tree.c (free_lang_data_in_decl): Free TREE_TYPE and alignment of TYPE_DECL.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70
71 /* Tree code classes. */
72
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82
83 /* Table indexed by tree code giving number of expression
84 operands beyond the fixed part of the node structure.
85 Not used for types or decls. */
86
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96
97 /* Names of tree components.
98 Used for printing out the tree and error messages. */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108
109 /* Each tree code class has an associated string representation.
110 These must correspond to the tree_code_class entries. */
111
112 const char *const tree_code_class_strings[] =
113 {
114 "exceptional",
115 "constant",
116 "type",
117 "declaration",
118 "reference",
119 "comparison",
120 "unary",
121 "binary",
122 "statement",
123 "vl_exp",
124 "expression"
125 };
126
127 /* obstack.[ch] explicitly declined to prototype this. */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129
130 /* Statistics-gathering stuff. */
131
132 static uint64_t tree_code_counts[MAX_TREE_CODES];
133 uint64_t tree_node_counts[(int) all_kinds];
134 uint64_t tree_node_sizes[(int) all_kinds];
135
136 /* Keep in sync with tree.h:enum tree_node_kind. */
137 static const char * const tree_node_kind_names[] = {
138 "decls",
139 "types",
140 "blocks",
141 "stmts",
142 "refs",
143 "exprs",
144 "constants",
145 "identifiers",
146 "vecs",
147 "binfos",
148 "ssa names",
149 "constructors",
150 "random kinds",
151 "lang_decl kinds",
152 "lang_type kinds",
153 "omp clauses",
154 };
155
156 /* Unique id for next decl created. */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created. */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created. Use negative numbers,
161 to catch erroneous uses. */
162 static GTY(()) int next_debug_decl_uid;
163
164 /* Since we cannot rehash a type after it is in the table, we have to
165 keep the hash code. */
166
167 struct GTY((for_user)) type_hash {
168 unsigned long hash;
169 tree type;
170 };
171
172 /* Initial size of the hash table (rounded to next prime). */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177 static hashval_t hash (type_hash *t) { return t->hash; }
178 static bool equal (type_hash *a, type_hash *b);
179
180 static int
181 keep_cache_entry (type_hash *&t)
182 {
183 return ggc_marked_p (t->type);
184 }
185 };
186
187 /* Now here is the hash table. When recording a type, it is added to
188 the slot whose index is the hash code. Note that the hash table is
189 used for several kinds of types (function types, array types and
190 array index range types, for now). While all these live in the
191 same table, they are completely independent, and the hash code is
192 computed differently for each of these. */
193
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195
196 /* Hash table and temporary node for larger integer const values. */
197 static GTY (()) tree int_cst_node;
198
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201 static hashval_t hash (tree t);
202 static bool equal (tree x, tree y);
203 };
204
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208 for a given value. */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211 typedef std::pair<tree, const poly_wide_int *> compare_type;
212 static hashval_t hash (tree t);
213 static bool equal (tree x, const compare_type &y);
214 };
215
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217
218 /* Hash table for optimization flags and target option flags. Use the same
219 hash table for both sets of options. Nodes for building the current
220 optimization and target option nodes. The assumption is most of the time
221 the options created will already be in the hash table, so we avoid
222 allocating and freeing up a node repeatably. */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228 static hashval_t hash (tree t);
229 static bool equal (tree x, tree y);
230 };
231
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233
234 /* General tree->tree mapping structure for use in hash tables. */
235
236
237 static GTY ((cache))
238 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239
240 static GTY ((cache))
241 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246
247 static bool
248 equal (tree_vec_map *a, tree_vec_map *b)
249 {
250 return a->base.from == b->base.from;
251 }
252
253 static int
254 keep_cache_entry (tree_vec_map *&m)
255 {
256 return ggc_marked_p (m->base.from);
257 }
258 };
259
260 static GTY ((cache))
261 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267
268 tree global_trees[TI_MAX];
269 tree integer_types[itk_none];
270
271 bool int_n_enabled_p[NUM_INT_N_ENTS];
272 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
273
274 bool tree_contains_struct[MAX_TREE_CODES][64];
275
276 /* Number of operands for each OpenMP clause. */
277 unsigned const char omp_clause_num_ops[] =
278 {
279 0, /* OMP_CLAUSE_ERROR */
280 1, /* OMP_CLAUSE_PRIVATE */
281 1, /* OMP_CLAUSE_SHARED */
282 1, /* OMP_CLAUSE_FIRSTPRIVATE */
283 2, /* OMP_CLAUSE_LASTPRIVATE */
284 5, /* OMP_CLAUSE_REDUCTION */
285 1, /* OMP_CLAUSE_COPYIN */
286 1, /* OMP_CLAUSE_COPYPRIVATE */
287 3, /* OMP_CLAUSE_LINEAR */
288 2, /* OMP_CLAUSE_ALIGNED */
289 1, /* OMP_CLAUSE_DEPEND */
290 1, /* OMP_CLAUSE_UNIFORM */
291 1, /* OMP_CLAUSE_TO_DECLARE */
292 1, /* OMP_CLAUSE_LINK */
293 2, /* OMP_CLAUSE_FROM */
294 2, /* OMP_CLAUSE_TO */
295 2, /* OMP_CLAUSE_MAP */
296 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
297 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
298 2, /* OMP_CLAUSE__CACHE_ */
299 2, /* OMP_CLAUSE_GANG */
300 1, /* OMP_CLAUSE_ASYNC */
301 1, /* OMP_CLAUSE_WAIT */
302 0, /* OMP_CLAUSE_AUTO */
303 0, /* OMP_CLAUSE_SEQ */
304 1, /* OMP_CLAUSE__LOOPTEMP_ */
305 1, /* OMP_CLAUSE_IF */
306 1, /* OMP_CLAUSE_NUM_THREADS */
307 1, /* OMP_CLAUSE_SCHEDULE */
308 0, /* OMP_CLAUSE_NOWAIT */
309 1, /* OMP_CLAUSE_ORDERED */
310 0, /* OMP_CLAUSE_DEFAULT */
311 3, /* OMP_CLAUSE_COLLAPSE */
312 0, /* OMP_CLAUSE_UNTIED */
313 1, /* OMP_CLAUSE_FINAL */
314 0, /* OMP_CLAUSE_MERGEABLE */
315 1, /* OMP_CLAUSE_DEVICE */
316 1, /* OMP_CLAUSE_DIST_SCHEDULE */
317 0, /* OMP_CLAUSE_INBRANCH */
318 0, /* OMP_CLAUSE_NOTINBRANCH */
319 1, /* OMP_CLAUSE_NUM_TEAMS */
320 1, /* OMP_CLAUSE_THREAD_LIMIT */
321 0, /* OMP_CLAUSE_PROC_BIND */
322 1, /* OMP_CLAUSE_SAFELEN */
323 1, /* OMP_CLAUSE_SIMDLEN */
324 0, /* OMP_CLAUSE_FOR */
325 0, /* OMP_CLAUSE_PARALLEL */
326 0, /* OMP_CLAUSE_SECTIONS */
327 0, /* OMP_CLAUSE_TASKGROUP */
328 1, /* OMP_CLAUSE_PRIORITY */
329 1, /* OMP_CLAUSE_GRAINSIZE */
330 1, /* OMP_CLAUSE_NUM_TASKS */
331 0, /* OMP_CLAUSE_NOGROUP */
332 0, /* OMP_CLAUSE_THREADS */
333 0, /* OMP_CLAUSE_SIMD */
334 1, /* OMP_CLAUSE_HINT */
335 0, /* OMP_CLAUSE_DEFALTMAP */
336 1, /* OMP_CLAUSE__SIMDUID_ */
337 0, /* OMP_CLAUSE__SIMT_ */
338 0, /* OMP_CLAUSE_INDEPENDENT */
339 1, /* OMP_CLAUSE_WORKER */
340 1, /* OMP_CLAUSE_VECTOR */
341 1, /* OMP_CLAUSE_NUM_GANGS */
342 1, /* OMP_CLAUSE_NUM_WORKERS */
343 1, /* OMP_CLAUSE_VECTOR_LENGTH */
344 3, /* OMP_CLAUSE_TILE */
345 2, /* OMP_CLAUSE__GRIDDIM_ */
346 0, /* OMP_CLAUSE_IF_PRESENT */
347 0, /* OMP_CLAUSE_FINALIZE */
348 };
349
350 const char * const omp_clause_code_name[] =
351 {
352 "error_clause",
353 "private",
354 "shared",
355 "firstprivate",
356 "lastprivate",
357 "reduction",
358 "copyin",
359 "copyprivate",
360 "linear",
361 "aligned",
362 "depend",
363 "uniform",
364 "to",
365 "link",
366 "from",
367 "to",
368 "map",
369 "use_device_ptr",
370 "is_device_ptr",
371 "_cache_",
372 "gang",
373 "async",
374 "wait",
375 "auto",
376 "seq",
377 "_looptemp_",
378 "if",
379 "num_threads",
380 "schedule",
381 "nowait",
382 "ordered",
383 "default",
384 "collapse",
385 "untied",
386 "final",
387 "mergeable",
388 "device",
389 "dist_schedule",
390 "inbranch",
391 "notinbranch",
392 "num_teams",
393 "thread_limit",
394 "proc_bind",
395 "safelen",
396 "simdlen",
397 "for",
398 "parallel",
399 "sections",
400 "taskgroup",
401 "priority",
402 "grainsize",
403 "num_tasks",
404 "nogroup",
405 "threads",
406 "simd",
407 "hint",
408 "defaultmap",
409 "_simduid_",
410 "_simt_",
411 "independent",
412 "worker",
413 "vector",
414 "num_gangs",
415 "num_workers",
416 "vector_length",
417 "tile",
418 "_griddim_",
419 "if_present",
420 "finalize",
421 };
422
423
424 /* Return the tree node structure used by tree code CODE. */
425
426 static inline enum tree_node_structure_enum
427 tree_node_structure_for_code (enum tree_code code)
428 {
429 switch (TREE_CODE_CLASS (code))
430 {
431 case tcc_declaration:
432 {
433 switch (code)
434 {
435 case FIELD_DECL:
436 return TS_FIELD_DECL;
437 case PARM_DECL:
438 return TS_PARM_DECL;
439 case VAR_DECL:
440 return TS_VAR_DECL;
441 case LABEL_DECL:
442 return TS_LABEL_DECL;
443 case RESULT_DECL:
444 return TS_RESULT_DECL;
445 case DEBUG_EXPR_DECL:
446 return TS_DECL_WRTL;
447 case CONST_DECL:
448 return TS_CONST_DECL;
449 case TYPE_DECL:
450 return TS_TYPE_DECL;
451 case FUNCTION_DECL:
452 return TS_FUNCTION_DECL;
453 case TRANSLATION_UNIT_DECL:
454 return TS_TRANSLATION_UNIT_DECL;
455 default:
456 return TS_DECL_NON_COMMON;
457 }
458 }
459 case tcc_type:
460 return TS_TYPE_NON_COMMON;
461 case tcc_reference:
462 case tcc_comparison:
463 case tcc_unary:
464 case tcc_binary:
465 case tcc_expression:
466 case tcc_statement:
467 case tcc_vl_exp:
468 return TS_EXP;
469 default: /* tcc_constant and tcc_exceptional */
470 break;
471 }
472 switch (code)
473 {
474 /* tcc_constant cases. */
475 case VOID_CST: return TS_TYPED;
476 case INTEGER_CST: return TS_INT_CST;
477 case POLY_INT_CST: return TS_POLY_INT_CST;
478 case REAL_CST: return TS_REAL_CST;
479 case FIXED_CST: return TS_FIXED_CST;
480 case COMPLEX_CST: return TS_COMPLEX;
481 case VECTOR_CST: return TS_VECTOR;
482 case STRING_CST: return TS_STRING;
483 /* tcc_exceptional cases. */
484 case ERROR_MARK: return TS_COMMON;
485 case IDENTIFIER_NODE: return TS_IDENTIFIER;
486 case TREE_LIST: return TS_LIST;
487 case TREE_VEC: return TS_VEC;
488 case SSA_NAME: return TS_SSA_NAME;
489 case PLACEHOLDER_EXPR: return TS_COMMON;
490 case STATEMENT_LIST: return TS_STATEMENT_LIST;
491 case BLOCK: return TS_BLOCK;
492 case CONSTRUCTOR: return TS_CONSTRUCTOR;
493 case TREE_BINFO: return TS_BINFO;
494 case OMP_CLAUSE: return TS_OMP_CLAUSE;
495 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
496 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
497
498 default:
499 gcc_unreachable ();
500 }
501 }
502
503
504 /* Initialize tree_contains_struct to describe the hierarchy of tree
505 nodes. */
506
507 static void
508 initialize_tree_contains_struct (void)
509 {
510 unsigned i;
511
512 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
513 {
514 enum tree_code code;
515 enum tree_node_structure_enum ts_code;
516
517 code = (enum tree_code) i;
518 ts_code = tree_node_structure_for_code (code);
519
520 /* Mark the TS structure itself. */
521 tree_contains_struct[code][ts_code] = 1;
522
523 /* Mark all the structures that TS is derived from. */
524 switch (ts_code)
525 {
526 case TS_TYPED:
527 case TS_BLOCK:
528 case TS_OPTIMIZATION:
529 case TS_TARGET_OPTION:
530 MARK_TS_BASE (code);
531 break;
532
533 case TS_COMMON:
534 case TS_INT_CST:
535 case TS_POLY_INT_CST:
536 case TS_REAL_CST:
537 case TS_FIXED_CST:
538 case TS_VECTOR:
539 case TS_STRING:
540 case TS_COMPLEX:
541 case TS_SSA_NAME:
542 case TS_CONSTRUCTOR:
543 case TS_EXP:
544 case TS_STATEMENT_LIST:
545 MARK_TS_TYPED (code);
546 break;
547
548 case TS_IDENTIFIER:
549 case TS_DECL_MINIMAL:
550 case TS_TYPE_COMMON:
551 case TS_LIST:
552 case TS_VEC:
553 case TS_BINFO:
554 case TS_OMP_CLAUSE:
555 MARK_TS_COMMON (code);
556 break;
557
558 case TS_TYPE_WITH_LANG_SPECIFIC:
559 MARK_TS_TYPE_COMMON (code);
560 break;
561
562 case TS_TYPE_NON_COMMON:
563 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
564 break;
565
566 case TS_DECL_COMMON:
567 MARK_TS_DECL_MINIMAL (code);
568 break;
569
570 case TS_DECL_WRTL:
571 case TS_CONST_DECL:
572 MARK_TS_DECL_COMMON (code);
573 break;
574
575 case TS_DECL_NON_COMMON:
576 MARK_TS_DECL_WITH_VIS (code);
577 break;
578
579 case TS_DECL_WITH_VIS:
580 case TS_PARM_DECL:
581 case TS_LABEL_DECL:
582 case TS_RESULT_DECL:
583 MARK_TS_DECL_WRTL (code);
584 break;
585
586 case TS_FIELD_DECL:
587 MARK_TS_DECL_COMMON (code);
588 break;
589
590 case TS_VAR_DECL:
591 MARK_TS_DECL_WITH_VIS (code);
592 break;
593
594 case TS_TYPE_DECL:
595 case TS_FUNCTION_DECL:
596 MARK_TS_DECL_NON_COMMON (code);
597 break;
598
599 case TS_TRANSLATION_UNIT_DECL:
600 MARK_TS_DECL_COMMON (code);
601 break;
602
603 default:
604 gcc_unreachable ();
605 }
606 }
607
608 /* Basic consistency checks for attributes used in fold. */
609 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
610 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
611 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
612 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
613 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
614 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
615 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
616 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
617 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
618 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
619 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
620 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
621 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
622 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
623 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
624 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
625 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
626 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
627 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
628 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
629 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
630 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
631 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
632 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
633 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
634 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
635 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
636 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
637 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
638 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
639 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
640 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
641 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
642 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
643 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
644 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
645 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
646 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
647 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
648 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
649 }
650
651
652 /* Init tree.c. */
653
654 void
655 init_ttree (void)
656 {
657 /* Initialize the hash table of types. */
658 type_hash_table
659 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
660
661 debug_expr_for_decl
662 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
663
664 value_expr_for_decl
665 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
666
667 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
668
669 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
670
671 int_cst_node = make_int_cst (1, 1);
672
673 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
674
675 cl_optimization_node = make_node (OPTIMIZATION_NODE);
676 cl_target_option_node = make_node (TARGET_OPTION_NODE);
677
678 /* Initialize the tree_contains_struct array. */
679 initialize_tree_contains_struct ();
680 lang_hooks.init_ts ();
681 }
682
683 \f
684 /* The name of the object as the assembler will see it (but before any
685 translations made by ASM_OUTPUT_LABELREF). Often this is the same
686 as DECL_NAME. It is an IDENTIFIER_NODE. */
687 tree
688 decl_assembler_name (tree decl)
689 {
690 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
691 lang_hooks.set_decl_assembler_name (decl);
692 return DECL_ASSEMBLER_NAME_RAW (decl);
693 }
694
695 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
696 (either of which may be NULL). Inform the FE, if this changes the
697 name. */
698
699 void
700 overwrite_decl_assembler_name (tree decl, tree name)
701 {
702 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
703 lang_hooks.overwrite_decl_assembler_name (decl, name);
704 }
705
706 /* When the target supports COMDAT groups, this indicates which group the
707 DECL is associated with. This can be either an IDENTIFIER_NODE or a
708 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
709 tree
710 decl_comdat_group (const_tree node)
711 {
712 struct symtab_node *snode = symtab_node::get (node);
713 if (!snode)
714 return NULL;
715 return snode->get_comdat_group ();
716 }
717
718 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
719 tree
720 decl_comdat_group_id (const_tree node)
721 {
722 struct symtab_node *snode = symtab_node::get (node);
723 if (!snode)
724 return NULL;
725 return snode->get_comdat_group_id ();
726 }
727
728 /* When the target supports named section, return its name as IDENTIFIER_NODE
729 or NULL if it is in no section. */
730 const char *
731 decl_section_name (const_tree node)
732 {
733 struct symtab_node *snode = symtab_node::get (node);
734 if (!snode)
735 return NULL;
736 return snode->get_section ();
737 }
738
739 /* Set section name of NODE to VALUE (that is expected to be
740 identifier node) */
741 void
742 set_decl_section_name (tree node, const char *value)
743 {
744 struct symtab_node *snode;
745
746 if (value == NULL)
747 {
748 snode = symtab_node::get (node);
749 if (!snode)
750 return;
751 }
752 else if (VAR_P (node))
753 snode = varpool_node::get_create (node);
754 else
755 snode = cgraph_node::get_create (node);
756 snode->set_section (value);
757 }
758
759 /* Return TLS model of a variable NODE. */
760 enum tls_model
761 decl_tls_model (const_tree node)
762 {
763 struct varpool_node *snode = varpool_node::get (node);
764 if (!snode)
765 return TLS_MODEL_NONE;
766 return snode->tls_model;
767 }
768
769 /* Set TLS model of variable NODE to MODEL. */
770 void
771 set_decl_tls_model (tree node, enum tls_model model)
772 {
773 struct varpool_node *vnode;
774
775 if (model == TLS_MODEL_NONE)
776 {
777 vnode = varpool_node::get (node);
778 if (!vnode)
779 return;
780 }
781 else
782 vnode = varpool_node::get_create (node);
783 vnode->tls_model = model;
784 }
785
786 /* Compute the number of bytes occupied by a tree with code CODE.
787 This function cannot be used for nodes that have variable sizes,
788 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
789 size_t
790 tree_code_size (enum tree_code code)
791 {
792 switch (TREE_CODE_CLASS (code))
793 {
794 case tcc_declaration: /* A decl node */
795 switch (code)
796 {
797 case FIELD_DECL: return sizeof (tree_field_decl);
798 case PARM_DECL: return sizeof (tree_parm_decl);
799 case VAR_DECL: return sizeof (tree_var_decl);
800 case LABEL_DECL: return sizeof (tree_label_decl);
801 case RESULT_DECL: return sizeof (tree_result_decl);
802 case CONST_DECL: return sizeof (tree_const_decl);
803 case TYPE_DECL: return sizeof (tree_type_decl);
804 case FUNCTION_DECL: return sizeof (tree_function_decl);
805 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
806 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
807 case NAMESPACE_DECL:
808 case IMPORTED_DECL:
809 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
810 default:
811 gcc_checking_assert (code >= NUM_TREE_CODES);
812 return lang_hooks.tree_size (code);
813 }
814
815 case tcc_type: /* a type node */
816 switch (code)
817 {
818 case OFFSET_TYPE:
819 case ENUMERAL_TYPE:
820 case BOOLEAN_TYPE:
821 case INTEGER_TYPE:
822 case REAL_TYPE:
823 case POINTER_TYPE:
824 case REFERENCE_TYPE:
825 case NULLPTR_TYPE:
826 case FIXED_POINT_TYPE:
827 case COMPLEX_TYPE:
828 case VECTOR_TYPE:
829 case ARRAY_TYPE:
830 case RECORD_TYPE:
831 case UNION_TYPE:
832 case QUAL_UNION_TYPE:
833 case VOID_TYPE:
834 case FUNCTION_TYPE:
835 case METHOD_TYPE:
836 case LANG_TYPE: return sizeof (tree_type_non_common);
837 default:
838 gcc_checking_assert (code >= NUM_TREE_CODES);
839 return lang_hooks.tree_size (code);
840 }
841
842 case tcc_reference: /* a reference */
843 case tcc_expression: /* an expression */
844 case tcc_statement: /* an expression with side effects */
845 case tcc_comparison: /* a comparison expression */
846 case tcc_unary: /* a unary arithmetic expression */
847 case tcc_binary: /* a binary arithmetic expression */
848 return (sizeof (struct tree_exp)
849 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
850
851 case tcc_constant: /* a constant */
852 switch (code)
853 {
854 case VOID_CST: return sizeof (tree_typed);
855 case INTEGER_CST: gcc_unreachable ();
856 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
857 case REAL_CST: return sizeof (tree_real_cst);
858 case FIXED_CST: return sizeof (tree_fixed_cst);
859 case COMPLEX_CST: return sizeof (tree_complex);
860 case VECTOR_CST: gcc_unreachable ();
861 case STRING_CST: gcc_unreachable ();
862 default:
863 gcc_checking_assert (code >= NUM_TREE_CODES);
864 return lang_hooks.tree_size (code);
865 }
866
867 case tcc_exceptional: /* something random, like an identifier. */
868 switch (code)
869 {
870 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
871 case TREE_LIST: return sizeof (tree_list);
872
873 case ERROR_MARK:
874 case PLACEHOLDER_EXPR: return sizeof (tree_common);
875
876 case TREE_VEC: gcc_unreachable ();
877 case OMP_CLAUSE: gcc_unreachable ();
878
879 case SSA_NAME: return sizeof (tree_ssa_name);
880
881 case STATEMENT_LIST: return sizeof (tree_statement_list);
882 case BLOCK: return sizeof (struct tree_block);
883 case CONSTRUCTOR: return sizeof (tree_constructor);
884 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
885 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
886
887 default:
888 gcc_checking_assert (code >= NUM_TREE_CODES);
889 return lang_hooks.tree_size (code);
890 }
891
892 default:
893 gcc_unreachable ();
894 }
895 }
896
897 /* Compute the number of bytes occupied by NODE. This routine only
898 looks at TREE_CODE, except for those nodes that have variable sizes. */
899 size_t
900 tree_size (const_tree node)
901 {
902 const enum tree_code code = TREE_CODE (node);
903 switch (code)
904 {
905 case INTEGER_CST:
906 return (sizeof (struct tree_int_cst)
907 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
908
909 case TREE_BINFO:
910 return (offsetof (struct tree_binfo, base_binfos)
911 + vec<tree, va_gc>
912 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
913
914 case TREE_VEC:
915 return (sizeof (struct tree_vec)
916 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
917
918 case VECTOR_CST:
919 return (sizeof (struct tree_vector)
920 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
921
922 case STRING_CST:
923 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
924
925 case OMP_CLAUSE:
926 return (sizeof (struct tree_omp_clause)
927 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
928 * sizeof (tree));
929
930 default:
931 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
932 return (sizeof (struct tree_exp)
933 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
934 else
935 return tree_code_size (code);
936 }
937 }
938
939 /* Return tree node kind based on tree CODE. */
940
941 static tree_node_kind
942 get_stats_node_kind (enum tree_code code)
943 {
944 enum tree_code_class type = TREE_CODE_CLASS (code);
945
946 switch (type)
947 {
948 case tcc_declaration: /* A decl node */
949 return d_kind;
950 case tcc_type: /* a type node */
951 return t_kind;
952 case tcc_statement: /* an expression with side effects */
953 return s_kind;
954 case tcc_reference: /* a reference */
955 return r_kind;
956 case tcc_expression: /* an expression */
957 case tcc_comparison: /* a comparison expression */
958 case tcc_unary: /* a unary arithmetic expression */
959 case tcc_binary: /* a binary arithmetic expression */
960 return e_kind;
961 case tcc_constant: /* a constant */
962 return c_kind;
963 case tcc_exceptional: /* something random, like an identifier. */
964 switch (code)
965 {
966 case IDENTIFIER_NODE:
967 return id_kind;
968 case TREE_VEC:
969 return vec_kind;
970 case TREE_BINFO:
971 return binfo_kind;
972 case SSA_NAME:
973 return ssa_name_kind;
974 case BLOCK:
975 return b_kind;
976 case CONSTRUCTOR:
977 return constr_kind;
978 case OMP_CLAUSE:
979 return omp_clause_kind;
980 default:
981 return x_kind;
982 }
983 break;
984 case tcc_vl_exp:
985 return e_kind;
986 default:
987 gcc_unreachable ();
988 }
989 }
990
991 /* Record interesting allocation statistics for a tree node with CODE
992 and LENGTH. */
993
994 static void
995 record_node_allocation_statistics (enum tree_code code, size_t length)
996 {
997 if (!GATHER_STATISTICS)
998 return;
999
1000 tree_node_kind kind = get_stats_node_kind (code);
1001
1002 tree_code_counts[(int) code]++;
1003 tree_node_counts[(int) kind]++;
1004 tree_node_sizes[(int) kind] += length;
1005 }
1006
1007 /* Allocate and return a new UID from the DECL_UID namespace. */
1008
1009 int
1010 allocate_decl_uid (void)
1011 {
1012 return next_decl_uid++;
1013 }
1014
1015 /* Return a newly allocated node of code CODE. For decl and type
1016 nodes, some other fields are initialized. The rest of the node is
1017 initialized to zero. This function cannot be used for TREE_VEC,
1018 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1019 tree_code_size.
1020
1021 Achoo! I got a code in the node. */
1022
1023 tree
1024 make_node (enum tree_code code MEM_STAT_DECL)
1025 {
1026 tree t;
1027 enum tree_code_class type = TREE_CODE_CLASS (code);
1028 size_t length = tree_code_size (code);
1029
1030 record_node_allocation_statistics (code, length);
1031
1032 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1033 TREE_SET_CODE (t, code);
1034
1035 switch (type)
1036 {
1037 case tcc_statement:
1038 if (code != DEBUG_BEGIN_STMT)
1039 TREE_SIDE_EFFECTS (t) = 1;
1040 break;
1041
1042 case tcc_declaration:
1043 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1044 {
1045 if (code == FUNCTION_DECL)
1046 {
1047 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1048 SET_DECL_MODE (t, FUNCTION_MODE);
1049 }
1050 else
1051 SET_DECL_ALIGN (t, 1);
1052 }
1053 DECL_SOURCE_LOCATION (t) = input_location;
1054 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1055 DECL_UID (t) = --next_debug_decl_uid;
1056 else
1057 {
1058 DECL_UID (t) = allocate_decl_uid ();
1059 SET_DECL_PT_UID (t, -1);
1060 }
1061 if (TREE_CODE (t) == LABEL_DECL)
1062 LABEL_DECL_UID (t) = -1;
1063
1064 break;
1065
1066 case tcc_type:
1067 TYPE_UID (t) = next_type_uid++;
1068 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1069 TYPE_USER_ALIGN (t) = 0;
1070 TYPE_MAIN_VARIANT (t) = t;
1071 TYPE_CANONICAL (t) = t;
1072
1073 /* Default to no attributes for type, but let target change that. */
1074 TYPE_ATTRIBUTES (t) = NULL_TREE;
1075 targetm.set_default_type_attributes (t);
1076
1077 /* We have not yet computed the alias set for this type. */
1078 TYPE_ALIAS_SET (t) = -1;
1079 break;
1080
1081 case tcc_constant:
1082 TREE_CONSTANT (t) = 1;
1083 break;
1084
1085 case tcc_expression:
1086 switch (code)
1087 {
1088 case INIT_EXPR:
1089 case MODIFY_EXPR:
1090 case VA_ARG_EXPR:
1091 case PREDECREMENT_EXPR:
1092 case PREINCREMENT_EXPR:
1093 case POSTDECREMENT_EXPR:
1094 case POSTINCREMENT_EXPR:
1095 /* All of these have side-effects, no matter what their
1096 operands are. */
1097 TREE_SIDE_EFFECTS (t) = 1;
1098 break;
1099
1100 default:
1101 break;
1102 }
1103 break;
1104
1105 case tcc_exceptional:
1106 switch (code)
1107 {
1108 case TARGET_OPTION_NODE:
1109 TREE_TARGET_OPTION(t)
1110 = ggc_cleared_alloc<struct cl_target_option> ();
1111 break;
1112
1113 case OPTIMIZATION_NODE:
1114 TREE_OPTIMIZATION (t)
1115 = ggc_cleared_alloc<struct cl_optimization> ();
1116 break;
1117
1118 default:
1119 break;
1120 }
1121 break;
1122
1123 default:
1124 /* Other classes need no special treatment. */
1125 break;
1126 }
1127
1128 return t;
1129 }
1130
1131 /* Free tree node. */
1132
1133 void
1134 free_node (tree node)
1135 {
1136 enum tree_code code = TREE_CODE (node);
1137 if (GATHER_STATISTICS)
1138 {
1139 enum tree_node_kind kind = get_stats_node_kind (code);
1140
1141 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1142 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1143 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1144
1145 tree_code_counts[(int) TREE_CODE (node)]--;
1146 tree_node_counts[(int) kind]--;
1147 tree_node_sizes[(int) kind] -= tree_size (node);
1148 }
1149 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1150 vec_free (CONSTRUCTOR_ELTS (node));
1151 else if (code == BLOCK)
1152 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1153 else if (code == TREE_BINFO)
1154 vec_free (BINFO_BASE_ACCESSES (node));
1155 ggc_free (node);
1156 }
1157 \f
1158 /* Return a new node with the same contents as NODE except that its
1159 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1160
1161 tree
1162 copy_node (tree node MEM_STAT_DECL)
1163 {
1164 tree t;
1165 enum tree_code code = TREE_CODE (node);
1166 size_t length;
1167
1168 gcc_assert (code != STATEMENT_LIST);
1169
1170 length = tree_size (node);
1171 record_node_allocation_statistics (code, length);
1172 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1173 memcpy (t, node, length);
1174
1175 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1176 TREE_CHAIN (t) = 0;
1177 TREE_ASM_WRITTEN (t) = 0;
1178 TREE_VISITED (t) = 0;
1179
1180 if (TREE_CODE_CLASS (code) == tcc_declaration)
1181 {
1182 if (code == DEBUG_EXPR_DECL)
1183 DECL_UID (t) = --next_debug_decl_uid;
1184 else
1185 {
1186 DECL_UID (t) = allocate_decl_uid ();
1187 if (DECL_PT_UID_SET_P (node))
1188 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1189 }
1190 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1191 && DECL_HAS_VALUE_EXPR_P (node))
1192 {
1193 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1194 DECL_HAS_VALUE_EXPR_P (t) = 1;
1195 }
1196 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1197 if (VAR_P (node))
1198 {
1199 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1200 t->decl_with_vis.symtab_node = NULL;
1201 }
1202 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1203 {
1204 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1205 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1206 }
1207 if (TREE_CODE (node) == FUNCTION_DECL)
1208 {
1209 DECL_STRUCT_FUNCTION (t) = NULL;
1210 t->decl_with_vis.symtab_node = NULL;
1211 }
1212 }
1213 else if (TREE_CODE_CLASS (code) == tcc_type)
1214 {
1215 TYPE_UID (t) = next_type_uid++;
1216 /* The following is so that the debug code for
1217 the copy is different from the original type.
1218 The two statements usually duplicate each other
1219 (because they clear fields of the same union),
1220 but the optimizer should catch that. */
1221 TYPE_SYMTAB_ADDRESS (t) = 0;
1222 TYPE_SYMTAB_DIE (t) = 0;
1223
1224 /* Do not copy the values cache. */
1225 if (TYPE_CACHED_VALUES_P (t))
1226 {
1227 TYPE_CACHED_VALUES_P (t) = 0;
1228 TYPE_CACHED_VALUES (t) = NULL_TREE;
1229 }
1230 }
1231 else if (code == TARGET_OPTION_NODE)
1232 {
1233 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1234 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1235 sizeof (struct cl_target_option));
1236 }
1237 else if (code == OPTIMIZATION_NODE)
1238 {
1239 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1240 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1241 sizeof (struct cl_optimization));
1242 }
1243
1244 return t;
1245 }
1246
1247 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1248 For example, this can copy a list made of TREE_LIST nodes. */
1249
1250 tree
1251 copy_list (tree list)
1252 {
1253 tree head;
1254 tree prev, next;
1255
1256 if (list == 0)
1257 return 0;
1258
1259 head = prev = copy_node (list);
1260 next = TREE_CHAIN (list);
1261 while (next)
1262 {
1263 TREE_CHAIN (prev) = copy_node (next);
1264 prev = TREE_CHAIN (prev);
1265 next = TREE_CHAIN (next);
1266 }
1267 return head;
1268 }
1269
1270 \f
1271 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1272 INTEGER_CST with value CST and type TYPE. */
1273
1274 static unsigned int
1275 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1276 {
1277 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1278 /* We need extra HWIs if CST is an unsigned integer with its
1279 upper bit set. */
1280 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1281 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1282 return cst.get_len ();
1283 }
1284
1285 /* Return a new INTEGER_CST with value CST and type TYPE. */
1286
1287 static tree
1288 build_new_int_cst (tree type, const wide_int &cst)
1289 {
1290 unsigned int len = cst.get_len ();
1291 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1292 tree nt = make_int_cst (len, ext_len);
1293
1294 if (len < ext_len)
1295 {
1296 --ext_len;
1297 TREE_INT_CST_ELT (nt, ext_len)
1298 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1299 for (unsigned int i = len; i < ext_len; ++i)
1300 TREE_INT_CST_ELT (nt, i) = -1;
1301 }
1302 else if (TYPE_UNSIGNED (type)
1303 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1304 {
1305 len--;
1306 TREE_INT_CST_ELT (nt, len)
1307 = zext_hwi (cst.elt (len),
1308 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1309 }
1310
1311 for (unsigned int i = 0; i < len; i++)
1312 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1313 TREE_TYPE (nt) = type;
1314 return nt;
1315 }
1316
1317 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1318
1319 static tree
1320 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1321 CXX_MEM_STAT_INFO)
1322 {
1323 size_t length = sizeof (struct tree_poly_int_cst);
1324 record_node_allocation_statistics (POLY_INT_CST, length);
1325
1326 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1327
1328 TREE_SET_CODE (t, POLY_INT_CST);
1329 TREE_CONSTANT (t) = 1;
1330 TREE_TYPE (t) = type;
1331 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1332 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1333 return t;
1334 }
1335
1336 /* Create a constant tree that contains CST sign-extended to TYPE. */
1337
1338 tree
1339 build_int_cst (tree type, poly_int64 cst)
1340 {
1341 /* Support legacy code. */
1342 if (!type)
1343 type = integer_type_node;
1344
1345 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1346 }
1347
1348 /* Create a constant tree that contains CST zero-extended to TYPE. */
1349
1350 tree
1351 build_int_cstu (tree type, poly_uint64 cst)
1352 {
1353 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1354 }
1355
1356 /* Create a constant tree that contains CST sign-extended to TYPE. */
1357
1358 tree
1359 build_int_cst_type (tree type, poly_int64 cst)
1360 {
1361 gcc_assert (type);
1362 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1363 }
1364
1365 /* Constructs tree in type TYPE from with value given by CST. Signedness
1366 of CST is assumed to be the same as the signedness of TYPE. */
1367
1368 tree
1369 double_int_to_tree (tree type, double_int cst)
1370 {
1371 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1372 }
1373
1374 /* We force the wide_int CST to the range of the type TYPE by sign or
1375 zero extending it. OVERFLOWABLE indicates if we are interested in
1376 overflow of the value, when >0 we are only interested in signed
1377 overflow, for <0 we are interested in any overflow. OVERFLOWED
1378 indicates whether overflow has already occurred. CONST_OVERFLOWED
1379 indicates whether constant overflow has already occurred. We force
1380 T's value to be within range of T's type (by setting to 0 or 1 all
1381 the bits outside the type's range). We set TREE_OVERFLOWED if,
1382 OVERFLOWED is nonzero,
1383 or OVERFLOWABLE is >0 and signed overflow occurs
1384 or OVERFLOWABLE is <0 and any overflow occurs
1385 We return a new tree node for the extended wide_int. The node
1386 is shared if no overflow flags are set. */
1387
1388
1389 tree
1390 force_fit_type (tree type, const poly_wide_int_ref &cst,
1391 int overflowable, bool overflowed)
1392 {
1393 signop sign = TYPE_SIGN (type);
1394
1395 /* If we need to set overflow flags, return a new unshared node. */
1396 if (overflowed || !wi::fits_to_tree_p (cst, type))
1397 {
1398 if (overflowed
1399 || overflowable < 0
1400 || (overflowable > 0 && sign == SIGNED))
1401 {
1402 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1403 sign);
1404 tree t;
1405 if (tmp.is_constant ())
1406 t = build_new_int_cst (type, tmp.coeffs[0]);
1407 else
1408 {
1409 tree coeffs[NUM_POLY_INT_COEFFS];
1410 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1411 {
1412 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1413 TREE_OVERFLOW (coeffs[i]) = 1;
1414 }
1415 t = build_new_poly_int_cst (type, coeffs);
1416 }
1417 TREE_OVERFLOW (t) = 1;
1418 return t;
1419 }
1420 }
1421
1422 /* Else build a shared node. */
1423 return wide_int_to_tree (type, cst);
1424 }
1425
1426 /* These are the hash table functions for the hash table of INTEGER_CST
1427 nodes of a sizetype. */
1428
1429 /* Return the hash code X, an INTEGER_CST. */
1430
1431 hashval_t
1432 int_cst_hasher::hash (tree x)
1433 {
1434 const_tree const t = x;
1435 hashval_t code = TYPE_UID (TREE_TYPE (t));
1436 int i;
1437
1438 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1439 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1440
1441 return code;
1442 }
1443
1444 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1445 is the same as that given by *Y, which is the same. */
1446
1447 bool
1448 int_cst_hasher::equal (tree x, tree y)
1449 {
1450 const_tree const xt = x;
1451 const_tree const yt = y;
1452
1453 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1454 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1455 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1456 return false;
1457
1458 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1459 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1460 return false;
1461
1462 return true;
1463 }
1464
1465 /* Create an INT_CST node of TYPE and value CST.
1466 The returned node is always shared. For small integers we use a
1467 per-type vector cache, for larger ones we use a single hash table.
1468 The value is extended from its precision according to the sign of
1469 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1470 the upper bits and ensures that hashing and value equality based
1471 upon the underlying HOST_WIDE_INTs works without masking. */
1472
1473 static tree
1474 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1475 {
1476 tree t;
1477 int ix = -1;
1478 int limit = 0;
1479
1480 gcc_assert (type);
1481 unsigned int prec = TYPE_PRECISION (type);
1482 signop sgn = TYPE_SIGN (type);
1483
1484 /* Verify that everything is canonical. */
1485 int l = pcst.get_len ();
1486 if (l > 1)
1487 {
1488 if (pcst.elt (l - 1) == 0)
1489 gcc_checking_assert (pcst.elt (l - 2) < 0);
1490 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1491 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1492 }
1493
1494 wide_int cst = wide_int::from (pcst, prec, sgn);
1495 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1496
1497 if (ext_len == 1)
1498 {
1499 /* We just need to store a single HOST_WIDE_INT. */
1500 HOST_WIDE_INT hwi;
1501 if (TYPE_UNSIGNED (type))
1502 hwi = cst.to_uhwi ();
1503 else
1504 hwi = cst.to_shwi ();
1505
1506 switch (TREE_CODE (type))
1507 {
1508 case NULLPTR_TYPE:
1509 gcc_assert (hwi == 0);
1510 /* Fallthru. */
1511
1512 case POINTER_TYPE:
1513 case REFERENCE_TYPE:
1514 /* Cache NULL pointer and zero bounds. */
1515 if (hwi == 0)
1516 {
1517 limit = 1;
1518 ix = 0;
1519 }
1520 break;
1521
1522 case BOOLEAN_TYPE:
1523 /* Cache false or true. */
1524 limit = 2;
1525 if (IN_RANGE (hwi, 0, 1))
1526 ix = hwi;
1527 break;
1528
1529 case INTEGER_TYPE:
1530 case OFFSET_TYPE:
1531 if (TYPE_SIGN (type) == UNSIGNED)
1532 {
1533 /* Cache [0, N). */
1534 limit = INTEGER_SHARE_LIMIT;
1535 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1536 ix = hwi;
1537 }
1538 else
1539 {
1540 /* Cache [-1, N). */
1541 limit = INTEGER_SHARE_LIMIT + 1;
1542 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1543 ix = hwi + 1;
1544 }
1545 break;
1546
1547 case ENUMERAL_TYPE:
1548 break;
1549
1550 default:
1551 gcc_unreachable ();
1552 }
1553
1554 if (ix >= 0)
1555 {
1556 /* Look for it in the type's vector of small shared ints. */
1557 if (!TYPE_CACHED_VALUES_P (type))
1558 {
1559 TYPE_CACHED_VALUES_P (type) = 1;
1560 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1561 }
1562
1563 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1564 if (t)
1565 /* Make sure no one is clobbering the shared constant. */
1566 gcc_checking_assert (TREE_TYPE (t) == type
1567 && TREE_INT_CST_NUNITS (t) == 1
1568 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1569 && TREE_INT_CST_EXT_NUNITS (t) == 1
1570 && TREE_INT_CST_ELT (t, 0) == hwi);
1571 else
1572 {
1573 /* Create a new shared int. */
1574 t = build_new_int_cst (type, cst);
1575 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1576 }
1577 }
1578 else
1579 {
1580 /* Use the cache of larger shared ints, using int_cst_node as
1581 a temporary. */
1582
1583 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1584 TREE_TYPE (int_cst_node) = type;
1585
1586 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1587 t = *slot;
1588 if (!t)
1589 {
1590 /* Insert this one into the hash table. */
1591 t = int_cst_node;
1592 *slot = t;
1593 /* Make a new node for next time round. */
1594 int_cst_node = make_int_cst (1, 1);
1595 }
1596 }
1597 }
1598 else
1599 {
1600 /* The value either hashes properly or we drop it on the floor
1601 for the gc to take care of. There will not be enough of them
1602 to worry about. */
1603
1604 tree nt = build_new_int_cst (type, cst);
1605 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1606 t = *slot;
1607 if (!t)
1608 {
1609 /* Insert this one into the hash table. */
1610 t = nt;
1611 *slot = t;
1612 }
1613 else
1614 ggc_free (nt);
1615 }
1616
1617 return t;
1618 }
1619
1620 hashval_t
1621 poly_int_cst_hasher::hash (tree t)
1622 {
1623 inchash::hash hstate;
1624
1625 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1626 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1627 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1628
1629 return hstate.end ();
1630 }
1631
1632 bool
1633 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1634 {
1635 if (TREE_TYPE (x) != y.first)
1636 return false;
1637 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1638 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1639 return false;
1640 return true;
1641 }
1642
1643 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1644 The elements must also have type TYPE. */
1645
1646 tree
1647 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1648 {
1649 unsigned int prec = TYPE_PRECISION (type);
1650 gcc_assert (prec <= values.coeffs[0].get_precision ());
1651 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1652
1653 inchash::hash h;
1654 h.add_int (TYPE_UID (type));
1655 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1656 h.add_wide_int (c.coeffs[i]);
1657 poly_int_cst_hasher::compare_type comp (type, &c);
1658 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1659 INSERT);
1660 if (*slot == NULL_TREE)
1661 {
1662 tree coeffs[NUM_POLY_INT_COEFFS];
1663 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1664 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1665 *slot = build_new_poly_int_cst (type, coeffs);
1666 }
1667 return *slot;
1668 }
1669
1670 /* Create a constant tree with value VALUE in type TYPE. */
1671
1672 tree
1673 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1674 {
1675 if (value.is_constant ())
1676 return wide_int_to_tree_1 (type, value.coeffs[0]);
1677 return build_poly_int_cst (type, value);
1678 }
1679
1680 void
1681 cache_integer_cst (tree t)
1682 {
1683 tree type = TREE_TYPE (t);
1684 int ix = -1;
1685 int limit = 0;
1686 int prec = TYPE_PRECISION (type);
1687
1688 gcc_assert (!TREE_OVERFLOW (t));
1689
1690 switch (TREE_CODE (type))
1691 {
1692 case NULLPTR_TYPE:
1693 gcc_assert (integer_zerop (t));
1694 /* Fallthru. */
1695
1696 case POINTER_TYPE:
1697 case REFERENCE_TYPE:
1698 /* Cache NULL pointer. */
1699 if (integer_zerop (t))
1700 {
1701 limit = 1;
1702 ix = 0;
1703 }
1704 break;
1705
1706 case BOOLEAN_TYPE:
1707 /* Cache false or true. */
1708 limit = 2;
1709 if (wi::ltu_p (wi::to_wide (t), 2))
1710 ix = TREE_INT_CST_ELT (t, 0);
1711 break;
1712
1713 case INTEGER_TYPE:
1714 case OFFSET_TYPE:
1715 if (TYPE_UNSIGNED (type))
1716 {
1717 /* Cache 0..N */
1718 limit = INTEGER_SHARE_LIMIT;
1719
1720 /* This is a little hokie, but if the prec is smaller than
1721 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1722 obvious test will not get the correct answer. */
1723 if (prec < HOST_BITS_PER_WIDE_INT)
1724 {
1725 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1726 ix = tree_to_uhwi (t);
1727 }
1728 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1729 ix = tree_to_uhwi (t);
1730 }
1731 else
1732 {
1733 /* Cache -1..N */
1734 limit = INTEGER_SHARE_LIMIT + 1;
1735
1736 if (integer_minus_onep (t))
1737 ix = 0;
1738 else if (!wi::neg_p (wi::to_wide (t)))
1739 {
1740 if (prec < HOST_BITS_PER_WIDE_INT)
1741 {
1742 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1743 ix = tree_to_shwi (t) + 1;
1744 }
1745 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1746 ix = tree_to_shwi (t) + 1;
1747 }
1748 }
1749 break;
1750
1751 case ENUMERAL_TYPE:
1752 break;
1753
1754 default:
1755 gcc_unreachable ();
1756 }
1757
1758 if (ix >= 0)
1759 {
1760 /* Look for it in the type's vector of small shared ints. */
1761 if (!TYPE_CACHED_VALUES_P (type))
1762 {
1763 TYPE_CACHED_VALUES_P (type) = 1;
1764 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1765 }
1766
1767 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1768 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1769 }
1770 else
1771 {
1772 /* Use the cache of larger shared ints. */
1773 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1774 /* If there is already an entry for the number verify it's the
1775 same. */
1776 if (*slot)
1777 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1778 else
1779 /* Otherwise insert this one into the hash table. */
1780 *slot = t;
1781 }
1782 }
1783
1784
1785 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1786 and the rest are zeros. */
1787
1788 tree
1789 build_low_bits_mask (tree type, unsigned bits)
1790 {
1791 gcc_assert (bits <= TYPE_PRECISION (type));
1792
1793 return wide_int_to_tree (type, wi::mask (bits, false,
1794 TYPE_PRECISION (type)));
1795 }
1796
1797 /* Checks that X is integer constant that can be expressed in (unsigned)
1798 HOST_WIDE_INT without loss of precision. */
1799
1800 bool
1801 cst_and_fits_in_hwi (const_tree x)
1802 {
1803 return (TREE_CODE (x) == INTEGER_CST
1804 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1805 }
1806
1807 /* Build a newly constructed VECTOR_CST with the given values of
1808 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1809
1810 tree
1811 make_vector (unsigned log2_npatterns,
1812 unsigned int nelts_per_pattern MEM_STAT_DECL)
1813 {
1814 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1815 tree t;
1816 unsigned npatterns = 1 << log2_npatterns;
1817 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1818 unsigned length = (sizeof (struct tree_vector)
1819 + (encoded_nelts - 1) * sizeof (tree));
1820
1821 record_node_allocation_statistics (VECTOR_CST, length);
1822
1823 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1824
1825 TREE_SET_CODE (t, VECTOR_CST);
1826 TREE_CONSTANT (t) = 1;
1827 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1828 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1829
1830 return t;
1831 }
1832
1833 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1834 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1835
1836 tree
1837 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1838 {
1839 unsigned HOST_WIDE_INT idx, nelts;
1840 tree value;
1841
1842 /* We can't construct a VECTOR_CST for a variable number of elements. */
1843 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1844 tree_vector_builder vec (type, nelts, 1);
1845 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1846 {
1847 if (TREE_CODE (value) == VECTOR_CST)
1848 {
1849 /* If NELTS is constant then this must be too. */
1850 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1851 for (unsigned i = 0; i < sub_nelts; ++i)
1852 vec.quick_push (VECTOR_CST_ELT (value, i));
1853 }
1854 else
1855 vec.quick_push (value);
1856 }
1857 while (vec.length () < nelts)
1858 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1859
1860 return vec.build ();
1861 }
1862
1863 /* Build a vector of type VECTYPE where all the elements are SCs. */
1864 tree
1865 build_vector_from_val (tree vectype, tree sc)
1866 {
1867 unsigned HOST_WIDE_INT i, nunits;
1868
1869 if (sc == error_mark_node)
1870 return sc;
1871
1872 /* Verify that the vector type is suitable for SC. Note that there
1873 is some inconsistency in the type-system with respect to restrict
1874 qualifications of pointers. Vector types always have a main-variant
1875 element type and the qualification is applied to the vector-type.
1876 So TREE_TYPE (vector-type) does not return a properly qualified
1877 vector element-type. */
1878 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1879 TREE_TYPE (vectype)));
1880
1881 if (CONSTANT_CLASS_P (sc))
1882 {
1883 tree_vector_builder v (vectype, 1, 1);
1884 v.quick_push (sc);
1885 return v.build ();
1886 }
1887 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1888 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1889 else
1890 {
1891 vec<constructor_elt, va_gc> *v;
1892 vec_alloc (v, nunits);
1893 for (i = 0; i < nunits; ++i)
1894 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1895 return build_constructor (vectype, v);
1896 }
1897 }
1898
1899 /* Build a vector series of type TYPE in which element I has the value
1900 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1901 and a VEC_SERIES_EXPR otherwise. */
1902
1903 tree
1904 build_vec_series (tree type, tree base, tree step)
1905 {
1906 if (integer_zerop (step))
1907 return build_vector_from_val (type, base);
1908 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1909 {
1910 tree_vector_builder builder (type, 1, 3);
1911 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1912 wi::to_wide (base) + wi::to_wide (step));
1913 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1914 wi::to_wide (elt1) + wi::to_wide (step));
1915 builder.quick_push (base);
1916 builder.quick_push (elt1);
1917 builder.quick_push (elt2);
1918 return builder.build ();
1919 }
1920 return build2 (VEC_SERIES_EXPR, type, base, step);
1921 }
1922
1923 /* Return a vector with the same number of units and number of bits
1924 as VEC_TYPE, but in which the elements are a linear series of unsigned
1925 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1926
1927 tree
1928 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1929 {
1930 tree index_vec_type = vec_type;
1931 tree index_elt_type = TREE_TYPE (vec_type);
1932 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1933 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1934 {
1935 index_elt_type = build_nonstandard_integer_type
1936 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1937 index_vec_type = build_vector_type (index_elt_type, nunits);
1938 }
1939
1940 tree_vector_builder v (index_vec_type, 1, 3);
1941 for (unsigned int i = 0; i < 3; ++i)
1942 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1943 return v.build ();
1944 }
1945
1946 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1947 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1948
1949 void
1950 recompute_constructor_flags (tree c)
1951 {
1952 unsigned int i;
1953 tree val;
1954 bool constant_p = true;
1955 bool side_effects_p = false;
1956 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1957
1958 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1959 {
1960 /* Mostly ctors will have elts that don't have side-effects, so
1961 the usual case is to scan all the elements. Hence a single
1962 loop for both const and side effects, rather than one loop
1963 each (with early outs). */
1964 if (!TREE_CONSTANT (val))
1965 constant_p = false;
1966 if (TREE_SIDE_EFFECTS (val))
1967 side_effects_p = true;
1968 }
1969
1970 TREE_SIDE_EFFECTS (c) = side_effects_p;
1971 TREE_CONSTANT (c) = constant_p;
1972 }
1973
1974 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1975 CONSTRUCTOR C. */
1976
1977 void
1978 verify_constructor_flags (tree c)
1979 {
1980 unsigned int i;
1981 tree val;
1982 bool constant_p = TREE_CONSTANT (c);
1983 bool side_effects_p = TREE_SIDE_EFFECTS (c);
1984 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1985
1986 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1987 {
1988 if (constant_p && !TREE_CONSTANT (val))
1989 internal_error ("non-constant element in constant CONSTRUCTOR");
1990 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
1991 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
1992 }
1993 }
1994
1995 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1996 are in the vec pointed to by VALS. */
1997 tree
1998 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1999 {
2000 tree c = make_node (CONSTRUCTOR);
2001
2002 TREE_TYPE (c) = type;
2003 CONSTRUCTOR_ELTS (c) = vals;
2004
2005 recompute_constructor_flags (c);
2006
2007 return c;
2008 }
2009
2010 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2011 INDEX and VALUE. */
2012 tree
2013 build_constructor_single (tree type, tree index, tree value)
2014 {
2015 vec<constructor_elt, va_gc> *v;
2016 constructor_elt elt = {index, value};
2017
2018 vec_alloc (v, 1);
2019 v->quick_push (elt);
2020
2021 return build_constructor (type, v);
2022 }
2023
2024
2025 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2026 are in a list pointed to by VALS. */
2027 tree
2028 build_constructor_from_list (tree type, tree vals)
2029 {
2030 tree t;
2031 vec<constructor_elt, va_gc> *v = NULL;
2032
2033 if (vals)
2034 {
2035 vec_alloc (v, list_length (vals));
2036 for (t = vals; t; t = TREE_CHAIN (t))
2037 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2038 }
2039
2040 return build_constructor (type, v);
2041 }
2042
2043 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2044 of elements, provided as index/value pairs. */
2045
2046 tree
2047 build_constructor_va (tree type, int nelts, ...)
