tree.c (find_decls_types_r): Remove all non-VAR_DECLs from blocks.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70
71 /* Tree code classes. */
72
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82
83 /* Table indexed by tree code giving number of expression
84 operands beyond the fixed part of the node structure.
85 Not used for types or decls. */
86
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96
97 /* Names of tree components.
98 Used for printing out the tree and error messages. */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108
109 /* Each tree code class has an associated string representation.
110 These must correspond to the tree_code_class entries. */
111
112 const char *const tree_code_class_strings[] =
113 {
114 "exceptional",
115 "constant",
116 "type",
117 "declaration",
118 "reference",
119 "comparison",
120 "unary",
121 "binary",
122 "statement",
123 "vl_exp",
124 "expression"
125 };
126
127 /* obstack.[ch] explicitly declined to prototype this. */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129
130 /* Statistics-gathering stuff. */
131
132 static uint64_t tree_code_counts[MAX_TREE_CODES];
133 uint64_t tree_node_counts[(int) all_kinds];
134 uint64_t tree_node_sizes[(int) all_kinds];
135
136 /* Keep in sync with tree.h:enum tree_node_kind. */
137 static const char * const tree_node_kind_names[] = {
138 "decls",
139 "types",
140 "blocks",
141 "stmts",
142 "refs",
143 "exprs",
144 "constants",
145 "identifiers",
146 "vecs",
147 "binfos",
148 "ssa names",
149 "constructors",
150 "random kinds",
151 "lang_decl kinds",
152 "lang_type kinds",
153 "omp clauses",
154 };
155
156 /* Unique id for next decl created. */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created. */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created. Use negative numbers,
161 to catch erroneous uses. */
162 static GTY(()) int next_debug_decl_uid;
163
164 /* Since we cannot rehash a type after it is in the table, we have to
165 keep the hash code. */
166
167 struct GTY((for_user)) type_hash {
168 unsigned long hash;
169 tree type;
170 };
171
172 /* Initial size of the hash table (rounded to next prime). */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177 static hashval_t hash (type_hash *t) { return t->hash; }
178 static bool equal (type_hash *a, type_hash *b);
179
180 static int
181 keep_cache_entry (type_hash *&t)
182 {
183 return ggc_marked_p (t->type);
184 }
185 };
186
187 /* Now here is the hash table. When recording a type, it is added to
188 the slot whose index is the hash code. Note that the hash table is
189 used for several kinds of types (function types, array types and
190 array index range types, for now). While all these live in the
191 same table, they are completely independent, and the hash code is
192 computed differently for each of these. */
193
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195
196 /* Hash table and temporary node for larger integer const values. */
197 static GTY (()) tree int_cst_node;
198
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201 static hashval_t hash (tree t);
202 static bool equal (tree x, tree y);
203 };
204
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208 for a given value. */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211 typedef std::pair<tree, const poly_wide_int *> compare_type;
212 static hashval_t hash (tree t);
213 static bool equal (tree x, const compare_type &y);
214 };
215
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217
218 /* Hash table for optimization flags and target option flags. Use the same
219 hash table for both sets of options. Nodes for building the current
220 optimization and target option nodes. The assumption is most of the time
221 the options created will already be in the hash table, so we avoid
222 allocating and freeing up a node repeatably. */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228 static hashval_t hash (tree t);
229 static bool equal (tree x, tree y);
230 };
231
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233
234 /* General tree->tree mapping structure for use in hash tables. */
235
236
237 static GTY ((cache))
238 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239
240 static GTY ((cache))
241 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246
247 static bool
248 equal (tree_vec_map *a, tree_vec_map *b)
249 {
250 return a->base.from == b->base.from;
251 }
252
253 static int
254 keep_cache_entry (tree_vec_map *&m)
255 {
256 return ggc_marked_p (m->base.from);
257 }
258 };
259
260 static GTY ((cache))
261 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267
268 tree global_trees[TI_MAX];
269 tree integer_types[itk_none];
270
271 bool int_n_enabled_p[NUM_INT_N_ENTS];
272 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
273
274 bool tree_contains_struct[MAX_TREE_CODES][64];
275
276 /* Number of operands for each OpenMP clause. */
277 unsigned const char omp_clause_num_ops[] =
278 {
279 0, /* OMP_CLAUSE_ERROR */
280 1, /* OMP_CLAUSE_PRIVATE */
281 1, /* OMP_CLAUSE_SHARED */
282 1, /* OMP_CLAUSE_FIRSTPRIVATE */
283 2, /* OMP_CLAUSE_LASTPRIVATE */
284 5, /* OMP_CLAUSE_REDUCTION */
285 1, /* OMP_CLAUSE_COPYIN */
286 1, /* OMP_CLAUSE_COPYPRIVATE */
287 3, /* OMP_CLAUSE_LINEAR */
288 2, /* OMP_CLAUSE_ALIGNED */
289 1, /* OMP_CLAUSE_DEPEND */
290 1, /* OMP_CLAUSE_UNIFORM */
291 1, /* OMP_CLAUSE_TO_DECLARE */
292 1, /* OMP_CLAUSE_LINK */
293 2, /* OMP_CLAUSE_FROM */
294 2, /* OMP_CLAUSE_TO */
295 2, /* OMP_CLAUSE_MAP */
296 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
297 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
298 2, /* OMP_CLAUSE__CACHE_ */
299 2, /* OMP_CLAUSE_GANG */
300 1, /* OMP_CLAUSE_ASYNC */
301 1, /* OMP_CLAUSE_WAIT */
302 0, /* OMP_CLAUSE_AUTO */
303 0, /* OMP_CLAUSE_SEQ */
304 1, /* OMP_CLAUSE__LOOPTEMP_ */
305 1, /* OMP_CLAUSE_IF */
306 1, /* OMP_CLAUSE_NUM_THREADS */
307 1, /* OMP_CLAUSE_SCHEDULE */
308 0, /* OMP_CLAUSE_NOWAIT */
309 1, /* OMP_CLAUSE_ORDERED */
310 0, /* OMP_CLAUSE_DEFAULT */
311 3, /* OMP_CLAUSE_COLLAPSE */
312 0, /* OMP_CLAUSE_UNTIED */
313 1, /* OMP_CLAUSE_FINAL */
314 0, /* OMP_CLAUSE_MERGEABLE */
315 1, /* OMP_CLAUSE_DEVICE */
316 1, /* OMP_CLAUSE_DIST_SCHEDULE */
317 0, /* OMP_CLAUSE_INBRANCH */
318 0, /* OMP_CLAUSE_NOTINBRANCH */
319 1, /* OMP_CLAUSE_NUM_TEAMS */
320 1, /* OMP_CLAUSE_THREAD_LIMIT */
321 0, /* OMP_CLAUSE_PROC_BIND */
322 1, /* OMP_CLAUSE_SAFELEN */
323 1, /* OMP_CLAUSE_SIMDLEN */
324 0, /* OMP_CLAUSE_FOR */
325 0, /* OMP_CLAUSE_PARALLEL */
326 0, /* OMP_CLAUSE_SECTIONS */
327 0, /* OMP_CLAUSE_TASKGROUP */
328 1, /* OMP_CLAUSE_PRIORITY */
329 1, /* OMP_CLAUSE_GRAINSIZE */
330 1, /* OMP_CLAUSE_NUM_TASKS */
331 0, /* OMP_CLAUSE_NOGROUP */
332 0, /* OMP_CLAUSE_THREADS */
333 0, /* OMP_CLAUSE_SIMD */
334 1, /* OMP_CLAUSE_HINT */
335 0, /* OMP_CLAUSE_DEFALTMAP */
336 1, /* OMP_CLAUSE__SIMDUID_ */
337 0, /* OMP_CLAUSE__SIMT_ */
338 0, /* OMP_CLAUSE_INDEPENDENT */
339 1, /* OMP_CLAUSE_WORKER */
340 1, /* OMP_CLAUSE_VECTOR */
341 1, /* OMP_CLAUSE_NUM_GANGS */
342 1, /* OMP_CLAUSE_NUM_WORKERS */
343 1, /* OMP_CLAUSE_VECTOR_LENGTH */
344 3, /* OMP_CLAUSE_TILE */
345 2, /* OMP_CLAUSE__GRIDDIM_ */
346 };
347
348 const char * const omp_clause_code_name[] =
349 {
350 "error_clause",
351 "private",
352 "shared",
353 "firstprivate",
354 "lastprivate",
355 "reduction",
356 "copyin",
357 "copyprivate",
358 "linear",
359 "aligned",
360 "depend",
361 "uniform",
362 "to",
363 "link",
364 "from",
365 "to",
366 "map",
367 "use_device_ptr",
368 "is_device_ptr",
369 "_cache_",
370 "gang",
371 "async",
372 "wait",
373 "auto",
374 "seq",
375 "_looptemp_",
376 "if",
377 "num_threads",
378 "schedule",
379 "nowait",
380 "ordered",
381 "default",
382 "collapse",
383 "untied",
384 "final",
385 "mergeable",
386 "device",
387 "dist_schedule",
388 "inbranch",
389 "notinbranch",
390 "num_teams",
391 "thread_limit",
392 "proc_bind",
393 "safelen",
394 "simdlen",
395 "for",
396 "parallel",
397 "sections",
398 "taskgroup",
399 "priority",
400 "grainsize",
401 "num_tasks",
402 "nogroup",
403 "threads",
404 "simd",
405 "hint",
406 "defaultmap",
407 "_simduid_",
408 "_simt_",
409 "independent",
410 "worker",
411 "vector",
412 "num_gangs",
413 "num_workers",
414 "vector_length",
415 "tile",
416 "_griddim_"
417 };
418
419
420 /* Return the tree node structure used by tree code CODE. */
421
422 static inline enum tree_node_structure_enum
423 tree_node_structure_for_code (enum tree_code code)
424 {
425 switch (TREE_CODE_CLASS (code))
426 {
427 case tcc_declaration:
428 {
429 switch (code)
430 {
431 case FIELD_DECL:
432 return TS_FIELD_DECL;
433 case PARM_DECL:
434 return TS_PARM_DECL;
435 case VAR_DECL:
436 return TS_VAR_DECL;
437 case LABEL_DECL:
438 return TS_LABEL_DECL;
439 case RESULT_DECL:
440 return TS_RESULT_DECL;
441 case DEBUG_EXPR_DECL:
442 return TS_DECL_WRTL;
443 case CONST_DECL:
444 return TS_CONST_DECL;
445 case TYPE_DECL:
446 return TS_TYPE_DECL;
447 case FUNCTION_DECL:
448 return TS_FUNCTION_DECL;
449 case TRANSLATION_UNIT_DECL:
450 return TS_TRANSLATION_UNIT_DECL;
451 default:
452 return TS_DECL_NON_COMMON;
453 }
454 }
455 case tcc_type:
456 return TS_TYPE_NON_COMMON;
457 case tcc_reference:
458 case tcc_comparison:
459 case tcc_unary:
460 case tcc_binary:
461 case tcc_expression:
462 case tcc_statement:
463 case tcc_vl_exp:
464 return TS_EXP;
465 default: /* tcc_constant and tcc_exceptional */
466 break;
467 }
468 switch (code)
469 {
470 /* tcc_constant cases. */
471 case VOID_CST: return TS_TYPED;
472 case INTEGER_CST: return TS_INT_CST;
473 case POLY_INT_CST: return TS_POLY_INT_CST;
474 case REAL_CST: return TS_REAL_CST;
475 case FIXED_CST: return TS_FIXED_CST;
476 case COMPLEX_CST: return TS_COMPLEX;
477 case VECTOR_CST: return TS_VECTOR;
478 case STRING_CST: return TS_STRING;
479 /* tcc_exceptional cases. */
480 case ERROR_MARK: return TS_COMMON;
481 case IDENTIFIER_NODE: return TS_IDENTIFIER;
482 case TREE_LIST: return TS_LIST;
483 case TREE_VEC: return TS_VEC;
484 case SSA_NAME: return TS_SSA_NAME;
485 case PLACEHOLDER_EXPR: return TS_COMMON;
486 case STATEMENT_LIST: return TS_STATEMENT_LIST;
487 case BLOCK: return TS_BLOCK;
488 case CONSTRUCTOR: return TS_CONSTRUCTOR;
489 case TREE_BINFO: return TS_BINFO;
490 case OMP_CLAUSE: return TS_OMP_CLAUSE;
491 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
492 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
493
494 default:
495 gcc_unreachable ();
496 }
497 }
498
499
500 /* Initialize tree_contains_struct to describe the hierarchy of tree
501 nodes. */
502
503 static void
504 initialize_tree_contains_struct (void)
505 {
506 unsigned i;
507
508 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
509 {
510 enum tree_code code;
511 enum tree_node_structure_enum ts_code;
512
513 code = (enum tree_code) i;
514 ts_code = tree_node_structure_for_code (code);
515
516 /* Mark the TS structure itself. */
517 tree_contains_struct[code][ts_code] = 1;
518
519 /* Mark all the structures that TS is derived from. */
520 switch (ts_code)
521 {
522 case TS_TYPED:
523 case TS_BLOCK:
524 case TS_OPTIMIZATION:
525 case TS_TARGET_OPTION:
526 MARK_TS_BASE (code);
527 break;
528
529 case TS_COMMON:
530 case TS_INT_CST:
531 case TS_POLY_INT_CST:
532 case TS_REAL_CST:
533 case TS_FIXED_CST:
534 case TS_VECTOR:
535 case TS_STRING:
536 case TS_COMPLEX:
537 case TS_SSA_NAME:
538 case TS_CONSTRUCTOR:
539 case TS_EXP:
540 case TS_STATEMENT_LIST:
541 MARK_TS_TYPED (code);
542 break;
543
544 case TS_IDENTIFIER:
545 case TS_DECL_MINIMAL:
546 case TS_TYPE_COMMON:
547 case TS_LIST:
548 case TS_VEC:
549 case TS_BINFO:
550 case TS_OMP_CLAUSE:
551 MARK_TS_COMMON (code);
552 break;
553
554 case TS_TYPE_WITH_LANG_SPECIFIC:
555 MARK_TS_TYPE_COMMON (code);
556 break;
557
558 case TS_TYPE_NON_COMMON:
559 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
560 break;
561
562 case TS_DECL_COMMON:
563 MARK_TS_DECL_MINIMAL (code);
564 break;
565
566 case TS_DECL_WRTL:
567 case TS_CONST_DECL:
568 MARK_TS_DECL_COMMON (code);
569 break;
570
571 case TS_DECL_NON_COMMON:
572 MARK_TS_DECL_WITH_VIS (code);
573 break;
574
575 case TS_DECL_WITH_VIS:
576 case TS_PARM_DECL:
577 case TS_LABEL_DECL:
578 case TS_RESULT_DECL:
579 MARK_TS_DECL_WRTL (code);
580 break;
581
582 case TS_FIELD_DECL:
583 MARK_TS_DECL_COMMON (code);
584 break;
585
586 case TS_VAR_DECL:
587 MARK_TS_DECL_WITH_VIS (code);
588 break;
589
590 case TS_TYPE_DECL:
591 case TS_FUNCTION_DECL:
592 MARK_TS_DECL_NON_COMMON (code);
593 break;
594
595 case TS_TRANSLATION_UNIT_DECL:
596 MARK_TS_DECL_COMMON (code);
597 break;
598
599 default:
600 gcc_unreachable ();
601 }
602 }
603
604 /* Basic consistency checks for attributes used in fold. */
605 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
606 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
607 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
608 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
609 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
610 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
611 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
612 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
613 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
614 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
615 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
616 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
617 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
618 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
619 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
620 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
621 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
622 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
623 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
624 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
625 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
626 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
627 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
628 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
629 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
630 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
631 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
632 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
633 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
634 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
635 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
636 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
637 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
638 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
639 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
640 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
641 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
642 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
643 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
644 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
645 }
646
647
648 /* Init tree.c. */
649
650 void
651 init_ttree (void)
652 {
653 /* Initialize the hash table of types. */
654 type_hash_table
655 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
656
657 debug_expr_for_decl
658 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
659
660 value_expr_for_decl
661 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
662
663 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
664
665 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
666
667 int_cst_node = make_int_cst (1, 1);
668
669 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
670
671 cl_optimization_node = make_node (OPTIMIZATION_NODE);
672 cl_target_option_node = make_node (TARGET_OPTION_NODE);
673
674 /* Initialize the tree_contains_struct array. */
675 initialize_tree_contains_struct ();
676 lang_hooks.init_ts ();
677 }
678
679 \f
680 /* The name of the object as the assembler will see it (but before any
681 translations made by ASM_OUTPUT_LABELREF). Often this is the same
682 as DECL_NAME. It is an IDENTIFIER_NODE. */
683 tree
684 decl_assembler_name (tree decl)
685 {
686 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
687 lang_hooks.set_decl_assembler_name (decl);
688 return DECL_ASSEMBLER_NAME_RAW (decl);
689 }
690
691 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
692 (either of which may be NULL). Inform the FE, if this changes the
693 name. */
694
695 void
696 overwrite_decl_assembler_name (tree decl, tree name)
697 {
698 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
699 lang_hooks.overwrite_decl_assembler_name (decl, name);
700 }
701
702 /* When the target supports COMDAT groups, this indicates which group the
703 DECL is associated with. This can be either an IDENTIFIER_NODE or a
704 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
705 tree
706 decl_comdat_group (const_tree node)
707 {
708 struct symtab_node *snode = symtab_node::get (node);
709 if (!snode)
710 return NULL;
711 return snode->get_comdat_group ();
712 }
713
714 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
715 tree
716 decl_comdat_group_id (const_tree node)
717 {
718 struct symtab_node *snode = symtab_node::get (node);
719 if (!snode)
720 return NULL;
721 return snode->get_comdat_group_id ();
722 }
723
724 /* When the target supports named section, return its name as IDENTIFIER_NODE
725 or NULL if it is in no section. */
726 const char *
727 decl_section_name (const_tree node)
728 {
729 struct symtab_node *snode = symtab_node::get (node);
730 if (!snode)
731 return NULL;
732 return snode->get_section ();
733 }
734
735 /* Set section name of NODE to VALUE (that is expected to be
736 identifier node) */
737 void
738 set_decl_section_name (tree node, const char *value)
739 {
740 struct symtab_node *snode;
741
742 if (value == NULL)
743 {
744 snode = symtab_node::get (node);
745 if (!snode)
746 return;
747 }
748 else if (VAR_P (node))
749 snode = varpool_node::get_create (node);
750 else
751 snode = cgraph_node::get_create (node);
752 snode->set_section (value);
753 }
754
755 /* Return TLS model of a variable NODE. */
756 enum tls_model
757 decl_tls_model (const_tree node)
758 {
759 struct varpool_node *snode = varpool_node::get (node);
760 if (!snode)
761 return TLS_MODEL_NONE;
762 return snode->tls_model;
763 }
764
765 /* Set TLS model of variable NODE to MODEL. */
766 void
767 set_decl_tls_model (tree node, enum tls_model model)
768 {
769 struct varpool_node *vnode;
770
771 if (model == TLS_MODEL_NONE)
772 {
773 vnode = varpool_node::get (node);
774 if (!vnode)
775 return;
776 }
777 else
778 vnode = varpool_node::get_create (node);
779 vnode->tls_model = model;
780 }
781
782 /* Compute the number of bytes occupied by a tree with code CODE.
783 This function cannot be used for nodes that have variable sizes,
784 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
785 size_t
786 tree_code_size (enum tree_code code)
787 {
788 switch (TREE_CODE_CLASS (code))
789 {
790 case tcc_declaration: /* A decl node */
791 switch (code)
792 {
793 case FIELD_DECL: return sizeof (tree_field_decl);
794 case PARM_DECL: return sizeof (tree_parm_decl);
795 case VAR_DECL: return sizeof (tree_var_decl);
796 case LABEL_DECL: return sizeof (tree_label_decl);
797 case RESULT_DECL: return sizeof (tree_result_decl);
798 case CONST_DECL: return sizeof (tree_const_decl);
799 case TYPE_DECL: return sizeof (tree_type_decl);
800 case FUNCTION_DECL: return sizeof (tree_function_decl);
801 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
802 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
803 case NAMESPACE_DECL:
804 case IMPORTED_DECL:
805 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
806 default:
807 gcc_checking_assert (code >= NUM_TREE_CODES);
808 return lang_hooks.tree_size (code);
809 }
810
811 case tcc_type: /* a type node */
812 switch (code)
813 {
814 case OFFSET_TYPE:
815 case ENUMERAL_TYPE:
816 case BOOLEAN_TYPE:
817 case INTEGER_TYPE:
818 case REAL_TYPE:
819 case POINTER_TYPE:
820 case REFERENCE_TYPE:
821 case NULLPTR_TYPE:
822 case FIXED_POINT_TYPE:
823 case COMPLEX_TYPE:
824 case VECTOR_TYPE:
825 case ARRAY_TYPE:
826 case RECORD_TYPE:
827 case UNION_TYPE:
828 case QUAL_UNION_TYPE:
829 case VOID_TYPE:
830 case FUNCTION_TYPE:
831 case METHOD_TYPE:
832 case LANG_TYPE: return sizeof (tree_type_non_common);
833 default:
834 gcc_checking_assert (code >= NUM_TREE_CODES);
835 return lang_hooks.tree_size (code);
836 }
837
838 case tcc_reference: /* a reference */
839 case tcc_expression: /* an expression */
840 case tcc_statement: /* an expression with side effects */
841 case tcc_comparison: /* a comparison expression */
842 case tcc_unary: /* a unary arithmetic expression */
843 case tcc_binary: /* a binary arithmetic expression */
844 return (sizeof (struct tree_exp)
845 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
846
847 case tcc_constant: /* a constant */
848 switch (code)
849 {
850 case VOID_CST: return sizeof (tree_typed);
851 case INTEGER_CST: gcc_unreachable ();
852 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
853 case REAL_CST: return sizeof (tree_real_cst);
854 case FIXED_CST: return sizeof (tree_fixed_cst);
855 case COMPLEX_CST: return sizeof (tree_complex);
856 case VECTOR_CST: gcc_unreachable ();
857 case STRING_CST: gcc_unreachable ();
858 default:
859 gcc_checking_assert (code >= NUM_TREE_CODES);
860 return lang_hooks.tree_size (code);
861 }
862
863 case tcc_exceptional: /* something random, like an identifier. */
864 switch (code)
865 {
866 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
867 case TREE_LIST: return sizeof (tree_list);
868
869 case ERROR_MARK:
870 case PLACEHOLDER_EXPR: return sizeof (tree_common);
871
872 case TREE_VEC: gcc_unreachable ();
873 case OMP_CLAUSE: gcc_unreachable ();
874
875 case SSA_NAME: return sizeof (tree_ssa_name);
876
877 case STATEMENT_LIST: return sizeof (tree_statement_list);
878 case BLOCK: return sizeof (struct tree_block);
879 case CONSTRUCTOR: return sizeof (tree_constructor);
880 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
881 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
882
883 default:
884 gcc_checking_assert (code >= NUM_TREE_CODES);
885 return lang_hooks.tree_size (code);
886 }
887
888 default:
889 gcc_unreachable ();
890 }
891 }
892
893 /* Compute the number of bytes occupied by NODE. This routine only
894 looks at TREE_CODE, except for those nodes that have variable sizes. */
895 size_t
896 tree_size (const_tree node)
897 {
898 const enum tree_code code = TREE_CODE (node);
899 switch (code)
900 {
901 case INTEGER_CST:
902 return (sizeof (struct tree_int_cst)
903 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
904
905 case TREE_BINFO:
906 return (offsetof (struct tree_binfo, base_binfos)
907 + vec<tree, va_gc>
908 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
909
910 case TREE_VEC:
911 return (sizeof (struct tree_vec)
912 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
913
914 case VECTOR_CST:
915 return (sizeof (struct tree_vector)
916 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
917
918 case STRING_CST:
919 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
920
921 case OMP_CLAUSE:
922 return (sizeof (struct tree_omp_clause)
923 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
924 * sizeof (tree));
925
926 default:
927 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
928 return (sizeof (struct tree_exp)
929 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
930 else
931 return tree_code_size (code);
932 }
933 }
934
935 /* Return tree node kind based on tree CODE. */
936
937 static tree_node_kind
938 get_stats_node_kind (enum tree_code code)
939 {
940 enum tree_code_class type = TREE_CODE_CLASS (code);
941
942 switch (type)
943 {
944 case tcc_declaration: /* A decl node */
945 return d_kind;
946 case tcc_type: /* a type node */
947 return t_kind;
948 case tcc_statement: /* an expression with side effects */
949 return s_kind;
950 case tcc_reference: /* a reference */
951 return r_kind;
952 case tcc_expression: /* an expression */
953 case tcc_comparison: /* a comparison expression */
954 case tcc_unary: /* a unary arithmetic expression */
955 case tcc_binary: /* a binary arithmetic expression */
956 return e_kind;
957 case tcc_constant: /* a constant */
958 return c_kind;
959 case tcc_exceptional: /* something random, like an identifier. */
960 switch (code)
961 {
962 case IDENTIFIER_NODE:
963 return id_kind;
964 case TREE_VEC:
965 return vec_kind;
966 case TREE_BINFO:
967 return binfo_kind;
968 case SSA_NAME:
969 return ssa_name_kind;
970 case BLOCK:
971 return b_kind;
972 case CONSTRUCTOR:
973 return constr_kind;
974 case OMP_CLAUSE:
975 return omp_clause_kind;
976 default:
977 return x_kind;
978 }
979 break;
980 case tcc_vl_exp:
981 return e_kind;
982 default:
983 gcc_unreachable ();
984 }
985 }
986
987 /* Record interesting allocation statistics for a tree node with CODE
988 and LENGTH. */
989
990 static void
991 record_node_allocation_statistics (enum tree_code code, size_t length)
992 {
993 if (!GATHER_STATISTICS)
994 return;
995
996 tree_node_kind kind = get_stats_node_kind (code);
997
998 tree_code_counts[(int) code]++;
999 tree_node_counts[(int) kind]++;
1000 tree_node_sizes[(int) kind] += length;
1001 }
1002
1003 /* Allocate and return a new UID from the DECL_UID namespace. */
1004
1005 int
1006 allocate_decl_uid (void)
1007 {
1008 return next_decl_uid++;
1009 }
1010
1011 /* Return a newly allocated node of code CODE. For decl and type
1012 nodes, some other fields are initialized. The rest of the node is
1013 initialized to zero. This function cannot be used for TREE_VEC,
1014 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1015 tree_code_size.
1016
1017 Achoo! I got a code in the node. */
1018
1019 tree
1020 make_node (enum tree_code code MEM_STAT_DECL)
1021 {
1022 tree t;
1023 enum tree_code_class type = TREE_CODE_CLASS (code);
1024 size_t length = tree_code_size (code);
1025
1026 record_node_allocation_statistics (code, length);
1027
1028 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1029 TREE_SET_CODE (t, code);
1030
1031 switch (type)
1032 {
1033 case tcc_statement:
1034 if (code != DEBUG_BEGIN_STMT)
1035 TREE_SIDE_EFFECTS (t) = 1;
1036 break;
1037
1038 case tcc_declaration:
1039 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1040 {
1041 if (code == FUNCTION_DECL)
1042 {
1043 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1044 SET_DECL_MODE (t, FUNCTION_MODE);
1045 }
1046 else
1047 SET_DECL_ALIGN (t, 1);
1048 }
1049 DECL_SOURCE_LOCATION (t) = input_location;
1050 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1051 DECL_UID (t) = --next_debug_decl_uid;
1052 else
1053 {
1054 DECL_UID (t) = allocate_decl_uid ();
1055 SET_DECL_PT_UID (t, -1);
1056 }
1057 if (TREE_CODE (t) == LABEL_DECL)
1058 LABEL_DECL_UID (t) = -1;
1059
1060 break;
1061
1062 case tcc_type:
1063 TYPE_UID (t) = next_type_uid++;
1064 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1065 TYPE_USER_ALIGN (t) = 0;
1066 TYPE_MAIN_VARIANT (t) = t;
1067 TYPE_CANONICAL (t) = t;
1068
1069 /* Default to no attributes for type, but let target change that. */
1070 TYPE_ATTRIBUTES (t) = NULL_TREE;
1071 targetm.set_default_type_attributes (t);
1072
1073 /* We have not yet computed the alias set for this type. */
1074 TYPE_ALIAS_SET (t) = -1;
1075 break;
1076
1077 case tcc_constant:
1078 TREE_CONSTANT (t) = 1;
1079 break;
1080
1081 case tcc_expression:
1082 switch (code)
1083 {
1084 case INIT_EXPR:
1085 case MODIFY_EXPR:
1086 case VA_ARG_EXPR:
1087 case PREDECREMENT_EXPR:
1088 case PREINCREMENT_EXPR:
1089 case POSTDECREMENT_EXPR:
1090 case POSTINCREMENT_EXPR:
1091 /* All of these have side-effects, no matter what their
1092 operands are. */
1093 TREE_SIDE_EFFECTS (t) = 1;
1094 break;
1095
1096 default:
1097 break;
1098 }
1099 break;
1100
1101 case tcc_exceptional:
1102 switch (code)
1103 {
1104 case TARGET_OPTION_NODE:
1105 TREE_TARGET_OPTION(t)
1106 = ggc_cleared_alloc<struct cl_target_option> ();
1107 break;
1108
1109 case OPTIMIZATION_NODE:
1110 TREE_OPTIMIZATION (t)
1111 = ggc_cleared_alloc<struct cl_optimization> ();
1112 break;
1113
1114 default:
1115 break;
1116 }
1117 break;
1118
1119 default:
1120 /* Other classes need no special treatment. */
1121 break;
1122 }
1123
1124 return t;
1125 }
1126
1127 /* Free tree node. */
1128
1129 void
1130 free_node (tree node)
1131 {
1132 enum tree_code code = TREE_CODE (node);
1133 if (GATHER_STATISTICS)
1134 {
1135 enum tree_node_kind kind = get_stats_node_kind (code);
1136
1137 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1138 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1139 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1140
1141 tree_code_counts[(int) TREE_CODE (node)]--;
1142 tree_node_counts[(int) kind]--;
1143 tree_node_sizes[(int) kind] -= tree_size (node);
1144 }
1145 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1146 vec_free (CONSTRUCTOR_ELTS (node));
1147 else if (code == BLOCK)
1148 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1149 else if (code == TREE_BINFO)
1150 vec_free (BINFO_BASE_ACCESSES (node));
1151 ggc_free (node);
1152 }
1153 \f
1154 /* Return a new node with the same contents as NODE except that its
1155 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1156
1157 tree
1158 copy_node (tree node MEM_STAT_DECL)
1159 {
1160 tree t;
1161 enum tree_code code = TREE_CODE (node);
1162 size_t length;
1163
1164 gcc_assert (code != STATEMENT_LIST);
1165
1166 length = tree_size (node);
1167 record_node_allocation_statistics (code, length);
1168 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1169 memcpy (t, node, length);
1170
1171 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1172 TREE_CHAIN (t) = 0;
1173 TREE_ASM_WRITTEN (t) = 0;
1174 TREE_VISITED (t) = 0;
1175
1176 if (TREE_CODE_CLASS (code) == tcc_declaration)
1177 {
1178 if (code == DEBUG_EXPR_DECL)
1179 DECL_UID (t) = --next_debug_decl_uid;
1180 else
1181 {
1182 DECL_UID (t) = allocate_decl_uid ();
1183 if (DECL_PT_UID_SET_P (node))
1184 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1185 }
1186 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1187 && DECL_HAS_VALUE_EXPR_P (node))
1188 {
1189 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1190 DECL_HAS_VALUE_EXPR_P (t) = 1;
1191 }
1192 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1193 if (VAR_P (node))
1194 {
1195 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1196 t->decl_with_vis.symtab_node = NULL;
1197 }
1198 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1199 {
1200 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1201 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1202 }
1203 if (TREE_CODE (node) == FUNCTION_DECL)
1204 {
1205 DECL_STRUCT_FUNCTION (t) = NULL;
1206 t->decl_with_vis.symtab_node = NULL;
1207 }
1208 }
1209 else if (TREE_CODE_CLASS (code) == tcc_type)
1210 {
1211 TYPE_UID (t) = next_type_uid++;
1212 /* The following is so that the debug code for
1213 the copy is different from the original type.
1214 The two statements usually duplicate each other
1215 (because they clear fields of the same union),
1216 but the optimizer should catch that. */
1217 TYPE_SYMTAB_ADDRESS (t) = 0;
1218 TYPE_SYMTAB_DIE (t) = 0;
1219
1220 /* Do not copy the values cache. */
1221 if (TYPE_CACHED_VALUES_P (t))
1222 {
1223 TYPE_CACHED_VALUES_P (t) = 0;
1224 TYPE_CACHED_VALUES (t) = NULL_TREE;
1225 }
1226 }
1227 else if (code == TARGET_OPTION_NODE)
1228 {
1229 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1230 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1231 sizeof (struct cl_target_option));
1232 }
1233 else if (code == OPTIMIZATION_NODE)
1234 {
1235 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1236 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1237 sizeof (struct cl_optimization));
1238 }
1239
1240 return t;
1241 }
1242
1243 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1244 For example, this can copy a list made of TREE_LIST nodes. */
1245
1246 tree
1247 copy_list (tree list)
1248 {
1249 tree head;
1250 tree prev, next;
1251
1252 if (list == 0)
1253 return 0;
1254
1255 head = prev = copy_node (list);
1256 next = TREE_CHAIN (list);
1257 while (next)
1258 {
1259 TREE_CHAIN (prev) = copy_node (next);
1260 prev = TREE_CHAIN (prev);
1261 next = TREE_CHAIN (next);
1262 }
1263 return head;
1264 }
1265
1266 \f
1267 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1268 INTEGER_CST with value CST and type TYPE. */
1269
1270 static unsigned int
1271 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1272 {
1273 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1274 /* We need extra HWIs if CST is an unsigned integer with its
1275 upper bit set. */
1276 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1277 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1278 return cst.get_len ();
1279 }
1280
1281 /* Return a new INTEGER_CST with value CST and type TYPE. */
1282
1283 static tree
1284 build_new_int_cst (tree type, const wide_int &cst)
1285 {
1286 unsigned int len = cst.get_len ();
1287 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1288 tree nt = make_int_cst (len, ext_len);
1289
1290 if (len < ext_len)
1291 {
1292 --ext_len;
1293 TREE_INT_CST_ELT (nt, ext_len)
1294 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1295 for (unsigned int i = len; i < ext_len; ++i)
1296 TREE_INT_CST_ELT (nt, i) = -1;
1297 }
1298 else if (TYPE_UNSIGNED (type)
1299 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1300 {
1301 len--;
1302 TREE_INT_CST_ELT (nt, len)
1303 = zext_hwi (cst.elt (len),
1304 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1305 }
1306
1307 for (unsigned int i = 0; i < len; i++)
1308 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1309 TREE_TYPE (nt) = type;
1310 return nt;
1311 }
1312
1313 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1314
1315 static tree
1316 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1317 CXX_MEM_STAT_INFO)
1318 {
1319 size_t length = sizeof (struct tree_poly_int_cst);
1320 record_node_allocation_statistics (POLY_INT_CST, length);
1321
1322 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1323
1324 TREE_SET_CODE (t, POLY_INT_CST);
1325 TREE_CONSTANT (t) = 1;
1326 TREE_TYPE (t) = type;
1327 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1328 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1329 return t;
1330 }
1331
1332 /* Create a constant tree that contains CST sign-extended to TYPE. */
1333
1334 tree
1335 build_int_cst (tree type, poly_int64 cst)
1336 {
1337 /* Support legacy code. */
1338 if (!type)
1339 type = integer_type_node;
1340
1341 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1342 }
1343
1344 /* Create a constant tree that contains CST zero-extended to TYPE. */
1345
1346 tree
1347 build_int_cstu (tree type, poly_uint64 cst)
1348 {
1349 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1350 }
1351
1352 /* Create a constant tree that contains CST sign-extended to TYPE. */
1353
1354 tree
1355 build_int_cst_type (tree type, poly_int64 cst)
1356 {
1357 gcc_assert (type);
1358 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1359 }
1360
1361 /* Constructs tree in type TYPE from with value given by CST. Signedness
1362 of CST is assumed to be the same as the signedness of TYPE. */
1363
1364 tree
1365 double_int_to_tree (tree type, double_int cst)
1366 {
1367 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1368 }
1369
1370 /* We force the wide_int CST to the range of the type TYPE by sign or
1371 zero extending it. OVERFLOWABLE indicates if we are interested in
1372 overflow of the value, when >0 we are only interested in signed
1373 overflow, for <0 we are interested in any overflow. OVERFLOWED
1374 indicates whether overflow has already occurred. CONST_OVERFLOWED
1375 indicates whether constant overflow has already occurred. We force
1376 T's value to be within range of T's type (by setting to 0 or 1 all
1377 the bits outside the type's range). We set TREE_OVERFLOWED if,
1378 OVERFLOWED is nonzero,
1379 or OVERFLOWABLE is >0 and signed overflow occurs
1380 or OVERFLOWABLE is <0 and any overflow occurs
1381 We return a new tree node for the extended wide_int. The node
1382 is shared if no overflow flags are set. */
1383
1384
1385 tree
1386 force_fit_type (tree type, const poly_wide_int_ref &cst,
1387 int overflowable, bool overflowed)
1388 {
1389 signop sign = TYPE_SIGN (type);
1390
1391 /* If we need to set overflow flags, return a new unshared node. */
1392 if (overflowed || !wi::fits_to_tree_p (cst, type))
1393 {
1394 if (overflowed
1395 || overflowable < 0
1396 || (overflowable > 0 && sign == SIGNED))
1397 {
1398 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1399 sign);
1400 tree t;
1401 if (tmp.is_constant ())
1402 t = build_new_int_cst (type, tmp.coeffs[0]);
1403 else
1404 {
1405 tree coeffs[NUM_POLY_INT_COEFFS];
1406 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1407 {
1408 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1409 TREE_OVERFLOW (coeffs[i]) = 1;
1410 }
1411 t = build_new_poly_int_cst (type, coeffs);
1412 }
1413 TREE_OVERFLOW (t) = 1;
1414 return t;
1415 }
1416 }
1417
1418 /* Else build a shared node. */
1419 return wide_int_to_tree (type, cst);
1420 }
1421
1422 /* These are the hash table functions for the hash table of INTEGER_CST
1423 nodes of a sizetype. */
1424
1425 /* Return the hash code X, an INTEGER_CST. */
1426
1427 hashval_t
1428 int_cst_hasher::hash (tree x)
1429 {
1430 const_tree const t = x;
1431 hashval_t code = TYPE_UID (TREE_TYPE (t));
1432 int i;
1433
1434 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1435 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1436
1437 return code;
1438 }
1439
1440 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1441 is the same as that given by *Y, which is the same. */
1442
1443 bool
1444 int_cst_hasher::equal (tree x, tree y)
1445 {
1446 const_tree const xt = x;
1447 const_tree const yt = y;
1448
1449 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1450 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1451 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1452 return false;
1453
1454 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1455 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1456 return false;
1457
1458 return true;
1459 }
1460
1461 /* Create an INT_CST node of TYPE and value CST.
1462 The returned node is always shared. For small integers we use a
1463 per-type vector cache, for larger ones we use a single hash table.
1464 The value is extended from its precision according to the sign of
1465 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1466 the upper bits and ensures that hashing and value equality based
1467 upon the underlying HOST_WIDE_INTs works without masking. */
1468
1469 static tree
1470 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1471 {
1472 tree t;
1473 int ix = -1;
1474 int limit = 0;
1475
1476 gcc_assert (type);
1477 unsigned int prec = TYPE_PRECISION (type);
1478 signop sgn = TYPE_SIGN (type);
1479
1480 /* Verify that everything is canonical. */
1481 int l = pcst.get_len ();
1482 if (l > 1)
1483 {
1484 if (pcst.elt (l - 1) == 0)
1485 gcc_checking_assert (pcst.elt (l - 2) < 0);
1486 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1487 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1488 }
1489
1490 wide_int cst = wide_int::from (pcst, prec, sgn);
1491 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1492
1493 if (ext_len == 1)
1494 {
1495 /* We just need to store a single HOST_WIDE_INT. */
1496 HOST_WIDE_INT hwi;
1497 if (TYPE_UNSIGNED (type))
1498 hwi = cst.to_uhwi ();
1499 else
1500 hwi = cst.to_shwi ();
1501
1502 switch (TREE_CODE (type))
1503 {
1504 case NULLPTR_TYPE:
1505 gcc_assert (hwi == 0);
1506 /* Fallthru. */
1507
1508 case POINTER_TYPE:
1509 case REFERENCE_TYPE:
1510 /* Cache NULL pointer and zero bounds. */
1511 if (hwi == 0)
1512 {
1513 limit = 1;
1514 ix = 0;
1515 }
1516 break;
1517
1518 case BOOLEAN_TYPE:
1519 /* Cache false or true. */
1520 limit = 2;
1521 if (IN_RANGE (hwi, 0, 1))
1522 ix = hwi;
1523 break;
1524
1525 case INTEGER_TYPE:
1526 case OFFSET_TYPE:
1527 if (TYPE_SIGN (type) == UNSIGNED)
1528 {
1529 /* Cache [0, N). */
1530 limit = INTEGER_SHARE_LIMIT;
1531 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1532 ix = hwi;
1533 }
1534 else
1535 {
1536 /* Cache [-1, N). */
1537 limit = INTEGER_SHARE_LIMIT + 1;
1538 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1539 ix = hwi + 1;
1540 }
1541 break;
1542
1543 case ENUMERAL_TYPE:
1544 break;
1545
1546 default:
1547 gcc_unreachable ();
1548 }
1549
1550 if (ix >= 0)
1551 {
1552 /* Look for it in the type's vector of small shared ints. */
1553 if (!TYPE_CACHED_VALUES_P (type))
1554 {
1555 TYPE_CACHED_VALUES_P (type) = 1;
1556 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1557 }
1558
1559 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1560 if (t)
1561 /* Make sure no one is clobbering the shared constant. */
1562 gcc_checking_assert (TREE_TYPE (t) == type
1563 && TREE_INT_CST_NUNITS (t) == 1
1564 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1565 && TREE_INT_CST_EXT_NUNITS (t) == 1
1566 && TREE_INT_CST_ELT (t, 0) == hwi);
1567 else
1568 {
1569 /* Create a new shared int. */
1570 t = build_new_int_cst (type, cst);
1571 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1572 }
1573 }
1574 else
1575 {
1576 /* Use the cache of larger shared ints, using int_cst_node as
1577 a temporary. */
1578
1579 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1580 TREE_TYPE (int_cst_node) = type;
1581
1582 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1583 t = *slot;
1584 if (!t)
1585 {
1586 /* Insert this one into the hash table. */
1587 t = int_cst_node;
1588 *slot = t;
1589 /* Make a new node for next time round. */
1590 int_cst_node = make_int_cst (1, 1);
1591 }
1592 }
1593 }
1594 else
1595 {
1596 /* The value either hashes properly or we drop it on the floor
1597 for the gc to take care of. There will not be enough of them
1598 to worry about. */
1599
1600 tree nt = build_new_int_cst (type, cst);
1601 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1602 t = *slot;
1603 if (!t)
1604 {
1605 /* Insert this one into the hash table. */
1606 t = nt;
1607 *slot = t;
1608 }
1609 else
1610 ggc_free (nt);
1611 }
1612
1613 return t;
1614 }
1615
1616 hashval_t
1617 poly_int_cst_hasher::hash (tree t)
1618 {
1619 inchash::hash hstate;
1620
1621 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1622 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1623 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1624
1625 return hstate.end ();
1626 }
1627
1628 bool
1629 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1630 {
1631 if (TREE_TYPE (x) != y.first)
1632 return false;
1633 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1634 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1635 return false;
1636 return true;
1637 }
1638
1639 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1640 The elements must also have type TYPE. */
1641
1642 tree
1643 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1644 {
1645 unsigned int prec = TYPE_PRECISION (type);
1646 gcc_assert (prec <= values.coeffs[0].get_precision ());
1647 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1648
1649 inchash::hash h;
1650 h.add_int (TYPE_UID (type));
1651 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1652 h.add_wide_int (c.coeffs[i]);
1653 poly_int_cst_hasher::compare_type comp (type, &c);
1654 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1655 INSERT);
1656 if (*slot == NULL_TREE)
1657 {
1658 tree coeffs[NUM_POLY_INT_COEFFS];
1659 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1660 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1661 *slot = build_new_poly_int_cst (type, coeffs);
1662 }
1663 return *slot;
1664 }
1665
1666 /* Create a constant tree with value VALUE in type TYPE. */
1667
1668 tree
1669 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1670 {
1671 if (value.is_constant ())
1672 return wide_int_to_tree_1 (type, value.coeffs[0]);
1673 return build_poly_int_cst (type, value);
1674 }
1675
1676 void
1677 cache_integer_cst (tree t)
1678 {
1679 tree type = TREE_TYPE (t);
1680 int ix = -1;
1681 int limit = 0;
1682 int prec = TYPE_PRECISION (type);
1683
1684 gcc_assert (!TREE_OVERFLOW (t));
1685
1686 switch (TREE_CODE (type))
1687 {
1688 case NULLPTR_TYPE:
1689 gcc_assert (integer_zerop (t));
1690 /* Fallthru. */
1691
1692 case POINTER_TYPE:
1693 case REFERENCE_TYPE:
1694 /* Cache NULL pointer. */
1695 if (integer_zerop (t))
1696 {
1697 limit = 1;
1698 ix = 0;
1699 }
1700 break;
1701
1702 case BOOLEAN_TYPE:
1703 /* Cache false or true. */
1704 limit = 2;
1705 if (wi::ltu_p (wi::to_wide (t), 2))
1706 ix = TREE_INT_CST_ELT (t, 0);
1707 break;
1708
1709 case INTEGER_TYPE:
1710 case OFFSET_TYPE:
1711 if (TYPE_UNSIGNED (type))
1712 {
1713 /* Cache 0..N */
1714 limit = INTEGER_SHARE_LIMIT;
1715
1716 /* This is a little hokie, but if the prec is smaller than
1717 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1718 obvious test will not get the correct answer. */
1719 if (prec < HOST_BITS_PER_WIDE_INT)
1720 {
1721 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1722 ix = tree_to_uhwi (t);
1723 }
1724 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1725 ix = tree_to_uhwi (t);
1726 }
1727 else
1728 {
1729 /* Cache -1..N */
1730 limit = INTEGER_SHARE_LIMIT + 1;
1731
1732 if (integer_minus_onep (t))
1733 ix = 0;
1734 else if (!wi::neg_p (wi::to_wide (t)))
1735 {
1736 if (prec < HOST_BITS_PER_WIDE_INT)
1737 {
1738 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1739 ix = tree_to_shwi (t) + 1;
1740 }
1741 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1742 ix = tree_to_shwi (t) + 1;
1743 }
1744 }
1745 break;
1746
1747 case ENUMERAL_TYPE:
1748 break;
1749
1750 default:
1751 gcc_unreachable ();
1752 }
1753
1754 if (ix >= 0)
1755 {
1756 /* Look for it in the type's vector of small shared ints. */
1757 if (!TYPE_CACHED_VALUES_P (type))
1758 {
1759 TYPE_CACHED_VALUES_P (type) = 1;
1760 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1761 }
1762
1763 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1764 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1765 }
1766 else
1767 {
1768 /* Use the cache of larger shared ints. */
1769 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1770 /* If there is already an entry for the number verify it's the
1771 same. */
1772 if (*slot)
1773 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1774 else
1775 /* Otherwise insert this one into the hash table. */
1776 *slot = t;
1777 }
1778 }
1779
1780
1781 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1782 and the rest are zeros. */
1783
1784 tree
1785 build_low_bits_mask (tree type, unsigned bits)
1786 {
1787 gcc_assert (bits <= TYPE_PRECISION (type));
1788
1789 return wide_int_to_tree (type, wi::mask (bits, false,
1790 TYPE_PRECISION (type)));
1791 }
1792
1793 /* Checks that X is integer constant that can be expressed in (unsigned)
1794 HOST_WIDE_INT without loss of precision. */
1795
1796 bool
1797 cst_and_fits_in_hwi (const_tree x)
1798 {
1799 return (TREE_CODE (x) == INTEGER_CST
1800 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1801 }
1802
1803 /* Build a newly constructed VECTOR_CST with the given values of
1804 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1805
1806 tree
1807 make_vector (unsigned log2_npatterns,
1808 unsigned int nelts_per_pattern MEM_STAT_DECL)
1809 {
1810 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1811 tree t;
1812 unsigned npatterns = 1 << log2_npatterns;
1813 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1814 unsigned length = (sizeof (struct tree_vector)
1815 + (encoded_nelts - 1) * sizeof (tree));
1816
1817 record_node_allocation_statistics (VECTOR_CST, length);
1818
1819 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1820
1821 TREE_SET_CODE (t, VECTOR_CST);
1822 TREE_CONSTANT (t) = 1;
1823 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1824 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1825
1826 return t;
1827 }
1828
1829 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1830 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1831
1832 tree
1833 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1834 {
1835 unsigned HOST_WIDE_INT idx, nelts;
1836 tree value;
1837
1838 /* We can't construct a VECTOR_CST for a variable number of elements. */
1839 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1840 tree_vector_builder vec (type, nelts, 1);
1841 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1842 {
1843 if (TREE_CODE (value) == VECTOR_CST)
1844 {
1845 /* If NELTS is constant then this must be too. */
1846 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1847 for (unsigned i = 0; i < sub_nelts; ++i)
1848 vec.quick_push (VECTOR_CST_ELT (value, i));
1849 }
1850 else
1851 vec.quick_push (value);
1852 }
1853 while (vec.length () < nelts)
1854 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1855
1856 return vec.build ();
1857 }
1858
1859 /* Build a vector of type VECTYPE where all the elements are SCs. */
1860 tree
1861 build_vector_from_val (tree vectype, tree sc)
1862 {
1863 unsigned HOST_WIDE_INT i, nunits;
1864
1865 if (sc == error_mark_node)
1866 return sc;
1867
1868 /* Verify that the vector type is suitable for SC. Note that there
1869 is some inconsistency in the type-system with respect to restrict
1870 qualifications of pointers. Vector types always have a main-variant
1871 element type and the qualification is applied to the vector-type.
