tree.c (get_unwidened): Remove code fiddling with COMPONENT_REF.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "fixed-value.h"
54
55 /* Each tree code class has an associated string representation.
56 These must correspond to the tree_code_class entries. */
57
58 const char *const tree_code_class_strings[] =
59 {
60 "exceptional",
61 "constant",
62 "type",
63 "declaration",
64 "reference",
65 "comparison",
66 "unary",
67 "binary",
68 "statement",
69 "vl_exp",
70 "expression",
71 "gimple_stmt"
72 };
73
74 /* obstack.[ch] explicitly declined to prototype this. */
75 extern int _obstack_allocated_p (struct obstack *h, void *obj);
76
77 #ifdef GATHER_STATISTICS
78 /* Statistics-gathering stuff. */
79
80 int tree_node_counts[(int) all_kinds];
81 int tree_node_sizes[(int) all_kinds];
82
83 /* Keep in sync with tree.h:enum tree_node_kind. */
84 static const char * const tree_node_kind_names[] = {
85 "decls",
86 "types",
87 "blocks",
88 "stmts",
89 "refs",
90 "exprs",
91 "constants",
92 "identifiers",
93 "perm_tree_lists",
94 "temp_tree_lists",
95 "vecs",
96 "binfos",
97 "phi_nodes",
98 "ssa names",
99 "constructors",
100 "random kinds",
101 "lang_decl kinds",
102 "lang_type kinds",
103 "omp clauses",
104 "gimple statements"
105 };
106 #endif /* GATHER_STATISTICS */
107
108 /* Unique id for next decl created. */
109 static GTY(()) int next_decl_uid;
110 /* Unique id for next type created. */
111 static GTY(()) int next_type_uid = 1;
112
113 /* Since we cannot rehash a type after it is in the table, we have to
114 keep the hash code. */
115
116 struct type_hash GTY(())
117 {
118 unsigned long hash;
119 tree type;
120 };
121
122 /* Initial size of the hash table (rounded to next prime). */
123 #define TYPE_HASH_INITIAL_SIZE 1000
124
125 /* Now here is the hash table. When recording a type, it is added to
126 the slot whose index is the hash code. Note that the hash table is
127 used for several kinds of types (function types, array types and
128 array index range types, for now). While all these live in the
129 same table, they are completely independent, and the hash code is
130 computed differently for each of these. */
131
132 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
133 htab_t type_hash_table;
134
135 /* Hash table and temporary node for larger integer const values. */
136 static GTY (()) tree int_cst_node;
137 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
138 htab_t int_cst_hash_table;
139
140 /* General tree->tree mapping structure for use in hash tables. */
141
142
143 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
144 htab_t debug_expr_for_decl;
145
146 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
147 htab_t value_expr_for_decl;
148
149 static GTY ((if_marked ("tree_priority_map_marked_p"),
150 param_is (struct tree_priority_map)))
151 htab_t init_priority_for_decl;
152
153 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
154 htab_t restrict_base_for_decl;
155
156 static void set_type_quals (tree, int);
157 static int type_hash_eq (const void *, const void *);
158 static hashval_t type_hash_hash (const void *);
159 static hashval_t int_cst_hash_hash (const void *);
160 static int int_cst_hash_eq (const void *, const void *);
161 static void print_type_hash_statistics (void);
162 static void print_debug_expr_statistics (void);
163 static void print_value_expr_statistics (void);
164 static int type_hash_marked_p (const void *);
165 static unsigned int type_hash_list (const_tree, hashval_t);
166 static unsigned int attribute_hash_list (const_tree, hashval_t);
167
168 tree global_trees[TI_MAX];
169 tree integer_types[itk_none];
170
171 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
172
173 /* Number of operands for each OpenMP clause. */
174 unsigned const char omp_clause_num_ops[] =
175 {
176 0, /* OMP_CLAUSE_ERROR */
177 1, /* OMP_CLAUSE_PRIVATE */
178 1, /* OMP_CLAUSE_SHARED */
179 1, /* OMP_CLAUSE_FIRSTPRIVATE */
180 1, /* OMP_CLAUSE_LASTPRIVATE */
181 4, /* OMP_CLAUSE_REDUCTION */
182 1, /* OMP_CLAUSE_COPYIN */
183 1, /* OMP_CLAUSE_COPYPRIVATE */
184 1, /* OMP_CLAUSE_IF */
185 1, /* OMP_CLAUSE_NUM_THREADS */
186 1, /* OMP_CLAUSE_SCHEDULE */
187 0, /* OMP_CLAUSE_NOWAIT */
188 0, /* OMP_CLAUSE_ORDERED */
189 0 /* OMP_CLAUSE_DEFAULT */
190 };
191
192 const char * const omp_clause_code_name[] =
193 {
194 "error_clause",
195 "private",
196 "shared",
197 "firstprivate",
198 "lastprivate",
199 "reduction",
200 "copyin",
201 "copyprivate",
202 "if",
203 "num_threads",
204 "schedule",
205 "nowait",
206 "ordered",
207 "default"
208 };
209 \f
210 /* Init tree.c. */
211
212 void
213 init_ttree (void)
214 {
215 /* Initialize the hash table of types. */
216 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
217 type_hash_eq, 0);
218
219 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
220 tree_map_eq, 0);
221
222 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
223 tree_map_eq, 0);
224 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
225 tree_priority_map_eq, 0);
226 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
227 tree_map_eq, 0);
228
229 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
230 int_cst_hash_eq, NULL);
231
232 int_cst_node = make_node (INTEGER_CST);
233
234 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
235 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
236 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
237
238
239 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
240 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
241 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
242 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
243 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
244 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
245 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
246 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
247 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
248
249
250 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
251 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
252 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
253 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
254 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
255 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
256
257 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
258 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
259 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
260 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
261 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
262 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
263 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
264 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
265 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
266 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
267 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
268 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
269 tree_contains_struct[MEMORY_PARTITION_TAG][TS_DECL_MINIMAL] = 1;
270
271 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
272 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
273 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
274 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_TAG] = 1;
275
276 tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
277 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_PARTITION_TAG] = 1;
278
279 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
280 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
281 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
282 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
283
284 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
285 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
286 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
287 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
288 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
289 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
290 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
291 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
292
293 lang_hooks.init_ts ();
294 }
295
296 \f
297 /* The name of the object as the assembler will see it (but before any
298 translations made by ASM_OUTPUT_LABELREF). Often this is the same
299 as DECL_NAME. It is an IDENTIFIER_NODE. */
300 tree
301 decl_assembler_name (tree decl)
302 {
303 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
304 lang_hooks.set_decl_assembler_name (decl);
305 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
306 }
307
308 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
309
310 bool
311 decl_assembler_name_equal (tree decl, tree asmname)
312 {
313 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
314
315 if (decl_asmname == asmname)
316 return true;
317
318 /* If the target assembler name was set by the user, things are trickier.
319 We have a leading '*' to begin with. After that, it's arguable what
320 is the correct thing to do with -fleading-underscore. Arguably, we've
321 historically been doing the wrong thing in assemble_alias by always
322 printing the leading underscore. Since we're not changing that, make
323 sure user_label_prefix follows the '*' before matching. */
324 if (IDENTIFIER_POINTER (decl_asmname)[0] == '*')
325 {
326 const char *decl_str = IDENTIFIER_POINTER (decl_asmname) + 1;
327 size_t ulp_len = strlen (user_label_prefix);
328
329 if (ulp_len == 0)
330 ;
331 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
332 decl_str += ulp_len;
333 else
334 return false;
335
336 return strcmp (decl_str, IDENTIFIER_POINTER (asmname)) == 0;
337 }
338
339 return false;
340 }
341
342 /* Compute the number of bytes occupied by a tree with code CODE.
343 This function cannot be used for nodes that have variable sizes,
344 including TREE_VEC, PHI_NODE, STRING_CST, and CALL_EXPR. */
345 size_t
346 tree_code_size (enum tree_code code)
347 {
348 switch (TREE_CODE_CLASS (code))
349 {
350 case tcc_declaration: /* A decl node */
351 {
352 switch (code)
353 {
354 case FIELD_DECL:
355 return sizeof (struct tree_field_decl);
356 case PARM_DECL:
357 return sizeof (struct tree_parm_decl);
358 case VAR_DECL:
359 return sizeof (struct tree_var_decl);
360 case LABEL_DECL:
361 return sizeof (struct tree_label_decl);
362 case RESULT_DECL:
363 return sizeof (struct tree_result_decl);
364 case CONST_DECL:
365 return sizeof (struct tree_const_decl);
366 case TYPE_DECL:
367 return sizeof (struct tree_type_decl);
368 case FUNCTION_DECL:
369 return sizeof (struct tree_function_decl);
370 case NAME_MEMORY_TAG:
371 case SYMBOL_MEMORY_TAG:
372 return sizeof (struct tree_memory_tag);
373 case STRUCT_FIELD_TAG:
374 return sizeof (struct tree_struct_field_tag);
375 case MEMORY_PARTITION_TAG:
376 return sizeof (struct tree_memory_partition_tag);
377 default:
378 return sizeof (struct tree_decl_non_common);
379 }
380 }
381
382 case tcc_type: /* a type node */
383 return sizeof (struct tree_type);
384
385 case tcc_reference: /* a reference */
386 case tcc_expression: /* an expression */
387 case tcc_statement: /* an expression with side effects */
388 case tcc_comparison: /* a comparison expression */
389 case tcc_unary: /* a unary arithmetic expression */
390 case tcc_binary: /* a binary arithmetic expression */
391 return (sizeof (struct tree_exp)
392 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
393
394 case tcc_gimple_stmt:
395 return (sizeof (struct gimple_stmt)
396 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
397
398 case tcc_constant: /* a constant */
399 switch (code)
400 {
401 case INTEGER_CST: return sizeof (struct tree_int_cst);
402 case REAL_CST: return sizeof (struct tree_real_cst);
403 case FIXED_CST: return sizeof (struct tree_fixed_cst);
404 case COMPLEX_CST: return sizeof (struct tree_complex);
405 case VECTOR_CST: return sizeof (struct tree_vector);
406 case STRING_CST: gcc_unreachable ();
407 default:
408 return lang_hooks.tree_size (code);
409 }
410
411 case tcc_exceptional: /* something random, like an identifier. */
412 switch (code)
413 {
414 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
415 case TREE_LIST: return sizeof (struct tree_list);
416
417 case ERROR_MARK:
418 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
419
420 case TREE_VEC:
421 case OMP_CLAUSE:
422 case PHI_NODE: gcc_unreachable ();
423
424 case SSA_NAME: return sizeof (struct tree_ssa_name);
425
426 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
427 case BLOCK: return sizeof (struct tree_block);
428 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
429 case CONSTRUCTOR: return sizeof (struct tree_constructor);
430
431 default:
432 return lang_hooks.tree_size (code);
433 }
434
435 default:
436 gcc_unreachable ();
437 }
438 }
439
440 /* Compute the number of bytes occupied by NODE. This routine only
441 looks at TREE_CODE, except for those nodes that have variable sizes. */
442 size_t
443 tree_size (const_tree node)
444 {
445 const enum tree_code code = TREE_CODE (node);
446 switch (code)
447 {
448 case PHI_NODE:
449 return (sizeof (struct tree_phi_node)
450 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
451
452 case TREE_BINFO:
453 return (offsetof (struct tree_binfo, base_binfos)
454 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
455
456 case TREE_VEC:
457 return (sizeof (struct tree_vec)
458 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
459
460 case STRING_CST:
461 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
462
463 case OMP_CLAUSE:
464 return (sizeof (struct tree_omp_clause)
465 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
466 * sizeof (tree));
467
468 default:
469 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
470 return (sizeof (struct tree_exp)
471 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
472 else
473 return tree_code_size (code);
474 }
475 }
476
477 /* Return a newly allocated node of code CODE. For decl and type
478 nodes, some other fields are initialized. The rest of the node is
479 initialized to zero. This function cannot be used for PHI_NODE,
480 TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
481 tree_code_size.
482
483 Achoo! I got a code in the node. */
484
485 tree
486 make_node_stat (enum tree_code code MEM_STAT_DECL)
487 {
488 tree t;
489 enum tree_code_class type = TREE_CODE_CLASS (code);
490 size_t length = tree_code_size (code);
491 #ifdef GATHER_STATISTICS
492 tree_node_kind kind;
493
494 switch (type)
495 {
496 case tcc_declaration: /* A decl node */
497 kind = d_kind;
498 break;
499
500 case tcc_type: /* a type node */
501 kind = t_kind;
502 break;
503
504 case tcc_statement: /* an expression with side effects */
505 kind = s_kind;
506 break;
507
508 case tcc_reference: /* a reference */
509 kind = r_kind;
510 break;
511
512 case tcc_expression: /* an expression */
513 case tcc_comparison: /* a comparison expression */
514 case tcc_unary: /* a unary arithmetic expression */
515 case tcc_binary: /* a binary arithmetic expression */
516 kind = e_kind;
517 break;
518
519 case tcc_constant: /* a constant */
520 kind = c_kind;
521 break;
522
523 case tcc_gimple_stmt:
524 kind = gimple_stmt_kind;
525 break;
526
527 case tcc_exceptional: /* something random, like an identifier. */
528 switch (code)
529 {
530 case IDENTIFIER_NODE:
531 kind = id_kind;
532 break;
533
534 case TREE_VEC:
535 kind = vec_kind;
536 break;
537
538 case TREE_BINFO:
539 kind = binfo_kind;
540 break;
541
542 case PHI_NODE:
543 kind = phi_kind;
544 break;
545
546 case SSA_NAME:
547 kind = ssa_name_kind;
548 break;
549
550 case BLOCK:
551 kind = b_kind;
552 break;
553
554 case CONSTRUCTOR:
555 kind = constr_kind;
556 break;
557
558 default:
559 kind = x_kind;
560 break;
561 }
562 break;
563
564 default:
565 gcc_unreachable ();
566 }
567
568 tree_node_counts[(int) kind]++;
569 tree_node_sizes[(int) kind] += length;
570 #endif
571
572 if (code == IDENTIFIER_NODE)
573 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
574 else
575 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
576
577 memset (t, 0, length);
578
579 TREE_SET_CODE (t, code);
580
581 switch (type)
582 {
583 case tcc_statement:
584 TREE_SIDE_EFFECTS (t) = 1;
585 break;
586
587 case tcc_declaration:
588 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
589 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
590 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
591 {
592 if (code == FUNCTION_DECL)
593 {
594 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
595 DECL_MODE (t) = FUNCTION_MODE;
596 }
597 else
598 DECL_ALIGN (t) = 1;
599 /* We have not yet computed the alias set for this declaration. */
600 DECL_POINTER_ALIAS_SET (t) = -1;
601 }
602 DECL_SOURCE_LOCATION (t) = input_location;
603 DECL_UID (t) = next_decl_uid++;
604
605 break;
606
607 case tcc_type:
608 TYPE_UID (t) = next_type_uid++;
609 TYPE_ALIGN (t) = BITS_PER_UNIT;
610 TYPE_USER_ALIGN (t) = 0;
611 TYPE_MAIN_VARIANT (t) = t;
612 TYPE_CANONICAL (t) = t;
613
614 /* Default to no attributes for type, but let target change that. */
615 TYPE_ATTRIBUTES (t) = NULL_TREE;
616 targetm.set_default_type_attributes (t);
617
618 /* We have not yet computed the alias set for this type. */
619 TYPE_ALIAS_SET (t) = -1;
620 break;
621
622 case tcc_constant:
623 TREE_CONSTANT (t) = 1;
624 TREE_INVARIANT (t) = 1;
625 break;
626
627 case tcc_expression:
628 switch (code)
629 {
630 case INIT_EXPR:
631 case MODIFY_EXPR:
632 case VA_ARG_EXPR:
633 case PREDECREMENT_EXPR:
634 case PREINCREMENT_EXPR:
635 case POSTDECREMENT_EXPR:
636 case POSTINCREMENT_EXPR:
637 /* All of these have side-effects, no matter what their
638 operands are. */
639 TREE_SIDE_EFFECTS (t) = 1;
640 break;
641
642 default:
643 break;
644 }
645 break;
646
647 case tcc_gimple_stmt:
648 switch (code)
649 {
650 case GIMPLE_MODIFY_STMT:
651 TREE_SIDE_EFFECTS (t) = 1;
652 break;
653
654 default:
655 break;
656 }
657
658 default:
659 /* Other classes need no special treatment. */
660 break;
661 }
662
663 return t;
664 }
665 \f
666 /* Return a new node with the same contents as NODE except that its
667 TREE_CHAIN is zero and it has a fresh uid. */
668
669 tree
670 copy_node_stat (tree node MEM_STAT_DECL)
671 {
672 tree t;
673 enum tree_code code = TREE_CODE (node);
674 size_t length;
675
676 gcc_assert (code != STATEMENT_LIST);
677
678 length = tree_size (node);
679 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
680 memcpy (t, node, length);
681
682 if (!GIMPLE_TUPLE_P (node))
683 TREE_CHAIN (t) = 0;
684 TREE_ASM_WRITTEN (t) = 0;
685 TREE_VISITED (t) = 0;
686 t->base.ann = 0;
687
688 if (TREE_CODE_CLASS (code) == tcc_declaration)
689 {
690 DECL_UID (t) = next_decl_uid++;
691 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
692 && DECL_HAS_VALUE_EXPR_P (node))
693 {
694 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
695 DECL_HAS_VALUE_EXPR_P (t) = 1;
696 }
697 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
698 {
699 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
700 DECL_HAS_INIT_PRIORITY_P (t) = 1;
701 }
702 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
703 {
704 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
705 DECL_BASED_ON_RESTRICT_P (t) = 1;
706 }
707 }
708 else if (TREE_CODE_CLASS (code) == tcc_type)
709 {
710 TYPE_UID (t) = next_type_uid++;
711 /* The following is so that the debug code for
712 the copy is different from the original type.
713 The two statements usually duplicate each other
714 (because they clear fields of the same union),
715 but the optimizer should catch that. */
716 TYPE_SYMTAB_POINTER (t) = 0;
717 TYPE_SYMTAB_ADDRESS (t) = 0;
718
719 /* Do not copy the values cache. */
720 if (TYPE_CACHED_VALUES_P(t))
721 {
722 TYPE_CACHED_VALUES_P (t) = 0;
723 TYPE_CACHED_VALUES (t) = NULL_TREE;
724 }
725 }
726
727 return t;
728 }
729
730 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
731 For example, this can copy a list made of TREE_LIST nodes. */
732
733 tree
734 copy_list (tree list)
735 {
736 tree head;
737 tree prev, next;
738
739 if (list == 0)
740 return 0;
741
742 head = prev = copy_node (list);
743 next = TREE_CHAIN (list);
744 while (next)
745 {
746 TREE_CHAIN (prev) = copy_node (next);
747 prev = TREE_CHAIN (prev);
748 next = TREE_CHAIN (next);
749 }
750 return head;
751 }
752
753 \f
754 /* Create an INT_CST node with a LOW value sign extended. */
755
756 tree
757 build_int_cst (tree type, HOST_WIDE_INT low)
758 {
759 /* Support legacy code. */
760 if (!type)
761 type = integer_type_node;
762
763 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
764 }
765
766 /* Create an INT_CST node with a LOW value zero extended. */
767
768 tree
769 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
770 {
771 return build_int_cst_wide (type, low, 0);
772 }
773
774 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
775 if it is negative. This function is similar to build_int_cst, but
776 the extra bits outside of the type precision are cleared. Constants
777 with these extra bits may confuse the fold so that it detects overflows
778 even in cases when they do not occur, and in general should be avoided.
779 We cannot however make this a default behavior of build_int_cst without
780 more intrusive changes, since there are parts of gcc that rely on the extra
781 precision of the integer constants. */
782
783 tree
784 build_int_cst_type (tree type, HOST_WIDE_INT low)
785 {
786 unsigned HOST_WIDE_INT low1;
787 HOST_WIDE_INT hi;
788
789 gcc_assert (type);
790
791 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
792
793 return build_int_cst_wide (type, low1, hi);
794 }
795
796 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
797 and sign extended according to the value range of TYPE. */
798
799 tree
800 build_int_cst_wide_type (tree type,
801 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
802 {
803 fit_double_type (low, high, &low, &high, type);
804 return build_int_cst_wide (type, low, high);
805 }
806
807 /* These are the hash table functions for the hash table of INTEGER_CST
808 nodes of a sizetype. */
809
810 /* Return the hash code code X, an INTEGER_CST. */
811
812 static hashval_t
813 int_cst_hash_hash (const void *x)
814 {
815 const_tree const t = (const_tree) x;
816
817 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
818 ^ htab_hash_pointer (TREE_TYPE (t)));
819 }
820
821 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
822 is the same as that given by *Y, which is the same. */
823
824 static int
825 int_cst_hash_eq (const void *x, const void *y)
826 {
827 const_tree const xt = (const_tree) x;
828 const_tree const yt = (const_tree) y;
829
830 return (TREE_TYPE (xt) == TREE_TYPE (yt)
831 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
832 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
833 }
834
835 /* Create an INT_CST node of TYPE and value HI:LOW.