2048 {
2049 vec<constructor_elt, va_gc> *v = NULL;
2050 va_list p;
2051
2052 va_start (p, nelts);
2053 vec_alloc (v, nelts);
2054 while (nelts--)
2055 {
2056 tree index = va_arg (p, tree);
2057 tree value = va_arg (p, tree);
2058 CONSTRUCTOR_APPEND_ELT (v, index, value);
2059 }
2060 va_end (p);
2061 return build_constructor (type, v);
2062 }
2063
2064 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2065
2066 tree
2067 build_clobber (tree type)
2068 {
2069 tree clobber = build_constructor (type, NULL);
2070 TREE_THIS_VOLATILE (clobber) = true;
2071 return clobber;
2072 }
2073
2074 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2075
2076 tree
2077 build_fixed (tree type, FIXED_VALUE_TYPE f)
2078 {
2079 tree v;
2080 FIXED_VALUE_TYPE *fp;
2081
2082 v = make_node (FIXED_CST);
2083 fp = ggc_alloc<fixed_value> ();
2084 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2085
2086 TREE_TYPE (v) = type;
2087 TREE_FIXED_CST_PTR (v) = fp;
2088 return v;
2089 }
2090
2091 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2092
2093 tree
2094 build_real (tree type, REAL_VALUE_TYPE d)
2095 {
2096 tree v;
2097 REAL_VALUE_TYPE *dp;
2098 int overflow = 0;
2099
2100 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2101 Consider doing it via real_convert now. */
2102
2103 v = make_node (REAL_CST);
2104 dp = ggc_alloc<real_value> ();
2105 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2106
2107 TREE_TYPE (v) = type;
2108 TREE_REAL_CST_PTR (v) = dp;
2109 TREE_OVERFLOW (v) = overflow;
2110 return v;
2111 }
2112
2113 /* Like build_real, but first truncate D to the type. */
2114
2115 tree
2116 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2117 {
2118 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2119 }
2120
2121 /* Return a new REAL_CST node whose type is TYPE
2122 and whose value is the integer value of the INTEGER_CST node I. */
2123
2124 REAL_VALUE_TYPE
2125 real_value_from_int_cst (const_tree type, const_tree i)
2126 {
2127 REAL_VALUE_TYPE d;
2128
2129 /* Clear all bits of the real value type so that we can later do
2130 bitwise comparisons to see if two values are the same. */
2131 memset (&d, 0, sizeof d);
2132
2133 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2134 TYPE_SIGN (TREE_TYPE (i)));
2135 return d;
2136 }
2137
2138 /* Given a tree representing an integer constant I, return a tree
2139 representing the same value as a floating-point constant of type TYPE. */
2140
2141 tree
2142 build_real_from_int_cst (tree type, const_tree i)
2143 {
2144 tree v;
2145 int overflow = TREE_OVERFLOW (i);
2146
2147 v = build_real (type, real_value_from_int_cst (type, i));
2148
2149 TREE_OVERFLOW (v) |= overflow;
2150 return v;
2151 }
2152
2153 /* Return a newly constructed STRING_CST node whose value is
2154 the LEN characters at STR.
2155 Note that for a C string literal, LEN should include the trailing NUL.
2156 The TREE_TYPE is not initialized. */
2157
2158 tree
2159 build_string (int len, const char *str)
2160 {
2161 tree s;
2162 size_t length;
2163
2164 /* Do not waste bytes provided by padding of struct tree_string. */
2165 length = len + offsetof (struct tree_string, str) + 1;
2166
2167 record_node_allocation_statistics (STRING_CST, length);
2168
2169 s = (tree) ggc_internal_alloc (length);
2170
2171 memset (s, 0, sizeof (struct tree_typed));
2172 TREE_SET_CODE (s, STRING_CST);
2173 TREE_CONSTANT (s) = 1;
2174 TREE_STRING_LENGTH (s) = len;
2175 memcpy (s->string.str, str, len);
2176 s->string.str[len] = '\0';
2177
2178 return s;
2179 }
2180
2181 /* Return a newly constructed COMPLEX_CST node whose value is
2182 specified by the real and imaginary parts REAL and IMAG.
2183 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2184 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2185
2186 tree
2187 build_complex (tree type, tree real, tree imag)
2188 {
2189 tree t = make_node (COMPLEX_CST);
2190
2191 TREE_REALPART (t) = real;
2192 TREE_IMAGPART (t) = imag;
2193 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2194 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2195 return t;
2196 }
2197
2198 /* Build a complex (inf +- 0i), such as for the result of cproj.
2199 TYPE is the complex tree type of the result. If NEG is true, the
2200 imaginary zero is negative. */
2201
2202 tree
2203 build_complex_inf (tree type, bool neg)
2204 {
2205 REAL_VALUE_TYPE rinf, rzero = dconst0;
2206
2207 real_inf (&rinf);
2208 rzero.sign = neg;
2209 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2210 build_real (TREE_TYPE (type), rzero));
2211 }
2212
2213 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2214 element is set to 1. In particular, this is 1 + i for complex types. */
2215
2216 tree
2217 build_each_one_cst (tree type)
2218 {
2219 if (TREE_CODE (type) == COMPLEX_TYPE)
2220 {
2221 tree scalar = build_one_cst (TREE_TYPE (type));
2222 return build_complex (type, scalar, scalar);
2223 }
2224 else
2225 return build_one_cst (type);
2226 }
2227
2228 /* Return a constant of arithmetic type TYPE which is the
2229 multiplicative identity of the set TYPE. */
2230
2231 tree
2232 build_one_cst (tree type)
2233 {
2234 switch (TREE_CODE (type))
2235 {
2236 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2237 case POINTER_TYPE: case REFERENCE_TYPE:
2238 case OFFSET_TYPE:
2239 return build_int_cst (type, 1);
2240
2241 case REAL_TYPE:
2242 return build_real (type, dconst1);
2243
2244 case FIXED_POINT_TYPE:
2245 /* We can only generate 1 for accum types. */
2246 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2247 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2248
2249 case VECTOR_TYPE:
2250 {
2251 tree scalar = build_one_cst (TREE_TYPE (type));
2252
2253 return build_vector_from_val (type, scalar);
2254 }
2255
2256 case COMPLEX_TYPE:
2257 return build_complex (type,
2258 build_one_cst (TREE_TYPE (type)),
2259 build_zero_cst (TREE_TYPE (type)));
2260
2261 default:
2262 gcc_unreachable ();
2263 }
2264 }
2265
2266 /* Return an integer of type TYPE containing all 1's in as much precision as
2267 it contains, or a complex or vector whose subparts are such integers. */
2268
2269 tree
2270 build_all_ones_cst (tree type)
2271 {
2272 if (TREE_CODE (type) == COMPLEX_TYPE)
2273 {
2274 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2275 return build_complex (type, scalar, scalar);
2276 }
2277 else
2278 return build_minus_one_cst (type);
2279 }
2280
2281 /* Return a constant of arithmetic type TYPE which is the
2282 opposite of the multiplicative identity of the set TYPE. */
2283
2284 tree
2285 build_minus_one_cst (tree type)
2286 {
2287 switch (TREE_CODE (type))
2288 {
2289 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2290 case POINTER_TYPE: case REFERENCE_TYPE:
2291 case OFFSET_TYPE:
2292 return build_int_cst (type, -1);
2293
2294 case REAL_TYPE:
2295 return build_real (type, dconstm1);
2296
2297 case FIXED_POINT_TYPE:
2298 /* We can only generate 1 for accum types. */
2299 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2300 return build_fixed (type,
2301 fixed_from_double_int (double_int_minus_one,
2302 SCALAR_TYPE_MODE (type)));
2303
2304 case VECTOR_TYPE:
2305 {
2306 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2307
2308 return build_vector_from_val (type, scalar);
2309 }
2310
2311 case COMPLEX_TYPE:
2312 return build_complex (type,
2313 build_minus_one_cst (TREE_TYPE (type)),
2314 build_zero_cst (TREE_TYPE (type)));
2315
2316 default:
2317 gcc_unreachable ();
2318 }
2319 }
2320
2321 /* Build 0 constant of type TYPE. This is used by constructor folding
2322 and thus the constant should be represented in memory by
2323 zero(es). */
2324
2325 tree
2326 build_zero_cst (tree type)
2327 {
2328 switch (TREE_CODE (type))
2329 {
2330 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2331 case POINTER_TYPE: case REFERENCE_TYPE:
2332 case OFFSET_TYPE: case NULLPTR_TYPE:
2333 return build_int_cst (type, 0);
2334
2335 case REAL_TYPE:
2336 return build_real (type, dconst0);
2337
2338 case FIXED_POINT_TYPE:
2339 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2340
2341 case VECTOR_TYPE:
2342 {
2343 tree scalar = build_zero_cst (TREE_TYPE (type));
2344
2345 return build_vector_from_val (type, scalar);
2346 }
2347
2348 case COMPLEX_TYPE:
2349 {
2350 tree zero = build_zero_cst (TREE_TYPE (type));
2351
2352 return build_complex (type, zero, zero);
2353 }
2354
2355 default:
2356 if (!AGGREGATE_TYPE_P (type))
2357 return fold_convert (type, integer_zero_node);
2358 return build_constructor (type, NULL);
2359 }
2360 }
2361
2362
2363 /* Build a BINFO with LEN language slots. */
2364
2365 tree
2366 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2367 {
2368 tree t;
2369 size_t length = (offsetof (struct tree_binfo, base_binfos)
2370 + vec<tree, va_gc>::embedded_size (base_binfos));
2371
2372 record_node_allocation_statistics (TREE_BINFO, length);
2373
2374 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2375
2376 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2377
2378 TREE_SET_CODE (t, TREE_BINFO);
2379
2380 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2381
2382 return t;
2383 }
2384
2385 /* Create a CASE_LABEL_EXPR tree node and return it. */
2386
2387 tree
2388 build_case_label (tree low_value, tree high_value, tree label_decl)
2389 {
2390 tree t = make_node (CASE_LABEL_EXPR);
2391
2392 TREE_TYPE (t) = void_type_node;
2393 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2394
2395 CASE_LOW (t) = low_value;
2396 CASE_HIGH (t) = high_value;
2397 CASE_LABEL (t) = label_decl;
2398 CASE_CHAIN (t) = NULL_TREE;
2399
2400 return t;
2401 }
2402
2403 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2404 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2405 The latter determines the length of the HOST_WIDE_INT vector. */
2406
2407 tree
2408 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2409 {
2410 tree t;
2411 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2412 + sizeof (struct tree_int_cst));
2413
2414 gcc_assert (len);
2415 record_node_allocation_statistics (INTEGER_CST, length);
2416
2417 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2418
2419 TREE_SET_CODE (t, INTEGER_CST);
2420 TREE_INT_CST_NUNITS (t) = len;
2421 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2422 /* to_offset can only be applied to trees that are offset_int-sized
2423 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2424 must be exactly the precision of offset_int and so LEN is correct. */
2425 if (ext_len <= OFFSET_INT_ELTS)
2426 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2427 else
2428 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2429
2430 TREE_CONSTANT (t) = 1;
2431
2432 return t;
2433 }
2434
2435 /* Build a newly constructed TREE_VEC node of length LEN. */
2436
2437 tree
2438 make_tree_vec (int len MEM_STAT_DECL)
2439 {
2440 tree t;
2441 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2442
2443 record_node_allocation_statistics (TREE_VEC, length);
2444
2445 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2446
2447 TREE_SET_CODE (t, TREE_VEC);
2448 TREE_VEC_LENGTH (t) = len;
2449
2450 return t;
2451 }
2452
2453 /* Grow a TREE_VEC node to new length LEN. */
2454
2455 tree
2456 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2457 {
2458 gcc_assert (TREE_CODE (v) == TREE_VEC);
2459
2460 int oldlen = TREE_VEC_LENGTH (v);
2461 gcc_assert (len > oldlen);
2462
2463 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2464 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2465
2466 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2467
2468 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2469
2470 TREE_VEC_LENGTH (v) = len;
2471
2472 return v;
2473 }
2474 \f
2475 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2476 fixed, and scalar, complex or vector. */
2477
2478 bool
2479 zerop (const_tree expr)
2480 {
2481 return (integer_zerop (expr)
2482 || real_zerop (expr)
2483 || fixed_zerop (expr));
2484 }
2485
2486 /* Return 1 if EXPR is the integer constant zero or a complex constant
2487 of zero. */
2488
2489 bool
2490 integer_zerop (const_tree expr)
2491 {
2492 switch (TREE_CODE (expr))
2493 {
2494 case INTEGER_CST:
2495 return wi::to_wide (expr) == 0;
2496 case COMPLEX_CST:
2497 return (integer_zerop (TREE_REALPART (expr))
2498 && integer_zerop (TREE_IMAGPART (expr)));
2499 case VECTOR_CST:
2500 return (VECTOR_CST_NPATTERNS (expr) == 1
2501 && VECTOR_CST_DUPLICATE_P (expr)
2502 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2503 default:
2504 return false;
2505 }
2506 }
2507
2508 /* Return 1 if EXPR is the integer constant one or the corresponding
2509 complex constant. */
2510
2511 bool
2512 integer_onep (const_tree expr)
2513 {
2514 switch (TREE_CODE (expr))
2515 {
2516 case INTEGER_CST:
2517 return wi::eq_p (wi::to_widest (expr), 1);
2518 case COMPLEX_CST:
2519 return (integer_onep (TREE_REALPART (expr))
2520 && integer_zerop (TREE_IMAGPART (expr)));
2521 case VECTOR_CST:
2522 return (VECTOR_CST_NPATTERNS (expr) == 1
2523 && VECTOR_CST_DUPLICATE_P (expr)
2524 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2525 default:
2526 return false;
2527 }
2528 }
2529
2530 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2531 return 1 if every piece is the integer constant one. */
2532
2533 bool
2534 integer_each_onep (const_tree expr)
2535 {
2536 if (TREE_CODE (expr) == COMPLEX_CST)
2537 return (integer_onep (TREE_REALPART (expr))
2538 && integer_onep (TREE_IMAGPART (expr)));
2539 else
2540 return integer_onep (expr);
2541 }
2542
2543 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2544 it contains, or a complex or vector whose subparts are such integers. */
2545
2546 bool
2547 integer_all_onesp (const_tree expr)
2548 {
2549 if (TREE_CODE (expr) == COMPLEX_CST
2550 && integer_all_onesp (TREE_REALPART (expr))
2551 && integer_all_onesp (TREE_IMAGPART (expr)))
2552 return true;
2553
2554 else if (TREE_CODE (expr) == VECTOR_CST)
2555 return (VECTOR_CST_NPATTERNS (expr) == 1
2556 && VECTOR_CST_DUPLICATE_P (expr)
2557 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2558
2559 else if (TREE_CODE (expr) != INTEGER_CST)
2560 return false;
2561
2562 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2563 == wi::to_wide (expr));
2564 }
2565
2566 /* Return 1 if EXPR is the integer constant minus one. */
2567
2568 bool
2569 integer_minus_onep (const_tree expr)
2570 {
2571 if (TREE_CODE (expr) == COMPLEX_CST)
2572 return (integer_all_onesp (TREE_REALPART (expr))
2573 && integer_zerop (TREE_IMAGPART (expr)));
2574 else
2575 return integer_all_onesp (expr);
2576 }
2577
2578 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2579 one bit on). */
2580
2581 bool
2582 integer_pow2p (const_tree expr)
2583 {
2584 if (TREE_CODE (expr) == COMPLEX_CST
2585 && integer_pow2p (TREE_REALPART (expr))
2586 && integer_zerop (TREE_IMAGPART (expr)))
2587 return true;
2588
2589 if (TREE_CODE (expr) != INTEGER_CST)
2590 return false;
2591
2592 return wi::popcount (wi::to_wide (expr)) == 1;
2593 }
2594
2595 /* Return 1 if EXPR is an integer constant other than zero or a
2596 complex constant other than zero. */
2597
2598 bool
2599 integer_nonzerop (const_tree expr)
2600 {
2601 return ((TREE_CODE (expr) == INTEGER_CST
2602 && wi::to_wide (expr) != 0)
2603 || (TREE_CODE (expr) == COMPLEX_CST
2604 && (integer_nonzerop (TREE_REALPART (expr))
2605 || integer_nonzerop (TREE_IMAGPART (expr)))));
2606 }
2607
2608 /* Return 1 if EXPR is the integer constant one. For vector,
2609 return 1 if every piece is the integer constant minus one
2610 (representing the value TRUE). */
2611
2612 bool
2613 integer_truep (const_tree expr)
2614 {
2615 if (TREE_CODE (expr) == VECTOR_CST)
2616 return integer_all_onesp (expr);
2617 return integer_onep (expr);
2618 }
2619
2620 /* Return 1 if EXPR is the fixed-point constant zero. */
2621
2622 bool
2623 fixed_zerop (const_tree expr)
2624 {
2625 return (TREE_CODE (expr) == FIXED_CST
2626 && TREE_FIXED_CST (expr).data.is_zero ());
2627 }
2628
2629 /* Return the power of two represented by a tree node known to be a
2630 power of two. */
2631
2632 int
2633 tree_log2 (const_tree expr)
2634 {
2635 if (TREE_CODE (expr) == COMPLEX_CST)
2636 return tree_log2 (TREE_REALPART (expr));
2637
2638 return wi::exact_log2 (wi::to_wide (expr));
2639 }
2640
2641 /* Similar, but return the largest integer Y such that 2 ** Y is less
2642 than or equal to EXPR. */
2643
2644 int
2645 tree_floor_log2 (const_tree expr)
2646 {
2647 if (TREE_CODE (expr) == COMPLEX_CST)
2648 return tree_log2 (TREE_REALPART (expr));
2649
2650 return wi::floor_log2 (wi::to_wide (expr));
2651 }
2652
2653 /* Return number of known trailing zero bits in EXPR, or, if the value of
2654 EXPR is known to be zero, the precision of it's type. */
2655
2656 unsigned int
2657 tree_ctz (const_tree expr)
2658 {
2659 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2660 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2661 return 0;
2662
2663 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2664 switch (TREE_CODE (expr))
2665 {
2666 case INTEGER_CST:
2667 ret1 = wi::ctz (wi::to_wide (expr));
2668 return MIN (ret1, prec);
2669 case SSA_NAME:
2670 ret1 = wi::ctz (get_nonzero_bits (expr));
2671 return MIN (ret1, prec);
2672 case PLUS_EXPR:
2673 case MINUS_EXPR:
2674 case BIT_IOR_EXPR:
2675 case BIT_XOR_EXPR:
2676 case MIN_EXPR:
2677 case MAX_EXPR:
2678 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2679 if (ret1 == 0)
2680 return ret1;
2681 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2682 return MIN (ret1, ret2);
2683 case POINTER_PLUS_EXPR:
2684 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2685 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2686 /* Second operand is sizetype, which could be in theory
2687 wider than pointer's precision. Make sure we never
2688 return more than prec. */
2689 ret2 = MIN (ret2, prec);
2690 return MIN (ret1, ret2);
2691 case BIT_AND_EXPR:
2692 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2693 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2694 return MAX (ret1, ret2);
2695 case MULT_EXPR:
2696 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2697 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2698 return MIN (ret1 + ret2, prec);
2699 case LSHIFT_EXPR:
2700 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2701 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2702 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2703 {
2704 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2705 return MIN (ret1 + ret2, prec);
2706 }
2707 return ret1;
2708 case RSHIFT_EXPR:
2709 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2710 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2711 {
2712 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2713 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2714 if (ret1 > ret2)
2715 return ret1 - ret2;
2716 }
2717 return 0;
2718 case TRUNC_DIV_EXPR:
2719 case CEIL_DIV_EXPR:
2720 case FLOOR_DIV_EXPR:
2721 case ROUND_DIV_EXPR:
2722 case EXACT_DIV_EXPR:
2723 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2724 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2725 {
2726 int l = tree_log2 (TREE_OPERAND (expr, 1));
2727 if (l >= 0)
2728 {
2729 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2730 ret2 = l;
2731 if (ret1 > ret2)
2732 return ret1 - ret2;
2733 }
2734 }
2735 return 0;
2736 CASE_CONVERT:
2737 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2738 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2739 ret1 = prec;
2740 return MIN (ret1, prec);
2741 case SAVE_EXPR:
2742 return tree_ctz (TREE_OPERAND (expr, 0));
2743 case COND_EXPR:
2744 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2745 if (ret1 == 0)
2746 return 0;
2747 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2748 return MIN (ret1, ret2);
2749 case COMPOUND_EXPR:
2750 return tree_ctz (TREE_OPERAND (expr, 1));
2751 case ADDR_EXPR:
2752 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2753 if (ret1 > BITS_PER_UNIT)
2754 {
2755 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2756 return MIN (ret1, prec);
2757 }
2758 return 0;
2759 default:
2760 return 0;
2761 }
2762 }
2763
2764 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2765 decimal float constants, so don't return 1 for them. */
2766
2767 bool
2768 real_zerop (const_tree expr)
2769 {
2770 switch (TREE_CODE (expr))
2771 {
2772 case REAL_CST:
2773 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2774 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2775 case COMPLEX_CST:
2776 return real_zerop (TREE_REALPART (expr))
2777 && real_zerop (TREE_IMAGPART (expr));
2778 case VECTOR_CST:
2779 {
2780 /* Don't simply check for a duplicate because the predicate
2781 accepts both +0.0 and -0.0. */
2782 unsigned count = vector_cst_encoded_nelts (expr);
2783 for (unsigned int i = 0; i < count; ++i)
2784 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2785 return false;
2786 return true;
2787 }
2788 default:
2789 return false;
2790 }
2791 }
2792
2793 /* Return 1 if EXPR is the real constant one in real or complex form.
2794 Trailing zeroes matter for decimal float constants, so don't return
2795 1 for them. */
2796
2797 bool
2798 real_onep (const_tree expr)
2799 {
2800 switch (TREE_CODE (expr))
2801 {
2802 case REAL_CST:
2803 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2804 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2805 case COMPLEX_CST:
2806 return real_onep (TREE_REALPART (expr))
2807 && real_zerop (TREE_IMAGPART (expr));
2808 case VECTOR_CST:
2809 return (VECTOR_CST_NPATTERNS (expr) == 1
2810 && VECTOR_CST_DUPLICATE_P (expr)
2811 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2812 default:
2813 return false;
2814 }
2815 }
2816
2817 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2818 matter for decimal float constants, so don't return 1 for them. */
2819
2820 bool
2821 real_minus_onep (const_tree expr)
2822 {
2823 switch (TREE_CODE (expr))
2824 {
2825 case REAL_CST:
2826 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2827 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2828 case COMPLEX_CST:
2829 return real_minus_onep (TREE_REALPART (expr))
2830 && real_zerop (TREE_IMAGPART (expr));
2831 case VECTOR_CST:
2832 return (VECTOR_CST_NPATTERNS (expr) == 1
2833 && VECTOR_CST_DUPLICATE_P (expr)
2834 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2835 default:
2836 return false;
2837 }
2838 }
2839
2840 /* Nonzero if EXP is a constant or a cast of a constant. */
2841
2842 bool
2843 really_constant_p (const_tree exp)
2844 {
2845 /* This is not quite the same as STRIP_NOPS. It does more. */
2846 while (CONVERT_EXPR_P (exp)
2847 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2848 exp = TREE_OPERAND (exp, 0);
2849 return TREE_CONSTANT (exp);
2850 }
2851
2852 /* Return true if T holds a polynomial pointer difference, storing it in
2853 *VALUE if so. A true return means that T's precision is no greater
2854 than 64 bits, which is the largest address space we support, so *VALUE
2855 never loses precision. However, the signedness of the result does
2856 not necessarily match the signedness of T: sometimes an unsigned type
2857 like sizetype is used to encode a value that is actually negative. */
2858
2859 bool
2860 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2861 {
2862 if (!t)
2863 return false;
2864 if (TREE_CODE (t) == INTEGER_CST)
2865 {
2866 if (!cst_and_fits_in_hwi (t))
2867 return false;
2868 *value = int_cst_value (t);
2869 return true;
2870 }
2871 if (POLY_INT_CST_P (t))
2872 {
2873 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2874 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2875 return false;
2876 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2877 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2878 return true;
2879 }
2880 return false;
2881 }
2882
2883 poly_int64
2884 tree_to_poly_int64 (const_tree t)
2885 {
2886 gcc_assert (tree_fits_poly_int64_p (t));
2887 if (POLY_INT_CST_P (t))
2888 return poly_int_cst_value (t).force_shwi ();
2889 return TREE_INT_CST_LOW (t);
2890 }
2891
2892 poly_uint64
2893 tree_to_poly_uint64 (const_tree t)
2894 {
2895 gcc_assert (tree_fits_poly_uint64_p (t));
2896 if (POLY_INT_CST_P (t))
2897 return poly_int_cst_value (t).force_uhwi ();
2898 return TREE_INT_CST_LOW (t);
2899 }
2900 \f
2901 /* Return first list element whose TREE_VALUE is ELEM.
2902 Return 0 if ELEM is not in LIST. */
2903
2904 tree
2905 value_member (tree elem, tree list)
2906 {
2907 while (list)
2908 {
2909 if (elem == TREE_VALUE (list))
2910 return list;
2911 list = TREE_CHAIN (list);
2912 }
2913 return NULL_TREE;
2914 }
2915
2916 /* Return first list element whose TREE_PURPOSE is ELEM.
2917 Return 0 if ELEM is not in LIST. */
2918
2919 tree
2920 purpose_member (const_tree elem, tree list)
2921 {
2922 while (list)
2923 {
2924 if (elem == TREE_PURPOSE (list))
2925 return list;
2926 list = TREE_CHAIN (list);
2927 }
2928 return NULL_TREE;
2929 }
2930
2931 /* Return true if ELEM is in V. */
2932
2933 bool
2934 vec_member (const_tree elem, vec<tree, va_gc> *v)
2935 {
2936 unsigned ix;
2937 tree t;
2938 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2939 if (elem == t)
2940 return true;
2941 return false;
2942 }
2943
2944 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2945 NULL_TREE. */
2946
2947 tree
2948 chain_index (int idx, tree chain)
2949 {
2950 for (; chain && idx > 0; --idx)
2951 chain = TREE_CHAIN (chain);
2952 return chain;
2953 }
2954
2955 /* Return nonzero if ELEM is part of the chain CHAIN. */
2956
2957 bool
2958 chain_member (const_tree elem, const_tree chain)
2959 {
2960 while (chain)
2961 {
2962 if (elem == chain)
2963 return true;
2964 chain = DECL_CHAIN (chain);
2965 }
2966
2967 return false;
2968 }
2969
2970 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2971 We expect a null pointer to mark the end of the chain.
2972 This is the Lisp primitive `length'. */
2973
2974 int
2975 list_length (const_tree t)
2976 {
2977 const_tree p = t;
2978 #ifdef ENABLE_TREE_CHECKING
2979 const_tree q = t;
2980 #endif
2981 int len = 0;
2982
2983 while (p)
2984 {
2985 p = TREE_CHAIN (p);
2986 #ifdef ENABLE_TREE_CHECKING
2987 if (len % 2)
2988 q = TREE_CHAIN (q);
2989 gcc_assert (p != q);
2990 #endif
2991 len++;
2992 }
2993
2994 return len;
2995 }
2996
2997 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2998 UNION_TYPE TYPE, or NULL_TREE if none. */
2999
3000 tree
3001 first_field (const_tree type)
3002 {
3003 tree t = TYPE_FIELDS (type);
3004 while (t && TREE_CODE (t) != FIELD_DECL)
3005 t = TREE_CHAIN (t);
3006 return t;
3007 }
3008
3009 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3010 by modifying the last node in chain 1 to point to chain 2.
3011 This is the Lisp primitive `nconc'. */
3012
3013 tree
3014 chainon (tree op1, tree op2)
3015 {
3016 tree t1;
3017
3018 if (!op1)
3019 return op2;
3020 if (!op2)
3021 return op1;
3022
3023 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3024 continue;
3025 TREE_CHAIN (t1) = op2;
3026
3027 #ifdef ENABLE_TREE_CHECKING
3028 {
3029 tree t2;
3030 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3031 gcc_assert (t2 != t1);
3032 }
3033 #endif
3034
3035 return op1;
3036 }
3037
3038 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3039
3040 tree
3041 tree_last (tree chain)
3042 {
3043 tree next;
3044 if (chain)
3045 while ((next = TREE_CHAIN (chain)))
3046 chain = next;
3047 return chain;
3048 }
3049
3050 /* Reverse the order of elements in the chain T,
3051 and return the new head of the chain (old last element). */
3052
3053 tree
3054 nreverse (tree t)
3055 {
3056 tree prev = 0, decl, next;
3057 for (decl = t; decl; decl = next)
3058 {
3059 /* We shouldn't be using this function to reverse BLOCK chains; we
3060 have blocks_nreverse for that. */
3061 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3062 next = TREE_CHAIN (decl);
3063 TREE_CHAIN (decl) = prev;
3064 prev = decl;
3065 }
3066 return prev;
3067 }
3068 \f
3069 /* Return a newly created TREE_LIST node whose
3070 purpose and value fields are PARM and VALUE. */
3071
3072 tree
3073 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3074 {
3075 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3076 TREE_PURPOSE (t) = parm;
3077 TREE_VALUE (t) = value;
3078 return t;
3079 }
3080
3081 /* Build a chain of TREE_LIST nodes from a vector. */
3082
3083 tree
3084 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3085 {
3086 tree ret = NULL_TREE;
3087 tree *pp = &ret;
3088 unsigned int i;
3089 tree t;
3090 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3091 {
3092 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3093 pp = &TREE_CHAIN (*pp);
3094 }
3095 return ret;
3096 }
3097
3098 /* Return a newly created TREE_LIST node whose
3099 purpose and value fields are PURPOSE and VALUE
3100 and whose TREE_CHAIN is CHAIN. */
3101
3102 tree
3103 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3104 {
3105 tree node;
3106
3107 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3108 memset (node, 0, sizeof (struct tree_common));
3109
3110 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3111
3112 TREE_SET_CODE (node, TREE_LIST);
3113 TREE_CHAIN (node) = chain;
3114 TREE_PURPOSE (node) = purpose;
3115 TREE_VALUE (node) = value;
3116 return node;
3117 }
3118
3119 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3120 trees. */
3121
3122 vec<tree, va_gc> *
3123 ctor_to_vec (tree ctor)
3124 {
3125 vec<tree, va_gc> *vec;
3126 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3127 unsigned int ix;
3128 tree val;
3129
3130 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3131 vec->quick_push (val);
3132
3133 return vec;
3134 }
3135 \f
3136 /* Return the size nominally occupied by an object of type TYPE
3137 when it resides in memory. The value is measured in units of bytes,
3138 and its data type is that normally used for type sizes
3139 (which is the first type created by make_signed_type or
3140 make_unsigned_type). */
3141
3142 tree
3143 size_in_bytes_loc (location_t loc, const_tree type)
3144 {
3145 tree t;
3146
3147 if (type == error_mark_node)
3148 return integer_zero_node;
3149
3150 type = TYPE_MAIN_VARIANT (type);
3151 t = TYPE_SIZE_UNIT (type);
3152
3153 if (t == 0)
3154 {
3155 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3156 return size_zero_node;
3157 }
3158
3159 return t;
3160 }
3161
3162 /* Return the size of TYPE (in bytes) as a wide integer
3163 or return -1 if the size can vary or is larger than an integer. */
3164
3165 HOST_WIDE_INT
3166 int_size_in_bytes (const_tree type)
3167 {
3168 tree t;
3169
3170 if (type == error_mark_node)
3171 return 0;
3172
3173 type = TYPE_MAIN_VARIANT (type);
3174 t = TYPE_SIZE_UNIT (type);
3175
3176 if (t && tree_fits_uhwi_p (t))
3177 return TREE_INT_CST_LOW (t);
3178 else
3179 return -1;
3180 }
3181
3182 /* Return the maximum size of TYPE (in bytes) as a wide integer
3183 or return -1 if the size can vary or is larger than an integer. */
3184
3185 HOST_WIDE_INT
3186 max_int_size_in_bytes (const_tree type)
3187 {
3188 HOST_WIDE_INT size = -1;
3189 tree size_tree;
3190
3191 /* If this is an array type, check for a possible MAX_SIZE attached. */
3192
3193 if (TREE_CODE (type) == ARRAY_TYPE)
3194 {
3195 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3196
3197 if (size_tree && tree_fits_uhwi_p (size_tree))
3198 size = tree_to_uhwi (size_tree);
3199 }
3200
3201 /* If we still haven't been able to get a size, see if the language
3202 can compute a maximum size. */
3203
3204 if (size == -1)
3205 {
3206 size_tree = lang_hooks.types.max_size (type);
3207
3208 if (size_tree && tree_fits_uhwi_p (size_tree))
3209 size = tree_to_uhwi (size_tree);
3210 }
3211
3212 return size;
3213 }
3214 \f
3215 /* Return the bit position of FIELD, in bits from the start of the record.
3216 This is a tree of type bitsizetype. */
3217
3218 tree
3219 bit_position (const_tree field)
3220 {
3221 return bit_from_pos (DECL_FIELD_OFFSET (field),
3222 DECL_FIELD_BIT_OFFSET (field));
3223 }
3224 \f
3225 /* Return the byte position of FIELD, in bytes from the start of the record.
3226 This is a tree of type sizetype. */
3227
3228 tree
3229 byte_position (const_tree field)
3230 {
3231 return byte_from_pos (DECL_FIELD_OFFSET (field),
3232 DECL_FIELD_BIT_OFFSET (field));
3233 }
3234
3235 /* Likewise, but return as an integer. It must be representable in
3236 that way (since it could be a signed value, we don't have the
3237 option of returning -1 like int_size_in_byte can. */
3238
3239 HOST_WIDE_INT
3240 int_byte_position (const_tree field)
3241 {
3242 return tree_to_shwi (byte_position (field));
3243 }
3244 \f
3245 /* Return the strictest alignment, in bits, that T is known to have. */
3246
3247 unsigned int
3248 expr_align (const_tree t)
3249 {
3250 unsigned int align0, align1;
3251
3252 switch (TREE_CODE (t))
3253 {
3254 CASE_CONVERT: case NON_LVALUE_EXPR:
3255 /* If we have conversions, we know that the alignment of the
3256 object must meet each of the alignments of the types. */
3257 align0 = expr_align (TREE_OPERAND (t, 0));
3258 align1 = TYPE_ALIGN (TREE_TYPE (t));
3259 return MAX (align0, align1);
3260
3261 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3262 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3263 case CLEANUP_POINT_EXPR:
3264 /* These don't change the alignment of an object. */
3265 return expr_align (TREE_OPERAND (t, 0));
3266
3267 case COND_EXPR:
3268 /* The best we can do is say that the alignment is the least aligned
3269 of the two arms. */
3270 align0 = expr_align (TREE_OPERAND (t, 1));
3271 align1 = expr_align (TREE_OPERAND (t, 2));
3272 return MIN (align0, align1);
3273
3274 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3275 meaningfully, it's always 1. */
3276 case LABEL_DECL: case CONST_DECL:
3277 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3278 case FUNCTION_DECL:
3279 gcc_assert (DECL_ALIGN (t) != 0);
3280 return DECL_ALIGN (t);
3281
3282 default:
3283 break;
3284 }
3285
3286 /* Otherwise take the alignment from that of the type. */
3287 return TYPE_ALIGN (TREE_TYPE (t));
3288 }
3289 \f
3290 /* Return, as a tree node, the number of elements for TYPE (which is an
3291 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3292
3293 tree
3294 array_type_nelts (const_tree type)
3295 {
3296 tree index_type, min, max;
3297
3298 /* If they did it with unspecified bounds, then we should have already
3299 given an error about it before we got here. */
3300 if (! TYPE_DOMAIN (type))
3301 return error_mark_node;
3302
3303 index_type = TYPE_DOMAIN (type);
3304 min = TYPE_MIN_VALUE (index_type);
3305 max = TYPE_MAX_VALUE (index_type);
3306
3307 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3308 if (!max)
3309 return error_mark_node;
3310
3311 return (integer_zerop (min)
3312 ? max
3313 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3314 }
3315 \f
3316 /* If arg is static -- a reference to an object in static storage -- then
3317 return the object. This is not the same as the C meaning of `static'.
3318 If arg isn't static, return NULL. */
3319
3320 tree
3321 staticp (tree arg)
3322 {
3323 switch (TREE_CODE (arg))
3324 {
3325 case FUNCTION_DECL:
3326 /* Nested functions are static, even though taking their address will
3327 involve a trampoline as we unnest the nested function and create
3328 the trampoline on the tree level. */
3329 return arg;
3330
3331 case VAR_DECL:
3332 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3333 && ! DECL_THREAD_LOCAL_P (arg)
3334 && ! DECL_DLLIMPORT_P (arg)
3335 ? arg : NULL);
3336
3337 case CONST_DECL:
3338 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3339 ? arg : NULL);
3340
3341 case CONSTRUCTOR:
3342 return TREE_STATIC (arg) ? arg : NULL;
3343
3344 case LABEL_DECL:
3345 case STRING_CST:
3346 return arg;
3347
3348 case COMPONENT_REF:
3349 /* If the thing being referenced is not a field, then it is
3350 something language specific. */
3351 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3352
3353 /* If we are referencing a bitfield, we can't evaluate an
3354 ADDR_EXPR at compile time and so it isn't a constant. */
3355 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3356 return NULL;
3357
3358 return staticp (TREE_OPERAND (arg, 0));
3359
3360 case BIT_FIELD_REF:
3361 return NULL;
3362
3363 case INDIRECT_REF:
3364 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3365
3366 case ARRAY_REF:
3367 case ARRAY_RANGE_REF:
3368 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3369 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3370 return staticp (TREE_OPERAND (arg, 0));
3371 else
3372 return NULL;
3373
3374 case COMPOUND_LITERAL_EXPR:
3375 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3376
3377 default:
3378 return NULL;
3379 }
3380 }
3381
3382 \f
3383
3384
3385 /* Return whether OP is a DECL whose address is function-invariant. */
3386
3387 bool
3388 decl_address_invariant_p (const_tree op)
3389 {
3390 /* The conditions below are slightly less strict than the one in
3391 staticp. */
3392
3393 switch (TREE_CODE (op))
3394 {
3395 case PARM_DECL:
3396 case RESULT_DECL:
3397 case LABEL_DECL:
3398 case FUNCTION_DECL:
3399 return true;
3400
3401 case VAR_DECL:
3402 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3403 || DECL_THREAD_LOCAL_P (op)
3404 || DECL_CONTEXT (op) == current_function_decl
3405 || decl_function_context (op) == current_function_decl)
3406 return true;
3407 break;
3408
3409 case CONST_DECL:
3410 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3411 || decl_function_context (op) == current_function_decl)
3412 return true;
3413 break;
3414
3415 default:
3416 break;
3417 }
3418
3419 return false;
3420 }
3421
3422 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3423
3424 bool
3425 decl_address_ip_invariant_p (const_tree op)
3426 {
3427 /* The conditions below are slightly less strict than the one in
3428 staticp. */
3429
3430 switch (TREE_CODE (op))
3431 {
3432 case LABEL_DECL:
3433 case FUNCTION_DECL:
3434 case STRING_CST:
3435 return true;
3436
3437 case VAR_DECL:
3438 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3439 && !DECL_DLLIMPORT_P (op))
3440 || DECL_THREAD_LOCAL_P (op))
3441 return true;
3442 break;
3443
3444 case CONST_DECL:
3445 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3446 return true;
3447 break;
3448
3449 default:
3450 break;
3451 }
3452
3453 return false;
3454 }
3455
3456
3457 /* Return true if T is function-invariant (internal function, does
3458 not handle arithmetic; that's handled in skip_simple_arithmetic and
3459 tree_invariant_p). */
3460
3461 static bool
3462 tree_invariant_p_1 (tree t)
3463 {
3464 tree op;
3465
3466 if (TREE_CONSTANT (t)
3467 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3468 return true;
3469
3470 switch (TREE_CODE (t))
3471 {
3472 case SAVE_EXPR:
3473 return true;
3474
3475 case ADDR_EXPR:
3476 op = TREE_OPERAND (t, 0);
3477 while (handled_component_p (op))
3478 {
3479 switch (TREE_CODE (op))
3480 {
3481 case ARRAY_REF:
3482 case ARRAY_RANGE_REF:
3483 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3484 || TREE_OPERAND (op, 2) != NULL_TREE
3485 || TREE_OPERAND (op, 3) != NULL_TREE)
3486 return false;
3487 break;
3488
3489 case COMPONENT_REF:
3490 if (TREE_OPERAND (op, 2) != NULL_TREE)
3491 return false;
3492 break;
3493
3494 default:;
3495 }
3496 op = TREE_OPERAND (op, 0);
3497 }
3498
3499 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3500
3501 default:
3502 break;
3503 }
3504
3505 return false;
3506 }
3507
3508 /* Return true if T is function-invariant. */
3509
3510 bool
3511 tree_invariant_p (tree t)
3512 {
3513 tree inner = skip_simple_arithmetic (t);
3514 return tree_invariant_p_1 (inner);
3515 }
3516
3517 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3518 Do this to any expression which may be used in more than one place,
3519 but must be evaluated only once.
3520
3521 Normally, expand_expr would reevaluate the expression each time.
3522 Calling save_expr produces something that is evaluated and recorded
3523 the first time expand_expr is called on it. Subsequent calls to
3524 expand_expr just reuse the recorded value.
3525
3526 The call to expand_expr that generates code that actually computes
3527 the value is the first call *at compile time*. Subsequent calls
3528 *at compile time* generate code to use the saved value.
3529 This produces correct result provided that *at run time* control
3530 always flows through the insns made by the first expand_expr
3531 before reaching the other places where the save_expr was evaluated.
3532 You, the caller of save_expr, must make sure this is so.
3533
3534 Constants, and certain read-only nodes, are returned with no
3535 SAVE_EXPR because that is safe. Expressions containing placeholders
3536 are not touched; see tree.def for an explanation of what these
3537 are used for. */
3538
3539 tree
3540 save_expr (tree expr)
3541 {
3542 tree inner;
3543
3544 /* If the tree evaluates to a constant, then we don't want to hide that
3545 fact (i.e. this allows further folding, and direct checks for constants).
3546 However, a read-only object that has side effects cannot be bypassed.
3547 Since it is no problem to reevaluate literals, we just return the
3548 literal node. */
3549 inner = skip_simple_arithmetic (expr);
3550 if (TREE_CODE (inner) == ERROR_MARK)
3551 return inner;
3552
3553 if (tree_invariant_p_1 (inner))
3554 return expr;
3555
3556 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3557 it means that the size or offset of some field of an object depends on
3558 the value within another field.
3559
3560 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3561 and some variable since it would then need to be both evaluated once and
3562 evaluated more than once. Front-ends must assure this case cannot
3563 happen by surrounding any such subexpressions in their own SAVE_EXPR
3564 and forcing evaluation at the proper time. */
3565 if (contains_placeholder_p (inner))
3566 return expr;
3567
3568 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3569
3570 /* This expression might be placed ahead of a jump to ensure that the
3571 value was computed on both sides of the jump. So make sure it isn't
3572 eliminated as dead. */
3573 TREE_SIDE_EFFECTS (expr) = 1;
3574 return expr;
3575 }
3576
3577 /* Look inside EXPR into any simple arithmetic operations. Return the
3578 outermost non-arithmetic or non-invariant node. */
3579
3580 tree
3581 skip_simple_arithmetic (tree expr)
3582 {
3583 /* We don't care about whether this can be used as an lvalue in this
3584 context. */
3585 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3586 expr = TREE_OPERAND (expr, 0);
3587
3588 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3589 a constant, it will be more efficient to not make another SAVE_EXPR since
3590 it will allow better simplification and GCSE will be able to merge the
3591 computations if they actually occur. */
3592 while (true)
3593 {
3594 if (UNARY_CLASS_P (expr))
3595 expr = TREE_OPERAND (expr, 0);
3596 else if (BINARY_CLASS_P (expr))
3597 {
3598 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3599 expr = TREE_OPERAND (expr, 0);
3600 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3601 expr = TREE_OPERAND (expr, 1);
3602 else
3603 break;
3604 }
3605 else
3606 break;
3607 }
3608
3609 return expr;
3610 }
3611
3612 /* Look inside EXPR into simple arithmetic operations involving constants.
3613 Return the outermost non-arithmetic or non-constant node. */
3614
3615 tree
3616 skip_simple_constant_arithmetic (tree expr)
3617 {
3618 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3619 expr = TREE_OPERAND (expr, 0);
3620
3621 while (true)
3622 {
3623 if (UNARY_CLASS_P (expr))
3624 expr = TREE_OPERAND (expr, 0);
3625 else if (BINARY_CLASS_P (expr))
3626 {
3627 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3628 expr = TREE_OPERAND (expr, 0);
3629 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3630 expr = TREE_OPERAND (expr, 1);
3631 else
3632 break;
3633 }
3634 else
3635 break;
3636 }
3637
3638 return expr;
3639 }
3640
3641 /* Return which tree structure is used by T. */
3642
3643 enum tree_node_structure_enum
3644 tree_node_structure (const_tree t)
3645 {
3646 const enum tree_code code = TREE_CODE (t);
3647 return tree_node_structure_for_code (code);
3648 }
3649
3650 /* Set various status flags when building a CALL_EXPR object T. */
3651
3652 static void
3653 process_call_operands (tree t)
3654 {
3655 bool side_effects = TREE_SIDE_EFFECTS (t);
3656 bool read_only = false;
3657 int i = call_expr_flags (t);
3658
3659 /* Calls have side-effects, except those to const or pure functions. */
3660 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3661 side_effects = true;
3662 /* Propagate TREE_READONLY of arguments for const functions. */
3663 if (i & ECF_CONST)
3664 read_only = true;
3665
3666 if (!side_effects || read_only)
3667 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3668 {
3669 tree op = TREE_OPERAND (t, i);
3670 if (op && TREE_SIDE_EFFECTS (op))
3671 side_effects = true;
3672 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3673 read_only = false;
3674 }
3675
3676 TREE_SIDE_EFFECTS (t) = side_effects;
3677 TREE_READONLY (t) = read_only;
3678 }
3679 \f
3680 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3681 size or offset that depends on a field within a record. */
3682
3683 bool
3684 contains_placeholder_p (const_tree exp)
3685 {
3686 enum tree_code code;
3687
3688 if (!exp)
3689 return 0;
3690
3691 code = TREE_CODE (exp);
3692 if (code == PLACEHOLDER_EXPR)
3693 return 1;
3694
3695 switch (TREE_CODE_CLASS (code))
3696 {
3697 case tcc_reference:
3698 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3699 position computations since they will be converted into a
3700 WITH_RECORD_EXPR involving the reference, which will assume
3701 here will be valid. */
3702 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3703
3704 case tcc_exceptional:
3705 if (code == TREE_LIST)
3706 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3707 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3708 break;
3709
3710 case tcc_unary:
3711 case tcc_binary:
3712 case tcc_comparison:
3713 case tcc_expression:
3714 switch (code)
3715 {
3716 case COMPOUND_EXPR:
3717 /* Ignoring the first operand isn't quite right, but works best. */
3718 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3719
3720 case COND_EXPR:
3721 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3722 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3723 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3724
3725 case SAVE_EXPR:
3726 /* The save_expr function never wraps anything containing
3727 a PLACEHOLDER_EXPR. */
3728 return 0;
3729
3730 default:
3731 break;
3732 }
3733
3734 switch (TREE_CODE_LENGTH (code))
3735 {
3736 case 1:
3737 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3738 case 2:
3739 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3740 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3741 default:
3742 return 0;
3743 }
3744
3745 case tcc_vl_exp:
3746 switch (code)
3747 {
3748 case CALL_EXPR:
3749 {
3750 const_tree arg;
3751 const_call_expr_arg_iterator iter;
3752 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3753 if (CONTAINS_PLACEHOLDER_P (arg))
3754 return 1;
3755 return 0;
3756 }
3757 default:
3758 return 0;
3759 }
3760
3761 default:
3762 return 0;
3763 }
3764 return 0;
3765 }
3766
3767 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3768 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3769 field positions. */
3770
3771 static bool
3772 type_contains_placeholder_1 (const_tree type)
3773 {
3774 /* If the size contains a placeholder or the parent type (component type in
3775 the case of arrays) type involves a placeholder, this type does. */
3776 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3777 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3778 || (!POINTER_TYPE_P (type)
3779 && TREE_TYPE (type)
3780 && type_contains_placeholder_p (TREE_TYPE (type))))
3781 return true;
3782
3783 /* Now do type-specific checks. Note that the last part of the check above
3784 greatly limits what we have to do below. */
3785 switch (TREE_CODE (type))
3786 {
3787 case VOID_TYPE:
3788 case COMPLEX_TYPE:
3789 case ENUMERAL_TYPE:
3790 case BOOLEAN_TYPE:
3791 case POINTER_TYPE:
3792 case OFFSET_TYPE:
3793 case REFERENCE_TYPE:
3794 case METHOD_TYPE:
3795 case FUNCTION_TYPE:
3796 case VECTOR_TYPE:
3797 case NULLPTR_TYPE:
3798 return false;
3799
3800 case INTEGER_TYPE:
3801 case REAL_TYPE:
3802 case FIXED_POINT_TYPE:
3803 /* Here we just check the bounds. */
3804 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3805 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3806
3807 case ARRAY_TYPE:
3808 /* We have already checked the component type above, so just check
3809 the domain type. Flexible array members have a null domain. */
3810 return TYPE_DOMAIN (type) ?
3811 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3812
3813 case RECORD_TYPE:
3814 case UNION_TYPE:
3815 case QUAL_UNION_TYPE:
3816 {
3817 tree field;
3818
3819 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3820 if (TREE_CODE (field) == FIELD_DECL
3821 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3822 || (TREE_CODE (type) == QUAL_UNION_TYPE
3823 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3824 || type_contains_placeholder_p (TREE_TYPE (field))))
3825 return true;
3826
3827 return false;
3828 }
3829
3830 default:
3831 gcc_unreachable ();
3832 }
3833 }
3834
3835 /* Wrapper around above function used to cache its result. */
3836
3837 bool
3838 type_contains_placeholder_p (tree type)
3839 {
3840 bool result;
3841
3842 /* If the contains_placeholder_bits field has been initialized,
3843 then we know the answer. */
3844 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3845 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3846
3847 /* Indicate that we've seen this type node, and the answer is false.
