re PR tree-optimization/37709 (inlining causes explosion in debug info)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "fixed-value.h"
54
55 /* Tree code classes. */
56
57 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
58 #define END_OF_BASE_TREE_CODES tcc_exceptional,
59
60 const enum tree_code_class tree_code_type[] = {
61 #include "all-tree.def"
62 };
63
64 #undef DEFTREECODE
65 #undef END_OF_BASE_TREE_CODES
66
67 /* Table indexed by tree code giving number of expression
68 operands beyond the fixed part of the node structure.
69 Not used for types or decls. */
70
71 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
72 #define END_OF_BASE_TREE_CODES 0,
73
74 const unsigned char tree_code_length[] = {
75 #include "all-tree.def"
76 };
77
78 #undef DEFTREECODE
79 #undef END_OF_BASE_TREE_CODES
80
81 /* Names of tree components.
82 Used for printing out the tree and error messages. */
83 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
84 #define END_OF_BASE_TREE_CODES "@dummy",
85
86 const char *const tree_code_name[] = {
87 #include "all-tree.def"
88 };
89
90 #undef DEFTREECODE
91 #undef END_OF_BASE_TREE_CODES
92
93 /* Each tree code class has an associated string representation.
94 These must correspond to the tree_code_class entries. */
95
96 const char *const tree_code_class_strings[] =
97 {
98 "exceptional",
99 "constant",
100 "type",
101 "declaration",
102 "reference",
103 "comparison",
104 "unary",
105 "binary",
106 "statement",
107 "vl_exp",
108 "expression"
109 };
110
111 /* obstack.[ch] explicitly declined to prototype this. */
112 extern int _obstack_allocated_p (struct obstack *h, void *obj);
113
114 #ifdef GATHER_STATISTICS
115 /* Statistics-gathering stuff. */
116
117 int tree_node_counts[(int) all_kinds];
118 int tree_node_sizes[(int) all_kinds];
119
120 /* Keep in sync with tree.h:enum tree_node_kind. */
121 static const char * const tree_node_kind_names[] = {
122 "decls",
123 "types",
124 "blocks",
125 "stmts",
126 "refs",
127 "exprs",
128 "constants",
129 "identifiers",
130 "perm_tree_lists",
131 "temp_tree_lists",
132 "vecs",
133 "binfos",
134 "ssa names",
135 "constructors",
136 "random kinds",
137 "lang_decl kinds",
138 "lang_type kinds",
139 "omp clauses",
140 };
141 #endif /* GATHER_STATISTICS */
142
143 /* Unique id for next decl created. */
144 static GTY(()) int next_decl_uid;
145 /* Unique id for next type created. */
146 static GTY(()) int next_type_uid = 1;
147
148 /* Since we cannot rehash a type after it is in the table, we have to
149 keep the hash code. */
150
151 struct type_hash GTY(())
152 {
153 unsigned long hash;
154 tree type;
155 };
156
157 /* Initial size of the hash table (rounded to next prime). */
158 #define TYPE_HASH_INITIAL_SIZE 1000
159
160 /* Now here is the hash table. When recording a type, it is added to
161 the slot whose index is the hash code. Note that the hash table is
162 used for several kinds of types (function types, array types and
163 array index range types, for now). While all these live in the
164 same table, they are completely independent, and the hash code is
165 computed differently for each of these. */
166
167 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
168 htab_t type_hash_table;
169
170 /* Hash table and temporary node for larger integer const values. */
171 static GTY (()) tree int_cst_node;
172 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
173 htab_t int_cst_hash_table;
174
175 /* Hash table for optimization flags and target option flags. Use the same
176 hash table for both sets of options. Nodes for building the current
177 optimization and target option nodes. The assumption is most of the time
178 the options created will already be in the hash table, so we avoid
179 allocating and freeing up a node repeatably. */
180 static GTY (()) tree cl_optimization_node;
181 static GTY (()) tree cl_target_option_node;
182 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
183 htab_t cl_option_hash_table;
184
185 /* General tree->tree mapping structure for use in hash tables. */
186
187
188 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
189 htab_t debug_expr_for_decl;
190
191 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
192 htab_t value_expr_for_decl;
193
194 static GTY ((if_marked ("tree_priority_map_marked_p"),
195 param_is (struct tree_priority_map)))
196 htab_t init_priority_for_decl;
197
198 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
199 htab_t restrict_base_for_decl;
200
201 static void set_type_quals (tree, int);
202 static int type_hash_eq (const void *, const void *);
203 static hashval_t type_hash_hash (const void *);
204 static hashval_t int_cst_hash_hash (const void *);
205 static int int_cst_hash_eq (const void *, const void *);
206 static hashval_t cl_option_hash_hash (const void *);
207 static int cl_option_hash_eq (const void *, const void *);
208 static void print_type_hash_statistics (void);
209 static void print_debug_expr_statistics (void);
210 static void print_value_expr_statistics (void);
211 static int type_hash_marked_p (const void *);
212 static unsigned int type_hash_list (const_tree, hashval_t);
213 static unsigned int attribute_hash_list (const_tree, hashval_t);
214
215 tree global_trees[TI_MAX];
216 tree integer_types[itk_none];
217
218 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
219
220 /* Number of operands for each OpenMP clause. */
221 unsigned const char omp_clause_num_ops[] =
222 {
223 0, /* OMP_CLAUSE_ERROR */
224 1, /* OMP_CLAUSE_PRIVATE */
225 1, /* OMP_CLAUSE_SHARED */
226 1, /* OMP_CLAUSE_FIRSTPRIVATE */
227 2, /* OMP_CLAUSE_LASTPRIVATE */
228 4, /* OMP_CLAUSE_REDUCTION */
229 1, /* OMP_CLAUSE_COPYIN */
230 1, /* OMP_CLAUSE_COPYPRIVATE */
231 1, /* OMP_CLAUSE_IF */
232 1, /* OMP_CLAUSE_NUM_THREADS */
233 1, /* OMP_CLAUSE_SCHEDULE */
234 0, /* OMP_CLAUSE_NOWAIT */
235 0, /* OMP_CLAUSE_ORDERED */
236 0, /* OMP_CLAUSE_DEFAULT */
237 3, /* OMP_CLAUSE_COLLAPSE */
238 0 /* OMP_CLAUSE_UNTIED */
239 };
240
241 const char * const omp_clause_code_name[] =
242 {
243 "error_clause",
244 "private",
245 "shared",
246 "firstprivate",
247 "lastprivate",
248 "reduction",
249 "copyin",
250 "copyprivate",
251 "if",
252 "num_threads",
253 "schedule",
254 "nowait",
255 "ordered",
256 "default",
257 "collapse",
258 "untied"
259 };
260 \f
261 /* Init tree.c. */
262
263 void
264 init_ttree (void)
265 {
266 /* Initialize the hash table of types. */
267 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
268 type_hash_eq, 0);
269
270 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
271 tree_map_eq, 0);
272
273 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
274 tree_map_eq, 0);
275 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
276 tree_priority_map_eq, 0);
277 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
278 tree_map_eq, 0);
279
280 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
281 int_cst_hash_eq, NULL);
282
283 int_cst_node = make_node (INTEGER_CST);
284
285 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
286 cl_option_hash_eq, NULL);
287
288 cl_optimization_node = make_node (OPTIMIZATION_NODE);
289 cl_target_option_node = make_node (TARGET_OPTION_NODE);
290
291 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
292 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
293 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
294
295
296 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
297 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
298 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
299 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
300 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
301 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
302 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
303 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
304 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
305
306
307 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
308 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
309 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
310 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
311 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
312 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
313
314 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
315 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
316 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
317 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
318 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
319 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
320 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
321 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
322 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
323 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
324 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
325 tree_contains_struct[MEMORY_PARTITION_TAG][TS_DECL_MINIMAL] = 1;
326
327 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
328 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
329 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_TAG] = 1;
330
331 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_PARTITION_TAG] = 1;
332
333 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
334 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
335 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
336 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
337
338 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
339 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
340 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
341 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
342 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
343 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
344 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
345 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
346 tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL] = 1;
347 tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON] = 1;
348
349 lang_hooks.init_ts ();
350 }
351
352 \f
353 /* The name of the object as the assembler will see it (but before any
354 translations made by ASM_OUTPUT_LABELREF). Often this is the same
355 as DECL_NAME. It is an IDENTIFIER_NODE. */
356 tree
357 decl_assembler_name (tree decl)
358 {
359 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
360 lang_hooks.set_decl_assembler_name (decl);
361 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
362 }
363
364 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
365
366 bool
367 decl_assembler_name_equal (tree decl, const_tree asmname)
368 {
369 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
370 const char *decl_str;
371 const char *asmname_str;
372 bool test = false;
373
374 if (decl_asmname == asmname)
375 return true;
376
377 decl_str = IDENTIFIER_POINTER (decl_asmname);
378 asmname_str = IDENTIFIER_POINTER (asmname);
379
380
381 /* If the target assembler name was set by the user, things are trickier.
382 We have a leading '*' to begin with. After that, it's arguable what
383 is the correct thing to do with -fleading-underscore. Arguably, we've
384 historically been doing the wrong thing in assemble_alias by always
385 printing the leading underscore. Since we're not changing that, make
386 sure user_label_prefix follows the '*' before matching. */
387 if (decl_str[0] == '*')
388 {
389 size_t ulp_len = strlen (user_label_prefix);
390
391 decl_str ++;
392
393 if (ulp_len == 0)
394 test = true;
395 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
396 decl_str += ulp_len, test=true;
397 else
398 decl_str --;
399 }
400 if (asmname_str[0] == '*')
401 {
402 size_t ulp_len = strlen (user_label_prefix);
403
404 asmname_str ++;
405
406 if (ulp_len == 0)
407 test = true;
408 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
409 asmname_str += ulp_len, test=true;
410 else
411 asmname_str --;
412 }
413
414 if (!test)
415 return false;
416 return strcmp (decl_str, asmname_str) == 0;
417 }
418
419 /* Hash asmnames ignoring the user specified marks. */
420
421 hashval_t
422 decl_assembler_name_hash (const_tree asmname)
423 {
424 if (IDENTIFIER_POINTER (asmname)[0] == '*')
425 {
426 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
427 size_t ulp_len = strlen (user_label_prefix);
428
429 if (ulp_len == 0)
430 ;
431 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
432 decl_str += ulp_len;
433
434 return htab_hash_string (decl_str);
435 }
436
437 return htab_hash_string (IDENTIFIER_POINTER (asmname));
438 }
439
440 /* Compute the number of bytes occupied by a tree with code CODE.
441 This function cannot be used for nodes that have variable sizes,
442 including TREE_VEC, STRING_CST, and CALL_EXPR. */
443 size_t
444 tree_code_size (enum tree_code code)
445 {
446 switch (TREE_CODE_CLASS (code))
447 {
448 case tcc_declaration: /* A decl node */
449 {
450 switch (code)
451 {
452 case FIELD_DECL:
453 return sizeof (struct tree_field_decl);
454 case PARM_DECL:
455 return sizeof (struct tree_parm_decl);
456 case VAR_DECL:
457 return sizeof (struct tree_var_decl);
458 case LABEL_DECL:
459 return sizeof (struct tree_label_decl);
460 case RESULT_DECL:
461 return sizeof (struct tree_result_decl);
462 case CONST_DECL:
463 return sizeof (struct tree_const_decl);
464 case TYPE_DECL:
465 return sizeof (struct tree_type_decl);
466 case FUNCTION_DECL:
467 return sizeof (struct tree_function_decl);
468 case NAME_MEMORY_TAG:
469 case SYMBOL_MEMORY_TAG:
470 return sizeof (struct tree_memory_tag);
471 case MEMORY_PARTITION_TAG:
472 return sizeof (struct tree_memory_partition_tag);
473 default:
474 return sizeof (struct tree_decl_non_common);
475 }
476 }
477
478 case tcc_type: /* a type node */
479 return sizeof (struct tree_type);
480
481 case tcc_reference: /* a reference */
482 case tcc_expression: /* an expression */
483 case tcc_statement: /* an expression with side effects */
484 case tcc_comparison: /* a comparison expression */
485 case tcc_unary: /* a unary arithmetic expression */
486 case tcc_binary: /* a binary arithmetic expression */
487 return (sizeof (struct tree_exp)
488 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
489
490 case tcc_constant: /* a constant */
491 switch (code)
492 {
493 case INTEGER_CST: return sizeof (struct tree_int_cst);
494 case REAL_CST: return sizeof (struct tree_real_cst);
495 case FIXED_CST: return sizeof (struct tree_fixed_cst);
496 case COMPLEX_CST: return sizeof (struct tree_complex);
497 case VECTOR_CST: return sizeof (struct tree_vector);
498 case STRING_CST: gcc_unreachable ();
499 default:
500 return lang_hooks.tree_size (code);
501 }
502
503 case tcc_exceptional: /* something random, like an identifier. */
504 switch (code)
505 {
506 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
507 case TREE_LIST: return sizeof (struct tree_list);
508
509 case ERROR_MARK:
510 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
511
512 case TREE_VEC:
513 case OMP_CLAUSE: gcc_unreachable ();
514
515 case SSA_NAME: return sizeof (struct tree_ssa_name);
516
517 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
518 case BLOCK: return sizeof (struct tree_block);
519 case CONSTRUCTOR: return sizeof (struct tree_constructor);
520 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
521 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
522
523 default:
524 return lang_hooks.tree_size (code);
525 }
526
527 default:
528 gcc_unreachable ();
529 }
530 }
531
532 /* Compute the number of bytes occupied by NODE. This routine only
533 looks at TREE_CODE, except for those nodes that have variable sizes. */
534 size_t
535 tree_size (const_tree node)
536 {
537 const enum tree_code code = TREE_CODE (node);
538 switch (code)
539 {
540 case TREE_BINFO:
541 return (offsetof (struct tree_binfo, base_binfos)
542 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
543
544 case TREE_VEC:
545 return (sizeof (struct tree_vec)
546 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
547
548 case STRING_CST:
549 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
550
551 case OMP_CLAUSE:
552 return (sizeof (struct tree_omp_clause)
553 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
554 * sizeof (tree));
555
556 default:
557 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
558 return (sizeof (struct tree_exp)
559 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
560 else
561 return tree_code_size (code);
562 }
563 }
564
565 /* Return a newly allocated node of code CODE. For decl and type
566 nodes, some other fields are initialized. The rest of the node is
567 initialized to zero. This function cannot be used for TREE_VEC or
568 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
569
570 Achoo! I got a code in the node. */
571
572 tree
573 make_node_stat (enum tree_code code MEM_STAT_DECL)
574 {
575 tree t;
576 enum tree_code_class type = TREE_CODE_CLASS (code);
577 size_t length = tree_code_size (code);
578 #ifdef GATHER_STATISTICS
579 tree_node_kind kind;
580
581 switch (type)
582 {
583 case tcc_declaration: /* A decl node */
584 kind = d_kind;
585 break;
586
587 case tcc_type: /* a type node */
588 kind = t_kind;
589 break;
590
591 case tcc_statement: /* an expression with side effects */
592 kind = s_kind;
593 break;
594
595 case tcc_reference: /* a reference */
596 kind = r_kind;
597 break;
598
599 case tcc_expression: /* an expression */
600 case tcc_comparison: /* a comparison expression */
601 case tcc_unary: /* a unary arithmetic expression */
602 case tcc_binary: /* a binary arithmetic expression */
603 kind = e_kind;
604 break;
605
606 case tcc_constant: /* a constant */
607 kind = c_kind;
608 break;
609
610 case tcc_exceptional: /* something random, like an identifier. */
611 switch (code)
612 {
613 case IDENTIFIER_NODE:
614 kind = id_kind;
615 break;
616
617 case TREE_VEC:
618 kind = vec_kind;
619 break;
620
621 case TREE_BINFO:
622 kind = binfo_kind;
623 break;
624
625 case SSA_NAME:
626 kind = ssa_name_kind;
627 break;
628
629 case BLOCK:
630 kind = b_kind;
631 break;
632
633 case CONSTRUCTOR:
634 kind = constr_kind;
635 break;
636
637 default:
638 kind = x_kind;
639 break;
640 }
641 break;
642
643 default:
644 gcc_unreachable ();
645 }
646
647 tree_node_counts[(int) kind]++;
648 tree_node_sizes[(int) kind] += length;
649 #endif
650
651 if (code == IDENTIFIER_NODE)
652 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_id_zone);
653 else
654 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
655
656 memset (t, 0, length);
657
658 TREE_SET_CODE (t, code);
659
660 switch (type)
661 {
662 case tcc_statement:
663 TREE_SIDE_EFFECTS (t) = 1;
664 break;
665
666 case tcc_declaration:
667 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
668 {
669 if (code == FUNCTION_DECL)
670 {
671 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
672 DECL_MODE (t) = FUNCTION_MODE;
673 }
674 else
675 DECL_ALIGN (t) = 1;
676 /* We have not yet computed the alias set for this declaration. */
677 DECL_POINTER_ALIAS_SET (t) = -1;
678 }
679 DECL_SOURCE_LOCATION (t) = input_location;
680 DECL_UID (t) = next_decl_uid++;
681
682 break;
683
684 case tcc_type:
685 TYPE_UID (t) = next_type_uid++;
686 TYPE_ALIGN (t) = BITS_PER_UNIT;
687 TYPE_USER_ALIGN (t) = 0;
688 TYPE_MAIN_VARIANT (t) = t;
689 TYPE_CANONICAL (t) = t;
690
691 /* Default to no attributes for type, but let target change that. */
692 TYPE_ATTRIBUTES (t) = NULL_TREE;
693 targetm.set_default_type_attributes (t);
694
695 /* We have not yet computed the alias set for this type. */
696 TYPE_ALIAS_SET (t) = -1;
697 break;
698
699 case tcc_constant:
700 TREE_CONSTANT (t) = 1;
701 break;
702
703 case tcc_expression:
704 switch (code)
705 {
706 case INIT_EXPR:
707 case MODIFY_EXPR:
708 case VA_ARG_EXPR:
709 case PREDECREMENT_EXPR:
710 case PREINCREMENT_EXPR:
711 case POSTDECREMENT_EXPR:
712 case POSTINCREMENT_EXPR:
713 /* All of these have side-effects, no matter what their
714 operands are. */
715 TREE_SIDE_EFFECTS (t) = 1;
716 break;
717
718 default:
719 break;
720 }
721 break;
722
723 default:
724 /* Other classes need no special treatment. */
725 break;
726 }
727
728 return t;
729 }
730 \f
731 /* Return a new node with the same contents as NODE except that its
732 TREE_CHAIN is zero and it has a fresh uid. */
733
734 tree
735 copy_node_stat (tree node MEM_STAT_DECL)
736 {
737 tree t;
738 enum tree_code code = TREE_CODE (node);
739 size_t length;
740
741 gcc_assert (code != STATEMENT_LIST);
742
743 length = tree_size (node);
744 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
745 memcpy (t, node, length);
746
747 TREE_CHAIN (t) = 0;
748 TREE_ASM_WRITTEN (t) = 0;
749 TREE_VISITED (t) = 0;
750 t->base.ann = 0;
751
752 if (TREE_CODE_CLASS (code) == tcc_declaration)
753 {
754 DECL_UID (t) = next_decl_uid++;
755 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
756 && DECL_HAS_VALUE_EXPR_P (node))
757 {
758 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
759 DECL_HAS_VALUE_EXPR_P (t) = 1;
760 }
761 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
762 {
763 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
764 DECL_HAS_INIT_PRIORITY_P (t) = 1;
765 }
766 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
767 {
768 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
769 DECL_BASED_ON_RESTRICT_P (t) = 1;
770 }
771 }
772 else if (TREE_CODE_CLASS (code) == tcc_type)
773 {
774 TYPE_UID (t) = next_type_uid++;
775 /* The following is so that the debug code for
776 the copy is different from the original type.
777 The two statements usually duplicate each other
778 (because they clear fields of the same union),
779 but the optimizer should catch that. */
780 TYPE_SYMTAB_POINTER (t) = 0;
781 TYPE_SYMTAB_ADDRESS (t) = 0;
782
783 /* Do not copy the values cache. */
784 if (TYPE_CACHED_VALUES_P(t))
785 {
786 TYPE_CACHED_VALUES_P (t) = 0;
787 TYPE_CACHED_VALUES (t) = NULL_TREE;
788 }
789 }
790
791 return t;
792 }
793
794 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
795 For example, this can copy a list made of TREE_LIST nodes. */
796
797 tree
798 copy_list (tree list)
799 {
800 tree head;
801 tree prev, next;
802
803 if (list == 0)
804 return 0;
805
806 head = prev = copy_node (list);
807 next = TREE_CHAIN (list);
808 while (next)
809 {
810 TREE_CHAIN (prev) = copy_node (next);
811 prev = TREE_CHAIN (prev);
812 next = TREE_CHAIN (next);
813 }
814 return head;
815 }
816
817 \f
818 /* Create an INT_CST node with a LOW value sign extended. */
819
820 tree
821 build_int_cst (tree type, HOST_WIDE_INT low)
822 {
823 /* Support legacy code. */
824 if (!type)
825 type = integer_type_node;
826
827 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
828 }
829
830 /* Create an INT_CST node with a LOW value zero extended. */
831
832 tree
833 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
834 {
835 return build_int_cst_wide (type, low, 0);
836 }
837
838 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
839 if it is negative. This function is similar to build_int_cst, but
840 the extra bits outside of the type precision are cleared. Constants
841 with these extra bits may confuse the fold so that it detects overflows
842 even in cases when they do not occur, and in general should be avoided.
843 We cannot however make this a default behavior of build_int_cst without
844 more intrusive changes, since there are parts of gcc that rely on the extra
845 precision of the integer constants. */
846
847 tree
848 build_int_cst_type (tree type, HOST_WIDE_INT low)
849 {
850 unsigned HOST_WIDE_INT low1;
851 HOST_WIDE_INT hi;
852
853 gcc_assert (type);
854
855 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
856
857 return build_int_cst_wide (type, low1, hi);
858 }
859
860 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
861 and sign extended according to the value range of TYPE. */
862
863 tree
864 build_int_cst_wide_type (tree type,
865 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
866 {
867 fit_double_type (low, high, &low, &high, type);
868 return build_int_cst_wide (type, low, high);
869 }
870
871 /* These are the hash table functions for the hash table of INTEGER_CST
872 nodes of a sizetype. */
873
874 /* Return the hash code code X, an INTEGER_CST. */
875
876 static hashval_t
877 int_cst_hash_hash (const void *x)
878 {
879 const_tree const t = (const_tree) x;
880
881 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
882 ^ htab_hash_pointer (TREE_TYPE (t)));
883 }
884
885 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
886 is the same as that given by *Y, which is the same. */
887
888 static int
889 int_cst_hash_eq (const void *x, const void *y)
890 {
891 const_tree const xt = (const_tree) x;
892 const_tree const yt = (const_tree) y;
893
894 return (TREE_TYPE (xt) == TREE_TYPE (yt)
895 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
896 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
897 }
898
899 /* Create an INT_CST node of TYPE and value HI:LOW.
900 The returned node is always shared. For small integers we use a
901 per-type vector cache, for larger ones we use a single hash table. */
902
903 tree
904 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
905 {
906 tree t;
907 int ix = -1;
908 int limit = 0;
909
910 gcc_assert (type);
911
912 switch (TREE_CODE (type))
913 {
914 case POINTER_TYPE:
915 case REFERENCE_TYPE:
916 /* Cache NULL pointer. */
917 if (!hi && !low)
918 {
919 limit = 1;
920 ix = 0;
921 }
922 break;
923
924 case BOOLEAN_TYPE:
925 /* Cache false or true. */
926 limit = 2;
927 if (!hi && low < 2)
928 ix = low;
929 break;
930
931 case INTEGER_TYPE:
932 case OFFSET_TYPE:
933 if (TYPE_UNSIGNED (type))
934 {
935 /* Cache 0..N */
936 limit = INTEGER_SHARE_LIMIT;
937 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
938 ix = low;
939 }
940 else
941 {
942 /* Cache -1..N */
943 limit = INTEGER_SHARE_LIMIT + 1;
944 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
945 ix = low + 1;
946 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
947 ix = 0;
948 }
949 break;
950
951 case ENUMERAL_TYPE:
952 break;
953
954 default:
955 gcc_unreachable ();
956 }
957
958 if (ix >= 0)
959 {
960 /* Look for it in the type's vector of small shared ints. */
961 if (!TYPE_CACHED_VALUES_P (type))
962 {
963 TYPE_CACHED_VALUES_P (type) = 1;
964 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
965 }
966
967 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
968 if (t)
969 {
970 /* Make sure no one is clobbering the shared constant. */
971 gcc_assert (TREE_TYPE (t) == type);
972 gcc_assert (TREE_INT_CST_LOW (t) == low);
973 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
974 }
975 else
976 {
977 /* Create a new shared int. */
978 t = make_node (INTEGER_CST);
979
980 TREE_INT_CST_LOW (t) = low;
981 TREE_INT_CST_HIGH (t) = hi;
982 TREE_TYPE (t) = type;
983
984 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
985 }
986 }
987 else
988 {
989 /* Use the cache of larger shared ints. */
990 void **slot;
991
992 TREE_INT_CST_LOW (int_cst_node) = low;
993 TREE_INT_CST_HIGH (int_cst_node) = hi;
994 TREE_TYPE (int_cst_node) = type;
995
996 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
997 t = (tree) *slot;
998 if (!t)
999 {
1000 /* Insert this one into the hash table. */
1001 t = int_cst_node;
1002 *slot = t;
1003 /* Make a new node for next time round. */
1004 int_cst_node = make_node (INTEGER_CST);
1005 }
1006 }
1007
1008 return t;
1009 }
1010
1011 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1012 and the rest are zeros. */
1013
1014 tree
1015 build_low_bits_mask (tree type, unsigned bits)
1016 {
1017 unsigned HOST_WIDE_INT low;
1018 HOST_WIDE_INT high;
1019 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
1020
1021 gcc_assert (bits <= TYPE_PRECISION (type));
1022
1023 if (bits == TYPE_PRECISION (type)
1024 && !TYPE_UNSIGNED (type))
1025 {
1026 /* Sign extended all-ones mask. */
1027 low = all_ones;
1028 high = -1;
1029 }
1030 else if (bits <= HOST_BITS_PER_WIDE_INT)
1031 {
1032 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1033 high = 0;
1034 }
1035 else
1036 {
1037 bits -= HOST_BITS_PER_WIDE_INT;
1038 low = all_ones;
1039 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1040 }
1041
1042 return build_int_cst_wide (type, low, high);
1043 }
1044
1045 /* Checks that X is integer constant that can be expressed in (unsigned)
1046 HOST_WIDE_INT without loss of precision. */
1047
1048 bool
1049 cst_and_fits_in_hwi (const_tree x)
1050 {
1051 if (TREE_CODE (x) != INTEGER_CST)
1052 return false;
1053
1054 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1055 return false;
1056
1057 return (TREE_INT_CST_HIGH (x) == 0
1058 || TREE_INT_CST_HIGH (x) == -1);
1059 }
1060
1061 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1062 are in a list pointed to by VALS. */
1063
1064 tree
1065 build_vector (tree type, tree vals)
1066 {
1067 tree v = make_node (VECTOR_CST);
1068 int over = 0;
1069 tree link;
1070
1071 TREE_VECTOR_CST_ELTS (v) = vals;
1072 TREE_TYPE (v) = type;
1073
1074 /* Iterate through elements and check for overflow. */
1075 for (link = vals; link; link = TREE_CHAIN (link))
1076 {
1077 tree value = TREE_VALUE (link);
1078
1079 /* Don't crash if we get an address constant. */
1080 if (!CONSTANT_CLASS_P (value))
1081 continue;
1082
1083 over |= TREE_OVERFLOW (value);
1084 }
1085
1086 TREE_OVERFLOW (v) = over;
1087 return v;
1088 }
1089
1090 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1091 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1092
1093 tree
1094 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1095 {
1096 tree list = NULL_TREE;
1097 unsigned HOST_WIDE_INT idx;
1098 tree value;
1099
1100 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1101 list = tree_cons (NULL_TREE, value, list);
1102 return build_vector (type, nreverse (list));
1103 }
1104
1105 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1106 are in the VEC pointed to by VALS. */
1107 tree
1108 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1109 {
1110 tree c = make_node (CONSTRUCTOR);
1111 TREE_TYPE (c) = type;
1112 CONSTRUCTOR_ELTS (c) = vals;
1113 return c;
1114 }
1115
1116 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1117 INDEX and VALUE. */
1118 tree
1119 build_constructor_single (tree type, tree index, tree value)
1120 {
1121 VEC(constructor_elt,gc) *v;
1122 constructor_elt *elt;
1123 tree t;
1124
1125 v = VEC_alloc (constructor_elt, gc, 1);
1126 elt = VEC_quick_push (constructor_elt, v, NULL);
1127 elt->index = index;
1128 elt->value = value;
1129
1130 t = build_constructor (type, v);
1131 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1132 return t;
1133 }
1134
1135
1136 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1137 are in a list pointed to by VALS. */
1138 tree
1139 build_constructor_from_list (tree type, tree vals)
1140 {
1141 tree t, val;
1142 VEC(constructor_elt,gc) *v = NULL;
1143 bool constant_p = true;
1144
1145 if (vals)
1146 {
1147 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1148 for (t = vals; t; t = TREE_CHAIN (t))
1149 {
1150 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1151 val = TREE_VALUE (t);
1152 elt->index = TREE_PURPOSE (t);
1153 elt->value = val;
1154 if (!TREE_CONSTANT (val))
1155 constant_p = false;
1156 }
1157 }
1158
1159 t = build_constructor (type, v);
1160 TREE_CONSTANT (t) = constant_p;
1161 return t;
1162 }
1163
1164 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1165
1166 tree
1167 build_fixed (tree type, FIXED_VALUE_TYPE f)
1168 {
1169 tree v;
1170 FIXED_VALUE_TYPE *fp;
1171
1172 v = make_node (FIXED_CST);
1173 fp = GGC_NEW (FIXED_VALUE_TYPE);
1174 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1175
1176 TREE_TYPE (v) = type;
1177 TREE_FIXED_CST_PTR (v) = fp;
1178 return v;
1179 }
1180
1181 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1182
1183 tree
1184 build_real (tree type, REAL_VALUE_TYPE d)
1185 {
1186 tree v;
1187 REAL_VALUE_TYPE *dp;
1188 int overflow = 0;
1189
1190 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1191 Consider doing it via real_convert now. */
1192
1193 v = make_node (REAL_CST);
1194 dp = GGC_NEW (REAL_VALUE_TYPE);
1195 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1196
1197 TREE_TYPE (v) = type;
1198 TREE_REAL_CST_PTR (v) = dp;
1199 TREE_OVERFLOW (v) = overflow;
1200 return v;
1201 }
1202
1203 /* Return a new REAL_CST node whose type is TYPE
1204 and whose value is the integer value of the INTEGER_CST node I. */
1205
1206 REAL_VALUE_TYPE
1207 real_value_from_int_cst (const_tree type, const_tree i)
1208 {
1209 REAL_VALUE_TYPE d;
1210
1211 /* Clear all bits of the real value type so that we can later do
1212 bitwise comparisons to see if two values are the same. */
1213 memset (&d, 0, sizeof d);
1214
1215 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1216 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1217 TYPE_UNSIGNED (TREE_TYPE (i)));
1218 return d;
1219 }
1220
1221 /* Given a tree representing an integer constant I, return a tree
1222 representing the same value as a floating-point constant of type TYPE. */
1223
1224 tree
1225 build_real_from_int_cst (tree type, const_tree i)
1226 {
1227 tree v;
1228 int overflow = TREE_OVERFLOW (i);
1229
1230 v = build_real (type, real_value_from_int_cst (type, i));
1231
1232 TREE_OVERFLOW (v) |= overflow;
1233 return v;
1234 }
1235
1236 /* Return a newly constructed STRING_CST node whose value is
1237 the LEN characters at STR.
1238 The TREE_TYPE is not initialized. */
1239
1240 tree
1241 build_string (int len, const char *str)
1242 {
1243 tree s;
1244 size_t length;
1245
1246 /* Do not waste bytes provided by padding of struct tree_string. */
1247 length = len + offsetof (struct tree_string, str) + 1;
1248
1249 #ifdef GATHER_STATISTICS
1250 tree_node_counts[(int) c_kind]++;
1251 tree_node_sizes[(int) c_kind] += length;
1252 #endif
1253
1254 s = ggc_alloc_tree (length);
1255
1256 memset (s, 0, sizeof (struct tree_common));
1257 TREE_SET_CODE (s, STRING_CST);
1258 TREE_CONSTANT (s) = 1;
1259 TREE_STRING_LENGTH (s) = len;
1260 memcpy (s->string.str, str, len);
1261 s->string.str[len] = '\0';
1262
1263 return s;
1264 }
1265
1266 /* Return a newly constructed COMPLEX_CST node whose value is
1267 specified by the real and imaginary parts REAL and IMAG.
