variant");
14278 debug_tree (ct);
14279 debug_tree (TYPE_MAIN_VARIANT (ct));
14280 error_found = true;
14281 }
14282
14283
14284 /* Check various uses of TYPE_MIN_VALUE_RAW. */
14285 if (RECORD_OR_UNION_TYPE_P (t))
14286 {
14287 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
14288 and danagle the pointer from time to time. */
14289 if (TYPE_VFIELD (t)
14290 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
14291 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
14292 {
14293 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
14294 debug_tree (TYPE_VFIELD (t));
14295 error_found = true;
14296 }
14297 }
14298 else if (TREE_CODE (t) == POINTER_TYPE)
14299 {
14300 if (TYPE_NEXT_PTR_TO (t)
14301 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
14302 {
14303 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
14304 debug_tree (TYPE_NEXT_PTR_TO (t));
14305 error_found = true;
14306 }
14307 }
14308 else if (TREE_CODE (t) == REFERENCE_TYPE)
14309 {
14310 if (TYPE_NEXT_REF_TO (t)
14311 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
14312 {
14313 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
14314 debug_tree (TYPE_NEXT_REF_TO (t));
14315 error_found = true;
14316 }
14317 }
14318 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14319 || TREE_CODE (t) == FIXED_POINT_TYPE)
14320 {
14321 /* FIXME: The following check should pass:
14322 useless_type_conversion_p (const_cast <tree> (t),
14323 TREE_TYPE (TYPE_MIN_VALUE (t))
14324 but does not for C sizetypes in LTO. */
14325 }
14326
14327 /* Check various uses of TYPE_MAXVAL_RAW. */
14328 if (RECORD_OR_UNION_TYPE_P (t))
14329 {
14330 if (!TYPE_BINFO (t))
14331 ;
14332 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
14333 {
14334 error ("TYPE_BINFO is not TREE_BINFO");
14335 debug_tree (TYPE_BINFO (t));
14336 error_found = true;
14337 }
14338 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
14339 {
14340 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
14341 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
14342 error_found = true;
14343 }
14344 }
14345 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14346 {
14347 if (TYPE_METHOD_BASETYPE (t)
14348 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
14349 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
14350 {
14351 error ("TYPE_METHOD_BASETYPE is not record nor union");
14352 debug_tree (TYPE_METHOD_BASETYPE (t));
14353 error_found = true;
14354 }
14355 }
14356 else if (TREE_CODE (t) == OFFSET_TYPE)
14357 {
14358 if (TYPE_OFFSET_BASETYPE (t)
14359 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
14360 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
14361 {
14362 error ("TYPE_OFFSET_BASETYPE is not record nor union");
14363 debug_tree (TYPE_OFFSET_BASETYPE (t));
14364 error_found = true;
14365 }
14366 }
14367 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14368 || TREE_CODE (t) == FIXED_POINT_TYPE)
14369 {
14370 /* FIXME: The following check should pass:
14371 useless_type_conversion_p (const_cast <tree> (t),
14372 TREE_TYPE (TYPE_MAX_VALUE (t))
14373 but does not for C sizetypes in LTO. */
14374 }
14375 else if (TREE_CODE (t) == ARRAY_TYPE)
14376 {
14377 if (TYPE_ARRAY_MAX_SIZE (t)
14378 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
14379 {
14380 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
14381 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
14382 error_found = true;
14383 }
14384 }
14385 else if (TYPE_MAX_VALUE_RAW (t))
14386 {
14387 error ("TYPE_MAX_VALUE_RAW non-NULL");
14388 debug_tree (TYPE_MAX_VALUE_RAW (t));
14389 error_found = true;
14390 }
14391
14392 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
14393 {
14394 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
14395 debug_tree (TYPE_LANG_SLOT_1 (t));
14396 error_found = true;
14397 }
14398
14399 /* Check various uses of TYPE_VALUES_RAW. */
14400 if (TREE_CODE (t) == ENUMERAL_TYPE)
14401 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
14402 {
14403 tree value = TREE_VALUE (l);
14404 tree name = TREE_PURPOSE (l);
14405
14406 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
14407 CONST_DECL of ENUMERAL TYPE. */
14408 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
14409 {
14410 error ("Enum value is not CONST_DECL or INTEGER_CST");
14411 debug_tree (value);
14412 debug_tree (name);
14413 error_found = true;
14414 }
14415 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
14416 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
14417 {
14418 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
14419 debug_tree (value);
14420 debug_tree (name);
14421 error_found = true;
14422 }
14423 if (TREE_CODE (name) != IDENTIFIER_NODE)
14424 {
14425 error ("Enum value name is not IDENTIFIER_NODE");
14426 debug_tree (value);
14427 debug_tree (name);
14428 error_found = true;
14429 }
14430 }
14431 else if (TREE_CODE (t) == ARRAY_TYPE)
14432 {
14433 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14434 {
14435 error ("Array TYPE_DOMAIN is not integer type");
14436 debug_tree (TYPE_DOMAIN (t));
14437 error_found = true;
14438 }
14439 }
14440 else if (RECORD_OR_UNION_TYPE_P (t))
14441 {
14442 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14443 {
14444 error ("TYPE_FIELDS defined in incomplete type");
14445 error_found = true;
14446 }
14447 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14448 {
14449 /* TODO: verify properties of decls. */
14450 if (TREE_CODE (fld) == FIELD_DECL)
14451 ;
14452 else if (TREE_CODE (fld) == TYPE_DECL)
14453 ;
14454 else if (TREE_CODE (fld) == CONST_DECL)
14455 ;
14456 else if (VAR_P (fld))
14457 ;
14458 else if (TREE_CODE (fld) == TEMPLATE_DECL)
14459 ;
14460 else if (TREE_CODE (fld) == USING_DECL)
14461 ;
14462 else if (TREE_CODE (fld) == FUNCTION_DECL)
14463 ;
14464 else
14465 {
14466 error ("Wrong tree in TYPE_FIELDS list");
14467 debug_tree (fld);
14468 error_found = true;
14469 }
14470 }
14471 }
14472 else if (TREE_CODE (t) == INTEGER_TYPE
14473 || TREE_CODE (t) == BOOLEAN_TYPE
14474 || TREE_CODE (t) == OFFSET_TYPE
14475 || TREE_CODE (t) == REFERENCE_TYPE
14476 || TREE_CODE (t) == NULLPTR_TYPE
14477 || TREE_CODE (t) == POINTER_TYPE)
14478 {
14479 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14480 {
14481 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
14482 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14483 error_found = true;
14484 }
14485 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14486 {
14487 error ("TYPE_CACHED_VALUES is not TREE_VEC");
14488 debug_tree (TYPE_CACHED_VALUES (t));
14489 error_found = true;
14490 }
14491 /* Verify just enough of cache to ensure that no one copied it to new type.
