tree-core.h (enum omp_clause_code): Add OMP_CLAUSE__CONDTEMP_.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70
71 /* Tree code classes. */
72
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82
83 /* Table indexed by tree code giving number of expression
84 operands beyond the fixed part of the node structure.
85 Not used for types or decls. */
86
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96
97 /* Names of tree components.
98 Used for printing out the tree and error messages. */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108
109 /* Each tree code class has an associated string representation.
110 These must correspond to the tree_code_class entries. */
111
112 const char *const tree_code_class_strings[] =
113 {
114 "exceptional",
115 "constant",
116 "type",
117 "declaration",
118 "reference",
119 "comparison",
120 "unary",
121 "binary",
122 "statement",
123 "vl_exp",
124 "expression"
125 };
126
127 /* obstack.[ch] explicitly declined to prototype this. */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129
130 /* Statistics-gathering stuff. */
131
132 static uint64_t tree_code_counts[MAX_TREE_CODES];
133 uint64_t tree_node_counts[(int) all_kinds];
134 uint64_t tree_node_sizes[(int) all_kinds];
135
136 /* Keep in sync with tree.h:enum tree_node_kind. */
137 static const char * const tree_node_kind_names[] = {
138 "decls",
139 "types",
140 "blocks",
141 "stmts",
142 "refs",
143 "exprs",
144 "constants",
145 "identifiers",
146 "vecs",
147 "binfos",
148 "ssa names",
149 "constructors",
150 "random kinds",
151 "lang_decl kinds",
152 "lang_type kinds",
153 "omp clauses",
154 };
155
156 /* Unique id for next decl created. */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created. */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created. Use negative numbers,
161 to catch erroneous uses. */
162 static GTY(()) int next_debug_decl_uid;
163
164 /* Since we cannot rehash a type after it is in the table, we have to
165 keep the hash code. */
166
167 struct GTY((for_user)) type_hash {
168 unsigned long hash;
169 tree type;
170 };
171
172 /* Initial size of the hash table (rounded to next prime). */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177 static hashval_t hash (type_hash *t) { return t->hash; }
178 static bool equal (type_hash *a, type_hash *b);
179
180 static int
181 keep_cache_entry (type_hash *&t)
182 {
183 return ggc_marked_p (t->type);
184 }
185 };
186
187 /* Now here is the hash table. When recording a type, it is added to
188 the slot whose index is the hash code. Note that the hash table is
189 used for several kinds of types (function types, array types and
190 array index range types, for now). While all these live in the
191 same table, they are completely independent, and the hash code is
192 computed differently for each of these. */
193
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195
196 /* Hash table and temporary node for larger integer const values. */
197 static GTY (()) tree int_cst_node;
198
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201 static hashval_t hash (tree t);
202 static bool equal (tree x, tree y);
203 };
204
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208 for a given value. */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211 typedef std::pair<tree, const poly_wide_int *> compare_type;
212 static hashval_t hash (tree t);
213 static bool equal (tree x, const compare_type &y);
214 };
215
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217
218 /* Hash table for optimization flags and target option flags. Use the same
219 hash table for both sets of options. Nodes for building the current
220 optimization and target option nodes. The assumption is most of the time
221 the options created will already be in the hash table, so we avoid
222 allocating and freeing up a node repeatably. */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228 static hashval_t hash (tree t);
229 static bool equal (tree x, tree y);
230 };
231
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233
234 /* General tree->tree mapping structure for use in hash tables. */
235
236
237 static GTY ((cache))
238 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239
240 static GTY ((cache))
241 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246
247 static bool
248 equal (tree_vec_map *a, tree_vec_map *b)
249 {
250 return a->base.from == b->base.from;
251 }
252
253 static int
254 keep_cache_entry (tree_vec_map *&m)
255 {
256 return ggc_marked_p (m->base.from);
257 }
258 };
259
260 static GTY ((cache))
261 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267
268 static tree build_array_type_1 (tree, tree, bool, bool);
269
270 tree global_trees[TI_MAX];
271 tree integer_types[itk_none];
272
273 bool int_n_enabled_p[NUM_INT_N_ENTS];
274 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
275
276 bool tree_contains_struct[MAX_TREE_CODES][64];
277
278 /* Number of operands for each OpenMP clause. */
279 unsigned const char omp_clause_num_ops[] =
280 {
281 0, /* OMP_CLAUSE_ERROR */
282 1, /* OMP_CLAUSE_PRIVATE */
283 1, /* OMP_CLAUSE_SHARED */
284 1, /* OMP_CLAUSE_FIRSTPRIVATE */
285 2, /* OMP_CLAUSE_LASTPRIVATE */
286 5, /* OMP_CLAUSE_REDUCTION */
287 5, /* OMP_CLAUSE_TASK_REDUCTION */
288 5, /* OMP_CLAUSE_IN_REDUCTION */
289 1, /* OMP_CLAUSE_COPYIN */
290 1, /* OMP_CLAUSE_COPYPRIVATE */
291 3, /* OMP_CLAUSE_LINEAR */
292 2, /* OMP_CLAUSE_ALIGNED */
293 1, /* OMP_CLAUSE_DEPEND */
294 1, /* OMP_CLAUSE_NONTEMPORAL */
295 1, /* OMP_CLAUSE_UNIFORM */
296 1, /* OMP_CLAUSE_TO_DECLARE */
297 1, /* OMP_CLAUSE_LINK */
298 2, /* OMP_CLAUSE_FROM */
299 2, /* OMP_CLAUSE_TO */
300 2, /* OMP_CLAUSE_MAP */
301 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
302 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
303 2, /* OMP_CLAUSE__CACHE_ */
304 2, /* OMP_CLAUSE_GANG */
305 1, /* OMP_CLAUSE_ASYNC */
306 1, /* OMP_CLAUSE_WAIT */
307 0, /* OMP_CLAUSE_AUTO */
308 0, /* OMP_CLAUSE_SEQ */
309 1, /* OMP_CLAUSE__LOOPTEMP_ */
310 1, /* OMP_CLAUSE__REDUCTEMP_ */
311 1, /* OMP_CLAUSE__CONDTEMP_ */
312 1, /* OMP_CLAUSE_IF */
313 1, /* OMP_CLAUSE_NUM_THREADS */
314 1, /* OMP_CLAUSE_SCHEDULE */
315 0, /* OMP_CLAUSE_NOWAIT */
316 1, /* OMP_CLAUSE_ORDERED */
317 0, /* OMP_CLAUSE_DEFAULT */
318 3, /* OMP_CLAUSE_COLLAPSE */
319 0, /* OMP_CLAUSE_UNTIED */
320 1, /* OMP_CLAUSE_FINAL */
321 0, /* OMP_CLAUSE_MERGEABLE */
322 1, /* OMP_CLAUSE_DEVICE */
323 1, /* OMP_CLAUSE_DIST_SCHEDULE */
324 0, /* OMP_CLAUSE_INBRANCH */
325 0, /* OMP_CLAUSE_NOTINBRANCH */
326 1, /* OMP_CLAUSE_NUM_TEAMS */
327 1, /* OMP_CLAUSE_THREAD_LIMIT */
328 0, /* OMP_CLAUSE_PROC_BIND */
329 1, /* OMP_CLAUSE_SAFELEN */
330 1, /* OMP_CLAUSE_SIMDLEN */
331 0, /* OMP_CLAUSE_FOR */
332 0, /* OMP_CLAUSE_PARALLEL */
333 0, /* OMP_CLAUSE_SECTIONS */
334 0, /* OMP_CLAUSE_TASKGROUP */
335 1, /* OMP_CLAUSE_PRIORITY */
336 1, /* OMP_CLAUSE_GRAINSIZE */
337 1, /* OMP_CLAUSE_NUM_TASKS */
338 0, /* OMP_CLAUSE_NOGROUP */
339 0, /* OMP_CLAUSE_THREADS */
340 0, /* OMP_CLAUSE_SIMD */
341 1, /* OMP_CLAUSE_HINT */
342 0, /* OMP_CLAUSE_DEFALTMAP */
343 1, /* OMP_CLAUSE__SIMDUID_ */
344 0, /* OMP_CLAUSE__SIMT_ */
345 0, /* OMP_CLAUSE_INDEPENDENT */
346 1, /* OMP_CLAUSE_WORKER */
347 1, /* OMP_CLAUSE_VECTOR */
348 1, /* OMP_CLAUSE_NUM_GANGS */
349 1, /* OMP_CLAUSE_NUM_WORKERS */
350 1, /* OMP_CLAUSE_VECTOR_LENGTH */
351 3, /* OMP_CLAUSE_TILE */
352 2, /* OMP_CLAUSE__GRIDDIM_ */
353 0, /* OMP_CLAUSE_IF_PRESENT */
354 0, /* OMP_CLAUSE_FINALIZE */
355 };
356
357 const char * const omp_clause_code_name[] =
358 {
359 "error_clause",
360 "private",
361 "shared",
362 "firstprivate",
363 "lastprivate",
364 "reduction",
365 "task_reduction",
366 "in_reduction",
367 "copyin",
368 "copyprivate",
369 "linear",
370 "aligned",
371 "depend",
372 "nontemporal",
373 "uniform",
374 "to",
375 "link",
376 "from",
377 "to",
378 "map",
379 "use_device_ptr",
380 "is_device_ptr",
381 "_cache_",
382 "gang",
383 "async",
384 "wait",
385 "auto",
386 "seq",
387 "_looptemp_",
388 "_reductemp_",
389 "_condtemp_",
390 "if",
391 "num_threads",
392 "schedule",
393 "nowait",
394 "ordered",
395 "default",
396 "collapse",
397 "untied",
398 "final",
399 "mergeable",
400 "device",
401 "dist_schedule",
402 "inbranch",
403 "notinbranch",
404 "num_teams",
405 "thread_limit",
406 "proc_bind",
407 "safelen",
408 "simdlen",
409 "for",
410 "parallel",
411 "sections",
412 "taskgroup",
413 "priority",
414 "grainsize",
415 "num_tasks",
416 "nogroup",
417 "threads",
418 "simd",
419 "hint",
420 "defaultmap",
421 "_simduid_",
422 "_simt_",
423 "independent",
424 "worker",
425 "vector",
426 "num_gangs",
427 "num_workers",
428 "vector_length",
429 "tile",
430 "_griddim_",
431 "if_present",
432 "finalize",
433 };
434
435
436 /* Return the tree node structure used by tree code CODE. */
437
438 static inline enum tree_node_structure_enum
439 tree_node_structure_for_code (enum tree_code code)
440 {
441 switch (TREE_CODE_CLASS (code))
442 {
443 case tcc_declaration:
444 {
445 switch (code)
446 {
447 case FIELD_DECL:
448 return TS_FIELD_DECL;
449 case PARM_DECL:
450 return TS_PARM_DECL;
451 case VAR_DECL:
452 return TS_VAR_DECL;
453 case LABEL_DECL:
454 return TS_LABEL_DECL;
455 case RESULT_DECL:
456 return TS_RESULT_DECL;
457 case DEBUG_EXPR_DECL:
458 return TS_DECL_WRTL;
459 case CONST_DECL:
460 return TS_CONST_DECL;
461 case TYPE_DECL:
462 return TS_TYPE_DECL;
463 case FUNCTION_DECL:
464 return TS_FUNCTION_DECL;
465 case TRANSLATION_UNIT_DECL:
466 return TS_TRANSLATION_UNIT_DECL;
467 default:
468 return TS_DECL_NON_COMMON;
469 }
470 }
471 case tcc_type:
472 return TS_TYPE_NON_COMMON;
473 case tcc_reference:
474 case tcc_comparison:
475 case tcc_unary:
476 case tcc_binary:
477 case tcc_expression:
478 case tcc_statement:
479 case tcc_vl_exp:
480 return TS_EXP;
481 default: /* tcc_constant and tcc_exceptional */
482 break;
483 }
484 switch (code)
485 {
486 /* tcc_constant cases. */
487 case VOID_CST: return TS_TYPED;
488 case INTEGER_CST: return TS_INT_CST;
489 case POLY_INT_CST: return TS_POLY_INT_CST;
490 case REAL_CST: return TS_REAL_CST;
491 case FIXED_CST: return TS_FIXED_CST;
492 case COMPLEX_CST: return TS_COMPLEX;
493 case VECTOR_CST: return TS_VECTOR;
494 case STRING_CST: return TS_STRING;
495 /* tcc_exceptional cases. */
496 case ERROR_MARK: return TS_COMMON;
497 case IDENTIFIER_NODE: return TS_IDENTIFIER;
498 case TREE_LIST: return TS_LIST;
499 case TREE_VEC: return TS_VEC;
500 case SSA_NAME: return TS_SSA_NAME;
501 case PLACEHOLDER_EXPR: return TS_COMMON;
502 case STATEMENT_LIST: return TS_STATEMENT_LIST;
503 case BLOCK: return TS_BLOCK;
504 case CONSTRUCTOR: return TS_CONSTRUCTOR;
505 case TREE_BINFO: return TS_BINFO;
506 case OMP_CLAUSE: return TS_OMP_CLAUSE;
507 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
508 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
509
510 default:
511 gcc_unreachable ();
512 }
513 }
514
515
516 /* Initialize tree_contains_struct to describe the hierarchy of tree
517 nodes. */
518
519 static void
520 initialize_tree_contains_struct (void)
521 {
522 unsigned i;
523
524 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
525 {
526 enum tree_code code;
527 enum tree_node_structure_enum ts_code;
528
529 code = (enum tree_code) i;
530 ts_code = tree_node_structure_for_code (code);
531
532 /* Mark the TS structure itself. */
533 tree_contains_struct[code][ts_code] = 1;
534
535 /* Mark all the structures that TS is derived from. */
536 switch (ts_code)
537 {
538 case TS_TYPED:
539 case TS_BLOCK:
540 case TS_OPTIMIZATION:
541 case TS_TARGET_OPTION:
542 MARK_TS_BASE (code);
543 break;
544
545 case TS_COMMON:
546 case TS_INT_CST:
547 case TS_POLY_INT_CST:
548 case TS_REAL_CST:
549 case TS_FIXED_CST:
550 case TS_VECTOR:
551 case TS_STRING:
552 case TS_COMPLEX:
553 case TS_SSA_NAME:
554 case TS_CONSTRUCTOR:
555 case TS_EXP:
556 case TS_STATEMENT_LIST:
557 MARK_TS_TYPED (code);
558 break;
559
560 case TS_IDENTIFIER:
561 case TS_DECL_MINIMAL:
562 case TS_TYPE_COMMON:
563 case TS_LIST:
564 case TS_VEC:
565 case TS_BINFO:
566 case TS_OMP_CLAUSE:
567 MARK_TS_COMMON (code);
568 break;
569
570 case TS_TYPE_WITH_LANG_SPECIFIC:
571 MARK_TS_TYPE_COMMON (code);
572 break;
573
574 case TS_TYPE_NON_COMMON:
575 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
576 break;
577
578 case TS_DECL_COMMON:
579 MARK_TS_DECL_MINIMAL (code);
580 break;
581
582 case TS_DECL_WRTL:
583 case TS_CONST_DECL:
584 MARK_TS_DECL_COMMON (code);
585 break;
586
587 case TS_DECL_NON_COMMON:
588 MARK_TS_DECL_WITH_VIS (code);
589 break;
590
591 case TS_DECL_WITH_VIS:
592 case TS_PARM_DECL:
593 case TS_LABEL_DECL:
594 case TS_RESULT_DECL:
595 MARK_TS_DECL_WRTL (code);
596 break;
597
598 case TS_FIELD_DECL:
599 MARK_TS_DECL_COMMON (code);
600 break;
601
602 case TS_VAR_DECL:
603 MARK_TS_DECL_WITH_VIS (code);
604 break;
605
606 case TS_TYPE_DECL:
607 case TS_FUNCTION_DECL:
608 MARK_TS_DECL_NON_COMMON (code);
609 break;
610
611 case TS_TRANSLATION_UNIT_DECL:
612 MARK_TS_DECL_COMMON (code);
613 break;
614
615 default:
616 gcc_unreachable ();
617 }
618 }
619
620 /* Basic consistency checks for attributes used in fold. */
621 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
622 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
623 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
624 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
625 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
626 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
627 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
628 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
629 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
630 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
631 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
632 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
633 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
634 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
635 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
636 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
637 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
638 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
639 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
640 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
641 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
642 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
643 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
644 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
645 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
646 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
647 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
648 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
649 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
650 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
651 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
652 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
653 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
654 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
655 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
656 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
657 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
658 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
659 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
660 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
661 }
662
663
664 /* Init tree.c. */
665
666 void
667 init_ttree (void)
668 {
669 /* Initialize the hash table of types. */
670 type_hash_table
671 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
672
673 debug_expr_for_decl
674 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
675
676 value_expr_for_decl
677 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
678
679 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
680
681 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
682
683 int_cst_node = make_int_cst (1, 1);
684
685 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
686
687 cl_optimization_node = make_node (OPTIMIZATION_NODE);
688 cl_target_option_node = make_node (TARGET_OPTION_NODE);
689
690 /* Initialize the tree_contains_struct array. */
691 initialize_tree_contains_struct ();
692 lang_hooks.init_ts ();
693 }
694
695 \f
696 /* The name of the object as the assembler will see it (but before any
697 translations made by ASM_OUTPUT_LABELREF). Often this is the same
698 as DECL_NAME. It is an IDENTIFIER_NODE. */
699 tree
700 decl_assembler_name (tree decl)
701 {
702 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
703 lang_hooks.set_decl_assembler_name (decl);
704 return DECL_ASSEMBLER_NAME_RAW (decl);
705 }
706
707 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
708 (either of which may be NULL). Inform the FE, if this changes the
709 name. */
710
711 void
712 overwrite_decl_assembler_name (tree decl, tree name)
713 {
714 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
715 lang_hooks.overwrite_decl_assembler_name (decl, name);
716 }
717
718 /* When the target supports COMDAT groups, this indicates which group the
719 DECL is associated with. This can be either an IDENTIFIER_NODE or a
720 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
721 tree
722 decl_comdat_group (const_tree node)
723 {
724 struct symtab_node *snode = symtab_node::get (node);
725 if (!snode)
726 return NULL;
727 return snode->get_comdat_group ();
728 }
729
730 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
731 tree
732 decl_comdat_group_id (const_tree node)
733 {
734 struct symtab_node *snode = symtab_node::get (node);
735 if (!snode)
736 return NULL;
737 return snode->get_comdat_group_id ();
738 }
739
740 /* When the target supports named section, return its name as IDENTIFIER_NODE
741 or NULL if it is in no section. */
742 const char *
743 decl_section_name (const_tree node)
744 {
745 struct symtab_node *snode = symtab_node::get (node);
746 if (!snode)
747 return NULL;
748 return snode->get_section ();
749 }
750
751 /* Set section name of NODE to VALUE (that is expected to be
752 identifier node) */
753 void
754 set_decl_section_name (tree node, const char *value)
755 {
756 struct symtab_node *snode;
757
758 if (value == NULL)
759 {
760 snode = symtab_node::get (node);
761 if (!snode)
762 return;
763 }
764 else if (VAR_P (node))
765 snode = varpool_node::get_create (node);
766 else
767 snode = cgraph_node::get_create (node);
768 snode->set_section (value);
769 }
770
771 /* Return TLS model of a variable NODE. */
772 enum tls_model
773 decl_tls_model (const_tree node)
774 {
775 struct varpool_node *snode = varpool_node::get (node);
776 if (!snode)
777 return TLS_MODEL_NONE;
778 return snode->tls_model;
779 }
780
781 /* Set TLS model of variable NODE to MODEL. */
782 void
783 set_decl_tls_model (tree node, enum tls_model model)
784 {
785 struct varpool_node *vnode;
786
787 if (model == TLS_MODEL_NONE)
788 {
789 vnode = varpool_node::get (node);
790 if (!vnode)
791 return;
792 }
793 else
794 vnode = varpool_node::get_create (node);
795 vnode->tls_model = model;
796 }
797
798 /* Compute the number of bytes occupied by a tree with code CODE.
799 This function cannot be used for nodes that have variable sizes,
800 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
801 size_t
802 tree_code_size (enum tree_code code)
803 {
804 switch (TREE_CODE_CLASS (code))
805 {
806 case tcc_declaration: /* A decl node */
807 switch (code)
808 {
809 case FIELD_DECL: return sizeof (tree_field_decl);
810 case PARM_DECL: return sizeof (tree_parm_decl);
811 case VAR_DECL: return sizeof (tree_var_decl);
812 case LABEL_DECL: return sizeof (tree_label_decl);
813 case RESULT_DECL: return sizeof (tree_result_decl);
814 case CONST_DECL: return sizeof (tree_const_decl);
815 case TYPE_DECL: return sizeof (tree_type_decl);
816 case FUNCTION_DECL: return sizeof (tree_function_decl);
817 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
818 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
819 case NAMESPACE_DECL:
820 case IMPORTED_DECL:
821 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
822 default:
823 gcc_checking_assert (code >= NUM_TREE_CODES);
824 return lang_hooks.tree_size (code);
825 }
826
827 case tcc_type: /* a type node */
828 switch (code)
829 {
830 case OFFSET_TYPE:
831 case ENUMERAL_TYPE:
832 case BOOLEAN_TYPE:
833 case INTEGER_TYPE:
834 case REAL_TYPE:
835 case POINTER_TYPE:
836 case REFERENCE_TYPE:
837 case NULLPTR_TYPE:
838 case FIXED_POINT_TYPE:
839 case COMPLEX_TYPE:
840 case VECTOR_TYPE:
841 case ARRAY_TYPE:
842 case RECORD_TYPE:
843 case UNION_TYPE:
844 case QUAL_UNION_TYPE:
845 case VOID_TYPE:
846 case FUNCTION_TYPE:
847 case METHOD_TYPE:
848 case LANG_TYPE: return sizeof (tree_type_non_common);
849 default:
850 gcc_checking_assert (code >= NUM_TREE_CODES);
851 return lang_hooks.tree_size (code);
852 }
853
854 case tcc_reference: /* a reference */
855 case tcc_expression: /* an expression */
856 case tcc_statement: /* an expression with side effects */
857 case tcc_comparison: /* a comparison expression */
858 case tcc_unary: /* a unary arithmetic expression */
859 case tcc_binary: /* a binary arithmetic expression */
860 return (sizeof (struct tree_exp)
861 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
862
863 case tcc_constant: /* a constant */
864 switch (code)
865 {
866 case VOID_CST: return sizeof (tree_typed);
867 case INTEGER_CST: gcc_unreachable ();
868 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
869 case REAL_CST: return sizeof (tree_real_cst);
870 case FIXED_CST: return sizeof (tree_fixed_cst);
871 case COMPLEX_CST: return sizeof (tree_complex);
872 case VECTOR_CST: gcc_unreachable ();
873 case STRING_CST: gcc_unreachable ();
874 default:
875 gcc_checking_assert (code >= NUM_TREE_CODES);
876 return lang_hooks.tree_size (code);
877 }
878
879 case tcc_exceptional: /* something random, like an identifier. */
880 switch (code)
881 {
882 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
883 case TREE_LIST: return sizeof (tree_list);
884
885 case ERROR_MARK:
886 case PLACEHOLDER_EXPR: return sizeof (tree_common);
887
888 case TREE_VEC: gcc_unreachable ();
889 case OMP_CLAUSE: gcc_unreachable ();
890
891 case SSA_NAME: return sizeof (tree_ssa_name);
892
893 case STATEMENT_LIST: return sizeof (tree_statement_list);
894 case BLOCK: return sizeof (struct tree_block);
895 case CONSTRUCTOR: return sizeof (tree_constructor);
896 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
897 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
898
899 default:
900 gcc_checking_assert (code >= NUM_TREE_CODES);
901 return lang_hooks.tree_size (code);
902 }
903
904 default:
905 gcc_unreachable ();
906 }
907 }
908
909 /* Compute the number of bytes occupied by NODE. This routine only
910 looks at TREE_CODE, except for those nodes that have variable sizes. */
911 size_t
912 tree_size (const_tree node)
913 {
914 const enum tree_code code = TREE_CODE (node);
915 switch (code)
916 {
917 case INTEGER_CST:
918 return (sizeof (struct tree_int_cst)
919 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
920
921 case TREE_BINFO:
922 return (offsetof (struct tree_binfo, base_binfos)
923 + vec<tree, va_gc>
924 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
925
926 case TREE_VEC:
927 return (sizeof (struct tree_vec)
928 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
929
930 case VECTOR_CST:
931 return (sizeof (struct tree_vector)
932 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
933
934 case STRING_CST:
935 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
936
937 case OMP_CLAUSE:
938 return (sizeof (struct tree_omp_clause)
939 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
940 * sizeof (tree));
941
942 default:
943 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
944 return (sizeof (struct tree_exp)
945 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
946 else
947 return tree_code_size (code);
948 }
949 }
950
951 /* Return tree node kind based on tree CODE. */
952
953 static tree_node_kind
954 get_stats_node_kind (enum tree_code code)
955 {
956 enum tree_code_class type = TREE_CODE_CLASS (code);
957
958 switch (type)
959 {
960 case tcc_declaration: /* A decl node */
961 return d_kind;
962 case tcc_type: /* a type node */
963 return t_kind;
964 case tcc_statement: /* an expression with side effects */
965 return s_kind;
966 case tcc_reference: /* a reference */
967 return r_kind;
968 case tcc_expression: /* an expression */
969 case tcc_comparison: /* a comparison expression */
970 case tcc_unary: /* a unary arithmetic expression */
971 case tcc_binary: /* a binary arithmetic expression */
972 return e_kind;
973 case tcc_constant: /* a constant */
974 return c_kind;
975 case tcc_exceptional: /* something random, like an identifier. */
976 switch (code)
977 {
978 case IDENTIFIER_NODE:
979 return id_kind;
980 case TREE_VEC:
981 return vec_kind;
982 case TREE_BINFO:
983 return binfo_kind;
984 case SSA_NAME:
985 return ssa_name_kind;
986 case BLOCK:
987 return b_kind;
988 case CONSTRUCTOR:
989 return constr_kind;
990 case OMP_CLAUSE:
991 return omp_clause_kind;
992 default:
993 return x_kind;
994 }
995 break;
996 case tcc_vl_exp:
997 return e_kind;
998 default:
999 gcc_unreachable ();
1000 }
1001 }
1002
1003 /* Record interesting allocation statistics for a tree node with CODE
1004 and LENGTH. */
1005
1006 static void
1007 record_node_allocation_statistics (enum tree_code code, size_t length)
1008 {
1009 if (!GATHER_STATISTICS)
1010 return;
1011
1012 tree_node_kind kind = get_stats_node_kind (code);
1013
1014 tree_code_counts[(int) code]++;
1015 tree_node_counts[(int) kind]++;
1016 tree_node_sizes[(int) kind] += length;
1017 }
1018
1019 /* Allocate and return a new UID from the DECL_UID namespace. */
1020
1021 int
1022 allocate_decl_uid (void)
1023 {
1024 return next_decl_uid++;
1025 }
1026
1027 /* Return a newly allocated node of code CODE. For decl and type
1028 nodes, some other fields are initialized. The rest of the node is
1029 initialized to zero. This function cannot be used for TREE_VEC,
1030 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1031 tree_code_size.
1032
1033 Achoo! I got a code in the node. */
1034
1035 tree
1036 make_node (enum tree_code code MEM_STAT_DECL)
1037 {
1038 tree t;
1039 enum tree_code_class type = TREE_CODE_CLASS (code);
1040 size_t length = tree_code_size (code);
1041
1042 record_node_allocation_statistics (code, length);
1043
1044 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1045 TREE_SET_CODE (t, code);
1046
1047 switch (type)
1048 {
1049 case tcc_statement:
1050 if (code != DEBUG_BEGIN_STMT)
1051 TREE_SIDE_EFFECTS (t) = 1;
1052 break;
1053
1054 case tcc_declaration:
1055 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1056 {
1057 if (code == FUNCTION_DECL)
1058 {
1059 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1060 SET_DECL_MODE (t, FUNCTION_MODE);
1061 }
1062 else
1063 SET_DECL_ALIGN (t, 1);
1064 }
1065 DECL_SOURCE_LOCATION (t) = input_location;
1066 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1067 DECL_UID (t) = --next_debug_decl_uid;
1068 else
1069 {
1070 DECL_UID (t) = allocate_decl_uid ();
1071 SET_DECL_PT_UID (t, -1);
1072 }
1073 if (TREE_CODE (t) == LABEL_DECL)
1074 LABEL_DECL_UID (t) = -1;
1075
1076 break;
1077
1078 case tcc_type:
1079 TYPE_UID (t) = next_type_uid++;
1080 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1081 TYPE_USER_ALIGN (t) = 0;
1082 TYPE_MAIN_VARIANT (t) = t;
1083 TYPE_CANONICAL (t) = t;
1084
1085 /* Default to no attributes for type, but let target change that. */
1086 TYPE_ATTRIBUTES (t) = NULL_TREE;
1087 targetm.set_default_type_attributes (t);
1088
1089 /* We have not yet computed the alias set for this type. */
1090 TYPE_ALIAS_SET (t) = -1;
1091 break;
1092
1093 case tcc_constant:
1094 TREE_CONSTANT (t) = 1;
1095 break;
1096
1097 case tcc_expression:
1098 switch (code)
1099 {
1100 case INIT_EXPR:
1101 case MODIFY_EXPR:
1102 case VA_ARG_EXPR:
1103 case PREDECREMENT_EXPR:
1104 case PREINCREMENT_EXPR:
1105 case POSTDECREMENT_EXPR:
1106 case POSTINCREMENT_EXPR:
1107 /* All of these have side-effects, no matter what their
1108 operands are. */
1109 TREE_SIDE_EFFECTS (t) = 1;
1110 break;
1111
1112 default:
1113 break;
1114 }
1115 break;
1116
1117 case tcc_exceptional:
1118 switch (code)
1119 {
1120 case TARGET_OPTION_NODE:
1121 TREE_TARGET_OPTION(t)
1122 = ggc_cleared_alloc<struct cl_target_option> ();
1123 break;
1124
1125 case OPTIMIZATION_NODE:
1126 TREE_OPTIMIZATION (t)
1127 = ggc_cleared_alloc<struct cl_optimization> ();
1128 break;
1129
1130 default:
1131 break;
1132 }
1133 break;
1134
1135 default:
1136 /* Other classes need no special treatment. */
1137 break;
1138 }
1139
1140 return t;
1141 }
1142
1143 /* Free tree node. */
1144
1145 void
1146 free_node (tree node)
1147 {
1148 enum tree_code code = TREE_CODE (node);
1149 if (GATHER_STATISTICS)
1150 {
1151 enum tree_node_kind kind = get_stats_node_kind (code);
1152
1153 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1154 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1155 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1156
1157 tree_code_counts[(int) TREE_CODE (node)]--;
1158 tree_node_counts[(int) kind]--;
1159 tree_node_sizes[(int) kind] -= tree_size (node);
1160 }
1161 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1162 vec_free (CONSTRUCTOR_ELTS (node));
1163 else if (code == BLOCK)
1164 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1165 else if (code == TREE_BINFO)
1166 vec_free (BINFO_BASE_ACCESSES (node));
1167 ggc_free (node);
1168 }
1169 \f
1170 /* Return a new node with the same contents as NODE except that its
1171 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1172
1173 tree
1174 copy_node (tree node MEM_STAT_DECL)
1175 {
1176 tree t;
1177 enum tree_code code = TREE_CODE (node);
1178 size_t length;
1179
1180 gcc_assert (code != STATEMENT_LIST);
1181
1182 length = tree_size (node);
1183 record_node_allocation_statistics (code, length);
1184 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1185 memcpy (t, node, length);
1186
1187 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1188 TREE_CHAIN (t) = 0;
1189 TREE_ASM_WRITTEN (t) = 0;
1190 TREE_VISITED (t) = 0;
1191
1192 if (TREE_CODE_CLASS (code) == tcc_declaration)
1193 {
1194 if (code == DEBUG_EXPR_DECL)
1195 DECL_UID (t) = --next_debug_decl_uid;
1196 else
1197 {
1198 DECL_UID (t) = allocate_decl_uid ();
1199 if (DECL_PT_UID_SET_P (node))
1200 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1201 }
1202 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1203 && DECL_HAS_VALUE_EXPR_P (node))
1204 {
1205 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1206 DECL_HAS_VALUE_EXPR_P (t) = 1;
1207 }
1208 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1209 if (VAR_P (node))
1210 {
1211 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1212 t->decl_with_vis.symtab_node = NULL;
1213 }
1214 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1215 {
1216 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1217 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1218 }
1219 if (TREE_CODE (node) == FUNCTION_DECL)
1220 {
1221 DECL_STRUCT_FUNCTION (t) = NULL;
1222 t->decl_with_vis.symtab_node = NULL;
1223 }
1224 }
1225 else if (TREE_CODE_CLASS (code) == tcc_type)
1226 {
1227 TYPE_UID (t) = next_type_uid++;
1228 /* The following is so that the debug code for
1229 the copy is different from the original type.
1230 The two statements usually duplicate each other
1231 (because they clear fields of the same union),
1232 but the optimizer should catch that. */
1233 TYPE_SYMTAB_ADDRESS (t) = 0;
1234 TYPE_SYMTAB_DIE (t) = 0;
1235
1236 /* Do not copy the values cache. */
1237 if (TYPE_CACHED_VALUES_P (t))
1238 {
1239 TYPE_CACHED_VALUES_P (t) = 0;
1240 TYPE_CACHED_VALUES (t) = NULL_TREE;
1241 }
1242 }
1243 else if (code == TARGET_OPTION_NODE)
1244 {
1245 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1246 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1247 sizeof (struct cl_target_option));
1248 }
1249 else if (code == OPTIMIZATION_NODE)
1250 {
1251 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1252 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1253 sizeof (struct cl_optimization));
1254 }
1255
1256 return t;
1257 }
1258
1259 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1260 For example, this can copy a list made of TREE_LIST nodes. */
1261
1262 tree
1263 copy_list (tree list)
1264 {
1265 tree head;
1266 tree prev, next;
1267
1268 if (list == 0)
1269 return 0;
1270
1271 head = prev = copy_node (list);
1272 next = TREE_CHAIN (list);
1273 while (next)
1274 {
1275 TREE_CHAIN (prev) = copy_node (next);
1276 prev = TREE_CHAIN (prev);
1277 next = TREE_CHAIN (next);
1278 }
1279 return head;
1280 }
1281
1282 \f
1283 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1284 INTEGER_CST with value CST and type TYPE. */
1285
1286 static unsigned int
1287 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1288 {
1289 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1290 /* We need extra HWIs if CST is an unsigned integer with its
1291 upper bit set. */
1292 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1293 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1294 return cst.get_len ();
1295 }
1296
1297 /* Return a new INTEGER_CST with value CST and type TYPE. */
1298
1299 static tree
1300 build_new_int_cst (tree type, const wide_int &cst)
1301 {
1302 unsigned int len = cst.get_len ();
1303 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1304 tree nt = make_int_cst (len, ext_len);
1305
1306 if (len < ext_len)
1307 {
1308 --ext_len;
1309 TREE_INT_CST_ELT (nt, ext_len)
1310 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1311 for (unsigned int i = len; i < ext_len; ++i)
1312 TREE_INT_CST_ELT (nt, i) = -1;
1313 }
1314 else if (TYPE_UNSIGNED (type)
1315 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1316 {
1317 len--;
1318 TREE_INT_CST_ELT (nt, len)
1319 = zext_hwi (cst.elt (len),
1320 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1321 }
1322
1323 for (unsigned int i = 0; i < len; i++)
1324 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1325 TREE_TYPE (nt) = type;
1326 return nt;
1327 }
1328
1329 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1330
1331 static tree
1332 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1333 CXX_MEM_STAT_INFO)
1334 {
1335 size_t length = sizeof (struct tree_poly_int_cst);
1336 record_node_allocation_statistics (POLY_INT_CST, length);
1337
1338 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1339
1340 TREE_SET_CODE (t, POLY_INT_CST);
1341 TREE_CONSTANT (t) = 1;
1342 TREE_TYPE (t) = type;
1343 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1344 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1345 return t;
1346 }
1347
1348 /* Create a constant tree that contains CST sign-extended to TYPE. */
1349
1350 tree
1351 build_int_cst (tree type, poly_int64 cst)
1352 {
1353 /* Support legacy code. */
1354 if (!type)
1355 type = integer_type_node;
1356
1357 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1358 }
1359
1360 /* Create a constant tree that contains CST zero-extended to TYPE. */
1361
1362 tree
1363 build_int_cstu (tree type, poly_uint64 cst)
1364 {
1365 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1366 }
1367
1368 /* Create a constant tree that contains CST sign-extended to TYPE. */
1369
1370 tree
1371 build_int_cst_type (tree type, poly_int64 cst)
1372 {
1373 gcc_assert (type);
1374 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1375 }
1376
1377 /* Constructs tree in type TYPE from with value given by CST. Signedness
1378 of CST is assumed to be the same as the signedness of TYPE. */
1379
1380 tree
1381 double_int_to_tree (tree type, double_int cst)
1382 {
1383 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1384 }
1385
1386 /* We force the wide_int CST to the range of the type TYPE by sign or
1387 zero extending it. OVERFLOWABLE indicates if we are interested in
1388 overflow of the value, when >0 we are only interested in signed
1389 overflow, for <0 we are interested in any overflow. OVERFLOWED
1390 indicates whether overflow has already occurred. CONST_OVERFLOWED
1391 indicates whether constant overflow has already occurred. We force
1392 T's value to be within range of T's type (by setting to 0 or 1 all
1393 the bits outside the type's range). We set TREE_OVERFLOWED if,
1394 OVERFLOWED is nonzero,
1395 or OVERFLOWABLE is >0 and signed overflow occurs
1396 or OVERFLOWABLE is <0 and any overflow occurs
1397 We return a new tree node for the extended wide_int. The node
1398 is shared if no overflow flags are set. */
1399
1400
1401 tree
1402 force_fit_type (tree type, const poly_wide_int_ref &cst,
1403 int overflowable, bool overflowed)
1404 {
1405 signop sign = TYPE_SIGN (type);
1406
1407 /* If we need to set overflow flags, return a new unshared node. */
1408 if (overflowed || !wi::fits_to_tree_p (cst, type))
1409 {
1410 if (overflowed
1411 || overflowable < 0
1412 || (overflowable > 0 && sign == SIGNED))
1413 {
1414 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1415 sign);
1416 tree t;
1417 if (tmp.is_constant ())
1418 t = build_new_int_cst (type, tmp.coeffs[0]);
1419 else
1420 {
1421 tree coeffs[NUM_POLY_INT_COEFFS];
1422 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1423 {
1424 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1425 TREE_OVERFLOW (coeffs[i]) = 1;
1426 }
1427 t = build_new_poly_int_cst (type, coeffs);
1428 }
1429 TREE_OVERFLOW (t) = 1;
1430 return t;
1431 }
1432 }
1433
1434 /* Else build a shared node. */
1435 return wide_int_to_tree (type, cst);
1436 }
1437
1438 /* These are the hash table functions for the hash table of INTEGER_CST
1439 nodes of a sizetype. */
1440
1441 /* Return the hash code X, an INTEGER_CST. */
1442
1443 hashval_t
1444 int_cst_hasher::hash (tree x)
1445 {
1446 const_tree const t = x;
1447 hashval_t code = TYPE_UID (TREE_TYPE (t));
1448 int i;
1449
1450 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1451 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1452
1453 return code;
1454 }
1455
1456 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1457 is the same as that given by *Y, which is the same. */
1458
1459 bool
1460 int_cst_hasher::equal (tree x, tree y)
1461 {
1462 const_tree const xt = x;
1463 const_tree const yt = y;
1464
1465 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1466 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1467 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1468 return false;
1469
1470 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1471 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1472 return false;
1473
1474 return true;
1475 }
1476
1477 /* Create an INT_CST node of TYPE and value CST.
1478 The returned node is always shared. For small integers we use a
1479 per-type vector cache, for larger ones we use a single hash table.
1480 The value is extended from its precision according to the sign of
1481 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1482 the upper bits and ensures that hashing and value equality based
1483 upon the underlying HOST_WIDE_INTs works without masking. */
1484
1485 static tree
1486 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1487 {
1488 tree t;
1489 int ix = -1;
1490 int limit = 0;
1491
1492 gcc_assert (type);
1493 unsigned int prec = TYPE_PRECISION (type);
1494 signop sgn = TYPE_SIGN (type);
1495
1496 /* Verify that everything is canonical. */
1497 int l = pcst.get_len ();
1498 if (l > 1)
1499 {
1500 if (pcst.elt (l - 1) == 0)
1501 gcc_checking_assert (pcst.elt (l - 2) < 0);
1502 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1503 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1504 }
1505
1506 wide_int cst = wide_int::from (pcst, prec, sgn);
1507 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1508
1509 if (ext_len == 1)
1510 {
1511 /* We just need to store a single HOST_WIDE_INT. */
1512 HOST_WIDE_INT hwi;
1513 if (TYPE_UNSIGNED (type))
1514 hwi = cst.to_uhwi ();
1515 else
1516 hwi = cst.to_shwi ();
1517
1518 switch (TREE_CODE (type))
1519 {
1520 case NULLPTR_TYPE:
1521 gcc_assert (hwi == 0);
1522 /* Fallthru. */
1523
1524 case POINTER_TYPE:
1525 case REFERENCE_TYPE:
1526 /* Cache NULL pointer and zero bounds. */
1527 if (hwi == 0)
1528 {
1529 limit = 1;
1530 ix = 0;
1531 }
1532 break;
1533
1534 case BOOLEAN_TYPE:
1535 /* Cache false or true. */
1536 limit = 2;
1537 if (IN_RANGE (hwi, 0, 1))
1538 ix = hwi;
1539 break;
1540
1541 case INTEGER_TYPE:
1542 case OFFSET_TYPE:
1543 if (TYPE_SIGN (type) == UNSIGNED)
1544 {
1545 /* Cache [0, N). */
1546 limit = INTEGER_SHARE_LIMIT;
1547 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1548 ix = hwi;
1549 }
1550 else
1551 {
1552 /* Cache [-1, N). */
1553 limit = INTEGER_SHARE_LIMIT + 1;
1554 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1555 ix = hwi + 1;
1556 }
1557 break;
1558
1559 case ENUMERAL_TYPE:
1560 break;
1561
1562 default:
1563 gcc_unreachable ();
1564 }
1565
1566 if (ix >= 0)
1567 {
1568 /* Look for it in the type's vector of small shared ints. */
1569 if (!TYPE_CACHED_VALUES_P (type))
1570 {
1571 TYPE_CACHED_VALUES_P (type) = 1;
1572 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1573 }
1574
1575 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1576 if (t)
1577 /* Make sure no one is clobbering the shared constant. */
1578 gcc_checking_assert (TREE_TYPE (t) == type
1579 && TREE_INT_CST_NUNITS (t) == 1
1580 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1581 && TREE_INT_CST_EXT_NUNITS (t) == 1
1582 && TREE_INT_CST_ELT (t, 0) == hwi);
1583 else
1584 {
1585 /* Create a new shared int. */
1586 t = build_new_int_cst (type, cst);
1587 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1588 }
1589 }
1590 else
1591 {
1592 /* Use the cache of larger shared ints, using int_cst_node as
1593 a temporary. */
1594
1595 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1596 TREE_TYPE (int_cst_node) = type;
1597
1598 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1599 t = *slot;
1600 if (!t)
1601 {
1602 /* Insert this one into the hash table. */
1603 t = int_cst_node;
1604 *slot = t;
1605 /* Make a new node for next time round. */
1606 int_cst_node = make_int_cst (1, 1);
1607 }
1608 }
1609 }
1610 else
1611 {
1612 /* The value either hashes properly or we drop it on the floor
1613 for the gc to take care of. There will not be enough of them
1614 to worry about. */
1615
1616 tree nt = build_new_int_cst (type, cst);
1617 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1618 t = *slot;
1619 if (!t)
1620 {
1621 /* Insert this one into the hash table. */
1622 t = nt;
1623 *slot = t;
1624 }
1625 else
1626 ggc_free (nt);
1627 }
1628
1629 return t;
1630 }
1631
1632 hashval_t
1633 poly_int_cst_hasher::hash (tree t)
1634 {
1635 inchash::hash hstate;
1636
1637 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1638 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1639 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1640
1641 return hstate.end ();
1642 }
1643
1644 bool
1645 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1646 {
1647 if (TREE_TYPE (x) != y.first)
1648 return false;
1649 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1650 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1651 return false;
1652 return true;
1653 }
1654
1655 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1656 The elements must also have type TYPE. */
1657
1658 tree
1659 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1660 {
1661 unsigned int prec = TYPE_PRECISION (type);
1662 gcc_assert (prec <= values.coeffs[0].get_precision ());
1663 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1664
1665 inchash::hash h;
1666 h.add_int (TYPE_UID (type));
1667 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1668 h.add_wide_int (c.coeffs[i]);
1669 poly_int_cst_hasher::compare_type comp (type, &c);
1670 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1671 INSERT);
1672 if (*slot == NULL_TREE)
1673 {
1674 tree coeffs[NUM_POLY_INT_COEFFS];
1675 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1676 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1677 *slot = build_new_poly_int_cst (type, coeffs);
1678 }
1679 return *slot;
1680 }
1681
1682 /* Create a constant tree with value VALUE in type TYPE. */
1683
1684 tree
1685 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1686 {
1687 if (value.is_constant ())
1688 return wide_int_to_tree_1 (type, value.coeffs[0]);
1689 return build_poly_int_cst (type, value);
1690 }
1691
1692 void
1693 cache_integer_cst (tree t)
1694 {
1695 tree type = TREE_TYPE (t);
1696 int ix = -1;
1697 int limit = 0;
1698 int prec = TYPE_PRECISION (type);
1699
1700 gcc_assert (!TREE_OVERFLOW (t));
1701
1702 switch (TREE_CODE (type))
1703 {
1704 case NULLPTR_TYPE:
1705 gcc_assert (integer_zerop (t));
1706 /* Fallthru. */
1707
1708 case POINTER_TYPE:
1709 case REFERENCE_TYPE:
1710 /* Cache NULL pointer. */
1711 if (integer_zerop (t))
1712 {
1713 limit = 1;
1714 ix = 0;
1715 }
1716 break;
1717
1718 case BOOLEAN_TYPE:
1719 /* Cache false or true. */
1720 limit = 2;
1721 if (wi::ltu_p (wi::to_wide (t), 2))
1722 ix = TREE_INT_CST_ELT (t, 0);
1723 break;
1724
1725 case INTEGER_TYPE:
1726 case OFFSET_TYPE:
1727 if (TYPE_UNSIGNED (type))
1728 {
1729 /* Cache 0..N */
1730 limit = INTEGER_SHARE_LIMIT;
1731
1732 /* This is a little hokie, but if the prec is smaller than
1733 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1734 obvious test will not get the correct answer. */
1735 if (prec < HOST_BITS_PER_WIDE_INT)
1736 {
1737 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1738 ix = tree_to_uhwi (t);
1739 }
1740 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1741 ix = tree_to_uhwi (t);
1742 }
1743 else
1744 {
1745 /* Cache -1..N */
1746 limit = INTEGER_SHARE_LIMIT + 1;
1747
1748 if (integer_minus_onep (t))
1749 ix = 0;
1750 else if (!wi::neg_p (wi::to_wide (t)))
1751 {
1752 if (prec < HOST_BITS_PER_WIDE_INT)
1753 {
1754 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1755 ix = tree_to_shwi (t) + 1;
1756 }
1757 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1758 ix = tree_to_shwi (t) + 1;
1759 }
1760 }
1761 break;
1762
1763 case ENUMERAL_TYPE:
1764 break;
1765
1766 default:
1767 gcc_unreachable ();
1768 }
1769
1770 if (ix >= 0)
1771 {
1772 /* Look for it in the type's vector of small shared ints. */
1773 if (!TYPE_CACHED_VALUES_P (type))
1774 {
1775 TYPE_CACHED_VALUES_P (type) = 1;
1776 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1777 }
1778
1779 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1780 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1781 }
1782 else
1783 {
1784 /* Use the cache of larger shared ints. */
1785 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1786 /* If there is already an entry for the number verify it's the
1787 same. */
1788 if (*slot)
1789 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1790 else
1791 /* Otherwise insert this one into the hash table. */
1792 *slot = t;
1793 }
1794 }
1795
1796
1797 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1798 and the rest are zeros. */
1799
1800 tree
1801 build_low_bits_mask (tree type, unsigned bits)
1802 {
1803 gcc_assert (bits <= TYPE_PRECISION (type));
1804
1805 return wide_int_to_tree (type, wi::mask (bits, false,
1806 TYPE_PRECISION (type)));
1807 }
1808
1809 /* Checks that X is integer constant that can be expressed in (unsigned)
1810 HOST_WIDE_INT without loss of precision. */
1811
1812 bool
1813 cst_and_fits_in_hwi (const_tree x)
1814 {
1815 return (TREE_CODE (x) == INTEGER_CST
1816 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1817 }
1818
1819 /* Build a newly constructed VECTOR_CST with the given values of
1820 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1821
1822 tree
1823 make_vector (unsigned log2_npatterns,
1824 unsigned int nelts_per_pattern MEM_STAT_DECL)
1825 {
1826 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1827 tree t;
1828 unsigned npatterns = 1 << log2_npatterns;
1829 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1830 unsigned length = (sizeof (struct tree_vector)
1831 + (encoded_nelts - 1) * sizeof (tree));
1832
1833 record_node_allocation_statistics (VECTOR_CST, length);
1834
1835 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1836
1837 TREE_SET_CODE (t, VECTOR_CST);
1838 TREE_CONSTANT (t) = 1;
1839 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1840 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1841
1842 return t;
1843 }
1844
1845 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1846 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1847
1848 tree
1849 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1850 {
1851 unsigned HOST_WIDE_INT idx, nelts;
1852 tree value;
1853
1854 /* We can't construct a VECTOR_CST for a variable number of elements. */
1855 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1856 tree_vector_builder vec (type, nelts, 1);
1857 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1858 {
1859 if (TREE_CODE (value) == VECTOR_CST)
1860 {
1861 /* If NELTS is constant then this must be too. */
1862 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1863 for (unsigned i = 0; i < sub_nelts; ++i)
1864 vec.quick_push (VECTOR_CST_ELT (value, i));
1865 }
1866 else
1867 vec.quick_push (value);
1868 }
1869 while (vec.length () < nelts)
1870 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1871
1872 return vec.build ();
1873 }
1874
1875 /* Build a vector of type VECTYPE where all the elements are SCs. */
1876 tree
1877 build_vector_from_val (tree vectype, tree sc)
1878 {
1879 unsigned HOST_WIDE_INT i, nunits;
1880
1881 if (sc == error_mark_node)
1882 return sc;
1883
1884 /* Verify that the vector type is suitable for SC. Note that there
1885 is some inconsistency in the type-system with respect to restrict
1886 qualifications of pointers. Vector types always have a main-variant
1887 element type and the qualification is applied to the vector-type.
1888 So TREE_TYPE (vector-type) does not return a properly qualified
1889 vector element-type. */
1890 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1891 TREE_TYPE (vectype)));
1892
1893 if (CONSTANT_CLASS_P (sc))
1894 {
1895 tree_vector_builder v (vectype, 1, 1);
1896 v.quick_push (sc);
1897 return v.build ();
1898 }
1899 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1900 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1901 else
1902 {
1903 vec<constructor_elt, va_gc> *v;
1904 vec_alloc (v, nunits);
1905 for (i = 0; i < nunits; ++i)
1906 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1907 return build_constructor (vectype, v);
1908 }
1909 }
1910
1911 /* If TYPE is not a vector type, just return SC, otherwise return
1912 build_vector_from_val (TYPE, SC). */
1913
1914 tree
1915 build_uniform_cst (tree type, tree sc)
1916 {
1917 if (!VECTOR_TYPE_P (type))
1918 return sc;
1919
1920 return build_vector_from_val (type, sc);
1921 }
1922
1923 /* Build a vector series of type TYPE in which element I has the value
1924 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1925 and a VEC_SERIES_EXPR otherwise. */
1926
1927 tree
1928 build_vec_series (tree type, tree base, tree step)
1929 {
1930 if (integer_zerop (step))
1931 return build_vector_from_val (type, base);
1932 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1933 {
1934 tree_vector_builder builder (type, 1, 3);
1935 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1936 wi::to_wide (base) + wi::to_wide (step));
1937 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1938 wi::to_wide (elt1) + wi::to_wide (step));
1939 builder.quick_push (base);
1940 builder.quick_push (elt1);
1941 builder.quick_push (elt2);
1942 return builder.build ();
1943 }
1944 return build2 (VEC_SERIES_EXPR, type, base, step);
1945 }
1946
1947 /* Return a vector with the same number of units and number of bits
1948 as VEC_TYPE, but in which the elements are a linear series of unsigned
1949 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1950
1951 tree
1952 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1953 {
1954 tree index_vec_type = vec_type;
1955 tree index_elt_type = TREE_TYPE (vec_type);
1956 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1957 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1958 {
1959 index_elt_type = build_nonstandard_integer_type
1960 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1961 index_vec_type = build_vector_type (index_elt_type, nunits);
1962 }
1963
1964 tree_vector_builder v (index_vec_type, 1, 3);
1965 for (unsigned int i = 0; i < 3; ++i)
1966 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1967 return v.build ();
1968 }
1969
1970 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1971 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1972
1973 void
1974 recompute_constructor_flags (tree c)
1975 {
1976 unsigned int i;
1977 tree val;
1978 bool constant_p = true;
1979 bool side_effects_p = false;
1980 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1981
1982 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1983 {
1984 /* Mostly ctors will have elts that don't have side-effects, so
1985 the usual case is to scan all the elements. Hence a single
1986 loop for both const and side effects, rather than one loop
1987 each (with early outs). */
1988 if (!TREE_CONSTANT (val))
1989 constant_p = false;
1990 if (TREE_SIDE_EFFECTS (val))
1991 side_effects_p = true;
1992 }
1993
1994 TREE_SIDE_EFFECTS (c) = side_effects_p;
1995 TREE_CONSTANT (c) = constant_p;
1996 }
1997
1998 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1999 CONSTRUCTOR C. */
2000
2001 void
2002 verify_constructor_flags (tree c)
2003 {
2004 unsigned int i;
2005 tree val;
2006 bool constant_p = TREE_CONSTANT (c);
2007 bool side_effects_p = TREE_SIDE_EFFECTS (c);
2008 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2009
2010 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2011 {
2012 if (constant_p && !TREE_CONSTANT (val))
2013 internal_error ("non-constant element in constant CONSTRUCTOR");
2014 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
2015 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
2016 }
2017 }
2018
2019 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2020 are in the vec pointed to by VALS. */
2021 tree
2022 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
2023 {
2024 tree c = make_node (CONSTRUCTOR);
2025
2026 TREE_TYPE (c) = type;
2027 CONSTRUCTOR_ELTS (c) = vals;
2028
2029 recompute_constructor_flags (c);
2030
2031 return c;
2032 }
2033
2034 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2035 INDEX and VALUE. */
2036 tree
2037 build_constructor_single (tree type, tree index, tree value)
2038 {
2039 vec<constructor_elt, va_gc> *v;
2040 constructor_elt elt = {index, value};
2041
2042 vec_alloc (v, 1);
2043 v->quick_push (elt);
2044
2045 return build_constructor (type, v);
2046 }
2047
2048
2049 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2050 are in a list pointed to by VALS. */
2051 tree
2052 build_constructor_from_list (tree type, tree vals)
2053 {
2054 tree t;
2055 vec<constructor_elt, va_gc> *v = NULL;
2056
2057 if (vals)
2058 {
2059 vec_alloc (v, list_length (vals));
2060 for (t = vals; t; t = TREE_CHAIN (t))
2061 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2062 }
2063
2064 return build_constructor (type, v);
2065 }
2066
2067 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2068 of elements, provided as index/value pairs. */
2069
2070 tree
2071 build_constructor_va (tree type, int nelts, ...)
2072 {
2073 vec<constructor_elt, va_gc> *v = NULL;
2074 va_list p;
2075
2076 va_start (p, nelts);
2077 vec_alloc (v, nelts);
2078 while (nelts--)
2079 {
2080 tree index = va_arg (p, tree);
2081 tree value = va_arg (p, tree);
2082 CONSTRUCTOR_APPEND_ELT (v, index, value);
2083 }
2084 va_end (p);
2085 return build_constructor (type, v);
2086 }
2087
2088 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2089
2090 tree
2091 build_clobber (tree type)
2092 {
2093 tree clobber = build_constructor (type, NULL);
2094 TREE_THIS_VOLATILE (clobber) = true;
2095 return clobber;
2096 }
2097
2098 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2099
2100 tree
2101 build_fixed (tree type, FIXED_VALUE_TYPE f)
2102 {
2103 tree v;
2104 FIXED_VALUE_TYPE *fp;
2105
2106 v = make_node (FIXED_CST);
2107 fp = ggc_alloc<fixed_value> ();
2108 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2109
2110 TREE_TYPE (v) = type;
2111 TREE_FIXED_CST_PTR (v) = fp;
2112 return v;
2113 }
2114
2115 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2116
2117 tree
2118 build_real (tree type, REAL_VALUE_TYPE d)
2119 {
2120 tree v;
2121 REAL_VALUE_TYPE *dp;
2122 int overflow = 0;
2123
2124 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2125 Consider doing it via real_convert now. */
2126
2127 v = make_node (REAL_CST);
2128 dp = ggc_alloc<real_value> ();
2129 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2130
2131 TREE_TYPE (v) = type;
2132 TREE_REAL_CST_PTR (v) = dp;
2133 TREE_OVERFLOW (v) = overflow;
2134 return v;
2135 }
2136
2137 /* Like build_real, but first truncate D to the type. */
2138
2139 tree
2140 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2141 {
2142 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2143 }
2144
2145 /* Return a new REAL_CST node whose type is TYPE
2146 and whose value is the integer value of the INTEGER_CST node I. */
2147
2148 REAL_VALUE_TYPE
2149 real_value_from_int_cst (const_tree type, const_tree i)
2150 {
2151 REAL_VALUE_TYPE d;
2152
2153 /* Clear all bits of the real value type so that we can later do
2154 bitwise comparisons to see if two values are the same. */
2155 memset (&d, 0, sizeof d);
2156
2157 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2158 TYPE_SIGN (TREE_TYPE (i)));
2159 return d;
2160 }
2161
2162 /* Given a tree representing an integer constant I, return a tree
2163 representing the same value as a floating-point constant of type TYPE. */
2164
2165 tree
2166 build_real_from_int_cst (tree type, const_tree i)
2167 {
2168 tree v;
2169 int overflow = TREE_OVERFLOW (i);
2170
2171 v = build_real (type, real_value_from_int_cst (type, i));
2172
2173 TREE_OVERFLOW (v) |= overflow;
2174 return v;
2175 }
2176
2177 /* Return a newly constructed STRING_CST node whose value is
2178 the LEN characters at STR.