1268 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1269 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1270
1271 tree
1272 build_complex (tree type, tree real, tree imag)
1273 {
1274 tree t = make_node (COMPLEX_CST);
1275
1276 TREE_REALPART (t) = real;
1277 TREE_IMAGPART (t) = imag;
1278 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1279 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1280 return t;
1281 }
1282
1283 /* Return a constant of arithmetic type TYPE which is the
1284 multiplicative identity of the set TYPE. */
1285
1286 tree
1287 build_one_cst (tree type)
1288 {
1289 switch (TREE_CODE (type))
1290 {
1291 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1292 case POINTER_TYPE: case REFERENCE_TYPE:
1293 case OFFSET_TYPE:
1294 return build_int_cst (type, 1);
1295
1296 case REAL_TYPE:
1297 return build_real (type, dconst1);
1298
1299 case FIXED_POINT_TYPE:
1300 /* We can only generate 1 for accum types. */
1301 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1302 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1303
1304 case VECTOR_TYPE:
1305 {
1306 tree scalar, cst;
1307 int i;
1308
1309 scalar = build_one_cst (TREE_TYPE (type));
1310
1311 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1312 cst = NULL_TREE;
1313 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1314 cst = tree_cons (NULL_TREE, scalar, cst);
1315
1316 return build_vector (type, cst);
1317 }
1318
1319 case COMPLEX_TYPE:
1320 return build_complex (type,
1321 build_one_cst (TREE_TYPE (type)),
1322 fold_convert (TREE_TYPE (type), integer_zero_node));
1323
1324 default:
1325 gcc_unreachable ();
1326 }
1327 }
1328
1329 /* Build a BINFO with LEN language slots. */
1330
1331 tree
1332 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1333 {
1334 tree t;
1335 size_t length = (offsetof (struct tree_binfo, base_binfos)
1336 + VEC_embedded_size (tree, base_binfos));
1337
1338 #ifdef GATHER_STATISTICS
1339 tree_node_counts[(int) binfo_kind]++;
1340 tree_node_sizes[(int) binfo_kind] += length;
1341 #endif
1342
1343 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1344
1345 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1346
1347 TREE_SET_CODE (t, TREE_BINFO);
1348
1349 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1350
1351 return t;
1352 }
1353
1354
1355 /* Build a newly constructed TREE_VEC node of length LEN. */
1356
1357 tree
1358 make_tree_vec_stat (int len MEM_STAT_DECL)
1359 {
1360 tree t;
1361 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1362
1363 #ifdef GATHER_STATISTICS
1364 tree_node_counts[(int) vec_kind]++;
1365 tree_node_sizes[(int) vec_kind] += length;
1366 #endif
1367
1368 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1369
1370 memset (t, 0, length);
1371
1372 TREE_SET_CODE (t, TREE_VEC);
1373 TREE_VEC_LENGTH (t) = len;
1374
1375 return t;
1376 }
1377 \f
1378 /* Return 1 if EXPR is the integer constant zero or a complex constant
1379 of zero. */
1380
1381 int
1382 integer_zerop (const_tree expr)
1383 {
1384 STRIP_NOPS (expr);
1385
1386 return ((TREE_CODE (expr) == INTEGER_CST
1387 && TREE_INT_CST_LOW (expr) == 0
1388 && TREE_INT_CST_HIGH (expr) == 0)
1389 || (TREE_CODE (expr) == COMPLEX_CST
1390 && integer_zerop (TREE_REALPART (expr))
1391 && integer_zerop (TREE_IMAGPART (expr))));
1392 }
1393
1394 /* Return 1 if EXPR is the integer constant one or the corresponding
1395 complex constant. */
1396
1397 int
1398 integer_onep (const_tree expr)
1399 {
1400 STRIP_NOPS (expr);
1401
1402 return ((TREE_CODE (expr) == INTEGER_CST
1403 && TREE_INT_CST_LOW (expr) == 1
1404 && TREE_INT_CST_HIGH (expr) == 0)
1405 || (TREE_CODE (expr) == COMPLEX_CST
1406 && integer_onep (TREE_REALPART (expr))
1407 && integer_zerop (TREE_IMAGPART (expr))));
1408 }
1409
1410 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1411 it contains. Likewise for the corresponding complex constant. */
1412
1413 int
1414 integer_all_onesp (const_tree expr)
1415 {
1416 int prec;
1417 int uns;
1418
1419 STRIP_NOPS (expr);
1420
1421 if (TREE_CODE (expr) == COMPLEX_CST
1422 && integer_all_onesp (TREE_REALPART (expr))
1423 && integer_zerop (TREE_IMAGPART (expr)))
1424 return 1;
1425
1426 else if (TREE_CODE (expr) != INTEGER_CST)
1427 return 0;
1428
1429 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1430 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1431 && TREE_INT_CST_HIGH (expr) == -1)
1432 return 1;
1433 if (!uns)
1434 return 0;
1435
1436 /* Note that using TYPE_PRECISION here is wrong. We care about the
1437 actual bits, not the (arbitrary) range of the type. */
1438 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1439 if (prec >= HOST_BITS_PER_WIDE_INT)
1440 {
1441 HOST_WIDE_INT high_value;
1442 int shift_amount;
1443
1444 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1445
1446 /* Can not handle precisions greater than twice the host int size. */
1447 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1448 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1449 /* Shifting by the host word size is undefined according to the ANSI
1450 standard, so we must handle this as a special case. */
1451 high_value = -1;
1452 else
1453 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1454
1455 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1456 && TREE_INT_CST_HIGH (expr) == high_value);
1457 }
1458 else
1459 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1460 }
1461
1462 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1463 one bit on). */
1464
1465 int
1466 integer_pow2p (const_tree expr)
1467 {
1468 int prec;
1469 HOST_WIDE_INT high, low;
1470
1471 STRIP_NOPS (expr);
1472
1473 if (TREE_CODE (expr) == COMPLEX_CST
1474 && integer_pow2p (TREE_REALPART (expr))
1475 && integer_zerop (TREE_IMAGPART (expr)))
1476 return 1;
1477
1478 if (TREE_CODE (expr) != INTEGER_CST)
1479 return 0;
1480
1481 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1482 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1483 high = TREE_INT_CST_HIGH (expr);
1484 low = TREE_INT_CST_LOW (expr);
1485
1486 /* First clear all bits that are beyond the type's precision in case
1487 we've been sign extended. */
1488
1489 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1490 ;
1491 else if (prec > HOST_BITS_PER_WIDE_INT)
1492 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1493 else
1494 {
1495 high = 0;
1496 if (prec < HOST_BITS_PER_WIDE_INT)
1497 low &= ~((HOST_WIDE_INT) (-1) << prec);
1498 }
1499
1500 if (high == 0 && low == 0)
1501 return 0;
1502
1503 return ((high == 0 && (low & (low - 1)) == 0)
1504 || (low == 0 && (high & (high - 1)) == 0));
1505 }
1506
1507 /* Return 1 if EXPR is an integer constant other than zero or a
1508 complex constant other than zero. */
1509
1510 int
1511 integer_nonzerop (const_tree expr)
1512 {
1513 STRIP_NOPS (expr);
1514
1515 return ((TREE_CODE (expr) == INTEGER_CST
1516 && (TREE_INT_CST_LOW (expr) != 0
1517 || TREE_INT_CST_HIGH (expr) != 0))
1518 || (TREE_CODE (expr) == COMPLEX_CST
1519 && (integer_nonzerop (TREE_REALPART (expr))
1520 || integer_nonzerop (TREE_IMAGPART (expr)))));
1521 }
1522
1523 /* Return 1 if EXPR is the fixed-point constant zero. */
1524
1525 int
1526 fixed_zerop (const_tree expr)
1527 {
1528 return (TREE_CODE (expr) == FIXED_CST
1529 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1530 }
1531
1532 /* Return the power of two represented by a tree node known to be a
1533 power of two. */
1534
1535 int
1536 tree_log2 (const_tree expr)
1537 {
1538 int prec;
1539 HOST_WIDE_INT high, low;
1540
1541 STRIP_NOPS (expr);
1542
1543 if (TREE_CODE (expr) == COMPLEX_CST)
1544 return tree_log2 (TREE_REALPART (expr));
1545
1546 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1547 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1548
1549 high = TREE_INT_CST_HIGH (expr);
1550 low = TREE_INT_CST_LOW (expr);
1551
1552 /* First clear all bits that are beyond the type's precision in case
1553 we've been sign extended. */
1554
1555 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1556 ;
1557 else if (prec > HOST_BITS_PER_WIDE_INT)
1558 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1559 else
1560 {
1561 high = 0;
1562 if (prec < HOST_BITS_PER_WIDE_INT)
1563 low &= ~((HOST_WIDE_INT) (-1) << prec);
1564 }
1565
1566 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1567 : exact_log2 (low));
1568 }
1569
1570 /* Similar, but return the largest integer Y such that 2 ** Y is less
1571 than or equal to EXPR. */
1572
1573 int
1574 tree_floor_log2 (const_tree expr)
1575 {
1576 int prec;
1577 HOST_WIDE_INT high, low;
1578
1579 STRIP_NOPS (expr);
1580
1581 if (TREE_CODE (expr) == COMPLEX_CST)
1582 return tree_log2 (TREE_REALPART (expr));
1583
1584 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1585 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1586
1587 high = TREE_INT_CST_HIGH (expr);
1588 low = TREE_INT_CST_LOW (expr);
1589
1590 /* First clear all bits that are beyond the type's precision in case
1591 we've been sign extended. Ignore if type's precision hasn't been set
1592 since what we are doing is setting it. */
1593
1594 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1595 ;
1596 else if (prec > HOST_BITS_PER_WIDE_INT)
1597 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1598 else
1599 {
1600 high = 0;
1601 if (prec < HOST_BITS_PER_WIDE_INT)
1602 low &= ~((HOST_WIDE_INT) (-1) << prec);
1603 }
1604
1605 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1606 : floor_log2 (low));
1607 }
1608
1609 /* Return 1 if EXPR is the real constant zero. */
1610
1611 int
1612 real_zerop (const_tree expr)
1613 {
1614 STRIP_NOPS (expr);
1615
1616 return ((TREE_CODE (expr) == REAL_CST
1617 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1618 || (TREE_CODE (expr) == COMPLEX_CST
1619 && real_zerop (TREE_REALPART (expr))
1620 && real_zerop (TREE_IMAGPART (expr))));
1621 }
1622
1623 /* Return 1 if EXPR is the real constant one in real or complex form. */
1624
1625 int
1626 real_onep (const_tree expr)
1627 {
1628 STRIP_NOPS (expr);
1629
1630 return ((TREE_CODE (expr) == REAL_CST
1631 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1632 || (TREE_CODE (expr) == COMPLEX_CST
1633 && real_onep (TREE_REALPART (expr))
1634 && real_zerop (TREE_IMAGPART (expr))));
1635 }
1636
1637 /* Return 1 if EXPR is the real constant two. */
1638
1639 int
1640 real_twop (const_tree expr)
1641 {
1642 STRIP_NOPS (expr);
1643
1644 return ((TREE_CODE (expr) == REAL_CST
1645 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1646 || (TREE_CODE (expr) == COMPLEX_CST
1647 && real_twop (TREE_REALPART (expr))
1648 && real_zerop (TREE_IMAGPART (expr))));
1649 }
1650
1651 /* Return 1 if EXPR is the real constant minus one. */
1652
1653 int
1654 real_minus_onep (const_tree expr)
1655 {
1656 STRIP_NOPS (expr);
1657
1658 return ((TREE_CODE (expr) == REAL_CST
1659 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1660 || (TREE_CODE (expr) == COMPLEX_CST
1661 && real_minus_onep (TREE_REALPART (expr))
1662 && real_zerop (TREE_IMAGPART (expr))));
1663 }
1664
1665 /* Nonzero if EXP is a constant or a cast of a constant. */
1666
1667 int
1668 really_constant_p (const_tree exp)
1669 {
1670 /* This is not quite the same as STRIP_NOPS. It does more. */
1671 while (CONVERT_EXPR_P (exp)
1672 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1673 exp = TREE_OPERAND (exp, 0);
1674 return TREE_CONSTANT (exp);
1675 }
1676 \f
1677 /* Return first list element whose TREE_VALUE is ELEM.
1678 Return 0 if ELEM is not in LIST. */
1679
1680 tree
1681 value_member (tree elem, tree list)
1682 {
1683 while (list)
1684 {
1685 if (elem == TREE_VALUE (list))
1686 return list;
1687 list = TREE_CHAIN (list);
1688 }
1689 return NULL_TREE;
1690 }
1691
1692 /* Return first list element whose TREE_PURPOSE is ELEM.
1693 Return 0 if ELEM is not in LIST. */
1694
1695 tree
1696 purpose_member (const_tree elem, tree list)
1697 {
1698 while (list)
1699 {
1700 if (elem == TREE_PURPOSE (list))
1701 return list;
1702 list = TREE_CHAIN (list);
1703 }
1704 return NULL_TREE;
1705 }
1706
1707 /* Return nonzero if ELEM is part of the chain CHAIN. */
1708
1709 int
1710 chain_member (const_tree elem, const_tree chain)
1711 {
1712 while (chain)
1713 {
1714 if (elem == chain)
1715 return 1;
1716 chain = TREE_CHAIN (chain);
1717 }
1718
1719 return 0;
1720 }
1721
1722 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1723 We expect a null pointer to mark the end of the chain.
1724 This is the Lisp primitive `length'. */
1725
1726 int
1727 list_length (const_tree t)
1728 {
1729 const_tree p = t;
1730 #ifdef ENABLE_TREE_CHECKING
1731 const_tree q = t;
1732 #endif
1733 int len = 0;
1734
1735 while (p)
1736 {
1737 p = TREE_CHAIN (p);
1738 #ifdef ENABLE_TREE_CHECKING
1739 if (len % 2)
1740 q = TREE_CHAIN (q);
1741 gcc_assert (p != q);
1742 #endif
1743 len++;
1744 }
1745
1746 return len;
1747 }
1748
1749 /* Returns the number of FIELD_DECLs in TYPE. */
1750
1751 int
1752 fields_length (const_tree type)
1753 {
1754 tree t = TYPE_FIELDS (type);
1755 int count = 0;
1756
1757 for (; t; t = TREE_CHAIN (t))
1758 if (TREE_CODE (t) == FIELD_DECL)
1759 ++count;
1760
1761 return count;
1762 }
1763
1764 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1765 by modifying the last node in chain 1 to point to chain 2.
1766 This is the Lisp primitive `nconc'. */
1767
1768 tree
1769 chainon (tree op1, tree op2)
1770 {
1771 tree t1;
1772
1773 if (!op1)
1774 return op2;
1775 if (!op2)
1776 return op1;
1777
1778 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1779 continue;
1780 TREE_CHAIN (t1) = op2;
1781
1782 #ifdef ENABLE_TREE_CHECKING
1783 {
1784 tree t2;
1785 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1786 gcc_assert (t2 != t1);
1787 }
1788 #endif
1789
1790 return op1;
1791 }
1792
1793 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1794
1795 tree
1796 tree_last (tree chain)
1797 {
1798 tree next;
1799 if (chain)
1800 while ((next = TREE_CHAIN (chain)))
1801 chain = next;
1802 return chain;
1803 }
1804
1805 /* Reverse the order of elements in the chain T,
1806 and return the new head of the chain (old last element). */
1807
1808 tree
1809 nreverse (tree t)
1810 {
1811 tree prev = 0, decl, next;
1812 for (decl = t; decl; decl = next)
1813 {
1814 next = TREE_CHAIN (decl);
1815 TREE_CHAIN (decl) = prev;
1816 prev = decl;
1817 }
1818 return prev;
1819 }
1820 \f
1821 /* Return a newly created TREE_LIST node whose
1822 purpose and value fields are PARM and VALUE. */
1823
1824 tree
1825 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1826 {
1827 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1828 TREE_PURPOSE (t) = parm;
1829 TREE_VALUE (t) = value;
1830 return t;
1831 }
1832
1833 /* Return a newly created TREE_LIST node whose
1834 purpose and value fields are PURPOSE and VALUE
1835 and whose TREE_CHAIN is CHAIN. */
1836
1837 tree
1838 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1839 {
1840 tree node;
1841
1842 node = (tree) ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1843
1844 memset (node, 0, sizeof (struct tree_common));
1845
1846 #ifdef GATHER_STATISTICS
1847 tree_node_counts[(int) x_kind]++;
1848 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1849 #endif
1850
1851 TREE_SET_CODE (node, TREE_LIST);
1852 TREE_CHAIN (node) = chain;
1853 TREE_PURPOSE (node) = purpose;
1854 TREE_VALUE (node) = value;
1855 return node;
1856 }
1857
1858 /* Return the elements of a CONSTRUCTOR as a TREE_LIST. */
1859
1860 tree
1861 ctor_to_list (tree ctor)
1862 {
1863 tree list = NULL_TREE;
1864 tree *p = &list;
1865 unsigned ix;
1866 tree purpose, val;
1867
1868 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), ix, purpose, val)
1869 {
1870 *p = build_tree_list (purpose, val);
1871 p = &TREE_CHAIN (*p);
1872 }
1873
1874 return list;
1875 }
1876 \f
1877 /* Return the size nominally occupied by an object of type TYPE
1878 when it resides in memory. The value is measured in units of bytes,
1879 and its data type is that normally used for type sizes
1880 (which is the first type created by make_signed_type or
1881 make_unsigned_type). */
1882
1883 tree
1884 size_in_bytes (const_tree type)
1885 {
1886 tree t;
1887
1888 if (type == error_mark_node)
1889 return integer_zero_node;
1890
1891 type = TYPE_MAIN_VARIANT (type);
1892 t = TYPE_SIZE_UNIT (type);
1893
1894 if (t == 0)
1895 {
1896 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1897 return size_zero_node;
1898 }
1899
1900 return t;
1901 }
1902
1903 /* Return the size of TYPE (in bytes) as a wide integer
1904 or return -1 if the size can vary or is larger than an integer. */
1905
1906 HOST_WIDE_INT
1907 int_size_in_bytes (const_tree type)
1908 {
1909 tree t;
1910
1911 if (type == error_mark_node)
1912 return 0;
1913
1914 type = TYPE_MAIN_VARIANT (type);
1915 t = TYPE_SIZE_UNIT (type);
1916 if (t == 0
1917 || TREE_CODE (t) != INTEGER_CST
1918 || TREE_INT_CST_HIGH (t) != 0
1919 /* If the result would appear negative, it's too big to represent. */
1920 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1921 return -1;
1922
1923 return TREE_INT_CST_LOW (t);
1924 }
1925
1926 /* Return the maximum size of TYPE (in bytes) as a wide integer
1927 or return -1 if the size can vary or is larger than an integer. */
1928
1929 HOST_WIDE_INT
1930 max_int_size_in_bytes (const_tree type)
1931 {
1932 HOST_WIDE_INT size = -1;
1933 tree size_tree;
1934
1935 /* If this is an array type, check for a possible MAX_SIZE attached. */
1936
1937 if (TREE_CODE (type) == ARRAY_TYPE)
1938 {
1939 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1940
1941 if (size_tree && host_integerp (size_tree, 1))
1942 size = tree_low_cst (size_tree, 1);
1943 }
1944
1945 /* If we still haven't been able to get a size, see if the language
1946 can compute a maximum size. */
1947
1948 if (size == -1)
1949 {
1950 size_tree = lang_hooks.types.max_size (type);
1951
1952 if (size_tree && host_integerp (size_tree, 1))
1953 size = tree_low_cst (size_tree, 1);
1954 }
1955
1956 return size;
1957 }
1958 \f
1959 /* Return the bit position of FIELD, in bits from the start of the record.
1960 This is a tree of type bitsizetype. */
1961
1962 tree
1963 bit_position (const_tree field)
1964 {
1965 return bit_from_pos (DECL_FIELD_OFFSET (field),
1966 DECL_FIELD_BIT_OFFSET (field));
1967 }
1968
1969 /* Likewise, but return as an integer. It must be representable in
1970 that way (since it could be a signed value, we don't have the
1971 option of returning -1 like int_size_in_byte can. */
1972
1973 HOST_WIDE_INT
1974 int_bit_position (const_tree field)
1975 {
1976 return tree_low_cst (bit_position (field), 0);
1977 }
1978 \f
1979 /* Return the byte position of FIELD, in bytes from the start of the record.
1980 This is a tree of type sizetype. */
1981
1982 tree
1983 byte_position (const_tree field)
1984 {
1985 return byte_from_pos (DECL_FIELD_OFFSET (field),
1986 DECL_FIELD_BIT_OFFSET (field));
1987 }
1988
1989 /* Likewise, but return as an integer. It must be representable in
1990 that way (since it could be a signed value, we don't have the
1991 option of returning -1 like int_size_in_byte can. */
1992
1993 HOST_WIDE_INT
1994 int_byte_position (const_tree field)
1995 {
1996 return tree_low_cst (byte_position (field), 0);
1997 }
1998 \f
1999 /* Return the strictest alignment, in bits, that T is known to have. */
2000
2001 unsigned int
2002 expr_align (const_tree t)
2003 {
2004 unsigned int align0, align1;
2005
2006 switch (TREE_CODE (t))
2007 {
2008 CASE_CONVERT: case NON_LVALUE_EXPR:
2009 /* If we have conversions, we know that the alignment of the
2010 object must meet each of the alignments of the types. */
2011 align0 = expr_align (TREE_OPERAND (t, 0));
2012 align1 = TYPE_ALIGN (TREE_TYPE (t));
2013 return MAX (align0, align1);
2014
2015 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2016 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2017 case CLEANUP_POINT_EXPR:
2018 /* These don't change the alignment of an object. */
2019 return expr_align (TREE_OPERAND (t, 0));
2020
2021 case COND_EXPR:
2022 /* The best we can do is say that the alignment is the least aligned
2023 of the two arms. */
2024 align0 = expr_align (TREE_OPERAND (t, 1));
2025 align1 = expr_align (TREE_OPERAND (t, 2));
2026 return MIN (align0, align1);
2027
2028 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2029 meaningfully, it's always 1. */
2030 case LABEL_DECL: case CONST_DECL:
2031 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2032 case FUNCTION_DECL:
2033 gcc_assert (DECL_ALIGN (t) != 0);
2034 return DECL_ALIGN (t);
2035
2036 default:
2037 break;
2038 }
2039
2040 /* Otherwise take the alignment from that of the type. */
2041 return TYPE_ALIGN (TREE_TYPE (t));
2042 }
2043 \f
2044 /* Return, as a tree node, the number of elements for TYPE (which is an
2045 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2046
2047 tree
2048 array_type_nelts (const_tree type)
2049 {
2050 tree index_type, min, max;
2051
2052 /* If they did it with unspecified bounds, then we should have already
2053 given an error about it before we got here. */
2054 if (! TYPE_DOMAIN (type))
2055 return error_mark_node;
2056
2057 index_type = TYPE_DOMAIN (type);
2058 min = TYPE_MIN_VALUE (index_type);
2059 max = TYPE_MAX_VALUE (index_type);
2060
2061 return (integer_zerop (min)
2062 ? max
2063 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2064 }
2065 \f
2066 /* If arg is static -- a reference to an object in static storage -- then
2067 return the object. This is not the same as the C meaning of `static'.
2068 If arg isn't static, return NULL. */
2069
2070 tree
2071 staticp (tree arg)
2072 {
2073 switch (TREE_CODE (arg))
2074 {
2075 case FUNCTION_DECL:
2076 /* Nested functions are static, even though taking their address will
2077 involve a trampoline as we unnest the nested function and create
2078 the trampoline on the tree level. */
2079 return arg;
2080
2081 case VAR_DECL:
2082 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2083 && ! DECL_THREAD_LOCAL_P (arg)
2084 && ! DECL_DLLIMPORT_P (arg)
2085 ? arg : NULL);
2086
2087 case CONST_DECL:
2088 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2089 ? arg : NULL);
2090
2091 case CONSTRUCTOR:
2092 return TREE_STATIC (arg) ? arg : NULL;
2093
2094 case LABEL_DECL:
2095 case STRING_CST:
2096 return arg;
2097
2098 case COMPONENT_REF:
2099 /* If the thing being referenced is not a field, then it is
2100 something language specific. */
2101 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
2102 return (*lang_hooks.staticp) (arg);
2103
2104 /* If we are referencing a bitfield, we can't evaluate an
2105 ADDR_EXPR at compile time and so it isn't a constant. */
2106 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2107 return NULL;
2108
2109 return staticp (TREE_OPERAND (arg, 0));
2110
2111 case BIT_FIELD_REF:
2112 return NULL;
2113
2114 case MISALIGNED_INDIRECT_REF:
2115 case ALIGN_INDIRECT_REF:
2116 case INDIRECT_REF:
2117 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2118
2119 case ARRAY_REF:
2120 case ARRAY_RANGE_REF:
2121 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2122 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2123 return staticp (TREE_OPERAND (arg, 0));
2124 else
2125 return false;
2126
2127 default:
2128 if ((unsigned int) TREE_CODE (arg)
2129 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
2130 return lang_hooks.staticp (arg);
2131 else
2132 return NULL;
2133 }
2134 }
2135
2136 \f
2137
2138
2139 /* Return whether OP is a DECL whose address is function-invariant. */
2140
2141 bool
2142 decl_address_invariant_p (const_tree op)
2143 {
2144 /* The conditions below are slightly less strict than the one in
2145 staticp. */
2146
2147 switch (TREE_CODE (op))
2148 {
2149 case PARM_DECL:
2150 case RESULT_DECL:
2151 case LABEL_DECL:
2152 case FUNCTION_DECL:
2153 return true;
2154
2155 case VAR_DECL:
2156 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2157 && !DECL_DLLIMPORT_P (op))
2158 || DECL_THREAD_LOCAL_P (op)
2159 || DECL_CONTEXT (op) == current_function_decl
2160 || decl_function_context (op) == current_function_decl)
2161 return true;
2162 break;
2163
2164 case CONST_DECL:
2165 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2166 || decl_function_context (op) == current_function_decl)
2167 return true;
2168 break;
2169
2170 default:
2171 break;
2172 }
2173
2174 return false;
2175 }
2176
2177 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2178
2179 bool
2180 decl_address_ip_invariant_p (const_tree op)
2181 {
2182 /* The conditions below are slightly less strict than the one in
2183 staticp. */
2184
2185 switch (TREE_CODE (op))
2186 {
2187 case LABEL_DECL:
2188 case FUNCTION_DECL:
2189 case STRING_CST:
2190 return true;
2191
2192 case VAR_DECL:
2193 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2194 && !DECL_DLLIMPORT_P (op))
2195 || DECL_THREAD_LOCAL_P (op))
2196 return true;
2197 break;
2198
2199 case CONST_DECL:
2200 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2201 return true;
2202 break;
2203
2204 default:
2205 break;
2206 }
2207
2208 return false;
2209 }
2210
2211
2212 /* Return true if T is function-invariant (internal function, does
2213 not handle arithmetic; that's handled in skip_simple_arithmetic and
2214 tree_invariant_p). */
2215
2216 static bool tree_invariant_p (tree t);
2217
2218 static bool
2219 tree_invariant_p_1 (tree t)
2220 {
2221 tree op;
2222
2223 if (TREE_CONSTANT (t)
2224 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2225 return true;
2226
2227 switch (TREE_CODE (t))
2228 {
2229 case SAVE_EXPR:
2230 return true;
2231
2232 case ADDR_EXPR:
2233 op = TREE_OPERAND (t, 0);
2234 while (handled_component_p (op))
2235 {
2236 switch (TREE_CODE (op))
2237 {
2238 case ARRAY_REF:
2239 case ARRAY_RANGE_REF:
2240 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2241 || TREE_OPERAND (op, 2) != NULL_TREE
2242 || TREE_OPERAND (op, 3) != NULL_TREE)
2243 return false;
2244 break;
2245
2246 case COMPONENT_REF:
2247 if (TREE_OPERAND (op, 2) != NULL_TREE)
2248 return false;
2249 break;
2250
2251 default:;
2252 }
2253 op = TREE_OPERAND (op, 0);
2254 }
2255
2256 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2257
2258 default:
2259 break;
2260 }
2261
2262 return false;
2263 }
2264
2265 /* Return true if T is function-invariant. */
2266
2267 static bool
2268 tree_invariant_p (tree t)
2269 {
2270 tree inner = skip_simple_arithmetic (t);
2271 return tree_invariant_p_1 (inner);
2272 }
2273
2274 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2275 Do this to any expression which may be used in more than one place,
2276 but must be evaluated only once.
2277
2278 Normally, expand_expr would reevaluate the expression each time.
2279 Calling save_expr produces something that is evaluated and recorded
2280 the first time expand_expr is called on it. Subsequent calls to
2281 expand_expr just reuse the recorded value.
2282
2283 The call to expand_expr that generates code that actually computes
2284 the value is the first call *at compile time*. Subsequent calls
2285 *at compile time* generate code to use the saved value.
2286 This produces correct result provided that *at run time* control
2287 always flows through the insns made by the first expand_expr
2288 before reaching the other places where the save_expr was evaluated.
2289 You, the caller of save_expr, must make sure this is so.
2290
2291 Constants, and certain read-only nodes, are returned with no
2292 SAVE_EXPR because that is safe. Expressions containing placeholders
2293 are not touched; see tree.def for an explanation of what these
2294 are used for. */
2295
2296 tree
2297 save_expr (tree expr)
2298 {
2299 tree t = fold (expr);
2300 tree inner;
2301
2302 /* If the tree evaluates to a constant, then we don't want to hide that
2303 fact (i.e. this allows further folding, and direct checks for constants).
2304 However, a read-only object that has side effects cannot be bypassed.
2305 Since it is no problem to reevaluate literals, we just return the
2306 literal node. */
2307 inner = skip_simple_arithmetic (t);
2308 if (TREE_CODE (inner) == ERROR_MARK)
2309 return inner;
2310
2311 if (tree_invariant_p_1 (inner))
2312 return t;
2313
2314 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2315 it means that the size or offset of some field of an object depends on
2316 the value within another field.