14492 All copying should go by copy_node that should clear it. */
14493 else if (TYPE_CACHED_VALUES_P (t))
14494 {
14495 int i;
14496 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14497 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14498 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14499 {
14500 error ("wrong TYPE_CACHED_VALUES entry");
14501 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14502 error_found = true;
14503 break;
14504 }
14505 }
14506 }
14507 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14508 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14509 {
14510 /* C++ FE uses TREE_PURPOSE to store initial values. */
14511 if (TREE_PURPOSE (l) && in_lto_p)
14512 {
14513 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
14514 debug_tree (l);
14515 error_found = true;
14516 }
14517 if (!TYPE_P (TREE_VALUE (l)))
14518 {
14519 error ("Wrong entry in TYPE_ARG_TYPES list");
14520 debug_tree (l);
14521 error_found = true;
14522 }
14523 }
14524 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14525 {
14526 error ("TYPE_VALUES_RAW field is non-NULL");
14527 debug_tree (TYPE_VALUES_RAW (t));
14528 error_found = true;
14529 }
14530 if (TREE_CODE (t) != INTEGER_TYPE
14531 && TREE_CODE (t) != BOOLEAN_TYPE
14532 && TREE_CODE (t) != OFFSET_TYPE
14533 && TREE_CODE (t) != REFERENCE_TYPE
14534 && TREE_CODE (t) != NULLPTR_TYPE
14535 && TREE_CODE (t) != POINTER_TYPE
14536 && TYPE_CACHED_VALUES_P (t))
14537 {
14538 error ("TYPE_CACHED_VALUES_P is set while it should not");
14539 error_found = true;
14540 }
14541 if (TYPE_STRING_FLAG (t)
14542 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
14543 {
14544 error ("TYPE_STRING_FLAG is set on wrong type code");
14545 error_found = true;
14546 }
14547
14548 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14549 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14550 of a type. */
14551 if (TREE_CODE (t) == METHOD_TYPE
14552 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14553 {
14554 error ("TYPE_METHOD_BASETYPE is not main variant");
14555 error_found = true;
14556 }
14557
14558 if (error_found)
14559 {
14560 debug_tree (const_cast <tree> (t));
14561 internal_error ("verify_type failed");
14562 }
14563 }
14564
14565
14566 /* Return 1 if ARG interpreted as signed in its precision is known to be
14567 always positive or 2 if ARG is known to be always negative, or 3 if
14568 ARG may be positive or negative. */
14569
14570 int
14571 get_range_pos_neg (tree arg)
14572 {
14573 if (arg == error_mark_node)
14574 return 3;
14575
14576 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14577 int cnt = 0;
14578 if (TREE_CODE (arg) == INTEGER_CST)
14579 {
14580 wide_int w = wi::sext (wi::to_wide (arg), prec);
14581 if (wi::neg_p (w))
14582 return 2;
14583 else
14584 return 1;
14585 }
14586 while (CONVERT_EXPR_P (arg)
14587 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14588 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14589 {
14590 arg = TREE_OPERAND (arg, 0);
14591 /* Narrower value zero extended into wider type
14592 will always result in positive values. */
14593 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14594 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14595 return 1;
14596 prec = TYPE_PRECISION (TREE_TYPE (arg));
14597 if (++cnt > 30)
14598 return 3;
14599 }
14600
14601 if (TREE_CODE (arg) != SSA_NAME)
14602 return 3;
14603 wide_int arg_min, arg_max;
14604 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14605 {
14606 gimple *g = SSA_NAME_DEF_STMT (arg);
14607 if (is_gimple_assign (g)
14608 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14609 {
14610 tree t = gimple_assign_rhs1 (g);
14611 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14612 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14613 {
14614 if (TYPE_UNSIGNED (TREE_TYPE (t))
14615 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14616 return 1;
14617 prec = TYPE_PRECISION (TREE_TYPE (t));
14618 arg = t;
14619 if (++cnt > 30)
14620 return 3;
14621 continue;
14622 }
14623 }
14624 return 3;
14625 }
14626 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14627 {
14628 /* For unsigned values, the "positive" range comes
14629 below the "negative" range. */
14630 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14631 return 1;
14632 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14633 return 2;
14634 }
14635 else
14636 {
14637 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14638 return 1;
14639 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14640 return 2;
14641 }
14642 return 3;
14643 }
14644
14645
14646
14647
14648 /* Return true if ARG is marked with the nonnull attribute in the
14649 current function signature. */
14650
14651 bool
14652 nonnull_arg_p (const_tree arg)
14653 {
14654 tree t, attrs, fntype;
14655 unsigned HOST_WIDE_INT arg_num;
14656
14657 gcc_assert (TREE_CODE (arg) == PARM_DECL
14658 && (POINTER_TYPE_P (TREE_TYPE (arg))
14659 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14660
14661 /* The static chain decl is always non null. */
14662 if (arg == cfun->static_chain_decl)
14663 return true;
14664
14665 /* THIS argument of method is always non-NULL. */
14666 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14667 && arg == DECL_ARGUMENTS (cfun->decl)
14668 && flag_delete_null_pointer_checks)
14669 return true;
14670
14671 /* Values passed by reference are always non-NULL. */
14672 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14673 && flag_delete_null_pointer_checks)
14674 return true;
14675
14676 fntype = TREE_TYPE (cfun->decl);
14677 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14678 {
14679 attrs = lookup_attribute ("nonnull", attrs);
14680
14681 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14682 if (attrs == NULL_TREE)
14683 return false;
14684
14685 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14686 if (TREE_VALUE (attrs) == NULL_TREE)
14687 return true;
14688
14689 /* Get the position number for ARG in the function signature. */
14690 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14691 t;
14692 t = DECL_CHAIN (t), arg_num++)
14693 {
14694 if (t == arg)
14695 break;
14696 }
14697
14698 gcc_assert (t == arg);
14699
14700 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14701 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14702 {
14703 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14704 return true;
14705 }
14706 }
14707
14708 return false;
14709 }
14710
14711 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14712 information. */
14713
14714 location_t
14715 set_block (location_t loc, tree block)
14716 {
14717 location_t pure_loc = get_pure_location (loc);
14718 source_range src_range = get_range_from_loc (line_table, loc);
14719 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14720 }
14721
14722 location_t
14723 set_source_range (tree expr, location_t start, location_t finish)
14724 {
14725 source_range src_range;
14726 src_range.m_start = start;
14727 src_range.m_finish = finish;
14728 return set_source_range (expr, src_range);
14729 }
14730
14731 location_t
14732 set_source_range (tree expr, source_range src_range)
14733 {
14734 if (!EXPR_P (expr))
14735 return UNKNOWN_LOCATION;
14736
14737 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14738 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14739 pure_loc,
14740 src_range,
14741 NULL);
14742 SET_EXPR_LOCATION (expr, adhoc);
14743 return adhoc;
14744 }
14745
14746 /* Return EXPR, potentially wrapped with a node expression LOC,
14747 if !CAN_HAVE_LOCATION_P (expr).