836 The returned node is always shared. For small integers we use a
837 per-type vector cache, for larger ones we use a single hash table. */
838
839 tree
840 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
841 {
842 tree t;
843 int ix = -1;
844 int limit = 0;
845
846 gcc_assert (type);
847
848 switch (TREE_CODE (type))
849 {
850 case POINTER_TYPE:
851 case REFERENCE_TYPE:
852 /* Cache NULL pointer. */
853 if (!hi && !low)
854 {
855 limit = 1;
856 ix = 0;
857 }
858 break;
859
860 case BOOLEAN_TYPE:
861 /* Cache false or true. */
862 limit = 2;
863 if (!hi && low < 2)
864 ix = low;
865 break;
866
867 case INTEGER_TYPE:
868 case OFFSET_TYPE:
869 if (TYPE_UNSIGNED (type))
870 {
871 /* Cache 0..N */
872 limit = INTEGER_SHARE_LIMIT;
873 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
874 ix = low;
875 }
876 else
877 {
878 /* Cache -1..N */
879 limit = INTEGER_SHARE_LIMIT + 1;
880 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
881 ix = low + 1;
882 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
883 ix = 0;
884 }
885 break;
886
887 case ENUMERAL_TYPE:
888 break;
889
890 default:
891 gcc_unreachable ();
892 }
893
894 if (ix >= 0)
895 {
896 /* Look for it in the type's vector of small shared ints. */
897 if (!TYPE_CACHED_VALUES_P (type))
898 {
899 TYPE_CACHED_VALUES_P (type) = 1;
900 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
901 }
902
903 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
904 if (t)
905 {
906 /* Make sure no one is clobbering the shared constant. */
907 gcc_assert (TREE_TYPE (t) == type);
908 gcc_assert (TREE_INT_CST_LOW (t) == low);
909 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
910 }
911 else
912 {
913 /* Create a new shared int. */
914 t = make_node (INTEGER_CST);
915
916 TREE_INT_CST_LOW (t) = low;
917 TREE_INT_CST_HIGH (t) = hi;
918 TREE_TYPE (t) = type;
919
920 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
921 }
922 }
923 else
924 {
925 /* Use the cache of larger shared ints. */
926 void **slot;
927
928 TREE_INT_CST_LOW (int_cst_node) = low;
929 TREE_INT_CST_HIGH (int_cst_node) = hi;
930 TREE_TYPE (int_cst_node) = type;
931
932 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
933 t = *slot;
934 if (!t)
935 {
936 /* Insert this one into the hash table. */
937 t = int_cst_node;
938 *slot = t;
939 /* Make a new node for next time round. */
940 int_cst_node = make_node (INTEGER_CST);
941 }
942 }
943
944 return t;
945 }
946
947 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
948 and the rest are zeros. */
949
950 tree
951 build_low_bits_mask (tree type, unsigned bits)
952 {
953 unsigned HOST_WIDE_INT low;
954 HOST_WIDE_INT high;
955 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
956
957 gcc_assert (bits <= TYPE_PRECISION (type));
958
959 if (bits == TYPE_PRECISION (type)
960 && !TYPE_UNSIGNED (type))
961 {
962 /* Sign extended all-ones mask. */
963 low = all_ones;
964 high = -1;
965 }
966 else if (bits <= HOST_BITS_PER_WIDE_INT)
967 {
968 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
969 high = 0;
970 }
971 else
972 {
973 bits -= HOST_BITS_PER_WIDE_INT;
974 low = all_ones;
975 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
976 }
977
978 return build_int_cst_wide (type, low, high);
979 }
980
981 /* Checks that X is integer constant that can be expressed in (unsigned)
982 HOST_WIDE_INT without loss of precision. */
983
984 bool
985 cst_and_fits_in_hwi (const_tree x)
986 {
987 if (TREE_CODE (x) != INTEGER_CST)
988 return false;
989
990 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
991 return false;
992
993 return (TREE_INT_CST_HIGH (x) == 0
994 || TREE_INT_CST_HIGH (x) == -1);
995 }
996
997 /* Return a new VECTOR_CST node whose type is TYPE and whose values
998 are in a list pointed to by VALS. */
999
1000 tree
1001 build_vector (tree type, tree vals)
1002 {
1003 tree v = make_node (VECTOR_CST);
1004 int over = 0;
1005 tree link;
1006
1007 TREE_VECTOR_CST_ELTS (v) = vals;
1008 TREE_TYPE (v) = type;
1009
1010 /* Iterate through elements and check for overflow. */
1011 for (link = vals; link; link = TREE_CHAIN (link))
1012 {
1013 tree value = TREE_VALUE (link);
1014
1015 /* Don't crash if we get an address constant. */
1016 if (!CONSTANT_CLASS_P (value))
1017 continue;
1018
1019 over |= TREE_OVERFLOW (value);
1020 }
1021
1022 TREE_OVERFLOW (v) = over;
1023 return v;
1024 }
1025
1026 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1027 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1028
1029 tree
1030 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1031 {
1032 tree list = NULL_TREE;
1033 unsigned HOST_WIDE_INT idx;
1034 tree value;
1035
1036 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1037 list = tree_cons (NULL_TREE, value, list);
1038 return build_vector (type, nreverse (list));
1039 }
1040
1041 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1042 are in the VEC pointed to by VALS. */
1043 tree
1044 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1045 {
1046 tree c = make_node (CONSTRUCTOR);
1047 TREE_TYPE (c) = type;
1048 CONSTRUCTOR_ELTS (c) = vals;
1049 return c;
1050 }
1051
1052 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1053 INDEX and VALUE. */
1054 tree
1055 build_constructor_single (tree type, tree index, tree value)
1056 {
1057 VEC(constructor_elt,gc) *v;
1058 constructor_elt *elt;
1059 tree t;
1060
1061 v = VEC_alloc (constructor_elt, gc, 1);
1062 elt = VEC_quick_push (constructor_elt, v, NULL);
1063 elt->index = index;
1064 elt->value = value;
1065
1066 t = build_constructor (type, v);
1067 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1068 return t;
1069 }
1070
1071
1072 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1073 are in a list pointed to by VALS. */
1074 tree
1075 build_constructor_from_list (tree type, tree vals)
1076 {
1077 tree t, val;
1078 VEC(constructor_elt,gc) *v = NULL;
1079 bool constant_p = true;
1080
1081 if (vals)
1082 {
1083 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1084 for (t = vals; t; t = TREE_CHAIN (t))
1085 {
1086 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1087 val = TREE_VALUE (t);
1088 elt->index = TREE_PURPOSE (t);
1089 elt->value = val;
1090 if (!TREE_CONSTANT (val))
1091 constant_p = false;
1092 }
1093 }
1094
1095 t = build_constructor (type, v);
1096 TREE_CONSTANT (t) = constant_p;
1097 return t;
1098 }
1099
1100 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1101
1102 tree
1103 build_fixed (tree type, FIXED_VALUE_TYPE f)
1104 {
1105 tree v;
1106 FIXED_VALUE_TYPE *fp;
1107
1108 v = make_node (FIXED_CST);
1109 fp = ggc_alloc (sizeof (FIXED_VALUE_TYPE));
1110 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1111
1112 TREE_TYPE (v) = type;
1113 TREE_FIXED_CST_PTR (v) = fp;
1114 return v;
1115 }
1116
1117 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1118
1119 tree
1120 build_real (tree type, REAL_VALUE_TYPE d)
1121 {
1122 tree v;
1123 REAL_VALUE_TYPE *dp;
1124 int overflow = 0;
1125
1126 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1127 Consider doing it via real_convert now. */
1128
1129 v = make_node (REAL_CST);
1130 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1131 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1132
1133 TREE_TYPE (v) = type;
1134 TREE_REAL_CST_PTR (v) = dp;
1135 TREE_OVERFLOW (v) = overflow;
1136 return v;
1137 }
1138
1139 /* Return a new REAL_CST node whose type is TYPE
1140 and whose value is the integer value of the INTEGER_CST node I. */
1141
1142 REAL_VALUE_TYPE
1143 real_value_from_int_cst (const_tree type, const_tree i)
1144 {
1145 REAL_VALUE_TYPE d;
1146
1147 /* Clear all bits of the real value type so that we can later do
1148 bitwise comparisons to see if two values are the same. */
1149 memset (&d, 0, sizeof d);
1150
1151 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1152 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1153 TYPE_UNSIGNED (TREE_TYPE (i)));
1154 return d;
1155 }
1156
1157 /* Given a tree representing an integer constant I, return a tree
1158 representing the same value as a floating-point constant of type TYPE. */
1159
1160 tree
1161 build_real_from_int_cst (tree type, const_tree i)
1162 {
1163 tree v;
1164 int overflow = TREE_OVERFLOW (i);
1165
1166 v = build_real (type, real_value_from_int_cst (type, i));
1167
1168 TREE_OVERFLOW (v) |= overflow;
1169 return v;
1170 }
1171
1172 /* Return a newly constructed STRING_CST node whose value is
1173 the LEN characters at STR.
1174 The TREE_TYPE is not initialized. */
1175
1176 tree
1177 build_string (int len, const char *str)
1178 {
1179 tree s;
1180 size_t length;
1181
1182 /* Do not waste bytes provided by padding of struct tree_string. */
1183 length = len + offsetof (struct tree_string, str) + 1;
1184
1185 #ifdef GATHER_STATISTICS
1186 tree_node_counts[(int) c_kind]++;
1187 tree_node_sizes[(int) c_kind] += length;
1188 #endif
1189
1190 s = ggc_alloc_tree (length);
1191
1192 memset (s, 0, sizeof (struct tree_common));
1193 TREE_SET_CODE (s, STRING_CST);
1194 TREE_CONSTANT (s) = 1;
1195 TREE_INVARIANT (s) = 1;
1196 TREE_STRING_LENGTH (s) = len;
1197 memcpy (s->string.str, str, len);
1198 s->string.str[len] = '\0';
1199
1200 return s;
1201 }
1202
1203 /* Return a newly constructed COMPLEX_CST node whose value is
1204 specified by the real and imaginary parts REAL and IMAG.
1205 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1206 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1207
1208 tree
1209 build_complex (tree type, tree real, tree imag)
1210 {
1211 tree t = make_node (COMPLEX_CST);
1212
1213 TREE_REALPART (t) = real;
1214 TREE_IMAGPART (t) = imag;
1215 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1216 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1217 return t;
1218 }
1219
1220 /* Return a constant of arithmetic type TYPE which is the
1221 multiplicative identity of the set TYPE. */
1222
1223 tree
1224 build_one_cst (tree type)
1225 {
1226 switch (TREE_CODE (type))
1227 {
1228 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1229 case POINTER_TYPE: case REFERENCE_TYPE:
1230 case OFFSET_TYPE:
1231 return build_int_cst (type, 1);
1232
1233 case REAL_TYPE:
1234 return build_real (type, dconst1);
1235
1236 case FIXED_POINT_TYPE:
1237 /* We can only generate 1 for accum types. */
1238 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1239 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1240
1241 case VECTOR_TYPE:
1242 {
1243 tree scalar, cst;
1244 int i;
1245
1246 scalar = build_one_cst (TREE_TYPE (type));
1247
1248 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1249 cst = NULL_TREE;
1250 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1251 cst = tree_cons (NULL_TREE, scalar, cst);
1252
1253 return build_vector (type, cst);
1254 }
1255
1256 case COMPLEX_TYPE:
1257 return build_complex (type,
1258 build_one_cst (TREE_TYPE (type)),
1259 fold_convert (TREE_TYPE (type), integer_zero_node));
1260
1261 default:
1262 gcc_unreachable ();
1263 }
1264 }
1265
1266 /* Build a BINFO with LEN language slots. */
1267
1268 tree
1269 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1270 {
1271 tree t;
1272 size_t length = (offsetof (struct tree_binfo, base_binfos)
1273 + VEC_embedded_size (tree, base_binfos));
1274
1275 #ifdef GATHER_STATISTICS
1276 tree_node_counts[(int) binfo_kind]++;
1277 tree_node_sizes[(int) binfo_kind] += length;
1278 #endif
1279
1280 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1281
1282 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1283
1284 TREE_SET_CODE (t, TREE_BINFO);
1285
1286 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1287
1288 return t;
1289 }
1290
1291
1292 /* Build a newly constructed TREE_VEC node of length LEN. */
1293
1294 tree
1295 make_tree_vec_stat (int len MEM_STAT_DECL)
1296 {
1297 tree t;
1298 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1299
1300 #ifdef GATHER_STATISTICS
1301 tree_node_counts[(int) vec_kind]++;
1302 tree_node_sizes[(int) vec_kind] += length;
1303 #endif
1304
1305 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1306
1307 memset (t, 0, length);
1308
1309 TREE_SET_CODE (t, TREE_VEC);
1310 TREE_VEC_LENGTH (t) = len;
1311
1312 return t;
1313 }
1314 \f
1315 /* Return 1 if EXPR is the integer constant zero or a complex constant
1316 of zero. */
1317
1318 int
1319 integer_zerop (const_tree expr)
1320 {
1321 STRIP_NOPS (expr);
1322
1323 return ((TREE_CODE (expr) == INTEGER_CST
1324 && TREE_INT_CST_LOW (expr) == 0
1325 && TREE_INT_CST_HIGH (expr) == 0)
1326 || (TREE_CODE (expr) == COMPLEX_CST
1327 && integer_zerop (TREE_REALPART (expr))
1328 && integer_zerop (TREE_IMAGPART (expr))));
1329 }
1330
1331 /* Return 1 if EXPR is the integer constant one or the corresponding
1332 complex constant. */
1333
1334 int
1335 integer_onep (const_tree expr)
1336 {
1337 STRIP_NOPS (expr);
1338
1339 return ((TREE_CODE (expr) == INTEGER_CST
1340 && TREE_INT_CST_LOW (expr) == 1
1341 && TREE_INT_CST_HIGH (expr) == 0)
1342 || (TREE_CODE (expr) == COMPLEX_CST
1343 && integer_onep (TREE_REALPART (expr))
1344 && integer_zerop (TREE_IMAGPART (expr))));
1345 }
1346
1347 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1348 it contains. Likewise for the corresponding complex constant. */
1349
1350 int
1351 integer_all_onesp (const_tree expr)
1352 {
1353 int prec;
1354 int uns;
1355
1356 STRIP_NOPS (expr);
1357
1358 if (TREE_CODE (expr) == COMPLEX_CST
1359 && integer_all_onesp (TREE_REALPART (expr))
1360 && integer_zerop (TREE_IMAGPART (expr)))
1361 return 1;
1362
1363 else if (TREE_CODE (expr) != INTEGER_CST)
1364 return 0;
1365
1366 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1367 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1368 && TREE_INT_CST_HIGH (expr) == -1)
1369 return 1;
1370 if (!uns)
1371 return 0;
1372
1373 /* Note that using TYPE_PRECISION here is wrong. We care about the
1374 actual bits, not the (arbitrary) range of the type. */
1375 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1376 if (prec >= HOST_BITS_PER_WIDE_INT)
1377 {
1378 HOST_WIDE_INT high_value;
1379 int shift_amount;
1380
1381 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1382
1383 /* Can not handle precisions greater than twice the host int size. */
1384 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1385 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1386 /* Shifting by the host word size is undefined according to the ANSI
1387 standard, so we must handle this as a special case. */
1388 high_value = -1;
1389 else
1390 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1391
1392 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1393 && TREE_INT_CST_HIGH (expr) == high_value);
1394 }
1395 else
1396 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1397 }
1398
1399 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1400 one bit on). */
1401
1402 int
1403 integer_pow2p (const_tree expr)
1404 {
1405 int prec;
1406 HOST_WIDE_INT high, low;
1407
1408 STRIP_NOPS (expr);
1409
1410 if (TREE_CODE (expr) == COMPLEX_CST
1411 && integer_pow2p (TREE_REALPART (expr))
1412 && integer_zerop (TREE_IMAGPART (expr)))
1413 return 1;
1414
1415 if (TREE_CODE (expr) != INTEGER_CST)
1416 return 0;
1417
1418 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1419 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1420 high = TREE_INT_CST_HIGH (expr);
1421 low = TREE_INT_CST_LOW (expr);
1422
1423 /* First clear all bits that are beyond the type's precision in case
1424 we've been sign extended. */
1425
1426 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1427 ;
1428 else if (prec > HOST_BITS_PER_WIDE_INT)
1429 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1430 else
1431 {
1432 high = 0;
1433 if (prec < HOST_BITS_PER_WIDE_INT)
1434 low &= ~((HOST_WIDE_INT) (-1) << prec);
1435 }
1436
1437 if (high == 0 && low == 0)
1438 return 0;
1439
1440 return ((high == 0 && (low & (low - 1)) == 0)
1441 || (low == 0 && (high & (high - 1)) == 0));
1442 }
1443
1444 /* Return 1 if EXPR is an integer constant other than zero or a
1445 complex constant other than zero. */
1446
1447 int
1448 integer_nonzerop (const_tree expr)
1449 {
1450 STRIP_NOPS (expr);
1451
1452 return ((TREE_CODE (expr) == INTEGER_CST
1453 && (TREE_INT_CST_LOW (expr) != 0
1454 || TREE_INT_CST_HIGH (expr) != 0))
1455 || (TREE_CODE (expr) == COMPLEX_CST
1456 && (integer_nonzerop (TREE_REALPART (expr))
1457 || integer_nonzerop (TREE_IMAGPART (expr)))));
1458 }
1459
1460 /* Return 1 if EXPR is the fixed-point constant zero. */
1461
1462 int
1463 fixed_zerop (const_tree expr)
1464 {
1465 return (TREE_CODE (expr) == FIXED_CST
1466 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1467 }
1468
1469 /* Return the power of two represented by a tree node known to be a
1470 power of two. */
1471
1472 int
1473 tree_log2 (const_tree expr)
1474 {
1475 int prec;
1476 HOST_WIDE_INT high, low;
1477
1478 STRIP_NOPS (expr);
1479
1480 if (TREE_CODE (expr) == COMPLEX_CST)
1481 return tree_log2 (TREE_REALPART (expr));
1482
1483 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1484 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1485
1486 high = TREE_INT_CST_HIGH (expr);
1487 low = TREE_INT_CST_LOW (expr);
1488
1489 /* First clear all bits that are beyond the type's precision in case
1490 we've been sign extended. */
1491
1492 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1493 ;
1494 else if (prec > HOST_BITS_PER_WIDE_INT)
1495 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1496 else
1497 {
1498 high = 0;
1499 if (prec < HOST_BITS_PER_WIDE_INT)
1500 low &= ~((HOST_WIDE_INT) (-1) << prec);
1501 }
1502
1503 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1504 : exact_log2 (low));
1505 }
1506
1507 /* Similar, but return the largest integer Y such that 2 ** Y is less
1508 than or equal to EXPR. */
1509
1510 int
1511 tree_floor_log2 (const_tree expr)
1512 {
1513 int prec;
1514 HOST_WIDE_INT high, low;
1515
1516 STRIP_NOPS (expr);
1517
1518 if (TREE_CODE (expr) == COMPLEX_CST)
1519 return tree_log2 (TREE_REALPART (expr));
1520
1521 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1522 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1523
1524 high = TREE_INT_CST_HIGH (expr);
1525 low = TREE_INT_CST_LOW (expr);
1526
1527 /* First clear all bits that are beyond the type's precision in case
1528 we've been sign extended. Ignore if type's precision hasn't been set
1529 since what we are doing is setting it. */
1530
1531 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1532 ;
1533 else if (prec > HOST_BITS_PER_WIDE_INT)
1534 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1535 else
1536 {
1537 high = 0;
1538 if (prec < HOST_BITS_PER_WIDE_INT)
1539 low &= ~((HOST_WIDE_INT) (-1) << prec);
1540 }
1541
1542 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1543 : floor_log2 (low));
1544 }
1545
1546 /* Return 1 if EXPR is the real constant zero. */
1547
1548 int
1549 real_zerop (const_tree expr)
1550 {
1551 STRIP_NOPS (expr);
1552
1553 return ((TREE_CODE (expr) == REAL_CST
1554 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1555 || (TREE_CODE (expr) == COMPLEX_CST
1556 && real_zerop (TREE_REALPART (expr))
1557 && real_zerop (TREE_IMAGPART (expr))));
1558 }
1559
1560 /* Return 1 if EXPR is the real constant one in real or complex form. */
1561
1562 int
1563 real_onep (const_tree expr)
1564 {
1565 STRIP_NOPS (expr);
1566
1567 return ((TREE_CODE (expr) == REAL_CST
1568 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1569 || (TREE_CODE (expr) == COMPLEX_CST
1570 && real_onep (TREE_REALPART (expr))
1571 && real_zerop (TREE_IMAGPART (expr))));
1572 }
1573
1574 /* Return 1 if EXPR is the real constant two. */
1575
1576 int
1577 real_twop (const_tree expr)
1578 {
1579 STRIP_NOPS (expr);
1580
1581 return ((TREE_CODE (expr) == REAL_CST
1582 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1583 || (TREE_CODE (expr) == COMPLEX_CST
1584 && real_twop (TREE_REALPART (expr))
1585 && real_zerop (TREE_IMAGPART (expr))));
1586 }
1587
1588 /* Return 1 if EXPR is the real constant minus one. */
1589
1590 int
1591 real_minus_onep (const_tree expr)
1592 {
1593 STRIP_NOPS (expr);
1594
1595 return ((TREE_CODE (expr) == REAL_CST
1596 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1597 || (TREE_CODE (expr) == COMPLEX_CST
1598 && real_minus_onep (TREE_REALPART (expr))
1599 && real_zerop (TREE_IMAGPART (expr))));
1600 }
1601
1602 /* Nonzero if EXP is a constant or a cast of a constant. */
1603
1604 int
1605 really_constant_p (const_tree exp)
1606 {
1607 /* This is not quite the same as STRIP_NOPS. It does more. */
1608 while (TREE_CODE (exp) == NOP_EXPR
1609 || TREE_CODE (exp) == CONVERT_EXPR
1610 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1611 exp = TREE_OPERAND (exp, 0);
1612 return TREE_CONSTANT (exp);
1613 }
1614 \f
1615 /* Return first list element whose TREE_VALUE is ELEM.
1616 Return 0 if ELEM is not in LIST. */
1617
1618 tree
1619 value_member (tree elem, tree list)
1620 {
1621 while (list)
1622 {
1623 if (elem == TREE_VALUE (list))
1624 return list;
1625 list = TREE_CHAIN (list);
1626 }
1627 return NULL_TREE;
1628 }
1629
1630 /* Return first list element whose TREE_PURPOSE is ELEM.
1631 Return 0 if ELEM is not in LIST. */
1632
1633 tree
1634 purpose_member (const_tree elem, tree list)
1635 {
1636 while (list)
1637 {
1638 if (elem == TREE_PURPOSE (list))
1639 return list;
1640 list = TREE_CHAIN (list);
1641 }
1642 return NULL_TREE;
1643 }
1644
1645 /* Return nonzero if ELEM is part of the chain CHAIN. */
1646
1647 int
1648 chain_member (const_tree elem, const_tree chain)
1649 {
1650 while (chain)
1651 {
1652 if (elem == chain)
1653 return 1;
1654 chain = TREE_CHAIN (chain);
1655 }
1656
1657 return 0;
1658 }
1659
1660 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1661 We expect a null pointer to mark the end of the chain.
1662 This is the Lisp primitive `length'. */
1663
1664 int
1665 list_length (const_tree t)
1666 {
1667 const_tree p = t;
1668 #ifdef ENABLE_TREE_CHECKING
1669 const_tree q = t;
1670 #endif
1671 int len = 0;
1672
1673 while (p)
1674 {
1675 p = TREE_CHAIN (p);
1676 #ifdef ENABLE_TREE_CHECKING
1677 if (len % 2)
1678 q = TREE_CHAIN (q);
1679 gcc_assert (p != q);
1680 #endif
1681 len++;
1682 }
1683
1684 return len;
1685 }
1686
1687 /* Returns the number of FIELD_DECLs in TYPE. */
1688
1689 int
1690 fields_length (const_tree type)
1691 {
1692 tree t = TYPE_FIELDS (type);
1693 int count = 0;
1694
1695 for (; t; t = TREE_CHAIN (t))
1696 if (TREE_CODE (t) == FIELD_DECL)
1697 ++count;
1698
1699 return count;
1700 }
1701
1702 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1703 by modifying the last node in chain 1 to point to chain 2.