2179 Note that for a C string literal, LEN should include the trailing NUL.
2180 The TREE_TYPE is not initialized. */
2181
2182 tree
2183 build_string (int len, const char *str)
2184 {
2185 tree s;
2186 size_t length;
2187
2188 /* Do not waste bytes provided by padding of struct tree_string. */
2189 length = len + offsetof (struct tree_string, str) + 1;
2190
2191 record_node_allocation_statistics (STRING_CST, length);
2192
2193 s = (tree) ggc_internal_alloc (length);
2194
2195 memset (s, 0, sizeof (struct tree_typed));
2196 TREE_SET_CODE (s, STRING_CST);
2197 TREE_CONSTANT (s) = 1;
2198 TREE_STRING_LENGTH (s) = len;
2199 memcpy (s->string.str, str, len);
2200 s->string.str[len] = '\0';
2201
2202 return s;
2203 }
2204
2205 /* Return a newly constructed COMPLEX_CST node whose value is
2206 specified by the real and imaginary parts REAL and IMAG.
2207 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2208 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2209
2210 tree
2211 build_complex (tree type, tree real, tree imag)
2212 {
2213 gcc_assert (CONSTANT_CLASS_P (real));
2214 gcc_assert (CONSTANT_CLASS_P (imag));
2215
2216 tree t = make_node (COMPLEX_CST);
2217
2218 TREE_REALPART (t) = real;
2219 TREE_IMAGPART (t) = imag;
2220 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2221 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2222 return t;
2223 }
2224
2225 /* Build a complex (inf +- 0i), such as for the result of cproj.
2226 TYPE is the complex tree type of the result. If NEG is true, the
2227 imaginary zero is negative. */
2228
2229 tree
2230 build_complex_inf (tree type, bool neg)
2231 {
2232 REAL_VALUE_TYPE rinf, rzero = dconst0;
2233
2234 real_inf (&rinf);
2235 rzero.sign = neg;
2236 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2237 build_real (TREE_TYPE (type), rzero));
2238 }
2239
2240 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2241 element is set to 1. In particular, this is 1 + i for complex types. */
2242
2243 tree
2244 build_each_one_cst (tree type)
2245 {
2246 if (TREE_CODE (type) == COMPLEX_TYPE)
2247 {
2248 tree scalar = build_one_cst (TREE_TYPE (type));
2249 return build_complex (type, scalar, scalar);
2250 }
2251 else
2252 return build_one_cst (type);
2253 }
2254
2255 /* Return a constant of arithmetic type TYPE which is the
2256 multiplicative identity of the set TYPE. */
2257
2258 tree
2259 build_one_cst (tree type)
2260 {
2261 switch (TREE_CODE (type))
2262 {
2263 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2264 case POINTER_TYPE: case REFERENCE_TYPE:
2265 case OFFSET_TYPE:
2266 return build_int_cst (type, 1);
2267
2268 case REAL_TYPE:
2269 return build_real (type, dconst1);
2270
2271 case FIXED_POINT_TYPE:
2272 /* We can only generate 1 for accum types. */
2273 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2274 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2275
2276 case VECTOR_TYPE:
2277 {
2278 tree scalar = build_one_cst (TREE_TYPE (type));
2279
2280 return build_vector_from_val (type, scalar);
2281 }
2282
2283 case COMPLEX_TYPE:
2284 return build_complex (type,
2285 build_one_cst (TREE_TYPE (type)),
2286 build_zero_cst (TREE_TYPE (type)));
2287
2288 default:
2289 gcc_unreachable ();
2290 }
2291 }
2292
2293 /* Return an integer of type TYPE containing all 1's in as much precision as
2294 it contains, or a complex or vector whose subparts are such integers. */
2295
2296 tree
2297 build_all_ones_cst (tree type)
2298 {
2299 if (TREE_CODE (type) == COMPLEX_TYPE)
2300 {
2301 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2302 return build_complex (type, scalar, scalar);
2303 }
2304 else
2305 return build_minus_one_cst (type);
2306 }
2307
2308 /* Return a constant of arithmetic type TYPE which is the
2309 opposite of the multiplicative identity of the set TYPE. */
2310
2311 tree
2312 build_minus_one_cst (tree type)
2313 {
2314 switch (TREE_CODE (type))
2315 {
2316 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2317 case POINTER_TYPE: case REFERENCE_TYPE:
2318 case OFFSET_TYPE:
2319 return build_int_cst (type, -1);
2320
2321 case REAL_TYPE:
2322 return build_real (type, dconstm1);
2323
2324 case FIXED_POINT_TYPE:
2325 /* We can only generate 1 for accum types. */
2326 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2327 return build_fixed (type,
2328 fixed_from_double_int (double_int_minus_one,
2329 SCALAR_TYPE_MODE (type)));
2330
2331 case VECTOR_TYPE:
2332 {
2333 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2334
2335 return build_vector_from_val (type, scalar);
2336 }
2337
2338 case COMPLEX_TYPE:
2339 return build_complex (type,
2340 build_minus_one_cst (TREE_TYPE (type)),
2341 build_zero_cst (TREE_TYPE (type)));
2342
2343 default:
2344 gcc_unreachable ();
2345 }
2346 }
2347
2348 /* Build 0 constant of type TYPE. This is used by constructor folding
2349 and thus the constant should be represented in memory by
2350 zero(es). */
2351
2352 tree
2353 build_zero_cst (tree type)
2354 {
2355 switch (TREE_CODE (type))
2356 {
2357 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2358 case POINTER_TYPE: case REFERENCE_TYPE:
2359 case OFFSET_TYPE: case NULLPTR_TYPE:
2360 return build_int_cst (type, 0);
2361
2362 case REAL_TYPE:
2363 return build_real (type, dconst0);
2364
2365 case FIXED_POINT_TYPE:
2366 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2367
2368 case VECTOR_TYPE:
2369 {
2370 tree scalar = build_zero_cst (TREE_TYPE (type));
2371
2372 return build_vector_from_val (type, scalar);
2373 }
2374
2375 case COMPLEX_TYPE:
2376 {
2377 tree zero = build_zero_cst (TREE_TYPE (type));
2378
2379 return build_complex (type, zero, zero);
2380 }
2381
2382 default:
2383 if (!AGGREGATE_TYPE_P (type))
2384 return fold_convert (type, integer_zero_node);
2385 return build_constructor (type, NULL);
2386 }
2387 }
2388
2389
2390 /* Build a BINFO with LEN language slots. */
2391
2392 tree
2393 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2394 {
2395 tree t;
2396 size_t length = (offsetof (struct tree_binfo, base_binfos)
2397 + vec<tree, va_gc>::embedded_size (base_binfos));
2398
2399 record_node_allocation_statistics (TREE_BINFO, length);
2400
2401 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2402
2403 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2404
2405 TREE_SET_CODE (t, TREE_BINFO);
2406
2407 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2408
2409 return t;
2410 }
2411
2412 /* Create a CASE_LABEL_EXPR tree node and return it. */
2413
2414 tree
2415 build_case_label (tree low_value, tree high_value, tree label_decl)
2416 {
2417 tree t = make_node (CASE_LABEL_EXPR);
2418
2419 TREE_TYPE (t) = void_type_node;
2420 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2421
2422 CASE_LOW (t) = low_value;
2423 CASE_HIGH (t) = high_value;
2424 CASE_LABEL (t) = label_decl;
2425 CASE_CHAIN (t) = NULL_TREE;
2426
2427 return t;
2428 }
2429
2430 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2431 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2432 The latter determines the length of the HOST_WIDE_INT vector. */
2433
2434 tree
2435 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2436 {
2437 tree t;
2438 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2439 + sizeof (struct tree_int_cst));
2440
2441 gcc_assert (len);
2442 record_node_allocation_statistics (INTEGER_CST, length);
2443
2444 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2445
2446 TREE_SET_CODE (t, INTEGER_CST);
2447 TREE_INT_CST_NUNITS (t) = len;
2448 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2449 /* to_offset can only be applied to trees that are offset_int-sized
2450 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2451 must be exactly the precision of offset_int and so LEN is correct. */
2452 if (ext_len <= OFFSET_INT_ELTS)
2453 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2454 else
2455 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2456
2457 TREE_CONSTANT (t) = 1;
2458
2459 return t;
2460 }
2461
2462 /* Build a newly constructed TREE_VEC node of length LEN. */
2463
2464 tree
2465 make_tree_vec (int len MEM_STAT_DECL)
2466 {
2467 tree t;
2468 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2469
2470 record_node_allocation_statistics (TREE_VEC, length);
2471
2472 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2473
2474 TREE_SET_CODE (t, TREE_VEC);
2475 TREE_VEC_LENGTH (t) = len;
2476
2477 return t;
2478 }
2479
2480 /* Grow a TREE_VEC node to new length LEN. */
2481
2482 tree
2483 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2484 {
2485 gcc_assert (TREE_CODE (v) == TREE_VEC);
2486
2487 int oldlen = TREE_VEC_LENGTH (v);
2488 gcc_assert (len > oldlen);
2489
2490 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2491 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2492
2493 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2494
2495 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2496
2497 TREE_VEC_LENGTH (v) = len;
2498
2499 return v;
2500 }
2501 \f
2502 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2503 fixed, and scalar, complex or vector. */
2504
2505 bool
2506 zerop (const_tree expr)
2507 {
2508 return (integer_zerop (expr)
2509 || real_zerop (expr)
2510 || fixed_zerop (expr));
2511 }
2512
2513 /* Return 1 if EXPR is the integer constant zero or a complex constant
2514 of zero, or a location wrapper for such a constant. */
2515
2516 bool
2517 integer_zerop (const_tree expr)
2518 {
2519 STRIP_ANY_LOCATION_WRAPPER (expr);
2520
2521 switch (TREE_CODE (expr))
2522 {
2523 case INTEGER_CST:
2524 return wi::to_wide (expr) == 0;
2525 case COMPLEX_CST:
2526 return (integer_zerop (TREE_REALPART (expr))
2527 && integer_zerop (TREE_IMAGPART (expr)));
2528 case VECTOR_CST:
2529 return (VECTOR_CST_NPATTERNS (expr) == 1
2530 && VECTOR_CST_DUPLICATE_P (expr)
2531 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2532 default:
2533 return false;
2534 }
2535 }
2536
2537 /* Return 1 if EXPR is the integer constant one or the corresponding
2538 complex constant, or a location wrapper for such a constant. */
2539
2540 bool
2541 integer_onep (const_tree expr)
2542 {
2543 STRIP_ANY_LOCATION_WRAPPER (expr);
2544
2545 switch (TREE_CODE (expr))
2546 {
2547 case INTEGER_CST:
2548 return wi::eq_p (wi::to_widest (expr), 1);
2549 case COMPLEX_CST:
2550 return (integer_onep (TREE_REALPART (expr))
2551 && integer_zerop (TREE_IMAGPART (expr)));
2552 case VECTOR_CST:
2553 return (VECTOR_CST_NPATTERNS (expr) == 1
2554 && VECTOR_CST_DUPLICATE_P (expr)
2555 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2556 default:
2557 return false;
2558 }
2559 }
2560
2561 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2562 return 1 if every piece is the integer constant one.
2563 Also return 1 for location wrappers for such a constant. */
2564
2565 bool
2566 integer_each_onep (const_tree expr)
2567 {
2568 STRIP_ANY_LOCATION_WRAPPER (expr);
2569
2570 if (TREE_CODE (expr) == COMPLEX_CST)
2571 return (integer_onep (TREE_REALPART (expr))
2572 && integer_onep (TREE_IMAGPART (expr)));
2573 else
2574 return integer_onep (expr);
2575 }
2576
2577 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2578 it contains, or a complex or vector whose subparts are such integers,
2579 or a location wrapper for such a constant. */
2580
2581 bool
2582 integer_all_onesp (const_tree expr)
2583 {
2584 STRIP_ANY_LOCATION_WRAPPER (expr);
2585
2586 if (TREE_CODE (expr) == COMPLEX_CST
2587 && integer_all_onesp (TREE_REALPART (expr))
2588 && integer_all_onesp (TREE_IMAGPART (expr)))
2589 return true;
2590
2591 else if (TREE_CODE (expr) == VECTOR_CST)
2592 return (VECTOR_CST_NPATTERNS (expr) == 1
2593 && VECTOR_CST_DUPLICATE_P (expr)
2594 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2595
2596 else if (TREE_CODE (expr) != INTEGER_CST)
2597 return false;
2598
2599 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2600 == wi::to_wide (expr));
2601 }
2602
2603 /* Return 1 if EXPR is the integer constant minus one, or a location wrapper
2604 for such a constant. */
2605
2606 bool
2607 integer_minus_onep (const_tree expr)
2608 {
2609 STRIP_ANY_LOCATION_WRAPPER (expr);
2610
2611 if (TREE_CODE (expr) == COMPLEX_CST)
2612 return (integer_all_onesp (TREE_REALPART (expr))
2613 && integer_zerop (TREE_IMAGPART (expr)));
2614 else
2615 return integer_all_onesp (expr);
2616 }
2617
2618 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2619 one bit on), or a location wrapper for such a constant. */
2620
2621 bool
2622 integer_pow2p (const_tree expr)
2623 {
2624 STRIP_ANY_LOCATION_WRAPPER (expr);
2625
2626 if (TREE_CODE (expr) == COMPLEX_CST
2627 && integer_pow2p (TREE_REALPART (expr))
2628 && integer_zerop (TREE_IMAGPART (expr)))
2629 return true;
2630
2631 if (TREE_CODE (expr) != INTEGER_CST)
2632 return false;
2633
2634 return wi::popcount (wi::to_wide (expr)) == 1;
2635 }
2636
2637 /* Return 1 if EXPR is an integer constant other than zero or a
2638 complex constant other than zero, or a location wrapper for such a
2639 constant. */
2640
2641 bool
2642 integer_nonzerop (const_tree expr)
2643 {
2644 STRIP_ANY_LOCATION_WRAPPER (expr);
2645
2646 return ((TREE_CODE (expr) == INTEGER_CST
2647 && wi::to_wide (expr) != 0)
2648 || (TREE_CODE (expr) == COMPLEX_CST
2649 && (integer_nonzerop (TREE_REALPART (expr))
2650 || integer_nonzerop (TREE_IMAGPART (expr)))));
2651 }
2652
2653 /* Return 1 if EXPR is the integer constant one. For vector,
2654 return 1 if every piece is the integer constant minus one
2655 (representing the value TRUE).
2656 Also return 1 for location wrappers for such a constant. */
2657
2658 bool
2659 integer_truep (const_tree expr)
2660 {
2661 STRIP_ANY_LOCATION_WRAPPER (expr);
2662
2663 if (TREE_CODE (expr) == VECTOR_CST)
2664 return integer_all_onesp (expr);
2665 return integer_onep (expr);
2666 }
2667
2668 /* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper
2669 for such a constant. */
2670
2671 bool
2672 fixed_zerop (const_tree expr)
2673 {
2674 STRIP_ANY_LOCATION_WRAPPER (expr);
2675
2676 return (TREE_CODE (expr) == FIXED_CST
2677 && TREE_FIXED_CST (expr).data.is_zero ());
2678 }
2679
2680 /* Return the power of two represented by a tree node known to be a
2681 power of two. */
2682
2683 int
2684 tree_log2 (const_tree expr)
2685 {
2686 if (TREE_CODE (expr) == COMPLEX_CST)
2687 return tree_log2 (TREE_REALPART (expr));
2688
2689 return wi::exact_log2 (wi::to_wide (expr));
2690 }
2691
2692 /* Similar, but return the largest integer Y such that 2 ** Y is less
2693 than or equal to EXPR. */
2694
2695 int
2696 tree_floor_log2 (const_tree expr)
2697 {
2698 if (TREE_CODE (expr) == COMPLEX_CST)
2699 return tree_log2 (TREE_REALPART (expr));
2700
2701 return wi::floor_log2 (wi::to_wide (expr));
2702 }
2703
2704 /* Return number of known trailing zero bits in EXPR, or, if the value of
2705 EXPR is known to be zero, the precision of it's type. */
2706
2707 unsigned int
2708 tree_ctz (const_tree expr)
2709 {
2710 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2711 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2712 return 0;
2713
2714 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2715 switch (TREE_CODE (expr))
2716 {
2717 case INTEGER_CST:
2718 ret1 = wi::ctz (wi::to_wide (expr));
2719 return MIN (ret1, prec);
2720 case SSA_NAME:
2721 ret1 = wi::ctz (get_nonzero_bits (expr));
2722 return MIN (ret1, prec);
2723 case PLUS_EXPR:
2724 case MINUS_EXPR:
2725 case BIT_IOR_EXPR:
2726 case BIT_XOR_EXPR:
2727 case MIN_EXPR:
2728 case MAX_EXPR:
2729 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2730 if (ret1 == 0)
2731 return ret1;
2732 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2733 return MIN (ret1, ret2);
2734 case POINTER_PLUS_EXPR:
2735 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2736 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2737 /* Second operand is sizetype, which could be in theory
2738 wider than pointer's precision. Make sure we never
2739 return more than prec. */
2740 ret2 = MIN (ret2, prec);
2741 return MIN (ret1, ret2);
2742 case BIT_AND_EXPR:
2743 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2744 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2745 return MAX (ret1, ret2);
2746 case MULT_EXPR:
2747 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2748 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2749 return MIN (ret1 + ret2, prec);
2750 case LSHIFT_EXPR:
2751 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2752 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2753 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2754 {
2755 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2756 return MIN (ret1 + ret2, prec);
2757 }
2758 return ret1;
2759 case RSHIFT_EXPR:
2760 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2761 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2762 {
2763 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2764 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2765 if (ret1 > ret2)
2766 return ret1 - ret2;
2767 }
2768 return 0;
2769 case TRUNC_DIV_EXPR:
2770 case CEIL_DIV_EXPR:
2771 case FLOOR_DIV_EXPR:
2772 case ROUND_DIV_EXPR:
2773 case EXACT_DIV_EXPR:
2774 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2775 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2776 {
2777 int l = tree_log2 (TREE_OPERAND (expr, 1));
2778 if (l >= 0)
2779 {
2780 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2781 ret2 = l;
2782 if (ret1 > ret2)
2783 return ret1 - ret2;
2784 }
2785 }
2786 return 0;
2787 CASE_CONVERT:
2788 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2789 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2790 ret1 = prec;
2791 return MIN (ret1, prec);
2792 case SAVE_EXPR:
2793 return tree_ctz (TREE_OPERAND (expr, 0));
2794 case COND_EXPR:
2795 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2796 if (ret1 == 0)
2797 return 0;
2798 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2799 return MIN (ret1, ret2);
2800 case COMPOUND_EXPR:
2801 return tree_ctz (TREE_OPERAND (expr, 1));
2802 case ADDR_EXPR:
2803 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2804 if (ret1 > BITS_PER_UNIT)
2805 {
2806 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2807 return MIN (ret1, prec);
2808 }
2809 return 0;
2810 default:
2811 return 0;
2812 }
2813 }
2814
2815 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2816 decimal float constants, so don't return 1 for them.
2817 Also return 1 for location wrappers around such a constant. */
2818
2819 bool
2820 real_zerop (const_tree expr)
2821 {
2822 STRIP_ANY_LOCATION_WRAPPER (expr);
2823
2824 switch (TREE_CODE (expr))
2825 {
2826 case REAL_CST:
2827 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2828 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2829 case COMPLEX_CST:
2830 return real_zerop (TREE_REALPART (expr))
2831 && real_zerop (TREE_IMAGPART (expr));
2832 case VECTOR_CST:
2833 {
2834 /* Don't simply check for a duplicate because the predicate
2835 accepts both +0.0 and -0.0. */
2836 unsigned count = vector_cst_encoded_nelts (expr);
2837 for (unsigned int i = 0; i < count; ++i)
2838 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2839 return false;
2840 return true;
2841 }
2842 default:
2843 return false;
2844 }
2845 }
2846
2847 /* Return 1 if EXPR is the real constant one in real or complex form.
2848 Trailing zeroes matter for decimal float constants, so don't return
2849 1 for them.
2850 Also return 1 for location wrappers around such a constant. */
2851
2852 bool
2853 real_onep (const_tree expr)
2854 {
2855 STRIP_ANY_LOCATION_WRAPPER (expr);
2856
2857 switch (TREE_CODE (expr))
2858 {
2859 case REAL_CST:
2860 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2861 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2862 case COMPLEX_CST:
2863 return real_onep (TREE_REALPART (expr))
2864 && real_zerop (TREE_IMAGPART (expr));
2865 case VECTOR_CST:
2866 return (VECTOR_CST_NPATTERNS (expr) == 1
2867 && VECTOR_CST_DUPLICATE_P (expr)
2868 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2869 default:
2870 return false;
2871 }
2872 }
2873
2874 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2875 matter for decimal float constants, so don't return 1 for them.
2876 Also return 1 for location wrappers around such a constant. */
2877
2878 bool
2879 real_minus_onep (const_tree expr)
2880 {
2881 STRIP_ANY_LOCATION_WRAPPER (expr);
2882
2883 switch (TREE_CODE (expr))
2884 {
2885 case REAL_CST:
2886 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2887 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2888 case COMPLEX_CST:
2889 return real_minus_onep (TREE_REALPART (expr))
2890 && real_zerop (TREE_IMAGPART (expr));
2891 case VECTOR_CST:
2892 return (VECTOR_CST_NPATTERNS (expr) == 1
2893 && VECTOR_CST_DUPLICATE_P (expr)
2894 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2895 default:
2896 return false;
2897 }
2898 }
2899
2900 /* Nonzero if EXP is a constant or a cast of a constant. */
2901
2902 bool
2903 really_constant_p (const_tree exp)
2904 {
2905 /* This is not quite the same as STRIP_NOPS. It does more. */
2906 while (CONVERT_EXPR_P (exp)
2907 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2908 exp = TREE_OPERAND (exp, 0);
2909 return TREE_CONSTANT (exp);
2910 }
2911
2912 /* Return true if T holds a polynomial pointer difference, storing it in
2913 *VALUE if so. A true return means that T's precision is no greater
2914 than 64 bits, which is the largest address space we support, so *VALUE
2915 never loses precision. However, the signedness of the result does
2916 not necessarily match the signedness of T: sometimes an unsigned type
2917 like sizetype is used to encode a value that is actually negative. */
2918
2919 bool
2920 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2921 {
2922 if (!t)
2923 return false;
2924 if (TREE_CODE (t) == INTEGER_CST)
2925 {
2926 if (!cst_and_fits_in_hwi (t))
2927 return false;
2928 *value = int_cst_value (t);
2929 return true;
2930 }
2931 if (POLY_INT_CST_P (t))
2932 {
2933 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2934 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2935 return false;
2936 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2937 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2938 return true;
2939 }
2940 return false;
2941 }
2942
2943 poly_int64
2944 tree_to_poly_int64 (const_tree t)
2945 {
2946 gcc_assert (tree_fits_poly_int64_p (t));
2947 if (POLY_INT_CST_P (t))
2948 return poly_int_cst_value (t).force_shwi ();
2949 return TREE_INT_CST_LOW (t);
2950 }
2951
2952 poly_uint64
2953 tree_to_poly_uint64 (const_tree t)
2954 {
2955 gcc_assert (tree_fits_poly_uint64_p (t));
2956 if (POLY_INT_CST_P (t))
2957 return poly_int_cst_value (t).force_uhwi ();
2958 return TREE_INT_CST_LOW (t);
2959 }
2960 \f
2961 /* Return first list element whose TREE_VALUE is ELEM.
2962 Return 0 if ELEM is not in LIST. */
2963
2964 tree
2965 value_member (tree elem, tree list)
2966 {
2967 while (list)
2968 {
2969 if (elem == TREE_VALUE (list))
2970 return list;
2971 list = TREE_CHAIN (list);
2972 }
2973 return NULL_TREE;
2974 }
2975
2976 /* Return first list element whose TREE_PURPOSE is ELEM.
2977 Return 0 if ELEM is not in LIST. */
2978
2979 tree
2980 purpose_member (const_tree elem, tree list)
2981 {
2982 while (list)
2983 {
2984 if (elem == TREE_PURPOSE (list))
2985 return list;
2986 list = TREE_CHAIN (list);
2987 }
2988 return NULL_TREE;
2989 }
2990
2991 /* Return true if ELEM is in V. */
2992
2993 bool
2994 vec_member (const_tree elem, vec<tree, va_gc> *v)
2995 {
2996 unsigned ix;
2997 tree t;
2998 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2999 if (elem == t)
3000 return true;
3001 return false;
3002 }
3003
3004 /* Returns element number IDX (zero-origin) of chain CHAIN, or
3005 NULL_TREE. */
3006
3007 tree
3008 chain_index (int idx, tree chain)
3009 {
3010 for (; chain && idx > 0; --idx)
3011 chain = TREE_CHAIN (chain);
3012 return chain;
3013 }
3014
3015 /* Return nonzero if ELEM is part of the chain CHAIN. */
3016
3017 bool
3018 chain_member (const_tree elem, const_tree chain)
3019 {
3020 while (chain)
3021 {
3022 if (elem == chain)
3023 return true;
3024 chain = DECL_CHAIN (chain);
3025 }
3026
3027 return false;
3028 }
3029
3030 /* Return the length of a chain of nodes chained through TREE_CHAIN.
3031 We expect a null pointer to mark the end of the chain.
3032 This is the Lisp primitive `length'. */
3033
3034 int
3035 list_length (const_tree t)
3036 {
3037 const_tree p = t;
3038 #ifdef ENABLE_TREE_CHECKING
3039 const_tree q = t;
3040 #endif
3041 int len = 0;
3042
3043 while (p)
3044 {
3045 p = TREE_CHAIN (p);
3046 #ifdef ENABLE_TREE_CHECKING
3047 if (len % 2)
3048 q = TREE_CHAIN (q);
3049 gcc_assert (p != q);
3050 #endif
3051 len++;
3052 }
3053
3054 return len;
3055 }
3056
3057 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3058 UNION_TYPE TYPE, or NULL_TREE if none. */
3059
3060 tree
3061 first_field (const_tree type)
3062 {
3063 tree t = TYPE_FIELDS (type);
3064 while (t && TREE_CODE (t) != FIELD_DECL)
3065 t = TREE_CHAIN (t);
3066 return t;
3067 }
3068
3069 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3070 by modifying the last node in chain 1 to point to chain 2.
3071 This is the Lisp primitive `nconc'. */
3072
3073 tree
3074 chainon (tree op1, tree op2)
3075 {
3076 tree t1;
3077
3078 if (!op1)
3079 return op2;
3080 if (!op2)
3081 return op1;
3082
3083 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3084 continue;
3085 TREE_CHAIN (t1) = op2;
3086
3087 #ifdef ENABLE_TREE_CHECKING
3088 {
3089 tree t2;
3090 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3091 gcc_assert (t2 != t1);
3092 }
3093 #endif
3094
3095 return op1;
3096 }
3097
3098 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3099
3100 tree
3101 tree_last (tree chain)
3102 {
3103 tree next;
3104 if (chain)
3105 while ((next = TREE_CHAIN (chain)))
3106 chain = next;
3107 return chain;
3108 }
3109
3110 /* Reverse the order of elements in the chain T,
3111 and return the new head of the chain (old last element). */
3112
3113 tree
3114 nreverse (tree t)
3115 {
3116 tree prev = 0, decl, next;
3117 for (decl = t; decl; decl = next)
3118 {
3119 /* We shouldn't be using this function to reverse BLOCK chains; we
3120 have blocks_nreverse for that. */
3121 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3122 next = TREE_CHAIN (decl);
3123 TREE_CHAIN (decl) = prev;
3124 prev = decl;
3125 }
3126 return prev;
3127 }
3128 \f
3129 /* Return a newly created TREE_LIST node whose
3130 purpose and value fields are PARM and VALUE. */
3131
3132 tree
3133 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3134 {
3135 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3136 TREE_PURPOSE (t) = parm;
3137 TREE_VALUE (t) = value;
3138 return t;
3139 }
3140
3141 /* Build a chain of TREE_LIST nodes from a vector. */
3142
3143 tree
3144 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3145 {
3146 tree ret = NULL_TREE;
3147 tree *pp = &ret;
3148 unsigned int i;
3149 tree t;
3150 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3151 {
3152 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3153 pp = &TREE_CHAIN (*pp);
3154 }
3155 return ret;
3156 }
3157
3158 /* Return a newly created TREE_LIST node whose
3159 purpose and value fields are PURPOSE and VALUE
3160 and whose TREE_CHAIN is CHAIN. */
3161
3162 tree
3163 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3164 {
3165 tree node;
3166
3167 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3168 memset (node, 0, sizeof (struct tree_common));
3169
3170 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3171
3172 TREE_SET_CODE (node, TREE_LIST);
3173 TREE_CHAIN (node) = chain;
3174 TREE_PURPOSE (node) = purpose;
3175 TREE_VALUE (node) = value;
3176 return node;
3177 }
3178
3179 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3180 trees. */
3181
3182 vec<tree, va_gc> *
3183 ctor_to_vec (tree ctor)
3184 {
3185 vec<tree, va_gc> *vec;
3186 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3187 unsigned int ix;
3188 tree val;
3189
3190 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3191 vec->quick_push (val);
3192
3193 return vec;
3194 }
3195 \f
3196 /* Return the size nominally occupied by an object of type TYPE
3197 when it resides in memory. The value is measured in units of bytes,
3198 and its data type is that normally used for type sizes
3199 (which is the first type created by make_signed_type or
3200 make_unsigned_type). */
3201
3202 tree
3203 size_in_bytes_loc (location_t loc, const_tree type)
3204 {
3205 tree t;
3206
3207 if (type == error_mark_node)
3208 return integer_zero_node;
3209
3210 type = TYPE_MAIN_VARIANT (type);
3211 t = TYPE_SIZE_UNIT (type);
3212
3213 if (t == 0)
3214 {
3215 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3216 return size_zero_node;
3217 }
3218
3219 return t;
3220 }
3221
3222 /* Return the size of TYPE (in bytes) as a wide integer
3223 or return -1 if the size can vary or is larger than an integer. */
3224
3225 HOST_WIDE_INT
3226 int_size_in_bytes (const_tree type)
3227 {
3228 tree t;
3229
3230 if (type == error_mark_node)
3231 return 0;
3232
3233 type = TYPE_MAIN_VARIANT (type);
3234 t = TYPE_SIZE_UNIT (type);
3235
3236 if (t && tree_fits_uhwi_p (t))
3237 return TREE_INT_CST_LOW (t);
3238 else
3239 return -1;
3240 }
3241
3242 /* Return the maximum size of TYPE (in bytes) as a wide integer
3243 or return -1 if the size can vary or is larger than an integer. */
3244
3245 HOST_WIDE_INT
3246 max_int_size_in_bytes (const_tree type)
3247 {
3248 HOST_WIDE_INT size = -1;
3249 tree size_tree;
3250
3251 /* If this is an array type, check for a possible MAX_SIZE attached. */
3252
3253 if (TREE_CODE (type) == ARRAY_TYPE)
3254 {
3255 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3256
3257 if (size_tree && tree_fits_uhwi_p (size_tree))
3258 size = tree_to_uhwi (size_tree);
3259 }
3260
3261 /* If we still haven't been able to get a size, see if the language
3262 can compute a maximum size. */
3263
3264 if (size == -1)
3265 {
3266 size_tree = lang_hooks.types.max_size (type);
3267
3268 if (size_tree && tree_fits_uhwi_p (size_tree))
3269 size = tree_to_uhwi (size_tree);
3270 }
3271
3272 return size;
3273 }
3274 \f
3275 /* Return the bit position of FIELD, in bits from the start of the record.
3276 This is a tree of type bitsizetype. */
3277
3278 tree
3279 bit_position (const_tree field)
3280 {
3281 return bit_from_pos (DECL_FIELD_OFFSET (field),
3282 DECL_FIELD_BIT_OFFSET (field));
3283 }
3284 \f
3285 /* Return the byte position of FIELD, in bytes from the start of the record.
3286 This is a tree of type sizetype. */
3287
3288 tree
3289 byte_position (const_tree field)
3290 {
3291 return byte_from_pos (DECL_FIELD_OFFSET (field),
3292 DECL_FIELD_BIT_OFFSET (field));
3293 }
3294
3295 /* Likewise, but return as an integer. It must be representable in
3296 that way (since it could be a signed value, we don't have the
3297 option of returning -1 like int_size_in_byte can. */
3298
3299 HOST_WIDE_INT
3300 int_byte_position (const_tree field)
3301 {
3302 return tree_to_shwi (byte_position (field));
3303 }
3304 \f
3305 /* Return the strictest alignment, in bits, that T is known to have. */
3306
3307 unsigned int
3308 expr_align (const_tree t)
3309 {
3310 unsigned int align0, align1;
3311
3312 switch (TREE_CODE (t))
3313 {
3314 CASE_CONVERT: case NON_LVALUE_EXPR:
3315 /* If we have conversions, we know that the alignment of the
3316 object must meet each of the alignments of the types. */
3317 align0 = expr_align (TREE_OPERAND (t, 0));
3318 align1 = TYPE_ALIGN (TREE_TYPE (t));
3319 return MAX (align0, align1);
3320
3321 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3322 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3323 case CLEANUP_POINT_EXPR:
3324 /* These don't change the alignment of an object. */
3325 return expr_align (TREE_OPERAND (t, 0));
3326
3327 case COND_EXPR:
3328 /* The best we can do is say that the alignment is the least aligned
3329 of the two arms. */
3330 align0 = expr_align (TREE_OPERAND (t, 1));
3331 align1 = expr_align (TREE_OPERAND (t, 2));
3332 return MIN (align0, align1);
3333
3334 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3335 meaningfully, it's always 1. */
3336 case LABEL_DECL: case CONST_DECL:
3337 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3338 case FUNCTION_DECL:
3339 gcc_assert (DECL_ALIGN (t) != 0);
3340 return DECL_ALIGN (t);
3341
3342 default:
3343 break;
3344 }
3345
3346 /* Otherwise take the alignment from that of the type. */
3347 return TYPE_ALIGN (TREE_TYPE (t));
3348 }
3349 \f
3350 /* Return, as a tree node, the number of elements for TYPE (which is an
3351 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3352
3353 tree
3354 array_type_nelts (const_tree type)
3355 {
3356 tree index_type, min, max;
3357
3358 /* If they did it with unspecified bounds, then we should have already
3359 given an error about it before we got here. */
3360 if (! TYPE_DOMAIN (type))
3361 return error_mark_node;
3362
3363 index_type = TYPE_DOMAIN (type);
3364 min = TYPE_MIN_VALUE (index_type);
3365 max = TYPE_MAX_VALUE (index_type);
3366
3367 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3368 if (!max)
3369 return error_mark_node;
3370
3371 return (integer_zerop (min)
3372 ? max
3373 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3374 }
3375 \f
3376 /* If arg is static -- a reference to an object in static storage -- then
3377 return the object. This is not the same as the C meaning of `static'.
3378 If arg isn't static, return NULL. */
3379
3380 tree
3381 staticp (tree arg)
3382 {
3383 switch (TREE_CODE (arg))
3384 {
3385 case FUNCTION_DECL:
3386 /* Nested functions are static, even though taking their address will
3387 involve a trampoline as we unnest the nested function and create
3388 the trampoline on the tree level. */
3389 return arg;
3390
3391 case VAR_DECL:
3392 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3393 && ! DECL_THREAD_LOCAL_P (arg)
3394 && ! DECL_DLLIMPORT_P (arg)
3395 ? arg : NULL);
3396
3397 case CONST_DECL:
3398 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3399 ? arg : NULL);
3400
3401 case CONSTRUCTOR:
3402 return TREE_STATIC (arg) ? arg : NULL;
3403
3404 case LABEL_DECL:
3405 case STRING_CST:
3406 return arg;
3407
3408 case COMPONENT_REF:
3409 /* If the thing being referenced is not a field, then it is
3410 something language specific. */
3411 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3412
3413 /* If we are referencing a bitfield, we can't evaluate an
3414 ADDR_EXPR at compile time and so it isn't a constant. */
3415 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3416 return NULL;
3417
3418 return staticp (TREE_OPERAND (arg, 0));
3419
3420 case BIT_FIELD_REF:
3421 return NULL;
3422
3423 case INDIRECT_REF:
3424 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3425
3426 case ARRAY_REF:
3427 case ARRAY_RANGE_REF:
3428 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3429 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3430 return staticp (TREE_OPERAND (arg, 0));
3431 else
3432 return NULL;
3433
3434 case COMPOUND_LITERAL_EXPR:
3435 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3436
3437 default:
3438 return NULL;
3439 }
3440 }
3441
3442 \f
3443
3444
3445 /* Return whether OP is a DECL whose address is function-invariant. */
3446
3447 bool
3448 decl_address_invariant_p (const_tree op)
3449 {
3450 /* The conditions below are slightly less strict than the one in
3451 staticp. */
3452
3453 switch (TREE_CODE (op))
3454 {
3455 case PARM_DECL:
3456 case RESULT_DECL:
3457 case LABEL_DECL:
3458 case FUNCTION_DECL:
3459 return true;
3460
3461 case VAR_DECL:
3462 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3463 || DECL_THREAD_LOCAL_P (op)
3464 || DECL_CONTEXT (op) == current_function_decl
3465 || decl_function_context (op) == current_function_decl)
3466 return true;
3467 break;
3468
3469 case CONST_DECL:
3470 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3471 || decl_function_context (op) == current_function_decl)
3472 return true;
3473 break;
3474
3475 default:
3476 break;
3477 }
3478
3479 return false;
3480 }
3481
3482 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3483
3484 bool
3485 decl_address_ip_invariant_p (const_tree op)
3486 {
3487 /* The conditions below are slightly less strict than the one in
3488 staticp. */
3489
3490 switch (TREE_CODE (op))
3491 {
3492 case LABEL_DECL:
3493 case FUNCTION_DECL:
3494 case STRING_CST:
3495 return true;
3496
3497 case VAR_DECL:
3498 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3499 && !DECL_DLLIMPORT_P (op))
3500 || DECL_THREAD_LOCAL_P (op))
3501 return true;
3502 break;
3503
3504 case CONST_DECL:
3505 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3506 return true;
3507 break;
3508
3509 default:
3510 break;
3511 }
3512
3513 return false;
3514 }
3515
3516
3517 /* Return true if T is function-invariant (internal function, does
3518 not handle arithmetic; that's handled in skip_simple_arithmetic and
3519 tree_invariant_p). */
3520
3521 static bool
3522 tree_invariant_p_1 (tree t)
3523 {
3524 tree op;
3525
3526 if (TREE_CONSTANT (t)
3527 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3528 return true;
3529
3530 switch (TREE_CODE (t))
3531 {
3532 case SAVE_EXPR:
3533 return true;
3534
3535 case ADDR_EXPR:
3536 op = TREE_OPERAND (t, 0);
3537 while (handled_component_p (op))
3538 {
3539 switch (TREE_CODE (op))
3540 {
3541 case ARRAY_REF:
3542 case ARRAY_RANGE_REF:
3543 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3544 || TREE_OPERAND (op, 2) != NULL_TREE
3545 || TREE_OPERAND (op, 3) != NULL_TREE)
3546 return false;
3547 break;
3548
3549 case COMPONENT_REF:
3550 if (TREE_OPERAND (op, 2) != NULL_TREE)
3551 return false;
3552 break;
3553
3554 default:;
3555 }
3556 op = TREE_OPERAND (op, 0);
3557 }
3558
3559 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3560
3561 default:
3562 break;
3563 }
3564
3565 return false;
3566 }
3567
3568 /* Return true if T is function-invariant. */
3569
3570 bool
3571 tree_invariant_p (tree t)
3572 {
3573 tree inner = skip_simple_arithmetic (t);
3574 return tree_invariant_p_1 (inner);
3575 }
3576
3577 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3578 Do this to any expression which may be used in more than one place,
3579 but must be evaluated only once.
3580
3581 Normally, expand_expr would reevaluate the expression each time.
3582 Calling save_expr produces something that is evaluated and recorded
3583 the first time expand_expr is called on it. Subsequent calls to
3584 expand_expr just reuse the recorded value.
3585
3586 The call to expand_expr that generates code that actually computes
3587 the value is the first call *at compile time*. Subsequent calls
3588 *at compile time* generate code to use the saved value.
3589 This produces correct result provided that *at run time* control
3590 always flows through the insns made by the first expand_expr
3591 before reaching the other places where the save_expr was evaluated.
3592 You, the caller of save_expr, must make sure this is so.
3593
3594 Constants, and certain read-only nodes, are returned with no
3595 SAVE_EXPR because that is safe. Expressions containing placeholders
3596 are not touched; see tree.def for an explanation of what these
3597 are used for. */
3598
3599 tree
3600 save_expr (tree expr)
3601 {
3602 tree inner;
3603
3604 /* If the tree evaluates to a constant, then we don't want to hide that
3605 fact (i.e. this allows further folding, and direct checks for constants).
3606 However, a read-only object that has side effects cannot be bypassed.
3607 Since it is no problem to reevaluate literals, we just return the
3608 literal node. */
3609 inner = skip_simple_arithmetic (expr);
3610 if (TREE_CODE (inner) == ERROR_MARK)
3611 return inner;
3612
3613 if (tree_invariant_p_1 (inner))
3614 return expr;
3615
3616 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3617 it means that the size or offset of some field of an object depends on
3618 the value within another field.
3619
3620 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3621 and some variable since it would then need to be both evaluated once and
3622 evaluated more than once. Front-ends must assure this case cannot
3623 happen by surrounding any such subexpressions in their own SAVE_EXPR
3624 and forcing evaluation at the proper time. */
3625 if (contains_placeholder_p (inner))
3626 return expr;
3627
3628 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3629
3630 /* This expression might be placed ahead of a jump to ensure that the
3631 value was computed on both sides of the jump. So make sure it isn't
3632 eliminated as dead. */
3633 TREE_SIDE_EFFECTS (expr) = 1;
3634 return expr;
3635 }
3636
3637 /* Look inside EXPR into any simple arithmetic operations. Return the
3638 outermost non-arithmetic or non-invariant node. */
3639
3640 tree
3641 skip_simple_arithmetic (tree expr)
3642 {
3643 /* We don't care about whether this can be used as an lvalue in this
3644 context. */
3645 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3646 expr = TREE_OPERAND (expr, 0);
3647
3648 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3649 a constant, it will be more efficient to not make another SAVE_EXPR since
3650 it will allow better simplification and GCSE will be able to merge the
3651 computations if they actually occur. */
3652 while (true)
3653 {
3654 if (UNARY_CLASS_P (expr))
3655 expr = TREE_OPERAND (expr, 0);
3656 else if (BINARY_CLASS_P (expr))
3657 {
3658 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3659 expr = TREE_OPERAND (expr, 0);
3660 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3661 expr = TREE_OPERAND (expr, 1);
3662 else
3663 break;
3664 }
3665 else
3666 break;
3667 }
3668
3669 return expr;
3670 }
3671
3672 /* Look inside EXPR into simple arithmetic operations involving constants.
3673 Return the outermost non-arithmetic or non-constant node. */
3674
3675 tree
3676 skip_simple_constant_arithmetic (tree expr)
3677 {
3678 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3679 expr = TREE_OPERAND (expr, 0);
3680
3681 while (true)
3682 {
3683 if (UNARY_CLASS_P (expr))
3684 expr = TREE_OPERAND (expr, 0);
3685 else if (BINARY_CLASS_P (expr))
3686 {
3687 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3688 expr = TREE_OPERAND (expr, 0);
3689 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3690 expr = TREE_OPERAND (expr, 1);
3691 else
3692 break;
3693 }
3694 else
3695 break;
3696 }
3697
3698 return expr;
3699 }
3700
3701 /* Return which tree structure is used by T. */
3702
3703 enum tree_node_structure_enum
3704 tree_node_structure (const_tree t)
3705 {
3706 const enum tree_code code = TREE_CODE (t);
3707 return tree_node_structure_for_code (code);
3708 }
3709
3710 /* Set various status flags when building a CALL_EXPR object T. */
3711
3712 static void
3713 process_call_operands (tree t)
3714 {
3715 bool side_effects = TREE_SIDE_EFFECTS (t);
3716 bool read_only = false;
3717 int i = call_expr_flags (t);
3718
3719 /* Calls have side-effects, except those to const or pure functions. */
3720 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3721 side_effects = true;
3722 /* Propagate TREE_READONLY of arguments for const functions. */
3723 if (i & ECF_CONST)
3724 read_only = true;
3725
3726 if (!side_effects || read_only)
3727 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3728 {
3729 tree op = TREE_OPERAND (t, i);
3730 if (op && TREE_SIDE_EFFECTS (op))
3731 side_effects = true;
3732 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3733 read_only = false;
3734 }
3735
3736 TREE_SIDE_EFFECTS (t) = side_effects;
3737 TREE_READONLY (t) = read_only;
3738 }
3739 \f
3740 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3741 size or offset that depends on a field within a record. */
3742
3743 bool
3744 contains_placeholder_p (const_tree exp)
3745 {
3746 enum tree_code code;
3747
3748 if (!exp)
3749 return 0;
3750
3751 code = TREE_CODE (exp);
3752 if (code == PLACEHOLDER_EXPR)
3753 return 1;
3754
3755 switch (TREE_CODE_CLASS (code))
3756 {
3757 case tcc_reference:
3758 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3759 position computations since they will be converted into a
3760 WITH_RECORD_EXPR involving the reference, which will assume
3761 here will be valid. */
3762 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3763
3764 case tcc_exceptional:
3765 if (code == TREE_LIST)
3766 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3767 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3768 break;
3769
3770 case tcc_unary:
3771 case tcc_binary:
3772 case tcc_comparison:
3773 case tcc_expression:
3774 switch (code)
3775 {
3776 case COMPOUND_EXPR:
3777 /* Ignoring the first operand isn't quite right, but works best. */
3778 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3779
3780 case COND_EXPR:
3781 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3782 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3783 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3784
3785 case SAVE_EXPR:
3786 /* The save_expr function never wraps anything containing
3787 a PLACEHOLDER_EXPR. */
3788 return 0;
3789
3790 default:
3791 break;
3792 }
3793
3794 switch (TREE_CODE_LENGTH (code))
3795 {
3796 case 1:
3797 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3798 case 2:
3799 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3800 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3801 default:
3802 return 0;
3803 }
3804
3805 case tcc_vl_exp:
3806 switch (code)
3807 {
3808 case CALL_EXPR:
3809 {
3810 const_tree arg;
3811 const_call_expr_arg_iterator iter;
3812 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3813 if (CONTAINS_PLACEHOLDER_P (arg))
3814 return 1;
3815 return 0;
3816 }
3817 default:
3818 return 0;
3819 }
3820
3821 default:
3822 return 0;
3823 }
3824 return 0;
3825 }
3826
3827 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3828 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3829 field positions. */
3830
3831 static bool
3832 type_contains_placeholder_1 (const_tree type)
3833 {
3834 /* If the size contains a placeholder or the parent type (component type in
3835 the case of arrays) type involves a placeholder, this type does. */
3836 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3837 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3838 || (!POINTER_TYPE_P (type)
3839 && TREE_TYPE (type)
3840 && type_contains_placeholder_p (TREE_TYPE (type))))
3841 return true;
3842
3843 /* Now do type-specific checks. Note that the last part of the check above
3844 greatly limits what we have to do below. */
3845 switch (TREE_CODE (type))
3846 {
3847 case VOID_TYPE:
3848 case COMPLEX_TYPE:
3849 case ENUMERAL_TYPE:
3850 case BOOLEAN_TYPE:
3851 case POINTER_TYPE:
3852 case OFFSET_TYPE:
3853 case REFERENCE_TYPE:
3854 case METHOD_TYPE:
3855 case FUNCTION_TYPE:
3856 case VECTOR_TYPE:
3857 case NULLPTR_TYPE:
3858 return false;
3859
3860 case INTEGER_TYPE:
3861 case REAL_TYPE:
3862 case FIXED_POINT_TYPE:
3863 /* Here we just check the bounds. */
3864 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3865 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3866
3867 case ARRAY_TYPE:
3868 /* We have already checked the component type above, so just check
3869 the domain type. Flexible array members have a null domain. */
3870 return TYPE_DOMAIN (type) ?
3871 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3872
3873 case RECORD_TYPE:
3874 case UNION_TYPE:
3875 case QUAL_UNION_TYPE:
3876 {
3877 tree field;
3878
3879 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3880 if (TREE_CODE (field) == FIELD_DECL
3881 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3882 || (TREE_CODE (type) == QUAL_UNION_TYPE
3883 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3884 || type_contains_placeholder_p (TREE_TYPE (field))))
3885 return true;
3886
3887 return false;
3888 }
3889
3890 default:
3891 gcc_unreachable ();
3892 }
3893 }
3894
3895 /* Wrapper around above function used to cache its result. */
3896
3897 bool
3898 type_contains_placeholder_p (tree type)
3899 {
3900 bool result;
3901
3902 /* If the contains_placeholder_bits field has been initialized,
3903 then we know the answer. */
3904 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3905 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3906
3907 /* Indicate that we've seen this type node, and the answer is false.
3908 This is what we want to return if we run into recursion via fields. */
3909 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3910
3911 /* Compute the real value. */
3912 result = type_contains_placeholder_1 (type);
3913
3914 /* Store the real value. */
3915 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3916
3917 return result;
3918 }
3919 \f
3920 /* Push tree EXP onto vector QUEUE if it is not already present. */
3921
3922 static void
3923 push_without_duplicates (tree exp, vec<tree> *queue)
3924 {
3925 unsigned int i;
3926 tree iter;
3927
3928 FOR_EACH_VEC_ELT (*queue, i, iter)
3929 if (simple_cst_equal (iter, exp) == 1)
3930 break;
3931
3932 if (!iter)
3933 queue->safe_push (exp);
3934 }
3935
3936 /* Given a tree EXP, find all occurrences of references to fields
3937 in a PLACEHOLDER_EXPR and place them in vector REFS without
3938 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3939 we assume here that EXP contains only arithmetic expressions
3940 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3941 argument list. */
3942
3943 void
3944 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3945 {
3946 enum tree_code code = TREE_CODE (exp);
3947 tree inner;
3948 int i;
3949
3950 /* We handle TREE_LIST and COMPONENT_REF separately. */
3951 if (code == TREE_LIST)
3952 {
3953 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3954 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3955 }
3956 else if (code == COMPONENT_REF)
3957 {
3958 for (inner = TREE_OPERAND (exp, 0);
3959 REFERENCE_CLASS_P (inner);
3960 inner = TREE_OPERAND (inner, 0))
3961 ;
3962
3963 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3964 push_without_duplicates (exp, refs);
3965 else
3966 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3967 }
3968 else
3969 switch (TREE_CODE_CLASS (code))
3970 {
3971 case tcc_constant:
3972 break;
3973
3974 case tcc_declaration:
3975 /* Variables allocated to static storage can stay. */
3976 if (!TREE_STATIC (exp))
3977 push_without_duplicates (exp, refs);
3978 break;
3979
3980 case tcc_expression:
3981 /* This is the pattern built in ada/make_aligning_type. */
3982 if (code == ADDR_EXPR
3983 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3984 {
3985 push_without_duplicates (exp, refs);
3986 break;
3987 }
3988
3989 /* Fall through. */
3990
3991 case tcc_exceptional:
3992 case tcc_unary:
3993 case tcc_binary:
3994 case tcc_comparison:
3995 case tcc_reference:
3996 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3997 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3998 break;
3999
4000 case tcc_vl_exp:
4001 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4002 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4003 break;
4004
4005 default:
4006 gcc_unreachable ();
4007 }
4008 }
4009
4010 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
4011 return a tree with all occurrences of references to F in a
4012 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
4013 CONST_DECLs. Note that we assume here that EXP contains only
4014 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
4015 occurring only in their argument list. */
4016
4017 tree
4018 substitute_in_expr (tree exp, tree f, tree r)
4019 {
4020 enum tree_code code = TREE_CODE (exp);
4021 tree op0, op1, op2, op3;
4022 tree new_tree;
4023
4024 /* We handle TREE_LIST and COMPONENT_REF separately. */
4025 if (code == TREE_LIST)
4026 {
4027 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
4028 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
4029 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4030 return exp;
4031
4032 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4033 }
4034 else if (code == COMPONENT_REF)
4035 {
4036 tree inner;
4037
4038 /* If this expression is getting a value from a PLACEHOLDER_EXPR
4039 and it is the right field, replace it with R. */
4040 for (inner = TREE_OPERAND (exp, 0);
4041 REFERENCE_CLASS_P (inner);
4042 inner = TREE_OPERAND (inner, 0))
4043 ;
4044
4045 /* The field. */
4046 op1 = TREE_OPERAND (exp, 1);
4047
4048 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
4049 return r;
4050
4051 /* If this expression hasn't been completed let, leave it alone. */
4052 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
4053 return exp;
4054
4055 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4056 if (op0 == TREE_OPERAND (exp, 0))
4057 return exp;
4058
4059 new_tree
4060 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4061 }
4062 else
4063 switch (TREE_CODE_CLASS (code))
4064 {
4065 case tcc_constant:
4066 return exp;
4067
4068 case tcc_declaration:
4069 if (exp == f)
4070 return r;
4071 else
4072 return exp;
4073
4074 case tcc_expression:
4075 if (exp == f)
4076 return r;
4077
4078 /* Fall through. */
4079
4080 case tcc_exceptional:
4081 case tcc_unary:
4082 case tcc_binary:
4083 case tcc_comparison:
4084 case tcc_reference:
4085 switch (TREE_CODE_LENGTH (code))
4086 {
4087 case 0:
4088 return exp;
4089
4090 case 1:
4091 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4092 if (op0 == TREE_OPERAND (exp, 0))
4093 return exp;
4094
4095 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4096 break;
4097
4098 case 2:
4099 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4100 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4101
4102 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4103 return exp;
4104
4105 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4106 break;
4107
4108 case 3:
4109 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4110 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4111 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4112
4113 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4114 && op2 == TREE_OPERAND (exp, 2))
4115 return exp;
4116
4117 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4118 break;
4119
4120 case 4:
4121 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4122 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4123 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4124 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4125
4126 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4127 && op2 == TREE_OPERAND (exp, 2)
4128 && op3 == TREE_OPERAND (exp, 3))
4129 return exp;
4130
4131 new_tree
4132 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4133 break;
4134
4135 default:
4136 gcc_unreachable ();
4137 }
4138 break;
4139
4140 case tcc_vl_exp:
4141 {
4142 int i;
4143
4144 new_tree = NULL_TREE;
4145
4146 /* If we are trying to replace F with a constant or with another
4147 instance of one of the arguments of the call, inline back
4148 functions which do nothing else than computing a value from
4149 the arguments they are passed. This makes it possible to
4150 fold partially or entirely the replacement expression. */
4151 if (code == CALL_EXPR)
4152 {
4153 bool maybe_inline = false;
4154 if (CONSTANT_CLASS_P (r))
4155 maybe_inline = true;
4156 else
4157 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4158 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4159 {
4160 maybe_inline = true;
4161 break;
4162 }
4163 if (maybe_inline)
4164 {
4165 tree t = maybe_inline_call_in_expr (exp);
4166 if (t)
4167 return SUBSTITUTE_IN_EXPR (t, f, r);
4168 }
4169 }
4170
4171 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4172 {
4173 tree op = TREE_OPERAND (exp, i);
4174 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4175 if (new_op != op)
4176 {
4177 if (!new_tree)
4178 new_tree = copy_node (exp);
4179 TREE_OPERAND (new_tree, i) = new_op;
4180 }
4181 }
4182
4183 if (new_tree)
4184 {
4185 new_tree = fold (new_tree);
4186 if (TREE_CODE (new_tree) == CALL_EXPR)
4187 process_call_operands (new_tree);
4188 }
4189 else
4190 return exp;
4191 }
4192 break;
4193
4194 default:
4195 gcc_unreachable ();
4196 }
4197
4198 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4199
4200 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4201 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4202
4203 return new_tree;
4204 }
4205
4206 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4207 for it within OBJ, a tree that is an object or a chain of references. */
4208
4209 tree
4210 substitute_placeholder_in_expr (tree exp, tree obj)
4211 {
4212 enum tree_code code = TREE_CODE (exp);
4213 tree op0, op1, op2, op3;
4214 tree new_tree;
4215
4216 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4217 in the chain of OBJ. */
4218 if (code == PLACEHOLDER_EXPR)
4219 {
4220 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4221 tree elt;
4222
4223 for (elt = obj; elt != 0;
4224 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4225 || TREE_CODE (elt) == COND_EXPR)
4226 ? TREE_OPERAND (elt, 1)
4227 : (REFERENCE_CLASS_P (elt)
4228 || UNARY_CLASS_P (elt)
4229 || BINARY_CLASS_P (elt)
4230 || VL_EXP_CLASS_P (elt)
4231 || EXPRESSION_CLASS_P (elt))
4232 ? TREE_OPERAND (elt, 0) : 0))
4233 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4234 return elt;
4235
4236 for (elt = obj; elt != 0;
4237 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4238 || TREE_CODE (elt) == COND_EXPR)
4239 ? TREE_OPERAND (elt, 1)
4240 : (REFERENCE_CLASS_P (elt)
4241 || UNARY_CLASS_P (elt)
4242 || BINARY_CLASS_P (elt)
4243 || VL_EXP_CLASS_P (elt)
4244 || EXPRESSION_CLASS_P (elt))
4245 ? TREE_OPERAND (elt, 0) : 0))
4246 if (POINTER_TYPE_P (TREE_TYPE (elt))
4247 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4248 == need_type))
4249 return fold_build1 (INDIRECT_REF, need_type, elt);
4250
4251 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4252 survives until RTL generation, there will be an error. */
4253 return exp;
4254 }
4255
4256 /* TREE_LIST is special because we need to look at TREE_VALUE
4257 and TREE_CHAIN, not TREE_OPERANDS. */
4258 else if (code == TREE_LIST)
4259 {
4260 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4261 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4262 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4263 return exp;
4264
4265 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4266 }
4267 else
4268 switch (TREE_CODE_CLASS (code))
4269 {
4270 case tcc_constant:
4271 case tcc_declaration:
4272 return exp;
4273
4274 case tcc_exceptional:
4275 case tcc_unary:
4276 case tcc_binary:
4277 case tcc_comparison:
4278 case tcc_expression:
4279 case tcc_reference:
4280 case tcc_statement:
4281 switch (TREE_CODE_LENGTH (code))
4282 {
4283 case 0:
4284 return exp;
4285
4286 case 1:
4287 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4288 if (op0 == TREE_OPERAND (exp, 0))
4289 return exp;
4290
4291 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4292 break;
4293
4294 case 2:
4295 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4296 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4297
4298 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4299 return exp;
4300
4301 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4302 break;
4303
4304 case 3:
4305 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4306 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4307 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4308
4309 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4310 && op2 == TREE_OPERAND (exp, 2))
4311 return exp;
4312
4313 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4314 break;
4315
4316 case 4:
4317 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4318 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4319 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4320 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4321
4322 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4323 && op2 == TREE_OPERAND (exp, 2)
4324 && op3 == TREE_OPERAND (exp, 3))
4325 return exp;
4326
4327 new_tree
4328 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4329 break;
4330
4331 default:
4332 gcc_unreachable ();
4333 }
4334 break;
4335
4336 case tcc_vl_exp:
4337 {
4338 int i;
4339
4340 new_tree = NULL_TREE;
4341
4342 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4343 {
4344 tree op = TREE_OPERAND (exp, i);
4345 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4346 if (new_op != op)
4347 {
4348 if (!new_tree)
4349 new_tree = copy_node (exp);
4350 TREE_OPERAND (new_tree, i) = new_op;
4351 }
4352 }
4353
4354 if (new_tree)
4355 {
4356 new_tree = fold (new_tree);
4357 if (TREE_CODE (new_tree) == CALL_EXPR)
4358 process_call_operands (new_tree);
4359 }
4360 else
4361 return exp;
4362 }
4363 break;
4364
4365 default:
4366 gcc_unreachable ();
4367 }
4368
4369 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4370
4371 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4372 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4373
4374 return new_tree;
4375 }
4376 \f
4377
4378 /* Subroutine of stabilize_reference; this is called for subtrees of
4379 references. Any expression with side-effects must be put in a SAVE_EXPR
4380 to ensure that it is only evaluated once.