14748
14749 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14750 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14751
14752 Wrapper nodes can be identified using location_wrapper_p. */
14753
14754 tree
14755 maybe_wrap_with_location (tree expr, location_t loc)
14756 {
14757 if (expr == NULL)
14758 return NULL;
14759 if (loc == UNKNOWN_LOCATION)
14760 return expr;
14761 if (CAN_HAVE_LOCATION_P (expr))
14762 return expr;
14763 /* We should only be adding wrappers for constants and for decls,
14764 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14765 gcc_assert (CONSTANT_CLASS_P (expr)
14766 || DECL_P (expr)
14767 || EXCEPTIONAL_CLASS_P (expr));
14768
14769 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14770 any impact of the wrapper nodes. */
14771 if (EXCEPTIONAL_CLASS_P (expr))
14772 return expr;
14773
14774 /* If any auto_suppress_location_wrappers are active, don't create
14775 wrappers. */
14776 if (suppress_location_wrappers > 0)
14777 return expr;
14778
14779 tree_code code
14780 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14781 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14782 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14783 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14784 /* Mark this node as being a wrapper. */
14785 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14786 return wrapper;
14787 }
14788
14789 int suppress_location_wrappers;
14790
14791 /* Return the name of combined function FN, for debugging purposes. */
14792
14793 const char *
14794 combined_fn_name (combined_fn fn)
14795 {
14796 if (builtin_fn_p (fn))
14797 {
14798 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14799 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14800 }
14801 else
14802 return internal_fn_name (as_internal_fn (fn));
14803 }
14804
14805 /* Return a bitmap with a bit set corresponding to each argument in
14806 a function call type FNTYPE declared with attribute nonnull,
14807 or null if none of the function's argument are nonnull. The caller
14808 must free the bitmap. */
14809
14810 bitmap
14811 get_nonnull_args (const_tree fntype)
14812 {
14813 if (fntype == NULL_TREE)
14814 return NULL;
14815
14816 tree attrs = TYPE_ATTRIBUTES (fntype);
14817 if (!attrs)
14818 return NULL;
14819
14820 bitmap argmap = NULL;
14821
14822 /* A function declaration can specify multiple attribute nonnull,
14823 each with zero or more arguments. The loop below creates a bitmap
14824 representing a union of all the arguments. An empty (but non-null)
14825 bitmap means that all arguments have been declaraed nonnull. */
14826 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14827 {
14828 attrs = lookup_attribute ("nonnull", attrs);
14829 if (!attrs)
14830 break;
14831
14832 if (!argmap)
14833 argmap = BITMAP_ALLOC (NULL);
14834
14835 if (!TREE_VALUE (attrs))
14836 {
14837 /* Clear the bitmap in case a previous attribute nonnull
14838 set it and this one overrides it for all arguments. */
14839 bitmap_clear (argmap);
14840 return argmap;
14841 }
14842
14843 /* Iterate over the indices of the format arguments declared nonnull
14844 and set a bit for each. */
14845 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14846 {
14847 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14848 bitmap_set_bit (argmap, val);
14849 }
14850 }
14851
14852 return argmap;
14853 }
14854
14855 /* Returns true if TYPE is a type where it and all of its subobjects
14856 (recursively) are of structure, union, or array type. */
14857
14858 static bool
14859 default_is_empty_type (tree type)
14860 {
14861 if (RECORD_OR_UNION_TYPE_P (type))
14862 {
14863 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14864 if (TREE_CODE (field) == FIELD_DECL
14865 && !DECL_PADDING_P (field)
14866 && !default_is_empty_type (TREE_TYPE (field)))
14867 return false;
14868 return true;
14869 }
14870 else if (TREE_CODE (type) == ARRAY_TYPE)
14871 return (integer_minus_onep (array_type_nelts (type))
14872 || TYPE_DOMAIN (type) == NULL_TREE
14873 || default_is_empty_type (TREE_TYPE (type)));
14874 return false;
14875 }
14876
14877 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14878 that shouldn't be passed via stack. */
14879
14880 bool
14881 default_is_empty_record (const_tree type)
14882 {
14883 if (!abi_version_at_least (12))
14884 return false;
14885
14886 if (type == error_mark_node)
14887 return false;
14888
14889 if (TREE_ADDRESSABLE (type))
14890 return false;
14891
14892 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14893 }
14894
14895 /* Like int_size_in_bytes, but handle empty records specially. */
14896
14897 HOST_WIDE_INT
14898 arg_int_size_in_bytes (const_tree type)
14899 {
14900 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14901 }
14902
14903 /* Like size_in_bytes, but handle empty records specially. */
14904
14905 tree
14906 arg_size_in_bytes (const_tree type)
14907 {
14908 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14909 }
14910
14911 /* Return true if an expression with CODE has to have the same result type as
14912 its first operand. */
14913
14914 bool
14915 expr_type_first_operand_type_p (tree_code code)
14916 {
14917 switch (code)
14918 {
14919 case NEGATE_EXPR:
14920 case ABS_EXPR:
14921 case BIT_NOT_EXPR:
14922 case PAREN_EXPR:
14923 case CONJ_EXPR:
14924
14925 case PLUS_EXPR:
14926 case MINUS_EXPR:
14927 case MULT_EXPR:
14928 case TRUNC_DIV_EXPR:
14929 case CEIL_DIV_EXPR:
14930 case FLOOR_DIV_EXPR:
14931 case ROUND_DIV_EXPR:
14932 case TRUNC_MOD_EXPR:
14933 case CEIL_MOD_EXPR:
14934 case FLOOR_MOD_EXPR:
14935 case ROUND_MOD_EXPR:
14936 case RDIV_EXPR:
14937 case EXACT_DIV_EXPR:
14938 case MIN_EXPR:
14939 case MAX_EXPR:
14940 case BIT_IOR_EXPR:
14941 case BIT_XOR_EXPR:
14942 case BIT_AND_EXPR:
14943
14944 case LSHIFT_EXPR:
14945 case RSHIFT_EXPR:
14946 case LROTATE_EXPR:
14947 case RROTATE_EXPR:
14948 return true;
14949
14950 default:
14951 return false;
14952 }
14953 }
14954
14955 /* Return a typenode for the "standard" C type with a given name. */
14956 tree
14957 get_typenode_from_name (const char *name)
14958 {
14959 if (name == NULL || *name == '\0')
14960 return NULL_TREE;
14961
14962 if (strcmp (name, "char") == 0)
14963 return char_type_node;
14964 if (strcmp (name, "unsigned char") == 0)
14965 return unsigned_char_type_node;
14966 if (strcmp (name, "signed char") == 0)