1704 This is the Lisp primitive `nconc'. */
1705
1706 tree
1707 chainon (tree op1, tree op2)
1708 {
1709 tree t1;
1710
1711 if (!op1)
1712 return op2;
1713 if (!op2)
1714 return op1;
1715
1716 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1717 continue;
1718 TREE_CHAIN (t1) = op2;
1719
1720 #ifdef ENABLE_TREE_CHECKING
1721 {
1722 tree t2;
1723 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1724 gcc_assert (t2 != t1);
1725 }
1726 #endif
1727
1728 return op1;
1729 }
1730
1731 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1732
1733 tree
1734 tree_last (tree chain)
1735 {
1736 tree next;
1737 if (chain)
1738 while ((next = TREE_CHAIN (chain)))
1739 chain = next;
1740 return chain;
1741 }
1742
1743 /* Reverse the order of elements in the chain T,
1744 and return the new head of the chain (old last element). */
1745
1746 tree
1747 nreverse (tree t)
1748 {
1749 tree prev = 0, decl, next;
1750 for (decl = t; decl; decl = next)
1751 {
1752 next = TREE_CHAIN (decl);
1753 TREE_CHAIN (decl) = prev;
1754 prev = decl;
1755 }
1756 return prev;
1757 }
1758 \f
1759 /* Return a newly created TREE_LIST node whose
1760 purpose and value fields are PARM and VALUE. */
1761
1762 tree
1763 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1764 {
1765 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1766 TREE_PURPOSE (t) = parm;
1767 TREE_VALUE (t) = value;
1768 return t;
1769 }
1770
1771 /* Return a newly created TREE_LIST node whose
1772 purpose and value fields are PURPOSE and VALUE
1773 and whose TREE_CHAIN is CHAIN. */
1774
1775 tree
1776 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1777 {
1778 tree node;
1779
1780 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1781
1782 memset (node, 0, sizeof (struct tree_common));
1783
1784 #ifdef GATHER_STATISTICS
1785 tree_node_counts[(int) x_kind]++;
1786 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1787 #endif
1788
1789 TREE_SET_CODE (node, TREE_LIST);
1790 TREE_CHAIN (node) = chain;
1791 TREE_PURPOSE (node) = purpose;
1792 TREE_VALUE (node) = value;
1793 return node;
1794 }
1795
1796 \f
1797 /* Return the size nominally occupied by an object of type TYPE
1798 when it resides in memory. The value is measured in units of bytes,
1799 and its data type is that normally used for type sizes
1800 (which is the first type created by make_signed_type or
1801 make_unsigned_type). */
1802
1803 tree
1804 size_in_bytes (const_tree type)
1805 {
1806 tree t;
1807
1808 if (type == error_mark_node)
1809 return integer_zero_node;
1810
1811 type = TYPE_MAIN_VARIANT (type);
1812 t = TYPE_SIZE_UNIT (type);
1813
1814 if (t == 0)
1815 {
1816 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1817 return size_zero_node;
1818 }
1819
1820 return t;
1821 }
1822
1823 /* Return the size of TYPE (in bytes) as a wide integer
1824 or return -1 if the size can vary or is larger than an integer. */
1825
1826 HOST_WIDE_INT
1827 int_size_in_bytes (const_tree type)
1828 {
1829 tree t;
1830
1831 if (type == error_mark_node)
1832 return 0;
1833
1834 type = TYPE_MAIN_VARIANT (type);
1835 t = TYPE_SIZE_UNIT (type);
1836 if (t == 0
1837 || TREE_CODE (t) != INTEGER_CST
1838 || TREE_INT_CST_HIGH (t) != 0
1839 /* If the result would appear negative, it's too big to represent. */
1840 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1841 return -1;
1842
1843 return TREE_INT_CST_LOW (t);
1844 }
1845
1846 /* Return the maximum size of TYPE (in bytes) as a wide integer
1847 or return -1 if the size can vary or is larger than an integer. */
1848
1849 HOST_WIDE_INT
1850 max_int_size_in_bytes (const_tree type)
1851 {
1852 HOST_WIDE_INT size = -1;
1853 tree size_tree;
1854
1855 /* If this is an array type, check for a possible MAX_SIZE attached. */
1856
1857 if (TREE_CODE (type) == ARRAY_TYPE)
1858 {
1859 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1860
1861 if (size_tree && host_integerp (size_tree, 1))
1862 size = tree_low_cst (size_tree, 1);
1863 }
1864
1865 /* If we still haven't been able to get a size, see if the language
1866 can compute a maximum size. */
1867
1868 if (size == -1)
1869 {
1870 size_tree = lang_hooks.types.max_size (type);
1871
1872 if (size_tree && host_integerp (size_tree, 1))
1873 size = tree_low_cst (size_tree, 1);
1874 }
1875
1876 return size;
1877 }
1878 \f
1879 /* Return the bit position of FIELD, in bits from the start of the record.
1880 This is a tree of type bitsizetype. */
1881
1882 tree
1883 bit_position (const_tree field)
1884 {
1885 return bit_from_pos (DECL_FIELD_OFFSET (field),
1886 DECL_FIELD_BIT_OFFSET (field));
1887 }
1888
1889 /* Likewise, but return as an integer. It must be representable in
1890 that way (since it could be a signed value, we don't have the
1891 option of returning -1 like int_size_in_byte can. */
1892
1893 HOST_WIDE_INT
1894 int_bit_position (const_tree field)
1895 {
1896 return tree_low_cst (bit_position (field), 0);
1897 }
1898 \f
1899 /* Return the byte position of FIELD, in bytes from the start of the record.
1900 This is a tree of type sizetype. */
1901
1902 tree
1903 byte_position (const_tree field)
1904 {
1905 return byte_from_pos (DECL_FIELD_OFFSET (field),
1906 DECL_FIELD_BIT_OFFSET (field));
1907 }
1908
1909 /* Likewise, but return as an integer. It must be representable in
1910 that way (since it could be a signed value, we don't have the
1911 option of returning -1 like int_size_in_byte can. */
1912
1913 HOST_WIDE_INT
1914 int_byte_position (const_tree field)
1915 {
1916 return tree_low_cst (byte_position (field), 0);
1917 }
1918 \f
1919 /* Return the strictest alignment, in bits, that T is known to have. */
1920
1921 unsigned int
1922 expr_align (const_tree t)
1923 {
1924 unsigned int align0, align1;
1925
1926 switch (TREE_CODE (t))
1927 {
1928 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1929 /* If we have conversions, we know that the alignment of the
1930 object must meet each of the alignments of the types. */
1931 align0 = expr_align (TREE_OPERAND (t, 0));
1932 align1 = TYPE_ALIGN (TREE_TYPE (t));
1933 return MAX (align0, align1);
1934
1935 case GIMPLE_MODIFY_STMT:
1936 /* We should never ask for the alignment of a gimple statement. */
1937 gcc_unreachable ();
1938
1939 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1940 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1941 case CLEANUP_POINT_EXPR:
1942 /* These don't change the alignment of an object. */
1943 return expr_align (TREE_OPERAND (t, 0));
1944
1945 case COND_EXPR:
1946 /* The best we can do is say that the alignment is the least aligned
1947 of the two arms. */
1948 align0 = expr_align (TREE_OPERAND (t, 1));
1949 align1 = expr_align (TREE_OPERAND (t, 2));
1950 return MIN (align0, align1);
1951
1952 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
1953 meaningfully, it's always 1. */
1954 case LABEL_DECL: case CONST_DECL:
1955 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1956 case FUNCTION_DECL:
1957 gcc_assert (DECL_ALIGN (t) != 0);
1958 return DECL_ALIGN (t);
1959
1960 default:
1961 break;
1962 }
1963
1964 /* Otherwise take the alignment from that of the type. */
1965 return TYPE_ALIGN (TREE_TYPE (t));
1966 }
1967 \f
1968 /* Return, as a tree node, the number of elements for TYPE (which is an
1969 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1970
1971 tree
1972 array_type_nelts (const_tree type)
1973 {
1974 tree index_type, min, max;
1975
1976 /* If they did it with unspecified bounds, then we should have already
1977 given an error about it before we got here. */
1978 if (! TYPE_DOMAIN (type))
1979 return error_mark_node;
1980
1981 index_type = TYPE_DOMAIN (type);
1982 min = TYPE_MIN_VALUE (index_type);
1983 max = TYPE_MAX_VALUE (index_type);
1984
1985 return (integer_zerop (min)
1986 ? max
1987 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1988 }
1989 \f
1990 /* If arg is static -- a reference to an object in static storage -- then
1991 return the object. This is not the same as the C meaning of `static'.
1992 If arg isn't static, return NULL. */
1993
1994 tree
1995 staticp (tree arg)
1996 {
1997 switch (TREE_CODE (arg))
1998 {
1999 case FUNCTION_DECL:
2000 /* Nested functions are static, even though taking their address will
2001 involve a trampoline as we unnest the nested function and create
2002 the trampoline on the tree level. */
2003 return arg;
2004
2005 case VAR_DECL:
2006 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2007 && ! DECL_THREAD_LOCAL_P (arg)
2008 && ! DECL_DLLIMPORT_P (arg)
2009 ? arg : NULL);
2010
2011 case CONST_DECL:
2012 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2013 ? arg : NULL);
2014
2015 case CONSTRUCTOR:
2016 return TREE_STATIC (arg) ? arg : NULL;
2017
2018 case LABEL_DECL:
2019 case STRING_CST:
2020 return arg;
2021
2022 case COMPONENT_REF:
2023 /* If the thing being referenced is not a field, then it is
2024 something language specific. */
2025 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
2026 return (*lang_hooks.staticp) (arg);
2027
2028 /* If we are referencing a bitfield, we can't evaluate an
2029 ADDR_EXPR at compile time and so it isn't a constant. */
2030 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2031 return NULL;
2032
2033 return staticp (TREE_OPERAND (arg, 0));
2034
2035 case BIT_FIELD_REF:
2036 return NULL;
2037
2038 case MISALIGNED_INDIRECT_REF:
2039 case ALIGN_INDIRECT_REF:
2040 case INDIRECT_REF:
2041 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2042
2043 case ARRAY_REF:
2044 case ARRAY_RANGE_REF:
2045 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2046 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2047 return staticp (TREE_OPERAND (arg, 0));
2048 else
2049 return false;
2050
2051 default:
2052 if ((unsigned int) TREE_CODE (arg)
2053 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
2054 return lang_hooks.staticp (arg);
2055 else
2056 return NULL;
2057 }
2058 }
2059 \f
2060 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2061 Do this to any expression which may be used in more than one place,
2062 but must be evaluated only once.
2063
2064 Normally, expand_expr would reevaluate the expression each time.
2065 Calling save_expr produces something that is evaluated and recorded
2066 the first time expand_expr is called on it. Subsequent calls to
2067 expand_expr just reuse the recorded value.
2068
2069 The call to expand_expr that generates code that actually computes
2070 the value is the first call *at compile time*. Subsequent calls
2071 *at compile time* generate code to use the saved value.
2072 This produces correct result provided that *at run time* control
2073 always flows through the insns made by the first expand_expr
2074 before reaching the other places where the save_expr was evaluated.
2075 You, the caller of save_expr, must make sure this is so.
2076
2077 Constants, and certain read-only nodes, are returned with no
2078 SAVE_EXPR because that is safe. Expressions containing placeholders
2079 are not touched; see tree.def for an explanation of what these
2080 are used for. */
2081
2082 tree
2083 save_expr (tree expr)
2084 {
2085 tree t = fold (expr);
2086 tree inner;
2087
2088 /* If the tree evaluates to a constant, then we don't want to hide that
2089 fact (i.e. this allows further folding, and direct checks for constants).
2090 However, a read-only object that has side effects cannot be bypassed.
2091 Since it is no problem to reevaluate literals, we just return the
2092 literal node. */
2093 inner = skip_simple_arithmetic (t);
2094
2095 if (TREE_INVARIANT (inner)
2096 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2097 || TREE_CODE (inner) == SAVE_EXPR
2098 || TREE_CODE (inner) == ERROR_MARK)
2099 return t;
2100
2101 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2102 it means that the size or offset of some field of an object depends on
2103 the value within another field.
2104
2105 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2106 and some variable since it would then need to be both evaluated once and
2107 evaluated more than once. Front-ends must assure this case cannot
2108 happen by surrounding any such subexpressions in their own SAVE_EXPR
2109 and forcing evaluation at the proper time. */
2110 if (contains_placeholder_p (inner))
2111 return t;
2112
2113 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2114
2115 /* This expression might be placed ahead of a jump to ensure that the
2116 value was computed on both sides of the jump. So make sure it isn't
2117 eliminated as dead. */
2118 TREE_SIDE_EFFECTS (t) = 1;
2119 TREE_INVARIANT (t) = 1;
2120 return t;
2121 }
2122
2123 /* Look inside EXPR and into any simple arithmetic operations. Return
2124 the innermost non-arithmetic node. */
2125
2126 tree
2127 skip_simple_arithmetic (tree expr)
2128 {
2129 tree inner;
2130
2131 /* We don't care about whether this can be used as an lvalue in this
2132 context. */
2133 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2134 expr = TREE_OPERAND (expr, 0);
2135
2136 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2137 a constant, it will be more efficient to not make another SAVE_EXPR since
2138 it will allow better simplification and GCSE will be able to merge the
2139 computations if they actually occur. */
2140 inner = expr;
2141 while (1)
2142 {
2143 if (UNARY_CLASS_P (inner))
2144 inner = TREE_OPERAND (inner, 0);
2145 else if (BINARY_CLASS_P (inner))
2146 {
2147 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2148 inner = TREE_OPERAND (inner, 0);
2149 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2150 inner = TREE_OPERAND (inner, 1);
2151 else
2152 break;
2153 }
2154 else
2155 break;
2156 }
2157
2158 return inner;
2159 }
2160
2161 /* Return which tree structure is used by T. */
2162
2163 enum tree_node_structure_enum
2164 tree_node_structure (const_tree t)
2165 {
2166 const enum tree_code code = TREE_CODE (t);
2167
2168 switch (TREE_CODE_CLASS (code))
2169 {
2170 case tcc_declaration:
2171 {
2172 switch (code)
2173 {
2174 case FIELD_DECL:
2175 return TS_FIELD_DECL;
2176 case PARM_DECL:
2177 return TS_PARM_DECL;
2178 case VAR_DECL:
2179 return TS_VAR_DECL;
2180 case LABEL_DECL:
2181 return TS_LABEL_DECL;
2182 case RESULT_DECL:
2183 return TS_RESULT_DECL;
2184 case CONST_DECL:
2185 return TS_CONST_DECL;
2186 case TYPE_DECL:
2187 return TS_TYPE_DECL;
2188 case FUNCTION_DECL:
2189 return TS_FUNCTION_DECL;
2190 case SYMBOL_MEMORY_TAG:
2191 case NAME_MEMORY_TAG:
2192 case STRUCT_FIELD_TAG:
2193 case MEMORY_PARTITION_TAG:
2194 return TS_MEMORY_TAG;
2195 default:
2196 return TS_DECL_NON_COMMON;
2197 }
2198 }
2199 case tcc_type:
2200 return TS_TYPE;
2201 case tcc_reference:
2202 case tcc_comparison:
2203 case tcc_unary:
2204 case tcc_binary:
2205 case tcc_expression:
2206 case tcc_statement:
2207 case tcc_vl_exp:
2208 return TS_EXP;
2209 case tcc_gimple_stmt:
2210 return TS_GIMPLE_STATEMENT;
2211 default: /* tcc_constant and tcc_exceptional */
2212 break;
2213 }
2214 switch (code)
2215 {
2216 /* tcc_constant cases. */
2217 case INTEGER_CST: return TS_INT_CST;
2218 case REAL_CST: return TS_REAL_CST;
2219 case FIXED_CST: return TS_FIXED_CST;
2220 case COMPLEX_CST: return TS_COMPLEX;
2221 case VECTOR_CST: return TS_VECTOR;
2222 case STRING_CST: return TS_STRING;
2223 /* tcc_exceptional cases. */
2224 /* FIXME tuples: eventually this should be TS_BASE. For now, nothing
2225 returns TS_BASE. */
2226 case ERROR_MARK: return TS_COMMON;
2227 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2228 case TREE_LIST: return TS_LIST;
2229 case TREE_VEC: return TS_VEC;
2230 case PHI_NODE: return TS_PHI_NODE;
2231 case SSA_NAME: return TS_SSA_NAME;
2232 case PLACEHOLDER_EXPR: return TS_COMMON;
2233 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2234 case BLOCK: return TS_BLOCK;
2235 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2236 case TREE_BINFO: return TS_BINFO;
2237 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2238 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2239
2240 default:
2241 gcc_unreachable ();
2242 }
2243 }
2244 \f
2245 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2246 or offset that depends on a field within a record. */
2247
2248 bool
2249 contains_placeholder_p (const_tree exp)
2250 {
2251 enum tree_code code;
2252
2253 if (!exp)
2254 return 0;
2255
2256 code = TREE_CODE (exp);
2257 if (code == PLACEHOLDER_EXPR)
2258 return 1;
2259
2260 switch (TREE_CODE_CLASS (code))
2261 {
2262 case tcc_reference:
2263 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2264 position computations since they will be converted into a
2265 WITH_RECORD_EXPR involving the reference, which will assume
2266 here will be valid. */
2267 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2268
2269 case tcc_exceptional:
2270 if (code == TREE_LIST)
2271 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2272 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2273 break;
2274
2275 case tcc_unary:
2276 case tcc_binary:
2277 case tcc_comparison:
2278 case tcc_expression:
2279 switch (code)
2280 {
2281 case COMPOUND_EXPR:
2282 /* Ignoring the first operand isn't quite right, but works best. */
2283 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2284
2285 case COND_EXPR:
2286 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2287 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2288 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2289
2290 default:
2291 break;
2292 }
2293
2294 switch (TREE_CODE_LENGTH (code))
2295 {
2296 case 1:
2297 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2298 case 2:
2299 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2300 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2301 default:
2302 return 0;
2303 }
2304
2305 case tcc_vl_exp:
2306 switch (code)
2307 {
2308 case CALL_EXPR:
2309 {
2310 const_tree arg;
2311 const_call_expr_arg_iterator iter;
2312 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2313 if (CONTAINS_PLACEHOLDER_P (arg))
2314 return 1;
2315 return 0;
2316 }
2317 default:
2318 return 0;
2319 }
2320
2321 default:
2322 return 0;
2323 }
2324 return 0;
2325 }
2326
2327 /* Return true if any part of the computation of TYPE involves a
2328 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2329 (for QUAL_UNION_TYPE) and field positions. */
2330
2331 static bool
2332 type_contains_placeholder_1 (const_tree type)
2333 {
2334 /* If the size contains a placeholder or the parent type (component type in
2335 the case of arrays) type involves a placeholder, this type does. */
2336 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2337 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2338 || (TREE_TYPE (type) != 0
2339 && type_contains_placeholder_p (TREE_TYPE (type))))
2340 return true;
2341
2342 /* Now do type-specific checks. Note that the last part of the check above
2343 greatly limits what we have to do below. */
2344 switch (TREE_CODE (type))
2345 {
2346 case VOID_TYPE:
2347 case COMPLEX_TYPE:
2348 case ENUMERAL_TYPE:
2349 case BOOLEAN_TYPE:
2350 case POINTER_TYPE:
2351 case OFFSET_TYPE:
2352 case REFERENCE_TYPE:
2353 case METHOD_TYPE:
2354 case FUNCTION_TYPE:
2355 case VECTOR_TYPE:
2356 return false;
2357
2358 case INTEGER_TYPE:
2359 case REAL_TYPE:
2360 case FIXED_POINT_TYPE:
2361 /* Here we just check the bounds. */
2362 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2363 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2364
2365 case ARRAY_TYPE:
2366 /* We're already checked the component type (TREE_TYPE), so just check
2367 the index type. */
2368 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2369
2370 case RECORD_TYPE:
2371 case UNION_TYPE:
2372 case QUAL_UNION_TYPE:
2373 {
2374 tree field;
2375
2376 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2377 if (TREE_CODE (field) == FIELD_DECL
2378 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2379 || (TREE_CODE (type) == QUAL_UNION_TYPE
2380 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2381 || type_contains_placeholder_p (TREE_TYPE (field))))
2382 return true;
2383
2384 return false;
2385 }
2386
2387 default:
2388 gcc_unreachable ();
2389 }
2390 }
2391
2392 bool
2393 type_contains_placeholder_p (tree type)
2394 {
2395 bool result;
2396
2397 /* If the contains_placeholder_bits field has been initialized,
2398 then we know the answer. */
2399 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2400 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2401
2402 /* Indicate that we've seen this type node, and the answer is false.