3848 This is what we want to return if we run into recursion via fields. */
3849 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3850
3851 /* Compute the real value. */
3852 result = type_contains_placeholder_1 (type);
3853
3854 /* Store the real value. */
3855 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3856
3857 return result;
3858 }
3859 \f
3860 /* Push tree EXP onto vector QUEUE if it is not already present. */
3861
3862 static void
3863 push_without_duplicates (tree exp, vec<tree> *queue)
3864 {
3865 unsigned int i;
3866 tree iter;
3867
3868 FOR_EACH_VEC_ELT (*queue, i, iter)
3869 if (simple_cst_equal (iter, exp) == 1)
3870 break;
3871
3872 if (!iter)
3873 queue->safe_push (exp);
3874 }
3875
3876 /* Given a tree EXP, find all occurrences of references to fields
3877 in a PLACEHOLDER_EXPR and place them in vector REFS without
3878 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3879 we assume here that EXP contains only arithmetic expressions
3880 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3881 argument list. */
3882
3883 void
3884 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3885 {
3886 enum tree_code code = TREE_CODE (exp);
3887 tree inner;
3888 int i;
3889
3890 /* We handle TREE_LIST and COMPONENT_REF separately. */
3891 if (code == TREE_LIST)
3892 {
3893 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3894 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3895 }
3896 else if (code == COMPONENT_REF)
3897 {
3898 for (inner = TREE_OPERAND (exp, 0);
3899 REFERENCE_CLASS_P (inner);
3900 inner = TREE_OPERAND (inner, 0))
3901 ;
3902
3903 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3904 push_without_duplicates (exp, refs);
3905 else
3906 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3907 }
3908 else
3909 switch (TREE_CODE_CLASS (code))
3910 {
3911 case tcc_constant:
3912 break;
3913
3914 case tcc_declaration:
3915 /* Variables allocated to static storage can stay. */
3916 if (!TREE_STATIC (exp))
3917 push_without_duplicates (exp, refs);
3918 break;
3919
3920 case tcc_expression:
3921 /* This is the pattern built in ada/make_aligning_type. */
3922 if (code == ADDR_EXPR
3923 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3924 {
3925 push_without_duplicates (exp, refs);
3926 break;
3927 }
3928
3929 /* Fall through. */
3930
3931 case tcc_exceptional:
3932 case tcc_unary:
3933 case tcc_binary:
3934 case tcc_comparison:
3935 case tcc_reference:
3936 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3937 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3938 break;
3939
3940 case tcc_vl_exp:
3941 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3942 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3943 break;
3944
3945 default:
3946 gcc_unreachable ();
3947 }
3948 }
3949
3950 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3951 return a tree with all occurrences of references to F in a
3952 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3953 CONST_DECLs. Note that we assume here that EXP contains only
3954 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3955 occurring only in their argument list. */
3956
3957 tree
3958 substitute_in_expr (tree exp, tree f, tree r)
3959 {
3960 enum tree_code code = TREE_CODE (exp);
3961 tree op0, op1, op2, op3;
3962 tree new_tree;
3963
3964 /* We handle TREE_LIST and COMPONENT_REF separately. */
3965 if (code == TREE_LIST)
3966 {
3967 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3968 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3969 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3970 return exp;
3971
3972 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3973 }
3974 else if (code == COMPONENT_REF)
3975 {
3976 tree inner;
3977
3978 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3979 and it is the right field, replace it with R. */
3980 for (inner = TREE_OPERAND (exp, 0);
3981 REFERENCE_CLASS_P (inner);
3982 inner = TREE_OPERAND (inner, 0))
3983 ;
3984
3985 /* The field. */
3986 op1 = TREE_OPERAND (exp, 1);
3987
3988 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3989 return r;
3990
3991 /* If this expression hasn't been completed let, leave it alone. */
3992 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3993 return exp;
3994
3995 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3996 if (op0 == TREE_OPERAND (exp, 0))
3997 return exp;
3998
3999 new_tree
4000 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4001 }
4002 else
4003 switch (TREE_CODE_CLASS (code))
4004 {
4005 case tcc_constant:
4006 return exp;
4007
4008 case tcc_declaration:
4009 if (exp == f)
4010 return r;
4011 else
4012 return exp;
4013
4014 case tcc_expression:
4015 if (exp == f)
4016 return r;
4017
4018 /* Fall through. */
4019
4020 case tcc_exceptional:
4021 case tcc_unary:
4022 case tcc_binary:
4023 case tcc_comparison:
4024 case tcc_reference:
4025 switch (TREE_CODE_LENGTH (code))
4026 {
4027 case 0:
4028 return exp;
4029
4030 case 1:
4031 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4032 if (op0 == TREE_OPERAND (exp, 0))
4033 return exp;
4034
4035 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4036 break;
4037
4038 case 2:
4039 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4040 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4041
4042 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4043 return exp;
4044
4045 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4046 break;
4047
4048 case 3:
4049 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4050 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4051 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4052
4053 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4054 && op2 == TREE_OPERAND (exp, 2))
4055 return exp;
4056
4057 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4058 break;
4059
4060 case 4:
4061 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4062 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4063 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4064 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4065
4066 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4067 && op2 == TREE_OPERAND (exp, 2)
4068 && op3 == TREE_OPERAND (exp, 3))
4069 return exp;
4070
4071 new_tree
4072 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4073 break;
4074
4075 default:
4076 gcc_unreachable ();
4077 }
4078 break;
4079
4080 case tcc_vl_exp:
4081 {
4082 int i;
4083
4084 new_tree = NULL_TREE;
4085
4086 /* If we are trying to replace F with a constant or with another
4087 instance of one of the arguments of the call, inline back
4088 functions which do nothing else than computing a value from
4089 the arguments they are passed. This makes it possible to
4090 fold partially or entirely the replacement expression. */
4091 if (code == CALL_EXPR)
4092 {
4093 bool maybe_inline = false;
4094 if (CONSTANT_CLASS_P (r))
4095 maybe_inline = true;
4096 else
4097 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4098 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4099 {
4100 maybe_inline = true;
4101 break;
4102 }
4103 if (maybe_inline)
4104 {
4105 tree t = maybe_inline_call_in_expr (exp);
4106 if (t)
4107 return SUBSTITUTE_IN_EXPR (t, f, r);
4108 }
4109 }
4110
4111 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4112 {
4113 tree op = TREE_OPERAND (exp, i);
4114 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4115 if (new_op != op)
4116 {
4117 if (!new_tree)
4118 new_tree = copy_node (exp);
4119 TREE_OPERAND (new_tree, i) = new_op;
4120 }
4121 }
4122
4123 if (new_tree)
4124 {
4125 new_tree = fold (new_tree);
4126 if (TREE_CODE (new_tree) == CALL_EXPR)
4127 process_call_operands (new_tree);
4128 }
4129 else
4130 return exp;
4131 }
4132 break;
4133
4134 default:
4135 gcc_unreachable ();
4136 }
4137
4138 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4139
4140 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4141 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4142
4143 return new_tree;
4144 }
4145
4146 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4147 for it within OBJ, a tree that is an object or a chain of references. */
4148
4149 tree
4150 substitute_placeholder_in_expr (tree exp, tree obj)
4151 {
4152 enum tree_code code = TREE_CODE (exp);
4153 tree op0, op1, op2, op3;
4154 tree new_tree;
4155
4156 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4157 in the chain of OBJ. */
4158 if (code == PLACEHOLDER_EXPR)
4159 {
4160 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4161 tree elt;
4162
4163 for (elt = obj; elt != 0;
4164 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4165 || TREE_CODE (elt) == COND_EXPR)
4166 ? TREE_OPERAND (elt, 1)
4167 : (REFERENCE_CLASS_P (elt)
4168 || UNARY_CLASS_P (elt)
4169 || BINARY_CLASS_P (elt)
4170 || VL_EXP_CLASS_P (elt)
4171 || EXPRESSION_CLASS_P (elt))
4172 ? TREE_OPERAND (elt, 0) : 0))
4173 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4174 return elt;
4175
4176 for (elt = obj; elt != 0;
4177 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4178 || TREE_CODE (elt) == COND_EXPR)
4179 ? TREE_OPERAND (elt, 1)
4180 : (REFERENCE_CLASS_P (elt)
4181 || UNARY_CLASS_P (elt)
4182 || BINARY_CLASS_P (elt)
4183 || VL_EXP_CLASS_P (elt)
4184 || EXPRESSION_CLASS_P (elt))
4185 ? TREE_OPERAND (elt, 0) : 0))
4186 if (POINTER_TYPE_P (TREE_TYPE (elt))
4187 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4188 == need_type))
4189 return fold_build1 (INDIRECT_REF, need_type, elt);
4190
4191 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4192 survives until RTL generation, there will be an error. */
4193 return exp;
4194 }
4195
4196 /* TREE_LIST is special because we need to look at TREE_VALUE
4197 and TREE_CHAIN, not TREE_OPERANDS. */
4198 else if (code == TREE_LIST)
4199 {
4200 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4201 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4202 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4203 return exp;
4204
4205 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4206 }
4207 else
4208 switch (TREE_CODE_CLASS (code))
4209 {
4210 case tcc_constant:
4211 case tcc_declaration:
4212 return exp;
4213
4214 case tcc_exceptional:
4215 case tcc_unary:
4216 case tcc_binary:
4217 case tcc_comparison:
4218 case tcc_expression:
4219 case tcc_reference:
4220 case tcc_statement:
4221 switch (TREE_CODE_LENGTH (code))
4222 {
4223 case 0:
4224 return exp;
4225
4226 case 1:
4227 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4228 if (op0 == TREE_OPERAND (exp, 0))
4229 return exp;
4230
4231 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4232 break;
4233
4234 case 2:
4235 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4236 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4237
4238 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4239 return exp;
4240
4241 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4242 break;
4243
4244 case 3:
4245 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4246 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4247 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4248
4249 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4250 && op2 == TREE_OPERAND (exp, 2))
4251 return exp;
4252
4253 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4254 break;
4255
4256 case 4:
4257 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4258 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4259 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4260 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4261
4262 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4263 && op2 == TREE_OPERAND (exp, 2)
4264 && op3 == TREE_OPERAND (exp, 3))
4265 return exp;
4266
4267 new_tree
4268 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4269 break;
4270
4271 default:
4272 gcc_unreachable ();
4273 }
4274 break;
4275
4276 case tcc_vl_exp:
4277 {
4278 int i;
4279
4280 new_tree = NULL_TREE;
4281
4282 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4283 {
4284 tree op = TREE_OPERAND (exp, i);
4285 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4286 if (new_op != op)
4287 {
4288 if (!new_tree)
4289 new_tree = copy_node (exp);
4290 TREE_OPERAND (new_tree, i) = new_op;
4291 }
4292 }
4293
4294 if (new_tree)
4295 {
4296 new_tree = fold (new_tree);
4297 if (TREE_CODE (new_tree) == CALL_EXPR)
4298 process_call_operands (new_tree);
4299 }
4300 else
4301 return exp;
4302 }
4303 break;
4304
4305 default:
4306 gcc_unreachable ();
4307 }
4308
4309 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4310
4311 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4312 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4313
4314 return new_tree;
4315 }
4316 \f
4317
4318 /* Subroutine of stabilize_reference; this is called for subtrees of
4319 references. Any expression with side-effects must be put in a SAVE_EXPR
4320 to ensure that it is only evaluated once.
4321
4322 We don't put SAVE_EXPR nodes around everything, because assigning very
4323 simple expressions to temporaries causes us to miss good opportunities
4324 for optimizations. Among other things, the opportunity to fold in the
4325 addition of a constant into an addressing mode often gets lost, e.g.
4326 "y[i+1] += x;". In general, we take the approach that we should not make
4327 an assignment unless we are forced into it - i.e., that any non-side effect
4328 operator should be allowed, and that cse should take care of coalescing
4329 multiple utterances of the same expression should that prove fruitful. */
4330
4331 static tree
4332 stabilize_reference_1 (tree e)
4333 {
4334 tree result;
4335 enum tree_code code = TREE_CODE (e);
4336
4337 /* We cannot ignore const expressions because it might be a reference
4338 to a const array but whose index contains side-effects. But we can
4339 ignore things that are actual constant or that already have been
4340 handled by this function. */
4341
4342 if (tree_invariant_p (e))
4343 return e;
4344
4345 switch (TREE_CODE_CLASS (code))
4346 {
4347 case tcc_exceptional:
4348 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4349 have side-effects. */
4350 if (code == STATEMENT_LIST)
4351 return save_expr (e);
4352 /* FALLTHRU */
4353 case tcc_type:
4354 case tcc_declaration:
4355 case tcc_comparison:
4356 case tcc_statement:
4357 case tcc_expression:
4358 case tcc_reference:
4359 case tcc_vl_exp:
4360 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4361 so that it will only be evaluated once. */
4362 /* The reference (r) and comparison (<) classes could be handled as
4363 below, but it is generally faster to only evaluate them once. */
4364 if (TREE_SIDE_EFFECTS (e))
4365 return save_expr (e);
4366 return e;
4367
4368 case tcc_constant:
4369 /* Constants need no processing. In fact, we should never reach
4370 here. */
4371 return e;
4372
4373 case tcc_binary:
4374 /* Division is slow and tends to be compiled with jumps,
4375 especially the division by powers of 2 that is often
4376 found inside of an array reference. So do it just once. */
4377 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4378 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4379 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4380 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4381 return save_expr (e);
4382 /* Recursively stabilize each operand. */
4383 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4384 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4385 break;
4386
4387 case tcc_unary:
4388 /* Recursively stabilize each operand. */
4389 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4390 break;
4391
4392 default:
4393 gcc_unreachable ();
4394 }
4395
4396 TREE_TYPE (result) = TREE_TYPE (e);
4397 TREE_READONLY (result) = TREE_READONLY (e);
4398 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4399 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4400
4401 return result;
4402 }
4403
4404 /* Stabilize a reference so that we can use it any number of times
4405 without causing its operands to be evaluated more than once.
4406 Returns the stabilized reference. This works by means of save_expr,
4407 so see the caveats in the comments about save_expr.
4408
4409 Also allows conversion expressions whose operands are references.
4410 Any other kind of expression is returned unchanged. */
4411
4412 tree
4413 stabilize_reference (tree ref)
4414 {
4415 tree result;
4416 enum tree_code code = TREE_CODE (ref);
4417
4418 switch (code)
4419 {
4420 case VAR_DECL:
4421 case PARM_DECL:
4422 case RESULT_DECL:
4423 /* No action is needed in this case. */
4424 return ref;
4425
4426 CASE_CONVERT:
4427 case FLOAT_EXPR:
4428 case FIX_TRUNC_EXPR:
4429 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4430 break;
4431
4432 case INDIRECT_REF:
4433 result = build_nt (INDIRECT_REF,
4434 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4435 break;
4436
4437 case COMPONENT_REF:
4438 result = build_nt (COMPONENT_REF,
4439 stabilize_reference (TREE_OPERAND (ref, 0)),
4440 TREE_OPERAND (ref, 1), NULL_TREE);
4441 break;
4442
4443 case BIT_FIELD_REF:
4444 result = build_nt (BIT_FIELD_REF,
4445 stabilize_reference (TREE_OPERAND (ref, 0)),
4446 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4447 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4448 break;
4449
4450 case ARRAY_REF:
4451 result = build_nt (ARRAY_REF,
4452 stabilize_reference (TREE_OPERAND (ref, 0)),
4453 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4454 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4455 break;
4456
4457 case ARRAY_RANGE_REF:
4458 result = build_nt (ARRAY_RANGE_REF,
4459 stabilize_reference (TREE_OPERAND (ref, 0)),
4460 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4461 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4462 break;
4463
4464 case COMPOUND_EXPR:
4465 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4466 it wouldn't be ignored. This matters when dealing with
4467 volatiles. */
4468 return stabilize_reference_1 (ref);
4469
4470 /* If arg isn't a kind of lvalue we recognize, make no change.
4471 Caller should recognize the error for an invalid lvalue. */
4472 default:
4473 return ref;
4474
4475 case ERROR_MARK:
4476 return error_mark_node;
4477 }
4478
4479 TREE_TYPE (result) = TREE_TYPE (ref);
4480 TREE_READONLY (result) = TREE_READONLY (ref);
4481 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4482 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4483
4484 return result;
4485 }
4486 \f
4487 /* Low-level constructors for expressions. */
4488
4489 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4490 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4491
4492 void
4493 recompute_tree_invariant_for_addr_expr (tree t)
4494 {
4495 tree node;
4496 bool tc = true, se = false;
4497
4498 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4499
4500 /* We started out assuming this address is both invariant and constant, but
4501 does not have side effects. Now go down any handled components and see if
4502 any of them involve offsets that are either non-constant or non-invariant.
4503 Also check for side-effects.
4504
4505 ??? Note that this code makes no attempt to deal with the case where
4506 taking the address of something causes a copy due to misalignment. */
4507
4508 #define UPDATE_FLAGS(NODE) \
4509 do { tree _node = (NODE); \
4510 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4511 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4512
4513 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4514 node = TREE_OPERAND (node, 0))
4515 {
4516 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4517 array reference (probably made temporarily by the G++ front end),
4518 so ignore all the operands. */
4519 if ((TREE_CODE (node) == ARRAY_REF
4520 || TREE_CODE (node) == ARRAY_RANGE_REF)
4521 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4522 {
4523 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4524 if (TREE_OPERAND (node, 2))
4525 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4526 if (TREE_OPERAND (node, 3))
4527 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4528 }
4529 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4530 FIELD_DECL, apparently. The G++ front end can put something else
4531 there, at least temporarily. */
4532 else if (TREE_CODE (node) == COMPONENT_REF
4533 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4534 {
4535 if (TREE_OPERAND (node, 2))
4536 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4537 }
4538 }
4539
4540 node = lang_hooks.expr_to_decl (node, &tc, &se);
4541
4542 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4543 the address, since &(*a)->b is a form of addition. If it's a constant, the
4544 address is constant too. If it's a decl, its address is constant if the
4545 decl is static. Everything else is not constant and, furthermore,
4546 taking the address of a volatile variable is not volatile. */
4547 if (TREE_CODE (node) == INDIRECT_REF
4548 || TREE_CODE (node) == MEM_REF)
4549 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4550 else if (CONSTANT_CLASS_P (node))
4551 ;
4552 else if (DECL_P (node))
4553 tc &= (staticp (node) != NULL_TREE);
4554 else
4555 {
4556 tc = false;
4557 se |= TREE_SIDE_EFFECTS (node);
4558 }
4559
4560
4561 TREE_CONSTANT (t) = tc;
4562 TREE_SIDE_EFFECTS (t) = se;
4563 #undef UPDATE_FLAGS
4564 }
4565
4566 /* Build an expression of code CODE, data type TYPE, and operands as
4567 specified. Expressions and reference nodes can be created this way.
4568 Constants, decls, types and misc nodes cannot be.
4569
4570 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4571 enough for all extant tree codes. */
4572
4573 tree
4574 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4575 {
4576 tree t;
4577
4578 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4579
4580 t = make_node (code PASS_MEM_STAT);
4581 TREE_TYPE (t) = tt;
4582
4583 return t;
4584 }
4585
4586 tree
4587 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4588 {
4589 int length = sizeof (struct tree_exp);
4590 tree t;
4591
4592 record_node_allocation_statistics (code, length);
4593
4594 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4595
4596 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4597
4598 memset (t, 0, sizeof (struct tree_common));
4599
4600 TREE_SET_CODE (t, code);
4601
4602 TREE_TYPE (t) = type;
4603 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4604 TREE_OPERAND (t, 0) = node;
4605 if (node && !TYPE_P (node))
4606 {
4607 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4608 TREE_READONLY (t) = TREE_READONLY (node);
4609 }
4610
4611 if (TREE_CODE_CLASS (code) == tcc_statement)
4612 {
4613 if (code != DEBUG_BEGIN_STMT)
4614 TREE_SIDE_EFFECTS (t) = 1;
4615 }
4616 else switch (code)
4617 {
4618 case VA_ARG_EXPR:
4619 /* All of these have side-effects, no matter what their
4620 operands are. */
4621 TREE_SIDE_EFFECTS (t) = 1;
4622 TREE_READONLY (t) = 0;
4623 break;
4624
4625 case INDIRECT_REF:
4626 /* Whether a dereference is readonly has nothing to do with whether
4627 its operand is readonly. */
4628 TREE_READONLY (t) = 0;
4629 break;
4630
4631 case ADDR_EXPR:
4632 if (node)
4633 recompute_tree_invariant_for_addr_expr (t);
4634 break;
4635
4636 default:
4637 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4638 && node && !TYPE_P (node)
4639 && TREE_CONSTANT (node))
4640 TREE_CONSTANT (t) = 1;
4641 if (TREE_CODE_CLASS (code) == tcc_reference
4642 && node && TREE_THIS_VOLATILE (node))
4643 TREE_THIS_VOLATILE (t) = 1;
4644 break;
4645 }
4646
4647 return t;
4648 }
4649
4650 #define PROCESS_ARG(N) \
4651 do { \
4652 TREE_OPERAND (t, N) = arg##N; \
4653 if (arg##N &&!TYPE_P (arg##N)) \
4654 { \
4655 if (TREE_SIDE_EFFECTS (arg##N)) \
4656 side_effects = 1; \
4657 if (!TREE_READONLY (arg##N) \
4658 && !CONSTANT_CLASS_P (arg##N)) \
4659 (void) (read_only = 0); \
4660 if (!TREE_CONSTANT (arg##N)) \
4661 (void) (constant = 0); \
4662 } \
4663 } while (0)
4664
4665 tree
4666 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4667 {
4668 bool constant, read_only, side_effects, div_by_zero;
4669 tree t;
4670
4671 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4672
4673 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4674 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4675 /* When sizetype precision doesn't match that of pointers
4676 we need to be able to build explicit extensions or truncations
4677 of the offset argument. */
4678 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4679 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4680 && TREE_CODE (arg1) == INTEGER_CST);
4681
4682 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4683 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4684 && ptrofftype_p (TREE_TYPE (arg1)));
4685
4686 t = make_node (code PASS_MEM_STAT);
4687 TREE_TYPE (t) = tt;
4688
4689 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4690 result based on those same flags for the arguments. But if the
4691 arguments aren't really even `tree' expressions, we shouldn't be trying
4692 to do this. */
4693
4694 /* Expressions without side effects may be constant if their
4695 arguments are as well. */
4696 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4697 || TREE_CODE_CLASS (code) == tcc_binary);
4698 read_only = 1;
4699 side_effects = TREE_SIDE_EFFECTS (t);
4700
4701 switch (code)
4702 {
4703 case TRUNC_DIV_EXPR:
4704 case CEIL_DIV_EXPR:
4705 case FLOOR_DIV_EXPR:
4706 case ROUND_DIV_EXPR:
4707 case EXACT_DIV_EXPR:
4708 case CEIL_MOD_EXPR:
4709 case FLOOR_MOD_EXPR:
4710 case ROUND_MOD_EXPR:
4711 case TRUNC_MOD_EXPR:
4712 div_by_zero = integer_zerop (arg1);
4713 break;
4714 default:
4715 div_by_zero = false;
4716 }
4717
4718 PROCESS_ARG (0);
4719 PROCESS_ARG (1);
4720
4721 TREE_SIDE_EFFECTS (t) = side_effects;
4722 if (code == MEM_REF)
4723 {
4724 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4725 {
4726 tree o = TREE_OPERAND (arg0, 0);
4727 TREE_READONLY (t) = TREE_READONLY (o);
4728 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4729 }
4730 }
4731 else
4732 {
4733 TREE_READONLY (t) = read_only;
4734 /* Don't mark X / 0 as constant. */
4735 TREE_CONSTANT (t) = constant && !div_by_zero;
4736 TREE_THIS_VOLATILE (t)
4737 = (TREE_CODE_CLASS (code) == tcc_reference
4738 && arg0 && TREE_THIS_VOLATILE (arg0));
4739 }
4740
4741 return t;
4742 }
4743
4744
4745 tree
4746 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4747 tree arg2 MEM_STAT_DECL)
4748 {
4749 bool constant, read_only, side_effects;
4750 tree t;
4751
4752 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4753 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4754
4755 t = make_node (code PASS_MEM_STAT);
4756 TREE_TYPE (t) = tt;
4757
4758 read_only = 1;
4759
4760 /* As a special exception, if COND_EXPR has NULL branches, we
4761 assume that it is a gimple statement and always consider
4762 it to have side effects. */
4763 if (code == COND_EXPR
4764 && tt == void_type_node
4765 && arg1 == NULL_TREE
4766 && arg2 == NULL_TREE)
4767 side_effects = true;
4768 else
4769 side_effects = TREE_SIDE_EFFECTS (t);
4770
4771 PROCESS_ARG (0);
4772 PROCESS_ARG (1);
4773 PROCESS_ARG (2);
4774
4775 if (code == COND_EXPR)
4776 TREE_READONLY (t) = read_only;
4777
4778 TREE_SIDE_EFFECTS (t) = side_effects;
4779 TREE_THIS_VOLATILE (t)
4780 = (TREE_CODE_CLASS (code) == tcc_reference
4781 && arg0 && TREE_THIS_VOLATILE (arg0));
4782
4783 return t;
4784 }
4785
4786 tree
4787 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4788 tree arg2, tree arg3 MEM_STAT_DECL)
4789 {
4790 bool constant, read_only, side_effects;
4791 tree t;
4792
4793 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4794
4795 t = make_node (code PASS_MEM_STAT);
4796 TREE_TYPE (t) = tt;
4797
4798 side_effects = TREE_SIDE_EFFECTS (t);
4799
4800 PROCESS_ARG (0);
4801 PROCESS_ARG (1);
4802 PROCESS_ARG (2);
4803 PROCESS_ARG (3);
4804
4805 TREE_SIDE_EFFECTS (t) = side_effects;
4806 TREE_THIS_VOLATILE (t)
4807 = (TREE_CODE_CLASS (code) == tcc_reference
4808 && arg0 && TREE_THIS_VOLATILE (arg0));
4809
4810 return t;
4811 }
4812
4813 tree
4814 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4815 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4816 {
4817 bool constant, read_only, side_effects;
4818 tree t;
4819
4820 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4821
4822 t = make_node (code PASS_MEM_STAT);
4823 TREE_TYPE (t) = tt;
4824
4825 side_effects = TREE_SIDE_EFFECTS (t);
4826
4827 PROCESS_ARG (0);
4828 PROCESS_ARG (1);
4829 PROCESS_ARG (2);
4830 PROCESS_ARG (3);
4831 PROCESS_ARG (4);
4832
4833 TREE_SIDE_EFFECTS (t) = side_effects;
4834 if (code == TARGET_MEM_REF)
4835 {
4836 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4837 {
4838 tree o = TREE_OPERAND (arg0, 0);
4839 TREE_READONLY (t) = TREE_READONLY (o);
4840 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4841 }
4842 }
4843 else
4844 TREE_THIS_VOLATILE (t)
4845 = (TREE_CODE_CLASS (code) == tcc_reference
4846 && arg0 && TREE_THIS_VOLATILE (arg0));
4847
4848 return t;
4849 }
4850
4851 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4852 on the pointer PTR. */
4853
4854 tree
4855 build_simple_mem_ref_loc (location_t loc, tree ptr)
4856 {
4857 poly_int64 offset = 0;
4858 tree ptype = TREE_TYPE (ptr);
4859 tree tem;
4860 /* For convenience allow addresses that collapse to a simple base
4861 and offset. */
4862 if (TREE_CODE (ptr) == ADDR_EXPR
4863 && (handled_component_p (TREE_OPERAND (ptr, 0))
4864 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4865 {
4866 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4867 gcc_assert (ptr);
4868 if (TREE_CODE (ptr) == MEM_REF)
4869 {
4870 offset += mem_ref_offset (ptr).force_shwi ();
4871 ptr = TREE_OPERAND (ptr, 0);
4872 }
4873 else
4874 ptr = build_fold_addr_expr (ptr);
4875 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4876 }
4877 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4878 ptr, build_int_cst (ptype, offset));
4879 SET_EXPR_LOCATION (tem, loc);
4880 return tem;
4881 }
4882
4883 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4884
4885 poly_offset_int
4886 mem_ref_offset (const_tree t)
4887 {
4888 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4889 SIGNED);
4890 }
4891
4892 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4893 offsetted by OFFSET units. */
4894
4895 tree
4896 build_invariant_address (tree type, tree base, poly_int64 offset)
4897 {
4898 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4899 build_fold_addr_expr (base),
4900 build_int_cst (ptr_type_node, offset));
4901 tree addr = build1 (ADDR_EXPR, type, ref);
4902 recompute_tree_invariant_for_addr_expr (addr);
4903 return addr;
4904 }
4905
4906 /* Similar except don't specify the TREE_TYPE
4907 and leave the TREE_SIDE_EFFECTS as 0.
4908 It is permissible for arguments to be null,
4909 or even garbage if their values do not matter. */
4910
4911 tree
4912 build_nt (enum tree_code code, ...)
4913 {
4914 tree t;
4915 int length;
4916 int i;
4917 va_list p;
4918
4919 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4920
4921 va_start (p, code);
4922
4923 t = make_node (code);
4924 length = TREE_CODE_LENGTH (code);
4925
4926 for (i = 0; i < length; i++)
4927 TREE_OPERAND (t, i) = va_arg (p, tree);
4928
4929 va_end (p);
4930 return t;
4931 }
4932
4933 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4934 tree vec. */
4935
4936 tree
4937 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4938 {
4939 tree ret, t;
4940 unsigned int ix;
4941
4942 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4943 CALL_EXPR_FN (ret) = fn;
4944 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4945 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4946 CALL_EXPR_ARG (ret, ix) = t;
4947 return ret;
4948 }
4949 \f
4950 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4951 We do NOT enter this node in any sort of symbol table.
4952
4953 LOC is the location of the decl.
4954
4955 layout_decl is used to set up the decl's storage layout.
4956 Other slots are initialized to 0 or null pointers. */
4957
4958 tree
4959 build_decl (location_t loc, enum tree_code code, tree name,
4960 tree type MEM_STAT_DECL)
4961 {
4962 tree t;
4963
4964 t = make_node (code PASS_MEM_STAT);
4965 DECL_SOURCE_LOCATION (t) = loc;
4966
4967 /* if (type == error_mark_node)
4968 type = integer_type_node; */
4969 /* That is not done, deliberately, so that having error_mark_node
4970 as the type can suppress useless errors in the use of this variable. */
4971
4972 DECL_NAME (t) = name;
4973 TREE_TYPE (t) = type;
4974
4975 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4976 layout_decl (t, 0);
4977
4978 return t;
4979 }
4980
4981 /* Builds and returns function declaration with NAME and TYPE. */
4982
4983 tree
4984 build_fn_decl (const char *name, tree type)
4985 {
4986 tree id = get_identifier (name);
4987 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4988
4989 DECL_EXTERNAL (decl) = 1;
4990 TREE_PUBLIC (decl) = 1;
4991 DECL_ARTIFICIAL (decl) = 1;
4992 TREE_NOTHROW (decl) = 1;
4993
4994 return decl;
4995 }
4996
4997 vec<tree, va_gc> *all_translation_units;
4998
4999 /* Builds a new translation-unit decl with name NAME, queues it in the
5000 global list of translation-unit decls and returns it. */
5001
5002 tree
5003 build_translation_unit_decl (tree name)
5004 {
5005 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5006 name, NULL_TREE);
5007 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5008 vec_safe_push (all_translation_units, tu);
5009 return tu;
5010 }
5011
5012 \f
5013 /* BLOCK nodes are used to represent the structure of binding contours
5014 and declarations, once those contours have been exited and their contents
5015 compiled. This information is used for outputting debugging info. */
5016
5017 tree
5018 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5019 {
5020 tree block = make_node (BLOCK);
5021
5022 BLOCK_VARS (block) = vars;
5023 BLOCK_SUBBLOCKS (block) = subblocks;
5024 BLOCK_SUPERCONTEXT (block) = supercontext;
5025 BLOCK_CHAIN (block) = chain;
5026 return block;
5027 }
5028
5029 \f
5030 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5031
5032 LOC is the location to use in tree T. */
5033
5034 void
5035 protected_set_expr_location (tree t, location_t loc)
5036 {
5037 if (CAN_HAVE_LOCATION_P (t))
5038 SET_EXPR_LOCATION (t, loc);
5039 }
5040
5041 /* Data used when collecting DECLs and TYPEs for language data removal. */
5042
5043 struct free_lang_data_d
5044 {
5045 free_lang_data_d () : decls (100), types (100) {}
5046
5047 /* Worklist to avoid excessive recursion. */
5048 auto_vec<tree> worklist;
5049
5050 /* Set of traversed objects. Used to avoid duplicate visits. */
5051 hash_set<tree> pset;
5052
5053 /* Array of symbols to process with free_lang_data_in_decl. */
5054 auto_vec<tree> decls;
5055
5056 /* Array of types to process with free_lang_data_in_type. */
5057 auto_vec<tree> types;
5058 };
5059
5060
5061 /* Add type or decl T to one of the list of tree nodes that need their
5062 language data removed. The lists are held inside FLD. */
5063
5064 static void
5065 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5066 {
5067 if (DECL_P (t))
5068 fld->decls.safe_push (t);
5069 else if (TYPE_P (t))
5070 fld->types.safe_push (t);
5071 else
5072 gcc_unreachable ();
5073 }
5074
5075 /* Push tree node T into FLD->WORKLIST. */
5076
5077 static inline void
5078 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5079 {
5080 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5081 fld->worklist.safe_push ((t));
5082 }
5083
5084
5085 \f
5086 /* Do same comparsion as check_qualified_type skipping lang part of type
5087 and be more permissive about type names: we only care that names are
5088 same (for diagnostics) and that ODR names are the same. */
5089
5090 static bool
5091 fld_type_variant_equal_p (tree t, tree v)
5092 {
5093 if (TYPE_QUALS (t) != TYPE_QUALS (v)
5094 || TYPE_NAME (t) != TYPE_NAME (v)
5095 || TYPE_ALIGN (t) != TYPE_ALIGN (v)
5096 || !attribute_list_equal (TYPE_ATTRIBUTES (t),
5097 TYPE_ATTRIBUTES (v)))
5098 return false;
5099
5100 return true;
5101 }
5102
5103 /* Find variant of FIRST that match T and create new one if necessary. */
5104
5105 static tree
5106 fld_type_variant (tree first, tree t, struct free_lang_data_d *fld)
5107 {
5108 if (first == TYPE_MAIN_VARIANT (t))
5109 return t;
5110 for (tree v = first; v; v = TYPE_NEXT_VARIANT (v))
5111 if (fld_type_variant_equal_p (t, v))
5112 return v;
5113 tree v = build_variant_type_copy (first);
5114 TYPE_READONLY (v) = TYPE_READONLY (t);
5115 TYPE_VOLATILE (v) = TYPE_VOLATILE (t);
5116 TYPE_ATOMIC (v) = TYPE_ATOMIC (t);
5117 TYPE_RESTRICT (v) = TYPE_RESTRICT (t);
5118 TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t);
5119 TYPE_NAME (v) = TYPE_NAME (t);
5120 TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t);
5121 add_tree_to_fld_list (v, fld);
5122 return v;
5123 }
5124
5125 /* Map complete types to incomplete types. */
5126
5127 static hash_map<tree, tree> *fld_incomplete_types;
5128
5129 /* For T being aggregate type try to turn it into a incomplete variant.
5130 Return T if no simplification is possible. */
5131
5132 static tree
5133 fld_incomplete_type_of (tree t, struct free_lang_data_d *fld)
5134 {
5135 if (!t)
5136 return NULL;
5137 if (POINTER_TYPE_P (t))
5138 {
5139 tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld);
5140 if (t2 != TREE_TYPE (t))
5141 {
5142 tree first;
5143 if (TREE_CODE (t) == POINTER_TYPE)
5144 first = build_pointer_type_for_mode (t2, TYPE_MODE (t),
5145 TYPE_REF_CAN_ALIAS_ALL (t));
5146 else
5147 first = build_reference_type_for_mode (t2, TYPE_MODE (t),
5148 TYPE_REF_CAN_ALIAS_ALL (t));
5149 add_tree_to_fld_list (first, fld);
5150 return fld_type_variant (first, t, fld);
5151 }
5152 return t;
5153 }
5154 if (!RECORD_OR_UNION_TYPE_P (t) || !COMPLETE_TYPE_P (t))
5155 return t;
5156 if (TYPE_MAIN_VARIANT (t) == t)
5157 {
5158 bool existed;
5159 tree &copy
5160 = fld_incomplete_types->get_or_insert (t, &existed);
5161
5162 if (!existed)
5163 {
5164 copy = build_distinct_type_copy (t);
5165
5166 /* It is possible type was not seen by free_lang_data yet. */
5167 add_tree_to_fld_list (copy, fld);
5168 TYPE_SIZE (copy) = NULL;
5169 SET_TYPE_MODE (copy, VOIDmode);
5170 SET_TYPE_ALIGN (copy, BITS_PER_UNIT);
5171 TYPE_SIZE_UNIT (copy) = NULL;
5172 if (AGGREGATE_TYPE_P (t))
5173 {
5174 TYPE_FIELDS (copy) = NULL;
5175 TYPE_BINFO (copy) = NULL;
5176 }
5177 else
5178 TYPE_VALUES (copy) = NULL;
5179 }
5180 return copy;
5181 }
5182 return (fld_type_variant
5183 (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld));
5184 }
5185
5186 /* Simplify type T for scenarios where we do not need complete pointer
5187 types. */
5188
5189 static tree
5190 fld_simplified_type (tree t, struct free_lang_data_d *fld)
5191 {
5192 if (t && POINTER_TYPE_P (t))
5193 return fld_incomplete_type_of (t, fld);
5194 return t;
5195 }
5196
5197 /* Reset the expression *EXPR_P, a size or position.
5198
5199 ??? We could reset all non-constant sizes or positions. But it's cheap
5200 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5201
5202 We need to reset self-referential sizes or positions because they cannot
5203 be gimplified and thus can contain a CALL_EXPR after the gimplification
5204 is finished, which will run afoul of LTO streaming. And they need to be
5205 reset to something essentially dummy but not constant, so as to preserve
5206 the properties of the object they are attached to. */
5207
5208 static inline void
5209 free_lang_data_in_one_sizepos (tree *expr_p)
5210 {
5211 tree expr = *expr_p;
5212 if (CONTAINS_PLACEHOLDER_P (expr))
5213 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5214 }
5215
5216
5217 /* Reset all the fields in a binfo node BINFO. We only keep
5218 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5219
5220 static void
5221 free_lang_data_in_binfo (tree binfo)
5222 {
5223 unsigned i;
5224 tree t;
5225
5226 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5227
5228 BINFO_VIRTUALS (binfo) = NULL_TREE;
5229 BINFO_BASE_ACCESSES (binfo) = NULL;
5230 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5231 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5232 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5233
5234 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5235 free_lang_data_in_binfo (t);
5236 }
5237
5238
5239 /* Reset all language specific information still present in TYPE. */
5240
5241 static void
5242 free_lang_data_in_type (tree type)
5243 {
5244 gcc_assert (TYPE_P (type));
5245
5246 /* Give the FE a chance to remove its own data first. */
5247 lang_hooks.free_lang_data (type);
5248
5249 TREE_LANG_FLAG_0 (type) = 0;
5250 TREE_LANG_FLAG_1 (type) = 0;
5251 TREE_LANG_FLAG_2 (type) = 0;
5252 TREE_LANG_FLAG_3 (type) = 0;
5253 TREE_LANG_FLAG_4 (type) = 0;
5254 TREE_LANG_FLAG_5 (type) = 0;
5255 TREE_LANG_FLAG_6 (type) = 0;
5256
5257 if (TREE_CODE (type) == FUNCTION_TYPE)
5258 {
5259 /* Remove the const and volatile qualifiers from arguments. The
5260 C++ front end removes them, but the C front end does not,
5261 leading to false ODR violation errors when merging two
5262 instances of the same function signature compiled by
5263 different front ends. */
5264 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5265 {
5266 tree arg_type = TREE_VALUE (p);
5267
5268 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5269 {
5270 int quals = TYPE_QUALS (arg_type)
5271 & ~TYPE_QUAL_CONST
5272 & ~TYPE_QUAL_VOLATILE;
5273 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5274 free_lang_data_in_type (TREE_VALUE (p));
5275 }
5276 /* C++ FE uses TREE_PURPOSE to store initial values. */
5277 TREE_PURPOSE (p) = NULL;
5278 }
5279 }
5280 else if (TREE_CODE (type) == METHOD_TYPE)
5281 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5282 /* C++ FE uses TREE_PURPOSE to store initial values. */
5283 TREE_PURPOSE (p) = NULL;
5284 else if (RECORD_OR_UNION_TYPE_P (type))
5285 {
5286 /* Remove members that are not FIELD_DECLs from the field list
5287 of an aggregate. These occur in C++. */
5288 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5289 if (TREE_CODE (member) == FIELD_DECL)
5290 prev = &DECL_CHAIN (member);
5291 else
5292 *prev = DECL_CHAIN (member);
5293
5294 TYPE_VFIELD (type) = NULL_TREE;
5295
5296 if (TYPE_BINFO (type))
5297 {
5298 free_lang_data_in_binfo (TYPE_BINFO (type));
5299 /* We need to preserve link to bases and virtual table for all
5300 polymorphic types to make devirtualization machinery working. */
5301 if (!BINFO_VTABLE (TYPE_BINFO (type))
5302 || !flag_devirtualize)
5303 TYPE_BINFO (type) = NULL;
5304 }
5305 }
5306 else if (INTEGRAL_TYPE_P (type)
5307 || SCALAR_FLOAT_TYPE_P (type)
5308 || FIXED_POINT_TYPE_P (type))
5309 {
5310 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5311 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5312 }
5313
5314 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5315
5316 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5317 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5318
5319 if (TYPE_CONTEXT (type)
5320 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5321 {
5322 tree ctx = TYPE_CONTEXT (type);
5323 do
5324 {
5325 ctx = BLOCK_SUPERCONTEXT (ctx);
5326 }
5327 while (ctx && TREE_CODE (ctx) == BLOCK);
5328 TYPE_CONTEXT (type) = ctx;
5329 }
5330
5331 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5332 TYPE_DECL if the type doesn't have linkage. */
5333 if (type != TYPE_MAIN_VARIANT (type) || ! type_with_linkage_p (type))
5334 {
5335 TYPE_NAME (type) = TYPE_IDENTIFIER (type);
5336 TYPE_STUB_DECL (type) = NULL;
5337 }
5338 }
5339
5340
5341 /* Return true if DECL may need an assembler name to be set. */
5342
5343 static inline bool
5344 need_assembler_name_p (tree decl)
5345 {
5346 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5347 Rule merging. This makes type_odr_p to return true on those types during
5348 LTO and by comparing the mangled name, we can say what types are intended
5349 to be equivalent across compilation unit.
5350
5351 We do not store names of type_in_anonymous_namespace_p.
5352
5353 Record, union and enumeration type have linkage that allows use
5354 to check type_in_anonymous_namespace_p. We do not mangle compound types
5355 that always can be compared structurally.
5356
5357 Similarly for builtin types, we compare properties of their main variant.
5358 A special case are integer types where mangling do make differences
5359 between char/signed char/unsigned char etc. Storing name for these makes
5360 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5361 See cp/mangle.c:write_builtin_type for details. */
5362
5363 if (flag_lto_odr_type_mering
5364 && TREE_CODE (decl) == TYPE_DECL
5365 && DECL_NAME (decl)
5366 && decl == TYPE_NAME (TREE_TYPE (decl))
5367 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5368 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5369 && (type_with_linkage_p (TREE_TYPE (decl))
5370 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5371 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5372 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5373 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5374 if (!VAR_OR_FUNCTION_DECL_P (decl))
5375 return false;
5376
5377 /* If DECL already has its assembler name set, it does not need a
5378 new one. */
5379 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5380 || DECL_ASSEMBLER_NAME_SET_P (decl))
5381 return false;
5382
5383 /* Abstract decls do not need an assembler name. */
5384 if (DECL_ABSTRACT_P (decl))
5385 return false;
5386
5387 /* For VAR_DECLs, only static, public and external symbols need an
5388 assembler name. */
5389 if (VAR_P (decl)
5390 && !TREE_STATIC (decl)
5391 && !TREE_PUBLIC (decl)
5392 && !DECL_EXTERNAL (decl))
5393 return false;
5394
5395 if (TREE_CODE (decl) == FUNCTION_DECL)
5396 {
5397 /* Do not set assembler name on builtins. Allow RTL expansion to
5398 decide whether to expand inline or via a regular call. */
5399 if (fndecl_built_in_p (decl)
5400 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5401 return false;
5402
5403 /* Functions represented in the callgraph need an assembler name. */
5404 if (cgraph_node::get (decl) != NULL)
5405 return true;
5406
5407 /* Unused and not public functions don't need an assembler name. */
5408 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5409 return false;
5410 }
5411
5412 return true;
5413 }
5414
5415
5416 /* Reset all language specific information still present in symbol
5417 DECL. */
5418
5419 static void
5420 free_lang_data_in_decl (tree decl, struct free_lang_data_d *fld)
5421 {
5422 gcc_assert (DECL_P (decl));
5423
5424 /* Give the FE a chance to remove its own data first. */
5425 lang_hooks.free_lang_data (decl);
5426
5427 TREE_LANG_FLAG_0 (decl) = 0;
5428 TREE_LANG_FLAG_1 (decl) = 0;
5429 TREE_LANG_FLAG_2 (decl) = 0;
5430 TREE_LANG_FLAG_3 (decl) = 0;
5431 TREE_LANG_FLAG_4 (decl) = 0;
5432 TREE_LANG_FLAG_5 (decl) = 0;
5433 TREE_LANG_FLAG_6 (decl) = 0;
5434
5435 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5436 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5437 if (TREE_CODE (decl) == FIELD_DECL)
5438 {
5439 DECL_FCONTEXT (decl) = NULL;
5440 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5441 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5442 DECL_QUALIFIER (decl) = NULL_TREE;
5443 }
5444
5445 if (TREE_CODE (decl) == FUNCTION_DECL)
5446 {
5447 struct cgraph_node *node;
5448 if (!(node = cgraph_node::get (decl))
5449 || (!node->definition && !node->clones))
5450 {
5451 if (node)
5452 node->release_body ();
5453 else
5454 {
5455 release_function_body (decl);
5456 DECL_ARGUMENTS (decl) = NULL;
5457 DECL_RESULT (decl) = NULL;
5458 DECL_INITIAL (decl) = error_mark_node;
5459 }
5460 }
5461 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5462 {
5463 tree t;
5464
5465 /* If DECL has a gimple body, then the context for its
5466 arguments must be DECL. Otherwise, it doesn't really
5467 matter, as we will not be emitting any code for DECL. In
5468 general, there may be other instances of DECL created by
5469 the front end and since PARM_DECLs are generally shared,
5470 their DECL_CONTEXT changes as the replicas of DECL are
5471 created. The only time where DECL_CONTEXT is important
5472 is for the FUNCTION_DECLs that have a gimple body (since
5473 the PARM_DECL will be used in the function's body). */
5474 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5475 DECL_CONTEXT (t) = decl;
5476 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5477 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5478 = target_option_default_node;
5479 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5480 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5481 = optimization_default_node;
5482 }
5483
5484 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5485 At this point, it is not needed anymore. */
5486 DECL_SAVED_TREE (decl) = NULL_TREE;
5487
5488 /* Clear the abstract origin if it refers to a method.
5489 Otherwise dwarf2out.c will ICE as we splice functions out of
5490 TYPE_FIELDS and thus the origin will not be output
5491 correctly. */
5492 if (DECL_ABSTRACT_ORIGIN (decl)
5493 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5494 && RECORD_OR_UNION_TYPE_P
5495 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5496 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5497
5498 DECL_VINDEX (decl) = NULL_TREE;
5499 }
5500 else if (VAR_P (decl))
5501 {
5502 if ((DECL_EXTERNAL (decl)
5503 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5504 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5505 DECL_INITIAL (decl) = NULL_TREE;
5506 }
5507 else if (TREE_CODE (decl) == TYPE_DECL)
5508 {
5509 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5510 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5511 DECL_INITIAL (decl) = NULL_TREE;
5512 DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5513 TREE_TYPE (decl) = void_type_node;
5514 SET_DECL_ALIGN (decl, 0);
5515 }
5516 else if (TREE_CODE (decl) == FIELD_DECL)
5517 {
5518 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5519 DECL_INITIAL (decl) = NULL_TREE;
5520 }
5521 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5522 && DECL_INITIAL (decl)
5523 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5524 {
5525 /* Strip builtins from the translation-unit BLOCK. We still have targets
5526 without builtin_decl_explicit support and also builtins are shared
5527 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5528 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5529 while (*nextp)
5530 {
5531 tree var = *nextp;
5532 if (fndecl_built_in_p (var))
5533 *nextp = TREE_CHAIN (var);
5534 else
5535 nextp = &TREE_CHAIN (var);
5536 }
5537 }
5538 /* We need to keep field decls associated with their trees. Otherwise tree
5539 merging may merge some fileds and keep others disjoint wich in turn will
5540 not do well with TREE_CHAIN pointers linking them.
5541
5542 Also do not drop containing types for virtual methods and tables because
5543 these are needed by devirtualization. */
5544 if (TREE_CODE (decl) != FIELD_DECL
5545 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5546 || !DECL_VIRTUAL_P (decl)))
5547 {
5548 tree ctx = DECL_CONTEXT (decl);
5549 /* Variably modified types are needed for tree_is_indexable to decide
5550 whether the type needs to go to local or global section.