14967 return signed_char_type_node;
14968
14969 if (strcmp (name, "short int") == 0)
14970 return short_integer_type_node;
14971 if (strcmp (name, "short unsigned int") == 0)
14972 return short_unsigned_type_node;
14973
14974 if (strcmp (name, "int") == 0)
14975 return integer_type_node;
14976 if (strcmp (name, "unsigned int") == 0)
14977 return unsigned_type_node;
14978
14979 if (strcmp (name, "long int") == 0)
14980 return long_integer_type_node;
14981 if (strcmp (name, "long unsigned int") == 0)
14982 return long_unsigned_type_node;
14983
14984 if (strcmp (name, "long long int") == 0)
14985 return long_long_integer_type_node;
14986 if (strcmp (name, "long long unsigned int") == 0)
14987 return long_long_unsigned_type_node;
14988
14989 gcc_unreachable ();
14990 }
14991
14992 /* List of pointer types used to declare builtins before we have seen their
14993 real declaration.
14994
14995 Keep the size up to date in tree.h ! */
14996 const builtin_structptr_type builtin_structptr_types[6] =
14997 {
14998 { fileptr_type_node, ptr_type_node, "FILE" },
14999 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
15000 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
15001 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
15002 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
15003 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
15004 };
15005
15006 #if CHECKING_P
15007
15008 namespace selftest {
15009
15010 /* Selftests for tree. */
15011
15012 /* Verify that integer constants are sane. */
15013
15014 static void
15015 test_integer_constants ()
15016 {
15017 ASSERT_TRUE (integer_type_node != NULL);
15018 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
15019
15020 tree type = integer_type_node;
15021
15022 tree zero = build_zero_cst (type);
15023 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
15024 ASSERT_EQ (type, TREE_TYPE (zero));
15025
15026 tree one = build_int_cst (type, 1);
15027 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
15028 ASSERT_EQ (type, TREE_TYPE (zero));
15029 }
15030
15031 /* Verify identifiers. */
15032
15033 static void
15034 test_identifiers ()
15035 {
15036 tree identifier = get_identifier ("foo");
15037 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
15038 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
15039 }
15040
15041 /* Verify LABEL_DECL. */
15042
15043 static void
15044 test_labels ()
15045 {
15046 tree identifier = get_identifier ("err");
15047 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
15048 identifier, void_type_node);
15049 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
15050 ASSERT_FALSE (FORCED_LABEL (label_decl));
15051 }
15052
15053 /* Return a new VECTOR_CST node whose type is TYPE and whose values
15054 are given by VALS. */
15055
15056 static tree
15057 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
15058 {
15059 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
15060 tree_vector_builder builder (type, vals.length (), 1);
15061 builder.splice (vals);
15062 return builder.build ();
15063 }
15064
15065 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
15066
15067 static void
15068 check_vector_cst (vec<tree> expected, tree actual)
15069 {
15070 ASSERT_KNOWN_EQ (expected.length (),
15071 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
15072 for (unsigned int i = 0; i < expected.length (); ++i)
15073 ASSERT_EQ (wi::to_wide (expected[i]),
15074 wi::to_wide (vector_cst_elt (actual, i)));
15075 }
15076
15077 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
15078 and that its elements match EXPECTED. */
15079
15080 static void
15081 check_vector_cst_duplicate (vec<tree> expected, tree actual,
15082 unsigned int npatterns)
15083 {
15084 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15085 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
15086 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
15087 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
15088 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15089 check_vector_cst (expected, actual);
15090 }
15091
15092 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
15093 and NPATTERNS background elements, and that its elements match
15094 EXPECTED. */
15095
15096 static void
15097 check_vector_cst_fill (vec<tree> expected, tree actual,
15098 unsigned int npatterns)
15099 {
15100 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15101 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
15102 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
15103 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15104 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15105 check_vector_cst (expected, actual);
15106 }
15107
15108 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
15109 and that its elements match EXPECTED. */
15110
15111 static void
15112 check_vector_cst_stepped (vec<tree> expected, tree actual,
15113 unsigned int npatterns)
15114 {
15115 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15116 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
15117 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
15118 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15119 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
15120 check_vector_cst (expected, actual);
15121 }
15122
15123 /* Test the creation of VECTOR_CSTs. */
15124
15125 static void
15126 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
15127 {
15128 auto_vec<tree, 8> elements (8);
15129 elements.quick_grow (8);
15130 tree element_type = build_nonstandard_integer_type (16, true);
15131 tree vector_type = build_vector_type (element_type, 8);
15132
15133 /* Test a simple linear series with a base of 0 and a step of 1:
15134 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
15135 for (unsigned int i = 0; i < 8; ++i)
15136 elements[i] = build_int_cst (element_type, i);
15137 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
15138 check_vector_cst_stepped (elements, vector, 1);
15139
15140 /* Try the same with the first element replaced by 100:
15141 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
15142 elements[0] = build_int_cst (element_type, 100);
15143 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15144 check_vector_cst_stepped (elements, vector, 1);
15145
15146 /* Try a series that wraps around.