2403 This is what we want to return if we run into recursion via fields. */
2404 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2405
2406 /* Compute the real value. */
2407 result = type_contains_placeholder_1 (type);
2408
2409 /* Store the real value. */
2410 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2411
2412 return result;
2413 }
2414 \f
2415 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2416 return a tree with all occurrences of references to F in a
2417 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2418 contains only arithmetic expressions or a CALL_EXPR with a
2419 PLACEHOLDER_EXPR occurring only in its arglist. */
2420
2421 tree
2422 substitute_in_expr (tree exp, tree f, tree r)
2423 {
2424 enum tree_code code = TREE_CODE (exp);
2425 tree op0, op1, op2, op3;
2426 tree new;
2427 tree inner;
2428
2429 /* We handle TREE_LIST and COMPONENT_REF separately. */
2430 if (code == TREE_LIST)
2431 {
2432 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2433 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2434 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2435 return exp;
2436
2437 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2438 }
2439 else if (code == COMPONENT_REF)
2440 {
2441 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2442 and it is the right field, replace it with R. */
2443 for (inner = TREE_OPERAND (exp, 0);
2444 REFERENCE_CLASS_P (inner);
2445 inner = TREE_OPERAND (inner, 0))
2446 ;
2447 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2448 && TREE_OPERAND (exp, 1) == f)
2449 return r;
2450
2451 /* If this expression hasn't been completed let, leave it alone. */
2452 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2453 return exp;
2454
2455 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2456 if (op0 == TREE_OPERAND (exp, 0))
2457 return exp;
2458
2459 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2460 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2461 }
2462 else
2463 switch (TREE_CODE_CLASS (code))
2464 {
2465 case tcc_constant:
2466 case tcc_declaration:
2467 return exp;
2468
2469 case tcc_exceptional:
2470 case tcc_unary:
2471 case tcc_binary:
2472 case tcc_comparison:
2473 case tcc_expression:
2474 case tcc_reference:
2475 switch (TREE_CODE_LENGTH (code))
2476 {
2477 case 0:
2478 return exp;
2479
2480 case 1:
2481 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2482 if (op0 == TREE_OPERAND (exp, 0))
2483 return exp;
2484
2485 new = fold_build1 (code, TREE_TYPE (exp), op0);
2486 break;
2487
2488 case 2:
2489 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2490 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2491
2492 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2493 return exp;
2494
2495 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2496 break;
2497
2498 case 3:
2499 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2500 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2501 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2502
2503 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2504 && op2 == TREE_OPERAND (exp, 2))
2505 return exp;
2506
2507 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2508 break;
2509
2510 case 4:
2511 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2512 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2513 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2514 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2515
2516 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2517 && op2 == TREE_OPERAND (exp, 2)
2518 && op3 == TREE_OPERAND (exp, 3))
2519 return exp;
2520
2521 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2522 break;
2523
2524 default:
2525 gcc_unreachable ();
2526 }
2527 break;
2528
2529 case tcc_vl_exp:
2530 {
2531 tree copy = NULL_TREE;
2532 int i;
2533
2534 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2535 {
2536 tree op = TREE_OPERAND (exp, i);
2537 tree newop = SUBSTITUTE_IN_EXPR (op, f, r);
2538 if (newop != op)
2539 {
2540 copy = copy_node (exp);
2541 TREE_OPERAND (copy, i) = newop;
2542 }
2543 }
2544 if (copy)
2545 new = fold (copy);
2546 else
2547 return exp;
2548 }
2549 break;
2550
2551 default:
2552 gcc_unreachable ();
2553 }
2554
2555 TREE_READONLY (new) = TREE_READONLY (exp);
2556 return new;
2557 }
2558
2559 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2560 for it within OBJ, a tree that is an object or a chain of references. */
2561
2562 tree
2563 substitute_placeholder_in_expr (tree exp, tree obj)
2564 {
2565 enum tree_code code = TREE_CODE (exp);
2566 tree op0, op1, op2, op3;
2567
2568 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2569 in the chain of OBJ. */
2570 if (code == PLACEHOLDER_EXPR)
2571 {
2572 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2573 tree elt;
2574
2575 for (elt = obj; elt != 0;
2576 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2577 || TREE_CODE (elt) == COND_EXPR)
2578 ? TREE_OPERAND (elt, 1)
2579 : (REFERENCE_CLASS_P (elt)
2580 || UNARY_CLASS_P (elt)
2581 || BINARY_CLASS_P (elt)
2582 || VL_EXP_CLASS_P (elt)
2583 || EXPRESSION_CLASS_P (elt))
2584 ? TREE_OPERAND (elt, 0) : 0))
2585 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2586 return elt;
2587
2588 for (elt = obj; elt != 0;
2589 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2590 || TREE_CODE (elt) == COND_EXPR)
2591 ? TREE_OPERAND (elt, 1)
2592 : (REFERENCE_CLASS_P (elt)
2593 || UNARY_CLASS_P (elt)
2594 || BINARY_CLASS_P (elt)
2595 || VL_EXP_CLASS_P (elt)
2596 || EXPRESSION_CLASS_P (elt))
2597 ? TREE_OPERAND (elt, 0) : 0))
2598 if (POINTER_TYPE_P (TREE_TYPE (elt))
2599 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2600 == need_type))
2601 return fold_build1 (INDIRECT_REF, need_type, elt);
2602
2603 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2604 survives until RTL generation, there will be an error. */
2605 return exp;
2606 }
2607
2608 /* TREE_LIST is special because we need to look at TREE_VALUE
2609 and TREE_CHAIN, not TREE_OPERANDS. */
2610 else if (code == TREE_LIST)
2611 {
2612 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2613 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2614 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2615 return exp;
2616
2617 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2618 }
2619 else
2620 switch (TREE_CODE_CLASS (code))
2621 {
2622 case tcc_constant:
2623 case tcc_declaration:
2624 return exp;
2625
2626 case tcc_exceptional:
2627 case tcc_unary:
2628 case tcc_binary:
2629 case tcc_comparison:
2630 case tcc_expression:
2631 case tcc_reference:
2632 case tcc_statement:
2633 switch (TREE_CODE_LENGTH (code))
2634 {
2635 case 0:
2636 return exp;
2637
2638 case 1:
2639 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2640 if (op0 == TREE_OPERAND (exp, 0))
2641 return exp;
2642 else
2643 return fold_build1 (code, TREE_TYPE (exp), op0);
2644
2645 case 2:
2646 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2647 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2648
2649 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2650 return exp;
2651 else
2652 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2653
2654 case 3:
2655 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2656 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2657 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2658
2659 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2660 && op2 == TREE_OPERAND (exp, 2))
2661 return exp;
2662 else
2663 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2664
2665 case 4:
2666 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2667 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2668 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2669 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2670
2671 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2672 && op2 == TREE_OPERAND (exp, 2)
2673 && op3 == TREE_OPERAND (exp, 3))
2674 return exp;
2675 else
2676 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2677
2678 default:
2679 gcc_unreachable ();
2680 }
2681 break;
2682
2683 case tcc_vl_exp:
2684 {
2685 tree copy = NULL_TREE;
2686 int i;
2687 int n = TREE_OPERAND_LENGTH (exp);
2688 for (i = 1; i < n; i++)
2689 {
2690 tree op = TREE_OPERAND (exp, i);
2691 tree newop = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
2692 if (newop != op)
2693 {
2694 if (!copy)
2695 copy = copy_node (exp);
2696 TREE_OPERAND (copy, i) = newop;
2697 }
2698 }
2699 if (copy)
2700 return fold (copy);
2701 else
2702 return exp;
2703 }
2704
2705 default:
2706 gcc_unreachable ();
2707 }
2708 }
2709 \f
2710 /* Stabilize a reference so that we can use it any number of times
2711 without causing its operands to be evaluated more than once.
2712 Returns the stabilized reference. This works by means of save_expr,
2713 so see the caveats in the comments about save_expr.
2714
2715 Also allows conversion expressions whose operands are references.
2716 Any other kind of expression is returned unchanged. */
2717
2718 tree
2719 stabilize_reference (tree ref)
2720 {
2721 tree result;
2722 enum tree_code code = TREE_CODE (ref);
2723
2724 switch (code)
2725 {
2726 case VAR_DECL:
2727 case PARM_DECL:
2728 case RESULT_DECL:
2729 /* No action is needed in this case. */
2730 return ref;
2731
2732 case NOP_EXPR:
2733 case CONVERT_EXPR:
2734 case FLOAT_EXPR:
2735 case FIX_TRUNC_EXPR:
2736 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2737 break;
2738
2739 case INDIRECT_REF:
2740 result = build_nt (INDIRECT_REF,
2741 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2742 break;
2743
2744 case COMPONENT_REF:
2745 result = build_nt (COMPONENT_REF,
2746 stabilize_reference (TREE_OPERAND (ref, 0)),
2747 TREE_OPERAND (ref, 1), NULL_TREE);
2748 break;
2749
2750 case BIT_FIELD_REF:
2751 result = build_nt (BIT_FIELD_REF,
2752 stabilize_reference (TREE_OPERAND (ref, 0)),
2753 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2754 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2755 break;
2756
2757 case ARRAY_REF:
2758 result = build_nt (ARRAY_REF,
2759 stabilize_reference (TREE_OPERAND (ref, 0)),
2760 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2761 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2762 break;
2763
2764 case ARRAY_RANGE_REF:
2765 result = build_nt (ARRAY_RANGE_REF,
2766 stabilize_reference (TREE_OPERAND (ref, 0)),
2767 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2768 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2769 break;
2770
2771 case COMPOUND_EXPR:
2772 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2773 it wouldn't be ignored. This matters when dealing with
2774 volatiles. */
2775 return stabilize_reference_1 (ref);
2776
2777 /* If arg isn't a kind of lvalue we recognize, make no change.
2778 Caller should recognize the error for an invalid lvalue. */
2779 default:
2780 return ref;
2781
2782 case ERROR_MARK:
2783 return error_mark_node;
2784 }
2785
2786 TREE_TYPE (result) = TREE_TYPE (ref);
2787 TREE_READONLY (result) = TREE_READONLY (ref);
2788 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2789 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2790
2791 return result;
2792 }
2793
2794 /* Subroutine of stabilize_reference; this is called for subtrees of
2795 references. Any expression with side-effects must be put in a SAVE_EXPR
2796 to ensure that it is only evaluated once.
2797
2798 We don't put SAVE_EXPR nodes around everything, because assigning very
2799 simple expressions to temporaries causes us to miss good opportunities
2800 for optimizations. Among other things, the opportunity to fold in the
2801 addition of a constant into an addressing mode often gets lost, e.g.
2802 "y[i+1] += x;". In general, we take the approach that we should not make
2803 an assignment unless we are forced into it - i.e., that any non-side effect
2804 operator should be allowed, and that cse should take care of coalescing
2805 multiple utterances of the same expression should that prove fruitful. */
2806
2807 tree
2808 stabilize_reference_1 (tree e)
2809 {
2810 tree result;
2811 enum tree_code code = TREE_CODE (e);
2812
2813 /* We cannot ignore const expressions because it might be a reference
2814 to a const array but whose index contains side-effects. But we can
2815 ignore things that are actual constant or that already have been
2816 handled by this function. */
2817
2818 if (TREE_INVARIANT (e))
2819 return e;
2820
2821 switch (TREE_CODE_CLASS (code))
2822 {
2823 case tcc_exceptional:
2824 case tcc_type:
2825 case tcc_declaration:
2826 case tcc_comparison:
2827 case tcc_statement:
2828 case tcc_expression:
2829 case tcc_reference:
2830 case tcc_vl_exp:
2831 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2832 so that it will only be evaluated once. */
2833 /* The reference (r) and comparison (<) classes could be handled as
2834 below, but it is generally faster to only evaluate them once. */
2835 if (TREE_SIDE_EFFECTS (e))
2836 return save_expr (e);
2837 return e;
2838
2839 case tcc_constant:
2840 /* Constants need no processing. In fact, we should never reach
2841 here. */
2842 return e;
2843
2844 case tcc_binary:
2845 /* Division is slow and tends to be compiled with jumps,
2846 especially the division by powers of 2 that is often
2847 found inside of an array reference. So do it just once. */
2848 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2849 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2850 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2851 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2852 return save_expr (e);
2853 /* Recursively stabilize each operand. */
2854 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2855 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2856 break;
2857
2858 case tcc_unary:
2859 /* Recursively stabilize each operand. */
2860 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2861 break;
2862
2863 default:
2864 gcc_unreachable ();
2865 }
2866
2867 TREE_TYPE (result) = TREE_TYPE (e);
2868 TREE_READONLY (result) = TREE_READONLY (e);
2869 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2870 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2871 TREE_INVARIANT (result) = 1;
2872
2873 return result;
2874 }
2875 \f
2876 /* Low-level constructors for expressions. */
2877
2878 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2879 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2880
2881 void
2882 recompute_tree_invariant_for_addr_expr (tree t)
2883 {
2884 tree node;
2885 bool tc = true, ti = true, se = false;
2886
2887 /* We started out assuming this address is both invariant and constant, but
2888 does not have side effects. Now go down any handled components and see if
2889 any of them involve offsets that are either non-constant or non-invariant.
2890 Also check for side-effects.
2891
2892 ??? Note that this code makes no attempt to deal with the case where
2893 taking the address of something causes a copy due to misalignment. */
2894
2895 #define UPDATE_TITCSE(NODE) \
2896 do { tree _node = (NODE); \
2897 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2898 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2899 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2900
2901 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2902 node = TREE_OPERAND (node, 0))
2903 {
2904 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2905 array reference (probably made temporarily by the G++ front end),
2906 so ignore all the operands. */
2907 if ((TREE_CODE (node) == ARRAY_REF
2908 || TREE_CODE (node) == ARRAY_RANGE_REF)
2909 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2910 {
2911 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2912 if (TREE_OPERAND (node, 2))
2913 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2914 if (TREE_OPERAND (node, 3))
2915 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2916 }
2917 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2918 FIELD_DECL, apparently. The G++ front end can put something else
2919 there, at least temporarily. */
2920 else if (TREE_CODE (node) == COMPONENT_REF
2921 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2922 {
2923 if (TREE_OPERAND (node, 2))
2924 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2925 }
2926 else if (TREE_CODE (node) == BIT_FIELD_REF)
2927 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2928 }
2929
2930 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2931
2932 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2933 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2934 invariant and constant if the decl is static. It's also invariant if it's
2935 a decl in the current function. Taking the address of a volatile variable
2936 is not volatile. If it's a constant, the address is both invariant and
2937 constant. Otherwise it's neither. */
2938 if (TREE_CODE (node) == INDIRECT_REF)
2939 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2940 else if (DECL_P (node))
2941 {
2942 if (staticp (node))
2943 ;
2944 else if (decl_function_context (node) == current_function_decl
2945 /* Addresses of thread-local variables are invariant. */
2946 || (TREE_CODE (node) == VAR_DECL
2947 && DECL_THREAD_LOCAL_P (node)))
2948 tc = false;
2949 else
2950 ti = tc = false;
2951 }
2952 else if (CONSTANT_CLASS_P (node))
2953 ;
2954 else
2955 {
2956 ti = tc = false;
2957 se |= TREE_SIDE_EFFECTS (node);
2958 }
2959
2960 TREE_CONSTANT (t) = tc;
2961 TREE_INVARIANT (t) = ti;
2962 TREE_SIDE_EFFECTS (t) = se;
2963 #undef UPDATE_TITCSE
2964 }
2965
2966 /* Build an expression of code CODE, data type TYPE, and operands as
2967 specified. Expressions and reference nodes can be created this way.
2968 Constants, decls, types and misc nodes cannot be.
2969
2970 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2971 enough for all extant tree codes. */
2972
2973 tree
2974 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2975 {
2976 tree t;
2977
2978 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2979
2980 t = make_node_stat (code PASS_MEM_STAT);
2981 TREE_TYPE (t) = tt;
2982
2983 return t;
2984 }
2985
2986 tree
2987 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2988 {
2989 int length = sizeof (struct tree_exp);
2990 #ifdef GATHER_STATISTICS
2991 tree_node_kind kind;
2992 #endif
2993 tree t;
2994
2995 #ifdef GATHER_STATISTICS
2996 switch (TREE_CODE_CLASS (code))
2997 {
2998 case tcc_statement: /* an expression with side effects */
2999 kind = s_kind;
3000 break;
3001 case tcc_reference: /* a reference */
3002 kind = r_kind;
3003 break;
3004 default:
3005 kind = e_kind;
3006 break;
3007 }
3008
3009 tree_node_counts[(int) kind]++;
3010 tree_node_sizes[(int) kind] += length;
3011 #endif
3012
3013 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3014
3015 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
3016
3017 memset (t, 0, sizeof (struct tree_common));
3018
3019 TREE_SET_CODE (t, code);
3020
3021 TREE_TYPE (t) = type;
3022 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3023 TREE_OPERAND (t, 0) = node;
3024 TREE_BLOCK (t) = NULL_TREE;
3025 if (node && !TYPE_P (node))
3026 {
3027 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3028 TREE_READONLY (t) = TREE_READONLY (node);
3029 }
3030
3031 if (TREE_CODE_CLASS (code) == tcc_statement)
3032 TREE_SIDE_EFFECTS (t) = 1;
3033 else switch (code)
3034 {
3035 case VA_ARG_EXPR:
3036 /* All of these have side-effects, no matter what their
3037 operands are. */
3038 TREE_SIDE_EFFECTS (t) = 1;
3039 TREE_READONLY (t) = 0;
3040 break;
3041
3042 case MISALIGNED_INDIRECT_REF:
3043 case ALIGN_INDIRECT_REF:
3044 case INDIRECT_REF:
3045 /* Whether a dereference is readonly has nothing to do with whether
3046 its operand is readonly. */
3047 TREE_READONLY (t) = 0;
3048 break;
3049
3050 case ADDR_EXPR:
3051 if (node)
3052 recompute_tree_invariant_for_addr_expr (t);
3053 break;
3054
3055 default:
3056 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3057 && node && !TYPE_P (node)
3058 && TREE_CONSTANT (node))
3059 TREE_CONSTANT (t) = 1;
3060 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3061 && node && TREE_INVARIANT (node))
3062 TREE_INVARIANT (t) = 1;
3063 if (TREE_CODE_CLASS (code) == tcc_reference
3064 && node && TREE_THIS_VOLATILE (node))
3065 TREE_THIS_VOLATILE (t) = 1;
3066 break;
3067 }
3068
3069 return t;
3070 }
3071
3072 #define PROCESS_ARG(N) \
3073 do { \
3074 TREE_OPERAND (t, N) = arg##N; \
3075 if (arg##N &&!TYPE_P (arg##N)) \
3076 { \
3077 if (TREE_SIDE_EFFECTS (arg##N)) \
3078 side_effects = 1; \
3079 if (!TREE_READONLY (arg##N)) \
3080 read_only = 0; \
3081 if (!TREE_CONSTANT (arg##N)) \
3082 constant = 0; \
3083 if (!TREE_INVARIANT (arg##N)) \
3084 invariant = 0; \
3085 } \
3086 } while (0)
3087
3088 tree
3089 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3090 {
3091 bool constant, read_only, side_effects, invariant;
3092 tree t;
3093
3094 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3095
3096 #if 1
3097 /* FIXME tuples: Statement's aren't expressions! */
3098 if (code == GIMPLE_MODIFY_STMT)
3099 return build_gimple_modify_stmt_stat (arg0, arg1 PASS_MEM_STAT);
3100 #else
3101 /* Must use build_gimple_modify_stmt to construct GIMPLE_MODIFY_STMTs. */
3102 gcc_assert (code != GIMPLE_MODIFY_STMT);
3103 #endif
3104
3105 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3106 && arg0 && arg1 && tt && POINTER_TYPE_P (tt))
3107 gcc_assert (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST);
3108
3109 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3110 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3111 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3112 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3113
3114 t = make_node_stat (code PASS_MEM_STAT);
3115 TREE_TYPE (t) = tt;
3116
3117 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3118 result based on those same flags for the arguments. But if the
3119 arguments aren't really even `tree' expressions, we shouldn't be trying
3120 to do this. */
3121
3122 /* Expressions without side effects may be constant if their
3123 arguments are as well. */
3124 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3125 || TREE_CODE_CLASS (code) == tcc_binary);
3126 read_only = 1;
3127 side_effects = TREE_SIDE_EFFECTS (t);
3128 invariant = constant;
3129
3130 PROCESS_ARG(0);
3131 PROCESS_ARG(1);
3132
3133 TREE_READONLY (t) = read_only;
3134 TREE_CONSTANT (t) = constant;
3135 TREE_INVARIANT (t) = invariant;
3136 TREE_SIDE_EFFECTS (t) = side_effects;
3137 TREE_THIS_VOLATILE (t)
3138 = (TREE_CODE_CLASS (code) == tcc_reference
3139 && arg0 && TREE_THIS_VOLATILE (arg0));
3140
3141 return t;
3142 }
3143
3144
3145 /* Build a GIMPLE_MODIFY_STMT node. This tree code doesn't have a
3146 type, so we can't use build2 (a.k.a. build2_stat). */
3147
3148 tree
3149 build_gimple_modify_stmt_stat (tree arg0, tree arg1 MEM_STAT_DECL)
3150 {
3151 tree t;
3152
3153 t = make_node_stat (GIMPLE_MODIFY_STMT PASS_MEM_STAT);
3154 /* ?? We don't care about setting flags for tuples... */
3155 GIMPLE_STMT_OPERAND (t, 0) = arg0;
3156 GIMPLE_STMT_OPERAND (t, 1) = arg1;
3157 return t;
3158 }
3159
3160 tree
3161 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3162 tree arg2 MEM_STAT_DECL)
3163 {
3164 bool constant, read_only, side_effects, invariant;
3165 tree t;
3166
3167 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3168 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3169
3170 t = make_node_stat (code PASS_MEM_STAT);
3171 TREE_TYPE (t) = tt;
3172
3173 /* As a special exception, if COND_EXPR has NULL branches, we
3174 assume that it is a gimple statement and always consider
3175 it to have side effects. */
3176 if (code == COND_EXPR
3177 && tt == void_type_node
3178 && arg1 == NULL_TREE
3179 && arg2 == NULL_TREE)
3180 side_effects = true;
3181 else
3182 side_effects = TREE_SIDE_EFFECTS (t);
3183
3184 PROCESS_ARG(0);
3185 PROCESS_ARG(1);
3186 PROCESS_ARG(2);
3187
3188 TREE_SIDE_EFFECTS (t) = side_effects;
3189 TREE_THIS_VOLATILE (t)
3190 = (TREE_CODE_CLASS (code) == tcc_reference
3191 && arg0 && TREE_THIS_VOLATILE (arg0));
3192
3193 return t;
3194 }
3195
3196 tree
3197 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3198 tree arg2, tree arg3 MEM_STAT_DECL)
3199 {
3200 bool constant, read_only, side_effects, invariant;
3201 tree t;
3202
3203 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3204
3205 t = make_node_stat (code PASS_MEM_STAT);
3206 TREE_TYPE (t) = tt;
3207
3208 side_effects = TREE_SIDE_EFFECTS (t);
3209
3210 PROCESS_ARG(0);
3211 PROCESS_ARG(1);
3212 PROCESS_ARG(2);
3213 PROCESS_ARG(3);
3214
3215 TREE_SIDE_EFFECTS (t) = side_effects;
3216 TREE_THIS_VOLATILE (t)
3217 = (TREE_CODE_CLASS (code) == tcc_reference
3218 && arg0 && TREE_THIS_VOLATILE (arg0));
3219
3220 return t;
3221 }
3222
3223 tree
3224 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3225 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3226 {
3227 bool constant, read_only, side_effects, invariant;
3228 tree t;
3229
3230 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3231
3232 t = make_node_stat (code PASS_MEM_STAT);
3233 TREE_TYPE (t) = tt;
3234
3235 side_effects = TREE_SIDE_EFFECTS (t);
3236
3237 PROCESS_ARG(0);
3238 PROCESS_ARG(1);
3239 PROCESS_ARG(2);
3240 PROCESS_ARG(3);
3241 PROCESS_ARG(4);
3242
3243 TREE_SIDE_EFFECTS (t) = side_effects;
3244 TREE_THIS_VOLATILE (t)
3245 = (TREE_CODE_CLASS (code) == tcc_reference
3246 && arg0 && TREE_THIS_VOLATILE (arg0));
3247
3248 return t;
3249 }
3250
3251 tree
3252 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3253 tree arg2, tree arg3, tree arg4, tree arg5,
3254 tree arg6 MEM_STAT_DECL)
3255 {
3256 bool constant, read_only, side_effects, invariant;
3257 tree t;
3258
3259 gcc_assert (code == TARGET_MEM_REF);
3260
3261 t = make_node_stat (code PASS_MEM_STAT);
3262 TREE_TYPE (t) = tt;
3263
3264 side_effects = TREE_SIDE_EFFECTS (t);
3265
3266 PROCESS_ARG(0);
3267 PROCESS_ARG(1);
3268 PROCESS_ARG(2);
3269 PROCESS_ARG(3);
3270 PROCESS_ARG(4);
3271 PROCESS_ARG(5);
3272 PROCESS_ARG(6);
3273
3274 TREE_SIDE_EFFECTS (t) = side_effects;
3275 TREE_THIS_VOLATILE (t) = 0;
3276
3277 return t;
3278 }
3279
3280 /* Similar except don't specify the TREE_TYPE
3281 and leave the TREE_SIDE_EFFECTS as 0.