5551 This code is semi-broken but for now it is easiest to keep contexts
5552 as expected. */
5553 if (ctx && TYPE_P (ctx)
5554 && !variably_modified_type_p (ctx, NULL_TREE))
5555 {
5556 while (ctx && TYPE_P (ctx))
5557 ctx = TYPE_CONTEXT (ctx);
5558 DECL_CONTEXT (decl) = ctx;
5559 }
5560 }
5561 }
5562
5563
5564 /* Operand callback helper for free_lang_data_in_node. *TP is the
5565 subtree operand being considered. */
5566
5567 static tree
5568 find_decls_types_r (tree *tp, int *ws, void *data)
5569 {
5570 tree t = *tp;
5571 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5572
5573 if (TREE_CODE (t) == TREE_LIST)
5574 return NULL_TREE;
5575
5576 /* Language specific nodes will be removed, so there is no need
5577 to gather anything under them. */
5578 if (is_lang_specific (t))
5579 {
5580 *ws = 0;
5581 return NULL_TREE;
5582 }
5583
5584 if (DECL_P (t))
5585 {
5586 /* Note that walk_tree does not traverse every possible field in
5587 decls, so we have to do our own traversals here. */
5588 add_tree_to_fld_list (t, fld);
5589
5590 fld_worklist_push (DECL_NAME (t), fld);
5591 fld_worklist_push (DECL_CONTEXT (t), fld);
5592 fld_worklist_push (DECL_SIZE (t), fld);
5593 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5594
5595 /* We are going to remove everything under DECL_INITIAL for
5596 TYPE_DECLs. No point walking them. */
5597 if (TREE_CODE (t) != TYPE_DECL)
5598 fld_worklist_push (DECL_INITIAL (t), fld);
5599
5600 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5601 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5602
5603 if (TREE_CODE (t) == FUNCTION_DECL)
5604 {
5605 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5606 fld_worklist_push (DECL_RESULT (t), fld);
5607 }
5608 else if (TREE_CODE (t) == FIELD_DECL)
5609 {
5610 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5611 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5612 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5613 fld_worklist_push (DECL_FCONTEXT (t), fld);
5614 }
5615
5616 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5617 && DECL_HAS_VALUE_EXPR_P (t))
5618 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5619
5620 if (TREE_CODE (t) != FIELD_DECL
5621 && TREE_CODE (t) != TYPE_DECL)
5622 fld_worklist_push (TREE_CHAIN (t), fld);
5623 *ws = 0;
5624 }
5625 else if (TYPE_P (t))
5626 {
5627 /* Note that walk_tree does not traverse every possible field in
5628 types, so we have to do our own traversals here. */
5629 add_tree_to_fld_list (t, fld);
5630
5631 if (!RECORD_OR_UNION_TYPE_P (t))
5632 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5633 fld_worklist_push (TYPE_SIZE (t), fld);
5634 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5635 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5636 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5637 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5638 fld_worklist_push (TYPE_NAME (t), fld);
5639 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
5640 lists, we may look types up in these lists and use them while
5641 optimizing the function body. Thus we need to free lang data
5642 in them. */
5643 if (TREE_CODE (t) == POINTER_TYPE)
5644 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
5645 if (TREE_CODE (t) == REFERENCE_TYPE)
5646 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
5647 if (!POINTER_TYPE_P (t))
5648 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5649 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5650 if (!RECORD_OR_UNION_TYPE_P (t))
5651 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5652 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5653 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5654 do not and want not to reach unused variants this way. */
5655 if (TYPE_CONTEXT (t))
5656 {
5657 tree ctx = TYPE_CONTEXT (t);
5658 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5659 So push that instead. */
5660 while (ctx && TREE_CODE (ctx) == BLOCK)
5661 ctx = BLOCK_SUPERCONTEXT (ctx);
5662 fld_worklist_push (ctx, fld);
5663 }
5664 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5665 and want not to reach unused types this way. */
5666
5667 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5668 {
5669 unsigned i;
5670 tree tem;
5671 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5672 fld_worklist_push (TREE_TYPE (tem), fld);
5673 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5674 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5675 }
5676 if (RECORD_OR_UNION_TYPE_P (t))
5677 {
5678 tree tem;
5679 /* Push all TYPE_FIELDS - there can be interleaving interesting
5680 and non-interesting things. */
5681 tem = TYPE_FIELDS (t);
5682 while (tem)
5683 {
5684 if (TREE_CODE (tem) == FIELD_DECL)
5685 fld_worklist_push (tem, fld);
5686 tem = TREE_CHAIN (tem);
5687 }
5688 }
5689 if (FUNC_OR_METHOD_TYPE_P (t))
5690 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5691
5692 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5693 *ws = 0;
5694 }
5695 else if (TREE_CODE (t) == BLOCK)
5696 {
5697 for (tree *tem = &BLOCK_VARS (t); *tem; )
5698 {
5699 if (TREE_CODE (*tem) != VAR_DECL
5700 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem)))
5701 {
5702 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
5703 && TREE_CODE (*tem) != PARM_DECL);
5704 *tem = TREE_CHAIN (*tem);
5705 }
5706 else
5707 {
5708 fld_worklist_push (*tem, fld);
5709 tem = &TREE_CHAIN (*tem);
5710 }
5711 }
5712 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5713 fld_worklist_push (tem, fld);
5714 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5715 }
5716
5717 if (TREE_CODE (t) != IDENTIFIER_NODE
5718 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5719 fld_worklist_push (TREE_TYPE (t), fld);
5720
5721 return NULL_TREE;
5722 }
5723
5724
5725 /* Find decls and types in T. */
5726
5727 static void
5728 find_decls_types (tree t, struct free_lang_data_d *fld)
5729 {
5730 while (1)
5731 {
5732 if (!fld->pset.contains (t))
5733 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5734 if (fld->worklist.is_empty ())
5735 break;
5736 t = fld->worklist.pop ();
5737 }
5738 }
5739
5740 /* Translate all the types in LIST with the corresponding runtime
5741 types. */
5742
5743 static tree
5744 get_eh_types_for_runtime (tree list)
5745 {
5746 tree head, prev;
5747
5748 if (list == NULL_TREE)
5749 return NULL_TREE;
5750
5751 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5752 prev = head;
5753 list = TREE_CHAIN (list);
5754 while (list)
5755 {
5756 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5757 TREE_CHAIN (prev) = n;
5758 prev = TREE_CHAIN (prev);
5759 list = TREE_CHAIN (list);
5760 }
5761
5762 return head;
5763 }
5764
5765
5766 /* Find decls and types referenced in EH region R and store them in
5767 FLD->DECLS and FLD->TYPES. */
5768
5769 static void
5770 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5771 {
5772 switch (r->type)
5773 {
5774 case ERT_CLEANUP:
5775 break;
5776
5777 case ERT_TRY:
5778 {
5779 eh_catch c;
5780
5781 /* The types referenced in each catch must first be changed to the
5782 EH types used at runtime. This removes references to FE types
5783 in the region. */
5784 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5785 {
5786 c->type_list = get_eh_types_for_runtime (c->type_list);
5787 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
5788 }
5789 }
5790 break;
5791
5792 case ERT_ALLOWED_EXCEPTIONS:
5793 r->u.allowed.type_list
5794 = get_eh_types_for_runtime (r->u.allowed.type_list);
5795 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
5796 break;
5797
5798 case ERT_MUST_NOT_THROW:
5799 walk_tree (&r->u.must_not_throw.failure_decl,
5800 find_decls_types_r, fld, &fld->pset);
5801 break;
5802 }
5803 }
5804
5805
5806 /* Find decls and types referenced in cgraph node N and store them in
5807 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5808 look for *every* kind of DECL and TYPE node reachable from N,
5809 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5810 NAMESPACE_DECLs, etc). */
5811
5812 static void
5813 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5814 {
5815 basic_block bb;
5816 struct function *fn;
5817 unsigned ix;
5818 tree t;
5819
5820 find_decls_types (n->decl, fld);
5821
5822 if (!gimple_has_body_p (n->decl))
5823 return;
5824
5825 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5826
5827 fn = DECL_STRUCT_FUNCTION (n->decl);
5828
5829 /* Traverse locals. */
5830 FOR_EACH_LOCAL_DECL (fn, ix, t)
5831 find_decls_types (t, fld);
5832
5833 /* Traverse EH regions in FN. */
5834 {
5835 eh_region r;
5836 FOR_ALL_EH_REGION_FN (r, fn)
5837 find_decls_types_in_eh_region (r, fld);
5838 }
5839
5840 /* Traverse every statement in FN. */
5841 FOR_EACH_BB_FN (bb, fn)
5842 {
5843 gphi_iterator psi;
5844 gimple_stmt_iterator si;
5845 unsigned i;
5846
5847 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
5848 {
5849 gphi *phi = psi.phi ();
5850
5851 for (i = 0; i < gimple_phi_num_args (phi); i++)
5852 {
5853 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5854 find_decls_types (*arg_p, fld);
5855 }
5856 }
5857
5858 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5859 {
5860 gimple *stmt = gsi_stmt (si);
5861
5862 if (is_gimple_call (stmt))
5863 find_decls_types (gimple_call_fntype (stmt), fld);
5864
5865 for (i = 0; i < gimple_num_ops (stmt); i++)
5866 {
5867 tree arg = gimple_op (stmt, i);
5868 find_decls_types (arg, fld);
5869 }
5870 }
5871 }
5872 }
5873
5874
5875 /* Find decls and types referenced in varpool node N and store them in
5876 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5877 look for *every* kind of DECL and TYPE node reachable from N,
5878 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5879 NAMESPACE_DECLs, etc). */
5880
5881 static void
5882 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5883 {
5884 find_decls_types (v->decl, fld);
5885 }
5886
5887 /* If T needs an assembler name, have one created for it. */
5888
5889 void
5890 assign_assembler_name_if_needed (tree t)
5891 {
5892 if (need_assembler_name_p (t))
5893 {
5894 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5895 diagnostics that use input_location to show locus
5896 information. The problem here is that, at this point,
5897 input_location is generally anchored to the end of the file
5898 (since the parser is long gone), so we don't have a good
5899 position to pin it to.
5900
5901 To alleviate this problem, this uses the location of T's
5902 declaration. Examples of this are
5903 testsuite/g++.dg/template/cond2.C and
5904 testsuite/g++.dg/template/pr35240.C. */
5905 location_t saved_location = input_location;
5906 input_location = DECL_SOURCE_LOCATION (t);
5907
5908 decl_assembler_name (t);
5909
5910 input_location = saved_location;
5911 }
5912 }
5913
5914
5915 /* Free language specific information for every operand and expression
5916 in every node of the call graph. This process operates in three stages:
5917
5918 1- Every callgraph node and varpool node is traversed looking for
5919 decls and types embedded in them. This is a more exhaustive
5920 search than that done by find_referenced_vars, because it will
5921 also collect individual fields, decls embedded in types, etc.
5922
5923 2- All the decls found are sent to free_lang_data_in_decl.
5924
5925 3- All the types found are sent to free_lang_data_in_type.
5926
5927 The ordering between decls and types is important because
5928 free_lang_data_in_decl sets assembler names, which includes
5929 mangling. So types cannot be freed up until assembler names have
5930 been set up. */
5931
5932 static void
5933 free_lang_data_in_cgraph (void)
5934 {
5935 struct cgraph_node *n;
5936 varpool_node *v;
5937 struct free_lang_data_d fld;
5938 tree t;
5939 unsigned i;
5940 alias_pair *p;
5941
5942 /* Find decls and types in the body of every function in the callgraph. */
5943 FOR_EACH_FUNCTION (n)
5944 find_decls_types_in_node (n, &fld);
5945
5946 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5947 find_decls_types (p->decl, &fld);
5948
5949 /* Find decls and types in every varpool symbol. */
5950 FOR_EACH_VARIABLE (v)
5951 find_decls_types_in_var (v, &fld);
5952
5953 /* Set the assembler name on every decl found. We need to do this
5954 now because free_lang_data_in_decl will invalidate data needed
5955 for mangling. This breaks mangling on interdependent decls. */
5956 FOR_EACH_VEC_ELT (fld.decls, i, t)
5957 assign_assembler_name_if_needed (t);
5958
5959 /* Traverse every decl found freeing its language data. */
5960 FOR_EACH_VEC_ELT (fld.decls, i, t)
5961 free_lang_data_in_decl (t, &fld);
5962
5963 /* Traverse every type found freeing its language data. */
5964 FOR_EACH_VEC_ELT (fld.types, i, t)
5965 free_lang_data_in_type (t);
5966 if (flag_checking)
5967 {
5968 FOR_EACH_VEC_ELT (fld.types, i, t)
5969 verify_type (t);
5970 }
5971 }
5972
5973
5974 /* Free resources that are used by FE but are not needed once they are done. */
5975
5976 static unsigned
5977 free_lang_data (void)
5978 {
5979 unsigned i;
5980
5981 /* If we are the LTO frontend we have freed lang-specific data already. */
5982 if (in_lto_p
5983 || (!flag_generate_lto && !flag_generate_offload))
5984 return 0;
5985
5986 fld_incomplete_types = new hash_map<tree, tree>;
5987
5988 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
5989 if (vec_safe_is_empty (all_translation_units))
5990 build_translation_unit_decl (NULL_TREE);
5991
5992 /* Allocate and assign alias sets to the standard integer types
5993 while the slots are still in the way the frontends generated them. */
5994 for (i = 0; i < itk_none; ++i)
5995 if (integer_types[i])
5996 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5997
5998 /* Traverse the IL resetting language specific information for
5999 operands, expressions, etc. */
6000 free_lang_data_in_cgraph ();
6001
6002 /* Create gimple variants for common types. */
6003 for (unsigned i = 0;
6004 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
6005 ++i)
6006 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
6007
6008 /* Reset some langhooks. Do not reset types_compatible_p, it may
6009 still be used indirectly via the get_alias_set langhook. */
6010 lang_hooks.dwarf_name = lhd_dwarf_name;
6011 lang_hooks.decl_printable_name = gimple_decl_printable_name;
6012 lang_hooks.gimplify_expr = lhd_gimplify_expr;
6013
6014 /* We do not want the default decl_assembler_name implementation,
6015 rather if we have fixed everything we want a wrapper around it
6016 asserting that all non-local symbols already got their assembler
6017 name and only produce assembler names for local symbols. Or rather
6018 make sure we never call decl_assembler_name on local symbols and
6019 devise a separate, middle-end private scheme for it. */
6020
6021 /* Reset diagnostic machinery. */
6022 tree_diagnostics_defaults (global_dc);
6023
6024 rebuild_type_inheritance_graph ();
6025
6026 delete fld_incomplete_types;
6027
6028 return 0;
6029 }
6030
6031
6032 namespace {
6033
6034 const pass_data pass_data_ipa_free_lang_data =
6035 {
6036 SIMPLE_IPA_PASS, /* type */
6037 "*free_lang_data", /* name */
6038 OPTGROUP_NONE, /* optinfo_flags */
6039 TV_IPA_FREE_LANG_DATA, /* tv_id */
6040 0, /* properties_required */
6041 0, /* properties_provided */
6042 0, /* properties_destroyed */
6043 0, /* todo_flags_start */
6044 0, /* todo_flags_finish */
6045 };
6046
6047 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6048 {
6049 public:
6050 pass_ipa_free_lang_data (gcc::context *ctxt)
6051 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6052 {}
6053
6054 /* opt_pass methods: */
6055 virtual unsigned int execute (function *) { return free_lang_data (); }
6056
6057 }; // class pass_ipa_free_lang_data
6058
6059 } // anon namespace
6060
6061 simple_ipa_opt_pass *
6062 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6063 {
6064 return new pass_ipa_free_lang_data (ctxt);
6065 }
6066 \f
6067 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6068 of the various TYPE_QUAL values. */
6069
6070 static void
6071 set_type_quals (tree type, int type_quals)
6072 {
6073 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6074 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6075 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6076 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6077 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6078 }
6079
6080 /* Returns true iff CAND and BASE have equivalent language-specific
6081 qualifiers. */
6082
6083 bool
6084 check_lang_type (const_tree cand, const_tree base)
6085 {
6086 if (lang_hooks.types.type_hash_eq == NULL)
6087 return true;
6088 /* type_hash_eq currently only applies to these types. */
6089 if (TREE_CODE (cand) != FUNCTION_TYPE
6090 && TREE_CODE (cand) != METHOD_TYPE)
6091 return true;
6092 return lang_hooks.types.type_hash_eq (cand, base);
6093 }
6094
6095 /* Returns true iff unqualified CAND and BASE are equivalent. */
6096
6097 bool
6098 check_base_type (const_tree cand, const_tree base)
6099 {
6100 return (TYPE_NAME (cand) == TYPE_NAME (base)
6101 /* Apparently this is needed for Objective-C. */
6102 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6103 /* Check alignment. */
6104 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6105 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6106 TYPE_ATTRIBUTES (base)));
6107 }
6108
6109 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6110
6111 bool
6112 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6113 {
6114 return (TYPE_QUALS (cand) == type_quals
6115 && check_base_type (cand, base)
6116 && check_lang_type (cand, base));
6117 }
6118
6119 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6120
6121 static bool
6122 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6123 {
6124 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6125 && TYPE_NAME (cand) == TYPE_NAME (base)
6126 /* Apparently this is needed for Objective-C. */
6127 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6128 /* Check alignment. */
6129 && TYPE_ALIGN (cand) == align
6130 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6131 TYPE_ATTRIBUTES (base))
6132 && check_lang_type (cand, base));
6133 }
6134
6135 /* This function checks to see if TYPE matches the size one of the built-in
6136 atomic types, and returns that core atomic type. */
6137
6138 static tree
6139 find_atomic_core_type (tree type)
6140 {
6141 tree base_atomic_type;
6142
6143 /* Only handle complete types. */
6144 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6145 return NULL_TREE;
6146
6147 switch (tree_to_uhwi (TYPE_SIZE (type)))
6148 {
6149 case 8:
6150 base_atomic_type = atomicQI_type_node;
6151 break;
6152
6153 case 16:
6154 base_atomic_type = atomicHI_type_node;
6155 break;
6156
6157 case 32:
6158 base_atomic_type = atomicSI_type_node;
6159 break;
6160
6161 case 64:
6162 base_atomic_type = atomicDI_type_node;
6163 break;
6164
6165 case 128:
6166 base_atomic_type = atomicTI_type_node;
6167 break;
6168
6169 default:
6170 base_atomic_type = NULL_TREE;
6171 }
6172
6173 return base_atomic_type;
6174 }
6175
6176 /* Return a version of the TYPE, qualified as indicated by the
6177 TYPE_QUALS, if one exists. If no qualified version exists yet,
6178 return NULL_TREE. */
6179
6180 tree
6181 get_qualified_type (tree type, int type_quals)
6182 {
6183 tree t;
6184
6185 if (TYPE_QUALS (type) == type_quals)
6186 return type;
6187
6188 /* Search the chain of variants to see if there is already one there just
6189 like the one we need to have. If so, use that existing one. We must
6190 preserve the TYPE_NAME, since there is code that depends on this. */
6191 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6192 if (check_qualified_type (t, type, type_quals))
6193 return t;
6194
6195 return NULL_TREE;
6196 }
6197
6198 /* Like get_qualified_type, but creates the type if it does not
6199 exist. This function never returns NULL_TREE. */
6200
6201 tree
6202 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6203 {
6204 tree t;
6205
6206 /* See if we already have the appropriate qualified variant. */
6207 t = get_qualified_type (type, type_quals);
6208
6209 /* If not, build it. */
6210 if (!t)
6211 {
6212 t = build_variant_type_copy (type PASS_MEM_STAT);
6213 set_type_quals (t, type_quals);
6214
6215 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6216 {
6217 /* See if this object can map to a basic atomic type. */
6218 tree atomic_type = find_atomic_core_type (type);
6219 if (atomic_type)
6220 {
6221 /* Ensure the alignment of this type is compatible with
6222 the required alignment of the atomic type. */
6223 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6224 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6225 }
6226 }
6227
6228 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6229 /* Propagate structural equality. */
6230 SET_TYPE_STRUCTURAL_EQUALITY (t);
6231 else if (TYPE_CANONICAL (type) != type)
6232 /* Build the underlying canonical type, since it is different
6233 from TYPE. */
6234 {
6235 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6236 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6237 }
6238 else
6239 /* T is its own canonical type. */
6240 TYPE_CANONICAL (t) = t;
6241
6242 }
6243
6244 return t;
6245 }
6246
6247 /* Create a variant of type T with alignment ALIGN. */
6248
6249 tree
6250 build_aligned_type (tree type, unsigned int align)
6251 {
6252 tree t;
6253
6254 if (TYPE_PACKED (type)
6255 || TYPE_ALIGN (type) == align)
6256 return type;
6257
6258 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6259 if (check_aligned_type (t, type, align))
6260 return t;
6261
6262 t = build_variant_type_copy (type);
6263 SET_TYPE_ALIGN (t, align);
6264 TYPE_USER_ALIGN (t) = 1;
6265
6266 return t;
6267 }
6268
6269 /* Create a new distinct copy of TYPE. The new type is made its own
6270 MAIN_VARIANT. If TYPE requires structural equality checks, the
6271 resulting type requires structural equality checks; otherwise, its
6272 TYPE_CANONICAL points to itself. */
6273
6274 tree
6275 build_distinct_type_copy (tree type MEM_STAT_DECL)
6276 {
6277 tree t = copy_node (type PASS_MEM_STAT);
6278
6279 TYPE_POINTER_TO (t) = 0;
6280 TYPE_REFERENCE_TO (t) = 0;
6281
6282 /* Set the canonical type either to a new equivalence class, or
6283 propagate the need for structural equality checks. */
6284 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6285 SET_TYPE_STRUCTURAL_EQUALITY (t);
6286 else
6287 TYPE_CANONICAL (t) = t;
6288
6289 /* Make it its own variant. */
6290 TYPE_MAIN_VARIANT (t) = t;
6291 TYPE_NEXT_VARIANT (t) = 0;
6292
6293 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6294 whose TREE_TYPE is not t. This can also happen in the Ada
6295 frontend when using subtypes. */
6296
6297 return t;
6298 }
6299
6300 /* Create a new variant of TYPE, equivalent but distinct. This is so
6301 the caller can modify it. TYPE_CANONICAL for the return type will
6302 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6303 are considered equal by the language itself (or that both types
6304 require structural equality checks). */
6305
6306 tree
6307 build_variant_type_copy (tree type MEM_STAT_DECL)
6308 {
6309 tree t, m = TYPE_MAIN_VARIANT (type);
6310
6311 t = build_distinct_type_copy (type PASS_MEM_STAT);
6312
6313 /* Since we're building a variant, assume that it is a non-semantic
6314 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6315 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6316 /* Type variants have no alias set defined. */
6317 TYPE_ALIAS_SET (t) = -1;
6318
6319 /* Add the new type to the chain of variants of TYPE. */
6320 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6321 TYPE_NEXT_VARIANT (m) = t;
6322 TYPE_MAIN_VARIANT (t) = m;
6323
6324 return t;
6325 }
6326 \f
6327 /* Return true if the from tree in both tree maps are equal. */
6328
6329 int
6330 tree_map_base_eq (const void *va, const void *vb)
6331 {
6332 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6333 *const b = (const struct tree_map_base *) vb;
6334 return (a->from == b->from);
6335 }
6336
6337 /* Hash a from tree in a tree_base_map. */
6338
6339 unsigned int
6340 tree_map_base_hash (const void *item)
6341 {
6342 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6343 }
6344
6345 /* Return true if this tree map structure is marked for garbage collection
6346 purposes. We simply return true if the from tree is marked, so that this
6347 structure goes away when the from tree goes away. */
6348
6349 int
6350 tree_map_base_marked_p (const void *p)
6351 {
6352 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6353 }
6354
6355 /* Hash a from tree in a tree_map. */
6356
6357 unsigned int
6358 tree_map_hash (const void *item)
6359 {
6360 return (((const struct tree_map *) item)->hash);
6361 }
6362
6363 /* Hash a from tree in a tree_decl_map. */
6364
6365 unsigned int
6366 tree_decl_map_hash (const void *item)
6367 {
6368 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6369 }
6370
6371 /* Return the initialization priority for DECL. */
6372
6373 priority_type
6374 decl_init_priority_lookup (tree decl)
6375 {
6376 symtab_node *snode = symtab_node::get (decl);
6377
6378 if (!snode)
6379 return DEFAULT_INIT_PRIORITY;
6380 return
6381 snode->get_init_priority ();
6382 }
6383
6384 /* Return the finalization priority for DECL. */
6385
6386 priority_type
6387 decl_fini_priority_lookup (tree decl)
6388 {
6389 cgraph_node *node = cgraph_node::get (decl);
6390
6391 if (!node)
6392 return DEFAULT_INIT_PRIORITY;
6393 return
6394 node->get_fini_priority ();
6395 }
6396
6397 /* Set the initialization priority for DECL to PRIORITY. */
6398
6399 void
6400 decl_init_priority_insert (tree decl, priority_type priority)
6401 {
6402 struct symtab_node *snode;
6403
6404 if (priority == DEFAULT_INIT_PRIORITY)
6405 {
6406 snode = symtab_node::get (decl);
6407 if (!snode)
6408 return;
6409 }
6410 else if (VAR_P (decl))
6411 snode = varpool_node::get_create (decl);
6412 else
6413 snode = cgraph_node::get_create (decl);
6414 snode->set_init_priority (priority);
6415 }
6416
6417 /* Set the finalization priority for DECL to PRIORITY. */
6418
6419 void
6420 decl_fini_priority_insert (tree decl, priority_type priority)
6421 {
6422 struct cgraph_node *node;
6423
6424 if (priority == DEFAULT_INIT_PRIORITY)
6425 {
6426 node = cgraph_node::get (decl);
6427 if (!node)
6428 return;
6429 }
6430 else
6431 node = cgraph_node::get_create (decl);
6432 node->set_fini_priority (priority);
6433 }
6434
6435 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6436
6437 static void
6438 print_debug_expr_statistics (void)
6439 {
6440 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6441 (long) debug_expr_for_decl->size (),
6442 (long) debug_expr_for_decl->elements (),
6443 debug_expr_for_decl->collisions ());
6444 }
6445
6446 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6447
6448 static void
6449 print_value_expr_statistics (void)
6450 {
6451 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6452 (long) value_expr_for_decl->size (),
6453 (long) value_expr_for_decl->elements (),
6454 value_expr_for_decl->collisions ());
6455 }
6456
6457 /* Lookup a debug expression for FROM, and return it if we find one. */
6458
6459 tree
6460 decl_debug_expr_lookup (tree from)
6461 {
6462 struct tree_decl_map *h, in;
6463 in.base.from = from;
6464
6465 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6466 if (h)
6467 return h->to;
6468 return NULL_TREE;
6469 }
6470
6471 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6472
6473 void
6474 decl_debug_expr_insert (tree from, tree to)
6475 {
6476 struct tree_decl_map *h;
6477
6478 h = ggc_alloc<tree_decl_map> ();
6479 h->base.from = from;
6480 h->to = to;
6481 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6482 }
6483
6484 /* Lookup a value expression for FROM, and return it if we find one. */
6485
6486 tree
6487 decl_value_expr_lookup (tree from)
6488 {
6489 struct tree_decl_map *h, in;
6490 in.base.from = from;
6491
6492 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6493 if (h)
6494 return h->to;
6495 return NULL_TREE;
6496 }
6497
6498 /* Insert a mapping FROM->TO in the value expression hashtable. */
6499
6500 void
6501 decl_value_expr_insert (tree from, tree to)
6502 {
6503 struct tree_decl_map *h;
6504
6505 h = ggc_alloc<tree_decl_map> ();
6506 h->base.from = from;
6507 h->to = to;
6508 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6509 }
6510
6511 /* Lookup a vector of debug arguments for FROM, and return it if we
6512 find one. */
6513
6514 vec<tree, va_gc> **
6515 decl_debug_args_lookup (tree from)
6516 {
6517 struct tree_vec_map *h, in;
6518
6519 if (!DECL_HAS_DEBUG_ARGS_P (from))
6520 return NULL;
6521 gcc_checking_assert (debug_args_for_decl != NULL);
6522 in.base.from = from;
6523 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6524 if (h)
6525 return &h->to;
6526 return NULL;
6527 }
6528
6529 /* Insert a mapping FROM->empty vector of debug arguments in the value
6530 expression hashtable. */
6531
6532 vec<tree, va_gc> **
6533 decl_debug_args_insert (tree from)
6534 {
6535 struct tree_vec_map *h;
6536 tree_vec_map **loc;
6537
6538 if (DECL_HAS_DEBUG_ARGS_P (from))
6539 return decl_debug_args_lookup (from);
6540 if (debug_args_for_decl == NULL)
6541 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6542 h = ggc_alloc<tree_vec_map> ();
6543 h->base.from = from;
6544 h->to = NULL;
6545 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6546 *loc = h;
6547 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6548 return &h->to;
6549 }
6550
6551 /* Hashing of types so that we don't make duplicates.
6552 The entry point is `type_hash_canon'. */
6553
6554 /* Generate the default hash code for TYPE. This is designed for
6555 speed, rather than maximum entropy. */
6556
6557 hashval_t
6558 type_hash_canon_hash (tree type)
6559 {
6560 inchash::hash hstate;
6561
6562 hstate.add_int (TREE_CODE (type));
6563
6564 if (TREE_TYPE (type))
6565 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6566
6567 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6568 /* Just the identifier is adequate to distinguish. */
6569 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6570
6571 switch (TREE_CODE (type))
6572 {
6573 case METHOD_TYPE:
6574 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6575 /* FALLTHROUGH. */
6576 case FUNCTION_TYPE:
6577 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6578 if (TREE_VALUE (t) != error_mark_node)
6579 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6580 break;
6581
6582 case OFFSET_TYPE:
6583 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6584 break;
6585
6586 case ARRAY_TYPE:
6587 {
6588 if (TYPE_DOMAIN (type))
6589 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6590 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6591 {
6592 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6593 hstate.add_object (typeless);
6594 }
6595 }
6596 break;
6597
6598 case INTEGER_TYPE:
6599 {
6600 tree t = TYPE_MAX_VALUE (type);
6601 if (!t)
6602 t = TYPE_MIN_VALUE (type);
6603 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6604 hstate.add_object (TREE_INT_CST_ELT (t, i));
6605 break;
6606 }
6607
6608 case REAL_TYPE:
6609 case FIXED_POINT_TYPE:
6610 {
6611 unsigned prec = TYPE_PRECISION (type);
6612 hstate.add_object (prec);
6613 break;
6614 }
6615
6616 case VECTOR_TYPE:
6617 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6618 break;
6619
6620 default:
6621 break;
6622 }
6623
6624 return hstate.end ();
6625 }
6626
6627 /* These are the Hashtable callback functions. */
6628
6629 /* Returns true iff the types are equivalent. */
6630
6631 bool
6632 type_cache_hasher::equal (type_hash *a, type_hash *b)
6633 {
6634 /* First test the things that are the same for all types. */
6635 if (a->hash != b->hash
6636 || TREE_CODE (a->type) != TREE_CODE (b->type)
6637 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6638 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6639 TYPE_ATTRIBUTES (b->type))
6640 || (TREE_CODE (a->type) != COMPLEX_TYPE
6641 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6642 return 0;
6643
6644 /* Be careful about comparing arrays before and after the element type
6645 has been completed; don't compare TYPE_ALIGN unless both types are
6646 complete. */
6647 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6648 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6649 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6650 return 0;
6651
6652 switch (TREE_CODE (a->type))
6653 {
6654 case VOID_TYPE:
6655 case COMPLEX_TYPE:
6656 case POINTER_TYPE:
6657 case REFERENCE_TYPE:
6658 case NULLPTR_TYPE:
6659 return 1;
6660
6661 case VECTOR_TYPE:
6662 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6663 TYPE_VECTOR_SUBPARTS (b->type));
6664
6665 case ENUMERAL_TYPE:
6666 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6667 && !(TYPE_VALUES (a->type)
6668 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6669 && TYPE_VALUES (b->type)
6670 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6671 && type_list_equal (TYPE_VALUES (a->type),
6672 TYPE_VALUES (b->type))))
6673 return 0;
6674
6675 /* fall through */
6676
6677 case INTEGER_TYPE:
6678 case REAL_TYPE:
6679 case BOOLEAN_TYPE:
6680 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6681 return false;
6682 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6683 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6684 TYPE_MAX_VALUE (b->type)))
6685 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6686 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6687 TYPE_MIN_VALUE (b->type))));
6688
6689 case FIXED_POINT_TYPE:
6690 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6691
6692 case OFFSET_TYPE:
6693 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6694
6695 case METHOD_TYPE:
6696 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6697 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6698 || (TYPE_ARG_TYPES (a->type)
6699 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6700 && TYPE_ARG_TYPES (b->type)
6701 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6702 && type_list_equal (TYPE_ARG_TYPES (a->type),
6703 TYPE_ARG_TYPES (b->type)))))
6704 break;
6705 return 0;
6706 case ARRAY_TYPE:
6707 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6708 where the flag should be inherited from the element type
6709 and can change after ARRAY_TYPEs are created; on non-aggregates
6710 compare it and hash it, scalars will never have that flag set
6711 and we need to differentiate between arrays created by different
6712 front-ends or middle-end created arrays. */
6713 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6714 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6715 || (TYPE_TYPELESS_STORAGE (a->type)
6716 == TYPE_TYPELESS_STORAGE (b->type))));
6717
6718 case RECORD_TYPE:
6719 case UNION_TYPE:
6720 case QUAL_UNION_TYPE:
6721 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6722 || (TYPE_FIELDS (a->type)
6723 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6724 && TYPE_FIELDS (b->type)
6725 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6726 && type_list_equal (TYPE_FIELDS (a->type),
6727 TYPE_FIELDS (b->type))));
6728
6729 case FUNCTION_TYPE:
6730 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6731 || (TYPE_ARG_TYPES (a->type)
6732 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6733 && TYPE_ARG_TYPES (b->type)
6734 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6735 && type_list_equal (TYPE_ARG_TYPES (a->type),
6736 TYPE_ARG_TYPES (b->type))))
6737 break;
6738 return 0;
6739
6740 default:
6741 return 0;
6742 }
6743
6744 if (lang_hooks.types.type_hash_eq != NULL)
6745 return lang_hooks.types.type_hash_eq (a->type, b->type);
6746
6747 return 1;
6748 }
6749
6750 /* Given TYPE, and HASHCODE its hash code, return the canonical
6751 object for an identical type if one already exists.
6752 Otherwise, return TYPE, and record it as the canonical object.
6753
6754 To use this function, first create a type of the sort you want.
6755 Then compute its hash code from the fields of the type that
6756 make it different from other similar types.
6757 Then call this function and use the value. */
6758
6759 tree
6760 type_hash_canon (unsigned int hashcode, tree type)
6761 {
6762 type_hash in;
6763 type_hash **loc;
6764
6765 /* The hash table only contains main variants, so ensure that's what we're
6766 being passed. */
6767 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6768
6769 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6770 must call that routine before comparing TYPE_ALIGNs. */
6771 layout_type (type);
6772
6773 in.hash = hashcode;
6774 in.type = type;
6775
6776 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
6777 if (*loc)
6778 {
6779 tree t1 = ((type_hash *) *loc)->type;
6780 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
6781 && t1 != type);
6782 if (TYPE_UID (type) + 1 == next_type_uid)
6783 --next_type_uid;
6784 /* Free also min/max values and the cache for integer
6785 types. This can't be done in free_node, as LTO frees
6786 those on its own. */
6787 if (TREE_CODE (type) == INTEGER_TYPE)
6788 {
6789 if (TYPE_MIN_VALUE (type)
6790 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
6791 {
6792 /* Zero is always in TYPE_CACHED_VALUES. */
6793 if (! TYPE_UNSIGNED (type))
6794 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
6795 ggc_free (TYPE_MIN_VALUE (type));
6796 }
6797 if (TYPE_MAX_VALUE (type)
6798 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
6799 {
6800 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
6801 ggc_free (TYPE_MAX_VALUE (type));
6802 }
6803 if (TYPE_CACHED_VALUES_P (type))
6804 ggc_free (TYPE_CACHED_VALUES (type));
6805 }
6806 free_node (type);
6807 return t1;
6808 }
6809 else
6810 {
6811 struct type_hash *h;
6812
6813 h = ggc_alloc<type_hash> ();
6814 h->hash = hashcode;
6815 h->type = type;
6816 *loc = h;
6817
6818 return type;
6819 }
6820 }
6821
6822 static void
6823 print_type_hash_statistics (void)
6824 {
6825 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6826 (long) type_hash_table->size (),
6827 (long) type_hash_table->elements (),
6828 type_hash_table->collisions ());
6829 }
6830
6831 /* Given two lists of types
6832 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6833 return 1 if the lists contain the same types in the same order.
6834 Also, the TREE_PURPOSEs must match. */
6835
6836 bool
6837 type_list_equal (const_tree l1, const_tree l2)
6838 {
6839 const_tree t1, t2;
6840
6841 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6842 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6843 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6844 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6845 && (TREE_TYPE (TREE_PURPOSE (t1))
6846 == TREE_TYPE (TREE_PURPOSE (t2))))))
6847 return false;
6848
6849 return t1 == t2;
6850 }
6851
6852 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6853 given by TYPE. If the argument list accepts variable arguments,
6854 then this function counts only the ordinary arguments. */
6855
6856 int
6857 type_num_arguments (const_tree type)
6858 {
6859 int i = 0;
6860 tree t;
6861
6862 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6863 /* If the function does not take a variable number of arguments,
6864 the last element in the list will have type `void'. */
6865 if (VOID_TYPE_P (TREE_VALUE (t)))
6866 break;
6867 else
6868 ++i;
6869
6870 return i;
6871 }
6872
6873 /* Nonzero if integer constants T1 and T2
6874 represent the same constant value. */
6875
6876 int
6877 tree_int_cst_equal (const_tree t1, const_tree t2)
6878 {
6879 if (t1 == t2)
6880 return 1;
6881
6882 if (t1 == 0 || t2 == 0)
6883 return 0;
6884
6885 if (TREE_CODE (t1) == INTEGER_CST
6886 && TREE_CODE (t2) == INTEGER_CST
6887 && wi::to_widest (t1) == wi::to_widest (t2))
6888 return 1;
6889
6890 return 0;
6891 }
6892
6893 /* Return true if T is an INTEGER_CST whose numerical value (extended
6894 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6895
6896 bool
6897 tree_fits_shwi_p (const_tree t)
6898 {
6899 return (t != NULL_TREE
6900 && TREE_CODE (t) == INTEGER_CST
6901 && wi::fits_shwi_p (wi::to_widest (t)));
6902 }
6903
6904 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6905 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
6906
6907 bool
6908 tree_fits_poly_int64_p (const_tree t)
6909 {
6910 if (t == NULL_TREE)
6911 return false;
6912 if (POLY_INT_CST_P (t))
6913 {
6914 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6915 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
6916 return false;
6917 return true;
6918 }
6919 return (TREE_CODE (t) == INTEGER_CST
6920 && wi::fits_shwi_p (wi::to_widest (t)));
6921 }
6922
6923 /* Return true if T is an INTEGER_CST whose numerical value (extended
6924 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6925
6926 bool
6927 tree_fits_uhwi_p (const_tree t)
6928 {
6929 return (t != NULL_TREE
6930 && TREE_CODE (t) == INTEGER_CST
6931 && wi::fits_uhwi_p (wi::to_widest (t)));
6932 }
6933
6934 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6935 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
6936
6937 bool
6938 tree_fits_poly_uint64_p (const_tree t)
6939 {
6940 if (t == NULL_TREE)
6941 return false;
6942 if (POLY_INT_CST_P (t))
6943 {
6944 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6945 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
6946 return false;
6947 return true;
6948 }
6949 return (TREE_CODE (t) == INTEGER_CST
6950 && wi::fits_uhwi_p (wi::to_widest (t)));
6951 }
6952
6953 /* T is an INTEGER_CST whose numerical value (extended according to
6954 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
6955 HOST_WIDE_INT. */
6956
6957 HOST_WIDE_INT
6958 tree_to_shwi (const_tree t)
6959 {
6960 gcc_assert (tree_fits_shwi_p (t));
6961 return TREE_INT_CST_LOW (t);
6962 }
6963
6964 /* T is an INTEGER_CST whose numerical value (extended according to
6965 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
6966 HOST_WIDE_INT. */
6967
6968 unsigned HOST_WIDE_INT
6969 tree_to_uhwi (const_tree t)
6970 {
6971 gcc_assert (tree_fits_uhwi_p (t));
6972 return TREE_INT_CST_LOW (t);
6973 }
6974
6975 /* Return the most significant (sign) bit of T. */
6976
6977 int
6978 tree_int_cst_sign_bit (const_tree t)
6979 {
6980 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6981
6982 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
6983 }
6984
6985 /* Return an indication of the sign of the integer constant T.
6986 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6987 Note that -1 will never be returned if T's type is unsigned. */
6988
6989 int
6990 tree_int_cst_sgn (const_tree t)
6991 {
6992 if (wi::to_wide (t) == 0)
6993 return 0;
6994 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6995 return 1;
6996 else if (wi::neg_p (wi::to_wide (t)))
6997 return -1;
6998 else
6999 return 1;
7000 }
7001
7002 /* Return the minimum number of bits needed to represent VALUE in a
7003 signed or unsigned type, UNSIGNEDP says which. */
7004
7005 unsigned int
7006 tree_int_cst_min_precision (tree value, signop sgn)
7007 {
7008 /* If the value is negative, compute its negative minus 1. The latter
7009 adjustment is because the absolute value of the largest negative value
7010 is one larger than the largest positive value. This is equivalent to
7011 a bit-wise negation, so use that operation instead. */
7012
7013 if (tree_int_cst_sgn (value) < 0)
7014 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7015
7016 /* Return the number of bits needed, taking into account the fact
7017 that we need one more bit for a signed than unsigned type.
7018 If value is 0 or -1, the minimum precision is 1 no matter
7019 whether unsignedp is true or false. */
7020
7021 if (integer_zerop (value))
7022 return 1;
7023 else
7024 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7025 }
7026
7027 /* Return truthvalue of whether T1 is the same tree structure as T2.
7028 Return 1 if they are the same.
7029 Return 0 if they are understandably different.
7030 Return -1 if either contains tree structure not understood by
7031 this function. */
7032
7033 int
7034 simple_cst_equal (const_tree t1, const_tree t2)
7035 {
7036 enum tree_code code1, code2;
7037 int cmp;
7038 int i;
7039
7040 if (t1 == t2)
7041 return 1;
7042 if (t1 == 0 || t2 == 0)
7043 return 0;
7044
7045 code1 = TREE_CODE (t1);
7046 code2 = TREE_CODE (t2);
7047
7048 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7049 {
7050 if (CONVERT_EXPR_CODE_P (code2)
7051 || code2 == NON_LVALUE_EXPR)
7052 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7053 else
7054 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7055 }
7056
7057 else if (CONVERT_EXPR_CODE_P (code2)
7058 || code2 == NON_LVALUE_EXPR)
7059 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7060
7061 if (code1 != code2)
7062 return 0;
7063
7064 switch (code1)
7065 {
7066 case INTEGER_CST:
7067 return wi::to_widest (t1) == wi::to_widest (t2);
7068
7069 case REAL_CST:
7070 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7071
7072 case FIXED_CST:
7073 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7074
7075 case STRING_CST:
7076 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7077 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7078 TREE_STRING_LENGTH (t1)));
7079
7080 case CONSTRUCTOR:
7081 {
7082 unsigned HOST_WIDE_INT idx;
7083 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7084 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7085
7086 if (vec_safe_length (v1) != vec_safe_length (v2))
7087 return false;
7088
7089 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7090 /* ??? Should we handle also fields here? */
7091 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7092 return false;
7093 return true;
7094 }
7095
7096 case SAVE_EXPR:
7097 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7098
7099 case CALL_EXPR:
7100 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7101 if (cmp <= 0)
7102 return cmp;
7103 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7104 return 0;
7105 {
7106 const_tree arg1, arg2;
7107 const_call_expr_arg_iterator iter1, iter2;
7108 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7109 arg2 = first_const_call_expr_arg (t2, &iter2);
7110 arg1 && arg2;
7111 arg1 = next_const_call_expr_arg (&iter1),
7112 arg2 = next_const_call_expr_arg (&iter2))
7113 {
7114 cmp = simple_cst_equal (arg1, arg2);
7115 if (cmp <= 0)
7116 return cmp;
7117 }
7118 return arg1 == arg2;
7119 }
7120
7121 case TARGET_EXPR:
7122 /* Special case: if either target is an unallocated VAR_DECL,
7123 it means that it's going to be unified with whatever the
7124 TARGET_EXPR is really supposed to initialize, so treat it
7125 as being equivalent to anything. */
7126 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7127 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7128 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7129 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7130 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7131 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7132 cmp = 1;
7133 else
7134 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7135
7136 if (cmp <= 0)
7137 return cmp;
7138
7139 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7140
7141 case WITH_CLEANUP_EXPR:
7142 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7143 if (cmp <= 0)
7144 return cmp;
7145
7146 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7147
7148 case COMPONENT_REF:
7149 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7150 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7151
7152 return 0;
7153
7154 case VAR_DECL:
7155 case PARM_DECL:
7156 case CONST_DECL:
7157 case FUNCTION_DECL:
7158 return 0;
7159
7160 default:
7161 if (POLY_INT_CST_P (t1))
7162 /* A false return means maybe_ne rather than known_ne. */
7163 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7164 TYPE_SIGN (TREE_TYPE (t1))),
7165 poly_widest_int::from (poly_int_cst_value (t2),
7166 TYPE_SIGN (TREE_TYPE (t2))));
7167 break;
7168 }
7169
7170 /* This general rule works for most tree codes. All exceptions should be
7171 handled above. If this is a language-specific tree code, we can't
7172 trust what might be in the operand, so say we don't know
7173 the situation. */
7174 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7175 return -1;
7176
7177 switch (TREE_CODE_CLASS (code1))
7178 {
7179 case tcc_unary:
7180 case tcc_binary:
7181 case tcc_comparison:
7182 case tcc_expression:
7183 case tcc_reference:
7184 case tcc_statement:
7185 cmp = 1;
7186 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7187 {
7188 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7189 if (cmp <= 0)
7190 return cmp;
7191 }
7192
7193 return cmp;
7194
7195 default:
7196 return -1;
7197 }
7198 }
7199
7200 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7201 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7202 than U, respectively. */
7203
7204 int
7205 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7206 {
7207 if (tree_int_cst_sgn (t) < 0)
7208 return -1;
7209 else if (!tree_fits_uhwi_p (t))
7210 return 1;
7211 else if (TREE_INT_CST_LOW (t) == u)
7212 return 0;
7213 else if (TREE_INT_CST_LOW (t) < u)
7214 return -1;
7215 else
7216 return 1;
7217 }
7218
7219 /* Return true if SIZE represents a constant size that is in bounds of
7220 what the middle-end and the backend accepts (covering not more than
7221 half of the address-space). */
7222
7223 bool
7224 valid_constant_size_p (const_tree size)
7225 {
7226 if (POLY_INT_CST_P (size))
7227 {
7228 if (TREE_OVERFLOW (size))
7229 return false;
7230 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7231 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7232 return false;
7233 return true;
7234 }
7235 if (! tree_fits_uhwi_p (size)
7236 || TREE_OVERFLOW (size)
7237 || tree_int_cst_sign_bit (size) != 0)
7238 return false;
7239 return true;
7240 }
7241
7242 /* Return the precision of the type, or for a complex or vector type the
7243 precision of the type of its elements. */
7244
7245 unsigned int
7246 element_precision (const_tree type)
7247 {
7248 if (!TYPE_P (type))
7249 type = TREE_TYPE (type);
7250 enum tree_code code = TREE_CODE (type);
7251 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7252 type = TREE_TYPE (type);
7253
7254 return TYPE_PRECISION (type);
7255 }
7256
7257 /* Return true if CODE represents an associative tree code. Otherwise
7258 return false. */
7259 bool
7260 associative_tree_code (enum tree_code code)
7261 {
7262 switch (code)
7263 {
7264 case BIT_IOR_EXPR:
7265 case BIT_AND_EXPR:
7266 case BIT_XOR_EXPR:
7267 case PLUS_EXPR:
7268 case MULT_EXPR:
7269 case MIN_EXPR:
7270 case MAX_EXPR:
7271 return true;
7272
7273 default:
7274 break;
7275 }
7276 return false;
7277 }
7278
7279 /* Return true if CODE represents a commutative tree code. Otherwise
7280 return false. */
7281 bool
7282 commutative_tree_code (enum tree_code code)
7283 {
7284 switch (code)
7285 {
7286 case PLUS_EXPR:
7287 case MULT_EXPR:
7288 case MULT_HIGHPART_EXPR:
7289 case MIN_EXPR:
7290 case MAX_EXPR:
7291 case BIT_IOR_EXPR:
7292 case BIT_XOR_EXPR:
7293 case BIT_AND_EXPR:
7294 case NE_EXPR:
7295 case EQ_EXPR:
7296 case UNORDERED_EXPR:
7297 case ORDERED_EXPR:
7298 case UNEQ_EXPR:
7299 case LTGT_EXPR:
7300 case TRUTH_AND_EXPR:
7301 case TRUTH_XOR_EXPR:
7302 case TRUTH_OR_EXPR:
7303 case WIDEN_MULT_EXPR:
7304 case VEC_WIDEN_MULT_HI_EXPR:
7305 case VEC_WIDEN_MULT_LO_EXPR:
7306 case VEC_WIDEN_MULT_EVEN_EXPR:
7307 case VEC_WIDEN_MULT_ODD_EXPR:
7308 return true;
7309
7310 default:
7311 break;
7312 }
7313 return false;
7314 }
7315
7316 /* Return true if CODE represents a ternary tree code for which the
7317 first two operands are commutative. Otherwise return false. */
7318 bool
7319 commutative_ternary_tree_code (enum tree_code code)
7320 {
7321 switch (code)
7322 {
7323 case WIDEN_MULT_PLUS_EXPR:
7324 case WIDEN_MULT_MINUS_EXPR:
7325 case DOT_PROD_EXPR:
7326 return true;
7327
7328 default:
7329 break;
7330 }
7331 return false;
7332 }
7333
7334 /* Returns true if CODE can overflow. */
7335
7336 bool
7337 operation_can_overflow (enum tree_code code)
7338 {
7339 switch (code)
7340 {
7341 case PLUS_EXPR:
7342 case MINUS_EXPR:
7343 case MULT_EXPR:
7344 case LSHIFT_EXPR:
7345 /* Can overflow in various ways. */
7346 return true;
7347 case TRUNC_DIV_EXPR:
7348 case EXACT_DIV_EXPR:
7349 case FLOOR_DIV_EXPR:
7350 case CEIL_DIV_EXPR:
7351 /* For INT_MIN / -1. */
7352 return true;
7353 case NEGATE_EXPR:
7354 case ABS_EXPR:
7355 /* For -INT_MIN. */
7356 return true;
7357 default:
7358 /* These operators cannot overflow. */
7359 return false;
7360 }
7361 }
7362
7363 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7364 ftrapv doesn't generate trapping insns for CODE. */
7365
7366 bool
7367 operation_no_trapping_overflow (tree type, enum tree_code code)
7368 {
7369 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7370
7371 /* We don't generate instructions that trap on overflow for complex or vector
7372 types. */
7373 if (!INTEGRAL_TYPE_P (type))
7374 return true;
7375
7376 if (!TYPE_OVERFLOW_TRAPS (type))
7377 return true;
7378
7379 switch (code)
7380 {
7381 case PLUS_EXPR:
7382 case MINUS_EXPR:
7383 case MULT_EXPR:
7384 case NEGATE_EXPR:
7385 case ABS_EXPR:
7386 /* These operators can overflow, and -ftrapv generates trapping code for
7387 these. */
7388 return false;
7389 case TRUNC_DIV_EXPR:
7390 case EXACT_DIV_EXPR:
7391 case FLOOR_DIV_EXPR:
7392 case CEIL_DIV_EXPR:
7393 case LSHIFT_EXPR:
7394 /* These operators can overflow, but -ftrapv does not generate trapping
7395 code for these. */
7396 return true;
7397 default:
7398 /* These operators cannot overflow. */
7399 return true;
7400 }
7401 }
7402
7403 namespace inchash
7404 {
7405
7406 /* Generate a hash value for an expression. This can be used iteratively
7407 by passing a previous result as the HSTATE argument.
7408
7409 This function is intended to produce the same hash for expressions which
7410 would compare equal using operand_equal_p. */
7411 void
7412 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7413 {
7414 int i;
7415 enum tree_code code;
7416 enum tree_code_class tclass;
7417
7418 if (t == NULL_TREE || t == error_mark_node)
7419 {
7420 hstate.merge_hash (0);
7421 return;
7422 }
7423
7424 if (!(flags & OEP_ADDRESS_OF))
7425 STRIP_NOPS (t);
7426
7427 code = TREE_CODE (t);
7428
7429 switch (code)
7430 {
7431 /* Alas, constants aren't shared, so we can't rely on pointer
7432 identity. */
7433 case VOID_CST:
7434 hstate.merge_hash (0);
7435 return;
7436 case INTEGER_CST:
7437 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7438 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7439 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7440 return;
7441 case REAL_CST:
7442 {
7443 unsigned int val2;
7444 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7445 val2 = rvc_zero;
7446 else
7447 val2 = real_hash (TREE_REAL_CST_PTR (t));
7448 hstate.merge_hash (val2);
7449 return;
7450 }
7451 case FIXED_CST:
7452 {
7453 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7454 hstate.merge_hash (val2);
7455 return;
7456 }
7457 case STRING_CST:
7458 hstate.add ((const void *) TREE_STRING_POINTER (t),
7459 TREE_STRING_LENGTH (t));
7460 return;
7461 case COMPLEX_CST:
7462 inchash::add_expr (TREE_REALPART (t), hstate, flags);
7463 inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7464 return;
7465 case VECTOR_CST:
7466 {
7467 hstate.add_int (VECTOR_CST_NPATTERNS (t));
7468 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7469 unsigned int count = vector_cst_encoded_nelts (t);
7470 for (unsigned int i = 0; i < count; ++i)
7471 inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7472 return;
7473 }
7474 case SSA_NAME:
7475 /* We can just compare by pointer. */
7476 hstate.add_hwi (SSA_NAME_VERSION (t));
7477 return;
7478 case PLACEHOLDER_EXPR:
7479 /* The node itself doesn't matter. */
7480 return;
7481 case BLOCK:
7482 case OMP_CLAUSE:
7483 /* Ignore. */
7484 return;
7485 case TREE_LIST:
7486 /* A list of expressions, for a CALL_EXPR or as the elements of a
7487 VECTOR_CST. */
7488 for (; t; t = TREE_CHAIN (t))
7489 inchash::add_expr (TREE_VALUE (t), hstate, flags);
7490 return;
7491 case CONSTRUCTOR:
7492 {
7493 unsigned HOST_WIDE_INT idx;
7494 tree field, value;
7495 flags &= ~OEP_ADDRESS_OF;
7496 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7497 {
7498 inchash::add_expr (field, hstate, flags);
7499 inchash::add_expr (value, hstate, flags);
7500 }
7501 return;
7502 }
7503 case STATEMENT_LIST:
7504 {
7505 tree_stmt_iterator i;
7506 for (i = tsi_start (CONST_CAST_TREE (t));
7507 !tsi_end_p (i); tsi_next (&i))
7508 inchash::add_expr (tsi_stmt (i), hstate, flags);
7509 return;
7510 }
7511 case TREE_VEC:
7512 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7513 inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7514 return;
7515 case IDENTIFIER_NODE:
7516 hstate.add_object (IDENTIFIER_HASH_VALUE (t));
7517 return;
7518 case FUNCTION_DECL:
7519 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7520 Otherwise nodes that compare equal according to operand_equal_p might
7521 get different hash codes. However, don't do this for machine specific
7522 or front end builtins, since the function code is overloaded in those
7523 cases. */
7524 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7525 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7526 {
7527 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7528 code = TREE_CODE (t);
7529 }
7530 /* FALL THROUGH */
7531 default:
7532 if (POLY_INT_CST_P (t))
7533 {
7534 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7535 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7536 return;
7537 }
7538 tclass = TREE_CODE_CLASS (code);
7539
7540 if (tclass == tcc_declaration)
7541 {
7542 /* DECL's have a unique ID */
7543 hstate.add_hwi (DECL_UID (t));
7544 }
7545 else if (tclass == tcc_comparison && !commutative_tree_code (code))
7546 {
7547 /* For comparisons that can be swapped, use the lower
7548 tree code. */
7549 enum tree_code ccode = swap_tree_comparison (code);
7550 if (code < ccode)
7551 ccode = code;
7552 hstate.add_object (ccode);
7553 inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7554 inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7555 }
7556 else if (CONVERT_EXPR_CODE_P (code))
7557 {
7558 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7559 operand_equal_p. */
7560 enum tree_code ccode = NOP_EXPR;
7561 hstate.add_object (ccode);
7562
7563 /* Don't hash the type, that can lead to having nodes which
7564 compare equal according to operand_equal_p, but which
7565 have different hash codes. Make sure to include signedness
7566 in the hash computation. */
7567 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7568 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7569 }
7570 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7571 else if (code == MEM_REF
7572 && (flags & OEP_ADDRESS_OF) != 0
7573 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7574 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7575 && integer_zerop (TREE_OPERAND (t, 1)))
7576 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7577 hstate, flags);
7578 /* Don't ICE on FE specific trees, or their arguments etc.