15147 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
15148 for (unsigned int i = 1; i < 8; ++i)
15149 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
15150 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15151 check_vector_cst_stepped (elements, vector, 1);
15152
15153 /* Try a downward series:
15154 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
15155 for (unsigned int i = 1; i < 8; ++i)
15156 elements[i] = build_int_cst (element_type, 80 - i);
15157 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15158 check_vector_cst_stepped (elements, vector, 1);
15159
15160 /* Try two interleaved series with different bases and steps:
15161 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
15162 elements[1] = build_int_cst (element_type, 53);
15163 for (unsigned int i = 2; i < 8; i += 2)
15164 {
15165 elements[i] = build_int_cst (element_type, 70 - i * 2);
15166 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
15167 }
15168 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15169 check_vector_cst_stepped (elements, vector, 2);
15170
15171 /* Try a duplicated value:
15172 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
15173 for (unsigned int i = 1; i < 8; ++i)
15174 elements[i] = elements[0];
15175 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15176 check_vector_cst_duplicate (elements, vector, 1);
15177
15178 /* Try an interleaved duplicated value:
15179 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
15180 elements[1] = build_int_cst (element_type, 55);
15181 for (unsigned int i = 2; i < 8; ++i)
15182 elements[i] = elements[i - 2];
15183 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15184 check_vector_cst_duplicate (elements, vector, 2);
15185
15186 /* Try a duplicated value with 2 exceptions
15187 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
15188 elements[0] = build_int_cst (element_type, 41);
15189 elements[1] = build_int_cst (element_type, 97);
15190 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15191 check_vector_cst_fill (elements, vector, 2);
15192
15193 /* Try with and without a step
15194 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
15195 for (unsigned int i = 3; i < 8; i += 2)
15196 elements[i] = build_int_cst (element_type, i * 7);
15197 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15198 check_vector_cst_stepped (elements, vector, 2);
15199
15200 /* Try a fully-general constant:
15201 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
15202 elements[5] = build_int_cst (element_type, 9990);
15203 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15204 check_vector_cst_fill (elements, vector, 4);
15205 }
15206
15207 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
15208 Helper function for test_location_wrappers, to deal with STRIP_NOPS
15209 modifying its argument in-place. */
15210
15211 static void
15212 check_strip_nops (tree node, tree expected)
15213 {
15214 STRIP_NOPS (node);
15215 ASSERT_EQ (expected, node);
15216 }
15217
15218 /* Verify location wrappers. */
15219
15220 static void
15221 test_location_wrappers ()
15222 {
15223 location_t loc = BUILTINS_LOCATION;
15224
15225 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
15226
15227 /* Wrapping a constant. */
15228 tree int_cst = build_int_cst (integer_type_node, 42);
15229 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
15230 ASSERT_FALSE (location_wrapper_p (int_cst));
15231
15232 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
15233 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
15234 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
15235 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
15236
15237 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
15238 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
15239
15240 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
15241 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
15242 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
15243 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
15244
15245 /* Wrapping a STRING_CST. */
15246 tree string_cst = build_string (4, "foo");
15247 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
15248 ASSERT_FALSE (location_wrapper_p (string_cst));
15249
15250 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
15251 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
15252 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
15253 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
15254 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
15255
15256
15257 /* Wrapping a variable. */
15258 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
15259 get_identifier ("some_int_var"),
15260 integer_type_node);
15261 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
15262 ASSERT_FALSE (location_wrapper_p (int_var));
15263
15264 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
15265 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
15266 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
15267 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
15268
15269 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
15270 wrapper. */
15271 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
15272 ASSERT_FALSE (location_wrapper_p (r_cast));