4381
4382 We don't put SAVE_EXPR nodes around everything, because assigning very
4383 simple expressions to temporaries causes us to miss good opportunities
4384 for optimizations. Among other things, the opportunity to fold in the
4385 addition of a constant into an addressing mode often gets lost, e.g.
4386 "y[i+1] += x;". In general, we take the approach that we should not make
4387 an assignment unless we are forced into it - i.e., that any non-side effect
4388 operator should be allowed, and that cse should take care of coalescing
4389 multiple utterances of the same expression should that prove fruitful. */
4390
4391 static tree
4392 stabilize_reference_1 (tree e)
4393 {
4394 tree result;
4395 enum tree_code code = TREE_CODE (e);
4396
4397 /* We cannot ignore const expressions because it might be a reference
4398 to a const array but whose index contains side-effects. But we can
4399 ignore things that are actual constant or that already have been
4400 handled by this function. */
4401
4402 if (tree_invariant_p (e))
4403 return e;
4404
4405 switch (TREE_CODE_CLASS (code))
4406 {
4407 case tcc_exceptional:
4408 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4409 have side-effects. */
4410 if (code == STATEMENT_LIST)
4411 return save_expr (e);
4412 /* FALLTHRU */
4413 case tcc_type:
4414 case tcc_declaration:
4415 case tcc_comparison:
4416 case tcc_statement:
4417 case tcc_expression:
4418 case tcc_reference:
4419 case tcc_vl_exp:
4420 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4421 so that it will only be evaluated once. */
4422 /* The reference (r) and comparison (<) classes could be handled as
4423 below, but it is generally faster to only evaluate them once. */
4424 if (TREE_SIDE_EFFECTS (e))
4425 return save_expr (e);
4426 return e;
4427
4428 case tcc_constant:
4429 /* Constants need no processing. In fact, we should never reach
4430 here. */
4431 return e;
4432
4433 case tcc_binary:
4434 /* Division is slow and tends to be compiled with jumps,
4435 especially the division by powers of 2 that is often
4436 found inside of an array reference. So do it just once. */
4437 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4438 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4439 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4440 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4441 return save_expr (e);
4442 /* Recursively stabilize each operand. */
4443 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4444 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4445 break;
4446
4447 case tcc_unary:
4448 /* Recursively stabilize each operand. */
4449 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4450 break;
4451
4452 default:
4453 gcc_unreachable ();
4454 }
4455
4456 TREE_TYPE (result) = TREE_TYPE (e);
4457 TREE_READONLY (result) = TREE_READONLY (e);
4458 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4459 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4460
4461 return result;
4462 }
4463
4464 /* Stabilize a reference so that we can use it any number of times
4465 without causing its operands to be evaluated more than once.
4466 Returns the stabilized reference. This works by means of save_expr,
4467 so see the caveats in the comments about save_expr.
4468
4469 Also allows conversion expressions whose operands are references.
4470 Any other kind of expression is returned unchanged. */
4471
4472 tree
4473 stabilize_reference (tree ref)
4474 {
4475 tree result;
4476 enum tree_code code = TREE_CODE (ref);
4477
4478 switch (code)
4479 {
4480 case VAR_DECL:
4481 case PARM_DECL:
4482 case RESULT_DECL:
4483 /* No action is needed in this case. */
4484 return ref;
4485
4486 CASE_CONVERT:
4487 case FLOAT_EXPR:
4488 case FIX_TRUNC_EXPR:
4489 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4490 break;
4491
4492 case INDIRECT_REF:
4493 result = build_nt (INDIRECT_REF,
4494 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4495 break;
4496
4497 case COMPONENT_REF:
4498 result = build_nt (COMPONENT_REF,
4499 stabilize_reference (TREE_OPERAND (ref, 0)),
4500 TREE_OPERAND (ref, 1), NULL_TREE);
4501 break;
4502
4503 case BIT_FIELD_REF:
4504 result = build_nt (BIT_FIELD_REF,
4505 stabilize_reference (TREE_OPERAND (ref, 0)),
4506 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4507 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4508 break;
4509
4510 case ARRAY_REF:
4511 result = build_nt (ARRAY_REF,
4512 stabilize_reference (TREE_OPERAND (ref, 0)),
4513 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4514 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4515 break;
4516
4517 case ARRAY_RANGE_REF:
4518 result = build_nt (ARRAY_RANGE_REF,
4519 stabilize_reference (TREE_OPERAND (ref, 0)),
4520 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4521 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4522 break;
4523
4524 case COMPOUND_EXPR:
4525 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4526 it wouldn't be ignored. This matters when dealing with
4527 volatiles. */
4528 return stabilize_reference_1 (ref);
4529
4530 /* If arg isn't a kind of lvalue we recognize, make no change.
4531 Caller should recognize the error for an invalid lvalue. */
4532 default:
4533 return ref;
4534
4535 case ERROR_MARK:
4536 return error_mark_node;
4537 }
4538
4539 TREE_TYPE (result) = TREE_TYPE (ref);
4540 TREE_READONLY (result) = TREE_READONLY (ref);
4541 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4542 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4543
4544 return result;
4545 }
4546 \f
4547 /* Low-level constructors for expressions. */
4548
4549 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4550 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4551
4552 void
4553 recompute_tree_invariant_for_addr_expr (tree t)
4554 {
4555 tree node;
4556 bool tc = true, se = false;
4557
4558 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4559
4560 /* We started out assuming this address is both invariant and constant, but
4561 does not have side effects. Now go down any handled components and see if
4562 any of them involve offsets that are either non-constant or non-invariant.
4563 Also check for side-effects.
4564
4565 ??? Note that this code makes no attempt to deal with the case where
4566 taking the address of something causes a copy due to misalignment. */
4567
4568 #define UPDATE_FLAGS(NODE) \
4569 do { tree _node = (NODE); \
4570 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4571 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4572
4573 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4574 node = TREE_OPERAND (node, 0))
4575 {
4576 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4577 array reference (probably made temporarily by the G++ front end),
4578 so ignore all the operands. */
4579 if ((TREE_CODE (node) == ARRAY_REF
4580 || TREE_CODE (node) == ARRAY_RANGE_REF)
4581 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4582 {
4583 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4584 if (TREE_OPERAND (node, 2))
4585 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4586 if (TREE_OPERAND (node, 3))
4587 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4588 }
4589 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4590 FIELD_DECL, apparently. The G++ front end can put something else
4591 there, at least temporarily. */
4592 else if (TREE_CODE (node) == COMPONENT_REF
4593 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4594 {
4595 if (TREE_OPERAND (node, 2))
4596 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4597 }
4598 }
4599
4600 node = lang_hooks.expr_to_decl (node, &tc, &se);
4601
4602 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4603 the address, since &(*a)->b is a form of addition. If it's a constant, the
4604 address is constant too. If it's a decl, its address is constant if the
4605 decl is static. Everything else is not constant and, furthermore,
4606 taking the address of a volatile variable is not volatile. */
4607 if (TREE_CODE (node) == INDIRECT_REF
4608 || TREE_CODE (node) == MEM_REF)
4609 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4610 else if (CONSTANT_CLASS_P (node))
4611 ;
4612 else if (DECL_P (node))
4613 tc &= (staticp (node) != NULL_TREE);
4614 else
4615 {
4616 tc = false;
4617 se |= TREE_SIDE_EFFECTS (node);
4618 }
4619
4620
4621 TREE_CONSTANT (t) = tc;
4622 TREE_SIDE_EFFECTS (t) = se;
4623 #undef UPDATE_FLAGS
4624 }
4625
4626 /* Build an expression of code CODE, data type TYPE, and operands as
4627 specified. Expressions and reference nodes can be created this way.
4628 Constants, decls, types and misc nodes cannot be.
4629
4630 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4631 enough for all extant tree codes. */
4632
4633 tree
4634 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4635 {
4636 tree t;
4637
4638 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4639
4640 t = make_node (code PASS_MEM_STAT);
4641 TREE_TYPE (t) = tt;
4642
4643 return t;
4644 }
4645
4646 tree
4647 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4648 {
4649 int length = sizeof (struct tree_exp);
4650 tree t;
4651
4652 record_node_allocation_statistics (code, length);
4653
4654 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4655
4656 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4657
4658 memset (t, 0, sizeof (struct tree_common));
4659
4660 TREE_SET_CODE (t, code);
4661
4662 TREE_TYPE (t) = type;
4663 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4664 TREE_OPERAND (t, 0) = node;
4665 if (node && !TYPE_P (node))
4666 {
4667 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4668 TREE_READONLY (t) = TREE_READONLY (node);
4669 }
4670
4671 if (TREE_CODE_CLASS (code) == tcc_statement)
4672 {
4673 if (code != DEBUG_BEGIN_STMT)
4674 TREE_SIDE_EFFECTS (t) = 1;
4675 }
4676 else switch (code)
4677 {
4678 case VA_ARG_EXPR:
4679 /* All of these have side-effects, no matter what their
4680 operands are. */
4681 TREE_SIDE_EFFECTS (t) = 1;
4682 TREE_READONLY (t) = 0;
4683 break;
4684
4685 case INDIRECT_REF:
4686 /* Whether a dereference is readonly has nothing to do with whether
4687 its operand is readonly. */
4688 TREE_READONLY (t) = 0;
4689 break;
4690
4691 case ADDR_EXPR:
4692 if (node)
4693 recompute_tree_invariant_for_addr_expr (t);
4694 break;
4695
4696 default:
4697 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4698 && node && !TYPE_P (node)
4699 && TREE_CONSTANT (node))
4700 TREE_CONSTANT (t) = 1;
4701 if (TREE_CODE_CLASS (code) == tcc_reference
4702 && node && TREE_THIS_VOLATILE (node))
4703 TREE_THIS_VOLATILE (t) = 1;
4704 break;
4705 }
4706
4707 return t;
4708 }
4709
4710 #define PROCESS_ARG(N) \
4711 do { \
4712 TREE_OPERAND (t, N) = arg##N; \
4713 if (arg##N &&!TYPE_P (arg##N)) \
4714 { \
4715 if (TREE_SIDE_EFFECTS (arg##N)) \
4716 side_effects = 1; \
4717 if (!TREE_READONLY (arg##N) \
4718 && !CONSTANT_CLASS_P (arg##N)) \
4719 (void) (read_only = 0); \
4720 if (!TREE_CONSTANT (arg##N)) \
4721 (void) (constant = 0); \
4722 } \
4723 } while (0)
4724
4725 tree
4726 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4727 {
4728 bool constant, read_only, side_effects, div_by_zero;
4729 tree t;
4730
4731 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4732
4733 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4734 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4735 /* When sizetype precision doesn't match that of pointers
4736 we need to be able to build explicit extensions or truncations
4737 of the offset argument. */
4738 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4739 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4740 && TREE_CODE (arg1) == INTEGER_CST);
4741
4742 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4743 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4744 && ptrofftype_p (TREE_TYPE (arg1)));
4745
4746 t = make_node (code PASS_MEM_STAT);
4747 TREE_TYPE (t) = tt;
4748
4749 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4750 result based on those same flags for the arguments. But if the
4751 arguments aren't really even `tree' expressions, we shouldn't be trying
4752 to do this. */
4753
4754 /* Expressions without side effects may be constant if their
4755 arguments are as well. */
4756 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4757 || TREE_CODE_CLASS (code) == tcc_binary);
4758 read_only = 1;
4759 side_effects = TREE_SIDE_EFFECTS (t);
4760
4761 switch (code)
4762 {
4763 case TRUNC_DIV_EXPR:
4764 case CEIL_DIV_EXPR:
4765 case FLOOR_DIV_EXPR:
4766 case ROUND_DIV_EXPR:
4767 case EXACT_DIV_EXPR:
4768 case CEIL_MOD_EXPR:
4769 case FLOOR_MOD_EXPR:
4770 case ROUND_MOD_EXPR:
4771 case TRUNC_MOD_EXPR:
4772 div_by_zero = integer_zerop (arg1);
4773 break;
4774 default:
4775 div_by_zero = false;
4776 }
4777
4778 PROCESS_ARG (0);
4779 PROCESS_ARG (1);
4780
4781 TREE_SIDE_EFFECTS (t) = side_effects;
4782 if (code == MEM_REF)
4783 {
4784 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4785 {
4786 tree o = TREE_OPERAND (arg0, 0);
4787 TREE_READONLY (t) = TREE_READONLY (o);
4788 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4789 }
4790 }
4791 else
4792 {
4793 TREE_READONLY (t) = read_only;
4794 /* Don't mark X / 0 as constant. */
4795 TREE_CONSTANT (t) = constant && !div_by_zero;
4796 TREE_THIS_VOLATILE (t)
4797 = (TREE_CODE_CLASS (code) == tcc_reference
4798 && arg0 && TREE_THIS_VOLATILE (arg0));
4799 }
4800
4801 return t;
4802 }
4803
4804
4805 tree
4806 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4807 tree arg2 MEM_STAT_DECL)
4808 {
4809 bool constant, read_only, side_effects;
4810 tree t;
4811
4812 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4813 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4814
4815 t = make_node (code PASS_MEM_STAT);
4816 TREE_TYPE (t) = tt;
4817
4818 read_only = 1;
4819
4820 /* As a special exception, if COND_EXPR has NULL branches, we
4821 assume that it is a gimple statement and always consider
4822 it to have side effects. */
4823 if (code == COND_EXPR
4824 && tt == void_type_node
4825 && arg1 == NULL_TREE
4826 && arg2 == NULL_TREE)
4827 side_effects = true;
4828 else
4829 side_effects = TREE_SIDE_EFFECTS (t);
4830
4831 PROCESS_ARG (0);
4832 PROCESS_ARG (1);
4833 PROCESS_ARG (2);
4834
4835 if (code == COND_EXPR)
4836 TREE_READONLY (t) = read_only;
4837
4838 TREE_SIDE_EFFECTS (t) = side_effects;
4839 TREE_THIS_VOLATILE (t)
4840 = (TREE_CODE_CLASS (code) == tcc_reference
4841 && arg0 && TREE_THIS_VOLATILE (arg0));
4842
4843 return t;
4844 }
4845
4846 tree
4847 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4848 tree arg2, tree arg3 MEM_STAT_DECL)
4849 {
4850 bool constant, read_only, side_effects;
4851 tree t;
4852
4853 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4854
4855 t = make_node (code PASS_MEM_STAT);
4856 TREE_TYPE (t) = tt;
4857
4858 side_effects = TREE_SIDE_EFFECTS (t);
4859
4860 PROCESS_ARG (0);
4861 PROCESS_ARG (1);
4862 PROCESS_ARG (2);
4863 PROCESS_ARG (3);
4864
4865 TREE_SIDE_EFFECTS (t) = side_effects;
4866 TREE_THIS_VOLATILE (t)
4867 = (TREE_CODE_CLASS (code) == tcc_reference
4868 && arg0 && TREE_THIS_VOLATILE (arg0));
4869
4870 return t;
4871 }
4872
4873 tree
4874 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4875 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4876 {
4877 bool constant, read_only, side_effects;
4878 tree t;
4879
4880 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4881
4882 t = make_node (code PASS_MEM_STAT);
4883 TREE_TYPE (t) = tt;
4884
4885 side_effects = TREE_SIDE_EFFECTS (t);
4886
4887 PROCESS_ARG (0);
4888 PROCESS_ARG (1);
4889 PROCESS_ARG (2);
4890 PROCESS_ARG (3);
4891 PROCESS_ARG (4);
4892
4893 TREE_SIDE_EFFECTS (t) = side_effects;
4894 if (code == TARGET_MEM_REF)
4895 {
4896 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4897 {
4898 tree o = TREE_OPERAND (arg0, 0);
4899 TREE_READONLY (t) = TREE_READONLY (o);
4900 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4901 }
4902 }
4903 else
4904 TREE_THIS_VOLATILE (t)
4905 = (TREE_CODE_CLASS (code) == tcc_reference
4906 && arg0 && TREE_THIS_VOLATILE (arg0));
4907
4908 return t;
4909 }
4910
4911 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4912 on the pointer PTR. */
4913
4914 tree
4915 build_simple_mem_ref_loc (location_t loc, tree ptr)
4916 {
4917 poly_int64 offset = 0;
4918 tree ptype = TREE_TYPE (ptr);
4919 tree tem;
4920 /* For convenience allow addresses that collapse to a simple base
4921 and offset. */
4922 if (TREE_CODE (ptr) == ADDR_EXPR
4923 && (handled_component_p (TREE_OPERAND (ptr, 0))
4924 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4925 {
4926 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4927 gcc_assert (ptr);
4928 if (TREE_CODE (ptr) == MEM_REF)
4929 {
4930 offset += mem_ref_offset (ptr).force_shwi ();
4931 ptr = TREE_OPERAND (ptr, 0);
4932 }
4933 else
4934 ptr = build_fold_addr_expr (ptr);
4935 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4936 }
4937 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4938 ptr, build_int_cst (ptype, offset));
4939 SET_EXPR_LOCATION (tem, loc);
4940 return tem;
4941 }
4942
4943 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4944
4945 poly_offset_int
4946 mem_ref_offset (const_tree t)
4947 {
4948 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4949 SIGNED);
4950 }
4951
4952 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4953 offsetted by OFFSET units. */
4954
4955 tree
4956 build_invariant_address (tree type, tree base, poly_int64 offset)
4957 {
4958 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4959 build_fold_addr_expr (base),
4960 build_int_cst (ptr_type_node, offset));
4961 tree addr = build1 (ADDR_EXPR, type, ref);
4962 recompute_tree_invariant_for_addr_expr (addr);
4963 return addr;
4964 }
4965
4966 /* Similar except don't specify the TREE_TYPE
4967 and leave the TREE_SIDE_EFFECTS as 0.
4968 It is permissible for arguments to be null,
4969 or even garbage if their values do not matter. */
4970
4971 tree
4972 build_nt (enum tree_code code, ...)
4973 {
4974 tree t;
4975 int length;
4976 int i;
4977 va_list p;
4978
4979 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4980
4981 va_start (p, code);
4982
4983 t = make_node (code);
4984 length = TREE_CODE_LENGTH (code);
4985
4986 for (i = 0; i < length; i++)
4987 TREE_OPERAND (t, i) = va_arg (p, tree);
4988
4989 va_end (p);
4990 return t;
4991 }
4992
4993 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4994 tree vec. */
4995
4996 tree
4997 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4998 {
4999 tree ret, t;
5000 unsigned int ix;
5001
5002 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
5003 CALL_EXPR_FN (ret) = fn;
5004 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
5005 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
5006 CALL_EXPR_ARG (ret, ix) = t;
5007 return ret;
5008 }
5009 \f
5010 /* Create a DECL_... node of code CODE, name NAME (if non-null)
5011 and data type TYPE.
5012 We do NOT enter this node in any sort of symbol table.
5013
5014 LOC is the location of the decl.
5015
5016 layout_decl is used to set up the decl's storage layout.
5017 Other slots are initialized to 0 or null pointers. */
5018
5019 tree
5020 build_decl (location_t loc, enum tree_code code, tree name,
5021 tree type MEM_STAT_DECL)
5022 {
5023 tree t;
5024
5025 t = make_node (code PASS_MEM_STAT);
5026 DECL_SOURCE_LOCATION (t) = loc;
5027
5028 /* if (type == error_mark_node)
5029 type = integer_type_node; */
5030 /* That is not done, deliberately, so that having error_mark_node
5031 as the type can suppress useless errors in the use of this variable. */
5032
5033 DECL_NAME (t) = name;
5034 TREE_TYPE (t) = type;
5035
5036 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
5037 layout_decl (t, 0);
5038
5039 return t;
5040 }
5041
5042 /* Builds and returns function declaration with NAME and TYPE. */
5043
5044 tree
5045 build_fn_decl (const char *name, tree type)
5046 {
5047 tree id = get_identifier (name);
5048 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
5049
5050 DECL_EXTERNAL (decl) = 1;
5051 TREE_PUBLIC (decl) = 1;
5052 DECL_ARTIFICIAL (decl) = 1;
5053 TREE_NOTHROW (decl) = 1;
5054
5055 return decl;
5056 }
5057
5058 vec<tree, va_gc> *all_translation_units;
5059
5060 /* Builds a new translation-unit decl with name NAME, queues it in the
5061 global list of translation-unit decls and returns it. */
5062
5063 tree
5064 build_translation_unit_decl (tree name)
5065 {
5066 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5067 name, NULL_TREE);
5068 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5069 vec_safe_push (all_translation_units, tu);
5070 return tu;
5071 }
5072
5073 \f
5074 /* BLOCK nodes are used to represent the structure of binding contours
5075 and declarations, once those contours have been exited and their contents
5076 compiled. This information is used for outputting debugging info. */
5077
5078 tree
5079 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5080 {
5081 tree block = make_node (BLOCK);
5082
5083 BLOCK_VARS (block) = vars;
5084 BLOCK_SUBBLOCKS (block) = subblocks;
5085 BLOCK_SUPERCONTEXT (block) = supercontext;
5086 BLOCK_CHAIN (block) = chain;
5087 return block;
5088 }
5089
5090 \f
5091 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5092
5093 LOC is the location to use in tree T. */
5094
5095 void
5096 protected_set_expr_location (tree t, location_t loc)
5097 {
5098 if (CAN_HAVE_LOCATION_P (t))
5099 SET_EXPR_LOCATION (t, loc);
5100 }
5101
5102 /* Data used when collecting DECLs and TYPEs for language data removal. */
5103
5104 struct free_lang_data_d
5105 {
5106 free_lang_data_d () : decls (100), types (100) {}
5107
5108 /* Worklist to avoid excessive recursion. */
5109 auto_vec<tree> worklist;
5110
5111 /* Set of traversed objects. Used to avoid duplicate visits. */
5112 hash_set<tree> pset;
5113
5114 /* Array of symbols to process with free_lang_data_in_decl. */
5115 auto_vec<tree> decls;
5116
5117 /* Array of types to process with free_lang_data_in_type. */
5118 auto_vec<tree> types;
5119 };
5120
5121
5122 /* Add type or decl T to one of the list of tree nodes that need their
5123 language data removed. The lists are held inside FLD. */
5124
5125 static void
5126 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5127 {
5128 if (DECL_P (t))
5129 fld->decls.safe_push (t);
5130 else if (TYPE_P (t))
5131 fld->types.safe_push (t);
5132 else
5133 gcc_unreachable ();
5134 }
5135
5136 /* Push tree node T into FLD->WORKLIST. */
5137
5138 static inline void
5139 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5140 {
5141 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5142 fld->worklist.safe_push ((t));
5143 }
5144
5145
5146 \f
5147 /* Return simplified TYPE_NAME of TYPE. */
5148
5149 static tree
5150 fld_simplified_type_name (tree type)
5151 {
5152 if (!TYPE_NAME (type) || TREE_CODE (TYPE_NAME (type)) != TYPE_DECL)
5153 return TYPE_NAME (type);
5154 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5155 TYPE_DECL if the type doesn't have linkage.
5156 this must match fld_ */
5157 if (type != TYPE_MAIN_VARIANT (type)
5158 || (!DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (type))
5159 && (TREE_CODE (type) != RECORD_TYPE
5160 || !TYPE_BINFO (type)
5161 || !BINFO_VTABLE (TYPE_BINFO (type)))))
5162 return DECL_NAME (TYPE_NAME (type));
5163 return TYPE_NAME (type);
5164 }
5165
5166 /* Do same comparsion as check_qualified_type skipping lang part of type
5167 and be more permissive about type names: we only care that names are
5168 same (for diagnostics) and that ODR names are the same.
5169 If INNER_TYPE is non-NULL, be sure that TREE_TYPE match it. */
5170
5171 static bool
5172 fld_type_variant_equal_p (tree t, tree v, tree inner_type)
5173 {
5174 if (TYPE_QUALS (t) != TYPE_QUALS (v)
5175 /* We want to match incomplete variants with complete types.
5176 In this case we need to ignore alignment. */
5177 || ((!RECORD_OR_UNION_TYPE_P (t) || COMPLETE_TYPE_P (v))
5178 && (TYPE_ALIGN (t) != TYPE_ALIGN (v)
5179 || TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (v)))
5180 || fld_simplified_type_name (t) != fld_simplified_type_name (v)
5181 || !attribute_list_equal (TYPE_ATTRIBUTES (t),
5182 TYPE_ATTRIBUTES (v))
5183 || (inner_type && TREE_TYPE (v) != inner_type))
5184 return false;
5185
5186 return true;
5187 }
5188
5189 /* Find variant of FIRST that match T and create new one if necessary.
5190 Set TREE_TYPE to INNER_TYPE if non-NULL. */
5191
5192 static tree
5193 fld_type_variant (tree first, tree t, struct free_lang_data_d *fld,
5194 tree inner_type = NULL)
5195 {
5196 if (first == TYPE_MAIN_VARIANT (t))
5197 return t;
5198 for (tree v = first; v; v = TYPE_NEXT_VARIANT (v))
5199 if (fld_type_variant_equal_p (t, v, inner_type))
5200 return v;
5201 tree v = build_variant_type_copy (first);
5202 TYPE_READONLY (v) = TYPE_READONLY (t);
5203 TYPE_VOLATILE (v) = TYPE_VOLATILE (t);
5204 TYPE_ATOMIC (v) = TYPE_ATOMIC (t);
5205 TYPE_RESTRICT (v) = TYPE_RESTRICT (t);
5206 TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t);
5207 TYPE_NAME (v) = TYPE_NAME (t);
5208 TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t);
5209 TYPE_CANONICAL (v) = TYPE_CANONICAL (t);
5210 /* Variants of incomplete types should have alignment
5211 set to BITS_PER_UNIT. Do not copy the actual alignment. */
5212 if (!RECORD_OR_UNION_TYPE_P (v) || COMPLETE_TYPE_P (v))
5213 {
5214 SET_TYPE_ALIGN (v, TYPE_ALIGN (t));
5215 TYPE_USER_ALIGN (v) = TYPE_USER_ALIGN (t);
5216 }
5217 if (inner_type)
5218 TREE_TYPE (v) = inner_type;
5219 gcc_checking_assert (fld_type_variant_equal_p (t,v, inner_type));
5220 if (!fld->pset.add (v))
5221 add_tree_to_fld_list (v, fld);
5222 return v;
5223 }
5224
5225 /* Map complete types to incomplete types. */
5226
5227 static hash_map<tree, tree> *fld_incomplete_types;
5228
5229 /* Map types to simplified types. */
5230
5231 static hash_map<tree, tree> *fld_simplified_types;
5232
5233 /* Produce variant of T whose TREE_TYPE is T2. If it is main variant,
5234 use MAP to prevent duplicates. */
5235
5236 static tree
5237 fld_process_array_type (tree t, tree t2, hash_map<tree, tree> *map,
5238 struct free_lang_data_d *fld)
5239 {
5240 if (TREE_TYPE (t) == t2)
5241 return t;
5242
5243 if (TYPE_MAIN_VARIANT (t) != t)
5244 {
5245 return fld_type_variant
5246 (fld_process_array_type (TYPE_MAIN_VARIANT (t),
5247 TYPE_MAIN_VARIANT (t2), map, fld),
5248 t, fld, t2);
5249 }
5250
5251 bool existed;
5252 tree &array
5253 = map->get_or_insert (t, &existed);
5254 if (!existed)
5255 {
5256 array = build_array_type_1 (t2, TYPE_DOMAIN (t),
5257 TYPE_TYPELESS_STORAGE (t), false);
5258 TYPE_CANONICAL (array) = TYPE_CANONICAL (t);
5259 if (!fld->pset.add (array))
5260 add_tree_to_fld_list (array, fld);
5261 }
5262 return array;
5263 }
5264
5265 /* Return CTX after removal of contexts that are not relevant */
5266
5267 static tree
5268 fld_decl_context (tree ctx)
5269 {
5270 /* Variably modified types are needed for tree_is_indexable to decide
5271 whether the type needs to go to local or global section.
5272 This code is semi-broken but for now it is easiest to keep contexts
5273 as expected. */
5274 if (ctx && TYPE_P (ctx)
5275 && !variably_modified_type_p (ctx, NULL_TREE))
5276 {
5277 while (ctx && TYPE_P (ctx))
5278 ctx = TYPE_CONTEXT (ctx);
5279 }
5280 return ctx;
5281 }
5282
5283 /* For T being aggregate type try to turn it into a incomplete variant.
5284 Return T if no simplification is possible. */
5285
5286 static tree
5287 fld_incomplete_type_of (tree t, struct free_lang_data_d *fld)
5288 {
5289 if (!t)
5290 return NULL;
5291 if (POINTER_TYPE_P (t))
5292 {
5293 tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld);
5294 if (t2 != TREE_TYPE (t))
5295 {
5296 tree first;
5297 if (TREE_CODE (t) == POINTER_TYPE)
5298 first = build_pointer_type_for_mode (t2, TYPE_MODE (t),
5299 TYPE_REF_CAN_ALIAS_ALL (t));
5300 else
5301 first = build_reference_type_for_mode (t2, TYPE_MODE (t),
5302 TYPE_REF_CAN_ALIAS_ALL (t));
5303 gcc_assert (TYPE_CANONICAL (t2) != t2
5304 && TYPE_CANONICAL (t2) == TYPE_CANONICAL (TREE_TYPE (t)));
5305 if (!fld->pset.add (first))
5306 add_tree_to_fld_list (first, fld);
5307 return fld_type_variant (first, t, fld);
5308 }
5309 return t;
5310 }
5311 if (TREE_CODE (t) == ARRAY_TYPE)
5312 return fld_process_array_type (t,
5313 fld_incomplete_type_of (TREE_TYPE (t), fld),
5314 fld_incomplete_types, fld);
5315 if ((!RECORD_OR_UNION_TYPE_P (t) && TREE_CODE (t) != ENUMERAL_TYPE)
5316 || !COMPLETE_TYPE_P (t))
5317 return t;
5318 if (TYPE_MAIN_VARIANT (t) == t)
5319 {
5320 bool existed;
5321 tree &copy
5322 = fld_incomplete_types->get_or_insert (t, &existed);
5323
5324 if (!existed)
5325 {
5326 copy = build_distinct_type_copy (t);
5327
5328 /* It is possible that type was not seen by free_lang_data yet. */
5329 if (!fld->pset.add (copy))
5330 add_tree_to_fld_list (copy, fld);
5331 TYPE_SIZE (copy) = NULL;
5332 TYPE_USER_ALIGN (copy) = 0;
5333 TYPE_SIZE_UNIT (copy) = NULL;
5334 TYPE_CANONICAL (copy) = TYPE_CANONICAL (t);
5335 TREE_ADDRESSABLE (copy) = 0;
5336 if (AGGREGATE_TYPE_P (t))
5337 {
5338 SET_TYPE_MODE (copy, VOIDmode);
5339 SET_TYPE_ALIGN (copy, BITS_PER_UNIT);
5340 TYPE_TYPELESS_STORAGE (copy) = 0;
5341 TYPE_FIELDS (copy) = NULL;
5342 TYPE_BINFO (copy) = NULL;
5343 }
5344 else
5345 TYPE_VALUES (copy) = NULL;
5346
5347 /* Build copy of TYPE_DECL in TYPE_NAME if necessary.
5348 This is needed for ODR violation warnings to come out right (we
5349 want duplicate TYPE_DECLs whenever the type is duplicated because
5350 of ODR violation. Because lang data in the TYPE_DECL may not
5351 have been freed yet, rebuild it from scratch and copy relevant
5352 fields. */
5353 TYPE_NAME (copy) = fld_simplified_type_name (copy);
5354 tree name = TYPE_NAME (copy);
5355
5356 if (name && TREE_CODE (name) == TYPE_DECL)
5357 {
5358 gcc_checking_assert (TREE_TYPE (name) == t);
5359 tree name2 = build_decl (DECL_SOURCE_LOCATION (name), TYPE_DECL,
5360 DECL_NAME (name), copy);
5361 if (DECL_ASSEMBLER_NAME_SET_P (name))
5362 SET_DECL_ASSEMBLER_NAME (name2, DECL_ASSEMBLER_NAME (name));
5363 SET_DECL_ALIGN (name2, 0);
5364 DECL_CONTEXT (name2) = fld_decl_context
5365 (DECL_CONTEXT (name));
5366 TYPE_NAME (copy) = name2;
5367 }
5368 }
5369 return copy;
5370 }
5371 return (fld_type_variant
5372 (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld));
5373 }
5374
5375 /* Simplify type T for scenarios where we do not need complete pointer
5376 types. */
5377
5378 static tree
5379 fld_simplified_type (tree t, struct free_lang_data_d *fld)
5380 {
5381 if (!t)
5382 return t;
5383 if (POINTER_TYPE_P (t))
5384 return fld_incomplete_type_of (t, fld);
5385 /* FIXME: This triggers verification error, see PR88140. */
5386 if (TREE_CODE (t) == ARRAY_TYPE && 0)
5387 return fld_process_array_type (t, fld_simplified_type (TREE_TYPE (t), fld),
5388 fld_simplified_types, fld);
5389 return t;
5390 }
5391
5392 /* Reset the expression *EXPR_P, a size or position.
5393
5394 ??? We could reset all non-constant sizes or positions. But it's cheap
5395 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5396
5397 We need to reset self-referential sizes or positions because they cannot
5398 be gimplified and thus can contain a CALL_EXPR after the gimplification
5399 is finished, which will run afoul of LTO streaming. And they need to be
5400 reset to something essentially dummy but not constant, so as to preserve
5401 the properties of the object they are attached to. */
5402
5403 static inline void
5404 free_lang_data_in_one_sizepos (tree *expr_p)
5405 {
5406 tree expr = *expr_p;
5407 if (CONTAINS_PLACEHOLDER_P (expr))
5408 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5409 }
5410
5411
5412 /* Reset all the fields in a binfo node BINFO. We only keep
5413 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5414
5415 static void
5416 free_lang_data_in_binfo (tree binfo)
5417 {
5418 unsigned i;
5419 tree t;
5420
5421 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5422
5423 BINFO_VIRTUALS (binfo) = NULL_TREE;
5424 BINFO_BASE_ACCESSES (binfo) = NULL;
5425 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5426 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5427 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5428
5429 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5430 free_lang_data_in_binfo (t);
5431 }
5432
5433
5434 /* Reset all language specific information still present in TYPE. */
5435
5436 static void
5437 free_lang_data_in_type (tree type, struct free_lang_data_d *fld)
5438 {
5439 gcc_assert (TYPE_P (type));
5440
5441 /* Give the FE a chance to remove its own data first. */
5442 lang_hooks.free_lang_data (type);
5443
5444 TREE_LANG_FLAG_0 (type) = 0;
5445 TREE_LANG_FLAG_1 (type) = 0;
5446 TREE_LANG_FLAG_2 (type) = 0;
5447 TREE_LANG_FLAG_3 (type) = 0;
5448 TREE_LANG_FLAG_4 (type) = 0;
5449 TREE_LANG_FLAG_5 (type) = 0;
5450 TREE_LANG_FLAG_6 (type) = 0;
5451
5452 TYPE_NEEDS_CONSTRUCTING (type) = 0;
5453
5454 /* Purge non-marked variants from the variants chain, so that they
5455 don't reappear in the IL after free_lang_data. */
5456 while (TYPE_NEXT_VARIANT (type)
5457 && !fld->pset.contains (TYPE_NEXT_VARIANT (type)))
5458 {
5459 tree t = TYPE_NEXT_VARIANT (type);
5460 TYPE_NEXT_VARIANT (type) = TYPE_NEXT_VARIANT (t);
5461 /* Turn the removed types into distinct types. */
5462 TYPE_MAIN_VARIANT (t) = t;
5463 TYPE_NEXT_VARIANT (t) = NULL_TREE;
5464 }
5465
5466 if (TREE_CODE (type) == FUNCTION_TYPE)
5467 {
5468 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5469 /* Remove the const and volatile qualifiers from arguments. The
5470 C++ front end removes them, but the C front end does not,
5471 leading to false ODR violation errors when merging two
5472 instances of the same function signature compiled by
5473 different front ends. */
5474 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5475 {
5476 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5477 tree arg_type = TREE_VALUE (p);
5478
5479 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5480 {
5481 int quals = TYPE_QUALS (arg_type)
5482 & ~TYPE_QUAL_CONST
5483 & ~TYPE_QUAL_VOLATILE;
5484 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5485 if (!fld->pset.add (TREE_VALUE (p)))
5486 free_lang_data_in_type (TREE_VALUE (p), fld);
5487 }
5488 /* C++ FE uses TREE_PURPOSE to store initial values. */
5489 TREE_PURPOSE (p) = NULL;
5490 }
5491 }
5492 else if (TREE_CODE (type) == METHOD_TYPE)
5493 {
5494 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5495 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5496 {
5497 /* C++ FE uses TREE_PURPOSE to store initial values. */
5498 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5499 TREE_PURPOSE (p) = NULL;
5500 }
5501 }
5502 else if (RECORD_OR_UNION_TYPE_P (type))
5503 {
5504 /* Remove members that are not FIELD_DECLs from the field list
5505 of an aggregate. These occur in C++. */
5506 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5507 if (TREE_CODE (member) == FIELD_DECL)
5508 prev = &DECL_CHAIN (member);
5509 else
5510 *prev = DECL_CHAIN (member);
5511
5512 TYPE_VFIELD (type) = NULL_TREE;
5513
5514 if (TYPE_BINFO (type))
5515 {
5516 free_lang_data_in_binfo (TYPE_BINFO (type));
5517 /* We need to preserve link to bases and virtual table for all
5518 polymorphic types to make devirtualization machinery working. */
5519 if (!BINFO_VTABLE (TYPE_BINFO (type))
5520 || !flag_devirtualize)
5521 TYPE_BINFO (type) = NULL;
5522 }
5523 }
5524 else if (INTEGRAL_TYPE_P (type)
5525 || SCALAR_FLOAT_TYPE_P (type)
5526 || FIXED_POINT_TYPE_P (type))
5527 {
5528 if (TREE_CODE (type) == ENUMERAL_TYPE)
5529 {
5530 /* Type values are used only for C++ ODR checking. Drop them
5531 for all type variants and non-ODR types.
5532 For ODR types the data is freed in free_odr_warning_data. */
5533 if (TYPE_MAIN_VARIANT (type) != type
5534 || !type_with_linkage_p (type))
5535 TYPE_VALUES (type) = NULL;
5536 else
5537 /* Simplify representation by recording only values rather
5538 than const decls. */
5539 for (tree e = TYPE_VALUES (type); e; e = TREE_CHAIN (e))
5540 if (TREE_CODE (TREE_VALUE (e)) == CONST_DECL)
5541 TREE_VALUE (e) = DECL_INITIAL (TREE_VALUE (e));
5542 }
5543 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5544 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5545 }
5546
5547 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5548
5549 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5550 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5551
5552 if (TYPE_CONTEXT (type)
5553 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5554 {
5555 tree ctx = TYPE_CONTEXT (type);
5556 do
5557 {
5558 ctx = BLOCK_SUPERCONTEXT (ctx);
5559 }
5560 while (ctx && TREE_CODE (ctx) == BLOCK);
5561 TYPE_CONTEXT (type) = ctx;
5562 }
5563
5564 TYPE_STUB_DECL (type) = NULL;
5565 TYPE_NAME (type) = fld_simplified_type_name (type);
5566 }
5567
5568
5569 /* Return true if DECL may need an assembler name to be set. */
5570
5571 static inline bool
5572 need_assembler_name_p (tree decl)
5573 {
5574 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5575 Rule merging. This makes type_odr_p to return true on those types during
5576 LTO and by comparing the mangled name, we can say what types are intended
5577 to be equivalent across compilation unit.
5578
5579 We do not store names of type_in_anonymous_namespace_p.
5580
5581 Record, union and enumeration type have linkage that allows use
5582 to check type_in_anonymous_namespace_p. We do not mangle compound types
5583 that always can be compared structurally.
5584
5585 Similarly for builtin types, we compare properties of their main variant.
5586 A special case are integer types where mangling do make differences
5587 between char/signed char/unsigned char etc. Storing name for these makes
5588 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5589 See cp/mangle.c:write_builtin_type for details. */
5590
5591 if (TREE_CODE (decl) == TYPE_DECL)
5592 {
5593 if (flag_lto_odr_type_mering
5594 && DECL_NAME (decl)
5595 && decl == TYPE_NAME (TREE_TYPE (decl))
5596 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5597 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5598 && (type_with_linkage_p (TREE_TYPE (decl))
5599 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5600 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5601 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5602 return false;
5603 }
5604 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5605 if (!VAR_OR_FUNCTION_DECL_P (decl))
5606 return false;
5607
5608 /* If DECL already has its assembler name set, it does not need a
5609 new one. */
5610 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5611 || DECL_ASSEMBLER_NAME_SET_P (decl))
5612 return false;
5613
5614 /* Abstract decls do not need an assembler name. */
5615 if (DECL_ABSTRACT_P (decl))
5616 return false;
5617
5618 /* For VAR_DECLs, only static, public and external symbols need an
5619 assembler name. */
5620 if (VAR_P (decl)
5621 && !TREE_STATIC (decl)
5622 && !TREE_PUBLIC (decl)
5623 && !DECL_EXTERNAL (decl))
5624 return false;
5625
5626 if (TREE_CODE (decl) == FUNCTION_DECL)
5627 {
5628 /* Do not set assembler name on builtins. Allow RTL expansion to
5629 decide whether to expand inline or via a regular call. */
5630 if (fndecl_built_in_p (decl)
5631 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5632 return false;
5633
5634 /* Functions represented in the callgraph need an assembler name. */
5635 if (cgraph_node::get (decl) != NULL)
5636 return true;
5637
5638 /* Unused and not public functions don't need an assembler name. */
5639 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5640 return false;
5641 }
5642
5643 return true;
5644 }
5645
5646
5647 /* Reset all language specific information still present in symbol
5648 DECL. */
5649
5650 static void
5651 free_lang_data_in_decl (tree decl, struct free_lang_data_d *fld)
5652 {
5653 gcc_assert (DECL_P (decl));
5654
5655 /* Give the FE a chance to remove its own data first. */
5656 lang_hooks.free_lang_data (decl);
5657
5658 TREE_LANG_FLAG_0 (decl) = 0;
5659 TREE_LANG_FLAG_1 (decl) = 0;
5660 TREE_LANG_FLAG_2 (decl) = 0;
5661 TREE_LANG_FLAG_3 (decl) = 0;
5662 TREE_LANG_FLAG_4 (decl) = 0;
5663 TREE_LANG_FLAG_5 (decl) = 0;
5664 TREE_LANG_FLAG_6 (decl) = 0;
5665
5666 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5667 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5668 if (TREE_CODE (decl) == FIELD_DECL)
5669 {
5670 DECL_FCONTEXT (decl) = NULL;
5671 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5672 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5673 DECL_QUALIFIER (decl) = NULL_TREE;
5674 }
5675
5676 if (TREE_CODE (decl) == FUNCTION_DECL)
5677 {
5678 struct cgraph_node *node;
5679 /* Frontends do not set TREE_ADDRESSABLE on public variables even though
5680 the address may be taken in other unit, so this flag has no practical
5681 use for middle-end.
5682
5683 It would make more sense if frontends set TREE_ADDRESSABLE to 0 only
5684 for public objects that indeed cannot be adressed, but it is not
5685 the case. Set the flag to true so we do not get merge failures for
5686 i.e. virtual tables between units that take address of it and
5687 units that don't. */
5688 if (TREE_PUBLIC (decl))
5689 TREE_ADDRESSABLE (decl) = true;
5690 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5691 if (!(node = cgraph_node::get (decl))
5692 || (!node->definition && !node->clones))
5693 {
5694 if (node)
5695 node->release_body ();
5696 else
5697 {
5698 release_function_body (decl);
5699 DECL_ARGUMENTS (decl) = NULL;
5700 DECL_RESULT (decl) = NULL;
5701 DECL_INITIAL (decl) = error_mark_node;
5702 }
5703 }
5704 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5705 {
5706 tree t;
5707
5708 /* If DECL has a gimple body, then the context for its
5709 arguments must be DECL. Otherwise, it doesn't really
5710 matter, as we will not be emitting any code for DECL. In
5711 general, there may be other instances of DECL created by
5712 the front end and since PARM_DECLs are generally shared,
5713 their DECL_CONTEXT changes as the replicas of DECL are
5714 created. The only time where DECL_CONTEXT is important
5715 is for the FUNCTION_DECLs that have a gimple body (since
5716 the PARM_DECL will be used in the function's body). */
5717 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5718 DECL_CONTEXT (t) = decl;
5719 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5720 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5721 = target_option_default_node;
5722 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5723 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5724 = optimization_default_node;
5725 }
5726
5727 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5728 At this point, it is not needed anymore. */
5729 DECL_SAVED_TREE (decl) = NULL_TREE;
5730
5731 /* Clear the abstract origin if it refers to a method.
5732 Otherwise dwarf2out.c will ICE as we splice functions out of
5733 TYPE_FIELDS and thus the origin will not be output
5734 correctly. */
5735 if (DECL_ABSTRACT_ORIGIN (decl)
5736 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5737 && RECORD_OR_UNION_TYPE_P
5738 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5739 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5740
5741 DECL_VINDEX (decl) = NULL_TREE;
5742 }
5743 else if (VAR_P (decl))
5744 {
5745 /* See comment above why we set the flag for functoins. */
5746 if (TREE_PUBLIC (decl))
5747 TREE_ADDRESSABLE (decl) = true;
5748 if ((DECL_EXTERNAL (decl)
5749 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5750 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5751 DECL_INITIAL (decl) = NULL_TREE;
5752 }
5753 else if (TREE_CODE (decl) == TYPE_DECL)
5754 {
5755 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5756 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5757 TREE_PUBLIC (decl) = 0;
5758 TREE_PRIVATE (decl) = 0;
5759 DECL_ARTIFICIAL (decl) = 0;
5760 TYPE_DECL_SUPPRESS_DEBUG (decl) = 0;
5761 DECL_INITIAL (decl) = NULL_TREE;
5762 DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5763 DECL_MODE (decl) = VOIDmode;
5764 SET_DECL_ALIGN (decl, 0);
5765 /* TREE_TYPE is cleared at WPA time in free_odr_warning_data. */
5766 }
5767 else if (TREE_CODE (decl) == FIELD_DECL)
5768 {
5769 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5770 DECL_INITIAL (decl) = NULL_TREE;
5771 }
5772 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5773 && DECL_INITIAL (decl)
5774 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5775 {
5776 /* Strip builtins from the translation-unit BLOCK. We still have targets
5777 without builtin_decl_explicit support and also builtins are shared
5778 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5779 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5780 while (*nextp)
5781 {
5782 tree var = *nextp;
5783 if (fndecl_built_in_p (var))
5784 *nextp = TREE_CHAIN (var);
5785 else
5786 nextp = &TREE_CHAIN (var);
5787 }
5788 }
5789 /* We need to keep field decls associated with their trees. Otherwise tree
5790 merging may merge some fileds and keep others disjoint wich in turn will
5791 not do well with TREE_CHAIN pointers linking them.
5792
5793 Also do not drop containing types for virtual methods and tables because
5794 these are needed by devirtualization.
5795 C++ destructors are special because C++ frontends sometimes produces
5796 virtual destructor as an alias of non-virtual destructor. In
5797 devirutalization code we always walk through aliases and we need
5798 context to be preserved too. See PR89335 */
5799 if (TREE_CODE (decl) != FIELD_DECL
5800 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5801 || (!DECL_VIRTUAL_P (decl)
5802 && (TREE_CODE (decl) != FUNCTION_DECL
5803 || !DECL_CXX_DESTRUCTOR_P (decl)))))
5804 DECL_CONTEXT (decl) = fld_decl_context (DECL_CONTEXT (decl));
5805 }
5806
5807
5808 /* Operand callback helper for free_lang_data_in_node. *TP is the
5809 subtree operand being considered. */
5810
5811 static tree
5812 find_decls_types_r (tree *tp, int *ws, void *data)
5813 {
5814 tree t = *tp;
5815 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5816
5817 if (TREE_CODE (t) == TREE_LIST)
5818 return NULL_TREE;
5819
5820 /* Language specific nodes will be removed, so there is no need
5821 to gather anything under them. */
5822 if (is_lang_specific (t))
5823 {
5824 *ws = 0;
5825 return NULL_TREE;
5826 }
5827
5828 if (DECL_P (t))
5829 {
5830 /* Note that walk_tree does not traverse every possible field in
5831 decls, so we have to do our own traversals here. */
5832 add_tree_to_fld_list (t, fld);
5833
5834 fld_worklist_push (DECL_NAME (t), fld);
5835 fld_worklist_push (DECL_CONTEXT (t), fld);
5836 fld_worklist_push (DECL_SIZE (t), fld);
5837 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5838
5839 /* We are going to remove everything under DECL_INITIAL for
5840 TYPE_DECLs. No point walking them. */
5841 if (TREE_CODE (t) != TYPE_DECL)
5842 fld_worklist_push (DECL_INITIAL (t), fld);
5843
5844 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5845 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5846
5847 if (TREE_CODE (t) == FUNCTION_DECL)
5848 {
5849 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5850 fld_worklist_push (DECL_RESULT (t), fld);
5851 }
5852 else if (TREE_CODE (t) == FIELD_DECL)
5853 {
5854 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5855 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5856 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5857 fld_worklist_push (DECL_FCONTEXT (t), fld);
5858 }
5859
5860 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5861 && DECL_HAS_VALUE_EXPR_P (t))
5862 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5863
5864 if (TREE_CODE (t) != FIELD_DECL
5865 && TREE_CODE (t) != TYPE_DECL)
5866 fld_worklist_push (TREE_CHAIN (t), fld);
5867 *ws = 0;
5868 }
5869 else if (TYPE_P (t))
5870 {
5871 /* Note that walk_tree does not traverse every possible field in
5872 types, so we have to do our own traversals here. */
5873 add_tree_to_fld_list (t, fld);
5874
5875 if (!RECORD_OR_UNION_TYPE_P (t))
5876 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5877 fld_worklist_push (TYPE_SIZE (t), fld);
5878 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5879 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5880 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5881 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5882 fld_worklist_push (TYPE_NAME (t), fld);
5883 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
5884 lists, we may look types up in these lists and use them while
5885 optimizing the function body. Thus we need to free lang data
5886 in them. */
5887 if (TREE_CODE (t) == POINTER_TYPE)
5888 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
5889 if (TREE_CODE (t) == REFERENCE_TYPE)
5890 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
5891 if (!POINTER_TYPE_P (t))
5892 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5893 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5894 if (!RECORD_OR_UNION_TYPE_P (t))
5895 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5896 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5897 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5898 do not and want not to reach unused variants this way. */
5899 if (TYPE_CONTEXT (t))
5900 {
5901 tree ctx = TYPE_CONTEXT (t);
5902 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5903 So push that instead. */
5904 while (ctx && TREE_CODE (ctx) == BLOCK)
5905 ctx = BLOCK_SUPERCONTEXT (ctx);
5906 fld_worklist_push (ctx, fld);
5907 }
5908 fld_worklist_push (TYPE_CANONICAL (t), fld);
5909
5910 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5911 {
5912 unsigned i;
5913 tree tem;
5914 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5915 fld_worklist_push (TREE_TYPE (tem), fld);
5916 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5917 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5918 }
5919 if (RECORD_OR_UNION_TYPE_P (t))
5920 {
5921 tree tem;
5922 /* Push all TYPE_FIELDS - there can be interleaving interesting
5923 and non-interesting things. */
5924 tem = TYPE_FIELDS (t);
5925 while (tem)
5926 {
5927 if (TREE_CODE (tem) == FIELD_DECL)
5928 fld_worklist_push (tem, fld);
5929 tem = TREE_CHAIN (tem);
5930 }
5931 }
5932 if (FUNC_OR_METHOD_TYPE_P (t))
5933 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5934
5935 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5936 *ws = 0;
5937 }
5938 else if (TREE_CODE (t) == BLOCK)
5939 {
5940 for (tree *tem = &BLOCK_VARS (t); *tem; )
5941 {
5942 if (TREE_CODE (*tem) != VAR_DECL
5943 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem)))
5944 {
5945 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
5946 && TREE_CODE (*tem) != PARM_DECL);
5947 *tem = TREE_CHAIN (*tem);
5948 }
5949 else
5950 {
5951 fld_worklist_push (*tem, fld);
5952 tem = &TREE_CHAIN (*tem);
5953 }
5954 }
5955 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5956 fld_worklist_push (tem, fld);
5957 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5958 }
5959
5960 if (TREE_CODE (t) != IDENTIFIER_NODE
5961 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5962 fld_worklist_push (TREE_TYPE (t), fld);
5963
5964 return NULL_TREE;
5965 }
5966
5967
5968 /* Find decls and types in T. */
5969
5970 static void
5971 find_decls_types (tree t, struct free_lang_data_d *fld)
5972 {
5973 while (1)
5974 {
5975 if (!fld->pset.contains (t))
5976 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5977 if (fld->worklist.is_empty ())
5978 break;
5979 t = fld->worklist.pop ();
5980 }
5981 }
5982
5983 /* Translate all the types in LIST with the corresponding runtime
5984 types. */
5985
5986 static tree
5987 get_eh_types_for_runtime (tree list)
5988 {
5989 tree head, prev;
5990
5991 if (list == NULL_TREE)
5992 return NULL_TREE;
5993
5994 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5995 prev = head;
5996 list = TREE_CHAIN (list);
5997 while (list)
5998 {
5999 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6000 TREE_CHAIN (prev) = n;
6001 prev = TREE_CHAIN (prev);
6002 list = TREE_CHAIN (list);
6003 }
6004
6005 return head;
6006 }
6007
6008
6009 /* Find decls and types referenced in EH region R and store them in
6010 FLD->DECLS and FLD->TYPES. */
6011
6012 static void
6013 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
6014 {
6015 switch (r->type)
6016 {
6017 case ERT_CLEANUP:
6018 break;
6019
6020 case ERT_TRY:
6021 {
6022 eh_catch c;
6023
6024 /* The types referenced in each catch must first be changed to the
6025 EH types used at runtime. This removes references to FE types
6026 in the region. */
6027 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
6028 {
6029 c->type_list = get_eh_types_for_runtime (c->type_list);
6030 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
6031 }
6032 }
6033 break;
6034
6035 case ERT_ALLOWED_EXCEPTIONS:
6036 r->u.allowed.type_list
6037 = get_eh_types_for_runtime (r->u.allowed.type_list);
6038 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
6039 break;
6040
6041 case ERT_MUST_NOT_THROW:
6042 walk_tree (&r->u.must_not_throw.failure_decl,
6043 find_decls_types_r, fld, &fld->pset);
6044 break;
6045 }
6046 }
6047
6048
6049 /* Find decls and types referenced in cgraph node N and store them in
6050 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6051 look for *every* kind of DECL and TYPE node reachable from N,
6052 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6053 NAMESPACE_DECLs, etc). */
6054
6055 static void
6056 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
6057 {
6058 basic_block bb;
6059 struct function *fn;
6060 unsigned ix;
6061 tree t;
6062
6063 find_decls_types (n->decl, fld);
6064
6065 if (!gimple_has_body_p (n->decl))
6066 return;
6067
6068 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
6069
6070 fn = DECL_STRUCT_FUNCTION (n->decl);
6071
6072 /* Traverse locals. */
6073 FOR_EACH_LOCAL_DECL (fn, ix, t)
6074 find_decls_types (t, fld);
6075
6076 /* Traverse EH regions in FN. */
6077 {
6078 eh_region r;
6079 FOR_ALL_EH_REGION_FN (r, fn)
6080 find_decls_types_in_eh_region (r, fld);
6081 }
6082
6083 /* Traverse every statement in FN. */
6084 FOR_EACH_BB_FN (bb, fn)
6085 {
6086 gphi_iterator psi;
6087 gimple_stmt_iterator si;
6088 unsigned i;
6089
6090 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
6091 {
6092 gphi *phi = psi.phi ();
6093
6094 for (i = 0; i < gimple_phi_num_args (phi); i++)
6095 {
6096 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
6097 find_decls_types (*arg_p, fld);
6098 }
6099 }
6100
6101 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6102 {
6103 gimple *stmt = gsi_stmt (si);
6104
6105 if (is_gimple_call (stmt))
6106 find_decls_types (gimple_call_fntype (stmt), fld);
6107
6108 for (i = 0; i < gimple_num_ops (stmt); i++)
6109 {
6110 tree arg = gimple_op (stmt, i);
6111 find_decls_types (arg, fld);
6112 }
6113 }
6114 }
6115 }
6116
6117
6118 /* Find decls and types referenced in varpool node N and store them in
6119 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6120 look for *every* kind of DECL and TYPE node reachable from N,
6121 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6122 NAMESPACE_DECLs, etc). */
6123
6124 static void
6125 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
6126 {
6127 find_decls_types (v->decl, fld);
6128 }
6129
6130 /* If T needs an assembler name, have one created for it. */
6131
6132 void
6133 assign_assembler_name_if_needed (tree t)
6134 {
6135 if (need_assembler_name_p (t))
6136 {
6137 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
6138 diagnostics that use input_location to show locus
6139 information. The problem here is that, at this point,
6140 input_location is generally anchored to the end of the file
6141 (since the parser is long gone), so we don't have a good
6142 position to pin it to.