7579 during operand_equal_p hash verification. */
7580 else if (!IS_EXPR_CODE_CLASS (tclass))
7581 gcc_assert (flags & OEP_HASH_CHECK);
7582 else
7583 {
7584 unsigned int sflags = flags;
7585
7586 hstate.add_object (code);
7587
7588 switch (code)
7589 {
7590 case ADDR_EXPR:
7591 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7592 flags |= OEP_ADDRESS_OF;
7593 sflags = flags;
7594 break;
7595
7596 case INDIRECT_REF:
7597 case MEM_REF:
7598 case TARGET_MEM_REF:
7599 flags &= ~OEP_ADDRESS_OF;
7600 sflags = flags;
7601 break;
7602
7603 case ARRAY_REF:
7604 case ARRAY_RANGE_REF:
7605 case COMPONENT_REF:
7606 case BIT_FIELD_REF:
7607 sflags &= ~OEP_ADDRESS_OF;
7608 break;
7609
7610 case COND_EXPR:
7611 flags &= ~OEP_ADDRESS_OF;
7612 break;
7613
7614 case WIDEN_MULT_PLUS_EXPR:
7615 case WIDEN_MULT_MINUS_EXPR:
7616 {
7617 /* The multiplication operands are commutative. */
7618 inchash::hash one, two;
7619 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7620 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7621 hstate.add_commutative (one, two);
7622 inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7623 return;
7624 }
7625
7626 case CALL_EXPR:
7627 if (CALL_EXPR_FN (t) == NULL_TREE)
7628 hstate.add_int (CALL_EXPR_IFN (t));
7629 break;
7630
7631 case TARGET_EXPR:
7632 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7633 Usually different TARGET_EXPRs just should use
7634 different temporaries in their slots. */
7635 inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7636 return;
7637
7638 default:
7639 break;
7640 }
7641
7642 /* Don't hash the type, that can lead to having nodes which
7643 compare equal according to operand_equal_p, but which
7644 have different hash codes. */
7645 if (code == NON_LVALUE_EXPR)
7646 {
7647 /* Make sure to include signness in the hash computation. */
7648 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7649 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7650 }
7651
7652 else if (commutative_tree_code (code))
7653 {
7654 /* It's a commutative expression. We want to hash it the same
7655 however it appears. We do this by first hashing both operands
7656 and then rehashing based on the order of their independent
7657 hashes. */
7658 inchash::hash one, two;
7659 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7660 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7661 hstate.add_commutative (one, two);
7662 }
7663 else
7664 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7665 inchash::add_expr (TREE_OPERAND (t, i), hstate,
7666 i == 0 ? flags : sflags);
7667 }
7668 return;
7669 }
7670 }
7671
7672 }
7673
7674 /* Constructors for pointer, array and function types.
7675 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7676 constructed by language-dependent code, not here.) */
7677
7678 /* Construct, lay out and return the type of pointers to TO_TYPE with
7679 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7680 reference all of memory. If such a type has already been
7681 constructed, reuse it. */
7682
7683 tree
7684 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7685 bool can_alias_all)
7686 {
7687 tree t;
7688 bool could_alias = can_alias_all;
7689
7690 if (to_type == error_mark_node)
7691 return error_mark_node;
7692
7693 /* If the pointed-to type has the may_alias attribute set, force
7694 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7695 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7696 can_alias_all = true;
7697
7698 /* In some cases, languages will have things that aren't a POINTER_TYPE
7699 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7700 In that case, return that type without regard to the rest of our
7701 operands.
7702
7703 ??? This is a kludge, but consistent with the way this function has
7704 always operated and there doesn't seem to be a good way to avoid this
7705 at the moment. */
7706 if (TYPE_POINTER_TO (to_type) != 0
7707 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7708 return TYPE_POINTER_TO (to_type);
7709
7710 /* First, if we already have a type for pointers to TO_TYPE and it's
7711 the proper mode, use it. */
7712 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7713 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7714 return t;
7715
7716 t = make_node (POINTER_TYPE);
7717
7718 TREE_TYPE (t) = to_type;
7719 SET_TYPE_MODE (t, mode);
7720 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7721 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7722 TYPE_POINTER_TO (to_type) = t;
7723
7724 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7725 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7726 SET_TYPE_STRUCTURAL_EQUALITY (t);
7727 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7728 TYPE_CANONICAL (t)
7729 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7730 mode, false);
7731
7732 /* Lay out the type. This function has many callers that are concerned
7733 with expression-construction, and this simplifies them all. */
7734 layout_type (t);
7735
7736 return t;
7737 }
7738
7739 /* By default build pointers in ptr_mode. */
7740
7741 tree
7742 build_pointer_type (tree to_type)
7743 {
7744 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7745 : TYPE_ADDR_SPACE (to_type);
7746 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7747 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7748 }
7749
7750 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7751
7752 tree
7753 build_reference_type_for_mode (tree to_type, machine_mode mode,
7754 bool can_alias_all)
7755 {
7756 tree t;
7757 bool could_alias = can_alias_all;
7758
7759 if (to_type == error_mark_node)
7760 return error_mark_node;
7761
7762 /* If the pointed-to type has the may_alias attribute set, force
7763 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7764 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7765 can_alias_all = true;
7766
7767 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7768 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7769 In that case, return that type without regard to the rest of our
7770 operands.
7771
7772 ??? This is a kludge, but consistent with the way this function has
7773 always operated and there doesn't seem to be a good way to avoid this
7774 at the moment. */
7775 if (TYPE_REFERENCE_TO (to_type) != 0
7776 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7777 return TYPE_REFERENCE_TO (to_type);
7778
7779 /* First, if we already have a type for pointers to TO_TYPE and it's
7780 the proper mode, use it. */
7781 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7782 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7783 return t;
7784
7785 t = make_node (REFERENCE_TYPE);
7786
7787 TREE_TYPE (t) = to_type;
7788 SET_TYPE_MODE (t, mode);
7789 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7790 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7791 TYPE_REFERENCE_TO (to_type) = t;
7792
7793 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7794 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7795 SET_TYPE_STRUCTURAL_EQUALITY (t);
7796 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7797 TYPE_CANONICAL (t)
7798 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7799 mode, false);
7800
7801 layout_type (t);
7802
7803 return t;
7804 }
7805
7806
7807 /* Build the node for the type of references-to-TO_TYPE by default
7808 in ptr_mode. */
7809
7810 tree
7811 build_reference_type (tree to_type)
7812 {
7813 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7814 : TYPE_ADDR_SPACE (to_type);
7815 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7816 return build_reference_type_for_mode (to_type, pointer_mode, false);
7817 }
7818
7819 #define MAX_INT_CACHED_PREC \
7820 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7821 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7822
7823 /* Builds a signed or unsigned integer type of precision PRECISION.
7824 Used for C bitfields whose precision does not match that of
7825 built-in target types. */
7826 tree
7827 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7828 int unsignedp)
7829 {
7830 tree itype, ret;
7831
7832 if (unsignedp)
7833 unsignedp = MAX_INT_CACHED_PREC + 1;
7834
7835 if (precision <= MAX_INT_CACHED_PREC)
7836 {
7837 itype = nonstandard_integer_type_cache[precision + unsignedp];
7838 if (itype)
7839 return itype;
7840 }
7841
7842 itype = make_node (INTEGER_TYPE);
7843 TYPE_PRECISION (itype) = precision;
7844
7845 if (unsignedp)
7846 fixup_unsigned_type (itype);
7847 else
7848 fixup_signed_type (itype);
7849
7850 ret = itype;
7851
7852 inchash::hash hstate;
7853 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7854 ret = type_hash_canon (hstate.end (), itype);
7855 if (precision <= MAX_INT_CACHED_PREC)
7856 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7857
7858 return ret;
7859 }
7860
7861 #define MAX_BOOL_CACHED_PREC \
7862 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7863 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7864
7865 /* Builds a boolean type of precision PRECISION.
7866 Used for boolean vectors to choose proper vector element size. */
7867 tree
7868 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7869 {
7870 tree type;
7871
7872 if (precision <= MAX_BOOL_CACHED_PREC)
7873 {
7874 type = nonstandard_boolean_type_cache[precision];
7875 if (type)
7876 return type;
7877 }
7878
7879 type = make_node (BOOLEAN_TYPE);
7880 TYPE_PRECISION (type) = precision;
7881 fixup_signed_type (type);
7882
7883 if (precision <= MAX_INT_CACHED_PREC)
7884 nonstandard_boolean_type_cache[precision] = type;
7885
7886 return type;
7887 }
7888
7889 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7890 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7891 is true, reuse such a type that has already been constructed. */
7892
7893 static tree
7894 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7895 {
7896 tree itype = make_node (INTEGER_TYPE);
7897
7898 TREE_TYPE (itype) = type;
7899
7900 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7901 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7902
7903 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7904 SET_TYPE_MODE (itype, TYPE_MODE (type));
7905 TYPE_SIZE (itype) = TYPE_SIZE (type);
7906 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7907 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
7908 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7909 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
7910
7911 if (!shared)
7912 return itype;
7913
7914 if ((TYPE_MIN_VALUE (itype)
7915 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7916 || (TYPE_MAX_VALUE (itype)
7917 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7918 {
7919 /* Since we cannot reliably merge this type, we need to compare it using
7920 structural equality checks. */
7921 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7922 return itype;
7923 }
7924
7925 hashval_t hash = type_hash_canon_hash (itype);
7926 itype = type_hash_canon (hash, itype);
7927
7928 return itype;
7929 }
7930
7931 /* Wrapper around build_range_type_1 with SHARED set to true. */
7932
7933 tree
7934 build_range_type (tree type, tree lowval, tree highval)
7935 {
7936 return build_range_type_1 (type, lowval, highval, true);
7937 }
7938
7939 /* Wrapper around build_range_type_1 with SHARED set to false. */
7940
7941 tree
7942 build_nonshared_range_type (tree type, tree lowval, tree highval)
7943 {
7944 return build_range_type_1 (type, lowval, highval, false);
7945 }
7946
7947 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7948 MAXVAL should be the maximum value in the domain
7949 (one less than the length of the array).
7950
7951 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7952 We don't enforce this limit, that is up to caller (e.g. language front end).
7953 The limit exists because the result is a signed type and we don't handle
7954 sizes that use more than one HOST_WIDE_INT. */
7955
7956 tree
7957 build_index_type (tree maxval)
7958 {
7959 return build_range_type (sizetype, size_zero_node, maxval);
7960 }
7961
7962 /* Return true if the debug information for TYPE, a subtype, should be emitted
7963 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7964 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7965 debug info and doesn't reflect the source code. */
7966
7967 bool
7968 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7969 {
7970 tree base_type = TREE_TYPE (type), low, high;
7971
7972 /* Subrange types have a base type which is an integral type. */
7973 if (!INTEGRAL_TYPE_P (base_type))
7974 return false;
7975
7976 /* Get the real bounds of the subtype. */
7977 if (lang_hooks.types.get_subrange_bounds)
7978 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7979 else
7980 {
7981 low = TYPE_MIN_VALUE (type);
7982 high = TYPE_MAX_VALUE (type);
7983 }
7984
7985 /* If the type and its base type have the same representation and the same
7986 name, then the type is not a subrange but a copy of the base type. */
7987 if ((TREE_CODE (base_type) == INTEGER_TYPE
7988 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7989 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7990 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7991 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7992 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7993 return false;
7994
7995 if (lowval)
7996 *lowval = low;
7997 if (highval)
7998 *highval = high;
7999 return true;
8000 }
8001
8002 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8003 and number of elements specified by the range of values of INDEX_TYPE.
8004 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
8005 If SHARED is true, reuse such a type that has already been constructed. */
8006
8007 static tree
8008 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
8009 bool shared)
8010 {
8011 tree t;
8012
8013 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8014 {
8015 error ("arrays of functions are not meaningful");
8016 elt_type = integer_type_node;
8017 }
8018
8019 t = make_node (ARRAY_TYPE);
8020 TREE_TYPE (t) = elt_type;
8021 TYPE_DOMAIN (t) = index_type;
8022 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8023 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
8024 layout_type (t);
8025
8026 /* If the element type is incomplete at this point we get marked for
8027 structural equality. Do not record these types in the canonical
8028 type hashtable. */
8029 if (TYPE_STRUCTURAL_EQUALITY_P (t))
8030 return t;
8031
8032 if (shared)
8033 {
8034 hashval_t hash = type_hash_canon_hash (t);
8035 t = type_hash_canon (hash, t);
8036 }
8037
8038 if (TYPE_CANONICAL (t) == t)
8039 {
8040 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8041 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8042 || in_lto_p)
8043 SET_TYPE_STRUCTURAL_EQUALITY (t);
8044 else if (TYPE_CANONICAL (elt_type) != elt_type
8045 || (index_type && TYPE_CANONICAL (index_type) != index_type))
8046 TYPE_CANONICAL (t)
8047 = build_array_type_1 (TYPE_CANONICAL (elt_type),
8048 index_type
8049 ? TYPE_CANONICAL (index_type) : NULL_TREE,
8050 typeless_storage, shared);
8051 }
8052
8053 return t;
8054 }
8055
8056 /* Wrapper around build_array_type_1 with SHARED set to true. */
8057
8058 tree
8059 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
8060 {
8061 return build_array_type_1 (elt_type, index_type, typeless_storage, true);
8062 }
8063
8064 /* Wrapper around build_array_type_1 with SHARED set to false. */
8065
8066 tree
8067 build_nonshared_array_type (tree elt_type, tree index_type)
8068 {
8069 return build_array_type_1 (elt_type, index_type, false, false);
8070 }
8071
8072 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8073 sizetype. */
8074
8075 tree
8076 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
8077 {
8078 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8079 }
8080
8081 /* Recursively examines the array elements of TYPE, until a non-array
8082 element type is found. */
8083
8084 tree
8085 strip_array_types (tree type)
8086 {
8087 while (TREE_CODE (type) == ARRAY_TYPE)
8088 type = TREE_TYPE (type);
8089
8090 return type;
8091 }
8092
8093 /* Computes the canonical argument types from the argument type list
8094 ARGTYPES.
8095
8096 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8097 on entry to this function, or if any of the ARGTYPES are
8098 structural.
8099
8100 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8101 true on entry to this function, or if any of the ARGTYPES are
8102 non-canonical.
8103
8104 Returns a canonical argument list, which may be ARGTYPES when the
8105 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8106 true) or would not differ from ARGTYPES. */
8107
8108 static tree
8109 maybe_canonicalize_argtypes (tree argtypes,
8110 bool *any_structural_p,
8111 bool *any_noncanonical_p)
8112 {
8113 tree arg;
8114 bool any_noncanonical_argtypes_p = false;
8115
8116 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8117 {
8118 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8119 /* Fail gracefully by stating that the type is structural. */
8120 *any_structural_p = true;
8121 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8122 *any_structural_p = true;
8123 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8124 || TREE_PURPOSE (arg))
8125 /* If the argument has a default argument, we consider it
8126 non-canonical even though the type itself is canonical.
8127 That way, different variants of function and method types
8128 with default arguments will all point to the variant with
8129 no defaults as their canonical type. */
8130 any_noncanonical_argtypes_p = true;
8131 }
8132
8133 if (*any_structural_p)
8134 return argtypes;
8135
8136 if (any_noncanonical_argtypes_p)
8137 {
8138 /* Build the canonical list of argument types. */
8139 tree canon_argtypes = NULL_TREE;
8140 bool is_void = false;
8141
8142 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8143 {
8144 if (arg == void_list_node)
8145 is_void = true;
8146 else
8147 canon_argtypes = tree_cons (NULL_TREE,
8148 TYPE_CANONICAL (TREE_VALUE (arg)),
8149 canon_argtypes);
8150 }
8151
8152 canon_argtypes = nreverse (canon_argtypes);
8153 if (is_void)
8154 canon_argtypes = chainon (canon_argtypes, void_list_node);
8155
8156 /* There is a non-canonical type. */
8157 *any_noncanonical_p = true;
8158 return canon_argtypes;
8159 }
8160
8161 /* The canonical argument types are the same as ARGTYPES. */
8162 return argtypes;
8163 }
8164
8165 /* Construct, lay out and return
8166 the type of functions returning type VALUE_TYPE
8167 given arguments of types ARG_TYPES.
8168 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8169 are data type nodes for the arguments of the function.
8170 If such a type has already been constructed, reuse it. */
8171
8172 tree
8173 build_function_type (tree value_type, tree arg_types)
8174 {
8175 tree t;
8176 inchash::hash hstate;
8177 bool any_structural_p, any_noncanonical_p;
8178 tree canon_argtypes;
8179
8180 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8181 {
8182 error ("function return type cannot be function");
8183 value_type = integer_type_node;
8184 }
8185
8186 /* Make a node of the sort we want. */
8187 t = make_node (FUNCTION_TYPE);
8188 TREE_TYPE (t) = value_type;
8189 TYPE_ARG_TYPES (t) = arg_types;
8190
8191 /* If we already have such a type, use the old one. */
8192 hashval_t hash = type_hash_canon_hash (t);
8193 t = type_hash_canon (hash, t);
8194
8195 /* Set up the canonical type. */
8196 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8197 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8198 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8199 &any_structural_p,
8200 &any_noncanonical_p);
8201 if (any_structural_p)
8202 SET_TYPE_STRUCTURAL_EQUALITY (t);
8203 else if (any_noncanonical_p)
8204 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8205 canon_argtypes);
8206
8207 if (!COMPLETE_TYPE_P (t))
8208 layout_type (t);
8209 return t;
8210 }
8211
8212 /* Build a function type. The RETURN_TYPE is the type returned by the
8213 function. If VAARGS is set, no void_type_node is appended to the
8214 list. ARGP must be always be terminated be a NULL_TREE. */
8215
8216 static tree
8217 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8218 {
8219 tree t, args, last;
8220
8221 t = va_arg (argp, tree);
8222 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8223 args = tree_cons (NULL_TREE, t, args);
8224
8225 if (vaargs)
8226 {
8227 last = args;
8228 if (args != NULL_TREE)
8229 args = nreverse (args);
8230 gcc_assert (last != void_list_node);
8231 }
8232 else if (args == NULL_TREE)
8233 args = void_list_node;
8234 else
8235 {
8236 last = args;
8237 args = nreverse (args);
8238 TREE_CHAIN (last) = void_list_node;
8239 }
8240 args = build_function_type (return_type, args);
8241
8242 return args;
8243 }
8244
8245 /* Build a function type. The RETURN_TYPE is the type returned by the
8246 function. If additional arguments are provided, they are
8247 additional argument types. The list of argument types must always
8248 be terminated by NULL_TREE. */
8249
8250 tree
8251 build_function_type_list (tree return_type, ...)
8252 {
8253 tree args;
8254 va_list p;
8255
8256 va_start (p, return_type);
8257 args = build_function_type_list_1 (false, return_type, p);
8258 va_end (p);
8259 return args;
8260 }
8261
8262 /* Build a variable argument function type. The RETURN_TYPE is the
8263 type returned by the function. If additional arguments are provided,
8264 they are additional argument types. The list of argument types must
8265 always be terminated by NULL_TREE. */
8266
8267 tree
8268 build_varargs_function_type_list (tree return_type, ...)
8269 {
8270 tree args;
8271 va_list p;
8272
8273 va_start (p, return_type);
8274 args = build_function_type_list_1 (true, return_type, p);
8275 va_end (p);
8276
8277 return args;
8278 }
8279
8280 /* Build a function type. RETURN_TYPE is the type returned by the
8281 function; VAARGS indicates whether the function takes varargs. The
8282 function takes N named arguments, the types of which are provided in
8283 ARG_TYPES. */
8284
8285 static tree
8286 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8287 tree *arg_types)
8288 {
8289 int i;
8290 tree t = vaargs ? NULL_TREE : void_list_node;
8291
8292 for (i = n - 1; i >= 0; i--)
8293 t = tree_cons (NULL_TREE, arg_types[i], t);
8294
8295 return build_function_type (return_type, t);
8296 }
8297
8298 /* Build a function type. RETURN_TYPE is the type returned by the
8299 function. The function takes N named arguments, the types of which
8300 are provided in ARG_TYPES. */
8301
8302 tree
8303 build_function_type_array (tree return_type, int n, tree *arg_types)
8304 {
8305 return build_function_type_array_1 (false, return_type, n, arg_types);
8306 }
8307
8308 /* Build a variable argument function type. RETURN_TYPE is the type
8309 returned by the function. The function takes N named arguments, the
8310 types of which are provided in ARG_TYPES. */
8311
8312 tree
8313 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8314 {
8315 return build_function_type_array_1 (true, return_type, n, arg_types);
8316 }
8317
8318 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8319 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8320 for the method. An implicit additional parameter (of type
8321 pointer-to-BASETYPE) is added to the ARGTYPES. */
8322
8323 tree
8324 build_method_type_directly (tree basetype,
8325 tree rettype,
8326 tree argtypes)
8327 {
8328 tree t;
8329 tree ptype;
8330 bool any_structural_p, any_noncanonical_p;
8331 tree canon_argtypes;
8332
8333 /* Make a node of the sort we want. */
8334 t = make_node (METHOD_TYPE);
8335
8336 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8337 TREE_TYPE (t) = rettype;
8338 ptype = build_pointer_type (basetype);
8339
8340 /* The actual arglist for this function includes a "hidden" argument
8341 which is "this". Put it into the list of argument types. */
8342 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8343 TYPE_ARG_TYPES (t) = argtypes;
8344
8345 /* If we already have such a type, use the old one. */
8346 hashval_t hash = type_hash_canon_hash (t);
8347 t = type_hash_canon (hash, t);
8348
8349 /* Set up the canonical type. */
8350 any_structural_p
8351 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8352 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8353 any_noncanonical_p
8354 = (TYPE_CANONICAL (basetype) != basetype
8355 || TYPE_CANONICAL (rettype) != rettype);
8356 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8357 &any_structural_p,
8358 &any_noncanonical_p);
8359 if (any_structural_p)
8360 SET_TYPE_STRUCTURAL_EQUALITY (t);
8361 else if (any_noncanonical_p)
8362 TYPE_CANONICAL (t)
8363 = build_method_type_directly (TYPE_CANONICAL (basetype),
8364 TYPE_CANONICAL (rettype),
8365 canon_argtypes);
8366 if (!COMPLETE_TYPE_P (t))
8367 layout_type (t);
8368
8369 return t;
8370 }
8371
8372 /* Construct, lay out and return the type of methods belonging to class
8373 BASETYPE and whose arguments and values are described by TYPE.
8374 If that type exists already, reuse it.
8375 TYPE must be a FUNCTION_TYPE node. */
8376
8377 tree
8378 build_method_type (tree basetype, tree type)
8379 {
8380 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8381
8382 return build_method_type_directly (basetype,
8383 TREE_TYPE (type),
8384 TYPE_ARG_TYPES (type));
8385 }
8386
8387 /* Construct, lay out and return the type of offsets to a value
8388 of type TYPE, within an object of type BASETYPE.
8389 If a suitable offset type exists already, reuse it. */
8390
8391 tree
8392 build_offset_type (tree basetype, tree type)
8393 {
8394 tree t;
8395
8396 /* Make a node of the sort we want. */
8397 t = make_node (OFFSET_TYPE);
8398
8399 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8400 TREE_TYPE (t) = type;
8401
8402 /* If we already have such a type, use the old one. */
8403 hashval_t hash = type_hash_canon_hash (t);
8404 t = type_hash_canon (hash, t);
8405
8406 if (!COMPLETE_TYPE_P (t))
8407 layout_type (t);
8408
8409 if (TYPE_CANONICAL (t) == t)
8410 {
8411 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8412 || TYPE_STRUCTURAL_EQUALITY_P (type))
8413 SET_TYPE_STRUCTURAL_EQUALITY (t);
8414 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8415 || TYPE_CANONICAL (type) != type)
8416 TYPE_CANONICAL (t)
8417 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8418 TYPE_CANONICAL (type));
8419 }
8420
8421 return t;
8422 }
8423
8424 /* Create a complex type whose components are COMPONENT_TYPE.
8425
8426 If NAMED is true, the type is given a TYPE_NAME. We do not always
8427 do so because this creates a DECL node and thus make the DECL_UIDs
8428 dependent on the type canonicalization hashtable, which is GC-ed,
8429 so the DECL_UIDs would not be stable wrt garbage collection. */
8430
8431 tree
8432 build_complex_type (tree component_type, bool named)
8433 {
8434 gcc_assert (INTEGRAL_TYPE_P (component_type)
8435 || SCALAR_FLOAT_TYPE_P (component_type)
8436 || FIXED_POINT_TYPE_P (component_type));
8437
8438 /* Make a node of the sort we want. */
8439 tree probe = make_node (COMPLEX_TYPE);
8440
8441 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8442
8443 /* If we already have such a type, use the old one. */
8444 hashval_t hash = type_hash_canon_hash (probe);
8445 tree t = type_hash_canon (hash, probe);
8446
8447 if (t == probe)
8448 {
8449 /* We created a new type. The hash insertion will have laid
8450 out the type. We need to check the canonicalization and
8451 maybe set the name. */
8452 gcc_checking_assert (COMPLETE_TYPE_P (t)
8453 && !TYPE_NAME (t)
8454 && TYPE_CANONICAL (t) == t);
8455
8456 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8457 SET_TYPE_STRUCTURAL_EQUALITY (t);
8458 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8459 TYPE_CANONICAL (t)
8460 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8461
8462 /* We need to create a name, since complex is a fundamental type. */
8463 if (named)
8464 {
8465 const char *name = NULL;
8466
8467 if (TREE_TYPE (t) == char_type_node)
8468 name = "complex char";
8469 else if (TREE_TYPE (t) == signed_char_type_node)
8470 name = "complex signed char";
8471 else if (TREE_TYPE (t) == unsigned_char_type_node)
8472 name = "complex unsigned char";
8473 else if (TREE_TYPE (t) == short_integer_type_node)
8474 name = "complex short int";
8475 else if (TREE_TYPE (t) == short_unsigned_type_node)
8476 name = "complex short unsigned int";
8477 else if (TREE_TYPE (t) == integer_type_node)
8478 name = "complex int";
8479 else if (TREE_TYPE (t) == unsigned_type_node)
8480 name = "complex unsigned int";
8481 else if (TREE_TYPE (t) == long_integer_type_node)
8482 name = "complex long int";
8483 else if (TREE_TYPE (t) == long_unsigned_type_node)
8484 name = "complex long unsigned int";
8485 else if (TREE_TYPE (t) == long_long_integer_type_node)
8486 name = "complex long long int";
8487 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8488 name = "complex long long unsigned int";
8489
8490 if (name != NULL)
8491 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8492 get_identifier (name), t);
8493 }
8494 }
8495
8496 return build_qualified_type (t, TYPE_QUALS (component_type));
8497 }
8498
8499 /* If TYPE is a real or complex floating-point type and the target
8500 does not directly support arithmetic on TYPE then return the wider
8501 type to be used for arithmetic on TYPE. Otherwise, return
8502 NULL_TREE. */
8503
8504 tree
8505 excess_precision_type (tree type)
8506 {
8507 /* The target can give two different responses to the question of
8508 which excess precision mode it would like depending on whether we
8509 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8510
8511 enum excess_precision_type requested_type
8512 = (flag_excess_precision == EXCESS_PRECISION_FAST
8513 ? EXCESS_PRECISION_TYPE_FAST
8514 : EXCESS_PRECISION_TYPE_STANDARD);
8515
8516 enum flt_eval_method target_flt_eval_method
8517 = targetm.c.excess_precision (requested_type);
8518
8519 /* The target should not ask for unpredictable float evaluation (though
8520 it might advertise that implicitly the evaluation is unpredictable,
8521 but we don't care about that here, it will have been reported
8522 elsewhere). If it does ask for unpredictable evaluation, we have
8523 nothing to do here. */
8524 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8525
8526 /* Nothing to do. The target has asked for all types we know about
8527 to be computed with their native precision and range. */
8528 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8529 return NULL_TREE;
8530
8531 /* The target will promote this type in a target-dependent way, so excess
8532 precision ought to leave it alone. */
8533 if (targetm.promoted_type (type) != NULL_TREE)
8534 return NULL_TREE;
8535
8536 machine_mode float16_type_mode = (float16_type_node
8537 ? TYPE_MODE (float16_type_node)
8538 : VOIDmode);
8539 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8540 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8541
8542 switch (TREE_CODE (type))
8543 {
8544 case REAL_TYPE:
8545 {
8546 machine_mode type_mode = TYPE_MODE (type);
8547 switch (target_flt_eval_method)
8548 {
8549 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8550 if (type_mode == float16_type_mode)
8551 return float_type_node;
8552 break;
8553 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8554 if (type_mode == float16_type_mode
8555 || type_mode == float_type_mode)
8556 return double_type_node;
8557 break;
8558 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8559 if (type_mode == float16_type_mode
8560 || type_mode == float_type_mode
8561 || type_mode == double_type_mode)
8562 return long_double_type_node;
8563 break;
8564 default:
8565 gcc_unreachable ();
8566 }
8567 break;
8568 }
8569 case COMPLEX_TYPE:
8570 {
8571 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8572 return NULL_TREE;
8573 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8574 switch (target_flt_eval_method)
8575 {
8576 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8577 if (type_mode == float16_type_mode)
8578 return complex_float_type_node;
8579 break;
8580 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8581 if (type_mode == float16_type_mode
8582 || type_mode == float_type_mode)
8583 return complex_double_type_node;
8584 break;
8585 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8586 if (type_mode == float16_type_mode
8587 || type_mode == float_type_mode
8588 || type_mode == double_type_mode)
8589 return complex_long_double_type_node;
8590 break;
8591 default:
8592 gcc_unreachable ();
8593 }
8594 break;
8595 }
8596 default:
8597 break;
8598 }
8599
8600 return NULL_TREE;
8601 }
8602 \f
8603 /* Return OP, stripped of any conversions to wider types as much as is safe.
8604 Converting the value back to OP's type makes a value equivalent to OP.
8605
8606 If FOR_TYPE is nonzero, we return a value which, if converted to
8607 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8608
8609 OP must have integer, real or enumeral type. Pointers are not allowed!
8610
8611 There are some cases where the obvious value we could return
8612 would regenerate to OP if converted to OP's type,
8613 but would not extend like OP to wider types.
8614 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8615 For example, if OP is (unsigned short)(signed char)-1,
8616 we avoid returning (signed char)-1 if FOR_TYPE is int,
8617 even though extending that to an unsigned short would regenerate OP,
8618 since the result of extending (signed char)-1 to (int)
8619 is different from (int) OP. */
8620
8621 tree
8622 get_unwidened (tree op, tree for_type)
8623 {
8624 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8625 tree type = TREE_TYPE (op);
8626 unsigned final_prec
8627 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8628 int uns
8629 = (for_type != 0 && for_type != type
8630 && final_prec > TYPE_PRECISION (type)
8631 && TYPE_UNSIGNED (type));
8632 tree win = op;
8633
8634 while (CONVERT_EXPR_P (op))
8635 {
8636 int bitschange;
8637
8638 /* TYPE_PRECISION on vector types has different meaning
8639 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8640 so avoid them here. */
8641 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8642 break;
8643
8644 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8645 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8646
8647 /* Truncations are many-one so cannot be removed.
8648 Unless we are later going to truncate down even farther. */
8649 if (bitschange < 0
8650 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8651 break;
8652
8653 /* See what's inside this conversion. If we decide to strip it,
8654 we will set WIN. */
8655 op = TREE_OPERAND (op, 0);
8656
8657 /* If we have not stripped any zero-extensions (uns is 0),
8658 we can strip any kind of extension.
8659 If we have previously stripped a zero-extension,
8660 only zero-extensions can safely be stripped.
8661 Any extension can be stripped if the bits it would produce
8662 are all going to be discarded later by truncating to FOR_TYPE. */
8663
8664 if (bitschange > 0)
8665 {
8666 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8667 win = op;
8668 /* TYPE_UNSIGNED says whether this is a zero-extension.
8669 Let's avoid computing it if it does not affect WIN
8670 and if UNS will not be needed again. */
8671 if ((uns
8672 || CONVERT_EXPR_P (op))
8673 && TYPE_UNSIGNED (TREE_TYPE (op)))
8674 {
8675 uns = 1;
8676 win = op;
8677 }
8678 }
8679 }
8680
8681 /* If we finally reach a constant see if it fits in sth smaller and
8682 in that case convert it. */
8683 if (TREE_CODE (win) == INTEGER_CST)
8684 {
8685 tree wtype = TREE_TYPE (win);
8686 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8687 if (for_type)
8688 prec = MAX (prec, final_prec);
8689 if (prec < TYPE_PRECISION (wtype))
8690 {
8691 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8692 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8693 win = fold_convert (t, win);
8694 }
8695 }
8696
8697 return win;
8698 }
8699 \f
8700 /* Return OP or a simpler expression for a narrower value
8701 which can be sign-extended or zero-extended to give back OP.
8702 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8703 or 0 if the value should be sign-extended. */
8704
8705 tree
8706 get_narrower (tree op, int *unsignedp_ptr)
8707 {
8708 int uns = 0;
8709 int first = 1;
8710 tree win = op;
8711 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8712
8713 while (TREE_CODE (op) == NOP_EXPR)
8714 {
8715 int bitschange
8716 = (TYPE_PRECISION (TREE_TYPE (op))
8717 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8718
8719 /* Truncations are many-one so cannot be removed. */
8720 if (bitschange < 0)
8721 break;
8722
8723 /* See what's inside this conversion. If we decide to strip it,
8724 we will set WIN. */
8725
8726 if (bitschange > 0)
8727 {
8728 op = TREE_OPERAND (op, 0);
8729 /* An extension: the outermost one can be stripped,
8730 but remember whether it is zero or sign extension. */
8731 if (first)
8732 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8733 /* Otherwise, if a sign extension has been stripped,
8734 only sign extensions can now be stripped;
8735 if a zero extension has been stripped, only zero-extensions. */
8736 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8737 break;
8738 first = 0;
8739 }
8740 else /* bitschange == 0 */
8741 {
8742 /* A change in nominal type can always be stripped, but we must
8743 preserve the unsignedness. */
8744 if (first)
8745 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8746 first = 0;
8747 op = TREE_OPERAND (op, 0);
8748 /* Keep trying to narrow, but don't assign op to win if it
8749 would turn an integral type into something else. */
8750 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8751 continue;
8752 }
8753
8754 win = op;
8755 }
8756
8757 if (TREE_CODE (op) == COMPONENT_REF
8758 /* Since type_for_size always gives an integer type. */
8759 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8760 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8761 /* Ensure field is laid out already. */
8762 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8763 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8764 {
8765 unsigned HOST_WIDE_INT innerprec
8766 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8767 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8768 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8769 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8770
8771 /* We can get this structure field in a narrower type that fits it,
8772 but the resulting extension to its nominal type (a fullword type)
8773 must satisfy the same conditions as for other extensions.
8774
8775 Do this only for fields that are aligned (not bit-fields),
8776 because when bit-field insns will be used there is no
8777 advantage in doing this. */
8778
8779 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8780 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8781 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8782 && type != 0)
8783 {
8784 if (first)
8785 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8786 win = fold_convert (type, op);
8787 }
8788 }
8789
8790 *unsignedp_ptr = uns;
8791 return win;
8792 }
8793 \f
8794 /* Return true if integer constant C has a value that is permissible
8795 for TYPE, an integral type. */
8796
8797 bool
8798 int_fits_type_p (const_tree c, const_tree type)
8799 {
8800 tree type_low_bound, type_high_bound;
8801 bool ok_for_low_bound, ok_for_high_bound;
8802 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8803
8804 /* Non-standard boolean types can have arbitrary precision but various
8805 transformations assume that they can only take values 0 and +/-1. */
8806 if (TREE_CODE (type) == BOOLEAN_TYPE)
8807 return wi::fits_to_boolean_p (wi::to_wide (c), type);
8808
8809 retry:
8810 type_low_bound = TYPE_MIN_VALUE (type);
8811 type_high_bound = TYPE_MAX_VALUE (type);
8812
8813 /* If at least one bound of the type is a constant integer, we can check
8814 ourselves and maybe make a decision. If no such decision is possible, but
8815 this type is a subtype, try checking against that. Otherwise, use
8816 fits_to_tree_p, which checks against the precision.
8817
8818 Compute the status for each possibly constant bound, and return if we see
8819 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8820 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8821 for "constant known to fit". */
8822
8823 /* Check if c >= type_low_bound. */
8824 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8825 {
8826 if (tree_int_cst_lt (c, type_low_bound))
8827 return false;
8828 ok_for_low_bound = true;
8829 }
8830 else
8831 ok_for_low_bound = false;
8832
8833 /* Check if c <= type_high_bound. */
8834 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8835 {
8836 if (tree_int_cst_lt (type_high_bound, c))
8837 return false;
8838 ok_for_high_bound = true;
8839 }
8840 else
8841 ok_for_high_bound = false;
8842
8843 /* If the constant fits both bounds, the result is known. */
8844 if (ok_for_low_bound && ok_for_high_bound)
8845 return true;
8846
8847 /* Perform some generic filtering which may allow making a decision
8848 even if the bounds are not constant. First, negative integers
8849 never fit in unsigned types, */
8850 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
8851 return false;
8852
8853 /* Second, narrower types always fit in wider ones. */
8854 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8855 return true;
8856
8857 /* Third, unsigned integers with top bit set never fit signed types. */
8858 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8859 {
8860 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
8861 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8862 {
8863 /* When a tree_cst is converted to a wide-int, the precision
8864 is taken from the type. However, if the precision of the
8865 mode underneath the type is smaller than that, it is
8866 possible that the value will not fit. The test below
8867 fails if any bit is set between the sign bit of the
8868 underlying mode and the top bit of the type. */
8869 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
8870 return false;
8871 }
8872 else if (wi::neg_p (wi::to_wide (c)))
8873 return false;
8874 }
8875
8876 /* If we haven't been able to decide at this point, there nothing more we
8877 can check ourselves here. Look at the base type if we have one and it
8878 has the same precision. */
8879 if (TREE_CODE (type) == INTEGER_TYPE
8880 && TREE_TYPE (type) != 0
8881 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8882 {
8883 type = TREE_TYPE (type);
8884 goto retry;
8885 }
8886
8887 /* Or to fits_to_tree_p, if nothing else. */
8888 return wi::fits_to_tree_p (wi::to_wide (c), type);
8889 }
8890
8891 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8892 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8893 represented (assuming two's-complement arithmetic) within the bit
8894 precision of the type are returned instead. */
8895
8896 void
8897 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8898 {
8899 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8900 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8901 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
8902 else
8903 {
8904 if (TYPE_UNSIGNED (type))
8905 mpz_set_ui (min, 0);
8906 else
8907 {
8908 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8909 wi::to_mpz (mn, min, SIGNED);
8910 }
8911 }
8912
8913 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8914 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8915 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
8916 else
8917 {
8918 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8919 wi::to_mpz (mn, max, TYPE_SIGN (type));
8920 }
8921 }
8922
8923 /* Return true if VAR is an automatic variable defined in function FN. */
8924
8925 bool
8926 auto_var_in_fn_p (const_tree var, const_tree fn)
8927 {
8928 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8929 && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
8930 || TREE_CODE (var) == PARM_DECL)
8931 && ! TREE_STATIC (var))
8932 || TREE_CODE (var) == LABEL_DECL
8933 || TREE_CODE (var) == RESULT_DECL));
8934 }
8935
8936 /* Subprogram of following function. Called by walk_tree.
8937
8938 Return *TP if it is an automatic variable or parameter of the
8939 function passed in as DATA. */
8940
8941 static tree
8942 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8943 {
8944 tree fn = (tree) data;
8945
8946 if (TYPE_P (*tp))
8947 *walk_subtrees = 0;
8948
8949 else if (DECL_P (*tp)
8950 && auto_var_in_fn_p (*tp, fn))
8951 return *tp;
8952
8953 return NULL_TREE;
8954 }
8955
8956 /* Returns true if T is, contains, or refers to a type with variable
8957 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8958 arguments, but not the return type. If FN is nonzero, only return
8959 true if a modifier of the type or position of FN is a variable or
8960 parameter inside FN.
8961
8962 This concept is more general than that of C99 'variably modified types':
8963 in C99, a struct type is never variably modified because a VLA may not
8964 appear as a structure member. However, in GNU C code like:
8965
8966 struct S { int i[f()]; };
8967
8968 is valid, and other languages may define similar constructs. */
8969
8970 bool
8971 variably_modified_type_p (tree type, tree fn)
8972 {
8973 tree t;
8974
8975 /* Test if T is either variable (if FN is zero) or an expression containing
8976 a variable in FN. If TYPE isn't gimplified, return true also if
8977 gimplify_one_sizepos would gimplify the expression into a local
8978 variable. */
8979 #define RETURN_TRUE_IF_VAR(T) \
8980 do { tree _t = (T); \
8981 if (_t != NULL_TREE \
8982 && _t != error_mark_node \
8983 && !CONSTANT_CLASS_P (_t) \
8984 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8985 && (!fn \
8986 || (!TYPE_SIZES_GIMPLIFIED (type) \
8987 && (TREE_CODE (_t) != VAR_DECL \
8988 && !CONTAINS_PLACEHOLDER_P (_t))) \
8989 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8990 return true; } while (0)
8991
8992 if (type == error_mark_node)
8993 return false;
8994
8995 /* If TYPE itself has variable size, it is variably modified. */
8996 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8997 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8998
8999 switch (TREE_CODE (type))
9000 {
9001 case POINTER_TYPE:
9002 case REFERENCE_TYPE:
9003 case VECTOR_TYPE:
9004 /* Ada can have pointer types refering to themselves indirectly. */
9005 if (TREE_VISITED (type))
9006 return false;
9007 TREE_VISITED (type) = true;
9008 if (variably_modified_type_p (TREE_TYPE (type), fn))
9009 {
9010 TREE_VISITED (type) = false;
9011 return true;
9012 }
9013 TREE_VISITED (type) = false;
9014 break;
9015
9016 case FUNCTION_TYPE:
9017 case METHOD_TYPE:
9018 /* If TYPE is a function type, it is variably modified if the
9019 return type is variably modified. */
9020 if (variably_modified_type_p (TREE_TYPE (type), fn))
9021 return true;
9022 break;
9023
9024 case INTEGER_TYPE:
9025 case REAL_TYPE:
9026 case FIXED_POINT_TYPE:
9027 case ENUMERAL_TYPE:
9028 case BOOLEAN_TYPE:
9029 /* Scalar types are variably modified if their end points
9030 aren't constant. */
9031 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9032 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9033 break;
9034
9035 case RECORD_TYPE:
9036 case UNION_TYPE:
9037 case QUAL_UNION_TYPE:
9038 /* We can't see if any of the fields are variably-modified by the
9039 definition we normally use, since that would produce infinite
9040 recursion via pointers. */
9041 /* This is variably modified if some field's type is. */
9042 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9043 if (TREE_CODE (t) == FIELD_DECL)
9044 {
9045 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9046 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9047 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9048
9049 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9050 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9051 }
9052 break;
9053
9054 case ARRAY_TYPE:
9055 /* Do not call ourselves to avoid infinite recursion. This is
9056 variably modified if the element type is. */
9057 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9058 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9059 break;
9060
9061 default:
9062 break;
9063 }
9064
9065 /* The current language may have other cases to check, but in general,
9066 all other types are not variably modified. */
9067 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9068
9069 #undef RETURN_TRUE_IF_VAR
9070 }
9071
9072 /* Given a DECL or TYPE, return the scope in which it was declared, or
9073 NULL_TREE if there is no containing scope. */
9074
9075 tree
9076 get_containing_scope (const_tree t)
9077 {
9078 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9079 }
9080
9081 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
9082
9083 const_tree
9084 get_ultimate_context (const_tree decl)
9085 {
9086 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
9087 {
9088 if (TREE_CODE (decl) == BLOCK)
9089 decl = BLOCK_SUPERCONTEXT (decl);
9090 else
9091 decl = get_containing_scope (decl);
9092 }
9093 return decl;
9094 }
9095
9096 /* Return the innermost context enclosing DECL that is
9097 a FUNCTION_DECL, or zero if none. */
9098
9099 tree
9100 decl_function_context (const_tree decl)
9101 {
9102 tree context;
9103
9104 if (TREE_CODE (decl) == ERROR_MARK)
9105 return 0;
9106
9107 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9108 where we look up the function at runtime. Such functions always take
9109 a first argument of type 'pointer to real context'.
9110
9111 C++ should really be fixed to use DECL_CONTEXT for the real context,
9112 and use something else for the "virtual context". */
9113 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
9114 context
9115 = TYPE_MAIN_VARIANT
9116 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9117 else
9118 context = DECL_CONTEXT (decl);
9119
9120 while (context && TREE_CODE (context) != FUNCTION_DECL)
9121 {
9122 if (TREE_CODE (context) == BLOCK)
9123 context = BLOCK_SUPERCONTEXT (context);
9124 else
9125 context = get_containing_scope (context);
9126 }
9127
9128 return context;
9129 }
9130
9131 /* Return the innermost context enclosing DECL that is
9132 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9133 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9134
9135 tree
9136 decl_type_context (const_tree decl)
9137 {
9138 tree context = DECL_CONTEXT (decl);
9139
9140 while (context)
9141 switch (TREE_CODE (context))
9142 {
9143 case NAMESPACE_DECL:
9144 case TRANSLATION_UNIT_DECL:
9145 return NULL_TREE;
9146
9147 case RECORD_TYPE:
9148 case UNION_TYPE:
9149 case QUAL_UNION_TYPE:
9150 return context;
9151
9152 case TYPE_DECL:
9153 case FUNCTION_DECL:
9154 context = DECL_CONTEXT (context);
9155 break;
9156
9157 case BLOCK:
9158 context = BLOCK_SUPERCONTEXT (context);
9159 break;
9160
9161 default:
9162 gcc_unreachable ();
9163 }
9164
9165 return NULL_TREE;
9166 }
9167
9168 /* CALL is a CALL_EXPR. Return the declaration for the function
9169 called, or NULL_TREE if the called function cannot be
9170 determined. */
9171
9172 tree
9173 get_callee_fndecl (const_tree call)
9174 {
9175 tree addr;
9176
9177 if (call == error_mark_node)
9178 return error_mark_node;
9179
9180 /* It's invalid to call this function with anything but a
9181 CALL_EXPR. */
9182 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9183
9184 /* The first operand to the CALL is the address of the function
9185 called. */
9186 addr = CALL_EXPR_FN (call);
9187
9188 /* If there is no function, return early. */
9189 if (addr == NULL_TREE)
9190 return NULL_TREE;
9191
9192 STRIP_NOPS (addr);
9193
9194 /* If this is a readonly function pointer, extract its initial value. */
9195 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9196 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9197 && DECL_INITIAL (addr))
9198 addr = DECL_INITIAL (addr);
9199
9200 /* If the address is just `&f' for some function `f', then we know
9201 that `f' is being called. */
9202 if (TREE_CODE (addr) == ADDR_EXPR
9203 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9204 return TREE_OPERAND (addr, 0);
9205
9206 /* We couldn't figure out what was being called. */
9207 return NULL_TREE;
9208 }
9209
9210 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9211 return the associated function code, otherwise return CFN_LAST. */
9212
9213 combined_fn
9214 get_call_combined_fn (const_tree call)
9215 {
9216 /* It's invalid to call this function with anything but a CALL_EXPR. */
9217 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9218
9219 if (!CALL_EXPR_FN (call))
9220 return as_combined_fn (CALL_EXPR_IFN (call));
9221
9222 tree fndecl = get_callee_fndecl (call);
9223 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9224 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9225
9226 return CFN_LAST;
9227 }
9228
9229 #define TREE_MEM_USAGE_SPACES 40
9230
9231 /* Print debugging information about tree nodes generated during the compile,
9232 and any language-specific information. */
9233
9234 void
9235 dump_tree_statistics (void)
9236 {
9237 if (GATHER_STATISTICS)
9238 {
9239 int i;
9240 uint64_t total_nodes, total_bytes;
9241 fprintf (stderr, "\nKind Nodes Bytes\n");
9242 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9243 total_nodes = total_bytes = 0;
9244 for (i = 0; i < (int) all_kinds; i++)
9245 {
9246 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n",
9247 tree_node_kind_names[i], tree_node_counts[i],
9248 tree_node_sizes[i]);
9249 total_nodes += tree_node_counts[i];
9250 total_bytes += tree_node_sizes[i];
9251 }
9252 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9253 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n", "Total",
9254 total_nodes, total_bytes);
9255 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9256 fprintf (stderr, "Code Nodes\n");
9257 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9258 for (i = 0; i < (int) MAX_TREE_CODES; i++)
9259 fprintf (stderr, "%-32s %7" PRIu64 "\n",
9260 get_tree_code_name ((enum tree_code) i), tree_code_counts[i]);
9261 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9262 fprintf (stderr, "\n");
9263 ssanames_print_statistics ();
9264 fprintf (stderr, "\n");
9265 phinodes_print_statistics ();
9266 fprintf (stderr, "\n");
9267 }
9268 else
9269 fprintf (stderr, "(No per-node statistics)\n");
9270
9271 print_type_hash_statistics ();
9272 print_debug_expr_statistics ();
9273 print_value_expr_statistics ();
9274 lang_hooks.print_statistics ();
9275 }
9276 \f
9277 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9278
9279 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9280
9281 unsigned
9282 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9283 {
9284 /* This relies on the raw feedback's top 4 bits being zero. */
9285 #define FEEDBACK(X) ((X) * 0x04c11db7)
9286 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9287 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9288 static const unsigned syndromes[16] =
9289 {
9290 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9291 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9292 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9293 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9294 };
9295 #undef FEEDBACK
9296 #undef SYNDROME
9297
9298 value <<= (32 - bytes * 8);
9299 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9300 {
9301 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9302
9303 chksum = (chksum << 4) ^ feedback;
9304 }
9305
9306 return chksum;
9307 }
9308
9309 /* Generate a crc32 of a string. */
9310
9311 unsigned
9312 crc32_string (unsigned chksum, const char *string)
9313 {
9314 do
9315 chksum = crc32_byte (chksum, *string);
9316 while (*string++);
9317 return chksum;
9318 }
9319
9320 /* P is a string that will be used in a symbol. Mask out any characters
9321 that are not valid in that context. */
9322
9323 void
9324 clean_symbol_name (char *p)
9325 {
9326 for (; *p; p++)
9327 if (! (ISALNUM (*p)
9328 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9329 || *p == '$'
9330 #endif
9331 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9332 || *p == '.'
9333 #endif
9334 ))
9335 *p = '_';
9336 }
9337
9338 /* For anonymous aggregate types, we need some sort of name to
9339 hold on to. In practice, this should not appear, but it should
9340 not be harmful if it does. */
9341 bool
9342 anon_aggrname_p(const_tree id_node)
9343 {
9344 #ifndef NO_DOT_IN_LABEL
9345 return (IDENTIFIER_POINTER (id_node)[0] == '.'
9346 && IDENTIFIER_POINTER (id_node)[1] == '_');
9347 #else /* NO_DOT_IN_LABEL */
9348 #ifndef NO_DOLLAR_IN_LABEL
9349 return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9350 && IDENTIFIER_POINTER (id_node)[1] == '_');
9351 #else /* NO_DOLLAR_IN_LABEL */
9352 #define ANON_AGGRNAME_PREFIX "__anon_"
9353 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9354 sizeof (ANON_AGGRNAME_PREFIX) - 1));
9355 #endif /* NO_DOLLAR_IN_LABEL */
9356 #endif /* NO_DOT_IN_LABEL */
9357 }
9358
9359 /* Return a format for an anonymous aggregate name. */
9360 const char *
9361 anon_aggrname_format()
9362 {
9363 #ifndef NO_DOT_IN_LABEL
9364 return "._%d";
9365 #else /* NO_DOT_IN_LABEL */
9366 #ifndef NO_DOLLAR_IN_LABEL
9367 return "$_%d";
9368 #else /* NO_DOLLAR_IN_LABEL */
9369 return "__anon_%d";
9370 #endif /* NO_DOLLAR_IN_LABEL */
9371 #endif /* NO_DOT_IN_LABEL */
9372 }
9373
9374 /* Generate a name for a special-purpose function.
9375 The generated name may need to be unique across the whole link.
9376 Changes to this function may also require corresponding changes to
9377 xstrdup_mask_random.
9378 TYPE is some string to identify the purpose of this function to the
9379 linker or collect2; it must start with an uppercase letter,
9380 one of:
9381 I - for constructors
9382 D - for destructors
9383 N - for C++ anonymous namespaces
9384 F - for DWARF unwind frame information. */
9385
9386 tree
9387 get_file_function_name (const char *type)
9388 {
9389 char *buf;
9390 const char *p;
9391 char *q;
9392
9393 /* If we already have a name we know to be unique, just use that. */
9394 if (first_global_object_name)
9395 p = q = ASTRDUP (first_global_object_name);
9396 /* If the target is handling the constructors/destructors, they
9397 will be local to this file and the name is only necessary for
9398 debugging purposes.
9399 We also assign sub_I and sub_D sufixes to constructors called from
9400 the global static constructors. These are always local. */
9401 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9402 || (strncmp (type, "sub_", 4) == 0
9403 && (type[4] == 'I' || type[4] == 'D')))
9404 {
9405 const char *file = main_input_filename;
9406 if (! file)
9407 file = LOCATION_FILE (input_location);
9408 /* Just use the file's basename, because the full pathname
9409 might be quite long. */
9410 p = q = ASTRDUP (lbasename (file));
9411 }
9412 else
9413 {
9414 /* Otherwise, the name must be unique across the entire link.