2317
2318 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2319 and some variable since it would then need to be both evaluated once and
2320 evaluated more than once. Front-ends must assure this case cannot
2321 happen by surrounding any such subexpressions in their own SAVE_EXPR
2322 and forcing evaluation at the proper time. */
2323 if (contains_placeholder_p (inner))
2324 return t;
2325
2326 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2327
2328 /* This expression might be placed ahead of a jump to ensure that the
2329 value was computed on both sides of the jump. So make sure it isn't
2330 eliminated as dead. */
2331 TREE_SIDE_EFFECTS (t) = 1;
2332 return t;
2333 }
2334
2335 /* Look inside EXPR and into any simple arithmetic operations. Return
2336 the innermost non-arithmetic node. */
2337
2338 tree
2339 skip_simple_arithmetic (tree expr)
2340 {
2341 tree inner;
2342
2343 /* We don't care about whether this can be used as an lvalue in this
2344 context. */
2345 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2346 expr = TREE_OPERAND (expr, 0);
2347
2348 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2349 a constant, it will be more efficient to not make another SAVE_EXPR since
2350 it will allow better simplification and GCSE will be able to merge the
2351 computations if they actually occur. */
2352 inner = expr;
2353 while (1)
2354 {
2355 if (UNARY_CLASS_P (inner))
2356 inner = TREE_OPERAND (inner, 0);
2357 else if (BINARY_CLASS_P (inner))
2358 {
2359 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2360 inner = TREE_OPERAND (inner, 0);
2361 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2362 inner = TREE_OPERAND (inner, 1);
2363 else
2364 break;
2365 }
2366 else
2367 break;
2368 }
2369
2370 return inner;
2371 }
2372
2373 /* Return which tree structure is used by T. */
2374
2375 enum tree_node_structure_enum
2376 tree_node_structure (const_tree t)
2377 {
2378 const enum tree_code code = TREE_CODE (t);
2379
2380 switch (TREE_CODE_CLASS (code))
2381 {
2382 case tcc_declaration:
2383 {
2384 switch (code)
2385 {
2386 case FIELD_DECL:
2387 return TS_FIELD_DECL;
2388 case PARM_DECL:
2389 return TS_PARM_DECL;
2390 case VAR_DECL:
2391 return TS_VAR_DECL;
2392 case LABEL_DECL:
2393 return TS_LABEL_DECL;
2394 case RESULT_DECL:
2395 return TS_RESULT_DECL;
2396 case CONST_DECL:
2397 return TS_CONST_DECL;
2398 case TYPE_DECL:
2399 return TS_TYPE_DECL;
2400 case FUNCTION_DECL:
2401 return TS_FUNCTION_DECL;
2402 case SYMBOL_MEMORY_TAG:
2403 case NAME_MEMORY_TAG:
2404 case MEMORY_PARTITION_TAG:
2405 return TS_MEMORY_TAG;
2406 default:
2407 return TS_DECL_NON_COMMON;
2408 }
2409 }
2410 case tcc_type:
2411 return TS_TYPE;
2412 case tcc_reference:
2413 case tcc_comparison:
2414 case tcc_unary:
2415 case tcc_binary:
2416 case tcc_expression:
2417 case tcc_statement:
2418 case tcc_vl_exp:
2419 return TS_EXP;
2420 default: /* tcc_constant and tcc_exceptional */
2421 break;
2422 }
2423 switch (code)
2424 {
2425 /* tcc_constant cases. */
2426 case INTEGER_CST: return TS_INT_CST;
2427 case REAL_CST: return TS_REAL_CST;
2428 case FIXED_CST: return TS_FIXED_CST;
2429 case COMPLEX_CST: return TS_COMPLEX;
2430 case VECTOR_CST: return TS_VECTOR;
2431 case STRING_CST: return TS_STRING;
2432 /* tcc_exceptional cases. */
2433 case ERROR_MARK: return TS_COMMON;
2434 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2435 case TREE_LIST: return TS_LIST;
2436 case TREE_VEC: return TS_VEC;
2437 case SSA_NAME: return TS_SSA_NAME;
2438 case PLACEHOLDER_EXPR: return TS_COMMON;
2439 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2440 case BLOCK: return TS_BLOCK;
2441 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2442 case TREE_BINFO: return TS_BINFO;
2443 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2444 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
2445 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
2446
2447 default:
2448 gcc_unreachable ();
2449 }
2450 }
2451 \f
2452 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2453 or offset that depends on a field within a record. */
2454
2455 bool
2456 contains_placeholder_p (const_tree exp)
2457 {
2458 enum tree_code code;
2459
2460 if (!exp)
2461 return 0;
2462
2463 code = TREE_CODE (exp);
2464 if (code == PLACEHOLDER_EXPR)
2465 return 1;
2466
2467 switch (TREE_CODE_CLASS (code))
2468 {
2469 case tcc_reference:
2470 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2471 position computations since they will be converted into a
2472 WITH_RECORD_EXPR involving the reference, which will assume
2473 here will be valid. */
2474 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2475
2476 case tcc_exceptional:
2477 if (code == TREE_LIST)
2478 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2479 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2480 break;
2481
2482 case tcc_unary:
2483 case tcc_binary:
2484 case tcc_comparison:
2485 case tcc_expression:
2486 switch (code)
2487 {
2488 case COMPOUND_EXPR:
2489 /* Ignoring the first operand isn't quite right, but works best. */
2490 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2491
2492 case COND_EXPR:
2493 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2494 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2495 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2496
2497 case SAVE_EXPR:
2498 /* The save_expr function never wraps anything containing
2499 a PLACEHOLDER_EXPR. */
2500 return 0;
2501
2502 default:
2503 break;
2504 }
2505
2506 switch (TREE_CODE_LENGTH (code))
2507 {
2508 case 1:
2509 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2510 case 2:
2511 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2512 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2513 default:
2514 return 0;
2515 }
2516
2517 case tcc_vl_exp:
2518 switch (code)
2519 {
2520 case CALL_EXPR:
2521 {
2522 const_tree arg;
2523 const_call_expr_arg_iterator iter;
2524 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2525 if (CONTAINS_PLACEHOLDER_P (arg))
2526 return 1;
2527 return 0;
2528 }
2529 default:
2530 return 0;
2531 }
2532
2533 default:
2534 return 0;
2535 }
2536 return 0;
2537 }
2538
2539 /* Return true if any part of the computation of TYPE involves a
2540 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2541 (for QUAL_UNION_TYPE) and field positions. */
2542
2543 static bool
2544 type_contains_placeholder_1 (const_tree type)
2545 {
2546 /* If the size contains a placeholder or the parent type (component type in
2547 the case of arrays) type involves a placeholder, this type does. */
2548 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2549 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2550 || (TREE_TYPE (type) != 0
2551 && type_contains_placeholder_p (TREE_TYPE (type))))
2552 return true;
2553
2554 /* Now do type-specific checks. Note that the last part of the check above
2555 greatly limits what we have to do below. */
2556 switch (TREE_CODE (type))
2557 {
2558 case VOID_TYPE:
2559 case COMPLEX_TYPE:
2560 case ENUMERAL_TYPE:
2561 case BOOLEAN_TYPE:
2562 case POINTER_TYPE:
2563 case OFFSET_TYPE:
2564 case REFERENCE_TYPE:
2565 case METHOD_TYPE:
2566 case FUNCTION_TYPE:
2567 case VECTOR_TYPE:
2568 return false;
2569
2570 case INTEGER_TYPE:
2571 case REAL_TYPE:
2572 case FIXED_POINT_TYPE:
2573 /* Here we just check the bounds. */
2574 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2575 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2576
2577 case ARRAY_TYPE:
2578 /* We're already checked the component type (TREE_TYPE), so just check
2579 the index type. */
2580 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2581
2582 case RECORD_TYPE:
2583 case UNION_TYPE:
2584 case QUAL_UNION_TYPE:
2585 {
2586 tree field;
2587
2588 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2589 if (TREE_CODE (field) == FIELD_DECL
2590 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2591 || (TREE_CODE (type) == QUAL_UNION_TYPE
2592 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2593 || type_contains_placeholder_p (TREE_TYPE (field))))
2594 return true;
2595
2596 return false;
2597 }
2598
2599 default:
2600 gcc_unreachable ();
2601 }
2602 }
2603
2604 bool
2605 type_contains_placeholder_p (tree type)
2606 {
2607 bool result;
2608
2609 /* If the contains_placeholder_bits field has been initialized,
2610 then we know the answer. */
2611 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2612 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2613
2614 /* Indicate that we've seen this type node, and the answer is false.
2615 This is what we want to return if we run into recursion via fields. */
2616 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2617
2618 /* Compute the real value. */
2619 result = type_contains_placeholder_1 (type);
2620
2621 /* Store the real value. */
2622 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2623
2624 return result;
2625 }
2626 \f
2627 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2628 return a tree with all occurrences of references to F in a
2629 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2630 contains only arithmetic expressions or a CALL_EXPR with a
2631 PLACEHOLDER_EXPR occurring only in its arglist. */
2632
2633 tree
2634 substitute_in_expr (tree exp, tree f, tree r)
2635 {
2636 enum tree_code code = TREE_CODE (exp);
2637 tree op0, op1, op2, op3;
2638 tree new_tree, inner;
2639
2640 /* We handle TREE_LIST and COMPONENT_REF separately. */
2641 if (code == TREE_LIST)
2642 {
2643 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2644 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2645 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2646 return exp;
2647
2648 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2649 }
2650 else if (code == COMPONENT_REF)
2651 {
2652 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2653 and it is the right field, replace it with R. */
2654 for (inner = TREE_OPERAND (exp, 0);
2655 REFERENCE_CLASS_P (inner);
2656 inner = TREE_OPERAND (inner, 0))
2657 ;
2658 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2659 && TREE_OPERAND (exp, 1) == f)
2660 return r;
2661
2662 /* If this expression hasn't been completed let, leave it alone. */
2663 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2664 return exp;
2665
2666 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2667 if (op0 == TREE_OPERAND (exp, 0))
2668 return exp;
2669
2670 new_tree = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2671 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2672 }
2673 else
2674 switch (TREE_CODE_CLASS (code))
2675 {
2676 case tcc_constant:
2677 case tcc_declaration:
2678 return exp;
2679
2680 case tcc_exceptional:
2681 case tcc_unary:
2682 case tcc_binary:
2683 case tcc_comparison:
2684 case tcc_expression:
2685 case tcc_reference:
2686 switch (TREE_CODE_LENGTH (code))
2687 {
2688 case 0:
2689 return exp;
2690
2691 case 1:
2692 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2693 if (op0 == TREE_OPERAND (exp, 0))
2694 return exp;
2695
2696 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
2697 break;
2698
2699 case 2:
2700 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2701 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2702
2703 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2704 return exp;
2705
2706 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2707 break;
2708
2709 case 3:
2710 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2711 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2712 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2713
2714 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2715 && op2 == TREE_OPERAND (exp, 2))
2716 return exp;
2717
2718 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2719 break;
2720
2721 case 4:
2722 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2723 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2724 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2725 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2726
2727 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2728 && op2 == TREE_OPERAND (exp, 2)
2729 && op3 == TREE_OPERAND (exp, 3))
2730 return exp;
2731
2732 new_tree = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2733 break;
2734
2735 default:
2736 gcc_unreachable ();
2737 }
2738 break;
2739
2740 case tcc_vl_exp:
2741 {
2742 tree copy = NULL_TREE;
2743 int i;
2744
2745 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2746 {
2747 tree op = TREE_OPERAND (exp, i);
2748 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
2749 if (new_op != op)
2750 {
2751 if (!copy)
2752 copy = copy_node (exp);
2753 TREE_OPERAND (copy, i) = new_op;
2754 }
2755 }
2756
2757 if (copy)
2758 new_tree = fold (copy);
2759 else
2760 return exp;
2761 }
2762 break;
2763
2764 default:
2765 gcc_unreachable ();
2766 }
2767
2768 TREE_READONLY (new_tree) = TREE_READONLY (exp);
2769 return new_tree;
2770 }
2771
2772 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2773 for it within OBJ, a tree that is an object or a chain of references. */
2774
2775 tree
2776 substitute_placeholder_in_expr (tree exp, tree obj)
2777 {
2778 enum tree_code code = TREE_CODE (exp);
2779 tree op0, op1, op2, op3;
2780
2781 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2782 in the chain of OBJ. */
2783 if (code == PLACEHOLDER_EXPR)
2784 {
2785 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2786 tree elt;
2787
2788 for (elt = obj; elt != 0;
2789 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2790 || TREE_CODE (elt) == COND_EXPR)
2791 ? TREE_OPERAND (elt, 1)
2792 : (REFERENCE_CLASS_P (elt)
2793 || UNARY_CLASS_P (elt)
2794 || BINARY_CLASS_P (elt)
2795 || VL_EXP_CLASS_P (elt)
2796 || EXPRESSION_CLASS_P (elt))
2797 ? TREE_OPERAND (elt, 0) : 0))
2798 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2799 return elt;
2800
2801 for (elt = obj; elt != 0;
2802 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2803 || TREE_CODE (elt) == COND_EXPR)
2804 ? TREE_OPERAND (elt, 1)
2805 : (REFERENCE_CLASS_P (elt)
2806 || UNARY_CLASS_P (elt)
2807 || BINARY_CLASS_P (elt)
2808 || VL_EXP_CLASS_P (elt)
2809 || EXPRESSION_CLASS_P (elt))
2810 ? TREE_OPERAND (elt, 0) : 0))
2811 if (POINTER_TYPE_P (TREE_TYPE (elt))
2812 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2813 == need_type))
2814 return fold_build1 (INDIRECT_REF, need_type, elt);
2815
2816 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2817 survives until RTL generation, there will be an error. */
2818 return exp;
2819 }
2820
2821 /* TREE_LIST is special because we need to look at TREE_VALUE
2822 and TREE_CHAIN, not TREE_OPERANDS. */
2823 else if (code == TREE_LIST)
2824 {
2825 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2826 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2827 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2828 return exp;
2829
2830 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2831 }
2832 else
2833 switch (TREE_CODE_CLASS (code))
2834 {
2835 case tcc_constant:
2836 case tcc_declaration:
2837 return exp;
2838
2839 case tcc_exceptional:
2840 case tcc_unary:
2841 case tcc_binary:
2842 case tcc_comparison:
2843 case tcc_expression:
2844 case tcc_reference:
2845 case tcc_statement:
2846 switch (TREE_CODE_LENGTH (code))
2847 {
2848 case 0:
2849 return exp;
2850
2851 case 1:
2852 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2853 if (op0 == TREE_OPERAND (exp, 0))
2854 return exp;
2855 else
2856 return fold_build1 (code, TREE_TYPE (exp), op0);
2857
2858 case 2:
2859 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2860 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2861
2862 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2863 return exp;
2864 else
2865 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2866
2867 case 3:
2868 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2869 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2870 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2871
2872 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2873 && op2 == TREE_OPERAND (exp, 2))
2874 return exp;
2875 else
2876 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2877
2878 case 4:
2879 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2880 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2881 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2882 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2883
2884 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2885 && op2 == TREE_OPERAND (exp, 2)
2886 && op3 == TREE_OPERAND (exp, 3))
2887 return exp;
2888 else
2889 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2890
2891 default:
2892 gcc_unreachable ();
2893 }
2894 break;
2895
2896 case tcc_vl_exp:
2897 {
2898 tree copy = NULL_TREE;
2899 int i;
2900
2901 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2902 {
2903 tree op = TREE_OPERAND (exp, i);
2904 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
2905 if (new_op != op)
2906 {
2907 if (!copy)
2908 copy = copy_node (exp);
2909 TREE_OPERAND (copy, i) = new_op;
2910 }
2911 }
2912
2913 if (copy)
2914 return fold (copy);
2915 else
2916 return exp;
2917 }
2918
2919 default:
2920 gcc_unreachable ();
2921 }
2922 }
2923 \f
2924 /* Stabilize a reference so that we can use it any number of times
2925 without causing its operands to be evaluated more than once.
2926 Returns the stabilized reference. This works by means of save_expr,
2927 so see the caveats in the comments about save_expr.
2928
2929 Also allows conversion expressions whose operands are references.
2930 Any other kind of expression is returned unchanged. */
2931
2932 tree
2933 stabilize_reference (tree ref)
2934 {
2935 tree result;
2936 enum tree_code code = TREE_CODE (ref);
2937
2938 switch (code)
2939 {
2940 case VAR_DECL:
2941 case PARM_DECL:
2942 case RESULT_DECL:
2943 /* No action is needed in this case. */
2944 return ref;
2945
2946 CASE_CONVERT:
2947 case FLOAT_EXPR:
2948 case FIX_TRUNC_EXPR:
2949 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2950 break;
2951
2952 case INDIRECT_REF:
2953 result = build_nt (INDIRECT_REF,
2954 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2955 break;
2956
2957 case COMPONENT_REF:
2958 result = build_nt (COMPONENT_REF,
2959 stabilize_reference (TREE_OPERAND (ref, 0)),
2960 TREE_OPERAND (ref, 1), NULL_TREE);
2961 break;
2962
2963 case BIT_FIELD_REF:
2964 result = build_nt (BIT_FIELD_REF,
2965 stabilize_reference (TREE_OPERAND (ref, 0)),
2966 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2967 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2968 break;
2969
2970 case ARRAY_REF:
2971 result = build_nt (ARRAY_REF,
2972 stabilize_reference (TREE_OPERAND (ref, 0)),
2973 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2974 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2975 break;
2976
2977 case ARRAY_RANGE_REF:
2978 result = build_nt (ARRAY_RANGE_REF,
2979 stabilize_reference (TREE_OPERAND (ref, 0)),
2980 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2981 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2982 break;
2983
2984 case COMPOUND_EXPR:
2985 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2986 it wouldn't be ignored. This matters when dealing with
2987 volatiles. */
2988 return stabilize_reference_1 (ref);
2989
2990 /* If arg isn't a kind of lvalue we recognize, make no change.
2991 Caller should recognize the error for an invalid lvalue. */
2992 default:
2993 return ref;
2994
2995 case ERROR_MARK:
2996 return error_mark_node;
2997 }
2998
2999 TREE_TYPE (result) = TREE_TYPE (ref);
3000 TREE_READONLY (result) = TREE_READONLY (ref);
3001 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3002 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3003
3004 return result;
3005 }
3006
3007 /* Subroutine of stabilize_reference; this is called for subtrees of
3008 references. Any expression with side-effects must be put in a SAVE_EXPR
3009 to ensure that it is only evaluated once.
3010
3011 We don't put SAVE_EXPR nodes around everything, because assigning very
3012 simple expressions to temporaries causes us to miss good opportunities
3013 for optimizations. Among other things, the opportunity to fold in the
3014 addition of a constant into an addressing mode often gets lost, e.g.
3015 "y[i+1] += x;". In general, we take the approach that we should not make
3016 an assignment unless we are forced into it - i.e., that any non-side effect
3017 operator should be allowed, and that cse should take care of coalescing
3018 multiple utterances of the same expression should that prove fruitful. */
3019
3020 tree
3021 stabilize_reference_1 (tree e)
3022 {
3023 tree result;
3024 enum tree_code code = TREE_CODE (e);
3025
3026 /* We cannot ignore const expressions because it might be a reference
3027 to a const array but whose index contains side-effects. But we can
3028 ignore things that are actual constant or that already have been
3029 handled by this function. */
3030
3031 if (tree_invariant_p (e))
3032 return e;
3033
3034 switch (TREE_CODE_CLASS (code))
3035 {
3036 case tcc_exceptional:
3037 case tcc_type:
3038 case tcc_declaration:
3039 case tcc_comparison:
3040 case tcc_statement:
3041 case tcc_expression:
3042 case tcc_reference:
3043 case tcc_vl_exp:
3044 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3045 so that it will only be evaluated once. */
3046 /* The reference (r) and comparison (<) classes could be handled as
3047 below, but it is generally faster to only evaluate them once. */
3048 if (TREE_SIDE_EFFECTS (e))
3049 return save_expr (e);
3050 return e;
3051
3052 case tcc_constant:
3053 /* Constants need no processing. In fact, we should never reach
3054 here. */
3055 return e;
3056
3057 case tcc_binary:
3058 /* Division is slow and tends to be compiled with jumps,
3059 especially the division by powers of 2 that is often
3060 found inside of an array reference. So do it just once. */
3061 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3062 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3063 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3064 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3065 return save_expr (e);
3066 /* Recursively stabilize each operand. */
3067 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3068 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3069 break;
3070
3071 case tcc_unary:
3072 /* Recursively stabilize each operand. */
3073 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3074 break;
3075
3076 default:
3077 gcc_unreachable ();
3078 }
3079
3080 TREE_TYPE (result) = TREE_TYPE (e);
3081 TREE_READONLY (result) = TREE_READONLY (e);
3082 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3083 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3084
3085 return result;
3086 }
3087 \f
3088 /* Low-level constructors for expressions. */
3089
3090 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3091 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3092
3093 void
3094 recompute_tree_invariant_for_addr_expr (tree t)
3095 {
3096 tree node;
3097 bool tc = true, se = false;
3098
3099 /* We started out assuming this address is both invariant and constant, but
3100 does not have side effects. Now go down any handled components and see if
3101 any of them involve offsets that are either non-constant or non-invariant.
3102 Also check for side-effects.
3103
3104 ??? Note that this code makes no attempt to deal with the case where
3105 taking the address of something causes a copy due to misalignment. */
3106
3107 #define UPDATE_FLAGS(NODE) \
3108 do { tree _node = (NODE); \
3109 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3110 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3111
3112 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3113 node = TREE_OPERAND (node, 0))
3114 {
3115 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3116 array reference (probably made temporarily by the G++ front end),
3117 so ignore all the operands. */
3118 if ((TREE_CODE (node) == ARRAY_REF
3119 || TREE_CODE (node) == ARRAY_RANGE_REF)
3120 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3121 {
3122 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3123 if (TREE_OPERAND (node, 2))
3124 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3125 if (TREE_OPERAND (node, 3))
3126 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3127 }
3128 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3129 FIELD_DECL, apparently. The G++ front end can put something else
3130 there, at least temporarily. */
3131 else if (TREE_CODE (node) == COMPONENT_REF
3132 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3133 {
3134 if (TREE_OPERAND (node, 2))
3135 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3136 }
3137 else if (TREE_CODE (node) == BIT_FIELD_REF)
3138 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3139 }
3140
3141 node = lang_hooks.expr_to_decl (node, &tc, &se);
3142
3143 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3144 the address, since &(*a)->b is a form of addition. If it's a constant, the
3145 address is constant too. If it's a decl, its address is constant if the
3146 decl is static. Everything else is not constant and, furthermore,
3147 taking the address of a volatile variable is not volatile. */
3148 if (TREE_CODE (node) == INDIRECT_REF)
3149 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3150 else if (CONSTANT_CLASS_P (node))
3151 ;
3152 else if (DECL_P (node))
3153 tc &= (staticp (node) != NULL_TREE);
3154 else
3155 {
3156 tc = false;
3157 se |= TREE_SIDE_EFFECTS (node);
3158 }
3159
3160
3161 TREE_CONSTANT (t) = tc;
3162 TREE_SIDE_EFFECTS (t) = se;
3163 #undef UPDATE_FLAGS
3164 }
3165
3166 /* Build an expression of code CODE, data type TYPE, and operands as
3167 specified. Expressions and reference nodes can be created this way.
3168 Constants, decls, types and misc nodes cannot be.
3169
3170 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3171 enough for all extant tree codes. */
3172
3173 tree
3174 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3175 {
3176 tree t;
3177
3178 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3179
3180 t = make_node_stat (code PASS_MEM_STAT);
3181 TREE_TYPE (t) = tt;
3182
3183 return t;
3184 }
3185
3186 tree
3187 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3188 {
3189 int length = sizeof (struct tree_exp);
3190 #ifdef GATHER_STATISTICS
3191 tree_node_kind kind;
3192 #endif
3193 tree t;
3194
3195 #ifdef GATHER_STATISTICS
3196 switch (TREE_CODE_CLASS (code))
3197 {
3198 case tcc_statement: /* an expression with side effects */
3199 kind = s_kind;
3200 break;
3201 case tcc_reference: /* a reference */
3202 kind = r_kind;
3203 break;
3204 default:
3205 kind = e_kind;
3206 break;
3207 }
3208
3209 tree_node_counts[(int) kind]++;
3210 tree_node_sizes[(int) kind] += length;
3211 #endif
3212
3213 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3214
3215 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
3216
3217 memset (t, 0, sizeof (struct tree_common));
3218
3219 TREE_SET_CODE (t, code);
3220
3221 TREE_TYPE (t) = type;
3222 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3223 TREE_OPERAND (t, 0) = node;
3224 TREE_BLOCK (t) = NULL_TREE;
3225 if (node && !TYPE_P (node))
3226 {
3227 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3228 TREE_READONLY (t) = TREE_READONLY (node);
3229 }
3230
3231 if (TREE_CODE_CLASS (code) == tcc_statement)
3232 TREE_SIDE_EFFECTS (t) = 1;
3233 else switch (code)
3234 {
3235 case VA_ARG_EXPR:
3236 /* All of these have side-effects, no matter what their
3237 operands are. */
3238 TREE_SIDE_EFFECTS (t) = 1;
3239 TREE_READONLY (t) = 0;
3240 break;
3241
3242 case MISALIGNED_INDIRECT_REF:
3243 case ALIGN_INDIRECT_REF:
3244 case INDIRECT_REF:
3245 /* Whether a dereference is readonly has nothing to do with whether
3246 its operand is readonly. */
3247 TREE_READONLY (t) = 0;
3248 break;
3249
3250 case ADDR_EXPR:
3251 if (node)
3252 recompute_tree_invariant_for_addr_expr (t);
3253 break;
3254
3255 default:
3256 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3257 && node && !TYPE_P (node)
3258 && TREE_CONSTANT (node))
3259 TREE_CONSTANT (t) = 1;
3260 if (TREE_CODE_CLASS (code) == tcc_reference
3261 && node && TREE_THIS_VOLATILE (node))
3262 TREE_THIS_VOLATILE (t) = 1;
3263 break;
3264 }
3265
3266 return t;
3267 }
3268
3269 #define PROCESS_ARG(N) \
3270 do { \
3271 TREE_OPERAND (t, N) = arg##N; \
3272 if (arg##N &&!TYPE_P (arg##N)) \
3273 { \
3274 if (TREE_SIDE_EFFECTS (arg##N)) \
3275 side_effects = 1; \
3276 if (!TREE_READONLY (arg##N)) \
3277 read_only = 0; \
3278 if (!TREE_CONSTANT (arg##N)) \
3279 constant = 0; \
3280 } \
3281 } while (0)
3282
3283 tree
3284 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3285 {
3286 bool constant, read_only, side_effects;
3287 tree t;
3288
3289 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3290
3291 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3292 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3293 /* When sizetype precision doesn't match that of pointers
3294 we need to be able to build explicit extensions or truncations
3295 of the offset argument. */
3296 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3297 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3298 && TREE_CODE (arg1) == INTEGER_CST);
3299
3300 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3301 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3302 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3303 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3304
3305 t = make_node_stat (code PASS_MEM_STAT);
3306 TREE_TYPE (t) = tt;
3307
3308 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3309 result based on those same flags for the arguments. But if the
3310 arguments aren't really even `tree' expressions, we shouldn't be trying
3311 to do this. */
3312
3313 /* Expressions without side effects may be constant if their
3314 arguments are as well. */
3315 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3316 || TREE_CODE_CLASS (code) == tcc_binary);
3317 read_only = 1;
3318 side_effects = TREE_SIDE_EFFECTS (t);
3319
3320 PROCESS_ARG(0);
3321 PROCESS_ARG(1);
3322
3323 TREE_READONLY (t) = read_only;
3324 TREE_CONSTANT (t) = constant;
3325 TREE_SIDE_EFFECTS (t) = side_effects;
3326 TREE_THIS_VOLATILE (t)
3327 = (TREE_CODE_CLASS (code) == tcc_reference
3328 && arg0 && TREE_THIS_VOLATILE (arg0));
3329
3330 return t;
3331 }
3332
3333
3334 tree
3335 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3336 tree arg2 MEM_STAT_DECL)
3337 {
3338 bool constant, read_only, side_effects;
3339 tree t;
3340
3341 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3342 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3343
3344 t = make_node_stat (code PASS_MEM_STAT);
3345 TREE_TYPE (t) = tt;
3346
3347 /* As a special exception, if COND_EXPR has NULL branches, we
3348 assume that it is a gimple statement and always consider
3349 it to have side effects. */
3350 if (code == COND_EXPR
3351 && tt == void_type_node
3352 && arg1 == NULL_TREE
3353 && arg2 == NULL_TREE)
3354 side_effects = true;
3355 else
3356 side_effects = TREE_SIDE_EFFECTS (t);
3357
3358 PROCESS_ARG(0);
3359 PROCESS_ARG(1);
3360 PROCESS_ARG(2);
3361
3362 TREE_SIDE_EFFECTS (t) = side_effects;
3363 TREE_THIS_VOLATILE (t)
3364 = (TREE_CODE_CLASS (code) == tcc_reference
3365 && arg0 && TREE_THIS_VOLATILE (arg0));
3366
3367 return t;
3368 }
3369
3370 tree
3371 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3372 tree arg2, tree arg3 MEM_STAT_DECL)
3373 {
3374 bool constant, read_only, side_effects;
3375 tree t;
3376
3377 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3378
3379 t = make_node_stat (code PASS_MEM_STAT);
3380 TREE_TYPE (t) = tt;
3381
3382 side_effects = TREE_SIDE_EFFECTS (t);
3383
3384 PROCESS_ARG(0);
3385 PROCESS_ARG(1);
3386 PROCESS_ARG(2);
3387 PROCESS_ARG(3);
3388
3389 TREE_SIDE_EFFECTS (t) = side_effects;
3390 TREE_THIS_VOLATILE (t)
3391 = (TREE_CODE_CLASS (code) == tcc_reference
3392 && arg0 && TREE_THIS_VOLATILE (arg0));
3393
3394 return t;
3395 }
3396
3397 tree
3398 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3399 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3400 {
3401 bool constant, read_only, side_effects;
3402 tree t;
3403
3404 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3405
3406 t = make_node_stat (code PASS_MEM_STAT);
3407 TREE_TYPE (t) = tt;
3408
3409 side_effects = TREE_SIDE_EFFECTS (t);
3410
3411 PROCESS_ARG(0);
3412 PROCESS_ARG(1);
3413 PROCESS_ARG(2);
3414 PROCESS_ARG(3);
3415 PROCESS_ARG(4);
3416
3417 TREE_SIDE_EFFECTS (t) = side_effects;
3418 TREE_THIS_VOLATILE (t)
3419 = (TREE_CODE_CLASS (code) == tcc_reference
3420 && arg0 && TREE_THIS_VOLATILE (arg0));
3421
3422 return t;
3423 }
3424
3425 tree
3426 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3427 tree arg2, tree arg3, tree arg4, tree arg5,
3428 tree arg6 MEM_STAT_DECL)
3429 {
3430 bool constant, read_only, side_effects;
3431 tree t;
3432
3433 gcc_assert (code == TARGET_MEM_REF);
3434
3435 t = make_node_stat (code PASS_MEM_STAT);
3436 TREE_TYPE (t) = tt;
3437
3438 side_effects = TREE_SIDE_EFFECTS (t);
3439
3440 PROCESS_ARG(0);
3441 PROCESS_ARG(1);
3442 PROCESS_ARG(2);
3443 PROCESS_ARG(3);
3444 PROCESS_ARG(4);
3445 PROCESS_ARG(5);
3446 PROCESS_ARG(6);
3447
3448 TREE_SIDE_EFFECTS (t) = side_effects;
3449 TREE_THIS_VOLATILE (t) = 0;
3450
3451 return t;
3452 }
3453
3454 /* Similar except don't specify the TREE_TYPE
3455 and leave the TREE_SIDE_EFFECTS as 0.
3456 It is permissible for arguments to be null,
3457 or even garbage if their values do not matter. */
3458
3459 tree
3460 build_nt (enum tree_code code, ...)
3461 {
3462 tree t;
3463 int length;
3464 int i;
3465 va_list p;
3466
3467 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3468
3469 va_start (p, code);
3470
3471 t = make_node (code);
3472 length = TREE_CODE_LENGTH (code);
3473
3474 for (i = 0; i < length; i++)
3475 TREE_OPERAND (t, i) = va_arg (p, tree);
3476
3477 va_end (p);
3478 return t;
3479 }
3480
3481 /* Similar to build_nt, but for creating a CALL_EXPR object with
3482 ARGLIST passed as a list. */
3483
3484 tree
3485 build_nt_call_list (tree fn, tree arglist)
3486 {
3487 tree t;
3488 int i;
3489
3490 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3491 CALL_EXPR_FN (t) = fn;
3492 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3493 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3494 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3495 return t;
3496 }
3497 \f
3498 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3499 We do NOT enter this node in any sort of symbol table.
3500
3501 layout_decl is used to set up the decl's storage layout.
3502 Other slots are initialized to 0 or null pointers. */
3503
3504 tree
3505 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3506 {
3507 tree t;
3508
3509 t = make_node_stat (code PASS_MEM_STAT);
3510
3511 /* if (type == error_mark_node)
3512 type = integer_type_node; */
3513 /* That is not done, deliberately, so that having error_mark_node
3514 as the type can suppress useless errors in the use of this variable. */
3515
3516 DECL_NAME (t) = name;
3517 TREE_TYPE (t) = type;
3518
3519 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3520 layout_decl (t, 0);
3521
3522 return t;
3523 }
3524
3525 /* Builds and returns function declaration with NAME and TYPE. */
3526
3527 tree
3528 build_fn_decl (const char *name, tree type)
3529 {
3530 tree id = get_identifier (name);
3531 tree decl = build_decl (FUNCTION_DECL, id, type);
3532
3533 DECL_EXTERNAL (decl) = 1;
3534 TREE_PUBLIC (decl) = 1;
3535 DECL_ARTIFICIAL (decl) = 1;
3536 TREE_NOTHROW (decl) = 1;
3537
3538 return decl;
3539 }
3540
3541 \f
3542 /* BLOCK nodes are used to represent the structure of binding contours
3543 and declarations, once those contours have been exited and their contents
3544 compiled. This information is used for outputting debugging info. */
3545
3546 tree
3547 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3548 {
3549 tree block = make_node (BLOCK);
3550
3551 BLOCK_VARS (block) = vars;
3552 BLOCK_SUBBLOCKS (block) = subblocks;
3553 BLOCK_SUPERCONTEXT (block) = supercontext;
3554 BLOCK_CHAIN (block) = chain;
3555 return block;
3556 }
3557
3558 expanded_location
3559 expand_location (source_location loc)
3560 {
3561 expanded_location xloc;
3562 if (loc == 0)
3563 {
3564 xloc.file = NULL;
3565 xloc.line = 0;
3566 xloc.column = 0;
3567 xloc.sysp = 0;
3568 }
3569 else
3570 {
3571 const struct line_map *map = linemap_lookup (line_table, loc);
3572 xloc.file = map->to_file;
3573 xloc.line = SOURCE_LINE (map, loc);
3574 xloc.column = SOURCE_COLUMN (map, loc);
3575 xloc.sysp = map->sysp != 0;
3576 };
3577 return xloc;
3578 }
3579
3580 \f
3581 /* Source location accessor functions. */
3582
3583
3584 void
3585 set_expr_locus (tree node, source_location *loc)
3586 {
3587 if (loc == NULL)
3588 EXPR_CHECK (node)->exp.locus = UNKNOWN_LOCATION;
3589 else
3590 EXPR_CHECK (node)->exp.locus = *loc;
3591 }
3592
3593 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
3594
3595 LOC is the location to use in tree T. */
3596
3597 void protected_set_expr_location (tree t, location_t loc)
3598 {
3599 if (t && CAN_HAVE_LOCATION_P (t))
3600 SET_EXPR_LOCATION (t, loc);
3601 }
3602 \f
3603 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3604 is ATTRIBUTE. */
3605
3606 tree
3607 build_decl_attribute_variant (tree ddecl, tree attribute)
3608 {
3609 DECL_ATTRIBUTES (ddecl) = attribute;
3610 return ddecl;
3611 }
3612
3613 /* Borrowed from hashtab.c iterative_hash implementation. */
3614 #define mix(a,b,c) \
3615 { \
3616 a -= b; a -= c; a ^= (c>>13); \
3617 b -= c; b -= a; b ^= (a<< 8); \
3618 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3619 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3620 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3621 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3622 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3623 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3624 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3625 }
3626
3627
3628 /* Produce good hash value combining VAL and VAL2. */
3629 hashval_t
3630 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3631 {
3632 /* the golden ratio; an arbitrary value. */
3633 hashval_t a = 0x9e3779b9;
3634
3635 mix (a, val, val2);
3636 return val2;
3637 }
3638
3639 /* Produce good hash value combining PTR and VAL2. */
3640 static inline hashval_t
3641 iterative_hash_pointer (const void *ptr, hashval_t val2)
3642 {
3643 if (sizeof (ptr) == sizeof (hashval_t))
3644 return iterative_hash_hashval_t ((size_t) ptr, val2);
3645 else
3646 {
3647 hashval_t a = (hashval_t) (size_t) ptr;
3648 /* Avoid warnings about shifting of more than the width of the type on
3649 hosts that won't execute this path. */
3650 int zero = 0;
3651 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3652 mix (a, b, val2);
3653 return val2;
3654 }
3655 }
3656
3657 /* Produce good hash value combining VAL and VAL2. */
3658 static inline hashval_t
3659 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3660 {
3661 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3662 return iterative_hash_hashval_t (val, val2);
3663 else
3664 {
3665 hashval_t a = (hashval_t) val;
3666 /* Avoid warnings about shifting of more than the width of the type on
3667 hosts that won't execute this path. */
3668 int zero = 0;
3669 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3670 mix (a, b, val2);
3671 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3672 {
3673 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3674 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3675 mix (a, b, val2);
3676 }
3677 return val2;
3678 }
3679 }
3680
3681 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3682 is ATTRIBUTE and its qualifiers are QUALS.