1872 So TREE_TYPE (vector-type) does not return a properly qualified
1873 vector element-type. */
1874 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1875 TREE_TYPE (vectype)));
1876
1877 if (CONSTANT_CLASS_P (sc))
1878 {
1879 tree_vector_builder v (vectype, 1, 1);
1880 v.quick_push (sc);
1881 return v.build ();
1882 }
1883 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1884 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1885 else
1886 {
1887 vec<constructor_elt, va_gc> *v;
1888 vec_alloc (v, nunits);
1889 for (i = 0; i < nunits; ++i)
1890 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1891 return build_constructor (vectype, v);
1892 }
1893 }
1894
1895 /* Build a vector series of type TYPE in which element I has the value
1896 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1897 and a VEC_SERIES_EXPR otherwise. */
1898
1899 tree
1900 build_vec_series (tree type, tree base, tree step)
1901 {
1902 if (integer_zerop (step))
1903 return build_vector_from_val (type, base);
1904 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1905 {
1906 tree_vector_builder builder (type, 1, 3);
1907 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1908 wi::to_wide (base) + wi::to_wide (step));
1909 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1910 wi::to_wide (elt1) + wi::to_wide (step));
1911 builder.quick_push (base);
1912 builder.quick_push (elt1);
1913 builder.quick_push (elt2);
1914 return builder.build ();
1915 }
1916 return build2 (VEC_SERIES_EXPR, type, base, step);
1917 }
1918
1919 /* Return a vector with the same number of units and number of bits
1920 as VEC_TYPE, but in which the elements are a linear series of unsigned
1921 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1922
1923 tree
1924 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1925 {
1926 tree index_vec_type = vec_type;
1927 tree index_elt_type = TREE_TYPE (vec_type);
1928 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1929 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1930 {
1931 index_elt_type = build_nonstandard_integer_type
1932 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1933 index_vec_type = build_vector_type (index_elt_type, nunits);
1934 }
1935
1936 tree_vector_builder v (index_vec_type, 1, 3);
1937 for (unsigned int i = 0; i < 3; ++i)
1938 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1939 return v.build ();
1940 }
1941
1942 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1943 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1944
1945 void
1946 recompute_constructor_flags (tree c)
1947 {
1948 unsigned int i;
1949 tree val;
1950 bool constant_p = true;
1951 bool side_effects_p = false;
1952 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1953
1954 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1955 {
1956 /* Mostly ctors will have elts that don't have side-effects, so
1957 the usual case is to scan all the elements. Hence a single
1958 loop for both const and side effects, rather than one loop
1959 each (with early outs). */
1960 if (!TREE_CONSTANT (val))
1961 constant_p = false;
1962 if (TREE_SIDE_EFFECTS (val))
1963 side_effects_p = true;
1964 }
1965
1966 TREE_SIDE_EFFECTS (c) = side_effects_p;
1967 TREE_CONSTANT (c) = constant_p;
1968 }
1969
1970 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1971 CONSTRUCTOR C. */
1972
1973 void
1974 verify_constructor_flags (tree c)
1975 {
1976 unsigned int i;
1977 tree val;
1978 bool constant_p = TREE_CONSTANT (c);
1979 bool side_effects_p = TREE_SIDE_EFFECTS (c);
1980 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1981
1982 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1983 {
1984 if (constant_p && !TREE_CONSTANT (val))
1985 internal_error ("non-constant element in constant CONSTRUCTOR");
1986 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
1987 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
1988 }
1989 }
1990
1991 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1992 are in the vec pointed to by VALS. */
1993 tree
1994 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1995 {
1996 tree c = make_node (CONSTRUCTOR);
1997
1998 TREE_TYPE (c) = type;
1999 CONSTRUCTOR_ELTS (c) = vals;
2000
2001 recompute_constructor_flags (c);
2002
2003 return c;
2004 }
2005
2006 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2007 INDEX and VALUE. */
2008 tree
2009 build_constructor_single (tree type, tree index, tree value)
2010 {
2011 vec<constructor_elt, va_gc> *v;
2012 constructor_elt elt = {index, value};
2013
2014 vec_alloc (v, 1);
2015 v->quick_push (elt);
2016
2017 return build_constructor (type, v);
2018 }
2019
2020
2021 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2022 are in a list pointed to by VALS. */
2023 tree
2024 build_constructor_from_list (tree type, tree vals)
2025 {
2026 tree t;
2027 vec<constructor_elt, va_gc> *v = NULL;
2028
2029 if (vals)
2030 {
2031 vec_alloc (v, list_length (vals));
2032 for (t = vals; t; t = TREE_CHAIN (t))
2033 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2034 }
2035
2036 return build_constructor (type, v);
2037 }
2038
2039 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2040 of elements, provided as index/value pairs. */
2041
2042 tree
2043 build_constructor_va (tree type, int nelts, ...)
2044 {
2045 vec<constructor_elt, va_gc> *v = NULL;
2046 va_list p;
2047
2048 va_start (p, nelts);
2049 vec_alloc (v, nelts);
2050 while (nelts--)
2051 {
2052 tree index = va_arg (p, tree);
2053 tree value = va_arg (p, tree);
2054 CONSTRUCTOR_APPEND_ELT (v, index, value);
2055 }
2056 va_end (p);
2057 return build_constructor (type, v);
2058 }
2059
2060 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2061
2062 tree
2063 build_clobber (tree type)
2064 {
2065 tree clobber = build_constructor (type, NULL);
2066 TREE_THIS_VOLATILE (clobber) = true;
2067 return clobber;
2068 }
2069
2070 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2071
2072 tree
2073 build_fixed (tree type, FIXED_VALUE_TYPE f)
2074 {
2075 tree v;
2076 FIXED_VALUE_TYPE *fp;
2077
2078 v = make_node (FIXED_CST);
2079 fp = ggc_alloc<fixed_value> ();
2080 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2081
2082 TREE_TYPE (v) = type;
2083 TREE_FIXED_CST_PTR (v) = fp;
2084 return v;
2085 }
2086
2087 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2088
2089 tree
2090 build_real (tree type, REAL_VALUE_TYPE d)
2091 {
2092 tree v;
2093 REAL_VALUE_TYPE *dp;
2094 int overflow = 0;
2095
2096 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2097 Consider doing it via real_convert now. */
2098
2099 v = make_node (REAL_CST);
2100 dp = ggc_alloc<real_value> ();
2101 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2102
2103 TREE_TYPE (v) = type;
2104 TREE_REAL_CST_PTR (v) = dp;
2105 TREE_OVERFLOW (v) = overflow;
2106 return v;
2107 }
2108
2109 /* Like build_real, but first truncate D to the type. */
2110
2111 tree
2112 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2113 {
2114 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2115 }
2116
2117 /* Return a new REAL_CST node whose type is TYPE
2118 and whose value is the integer value of the INTEGER_CST node I. */
2119
2120 REAL_VALUE_TYPE
2121 real_value_from_int_cst (const_tree type, const_tree i)
2122 {
2123 REAL_VALUE_TYPE d;
2124
2125 /* Clear all bits of the real value type so that we can later do
2126 bitwise comparisons to see if two values are the same. */
2127 memset (&d, 0, sizeof d);
2128
2129 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2130 TYPE_SIGN (TREE_TYPE (i)));
2131 return d;
2132 }
2133
2134 /* Given a tree representing an integer constant I, return a tree
2135 representing the same value as a floating-point constant of type TYPE. */
2136
2137 tree
2138 build_real_from_int_cst (tree type, const_tree i)
2139 {
2140 tree v;
2141 int overflow = TREE_OVERFLOW (i);
2142
2143 v = build_real (type, real_value_from_int_cst (type, i));
2144
2145 TREE_OVERFLOW (v) |= overflow;
2146 return v;
2147 }
2148
2149 /* Return a newly constructed STRING_CST node whose value is
2150 the LEN characters at STR.
2151 Note that for a C string literal, LEN should include the trailing NUL.
2152 The TREE_TYPE is not initialized. */
2153
2154 tree
2155 build_string (int len, const char *str)
2156 {
2157 tree s;
2158 size_t length;
2159
2160 /* Do not waste bytes provided by padding of struct tree_string. */
2161 length = len + offsetof (struct tree_string, str) + 1;
2162
2163 record_node_allocation_statistics (STRING_CST, length);
2164
2165 s = (tree) ggc_internal_alloc (length);
2166
2167 memset (s, 0, sizeof (struct tree_typed));
2168 TREE_SET_CODE (s, STRING_CST);
2169 TREE_CONSTANT (s) = 1;
2170 TREE_STRING_LENGTH (s) = len;
2171 memcpy (s->string.str, str, len);
2172 s->string.str[len] = '\0';
2173
2174 return s;
2175 }
2176
2177 /* Return a newly constructed COMPLEX_CST node whose value is
2178 specified by the real and imaginary parts REAL and IMAG.
2179 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2180 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2181
2182 tree
2183 build_complex (tree type, tree real, tree imag)
2184 {
2185 tree t = make_node (COMPLEX_CST);
2186
2187 TREE_REALPART (t) = real;
2188 TREE_IMAGPART (t) = imag;
2189 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2190 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2191 return t;
2192 }
2193
2194 /* Build a complex (inf +- 0i), such as for the result of cproj.
2195 TYPE is the complex tree type of the result. If NEG is true, the
2196 imaginary zero is negative. */
2197
2198 tree
2199 build_complex_inf (tree type, bool neg)
2200 {
2201 REAL_VALUE_TYPE rinf, rzero = dconst0;
2202
2203 real_inf (&rinf);
2204 rzero.sign = neg;
2205 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2206 build_real (TREE_TYPE (type), rzero));
2207 }
2208
2209 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2210 element is set to 1. In particular, this is 1 + i for complex types. */
2211
2212 tree
2213 build_each_one_cst (tree type)
2214 {
2215 if (TREE_CODE (type) == COMPLEX_TYPE)
2216 {
2217 tree scalar = build_one_cst (TREE_TYPE (type));
2218 return build_complex (type, scalar, scalar);
2219 }
2220 else
2221 return build_one_cst (type);
2222 }
2223
2224 /* Return a constant of arithmetic type TYPE which is the
2225 multiplicative identity of the set TYPE. */
2226
2227 tree
2228 build_one_cst (tree type)
2229 {
2230 switch (TREE_CODE (type))
2231 {
2232 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2233 case POINTER_TYPE: case REFERENCE_TYPE:
2234 case OFFSET_TYPE:
2235 return build_int_cst (type, 1);
2236
2237 case REAL_TYPE:
2238 return build_real (type, dconst1);
2239
2240 case FIXED_POINT_TYPE:
2241 /* We can only generate 1 for accum types. */
2242 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2243 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2244
2245 case VECTOR_TYPE:
2246 {
2247 tree scalar = build_one_cst (TREE_TYPE (type));
2248
2249 return build_vector_from_val (type, scalar);
2250 }
2251
2252 case COMPLEX_TYPE:
2253 return build_complex (type,
2254 build_one_cst (TREE_TYPE (type)),
2255 build_zero_cst (TREE_TYPE (type)));
2256
2257 default:
2258 gcc_unreachable ();
2259 }
2260 }
2261
2262 /* Return an integer of type TYPE containing all 1's in as much precision as
2263 it contains, or a complex or vector whose subparts are such integers. */
2264
2265 tree
2266 build_all_ones_cst (tree type)
2267 {
2268 if (TREE_CODE (type) == COMPLEX_TYPE)
2269 {
2270 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2271 return build_complex (type, scalar, scalar);
2272 }
2273 else
2274 return build_minus_one_cst (type);
2275 }
2276
2277 /* Return a constant of arithmetic type TYPE which is the
2278 opposite of the multiplicative identity of the set TYPE. */
2279
2280 tree
2281 build_minus_one_cst (tree type)
2282 {
2283 switch (TREE_CODE (type))
2284 {
2285 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2286 case POINTER_TYPE: case REFERENCE_TYPE:
2287 case OFFSET_TYPE:
2288 return build_int_cst (type, -1);
2289
2290 case REAL_TYPE:
2291 return build_real (type, dconstm1);
2292
2293 case FIXED_POINT_TYPE:
2294 /* We can only generate 1 for accum types. */
2295 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2296 return build_fixed (type,
2297 fixed_from_double_int (double_int_minus_one,
2298 SCALAR_TYPE_MODE (type)));
2299
2300 case VECTOR_TYPE:
2301 {
2302 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2303
2304 return build_vector_from_val (type, scalar);
2305 }
2306
2307 case COMPLEX_TYPE:
2308 return build_complex (type,
2309 build_minus_one_cst (TREE_TYPE (type)),
2310 build_zero_cst (TREE_TYPE (type)));
2311
2312 default:
2313 gcc_unreachable ();
2314 }
2315 }
2316
2317 /* Build 0 constant of type TYPE. This is used by constructor folding
2318 and thus the constant should be represented in memory by
2319 zero(es). */
2320
2321 tree
2322 build_zero_cst (tree type)
2323 {
2324 switch (TREE_CODE (type))
2325 {
2326 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2327 case POINTER_TYPE: case REFERENCE_TYPE:
2328 case OFFSET_TYPE: case NULLPTR_TYPE:
2329 return build_int_cst (type, 0);
2330
2331 case REAL_TYPE:
2332 return build_real (type, dconst0);
2333
2334 case FIXED_POINT_TYPE:
2335 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2336
2337 case VECTOR_TYPE:
2338 {
2339 tree scalar = build_zero_cst (TREE_TYPE (type));
2340
2341 return build_vector_from_val (type, scalar);
2342 }
2343
2344 case COMPLEX_TYPE:
2345 {
2346 tree zero = build_zero_cst (TREE_TYPE (type));
2347
2348 return build_complex (type, zero, zero);
2349 }
2350
2351 default:
2352 if (!AGGREGATE_TYPE_P (type))
2353 return fold_convert (type, integer_zero_node);
2354 return build_constructor (type, NULL);
2355 }
2356 }
2357
2358
2359 /* Build a BINFO with LEN language slots. */
2360
2361 tree
2362 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2363 {
2364 tree t;
2365 size_t length = (offsetof (struct tree_binfo, base_binfos)
2366 + vec<tree, va_gc>::embedded_size (base_binfos));
2367
2368 record_node_allocation_statistics (TREE_BINFO, length);
2369
2370 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2371
2372 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2373
2374 TREE_SET_CODE (t, TREE_BINFO);
2375
2376 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2377
2378 return t;
2379 }
2380
2381 /* Create a CASE_LABEL_EXPR tree node and return it. */
2382
2383 tree
2384 build_case_label (tree low_value, tree high_value, tree label_decl)
2385 {
2386 tree t = make_node (CASE_LABEL_EXPR);
2387
2388 TREE_TYPE (t) = void_type_node;
2389 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2390
2391 CASE_LOW (t) = low_value;
2392 CASE_HIGH (t) = high_value;
2393 CASE_LABEL (t) = label_decl;
2394 CASE_CHAIN (t) = NULL_TREE;
2395
2396 return t;
2397 }
2398
2399 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2400 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2401 The latter determines the length of the HOST_WIDE_INT vector. */
2402
2403 tree
2404 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2405 {
2406 tree t;
2407 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2408 + sizeof (struct tree_int_cst));
2409
2410 gcc_assert (len);
2411 record_node_allocation_statistics (INTEGER_CST, length);
2412
2413 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2414
2415 TREE_SET_CODE (t, INTEGER_CST);
2416 TREE_INT_CST_NUNITS (t) = len;
2417 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2418 /* to_offset can only be applied to trees that are offset_int-sized
2419 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2420 must be exactly the precision of offset_int and so LEN is correct. */
2421 if (ext_len <= OFFSET_INT_ELTS)
2422 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2423 else
2424 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2425
2426 TREE_CONSTANT (t) = 1;
2427
2428 return t;
2429 }
2430
2431 /* Build a newly constructed TREE_VEC node of length LEN. */
2432
2433 tree
2434 make_tree_vec (int len MEM_STAT_DECL)
2435 {
2436 tree t;
2437 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2438
2439 record_node_allocation_statistics (TREE_VEC, length);
2440
2441 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2442
2443 TREE_SET_CODE (t, TREE_VEC);
2444 TREE_VEC_LENGTH (t) = len;
2445
2446 return t;
2447 }
2448
2449 /* Grow a TREE_VEC node to new length LEN. */
2450
2451 tree
2452 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2453 {
2454 gcc_assert (TREE_CODE (v) == TREE_VEC);
2455
2456 int oldlen = TREE_VEC_LENGTH (v);
2457 gcc_assert (len > oldlen);
2458
2459 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2460 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2461
2462 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2463
2464 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2465
2466 TREE_VEC_LENGTH (v) = len;
2467
2468 return v;
2469 }
2470 \f
2471 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2472 fixed, and scalar, complex or vector. */
2473
2474 int
2475 zerop (const_tree expr)
2476 {
2477 return (integer_zerop (expr)
2478 || real_zerop (expr)
2479 || fixed_zerop (expr));
2480 }
2481
2482 /* Return 1 if EXPR is the integer constant zero or a complex constant
2483 of zero. */
2484
2485 int
2486 integer_zerop (const_tree expr)
2487 {
2488 switch (TREE_CODE (expr))
2489 {
2490 case INTEGER_CST:
2491 return wi::to_wide (expr) == 0;
2492 case COMPLEX_CST:
2493 return (integer_zerop (TREE_REALPART (expr))
2494 && integer_zerop (TREE_IMAGPART (expr)));
2495 case VECTOR_CST:
2496 return (VECTOR_CST_NPATTERNS (expr) == 1
2497 && VECTOR_CST_DUPLICATE_P (expr)
2498 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2499 default:
2500 return false;
2501 }
2502 }
2503
2504 /* Return 1 if EXPR is the integer constant one or the corresponding
2505 complex constant. */
2506
2507 int
2508 integer_onep (const_tree expr)
2509 {
2510 switch (TREE_CODE (expr))
2511 {
2512 case INTEGER_CST:
2513 return wi::eq_p (wi::to_widest (expr), 1);
2514 case COMPLEX_CST:
2515 return (integer_onep (TREE_REALPART (expr))
2516 && integer_zerop (TREE_IMAGPART (expr)));
2517 case VECTOR_CST:
2518 return (VECTOR_CST_NPATTERNS (expr) == 1
2519 && VECTOR_CST_DUPLICATE_P (expr)
2520 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2521 default:
2522 return false;
2523 }
2524 }
2525
2526 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2527 return 1 if every piece is the integer constant one. */
2528
2529 int
2530 integer_each_onep (const_tree expr)
2531 {
2532 if (TREE_CODE (expr) == COMPLEX_CST)
2533 return (integer_onep (TREE_REALPART (expr))
2534 && integer_onep (TREE_IMAGPART (expr)));
2535 else
2536 return integer_onep (expr);
2537 }
2538
2539 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2540 it contains, or a complex or vector whose subparts are such integers. */
2541
2542 int
2543 integer_all_onesp (const_tree expr)
2544 {
2545 if (TREE_CODE (expr) == COMPLEX_CST
2546 && integer_all_onesp (TREE_REALPART (expr))
2547 && integer_all_onesp (TREE_IMAGPART (expr)))
2548 return 1;
2549
2550 else if (TREE_CODE (expr) == VECTOR_CST)
2551 return (VECTOR_CST_NPATTERNS (expr) == 1
2552 && VECTOR_CST_DUPLICATE_P (expr)
2553 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2554
2555 else if (TREE_CODE (expr) != INTEGER_CST)
2556 return 0;
2557
2558 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2559 == wi::to_wide (expr));
2560 }
2561
2562 /* Return 1 if EXPR is the integer constant minus one. */
2563
2564 int
2565 integer_minus_onep (const_tree expr)
2566 {
2567 if (TREE_CODE (expr) == COMPLEX_CST)
2568 return (integer_all_onesp (TREE_REALPART (expr))
2569 && integer_zerop (TREE_IMAGPART (expr)));
2570 else
2571 return integer_all_onesp (expr);
2572 }
2573
2574 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2575 one bit on). */
2576
2577 int
2578 integer_pow2p (const_tree expr)
2579 {
2580 if (TREE_CODE (expr) == COMPLEX_CST
2581 && integer_pow2p (TREE_REALPART (expr))
2582 && integer_zerop (TREE_IMAGPART (expr)))
2583 return 1;
2584
2585 if (TREE_CODE (expr) != INTEGER_CST)
2586 return 0;
2587
2588 return wi::popcount (wi::to_wide (expr)) == 1;
2589 }
2590
2591 /* Return 1 if EXPR is an integer constant other than zero or a
2592 complex constant other than zero. */
2593
2594 int
2595 integer_nonzerop (const_tree expr)
2596 {
2597 return ((TREE_CODE (expr) == INTEGER_CST
2598 && wi::to_wide (expr) != 0)
2599 || (TREE_CODE (expr) == COMPLEX_CST
2600 && (integer_nonzerop (TREE_REALPART (expr))
2601 || integer_nonzerop (TREE_IMAGPART (expr)))));
2602 }
2603
2604 /* Return 1 if EXPR is the integer constant one. For vector,
2605 return 1 if every piece is the integer constant minus one
2606 (representing the value TRUE). */
2607
2608 int
2609 integer_truep (const_tree expr)
2610 {
2611 if (TREE_CODE (expr) == VECTOR_CST)
2612 return integer_all_onesp (expr);
2613 return integer_onep (expr);
2614 }
2615
2616 /* Return 1 if EXPR is the fixed-point constant zero. */
2617
2618 int
2619 fixed_zerop (const_tree expr)
2620 {
2621 return (TREE_CODE (expr) == FIXED_CST
2622 && TREE_FIXED_CST (expr).data.is_zero ());
2623 }
2624
2625 /* Return the power of two represented by a tree node known to be a
2626 power of two. */
2627
2628 int
2629 tree_log2 (const_tree expr)
2630 {
2631 if (TREE_CODE (expr) == COMPLEX_CST)
2632 return tree_log2 (TREE_REALPART (expr));
2633
2634 return wi::exact_log2 (wi::to_wide (expr));
2635 }
2636
2637 /* Similar, but return the largest integer Y such that 2 ** Y is less
2638 than or equal to EXPR. */
2639
2640 int
2641 tree_floor_log2 (const_tree expr)
2642 {
2643 if (TREE_CODE (expr) == COMPLEX_CST)
2644 return tree_log2 (TREE_REALPART (expr));
2645
2646 return wi::floor_log2 (wi::to_wide (expr));
2647 }
2648
2649 /* Return number of known trailing zero bits in EXPR, or, if the value of
2650 EXPR is known to be zero, the precision of it's type. */
2651
2652 unsigned int
2653 tree_ctz (const_tree expr)
2654 {
2655 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2656 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2657 return 0;
2658
2659 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2660 switch (TREE_CODE (expr))
2661 {
2662 case INTEGER_CST:
2663 ret1 = wi::ctz (wi::to_wide (expr));
2664 return MIN (ret1, prec);
2665 case SSA_NAME:
2666 ret1 = wi::ctz (get_nonzero_bits (expr));
2667 return MIN (ret1, prec);
2668 case PLUS_EXPR:
2669 case MINUS_EXPR:
2670 case BIT_IOR_EXPR:
2671 case BIT_XOR_EXPR:
2672 case MIN_EXPR:
2673 case MAX_EXPR:
2674 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2675 if (ret1 == 0)
2676 return ret1;
2677 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2678 return MIN (ret1, ret2);
2679 case POINTER_PLUS_EXPR:
2680 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2681 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2682 /* Second operand is sizetype, which could be in theory
2683 wider than pointer's precision. Make sure we never
2684 return more than prec. */
2685 ret2 = MIN (ret2, prec);
2686 return MIN (ret1, ret2);
2687 case BIT_AND_EXPR:
2688 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2689 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2690 return MAX (ret1, ret2);
2691 case MULT_EXPR:
2692 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2693 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2694 return MIN (ret1 + ret2, prec);
2695 case LSHIFT_EXPR:
2696 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2697 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2698 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2699 {
2700 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2701 return MIN (ret1 + ret2, prec);
2702 }
2703 return ret1;
2704 case RSHIFT_EXPR:
2705 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2706 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2707 {
2708 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2709 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2710 if (ret1 > ret2)
2711 return ret1 - ret2;
2712 }
2713 return 0;
2714 case TRUNC_DIV_EXPR:
2715 case CEIL_DIV_EXPR:
2716 case FLOOR_DIV_EXPR:
2717 case ROUND_DIV_EXPR:
2718 case EXACT_DIV_EXPR:
2719 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2720 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2721 {
2722 int l = tree_log2 (TREE_OPERAND (expr, 1));
2723 if (l >= 0)
2724 {
2725 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2726 ret2 = l;
2727 if (ret1 > ret2)
2728 return ret1 - ret2;
2729 }
2730 }
2731 return 0;
2732 CASE_CONVERT:
2733 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2734 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2735 ret1 = prec;
2736 return MIN (ret1, prec);
2737 case SAVE_EXPR:
2738 return tree_ctz (TREE_OPERAND (expr, 0));
2739 case COND_EXPR:
2740 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2741 if (ret1 == 0)
2742 return 0;
2743 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2744 return MIN (ret1, ret2);
2745 case COMPOUND_EXPR:
2746 return tree_ctz (TREE_OPERAND (expr, 1));
2747 case ADDR_EXPR:
2748 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2749 if (ret1 > BITS_PER_UNIT)
2750 {
2751 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2752 return MIN (ret1, prec);
2753 }
2754 return 0;
2755 default:
2756 return 0;
2757 }
2758 }
2759
2760 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2761 decimal float constants, so don't return 1 for them. */
2762
2763 int
2764 real_zerop (const_tree expr)
2765 {
2766 switch (TREE_CODE (expr))
2767 {
2768 case REAL_CST:
2769 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2770 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2771 case COMPLEX_CST:
2772 return real_zerop (TREE_REALPART (expr))
2773 && real_zerop (TREE_IMAGPART (expr));
2774 case VECTOR_CST:
2775 {
2776 /* Don't simply check for a duplicate because the predicate
2777 accepts both +0.0 and -0.0. */
2778 unsigned count = vector_cst_encoded_nelts (expr);
2779 for (unsigned int i = 0; i < count; ++i)
2780 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2781 return false;
2782 return true;
2783 }
2784 default:
2785 return false;
2786 }
2787 }
2788
2789 /* Return 1 if EXPR is the real constant one in real or complex form.
2790 Trailing zeroes matter for decimal float constants, so don't return
2791 1 for them. */
2792
2793 int
2794 real_onep (const_tree expr)
2795 {
2796 switch (TREE_CODE (expr))
2797 {
2798 case REAL_CST:
2799 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2800 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2801 case COMPLEX_CST:
2802 return real_onep (TREE_REALPART (expr))
2803 && real_zerop (TREE_IMAGPART (expr));
2804 case VECTOR_CST:
2805 return (VECTOR_CST_NPATTERNS (expr) == 1
2806 && VECTOR_CST_DUPLICATE_P (expr)
2807 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2808 default:
2809 return false;
2810 }
2811 }
2812
2813 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2814 matter for decimal float constants, so don't return 1 for them. */
2815
2816 int
2817 real_minus_onep (const_tree expr)
2818 {
2819 switch (TREE_CODE (expr))
2820 {
2821 case REAL_CST:
2822 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2823 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2824 case COMPLEX_CST:
2825 return real_minus_onep (TREE_REALPART (expr))
2826 && real_zerop (TREE_IMAGPART (expr));
2827 case VECTOR_CST:
2828 return (VECTOR_CST_NPATTERNS (expr) == 1
2829 && VECTOR_CST_DUPLICATE_P (expr)
2830 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2831 default:
2832 return false;
2833 }
2834 }
2835
2836 /* Nonzero if EXP is a constant or a cast of a constant. */
2837
2838 int
2839 really_constant_p (const_tree exp)
2840 {
2841 /* This is not quite the same as STRIP_NOPS. It does more. */
2842 while (CONVERT_EXPR_P (exp)
2843 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2844 exp = TREE_OPERAND (exp, 0);
2845 return TREE_CONSTANT (exp);
2846 }
2847
2848 /* Return true if T holds a polynomial pointer difference, storing it in
2849 *VALUE if so. A true return means that T's precision is no greater
2850 than 64 bits, which is the largest address space we support, so *VALUE
2851 never loses precision. However, the signedness of the result does
2852 not necessarily match the signedness of T: sometimes an unsigned type
2853 like sizetype is used to encode a value that is actually negative. */
2854
2855 bool
2856 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2857 {
2858 if (!t)
2859 return false;
2860 if (TREE_CODE (t) == INTEGER_CST)
2861 {
2862 if (!cst_and_fits_in_hwi (t))
2863 return false;
2864 *value = int_cst_value (t);
2865 return true;
2866 }
2867 if (POLY_INT_CST_P (t))
2868 {
2869 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2870 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2871 return false;
2872 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2873 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2874 return true;
2875 }
2876 return false;
2877 }
2878
2879 poly_int64
2880 tree_to_poly_int64 (const_tree t)
2881 {
2882 gcc_assert (tree_fits_poly_int64_p (t));
2883 if (POLY_INT_CST_P (t))
2884 return poly_int_cst_value (t).force_shwi ();
2885 return TREE_INT_CST_LOW (t);
2886 }
2887
2888 poly_uint64
2889 tree_to_poly_uint64 (const_tree t)
2890 {
2891 gcc_assert (tree_fits_poly_uint64_p (t));
2892 if (POLY_INT_CST_P (t))
2893 return poly_int_cst_value (t).force_uhwi ();
2894 return TREE_INT_CST_LOW (t);
2895 }
2896 \f
2897 /* Return first list element whose TREE_VALUE is ELEM.
2898 Return 0 if ELEM is not in LIST. */
2899
2900 tree
2901 value_member (tree elem, tree list)
2902 {
2903 while (list)
2904 {
2905 if (elem == TREE_VALUE (list))
2906 return list;
2907 list = TREE_CHAIN (list);
2908 }
2909 return NULL_TREE;
2910 }
2911
2912 /* Return first list element whose TREE_PURPOSE is ELEM.
2913 Return 0 if ELEM is not in LIST. */
2914
2915 tree
2916 purpose_member (const_tree elem, tree list)
2917 {
2918 while (list)
2919 {
2920 if (elem == TREE_PURPOSE (list))
2921 return list;
2922 list = TREE_CHAIN (list);
2923 }
2924 return NULL_TREE;
2925 }
2926
2927 /* Return true if ELEM is in V. */
2928
2929 bool
2930 vec_member (const_tree elem, vec<tree, va_gc> *v)
2931 {
2932 unsigned ix;
2933 tree t;
2934 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2935 if (elem == t)
2936 return true;
2937 return false;
2938 }
2939
2940 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2941 NULL_TREE. */
2942
2943 tree
2944 chain_index (int idx, tree chain)
2945 {
2946 for (; chain && idx > 0; --idx)
2947 chain = TREE_CHAIN (chain);
2948 return chain;
2949 }
2950
2951 /* Return nonzero if ELEM is part of the chain CHAIN. */
2952
2953 int
2954 chain_member (const_tree elem, const_tree chain)
2955 {
2956 while (chain)
2957 {
2958 if (elem == chain)
2959 return 1;
2960 chain = DECL_CHAIN (chain);
2961 }
2962
2963 return 0;
2964 }
2965
2966 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2967 We expect a null pointer to mark the end of the chain.
2968 This is the Lisp primitive `length'. */
2969
2970 int
2971 list_length (const_tree t)
2972 {
2973 const_tree p = t;
2974 #ifdef ENABLE_TREE_CHECKING
2975 const_tree q = t;
2976 #endif
2977 int len = 0;
2978
2979 while (p)
2980 {
2981 p = TREE_CHAIN (p);
2982 #ifdef ENABLE_TREE_CHECKING
2983 if (len % 2)
2984 q = TREE_CHAIN (q);
2985 gcc_assert (p != q);
2986 #endif
2987 len++;
2988 }
2989
2990 return len;
2991 }
2992
2993 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2994 UNION_TYPE TYPE, or NULL_TREE if none. */
2995
2996 tree
2997 first_field (const_tree type)
2998 {
2999 tree t = TYPE_FIELDS (type);
3000 while (t && TREE_CODE (t) != FIELD_DECL)
3001 t = TREE_CHAIN (t);
3002 return t;
3003 }
3004
3005 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3006 by modifying the last node in chain 1 to point to chain 2.
3007 This is the Lisp primitive `nconc'. */
3008
3009 tree
3010 chainon (tree op1, tree op2)
3011 {
3012 tree t1;
3013
3014 if (!op1)
3015 return op2;
3016 if (!op2)
3017 return op1;
3018
3019 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3020 continue;
3021 TREE_CHAIN (t1) = op2;
3022
3023 #ifdef ENABLE_TREE_CHECKING
3024 {
3025 tree t2;
3026 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3027 gcc_assert (t2 != t1);
3028 }
3029 #endif
3030
3031 return op1;
3032 }
3033
3034 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3035
3036 tree
3037 tree_last (tree chain)
3038 {
3039 tree next;
3040 if (chain)
3041 while ((next = TREE_CHAIN (chain)))
3042 chain = next;
3043 return chain;
3044 }
3045
3046 /* Reverse the order of elements in the chain T,
3047 and return the new head of the chain (old last element). */
3048
3049 tree
3050 nreverse (tree t)
3051 {
3052 tree prev = 0, decl, next;
3053 for (decl = t; decl; decl = next)
3054 {
3055 /* We shouldn't be using this function to reverse BLOCK chains; we
3056 have blocks_nreverse for that. */
3057 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3058 next = TREE_CHAIN (decl);
3059 TREE_CHAIN (decl) = prev;
3060 prev = decl;
3061 }
3062 return prev;
3063 }
3064 \f
3065 /* Return a newly created TREE_LIST node whose
3066 purpose and value fields are PARM and VALUE. */
3067
3068 tree
3069 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3070 {
3071 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3072 TREE_PURPOSE (t) = parm;
3073 TREE_VALUE (t) = value;
3074 return t;
3075 }
3076
3077 /* Build a chain of TREE_LIST nodes from a vector. */
3078
3079 tree
3080 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3081 {
3082 tree ret = NULL_TREE;
3083 tree *pp = &ret;
3084 unsigned int i;
3085 tree t;
3086 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3087 {
3088 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3089 pp = &TREE_CHAIN (*pp);
3090 }
3091 return ret;
3092 }
3093
3094 /* Return a newly created TREE_LIST node whose
3095 purpose and value fields are PURPOSE and VALUE
3096 and whose TREE_CHAIN is CHAIN. */
3097
3098 tree
3099 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3100 {
3101 tree node;
3102
3103 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3104 memset (node, 0, sizeof (struct tree_common));
3105
3106 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3107
3108 TREE_SET_CODE (node, TREE_LIST);
3109 TREE_CHAIN (node) = chain;
3110 TREE_PURPOSE (node) = purpose;
3111 TREE_VALUE (node) = value;
3112 return node;
3113 }
3114
3115 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3116 trees. */
3117
3118 vec<tree, va_gc> *
3119 ctor_to_vec (tree ctor)
3120 {
3121 vec<tree, va_gc> *vec;
3122 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3123 unsigned int ix;
3124 tree val;
3125
3126 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3127 vec->quick_push (val);
3128
3129 return vec;
3130 }
3131 \f
3132 /* Return the size nominally occupied by an object of type TYPE
3133 when it resides in memory. The value is measured in units of bytes,
3134 and its data type is that normally used for type sizes
3135 (which is the first type created by make_signed_type or
3136 make_unsigned_type). */
3137
3138 tree
3139 size_in_bytes_loc (location_t loc, const_tree type)
3140 {
3141 tree t;
3142
3143 if (type == error_mark_node)
3144 return integer_zero_node;
3145
3146 type = TYPE_MAIN_VARIANT (type);
3147 t = TYPE_SIZE_UNIT (type);
3148
3149 if (t == 0)
3150 {
3151 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3152 return size_zero_node;
3153 }
3154
3155 return t;
3156 }
3157
3158 /* Return the size of TYPE (in bytes) as a wide integer
3159 or return -1 if the size can vary or is larger than an integer. */
3160
3161 HOST_WIDE_INT
3162 int_size_in_bytes (const_tree type)
3163 {
3164 tree t;
3165
3166 if (type == error_mark_node)
3167 return 0;
3168
3169 type = TYPE_MAIN_VARIANT (type);
3170 t = TYPE_SIZE_UNIT (type);
3171
3172 if (t && tree_fits_uhwi_p (t))
3173 return TREE_INT_CST_LOW (t);
3174 else
3175 return -1;
3176 }
3177
3178 /* Return the maximum size of TYPE (in bytes) as a wide integer
3179 or return -1 if the size can vary or is larger than an integer. */
3180
3181 HOST_WIDE_INT
3182 max_int_size_in_bytes (const_tree type)
3183 {
3184 HOST_WIDE_INT size = -1;
3185 tree size_tree;
3186
3187 /* If this is an array type, check for a possible MAX_SIZE attached. */
3188
3189 if (TREE_CODE (type) == ARRAY_TYPE)
3190 {
3191 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3192
3193 if (size_tree && tree_fits_uhwi_p (size_tree))
3194 size = tree_to_uhwi (size_tree);
3195 }
3196
3197 /* If we still haven't been able to get a size, see if the language
3198 can compute a maximum size. */
3199
3200 if (size == -1)
3201 {
3202 size_tree = lang_hooks.types.max_size (type);
3203
3204 if (size_tree && tree_fits_uhwi_p (size_tree))
3205 size = tree_to_uhwi (size_tree);
3206 }
3207
3208 return size;
3209 }
3210 \f
3211 /* Return the bit position of FIELD, in bits from the start of the record.
3212 This is a tree of type bitsizetype. */
3213
3214 tree
3215 bit_position (const_tree field)
3216 {
3217 return bit_from_pos (DECL_FIELD_OFFSET (field),
3218 DECL_FIELD_BIT_OFFSET (field));
3219 }
3220 \f
3221 /* Return the byte position of FIELD, in bytes from the start of the record.
3222 This is a tree of type sizetype. */
3223
3224 tree
3225 byte_position (const_tree field)
3226 {
3227 return byte_from_pos (DECL_FIELD_OFFSET (field),
3228 DECL_FIELD_BIT_OFFSET (field));
3229 }
3230
3231 /* Likewise, but return as an integer. It must be representable in
3232 that way (since it could be a signed value, we don't have the
3233 option of returning -1 like int_size_in_byte can. */
3234
3235 HOST_WIDE_INT
3236 int_byte_position (const_tree field)
3237 {
3238 return tree_to_shwi (byte_position (field));
3239 }
3240 \f
3241 /* Return the strictest alignment, in bits, that T is known to have. */
3242
3243 unsigned int
3244 expr_align (const_tree t)
3245 {
3246 unsigned int align0, align1;
3247
3248 switch (TREE_CODE (t))
3249 {
3250 CASE_CONVERT: case NON_LVALUE_EXPR:
3251 /* If we have conversions, we know that the alignment of the
3252 object must meet each of the alignments of the types. */
3253 align0 = expr_align (TREE_OPERAND (t, 0));
3254 align1 = TYPE_ALIGN (TREE_TYPE (t));
3255 return MAX (align0, align1);
3256
3257 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3258 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3259 case CLEANUP_POINT_EXPR:
3260 /* These don't change the alignment of an object. */
3261 return expr_align (TREE_OPERAND (t, 0));
3262
3263 case COND_EXPR:
3264 /* The best we can do is say that the alignment is the least aligned
3265 of the two arms. */
3266 align0 = expr_align (TREE_OPERAND (t, 1));
3267 align1 = expr_align (TREE_OPERAND (t, 2));
3268 return MIN (align0, align1);
3269
3270 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3271 meaningfully, it's always 1. */
3272 case LABEL_DECL: case CONST_DECL:
3273 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3274 case FUNCTION_DECL:
3275 gcc_assert (DECL_ALIGN (t) != 0);
3276 return DECL_ALIGN (t);
3277
3278 default:
3279 break;
3280 }
3281
3282 /* Otherwise take the alignment from that of the type. */
3283 return TYPE_ALIGN (TREE_TYPE (t));
3284 }
3285 \f
3286 /* Return, as a tree node, the number of elements for TYPE (which is an
3287 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3288
3289 tree
3290 array_type_nelts (const_tree type)
3291 {
3292 tree index_type, min, max;
3293
3294 /* If they did it with unspecified bounds, then we should have already
3295 given an error about it before we got here. */
3296 if (! TYPE_DOMAIN (type))
3297 return error_mark_node;
3298
3299 index_type = TYPE_DOMAIN (type);
3300 min = TYPE_MIN_VALUE (index_type);
3301 max = TYPE_MAX_VALUE (index_type);
3302
3303 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3304 if (!max)
3305 return error_mark_node;
3306
3307 return (integer_zerop (min)
3308 ? max
3309 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3310 }
3311 \f
3312 /* If arg is static -- a reference to an object in static storage -- then
3313 return the object. This is not the same as the C meaning of `static'.
3314 If arg isn't static, return NULL. */
3315
3316 tree
3317 staticp (tree arg)
3318 {
3319 switch (TREE_CODE (arg))
3320 {
3321 case FUNCTION_DECL:
3322 /* Nested functions are static, even though taking their address will
3323 involve a trampoline as we unnest the nested function and create
3324 the trampoline on the tree level. */
3325 return arg;
3326
3327 case VAR_DECL:
3328 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3329 && ! DECL_THREAD_LOCAL_P (arg)
3330 && ! DECL_DLLIMPORT_P (arg)
3331 ? arg : NULL);
3332
3333 case CONST_DECL:
3334 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3335 ? arg : NULL);
3336
3337 case CONSTRUCTOR:
3338 return TREE_STATIC (arg) ? arg : NULL;
3339
3340 case LABEL_DECL:
3341 case STRING_CST:
3342 return arg;
3343
3344 case COMPONENT_REF:
3345 /* If the thing being referenced is not a field, then it is
3346 something language specific. */
3347 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3348
3349 /* If we are referencing a bitfield, we can't evaluate an
3350 ADDR_EXPR at compile time and so it isn't a constant. */
3351 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3352 return NULL;
3353
3354 return staticp (TREE_OPERAND (arg, 0));
3355
3356 case BIT_FIELD_REF:
3357 return NULL;
3358
3359 case INDIRECT_REF:
3360 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3361
3362 case ARRAY_REF:
3363 case ARRAY_RANGE_REF:
3364 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3365 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3366 return staticp (TREE_OPERAND (arg, 0));
3367 else
3368 return NULL;
3369
3370 case COMPOUND_LITERAL_EXPR:
3371 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3372
3373 default:
3374 return NULL;
3375 }
3376 }
3377
3378 \f
3379
3380
3381 /* Return whether OP is a DECL whose address is function-invariant. */
3382
3383 bool
3384 decl_address_invariant_p (const_tree op)
3385 {
3386 /* The conditions below are slightly less strict than the one in
3387 staticp. */
3388
3389 switch (TREE_CODE (op))
3390 {
3391 case PARM_DECL:
3392 case RESULT_DECL:
3393 case LABEL_DECL:
3394 case FUNCTION_DECL:
3395 return true;
3396
3397 case VAR_DECL:
3398 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3399 || DECL_THREAD_LOCAL_P (op)
3400 || DECL_CONTEXT (op) == current_function_decl
3401 || decl_function_context (op) == current_function_decl)
3402 return true;
3403 break;
3404
3405 case CONST_DECL:
3406 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3407 || decl_function_context (op) == current_function_decl)
3408 return true;
3409 break;
3410
3411 default:
3412 break;
3413 }
3414
3415 return false;
3416 }
3417
3418 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3419
3420 bool
3421 decl_address_ip_invariant_p (const_tree op)
3422 {
3423 /* The conditions below are slightly less strict than the one in
3424 staticp. */
3425
3426 switch (TREE_CODE (op))
3427 {
3428 case LABEL_DECL:
3429 case FUNCTION_DECL:
3430 case STRING_CST:
3431 return true;
3432
3433 case VAR_DECL:
3434 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3435 && !DECL_DLLIMPORT_P (op))
3436 || DECL_THREAD_LOCAL_P (op))
3437 return true;
3438 break;
3439
3440 case CONST_DECL:
3441 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3442 return true;
3443 break;
3444
3445 default:
3446 break;
3447 }
3448
3449 return false;
3450 }
3451
3452
3453 /* Return true if T is function-invariant (internal function, does
3454 not handle arithmetic; that's handled in skip_simple_arithmetic and
3455 tree_invariant_p). */
3456
3457 static bool
3458 tree_invariant_p_1 (tree t)
3459 {
3460 tree op;
3461
3462 if (TREE_CONSTANT (t)
3463 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3464 return true;
3465
3466 switch (TREE_CODE (t))
3467 {
3468 case SAVE_EXPR:
3469 return true;
3470
3471 case ADDR_EXPR:
3472 op = TREE_OPERAND (t, 0);
3473 while (handled_component_p (op))
3474 {
3475 switch (TREE_CODE (op))
3476 {
3477 case ARRAY_REF:
3478 case ARRAY_RANGE_REF:
3479 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3480 || TREE_OPERAND (op, 2) != NULL_TREE
3481 || TREE_OPERAND (op, 3) != NULL_TREE)
3482 return false;
3483 break;
3484
3485 case COMPONENT_REF:
3486 if (TREE_OPERAND (op, 2) != NULL_TREE)
3487 return false;
3488 break;
3489
3490 default:;
3491 }
3492 op = TREE_OPERAND (op, 0);
3493 }
3494
3495 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3496
3497 default:
3498 break;
3499 }
3500
3501 return false;
3502 }
3503
3504 /* Return true if T is function-invariant. */
3505
3506 bool
3507 tree_invariant_p (tree t)
3508 {
3509 tree inner = skip_simple_arithmetic (t);
3510 return tree_invariant_p_1 (inner);
3511 }
3512
3513 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3514 Do this to any expression which may be used in more than one place,
3515 but must be evaluated only once.
3516
3517 Normally, expand_expr would reevaluate the expression each time.
3518 Calling save_expr produces something that is evaluated and recorded
3519 the first time expand_expr is called on it. Subsequent calls to
3520 expand_expr just reuse the recorded value.
3521
3522 The call to expand_expr that generates code that actually computes
3523 the value is the first call *at compile time*. Subsequent calls
3524 *at compile time* generate code to use the saved value.
3525 This produces correct result provided that *at run time* control
3526 always flows through the insns made by the first expand_expr
3527 before reaching the other places where the save_expr was evaluated.
3528 You, the caller of save_expr, must make sure this is so.
3529
3530 Constants, and certain read-only nodes, are returned with no
3531 SAVE_EXPR because that is safe. Expressions containing placeholders
3532 are not touched; see tree.def for an explanation of what these
3533 are used for. */
3534
3535 tree
3536 save_expr (tree expr)
3537 {
3538 tree inner;
3539
3540 /* If the tree evaluates to a constant, then we don't want to hide that
3541 fact (i.e. this allows further folding, and direct checks for constants).
3542 However, a read-only object that has side effects cannot be bypassed.
3543 Since it is no problem to reevaluate literals, we just return the
3544 literal node. */
3545 inner = skip_simple_arithmetic (expr);
3546 if (TREE_CODE (inner) == ERROR_MARK)
3547 return inner;
3548
3549 if (tree_invariant_p_1 (inner))
3550 return expr;
3551
3552 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3553 it means that the size or offset of some field of an object depends on
3554 the value within another field.
3555
3556 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3557 and some variable since it would then need to be both evaluated once and
3558 evaluated more than once. Front-ends must assure this case cannot
3559 happen by surrounding any such subexpressions in their own SAVE_EXPR
3560 and forcing evaluation at the proper time. */
3561 if (contains_placeholder_p (inner))
3562 return expr;
3563
3564 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3565
3566 /* This expression might be placed ahead of a jump to ensure that the
3567 value was computed on both sides of the jump. So make sure it isn't
3568 eliminated as dead. */
3569 TREE_SIDE_EFFECTS (expr) = 1;
3570 return expr;
3571 }
3572
3573 /* Look inside EXPR into any simple arithmetic operations. Return the
3574 outermost non-arithmetic or non-invariant node. */
3575
3576 tree
3577 skip_simple_arithmetic (tree expr)
3578 {
3579 /* We don't care about whether this can be used as an lvalue in this
3580 context. */
3581 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3582 expr = TREE_OPERAND (expr, 0);
3583
3584 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3585 a constant, it will be more efficient to not make another SAVE_EXPR since
3586 it will allow better simplification and GCSE will be able to merge the
3587 computations if they actually occur. */
3588 while (true)
3589 {
3590 if (UNARY_CLASS_P (expr))
3591 expr = TREE_OPERAND (expr, 0);
3592 else if (BINARY_CLASS_P (expr))
3593 {
3594 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3595 expr = TREE_OPERAND (expr, 0);
3596 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3597 expr = TREE_OPERAND (expr, 1);
3598 else
3599 break;
3600 }
3601 else
3602 break;
3603 }
3604
3605 return expr;
3606 }
3607
3608 /* Look inside EXPR into simple arithmetic operations involving constants.
3609 Return the outermost non-arithmetic or non-constant node. */
3610
3611 tree
3612 skip_simple_constant_arithmetic (tree expr)
3613 {
3614 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3615 expr = TREE_OPERAND (expr, 0);
3616
3617 while (true)
3618 {
3619 if (UNARY_CLASS_P (expr))
3620 expr = TREE_OPERAND (expr, 0);
3621 else if (BINARY_CLASS_P (expr))
3622 {
3623 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3624 expr = TREE_OPERAND (expr, 0);
3625 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3626 expr = TREE_OPERAND (expr, 1);
3627 else
3628 break;
3629 }
3630 else
3631 break;
3632 }
3633
3634 return expr;
3635 }
3636
3637 /* Return which tree structure is used by T. */
3638
3639 enum tree_node_structure_enum
3640 tree_node_structure (const_tree t)
3641 {
3642 const enum tree_code code = TREE_CODE (t);
3643 return tree_node_structure_for_code (code);
3644 }
3645
3646 /* Set various status flags when building a CALL_EXPR object T. */
3647
3648 static void
3649 process_call_operands (tree t)
3650 {
3651 bool side_effects = TREE_SIDE_EFFECTS (t);
3652 bool read_only = false;
3653 int i = call_expr_flags (t);
3654
3655 /* Calls have side-effects, except those to const or pure functions. */
3656 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3657 side_effects = true;
3658 /* Propagate TREE_READONLY of arguments for const functions. */
3659 if (i & ECF_CONST)
3660 read_only = true;
3661
3662 if (!side_effects || read_only)
3663 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3664 {
3665 tree op = TREE_OPERAND (t, i);
3666 if (op && TREE_SIDE_EFFECTS (op))
3667 side_effects = true;
3668 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3669 read_only = false;
3670 }
3671
3672 TREE_SIDE_EFFECTS (t) = side_effects;
3673 TREE_READONLY (t) = read_only;
3674 }
3675 \f
3676 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3677 size or offset that depends on a field within a record. */
3678
3679 bool
3680 contains_placeholder_p (const_tree exp)
3681 {
3682 enum tree_code code;
3683
3684 if (!exp)
3685 return 0;
3686
3687 code = TREE_CODE (exp);
3688 if (code == PLACEHOLDER_EXPR)
3689 return 1;
3690
3691 switch (TREE_CODE_CLASS (code))
3692 {
3693 case tcc_reference:
3694 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3695 position computations since they will be converted into a
3696 WITH_RECORD_EXPR involving the reference, which will assume
3697 here will be valid. */
3698 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3699
3700 case tcc_exceptional:
3701 if (code == TREE_LIST)
3702 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3703 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3704 break;
3705
3706 case tcc_unary:
3707 case tcc_binary:
3708 case tcc_comparison:
3709 case tcc_expression:
3710 switch (code)
3711 {
3712 case COMPOUND_EXPR:
3713 /* Ignoring the first operand isn't quite right, but works best. */
3714 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3715
3716 case COND_EXPR:
3717 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3718 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3719 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3720
3721 case SAVE_EXPR:
3722 /* The save_expr function never wraps anything containing
3723 a PLACEHOLDER_EXPR. */
3724 return 0;
3725
3726 default:
3727 break;
3728 }
3729
3730 switch (TREE_CODE_LENGTH (code))
3731 {
3732 case 1:
3733 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3734 case 2:
3735 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3736 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3737 default:
3738 return 0;
3739 }
3740
3741 case tcc_vl_exp:
3742 switch (code)
3743 {
3744 case CALL_EXPR:
3745 {
3746 const_tree arg;
3747 const_call_expr_arg_iterator iter;
3748 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3749 if (CONTAINS_PLACEHOLDER_P (arg))
3750 return 1;
3751 return 0;
3752 }
3753 default:
3754 return 0;
3755 }
3756
3757 default:
3758 return 0;
3759 }
3760 return 0;
3761 }
3762
3763 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3764 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3765 field positions. */
3766
3767 static bool
3768 type_contains_placeholder_1 (const_tree type)
3769 {
3770 /* If the size contains a placeholder or the parent type (component type in
3771 the case of arrays) type involves a placeholder, this type does. */
3772 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3773 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3774 || (!POINTER_TYPE_P (type)
3775 && TREE_TYPE (type)
3776 && type_contains_placeholder_p (TREE_TYPE (type))))
3777 return true;
3778
3779 /* Now do type-specific checks. Note that the last part of the check above
3780 greatly limits what we have to do below. */
3781 switch (TREE_CODE (type))
3782 {
3783 case VOID_TYPE:
3784 case COMPLEX_TYPE:
3785 case ENUMERAL_TYPE:
3786 case BOOLEAN_TYPE:
3787 case POINTER_TYPE:
3788 case OFFSET_TYPE:
3789 case REFERENCE_TYPE:
3790 case METHOD_TYPE:
3791 case FUNCTION_TYPE:
3792 case VECTOR_TYPE:
3793 case NULLPTR_TYPE:
3794 return false;
3795
3796 case INTEGER_TYPE:
3797 case REAL_TYPE:
3798 case FIXED_POINT_TYPE:
3799 /* Here we just check the bounds. */
3800 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3801 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3802
3803 case ARRAY_TYPE:
3804 /* We have already checked the component type above, so just check
3805 the domain type. Flexible array members have a null domain. */
3806 return TYPE_DOMAIN (type) ?