3282 It is permissible for arguments to be null,
3283 or even garbage if their values do not matter. */
3284
3285 tree
3286 build_nt (enum tree_code code, ...)
3287 {
3288 tree t;
3289 int length;
3290 int i;
3291 va_list p;
3292
3293 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3294
3295 va_start (p, code);
3296
3297 t = make_node (code);
3298 length = TREE_CODE_LENGTH (code);
3299
3300 for (i = 0; i < length; i++)
3301 TREE_OPERAND (t, i) = va_arg (p, tree);
3302
3303 va_end (p);
3304 return t;
3305 }
3306
3307 /* Similar to build_nt, but for creating a CALL_EXPR object with
3308 ARGLIST passed as a list. */
3309
3310 tree
3311 build_nt_call_list (tree fn, tree arglist)
3312 {
3313 tree t;
3314 int i;
3315
3316 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3317 CALL_EXPR_FN (t) = fn;
3318 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3319 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3320 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3321 return t;
3322 }
3323 \f
3324 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3325 We do NOT enter this node in any sort of symbol table.
3326
3327 layout_decl is used to set up the decl's storage layout.
3328 Other slots are initialized to 0 or null pointers. */
3329
3330 tree
3331 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3332 {
3333 tree t;
3334
3335 t = make_node_stat (code PASS_MEM_STAT);
3336
3337 /* if (type == error_mark_node)
3338 type = integer_type_node; */
3339 /* That is not done, deliberately, so that having error_mark_node
3340 as the type can suppress useless errors in the use of this variable. */
3341
3342 DECL_NAME (t) = name;
3343 TREE_TYPE (t) = type;
3344
3345 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3346 layout_decl (t, 0);
3347
3348 return t;
3349 }
3350
3351 /* Builds and returns function declaration with NAME and TYPE. */
3352
3353 tree
3354 build_fn_decl (const char *name, tree type)
3355 {
3356 tree id = get_identifier (name);
3357 tree decl = build_decl (FUNCTION_DECL, id, type);
3358
3359 DECL_EXTERNAL (decl) = 1;
3360 TREE_PUBLIC (decl) = 1;
3361 DECL_ARTIFICIAL (decl) = 1;
3362 TREE_NOTHROW (decl) = 1;
3363
3364 return decl;
3365 }
3366
3367 \f
3368 /* BLOCK nodes are used to represent the structure of binding contours
3369 and declarations, once those contours have been exited and their contents
3370 compiled. This information is used for outputting debugging info. */
3371
3372 tree
3373 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3374 {
3375 tree block = make_node (BLOCK);
3376
3377 BLOCK_VARS (block) = vars;
3378 BLOCK_SUBBLOCKS (block) = subblocks;
3379 BLOCK_SUPERCONTEXT (block) = supercontext;
3380 BLOCK_CHAIN (block) = chain;
3381 return block;
3382 }
3383
3384 expanded_location
3385 expand_location (source_location loc)
3386 {
3387 expanded_location xloc;
3388 if (loc == 0)
3389 {
3390 xloc.file = NULL;
3391 xloc.line = 0;
3392 xloc.column = 0;
3393 }
3394 else
3395 {
3396 const struct line_map *map = linemap_lookup (line_table, loc);
3397 xloc.file = map->to_file;
3398 xloc.line = SOURCE_LINE (map, loc);
3399 xloc.column = SOURCE_COLUMN (map, loc);
3400 };
3401 return xloc;
3402 }
3403
3404 \f
3405 /* Source location accessor functions. */
3406
3407
3408 /* The source location of this expression. Non-tree_exp nodes such as
3409 decls and constants can be shared among multiple locations, so
3410 return nothing. */
3411 location_t
3412 expr_location (const_tree node)
3413 {
3414 if (GIMPLE_STMT_P (node))
3415 return GIMPLE_STMT_LOCUS (node);
3416 return EXPR_P (node) ? node->exp.locus : UNKNOWN_LOCATION;
3417 }
3418
3419 void
3420 set_expr_location (tree node, location_t locus)
3421 {
3422 if (GIMPLE_STMT_P (node))
3423 GIMPLE_STMT_LOCUS (node) = locus;
3424 else
3425 EXPR_CHECK (node)->exp.locus = locus;
3426 }
3427
3428 bool
3429 expr_has_location (const_tree node)
3430 {
3431 return expr_location (node) != UNKNOWN_LOCATION;
3432 }
3433
3434 source_location *
3435 expr_locus (const_tree node)
3436 {
3437 if (GIMPLE_STMT_P (node))
3438 return CONST_CAST (source_location *, &GIMPLE_STMT_LOCUS (node));
3439 return (EXPR_P (node)
3440 ? CONST_CAST (source_location *, &node->exp.locus)
3441 : (source_location *) NULL);
3442 }
3443
3444 void
3445 set_expr_locus (tree node, source_location *loc)
3446 {
3447 if (loc == NULL)
3448 {
3449 if (GIMPLE_STMT_P (node))
3450 GIMPLE_STMT_LOCUS (node) = UNKNOWN_LOCATION;
3451 else
3452 EXPR_CHECK (node)->exp.locus = UNKNOWN_LOCATION;
3453 }
3454 else
3455 {
3456 if (GIMPLE_STMT_P (node))
3457 GIMPLE_STMT_LOCUS (node) = *loc;
3458 else
3459 EXPR_CHECK (node)->exp.locus = *loc;
3460 }
3461 }
3462
3463 /* Return the file name of the location of NODE. */
3464 const char *
3465 expr_filename (const_tree node)
3466 {
3467 if (GIMPLE_STMT_P (node))
3468 return LOCATION_FILE (GIMPLE_STMT_LOCUS (node));
3469 return LOCATION_FILE (EXPR_CHECK (node)->exp.locus);
3470 }
3471
3472 /* Return the line number of the location of NODE. */
3473 int
3474 expr_lineno (const_tree node)
3475 {
3476 if (GIMPLE_STMT_P (node))
3477 return LOCATION_LINE (GIMPLE_STMT_LOCUS (node));
3478 return LOCATION_LINE (EXPR_CHECK (node)->exp.locus);
3479 }
3480
3481 \f
3482 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3483 is ATTRIBUTE. */
3484
3485 tree
3486 build_decl_attribute_variant (tree ddecl, tree attribute)
3487 {
3488 DECL_ATTRIBUTES (ddecl) = attribute;
3489 return ddecl;
3490 }
3491
3492 /* Borrowed from hashtab.c iterative_hash implementation. */
3493 #define mix(a,b,c) \
3494 { \
3495 a -= b; a -= c; a ^= (c>>13); \
3496 b -= c; b -= a; b ^= (a<< 8); \
3497 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3498 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3499 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3500 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3501 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3502 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3503 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3504 }
3505
3506
3507 /* Produce good hash value combining VAL and VAL2. */
3508 static inline hashval_t
3509 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3510 {
3511 /* the golden ratio; an arbitrary value. */
3512 hashval_t a = 0x9e3779b9;
3513
3514 mix (a, val, val2);
3515 return val2;
3516 }
3517
3518 /* Produce good hash value combining PTR and VAL2. */
3519 static inline hashval_t
3520 iterative_hash_pointer (const void *ptr, hashval_t val2)
3521 {
3522 if (sizeof (ptr) == sizeof (hashval_t))
3523 return iterative_hash_hashval_t ((size_t) ptr, val2);
3524 else
3525 {
3526 hashval_t a = (hashval_t) (size_t) ptr;
3527 /* Avoid warnings about shifting of more than the width of the type on
3528 hosts that won't execute this path. */
3529 int zero = 0;
3530 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3531 mix (a, b, val2);
3532 return val2;
3533 }
3534 }
3535
3536 /* Produce good hash value combining VAL and VAL2. */
3537 static inline hashval_t
3538 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3539 {
3540 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3541 return iterative_hash_hashval_t (val, val2);
3542 else
3543 {
3544 hashval_t a = (hashval_t) val;
3545 /* Avoid warnings about shifting of more than the width of the type on
3546 hosts that won't execute this path. */
3547 int zero = 0;
3548 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3549 mix (a, b, val2);
3550 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3551 {
3552 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3553 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3554 mix (a, b, val2);
3555 }
3556 return val2;
3557 }
3558 }
3559
3560 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3561 is ATTRIBUTE and its qualifiers are QUALS.
3562
3563 Record such modified types already made so we don't make duplicates. */
3564
3565 static tree
3566 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3567 {
3568 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3569 {
3570 hashval_t hashcode = 0;
3571 tree ntype;
3572 enum tree_code code = TREE_CODE (ttype);
3573
3574 /* Building a distinct copy of a tagged type is inappropriate; it
3575 causes breakage in code that expects there to be a one-to-one
3576 relationship between a struct and its fields.
3577 build_duplicate_type is another solution (as used in
3578 handle_transparent_union_attribute), but that doesn't play well
3579 with the stronger C++ type identity model. */
3580 if (TREE_CODE (ttype) == RECORD_TYPE
3581 || TREE_CODE (ttype) == UNION_TYPE
3582 || TREE_CODE (ttype) == QUAL_UNION_TYPE
3583 || TREE_CODE (ttype) == ENUMERAL_TYPE)
3584 {
3585 warning (OPT_Wattributes,
3586 "ignoring attributes applied to %qT after definition",
3587 TYPE_MAIN_VARIANT (ttype));
3588 return build_qualified_type (ttype, quals);
3589 }
3590
3591 ntype = build_distinct_type_copy (ttype);
3592
3593 TYPE_ATTRIBUTES (ntype) = attribute;
3594 set_type_quals (ntype, TYPE_UNQUALIFIED);
3595
3596 hashcode = iterative_hash_object (code, hashcode);
3597 if (TREE_TYPE (ntype))
3598 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3599 hashcode);
3600 hashcode = attribute_hash_list (attribute, hashcode);
3601
3602 switch (TREE_CODE (ntype))
3603 {
3604 case FUNCTION_TYPE:
3605 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3606 break;
3607 case ARRAY_TYPE:
3608 if (TYPE_DOMAIN (ntype))
3609 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3610 hashcode);
3611 break;
3612 case INTEGER_TYPE:
3613 hashcode = iterative_hash_object
3614 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3615 hashcode = iterative_hash_object
3616 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3617 break;
3618 case REAL_TYPE:
3619 case FIXED_POINT_TYPE:
3620 {
3621 unsigned int precision = TYPE_PRECISION (ntype);
3622 hashcode = iterative_hash_object (precision, hashcode);
3623 }
3624 break;
3625 default:
3626 break;
3627 }
3628
3629 ntype = type_hash_canon (hashcode, ntype);
3630
3631 /* If the target-dependent attributes make NTYPE different from
3632 its canonical type, we will need to use structural equality
3633 checks for this qualified type. */
3634 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
3635 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
3636 || !targetm.comp_type_attributes (ntype, ttype))
3637 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3638 else
3639 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
3640
3641 ttype = build_qualified_type (ntype, quals);
3642 }
3643 else if (TYPE_QUALS (ttype) != quals)
3644 ttype = build_qualified_type (ttype, quals);
3645
3646 return ttype;
3647 }
3648
3649
3650 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3651 is ATTRIBUTE.
3652
3653 Record such modified types already made so we don't make duplicates. */
3654
3655 tree
3656 build_type_attribute_variant (tree ttype, tree attribute)
3657 {
3658 return build_type_attribute_qual_variant (ttype, attribute,
3659 TYPE_QUALS (ttype));
3660 }
3661
3662 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3663 or zero if not.
3664
3665 We try both `text' and `__text__', ATTR may be either one. */
3666 /* ??? It might be a reasonable simplification to require ATTR to be only
3667 `text'. One might then also require attribute lists to be stored in
3668 their canonicalized form. */
3669
3670 static int
3671 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
3672 {
3673 int ident_len;
3674 const char *p;
3675
3676 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3677 return 0;
3678
3679 p = IDENTIFIER_POINTER (ident);
3680 ident_len = IDENTIFIER_LENGTH (ident);
3681
3682 if (ident_len == attr_len
3683 && strcmp (attr, p) == 0)
3684 return 1;
3685
3686 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3687 if (attr[0] == '_')
3688 {
3689 gcc_assert (attr[1] == '_');
3690 gcc_assert (attr[attr_len - 2] == '_');
3691 gcc_assert (attr[attr_len - 1] == '_');
3692 if (ident_len == attr_len - 4
3693 && strncmp (attr + 2, p, attr_len - 4) == 0)
3694 return 1;
3695 }
3696 else
3697 {
3698 if (ident_len == attr_len + 4
3699 && p[0] == '_' && p[1] == '_'
3700 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3701 && strncmp (attr, p + 2, attr_len) == 0)
3702 return 1;
3703 }
3704
3705 return 0;
3706 }
3707
3708 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3709 or zero if not.
3710
3711 We try both `text' and `__text__', ATTR may be either one. */
3712
3713 int
3714 is_attribute_p (const char *attr, const_tree ident)
3715 {
3716 return is_attribute_with_length_p (attr, strlen (attr), ident);
3717 }
3718
3719 /* Given an attribute name and a list of attributes, return a pointer to the
3720 attribute's list element if the attribute is part of the list, or NULL_TREE
3721 if not found. If the attribute appears more than once, this only
3722 returns the first occurrence; the TREE_CHAIN of the return value should
3723 be passed back in if further occurrences are wanted. */
3724
3725 tree
3726 lookup_attribute (const char *attr_name, tree list)
3727 {
3728 tree l;
3729 size_t attr_len = strlen (attr_name);
3730
3731 for (l = list; l; l = TREE_CHAIN (l))
3732 {
3733 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3734 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3735 return l;
3736 }
3737 return NULL_TREE;
3738 }
3739
3740 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3741 modified list. */
3742
3743 tree
3744 remove_attribute (const char *attr_name, tree list)
3745 {
3746 tree *p;
3747 size_t attr_len = strlen (attr_name);
3748
3749 for (p = &list; *p; )
3750 {
3751 tree l = *p;
3752 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3753 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3754 *p = TREE_CHAIN (l);
3755 else
3756 p = &TREE_CHAIN (l);
3757 }
3758
3759 return list;
3760 }
3761
3762 /* Return an attribute list that is the union of a1 and a2. */
3763
3764 tree
3765 merge_attributes (tree a1, tree a2)
3766 {
3767 tree attributes;
3768
3769 /* Either one unset? Take the set one. */
3770
3771 if ((attributes = a1) == 0)
3772 attributes = a2;
3773
3774 /* One that completely contains the other? Take it. */
3775
3776 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3777 {
3778 if (attribute_list_contained (a2, a1))
3779 attributes = a2;
3780 else
3781 {
3782 /* Pick the longest list, and hang on the other list. */
3783
3784 if (list_length (a1) < list_length (a2))
3785 attributes = a2, a2 = a1;
3786
3787 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3788 {
3789 tree a;
3790 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3791 attributes);
3792 a != NULL_TREE;
3793 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3794 TREE_CHAIN (a)))
3795 {
3796 if (TREE_VALUE (a) != NULL
3797 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3798 && TREE_VALUE (a2) != NULL
3799 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3800 {
3801 if (simple_cst_list_equal (TREE_VALUE (a),
3802 TREE_VALUE (a2)) == 1)
3803 break;
3804 }
3805 else if (simple_cst_equal (TREE_VALUE (a),
3806 TREE_VALUE (a2)) == 1)
3807 break;
3808 }
3809 if (a == NULL_TREE)
3810 {
3811 a1 = copy_node (a2);
3812 TREE_CHAIN (a1) = attributes;
3813 attributes = a1;
3814 }
3815 }
3816 }
3817 }
3818 return attributes;
3819 }
3820
3821 /* Given types T1 and T2, merge their attributes and return
3822 the result. */
3823
3824 tree
3825 merge_type_attributes (tree t1, tree t2)
3826 {
3827 return merge_attributes (TYPE_ATTRIBUTES (t1),
3828 TYPE_ATTRIBUTES (t2));
3829 }
3830
3831 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3832 the result. */
3833
3834 tree
3835 merge_decl_attributes (tree olddecl, tree newdecl)
3836 {
3837 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3838 DECL_ATTRIBUTES (newdecl));
3839 }
3840
3841 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3842
3843 /* Specialization of merge_decl_attributes for various Windows targets.
3844
3845 This handles the following situation:
3846
3847 __declspec (dllimport) int foo;
3848 int foo;
3849
3850 The second instance of `foo' nullifies the dllimport. */
3851
3852 tree
3853 merge_dllimport_decl_attributes (tree old, tree new)
3854 {
3855 tree a;
3856 int delete_dllimport_p = 1;
3857
3858 /* What we need to do here is remove from `old' dllimport if it doesn't
3859 appear in `new'. dllimport behaves like extern: if a declaration is
3860 marked dllimport and a definition appears later, then the object
3861 is not dllimport'd. We also remove a `new' dllimport if the old list
3862 contains dllexport: dllexport always overrides dllimport, regardless
3863 of the order of declaration. */
3864 if (!VAR_OR_FUNCTION_DECL_P (new))
3865 delete_dllimport_p = 0;
3866 else if (DECL_DLLIMPORT_P (new)
3867 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3868 {
3869 DECL_DLLIMPORT_P (new) = 0;
3870 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3871 "dllimport ignored", new);
3872 }
3873 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3874 {
3875 /* Warn about overriding a symbol that has already been used. eg:
3876 extern int __attribute__ ((dllimport)) foo;
3877 int* bar () {return &foo;}
3878 int foo;
3879 */
3880 if (TREE_USED (old))
3881 {
3882 warning (0, "%q+D redeclared without dllimport attribute "
3883 "after being referenced with dll linkage", new);
3884 /* If we have used a variable's address with dllimport linkage,
3885 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3886 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3887 computed.
3888 We still remove the attribute so that assembler code refers
3889 to '&foo rather than '_imp__foo'. */
3890 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3891 DECL_DLLIMPORT_P (new) = 1;
3892 }
3893
3894 /* Let an inline definition silently override the external reference,
3895 but otherwise warn about attribute inconsistency. */
3896 else if (TREE_CODE (new) == VAR_DECL
3897 || !DECL_DECLARED_INLINE_P (new))
3898 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3899 "previous dllimport ignored", new);
3900 }
3901 else
3902 delete_dllimport_p = 0;
3903
3904 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3905
3906 if (delete_dllimport_p)
3907 {
3908 tree prev, t;
3909 const size_t attr_len = strlen ("dllimport");
3910
3911 /* Scan the list for dllimport and delete it. */
3912 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3913 {
3914 if (is_attribute_with_length_p ("dllimport", attr_len,
3915 TREE_PURPOSE (t)))
3916 {
3917 if (prev == NULL_TREE)
3918 a = TREE_CHAIN (a);
3919 else
3920 TREE_CHAIN (prev) = TREE_CHAIN (t);
3921 break;
3922 }
3923 }
3924 }
3925
3926 return a;
3927 }
3928
3929 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3930 struct attribute_spec.handler. */
3931
3932 tree
3933 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3934 bool *no_add_attrs)
3935 {
3936 tree node = *pnode;
3937
3938 /* These attributes may apply to structure and union types being created,
3939 but otherwise should pass to the declaration involved. */
3940 if (!DECL_P (node))
3941 {
3942 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3943 | (int) ATTR_FLAG_ARRAY_NEXT))
3944 {
3945 *no_add_attrs = true;
3946 return tree_cons (name, args, NULL_TREE);
3947 }
3948 if (TREE_CODE (node) == RECORD_TYPE
3949 || TREE_CODE (node) == UNION_TYPE)
3950 {
3951 node = TYPE_NAME (node);
3952 if (!node)
3953 return NULL_TREE;
3954 }
3955 else
3956 {
3957 warning (OPT_Wattributes, "%qs attribute ignored",
3958 IDENTIFIER_POINTER (name));
3959 *no_add_attrs = true;
3960 return NULL_TREE;
3961 }
3962 }
3963
3964 if (TREE_CODE (node) != FUNCTION_DECL
3965 && TREE_CODE (node) != VAR_DECL
3966 && TREE_CODE (node) != TYPE_DECL)
3967 {
3968 *no_add_attrs = true;
3969 warning (OPT_Wattributes, "%qs attribute ignored",
3970 IDENTIFIER_POINTER (name));
3971 return NULL_TREE;
3972 }
3973
3974 if (TREE_CODE (node) == TYPE_DECL
3975 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
3976 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
3977 {
3978 *no_add_attrs = true;
3979 warning (OPT_Wattributes, "%qs attribute ignored",
3980 IDENTIFIER_POINTER (name));
3981 return NULL_TREE;
3982 }
3983
3984 /* Report error on dllimport ambiguities seen now before they cause
3985 any damage. */
3986 else if (is_attribute_p ("dllimport", name))
3987 {
3988 /* Honor any target-specific overrides. */
3989 if (!targetm.valid_dllimport_attribute_p (node))
3990 *no_add_attrs = true;
3991
3992 else if (TREE_CODE (node) == FUNCTION_DECL
3993 && DECL_DECLARED_INLINE_P (node))
3994 {
3995 warning (OPT_Wattributes, "inline function %q+D declared as "
3996 " dllimport: attribute ignored", node);
3997 *no_add_attrs = true;
3998 }
3999 /* Like MS, treat definition of dllimported variables and
4000 non-inlined functions on declaration as syntax errors. */
4001 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
4002 {
4003 error ("function %q+D definition is marked dllimport", node);
4004 *no_add_attrs = true;
4005 }
4006
4007 else if (TREE_CODE (node) == VAR_DECL)
4008 {
4009 if (DECL_INITIAL (node))
4010 {
4011 error ("variable %q+D definition is marked dllimport",
4012 node);
4013 *no_add_attrs = true;
4014 }
4015
4016 /* `extern' needn't be specified with dllimport.