3683
3684 Record such modified types already made so we don't make duplicates. */
3685
3686 static tree
3687 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3688 {
3689 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3690 {
3691 hashval_t hashcode = 0;
3692 tree ntype;
3693 enum tree_code code = TREE_CODE (ttype);
3694
3695 /* Building a distinct copy of a tagged type is inappropriate; it
3696 causes breakage in code that expects there to be a one-to-one
3697 relationship between a struct and its fields.
3698 build_duplicate_type is another solution (as used in
3699 handle_transparent_union_attribute), but that doesn't play well
3700 with the stronger C++ type identity model. */
3701 if (TREE_CODE (ttype) == RECORD_TYPE
3702 || TREE_CODE (ttype) == UNION_TYPE
3703 || TREE_CODE (ttype) == QUAL_UNION_TYPE
3704 || TREE_CODE (ttype) == ENUMERAL_TYPE)
3705 {
3706 warning (OPT_Wattributes,
3707 "ignoring attributes applied to %qT after definition",
3708 TYPE_MAIN_VARIANT (ttype));
3709 return build_qualified_type (ttype, quals);
3710 }
3711
3712 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
3713 ntype = build_distinct_type_copy (ttype);
3714
3715 TYPE_ATTRIBUTES (ntype) = attribute;
3716
3717 hashcode = iterative_hash_object (code, hashcode);
3718 if (TREE_TYPE (ntype))
3719 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3720 hashcode);
3721 hashcode = attribute_hash_list (attribute, hashcode);
3722
3723 switch (TREE_CODE (ntype))
3724 {
3725 case FUNCTION_TYPE:
3726 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3727 break;
3728 case ARRAY_TYPE:
3729 if (TYPE_DOMAIN (ntype))
3730 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3731 hashcode);
3732 break;
3733 case INTEGER_TYPE:
3734 hashcode = iterative_hash_object
3735 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3736 hashcode = iterative_hash_object
3737 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3738 break;
3739 case REAL_TYPE:
3740 case FIXED_POINT_TYPE:
3741 {
3742 unsigned int precision = TYPE_PRECISION (ntype);
3743 hashcode = iterative_hash_object (precision, hashcode);
3744 }
3745 break;
3746 default:
3747 break;
3748 }
3749
3750 ntype = type_hash_canon (hashcode, ntype);
3751
3752 /* If the target-dependent attributes make NTYPE different from
3753 its canonical type, we will need to use structural equality
3754 checks for this type. */
3755 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
3756 || !targetm.comp_type_attributes (ntype, ttype))
3757 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3758 else if (TYPE_CANONICAL (ntype) == ntype)
3759 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
3760
3761 ttype = build_qualified_type (ntype, quals);
3762 }
3763 else if (TYPE_QUALS (ttype) != quals)
3764 ttype = build_qualified_type (ttype, quals);
3765
3766 return ttype;
3767 }
3768
3769
3770 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3771 is ATTRIBUTE.
3772
3773 Record such modified types already made so we don't make duplicates. */
3774
3775 tree
3776 build_type_attribute_variant (tree ttype, tree attribute)
3777 {
3778 return build_type_attribute_qual_variant (ttype, attribute,
3779 TYPE_QUALS (ttype));
3780 }
3781
3782 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3783 or zero if not.
3784
3785 We try both `text' and `__text__', ATTR may be either one. */
3786 /* ??? It might be a reasonable simplification to require ATTR to be only
3787 `text'. One might then also require attribute lists to be stored in
3788 their canonicalized form. */
3789
3790 static int
3791 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
3792 {
3793 int ident_len;
3794 const char *p;
3795
3796 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3797 return 0;
3798
3799 p = IDENTIFIER_POINTER (ident);
3800 ident_len = IDENTIFIER_LENGTH (ident);
3801
3802 if (ident_len == attr_len
3803 && strcmp (attr, p) == 0)
3804 return 1;
3805
3806 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3807 if (attr[0] == '_')
3808 {
3809 gcc_assert (attr[1] == '_');
3810 gcc_assert (attr[attr_len - 2] == '_');
3811 gcc_assert (attr[attr_len - 1] == '_');
3812 if (ident_len == attr_len - 4
3813 && strncmp (attr + 2, p, attr_len - 4) == 0)
3814 return 1;
3815 }
3816 else
3817 {
3818 if (ident_len == attr_len + 4
3819 && p[0] == '_' && p[1] == '_'
3820 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3821 && strncmp (attr, p + 2, attr_len) == 0)
3822 return 1;
3823 }
3824
3825 return 0;
3826 }
3827
3828 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3829 or zero if not.
3830
3831 We try both `text' and `__text__', ATTR may be either one. */
3832
3833 int
3834 is_attribute_p (const char *attr, const_tree ident)
3835 {
3836 return is_attribute_with_length_p (attr, strlen (attr), ident);
3837 }
3838
3839 /* Given an attribute name and a list of attributes, return a pointer to the
3840 attribute's list element if the attribute is part of the list, or NULL_TREE
3841 if not found. If the attribute appears more than once, this only
3842 returns the first occurrence; the TREE_CHAIN of the return value should
3843 be passed back in if further occurrences are wanted. */
3844
3845 tree
3846 lookup_attribute (const char *attr_name, tree list)
3847 {
3848 tree l;
3849 size_t attr_len = strlen (attr_name);
3850
3851 for (l = list; l; l = TREE_CHAIN (l))
3852 {
3853 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3854 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3855 return l;
3856 }
3857 return NULL_TREE;
3858 }
3859
3860 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3861 modified list. */
3862
3863 tree
3864 remove_attribute (const char *attr_name, tree list)
3865 {
3866 tree *p;
3867 size_t attr_len = strlen (attr_name);
3868
3869 for (p = &list; *p; )
3870 {
3871 tree l = *p;
3872 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3873 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3874 *p = TREE_CHAIN (l);
3875 else
3876 p = &TREE_CHAIN (l);
3877 }
3878
3879 return list;
3880 }
3881
3882 /* Return an attribute list that is the union of a1 and a2. */
3883
3884 tree
3885 merge_attributes (tree a1, tree a2)
3886 {
3887 tree attributes;
3888
3889 /* Either one unset? Take the set one. */
3890
3891 if ((attributes = a1) == 0)
3892 attributes = a2;
3893
3894 /* One that completely contains the other? Take it. */
3895
3896 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3897 {
3898 if (attribute_list_contained (a2, a1))
3899 attributes = a2;
3900 else
3901 {
3902 /* Pick the longest list, and hang on the other list. */
3903
3904 if (list_length (a1) < list_length (a2))
3905 attributes = a2, a2 = a1;
3906
3907 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3908 {
3909 tree a;
3910 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3911 attributes);
3912 a != NULL_TREE;
3913 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3914 TREE_CHAIN (a)))
3915 {
3916 if (TREE_VALUE (a) != NULL
3917 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3918 && TREE_VALUE (a2) != NULL
3919 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3920 {
3921 if (simple_cst_list_equal (TREE_VALUE (a),
3922 TREE_VALUE (a2)) == 1)
3923 break;
3924 }
3925 else if (simple_cst_equal (TREE_VALUE (a),
3926 TREE_VALUE (a2)) == 1)
3927 break;
3928 }
3929 if (a == NULL_TREE)
3930 {
3931 a1 = copy_node (a2);
3932 TREE_CHAIN (a1) = attributes;
3933 attributes = a1;
3934 }
3935 }
3936 }
3937 }
3938 return attributes;
3939 }
3940
3941 /* Given types T1 and T2, merge their attributes and return
3942 the result. */
3943
3944 tree
3945 merge_type_attributes (tree t1, tree t2)
3946 {
3947 return merge_attributes (TYPE_ATTRIBUTES (t1),
3948 TYPE_ATTRIBUTES (t2));
3949 }
3950
3951 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3952 the result. */
3953
3954 tree
3955 merge_decl_attributes (tree olddecl, tree newdecl)
3956 {
3957 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3958 DECL_ATTRIBUTES (newdecl));
3959 }
3960
3961 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3962
3963 /* Specialization of merge_decl_attributes for various Windows targets.
3964
3965 This handles the following situation:
3966
3967 __declspec (dllimport) int foo;
3968 int foo;
3969
3970 The second instance of `foo' nullifies the dllimport. */
3971
3972 tree
3973 merge_dllimport_decl_attributes (tree old, tree new_tree)
3974 {
3975 tree a;
3976 int delete_dllimport_p = 1;
3977
3978 /* What we need to do here is remove from `old' dllimport if it doesn't
3979 appear in `new'. dllimport behaves like extern: if a declaration is
3980 marked dllimport and a definition appears later, then the object
3981 is not dllimport'd. We also remove a `new' dllimport if the old list
3982 contains dllexport: dllexport always overrides dllimport, regardless
3983 of the order of declaration. */
3984 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
3985 delete_dllimport_p = 0;
3986 else if (DECL_DLLIMPORT_P (new_tree)
3987 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3988 {
3989 DECL_DLLIMPORT_P (new_tree) = 0;
3990 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3991 "dllimport ignored", new_tree);
3992 }
3993 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
3994 {
3995 /* Warn about overriding a symbol that has already been used, e.g.:
3996 extern int __attribute__ ((dllimport)) foo;
3997 int* bar () {return &foo;}
3998 int foo;
3999 */
4000 if (TREE_USED (old))
4001 {
4002 warning (0, "%q+D redeclared without dllimport attribute "
4003 "after being referenced with dll linkage", new_tree);
4004 /* If we have used a variable's address with dllimport linkage,
4005 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
4006 decl may already have had TREE_CONSTANT computed.
4007 We still remove the attribute so that assembler code refers
4008 to '&foo rather than '_imp__foo'. */
4009 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
4010 DECL_DLLIMPORT_P (new_tree) = 1;
4011 }
4012
4013 /* Let an inline definition silently override the external reference,
4014 but otherwise warn about attribute inconsistency. */
4015 else if (TREE_CODE (new_tree) == VAR_DECL
4016 || !DECL_DECLARED_INLINE_P (new_tree))
4017 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
4018 "previous dllimport ignored", new_tree);
4019 }
4020 else
4021 delete_dllimport_p = 0;
4022
4023 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
4024
4025 if (delete_dllimport_p)
4026 {
4027 tree prev, t;
4028 const size_t attr_len = strlen ("dllimport");
4029
4030 /* Scan the list for dllimport and delete it. */
4031 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
4032 {
4033 if (is_attribute_with_length_p ("dllimport", attr_len,
4034 TREE_PURPOSE (t)))
4035 {
4036 if (prev == NULL_TREE)
4037 a = TREE_CHAIN (a);
4038 else
4039 TREE_CHAIN (prev) = TREE_CHAIN (t);
4040 break;
4041 }
4042 }
4043 }
4044
4045 return a;
4046 }
4047
4048 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
4049 struct attribute_spec.handler. */
4050
4051 tree
4052 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
4053 bool *no_add_attrs)
4054 {
4055 tree node = *pnode;
4056
4057 /* These attributes may apply to structure and union types being created,
4058 but otherwise should pass to the declaration involved. */
4059 if (!DECL_P (node))
4060 {
4061 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
4062 | (int) ATTR_FLAG_ARRAY_NEXT))
4063 {
4064 *no_add_attrs = true;
4065 return tree_cons (name, args, NULL_TREE);
4066 }
4067 if (TREE_CODE (node) == RECORD_TYPE
4068 || TREE_CODE (node) == UNION_TYPE)
4069 {
4070 node = TYPE_NAME (node);
4071 if (!node)
4072 return NULL_TREE;
4073 }
4074 else
4075 {
4076 warning (OPT_Wattributes, "%qs attribute ignored",
4077 IDENTIFIER_POINTER (name));
4078 *no_add_attrs = true;
4079 return NULL_TREE;
4080 }
4081 }
4082
4083 if (TREE_CODE (node) != FUNCTION_DECL
4084 && TREE_CODE (node) != VAR_DECL
4085 && TREE_CODE (node) != TYPE_DECL)
4086 {
4087 *no_add_attrs = true;
4088 warning (OPT_Wattributes, "%qs attribute ignored",
4089 IDENTIFIER_POINTER (name));
4090 return NULL_TREE;
4091 }
4092
4093 if (TREE_CODE (node) == TYPE_DECL
4094 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
4095 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
4096 {
4097 *no_add_attrs = true;
4098 warning (OPT_Wattributes, "%qs attribute ignored",
4099 IDENTIFIER_POINTER (name));
4100 return NULL_TREE;
4101 }
4102
4103 /* Report error on dllimport ambiguities seen now before they cause
4104 any damage. */
4105 else if (is_attribute_p ("dllimport", name))
4106 {
4107 /* Honor any target-specific overrides. */
4108 if (!targetm.valid_dllimport_attribute_p (node))
4109 *no_add_attrs = true;
4110
4111 else if (TREE_CODE (node) == FUNCTION_DECL
4112 && DECL_DECLARED_INLINE_P (node))
4113 {
4114 warning (OPT_Wattributes, "inline function %q+D declared as "
4115 " dllimport: attribute ignored", node);
4116 *no_add_attrs = true;
4117 }
4118 /* Like MS, treat definition of dllimported variables and
4119 non-inlined functions on declaration as syntax errors. */
4120 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
4121 {
4122 error ("function %q+D definition is marked dllimport", node);
4123 *no_add_attrs = true;
4124 }
4125
4126 else if (TREE_CODE (node) == VAR_DECL)
4127 {
4128 if (DECL_INITIAL (node))
4129 {
4130 error ("variable %q+D definition is marked dllimport",
4131 node);
4132 *no_add_attrs = true;
4133 }
4134
4135 /* `extern' needn't be specified with dllimport.
4136 Specify `extern' now and hope for the best. Sigh. */
4137 DECL_EXTERNAL (node) = 1;
4138 /* Also, implicitly give dllimport'd variables declared within
4139 a function global scope, unless declared static. */
4140 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
4141 TREE_PUBLIC (node) = 1;
4142 }
4143
4144 if (*no_add_attrs == false)
4145 DECL_DLLIMPORT_P (node) = 1;
4146 }
4147
4148 /* Report error if symbol is not accessible at global scope. */
4149 if (!TREE_PUBLIC (node)
4150 && (TREE_CODE (node) == VAR_DECL
4151 || TREE_CODE (node) == FUNCTION_DECL))
4152 {
4153 error ("external linkage required for symbol %q+D because of "
4154 "%qs attribute", node, IDENTIFIER_POINTER (name));
4155 *no_add_attrs = true;
4156 }
4157
4158 /* A dllexport'd entity must have default visibility so that other
4159 program units (shared libraries or the main executable) can see
4160 it. A dllimport'd entity must have default visibility so that
4161 the linker knows that undefined references within this program
4162 unit can be resolved by the dynamic linker. */
4163 if (!*no_add_attrs)
4164 {
4165 if (DECL_VISIBILITY_SPECIFIED (node)
4166 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
4167 error ("%qs implies default visibility, but %qD has already "
4168 "been declared with a different visibility",
4169 IDENTIFIER_POINTER (name), node);
4170 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
4171 DECL_VISIBILITY_SPECIFIED (node) = 1;
4172 }
4173
4174 return NULL_TREE;
4175 }
4176
4177 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
4178 \f
4179 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
4180 of the various TYPE_QUAL values. */
4181
4182 static void
4183 set_type_quals (tree type, int type_quals)
4184 {
4185 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
4186 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
4187 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
4188 }
4189
4190 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
4191
4192 bool
4193 check_qualified_type (const_tree cand, const_tree base, int type_quals)
4194 {
4195 return (TYPE_QUALS (cand) == type_quals
4196 && TYPE_NAME (cand) == TYPE_NAME (base)
4197 /* Apparently this is needed for Objective-C. */
4198 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
4199 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
4200 TYPE_ATTRIBUTES (base)));
4201 }
4202
4203 /* Return a version of the TYPE, qualified as indicated by the
4204 TYPE_QUALS, if one exists. If no qualified version exists yet,
4205 return NULL_TREE. */
4206
4207 tree
4208 get_qualified_type (tree type, int type_quals)
4209 {
4210 tree t;
4211
4212 if (TYPE_QUALS (type) == type_quals)
4213 return type;
4214
4215 /* Search the chain of variants to see if there is already one there just
4216 like the one we need to have. If so, use that existing one. We must
4217 preserve the TYPE_NAME, since there is code that depends on this. */
4218 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
4219 if (check_qualified_type (t, type, type_quals))
4220 return t;
4221
4222 return NULL_TREE;
4223 }
4224
4225 /* Like get_qualified_type, but creates the type if it does not
4226 exist. This function never returns NULL_TREE. */
4227
4228 tree
4229 build_qualified_type (tree type, int type_quals)
4230 {
4231 tree t;
4232
4233 /* See if we already have the appropriate qualified variant. */
4234 t = get_qualified_type (type, type_quals);
4235
4236 /* If not, build it. */
4237 if (!t)
4238 {
4239 t = build_variant_type_copy (type);
4240 set_type_quals (t, type_quals);
4241
4242 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4243 /* Propagate structural equality. */
4244 SET_TYPE_STRUCTURAL_EQUALITY (t);
4245 else if (TYPE_CANONICAL (type) != type)
4246 /* Build the underlying canonical type, since it is different
4247 from TYPE. */
4248 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
4249 type_quals);
4250 else
4251 /* T is its own canonical type. */
4252 TYPE_CANONICAL (t) = t;
4253
4254 }
4255
4256 return t;
4257 }
4258
4259 /* Create a new distinct copy of TYPE. The new type is made its own
4260 MAIN_VARIANT. If TYPE requires structural equality checks, the
4261 resulting type requires structural equality checks; otherwise, its
4262 TYPE_CANONICAL points to itself. */
4263
4264 tree
4265 build_distinct_type_copy (tree type)
4266 {
4267 tree t = copy_node (type);
4268
4269 TYPE_POINTER_TO (t) = 0;
4270 TYPE_REFERENCE_TO (t) = 0;
4271
4272 /* Set the canonical type either to a new equivalence class, or
4273 propagate the need for structural equality checks. */
4274 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4275 SET_TYPE_STRUCTURAL_EQUALITY (t);
4276 else
4277 TYPE_CANONICAL (t) = t;
4278
4279 /* Make it its own variant. */
4280 TYPE_MAIN_VARIANT (t) = t;
4281 TYPE_NEXT_VARIANT (t) = 0;
4282
4283 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
4284 whose TREE_TYPE is not t. This can also happen in the Ada
4285 frontend when using subtypes. */
4286
4287 return t;
4288 }
4289
4290 /* Create a new variant of TYPE, equivalent but distinct. This is so
4291 the caller can modify it. TYPE_CANONICAL for the return type will
4292 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
4293 are considered equal by the language itself (or that both types
4294 require structural equality checks). */
4295
4296 tree
4297 build_variant_type_copy (tree type)
4298 {
4299 tree t, m = TYPE_MAIN_VARIANT (type);
4300
4301 t = build_distinct_type_copy (type);
4302
4303 /* Since we're building a variant, assume that it is a non-semantic
4304 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
4305 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
4306
4307 /* Add the new type to the chain of variants of TYPE. */
4308 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
4309 TYPE_NEXT_VARIANT (m) = t;
4310 TYPE_MAIN_VARIANT (t) = m;
4311
4312 return t;
4313 }
4314 \f
4315 /* Return true if the from tree in both tree maps are equal. */
4316
4317 int
4318 tree_map_base_eq (const void *va, const void *vb)
4319 {
4320 const struct tree_map_base *const a = (const struct tree_map_base *) va,
4321 *const b = (const struct tree_map_base *) vb;
4322 return (a->from == b->from);
4323 }
4324
4325 /* Hash a from tree in a tree_map. */
4326
4327 unsigned int
4328 tree_map_base_hash (const void *item)
4329 {
4330 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
4331 }
4332
4333 /* Return true if this tree map structure is marked for garbage collection
4334 purposes. We simply return true if the from tree is marked, so that this
4335 structure goes away when the from tree goes away. */
4336
4337 int
4338 tree_map_base_marked_p (const void *p)
4339 {
4340 return ggc_marked_p (((const struct tree_map_base *) p)->from);
4341 }
4342
4343 unsigned int
4344 tree_map_hash (const void *item)
4345 {
4346 return (((const struct tree_map *) item)->hash);
4347 }
4348
4349 /* Return the initialization priority for DECL. */
4350
4351 priority_type
4352 decl_init_priority_lookup (tree decl)
4353 {
4354 struct tree_priority_map *h;
4355 struct tree_map_base in;
4356
4357 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4358 in.from = decl;
4359 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
4360 return h ? h->init : DEFAULT_INIT_PRIORITY;
4361 }
4362
4363 /* Return the finalization priority for DECL. */
4364
4365 priority_type
4366 decl_fini_priority_lookup (tree decl)
4367 {
4368 struct tree_priority_map *h;
4369 struct tree_map_base in;
4370
4371 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4372 in.from = decl;
4373 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
4374 return h ? h->fini : DEFAULT_INIT_PRIORITY;
4375 }
4376
4377 /* Return the initialization and finalization priority information for
4378 DECL. If there is no previous priority information, a freshly
4379 allocated structure is returned. */
4380
4381 static struct tree_priority_map *
4382 decl_priority_info (tree decl)
4383 {
4384 struct tree_priority_map in;
4385 struct tree_priority_map *h;
4386 void **loc;
4387
4388 in.base.from = decl;
4389 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
4390 h = (struct tree_priority_map *) *loc;
4391 if (!h)
4392 {
4393 h = GGC_CNEW (struct tree_priority_map);
4394 *loc = h;
4395 h->base.from = decl;
4396 h->init = DEFAULT_INIT_PRIORITY;
4397 h->fini = DEFAULT_INIT_PRIORITY;
4398 }
4399
4400 return h;
4401 }
4402
4403 /* Set the initialization priority for DECL to PRIORITY. */
4404
4405 void
4406 decl_init_priority_insert (tree decl, priority_type priority)
4407 {
4408 struct tree_priority_map *h;
4409
4410 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4411 h = decl_priority_info (decl);
4412 h->init = priority;
4413 }
4414
4415 /* Set the finalization priority for DECL to PRIORITY. */
4416
4417 void
4418 decl_fini_priority_insert (tree decl, priority_type priority)
4419 {
4420 struct tree_priority_map *h;
4421
4422 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4423 h = decl_priority_info (decl);
4424 h->fini = priority;
4425 }
4426
4427 /* Look up a restrict qualified base decl for FROM. */
4428
4429 tree
4430 decl_restrict_base_lookup (tree from)
4431 {
4432 struct tree_map *h;
4433 struct tree_map in;
4434
4435 in.base.from = from;
4436 h = (struct tree_map *) htab_find_with_hash (restrict_base_for_decl, &in,
4437 htab_hash_pointer (from));
4438 return h ? h->to : NULL_TREE;
4439 }
4440
4441 /* Record the restrict qualified base TO for FROM. */
4442
4443 void
4444 decl_restrict_base_insert (tree from, tree to)
4445 {
4446 struct tree_map *h;
4447 void **loc;
4448
4449 h = GGC_NEW (struct tree_map);
4450 h->hash = htab_hash_pointer (from);
4451 h->base.from = from;
4452 h->to = to;
4453 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4454 *(struct tree_map **) loc = h;
4455 }
4456
4457 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4458
4459 static void
4460 print_debug_expr_statistics (void)
4461 {
4462 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4463 (long) htab_size (debug_expr_for_decl),
4464 (long) htab_elements (debug_expr_for_decl),
4465 htab_collisions (debug_expr_for_decl));
4466 }
4467
4468 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4469
4470 static void
4471 print_value_expr_statistics (void)
4472 {
4473 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4474 (long) htab_size (value_expr_for_decl),
4475 (long) htab_elements (value_expr_for_decl),
4476 htab_collisions (value_expr_for_decl));
4477 }
4478
4479 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4480 don't print anything if the table is empty. */
4481
4482 static void
4483 print_restrict_base_statistics (void)
4484 {
4485 if (htab_elements (restrict_base_for_decl) != 0)
4486 fprintf (stderr,
4487 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4488 (long) htab_size (restrict_base_for_decl),
4489 (long) htab_elements (restrict_base_for_decl),
4490 htab_collisions (restrict_base_for_decl));
4491 }
4492
4493 /* Lookup a debug expression for FROM, and return it if we find one. */
4494
4495 tree
4496 decl_debug_expr_lookup (tree from)
4497 {
4498 struct tree_map *h, in;
4499 in.base.from = from;
4500
4501 h = (struct tree_map *) htab_find_with_hash (debug_expr_for_decl, &in,
4502 htab_hash_pointer (from));
4503 if (h)
4504 return h->to;
4505 return NULL_TREE;
4506 }
4507
4508 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4509
4510 void
4511 decl_debug_expr_insert (tree from, tree to)
4512 {
4513 struct tree_map *h;
4514 void **loc;
4515
4516 h = GGC_NEW (struct tree_map);
4517 h->hash = htab_hash_pointer (from);
4518 h->base.from = from;
4519 h->to = to;
4520 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4521 *(struct tree_map **) loc = h;
4522 }
4523
4524 /* Lookup a value expression for FROM, and return it if we find one. */
4525
4526 tree
4527 decl_value_expr_lookup (tree from)
4528 {
4529 struct tree_map *h, in;
4530 in.base.from = from;
4531
4532 h = (struct tree_map *) htab_find_with_hash (value_expr_for_decl, &in,
4533 htab_hash_pointer (from));
4534 if (h)
4535 return h->to;
4536 return NULL_TREE;
4537 }
4538
4539 /* Insert a mapping FROM->TO in the value expression hashtable. */
4540
4541 void
4542 decl_value_expr_insert (tree from, tree to)
4543 {
4544 struct tree_map *h;
4545 void **loc;
4546
4547 h = GGC_NEW (struct tree_map);
4548 h->hash = htab_hash_pointer (from);
4549 h->base.from = from;
4550 h->to = to;
4551 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4552 *(struct tree_map **) loc = h;
4553 }
4554
4555 /* Hashing of types so that we don't make duplicates.
4556 The entry point is `type_hash_canon'. */
4557
4558 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4559 with types in the TREE_VALUE slots), by adding the hash codes
4560 of the individual types. */
4561
4562 static unsigned int
4563 type_hash_list (const_tree list, hashval_t hashcode)
4564 {
4565 const_tree tail;
4566
4567 for (tail = list; tail; tail = TREE_CHAIN (tail))
4568 if (TREE_VALUE (tail) != error_mark_node)
4569 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4570 hashcode);
4571
4572 return hashcode;
4573 }
4574
4575 /* These are the Hashtable callback functions. */
4576
4577 /* Returns true iff the types are equivalent. */
4578
4579 static int
4580 type_hash_eq (const void *va, const void *vb)
4581 {
4582 const struct type_hash *const a = (const struct type_hash *) va,
4583 *const b = (const struct type_hash *) vb;
4584
4585 /* First test the things that are the same for all types. */
4586 if (a->hash != b->hash
4587 || TREE_CODE (a->type) != TREE_CODE (b->type)
4588 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4589 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4590 TYPE_ATTRIBUTES (b->type))
4591 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4592 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
4593 || (TREE_CODE (a->type) != COMPLEX_TYPE
4594 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
4595 return 0;
4596
4597 switch (TREE_CODE (a->type))
4598 {
4599 case VOID_TYPE:
4600 case COMPLEX_TYPE:
4601 case POINTER_TYPE:
4602 case REFERENCE_TYPE:
4603 return 1;
4604
4605 case VECTOR_TYPE:
4606 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4607
4608 case ENUMERAL_TYPE:
4609 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4610 && !(TYPE_VALUES (a->type)
4611 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4612 && TYPE_VALUES (b->type)
4613 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4614 && type_list_equal (TYPE_VALUES (a->type),
4615 TYPE_VALUES (b->type))))
4616 return 0;
4617
4618 /* ... fall through ... */
4619
4620 case INTEGER_TYPE:
4621 case REAL_TYPE:
4622 case BOOLEAN_TYPE:
4623 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4624 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4625 TYPE_MAX_VALUE (b->type)))
4626 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4627 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4628 TYPE_MIN_VALUE (b->type))));
4629
4630 case FIXED_POINT_TYPE:
4631 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
4632
4633 case OFFSET_TYPE:
4634 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4635
4636 case METHOD_TYPE:
4637 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4638 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4639 || (TYPE_ARG_TYPES (a->type)
4640 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4641 && TYPE_ARG_TYPES (b->type)
4642 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4643 && type_list_equal (TYPE_ARG_TYPES (a->type),
4644 TYPE_ARG_TYPES (b->type)))));
4645
4646 case ARRAY_TYPE:
4647 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4648
4649 case RECORD_TYPE:
4650 case UNION_TYPE:
4651 case QUAL_UNION_TYPE:
4652 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4653 || (TYPE_FIELDS (a->type)
4654 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4655 && TYPE_FIELDS (b->type)
4656 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4657 && type_list_equal (TYPE_FIELDS (a->type),
4658 TYPE_FIELDS (b->type))));
4659
4660 case FUNCTION_TYPE:
4661 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4662 || (TYPE_ARG_TYPES (a->type)
4663 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4664 && TYPE_ARG_TYPES (b->type)
4665 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4666 && type_list_equal (TYPE_ARG_TYPES (a->type),
4667 TYPE_ARG_TYPES (b->type))))
4668 break;
4669 return 0;
4670
4671 default:
4672 return 0;
4673 }
4674
4675 if (lang_hooks.types.type_hash_eq != NULL)
4676 return lang_hooks.types.type_hash_eq (a->type, b->type);
4677
4678 return 1;
4679 }
4680
4681 /* Return the cached hash value. */
4682
4683 static hashval_t
4684 type_hash_hash (const void *item)
4685 {
4686 return ((const struct type_hash *) item)->hash;
4687 }
4688
4689 /* Look in the type hash table for a type isomorphic to TYPE.
4690 If one is found, return it. Otherwise return 0. */
4691
4692 tree
4693 type_hash_lookup (hashval_t hashcode, tree type)
4694 {
4695 struct type_hash *h, in;
4696
4697 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4698 must call that routine before comparing TYPE_ALIGNs. */
4699 layout_type (type);
4700
4701 in.hash = hashcode;
4702 in.type = type;
4703
4704 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
4705 hashcode);
4706 if (h)
4707 return h->type;
4708 return NULL_TREE;
4709 }
4710
4711 /* Add an entry to the type-hash-table
4712 for a type TYPE whose hash code is HASHCODE. */
4713
4714 void
4715 type_hash_add (hashval_t hashcode, tree type)
4716 {
4717 struct type_hash *h;
4718 void **loc;
4719
4720 h = GGC_NEW (struct type_hash);
4721 h->hash = hashcode;
4722 h->type = type;
4723 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4724 *loc = (void *)h;
4725 }
4726
4727 /* Given TYPE, and HASHCODE its hash code, return the canonical
4728 object for an identical type if one already exists.
4729 Otherwise, return TYPE, and record it as the canonical object.
4730
4731 To use this function, first create a type of the sort you want.
4732 Then compute its hash code from the fields of the type that
4733 make it different from other similar types.