3807 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3808
3809 case RECORD_TYPE:
3810 case UNION_TYPE:
3811 case QUAL_UNION_TYPE:
3812 {
3813 tree field;
3814
3815 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3816 if (TREE_CODE (field) == FIELD_DECL
3817 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3818 || (TREE_CODE (type) == QUAL_UNION_TYPE
3819 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3820 || type_contains_placeholder_p (TREE_TYPE (field))))
3821 return true;
3822
3823 return false;
3824 }
3825
3826 default:
3827 gcc_unreachable ();
3828 }
3829 }
3830
3831 /* Wrapper around above function used to cache its result. */
3832
3833 bool
3834 type_contains_placeholder_p (tree type)
3835 {
3836 bool result;
3837
3838 /* If the contains_placeholder_bits field has been initialized,
3839 then we know the answer. */
3840 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3841 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3842
3843 /* Indicate that we've seen this type node, and the answer is false.
3844 This is what we want to return if we run into recursion via fields. */
3845 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3846
3847 /* Compute the real value. */
3848 result = type_contains_placeholder_1 (type);
3849
3850 /* Store the real value. */
3851 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3852
3853 return result;
3854 }
3855 \f
3856 /* Push tree EXP onto vector QUEUE if it is not already present. */
3857
3858 static void
3859 push_without_duplicates (tree exp, vec<tree> *queue)
3860 {
3861 unsigned int i;
3862 tree iter;
3863
3864 FOR_EACH_VEC_ELT (*queue, i, iter)
3865 if (simple_cst_equal (iter, exp) == 1)
3866 break;
3867
3868 if (!iter)
3869 queue->safe_push (exp);
3870 }
3871
3872 /* Given a tree EXP, find all occurrences of references to fields
3873 in a PLACEHOLDER_EXPR and place them in vector REFS without
3874 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3875 we assume here that EXP contains only arithmetic expressions
3876 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3877 argument list. */
3878
3879 void
3880 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3881 {
3882 enum tree_code code = TREE_CODE (exp);
3883 tree inner;
3884 int i;
3885
3886 /* We handle TREE_LIST and COMPONENT_REF separately. */
3887 if (code == TREE_LIST)
3888 {
3889 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3890 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3891 }
3892 else if (code == COMPONENT_REF)
3893 {
3894 for (inner = TREE_OPERAND (exp, 0);
3895 REFERENCE_CLASS_P (inner);
3896 inner = TREE_OPERAND (inner, 0))
3897 ;
3898
3899 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3900 push_without_duplicates (exp, refs);
3901 else
3902 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3903 }
3904 else
3905 switch (TREE_CODE_CLASS (code))
3906 {
3907 case tcc_constant:
3908 break;
3909
3910 case tcc_declaration:
3911 /* Variables allocated to static storage can stay. */
3912 if (!TREE_STATIC (exp))
3913 push_without_duplicates (exp, refs);
3914 break;
3915
3916 case tcc_expression:
3917 /* This is the pattern built in ada/make_aligning_type. */
3918 if (code == ADDR_EXPR
3919 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3920 {
3921 push_without_duplicates (exp, refs);
3922 break;
3923 }
3924
3925 /* Fall through. */
3926
3927 case tcc_exceptional:
3928 case tcc_unary:
3929 case tcc_binary:
3930 case tcc_comparison:
3931 case tcc_reference:
3932 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3933 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3934 break;
3935
3936 case tcc_vl_exp:
3937 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3938 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3939 break;
3940
3941 default:
3942 gcc_unreachable ();
3943 }
3944 }
3945
3946 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3947 return a tree with all occurrences of references to F in a
3948 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3949 CONST_DECLs. Note that we assume here that EXP contains only
3950 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3951 occurring only in their argument list. */
3952
3953 tree
3954 substitute_in_expr (tree exp, tree f, tree r)
3955 {
3956 enum tree_code code = TREE_CODE (exp);
3957 tree op0, op1, op2, op3;
3958 tree new_tree;
3959
3960 /* We handle TREE_LIST and COMPONENT_REF separately. */
3961 if (code == TREE_LIST)
3962 {
3963 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3964 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3965 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3966 return exp;
3967
3968 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3969 }
3970 else if (code == COMPONENT_REF)
3971 {
3972 tree inner;
3973
3974 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3975 and it is the right field, replace it with R. */
3976 for (inner = TREE_OPERAND (exp, 0);
3977 REFERENCE_CLASS_P (inner);
3978 inner = TREE_OPERAND (inner, 0))
3979 ;
3980
3981 /* The field. */
3982 op1 = TREE_OPERAND (exp, 1);
3983
3984 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3985 return r;
3986
3987 /* If this expression hasn't been completed let, leave it alone. */
3988 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3989 return exp;
3990
3991 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3992 if (op0 == TREE_OPERAND (exp, 0))
3993 return exp;
3994
3995 new_tree
3996 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3997 }
3998 else
3999 switch (TREE_CODE_CLASS (code))
4000 {
4001 case tcc_constant:
4002 return exp;
4003
4004 case tcc_declaration:
4005 if (exp == f)
4006 return r;
4007 else
4008 return exp;
4009
4010 case tcc_expression:
4011 if (exp == f)
4012 return r;
4013
4014 /* Fall through. */
4015
4016 case tcc_exceptional:
4017 case tcc_unary:
4018 case tcc_binary:
4019 case tcc_comparison:
4020 case tcc_reference:
4021 switch (TREE_CODE_LENGTH (code))
4022 {
4023 case 0:
4024 return exp;
4025
4026 case 1:
4027 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4028 if (op0 == TREE_OPERAND (exp, 0))
4029 return exp;
4030
4031 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4032 break;
4033
4034 case 2:
4035 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4036 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4037
4038 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4039 return exp;
4040
4041 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4042 break;
4043
4044 case 3:
4045 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4046 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4047 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4048
4049 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4050 && op2 == TREE_OPERAND (exp, 2))
4051 return exp;
4052
4053 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4054 break;
4055
4056 case 4:
4057 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4058 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4059 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4060 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4061
4062 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4063 && op2 == TREE_OPERAND (exp, 2)
4064 && op3 == TREE_OPERAND (exp, 3))
4065 return exp;
4066
4067 new_tree
4068 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4069 break;
4070
4071 default:
4072 gcc_unreachable ();
4073 }
4074 break;
4075
4076 case tcc_vl_exp:
4077 {
4078 int i;
4079
4080 new_tree = NULL_TREE;
4081
4082 /* If we are trying to replace F with a constant or with another
4083 instance of one of the arguments of the call, inline back
4084 functions which do nothing else than computing a value from
4085 the arguments they are passed. This makes it possible to
4086 fold partially or entirely the replacement expression. */
4087 if (code == CALL_EXPR)
4088 {
4089 bool maybe_inline = false;
4090 if (CONSTANT_CLASS_P (r))
4091 maybe_inline = true;
4092 else
4093 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4094 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4095 {
4096 maybe_inline = true;
4097 break;
4098 }
4099 if (maybe_inline)
4100 {
4101 tree t = maybe_inline_call_in_expr (exp);
4102 if (t)
4103 return SUBSTITUTE_IN_EXPR (t, f, r);
4104 }
4105 }
4106
4107 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4108 {
4109 tree op = TREE_OPERAND (exp, i);
4110 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4111 if (new_op != op)
4112 {
4113 if (!new_tree)
4114 new_tree = copy_node (exp);
4115 TREE_OPERAND (new_tree, i) = new_op;
4116 }
4117 }
4118
4119 if (new_tree)
4120 {
4121 new_tree = fold (new_tree);
4122 if (TREE_CODE (new_tree) == CALL_EXPR)
4123 process_call_operands (new_tree);
4124 }
4125 else
4126 return exp;
4127 }
4128 break;
4129
4130 default:
4131 gcc_unreachable ();
4132 }
4133
4134 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4135
4136 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4137 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4138
4139 return new_tree;
4140 }
4141
4142 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4143 for it within OBJ, a tree that is an object or a chain of references. */
4144
4145 tree
4146 substitute_placeholder_in_expr (tree exp, tree obj)
4147 {
4148 enum tree_code code = TREE_CODE (exp);
4149 tree op0, op1, op2, op3;
4150 tree new_tree;
4151
4152 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4153 in the chain of OBJ. */
4154 if (code == PLACEHOLDER_EXPR)
4155 {
4156 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4157 tree elt;
4158
4159 for (elt = obj; elt != 0;
4160 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4161 || TREE_CODE (elt) == COND_EXPR)
4162 ? TREE_OPERAND (elt, 1)
4163 : (REFERENCE_CLASS_P (elt)
4164 || UNARY_CLASS_P (elt)
4165 || BINARY_CLASS_P (elt)
4166 || VL_EXP_CLASS_P (elt)
4167 || EXPRESSION_CLASS_P (elt))
4168 ? TREE_OPERAND (elt, 0) : 0))
4169 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4170 return elt;
4171
4172 for (elt = obj; elt != 0;
4173 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4174 || TREE_CODE (elt) == COND_EXPR)
4175 ? TREE_OPERAND (elt, 1)
4176 : (REFERENCE_CLASS_P (elt)
4177 || UNARY_CLASS_P (elt)
4178 || BINARY_CLASS_P (elt)
4179 || VL_EXP_CLASS_P (elt)
4180 || EXPRESSION_CLASS_P (elt))
4181 ? TREE_OPERAND (elt, 0) : 0))
4182 if (POINTER_TYPE_P (TREE_TYPE (elt))
4183 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4184 == need_type))
4185 return fold_build1 (INDIRECT_REF, need_type, elt);
4186
4187 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4188 survives until RTL generation, there will be an error. */
4189 return exp;
4190 }
4191
4192 /* TREE_LIST is special because we need to look at TREE_VALUE
4193 and TREE_CHAIN, not TREE_OPERANDS. */
4194 else if (code == TREE_LIST)
4195 {
4196 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4197 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4198 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4199 return exp;
4200
4201 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4202 }
4203 else
4204 switch (TREE_CODE_CLASS (code))
4205 {
4206 case tcc_constant:
4207 case tcc_declaration:
4208 return exp;
4209
4210 case tcc_exceptional:
4211 case tcc_unary:
4212 case tcc_binary:
4213 case tcc_comparison:
4214 case tcc_expression:
4215 case tcc_reference:
4216 case tcc_statement:
4217 switch (TREE_CODE_LENGTH (code))
4218 {
4219 case 0:
4220 return exp;
4221
4222 case 1:
4223 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4224 if (op0 == TREE_OPERAND (exp, 0))
4225 return exp;
4226
4227 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4228 break;
4229
4230 case 2:
4231 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4232 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4233
4234 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4235 return exp;
4236
4237 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4238 break;
4239
4240 case 3:
4241 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4242 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4243 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4244
4245 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4246 && op2 == TREE_OPERAND (exp, 2))
4247 return exp;
4248
4249 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4250 break;
4251
4252 case 4:
4253 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4254 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4255 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4256 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4257
4258 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4259 && op2 == TREE_OPERAND (exp, 2)
4260 && op3 == TREE_OPERAND (exp, 3))
4261 return exp;
4262
4263 new_tree
4264 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4265 break;
4266
4267 default:
4268 gcc_unreachable ();
4269 }
4270 break;
4271
4272 case tcc_vl_exp:
4273 {
4274 int i;
4275
4276 new_tree = NULL_TREE;
4277
4278 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4279 {
4280 tree op = TREE_OPERAND (exp, i);
4281 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4282 if (new_op != op)
4283 {
4284 if (!new_tree)
4285 new_tree = copy_node (exp);
4286 TREE_OPERAND (new_tree, i) = new_op;
4287 }
4288 }
4289
4290 if (new_tree)
4291 {
4292 new_tree = fold (new_tree);
4293 if (TREE_CODE (new_tree) == CALL_EXPR)
4294 process_call_operands (new_tree);
4295 }
4296 else
4297 return exp;
4298 }
4299 break;
4300
4301 default:
4302 gcc_unreachable ();
4303 }
4304
4305 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4306
4307 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4308 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4309
4310 return new_tree;
4311 }
4312 \f
4313
4314 /* Subroutine of stabilize_reference; this is called for subtrees of
4315 references. Any expression with side-effects must be put in a SAVE_EXPR
4316 to ensure that it is only evaluated once.
4317
4318 We don't put SAVE_EXPR nodes around everything, because assigning very
4319 simple expressions to temporaries causes us to miss good opportunities
4320 for optimizations. Among other things, the opportunity to fold in the
4321 addition of a constant into an addressing mode often gets lost, e.g.
4322 "y[i+1] += x;". In general, we take the approach that we should not make
4323 an assignment unless we are forced into it - i.e., that any non-side effect
4324 operator should be allowed, and that cse should take care of coalescing
4325 multiple utterances of the same expression should that prove fruitful. */
4326
4327 static tree
4328 stabilize_reference_1 (tree e)
4329 {
4330 tree result;
4331 enum tree_code code = TREE_CODE (e);
4332
4333 /* We cannot ignore const expressions because it might be a reference
4334 to a const array but whose index contains side-effects. But we can
4335 ignore things that are actual constant or that already have been
4336 handled by this function. */
4337
4338 if (tree_invariant_p (e))
4339 return e;
4340
4341 switch (TREE_CODE_CLASS (code))
4342 {
4343 case tcc_exceptional:
4344 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4345 have side-effects. */
4346 if (code == STATEMENT_LIST)
4347 return save_expr (e);
4348 /* FALLTHRU */
4349 case tcc_type:
4350 case tcc_declaration:
4351 case tcc_comparison:
4352 case tcc_statement:
4353 case tcc_expression:
4354 case tcc_reference:
4355 case tcc_vl_exp:
4356 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4357 so that it will only be evaluated once. */
4358 /* The reference (r) and comparison (<) classes could be handled as
4359 below, but it is generally faster to only evaluate them once. */
4360 if (TREE_SIDE_EFFECTS (e))
4361 return save_expr (e);
4362 return e;
4363
4364 case tcc_constant:
4365 /* Constants need no processing. In fact, we should never reach
4366 here. */
4367 return e;
4368
4369 case tcc_binary:
4370 /* Division is slow and tends to be compiled with jumps,
4371 especially the division by powers of 2 that is often
4372 found inside of an array reference. So do it just once. */
4373 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4374 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4375 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4376 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4377 return save_expr (e);
4378 /* Recursively stabilize each operand. */
4379 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4380 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4381 break;
4382
4383 case tcc_unary:
4384 /* Recursively stabilize each operand. */
4385 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4386 break;
4387
4388 default:
4389 gcc_unreachable ();
4390 }
4391
4392 TREE_TYPE (result) = TREE_TYPE (e);
4393 TREE_READONLY (result) = TREE_READONLY (e);
4394 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4395 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4396
4397 return result;
4398 }
4399
4400 /* Stabilize a reference so that we can use it any number of times
4401 without causing its operands to be evaluated more than once.
4402 Returns the stabilized reference. This works by means of save_expr,
4403 so see the caveats in the comments about save_expr.
4404
4405 Also allows conversion expressions whose operands are references.
4406 Any other kind of expression is returned unchanged. */
4407
4408 tree
4409 stabilize_reference (tree ref)
4410 {
4411 tree result;
4412 enum tree_code code = TREE_CODE (ref);
4413
4414 switch (code)
4415 {
4416 case VAR_DECL:
4417 case PARM_DECL:
4418 case RESULT_DECL:
4419 /* No action is needed in this case. */
4420 return ref;
4421
4422 CASE_CONVERT:
4423 case FLOAT_EXPR:
4424 case FIX_TRUNC_EXPR:
4425 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4426 break;
4427
4428 case INDIRECT_REF:
4429 result = build_nt (INDIRECT_REF,
4430 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4431 break;
4432
4433 case COMPONENT_REF:
4434 result = build_nt (COMPONENT_REF,
4435 stabilize_reference (TREE_OPERAND (ref, 0)),
4436 TREE_OPERAND (ref, 1), NULL_TREE);
4437 break;
4438
4439 case BIT_FIELD_REF:
4440 result = build_nt (BIT_FIELD_REF,
4441 stabilize_reference (TREE_OPERAND (ref, 0)),
4442 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4443 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4444 break;
4445
4446 case ARRAY_REF:
4447 result = build_nt (ARRAY_REF,
4448 stabilize_reference (TREE_OPERAND (ref, 0)),
4449 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4450 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4451 break;
4452
4453 case ARRAY_RANGE_REF:
4454 result = build_nt (ARRAY_RANGE_REF,
4455 stabilize_reference (TREE_OPERAND (ref, 0)),
4456 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4457 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4458 break;
4459
4460 case COMPOUND_EXPR:
4461 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4462 it wouldn't be ignored. This matters when dealing with
4463 volatiles. */
4464 return stabilize_reference_1 (ref);
4465
4466 /* If arg isn't a kind of lvalue we recognize, make no change.
4467 Caller should recognize the error for an invalid lvalue. */
4468 default:
4469 return ref;
4470
4471 case ERROR_MARK:
4472 return error_mark_node;
4473 }
4474
4475 TREE_TYPE (result) = TREE_TYPE (ref);
4476 TREE_READONLY (result) = TREE_READONLY (ref);
4477 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4478 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4479
4480 return result;
4481 }
4482 \f
4483 /* Low-level constructors for expressions. */
4484
4485 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4486 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4487
4488 void
4489 recompute_tree_invariant_for_addr_expr (tree t)
4490 {
4491 tree node;
4492 bool tc = true, se = false;
4493
4494 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4495
4496 /* We started out assuming this address is both invariant and constant, but
4497 does not have side effects. Now go down any handled components and see if
4498 any of them involve offsets that are either non-constant or non-invariant.
4499 Also check for side-effects.
4500
4501 ??? Note that this code makes no attempt to deal with the case where
4502 taking the address of something causes a copy due to misalignment. */
4503
4504 #define UPDATE_FLAGS(NODE) \
4505 do { tree _node = (NODE); \
4506 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4507 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4508
4509 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4510 node = TREE_OPERAND (node, 0))
4511 {
4512 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4513 array reference (probably made temporarily by the G++ front end),
4514 so ignore all the operands. */
4515 if ((TREE_CODE (node) == ARRAY_REF
4516 || TREE_CODE (node) == ARRAY_RANGE_REF)
4517 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4518 {
4519 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4520 if (TREE_OPERAND (node, 2))
4521 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4522 if (TREE_OPERAND (node, 3))
4523 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4524 }
4525 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4526 FIELD_DECL, apparently. The G++ front end can put something else
4527 there, at least temporarily. */
4528 else if (TREE_CODE (node) == COMPONENT_REF
4529 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4530 {
4531 if (TREE_OPERAND (node, 2))
4532 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4533 }
4534 }
4535
4536 node = lang_hooks.expr_to_decl (node, &tc, &se);
4537
4538 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4539 the address, since &(*a)->b is a form of addition. If it's a constant, the
4540 address is constant too. If it's a decl, its address is constant if the
4541 decl is static. Everything else is not constant and, furthermore,
4542 taking the address of a volatile variable is not volatile. */
4543 if (TREE_CODE (node) == INDIRECT_REF
4544 || TREE_CODE (node) == MEM_REF)
4545 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4546 else if (CONSTANT_CLASS_P (node))
4547 ;
4548 else if (DECL_P (node))
4549 tc &= (staticp (node) != NULL_TREE);
4550 else
4551 {
4552 tc = false;
4553 se |= TREE_SIDE_EFFECTS (node);
4554 }
4555
4556
4557 TREE_CONSTANT (t) = tc;
4558 TREE_SIDE_EFFECTS (t) = se;
4559 #undef UPDATE_FLAGS
4560 }
4561
4562 /* Build an expression of code CODE, data type TYPE, and operands as
4563 specified. Expressions and reference nodes can be created this way.
4564 Constants, decls, types and misc nodes cannot be.
4565
4566 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4567 enough for all extant tree codes. */
4568
4569 tree
4570 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4571 {
4572 tree t;
4573
4574 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4575
4576 t = make_node (code PASS_MEM_STAT);
4577 TREE_TYPE (t) = tt;
4578
4579 return t;
4580 }
4581
4582 tree
4583 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4584 {
4585 int length = sizeof (struct tree_exp);
4586 tree t;
4587
4588 record_node_allocation_statistics (code, length);
4589
4590 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4591
4592 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4593
4594 memset (t, 0, sizeof (struct tree_common));
4595
4596 TREE_SET_CODE (t, code);
4597
4598 TREE_TYPE (t) = type;
4599 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4600 TREE_OPERAND (t, 0) = node;
4601 if (node && !TYPE_P (node))
4602 {
4603 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4604 TREE_READONLY (t) = TREE_READONLY (node);
4605 }
4606
4607 if (TREE_CODE_CLASS (code) == tcc_statement)
4608 {
4609 if (code != DEBUG_BEGIN_STMT)
4610 TREE_SIDE_EFFECTS (t) = 1;
4611 }
4612 else switch (code)
4613 {
4614 case VA_ARG_EXPR:
4615 /* All of these have side-effects, no matter what their
4616 operands are. */
4617 TREE_SIDE_EFFECTS (t) = 1;
4618 TREE_READONLY (t) = 0;
4619 break;
4620
4621 case INDIRECT_REF:
4622 /* Whether a dereference is readonly has nothing to do with whether
4623 its operand is readonly. */
4624 TREE_READONLY (t) = 0;
4625 break;
4626
4627 case ADDR_EXPR:
4628 if (node)
4629 recompute_tree_invariant_for_addr_expr (t);
4630 break;
4631
4632 default:
4633 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4634 && node && !TYPE_P (node)
4635 && TREE_CONSTANT (node))
4636 TREE_CONSTANT (t) = 1;
4637 if (TREE_CODE_CLASS (code) == tcc_reference
4638 && node && TREE_THIS_VOLATILE (node))
4639 TREE_THIS_VOLATILE (t) = 1;
4640 break;
4641 }
4642
4643 return t;
4644 }
4645
4646 #define PROCESS_ARG(N) \
4647 do { \
4648 TREE_OPERAND (t, N) = arg##N; \
4649 if (arg##N &&!TYPE_P (arg##N)) \
4650 { \
4651 if (TREE_SIDE_EFFECTS (arg##N)) \
4652 side_effects = 1; \
4653 if (!TREE_READONLY (arg##N) \
4654 && !CONSTANT_CLASS_P (arg##N)) \
4655 (void) (read_only = 0); \
4656 if (!TREE_CONSTANT (arg##N)) \
4657 (void) (constant = 0); \
4658 } \
4659 } while (0)
4660
4661 tree
4662 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4663 {
4664 bool constant, read_only, side_effects, div_by_zero;
4665 tree t;
4666
4667 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4668
4669 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4670 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4671 /* When sizetype precision doesn't match that of pointers
4672 we need to be able to build explicit extensions or truncations
4673 of the offset argument. */
4674 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4675 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4676 && TREE_CODE (arg1) == INTEGER_CST);
4677
4678 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4679 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4680 && ptrofftype_p (TREE_TYPE (arg1)));
4681
4682 t = make_node (code PASS_MEM_STAT);
4683 TREE_TYPE (t) = tt;
4684
4685 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4686 result based on those same flags for the arguments. But if the
4687 arguments aren't really even `tree' expressions, we shouldn't be trying
4688 to do this. */
4689
4690 /* Expressions without side effects may be constant if their
4691 arguments are as well. */
4692 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4693 || TREE_CODE_CLASS (code) == tcc_binary);
4694 read_only = 1;
4695 side_effects = TREE_SIDE_EFFECTS (t);
4696
4697 switch (code)
4698 {
4699 case TRUNC_DIV_EXPR:
4700 case CEIL_DIV_EXPR:
4701 case FLOOR_DIV_EXPR:
4702 case ROUND_DIV_EXPR:
4703 case EXACT_DIV_EXPR:
4704 case CEIL_MOD_EXPR:
4705 case FLOOR_MOD_EXPR:
4706 case ROUND_MOD_EXPR:
4707 case TRUNC_MOD_EXPR:
4708 div_by_zero = integer_zerop (arg1);
4709 break;
4710 default:
4711 div_by_zero = false;
4712 }
4713
4714 PROCESS_ARG (0);
4715 PROCESS_ARG (1);
4716
4717 TREE_SIDE_EFFECTS (t) = side_effects;
4718 if (code == MEM_REF)
4719 {
4720 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4721 {
4722 tree o = TREE_OPERAND (arg0, 0);
4723 TREE_READONLY (t) = TREE_READONLY (o);
4724 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4725 }
4726 }
4727 else
4728 {
4729 TREE_READONLY (t) = read_only;
4730 /* Don't mark X / 0 as constant. */
4731 TREE_CONSTANT (t) = constant && !div_by_zero;
4732 TREE_THIS_VOLATILE (t)
4733 = (TREE_CODE_CLASS (code) == tcc_reference
4734 && arg0 && TREE_THIS_VOLATILE (arg0));
4735 }
4736
4737 return t;
4738 }
4739
4740
4741 tree
4742 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4743 tree arg2 MEM_STAT_DECL)
4744 {
4745 bool constant, read_only, side_effects;
4746 tree t;
4747
4748 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4749 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4750
4751 t = make_node (code PASS_MEM_STAT);
4752 TREE_TYPE (t) = tt;
4753
4754 read_only = 1;
4755
4756 /* As a special exception, if COND_EXPR has NULL branches, we
4757 assume that it is a gimple statement and always consider
4758 it to have side effects. */
4759 if (code == COND_EXPR
4760 && tt == void_type_node
4761 && arg1 == NULL_TREE
4762 && arg2 == NULL_TREE)
4763 side_effects = true;
4764 else
4765 side_effects = TREE_SIDE_EFFECTS (t);
4766
4767 PROCESS_ARG (0);
4768 PROCESS_ARG (1);
4769 PROCESS_ARG (2);
4770
4771 if (code == COND_EXPR)
4772 TREE_READONLY (t) = read_only;
4773
4774 TREE_SIDE_EFFECTS (t) = side_effects;
4775 TREE_THIS_VOLATILE (t)
4776 = (TREE_CODE_CLASS (code) == tcc_reference
4777 && arg0 && TREE_THIS_VOLATILE (arg0));
4778
4779 return t;
4780 }
4781
4782 tree
4783 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4784 tree arg2, tree arg3 MEM_STAT_DECL)
4785 {
4786 bool constant, read_only, side_effects;
4787 tree t;
4788
4789 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4790
4791 t = make_node (code PASS_MEM_STAT);
4792 TREE_TYPE (t) = tt;
4793
4794 side_effects = TREE_SIDE_EFFECTS (t);
4795
4796 PROCESS_ARG (0);
4797 PROCESS_ARG (1);
4798 PROCESS_ARG (2);
4799 PROCESS_ARG (3);
4800
4801 TREE_SIDE_EFFECTS (t) = side_effects;
4802 TREE_THIS_VOLATILE (t)
4803 = (TREE_CODE_CLASS (code) == tcc_reference
4804 && arg0 && TREE_THIS_VOLATILE (arg0));
4805
4806 return t;
4807 }
4808
4809 tree
4810 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4811 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4812 {
4813 bool constant, read_only, side_effects;
4814 tree t;
4815
4816 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4817
4818 t = make_node (code PASS_MEM_STAT);
4819 TREE_TYPE (t) = tt;
4820
4821 side_effects = TREE_SIDE_EFFECTS (t);
4822
4823 PROCESS_ARG (0);
4824 PROCESS_ARG (1);
4825 PROCESS_ARG (2);
4826 PROCESS_ARG (3);
4827 PROCESS_ARG (4);
4828
4829 TREE_SIDE_EFFECTS (t) = side_effects;
4830 if (code == TARGET_MEM_REF)
4831 {
4832 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4833 {
4834 tree o = TREE_OPERAND (arg0, 0);
4835 TREE_READONLY (t) = TREE_READONLY (o);
4836 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4837 }
4838 }
4839 else
4840 TREE_THIS_VOLATILE (t)
4841 = (TREE_CODE_CLASS (code) == tcc_reference
4842 && arg0 && TREE_THIS_VOLATILE (arg0));
4843
4844 return t;
4845 }
4846
4847 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4848 on the pointer PTR. */
4849
4850 tree
4851 build_simple_mem_ref_loc (location_t loc, tree ptr)
4852 {
4853 poly_int64 offset = 0;
4854 tree ptype = TREE_TYPE (ptr);
4855 tree tem;
4856 /* For convenience allow addresses that collapse to a simple base
4857 and offset. */
4858 if (TREE_CODE (ptr) == ADDR_EXPR
4859 && (handled_component_p (TREE_OPERAND (ptr, 0))
4860 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4861 {
4862 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4863 gcc_assert (ptr);
4864 if (TREE_CODE (ptr) == MEM_REF)
4865 {
4866 offset += mem_ref_offset (ptr).force_shwi ();
4867 ptr = TREE_OPERAND (ptr, 0);
4868 }
4869 else
4870 ptr = build_fold_addr_expr (ptr);
4871 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4872 }
4873 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4874 ptr, build_int_cst (ptype, offset));
4875 SET_EXPR_LOCATION (tem, loc);
4876 return tem;
4877 }
4878
4879 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4880
4881 poly_offset_int
4882 mem_ref_offset (const_tree t)
4883 {
4884 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4885 SIGNED);
4886 }
4887
4888 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4889 offsetted by OFFSET units. */
4890
4891 tree
4892 build_invariant_address (tree type, tree base, poly_int64 offset)
4893 {
4894 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4895 build_fold_addr_expr (base),
4896 build_int_cst (ptr_type_node, offset));
4897 tree addr = build1 (ADDR_EXPR, type, ref);
4898 recompute_tree_invariant_for_addr_expr (addr);
4899 return addr;
4900 }
4901
4902 /* Similar except don't specify the TREE_TYPE
4903 and leave the TREE_SIDE_EFFECTS as 0.
4904 It is permissible for arguments to be null,
4905 or even garbage if their values do not matter. */
4906
4907 tree
4908 build_nt (enum tree_code code, ...)
4909 {
4910 tree t;
4911 int length;
4912 int i;
4913 va_list p;
4914
4915 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4916
4917 va_start (p, code);
4918
4919 t = make_node (code);
4920 length = TREE_CODE_LENGTH (code);
4921
4922 for (i = 0; i < length; i++)
4923 TREE_OPERAND (t, i) = va_arg (p, tree);
4924
4925 va_end (p);
4926 return t;
4927 }
4928
4929 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4930 tree vec. */
4931
4932 tree
4933 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4934 {
4935 tree ret, t;
4936 unsigned int ix;
4937
4938 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4939 CALL_EXPR_FN (ret) = fn;
4940 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4941 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4942 CALL_EXPR_ARG (ret, ix) = t;
4943 return ret;
4944 }
4945 \f
4946 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4947 We do NOT enter this node in any sort of symbol table.
4948
4949 LOC is the location of the decl.
4950
4951 layout_decl is used to set up the decl's storage layout.
4952 Other slots are initialized to 0 or null pointers. */
4953
4954 tree
4955 build_decl (location_t loc, enum tree_code code, tree name,
4956 tree type MEM_STAT_DECL)
4957 {
4958 tree t;
4959
4960 t = make_node (code PASS_MEM_STAT);
4961 DECL_SOURCE_LOCATION (t) = loc;
4962
4963 /* if (type == error_mark_node)
4964 type = integer_type_node; */
4965 /* That is not done, deliberately, so that having error_mark_node
4966 as the type can suppress useless errors in the use of this variable. */
4967
4968 DECL_NAME (t) = name;
4969 TREE_TYPE (t) = type;
4970
4971 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4972 layout_decl (t, 0);
4973
4974 return t;
4975 }
4976
4977 /* Builds and returns function declaration with NAME and TYPE. */
4978
4979 tree
4980 build_fn_decl (const char *name, tree type)
4981 {
4982 tree id = get_identifier (name);
4983 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4984
4985 DECL_EXTERNAL (decl) = 1;
4986 TREE_PUBLIC (decl) = 1;
4987 DECL_ARTIFICIAL (decl) = 1;
4988 TREE_NOTHROW (decl) = 1;
4989
4990 return decl;
4991 }
4992
4993 vec<tree, va_gc> *all_translation_units;
4994
4995 /* Builds a new translation-unit decl with name NAME, queues it in the
4996 global list of translation-unit decls and returns it. */
4997
4998 tree
4999 build_translation_unit_decl (tree name)
5000 {
5001 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5002 name, NULL_TREE);
5003 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5004 vec_safe_push (all_translation_units, tu);
5005 return tu;
5006 }
5007
5008 \f
5009 /* BLOCK nodes are used to represent the structure of binding contours
5010 and declarations, once those contours have been exited and their contents
5011 compiled. This information is used for outputting debugging info. */
5012
5013 tree
5014 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5015 {
5016 tree block = make_node (BLOCK);
5017
5018 BLOCK_VARS (block) = vars;
5019 BLOCK_SUBBLOCKS (block) = subblocks;
5020 BLOCK_SUPERCONTEXT (block) = supercontext;
5021 BLOCK_CHAIN (block) = chain;
5022 return block;
5023 }
5024
5025 \f
5026 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5027
5028 LOC is the location to use in tree T. */
5029
5030 void
5031 protected_set_expr_location (tree t, location_t loc)
5032 {
5033 if (CAN_HAVE_LOCATION_P (t))
5034 SET_EXPR_LOCATION (t, loc);
5035 }
5036 \f
5037 /* Reset the expression *EXPR_P, a size or position.
5038
5039 ??? We could reset all non-constant sizes or positions. But it's cheap
5040 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5041
5042 We need to reset self-referential sizes or positions because they cannot
5043 be gimplified and thus can contain a CALL_EXPR after the gimplification
5044 is finished, which will run afoul of LTO streaming. And they need to be
5045 reset to something essentially dummy but not constant, so as to preserve
5046 the properties of the object they are attached to. */
5047
5048 static inline void
5049 free_lang_data_in_one_sizepos (tree *expr_p)
5050 {
5051 tree expr = *expr_p;
5052 if (CONTAINS_PLACEHOLDER_P (expr))
5053 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5054 }
5055
5056
5057 /* Reset all the fields in a binfo node BINFO. We only keep
5058 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5059
5060 static void
5061 free_lang_data_in_binfo (tree binfo)
5062 {
5063 unsigned i;
5064 tree t;
5065
5066 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5067
5068 BINFO_VIRTUALS (binfo) = NULL_TREE;
5069 BINFO_BASE_ACCESSES (binfo) = NULL;
5070 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5071 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5072
5073 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5074 free_lang_data_in_binfo (t);
5075 }
5076
5077
5078 /* Reset all language specific information still present in TYPE. */
5079
5080 static void
5081 free_lang_data_in_type (tree type)
5082 {
5083 gcc_assert (TYPE_P (type));
5084
5085 /* Give the FE a chance to remove its own data first. */
5086 lang_hooks.free_lang_data (type);
5087
5088 TREE_LANG_FLAG_0 (type) = 0;
5089 TREE_LANG_FLAG_1 (type) = 0;
5090 TREE_LANG_FLAG_2 (type) = 0;
5091 TREE_LANG_FLAG_3 (type) = 0;
5092 TREE_LANG_FLAG_4 (type) = 0;
5093 TREE_LANG_FLAG_5 (type) = 0;
5094 TREE_LANG_FLAG_6 (type) = 0;
5095
5096 if (TREE_CODE (type) == FUNCTION_TYPE)
5097 {
5098 /* Remove the const and volatile qualifiers from arguments. The
5099 C++ front end removes them, but the C front end does not,
5100 leading to false ODR violation errors when merging two
5101 instances of the same function signature compiled by
5102 different front ends. */
5103 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5104 {
5105 tree arg_type = TREE_VALUE (p);
5106
5107 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5108 {
5109 int quals = TYPE_QUALS (arg_type)
5110 & ~TYPE_QUAL_CONST
5111 & ~TYPE_QUAL_VOLATILE;
5112 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5113 free_lang_data_in_type (TREE_VALUE (p));
5114 }
5115 /* C++ FE uses TREE_PURPOSE to store initial values. */
5116 TREE_PURPOSE (p) = NULL;
5117 }
5118 }
5119 else if (TREE_CODE (type) == METHOD_TYPE)
5120 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5121 /* C++ FE uses TREE_PURPOSE to store initial values. */
5122 TREE_PURPOSE (p) = NULL;
5123 else if (RECORD_OR_UNION_TYPE_P (type))
5124 {
5125 /* Remove members that are not FIELD_DECLs from the field list
5126 of an aggregate. These occur in C++. */
5127 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5128 if (TREE_CODE (member) == FIELD_DECL)
5129 prev = &DECL_CHAIN (member);
5130 else
5131 *prev = DECL_CHAIN (member);
5132
5133 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
5134 and danagle the pointer from time to time. */
5135 if (TYPE_VFIELD (type) && TREE_CODE (TYPE_VFIELD (type)) != FIELD_DECL)
5136 TYPE_VFIELD (type) = NULL_TREE;
5137
5138 if (TYPE_BINFO (type))
5139 {
5140 free_lang_data_in_binfo (TYPE_BINFO (type));
5141 /* We need to preserve link to bases and virtual table for all
5142 polymorphic types to make devirtualization machinery working. */
5143 if (!BINFO_VTABLE (TYPE_BINFO (type))
5144 || !flag_devirtualize)
5145 TYPE_BINFO (type) = NULL;
5146 }
5147 }
5148 else if (INTEGRAL_TYPE_P (type)
5149 || SCALAR_FLOAT_TYPE_P (type)
5150 || FIXED_POINT_TYPE_P (type))
5151 {
5152 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5153 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5154 }
5155
5156 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5157
5158 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5159 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5160
5161 if (TYPE_CONTEXT (type)
5162 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5163 {
5164 tree ctx = TYPE_CONTEXT (type);
5165 do
5166 {
5167 ctx = BLOCK_SUPERCONTEXT (ctx);
5168 }
5169 while (ctx && TREE_CODE (ctx) == BLOCK);
5170 TYPE_CONTEXT (type) = ctx;
5171 }
5172
5173 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5174 TYPE_DECL if the type doesn't have linkage. */
5175 if (! type_with_linkage_p (type))
5176 {
5177 TYPE_NAME (type) = TYPE_IDENTIFIER (type);
5178 TYPE_STUB_DECL (type) = NULL;
5179 }
5180 }
5181
5182
5183 /* Return true if DECL may need an assembler name to be set. */
5184
5185 static inline bool
5186 need_assembler_name_p (tree decl)
5187 {
5188 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5189 Rule merging. This makes type_odr_p to return true on those types during
5190 LTO and by comparing the mangled name, we can say what types are intended
5191 to be equivalent across compilation unit.
5192
5193 We do not store names of type_in_anonymous_namespace_p.
5194
5195 Record, union and enumeration type have linkage that allows use
5196 to check type_in_anonymous_namespace_p. We do not mangle compound types
5197 that always can be compared structurally.
5198
5199 Similarly for builtin types, we compare properties of their main variant.
5200 A special case are integer types where mangling do make differences
5201 between char/signed char/unsigned char etc. Storing name for these makes
5202 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5203 See cp/mangle.c:write_builtin_type for details. */
5204
5205 if (flag_lto_odr_type_mering
5206 && TREE_CODE (decl) == TYPE_DECL
5207 && DECL_NAME (decl)
5208 && decl == TYPE_NAME (TREE_TYPE (decl))
5209 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5210 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5211 && (type_with_linkage_p (TREE_TYPE (decl))
5212 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5213 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5214 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5215 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5216 if (!VAR_OR_FUNCTION_DECL_P (decl))
5217 return false;
5218
5219 /* If DECL already has its assembler name set, it does not need a
5220 new one. */
5221 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5222 || DECL_ASSEMBLER_NAME_SET_P (decl))
5223 return false;
5224
5225 /* Abstract decls do not need an assembler name. */
5226 if (DECL_ABSTRACT_P (decl))
5227 return false;
5228
5229 /* For VAR_DECLs, only static, public and external symbols need an
5230 assembler name. */
5231 if (VAR_P (decl)
5232 && !TREE_STATIC (decl)
5233 && !TREE_PUBLIC (decl)
5234 && !DECL_EXTERNAL (decl))
5235 return false;
5236
5237 if (TREE_CODE (decl) == FUNCTION_DECL)
5238 {
5239 /* Do not set assembler name on builtins. Allow RTL expansion to
5240 decide whether to expand inline or via a regular call. */
5241 if (DECL_BUILT_IN (decl)
5242 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5243 return false;
5244
5245 /* Functions represented in the callgraph need an assembler name. */
5246 if (cgraph_node::get (decl) != NULL)
5247 return true;
5248
5249 /* Unused and not public functions don't need an assembler name. */
5250 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5251 return false;
5252 }
5253
5254 return true;
5255 }
5256
5257
5258 /* Reset all language specific information still present in symbol
5259 DECL. */
5260
5261 static void
5262 free_lang_data_in_decl (tree decl)
5263 {
5264 gcc_assert (DECL_P (decl));
5265
5266 /* Give the FE a chance to remove its own data first. */
5267 lang_hooks.free_lang_data (decl);
5268
5269 TREE_LANG_FLAG_0 (decl) = 0;
5270 TREE_LANG_FLAG_1 (decl) = 0;
5271 TREE_LANG_FLAG_2 (decl) = 0;
5272 TREE_LANG_FLAG_3 (decl) = 0;
5273 TREE_LANG_FLAG_4 (decl) = 0;
5274 TREE_LANG_FLAG_5 (decl) = 0;
5275 TREE_LANG_FLAG_6 (decl) = 0;
5276
5277 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5278 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5279 if (TREE_CODE (decl) == FIELD_DECL)
5280 {
5281 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5282 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5283 DECL_QUALIFIER (decl) = NULL_TREE;
5284 }
5285
5286 if (TREE_CODE (decl) == FUNCTION_DECL)
5287 {
5288 struct cgraph_node *node;
5289 if (!(node = cgraph_node::get (decl))
5290 || (!node->definition && !node->clones))
5291 {
5292 if (node)
5293 node->release_body ();
5294 else
5295 {
5296 release_function_body (decl);
5297 DECL_ARGUMENTS (decl) = NULL;
5298 DECL_RESULT (decl) = NULL;
5299 DECL_INITIAL (decl) = error_mark_node;
5300 }
5301 }
5302 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5303 {
5304 tree t;
5305
5306 /* If DECL has a gimple body, then the context for its
5307 arguments must be DECL. Otherwise, it doesn't really
5308 matter, as we will not be emitting any code for DECL. In
5309 general, there may be other instances of DECL created by
5310 the front end and since PARM_DECLs are generally shared,
5311 their DECL_CONTEXT changes as the replicas of DECL are
5312 created. The only time where DECL_CONTEXT is important
5313 is for the FUNCTION_DECLs that have a gimple body (since
5314 the PARM_DECL will be used in the function's body). */
5315 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5316 DECL_CONTEXT (t) = decl;
5317 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5318 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5319 = target_option_default_node;
5320 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5321 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5322 = optimization_default_node;
5323 }
5324
5325 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5326 At this point, it is not needed anymore. */
5327 DECL_SAVED_TREE (decl) = NULL_TREE;
5328
5329 /* Clear the abstract origin if it refers to a method.
5330 Otherwise dwarf2out.c will ICE as we splice functions out of
5331 TYPE_FIELDS and thus the origin will not be output
5332 correctly. */
5333 if (DECL_ABSTRACT_ORIGIN (decl)
5334 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5335 && RECORD_OR_UNION_TYPE_P
5336 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5337 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5338
5339 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5340 DECL_VINDEX referring to itself into a vtable slot number as it
5341 should. Happens with functions that are copied and then forgotten
5342 about. Just clear it, it won't matter anymore. */
5343 if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5344 DECL_VINDEX (decl) = NULL_TREE;
5345 }
5346 else if (VAR_P (decl))
5347 {
5348 if ((DECL_EXTERNAL (decl)
5349 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5350 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5351 DECL_INITIAL (decl) = NULL_TREE;
5352 }
5353 else if (TREE_CODE (decl) == TYPE_DECL)
5354 {
5355 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5356 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5357 DECL_INITIAL (decl) = NULL_TREE;
5358 }
5359 else if (TREE_CODE (decl) == FIELD_DECL)
5360 DECL_INITIAL (decl) = NULL_TREE;
5361 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5362 && DECL_INITIAL (decl)
5363 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5364 {
5365 /* Strip builtins from the translation-unit BLOCK. We still have targets
5366 without builtin_decl_explicit support and also builtins are shared
5367 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5368 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5369 while (*nextp)
5370 {
5371 tree var = *nextp;
5372 if (TREE_CODE (var) == FUNCTION_DECL
5373 && DECL_BUILT_IN (var))
5374 *nextp = TREE_CHAIN (var);
5375 else
5376 nextp = &TREE_CHAIN (var);
5377 }
5378 }
5379 }
5380
5381
5382 /* Data used when collecting DECLs and TYPEs for language data removal. */
5383
5384 struct free_lang_data_d
5385 {
5386 free_lang_data_d () : decls (100), types (100) {}
5387
5388 /* Worklist to avoid excessive recursion. */
5389 auto_vec<tree> worklist;
5390
5391 /* Set of traversed objects. Used to avoid duplicate visits. */
5392 hash_set<tree> pset;
5393
5394 /* Array of symbols to process with free_lang_data_in_decl. */
5395 auto_vec<tree> decls;
5396
5397 /* Array of types to process with free_lang_data_in_type. */
5398 auto_vec<tree> types;
5399 };
5400
5401
5402 /* Add type or decl T to one of the list of tree nodes that need their
5403 language data removed. The lists are held inside FLD. */
5404
5405 static void
5406 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5407 {
5408 if (DECL_P (t))
5409 fld->decls.safe_push (t);
5410 else if (TYPE_P (t))
5411 fld->types.safe_push (t);
5412 else
5413 gcc_unreachable ();
5414 }
5415
5416 /* Push tree node T into FLD->WORKLIST. */
5417
5418 static inline void
5419 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5420 {
5421 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5422 fld->worklist.safe_push ((t));
5423 }
5424
5425
5426 /* Operand callback helper for free_lang_data_in_node. *TP is the
5427 subtree operand being considered. */
5428
5429 static tree
5430 find_decls_types_r (tree *tp, int *ws, void *data)
5431 {
5432 tree t = *tp;
5433 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5434
5435 if (TREE_CODE (t) == TREE_LIST)
5436 return NULL_TREE;
5437
5438 /* Language specific nodes will be removed, so there is no need
5439 to gather anything under them. */
5440 if (is_lang_specific (t))
5441 {
5442 *ws = 0;
5443 return NULL_TREE;
5444 }
5445
5446 if (DECL_P (t))
5447 {
5448 /* Note that walk_tree does not traverse every possible field in
5449 decls, so we have to do our own traversals here. */
5450 add_tree_to_fld_list (t, fld);
5451
5452 fld_worklist_push (DECL_NAME (t), fld);
5453 fld_worklist_push (DECL_CONTEXT (t), fld);
5454 fld_worklist_push (DECL_SIZE (t), fld);
5455 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5456
5457 /* We are going to remove everything under DECL_INITIAL for
5458 TYPE_DECLs. No point walking them. */
5459 if (TREE_CODE (t) != TYPE_DECL)
5460 fld_worklist_push (DECL_INITIAL (t), fld);
5461
5462 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5463 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5464
5465 if (TREE_CODE (t) == FUNCTION_DECL)
5466 {
5467 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5468 fld_worklist_push (DECL_RESULT (t), fld);
5469 }
5470 else if (TREE_CODE (t) == TYPE_DECL)
5471 {
5472 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5473 }
5474 else if (TREE_CODE (t) == FIELD_DECL)
5475 {
5476 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5477 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5478 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5479 fld_worklist_push (DECL_FCONTEXT (t), fld);
5480 }
5481
5482 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5483 && DECL_HAS_VALUE_EXPR_P (t))
5484 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5485
5486 if (TREE_CODE (t) != FIELD_DECL
5487 && TREE_CODE (t) != TYPE_DECL)
5488 fld_worklist_push (TREE_CHAIN (t), fld);
5489 *ws = 0;
5490 }
5491 else if (TYPE_P (t))
5492 {
5493 /* Note that walk_tree does not traverse every possible field in
5494 types, so we have to do our own traversals here. */
5495 add_tree_to_fld_list (t, fld);
5496
5497 if (!RECORD_OR_UNION_TYPE_P (t))
5498 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5499 fld_worklist_push (TYPE_SIZE (t), fld);
5500 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5501 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5502 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5503 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5504 fld_worklist_push (TYPE_NAME (t), fld);
5505 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5506 them and thus do not and want not to reach unused pointer types
5507 this way. */
5508 if (!POINTER_TYPE_P (t))
5509 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5510 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5511 if (!RECORD_OR_UNION_TYPE_P (t))
5512 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5513 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5514 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5515 do not and want not to reach unused variants this way. */
5516 if (TYPE_CONTEXT (t))
5517 {
5518 tree ctx = TYPE_CONTEXT (t);
5519 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5520 So push that instead. */
5521 while (ctx && TREE_CODE (ctx) == BLOCK)
5522 ctx = BLOCK_SUPERCONTEXT (ctx);
5523 fld_worklist_push (ctx, fld);
5524 }
5525 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5526 and want not to reach unused types this way. */
5527
5528 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5529 {
5530 unsigned i;
5531 tree tem;
5532 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5533 fld_worklist_push (TREE_TYPE (tem), fld);
5534 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5535 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5536 }
5537 if (RECORD_OR_UNION_TYPE_P (t))
5538 {
5539 tree tem;
5540 /* Push all TYPE_FIELDS - there can be interleaving interesting
5541 and non-interesting things. */
5542 tem = TYPE_FIELDS (t);
5543 while (tem)
5544 {
5545 if (TREE_CODE (tem) == FIELD_DECL
5546 || (TREE_CODE (tem) == TYPE_DECL
5547 && !DECL_IGNORED_P (tem)
5548 && debug_info_level > DINFO_LEVEL_TERSE
5549 && !is_redundant_typedef (tem)))
5550 fld_worklist_push (tem, fld);
5551 tem = TREE_CHAIN (tem);
5552 }
5553 }
5554 if (FUNC_OR_METHOD_TYPE_P (t))
5555 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5556
5557 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5558 *ws = 0;
5559 }
5560 else if (TREE_CODE (t) == BLOCK)
5561 {
5562 for (tree *tem = &BLOCK_VARS (t); *tem; )
5563 {
5564 if (TREE_CODE (*tem) != VAR_DECL
5565 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem)))
5566 {
5567 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
5568 && TREE_CODE (*tem) != PARM_DECL);
5569 *tem = TREE_CHAIN (*tem);
5570 }
5571 else
5572 {
5573 fld_worklist_push (*tem, fld);
5574 tem = &TREE_CHAIN (*tem);
5575 }
5576 }
5577 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5578 fld_worklist_push (tem, fld);
5579 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5580 }
5581
5582 if (TREE_CODE (t) != IDENTIFIER_NODE
5583 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5584 fld_worklist_push (TREE_TYPE (t), fld);
5585
5586 return NULL_TREE;
5587 }
5588
5589
5590 /* Find decls and types in T. */
5591
5592 static void
5593 find_decls_types (tree t, struct free_lang_data_d *fld)
5594 {
5595 while (1)
5596 {
5597 if (!fld->pset.contains (t))
5598 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5599 if (fld->worklist.is_empty ())
5600 break;
5601 t = fld->worklist.pop ();
5602 }
5603 }
5604
5605 /* Translate all the types in LIST with the corresponding runtime
5606 types. */
5607
5608 static tree
5609 get_eh_types_for_runtime (tree list)
5610 {
5611 tree head, prev;
5612
5613 if (list == NULL_TREE)
5614 return NULL_TREE;
5615
5616 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5617 prev = head;
5618 list = TREE_CHAIN (list);
5619 while (list)
5620 {
5621 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5622 TREE_CHAIN (prev) = n;
5623 prev = TREE_CHAIN (prev);
5624 list = TREE_CHAIN (list);
5625 }
5626
5627 return head;
5628 }
5629
5630
5631 /* Find decls and types referenced in EH region R and store them in
5632 FLD->DECLS and FLD->TYPES. */
5633
5634 static void
5635 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5636 {
5637 switch (r->type)
5638 {
5639 case ERT_CLEANUP:
5640 break;
5641
5642 case ERT_TRY:
5643 {
5644 eh_catch c;
5645
5646 /* The types referenced in each catch must first be changed to the
5647 EH types used at runtime. This removes references to FE types
5648 in the region. */
5649 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5650 {
5651 c->type_list = get_eh_types_for_runtime (c->type_list);
5652 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
5653 }
5654 }
5655 break;
5656
5657 case ERT_ALLOWED_EXCEPTIONS:
5658 r->u.allowed.type_list
5659 = get_eh_types_for_runtime (r->u.allowed.type_list);
5660 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
5661 break;
5662
5663 case ERT_MUST_NOT_THROW:
5664 walk_tree (&r->u.must_not_throw.failure_decl,
5665 find_decls_types_r, fld, &fld->pset);
5666 break;
5667 }
5668 }
5669
5670
5671 /* Find decls and types referenced in cgraph node N and store them in
5672 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5673 look for *every* kind of DECL and TYPE node reachable from N,
5674 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5675 NAMESPACE_DECLs, etc). */
5676
5677 static void
5678 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5679 {
5680 basic_block bb;
5681 struct function *fn;
5682 unsigned ix;
5683 tree t;
5684
5685 find_decls_types (n->decl, fld);
5686
5687 if (!gimple_has_body_p (n->decl))
5688 return;
5689
5690 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5691
5692 fn = DECL_STRUCT_FUNCTION (n->decl);
5693
5694 /* Traverse locals. */
5695 FOR_EACH_LOCAL_DECL (fn, ix, t)
5696 find_decls_types (t, fld);
5697
5698 /* Traverse EH regions in FN. */
5699 {
5700 eh_region r;
5701 FOR_ALL_EH_REGION_FN (r, fn)
5702 find_decls_types_in_eh_region (r, fld);
5703 }
5704
5705 /* Traverse every statement in FN. */
5706 FOR_EACH_BB_FN (bb, fn)
5707 {
5708 gphi_iterator psi;
5709 gimple_stmt_iterator si;
5710 unsigned i;
5711
5712 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
5713 {
5714 gphi *phi = psi.phi ();
5715
5716 for (i = 0; i < gimple_phi_num_args (phi); i++)
5717 {
5718 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5719 find_decls_types (*arg_p, fld);
5720 }
5721 }
5722
5723 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5724 {
5725 gimple *stmt = gsi_stmt (si);
5726
5727 if (is_gimple_call (stmt))
5728 find_decls_types (gimple_call_fntype (stmt), fld);
5729
5730 for (i = 0; i < gimple_num_ops (stmt); i++)
5731 {
5732 tree arg = gimple_op (stmt, i);
5733 find_decls_types (arg, fld);
5734 }
5735 }
5736 }
5737 }
5738
5739
5740 /* Find decls and types referenced in varpool node N and store them in
5741 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5742 look for *every* kind of DECL and TYPE node reachable from N,
5743 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5744 NAMESPACE_DECLs, etc). */
5745
5746 static void
5747 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5748 {
5749 find_decls_types (v->decl, fld);
5750 }
5751
5752 /* If T needs an assembler name, have one created for it. */
5753
5754 void
5755 assign_assembler_name_if_needed (tree t)
5756 {
5757 if (need_assembler_name_p (t))
5758 {
5759 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5760 diagnostics that use input_location to show locus
5761 information. The problem here is that, at this point,
5762 input_location is generally anchored to the end of the file
5763 (since the parser is long gone), so we don't have a good
5764 position to pin it to.