6143
6144 To alleviate this problem, this uses the location of T's
6145 declaration. Examples of this are
6146 testsuite/g++.dg/template/cond2.C and
6147 testsuite/g++.dg/template/pr35240.C. */
6148 location_t saved_location = input_location;
6149 input_location = DECL_SOURCE_LOCATION (t);
6150
6151 decl_assembler_name (t);
6152
6153 input_location = saved_location;
6154 }
6155 }
6156
6157
6158 /* Free language specific information for every operand and expression
6159 in every node of the call graph. This process operates in three stages:
6160
6161 1- Every callgraph node and varpool node is traversed looking for
6162 decls and types embedded in them. This is a more exhaustive
6163 search than that done by find_referenced_vars, because it will
6164 also collect individual fields, decls embedded in types, etc.
6165
6166 2- All the decls found are sent to free_lang_data_in_decl.
6167
6168 3- All the types found are sent to free_lang_data_in_type.
6169
6170 The ordering between decls and types is important because
6171 free_lang_data_in_decl sets assembler names, which includes
6172 mangling. So types cannot be freed up until assembler names have
6173 been set up. */
6174
6175 static void
6176 free_lang_data_in_cgraph (struct free_lang_data_d *fld)
6177 {
6178 struct cgraph_node *n;
6179 varpool_node *v;
6180 tree t;
6181 unsigned i;
6182 alias_pair *p;
6183
6184 /* Find decls and types in the body of every function in the callgraph. */
6185 FOR_EACH_FUNCTION (n)
6186 find_decls_types_in_node (n, fld);
6187
6188 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
6189 find_decls_types (p->decl, fld);
6190
6191 /* Find decls and types in every varpool symbol. */
6192 FOR_EACH_VARIABLE (v)
6193 find_decls_types_in_var (v, fld);
6194
6195 /* Set the assembler name on every decl found. We need to do this
6196 now because free_lang_data_in_decl will invalidate data needed
6197 for mangling. This breaks mangling on interdependent decls. */
6198 FOR_EACH_VEC_ELT (fld->decls, i, t)
6199 assign_assembler_name_if_needed (t);
6200
6201 /* Traverse every decl found freeing its language data. */
6202 FOR_EACH_VEC_ELT (fld->decls, i, t)
6203 free_lang_data_in_decl (t, fld);
6204
6205 /* Traverse every type found freeing its language data. */
6206 FOR_EACH_VEC_ELT (fld->types, i, t)
6207 free_lang_data_in_type (t, fld);
6208 }
6209
6210
6211 /* Free resources that are used by FE but are not needed once they are done. */
6212
6213 static unsigned
6214 free_lang_data (void)
6215 {
6216 unsigned i;
6217 struct free_lang_data_d fld;
6218
6219 /* If we are the LTO frontend we have freed lang-specific data already. */
6220 if (in_lto_p
6221 || (!flag_generate_lto && !flag_generate_offload))
6222 {
6223 /* Rebuild type inheritance graph even when not doing LTO to get
6224 consistent profile data. */
6225 rebuild_type_inheritance_graph ();
6226 return 0;
6227 }
6228
6229 fld_incomplete_types = new hash_map<tree, tree>;
6230 fld_simplified_types = new hash_map<tree, tree>;
6231
6232 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
6233 if (vec_safe_is_empty (all_translation_units))
6234 build_translation_unit_decl (NULL_TREE);
6235
6236 /* Allocate and assign alias sets to the standard integer types
6237 while the slots are still in the way the frontends generated them. */
6238 for (i = 0; i < itk_none; ++i)
6239 if (integer_types[i])
6240 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
6241
6242 /* Traverse the IL resetting language specific information for
6243 operands, expressions, etc. */
6244 free_lang_data_in_cgraph (&fld);
6245
6246 /* Create gimple variants for common types. */
6247 for (unsigned i = 0;
6248 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
6249 ++i)
6250 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
6251
6252 /* Reset some langhooks. Do not reset types_compatible_p, it may
6253 still be used indirectly via the get_alias_set langhook. */
6254 lang_hooks.dwarf_name = lhd_dwarf_name;
6255 lang_hooks.decl_printable_name = gimple_decl_printable_name;
6256 lang_hooks.gimplify_expr = lhd_gimplify_expr;
6257 lang_hooks.overwrite_decl_assembler_name = lhd_overwrite_decl_assembler_name;
6258 lang_hooks.print_xnode = lhd_print_tree_nothing;
6259 lang_hooks.print_decl = lhd_print_tree_nothing;
6260 lang_hooks.print_type = lhd_print_tree_nothing;
6261 lang_hooks.print_identifier = lhd_print_tree_nothing;
6262
6263 lang_hooks.tree_inlining.var_mod_type_p = hook_bool_tree_tree_false;
6264
6265 if (flag_checking)
6266 {
6267 int i;
6268 tree t;
6269
6270 FOR_EACH_VEC_ELT (fld.types, i, t)
6271 verify_type (t);
6272 }
6273
6274 /* We do not want the default decl_assembler_name implementation,
6275 rather if we have fixed everything we want a wrapper around it
6276 asserting that all non-local symbols already got their assembler
6277 name and only produce assembler names for local symbols. Or rather
6278 make sure we never call decl_assembler_name on local symbols and
6279 devise a separate, middle-end private scheme for it. */
6280
6281 /* Reset diagnostic machinery. */
6282 tree_diagnostics_defaults (global_dc);
6283
6284 rebuild_type_inheritance_graph ();
6285
6286 delete fld_incomplete_types;
6287 delete fld_simplified_types;
6288
6289 return 0;
6290 }
6291
6292
6293 namespace {
6294
6295 const pass_data pass_data_ipa_free_lang_data =
6296 {
6297 SIMPLE_IPA_PASS, /* type */
6298 "*free_lang_data", /* name */
6299 OPTGROUP_NONE, /* optinfo_flags */
6300 TV_IPA_FREE_LANG_DATA, /* tv_id */
6301 0, /* properties_required */
6302 0, /* properties_provided */
6303 0, /* properties_destroyed */
6304 0, /* todo_flags_start */
6305 0, /* todo_flags_finish */
6306 };
6307
6308 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6309 {
6310 public:
6311 pass_ipa_free_lang_data (gcc::context *ctxt)
6312 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6313 {}
6314
6315 /* opt_pass methods: */
6316 virtual unsigned int execute (function *) { return free_lang_data (); }
6317
6318 }; // class pass_ipa_free_lang_data
6319
6320 } // anon namespace
6321
6322 simple_ipa_opt_pass *
6323 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6324 {
6325 return new pass_ipa_free_lang_data (ctxt);
6326 }
6327 \f
6328 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6329 of the various TYPE_QUAL values. */
6330
6331 static void
6332 set_type_quals (tree type, int type_quals)
6333 {
6334 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6335 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6336 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6337 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6338 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6339 }
6340
6341 /* Returns true iff CAND and BASE have equivalent language-specific
6342 qualifiers. */
6343
6344 bool
6345 check_lang_type (const_tree cand, const_tree base)
6346 {
6347 if (lang_hooks.types.type_hash_eq == NULL)
6348 return true;
6349 /* type_hash_eq currently only applies to these types. */
6350 if (TREE_CODE (cand) != FUNCTION_TYPE
6351 && TREE_CODE (cand) != METHOD_TYPE)
6352 return true;
6353 return lang_hooks.types.type_hash_eq (cand, base);
6354 }
6355
6356 /* This function checks to see if TYPE matches the size one of the built-in
6357 atomic types, and returns that core atomic type. */
6358
6359 static tree
6360 find_atomic_core_type (const_tree type)
6361 {
6362 tree base_atomic_type;
6363
6364 /* Only handle complete types. */
6365 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6366 return NULL_TREE;
6367
6368 switch (tree_to_uhwi (TYPE_SIZE (type)))
6369 {
6370 case 8:
6371 base_atomic_type = atomicQI_type_node;
6372 break;
6373
6374 case 16:
6375 base_atomic_type = atomicHI_type_node;
6376 break;
6377
6378 case 32:
6379 base_atomic_type = atomicSI_type_node;
6380 break;
6381
6382 case 64:
6383 base_atomic_type = atomicDI_type_node;
6384 break;
6385
6386 case 128:
6387 base_atomic_type = atomicTI_type_node;
6388 break;
6389
6390 default:
6391 base_atomic_type = NULL_TREE;
6392 }
6393
6394 return base_atomic_type;
6395 }
6396
6397 /* Returns true iff unqualified CAND and BASE are equivalent. */
6398
6399 bool
6400 check_base_type (const_tree cand, const_tree base)
6401 {
6402 if (TYPE_NAME (cand) != TYPE_NAME (base)
6403 /* Apparently this is needed for Objective-C. */
6404 || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base)
6405 || !attribute_list_equal (TYPE_ATTRIBUTES (cand),
6406 TYPE_ATTRIBUTES (base)))
6407 return false;
6408 /* Check alignment. */
6409 if (TYPE_ALIGN (cand) == TYPE_ALIGN (base))
6410 return true;
6411 /* Atomic types increase minimal alignment. We must to do so as well
6412 or we get duplicated canonical types. See PR88686. */
6413 if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC))
6414 {
6415 /* See if this object can map to a basic atomic type. */
6416 tree atomic_type = find_atomic_core_type (cand);
6417 if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand))
6418 return true;
6419 }
6420 return false;
6421 }
6422
6423 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6424
6425 bool
6426 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6427 {
6428 return (TYPE_QUALS (cand) == type_quals
6429 && check_base_type (cand, base)
6430 && check_lang_type (cand, base));
6431 }
6432
6433 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6434
6435 static bool
6436 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6437 {
6438 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6439 && TYPE_NAME (cand) == TYPE_NAME (base)
6440 /* Apparently this is needed for Objective-C. */
6441 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6442 /* Check alignment. */
6443 && TYPE_ALIGN (cand) == align
6444 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6445 TYPE_ATTRIBUTES (base))
6446 && check_lang_type (cand, base));
6447 }
6448
6449 /* Return a version of the TYPE, qualified as indicated by the
6450 TYPE_QUALS, if one exists. If no qualified version exists yet,
6451 return NULL_TREE. */
6452
6453 tree
6454 get_qualified_type (tree type, int type_quals)
6455 {
6456 if (TYPE_QUALS (type) == type_quals)
6457 return type;
6458
6459 tree mv = TYPE_MAIN_VARIANT (type);
6460 if (check_qualified_type (mv, type, type_quals))
6461 return mv;
6462
6463 /* Search the chain of variants to see if there is already one there just
6464 like the one we need to have. If so, use that existing one. We must
6465 preserve the TYPE_NAME, since there is code that depends on this. */
6466 for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp))
6467 if (check_qualified_type (*tp, type, type_quals))
6468 {
6469 /* Put the found variant at the head of the variant list so
6470 frequently searched variants get found faster. The C++ FE
6471 benefits greatly from this. */
6472 tree t = *tp;
6473 *tp = TYPE_NEXT_VARIANT (t);
6474 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
6475 TYPE_NEXT_VARIANT (mv) = t;
6476 return t;
6477 }
6478
6479 return NULL_TREE;
6480 }
6481
6482 /* Like get_qualified_type, but creates the type if it does not
6483 exist. This function never returns NULL_TREE. */
6484
6485 tree
6486 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6487 {
6488 tree t;
6489
6490 /* See if we already have the appropriate qualified variant. */
6491 t = get_qualified_type (type, type_quals);
6492
6493 /* If not, build it. */
6494 if (!t)
6495 {
6496 t = build_variant_type_copy (type PASS_MEM_STAT);
6497 set_type_quals (t, type_quals);
6498
6499 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6500 {
6501 /* See if this object can map to a basic atomic type. */
6502 tree atomic_type = find_atomic_core_type (type);
6503 if (atomic_type)
6504 {
6505 /* Ensure the alignment of this type is compatible with
6506 the required alignment of the atomic type. */
6507 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6508 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6509 }
6510 }
6511
6512 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6513 /* Propagate structural equality. */
6514 SET_TYPE_STRUCTURAL_EQUALITY (t);
6515 else if (TYPE_CANONICAL (type) != type)
6516 /* Build the underlying canonical type, since it is different
6517 from TYPE. */
6518 {
6519 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6520 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6521 }
6522 else
6523 /* T is its own canonical type. */
6524 TYPE_CANONICAL (t) = t;
6525
6526 }
6527
6528 return t;
6529 }
6530
6531 /* Create a variant of type T with alignment ALIGN. */
6532
6533 tree
6534 build_aligned_type (tree type, unsigned int align)
6535 {
6536 tree t;
6537
6538 if (TYPE_PACKED (type)
6539 || TYPE_ALIGN (type) == align)
6540 return type;
6541
6542 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6543 if (check_aligned_type (t, type, align))
6544 return t;
6545
6546 t = build_variant_type_copy (type);
6547 SET_TYPE_ALIGN (t, align);
6548 TYPE_USER_ALIGN (t) = 1;
6549
6550 return t;
6551 }
6552
6553 /* Create a new distinct copy of TYPE. The new type is made its own
6554 MAIN_VARIANT. If TYPE requires structural equality checks, the
6555 resulting type requires structural equality checks; otherwise, its
6556 TYPE_CANONICAL points to itself. */
6557
6558 tree
6559 build_distinct_type_copy (tree type MEM_STAT_DECL)
6560 {
6561 tree t = copy_node (type PASS_MEM_STAT);
6562
6563 TYPE_POINTER_TO (t) = 0;
6564 TYPE_REFERENCE_TO (t) = 0;
6565
6566 /* Set the canonical type either to a new equivalence class, or
6567 propagate the need for structural equality checks. */
6568 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6569 SET_TYPE_STRUCTURAL_EQUALITY (t);
6570 else
6571 TYPE_CANONICAL (t) = t;
6572
6573 /* Make it its own variant. */
6574 TYPE_MAIN_VARIANT (t) = t;
6575 TYPE_NEXT_VARIANT (t) = 0;
6576
6577 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6578 whose TREE_TYPE is not t. This can also happen in the Ada
6579 frontend when using subtypes. */
6580
6581 return t;
6582 }
6583
6584 /* Create a new variant of TYPE, equivalent but distinct. This is so
6585 the caller can modify it. TYPE_CANONICAL for the return type will
6586 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6587 are considered equal by the language itself (or that both types
6588 require structural equality checks). */
6589
6590 tree
6591 build_variant_type_copy (tree type MEM_STAT_DECL)
6592 {
6593 tree t, m = TYPE_MAIN_VARIANT (type);
6594
6595 t = build_distinct_type_copy (type PASS_MEM_STAT);
6596
6597 /* Since we're building a variant, assume that it is a non-semantic
6598 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6599 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6600 /* Type variants have no alias set defined. */
6601 TYPE_ALIAS_SET (t) = -1;
6602
6603 /* Add the new type to the chain of variants of TYPE. */
6604 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6605 TYPE_NEXT_VARIANT (m) = t;
6606 TYPE_MAIN_VARIANT (t) = m;
6607
6608 return t;
6609 }
6610 \f
6611 /* Return true if the from tree in both tree maps are equal. */
6612
6613 int
6614 tree_map_base_eq (const void *va, const void *vb)
6615 {
6616 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6617 *const b = (const struct tree_map_base *) vb;
6618 return (a->from == b->from);
6619 }
6620
6621 /* Hash a from tree in a tree_base_map. */
6622
6623 unsigned int
6624 tree_map_base_hash (const void *item)
6625 {
6626 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6627 }
6628
6629 /* Return true if this tree map structure is marked for garbage collection
6630 purposes. We simply return true if the from tree is marked, so that this
6631 structure goes away when the from tree goes away. */
6632
6633 int
6634 tree_map_base_marked_p (const void *p)
6635 {
6636 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6637 }
6638
6639 /* Hash a from tree in a tree_map. */
6640
6641 unsigned int
6642 tree_map_hash (const void *item)
6643 {
6644 return (((const struct tree_map *) item)->hash);
6645 }
6646
6647 /* Hash a from tree in a tree_decl_map. */
6648
6649 unsigned int
6650 tree_decl_map_hash (const void *item)
6651 {
6652 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6653 }
6654
6655 /* Return the initialization priority for DECL. */
6656
6657 priority_type
6658 decl_init_priority_lookup (tree decl)
6659 {
6660 symtab_node *snode = symtab_node::get (decl);
6661
6662 if (!snode)
6663 return DEFAULT_INIT_PRIORITY;
6664 return
6665 snode->get_init_priority ();
6666 }
6667
6668 /* Return the finalization priority for DECL. */
6669
6670 priority_type
6671 decl_fini_priority_lookup (tree decl)
6672 {
6673 cgraph_node *node = cgraph_node::get (decl);
6674
6675 if (!node)
6676 return DEFAULT_INIT_PRIORITY;
6677 return
6678 node->get_fini_priority ();
6679 }
6680
6681 /* Set the initialization priority for DECL to PRIORITY. */
6682
6683 void
6684 decl_init_priority_insert (tree decl, priority_type priority)
6685 {
6686 struct symtab_node *snode;
6687
6688 if (priority == DEFAULT_INIT_PRIORITY)
6689 {
6690 snode = symtab_node::get (decl);
6691 if (!snode)
6692 return;
6693 }
6694 else if (VAR_P (decl))
6695 snode = varpool_node::get_create (decl);
6696 else
6697 snode = cgraph_node::get_create (decl);
6698 snode->set_init_priority (priority);
6699 }
6700
6701 /* Set the finalization priority for DECL to PRIORITY. */
6702
6703 void
6704 decl_fini_priority_insert (tree decl, priority_type priority)
6705 {
6706 struct cgraph_node *node;
6707
6708 if (priority == DEFAULT_INIT_PRIORITY)
6709 {
6710 node = cgraph_node::get (decl);
6711 if (!node)
6712 return;
6713 }
6714 else
6715 node = cgraph_node::get_create (decl);
6716 node->set_fini_priority (priority);
6717 }
6718
6719 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6720
6721 static void
6722 print_debug_expr_statistics (void)
6723 {
6724 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6725 (long) debug_expr_for_decl->size (),
6726 (long) debug_expr_for_decl->elements (),
6727 debug_expr_for_decl->collisions ());
6728 }
6729
6730 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6731
6732 static void
6733 print_value_expr_statistics (void)
6734 {
6735 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6736 (long) value_expr_for_decl->size (),
6737 (long) value_expr_for_decl->elements (),
6738 value_expr_for_decl->collisions ());
6739 }
6740
6741 /* Lookup a debug expression for FROM, and return it if we find one. */
6742
6743 tree
6744 decl_debug_expr_lookup (tree from)
6745 {
6746 struct tree_decl_map *h, in;
6747 in.base.from = from;
6748
6749 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6750 if (h)
6751 return h->to;
6752 return NULL_TREE;
6753 }
6754
6755 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6756
6757 void
6758 decl_debug_expr_insert (tree from, tree to)
6759 {
6760 struct tree_decl_map *h;
6761
6762 h = ggc_alloc<tree_decl_map> ();
6763 h->base.from = from;
6764 h->to = to;
6765 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6766 }
6767
6768 /* Lookup a value expression for FROM, and return it if we find one. */
6769
6770 tree
6771 decl_value_expr_lookup (tree from)
6772 {
6773 struct tree_decl_map *h, in;
6774 in.base.from = from;
6775
6776 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6777 if (h)
6778 return h->to;
6779 return NULL_TREE;
6780 }
6781
6782 /* Insert a mapping FROM->TO in the value expression hashtable. */
6783
6784 void
6785 decl_value_expr_insert (tree from, tree to)
6786 {
6787 struct tree_decl_map *h;
6788
6789 h = ggc_alloc<tree_decl_map> ();
6790 h->base.from = from;
6791 h->to = to;
6792 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6793 }
6794
6795 /* Lookup a vector of debug arguments for FROM, and return it if we
6796 find one. */
6797
6798 vec<tree, va_gc> **
6799 decl_debug_args_lookup (tree from)
6800 {
6801 struct tree_vec_map *h, in;
6802
6803 if (!DECL_HAS_DEBUG_ARGS_P (from))
6804 return NULL;
6805 gcc_checking_assert (debug_args_for_decl != NULL);
6806 in.base.from = from;
6807 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6808 if (h)
6809 return &h->to;
6810 return NULL;
6811 }
6812
6813 /* Insert a mapping FROM->empty vector of debug arguments in the value
6814 expression hashtable. */
6815
6816 vec<tree, va_gc> **
6817 decl_debug_args_insert (tree from)
6818 {
6819 struct tree_vec_map *h;
6820 tree_vec_map **loc;
6821
6822 if (DECL_HAS_DEBUG_ARGS_P (from))
6823 return decl_debug_args_lookup (from);
6824 if (debug_args_for_decl == NULL)
6825 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6826 h = ggc_alloc<tree_vec_map> ();
6827 h->base.from = from;
6828 h->to = NULL;
6829 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6830 *loc = h;
6831 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6832 return &h->to;
6833 }
6834
6835 /* Hashing of types so that we don't make duplicates.
6836 The entry point is `type_hash_canon'. */
6837
6838 /* Generate the default hash code for TYPE. This is designed for
6839 speed, rather than maximum entropy. */
6840
6841 hashval_t
6842 type_hash_canon_hash (tree type)
6843 {
6844 inchash::hash hstate;
6845
6846 hstate.add_int (TREE_CODE (type));
6847
6848 if (TREE_TYPE (type))
6849 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6850
6851 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6852 /* Just the identifier is adequate to distinguish. */
6853 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6854
6855 switch (TREE_CODE (type))
6856 {
6857 case METHOD_TYPE:
6858 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6859 /* FALLTHROUGH. */
6860 case FUNCTION_TYPE:
6861 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6862 if (TREE_VALUE (t) != error_mark_node)
6863 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6864 break;
6865
6866 case OFFSET_TYPE:
6867 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6868 break;
6869
6870 case ARRAY_TYPE:
6871 {
6872 if (TYPE_DOMAIN (type))
6873 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6874 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6875 {
6876 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6877 hstate.add_object (typeless);
6878 }
6879 }
6880 break;
6881
6882 case INTEGER_TYPE:
6883 {
6884 tree t = TYPE_MAX_VALUE (type);
6885 if (!t)
6886 t = TYPE_MIN_VALUE (type);
6887 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6888 hstate.add_object (TREE_INT_CST_ELT (t, i));
6889 break;
6890 }
6891
6892 case REAL_TYPE:
6893 case FIXED_POINT_TYPE:
6894 {
6895 unsigned prec = TYPE_PRECISION (type);
6896 hstate.add_object (prec);
6897 break;
6898 }
6899
6900 case VECTOR_TYPE:
6901 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6902 break;
6903
6904 default:
6905 break;
6906 }
6907
6908 return hstate.end ();
6909 }
6910
6911 /* These are the Hashtable callback functions. */
6912
6913 /* Returns true iff the types are equivalent. */
6914
6915 bool
6916 type_cache_hasher::equal (type_hash *a, type_hash *b)
6917 {
6918 /* First test the things that are the same for all types. */
6919 if (a->hash != b->hash
6920 || TREE_CODE (a->type) != TREE_CODE (b->type)
6921 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6922 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6923 TYPE_ATTRIBUTES (b->type))
6924 || (TREE_CODE (a->type) != COMPLEX_TYPE
6925 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6926 return 0;
6927
6928 /* Be careful about comparing arrays before and after the element type
6929 has been completed; don't compare TYPE_ALIGN unless both types are
6930 complete. */
6931 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6932 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6933 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6934 return 0;
6935
6936 switch (TREE_CODE (a->type))
6937 {
6938 case VOID_TYPE:
6939 case COMPLEX_TYPE:
6940 case POINTER_TYPE:
6941 case REFERENCE_TYPE:
6942 case NULLPTR_TYPE:
6943 return 1;
6944
6945 case VECTOR_TYPE:
6946 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6947 TYPE_VECTOR_SUBPARTS (b->type));
6948
6949 case ENUMERAL_TYPE:
6950 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6951 && !(TYPE_VALUES (a->type)
6952 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6953 && TYPE_VALUES (b->type)
6954 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6955 && type_list_equal (TYPE_VALUES (a->type),
6956 TYPE_VALUES (b->type))))
6957 return 0;
6958
6959 /* fall through */
6960
6961 case INTEGER_TYPE:
6962 case REAL_TYPE:
6963 case BOOLEAN_TYPE:
6964 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6965 return false;
6966 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6967 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6968 TYPE_MAX_VALUE (b->type)))
6969 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6970 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6971 TYPE_MIN_VALUE (b->type))));
6972
6973 case FIXED_POINT_TYPE:
6974 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6975
6976 case OFFSET_TYPE:
6977 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6978
6979 case METHOD_TYPE:
6980 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6981 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6982 || (TYPE_ARG_TYPES (a->type)
6983 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6984 && TYPE_ARG_TYPES (b->type)
6985 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6986 && type_list_equal (TYPE_ARG_TYPES (a->type),
6987 TYPE_ARG_TYPES (b->type)))))
6988 break;
6989 return 0;
6990 case ARRAY_TYPE:
6991 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6992 where the flag should be inherited from the element type
6993 and can change after ARRAY_TYPEs are created; on non-aggregates
6994 compare it and hash it, scalars will never have that flag set
6995 and we need to differentiate between arrays created by different
6996 front-ends or middle-end created arrays. */
6997 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6998 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6999 || (TYPE_TYPELESS_STORAGE (a->type)
7000 == TYPE_TYPELESS_STORAGE (b->type))));
7001
7002 case RECORD_TYPE:
7003 case UNION_TYPE:
7004 case QUAL_UNION_TYPE:
7005 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
7006 || (TYPE_FIELDS (a->type)
7007 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
7008 && TYPE_FIELDS (b->type)
7009 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
7010 && type_list_equal (TYPE_FIELDS (a->type),
7011 TYPE_FIELDS (b->type))));
7012
7013 case FUNCTION_TYPE:
7014 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7015 || (TYPE_ARG_TYPES (a->type)
7016 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7017 && TYPE_ARG_TYPES (b->type)
7018 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7019 && type_list_equal (TYPE_ARG_TYPES (a->type),
7020 TYPE_ARG_TYPES (b->type))))
7021 break;
7022 return 0;
7023
7024 default:
7025 return 0;
7026 }
7027
7028 if (lang_hooks.types.type_hash_eq != NULL)
7029 return lang_hooks.types.type_hash_eq (a->type, b->type);
7030
7031 return 1;
7032 }
7033
7034 /* Given TYPE, and HASHCODE its hash code, return the canonical
7035 object for an identical type if one already exists.
7036 Otherwise, return TYPE, and record it as the canonical object.
7037
7038 To use this function, first create a type of the sort you want.
7039 Then compute its hash code from the fields of the type that
7040 make it different from other similar types.
7041 Then call this function and use the value. */
7042
7043 tree
7044 type_hash_canon (unsigned int hashcode, tree type)
7045 {
7046 type_hash in;
7047 type_hash **loc;
7048
7049 /* The hash table only contains main variants, so ensure that's what we're
7050 being passed. */
7051 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
7052
7053 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
7054 must call that routine before comparing TYPE_ALIGNs. */
7055 layout_type (type);
7056
7057 in.hash = hashcode;
7058 in.type = type;
7059
7060 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
7061 if (*loc)
7062 {
7063 tree t1 = ((type_hash *) *loc)->type;
7064 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
7065 && t1 != type);
7066 if (TYPE_UID (type) + 1 == next_type_uid)
7067 --next_type_uid;
7068 /* Free also min/max values and the cache for integer
7069 types. This can't be done in free_node, as LTO frees
7070 those on its own. */
7071 if (TREE_CODE (type) == INTEGER_TYPE)
7072 {
7073 if (TYPE_MIN_VALUE (type)
7074 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
7075 {
7076 /* Zero is always in TYPE_CACHED_VALUES. */
7077 if (! TYPE_UNSIGNED (type))
7078 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
7079 ggc_free (TYPE_MIN_VALUE (type));
7080 }
7081 if (TYPE_MAX_VALUE (type)
7082 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
7083 {
7084 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
7085 ggc_free (TYPE_MAX_VALUE (type));
7086 }
7087 if (TYPE_CACHED_VALUES_P (type))
7088 ggc_free (TYPE_CACHED_VALUES (type));
7089 }
7090 free_node (type);
7091 return t1;
7092 }
7093 else
7094 {
7095 struct type_hash *h;
7096
7097 h = ggc_alloc<type_hash> ();
7098 h->hash = hashcode;
7099 h->type = type;
7100 *loc = h;
7101
7102 return type;
7103 }
7104 }
7105
7106 static void
7107 print_type_hash_statistics (void)
7108 {
7109 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
7110 (long) type_hash_table->size (),
7111 (long) type_hash_table->elements (),
7112 type_hash_table->collisions ());
7113 }
7114
7115 /* Given two lists of types
7116 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
7117 return 1 if the lists contain the same types in the same order.
7118 Also, the TREE_PURPOSEs must match. */
7119
7120 bool
7121 type_list_equal (const_tree l1, const_tree l2)
7122 {
7123 const_tree t1, t2;
7124
7125 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
7126 if (TREE_VALUE (t1) != TREE_VALUE (t2)
7127 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
7128 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
7129 && (TREE_TYPE (TREE_PURPOSE (t1))
7130 == TREE_TYPE (TREE_PURPOSE (t2))))))
7131 return false;
7132
7133 return t1 == t2;
7134 }
7135
7136 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
7137 given by TYPE. If the argument list accepts variable arguments,
7138 then this function counts only the ordinary arguments. */
7139
7140 int
7141 type_num_arguments (const_tree fntype)
7142 {
7143 int i = 0;
7144
7145 for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
7146 /* If the function does not take a variable number of arguments,
7147 the last element in the list will have type `void'. */
7148 if (VOID_TYPE_P (TREE_VALUE (t)))
7149 break;
7150 else
7151 ++i;
7152
7153 return i;
7154 }
7155
7156 /* Return the type of the function TYPE's argument ARGNO if known.
7157 For vararg function's where ARGNO refers to one of the variadic
7158 arguments return null. Otherwise, return a void_type_node for
7159 out-of-bounds ARGNO. */
7160
7161 tree
7162 type_argument_type (const_tree fntype, unsigned argno)
7163 {
7164 /* Treat zero the same as an out-of-bounds argument number. */
7165 if (!argno)
7166 return void_type_node;
7167
7168 function_args_iterator iter;
7169
7170 tree argtype;
7171 unsigned i = 1;
7172 FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
7173 {
7174 /* A vararg function's argument list ends in a null. Otherwise,
7175 an ordinary function's argument list ends with void. Return
7176 null if ARGNO refers to a vararg argument, void_type_node if
7177 it's out of bounds, and the formal argument type otherwise. */
7178 if (!argtype)
7179 break;
7180
7181 if (i == argno || VOID_TYPE_P (argtype))
7182 return argtype;
7183
7184 ++i;
7185 }
7186
7187 return NULL_TREE;
7188 }
7189
7190 /* Nonzero if integer constants T1 and T2
7191 represent the same constant value. */
7192
7193 int
7194 tree_int_cst_equal (const_tree t1, const_tree t2)
7195 {
7196 if (t1 == t2)
7197 return 1;
7198
7199 if (t1 == 0 || t2 == 0)
7200 return 0;
7201
7202 STRIP_ANY_LOCATION_WRAPPER (t1);
7203 STRIP_ANY_LOCATION_WRAPPER (t2);
7204
7205 if (TREE_CODE (t1) == INTEGER_CST
7206 && TREE_CODE (t2) == INTEGER_CST
7207 && wi::to_widest (t1) == wi::to_widest (t2))
7208 return 1;
7209
7210 return 0;
7211 }
7212
7213 /* Return true if T is an INTEGER_CST whose numerical value (extended
7214 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7215
7216 bool
7217 tree_fits_shwi_p (const_tree t)
7218 {
7219 return (t != NULL_TREE
7220 && TREE_CODE (t) == INTEGER_CST
7221 && wi::fits_shwi_p (wi::to_widest (t)));
7222 }
7223
7224 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7225 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
7226
7227 bool
7228 tree_fits_poly_int64_p (const_tree t)
7229 {
7230 if (t == NULL_TREE)
7231 return false;
7232 if (POLY_INT_CST_P (t))
7233 {
7234 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7235 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
7236 return false;
7237 return true;
7238 }
7239 return (TREE_CODE (t) == INTEGER_CST
7240 && wi::fits_shwi_p (wi::to_widest (t)));
7241 }
7242
7243 /* Return true if T is an INTEGER_CST whose numerical value (extended
7244 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7245
7246 bool
7247 tree_fits_uhwi_p (const_tree t)
7248 {
7249 return (t != NULL_TREE
7250 && TREE_CODE (t) == INTEGER_CST
7251 && wi::fits_uhwi_p (wi::to_widest (t)));
7252 }
7253
7254 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7255 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
7256
7257 bool
7258 tree_fits_poly_uint64_p (const_tree t)
7259 {
7260 if (t == NULL_TREE)
7261 return false;
7262 if (POLY_INT_CST_P (t))
7263 {
7264 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7265 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
7266 return false;
7267 return true;
7268 }
7269 return (TREE_CODE (t) == INTEGER_CST
7270 && wi::fits_uhwi_p (wi::to_widest (t)));
7271 }
7272
7273 /* T is an INTEGER_CST whose numerical value (extended according to
7274 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7275 HOST_WIDE_INT. */
7276
7277 HOST_WIDE_INT
7278 tree_to_shwi (const_tree t)
7279 {
7280 gcc_assert (tree_fits_shwi_p (t));
7281 return TREE_INT_CST_LOW (t);
7282 }
7283
7284 /* T is an INTEGER_CST whose numerical value (extended according to
7285 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7286 HOST_WIDE_INT. */
7287
7288 unsigned HOST_WIDE_INT
7289 tree_to_uhwi (const_tree t)
7290 {
7291 gcc_assert (tree_fits_uhwi_p (t));
7292 return TREE_INT_CST_LOW (t);
7293 }
7294
7295 /* Return the most significant (sign) bit of T. */
7296
7297 int
7298 tree_int_cst_sign_bit (const_tree t)
7299 {
7300 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7301
7302 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
7303 }
7304
7305 /* Return an indication of the sign of the integer constant T.
7306 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7307 Note that -1 will never be returned if T's type is unsigned. */
7308
7309 int
7310 tree_int_cst_sgn (const_tree t)
7311 {
7312 if (wi::to_wide (t) == 0)
7313 return 0;
7314 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7315 return 1;
7316 else if (wi::neg_p (wi::to_wide (t)))
7317 return -1;
7318 else
7319 return 1;
7320 }
7321
7322 /* Return the minimum number of bits needed to represent VALUE in a
7323 signed or unsigned type, UNSIGNEDP says which. */
7324
7325 unsigned int
7326 tree_int_cst_min_precision (tree value, signop sgn)
7327 {
7328 /* If the value is negative, compute its negative minus 1. The latter
7329 adjustment is because the absolute value of the largest negative value
7330 is one larger than the largest positive value. This is equivalent to
7331 a bit-wise negation, so use that operation instead. */
7332
7333 if (tree_int_cst_sgn (value) < 0)
7334 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7335
7336 /* Return the number of bits needed, taking into account the fact
7337 that we need one more bit for a signed than unsigned type.
7338 If value is 0 or -1, the minimum precision is 1 no matter
7339 whether unsignedp is true or false. */
7340
7341 if (integer_zerop (value))
7342 return 1;
7343 else
7344 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7345 }
7346
7347 /* Return truthvalue of whether T1 is the same tree structure as T2.
7348 Return 1 if they are the same.
7349 Return 0 if they are understandably different.
7350 Return -1 if either contains tree structure not understood by
7351 this function. */
7352
7353 int
7354 simple_cst_equal (const_tree t1, const_tree t2)
7355 {
7356 enum tree_code code1, code2;
7357 int cmp;
7358 int i;
7359
7360 if (t1 == t2)
7361 return 1;
7362 if (t1 == 0 || t2 == 0)
7363 return 0;
7364
7365 /* For location wrappers to be the same, they must be at the same
7366 source location (and wrap the same thing). */
7367 if (location_wrapper_p (t1) && location_wrapper_p (t2))
7368 {
7369 if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
7370 return 0;
7371 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7372 }
7373
7374 code1 = TREE_CODE (t1);
7375 code2 = TREE_CODE (t2);
7376
7377 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7378 {
7379 if (CONVERT_EXPR_CODE_P (code2)
7380 || code2 == NON_LVALUE_EXPR)
7381 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7382 else
7383 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7384 }
7385
7386 else if (CONVERT_EXPR_CODE_P (code2)
7387 || code2 == NON_LVALUE_EXPR)
7388 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7389
7390 if (code1 != code2)
7391 return 0;
7392
7393 switch (code1)
7394 {
7395 case INTEGER_CST:
7396 return wi::to_widest (t1) == wi::to_widest (t2);
7397
7398 case REAL_CST:
7399 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7400
7401 case FIXED_CST:
7402 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7403
7404 case STRING_CST:
7405 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7406 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7407 TREE_STRING_LENGTH (t1)));
7408
7409 case CONSTRUCTOR:
7410 {
7411 unsigned HOST_WIDE_INT idx;
7412 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7413 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7414
7415 if (vec_safe_length (v1) != vec_safe_length (v2))
7416 return false;
7417
7418 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7419 /* ??? Should we handle also fields here? */
7420 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7421 return false;
7422 return true;
7423 }
7424
7425 case SAVE_EXPR:
7426 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7427
7428 case CALL_EXPR:
7429 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7430 if (cmp <= 0)
7431 return cmp;
7432 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7433 return 0;
7434 {
7435 const_tree arg1, arg2;
7436 const_call_expr_arg_iterator iter1, iter2;
7437 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7438 arg2 = first_const_call_expr_arg (t2, &iter2);
7439 arg1 && arg2;
7440 arg1 = next_const_call_expr_arg (&iter1),
7441 arg2 = next_const_call_expr_arg (&iter2))
7442 {
7443 cmp = simple_cst_equal (arg1, arg2);
7444 if (cmp <= 0)
7445 return cmp;
7446 }
7447 return arg1 == arg2;
7448 }
7449
7450 case TARGET_EXPR:
7451 /* Special case: if either target is an unallocated VAR_DECL,
7452 it means that it's going to be unified with whatever the
7453 TARGET_EXPR is really supposed to initialize, so treat it
7454 as being equivalent to anything. */
7455 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7456 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7457 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7458 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7459 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7460 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7461 cmp = 1;
7462 else
7463 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7464
7465 if (cmp <= 0)
7466 return cmp;
7467
7468 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7469
7470 case WITH_CLEANUP_EXPR:
7471 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7472 if (cmp <= 0)
7473 return cmp;
7474
7475 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7476
7477 case COMPONENT_REF:
7478 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7479 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7480
7481 return 0;
7482
7483 case VAR_DECL:
7484 case PARM_DECL:
7485 case CONST_DECL:
7486 case FUNCTION_DECL:
7487 return 0;
7488
7489 default:
7490 if (POLY_INT_CST_P (t1))
7491 /* A false return means maybe_ne rather than known_ne. */
7492 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7493 TYPE_SIGN (TREE_TYPE (t1))),
7494 poly_widest_int::from (poly_int_cst_value (t2),
7495 TYPE_SIGN (TREE_TYPE (t2))));
7496 break;
7497 }
7498
7499 /* This general rule works for most tree codes. All exceptions should be
7500 handled above. If this is a language-specific tree code, we can't
7501 trust what might be in the operand, so say we don't know
7502 the situation. */
7503 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7504 return -1;
7505
7506 switch (TREE_CODE_CLASS (code1))
7507 {
7508 case tcc_unary:
7509 case tcc_binary:
7510 case tcc_comparison:
7511 case tcc_expression:
7512 case tcc_reference:
7513 case tcc_statement:
7514 cmp = 1;
7515 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7516 {
7517 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7518 if (cmp <= 0)
7519 return cmp;
7520 }
7521
7522 return cmp;
7523
7524 default:
7525 return -1;
7526 }
7527 }
7528
7529 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7530 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7531 than U, respectively. */
7532
7533 int
7534 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7535 {
7536 if (tree_int_cst_sgn (t) < 0)
7537 return -1;
7538 else if (!tree_fits_uhwi_p (t))
7539 return 1;
7540 else if (TREE_INT_CST_LOW (t) == u)
7541 return 0;
7542 else if (TREE_INT_CST_LOW (t) < u)
7543 return -1;
7544 else
7545 return 1;
7546 }
7547
7548 /* Return true if SIZE represents a constant size that is in bounds of
7549 what the middle-end and the backend accepts (covering not more than
7550 half of the address-space).
7551 When PERR is non-null, set *PERR on failure to the description of
7552 why SIZE is not valid. */
7553
7554 bool
7555 valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */)
7556 {
7557 if (POLY_INT_CST_P (size))
7558 {
7559 if (TREE_OVERFLOW (size))
7560 return false;
7561 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7562 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7563 return false;
7564 return true;
7565 }
7566
7567 cst_size_error error;
7568 if (!perr)
7569 perr = &error;
7570
7571 if (TREE_CODE (size) != INTEGER_CST)
7572 {
7573 *perr = cst_size_not_constant;
7574 return false;
7575 }
7576
7577 if (TREE_OVERFLOW_P (size))
7578 {
7579 *perr = cst_size_overflow;
7580 return false;
7581 }
7582
7583 if (tree_int_cst_sgn (size) < 0)
7584 {
7585 *perr = cst_size_negative;
7586 return false;
7587 }
7588 if (!tree_fits_uhwi_p (size)
7589 || (wi::to_widest (TYPE_MAX_VALUE (sizetype))
7590 < wi::to_widest (size) * 2))
7591 {
7592 *perr = cst_size_too_big;
7593 return false;
7594 }
7595
7596 return true;
7597 }
7598
7599 /* Return the precision of the type, or for a complex or vector type the
7600 precision of the type of its elements. */
7601
7602 unsigned int
7603 element_precision (const_tree type)
7604 {
7605 if (!TYPE_P (type))
7606 type = TREE_TYPE (type);
7607 enum tree_code code = TREE_CODE (type);
7608 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7609 type = TREE_TYPE (type);
7610
7611 return TYPE_PRECISION (type);
7612 }
7613
7614 /* Return true if CODE represents an associative tree code. Otherwise
7615 return false. */
7616 bool
7617 associative_tree_code (enum tree_code code)
7618 {
7619 switch (code)
7620 {
7621 case BIT_IOR_EXPR:
7622 case BIT_AND_EXPR:
7623 case BIT_XOR_EXPR:
7624 case PLUS_EXPR:
7625 case MULT_EXPR:
7626 case MIN_EXPR:
7627 case MAX_EXPR:
7628 return true;
7629
7630 default:
7631 break;
7632 }
7633 return false;
7634 }
7635
7636 /* Return true if CODE represents a commutative tree code. Otherwise
7637 return false. */
7638 bool
7639 commutative_tree_code (enum tree_code code)
7640 {
7641 switch (code)
7642 {
7643 case PLUS_EXPR:
7644 case MULT_EXPR:
7645 case MULT_HIGHPART_EXPR:
7646 case MIN_EXPR:
7647 case MAX_EXPR:
7648 case BIT_IOR_EXPR:
7649 case BIT_XOR_EXPR:
7650 case BIT_AND_EXPR:
7651 case NE_EXPR:
7652 case EQ_EXPR:
7653 case UNORDERED_EXPR:
7654 case ORDERED_EXPR:
7655 case UNEQ_EXPR:
7656 case LTGT_EXPR:
7657 case TRUTH_AND_EXPR:
7658 case TRUTH_XOR_EXPR:
7659 case TRUTH_OR_EXPR:
7660 case WIDEN_MULT_EXPR:
7661 case VEC_WIDEN_MULT_HI_EXPR:
7662 case VEC_WIDEN_MULT_LO_EXPR:
7663 case VEC_WIDEN_MULT_EVEN_EXPR:
7664 case VEC_WIDEN_MULT_ODD_EXPR:
7665 return true;
7666
7667 default:
7668 break;
7669 }
7670 return false;
7671 }
7672
7673 /* Return true if CODE represents a ternary tree code for which the
7674 first two operands are commutative. Otherwise return false. */
7675 bool
7676 commutative_ternary_tree_code (enum tree_code code)
7677 {
7678 switch (code)
7679 {
7680 case WIDEN_MULT_PLUS_EXPR:
7681 case WIDEN_MULT_MINUS_EXPR:
7682 case DOT_PROD_EXPR:
7683 return true;
7684
7685 default:
7686 break;
7687 }
7688 return false;
7689 }
7690
7691 /* Returns true if CODE can overflow. */
7692
7693 bool
7694 operation_can_overflow (enum tree_code code)
7695 {
7696 switch (code)
7697 {
7698 case PLUS_EXPR:
7699 case MINUS_EXPR:
7700 case MULT_EXPR:
7701 case LSHIFT_EXPR:
7702 /* Can overflow in various ways. */
7703 return true;
7704 case TRUNC_DIV_EXPR:
7705 case EXACT_DIV_EXPR:
7706 case FLOOR_DIV_EXPR:
7707 case CEIL_DIV_EXPR:
7708 /* For INT_MIN / -1. */
7709 return true;
7710 case NEGATE_EXPR:
7711 case ABS_EXPR:
7712 /* For -INT_MIN. */
7713 return true;
7714 default:
7715 /* These operators cannot overflow. */
7716 return false;
7717 }
7718 }
7719
7720 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7721 ftrapv doesn't generate trapping insns for CODE. */
7722
7723 bool
7724 operation_no_trapping_overflow (tree type, enum tree_code code)
7725 {
7726 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7727
7728 /* We don't generate instructions that trap on overflow for complex or vector
7729 types. */
7730 if (!INTEGRAL_TYPE_P (type))
7731 return true;
7732
7733 if (!TYPE_OVERFLOW_TRAPS (type))
7734 return true;
7735
7736 switch (code)
7737 {
7738 case PLUS_EXPR:
7739 case MINUS_EXPR:
7740 case MULT_EXPR:
7741 case NEGATE_EXPR:
7742 case ABS_EXPR:
7743 /* These operators can overflow, and -ftrapv generates trapping code for
7744 these. */
7745 return false;
7746 case TRUNC_DIV_EXPR:
7747 case EXACT_DIV_EXPR:
7748 case FLOOR_DIV_EXPR:
7749 case CEIL_DIV_EXPR:
7750 case LSHIFT_EXPR:
7751 /* These operators can overflow, but -ftrapv does not generate trapping
7752 code for these. */
7753 return true;
7754 default:
7755 /* These operators cannot overflow. */
7756 return true;
7757 }
7758 }
7759
7760 namespace inchash
7761 {
7762
7763 /* Generate a hash value for an expression. This can be used iteratively
7764 by passing a previous result as the HSTATE argument.
7765
7766 This function is intended to produce the same hash for expressions which
7767 would compare equal using operand_equal_p. */
7768 void
7769 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7770 {
7771 int i;
7772 enum tree_code code;
7773 enum tree_code_class tclass;
7774
7775 if (t == NULL_TREE || t == error_mark_node)
7776 {
7777 hstate.merge_hash (0);
7778 return;
7779 }
7780
7781 STRIP_ANY_LOCATION_WRAPPER (t);
7782
7783 if (!(flags & OEP_ADDRESS_OF))
7784 STRIP_NOPS (t);
7785
7786 code = TREE_CODE (t);
7787
7788 switch (code)
7789 {
7790 /* Alas, constants aren't shared, so we can't rely on pointer
7791 identity. */
7792 case VOID_CST:
7793 hstate.merge_hash (0);
7794 return;
7795 case INTEGER_CST:
7796 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7797 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7798 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7799 return;
7800 case REAL_CST:
7801 {
7802 unsigned int val2;
7803 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7804 val2 = rvc_zero;
7805 else
7806 val2 = real_hash (TREE_REAL_CST_PTR (t));
7807 hstate.merge_hash (val2);
7808 return;
7809 }
7810 case FIXED_CST:
7811 {
7812 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7813 hstate.merge_hash (val2);
7814 return;
7815 }
7816 case STRING_CST:
7817 hstate.add ((const void *) TREE_STRING_POINTER (t),
7818 TREE_STRING_LENGTH (t));
7819 return;
7820 case COMPLEX_CST:
7821 inchash::add_expr (TREE_REALPART (t), hstate, flags);
7822 inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7823 return;
7824 case VECTOR_CST:
7825 {
7826 hstate.add_int (VECTOR_CST_NPATTERNS (t));
7827 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7828 unsigned int count = vector_cst_encoded_nelts (t);
7829 for (unsigned int i = 0; i < count; ++i)
7830 inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7831 return;
7832 }
7833 case SSA_NAME:
7834 /* We can just compare by pointer. */
7835 hstate.add_hwi (SSA_NAME_VERSION (t));
7836 return;
7837 case PLACEHOLDER_EXPR:
7838 /* The node itself doesn't matter. */
7839 return;
7840 case BLOCK:
7841 case OMP_CLAUSE:
7842 /* Ignore. */
7843 return;
7844 case TREE_LIST:
7845 /* A list of expressions, for a CALL_EXPR or as the elements of a
7846 VECTOR_CST. */
7847 for (; t; t = TREE_CHAIN (t))
7848 inchash::add_expr (TREE_VALUE (t), hstate, flags);
7849 return;
7850 case CONSTRUCTOR:
7851 {
7852 unsigned HOST_WIDE_INT idx;
7853 tree field, value;
7854 flags &= ~OEP_ADDRESS_OF;
7855 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7856 {
7857 inchash::add_expr (field, hstate, flags);
7858 inchash::add_expr (value, hstate, flags);
7859 }
7860 return;
7861 }
7862 case STATEMENT_LIST:
7863 {
7864 tree_stmt_iterator i;
7865 for (i = tsi_start (CONST_CAST_TREE (t));
7866 !tsi_end_p (i); tsi_next (&i))
7867 inchash::add_expr (tsi_stmt (i), hstate, flags);
7868 return;
7869 }
7870 case TREE_VEC:
7871 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7872 inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7873 return;
7874 case IDENTIFIER_NODE:
7875 hstate.add_object (IDENTIFIER_HASH_VALUE (t));
7876 return;
7877 case FUNCTION_DECL:
7878 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7879 Otherwise nodes that compare equal according to operand_equal_p might
7880 get different hash codes. However, don't do this for machine specific
7881 or front end builtins, since the function code is overloaded in those
7882 cases. */
7883 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7884 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7885 {
7886 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7887 code = TREE_CODE (t);
7888 }
7889 /* FALL THROUGH */
7890 default:
7891 if (POLY_INT_CST_P (t))
7892 {
7893 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7894 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7895 return;
7896 }
7897 tclass = TREE_CODE_CLASS (code);
7898
7899 if (tclass == tcc_declaration)
7900 {
7901 /* DECL's have a unique ID */
7902 hstate.add_hwi (DECL_UID (t));
7903 }
7904 else if (tclass == tcc_comparison && !commutative_tree_code (code))
7905 {
7906 /* For comparisons that can be swapped, use the lower
7907 tree code. */
7908 enum tree_code ccode = swap_tree_comparison (code);
7909 if (code < ccode)
7910 ccode = code;
7911 hstate.add_object (ccode);
7912 inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7913 inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7914 }
7915 else if (CONVERT_EXPR_CODE_P (code))
7916 {
7917 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7918 operand_equal_p. */
7919 enum tree_code ccode = NOP_EXPR;
7920 hstate.add_object (ccode);
7921
7922 /* Don't hash the type, that can lead to having nodes which
7923 compare equal according to operand_equal_p, but which
7924 have different hash codes. Make sure to include signedness
7925 in the hash computation. */
7926 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7927 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7928 }
7929 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7930 else if (code == MEM_REF
7931 && (flags & OEP_ADDRESS_OF) != 0
7932 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7933 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7934 && integer_zerop (TREE_OPERAND (t, 1)))
7935 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7936 hstate, flags);
7937 /* Don't ICE on FE specific trees, or their arguments etc.
7938 during operand_equal_p hash verification. */
7939 else if (!IS_EXPR_CODE_CLASS (tclass))
7940 gcc_assert (flags & OEP_HASH_CHECK);
7941 else
7942 {
7943 unsigned int sflags = flags;
7944
7945 hstate.add_object (code);
7946
7947 switch (code)
7948 {
7949 case ADDR_EXPR:
7950 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7951 flags |= OEP_ADDRESS_OF;
7952 sflags = flags;
7953 break;
7954
7955 case INDIRECT_REF:
7956 case MEM_REF:
7957 case TARGET_MEM_REF:
7958 flags &= ~OEP_ADDRESS_OF;
7959 sflags = flags;
7960 break;
7961
7962 case ARRAY_REF:
7963 case ARRAY_RANGE_REF:
7964 case COMPONENT_REF:
7965 case BIT_FIELD_REF:
7966 sflags &= ~OEP_ADDRESS_OF;
7967 break;
7968
7969 case COND_EXPR:
7970 flags &= ~OEP_ADDRESS_OF;
7971 break;
7972
7973 case WIDEN_MULT_PLUS_EXPR:
7974 case WIDEN_MULT_MINUS_EXPR:
7975 {
7976 /* The multiplication operands are commutative. */
7977 inchash::hash one, two;
7978 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7979 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7980 hstate.add_commutative (one, two);
7981 inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7982 return;
7983 }
7984
7985 case CALL_EXPR:
7986 if (CALL_EXPR_FN (t) == NULL_TREE)
7987 hstate.add_int (CALL_EXPR_IFN (t));
7988 break;
7989
7990 case TARGET_EXPR:
7991 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7992 Usually different TARGET_EXPRs just should use
7993 different temporaries in their slots. */
7994 inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7995 return;
7996
7997 default:
7998 break;
7999 }
8000
8001 /* Don't hash the type, that can lead to having nodes which
8002 compare equal according to operand_equal_p, but which
8003 have different hash codes. */
8004 if (code == NON_LVALUE_EXPR)
8005 {
8006 /* Make sure to include signness in the hash computation. */
8007 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
8008 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
8009 }
8010
8011 else if (commutative_tree_code (code))
8012 {
8013 /* It's a commutative expression. We want to hash it the same
8014 however it appears. We do this by first hashing both operands
8015 and then rehashing based on the order of their independent
8016 hashes. */
8017 inchash::hash one, two;
8018 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
8019 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
8020 hstate.add_commutative (one, two);
8021 }
8022 else
8023 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
8024 inchash::add_expr (TREE_OPERAND (t, i), hstate,
8025 i == 0 ? flags : sflags);
8026 }
8027 return;
8028 }
8029 }
8030
8031 }
8032
8033 /* Constructors for pointer, array and function types.
8034 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
8035 constructed by language-dependent code, not here.) */
8036
8037 /* Construct, lay out and return the type of pointers to TO_TYPE with
8038 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
8039 reference all of memory. If such a type has already been
8040 constructed, reuse it. */
8041
8042 tree
8043 build_pointer_type_for_mode (tree to_type, machine_mode mode,
8044 bool can_alias_all)
8045 {
8046 tree t;
8047 bool could_alias = can_alias_all;
8048
8049 if (to_type == error_mark_node)
8050 return error_mark_node;
8051
8052 /* If the pointed-to type has the may_alias attribute set, force
8053 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
8054 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
8055 can_alias_all = true;
8056
8057 /* In some cases, languages will have things that aren't a POINTER_TYPE
8058 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
8059 In that case, return that type without regard to the rest of our
8060 operands.
8061
8062 ??? This is a kludge, but consistent with the way this function has
8063 always operated and there doesn't seem to be a good way to avoid this
8064 at the moment. */
8065 if (TYPE_POINTER_TO (to_type) != 0
8066 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
8067 return TYPE_POINTER_TO (to_type);
8068
8069 /* First, if we already have a type for pointers to TO_TYPE and it's
8070 the proper mode, use it. */
8071 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
8072 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
8073 return t;
8074
8075 t = make_node (POINTER_TYPE);
8076
8077 TREE_TYPE (t) = to_type;
8078 SET_TYPE_MODE (t, mode);
8079 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
8080 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
8081 TYPE_POINTER_TO (to_type) = t;
8082
8083 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
8084 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
8085 SET_TYPE_STRUCTURAL_EQUALITY (t);
8086 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
8087 TYPE_CANONICAL (t)
8088 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
8089 mode, false);
8090
8091 /* Lay out the type. This function has many callers that are concerned
8092 with expression-construction, and this simplifies them all. */
8093 layout_type (t);
8094
8095 return t;
8096 }
8097
8098 /* By default build pointers in ptr_mode. */
8099
8100 tree
8101 build_pointer_type (tree to_type)
8102 {
8103 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
8104 : TYPE_ADDR_SPACE (to_type);
8105 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
8106 return build_pointer_type_for_mode (to_type, pointer_mode, false);
8107 }
8108
8109 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
8110
8111 tree
8112 build_reference_type_for_mode (tree to_type, machine_mode mode,
8113 bool can_alias_all)
8114 {
8115 tree t;
8116 bool could_alias = can_alias_all;
8117
8118 if (to_type == error_mark_node)
8119 return error_mark_node;
8120
8121 /* If the pointed-to type has the may_alias attribute set, force
8122 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
8123 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
8124 can_alias_all = true;
8125
8126 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
8127 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
8128 In that case, return that type without regard to the rest of our
8129 operands.
8130
8131 ??? This is a kludge, but consistent with the way this function has
8132 always operated and there doesn't seem to be a good way to avoid this
8133 at the moment. */
8134 if (TYPE_REFERENCE_TO (to_type) != 0
8135 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
8136 return TYPE_REFERENCE_TO (to_type);
8137
8138 /* First, if we already have a type for pointers to TO_TYPE and it's
8139 the proper mode, use it. */
8140 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
8141 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
8142 return t;
8143
8144 t = make_node (REFERENCE_TYPE);
8145
8146 TREE_TYPE (t) = to_type;
8147 SET_TYPE_MODE (t, mode);
8148 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
8149 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
8150 TYPE_REFERENCE_TO (to_type) = t;
8151
8152 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
8153 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
8154 SET_TYPE_STRUCTURAL_EQUALITY (t);
8155 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
8156 TYPE_CANONICAL (t)
8157 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
8158 mode, false);
8159
8160 layout_type (t);
8161
8162 return t;
8163 }
8164
8165
8166 /* Build the node for the type of references-to-TO_TYPE by default
8167 in ptr_mode. */
8168
8169 tree
8170 build_reference_type (tree to_type)
8171 {
8172 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
8173 : TYPE_ADDR_SPACE (to_type);
8174 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
8175 return build_reference_type_for_mode (to_type, pointer_mode, false);
8176 }
8177
8178 #define MAX_INT_CACHED_PREC \
8179 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8180 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
8181
8182 /* Builds a signed or unsigned integer type of precision PRECISION.