15273 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
15274
15275 /* Verify that STRIP_NOPS removes wrappers. */
15276 check_strip_nops (wrapped_int_cst, int_cst);
15277 check_strip_nops (wrapped_string_cst, string_cst);
15278 check_strip_nops (wrapped_int_var, int_var);
15279 }
15280
15281 /* Test various tree predicates. Verify that location wrappers don't
15282 affect the results. */
15283
15284 static void
15285 test_predicates ()
15286 {
15287 /* Build various constants and wrappers around them. */
15288
15289 location_t loc = BUILTINS_LOCATION;
15290
15291 tree i_0 = build_int_cst (integer_type_node, 0);
15292 tree wr_i_0 = maybe_wrap_with_location (i_0, loc);
15293
15294 tree i_1 = build_int_cst (integer_type_node, 1);
15295 tree wr_i_1 = maybe_wrap_with_location (i_1, loc);
15296
15297 tree i_m1 = build_int_cst (integer_type_node, -1);
15298 tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);
15299
15300 tree f_0 = build_real_from_int_cst (float_type_node, i_0);
15301 tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
15302 tree f_1 = build_real_from_int_cst (float_type_node, i_1);
15303 tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
15304 tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
15305 tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);
15306
15307 tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
15308 tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
15309 tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);
15310
15311 tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
15312 tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
15313 tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);
15314
15315 /* TODO: vector constants. */
15316
15317 /* Test integer_onep. */
15318 ASSERT_FALSE (integer_onep (i_0));
15319 ASSERT_FALSE (integer_onep (wr_i_0));
15320 ASSERT_TRUE (integer_onep (i_1));
15321 ASSERT_TRUE (integer_onep (wr_i_1));
15322 ASSERT_FALSE (integer_onep (i_m1));
15323 ASSERT_FALSE (integer_onep (wr_i_m1));
15324 ASSERT_FALSE (integer_onep (f_0));
15325 ASSERT_FALSE (integer_onep (wr_f_0));
15326 ASSERT_FALSE (integer_onep (f_1));
15327 ASSERT_FALSE (integer_onep (wr_f_1));
15328 ASSERT_FALSE (integer_onep (f_m1));
15329 ASSERT_FALSE (integer_onep (wr_f_m1));
15330 ASSERT_FALSE (integer_onep (c_i_0));
15331 ASSERT_TRUE (integer_onep (c_i_1));
15332 ASSERT_FALSE (integer_onep (c_i_m1));
15333 ASSERT_FALSE (integer_onep (c_f_0));
15334 ASSERT_FALSE (integer_onep (c_f_1));
15335 ASSERT_FALSE (integer_onep (c_f_m1));
15336
15337 /* Test integer_zerop. */
15338 ASSERT_TRUE (integer_zerop (i_0));
15339 ASSERT_TRUE (integer_zerop (wr_i_0));
15340 ASSERT_FALSE (integer_zerop (i_1));
15341 ASSERT_FALSE (integer_zerop (wr_i_1));
15342 ASSERT_FALSE (integer_zerop (i_m1));
15343 ASSERT_FALSE (integer_zerop (wr_i_m1));
15344 ASSERT_FALSE (integer_zerop (f_0));
15345 ASSERT_FALSE (integer_zerop (wr_f_0));
15346 ASSERT_FALSE (integer_zerop (f_1));
15347 ASSERT_FALSE (integer_zerop (wr_f_1));
15348 ASSERT_FALSE (integer_zerop (f_m1));
15349 ASSERT_FALSE (integer_zerop (wr_f_m1));
15350 ASSERT_TRUE (integer_zerop (c_i_0));
15351 ASSERT_FALSE (integer_zerop (c_i_1));
15352 ASSERT_FALSE (integer_zerop (c_i_m1));
15353 ASSERT_FALSE (integer_zerop (c_f_0));
15354 ASSERT_FALSE (integer_zerop (c_f_1));
15355 ASSERT_FALSE (integer_zerop (c_f_m1));
15356
15357 /* Test integer_all_onesp. */
15358 ASSERT_FALSE (integer_all_onesp (i_0));
15359 ASSERT_FALSE (integer_all_onesp (wr_i_0));
15360 ASSERT_FALSE (integer_all_onesp (i_1));
15361 ASSERT_FALSE (integer_all_onesp (wr_i_1));
15362 ASSERT_TRUE (integer_all_onesp (i_m1));
15363 ASSERT_TRUE (integer_all_onesp (wr_i_m1));
15364 ASSERT_FALSE (integer_all_onesp (f_0));
15365 ASSERT_FALSE (integer_all_onesp (wr_f_0));
15366 ASSERT_FALSE (integer_all_onesp (f_1));
15367 ASSERT_FALSE (integer_all_onesp (wr_f_1));
15368 ASSERT_FALSE (integer_all_onesp (f_m1));
15369 ASSERT_FALSE (integer_all_onesp (wr_f_m1));
15370 ASSERT_FALSE (integer_all_onesp (c_i_0));
15371 ASSERT_FALSE (integer_all_onesp (c_i_1));
15372 ASSERT_FALSE (integer_all_onesp (c_i_m1));
15373 ASSERT_FALSE (integer_all_onesp (c_f_0));
15374 ASSERT_FALSE (integer_all_onesp (c_f_1));
15375 ASSERT_FALSE (integer_all_onesp (c_f_m1));
15376
15377 /* Test integer_minus_onep. */
15378 ASSERT_FALSE (integer_minus_onep (i_0));
15379 ASSERT_FALSE (integer_minus_onep (wr_i_0));
15380 ASSERT_FALSE (integer_minus_onep (i_1));
15381 ASSERT_FALSE (integer_minus_onep (wr_i_1));
15382 ASSERT_TRUE (integer_minus_onep (i_m1));
15383 ASSERT_TRUE (integer_minus_onep (wr_i_m1));
15384 ASSERT_FALSE (integer_minus_onep (f_0));
15385 ASSERT_FALSE (integer_minus_onep (wr_f_0));
15386 ASSERT_FALSE (integer_minus_onep (f_1));
15387 ASSERT_FALSE (integer_minus_onep (wr_f_1));
15388 ASSERT_FALSE (integer_minus_onep (f_m1));
15389 ASSERT_FALSE (integer_minus_onep (wr_f_m1));
15390 ASSERT_FALSE (integer_minus_onep (c_i_0));
15391 ASSERT_FALSE (integer_minus_onep (c_i_1));
15392 ASSERT_TRUE (integer_minus_onep (c_i_m1));
15393 ASSERT_FALSE (integer_minus_onep (c_f_0));
15394 ASSERT_FALSE (integer_minus_onep (c_f_1));
15395 ASSERT_FALSE (integer_minus_onep (c_f_m1));
15396
15397 /* Test integer_each_onep. */