5765
5766 To alleviate this problem, this uses the location of T's
5767 declaration. Examples of this are
5768 testsuite/g++.dg/template/cond2.C and
5769 testsuite/g++.dg/template/pr35240.C. */
5770 location_t saved_location = input_location;
5771 input_location = DECL_SOURCE_LOCATION (t);
5772
5773 decl_assembler_name (t);
5774
5775 input_location = saved_location;
5776 }
5777 }
5778
5779
5780 /* Free language specific information for every operand and expression
5781 in every node of the call graph. This process operates in three stages:
5782
5783 1- Every callgraph node and varpool node is traversed looking for
5784 decls and types embedded in them. This is a more exhaustive
5785 search than that done by find_referenced_vars, because it will
5786 also collect individual fields, decls embedded in types, etc.
5787
5788 2- All the decls found are sent to free_lang_data_in_decl.
5789
5790 3- All the types found are sent to free_lang_data_in_type.
5791
5792 The ordering between decls and types is important because
5793 free_lang_data_in_decl sets assembler names, which includes
5794 mangling. So types cannot be freed up until assembler names have
5795 been set up. */
5796
5797 static void
5798 free_lang_data_in_cgraph (void)
5799 {
5800 struct cgraph_node *n;
5801 varpool_node *v;
5802 struct free_lang_data_d fld;
5803 tree t;
5804 unsigned i;
5805 alias_pair *p;
5806
5807 /* Find decls and types in the body of every function in the callgraph. */
5808 FOR_EACH_FUNCTION (n)
5809 find_decls_types_in_node (n, &fld);
5810
5811 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5812 find_decls_types (p->decl, &fld);
5813
5814 /* Find decls and types in every varpool symbol. */
5815 FOR_EACH_VARIABLE (v)
5816 find_decls_types_in_var (v, &fld);
5817
5818 /* Set the assembler name on every decl found. We need to do this
5819 now because free_lang_data_in_decl will invalidate data needed
5820 for mangling. This breaks mangling on interdependent decls. */
5821 FOR_EACH_VEC_ELT (fld.decls, i, t)
5822 assign_assembler_name_if_needed (t);
5823
5824 /* Traverse every decl found freeing its language data. */
5825 FOR_EACH_VEC_ELT (fld.decls, i, t)
5826 free_lang_data_in_decl (t);
5827
5828 /* Traverse every type found freeing its language data. */
5829 FOR_EACH_VEC_ELT (fld.types, i, t)
5830 free_lang_data_in_type (t);
5831 if (flag_checking)
5832 {
5833 FOR_EACH_VEC_ELT (fld.types, i, t)
5834 verify_type (t);
5835 }
5836 }
5837
5838
5839 /* Free resources that are used by FE but are not needed once they are done. */
5840
5841 static unsigned
5842 free_lang_data (void)
5843 {
5844 unsigned i;
5845
5846 /* If we are the LTO frontend we have freed lang-specific data already. */
5847 if (in_lto_p
5848 || (!flag_generate_lto && !flag_generate_offload))
5849 return 0;
5850
5851 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
5852 if (vec_safe_is_empty (all_translation_units))
5853 build_translation_unit_decl (NULL_TREE);
5854
5855 /* Allocate and assign alias sets to the standard integer types
5856 while the slots are still in the way the frontends generated them. */
5857 for (i = 0; i < itk_none; ++i)
5858 if (integer_types[i])
5859 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5860
5861 /* Traverse the IL resetting language specific information for
5862 operands, expressions, etc. */
5863 free_lang_data_in_cgraph ();
5864
5865 /* Create gimple variants for common types. */
5866 for (unsigned i = 0;
5867 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
5868 ++i)
5869 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
5870
5871 /* Reset some langhooks. Do not reset types_compatible_p, it may
5872 still be used indirectly via the get_alias_set langhook. */
5873 lang_hooks.dwarf_name = lhd_dwarf_name;
5874 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5875 lang_hooks.gimplify_expr = lhd_gimplify_expr;
5876
5877 /* We do not want the default decl_assembler_name implementation,
5878 rather if we have fixed everything we want a wrapper around it
5879 asserting that all non-local symbols already got their assembler
5880 name and only produce assembler names for local symbols. Or rather
5881 make sure we never call decl_assembler_name on local symbols and
5882 devise a separate, middle-end private scheme for it. */
5883
5884 /* Reset diagnostic machinery. */
5885 tree_diagnostics_defaults (global_dc);
5886
5887 rebuild_type_inheritance_graph ();
5888
5889 return 0;
5890 }
5891
5892
5893 namespace {
5894
5895 const pass_data pass_data_ipa_free_lang_data =
5896 {
5897 SIMPLE_IPA_PASS, /* type */
5898 "*free_lang_data", /* name */
5899 OPTGROUP_NONE, /* optinfo_flags */
5900 TV_IPA_FREE_LANG_DATA, /* tv_id */
5901 0, /* properties_required */
5902 0, /* properties_provided */
5903 0, /* properties_destroyed */
5904 0, /* todo_flags_start */
5905 0, /* todo_flags_finish */
5906 };
5907
5908 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5909 {
5910 public:
5911 pass_ipa_free_lang_data (gcc::context *ctxt)
5912 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5913 {}
5914
5915 /* opt_pass methods: */
5916 virtual unsigned int execute (function *) { return free_lang_data (); }
5917
5918 }; // class pass_ipa_free_lang_data
5919
5920 } // anon namespace
5921
5922 simple_ipa_opt_pass *
5923 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5924 {
5925 return new pass_ipa_free_lang_data (ctxt);
5926 }
5927 \f
5928 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5929 of the various TYPE_QUAL values. */
5930
5931 static void
5932 set_type_quals (tree type, int type_quals)
5933 {
5934 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5935 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5936 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5937 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
5938 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5939 }
5940
5941 /* Returns true iff CAND and BASE have equivalent language-specific
5942 qualifiers. */
5943
5944 bool
5945 check_lang_type (const_tree cand, const_tree base)
5946 {
5947 if (lang_hooks.types.type_hash_eq == NULL)
5948 return true;
5949 /* type_hash_eq currently only applies to these types. */
5950 if (TREE_CODE (cand) != FUNCTION_TYPE
5951 && TREE_CODE (cand) != METHOD_TYPE)
5952 return true;
5953 return lang_hooks.types.type_hash_eq (cand, base);
5954 }
5955
5956 /* Returns true iff unqualified CAND and BASE are equivalent. */
5957
5958 bool
5959 check_base_type (const_tree cand, const_tree base)
5960 {
5961 return (TYPE_NAME (cand) == TYPE_NAME (base)
5962 /* Apparently this is needed for Objective-C. */
5963 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5964 /* Check alignment. */
5965 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5966 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5967 TYPE_ATTRIBUTES (base)));
5968 }
5969
5970 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5971
5972 bool
5973 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5974 {
5975 return (TYPE_QUALS (cand) == type_quals
5976 && check_base_type (cand, base)
5977 && check_lang_type (cand, base));
5978 }
5979
5980 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5981
5982 static bool
5983 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5984 {
5985 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5986 && TYPE_NAME (cand) == TYPE_NAME (base)
5987 /* Apparently this is needed for Objective-C. */
5988 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5989 /* Check alignment. */
5990 && TYPE_ALIGN (cand) == align
5991 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5992 TYPE_ATTRIBUTES (base))
5993 && check_lang_type (cand, base));
5994 }
5995
5996 /* This function checks to see if TYPE matches the size one of the built-in
5997 atomic types, and returns that core atomic type. */
5998
5999 static tree
6000 find_atomic_core_type (tree type)
6001 {
6002 tree base_atomic_type;
6003
6004 /* Only handle complete types. */
6005 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6006 return NULL_TREE;
6007
6008 switch (tree_to_uhwi (TYPE_SIZE (type)))
6009 {
6010 case 8:
6011 base_atomic_type = atomicQI_type_node;
6012 break;
6013
6014 case 16:
6015 base_atomic_type = atomicHI_type_node;
6016 break;
6017
6018 case 32:
6019 base_atomic_type = atomicSI_type_node;
6020 break;
6021
6022 case 64:
6023 base_atomic_type = atomicDI_type_node;
6024 break;
6025
6026 case 128:
6027 base_atomic_type = atomicTI_type_node;
6028 break;
6029
6030 default:
6031 base_atomic_type = NULL_TREE;
6032 }
6033
6034 return base_atomic_type;
6035 }
6036
6037 /* Return a version of the TYPE, qualified as indicated by the
6038 TYPE_QUALS, if one exists. If no qualified version exists yet,
6039 return NULL_TREE. */
6040
6041 tree
6042 get_qualified_type (tree type, int type_quals)
6043 {
6044 tree t;
6045
6046 if (TYPE_QUALS (type) == type_quals)
6047 return type;
6048
6049 /* Search the chain of variants to see if there is already one there just
6050 like the one we need to have. If so, use that existing one. We must
6051 preserve the TYPE_NAME, since there is code that depends on this. */
6052 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6053 if (check_qualified_type (t, type, type_quals))
6054 return t;
6055
6056 return NULL_TREE;
6057 }
6058
6059 /* Like get_qualified_type, but creates the type if it does not
6060 exist. This function never returns NULL_TREE. */
6061
6062 tree
6063 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6064 {
6065 tree t;
6066
6067 /* See if we already have the appropriate qualified variant. */
6068 t = get_qualified_type (type, type_quals);
6069
6070 /* If not, build it. */
6071 if (!t)
6072 {
6073 t = build_variant_type_copy (type PASS_MEM_STAT);
6074 set_type_quals (t, type_quals);
6075
6076 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6077 {
6078 /* See if this object can map to a basic atomic type. */
6079 tree atomic_type = find_atomic_core_type (type);
6080 if (atomic_type)
6081 {
6082 /* Ensure the alignment of this type is compatible with
6083 the required alignment of the atomic type. */
6084 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6085 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6086 }
6087 }
6088
6089 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6090 /* Propagate structural equality. */
6091 SET_TYPE_STRUCTURAL_EQUALITY (t);
6092 else if (TYPE_CANONICAL (type) != type)
6093 /* Build the underlying canonical type, since it is different
6094 from TYPE. */
6095 {
6096 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6097 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6098 }
6099 else
6100 /* T is its own canonical type. */
6101 TYPE_CANONICAL (t) = t;
6102
6103 }
6104
6105 return t;
6106 }
6107
6108 /* Create a variant of type T with alignment ALIGN. */
6109
6110 tree
6111 build_aligned_type (tree type, unsigned int align)
6112 {
6113 tree t;
6114
6115 if (TYPE_PACKED (type)
6116 || TYPE_ALIGN (type) == align)
6117 return type;
6118
6119 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6120 if (check_aligned_type (t, type, align))
6121 return t;
6122
6123 t = build_variant_type_copy (type);
6124 SET_TYPE_ALIGN (t, align);
6125 TYPE_USER_ALIGN (t) = 1;
6126
6127 return t;
6128 }
6129
6130 /* Create a new distinct copy of TYPE. The new type is made its own
6131 MAIN_VARIANT. If TYPE requires structural equality checks, the
6132 resulting type requires structural equality checks; otherwise, its
6133 TYPE_CANONICAL points to itself. */
6134
6135 tree
6136 build_distinct_type_copy (tree type MEM_STAT_DECL)
6137 {
6138 tree t = copy_node (type PASS_MEM_STAT);
6139
6140 TYPE_POINTER_TO (t) = 0;
6141 TYPE_REFERENCE_TO (t) = 0;
6142
6143 /* Set the canonical type either to a new equivalence class, or
6144 propagate the need for structural equality checks. */
6145 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6146 SET_TYPE_STRUCTURAL_EQUALITY (t);
6147 else
6148 TYPE_CANONICAL (t) = t;
6149
6150 /* Make it its own variant. */
6151 TYPE_MAIN_VARIANT (t) = t;
6152 TYPE_NEXT_VARIANT (t) = 0;
6153
6154 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6155 whose TREE_TYPE is not t. This can also happen in the Ada
6156 frontend when using subtypes. */
6157
6158 return t;
6159 }
6160
6161 /* Create a new variant of TYPE, equivalent but distinct. This is so
6162 the caller can modify it. TYPE_CANONICAL for the return type will
6163 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6164 are considered equal by the language itself (or that both types
6165 require structural equality checks). */
6166
6167 tree
6168 build_variant_type_copy (tree type MEM_STAT_DECL)
6169 {
6170 tree t, m = TYPE_MAIN_VARIANT (type);
6171
6172 t = build_distinct_type_copy (type PASS_MEM_STAT);
6173
6174 /* Since we're building a variant, assume that it is a non-semantic
6175 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6176 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6177 /* Type variants have no alias set defined. */
6178 TYPE_ALIAS_SET (t) = -1;
6179
6180 /* Add the new type to the chain of variants of TYPE. */
6181 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6182 TYPE_NEXT_VARIANT (m) = t;
6183 TYPE_MAIN_VARIANT (t) = m;
6184
6185 return t;
6186 }
6187 \f
6188 /* Return true if the from tree in both tree maps are equal. */
6189
6190 int
6191 tree_map_base_eq (const void *va, const void *vb)
6192 {
6193 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6194 *const b = (const struct tree_map_base *) vb;
6195 return (a->from == b->from);
6196 }
6197
6198 /* Hash a from tree in a tree_base_map. */
6199
6200 unsigned int
6201 tree_map_base_hash (const void *item)
6202 {
6203 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6204 }
6205
6206 /* Return true if this tree map structure is marked for garbage collection
6207 purposes. We simply return true if the from tree is marked, so that this
6208 structure goes away when the from tree goes away. */
6209
6210 int
6211 tree_map_base_marked_p (const void *p)
6212 {
6213 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6214 }
6215
6216 /* Hash a from tree in a tree_map. */
6217
6218 unsigned int
6219 tree_map_hash (const void *item)
6220 {
6221 return (((const struct tree_map *) item)->hash);
6222 }
6223
6224 /* Hash a from tree in a tree_decl_map. */
6225
6226 unsigned int
6227 tree_decl_map_hash (const void *item)
6228 {
6229 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6230 }
6231
6232 /* Return the initialization priority for DECL. */
6233
6234 priority_type
6235 decl_init_priority_lookup (tree decl)
6236 {
6237 symtab_node *snode = symtab_node::get (decl);
6238
6239 if (!snode)
6240 return DEFAULT_INIT_PRIORITY;
6241 return
6242 snode->get_init_priority ();
6243 }
6244
6245 /* Return the finalization priority for DECL. */
6246
6247 priority_type
6248 decl_fini_priority_lookup (tree decl)
6249 {
6250 cgraph_node *node = cgraph_node::get (decl);
6251
6252 if (!node)
6253 return DEFAULT_INIT_PRIORITY;
6254 return
6255 node->get_fini_priority ();
6256 }
6257
6258 /* Set the initialization priority for DECL to PRIORITY. */
6259
6260 void
6261 decl_init_priority_insert (tree decl, priority_type priority)
6262 {
6263 struct symtab_node *snode;
6264
6265 if (priority == DEFAULT_INIT_PRIORITY)
6266 {
6267 snode = symtab_node::get (decl);
6268 if (!snode)
6269 return;
6270 }
6271 else if (VAR_P (decl))
6272 snode = varpool_node::get_create (decl);
6273 else
6274 snode = cgraph_node::get_create (decl);
6275 snode->set_init_priority (priority);
6276 }
6277
6278 /* Set the finalization priority for DECL to PRIORITY. */
6279
6280 void
6281 decl_fini_priority_insert (tree decl, priority_type priority)
6282 {
6283 struct cgraph_node *node;
6284
6285 if (priority == DEFAULT_INIT_PRIORITY)
6286 {
6287 node = cgraph_node::get (decl);
6288 if (!node)
6289 return;
6290 }
6291 else
6292 node = cgraph_node::get_create (decl);
6293 node->set_fini_priority (priority);
6294 }
6295
6296 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6297
6298 static void
6299 print_debug_expr_statistics (void)
6300 {
6301 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6302 (long) debug_expr_for_decl->size (),
6303 (long) debug_expr_for_decl->elements (),
6304 debug_expr_for_decl->collisions ());
6305 }
6306
6307 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6308
6309 static void
6310 print_value_expr_statistics (void)
6311 {
6312 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6313 (long) value_expr_for_decl->size (),
6314 (long) value_expr_for_decl->elements (),
6315 value_expr_for_decl->collisions ());
6316 }
6317
6318 /* Lookup a debug expression for FROM, and return it if we find one. */
6319
6320 tree
6321 decl_debug_expr_lookup (tree from)
6322 {
6323 struct tree_decl_map *h, in;
6324 in.base.from = from;
6325
6326 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6327 if (h)
6328 return h->to;
6329 return NULL_TREE;
6330 }
6331
6332 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6333
6334 void
6335 decl_debug_expr_insert (tree from, tree to)
6336 {
6337 struct tree_decl_map *h;
6338
6339 h = ggc_alloc<tree_decl_map> ();
6340 h->base.from = from;
6341 h->to = to;
6342 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6343 }
6344
6345 /* Lookup a value expression for FROM, and return it if we find one. */
6346
6347 tree
6348 decl_value_expr_lookup (tree from)
6349 {
6350 struct tree_decl_map *h, in;
6351 in.base.from = from;
6352
6353 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6354 if (h)
6355 return h->to;
6356 return NULL_TREE;
6357 }
6358
6359 /* Insert a mapping FROM->TO in the value expression hashtable. */
6360
6361 void
6362 decl_value_expr_insert (tree from, tree to)
6363 {
6364 struct tree_decl_map *h;
6365
6366 h = ggc_alloc<tree_decl_map> ();
6367 h->base.from = from;
6368 h->to = to;
6369 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6370 }
6371
6372 /* Lookup a vector of debug arguments for FROM, and return it if we
6373 find one. */
6374
6375 vec<tree, va_gc> **
6376 decl_debug_args_lookup (tree from)
6377 {
6378 struct tree_vec_map *h, in;
6379
6380 if (!DECL_HAS_DEBUG_ARGS_P (from))
6381 return NULL;
6382 gcc_checking_assert (debug_args_for_decl != NULL);
6383 in.base.from = from;
6384 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6385 if (h)
6386 return &h->to;
6387 return NULL;
6388 }
6389
6390 /* Insert a mapping FROM->empty vector of debug arguments in the value
6391 expression hashtable. */
6392
6393 vec<tree, va_gc> **
6394 decl_debug_args_insert (tree from)
6395 {
6396 struct tree_vec_map *h;
6397 tree_vec_map **loc;
6398
6399 if (DECL_HAS_DEBUG_ARGS_P (from))
6400 return decl_debug_args_lookup (from);
6401 if (debug_args_for_decl == NULL)
6402 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6403 h = ggc_alloc<tree_vec_map> ();
6404 h->base.from = from;
6405 h->to = NULL;
6406 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6407 *loc = h;
6408 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6409 return &h->to;
6410 }
6411
6412 /* Hashing of types so that we don't make duplicates.
6413 The entry point is `type_hash_canon'. */
6414
6415 /* Generate the default hash code for TYPE. This is designed for
6416 speed, rather than maximum entropy. */
6417
6418 hashval_t
6419 type_hash_canon_hash (tree type)
6420 {
6421 inchash::hash hstate;
6422
6423 hstate.add_int (TREE_CODE (type));
6424
6425 if (TREE_TYPE (type))
6426 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6427
6428 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6429 /* Just the identifier is adequate to distinguish. */
6430 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6431
6432 switch (TREE_CODE (type))
6433 {
6434 case METHOD_TYPE:
6435 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6436 /* FALLTHROUGH. */
6437 case FUNCTION_TYPE:
6438 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6439 if (TREE_VALUE (t) != error_mark_node)
6440 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6441 break;
6442
6443 case OFFSET_TYPE:
6444 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6445 break;
6446
6447 case ARRAY_TYPE:
6448 {
6449 if (TYPE_DOMAIN (type))
6450 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6451 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6452 {
6453 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6454 hstate.add_object (typeless);
6455 }
6456 }
6457 break;
6458
6459 case INTEGER_TYPE:
6460 {
6461 tree t = TYPE_MAX_VALUE (type);
6462 if (!t)
6463 t = TYPE_MIN_VALUE (type);
6464 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6465 hstate.add_object (TREE_INT_CST_ELT (t, i));
6466 break;
6467 }
6468
6469 case REAL_TYPE:
6470 case FIXED_POINT_TYPE:
6471 {
6472 unsigned prec = TYPE_PRECISION (type);
6473 hstate.add_object (prec);
6474 break;
6475 }
6476
6477 case VECTOR_TYPE:
6478 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6479 break;
6480
6481 default:
6482 break;
6483 }
6484
6485 return hstate.end ();
6486 }
6487
6488 /* These are the Hashtable callback functions. */
6489
6490 /* Returns true iff the types are equivalent. */
6491
6492 bool
6493 type_cache_hasher::equal (type_hash *a, type_hash *b)
6494 {
6495 /* First test the things that are the same for all types. */
6496 if (a->hash != b->hash
6497 || TREE_CODE (a->type) != TREE_CODE (b->type)
6498 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6499 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6500 TYPE_ATTRIBUTES (b->type))
6501 || (TREE_CODE (a->type) != COMPLEX_TYPE
6502 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6503 return 0;
6504
6505 /* Be careful about comparing arrays before and after the element type
6506 has been completed; don't compare TYPE_ALIGN unless both types are
6507 complete. */
6508 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6509 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6510 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6511 return 0;
6512
6513 switch (TREE_CODE (a->type))
6514 {
6515 case VOID_TYPE:
6516 case COMPLEX_TYPE:
6517 case POINTER_TYPE:
6518 case REFERENCE_TYPE:
6519 case NULLPTR_TYPE:
6520 return 1;
6521
6522 case VECTOR_TYPE:
6523 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6524 TYPE_VECTOR_SUBPARTS (b->type));
6525
6526 case ENUMERAL_TYPE:
6527 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6528 && !(TYPE_VALUES (a->type)
6529 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6530 && TYPE_VALUES (b->type)
6531 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6532 && type_list_equal (TYPE_VALUES (a->type),
6533 TYPE_VALUES (b->type))))
6534 return 0;
6535
6536 /* fall through */
6537
6538 case INTEGER_TYPE:
6539 case REAL_TYPE:
6540 case BOOLEAN_TYPE:
6541 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6542 return false;
6543 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6544 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6545 TYPE_MAX_VALUE (b->type)))
6546 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6547 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6548 TYPE_MIN_VALUE (b->type))));
6549
6550 case FIXED_POINT_TYPE:
6551 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6552
6553 case OFFSET_TYPE:
6554 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6555
6556 case METHOD_TYPE:
6557 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6558 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6559 || (TYPE_ARG_TYPES (a->type)
6560 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6561 && TYPE_ARG_TYPES (b->type)
6562 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6563 && type_list_equal (TYPE_ARG_TYPES (a->type),
6564 TYPE_ARG_TYPES (b->type)))))
6565 break;
6566 return 0;
6567 case ARRAY_TYPE:
6568 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6569 where the flag should be inherited from the element type
6570 and can change after ARRAY_TYPEs are created; on non-aggregates
6571 compare it and hash it, scalars will never have that flag set
6572 and we need to differentiate between arrays created by different
6573 front-ends or middle-end created arrays. */
6574 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6575 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6576 || (TYPE_TYPELESS_STORAGE (a->type)
6577 == TYPE_TYPELESS_STORAGE (b->type))));
6578
6579 case RECORD_TYPE:
6580 case UNION_TYPE:
6581 case QUAL_UNION_TYPE:
6582 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6583 || (TYPE_FIELDS (a->type)
6584 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6585 && TYPE_FIELDS (b->type)
6586 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6587 && type_list_equal (TYPE_FIELDS (a->type),
6588 TYPE_FIELDS (b->type))));
6589
6590 case FUNCTION_TYPE:
6591 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6592 || (TYPE_ARG_TYPES (a->type)
6593 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6594 && TYPE_ARG_TYPES (b->type)
6595 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6596 && type_list_equal (TYPE_ARG_TYPES (a->type),
6597 TYPE_ARG_TYPES (b->type))))
6598 break;
6599 return 0;
6600
6601 default:
6602 return 0;
6603 }
6604
6605 if (lang_hooks.types.type_hash_eq != NULL)
6606 return lang_hooks.types.type_hash_eq (a->type, b->type);
6607
6608 return 1;
6609 }
6610
6611 /* Given TYPE, and HASHCODE its hash code, return the canonical
6612 object for an identical type if one already exists.
6613 Otherwise, return TYPE, and record it as the canonical object.
6614
6615 To use this function, first create a type of the sort you want.
6616 Then compute its hash code from the fields of the type that
6617 make it different from other similar types.
6618 Then call this function and use the value. */
6619
6620 tree
6621 type_hash_canon (unsigned int hashcode, tree type)
6622 {
6623 type_hash in;
6624 type_hash **loc;
6625
6626 /* The hash table only contains main variants, so ensure that's what we're
6627 being passed. */
6628 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6629
6630 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6631 must call that routine before comparing TYPE_ALIGNs. */
6632 layout_type (type);
6633
6634 in.hash = hashcode;
6635 in.type = type;
6636
6637 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
6638 if (*loc)
6639 {
6640 tree t1 = ((type_hash *) *loc)->type;
6641 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
6642 && t1 != type);
6643 if (TYPE_UID (type) + 1 == next_type_uid)
6644 --next_type_uid;
6645 /* Free also min/max values and the cache for integer
6646 types. This can't be done in free_node, as LTO frees
6647 those on its own. */
6648 if (TREE_CODE (type) == INTEGER_TYPE)
6649 {
6650 if (TYPE_MIN_VALUE (type)
6651 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
6652 {
6653 /* Zero is always in TYPE_CACHED_VALUES. */
6654 if (! TYPE_UNSIGNED (type))
6655 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
6656 ggc_free (TYPE_MIN_VALUE (type));
6657 }
6658 if (TYPE_MAX_VALUE (type)
6659 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
6660 {
6661 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
6662 ggc_free (TYPE_MAX_VALUE (type));
6663 }
6664 if (TYPE_CACHED_VALUES_P (type))
6665 ggc_free (TYPE_CACHED_VALUES (type));
6666 }
6667 free_node (type);
6668 return t1;
6669 }
6670 else
6671 {
6672 struct type_hash *h;
6673
6674 h = ggc_alloc<type_hash> ();
6675 h->hash = hashcode;
6676 h->type = type;
6677 *loc = h;
6678
6679 return type;
6680 }
6681 }
6682
6683 static void
6684 print_type_hash_statistics (void)
6685 {
6686 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6687 (long) type_hash_table->size (),
6688 (long) type_hash_table->elements (),
6689 type_hash_table->collisions ());
6690 }
6691
6692 /* Given two lists of types
6693 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6694 return 1 if the lists contain the same types in the same order.
6695 Also, the TREE_PURPOSEs must match. */
6696
6697 int
6698 type_list_equal (const_tree l1, const_tree l2)
6699 {
6700 const_tree t1, t2;
6701
6702 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6703 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6704 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6705 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6706 && (TREE_TYPE (TREE_PURPOSE (t1))
6707 == TREE_TYPE (TREE_PURPOSE (t2))))))
6708 return 0;
6709
6710 return t1 == t2;
6711 }
6712
6713 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6714 given by TYPE. If the argument list accepts variable arguments,
6715 then this function counts only the ordinary arguments. */
6716
6717 int
6718 type_num_arguments (const_tree type)
6719 {
6720 int i = 0;
6721 tree t;
6722
6723 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6724 /* If the function does not take a variable number of arguments,
6725 the last element in the list will have type `void'. */
6726 if (VOID_TYPE_P (TREE_VALUE (t)))
6727 break;
6728 else
6729 ++i;
6730
6731 return i;
6732 }
6733
6734 /* Nonzero if integer constants T1 and T2
6735 represent the same constant value. */
6736
6737 int
6738 tree_int_cst_equal (const_tree t1, const_tree t2)
6739 {
6740 if (t1 == t2)
6741 return 1;
6742
6743 if (t1 == 0 || t2 == 0)
6744 return 0;
6745
6746 if (TREE_CODE (t1) == INTEGER_CST
6747 && TREE_CODE (t2) == INTEGER_CST
6748 && wi::to_widest (t1) == wi::to_widest (t2))
6749 return 1;
6750
6751 return 0;
6752 }
6753
6754 /* Return true if T is an INTEGER_CST whose numerical value (extended
6755 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6756
6757 bool
6758 tree_fits_shwi_p (const_tree t)
6759 {
6760 return (t != NULL_TREE
6761 && TREE_CODE (t) == INTEGER_CST
6762 && wi::fits_shwi_p (wi::to_widest (t)));
6763 }
6764
6765 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6766 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
6767
6768 bool
6769 tree_fits_poly_int64_p (const_tree t)
6770 {
6771 if (t == NULL_TREE)
6772 return false;
6773 if (POLY_INT_CST_P (t))
6774 {
6775 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6776 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
6777 return false;
6778 return true;
6779 }
6780 return (TREE_CODE (t) == INTEGER_CST
6781 && wi::fits_shwi_p (wi::to_widest (t)));
6782 }
6783
6784 /* Return true if T is an INTEGER_CST whose numerical value (extended
6785 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6786
6787 bool
6788 tree_fits_uhwi_p (const_tree t)
6789 {
6790 return (t != NULL_TREE
6791 && TREE_CODE (t) == INTEGER_CST
6792 && wi::fits_uhwi_p (wi::to_widest (t)));
6793 }
6794
6795 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6796 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
6797
6798 bool
6799 tree_fits_poly_uint64_p (const_tree t)
6800 {
6801 if (t == NULL_TREE)
6802 return false;
6803 if (POLY_INT_CST_P (t))
6804 {
6805 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6806 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
6807 return false;
6808 return true;
6809 }
6810 return (TREE_CODE (t) == INTEGER_CST
6811 && wi::fits_uhwi_p (wi::to_widest (t)));
6812 }
6813
6814 /* T is an INTEGER_CST whose numerical value (extended according to
6815 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
6816 HOST_WIDE_INT. */
6817
6818 HOST_WIDE_INT
6819 tree_to_shwi (const_tree t)
6820 {
6821 gcc_assert (tree_fits_shwi_p (t));
6822 return TREE_INT_CST_LOW (t);
6823 }
6824
6825 /* T is an INTEGER_CST whose numerical value (extended according to
6826 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
6827 HOST_WIDE_INT. */
6828
6829 unsigned HOST_WIDE_INT
6830 tree_to_uhwi (const_tree t)
6831 {
6832 gcc_assert (tree_fits_uhwi_p (t));
6833 return TREE_INT_CST_LOW (t);
6834 }
6835
6836 /* Return the most significant (sign) bit of T. */
6837
6838 int
6839 tree_int_cst_sign_bit (const_tree t)
6840 {
6841 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6842
6843 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
6844 }
6845
6846 /* Return an indication of the sign of the integer constant T.
6847 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6848 Note that -1 will never be returned if T's type is unsigned. */
6849
6850 int
6851 tree_int_cst_sgn (const_tree t)
6852 {
6853 if (wi::to_wide (t) == 0)
6854 return 0;
6855 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6856 return 1;
6857 else if (wi::neg_p (wi::to_wide (t)))
6858 return -1;
6859 else
6860 return 1;
6861 }
6862
6863 /* Return the minimum number of bits needed to represent VALUE in a
6864 signed or unsigned type, UNSIGNEDP says which. */
6865
6866 unsigned int
6867 tree_int_cst_min_precision (tree value, signop sgn)
6868 {
6869 /* If the value is negative, compute its negative minus 1. The latter
6870 adjustment is because the absolute value of the largest negative value
6871 is one larger than the largest positive value. This is equivalent to
6872 a bit-wise negation, so use that operation instead. */
6873
6874 if (tree_int_cst_sgn (value) < 0)
6875 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6876
6877 /* Return the number of bits needed, taking into account the fact
6878 that we need one more bit for a signed than unsigned type.
6879 If value is 0 or -1, the minimum precision is 1 no matter
6880 whether unsignedp is true or false. */
6881
6882 if (integer_zerop (value))
6883 return 1;
6884 else
6885 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
6886 }
6887
6888 /* Return truthvalue of whether T1 is the same tree structure as T2.
6889 Return 1 if they are the same.
6890 Return 0 if they are understandably different.
6891 Return -1 if either contains tree structure not understood by
6892 this function. */
6893
6894 int
6895 simple_cst_equal (const_tree t1, const_tree t2)
6896 {
6897 enum tree_code code1, code2;
6898 int cmp;
6899 int i;
6900
6901 if (t1 == t2)
6902 return 1;
6903 if (t1 == 0 || t2 == 0)
6904 return 0;
6905
6906 code1 = TREE_CODE (t1);
6907 code2 = TREE_CODE (t2);
6908
6909 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6910 {
6911 if (CONVERT_EXPR_CODE_P (code2)
6912 || code2 == NON_LVALUE_EXPR)
6913 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6914 else
6915 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6916 }
6917
6918 else if (CONVERT_EXPR_CODE_P (code2)
6919 || code2 == NON_LVALUE_EXPR)
6920 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6921
6922 if (code1 != code2)
6923 return 0;
6924
6925 switch (code1)
6926 {
6927 case INTEGER_CST:
6928 return wi::to_widest (t1) == wi::to_widest (t2);
6929
6930 case REAL_CST:
6931 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
6932
6933 case FIXED_CST:
6934 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6935
6936 case STRING_CST:
6937 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6938 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6939 TREE_STRING_LENGTH (t1)));
6940
6941 case CONSTRUCTOR:
6942 {
6943 unsigned HOST_WIDE_INT idx;
6944 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6945 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6946
6947 if (vec_safe_length (v1) != vec_safe_length (v2))
6948 return false;
6949
6950 for (idx = 0; idx < vec_safe_length (v1); ++idx)
6951 /* ??? Should we handle also fields here? */
6952 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6953 return false;
6954 return true;
6955 }
6956
6957 case SAVE_EXPR:
6958 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6959
6960 case CALL_EXPR:
6961 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6962 if (cmp <= 0)
6963 return cmp;
6964 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6965 return 0;
6966 {
6967 const_tree arg1, arg2;
6968 const_call_expr_arg_iterator iter1, iter2;
6969 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6970 arg2 = first_const_call_expr_arg (t2, &iter2);
6971 arg1 && arg2;
6972 arg1 = next_const_call_expr_arg (&iter1),
6973 arg2 = next_const_call_expr_arg (&iter2))
6974 {
6975 cmp = simple_cst_equal (arg1, arg2);
6976 if (cmp <= 0)
6977 return cmp;
6978 }
6979 return arg1 == arg2;
6980 }
6981
6982 case TARGET_EXPR:
6983 /* Special case: if either target is an unallocated VAR_DECL,
6984 it means that it's going to be unified with whatever the
6985 TARGET_EXPR is really supposed to initialize, so treat it
6986 as being equivalent to anything. */
6987 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6988 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6989 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6990 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6991 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6992 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6993 cmp = 1;
6994 else
6995 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6996
6997 if (cmp <= 0)
6998 return cmp;
6999
7000 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7001
7002 case WITH_CLEANUP_EXPR:
7003 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7004 if (cmp <= 0)
7005 return cmp;
7006
7007 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7008
7009 case COMPONENT_REF:
7010 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7011 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7012
7013 return 0;
7014
7015 case VAR_DECL:
7016 case PARM_DECL:
7017 case CONST_DECL:
7018 case FUNCTION_DECL:
7019 return 0;
7020
7021 default:
7022 if (POLY_INT_CST_P (t1))
7023 /* A false return means maybe_ne rather than known_ne. */
7024 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7025 TYPE_SIGN (TREE_TYPE (t1))),
7026 poly_widest_int::from (poly_int_cst_value (t2),
7027 TYPE_SIGN (TREE_TYPE (t2))));
7028 break;
7029 }
7030
7031 /* This general rule works for most tree codes. All exceptions should be
7032 handled above. If this is a language-specific tree code, we can't
7033 trust what might be in the operand, so say we don't know
7034 the situation. */
7035 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7036 return -1;
7037
7038 switch (TREE_CODE_CLASS (code1))
7039 {
7040 case tcc_unary:
7041 case tcc_binary:
7042 case tcc_comparison:
7043 case tcc_expression:
7044 case tcc_reference:
7045 case tcc_statement:
7046 cmp = 1;
7047 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7048 {
7049 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7050 if (cmp <= 0)
7051 return cmp;
7052 }
7053
7054 return cmp;
7055
7056 default:
7057 return -1;
7058 }
7059 }
7060
7061 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7062 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7063 than U, respectively. */
7064
7065 int
7066 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7067 {
7068 if (tree_int_cst_sgn (t) < 0)
7069 return -1;
7070 else if (!tree_fits_uhwi_p (t))
7071 return 1;
7072 else if (TREE_INT_CST_LOW (t) == u)
7073 return 0;
7074 else if (TREE_INT_CST_LOW (t) < u)
7075 return -1;
7076 else
7077 return 1;
7078 }
7079
7080 /* Return true if SIZE represents a constant size that is in bounds of
7081 what the middle-end and the backend accepts (covering not more than
7082 half of the address-space). */
7083
7084 bool
7085 valid_constant_size_p (const_tree size)
7086 {
7087 if (POLY_INT_CST_P (size))
7088 {
7089 if (TREE_OVERFLOW (size))
7090 return false;
7091 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7092 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7093 return false;
7094 return true;
7095 }
7096 if (! tree_fits_uhwi_p (size)
7097 || TREE_OVERFLOW (size)
7098 || tree_int_cst_sign_bit (size) != 0)
7099 return false;
7100 return true;
7101 }
7102
7103 /* Return the precision of the type, or for a complex or vector type the
7104 precision of the type of its elements. */
7105
7106 unsigned int
7107 element_precision (const_tree type)
7108 {
7109 if (!TYPE_P (type))
7110 type = TREE_TYPE (type);
7111 enum tree_code code = TREE_CODE (type);
7112 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7113 type = TREE_TYPE (type);
7114
7115 return TYPE_PRECISION (type);
7116 }
7117
7118 /* Return true if CODE represents an associative tree code. Otherwise
7119 return false. */
7120 bool
7121 associative_tree_code (enum tree_code code)
7122 {
7123 switch (code)
7124 {
7125 case BIT_IOR_EXPR:
7126 case BIT_AND_EXPR:
7127 case BIT_XOR_EXPR:
7128 case PLUS_EXPR:
7129 case MULT_EXPR:
7130 case MIN_EXPR:
7131 case MAX_EXPR:
7132 return true;
7133
7134 default:
7135 break;
7136 }
7137 return false;
7138 }
7139
7140 /* Return true if CODE represents a commutative tree code. Otherwise
7141 return false. */
7142 bool
7143 commutative_tree_code (enum tree_code code)
7144 {
7145 switch (code)
7146 {
7147 case PLUS_EXPR:
7148 case MULT_EXPR:
7149 case MULT_HIGHPART_EXPR:
7150 case MIN_EXPR:
7151 case MAX_EXPR:
7152 case BIT_IOR_EXPR:
7153 case BIT_XOR_EXPR:
7154 case BIT_AND_EXPR:
7155 case NE_EXPR:
7156 case EQ_EXPR:
7157 case UNORDERED_EXPR:
7158 case ORDERED_EXPR:
7159 case UNEQ_EXPR:
7160 case LTGT_EXPR:
7161 case TRUTH_AND_EXPR:
7162 case TRUTH_XOR_EXPR:
7163 case TRUTH_OR_EXPR:
7164 case WIDEN_MULT_EXPR:
7165 case VEC_WIDEN_MULT_HI_EXPR:
7166 case VEC_WIDEN_MULT_LO_EXPR:
7167 case VEC_WIDEN_MULT_EVEN_EXPR:
7168 case VEC_WIDEN_MULT_ODD_EXPR:
7169 return true;
7170
7171 default:
7172 break;
7173 }
7174 return false;
7175 }
7176
7177 /* Return true if CODE represents a ternary tree code for which the
7178 first two operands are commutative. Otherwise return false. */
7179 bool
7180 commutative_ternary_tree_code (enum tree_code code)
7181 {
7182 switch (code)
7183 {
7184 case WIDEN_MULT_PLUS_EXPR:
7185 case WIDEN_MULT_MINUS_EXPR:
7186 case DOT_PROD_EXPR:
7187 return true;
7188
7189 default:
7190 break;
7191 }
7192 return false;
7193 }
7194
7195 /* Returns true if CODE can overflow. */
7196
7197 bool
7198 operation_can_overflow (enum tree_code code)
7199 {
7200 switch (code)
7201 {
7202 case PLUS_EXPR:
7203 case MINUS_EXPR:
7204 case MULT_EXPR:
7205 case LSHIFT_EXPR:
7206 /* Can overflow in various ways. */
7207 return true;
7208 case TRUNC_DIV_EXPR:
7209 case EXACT_DIV_EXPR:
7210 case FLOOR_DIV_EXPR:
7211 case CEIL_DIV_EXPR:
7212 /* For INT_MIN / -1. */
7213 return true;
7214 case NEGATE_EXPR:
7215 case ABS_EXPR:
7216 /* For -INT_MIN. */
7217 return true;
7218 default:
7219 /* These operators cannot overflow. */
7220 return false;
7221 }
7222 }
7223
7224 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7225 ftrapv doesn't generate trapping insns for CODE. */
7226
7227 bool
7228 operation_no_trapping_overflow (tree type, enum tree_code code)
7229 {
7230 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7231
7232 /* We don't generate instructions that trap on overflow for complex or vector
7233 types. */
7234 if (!INTEGRAL_TYPE_P (type))
7235 return true;
7236
7237 if (!TYPE_OVERFLOW_TRAPS (type))
7238 return true;
7239
7240 switch (code)
7241 {
7242 case PLUS_EXPR:
7243 case MINUS_EXPR:
7244 case MULT_EXPR:
7245 case NEGATE_EXPR:
7246 case ABS_EXPR:
7247 /* These operators can overflow, and -ftrapv generates trapping code for
7248 these. */
7249 return false;
7250 case TRUNC_DIV_EXPR:
7251 case EXACT_DIV_EXPR:
7252 case FLOOR_DIV_EXPR:
7253 case CEIL_DIV_EXPR:
7254 case LSHIFT_EXPR:
7255 /* These operators can overflow, but -ftrapv does not generate trapping
7256 code for these. */
7257 return true;
7258 default:
7259 /* These operators cannot overflow. */
7260 return true;
7261 }
7262 }
7263
7264 namespace inchash
7265 {
7266
7267 /* Generate a hash value for an expression. This can be used iteratively
7268 by passing a previous result as the HSTATE argument.
7269
7270 This function is intended to produce the same hash for expressions which
7271 would compare equal using operand_equal_p. */
7272 void
7273 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7274 {
7275 int i;
7276 enum tree_code code;
7277 enum tree_code_class tclass;
7278
7279 if (t == NULL_TREE || t == error_mark_node)
7280 {
7281 hstate.merge_hash (0);
7282 return;
7283 }
7284
7285 if (!(flags & OEP_ADDRESS_OF))
7286 STRIP_NOPS (t);
7287
7288 code = TREE_CODE (t);
7289
7290 switch (code)
7291 {
7292 /* Alas, constants aren't shared, so we can't rely on pointer
7293 identity. */
7294 case VOID_CST:
7295 hstate.merge_hash (0);
7296 return;
7297 case INTEGER_CST:
7298 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7299 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7300 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7301 return;
7302 case REAL_CST:
7303 {
7304 unsigned int val2;
7305 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7306 val2 = rvc_zero;
7307 else
7308 val2 = real_hash (TREE_REAL_CST_PTR (t));
7309 hstate.merge_hash (val2);
7310 return;
7311 }
7312 case FIXED_CST:
7313 {
7314 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7315 hstate.merge_hash (val2);
7316 return;
7317 }
7318 case STRING_CST:
7319 hstate.add ((const void *) TREE_STRING_POINTER (t),
7320 TREE_STRING_LENGTH (t));
7321 return;
7322 case COMPLEX_CST:
7323 inchash::add_expr (TREE_REALPART (t), hstate, flags);
7324 inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7325 return;
7326 case VECTOR_CST:
7327 {
7328 hstate.add_int (VECTOR_CST_NPATTERNS (t));
7329 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7330 unsigned int count = vector_cst_encoded_nelts (t);
7331 for (unsigned int i = 0; i < count; ++i)
7332 inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7333 return;
7334 }
7335 case SSA_NAME:
7336 /* We can just compare by pointer. */
7337 hstate.add_hwi (SSA_NAME_VERSION (t));
7338 return;
7339 case PLACEHOLDER_EXPR:
7340 /* The node itself doesn't matter. */
7341 return;
7342 case BLOCK:
7343 case OMP_CLAUSE:
7344 /* Ignore. */
7345 return;
7346 case TREE_LIST:
7347 /* A list of expressions, for a CALL_EXPR or as the elements of a
7348 VECTOR_CST. */
7349 for (; t; t = TREE_CHAIN (t))
7350 inchash::add_expr (TREE_VALUE (t), hstate, flags);
7351 return;
7352 case CONSTRUCTOR:
7353 {
7354 unsigned HOST_WIDE_INT idx;
7355 tree field, value;
7356 flags &= ~OEP_ADDRESS_OF;
7357 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7358 {
7359 inchash::add_expr (field, hstate, flags);
7360 inchash::add_expr (value, hstate, flags);
7361 }
7362 return;
7363 }
7364 case STATEMENT_LIST:
7365 {
7366 tree_stmt_iterator i;
7367 for (i = tsi_start (CONST_CAST_TREE (t));
7368 !tsi_end_p (i); tsi_next (&i))
7369 inchash::add_expr (tsi_stmt (i), hstate, flags);
7370 return;
7371 }
7372 case TREE_VEC:
7373 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7374 inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7375 return;
7376 case IDENTIFIER_NODE:
7377 hstate.add_object (IDENTIFIER_HASH_VALUE (t));
7378 return;
7379 case FUNCTION_DECL:
7380 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7381 Otherwise nodes that compare equal according to operand_equal_p might
7382 get different hash codes. However, don't do this for machine specific
7383 or front end builtins, since the function code is overloaded in those
7384 cases. */
7385 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7386 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7387 {
7388 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7389 code = TREE_CODE (t);
7390 }
7391 /* FALL THROUGH */
7392 default:
7393 if (POLY_INT_CST_P (t))
7394 {
7395 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7396 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7397 return;
7398 }
7399 tclass = TREE_CODE_CLASS (code);
7400
7401 if (tclass == tcc_declaration)
7402 {
7403 /* DECL's have a unique ID */
7404 hstate.add_hwi (DECL_UID (t));
7405 }
7406 else if (tclass == tcc_comparison && !commutative_tree_code (code))
7407 {
7408 /* For comparisons that can be swapped, use the lower
7409 tree code. */
7410 enum tree_code ccode = swap_tree_comparison (code);
7411 if (code < ccode)
7412 ccode = code;
7413 hstate.add_object (ccode);
7414 inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7415 inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7416 }
7417 else if (CONVERT_EXPR_CODE_P (code))
7418 {
7419 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7420 operand_equal_p. */
7421 enum tree_code ccode = NOP_EXPR;
7422 hstate.add_object (ccode);
7423
7424 /* Don't hash the type, that can lead to having nodes which
7425 compare equal according to operand_equal_p, but which
7426 have different hash codes. Make sure to include signedness
7427 in the hash computation. */
7428 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7429 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7430 }
7431 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7432 else if (code == MEM_REF
7433 && (flags & OEP_ADDRESS_OF) != 0
7434 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7435 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7436 && integer_zerop (TREE_OPERAND (t, 1)))
7437 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7438 hstate, flags);
7439 /* Don't ICE on FE specific trees, or their arguments etc.
7440 during operand_equal_p hash verification. */
7441 else if (!IS_EXPR_CODE_CLASS (tclass))
7442 gcc_assert (flags & OEP_HASH_CHECK);
7443 else
7444 {
7445 unsigned int sflags = flags;
7446
7447 hstate.add_object (code);
7448
7449 switch (code)
7450 {
7451 case ADDR_EXPR:
7452 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7453 flags |= OEP_ADDRESS_OF;
7454 sflags = flags;
7455 break;
7456
7457 case INDIRECT_REF:
7458 case MEM_REF:
7459 case TARGET_MEM_REF:
7460 flags &= ~OEP_ADDRESS_OF;
7461 sflags = flags;
7462 break;
7463
7464 case ARRAY_REF:
7465 case ARRAY_RANGE_REF:
7466 case COMPONENT_REF:
7467 case BIT_FIELD_REF:
7468 sflags &= ~OEP_ADDRESS_OF;
7469 break;
7470
7471 case COND_EXPR:
7472 flags &= ~OEP_ADDRESS_OF;
7473 break;
7474
7475 case WIDEN_MULT_PLUS_EXPR:
7476 case WIDEN_MULT_MINUS_EXPR:
7477 {
7478 /* The multiplication operands are commutative. */
7479 inchash::hash one, two;
7480 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7481 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7482 hstate.add_commutative (one, two);
7483 inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7484 return;
7485 }
7486
7487 case CALL_EXPR:
7488 if (CALL_EXPR_FN (t) == NULL_TREE)
7489 hstate.add_int (CALL_EXPR_IFN (t));
7490 break;
7491
7492 case TARGET_EXPR:
7493 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7494 Usually different TARGET_EXPRs just should use
7495 different temporaries in their slots. */
7496 inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7497 return;
7498
7499 default:
7500 break;
7501 }
7502
7503 /* Don't hash the type, that can lead to having nodes which
7504 compare equal according to operand_equal_p, but which
7505 have different hash codes. */
7506 if (code == NON_LVALUE_EXPR)
7507 {
7508 /* Make sure to include signness in the hash computation. */
7509 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7510 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7511 }
7512
7513 else if (commutative_tree_code (code))
7514 {
7515 /* It's a commutative expression. We want to hash it the same
7516 however it appears. We do this by first hashing both operands
7517 and then rehashing based on the order of their independent
7518 hashes. */
7519 inchash::hash one, two;
7520 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7521 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7522 hstate.add_commutative (one, two);
7523 }
7524 else
7525 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7526 inchash::add_expr (TREE_OPERAND (t, i), hstate,
7527 i == 0 ? flags : sflags);
7528 }
7529 return;
7530 }
7531 }
7532
7533 }
7534
7535 /* Constructors for pointer, array and function types.