8183 Used for C bitfields whose precision does not match that of
8184 built-in target types. */
8185 tree
8186 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
8187 int unsignedp)
8188 {
8189 tree itype, ret;
8190
8191 if (unsignedp)
8192 unsignedp = MAX_INT_CACHED_PREC + 1;
8193
8194 if (precision <= MAX_INT_CACHED_PREC)
8195 {
8196 itype = nonstandard_integer_type_cache[precision + unsignedp];
8197 if (itype)
8198 return itype;
8199 }
8200
8201 itype = make_node (INTEGER_TYPE);
8202 TYPE_PRECISION (itype) = precision;
8203
8204 if (unsignedp)
8205 fixup_unsigned_type (itype);
8206 else
8207 fixup_signed_type (itype);
8208
8209 ret = itype;
8210
8211 inchash::hash hstate;
8212 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
8213 ret = type_hash_canon (hstate.end (), itype);
8214 if (precision <= MAX_INT_CACHED_PREC)
8215 nonstandard_integer_type_cache[precision + unsignedp] = ret;
8216
8217 return ret;
8218 }
8219
8220 #define MAX_BOOL_CACHED_PREC \
8221 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8222 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
8223
8224 /* Builds a boolean type of precision PRECISION.
8225 Used for boolean vectors to choose proper vector element size. */
8226 tree
8227 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
8228 {
8229 tree type;
8230
8231 if (precision <= MAX_BOOL_CACHED_PREC)
8232 {
8233 type = nonstandard_boolean_type_cache[precision];
8234 if (type)
8235 return type;
8236 }
8237
8238 type = make_node (BOOLEAN_TYPE);
8239 TYPE_PRECISION (type) = precision;
8240 fixup_signed_type (type);
8241
8242 if (precision <= MAX_INT_CACHED_PREC)
8243 nonstandard_boolean_type_cache[precision] = type;
8244
8245 return type;
8246 }
8247
8248 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
8249 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
8250 is true, reuse such a type that has already been constructed. */
8251
8252 static tree
8253 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
8254 {
8255 tree itype = make_node (INTEGER_TYPE);
8256
8257 TREE_TYPE (itype) = type;
8258
8259 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
8260 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
8261
8262 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
8263 SET_TYPE_MODE (itype, TYPE_MODE (type));
8264 TYPE_SIZE (itype) = TYPE_SIZE (type);
8265 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
8266 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
8267 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
8268 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
8269
8270 if (!shared)
8271 return itype;
8272
8273 if ((TYPE_MIN_VALUE (itype)
8274 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
8275 || (TYPE_MAX_VALUE (itype)
8276 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
8277 {
8278 /* Since we cannot reliably merge this type, we need to compare it using
8279 structural equality checks. */
8280 SET_TYPE_STRUCTURAL_EQUALITY (itype);
8281 return itype;
8282 }
8283
8284 hashval_t hash = type_hash_canon_hash (itype);
8285 itype = type_hash_canon (hash, itype);
8286
8287 return itype;
8288 }
8289
8290 /* Wrapper around build_range_type_1 with SHARED set to true. */
8291
8292 tree
8293 build_range_type (tree type, tree lowval, tree highval)
8294 {
8295 return build_range_type_1 (type, lowval, highval, true);
8296 }
8297
8298 /* Wrapper around build_range_type_1 with SHARED set to false. */
8299
8300 tree
8301 build_nonshared_range_type (tree type, tree lowval, tree highval)
8302 {
8303 return build_range_type_1 (type, lowval, highval, false);
8304 }
8305
8306 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
8307 MAXVAL should be the maximum value in the domain
8308 (one less than the length of the array).
8309
8310 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
8311 We don't enforce this limit, that is up to caller (e.g. language front end).
8312 The limit exists because the result is a signed type and we don't handle
8313 sizes that use more than one HOST_WIDE_INT. */
8314
8315 tree
8316 build_index_type (tree maxval)
8317 {
8318 return build_range_type (sizetype, size_zero_node, maxval);
8319 }
8320
8321 /* Return true if the debug information for TYPE, a subtype, should be emitted
8322 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
8323 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
8324 debug info and doesn't reflect the source code. */
8325
8326 bool
8327 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
8328 {
8329 tree base_type = TREE_TYPE (type), low, high;
8330
8331 /* Subrange types have a base type which is an integral type. */
8332 if (!INTEGRAL_TYPE_P (base_type))
8333 return false;
8334
8335 /* Get the real bounds of the subtype. */
8336 if (lang_hooks.types.get_subrange_bounds)
8337 lang_hooks.types.get_subrange_bounds (type, &low, &high);
8338 else
8339 {
8340 low = TYPE_MIN_VALUE (type);
8341 high = TYPE_MAX_VALUE (type);
8342 }
8343
8344 /* If the type and its base type have the same representation and the same
8345 name, then the type is not a subrange but a copy of the base type. */
8346 if ((TREE_CODE (base_type) == INTEGER_TYPE
8347 || TREE_CODE (base_type) == BOOLEAN_TYPE)
8348 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
8349 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
8350 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
8351 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
8352 return false;
8353
8354 if (lowval)
8355 *lowval = low;
8356 if (highval)
8357 *highval = high;
8358 return true;
8359 }
8360
8361 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8362 and number of elements specified by the range of values of INDEX_TYPE.
8363 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
8364 If SHARED is true, reuse such a type that has already been constructed. */
8365
8366 static tree
8367 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
8368 bool shared)
8369 {
8370 tree t;
8371
8372 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8373 {
8374 error ("arrays of functions are not meaningful");
8375 elt_type = integer_type_node;
8376 }
8377
8378 t = make_node (ARRAY_TYPE);
8379 TREE_TYPE (t) = elt_type;
8380 TYPE_DOMAIN (t) = index_type;
8381 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8382 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
8383 layout_type (t);
8384
8385 /* If the element type is incomplete at this point we get marked for
8386 structural equality. Do not record these types in the canonical
8387 type hashtable. */
8388 if (TYPE_STRUCTURAL_EQUALITY_P (t))
8389 return t;
8390
8391 if (shared)
8392 {
8393 hashval_t hash = type_hash_canon_hash (t);
8394 t = type_hash_canon (hash, t);
8395 }
8396
8397 if (TYPE_CANONICAL (t) == t)
8398 {
8399 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8400 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8401 || in_lto_p)
8402 SET_TYPE_STRUCTURAL_EQUALITY (t);
8403 else if (TYPE_CANONICAL (elt_type) != elt_type
8404 || (index_type && TYPE_CANONICAL (index_type) != index_type))
8405 TYPE_CANONICAL (t)
8406 = build_array_type_1 (TYPE_CANONICAL (elt_type),
8407 index_type
8408 ? TYPE_CANONICAL (index_type) : NULL_TREE,
8409 typeless_storage, shared);
8410 }
8411
8412 return t;
8413 }
8414
8415 /* Wrapper around build_array_type_1 with SHARED set to true. */
8416
8417 tree
8418 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
8419 {
8420 return build_array_type_1 (elt_type, index_type, typeless_storage, true);
8421 }
8422
8423 /* Wrapper around build_array_type_1 with SHARED set to false. */
8424
8425 tree
8426 build_nonshared_array_type (tree elt_type, tree index_type)
8427 {
8428 return build_array_type_1 (elt_type, index_type, false, false);
8429 }
8430
8431 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8432 sizetype. */
8433
8434 tree
8435 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
8436 {
8437 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8438 }
8439
8440 /* Recursively examines the array elements of TYPE, until a non-array
8441 element type is found. */
8442
8443 tree
8444 strip_array_types (tree type)
8445 {
8446 while (TREE_CODE (type) == ARRAY_TYPE)
8447 type = TREE_TYPE (type);
8448
8449 return type;
8450 }
8451
8452 /* Computes the canonical argument types from the argument type list
8453 ARGTYPES.
8454
8455 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8456 on entry to this function, or if any of the ARGTYPES are
8457 structural.
8458
8459 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8460 true on entry to this function, or if any of the ARGTYPES are
8461 non-canonical.
8462
8463 Returns a canonical argument list, which may be ARGTYPES when the
8464 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8465 true) or would not differ from ARGTYPES. */
8466
8467 static tree
8468 maybe_canonicalize_argtypes (tree argtypes,
8469 bool *any_structural_p,
8470 bool *any_noncanonical_p)
8471 {
8472 tree arg;
8473 bool any_noncanonical_argtypes_p = false;
8474
8475 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8476 {
8477 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8478 /* Fail gracefully by stating that the type is structural. */
8479 *any_structural_p = true;
8480 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8481 *any_structural_p = true;
8482 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8483 || TREE_PURPOSE (arg))
8484 /* If the argument has a default argument, we consider it
8485 non-canonical even though the type itself is canonical.
8486 That way, different variants of function and method types
8487 with default arguments will all point to the variant with
8488 no defaults as their canonical type. */
8489 any_noncanonical_argtypes_p = true;
8490 }
8491
8492 if (*any_structural_p)
8493 return argtypes;
8494
8495 if (any_noncanonical_argtypes_p)
8496 {
8497 /* Build the canonical list of argument types. */
8498 tree canon_argtypes = NULL_TREE;
8499 bool is_void = false;
8500
8501 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8502 {
8503 if (arg == void_list_node)
8504 is_void = true;
8505 else
8506 canon_argtypes = tree_cons (NULL_TREE,
8507 TYPE_CANONICAL (TREE_VALUE (arg)),
8508 canon_argtypes);
8509 }
8510
8511 canon_argtypes = nreverse (canon_argtypes);
8512 if (is_void)
8513 canon_argtypes = chainon (canon_argtypes, void_list_node);
8514
8515 /* There is a non-canonical type. */
8516 *any_noncanonical_p = true;
8517 return canon_argtypes;
8518 }
8519
8520 /* The canonical argument types are the same as ARGTYPES. */
8521 return argtypes;
8522 }
8523
8524 /* Construct, lay out and return
8525 the type of functions returning type VALUE_TYPE
8526 given arguments of types ARG_TYPES.
8527 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8528 are data type nodes for the arguments of the function.
8529 If such a type has already been constructed, reuse it. */
8530
8531 tree
8532 build_function_type (tree value_type, tree arg_types)
8533 {
8534 tree t;
8535 inchash::hash hstate;
8536 bool any_structural_p, any_noncanonical_p;
8537 tree canon_argtypes;
8538
8539 gcc_assert (arg_types != error_mark_node);
8540
8541 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8542 {
8543 error ("function return type cannot be function");
8544 value_type = integer_type_node;
8545 }
8546
8547 /* Make a node of the sort we want. */
8548 t = make_node (FUNCTION_TYPE);
8549 TREE_TYPE (t) = value_type;
8550 TYPE_ARG_TYPES (t) = arg_types;
8551
8552 /* If we already have such a type, use the old one. */
8553 hashval_t hash = type_hash_canon_hash (t);
8554 t = type_hash_canon (hash, t);
8555
8556 /* Set up the canonical type. */
8557 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8558 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8559 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8560 &any_structural_p,
8561 &any_noncanonical_p);
8562 if (any_structural_p)
8563 SET_TYPE_STRUCTURAL_EQUALITY (t);
8564 else if (any_noncanonical_p)
8565 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8566 canon_argtypes);
8567
8568 if (!COMPLETE_TYPE_P (t))
8569 layout_type (t);
8570 return t;
8571 }
8572
8573 /* Build a function type. The RETURN_TYPE is the type returned by the
8574 function. If VAARGS is set, no void_type_node is appended to the
8575 list. ARGP must be always be terminated be a NULL_TREE. */
8576
8577 static tree
8578 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8579 {
8580 tree t, args, last;
8581
8582 t = va_arg (argp, tree);
8583 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8584 args = tree_cons (NULL_TREE, t, args);
8585
8586 if (vaargs)
8587 {
8588 last = args;
8589 if (args != NULL_TREE)
8590 args = nreverse (args);
8591 gcc_assert (last != void_list_node);
8592 }
8593 else if (args == NULL_TREE)
8594 args = void_list_node;
8595 else
8596 {
8597 last = args;
8598 args = nreverse (args);
8599 TREE_CHAIN (last) = void_list_node;
8600 }
8601 args = build_function_type (return_type, args);
8602
8603 return args;
8604 }
8605
8606 /* Build a function type. The RETURN_TYPE is the type returned by the
8607 function. If additional arguments are provided, they are
8608 additional argument types. The list of argument types must always
8609 be terminated by NULL_TREE. */
8610
8611 tree
8612 build_function_type_list (tree return_type, ...)
8613 {
8614 tree args;
8615 va_list p;
8616
8617 va_start (p, return_type);
8618 args = build_function_type_list_1 (false, return_type, p);
8619 va_end (p);
8620 return args;
8621 }
8622
8623 /* Build a variable argument function type. The RETURN_TYPE is the
8624 type returned by the function. If additional arguments are provided,
8625 they are additional argument types. The list of argument types must
8626 always be terminated by NULL_TREE. */
8627
8628 tree
8629 build_varargs_function_type_list (tree return_type, ...)
8630 {
8631 tree args;
8632 va_list p;
8633
8634 va_start (p, return_type);
8635 args = build_function_type_list_1 (true, return_type, p);
8636 va_end (p);
8637
8638 return args;
8639 }
8640
8641 /* Build a function type. RETURN_TYPE is the type returned by the
8642 function; VAARGS indicates whether the function takes varargs. The
8643 function takes N named arguments, the types of which are provided in
8644 ARG_TYPES. */
8645
8646 static tree
8647 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8648 tree *arg_types)
8649 {
8650 int i;
8651 tree t = vaargs ? NULL_TREE : void_list_node;
8652
8653 for (i = n - 1; i >= 0; i--)
8654 t = tree_cons (NULL_TREE, arg_types[i], t);
8655
8656 return build_function_type (return_type, t);
8657 }
8658
8659 /* Build a function type. RETURN_TYPE is the type returned by the
8660 function. The function takes N named arguments, the types of which
8661 are provided in ARG_TYPES. */
8662
8663 tree
8664 build_function_type_array (tree return_type, int n, tree *arg_types)
8665 {
8666 return build_function_type_array_1 (false, return_type, n, arg_types);
8667 }
8668
8669 /* Build a variable argument function type. RETURN_TYPE is the type
8670 returned by the function. The function takes N named arguments, the
8671 types of which are provided in ARG_TYPES. */
8672
8673 tree
8674 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8675 {
8676 return build_function_type_array_1 (true, return_type, n, arg_types);
8677 }
8678
8679 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8680 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8681 for the method. An implicit additional parameter (of type
8682 pointer-to-BASETYPE) is added to the ARGTYPES. */
8683
8684 tree
8685 build_method_type_directly (tree basetype,
8686 tree rettype,
8687 tree argtypes)
8688 {
8689 tree t;
8690 tree ptype;
8691 bool any_structural_p, any_noncanonical_p;
8692 tree canon_argtypes;
8693
8694 /* Make a node of the sort we want. */
8695 t = make_node (METHOD_TYPE);
8696
8697 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8698 TREE_TYPE (t) = rettype;
8699 ptype = build_pointer_type (basetype);
8700
8701 /* The actual arglist for this function includes a "hidden" argument
8702 which is "this". Put it into the list of argument types. */
8703 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8704 TYPE_ARG_TYPES (t) = argtypes;
8705
8706 /* If we already have such a type, use the old one. */
8707 hashval_t hash = type_hash_canon_hash (t);
8708 t = type_hash_canon (hash, t);
8709
8710 /* Set up the canonical type. */
8711 any_structural_p
8712 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8713 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8714 any_noncanonical_p
8715 = (TYPE_CANONICAL (basetype) != basetype
8716 || TYPE_CANONICAL (rettype) != rettype);
8717 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8718 &any_structural_p,
8719 &any_noncanonical_p);
8720 if (any_structural_p)
8721 SET_TYPE_STRUCTURAL_EQUALITY (t);
8722 else if (any_noncanonical_p)
8723 TYPE_CANONICAL (t)
8724 = build_method_type_directly (TYPE_CANONICAL (basetype),
8725 TYPE_CANONICAL (rettype),
8726 canon_argtypes);
8727 if (!COMPLETE_TYPE_P (t))
8728 layout_type (t);
8729
8730 return t;
8731 }
8732
8733 /* Construct, lay out and return the type of methods belonging to class
8734 BASETYPE and whose arguments and values are described by TYPE.
8735 If that type exists already, reuse it.
8736 TYPE must be a FUNCTION_TYPE node. */
8737
8738 tree
8739 build_method_type (tree basetype, tree type)
8740 {
8741 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8742
8743 return build_method_type_directly (basetype,
8744 TREE_TYPE (type),
8745 TYPE_ARG_TYPES (type));
8746 }
8747
8748 /* Construct, lay out and return the type of offsets to a value
8749 of type TYPE, within an object of type BASETYPE.
8750 If a suitable offset type exists already, reuse it. */
8751
8752 tree
8753 build_offset_type (tree basetype, tree type)
8754 {
8755 tree t;
8756
8757 /* Make a node of the sort we want. */
8758 t = make_node (OFFSET_TYPE);
8759
8760 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8761 TREE_TYPE (t) = type;
8762
8763 /* If we already have such a type, use the old one. */
8764 hashval_t hash = type_hash_canon_hash (t);
8765 t = type_hash_canon (hash, t);
8766
8767 if (!COMPLETE_TYPE_P (t))
8768 layout_type (t);
8769
8770 if (TYPE_CANONICAL (t) == t)
8771 {
8772 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8773 || TYPE_STRUCTURAL_EQUALITY_P (type))
8774 SET_TYPE_STRUCTURAL_EQUALITY (t);
8775 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8776 || TYPE_CANONICAL (type) != type)
8777 TYPE_CANONICAL (t)
8778 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8779 TYPE_CANONICAL (type));
8780 }
8781
8782 return t;
8783 }
8784
8785 /* Create a complex type whose components are COMPONENT_TYPE.
8786
8787 If NAMED is true, the type is given a TYPE_NAME. We do not always
8788 do so because this creates a DECL node and thus make the DECL_UIDs
8789 dependent on the type canonicalization hashtable, which is GC-ed,
8790 so the DECL_UIDs would not be stable wrt garbage collection. */
8791
8792 tree
8793 build_complex_type (tree component_type, bool named)
8794 {
8795 gcc_assert (INTEGRAL_TYPE_P (component_type)
8796 || SCALAR_FLOAT_TYPE_P (component_type)
8797 || FIXED_POINT_TYPE_P (component_type));
8798
8799 /* Make a node of the sort we want. */
8800 tree probe = make_node (COMPLEX_TYPE);
8801
8802 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8803
8804 /* If we already have such a type, use the old one. */
8805 hashval_t hash = type_hash_canon_hash (probe);
8806 tree t = type_hash_canon (hash, probe);
8807
8808 if (t == probe)
8809 {
8810 /* We created a new type. The hash insertion will have laid
8811 out the type. We need to check the canonicalization and
8812 maybe set the name. */
8813 gcc_checking_assert (COMPLETE_TYPE_P (t)
8814 && !TYPE_NAME (t)
8815 && TYPE_CANONICAL (t) == t);
8816
8817 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8818 SET_TYPE_STRUCTURAL_EQUALITY (t);
8819 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8820 TYPE_CANONICAL (t)
8821 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8822
8823 /* We need to create a name, since complex is a fundamental type. */
8824 if (named)
8825 {
8826 const char *name = NULL;
8827
8828 if (TREE_TYPE (t) == char_type_node)
8829 name = "complex char";
8830 else if (TREE_TYPE (t) == signed_char_type_node)
8831 name = "complex signed char";
8832 else if (TREE_TYPE (t) == unsigned_char_type_node)
8833 name = "complex unsigned char";
8834 else if (TREE_TYPE (t) == short_integer_type_node)
8835 name = "complex short int";
8836 else if (TREE_TYPE (t) == short_unsigned_type_node)
8837 name = "complex short unsigned int";
8838 else if (TREE_TYPE (t) == integer_type_node)
8839 name = "complex int";
8840 else if (TREE_TYPE (t) == unsigned_type_node)
8841 name = "complex unsigned int";
8842 else if (TREE_TYPE (t) == long_integer_type_node)
8843 name = "complex long int";
8844 else if (TREE_TYPE (t) == long_unsigned_type_node)
8845 name = "complex long unsigned int";
8846 else if (TREE_TYPE (t) == long_long_integer_type_node)
8847 name = "complex long long int";
8848 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8849 name = "complex long long unsigned int";
8850
8851 if (name != NULL)
8852 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8853 get_identifier (name), t);
8854 }
8855 }
8856
8857 return build_qualified_type (t, TYPE_QUALS (component_type));
8858 }
8859
8860 /* If TYPE is a real or complex floating-point type and the target
8861 does not directly support arithmetic on TYPE then return the wider
8862 type to be used for arithmetic on TYPE. Otherwise, return
8863 NULL_TREE. */
8864
8865 tree
8866 excess_precision_type (tree type)
8867 {
8868 /* The target can give two different responses to the question of
8869 which excess precision mode it would like depending on whether we
8870 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8871
8872 enum excess_precision_type requested_type
8873 = (flag_excess_precision == EXCESS_PRECISION_FAST
8874 ? EXCESS_PRECISION_TYPE_FAST
8875 : EXCESS_PRECISION_TYPE_STANDARD);
8876
8877 enum flt_eval_method target_flt_eval_method
8878 = targetm.c.excess_precision (requested_type);
8879
8880 /* The target should not ask for unpredictable float evaluation (though
8881 it might advertise that implicitly the evaluation is unpredictable,
8882 but we don't care about that here, it will have been reported
8883 elsewhere). If it does ask for unpredictable evaluation, we have
8884 nothing to do here. */
8885 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8886
8887 /* Nothing to do. The target has asked for all types we know about
8888 to be computed with their native precision and range. */
8889 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8890 return NULL_TREE;
8891
8892 /* The target will promote this type in a target-dependent way, so excess
8893 precision ought to leave it alone. */
8894 if (targetm.promoted_type (type) != NULL_TREE)
8895 return NULL_TREE;
8896
8897 machine_mode float16_type_mode = (float16_type_node
8898 ? TYPE_MODE (float16_type_node)
8899 : VOIDmode);
8900 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8901 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8902
8903 switch (TREE_CODE (type))
8904 {
8905 case REAL_TYPE:
8906 {
8907 machine_mode type_mode = TYPE_MODE (type);
8908 switch (target_flt_eval_method)
8909 {
8910 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8911 if (type_mode == float16_type_mode)
8912 return float_type_node;
8913 break;
8914 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8915 if (type_mode == float16_type_mode
8916 || type_mode == float_type_mode)
8917 return double_type_node;
8918 break;
8919 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8920 if (type_mode == float16_type_mode
8921 || type_mode == float_type_mode
8922 || type_mode == double_type_mode)
8923 return long_double_type_node;
8924 break;
8925 default:
8926 gcc_unreachable ();
8927 }
8928 break;
8929 }
8930 case COMPLEX_TYPE:
8931 {
8932 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8933 return NULL_TREE;
8934 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8935 switch (target_flt_eval_method)
8936 {
8937 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8938 if (type_mode == float16_type_mode)
8939 return complex_float_type_node;
8940 break;
8941 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8942 if (type_mode == float16_type_mode
8943 || type_mode == float_type_mode)
8944 return complex_double_type_node;
8945 break;
8946 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8947 if (type_mode == float16_type_mode
8948 || type_mode == float_type_mode
8949 || type_mode == double_type_mode)
8950 return complex_long_double_type_node;
8951 break;
8952 default:
8953 gcc_unreachable ();
8954 }
8955 break;
8956 }
8957 default:
8958 break;
8959 }
8960
8961 return NULL_TREE;
8962 }
8963 \f
8964 /* Return OP, stripped of any conversions to wider types as much as is safe.
8965 Converting the value back to OP's type makes a value equivalent to OP.
8966
8967 If FOR_TYPE is nonzero, we return a value which, if converted to
8968 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8969
8970 OP must have integer, real or enumeral type. Pointers are not allowed!
8971
8972 There are some cases where the obvious value we could return
8973 would regenerate to OP if converted to OP's type,
8974 but would not extend like OP to wider types.
8975 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8976 For example, if OP is (unsigned short)(signed char)-1,
8977 we avoid returning (signed char)-1 if FOR_TYPE is int,
8978 even though extending that to an unsigned short would regenerate OP,
8979 since the result of extending (signed char)-1 to (int)
8980 is different from (int) OP. */
8981
8982 tree
8983 get_unwidened (tree op, tree for_type)
8984 {
8985 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8986 tree type = TREE_TYPE (op);
8987 unsigned final_prec
8988 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8989 int uns
8990 = (for_type != 0 && for_type != type
8991 && final_prec > TYPE_PRECISION (type)
8992 && TYPE_UNSIGNED (type));
8993 tree win = op;
8994
8995 while (CONVERT_EXPR_P (op))
8996 {
8997 int bitschange;
8998
8999 /* TYPE_PRECISION on vector types has different meaning
9000 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
9001 so avoid them here. */
9002 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
9003 break;
9004
9005 bitschange = TYPE_PRECISION (TREE_TYPE (op))
9006 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
9007
9008 /* Truncations are many-one so cannot be removed.
9009 Unless we are later going to truncate down even farther. */
9010 if (bitschange < 0
9011 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
9012 break;
9013
9014 /* See what's inside this conversion. If we decide to strip it,
9015 we will set WIN. */
9016 op = TREE_OPERAND (op, 0);
9017
9018 /* If we have not stripped any zero-extensions (uns is 0),
9019 we can strip any kind of extension.
9020 If we have previously stripped a zero-extension,
9021 only zero-extensions can safely be stripped.
9022 Any extension can be stripped if the bits it would produce
9023 are all going to be discarded later by truncating to FOR_TYPE. */
9024
9025 if (bitschange > 0)
9026 {
9027 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
9028 win = op;
9029 /* TYPE_UNSIGNED says whether this is a zero-extension.
9030 Let's avoid computing it if it does not affect WIN
9031 and if UNS will not be needed again. */
9032 if ((uns
9033 || CONVERT_EXPR_P (op))
9034 && TYPE_UNSIGNED (TREE_TYPE (op)))
9035 {
9036 uns = 1;
9037 win = op;
9038 }
9039 }
9040 }
9041
9042 /* If we finally reach a constant see if it fits in sth smaller and
9043 in that case convert it. */
9044 if (TREE_CODE (win) == INTEGER_CST)
9045 {
9046 tree wtype = TREE_TYPE (win);
9047 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
9048 if (for_type)
9049 prec = MAX (prec, final_prec);
9050 if (prec < TYPE_PRECISION (wtype))
9051 {
9052 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
9053 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
9054 win = fold_convert (t, win);
9055 }
9056 }
9057
9058 return win;
9059 }
9060 \f
9061 /* Return OP or a simpler expression for a narrower value
9062 which can be sign-extended or zero-extended to give back OP.
9063 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
9064 or 0 if the value should be sign-extended. */
9065
9066 tree
9067 get_narrower (tree op, int *unsignedp_ptr)
9068 {
9069 int uns = 0;
9070 int first = 1;
9071 tree win = op;
9072 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
9073
9074 while (TREE_CODE (op) == NOP_EXPR)
9075 {
9076 int bitschange
9077 = (TYPE_PRECISION (TREE_TYPE (op))
9078 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
9079
9080 /* Truncations are many-one so cannot be removed. */
9081 if (bitschange < 0)
9082 break;
9083
9084 /* See what's inside this conversion. If we decide to strip it,
9085 we will set WIN. */
9086
9087 if (bitschange > 0)
9088 {
9089 op = TREE_OPERAND (op, 0);
9090 /* An extension: the outermost one can be stripped,
9091 but remember whether it is zero or sign extension. */
9092 if (first)
9093 uns = TYPE_UNSIGNED (TREE_TYPE (op));
9094 /* Otherwise, if a sign extension has been stripped,
9095 only sign extensions can now be stripped;
9096 if a zero extension has been stripped, only zero-extensions. */
9097 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
9098 break;
9099 first = 0;
9100 }
9101 else /* bitschange == 0 */
9102 {
9103 /* A change in nominal type can always be stripped, but we must
9104 preserve the unsignedness. */
9105 if (first)
9106 uns = TYPE_UNSIGNED (TREE_TYPE (op));
9107 first = 0;
9108 op = TREE_OPERAND (op, 0);
9109 /* Keep trying to narrow, but don't assign op to win if it
9110 would turn an integral type into something else. */
9111 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
9112 continue;
9113 }
9114
9115 win = op;
9116 }
9117
9118 if (TREE_CODE (op) == COMPONENT_REF
9119 /* Since type_for_size always gives an integer type. */
9120 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
9121 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
9122 /* Ensure field is laid out already. */
9123 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
9124 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
9125 {
9126 unsigned HOST_WIDE_INT innerprec
9127 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
9128 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
9129 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
9130 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
9131
9132 /* We can get this structure field in a narrower type that fits it,
9133 but the resulting extension to its nominal type (a fullword type)
9134 must satisfy the same conditions as for other extensions.
9135
9136 Do this only for fields that are aligned (not bit-fields),
9137 because when bit-field insns will be used there is no
9138 advantage in doing this. */
9139
9140 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
9141 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
9142 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
9143 && type != 0)
9144 {
9145 if (first)
9146 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
9147 win = fold_convert (type, op);
9148 }
9149 }
9150
9151 *unsignedp_ptr = uns;
9152 return win;
9153 }
9154 \f
9155 /* Return true if integer constant C has a value that is permissible
9156 for TYPE, an integral type. */
9157
9158 bool
9159 int_fits_type_p (const_tree c, const_tree type)
9160 {
9161 tree type_low_bound, type_high_bound;
9162 bool ok_for_low_bound, ok_for_high_bound;
9163 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
9164
9165 /* Non-standard boolean types can have arbitrary precision but various
9166 transformations assume that they can only take values 0 and +/-1. */
9167 if (TREE_CODE (type) == BOOLEAN_TYPE)
9168 return wi::fits_to_boolean_p (wi::to_wide (c), type);
9169
9170 retry:
9171 type_low_bound = TYPE_MIN_VALUE (type);
9172 type_high_bound = TYPE_MAX_VALUE (type);
9173
9174 /* If at least one bound of the type is a constant integer, we can check
9175 ourselves and maybe make a decision. If no such decision is possible, but
9176 this type is a subtype, try checking against that. Otherwise, use
9177 fits_to_tree_p, which checks against the precision.
9178
9179 Compute the status for each possibly constant bound, and return if we see
9180 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
9181 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
9182 for "constant known to fit". */
9183
9184 /* Check if c >= type_low_bound. */
9185 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
9186 {
9187 if (tree_int_cst_lt (c, type_low_bound))
9188 return false;
9189 ok_for_low_bound = true;
9190 }
9191 else
9192 ok_for_low_bound = false;
9193
9194 /* Check if c <= type_high_bound. */
9195 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
9196 {
9197 if (tree_int_cst_lt (type_high_bound, c))
9198 return false;
9199 ok_for_high_bound = true;
9200 }
9201 else
9202 ok_for_high_bound = false;
9203
9204 /* If the constant fits both bounds, the result is known. */
9205 if (ok_for_low_bound && ok_for_high_bound)
9206 return true;
9207
9208 /* Perform some generic filtering which may allow making a decision
9209 even if the bounds are not constant. First, negative integers
9210 never fit in unsigned types, */
9211 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
9212 return false;
9213
9214 /* Second, narrower types always fit in wider ones. */
9215 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
9216 return true;
9217
9218 /* Third, unsigned integers with top bit set never fit signed types. */
9219 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
9220 {
9221 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
9222 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
9223 {
9224 /* When a tree_cst is converted to a wide-int, the precision
9225 is taken from the type. However, if the precision of the
9226 mode underneath the type is smaller than that, it is
9227 possible that the value will not fit. The test below
9228 fails if any bit is set between the sign bit of the
9229 underlying mode and the top bit of the type. */
9230 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
9231 return false;
9232 }
9233 else if (wi::neg_p (wi::to_wide (c)))
9234 return false;
9235 }
9236
9237 /* If we haven't been able to decide at this point, there nothing more we
9238 can check ourselves here. Look at the base type if we have one and it
9239 has the same precision. */
9240 if (TREE_CODE (type) == INTEGER_TYPE
9241 && TREE_TYPE (type) != 0
9242 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
9243 {
9244 type = TREE_TYPE (type);
9245 goto retry;
9246 }
9247
9248 /* Or to fits_to_tree_p, if nothing else. */
9249 return wi::fits_to_tree_p (wi::to_wide (c), type);
9250 }
9251
9252 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
9253 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
9254 represented (assuming two's-complement arithmetic) within the bit
9255 precision of the type are returned instead. */
9256
9257 void
9258 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
9259 {
9260 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
9261 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
9262 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
9263 else
9264 {
9265 if (TYPE_UNSIGNED (type))
9266 mpz_set_ui (min, 0);
9267 else
9268 {
9269 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
9270 wi::to_mpz (mn, min, SIGNED);
9271 }
9272 }
9273
9274 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
9275 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
9276 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
9277 else
9278 {
9279 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
9280 wi::to_mpz (mn, max, TYPE_SIGN (type));
9281 }
9282 }
9283
9284 /* Return true if VAR is an automatic variable. */
9285
9286 bool
9287 auto_var_p (const_tree var)
9288 {
9289 return ((((VAR_P (var) && ! DECL_EXTERNAL (var))
9290 || TREE_CODE (var) == PARM_DECL)
9291 && ! TREE_STATIC (var))
9292 || TREE_CODE (var) == RESULT_DECL);
9293 }
9294
9295 /* Return true if VAR is an automatic variable defined in function FN. */
9296
9297 bool
9298 auto_var_in_fn_p (const_tree var, const_tree fn)
9299 {
9300 return (DECL_P (var) && DECL_CONTEXT (var) == fn
9301 && (auto_var_p (var)
9302 || TREE_CODE (var) == LABEL_DECL));
9303 }
9304
9305 /* Subprogram of following function. Called by walk_tree.
9306
9307 Return *TP if it is an automatic variable or parameter of the
9308 function passed in as DATA. */
9309
9310 static tree
9311 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
9312 {
9313 tree fn = (tree) data;
9314
9315 if (TYPE_P (*tp))
9316 *walk_subtrees = 0;
9317
9318 else if (DECL_P (*tp)
9319 && auto_var_in_fn_p (*tp, fn))
9320 return *tp;
9321
9322 return NULL_TREE;
9323 }
9324
9325 /* Returns true if T is, contains, or refers to a type with variable
9326 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
9327 arguments, but not the return type. If FN is nonzero, only return
9328 true if a modifier of the type or position of FN is a variable or
9329 parameter inside FN.
9330
9331 This concept is more general than that of C99 'variably modified types':
9332 in C99, a struct type is never variably modified because a VLA may not
9333 appear as a structure member. However, in GNU C code like:
9334
9335 struct S { int i[f()]; };
9336
9337 is valid, and other languages may define similar constructs. */
9338
9339 bool
9340 variably_modified_type_p (tree type, tree fn)
9341 {
9342 tree t;
9343
9344 /* Test if T is either variable (if FN is zero) or an expression containing
9345 a variable in FN. If TYPE isn't gimplified, return true also if
9346 gimplify_one_sizepos would gimplify the expression into a local
9347 variable. */
9348 #define RETURN_TRUE_IF_VAR(T) \
9349 do { tree _t = (T); \
9350 if (_t != NULL_TREE \
9351 && _t != error_mark_node \
9352 && !CONSTANT_CLASS_P (_t) \
9353 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
9354 && (!fn \
9355 || (!TYPE_SIZES_GIMPLIFIED (type) \
9356 && (TREE_CODE (_t) != VAR_DECL \
9357 && !CONTAINS_PLACEHOLDER_P (_t))) \
9358 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
9359 return true; } while (0)
9360
9361 if (type == error_mark_node)
9362 return false;
9363
9364 /* If TYPE itself has variable size, it is variably modified. */
9365 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9366 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9367
9368 switch (TREE_CODE (type))
9369 {
9370 case POINTER_TYPE:
9371 case REFERENCE_TYPE:
9372 case VECTOR_TYPE:
9373 /* Ada can have pointer types refering to themselves indirectly. */
9374 if (TREE_VISITED (type))
9375 return false;
9376 TREE_VISITED (type) = true;
9377 if (variably_modified_type_p (TREE_TYPE (type), fn))
9378 {
9379 TREE_VISITED (type) = false;
9380 return true;
9381 }
9382 TREE_VISITED (type) = false;
9383 break;
9384
9385 case FUNCTION_TYPE:
9386 case METHOD_TYPE:
9387 /* If TYPE is a function type, it is variably modified if the
9388 return type is variably modified. */
9389 if (variably_modified_type_p (TREE_TYPE (type), fn))
9390 return true;
9391 break;
9392
9393 case INTEGER_TYPE:
9394 case REAL_TYPE:
9395 case FIXED_POINT_TYPE:
9396 case ENUMERAL_TYPE:
9397 case BOOLEAN_TYPE:
9398 /* Scalar types are variably modified if their end points
9399 aren't constant. */
9400 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9401 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9402 break;
9403
9404 case RECORD_TYPE:
9405 case UNION_TYPE:
9406 case QUAL_UNION_TYPE:
9407 /* We can't see if any of the fields are variably-modified by the
9408 definition we normally use, since that would produce infinite
9409 recursion via pointers. */
9410 /* This is variably modified if some field's type is. */
9411 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9412 if (TREE_CODE (t) == FIELD_DECL)
9413 {
9414 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9415 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9416 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9417
9418 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9419 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9420 }
9421 break;
9422
9423 case ARRAY_TYPE:
9424 /* Do not call ourselves to avoid infinite recursion. This is
9425 variably modified if the element type is. */
9426 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9427 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9428 break;
9429
9430 default:
9431 break;
9432 }
9433
9434 /* The current language may have other cases to check, but in general,
9435 all other types are not variably modified. */
9436 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9437
9438 #undef RETURN_TRUE_IF_VAR
9439 }
9440
9441 /* Given a DECL or TYPE, return the scope in which it was declared, or
9442 NULL_TREE if there is no containing scope. */
9443
9444 tree
9445 get_containing_scope (const_tree t)
9446 {
9447 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9448 }
9449
9450 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
9451
9452 const_tree
9453 get_ultimate_context (const_tree decl)
9454 {
9455 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
9456 {
9457 if (TREE_CODE (decl) == BLOCK)
9458 decl = BLOCK_SUPERCONTEXT (decl);
9459 else
9460 decl = get_containing_scope (decl);
9461 }
9462 return decl;
9463 }
9464
9465 /* Return the innermost context enclosing DECL that is
9466 a FUNCTION_DECL, or zero if none. */
9467
9468 tree
9469 decl_function_context (const_tree decl)
9470 {
9471 tree context;
9472
9473 if (TREE_CODE (decl) == ERROR_MARK)
9474 return 0;
9475
9476 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9477 where we look up the function at runtime. Such functions always take
9478 a first argument of type 'pointer to real context'.
9479
9480 C++ should really be fixed to use DECL_CONTEXT for the real context,
9481 and use something else for the "virtual context". */
9482 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
9483 context
9484 = TYPE_MAIN_VARIANT
9485 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9486 else
9487 context = DECL_CONTEXT (decl);
9488
9489 while (context && TREE_CODE (context) != FUNCTION_DECL)
9490 {
9491 if (TREE_CODE (context) == BLOCK)
9492 context = BLOCK_SUPERCONTEXT (context);
9493 else
9494 context = get_containing_scope (context);
9495 }
9496
9497 return context;
9498 }
9499
9500 /* Return the innermost context enclosing DECL that is
9501 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9502 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9503
9504 tree
9505 decl_type_context (const_tree decl)
9506 {
9507 tree context = DECL_CONTEXT (decl);
9508
9509 while (context)
9510 switch (TREE_CODE (context))
9511 {
9512 case NAMESPACE_DECL:
9513 case TRANSLATION_UNIT_DECL:
9514 return NULL_TREE;
9515
9516 case RECORD_TYPE:
9517 case UNION_TYPE:
9518 case QUAL_UNION_TYPE:
9519 return context;
9520
9521 case TYPE_DECL:
9522 case FUNCTION_DECL:
9523 context = DECL_CONTEXT (context);
9524 break;
9525
9526 case BLOCK:
9527 context = BLOCK_SUPERCONTEXT (context);
9528 break;
9529
9530 default:
9531 gcc_unreachable ();
9532 }
9533
9534 return NULL_TREE;
9535 }
9536
9537 /* CALL is a CALL_EXPR. Return the declaration for the function
9538 called, or NULL_TREE if the called function cannot be
9539 determined. */
9540
9541 tree
9542 get_callee_fndecl (const_tree call)
9543 {
9544 tree addr;
9545
9546 if (call == error_mark_node)
9547 return error_mark_node;
9548
9549 /* It's invalid to call this function with anything but a
9550 CALL_EXPR. */
9551 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9552
9553 /* The first operand to the CALL is the address of the function
9554 called. */
9555 addr = CALL_EXPR_FN (call);
9556
9557 /* If there is no function, return early. */
9558 if (addr == NULL_TREE)
9559 return NULL_TREE;
9560
9561 STRIP_NOPS (addr);
9562
9563 /* If this is a readonly function pointer, extract its initial value. */
9564 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9565 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9566 && DECL_INITIAL (addr))
9567 addr = DECL_INITIAL (addr);
9568
9569 /* If the address is just `&f' for some function `f', then we know
9570 that `f' is being called. */
9571 if (TREE_CODE (addr) == ADDR_EXPR
9572 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9573 return TREE_OPERAND (addr, 0);
9574
9575 /* We couldn't figure out what was being called. */
9576 return NULL_TREE;
9577 }
9578
9579 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9580 return the associated function code, otherwise return CFN_LAST. */
9581
9582 combined_fn
9583 get_call_combined_fn (const_tree call)
9584 {
9585 /* It's invalid to call this function with anything but a CALL_EXPR. */
9586 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9587
9588 if (!CALL_EXPR_FN (call))
9589 return as_combined_fn (CALL_EXPR_IFN (call));
9590
9591 tree fndecl = get_callee_fndecl (call);
9592 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9593 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9594
9595 return CFN_LAST;
9596 }
9597
9598 /* Comparator of indices based on tree_node_counts. */
9599
9600 static int
9601 tree_nodes_cmp (const void *p1, const void *p2)
9602 {
9603 const unsigned *n1 = (const unsigned *)p1;
9604 const unsigned *n2 = (const unsigned *)p2;
9605
9606 return tree_node_counts[*n1] - tree_node_counts[*n2];
9607 }
9608
9609 /* Comparator of indices based on tree_code_counts. */
9610
9611 static int
9612 tree_codes_cmp (const void *p1, const void *p2)
9613 {
9614 const unsigned *n1 = (const unsigned *)p1;
9615 const unsigned *n2 = (const unsigned *)p2;
9616
9617 return tree_code_counts[*n1] - tree_code_counts[*n2];
9618 }
9619
9620 #define TREE_MEM_USAGE_SPACES 40
9621
9622 /* Print debugging information about tree nodes generated during the compile,
9623 and any language-specific information. */
9624
9625 void
9626 dump_tree_statistics (void)
9627 {
9628 if (GATHER_STATISTICS)
9629 {
9630 uint64_t total_nodes, total_bytes;
9631 fprintf (stderr, "\nKind Nodes Bytes\n");
9632 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9633 total_nodes = total_bytes = 0;
9634
9635 {
9636 auto_vec<unsigned> indices (all_kinds);
9637 for (unsigned i = 0; i < all_kinds; i++)
9638 indices.quick_push (i);
9639 indices.qsort (tree_nodes_cmp);
9640
9641 for (unsigned i = 0; i < (int) all_kinds; i++)
9642 {
9643 unsigned j = indices[i];
9644 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
9645 tree_node_kind_names[i], SIZE_AMOUNT (tree_node_counts[j]),
9646 SIZE_AMOUNT (tree_node_sizes[j]));
9647 total_nodes += tree_node_counts[j];
9648 total_bytes += tree_node_sizes[j];
9649 }
9650 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9651 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
9652 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
9653 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9654 }
9655
9656 {
9657 fprintf (stderr, "Code Nodes\n");
9658 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9659
9660 auto_vec<unsigned> indices (MAX_TREE_CODES);
9661 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9662 indices.quick_push (i);
9663 indices.qsort (tree_codes_cmp);
9664
9665 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9666 {
9667 unsigned j = indices[i];
9668 fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
9669 get_tree_code_name ((enum tree_code) j),
9670 SIZE_AMOUNT (tree_code_counts[j]));
9671 }
9672 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9673 fprintf (stderr, "\n");
9674 ssanames_print_statistics ();
9675 fprintf (stderr, "\n");
9676 phinodes_print_statistics ();
9677 fprintf (stderr, "\n");
9678 }
9679 }
9680 else
9681 fprintf (stderr, "(No per-node statistics)\n");
9682
9683 print_type_hash_statistics ();
9684 print_debug_expr_statistics ();
9685 print_value_expr_statistics ();
9686 lang_hooks.print_statistics ();
9687 }
9688 \f
9689 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9690
9691 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9692
9693 unsigned
9694 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9695 {
9696 /* This relies on the raw feedback's top 4 bits being zero. */
9697 #define FEEDBACK(X) ((X) * 0x04c11db7)
9698 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9699 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9700 static const unsigned syndromes[16] =
9701 {
9702 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9703 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9704 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9705 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9706 };
9707 #undef FEEDBACK
9708 #undef SYNDROME
9709
9710 value <<= (32 - bytes * 8);
9711 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9712 {
9713 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9714
9715 chksum = (chksum << 4) ^ feedback;
9716 }
9717
9718 return chksum;
9719 }
9720
9721 /* Generate a crc32 of a string. */
9722
9723 unsigned
9724 crc32_string (unsigned chksum, const char *string)
9725 {
9726 do
9727 chksum = crc32_byte (chksum, *string);
9728 while (*string++);
9729 return chksum;
9730 }
9731
9732 /* P is a string that will be used in a symbol. Mask out any characters
9733 that are not valid in that context. */
9734
9735 void
9736 clean_symbol_name (char *p)
9737 {
9738 for (; *p; p++)
9739 if (! (ISALNUM (*p)
9740 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9741 || *p == '$'
9742 #endif
9743 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9744 || *p == '.'
9745 #endif
9746 ))
9747 *p = '_';
9748 }
9749
9750 /* For anonymous aggregate types, we need some sort of name to
9751 hold on to. In practice, this should not appear, but it should
9752 not be harmful if it does. */
9753 bool
9754 anon_aggrname_p(const_tree id_node)
9755 {
9756 #ifndef NO_DOT_IN_LABEL
9757 return (IDENTIFIER_POINTER (id_node)[0] == '.'
9758 && IDENTIFIER_POINTER (id_node)[1] == '_');
9759 #else /* NO_DOT_IN_LABEL */
9760 #ifndef NO_DOLLAR_IN_LABEL
9761 return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9762 && IDENTIFIER_POINTER (id_node)[1] == '_');
9763 #else /* NO_DOLLAR_IN_LABEL */
9764 #define ANON_AGGRNAME_PREFIX "__anon_"
9765 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9766 sizeof (ANON_AGGRNAME_PREFIX) - 1));
9767 #endif /* NO_DOLLAR_IN_LABEL */
9768 #endif /* NO_DOT_IN_LABEL */
9769 }
9770
9771 /* Return a format for an anonymous aggregate name. */
9772 const char *
9773 anon_aggrname_format()
9774 {
9775 #ifndef NO_DOT_IN_LABEL
9776 return "._%d";
9777 #else /* NO_DOT_IN_LABEL */
9778 #ifndef NO_DOLLAR_IN_LABEL
9779 return "$_%d";
9780 #else /* NO_DOLLAR_IN_LABEL */
9781 return "__anon_%d";
9782 #endif /* NO_DOLLAR_IN_LABEL */
9783 #endif /* NO_DOT_IN_LABEL */
9784 }
9785
9786 /* Generate a name for a special-purpose function.
9787 The generated name may need to be unique across the whole link.
9788 Changes to this function may also require corresponding changes to
9789 xstrdup_mask_random.
9790 TYPE is some string to identify the purpose of this function to the
9791 linker or collect2; it must start with an uppercase letter,
9792 one of:
9793 I - for constructors
9794 D - for destructors
9795 N - for C++ anonymous namespaces
9796 F - for DWARF unwind frame information. */
9797
9798 tree
9799 get_file_function_name (const char *type)
9800 {
9801 char *buf;
9802 const char *p;
9803 char *q;
9804
9805 /* If we already have a name we know to be unique, just use that. */
9806 if (first_global_object_name)
9807 p = q = ASTRDUP (first_global_object_name);
9808 /* If the target is handling the constructors/destructors, they
9809 will be local to this file and the name is only necessary for
9810 debugging purposes.
9811 We also assign sub_I and sub_D sufixes to constructors called from
9812 the global static constructors. These are always local. */
9813 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9814 || (strncmp (type, "sub_", 4) == 0
9815 && (type[4] == 'I' || type[4] == 'D')))
9816 {
9817 const char *file = main_input_filename;
9818 if (! file)
9819 file = LOCATION_FILE (input_location);
9820 /* Just use the file's basename, because the full pathname
9821 might be quite long. */
9822 p = q = ASTRDUP (lbasename (file));
9823 }
9824 else
9825 {
9826 /* Otherwise, the name must be unique across the entire link.
9827 We don't have anything that we know to be unique to this translation
9828 unit, so use what we do have and throw in some randomness. */
9829 unsigned len;
9830 const char *name = weak_global_object_name;
9831 const char *file = main_input_filename;
9832
9833 if (! name)
9834 name = "";
9835 if (! file)
9836 file = LOCATION_FILE (input_location);
9837
9838 len = strlen (file);
9839 q = (char *) alloca (9 + 19 + len + 1);
9840 memcpy (q, file, len + 1);
9841
9842 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9843 crc32_string (0, name), get_random_seed (false));
9844
9845 p = q;
9846 }
9847
9848 clean_symbol_name (q);
9849 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9850 + strlen (type));
9851
9852 /* Set up the name of the file-level functions we may need.
9853 Use a global object (which is already required to be unique over
9854 the program) rather than the file name (which imposes extra
9855 constraints). */
9856 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9857
9858 return get_identifier (buf);
9859 }
9860 \f
9861 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9862
9863 /* Complain that the tree code of NODE does not match the expected 0
9864 terminated list of trailing codes. The trailing code list can be
9865 empty, for a more vague error message. FILE, LINE, and FUNCTION
9866 are of the caller. */
9867
9868 void
9869 tree_check_failed (const_tree node, const char *file,
9870 int line, const char *function, ...)
9871 {
9872 va_list args;
9873 const char *buffer;
9874 unsigned length = 0;
9875 enum tree_code code;
9876
9877 va_start (args, function);
9878 while ((code = (enum tree_code) va_arg (args, int)))
9879 length += 4 + strlen (get_tree_code_name (code));
9880 va_end (args);
9881 if (length)
9882 {
9883 char *tmp;
9884 va_start (args, function);
9885 length += strlen ("expected ");
9886 buffer = tmp = (char *) alloca (length);
9887 length = 0;
9888 while ((code = (enum tree_code) va_arg (args, int)))
9889 {
9890 const char *prefix = length ? " or " : "expected ";
9891
9892 strcpy (tmp + length, prefix);
9893 length += strlen (prefix);
9894 strcpy (tmp + length, get_tree_code_name (code));
9895 length += strlen (get_tree_code_name (code));
9896 }
9897 va_end (args);
9898 }
9899 else
9900 buffer = "unexpected node";
9901
9902 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9903 buffer, get_tree_code_name (TREE_CODE (node)),
9904 function, trim_filename (file), line);
9905 }
9906
9907 /* Complain that the tree code of NODE does match the expected 0
9908 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9909 the caller. */
9910
9911 void
9912 tree_not_check_failed (const_tree node, const char *file,
9913 int line, const char *function, ...)