4734 Then call this function and use the value. */
4735
4736 tree
4737 type_hash_canon (unsigned int hashcode, tree type)
4738 {
4739 tree t1;
4740
4741 /* The hash table only contains main variants, so ensure that's what we're
4742 being passed. */
4743 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4744
4745 if (!lang_hooks.types.hash_types)
4746 return type;
4747
4748 /* See if the type is in the hash table already. If so, return it.
4749 Otherwise, add the type. */
4750 t1 = type_hash_lookup (hashcode, type);
4751 if (t1 != 0)
4752 {
4753 #ifdef GATHER_STATISTICS
4754 tree_node_counts[(int) t_kind]--;
4755 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4756 #endif
4757 return t1;
4758 }
4759 else
4760 {
4761 type_hash_add (hashcode, type);
4762 return type;
4763 }
4764 }
4765
4766 /* See if the data pointed to by the type hash table is marked. We consider
4767 it marked if the type is marked or if a debug type number or symbol
4768 table entry has been made for the type. This reduces the amount of
4769 debugging output and eliminates that dependency of the debug output on
4770 the number of garbage collections. */
4771
4772 static int
4773 type_hash_marked_p (const void *p)
4774 {
4775 const_tree const type = ((const struct type_hash *) p)->type;
4776
4777 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4778 }
4779
4780 static void
4781 print_type_hash_statistics (void)
4782 {
4783 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4784 (long) htab_size (type_hash_table),
4785 (long) htab_elements (type_hash_table),
4786 htab_collisions (type_hash_table));
4787 }
4788
4789 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4790 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4791 by adding the hash codes of the individual attributes. */
4792
4793 static unsigned int
4794 attribute_hash_list (const_tree list, hashval_t hashcode)
4795 {
4796 const_tree tail;
4797
4798 for (tail = list; tail; tail = TREE_CHAIN (tail))
4799 /* ??? Do we want to add in TREE_VALUE too? */
4800 hashcode = iterative_hash_object
4801 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4802 return hashcode;
4803 }
4804
4805 /* Given two lists of attributes, return true if list l2 is
4806 equivalent to l1. */
4807
4808 int
4809 attribute_list_equal (const_tree l1, const_tree l2)
4810 {
4811 return attribute_list_contained (l1, l2)
4812 && attribute_list_contained (l2, l1);
4813 }
4814
4815 /* Given two lists of attributes, return true if list L2 is
4816 completely contained within L1. */
4817 /* ??? This would be faster if attribute names were stored in a canonicalized
4818 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4819 must be used to show these elements are equivalent (which they are). */
4820 /* ??? It's not clear that attributes with arguments will always be handled
4821 correctly. */
4822
4823 int
4824 attribute_list_contained (const_tree l1, const_tree l2)
4825 {
4826 const_tree t1, t2;
4827
4828 /* First check the obvious, maybe the lists are identical. */
4829 if (l1 == l2)
4830 return 1;
4831
4832 /* Maybe the lists are similar. */
4833 for (t1 = l1, t2 = l2;
4834 t1 != 0 && t2 != 0
4835 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4836 && TREE_VALUE (t1) == TREE_VALUE (t2);
4837 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4838
4839 /* Maybe the lists are equal. */
4840 if (t1 == 0 && t2 == 0)
4841 return 1;
4842
4843 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4844 {
4845 const_tree attr;
4846 /* This CONST_CAST is okay because lookup_attribute does not
4847 modify its argument and the return value is assigned to a
4848 const_tree. */
4849 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4850 CONST_CAST_TREE(l1));
4851 attr != NULL_TREE;
4852 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4853 TREE_CHAIN (attr)))
4854 {
4855 if (TREE_VALUE (t2) != NULL
4856 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4857 && TREE_VALUE (attr) != NULL
4858 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4859 {
4860 if (simple_cst_list_equal (TREE_VALUE (t2),
4861 TREE_VALUE (attr)) == 1)
4862 break;
4863 }
4864 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4865 break;
4866 }
4867
4868 if (attr == 0)
4869 return 0;
4870 }
4871
4872 return 1;
4873 }
4874
4875 /* Given two lists of types
4876 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4877 return 1 if the lists contain the same types in the same order.
4878 Also, the TREE_PURPOSEs must match. */
4879
4880 int
4881 type_list_equal (const_tree l1, const_tree l2)
4882 {
4883 const_tree t1, t2;
4884
4885 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4886 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4887 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4888 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4889 && (TREE_TYPE (TREE_PURPOSE (t1))
4890 == TREE_TYPE (TREE_PURPOSE (t2))))))
4891 return 0;
4892
4893 return t1 == t2;
4894 }
4895
4896 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4897 given by TYPE. If the argument list accepts variable arguments,
4898 then this function counts only the ordinary arguments. */
4899
4900 int
4901 type_num_arguments (const_tree type)
4902 {
4903 int i = 0;
4904 tree t;
4905
4906 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4907 /* If the function does not take a variable number of arguments,
4908 the last element in the list will have type `void'. */
4909 if (VOID_TYPE_P (TREE_VALUE (t)))
4910 break;
4911 else
4912 ++i;
4913
4914 return i;
4915 }
4916
4917 /* Nonzero if integer constants T1 and T2
4918 represent the same constant value. */
4919
4920 int
4921 tree_int_cst_equal (const_tree t1, const_tree t2)
4922 {
4923 if (t1 == t2)
4924 return 1;
4925
4926 if (t1 == 0 || t2 == 0)
4927 return 0;
4928
4929 if (TREE_CODE (t1) == INTEGER_CST
4930 && TREE_CODE (t2) == INTEGER_CST
4931 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4932 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4933 return 1;
4934
4935 return 0;
4936 }
4937
4938 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4939 The precise way of comparison depends on their data type. */
4940
4941 int
4942 tree_int_cst_lt (const_tree t1, const_tree t2)
4943 {
4944 if (t1 == t2)
4945 return 0;
4946
4947 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4948 {
4949 int t1_sgn = tree_int_cst_sgn (t1);
4950 int t2_sgn = tree_int_cst_sgn (t2);
4951
4952 if (t1_sgn < t2_sgn)
4953 return 1;
4954 else if (t1_sgn > t2_sgn)
4955 return 0;
4956 /* Otherwise, both are non-negative, so we compare them as
4957 unsigned just in case one of them would overflow a signed
4958 type. */
4959 }
4960 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4961 return INT_CST_LT (t1, t2);
4962
4963 return INT_CST_LT_UNSIGNED (t1, t2);
4964 }
4965
4966 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4967
4968 int
4969 tree_int_cst_compare (const_tree t1, const_tree t2)
4970 {
4971 if (tree_int_cst_lt (t1, t2))
4972 return -1;
4973 else if (tree_int_cst_lt (t2, t1))
4974 return 1;
4975 else
4976 return 0;
4977 }
4978
4979 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4980 the host. If POS is zero, the value can be represented in a single
4981 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4982 be represented in a single unsigned HOST_WIDE_INT. */
4983
4984 int
4985 host_integerp (const_tree t, int pos)
4986 {
4987 return (TREE_CODE (t) == INTEGER_CST
4988 && ((TREE_INT_CST_HIGH (t) == 0
4989 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4990 || (! pos && TREE_INT_CST_HIGH (t) == -1
4991 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4992 && (!TYPE_UNSIGNED (TREE_TYPE (t))
4993 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
4994 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
4995 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4996 }
4997
4998 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4999 INTEGER_CST and there is no overflow. POS is nonzero if the result must
5000 be non-negative. We must be able to satisfy the above conditions. */
5001
5002 HOST_WIDE_INT
5003 tree_low_cst (const_tree t, int pos)
5004 {
5005 gcc_assert (host_integerp (t, pos));
5006 return TREE_INT_CST_LOW (t);
5007 }
5008
5009 /* Return the most significant bit of the integer constant T. */
5010
5011 int
5012 tree_int_cst_msb (const_tree t)
5013 {
5014 int prec;
5015 HOST_WIDE_INT h;
5016 unsigned HOST_WIDE_INT l;
5017
5018 /* Note that using TYPE_PRECISION here is wrong. We care about the
5019 actual bits, not the (arbitrary) range of the type. */
5020 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
5021 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
5022 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
5023 return (l & 1) == 1;
5024 }
5025
5026 /* Return an indication of the sign of the integer constant T.
5027 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
5028 Note that -1 will never be returned if T's type is unsigned. */
5029
5030 int
5031 tree_int_cst_sgn (const_tree t)
5032 {
5033 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
5034 return 0;
5035 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
5036 return 1;
5037 else if (TREE_INT_CST_HIGH (t) < 0)
5038 return -1;
5039 else
5040 return 1;
5041 }
5042
5043 /* Return the minimum number of bits needed to represent VALUE in a
5044 signed or unsigned type, UNSIGNEDP says which. */
5045
5046 unsigned int
5047 tree_int_cst_min_precision (tree value, bool unsignedp)
5048 {
5049 int log;
5050
5051 /* If the value is negative, compute its negative minus 1. The latter
5052 adjustment is because the absolute value of the largest negative value
5053 is one larger than the largest positive value. This is equivalent to
5054 a bit-wise negation, so use that operation instead. */
5055
5056 if (tree_int_cst_sgn (value) < 0)
5057 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
5058
5059 /* Return the number of bits needed, taking into account the fact
5060 that we need one more bit for a signed than unsigned type. */
5061
5062 if (integer_zerop (value))
5063 log = 0;
5064 else
5065 log = tree_floor_log2 (value);
5066
5067 return log + 1 + !unsignedp;
5068 }
5069
5070 /* Compare two constructor-element-type constants. Return 1 if the lists
5071 are known to be equal; otherwise return 0. */
5072
5073 int
5074 simple_cst_list_equal (const_tree l1, const_tree l2)
5075 {
5076 while (l1 != NULL_TREE && l2 != NULL_TREE)
5077 {
5078 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
5079 return 0;
5080
5081 l1 = TREE_CHAIN (l1);
5082 l2 = TREE_CHAIN (l2);
5083 }
5084
5085 return l1 == l2;
5086 }
5087
5088 /* Return truthvalue of whether T1 is the same tree structure as T2.
5089 Return 1 if they are the same.
5090 Return 0 if they are understandably different.
5091 Return -1 if either contains tree structure not understood by
5092 this function. */
5093
5094 int
5095 simple_cst_equal (const_tree t1, const_tree t2)
5096 {
5097 enum tree_code code1, code2;
5098 int cmp;
5099 int i;
5100
5101 if (t1 == t2)
5102 return 1;
5103 if (t1 == 0 || t2 == 0)
5104 return 0;
5105
5106 code1 = TREE_CODE (t1);
5107 code2 = TREE_CODE (t2);
5108
5109 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
5110 {
5111 if (CONVERT_EXPR_CODE_P (code2)
5112 || code2 == NON_LVALUE_EXPR)
5113 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5114 else
5115 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
5116 }
5117
5118 else if (CONVERT_EXPR_CODE_P (code2)
5119 || code2 == NON_LVALUE_EXPR)
5120 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
5121
5122 if (code1 != code2)
5123 return 0;
5124
5125 switch (code1)
5126 {
5127 case INTEGER_CST:
5128 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
5129 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
5130
5131 case REAL_CST:
5132 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
5133
5134 case FIXED_CST:
5135 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
5136
5137 case STRING_CST:
5138 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
5139 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
5140 TREE_STRING_LENGTH (t1)));
5141
5142 case CONSTRUCTOR:
5143 {
5144 unsigned HOST_WIDE_INT idx;
5145 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
5146 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
5147
5148 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
5149 return false;
5150
5151 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
5152 /* ??? Should we handle also fields here? */
5153 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
5154 VEC_index (constructor_elt, v2, idx)->value))
5155 return false;
5156 return true;
5157 }
5158
5159 case SAVE_EXPR:
5160 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5161
5162 case CALL_EXPR:
5163 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
5164 if (cmp <= 0)
5165 return cmp;
5166 if (call_expr_nargs (t1) != call_expr_nargs (t2))
5167 return 0;
5168 {
5169 const_tree arg1, arg2;
5170 const_call_expr_arg_iterator iter1, iter2;
5171 for (arg1 = first_const_call_expr_arg (t1, &iter1),
5172 arg2 = first_const_call_expr_arg (t2, &iter2);
5173 arg1 && arg2;
5174 arg1 = next_const_call_expr_arg (&iter1),
5175 arg2 = next_const_call_expr_arg (&iter2))
5176 {
5177 cmp = simple_cst_equal (arg1, arg2);
5178 if (cmp <= 0)
5179 return cmp;
5180 }
5181 return arg1 == arg2;
5182 }
5183
5184 case TARGET_EXPR:
5185 /* Special case: if either target is an unallocated VAR_DECL,
5186 it means that it's going to be unified with whatever the
5187 TARGET_EXPR is really supposed to initialize, so treat it
5188 as being equivalent to anything. */
5189 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
5190 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
5191 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
5192 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
5193 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
5194 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
5195 cmp = 1;
5196 else
5197 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5198
5199 if (cmp <= 0)
5200 return cmp;
5201
5202 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
5203
5204 case WITH_CLEANUP_EXPR:
5205 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5206 if (cmp <= 0)
5207 return cmp;
5208
5209 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
5210
5211 case COMPONENT_REF:
5212 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
5213 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5214
5215 return 0;
5216
5217 case VAR_DECL:
5218 case PARM_DECL:
5219 case CONST_DECL:
5220 case FUNCTION_DECL:
5221 return 0;
5222
5223 default:
5224 break;
5225 }
5226
5227 /* This general rule works for most tree codes. All exceptions should be
5228 handled above. If this is a language-specific tree code, we can't
5229 trust what might be in the operand, so say we don't know
5230 the situation. */
5231 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
5232 return -1;
5233
5234 switch (TREE_CODE_CLASS (code1))
5235 {
5236 case tcc_unary:
5237 case tcc_binary:
5238 case tcc_comparison:
5239 case tcc_expression:
5240 case tcc_reference:
5241 case tcc_statement:
5242 cmp = 1;
5243 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
5244 {
5245 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
5246 if (cmp <= 0)
5247 return cmp;
5248 }
5249
5250 return cmp;
5251
5252 default:
5253 return -1;
5254 }
5255 }
5256
5257 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
5258 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
5259 than U, respectively. */
5260
5261 int
5262 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
5263 {
5264 if (tree_int_cst_sgn (t) < 0)
5265 return -1;
5266 else if (TREE_INT_CST_HIGH (t) != 0)
5267 return 1;
5268 else if (TREE_INT_CST_LOW (t) == u)
5269 return 0;
5270 else if (TREE_INT_CST_LOW (t) < u)
5271 return -1;
5272 else
5273 return 1;
5274 }
5275
5276 /* Return true if CODE represents an associative tree code. Otherwise
5277 return false. */
5278 bool
5279 associative_tree_code (enum tree_code code)
5280 {
5281 switch (code)
5282 {
5283 case BIT_IOR_EXPR:
5284 case BIT_AND_EXPR:
5285 case BIT_XOR_EXPR:
5286 case PLUS_EXPR:
5287 case MULT_EXPR:
5288 case MIN_EXPR:
5289 case MAX_EXPR:
5290 return true;
5291
5292 default:
5293 break;
5294 }
5295 return false;
5296 }
5297
5298 /* Return true if CODE represents a commutative tree code. Otherwise
5299 return false. */
5300 bool
5301 commutative_tree_code (enum tree_code code)
5302 {
5303 switch (code)
5304 {
5305 case PLUS_EXPR:
5306 case MULT_EXPR:
5307 case MIN_EXPR:
5308 case MAX_EXPR:
5309 case BIT_IOR_EXPR:
5310 case BIT_XOR_EXPR:
5311 case BIT_AND_EXPR:
5312 case NE_EXPR:
5313 case EQ_EXPR:
5314 case UNORDERED_EXPR:
5315 case ORDERED_EXPR:
5316 case UNEQ_EXPR:
5317 case LTGT_EXPR:
5318 case TRUTH_AND_EXPR:
5319 case TRUTH_XOR_EXPR:
5320 case TRUTH_OR_EXPR:
5321 return true;
5322
5323 default:
5324 break;
5325 }
5326 return false;
5327 }
5328
5329 /* Generate a hash value for an expression. This can be used iteratively
5330 by passing a previous result as the VAL argument.
5331
5332 This function is intended to produce the same hash for expressions which
5333 would compare equal using operand_equal_p. */
5334
5335 hashval_t
5336 iterative_hash_expr (const_tree t, hashval_t val)
5337 {
5338 int i;
5339 enum tree_code code;
5340 char tclass;
5341
5342 if (t == NULL_TREE)
5343 return iterative_hash_pointer (t, val);
5344
5345 code = TREE_CODE (t);
5346
5347 switch (code)
5348 {
5349 /* Alas, constants aren't shared, so we can't rely on pointer
5350 identity. */
5351 case INTEGER_CST:
5352 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
5353 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
5354 case REAL_CST:
5355 {
5356 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
5357
5358 return iterative_hash_hashval_t (val2, val);
5359 }
5360 case FIXED_CST:
5361 {
5362 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
5363
5364 return iterative_hash_hashval_t (val2, val);
5365 }
5366 case STRING_CST:
5367 return iterative_hash (TREE_STRING_POINTER (t),
5368 TREE_STRING_LENGTH (t), val);
5369 case COMPLEX_CST:
5370 val = iterative_hash_expr (TREE_REALPART (t), val);
5371 return iterative_hash_expr (TREE_IMAGPART (t), val);
5372 case VECTOR_CST:
5373 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
5374
5375 case SSA_NAME:
5376 /* we can just compare by pointer. */
5377 return iterative_hash_pointer (t, val);
5378
5379 case TREE_LIST:
5380 /* A list of expressions, for a CALL_EXPR or as the elements of a
5381 VECTOR_CST. */
5382 for (; t; t = TREE_CHAIN (t))
5383 val = iterative_hash_expr (TREE_VALUE (t), val);
5384 return val;
5385 case CONSTRUCTOR:
5386 {
5387 unsigned HOST_WIDE_INT idx;
5388 tree field, value;
5389 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
5390 {
5391 val = iterative_hash_expr (field, val);
5392 val = iterative_hash_expr (value, val);
5393 }
5394 return val;
5395 }
5396 case FUNCTION_DECL:
5397 /* When referring to a built-in FUNCTION_DECL, use the
5398 __builtin__ form. Otherwise nodes that compare equal
5399 according to operand_equal_p might get different
5400 hash codes. */
5401 if (DECL_BUILT_IN (t))
5402 {
5403 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
5404 val);
5405 return val;
5406 }
5407 /* else FALL THROUGH */
5408 default:
5409 tclass = TREE_CODE_CLASS (code);
5410
5411 if (tclass == tcc_declaration)
5412 {
5413 /* DECL's have a unique ID */
5414 val = iterative_hash_host_wide_int (DECL_UID (t), val);
5415 }
5416 else
5417 {
5418 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
5419
5420 val = iterative_hash_object (code, val);
5421
5422 /* Don't hash the type, that can lead to having nodes which
5423 compare equal according to operand_equal_p, but which
5424 have different hash codes. */
5425 if (CONVERT_EXPR_CODE_P (code)
5426 || code == NON_LVALUE_EXPR)
5427 {
5428 /* Make sure to include signness in the hash computation. */
5429 val += TYPE_UNSIGNED (TREE_TYPE (t));
5430 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
5431 }
5432
5433 else if (commutative_tree_code (code))
5434 {
5435 /* It's a commutative expression. We want to hash it the same
5436 however it appears. We do this by first hashing both operands
5437 and then rehashing based on the order of their independent
5438 hashes. */
5439 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
5440 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
5441 hashval_t t;
5442
5443 if (one > two)
5444 t = one, one = two, two = t;
5445
5446 val = iterative_hash_hashval_t (one, val);
5447 val = iterative_hash_hashval_t (two, val);
5448 }
5449 else
5450 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
5451 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
5452 }
5453 return val;
5454 break;
5455 }
5456 }
5457
5458 /* Generate a hash value for a pair of expressions. This can be used
5459 iteratively by passing a previous result as the VAL argument.
5460
5461 The same hash value is always returned for a given pair of expressions,
5462 regardless of the order in which they are presented. This is useful in
5463 hashing the operands of commutative functions. */
5464
5465 hashval_t
5466 iterative_hash_exprs_commutative (const_tree t1,
5467 const_tree t2, hashval_t val)
5468 {
5469 hashval_t one = iterative_hash_expr (t1, 0);
5470 hashval_t two = iterative_hash_expr (t2, 0);
5471 hashval_t t;
5472
5473 if (one > two)
5474 t = one, one = two, two = t;
5475 val = iterative_hash_hashval_t (one, val);
5476 val = iterative_hash_hashval_t (two, val);
5477
5478 return val;
5479 }
5480 \f
5481 /* Constructors for pointer, array and function types.
5482 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
5483 constructed by language-dependent code, not here.) */
5484
5485 /* Construct, lay out and return the type of pointers to TO_TYPE with
5486 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
5487 reference all of memory. If such a type has already been
5488 constructed, reuse it. */
5489
5490 tree
5491 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
5492 bool can_alias_all)
5493 {
5494 tree t;
5495
5496 if (to_type == error_mark_node)
5497 return error_mark_node;
5498
5499 /* If the pointed-to type has the may_alias attribute set, force
5500 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
5501 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
5502 can_alias_all = true;
5503
5504 /* In some cases, languages will have things that aren't a POINTER_TYPE
5505 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
5506 In that case, return that type without regard to the rest of our
5507 operands.
5508
5509 ??? This is a kludge, but consistent with the way this function has
5510 always operated and there doesn't seem to be a good way to avoid this
5511 at the moment. */
5512 if (TYPE_POINTER_TO (to_type) != 0
5513 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
5514 return TYPE_POINTER_TO (to_type);
5515
5516 /* First, if we already have a type for pointers to TO_TYPE and it's
5517 the proper mode, use it. */
5518 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
5519 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5520 return t;
5521
5522 t = make_node (POINTER_TYPE);
5523
5524 TREE_TYPE (t) = to_type;
5525 SET_TYPE_MODE (t, mode);
5526 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5527 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5528 TYPE_POINTER_TO (to_type) = t;
5529
5530 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5531 SET_TYPE_STRUCTURAL_EQUALITY (t);
5532 else if (TYPE_CANONICAL (to_type) != to_type)
5533 TYPE_CANONICAL (t)
5534 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
5535 mode, can_alias_all);
5536
5537 /* Lay out the type. This function has many callers that are concerned
5538 with expression-construction, and this simplifies them all. */
5539 layout_type (t);
5540
5541 return t;
5542 }
5543
5544 /* By default build pointers in ptr_mode. */
5545
5546 tree
5547 build_pointer_type (tree to_type)
5548 {
5549 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5550 }
5551
5552 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5553
5554 tree
5555 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5556 bool can_alias_all)
5557 {
5558 tree t;
5559
5560 if (to_type == error_mark_node)
5561 return error_mark_node;
5562
5563 /* If the pointed-to type has the may_alias attribute set, force
5564 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
5565 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
5566 can_alias_all = true;
5567
5568 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5569 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5570 In that case, return that type without regard to the rest of our
5571 operands.
5572
5573 ??? This is a kludge, but consistent with the way this function has
5574 always operated and there doesn't seem to be a good way to avoid this
5575 at the moment. */
5576 if (TYPE_REFERENCE_TO (to_type) != 0
5577 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5578 return TYPE_REFERENCE_TO (to_type);
5579
5580 /* First, if we already have a type for pointers to TO_TYPE and it's
5581 the proper mode, use it. */
5582 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5583 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5584 return t;
5585
5586 t = make_node (REFERENCE_TYPE);
5587
5588 TREE_TYPE (t) = to_type;
5589 SET_TYPE_MODE (t, mode);
5590 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5591 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5592 TYPE_REFERENCE_TO (to_type) = t;
5593
5594 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5595 SET_TYPE_STRUCTURAL_EQUALITY (t);
5596 else if (TYPE_CANONICAL (to_type) != to_type)
5597 TYPE_CANONICAL (t)
5598 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
5599 mode, can_alias_all);
5600
5601 layout_type (t);
5602
5603 return t;
5604 }
5605
5606
5607 /* Build the node for the type of references-to-TO_TYPE by default
5608 in ptr_mode. */
5609
5610 tree
5611 build_reference_type (tree to_type)
5612 {
5613 return build_reference_type_for_mode (to_type, ptr_mode, false);
5614 }
5615
5616 /* Build a type that is compatible with t but has no cv quals anywhere
5617 in its type, thus
5618
5619 const char *const *const * -> char ***. */
5620
5621 tree
5622 build_type_no_quals (tree t)
5623 {
5624 switch (TREE_CODE (t))
5625 {
5626 case POINTER_TYPE:
5627 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5628 TYPE_MODE (t),
5629 TYPE_REF_CAN_ALIAS_ALL (t));
5630 case REFERENCE_TYPE:
5631 return
5632 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5633 TYPE_MODE (t),
5634 TYPE_REF_CAN_ALIAS_ALL (t));
5635 default:
5636 return TYPE_MAIN_VARIANT (t);
5637 }
5638 }
5639
5640 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5641 MAXVAL should be the maximum value in the domain
5642 (one less than the length of the array).
5643
5644 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5645 We don't enforce this limit, that is up to caller (e.g. language front end).
5646 The limit exists because the result is a signed type and we don't handle
5647 sizes that use more than one HOST_WIDE_INT. */
5648
5649 tree
5650 build_index_type (tree maxval)
5651 {
5652 tree itype = make_node (INTEGER_TYPE);
5653
5654 TREE_TYPE (itype) = sizetype;
5655 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5656 TYPE_MIN_VALUE (itype) = size_zero_node;
5657 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5658 SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
5659 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5660 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5661 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5662 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5663
5664 if (host_integerp (maxval, 1))
5665 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5666 else
5667 {
5668 /* Since we cannot hash this type, we need to compare it using
5669 structural equality checks. */
5670 SET_TYPE_STRUCTURAL_EQUALITY (itype);
5671 return itype;
5672 }
5673 }
5674
5675 /* Builds a signed or unsigned integer type of precision PRECISION.
5676 Used for C bitfields whose precision does not match that of
5677 built-in target types. */
5678 tree
5679 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5680 int unsignedp)
5681 {
5682 tree itype = make_node (INTEGER_TYPE);
5683
5684 TYPE_PRECISION (itype) = precision;
5685
5686 if (unsignedp)
5687 fixup_unsigned_type (itype);
5688 else
5689 fixup_signed_type (itype);
5690
5691 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5692 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5693
5694 return itype;
5695 }
5696
5697 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5698 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5699 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5700
5701 tree
5702 build_range_type (tree type, tree lowval, tree highval)
5703 {
5704 tree itype = make_node (INTEGER_TYPE);
5705
5706 TREE_TYPE (itype) = type;
5707 if (type == NULL_TREE)
5708 type = sizetype;
5709
5710 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5711 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5712
5713 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5714 SET_TYPE_MODE (itype, TYPE_MODE (type));
5715 TYPE_SIZE (itype) = TYPE_SIZE (type);
5716 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5717 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5718 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5719
5720 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5721 return type_hash_canon (tree_low_cst (highval, 0)
5722 - tree_low_cst (lowval, 0),
5723 itype);
5724 else
5725 return itype;
5726 }
5727
5728 /* Just like build_index_type, but takes lowval and highval instead
5729 of just highval (maxval). */
5730
5731 tree
5732 build_index_2_type (tree lowval, tree highval)
5733 {
5734 return build_range_type (sizetype, lowval, highval);
5735 }
5736
5737 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5738 and number of elements specified by the range of values of INDEX_TYPE.
5739 If such a type has already been constructed, reuse it. */
5740
5741 tree
5742 build_array_type (tree elt_type, tree index_type)
5743 {
5744 tree t;
5745 hashval_t hashcode = 0;
5746
5747 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5748 {
5749 error ("arrays of functions are not meaningful");
5750 elt_type = integer_type_node;
5751 }
5752
5753 t = make_node (ARRAY_TYPE);
5754 TREE_TYPE (t) = elt_type;
5755 TYPE_DOMAIN (t) = index_type;
5756
5757 if (index_type == 0)
5758 {
5759 tree save = t;
5760 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5761 t = type_hash_canon (hashcode, t);
5762 if (save == t)
5763 layout_type (t);
5764
5765 if (TYPE_CANONICAL (t) == t)
5766 {
5767 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
5768 SET_TYPE_STRUCTURAL_EQUALITY (t);
5769 else if (TYPE_CANONICAL (elt_type) != elt_type)
5770 TYPE_CANONICAL (t)
5771 = build_array_type (TYPE_CANONICAL (elt_type), index_type);
5772 }
5773
5774 return t;
5775 }
5776
5777 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5778 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5779 t = type_hash_canon (hashcode, t);
5780
5781 if (!COMPLETE_TYPE_P (t))
5782 layout_type (t);
5783
5784 if (TYPE_CANONICAL (t) == t)
5785 {
5786 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
5787 || TYPE_STRUCTURAL_EQUALITY_P (index_type))
5788 SET_TYPE_STRUCTURAL_EQUALITY (t);
5789 else if (TYPE_CANONICAL (elt_type) != elt_type
5790 || TYPE_CANONICAL (index_type) != index_type)
5791 TYPE_CANONICAL (t)
5792 = build_array_type (TYPE_CANONICAL (elt_type),
5793 TYPE_CANONICAL (index_type));
5794 }
5795
5796 return t;
5797 }
5798
5799 /* Recursively examines the array elements of TYPE, until a non-array
5800 element type is found. */
5801
5802 tree
5803 strip_array_types (tree type)
5804 {
5805 while (TREE_CODE (type) == ARRAY_TYPE)
5806 type = TREE_TYPE (type);
5807
5808 return type;
5809 }
5810
5811 /* Computes the canonical argument types from the argument type list
5812 ARGTYPES.
5813
5814 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
5815 on entry to this function, or if any of the ARGTYPES are
5816 structural.
5817
5818 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
5819 true on entry to this function, or if any of the ARGTYPES are
5820 non-canonical.
5821
5822 Returns a canonical argument list, which may be ARGTYPES when the
5823 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
5824 true) or would not differ from ARGTYPES. */
5825
5826 static tree
5827 maybe_canonicalize_argtypes(tree argtypes,
5828 bool *any_structural_p,
5829 bool *any_noncanonical_p)
5830 {
5831 tree arg;
5832 bool any_noncanonical_argtypes_p = false;
5833
5834 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
5835 {
5836 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
5837 /* Fail gracefully by stating that the type is structural. */
5838 *any_structural_p = true;
5839 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
5840 *any_structural_p = true;
5841 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
5842 || TREE_PURPOSE (arg))
5843 /* If the argument has a default argument, we consider it
5844 non-canonical even though the type itself is canonical.
5845 That way, different variants of function and method types
5846 with default arguments will all point to the variant with
5847 no defaults as their canonical type. */
5848 any_noncanonical_argtypes_p = true;
5849 }
5850
5851 if (*any_structural_p)
5852 return argtypes;
5853
5854 if (any_noncanonical_argtypes_p)
5855 {
5856 /* Build the canonical list of argument types. */
5857 tree canon_argtypes = NULL_TREE;
5858 bool is_void = false;
5859
5860 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
5861 {
5862 if (arg == void_list_node)
5863 is_void = true;
5864 else
5865 canon_argtypes = tree_cons (NULL_TREE,
5866 TYPE_CANONICAL (TREE_VALUE (arg)),
5867 canon_argtypes);
5868 }
5869
5870 canon_argtypes = nreverse (canon_argtypes);
5871 if (is_void)
5872 canon_argtypes = chainon (canon_argtypes, void_list_node);
5873
5874 /* There is a non-canonical type. */
5875 *any_noncanonical_p = true;
5876 return canon_argtypes;
5877 }
5878
5879 /* The canonical argument types are the same as ARGTYPES. */
5880 return argtypes;
5881 }
5882
5883 /* Construct, lay out and return
5884 the type of functions returning type VALUE_TYPE
5885 given arguments of types ARG_TYPES.
5886 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5887 are data type nodes for the arguments of the function.
5888 If such a type has already been constructed, reuse it. */
5889
5890 tree
5891 build_function_type (tree value_type, tree arg_types)
5892 {
5893 tree t;
5894 hashval_t hashcode = 0;
5895 bool any_structural_p, any_noncanonical_p;
5896 tree canon_argtypes;
5897
5898 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5899 {
5900 error ("function return type cannot be function");
5901 value_type = integer_type_node;
5902 }
5903
5904 /* Make a node of the sort we want. */
5905 t = make_node (FUNCTION_TYPE);
5906 TREE_TYPE (t) = value_type;
5907 TYPE_ARG_TYPES (t) = arg_types;
5908
5909 /* If we already have such a type, use the old one. */
5910 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5911 hashcode = type_hash_list (arg_types, hashcode);
5912 t = type_hash_canon (hashcode, t);
5913
5914 /* Set up the canonical type. */
5915 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
5916 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
5917 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
5918 &any_structural_p,
5919 &any_noncanonical_p);
5920 if (any_structural_p)
5921 SET_TYPE_STRUCTURAL_EQUALITY (t);
5922 else if (any_noncanonical_p)
5923 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
5924 canon_argtypes);
5925
5926 if (!COMPLETE_TYPE_P (t))
5927 layout_type (t);
5928 return t;
5929 }
5930
5931 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
5932
5933 tree
5934 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
5935 {
5936 tree new_type = NULL;
5937 tree args, new_args = NULL, t;
5938 tree new_reversed;
5939 int i = 0;
5940
5941 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
5942 args = TREE_CHAIN (args), i++)
5943 if (!bitmap_bit_p (args_to_skip, i))
5944 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
5945
5946 new_reversed = nreverse (new_args);
5947 if (args)
5948 {
5949 if (new_reversed)
5950 TREE_CHAIN (new_args) = void_list_node;
5951 else
5952 new_reversed = void_list_node;
5953 }
5954 gcc_assert (new_reversed);
5955
5956 /* Use copy_node to preserve as much as possible from original type
5957 (debug info, attribute lists etc.)