7536 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7537 constructed by language-dependent code, not here.) */
7538
7539 /* Construct, lay out and return the type of pointers to TO_TYPE with
7540 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7541 reference all of memory. If such a type has already been
7542 constructed, reuse it. */
7543
7544 tree
7545 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7546 bool can_alias_all)
7547 {
7548 tree t;
7549 bool could_alias = can_alias_all;
7550
7551 if (to_type == error_mark_node)
7552 return error_mark_node;
7553
7554 /* If the pointed-to type has the may_alias attribute set, force
7555 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7556 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7557 can_alias_all = true;
7558
7559 /* In some cases, languages will have things that aren't a POINTER_TYPE
7560 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7561 In that case, return that type without regard to the rest of our
7562 operands.
7563
7564 ??? This is a kludge, but consistent with the way this function has
7565 always operated and there doesn't seem to be a good way to avoid this
7566 at the moment. */
7567 if (TYPE_POINTER_TO (to_type) != 0
7568 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7569 return TYPE_POINTER_TO (to_type);
7570
7571 /* First, if we already have a type for pointers to TO_TYPE and it's
7572 the proper mode, use it. */
7573 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7574 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7575 return t;
7576
7577 t = make_node (POINTER_TYPE);
7578
7579 TREE_TYPE (t) = to_type;
7580 SET_TYPE_MODE (t, mode);
7581 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7582 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7583 TYPE_POINTER_TO (to_type) = t;
7584
7585 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7586 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7587 SET_TYPE_STRUCTURAL_EQUALITY (t);
7588 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7589 TYPE_CANONICAL (t)
7590 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7591 mode, false);
7592
7593 /* Lay out the type. This function has many callers that are concerned
7594 with expression-construction, and this simplifies them all. */
7595 layout_type (t);
7596
7597 return t;
7598 }
7599
7600 /* By default build pointers in ptr_mode. */
7601
7602 tree
7603 build_pointer_type (tree to_type)
7604 {
7605 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7606 : TYPE_ADDR_SPACE (to_type);
7607 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7608 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7609 }
7610
7611 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7612
7613 tree
7614 build_reference_type_for_mode (tree to_type, machine_mode mode,
7615 bool can_alias_all)
7616 {
7617 tree t;
7618 bool could_alias = can_alias_all;
7619
7620 if (to_type == error_mark_node)
7621 return error_mark_node;
7622
7623 /* If the pointed-to type has the may_alias attribute set, force
7624 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7625 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7626 can_alias_all = true;
7627
7628 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7629 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7630 In that case, return that type without regard to the rest of our
7631 operands.
7632
7633 ??? This is a kludge, but consistent with the way this function has
7634 always operated and there doesn't seem to be a good way to avoid this
7635 at the moment. */
7636 if (TYPE_REFERENCE_TO (to_type) != 0
7637 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7638 return TYPE_REFERENCE_TO (to_type);
7639
7640 /* First, if we already have a type for pointers to TO_TYPE and it's
7641 the proper mode, use it. */
7642 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7643 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7644 return t;
7645
7646 t = make_node (REFERENCE_TYPE);
7647
7648 TREE_TYPE (t) = to_type;
7649 SET_TYPE_MODE (t, mode);
7650 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7651 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7652 TYPE_REFERENCE_TO (to_type) = t;
7653
7654 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7655 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7656 SET_TYPE_STRUCTURAL_EQUALITY (t);
7657 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7658 TYPE_CANONICAL (t)
7659 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7660 mode, false);
7661
7662 layout_type (t);
7663
7664 return t;
7665 }
7666
7667
7668 /* Build the node for the type of references-to-TO_TYPE by default
7669 in ptr_mode. */
7670
7671 tree
7672 build_reference_type (tree to_type)
7673 {
7674 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7675 : TYPE_ADDR_SPACE (to_type);
7676 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7677 return build_reference_type_for_mode (to_type, pointer_mode, false);
7678 }
7679
7680 #define MAX_INT_CACHED_PREC \
7681 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7682 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7683
7684 /* Builds a signed or unsigned integer type of precision PRECISION.
7685 Used for C bitfields whose precision does not match that of
7686 built-in target types. */
7687 tree
7688 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7689 int unsignedp)
7690 {
7691 tree itype, ret;
7692
7693 if (unsignedp)
7694 unsignedp = MAX_INT_CACHED_PREC + 1;
7695
7696 if (precision <= MAX_INT_CACHED_PREC)
7697 {
7698 itype = nonstandard_integer_type_cache[precision + unsignedp];
7699 if (itype)
7700 return itype;
7701 }
7702
7703 itype = make_node (INTEGER_TYPE);
7704 TYPE_PRECISION (itype) = precision;
7705
7706 if (unsignedp)
7707 fixup_unsigned_type (itype);
7708 else
7709 fixup_signed_type (itype);
7710
7711 ret = itype;
7712
7713 inchash::hash hstate;
7714 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7715 ret = type_hash_canon (hstate.end (), itype);
7716 if (precision <= MAX_INT_CACHED_PREC)
7717 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7718
7719 return ret;
7720 }
7721
7722 #define MAX_BOOL_CACHED_PREC \
7723 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7724 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7725
7726 /* Builds a boolean type of precision PRECISION.
7727 Used for boolean vectors to choose proper vector element size. */
7728 tree
7729 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7730 {
7731 tree type;
7732
7733 if (precision <= MAX_BOOL_CACHED_PREC)
7734 {
7735 type = nonstandard_boolean_type_cache[precision];
7736 if (type)
7737 return type;
7738 }
7739
7740 type = make_node (BOOLEAN_TYPE);
7741 TYPE_PRECISION (type) = precision;
7742 fixup_signed_type (type);
7743
7744 if (precision <= MAX_INT_CACHED_PREC)
7745 nonstandard_boolean_type_cache[precision] = type;
7746
7747 return type;
7748 }
7749
7750 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7751 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7752 is true, reuse such a type that has already been constructed. */
7753
7754 static tree
7755 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7756 {
7757 tree itype = make_node (INTEGER_TYPE);
7758
7759 TREE_TYPE (itype) = type;
7760
7761 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7762 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7763
7764 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7765 SET_TYPE_MODE (itype, TYPE_MODE (type));
7766 TYPE_SIZE (itype) = TYPE_SIZE (type);
7767 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7768 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
7769 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7770 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
7771
7772 if (!shared)
7773 return itype;
7774
7775 if ((TYPE_MIN_VALUE (itype)
7776 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7777 || (TYPE_MAX_VALUE (itype)
7778 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7779 {
7780 /* Since we cannot reliably merge this type, we need to compare it using
7781 structural equality checks. */
7782 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7783 return itype;
7784 }
7785
7786 hashval_t hash = type_hash_canon_hash (itype);
7787 itype = type_hash_canon (hash, itype);
7788
7789 return itype;
7790 }
7791
7792 /* Wrapper around build_range_type_1 with SHARED set to true. */
7793
7794 tree
7795 build_range_type (tree type, tree lowval, tree highval)
7796 {
7797 return build_range_type_1 (type, lowval, highval, true);
7798 }
7799
7800 /* Wrapper around build_range_type_1 with SHARED set to false. */
7801
7802 tree
7803 build_nonshared_range_type (tree type, tree lowval, tree highval)
7804 {
7805 return build_range_type_1 (type, lowval, highval, false);
7806 }
7807
7808 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7809 MAXVAL should be the maximum value in the domain
7810 (one less than the length of the array).
7811
7812 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7813 We don't enforce this limit, that is up to caller (e.g. language front end).
7814 The limit exists because the result is a signed type and we don't handle
7815 sizes that use more than one HOST_WIDE_INT. */
7816
7817 tree
7818 build_index_type (tree maxval)
7819 {
7820 return build_range_type (sizetype, size_zero_node, maxval);
7821 }
7822
7823 /* Return true if the debug information for TYPE, a subtype, should be emitted
7824 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7825 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7826 debug info and doesn't reflect the source code. */
7827
7828 bool
7829 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7830 {
7831 tree base_type = TREE_TYPE (type), low, high;
7832
7833 /* Subrange types have a base type which is an integral type. */
7834 if (!INTEGRAL_TYPE_P (base_type))
7835 return false;
7836
7837 /* Get the real bounds of the subtype. */
7838 if (lang_hooks.types.get_subrange_bounds)
7839 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7840 else
7841 {
7842 low = TYPE_MIN_VALUE (type);
7843 high = TYPE_MAX_VALUE (type);
7844 }
7845
7846 /* If the type and its base type have the same representation and the same
7847 name, then the type is not a subrange but a copy of the base type. */
7848 if ((TREE_CODE (base_type) == INTEGER_TYPE
7849 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7850 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7851 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7852 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7853 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7854 return false;
7855
7856 if (lowval)
7857 *lowval = low;
7858 if (highval)
7859 *highval = high;
7860 return true;
7861 }
7862
7863 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7864 and number of elements specified by the range of values of INDEX_TYPE.
7865 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
7866 If SHARED is true, reuse such a type that has already been constructed. */
7867
7868 static tree
7869 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
7870 bool shared)
7871 {
7872 tree t;
7873
7874 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7875 {
7876 error ("arrays of functions are not meaningful");
7877 elt_type = integer_type_node;
7878 }
7879
7880 t = make_node (ARRAY_TYPE);
7881 TREE_TYPE (t) = elt_type;
7882 TYPE_DOMAIN (t) = index_type;
7883 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7884 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
7885 layout_type (t);
7886
7887 /* If the element type is incomplete at this point we get marked for
7888 structural equality. Do not record these types in the canonical
7889 type hashtable. */
7890 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7891 return t;
7892
7893 if (shared)
7894 {
7895 hashval_t hash = type_hash_canon_hash (t);
7896 t = type_hash_canon (hash, t);
7897 }
7898
7899 if (TYPE_CANONICAL (t) == t)
7900 {
7901 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7902 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
7903 || in_lto_p)
7904 SET_TYPE_STRUCTURAL_EQUALITY (t);
7905 else if (TYPE_CANONICAL (elt_type) != elt_type
7906 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7907 TYPE_CANONICAL (t)
7908 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7909 index_type
7910 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7911 typeless_storage, shared);
7912 }
7913
7914 return t;
7915 }
7916
7917 /* Wrapper around build_array_type_1 with SHARED set to true. */
7918
7919 tree
7920 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
7921 {
7922 return build_array_type_1 (elt_type, index_type, typeless_storage, true);
7923 }
7924
7925 /* Wrapper around build_array_type_1 with SHARED set to false. */
7926
7927 tree
7928 build_nonshared_array_type (tree elt_type, tree index_type)
7929 {
7930 return build_array_type_1 (elt_type, index_type, false, false);
7931 }
7932
7933 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7934 sizetype. */
7935
7936 tree
7937 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
7938 {
7939 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7940 }
7941
7942 /* Recursively examines the array elements of TYPE, until a non-array
7943 element type is found. */
7944
7945 tree
7946 strip_array_types (tree type)
7947 {
7948 while (TREE_CODE (type) == ARRAY_TYPE)
7949 type = TREE_TYPE (type);
7950
7951 return type;
7952 }
7953
7954 /* Computes the canonical argument types from the argument type list
7955 ARGTYPES.
7956
7957 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7958 on entry to this function, or if any of the ARGTYPES are
7959 structural.
7960
7961 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7962 true on entry to this function, or if any of the ARGTYPES are
7963 non-canonical.
7964
7965 Returns a canonical argument list, which may be ARGTYPES when the
7966 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7967 true) or would not differ from ARGTYPES. */
7968
7969 static tree
7970 maybe_canonicalize_argtypes (tree argtypes,
7971 bool *any_structural_p,
7972 bool *any_noncanonical_p)
7973 {
7974 tree arg;
7975 bool any_noncanonical_argtypes_p = false;
7976
7977 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7978 {
7979 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7980 /* Fail gracefully by stating that the type is structural. */
7981 *any_structural_p = true;
7982 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7983 *any_structural_p = true;
7984 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7985 || TREE_PURPOSE (arg))
7986 /* If the argument has a default argument, we consider it
7987 non-canonical even though the type itself is canonical.
7988 That way, different variants of function and method types
7989 with default arguments will all point to the variant with
7990 no defaults as their canonical type. */
7991 any_noncanonical_argtypes_p = true;
7992 }
7993
7994 if (*any_structural_p)
7995 return argtypes;
7996
7997 if (any_noncanonical_argtypes_p)
7998 {
7999 /* Build the canonical list of argument types. */
8000 tree canon_argtypes = NULL_TREE;
8001 bool is_void = false;
8002
8003 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8004 {
8005 if (arg == void_list_node)
8006 is_void = true;
8007 else
8008 canon_argtypes = tree_cons (NULL_TREE,
8009 TYPE_CANONICAL (TREE_VALUE (arg)),
8010 canon_argtypes);
8011 }
8012
8013 canon_argtypes = nreverse (canon_argtypes);
8014 if (is_void)
8015 canon_argtypes = chainon (canon_argtypes, void_list_node);
8016
8017 /* There is a non-canonical type. */
8018 *any_noncanonical_p = true;
8019 return canon_argtypes;
8020 }
8021
8022 /* The canonical argument types are the same as ARGTYPES. */
8023 return argtypes;
8024 }
8025
8026 /* Construct, lay out and return
8027 the type of functions returning type VALUE_TYPE
8028 given arguments of types ARG_TYPES.
8029 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8030 are data type nodes for the arguments of the function.
8031 If such a type has already been constructed, reuse it. */
8032
8033 tree
8034 build_function_type (tree value_type, tree arg_types)
8035 {
8036 tree t;
8037 inchash::hash hstate;
8038 bool any_structural_p, any_noncanonical_p;
8039 tree canon_argtypes;
8040
8041 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8042 {
8043 error ("function return type cannot be function");
8044 value_type = integer_type_node;
8045 }
8046
8047 /* Make a node of the sort we want. */
8048 t = make_node (FUNCTION_TYPE);
8049 TREE_TYPE (t) = value_type;
8050 TYPE_ARG_TYPES (t) = arg_types;
8051
8052 /* If we already have such a type, use the old one. */
8053 hashval_t hash = type_hash_canon_hash (t);
8054 t = type_hash_canon (hash, t);
8055
8056 /* Set up the canonical type. */
8057 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8058 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8059 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8060 &any_structural_p,
8061 &any_noncanonical_p);
8062 if (any_structural_p)
8063 SET_TYPE_STRUCTURAL_EQUALITY (t);
8064 else if (any_noncanonical_p)
8065 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8066 canon_argtypes);
8067
8068 if (!COMPLETE_TYPE_P (t))
8069 layout_type (t);
8070 return t;
8071 }
8072
8073 /* Build a function type. The RETURN_TYPE is the type returned by the
8074 function. If VAARGS is set, no void_type_node is appended to the
8075 list. ARGP must be always be terminated be a NULL_TREE. */
8076
8077 static tree
8078 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8079 {
8080 tree t, args, last;
8081
8082 t = va_arg (argp, tree);
8083 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8084 args = tree_cons (NULL_TREE, t, args);
8085
8086 if (vaargs)
8087 {
8088 last = args;
8089 if (args != NULL_TREE)
8090 args = nreverse (args);
8091 gcc_assert (last != void_list_node);
8092 }
8093 else if (args == NULL_TREE)
8094 args = void_list_node;
8095 else
8096 {
8097 last = args;
8098 args = nreverse (args);
8099 TREE_CHAIN (last) = void_list_node;
8100 }
8101 args = build_function_type (return_type, args);
8102
8103 return args;
8104 }
8105
8106 /* Build a function type. The RETURN_TYPE is the type returned by the
8107 function. If additional arguments are provided, they are
8108 additional argument types. The list of argument types must always
8109 be terminated by NULL_TREE. */
8110
8111 tree
8112 build_function_type_list (tree return_type, ...)
8113 {
8114 tree args;
8115 va_list p;
8116
8117 va_start (p, return_type);
8118 args = build_function_type_list_1 (false, return_type, p);
8119 va_end (p);
8120 return args;
8121 }
8122
8123 /* Build a variable argument function type. The RETURN_TYPE is the
8124 type returned by the function. If additional arguments are provided,
8125 they are additional argument types. The list of argument types must
8126 always be terminated by NULL_TREE. */
8127
8128 tree
8129 build_varargs_function_type_list (tree return_type, ...)
8130 {
8131 tree args;
8132 va_list p;
8133
8134 va_start (p, return_type);
8135 args = build_function_type_list_1 (true, return_type, p);
8136 va_end (p);
8137
8138 return args;
8139 }
8140
8141 /* Build a function type. RETURN_TYPE is the type returned by the
8142 function; VAARGS indicates whether the function takes varargs. The
8143 function takes N named arguments, the types of which are provided in
8144 ARG_TYPES. */
8145
8146 static tree
8147 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8148 tree *arg_types)
8149 {
8150 int i;
8151 tree t = vaargs ? NULL_TREE : void_list_node;
8152
8153 for (i = n - 1; i >= 0; i--)
8154 t = tree_cons (NULL_TREE, arg_types[i], t);
8155
8156 return build_function_type (return_type, t);
8157 }
8158
8159 /* Build a function type. RETURN_TYPE is the type returned by the
8160 function. The function takes N named arguments, the types of which
8161 are provided in ARG_TYPES. */
8162
8163 tree
8164 build_function_type_array (tree return_type, int n, tree *arg_types)
8165 {
8166 return build_function_type_array_1 (false, return_type, n, arg_types);
8167 }
8168
8169 /* Build a variable argument function type. RETURN_TYPE is the type
8170 returned by the function. The function takes N named arguments, the
8171 types of which are provided in ARG_TYPES. */
8172
8173 tree
8174 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8175 {
8176 return build_function_type_array_1 (true, return_type, n, arg_types);
8177 }
8178
8179 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8180 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8181 for the method. An implicit additional parameter (of type
8182 pointer-to-BASETYPE) is added to the ARGTYPES. */
8183
8184 tree
8185 build_method_type_directly (tree basetype,
8186 tree rettype,
8187 tree argtypes)
8188 {
8189 tree t;
8190 tree ptype;
8191 bool any_structural_p, any_noncanonical_p;
8192 tree canon_argtypes;
8193
8194 /* Make a node of the sort we want. */
8195 t = make_node (METHOD_TYPE);
8196
8197 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8198 TREE_TYPE (t) = rettype;
8199 ptype = build_pointer_type (basetype);
8200
8201 /* The actual arglist for this function includes a "hidden" argument
8202 which is "this". Put it into the list of argument types. */
8203 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8204 TYPE_ARG_TYPES (t) = argtypes;
8205
8206 /* If we already have such a type, use the old one. */
8207 hashval_t hash = type_hash_canon_hash (t);
8208 t = type_hash_canon (hash, t);
8209
8210 /* Set up the canonical type. */
8211 any_structural_p
8212 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8213 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8214 any_noncanonical_p
8215 = (TYPE_CANONICAL (basetype) != basetype
8216 || TYPE_CANONICAL (rettype) != rettype);
8217 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8218 &any_structural_p,
8219 &any_noncanonical_p);
8220 if (any_structural_p)
8221 SET_TYPE_STRUCTURAL_EQUALITY (t);
8222 else if (any_noncanonical_p)
8223 TYPE_CANONICAL (t)
8224 = build_method_type_directly (TYPE_CANONICAL (basetype),
8225 TYPE_CANONICAL (rettype),
8226 canon_argtypes);
8227 if (!COMPLETE_TYPE_P (t))
8228 layout_type (t);
8229
8230 return t;
8231 }
8232
8233 /* Construct, lay out and return the type of methods belonging to class
8234 BASETYPE and whose arguments and values are described by TYPE.
8235 If that type exists already, reuse it.
8236 TYPE must be a FUNCTION_TYPE node. */
8237
8238 tree
8239 build_method_type (tree basetype, tree type)
8240 {
8241 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8242
8243 return build_method_type_directly (basetype,
8244 TREE_TYPE (type),
8245 TYPE_ARG_TYPES (type));
8246 }
8247
8248 /* Construct, lay out and return the type of offsets to a value
8249 of type TYPE, within an object of type BASETYPE.
8250 If a suitable offset type exists already, reuse it. */
8251
8252 tree
8253 build_offset_type (tree basetype, tree type)
8254 {
8255 tree t;
8256
8257 /* Make a node of the sort we want. */
8258 t = make_node (OFFSET_TYPE);
8259
8260 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8261 TREE_TYPE (t) = type;
8262
8263 /* If we already have such a type, use the old one. */
8264 hashval_t hash = type_hash_canon_hash (t);
8265 t = type_hash_canon (hash, t);
8266
8267 if (!COMPLETE_TYPE_P (t))
8268 layout_type (t);
8269
8270 if (TYPE_CANONICAL (t) == t)
8271 {
8272 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8273 || TYPE_STRUCTURAL_EQUALITY_P (type))
8274 SET_TYPE_STRUCTURAL_EQUALITY (t);
8275 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8276 || TYPE_CANONICAL (type) != type)
8277 TYPE_CANONICAL (t)
8278 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8279 TYPE_CANONICAL (type));
8280 }
8281
8282 return t;
8283 }
8284
8285 /* Create a complex type whose components are COMPONENT_TYPE.
8286
8287 If NAMED is true, the type is given a TYPE_NAME. We do not always
8288 do so because this creates a DECL node and thus make the DECL_UIDs
8289 dependent on the type canonicalization hashtable, which is GC-ed,
8290 so the DECL_UIDs would not be stable wrt garbage collection. */
8291
8292 tree
8293 build_complex_type (tree component_type, bool named)
8294 {
8295 gcc_assert (INTEGRAL_TYPE_P (component_type)
8296 || SCALAR_FLOAT_TYPE_P (component_type)
8297 || FIXED_POINT_TYPE_P (component_type));
8298
8299 /* Make a node of the sort we want. */
8300 tree probe = make_node (COMPLEX_TYPE);
8301
8302 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8303
8304 /* If we already have such a type, use the old one. */
8305 hashval_t hash = type_hash_canon_hash (probe);
8306 tree t = type_hash_canon (hash, probe);
8307
8308 if (t == probe)
8309 {
8310 /* We created a new type. The hash insertion will have laid
8311 out the type. We need to check the canonicalization and
8312 maybe set the name. */
8313 gcc_checking_assert (COMPLETE_TYPE_P (t)
8314 && !TYPE_NAME (t)
8315 && TYPE_CANONICAL (t) == t);
8316
8317 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8318 SET_TYPE_STRUCTURAL_EQUALITY (t);
8319 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8320 TYPE_CANONICAL (t)
8321 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8322
8323 /* We need to create a name, since complex is a fundamental type. */
8324 if (named)
8325 {
8326 const char *name = NULL;
8327
8328 if (TREE_TYPE (t) == char_type_node)
8329 name = "complex char";
8330 else if (TREE_TYPE (t) == signed_char_type_node)
8331 name = "complex signed char";
8332 else if (TREE_TYPE (t) == unsigned_char_type_node)
8333 name = "complex unsigned char";
8334 else if (TREE_TYPE (t) == short_integer_type_node)
8335 name = "complex short int";
8336 else if (TREE_TYPE (t) == short_unsigned_type_node)
8337 name = "complex short unsigned int";
8338 else if (TREE_TYPE (t) == integer_type_node)
8339 name = "complex int";
8340 else if (TREE_TYPE (t) == unsigned_type_node)
8341 name = "complex unsigned int";
8342 else if (TREE_TYPE (t) == long_integer_type_node)
8343 name = "complex long int";
8344 else if (TREE_TYPE (t) == long_unsigned_type_node)
8345 name = "complex long unsigned int";
8346 else if (TREE_TYPE (t) == long_long_integer_type_node)
8347 name = "complex long long int";
8348 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8349 name = "complex long long unsigned int";
8350
8351 if (name != NULL)
8352 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8353 get_identifier (name), t);
8354 }
8355 }
8356
8357 return build_qualified_type (t, TYPE_QUALS (component_type));
8358 }
8359
8360 /* If TYPE is a real or complex floating-point type and the target
8361 does not directly support arithmetic on TYPE then return the wider
8362 type to be used for arithmetic on TYPE. Otherwise, return
8363 NULL_TREE. */
8364
8365 tree
8366 excess_precision_type (tree type)
8367 {
8368 /* The target can give two different responses to the question of
8369 which excess precision mode it would like depending on whether we
8370 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8371
8372 enum excess_precision_type requested_type
8373 = (flag_excess_precision == EXCESS_PRECISION_FAST
8374 ? EXCESS_PRECISION_TYPE_FAST
8375 : EXCESS_PRECISION_TYPE_STANDARD);
8376
8377 enum flt_eval_method target_flt_eval_method
8378 = targetm.c.excess_precision (requested_type);
8379
8380 /* The target should not ask for unpredictable float evaluation (though
8381 it might advertise that implicitly the evaluation is unpredictable,
8382 but we don't care about that here, it will have been reported
8383 elsewhere). If it does ask for unpredictable evaluation, we have
8384 nothing to do here. */
8385 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8386
8387 /* Nothing to do. The target has asked for all types we know about
8388 to be computed with their native precision and range. */
8389 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8390 return NULL_TREE;
8391
8392 /* The target will promote this type in a target-dependent way, so excess
8393 precision ought to leave it alone. */
8394 if (targetm.promoted_type (type) != NULL_TREE)
8395 return NULL_TREE;
8396
8397 machine_mode float16_type_mode = (float16_type_node
8398 ? TYPE_MODE (float16_type_node)
8399 : VOIDmode);
8400 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8401 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8402
8403 switch (TREE_CODE (type))
8404 {
8405 case REAL_TYPE:
8406 {
8407 machine_mode type_mode = TYPE_MODE (type);
8408 switch (target_flt_eval_method)
8409 {
8410 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8411 if (type_mode == float16_type_mode)
8412 return float_type_node;
8413 break;
8414 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8415 if (type_mode == float16_type_mode
8416 || type_mode == float_type_mode)
8417 return double_type_node;
8418 break;
8419 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8420 if (type_mode == float16_type_mode
8421 || type_mode == float_type_mode
8422 || type_mode == double_type_mode)
8423 return long_double_type_node;
8424 break;
8425 default:
8426 gcc_unreachable ();
8427 }
8428 break;
8429 }
8430 case COMPLEX_TYPE:
8431 {
8432 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8433 return NULL_TREE;
8434 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8435 switch (target_flt_eval_method)
8436 {
8437 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8438 if (type_mode == float16_type_mode)
8439 return complex_float_type_node;
8440 break;
8441 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8442 if (type_mode == float16_type_mode
8443 || type_mode == float_type_mode)
8444 return complex_double_type_node;
8445 break;
8446 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8447 if (type_mode == float16_type_mode
8448 || type_mode == float_type_mode
8449 || type_mode == double_type_mode)
8450 return complex_long_double_type_node;
8451 break;
8452 default:
8453 gcc_unreachable ();
8454 }
8455 break;
8456 }
8457 default:
8458 break;
8459 }
8460
8461 return NULL_TREE;
8462 }
8463 \f
8464 /* Return OP, stripped of any conversions to wider types as much as is safe.
8465 Converting the value back to OP's type makes a value equivalent to OP.
8466
8467 If FOR_TYPE is nonzero, we return a value which, if converted to
8468 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8469
8470 OP must have integer, real or enumeral type. Pointers are not allowed!
8471
8472 There are some cases where the obvious value we could return
8473 would regenerate to OP if converted to OP's type,
8474 but would not extend like OP to wider types.
8475 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8476 For example, if OP is (unsigned short)(signed char)-1,
8477 we avoid returning (signed char)-1 if FOR_TYPE is int,
8478 even though extending that to an unsigned short would regenerate OP,
8479 since the result of extending (signed char)-1 to (int)
8480 is different from (int) OP. */
8481
8482 tree
8483 get_unwidened (tree op, tree for_type)
8484 {
8485 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8486 tree type = TREE_TYPE (op);
8487 unsigned final_prec
8488 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8489 int uns
8490 = (for_type != 0 && for_type != type
8491 && final_prec > TYPE_PRECISION (type)
8492 && TYPE_UNSIGNED (type));
8493 tree win = op;
8494
8495 while (CONVERT_EXPR_P (op))
8496 {
8497 int bitschange;
8498
8499 /* TYPE_PRECISION on vector types has different meaning
8500 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8501 so avoid them here. */
8502 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8503 break;
8504
8505 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8506 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8507
8508 /* Truncations are many-one so cannot be removed.
8509 Unless we are later going to truncate down even farther. */
8510 if (bitschange < 0
8511 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8512 break;
8513
8514 /* See what's inside this conversion. If we decide to strip it,
8515 we will set WIN. */
8516 op = TREE_OPERAND (op, 0);
8517
8518 /* If we have not stripped any zero-extensions (uns is 0),
8519 we can strip any kind of extension.
8520 If we have previously stripped a zero-extension,
8521 only zero-extensions can safely be stripped.
8522 Any extension can be stripped if the bits it would produce
8523 are all going to be discarded later by truncating to FOR_TYPE. */
8524
8525 if (bitschange > 0)
8526 {
8527 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8528 win = op;
8529 /* TYPE_UNSIGNED says whether this is a zero-extension.
8530 Let's avoid computing it if it does not affect WIN
8531 and if UNS will not be needed again. */
8532 if ((uns
8533 || CONVERT_EXPR_P (op))
8534 && TYPE_UNSIGNED (TREE_TYPE (op)))
8535 {
8536 uns = 1;
8537 win = op;
8538 }
8539 }
8540 }
8541
8542 /* If we finally reach a constant see if it fits in sth smaller and
8543 in that case convert it. */
8544 if (TREE_CODE (win) == INTEGER_CST)
8545 {
8546 tree wtype = TREE_TYPE (win);
8547 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8548 if (for_type)
8549 prec = MAX (prec, final_prec);
8550 if (prec < TYPE_PRECISION (wtype))
8551 {
8552 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8553 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8554 win = fold_convert (t, win);
8555 }
8556 }
8557
8558 return win;
8559 }
8560 \f
8561 /* Return OP or a simpler expression for a narrower value
8562 which can be sign-extended or zero-extended to give back OP.
8563 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8564 or 0 if the value should be sign-extended. */
8565
8566 tree
8567 get_narrower (tree op, int *unsignedp_ptr)
8568 {
8569 int uns = 0;
8570 int first = 1;
8571 tree win = op;
8572 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8573
8574 while (TREE_CODE (op) == NOP_EXPR)
8575 {
8576 int bitschange
8577 = (TYPE_PRECISION (TREE_TYPE (op))
8578 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8579
8580 /* Truncations are many-one so cannot be removed. */
8581 if (bitschange < 0)
8582 break;
8583
8584 /* See what's inside this conversion. If we decide to strip it,
8585 we will set WIN. */
8586
8587 if (bitschange > 0)
8588 {
8589 op = TREE_OPERAND (op, 0);
8590 /* An extension: the outermost one can be stripped,
8591 but remember whether it is zero or sign extension. */
8592 if (first)
8593 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8594 /* Otherwise, if a sign extension has been stripped,
8595 only sign extensions can now be stripped;
8596 if a zero extension has been stripped, only zero-extensions. */
8597 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8598 break;
8599 first = 0;
8600 }
8601 else /* bitschange == 0 */
8602 {
8603 /* A change in nominal type can always be stripped, but we must
8604 preserve the unsignedness. */
8605 if (first)
8606 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8607 first = 0;
8608 op = TREE_OPERAND (op, 0);
8609 /* Keep trying to narrow, but don't assign op to win if it
8610 would turn an integral type into something else. */
8611 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8612 continue;
8613 }
8614
8615 win = op;
8616 }
8617
8618 if (TREE_CODE (op) == COMPONENT_REF
8619 /* Since type_for_size always gives an integer type. */
8620 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8621 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8622 /* Ensure field is laid out already. */
8623 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8624 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8625 {
8626 unsigned HOST_WIDE_INT innerprec
8627 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8628 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8629 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8630 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8631
8632 /* We can get this structure field in a narrower type that fits it,
8633 but the resulting extension to its nominal type (a fullword type)
8634 must satisfy the same conditions as for other extensions.
8635
8636 Do this only for fields that are aligned (not bit-fields),
8637 because when bit-field insns will be used there is no
8638 advantage in doing this. */
8639
8640 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8641 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8642 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8643 && type != 0)
8644 {
8645 if (first)
8646 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8647 win = fold_convert (type, op);
8648 }
8649 }
8650
8651 *unsignedp_ptr = uns;
8652 return win;
8653 }
8654 \f
8655 /* Return true if integer constant C has a value that is permissible
8656 for TYPE, an integral type. */
8657
8658 bool
8659 int_fits_type_p (const_tree c, const_tree type)
8660 {
8661 tree type_low_bound, type_high_bound;
8662 bool ok_for_low_bound, ok_for_high_bound;
8663 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8664
8665 /* Non-standard boolean types can have arbitrary precision but various
8666 transformations assume that they can only take values 0 and +/-1. */
8667 if (TREE_CODE (type) == BOOLEAN_TYPE)
8668 return wi::fits_to_boolean_p (wi::to_wide (c), type);
8669
8670 retry:
8671 type_low_bound = TYPE_MIN_VALUE (type);
8672 type_high_bound = TYPE_MAX_VALUE (type);
8673
8674 /* If at least one bound of the type is a constant integer, we can check
8675 ourselves and maybe make a decision. If no such decision is possible, but
8676 this type is a subtype, try checking against that. Otherwise, use
8677 fits_to_tree_p, which checks against the precision.
8678
8679 Compute the status for each possibly constant bound, and return if we see
8680 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8681 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8682 for "constant known to fit". */
8683
8684 /* Check if c >= type_low_bound. */
8685 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8686 {
8687 if (tree_int_cst_lt (c, type_low_bound))
8688 return false;
8689 ok_for_low_bound = true;
8690 }
8691 else
8692 ok_for_low_bound = false;
8693
8694 /* Check if c <= type_high_bound. */
8695 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8696 {
8697 if (tree_int_cst_lt (type_high_bound, c))
8698 return false;
8699 ok_for_high_bound = true;
8700 }
8701 else
8702 ok_for_high_bound = false;
8703
8704 /* If the constant fits both bounds, the result is known. */
8705 if (ok_for_low_bound && ok_for_high_bound)
8706 return true;
8707
8708 /* Perform some generic filtering which may allow making a decision
8709 even if the bounds are not constant. First, negative integers
8710 never fit in unsigned types, */
8711 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
8712 return false;
8713
8714 /* Second, narrower types always fit in wider ones. */
8715 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8716 return true;
8717
8718 /* Third, unsigned integers with top bit set never fit signed types. */
8719 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8720 {
8721 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
8722 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8723 {
8724 /* When a tree_cst is converted to a wide-int, the precision
8725 is taken from the type. However, if the precision of the
8726 mode underneath the type is smaller than that, it is
8727 possible that the value will not fit. The test below
8728 fails if any bit is set between the sign bit of the
8729 underlying mode and the top bit of the type. */
8730 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
8731 return false;
8732 }
8733 else if (wi::neg_p (wi::to_wide (c)))
8734 return false;
8735 }
8736
8737 /* If we haven't been able to decide at this point, there nothing more we
8738 can check ourselves here. Look at the base type if we have one and it
8739 has the same precision. */
8740 if (TREE_CODE (type) == INTEGER_TYPE
8741 && TREE_TYPE (type) != 0
8742 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8743 {
8744 type = TREE_TYPE (type);
8745 goto retry;
8746 }
8747
8748 /* Or to fits_to_tree_p, if nothing else. */
8749 return wi::fits_to_tree_p (wi::to_wide (c), type);
8750 }
8751
8752 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8753 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8754 represented (assuming two's-complement arithmetic) within the bit
8755 precision of the type are returned instead. */
8756
8757 void
8758 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8759 {
8760 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8761 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8762 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
8763 else
8764 {
8765 if (TYPE_UNSIGNED (type))
8766 mpz_set_ui (min, 0);
8767 else
8768 {
8769 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8770 wi::to_mpz (mn, min, SIGNED);
8771 }
8772 }
8773
8774 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8775 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8776 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
8777 else
8778 {
8779 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8780 wi::to_mpz (mn, max, TYPE_SIGN (type));
8781 }
8782 }
8783
8784 /* Return true if VAR is an automatic variable defined in function FN. */
8785
8786 bool
8787 auto_var_in_fn_p (const_tree var, const_tree fn)
8788 {
8789 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8790 && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
8791 || TREE_CODE (var) == PARM_DECL)
8792 && ! TREE_STATIC (var))
8793 || TREE_CODE (var) == LABEL_DECL
8794 || TREE_CODE (var) == RESULT_DECL));
8795 }
8796
8797 /* Subprogram of following function. Called by walk_tree.
8798
8799 Return *TP if it is an automatic variable or parameter of the
8800 function passed in as DATA. */
8801
8802 static tree
8803 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8804 {
8805 tree fn = (tree) data;
8806
8807 if (TYPE_P (*tp))
8808 *walk_subtrees = 0;
8809
8810 else if (DECL_P (*tp)
8811 && auto_var_in_fn_p (*tp, fn))
8812 return *tp;
8813
8814 return NULL_TREE;
8815 }
8816
8817 /* Returns true if T is, contains, or refers to a type with variable
8818 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8819 arguments, but not the return type. If FN is nonzero, only return
8820 true if a modifier of the type or position of FN is a variable or
8821 parameter inside FN.
8822
8823 This concept is more general than that of C99 'variably modified types':
8824 in C99, a struct type is never variably modified because a VLA may not
8825 appear as a structure member. However, in GNU C code like:
8826
8827 struct S { int i[f()]; };
8828
8829 is valid, and other languages may define similar constructs. */
8830
8831 bool
8832 variably_modified_type_p (tree type, tree fn)
8833 {
8834 tree t;
8835
8836 /* Test if T is either variable (if FN is zero) or an expression containing
8837 a variable in FN. If TYPE isn't gimplified, return true also if
8838 gimplify_one_sizepos would gimplify the expression into a local
8839 variable. */
8840 #define RETURN_TRUE_IF_VAR(T) \
8841 do { tree _t = (T); \
8842 if (_t != NULL_TREE \
8843 && _t != error_mark_node \
8844 && !CONSTANT_CLASS_P (_t) \
8845 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8846 && (!fn \
8847 || (!TYPE_SIZES_GIMPLIFIED (type) \
8848 && (TREE_CODE (_t) != VAR_DECL \
8849 && !CONTAINS_PLACEHOLDER_P (_t))) \
8850 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8851 return true; } while (0)
8852
8853 if (type == error_mark_node)
8854 return false;
8855
8856 /* If TYPE itself has variable size, it is variably modified. */
8857 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8858 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8859
8860 switch (TREE_CODE (type))
8861 {
8862 case POINTER_TYPE:
8863 case REFERENCE_TYPE:
8864 case VECTOR_TYPE:
8865 /* Ada can have pointer types refering to themselves indirectly. */
8866 if (TREE_VISITED (type))
8867 return false;
8868 TREE_VISITED (type) = true;
8869 if (variably_modified_type_p (TREE_TYPE (type), fn))
8870 {
8871 TREE_VISITED (type) = false;
8872 return true;
8873 }
8874 TREE_VISITED (type) = false;
8875 break;
8876
8877 case FUNCTION_TYPE:
8878 case METHOD_TYPE:
8879 /* If TYPE is a function type, it is variably modified if the
8880 return type is variably modified. */
8881 if (variably_modified_type_p (TREE_TYPE (type), fn))
8882 return true;
8883 break;
8884
8885 case INTEGER_TYPE:
8886 case REAL_TYPE:
8887 case FIXED_POINT_TYPE:
8888 case ENUMERAL_TYPE:
8889 case BOOLEAN_TYPE:
8890 /* Scalar types are variably modified if their end points
8891 aren't constant. */
8892 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8893 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8894 break;
8895
8896 case RECORD_TYPE:
8897 case UNION_TYPE:
8898 case QUAL_UNION_TYPE:
8899 /* We can't see if any of the fields are variably-modified by the
8900 definition we normally use, since that would produce infinite
8901 recursion via pointers. */
8902 /* This is variably modified if some field's type is. */
8903 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8904 if (TREE_CODE (t) == FIELD_DECL)
8905 {
8906 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8907 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8908 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8909
8910 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8911 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8912 }
8913 break;
8914
8915 case ARRAY_TYPE:
8916 /* Do not call ourselves to avoid infinite recursion. This is
8917 variably modified if the element type is. */
8918 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8919 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8920 break;
8921
8922 default:
8923 break;
8924 }
8925
8926 /* The current language may have other cases to check, but in general,
8927 all other types are not variably modified. */
8928 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8929
8930 #undef RETURN_TRUE_IF_VAR
8931 }
8932
8933 /* Given a DECL or TYPE, return the scope in which it was declared, or
8934 NULL_TREE if there is no containing scope. */
8935
8936 tree
8937 get_containing_scope (const_tree t)
8938 {
8939 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8940 }
8941
8942 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
8943
8944 const_tree
8945 get_ultimate_context (const_tree decl)
8946 {
8947 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
8948 {
8949 if (TREE_CODE (decl) == BLOCK)
8950 decl = BLOCK_SUPERCONTEXT (decl);
8951 else
8952 decl = get_containing_scope (decl);
8953 }
8954 return decl;
8955 }
8956
8957 /* Return the innermost context enclosing DECL that is
8958 a FUNCTION_DECL, or zero if none. */
8959
8960 tree
8961 decl_function_context (const_tree decl)
8962 {
8963 tree context;
8964
8965 if (TREE_CODE (decl) == ERROR_MARK)
8966 return 0;
8967
8968 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8969 where we look up the function at runtime. Such functions always take
8970 a first argument of type 'pointer to real context'.
8971
8972 C++ should really be fixed to use DECL_CONTEXT for the real context,
8973 and use something else for the "virtual context". */
8974 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8975 context
8976 = TYPE_MAIN_VARIANT
8977 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8978 else
8979 context = DECL_CONTEXT (decl);
8980
8981 while (context && TREE_CODE (context) != FUNCTION_DECL)
8982 {
8983 if (TREE_CODE (context) == BLOCK)
8984 context = BLOCK_SUPERCONTEXT (context);
8985 else
8986 context = get_containing_scope (context);
8987 }
8988
8989 return context;
8990 }
8991
8992 /* Return the innermost context enclosing DECL that is
8993 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8994 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8995
8996 tree
8997 decl_type_context (const_tree decl)
8998 {
8999 tree context = DECL_CONTEXT (decl);
9000
9001 while (context)
9002 switch (TREE_CODE (context))
9003 {
9004 case NAMESPACE_DECL:
9005 case TRANSLATION_UNIT_DECL:
9006 return NULL_TREE;
9007
9008 case RECORD_TYPE:
9009 case UNION_TYPE:
9010 case QUAL_UNION_TYPE:
9011 return context;
9012
9013 case TYPE_DECL:
9014 case FUNCTION_DECL:
9015 context = DECL_CONTEXT (context);
9016 break;
9017
9018 case BLOCK:
9019 context = BLOCK_SUPERCONTEXT (context);
9020 break;
9021
9022 default:
9023 gcc_unreachable ();
9024 }
9025
9026 return NULL_TREE;
9027 }
9028
9029 /* CALL is a CALL_EXPR. Return the declaration for the function
9030 called, or NULL_TREE if the called function cannot be
9031 determined. */
9032
9033 tree
9034 get_callee_fndecl (const_tree call)
9035 {
9036 tree addr;
9037
9038 if (call == error_mark_node)
9039 return error_mark_node;
9040
9041 /* It's invalid to call this function with anything but a
9042 CALL_EXPR. */
9043 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9044
9045 /* The first operand to the CALL is the address of the function
9046 called. */
9047 addr = CALL_EXPR_FN (call);
9048
9049 /* If there is no function, return early. */
9050 if (addr == NULL_TREE)
9051 return NULL_TREE;
9052
9053 STRIP_NOPS (addr);
9054
9055 /* If this is a readonly function pointer, extract its initial value. */
9056 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9057 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9058 && DECL_INITIAL (addr))
9059 addr = DECL_INITIAL (addr);
9060
9061 /* If the address is just `&f' for some function `f', then we know
9062 that `f' is being called. */
9063 if (TREE_CODE (addr) == ADDR_EXPR
9064 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9065 return TREE_OPERAND (addr, 0);
9066
9067 /* We couldn't figure out what was being called. */
9068 return NULL_TREE;
9069 }
9070
9071 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9072 return the associated function code, otherwise return CFN_LAST. */
9073
9074 combined_fn
9075 get_call_combined_fn (const_tree call)
9076 {
9077 /* It's invalid to call this function with anything but a CALL_EXPR. */
9078 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9079
9080 if (!CALL_EXPR_FN (call))
9081 return as_combined_fn (CALL_EXPR_IFN (call));
9082
9083 tree fndecl = get_callee_fndecl (call);
9084 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
9085 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9086
9087 return CFN_LAST;
9088 }
9089
9090 #define TREE_MEM_USAGE_SPACES 40
9091
9092 /* Print debugging information about tree nodes generated during the compile,
9093 and any language-specific information. */
9094
9095 void
9096 dump_tree_statistics (void)
9097 {
9098 if (GATHER_STATISTICS)
9099 {
9100 int i;
9101 uint64_t total_nodes, total_bytes;
9102 fprintf (stderr, "\nKind Nodes Bytes\n");
9103 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9104 total_nodes = total_bytes = 0;
9105 for (i = 0; i < (int) all_kinds; i++)
9106 {
9107 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n",
9108 tree_node_kind_names[i], tree_node_counts[i],
9109 tree_node_sizes[i]);
9110 total_nodes += tree_node_counts[i];
9111 total_bytes += tree_node_sizes[i];
9112 }
9113 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9114 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n", "Total",
9115 total_nodes, total_bytes);
9116 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9117 fprintf (stderr, "Code Nodes\n");
9118 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9119 for (i = 0; i < (int) MAX_TREE_CODES; i++)
9120 fprintf (stderr, "%-32s %7" PRIu64 "\n",
9121 get_tree_code_name ((enum tree_code) i), tree_code_counts[i]);
9122 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9123 fprintf (stderr, "\n");
9124 ssanames_print_statistics ();
9125 fprintf (stderr, "\n");
9126 phinodes_print_statistics ();
9127 fprintf (stderr, "\n");
9128 }
9129 else
9130 fprintf (stderr, "(No per-node statistics)\n");
9131
9132 print_type_hash_statistics ();
9133 print_debug_expr_statistics ();
9134 print_value_expr_statistics ();
9135 lang_hooks.print_statistics ();
9136 }
9137 \f
9138 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9139
9140 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9141
9142 unsigned
9143 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9144 {
9145 /* This relies on the raw feedback's top 4 bits being zero. */
9146 #define FEEDBACK(X) ((X) * 0x04c11db7)
9147 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9148 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9149 static const unsigned syndromes[16] =
9150 {
9151 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9152 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9153 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9154 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9155 };
9156 #undef FEEDBACK
9157 #undef SYNDROME
9158
9159 value <<= (32 - bytes * 8);
9160 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9161 {
9162 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9163
9164 chksum = (chksum << 4) ^ feedback;
9165 }
9166
9167 return chksum;
9168 }
9169
9170 /* Generate a crc32 of a string. */
9171
9172 unsigned
9173 crc32_string (unsigned chksum, const char *string)
9174 {
9175 do
9176 chksum = crc32_byte (chksum, *string);
9177 while (*string++);
9178 return chksum;
9179 }
9180
9181 /* P is a string that will be used in a symbol. Mask out any characters
9182 that are not valid in that context. */
9183
9184 void
9185 clean_symbol_name (char *p)
9186 {
9187 for (; *p; p++)
9188 if (! (ISALNUM (*p)
9189 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9190 || *p == '$'
9191 #endif
9192 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9193 || *p == '.'
9194 #endif
9195 ))
9196 *p = '_';
9197 }
9198
9199 /* For anonymous aggregate types, we need some sort of name to
9200 hold on to. In practice, this should not appear, but it should
9201 not be harmful if it does. */
9202 bool
9203 anon_aggrname_p(const_tree id_node)
9204 {
9205 #ifndef NO_DOT_IN_LABEL
9206 return (IDENTIFIER_POINTER (id_node)[0] == '.'
9207 && IDENTIFIER_POINTER (id_node)[1] == '_');
9208 #else /* NO_DOT_IN_LABEL */
9209 #ifndef NO_DOLLAR_IN_LABEL
9210 return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9211 && IDENTIFIER_POINTER (id_node)[1] == '_');
9212 #else /* NO_DOLLAR_IN_LABEL */
9213 #define ANON_AGGRNAME_PREFIX "__anon_"
9214 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9215 sizeof (ANON_AGGRNAME_PREFIX) - 1));
9216 #endif /* NO_DOLLAR_IN_LABEL */
9217 #endif /* NO_DOT_IN_LABEL */
9218 }
9219
9220 /* Return a format for an anonymous aggregate name. */
9221 const char *
9222 anon_aggrname_format()
9223 {
9224 #ifndef NO_DOT_IN_LABEL
9225 return "._%d";
9226 #else /* NO_DOT_IN_LABEL */
9227 #ifndef NO_DOLLAR_IN_LABEL
9228 return "$_%d";
9229 #else /* NO_DOLLAR_IN_LABEL */
9230 return "__anon_%d";
9231 #endif /* NO_DOLLAR_IN_LABEL */
9232 #endif /* NO_DOT_IN_LABEL */
9233 }
9234
9235 /* Generate a name for a special-purpose function.
9236 The generated name may need to be unique across the whole link.
9237 Changes to this function may also require corresponding changes to
9238 xstrdup_mask_random.
9239 TYPE is some string to identify the purpose of this function to the
9240 linker or collect2; it must start with an uppercase letter,
9241 one of:
9242 I - for constructors
9243 D - for destructors
9244 N - for C++ anonymous namespaces
9245 F - for DWARF unwind frame information. */
9246
9247 tree
9248 get_file_function_name (const char *type)
9249 {
9250 char *buf;
9251 const char *p;
9252 char *q;
9253
9254 /* If we already have a name we know to be unique, just use that. */
9255 if (first_global_object_name)
9256 p = q = ASTRDUP (first_global_object_name);
9257 /* If the target is handling the constructors/destructors, they
9258 will be local to this file and the name is only necessary for
9259 debugging purposes.
9260 We also assign sub_I and sub_D sufixes to constructors called from
9261 the global static constructors. These are always local. */
9262 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9263 || (strncmp (type, "sub_", 4) == 0
9264 && (type[4] == 'I' || type[4] == 'D')))
9265 {
9266 const char *file = main_input_filename;
9267 if (! file)
9268 file = LOCATION_FILE (input_location);
9269 /* Just use the file's basename, because the full pathname
9270 might be quite long. */
9271 p = q = ASTRDUP (lbasename (file));
9272 }
9273 else
9274 {
9275 /* Otherwise, the name must be unique across the entire link.
9276 We don't have anything that we know to be unique to this translation
9277 unit, so use what we do have and throw in some randomness. */
9278 unsigned len;
9279 const char *name = weak_global_object_name;
9280 const char *file = main_input_filename;
9281
9282 if (! name)
9283 name = "";
9284 if (! file)
9285 file = LOCATION_FILE (input_location);
9286
9287 len = strlen (file);
9288 q = (char *) alloca (9 + 19 + len + 1);
9289 memcpy (q, file, len + 1);
9290
9291 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9292 crc32_string (0, name), get_random_seed (false));
9293
9294 p = q;
9295 }
9296
9297 clean_symbol_name (q);
9298 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9299 + strlen (type));
9300
9301 /* Set up the name of the file-level functions we may need.