9415 We don't have anything that we know to be unique to this translation
9416 unit, so use what we do have and throw in some randomness. */
9417 unsigned len;
9418 const char *name = weak_global_object_name;
9419 const char *file = main_input_filename;
9420
9421 if (! name)
9422 name = "";
9423 if (! file)
9424 file = LOCATION_FILE (input_location);
9425
9426 len = strlen (file);
9427 q = (char *) alloca (9 + 19 + len + 1);
9428 memcpy (q, file, len + 1);
9429
9430 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9431 crc32_string (0, name), get_random_seed (false));
9432
9433 p = q;
9434 }
9435
9436 clean_symbol_name (q);
9437 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9438 + strlen (type));
9439
9440 /* Set up the name of the file-level functions we may need.
9441 Use a global object (which is already required to be unique over
9442 the program) rather than the file name (which imposes extra
9443 constraints). */
9444 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9445
9446 return get_identifier (buf);
9447 }
9448 \f
9449 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9450
9451 /* Complain that the tree code of NODE does not match the expected 0
9452 terminated list of trailing codes. The trailing code list can be
9453 empty, for a more vague error message. FILE, LINE, and FUNCTION
9454 are of the caller. */
9455
9456 void
9457 tree_check_failed (const_tree node, const char *file,
9458 int line, const char *function, ...)
9459 {
9460 va_list args;
9461 const char *buffer;
9462 unsigned length = 0;
9463 enum tree_code code;
9464
9465 va_start (args, function);
9466 while ((code = (enum tree_code) va_arg (args, int)))
9467 length += 4 + strlen (get_tree_code_name (code));
9468 va_end (args);
9469 if (length)
9470 {
9471 char *tmp;
9472 va_start (args, function);
9473 length += strlen ("expected ");
9474 buffer = tmp = (char *) alloca (length);
9475 length = 0;
9476 while ((code = (enum tree_code) va_arg (args, int)))
9477 {
9478 const char *prefix = length ? " or " : "expected ";
9479
9480 strcpy (tmp + length, prefix);
9481 length += strlen (prefix);
9482 strcpy (tmp + length, get_tree_code_name (code));
9483 length += strlen (get_tree_code_name (code));
9484 }
9485 va_end (args);
9486 }
9487 else
9488 buffer = "unexpected node";
9489
9490 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9491 buffer, get_tree_code_name (TREE_CODE (node)),
9492 function, trim_filename (file), line);
9493 }
9494
9495 /* Complain that the tree code of NODE does match the expected 0
9496 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9497 the caller. */
9498
9499 void
9500 tree_not_check_failed (const_tree node, const char *file,
9501 int line, const char *function, ...)
9502 {
9503 va_list args;
9504 char *buffer;
9505 unsigned length = 0;
9506 enum tree_code code;
9507
9508 va_start (args, function);
9509 while ((code = (enum tree_code) va_arg (args, int)))
9510 length += 4 + strlen (get_tree_code_name (code));
9511 va_end (args);
9512 va_start (args, function);
9513 buffer = (char *) alloca (length);
9514 length = 0;
9515 while ((code = (enum tree_code) va_arg (args, int)))
9516 {
9517 if (length)
9518 {
9519 strcpy (buffer + length, " or ");
9520 length += 4;
9521 }
9522 strcpy (buffer + length, get_tree_code_name (code));
9523 length += strlen (get_tree_code_name (code));
9524 }
9525 va_end (args);
9526
9527 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9528 buffer, get_tree_code_name (TREE_CODE (node)),
9529 function, trim_filename (file), line);
9530 }
9531
9532 /* Similar to tree_check_failed, except that we check for a class of tree
9533 code, given in CL. */
9534
9535 void
9536 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9537 const char *file, int line, const char *function)
9538 {
9539 internal_error
9540 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9541 TREE_CODE_CLASS_STRING (cl),
9542 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9543 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9544 }
9545
9546 /* Similar to tree_check_failed, except that instead of specifying a
9547 dozen codes, use the knowledge that they're all sequential. */
9548
9549 void
9550 tree_range_check_failed (const_tree node, const char *file, int line,
9551 const char *function, enum tree_code c1,
9552 enum tree_code c2)
9553 {
9554 char *buffer;
9555 unsigned length = 0;
9556 unsigned int c;
9557
9558 for (c = c1; c <= c2; ++c)
9559 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9560
9561 length += strlen ("expected ");
9562 buffer = (char *) alloca (length);
9563 length = 0;
9564
9565 for (c = c1; c <= c2; ++c)
9566 {
9567 const char *prefix = length ? " or " : "expected ";
9568
9569 strcpy (buffer + length, prefix);
9570 length += strlen (prefix);
9571 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9572 length += strlen (get_tree_code_name ((enum tree_code) c));
9573 }
9574
9575 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9576 buffer, get_tree_code_name (TREE_CODE (node)),
9577 function, trim_filename (file), line);
9578 }
9579
9580
9581 /* Similar to tree_check_failed, except that we check that a tree does
9582 not have the specified code, given in CL. */
9583
9584 void
9585 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9586 const char *file, int line, const char *function)
9587 {
9588 internal_error
9589 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9590 TREE_CODE_CLASS_STRING (cl),
9591 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9592 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9593 }
9594
9595
9596 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9597
9598 void
9599 omp_clause_check_failed (const_tree node, const char *file, int line,
9600 const char *function, enum omp_clause_code code)
9601 {
9602 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9603 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9604 function, trim_filename (file), line);
9605 }
9606
9607
9608 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9609
9610 void
9611 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9612 const char *function, enum omp_clause_code c1,
9613 enum omp_clause_code c2)
9614 {
9615 char *buffer;
9616 unsigned length = 0;
9617 unsigned int c;
9618
9619 for (c = c1; c <= c2; ++c)
9620 length += 4 + strlen (omp_clause_code_name[c]);
9621
9622 length += strlen ("expected ");
9623 buffer = (char *) alloca (length);
9624 length = 0;
9625
9626 for (c = c1; c <= c2; ++c)
9627 {
9628 const char *prefix = length ? " or " : "expected ";
9629
9630 strcpy (buffer + length, prefix);
9631 length += strlen (prefix);
9632 strcpy (buffer + length, omp_clause_code_name[c]);
9633 length += strlen (omp_clause_code_name[c]);
9634 }
9635
9636 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9637 buffer, omp_clause_code_name[TREE_CODE (node)],
9638 function, trim_filename (file), line);
9639 }
9640
9641
9642 #undef DEFTREESTRUCT
9643 #define DEFTREESTRUCT(VAL, NAME) NAME,
9644
9645 static const char *ts_enum_names[] = {
9646 #include "treestruct.def"
9647 };
9648 #undef DEFTREESTRUCT
9649
9650 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9651
9652 /* Similar to tree_class_check_failed, except that we check for
9653 whether CODE contains the tree structure identified by EN. */
9654
9655 void
9656 tree_contains_struct_check_failed (const_tree node,
9657 const enum tree_node_structure_enum en,
9658 const char *file, int line,
9659 const char *function)
9660 {
9661 internal_error
9662 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9663 TS_ENUM_NAME (en),
9664 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9665 }
9666
9667
9668 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9669 (dynamically sized) vector. */
9670
9671 void
9672 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9673 const char *function)
9674 {
9675 internal_error
9676 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9677 idx + 1, len, function, trim_filename (file), line);
9678 }
9679
9680 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9681 (dynamically sized) vector. */
9682
9683 void
9684 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9685 const char *function)
9686 {
9687 internal_error
9688 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9689 idx + 1, len, function, trim_filename (file), line);
9690 }
9691
9692 /* Similar to above, except that the check is for the bounds of the operand
9693 vector of an expression node EXP. */
9694
9695 void
9696 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9697 int line, const char *function)
9698 {
9699 enum tree_code code = TREE_CODE (exp);
9700 internal_error
9701 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9702 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9703 function, trim_filename (file), line);
9704 }
9705
9706 /* Similar to above, except that the check is for the number of
9707 operands of an OMP_CLAUSE node. */
9708
9709 void
9710 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9711 int line, const char *function)
9712 {
9713 internal_error
9714 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9715 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9716 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9717 trim_filename (file), line);
9718 }
9719 #endif /* ENABLE_TREE_CHECKING */
9720 \f
9721 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9722 and mapped to the machine mode MODE. Initialize its fields and build
9723 the information necessary for debugging output. */
9724
9725 static tree
9726 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9727 {
9728 tree t;
9729 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9730
9731 t = make_node (VECTOR_TYPE);
9732 TREE_TYPE (t) = mv_innertype;
9733 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9734 SET_TYPE_MODE (t, mode);
9735
9736 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9737 SET_TYPE_STRUCTURAL_EQUALITY (t);
9738 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9739 || mode != VOIDmode)
9740 && !VECTOR_BOOLEAN_TYPE_P (t))
9741 TYPE_CANONICAL (t)
9742 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9743
9744 layout_type (t);
9745
9746 hashval_t hash = type_hash_canon_hash (t);
9747 t = type_hash_canon (hash, t);
9748
9749 /* We have built a main variant, based on the main variant of the
9750 inner type. Use it to build the variant we return. */
9751 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9752 && TREE_TYPE (t) != innertype)
9753 return build_type_attribute_qual_variant (t,
9754 TYPE_ATTRIBUTES (innertype),
9755 TYPE_QUALS (innertype));
9756
9757 return t;
9758 }
9759
9760 static tree
9761 make_or_reuse_type (unsigned size, int unsignedp)
9762 {
9763 int i;
9764
9765 if (size == INT_TYPE_SIZE)
9766 return unsignedp ? unsigned_type_node : integer_type_node;
9767 if (size == CHAR_TYPE_SIZE)
9768 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9769 if (size == SHORT_TYPE_SIZE)
9770 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9771 if (size == LONG_TYPE_SIZE)
9772 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9773 if (size == LONG_LONG_TYPE_SIZE)
9774 return (unsignedp ? long_long_unsigned_type_node
9775 : long_long_integer_type_node);
9776
9777 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9778 if (size == int_n_data[i].bitsize
9779 && int_n_enabled_p[i])
9780 return (unsignedp ? int_n_trees[i].unsigned_type
9781 : int_n_trees[i].signed_type);
9782
9783 if (unsignedp)
9784 return make_unsigned_type (size);
9785 else
9786 return make_signed_type (size);
9787 }
9788
9789 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9790
9791 static tree
9792 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9793 {
9794 if (satp)
9795 {
9796 if (size == SHORT_FRACT_TYPE_SIZE)
9797 return unsignedp ? sat_unsigned_short_fract_type_node
9798 : sat_short_fract_type_node;
9799 if (size == FRACT_TYPE_SIZE)
9800 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9801 if (size == LONG_FRACT_TYPE_SIZE)
9802 return unsignedp ? sat_unsigned_long_fract_type_node
9803 : sat_long_fract_type_node;
9804 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9805 return unsignedp ? sat_unsigned_long_long_fract_type_node
9806 : sat_long_long_fract_type_node;
9807 }
9808 else
9809 {
9810 if (size == SHORT_FRACT_TYPE_SIZE)
9811 return unsignedp ? unsigned_short_fract_type_node
9812 : short_fract_type_node;
9813 if (size == FRACT_TYPE_SIZE)
9814 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9815 if (size == LONG_FRACT_TYPE_SIZE)
9816 return unsignedp ? unsigned_long_fract_type_node
9817 : long_fract_type_node;
9818 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9819 return unsignedp ? unsigned_long_long_fract_type_node
9820 : long_long_fract_type_node;
9821 }
9822
9823 return make_fract_type (size, unsignedp, satp);
9824 }
9825
9826 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9827
9828 static tree
9829 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9830 {
9831 if (satp)
9832 {
9833 if (size == SHORT_ACCUM_TYPE_SIZE)
9834 return unsignedp ? sat_unsigned_short_accum_type_node
9835 : sat_short_accum_type_node;
9836 if (size == ACCUM_TYPE_SIZE)
9837 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9838 if (size == LONG_ACCUM_TYPE_SIZE)
9839 return unsignedp ? sat_unsigned_long_accum_type_node
9840 : sat_long_accum_type_node;
9841 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9842 return unsignedp ? sat_unsigned_long_long_accum_type_node
9843 : sat_long_long_accum_type_node;
9844 }
9845 else
9846 {
9847 if (size == SHORT_ACCUM_TYPE_SIZE)
9848 return unsignedp ? unsigned_short_accum_type_node
9849 : short_accum_type_node;
9850 if (size == ACCUM_TYPE_SIZE)
9851 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9852 if (size == LONG_ACCUM_TYPE_SIZE)
9853 return unsignedp ? unsigned_long_accum_type_node
9854 : long_accum_type_node;
9855 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9856 return unsignedp ? unsigned_long_long_accum_type_node
9857 : long_long_accum_type_node;
9858 }
9859
9860 return make_accum_type (size, unsignedp, satp);
9861 }
9862
9863
9864 /* Create an atomic variant node for TYPE. This routine is called
9865 during initialization of data types to create the 5 basic atomic
9866 types. The generic build_variant_type function requires these to
9867 already be set up in order to function properly, so cannot be
9868 called from there. If ALIGN is non-zero, then ensure alignment is
9869 overridden to this value. */
9870
9871 static tree
9872 build_atomic_base (tree type, unsigned int align)
9873 {
9874 tree t;
9875
9876 /* Make sure its not already registered. */
9877 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9878 return t;
9879
9880 t = build_variant_type_copy (type);
9881 set_type_quals (t, TYPE_QUAL_ATOMIC);
9882
9883 if (align)
9884 SET_TYPE_ALIGN (t, align);
9885
9886 return t;
9887 }
9888
9889 /* Information about the _FloatN and _FloatNx types. This must be in
9890 the same order as the corresponding TI_* enum values. */
9891 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
9892 {
9893 { 16, false },
9894 { 32, false },
9895 { 64, false },
9896 { 128, false },
9897 { 32, true },
9898 { 64, true },
9899 { 128, true },
9900 };
9901
9902
9903 /* Create nodes for all integer types (and error_mark_node) using the sizes
9904 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
9905
9906 void
9907 build_common_tree_nodes (bool signed_char)
9908 {
9909 int i;
9910
9911 error_mark_node = make_node (ERROR_MARK);
9912 TREE_TYPE (error_mark_node) = error_mark_node;
9913
9914 initialize_sizetypes ();
9915
9916 /* Define both `signed char' and `unsigned char'. */
9917 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9918 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9919 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9920 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9921
9922 /* Define `char', which is like either `signed char' or `unsigned char'
9923 but not the same as either. */
9924 char_type_node
9925 = (signed_char
9926 ? make_signed_type (CHAR_TYPE_SIZE)
9927 : make_unsigned_type (CHAR_TYPE_SIZE));
9928 TYPE_STRING_FLAG (char_type_node) = 1;
9929
9930 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9931 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9932 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9933 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9934 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9935 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9936 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9937 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9938
9939 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9940 {
9941 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9942 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9943
9944 if (int_n_enabled_p[i])
9945 {
9946 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9947 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9948 }
9949 }
9950
9951 /* Define a boolean type. This type only represents boolean values but
9952 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9953 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9954 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9955 TYPE_PRECISION (boolean_type_node) = 1;
9956 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9957
9958 /* Define what type to use for size_t. */
9959 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9960 size_type_node = unsigned_type_node;
9961 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9962 size_type_node = long_unsigned_type_node;
9963 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9964 size_type_node = long_long_unsigned_type_node;
9965 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9966 size_type_node = short_unsigned_type_node;
9967 else
9968 {
9969 int i;
9970
9971 size_type_node = NULL_TREE;
9972 for (i = 0; i < NUM_INT_N_ENTS; i++)
9973 if (int_n_enabled_p[i])
9974 {
9975 char name[50];
9976 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9977
9978 if (strcmp (name, SIZE_TYPE) == 0)
9979 {
9980 size_type_node = int_n_trees[i].unsigned_type;
9981 }
9982 }
9983 if (size_type_node == NULL_TREE)
9984 gcc_unreachable ();
9985 }
9986
9987 /* Define what type to use for ptrdiff_t. */
9988 if (strcmp (PTRDIFF_TYPE, "int") == 0)
9989 ptrdiff_type_node = integer_type_node;
9990 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
9991 ptrdiff_type_node = long_integer_type_node;
9992 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
9993 ptrdiff_type_node = long_long_integer_type_node;
9994 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
9995 ptrdiff_type_node = short_integer_type_node;
9996 else
9997 {
9998 ptrdiff_type_node = NULL_TREE;
9999 for (int i = 0; i < NUM_INT_N_ENTS; i++)
10000 if (int_n_enabled_p[i])
10001 {
10002 char name[50];
10003 sprintf (name, "__int%d", int_n_data[i].bitsize);
10004 if (strcmp (name, PTRDIFF_TYPE) == 0)
10005 ptrdiff_type_node = int_n_trees[i].signed_type;
10006 }
10007 if (ptrdiff_type_node == NULL_TREE)
10008 gcc_unreachable ();
10009 }
10010
10011 /* Fill in the rest of the sized types. Reuse existing type nodes
10012 when possible. */
10013 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10014 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10015 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10016 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10017 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10018
10019 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10020 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10021 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10022 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10023 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10024
10025 /* Don't call build_qualified type for atomics. That routine does
10026 special processing for atomics, and until they are initialized
10027 it's better not to make that call.
10028
10029 Check to see if there is a target override for atomic types. */
10030
10031 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10032 targetm.atomic_align_for_mode (QImode));
10033 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10034 targetm.atomic_align_for_mode (HImode));
10035 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10036 targetm.atomic_align_for_mode (SImode));
10037 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10038 targetm.atomic_align_for_mode (DImode));
10039 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10040 targetm.atomic_align_for_mode (TImode));
10041
10042 access_public_node = get_identifier ("public");
10043 access_protected_node = get_identifier ("protected");
10044 access_private_node = get_identifier ("private");
10045
10046 /* Define these next since types below may used them. */
10047 integer_zero_node = build_int_cst (integer_type_node, 0);
10048 integer_one_node = build_int_cst (integer_type_node, 1);
10049 integer_three_node = build_int_cst (integer_type_node, 3);
10050 integer_minus_one_node = build_int_cst (integer_type_node, -1);
10051
10052 size_zero_node = size_int (0);
10053 size_one_node = size_int (1);
10054 bitsize_zero_node = bitsize_int (0);
10055 bitsize_one_node = bitsize_int (1);
10056 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10057
10058 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10059 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10060
10061 void_type_node = make_node (VOID_TYPE);
10062 layout_type (void_type_node);
10063
10064 /* We are not going to have real types in C with less than byte alignment,
10065 so we might as well not have any types that claim to have it. */
10066 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
10067 TYPE_USER_ALIGN (void_type_node) = 0;
10068
10069 void_node = make_node (VOID_CST);
10070 TREE_TYPE (void_node) = void_type_node;
10071
10072 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10073 layout_type (TREE_TYPE (null_pointer_node));
10074
10075 ptr_type_node = build_pointer_type (void_type_node);
10076 const_ptr_type_node
10077 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10078 for (unsigned i = 0;
10079 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
10080 ++i)
10081 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
10082
10083 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10084
10085 float_type_node = make_node (REAL_TYPE);
10086 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10087 layout_type (float_type_node);
10088
10089 double_type_node = make_node (REAL_TYPE);
10090 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10091 layout_type (double_type_node);
10092
10093 long_double_type_node = make_node (REAL_TYPE);
10094 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10095 layout_type (long_double_type_node);
10096
10097 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10098 {
10099 int n = floatn_nx_types[i].n;
10100 bool extended = floatn_nx_types[i].extended;
10101 scalar_float_mode mode;
10102 if (!targetm.floatn_mode (n, extended).exists (&mode))
10103 continue;
10104 int precision = GET_MODE_PRECISION (mode);
10105 /* Work around the rs6000 KFmode having precision 113 not
10106 128. */
10107 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
10108 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
10109 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
10110 if (!extended)
10111 gcc_assert (min_precision == n);
10112 if (precision < min_precision)
10113 precision = min_precision;
10114 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
10115 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
10116 layout_type (FLOATN_NX_TYPE_NODE (i));
10117 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
10118 }
10119
10120 float_ptr_type_node = build_pointer_type (float_type_node);
10121 double_ptr_type_node = build_pointer_type (double_type_node);
10122 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10123 integer_ptr_type_node = build_pointer_type (integer_type_node);
10124
10125 /* Fixed size integer types. */
10126 uint16_type_node = make_or_reuse_type (16, 1);
10127 uint32_type_node = make_or_reuse_type (32, 1);
10128 uint64_type_node = make_or_reuse_type (64, 1);
10129
10130 /* Decimal float types. */
10131 dfloat32_type_node = make_node (REAL_TYPE);
10132 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10133 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10134 layout_type (dfloat32_type_node);
10135 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
10136
10137 dfloat64_type_node = make_node (REAL_TYPE);
10138 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10139 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10140 layout_type (dfloat64_type_node);
10141 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
10142
10143 dfloat128_type_node = make_node (REAL_TYPE);
10144 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10145 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10146 layout_type (dfloat128_type_node);
10147 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
10148
10149 complex_integer_type_node = build_complex_type (integer_type_node, true);
10150 complex_float_type_node = build_complex_type (float_type_node, true);
10151 complex_double_type_node = build_complex_type (double_type_node, true);
10152 complex_long_double_type_node = build_complex_type (long_double_type_node,
10153 true);
10154
10155 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10156 {
10157 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10158 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10159 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10160 }
10161
10162 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10163 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10164 sat_ ## KIND ## _type_node = \
10165 make_sat_signed_ ## KIND ## _type (SIZE); \
10166 sat_unsigned_ ## KIND ## _type_node = \
10167 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10168 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10169 unsigned_ ## KIND ## _type_node = \
10170 make_unsigned_ ## KIND ## _type (SIZE);
10171
10172 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10173 sat_ ## WIDTH ## KIND ## _type_node = \
10174 make_sat_signed_ ## KIND ## _type (SIZE); \
10175 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10176 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10177 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10178 unsigned_ ## WIDTH ## KIND ## _type_node = \
10179 make_unsigned_ ## KIND ## _type (SIZE);
10180
10181 /* Make fixed-point type nodes based on four different widths. */
10182 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10183 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10184 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10185 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10186 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10187
10188 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10189 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10190 NAME ## _type_node = \
10191 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10192 u ## NAME ## _type_node = \
10193 make_or_reuse_unsigned_ ## KIND ## _type \
10194 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10195 sat_ ## NAME ## _type_node = \
10196 make_or_reuse_sat_signed_ ## KIND ## _type \
10197 (GET_MODE_BITSIZE (MODE ## mode)); \
10198 sat_u ## NAME ## _type_node = \
10199 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10200 (GET_MODE_BITSIZE (U ## MODE ## mode));
10201
10202 /* Fixed-point type and mode nodes. */
10203 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10204 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10205 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10206 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10207 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10208 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10209 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10210 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10211 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10212 MAKE_FIXED_MODE_NODE (accum, da, DA)
10213 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10214
10215 {
10216 tree t = targetm.build_builtin_va_list ();
10217
10218 /* Many back-ends define record types without setting TYPE_NAME.
10219 If we copied the record type here, we'd keep the original
10220 record type without a name. This breaks name mangling. So,
10221 don't copy record types and let c_common_nodes_and_builtins()
10222 declare the type to be __builtin_va_list. */
10223 if (TREE_CODE (t) != RECORD_TYPE)
10224 t = build_variant_type_copy (t);
10225
10226 va_list_type_node = t;
10227 }
10228 }
10229
10230 /* Modify DECL for given flags.
10231 TM_PURE attribute is set only on types, so the function will modify
10232 DECL's type when ECF_TM_PURE is used. */
10233
10234 void
10235 set_call_expr_flags (tree decl, int flags)
10236 {
10237 if (flags & ECF_NOTHROW)
10238 TREE_NOTHROW (decl) = 1;
10239 if (flags & ECF_CONST)
10240 TREE_READONLY (decl) = 1;
10241 if (flags & ECF_PURE)
10242 DECL_PURE_P (decl) = 1;
10243 if (flags & ECF_LOOPING_CONST_OR_PURE)
10244 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10245 if (flags & ECF_NOVOPS)
10246 DECL_IS_NOVOPS (decl) = 1;
10247 if (flags & ECF_NORETURN)
10248 TREE_THIS_VOLATILE (decl) = 1;
10249 if (flags & ECF_MALLOC)
10250 DECL_IS_MALLOC (decl) = 1;
10251 if (flags & ECF_RETURNS_TWICE)
10252 DECL_IS_RETURNS_TWICE (decl) = 1;
10253 if (flags & ECF_LEAF)
10254 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10255 NULL, DECL_ATTRIBUTES (decl));
10256 if (flags & ECF_COLD)
10257 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10258 NULL, DECL_ATTRIBUTES (decl));
10259 if (flags & ECF_RET1)
10260 DECL_ATTRIBUTES (decl)
10261 = tree_cons (get_identifier ("fn spec"),
10262 build_tree_list (NULL_TREE, build_string (1, "1")),
10263 DECL_ATTRIBUTES (decl));
10264 if ((flags & ECF_TM_PURE) && flag_tm)
10265 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10266 /* Looping const or pure is implied by noreturn.
10267 There is currently no way to declare looping const or looping pure alone. */
10268 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10269 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10270 }
10271
10272
10273 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10274
10275 static void
10276 local_define_builtin (const char *name, tree type, enum built_in_function code,
10277 const char *library_name, int ecf_flags)
10278 {
10279 tree decl;
10280
10281 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10282 library_name, NULL_TREE);
10283 set_call_expr_flags (decl, ecf_flags);
10284
10285 set_builtin_decl (code, decl, true);
10286 }
10287
10288 /* Call this function after instantiating all builtins that the language
10289 front end cares about. This will build the rest of the builtins
10290 and internal functions that are relied upon by the tree optimizers and
10291 the middle-end. */
10292
10293 void
10294 build_common_builtin_nodes (void)
10295 {
10296 tree tmp, ftype;
10297 int ecf_flags;
10298
10299 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10300 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10301 {
10302 ftype = build_function_type (void_type_node, void_list_node);
10303 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10304 local_define_builtin ("__builtin_unreachable", ftype,
10305 BUILT_IN_UNREACHABLE,
10306 "__builtin_unreachable",
10307 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10308 | ECF_CONST | ECF_COLD);
10309 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10310 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10311 "abort",
10312 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10313 }
10314
10315 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10316 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10317 {
10318 ftype = build_function_type_list (ptr_type_node,
10319 ptr_type_node, const_ptr_type_node,
10320 size_type_node, NULL_TREE);
10321
10322 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10323 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10324 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10325 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10326 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10327 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10328 }
10329
10330 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10331 {
10332 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10333 const_ptr_type_node, size_type_node,
10334 NULL_TREE);
10335 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10336 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10337 }
10338
10339 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10340 {
10341 ftype = build_function_type_list (ptr_type_node,
10342 ptr_type_node, integer_type_node,
10343 size_type_node, NULL_TREE);
10344 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10345 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10346 }
10347
10348 /* If we're checking the stack, `alloca' can throw. */
10349 const int alloca_flags
10350 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10351
10352 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10353 {
10354 ftype = build_function_type_list (ptr_type_node,
10355 size_type_node, NULL_TREE);
10356 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10357 "alloca", alloca_flags);
10358 }
10359
10360 ftype = build_function_type_list (ptr_type_node, size_type_node,
10361 size_type_node, NULL_TREE);
10362 local_define_builtin ("__builtin_alloca_with_align", ftype,
10363 BUILT_IN_ALLOCA_WITH_ALIGN,
10364 "__builtin_alloca_with_align",
10365 alloca_flags);
10366
10367 ftype = build_function_type_list (ptr_type_node, size_type_node,
10368 size_type_node, size_type_node, NULL_TREE);
10369 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10370 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10371 "__builtin_alloca_with_align_and_max",
10372 alloca_flags);
10373
10374 ftype = build_function_type_list (void_type_node,
10375 ptr_type_node, ptr_type_node,
10376 ptr_type_node, NULL_TREE);
10377 local_define_builtin ("__builtin_init_trampoline", ftype,
10378 BUILT_IN_INIT_TRAMPOLINE,
10379 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10380 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10381 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10382 "__builtin_init_heap_trampoline",
10383 ECF_NOTHROW | ECF_LEAF);
10384 local_define_builtin ("__builtin_init_descriptor", ftype,
10385 BUILT_IN_INIT_DESCRIPTOR,
10386 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10387
10388 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10389 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10390 BUILT_IN_ADJUST_TRAMPOLINE,
10391 "__builtin_adjust_trampoline",
10392 ECF_CONST | ECF_NOTHROW);
10393 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10394 BUILT_IN_ADJUST_DESCRIPTOR,
10395 "__builtin_adjust_descriptor",
10396 ECF_CONST | ECF_NOTHROW);
10397
10398 ftype = build_function_type_list (void_type_node,
10399 ptr_type_node, ptr_type_node, NULL_TREE);
10400 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10401 BUILT_IN_NONLOCAL_GOTO,
10402 "__builtin_nonlocal_goto",
10403 ECF_NORETURN | ECF_NOTHROW);
10404
10405 ftype = build_function_type_list (void_type_node,
10406 ptr_type_node, ptr_type_node, NULL_TREE);
10407 local_define_builtin ("__builtin_setjmp_setup", ftype,
10408 BUILT_IN_SETJMP_SETUP,
10409 "__builtin_setjmp_setup", ECF_NOTHROW);
10410
10411 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10412 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10413 BUILT_IN_SETJMP_RECEIVER,
10414 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10415
10416 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10417 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10418 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10419
10420 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10421 local_define_builtin ("__builtin_stack_restore", ftype,
10422 BUILT_IN_STACK_RESTORE,
10423 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10424
10425 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10426 const_ptr_type_node, size_type_node,
10427 NULL_TREE);
10428 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10429 "__builtin_memcmp_eq",
10430 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10431
10432 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10433 "__builtin_strncmp_eq",
10434 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10435
10436 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10437 "__builtin_strcmp_eq",
10438 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10439
10440 /* If there's a possibility that we might use the ARM EABI, build the
10441 alternate __cxa_end_cleanup node used to resume from C++. */
10442 if (targetm.arm_eabi_unwinder)
10443 {
10444 ftype = build_function_type_list (void_type_node, NULL_TREE);
10445 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10446 BUILT_IN_CXA_END_CLEANUP,
10447 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10448 }
10449
10450 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10451 local_define_builtin ("__builtin_unwind_resume", ftype,
10452 BUILT_IN_UNWIND_RESUME,
10453 ((targetm_common.except_unwind_info (&global_options)
10454 == UI_SJLJ)
10455 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10456 ECF_NORETURN);
10457
10458 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10459 {
10460 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10461 NULL_TREE);
10462 local_define_builtin ("__builtin_return_address", ftype,
10463 BUILT_IN_RETURN_ADDRESS,
10464 "__builtin_return_address",
10465 ECF_NOTHROW);
10466 }
10467
10468 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10469 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10470 {
10471 ftype = build_function_type_list (void_type_node, ptr_type_node,
10472 ptr_type_node, NULL_TREE);
10473 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10474 local_define_builtin ("__cyg_profile_func_enter", ftype,
10475 BUILT_IN_PROFILE_FUNC_ENTER,
10476 "__cyg_profile_func_enter", 0);
10477 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10478 local_define_builtin ("__cyg_profile_func_exit", ftype,
10479 BUILT_IN_PROFILE_FUNC_EXIT,
10480 "__cyg_profile_func_exit", 0);
10481 }
10482
10483 /* The exception object and filter values from the runtime. The argument
10484 must be zero before exception lowering, i.e. from the front end. After
10485 exception lowering, it will be the region number for the exception
10486 landing pad. These functions are PURE instead of CONST to prevent
10487 them from being hoisted past the exception edge that will initialize
10488 its value in the landing pad. */
10489 ftype = build_function_type_list (ptr_type_node,
10490 integer_type_node, NULL_TREE);
10491 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10492 /* Only use TM_PURE if we have TM language support. */
10493 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10494 ecf_flags |= ECF_TM_PURE;
10495 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10496 "__builtin_eh_pointer", ecf_flags);
10497
10498 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10499 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10500 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10501 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10502
10503 ftype = build_function_type_list (void_type_node,
10504 integer_type_node, integer_type_node,
10505 NULL_TREE);
10506 local_define_builtin ("__builtin_eh_copy_values", ftype,
10507 BUILT_IN_EH_COPY_VALUES,
10508 "__builtin_eh_copy_values", ECF_NOTHROW);
10509
10510 /* Complex multiplication and division. These are handled as builtins
10511 rather than optabs because emit_library_call_value doesn't support
10512 complex. Further, we can do slightly better with folding these
10513 beasties if the real and complex parts of the arguments are separate. */
10514 {
10515 int mode;
10516
10517 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10518 {
10519 char mode_name_buf[4], *q;
10520 const char *p;
10521 enum built_in_function mcode, dcode;
10522 tree type, inner_type;
10523 const char *prefix = "__";
10524
10525 if (targetm.libfunc_gnu_prefix)
10526 prefix = "__gnu_";
10527
10528 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10529 if (type == NULL)
10530 continue;
10531 inner_type = TREE_TYPE (type);
10532
10533 ftype = build_function_type_list (type, inner_type, inner_type,
10534 inner_type, inner_type, NULL_TREE);
10535
10536 mcode = ((enum built_in_function)
10537 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10538 dcode = ((enum built_in_function)
10539 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10540
10541 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10542 *q = TOLOWER (*p);
10543 *q = '\0';
10544
10545 /* For -ftrapping-math these should throw from a former
10546 -fnon-call-exception stmt. */
10547 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10548 NULL);
10549 local_define_builtin (built_in_names[mcode], ftype, mcode,
10550 built_in_names[mcode],
10551 ECF_CONST | ECF_LEAF);
10552
10553 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10554 NULL);
10555 local_define_builtin (built_in_names[dcode], ftype, dcode,
10556 built_in_names[dcode],
10557 ECF_CONST | ECF_LEAF);
10558 }
10559 }
10560
10561 init_internal_fns ();
10562 }
10563
10564 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10565 better way.
10566
10567 If we requested a pointer to a vector, build up the pointers that
10568 we stripped off while looking for the inner type. Similarly for
10569 return values from functions.
10570
10571 The argument TYPE is the top of the chain, and BOTTOM is the
10572 new type which we will point to. */
10573
10574 tree
10575 reconstruct_complex_type (tree type, tree bottom)
10576 {
10577 tree inner, outer;
10578
10579 if (TREE_CODE (type) == POINTER_TYPE)
10580 {
10581 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10582 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10583 TYPE_REF_CAN_ALIAS_ALL (type));
10584 }
10585 else if (TREE_CODE (type) == REFERENCE_TYPE)
10586 {
10587 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10588 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10589 TYPE_REF_CAN_ALIAS_ALL (type));
10590 }
10591 else if (TREE_CODE (type) == ARRAY_TYPE)
10592 {
10593 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10594 outer = build_array_type (inner, TYPE_DOMAIN (type));
10595 }
10596 else if (TREE_CODE (type) == FUNCTION_TYPE)
10597 {
10598 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10599 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10600 }
10601 else if (TREE_CODE (type) == METHOD_TYPE)
10602 {
10603 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10604 /* The build_method_type_directly() routine prepends 'this' to argument list,
10605 so we must compensate by getting rid of it. */
10606 outer
10607 = build_method_type_directly
10608 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10609 inner,
10610 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10611 }
10612 else if (TREE_CODE (type) == OFFSET_TYPE)
10613 {
10614 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10615 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10616 }
10617 else
10618 return bottom;
10619
10620 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10621 TYPE_QUALS (type));
10622 }
10623
10624 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10625 the inner type. */
10626 tree
10627 build_vector_type_for_mode (tree innertype, machine_mode mode)
10628 {
10629 poly_int64 nunits;
10630 unsigned int bitsize;
10631
10632 switch (GET_MODE_CLASS (mode))
10633 {
10634 case MODE_VECTOR_BOOL:
10635 case MODE_VECTOR_INT:
10636 case MODE_VECTOR_FLOAT:
10637 case MODE_VECTOR_FRACT:
10638 case MODE_VECTOR_UFRACT:
10639 case MODE_VECTOR_ACCUM:
10640 case MODE_VECTOR_UACCUM:
10641 nunits = GET_MODE_NUNITS (mode);
10642 break;
10643
10644 case MODE_INT:
10645 /* Check that there are no leftover bits. */
10646 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10647 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10648 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10649 break;
10650
10651 default:
10652 gcc_unreachable ();
10653 }
10654
10655 return make_vector_type (innertype, nunits, mode);
10656 }
10657
10658 /* Similarly, but takes the inner type and number of units, which must be
10659 a power of two. */
10660
10661 tree
10662 build_vector_type (tree innertype, poly_int64 nunits)
10663 {
10664 return make_vector_type (innertype, nunits, VOIDmode);
10665 }
10666
10667 /* Build truth vector with specified length and number of units. */
10668
10669 tree
10670 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
10671 {
10672 machine_mode mask_mode
10673 = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
10674
10675 poly_uint64 vsize;
10676 if (mask_mode == BLKmode)
10677 vsize = vector_size * BITS_PER_UNIT;
10678 else
10679 vsize = GET_MODE_BITSIZE (mask_mode);
10680
10681 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10682
10683 tree bool_type = build_nonstandard_boolean_type (esize);
10684
10685 return make_vector_type (bool_type, nunits, mask_mode);
10686 }
10687
10688 /* Returns a vector type corresponding to a comparison of VECTYPE. */
10689
10690 tree
10691 build_same_sized_truth_vector_type (tree vectype)
10692 {
10693 if (VECTOR_BOOLEAN_TYPE_P (vectype))
10694 return vectype;
10695
10696 poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
10697
10698 if (known_eq (size, 0U))
10699 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
10700
10701 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
10702 }
10703
10704 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10705
10706 tree
10707 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10708 {
10709 tree t = make_vector_type (innertype, nunits, VOIDmode);
10710 tree cand;
10711 /* We always build the non-opaque variant before the opaque one,
10712 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10713 cand = TYPE_NEXT_VARIANT (t);
10714 if (cand
10715 && TYPE_VECTOR_OPAQUE (cand)
10716 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10717 return cand;
10718 /* Othewise build a variant type and make sure to queue it after
10719 the non-opaque type. */
10720 cand = build_distinct_type_copy (t);
10721 TYPE_VECTOR_OPAQUE (cand) = true;
10722 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10723 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10724 TYPE_NEXT_VARIANT (t) = cand;
10725 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10726 return cand;
10727 }
10728
10729 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10730
10731 wide_int
10732 vector_cst_int_elt (const_tree t, unsigned int i)
10733 {
10734 /* First handle elements that are directly encoded. */
10735 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10736 if (i < encoded_nelts)
10737 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10738
10739 /* Identify the pattern that contains element I and work out the index of
10740 the last encoded element for that pattern. */
10741 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10742 unsigned int pattern = i % npatterns;
10743 unsigned int count = i / npatterns;
10744 unsigned int final_i = encoded_nelts - npatterns + pattern;
10745
10746 /* If there are no steps, the final encoded value is the right one. */
10747 if (!VECTOR_CST_STEPPED_P (t))
10748 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10749
10750 /* Otherwise work out the value from the last two encoded elements. */
10751 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10752 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10753 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10754 return wi::to_wide (v2) + (count - 2) * diff;
10755 }
10756
10757 /* Return the value of element I of VECTOR_CST T. */
10758
10759 tree
10760 vector_cst_elt (const_tree t, unsigned int i)
10761 {
10762 /* First handle elements that are directly encoded. */
10763 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10764 if (i < encoded_nelts)
10765 return VECTOR_CST_ENCODED_ELT (t, i);
10766
10767 /* If there are no steps, the final encoded value is the right one. */
10768 if (!VECTOR_CST_STEPPED_P (t))
10769 {
10770 /* Identify the pattern that contains element I and work out the index of
10771 the last encoded element for that pattern. */
10772 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10773 unsigned int pattern = i % npatterns;
10774 unsigned int final_i = encoded_nelts - npatterns + pattern;
10775 return VECTOR_CST_ENCODED_ELT (t, final_i);
10776 }
10777
10778 /* Otherwise work out the value from the last two encoded elements. */
10779 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
10780 vector_cst_int_elt (t, i));
10781 }
10782
10783 /* Given an initializer INIT, return TRUE if INIT is zero or some
10784 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
10785 null, set *NONZERO if and only if INIT is known not to be all
10786 zeros. The combination of return value of false and *NONZERO
10787 false implies that INIT may but need not be all zeros. Other
10788 combinations indicate definitive answers. */
10789
10790 bool
10791 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
10792 {
10793 bool dummy;
10794 if (!nonzero)
10795 nonzero = &dummy;
10796
10797 /* Conservatively clear NONZERO and set it only if INIT is definitely
10798 not all zero. */
10799 *nonzero = false;
10800
10801 STRIP_NOPS (init);
10802
10803 unsigned HOST_WIDE_INT off = 0;
10804
10805 switch (TREE_CODE (init))
10806 {
10807 case INTEGER_CST:
10808 if (integer_zerop (init))
10809 return true;
10810
10811 *nonzero = true;
10812 return false;
10813
10814 case REAL_CST:
10815 /* ??? Note that this is not correct for C4X float formats. There,
10816 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10817 negative exponent. */
10818 if (real_zerop (init)
10819 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
10820 return true;
10821
10822 *nonzero = true;
10823 return false;
10824
10825 case FIXED_CST:
10826 if (fixed_zerop (init))
10827 return true;
10828
10829 *nonzero = true;
10830 return false;
10831
10832 case COMPLEX_CST:
10833 if (integer_zerop (init)
10834 || (real_zerop (init)
10835 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10836 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
10837 return true;
10838
10839 *nonzero = true;
10840 return false;
10841
10842 case VECTOR_CST:
10843 if (VECTOR_CST_NPATTERNS (init) == 1
10844 && VECTOR_CST_DUPLICATE_P (init)
10845 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
10846 return true;
10847
10848 *nonzero = true;
10849 return false;
10850
10851 case CONSTRUCTOR:
10852 {
10853 if (TREE_CLOBBER_P (init))
10854 return false;
10855
10856 unsigned HOST_WIDE_INT idx;
10857 tree elt;
10858
10859 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10860 if (!initializer_zerop (elt, nonzero))
10861 return false;
10862
10863 return true;
10864 }
10865
10866 case MEM_REF:
10867 {
10868 tree arg = TREE_OPERAND (init, 0);
10869 if (TREE_CODE (arg) != ADDR_EXPR)
10870 return false;
10871 tree offset = TREE_OPERAND (init, 1);
10872 if (TREE_CODE (offset) != INTEGER_CST
10873 || !tree_fits_uhwi_p (offset))
10874 return false;
10875 off = tree_to_uhwi (offset);
10876 if (INT_MAX < off)
10877 return false;
10878 arg = TREE_OPERAND (arg, 0);
10879 if (TREE_CODE (arg) != STRING_CST)
10880 return false;
10881 init = arg;
10882 }
10883 /* Fall through. */
10884
10885 case STRING_CST:
10886 {
10887 gcc_assert (off <= INT_MAX);
10888
10889 int i = off;
10890 int n = TREE_STRING_LENGTH (init);
10891 if (n <= i)
10892 return false;
10893
10894 /* We need to loop through all elements to handle cases like
10895 "\0" and "\0foobar". */
10896 for (i = 0; i < n; ++i)
10897 if (TREE_STRING_POINTER (init)[i] != '\0')
10898 {
10899 *nonzero = true;
10900 return false;
10901 }
10902
10903 return true;
10904 }
10905
10906 default:
10907 return false;
10908 }
10909 }
10910
10911 /* Check if vector VEC consists of all the equal elements and
10912 that the number of elements corresponds to the type of VEC.
10913 The function returns first element of the vector
10914 or NULL_TREE if the vector is not uniform. */
10915 tree
10916 uniform_vector_p (const_tree vec)
10917 {
10918 tree first, t;
10919 unsigned HOST_WIDE_INT i, nelts;
10920
10921 if (vec == NULL_TREE)
10922 return NULL_TREE;
10923
10924 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10925
10926 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
10927 return TREE_OPERAND (vec, 0);
10928
10929 else if (TREE_CODE (vec) == VECTOR_CST)
10930 {
10931 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
10932 return VECTOR_CST_ENCODED_ELT (vec, 0);
10933 return NULL_TREE;
10934 }
10935
10936 else if (TREE_CODE (vec) == CONSTRUCTOR
10937 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
10938 {
10939 first = error_mark_node;
10940
10941 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10942 {
10943 if (i == 0)
10944 {
10945 first = t;
10946 continue;
10947 }
10948 if (!operand_equal_p (first, t, 0))
10949 return NULL_TREE;
10950 }
10951 if (i != nelts)
10952 return NULL_TREE;
10953
10954 return first;
10955 }
10956
10957 return NULL_TREE;
10958 }
10959
10960 /* Build an empty statement at location LOC. */
10961
10962 tree
10963 build_empty_stmt (location_t loc)
10964 {
10965 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10966 SET_EXPR_LOCATION (t, loc);
10967 return t;
10968 }
10969
10970
10971 /* Build an OpenMP clause with code CODE. LOC is the location of the
10972 clause. */
10973
10974 tree
10975 build_omp_clause (location_t loc, enum omp_clause_code code)
10976 {
10977 tree t;
10978 int size, length;
10979
10980 length = omp_clause_num_ops[code];
10981 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10982
10983 record_node_allocation_statistics (OMP_CLAUSE, size);
10984
10985 t = (tree) ggc_internal_alloc (size);
10986 memset (t, 0, size);
10987 TREE_SET_CODE (t, OMP_CLAUSE);
10988 OMP_CLAUSE_SET_CODE (t, code);
10989 OMP_CLAUSE_LOCATION (t) = loc;
10990
10991 return t;
10992 }
10993
10994 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10995 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10996 Except for the CODE and operand count field, other storage for the
10997 object is initialized to zeros. */
10998
10999 tree
11000 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
11001 {
11002 tree t;
11003 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
11004
11005 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
11006 gcc_assert (len >= 1);
11007
11008 record_node_allocation_statistics (code, length);
11009
11010 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
11011
11012 TREE_SET_CODE (t, code);
11013
11014 /* Can't use TREE_OPERAND to store the length because if checking is
11015 enabled, it will try to check the length before we store it. :-P */
11016 t->exp.operands[0] = build_int_cst (sizetype, len);
11017
11018 return t;
11019 }
11020
11021 /* Helper function for build_call_* functions; build a CALL_EXPR with
11022 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
11023 the argument slots. */
11024
11025 static tree
11026 build_call_1 (tree return_type, tree fn, int nargs)
11027 {
11028 tree t;
11029
11030 t = build_vl_exp (CALL_EXPR, nargs + 3);
11031 TREE_TYPE (t) = return_type;
11032 CALL_EXPR_FN (t) = fn;
11033 CALL_EXPR_STATIC_CHAIN (t) = NULL;
11034
11035 return t;
11036 }
11037
11038 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11039 FN and a null static chain slot. NARGS is the number of call arguments
11040 which are specified as "..." arguments. */
11041
11042 tree
11043 build_call_nary (tree return_type, tree fn, int nargs, ...)
11044 {
11045 tree ret;
11046 va_list args;
11047 va_start (args, nargs);
11048 ret = build_call_valist (return_type, fn, nargs, args);
11049 va_end (args);
11050 return ret;
11051 }
11052
11053 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11054 FN and a null static chain slot. NARGS is the number of call arguments
11055 which are specified as a va_list ARGS. */
11056
11057 tree
11058 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
11059 {
11060 tree t;
11061 int i;
11062
11063 t = build_call_1 (return_type, fn, nargs);
11064 for (i = 0; i < nargs; i++)
11065 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
11066 process_call_operands (t);
11067 return t;
11068 }
11069
11070 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11071 FN and a null static chain slot. NARGS is the number of call arguments
11072 which are specified as a tree array ARGS. */
11073
11074 tree
11075 build_call_array_loc (location_t loc, tree return_type, tree fn,
11076 int nargs, const tree *args)
11077 {
11078 tree t;
11079 int i;
11080
11081 t = build_call_1 (return_type, fn, nargs);
11082 for (i = 0; i < nargs; i++)
11083 CALL_EXPR_ARG (t, i) = args[i];
11084 process_call_operands (t);
11085 SET_EXPR_LOCATION (t, loc);
11086 return t;
11087 }
11088
11089 /* Like build_call_array, but takes a vec. */
11090
11091 tree
11092 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
11093 {
11094 tree ret, t;
11095 unsigned int ix;
11096
11097 ret = build_call_1 (return_type, fn, vec_safe_length (args));
11098 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
11099 CALL_EXPR_ARG (ret, ix) = t;
11100 process_call_operands (ret);
11101 return ret;
11102 }
11103
11104 /* Conveniently construct a function call expression. FNDECL names the
11105 function to be called and N arguments are passed in the array
11106 ARGARRAY. */
11107
11108 tree
11109 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11110 {
11111 tree fntype = TREE_TYPE (fndecl);
11112 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11113
11114 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11115 }
11116
11117 /* Conveniently construct a function call expression. FNDECL names the
11118 function to be called and the arguments are passed in the vector
11119 VEC. */
11120
11121 tree
11122 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11123 {
11124 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11125 vec_safe_address (vec));
11126 }
11127
11128
11129 /* Conveniently construct a function call expression. FNDECL names the
11130 function to be called, N is the number of arguments, and the "..."
11131 parameters are the argument expressions. */
11132
11133 tree
11134 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11135 {
11136 va_list ap;
11137 tree *argarray = XALLOCAVEC (tree, n);
11138 int i;
11139
11140 va_start (ap, n);
11141 for (i = 0; i < n; i++)
11142 argarray[i] = va_arg (ap, tree);
11143 va_end (ap);
11144 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11145 }
11146
11147 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11148 varargs macros aren't supported by all bootstrap compilers. */
11149
11150 tree
11151 build_call_expr (tree fndecl, int n, ...)
11152 {
11153 va_list ap;
11154 tree *argarray = XALLOCAVEC (tree, n);
11155 int i;
11156
11157 va_start (ap, n);
11158 for (i = 0; i < n; i++)
11159 argarray[i] = va_arg (ap, tree);
11160 va_end (ap);
11161 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11162 }
11163
11164 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11165 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11166 It will get gimplified later into an ordinary internal function. */
11167
11168 tree
11169 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11170 tree type, int n, const tree *args)
11171 {
11172 tree t = build_call_1 (type, NULL_TREE, n);
11173 for (int i = 0; i < n; ++i)
11174 CALL_EXPR_ARG (t, i) = args[i];
11175 SET_EXPR_LOCATION (t, loc);
11176 CALL_EXPR_IFN (t) = ifn;
11177 return t;
11178 }
11179
11180 /* Build internal call expression. This is just like CALL_EXPR, except
11181 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11182 internal function. */
11183
11184 tree
11185 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11186 tree type, int n, ...)
11187 {
11188 va_list ap;
11189 tree *argarray = XALLOCAVEC (tree, n);
11190 int i;
11191
11192 va_start (ap, n);
11193 for (i = 0; i < n; i++)
11194 argarray[i] = va_arg (ap, tree);
11195 va_end (ap);
11196 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11197 }
11198
11199 /* Return a function call to FN, if the target is guaranteed to support it,
11200 or null otherwise.
11201
11202 N is the number of arguments, passed in the "...", and TYPE is the
11203 type of the return value. */
11204
11205 tree
11206 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11207 int n, ...)
11208 {
11209 va_list ap;
11210 tree *argarray = XALLOCAVEC (tree, n);
11211 int i;
11212
11213 va_start (ap, n);
11214 for (i = 0; i < n; i++)
11215 argarray[i] = va_arg (ap, tree);
11216 va_end (ap);
11217 if (internal_fn_p (fn))
11218 {
11219 internal_fn ifn = as_internal_fn (fn);
11220 if (direct_internal_fn_p (ifn))
11221 {
11222 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11223 if (!direct_internal_fn_supported_p (ifn, types,
11224 OPTIMIZE_FOR_BOTH))
11225 return NULL_TREE;
11226 }
11227 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11228 }
11229 else
11230 {
11231 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11232 if (!fndecl)
11233 return NULL_TREE;
11234 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11235 }
11236 }
11237
11238 /* Return a function call to the appropriate builtin alloca variant.
11239
11240 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11241 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11242 bound for SIZE in case it is not a fixed value. */
11243
11244 tree
11245 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11246 {
11247 if (max_size >= 0)
11248 {
11249 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11250 return
11251 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11252 }
11253 else if (align > 0)
11254 {
11255 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11256 return build_call_expr (t, 2, size, size_int (align));
11257 }
11258 else
11259 {
11260 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11261 return build_call_expr (t, 1, size);
11262 }
11263 }
11264
11265 /* Create a new constant string literal and return a char* pointer to it.