5958 Exception is METHOD_TYPEs must have THIS argument.
5959 When we are asked to remove it, we need to build new FUNCTION_TYPE
5960 instead. */
5961 if (TREE_CODE (orig_type) != METHOD_TYPE
5962 || !bitmap_bit_p (args_to_skip, 0))
5963 {
5964 new_type = copy_node (orig_type);
5965 TYPE_ARG_TYPES (new_type) = new_reversed;
5966 }
5967 else
5968 {
5969 new_type
5970 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
5971 new_reversed));
5972 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
5973 }
5974
5975 /* This is a new type, not a copy of an old type. Need to reassociate
5976 variants. We can handle everything except the main variant lazily. */
5977 t = TYPE_MAIN_VARIANT (orig_type);
5978 if (orig_type != t)
5979 {
5980 TYPE_MAIN_VARIANT (new_type) = t;
5981 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
5982 TYPE_NEXT_VARIANT (t) = new_type;
5983 }
5984 else
5985 {
5986 TYPE_MAIN_VARIANT (new_type) = new_type;
5987 TYPE_NEXT_VARIANT (new_type) = NULL;
5988 }
5989 return new_type;
5990 }
5991
5992 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
5993
5994 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
5995 linked by TREE_CHAIN directly. It is caller responsibility to eliminate
5996 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
5997
5998 tree
5999 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
6000 {
6001 tree new_decl = copy_node (orig_decl);
6002 tree new_type;
6003
6004 new_type = TREE_TYPE (orig_decl);
6005 if (prototype_p (new_type))
6006 new_type = build_function_type_skip_args (new_type, args_to_skip);
6007 TREE_TYPE (new_decl) = new_type;
6008
6009 /* For declarations setting DECL_VINDEX (i.e. methods)
6010 we expect first argument to be THIS pointer. */
6011 if (bitmap_bit_p (args_to_skip, 0))
6012 DECL_VINDEX (new_decl) = NULL_TREE;
6013 return new_decl;
6014 }
6015
6016 /* Build a function type. The RETURN_TYPE is the type returned by the
6017 function. If VAARGS is set, no void_type_node is appended to the
6018 the list. ARGP muse be alway be terminated be a NULL_TREE. */
6019
6020 static tree
6021 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
6022 {
6023 tree t, args, last;
6024
6025 t = va_arg (argp, tree);
6026 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
6027 args = tree_cons (NULL_TREE, t, args);
6028
6029 if (vaargs)
6030 {
6031 last = args;
6032 if (args != NULL_TREE)
6033 args = nreverse (args);
6034 gcc_assert (args != NULL_TREE && last != void_list_node);
6035 }
6036 else if (args == NULL_TREE)
6037 args = void_list_node;
6038 else
6039 {
6040 last = args;
6041 args = nreverse (args);
6042 TREE_CHAIN (last) = void_list_node;
6043 }
6044 args = build_function_type (return_type, args);
6045
6046 return args;
6047 }
6048
6049 /* Build a function type. The RETURN_TYPE is the type returned by the
6050 function. If additional arguments are provided, they are
6051 additional argument types. The list of argument types must always
6052 be terminated by NULL_TREE. */
6053
6054 tree
6055 build_function_type_list (tree return_type, ...)
6056 {
6057 tree args;
6058 va_list p;
6059
6060 va_start (p, return_type);
6061 args = build_function_type_list_1 (false, return_type, p);
6062 va_end (p);
6063 return args;
6064 }
6065
6066 /* Build a variable argument function type. The RETURN_TYPE is the
6067 type returned by the function. If additional arguments are provided,
6068 they are additional argument types. The list of argument types must
6069 always be terminated by NULL_TREE. */
6070
6071 tree
6072 build_varargs_function_type_list (tree return_type, ...)
6073 {
6074 tree args;
6075 va_list p;
6076
6077 va_start (p, return_type);
6078 args = build_function_type_list_1 (true, return_type, p);
6079 va_end (p);
6080
6081 return args;
6082 }
6083
6084 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
6085 and ARGTYPES (a TREE_LIST) are the return type and arguments types
6086 for the method. An implicit additional parameter (of type
6087 pointer-to-BASETYPE) is added to the ARGTYPES. */
6088
6089 tree
6090 build_method_type_directly (tree basetype,
6091 tree rettype,
6092 tree argtypes)
6093 {
6094 tree t;
6095 tree ptype;
6096 int hashcode = 0;
6097 bool any_structural_p, any_noncanonical_p;
6098 tree canon_argtypes;
6099
6100 /* Make a node of the sort we want. */
6101 t = make_node (METHOD_TYPE);
6102
6103 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
6104 TREE_TYPE (t) = rettype;
6105 ptype = build_pointer_type (basetype);
6106
6107 /* The actual arglist for this function includes a "hidden" argument
6108 which is "this". Put it into the list of argument types. */
6109 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
6110 TYPE_ARG_TYPES (t) = argtypes;
6111
6112 /* If we already have such a type, use the old one. */
6113 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
6114 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
6115 hashcode = type_hash_list (argtypes, hashcode);
6116 t = type_hash_canon (hashcode, t);
6117
6118 /* Set up the canonical type. */
6119 any_structural_p
6120 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
6121 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
6122 any_noncanonical_p
6123 = (TYPE_CANONICAL (basetype) != basetype
6124 || TYPE_CANONICAL (rettype) != rettype);
6125 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
6126 &any_structural_p,
6127 &any_noncanonical_p);
6128 if (any_structural_p)
6129 SET_TYPE_STRUCTURAL_EQUALITY (t);
6130 else if (any_noncanonical_p)
6131 TYPE_CANONICAL (t)
6132 = build_method_type_directly (TYPE_CANONICAL (basetype),
6133 TYPE_CANONICAL (rettype),
6134 canon_argtypes);
6135 if (!COMPLETE_TYPE_P (t))
6136 layout_type (t);
6137
6138 return t;
6139 }
6140
6141 /* Construct, lay out and return the type of methods belonging to class
6142 BASETYPE and whose arguments and values are described by TYPE.
6143 If that type exists already, reuse it.
6144 TYPE must be a FUNCTION_TYPE node. */
6145
6146 tree
6147 build_method_type (tree basetype, tree type)
6148 {
6149 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
6150
6151 return build_method_type_directly (basetype,
6152 TREE_TYPE (type),
6153 TYPE_ARG_TYPES (type));
6154 }
6155
6156 /* Construct, lay out and return the type of offsets to a value
6157 of type TYPE, within an object of type BASETYPE.
6158 If a suitable offset type exists already, reuse it. */
6159
6160 tree
6161 build_offset_type (tree basetype, tree type)
6162 {
6163 tree t;
6164 hashval_t hashcode = 0;
6165
6166 /* Make a node of the sort we want. */
6167 t = make_node (OFFSET_TYPE);
6168
6169 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
6170 TREE_TYPE (t) = type;
6171
6172 /* If we already have such a type, use the old one. */
6173 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
6174 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
6175 t = type_hash_canon (hashcode, t);
6176
6177 if (!COMPLETE_TYPE_P (t))
6178 layout_type (t);
6179
6180 if (TYPE_CANONICAL (t) == t)
6181 {
6182 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
6183 || TYPE_STRUCTURAL_EQUALITY_P (type))
6184 SET_TYPE_STRUCTURAL_EQUALITY (t);
6185 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
6186 || TYPE_CANONICAL (type) != type)
6187 TYPE_CANONICAL (t)
6188 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
6189 TYPE_CANONICAL (type));
6190 }
6191
6192 return t;
6193 }
6194
6195 /* Create a complex type whose components are COMPONENT_TYPE. */
6196
6197 tree
6198 build_complex_type (tree component_type)
6199 {
6200 tree t;
6201 hashval_t hashcode;
6202
6203 gcc_assert (INTEGRAL_TYPE_P (component_type)
6204 || SCALAR_FLOAT_TYPE_P (component_type)
6205 || FIXED_POINT_TYPE_P (component_type));
6206
6207 /* Make a node of the sort we want. */
6208 t = make_node (COMPLEX_TYPE);
6209
6210 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
6211
6212 /* If we already have such a type, use the old one. */
6213 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
6214 t = type_hash_canon (hashcode, t);
6215
6216 if (!COMPLETE_TYPE_P (t))
6217 layout_type (t);
6218
6219 if (TYPE_CANONICAL (t) == t)
6220 {
6221 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
6222 SET_TYPE_STRUCTURAL_EQUALITY (t);
6223 else if (TYPE_CANONICAL (component_type) != component_type)
6224 TYPE_CANONICAL (t)
6225 = build_complex_type (TYPE_CANONICAL (component_type));
6226 }
6227
6228 /* We need to create a name, since complex is a fundamental type. */
6229 if (! TYPE_NAME (t))
6230 {
6231 const char *name;
6232 if (component_type == char_type_node)
6233 name = "complex char";
6234 else if (component_type == signed_char_type_node)
6235 name = "complex signed char";
6236 else if (component_type == unsigned_char_type_node)
6237 name = "complex unsigned char";
6238 else if (component_type == short_integer_type_node)
6239 name = "complex short int";
6240 else if (component_type == short_unsigned_type_node)
6241 name = "complex short unsigned int";
6242 else if (component_type == integer_type_node)
6243 name = "complex int";
6244 else if (component_type == unsigned_type_node)
6245 name = "complex unsigned int";
6246 else if (component_type == long_integer_type_node)
6247 name = "complex long int";
6248 else if (component_type == long_unsigned_type_node)
6249 name = "complex long unsigned int";
6250 else if (component_type == long_long_integer_type_node)
6251 name = "complex long long int";
6252 else if (component_type == long_long_unsigned_type_node)
6253 name = "complex long long unsigned int";
6254 else
6255 name = 0;
6256
6257 if (name != 0)
6258 TYPE_NAME (t) = build_decl (TYPE_DECL, get_identifier (name), t);
6259 }
6260
6261 return build_qualified_type (t, TYPE_QUALS (component_type));
6262 }
6263 \f
6264 /* Return OP, stripped of any conversions to wider types as much as is safe.
6265 Converting the value back to OP's type makes a value equivalent to OP.
6266
6267 If FOR_TYPE is nonzero, we return a value which, if converted to
6268 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
6269
6270 OP must have integer, real or enumeral type. Pointers are not allowed!
6271
6272 There are some cases where the obvious value we could return
6273 would regenerate to OP if converted to OP's type,
6274 but would not extend like OP to wider types.
6275 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
6276 For example, if OP is (unsigned short)(signed char)-1,
6277 we avoid returning (signed char)-1 if FOR_TYPE is int,
6278 even though extending that to an unsigned short would regenerate OP,
6279 since the result of extending (signed char)-1 to (int)
6280 is different from (int) OP. */
6281
6282 tree
6283 get_unwidened (tree op, tree for_type)
6284 {
6285 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
6286 tree type = TREE_TYPE (op);
6287 unsigned final_prec
6288 = TYPE_PRECISION (for_type != 0 ? for_type : type);
6289 int uns
6290 = (for_type != 0 && for_type != type
6291 && final_prec > TYPE_PRECISION (type)
6292 && TYPE_UNSIGNED (type));
6293 tree win = op;
6294
6295 while (CONVERT_EXPR_P (op))
6296 {
6297 int bitschange;
6298
6299 /* TYPE_PRECISION on vector types has different meaning
6300 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
6301 so avoid them here. */
6302 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
6303 break;
6304
6305 bitschange = TYPE_PRECISION (TREE_TYPE (op))
6306 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
6307
6308 /* Truncations are many-one so cannot be removed.
6309 Unless we are later going to truncate down even farther. */
6310 if (bitschange < 0
6311 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
6312 break;
6313
6314 /* See what's inside this conversion. If we decide to strip it,
6315 we will set WIN. */
6316 op = TREE_OPERAND (op, 0);
6317
6318 /* If we have not stripped any zero-extensions (uns is 0),
6319 we can strip any kind of extension.
6320 If we have previously stripped a zero-extension,
6321 only zero-extensions can safely be stripped.
6322 Any extension can be stripped if the bits it would produce
6323 are all going to be discarded later by truncating to FOR_TYPE. */
6324
6325 if (bitschange > 0)
6326 {
6327 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
6328 win = op;
6329 /* TYPE_UNSIGNED says whether this is a zero-extension.
6330 Let's avoid computing it if it does not affect WIN
6331 and if UNS will not be needed again. */
6332 if ((uns
6333 || CONVERT_EXPR_P (op))
6334 && TYPE_UNSIGNED (TREE_TYPE (op)))
6335 {
6336 uns = 1;
6337 win = op;
6338 }
6339 }
6340 }
6341
6342 return win;
6343 }
6344 \f
6345 /* Return OP or a simpler expression for a narrower value
6346 which can be sign-extended or zero-extended to give back OP.
6347 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
6348 or 0 if the value should be sign-extended. */
6349
6350 tree
6351 get_narrower (tree op, int *unsignedp_ptr)
6352 {
6353 int uns = 0;
6354 int first = 1;
6355 tree win = op;
6356 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
6357
6358 while (TREE_CODE (op) == NOP_EXPR)
6359 {
6360 int bitschange
6361 = (TYPE_PRECISION (TREE_TYPE (op))
6362 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
6363
6364 /* Truncations are many-one so cannot be removed. */
6365 if (bitschange < 0)
6366 break;
6367
6368 /* See what's inside this conversion. If we decide to strip it,
6369 we will set WIN. */
6370
6371 if (bitschange > 0)
6372 {
6373 op = TREE_OPERAND (op, 0);
6374 /* An extension: the outermost one can be stripped,
6375 but remember whether it is zero or sign extension. */
6376 if (first)
6377 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6378 /* Otherwise, if a sign extension has been stripped,
6379 only sign extensions can now be stripped;
6380 if a zero extension has been stripped, only zero-extensions. */
6381 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
6382 break;
6383 first = 0;
6384 }
6385 else /* bitschange == 0 */
6386 {
6387 /* A change in nominal type can always be stripped, but we must
6388 preserve the unsignedness. */
6389 if (first)
6390 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6391 first = 0;
6392 op = TREE_OPERAND (op, 0);
6393 /* Keep trying to narrow, but don't assign op to win if it
6394 would turn an integral type into something else. */
6395 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
6396 continue;
6397 }
6398
6399 win = op;
6400 }
6401
6402 if (TREE_CODE (op) == COMPONENT_REF
6403 /* Since type_for_size always gives an integer type. */
6404 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
6405 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
6406 /* Ensure field is laid out already. */
6407 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6408 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6409 {
6410 unsigned HOST_WIDE_INT innerprec
6411 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6412 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6413 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6414 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6415
6416 /* We can get this structure field in a narrower type that fits it,
6417 but the resulting extension to its nominal type (a fullword type)
6418 must satisfy the same conditions as for other extensions.
6419
6420 Do this only for fields that are aligned (not bit-fields),
6421 because when bit-field insns will be used there is no
6422 advantage in doing this. */
6423
6424 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
6425 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
6426 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
6427 && type != 0)
6428 {
6429 if (first)
6430 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
6431 win = fold_convert (type, op);
6432 }
6433 }
6434
6435 *unsignedp_ptr = uns;
6436 return win;
6437 }
6438 \f
6439 /* Nonzero if integer constant C has a value that is permissible
6440 for type TYPE (an INTEGER_TYPE). */
6441
6442 int
6443 int_fits_type_p (const_tree c, const_tree type)
6444 {
6445 tree type_low_bound, type_high_bound;
6446 bool ok_for_low_bound, ok_for_high_bound, unsc;
6447 double_int dc, dd;
6448
6449 dc = tree_to_double_int (c);
6450 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
6451
6452 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
6453 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
6454 && unsc)
6455 /* So c is an unsigned integer whose type is sizetype and type is not.
6456 sizetype'd integers are sign extended even though they are
6457 unsigned. If the integer value fits in the lower end word of c,
6458 and if the higher end word has all its bits set to 1, that
6459 means the higher end bits are set to 1 only for sign extension.
6460 So let's convert c into an equivalent zero extended unsigned
6461 integer. */
6462 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
6463
6464 retry:
6465 type_low_bound = TYPE_MIN_VALUE (type);
6466 type_high_bound = TYPE_MAX_VALUE (type);
6467
6468 /* If at least one bound of the type is a constant integer, we can check
6469 ourselves and maybe make a decision. If no such decision is possible, but
6470 this type is a subtype, try checking against that. Otherwise, use
6471 fit_double_type, which checks against the precision.
6472
6473 Compute the status for each possibly constant bound, and return if we see
6474 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
6475 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
6476 for "constant known to fit". */
6477
6478 /* Check if c >= type_low_bound. */
6479 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
6480 {
6481 dd = tree_to_double_int (type_low_bound);
6482 if (TREE_CODE (type) == INTEGER_TYPE
6483 && TYPE_IS_SIZETYPE (type)
6484 && TYPE_UNSIGNED (type))
6485 dd = double_int_zext (dd, TYPE_PRECISION (type));
6486 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
6487 {
6488 int c_neg = (!unsc && double_int_negative_p (dc));
6489 int t_neg = (unsc && double_int_negative_p (dd));
6490
6491 if (c_neg && !t_neg)
6492 return 0;
6493 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
6494 return 0;
6495 }
6496 else if (double_int_cmp (dc, dd, unsc) < 0)
6497 return 0;
6498 ok_for_low_bound = true;
6499 }
6500 else
6501 ok_for_low_bound = false;
6502
6503 /* Check if c <= type_high_bound. */
6504 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
6505 {
6506 dd = tree_to_double_int (type_high_bound);
6507 if (TREE_CODE (type) == INTEGER_TYPE
6508 && TYPE_IS_SIZETYPE (type)
6509 && TYPE_UNSIGNED (type))
6510 dd = double_int_zext (dd, TYPE_PRECISION (type));
6511 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
6512 {
6513 int c_neg = (!unsc && double_int_negative_p (dc));
6514 int t_neg = (unsc && double_int_negative_p (dd));
6515
6516 if (t_neg && !c_neg)
6517 return 0;
6518 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
6519 return 0;
6520 }
6521 else if (double_int_cmp (dc, dd, unsc) > 0)
6522 return 0;
6523 ok_for_high_bound = true;
6524 }
6525 else
6526 ok_for_high_bound = false;
6527
6528 /* If the constant fits both bounds, the result is known. */
6529 if (ok_for_low_bound && ok_for_high_bound)
6530 return 1;
6531
6532 /* Perform some generic filtering which may allow making a decision
6533 even if the bounds are not constant. First, negative integers
6534 never fit in unsigned types, */
6535 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
6536 return 0;
6537
6538 /* Second, narrower types always fit in wider ones. */
6539 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
6540 return 1;
6541
6542 /* Third, unsigned integers with top bit set never fit signed types. */
6543 if (! TYPE_UNSIGNED (type) && unsc)
6544 {
6545 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
6546 if (prec < HOST_BITS_PER_WIDE_INT)
6547 {
6548 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
6549 return 0;
6550 }
6551 else if (((((unsigned HOST_WIDE_INT) 1)
6552 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
6553 return 0;
6554 }
6555
6556 /* If we haven't been able to decide at this point, there nothing more we
6557 can check ourselves here. Look at the base type if we have one and it
6558 has the same precision. */
6559 if (TREE_CODE (type) == INTEGER_TYPE
6560 && TREE_TYPE (type) != 0
6561 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
6562 {
6563 type = TREE_TYPE (type);
6564 goto retry;
6565 }
6566
6567 /* Or to fit_double_type, if nothing else. */
6568 return !fit_double_type (dc.low, dc.high, &dc.low, &dc.high, type);
6569 }
6570
6571 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
6572 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
6573 represented (assuming two's-complement arithmetic) within the bit
6574 precision of the type are returned instead. */
6575
6576 void
6577 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
6578 {
6579 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
6580 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
6581 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
6582 TYPE_UNSIGNED (type));
6583 else
6584 {
6585 if (TYPE_UNSIGNED (type))
6586 mpz_set_ui (min, 0);
6587 else
6588 {
6589 double_int mn;
6590 mn = double_int_mask (TYPE_PRECISION (type) - 1);
6591 mn = double_int_sext (double_int_add (mn, double_int_one),
6592 TYPE_PRECISION (type));
6593 mpz_set_double_int (min, mn, false);
6594 }
6595 }
6596
6597 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
6598 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
6599 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
6600 TYPE_UNSIGNED (type));
6601 else
6602 {
6603 if (TYPE_UNSIGNED (type))
6604 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
6605 true);
6606 else
6607 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
6608 true);
6609 }
6610 }
6611
6612 /* Return true if VAR is an automatic variable defined in function FN. */
6613
6614 bool
6615 auto_var_in_fn_p (const_tree var, const_tree fn)
6616 {
6617 return (DECL_P (var) && DECL_CONTEXT (var) == fn
6618 && (((TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
6619 && ! TREE_STATIC (var))
6620 || TREE_CODE (var) == LABEL_DECL
6621 || TREE_CODE (var) == RESULT_DECL));
6622 }
6623
6624 /* Subprogram of following function. Called by walk_tree.
6625
6626 Return *TP if it is an automatic variable or parameter of the
6627 function passed in as DATA. */
6628
6629 static tree
6630 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
6631 {
6632 tree fn = (tree) data;
6633
6634 if (TYPE_P (*tp))
6635 *walk_subtrees = 0;
6636
6637 else if (DECL_P (*tp)
6638 && auto_var_in_fn_p (*tp, fn))
6639 return *tp;
6640
6641 return NULL_TREE;
6642 }
6643
6644 /* Returns true if T is, contains, or refers to a type with variable
6645 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
6646 arguments, but not the return type. If FN is nonzero, only return
6647 true if a modifier of the type or position of FN is a variable or
6648 parameter inside FN.
6649
6650 This concept is more general than that of C99 'variably modified types':
6651 in C99, a struct type is never variably modified because a VLA may not
6652 appear as a structure member. However, in GNU C code like:
6653
6654 struct S { int i[f()]; };
6655
6656 is valid, and other languages may define similar constructs. */
6657
6658 bool
6659 variably_modified_type_p (tree type, tree fn)
6660 {
6661 tree t;
6662
6663 /* Test if T is either variable (if FN is zero) or an expression containing
6664 a variable in FN. */
6665 #define RETURN_TRUE_IF_VAR(T) \
6666 do { tree _t = (T); \
6667 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
6668 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
6669 return true; } while (0)
6670
6671 if (type == error_mark_node)
6672 return false;
6673
6674 /* If TYPE itself has variable size, it is variably modified. */
6675 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
6676 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
6677
6678 switch (TREE_CODE (type))
6679 {
6680 case POINTER_TYPE:
6681 case REFERENCE_TYPE:
6682 case VECTOR_TYPE:
6683 if (variably_modified_type_p (TREE_TYPE (type), fn))
6684 return true;
6685 break;
6686
6687 case FUNCTION_TYPE:
6688 case METHOD_TYPE:
6689 /* If TYPE is a function type, it is variably modified if the
6690 return type is variably modified. */
6691 if (variably_modified_type_p (TREE_TYPE (type), fn))
6692 return true;
6693 break;
6694
6695 case INTEGER_TYPE:
6696 case REAL_TYPE:
6697 case FIXED_POINT_TYPE:
6698 case ENUMERAL_TYPE:
6699 case BOOLEAN_TYPE:
6700 /* Scalar types are variably modified if their end points
6701 aren't constant. */
6702 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
6703 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
6704 break;
6705
6706 case RECORD_TYPE:
6707 case UNION_TYPE:
6708 case QUAL_UNION_TYPE:
6709 /* We can't see if any of the fields are variably-modified by the
6710 definition we normally use, since that would produce infinite
6711 recursion via pointers. */
6712 /* This is variably modified if some field's type is. */
6713 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
6714 if (TREE_CODE (t) == FIELD_DECL)
6715 {
6716 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
6717 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
6718 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
6719
6720 if (TREE_CODE (type) == QUAL_UNION_TYPE)
6721 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
6722 }
6723 break;
6724
6725 case ARRAY_TYPE:
6726 /* Do not call ourselves to avoid infinite recursion. This is
6727 variably modified if the element type is. */
6728 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
6729 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
6730 break;
6731
6732 default:
6733 break;
6734 }
6735
6736 /* The current language may have other cases to check, but in general,
6737 all other types are not variably modified. */
6738 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
6739
6740 #undef RETURN_TRUE_IF_VAR
6741 }
6742
6743 /* Given a DECL or TYPE, return the scope in which it was declared, or
6744 NULL_TREE if there is no containing scope. */
6745
6746 tree
6747 get_containing_scope (const_tree t)
6748 {
6749 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
6750 }
6751
6752 /* Return the innermost context enclosing DECL that is
6753 a FUNCTION_DECL, or zero if none. */
6754
6755 tree
6756 decl_function_context (const_tree decl)
6757 {
6758 tree context;
6759
6760 if (TREE_CODE (decl) == ERROR_MARK)
6761 return 0;
6762
6763 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
6764 where we look up the function at runtime. Such functions always take
6765 a first argument of type 'pointer to real context'.
6766
6767 C++ should really be fixed to use DECL_CONTEXT for the real context,
6768 and use something else for the "virtual context". */
6769 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
6770 context
6771 = TYPE_MAIN_VARIANT
6772 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6773 else
6774 context = DECL_CONTEXT (decl);
6775
6776 while (context && TREE_CODE (context) != FUNCTION_DECL)
6777 {
6778 if (TREE_CODE (context) == BLOCK)
6779 context = BLOCK_SUPERCONTEXT (context);
6780 else
6781 context = get_containing_scope (context);
6782 }
6783
6784 return context;
6785 }
6786
6787 /* Return the innermost context enclosing DECL that is
6788 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
6789 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
6790
6791 tree
6792 decl_type_context (const_tree decl)
6793 {
6794 tree context = DECL_CONTEXT (decl);
6795
6796 while (context)
6797 switch (TREE_CODE (context))
6798 {
6799 case NAMESPACE_DECL:
6800 case TRANSLATION_UNIT_DECL:
6801 return NULL_TREE;
6802
6803 case RECORD_TYPE:
6804 case UNION_TYPE:
6805 case QUAL_UNION_TYPE:
6806 return context;
6807
6808 case TYPE_DECL:
6809 case FUNCTION_DECL:
6810 context = DECL_CONTEXT (context);
6811 break;
6812
6813 case BLOCK:
6814 context = BLOCK_SUPERCONTEXT (context);
6815 break;
6816
6817 default:
6818 gcc_unreachable ();
6819 }
6820
6821 return NULL_TREE;
6822 }
6823
6824 /* CALL is a CALL_EXPR. Return the declaration for the function
6825 called, or NULL_TREE if the called function cannot be
6826 determined. */
6827
6828 tree
6829 get_callee_fndecl (const_tree call)
6830 {
6831 tree addr;
6832
6833 if (call == error_mark_node)
6834 return error_mark_node;
6835
6836 /* It's invalid to call this function with anything but a
6837 CALL_EXPR. */
6838 gcc_assert (TREE_CODE (call) == CALL_EXPR);
6839
6840 /* The first operand to the CALL is the address of the function
6841 called. */
6842 addr = CALL_EXPR_FN (call);
6843
6844 STRIP_NOPS (addr);
6845
6846 /* If this is a readonly function pointer, extract its initial value. */
6847 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
6848 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
6849 && DECL_INITIAL (addr))
6850 addr = DECL_INITIAL (addr);
6851
6852 /* If the address is just `&f' for some function `f', then we know
6853 that `f' is being called. */
6854 if (TREE_CODE (addr) == ADDR_EXPR
6855 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
6856 return TREE_OPERAND (addr, 0);
6857
6858 /* We couldn't figure out what was being called. */
6859 return NULL_TREE;
6860 }
6861
6862 /* Print debugging information about tree nodes generated during the compile,
6863 and any language-specific information. */
6864
6865 void
6866 dump_tree_statistics (void)
6867 {
6868 #ifdef GATHER_STATISTICS
6869 int i;
6870 int total_nodes, total_bytes;
6871 #endif
6872
6873 fprintf (stderr, "\n??? tree nodes created\n\n");
6874 #ifdef GATHER_STATISTICS
6875 fprintf (stderr, "Kind Nodes Bytes\n");
6876 fprintf (stderr, "---------------------------------------\n");
6877 total_nodes = total_bytes = 0;
6878 for (i = 0; i < (int) all_kinds; i++)
6879 {
6880 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
6881 tree_node_counts[i], tree_node_sizes[i]);
6882 total_nodes += tree_node_counts[i];
6883 total_bytes += tree_node_sizes[i];
6884 }
6885 fprintf (stderr, "---------------------------------------\n");
6886 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
6887 fprintf (stderr, "---------------------------------------\n");
6888 ssanames_print_statistics ();
6889 phinodes_print_statistics ();
6890 #else
6891 fprintf (stderr, "(No per-node statistics)\n");
6892 #endif
6893 print_type_hash_statistics ();
6894 print_debug_expr_statistics ();
6895 print_value_expr_statistics ();
6896 print_restrict_base_statistics ();
6897 lang_hooks.print_statistics ();
6898 }
6899 \f
6900 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6901
6902 /* Generate a crc32 of a string. */
6903
6904 unsigned
6905 crc32_string (unsigned chksum, const char *string)
6906 {
6907 do
6908 {
6909 unsigned value = *string << 24;
6910 unsigned ix;
6911
6912 for (ix = 8; ix--; value <<= 1)
6913 {
6914 unsigned feedback;
6915
6916 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6917 chksum <<= 1;
6918 chksum ^= feedback;
6919 }
6920 }
6921 while (*string++);
6922 return chksum;
6923 }
6924
6925 /* P is a string that will be used in a symbol. Mask out any characters
6926 that are not valid in that context. */
6927
6928 void
6929 clean_symbol_name (char *p)
6930 {
6931 for (; *p; p++)
6932 if (! (ISALNUM (*p)
6933 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6934 || *p == '$'
6935 #endif
6936 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6937 || *p == '.'
6938 #endif
6939 ))
6940 *p = '_';
6941 }
6942
6943 /* Generate a name for a special-purpose function function.
6944 The generated name may need to be unique across the whole link.
6945 TYPE is some string to identify the purpose of this function to the
6946 linker or collect2; it must start with an uppercase letter,
6947 one of:
6948 I - for constructors
6949 D - for destructors
6950 N - for C++ anonymous namespaces
6951 F - for DWARF unwind frame information. */
6952
6953 tree
6954 get_file_function_name (const char *type)
6955 {
6956 char *buf;
6957 const char *p;
6958 char *q;
6959
6960 /* If we already have a name we know to be unique, just use that. */
6961 if (first_global_object_name)
6962 p = q = ASTRDUP (first_global_object_name);
6963 /* If the target is handling the constructors/destructors, they
6964 will be local to this file and the name is only necessary for
6965 debugging purposes. */
6966 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6967 {
6968 const char *file = main_input_filename;
6969 if (! file)
6970 file = input_filename;
6971 /* Just use the file's basename, because the full pathname
6972 might be quite long. */
6973 p = strrchr (file, '/');
6974 if (p)
6975 p++;
6976 else
6977 p = file;
6978 p = q = ASTRDUP (p);
6979 }
6980 else
6981 {
6982 /* Otherwise, the name must be unique across the entire link.
6983 We don't have anything that we know to be unique to this translation
6984 unit, so use what we do have and throw in some randomness. */
6985 unsigned len;
6986 const char *name = weak_global_object_name;
6987 const char *file = main_input_filename;
6988
6989 if (! name)
6990 name = "";
6991 if (! file)
6992 file = input_filename;
6993
6994 len = strlen (file);
6995 q = (char *) alloca (9 * 2 + len + 1);
6996 memcpy (q, file, len + 1);
6997
6998 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6999 crc32_string (0, get_random_seed (false)));
7000
7001 p = q;
7002 }
7003
7004 clean_symbol_name (q);
7005 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
7006 + strlen (type));
7007
7008 /* Set up the name of the file-level functions we may need.
7009 Use a global object (which is already required to be unique over
7010 the program) rather than the file name (which imposes extra
7011 constraints). */
7012 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
7013
7014 return get_identifier (buf);
7015 }
7016 \f
7017 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
7018
7019 /* Complain that the tree code of NODE does not match the expected 0
7020 terminated list of trailing codes. The trailing code list can be
7021 empty, for a more vague error message. FILE, LINE, and FUNCTION
7022 are of the caller. */
7023
7024 void
7025 tree_check_failed (const_tree node, const char *file,
7026 int line, const char *function, ...)