15398 ASSERT_FALSE (integer_each_onep (i_0));
15399 ASSERT_FALSE (integer_each_onep (wr_i_0));
15400 ASSERT_TRUE (integer_each_onep (i_1));
15401 ASSERT_TRUE (integer_each_onep (wr_i_1));
15402 ASSERT_FALSE (integer_each_onep (i_m1));
15403 ASSERT_FALSE (integer_each_onep (wr_i_m1));
15404 ASSERT_FALSE (integer_each_onep (f_0));
15405 ASSERT_FALSE (integer_each_onep (wr_f_0));
15406 ASSERT_FALSE (integer_each_onep (f_1));
15407 ASSERT_FALSE (integer_each_onep (wr_f_1));
15408 ASSERT_FALSE (integer_each_onep (f_m1));
15409 ASSERT_FALSE (integer_each_onep (wr_f_m1));
15410 ASSERT_FALSE (integer_each_onep (c_i_0));
15411 ASSERT_FALSE (integer_each_onep (c_i_1));
15412 ASSERT_FALSE (integer_each_onep (c_i_m1));
15413 ASSERT_FALSE (integer_each_onep (c_f_0));
15414 ASSERT_FALSE (integer_each_onep (c_f_1));
15415 ASSERT_FALSE (integer_each_onep (c_f_m1));
15416
15417 /* Test integer_truep. */
15418 ASSERT_FALSE (integer_truep (i_0));
15419 ASSERT_FALSE (integer_truep (wr_i_0));
15420 ASSERT_TRUE (integer_truep (i_1));
15421 ASSERT_TRUE (integer_truep (wr_i_1));
15422 ASSERT_FALSE (integer_truep (i_m1));
15423 ASSERT_FALSE (integer_truep (wr_i_m1));
15424 ASSERT_FALSE (integer_truep (f_0));
15425 ASSERT_FALSE (integer_truep (wr_f_0));
15426 ASSERT_FALSE (integer_truep (f_1));
15427 ASSERT_FALSE (integer_truep (wr_f_1));
15428 ASSERT_FALSE (integer_truep (f_m1));
15429 ASSERT_FALSE (integer_truep (wr_f_m1));
15430 ASSERT_FALSE (integer_truep (c_i_0));
15431 ASSERT_TRUE (integer_truep (c_i_1));
15432 ASSERT_FALSE (integer_truep (c_i_m1));
15433 ASSERT_FALSE (integer_truep (c_f_0));
15434 ASSERT_FALSE (integer_truep (c_f_1));
15435 ASSERT_FALSE (integer_truep (c_f_m1));
15436
15437 /* Test integer_nonzerop. */
15438 ASSERT_FALSE (integer_nonzerop (i_0));
15439 ASSERT_FALSE (integer_nonzerop (wr_i_0));
15440 ASSERT_TRUE (integer_nonzerop (i_1));
15441 ASSERT_TRUE (integer_nonzerop (wr_i_1));
15442 ASSERT_TRUE (integer_nonzerop (i_m1));
15443 ASSERT_TRUE (integer_nonzerop (wr_i_m1));
15444 ASSERT_FALSE (integer_nonzerop (f_0));
15445 ASSERT_FALSE (integer_nonzerop (wr_f_0));
15446 ASSERT_FALSE (integer_nonzerop (f_1));
15447 ASSERT_FALSE (integer_nonzerop (wr_f_1));
15448 ASSERT_FALSE (integer_nonzerop (f_m1));
15449 ASSERT_FALSE (integer_nonzerop (wr_f_m1));
15450 ASSERT_FALSE (integer_nonzerop (c_i_0));
15451 ASSERT_TRUE (integer_nonzerop (c_i_1));
15452 ASSERT_TRUE (integer_nonzerop (c_i_m1));
15453 ASSERT_FALSE (integer_nonzerop (c_f_0));
15454 ASSERT_FALSE (integer_nonzerop (c_f_1));
15455 ASSERT_FALSE (integer_nonzerop (c_f_m1));
15456
15457 /* Test real_zerop. */
15458 ASSERT_FALSE (real_zerop (i_0));
15459 ASSERT_FALSE (real_zerop (wr_i_0));
15460 ASSERT_FALSE (real_zerop (i_1));
15461 ASSERT_FALSE (real_zerop (wr_i_1));
15462 ASSERT_FALSE (real_zerop (i_m1));
15463 ASSERT_FALSE (real_zerop (wr_i_m1));
15464 ASSERT_TRUE (real_zerop (f_0));
15465 ASSERT_TRUE (real_zerop (wr_f_0));
15466 ASSERT_FALSE (real_zerop (f_1));
15467 ASSERT_FALSE (real_zerop (wr_f_1));
15468 ASSERT_FALSE (real_zerop (f_m1));
15469 ASSERT_FALSE (real_zerop (wr_f_m1));
15470 ASSERT_FALSE (real_zerop (c_i_0));
15471 ASSERT_FALSE (real_zerop (c_i_1));
15472 ASSERT_FALSE (real_zerop (c_i_m1));
15473 ASSERT_TRUE (real_zerop (c_f_0));
15474 ASSERT_FALSE (real_zerop (c_f_1));
15475 ASSERT_FALSE (real_zerop (c_f_m1));
15476
15477 /* Test real_onep. */
15478 ASSERT_FALSE (real_onep (i_0));
15479 ASSERT_FALSE (real_onep (wr_i_0));
15480 ASSERT_FALSE (real_onep (i_1));
15481 ASSERT_FALSE (real_onep (wr_i_1));
15482 ASSERT_FALSE (real_onep (i_m1));
15483 ASSERT_FALSE (real_onep (wr_i_m1));
15484 ASSERT_FALSE (real_onep (f_0));
15485 ASSERT_FALSE (real_onep (wr_f_0));
15486 ASSERT_TRUE (real_onep (f_1));
15487 ASSERT_TRUE (real_onep (wr_f_1));
15488 ASSERT_FALSE (real_onep (f_m1));
15489 ASSERT_FALSE (real_onep (wr_f_m1));
15490 ASSERT_FALSE (real_onep (c_i_0));
15491 ASSERT_FALSE (real_onep (c_i_1));
15492 ASSERT_FALSE (real_onep (c_i_m1));
15493 ASSERT_FALSE (real_onep (c_f_0));
15494 ASSERT_TRUE (real_onep (c_f_1));
15495 ASSERT_FALSE (real_onep (c_f_m1));
15496
15497 /* Test real_minus_onep. */
15498 ASSERT_FALSE (real_minus_onep (i_0));
15499 ASSERT_FALSE (real_minus_onep (wr_i_0));
15500 ASSERT_FALSE (real_minus_onep (i_1));
15501 ASSERT_FALSE (real_minus_onep (wr_i_1));
15502 ASSERT_FALSE (real_minus_onep (i_m1));
15503 ASSERT_FALSE (real_minus_onep (wr_i_m1));
15504 ASSERT_FALSE (real_minus_onep (f_0));
15505 ASSERT_FALSE (real_minus_onep (wr_f_0));
15506 ASSERT_FALSE (real_minus_onep (f_1));
15507 ASSERT_FALSE (real_minus_onep (wr_f_1));
15508 ASSERT_TRUE (real_minus_onep (f_m1));
15509 ASSERT_TRUE (real_minus_onep (wr_f_m1));
15510 ASSERT_FALSE (real_minus_onep (c_i_0));
15511 ASSERT_FALSE (real_minus_onep (c_i_1));
15512 ASSERT_FALSE (real_minus_onep (c_i_m1));
15513 ASSERT_FALSE (real_minus_onep (c_f_0));
15514 ASSERT_FALSE (real_minus_onep (c_f_1));
15515 ASSERT_TRUE (real_minus_onep (c_f_m1));
15516
15517 /* Test zerop. */
15518 ASSERT_TRUE (zerop (i_0));
15519 ASSERT_TRUE (zerop (wr_i_0));
15520 ASSERT_FALSE (zerop (i_1));
15521 ASSERT_FALSE (zerop (wr_i_1));
15522 ASSERT_FALSE (zerop (i_m1));
15523 ASSERT_FALSE (zerop (wr_i_m1));
15524 ASSERT_TRUE (zerop (f_0));
15525 ASSERT_TRUE (zerop (wr_f_0));