4017 Specify `extern' now and hope for the best. Sigh. */
4018 DECL_EXTERNAL (node) = 1;
4019 /* Also, implicitly give dllimport'd variables declared within
4020 a function global scope, unless declared static. */
4021 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
4022 TREE_PUBLIC (node) = 1;
4023 }
4024
4025 if (*no_add_attrs == false)
4026 DECL_DLLIMPORT_P (node) = 1;
4027 }
4028
4029 /* Report error if symbol is not accessible at global scope. */
4030 if (!TREE_PUBLIC (node)
4031 && (TREE_CODE (node) == VAR_DECL
4032 || TREE_CODE (node) == FUNCTION_DECL))
4033 {
4034 error ("external linkage required for symbol %q+D because of "
4035 "%qs attribute", node, IDENTIFIER_POINTER (name));
4036 *no_add_attrs = true;
4037 }
4038
4039 /* A dllexport'd entity must have default visibility so that other
4040 program units (shared libraries or the main executable) can see
4041 it. A dllimport'd entity must have default visibility so that
4042 the linker knows that undefined references within this program
4043 unit can be resolved by the dynamic linker. */
4044 if (!*no_add_attrs)
4045 {
4046 if (DECL_VISIBILITY_SPECIFIED (node)
4047 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
4048 error ("%qs implies default visibility, but %qD has already "
4049 "been declared with a different visibility",
4050 IDENTIFIER_POINTER (name), node);
4051 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
4052 DECL_VISIBILITY_SPECIFIED (node) = 1;
4053 }
4054
4055 return NULL_TREE;
4056 }
4057
4058 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
4059 \f
4060 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
4061 of the various TYPE_QUAL values. */
4062
4063 static void
4064 set_type_quals (tree type, int type_quals)
4065 {
4066 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
4067 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
4068 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
4069 }
4070
4071 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
4072
4073 bool
4074 check_qualified_type (const_tree cand, const_tree base, int type_quals)
4075 {
4076 return (TYPE_QUALS (cand) == type_quals
4077 && TYPE_NAME (cand) == TYPE_NAME (base)
4078 /* Apparently this is needed for Objective-C. */
4079 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
4080 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
4081 TYPE_ATTRIBUTES (base)));
4082 }
4083
4084 /* Return a version of the TYPE, qualified as indicated by the
4085 TYPE_QUALS, if one exists. If no qualified version exists yet,
4086 return NULL_TREE. */
4087
4088 tree
4089 get_qualified_type (tree type, int type_quals)
4090 {
4091 tree t;
4092
4093 if (TYPE_QUALS (type) == type_quals)
4094 return type;
4095
4096 /* Search the chain of variants to see if there is already one there just
4097 like the one we need to have. If so, use that existing one. We must
4098 preserve the TYPE_NAME, since there is code that depends on this. */
4099 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
4100 if (check_qualified_type (t, type, type_quals))
4101 return t;
4102
4103 return NULL_TREE;
4104 }
4105
4106 /* Like get_qualified_type, but creates the type if it does not
4107 exist. This function never returns NULL_TREE. */
4108
4109 tree
4110 build_qualified_type (tree type, int type_quals)
4111 {
4112 tree t;
4113
4114 /* See if we already have the appropriate qualified variant. */
4115 t = get_qualified_type (type, type_quals);
4116
4117 /* If not, build it. */
4118 if (!t)
4119 {
4120 t = build_variant_type_copy (type);
4121 set_type_quals (t, type_quals);
4122
4123 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4124 /* Propagate structural equality. */
4125 SET_TYPE_STRUCTURAL_EQUALITY (t);
4126 else if (TYPE_CANONICAL (type) != type)
4127 /* Build the underlying canonical type, since it is different
4128 from TYPE. */
4129 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
4130 type_quals);
4131 else
4132 /* T is its own canonical type. */
4133 TYPE_CANONICAL (t) = t;
4134
4135 }
4136
4137 return t;
4138 }
4139
4140 /* Create a new distinct copy of TYPE. The new type is made its own
4141 MAIN_VARIANT. If TYPE requires structural equality checks, the
4142 resulting type requires structural equality checks; otherwise, its
4143 TYPE_CANONICAL points to itself. */
4144
4145 tree
4146 build_distinct_type_copy (tree type)
4147 {
4148 tree t = copy_node (type);
4149
4150 TYPE_POINTER_TO (t) = 0;
4151 TYPE_REFERENCE_TO (t) = 0;
4152
4153 /* Set the canonical type either to a new equivalence class, or
4154 propagate the need for structural equality checks. */
4155 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4156 SET_TYPE_STRUCTURAL_EQUALITY (t);
4157 else
4158 TYPE_CANONICAL (t) = t;
4159
4160 /* Make it its own variant. */
4161 TYPE_MAIN_VARIANT (t) = t;
4162 TYPE_NEXT_VARIANT (t) = 0;
4163
4164 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
4165 whose TREE_TYPE is not t. This can also happen in the Ada
4166 frontend when using subtypes. */
4167
4168 return t;
4169 }
4170
4171 /* Create a new variant of TYPE, equivalent but distinct. This is so
4172 the caller can modify it. TYPE_CANONICAL for the return type will
4173 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
4174 are considered equal by the language itself (or that both types
4175 require structural equality checks). */
4176
4177 tree
4178 build_variant_type_copy (tree type)
4179 {
4180 tree t, m = TYPE_MAIN_VARIANT (type);
4181
4182 t = build_distinct_type_copy (type);
4183
4184 /* Since we're building a variant, assume that it is a non-semantic
4185 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
4186 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
4187
4188 /* Add the new type to the chain of variants of TYPE. */
4189 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
4190 TYPE_NEXT_VARIANT (m) = t;
4191 TYPE_MAIN_VARIANT (t) = m;
4192
4193 return t;
4194 }
4195 \f
4196 /* Return true if the from tree in both tree maps are equal. */
4197
4198 int
4199 tree_map_base_eq (const void *va, const void *vb)
4200 {
4201 const struct tree_map_base *const a = va, *const b = vb;
4202 return (a->from == b->from);
4203 }
4204
4205 /* Hash a from tree in a tree_map. */
4206
4207 unsigned int
4208 tree_map_base_hash (const void *item)
4209 {
4210 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
4211 }
4212
4213 /* Return true if this tree map structure is marked for garbage collection
4214 purposes. We simply return true if the from tree is marked, so that this
4215 structure goes away when the from tree goes away. */
4216
4217 int
4218 tree_map_base_marked_p (const void *p)
4219 {
4220 return ggc_marked_p (((const struct tree_map_base *) p)->from);
4221 }
4222
4223 unsigned int
4224 tree_map_hash (const void *item)
4225 {
4226 return (((const struct tree_map *) item)->hash);
4227 }
4228
4229 /* Return the initialization priority for DECL. */
4230
4231 priority_type
4232 decl_init_priority_lookup (tree decl)
4233 {
4234 struct tree_priority_map *h;
4235 struct tree_map_base in;
4236
4237 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4238 in.from = decl;
4239 h = htab_find (init_priority_for_decl, &in);
4240 return h ? h->init : DEFAULT_INIT_PRIORITY;
4241 }
4242
4243 /* Return the finalization priority for DECL. */
4244
4245 priority_type
4246 decl_fini_priority_lookup (tree decl)
4247 {
4248 struct tree_priority_map *h;
4249 struct tree_map_base in;
4250
4251 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4252 in.from = decl;
4253 h = htab_find (init_priority_for_decl, &in);
4254 return h ? h->fini : DEFAULT_INIT_PRIORITY;
4255 }
4256
4257 /* Return the initialization and finalization priority information for
4258 DECL. If there is no previous priority information, a freshly
4259 allocated structure is returned. */
4260
4261 static struct tree_priority_map *
4262 decl_priority_info (tree decl)
4263 {
4264 struct tree_priority_map in;
4265 struct tree_priority_map *h;
4266 void **loc;
4267
4268 in.base.from = decl;
4269 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
4270 h = *loc;
4271 if (!h)
4272 {
4273 h = GGC_CNEW (struct tree_priority_map);
4274 *loc = h;
4275 h->base.from = decl;
4276 h->init = DEFAULT_INIT_PRIORITY;
4277 h->fini = DEFAULT_INIT_PRIORITY;
4278 }
4279
4280 return h;
4281 }
4282
4283 /* Set the initialization priority for DECL to PRIORITY. */
4284
4285 void
4286 decl_init_priority_insert (tree decl, priority_type priority)
4287 {
4288 struct tree_priority_map *h;
4289
4290 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4291 h = decl_priority_info (decl);
4292 h->init = priority;
4293 }
4294
4295 /* Set the finalization priority for DECL to PRIORITY. */
4296
4297 void
4298 decl_fini_priority_insert (tree decl, priority_type priority)
4299 {
4300 struct tree_priority_map *h;
4301
4302 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4303 h = decl_priority_info (decl);
4304 h->fini = priority;
4305 }
4306
4307 /* Look up a restrict qualified base decl for FROM. */
4308
4309 tree
4310 decl_restrict_base_lookup (tree from)
4311 {
4312 struct tree_map *h;
4313 struct tree_map in;
4314
4315 in.base.from = from;
4316 h = htab_find_with_hash (restrict_base_for_decl, &in,
4317 htab_hash_pointer (from));
4318 return h ? h->to : NULL_TREE;
4319 }
4320
4321 /* Record the restrict qualified base TO for FROM. */
4322
4323 void
4324 decl_restrict_base_insert (tree from, tree to)
4325 {
4326 struct tree_map *h;
4327 void **loc;
4328
4329 h = ggc_alloc (sizeof (struct tree_map));
4330 h->hash = htab_hash_pointer (from);
4331 h->base.from = from;
4332 h->to = to;
4333 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4334 *(struct tree_map **) loc = h;
4335 }
4336
4337 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4338
4339 static void
4340 print_debug_expr_statistics (void)
4341 {
4342 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4343 (long) htab_size (debug_expr_for_decl),
4344 (long) htab_elements (debug_expr_for_decl),
4345 htab_collisions (debug_expr_for_decl));
4346 }
4347
4348 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4349
4350 static void
4351 print_value_expr_statistics (void)
4352 {
4353 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4354 (long) htab_size (value_expr_for_decl),
4355 (long) htab_elements (value_expr_for_decl),
4356 htab_collisions (value_expr_for_decl));
4357 }
4358
4359 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4360 don't print anything if the table is empty. */
4361
4362 static void
4363 print_restrict_base_statistics (void)
4364 {
4365 if (htab_elements (restrict_base_for_decl) != 0)
4366 fprintf (stderr,
4367 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4368 (long) htab_size (restrict_base_for_decl),
4369 (long) htab_elements (restrict_base_for_decl),
4370 htab_collisions (restrict_base_for_decl));
4371 }
4372
4373 /* Lookup a debug expression for FROM, and return it if we find one. */
4374
4375 tree
4376 decl_debug_expr_lookup (tree from)
4377 {
4378 struct tree_map *h, in;
4379 in.base.from = from;
4380
4381 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4382 if (h)
4383 return h->to;
4384 return NULL_TREE;
4385 }
4386
4387 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4388
4389 void
4390 decl_debug_expr_insert (tree from, tree to)
4391 {
4392 struct tree_map *h;
4393 void **loc;
4394
4395 h = ggc_alloc (sizeof (struct tree_map));
4396 h->hash = htab_hash_pointer (from);
4397 h->base.from = from;
4398 h->to = to;
4399 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4400 *(struct tree_map **) loc = h;
4401 }
4402
4403 /* Lookup a value expression for FROM, and return it if we find one. */
4404
4405 tree
4406 decl_value_expr_lookup (tree from)
4407 {
4408 struct tree_map *h, in;
4409 in.base.from = from;
4410
4411 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4412 if (h)
4413 return h->to;
4414 return NULL_TREE;
4415 }
4416
4417 /* Insert a mapping FROM->TO in the value expression hashtable. */
4418
4419 void
4420 decl_value_expr_insert (tree from, tree to)
4421 {
4422 struct tree_map *h;
4423 void **loc;
4424
4425 h = ggc_alloc (sizeof (struct tree_map));
4426 h->hash = htab_hash_pointer (from);
4427 h->base.from = from;
4428 h->to = to;
4429 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4430 *(struct tree_map **) loc = h;
4431 }
4432
4433 /* Hashing of types so that we don't make duplicates.
4434 The entry point is `type_hash_canon'. */
4435
4436 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4437 with types in the TREE_VALUE slots), by adding the hash codes
4438 of the individual types. */
4439
4440 static unsigned int
4441 type_hash_list (const_tree list, hashval_t hashcode)
4442 {
4443 const_tree tail;
4444
4445 for (tail = list; tail; tail = TREE_CHAIN (tail))
4446 if (TREE_VALUE (tail) != error_mark_node)
4447 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4448 hashcode);
4449
4450 return hashcode;
4451 }
4452
4453 /* These are the Hashtable callback functions. */
4454
4455 /* Returns true iff the types are equivalent. */
4456
4457 static int
4458 type_hash_eq (const void *va, const void *vb)
4459 {
4460 const struct type_hash *const a = va, *const b = vb;
4461
4462 /* First test the things that are the same for all types. */
4463 if (a->hash != b->hash
4464 || TREE_CODE (a->type) != TREE_CODE (b->type)
4465 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4466 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4467 TYPE_ATTRIBUTES (b->type))
4468 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4469 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4470 return 0;
4471
4472 switch (TREE_CODE (a->type))
4473 {
4474 case VOID_TYPE:
4475 case COMPLEX_TYPE:
4476 case POINTER_TYPE:
4477 case REFERENCE_TYPE:
4478 return 1;
4479
4480 case VECTOR_TYPE:
4481 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4482
4483 case ENUMERAL_TYPE:
4484 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4485 && !(TYPE_VALUES (a->type)
4486 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4487 && TYPE_VALUES (b->type)
4488 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4489 && type_list_equal (TYPE_VALUES (a->type),
4490 TYPE_VALUES (b->type))))
4491 return 0;
4492
4493 /* ... fall through ... */
4494
4495 case INTEGER_TYPE:
4496 case REAL_TYPE:
4497 case BOOLEAN_TYPE:
4498 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4499 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4500 TYPE_MAX_VALUE (b->type)))
4501 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4502 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4503 TYPE_MIN_VALUE (b->type))));
4504
4505 case FIXED_POINT_TYPE:
4506 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
4507
4508 case OFFSET_TYPE:
4509 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4510
4511 case METHOD_TYPE:
4512 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4513 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4514 || (TYPE_ARG_TYPES (a->type)
4515 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4516 && TYPE_ARG_TYPES (b->type)
4517 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4518 && type_list_equal (TYPE_ARG_TYPES (a->type),
4519 TYPE_ARG_TYPES (b->type)))));
4520
4521 case ARRAY_TYPE:
4522 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4523
4524 case RECORD_TYPE:
4525 case UNION_TYPE:
4526 case QUAL_UNION_TYPE:
4527 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4528 || (TYPE_FIELDS (a->type)
4529 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4530 && TYPE_FIELDS (b->type)
4531 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4532 && type_list_equal (TYPE_FIELDS (a->type),
4533 TYPE_FIELDS (b->type))));
4534
4535 case FUNCTION_TYPE:
4536 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4537 || (TYPE_ARG_TYPES (a->type)
4538 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4539 && TYPE_ARG_TYPES (b->type)
4540 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4541 && type_list_equal (TYPE_ARG_TYPES (a->type),
4542 TYPE_ARG_TYPES (b->type))))
4543 break;
4544 return 0;
4545
4546 default:
4547 return 0;
4548 }
4549
4550 if (lang_hooks.types.type_hash_eq != NULL)
4551 return lang_hooks.types.type_hash_eq (a->type, b->type);
4552
4553 return 1;
4554 }
4555
4556 /* Return the cached hash value. */
4557
4558 static hashval_t
4559 type_hash_hash (const void *item)
4560 {
4561 return ((const struct type_hash *) item)->hash;
4562 }
4563
4564 /* Look in the type hash table for a type isomorphic to TYPE.
4565 If one is found, return it. Otherwise return 0. */
4566
4567 tree
4568 type_hash_lookup (hashval_t hashcode, tree type)
4569 {
4570 struct type_hash *h, in;
4571
4572 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4573 must call that routine before comparing TYPE_ALIGNs. */
4574 layout_type (type);
4575
4576 in.hash = hashcode;
4577 in.type = type;
4578
4579 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4580 if (h)
4581 return h->type;
4582 return NULL_TREE;
4583 }
4584
4585 /* Add an entry to the type-hash-table
4586 for a type TYPE whose hash code is HASHCODE. */
4587
4588 void
4589 type_hash_add (hashval_t hashcode, tree type)
4590 {
4591 struct type_hash *h;
4592 void **loc;
4593
4594 h = ggc_alloc (sizeof (struct type_hash));
4595 h->hash = hashcode;
4596 h->type = type;
4597 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4598 *loc = (void *)h;
4599 }
4600
4601 /* Given TYPE, and HASHCODE its hash code, return the canonical
4602 object for an identical type if one already exists.
4603 Otherwise, return TYPE, and record it as the canonical object.
4604
4605 To use this function, first create a type of the sort you want.
4606 Then compute its hash code from the fields of the type that
4607 make it different from other similar types.
4608 Then call this function and use the value. */
4609
4610 tree
4611 type_hash_canon (unsigned int hashcode, tree type)
4612 {
4613 tree t1;
4614
4615 /* The hash table only contains main variants, so ensure that's what we're
4616 being passed. */
4617 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4618
4619 if (!lang_hooks.types.hash_types)
4620 return type;
4621
4622 /* See if the type is in the hash table already. If so, return it.
4623 Otherwise, add the type. */
4624 t1 = type_hash_lookup (hashcode, type);
4625 if (t1 != 0)
4626 {
4627 #ifdef GATHER_STATISTICS
4628 tree_node_counts[(int) t_kind]--;
4629 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4630 #endif
4631 return t1;
4632 }
4633 else
4634 {
4635 type_hash_add (hashcode, type);
4636 return type;
4637 }
4638 }
4639
4640 /* See if the data pointed to by the type hash table is marked. We consider
4641 it marked if the type is marked or if a debug type number or symbol
4642 table entry has been made for the type. This reduces the amount of
4643 debugging output and eliminates that dependency of the debug output on
4644 the number of garbage collections. */
4645
4646 static int
4647 type_hash_marked_p (const void *p)
4648 {
4649 const_tree const type = ((const struct type_hash *) p)->type;
4650
4651 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4652 }
4653
4654 static void
4655 print_type_hash_statistics (void)
4656 {
4657 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4658 (long) htab_size (type_hash_table),
4659 (long) htab_elements (type_hash_table),
4660 htab_collisions (type_hash_table));
4661 }
4662
4663 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4664 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4665 by adding the hash codes of the individual attributes. */
4666
4667 static unsigned int
4668 attribute_hash_list (const_tree list, hashval_t hashcode)
4669 {
4670 const_tree tail;
4671
4672 for (tail = list; tail; tail = TREE_CHAIN (tail))
4673 /* ??? Do we want to add in TREE_VALUE too? */
4674 hashcode = iterative_hash_object
4675 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4676 return hashcode;
4677 }
4678
4679 /* Given two lists of attributes, return true if list l2 is
4680 equivalent to l1. */
4681
4682 int
4683 attribute_list_equal (const_tree l1, const_tree l2)
4684 {
4685 return attribute_list_contained (l1, l2)
4686 && attribute_list_contained (l2, l1);
4687 }
4688
4689 /* Given two lists of attributes, return true if list L2 is
4690 completely contained within L1. */
4691 /* ??? This would be faster if attribute names were stored in a canonicalized
4692 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4693 must be used to show these elements are equivalent (which they are). */
4694 /* ??? It's not clear that attributes with arguments will always be handled
4695 correctly. */
4696
4697 int
4698 attribute_list_contained (const_tree l1, const_tree l2)
4699 {
4700 const_tree t1, t2;
4701
4702 /* First check the obvious, maybe the lists are identical. */
4703 if (l1 == l2)
4704 return 1;
4705
4706 /* Maybe the lists are similar. */
4707 for (t1 = l1, t2 = l2;
4708 t1 != 0 && t2 != 0
4709 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4710 && TREE_VALUE (t1) == TREE_VALUE (t2);
4711 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4712
4713 /* Maybe the lists are equal. */
4714 if (t1 == 0 && t2 == 0)
4715 return 1;
4716
4717 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4718 {
4719 const_tree attr;
4720 /* This CONST_CAST is okay because lookup_attribute does not
4721 modify its argument and the return value is assigned to a
4722 const_tree. */
4723 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4724 CONST_CAST_TREE(l1));
4725 attr != NULL_TREE;
4726 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4727 TREE_CHAIN (attr)))
4728 {
4729 if (TREE_VALUE (t2) != NULL
4730 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4731 && TREE_VALUE (attr) != NULL
4732 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4733 {
4734 if (simple_cst_list_equal (TREE_VALUE (t2),
4735 TREE_VALUE (attr)) == 1)
4736 break;
4737 }
4738 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4739 break;
4740 }
4741
4742 if (attr == 0)
4743 return 0;
4744 }
4745
4746 return 1;
4747 }
4748
4749 /* Given two lists of types
4750 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4751 return 1 if the lists contain the same types in the same order.
4752 Also, the TREE_PURPOSEs must match. */
4753
4754 int
4755 type_list_equal (const_tree l1, const_tree l2)
4756 {
4757 const_tree t1, t2;
4758
4759 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4760 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4761 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4762 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4763 && (TREE_TYPE (TREE_PURPOSE (t1))
4764 == TREE_TYPE (TREE_PURPOSE (t2))))))
4765 return 0;
4766
4767 return t1 == t2;
4768 }
4769
4770 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4771 given by TYPE. If the argument list accepts variable arguments,
4772 then this function counts only the ordinary arguments. */
4773
4774 int
4775 type_num_arguments (const_tree type)
4776 {
4777 int i = 0;
4778 tree t;
4779
4780 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4781 /* If the function does not take a variable number of arguments,
4782 the last element in the list will have type `void'. */
4783 if (VOID_TYPE_P (TREE_VALUE (t)))
4784 break;
4785 else
4786 ++i;
4787
4788 return i;
4789 }
4790
4791 /* Nonzero if integer constants T1 and T2
4792 represent the same constant value. */
4793
4794 int
4795 tree_int_cst_equal (const_tree t1, const_tree t2)
4796 {
4797 if (t1 == t2)
4798 return 1;
4799
4800 if (t1 == 0 || t2 == 0)
4801 return 0;
4802
4803 if (TREE_CODE (t1) == INTEGER_CST
4804 && TREE_CODE (t2) == INTEGER_CST
4805 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4806 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4807 return 1;
4808
4809 return 0;
4810 }
4811
4812 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4813 The precise way of comparison depends on their data type. */
4814
4815 int
4816 tree_int_cst_lt (const_tree t1, const_tree t2)
4817 {
4818 if (t1 == t2)
4819 return 0;
4820
4821 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4822 {
4823 int t1_sgn = tree_int_cst_sgn (t1);
4824 int t2_sgn = tree_int_cst_sgn (t2);
4825
4826 if (t1_sgn < t2_sgn)
4827 return 1;
4828 else if (t1_sgn > t2_sgn)
4829 return 0;
4830 /* Otherwise, both are non-negative, so we compare them as
4831 unsigned just in case one of them would overflow a signed
4832 type. */
4833 }
4834 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4835 return INT_CST_LT (t1, t2);
4836
4837 return INT_CST_LT_UNSIGNED (t1, t2);
4838 }
4839
4840 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4841
4842 int
4843 tree_int_cst_compare (const_tree t1, const_tree t2)
4844 {
4845 if (tree_int_cst_lt (t1, t2))
4846 return -1;
4847 else if (tree_int_cst_lt (t2, t1))
4848 return 1;
4849 else
4850 return 0;
4851 }
4852
4853 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4854 the host. If POS is zero, the value can be represented in a single
4855 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4856 be represented in a single unsigned HOST_WIDE_INT. */
4857
4858 int
4859 host_integerp (const_tree t, int pos)
4860 {
4861 return (TREE_CODE (t) == INTEGER_CST
4862 && ((TREE_INT_CST_HIGH (t) == 0
4863 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4864 || (! pos && TREE_INT_CST_HIGH (t) == -1
4865 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4866 && (!TYPE_UNSIGNED (TREE_TYPE (t))
4867 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
4868 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
4869 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4870 }
4871
4872 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4873 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4874 be non-negative. We must be able to satisfy the above conditions. */
4875
4876 HOST_WIDE_INT
4877 tree_low_cst (const_tree t, int pos)
4878 {
4879 gcc_assert (host_integerp (t, pos));
4880 return TREE_INT_CST_LOW (t);
4881 }
4882
4883 /* Return the most significant bit of the integer constant T. */
4884
4885 int
4886 tree_int_cst_msb (const_tree t)
4887 {
4888 int prec;
4889 HOST_WIDE_INT h;
4890 unsigned HOST_WIDE_INT l;
4891
4892 /* Note that using TYPE_PRECISION here is wrong. We care about the
4893 actual bits, not the (arbitrary) range of the type. */
4894 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4895 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4896 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4897 return (l & 1) == 1;
4898 }
4899
4900 /* Return an indication of the sign of the integer constant T.