9914 {
9915 va_list args;
9916 char *buffer;
9917 unsigned length = 0;
9918 enum tree_code code;
9919
9920 va_start (args, function);
9921 while ((code = (enum tree_code) va_arg (args, int)))
9922 length += 4 + strlen (get_tree_code_name (code));
9923 va_end (args);
9924 va_start (args, function);
9925 buffer = (char *) alloca (length);
9926 length = 0;
9927 while ((code = (enum tree_code) va_arg (args, int)))
9928 {
9929 if (length)
9930 {
9931 strcpy (buffer + length, " or ");
9932 length += 4;
9933 }
9934 strcpy (buffer + length, get_tree_code_name (code));
9935 length += strlen (get_tree_code_name (code));
9936 }
9937 va_end (args);
9938
9939 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9940 buffer, get_tree_code_name (TREE_CODE (node)),
9941 function, trim_filename (file), line);
9942 }
9943
9944 /* Similar to tree_check_failed, except that we check for a class of tree
9945 code, given in CL. */
9946
9947 void
9948 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9949 const char *file, int line, const char *function)
9950 {
9951 internal_error
9952 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9953 TREE_CODE_CLASS_STRING (cl),
9954 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9955 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9956 }
9957
9958 /* Similar to tree_check_failed, except that instead of specifying a
9959 dozen codes, use the knowledge that they're all sequential. */
9960
9961 void
9962 tree_range_check_failed (const_tree node, const char *file, int line,
9963 const char *function, enum tree_code c1,
9964 enum tree_code c2)
9965 {
9966 char *buffer;
9967 unsigned length = 0;
9968 unsigned int c;
9969
9970 for (c = c1; c <= c2; ++c)
9971 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9972
9973 length += strlen ("expected ");
9974 buffer = (char *) alloca (length);
9975 length = 0;
9976
9977 for (c = c1; c <= c2; ++c)
9978 {
9979 const char *prefix = length ? " or " : "expected ";
9980
9981 strcpy (buffer + length, prefix);
9982 length += strlen (prefix);
9983 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9984 length += strlen (get_tree_code_name ((enum tree_code) c));
9985 }
9986
9987 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9988 buffer, get_tree_code_name (TREE_CODE (node)),
9989 function, trim_filename (file), line);
9990 }
9991
9992
9993 /* Similar to tree_check_failed, except that we check that a tree does
9994 not have the specified code, given in CL. */
9995
9996 void
9997 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9998 const char *file, int line, const char *function)
9999 {
10000 internal_error
10001 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
10002 TREE_CODE_CLASS_STRING (cl),
10003 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
10004 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
10005 }
10006
10007
10008 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
10009
10010 void
10011 omp_clause_check_failed (const_tree node, const char *file, int line,
10012 const char *function, enum omp_clause_code code)
10013 {
10014 internal_error ("tree check: expected %<omp_clause %s%>, have %qs "
10015 "in %s, at %s:%d",
10016 omp_clause_code_name[code],
10017 get_tree_code_name (TREE_CODE (node)),
10018 function, trim_filename (file), line);
10019 }
10020
10021
10022 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
10023
10024 void
10025 omp_clause_range_check_failed (const_tree node, const char *file, int line,
10026 const char *function, enum omp_clause_code c1,
10027 enum omp_clause_code c2)
10028 {
10029 char *buffer;
10030 unsigned length = 0;
10031 unsigned int c;
10032
10033 for (c = c1; c <= c2; ++c)
10034 length += 4 + strlen (omp_clause_code_name[c]);
10035
10036 length += strlen ("expected ");
10037 buffer = (char *) alloca (length);
10038 length = 0;
10039
10040 for (c = c1; c <= c2; ++c)
10041 {
10042 const char *prefix = length ? " or " : "expected ";
10043
10044 strcpy (buffer + length, prefix);
10045 length += strlen (prefix);
10046 strcpy (buffer + length, omp_clause_code_name[c]);
10047 length += strlen (omp_clause_code_name[c]);
10048 }
10049
10050 internal_error ("tree check: %s, have %s in %s, at %s:%d",
10051 buffer, omp_clause_code_name[TREE_CODE (node)],
10052 function, trim_filename (file), line);
10053 }
10054
10055
10056 #undef DEFTREESTRUCT
10057 #define DEFTREESTRUCT(VAL, NAME) NAME,
10058
10059 static const char *ts_enum_names[] = {
10060 #include "treestruct.def"
10061 };
10062 #undef DEFTREESTRUCT
10063
10064 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
10065
10066 /* Similar to tree_class_check_failed, except that we check for
10067 whether CODE contains the tree structure identified by EN. */
10068
10069 void
10070 tree_contains_struct_check_failed (const_tree node,
10071 const enum tree_node_structure_enum en,
10072 const char *file, int line,
10073 const char *function)
10074 {
10075 internal_error
10076 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
10077 TS_ENUM_NAME (en),
10078 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
10079 }
10080
10081
10082 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
10083 (dynamically sized) vector. */
10084
10085 void
10086 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
10087 const char *function)
10088 {
10089 internal_error
10090 ("tree check: accessed elt %d of %<tree_int_cst%> with %d elts in %s, "
10091 "at %s:%d",
10092 idx + 1, len, function, trim_filename (file), line);
10093 }
10094
10095 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
10096 (dynamically sized) vector. */
10097
10098 void
10099 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
10100 const char *function)
10101 {
10102 internal_error
10103 ("tree check: accessed elt %d of %<tree_vec%> with %d elts in %s, at %s:%d",
10104 idx + 1, len, function, trim_filename (file), line);
10105 }
10106
10107 /* Similar to above, except that the check is for the bounds of the operand
10108 vector of an expression node EXP. */
10109
10110 void
10111 tree_operand_check_failed (int idx, const_tree exp, const char *file,
10112 int line, const char *function)
10113 {
10114 enum tree_code code = TREE_CODE (exp);
10115 internal_error
10116 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
10117 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
10118 function, trim_filename (file), line);
10119 }
10120
10121 /* Similar to above, except that the check is for the number of
10122 operands of an OMP_CLAUSE node. */
10123
10124 void
10125 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
10126 int line, const char *function)
10127 {
10128 internal_error
10129 ("tree check: accessed operand %d of %<omp_clause %s%> with %d operands "
10130 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
10131 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
10132 trim_filename (file), line);
10133 }
10134 #endif /* ENABLE_TREE_CHECKING */
10135 \f
10136 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
10137 and mapped to the machine mode MODE. Initialize its fields and build
10138 the information necessary for debugging output. */
10139
10140 static tree
10141 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
10142 {
10143 tree t;
10144 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
10145
10146 t = make_node (VECTOR_TYPE);
10147 TREE_TYPE (t) = mv_innertype;
10148 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
10149 SET_TYPE_MODE (t, mode);
10150
10151 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
10152 SET_TYPE_STRUCTURAL_EQUALITY (t);
10153 else if ((TYPE_CANONICAL (mv_innertype) != innertype
10154 || mode != VOIDmode)
10155 && !VECTOR_BOOLEAN_TYPE_P (t))
10156 TYPE_CANONICAL (t)
10157 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
10158
10159 layout_type (t);
10160
10161 hashval_t hash = type_hash_canon_hash (t);
10162 t = type_hash_canon (hash, t);
10163
10164 /* We have built a main variant, based on the main variant of the
10165 inner type. Use it to build the variant we return. */
10166 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
10167 && TREE_TYPE (t) != innertype)
10168 return build_type_attribute_qual_variant (t,
10169 TYPE_ATTRIBUTES (innertype),
10170 TYPE_QUALS (innertype));
10171
10172 return t;
10173 }
10174
10175 static tree
10176 make_or_reuse_type (unsigned size, int unsignedp)
10177 {
10178 int i;
10179
10180 if (size == INT_TYPE_SIZE)
10181 return unsignedp ? unsigned_type_node : integer_type_node;
10182 if (size == CHAR_TYPE_SIZE)
10183 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
10184 if (size == SHORT_TYPE_SIZE)
10185 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
10186 if (size == LONG_TYPE_SIZE)
10187 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
10188 if (size == LONG_LONG_TYPE_SIZE)
10189 return (unsignedp ? long_long_unsigned_type_node
10190 : long_long_integer_type_node);
10191
10192 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10193 if (size == int_n_data[i].bitsize
10194 && int_n_enabled_p[i])
10195 return (unsignedp ? int_n_trees[i].unsigned_type
10196 : int_n_trees[i].signed_type);
10197
10198 if (unsignedp)
10199 return make_unsigned_type (size);
10200 else
10201 return make_signed_type (size);
10202 }
10203
10204 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
10205
10206 static tree
10207 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
10208 {
10209 if (satp)
10210 {
10211 if (size == SHORT_FRACT_TYPE_SIZE)
10212 return unsignedp ? sat_unsigned_short_fract_type_node
10213 : sat_short_fract_type_node;
10214 if (size == FRACT_TYPE_SIZE)
10215 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
10216 if (size == LONG_FRACT_TYPE_SIZE)
10217 return unsignedp ? sat_unsigned_long_fract_type_node
10218 : sat_long_fract_type_node;
10219 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10220 return unsignedp ? sat_unsigned_long_long_fract_type_node
10221 : sat_long_long_fract_type_node;
10222 }
10223 else
10224 {
10225 if (size == SHORT_FRACT_TYPE_SIZE)
10226 return unsignedp ? unsigned_short_fract_type_node
10227 : short_fract_type_node;
10228 if (size == FRACT_TYPE_SIZE)
10229 return unsignedp ? unsigned_fract_type_node : fract_type_node;
10230 if (size == LONG_FRACT_TYPE_SIZE)
10231 return unsignedp ? unsigned_long_fract_type_node
10232 : long_fract_type_node;
10233 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10234 return unsignedp ? unsigned_long_long_fract_type_node
10235 : long_long_fract_type_node;
10236 }
10237
10238 return make_fract_type (size, unsignedp, satp);
10239 }
10240
10241 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
10242
10243 static tree
10244 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
10245 {
10246 if (satp)
10247 {
10248 if (size == SHORT_ACCUM_TYPE_SIZE)
10249 return unsignedp ? sat_unsigned_short_accum_type_node
10250 : sat_short_accum_type_node;
10251 if (size == ACCUM_TYPE_SIZE)
10252 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
10253 if (size == LONG_ACCUM_TYPE_SIZE)
10254 return unsignedp ? sat_unsigned_long_accum_type_node
10255 : sat_long_accum_type_node;
10256 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10257 return unsignedp ? sat_unsigned_long_long_accum_type_node
10258 : sat_long_long_accum_type_node;
10259 }
10260 else
10261 {
10262 if (size == SHORT_ACCUM_TYPE_SIZE)
10263 return unsignedp ? unsigned_short_accum_type_node
10264 : short_accum_type_node;
10265 if (size == ACCUM_TYPE_SIZE)
10266 return unsignedp ? unsigned_accum_type_node : accum_type_node;
10267 if (size == LONG_ACCUM_TYPE_SIZE)
10268 return unsignedp ? unsigned_long_accum_type_node
10269 : long_accum_type_node;
10270 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10271 return unsignedp ? unsigned_long_long_accum_type_node
10272 : long_long_accum_type_node;
10273 }
10274
10275 return make_accum_type (size, unsignedp, satp);
10276 }
10277
10278
10279 /* Create an atomic variant node for TYPE. This routine is called
10280 during initialization of data types to create the 5 basic atomic
10281 types. The generic build_variant_type function requires these to
10282 already be set up in order to function properly, so cannot be
10283 called from there. If ALIGN is non-zero, then ensure alignment is
10284 overridden to this value. */
10285
10286 static tree
10287 build_atomic_base (tree type, unsigned int align)
10288 {
10289 tree t;
10290
10291 /* Make sure its not already registered. */
10292 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
10293 return t;
10294
10295 t = build_variant_type_copy (type);
10296 set_type_quals (t, TYPE_QUAL_ATOMIC);
10297
10298 if (align)
10299 SET_TYPE_ALIGN (t, align);
10300
10301 return t;
10302 }
10303
10304 /* Information about the _FloatN and _FloatNx types. This must be in
10305 the same order as the corresponding TI_* enum values. */
10306 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
10307 {
10308 { 16, false },
10309 { 32, false },
10310 { 64, false },
10311 { 128, false },
10312 { 32, true },
10313 { 64, true },
10314 { 128, true },
10315 };
10316
10317
10318 /* Create nodes for all integer types (and error_mark_node) using the sizes
10319 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
10320
10321 void
10322 build_common_tree_nodes (bool signed_char)
10323 {
10324 int i;
10325
10326 error_mark_node = make_node (ERROR_MARK);
10327 TREE_TYPE (error_mark_node) = error_mark_node;
10328
10329 initialize_sizetypes ();
10330
10331 /* Define both `signed char' and `unsigned char'. */
10332 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
10333 TYPE_STRING_FLAG (signed_char_type_node) = 1;
10334 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
10335 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
10336
10337 /* Define `char', which is like either `signed char' or `unsigned char'
10338 but not the same as either. */
10339 char_type_node
10340 = (signed_char
10341 ? make_signed_type (CHAR_TYPE_SIZE)
10342 : make_unsigned_type (CHAR_TYPE_SIZE));
10343 TYPE_STRING_FLAG (char_type_node) = 1;
10344
10345 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
10346 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
10347 integer_type_node = make_signed_type (INT_TYPE_SIZE);
10348 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
10349 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
10350 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
10351 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
10352 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
10353
10354 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10355 {
10356 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
10357 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
10358
10359 if (int_n_enabled_p[i])
10360 {
10361 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
10362 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
10363 }
10364 }
10365
10366 /* Define a boolean type. This type only represents boolean values but
10367 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
10368 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
10369 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
10370 TYPE_PRECISION (boolean_type_node) = 1;
10371 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
10372
10373 /* Define what type to use for size_t. */
10374 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
10375 size_type_node = unsigned_type_node;
10376 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
10377 size_type_node = long_unsigned_type_node;
10378 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
10379 size_type_node = long_long_unsigned_type_node;
10380 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
10381 size_type_node = short_unsigned_type_node;
10382 else
10383 {
10384 int i;
10385
10386 size_type_node = NULL_TREE;
10387 for (i = 0; i < NUM_INT_N_ENTS; i++)
10388 if (int_n_enabled_p[i])
10389 {
10390 char name[50];
10391 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
10392
10393 if (strcmp (name, SIZE_TYPE) == 0)
10394 {
10395 size_type_node = int_n_trees[i].unsigned_type;
10396 }
10397 }
10398 if (size_type_node == NULL_TREE)
10399 gcc_unreachable ();
10400 }
10401
10402 /* Define what type to use for ptrdiff_t. */
10403 if (strcmp (PTRDIFF_TYPE, "int") == 0)
10404 ptrdiff_type_node = integer_type_node;
10405 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
10406 ptrdiff_type_node = long_integer_type_node;
10407 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
10408 ptrdiff_type_node = long_long_integer_type_node;
10409 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
10410 ptrdiff_type_node = short_integer_type_node;
10411 else
10412 {
10413 ptrdiff_type_node = NULL_TREE;
10414 for (int i = 0; i < NUM_INT_N_ENTS; i++)
10415 if (int_n_enabled_p[i])
10416 {
10417 char name[50];
10418 sprintf (name, "__int%d", int_n_data[i].bitsize);
10419 if (strcmp (name, PTRDIFF_TYPE) == 0)
10420 ptrdiff_type_node = int_n_trees[i].signed_type;
10421 }
10422 if (ptrdiff_type_node == NULL_TREE)
10423 gcc_unreachable ();
10424 }
10425
10426 /* Fill in the rest of the sized types. Reuse existing type nodes
10427 when possible. */
10428 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10429 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10430 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10431 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10432 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10433
10434 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10435 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10436 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10437 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10438 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10439
10440 /* Don't call build_qualified type for atomics. That routine does
10441 special processing for atomics, and until they are initialized
10442 it's better not to make that call.
10443
10444 Check to see if there is a target override for atomic types. */
10445
10446 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10447 targetm.atomic_align_for_mode (QImode));
10448 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10449 targetm.atomic_align_for_mode (HImode));
10450 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10451 targetm.atomic_align_for_mode (SImode));
10452 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10453 targetm.atomic_align_for_mode (DImode));
10454 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10455 targetm.atomic_align_for_mode (TImode));
10456
10457 access_public_node = get_identifier ("public");
10458 access_protected_node = get_identifier ("protected");
10459 access_private_node = get_identifier ("private");
10460
10461 /* Define these next since types below may used them. */
10462 integer_zero_node = build_int_cst (integer_type_node, 0);
10463 integer_one_node = build_int_cst (integer_type_node, 1);
10464 integer_three_node = build_int_cst (integer_type_node, 3);
10465 integer_minus_one_node = build_int_cst (integer_type_node, -1);
10466
10467 size_zero_node = size_int (0);
10468 size_one_node = size_int (1);
10469 bitsize_zero_node = bitsize_int (0);
10470 bitsize_one_node = bitsize_int (1);
10471 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10472
10473 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10474 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10475
10476 void_type_node = make_node (VOID_TYPE);
10477 layout_type (void_type_node);
10478
10479 /* We are not going to have real types in C with less than byte alignment,
10480 so we might as well not have any types that claim to have it. */
10481 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
10482 TYPE_USER_ALIGN (void_type_node) = 0;
10483
10484 void_node = make_node (VOID_CST);
10485 TREE_TYPE (void_node) = void_type_node;
10486
10487 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10488 layout_type (TREE_TYPE (null_pointer_node));
10489
10490 ptr_type_node = build_pointer_type (void_type_node);
10491 const_ptr_type_node
10492 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10493 for (unsigned i = 0;
10494 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
10495 ++i)
10496 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
10497
10498 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10499
10500 float_type_node = make_node (REAL_TYPE);
10501 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10502 layout_type (float_type_node);
10503
10504 double_type_node = make_node (REAL_TYPE);
10505 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10506 layout_type (double_type_node);
10507
10508 long_double_type_node = make_node (REAL_TYPE);
10509 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10510 layout_type (long_double_type_node);
10511
10512 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10513 {
10514 int n = floatn_nx_types[i].n;
10515 bool extended = floatn_nx_types[i].extended;
10516 scalar_float_mode mode;
10517 if (!targetm.floatn_mode (n, extended).exists (&mode))
10518 continue;
10519 int precision = GET_MODE_PRECISION (mode);
10520 /* Work around the rs6000 KFmode having precision 113 not
10521 128. */
10522 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
10523 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
10524 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
10525 if (!extended)
10526 gcc_assert (min_precision == n);
10527 if (precision < min_precision)
10528 precision = min_precision;
10529 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
10530 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
10531 layout_type (FLOATN_NX_TYPE_NODE (i));
10532 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
10533 }
10534
10535 float_ptr_type_node = build_pointer_type (float_type_node);
10536 double_ptr_type_node = build_pointer_type (double_type_node);
10537 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10538 integer_ptr_type_node = build_pointer_type (integer_type_node);
10539
10540 /* Fixed size integer types. */
10541 uint16_type_node = make_or_reuse_type (16, 1);
10542 uint32_type_node = make_or_reuse_type (32, 1);
10543 uint64_type_node = make_or_reuse_type (64, 1);
10544
10545 /* Decimal float types. */
10546 dfloat32_type_node = make_node (REAL_TYPE);
10547 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10548 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10549 layout_type (dfloat32_type_node);
10550 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
10551
10552 dfloat64_type_node = make_node (REAL_TYPE);
10553 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10554 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10555 layout_type (dfloat64_type_node);
10556 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
10557
10558 dfloat128_type_node = make_node (REAL_TYPE);
10559 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10560 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10561 layout_type (dfloat128_type_node);
10562 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
10563
10564 complex_integer_type_node = build_complex_type (integer_type_node, true);
10565 complex_float_type_node = build_complex_type (float_type_node, true);
10566 complex_double_type_node = build_complex_type (double_type_node, true);
10567 complex_long_double_type_node = build_complex_type (long_double_type_node,
10568 true);
10569
10570 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10571 {
10572 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10573 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10574 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10575 }
10576
10577 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10578 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10579 sat_ ## KIND ## _type_node = \
10580 make_sat_signed_ ## KIND ## _type (SIZE); \
10581 sat_unsigned_ ## KIND ## _type_node = \
10582 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10583 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10584 unsigned_ ## KIND ## _type_node = \
10585 make_unsigned_ ## KIND ## _type (SIZE);
10586
10587 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10588 sat_ ## WIDTH ## KIND ## _type_node = \
10589 make_sat_signed_ ## KIND ## _type (SIZE); \
10590 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10591 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10592 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10593 unsigned_ ## WIDTH ## KIND ## _type_node = \
10594 make_unsigned_ ## KIND ## _type (SIZE);
10595
10596 /* Make fixed-point type nodes based on four different widths. */
10597 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10598 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10599 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10600 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10601 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10602
10603 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10604 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10605 NAME ## _type_node = \
10606 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10607 u ## NAME ## _type_node = \
10608 make_or_reuse_unsigned_ ## KIND ## _type \
10609 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10610 sat_ ## NAME ## _type_node = \
10611 make_or_reuse_sat_signed_ ## KIND ## _type \
10612 (GET_MODE_BITSIZE (MODE ## mode)); \
10613 sat_u ## NAME ## _type_node = \
10614 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10615 (GET_MODE_BITSIZE (U ## MODE ## mode));
10616
10617 /* Fixed-point type and mode nodes. */
10618 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10619 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10620 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10621 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10622 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10623 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10624 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10625 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10626 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10627 MAKE_FIXED_MODE_NODE (accum, da, DA)
10628 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10629
10630 {
10631 tree t = targetm.build_builtin_va_list ();
10632
10633 /* Many back-ends define record types without setting TYPE_NAME.
10634 If we copied the record type here, we'd keep the original
10635 record type without a name. This breaks name mangling. So,
10636 don't copy record types and let c_common_nodes_and_builtins()
10637 declare the type to be __builtin_va_list. */
10638 if (TREE_CODE (t) != RECORD_TYPE)
10639 t = build_variant_type_copy (t);
10640
10641 va_list_type_node = t;
10642 }
10643 }
10644
10645 /* Modify DECL for given flags.
10646 TM_PURE attribute is set only on types, so the function will modify
10647 DECL's type when ECF_TM_PURE is used. */
10648
10649 void
10650 set_call_expr_flags (tree decl, int flags)
10651 {
10652 if (flags & ECF_NOTHROW)
10653 TREE_NOTHROW (decl) = 1;
10654 if (flags & ECF_CONST)
10655 TREE_READONLY (decl) = 1;
10656 if (flags & ECF_PURE)
10657 DECL_PURE_P (decl) = 1;
10658 if (flags & ECF_LOOPING_CONST_OR_PURE)
10659 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10660 if (flags & ECF_NOVOPS)
10661 DECL_IS_NOVOPS (decl) = 1;
10662 if (flags & ECF_NORETURN)
10663 TREE_THIS_VOLATILE (decl) = 1;
10664 if (flags & ECF_MALLOC)
10665 DECL_IS_MALLOC (decl) = 1;
10666 if (flags & ECF_RETURNS_TWICE)
10667 DECL_IS_RETURNS_TWICE (decl) = 1;
10668 if (flags & ECF_LEAF)
10669 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10670 NULL, DECL_ATTRIBUTES (decl));
10671 if (flags & ECF_COLD)
10672 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10673 NULL, DECL_ATTRIBUTES (decl));
10674 if (flags & ECF_RET1)
10675 DECL_ATTRIBUTES (decl)
10676 = tree_cons (get_identifier ("fn spec"),
10677 build_tree_list (NULL_TREE, build_string (1, "1")),
10678 DECL_ATTRIBUTES (decl));
10679 if ((flags & ECF_TM_PURE) && flag_tm)
10680 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10681 /* Looping const or pure is implied by noreturn.
10682 There is currently no way to declare looping const or looping pure alone. */
10683 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10684 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10685 }
10686
10687
10688 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10689
10690 static void
10691 local_define_builtin (const char *name, tree type, enum built_in_function code,
10692 const char *library_name, int ecf_flags)
10693 {
10694 tree decl;
10695
10696 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10697 library_name, NULL_TREE);
10698 set_call_expr_flags (decl, ecf_flags);
10699
10700 set_builtin_decl (code, decl, true);
10701 }
10702
10703 /* Call this function after instantiating all builtins that the language
10704 front end cares about. This will build the rest of the builtins
10705 and internal functions that are relied upon by the tree optimizers and
10706 the middle-end. */
10707
10708 void
10709 build_common_builtin_nodes (void)
10710 {
10711 tree tmp, ftype;
10712 int ecf_flags;
10713
10714 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10715 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10716 {
10717 ftype = build_function_type (void_type_node, void_list_node);
10718 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10719 local_define_builtin ("__builtin_unreachable", ftype,
10720 BUILT_IN_UNREACHABLE,
10721 "__builtin_unreachable",
10722 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10723 | ECF_CONST | ECF_COLD);
10724 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10725 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10726 "abort",
10727 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10728 }
10729
10730 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10731 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10732 {
10733 ftype = build_function_type_list (ptr_type_node,
10734 ptr_type_node, const_ptr_type_node,
10735 size_type_node, NULL_TREE);
10736
10737 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10738 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10739 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10740 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10741 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10742 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10743 }
10744
10745 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10746 {
10747 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10748 const_ptr_type_node, size_type_node,
10749 NULL_TREE);
10750 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10751 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10752 }
10753
10754 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10755 {
10756 ftype = build_function_type_list (ptr_type_node,
10757 ptr_type_node, integer_type_node,
10758 size_type_node, NULL_TREE);
10759 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10760 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10761 }
10762
10763 /* If we're checking the stack, `alloca' can throw. */
10764 const int alloca_flags
10765 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10766
10767 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10768 {
10769 ftype = build_function_type_list (ptr_type_node,
10770 size_type_node, NULL_TREE);
10771 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10772 "alloca", alloca_flags);
10773 }
10774
10775 ftype = build_function_type_list (ptr_type_node, size_type_node,
10776 size_type_node, NULL_TREE);
10777 local_define_builtin ("__builtin_alloca_with_align", ftype,
10778 BUILT_IN_ALLOCA_WITH_ALIGN,
10779 "__builtin_alloca_with_align",
10780 alloca_flags);
10781
10782 ftype = build_function_type_list (ptr_type_node, size_type_node,
10783 size_type_node, size_type_node, NULL_TREE);
10784 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10785 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10786 "__builtin_alloca_with_align_and_max",
10787 alloca_flags);
10788
10789 ftype = build_function_type_list (void_type_node,
10790 ptr_type_node, ptr_type_node,
10791 ptr_type_node, NULL_TREE);
10792 local_define_builtin ("__builtin_init_trampoline", ftype,
10793 BUILT_IN_INIT_TRAMPOLINE,
10794 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10795 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10796 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10797 "__builtin_init_heap_trampoline",
10798 ECF_NOTHROW | ECF_LEAF);
10799 local_define_builtin ("__builtin_init_descriptor", ftype,
10800 BUILT_IN_INIT_DESCRIPTOR,
10801 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10802
10803 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10804 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10805 BUILT_IN_ADJUST_TRAMPOLINE,
10806 "__builtin_adjust_trampoline",
10807 ECF_CONST | ECF_NOTHROW);
10808 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10809 BUILT_IN_ADJUST_DESCRIPTOR,
10810 "__builtin_adjust_descriptor",
10811 ECF_CONST | ECF_NOTHROW);
10812
10813 ftype = build_function_type_list (void_type_node,
10814 ptr_type_node, ptr_type_node, NULL_TREE);
10815 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10816 BUILT_IN_NONLOCAL_GOTO,
10817 "__builtin_nonlocal_goto",
10818 ECF_NORETURN | ECF_NOTHROW);
10819
10820 ftype = build_function_type_list (void_type_node,
10821 ptr_type_node, ptr_type_node, NULL_TREE);
10822 local_define_builtin ("__builtin_setjmp_setup", ftype,
10823 BUILT_IN_SETJMP_SETUP,
10824 "__builtin_setjmp_setup", ECF_NOTHROW);
10825
10826 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10827 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10828 BUILT_IN_SETJMP_RECEIVER,
10829 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10830
10831 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10832 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10833 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10834
10835 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10836 local_define_builtin ("__builtin_stack_restore", ftype,
10837 BUILT_IN_STACK_RESTORE,
10838 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10839
10840 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10841 const_ptr_type_node, size_type_node,
10842 NULL_TREE);
10843 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10844 "__builtin_memcmp_eq",
10845 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10846
10847 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10848 "__builtin_strncmp_eq",
10849 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10850
10851 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10852 "__builtin_strcmp_eq",
10853 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10854
10855 /* If there's a possibility that we might use the ARM EABI, build the
10856 alternate __cxa_end_cleanup node used to resume from C++. */
10857 if (targetm.arm_eabi_unwinder)
10858 {
10859 ftype = build_function_type_list (void_type_node, NULL_TREE);
10860 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10861 BUILT_IN_CXA_END_CLEANUP,
10862 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10863 }
10864
10865 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10866 local_define_builtin ("__builtin_unwind_resume", ftype,
10867 BUILT_IN_UNWIND_RESUME,
10868 ((targetm_common.except_unwind_info (&global_options)
10869 == UI_SJLJ)
10870 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10871 ECF_NORETURN);
10872
10873 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10874 {
10875 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10876 NULL_TREE);
10877 local_define_builtin ("__builtin_return_address", ftype,
10878 BUILT_IN_RETURN_ADDRESS,
10879 "__builtin_return_address",
10880 ECF_NOTHROW);
10881 }
10882
10883 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10884 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10885 {
10886 ftype = build_function_type_list (void_type_node, ptr_type_node,
10887 ptr_type_node, NULL_TREE);
10888 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10889 local_define_builtin ("__cyg_profile_func_enter", ftype,
10890 BUILT_IN_PROFILE_FUNC_ENTER,
10891 "__cyg_profile_func_enter", 0);
10892 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10893 local_define_builtin ("__cyg_profile_func_exit", ftype,
10894 BUILT_IN_PROFILE_FUNC_EXIT,
10895 "__cyg_profile_func_exit", 0);
10896 }
10897
10898 /* The exception object and filter values from the runtime. The argument
10899 must be zero before exception lowering, i.e. from the front end. After
10900 exception lowering, it will be the region number for the exception
10901 landing pad. These functions are PURE instead of CONST to prevent
10902 them from being hoisted past the exception edge that will initialize
10903 its value in the landing pad. */
10904 ftype = build_function_type_list (ptr_type_node,
10905 integer_type_node, NULL_TREE);
10906 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10907 /* Only use TM_PURE if we have TM language support. */
10908 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10909 ecf_flags |= ECF_TM_PURE;
10910 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10911 "__builtin_eh_pointer", ecf_flags);
10912
10913 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10914 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10915 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10916 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10917
10918 ftype = build_function_type_list (void_type_node,
10919 integer_type_node, integer_type_node,
10920 NULL_TREE);
10921 local_define_builtin ("__builtin_eh_copy_values", ftype,
10922 BUILT_IN_EH_COPY_VALUES,
10923 "__builtin_eh_copy_values", ECF_NOTHROW);
10924
10925 /* Complex multiplication and division. These are handled as builtins
10926 rather than optabs because emit_library_call_value doesn't support
10927 complex. Further, we can do slightly better with folding these
10928 beasties if the real and complex parts of the arguments are separate. */
10929 {
10930 int mode;
10931
10932 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10933 {
10934 char mode_name_buf[4], *q;
10935 const char *p;
10936 enum built_in_function mcode, dcode;
10937 tree type, inner_type;
10938 const char *prefix = "__";
10939
10940 if (targetm.libfunc_gnu_prefix)
10941 prefix = "__gnu_";
10942
10943 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10944 if (type == NULL)
10945 continue;
10946 inner_type = TREE_TYPE (type);
10947
10948 ftype = build_function_type_list (type, inner_type, inner_type,
10949 inner_type, inner_type, NULL_TREE);
10950
10951 mcode = ((enum built_in_function)
10952 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10953 dcode = ((enum built_in_function)
10954 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10955
10956 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10957 *q = TOLOWER (*p);
10958 *q = '\0';
10959
10960 /* For -ftrapping-math these should throw from a former
10961 -fnon-call-exception stmt. */
10962 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10963 NULL);
10964 local_define_builtin (built_in_names[mcode], ftype, mcode,
10965 built_in_names[mcode],
10966 ECF_CONST | ECF_LEAF);
10967
10968 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10969 NULL);
10970 local_define_builtin (built_in_names[dcode], ftype, dcode,
10971 built_in_names[dcode],
10972 ECF_CONST | ECF_LEAF);
10973 }
10974 }
10975
10976 init_internal_fns ();
10977 }
10978
10979 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10980 better way.
10981
10982 If we requested a pointer to a vector, build up the pointers that
10983 we stripped off while looking for the inner type. Similarly for
10984 return values from functions.
10985
10986 The argument TYPE is the top of the chain, and BOTTOM is the
10987 new type which we will point to. */
10988
10989 tree
10990 reconstruct_complex_type (tree type, tree bottom)
10991 {
10992 tree inner, outer;
10993
10994 if (TREE_CODE (type) == POINTER_TYPE)
10995 {
10996 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10997 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10998 TYPE_REF_CAN_ALIAS_ALL (type));
10999 }
11000 else if (TREE_CODE (type) == REFERENCE_TYPE)
11001 {
11002 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
11003 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
11004 TYPE_REF_CAN_ALIAS_ALL (type));
11005 }
11006 else if (TREE_CODE (type) == ARRAY_TYPE)
11007 {
11008 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
11009 outer = build_array_type (inner, TYPE_DOMAIN (type));
11010 }
11011 else if (TREE_CODE (type) == FUNCTION_TYPE)
11012 {
11013 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
11014 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
11015 }
11016 else if (TREE_CODE (type) == METHOD_TYPE)
11017 {
11018 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
11019 /* The build_method_type_directly() routine prepends 'this' to argument list,
11020 so we must compensate by getting rid of it. */
11021 outer
11022 = build_method_type_directly
11023 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
11024 inner,
11025 TREE_CHAIN (TYPE_ARG_TYPES (type)));
11026 }
11027 else if (TREE_CODE (type) == OFFSET_TYPE)
11028 {
11029 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
11030 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
11031 }
11032 else
11033 return bottom;
11034
11035 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
11036 TYPE_QUALS (type));
11037 }
11038
11039 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
11040 the inner type. */
11041 tree
11042 build_vector_type_for_mode (tree innertype, machine_mode mode)
11043 {
11044 poly_int64 nunits;
11045 unsigned int bitsize;
11046
11047 switch (GET_MODE_CLASS (mode))
11048 {
11049 case MODE_VECTOR_BOOL:
11050 case MODE_VECTOR_INT:
11051 case MODE_VECTOR_FLOAT:
11052 case MODE_VECTOR_FRACT:
11053 case MODE_VECTOR_UFRACT:
11054 case MODE_VECTOR_ACCUM:
11055 case MODE_VECTOR_UACCUM:
11056 nunits = GET_MODE_NUNITS (mode);
11057 break;
11058
11059 case MODE_INT:
11060 /* Check that there are no leftover bits. */
11061 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
11062 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
11063 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
11064 break;
11065
11066 default:
11067 gcc_unreachable ();
11068 }
11069
11070 return make_vector_type (innertype, nunits, mode);
11071 }
11072
11073 /* Similarly, but takes the inner type and number of units, which must be
11074 a power of two. */
11075
11076 tree
11077 build_vector_type (tree innertype, poly_int64 nunits)
11078 {
11079 return make_vector_type (innertype, nunits, VOIDmode);
11080 }
11081
11082 /* Build truth vector with specified length and number of units. */
11083
11084 tree
11085 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
11086 {
11087 machine_mode mask_mode
11088 = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
11089
11090 poly_uint64 vsize;
11091 if (mask_mode == BLKmode)
11092 vsize = vector_size * BITS_PER_UNIT;
11093 else
11094 vsize = GET_MODE_BITSIZE (mask_mode);
11095
11096 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
11097
11098 tree bool_type = build_nonstandard_boolean_type (esize);
11099
11100 return make_vector_type (bool_type, nunits, mask_mode);
11101 }
11102
11103 /* Returns a vector type corresponding to a comparison of VECTYPE. */
11104
11105 tree
11106 build_same_sized_truth_vector_type (tree vectype)
11107 {
11108 if (VECTOR_BOOLEAN_TYPE_P (vectype))
11109 return vectype;
11110
11111 poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
11112
11113 if (known_eq (size, 0U))
11114 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
11115
11116 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
11117 }
11118
11119 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
11120
11121 tree
11122 build_opaque_vector_type (tree innertype, poly_int64 nunits)
11123 {
11124 tree t = make_vector_type (innertype, nunits, VOIDmode);
11125 tree cand;
11126 /* We always build the non-opaque variant before the opaque one,
11127 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
11128 cand = TYPE_NEXT_VARIANT (t);
11129 if (cand
11130 && TYPE_VECTOR_OPAQUE (cand)
11131 && check_qualified_type (cand, t, TYPE_QUALS (t)))
11132 return cand;
11133 /* Othewise build a variant type and make sure to queue it after
11134 the non-opaque type. */
11135 cand = build_distinct_type_copy (t);
11136 TYPE_VECTOR_OPAQUE (cand) = true;
11137 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
11138 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
11139 TYPE_NEXT_VARIANT (t) = cand;
11140 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
11141 return cand;
11142 }
11143
11144 /* Return the value of element I of VECTOR_CST T as a wide_int. */
11145
11146 wide_int
11147 vector_cst_int_elt (const_tree t, unsigned int i)
11148 {
11149 /* First handle elements that are directly encoded. */
11150 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
11151 if (i < encoded_nelts)
11152 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
11153
11154 /* Identify the pattern that contains element I and work out the index of
11155 the last encoded element for that pattern. */
11156 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11157 unsigned int pattern = i % npatterns;
11158 unsigned int count = i / npatterns;
11159 unsigned int final_i = encoded_nelts - npatterns + pattern;
11160
11161 /* If there are no steps, the final encoded value is the right one. */
11162 if (!VECTOR_CST_STEPPED_P (t))
11163 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
11164
11165 /* Otherwise work out the value from the last two encoded elements. */
11166 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
11167 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
11168 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
11169 return wi::to_wide (v2) + (count - 2) * diff;
11170 }
11171
11172 /* Return the value of element I of VECTOR_CST T. */
11173
11174 tree
11175 vector_cst_elt (const_tree t, unsigned int i)
11176 {
11177 /* First handle elements that are directly encoded. */
11178 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
11179 if (i < encoded_nelts)
11180 return VECTOR_CST_ENCODED_ELT (t, i);
11181
11182 /* If there are no steps, the final encoded value is the right one. */
11183 if (!VECTOR_CST_STEPPED_P (t))
11184 {
11185 /* Identify the pattern that contains element I and work out the index of
11186 the last encoded element for that pattern. */
11187 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11188 unsigned int pattern = i % npatterns;
11189 unsigned int final_i = encoded_nelts - npatterns + pattern;
11190 return VECTOR_CST_ENCODED_ELT (t, final_i);
11191 }
11192
11193 /* Otherwise work out the value from the last two encoded elements. */
11194 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
11195 vector_cst_int_elt (t, i));
11196 }
11197
11198 /* Given an initializer INIT, return TRUE if INIT is zero or some
11199 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
11200 null, set *NONZERO if and only if INIT is known not to be all
11201 zeros. The combination of return value of false and *NONZERO
11202 false implies that INIT may but need not be all zeros. Other
11203 combinations indicate definitive answers. */
11204
11205 bool
11206 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
11207 {
11208 bool dummy;
11209 if (!nonzero)
11210 nonzero = &dummy;
11211
11212 /* Conservatively clear NONZERO and set it only if INIT is definitely
11213 not all zero. */
11214 *nonzero = false;
11215
11216 STRIP_NOPS (init);
11217
11218 unsigned HOST_WIDE_INT off = 0;
11219
11220 switch (TREE_CODE (init))
11221 {
11222 case INTEGER_CST:
11223 if (integer_zerop (init))
11224 return true;
11225
11226 *nonzero = true;
11227 return false;
11228
11229 case REAL_CST:
11230 /* ??? Note that this is not correct for C4X float formats. There,
11231 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
11232 negative exponent. */
11233 if (real_zerop (init)
11234 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
11235 return true;
11236
11237 *nonzero = true;
11238 return false;
11239
11240 case FIXED_CST:
11241 if (fixed_zerop (init))
11242 return true;
11243
11244 *nonzero = true;
11245 return false;
11246
11247 case COMPLEX_CST:
11248 if (integer_zerop (init)
11249 || (real_zerop (init)
11250 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
11251 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
11252 return true;
11253
11254 *nonzero = true;
11255 return false;
11256
11257 case VECTOR_CST:
11258 if (VECTOR_CST_NPATTERNS (init) == 1
11259 && VECTOR_CST_DUPLICATE_P (init)
11260 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
11261 return true;
11262
11263 *nonzero = true;
11264 return false;
11265
11266 case CONSTRUCTOR:
11267 {
11268 if (TREE_CLOBBER_P (init))
11269 return false;
11270
11271 unsigned HOST_WIDE_INT idx;
11272 tree elt;
11273
11274 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
11275 if (!initializer_zerop (elt, nonzero))
11276 return false;
11277
11278 return true;
11279 }
11280
11281 case MEM_REF:
11282 {
11283 tree arg = TREE_OPERAND (init, 0);
11284 if (TREE_CODE (arg) != ADDR_EXPR)
11285 return false;
11286 tree offset = TREE_OPERAND (init, 1);
11287 if (TREE_CODE (offset) != INTEGER_CST
11288 || !tree_fits_uhwi_p (offset))
11289 return false;
11290 off = tree_to_uhwi (offset);
11291 if (INT_MAX < off)
11292 return false;
11293 arg = TREE_OPERAND (arg, 0);
11294 if (TREE_CODE (arg) != STRING_CST)
11295 return false;
11296 init = arg;
11297 }
11298 /* Fall through. */
11299
11300 case STRING_CST:
11301 {
11302 gcc_assert (off <= INT_MAX);
11303
11304 int i = off;
11305 int n = TREE_STRING_LENGTH (init);
11306 if (n <= i)
11307 return false;
11308
11309 /* We need to loop through all elements to handle cases like
11310 "\0" and "\0foobar". */
11311 for (i = 0; i < n; ++i)
11312 if (TREE_STRING_POINTER (init)[i] != '\0')
11313 {
11314 *nonzero = true;
11315 return false;
11316 }
11317
11318 return true;
11319 }
11320
11321 default:
11322 return false;
11323 }
11324 }
11325
11326 /* Return true if EXPR is an initializer expression in which every element
11327 is a constant that is numerically equal to 0 or 1. The elements do not
11328 need to be equal to each other. */
11329
11330 bool
11331 initializer_each_zero_or_onep (const_tree expr)
11332 {
11333 STRIP_ANY_LOCATION_WRAPPER (expr);
11334
11335 switch (TREE_CODE (expr))
11336 {
11337 case INTEGER_CST:
11338 return integer_zerop (expr) || integer_onep (expr);
11339
11340 case REAL_CST:
11341 return real_zerop (expr) || real_onep (expr);
11342
11343 case VECTOR_CST:
11344 {
11345 unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
11346 if (VECTOR_CST_STEPPED_P (expr)
11347 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
11348 return false;
11349
11350 for (unsigned int i = 0; i < nelts; ++i)
11351 {
11352 tree elt = vector_cst_elt (expr, i);
11353 if (!initializer_each_zero_or_onep (elt))
11354 return false;
11355 }
11356
11357 return true;
11358 }
11359
11360 default:
11361 return false;
11362 }
11363 }
11364
11365 /* Check if vector VEC consists of all the equal elements and
11366 that the number of elements corresponds to the type of VEC.
11367 The function returns first element of the vector
11368 or NULL_TREE if the vector is not uniform. */
11369 tree
11370 uniform_vector_p (const_tree vec)
11371 {
11372 tree first, t;
11373 unsigned HOST_WIDE_INT i, nelts;
11374
11375 if (vec == NULL_TREE)
11376 return NULL_TREE;
11377
11378 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
11379
11380 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
11381 return TREE_OPERAND (vec, 0);
11382
11383 else if (TREE_CODE (vec) == VECTOR_CST)
11384 {
11385 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
11386 return VECTOR_CST_ENCODED_ELT (vec, 0);
11387 return NULL_TREE;
11388 }
11389
11390 else if (TREE_CODE (vec) == CONSTRUCTOR
11391 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
11392 {
11393 first = error_mark_node;
11394
11395 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
11396 {
11397 if (i == 0)
11398 {
11399 first = t;
11400 continue;
11401 }
11402 if (!operand_equal_p (first, t, 0))
11403 return NULL_TREE;
11404 }
11405 if (i != nelts)
11406 return NULL_TREE;
11407
11408 return first;
11409 }
11410
11411 return NULL_TREE;
11412 }
11413
11414 /* If the argument is INTEGER_CST, return it. If the argument is vector
11415 with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise
11416 return NULL_TREE.
11417 Look through location wrappers. */
11418
11419 tree
11420 uniform_integer_cst_p (tree t)
11421 {
11422 STRIP_ANY_LOCATION_WRAPPER (t);
11423
11424 if (TREE_CODE (t) == INTEGER_CST)
11425 return t;
11426
11427 if (VECTOR_TYPE_P (TREE_TYPE (t)))
11428 {
11429 t = uniform_vector_p (t);
11430 if (t && TREE_CODE (t) == INTEGER_CST)
11431 return t;
11432 }
11433
11434 return NULL_TREE;
11435 }
11436
11437 /* If VECTOR_CST T has a single nonzero element, return the index of that
11438 element, otherwise return -1. */
11439
11440 int
11441 single_nonzero_element (const_tree t)
11442 {
11443 unsigned HOST_WIDE_INT nelts;
11444 unsigned int repeat_nelts;
11445 if (VECTOR_CST_NELTS (t).is_constant (&nelts))
11446 repeat_nelts = nelts;
11447 else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
11448 {
11449 nelts = vector_cst_encoded_nelts (t);
11450 repeat_nelts = VECTOR_CST_NPATTERNS (t);
11451 }
11452 else
11453 return -1;
11454
11455 int res = -1;
11456 for (unsigned int i = 0; i < nelts; ++i)
11457 {
11458 tree elt = vector_cst_elt (t, i);
11459 if (!integer_zerop (elt) && !real_zerop (elt))
11460 {
11461 if (res >= 0 || i >= repeat_nelts)
11462 return -1;
11463 res = i;
11464 }
11465 }
11466 return res;
11467 }
11468
11469 /* Build an empty statement at location LOC. */
11470
11471 tree
11472 build_empty_stmt (location_t loc)
11473 {
11474 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
11475 SET_EXPR_LOCATION (t, loc);
11476 return t;
11477 }
11478
11479
11480 /* Build an OpenMP clause with code CODE. LOC is the location of the
11481 clause. */
11482
11483 tree
11484 build_omp_clause (location_t loc, enum omp_clause_code code)
11485 {
11486 tree t;
11487 int size, length;
11488
11489 length = omp_clause_num_ops[code];
11490 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
11491
11492 record_node_allocation_statistics (OMP_CLAUSE, size);
11493
11494 t = (tree) ggc_internal_alloc (size);
11495 memset (t, 0, size);
11496 TREE_SET_CODE (t, OMP_CLAUSE);
11497 OMP_CLAUSE_SET_CODE (t, code);
11498 OMP_CLAUSE_LOCATION (t) = loc;
11499
11500 return t;
11501 }
11502
11503 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
11504 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
11505 Except for the CODE and operand count field, other storage for the
11506 object is initialized to zeros. */
11507
11508 tree
11509 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
11510 {
11511 tree t;
11512 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
11513
11514 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
11515 gcc_assert (len >= 1);
11516
11517 record_node_allocation_statistics (code, length);
11518
11519 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
11520
11521 TREE_SET_CODE (t, code);
11522
11523 /* Can't use TREE_OPERAND to store the length because if checking is
11524 enabled, it will try to check the length before we store it. :-P */
11525 t->exp.operands[0] = build_int_cst (sizetype, len);
11526
11527 return t;
11528 }
11529
11530 /* Helper function for build_call_* functions; build a CALL_EXPR with
11531 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
11532 the argument slots. */
11533
11534 static tree
11535 build_call_1 (tree return_type, tree fn, int nargs)
11536 {
11537 tree t;
11538
11539 t = build_vl_exp (CALL_EXPR, nargs + 3);
11540 TREE_TYPE (t) = return_type;
11541 CALL_EXPR_FN (t) = fn;
11542 CALL_EXPR_STATIC_CHAIN (t) = NULL;
11543
11544 return t;
11545 }
11546
11547 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11548 FN and a null static chain slot. NARGS is the number of call arguments
11549 which are specified as "..." arguments. */
11550
11551 tree
11552 build_call_nary (tree return_type, tree fn, int nargs, ...)
11553 {
11554 tree ret;
11555 va_list args;
11556 va_start (args, nargs);
11557 ret = build_call_valist (return_type, fn, nargs, args);
11558 va_end (args);
11559 return ret;
11560 }
11561
11562 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11563 FN and a null static chain slot. NARGS is the number of call arguments
11564 which are specified as a va_list ARGS. */
11565
11566 tree
11567 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
11568 {
11569 tree t;
11570 int i;
11571
11572 t = build_call_1 (return_type, fn, nargs);
11573 for (i = 0; i < nargs; i++)
11574 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
11575 process_call_operands (t);
11576 return t;
11577 }
11578
11579 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11580 FN and a null static chain slot. NARGS is the number of call arguments
11581 which are specified as a tree array ARGS. */
11582
11583 tree
11584 build_call_array_loc (location_t loc, tree return_type, tree fn,
11585 int nargs, const tree *args)
11586 {
11587 tree t;
11588 int i;
11589
11590 t = build_call_1 (return_type, fn, nargs);
11591 for (i = 0; i < nargs; i++)
11592 CALL_EXPR_ARG (t, i) = args[i];
11593 process_call_operands (t);
11594 SET_EXPR_LOCATION (t, loc);
11595 return t;
11596 }
11597
11598 /* Like build_call_array, but takes a vec. */
11599
11600 tree
11601 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
11602 {
11603 tree ret, t;
11604 unsigned int ix;
11605
11606 ret = build_call_1 (return_type, fn, vec_safe_length (args));
11607 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
11608 CALL_EXPR_ARG (ret, ix) = t;
11609 process_call_operands (ret);
11610 return ret;
11611 }
11612
11613 /* Conveniently construct a function call expression. FNDECL names the
11614 function to be called and N arguments are passed in the array
11615 ARGARRAY. */
11616
11617 tree
11618 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11619 {
11620 tree fntype = TREE_TYPE (fndecl);
11621 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11622
11623 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11624 }
11625
11626 /* Conveniently construct a function call expression. FNDECL names the
11627 function to be called and the arguments are passed in the vector
11628 VEC. */
11629
11630 tree
11631 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11632 {
11633 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11634 vec_safe_address (vec));
11635 }
11636
11637
11638 /* Conveniently construct a function call expression. FNDECL names the
11639 function to be called, N is the number of arguments, and the "..."
11640 parameters are the argument expressions. */
11641
11642 tree
11643 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11644 {
11645 va_list ap;
11646 tree *argarray = XALLOCAVEC (tree, n);
11647 int i;
11648
11649 va_start (ap, n);
11650 for (i = 0; i < n; i++)
11651 argarray[i] = va_arg (ap, tree);
11652 va_end (ap);
11653 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11654 }
11655
11656 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11657 varargs macros aren't supported by all bootstrap compilers. */
11658
11659 tree
11660 build_call_expr (tree fndecl, int n, ...)
11661 {
11662 va_list ap;
11663 tree *argarray = XALLOCAVEC (tree, n);
11664 int i;
11665
11666 va_start (ap, n);
11667 for (i = 0; i < n; i++)
11668 argarray[i] = va_arg (ap, tree);
11669 va_end (ap);
11670 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11671 }
11672
11673 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11674 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11675 It will get gimplified later into an ordinary internal function. */
11676
11677 tree
11678 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11679 tree type, int n, const tree *args)
11680 {
11681 tree t = build_call_1 (type, NULL_TREE, n);
11682 for (int i = 0; i < n; ++i)
11683 CALL_EXPR_ARG (t, i) = args[i];
11684 SET_EXPR_LOCATION (t, loc);
11685 CALL_EXPR_IFN (t) = ifn;
11686 return t;
11687 }
11688
11689 /* Build internal call expression. This is just like CALL_EXPR, except
11690 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11691 internal function. */
11692
11693 tree
11694 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11695 tree type, int n, ...)
11696 {
11697 va_list ap;
11698 tree *argarray = XALLOCAVEC (tree, n);
11699 int i;
11700
11701 va_start (ap, n);
11702 for (i = 0; i < n; i++)
11703 argarray[i] = va_arg (ap, tree);
11704 va_end (ap);
11705 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11706 }
11707
11708 /* Return a function call to FN, if the target is guaranteed to support it,
11709 or null otherwise.
11710
11711 N is the number of arguments, passed in the "...", and TYPE is the
11712 type of the return value. */
11713
11714 tree
11715 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11716 int n, ...)
11717 {
11718 va_list ap;
11719 tree *argarray = XALLOCAVEC (tree, n);
11720 int i;
11721
11722 va_start (ap, n);
11723 for (i = 0; i < n; i++)
11724 argarray[i] = va_arg (ap, tree);
11725 va_end (ap);
11726 if (internal_fn_p (fn))
11727 {
11728 internal_fn ifn = as_internal_fn (fn);
11729 if (direct_internal_fn_p (ifn))
11730 {
11731 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11732 if (!direct_internal_fn_supported_p (ifn, types,
11733 OPTIMIZE_FOR_BOTH))
11734 return NULL_TREE;
11735 }
11736 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11737 }
11738 else
11739 {
11740 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11741 if (!fndecl)
11742 return NULL_TREE;
11743 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11744 }
11745 }
11746
11747 /* Return a function call to the appropriate builtin alloca variant.
11748
11749 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11750 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11751 bound for SIZE in case it is not a fixed value. */
11752
11753 tree
11754 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11755 {
11756 if (max_size >= 0)
11757 {
11758 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11759 return
11760 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11761 }
11762 else if (align > 0)
11763 {
11764 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11765 return build_call_expr (t, 2, size, size_int (align));
11766 }
11767 else
11768 {
11769 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11770 return build_call_expr (t, 1, size);
11771 }
11772 }
11773
11774 /* Create a new constant string literal consisting of elements of type
11775 ELTYPE and return a tree node representing char* pointer to it as
11776 an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). The STRING_CST value is
11777 the LEN bytes at STR (the representation of the string, which may
11778 be wide). */
11779
11780 tree
11781 build_string_literal (int len, const char *str,
11782 tree eltype /* = char_type_node */)
11783 {
11784 tree t = build_string (len, str);
11785 tree index = build_index_type (size_int (len - 1));
11786 eltype = build_type_variant (eltype, 1, 0);
11787 tree type = build_array_type (eltype, index);
11788 TREE_TYPE (t) = type;
11789 TREE_CONSTANT (t) = 1;
11790 TREE_READONLY (t) = 1;
11791 TREE_STATIC (t) = 1;
11792
11793 type = build_pointer_type (eltype);
11794 t = build1 (ADDR_EXPR, type,
11795 build4 (ARRAY_REF, eltype,
11796 t, integer_zero_node, NULL_TREE, NULL_TREE));
11797 return t;
11798 }
11799
11800
11801
11802 /* Return true if T (assumed to be a DECL) must be assigned a memory
11803 location. */
11804
11805 bool
11806 needs_to_live_in_memory (const_tree t)
11807 {
11808 return (TREE_ADDRESSABLE (t)
11809 || is_global_var (t)
11810 || (TREE_CODE (t) == RESULT_DECL
11811 && !DECL_BY_REFERENCE (t)
11812 && aggregate_value_p (t, current_function_decl)));
11813 }
11814
11815 /* Return value of a constant X and sign-extend it. */
11816
11817 HOST_WIDE_INT
11818 int_cst_value (const_tree x)
11819 {
11820 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11821 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11822
11823 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11824 gcc_assert (cst_and_fits_in_hwi (x));
11825
11826 if (bits < HOST_BITS_PER_WIDE_INT)
11827 {
11828 bool negative = ((val >> (bits - 1)) & 1) != 0;
11829 if (negative)
11830 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11831 else
11832 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11833 }
11834
11835 return val;
11836 }
11837
11838 /* If TYPE is an integral or pointer type, return an integer type with
11839 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11840 if TYPE is already an integer type of signedness UNSIGNEDP.
11841 If TYPE is a floating-point type, return an integer type with the same
11842 bitsize and with the signedness given by UNSIGNEDP; this is useful
11843 when doing bit-level operations on a floating-point value. */
11844
11845 tree
11846 signed_or_unsigned_type_for (int unsignedp, tree type)
11847 {
11848 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11849 return type;
11850
11851 if (TREE_CODE (type) == VECTOR_TYPE)
11852 {
11853 tree inner = TREE_TYPE (type);
11854 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11855 if (!inner2)
11856 return NULL_TREE;
11857 if (inner == inner2)
11858 return type;
11859 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11860 }
11861
11862 if (TREE_CODE (type) == COMPLEX_TYPE)
11863 {
11864 tree inner = TREE_TYPE (type);
11865 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11866 if (!inner2)
11867 return NULL_TREE;
11868 if (inner == inner2)
11869 return type;
11870 return build_complex_type (inner2);
11871 }
11872
11873 unsigned int bits;
11874 if (INTEGRAL_TYPE_P (type)
11875 || POINTER_TYPE_P (type)
11876 || TREE_CODE (type) == OFFSET_TYPE)
11877 bits = TYPE_PRECISION (type);
11878 else if (TREE_CODE (type) == REAL_TYPE)
11879 bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
11880 else
11881 return NULL_TREE;
11882
11883 return build_nonstandard_integer_type (bits, unsignedp);
11884 }
11885
11886 /* If TYPE is an integral or pointer type, return an integer type with
11887 the same precision which is unsigned, or itself if TYPE is already an
11888 unsigned integer type. If TYPE is a floating-point type, return an
11889 unsigned integer type with the same bitsize as TYPE. */
11890
11891 tree
11892 unsigned_type_for (tree type)
11893 {
11894 return signed_or_unsigned_type_for (1, type);
11895 }
11896
11897 /* If TYPE is an integral or pointer type, return an integer type with
11898 the same precision which is signed, or itself if TYPE is already a
11899 signed integer type. If TYPE is a floating-point type, return a
11900 signed integer type with the same bitsize as TYPE. */
11901
11902 tree
11903 signed_type_for (tree type)
11904 {
11905 return signed_or_unsigned_type_for (0, type);
11906 }
11907
11908 /* If TYPE is a vector type, return a signed integer vector type with the
11909 same width and number of subparts. Otherwise return boolean_type_node. */
11910
11911 tree
11912 truth_type_for (tree type)
11913 {
11914 if (TREE_CODE (type) == VECTOR_TYPE)
11915 {
11916 if (VECTOR_BOOLEAN_TYPE_P (type))
11917 return type;
11918 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11919 GET_MODE_SIZE (TYPE_MODE (type)));
11920 }
11921 else
11922 return boolean_type_node;
11923 }
11924
11925 /* Returns the largest value obtainable by casting something in INNER type to
11926 OUTER type. */
11927
11928 tree
11929 upper_bound_in_type (tree outer, tree inner)
11930 {
11931 unsigned int det = 0;
11932 unsigned oprec = TYPE_PRECISION (outer);
11933 unsigned iprec = TYPE_PRECISION (inner);
11934 unsigned prec;
11935
11936 /* Compute a unique number for every combination. */
11937 det |= (oprec > iprec) ? 4 : 0;
11938 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11939 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11940
11941 /* Determine the exponent to use. */
11942 switch (det)
11943 {
11944 case 0:
11945 case 1:
11946 /* oprec <= iprec, outer: signed, inner: don't care. */
11947 prec = oprec - 1;
11948 break;
11949 case 2:
11950 case 3:
11951 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11952 prec = oprec;
11953 break;
11954 case 4:
11955 /* oprec > iprec, outer: signed, inner: signed. */
11956 prec = iprec - 1;
11957 break;
11958 case 5:
11959 /* oprec > iprec, outer: signed, inner: unsigned. */
11960 prec = iprec;
11961 break;
11962 case 6:
11963 /* oprec > iprec, outer: unsigned, inner: signed. */
11964 prec = oprec;
11965 break;
11966 case 7:
11967 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11968 prec = iprec;
11969 break;
11970 default:
11971 gcc_unreachable ();
11972 }
11973
11974 return wide_int_to_tree (outer,
11975 wi::mask (prec, false, TYPE_PRECISION (outer)));
11976 }
11977
11978 /* Returns the smallest value obtainable by casting something in INNER type to
11979 OUTER type. */
11980
11981 tree
11982 lower_bound_in_type (tree outer, tree inner)
11983 {
11984 unsigned oprec = TYPE_PRECISION (outer);
11985 unsigned iprec = TYPE_PRECISION (inner);
11986
11987 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11988 and obtain 0. */
11989 if (TYPE_UNSIGNED (outer)
11990 /* If we are widening something of an unsigned type, OUTER type
11991 contains all values of INNER type. In particular, both INNER
11992 and OUTER types have zero in common. */
11993 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11994 return build_int_cst (outer, 0);
11995 else
11996 {
11997 /* If we are widening a signed type to another signed type, we
11998 want to obtain -2^^(iprec-1). If we are keeping the
11999 precision or narrowing to a signed type, we want to obtain
12000 -2^(oprec-1). */
12001 unsigned prec = oprec > iprec ? iprec : oprec;
12002 return wide_int_to_tree (outer,
12003 wi::mask (prec - 1, true,
12004 TYPE_PRECISION (outer)));
12005 }
12006 }
12007
12008 /* Return nonzero if two operands that are suitable for PHI nodes are
12009 necessarily equal. Specifically, both ARG0 and ARG1 must be either
12010 SSA_NAME or invariant. Note that this is strictly an optimization.
12011 That is, callers of this function can directly call operand_equal_p
12012 and get the same result, only slower. */
12013
12014 int
12015 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
12016 {
12017 if (arg0 == arg1)
12018 return 1;
12019 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
12020 return 0;
12021 return operand_equal_p (arg0, arg1, 0);
12022 }
12023
12024 /* Returns number of zeros at the end of binary representation of X. */
12025
12026 tree
12027 num_ending_zeros (const_tree x)
12028 {
12029 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
12030 }
12031
12032
12033 #define WALK_SUBTREE(NODE) \
12034 do \
12035 { \
12036 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
12037 if (result) \
12038 return result; \
12039 } \
12040 while (0)
12041
12042 /* This is a subroutine of walk_tree that walks field of TYPE that are to
12043 be walked whenever a type is seen in the tree. Rest of operands and return
12044 value are as for walk_tree. */
12045
12046 static tree
12047 walk_type_fields (tree type, walk_tree_fn func, void *data,
12048 hash_set<tree> *pset, walk_tree_lh lh)
12049 {
12050 tree result = NULL_TREE;
12051
12052 switch (TREE_CODE (type))
12053 {
12054 case POINTER_TYPE:
12055 case REFERENCE_TYPE:
12056 case VECTOR_TYPE:
12057 /* We have to worry about mutually recursive pointers. These can't
12058 be written in C. They can in Ada. It's pathological, but
12059 there's an ACATS test (c38102a) that checks it. Deal with this
12060 by checking if we're pointing to another pointer, that one
12061 points to another pointer, that one does too, and we have no htab.