9302 Use a global object (which is already required to be unique over
9303 the program) rather than the file name (which imposes extra
9304 constraints). */
9305 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9306
9307 return get_identifier (buf);
9308 }
9309 \f
9310 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9311
9312 /* Complain that the tree code of NODE does not match the expected 0
9313 terminated list of trailing codes. The trailing code list can be
9314 empty, for a more vague error message. FILE, LINE, and FUNCTION
9315 are of the caller. */
9316
9317 void
9318 tree_check_failed (const_tree node, const char *file,
9319 int line, const char *function, ...)
9320 {
9321 va_list args;
9322 const char *buffer;
9323 unsigned length = 0;
9324 enum tree_code code;
9325
9326 va_start (args, function);
9327 while ((code = (enum tree_code) va_arg (args, int)))
9328 length += 4 + strlen (get_tree_code_name (code));
9329 va_end (args);
9330 if (length)
9331 {
9332 char *tmp;
9333 va_start (args, function);
9334 length += strlen ("expected ");
9335 buffer = tmp = (char *) alloca (length);
9336 length = 0;
9337 while ((code = (enum tree_code) va_arg (args, int)))
9338 {
9339 const char *prefix = length ? " or " : "expected ";
9340
9341 strcpy (tmp + length, prefix);
9342 length += strlen (prefix);
9343 strcpy (tmp + length, get_tree_code_name (code));
9344 length += strlen (get_tree_code_name (code));
9345 }
9346 va_end (args);
9347 }
9348 else
9349 buffer = "unexpected node";
9350
9351 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9352 buffer, get_tree_code_name (TREE_CODE (node)),
9353 function, trim_filename (file), line);
9354 }
9355
9356 /* Complain that the tree code of NODE does match the expected 0
9357 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9358 the caller. */
9359
9360 void
9361 tree_not_check_failed (const_tree node, const char *file,
9362 int line, const char *function, ...)
9363 {
9364 va_list args;
9365 char *buffer;
9366 unsigned length = 0;
9367 enum tree_code code;
9368
9369 va_start (args, function);
9370 while ((code = (enum tree_code) va_arg (args, int)))
9371 length += 4 + strlen (get_tree_code_name (code));
9372 va_end (args);
9373 va_start (args, function);
9374 buffer = (char *) alloca (length);
9375 length = 0;
9376 while ((code = (enum tree_code) va_arg (args, int)))
9377 {
9378 if (length)
9379 {
9380 strcpy (buffer + length, " or ");
9381 length += 4;
9382 }
9383 strcpy (buffer + length, get_tree_code_name (code));
9384 length += strlen (get_tree_code_name (code));
9385 }
9386 va_end (args);
9387
9388 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9389 buffer, get_tree_code_name (TREE_CODE (node)),
9390 function, trim_filename (file), line);
9391 }
9392
9393 /* Similar to tree_check_failed, except that we check for a class of tree
9394 code, given in CL. */
9395
9396 void
9397 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9398 const char *file, int line, const char *function)
9399 {
9400 internal_error
9401 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9402 TREE_CODE_CLASS_STRING (cl),
9403 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9404 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9405 }
9406
9407 /* Similar to tree_check_failed, except that instead of specifying a
9408 dozen codes, use the knowledge that they're all sequential. */
9409
9410 void
9411 tree_range_check_failed (const_tree node, const char *file, int line,
9412 const char *function, enum tree_code c1,
9413 enum tree_code c2)
9414 {
9415 char *buffer;
9416 unsigned length = 0;
9417 unsigned int c;
9418
9419 for (c = c1; c <= c2; ++c)
9420 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9421
9422 length += strlen ("expected ");
9423 buffer = (char *) alloca (length);
9424 length = 0;
9425
9426 for (c = c1; c <= c2; ++c)
9427 {
9428 const char *prefix = length ? " or " : "expected ";
9429
9430 strcpy (buffer + length, prefix);
9431 length += strlen (prefix);
9432 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9433 length += strlen (get_tree_code_name ((enum tree_code) c));
9434 }
9435
9436 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9437 buffer, get_tree_code_name (TREE_CODE (node)),
9438 function, trim_filename (file), line);
9439 }
9440
9441
9442 /* Similar to tree_check_failed, except that we check that a tree does
9443 not have the specified code, given in CL. */
9444
9445 void
9446 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9447 const char *file, int line, const char *function)
9448 {
9449 internal_error
9450 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9451 TREE_CODE_CLASS_STRING (cl),
9452 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9453 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9454 }
9455
9456
9457 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9458
9459 void
9460 omp_clause_check_failed (const_tree node, const char *file, int line,
9461 const char *function, enum omp_clause_code code)
9462 {
9463 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9464 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9465 function, trim_filename (file), line);
9466 }
9467
9468
9469 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9470
9471 void
9472 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9473 const char *function, enum omp_clause_code c1,
9474 enum omp_clause_code c2)
9475 {
9476 char *buffer;
9477 unsigned length = 0;
9478 unsigned int c;
9479
9480 for (c = c1; c <= c2; ++c)
9481 length += 4 + strlen (omp_clause_code_name[c]);
9482
9483 length += strlen ("expected ");
9484 buffer = (char *) alloca (length);
9485 length = 0;
9486
9487 for (c = c1; c <= c2; ++c)
9488 {
9489 const char *prefix = length ? " or " : "expected ";
9490
9491 strcpy (buffer + length, prefix);
9492 length += strlen (prefix);
9493 strcpy (buffer + length, omp_clause_code_name[c]);
9494 length += strlen (omp_clause_code_name[c]);
9495 }
9496
9497 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9498 buffer, omp_clause_code_name[TREE_CODE (node)],
9499 function, trim_filename (file), line);
9500 }
9501
9502
9503 #undef DEFTREESTRUCT
9504 #define DEFTREESTRUCT(VAL, NAME) NAME,
9505
9506 static const char *ts_enum_names[] = {
9507 #include "treestruct.def"
9508 };
9509 #undef DEFTREESTRUCT
9510
9511 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9512
9513 /* Similar to tree_class_check_failed, except that we check for
9514 whether CODE contains the tree structure identified by EN. */
9515
9516 void
9517 tree_contains_struct_check_failed (const_tree node,
9518 const enum tree_node_structure_enum en,
9519 const char *file, int line,
9520 const char *function)
9521 {
9522 internal_error
9523 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9524 TS_ENUM_NAME (en),
9525 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9526 }
9527
9528
9529 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9530 (dynamically sized) vector. */
9531
9532 void
9533 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9534 const char *function)
9535 {
9536 internal_error
9537 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9538 idx + 1, len, function, trim_filename (file), line);
9539 }
9540
9541 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9542 (dynamically sized) vector. */
9543
9544 void
9545 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9546 const char *function)
9547 {
9548 internal_error
9549 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9550 idx + 1, len, function, trim_filename (file), line);
9551 }
9552
9553 /* Similar to above, except that the check is for the bounds of the operand
9554 vector of an expression node EXP. */
9555
9556 void
9557 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9558 int line, const char *function)
9559 {
9560 enum tree_code code = TREE_CODE (exp);
9561 internal_error
9562 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9563 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9564 function, trim_filename (file), line);
9565 }
9566
9567 /* Similar to above, except that the check is for the number of
9568 operands of an OMP_CLAUSE node. */
9569
9570 void
9571 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9572 int line, const char *function)
9573 {
9574 internal_error
9575 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9576 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9577 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9578 trim_filename (file), line);
9579 }
9580 #endif /* ENABLE_TREE_CHECKING */
9581 \f
9582 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9583 and mapped to the machine mode MODE. Initialize its fields and build
9584 the information necessary for debugging output. */
9585
9586 static tree
9587 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9588 {
9589 tree t;
9590 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9591
9592 t = make_node (VECTOR_TYPE);
9593 TREE_TYPE (t) = mv_innertype;
9594 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9595 SET_TYPE_MODE (t, mode);
9596
9597 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9598 SET_TYPE_STRUCTURAL_EQUALITY (t);
9599 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9600 || mode != VOIDmode)
9601 && !VECTOR_BOOLEAN_TYPE_P (t))
9602 TYPE_CANONICAL (t)
9603 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9604
9605 layout_type (t);
9606
9607 hashval_t hash = type_hash_canon_hash (t);
9608 t = type_hash_canon (hash, t);
9609
9610 /* We have built a main variant, based on the main variant of the
9611 inner type. Use it to build the variant we return. */
9612 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9613 && TREE_TYPE (t) != innertype)
9614 return build_type_attribute_qual_variant (t,
9615 TYPE_ATTRIBUTES (innertype),
9616 TYPE_QUALS (innertype));
9617
9618 return t;
9619 }
9620
9621 static tree
9622 make_or_reuse_type (unsigned size, int unsignedp)
9623 {
9624 int i;
9625
9626 if (size == INT_TYPE_SIZE)
9627 return unsignedp ? unsigned_type_node : integer_type_node;
9628 if (size == CHAR_TYPE_SIZE)
9629 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9630 if (size == SHORT_TYPE_SIZE)
9631 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9632 if (size == LONG_TYPE_SIZE)
9633 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9634 if (size == LONG_LONG_TYPE_SIZE)
9635 return (unsignedp ? long_long_unsigned_type_node
9636 : long_long_integer_type_node);
9637
9638 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9639 if (size == int_n_data[i].bitsize
9640 && int_n_enabled_p[i])
9641 return (unsignedp ? int_n_trees[i].unsigned_type
9642 : int_n_trees[i].signed_type);
9643
9644 if (unsignedp)
9645 return make_unsigned_type (size);
9646 else
9647 return make_signed_type (size);
9648 }
9649
9650 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9651
9652 static tree
9653 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9654 {
9655 if (satp)
9656 {
9657 if (size == SHORT_FRACT_TYPE_SIZE)
9658 return unsignedp ? sat_unsigned_short_fract_type_node
9659 : sat_short_fract_type_node;
9660 if (size == FRACT_TYPE_SIZE)
9661 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9662 if (size == LONG_FRACT_TYPE_SIZE)
9663 return unsignedp ? sat_unsigned_long_fract_type_node
9664 : sat_long_fract_type_node;
9665 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9666 return unsignedp ? sat_unsigned_long_long_fract_type_node
9667 : sat_long_long_fract_type_node;
9668 }
9669 else
9670 {
9671 if (size == SHORT_FRACT_TYPE_SIZE)
9672 return unsignedp ? unsigned_short_fract_type_node
9673 : short_fract_type_node;
9674 if (size == FRACT_TYPE_SIZE)
9675 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9676 if (size == LONG_FRACT_TYPE_SIZE)
9677 return unsignedp ? unsigned_long_fract_type_node
9678 : long_fract_type_node;
9679 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9680 return unsignedp ? unsigned_long_long_fract_type_node
9681 : long_long_fract_type_node;
9682 }
9683
9684 return make_fract_type (size, unsignedp, satp);
9685 }
9686
9687 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9688
9689 static tree
9690 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9691 {
9692 if (satp)
9693 {
9694 if (size == SHORT_ACCUM_TYPE_SIZE)
9695 return unsignedp ? sat_unsigned_short_accum_type_node
9696 : sat_short_accum_type_node;
9697 if (size == ACCUM_TYPE_SIZE)
9698 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9699 if (size == LONG_ACCUM_TYPE_SIZE)
9700 return unsignedp ? sat_unsigned_long_accum_type_node
9701 : sat_long_accum_type_node;
9702 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9703 return unsignedp ? sat_unsigned_long_long_accum_type_node
9704 : sat_long_long_accum_type_node;
9705 }
9706 else
9707 {
9708 if (size == SHORT_ACCUM_TYPE_SIZE)
9709 return unsignedp ? unsigned_short_accum_type_node
9710 : short_accum_type_node;
9711 if (size == ACCUM_TYPE_SIZE)
9712 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9713 if (size == LONG_ACCUM_TYPE_SIZE)
9714 return unsignedp ? unsigned_long_accum_type_node
9715 : long_accum_type_node;
9716 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9717 return unsignedp ? unsigned_long_long_accum_type_node
9718 : long_long_accum_type_node;
9719 }
9720
9721 return make_accum_type (size, unsignedp, satp);
9722 }
9723
9724
9725 /* Create an atomic variant node for TYPE. This routine is called
9726 during initialization of data types to create the 5 basic atomic
9727 types. The generic build_variant_type function requires these to
9728 already be set up in order to function properly, so cannot be
9729 called from there. If ALIGN is non-zero, then ensure alignment is
9730 overridden to this value. */
9731
9732 static tree
9733 build_atomic_base (tree type, unsigned int align)
9734 {
9735 tree t;
9736
9737 /* Make sure its not already registered. */
9738 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9739 return t;
9740
9741 t = build_variant_type_copy (type);
9742 set_type_quals (t, TYPE_QUAL_ATOMIC);
9743
9744 if (align)
9745 SET_TYPE_ALIGN (t, align);
9746
9747 return t;
9748 }
9749
9750 /* Information about the _FloatN and _FloatNx types. This must be in
9751 the same order as the corresponding TI_* enum values. */
9752 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
9753 {
9754 { 16, false },
9755 { 32, false },
9756 { 64, false },
9757 { 128, false },
9758 { 32, true },
9759 { 64, true },
9760 { 128, true },
9761 };
9762
9763
9764 /* Create nodes for all integer types (and error_mark_node) using the sizes
9765 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
9766
9767 void
9768 build_common_tree_nodes (bool signed_char)
9769 {
9770 int i;
9771
9772 error_mark_node = make_node (ERROR_MARK);
9773 TREE_TYPE (error_mark_node) = error_mark_node;
9774
9775 initialize_sizetypes ();
9776
9777 /* Define both `signed char' and `unsigned char'. */
9778 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9779 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9780 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9781 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9782
9783 /* Define `char', which is like either `signed char' or `unsigned char'
9784 but not the same as either. */
9785 char_type_node
9786 = (signed_char
9787 ? make_signed_type (CHAR_TYPE_SIZE)
9788 : make_unsigned_type (CHAR_TYPE_SIZE));
9789 TYPE_STRING_FLAG (char_type_node) = 1;
9790
9791 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9792 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9793 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9794 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9795 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9796 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9797 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9798 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9799
9800 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9801 {
9802 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9803 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9804
9805 if (int_n_data[i].bitsize > LONG_LONG_TYPE_SIZE
9806 && int_n_enabled_p[i])
9807 {
9808 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9809 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9810 }
9811 }
9812
9813 /* Define a boolean type. This type only represents boolean values but
9814 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9815 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9816 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9817 TYPE_PRECISION (boolean_type_node) = 1;
9818 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9819
9820 /* Define what type to use for size_t. */
9821 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9822 size_type_node = unsigned_type_node;
9823 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9824 size_type_node = long_unsigned_type_node;
9825 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9826 size_type_node = long_long_unsigned_type_node;
9827 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9828 size_type_node = short_unsigned_type_node;
9829 else
9830 {
9831 int i;
9832
9833 size_type_node = NULL_TREE;
9834 for (i = 0; i < NUM_INT_N_ENTS; i++)
9835 if (int_n_enabled_p[i])
9836 {
9837 char name[50];
9838 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9839
9840 if (strcmp (name, SIZE_TYPE) == 0)
9841 {
9842 size_type_node = int_n_trees[i].unsigned_type;
9843 }
9844 }
9845 if (size_type_node == NULL_TREE)
9846 gcc_unreachable ();
9847 }
9848
9849 /* Define what type to use for ptrdiff_t. */
9850 if (strcmp (PTRDIFF_TYPE, "int") == 0)
9851 ptrdiff_type_node = integer_type_node;
9852 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
9853 ptrdiff_type_node = long_integer_type_node;
9854 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
9855 ptrdiff_type_node = long_long_integer_type_node;
9856 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
9857 ptrdiff_type_node = short_integer_type_node;
9858 else
9859 {
9860 ptrdiff_type_node = NULL_TREE;
9861 for (int i = 0; i < NUM_INT_N_ENTS; i++)
9862 if (int_n_enabled_p[i])
9863 {
9864 char name[50];
9865 sprintf (name, "__int%d", int_n_data[i].bitsize);
9866 if (strcmp (name, PTRDIFF_TYPE) == 0)
9867 ptrdiff_type_node = int_n_trees[i].signed_type;
9868 }
9869 if (ptrdiff_type_node == NULL_TREE)
9870 gcc_unreachable ();
9871 }
9872
9873 /* Fill in the rest of the sized types. Reuse existing type nodes
9874 when possible. */
9875 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9876 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9877 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9878 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9879 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9880
9881 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9882 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9883 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9884 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9885 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9886
9887 /* Don't call build_qualified type for atomics. That routine does
9888 special processing for atomics, and until they are initialized
9889 it's better not to make that call.
9890
9891 Check to see if there is a target override for atomic types. */
9892
9893 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9894 targetm.atomic_align_for_mode (QImode));
9895 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9896 targetm.atomic_align_for_mode (HImode));
9897 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9898 targetm.atomic_align_for_mode (SImode));
9899 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9900 targetm.atomic_align_for_mode (DImode));
9901 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9902 targetm.atomic_align_for_mode (TImode));
9903
9904 access_public_node = get_identifier ("public");
9905 access_protected_node = get_identifier ("protected");
9906 access_private_node = get_identifier ("private");
9907
9908 /* Define these next since types below may used them. */
9909 integer_zero_node = build_int_cst (integer_type_node, 0);
9910 integer_one_node = build_int_cst (integer_type_node, 1);
9911 integer_three_node = build_int_cst (integer_type_node, 3);
9912 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9913
9914 size_zero_node = size_int (0);
9915 size_one_node = size_int (1);
9916 bitsize_zero_node = bitsize_int (0);
9917 bitsize_one_node = bitsize_int (1);
9918 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9919
9920 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9921 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9922
9923 void_type_node = make_node (VOID_TYPE);
9924 layout_type (void_type_node);
9925
9926 /* We are not going to have real types in C with less than byte alignment,
9927 so we might as well not have any types that claim to have it. */
9928 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
9929 TYPE_USER_ALIGN (void_type_node) = 0;
9930
9931 void_node = make_node (VOID_CST);
9932 TREE_TYPE (void_node) = void_type_node;
9933
9934 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9935 layout_type (TREE_TYPE (null_pointer_node));
9936
9937 ptr_type_node = build_pointer_type (void_type_node);
9938 const_ptr_type_node
9939 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9940 for (unsigned i = 0;
9941 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
9942 ++i)
9943 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
9944
9945 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9946
9947 float_type_node = make_node (REAL_TYPE);
9948 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9949 layout_type (float_type_node);
9950
9951 double_type_node = make_node (REAL_TYPE);
9952 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9953 layout_type (double_type_node);
9954
9955 long_double_type_node = make_node (REAL_TYPE);
9956 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9957 layout_type (long_double_type_node);
9958
9959 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9960 {
9961 int n = floatn_nx_types[i].n;
9962 bool extended = floatn_nx_types[i].extended;
9963 scalar_float_mode mode;
9964 if (!targetm.floatn_mode (n, extended).exists (&mode))
9965 continue;
9966 int precision = GET_MODE_PRECISION (mode);
9967 /* Work around the rs6000 KFmode having precision 113 not
9968 128. */
9969 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
9970 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
9971 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
9972 if (!extended)
9973 gcc_assert (min_precision == n);
9974 if (precision < min_precision)
9975 precision = min_precision;
9976 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
9977 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
9978 layout_type (FLOATN_NX_TYPE_NODE (i));
9979 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
9980 }
9981
9982 float_ptr_type_node = build_pointer_type (float_type_node);
9983 double_ptr_type_node = build_pointer_type (double_type_node);
9984 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9985 integer_ptr_type_node = build_pointer_type (integer_type_node);
9986
9987 /* Fixed size integer types. */
9988 uint16_type_node = make_or_reuse_type (16, 1);
9989 uint32_type_node = make_or_reuse_type (32, 1);
9990 uint64_type_node = make_or_reuse_type (64, 1);
9991
9992 /* Decimal float types. */
9993 dfloat32_type_node = make_node (REAL_TYPE);
9994 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9995 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9996 layout_type (dfloat32_type_node);
9997 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9998
9999 dfloat64_type_node = make_node (REAL_TYPE);
10000 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10001 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10002 layout_type (dfloat64_type_node);
10003 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
10004
10005 dfloat128_type_node = make_node (REAL_TYPE);
10006 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10007 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10008 layout_type (dfloat128_type_node);
10009 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
10010
10011 complex_integer_type_node = build_complex_type (integer_type_node, true);
10012 complex_float_type_node = build_complex_type (float_type_node, true);
10013 complex_double_type_node = build_complex_type (double_type_node, true);
10014 complex_long_double_type_node = build_complex_type (long_double_type_node,
10015 true);
10016
10017 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10018 {
10019 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10020 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10021 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10022 }
10023
10024 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10025 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10026 sat_ ## KIND ## _type_node = \
10027 make_sat_signed_ ## KIND ## _type (SIZE); \
10028 sat_unsigned_ ## KIND ## _type_node = \
10029 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10030 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10031 unsigned_ ## KIND ## _type_node = \
10032 make_unsigned_ ## KIND ## _type (SIZE);
10033
10034 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10035 sat_ ## WIDTH ## KIND ## _type_node = \
10036 make_sat_signed_ ## KIND ## _type (SIZE); \
10037 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10038 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10039 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10040 unsigned_ ## WIDTH ## KIND ## _type_node = \
10041 make_unsigned_ ## KIND ## _type (SIZE);
10042
10043 /* Make fixed-point type nodes based on four different widths. */
10044 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10045 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10046 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10047 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10048 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10049
10050 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10051 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10052 NAME ## _type_node = \
10053 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10054 u ## NAME ## _type_node = \
10055 make_or_reuse_unsigned_ ## KIND ## _type \
10056 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10057 sat_ ## NAME ## _type_node = \
10058 make_or_reuse_sat_signed_ ## KIND ## _type \
10059 (GET_MODE_BITSIZE (MODE ## mode)); \
10060 sat_u ## NAME ## _type_node = \
10061 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10062 (GET_MODE_BITSIZE (U ## MODE ## mode));
10063
10064 /* Fixed-point type and mode nodes. */
10065 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10066 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10067 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10068 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10069 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10070 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10071 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10072 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10073 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10074 MAKE_FIXED_MODE_NODE (accum, da, DA)
10075 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10076
10077 {
10078 tree t = targetm.build_builtin_va_list ();
10079
10080 /* Many back-ends define record types without setting TYPE_NAME.
10081 If we copied the record type here, we'd keep the original
10082 record type without a name. This breaks name mangling. So,
10083 don't copy record types and let c_common_nodes_and_builtins()
10084 declare the type to be __builtin_va_list. */
10085 if (TREE_CODE (t) != RECORD_TYPE)
10086 t = build_variant_type_copy (t);
10087
10088 va_list_type_node = t;
10089 }
10090 }
10091
10092 /* Modify DECL for given flags.
10093 TM_PURE attribute is set only on types, so the function will modify
10094 DECL's type when ECF_TM_PURE is used. */
10095
10096 void
10097 set_call_expr_flags (tree decl, int flags)
10098 {
10099 if (flags & ECF_NOTHROW)
10100 TREE_NOTHROW (decl) = 1;
10101 if (flags & ECF_CONST)
10102 TREE_READONLY (decl) = 1;
10103 if (flags & ECF_PURE)
10104 DECL_PURE_P (decl) = 1;
10105 if (flags & ECF_LOOPING_CONST_OR_PURE)
10106 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10107 if (flags & ECF_NOVOPS)
10108 DECL_IS_NOVOPS (decl) = 1;
10109 if (flags & ECF_NORETURN)
10110 TREE_THIS_VOLATILE (decl) = 1;
10111 if (flags & ECF_MALLOC)
10112 DECL_IS_MALLOC (decl) = 1;
10113 if (flags & ECF_RETURNS_TWICE)
10114 DECL_IS_RETURNS_TWICE (decl) = 1;
10115 if (flags & ECF_LEAF)
10116 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10117 NULL, DECL_ATTRIBUTES (decl));
10118 if (flags & ECF_COLD)
10119 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10120 NULL, DECL_ATTRIBUTES (decl));
10121 if (flags & ECF_RET1)
10122 DECL_ATTRIBUTES (decl)
10123 = tree_cons (get_identifier ("fn spec"),
10124 build_tree_list (NULL_TREE, build_string (1, "1")),
10125 DECL_ATTRIBUTES (decl));
10126 if ((flags & ECF_TM_PURE) && flag_tm)
10127 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10128 /* Looping const or pure is implied by noreturn.
10129 There is currently no way to declare looping const or looping pure alone. */
10130 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10131 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10132 }
10133
10134
10135 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10136
10137 static void
10138 local_define_builtin (const char *name, tree type, enum built_in_function code,
10139 const char *library_name, int ecf_flags)
10140 {
10141 tree decl;
10142
10143 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10144 library_name, NULL_TREE);
10145 set_call_expr_flags (decl, ecf_flags);
10146
10147 set_builtin_decl (code, decl, true);
10148 }
10149
10150 /* Call this function after instantiating all builtins that the language
10151 front end cares about. This will build the rest of the builtins
10152 and internal functions that are relied upon by the tree optimizers and
10153 the middle-end. */
10154
10155 void
10156 build_common_builtin_nodes (void)
10157 {
10158 tree tmp, ftype;
10159 int ecf_flags;
10160
10161 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10162 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10163 {
10164 ftype = build_function_type (void_type_node, void_list_node);
10165 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10166 local_define_builtin ("__builtin_unreachable", ftype,
10167 BUILT_IN_UNREACHABLE,
10168 "__builtin_unreachable",
10169 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10170 | ECF_CONST | ECF_COLD);
10171 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10172 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10173 "abort",
10174 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10175 }
10176
10177 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10178 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10179 {
10180 ftype = build_function_type_list (ptr_type_node,
10181 ptr_type_node, const_ptr_type_node,
10182 size_type_node, NULL_TREE);
10183
10184 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10185 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10186 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10187 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10188 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10189 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10190 }
10191
10192 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10193 {
10194 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10195 const_ptr_type_node, size_type_node,
10196 NULL_TREE);
10197 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10198 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10199 }
10200
10201 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10202 {
10203 ftype = build_function_type_list (ptr_type_node,
10204 ptr_type_node, integer_type_node,
10205 size_type_node, NULL_TREE);
10206 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10207 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10208 }
10209
10210 /* If we're checking the stack, `alloca' can throw. */
10211 const int alloca_flags
10212 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10213
10214 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10215 {
10216 ftype = build_function_type_list (ptr_type_node,
10217 size_type_node, NULL_TREE);
10218 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10219 "alloca", alloca_flags);
10220 }
10221
10222 ftype = build_function_type_list (ptr_type_node, size_type_node,
10223 size_type_node, NULL_TREE);
10224 local_define_builtin ("__builtin_alloca_with_align", ftype,
10225 BUILT_IN_ALLOCA_WITH_ALIGN,
10226 "__builtin_alloca_with_align",
10227 alloca_flags);
10228
10229 ftype = build_function_type_list (ptr_type_node, size_type_node,
10230 size_type_node, size_type_node, NULL_TREE);
10231 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10232 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10233 "__builtin_alloca_with_align_and_max",
10234 alloca_flags);
10235
10236 ftype = build_function_type_list (void_type_node,
10237 ptr_type_node, ptr_type_node,
10238 ptr_type_node, NULL_TREE);
10239 local_define_builtin ("__builtin_init_trampoline", ftype,
10240 BUILT_IN_INIT_TRAMPOLINE,
10241 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10242 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10243 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10244 "__builtin_init_heap_trampoline",
10245 ECF_NOTHROW | ECF_LEAF);
10246 local_define_builtin ("__builtin_init_descriptor", ftype,
10247 BUILT_IN_INIT_DESCRIPTOR,
10248 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10249
10250 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10251 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10252 BUILT_IN_ADJUST_TRAMPOLINE,
10253 "__builtin_adjust_trampoline",
10254 ECF_CONST | ECF_NOTHROW);
10255 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10256 BUILT_IN_ADJUST_DESCRIPTOR,
10257 "__builtin_adjust_descriptor",
10258 ECF_CONST | ECF_NOTHROW);
10259
10260 ftype = build_function_type_list (void_type_node,
10261 ptr_type_node, ptr_type_node, NULL_TREE);
10262 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10263 BUILT_IN_NONLOCAL_GOTO,
10264 "__builtin_nonlocal_goto",
10265 ECF_NORETURN | ECF_NOTHROW);
10266
10267 ftype = build_function_type_list (void_type_node,
10268 ptr_type_node, ptr_type_node, NULL_TREE);
10269 local_define_builtin ("__builtin_setjmp_setup", ftype,
10270 BUILT_IN_SETJMP_SETUP,
10271 "__builtin_setjmp_setup", ECF_NOTHROW);
10272
10273 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10274 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10275 BUILT_IN_SETJMP_RECEIVER,
10276 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10277
10278 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10279 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10280 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10281
10282 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10283 local_define_builtin ("__builtin_stack_restore", ftype,
10284 BUILT_IN_STACK_RESTORE,
10285 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10286
10287 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10288 const_ptr_type_node, size_type_node,
10289 NULL_TREE);
10290 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10291 "__builtin_memcmp_eq",
10292 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10293
10294 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10295 "__builtin_strncmp_eq",
10296 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10297
10298 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10299 "__builtin_strcmp_eq",
10300 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10301
10302 /* If there's a possibility that we might use the ARM EABI, build the
10303 alternate __cxa_end_cleanup node used to resume from C++. */
10304 if (targetm.arm_eabi_unwinder)
10305 {
10306 ftype = build_function_type_list (void_type_node, NULL_TREE);
10307 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10308 BUILT_IN_CXA_END_CLEANUP,
10309 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10310 }
10311
10312 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10313 local_define_builtin ("__builtin_unwind_resume", ftype,
10314 BUILT_IN_UNWIND_RESUME,
10315 ((targetm_common.except_unwind_info (&global_options)
10316 == UI_SJLJ)
10317 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10318 ECF_NORETURN);
10319
10320 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10321 {
10322 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10323 NULL_TREE);
10324 local_define_builtin ("__builtin_return_address", ftype,
10325 BUILT_IN_RETURN_ADDRESS,
10326 "__builtin_return_address",
10327 ECF_NOTHROW);
10328 }
10329
10330 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10331 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10332 {
10333 ftype = build_function_type_list (void_type_node, ptr_type_node,
10334 ptr_type_node, NULL_TREE);
10335 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10336 local_define_builtin ("__cyg_profile_func_enter", ftype,
10337 BUILT_IN_PROFILE_FUNC_ENTER,
10338 "__cyg_profile_func_enter", 0);
10339 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10340 local_define_builtin ("__cyg_profile_func_exit", ftype,
10341 BUILT_IN_PROFILE_FUNC_EXIT,
10342 "__cyg_profile_func_exit", 0);
10343 }
10344
10345 /* The exception object and filter values from the runtime. The argument
10346 must be zero before exception lowering, i.e. from the front end. After
10347 exception lowering, it will be the region number for the exception
10348 landing pad. These functions are PURE instead of CONST to prevent
10349 them from being hoisted past the exception edge that will initialize
10350 its value in the landing pad. */
10351 ftype = build_function_type_list (ptr_type_node,
10352 integer_type_node, NULL_TREE);
10353 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10354 /* Only use TM_PURE if we have TM language support. */
10355 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10356 ecf_flags |= ECF_TM_PURE;
10357 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10358 "__builtin_eh_pointer", ecf_flags);
10359
10360 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10361 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10362 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10363 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10364
10365 ftype = build_function_type_list (void_type_node,
10366 integer_type_node, integer_type_node,
10367 NULL_TREE);
10368 local_define_builtin ("__builtin_eh_copy_values", ftype,
10369 BUILT_IN_EH_COPY_VALUES,
10370 "__builtin_eh_copy_values", ECF_NOTHROW);
10371
10372 /* Complex multiplication and division. These are handled as builtins
10373 rather than optabs because emit_library_call_value doesn't support
10374 complex. Further, we can do slightly better with folding these
10375 beasties if the real and complex parts of the arguments are separate. */
10376 {
10377 int mode;
10378
10379 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10380 {
10381 char mode_name_buf[4], *q;
10382 const char *p;
10383 enum built_in_function mcode, dcode;
10384 tree type, inner_type;
10385 const char *prefix = "__";
10386
10387 if (targetm.libfunc_gnu_prefix)
10388 prefix = "__gnu_";
10389
10390 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10391 if (type == NULL)
10392 continue;
10393 inner_type = TREE_TYPE (type);
10394
10395 ftype = build_function_type_list (type, inner_type, inner_type,
10396 inner_type, inner_type, NULL_TREE);
10397
10398 mcode = ((enum built_in_function)
10399 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10400 dcode = ((enum built_in_function)
10401 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10402
10403 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10404 *q = TOLOWER (*p);
10405 *q = '\0';
10406
10407 /* For -ftrapping-math these should throw from a former
10408 -fnon-call-exception stmt. */
10409 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10410 NULL);
10411 local_define_builtin (built_in_names[mcode], ftype, mcode,
10412 built_in_names[mcode],
10413 ECF_CONST | ECF_LEAF);
10414
10415 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10416 NULL);
10417 local_define_builtin (built_in_names[dcode], ftype, dcode,
10418 built_in_names[dcode],
10419 ECF_CONST | ECF_LEAF);
10420 }
10421 }
10422
10423 init_internal_fns ();
10424 }
10425
10426 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10427 better way.
10428
10429 If we requested a pointer to a vector, build up the pointers that
10430 we stripped off while looking for the inner type. Similarly for
10431 return values from functions.
10432
10433 The argument TYPE is the top of the chain, and BOTTOM is the
10434 new type which we will point to. */
10435
10436 tree
10437 reconstruct_complex_type (tree type, tree bottom)
10438 {
10439 tree inner, outer;
10440
10441 if (TREE_CODE (type) == POINTER_TYPE)
10442 {
10443 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10444 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10445 TYPE_REF_CAN_ALIAS_ALL (type));
10446 }
10447 else if (TREE_CODE (type) == REFERENCE_TYPE)
10448 {
10449 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10450 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10451 TYPE_REF_CAN_ALIAS_ALL (type));
10452 }
10453 else if (TREE_CODE (type) == ARRAY_TYPE)
10454 {
10455 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10456 outer = build_array_type (inner, TYPE_DOMAIN (type));
10457 }
10458 else if (TREE_CODE (type) == FUNCTION_TYPE)
10459 {
10460 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10461 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10462 }
10463 else if (TREE_CODE (type) == METHOD_TYPE)
10464 {
10465 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10466 /* The build_method_type_directly() routine prepends 'this' to argument list,
10467 so we must compensate by getting rid of it. */
10468 outer
10469 = build_method_type_directly
10470 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10471 inner,
10472 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10473 }
10474 else if (TREE_CODE (type) == OFFSET_TYPE)
10475 {
10476 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10477 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10478 }
10479 else
10480 return bottom;
10481
10482 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10483 TYPE_QUALS (type));
10484 }
10485
10486 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10487 the inner type. */
10488 tree
10489 build_vector_type_for_mode (tree innertype, machine_mode mode)
10490 {
10491 poly_int64 nunits;
10492 unsigned int bitsize;
10493
10494 switch (GET_MODE_CLASS (mode))
10495 {
10496 case MODE_VECTOR_BOOL:
10497 case MODE_VECTOR_INT:
10498 case MODE_VECTOR_FLOAT:
10499 case MODE_VECTOR_FRACT:
10500 case MODE_VECTOR_UFRACT:
10501 case MODE_VECTOR_ACCUM:
10502 case MODE_VECTOR_UACCUM:
10503 nunits = GET_MODE_NUNITS (mode);
10504 break;
10505
10506 case MODE_INT:
10507 /* Check that there are no leftover bits. */
10508 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10509 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10510 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10511 break;
10512
10513 default:
10514 gcc_unreachable ();
10515 }
10516
10517 return make_vector_type (innertype, nunits, mode);
10518 }
10519
10520 /* Similarly, but takes the inner type and number of units, which must be
10521 a power of two. */
10522
10523 tree
10524 build_vector_type (tree innertype, poly_int64 nunits)
10525 {
10526 return make_vector_type (innertype, nunits, VOIDmode);
10527 }
10528
10529 /* Build truth vector with specified length and number of units. */
10530
10531 tree
10532 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
10533 {
10534 machine_mode mask_mode
10535 = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
10536
10537 poly_uint64 vsize;
10538 if (mask_mode == BLKmode)
10539 vsize = vector_size * BITS_PER_UNIT;
10540 else
10541 vsize = GET_MODE_BITSIZE (mask_mode);
10542
10543 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10544
10545 tree bool_type = build_nonstandard_boolean_type (esize);
10546
10547 return make_vector_type (bool_type, nunits, mask_mode);
10548 }
10549
10550 /* Returns a vector type corresponding to a comparison of VECTYPE. */
10551
10552 tree
10553 build_same_sized_truth_vector_type (tree vectype)
10554 {
10555 if (VECTOR_BOOLEAN_TYPE_P (vectype))
10556 return vectype;
10557
10558 poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
10559
10560 if (known_eq (size, 0U))
10561 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
10562
10563 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
10564 }
10565
10566 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10567
10568 tree
10569 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10570 {
10571 tree t = make_vector_type (innertype, nunits, VOIDmode);
10572 tree cand;
10573 /* We always build the non-opaque variant before the opaque one,
10574 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10575 cand = TYPE_NEXT_VARIANT (t);
10576 if (cand
10577 && TYPE_VECTOR_OPAQUE (cand)
10578 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10579 return cand;
10580 /* Othewise build a variant type and make sure to queue it after
10581 the non-opaque type. */
10582 cand = build_distinct_type_copy (t);
10583 TYPE_VECTOR_OPAQUE (cand) = true;
10584 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10585 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10586 TYPE_NEXT_VARIANT (t) = cand;
10587 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10588 return cand;
10589 }
10590
10591 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10592
10593 wide_int
10594 vector_cst_int_elt (const_tree t, unsigned int i)
10595 {
10596 /* First handle elements that are directly encoded. */
10597 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10598 if (i < encoded_nelts)
10599 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10600
10601 /* Identify the pattern that contains element I and work out the index of
10602 the last encoded element for that pattern. */
10603 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10604 unsigned int pattern = i % npatterns;
10605 unsigned int count = i / npatterns;
10606 unsigned int final_i = encoded_nelts - npatterns + pattern;
10607
10608 /* If there are no steps, the final encoded value is the right one. */
10609 if (!VECTOR_CST_STEPPED_P (t))
10610 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10611
10612 /* Otherwise work out the value from the last two encoded elements. */
10613 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10614 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10615 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10616 return wi::to_wide (v2) + (count - 2) * diff;
10617 }
10618
10619 /* Return the value of element I of VECTOR_CST T. */
10620
10621 tree
10622 vector_cst_elt (const_tree t, unsigned int i)
10623 {
10624 /* First handle elements that are directly encoded. */
10625 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10626 if (i < encoded_nelts)
10627 return VECTOR_CST_ENCODED_ELT (t, i);
10628
10629 /* If there are no steps, the final encoded value is the right one. */
10630 if (!VECTOR_CST_STEPPED_P (t))
10631 {
10632 /* Identify the pattern that contains element I and work out the index of
10633 the last encoded element for that pattern. */
10634 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10635 unsigned int pattern = i % npatterns;
10636 unsigned int final_i = encoded_nelts - npatterns + pattern;
10637 return VECTOR_CST_ENCODED_ELT (t, final_i);
10638 }
10639
10640 /* Otherwise work out the value from the last two encoded elements. */
10641 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
10642 vector_cst_int_elt (t, i));
10643 }
10644
10645 /* Given an initializer INIT, return TRUE if INIT is zero or some
10646 aggregate of zeros. Otherwise return FALSE. */
10647 bool
10648 initializer_zerop (const_tree init)
10649 {
10650 tree elt;
10651
10652 STRIP_NOPS (init);
10653
10654 switch (TREE_CODE (init))
10655 {
10656 case INTEGER_CST:
10657 return integer_zerop (init);
10658
10659 case REAL_CST:
10660 /* ??? Note that this is not correct for C4X float formats. There,
10661 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10662 negative exponent. */
10663 return real_zerop (init)
10664 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10665
10666 case FIXED_CST:
10667 return fixed_zerop (init);
10668
10669 case COMPLEX_CST:
10670 return integer_zerop (init)
10671 || (real_zerop (init)
10672 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10673 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10674
10675 case VECTOR_CST:
10676 return (VECTOR_CST_NPATTERNS (init) == 1
10677 && VECTOR_CST_DUPLICATE_P (init)
10678 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)));
10679
10680 case CONSTRUCTOR:
10681 {
10682 unsigned HOST_WIDE_INT idx;
10683
10684 if (TREE_CLOBBER_P (init))
10685 return false;
10686 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10687 if (!initializer_zerop (elt))
10688 return false;
10689 return true;
10690 }
10691
10692 case STRING_CST:
10693 {
10694 int i;
10695
10696 /* We need to loop through all elements to handle cases like
10697 "\0" and "\0foobar". */
10698 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10699 if (TREE_STRING_POINTER (init)[i] != '\0')
10700 return false;
10701
10702 return true;
10703 }
10704
10705 default:
10706 return false;
10707 }
10708 }
10709
10710 /* Check if vector VEC consists of all the equal elements and
10711 that the number of elements corresponds to the type of VEC.
10712 The function returns first element of the vector
10713 or NULL_TREE if the vector is not uniform. */
10714 tree
10715 uniform_vector_p (const_tree vec)
10716 {
10717 tree first, t;
10718 unsigned HOST_WIDE_INT i, nelts;
10719
10720 if (vec == NULL_TREE)
10721 return NULL_TREE;
10722
10723 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10724
10725 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
10726 return TREE_OPERAND (vec, 0);
10727
10728 else if (TREE_CODE (vec) == VECTOR_CST)
10729 {
10730 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
10731 return VECTOR_CST_ENCODED_ELT (vec, 0);
10732 return NULL_TREE;
10733 }
10734
10735 else if (TREE_CODE (vec) == CONSTRUCTOR
10736 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
10737 {
10738 first = error_mark_node;
10739
10740 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10741 {
10742 if (i == 0)
10743 {
10744 first = t;
10745 continue;
10746 }
10747 if (!operand_equal_p (first, t, 0))
10748 return NULL_TREE;
10749 }
10750 if (i != nelts)
10751 return NULL_TREE;
10752
10753 return first;
10754 }
10755
10756 return NULL_TREE;
10757 }
10758
10759 /* Build an empty statement at location LOC. */
10760
10761 tree
10762 build_empty_stmt (location_t loc)
10763 {
10764 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10765 SET_EXPR_LOCATION (t, loc);
10766 return t;
10767 }
10768
10769
10770 /* Build an OpenMP clause with code CODE. LOC is the location of the
10771 clause. */
10772
10773 tree
10774 build_omp_clause (location_t loc, enum omp_clause_code code)
10775 {
10776 tree t;
10777 int size, length;
10778
10779 length = omp_clause_num_ops[code];
10780 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10781
10782 record_node_allocation_statistics (OMP_CLAUSE, size);
10783
10784 t = (tree) ggc_internal_alloc (size);
10785 memset (t, 0, size);
10786 TREE_SET_CODE (t, OMP_CLAUSE);
10787 OMP_CLAUSE_SET_CODE (t, code);
10788 OMP_CLAUSE_LOCATION (t) = loc;
10789
10790 return t;
10791 }
10792
10793 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10794 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10795 Except for the CODE and operand count field, other storage for the
10796 object is initialized to zeros. */
10797
10798 tree
10799 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
10800 {
10801 tree t;
10802 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10803
10804 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10805 gcc_assert (len >= 1);
10806
10807 record_node_allocation_statistics (code, length);
10808
10809 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10810
10811 TREE_SET_CODE (t, code);
10812
10813 /* Can't use TREE_OPERAND to store the length because if checking is
10814 enabled, it will try to check the length before we store it. :-P */
10815 t->exp.operands[0] = build_int_cst (sizetype, len);
10816
10817 return t;
10818 }
10819
10820 /* Helper function for build_call_* functions; build a CALL_EXPR with
10821 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10822 the argument slots. */
10823
10824 static tree
10825 build_call_1 (tree return_type, tree fn, int nargs)
10826 {
10827 tree t;
10828
10829 t = build_vl_exp (CALL_EXPR, nargs + 3);
10830 TREE_TYPE (t) = return_type;
10831 CALL_EXPR_FN (t) = fn;
10832 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10833
10834 return t;
10835 }
10836
10837 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10838 FN and a null static chain slot. NARGS is the number of call arguments
10839 which are specified as "..." arguments. */
10840
10841 tree
10842 build_call_nary (tree return_type, tree fn, int nargs, ...)
10843 {
10844 tree ret;
10845 va_list args;
10846 va_start (args, nargs);
10847 ret = build_call_valist (return_type, fn, nargs, args);
10848 va_end (args);
10849 return ret;
10850 }
10851
10852 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10853 FN and a null static chain slot. NARGS is the number of call arguments
10854 which are specified as a va_list ARGS. */
10855
10856 tree
10857 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10858 {
10859 tree t;
10860 int i;
10861
10862 t = build_call_1 (return_type, fn, nargs);
10863 for (i = 0; i < nargs; i++)
10864 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10865 process_call_operands (t);
10866 return t;
10867 }
10868
10869 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10870 FN and a null static chain slot. NARGS is the number of call arguments
10871 which are specified as a tree array ARGS. */
10872
10873 tree
10874 build_call_array_loc (location_t loc, tree return_type, tree fn,
10875 int nargs, const tree *args)
10876 {
10877 tree t;
10878 int i;
10879
10880 t = build_call_1 (return_type, fn, nargs);
10881 for (i = 0; i < nargs; i++)
10882 CALL_EXPR_ARG (t, i) = args[i];
10883 process_call_operands (t);
10884 SET_EXPR_LOCATION (t, loc);
10885 return t;
10886 }
10887
10888 /* Like build_call_array, but takes a vec. */
10889
10890 tree
10891 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10892 {
10893 tree ret, t;
10894 unsigned int ix;
10895
10896 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10897 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10898 CALL_EXPR_ARG (ret, ix) = t;
10899 process_call_operands (ret);
10900 return ret;
10901 }
10902
10903 /* Conveniently construct a function call expression. FNDECL names the
10904 function to be called and N arguments are passed in the array
10905 ARGARRAY. */
10906
10907 tree
10908 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10909 {
10910 tree fntype = TREE_TYPE (fndecl);
10911 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10912
10913 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
10914 }
10915
10916 /* Conveniently construct a function call expression. FNDECL names the
10917 function to be called and the arguments are passed in the vector
10918 VEC. */
10919
10920 tree
10921 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10922 {
10923 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10924 vec_safe_address (vec));
10925 }
10926
10927
10928 /* Conveniently construct a function call expression. FNDECL names the
10929 function to be called, N is the number of arguments, and the "..."
10930 parameters are the argument expressions. */
10931
10932 tree
10933 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10934 {
10935 va_list ap;
10936 tree *argarray = XALLOCAVEC (tree, n);
10937 int i;
10938
10939 va_start (ap, n);
10940 for (i = 0; i < n; i++)
10941 argarray[i] = va_arg (ap, tree);
10942 va_end (ap);
10943 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10944 }
10945
10946 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10947 varargs macros aren't supported by all bootstrap compilers. */
10948
10949 tree
10950 build_call_expr (tree fndecl, int n, ...)
10951 {
10952 va_list ap;
10953 tree *argarray = XALLOCAVEC (tree, n);
10954 int i;
10955
10956 va_start (ap, n);
10957 for (i = 0; i < n; i++)
10958 argarray[i] = va_arg (ap, tree);
10959 va_end (ap);
10960 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10961 }
10962
10963 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
10964 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
10965 It will get gimplified later into an ordinary internal function. */
10966
10967 tree
10968 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
10969 tree type, int n, const tree *args)
10970 {
10971 tree t = build_call_1 (type, NULL_TREE, n);
10972 for (int i = 0; i < n; ++i)
10973 CALL_EXPR_ARG (t, i) = args[i];
10974 SET_EXPR_LOCATION (t, loc);
10975 CALL_EXPR_IFN (t) = ifn;
10976 return t;
10977 }
10978
10979 /* Build internal call expression. This is just like CALL_EXPR, except
10980 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10981 internal function. */
10982
10983 tree
10984 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10985 tree type, int n, ...)
10986 {
10987 va_list ap;
10988 tree *argarray = XALLOCAVEC (tree, n);
10989 int i;
10990
10991 va_start (ap, n);
10992 for (i = 0; i < n; i++)
10993 argarray[i] = va_arg (ap, tree);
10994 va_end (ap);
10995 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10996 }
10997
10998 /* Return a function call to FN, if the target is guaranteed to support it,
10999 or null otherwise.
11000
11001 N is the number of arguments, passed in the "...", and TYPE is the
11002 type of the return value. */
11003
11004 tree
11005 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11006 int n, ...)
11007 {
11008 va_list ap;
11009 tree *argarray = XALLOCAVEC (tree, n);
11010 int i;
11011
11012 va_start (ap, n);
11013 for (i = 0; i < n; i++)
11014 argarray[i] = va_arg (ap, tree);
11015 va_end (ap);
11016 if (internal_fn_p (fn))
11017 {
11018 internal_fn ifn = as_internal_fn (fn);
11019 if (direct_internal_fn_p (ifn))
11020 {
11021 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11022 if (!direct_internal_fn_supported_p (ifn, types,
11023 OPTIMIZE_FOR_BOTH))
11024 return NULL_TREE;
11025 }
11026 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11027 }
11028 else
11029 {
11030 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11031 if (!fndecl)
11032 return NULL_TREE;
11033 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11034 }
11035 }
11036
11037 /* Return a function call to the appropriate builtin alloca variant.
11038
11039 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11040 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11041 bound for SIZE in case it is not a fixed value. */
11042
11043 tree
11044 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11045 {
11046 if (max_size >= 0)
11047 {
11048 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11049 return
11050 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11051 }
11052 else if (align > 0)
11053 {
11054 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11055 return build_call_expr (t, 2, size, size_int (align));
11056 }
11057 else
11058 {
11059 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11060 return build_call_expr (t, 1, size);
11061 }
11062 }
11063
11064 /* Create a new constant string literal and return a char* pointer to it.