11266 The STRING_CST value is the LEN characters at STR. */
11267 tree
11268 build_string_literal (int len, const char *str)
11269 {
11270 tree t, elem, index, type;
11271
11272 t = build_string (len, str);
11273 elem = build_type_variant (char_type_node, 1, 0);
11274 index = build_index_type (size_int (len - 1));
11275 type = build_array_type (elem, index);
11276 TREE_TYPE (t) = type;
11277 TREE_CONSTANT (t) = 1;
11278 TREE_READONLY (t) = 1;
11279 TREE_STATIC (t) = 1;
11280
11281 type = build_pointer_type (elem);
11282 t = build1 (ADDR_EXPR, type,
11283 build4 (ARRAY_REF, elem,
11284 t, integer_zero_node, NULL_TREE, NULL_TREE));
11285 return t;
11286 }
11287
11288
11289
11290 /* Return true if T (assumed to be a DECL) must be assigned a memory
11291 location. */
11292
11293 bool
11294 needs_to_live_in_memory (const_tree t)
11295 {
11296 return (TREE_ADDRESSABLE (t)
11297 || is_global_var (t)
11298 || (TREE_CODE (t) == RESULT_DECL
11299 && !DECL_BY_REFERENCE (t)
11300 && aggregate_value_p (t, current_function_decl)));
11301 }
11302
11303 /* Return value of a constant X and sign-extend it. */
11304
11305 HOST_WIDE_INT
11306 int_cst_value (const_tree x)
11307 {
11308 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11309 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11310
11311 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11312 gcc_assert (cst_and_fits_in_hwi (x));
11313
11314 if (bits < HOST_BITS_PER_WIDE_INT)
11315 {
11316 bool negative = ((val >> (bits - 1)) & 1) != 0;
11317 if (negative)
11318 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11319 else
11320 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11321 }
11322
11323 return val;
11324 }
11325
11326 /* If TYPE is an integral or pointer type, return an integer type with
11327 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11328 if TYPE is already an integer type of signedness UNSIGNEDP. */
11329
11330 tree
11331 signed_or_unsigned_type_for (int unsignedp, tree type)
11332 {
11333 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11334 return type;
11335
11336 if (TREE_CODE (type) == VECTOR_TYPE)
11337 {
11338 tree inner = TREE_TYPE (type);
11339 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11340 if (!inner2)
11341 return NULL_TREE;
11342 if (inner == inner2)
11343 return type;
11344 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11345 }
11346
11347 if (TREE_CODE (type) == COMPLEX_TYPE)
11348 {
11349 tree inner = TREE_TYPE (type);
11350 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11351 if (!inner2)
11352 return NULL_TREE;
11353 if (inner == inner2)
11354 return type;
11355 return build_complex_type (inner2);
11356 }
11357
11358 if (!INTEGRAL_TYPE_P (type)
11359 && !POINTER_TYPE_P (type)
11360 && TREE_CODE (type) != OFFSET_TYPE)
11361 return NULL_TREE;
11362
11363 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
11364 }
11365
11366 /* If TYPE is an integral or pointer type, return an integer type with
11367 the same precision which is unsigned, or itself if TYPE is already an
11368 unsigned integer type. */
11369
11370 tree
11371 unsigned_type_for (tree type)
11372 {
11373 return signed_or_unsigned_type_for (1, type);
11374 }
11375
11376 /* If TYPE is an integral or pointer type, return an integer type with
11377 the same precision which is signed, or itself if TYPE is already a
11378 signed integer type. */
11379
11380 tree
11381 signed_type_for (tree type)
11382 {
11383 return signed_or_unsigned_type_for (0, type);
11384 }
11385
11386 /* If TYPE is a vector type, return a signed integer vector type with the
11387 same width and number of subparts. Otherwise return boolean_type_node. */
11388
11389 tree
11390 truth_type_for (tree type)
11391 {
11392 if (TREE_CODE (type) == VECTOR_TYPE)
11393 {
11394 if (VECTOR_BOOLEAN_TYPE_P (type))
11395 return type;
11396 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11397 GET_MODE_SIZE (TYPE_MODE (type)));
11398 }
11399 else
11400 return boolean_type_node;
11401 }
11402
11403 /* Returns the largest value obtainable by casting something in INNER type to
11404 OUTER type. */
11405
11406 tree
11407 upper_bound_in_type (tree outer, tree inner)
11408 {
11409 unsigned int det = 0;
11410 unsigned oprec = TYPE_PRECISION (outer);
11411 unsigned iprec = TYPE_PRECISION (inner);
11412 unsigned prec;
11413
11414 /* Compute a unique number for every combination. */
11415 det |= (oprec > iprec) ? 4 : 0;
11416 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11417 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11418
11419 /* Determine the exponent to use. */
11420 switch (det)
11421 {
11422 case 0:
11423 case 1:
11424 /* oprec <= iprec, outer: signed, inner: don't care. */
11425 prec = oprec - 1;
11426 break;
11427 case 2:
11428 case 3:
11429 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11430 prec = oprec;
11431 break;
11432 case 4:
11433 /* oprec > iprec, outer: signed, inner: signed. */
11434 prec = iprec - 1;
11435 break;
11436 case 5:
11437 /* oprec > iprec, outer: signed, inner: unsigned. */
11438 prec = iprec;
11439 break;
11440 case 6:
11441 /* oprec > iprec, outer: unsigned, inner: signed. */
11442 prec = oprec;
11443 break;
11444 case 7:
11445 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11446 prec = iprec;
11447 break;
11448 default:
11449 gcc_unreachable ();
11450 }
11451
11452 return wide_int_to_tree (outer,
11453 wi::mask (prec, false, TYPE_PRECISION (outer)));
11454 }
11455
11456 /* Returns the smallest value obtainable by casting something in INNER type to
11457 OUTER type. */
11458
11459 tree
11460 lower_bound_in_type (tree outer, tree inner)
11461 {
11462 unsigned oprec = TYPE_PRECISION (outer);
11463 unsigned iprec = TYPE_PRECISION (inner);
11464
11465 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11466 and obtain 0. */
11467 if (TYPE_UNSIGNED (outer)
11468 /* If we are widening something of an unsigned type, OUTER type
11469 contains all values of INNER type. In particular, both INNER
11470 and OUTER types have zero in common. */
11471 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11472 return build_int_cst (outer, 0);
11473 else
11474 {
11475 /* If we are widening a signed type to another signed type, we
11476 want to obtain -2^^(iprec-1). If we are keeping the
11477 precision or narrowing to a signed type, we want to obtain
11478 -2^(oprec-1). */
11479 unsigned prec = oprec > iprec ? iprec : oprec;
11480 return wide_int_to_tree (outer,
11481 wi::mask (prec - 1, true,
11482 TYPE_PRECISION (outer)));
11483 }
11484 }
11485
11486 /* Return nonzero if two operands that are suitable for PHI nodes are
11487 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11488 SSA_NAME or invariant. Note that this is strictly an optimization.
11489 That is, callers of this function can directly call operand_equal_p
11490 and get the same result, only slower. */
11491
11492 int
11493 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11494 {
11495 if (arg0 == arg1)
11496 return 1;
11497 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11498 return 0;
11499 return operand_equal_p (arg0, arg1, 0);
11500 }
11501
11502 /* Returns number of zeros at the end of binary representation of X. */
11503
11504 tree
11505 num_ending_zeros (const_tree x)
11506 {
11507 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11508 }
11509
11510
11511 #define WALK_SUBTREE(NODE) \
11512 do \
11513 { \
11514 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11515 if (result) \
11516 return result; \
11517 } \
11518 while (0)
11519
11520 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11521 be walked whenever a type is seen in the tree. Rest of operands and return
11522 value are as for walk_tree. */
11523
11524 static tree
11525 walk_type_fields (tree type, walk_tree_fn func, void *data,
11526 hash_set<tree> *pset, walk_tree_lh lh)
11527 {
11528 tree result = NULL_TREE;
11529
11530 switch (TREE_CODE (type))
11531 {
11532 case POINTER_TYPE:
11533 case REFERENCE_TYPE:
11534 case VECTOR_TYPE:
11535 /* We have to worry about mutually recursive pointers. These can't
11536 be written in C. They can in Ada. It's pathological, but
11537 there's an ACATS test (c38102a) that checks it. Deal with this
11538 by checking if we're pointing to another pointer, that one
11539 points to another pointer, that one does too, and we have no htab.
11540 If so, get a hash table. We check three levels deep to avoid
11541 the cost of the hash table if we don't need one. */
11542 if (POINTER_TYPE_P (TREE_TYPE (type))
11543 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11544 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11545 && !pset)
11546 {
11547 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11548 func, data);
11549 if (result)
11550 return result;
11551
11552 break;
11553 }
11554
11555 /* fall through */
11556
11557 case COMPLEX_TYPE:
11558 WALK_SUBTREE (TREE_TYPE (type));
11559 break;
11560
11561 case METHOD_TYPE:
11562 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11563
11564 /* Fall through. */
11565
11566 case FUNCTION_TYPE:
11567 WALK_SUBTREE (TREE_TYPE (type));
11568 {
11569 tree arg;
11570
11571 /* We never want to walk into default arguments. */
11572 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11573 WALK_SUBTREE (TREE_VALUE (arg));
11574 }
11575 break;
11576
11577 case ARRAY_TYPE:
11578 /* Don't follow this nodes's type if a pointer for fear that
11579 we'll have infinite recursion. If we have a PSET, then we
11580 need not fear. */
11581 if (pset
11582 || (!POINTER_TYPE_P (TREE_TYPE (type))
11583 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11584 WALK_SUBTREE (TREE_TYPE (type));
11585 WALK_SUBTREE (TYPE_DOMAIN (type));
11586 break;
11587
11588 case OFFSET_TYPE:
11589 WALK_SUBTREE (TREE_TYPE (type));
11590 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11591 break;
11592
11593 default:
11594 break;
11595 }
11596
11597 return NULL_TREE;
11598 }
11599
11600 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11601 called with the DATA and the address of each sub-tree. If FUNC returns a
11602 non-NULL value, the traversal is stopped, and the value returned by FUNC
11603 is returned. If PSET is non-NULL it is used to record the nodes visited,
11604 and to avoid visiting a node more than once. */
11605
11606 tree
11607 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11608 hash_set<tree> *pset, walk_tree_lh lh)
11609 {
11610 enum tree_code code;
11611 int walk_subtrees;
11612 tree result;
11613
11614 #define WALK_SUBTREE_TAIL(NODE) \
11615 do \
11616 { \
11617 tp = & (NODE); \
11618 goto tail_recurse; \
11619 } \
11620 while (0)
11621
11622 tail_recurse:
11623 /* Skip empty subtrees. */
11624 if (!*tp)
11625 return NULL_TREE;
11626
11627 /* Don't walk the same tree twice, if the user has requested
11628 that we avoid doing so. */
11629 if (pset && pset->add (*tp))
11630 return NULL_TREE;
11631
11632 /* Call the function. */
11633 walk_subtrees = 1;
11634 result = (*func) (tp, &walk_subtrees, data);
11635
11636 /* If we found something, return it. */
11637 if (result)
11638 return result;
11639
11640 code = TREE_CODE (*tp);
11641
11642 /* Even if we didn't, FUNC may have decided that there was nothing
11643 interesting below this point in the tree. */
11644 if (!walk_subtrees)
11645 {
11646 /* But we still need to check our siblings. */
11647 if (code == TREE_LIST)
11648 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11649 else if (code == OMP_CLAUSE)
11650 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11651 else
11652 return NULL_TREE;
11653 }
11654
11655 if (lh)
11656 {
11657 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11658 if (result || !walk_subtrees)
11659 return result;
11660 }
11661
11662 switch (code)
11663 {
11664 case ERROR_MARK:
11665 case IDENTIFIER_NODE:
11666 case INTEGER_CST:
11667 case REAL_CST:
11668 case FIXED_CST:
11669 case VECTOR_CST:
11670 case STRING_CST:
11671 case BLOCK:
11672 case PLACEHOLDER_EXPR:
11673 case SSA_NAME:
11674 case FIELD_DECL:
11675 case RESULT_DECL:
11676 /* None of these have subtrees other than those already walked
11677 above. */
11678 break;
11679
11680 case TREE_LIST:
11681 WALK_SUBTREE (TREE_VALUE (*tp));
11682 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11683 break;
11684
11685 case TREE_VEC:
11686 {
11687 int len = TREE_VEC_LENGTH (*tp);
11688
11689 if (len == 0)
11690 break;
11691
11692 /* Walk all elements but the first. */
11693 while (--len)
11694 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11695
11696 /* Now walk the first one as a tail call. */
11697 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11698 }
11699
11700 case COMPLEX_CST:
11701 WALK_SUBTREE (TREE_REALPART (*tp));
11702 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11703
11704 case CONSTRUCTOR:
11705 {
11706 unsigned HOST_WIDE_INT idx;
11707 constructor_elt *ce;
11708
11709 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11710 idx++)
11711 WALK_SUBTREE (ce->value);
11712 }
11713 break;
11714
11715 case SAVE_EXPR:
11716 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11717
11718 case BIND_EXPR:
11719 {
11720 tree decl;
11721 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11722 {
11723 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11724 into declarations that are just mentioned, rather than
11725 declared; they don't really belong to this part of the tree.
11726 And, we can see cycles: the initializer for a declaration
11727 can refer to the declaration itself. */
11728 WALK_SUBTREE (DECL_INITIAL (decl));
11729 WALK_SUBTREE (DECL_SIZE (decl));
11730 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11731 }
11732 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11733 }
11734
11735 case STATEMENT_LIST:
11736 {
11737 tree_stmt_iterator i;
11738 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11739 WALK_SUBTREE (*tsi_stmt_ptr (i));
11740 }
11741 break;
11742
11743 case OMP_CLAUSE:
11744 switch (OMP_CLAUSE_CODE (*tp))
11745 {
11746 case OMP_CLAUSE_GANG:
11747 case OMP_CLAUSE__GRIDDIM_:
11748 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11749 /* FALLTHRU */
11750
11751 case OMP_CLAUSE_ASYNC:
11752 case OMP_CLAUSE_WAIT:
11753 case OMP_CLAUSE_WORKER:
11754 case OMP_CLAUSE_VECTOR:
11755 case OMP_CLAUSE_NUM_GANGS:
11756 case OMP_CLAUSE_NUM_WORKERS:
11757 case OMP_CLAUSE_VECTOR_LENGTH:
11758 case OMP_CLAUSE_PRIVATE:
11759 case OMP_CLAUSE_SHARED:
11760 case OMP_CLAUSE_FIRSTPRIVATE:
11761 case OMP_CLAUSE_COPYIN:
11762 case OMP_CLAUSE_COPYPRIVATE:
11763 case OMP_CLAUSE_FINAL:
11764 case OMP_CLAUSE_IF:
11765 case OMP_CLAUSE_NUM_THREADS:
11766 case OMP_CLAUSE_SCHEDULE:
11767 case OMP_CLAUSE_UNIFORM:
11768 case OMP_CLAUSE_DEPEND:
11769 case OMP_CLAUSE_NUM_TEAMS:
11770 case OMP_CLAUSE_THREAD_LIMIT:
11771 case OMP_CLAUSE_DEVICE:
11772 case OMP_CLAUSE_DIST_SCHEDULE:
11773 case OMP_CLAUSE_SAFELEN:
11774 case OMP_CLAUSE_SIMDLEN:
11775 case OMP_CLAUSE_ORDERED:
11776 case OMP_CLAUSE_PRIORITY:
11777 case OMP_CLAUSE_GRAINSIZE:
11778 case OMP_CLAUSE_NUM_TASKS:
11779 case OMP_CLAUSE_HINT:
11780 case OMP_CLAUSE_TO_DECLARE:
11781 case OMP_CLAUSE_LINK:
11782 case OMP_CLAUSE_USE_DEVICE_PTR:
11783 case OMP_CLAUSE_IS_DEVICE_PTR:
11784 case OMP_CLAUSE__LOOPTEMP_:
11785 case OMP_CLAUSE__SIMDUID_:
11786 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11787 /* FALLTHRU */
11788
11789 case OMP_CLAUSE_INDEPENDENT:
11790 case OMP_CLAUSE_NOWAIT:
11791 case OMP_CLAUSE_DEFAULT:
11792 case OMP_CLAUSE_UNTIED:
11793 case OMP_CLAUSE_MERGEABLE:
11794 case OMP_CLAUSE_PROC_BIND:
11795 case OMP_CLAUSE_INBRANCH:
11796 case OMP_CLAUSE_NOTINBRANCH:
11797 case OMP_CLAUSE_FOR:
11798 case OMP_CLAUSE_PARALLEL:
11799 case OMP_CLAUSE_SECTIONS:
11800 case OMP_CLAUSE_TASKGROUP:
11801 case OMP_CLAUSE_NOGROUP:
11802 case OMP_CLAUSE_THREADS:
11803 case OMP_CLAUSE_SIMD:
11804 case OMP_CLAUSE_DEFAULTMAP:
11805 case OMP_CLAUSE_AUTO:
11806 case OMP_CLAUSE_SEQ:
11807 case OMP_CLAUSE_TILE:
11808 case OMP_CLAUSE__SIMT_:
11809 case OMP_CLAUSE_IF_PRESENT:
11810 case OMP_CLAUSE_FINALIZE:
11811 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11812
11813 case OMP_CLAUSE_LASTPRIVATE:
11814 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11815 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11816 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11817
11818 case OMP_CLAUSE_COLLAPSE:
11819 {
11820 int i;
11821 for (i = 0; i < 3; i++)
11822 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11823 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11824 }
11825
11826 case OMP_CLAUSE_LINEAR:
11827 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11828 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11829 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11830 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11831
11832 case OMP_CLAUSE_ALIGNED:
11833 case OMP_CLAUSE_FROM:
11834 case OMP_CLAUSE_TO:
11835 case OMP_CLAUSE_MAP:
11836 case OMP_CLAUSE__CACHE_:
11837 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11838 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11839 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11840
11841 case OMP_CLAUSE_REDUCTION:
11842 {
11843 int i;
11844 for (i = 0; i < 5; i++)
11845 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11846 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11847 }
11848
11849 default:
11850 gcc_unreachable ();
11851 }
11852 break;
11853
11854 case TARGET_EXPR:
11855 {
11856 int i, len;
11857
11858 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11859 But, we only want to walk once. */
11860 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11861 for (i = 0; i < len; ++i)
11862 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11863 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11864 }
11865
11866 case DECL_EXPR:
11867 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11868 defining. We only want to walk into these fields of a type in this
11869 case and not in the general case of a mere reference to the type.
11870
11871 The criterion is as follows: if the field can be an expression, it
11872 must be walked only here. This should be in keeping with the fields
11873 that are directly gimplified in gimplify_type_sizes in order for the
11874 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11875 variable-sized types.
11876
11877 Note that DECLs get walked as part of processing the BIND_EXPR. */
11878 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11879 {
11880 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11881 if (TREE_CODE (*type_p) == ERROR_MARK)
11882 return NULL_TREE;
11883
11884 /* Call the function for the type. See if it returns anything or
11885 doesn't want us to continue. If we are to continue, walk both
11886 the normal fields and those for the declaration case. */
11887 result = (*func) (type_p, &walk_subtrees, data);
11888 if (result || !walk_subtrees)
11889 return result;
11890
11891 /* But do not walk a pointed-to type since it may itself need to
11892 be walked in the declaration case if it isn't anonymous. */
11893 if (!POINTER_TYPE_P (*type_p))
11894 {
11895 result = walk_type_fields (*type_p, func, data, pset, lh);
11896 if (result)
11897 return result;
11898 }
11899
11900 /* If this is a record type, also walk the fields. */
11901 if (RECORD_OR_UNION_TYPE_P (*type_p))
11902 {
11903 tree field;
11904
11905 for (field = TYPE_FIELDS (*type_p); field;
11906 field = DECL_CHAIN (field))
11907 {
11908 /* We'd like to look at the type of the field, but we can
11909 easily get infinite recursion. So assume it's pointed
11910 to elsewhere in the tree. Also, ignore things that
11911 aren't fields. */
11912 if (TREE_CODE (field) != FIELD_DECL)
11913 continue;
11914
11915 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11916 WALK_SUBTREE (DECL_SIZE (field));
11917 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11918 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11919 WALK_SUBTREE (DECL_QUALIFIER (field));
11920 }
11921 }
11922
11923 /* Same for scalar types. */
11924 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11925 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11926 || TREE_CODE (*type_p) == INTEGER_TYPE
11927 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11928 || TREE_CODE (*type_p) == REAL_TYPE)
11929 {
11930 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11931 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11932 }
11933
11934 WALK_SUBTREE (TYPE_SIZE (*type_p));
11935 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11936 }
11937 /* FALLTHRU */
11938
11939 default:
11940 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11941 {
11942 int i, len;
11943
11944 /* Walk over all the sub-trees of this operand. */
11945 len = TREE_OPERAND_LENGTH (*tp);
11946
11947 /* Go through the subtrees. We need to do this in forward order so
11948 that the scope of a FOR_EXPR is handled properly. */
11949 if (len)
11950 {
11951 for (i = 0; i < len - 1; ++i)
11952 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11953 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11954 }
11955 }
11956 /* If this is a type, walk the needed fields in the type. */
11957 else if (TYPE_P (*tp))
11958 return walk_type_fields (*tp, func, data, pset, lh);
11959 break;
11960 }
11961
11962 /* We didn't find what we were looking for. */
11963 return NULL_TREE;
11964
11965 #undef WALK_SUBTREE_TAIL
11966 }
11967 #undef WALK_SUBTREE
11968
11969 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11970
11971 tree
11972 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11973 walk_tree_lh lh)
11974 {
11975 tree result;
11976
11977 hash_set<tree> pset;
11978 result = walk_tree_1 (tp, func, data, &pset, lh);
11979 return result;
11980 }
11981
11982
11983 tree
11984 tree_block (tree t)
11985 {
11986 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11987
11988 if (IS_EXPR_CODE_CLASS (c))
11989 return LOCATION_BLOCK (t->exp.locus);
11990 gcc_unreachable ();
11991 return NULL;
11992 }
11993
11994 void
11995 tree_set_block (tree t, tree b)
11996 {
11997 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11998
11999 if (IS_EXPR_CODE_CLASS (c))
12000 {
12001 t->exp.locus = set_block (t->exp.locus, b);
12002 }
12003 else
12004 gcc_unreachable ();
12005 }
12006
12007 /* Create a nameless artificial label and put it in the current
12008 function context. The label has a location of LOC. Returns the
12009 newly created label. */
12010
12011 tree
12012 create_artificial_label (location_t loc)
12013 {
12014 tree lab = build_decl (loc,
12015 LABEL_DECL, NULL_TREE, void_type_node);
12016
12017 DECL_ARTIFICIAL (lab) = 1;
12018 DECL_IGNORED_P (lab) = 1;
12019 DECL_CONTEXT (lab) = current_function_decl;
12020 return lab;
12021 }
12022
12023 /* Given a tree, try to return a useful variable name that we can use
12024 to prefix a temporary that is being assigned the value of the tree.
12025 I.E. given <temp> = &A, return A. */
12026
12027 const char *
12028 get_name (tree t)
12029 {
12030 tree stripped_decl;
12031
12032 stripped_decl = t;
12033 STRIP_NOPS (stripped_decl);
12034 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
12035 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
12036 else if (TREE_CODE (stripped_decl) == SSA_NAME)
12037 {
12038 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
12039 if (!name)
12040 return NULL;
12041 return IDENTIFIER_POINTER (name);
12042 }
12043 else
12044 {
12045 switch (TREE_CODE (stripped_decl))
12046 {
12047 case ADDR_EXPR:
12048 return get_name (TREE_OPERAND (stripped_decl, 0));
12049 default:
12050 return NULL;
12051 }
12052 }
12053 }
12054
12055 /* Return true if TYPE has a variable argument list. */
12056
12057 bool
12058 stdarg_p (const_tree fntype)
12059 {
12060 function_args_iterator args_iter;
12061 tree n = NULL_TREE, t;
12062
12063 if (!fntype)
12064 return false;
12065
12066 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
12067 {
12068 n = t;
12069 }
12070
12071 return n != NULL_TREE && n != void_type_node;
12072 }
12073
12074 /* Return true if TYPE has a prototype. */
12075
12076 bool
12077 prototype_p (const_tree fntype)
12078 {
12079 tree t;
12080
12081 gcc_assert (fntype != NULL_TREE);
12082
12083 t = TYPE_ARG_TYPES (fntype);
12084 return (t != NULL_TREE);
12085 }
12086
12087 /* If BLOCK is inlined from an __attribute__((__artificial__))
12088 routine, return pointer to location from where it has been
12089 called. */
12090 location_t *
12091 block_nonartificial_location (tree block)
12092 {
12093 location_t *ret = NULL;
12094
12095 while (block && TREE_CODE (block) == BLOCK
12096 && BLOCK_ABSTRACT_ORIGIN (block))
12097 {
12098 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12099 if (TREE_CODE (ao) == FUNCTION_DECL)
12100 {
12101 /* If AO is an artificial inline, point RET to the
12102 call site locus at which it has been inlined and continue
12103 the loop, in case AO's caller is also an artificial
12104 inline. */
12105 if (DECL_DECLARED_INLINE_P (ao)
12106 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
12107 ret = &BLOCK_SOURCE_LOCATION (block);
12108 else
12109 break;
12110 }
12111 else if (TREE_CODE (ao) != BLOCK)
12112 break;
12113
12114 block = BLOCK_SUPERCONTEXT (block);
12115 }
12116 return ret;
12117 }
12118
12119
12120 /* If EXP is inlined from an __attribute__((__artificial__))
12121 function, return the location of the original call expression. */
12122
12123 location_t
12124 tree_nonartificial_location (tree exp)
12125 {
12126 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12127
12128 if (loc)
12129 return *loc;
12130 else
12131 return EXPR_LOCATION (exp);
12132 }
12133
12134
12135 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12136 nodes. */
12137
12138 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12139
12140 hashval_t
12141 cl_option_hasher::hash (tree x)
12142 {
12143 const_tree const t = x;
12144 const char *p;
12145 size_t i;
12146 size_t len = 0;
12147 hashval_t hash = 0;
12148
12149 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12150 {
12151 p = (const char *)TREE_OPTIMIZATION (t);
12152 len = sizeof (struct cl_optimization);
12153 }
12154
12155 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12156 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12157
12158 else
12159 gcc_unreachable ();
12160
12161 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12162 something else. */
12163 for (i = 0; i < len; i++)
12164 if (p[i])
12165 hash = (hash << 4) ^ ((i << 2) | p[i]);
12166
12167 return hash;
12168 }
12169
12170 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12171 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12172 same. */
12173
12174 bool
12175 cl_option_hasher::equal (tree x, tree y)
12176 {
12177 const_tree const xt = x;
12178 const_tree const yt = y;
12179
12180 if (TREE_CODE (xt) != TREE_CODE (yt))
12181 return 0;
12182
12183 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12184 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12185 TREE_OPTIMIZATION (yt));
12186 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12187 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12188 TREE_TARGET_OPTION (yt));
12189 else
12190 gcc_unreachable ();
12191 }
12192
12193 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
12194
12195 tree
12196 build_optimization_node (struct gcc_options *opts)
12197 {
12198 tree t;
12199
12200 /* Use the cache of optimization nodes. */
12201
12202 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12203 opts);
12204
12205 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12206 t = *slot;
12207 if (!t)
12208 {
12209 /* Insert this one into the hash table. */
12210 t = cl_optimization_node;
12211 *slot = t;
12212
12213 /* Make a new node for next time round. */
12214 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12215 }
12216
12217 return t;
12218 }
12219
12220 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12221
12222 tree
12223 build_target_option_node (struct gcc_options *opts)
12224 {
12225 tree t;
12226
12227 /* Use the cache of optimization nodes. */
12228
12229 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12230 opts);
12231
12232 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12233 t = *slot;
12234 if (!t)
12235 {
12236 /* Insert this one into the hash table. */
12237 t = cl_target_option_node;
12238 *slot = t;
12239
12240 /* Make a new node for next time round. */
12241 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12242 }
12243
12244 return t;
12245 }
12246
12247 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12248 so that they aren't saved during PCH writing. */
12249
12250 void
12251 prepare_target_option_nodes_for_pch (void)
12252 {
12253 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12254 for (; iter != cl_option_hash_table->end (); ++iter)
12255 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12256 TREE_TARGET_GLOBALS (*iter) = NULL;
12257 }
12258
12259 /* Determine the "ultimate origin" of a block. */
12260
12261 tree
12262 block_ultimate_origin (const_tree block)
12263 {
12264 tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12265
12266 if (origin == NULL_TREE)
12267 return NULL_TREE;
12268 else
12269 {
12270 gcc_checking_assert ((DECL_P (origin)
12271 && DECL_ORIGIN (origin) == origin)
12272 || BLOCK_ORIGIN (origin) == origin);
12273 return origin;
12274 }
12275 }
12276
12277 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12278 no instruction. */
12279
12280 bool
12281 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12282 {
12283 /* Do not strip casts into or out of differing address spaces. */
12284 if (POINTER_TYPE_P (outer_type)
12285 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12286 {
12287 if (!POINTER_TYPE_P (inner_type)
12288 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12289 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12290 return false;
12291 }
12292 else if (POINTER_TYPE_P (inner_type)
12293 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12294 {
12295 /* We already know that outer_type is not a pointer with
12296 a non-generic address space. */
12297 return false;
12298 }
12299
12300 /* Use precision rather then machine mode when we can, which gives
12301 the correct answer even for submode (bit-field) types. */
12302 if ((INTEGRAL_TYPE_P (outer_type)
12303 || POINTER_TYPE_P (outer_type)
12304 || TREE_CODE (outer_type) == OFFSET_TYPE)
12305 && (INTEGRAL_TYPE_P (inner_type)
12306 || POINTER_TYPE_P (inner_type)
12307 || TREE_CODE (inner_type) == OFFSET_TYPE))
12308 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12309
12310 /* Otherwise fall back on comparing machine modes (e.g. for
12311 aggregate types, floats). */
12312 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12313 }
12314
12315 /* Return true iff conversion in EXP generates no instruction. Mark
12316 it inline so that we fully inline into the stripping functions even
12317 though we have two uses of this function. */
12318
12319 static inline bool
12320 tree_nop_conversion (const_tree exp)
12321 {
12322 tree outer_type, inner_type;
12323
12324 if (location_wrapper_p (exp))
12325 return true;
12326 if (!CONVERT_EXPR_P (exp)
12327 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12328 return false;
12329 if (TREE_OPERAND (exp, 0) == error_mark_node)
12330 return false;
12331
12332 outer_type = TREE_TYPE (exp);
12333 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12334
12335 if (!inner_type)
12336 return false;
12337
12338 return tree_nop_conversion_p (outer_type, inner_type);
12339 }
12340
12341 /* Return true iff conversion in EXP generates no instruction. Don't
12342 consider conversions changing the signedness. */
12343
12344 static bool
12345 tree_sign_nop_conversion (const_tree exp)
12346 {
12347 tree outer_type, inner_type;
12348
12349 if (!tree_nop_conversion (exp))
12350 return false;
12351
12352 outer_type = TREE_TYPE (exp);
12353 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12354
12355 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12356 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12357 }
12358
12359 /* Strip conversions from EXP according to tree_nop_conversion and
12360 return the resulting expression. */
12361
12362 tree
12363 tree_strip_nop_conversions (tree exp)
12364 {
12365 while (tree_nop_conversion (exp))
12366 exp = TREE_OPERAND (exp, 0);
12367 return exp;
12368 }
12369
12370 /* Strip conversions from EXP according to tree_sign_nop_conversion
12371 and return the resulting expression. */
12372
12373 tree
12374 tree_strip_sign_nop_conversions (tree exp)
12375 {
12376 while (tree_sign_nop_conversion (exp))
12377 exp = TREE_OPERAND (exp, 0);
12378 return exp;
12379 }
12380
12381 /* Avoid any floating point extensions from EXP. */
12382 tree
12383 strip_float_extensions (tree exp)
12384 {
12385 tree sub, expt, subt;
12386
12387 /* For floating point constant look up the narrowest type that can hold
12388 it properly and handle it like (type)(narrowest_type)constant.
12389 This way we can optimize for instance a=a*2.0 where "a" is float
12390 but 2.0 is double constant. */
12391 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12392 {
12393 REAL_VALUE_TYPE orig;
12394 tree type = NULL;
12395
12396 orig = TREE_REAL_CST (exp);
12397 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12398 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12399 type = float_type_node;
12400 else if (TYPE_PRECISION (TREE_TYPE (exp))
12401 > TYPE_PRECISION (double_type_node)
12402 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12403 type = double_type_node;
12404 if (type)
12405 return build_real_truncate (type, orig);
12406 }
12407
12408 if (!CONVERT_EXPR_P (exp))
12409 return exp;
12410
12411 sub = TREE_OPERAND (exp, 0);
12412 subt = TREE_TYPE (sub);
12413 expt = TREE_TYPE (exp);
12414
12415 if (!FLOAT_TYPE_P (subt))
12416 return exp;
12417
12418 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12419 return exp;
12420
12421 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12422 return exp;
12423
12424 return strip_float_extensions (sub);
12425 }
12426
12427 /* Strip out all handled components that produce invariant
12428 offsets. */
12429
12430 const_tree
12431 strip_invariant_refs (const_tree op)
12432 {
12433 while (handled_component_p (op))
12434 {
12435 switch (TREE_CODE (op))
12436 {
12437 case ARRAY_REF:
12438 case ARRAY_RANGE_REF:
12439 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12440 || TREE_OPERAND (op, 2) != NULL_TREE
12441 || TREE_OPERAND (op, 3) != NULL_TREE)
12442 return NULL;
12443 break;
12444
12445 case COMPONENT_REF:
12446 if (TREE_OPERAND (op, 2) != NULL_TREE)
12447 return NULL;
12448 break;
12449
12450 default:;
12451 }
12452 op = TREE_OPERAND (op, 0);
12453 }
12454
12455 return op;
12456 }
12457
12458 static GTY(()) tree gcc_eh_personality_decl;
12459
12460 /* Return the GCC personality function decl. */
12461
12462 tree
12463 lhd_gcc_personality (void)
12464 {
12465 if (!gcc_eh_personality_decl)
12466 gcc_eh_personality_decl = build_personality_function ("gcc");
12467 return gcc_eh_personality_decl;
12468 }
12469
12470 /* TARGET is a call target of GIMPLE call statement
12471 (obtained by gimple_call_fn). Return true if it is
12472 OBJ_TYPE_REF representing an virtual call of C++ method.
12473 (As opposed to OBJ_TYPE_REF representing objc calls
12474 through a cast where middle-end devirtualization machinery
12475 can't apply.) */
12476
12477 bool
12478 virtual_method_call_p (const_tree target)
12479 {
12480 if (TREE_CODE (target) != OBJ_TYPE_REF)
12481 return false;
12482 tree t = TREE_TYPE (target);
12483 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12484 t = TREE_TYPE (t);
12485 if (TREE_CODE (t) == FUNCTION_TYPE)
12486 return false;
12487 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12488 /* If we do not have BINFO associated, it means that type was built
12489 without devirtualization enabled. Do not consider this a virtual
12490 call. */
12491 if (!TYPE_BINFO (obj_type_ref_class (target)))
12492 return false;
12493 return true;
12494 }
12495
12496 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
12497
12498 tree
12499 obj_type_ref_class (const_tree ref)
12500 {
12501 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
12502 ref = TREE_TYPE (ref);
12503 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12504 ref = TREE_TYPE (ref);
12505 /* We look for type THIS points to. ObjC also builds
12506 OBJ_TYPE_REF with non-method calls, Their first parameter
12507 ID however also corresponds to class type. */
12508 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
12509 || TREE_CODE (ref) == FUNCTION_TYPE);
12510 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
12511 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12512 return TREE_TYPE (ref);
12513 }
12514
12515 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12516
12517 static tree
12518 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12519 {
12520 unsigned int i;
12521 tree base_binfo, b;
12522
12523 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12524 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12525 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12526 return base_binfo;
12527 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12528 return b;
12529 return NULL;
12530 }
12531
12532 /* Try to find a base info of BINFO that would have its field decl at offset
12533 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12534 found, return, otherwise return NULL_TREE. */
12535
12536 tree
12537 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12538 {
12539 tree type = BINFO_TYPE (binfo);
12540
12541 while (true)
12542 {
12543 HOST_WIDE_INT pos, size;
12544 tree fld;
12545 int i;
12546
12547 if (types_same_for_odr (type, expected_type))
12548 return binfo;
12549 if (maybe_lt (offset, 0))
12550 return NULL_TREE;
12551
12552 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12553 {
12554 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12555 continue;
12556
12557 pos = int_bit_position (fld);
12558 size = tree_to_uhwi (DECL_SIZE (fld));
12559 if (known_in_range_p (offset, pos, size))
12560 break;
12561 }
12562 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12563 return NULL_TREE;
12564
12565 /* Offset 0 indicates the primary base, whose vtable contents are
12566 represented in the binfo for the derived class. */
12567 else if (maybe_ne (offset, 0))
12568 {
12569 tree found_binfo = NULL, base_binfo;
12570 /* Offsets in BINFO are in bytes relative to the whole structure
12571 while POS is in bits relative to the containing field. */
12572 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12573 / BITS_PER_UNIT);
12574
12575 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12576 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12577 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12578 {
12579 found_binfo = base_binfo;
12580 break;
12581 }
12582 if (found_binfo)
12583 binfo = found_binfo;
12584 else
12585 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12586 binfo_offset);
12587 }
12588
12589 type = TREE_TYPE (fld);
12590 offset -= pos;
12591 }
12592 }
12593
12594 /* Returns true if X is a typedef decl. */
12595
12596 bool
12597 is_typedef_decl (const_tree x)
12598 {
12599 return (x && TREE_CODE (x) == TYPE_DECL
12600 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12601 }
12602
12603 /* Returns true iff TYPE is a type variant created for a typedef. */
12604
12605 bool
12606 typedef_variant_p (const_tree type)
12607 {
12608 return is_typedef_decl (TYPE_NAME (type));
12609 }
12610
12611 /* A class to handle converting a string that might contain
12612 control characters, (eg newline, form-feed, etc), into one
12613 in which contains escape sequences instead. */
12614
12615 class escaped_string
12616 {
12617 public:
12618 escaped_string () { m_owned = false; m_str = NULL; };
12619 ~escaped_string () { if (m_owned) free (m_str); }
12620 operator const char *() const { return (const char *) m_str; }
12621 void escape (const char *);
12622 private:
12623 char *m_str;
12624 bool m_owned;
12625 };
12626
12627 /* PR 84195: Replace control characters in "unescaped" with their
12628 escaped equivalents. Allow newlines if -fmessage-length has
12629 been set to a non-zero value. This is done here, rather than
12630 where the attribute is recorded as the message length can
12631 change between these two locations. */
12632
12633 void
12634 escaped_string::escape (const char *unescaped)
12635 {
12636 char *escaped;
12637 size_t i, new_i, len;
12638
12639 if (m_owned)
12640 free (m_str);
12641
12642 m_str = const_cast<char *> (unescaped);
12643 m_owned = false;
12644
12645 if (unescaped == NULL || *unescaped == 0)
12646 return;
12647
12648 len = strlen (unescaped);
12649 escaped = NULL;
12650 new_i = 0;
12651
12652 for (i = 0; i < len; i++)
12653 {
12654 char c = unescaped[i];
12655
12656 if (!ISCNTRL (c))
12657 {
12658 if (escaped)
12659 escaped[new_i++] = c;
12660 continue;
12661 }
12662
12663 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
12664 {
12665 if (escaped == NULL)
12666 {
12667 /* We only allocate space for a new string if we
12668 actually encounter a control character that
12669 needs replacing. */
12670 escaped = (char *) xmalloc (len * 2 + 1);
12671 strncpy (escaped, unescaped, i);
12672 new_i = i;
12673 }
12674
12675 escaped[new_i++] = '\\';
12676
12677 switch (c)
12678 {
12679 case '\a': escaped[new_i++] = 'a'; break;
12680 case '\b': escaped[new_i++] = 'b'; break;
12681 case '\f': escaped[new_i++] = 'f'; break;
12682 case '\n': escaped[new_i++] = 'n'; break;
12683 case '\r': escaped[new_i++] = 'r'; break;
12684 case '\t': escaped[new_i++] = 't'; break;
12685 case '\v': escaped[new_i++] = 'v'; break;
12686 default: escaped[new_i++] = '?'; break;
12687 }
12688 }
12689 else if (escaped)
12690 escaped[new_i++] = c;
12691 }
12692
12693 if (escaped)
12694 {
12695 escaped[new_i] = 0;
12696 m_str = escaped;
12697 m_owned = true;
12698 }
12699 }
12700
12701 /* Warn about a use of an identifier which was marked deprecated. Returns
12702 whether a warning was given. */
12703
12704 bool
12705 warn_deprecated_use (tree node, tree attr)
12706 {
12707 escaped_string msg;
12708
12709 if (node == 0 || !warn_deprecated_decl)
12710 return false;
12711
12712 if (!attr)
12713 {
12714 if (DECL_P (node))
12715 attr = DECL_ATTRIBUTES (node);
12716 else if (TYPE_P (node))
12717 {
12718 tree decl = TYPE_STUB_DECL (node);
12719 if (decl)
12720 attr = lookup_attribute ("deprecated",
12721 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12722 }
12723 }
12724
12725 if (attr)
12726 attr = lookup_attribute ("deprecated", attr);
12727
12728 if (attr)
12729 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
12730
12731 bool w = false;
12732 if (DECL_P (node))
12733 {
12734 auto_diagnostic_group d;
12735 if (msg)
12736 w = warning (OPT_Wdeprecated_declarations,
12737 "%qD is deprecated: %s", node, (const char *) msg);
12738 else
12739 w = warning (OPT_Wdeprecated_declarations,
12740 "%qD is deprecated", node);
12741 if (w)
12742 inform (DECL_SOURCE_LOCATION (node), "declared here");
12743 }
12744 else if (TYPE_P (node))
12745 {
12746 tree what = NULL_TREE;
12747 tree decl = TYPE_STUB_DECL (node);
12748
12749 if (TYPE_NAME (node))
12750 {
12751 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12752 what = TYPE_NAME (node);
12753 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12754 && DECL_NAME (TYPE_NAME (node)))
12755 what = DECL_NAME (TYPE_NAME (node));
12756 }
12757
12758 auto_diagnostic_group d;
12759 if (what)
12760 {
12761 if (msg)
12762 w = warning (OPT_Wdeprecated_declarations,
12763 "%qE is deprecated: %s", what, (const char *) msg);
12764 else
12765 w = warning (OPT_Wdeprecated_declarations,
12766 "%qE is deprecated", what);
12767 }
12768 else
12769 {
12770 if (msg)
12771 w = warning (OPT_Wdeprecated_declarations,
12772 "type is deprecated: %s", (const char *) msg);
12773 else
12774 w = warning (OPT_Wdeprecated_declarations,
12775 "type is deprecated");
12776 }
12777
12778 if (w && decl)
12779 inform (DECL_SOURCE_LOCATION (decl), "declared here");
12780 }
12781
12782 return w;
12783 }
12784
12785 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12786 somewhere in it. */
12787
12788 bool
12789 contains_bitfld_component_ref_p (const_tree ref)
12790 {
12791 while (handled_component_p (ref))
12792 {
12793 if (TREE_CODE (ref) == COMPONENT_REF
12794 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12795 return true;
12796 ref = TREE_OPERAND (ref, 0);
12797 }
12798
12799 return false;
12800 }
12801
12802 /* Try to determine whether a TRY_CATCH expression can fall through.
12803 This is a subroutine of block_may_fallthru. */
12804
12805 static bool
12806 try_catch_may_fallthru (const_tree stmt)
12807 {
12808 tree_stmt_iterator i;
12809
12810 /* If the TRY block can fall through, the whole TRY_CATCH can
12811 fall through. */
12812 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12813 return true;
12814
12815 i = tsi_start (TREE_OPERAND (stmt, 1));
12816 switch (TREE_CODE (tsi_stmt (i)))
12817 {
12818 case CATCH_EXPR:
12819 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12820 catch expression and a body. The whole TRY_CATCH may fall
12821 through iff any of the catch bodies falls through. */
12822 for (; !tsi_end_p (i); tsi_next (&i))
12823 {
12824 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12825 return true;
12826 }
12827 return false;
12828
12829 case EH_FILTER_EXPR:
12830 /* The exception filter expression only matters if there is an
12831 exception. If the exception does not match EH_FILTER_TYPES,
12832 we will execute EH_FILTER_FAILURE, and we will fall through
12833 if that falls through. If the exception does match
12834 EH_FILTER_TYPES, the stack unwinder will continue up the
12835 stack, so we will not fall through. We don't know whether we
12836 will throw an exception which matches EH_FILTER_TYPES or not,
12837 so we just ignore EH_FILTER_TYPES and assume that we might
12838 throw an exception which doesn't match. */
12839 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12840
12841 default:
12842 /* This case represents statements to be executed when an
12843 exception occurs. Those statements are implicitly followed
12844 by a RESX statement to resume execution after the exception.
12845 So in this case the TRY_CATCH never falls through. */
12846 return false;
12847 }
12848 }
12849
12850 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12851 need not be 100% accurate; simply be conservative and return true if we
12852 don't know. This is used only to avoid stupidly generating extra code.
12853 If we're wrong, we'll just delete the extra code later. */
12854
12855 bool
12856 block_may_fallthru (const_tree block)
12857 {
12858 /* This CONST_CAST is okay because expr_last returns its argument
12859 unmodified and we assign it to a const_tree. */
12860 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12861
12862 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12863 {
12864 case GOTO_EXPR:
12865 case RETURN_EXPR:
12866 /* Easy cases. If the last statement of the block implies
12867 control transfer, then we can't fall through. */
12868 return false;
12869
12870 case SWITCH_EXPR:
12871 /* If there is a default: label or case labels cover all possible
12872 SWITCH_COND values, then the SWITCH_EXPR will transfer control
12873 to some case label in all cases and all we care is whether the
12874 SWITCH_BODY falls through. */
12875 if (SWITCH_ALL_CASES_P (stmt))
12876 return block_may_fallthru (SWITCH_BODY (stmt));
12877 return true;
12878
12879 case COND_EXPR:
12880 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12881 return true;
12882 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12883
12884 case BIND_EXPR:
12885 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12886
12887 case TRY_CATCH_EXPR:
12888 return try_catch_may_fallthru (stmt);
12889
12890 case TRY_FINALLY_EXPR:
12891 /* The finally clause is always executed after the try clause,
12892 so if it does not fall through, then the try-finally will not
12893 fall through. Otherwise, if the try clause does not fall
12894 through, then when the finally clause falls through it will
12895 resume execution wherever the try clause was going. So the
12896 whole try-finally will only fall through if both the try
12897 clause and the finally clause fall through. */
12898 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12899 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12900
12901 case MODIFY_EXPR:
12902 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12903 stmt = TREE_OPERAND (stmt, 1);
12904 else
12905 return true;
12906 /* FALLTHRU */
12907
12908 case CALL_EXPR:
12909 /* Functions that do not return do not fall through. */
12910 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12911
12912 case CLEANUP_POINT_EXPR:
12913 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12914
12915 case TARGET_EXPR:
12916 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12917
12918 case ERROR_MARK:
12919 return true;
12920
12921 default:
12922 return lang_hooks.block_may_fallthru (stmt);
12923 }
12924 }
12925
12926 /* True if we are using EH to handle cleanups. */
12927 static bool using_eh_for_cleanups_flag = false;
12928
12929 /* This routine is called from front ends to indicate eh should be used for
12930 cleanups. */
12931 void
12932 using_eh_for_cleanups (void)
12933 {
12934 using_eh_for_cleanups_flag = true;
12935 }
12936
12937 /* Query whether EH is used for cleanups. */
12938 bool
12939 using_eh_for_cleanups_p (void)
12940 {
12941 return using_eh_for_cleanups_flag;
12942 }
12943
12944 /* Wrapper for tree_code_name to ensure that tree code is valid */
12945 const char *
12946 get_tree_code_name (enum tree_code code)
12947 {
12948 const char *invalid = "<invalid tree code>";
12949
12950 if (code >= MAX_TREE_CODES)
12951 return invalid;
12952
12953 return tree_code_name[code];
12954 }
12955
12956 /* Drops the TREE_OVERFLOW flag from T. */
12957
12958 tree
12959 drop_tree_overflow (tree t)
12960 {
12961 gcc_checking_assert (TREE_OVERFLOW (t));
12962
12963 /* For tree codes with a sharing machinery re-build the result. */
12964 if (poly_int_tree_p (t))
12965 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
12966
12967 /* For VECTOR_CST, remove the overflow bits from the encoded elements
12968 and canonicalize the result. */
12969 if (TREE_CODE (t) == VECTOR_CST)
12970 {
12971 tree_vector_builder builder;
12972 builder.new_unary_operation (TREE_TYPE (t), t, true);
12973 unsigned int count = builder.encoded_nelts ();
12974 for (unsigned int i = 0; i < count; ++i)
12975 {
12976 tree elt = VECTOR_CST_ELT (t, i);
12977 if (TREE_OVERFLOW (elt))
12978 elt = drop_tree_overflow (elt);
12979 builder.quick_push (elt);
12980 }
12981 return builder.build ();
12982 }
12983
12984 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12985 and drop the flag. */
12986 t = copy_node (t);
12987 TREE_OVERFLOW (t) = 0;
12988
12989 /* For constants that contain nested constants, drop the flag
12990 from those as well. */
12991 if (TREE_CODE (t) == COMPLEX_CST)
12992 {
12993 if (TREE_OVERFLOW (TREE_REALPART (t)))
12994 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
12995 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
12996 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
12997 }
12998
12999 return t;
13000 }
13001
13002 /* Given a memory reference expression T, return its base address.
13003 The base address of a memory reference expression is the main
13004 object being referenced. For instance, the base address for
13005 'array[i].fld[j]' is 'array'. You can think of this as stripping
13006 away the offset part from a memory address.
13007
13008 This function calls handled_component_p to strip away all the inner
13009 parts of the memory reference until it reaches the base object. */
13010
13011 tree
13012 get_base_address (tree t)
13013 {
13014 while (handled_component_p (t))
13015 t = TREE_OPERAND (t, 0);
13016
13017 if ((TREE_CODE (t) == MEM_REF
13018 || TREE_CODE (t) == TARGET_MEM_REF)
13019 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
13020 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
13021
13022 /* ??? Either the alias oracle or all callers need to properly deal
13023 with WITH_SIZE_EXPRs before we can look through those. */
13024 if (TREE_CODE (t) == WITH_SIZE_EXPR)
13025 return NULL_TREE;
13026
13027 return t;
13028 }
13029
13030 /* Return a tree of sizetype representing the size, in bytes, of the element
13031 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13032
13033 tree
13034 array_ref_element_size (tree exp)
13035 {
13036 tree aligned_size = TREE_OPERAND (exp, 3);
13037 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
13038 location_t loc = EXPR_LOCATION (exp);
13039
13040 /* If a size was specified in the ARRAY_REF, it's the size measured
13041 in alignment units of the element type. So multiply by that value. */
13042 if (aligned_size)
13043 {
13044 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13045 sizetype from another type of the same width and signedness. */
13046 if (TREE_TYPE (aligned_size) != sizetype)
13047 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
13048 return size_binop_loc (loc, MULT_EXPR, aligned_size,
13049 size_int (TYPE_ALIGN_UNIT (elmt_type)));
13050 }
13051
13052 /* Otherwise, take the size from that of the element type. Substitute
13053 any PLACEHOLDER_EXPR that we have. */
13054 else
13055 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
13056 }
13057
13058 /* Return a tree representing the lower bound of the array mentioned in
13059 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13060
13061 tree
13062 array_ref_low_bound (tree exp)
13063 {
13064 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13065
13066 /* If a lower bound is specified in EXP, use it. */
13067 if (TREE_OPERAND (exp, 2))
13068 return TREE_OPERAND (exp, 2);
13069
13070 /* Otherwise, if there is a domain type and it has a lower bound, use it,
13071 substituting for a PLACEHOLDER_EXPR as needed. */
13072 if (domain_type && TYPE_MIN_VALUE (domain_type))
13073 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
13074
13075 /* Otherwise, return a zero of the appropriate type. */
13076 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
13077 }
13078
13079 /* Return a tree representing the upper bound of the array mentioned in
13080 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13081
13082 tree
13083 array_ref_up_bound (tree exp)
13084 {
13085 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13086
13087 /* If there is a domain type and it has an upper bound, use it, substituting
13088 for a PLACEHOLDER_EXPR as needed. */
13089 if (domain_type && TYPE_MAX_VALUE (domain_type))
13090 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
13091
13092 /* Otherwise fail. */
13093 return NULL_TREE;
13094 }
13095
13096 /* Returns true if REF is an array reference or a component reference
13097 to an array at the end of a structure.
13098 If this is the case, the array may be allocated larger
13099 than its upper bound implies. */
13100
13101 bool
13102 array_at_struct_end_p (tree ref)
13103 {
13104 tree atype;
13105
13106 if (TREE_CODE (ref) == ARRAY_REF
13107 || TREE_CODE (ref) == ARRAY_RANGE_REF)
13108 {
13109 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13110 ref = TREE_OPERAND (ref, 0);
13111 }
13112 else if (TREE_CODE (ref) == COMPONENT_REF
13113 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13114 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13115 else
13116 return false;
13117
13118 if (TREE_CODE (ref) == STRING_CST)
13119 return false;
13120
13121 tree ref_to_array = ref;
13122 while (handled_component_p (ref))
13123 {
13124 /* If the reference chain contains a component reference to a
13125 non-union type and there follows another field the reference
13126 is not at the end of a structure. */
13127 if (TREE_CODE (ref) == COMPONENT_REF)
13128 {
13129 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13130 {
13131 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13132 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13133 nextf = DECL_CHAIN (nextf);
13134 if (nextf)
13135 return false;
13136 }
13137 }
13138 /* If we have a multi-dimensional array we do not consider
13139 a non-innermost dimension as flex array if the whole
13140 multi-dimensional array is at struct end.