12062 If so, get a hash table. We check three levels deep to avoid
12063 the cost of the hash table if we don't need one. */
12064 if (POINTER_TYPE_P (TREE_TYPE (type))
12065 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
12066 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
12067 && !pset)
12068 {
12069 result = walk_tree_without_duplicates (&TREE_TYPE (type),
12070 func, data);
12071 if (result)
12072 return result;
12073
12074 break;
12075 }
12076
12077 /* fall through */
12078
12079 case COMPLEX_TYPE:
12080 WALK_SUBTREE (TREE_TYPE (type));
12081 break;
12082
12083 case METHOD_TYPE:
12084 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
12085
12086 /* Fall through. */
12087
12088 case FUNCTION_TYPE:
12089 WALK_SUBTREE (TREE_TYPE (type));
12090 {
12091 tree arg;
12092
12093 /* We never want to walk into default arguments. */
12094 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
12095 WALK_SUBTREE (TREE_VALUE (arg));
12096 }
12097 break;
12098
12099 case ARRAY_TYPE:
12100 /* Don't follow this nodes's type if a pointer for fear that
12101 we'll have infinite recursion. If we have a PSET, then we
12102 need not fear. */
12103 if (pset
12104 || (!POINTER_TYPE_P (TREE_TYPE (type))
12105 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
12106 WALK_SUBTREE (TREE_TYPE (type));
12107 WALK_SUBTREE (TYPE_DOMAIN (type));
12108 break;
12109
12110 case OFFSET_TYPE:
12111 WALK_SUBTREE (TREE_TYPE (type));
12112 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
12113 break;
12114
12115 default:
12116 break;
12117 }
12118
12119 return NULL_TREE;
12120 }
12121
12122 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
12123 called with the DATA and the address of each sub-tree. If FUNC returns a
12124 non-NULL value, the traversal is stopped, and the value returned by FUNC
12125 is returned. If PSET is non-NULL it is used to record the nodes visited,
12126 and to avoid visiting a node more than once. */
12127
12128 tree
12129 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
12130 hash_set<tree> *pset, walk_tree_lh lh)
12131 {
12132 enum tree_code code;
12133 int walk_subtrees;
12134 tree result;
12135
12136 #define WALK_SUBTREE_TAIL(NODE) \
12137 do \
12138 { \
12139 tp = & (NODE); \
12140 goto tail_recurse; \
12141 } \
12142 while (0)
12143
12144 tail_recurse:
12145 /* Skip empty subtrees. */
12146 if (!*tp)
12147 return NULL_TREE;
12148
12149 /* Don't walk the same tree twice, if the user has requested
12150 that we avoid doing so. */
12151 if (pset && pset->add (*tp))
12152 return NULL_TREE;
12153
12154 /* Call the function. */
12155 walk_subtrees = 1;
12156 result = (*func) (tp, &walk_subtrees, data);
12157
12158 /* If we found something, return it. */
12159 if (result)
12160 return result;
12161
12162 code = TREE_CODE (*tp);
12163
12164 /* Even if we didn't, FUNC may have decided that there was nothing
12165 interesting below this point in the tree. */
12166 if (!walk_subtrees)
12167 {
12168 /* But we still need to check our siblings. */
12169 if (code == TREE_LIST)
12170 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12171 else if (code == OMP_CLAUSE)
12172 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12173 else
12174 return NULL_TREE;
12175 }
12176
12177 if (lh)
12178 {
12179 result = (*lh) (tp, &walk_subtrees, func, data, pset);
12180 if (result || !walk_subtrees)
12181 return result;
12182 }
12183
12184 switch (code)
12185 {
12186 case ERROR_MARK:
12187 case IDENTIFIER_NODE:
12188 case INTEGER_CST:
12189 case REAL_CST:
12190 case FIXED_CST:
12191 case VECTOR_CST:
12192 case STRING_CST:
12193 case BLOCK:
12194 case PLACEHOLDER_EXPR:
12195 case SSA_NAME:
12196 case FIELD_DECL:
12197 case RESULT_DECL:
12198 /* None of these have subtrees other than those already walked
12199 above. */
12200 break;
12201
12202 case TREE_LIST:
12203 WALK_SUBTREE (TREE_VALUE (*tp));
12204 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12205 break;
12206
12207 case TREE_VEC:
12208 {
12209 int len = TREE_VEC_LENGTH (*tp);
12210
12211 if (len == 0)
12212 break;
12213
12214 /* Walk all elements but the first. */
12215 while (--len)
12216 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
12217
12218 /* Now walk the first one as a tail call. */
12219 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
12220 }
12221
12222 case COMPLEX_CST:
12223 WALK_SUBTREE (TREE_REALPART (*tp));
12224 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
12225
12226 case CONSTRUCTOR:
12227 {
12228 unsigned HOST_WIDE_INT idx;
12229 constructor_elt *ce;
12230
12231 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
12232 idx++)
12233 WALK_SUBTREE (ce->value);
12234 }
12235 break;
12236
12237 case SAVE_EXPR:
12238 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
12239
12240 case BIND_EXPR:
12241 {
12242 tree decl;
12243 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
12244 {
12245 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
12246 into declarations that are just mentioned, rather than
12247 declared; they don't really belong to this part of the tree.
12248 And, we can see cycles: the initializer for a declaration
12249 can refer to the declaration itself. */
12250 WALK_SUBTREE (DECL_INITIAL (decl));
12251 WALK_SUBTREE (DECL_SIZE (decl));
12252 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
12253 }
12254 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
12255 }
12256
12257 case STATEMENT_LIST:
12258 {
12259 tree_stmt_iterator i;
12260 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
12261 WALK_SUBTREE (*tsi_stmt_ptr (i));
12262 }
12263 break;
12264
12265 case OMP_CLAUSE:
12266 switch (OMP_CLAUSE_CODE (*tp))
12267 {
12268 case OMP_CLAUSE_GANG:
12269 case OMP_CLAUSE__GRIDDIM_:
12270 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12271 /* FALLTHRU */
12272
12273 case OMP_CLAUSE_ASYNC:
12274 case OMP_CLAUSE_WAIT:
12275 case OMP_CLAUSE_WORKER:
12276 case OMP_CLAUSE_VECTOR:
12277 case OMP_CLAUSE_NUM_GANGS:
12278 case OMP_CLAUSE_NUM_WORKERS:
12279 case OMP_CLAUSE_VECTOR_LENGTH:
12280 case OMP_CLAUSE_PRIVATE:
12281 case OMP_CLAUSE_SHARED:
12282 case OMP_CLAUSE_FIRSTPRIVATE:
12283 case OMP_CLAUSE_COPYIN:
12284 case OMP_CLAUSE_COPYPRIVATE:
12285 case OMP_CLAUSE_FINAL:
12286 case OMP_CLAUSE_IF:
12287 case OMP_CLAUSE_NUM_THREADS:
12288 case OMP_CLAUSE_SCHEDULE:
12289 case OMP_CLAUSE_UNIFORM:
12290 case OMP_CLAUSE_DEPEND:
12291 case OMP_CLAUSE_NONTEMPORAL:
12292 case OMP_CLAUSE_NUM_TEAMS:
12293 case OMP_CLAUSE_THREAD_LIMIT:
12294 case OMP_CLAUSE_DEVICE:
12295 case OMP_CLAUSE_DIST_SCHEDULE:
12296 case OMP_CLAUSE_SAFELEN:
12297 case OMP_CLAUSE_SIMDLEN:
12298 case OMP_CLAUSE_ORDERED:
12299 case OMP_CLAUSE_PRIORITY:
12300 case OMP_CLAUSE_GRAINSIZE:
12301 case OMP_CLAUSE_NUM_TASKS:
12302 case OMP_CLAUSE_HINT:
12303 case OMP_CLAUSE_TO_DECLARE:
12304 case OMP_CLAUSE_LINK:
12305 case OMP_CLAUSE_USE_DEVICE_PTR:
12306 case OMP_CLAUSE_IS_DEVICE_PTR:
12307 case OMP_CLAUSE__LOOPTEMP_:
12308 case OMP_CLAUSE__REDUCTEMP_:
12309 case OMP_CLAUSE__CONDTEMP_:
12310 case OMP_CLAUSE__SIMDUID_:
12311 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
12312 /* FALLTHRU */
12313
12314 case OMP_CLAUSE_INDEPENDENT:
12315 case OMP_CLAUSE_NOWAIT:
12316 case OMP_CLAUSE_DEFAULT:
12317 case OMP_CLAUSE_UNTIED:
12318 case OMP_CLAUSE_MERGEABLE:
12319 case OMP_CLAUSE_PROC_BIND:
12320 case OMP_CLAUSE_INBRANCH:
12321 case OMP_CLAUSE_NOTINBRANCH:
12322 case OMP_CLAUSE_FOR:
12323 case OMP_CLAUSE_PARALLEL:
12324 case OMP_CLAUSE_SECTIONS:
12325 case OMP_CLAUSE_TASKGROUP:
12326 case OMP_CLAUSE_NOGROUP:
12327 case OMP_CLAUSE_THREADS:
12328 case OMP_CLAUSE_SIMD:
12329 case OMP_CLAUSE_DEFAULTMAP:
12330 case OMP_CLAUSE_AUTO:
12331 case OMP_CLAUSE_SEQ:
12332 case OMP_CLAUSE_TILE:
12333 case OMP_CLAUSE__SIMT_:
12334 case OMP_CLAUSE_IF_PRESENT:
12335 case OMP_CLAUSE_FINALIZE:
12336 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12337
12338 case OMP_CLAUSE_LASTPRIVATE:
12339 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12340 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
12341 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12342
12343 case OMP_CLAUSE_COLLAPSE:
12344 {
12345 int i;
12346 for (i = 0; i < 3; i++)
12347 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12348 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12349 }
12350
12351 case OMP_CLAUSE_LINEAR:
12352 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12353 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
12354 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
12355 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12356
12357 case OMP_CLAUSE_ALIGNED:
12358 case OMP_CLAUSE_FROM:
12359 case OMP_CLAUSE_TO:
12360 case OMP_CLAUSE_MAP:
12361 case OMP_CLAUSE__CACHE_:
12362 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12363 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12364 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12365
12366 case OMP_CLAUSE_REDUCTION:
12367 case OMP_CLAUSE_TASK_REDUCTION:
12368 case OMP_CLAUSE_IN_REDUCTION:
12369 {
12370 int i;
12371 for (i = 0; i < 5; i++)
12372 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12373 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12374 }
12375
12376 default:
12377 gcc_unreachable ();
12378 }
12379 break;
12380
12381 case TARGET_EXPR:
12382 {
12383 int i, len;
12384
12385 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
12386 But, we only want to walk once. */
12387 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
12388 for (i = 0; i < len; ++i)
12389 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12390 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
12391 }
12392
12393 case DECL_EXPR:
12394 /* If this is a TYPE_DECL, walk into the fields of the type that it's
12395 defining. We only want to walk into these fields of a type in this
12396 case and not in the general case of a mere reference to the type.
12397
12398 The criterion is as follows: if the field can be an expression, it
12399 must be walked only here. This should be in keeping with the fields
12400 that are directly gimplified in gimplify_type_sizes in order for the
12401 mark/copy-if-shared/unmark machinery of the gimplifier to work with
12402 variable-sized types.
12403
12404 Note that DECLs get walked as part of processing the BIND_EXPR. */
12405 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
12406 {
12407 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
12408 if (TREE_CODE (*type_p) == ERROR_MARK)
12409 return NULL_TREE;
12410
12411 /* Call the function for the type. See if it returns anything or
12412 doesn't want us to continue. If we are to continue, walk both
12413 the normal fields and those for the declaration case. */
12414 result = (*func) (type_p, &walk_subtrees, data);
12415 if (result || !walk_subtrees)
12416 return result;
12417
12418 /* But do not walk a pointed-to type since it may itself need to
12419 be walked in the declaration case if it isn't anonymous. */
12420 if (!POINTER_TYPE_P (*type_p))
12421 {
12422 result = walk_type_fields (*type_p, func, data, pset, lh);
12423 if (result)
12424 return result;
12425 }
12426
12427 /* If this is a record type, also walk the fields. */
12428 if (RECORD_OR_UNION_TYPE_P (*type_p))
12429 {
12430 tree field;
12431
12432 for (field = TYPE_FIELDS (*type_p); field;
12433 field = DECL_CHAIN (field))
12434 {
12435 /* We'd like to look at the type of the field, but we can
12436 easily get infinite recursion. So assume it's pointed
12437 to elsewhere in the tree. Also, ignore things that
12438 aren't fields. */
12439 if (TREE_CODE (field) != FIELD_DECL)
12440 continue;
12441
12442 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
12443 WALK_SUBTREE (DECL_SIZE (field));
12444 WALK_SUBTREE (DECL_SIZE_UNIT (field));
12445 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
12446 WALK_SUBTREE (DECL_QUALIFIER (field));
12447 }
12448 }
12449
12450 /* Same for scalar types. */
12451 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
12452 || TREE_CODE (*type_p) == ENUMERAL_TYPE
12453 || TREE_CODE (*type_p) == INTEGER_TYPE
12454 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
12455 || TREE_CODE (*type_p) == REAL_TYPE)
12456 {
12457 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
12458 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
12459 }
12460
12461 WALK_SUBTREE (TYPE_SIZE (*type_p));
12462 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
12463 }
12464 /* FALLTHRU */
12465
12466 default:
12467 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
12468 {
12469 int i, len;
12470
12471 /* Walk over all the sub-trees of this operand. */
12472 len = TREE_OPERAND_LENGTH (*tp);
12473
12474 /* Go through the subtrees. We need to do this in forward order so
12475 that the scope of a FOR_EXPR is handled properly. */
12476 if (len)
12477 {
12478 for (i = 0; i < len - 1; ++i)
12479 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12480 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
12481 }
12482 }
12483 /* If this is a type, walk the needed fields in the type. */
12484 else if (TYPE_P (*tp))
12485 return walk_type_fields (*tp, func, data, pset, lh);
12486 break;
12487 }
12488
12489 /* We didn't find what we were looking for. */
12490 return NULL_TREE;
12491
12492 #undef WALK_SUBTREE_TAIL
12493 }
12494 #undef WALK_SUBTREE
12495
12496 /* Like walk_tree, but does not walk duplicate nodes more than once. */
12497
12498 tree
12499 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
12500 walk_tree_lh lh)
12501 {
12502 tree result;
12503
12504 hash_set<tree> pset;
12505 result = walk_tree_1 (tp, func, data, &pset, lh);
12506 return result;
12507 }
12508
12509
12510 tree
12511 tree_block (tree t)
12512 {
12513 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12514
12515 if (IS_EXPR_CODE_CLASS (c))
12516 return LOCATION_BLOCK (t->exp.locus);
12517 gcc_unreachable ();
12518 return NULL;
12519 }
12520
12521 void
12522 tree_set_block (tree t, tree b)
12523 {
12524 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12525
12526 if (IS_EXPR_CODE_CLASS (c))
12527 {
12528 t->exp.locus = set_block (t->exp.locus, b);
12529 }
12530 else
12531 gcc_unreachable ();
12532 }
12533
12534 /* Create a nameless artificial label and put it in the current
12535 function context. The label has a location of LOC. Returns the
12536 newly created label. */
12537
12538 tree
12539 create_artificial_label (location_t loc)
12540 {
12541 tree lab = build_decl (loc,
12542 LABEL_DECL, NULL_TREE, void_type_node);
12543
12544 DECL_ARTIFICIAL (lab) = 1;
12545 DECL_IGNORED_P (lab) = 1;
12546 DECL_CONTEXT (lab) = current_function_decl;
12547 return lab;
12548 }
12549
12550 /* Given a tree, try to return a useful variable name that we can use
12551 to prefix a temporary that is being assigned the value of the tree.
12552 I.E. given <temp> = &A, return A. */
12553
12554 const char *
12555 get_name (tree t)
12556 {
12557 tree stripped_decl;
12558
12559 stripped_decl = t;
12560 STRIP_NOPS (stripped_decl);
12561 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
12562 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
12563 else if (TREE_CODE (stripped_decl) == SSA_NAME)
12564 {
12565 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
12566 if (!name)
12567 return NULL;
12568 return IDENTIFIER_POINTER (name);
12569 }
12570 else
12571 {
12572 switch (TREE_CODE (stripped_decl))
12573 {
12574 case ADDR_EXPR:
12575 return get_name (TREE_OPERAND (stripped_decl, 0));
12576 default:
12577 return NULL;
12578 }
12579 }
12580 }
12581
12582 /* Return true if TYPE has a variable argument list. */
12583
12584 bool
12585 stdarg_p (const_tree fntype)
12586 {
12587 function_args_iterator args_iter;
12588 tree n = NULL_TREE, t;
12589
12590 if (!fntype)
12591 return false;
12592
12593 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
12594 {
12595 n = t;
12596 }
12597
12598 return n != NULL_TREE && n != void_type_node;
12599 }
12600
12601 /* Return true if TYPE has a prototype. */
12602
12603 bool
12604 prototype_p (const_tree fntype)
12605 {
12606 tree t;
12607
12608 gcc_assert (fntype != NULL_TREE);
12609
12610 t = TYPE_ARG_TYPES (fntype);
12611 return (t != NULL_TREE);
12612 }
12613
12614 /* If BLOCK is inlined from an __attribute__((__artificial__))
12615 routine, return pointer to location from where it has been
12616 called. */
12617 location_t *
12618 block_nonartificial_location (tree block)
12619 {
12620 location_t *ret = NULL;
12621
12622 while (block && TREE_CODE (block) == BLOCK
12623 && BLOCK_ABSTRACT_ORIGIN (block))
12624 {
12625 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12626 if (TREE_CODE (ao) == FUNCTION_DECL)
12627 {
12628 /* If AO is an artificial inline, point RET to the
12629 call site locus at which it has been inlined and continue
12630 the loop, in case AO's caller is also an artificial
12631 inline. */
12632 if (DECL_DECLARED_INLINE_P (ao)
12633 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
12634 ret = &BLOCK_SOURCE_LOCATION (block);
12635 else
12636 break;
12637 }
12638 else if (TREE_CODE (ao) != BLOCK)
12639 break;
12640
12641 block = BLOCK_SUPERCONTEXT (block);
12642 }
12643 return ret;
12644 }
12645
12646
12647 /* If EXP is inlined from an __attribute__((__artificial__))
12648 function, return the location of the original call expression. */
12649
12650 location_t
12651 tree_nonartificial_location (tree exp)
12652 {
12653 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12654
12655 if (loc)
12656 return *loc;
12657 else
12658 return EXPR_LOCATION (exp);
12659 }
12660
12661
12662 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12663 nodes. */
12664
12665 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12666
12667 hashval_t
12668 cl_option_hasher::hash (tree x)
12669 {
12670 const_tree const t = x;
12671 const char *p;
12672 size_t i;
12673 size_t len = 0;
12674 hashval_t hash = 0;
12675
12676 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12677 {
12678 p = (const char *)TREE_OPTIMIZATION (t);
12679 len = sizeof (struct cl_optimization);
12680 }
12681
12682 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12683 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12684
12685 else
12686 gcc_unreachable ();
12687
12688 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12689 something else. */
12690 for (i = 0; i < len; i++)
12691 if (p[i])
12692 hash = (hash << 4) ^ ((i << 2) | p[i]);
12693
12694 return hash;
12695 }
12696
12697 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12698 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12699 same. */
12700
12701 bool
12702 cl_option_hasher::equal (tree x, tree y)
12703 {
12704 const_tree const xt = x;
12705 const_tree const yt = y;
12706
12707 if (TREE_CODE (xt) != TREE_CODE (yt))
12708 return 0;
12709
12710 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12711 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12712 TREE_OPTIMIZATION (yt));
12713 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12714 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12715 TREE_TARGET_OPTION (yt));
12716 else
12717 gcc_unreachable ();
12718 }
12719
12720 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
12721
12722 tree
12723 build_optimization_node (struct gcc_options *opts)
12724 {
12725 tree t;
12726
12727 /* Use the cache of optimization nodes. */
12728
12729 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12730 opts);
12731
12732 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12733 t = *slot;
12734 if (!t)
12735 {
12736 /* Insert this one into the hash table. */
12737 t = cl_optimization_node;
12738 *slot = t;
12739
12740 /* Make a new node for next time round. */
12741 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12742 }
12743
12744 return t;
12745 }
12746
12747 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12748
12749 tree
12750 build_target_option_node (struct gcc_options *opts)
12751 {
12752 tree t;
12753
12754 /* Use the cache of optimization nodes. */
12755
12756 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12757 opts);
12758
12759 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12760 t = *slot;
12761 if (!t)
12762 {
12763 /* Insert this one into the hash table. */
12764 t = cl_target_option_node;
12765 *slot = t;
12766
12767 /* Make a new node for next time round. */
12768 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12769 }
12770
12771 return t;
12772 }
12773
12774 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12775 so that they aren't saved during PCH writing. */
12776
12777 void
12778 prepare_target_option_nodes_for_pch (void)
12779 {
12780 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12781 for (; iter != cl_option_hash_table->end (); ++iter)
12782 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12783 TREE_TARGET_GLOBALS (*iter) = NULL;
12784 }
12785
12786 /* Determine the "ultimate origin" of a block. */
12787
12788 tree
12789 block_ultimate_origin (const_tree block)
12790 {
12791 tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12792
12793 if (origin == NULL_TREE)
12794 return NULL_TREE;
12795 else
12796 {
12797 gcc_checking_assert ((DECL_P (origin)
12798 && DECL_ORIGIN (origin) == origin)
12799 || BLOCK_ORIGIN (origin) == origin);
12800 return origin;
12801 }
12802 }
12803
12804 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12805 no instruction. */
12806
12807 bool
12808 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12809 {
12810 /* Do not strip casts into or out of differing address spaces. */
12811 if (POINTER_TYPE_P (outer_type)
12812 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12813 {
12814 if (!POINTER_TYPE_P (inner_type)
12815 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12816 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12817 return false;
12818 }
12819 else if (POINTER_TYPE_P (inner_type)
12820 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12821 {
12822 /* We already know that outer_type is not a pointer with
12823 a non-generic address space. */
12824 return false;
12825 }
12826
12827 /* Use precision rather then machine mode when we can, which gives
12828 the correct answer even for submode (bit-field) types. */
12829 if ((INTEGRAL_TYPE_P (outer_type)
12830 || POINTER_TYPE_P (outer_type)
12831 || TREE_CODE (outer_type) == OFFSET_TYPE)
12832 && (INTEGRAL_TYPE_P (inner_type)
12833 || POINTER_TYPE_P (inner_type)
12834 || TREE_CODE (inner_type) == OFFSET_TYPE))
12835 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12836
12837 /* Otherwise fall back on comparing machine modes (e.g. for
12838 aggregate types, floats). */
12839 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12840 }
12841
12842 /* Return true iff conversion in EXP generates no instruction. Mark
12843 it inline so that we fully inline into the stripping functions even
12844 though we have two uses of this function. */
12845
12846 static inline bool
12847 tree_nop_conversion (const_tree exp)
12848 {
12849 tree outer_type, inner_type;
12850
12851 if (location_wrapper_p (exp))
12852 return true;
12853 if (!CONVERT_EXPR_P (exp)
12854 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12855 return false;
12856
12857 outer_type = TREE_TYPE (exp);
12858 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12859 if (!inner_type || inner_type == error_mark_node)
12860 return false;
12861
12862 return tree_nop_conversion_p (outer_type, inner_type);
12863 }
12864
12865 /* Return true iff conversion in EXP generates no instruction. Don't
12866 consider conversions changing the signedness. */
12867
12868 static bool
12869 tree_sign_nop_conversion (const_tree exp)
12870 {
12871 tree outer_type, inner_type;
12872
12873 if (!tree_nop_conversion (exp))
12874 return false;
12875
12876 outer_type = TREE_TYPE (exp);
12877 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12878
12879 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12880 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12881 }
12882
12883 /* Strip conversions from EXP according to tree_nop_conversion and
12884 return the resulting expression. */
12885
12886 tree
12887 tree_strip_nop_conversions (tree exp)
12888 {
12889 while (tree_nop_conversion (exp))
12890 exp = TREE_OPERAND (exp, 0);
12891 return exp;
12892 }
12893
12894 /* Strip conversions from EXP according to tree_sign_nop_conversion
12895 and return the resulting expression. */
12896
12897 tree
12898 tree_strip_sign_nop_conversions (tree exp)
12899 {
12900 while (tree_sign_nop_conversion (exp))
12901 exp = TREE_OPERAND (exp, 0);
12902 return exp;
12903 }
12904
12905 /* Avoid any floating point extensions from EXP. */
12906 tree
12907 strip_float_extensions (tree exp)
12908 {
12909 tree sub, expt, subt;
12910
12911 /* For floating point constant look up the narrowest type that can hold
12912 it properly and handle it like (type)(narrowest_type)constant.
12913 This way we can optimize for instance a=a*2.0 where "a" is float
12914 but 2.0 is double constant. */
12915 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12916 {
12917 REAL_VALUE_TYPE orig;
12918 tree type = NULL;
12919
12920 orig = TREE_REAL_CST (exp);
12921 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12922 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12923 type = float_type_node;
12924 else if (TYPE_PRECISION (TREE_TYPE (exp))
12925 > TYPE_PRECISION (double_type_node)
12926 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12927 type = double_type_node;
12928 if (type)
12929 return build_real_truncate (type, orig);
12930 }
12931
12932 if (!CONVERT_EXPR_P (exp))
12933 return exp;
12934
12935 sub = TREE_OPERAND (exp, 0);
12936 subt = TREE_TYPE (sub);
12937 expt = TREE_TYPE (exp);
12938
12939 if (!FLOAT_TYPE_P (subt))
12940 return exp;
12941
12942 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12943 return exp;
12944
12945 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12946 return exp;
12947
12948 return strip_float_extensions (sub);
12949 }
12950
12951 /* Strip out all handled components that produce invariant
12952 offsets. */
12953
12954 const_tree
12955 strip_invariant_refs (const_tree op)
12956 {
12957 while (handled_component_p (op))
12958 {
12959 switch (TREE_CODE (op))
12960 {
12961 case ARRAY_REF:
12962 case ARRAY_RANGE_REF:
12963 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12964 || TREE_OPERAND (op, 2) != NULL_TREE
12965 || TREE_OPERAND (op, 3) != NULL_TREE)
12966 return NULL;
12967 break;
12968
12969 case COMPONENT_REF:
12970 if (TREE_OPERAND (op, 2) != NULL_TREE)
12971 return NULL;
12972 break;
12973
12974 default:;
12975 }
12976 op = TREE_OPERAND (op, 0);
12977 }
12978
12979 return op;
12980 }
12981
12982 static GTY(()) tree gcc_eh_personality_decl;
12983
12984 /* Return the GCC personality function decl. */
12985
12986 tree
12987 lhd_gcc_personality (void)
12988 {
12989 if (!gcc_eh_personality_decl)
12990 gcc_eh_personality_decl = build_personality_function ("gcc");
12991 return gcc_eh_personality_decl;
12992 }
12993
12994 /* TARGET is a call target of GIMPLE call statement
12995 (obtained by gimple_call_fn). Return true if it is
12996 OBJ_TYPE_REF representing an virtual call of C++ method.
12997 (As opposed to OBJ_TYPE_REF representing objc calls
12998 through a cast where middle-end devirtualization machinery
12999 can't apply.) */
13000
13001 bool
13002 virtual_method_call_p (const_tree target)
13003 {
13004 if (TREE_CODE (target) != OBJ_TYPE_REF)
13005 return false;
13006 tree t = TREE_TYPE (target);
13007 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
13008 t = TREE_TYPE (t);
13009 if (TREE_CODE (t) == FUNCTION_TYPE)
13010 return false;
13011 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
13012 /* If we do not have BINFO associated, it means that type was built
13013 without devirtualization enabled. Do not consider this a virtual
13014 call. */
13015 if (!TYPE_BINFO (obj_type_ref_class (target)))
13016 return false;
13017 return true;
13018 }
13019
13020 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
13021
13022 static tree
13023 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
13024 {
13025 unsigned int i;
13026 tree base_binfo, b;
13027
13028 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
13029 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
13030 && types_same_for_odr (TREE_TYPE (base_binfo), type))
13031 return base_binfo;
13032 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
13033 return b;
13034 return NULL;
13035 }
13036
13037 /* Try to find a base info of BINFO that would have its field decl at offset
13038 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
13039 found, return, otherwise return NULL_TREE. */
13040
13041 tree
13042 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
13043 {
13044 tree type = BINFO_TYPE (binfo);
13045
13046 while (true)
13047 {
13048 HOST_WIDE_INT pos, size;
13049 tree fld;
13050 int i;
13051
13052 if (types_same_for_odr (type, expected_type))
13053 return binfo;
13054 if (maybe_lt (offset, 0))
13055 return NULL_TREE;
13056
13057 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
13058 {
13059 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
13060 continue;
13061
13062 pos = int_bit_position (fld);
13063 size = tree_to_uhwi (DECL_SIZE (fld));
13064 if (known_in_range_p (offset, pos, size))
13065 break;
13066 }
13067 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
13068 return NULL_TREE;
13069
13070 /* Offset 0 indicates the primary base, whose vtable contents are
13071 represented in the binfo for the derived class. */
13072 else if (maybe_ne (offset, 0))
13073 {
13074 tree found_binfo = NULL, base_binfo;
13075 /* Offsets in BINFO are in bytes relative to the whole structure
13076 while POS is in bits relative to the containing field. */
13077 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
13078 / BITS_PER_UNIT);
13079
13080 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
13081 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
13082 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
13083 {
13084 found_binfo = base_binfo;
13085 break;
13086 }
13087 if (found_binfo)
13088 binfo = found_binfo;
13089 else
13090 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
13091 binfo_offset);
13092 }
13093
13094 type = TREE_TYPE (fld);
13095 offset -= pos;
13096 }
13097 }
13098
13099 /* Returns true if X is a typedef decl. */
13100
13101 bool
13102 is_typedef_decl (const_tree x)
13103 {
13104 return (x && TREE_CODE (x) == TYPE_DECL
13105 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
13106 }
13107
13108 /* Returns true iff TYPE is a type variant created for a typedef. */
13109
13110 bool
13111 typedef_variant_p (const_tree type)
13112 {
13113 return is_typedef_decl (TYPE_NAME (type));
13114 }
13115
13116 /* A class to handle converting a string that might contain
13117 control characters, (eg newline, form-feed, etc), into one
13118 in which contains escape sequences instead. */
13119
13120 class escaped_string
13121 {
13122 public:
13123 escaped_string () { m_owned = false; m_str = NULL; };
13124 ~escaped_string () { if (m_owned) free (m_str); }
13125 operator const char *() const { return (const char *) m_str; }
13126 void escape (const char *);
13127 private:
13128 char *m_str;
13129 bool m_owned;
13130 };
13131
13132 /* PR 84195: Replace control characters in "unescaped" with their
13133 escaped equivalents. Allow newlines if -fmessage-length has
13134 been set to a non-zero value. This is done here, rather than
13135 where the attribute is recorded as the message length can
13136 change between these two locations. */
13137
13138 void
13139 escaped_string::escape (const char *unescaped)
13140 {
13141 char *escaped;
13142 size_t i, new_i, len;
13143
13144 if (m_owned)
13145 free (m_str);
13146
13147 m_str = const_cast<char *> (unescaped);
13148 m_owned = false;
13149
13150 if (unescaped == NULL || *unescaped == 0)
13151 return;
13152
13153 len = strlen (unescaped);
13154 escaped = NULL;
13155 new_i = 0;
13156
13157 for (i = 0; i < len; i++)
13158 {
13159 char c = unescaped[i];
13160
13161 if (!ISCNTRL (c))
13162 {
13163 if (escaped)
13164 escaped[new_i++] = c;
13165 continue;
13166 }
13167
13168 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
13169 {
13170 if (escaped == NULL)
13171 {
13172 /* We only allocate space for a new string if we
13173 actually encounter a control character that
13174 needs replacing. */
13175 escaped = (char *) xmalloc (len * 2 + 1);
13176 strncpy (escaped, unescaped, i);
13177 new_i = i;
13178 }
13179
13180 escaped[new_i++] = '\\';
13181
13182 switch (c)
13183 {
13184 case '\a': escaped[new_i++] = 'a'; break;
13185 case '\b': escaped[new_i++] = 'b'; break;
13186 case '\f': escaped[new_i++] = 'f'; break;
13187 case '\n': escaped[new_i++] = 'n'; break;
13188 case '\r': escaped[new_i++] = 'r'; break;
13189 case '\t': escaped[new_i++] = 't'; break;
13190 case '\v': escaped[new_i++] = 'v'; break;
13191 default: escaped[new_i++] = '?'; break;
13192 }
13193 }
13194 else if (escaped)
13195 escaped[new_i++] = c;
13196 }
13197
13198 if (escaped)
13199 {
13200 escaped[new_i] = 0;
13201 m_str = escaped;
13202 m_owned = true;
13203 }
13204 }
13205
13206 /* Warn about a use of an identifier which was marked deprecated. Returns
13207 whether a warning was given. */
13208
13209 bool
13210 warn_deprecated_use (tree node, tree attr)
13211 {
13212 escaped_string msg;
13213
13214 if (node == 0 || !warn_deprecated_decl)
13215 return false;
13216
13217 if (!attr)
13218 {
13219 if (DECL_P (node))
13220 attr = DECL_ATTRIBUTES (node);
13221 else if (TYPE_P (node))
13222 {
13223 tree decl = TYPE_STUB_DECL (node);
13224 if (decl)
13225 attr = lookup_attribute ("deprecated",
13226 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
13227 }
13228 }
13229
13230 if (attr)
13231 attr = lookup_attribute ("deprecated", attr);
13232
13233 if (attr)
13234 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
13235
13236 bool w = false;
13237 if (DECL_P (node))
13238 {
13239 auto_diagnostic_group d;
13240 if (msg)
13241 w = warning (OPT_Wdeprecated_declarations,
13242 "%qD is deprecated: %s", node, (const char *) msg);
13243 else
13244 w = warning (OPT_Wdeprecated_declarations,
13245 "%qD is deprecated", node);
13246 if (w)
13247 inform (DECL_SOURCE_LOCATION (node), "declared here");
13248 }
13249 else if (TYPE_P (node))
13250 {
13251 tree what = NULL_TREE;
13252 tree decl = TYPE_STUB_DECL (node);
13253
13254 if (TYPE_NAME (node))
13255 {
13256 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
13257 what = TYPE_NAME (node);
13258 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
13259 && DECL_NAME (TYPE_NAME (node)))
13260 what = DECL_NAME (TYPE_NAME (node));
13261 }
13262
13263 auto_diagnostic_group d;
13264 if (what)
13265 {
13266 if (msg)
13267 w = warning (OPT_Wdeprecated_declarations,
13268 "%qE is deprecated: %s", what, (const char *) msg);
13269 else
13270 w = warning (OPT_Wdeprecated_declarations,
13271 "%qE is deprecated", what);
13272 }
13273 else
13274 {
13275 if (msg)
13276 w = warning (OPT_Wdeprecated_declarations,
13277 "type is deprecated: %s", (const char *) msg);
13278 else
13279 w = warning (OPT_Wdeprecated_declarations,
13280 "type is deprecated");
13281 }
13282
13283 if (w && decl)
13284 inform (DECL_SOURCE_LOCATION (decl), "declared here");
13285 }
13286
13287 return w;
13288 }
13289
13290 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
13291 somewhere in it. */
13292
13293 bool
13294 contains_bitfld_component_ref_p (const_tree ref)
13295 {
13296 while (handled_component_p (ref))
13297 {
13298 if (TREE_CODE (ref) == COMPONENT_REF
13299 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
13300 return true;
13301 ref = TREE_OPERAND (ref, 0);
13302 }
13303
13304 return false;
13305 }
13306
13307 /* Try to determine whether a TRY_CATCH expression can fall through.
13308 This is a subroutine of block_may_fallthru. */
13309
13310 static bool
13311 try_catch_may_fallthru (const_tree stmt)
13312 {
13313 tree_stmt_iterator i;
13314
13315 /* If the TRY block can fall through, the whole TRY_CATCH can
13316 fall through. */
13317 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
13318 return true;
13319
13320 i = tsi_start (TREE_OPERAND (stmt, 1));
13321 switch (TREE_CODE (tsi_stmt (i)))
13322 {
13323 case CATCH_EXPR:
13324 /* We expect to see a sequence of CATCH_EXPR trees, each with a
13325 catch expression and a body. The whole TRY_CATCH may fall
13326 through iff any of the catch bodies falls through. */
13327 for (; !tsi_end_p (i); tsi_next (&i))
13328 {
13329 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
13330 return true;
13331 }
13332 return false;
13333
13334 case EH_FILTER_EXPR:
13335 /* The exception filter expression only matters if there is an
13336 exception. If the exception does not match EH_FILTER_TYPES,
13337 we will execute EH_FILTER_FAILURE, and we will fall through
13338 if that falls through. If the exception does match
13339 EH_FILTER_TYPES, the stack unwinder will continue up the
13340 stack, so we will not fall through. We don't know whether we
13341 will throw an exception which matches EH_FILTER_TYPES or not,
13342 so we just ignore EH_FILTER_TYPES and assume that we might
13343 throw an exception which doesn't match. */
13344 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
13345
13346 default:
13347 /* This case represents statements to be executed when an
13348 exception occurs. Those statements are implicitly followed
13349 by a RESX statement to resume execution after the exception.
13350 So in this case the TRY_CATCH never falls through. */
13351 return false;
13352 }
13353 }
13354
13355 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
13356 need not be 100% accurate; simply be conservative and return true if we
13357 don't know. This is used only to avoid stupidly generating extra code.
13358 If we're wrong, we'll just delete the extra code later. */
13359
13360 bool
13361 block_may_fallthru (const_tree block)
13362 {
13363 /* This CONST_CAST is okay because expr_last returns its argument
13364 unmodified and we assign it to a const_tree. */
13365 const_tree stmt = expr_last (CONST_CAST_TREE (block));
13366
13367 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
13368 {
13369 case GOTO_EXPR:
13370 case RETURN_EXPR:
13371 /* Easy cases. If the last statement of the block implies
13372 control transfer, then we can't fall through. */
13373 return false;
13374
13375 case SWITCH_EXPR:
13376 /* If there is a default: label or case labels cover all possible
13377 SWITCH_COND values, then the SWITCH_EXPR will transfer control
13378 to some case label in all cases and all we care is whether the
13379 SWITCH_BODY falls through. */
13380 if (SWITCH_ALL_CASES_P (stmt))
13381 return block_may_fallthru (SWITCH_BODY (stmt));
13382 return true;
13383
13384 case COND_EXPR:
13385 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
13386 return true;
13387 return block_may_fallthru (COND_EXPR_ELSE (stmt));
13388
13389 case BIND_EXPR:
13390 return block_may_fallthru (BIND_EXPR_BODY (stmt));
13391
13392 case TRY_CATCH_EXPR:
13393 return try_catch_may_fallthru (stmt);
13394
13395 case TRY_FINALLY_EXPR:
13396 /* The finally clause is always executed after the try clause,
13397 so if it does not fall through, then the try-finally will not
13398 fall through. Otherwise, if the try clause does not fall
13399 through, then when the finally clause falls through it will
13400 resume execution wherever the try clause was going. So the
13401 whole try-finally will only fall through if both the try
13402 clause and the finally clause fall through. */
13403 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
13404 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
13405
13406 case MODIFY_EXPR:
13407 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
13408 stmt = TREE_OPERAND (stmt, 1);
13409 else
13410 return true;
13411 /* FALLTHRU */
13412
13413 case CALL_EXPR:
13414 /* Functions that do not return do not fall through. */
13415 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
13416
13417 case CLEANUP_POINT_EXPR:
13418 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13419
13420 case TARGET_EXPR:
13421 return block_may_fallthru (TREE_OPERAND (stmt, 1));
13422
13423 case ERROR_MARK:
13424 return true;
13425
13426 default:
13427 return lang_hooks.block_may_fallthru (stmt);
13428 }
13429 }
13430
13431 /* True if we are using EH to handle cleanups. */
13432 static bool using_eh_for_cleanups_flag = false;
13433
13434 /* This routine is called from front ends to indicate eh should be used for
13435 cleanups. */
13436 void
13437 using_eh_for_cleanups (void)
13438 {
13439 using_eh_for_cleanups_flag = true;
13440 }
13441
13442 /* Query whether EH is used for cleanups. */
13443 bool
13444 using_eh_for_cleanups_p (void)
13445 {
13446 return using_eh_for_cleanups_flag;
13447 }
13448
13449 /* Wrapper for tree_code_name to ensure that tree code is valid */
13450 const char *
13451 get_tree_code_name (enum tree_code code)
13452 {
13453 const char *invalid = "<invalid tree code>";
13454
13455 if (code >= MAX_TREE_CODES)
13456 return invalid;
13457
13458 return tree_code_name[code];
13459 }
13460
13461 /* Drops the TREE_OVERFLOW flag from T. */
13462
13463 tree
13464 drop_tree_overflow (tree t)
13465 {
13466 gcc_checking_assert (TREE_OVERFLOW (t));
13467
13468 /* For tree codes with a sharing machinery re-build the result. */
13469 if (poly_int_tree_p (t))
13470 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
13471
13472 /* For VECTOR_CST, remove the overflow bits from the encoded elements
13473 and canonicalize the result. */
13474 if (TREE_CODE (t) == VECTOR_CST)
13475 {
13476 tree_vector_builder builder;
13477 builder.new_unary_operation (TREE_TYPE (t), t, true);
13478 unsigned int count = builder.encoded_nelts ();
13479 for (unsigned int i = 0; i < count; ++i)
13480 {
13481 tree elt = VECTOR_CST_ELT (t, i);
13482 if (TREE_OVERFLOW (elt))
13483 elt = drop_tree_overflow (elt);
13484 builder.quick_push (elt);
13485 }
13486 return builder.build ();
13487 }
13488
13489 /* Otherwise, as all tcc_constants are possibly shared, copy the node
13490 and drop the flag. */
13491 t = copy_node (t);
13492 TREE_OVERFLOW (t) = 0;
13493
13494 /* For constants that contain nested constants, drop the flag
13495 from those as well. */
13496 if (TREE_CODE (t) == COMPLEX_CST)
13497 {
13498 if (TREE_OVERFLOW (TREE_REALPART (t)))
13499 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
13500 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
13501 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
13502 }
13503
13504 return t;
13505 }
13506
13507 /* Given a memory reference expression T, return its base address.
13508 The base address of a memory reference expression is the main
13509 object being referenced. For instance, the base address for
13510 'array[i].fld[j]' is 'array'. You can think of this as stripping
13511 away the offset part from a memory address.
13512
13513 This function calls handled_component_p to strip away all the inner
13514 parts of the memory reference until it reaches the base object. */
13515
13516 tree
13517 get_base_address (tree t)
13518 {
13519 while (handled_component_p (t))
13520 t = TREE_OPERAND (t, 0);
13521
13522 if ((TREE_CODE (t) == MEM_REF
13523 || TREE_CODE (t) == TARGET_MEM_REF)
13524 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
13525 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
13526
13527 /* ??? Either the alias oracle or all callers need to properly deal
13528 with WITH_SIZE_EXPRs before we can look through those. */
13529 if (TREE_CODE (t) == WITH_SIZE_EXPR)
13530 return NULL_TREE;
13531
13532 return t;
13533 }
13534
13535 /* Return a tree of sizetype representing the size, in bytes, of the element
13536 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13537
13538 tree
13539 array_ref_element_size (tree exp)
13540 {
13541 tree aligned_size = TREE_OPERAND (exp, 3);
13542 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
13543 location_t loc = EXPR_LOCATION (exp);
13544
13545 /* If a size was specified in the ARRAY_REF, it's the size measured
13546 in alignment units of the element type. So multiply by that value. */
13547 if (aligned_size)
13548 {
13549 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13550 sizetype from another type of the same width and signedness. */
13551 if (TREE_TYPE (aligned_size) != sizetype)
13552 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
13553 return size_binop_loc (loc, MULT_EXPR, aligned_size,
13554 size_int (TYPE_ALIGN_UNIT (elmt_type)));
13555 }
13556
13557 /* Otherwise, take the size from that of the element type. Substitute
13558 any PLACEHOLDER_EXPR that we have. */
13559 else
13560 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
13561 }
13562
13563 /* Return a tree representing the lower bound of the array mentioned in
13564 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13565
13566 tree
13567 array_ref_low_bound (tree exp)
13568 {
13569 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13570
13571 /* If a lower bound is specified in EXP, use it. */
13572 if (TREE_OPERAND (exp, 2))
13573 return TREE_OPERAND (exp, 2);
13574
13575 /* Otherwise, if there is a domain type and it has a lower bound, use it,
13576 substituting for a PLACEHOLDER_EXPR as needed. */
13577 if (domain_type && TYPE_MIN_VALUE (domain_type))
13578 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
13579
13580 /* Otherwise, return a zero of the appropriate type. */
13581 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
13582 }
13583
13584 /* Return a tree representing the upper bound of the array mentioned in
13585 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13586
13587 tree
13588 array_ref_up_bound (tree exp)
13589 {
13590 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13591
13592 /* If there is a domain type and it has an upper bound, use it, substituting
13593 for a PLACEHOLDER_EXPR as needed. */
13594 if (domain_type && TYPE_MAX_VALUE (domain_type))
13595 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
13596
13597 /* Otherwise fail. */
13598 return NULL_TREE;
13599 }
13600
13601 /* Returns true if REF is an array reference or a component reference
13602 to an array at the end of a structure.
13603 If this is the case, the array may be allocated larger
13604 than its upper bound implies. */
13605
13606 bool
13607 array_at_struct_end_p (tree ref)
13608 {
13609 tree atype;
13610
13611 if (TREE_CODE (ref) == ARRAY_REF
13612 || TREE_CODE (ref) == ARRAY_RANGE_REF)
13613 {
13614 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13615 ref = TREE_OPERAND (ref, 0);
13616 }
13617 else if (TREE_CODE (ref) == COMPONENT_REF
13618 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13619 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13620 else
13621 return false;
13622
13623 if (TREE_CODE (ref) == STRING_CST)
13624 return false;
13625
13626 tree ref_to_array = ref;
13627 while (handled_component_p (ref))
13628 {
13629 /* If the reference chain contains a component reference to a
13630 non-union type and there follows another field the reference
13631 is not at the end of a structure. */
13632 if (TREE_CODE (ref) == COMPONENT_REF)
13633 {
13634 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13635 {
13636 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13637 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13638 nextf = DECL_CHAIN (nextf);
13639 if (nextf)
13640 return false;
13641 }
13642 }
13643 /* If we have a multi-dimensional array we do not consider
13644 a non-innermost dimension as flex array if the whole
13645 multi-dimensional array is at struct end.
13646 Same for an array of aggregates with a trailing array
13647 member. */
13648 else if (TREE_CODE (ref) == ARRAY_REF)
13649 return false;
13650 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13651 ;
13652 /* If we view an underlying object as sth else then what we
13653 gathered up to now is what we have to rely on. */
13654 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13655 break;
13656 else
13657 gcc_unreachable ();
13658
13659 ref = TREE_OPERAND (ref, 0);
13660 }
13661
13662 /* The array now is at struct end. Treat flexible arrays as
13663 always subject to extend, even into just padding constrained by
13664 an underlying decl. */
13665 if (! TYPE_SIZE (atype)
13666 || ! TYPE_DOMAIN (atype)
13667 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13668 return true;
13669
13670 if (TREE_CODE (ref) == MEM_REF
13671 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13672 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13673
13674 /* If the reference is based on a declared entity, the size of the array
13675 is constrained by its given domain. (Do not trust commons PR/69368). */
13676 if (DECL_P (ref)
13677 && !(flag_unconstrained_commons
13678 && VAR_P (ref) && DECL_COMMON (ref))
13679 && DECL_SIZE_UNIT (ref)
13680 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13681 {
13682 /* Check whether the array domain covers all of the available
13683 padding. */
13684 poly_int64 offset;
13685 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13686 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13687 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13688 return true;
13689 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13690 return true;
13691
13692 /* If at least one extra element fits it is a flexarray. */
13693 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13694 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13695 + 2)
13696 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13697 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13698 return true;
13699
13700 return false;
13701 }
13702
13703 return true;
13704 }
13705
13706 /* Return a tree representing the offset, in bytes, of the field referenced
13707 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13708
13709 tree
13710 component_ref_field_offset (tree exp)
13711 {
13712 tree aligned_offset = TREE_OPERAND (exp, 2);
13713 tree field = TREE_OPERAND (exp, 1);
13714 location_t loc = EXPR_LOCATION (exp);
13715
13716 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13717 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13718 value. */
13719 if (aligned_offset)
13720 {
13721 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13722 sizetype from another type of the same width and signedness. */
13723 if (TREE_TYPE (aligned_offset) != sizetype)
13724 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13725 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13726 size_int (DECL_OFFSET_ALIGN (field)
13727 / BITS_PER_UNIT));
13728 }
13729
13730 /* Otherwise, take the offset from that of the field. Substitute
13731 any PLACEHOLDER_EXPR that we have. */
13732 else
13733 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13734 }
13735
13736 /* Return the machine mode of T. For vectors, returns the mode of the
13737 inner type. The main use case is to feed the result to HONOR_NANS,
13738 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13739
13740 machine_mode
13741 element_mode (const_tree t)
13742 {
13743 if (!TYPE_P (t))
13744 t = TREE_TYPE (t);
13745 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13746 t = TREE_TYPE (t);
13747 return TYPE_MODE (t);
13748 }
13749
13750 /* Vector types need to re-check the target flags each time we report
13751 the machine mode. We need to do this because attribute target can
13752 change the result of vector_mode_supported_p and have_regs_of_mode
13753 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13754 change on a per-function basis. */
13755 /* ??? Possibly a better solution is to run through all the types
13756 referenced by a function and re-compute the TYPE_MODE once, rather
13757 than make the TYPE_MODE macro call a function. */
13758
13759 machine_mode
13760 vector_type_mode (const_tree t)
13761 {
13762 machine_mode mode;
13763
13764 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13765
13766 mode = t->type_common.mode;
13767 if (VECTOR_MODE_P (mode)
13768 && (!targetm.vector_mode_supported_p (mode)
13769 || !have_regs_of_mode[mode]))
13770 {
13771 scalar_int_mode innermode;
13772
13773 /* For integers, try mapping it to a same-sized scalar mode. */
13774 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13775 {
13776 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13777 * GET_MODE_BITSIZE (innermode));
13778 scalar_int_mode mode;
13779 if (int_mode_for_size (size, 0).exists (&mode)
13780 && have_regs_of_mode[mode])
13781 return mode;
13782 }
13783
13784 return BLKmode;
13785 }
13786
13787 return mode;
13788 }
13789
13790 /* Verify that basic properties of T match TV and thus T can be a variant of
13791 TV. TV should be the more specified variant (i.e. the main variant). */
13792
13793 static bool
13794 verify_type_variant (const_tree t, tree tv)
13795 {
13796 /* Type variant can differ by:
13797
13798 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13799 ENCODE_QUAL_ADDR_SPACE.
13800 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13801 in this case some values may not be set in the variant types
13802 (see TYPE_COMPLETE_P checks).
13803 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13804 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13805 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13806 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13807 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13808 this is necessary to make it possible to merge types form different TUs
13809 - arrays, pointers and references may have TREE_TYPE that is a variant
13810 of TREE_TYPE of their main variants.
13811 - aggregates may have new TYPE_FIELDS list that list variants of
13812 the main variant TYPE_FIELDS.
13813 - vector types may differ by TYPE_VECTOR_OPAQUE
13814 */
13815
13816 /* Convenience macro for matching individual fields. */
13817 #define verify_variant_match(flag) \
13818 do { \
13819 if (flag (tv) != flag (t)) \
13820 { \
13821 error ("type variant differs by %s", #flag); \
13822 debug_tree (tv); \
13823 return false; \
13824 } \
13825 } while (false)
13826
13827 /* tree_base checks. */
13828
13829 verify_variant_match (TREE_CODE);
13830 /* FIXME: Ada builds non-artificial variants of artificial types. */
13831 if (TYPE_ARTIFICIAL (tv) && 0)
13832 verify_variant_match (TYPE_ARTIFICIAL);
13833 if (POINTER_TYPE_P (tv))
13834 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13835 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13836 verify_variant_match (TYPE_UNSIGNED);
13837 verify_variant_match (TYPE_PACKED);
13838 if (TREE_CODE (t) == REFERENCE_TYPE)
13839 verify_variant_match (TYPE_REF_IS_RVALUE);
13840 if (AGGREGATE_TYPE_P (t))
13841 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13842 else
13843 verify_variant_match (TYPE_SATURATING);
13844 /* FIXME: This check trigger during libstdc++ build. */
13845 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13846 verify_variant_match (TYPE_FINAL_P);
13847
13848 /* tree_type_common checks. */
13849
13850 if (COMPLETE_TYPE_P (t))
13851 {
13852 verify_variant_match (TYPE_MODE);
13853 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13854 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13855 verify_variant_match (TYPE_SIZE);
13856 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13857 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13858 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13859 {
13860 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13861 TYPE_SIZE_UNIT (tv), 0));
13862 error ("type variant has different %<TYPE_SIZE_UNIT%>");
13863 debug_tree (tv);
13864 error ("type variant%'s %<TYPE_SIZE_UNIT%>");
13865 debug_tree (TYPE_SIZE_UNIT (tv));
13866 error ("type%'s %<TYPE_SIZE_UNIT%>");
13867 debug_tree (TYPE_SIZE_UNIT (t));
13868 return false;
13869 }
13870 }
13871 verify_variant_match (TYPE_PRECISION);
13872 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13873 if (RECORD_OR_UNION_TYPE_P (t))
13874 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13875 else if (TREE_CODE (t) == ARRAY_TYPE)
13876 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13877 /* During LTO we merge variant lists from diferent translation units
13878 that may differ BY TYPE_CONTEXT that in turn may point
13879 to TRANSLATION_UNIT_DECL.
13880 Ada also builds variants of types with different TYPE_CONTEXT. */
13881 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13882 verify_variant_match (TYPE_CONTEXT);
13883 verify_variant_match (TYPE_STRING_FLAG);
13884 if (TYPE_ALIAS_SET_KNOWN_P (t))
13885 {
13886 error ("type variant with %<TYPE_ALIAS_SET_KNOWN_P%>");
13887 debug_tree (tv);
13888 return false;
13889 }
13890
13891 /* tree_type_non_common checks. */
13892
13893 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13894 and dangle the pointer from time to time. */
13895 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13896 && (in_lto_p || !TYPE_VFIELD (tv)
13897 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13898 {
13899 error ("type variant has different %<TYPE_VFIELD%>");
13900 debug_tree (tv);
13901 return false;
13902 }
13903 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13904 || TREE_CODE (t) == INTEGER_TYPE
13905 || TREE_CODE (t) == BOOLEAN_TYPE
13906 || TREE_CODE (t) == REAL_TYPE
13907 || TREE_CODE (t) == FIXED_POINT_TYPE)
13908 {
13909 verify_variant_match (TYPE_MAX_VALUE);
13910 verify_variant_match (TYPE_MIN_VALUE);
13911 }
13912 if (TREE_CODE (t) == METHOD_TYPE)
13913 verify_variant_match (TYPE_METHOD_BASETYPE);
13914 if (TREE_CODE (t) == OFFSET_TYPE)
13915 verify_variant_match (TYPE_OFFSET_BASETYPE);
13916 if (TREE_CODE (t) == ARRAY_TYPE)
13917 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13918 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13919 or even type's main variant. This is needed to make bootstrap pass
13920 and the bug seems new in GCC 5.
13921 C++ FE should be updated to make this consistent and we should check
13922 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13923 is a match with main variant.
13924
13925 Also disable the check for Java for now because of parser hack that builds
13926 first an dummy BINFO and then sometimes replace it by real BINFO in some
13927 of the copies. */
13928 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13929 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13930 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13931 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13932 at LTO time only. */
13933 && (in_lto_p && odr_type_p (t)))
13934 {
13935 error ("type variant has different %<TYPE_BINFO%>");
13936 debug_tree (tv);
13937 error ("type variant%'s %<TYPE_BINFO%>");
13938 debug_tree (TYPE_BINFO (tv));
13939 error ("type%'s %<TYPE_BINFO%>");
13940 debug_tree (TYPE_BINFO (t));
13941 return false;
13942 }
13943
13944 /* Check various uses of TYPE_VALUES_RAW. */
13945 if (TREE_CODE (t) == ENUMERAL_TYPE
13946 && TYPE_VALUES (t))
13947 verify_variant_match (TYPE_VALUES);
13948 else if (TREE_CODE (t) == ARRAY_TYPE)
13949 verify_variant_match (TYPE_DOMAIN);
13950 /* Permit incomplete variants of complete type. While FEs may complete
13951 all variants, this does not happen for C++ templates in all cases. */
13952 else if (RECORD_OR_UNION_TYPE_P (t)
13953 && COMPLETE_TYPE_P (t)
13954 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13955 {
13956 tree f1, f2;
13957
13958 /* Fortran builds qualified variants as new records with items of
13959 qualified type. Verify that they looks same. */
13960 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13961 f1 && f2;
13962 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13963 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13964 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13965 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13966 /* FIXME: gfc_nonrestricted_type builds all types as variants
13967 with exception of pointer types. It deeply copies the type
13968 which means that we may end up with a variant type
13969 referring non-variant pointer. We may change it to
13970 produce types as variants, too, like
13971 objc_get_protocol_qualified_type does. */
13972 && !POINTER_TYPE_P (TREE_TYPE (f1)))
13973 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13974 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13975 break;
13976 if (f1 || f2)
13977 {
13978 error ("type variant has different %<TYPE_FIELDS%>");
13979 debug_tree (tv);
13980 error ("first mismatch is field");
13981 debug_tree (f1);
13982 error ("and field");
13983 debug_tree (f2);
13984 return false;
13985 }
13986 }
13987 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13988 verify_variant_match (TYPE_ARG_TYPES);
13989 /* For C++ the qualified variant of array type is really an array type
13990 of qualified TREE_TYPE.
13991 objc builds variants of pointer where pointer to type is a variant, too
13992 in objc_get_protocol_qualified_type. */
13993 if (TREE_TYPE (t) != TREE_TYPE (tv)
13994 && ((TREE_CODE (t) != ARRAY_TYPE
13995 && !POINTER_TYPE_P (t))
13996 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13997 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13998 {
13999 error ("type variant has different %<TREE_TYPE%>");
14000 debug_tree (tv);
14001 error ("type variant%'s %<TREE_TYPE%>");
14002 debug_tree (TREE_TYPE (tv));
14003 error ("type%'s %<TREE_TYPE%>");
14004 debug_tree (TREE_TYPE (t));
14005 return false;
14006 }
14007 if (type_with_alias_set_p (t)
14008 && !gimple_canonical_types_compatible_p (t, tv, false))
14009 {
14010 error ("type is not compatible with its variant");
14011 debug_tree (tv);
14012 error ("type variant%'s %<TREE_TYPE%>");
14013 debug_tree (TREE_TYPE (tv));
14014 error ("type%'s %<TREE_TYPE%>");
14015 debug_tree (TREE_TYPE (t));
14016 return false;
14017 }
14018 return true;
14019 #undef verify_variant_match
14020 }
14021
14022
14023 /* The TYPE_CANONICAL merging machinery. It should closely resemble
14024 the middle-end types_compatible_p function. It needs to avoid
14025 claiming types are different for types that should be treated
14026 the same with respect to TBAA. Canonical types are also used
14027 for IL consistency checks via the useless_type_conversion_p
14028 predicate which does not handle all type kinds itself but falls
14029 back to pointer-comparison of TYPE_CANONICAL for aggregates
14030 for example. */
14031
14032 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
14033 type calculation because we need to allow inter-operability between signed
14034 and unsigned variants. */
14035
14036 bool
14037 type_with_interoperable_signedness (const_tree type)
14038 {
14039 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
14040 signed char and unsigned char. Similarly fortran FE builds
14041 C_SIZE_T as signed type, while C defines it unsigned. */
14042
14043 return tree_code_for_canonical_type_merging (TREE_CODE (type))
14044 == INTEGER_TYPE
14045 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
14046 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
14047 }
14048
14049 /* Return true iff T1 and T2 are structurally identical for what
14050 TBAA is concerned.
14051 This function is used both by lto.c canonical type merging and by the
14052 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
14053 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
14054 only for LTO because only in these cases TYPE_CANONICAL equivalence
14055 correspond to one defined by gimple_canonical_types_compatible_p. */
14056
14057 bool
14058 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
14059 bool trust_type_canonical)
14060 {
14061 /* Type variants should be same as the main variant. When not doing sanity
14062 checking to verify this fact, go to main variants and save some work. */
14063 if (trust_type_canonical)
14064 {
14065 t1 = TYPE_MAIN_VARIANT (t1);
14066 t2 = TYPE_MAIN_VARIANT (t2);
14067 }
14068
14069 /* Check first for the obvious case of pointer identity. */
14070 if (t1 == t2)
14071 return true;
14072
14073 /* Check that we have two types to compare. */
14074 if (t1 == NULL_TREE || t2 == NULL_TREE)
14075 return false;
14076
14077 /* We consider complete types always compatible with incomplete type.