15526 ASSERT_FALSE (zerop (f_1));
15527 ASSERT_FALSE (zerop (wr_f_1));
15528 ASSERT_FALSE (zerop (f_m1));
15529 ASSERT_FALSE (zerop (wr_f_m1));
15530 ASSERT_TRUE (zerop (c_i_0));
15531 ASSERT_FALSE (zerop (c_i_1));
15532 ASSERT_FALSE (zerop (c_i_m1));
15533 ASSERT_TRUE (zerop (c_f_0));
15534 ASSERT_FALSE (zerop (c_f_1));
15535 ASSERT_FALSE (zerop (c_f_m1));
15536
15537 /* Test tree_expr_nonnegative_p. */
15538 ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
15539 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
15540 ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
15541 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
15542 ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
15543 ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
15544 ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
15545 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
15546 ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
15547 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
15548 ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
15549 ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
15550 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
15551 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
15552 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
15553 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
15554 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
15555 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));
15556
15557 /* Test tree_expr_nonzero_p. */
15558 ASSERT_FALSE (tree_expr_nonzero_p (i_0));
15559 ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
15560 ASSERT_TRUE (tree_expr_nonzero_p (i_1));
15561 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
15562 ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
15563 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));
15564
15565 /* Test integer_valued_real_p. */
15566 ASSERT_FALSE (integer_valued_real_p (i_0));
15567 ASSERT_TRUE (integer_valued_real_p (f_0));
15568 ASSERT_TRUE (integer_valued_real_p (wr_f_0));
15569 ASSERT_TRUE (integer_valued_real_p (f_1));
15570 ASSERT_TRUE (integer_valued_real_p (wr_f_1));
15571
15572 /* Test integer_pow2p. */
15573 ASSERT_FALSE (integer_pow2p (i_0));
15574 ASSERT_TRUE (integer_pow2p (i_1));
15575 ASSERT_TRUE (integer_pow2p (wr_i_1));
15576
15577 /* Test uniform_integer_cst_p. */
15578 ASSERT_TRUE (uniform_integer_cst_p (i_0));
15579 ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
15580 ASSERT_TRUE (uniform_integer_cst_p (i_1));
15581 ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
15582 ASSERT_TRUE (uniform_integer_cst_p (i_m1));
15583 ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
15584 ASSERT_FALSE (uniform_integer_cst_p (f_0));
15585 ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
15586 ASSERT_FALSE (uniform_integer_cst_p (f_1));
15587 ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
15588 ASSERT_FALSE (uniform_integer_cst_p (f_m1));
15589 ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
15590 ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
15591 ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
15592 ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
15593 ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
15594 ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
15595 ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
15596 }
15597
15598 /* Check that string escaping works correctly. */
15599
15600 static void
15601 test_escaped_strings (void)
15602 {
15603 int saved_cutoff;
15604 escaped_string msg;
15605
15606 msg.escape (NULL);
15607 /* ASSERT_STREQ does not accept NULL as a valid test
15608 result, so we have to use ASSERT_EQ instead. */
15609 ASSERT_EQ (NULL, (const char *) msg);
15610
15611 msg.escape ("");
15612 ASSERT_STREQ ("", (const char *) msg);
15613
15614 msg.escape ("foobar");
15615 ASSERT_STREQ ("foobar", (const char *) msg);
15616
15617 /* Ensure that we have -fmessage-length set to 0. */
15618 saved_cutoff = pp_line_cutoff (global_dc->printer);
15619 pp_line_cutoff (global_dc->printer) = 0;
15620
15621 msg.escape ("foo\nbar");
15622 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
15623
15624 msg.escape ("\a\b\f\n\r\t\v");
15625 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
15626
15627 /* Now repeat the tests with -fmessage-length set to 5. */
15628 pp_line_cutoff (global_dc->printer) = 5;
15629
15630 /* Note that the newline is not translated into an escape. */
15631 msg.escape ("foo\nbar");
15632 ASSERT_STREQ ("foo\nbar", (const char *) msg);
15633
15634 msg.escape ("\a\b\f\n\r\t\v");
15635 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
15636
15637 /* Restore the original message length setting. */
15638 pp_line_cutoff (global_dc->printer) = saved_cutoff;
15639 }
15640
15641 /* Run all of the selftests within this file. */
15642
15643 void
15644 tree_c_tests ()
15645 {
15646 test_integer_constants ();
15647 test_identifiers ();
15648 test_labels ();
15649 test_vector_cst_patterns ();
15650 test_location_wrappers ();
15651 test_predicates ();
15652 test_escaped_strings ();
15653 }
15654
15655 } // namespace selftest
15656
15657 #endif /* CHECKING_P */
15658
15659 #include "gt-tree.h"