7027 {
7028 va_list args;
7029 const char *buffer;
7030 unsigned length = 0;
7031 int code;
7032
7033 va_start (args, function);
7034 while ((code = va_arg (args, int)))
7035 length += 4 + strlen (tree_code_name[code]);
7036 va_end (args);
7037 if (length)
7038 {
7039 char *tmp;
7040 va_start (args, function);
7041 length += strlen ("expected ");
7042 buffer = tmp = (char *) alloca (length);
7043 length = 0;
7044 while ((code = va_arg (args, int)))
7045 {
7046 const char *prefix = length ? " or " : "expected ";
7047
7048 strcpy (tmp + length, prefix);
7049 length += strlen (prefix);
7050 strcpy (tmp + length, tree_code_name[code]);
7051 length += strlen (tree_code_name[code]);
7052 }
7053 va_end (args);
7054 }
7055 else
7056 buffer = "unexpected node";
7057
7058 internal_error ("tree check: %s, have %s in %s, at %s:%d",
7059 buffer, tree_code_name[TREE_CODE (node)],
7060 function, trim_filename (file), line);
7061 }
7062
7063 /* Complain that the tree code of NODE does match the expected 0
7064 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
7065 the caller. */
7066
7067 void
7068 tree_not_check_failed (const_tree node, const char *file,
7069 int line, const char *function, ...)
7070 {
7071 va_list args;
7072 char *buffer;
7073 unsigned length = 0;
7074 int code;
7075
7076 va_start (args, function);
7077 while ((code = va_arg (args, int)))
7078 length += 4 + strlen (tree_code_name[code]);
7079 va_end (args);
7080 va_start (args, function);
7081 buffer = (char *) alloca (length);
7082 length = 0;
7083 while ((code = va_arg (args, int)))
7084 {
7085 if (length)
7086 {
7087 strcpy (buffer + length, " or ");
7088 length += 4;
7089 }
7090 strcpy (buffer + length, tree_code_name[code]);
7091 length += strlen (tree_code_name[code]);
7092 }
7093 va_end (args);
7094
7095 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
7096 buffer, tree_code_name[TREE_CODE (node)],
7097 function, trim_filename (file), line);
7098 }
7099
7100 /* Similar to tree_check_failed, except that we check for a class of tree
7101 code, given in CL. */
7102
7103 void
7104 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
7105 const char *file, int line, const char *function)
7106 {
7107 internal_error
7108 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
7109 TREE_CODE_CLASS_STRING (cl),
7110 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
7111 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
7112 }
7113
7114 /* Similar to tree_check_failed, except that instead of specifying a
7115 dozen codes, use the knowledge that they're all sequential. */
7116
7117 void
7118 tree_range_check_failed (const_tree node, const char *file, int line,
7119 const char *function, enum tree_code c1,
7120 enum tree_code c2)
7121 {
7122 char *buffer;
7123 unsigned length = 0;
7124 enum tree_code c;
7125
7126 for (c = c1; c <= c2; ++c)
7127 length += 4 + strlen (tree_code_name[c]);
7128
7129 length += strlen ("expected ");
7130 buffer = (char *) alloca (length);
7131 length = 0;
7132
7133 for (c = c1; c <= c2; ++c)
7134 {
7135 const char *prefix = length ? " or " : "expected ";
7136
7137 strcpy (buffer + length, prefix);
7138 length += strlen (prefix);
7139 strcpy (buffer + length, tree_code_name[c]);
7140 length += strlen (tree_code_name[c]);
7141 }
7142
7143 internal_error ("tree check: %s, have %s in %s, at %s:%d",
7144 buffer, tree_code_name[TREE_CODE (node)],
7145 function, trim_filename (file), line);
7146 }
7147
7148
7149 /* Similar to tree_check_failed, except that we check that a tree does
7150 not have the specified code, given in CL. */
7151
7152 void
7153 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
7154 const char *file, int line, const char *function)
7155 {
7156 internal_error
7157 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
7158 TREE_CODE_CLASS_STRING (cl),
7159 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
7160 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
7161 }
7162
7163
7164 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
7165
7166 void
7167 omp_clause_check_failed (const_tree node, const char *file, int line,
7168 const char *function, enum omp_clause_code code)
7169 {
7170 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
7171 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
7172 function, trim_filename (file), line);
7173 }
7174
7175
7176 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
7177
7178 void
7179 omp_clause_range_check_failed (const_tree node, const char *file, int line,
7180 const char *function, enum omp_clause_code c1,
7181 enum omp_clause_code c2)
7182 {
7183 char *buffer;
7184 unsigned length = 0;
7185 enum omp_clause_code c;
7186
7187 for (c = c1; c <= c2; ++c)
7188 length += 4 + strlen (omp_clause_code_name[c]);
7189
7190 length += strlen ("expected ");
7191 buffer = (char *) alloca (length);
7192 length = 0;
7193
7194 for (c = c1; c <= c2; ++c)
7195 {
7196 const char *prefix = length ? " or " : "expected ";
7197
7198 strcpy (buffer + length, prefix);
7199 length += strlen (prefix);
7200 strcpy (buffer + length, omp_clause_code_name[c]);
7201 length += strlen (omp_clause_code_name[c]);
7202 }
7203
7204 internal_error ("tree check: %s, have %s in %s, at %s:%d",
7205 buffer, omp_clause_code_name[TREE_CODE (node)],
7206 function, trim_filename (file), line);
7207 }
7208
7209
7210 #undef DEFTREESTRUCT
7211 #define DEFTREESTRUCT(VAL, NAME) NAME,
7212
7213 static const char *ts_enum_names[] = {
7214 #include "treestruct.def"
7215 };
7216 #undef DEFTREESTRUCT
7217
7218 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
7219
7220 /* Similar to tree_class_check_failed, except that we check for
7221 whether CODE contains the tree structure identified by EN. */
7222
7223 void
7224 tree_contains_struct_check_failed (const_tree node,
7225 const enum tree_node_structure_enum en,
7226 const char *file, int line,
7227 const char *function)
7228 {
7229 internal_error
7230 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
7231 TS_ENUM_NAME(en),
7232 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
7233 }
7234
7235
7236 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
7237 (dynamically sized) vector. */
7238
7239 void
7240 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
7241 const char *function)
7242 {
7243 internal_error
7244 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
7245 idx + 1, len, function, trim_filename (file), line);
7246 }
7247
7248 /* Similar to above, except that the check is for the bounds of the operand
7249 vector of an expression node EXP. */
7250
7251 void
7252 tree_operand_check_failed (int idx, const_tree exp, const char *file,
7253 int line, const char *function)
7254 {
7255 int code = TREE_CODE (exp);
7256 internal_error
7257 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
7258 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
7259 function, trim_filename (file), line);
7260 }
7261
7262 /* Similar to above, except that the check is for the number of
7263 operands of an OMP_CLAUSE node. */
7264
7265 void
7266 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
7267 int line, const char *function)
7268 {
7269 internal_error
7270 ("tree check: accessed operand %d of omp_clause %s with %d operands "
7271 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
7272 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
7273 trim_filename (file), line);
7274 }
7275 #endif /* ENABLE_TREE_CHECKING */
7276 \f
7277 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
7278 and mapped to the machine mode MODE. Initialize its fields and build
7279 the information necessary for debugging output. */
7280
7281 static tree
7282 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
7283 {
7284 tree t;
7285 hashval_t hashcode = 0;
7286
7287 /* Build a main variant, based on the main variant of the inner type, then
7288 use it to build the variant we return. */
7289 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
7290 && TYPE_MAIN_VARIANT (innertype) != innertype)
7291 return build_type_attribute_qual_variant (
7292 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
7293 TYPE_ATTRIBUTES (innertype),
7294 TYPE_QUALS (innertype));
7295
7296 t = make_node (VECTOR_TYPE);
7297 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
7298 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
7299 SET_TYPE_MODE (t, mode);
7300 TYPE_READONLY (t) = TYPE_READONLY (innertype);
7301 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
7302
7303 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
7304 SET_TYPE_STRUCTURAL_EQUALITY (t);
7305 else if (TYPE_CANONICAL (innertype) != innertype
7306 || mode != VOIDmode)
7307 TYPE_CANONICAL (t)
7308 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
7309
7310 layout_type (t);
7311
7312 {
7313 tree index = build_int_cst (NULL_TREE, nunits - 1);
7314 tree array = build_array_type (innertype, build_index_type (index));
7315 tree rt = make_node (RECORD_TYPE);
7316
7317 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
7318 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
7319 layout_type (rt);
7320 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
7321 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
7322 the representation type, and we want to find that die when looking up
7323 the vector type. This is most easily achieved by making the TYPE_UID
7324 numbers equal. */
7325 TYPE_UID (rt) = TYPE_UID (t);
7326 }
7327
7328 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
7329 hashcode = iterative_hash_host_wide_int (mode, hashcode);
7330 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
7331 return type_hash_canon (hashcode, t);
7332 }
7333
7334 static tree
7335 make_or_reuse_type (unsigned size, int unsignedp)
7336 {
7337 if (size == INT_TYPE_SIZE)
7338 return unsignedp ? unsigned_type_node : integer_type_node;
7339 if (size == CHAR_TYPE_SIZE)
7340 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
7341 if (size == SHORT_TYPE_SIZE)
7342 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
7343 if (size == LONG_TYPE_SIZE)
7344 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
7345 if (size == LONG_LONG_TYPE_SIZE)
7346 return (unsignedp ? long_long_unsigned_type_node
7347 : long_long_integer_type_node);
7348
7349 if (unsignedp)
7350 return make_unsigned_type (size);
7351 else
7352 return make_signed_type (size);
7353 }
7354
7355 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
7356
7357 static tree
7358 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
7359 {
7360 if (satp)
7361 {
7362 if (size == SHORT_FRACT_TYPE_SIZE)
7363 return unsignedp ? sat_unsigned_short_fract_type_node
7364 : sat_short_fract_type_node;
7365 if (size == FRACT_TYPE_SIZE)
7366 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
7367 if (size == LONG_FRACT_TYPE_SIZE)
7368 return unsignedp ? sat_unsigned_long_fract_type_node
7369 : sat_long_fract_type_node;
7370 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7371 return unsignedp ? sat_unsigned_long_long_fract_type_node
7372 : sat_long_long_fract_type_node;
7373 }
7374 else
7375 {
7376 if (size == SHORT_FRACT_TYPE_SIZE)
7377 return unsignedp ? unsigned_short_fract_type_node
7378 : short_fract_type_node;
7379 if (size == FRACT_TYPE_SIZE)
7380 return unsignedp ? unsigned_fract_type_node : fract_type_node;
7381 if (size == LONG_FRACT_TYPE_SIZE)
7382 return unsignedp ? unsigned_long_fract_type_node
7383 : long_fract_type_node;
7384 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7385 return unsignedp ? unsigned_long_long_fract_type_node
7386 : long_long_fract_type_node;
7387 }
7388
7389 return make_fract_type (size, unsignedp, satp);
7390 }
7391
7392 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
7393
7394 static tree
7395 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
7396 {
7397 if (satp)
7398 {
7399 if (size == SHORT_ACCUM_TYPE_SIZE)
7400 return unsignedp ? sat_unsigned_short_accum_type_node
7401 : sat_short_accum_type_node;
7402 if (size == ACCUM_TYPE_SIZE)
7403 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
7404 if (size == LONG_ACCUM_TYPE_SIZE)
7405 return unsignedp ? sat_unsigned_long_accum_type_node
7406 : sat_long_accum_type_node;
7407 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7408 return unsignedp ? sat_unsigned_long_long_accum_type_node
7409 : sat_long_long_accum_type_node;
7410 }
7411 else
7412 {
7413 if (size == SHORT_ACCUM_TYPE_SIZE)
7414 return unsignedp ? unsigned_short_accum_type_node
7415 : short_accum_type_node;
7416 if (size == ACCUM_TYPE_SIZE)
7417 return unsignedp ? unsigned_accum_type_node : accum_type_node;
7418 if (size == LONG_ACCUM_TYPE_SIZE)
7419 return unsignedp ? unsigned_long_accum_type_node
7420 : long_accum_type_node;
7421 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7422 return unsignedp ? unsigned_long_long_accum_type_node
7423 : long_long_accum_type_node;
7424 }
7425
7426 return make_accum_type (size, unsignedp, satp);
7427 }
7428
7429 /* Create nodes for all integer types (and error_mark_node) using the sizes
7430 of C datatypes. The caller should call set_sizetype soon after calling
7431 this function to select one of the types as sizetype. */
7432
7433 void
7434 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
7435 {
7436 error_mark_node = make_node (ERROR_MARK);
7437 TREE_TYPE (error_mark_node) = error_mark_node;
7438
7439 initialize_sizetypes (signed_sizetype);
7440
7441 /* Define both `signed char' and `unsigned char'. */
7442 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
7443 TYPE_STRING_FLAG (signed_char_type_node) = 1;
7444 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
7445 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
7446
7447 /* Define `char', which is like either `signed char' or `unsigned char'
7448 but not the same as either. */
7449 char_type_node
7450 = (signed_char
7451 ? make_signed_type (CHAR_TYPE_SIZE)
7452 : make_unsigned_type (CHAR_TYPE_SIZE));
7453 TYPE_STRING_FLAG (char_type_node) = 1;
7454
7455 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
7456 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
7457 integer_type_node = make_signed_type (INT_TYPE_SIZE);
7458 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
7459 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
7460 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
7461 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
7462 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
7463
7464 /* Define a boolean type. This type only represents boolean values but
7465 may be larger than char depending on the value of BOOL_TYPE_SIZE.
7466 Front ends which want to override this size (i.e. Java) can redefine
7467 boolean_type_node before calling build_common_tree_nodes_2. */
7468 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
7469 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
7470 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
7471 TYPE_PRECISION (boolean_type_node) = 1;
7472
7473 /* Fill in the rest of the sized types. Reuse existing type nodes
7474 when possible. */
7475 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
7476 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
7477 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
7478 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
7479 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
7480
7481 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
7482 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
7483 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
7484 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
7485 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
7486
7487 access_public_node = get_identifier ("public");
7488 access_protected_node = get_identifier ("protected");
7489 access_private_node = get_identifier ("private");
7490 }
7491
7492 /* Call this function after calling build_common_tree_nodes and set_sizetype.
7493 It will create several other common tree nodes. */
7494
7495 void
7496 build_common_tree_nodes_2 (int short_double)
7497 {
7498 /* Define these next since types below may used them. */
7499 integer_zero_node = build_int_cst (NULL_TREE, 0);
7500 integer_one_node = build_int_cst (NULL_TREE, 1);
7501 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
7502
7503 size_zero_node = size_int (0);
7504 size_one_node = size_int (1);
7505 bitsize_zero_node = bitsize_int (0);
7506 bitsize_one_node = bitsize_int (1);
7507 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
7508
7509 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
7510 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
7511
7512 void_type_node = make_node (VOID_TYPE);
7513 layout_type (void_type_node);
7514
7515 /* We are not going to have real types in C with less than byte alignment,
7516 so we might as well not have any types that claim to have it. */
7517 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
7518 TYPE_USER_ALIGN (void_type_node) = 0;
7519
7520 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
7521 layout_type (TREE_TYPE (null_pointer_node));
7522
7523 ptr_type_node = build_pointer_type (void_type_node);
7524 const_ptr_type_node
7525 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
7526 fileptr_type_node = ptr_type_node;
7527
7528 float_type_node = make_node (REAL_TYPE);
7529 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
7530 layout_type (float_type_node);
7531
7532 double_type_node = make_node (REAL_TYPE);
7533 if (short_double)
7534 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
7535 else
7536 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
7537 layout_type (double_type_node);
7538
7539 long_double_type_node = make_node (REAL_TYPE);
7540 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
7541 layout_type (long_double_type_node);
7542
7543 float_ptr_type_node = build_pointer_type (float_type_node);
7544 double_ptr_type_node = build_pointer_type (double_type_node);
7545 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
7546 integer_ptr_type_node = build_pointer_type (integer_type_node);
7547
7548 /* Fixed size integer types. */
7549 uint32_type_node = build_nonstandard_integer_type (32, true);
7550 uint64_type_node = build_nonstandard_integer_type (64, true);
7551
7552 /* Decimal float types. */
7553 dfloat32_type_node = make_node (REAL_TYPE);
7554 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
7555 layout_type (dfloat32_type_node);
7556 SET_TYPE_MODE (dfloat32_type_node, SDmode);
7557 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
7558
7559 dfloat64_type_node = make_node (REAL_TYPE);
7560 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
7561 layout_type (dfloat64_type_node);
7562 SET_TYPE_MODE (dfloat64_type_node, DDmode);
7563 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
7564
7565 dfloat128_type_node = make_node (REAL_TYPE);
7566 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
7567 layout_type (dfloat128_type_node);
7568 SET_TYPE_MODE (dfloat128_type_node, TDmode);
7569 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
7570
7571 complex_integer_type_node = build_complex_type (integer_type_node);
7572 complex_float_type_node = build_complex_type (float_type_node);
7573 complex_double_type_node = build_complex_type (double_type_node);
7574 complex_long_double_type_node = build_complex_type (long_double_type_node);
7575
7576 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
7577 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
7578 sat_ ## KIND ## _type_node = \
7579 make_sat_signed_ ## KIND ## _type (SIZE); \
7580 sat_unsigned_ ## KIND ## _type_node = \
7581 make_sat_unsigned_ ## KIND ## _type (SIZE); \
7582 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
7583 unsigned_ ## KIND ## _type_node = \
7584 make_unsigned_ ## KIND ## _type (SIZE);
7585
7586 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
7587 sat_ ## WIDTH ## KIND ## _type_node = \
7588 make_sat_signed_ ## KIND ## _type (SIZE); \
7589 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
7590 make_sat_unsigned_ ## KIND ## _type (SIZE); \
7591 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
7592 unsigned_ ## WIDTH ## KIND ## _type_node = \
7593 make_unsigned_ ## KIND ## _type (SIZE);
7594
7595 /* Make fixed-point type nodes based on four different widths. */
7596 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
7597 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
7598 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
7599 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
7600 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
7601
7602 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
7603 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
7604 NAME ## _type_node = \
7605 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
7606 u ## NAME ## _type_node = \
7607 make_or_reuse_unsigned_ ## KIND ## _type \
7608 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
7609 sat_ ## NAME ## _type_node = \
7610 make_or_reuse_sat_signed_ ## KIND ## _type \
7611 (GET_MODE_BITSIZE (MODE ## mode)); \
7612 sat_u ## NAME ## _type_node = \
7613 make_or_reuse_sat_unsigned_ ## KIND ## _type \
7614 (GET_MODE_BITSIZE (U ## MODE ## mode));
7615
7616 /* Fixed-point type and mode nodes. */
7617 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
7618 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
7619 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
7620 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
7621 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
7622 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
7623 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
7624 MAKE_FIXED_MODE_NODE (accum, ha, HA)
7625 MAKE_FIXED_MODE_NODE (accum, sa, SA)
7626 MAKE_FIXED_MODE_NODE (accum, da, DA)
7627 MAKE_FIXED_MODE_NODE (accum, ta, TA)
7628
7629 {
7630 tree t = targetm.build_builtin_va_list ();
7631
7632 /* Many back-ends define record types without setting TYPE_NAME.
7633 If we copied the record type here, we'd keep the original
7634 record type without a name. This breaks name mangling. So,
7635 don't copy record types and let c_common_nodes_and_builtins()
7636 declare the type to be __builtin_va_list. */
7637 if (TREE_CODE (t) != RECORD_TYPE)
7638 t = build_variant_type_copy (t);
7639
7640 va_list_type_node = t;
7641 }
7642 }
7643
7644 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
7645
7646 static void
7647 local_define_builtin (const char *name, tree type, enum built_in_function code,
7648 const char *library_name, int ecf_flags)
7649 {
7650 tree decl;
7651
7652 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
7653 library_name, NULL_TREE);
7654 if (ecf_flags & ECF_CONST)
7655 TREE_READONLY (decl) = 1;
7656 if (ecf_flags & ECF_PURE)
7657 DECL_PURE_P (decl) = 1;
7658 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
7659 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
7660 if (ecf_flags & ECF_NORETURN)
7661 TREE_THIS_VOLATILE (decl) = 1;
7662 if (ecf_flags & ECF_NOTHROW)
7663 TREE_NOTHROW (decl) = 1;
7664 if (ecf_flags & ECF_MALLOC)
7665 DECL_IS_MALLOC (decl) = 1;
7666
7667 built_in_decls[code] = decl;
7668 implicit_built_in_decls[code] = decl;
7669 }
7670
7671 /* Call this function after instantiating all builtins that the language
7672 front end cares about. This will build the rest of the builtins that
7673 are relied upon by the tree optimizers and the middle-end. */
7674
7675 void
7676 build_common_builtin_nodes (void)
7677 {
7678 tree tmp, ftype;
7679
7680 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
7681 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7682 {
7683 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7684 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7685 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7686 ftype = build_function_type (ptr_type_node, tmp);
7687
7688 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
7689 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
7690 "memcpy", ECF_NOTHROW);
7691 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7692 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
7693 "memmove", ECF_NOTHROW);
7694 }
7695
7696 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
7697 {
7698 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7699 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7700 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7701 ftype = build_function_type (integer_type_node, tmp);
7702 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
7703 "memcmp", ECF_PURE | ECF_NOTHROW);
7704 }
7705
7706 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
7707 {
7708 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7709 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
7710 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7711 ftype = build_function_type (ptr_type_node, tmp);
7712 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
7713 "memset", ECF_NOTHROW);
7714 }
7715
7716 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
7717 {
7718 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7719 ftype = build_function_type (ptr_type_node, tmp);
7720 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
7721 "alloca", ECF_NOTHROW | ECF_MALLOC);
7722 }
7723
7724 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7725 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7726 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7727 ftype = build_function_type (void_type_node, tmp);
7728 local_define_builtin ("__builtin_init_trampoline", ftype,
7729 BUILT_IN_INIT_TRAMPOLINE,
7730 "__builtin_init_trampoline", ECF_NOTHROW);
7731
7732 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7733 ftype = build_function_type (ptr_type_node, tmp);
7734 local_define_builtin ("__builtin_adjust_trampoline", ftype,
7735 BUILT_IN_ADJUST_TRAMPOLINE,
7736 "__builtin_adjust_trampoline",
7737 ECF_CONST | ECF_NOTHROW);
7738
7739 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7740 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7741 ftype = build_function_type (void_type_node, tmp);
7742 local_define_builtin ("__builtin_nonlocal_goto", ftype,
7743 BUILT_IN_NONLOCAL_GOTO,
7744 "__builtin_nonlocal_goto",
7745 ECF_NORETURN | ECF_NOTHROW);
7746
7747 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7748 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7749 ftype = build_function_type (void_type_node, tmp);
7750 local_define_builtin ("__builtin_setjmp_setup", ftype,
7751 BUILT_IN_SETJMP_SETUP,
7752 "__builtin_setjmp_setup", ECF_NOTHROW);
7753
7754 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7755 ftype = build_function_type (ptr_type_node, tmp);
7756 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
7757 BUILT_IN_SETJMP_DISPATCHER,
7758 "__builtin_setjmp_dispatcher",
7759 ECF_PURE | ECF_NOTHROW);
7760
7761 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7762 ftype = build_function_type (void_type_node, tmp);
7763 local_define_builtin ("__builtin_setjmp_receiver", ftype,
7764 BUILT_IN_SETJMP_RECEIVER,
7765 "__builtin_setjmp_receiver", ECF_NOTHROW);
7766
7767 ftype = build_function_type (ptr_type_node, void_list_node);
7768 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
7769 "__builtin_stack_save", ECF_NOTHROW);
7770
7771 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7772 ftype = build_function_type (void_type_node, tmp);
7773 local_define_builtin ("__builtin_stack_restore", ftype,
7774 BUILT_IN_STACK_RESTORE,
7775 "__builtin_stack_restore", ECF_NOTHROW);
7776
7777 ftype = build_function_type (void_type_node, void_list_node);
7778 local_define_builtin ("__builtin_profile_func_enter", ftype,
7779 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
7780 local_define_builtin ("__builtin_profile_func_exit", ftype,
7781 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
7782
7783 /* Complex multiplication and division. These are handled as builtins
7784 rather than optabs because emit_library_call_value doesn't support
7785 complex. Further, we can do slightly better with folding these
7786 beasties if the real and complex parts of the arguments are separate. */
7787 {
7788 enum machine_mode mode;
7789
7790 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
7791 {
7792 char mode_name_buf[4], *q;
7793 const char *p;
7794 enum built_in_function mcode, dcode;
7795 tree type, inner_type;
7796
7797 type = lang_hooks.types.type_for_mode (mode, 0);
7798 if (type == NULL)
7799 continue;
7800 inner_type = TREE_TYPE (type);
7801
7802 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
7803 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7804 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7805 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7806 ftype = build_function_type (type, tmp);
7807
7808 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7809 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7810
7811 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
7812 *q = TOLOWER (*p);
7813 *q = '\0';
7814
7815 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
7816 local_define_builtin (built_in_names[mcode], ftype, mcode,
7817 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
7818
7819 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
7820 local_define_builtin (built_in_names[dcode], ftype, dcode,
7821 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
7822 }
7823 }
7824 }
7825
7826 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
7827 better way.
7828
7829 If we requested a pointer to a vector, build up the pointers that
7830 we stripped off while looking for the inner type. Similarly for
7831 return values from functions.
7832
7833 The argument TYPE is the top of the chain, and BOTTOM is the
7834 new type which we will point to. */
7835
7836 tree
7837 reconstruct_complex_type (tree type, tree bottom)
7838 {
7839 tree inner, outer;
7840
7841 if (TREE_CODE (type) == POINTER_TYPE)
7842 {
7843 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7844 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
7845 TYPE_REF_CAN_ALIAS_ALL (type));
7846 }
7847 else if (TREE_CODE (type) == REFERENCE_TYPE)
7848 {
7849 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7850 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
7851 TYPE_REF_CAN_ALIAS_ALL (type));
7852 }
7853 else if (TREE_CODE (type) == ARRAY_TYPE)
7854 {
7855 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7856 outer = build_array_type (inner, TYPE_DOMAIN (type));
7857 }
7858 else if (TREE_CODE (type) == FUNCTION_TYPE)
7859 {
7860 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7861 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
7862 }
7863 else if (TREE_CODE (type) == METHOD_TYPE)
7864 {
7865 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7866 /* The build_method_type_directly() routine prepends 'this' to argument list,
7867 so we must compensate by getting rid of it. */
7868 outer
7869 = build_method_type_directly
7870 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
7871 inner,
7872 TREE_CHAIN (TYPE_ARG_TYPES (type)));
7873 }
7874 else if (TREE_CODE (type) == OFFSET_TYPE)
7875 {
7876 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7877 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
7878 }
7879 else
7880 return bottom;
7881
7882 return build_qualified_type (outer, TYPE_QUALS (type));
7883 }
7884
7885 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
7886 the inner type. */
7887 tree
7888 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
7889 {
7890 int nunits;
7891
7892 switch (GET_MODE_CLASS (mode))
7893 {
7894 case MODE_VECTOR_INT:
7895 case MODE_VECTOR_FLOAT:
7896 case MODE_VECTOR_FRACT:
7897 case MODE_VECTOR_UFRACT:
7898 case MODE_VECTOR_ACCUM:
7899 case MODE_VECTOR_UACCUM:
7900 nunits = GET_MODE_NUNITS (mode);
7901 break;
7902
7903 case MODE_INT:
7904 /* Check that there are no leftover bits. */
7905 gcc_assert (GET_MODE_BITSIZE (mode)
7906 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
7907
7908 nunits = GET_MODE_BITSIZE (mode)
7909 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
7910 break;
7911
7912 default:
7913 gcc_unreachable ();
7914 }
7915
7916 return make_vector_type (innertype, nunits, mode);
7917 }
7918
7919 /* Similarly, but takes the inner type and number of units, which must be
7920 a power of two. */
7921
7922 tree
7923 build_vector_type (tree innertype, int nunits)
7924 {
7925 return make_vector_type (innertype, nunits, VOIDmode);
7926 }
7927
7928
7929 /* Build RESX_EXPR with given REGION_NUMBER. */
7930 tree
7931 build_resx (int region_number)
7932 {
7933 tree t;
7934 t = build1 (RESX_EXPR, void_type_node,
7935 build_int_cst (NULL_TREE, region_number));
7936 return t;
7937 }
7938
7939 /* Given an initializer INIT, return TRUE if INIT is zero or some
7940 aggregate of zeros. Otherwise return FALSE. */
7941 bool
7942 initializer_zerop (const_tree init)
7943 {
7944 tree elt;
7945
7946 STRIP_NOPS (init);
7947
7948 switch (TREE_CODE (init))
7949 {
7950 case INTEGER_CST:
7951 return integer_zerop (init);
7952
7953 case REAL_CST:
7954 /* ??? Note that this is not correct for C4X float formats. There,
7955 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
7956 negative exponent. */
7957 return real_zerop (init)
7958 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
7959
7960 case FIXED_CST:
7961 return fixed_zerop (init);
7962
7963 case COMPLEX_CST:
7964 return integer_zerop (init)
7965 || (real_zerop (init)
7966 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
7967 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
7968
7969 case VECTOR_CST:
7970 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
7971 if (!initializer_zerop (TREE_VALUE (elt)))
7972 return false;
7973 return true;
7974
7975 case CONSTRUCTOR:
7976 {
7977 unsigned HOST_WIDE_INT idx;
7978
7979 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
7980 if (!initializer_zerop (elt))
7981 return false;
7982 return true;
7983 }
7984
7985 default:
7986 return false;
7987 }
7988 }
7989
7990 /* Build an empty statement. */
7991
7992 tree
7993 build_empty_stmt (void)
7994 {
7995 return build1 (NOP_EXPR, void_type_node, size_zero_node);
7996 }
7997
7998
7999 /* Build an OpenMP clause with code CODE. */
8000
8001 tree
8002 build_omp_clause (enum omp_clause_code code)
8003 {
8004 tree t;
8005 int size, length;
8006
8007 length = omp_clause_num_ops[code];
8008 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
8009
8010 t = GGC_NEWVAR (union tree_node, size);
8011 memset (t, 0, size);
8012 TREE_SET_CODE (t, OMP_CLAUSE);
8013 OMP_CLAUSE_SET_CODE (t, code);
8014
8015 #ifdef GATHER_STATISTICS
8016 tree_node_counts[(int) omp_clause_kind]++;
8017 tree_node_sizes[(int) omp_clause_kind] += size;
8018 #endif
8019
8020 return t;
8021 }
8022
8023 /* Set various status flags when building a CALL_EXPR object T. */
8024
8025 static void
8026 process_call_operands (tree t)
8027 {
8028 bool side_effects;
8029
8030 side_effects = TREE_SIDE_EFFECTS (t);
8031 if (!side_effects)
8032 {
8033 int i, n;
8034 n = TREE_OPERAND_LENGTH (t);
8035 for (i = 1; i < n; i++)
8036 {
8037 tree op = TREE_OPERAND (t, i);
8038 if (op && TREE_SIDE_EFFECTS (op))
8039 {
8040 side_effects = 1;
8041 break;
8042 }
8043 }
8044 }
8045 if (!side_effects)
8046 {
8047 int i;
8048
8049 /* Calls have side-effects, except those to const or
8050 pure functions. */
8051 i = call_expr_flags (t);
8052 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
8053 side_effects = 1;
8054 }
8055 TREE_SIDE_EFFECTS (t) = side_effects;
8056 }
8057
8058 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
8059 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
8060 Except for the CODE and operand count field, other storage for the
8061 object is initialized to zeros. */
8062
8063 tree
8064 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
8065 {
8066 tree t;
8067 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
8068
8069 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
8070 gcc_assert (len >= 1);
8071
8072 #ifdef GATHER_STATISTICS
8073 tree_node_counts[(int) e_kind]++;
8074 tree_node_sizes[(int) e_kind] += length;
8075 #endif
8076
8077 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
8078
8079 memset (t, 0, length);
8080
8081 TREE_SET_CODE (t, code);
8082
8083 /* Can't use TREE_OPERAND to store the length because if checking is
8084 enabled, it will try to check the length before we store it. :-P */
8085 t->exp.operands[0] = build_int_cst (sizetype, len);
8086
8087 return t;
8088 }
8089
8090
8091 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
8092 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
8093 arguments. */
8094
8095 tree
8096 build_call_list (tree return_type, tree fn, tree arglist)
8097 {
8098 tree t;
8099 int i;
8100
8101 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
8102 TREE_TYPE (t) = return_type;
8103 CALL_EXPR_FN (t) = fn;
8104 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
8105 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
8106 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
8107 process_call_operands (t);
8108 return t;
8109 }
8110
8111 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
8112 FN and a null static chain slot. NARGS is the number of call arguments
8113 which are specified as "..." arguments. */
8114
8115 tree
8116 build_call_nary (tree return_type, tree fn, int nargs, ...)