14078 This does not make sense for canonical type calculation and thus we
14079 need to ensure that we are never called on it.
14080
14081 FIXME: For more correctness the function probably should have three modes
14082 1) mode assuming that types are complete mathcing their structure
14083 2) mode allowing incomplete types but producing equivalence classes
14084 and thus ignoring all info from complete types
14085 3) mode allowing incomplete types to match complete but checking
14086 compatibility between complete types.
14087
14088 1 and 2 can be used for canonical type calculation. 3 is the real
14089 definition of type compatibility that can be used i.e. for warnings during
14090 declaration merging. */
14091
14092 gcc_assert (!trust_type_canonical
14093 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
14094 /* If the types have been previously registered and found equal
14095 they still are. */
14096
14097 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
14098 && trust_type_canonical)
14099 {
14100 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
14101 they are always NULL, but they are set to non-NULL for types
14102 constructed by build_pointer_type and variants. In this case the
14103 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
14104 all pointers are considered equal. Be sure to not return false
14105 negatives. */
14106 gcc_checking_assert (canonical_type_used_p (t1)
14107 && canonical_type_used_p (t2));
14108 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
14109 }
14110
14111 /* Can't be the same type if the types don't have the same code. */
14112 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
14113 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
14114 return false;
14115
14116 /* Qualifiers do not matter for canonical type comparison purposes. */
14117
14118 /* Void types and nullptr types are always the same. */
14119 if (TREE_CODE (t1) == VOID_TYPE
14120 || TREE_CODE (t1) == NULLPTR_TYPE)
14121 return true;
14122
14123 /* Can't be the same type if they have different mode. */
14124 if (TYPE_MODE (t1) != TYPE_MODE (t2))
14125 return false;
14126
14127 /* Non-aggregate types can be handled cheaply. */
14128 if (INTEGRAL_TYPE_P (t1)
14129 || SCALAR_FLOAT_TYPE_P (t1)
14130 || FIXED_POINT_TYPE_P (t1)
14131 || TREE_CODE (t1) == VECTOR_TYPE
14132 || TREE_CODE (t1) == COMPLEX_TYPE
14133 || TREE_CODE (t1) == OFFSET_TYPE
14134 || POINTER_TYPE_P (t1))
14135 {
14136 /* Can't be the same type if they have different recision. */
14137 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
14138 return false;
14139
14140 /* In some cases the signed and unsigned types are required to be
14141 inter-operable. */
14142 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
14143 && !type_with_interoperable_signedness (t1))
14144 return false;
14145
14146 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
14147 interoperable with "signed char". Unless all frontends are revisited
14148 to agree on these types, we must ignore the flag completely. */
14149
14150 /* Fortran standard define C_PTR type that is compatible with every
14151 C pointer. For this reason we need to glob all pointers into one.
14152 Still pointers in different address spaces are not compatible. */
14153 if (POINTER_TYPE_P (t1))
14154 {
14155 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
14156 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
14157 return false;
14158 }
14159
14160 /* Tail-recurse to components. */
14161 if (TREE_CODE (t1) == VECTOR_TYPE
14162 || TREE_CODE (t1) == COMPLEX_TYPE)
14163 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
14164 TREE_TYPE (t2),
14165 trust_type_canonical);
14166
14167 return true;
14168 }
14169
14170 /* Do type-specific comparisons. */
14171 switch (TREE_CODE (t1))
14172 {
14173 case ARRAY_TYPE:
14174 /* Array types are the same if the element types are the same and
14175 the number of elements are the same. */
14176 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14177 trust_type_canonical)
14178 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
14179 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
14180 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
14181 return false;
14182 else
14183 {
14184 tree i1 = TYPE_DOMAIN (t1);
14185 tree i2 = TYPE_DOMAIN (t2);
14186
14187 /* For an incomplete external array, the type domain can be
14188 NULL_TREE. Check this condition also. */
14189 if (i1 == NULL_TREE && i2 == NULL_TREE)
14190 return true;
14191 else if (i1 == NULL_TREE || i2 == NULL_TREE)
14192 return false;
14193 else
14194 {
14195 tree min1 = TYPE_MIN_VALUE (i1);
14196 tree min2 = TYPE_MIN_VALUE (i2);
14197 tree max1 = TYPE_MAX_VALUE (i1);
14198 tree max2 = TYPE_MAX_VALUE (i2);
14199
14200 /* The minimum/maximum values have to be the same. */
14201 if ((min1 == min2
14202 || (min1 && min2
14203 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
14204 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
14205 || operand_equal_p (min1, min2, 0))))
14206 && (max1 == max2
14207 || (max1 && max2
14208 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
14209 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
14210 || operand_equal_p (max1, max2, 0)))))
14211 return true;
14212 else
14213 return false;
14214 }
14215 }
14216
14217 case METHOD_TYPE:
14218 case FUNCTION_TYPE:
14219 /* Function types are the same if the return type and arguments types
14220 are the same. */
14221 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14222 trust_type_canonical))
14223 return false;
14224
14225 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
14226 return true;
14227 else
14228 {
14229 tree parms1, parms2;
14230
14231 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
14232 parms1 && parms2;
14233 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
14234 {
14235 if (!gimple_canonical_types_compatible_p
14236 (TREE_VALUE (parms1), TREE_VALUE (parms2),
14237 trust_type_canonical))
14238 return false;
14239 }
14240
14241 if (parms1 || parms2)
14242 return false;
14243
14244 return true;
14245 }
14246
14247 case RECORD_TYPE:
14248 case UNION_TYPE:
14249 case QUAL_UNION_TYPE:
14250 {
14251 tree f1, f2;
14252
14253 /* Don't try to compare variants of an incomplete type, before
14254 TYPE_FIELDS has been copied around. */
14255 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
14256 return true;
14257
14258
14259 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
14260 return false;
14261
14262 /* For aggregate types, all the fields must be the same. */
14263 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
14264 f1 || f2;
14265 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14266 {
14267 /* Skip non-fields and zero-sized fields. */
14268 while (f1 && (TREE_CODE (f1) != FIELD_DECL
14269 || (DECL_SIZE (f1)
14270 && integer_zerop (DECL_SIZE (f1)))))
14271 f1 = TREE_CHAIN (f1);
14272 while (f2 && (TREE_CODE (f2) != FIELD_DECL
14273 || (DECL_SIZE (f2)
14274 && integer_zerop (DECL_SIZE (f2)))))
14275 f2 = TREE_CHAIN (f2);
14276 if (!f1 || !f2)
14277 break;
14278 /* The fields must have the same name, offset and type. */
14279 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
14280 || !gimple_compare_field_offset (f1, f2)
14281 || !gimple_canonical_types_compatible_p
14282 (TREE_TYPE (f1), TREE_TYPE (f2),
14283 trust_type_canonical))
14284 return false;
14285 }
14286
14287 /* If one aggregate has more fields than the other, they
14288 are not the same. */
14289 if (f1 || f2)
14290 return false;
14291
14292 return true;
14293 }
14294
14295 default:
14296 /* Consider all types with language specific trees in them mutually
14297 compatible. This is executed only from verify_type and false
14298 positives can be tolerated. */
14299 gcc_assert (!in_lto_p);
14300 return true;
14301 }
14302 }
14303
14304 /* Verify type T. */
14305
14306 void
14307 verify_type (const_tree t)
14308 {
14309 bool error_found = false;
14310 tree mv = TYPE_MAIN_VARIANT (t);
14311 if (!mv)
14312 {
14313 error ("main variant is not defined");
14314 error_found = true;
14315 }
14316 else if (mv != TYPE_MAIN_VARIANT (mv))
14317 {
14318 error ("%<TYPE_MAIN_VARIANT%> has different %<TYPE_MAIN_VARIANT%>");
14319 debug_tree (mv);
14320 error_found = true;
14321 }
14322 else if (t != mv && !verify_type_variant (t, mv))
14323 error_found = true;
14324
14325 tree ct = TYPE_CANONICAL (t);
14326 if (!ct)
14327 ;
14328 else if (TYPE_CANONICAL (t) != ct)
14329 {
14330 error ("%<TYPE_CANONICAL%> has different %<TYPE_CANONICAL%>");
14331 debug_tree (ct);
14332 error_found = true;
14333 }
14334 /* Method and function types cannot be used to address memory and thus
14335 TYPE_CANONICAL really matters only for determining useless conversions.
14336
14337 FIXME: C++ FE produce declarations of builtin functions that are not
14338 compatible with main variants. */
14339 else if (TREE_CODE (t) == FUNCTION_TYPE)
14340 ;
14341 else if (t != ct
14342 /* FIXME: gimple_canonical_types_compatible_p cannot compare types
14343 with variably sized arrays because their sizes possibly
14344 gimplified to different variables. */
14345 && !variably_modified_type_p (ct, NULL)
14346 && !gimple_canonical_types_compatible_p (t, ct, false)
14347 && COMPLETE_TYPE_P (t))
14348 {
14349 error ("%<TYPE_CANONICAL%> is not compatible");
14350 debug_tree (ct);
14351 error_found = true;
14352 }
14353
14354 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
14355 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
14356 {
14357 error ("%<TYPE_MODE%> of %<TYPE_CANONICAL%> is not compatible");
14358 debug_tree (ct);
14359 error_found = true;
14360 }
14361 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
14362 {
14363 error ("%<TYPE_CANONICAL%> of main variant is not main variant");
14364 debug_tree (ct);
14365 debug_tree (TYPE_MAIN_VARIANT (ct));
14366 error_found = true;
14367 }
14368
14369
14370 /* Check various uses of TYPE_MIN_VALUE_RAW. */
14371 if (RECORD_OR_UNION_TYPE_P (t))
14372 {
14373 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
14374 and danagle the pointer from time to time. */
14375 if (TYPE_VFIELD (t)
14376 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
14377 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
14378 {
14379 error ("%<TYPE_VFIELD%> is not %<FIELD_DECL%> nor %<TREE_LIST%>");
14380 debug_tree (TYPE_VFIELD (t));
14381 error_found = true;
14382 }
14383 }
14384 else if (TREE_CODE (t) == POINTER_TYPE)
14385 {
14386 if (TYPE_NEXT_PTR_TO (t)
14387 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
14388 {
14389 error ("%<TYPE_NEXT_PTR_TO%> is not %<POINTER_TYPE%>");
14390 debug_tree (TYPE_NEXT_PTR_TO (t));
14391 error_found = true;
14392 }
14393 }
14394 else if (TREE_CODE (t) == REFERENCE_TYPE)
14395 {
14396 if (TYPE_NEXT_REF_TO (t)
14397 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
14398 {
14399 error ("%<TYPE_NEXT_REF_TO%> is not %<REFERENCE_TYPE%>");
14400 debug_tree (TYPE_NEXT_REF_TO (t));
14401 error_found = true;
14402 }
14403 }
14404 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14405 || TREE_CODE (t) == FIXED_POINT_TYPE)
14406 {
14407 /* FIXME: The following check should pass:
14408 useless_type_conversion_p (const_cast <tree> (t),
14409 TREE_TYPE (TYPE_MIN_VALUE (t))
14410 but does not for C sizetypes in LTO. */
14411 }
14412
14413 /* Check various uses of TYPE_MAXVAL_RAW. */
14414 if (RECORD_OR_UNION_TYPE_P (t))
14415 {
14416 if (!TYPE_BINFO (t))
14417 ;
14418 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
14419 {
14420 error ("%<TYPE_BINFO%> is not %<TREE_BINFO%>");
14421 debug_tree (TYPE_BINFO (t));
14422 error_found = true;
14423 }
14424 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
14425 {
14426 error ("%<TYPE_BINFO%> type is not %<TYPE_MAIN_VARIANT%>");
14427 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
14428 error_found = true;
14429 }
14430 }
14431 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14432 {
14433 if (TYPE_METHOD_BASETYPE (t)
14434 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
14435 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
14436 {
14437 error ("%<TYPE_METHOD_BASETYPE%> is not record nor union");
14438 debug_tree (TYPE_METHOD_BASETYPE (t));
14439 error_found = true;
14440 }
14441 }
14442 else if (TREE_CODE (t) == OFFSET_TYPE)
14443 {
14444 if (TYPE_OFFSET_BASETYPE (t)
14445 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
14446 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
14447 {
14448 error ("%<TYPE_OFFSET_BASETYPE%> is not record nor union");
14449 debug_tree (TYPE_OFFSET_BASETYPE (t));
14450 error_found = true;
14451 }
14452 }
14453 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14454 || TREE_CODE (t) == FIXED_POINT_TYPE)
14455 {
14456 /* FIXME: The following check should pass:
14457 useless_type_conversion_p (const_cast <tree> (t),
14458 TREE_TYPE (TYPE_MAX_VALUE (t))
14459 but does not for C sizetypes in LTO. */
14460 }
14461 else if (TREE_CODE (t) == ARRAY_TYPE)
14462 {
14463 if (TYPE_ARRAY_MAX_SIZE (t)
14464 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
14465 {
14466 error ("%<TYPE_ARRAY_MAX_SIZE%> not %<INTEGER_CST%>");
14467 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
14468 error_found = true;
14469 }
14470 }
14471 else if (TYPE_MAX_VALUE_RAW (t))
14472 {
14473 error ("%<TYPE_MAX_VALUE_RAW%> non-NULL");
14474 debug_tree (TYPE_MAX_VALUE_RAW (t));
14475 error_found = true;
14476 }
14477
14478 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
14479 {
14480 error ("%<TYPE_LANG_SLOT_1 (binfo)%> field is non-NULL");
14481 debug_tree (TYPE_LANG_SLOT_1 (t));
14482 error_found = true;
14483 }
14484
14485 /* Check various uses of TYPE_VALUES_RAW. */
14486 if (TREE_CODE (t) == ENUMERAL_TYPE)
14487 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
14488 {
14489 tree value = TREE_VALUE (l);
14490 tree name = TREE_PURPOSE (l);
14491
14492 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
14493 CONST_DECL of ENUMERAL TYPE. */
14494 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
14495 {
14496 error ("enum value is not %<CONST_DECL%> or %<INTEGER_CST%>");
14497 debug_tree (value);
14498 debug_tree (name);
14499 error_found = true;
14500 }
14501 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
14502 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
14503 {
14504 error ("enum value type is not %<INTEGER_TYPE%> nor convertible "
14505 "to the enum");
14506 debug_tree (value);
14507 debug_tree (name);
14508 error_found = true;
14509 }
14510 if (TREE_CODE (name) != IDENTIFIER_NODE)
14511 {
14512 error ("enum value name is not %<IDENTIFIER_NODE%>");
14513 debug_tree (value);
14514 debug_tree (name);
14515 error_found = true;
14516 }
14517 }
14518 else if (TREE_CODE (t) == ARRAY_TYPE)
14519 {
14520 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14521 {
14522 error ("array %<TYPE_DOMAIN%> is not integer type");
14523 debug_tree (TYPE_DOMAIN (t));
14524 error_found = true;
14525 }
14526 }
14527 else if (RECORD_OR_UNION_TYPE_P (t))
14528 {
14529 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14530 {
14531 error ("%<TYPE_FIELDS%> defined in incomplete type");
14532 error_found = true;
14533 }
14534 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14535 {
14536 /* TODO: verify properties of decls. */
14537 if (TREE_CODE (fld) == FIELD_DECL)
14538 ;
14539 else if (TREE_CODE (fld) == TYPE_DECL)
14540 ;
14541 else if (TREE_CODE (fld) == CONST_DECL)
14542 ;
14543 else if (VAR_P (fld))
14544 ;
14545 else if (TREE_CODE (fld) == TEMPLATE_DECL)
14546 ;
14547 else if (TREE_CODE (fld) == USING_DECL)
14548 ;
14549 else if (TREE_CODE (fld) == FUNCTION_DECL)
14550 ;
14551 else
14552 {
14553 error ("wrong tree in %<TYPE_FIELDS%> list");
14554 debug_tree (fld);
14555 error_found = true;
14556 }
14557 }
14558 }
14559 else if (TREE_CODE (t) == INTEGER_TYPE
14560 || TREE_CODE (t) == BOOLEAN_TYPE
14561 || TREE_CODE (t) == OFFSET_TYPE
14562 || TREE_CODE (t) == REFERENCE_TYPE
14563 || TREE_CODE (t) == NULLPTR_TYPE
14564 || TREE_CODE (t) == POINTER_TYPE)
14565 {
14566 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14567 {
14568 error ("%<TYPE_CACHED_VALUES_P%> is %i while %<TYPE_CACHED_VALUES%> "
14569 "is %p",
14570 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14571 error_found = true;
14572 }
14573 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14574 {
14575 error ("%<TYPE_CACHED_VALUES%> is not %<TREE_VEC%>");
14576 debug_tree (TYPE_CACHED_VALUES (t));
14577 error_found = true;
14578 }
14579 /* Verify just enough of cache to ensure that no one copied it to new type.
14580 All copying should go by copy_node that should clear it. */
14581 else if (TYPE_CACHED_VALUES_P (t))
14582 {
14583 int i;
14584 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14585 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14586 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14587 {
14588 error ("wrong %<TYPE_CACHED_VALUES%> entry");
14589 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14590 error_found = true;
14591 break;
14592 }
14593 }
14594 }
14595 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14596 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14597 {
14598 /* C++ FE uses TREE_PURPOSE to store initial values. */
14599 if (TREE_PURPOSE (l) && in_lto_p)
14600 {
14601 error ("%<TREE_PURPOSE%> is non-NULL in %<TYPE_ARG_TYPES%> list");
14602 debug_tree (l);
14603 error_found = true;
14604 }
14605 if (!TYPE_P (TREE_VALUE (l)))
14606 {
14607 error ("wrong entry in %<TYPE_ARG_TYPES%> list");
14608 debug_tree (l);
14609 error_found = true;
14610 }
14611 }
14612 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14613 {
14614 error ("%<TYPE_VALUES_RAW%> field is non-NULL");
14615 debug_tree (TYPE_VALUES_RAW (t));
14616 error_found = true;
14617 }
14618 if (TREE_CODE (t) != INTEGER_TYPE
14619 && TREE_CODE (t) != BOOLEAN_TYPE
14620 && TREE_CODE (t) != OFFSET_TYPE
14621 && TREE_CODE (t) != REFERENCE_TYPE
14622 && TREE_CODE (t) != NULLPTR_TYPE
14623 && TREE_CODE (t) != POINTER_TYPE
14624 && TYPE_CACHED_VALUES_P (t))
14625 {
14626 error ("%<TYPE_CACHED_VALUES_P%> is set while it should not be");
14627 error_found = true;
14628 }
14629 if (TYPE_STRING_FLAG (t)
14630 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
14631 {
14632 error ("%<TYPE_STRING_FLAG%> is set on wrong type code");
14633 error_found = true;
14634 }
14635
14636 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14637 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14638 of a type. */
14639 if (TREE_CODE (t) == METHOD_TYPE
14640 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14641 {
14642 error ("%<TYPE_METHOD_BASETYPE%> is not main variant");
14643 error_found = true;
14644 }
14645
14646 if (error_found)
14647 {
14648 debug_tree (const_cast <tree> (t));
14649 internal_error ("%qs failed", __func__);
14650 }
14651 }
14652
14653
14654 /* Return 1 if ARG interpreted as signed in its precision is known to be
14655 always positive or 2 if ARG is known to be always negative, or 3 if
14656 ARG may be positive or negative. */
14657
14658 int
14659 get_range_pos_neg (tree arg)
14660 {
14661 if (arg == error_mark_node)
14662 return 3;
14663
14664 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14665 int cnt = 0;
14666 if (TREE_CODE (arg) == INTEGER_CST)
14667 {
14668 wide_int w = wi::sext (wi::to_wide (arg), prec);
14669 if (wi::neg_p (w))
14670 return 2;
14671 else
14672 return 1;
14673 }
14674 while (CONVERT_EXPR_P (arg)
14675 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14676 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14677 {
14678 arg = TREE_OPERAND (arg, 0);
14679 /* Narrower value zero extended into wider type
14680 will always result in positive values. */
14681 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14682 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14683 return 1;
14684 prec = TYPE_PRECISION (TREE_TYPE (arg));
14685 if (++cnt > 30)
14686 return 3;
14687 }
14688
14689 if (TREE_CODE (arg) != SSA_NAME)
14690 return 3;
14691 wide_int arg_min, arg_max;
14692 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14693 {
14694 gimple *g = SSA_NAME_DEF_STMT (arg);
14695 if (is_gimple_assign (g)
14696 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14697 {
14698 tree t = gimple_assign_rhs1 (g);
14699 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14700 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14701 {
14702 if (TYPE_UNSIGNED (TREE_TYPE (t))
14703 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14704 return 1;
14705 prec = TYPE_PRECISION (TREE_TYPE (t));
14706 arg = t;
14707 if (++cnt > 30)
14708 return 3;
14709 continue;
14710 }
14711 }
14712 return 3;
14713 }
14714 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14715 {
14716 /* For unsigned values, the "positive" range comes
14717 below the "negative" range. */
14718 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14719 return 1;
14720 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14721 return 2;
14722 }
14723 else
14724 {
14725 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14726 return 1;
14727 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14728 return 2;
14729 }
14730 return 3;
14731 }
14732
14733
14734
14735
14736 /* Return true if ARG is marked with the nonnull attribute in the
14737 current function signature. */
14738
14739 bool
14740 nonnull_arg_p (const_tree arg)
14741 {
14742 tree t, attrs, fntype;
14743 unsigned HOST_WIDE_INT arg_num;
14744
14745 gcc_assert (TREE_CODE (arg) == PARM_DECL
14746 && (POINTER_TYPE_P (TREE_TYPE (arg))
14747 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14748
14749 /* The static chain decl is always non null. */
14750 if (arg == cfun->static_chain_decl)
14751 return true;
14752
14753 /* THIS argument of method is always non-NULL. */
14754 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14755 && arg == DECL_ARGUMENTS (cfun->decl)
14756 && flag_delete_null_pointer_checks)
14757 return true;
14758
14759 /* Values passed by reference are always non-NULL. */
14760 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14761 && flag_delete_null_pointer_checks)
14762 return true;
14763
14764 fntype = TREE_TYPE (cfun->decl);
14765 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14766 {
14767 attrs = lookup_attribute ("nonnull", attrs);
14768
14769 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14770 if (attrs == NULL_TREE)
14771 return false;
14772
14773 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14774 if (TREE_VALUE (attrs) == NULL_TREE)
14775 return true;
14776
14777 /* Get the position number for ARG in the function signature. */
14778 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14779 t;
14780 t = DECL_CHAIN (t), arg_num++)
14781 {
14782 if (t == arg)
14783 break;
14784 }
14785
14786 gcc_assert (t == arg);
14787
14788 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14789 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14790 {
14791 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14792 return true;
14793 }
14794 }
14795
14796 return false;
14797 }
14798
14799 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14800 information. */
14801
14802 location_t
14803 set_block (location_t loc, tree block)
14804 {
14805 location_t pure_loc = get_pure_location (loc);
14806 source_range src_range = get_range_from_loc (line_table, loc);
14807 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14808 }
14809
14810 location_t
14811 set_source_range (tree expr, location_t start, location_t finish)
14812 {
14813 source_range src_range;
14814 src_range.m_start = start;
14815 src_range.m_finish = finish;
14816 return set_source_range (expr, src_range);
14817 }
14818
14819 location_t
14820 set_source_range (tree expr, source_range src_range)
14821 {
14822 if (!EXPR_P (expr))
14823 return UNKNOWN_LOCATION;
14824
14825 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14826 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14827 pure_loc,
14828 src_range,
14829 NULL);
14830 SET_EXPR_LOCATION (expr, adhoc);
14831 return adhoc;
14832 }
14833
14834 /* Return EXPR, potentially wrapped with a node expression LOC,
14835 if !CAN_HAVE_LOCATION_P (expr).
14836
14837 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14838 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14839
14840 Wrapper nodes can be identified using location_wrapper_p. */
14841
14842 tree
14843 maybe_wrap_with_location (tree expr, location_t loc)
14844 {
14845 if (expr == NULL)
14846 return NULL;
14847 if (loc == UNKNOWN_LOCATION)
14848 return expr;
14849 if (CAN_HAVE_LOCATION_P (expr))
14850 return expr;
14851 /* We should only be adding wrappers for constants and for decls,
14852 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14853 gcc_assert (CONSTANT_CLASS_P (expr)
14854 || DECL_P (expr)
14855 || EXCEPTIONAL_CLASS_P (expr));
14856
14857 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14858 any impact of the wrapper nodes. */
14859 if (EXCEPTIONAL_CLASS_P (expr))
14860 return expr;
14861
14862 /* If any auto_suppress_location_wrappers are active, don't create
14863 wrappers. */
14864 if (suppress_location_wrappers > 0)
14865 return expr;
14866
14867 tree_code code
14868 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14869 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14870 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14871 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14872 /* Mark this node as being a wrapper. */
14873 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14874 return wrapper;
14875 }
14876
14877 int suppress_location_wrappers;
14878
14879 /* Return the name of combined function FN, for debugging purposes. */
14880
14881 const char *
14882 combined_fn_name (combined_fn fn)
14883 {
14884 if (builtin_fn_p (fn))
14885 {
14886 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14887 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14888 }
14889 else
14890 return internal_fn_name (as_internal_fn (fn));
14891 }
14892
14893 /* Return a bitmap with a bit set corresponding to each argument in
14894 a function call type FNTYPE declared with attribute nonnull,
14895 or null if none of the function's argument are nonnull. The caller
14896 must free the bitmap. */
14897
14898 bitmap
14899 get_nonnull_args (const_tree fntype)
14900 {
14901 if (fntype == NULL_TREE)
14902 return NULL;
14903
14904 tree attrs = TYPE_ATTRIBUTES (fntype);
14905 if (!attrs)
14906 return NULL;
14907
14908 bitmap argmap = NULL;
14909
14910 /* A function declaration can specify multiple attribute nonnull,
14911 each with zero or more arguments. The loop below creates a bitmap
14912 representing a union of all the arguments. An empty (but non-null)
14913 bitmap means that all arguments have been declaraed nonnull. */
14914 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14915 {
14916 attrs = lookup_attribute ("nonnull", attrs);
14917 if (!attrs)
14918 break;
14919
14920 if (!argmap)
14921 argmap = BITMAP_ALLOC (NULL);
14922
14923 if (!TREE_VALUE (attrs))
14924 {
14925 /* Clear the bitmap in case a previous attribute nonnull
14926 set it and this one overrides it for all arguments. */
14927 bitmap_clear (argmap);
14928 return argmap;
14929 }
14930
14931 /* Iterate over the indices of the format arguments declared nonnull
14932 and set a bit for each. */
14933 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14934 {
14935 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14936 bitmap_set_bit (argmap, val);
14937 }
14938 }
14939
14940 return argmap;
14941 }
14942
14943 /* Returns true if TYPE is a type where it and all of its subobjects
14944 (recursively) are of structure, union, or array type. */
14945
14946 static bool
14947 default_is_empty_type (tree type)
14948 {
14949 if (RECORD_OR_UNION_TYPE_P (type))
14950 {
14951 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14952 if (TREE_CODE (field) == FIELD_DECL
14953 && !DECL_PADDING_P (field)
14954 && !default_is_empty_type (TREE_TYPE (field)))
14955 return false;
14956 return true;
14957 }
14958 else if (TREE_CODE (type) == ARRAY_TYPE)
14959 return (integer_minus_onep (array_type_nelts (type))
14960 || TYPE_DOMAIN (type) == NULL_TREE
14961 || default_is_empty_type (TREE_TYPE (type)));
14962 return false;
14963 }
14964
14965 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14966 that shouldn't be passed via stack. */
14967
14968 bool
14969 default_is_empty_record (const_tree type)
14970 {
14971 if (!abi_version_at_least (12))
14972 return false;
14973
14974 if (type == error_mark_node)
14975 return false;
14976
14977 if (TREE_ADDRESSABLE (type))
14978 return false;
14979
14980 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14981 }
14982
14983 /* Like int_size_in_bytes, but handle empty records specially. */
14984
14985 HOST_WIDE_INT
14986 arg_int_size_in_bytes (const_tree type)
14987 {
14988 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14989 }
14990
14991 /* Like size_in_bytes, but handle empty records specially. */
14992
14993 tree
14994 arg_size_in_bytes (const_tree type)
14995 {
14996 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14997 }
14998
14999 /* Return true if an expression with CODE has to have the same result type as
15000 its first operand. */
15001
15002 bool
15003 expr_type_first_operand_type_p (tree_code code)
15004 {
15005 switch (code)
15006 {
15007 case NEGATE_EXPR:
15008 case ABS_EXPR:
15009 case BIT_NOT_EXPR:
15010 case PAREN_EXPR:
15011 case CONJ_EXPR:
15012
15013 case PLUS_EXPR:
15014 case MINUS_EXPR:
15015 case MULT_EXPR:
15016 case TRUNC_DIV_EXPR:
15017 case CEIL_DIV_EXPR:
15018 case FLOOR_DIV_EXPR:
15019 case ROUND_DIV_EXPR:
15020 case TRUNC_MOD_EXPR:
15021 case CEIL_MOD_EXPR:
15022 case FLOOR_MOD_EXPR:
15023 case ROUND_MOD_EXPR:
15024 case RDIV_EXPR:
15025 case EXACT_DIV_EXPR:
15026 case MIN_EXPR:
15027 case MAX_EXPR:
15028 case BIT_IOR_EXPR:
15029 case BIT_XOR_EXPR:
15030 case BIT_AND_EXPR:
15031
15032 case LSHIFT_EXPR:
15033 case RSHIFT_EXPR:
15034 case LROTATE_EXPR:
15035 case RROTATE_EXPR:
15036 return true;
15037
15038 default:
15039 return false;
15040 }
15041 }
15042
15043 /* Return a typenode for the "standard" C type with a given name. */
15044 tree
15045 get_typenode_from_name (const char *name)
15046 {
15047 if (name == NULL || *name == '\0')
15048 return NULL_TREE;
15049
15050 if (strcmp (name, "char") == 0)
15051 return char_type_node;
15052 if (strcmp (name, "unsigned char") == 0)
15053 return unsigned_char_type_node;
15054 if (strcmp (name, "signed char") == 0)
15055 return signed_char_type_node;
15056
15057 if (strcmp (name, "short int") == 0)
15058 return short_integer_type_node;
15059 if (strcmp (name, "short unsigned int") == 0)
15060 return short_unsigned_type_node;
15061
15062 if (strcmp (name, "int") == 0)
15063 return integer_type_node;
15064 if (strcmp (name, "unsigned int") == 0)
15065 return unsigned_type_node;
15066
15067 if (strcmp (name, "long int") == 0)
15068 return long_integer_type_node;
15069 if (strcmp (name, "long unsigned int") == 0)
15070 return long_unsigned_type_node;
15071
15072 if (strcmp (name, "long long int") == 0)
15073 return long_long_integer_type_node;
15074 if (strcmp (name, "long long unsigned int") == 0)
15075 return long_long_unsigned_type_node;
15076
15077 gcc_unreachable ();
15078 }
15079
15080 /* List of pointer types used to declare builtins before we have seen their
15081 real declaration.
15082
15083 Keep the size up to date in tree.h ! */
15084 const builtin_structptr_type builtin_structptr_types[6] =
15085 {
15086 { fileptr_type_node, ptr_type_node, "FILE" },
15087 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
15088 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
15089 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
15090 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
15091 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
15092 };
15093
15094 /* Return the maximum object size. */
15095
15096 tree
15097 max_object_size (void)
15098 {
15099 /* To do: Make this a configurable parameter. */
15100 return TYPE_MAX_VALUE (ptrdiff_type_node);
15101 }
15102
15103 #if CHECKING_P
15104
15105 namespace selftest {
15106
15107 /* Selftests for tree. */
15108
15109 /* Verify that integer constants are sane. */
15110
15111 static void
15112 test_integer_constants ()
15113 {
15114 ASSERT_TRUE (integer_type_node != NULL);
15115 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
15116
15117 tree type = integer_type_node;
15118
15119 tree zero = build_zero_cst (type);
15120 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
15121 ASSERT_EQ (type, TREE_TYPE (zero));
15122
15123 tree one = build_int_cst (type, 1);
15124 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
15125 ASSERT_EQ (type, TREE_TYPE (zero));
15126 }
15127
15128 /* Verify identifiers. */
15129
15130 static void
15131 test_identifiers ()
15132 {
15133 tree identifier = get_identifier ("foo");
15134 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
15135 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
15136 }
15137
15138 /* Verify LABEL_DECL. */
15139
15140 static void
15141 test_labels ()
15142 {
15143 tree identifier = get_identifier ("err");
15144 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
15145 identifier, void_type_node);
15146 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
15147 ASSERT_FALSE (FORCED_LABEL (label_decl));
15148 }
15149
15150 /* Return a new VECTOR_CST node whose type is TYPE and whose values
15151 are given by VALS. */
15152
15153 static tree
15154 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
15155 {
15156 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
15157 tree_vector_builder builder (type, vals.length (), 1);
15158 builder.splice (vals);
15159 return builder.build ();
15160 }
15161
15162 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
15163
15164 static void
15165 check_vector_cst (vec<tree> expected, tree actual)
15166 {
15167 ASSERT_KNOWN_EQ (expected.length (),
15168 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
15169 for (unsigned int i = 0; i < expected.length (); ++i)
15170 ASSERT_EQ (wi::to_wide (expected[i]),
15171 wi::to_wide (vector_cst_elt (actual, i)));
15172 }
15173
15174 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
15175 and that its elements match EXPECTED. */
15176
15177 static void
15178 check_vector_cst_duplicate (vec<tree> expected, tree actual,
15179 unsigned int npatterns)
15180 {
15181 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15182 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
15183 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
15184 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
15185 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15186 check_vector_cst (expected, actual);
15187 }
15188
15189 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
15190 and NPATTERNS background elements, and that its elements match
15191 EXPECTED. */
15192
15193 static void
15194 check_vector_cst_fill (vec<tree> expected, tree actual,
15195 unsigned int npatterns)
15196 {
15197 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15198 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
15199 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
15200 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15201 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15202 check_vector_cst (expected, actual);
15203 }
15204
15205 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
15206 and that its elements match EXPECTED. */
15207
15208 static void
15209 check_vector_cst_stepped (vec<tree> expected, tree actual,
15210 unsigned int npatterns)
15211 {
15212 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15213 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
15214 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
15215 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15216 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
15217 check_vector_cst (expected, actual);
15218 }
15219
15220 /* Test the creation of VECTOR_CSTs. */
15221
15222 static void
15223 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
15224 {
15225 auto_vec<tree, 8> elements (8);
15226 elements.quick_grow (8);
15227 tree element_type = build_nonstandard_integer_type (16, true);
15228 tree vector_type = build_vector_type (element_type, 8);
15229
15230 /* Test a simple linear series with a base of 0 and a step of 1:
15231 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
15232 for (unsigned int i = 0; i < 8; ++i)
15233 elements[i] = build_int_cst (element_type, i);
15234 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
15235 check_vector_cst_stepped (elements, vector, 1);
15236
15237 /* Try the same with the first element replaced by 100:
15238 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
15239 elements[0] = build_int_cst (element_type, 100);
15240 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15241 check_vector_cst_stepped (elements, vector, 1);
15242
15243 /* Try a series that wraps around.
15244 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
15245 for (unsigned int i = 1; i < 8; ++i)
15246 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
15247 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15248 check_vector_cst_stepped (elements, vector, 1);
15249
15250 /* Try a downward series:
15251 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
15252 for (unsigned int i = 1; i < 8; ++i)
15253 elements[i] = build_int_cst (element_type, 80 - i);
15254 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15255 check_vector_cst_stepped (elements, vector, 1);
15256
15257 /* Try two interleaved series with different bases and steps:
15258 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
15259 elements[1] = build_int_cst (element_type, 53);
15260 for (unsigned int i = 2; i < 8; i += 2)
15261 {
15262 elements[i] = build_int_cst (element_type, 70 - i * 2);
15263 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
15264 }
15265 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15266 check_vector_cst_stepped (elements, vector, 2);
15267
15268 /* Try a duplicated value:
15269 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
15270 for (unsigned int i = 1; i < 8; ++i)
15271 elements[i] = elements[0];
15272 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15273 check_vector_cst_duplicate (elements, vector, 1);
15274
15275 /* Try an interleaved duplicated value:
15276 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
15277 elements[1] = build_int_cst (element_type, 55);
15278 for (unsigned int i = 2; i < 8; ++i)
15279 elements[i] = elements[i - 2];
15280 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15281 check_vector_cst_duplicate (elements, vector, 2);
15282
15283 /* Try a duplicated value with 2 exceptions
15284 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
15285 elements[0] = build_int_cst (element_type, 41);
15286 elements[1] = build_int_cst (element_type, 97);
15287 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15288 check_vector_cst_fill (elements, vector, 2);
15289
15290 /* Try with and without a step
15291 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
15292 for (unsigned int i = 3; i < 8; i += 2)
15293 elements[i] = build_int_cst (element_type, i * 7);
15294 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15295 check_vector_cst_stepped (elements, vector, 2);
15296
15297 /* Try a fully-general constant:
15298 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
15299 elements[5] = build_int_cst (element_type, 9990);
15300 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15301 check_vector_cst_fill (elements, vector, 4);
15302 }
15303
15304 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
15305 Helper function for test_location_wrappers, to deal with STRIP_NOPS
15306 modifying its argument in-place. */
15307
15308 static void
15309 check_strip_nops (tree node, tree expected)
15310 {
15311 STRIP_NOPS (node);
15312 ASSERT_EQ (expected, node);
15313 }
15314
15315 /* Verify location wrappers. */
15316
15317 static void
15318 test_location_wrappers ()
15319 {
15320 location_t loc = BUILTINS_LOCATION;
15321
15322 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
15323
15324 /* Wrapping a constant. */
15325 tree int_cst = build_int_cst (integer_type_node, 42);
15326 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
15327 ASSERT_FALSE (location_wrapper_p (int_cst));
15328
15329 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
15330 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
15331 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
15332 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
15333
15334 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
15335 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
15336
15337 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
15338 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
15339 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
15340 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
15341
15342 /* Wrapping a STRING_CST. */
15343 tree string_cst = build_string (4, "foo");
15344 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
15345 ASSERT_FALSE (location_wrapper_p (string_cst));
15346
15347 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
15348 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
15349 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
15350 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
15351 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
15352
15353
15354 /* Wrapping a variable. */
15355 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
15356 get_identifier ("some_int_var"),
15357 integer_type_node);
15358 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
15359 ASSERT_FALSE (location_wrapper_p (int_var));
15360
15361 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
15362 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
15363 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
15364 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
15365
15366 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
15367 wrapper. */
15368 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
15369 ASSERT_FALSE (location_wrapper_p (r_cast));
15370 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
15371
15372 /* Verify that STRIP_NOPS removes wrappers. */
15373 check_strip_nops (wrapped_int_cst, int_cst);
15374 check_strip_nops (wrapped_string_cst, string_cst);
15375 check_strip_nops (wrapped_int_var, int_var);
15376 }
15377
15378 /* Test various tree predicates. Verify that location wrappers don't
15379 affect the results. */
15380
15381 static void
15382 test_predicates ()
15383 {
15384 /* Build various constants and wrappers around them. */
15385
15386 location_t loc = BUILTINS_LOCATION;
15387
15388 tree i_0 = build_int_cst (integer_type_node, 0);
15389 tree wr_i_0 = maybe_wrap_with_location (i_0, loc);
15390
15391 tree i_1 = build_int_cst (integer_type_node, 1);
15392 tree wr_i_1 = maybe_wrap_with_location (i_1, loc);
15393
15394 tree i_m1 = build_int_cst (integer_type_node, -1);
15395 tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);
15396
15397 tree f_0 = build_real_from_int_cst (float_type_node, i_0);
15398 tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
15399 tree f_1 = build_real_from_int_cst (float_type_node, i_1);
15400 tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
15401 tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
15402 tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);
15403
15404 tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
15405 tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
15406 tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);
15407
15408 tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
15409 tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
15410 tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);
15411
15412 /* TODO: vector constants. */
15413
15414 /* Test integer_onep. */
15415 ASSERT_FALSE (integer_onep (i_0));
15416 ASSERT_FALSE (integer_onep (wr_i_0));
15417 ASSERT_TRUE (integer_onep (i_1));
15418 ASSERT_TRUE (integer_onep (wr_i_1));
15419 ASSERT_FALSE (integer_onep (i_m1));
15420 ASSERT_FALSE (integer_onep (wr_i_m1));
15421 ASSERT_FALSE (integer_onep (f_0));
15422 ASSERT_FALSE (integer_onep (wr_f_0));
15423 ASSERT_FALSE (integer_onep (f_1));
15424 ASSERT_FALSE (integer_onep (wr_f_1));
15425 ASSERT_FALSE (integer_onep (f_m1));
15426 ASSERT_FALSE (integer_onep (wr_f_m1));
15427 ASSERT_FALSE (integer_onep (c_i_0));
15428 ASSERT_TRUE (integer_onep (c_i_1));
15429 ASSERT_FALSE (integer_onep (c_i_m1));
15430 ASSERT_FALSE (integer_onep (c_f_0));
15431 ASSERT_FALSE (integer_onep (c_f_1));
15432 ASSERT_FALSE (integer_onep (c_f_m1));
15433
15434 /* Test integer_zerop. */
15435 ASSERT_TRUE (integer_zerop (i_0));
15436 ASSERT_TRUE (integer_zerop (wr_i_0));
15437 ASSERT_FALSE (integer_zerop (i_1));
15438 ASSERT_FALSE (integer_zerop (wr_i_1));
15439 ASSERT_FALSE (integer_zerop (i_m1));
15440 ASSERT_FALSE (integer_zerop (wr_i_m1));
15441 ASSERT_FALSE (integer_zerop (f_0));
15442 ASSERT_FALSE (integer_zerop (wr_f_0));
15443 ASSERT_FALSE (integer_zerop (f_1));
15444 ASSERT_FALSE (integer_zerop (wr_f_1));
15445 ASSERT_FALSE (integer_zerop (f_m1));
15446 ASSERT_FALSE (integer_zerop (wr_f_m1));
15447 ASSERT_TRUE (integer_zerop (c_i_0));
15448 ASSERT_FALSE (integer_zerop (c_i_1));
15449 ASSERT_FALSE (integer_zerop (c_i_m1));
15450 ASSERT_FALSE (integer_zerop (c_f_0));
15451 ASSERT_FALSE (integer_zerop (c_f_1));
15452 ASSERT_FALSE (integer_zerop (c_f_m1));
15453
15454 /* Test integer_all_onesp. */
15455 ASSERT_FALSE (integer_all_onesp (i_0));
15456 ASSERT_FALSE (integer_all_onesp (wr_i_0));
15457 ASSERT_FALSE (integer_all_onesp (i_1));
15458 ASSERT_FALSE (integer_all_onesp (wr_i_1));
15459 ASSERT_TRUE (integer_all_onesp (i_m1));
15460 ASSERT_TRUE (integer_all_onesp (wr_i_m1));
15461 ASSERT_FALSE (integer_all_onesp (f_0));
15462 ASSERT_FALSE (integer_all_onesp (wr_f_0));
15463 ASSERT_FALSE (integer_all_onesp (f_1));
15464 ASSERT_FALSE (integer_all_onesp (wr_f_1));
15465 ASSERT_FALSE (integer_all_onesp (f_m1));
15466 ASSERT_FALSE (integer_all_onesp (wr_f_m1));
15467 ASSERT_FALSE (integer_all_onesp (c_i_0));
15468 ASSERT_FALSE (integer_all_onesp (c_i_1));
15469 ASSERT_FALSE (integer_all_onesp (c_i_m1));
15470 ASSERT_FALSE (integer_all_onesp (c_f_0));
15471 ASSERT_FALSE (integer_all_onesp (c_f_1));
15472 ASSERT_FALSE (integer_all_onesp (c_f_m1));
15473
15474 /* Test integer_minus_onep. */
15475 ASSERT_FALSE (integer_minus_onep (i_0));
15476 ASSERT_FALSE (integer_minus_onep (wr_i_0));
15477 ASSERT_FALSE (integer_minus_onep (i_1));
15478 ASSERT_FALSE (integer_minus_onep (wr_i_1));
15479 ASSERT_TRUE (integer_minus_onep (i_m1));
15480 ASSERT_TRUE (integer_minus_onep (wr_i_m1));
15481 ASSERT_FALSE (integer_minus_onep (f_0));
15482 ASSERT_FALSE (integer_minus_onep (wr_f_0));
15483 ASSERT_FALSE (integer_minus_onep (f_1));
15484 ASSERT_FALSE (integer_minus_onep (wr_f_1));
15485 ASSERT_FALSE (integer_minus_onep (f_m1));
15486 ASSERT_FALSE (integer_minus_onep (wr_f_m1));
15487 ASSERT_FALSE (integer_minus_onep (c_i_0));
15488 ASSERT_FALSE (integer_minus_onep (c_i_1));
15489 ASSERT_TRUE (integer_minus_onep (c_i_m1));
15490 ASSERT_FALSE (integer_minus_onep (c_f_0));
15491 ASSERT_FALSE (integer_minus_onep (c_f_1));
15492 ASSERT_FALSE (integer_minus_onep (c_f_m1));
15493
15494 /* Test integer_each_onep. */
15495 ASSERT_FALSE (integer_each_onep (i_0));
15496 ASSERT_FALSE (integer_each_onep (wr_i_0));
15497 ASSERT_TRUE (integer_each_onep (i_1));
15498 ASSERT_TRUE (integer_each_onep (wr_i_1));
15499 ASSERT_FALSE (integer_each_onep (i_m1));
15500 ASSERT_FALSE (integer_each_onep (wr_i_m1));
15501 ASSERT_FALSE (integer_each_onep (f_0));
15502 ASSERT_FALSE (integer_each_onep (wr_f_0));
15503 ASSERT_FALSE (integer_each_onep (f_1));
15504 ASSERT_FALSE (integer_each_onep (wr_f_1));
15505 ASSERT_FALSE (integer_each_onep (f_m1));
15506 ASSERT_FALSE (integer_each_onep (wr_f_m1));
15507 ASSERT_FALSE (integer_each_onep (c_i_0));
15508 ASSERT_FALSE (integer_each_onep (c_i_1));
15509 ASSERT_FALSE (integer_each_onep (c_i_m1));
15510 ASSERT_FALSE (integer_each_onep (c_f_0));
15511 ASSERT_FALSE (integer_each_onep (c_f_1));
15512 ASSERT_FALSE (integer_each_onep (c_f_m1));
15513
15514 /* Test integer_truep. */
15515 ASSERT_FALSE (integer_truep (i_0));
15516 ASSERT_FALSE (integer_truep (wr_i_0));
15517 ASSERT_TRUE (integer_truep (i_1));
15518 ASSERT_TRUE (integer_truep (wr_i_1));
15519 ASSERT_FALSE (integer_truep (i_m1));
15520 ASSERT_FALSE (integer_truep (wr_i_m1));
15521 ASSERT_FALSE (integer_truep (f_0));
15522 ASSERT_FALSE (integer_truep (wr_f_0));
15523 ASSERT_FALSE (integer_truep (f_1));
15524 ASSERT_FALSE (integer_truep (wr_f_1));
15525 ASSERT_FALSE (integer_truep (f_m1));
15526 ASSERT_FALSE (integer_truep (wr_f_m1));
15527 ASSERT_FALSE (integer_truep (c_i_0));
15528 ASSERT_TRUE (integer_truep (c_i_1));
15529 ASSERT_FALSE (integer_truep (c_i_m1));
15530 ASSERT_FALSE (integer_truep (c_f_0));
15531 ASSERT_FALSE (integer_truep (c_f_1));
15532 ASSERT_FALSE (integer_truep (c_f_m1));
15533
15534 /* Test integer_nonzerop. */
15535 ASSERT_FALSE (integer_nonzerop (i_0));
15536 ASSERT_FALSE (integer_nonzerop (wr_i_0));
15537 ASSERT_TRUE (integer_nonzerop (i_1));
15538 ASSERT_TRUE (integer_nonzerop (wr_i_1));
15539 ASSERT_TRUE (integer_nonzerop (i_m1));
15540 ASSERT_TRUE (integer_nonzerop (wr_i_m1));
15541 ASSERT_FALSE (integer_nonzerop (f_0));
15542 ASSERT_FALSE (integer_nonzerop (wr_f_0));
15543 ASSERT_FALSE (integer_nonzerop (f_1));
15544 ASSERT_FALSE (integer_nonzerop (wr_f_1));
15545 ASSERT_FALSE (integer_nonzerop (f_m1));
15546 ASSERT_FALSE (integer_nonzerop (wr_f_m1));
15547 ASSERT_FALSE (integer_nonzerop (c_i_0));
15548 ASSERT_TRUE (integer_nonzerop (c_i_1));
15549 ASSERT_TRUE (integer_nonzerop (c_i_m1));
15550 ASSERT_FALSE (integer_nonzerop (c_f_0));
15551 ASSERT_FALSE (integer_nonzerop (c_f_1));
15552 ASSERT_FALSE (integer_nonzerop (c_f_m1));
15553
15554 /* Test real_zerop. */
15555 ASSERT_FALSE (real_zerop (i_0));
15556 ASSERT_FALSE (real_zerop (wr_i_0));
15557 ASSERT_FALSE (real_zerop (i_1));
15558 ASSERT_FALSE (real_zerop (wr_i_1));
15559 ASSERT_FALSE (real_zerop (i_m1));
15560 ASSERT_FALSE (real_zerop (wr_i_m1));
15561 ASSERT_TRUE (real_zerop (f_0));
15562 ASSERT_TRUE (real_zerop (wr_f_0));
15563 ASSERT_FALSE (real_zerop (f_1));
15564 ASSERT_FALSE (real_zerop (wr_f_1));
15565 ASSERT_FALSE (real_zerop (f_m1));
15566 ASSERT_FALSE (real_zerop (wr_f_m1));
15567 ASSERT_FALSE (real_zerop (c_i_0));
15568 ASSERT_FALSE (real_zerop (c_i_1));
15569 ASSERT_FALSE (real_zerop (c_i_m1));
15570 ASSERT_TRUE (real_zerop (c_f_0));
15571 ASSERT_FALSE (real_zerop (c_f_1));
15572 ASSERT_FALSE (real_zerop (c_f_m1));
15573
15574 /* Test real_onep. */
15575 ASSERT_FALSE (real_onep (i_0));
15576 ASSERT_FALSE (real_onep (wr_i_0));
15577 ASSERT_FALSE (real_onep (i_1));
15578 ASSERT_FALSE (real_onep (wr_i_1));
15579 ASSERT_FALSE (real_onep (i_m1));
15580 ASSERT_FALSE (real_onep (wr_i_m1));
15581 ASSERT_FALSE (real_onep (f_0));
15582 ASSERT_FALSE (real_onep (wr_f_0));
15583 ASSERT_TRUE (real_onep (f_1));
15584 ASSERT_TRUE (real_onep (wr_f_1));
15585 ASSERT_FALSE (real_onep (f_m1));
15586 ASSERT_FALSE (real_onep (wr_f_m1));
15587 ASSERT_FALSE (real_onep (c_i_0));
15588 ASSERT_FALSE (real_onep (c_i_1));
15589 ASSERT_FALSE (real_onep (c_i_m1));
15590 ASSERT_FALSE (real_onep (c_f_0));
15591 ASSERT_TRUE (real_onep (c_f_1));
15592 ASSERT_FALSE (real_onep (c_f_m1));
15593
15594 /* Test real_minus_onep. */
15595 ASSERT_FALSE (real_minus_onep (i_0));
15596 ASSERT_FALSE (real_minus_onep (wr_i_0));
15597 ASSERT_FALSE (real_minus_onep (i_1));
15598 ASSERT_FALSE (real_minus_onep (wr_i_1));
15599 ASSERT_FALSE (real_minus_onep (i_m1));
15600 ASSERT_FALSE (real_minus_onep (wr_i_m1));
15601 ASSERT_FALSE (real_minus_onep (f_0));
15602 ASSERT_FALSE (real_minus_onep (wr_f_0));
15603 ASSERT_FALSE (real_minus_onep (f_1));
15604 ASSERT_FALSE (real_minus_onep (wr_f_1));
15605 ASSERT_TRUE (real_minus_onep (f_m1));
15606 ASSERT_TRUE (real_minus_onep (wr_f_m1));
15607 ASSERT_FALSE (real_minus_onep (c_i_0));
15608 ASSERT_FALSE (real_minus_onep (c_i_1));
15609 ASSERT_FALSE (real_minus_onep (c_i_m1));
15610 ASSERT_FALSE (real_minus_onep (c_f_0));
15611 ASSERT_FALSE (real_minus_onep (c_f_1));
15612 ASSERT_TRUE (real_minus_onep (c_f_m1));
15613
15614 /* Test zerop. */
15615 ASSERT_TRUE (zerop (i_0));
15616 ASSERT_TRUE (zerop (wr_i_0));
15617 ASSERT_FALSE (zerop (i_1));
15618 ASSERT_FALSE (zerop (wr_i_1));
15619 ASSERT_FALSE (zerop (i_m1));
15620 ASSERT_FALSE (zerop (wr_i_m1));
15621 ASSERT_TRUE (zerop (f_0));
15622 ASSERT_TRUE (zerop (wr_f_0));
15623 ASSERT_FALSE (zerop (f_1));
15624 ASSERT_FALSE (zerop (wr_f_1));
15625 ASSERT_FALSE (zerop (f_m1));
15626 ASSERT_FALSE (zerop (wr_f_m1));
15627 ASSERT_TRUE (zerop (c_i_0));
15628 ASSERT_FALSE (zerop (c_i_1));
15629 ASSERT_FALSE (zerop (c_i_m1));
15630 ASSERT_TRUE (zerop (c_f_0));
15631 ASSERT_FALSE (zerop (c_f_1));
15632 ASSERT_FALSE (zerop (c_f_m1));
15633
15634 /* Test tree_expr_nonnegative_p. */
15635 ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
15636 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
15637 ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
15638 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
15639 ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
15640 ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
15641 ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
15642 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
15643 ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
15644 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
15645 ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
15646 ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
15647 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
15648 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
15649 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
15650 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
15651 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
15652 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));
15653
15654 /* Test tree_expr_nonzero_p. */
15655 ASSERT_FALSE (tree_expr_nonzero_p (i_0));
15656 ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
15657 ASSERT_TRUE (tree_expr_nonzero_p (i_1));
15658 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
15659 ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
15660 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));
15661
15662 /* Test integer_valued_real_p. */
15663 ASSERT_FALSE (integer_valued_real_p (i_0));
15664 ASSERT_TRUE (integer_valued_real_p (f_0));
15665 ASSERT_TRUE (integer_valued_real_p (wr_f_0));
15666 ASSERT_TRUE (integer_valued_real_p (f_1));
15667 ASSERT_TRUE (integer_valued_real_p (wr_f_1));
15668
15669 /* Test integer_pow2p. */
15670 ASSERT_FALSE (integer_pow2p (i_0));
15671 ASSERT_TRUE (integer_pow2p (i_1));
15672 ASSERT_TRUE (integer_pow2p (wr_i_1));
15673
15674 /* Test uniform_integer_cst_p. */
15675 ASSERT_TRUE (uniform_integer_cst_p (i_0));
15676 ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
15677 ASSERT_TRUE (uniform_integer_cst_p (i_1));
15678 ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
15679 ASSERT_TRUE (uniform_integer_cst_p (i_m1));
15680 ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
15681 ASSERT_FALSE (uniform_integer_cst_p (f_0));
15682 ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
15683 ASSERT_FALSE (uniform_integer_cst_p (f_1));
15684 ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
15685 ASSERT_FALSE (uniform_integer_cst_p (f_m1));
15686 ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
15687 ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
15688 ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
15689 ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
15690 ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
15691 ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
15692 ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
15693 }
15694
15695 /* Check that string escaping works correctly. */
15696
15697 static void
15698 test_escaped_strings (void)
15699 {
15700 int saved_cutoff;
15701 escaped_string msg;
15702
15703 msg.escape (NULL);
15704 /* ASSERT_STREQ does not accept NULL as a valid test
15705 result, so we have to use ASSERT_EQ instead. */
15706 ASSERT_EQ (NULL, (const char *) msg);
15707
15708 msg.escape ("");
15709 ASSERT_STREQ ("", (const char *) msg);
15710
15711 msg.escape ("foobar");
15712 ASSERT_STREQ ("foobar", (const char *) msg);
15713
15714 /* Ensure that we have -fmessage-length set to 0. */
15715 saved_cutoff = pp_line_cutoff (global_dc->printer);
15716 pp_line_cutoff (global_dc->printer) = 0;
15717
15718 msg.escape ("foo\nbar");
15719 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
15720
15721 msg.escape ("\a\b\f\n\r\t\v");
15722 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
15723
15724 /* Now repeat the tests with -fmessage-length set to 5. */
15725 pp_line_cutoff (global_dc->printer) = 5;
15726
15727 /* Note that the newline is not translated into an escape. */
15728 msg.escape ("foo\nbar");
15729 ASSERT_STREQ ("foo\nbar", (const char *) msg);
15730
15731 msg.escape ("\a\b\f\n\r\t\v");
15732 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
15733
15734 /* Restore the original message length setting. */
15735 pp_line_cutoff (global_dc->printer) = saved_cutoff;
15736 }
15737
15738 /* Run all of the selftests within this file. */
15739
15740 void
15741 tree_c_tests ()
15742 {
15743 test_integer_constants ();
15744 test_identifiers ();
15745 test_labels ();
15746 test_vector_cst_patterns ();
15747 test_location_wrappers ();
15748 test_predicates ();
15749 test_escaped_strings ();
15750 }
15751
15752 } // namespace selftest
15753
15754 #endif /* CHECKING_P */
15755
15756 #include "gt-tree.h"