13141 Same for an array of aggregates with a trailing array
13142 member. */
13143 else if (TREE_CODE (ref) == ARRAY_REF)
13144 return false;
13145 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13146 ;
13147 /* If we view an underlying object as sth else then what we
13148 gathered up to now is what we have to rely on. */
13149 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13150 break;
13151 else
13152 gcc_unreachable ();
13153
13154 ref = TREE_OPERAND (ref, 0);
13155 }
13156
13157 /* The array now is at struct end. Treat flexible arrays as
13158 always subject to extend, even into just padding constrained by
13159 an underlying decl. */
13160 if (! TYPE_SIZE (atype)
13161 || ! TYPE_DOMAIN (atype)
13162 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13163 return true;
13164
13165 if (TREE_CODE (ref) == MEM_REF
13166 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13167 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13168
13169 /* If the reference is based on a declared entity, the size of the array
13170 is constrained by its given domain. (Do not trust commons PR/69368). */
13171 if (DECL_P (ref)
13172 && !(flag_unconstrained_commons
13173 && VAR_P (ref) && DECL_COMMON (ref))
13174 && DECL_SIZE_UNIT (ref)
13175 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13176 {
13177 /* Check whether the array domain covers all of the available
13178 padding. */
13179 poly_int64 offset;
13180 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13181 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13182 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13183 return true;
13184 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13185 return true;
13186
13187 /* If at least one extra element fits it is a flexarray. */
13188 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13189 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13190 + 2)
13191 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13192 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13193 return true;
13194
13195 return false;
13196 }
13197
13198 return true;
13199 }
13200
13201 /* Return a tree representing the offset, in bytes, of the field referenced
13202 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13203
13204 tree
13205 component_ref_field_offset (tree exp)
13206 {
13207 tree aligned_offset = TREE_OPERAND (exp, 2);
13208 tree field = TREE_OPERAND (exp, 1);
13209 location_t loc = EXPR_LOCATION (exp);
13210
13211 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13212 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13213 value. */
13214 if (aligned_offset)
13215 {
13216 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13217 sizetype from another type of the same width and signedness. */
13218 if (TREE_TYPE (aligned_offset) != sizetype)
13219 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13220 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13221 size_int (DECL_OFFSET_ALIGN (field)
13222 / BITS_PER_UNIT));
13223 }
13224
13225 /* Otherwise, take the offset from that of the field. Substitute
13226 any PLACEHOLDER_EXPR that we have. */
13227 else
13228 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13229 }
13230
13231 /* Return the machine mode of T. For vectors, returns the mode of the
13232 inner type. The main use case is to feed the result to HONOR_NANS,
13233 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13234
13235 machine_mode
13236 element_mode (const_tree t)
13237 {
13238 if (!TYPE_P (t))
13239 t = TREE_TYPE (t);
13240 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13241 t = TREE_TYPE (t);
13242 return TYPE_MODE (t);
13243 }
13244
13245 /* Vector types need to re-check the target flags each time we report
13246 the machine mode. We need to do this because attribute target can
13247 change the result of vector_mode_supported_p and have_regs_of_mode
13248 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13249 change on a per-function basis. */
13250 /* ??? Possibly a better solution is to run through all the types
13251 referenced by a function and re-compute the TYPE_MODE once, rather
13252 than make the TYPE_MODE macro call a function. */
13253
13254 machine_mode
13255 vector_type_mode (const_tree t)
13256 {
13257 machine_mode mode;
13258
13259 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13260
13261 mode = t->type_common.mode;
13262 if (VECTOR_MODE_P (mode)
13263 && (!targetm.vector_mode_supported_p (mode)
13264 || !have_regs_of_mode[mode]))
13265 {
13266 scalar_int_mode innermode;
13267
13268 /* For integers, try mapping it to a same-sized scalar mode. */
13269 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13270 {
13271 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13272 * GET_MODE_BITSIZE (innermode));
13273 scalar_int_mode mode;
13274 if (int_mode_for_size (size, 0).exists (&mode)
13275 && have_regs_of_mode[mode])
13276 return mode;
13277 }
13278
13279 return BLKmode;
13280 }
13281
13282 return mode;
13283 }
13284
13285 /* Verify that basic properties of T match TV and thus T can be a variant of
13286 TV. TV should be the more specified variant (i.e. the main variant). */
13287
13288 static bool
13289 verify_type_variant (const_tree t, tree tv)
13290 {
13291 /* Type variant can differ by:
13292
13293 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13294 ENCODE_QUAL_ADDR_SPACE.
13295 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13296 in this case some values may not be set in the variant types
13297 (see TYPE_COMPLETE_P checks).
13298 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13299 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13300 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13301 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13302 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13303 this is necessary to make it possible to merge types form different TUs
13304 - arrays, pointers and references may have TREE_TYPE that is a variant
13305 of TREE_TYPE of their main variants.
13306 - aggregates may have new TYPE_FIELDS list that list variants of
13307 the main variant TYPE_FIELDS.
13308 - vector types may differ by TYPE_VECTOR_OPAQUE
13309 */
13310
13311 /* Convenience macro for matching individual fields. */
13312 #define verify_variant_match(flag) \
13313 do { \
13314 if (flag (tv) != flag (t)) \
13315 { \
13316 error ("type variant differs by %s", #flag); \
13317 debug_tree (tv); \
13318 return false; \
13319 } \
13320 } while (false)
13321
13322 /* tree_base checks. */
13323
13324 verify_variant_match (TREE_CODE);
13325 /* FIXME: Ada builds non-artificial variants of artificial types. */
13326 if (TYPE_ARTIFICIAL (tv) && 0)
13327 verify_variant_match (TYPE_ARTIFICIAL);
13328 if (POINTER_TYPE_P (tv))
13329 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13330 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13331 verify_variant_match (TYPE_UNSIGNED);
13332 verify_variant_match (TYPE_PACKED);
13333 if (TREE_CODE (t) == REFERENCE_TYPE)
13334 verify_variant_match (TYPE_REF_IS_RVALUE);
13335 if (AGGREGATE_TYPE_P (t))
13336 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13337 else
13338 verify_variant_match (TYPE_SATURATING);
13339 /* FIXME: This check trigger during libstdc++ build. */
13340 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13341 verify_variant_match (TYPE_FINAL_P);
13342
13343 /* tree_type_common checks. */
13344
13345 if (COMPLETE_TYPE_P (t))
13346 {
13347 verify_variant_match (TYPE_MODE);
13348 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13349 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13350 verify_variant_match (TYPE_SIZE);
13351 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13352 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13353 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13354 {
13355 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13356 TYPE_SIZE_UNIT (tv), 0));
13357 error ("type variant has different TYPE_SIZE_UNIT");
13358 debug_tree (tv);
13359 error ("type variant's TYPE_SIZE_UNIT");
13360 debug_tree (TYPE_SIZE_UNIT (tv));
13361 error ("type's TYPE_SIZE_UNIT");
13362 debug_tree (TYPE_SIZE_UNIT (t));
13363 return false;
13364 }
13365 }
13366 verify_variant_match (TYPE_PRECISION);
13367 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13368 if (RECORD_OR_UNION_TYPE_P (t))
13369 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13370 else if (TREE_CODE (t) == ARRAY_TYPE)
13371 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13372 /* During LTO we merge variant lists from diferent translation units
13373 that may differ BY TYPE_CONTEXT that in turn may point
13374 to TRANSLATION_UNIT_DECL.
13375 Ada also builds variants of types with different TYPE_CONTEXT. */
13376 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13377 verify_variant_match (TYPE_CONTEXT);
13378 verify_variant_match (TYPE_STRING_FLAG);
13379 if (TYPE_ALIAS_SET_KNOWN_P (t))
13380 {
13381 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13382 debug_tree (tv);
13383 return false;
13384 }
13385
13386 /* tree_type_non_common checks. */
13387
13388 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13389 and dangle the pointer from time to time. */
13390 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13391 && (in_lto_p || !TYPE_VFIELD (tv)
13392 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13393 {
13394 error ("type variant has different TYPE_VFIELD");
13395 debug_tree (tv);
13396 return false;
13397 }
13398 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13399 || TREE_CODE (t) == INTEGER_TYPE
13400 || TREE_CODE (t) == BOOLEAN_TYPE
13401 || TREE_CODE (t) == REAL_TYPE
13402 || TREE_CODE (t) == FIXED_POINT_TYPE)
13403 {
13404 verify_variant_match (TYPE_MAX_VALUE);
13405 verify_variant_match (TYPE_MIN_VALUE);
13406 }
13407 if (TREE_CODE (t) == METHOD_TYPE)
13408 verify_variant_match (TYPE_METHOD_BASETYPE);
13409 if (TREE_CODE (t) == OFFSET_TYPE)
13410 verify_variant_match (TYPE_OFFSET_BASETYPE);
13411 if (TREE_CODE (t) == ARRAY_TYPE)
13412 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13413 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13414 or even type's main variant. This is needed to make bootstrap pass
13415 and the bug seems new in GCC 5.
13416 C++ FE should be updated to make this consistent and we should check
13417 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13418 is a match with main variant.
13419
13420 Also disable the check for Java for now because of parser hack that builds
13421 first an dummy BINFO and then sometimes replace it by real BINFO in some
13422 of the copies. */
13423 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13424 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13425 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13426 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13427 at LTO time only. */
13428 && (in_lto_p && odr_type_p (t)))
13429 {
13430 error ("type variant has different TYPE_BINFO");
13431 debug_tree (tv);
13432 error ("type variant's TYPE_BINFO");
13433 debug_tree (TYPE_BINFO (tv));
13434 error ("type's TYPE_BINFO");
13435 debug_tree (TYPE_BINFO (t));
13436 return false;
13437 }
13438
13439 /* Check various uses of TYPE_VALUES_RAW. */
13440 if (TREE_CODE (t) == ENUMERAL_TYPE)
13441 verify_variant_match (TYPE_VALUES);
13442 else if (TREE_CODE (t) == ARRAY_TYPE)
13443 verify_variant_match (TYPE_DOMAIN);
13444 /* Permit incomplete variants of complete type. While FEs may complete
13445 all variants, this does not happen for C++ templates in all cases. */
13446 else if (RECORD_OR_UNION_TYPE_P (t)
13447 && COMPLETE_TYPE_P (t)
13448 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13449 {
13450 tree f1, f2;
13451
13452 /* Fortran builds qualified variants as new records with items of
13453 qualified type. Verify that they looks same. */
13454 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13455 f1 && f2;
13456 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13457 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13458 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13459 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13460 /* FIXME: gfc_nonrestricted_type builds all types as variants
13461 with exception of pointer types. It deeply copies the type
13462 which means that we may end up with a variant type
13463 referring non-variant pointer. We may change it to
13464 produce types as variants, too, like
13465 objc_get_protocol_qualified_type does. */
13466 && !POINTER_TYPE_P (TREE_TYPE (f1)))
13467 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13468 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13469 break;
13470 if (f1 || f2)
13471 {
13472 error ("type variant has different TYPE_FIELDS");
13473 debug_tree (tv);
13474 error ("first mismatch is field");
13475 debug_tree (f1);
13476 error ("and field");
13477 debug_tree (f2);
13478 return false;
13479 }
13480 }
13481 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13482 verify_variant_match (TYPE_ARG_TYPES);
13483 /* For C++ the qualified variant of array type is really an array type
13484 of qualified TREE_TYPE.
13485 objc builds variants of pointer where pointer to type is a variant, too
13486 in objc_get_protocol_qualified_type. */
13487 if (TREE_TYPE (t) != TREE_TYPE (tv)
13488 && ((TREE_CODE (t) != ARRAY_TYPE
13489 && !POINTER_TYPE_P (t))
13490 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13491 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13492 {
13493 error ("type variant has different TREE_TYPE");
13494 debug_tree (tv);
13495 error ("type variant's TREE_TYPE");
13496 debug_tree (TREE_TYPE (tv));
13497 error ("type's TREE_TYPE");
13498 debug_tree (TREE_TYPE (t));
13499 return false;
13500 }
13501 if (type_with_alias_set_p (t)
13502 && !gimple_canonical_types_compatible_p (t, tv, false))
13503 {
13504 error ("type is not compatible with its variant");
13505 debug_tree (tv);
13506 error ("type variant's TREE_TYPE");
13507 debug_tree (TREE_TYPE (tv));
13508 error ("type's TREE_TYPE");
13509 debug_tree (TREE_TYPE (t));
13510 return false;
13511 }
13512 return true;
13513 #undef verify_variant_match
13514 }
13515
13516
13517 /* The TYPE_CANONICAL merging machinery. It should closely resemble
13518 the middle-end types_compatible_p function. It needs to avoid
13519 claiming types are different for types that should be treated
13520 the same with respect to TBAA. Canonical types are also used
13521 for IL consistency checks via the useless_type_conversion_p
13522 predicate which does not handle all type kinds itself but falls
13523 back to pointer-comparison of TYPE_CANONICAL for aggregates
13524 for example. */
13525
13526 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13527 type calculation because we need to allow inter-operability between signed
13528 and unsigned variants. */
13529
13530 bool
13531 type_with_interoperable_signedness (const_tree type)
13532 {
13533 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13534 signed char and unsigned char. Similarly fortran FE builds
13535 C_SIZE_T as signed type, while C defines it unsigned. */
13536
13537 return tree_code_for_canonical_type_merging (TREE_CODE (type))
13538 == INTEGER_TYPE
13539 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13540 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13541 }
13542
13543 /* Return true iff T1 and T2 are structurally identical for what
13544 TBAA is concerned.
13545 This function is used both by lto.c canonical type merging and by the
13546 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
13547 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
13548 only for LTO because only in these cases TYPE_CANONICAL equivalence
13549 correspond to one defined by gimple_canonical_types_compatible_p. */
13550
13551 bool
13552 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
13553 bool trust_type_canonical)
13554 {
13555 /* Type variants should be same as the main variant. When not doing sanity
13556 checking to verify this fact, go to main variants and save some work. */
13557 if (trust_type_canonical)
13558 {
13559 t1 = TYPE_MAIN_VARIANT (t1);
13560 t2 = TYPE_MAIN_VARIANT (t2);
13561 }
13562
13563 /* Check first for the obvious case of pointer identity. */
13564 if (t1 == t2)
13565 return true;
13566
13567 /* Check that we have two types to compare. */
13568 if (t1 == NULL_TREE || t2 == NULL_TREE)
13569 return false;
13570
13571 /* We consider complete types always compatible with incomplete type.
13572 This does not make sense for canonical type calculation and thus we
13573 need to ensure that we are never called on it.
13574
13575 FIXME: For more correctness the function probably should have three modes
13576 1) mode assuming that types are complete mathcing their structure
13577 2) mode allowing incomplete types but producing equivalence classes
13578 and thus ignoring all info from complete types
13579 3) mode allowing incomplete types to match complete but checking
13580 compatibility between complete types.
13581
13582 1 and 2 can be used for canonical type calculation. 3 is the real
13583 definition of type compatibility that can be used i.e. for warnings during
13584 declaration merging. */
13585
13586 gcc_assert (!trust_type_canonical
13587 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
13588 /* If the types have been previously registered and found equal
13589 they still are. */
13590
13591 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
13592 && trust_type_canonical)
13593 {
13594 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
13595 they are always NULL, but they are set to non-NULL for types
13596 constructed by build_pointer_type and variants. In this case the
13597 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13598 all pointers are considered equal. Be sure to not return false
13599 negatives. */
13600 gcc_checking_assert (canonical_type_used_p (t1)
13601 && canonical_type_used_p (t2));
13602 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
13603 }
13604
13605 /* Can't be the same type if the types don't have the same code. */
13606 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
13607 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
13608 return false;
13609
13610 /* Qualifiers do not matter for canonical type comparison purposes. */
13611
13612 /* Void types and nullptr types are always the same. */
13613 if (TREE_CODE (t1) == VOID_TYPE
13614 || TREE_CODE (t1) == NULLPTR_TYPE)
13615 return true;
13616
13617 /* Can't be the same type if they have different mode. */
13618 if (TYPE_MODE (t1) != TYPE_MODE (t2))
13619 return false;
13620
13621 /* Non-aggregate types can be handled cheaply. */
13622 if (INTEGRAL_TYPE_P (t1)
13623 || SCALAR_FLOAT_TYPE_P (t1)
13624 || FIXED_POINT_TYPE_P (t1)
13625 || TREE_CODE (t1) == VECTOR_TYPE
13626 || TREE_CODE (t1) == COMPLEX_TYPE
13627 || TREE_CODE (t1) == OFFSET_TYPE
13628 || POINTER_TYPE_P (t1))
13629 {
13630 /* Can't be the same type if they have different recision. */
13631 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
13632 return false;
13633
13634 /* In some cases the signed and unsigned types are required to be
13635 inter-operable. */
13636 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13637 && !type_with_interoperable_signedness (t1))
13638 return false;
13639
13640 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13641 interoperable with "signed char". Unless all frontends are revisited
13642 to agree on these types, we must ignore the flag completely. */
13643
13644 /* Fortran standard define C_PTR type that is compatible with every
13645 C pointer. For this reason we need to glob all pointers into one.
13646 Still pointers in different address spaces are not compatible. */
13647 if (POINTER_TYPE_P (t1))
13648 {
13649 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13650 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13651 return false;
13652 }
13653
13654 /* Tail-recurse to components. */
13655 if (TREE_CODE (t1) == VECTOR_TYPE
13656 || TREE_CODE (t1) == COMPLEX_TYPE)
13657 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13658 TREE_TYPE (t2),
13659 trust_type_canonical);
13660
13661 return true;
13662 }
13663
13664 /* Do type-specific comparisons. */
13665 switch (TREE_CODE (t1))
13666 {
13667 case ARRAY_TYPE:
13668 /* Array types are the same if the element types are the same and
13669 the number of elements are the same. */
13670 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13671 trust_type_canonical)
13672 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13673 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13674 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13675 return false;
13676 else
13677 {
13678 tree i1 = TYPE_DOMAIN (t1);
13679 tree i2 = TYPE_DOMAIN (t2);
13680
13681 /* For an incomplete external array, the type domain can be
13682 NULL_TREE. Check this condition also. */
13683 if (i1 == NULL_TREE && i2 == NULL_TREE)
13684 return true;
13685 else if (i1 == NULL_TREE || i2 == NULL_TREE)
13686 return false;
13687 else
13688 {
13689 tree min1 = TYPE_MIN_VALUE (i1);
13690 tree min2 = TYPE_MIN_VALUE (i2);
13691 tree max1 = TYPE_MAX_VALUE (i1);
13692 tree max2 = TYPE_MAX_VALUE (i2);
13693
13694 /* The minimum/maximum values have to be the same. */
13695 if ((min1 == min2
13696 || (min1 && min2
13697 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13698 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13699 || operand_equal_p (min1, min2, 0))))
13700 && (max1 == max2
13701 || (max1 && max2
13702 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13703 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13704 || operand_equal_p (max1, max2, 0)))))
13705 return true;
13706 else
13707 return false;
13708 }
13709 }
13710
13711 case METHOD_TYPE:
13712 case FUNCTION_TYPE:
13713 /* Function types are the same if the return type and arguments types
13714 are the same. */
13715 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13716 trust_type_canonical))
13717 return false;
13718
13719 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
13720 return true;
13721 else
13722 {
13723 tree parms1, parms2;
13724
13725 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13726 parms1 && parms2;
13727 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13728 {
13729 if (!gimple_canonical_types_compatible_p
13730 (TREE_VALUE (parms1), TREE_VALUE (parms2),
13731 trust_type_canonical))
13732 return false;
13733 }
13734
13735 if (parms1 || parms2)
13736 return false;
13737
13738 return true;
13739 }
13740
13741 case RECORD_TYPE:
13742 case UNION_TYPE:
13743 case QUAL_UNION_TYPE:
13744 {
13745 tree f1, f2;
13746
13747 /* Don't try to compare variants of an incomplete type, before
13748 TYPE_FIELDS has been copied around. */
13749 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
13750 return true;
13751
13752
13753 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13754 return false;
13755
13756 /* For aggregate types, all the fields must be the same. */
13757 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13758 f1 || f2;
13759 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13760 {
13761 /* Skip non-fields and zero-sized fields. */
13762 while (f1 && (TREE_CODE (f1) != FIELD_DECL
13763 || (DECL_SIZE (f1)
13764 && integer_zerop (DECL_SIZE (f1)))))
13765 f1 = TREE_CHAIN (f1);
13766 while (f2 && (TREE_CODE (f2) != FIELD_DECL
13767 || (DECL_SIZE (f2)
13768 && integer_zerop (DECL_SIZE (f2)))))
13769 f2 = TREE_CHAIN (f2);
13770 if (!f1 || !f2)
13771 break;
13772 /* The fields must have the same name, offset and type. */
13773 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13774 || !gimple_compare_field_offset (f1, f2)
13775 || !gimple_canonical_types_compatible_p
13776 (TREE_TYPE (f1), TREE_TYPE (f2),
13777 trust_type_canonical))
13778 return false;
13779 }
13780
13781 /* If one aggregate has more fields than the other, they
13782 are not the same. */
13783 if (f1 || f2)
13784 return false;
13785
13786 return true;
13787 }
13788
13789 default:
13790 /* Consider all types with language specific trees in them mutually
13791 compatible. This is executed only from verify_type and false
13792 positives can be tolerated. */
13793 gcc_assert (!in_lto_p);
13794 return true;
13795 }
13796 }
13797
13798 /* Verify type T. */
13799
13800 void
13801 verify_type (const_tree t)
13802 {
13803 bool error_found = false;
13804 tree mv = TYPE_MAIN_VARIANT (t);
13805 if (!mv)
13806 {
13807 error ("Main variant is not defined");
13808 error_found = true;
13809 }
13810 else if (mv != TYPE_MAIN_VARIANT (mv))
13811 {
13812 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13813 debug_tree (mv);
13814 error_found = true;
13815 }
13816 else if (t != mv && !verify_type_variant (t, mv))
13817 error_found = true;
13818
13819 tree ct = TYPE_CANONICAL (t);
13820 if (!ct)
13821 ;
13822 else if (TYPE_CANONICAL (t) != ct)
13823 {
13824 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13825 debug_tree (ct);
13826 error_found = true;
13827 }
13828 /* Method and function types can not be used to address memory and thus
13829 TYPE_CANONICAL really matters only for determining useless conversions.
13830
13831 FIXME: C++ FE produce declarations of builtin functions that are not
13832 compatible with main variants. */
13833 else if (TREE_CODE (t) == FUNCTION_TYPE)
13834 ;
13835 else if (t != ct
13836 /* FIXME: gimple_canonical_types_compatible_p can not compare types
13837 with variably sized arrays because their sizes possibly
13838 gimplified to different variables. */
13839 && !variably_modified_type_p (ct, NULL)
13840 && !gimple_canonical_types_compatible_p (t, ct, false))
13841 {
13842 error ("TYPE_CANONICAL is not compatible");
13843 debug_tree (ct);
13844 error_found = true;
13845 }
13846
13847 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
13848 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
13849 {
13850 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13851 debug_tree (ct);
13852 error_found = true;
13853 }
13854 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
13855 {
13856 error ("TYPE_CANONICAL of main variant is not main variant");
13857 debug_tree (ct);
13858 debug_tree (TYPE_MAIN_VARIANT (ct));
13859 error_found = true;
13860 }
13861
13862
13863 /* Check various uses of TYPE_MIN_VALUE_RAW. */
13864 if (RECORD_OR_UNION_TYPE_P (t))
13865 {
13866 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13867 and danagle the pointer from time to time. */
13868 if (TYPE_VFIELD (t)
13869 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
13870 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
13871 {
13872 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13873 debug_tree (TYPE_VFIELD (t));
13874 error_found = true;
13875 }
13876 }
13877 else if (TREE_CODE (t) == POINTER_TYPE)
13878 {
13879 if (TYPE_NEXT_PTR_TO (t)
13880 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
13881 {
13882 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13883 debug_tree (TYPE_NEXT_PTR_TO (t));
13884 error_found = true;
13885 }
13886 }
13887 else if (TREE_CODE (t) == REFERENCE_TYPE)
13888 {
13889 if (TYPE_NEXT_REF_TO (t)
13890 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
13891 {
13892 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13893 debug_tree (TYPE_NEXT_REF_TO (t));
13894 error_found = true;
13895 }
13896 }
13897 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13898 || TREE_CODE (t) == FIXED_POINT_TYPE)
13899 {
13900 /* FIXME: The following check should pass:
13901 useless_type_conversion_p (const_cast <tree> (t),
13902 TREE_TYPE (TYPE_MIN_VALUE (t))
13903 but does not for C sizetypes in LTO. */
13904 }
13905
13906 /* Check various uses of TYPE_MAXVAL_RAW. */
13907 if (RECORD_OR_UNION_TYPE_P (t))
13908 {
13909 if (!TYPE_BINFO (t))
13910 ;
13911 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
13912 {
13913 error ("TYPE_BINFO is not TREE_BINFO");
13914 debug_tree (TYPE_BINFO (t));
13915 error_found = true;
13916 }
13917 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
13918 {
13919 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13920 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
13921 error_found = true;
13922 }
13923 }
13924 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13925 {
13926 if (TYPE_METHOD_BASETYPE (t)
13927 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
13928 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
13929 {
13930 error ("TYPE_METHOD_BASETYPE is not record nor union");
13931 debug_tree (TYPE_METHOD_BASETYPE (t));
13932 error_found = true;
13933 }
13934 }
13935 else if (TREE_CODE (t) == OFFSET_TYPE)
13936 {
13937 if (TYPE_OFFSET_BASETYPE (t)
13938 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
13939 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
13940 {
13941 error ("TYPE_OFFSET_BASETYPE is not record nor union");
13942 debug_tree (TYPE_OFFSET_BASETYPE (t));
13943 error_found = true;
13944 }
13945 }
13946 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13947 || TREE_CODE (t) == FIXED_POINT_TYPE)
13948 {
13949 /* FIXME: The following check should pass:
13950 useless_type_conversion_p (const_cast <tree> (t),
13951 TREE_TYPE (TYPE_MAX_VALUE (t))
13952 but does not for C sizetypes in LTO. */
13953 }
13954 else if (TREE_CODE (t) == ARRAY_TYPE)
13955 {
13956 if (TYPE_ARRAY_MAX_SIZE (t)
13957 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
13958 {
13959 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13960 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
13961 error_found = true;
13962 }
13963 }
13964 else if (TYPE_MAX_VALUE_RAW (t))
13965 {
13966 error ("TYPE_MAX_VALUE_RAW non-NULL");
13967 debug_tree (TYPE_MAX_VALUE_RAW (t));
13968 error_found = true;
13969 }
13970
13971 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
13972 {
13973 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13974 debug_tree (TYPE_LANG_SLOT_1 (t));
13975 error_found = true;
13976 }
13977
13978 /* Check various uses of TYPE_VALUES_RAW. */
13979 if (TREE_CODE (t) == ENUMERAL_TYPE)
13980 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
13981 {
13982 tree value = TREE_VALUE (l);
13983 tree name = TREE_PURPOSE (l);
13984
13985 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13986 CONST_DECL of ENUMERAL TYPE. */
13987 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
13988 {
13989 error ("Enum value is not CONST_DECL or INTEGER_CST");
13990 debug_tree (value);
13991 debug_tree (name);
13992 error_found = true;
13993 }
13994 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
13995 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
13996 {
13997 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13998 debug_tree (value);
13999 debug_tree (name);
14000 error_found = true;
14001 }
14002 if (TREE_CODE (name) != IDENTIFIER_NODE)
14003 {
14004 error ("Enum value name is not IDENTIFIER_NODE");
14005 debug_tree (value);
14006 debug_tree (name);
14007 error_found = true;
14008 }
14009 }
14010 else if (TREE_CODE (t) == ARRAY_TYPE)
14011 {
14012 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14013 {
14014 error ("Array TYPE_DOMAIN is not integer type");
14015 debug_tree (TYPE_DOMAIN (t));
14016 error_found = true;
14017 }
14018 }
14019 else if (RECORD_OR_UNION_TYPE_P (t))
14020 {
14021 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14022 {
14023 error ("TYPE_FIELDS defined in incomplete type");
14024 error_found = true;
14025 }
14026 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14027 {
14028 /* TODO: verify properties of decls. */
14029 if (TREE_CODE (fld) == FIELD_DECL)
14030 ;
14031 else if (TREE_CODE (fld) == TYPE_DECL)
14032 ;
14033 else if (TREE_CODE (fld) == CONST_DECL)
14034 ;
14035 else if (VAR_P (fld))
14036 ;
14037 else if (TREE_CODE (fld) == TEMPLATE_DECL)
14038 ;
14039 else if (TREE_CODE (fld) == USING_DECL)
14040 ;
14041 else if (TREE_CODE (fld) == FUNCTION_DECL)
14042 ;
14043 else
14044 {
14045 error ("Wrong tree in TYPE_FIELDS list");
14046 debug_tree (fld);
14047 error_found = true;
14048 }
14049 }
14050 }
14051 else if (TREE_CODE (t) == INTEGER_TYPE
14052 || TREE_CODE (t) == BOOLEAN_TYPE
14053 || TREE_CODE (t) == OFFSET_TYPE
14054 || TREE_CODE (t) == REFERENCE_TYPE
14055 || TREE_CODE (t) == NULLPTR_TYPE
14056 || TREE_CODE (t) == POINTER_TYPE)
14057 {
14058 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14059 {
14060 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
14061 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14062 error_found = true;
14063 }
14064 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14065 {
14066 error ("TYPE_CACHED_VALUES is not TREE_VEC");
14067 debug_tree (TYPE_CACHED_VALUES (t));
14068 error_found = true;
14069 }
14070 /* Verify just enough of cache to ensure that no one copied it to new type.
14071 All copying should go by copy_node that should clear it. */
14072 else if (TYPE_CACHED_VALUES_P (t))
14073 {
14074 int i;
14075 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14076 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14077 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14078 {
14079 error ("wrong TYPE_CACHED_VALUES entry");
14080 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14081 error_found = true;
14082 break;
14083 }
14084 }
14085 }
14086 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14087 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14088 {
14089 /* C++ FE uses TREE_PURPOSE to store initial values. */
14090 if (TREE_PURPOSE (l) && in_lto_p)
14091 {
14092 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
14093 debug_tree (l);
14094 error_found = true;
14095 }
14096 if (!TYPE_P (TREE_VALUE (l)))
14097 {
14098 error ("Wrong entry in TYPE_ARG_TYPES list");
14099 debug_tree (l);
14100 error_found = true;
14101 }
14102 }
14103 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14104 {
14105 error ("TYPE_VALUES_RAW field is non-NULL");
14106 debug_tree (TYPE_VALUES_RAW (t));
14107 error_found = true;
14108 }
14109 if (TREE_CODE (t) != INTEGER_TYPE
14110 && TREE_CODE (t) != BOOLEAN_TYPE
14111 && TREE_CODE (t) != OFFSET_TYPE
14112 && TREE_CODE (t) != REFERENCE_TYPE
14113 && TREE_CODE (t) != NULLPTR_TYPE
14114 && TREE_CODE (t) != POINTER_TYPE
14115 && TYPE_CACHED_VALUES_P (t))
14116 {
14117 error ("TYPE_CACHED_VALUES_P is set while it should not");
14118 error_found = true;
14119 }
14120 if (TYPE_STRING_FLAG (t)
14121 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
14122 {
14123 error ("TYPE_STRING_FLAG is set on wrong type code");
14124 error_found = true;
14125 }
14126
14127 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14128 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14129 of a type. */
14130 if (TREE_CODE (t) == METHOD_TYPE
14131 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14132 {
14133 error ("TYPE_METHOD_BASETYPE is not main variant");
14134 error_found = true;
14135 }
14136
14137 if (error_found)
14138 {
14139 debug_tree (const_cast <tree> (t));
14140 internal_error ("verify_type failed");
14141 }
14142 }
14143
14144
14145 /* Return 1 if ARG interpreted as signed in its precision is known to be
14146 always positive or 2 if ARG is known to be always negative, or 3 if
14147 ARG may be positive or negative. */
14148
14149 int
14150 get_range_pos_neg (tree arg)
14151 {
14152 if (arg == error_mark_node)
14153 return 3;
14154
14155 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14156 int cnt = 0;
14157 if (TREE_CODE (arg) == INTEGER_CST)
14158 {
14159 wide_int w = wi::sext (wi::to_wide (arg), prec);
14160 if (wi::neg_p (w))
14161 return 2;
14162 else
14163 return 1;
14164 }
14165 while (CONVERT_EXPR_P (arg)
14166 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14167 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14168 {
14169 arg = TREE_OPERAND (arg, 0);
14170 /* Narrower value zero extended into wider type
14171 will always result in positive values. */
14172 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14173 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14174 return 1;
14175 prec = TYPE_PRECISION (TREE_TYPE (arg));
14176 if (++cnt > 30)
14177 return 3;
14178 }
14179
14180 if (TREE_CODE (arg) != SSA_NAME)
14181 return 3;
14182 wide_int arg_min, arg_max;
14183 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14184 {
14185 gimple *g = SSA_NAME_DEF_STMT (arg);
14186 if (is_gimple_assign (g)
14187 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14188 {
14189 tree t = gimple_assign_rhs1 (g);
14190 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14191 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14192 {
14193 if (TYPE_UNSIGNED (TREE_TYPE (t))
14194 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14195 return 1;
14196 prec = TYPE_PRECISION (TREE_TYPE (t));
14197 arg = t;
14198 if (++cnt > 30)
14199 return 3;
14200 continue;
14201 }
14202 }
14203 return 3;
14204 }
14205 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14206 {
14207 /* For unsigned values, the "positive" range comes
14208 below the "negative" range. */
14209 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14210 return 1;
14211 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14212 return 2;
14213 }
14214 else
14215 {
14216 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14217 return 1;
14218 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14219 return 2;
14220 }
14221 return 3;
14222 }
14223
14224
14225
14226
14227 /* Return true if ARG is marked with the nonnull attribute in the
14228 current function signature. */
14229
14230 bool
14231 nonnull_arg_p (const_tree arg)
14232 {
14233 tree t, attrs, fntype;
14234 unsigned HOST_WIDE_INT arg_num;
14235
14236 gcc_assert (TREE_CODE (arg) == PARM_DECL
14237 && (POINTER_TYPE_P (TREE_TYPE (arg))
14238 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14239
14240 /* The static chain decl is always non null. */
14241 if (arg == cfun->static_chain_decl)
14242 return true;
14243
14244 /* THIS argument of method is always non-NULL. */
14245 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14246 && arg == DECL_ARGUMENTS (cfun->decl)
14247 && flag_delete_null_pointer_checks)
14248 return true;
14249
14250 /* Values passed by reference are always non-NULL. */
14251 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14252 && flag_delete_null_pointer_checks)
14253 return true;
14254
14255 fntype = TREE_TYPE (cfun->decl);
14256 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14257 {
14258 attrs = lookup_attribute ("nonnull", attrs);
14259
14260 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14261 if (attrs == NULL_TREE)
14262 return false;
14263
14264 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14265 if (TREE_VALUE (attrs) == NULL_TREE)
14266 return true;
14267
14268 /* Get the position number for ARG in the function signature. */
14269 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14270 t;
14271 t = DECL_CHAIN (t), arg_num++)
14272 {
14273 if (t == arg)
14274 break;
14275 }
14276
14277 gcc_assert (t == arg);
14278
14279 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14280 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14281 {
14282 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14283 return true;
14284 }
14285 }
14286
14287 return false;
14288 }
14289
14290 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14291 information. */
14292
14293 location_t
14294 set_block (location_t loc, tree block)
14295 {
14296 location_t pure_loc = get_pure_location (loc);
14297 source_range src_range = get_range_from_loc (line_table, loc);
14298 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14299 }
14300
14301 location_t
14302 set_source_range (tree expr, location_t start, location_t finish)
14303 {
14304 source_range src_range;
14305 src_range.m_start = start;
14306 src_range.m_finish = finish;
14307 return set_source_range (expr, src_range);
14308 }
14309
14310 location_t
14311 set_source_range (tree expr, source_range src_range)
14312 {
14313 if (!EXPR_P (expr))
14314 return UNKNOWN_LOCATION;
14315
14316 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14317 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14318 pure_loc,
14319 src_range,
14320 NULL);
14321 SET_EXPR_LOCATION (expr, adhoc);
14322 return adhoc;
14323 }
14324
14325 /* Return EXPR, potentially wrapped with a node expression LOC,
14326 if !CAN_HAVE_LOCATION_P (expr).
14327
14328 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14329 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14330
14331 Wrapper nodes can be identified using location_wrapper_p. */
14332
14333 tree
14334 maybe_wrap_with_location (tree expr, location_t loc)
14335 {
14336 if (expr == NULL)
14337 return NULL;
14338 if (loc == UNKNOWN_LOCATION)
14339 return expr;
14340 if (CAN_HAVE_LOCATION_P (expr))
14341 return expr;
14342 /* We should only be adding wrappers for constants and for decls,
14343 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14344 gcc_assert (CONSTANT_CLASS_P (expr)
14345 || DECL_P (expr)
14346 || EXCEPTIONAL_CLASS_P (expr));
14347
14348 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14349 any impact of the wrapper nodes. */
14350 if (EXCEPTIONAL_CLASS_P (expr))
14351 return expr;
14352
14353 tree_code code
14354 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14355 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14356 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14357 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14358 /* Mark this node as being a wrapper. */
14359 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14360 return wrapper;
14361 }
14362
14363 /* Return the name of combined function FN, for debugging purposes. */
14364
14365 const char *
14366 combined_fn_name (combined_fn fn)
14367 {
14368 if (builtin_fn_p (fn))
14369 {
14370 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14371 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14372 }
14373 else
14374 return internal_fn_name (as_internal_fn (fn));
14375 }
14376
14377 /* Return a bitmap with a bit set corresponding to each argument in
14378 a function call type FNTYPE declared with attribute nonnull,
14379 or null if none of the function's argument are nonnull. The caller
14380 must free the bitmap. */
14381
14382 bitmap
14383 get_nonnull_args (const_tree fntype)
14384 {
14385 if (fntype == NULL_TREE)
14386 return NULL;
14387
14388 tree attrs = TYPE_ATTRIBUTES (fntype);
14389 if (!attrs)
14390 return NULL;
14391
14392 bitmap argmap = NULL;
14393
14394 /* A function declaration can specify multiple attribute nonnull,
14395 each with zero or more arguments. The loop below creates a bitmap
14396 representing a union of all the arguments. An empty (but non-null)
14397 bitmap means that all arguments have been declaraed nonnull. */
14398 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14399 {
14400 attrs = lookup_attribute ("nonnull", attrs);
14401 if (!attrs)
14402 break;
14403
14404 if (!argmap)
14405 argmap = BITMAP_ALLOC (NULL);
14406
14407 if (!TREE_VALUE (attrs))
14408 {
14409 /* Clear the bitmap in case a previous attribute nonnull
14410 set it and this one overrides it for all arguments. */
14411 bitmap_clear (argmap);
14412 return argmap;
14413 }
14414
14415 /* Iterate over the indices of the format arguments declared nonnull
14416 and set a bit for each. */
14417 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14418 {
14419 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14420 bitmap_set_bit (argmap, val);
14421 }
14422 }
14423
14424 return argmap;
14425 }
14426
14427 /* Returns true if TYPE is a type where it and all of its subobjects
14428 (recursively) are of structure, union, or array type. */
14429
14430 static bool
14431 default_is_empty_type (tree type)
14432 {
14433 if (RECORD_OR_UNION_TYPE_P (type))
14434 {
14435 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14436 if (TREE_CODE (field) == FIELD_DECL
14437 && !DECL_PADDING_P (field)
14438 && !default_is_empty_type (TREE_TYPE (field)))
14439 return false;
14440 return true;
14441 }
14442 else if (TREE_CODE (type) == ARRAY_TYPE)
14443 return (integer_minus_onep (array_type_nelts (type))
14444 || TYPE_DOMAIN (type) == NULL_TREE
14445 || default_is_empty_type (TREE_TYPE (type)));
14446 return false;
14447 }
14448
14449 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14450 that shouldn't be passed via stack. */
14451
14452 bool
14453 default_is_empty_record (const_tree type)
14454 {
14455 if (!abi_version_at_least (12))
14456 return false;
14457
14458 if (type == error_mark_node)
14459 return false;
14460
14461 if (TREE_ADDRESSABLE (type))
14462 return false;
14463
14464 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14465 }
14466
14467 /* Like int_size_in_bytes, but handle empty records specially. */
14468
14469 HOST_WIDE_INT
14470 arg_int_size_in_bytes (const_tree type)
14471 {
14472 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14473 }
14474
14475 /* Like size_in_bytes, but handle empty records specially. */
14476
14477 tree
14478 arg_size_in_bytes (const_tree type)
14479 {
14480 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14481 }
14482
14483 /* Return true if an expression with CODE has to have the same result type as
14484 its first operand. */
14485
14486 bool
14487 expr_type_first_operand_type_p (tree_code code)
14488 {
14489 switch (code)
14490 {
14491 case NEGATE_EXPR:
14492 case ABS_EXPR:
14493 case BIT_NOT_EXPR:
14494 case PAREN_EXPR:
14495 case CONJ_EXPR:
14496
14497 case PLUS_EXPR:
14498 case MINUS_EXPR:
14499 case MULT_EXPR:
14500 case TRUNC_DIV_EXPR:
14501 case CEIL_DIV_EXPR:
14502 case FLOOR_DIV_EXPR:
14503 case ROUND_DIV_EXPR:
14504 case TRUNC_MOD_EXPR:
14505 case CEIL_MOD_EXPR:
14506 case FLOOR_MOD_EXPR:
14507 case ROUND_MOD_EXPR:
14508 case RDIV_EXPR:
14509 case EXACT_DIV_EXPR:
14510 case MIN_EXPR:
14511 case MAX_EXPR:
14512 case BIT_IOR_EXPR:
14513 case BIT_XOR_EXPR:
14514 case BIT_AND_EXPR:
14515
14516 case LSHIFT_EXPR:
14517 case RSHIFT_EXPR:
14518 case LROTATE_EXPR:
14519 case RROTATE_EXPR:
14520 return true;
14521
14522 default:
14523 return false;
14524 }
14525 }
14526
14527 /* Return a typenode for the "standard" C type with a given name. */
14528 tree
14529 get_typenode_from_name (const char *name)
14530 {
14531 if (name == NULL || *name == '\0')
14532 return NULL_TREE;
14533
14534 if (strcmp (name, "char") == 0)
14535 return char_type_node;
14536 if (strcmp (name, "unsigned char") == 0)
14537 return unsigned_char_type_node;
14538 if (strcmp (name, "signed char") == 0)
14539 return signed_char_type_node;
14540
14541 if (strcmp (name, "short int") == 0)
14542 return short_integer_type_node;
14543 if (strcmp (name, "short unsigned int") == 0)
14544 return short_unsigned_type_node;
14545
14546 if (strcmp (name, "int") == 0)
14547 return integer_type_node;
14548 if (strcmp (name, "unsigned int") == 0)
14549 return unsigned_type_node;
14550
14551 if (strcmp (name, "long int") == 0)
14552 return long_integer_type_node;
14553 if (strcmp (name, "long unsigned int") == 0)
14554 return long_unsigned_type_node;
14555
14556 if (strcmp (name, "long long int") == 0)
14557 return long_long_integer_type_node;
14558 if (strcmp (name, "long long unsigned int") == 0)
14559 return long_long_unsigned_type_node;
14560
14561 gcc_unreachable ();
14562 }
14563
14564 /* List of pointer types used to declare builtins before we have seen their
14565 real declaration.
14566
14567 Keep the size up to date in tree.h ! */
14568 const builtin_structptr_type builtin_structptr_types[6] =
14569 {
14570 { fileptr_type_node, ptr_type_node, "FILE" },
14571 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
14572 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
14573 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
14574 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
14575 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
14576 };
14577
14578 #if CHECKING_P
14579
14580 namespace selftest {
14581
14582 /* Selftests for tree. */
14583
14584 /* Verify that integer constants are sane. */
14585
14586 static void
14587 test_integer_constants ()
14588 {
14589 ASSERT_TRUE (integer_type_node != NULL);
14590 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
14591
14592 tree type = integer_type_node;
14593
14594 tree zero = build_zero_cst (type);
14595 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
14596 ASSERT_EQ (type, TREE_TYPE (zero));
14597
14598 tree one = build_int_cst (type, 1);
14599 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
14600 ASSERT_EQ (type, TREE_TYPE (zero));
14601 }
14602
14603 /* Verify identifiers. */
14604
14605 static void
14606 test_identifiers ()
14607 {
14608 tree identifier = get_identifier ("foo");
14609 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
14610 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
14611 }
14612
14613 /* Verify LABEL_DECL. */
14614
14615 static void
14616 test_labels ()
14617 {
14618 tree identifier = get_identifier ("err");
14619 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
14620 identifier, void_type_node);
14621 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
14622 ASSERT_FALSE (FORCED_LABEL (label_decl));
14623 }
14624
14625 /* Return a new VECTOR_CST node whose type is TYPE and whose values
14626 are given by VALS. */
14627
14628 static tree
14629 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
14630 {
14631 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
14632 tree_vector_builder builder (type, vals.length (), 1);
14633 builder.splice (vals);
14634 return builder.build ();
14635 }
14636
14637 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
14638
14639 static void
14640 check_vector_cst (vec<tree> expected, tree actual)
14641 {
14642 ASSERT_KNOWN_EQ (expected.length (),
14643 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
14644 for (unsigned int i = 0; i < expected.length (); ++i)
14645 ASSERT_EQ (wi::to_wide (expected[i]),
14646 wi::to_wide (vector_cst_elt (actual, i)));
14647 }
14648
14649 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
14650 and that its elements match EXPECTED. */
14651
14652 static void
14653 check_vector_cst_duplicate (vec<tree> expected, tree actual,
14654 unsigned int npatterns)
14655 {
14656 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14657 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
14658 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
14659 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
14660 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14661 check_vector_cst (expected, actual);
14662 }
14663
14664 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
14665 and NPATTERNS background elements, and that its elements match
14666 EXPECTED. */
14667
14668 static void
14669 check_vector_cst_fill (vec<tree> expected, tree actual,
14670 unsigned int npatterns)
14671 {
14672 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14673 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
14674 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
14675 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14676 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14677 check_vector_cst (expected, actual);
14678 }
14679
14680 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
14681 and that its elements match EXPECTED. */
14682
14683 static void
14684 check_vector_cst_stepped (vec<tree> expected, tree actual,
14685 unsigned int npatterns)
14686 {
14687 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14688 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
14689 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
14690 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14691 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
14692 check_vector_cst (expected, actual);
14693 }
14694
14695 /* Test the creation of VECTOR_CSTs. */
14696
14697 static void
14698 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
14699 {
14700 auto_vec<tree, 8> elements (8);
14701 elements.quick_grow (8);
14702 tree element_type = build_nonstandard_integer_type (16, true);
14703 tree vector_type = build_vector_type (element_type, 8);
14704
14705 /* Test a simple linear series with a base of 0 and a step of 1:
14706 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
14707 for (unsigned int i = 0; i < 8; ++i)
14708 elements[i] = build_int_cst (element_type, i);
14709 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
14710 check_vector_cst_stepped (elements, vector, 1);
14711
14712 /* Try the same with the first element replaced by 100:
14713 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
14714 elements[0] = build_int_cst (element_type, 100);
14715 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14716 check_vector_cst_stepped (elements, vector, 1);
14717
14718 /* Try a series that wraps around.
14719 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
14720 for (unsigned int i = 1; i < 8; ++i)
14721 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
14722 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14723 check_vector_cst_stepped (elements, vector, 1);
14724
14725 /* Try a downward series:
14726 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
14727 for (unsigned int i = 1; i < 8; ++i)
14728 elements[i] = build_int_cst (element_type, 80 - i);
14729 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14730 check_vector_cst_stepped (elements, vector, 1);
14731
14732 /* Try two interleaved series with different bases and steps:
14733 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
14734 elements[1] = build_int_cst (element_type, 53);
14735 for (unsigned int i = 2; i < 8; i += 2)
14736 {
14737 elements[i] = build_int_cst (element_type, 70 - i * 2);
14738 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
14739 }
14740 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14741 check_vector_cst_stepped (elements, vector, 2);
14742
14743 /* Try a duplicated value:
14744 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
14745 for (unsigned int i = 1; i < 8; ++i)
14746 elements[i] = elements[0];
14747 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14748 check_vector_cst_duplicate (elements, vector, 1);
14749
14750 /* Try an interleaved duplicated value:
14751 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
14752 elements[1] = build_int_cst (element_type, 55);
14753 for (unsigned int i = 2; i < 8; ++i)
14754 elements[i] = elements[i - 2];
14755 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14756 check_vector_cst_duplicate (elements, vector, 2);
14757
14758 /* Try a duplicated value with 2 exceptions
14759 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
14760 elements[0] = build_int_cst (element_type, 41);
14761 elements[1] = build_int_cst (element_type, 97);
14762 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14763 check_vector_cst_fill (elements, vector, 2);
14764
14765 /* Try with and without a step
14766 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
14767 for (unsigned int i = 3; i < 8; i += 2)
14768 elements[i] = build_int_cst (element_type, i * 7);
14769 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14770 check_vector_cst_stepped (elements, vector, 2);
14771
14772 /* Try a fully-general constant:
14773 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
14774 elements[5] = build_int_cst (element_type, 9990);
14775 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14776 check_vector_cst_fill (elements, vector, 4);
14777 }
14778
14779 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
14780 Helper function for test_location_wrappers, to deal with STRIP_NOPS
14781 modifying its argument in-place. */
14782
14783 static void
14784 check_strip_nops (tree node, tree expected)
14785 {
14786 STRIP_NOPS (node);
14787 ASSERT_EQ (expected, node);
14788 }
14789
14790 /* Verify location wrappers. */
14791
14792 static void
14793 test_location_wrappers ()
14794 {
14795 location_t loc = BUILTINS_LOCATION;
14796
14797 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
14798
14799 /* Wrapping a constant. */
14800 tree int_cst = build_int_cst (integer_type_node, 42);
14801 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
14802 ASSERT_FALSE (location_wrapper_p (int_cst));
14803
14804 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
14805 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
14806 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
14807 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
14808
14809 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
14810 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
14811
14812 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
14813 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
14814 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
14815 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
14816
14817 /* Wrapping a STRING_CST. */
14818 tree string_cst = build_string (4, "foo");
14819 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
14820 ASSERT_FALSE (location_wrapper_p (string_cst));
14821
14822 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
14823 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
14824 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
14825 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
14826 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
14827
14828
14829 /* Wrapping a variable. */
14830 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
14831 get_identifier ("some_int_var"),
14832 integer_type_node);
14833 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
14834 ASSERT_FALSE (location_wrapper_p (int_var));
14835
14836 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
14837 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
14838 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
14839 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
14840
14841 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
14842 wrapper. */
14843 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
14844 ASSERT_FALSE (location_wrapper_p (r_cast));
14845 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
14846
14847 /* Verify that STRIP_NOPS removes wrappers. */
14848 check_strip_nops (wrapped_int_cst, int_cst);
14849 check_strip_nops (wrapped_string_cst, string_cst);
14850 check_strip_nops (wrapped_int_var, int_var);
14851 }
14852
14853 /* Check that string escaping works correctly. */
14854
14855 static void
14856 test_escaped_strings (void)
14857 {
14858 int saved_cutoff;
14859 escaped_string msg;
14860
14861 msg.escape (NULL);
14862 /* ASSERT_STREQ does not accept NULL as a valid test
14863 result, so we have to use ASSERT_EQ instead. */
14864 ASSERT_EQ (NULL, (const char *) msg);
14865
14866 msg.escape ("");
14867 ASSERT_STREQ ("", (const char *) msg);
14868
14869 msg.escape ("foobar");
14870 ASSERT_STREQ ("foobar", (const char *) msg);
14871
14872 /* Ensure that we have -fmessage-length set to 0. */
14873 saved_cutoff = pp_line_cutoff (global_dc->printer);
14874 pp_line_cutoff (global_dc->printer) = 0;
14875
14876 msg.escape ("foo\nbar");
14877 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
14878
14879 msg.escape ("\a\b\f\n\r\t\v");
14880 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
14881
14882 /* Now repeat the tests with -fmessage-length set to 5. */
14883 pp_line_cutoff (global_dc->printer) = 5;
14884
14885 /* Note that the newline is not translated into an escape. */
14886 msg.escape ("foo\nbar");
14887 ASSERT_STREQ ("foo\nbar", (const char *) msg);
14888
14889 msg.escape ("\a\b\f\n\r\t\v");
14890 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
14891
14892 /* Restore the original message length setting. */
14893 pp_line_cutoff (global_dc->printer) = saved_cutoff;
14894 }
14895
14896 /* Run all of the selftests within this file. */
14897
14898 void
14899 tree_c_tests ()
14900 {
14901 test_integer_constants ();
14902 test_identifiers ();
14903 test_labels ();
14904 test_vector_cst_patterns ();
14905 test_location_wrappers ();
14906 test_escaped_strings ();
14907 }
14908
14909 } // namespace selftest
14910
14911 #endif /* CHECKING_P */
14912
14913 #include "gt-tree.h"