11065 The STRING_CST value is the LEN characters at STR. */
11066 tree
11067 build_string_literal (int len, const char *str)
11068 {
11069 tree t, elem, index, type;
11070
11071 t = build_string (len, str);
11072 elem = build_type_variant (char_type_node, 1, 0);
11073 index = build_index_type (size_int (len - 1));
11074 type = build_array_type (elem, index);
11075 TREE_TYPE (t) = type;
11076 TREE_CONSTANT (t) = 1;
11077 TREE_READONLY (t) = 1;
11078 TREE_STATIC (t) = 1;
11079
11080 type = build_pointer_type (elem);
11081 t = build1 (ADDR_EXPR, type,
11082 build4 (ARRAY_REF, elem,
11083 t, integer_zero_node, NULL_TREE, NULL_TREE));
11084 return t;
11085 }
11086
11087
11088
11089 /* Return true if T (assumed to be a DECL) must be assigned a memory
11090 location. */
11091
11092 bool
11093 needs_to_live_in_memory (const_tree t)
11094 {
11095 return (TREE_ADDRESSABLE (t)
11096 || is_global_var (t)
11097 || (TREE_CODE (t) == RESULT_DECL
11098 && !DECL_BY_REFERENCE (t)
11099 && aggregate_value_p (t, current_function_decl)));
11100 }
11101
11102 /* Return value of a constant X and sign-extend it. */
11103
11104 HOST_WIDE_INT
11105 int_cst_value (const_tree x)
11106 {
11107 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11108 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11109
11110 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11111 gcc_assert (cst_and_fits_in_hwi (x));
11112
11113 if (bits < HOST_BITS_PER_WIDE_INT)
11114 {
11115 bool negative = ((val >> (bits - 1)) & 1) != 0;
11116 if (negative)
11117 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11118 else
11119 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11120 }
11121
11122 return val;
11123 }
11124
11125 /* If TYPE is an integral or pointer type, return an integer type with
11126 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11127 if TYPE is already an integer type of signedness UNSIGNEDP. */
11128
11129 tree
11130 signed_or_unsigned_type_for (int unsignedp, tree type)
11131 {
11132 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
11133 return type;
11134
11135 if (TREE_CODE (type) == VECTOR_TYPE)
11136 {
11137 tree inner = TREE_TYPE (type);
11138 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11139 if (!inner2)
11140 return NULL_TREE;
11141 if (inner == inner2)
11142 return type;
11143 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11144 }
11145
11146 if (!INTEGRAL_TYPE_P (type)
11147 && !POINTER_TYPE_P (type)
11148 && TREE_CODE (type) != OFFSET_TYPE)
11149 return NULL_TREE;
11150
11151 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
11152 }
11153
11154 /* If TYPE is an integral or pointer type, return an integer type with
11155 the same precision which is unsigned, or itself if TYPE is already an
11156 unsigned integer type. */
11157
11158 tree
11159 unsigned_type_for (tree type)
11160 {
11161 return signed_or_unsigned_type_for (1, type);
11162 }
11163
11164 /* If TYPE is an integral or pointer type, return an integer type with
11165 the same precision which is signed, or itself if TYPE is already a
11166 signed integer type. */
11167
11168 tree
11169 signed_type_for (tree type)
11170 {
11171 return signed_or_unsigned_type_for (0, type);
11172 }
11173
11174 /* If TYPE is a vector type, return a signed integer vector type with the
11175 same width and number of subparts. Otherwise return boolean_type_node. */
11176
11177 tree
11178 truth_type_for (tree type)
11179 {
11180 if (TREE_CODE (type) == VECTOR_TYPE)
11181 {
11182 if (VECTOR_BOOLEAN_TYPE_P (type))
11183 return type;
11184 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11185 GET_MODE_SIZE (TYPE_MODE (type)));
11186 }
11187 else
11188 return boolean_type_node;
11189 }
11190
11191 /* Returns the largest value obtainable by casting something in INNER type to
11192 OUTER type. */
11193
11194 tree
11195 upper_bound_in_type (tree outer, tree inner)
11196 {
11197 unsigned int det = 0;
11198 unsigned oprec = TYPE_PRECISION (outer);
11199 unsigned iprec = TYPE_PRECISION (inner);
11200 unsigned prec;
11201
11202 /* Compute a unique number for every combination. */
11203 det |= (oprec > iprec) ? 4 : 0;
11204 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11205 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11206
11207 /* Determine the exponent to use. */
11208 switch (det)
11209 {
11210 case 0:
11211 case 1:
11212 /* oprec <= iprec, outer: signed, inner: don't care. */
11213 prec = oprec - 1;
11214 break;
11215 case 2:
11216 case 3:
11217 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11218 prec = oprec;
11219 break;
11220 case 4:
11221 /* oprec > iprec, outer: signed, inner: signed. */
11222 prec = iprec - 1;
11223 break;
11224 case 5:
11225 /* oprec > iprec, outer: signed, inner: unsigned. */
11226 prec = iprec;
11227 break;
11228 case 6:
11229 /* oprec > iprec, outer: unsigned, inner: signed. */
11230 prec = oprec;
11231 break;
11232 case 7:
11233 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11234 prec = iprec;
11235 break;
11236 default:
11237 gcc_unreachable ();
11238 }
11239
11240 return wide_int_to_tree (outer,
11241 wi::mask (prec, false, TYPE_PRECISION (outer)));
11242 }
11243
11244 /* Returns the smallest value obtainable by casting something in INNER type to
11245 OUTER type. */
11246
11247 tree
11248 lower_bound_in_type (tree outer, tree inner)
11249 {
11250 unsigned oprec = TYPE_PRECISION (outer);
11251 unsigned iprec = TYPE_PRECISION (inner);
11252
11253 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11254 and obtain 0. */
11255 if (TYPE_UNSIGNED (outer)
11256 /* If we are widening something of an unsigned type, OUTER type
11257 contains all values of INNER type. In particular, both INNER
11258 and OUTER types have zero in common. */
11259 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11260 return build_int_cst (outer, 0);
11261 else
11262 {
11263 /* If we are widening a signed type to another signed type, we
11264 want to obtain -2^^(iprec-1). If we are keeping the
11265 precision or narrowing to a signed type, we want to obtain
11266 -2^(oprec-1). */
11267 unsigned prec = oprec > iprec ? iprec : oprec;
11268 return wide_int_to_tree (outer,
11269 wi::mask (prec - 1, true,
11270 TYPE_PRECISION (outer)));
11271 }
11272 }
11273
11274 /* Return nonzero if two operands that are suitable for PHI nodes are
11275 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11276 SSA_NAME or invariant. Note that this is strictly an optimization.
11277 That is, callers of this function can directly call operand_equal_p
11278 and get the same result, only slower. */
11279
11280 int
11281 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11282 {
11283 if (arg0 == arg1)
11284 return 1;
11285 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11286 return 0;
11287 return operand_equal_p (arg0, arg1, 0);
11288 }
11289
11290 /* Returns number of zeros at the end of binary representation of X. */
11291
11292 tree
11293 num_ending_zeros (const_tree x)
11294 {
11295 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11296 }
11297
11298
11299 #define WALK_SUBTREE(NODE) \
11300 do \
11301 { \
11302 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11303 if (result) \
11304 return result; \
11305 } \
11306 while (0)
11307
11308 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11309 be walked whenever a type is seen in the tree. Rest of operands and return
11310 value are as for walk_tree. */
11311
11312 static tree
11313 walk_type_fields (tree type, walk_tree_fn func, void *data,
11314 hash_set<tree> *pset, walk_tree_lh lh)
11315 {
11316 tree result = NULL_TREE;
11317
11318 switch (TREE_CODE (type))
11319 {
11320 case POINTER_TYPE:
11321 case REFERENCE_TYPE:
11322 case VECTOR_TYPE:
11323 /* We have to worry about mutually recursive pointers. These can't
11324 be written in C. They can in Ada. It's pathological, but
11325 there's an ACATS test (c38102a) that checks it. Deal with this
11326 by checking if we're pointing to another pointer, that one
11327 points to another pointer, that one does too, and we have no htab.
11328 If so, get a hash table. We check three levels deep to avoid
11329 the cost of the hash table if we don't need one. */
11330 if (POINTER_TYPE_P (TREE_TYPE (type))
11331 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11332 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11333 && !pset)
11334 {
11335 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11336 func, data);
11337 if (result)
11338 return result;
11339
11340 break;
11341 }
11342
11343 /* fall through */
11344
11345 case COMPLEX_TYPE:
11346 WALK_SUBTREE (TREE_TYPE (type));
11347 break;
11348
11349 case METHOD_TYPE:
11350 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11351
11352 /* Fall through. */
11353
11354 case FUNCTION_TYPE:
11355 WALK_SUBTREE (TREE_TYPE (type));
11356 {
11357 tree arg;
11358
11359 /* We never want to walk into default arguments. */
11360 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11361 WALK_SUBTREE (TREE_VALUE (arg));
11362 }
11363 break;
11364
11365 case ARRAY_TYPE:
11366 /* Don't follow this nodes's type if a pointer for fear that
11367 we'll have infinite recursion. If we have a PSET, then we
11368 need not fear. */
11369 if (pset
11370 || (!POINTER_TYPE_P (TREE_TYPE (type))
11371 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11372 WALK_SUBTREE (TREE_TYPE (type));
11373 WALK_SUBTREE (TYPE_DOMAIN (type));
11374 break;
11375
11376 case OFFSET_TYPE:
11377 WALK_SUBTREE (TREE_TYPE (type));
11378 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11379 break;
11380
11381 default:
11382 break;
11383 }
11384
11385 return NULL_TREE;
11386 }
11387
11388 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11389 called with the DATA and the address of each sub-tree. If FUNC returns a
11390 non-NULL value, the traversal is stopped, and the value returned by FUNC
11391 is returned. If PSET is non-NULL it is used to record the nodes visited,
11392 and to avoid visiting a node more than once. */
11393
11394 tree
11395 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11396 hash_set<tree> *pset, walk_tree_lh lh)
11397 {
11398 enum tree_code code;
11399 int walk_subtrees;
11400 tree result;
11401
11402 #define WALK_SUBTREE_TAIL(NODE) \
11403 do \
11404 { \
11405 tp = & (NODE); \
11406 goto tail_recurse; \
11407 } \
11408 while (0)
11409
11410 tail_recurse:
11411 /* Skip empty subtrees. */
11412 if (!*tp)
11413 return NULL_TREE;
11414
11415 /* Don't walk the same tree twice, if the user has requested
11416 that we avoid doing so. */
11417 if (pset && pset->add (*tp))
11418 return NULL_TREE;
11419
11420 /* Call the function. */
11421 walk_subtrees = 1;
11422 result = (*func) (tp, &walk_subtrees, data);
11423
11424 /* If we found something, return it. */
11425 if (result)
11426 return result;
11427
11428 code = TREE_CODE (*tp);
11429
11430 /* Even if we didn't, FUNC may have decided that there was nothing
11431 interesting below this point in the tree. */
11432 if (!walk_subtrees)
11433 {
11434 /* But we still need to check our siblings. */
11435 if (code == TREE_LIST)
11436 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11437 else if (code == OMP_CLAUSE)
11438 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11439 else
11440 return NULL_TREE;
11441 }
11442
11443 if (lh)
11444 {
11445 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11446 if (result || !walk_subtrees)
11447 return result;
11448 }
11449
11450 switch (code)
11451 {
11452 case ERROR_MARK:
11453 case IDENTIFIER_NODE:
11454 case INTEGER_CST:
11455 case REAL_CST:
11456 case FIXED_CST:
11457 case VECTOR_CST:
11458 case STRING_CST:
11459 case BLOCK:
11460 case PLACEHOLDER_EXPR:
11461 case SSA_NAME:
11462 case FIELD_DECL:
11463 case RESULT_DECL:
11464 /* None of these have subtrees other than those already walked
11465 above. */
11466 break;
11467
11468 case TREE_LIST:
11469 WALK_SUBTREE (TREE_VALUE (*tp));
11470 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11471 break;
11472
11473 case TREE_VEC:
11474 {
11475 int len = TREE_VEC_LENGTH (*tp);
11476
11477 if (len == 0)
11478 break;
11479
11480 /* Walk all elements but the first. */
11481 while (--len)
11482 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11483
11484 /* Now walk the first one as a tail call. */
11485 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11486 }
11487
11488 case COMPLEX_CST:
11489 WALK_SUBTREE (TREE_REALPART (*tp));
11490 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11491
11492 case CONSTRUCTOR:
11493 {
11494 unsigned HOST_WIDE_INT idx;
11495 constructor_elt *ce;
11496
11497 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11498 idx++)
11499 WALK_SUBTREE (ce->value);
11500 }
11501 break;
11502
11503 case SAVE_EXPR:
11504 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11505
11506 case BIND_EXPR:
11507 {
11508 tree decl;
11509 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11510 {
11511 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11512 into declarations that are just mentioned, rather than
11513 declared; they don't really belong to this part of the tree.
11514 And, we can see cycles: the initializer for a declaration
11515 can refer to the declaration itself. */
11516 WALK_SUBTREE (DECL_INITIAL (decl));
11517 WALK_SUBTREE (DECL_SIZE (decl));
11518 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11519 }
11520 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11521 }
11522
11523 case STATEMENT_LIST:
11524 {
11525 tree_stmt_iterator i;
11526 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11527 WALK_SUBTREE (*tsi_stmt_ptr (i));
11528 }
11529 break;
11530
11531 case OMP_CLAUSE:
11532 switch (OMP_CLAUSE_CODE (*tp))
11533 {
11534 case OMP_CLAUSE_GANG:
11535 case OMP_CLAUSE__GRIDDIM_:
11536 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11537 /* FALLTHRU */
11538
11539 case OMP_CLAUSE_ASYNC:
11540 case OMP_CLAUSE_WAIT:
11541 case OMP_CLAUSE_WORKER:
11542 case OMP_CLAUSE_VECTOR:
11543 case OMP_CLAUSE_NUM_GANGS:
11544 case OMP_CLAUSE_NUM_WORKERS:
11545 case OMP_CLAUSE_VECTOR_LENGTH:
11546 case OMP_CLAUSE_PRIVATE:
11547 case OMP_CLAUSE_SHARED:
11548 case OMP_CLAUSE_FIRSTPRIVATE:
11549 case OMP_CLAUSE_COPYIN:
11550 case OMP_CLAUSE_COPYPRIVATE:
11551 case OMP_CLAUSE_FINAL:
11552 case OMP_CLAUSE_IF:
11553 case OMP_CLAUSE_NUM_THREADS:
11554 case OMP_CLAUSE_SCHEDULE:
11555 case OMP_CLAUSE_UNIFORM:
11556 case OMP_CLAUSE_DEPEND:
11557 case OMP_CLAUSE_NUM_TEAMS:
11558 case OMP_CLAUSE_THREAD_LIMIT:
11559 case OMP_CLAUSE_DEVICE:
11560 case OMP_CLAUSE_DIST_SCHEDULE:
11561 case OMP_CLAUSE_SAFELEN:
11562 case OMP_CLAUSE_SIMDLEN:
11563 case OMP_CLAUSE_ORDERED:
11564 case OMP_CLAUSE_PRIORITY:
11565 case OMP_CLAUSE_GRAINSIZE:
11566 case OMP_CLAUSE_NUM_TASKS:
11567 case OMP_CLAUSE_HINT:
11568 case OMP_CLAUSE_TO_DECLARE:
11569 case OMP_CLAUSE_LINK:
11570 case OMP_CLAUSE_USE_DEVICE_PTR:
11571 case OMP_CLAUSE_IS_DEVICE_PTR:
11572 case OMP_CLAUSE__LOOPTEMP_:
11573 case OMP_CLAUSE__SIMDUID_:
11574 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11575 /* FALLTHRU */
11576
11577 case OMP_CLAUSE_INDEPENDENT:
11578 case OMP_CLAUSE_NOWAIT:
11579 case OMP_CLAUSE_DEFAULT:
11580 case OMP_CLAUSE_UNTIED:
11581 case OMP_CLAUSE_MERGEABLE:
11582 case OMP_CLAUSE_PROC_BIND:
11583 case OMP_CLAUSE_INBRANCH:
11584 case OMP_CLAUSE_NOTINBRANCH:
11585 case OMP_CLAUSE_FOR:
11586 case OMP_CLAUSE_PARALLEL:
11587 case OMP_CLAUSE_SECTIONS:
11588 case OMP_CLAUSE_TASKGROUP:
11589 case OMP_CLAUSE_NOGROUP:
11590 case OMP_CLAUSE_THREADS:
11591 case OMP_CLAUSE_SIMD:
11592 case OMP_CLAUSE_DEFAULTMAP:
11593 case OMP_CLAUSE_AUTO:
11594 case OMP_CLAUSE_SEQ:
11595 case OMP_CLAUSE_TILE:
11596 case OMP_CLAUSE__SIMT_:
11597 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11598
11599 case OMP_CLAUSE_LASTPRIVATE:
11600 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11601 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11602 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11603
11604 case OMP_CLAUSE_COLLAPSE:
11605 {
11606 int i;
11607 for (i = 0; i < 3; i++)
11608 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11609 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11610 }
11611
11612 case OMP_CLAUSE_LINEAR:
11613 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11614 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11615 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11616 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11617
11618 case OMP_CLAUSE_ALIGNED:
11619 case OMP_CLAUSE_FROM:
11620 case OMP_CLAUSE_TO:
11621 case OMP_CLAUSE_MAP:
11622 case OMP_CLAUSE__CACHE_:
11623 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11624 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11625 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11626
11627 case OMP_CLAUSE_REDUCTION:
11628 {
11629 int i;
11630 for (i = 0; i < 5; i++)
11631 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11632 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11633 }
11634
11635 default:
11636 gcc_unreachable ();
11637 }
11638 break;
11639
11640 case TARGET_EXPR:
11641 {
11642 int i, len;
11643
11644 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11645 But, we only want to walk once. */
11646 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11647 for (i = 0; i < len; ++i)
11648 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11649 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11650 }
11651
11652 case DECL_EXPR:
11653 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11654 defining. We only want to walk into these fields of a type in this
11655 case and not in the general case of a mere reference to the type.
11656
11657 The criterion is as follows: if the field can be an expression, it
11658 must be walked only here. This should be in keeping with the fields
11659 that are directly gimplified in gimplify_type_sizes in order for the
11660 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11661 variable-sized types.
11662
11663 Note that DECLs get walked as part of processing the BIND_EXPR. */
11664 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11665 {
11666 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11667 if (TREE_CODE (*type_p) == ERROR_MARK)
11668 return NULL_TREE;
11669
11670 /* Call the function for the type. See if it returns anything or
11671 doesn't want us to continue. If we are to continue, walk both
11672 the normal fields and those for the declaration case. */
11673 result = (*func) (type_p, &walk_subtrees, data);
11674 if (result || !walk_subtrees)
11675 return result;
11676
11677 /* But do not walk a pointed-to type since it may itself need to
11678 be walked in the declaration case if it isn't anonymous. */
11679 if (!POINTER_TYPE_P (*type_p))
11680 {
11681 result = walk_type_fields (*type_p, func, data, pset, lh);
11682 if (result)
11683 return result;
11684 }
11685
11686 /* If this is a record type, also walk the fields. */
11687 if (RECORD_OR_UNION_TYPE_P (*type_p))
11688 {
11689 tree field;
11690
11691 for (field = TYPE_FIELDS (*type_p); field;
11692 field = DECL_CHAIN (field))
11693 {
11694 /* We'd like to look at the type of the field, but we can
11695 easily get infinite recursion. So assume it's pointed
11696 to elsewhere in the tree. Also, ignore things that
11697 aren't fields. */
11698 if (TREE_CODE (field) != FIELD_DECL)
11699 continue;
11700
11701 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11702 WALK_SUBTREE (DECL_SIZE (field));
11703 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11704 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11705 WALK_SUBTREE (DECL_QUALIFIER (field));
11706 }
11707 }
11708
11709 /* Same for scalar types. */
11710 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11711 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11712 || TREE_CODE (*type_p) == INTEGER_TYPE
11713 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11714 || TREE_CODE (*type_p) == REAL_TYPE)
11715 {
11716 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11717 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11718 }
11719
11720 WALK_SUBTREE (TYPE_SIZE (*type_p));
11721 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11722 }
11723 /* FALLTHRU */
11724
11725 default:
11726 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11727 {
11728 int i, len;
11729
11730 /* Walk over all the sub-trees of this operand. */
11731 len = TREE_OPERAND_LENGTH (*tp);
11732
11733 /* Go through the subtrees. We need to do this in forward order so
11734 that the scope of a FOR_EXPR is handled properly. */
11735 if (len)
11736 {
11737 for (i = 0; i < len - 1; ++i)
11738 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11739 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11740 }
11741 }
11742 /* If this is a type, walk the needed fields in the type. */
11743 else if (TYPE_P (*tp))
11744 return walk_type_fields (*tp, func, data, pset, lh);
11745 break;
11746 }
11747
11748 /* We didn't find what we were looking for. */
11749 return NULL_TREE;
11750
11751 #undef WALK_SUBTREE_TAIL
11752 }
11753 #undef WALK_SUBTREE
11754
11755 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11756
11757 tree
11758 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11759 walk_tree_lh lh)
11760 {
11761 tree result;
11762
11763 hash_set<tree> pset;
11764 result = walk_tree_1 (tp, func, data, &pset, lh);
11765 return result;
11766 }
11767
11768
11769 tree
11770 tree_block (tree t)
11771 {
11772 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11773
11774 if (IS_EXPR_CODE_CLASS (c))
11775 return LOCATION_BLOCK (t->exp.locus);
11776 gcc_unreachable ();
11777 return NULL;
11778 }
11779
11780 void
11781 tree_set_block (tree t, tree b)
11782 {
11783 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11784
11785 if (IS_EXPR_CODE_CLASS (c))
11786 {
11787 t->exp.locus = set_block (t->exp.locus, b);
11788 }
11789 else
11790 gcc_unreachable ();
11791 }
11792
11793 /* Create a nameless artificial label and put it in the current
11794 function context. The label has a location of LOC. Returns the
11795 newly created label. */
11796
11797 tree
11798 create_artificial_label (location_t loc)
11799 {
11800 tree lab = build_decl (loc,
11801 LABEL_DECL, NULL_TREE, void_type_node);
11802
11803 DECL_ARTIFICIAL (lab) = 1;
11804 DECL_IGNORED_P (lab) = 1;
11805 DECL_CONTEXT (lab) = current_function_decl;
11806 return lab;
11807 }
11808
11809 /* Given a tree, try to return a useful variable name that we can use
11810 to prefix a temporary that is being assigned the value of the tree.
11811 I.E. given <temp> = &A, return A. */
11812
11813 const char *
11814 get_name (tree t)
11815 {
11816 tree stripped_decl;
11817
11818 stripped_decl = t;
11819 STRIP_NOPS (stripped_decl);
11820 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11821 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11822 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11823 {
11824 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11825 if (!name)
11826 return NULL;
11827 return IDENTIFIER_POINTER (name);
11828 }
11829 else
11830 {
11831 switch (TREE_CODE (stripped_decl))
11832 {
11833 case ADDR_EXPR:
11834 return get_name (TREE_OPERAND (stripped_decl, 0));
11835 default:
11836 return NULL;
11837 }
11838 }
11839 }
11840
11841 /* Return true if TYPE has a variable argument list. */
11842
11843 bool
11844 stdarg_p (const_tree fntype)
11845 {
11846 function_args_iterator args_iter;
11847 tree n = NULL_TREE, t;
11848
11849 if (!fntype)
11850 return false;
11851
11852 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11853 {
11854 n = t;
11855 }
11856
11857 return n != NULL_TREE && n != void_type_node;
11858 }
11859
11860 /* Return true if TYPE has a prototype. */
11861
11862 bool
11863 prototype_p (const_tree fntype)
11864 {
11865 tree t;
11866
11867 gcc_assert (fntype != NULL_TREE);
11868
11869 t = TYPE_ARG_TYPES (fntype);
11870 return (t != NULL_TREE);
11871 }
11872
11873 /* If BLOCK is inlined from an __attribute__((__artificial__))
11874 routine, return pointer to location from where it has been
11875 called. */
11876 location_t *
11877 block_nonartificial_location (tree block)
11878 {
11879 location_t *ret = NULL;
11880
11881 while (block && TREE_CODE (block) == BLOCK
11882 && BLOCK_ABSTRACT_ORIGIN (block))
11883 {
11884 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11885
11886 while (TREE_CODE (ao) == BLOCK
11887 && BLOCK_ABSTRACT_ORIGIN (ao)
11888 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11889 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11890
11891 if (TREE_CODE (ao) == FUNCTION_DECL)
11892 {
11893 /* If AO is an artificial inline, point RET to the
11894 call site locus at which it has been inlined and continue
11895 the loop, in case AO's caller is also an artificial
11896 inline. */
11897 if (DECL_DECLARED_INLINE_P (ao)
11898 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11899 ret = &BLOCK_SOURCE_LOCATION (block);
11900 else
11901 break;
11902 }
11903 else if (TREE_CODE (ao) != BLOCK)
11904 break;
11905
11906 block = BLOCK_SUPERCONTEXT (block);
11907 }
11908 return ret;
11909 }
11910
11911
11912 /* If EXP is inlined from an __attribute__((__artificial__))
11913 function, return the location of the original call expression. */
11914
11915 location_t
11916 tree_nonartificial_location (tree exp)
11917 {
11918 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11919
11920 if (loc)
11921 return *loc;
11922 else
11923 return EXPR_LOCATION (exp);
11924 }
11925
11926
11927 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11928 nodes. */
11929
11930 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11931
11932 hashval_t
11933 cl_option_hasher::hash (tree x)
11934 {
11935 const_tree const t = x;
11936 const char *p;
11937 size_t i;
11938 size_t len = 0;
11939 hashval_t hash = 0;
11940
11941 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11942 {
11943 p = (const char *)TREE_OPTIMIZATION (t);
11944 len = sizeof (struct cl_optimization);
11945 }
11946
11947 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11948 return cl_target_option_hash (TREE_TARGET_OPTION (t));
11949
11950 else
11951 gcc_unreachable ();
11952
11953 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11954 something else. */
11955 for (i = 0; i < len; i++)
11956 if (p[i])
11957 hash = (hash << 4) ^ ((i << 2) | p[i]);
11958
11959 return hash;
11960 }
11961
11962 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11963 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11964 same. */
11965
11966 bool
11967 cl_option_hasher::equal (tree x, tree y)
11968 {
11969 const_tree const xt = x;
11970 const_tree const yt = y;
11971 const char *xp;
11972 const char *yp;
11973 size_t len;
11974
11975 if (TREE_CODE (xt) != TREE_CODE (yt))
11976 return 0;
11977
11978 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11979 {
11980 xp = (const char *)TREE_OPTIMIZATION (xt);
11981 yp = (const char *)TREE_OPTIMIZATION (yt);
11982 len = sizeof (struct cl_optimization);
11983 }
11984
11985 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11986 {
11987 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
11988 TREE_TARGET_OPTION (yt));
11989 }
11990
11991 else
11992 gcc_unreachable ();
11993
11994 return (memcmp (xp, yp, len) == 0);
11995 }
11996
11997 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11998
11999 tree
12000 build_optimization_node (struct gcc_options *opts)
12001 {
12002 tree t;
12003
12004 /* Use the cache of optimization nodes. */
12005
12006 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12007 opts);
12008
12009 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12010 t = *slot;
12011 if (!t)
12012 {
12013 /* Insert this one into the hash table. */
12014 t = cl_optimization_node;
12015 *slot = t;
12016
12017 /* Make a new node for next time round. */
12018 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12019 }
12020
12021 return t;
12022 }
12023
12024 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12025
12026 tree
12027 build_target_option_node (struct gcc_options *opts)
12028 {
12029 tree t;
12030
12031 /* Use the cache of optimization nodes. */
12032
12033 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12034 opts);
12035
12036 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12037 t = *slot;
12038 if (!t)
12039 {
12040 /* Insert this one into the hash table. */
12041 t = cl_target_option_node;
12042 *slot = t;
12043
12044 /* Make a new node for next time round. */
12045 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12046 }
12047
12048 return t;
12049 }
12050
12051 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12052 so that they aren't saved during PCH writing. */
12053
12054 void
12055 prepare_target_option_nodes_for_pch (void)
12056 {
12057 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12058 for (; iter != cl_option_hash_table->end (); ++iter)
12059 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12060 TREE_TARGET_GLOBALS (*iter) = NULL;
12061 }
12062
12063 /* Determine the "ultimate origin" of a block. The block may be an inlined
12064 instance of an inlined instance of a block which is local to an inline
12065 function, so we have to trace all of the way back through the origin chain
12066 to find out what sort of node actually served as the original seed for the
12067 given block. */
12068
12069 tree
12070 block_ultimate_origin (const_tree block)
12071 {
12072 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
12073
12074 /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
12075 we're trying to output the abstract instance of this function. */
12076 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
12077 return NULL_TREE;
12078
12079 if (immediate_origin == NULL_TREE)
12080 return NULL_TREE;
12081 else
12082 {
12083 tree ret_val;
12084 tree lookahead = immediate_origin;
12085
12086 do
12087 {
12088 ret_val = lookahead;
12089 lookahead = (TREE_CODE (ret_val) == BLOCK
12090 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
12091 }
12092 while (lookahead != NULL && lookahead != ret_val);
12093
12094 /* The block's abstract origin chain may not be the *ultimate* origin of
12095 the block. It could lead to a DECL that has an abstract origin set.
12096 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
12097 will give us if it has one). Note that DECL's abstract origins are
12098 supposed to be the most distant ancestor (or so decl_ultimate_origin
12099 claims), so we don't need to loop following the DECL origins. */
12100 if (DECL_P (ret_val))
12101 return DECL_ORIGIN (ret_val);
12102
12103 return ret_val;
12104 }
12105 }
12106
12107 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12108 no instruction. */
12109
12110 bool
12111 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12112 {
12113 /* Do not strip casts into or out of differing address spaces. */
12114 if (POINTER_TYPE_P (outer_type)
12115 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12116 {
12117 if (!POINTER_TYPE_P (inner_type)
12118 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12119 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12120 return false;
12121 }
12122 else if (POINTER_TYPE_P (inner_type)
12123 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12124 {
12125 /* We already know that outer_type is not a pointer with
12126 a non-generic address space. */
12127 return false;
12128 }
12129
12130 /* Use precision rather then machine mode when we can, which gives
12131 the correct answer even for submode (bit-field) types. */
12132 if ((INTEGRAL_TYPE_P (outer_type)
12133 || POINTER_TYPE_P (outer_type)
12134 || TREE_CODE (outer_type) == OFFSET_TYPE)
12135 && (INTEGRAL_TYPE_P (inner_type)
12136 || POINTER_TYPE_P (inner_type)
12137 || TREE_CODE (inner_type) == OFFSET_TYPE))
12138 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12139
12140 /* Otherwise fall back on comparing machine modes (e.g. for
12141 aggregate types, floats). */
12142 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12143 }
12144
12145 /* Return true iff conversion in EXP generates no instruction. Mark
12146 it inline so that we fully inline into the stripping functions even
12147 though we have two uses of this function. */
12148
12149 static inline bool
12150 tree_nop_conversion (const_tree exp)
12151 {
12152 tree outer_type, inner_type;
12153
12154 if (location_wrapper_p (exp))
12155 return true;
12156 if (!CONVERT_EXPR_P (exp)
12157 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12158 return false;
12159 if (TREE_OPERAND (exp, 0) == error_mark_node)
12160 return false;
12161
12162 outer_type = TREE_TYPE (exp);
12163 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12164
12165 if (!inner_type)
12166 return false;
12167
12168 return tree_nop_conversion_p (outer_type, inner_type);
12169 }
12170
12171 /* Return true iff conversion in EXP generates no instruction. Don't
12172 consider conversions changing the signedness. */
12173
12174 static bool
12175 tree_sign_nop_conversion (const_tree exp)
12176 {
12177 tree outer_type, inner_type;
12178
12179 if (!tree_nop_conversion (exp))
12180 return false;
12181
12182 outer_type = TREE_TYPE (exp);
12183 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12184
12185 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12186 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12187 }
12188
12189 /* Strip conversions from EXP according to tree_nop_conversion and
12190 return the resulting expression. */
12191
12192 tree
12193 tree_strip_nop_conversions (tree exp)
12194 {
12195 while (tree_nop_conversion (exp))
12196 exp = TREE_OPERAND (exp, 0);
12197 return exp;
12198 }
12199
12200 /* Strip conversions from EXP according to tree_sign_nop_conversion
12201 and return the resulting expression. */
12202
12203 tree
12204 tree_strip_sign_nop_conversions (tree exp)
12205 {
12206 while (tree_sign_nop_conversion (exp))
12207 exp = TREE_OPERAND (exp, 0);
12208 return exp;
12209 }
12210
12211 /* Avoid any floating point extensions from EXP. */
12212 tree
12213 strip_float_extensions (tree exp)
12214 {
12215 tree sub, expt, subt;
12216
12217 /* For floating point constant look up the narrowest type that can hold
12218 it properly and handle it like (type)(narrowest_type)constant.
12219 This way we can optimize for instance a=a*2.0 where "a" is float
12220 but 2.0 is double constant. */
12221 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12222 {
12223 REAL_VALUE_TYPE orig;
12224 tree type = NULL;
12225
12226 orig = TREE_REAL_CST (exp);
12227 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12228 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12229 type = float_type_node;
12230 else if (TYPE_PRECISION (TREE_TYPE (exp))
12231 > TYPE_PRECISION (double_type_node)
12232 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12233 type = double_type_node;
12234 if (type)
12235 return build_real_truncate (type, orig);
12236 }
12237
12238 if (!CONVERT_EXPR_P (exp))
12239 return exp;
12240
12241 sub = TREE_OPERAND (exp, 0);
12242 subt = TREE_TYPE (sub);
12243 expt = TREE_TYPE (exp);
12244
12245 if (!FLOAT_TYPE_P (subt))
12246 return exp;
12247
12248 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12249 return exp;
12250
12251 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12252 return exp;
12253
12254 return strip_float_extensions (sub);
12255 }
12256
12257 /* Strip out all handled components that produce invariant
12258 offsets. */
12259
12260 const_tree
12261 strip_invariant_refs (const_tree op)
12262 {
12263 while (handled_component_p (op))
12264 {
12265 switch (TREE_CODE (op))
12266 {
12267 case ARRAY_REF:
12268 case ARRAY_RANGE_REF:
12269 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12270 || TREE_OPERAND (op, 2) != NULL_TREE
12271 || TREE_OPERAND (op, 3) != NULL_TREE)
12272 return NULL;
12273 break;
12274
12275 case COMPONENT_REF:
12276 if (TREE_OPERAND (op, 2) != NULL_TREE)
12277 return NULL;
12278 break;
12279
12280 default:;
12281 }
12282 op = TREE_OPERAND (op, 0);
12283 }
12284
12285 return op;
12286 }
12287
12288 static GTY(()) tree gcc_eh_personality_decl;
12289
12290 /* Return the GCC personality function decl. */
12291
12292 tree
12293 lhd_gcc_personality (void)
12294 {
12295 if (!gcc_eh_personality_decl)
12296 gcc_eh_personality_decl = build_personality_function ("gcc");
12297 return gcc_eh_personality_decl;
12298 }
12299
12300 /* TARGET is a call target of GIMPLE call statement
12301 (obtained by gimple_call_fn). Return true if it is
12302 OBJ_TYPE_REF representing an virtual call of C++ method.
12303 (As opposed to OBJ_TYPE_REF representing objc calls
12304 through a cast where middle-end devirtualization machinery
12305 can't apply.) */
12306
12307 bool
12308 virtual_method_call_p (const_tree target)
12309 {
12310 if (TREE_CODE (target) != OBJ_TYPE_REF)
12311 return false;
12312 tree t = TREE_TYPE (target);
12313 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12314 t = TREE_TYPE (t);
12315 if (TREE_CODE (t) == FUNCTION_TYPE)
12316 return false;
12317 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12318 /* If we do not have BINFO associated, it means that type was built
12319 without devirtualization enabled. Do not consider this a virtual
12320 call. */
12321 if (!TYPE_BINFO (obj_type_ref_class (target)))
12322 return false;
12323 return true;
12324 }
12325
12326 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
12327
12328 tree
12329 obj_type_ref_class (const_tree ref)
12330 {
12331 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
12332 ref = TREE_TYPE (ref);
12333 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12334 ref = TREE_TYPE (ref);
12335 /* We look for type THIS points to. ObjC also builds
12336 OBJ_TYPE_REF with non-method calls, Their first parameter
12337 ID however also corresponds to class type. */
12338 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
12339 || TREE_CODE (ref) == FUNCTION_TYPE);
12340 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
12341 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12342 return TREE_TYPE (ref);
12343 }
12344
12345 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12346
12347 static tree
12348 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12349 {
12350 unsigned int i;
12351 tree base_binfo, b;
12352
12353 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12354 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12355 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12356 return base_binfo;
12357 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12358 return b;
12359 return NULL;
12360 }
12361
12362 /* Try to find a base info of BINFO that would have its field decl at offset
12363 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12364 found, return, otherwise return NULL_TREE. */
12365
12366 tree
12367 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12368 {
12369 tree type = BINFO_TYPE (binfo);
12370
12371 while (true)
12372 {
12373 HOST_WIDE_INT pos, size;
12374 tree fld;
12375 int i;
12376
12377 if (types_same_for_odr (type, expected_type))
12378 return binfo;
12379 if (maybe_lt (offset, 0))
12380 return NULL_TREE;
12381
12382 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12383 {
12384 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12385 continue;
12386
12387 pos = int_bit_position (fld);
12388 size = tree_to_uhwi (DECL_SIZE (fld));
12389 if (known_in_range_p (offset, pos, size))
12390 break;
12391 }
12392 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12393 return NULL_TREE;
12394
12395 /* Offset 0 indicates the primary base, whose vtable contents are
12396 represented in the binfo for the derived class. */
12397 else if (maybe_ne (offset, 0))
12398 {
12399 tree found_binfo = NULL, base_binfo;
12400 /* Offsets in BINFO are in bytes relative to the whole structure
12401 while POS is in bits relative to the containing field. */
12402 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12403 / BITS_PER_UNIT);
12404
12405 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12406 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12407 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12408 {
12409 found_binfo = base_binfo;
12410 break;
12411 }
12412 if (found_binfo)
12413 binfo = found_binfo;
12414 else
12415 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12416 binfo_offset);
12417 }
12418
12419 type = TREE_TYPE (fld);
12420 offset -= pos;
12421 }
12422 }
12423
12424 /* Returns true if X is a typedef decl. */
12425
12426 bool
12427 is_typedef_decl (const_tree x)
12428 {
12429 return (x && TREE_CODE (x) == TYPE_DECL
12430 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12431 }
12432
12433 /* Returns true iff TYPE is a type variant created for a typedef. */
12434
12435 bool
12436 typedef_variant_p (const_tree type)
12437 {
12438 return is_typedef_decl (TYPE_NAME (type));
12439 }
12440
12441 /* A class to handle converting a string that might contain
12442 control characters, (eg newline, form-feed, etc), into one
12443 in which contains escape sequences instead. */
12444
12445 class escaped_string
12446 {
12447 public:
12448 escaped_string () { m_owned = false; m_str = NULL; };
12449 ~escaped_string () { if (m_owned) free (m_str); }
12450 operator const char *() const { return (const char *) m_str; }
12451 void escape (const char *);
12452 private:
12453 char *m_str;
12454 bool m_owned;
12455 };
12456
12457 /* PR 84195: Replace control characters in "unescaped" with their
12458 escaped equivalents. Allow newlines if -fmessage-length has
12459 been set to a non-zero value. This is done here, rather than
12460 where the attribute is recorded as the message length can
12461 change between these two locations. */
12462
12463 void
12464 escaped_string::escape (const char *unescaped)
12465 {
12466 char *escaped;
12467 size_t i, new_i, len;
12468
12469 if (m_owned)
12470 free (m_str);
12471
12472 m_str = const_cast<char *> (unescaped);
12473 m_owned = false;
12474
12475 if (unescaped == NULL || *unescaped == 0)
12476 return;
12477
12478 len = strlen (unescaped);
12479 escaped = NULL;
12480 new_i = 0;
12481
12482 for (i = 0; i < len; i++)
12483 {
12484 char c = unescaped[i];
12485
12486 if (!ISCNTRL (c))
12487 {
12488 if (escaped)
12489 escaped[new_i++] = c;
12490 continue;
12491 }
12492
12493 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
12494 {
12495 if (escaped == NULL)
12496 {
12497 /* We only allocate space for a new string if we
12498 actually encounter a control character that
12499 needs replacing. */
12500 escaped = (char *) xmalloc (len * 2 + 1);
12501 strncpy (escaped, unescaped, i);
12502 new_i = i;
12503 }
12504
12505 escaped[new_i++] = '\\';
12506
12507 switch (c)
12508 {
12509 case '\a': escaped[new_i++] = 'a'; break;
12510 case '\b': escaped[new_i++] = 'b'; break;
12511 case '\f': escaped[new_i++] = 'f'; break;
12512 case '\n': escaped[new_i++] = 'n'; break;
12513 case '\r': escaped[new_i++] = 'r'; break;
12514 case '\t': escaped[new_i++] = 't'; break;
12515 case '\v': escaped[new_i++] = 'v'; break;
12516 default: escaped[new_i++] = '?'; break;
12517 }
12518 }
12519 else if (escaped)
12520 escaped[new_i++] = c;
12521 }
12522
12523 if (escaped)
12524 {
12525 escaped[new_i] = 0;
12526 m_str = escaped;
12527 m_owned = true;
12528 }
12529 }
12530
12531 /* Warn about a use of an identifier which was marked deprecated. Returns
12532 whether a warning was given. */
12533
12534 bool
12535 warn_deprecated_use (tree node, tree attr)
12536 {
12537 escaped_string msg;
12538
12539 if (node == 0 || !warn_deprecated_decl)
12540 return false;
12541
12542 if (!attr)
12543 {
12544 if (DECL_P (node))
12545 attr = DECL_ATTRIBUTES (node);
12546 else if (TYPE_P (node))
12547 {
12548 tree decl = TYPE_STUB_DECL (node);
12549 if (decl)
12550 attr = lookup_attribute ("deprecated",
12551 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12552 }
12553 }
12554
12555 if (attr)
12556 attr = lookup_attribute ("deprecated", attr);
12557
12558 if (attr)
12559 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
12560
12561 bool w = false;
12562 if (DECL_P (node))
12563 {
12564 if (msg)
12565 w = warning (OPT_Wdeprecated_declarations,
12566 "%qD is deprecated: %s", node, (const char *) msg);
12567 else
12568 w = warning (OPT_Wdeprecated_declarations,
12569 "%qD is deprecated", node);
12570 if (w)
12571 inform (DECL_SOURCE_LOCATION (node), "declared here");
12572 }
12573 else if (TYPE_P (node))
12574 {
12575 tree what = NULL_TREE;
12576 tree decl = TYPE_STUB_DECL (node);
12577
12578 if (TYPE_NAME (node))
12579 {
12580 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12581 what = TYPE_NAME (node);
12582 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12583 && DECL_NAME (TYPE_NAME (node)))
12584 what = DECL_NAME (TYPE_NAME (node));
12585 }
12586
12587 if (what)
12588 {
12589 if (msg)
12590 w = warning (OPT_Wdeprecated_declarations,
12591 "%qE is deprecated: %s", what, (const char *) msg);
12592 else
12593 w = warning (OPT_Wdeprecated_declarations,
12594 "%qE is deprecated", what);
12595 }
12596 else
12597 {
12598 if (msg)
12599 w = warning (OPT_Wdeprecated_declarations,
12600 "type is deprecated: %s", (const char *) msg);
12601 else
12602 w = warning (OPT_Wdeprecated_declarations,
12603 "type is deprecated");
12604 }
12605
12606 if (w && decl)
12607 inform (DECL_SOURCE_LOCATION (decl), "declared here");
12608 }
12609
12610 return w;
12611 }
12612
12613 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12614 somewhere in it. */
12615
12616 bool
12617 contains_bitfld_component_ref_p (const_tree ref)
12618 {
12619 while (handled_component_p (ref))
12620 {
12621 if (TREE_CODE (ref) == COMPONENT_REF
12622 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12623 return true;
12624 ref = TREE_OPERAND (ref, 0);
12625 }
12626
12627 return false;
12628 }
12629
12630 /* Try to determine whether a TRY_CATCH expression can fall through.
12631 This is a subroutine of block_may_fallthru. */
12632
12633 static bool
12634 try_catch_may_fallthru (const_tree stmt)
12635 {
12636 tree_stmt_iterator i;
12637
12638 /* If the TRY block can fall through, the whole TRY_CATCH can
12639 fall through. */
12640 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12641 return true;
12642
12643 i = tsi_start (TREE_OPERAND (stmt, 1));
12644 switch (TREE_CODE (tsi_stmt (i)))
12645 {
12646 case CATCH_EXPR:
12647 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12648 catch expression and a body. The whole TRY_CATCH may fall
12649 through iff any of the catch bodies falls through. */
12650 for (; !tsi_end_p (i); tsi_next (&i))
12651 {
12652 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12653 return true;
12654 }
12655 return false;
12656
12657 case EH_FILTER_EXPR:
12658 /* The exception filter expression only matters if there is an
12659 exception. If the exception does not match EH_FILTER_TYPES,
12660 we will execute EH_FILTER_FAILURE, and we will fall through
12661 if that falls through. If the exception does match
12662 EH_FILTER_TYPES, the stack unwinder will continue up the
12663 stack, so we will not fall through. We don't know whether we
12664 will throw an exception which matches EH_FILTER_TYPES or not,
12665 so we just ignore EH_FILTER_TYPES and assume that we might
12666 throw an exception which doesn't match. */
12667 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12668
12669 default:
12670 /* This case represents statements to be executed when an
12671 exception occurs. Those statements are implicitly followed
12672 by a RESX statement to resume execution after the exception.
12673 So in this case the TRY_CATCH never falls through. */
12674 return false;
12675 }
12676 }
12677
12678 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12679 need not be 100% accurate; simply be conservative and return true if we
12680 don't know. This is used only to avoid stupidly generating extra code.
12681 If we're wrong, we'll just delete the extra code later. */
12682
12683 bool
12684 block_may_fallthru (const_tree block)
12685 {
12686 /* This CONST_CAST is okay because expr_last returns its argument
12687 unmodified and we assign it to a const_tree. */
12688 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12689
12690 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12691 {
12692 case GOTO_EXPR:
12693 case RETURN_EXPR:
12694 /* Easy cases. If the last statement of the block implies
12695 control transfer, then we can't fall through. */
12696 return false;
12697
12698 case SWITCH_EXPR:
12699 /* If there is a default: label or case labels cover all possible
12700 SWITCH_COND values, then the SWITCH_EXPR will transfer control
12701 to some case label in all cases and all we care is whether the
12702 SWITCH_BODY falls through. */
12703 if (SWITCH_ALL_CASES_P (stmt))
12704 return block_may_fallthru (SWITCH_BODY (stmt));
12705 return true;
12706
12707 case COND_EXPR:
12708 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12709 return true;
12710 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12711
12712 case BIND_EXPR:
12713 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12714
12715 case TRY_CATCH_EXPR:
12716 return try_catch_may_fallthru (stmt);
12717
12718 case TRY_FINALLY_EXPR:
12719 /* The finally clause is always executed after the try clause,
12720 so if it does not fall through, then the try-finally will not
12721 fall through. Otherwise, if the try clause does not fall
12722 through, then when the finally clause falls through it will
12723 resume execution wherever the try clause was going. So the
12724 whole try-finally will only fall through if both the try
12725 clause and the finally clause fall through. */
12726 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12727 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12728
12729 case MODIFY_EXPR:
12730 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12731 stmt = TREE_OPERAND (stmt, 1);
12732 else
12733 return true;
12734 /* FALLTHRU */
12735
12736 case CALL_EXPR:
12737 /* Functions that do not return do not fall through. */
12738 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12739
12740 case CLEANUP_POINT_EXPR:
12741 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12742
12743 case TARGET_EXPR:
12744 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12745
12746 case ERROR_MARK:
12747 return true;
12748
12749 default:
12750 return lang_hooks.block_may_fallthru (stmt);
12751 }
12752 }
12753
12754 /* True if we are using EH to handle cleanups. */
12755 static bool using_eh_for_cleanups_flag = false;
12756
12757 /* This routine is called from front ends to indicate eh should be used for
12758 cleanups. */
12759 void
12760 using_eh_for_cleanups (void)
12761 {
12762 using_eh_for_cleanups_flag = true;
12763 }
12764
12765 /* Query whether EH is used for cleanups. */
12766 bool
12767 using_eh_for_cleanups_p (void)
12768 {
12769 return using_eh_for_cleanups_flag;
12770 }
12771
12772 /* Wrapper for tree_code_name to ensure that tree code is valid */
12773 const char *
12774 get_tree_code_name (enum tree_code code)
12775 {
12776 const char *invalid = "<invalid tree code>";
12777
12778 if (code >= MAX_TREE_CODES)
12779 return invalid;
12780
12781 return tree_code_name[code];
12782 }
12783
12784 /* Drops the TREE_OVERFLOW flag from T. */
12785
12786 tree
12787 drop_tree_overflow (tree t)
12788 {
12789 gcc_checking_assert (TREE_OVERFLOW (t));
12790
12791 /* For tree codes with a sharing machinery re-build the result. */
12792 if (poly_int_tree_p (t))
12793 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
12794
12795 /* For VECTOR_CST, remove the overflow bits from the encoded elements
12796 and canonicalize the result. */
12797 if (TREE_CODE (t) == VECTOR_CST)
12798 {
12799 tree_vector_builder builder;
12800 builder.new_unary_operation (TREE_TYPE (t), t, true);
12801 unsigned int count = builder.encoded_nelts ();
12802 for (unsigned int i = 0; i < count; ++i)
12803 {
12804 tree elt = VECTOR_CST_ELT (t, i);
12805 if (TREE_OVERFLOW (elt))
12806 elt = drop_tree_overflow (elt);
12807 builder.quick_push (elt);
12808 }
12809 return builder.build ();
12810 }
12811
12812 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12813 and drop the flag. */
12814 t = copy_node (t);
12815 TREE_OVERFLOW (t) = 0;
12816
12817 /* For constants that contain nested constants, drop the flag
12818 from those as well. */
12819 if (TREE_CODE (t) == COMPLEX_CST)
12820 {
12821 if (TREE_OVERFLOW (TREE_REALPART (t)))
12822 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
12823 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
12824 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
12825 }
12826
12827 return t;
12828 }
12829
12830 /* Given a memory reference expression T, return its base address.
12831 The base address of a memory reference expression is the main
12832 object being referenced. For instance, the base address for
12833 'array[i].fld[j]' is 'array'. You can think of this as stripping
12834 away the offset part from a memory address.
12835
12836 This function calls handled_component_p to strip away all the inner
12837 parts of the memory reference until it reaches the base object. */
12838
12839 tree
12840 get_base_address (tree t)
12841 {
12842 while (handled_component_p (t))
12843 t = TREE_OPERAND (t, 0);
12844
12845 if ((TREE_CODE (t) == MEM_REF
12846 || TREE_CODE (t) == TARGET_MEM_REF)
12847 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12848 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12849
12850 /* ??? Either the alias oracle or all callers need to properly deal
12851 with WITH_SIZE_EXPRs before we can look through those. */
12852 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12853 return NULL_TREE;
12854
12855 return t;
12856 }
12857
12858 /* Return a tree of sizetype representing the size, in bytes, of the element
12859 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12860
12861 tree
12862 array_ref_element_size (tree exp)
12863 {
12864 tree aligned_size = TREE_OPERAND (exp, 3);
12865 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
12866 location_t loc = EXPR_LOCATION (exp);
12867
12868 /* If a size was specified in the ARRAY_REF, it's the size measured
12869 in alignment units of the element type. So multiply by that value. */
12870 if (aligned_size)
12871 {
12872 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12873 sizetype from another type of the same width and signedness. */
12874 if (TREE_TYPE (aligned_size) != sizetype)
12875 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
12876 return size_binop_loc (loc, MULT_EXPR, aligned_size,
12877 size_int (TYPE_ALIGN_UNIT (elmt_type)));
12878 }
12879
12880 /* Otherwise, take the size from that of the element type. Substitute
12881 any PLACEHOLDER_EXPR that we have. */
12882 else
12883 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
12884 }
12885
12886 /* Return a tree representing the lower bound of the array mentioned in
12887 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12888
12889 tree
12890 array_ref_low_bound (tree exp)
12891 {
12892 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12893
12894 /* If a lower bound is specified in EXP, use it. */
12895 if (TREE_OPERAND (exp, 2))
12896 return TREE_OPERAND (exp, 2);
12897
12898 /* Otherwise, if there is a domain type and it has a lower bound, use it,
12899 substituting for a PLACEHOLDER_EXPR as needed. */
12900 if (domain_type && TYPE_MIN_VALUE (domain_type))
12901 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
12902
12903 /* Otherwise, return a zero of the appropriate type. */
12904 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
12905 }
12906
12907 /* Return a tree representing the upper bound of the array mentioned in
12908 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12909
12910 tree
12911 array_ref_up_bound (tree exp)
12912 {
12913 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12914
12915 /* If there is a domain type and it has an upper bound, use it, substituting
12916 for a PLACEHOLDER_EXPR as needed. */
12917 if (domain_type && TYPE_MAX_VALUE (domain_type))
12918 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
12919
12920 /* Otherwise fail. */
12921 return NULL_TREE;
12922 }
12923
12924 /* Returns true if REF is an array reference or a component reference
12925 to an array at the end of a structure.
12926 If this is the case, the array may be allocated larger
12927 than its upper bound implies. */
12928
12929 bool
12930 array_at_struct_end_p (tree ref)
12931 {
12932 tree atype;
12933
12934 if (TREE_CODE (ref) == ARRAY_REF
12935 || TREE_CODE (ref) == ARRAY_RANGE_REF)
12936 {
12937 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
12938 ref = TREE_OPERAND (ref, 0);
12939 }
12940 else if (TREE_CODE (ref) == COMPONENT_REF
12941 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
12942 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
12943 else
12944 return false;
12945
12946 if (TREE_CODE (ref) == STRING_CST)
12947 return false;
12948
12949 tree ref_to_array = ref;
12950 while (handled_component_p (ref))
12951 {
12952 /* If the reference chain contains a component reference to a
12953 non-union type and there follows another field the reference
12954 is not at the end of a structure. */
12955 if (TREE_CODE (ref) == COMPONENT_REF)
12956 {
12957 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
12958 {
12959 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
12960 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
12961 nextf = DECL_CHAIN (nextf);
12962 if (nextf)
12963 return false;
12964 }
12965 }
12966 /* If we have a multi-dimensional array we do not consider
12967 a non-innermost dimension as flex array if the whole
12968 multi-dimensional array is at struct end.