4901 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4902 Note that -1 will never be returned if T's type is unsigned. */
4903
4904 int
4905 tree_int_cst_sgn (const_tree t)
4906 {
4907 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4908 return 0;
4909 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4910 return 1;
4911 else if (TREE_INT_CST_HIGH (t) < 0)
4912 return -1;
4913 else
4914 return 1;
4915 }
4916
4917 /* Compare two constructor-element-type constants. Return 1 if the lists
4918 are known to be equal; otherwise return 0. */
4919
4920 int
4921 simple_cst_list_equal (const_tree l1, const_tree l2)
4922 {
4923 while (l1 != NULL_TREE && l2 != NULL_TREE)
4924 {
4925 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4926 return 0;
4927
4928 l1 = TREE_CHAIN (l1);
4929 l2 = TREE_CHAIN (l2);
4930 }
4931
4932 return l1 == l2;
4933 }
4934
4935 /* Return truthvalue of whether T1 is the same tree structure as T2.
4936 Return 1 if they are the same.
4937 Return 0 if they are understandably different.
4938 Return -1 if either contains tree structure not understood by
4939 this function. */
4940
4941 int
4942 simple_cst_equal (const_tree t1, const_tree t2)
4943 {
4944 enum tree_code code1, code2;
4945 int cmp;
4946 int i;
4947
4948 if (t1 == t2)
4949 return 1;
4950 if (t1 == 0 || t2 == 0)
4951 return 0;
4952
4953 code1 = TREE_CODE (t1);
4954 code2 = TREE_CODE (t2);
4955
4956 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4957 {
4958 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4959 || code2 == NON_LVALUE_EXPR)
4960 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4961 else
4962 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4963 }
4964
4965 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4966 || code2 == NON_LVALUE_EXPR)
4967 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4968
4969 if (code1 != code2)
4970 return 0;
4971
4972 switch (code1)
4973 {
4974 case INTEGER_CST:
4975 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4976 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4977
4978 case REAL_CST:
4979 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4980
4981 case FIXED_CST:
4982 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
4983
4984 case STRING_CST:
4985 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4986 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4987 TREE_STRING_LENGTH (t1)));
4988
4989 case CONSTRUCTOR:
4990 {
4991 unsigned HOST_WIDE_INT idx;
4992 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4993 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4994
4995 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4996 return false;
4997
4998 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4999 /* ??? Should we handle also fields here? */
5000 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
5001 VEC_index (constructor_elt, v2, idx)->value))
5002 return false;
5003 return true;
5004 }
5005
5006 case SAVE_EXPR:
5007 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5008
5009 case CALL_EXPR:
5010 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
5011 if (cmp <= 0)
5012 return cmp;
5013 if (call_expr_nargs (t1) != call_expr_nargs (t2))
5014 return 0;
5015 {
5016 const_tree arg1, arg2;
5017 const_call_expr_arg_iterator iter1, iter2;
5018 for (arg1 = first_const_call_expr_arg (t1, &iter1),
5019 arg2 = first_const_call_expr_arg (t2, &iter2);
5020 arg1 && arg2;
5021 arg1 = next_const_call_expr_arg (&iter1),
5022 arg2 = next_const_call_expr_arg (&iter2))
5023 {
5024 cmp = simple_cst_equal (arg1, arg2);
5025 if (cmp <= 0)
5026 return cmp;
5027 }
5028 return arg1 == arg2;
5029 }
5030
5031 case TARGET_EXPR:
5032 /* Special case: if either target is an unallocated VAR_DECL,
5033 it means that it's going to be unified with whatever the
5034 TARGET_EXPR is really supposed to initialize, so treat it
5035 as being equivalent to anything. */
5036 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
5037 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
5038 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
5039 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
5040 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
5041 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
5042 cmp = 1;
5043 else
5044 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5045
5046 if (cmp <= 0)
5047 return cmp;
5048
5049 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
5050
5051 case WITH_CLEANUP_EXPR:
5052 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5053 if (cmp <= 0)
5054 return cmp;
5055
5056 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
5057
5058 case COMPONENT_REF:
5059 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
5060 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5061
5062 return 0;
5063
5064 case VAR_DECL:
5065 case PARM_DECL:
5066 case CONST_DECL:
5067 case FUNCTION_DECL:
5068 return 0;
5069
5070 default:
5071 break;
5072 }
5073
5074 /* This general rule works for most tree codes. All exceptions should be
5075 handled above. If this is a language-specific tree code, we can't
5076 trust what might be in the operand, so say we don't know
5077 the situation. */
5078 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
5079 return -1;
5080
5081 switch (TREE_CODE_CLASS (code1))
5082 {
5083 case tcc_unary:
5084 case tcc_binary:
5085 case tcc_comparison:
5086 case tcc_expression:
5087 case tcc_reference:
5088 case tcc_statement:
5089 cmp = 1;
5090 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
5091 {
5092 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
5093 if (cmp <= 0)
5094 return cmp;
5095 }
5096
5097 return cmp;
5098
5099 default:
5100 return -1;
5101 }
5102 }
5103
5104 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
5105 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
5106 than U, respectively. */
5107
5108 int
5109 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
5110 {
5111 if (tree_int_cst_sgn (t) < 0)
5112 return -1;
5113 else if (TREE_INT_CST_HIGH (t) != 0)
5114 return 1;
5115 else if (TREE_INT_CST_LOW (t) == u)
5116 return 0;
5117 else if (TREE_INT_CST_LOW (t) < u)
5118 return -1;
5119 else
5120 return 1;
5121 }
5122
5123 /* Return true if CODE represents an associative tree code. Otherwise
5124 return false. */
5125 bool
5126 associative_tree_code (enum tree_code code)
5127 {
5128 switch (code)
5129 {
5130 case BIT_IOR_EXPR:
5131 case BIT_AND_EXPR:
5132 case BIT_XOR_EXPR:
5133 case PLUS_EXPR:
5134 case MULT_EXPR:
5135 case MIN_EXPR:
5136 case MAX_EXPR:
5137 return true;
5138
5139 default:
5140 break;
5141 }
5142 return false;
5143 }
5144
5145 /* Return true if CODE represents a commutative tree code. Otherwise
5146 return false. */
5147 bool
5148 commutative_tree_code (enum tree_code code)
5149 {
5150 switch (code)
5151 {
5152 case PLUS_EXPR:
5153 case MULT_EXPR:
5154 case MIN_EXPR:
5155 case MAX_EXPR:
5156 case BIT_IOR_EXPR:
5157 case BIT_XOR_EXPR:
5158 case BIT_AND_EXPR:
5159 case NE_EXPR:
5160 case EQ_EXPR:
5161 case UNORDERED_EXPR:
5162 case ORDERED_EXPR:
5163 case UNEQ_EXPR:
5164 case LTGT_EXPR:
5165 case TRUTH_AND_EXPR:
5166 case TRUTH_XOR_EXPR:
5167 case TRUTH_OR_EXPR:
5168 return true;
5169
5170 default:
5171 break;
5172 }
5173 return false;
5174 }
5175
5176 /* Generate a hash value for an expression. This can be used iteratively
5177 by passing a previous result as the "val" argument.
5178
5179 This function is intended to produce the same hash for expressions which
5180 would compare equal using operand_equal_p. */
5181
5182 hashval_t
5183 iterative_hash_expr (const_tree t, hashval_t val)
5184 {
5185 int i;
5186 enum tree_code code;
5187 char class;
5188
5189 if (t == NULL_TREE)
5190 return iterative_hash_pointer (t, val);
5191
5192 code = TREE_CODE (t);
5193
5194 switch (code)
5195 {
5196 /* Alas, constants aren't shared, so we can't rely on pointer
5197 identity. */
5198 case INTEGER_CST:
5199 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
5200 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
5201 case REAL_CST:
5202 {
5203 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
5204
5205 return iterative_hash_hashval_t (val2, val);
5206 }
5207 case FIXED_CST:
5208 {
5209 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
5210
5211 return iterative_hash_hashval_t (val2, val);
5212 }
5213 case STRING_CST:
5214 return iterative_hash (TREE_STRING_POINTER (t),
5215 TREE_STRING_LENGTH (t), val);
5216 case COMPLEX_CST:
5217 val = iterative_hash_expr (TREE_REALPART (t), val);
5218 return iterative_hash_expr (TREE_IMAGPART (t), val);
5219 case VECTOR_CST:
5220 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
5221
5222 case SSA_NAME:
5223 case VALUE_HANDLE:
5224 /* we can just compare by pointer. */
5225 return iterative_hash_pointer (t, val);
5226
5227 case TREE_LIST:
5228 /* A list of expressions, for a CALL_EXPR or as the elements of a
5229 VECTOR_CST. */
5230 for (; t; t = TREE_CHAIN (t))
5231 val = iterative_hash_expr (TREE_VALUE (t), val);
5232 return val;
5233 case CONSTRUCTOR:
5234 {
5235 unsigned HOST_WIDE_INT idx;
5236 tree field, value;
5237 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
5238 {
5239 val = iterative_hash_expr (field, val);
5240 val = iterative_hash_expr (value, val);
5241 }
5242 return val;
5243 }
5244 case FUNCTION_DECL:
5245 /* When referring to a built-in FUNCTION_DECL, use the
5246 __builtin__ form. Otherwise nodes that compare equal
5247 according to operand_equal_p might get different
5248 hash codes. */
5249 if (DECL_BUILT_IN (t))
5250 {
5251 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
5252 val);
5253 return val;
5254 }
5255 /* else FALL THROUGH */
5256 default:
5257 class = TREE_CODE_CLASS (code);
5258
5259 if (class == tcc_declaration)
5260 {
5261 /* DECL's have a unique ID */
5262 val = iterative_hash_host_wide_int (DECL_UID (t), val);
5263 }
5264 else
5265 {
5266 gcc_assert (IS_EXPR_CODE_CLASS (class));
5267
5268 val = iterative_hash_object (code, val);
5269
5270 /* Don't hash the type, that can lead to having nodes which
5271 compare equal according to operand_equal_p, but which
5272 have different hash codes. */
5273 if (code == NOP_EXPR
5274 || code == CONVERT_EXPR
5275 || code == NON_LVALUE_EXPR)
5276 {
5277 /* Make sure to include signness in the hash computation. */
5278 val += TYPE_UNSIGNED (TREE_TYPE (t));
5279 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
5280 }
5281
5282 else if (commutative_tree_code (code))
5283 {
5284 /* It's a commutative expression. We want to hash it the same
5285 however it appears. We do this by first hashing both operands
5286 and then rehashing based on the order of their independent
5287 hashes. */
5288 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
5289 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
5290 hashval_t t;
5291
5292 if (one > two)
5293 t = one, one = two, two = t;
5294
5295 val = iterative_hash_hashval_t (one, val);
5296 val = iterative_hash_hashval_t (two, val);
5297 }
5298 else
5299 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
5300 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
5301 }
5302 return val;
5303 break;
5304 }
5305 }
5306 \f
5307 /* Constructors for pointer, array and function types.
5308 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
5309 constructed by language-dependent code, not here.) */
5310
5311 /* Construct, lay out and return the type of pointers to TO_TYPE with
5312 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
5313 reference all of memory. If such a type has already been
5314 constructed, reuse it. */
5315
5316 tree
5317 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
5318 bool can_alias_all)
5319 {
5320 tree t;
5321
5322 if (to_type == error_mark_node)
5323 return error_mark_node;
5324
5325 /* In some cases, languages will have things that aren't a POINTER_TYPE
5326 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
5327 In that case, return that type without regard to the rest of our
5328 operands.
5329
5330 ??? This is a kludge, but consistent with the way this function has
5331 always operated and there doesn't seem to be a good way to avoid this
5332 at the moment. */
5333 if (TYPE_POINTER_TO (to_type) != 0
5334 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
5335 return TYPE_POINTER_TO (to_type);
5336
5337 /* First, if we already have a type for pointers to TO_TYPE and it's
5338 the proper mode, use it. */
5339 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
5340 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5341 return t;
5342
5343 t = make_node (POINTER_TYPE);
5344
5345 TREE_TYPE (t) = to_type;
5346 TYPE_MODE (t) = mode;
5347 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5348 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5349 TYPE_POINTER_TO (to_type) = t;
5350
5351 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5352 SET_TYPE_STRUCTURAL_EQUALITY (t);
5353 else if (TYPE_CANONICAL (to_type) != to_type)
5354 TYPE_CANONICAL (t)
5355 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
5356 mode, can_alias_all);
5357
5358 /* Lay out the type. This function has many callers that are concerned
5359 with expression-construction, and this simplifies them all. */
5360 layout_type (t);
5361
5362 return t;
5363 }
5364
5365 /* By default build pointers in ptr_mode. */
5366
5367 tree
5368 build_pointer_type (tree to_type)
5369 {
5370 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5371 }
5372
5373 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5374
5375 tree
5376 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5377 bool can_alias_all)
5378 {
5379 tree t;
5380
5381 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5382 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5383 In that case, return that type without regard to the rest of our
5384 operands.
5385
5386 ??? This is a kludge, but consistent with the way this function has
5387 always operated and there doesn't seem to be a good way to avoid this
5388 at the moment. */
5389 if (TYPE_REFERENCE_TO (to_type) != 0
5390 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5391 return TYPE_REFERENCE_TO (to_type);
5392
5393 /* First, if we already have a type for pointers to TO_TYPE and it's
5394 the proper mode, use it. */
5395 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5396 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5397 return t;
5398
5399 t = make_node (REFERENCE_TYPE);
5400
5401 TREE_TYPE (t) = to_type;
5402 TYPE_MODE (t) = mode;
5403 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5404 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5405 TYPE_REFERENCE_TO (to_type) = t;
5406
5407 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5408 SET_TYPE_STRUCTURAL_EQUALITY (t);
5409 else if (TYPE_CANONICAL (to_type) != to_type)
5410 TYPE_CANONICAL (t)
5411 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
5412 mode, can_alias_all);
5413
5414 layout_type (t);
5415
5416 return t;
5417 }
5418
5419
5420 /* Build the node for the type of references-to-TO_TYPE by default
5421 in ptr_mode. */
5422
5423 tree
5424 build_reference_type (tree to_type)
5425 {
5426 return build_reference_type_for_mode (to_type, ptr_mode, false);
5427 }
5428
5429 /* Build a type that is compatible with t but has no cv quals anywhere
5430 in its type, thus
5431
5432 const char *const *const * -> char ***. */
5433
5434 tree
5435 build_type_no_quals (tree t)
5436 {
5437 switch (TREE_CODE (t))
5438 {
5439 case POINTER_TYPE:
5440 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5441 TYPE_MODE (t),
5442 TYPE_REF_CAN_ALIAS_ALL (t));
5443 case REFERENCE_TYPE:
5444 return
5445 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5446 TYPE_MODE (t),
5447 TYPE_REF_CAN_ALIAS_ALL (t));
5448 default:
5449 return TYPE_MAIN_VARIANT (t);
5450 }
5451 }
5452
5453 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5454 MAXVAL should be the maximum value in the domain
5455 (one less than the length of the array).
5456
5457 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5458 We don't enforce this limit, that is up to caller (e.g. language front end).
5459 The limit exists because the result is a signed type and we don't handle
5460 sizes that use more than one HOST_WIDE_INT. */
5461
5462 tree
5463 build_index_type (tree maxval)
5464 {
5465 tree itype = make_node (INTEGER_TYPE);
5466
5467 TREE_TYPE (itype) = sizetype;
5468 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5469 TYPE_MIN_VALUE (itype) = size_zero_node;
5470 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5471 TYPE_MODE (itype) = TYPE_MODE (sizetype);
5472 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5473 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5474 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5475 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5476
5477 if (host_integerp (maxval, 1))
5478 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5479 else
5480 {
5481 /* Since we cannot hash this type, we need to compare it using
5482 structural equality checks. */
5483 SET_TYPE_STRUCTURAL_EQUALITY (itype);
5484 return itype;
5485 }
5486 }
5487
5488 /* Builds a signed or unsigned integer type of precision PRECISION.
5489 Used for C bitfields whose precision does not match that of
5490 built-in target types. */
5491 tree
5492 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5493 int unsignedp)
5494 {
5495 tree itype = make_node (INTEGER_TYPE);
5496
5497 TYPE_PRECISION (itype) = precision;
5498
5499 if (unsignedp)
5500 fixup_unsigned_type (itype);
5501 else
5502 fixup_signed_type (itype);
5503
5504 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5505 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5506
5507 return itype;
5508 }
5509
5510 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5511 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5512 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5513
5514 tree
5515 build_range_type (tree type, tree lowval, tree highval)
5516 {
5517 tree itype = make_node (INTEGER_TYPE);
5518
5519 TREE_TYPE (itype) = type;
5520 if (type == NULL_TREE)
5521 type = sizetype;
5522
5523 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5524 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5525
5526 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5527 TYPE_MODE (itype) = TYPE_MODE (type);
5528 TYPE_SIZE (itype) = TYPE_SIZE (type);
5529 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5530 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5531 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5532
5533 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5534 return type_hash_canon (tree_low_cst (highval, 0)
5535 - tree_low_cst (lowval, 0),
5536 itype);
5537 else
5538 return itype;
5539 }
5540
5541 /* Just like build_index_type, but takes lowval and highval instead
5542 of just highval (maxval). */
5543
5544 tree
5545 build_index_2_type (tree lowval, tree highval)
5546 {
5547 return build_range_type (sizetype, lowval, highval);
5548 }
5549
5550 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5551 and number of elements specified by the range of values of INDEX_TYPE.
5552 If such a type has already been constructed, reuse it. */
5553
5554 tree
5555 build_array_type (tree elt_type, tree index_type)
5556 {
5557 tree t;
5558 hashval_t hashcode = 0;
5559
5560 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5561 {
5562 error ("arrays of functions are not meaningful");
5563 elt_type = integer_type_node;
5564 }
5565
5566 t = make_node (ARRAY_TYPE);
5567 TREE_TYPE (t) = elt_type;
5568 TYPE_DOMAIN (t) = index_type;
5569
5570 if (index_type == 0)
5571 {
5572 tree save = t;
5573 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5574 t = type_hash_canon (hashcode, t);
5575 if (save == t)
5576 layout_type (t);
5577
5578 if (TYPE_CANONICAL (t) == t)
5579 {
5580 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
5581 SET_TYPE_STRUCTURAL_EQUALITY (t);
5582 else if (TYPE_CANONICAL (elt_type) != elt_type)
5583 TYPE_CANONICAL (t)
5584 = build_array_type (TYPE_CANONICAL (elt_type), index_type);
5585 }
5586
5587 return t;
5588 }
5589
5590 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5591 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5592 t = type_hash_canon (hashcode, t);
5593
5594 if (!COMPLETE_TYPE_P (t))
5595 layout_type (t);
5596
5597 if (TYPE_CANONICAL (t) == t)
5598 {
5599 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
5600 || TYPE_STRUCTURAL_EQUALITY_P (index_type))
5601 SET_TYPE_STRUCTURAL_EQUALITY (t);
5602 else if (TYPE_CANONICAL (elt_type) != elt_type
5603 || TYPE_CANONICAL (index_type) != index_type)
5604 TYPE_CANONICAL (t)
5605 = build_array_type (TYPE_CANONICAL (elt_type),
5606 TYPE_CANONICAL (index_type));
5607 }
5608
5609 return t;
5610 }
5611
5612 /* Return the TYPE of the elements comprising
5613 the innermost dimension of ARRAY. */
5614
5615 tree
5616 get_inner_array_type (const_tree array)
5617 {
5618 tree type = TREE_TYPE (array);
5619
5620 while (TREE_CODE (type) == ARRAY_TYPE)
5621 type = TREE_TYPE (type);
5622
5623 return type;
5624 }
5625
5626 /* Computes the canonical argument types from the argument type list
5627 ARGTYPES.
5628
5629 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
5630 on entry to this function, or if any of the ARGTYPES are
5631 structural.
5632
5633 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
5634 true on entry to this function, or if any of the ARGTYPES are
5635 non-canonical.
5636
5637 Returns a canonical argument list, which may be ARGTYPES when the
5638 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
5639 true) or would not differ from ARGTYPES. */
5640
5641 static tree
5642 maybe_canonicalize_argtypes(tree argtypes,
5643 bool *any_structural_p,
5644 bool *any_noncanonical_p)
5645 {
5646 tree arg;
5647 bool any_noncanonical_argtypes_p = false;
5648
5649 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
5650 {
5651 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
5652 /* Fail gracefully by stating that the type is structural. */
5653 *any_structural_p = true;
5654 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
5655 *any_structural_p = true;
5656 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
5657 || TREE_PURPOSE (arg))
5658 /* If the argument has a default argument, we consider it
5659 non-canonical even though the type itself is canonical.