8117 {
8118 tree ret;
8119 va_list args;
8120 va_start (args, nargs);
8121 ret = build_call_valist (return_type, fn, nargs, args);
8122 va_end (args);
8123 return ret;
8124 }
8125
8126 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
8127 FN and a null static chain slot. NARGS is the number of call arguments
8128 which are specified as a va_list ARGS. */
8129
8130 tree
8131 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
8132 {
8133 tree t;
8134 int i;
8135
8136 t = build_vl_exp (CALL_EXPR, nargs + 3);
8137 TREE_TYPE (t) = return_type;
8138 CALL_EXPR_FN (t) = fn;
8139 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
8140 for (i = 0; i < nargs; i++)
8141 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
8142 process_call_operands (t);
8143 return t;
8144 }
8145
8146 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
8147 FN and a null static chain slot. NARGS is the number of call arguments
8148 which are specified as a tree array ARGS. */
8149
8150 tree
8151 build_call_array (tree return_type, tree fn, int nargs, tree *args)
8152 {
8153 tree t;
8154 int i;
8155
8156 t = build_vl_exp (CALL_EXPR, nargs + 3);
8157 TREE_TYPE (t) = return_type;
8158 CALL_EXPR_FN (t) = fn;
8159 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
8160 for (i = 0; i < nargs; i++)
8161 CALL_EXPR_ARG (t, i) = args[i];
8162 process_call_operands (t);
8163 return t;
8164 }
8165
8166
8167 /* Returns true if it is possible to prove that the index of
8168 an array access REF (an ARRAY_REF expression) falls into the
8169 array bounds. */
8170
8171 bool
8172 in_array_bounds_p (tree ref)
8173 {
8174 tree idx = TREE_OPERAND (ref, 1);
8175 tree min, max;
8176
8177 if (TREE_CODE (idx) != INTEGER_CST)
8178 return false;
8179
8180 min = array_ref_low_bound (ref);
8181 max = array_ref_up_bound (ref);
8182 if (!min
8183 || !max
8184 || TREE_CODE (min) != INTEGER_CST
8185 || TREE_CODE (max) != INTEGER_CST)
8186 return false;
8187
8188 if (tree_int_cst_lt (idx, min)
8189 || tree_int_cst_lt (max, idx))
8190 return false;
8191
8192 return true;
8193 }
8194
8195 /* Returns true if it is possible to prove that the range of
8196 an array access REF (an ARRAY_RANGE_REF expression) falls
8197 into the array bounds. */
8198
8199 bool
8200 range_in_array_bounds_p (tree ref)
8201 {
8202 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
8203 tree range_min, range_max, min, max;
8204
8205 range_min = TYPE_MIN_VALUE (domain_type);
8206 range_max = TYPE_MAX_VALUE (domain_type);
8207 if (!range_min
8208 || !range_max
8209 || TREE_CODE (range_min) != INTEGER_CST
8210 || TREE_CODE (range_max) != INTEGER_CST)
8211 return false;
8212
8213 min = array_ref_low_bound (ref);
8214 max = array_ref_up_bound (ref);
8215 if (!min
8216 || !max
8217 || TREE_CODE (min) != INTEGER_CST
8218 || TREE_CODE (max) != INTEGER_CST)
8219 return false;
8220
8221 if (tree_int_cst_lt (range_min, min)
8222 || tree_int_cst_lt (max, range_max))
8223 return false;
8224
8225 return true;
8226 }
8227
8228 /* Return true if T (assumed to be a DECL) must be assigned a memory
8229 location. */
8230
8231 bool
8232 needs_to_live_in_memory (const_tree t)
8233 {
8234 if (TREE_CODE (t) == SSA_NAME)
8235 t = SSA_NAME_VAR (t);
8236
8237 return (TREE_ADDRESSABLE (t)
8238 || is_global_var (t)
8239 || (TREE_CODE (t) == RESULT_DECL
8240 && aggregate_value_p (t, current_function_decl)));
8241 }
8242
8243 /* There are situations in which a language considers record types
8244 compatible which have different field lists. Decide if two fields
8245 are compatible. It is assumed that the parent records are compatible. */
8246
8247 bool
8248 fields_compatible_p (const_tree f1, const_tree f2)
8249 {
8250 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
8251 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
8252 return false;
8253
8254 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
8255 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
8256 return false;
8257
8258 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
8259 return false;
8260
8261 return true;
8262 }
8263
8264 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
8265
8266 tree
8267 find_compatible_field (tree record, tree orig_field)
8268 {
8269 tree f;
8270
8271 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
8272 if (TREE_CODE (f) == FIELD_DECL
8273 && fields_compatible_p (f, orig_field))
8274 return f;
8275
8276 /* ??? Why isn't this on the main fields list? */
8277 f = TYPE_VFIELD (record);
8278 if (f && TREE_CODE (f) == FIELD_DECL
8279 && fields_compatible_p (f, orig_field))
8280 return f;
8281
8282 /* ??? We should abort here, but Java appears to do Bad Things
8283 with inherited fields. */
8284 return orig_field;
8285 }
8286
8287 /* Return value of a constant X and sign-extend it. */
8288
8289 HOST_WIDE_INT
8290 int_cst_value (const_tree x)
8291 {
8292 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
8293 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
8294
8295 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
8296 gcc_assert (TREE_INT_CST_HIGH (x) == 0
8297 || TREE_INT_CST_HIGH (x) == -1);
8298
8299 if (bits < HOST_BITS_PER_WIDE_INT)
8300 {
8301 bool negative = ((val >> (bits - 1)) & 1) != 0;
8302 if (negative)
8303 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
8304 else
8305 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
8306 }
8307
8308 return val;
8309 }
8310
8311 /* If TYPE is an integral type, return an equivalent type which is
8312 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
8313 return TYPE itself. */
8314
8315 tree
8316 signed_or_unsigned_type_for (int unsignedp, tree type)
8317 {
8318 tree t = type;
8319 if (POINTER_TYPE_P (type))
8320 t = size_type_node;
8321
8322 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
8323 return t;
8324
8325 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
8326 }
8327
8328 /* Returns unsigned variant of TYPE. */
8329
8330 tree
8331 unsigned_type_for (tree type)
8332 {
8333 return signed_or_unsigned_type_for (1, type);
8334 }
8335
8336 /* Returns signed variant of TYPE. */
8337
8338 tree
8339 signed_type_for (tree type)
8340 {
8341 return signed_or_unsigned_type_for (0, type);
8342 }
8343
8344 /* Returns the largest value obtainable by casting something in INNER type to
8345 OUTER type. */
8346
8347 tree
8348 upper_bound_in_type (tree outer, tree inner)
8349 {
8350 unsigned HOST_WIDE_INT lo, hi;
8351 unsigned int det = 0;
8352 unsigned oprec = TYPE_PRECISION (outer);
8353 unsigned iprec = TYPE_PRECISION (inner);
8354 unsigned prec;
8355
8356 /* Compute a unique number for every combination. */
8357 det |= (oprec > iprec) ? 4 : 0;
8358 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
8359 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
8360
8361 /* Determine the exponent to use. */
8362 switch (det)
8363 {
8364 case 0:
8365 case 1:
8366 /* oprec <= iprec, outer: signed, inner: don't care. */
8367 prec = oprec - 1;
8368 break;
8369 case 2:
8370 case 3:
8371 /* oprec <= iprec, outer: unsigned, inner: don't care. */
8372 prec = oprec;
8373 break;
8374 case 4:
8375 /* oprec > iprec, outer: signed, inner: signed. */
8376 prec = iprec - 1;
8377 break;
8378 case 5:
8379 /* oprec > iprec, outer: signed, inner: unsigned. */
8380 prec = iprec;
8381 break;
8382 case 6:
8383 /* oprec > iprec, outer: unsigned, inner: signed. */
8384 prec = oprec;
8385 break;
8386 case 7:
8387 /* oprec > iprec, outer: unsigned, inner: unsigned. */
8388 prec = iprec;
8389 break;
8390 default:
8391 gcc_unreachable ();
8392 }
8393
8394 /* Compute 2^^prec - 1. */
8395 if (prec <= HOST_BITS_PER_WIDE_INT)
8396 {
8397 hi = 0;
8398 lo = ((~(unsigned HOST_WIDE_INT) 0)
8399 >> (HOST_BITS_PER_WIDE_INT - prec));
8400 }
8401 else
8402 {
8403 hi = ((~(unsigned HOST_WIDE_INT) 0)
8404 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
8405 lo = ~(unsigned HOST_WIDE_INT) 0;
8406 }
8407
8408 return build_int_cst_wide (outer, lo, hi);
8409 }
8410
8411 /* Returns the smallest value obtainable by casting something in INNER type to
8412 OUTER type. */
8413
8414 tree
8415 lower_bound_in_type (tree outer, tree inner)
8416 {
8417 unsigned HOST_WIDE_INT lo, hi;
8418 unsigned oprec = TYPE_PRECISION (outer);
8419 unsigned iprec = TYPE_PRECISION (inner);
8420
8421 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
8422 and obtain 0. */
8423 if (TYPE_UNSIGNED (outer)
8424 /* If we are widening something of an unsigned type, OUTER type
8425 contains all values of INNER type. In particular, both INNER
8426 and OUTER types have zero in common. */
8427 || (oprec > iprec && TYPE_UNSIGNED (inner)))
8428 lo = hi = 0;
8429 else
8430 {
8431 /* If we are widening a signed type to another signed type, we
8432 want to obtain -2^^(iprec-1). If we are keeping the
8433 precision or narrowing to a signed type, we want to obtain
8434 -2^(oprec-1). */
8435 unsigned prec = oprec > iprec ? iprec : oprec;
8436
8437 if (prec <= HOST_BITS_PER_WIDE_INT)
8438 {
8439 hi = ~(unsigned HOST_WIDE_INT) 0;
8440 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
8441 }
8442 else
8443 {
8444 hi = ((~(unsigned HOST_WIDE_INT) 0)
8445 << (prec - HOST_BITS_PER_WIDE_INT - 1));
8446 lo = 0;
8447 }
8448 }
8449
8450 return build_int_cst_wide (outer, lo, hi);
8451 }
8452
8453 /* Return nonzero if two operands that are suitable for PHI nodes are
8454 necessarily equal. Specifically, both ARG0 and ARG1 must be either
8455 SSA_NAME or invariant. Note that this is strictly an optimization.
8456 That is, callers of this function can directly call operand_equal_p
8457 and get the same result, only slower. */
8458
8459 int
8460 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
8461 {
8462 if (arg0 == arg1)
8463 return 1;
8464 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
8465 return 0;
8466 return operand_equal_p (arg0, arg1, 0);
8467 }
8468
8469 /* Returns number of zeros at the end of binary representation of X.
8470
8471 ??? Use ffs if available? */
8472
8473 tree
8474 num_ending_zeros (const_tree x)
8475 {
8476 unsigned HOST_WIDE_INT fr, nfr;
8477 unsigned num, abits;
8478 tree type = TREE_TYPE (x);
8479
8480 if (TREE_INT_CST_LOW (x) == 0)
8481 {
8482 num = HOST_BITS_PER_WIDE_INT;
8483 fr = TREE_INT_CST_HIGH (x);
8484 }
8485 else
8486 {
8487 num = 0;
8488 fr = TREE_INT_CST_LOW (x);
8489 }
8490
8491 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
8492 {
8493 nfr = fr >> abits;
8494 if (nfr << abits == fr)
8495 {
8496 num += abits;
8497 fr = nfr;
8498 }
8499 }
8500
8501 if (num > TYPE_PRECISION (type))
8502 num = TYPE_PRECISION (type);
8503
8504 return build_int_cst_type (type, num);
8505 }
8506
8507
8508 #define WALK_SUBTREE(NODE) \
8509 do \
8510 { \
8511 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
8512 if (result) \
8513 return result; \
8514 } \
8515 while (0)
8516
8517 /* This is a subroutine of walk_tree that walks field of TYPE that are to
8518 be walked whenever a type is seen in the tree. Rest of operands and return
8519 value are as for walk_tree. */
8520
8521 static tree
8522 walk_type_fields (tree type, walk_tree_fn func, void *data,
8523 struct pointer_set_t *pset, walk_tree_lh lh)
8524 {
8525 tree result = NULL_TREE;
8526
8527 switch (TREE_CODE (type))
8528 {
8529 case POINTER_TYPE:
8530 case REFERENCE_TYPE:
8531 /* We have to worry about mutually recursive pointers. These can't
8532 be written in C. They can in Ada. It's pathological, but
8533 there's an ACATS test (c38102a) that checks it. Deal with this
8534 by checking if we're pointing to another pointer, that one
8535 points to another pointer, that one does too, and we have no htab.
8536 If so, get a hash table. We check three levels deep to avoid
8537 the cost of the hash table if we don't need one. */
8538 if (POINTER_TYPE_P (TREE_TYPE (type))
8539 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
8540 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
8541 && !pset)
8542 {
8543 result = walk_tree_without_duplicates (&TREE_TYPE (type),
8544 func, data);
8545 if (result)
8546 return result;
8547
8548 break;
8549 }
8550
8551 /* ... fall through ... */
8552
8553 case COMPLEX_TYPE:
8554 WALK_SUBTREE (TREE_TYPE (type));
8555 break;
8556
8557 case METHOD_TYPE:
8558 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
8559
8560 /* Fall through. */
8561
8562 case FUNCTION_TYPE:
8563 WALK_SUBTREE (TREE_TYPE (type));
8564 {
8565 tree arg;
8566
8567 /* We never want to walk into default arguments. */
8568 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
8569 WALK_SUBTREE (TREE_VALUE (arg));
8570 }
8571 break;
8572
8573 case ARRAY_TYPE:
8574 /* Don't follow this nodes's type if a pointer for fear that
8575 we'll have infinite recursion. If we have a PSET, then we
8576 need not fear. */
8577 if (pset
8578 || (!POINTER_TYPE_P (TREE_TYPE (type))
8579 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
8580 WALK_SUBTREE (TREE_TYPE (type));
8581 WALK_SUBTREE (TYPE_DOMAIN (type));
8582 break;
8583
8584 case OFFSET_TYPE:
8585 WALK_SUBTREE (TREE_TYPE (type));
8586 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
8587 break;
8588
8589 default:
8590 break;
8591 }
8592
8593 return NULL_TREE;
8594 }
8595
8596 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
8597 called with the DATA and the address of each sub-tree. If FUNC returns a
8598 non-NULL value, the traversal is stopped, and the value returned by FUNC
8599 is returned. If PSET is non-NULL it is used to record the nodes visited,
8600 and to avoid visiting a node more than once. */
8601
8602 tree
8603 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
8604 struct pointer_set_t *pset, walk_tree_lh lh)
8605 {
8606 enum tree_code code;
8607 int walk_subtrees;
8608 tree result;
8609
8610 #define WALK_SUBTREE_TAIL(NODE) \
8611 do \
8612 { \
8613 tp = & (NODE); \
8614 goto tail_recurse; \
8615 } \
8616 while (0)
8617
8618 tail_recurse:
8619 /* Skip empty subtrees. */
8620 if (!*tp)
8621 return NULL_TREE;
8622
8623 /* Don't walk the same tree twice, if the user has requested
8624 that we avoid doing so. */
8625 if (pset && pointer_set_insert (pset, *tp))
8626 return NULL_TREE;
8627
8628 /* Call the function. */
8629 walk_subtrees = 1;
8630 result = (*func) (tp, &walk_subtrees, data);
8631
8632 /* If we found something, return it. */
8633 if (result)
8634 return result;
8635
8636 code = TREE_CODE (*tp);
8637
8638 /* Even if we didn't, FUNC may have decided that there was nothing
8639 interesting below this point in the tree. */
8640 if (!walk_subtrees)
8641 {
8642 /* But we still need to check our siblings. */
8643 if (code == TREE_LIST)
8644 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8645 else if (code == OMP_CLAUSE)
8646 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8647 else
8648 return NULL_TREE;
8649 }
8650
8651 if (lh)
8652 {
8653 result = (*lh) (tp, &walk_subtrees, func, data, pset);
8654 if (result || !walk_subtrees)
8655 return result;
8656 }
8657
8658 switch (code)
8659 {
8660 case ERROR_MARK:
8661 case IDENTIFIER_NODE:
8662 case INTEGER_CST:
8663 case REAL_CST:
8664 case FIXED_CST:
8665 case VECTOR_CST:
8666 case STRING_CST:
8667 case BLOCK:
8668 case PLACEHOLDER_EXPR:
8669 case SSA_NAME:
8670 case FIELD_DECL:
8671 case RESULT_DECL:
8672 /* None of these have subtrees other than those already walked
8673 above. */
8674 break;
8675
8676 case TREE_LIST:
8677 WALK_SUBTREE (TREE_VALUE (*tp));
8678 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8679 break;
8680
8681 case TREE_VEC:
8682 {
8683 int len = TREE_VEC_LENGTH (*tp);
8684
8685 if (len == 0)
8686 break;
8687
8688 /* Walk all elements but the first. */
8689 while (--len)
8690 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
8691
8692 /* Now walk the first one as a tail call. */
8693 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
8694 }
8695
8696 case COMPLEX_CST:
8697 WALK_SUBTREE (TREE_REALPART (*tp));
8698 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
8699
8700 case CONSTRUCTOR:
8701 {
8702 unsigned HOST_WIDE_INT idx;
8703 constructor_elt *ce;
8704
8705 for (idx = 0;
8706 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
8707 idx++)
8708 WALK_SUBTREE (ce->value);
8709 }
8710 break;
8711
8712 case SAVE_EXPR:
8713 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
8714
8715 case BIND_EXPR:
8716 {
8717 tree decl;
8718 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
8719 {
8720 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
8721 into declarations that are just mentioned, rather than
8722 declared; they don't really belong to this part of the tree.
8723 And, we can see cycles: the initializer for a declaration
8724 can refer to the declaration itself. */
8725 WALK_SUBTREE (DECL_INITIAL (decl));
8726 WALK_SUBTREE (DECL_SIZE (decl));
8727 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
8728 }
8729 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
8730 }
8731
8732 case STATEMENT_LIST:
8733 {
8734 tree_stmt_iterator i;
8735 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
8736 WALK_SUBTREE (*tsi_stmt_ptr (i));
8737 }
8738 break;
8739
8740 case OMP_CLAUSE:
8741 switch (OMP_CLAUSE_CODE (*tp))
8742 {
8743 case OMP_CLAUSE_PRIVATE:
8744 case OMP_CLAUSE_SHARED:
8745 case OMP_CLAUSE_FIRSTPRIVATE:
8746 case OMP_CLAUSE_COPYIN:
8747 case OMP_CLAUSE_COPYPRIVATE:
8748 case OMP_CLAUSE_IF:
8749 case OMP_CLAUSE_NUM_THREADS:
8750 case OMP_CLAUSE_SCHEDULE:
8751 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
8752 /* FALLTHRU */
8753
8754 case OMP_CLAUSE_NOWAIT:
8755 case OMP_CLAUSE_ORDERED:
8756 case OMP_CLAUSE_DEFAULT:
8757 case OMP_CLAUSE_UNTIED:
8758 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8759
8760 case OMP_CLAUSE_LASTPRIVATE:
8761 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
8762 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
8763 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8764
8765 case OMP_CLAUSE_COLLAPSE:
8766 {
8767 int i;
8768 for (i = 0; i < 3; i++)
8769 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
8770 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8771 }
8772
8773 case OMP_CLAUSE_REDUCTION:
8774 {
8775 int i;
8776 for (i = 0; i < 4; i++)
8777 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
8778 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8779 }
8780
8781 default:
8782 gcc_unreachable ();
8783 }
8784 break;
8785
8786 case TARGET_EXPR:
8787 {
8788 int i, len;
8789
8790 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
8791 But, we only want to walk once. */
8792 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
8793 for (i = 0; i < len; ++i)
8794 WALK_SUBTREE (TREE_OPERAND (*tp, i));
8795 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
8796 }
8797
8798 case CHANGE_DYNAMIC_TYPE_EXPR:
8799 WALK_SUBTREE (CHANGE_DYNAMIC_TYPE_NEW_TYPE (*tp));
8800 WALK_SUBTREE_TAIL (CHANGE_DYNAMIC_TYPE_LOCATION (*tp));
8801
8802 case DECL_EXPR:
8803 /* If this is a TYPE_DECL, walk into the fields of the type that it's
8804 defining. We only want to walk into these fields of a type in this
8805 case and not in the general case of a mere reference to the type.
8806
8807 The criterion is as follows: if the field can be an expression, it
8808 must be walked only here. This should be in keeping with the fields
8809 that are directly gimplified in gimplify_type_sizes in order for the
8810 mark/copy-if-shared/unmark machinery of the gimplifier to work with
8811 variable-sized types.
8812
8813 Note that DECLs get walked as part of processing the BIND_EXPR. */
8814 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
8815 {
8816 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
8817 if (TREE_CODE (*type_p) == ERROR_MARK)
8818 return NULL_TREE;
8819
8820 /* Call the function for the type. See if it returns anything or
8821 doesn't want us to continue. If we are to continue, walk both
8822 the normal fields and those for the declaration case. */
8823 result = (*func) (type_p, &walk_subtrees, data);
8824 if (result || !walk_subtrees)
8825 return result;
8826
8827 result = walk_type_fields (*type_p, func, data, pset, lh);
8828 if (result)
8829 return result;
8830
8831 /* If this is a record type, also walk the fields. */
8832 if (TREE_CODE (*type_p) == RECORD_TYPE
8833 || TREE_CODE (*type_p) == UNION_TYPE
8834 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8835 {
8836 tree field;
8837
8838 for (field = TYPE_FIELDS (*type_p); field;
8839 field = TREE_CHAIN (field))
8840 {
8841 /* We'd like to look at the type of the field, but we can
8842 easily get infinite recursion. So assume it's pointed
8843 to elsewhere in the tree. Also, ignore things that
8844 aren't fields. */
8845 if (TREE_CODE (field) != FIELD_DECL)
8846 continue;
8847
8848 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
8849 WALK_SUBTREE (DECL_SIZE (field));
8850 WALK_SUBTREE (DECL_SIZE_UNIT (field));
8851 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8852 WALK_SUBTREE (DECL_QUALIFIER (field));
8853 }
8854 }
8855
8856 /* Same for scalar types. */
8857 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
8858 || TREE_CODE (*type_p) == ENUMERAL_TYPE
8859 || TREE_CODE (*type_p) == INTEGER_TYPE
8860 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
8861 || TREE_CODE (*type_p) == REAL_TYPE)
8862 {
8863 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
8864 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
8865 }
8866
8867 WALK_SUBTREE (TYPE_SIZE (*type_p));
8868 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
8869 }
8870 /* FALLTHRU */
8871
8872 default:
8873 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
8874 {
8875 int i, len;
8876
8877 /* Walk over all the sub-trees of this operand. */
8878 len = TREE_OPERAND_LENGTH (*tp);
8879
8880 /* Go through the subtrees. We need to do this in forward order so
8881 that the scope of a FOR_EXPR is handled properly. */
8882 if (len)
8883 {
8884 for (i = 0; i < len - 1; ++i)
8885 WALK_SUBTREE (TREE_OPERAND (*tp, i));
8886 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
8887 }
8888 }
8889 /* If this is a type, walk the needed fields in the type. */
8890 else if (TYPE_P (*tp))
8891 return walk_type_fields (*tp, func, data, pset, lh);
8892 break;
8893 }
8894
8895 /* We didn't find what we were looking for. */
8896 return NULL_TREE;
8897
8898 #undef WALK_SUBTREE_TAIL
8899 }
8900 #undef WALK_SUBTREE
8901
8902 /* Like walk_tree, but does not walk duplicate nodes more than once. */
8903
8904 tree
8905 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
8906 walk_tree_lh lh)
8907 {
8908 tree result;
8909 struct pointer_set_t *pset;
8910
8911 pset = pointer_set_create ();
8912 result = walk_tree_1 (tp, func, data, pset, lh);
8913 pointer_set_destroy (pset);
8914 return result;
8915 }
8916
8917
8918 tree *
8919 tree_block (tree t)
8920 {
8921 char const c = TREE_CODE_CLASS (TREE_CODE (t));
8922
8923 if (IS_EXPR_CODE_CLASS (c))
8924 return &t->exp.block;
8925 gcc_unreachable ();
8926 return NULL;
8927 }
8928
8929 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
8930 FIXME: don't use this function. It exists for compatibility with
8931 the old representation of CALL_EXPRs where a list was used to hold the
8932 arguments. Places that currently extract the arglist from a CALL_EXPR
8933 ought to be rewritten to use the CALL_EXPR itself. */
8934 tree
8935 call_expr_arglist (tree exp)
8936 {
8937 tree arglist = NULL_TREE;
8938 int i;
8939 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
8940 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
8941 return arglist;
8942 }
8943
8944
8945 /* Create a nameless artificial label and put it in the current function
8946 context. Returns the newly created label. */
8947
8948 tree
8949 create_artificial_label (void)
8950 {
8951 tree lab = build_decl (LABEL_DECL, NULL_TREE, void_type_node);
8952
8953 DECL_ARTIFICIAL (lab) = 1;
8954 DECL_IGNORED_P (lab) = 1;
8955 DECL_CONTEXT (lab) = current_function_decl;
8956 return lab;
8957 }
8958
8959 /* Given a tree, try to return a useful variable name that we can use
8960 to prefix a temporary that is being assigned the value of the tree.
8961 I.E. given <temp> = &A, return A. */
8962
8963 const char *
8964 get_name (tree t)
8965 {
8966 tree stripped_decl;
8967
8968 stripped_decl = t;
8969 STRIP_NOPS (stripped_decl);
8970 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
8971 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
8972 else
8973 {
8974 switch (TREE_CODE (stripped_decl))
8975 {
8976 case ADDR_EXPR:
8977 return get_name (TREE_OPERAND (stripped_decl, 0));
8978 default:
8979 return NULL;
8980 }
8981 }
8982 }
8983
8984 /* Return true if TYPE has a variable argument list. */
8985
8986 bool
8987 stdarg_p (tree fntype)
8988 {
8989 function_args_iterator args_iter;
8990 tree n = NULL_TREE, t;
8991
8992 if (!fntype)
8993 return false;
8994
8995 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
8996 {
8997 n = t;
8998 }
8999
9000 return n != NULL_TREE && n != void_type_node;
9001 }
9002
9003 /* Return true if TYPE has a prototype. */
9004
9005 bool
9006 prototype_p (tree fntype)
9007 {
9008 tree t;
9009
9010 gcc_assert (fntype != NULL_TREE);
9011
9012 t = TYPE_ARG_TYPES (fntype);
9013 return (t != NULL_TREE);
9014 }
9015
9016 /* Return the number of arguments that a function has. */
9017
9018 int
9019 function_args_count (tree fntype)
9020 {
9021 function_args_iterator args_iter;
9022 tree t;
9023 int num = 0;
9024
9025 if (fntype)
9026 {
9027 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
9028 {
9029 num++;
9030 }
9031 }
9032
9033 return num;
9034 }
9035
9036 /* If BLOCK is inlined from an __attribute__((__artificial__))
9037 routine, return pointer to location from where it has been
9038 called. */
9039 location_t *
9040 block_nonartificial_location (tree block)
9041 {
9042 location_t *ret = NULL;
9043
9044 while (block && TREE_CODE (block) == BLOCK
9045 && BLOCK_ABSTRACT_ORIGIN (block))
9046 {
9047 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
9048
9049 while (TREE_CODE (ao) == BLOCK
9050 && BLOCK_ABSTRACT_ORIGIN (ao)
9051 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
9052 ao = BLOCK_ABSTRACT_ORIGIN (ao);
9053
9054 if (TREE_CODE (ao) == FUNCTION_DECL)
9055 {
9056 /* If AO is an artificial inline, point RET to the
9057 call site locus at which it has been inlined and continue
9058 the loop, in case AO's caller is also an artificial
9059 inline. */
9060 if (DECL_DECLARED_INLINE_P (ao)
9061 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
9062 ret = &BLOCK_SOURCE_LOCATION (block);
9063 else
9064 break;
9065 }
9066 else if (TREE_CODE (ao) != BLOCK)
9067 break;
9068
9069 block = BLOCK_SUPERCONTEXT (block);
9070 }
9071 return ret;
9072 }
9073
9074 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
9075 nodes. */
9076
9077 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
9078
9079 static hashval_t
9080 cl_option_hash_hash (const void *x)
9081 {
9082 const_tree const t = (const_tree) x;
9083 const char *p;
9084 size_t i;
9085 size_t len = 0;
9086 hashval_t hash = 0;
9087
9088 if (TREE_CODE (t) == OPTIMIZATION_NODE)
9089 {
9090 p = (const char *)TREE_OPTIMIZATION (t);
9091 len = sizeof (struct cl_optimization);
9092 }
9093
9094 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
9095 {
9096 p = (const char *)TREE_TARGET_OPTION (t);
9097 len = sizeof (struct cl_target_option);
9098 }
9099
9100 else
9101 gcc_unreachable ();
9102
9103 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
9104 something else. */
9105 for (i = 0; i < len; i++)
9106 if (p[i])
9107 hash = (hash << 4) ^ ((i << 2) | p[i]);
9108
9109 return hash;
9110 }
9111
9112 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
9113 TARGET_OPTION tree node) is the same as that given by *Y, which is the
9114 same. */
9115
9116 static int
9117 cl_option_hash_eq (const void *x, const void *y)
9118 {
9119 const_tree const xt = (const_tree) x;
9120 const_tree const yt = (const_tree) y;
9121 const char *xp;
9122 const char *yp;
9123 size_t len;
9124
9125 if (TREE_CODE (xt) != TREE_CODE (yt))
9126 return 0;
9127
9128 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
9129 {
9130 xp = (const char *)TREE_OPTIMIZATION (xt);
9131 yp = (const char *)TREE_OPTIMIZATION (yt);
9132 len = sizeof (struct cl_optimization);
9133 }
9134
9135 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
9136 {
9137 xp = (const char *)TREE_TARGET_OPTION (xt);
9138 yp = (const char *)TREE_TARGET_OPTION (yt);
9139 len = sizeof (struct cl_target_option);
9140 }
9141
9142 else
9143 gcc_unreachable ();
9144
9145 return (memcmp (xp, yp, len) == 0);
9146 }
9147
9148 /* Build an OPTIMIZATION_NODE based on the current options. */
9149
9150 tree
9151 build_optimization_node (void)
9152 {
9153 tree t;
9154 void **slot;
9155
9156 /* Use the cache of optimization nodes. */
9157
9158 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
9159
9160 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
9161 t = (tree) *slot;
9162 if (!t)
9163 {
9164 /* Insert this one into the hash table. */
9165 t = cl_optimization_node;
9166 *slot = t;
9167
9168 /* Make a new node for next time round. */
9169 cl_optimization_node = make_node (OPTIMIZATION_NODE);
9170 }
9171
9172 return t;
9173 }
9174
9175 /* Build a TARGET_OPTION_NODE based on the current options. */
9176
9177 tree
9178 build_target_option_node (void)
9179 {
9180 tree t;
9181 void **slot;
9182
9183 /* Use the cache of optimization nodes. */
9184
9185 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
9186
9187 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
9188 t = (tree) *slot;
9189 if (!t)
9190 {
9191 /* Insert this one into the hash table. */
9192 t = cl_target_option_node;
9193 *slot = t;
9194
9195 /* Make a new node for next time round. */
9196 cl_target_option_node = make_node (TARGET_OPTION_NODE);
9197 }
9198
9199 return t;
9200 }
9201
9202 /* Determine the "ultimate origin" of a block. The block may be an inlined
9203 instance of an inlined instance of a block which is local to an inline
9204 function, so we have to trace all of the way back through the origin chain
9205 to find out what sort of node actually served as the original seed for the
9206 given block. */
9207
9208 tree
9209 block_ultimate_origin (const_tree block)
9210 {
9211 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
9212
9213 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
9214 nodes in the function to point to themselves; ignore that if
9215 we're trying to output the abstract instance of this function. */
9216 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
9217 return NULL_TREE;
9218
9219 if (immediate_origin == NULL_TREE)
9220 return NULL_TREE;
9221 else
9222 {
9223 tree ret_val;
9224 tree lookahead = immediate_origin;
9225
9226 do
9227 {
9228 ret_val = lookahead;
9229 lookahead = (TREE_CODE (ret_val) == BLOCK
9230 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
9231 }
9232 while (lookahead != NULL && lookahead != ret_val);
9233
9234 /* The block's abstract origin chain may not be the *ultimate* origin of
9235 the block. It could lead to a DECL that has an abstract origin set.
9236 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
9237 will give us if it has one). Note that DECL's abstract origins are
9238 supposed to be the most distant ancestor (or so decl_ultimate_origin
9239 claims), so we don't need to loop following the DECL origins. */
9240 if (DECL_P (ret_val))
9241 return DECL_ORIGIN (ret_val);
9242
9243 return ret_val;
9244 }
9245 }
9246
9247 #include "gt-tree.h"