12969 Same for an array of aggregates with a trailing array
12970 member. */
12971 else if (TREE_CODE (ref) == ARRAY_REF)
12972 return false;
12973 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
12974 ;
12975 /* If we view an underlying object as sth else then what we
12976 gathered up to now is what we have to rely on. */
12977 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
12978 break;
12979 else
12980 gcc_unreachable ();
12981
12982 ref = TREE_OPERAND (ref, 0);
12983 }
12984
12985 /* The array now is at struct end. Treat flexible arrays as
12986 always subject to extend, even into just padding constrained by
12987 an underlying decl. */
12988 if (! TYPE_SIZE (atype)
12989 || ! TYPE_DOMAIN (atype)
12990 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
12991 return true;
12992
12993 if (TREE_CODE (ref) == MEM_REF
12994 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
12995 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
12996
12997 /* If the reference is based on a declared entity, the size of the array
12998 is constrained by its given domain. (Do not trust commons PR/69368). */
12999 if (DECL_P (ref)
13000 && !(flag_unconstrained_commons
13001 && VAR_P (ref) && DECL_COMMON (ref))
13002 && DECL_SIZE_UNIT (ref)
13003 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13004 {
13005 /* Check whether the array domain covers all of the available
13006 padding. */
13007 poly_int64 offset;
13008 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13009 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13010 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13011 return true;
13012 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13013 return true;
13014
13015 /* If at least one extra element fits it is a flexarray. */
13016 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13017 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13018 + 2)
13019 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13020 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13021 return true;
13022
13023 return false;
13024 }
13025
13026 return true;
13027 }
13028
13029 /* Return a tree representing the offset, in bytes, of the field referenced
13030 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13031
13032 tree
13033 component_ref_field_offset (tree exp)
13034 {
13035 tree aligned_offset = TREE_OPERAND (exp, 2);
13036 tree field = TREE_OPERAND (exp, 1);
13037 location_t loc = EXPR_LOCATION (exp);
13038
13039 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13040 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13041 value. */
13042 if (aligned_offset)
13043 {
13044 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13045 sizetype from another type of the same width and signedness. */
13046 if (TREE_TYPE (aligned_offset) != sizetype)
13047 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13048 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13049 size_int (DECL_OFFSET_ALIGN (field)
13050 / BITS_PER_UNIT));
13051 }
13052
13053 /* Otherwise, take the offset from that of the field. Substitute
13054 any PLACEHOLDER_EXPR that we have. */
13055 else
13056 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13057 }
13058
13059 /* Return the machine mode of T. For vectors, returns the mode of the
13060 inner type. The main use case is to feed the result to HONOR_NANS,
13061 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13062
13063 machine_mode
13064 element_mode (const_tree t)
13065 {
13066 if (!TYPE_P (t))
13067 t = TREE_TYPE (t);
13068 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13069 t = TREE_TYPE (t);
13070 return TYPE_MODE (t);
13071 }
13072
13073 /* Vector types need to re-check the target flags each time we report
13074 the machine mode. We need to do this because attribute target can
13075 change the result of vector_mode_supported_p and have_regs_of_mode
13076 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13077 change on a per-function basis. */
13078 /* ??? Possibly a better solution is to run through all the types
13079 referenced by a function and re-compute the TYPE_MODE once, rather
13080 than make the TYPE_MODE macro call a function. */
13081
13082 machine_mode
13083 vector_type_mode (const_tree t)
13084 {
13085 machine_mode mode;
13086
13087 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13088
13089 mode = t->type_common.mode;
13090 if (VECTOR_MODE_P (mode)
13091 && (!targetm.vector_mode_supported_p (mode)
13092 || !have_regs_of_mode[mode]))
13093 {
13094 scalar_int_mode innermode;
13095
13096 /* For integers, try mapping it to a same-sized scalar mode. */
13097 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13098 {
13099 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13100 * GET_MODE_BITSIZE (innermode));
13101 scalar_int_mode mode;
13102 if (int_mode_for_size (size, 0).exists (&mode)
13103 && have_regs_of_mode[mode])
13104 return mode;
13105 }
13106
13107 return BLKmode;
13108 }
13109
13110 return mode;
13111 }
13112
13113 /* Verify that basic properties of T match TV and thus T can be a variant of
13114 TV. TV should be the more specified variant (i.e. the main variant). */
13115
13116 static bool
13117 verify_type_variant (const_tree t, tree tv)
13118 {
13119 /* Type variant can differ by:
13120
13121 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13122 ENCODE_QUAL_ADDR_SPACE.
13123 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13124 in this case some values may not be set in the variant types
13125 (see TYPE_COMPLETE_P checks).
13126 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13127 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13128 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13129 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13130 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13131 this is necessary to make it possible to merge types form different TUs
13132 - arrays, pointers and references may have TREE_TYPE that is a variant
13133 of TREE_TYPE of their main variants.
13134 - aggregates may have new TYPE_FIELDS list that list variants of
13135 the main variant TYPE_FIELDS.
13136 - vector types may differ by TYPE_VECTOR_OPAQUE
13137 */
13138
13139 /* Convenience macro for matching individual fields. */
13140 #define verify_variant_match(flag) \
13141 do { \
13142 if (flag (tv) != flag (t)) \
13143 { \
13144 error ("type variant differs by %s", #flag); \
13145 debug_tree (tv); \
13146 return false; \
13147 } \
13148 } while (false)
13149
13150 /* tree_base checks. */
13151
13152 verify_variant_match (TREE_CODE);
13153 /* FIXME: Ada builds non-artificial variants of artificial types. */
13154 if (TYPE_ARTIFICIAL (tv) && 0)
13155 verify_variant_match (TYPE_ARTIFICIAL);
13156 if (POINTER_TYPE_P (tv))
13157 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13158 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13159 verify_variant_match (TYPE_UNSIGNED);
13160 verify_variant_match (TYPE_PACKED);
13161 if (TREE_CODE (t) == REFERENCE_TYPE)
13162 verify_variant_match (TYPE_REF_IS_RVALUE);
13163 if (AGGREGATE_TYPE_P (t))
13164 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13165 else
13166 verify_variant_match (TYPE_SATURATING);
13167 /* FIXME: This check trigger during libstdc++ build. */
13168 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13169 verify_variant_match (TYPE_FINAL_P);
13170
13171 /* tree_type_common checks. */
13172
13173 if (COMPLETE_TYPE_P (t))
13174 {
13175 verify_variant_match (TYPE_MODE);
13176 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13177 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13178 verify_variant_match (TYPE_SIZE);
13179 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13180 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13181 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13182 {
13183 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13184 TYPE_SIZE_UNIT (tv), 0));
13185 error ("type variant has different TYPE_SIZE_UNIT");
13186 debug_tree (tv);
13187 error ("type variant's TYPE_SIZE_UNIT");
13188 debug_tree (TYPE_SIZE_UNIT (tv));
13189 error ("type's TYPE_SIZE_UNIT");
13190 debug_tree (TYPE_SIZE_UNIT (t));
13191 return false;
13192 }
13193 }
13194 verify_variant_match (TYPE_PRECISION);
13195 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13196 if (RECORD_OR_UNION_TYPE_P (t))
13197 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13198 else if (TREE_CODE (t) == ARRAY_TYPE)
13199 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13200 /* During LTO we merge variant lists from diferent translation units
13201 that may differ BY TYPE_CONTEXT that in turn may point
13202 to TRANSLATION_UNIT_DECL.
13203 Ada also builds variants of types with different TYPE_CONTEXT. */
13204 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13205 verify_variant_match (TYPE_CONTEXT);
13206 verify_variant_match (TYPE_STRING_FLAG);
13207 if (TYPE_ALIAS_SET_KNOWN_P (t))
13208 {
13209 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13210 debug_tree (tv);
13211 return false;
13212 }
13213
13214 /* tree_type_non_common checks. */
13215
13216 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13217 and dangle the pointer from time to time. */
13218 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13219 && (in_lto_p || !TYPE_VFIELD (tv)
13220 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13221 {
13222 error ("type variant has different TYPE_VFIELD");
13223 debug_tree (tv);
13224 return false;
13225 }
13226 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13227 || TREE_CODE (t) == INTEGER_TYPE
13228 || TREE_CODE (t) == BOOLEAN_TYPE
13229 || TREE_CODE (t) == REAL_TYPE
13230 || TREE_CODE (t) == FIXED_POINT_TYPE)
13231 {
13232 verify_variant_match (TYPE_MAX_VALUE);
13233 verify_variant_match (TYPE_MIN_VALUE);
13234 }
13235 if (TREE_CODE (t) == METHOD_TYPE)
13236 verify_variant_match (TYPE_METHOD_BASETYPE);
13237 if (TREE_CODE (t) == OFFSET_TYPE)
13238 verify_variant_match (TYPE_OFFSET_BASETYPE);
13239 if (TREE_CODE (t) == ARRAY_TYPE)
13240 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13241 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13242 or even type's main variant. This is needed to make bootstrap pass
13243 and the bug seems new in GCC 5.
13244 C++ FE should be updated to make this consistent and we should check
13245 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13246 is a match with main variant.
13247
13248 Also disable the check for Java for now because of parser hack that builds
13249 first an dummy BINFO and then sometimes replace it by real BINFO in some
13250 of the copies. */
13251 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13252 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13253 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13254 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13255 at LTO time only. */
13256 && (in_lto_p && odr_type_p (t)))
13257 {
13258 error ("type variant has different TYPE_BINFO");
13259 debug_tree (tv);
13260 error ("type variant's TYPE_BINFO");
13261 debug_tree (TYPE_BINFO (tv));
13262 error ("type's TYPE_BINFO");
13263 debug_tree (TYPE_BINFO (t));
13264 return false;
13265 }
13266
13267 /* Check various uses of TYPE_VALUES_RAW. */
13268 if (TREE_CODE (t) == ENUMERAL_TYPE)
13269 verify_variant_match (TYPE_VALUES);
13270 else if (TREE_CODE (t) == ARRAY_TYPE)
13271 verify_variant_match (TYPE_DOMAIN);
13272 /* Permit incomplete variants of complete type. While FEs may complete
13273 all variants, this does not happen for C++ templates in all cases. */
13274 else if (RECORD_OR_UNION_TYPE_P (t)
13275 && COMPLETE_TYPE_P (t)
13276 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13277 {
13278 tree f1, f2;
13279
13280 /* Fortran builds qualified variants as new records with items of
13281 qualified type. Verify that they looks same. */
13282 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13283 f1 && f2;
13284 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13285 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13286 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13287 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13288 /* FIXME: gfc_nonrestricted_type builds all types as variants
13289 with exception of pointer types. It deeply copies the type
13290 which means that we may end up with a variant type
13291 referring non-variant pointer. We may change it to
13292 produce types as variants, too, like
13293 objc_get_protocol_qualified_type does. */
13294 && !POINTER_TYPE_P (TREE_TYPE (f1)))
13295 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13296 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13297 break;
13298 if (f1 || f2)
13299 {
13300 error ("type variant has different TYPE_FIELDS");
13301 debug_tree (tv);
13302 error ("first mismatch is field");
13303 debug_tree (f1);
13304 error ("and field");
13305 debug_tree (f2);
13306 return false;
13307 }
13308 }
13309 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13310 verify_variant_match (TYPE_ARG_TYPES);
13311 /* For C++ the qualified variant of array type is really an array type
13312 of qualified TREE_TYPE.
13313 objc builds variants of pointer where pointer to type is a variant, too
13314 in objc_get_protocol_qualified_type. */
13315 if (TREE_TYPE (t) != TREE_TYPE (tv)
13316 && ((TREE_CODE (t) != ARRAY_TYPE
13317 && !POINTER_TYPE_P (t))
13318 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13319 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13320 {
13321 error ("type variant has different TREE_TYPE");
13322 debug_tree (tv);
13323 error ("type variant's TREE_TYPE");
13324 debug_tree (TREE_TYPE (tv));
13325 error ("type's TREE_TYPE");
13326 debug_tree (TREE_TYPE (t));
13327 return false;
13328 }
13329 if (type_with_alias_set_p (t)
13330 && !gimple_canonical_types_compatible_p (t, tv, false))
13331 {
13332 error ("type is not compatible with its variant");
13333 debug_tree (tv);
13334 error ("type variant's TREE_TYPE");
13335 debug_tree (TREE_TYPE (tv));
13336 error ("type's TREE_TYPE");
13337 debug_tree (TREE_TYPE (t));
13338 return false;
13339 }
13340 return true;
13341 #undef verify_variant_match
13342 }
13343
13344
13345 /* The TYPE_CANONICAL merging machinery. It should closely resemble
13346 the middle-end types_compatible_p function. It needs to avoid
13347 claiming types are different for types that should be treated
13348 the same with respect to TBAA. Canonical types are also used
13349 for IL consistency checks via the useless_type_conversion_p
13350 predicate which does not handle all type kinds itself but falls
13351 back to pointer-comparison of TYPE_CANONICAL for aggregates
13352 for example. */
13353
13354 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13355 type calculation because we need to allow inter-operability between signed
13356 and unsigned variants. */
13357
13358 bool
13359 type_with_interoperable_signedness (const_tree type)
13360 {
13361 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13362 signed char and unsigned char. Similarly fortran FE builds
13363 C_SIZE_T as signed type, while C defines it unsigned. */
13364
13365 return tree_code_for_canonical_type_merging (TREE_CODE (type))
13366 == INTEGER_TYPE
13367 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13368 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13369 }
13370
13371 /* Return true iff T1 and T2 are structurally identical for what
13372 TBAA is concerned.
13373 This function is used both by lto.c canonical type merging and by the
13374 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
13375 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
13376 only for LTO because only in these cases TYPE_CANONICAL equivalence
13377 correspond to one defined by gimple_canonical_types_compatible_p. */
13378
13379 bool
13380 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
13381 bool trust_type_canonical)
13382 {
13383 /* Type variants should be same as the main variant. When not doing sanity
13384 checking to verify this fact, go to main variants and save some work. */
13385 if (trust_type_canonical)
13386 {
13387 t1 = TYPE_MAIN_VARIANT (t1);
13388 t2 = TYPE_MAIN_VARIANT (t2);
13389 }
13390
13391 /* Check first for the obvious case of pointer identity. */
13392 if (t1 == t2)
13393 return true;
13394
13395 /* Check that we have two types to compare. */
13396 if (t1 == NULL_TREE || t2 == NULL_TREE)
13397 return false;
13398
13399 /* We consider complete types always compatible with incomplete type.
13400 This does not make sense for canonical type calculation and thus we
13401 need to ensure that we are never called on it.
13402
13403 FIXME: For more correctness the function probably should have three modes
13404 1) mode assuming that types are complete mathcing their structure
13405 2) mode allowing incomplete types but producing equivalence classes
13406 and thus ignoring all info from complete types
13407 3) mode allowing incomplete types to match complete but checking
13408 compatibility between complete types.
13409
13410 1 and 2 can be used for canonical type calculation. 3 is the real
13411 definition of type compatibility that can be used i.e. for warnings during
13412 declaration merging. */
13413
13414 gcc_assert (!trust_type_canonical
13415 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
13416 /* If the types have been previously registered and found equal
13417 they still are. */
13418
13419 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
13420 && trust_type_canonical)
13421 {
13422 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
13423 they are always NULL, but they are set to non-NULL for types
13424 constructed by build_pointer_type and variants. In this case the
13425 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13426 all pointers are considered equal. Be sure to not return false
13427 negatives. */
13428 gcc_checking_assert (canonical_type_used_p (t1)
13429 && canonical_type_used_p (t2));
13430 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
13431 }
13432
13433 /* Can't be the same type if the types don't have the same code. */
13434 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
13435 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
13436 return false;
13437
13438 /* Qualifiers do not matter for canonical type comparison purposes. */
13439
13440 /* Void types and nullptr types are always the same. */
13441 if (TREE_CODE (t1) == VOID_TYPE
13442 || TREE_CODE (t1) == NULLPTR_TYPE)
13443 return true;
13444
13445 /* Can't be the same type if they have different mode. */
13446 if (TYPE_MODE (t1) != TYPE_MODE (t2))
13447 return false;
13448
13449 /* Non-aggregate types can be handled cheaply. */
13450 if (INTEGRAL_TYPE_P (t1)
13451 || SCALAR_FLOAT_TYPE_P (t1)
13452 || FIXED_POINT_TYPE_P (t1)
13453 || TREE_CODE (t1) == VECTOR_TYPE
13454 || TREE_CODE (t1) == COMPLEX_TYPE
13455 || TREE_CODE (t1) == OFFSET_TYPE
13456 || POINTER_TYPE_P (t1))
13457 {
13458 /* Can't be the same type if they have different recision. */
13459 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
13460 return false;
13461
13462 /* In some cases the signed and unsigned types are required to be
13463 inter-operable. */
13464 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13465 && !type_with_interoperable_signedness (t1))
13466 return false;
13467
13468 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13469 interoperable with "signed char". Unless all frontends are revisited
13470 to agree on these types, we must ignore the flag completely. */
13471
13472 /* Fortran standard define C_PTR type that is compatible with every
13473 C pointer. For this reason we need to glob all pointers into one.
13474 Still pointers in different address spaces are not compatible. */
13475 if (POINTER_TYPE_P (t1))
13476 {
13477 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13478 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13479 return false;
13480 }
13481
13482 /* Tail-recurse to components. */
13483 if (TREE_CODE (t1) == VECTOR_TYPE
13484 || TREE_CODE (t1) == COMPLEX_TYPE)
13485 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13486 TREE_TYPE (t2),
13487 trust_type_canonical);
13488
13489 return true;
13490 }
13491
13492 /* Do type-specific comparisons. */
13493 switch (TREE_CODE (t1))
13494 {
13495 case ARRAY_TYPE:
13496 /* Array types are the same if the element types are the same and
13497 the number of elements are the same. */
13498 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13499 trust_type_canonical)
13500 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13501 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13502 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13503 return false;
13504 else
13505 {
13506 tree i1 = TYPE_DOMAIN (t1);
13507 tree i2 = TYPE_DOMAIN (t2);
13508
13509 /* For an incomplete external array, the type domain can be
13510 NULL_TREE. Check this condition also. */
13511 if (i1 == NULL_TREE && i2 == NULL_TREE)
13512 return true;
13513 else if (i1 == NULL_TREE || i2 == NULL_TREE)
13514 return false;
13515 else
13516 {
13517 tree min1 = TYPE_MIN_VALUE (i1);
13518 tree min2 = TYPE_MIN_VALUE (i2);
13519 tree max1 = TYPE_MAX_VALUE (i1);
13520 tree max2 = TYPE_MAX_VALUE (i2);
13521
13522 /* The minimum/maximum values have to be the same. */
13523 if ((min1 == min2
13524 || (min1 && min2
13525 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13526 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13527 || operand_equal_p (min1, min2, 0))))
13528 && (max1 == max2
13529 || (max1 && max2
13530 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13531 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13532 || operand_equal_p (max1, max2, 0)))))
13533 return true;
13534 else
13535 return false;
13536 }
13537 }
13538
13539 case METHOD_TYPE:
13540 case FUNCTION_TYPE:
13541 /* Function types are the same if the return type and arguments types
13542 are the same. */
13543 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13544 trust_type_canonical))
13545 return false;
13546
13547 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
13548 return true;
13549 else
13550 {
13551 tree parms1, parms2;
13552
13553 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13554 parms1 && parms2;
13555 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13556 {
13557 if (!gimple_canonical_types_compatible_p
13558 (TREE_VALUE (parms1), TREE_VALUE (parms2),
13559 trust_type_canonical))
13560 return false;
13561 }
13562
13563 if (parms1 || parms2)
13564 return false;
13565
13566 return true;
13567 }
13568
13569 case RECORD_TYPE:
13570 case UNION_TYPE:
13571 case QUAL_UNION_TYPE:
13572 {
13573 tree f1, f2;
13574
13575 /* Don't try to compare variants of an incomplete type, before
13576 TYPE_FIELDS has been copied around. */
13577 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
13578 return true;
13579
13580
13581 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13582 return false;
13583
13584 /* For aggregate types, all the fields must be the same. */
13585 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13586 f1 || f2;
13587 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13588 {
13589 /* Skip non-fields and zero-sized fields. */
13590 while (f1 && (TREE_CODE (f1) != FIELD_DECL
13591 || (DECL_SIZE (f1)
13592 && integer_zerop (DECL_SIZE (f1)))))
13593 f1 = TREE_CHAIN (f1);
13594 while (f2 && (TREE_CODE (f2) != FIELD_DECL
13595 || (DECL_SIZE (f2)
13596 && integer_zerop (DECL_SIZE (f2)))))
13597 f2 = TREE_CHAIN (f2);
13598 if (!f1 || !f2)
13599 break;
13600 /* The fields must have the same name, offset and type. */
13601 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13602 || !gimple_compare_field_offset (f1, f2)
13603 || !gimple_canonical_types_compatible_p
13604 (TREE_TYPE (f1), TREE_TYPE (f2),
13605 trust_type_canonical))
13606 return false;
13607 }
13608
13609 /* If one aggregate has more fields than the other, they
13610 are not the same. */
13611 if (f1 || f2)
13612 return false;
13613
13614 return true;
13615 }
13616
13617 default:
13618 /* Consider all types with language specific trees in them mutually
13619 compatible. This is executed only from verify_type and false
13620 positives can be tolerated. */
13621 gcc_assert (!in_lto_p);
13622 return true;
13623 }
13624 }
13625
13626 /* Verify type T. */
13627
13628 void
13629 verify_type (const_tree t)
13630 {
13631 bool error_found = false;
13632 tree mv = TYPE_MAIN_VARIANT (t);
13633 if (!mv)
13634 {
13635 error ("Main variant is not defined");
13636 error_found = true;
13637 }
13638 else if (mv != TYPE_MAIN_VARIANT (mv))
13639 {
13640 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13641 debug_tree (mv);
13642 error_found = true;
13643 }
13644 else if (t != mv && !verify_type_variant (t, mv))
13645 error_found = true;
13646
13647 tree ct = TYPE_CANONICAL (t);
13648 if (!ct)
13649 ;
13650 else if (TYPE_CANONICAL (t) != ct)
13651 {
13652 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13653 debug_tree (ct);
13654 error_found = true;
13655 }
13656 /* Method and function types can not be used to address memory and thus
13657 TYPE_CANONICAL really matters only for determining useless conversions.
13658
13659 FIXME: C++ FE produce declarations of builtin functions that are not
13660 compatible with main variants. */
13661 else if (TREE_CODE (t) == FUNCTION_TYPE)
13662 ;
13663 else if (t != ct
13664 /* FIXME: gimple_canonical_types_compatible_p can not compare types
13665 with variably sized arrays because their sizes possibly
13666 gimplified to different variables. */
13667 && !variably_modified_type_p (ct, NULL)
13668 && !gimple_canonical_types_compatible_p (t, ct, false))
13669 {
13670 error ("TYPE_CANONICAL is not compatible");
13671 debug_tree (ct);
13672 error_found = true;
13673 }
13674
13675 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
13676 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
13677 {
13678 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13679 debug_tree (ct);
13680 error_found = true;
13681 }
13682 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
13683 {
13684 error ("TYPE_CANONICAL of main variant is not main variant");
13685 debug_tree (ct);
13686 debug_tree (TYPE_MAIN_VARIANT (ct));
13687 error_found = true;
13688 }
13689
13690
13691 /* Check various uses of TYPE_MIN_VALUE_RAW. */
13692 if (RECORD_OR_UNION_TYPE_P (t))
13693 {
13694 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13695 and danagle the pointer from time to time. */
13696 if (TYPE_VFIELD (t)
13697 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
13698 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
13699 {
13700 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13701 debug_tree (TYPE_VFIELD (t));
13702 error_found = true;
13703 }
13704 }
13705 else if (TREE_CODE (t) == POINTER_TYPE)
13706 {
13707 if (TYPE_NEXT_PTR_TO (t)
13708 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
13709 {
13710 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13711 debug_tree (TYPE_NEXT_PTR_TO (t));
13712 error_found = true;
13713 }
13714 }
13715 else if (TREE_CODE (t) == REFERENCE_TYPE)
13716 {
13717 if (TYPE_NEXT_REF_TO (t)
13718 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
13719 {
13720 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13721 debug_tree (TYPE_NEXT_REF_TO (t));
13722 error_found = true;
13723 }
13724 }
13725 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13726 || TREE_CODE (t) == FIXED_POINT_TYPE)
13727 {
13728 /* FIXME: The following check should pass:
13729 useless_type_conversion_p (const_cast <tree> (t),
13730 TREE_TYPE (TYPE_MIN_VALUE (t))
13731 but does not for C sizetypes in LTO. */
13732 }
13733
13734 /* Check various uses of TYPE_MAXVAL_RAW. */
13735 if (RECORD_OR_UNION_TYPE_P (t))
13736 {
13737 if (!TYPE_BINFO (t))
13738 ;
13739 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
13740 {
13741 error ("TYPE_BINFO is not TREE_BINFO");
13742 debug_tree (TYPE_BINFO (t));
13743 error_found = true;
13744 }
13745 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
13746 {
13747 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13748 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
13749 error_found = true;
13750 }
13751 }
13752 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13753 {
13754 if (TYPE_METHOD_BASETYPE (t)
13755 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
13756 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
13757 {
13758 error ("TYPE_METHOD_BASETYPE is not record nor union");
13759 debug_tree (TYPE_METHOD_BASETYPE (t));
13760 error_found = true;
13761 }
13762 }
13763 else if (TREE_CODE (t) == OFFSET_TYPE)
13764 {
13765 if (TYPE_OFFSET_BASETYPE (t)
13766 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
13767 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
13768 {
13769 error ("TYPE_OFFSET_BASETYPE is not record nor union");
13770 debug_tree (TYPE_OFFSET_BASETYPE (t));
13771 error_found = true;
13772 }
13773 }
13774 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13775 || TREE_CODE (t) == FIXED_POINT_TYPE)
13776 {
13777 /* FIXME: The following check should pass:
13778 useless_type_conversion_p (const_cast <tree> (t),
13779 TREE_TYPE (TYPE_MAX_VALUE (t))
13780 but does not for C sizetypes in LTO. */
13781 }
13782 else if (TREE_CODE (t) == ARRAY_TYPE)
13783 {
13784 if (TYPE_ARRAY_MAX_SIZE (t)
13785 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
13786 {
13787 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13788 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
13789 error_found = true;
13790 }
13791 }
13792 else if (TYPE_MAX_VALUE_RAW (t))
13793 {
13794 error ("TYPE_MAX_VALUE_RAW non-NULL");
13795 debug_tree (TYPE_MAX_VALUE_RAW (t));
13796 error_found = true;
13797 }
13798
13799 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
13800 {
13801 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13802 debug_tree (TYPE_LANG_SLOT_1 (t));
13803 error_found = true;
13804 }
13805
13806 /* Check various uses of TYPE_VALUES_RAW. */
13807 if (TREE_CODE (t) == ENUMERAL_TYPE)
13808 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
13809 {
13810 tree value = TREE_VALUE (l);
13811 tree name = TREE_PURPOSE (l);
13812
13813 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13814 CONST_DECL of ENUMERAL TYPE. */
13815 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
13816 {
13817 error ("Enum value is not CONST_DECL or INTEGER_CST");
13818 debug_tree (value);
13819 debug_tree (name);
13820 error_found = true;
13821 }
13822 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
13823 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
13824 {
13825 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13826 debug_tree (value);
13827 debug_tree (name);
13828 error_found = true;
13829 }
13830 if (TREE_CODE (name) != IDENTIFIER_NODE)
13831 {
13832 error ("Enum value name is not IDENTIFIER_NODE");
13833 debug_tree (value);
13834 debug_tree (name);
13835 error_found = true;
13836 }
13837 }
13838 else if (TREE_CODE (t) == ARRAY_TYPE)
13839 {
13840 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
13841 {
13842 error ("Array TYPE_DOMAIN is not integer type");
13843 debug_tree (TYPE_DOMAIN (t));
13844 error_found = true;
13845 }
13846 }
13847 else if (RECORD_OR_UNION_TYPE_P (t))
13848 {
13849 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
13850 {
13851 error ("TYPE_FIELDS defined in incomplete type");
13852 error_found = true;
13853 }
13854 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
13855 {
13856 /* TODO: verify properties of decls. */
13857 if (TREE_CODE (fld) == FIELD_DECL)
13858 ;
13859 else if (TREE_CODE (fld) == TYPE_DECL)
13860 ;
13861 else if (TREE_CODE (fld) == CONST_DECL)
13862 ;
13863 else if (VAR_P (fld))
13864 ;
13865 else if (TREE_CODE (fld) == TEMPLATE_DECL)
13866 ;
13867 else if (TREE_CODE (fld) == USING_DECL)
13868 ;
13869 else if (TREE_CODE (fld) == FUNCTION_DECL)
13870 ;
13871 else
13872 {
13873 error ("Wrong tree in TYPE_FIELDS list");
13874 debug_tree (fld);
13875 error_found = true;
13876 }
13877 }
13878 }
13879 else if (TREE_CODE (t) == INTEGER_TYPE
13880 || TREE_CODE (t) == BOOLEAN_TYPE
13881 || TREE_CODE (t) == OFFSET_TYPE
13882 || TREE_CODE (t) == REFERENCE_TYPE
13883 || TREE_CODE (t) == NULLPTR_TYPE
13884 || TREE_CODE (t) == POINTER_TYPE)
13885 {
13886 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
13887 {
13888 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
13889 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
13890 error_found = true;
13891 }
13892 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
13893 {
13894 error ("TYPE_CACHED_VALUES is not TREE_VEC");
13895 debug_tree (TYPE_CACHED_VALUES (t));
13896 error_found = true;
13897 }
13898 /* Verify just enough of cache to ensure that no one copied it to new type.
13899 All copying should go by copy_node that should clear it. */
13900 else if (TYPE_CACHED_VALUES_P (t))
13901 {
13902 int i;
13903 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
13904 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
13905 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
13906 {
13907 error ("wrong TYPE_CACHED_VALUES entry");
13908 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
13909 error_found = true;
13910 break;
13911 }
13912 }
13913 }
13914 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13915 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
13916 {
13917 /* C++ FE uses TREE_PURPOSE to store initial values. */
13918 if (TREE_PURPOSE (l) && in_lto_p)
13919 {
13920 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
13921 debug_tree (l);
13922 error_found = true;
13923 }
13924 if (!TYPE_P (TREE_VALUE (l)))
13925 {
13926 error ("Wrong entry in TYPE_ARG_TYPES list");
13927 debug_tree (l);
13928 error_found = true;
13929 }
13930 }
13931 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
13932 {
13933 error ("TYPE_VALUES_RAW field is non-NULL");
13934 debug_tree (TYPE_VALUES_RAW (t));
13935 error_found = true;
13936 }
13937 if (TREE_CODE (t) != INTEGER_TYPE
13938 && TREE_CODE (t) != BOOLEAN_TYPE
13939 && TREE_CODE (t) != OFFSET_TYPE
13940 && TREE_CODE (t) != REFERENCE_TYPE
13941 && TREE_CODE (t) != NULLPTR_TYPE
13942 && TREE_CODE (t) != POINTER_TYPE
13943 && TYPE_CACHED_VALUES_P (t))
13944 {
13945 error ("TYPE_CACHED_VALUES_P is set while it should not");
13946 error_found = true;
13947 }
13948 if (TYPE_STRING_FLAG (t)
13949 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
13950 {
13951 error ("TYPE_STRING_FLAG is set on wrong type code");
13952 error_found = true;
13953 }
13954
13955 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
13956 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
13957 of a type. */
13958 if (TREE_CODE (t) == METHOD_TYPE
13959 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
13960 {
13961 error ("TYPE_METHOD_BASETYPE is not main variant");
13962 error_found = true;
13963 }
13964
13965 if (error_found)
13966 {
13967 debug_tree (const_cast <tree> (t));
13968 internal_error ("verify_type failed");
13969 }
13970 }
13971
13972
13973 /* Return 1 if ARG interpreted as signed in its precision is known to be
13974 always positive or 2 if ARG is known to be always negative, or 3 if
13975 ARG may be positive or negative. */
13976
13977 int
13978 get_range_pos_neg (tree arg)
13979 {
13980 if (arg == error_mark_node)
13981 return 3;
13982
13983 int prec = TYPE_PRECISION (TREE_TYPE (arg));
13984 int cnt = 0;
13985 if (TREE_CODE (arg) == INTEGER_CST)
13986 {
13987 wide_int w = wi::sext (wi::to_wide (arg), prec);
13988 if (wi::neg_p (w))
13989 return 2;
13990 else
13991 return 1;
13992 }
13993 while (CONVERT_EXPR_P (arg)
13994 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
13995 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
13996 {
13997 arg = TREE_OPERAND (arg, 0);
13998 /* Narrower value zero extended into wider type
13999 will always result in positive values. */
14000 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14001 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14002 return 1;
14003 prec = TYPE_PRECISION (TREE_TYPE (arg));
14004 if (++cnt > 30)
14005 return 3;
14006 }
14007
14008 if (TREE_CODE (arg) != SSA_NAME)
14009 return 3;
14010 wide_int arg_min, arg_max;
14011 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14012 {
14013 gimple *g = SSA_NAME_DEF_STMT (arg);
14014 if (is_gimple_assign (g)
14015 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14016 {
14017 tree t = gimple_assign_rhs1 (g);
14018 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14019 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14020 {
14021 if (TYPE_UNSIGNED (TREE_TYPE (t))
14022 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14023 return 1;
14024 prec = TYPE_PRECISION (TREE_TYPE (t));
14025 arg = t;
14026 if (++cnt > 30)
14027 return 3;
14028 continue;
14029 }
14030 }
14031 return 3;
14032 }
14033 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14034 {
14035 /* For unsigned values, the "positive" range comes
14036 below the "negative" range. */
14037 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14038 return 1;
14039 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14040 return 2;
14041 }
14042 else
14043 {
14044 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14045 return 1;
14046 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14047 return 2;
14048 }
14049 return 3;
14050 }
14051
14052
14053
14054
14055 /* Return true if ARG is marked with the nonnull attribute in the
14056 current function signature. */
14057
14058 bool
14059 nonnull_arg_p (const_tree arg)
14060 {
14061 tree t, attrs, fntype;
14062 unsigned HOST_WIDE_INT arg_num;
14063
14064 gcc_assert (TREE_CODE (arg) == PARM_DECL
14065 && (POINTER_TYPE_P (TREE_TYPE (arg))
14066 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14067
14068 /* The static chain decl is always non null. */
14069 if (arg == cfun->static_chain_decl)
14070 return true;
14071
14072 /* THIS argument of method is always non-NULL. */
14073 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14074 && arg == DECL_ARGUMENTS (cfun->decl)
14075 && flag_delete_null_pointer_checks)
14076 return true;
14077
14078 /* Values passed by reference are always non-NULL. */
14079 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14080 && flag_delete_null_pointer_checks)
14081 return true;
14082
14083 fntype = TREE_TYPE (cfun->decl);
14084 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14085 {
14086 attrs = lookup_attribute ("nonnull", attrs);
14087
14088 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14089 if (attrs == NULL_TREE)
14090 return false;
14091
14092 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14093 if (TREE_VALUE (attrs) == NULL_TREE)
14094 return true;
14095
14096 /* Get the position number for ARG in the function signature. */
14097 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14098 t;
14099 t = DECL_CHAIN (t), arg_num++)
14100 {
14101 if (t == arg)
14102 break;
14103 }
14104
14105 gcc_assert (t == arg);
14106
14107 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14108 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14109 {
14110 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14111 return true;
14112 }
14113 }
14114
14115 return false;
14116 }
14117
14118 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14119 information. */
14120
14121 location_t
14122 set_block (location_t loc, tree block)
14123 {
14124 location_t pure_loc = get_pure_location (loc);
14125 source_range src_range = get_range_from_loc (line_table, loc);
14126 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14127 }
14128
14129 location_t
14130 set_source_range (tree expr, location_t start, location_t finish)
14131 {
14132 source_range src_range;
14133 src_range.m_start = start;
14134 src_range.m_finish = finish;
14135 return set_source_range (expr, src_range);
14136 }
14137
14138 location_t
14139 set_source_range (tree expr, source_range src_range)
14140 {
14141 if (!EXPR_P (expr))
14142 return UNKNOWN_LOCATION;
14143
14144 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14145 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14146 pure_loc,
14147 src_range,
14148 NULL);
14149 SET_EXPR_LOCATION (expr, adhoc);
14150 return adhoc;
14151 }
14152
14153 /* Return EXPR, potentially wrapped with a node expression LOC,
14154 if !CAN_HAVE_LOCATION_P (expr).
14155
14156 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14157 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14158
14159 Wrapper nodes can be identified using location_wrapper_p. */
14160
14161 tree
14162 maybe_wrap_with_location (tree expr, location_t loc)
14163 {
14164 if (expr == NULL)
14165 return NULL;
14166 if (loc == UNKNOWN_LOCATION)
14167 return expr;
14168 if (CAN_HAVE_LOCATION_P (expr))
14169 return expr;
14170 /* We should only be adding wrappers for constants and for decls,
14171 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14172 gcc_assert (CONSTANT_CLASS_P (expr)
14173 || DECL_P (expr)
14174 || EXCEPTIONAL_CLASS_P (expr));
14175
14176 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14177 any impact of the wrapper nodes. */
14178 if (EXCEPTIONAL_CLASS_P (expr))
14179 return expr;
14180
14181 tree_code code
14182 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14183 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14184 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14185 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14186 /* Mark this node as being a wrapper. */
14187 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14188 return wrapper;
14189 }
14190
14191 /* Return the name of combined function FN, for debugging purposes. */
14192
14193 const char *
14194 combined_fn_name (combined_fn fn)
14195 {
14196 if (builtin_fn_p (fn))
14197 {
14198 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14199 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14200 }
14201 else
14202 return internal_fn_name (as_internal_fn (fn));
14203 }
14204
14205 /* Return a bitmap with a bit set corresponding to each argument in
14206 a function call type FNTYPE declared with attribute nonnull,
14207 or null if none of the function's argument are nonnull. The caller
14208 must free the bitmap. */
14209
14210 bitmap
14211 get_nonnull_args (const_tree fntype)
14212 {
14213 if (fntype == NULL_TREE)
14214 return NULL;
14215
14216 tree attrs = TYPE_ATTRIBUTES (fntype);
14217 if (!attrs)
14218 return NULL;
14219
14220 bitmap argmap = NULL;
14221
14222 /* A function declaration can specify multiple attribute nonnull,
14223 each with zero or more arguments. The loop below creates a bitmap
14224 representing a union of all the arguments. An empty (but non-null)
14225 bitmap means that all arguments have been declaraed nonnull. */
14226 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14227 {
14228 attrs = lookup_attribute ("nonnull", attrs);
14229 if (!attrs)
14230 break;
14231
14232 if (!argmap)
14233 argmap = BITMAP_ALLOC (NULL);
14234
14235 if (!TREE_VALUE (attrs))
14236 {
14237 /* Clear the bitmap in case a previous attribute nonnull
14238 set it and this one overrides it for all arguments. */
14239 bitmap_clear (argmap);
14240 return argmap;
14241 }
14242
14243 /* Iterate over the indices of the format arguments declared nonnull
14244 and set a bit for each. */
14245 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14246 {
14247 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14248 bitmap_set_bit (argmap, val);
14249 }
14250 }
14251
14252 return argmap;
14253 }
14254
14255 /* Returns true if TYPE is a type where it and all of its subobjects
14256 (recursively) are of structure, union, or array type. */
14257
14258 static bool
14259 default_is_empty_type (tree type)
14260 {
14261 if (RECORD_OR_UNION_TYPE_P (type))
14262 {
14263 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14264 if (TREE_CODE (field) == FIELD_DECL
14265 && !DECL_PADDING_P (field)
14266 && !default_is_empty_type (TREE_TYPE (field)))
14267 return false;
14268 return true;
14269 }
14270 else if (TREE_CODE (type) == ARRAY_TYPE)
14271 return (integer_minus_onep (array_type_nelts (type))
14272 || TYPE_DOMAIN (type) == NULL_TREE
14273 || default_is_empty_type (TREE_TYPE (type)));
14274 return false;
14275 }
14276
14277 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14278 that shouldn't be passed via stack. */
14279
14280 bool
14281 default_is_empty_record (const_tree type)
14282 {
14283 if (!abi_version_at_least (12))
14284 return false;
14285
14286 if (type == error_mark_node)
14287 return false;
14288
14289 if (TREE_ADDRESSABLE (type))
14290 return false;
14291
14292 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14293 }
14294
14295 /* Like int_size_in_bytes, but handle empty records specially. */
14296
14297 HOST_WIDE_INT
14298 arg_int_size_in_bytes (const_tree type)
14299 {
14300 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14301 }
14302
14303 /* Like size_in_bytes, but handle empty records specially. */
14304
14305 tree
14306 arg_size_in_bytes (const_tree type)
14307 {
14308 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14309 }
14310
14311 /* Return true if an expression with CODE has to have the same result type as
14312 its first operand. */
14313
14314 bool
14315 expr_type_first_operand_type_p (tree_code code)
14316 {
14317 switch (code)
14318 {
14319 case NEGATE_EXPR:
14320 case ABS_EXPR:
14321 case BIT_NOT_EXPR:
14322 case PAREN_EXPR:
14323 case CONJ_EXPR:
14324
14325 case PLUS_EXPR:
14326 case MINUS_EXPR:
14327 case MULT_EXPR:
14328 case TRUNC_DIV_EXPR:
14329 case CEIL_DIV_EXPR:
14330 case FLOOR_DIV_EXPR:
14331 case ROUND_DIV_EXPR:
14332 case TRUNC_MOD_EXPR:
14333 case CEIL_MOD_EXPR:
14334 case FLOOR_MOD_EXPR:
14335 case ROUND_MOD_EXPR:
14336 case RDIV_EXPR:
14337 case EXACT_DIV_EXPR:
14338 case MIN_EXPR:
14339 case MAX_EXPR:
14340 case BIT_IOR_EXPR:
14341 case BIT_XOR_EXPR:
14342 case BIT_AND_EXPR:
14343
14344 case LSHIFT_EXPR:
14345 case RSHIFT_EXPR:
14346 case LROTATE_EXPR:
14347 case RROTATE_EXPR:
14348 return true;
14349
14350 default:
14351 return false;
14352 }
14353 }
14354
14355 /* List of pointer types used to declare builtins before we have seen their
14356 real declaration.
14357
14358 Keep the size up to date in tree.h ! */
14359 const builtin_structptr_type builtin_structptr_types[6] =
14360 {
14361 { fileptr_type_node, ptr_type_node, "FILE" },
14362 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
14363 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
14364 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
14365 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
14366 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
14367 };
14368
14369 #if CHECKING_P
14370
14371 namespace selftest {
14372
14373 /* Selftests for tree. */
14374
14375 /* Verify that integer constants are sane. */
14376
14377 static void
14378 test_integer_constants ()
14379 {
14380 ASSERT_TRUE (integer_type_node != NULL);
14381 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
14382
14383 tree type = integer_type_node;
14384
14385 tree zero = build_zero_cst (type);
14386 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
14387 ASSERT_EQ (type, TREE_TYPE (zero));
14388
14389 tree one = build_int_cst (type, 1);
14390 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
14391 ASSERT_EQ (type, TREE_TYPE (zero));
14392 }
14393
14394 /* Verify identifiers. */
14395
14396 static void
14397 test_identifiers ()
14398 {
14399 tree identifier = get_identifier ("foo");
14400 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
14401 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
14402 }
14403
14404 /* Verify LABEL_DECL. */
14405
14406 static void
14407 test_labels ()
14408 {
14409 tree identifier = get_identifier ("err");
14410 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
14411 identifier, void_type_node);
14412 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
14413 ASSERT_FALSE (FORCED_LABEL (label_decl));
14414 }
14415
14416 /* Return a new VECTOR_CST node whose type is TYPE and whose values
14417 are given by VALS. */
14418
14419 static tree
14420 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
14421 {
14422 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
14423 tree_vector_builder builder (type, vals.length (), 1);
14424 builder.splice (vals);
14425 return builder.build ();
14426 }
14427
14428 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
14429
14430 static void
14431 check_vector_cst (vec<tree> expected, tree actual)
14432 {
14433 ASSERT_KNOWN_EQ (expected.length (),
14434 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
14435 for (unsigned int i = 0; i < expected.length (); ++i)
14436 ASSERT_EQ (wi::to_wide (expected[i]),
14437 wi::to_wide (vector_cst_elt (actual, i)));
14438 }
14439
14440 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
14441 and that its elements match EXPECTED. */
14442
14443 static void
14444 check_vector_cst_duplicate (vec<tree> expected, tree actual,
14445 unsigned int npatterns)
14446 {
14447 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14448 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
14449 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
14450 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
14451 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14452 check_vector_cst (expected, actual);
14453 }
14454
14455 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
14456 and NPATTERNS background elements, and that its elements match
14457 EXPECTED. */
14458
14459 static void
14460 check_vector_cst_fill (vec<tree> expected, tree actual,
14461 unsigned int npatterns)
14462 {
14463 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14464 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
14465 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
14466 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14467 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14468 check_vector_cst (expected, actual);
14469 }
14470
14471 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
14472 and that its elements match EXPECTED. */
14473
14474 static void
14475 check_vector_cst_stepped (vec<tree> expected, tree actual,
14476 unsigned int npatterns)
14477 {
14478 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14479 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
14480 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
14481 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14482 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
14483 check_vector_cst (expected, actual);
14484 }
14485
14486 /* Test the creation of VECTOR_CSTs. */
14487
14488 static void
14489 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
14490 {
14491 auto_vec<tree, 8> elements (8);
14492 elements.quick_grow (8);
14493 tree element_type = build_nonstandard_integer_type (16, true);
14494 tree vector_type = build_vector_type (element_type, 8);
14495
14496 /* Test a simple linear series with a base of 0 and a step of 1:
14497 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
14498 for (unsigned int i = 0; i < 8; ++i)
14499 elements[i] = build_int_cst (element_type, i);
14500 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
14501 check_vector_cst_stepped (elements, vector, 1);
14502
14503 /* Try the same with the first element replaced by 100:
14504 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
14505 elements[0] = build_int_cst (element_type, 100);
14506 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14507 check_vector_cst_stepped (elements, vector, 1);
14508
14509 /* Try a series that wraps around.
14510 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
14511 for (unsigned int i = 1; i < 8; ++i)
14512 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
14513 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14514 check_vector_cst_stepped (elements, vector, 1);
14515
14516 /* Try a downward series:
14517 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
14518 for (unsigned int i = 1; i < 8; ++i)
14519 elements[i] = build_int_cst (element_type, 80 - i);
14520 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14521 check_vector_cst_stepped (elements, vector, 1);
14522
14523 /* Try two interleaved series with different bases and steps:
14524 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
14525 elements[1] = build_int_cst (element_type, 53);
14526 for (unsigned int i = 2; i < 8; i += 2)
14527 {
14528 elements[i] = build_int_cst (element_type, 70 - i * 2);
14529 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
14530 }
14531 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14532 check_vector_cst_stepped (elements, vector, 2);
14533
14534 /* Try a duplicated value:
14535 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
14536 for (unsigned int i = 1; i < 8; ++i)
14537 elements[i] = elements[0];
14538 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14539 check_vector_cst_duplicate (elements, vector, 1);
14540
14541 /* Try an interleaved duplicated value:
14542 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
14543 elements[1] = build_int_cst (element_type, 55);
14544 for (unsigned int i = 2; i < 8; ++i)
14545 elements[i] = elements[i - 2];
14546 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14547 check_vector_cst_duplicate (elements, vector, 2);
14548
14549 /* Try a duplicated value with 2 exceptions
14550 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
14551 elements[0] = build_int_cst (element_type, 41);
14552 elements[1] = build_int_cst (element_type, 97);
14553 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14554 check_vector_cst_fill (elements, vector, 2);
14555
14556 /* Try with and without a step
14557 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
14558 for (unsigned int i = 3; i < 8; i += 2)
14559 elements[i] = build_int_cst (element_type, i * 7);
14560 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14561 check_vector_cst_stepped (elements, vector, 2);
14562
14563 /* Try a fully-general constant:
14564 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
14565 elements[5] = build_int_cst (element_type, 9990);
14566 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14567 check_vector_cst_fill (elements, vector, 4);
14568 }
14569
14570 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
14571 Helper function for test_location_wrappers, to deal with STRIP_NOPS
14572 modifying its argument in-place. */
14573
14574 static void
14575 check_strip_nops (tree node, tree expected)
14576 {
14577 STRIP_NOPS (node);
14578 ASSERT_EQ (expected, node);
14579 }
14580
14581 /* Verify location wrappers. */
14582
14583 static void
14584 test_location_wrappers ()
14585 {
14586 location_t loc = BUILTINS_LOCATION;
14587
14588 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
14589
14590 /* Wrapping a constant. */
14591 tree int_cst = build_int_cst (integer_type_node, 42);
14592 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
14593 ASSERT_FALSE (location_wrapper_p (int_cst));
14594
14595 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
14596 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
14597 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
14598 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
14599
14600 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
14601 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
14602
14603 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
14604 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
14605 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
14606 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
14607
14608 /* Wrapping a STRING_CST. */
14609 tree string_cst = build_string (4, "foo");
14610 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
14611 ASSERT_FALSE (location_wrapper_p (string_cst));
14612
14613 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
14614 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
14615 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
14616 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
14617 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
14618
14619
14620 /* Wrapping a variable. */
14621 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
14622 get_identifier ("some_int_var"),
14623 integer_type_node);
14624 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
14625 ASSERT_FALSE (location_wrapper_p (int_var));
14626
14627 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
14628 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
14629 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
14630 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
14631
14632 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
14633 wrapper. */
14634 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
14635 ASSERT_FALSE (location_wrapper_p (r_cast));
14636 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
14637
14638 /* Verify that STRIP_NOPS removes wrappers. */
14639 check_strip_nops (wrapped_int_cst, int_cst);
14640 check_strip_nops (wrapped_string_cst, string_cst);
14641 check_strip_nops (wrapped_int_var, int_var);
14642 }
14643
14644 /* Check that string escaping works correctly. */
14645
14646 static void
14647 test_escaped_strings (void)
14648 {
14649 int saved_cutoff;
14650 escaped_string msg;
14651
14652 msg.escape (NULL);
14653 /* ASSERT_STREQ does not accept NULL as a valid test
14654 result, so we have to use ASSERT_EQ instead. */
14655 ASSERT_EQ (NULL, (const char *) msg);
14656
14657 msg.escape ("");
14658 ASSERT_STREQ ("", (const char *) msg);
14659
14660 msg.escape ("foobar");
14661 ASSERT_STREQ ("foobar", (const char *) msg);
14662
14663 /* Ensure that we have -fmessage-length set to 0. */
14664 saved_cutoff = pp_line_cutoff (global_dc->printer);
14665 pp_line_cutoff (global_dc->printer) = 0;
14666
14667 msg.escape ("foo\nbar");
14668 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
14669
14670 msg.escape ("\a\b\f\n\r\t\v");
14671 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
14672
14673 /* Now repeat the tests with -fmessage-length set to 5. */
14674 pp_line_cutoff (global_dc->printer) = 5;
14675
14676 /* Note that the newline is not translated into an escape. */
14677 msg.escape ("foo\nbar");
14678 ASSERT_STREQ ("foo\nbar", (const char *) msg);
14679
14680 msg.escape ("\a\b\f\n\r\t\v");
14681 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
14682
14683 /* Restore the original message length setting. */
14684 pp_line_cutoff (global_dc->printer) = saved_cutoff;
14685 }
14686
14687 /* Run all of the selftests within this file. */
14688
14689 void
14690 tree_c_tests ()
14691 {
14692 test_integer_constants ();
14693 test_identifiers ();
14694 test_labels ();
14695 test_vector_cst_patterns ();
14696 test_location_wrappers ();
14697 test_escaped_strings ();
14698 }
14699
14700 } // namespace selftest
14701
14702 #endif /* CHECKING_P */
14703
14704 #include "gt-tree.h"