5660 That way, different variants of function and method types
5661 with default arguments will all point to the variant with
5662 no defaults as their canonical type. */
5663 any_noncanonical_argtypes_p = true;
5664 }
5665
5666 if (*any_structural_p)
5667 return argtypes;
5668
5669 if (any_noncanonical_argtypes_p)
5670 {
5671 /* Build the canonical list of argument types. */
5672 tree canon_argtypes = NULL_TREE;
5673 bool is_void = false;
5674
5675 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
5676 {
5677 if (arg == void_list_node)
5678 is_void = true;
5679 else
5680 canon_argtypes = tree_cons (NULL_TREE,
5681 TYPE_CANONICAL (TREE_VALUE (arg)),
5682 canon_argtypes);
5683 }
5684
5685 canon_argtypes = nreverse (canon_argtypes);
5686 if (is_void)
5687 canon_argtypes = chainon (canon_argtypes, void_list_node);
5688
5689 /* There is a non-canonical type. */
5690 *any_noncanonical_p = true;
5691 return canon_argtypes;
5692 }
5693
5694 /* The canonical argument types are the same as ARGTYPES. */
5695 return argtypes;
5696 }
5697
5698 /* Construct, lay out and return
5699 the type of functions returning type VALUE_TYPE
5700 given arguments of types ARG_TYPES.
5701 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5702 are data type nodes for the arguments of the function.
5703 If such a type has already been constructed, reuse it. */
5704
5705 tree
5706 build_function_type (tree value_type, tree arg_types)
5707 {
5708 tree t;
5709 hashval_t hashcode = 0;
5710 bool any_structural_p, any_noncanonical_p;
5711 tree canon_argtypes;
5712
5713 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5714 {
5715 error ("function return type cannot be function");
5716 value_type = integer_type_node;
5717 }
5718
5719 /* Make a node of the sort we want. */
5720 t = make_node (FUNCTION_TYPE);
5721 TREE_TYPE (t) = value_type;
5722 TYPE_ARG_TYPES (t) = arg_types;
5723
5724 /* If we already have such a type, use the old one. */
5725 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5726 hashcode = type_hash_list (arg_types, hashcode);
5727 t = type_hash_canon (hashcode, t);
5728
5729 /* Set up the canonical type. */
5730 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
5731 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
5732 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
5733 &any_structural_p,
5734 &any_noncanonical_p);
5735 if (any_structural_p)
5736 SET_TYPE_STRUCTURAL_EQUALITY (t);
5737 else if (any_noncanonical_p)
5738 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
5739 canon_argtypes);
5740
5741 if (!COMPLETE_TYPE_P (t))
5742 layout_type (t);
5743 return t;
5744 }
5745
5746 /* Build a function type. The RETURN_TYPE is the type returned by the
5747 function. If additional arguments are provided, they are
5748 additional argument types. The list of argument types must always
5749 be terminated by NULL_TREE. */
5750
5751 tree
5752 build_function_type_list (tree return_type, ...)
5753 {
5754 tree t, args, last;
5755 va_list p;
5756
5757 va_start (p, return_type);
5758
5759 t = va_arg (p, tree);
5760 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5761 args = tree_cons (NULL_TREE, t, args);
5762
5763 if (args == NULL_TREE)
5764 args = void_list_node;
5765 else
5766 {
5767 last = args;
5768 args = nreverse (args);
5769 TREE_CHAIN (last) = void_list_node;
5770 }
5771 args = build_function_type (return_type, args);
5772
5773 va_end (p);
5774 return args;
5775 }
5776
5777 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5778 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5779 for the method. An implicit additional parameter (of type
5780 pointer-to-BASETYPE) is added to the ARGTYPES. */
5781
5782 tree
5783 build_method_type_directly (tree basetype,
5784 tree rettype,
5785 tree argtypes)
5786 {
5787 tree t;
5788 tree ptype;
5789 int hashcode = 0;
5790 bool any_structural_p, any_noncanonical_p;
5791 tree canon_argtypes;
5792
5793 /* Make a node of the sort we want. */
5794 t = make_node (METHOD_TYPE);
5795
5796 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5797 TREE_TYPE (t) = rettype;
5798 ptype = build_pointer_type (basetype);
5799
5800 /* The actual arglist for this function includes a "hidden" argument
5801 which is "this". Put it into the list of argument types. */
5802 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5803 TYPE_ARG_TYPES (t) = argtypes;
5804
5805 /* If we already have such a type, use the old one. */
5806 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5807 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5808 hashcode = type_hash_list (argtypes, hashcode);
5809 t = type_hash_canon (hashcode, t);
5810
5811 /* Set up the canonical type. */
5812 any_structural_p
5813 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5814 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
5815 any_noncanonical_p
5816 = (TYPE_CANONICAL (basetype) != basetype
5817 || TYPE_CANONICAL (rettype) != rettype);
5818 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
5819 &any_structural_p,
5820 &any_noncanonical_p);
5821 if (any_structural_p)
5822 SET_TYPE_STRUCTURAL_EQUALITY (t);
5823 else if (any_noncanonical_p)
5824 TYPE_CANONICAL (t)
5825 = build_method_type_directly (TYPE_CANONICAL (basetype),
5826 TYPE_CANONICAL (rettype),
5827 canon_argtypes);
5828 if (!COMPLETE_TYPE_P (t))
5829 layout_type (t);
5830
5831 return t;
5832 }
5833
5834 /* Construct, lay out and return the type of methods belonging to class
5835 BASETYPE and whose arguments and values are described by TYPE.
5836 If that type exists already, reuse it.
5837 TYPE must be a FUNCTION_TYPE node. */
5838
5839 tree
5840 build_method_type (tree basetype, tree type)
5841 {
5842 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5843
5844 return build_method_type_directly (basetype,
5845 TREE_TYPE (type),
5846 TYPE_ARG_TYPES (type));
5847 }
5848
5849 /* Construct, lay out and return the type of offsets to a value
5850 of type TYPE, within an object of type BASETYPE.
5851 If a suitable offset type exists already, reuse it. */
5852
5853 tree
5854 build_offset_type (tree basetype, tree type)
5855 {
5856 tree t;
5857 hashval_t hashcode = 0;
5858
5859 /* Make a node of the sort we want. */
5860 t = make_node (OFFSET_TYPE);
5861
5862 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5863 TREE_TYPE (t) = type;
5864
5865 /* If we already have such a type, use the old one. */
5866 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5867 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5868 t = type_hash_canon (hashcode, t);
5869
5870 if (!COMPLETE_TYPE_P (t))
5871 layout_type (t);
5872
5873 if (TYPE_CANONICAL (t) == t)
5874 {
5875 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5876 || TYPE_STRUCTURAL_EQUALITY_P (type))
5877 SET_TYPE_STRUCTURAL_EQUALITY (t);
5878 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
5879 || TYPE_CANONICAL (type) != type)
5880 TYPE_CANONICAL (t)
5881 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
5882 TYPE_CANONICAL (type));
5883 }
5884
5885 return t;
5886 }
5887
5888 /* Create a complex type whose components are COMPONENT_TYPE. */
5889
5890 tree
5891 build_complex_type (tree component_type)
5892 {
5893 tree t;
5894 hashval_t hashcode;
5895
5896 /* Make a node of the sort we want. */
5897 t = make_node (COMPLEX_TYPE);
5898
5899 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5900
5901 /* If we already have such a type, use the old one. */
5902 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5903 t = type_hash_canon (hashcode, t);
5904
5905 if (!COMPLETE_TYPE_P (t))
5906 layout_type (t);
5907
5908 if (TYPE_CANONICAL (t) == t)
5909 {
5910 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
5911 SET_TYPE_STRUCTURAL_EQUALITY (t);
5912 else if (TYPE_CANONICAL (component_type) != component_type)
5913 TYPE_CANONICAL (t)
5914 = build_complex_type (TYPE_CANONICAL (component_type));
5915 }
5916
5917 /* We need to create a name, since complex is a fundamental type. */
5918 if (! TYPE_NAME (t))
5919 {
5920 const char *name;
5921 if (component_type == char_type_node)
5922 name = "complex char";
5923 else if (component_type == signed_char_type_node)
5924 name = "complex signed char";
5925 else if (component_type == unsigned_char_type_node)
5926 name = "complex unsigned char";
5927 else if (component_type == short_integer_type_node)
5928 name = "complex short int";
5929 else if (component_type == short_unsigned_type_node)
5930 name = "complex short unsigned int";
5931 else if (component_type == integer_type_node)
5932 name = "complex int";
5933 else if (component_type == unsigned_type_node)
5934 name = "complex unsigned int";
5935 else if (component_type == long_integer_type_node)
5936 name = "complex long int";
5937 else if (component_type == long_unsigned_type_node)
5938 name = "complex long unsigned int";
5939 else if (component_type == long_long_integer_type_node)
5940 name = "complex long long int";
5941 else if (component_type == long_long_unsigned_type_node)
5942 name = "complex long long unsigned int";
5943 else
5944 name = 0;
5945
5946 if (name != 0)
5947 TYPE_NAME (t) = build_decl (TYPE_DECL, get_identifier (name), t);
5948 }
5949
5950 return build_qualified_type (t, TYPE_QUALS (component_type));
5951 }
5952 \f
5953 /* Return OP, stripped of any conversions to wider types as much as is safe.
5954 Converting the value back to OP's type makes a value equivalent to OP.
5955
5956 If FOR_TYPE is nonzero, we return a value which, if converted to
5957 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5958
5959 OP must have integer, real or enumeral type. Pointers are not allowed!
5960
5961 There are some cases where the obvious value we could return
5962 would regenerate to OP if converted to OP's type,
5963 but would not extend like OP to wider types.
5964 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5965 For example, if OP is (unsigned short)(signed char)-1,
5966 we avoid returning (signed char)-1 if FOR_TYPE is int,
5967 even though extending that to an unsigned short would regenerate OP,
5968 since the result of extending (signed char)-1 to (int)
5969 is different from (int) OP. */
5970
5971 tree
5972 get_unwidened (tree op, tree for_type)
5973 {
5974 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
5975 tree type = TREE_TYPE (op);
5976 unsigned final_prec
5977 = TYPE_PRECISION (for_type != 0 ? for_type : type);
5978 int uns
5979 = (for_type != 0 && for_type != type
5980 && final_prec > TYPE_PRECISION (type)
5981 && TYPE_UNSIGNED (type));
5982 tree win = op;
5983
5984 while (TREE_CODE (op) == NOP_EXPR
5985 || TREE_CODE (op) == CONVERT_EXPR)
5986 {
5987 int bitschange;
5988
5989 /* TYPE_PRECISION on vector types has different meaning
5990 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5991 so avoid them here. */
5992 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5993 break;
5994
5995 bitschange = TYPE_PRECISION (TREE_TYPE (op))
5996 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5997
5998 /* Truncations are many-one so cannot be removed.
5999 Unless we are later going to truncate down even farther. */
6000 if (bitschange < 0
6001 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
6002 break;
6003
6004 /* See what's inside this conversion. If we decide to strip it,
6005 we will set WIN. */
6006 op = TREE_OPERAND (op, 0);
6007
6008 /* If we have not stripped any zero-extensions (uns is 0),
6009 we can strip any kind of extension.
6010 If we have previously stripped a zero-extension,
6011 only zero-extensions can safely be stripped.
6012 Any extension can be stripped if the bits it would produce
6013 are all going to be discarded later by truncating to FOR_TYPE. */
6014
6015 if (bitschange > 0)
6016 {
6017 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
6018 win = op;
6019 /* TYPE_UNSIGNED says whether this is a zero-extension.
6020 Let's avoid computing it if it does not affect WIN
6021 and if UNS will not be needed again. */
6022 if ((uns
6023 || TREE_CODE (op) == NOP_EXPR
6024 || TREE_CODE (op) == CONVERT_EXPR)
6025 && TYPE_UNSIGNED (TREE_TYPE (op)))
6026 {
6027 uns = 1;
6028 win = op;
6029 }
6030 }
6031 }
6032
6033 return win;
6034 }
6035 \f
6036 /* Return OP or a simpler expression for a narrower value
6037 which can be sign-extended or zero-extended to give back OP.
6038 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
6039 or 0 if the value should be sign-extended. */
6040
6041 tree
6042 get_narrower (tree op, int *unsignedp_ptr)
6043 {
6044 int uns = 0;
6045 int first = 1;
6046 tree win = op;
6047 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
6048
6049 while (TREE_CODE (op) == NOP_EXPR)
6050 {
6051 int bitschange
6052 = (TYPE_PRECISION (TREE_TYPE (op))
6053 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
6054
6055 /* Truncations are many-one so cannot be removed. */
6056 if (bitschange < 0)
6057 break;
6058
6059 /* See what's inside this conversion. If we decide to strip it,
6060 we will set WIN. */
6061
6062 if (bitschange > 0)
6063 {
6064 op = TREE_OPERAND (op, 0);
6065 /* An extension: the outermost one can be stripped,
6066 but remember whether it is zero or sign extension. */
6067 if (first)
6068 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6069 /* Otherwise, if a sign extension has been stripped,
6070 only sign extensions can now be stripped;
6071 if a zero extension has been stripped, only zero-extensions. */
6072 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
6073 break;
6074 first = 0;
6075 }
6076 else /* bitschange == 0 */
6077 {
6078 /* A change in nominal type can always be stripped, but we must
6079 preserve the unsignedness. */
6080 if (first)
6081 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6082 first = 0;
6083 op = TREE_OPERAND (op, 0);
6084 /* Keep trying to narrow, but don't assign op to win if it
6085 would turn an integral type into something else. */
6086 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
6087 continue;
6088 }
6089
6090 win = op;
6091 }
6092
6093 if (TREE_CODE (op) == COMPONENT_REF
6094 /* Since type_for_size always gives an integer type. */
6095 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
6096 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
6097 /* Ensure field is laid out already. */
6098 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6099 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6100 {
6101 unsigned HOST_WIDE_INT innerprec
6102 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6103 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6104 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6105 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6106
6107 /* We can get this structure field in a narrower type that fits it,
6108 but the resulting extension to its nominal type (a fullword type)
6109 must satisfy the same conditions as for other extensions.
6110
6111 Do this only for fields that are aligned (not bit-fields),
6112 because when bit-field insns will be used there is no
6113 advantage in doing this. */
6114
6115 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
6116 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
6117 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
6118 && type != 0)
6119 {
6120 if (first)
6121 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
6122 win = fold_convert (type, op);
6123 }
6124 }
6125
6126 *unsignedp_ptr = uns;
6127 return win;
6128 }
6129 \f
6130 /* Nonzero if integer constant C has a value that is permissible
6131 for type TYPE (an INTEGER_TYPE). */
6132
6133 int
6134 int_fits_type_p (const_tree c, const_tree type)
6135 {
6136 tree type_low_bound = TYPE_MIN_VALUE (type);
6137 tree type_high_bound = TYPE_MAX_VALUE (type);
6138 bool ok_for_low_bound, ok_for_high_bound;
6139 unsigned HOST_WIDE_INT low;
6140 HOST_WIDE_INT high;
6141
6142 /* If at least one bound of the type is a constant integer, we can check
6143 ourselves and maybe make a decision. If no such decision is possible, but
6144 this type is a subtype, try checking against that. Otherwise, use
6145 fit_double_type, which checks against the precision.
6146
6147 Compute the status for each possibly constant bound, and return if we see
6148 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
6149 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
6150 for "constant known to fit". */
6151
6152 /* Check if C >= type_low_bound. */
6153 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
6154 {
6155 if (tree_int_cst_lt (c, type_low_bound))
6156 return 0;
6157 ok_for_low_bound = true;
6158 }
6159 else
6160 ok_for_low_bound = false;
6161
6162 /* Check if c <= type_high_bound. */
6163 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
6164 {
6165 if (tree_int_cst_lt (type_high_bound, c))
6166 return 0;
6167 ok_for_high_bound = true;
6168 }
6169 else
6170 ok_for_high_bound = false;
6171
6172 /* If the constant fits both bounds, the result is known. */
6173 if (ok_for_low_bound && ok_for_high_bound)
6174 return 1;
6175
6176 /* Perform some generic filtering which may allow making a decision
6177 even if the bounds are not constant. First, negative integers
6178 never fit in unsigned types, */
6179 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
6180 return 0;
6181
6182 /* Second, narrower types always fit in wider ones. */
6183 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
6184 return 1;
6185
6186 /* Third, unsigned integers with top bit set never fit signed types. */
6187 if (! TYPE_UNSIGNED (type)
6188 && TYPE_UNSIGNED (TREE_TYPE (c))
6189 && tree_int_cst_msb (c))
6190 return 0;
6191
6192 /* If we haven't been able to decide at this point, there nothing more we
6193 can check ourselves here. Look at the base type if we have one and it
6194 has the same precision. */
6195 if (TREE_CODE (type) == INTEGER_TYPE
6196 && TREE_TYPE (type) != 0
6197 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
6198 return int_fits_type_p (c, TREE_TYPE (type));
6199
6200 /* Or to fit_double_type, if nothing else. */
6201 low = TREE_INT_CST_LOW (c);
6202 high = TREE_INT_CST_HIGH (c);
6203 return !fit_double_type (low, high, &low, &high, type);
6204 }
6205
6206 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
6207 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
6208 represented (assuming two's-complement arithmetic) within the bit
6209 precision of the type are returned instead. */
6210
6211 void
6212 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
6213 {
6214 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
6215 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
6216 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
6217 TYPE_UNSIGNED (type));
6218 else
6219 {
6220 if (TYPE_UNSIGNED (type))
6221 mpz_set_ui (min, 0);
6222 else
6223 {
6224 double_int mn;
6225 mn = double_int_mask (TYPE_PRECISION (type) - 1);
6226 mn = double_int_sext (double_int_add (mn, double_int_one),
6227 TYPE_PRECISION (type));
6228 mpz_set_double_int (min, mn, false);
6229 }
6230 }
6231
6232 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
6233 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
6234 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
6235 TYPE_UNSIGNED (type));
6236 else
6237 {
6238 if (TYPE_UNSIGNED (type))
6239 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
6240 true);
6241 else
6242 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
6243 true);
6244 }
6245 }
6246
6247 /* auto_var_in_fn_p is called to determine whether VAR is an automatic
6248 variable defined in function FN. */
6249
6250 bool
6251 auto_var_in_fn_p (const_tree var, const_tree fn)
6252 {
6253 return (DECL_P (var) && DECL_CONTEXT (var) == fn
6254 && (((TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
6255 && ! TREE_STATIC (var))
6256 || TREE_CODE (var) == LABEL_DECL
6257 || TREE_CODE (var) == RESULT_DECL));
6258 }
6259
6260 /* Subprogram of following function. Called by walk_tree.
6261
6262 Return *TP if it is an automatic variable or parameter of the
6263 function passed in as DATA. */
6264
6265 static tree
6266 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
6267 {
6268 tree fn = (tree) data;
6269
6270 if (TYPE_P (*tp))
6271 *walk_subtrees = 0;
6272
6273 else if (DECL_P (*tp)
6274 && auto_var_in_fn_p (*tp, fn))
6275 return *tp;
6276
6277 return NULL_TREE;
6278 }
6279
6280 /* Returns true if T is, contains, or refers to a type with variable
6281 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
6282 arguments, but not the return type. If FN is nonzero, only return
6283 true if a modifier of the type or position of FN is a variable or
6284 parameter inside FN.
6285
6286 This concept is more general than that of C99 'variably modified types':
6287 in C99, a struct type is never variably modified because a VLA may not
6288 appear as a structure member. However, in GNU C code like:
6289
6290 struct S { int i[f()]; };
6291
6292 is valid, and other languages may define similar constructs. */
6293
6294 bool
6295 variably_modified_type_p (tree type, tree fn)
6296 {
6297 tree t;
6298
6299 /* Test if T is either variable (if FN is zero) or an expression containing
6300 a variable in FN. */
6301 #define RETURN_TRUE_IF_VAR(T) \
6302 do { tree _t = (T); \
6303 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
6304 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
6305 return true; } while (0)
6306
6307 if (type == error_mark_node)
6308 return false;
6309
6310 /* If TYPE itself has variable size, it is variably modified. */
6311 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
6312 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
6313
6314 switch (TREE_CODE (type))
6315 {
6316 case POINTER_TYPE:
6317 case REFERENCE_TYPE:
6318 case VECTOR_TYPE:
6319 if (variably_modified_type_p (TREE_TYPE (type), fn))
6320 return true;
6321 break;
6322
6323 case FUNCTION_TYPE:
6324 case METHOD_TYPE:
6325 /* If TYPE is a function type, it is variably modified if the
6326 return type is variably modified. */
6327 if (variably_modified_type_p (TREE_TYPE (type), fn))
6328 return true;
6329 break;
6330
6331 case INTEGER_TYPE:
6332 case REAL_TYPE:
6333 case FIXED_POINT_TYPE:
6334 case ENUMERAL_TYPE:
6335 case BOOLEAN_TYPE:
6336 /* Scalar types are variably modified if their end points
6337 aren't constant. */
6338 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
6339 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
6340 break;
6341
6342 case RECORD_TYPE:
6343 case UNION_TYPE:
6344 case QUAL_UNION_TYPE:
6345 /* We can't see if any of the fields are variably-modified by the
6346 definition we normally use, since that would produce infinite
6347 recursion via pointers. */
6348 /* This is variably modified if some field's type is. */
6349 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
6350 if (TREE_CODE (t) == FIELD_DECL)
6351 {
6352 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
6353 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
6354 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
6355
6356 if (TREE_CODE (type) == QUAL_UNION_TYPE)
6357 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
6358 }
6359 break;
6360
6361 case ARRAY_TYPE:
6362 /* Do not call ourselves to avoid infinite recursion. This is
6363 variably modified if the element type is. */
6364 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
6365 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
6366 break;
6367
6368 default:
6369 break;
6370 }
6371
6372 /* The current language may have other cases to check, but in general,
6373 all other types are not variably modified. */
6374 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
6375
6376 #undef RETURN_TRUE_IF_VAR
6377 }
6378
6379 /* Given a DECL or TYPE, return the scope in which it was declared, or
6380 NULL_TREE if there is no containing scope. */
6381
6382 tree
6383 get_containing_scope (const_tree t)
6384 {
6385 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
6386 }
6387
6388 /* Return the innermost context enclosing DECL that is
6389 a FUNCTION_DECL, or zero if none. */
6390
6391 tree
6392 decl_function_context (const_tree decl)
6393 {
6394 tree context;
6395
6396 if (TREE_CODE (decl) == ERROR_MARK)
6397 return 0;
6398
6399 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
6400 where we look up the function at runtime. Such functions always take
6401 a first argument of type 'pointer to real context'.
6402
6403 C++ should really be fixed to use DECL_CONTEXT for the real context,
6404 and use something else for the "virtual context". */
6405 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
6406 context
6407 = TYPE_MAIN_VARIANT
6408 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6409 else
6410 context = DECL_CONTEXT (decl);
6411
6412 while (context && TREE_CODE (context) != FUNCTION_DECL)
6413 {
6414 if (TREE_CODE (context) == BLOCK)
6415 context = BLOCK_SUPERCONTEXT (context);
6416 else
6417 context = get_containing_scope (context);
6418 }
6419
6420 return context;
6421 }
6422
6423 /* Return the innermost context enclosing DECL that is
6424 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
6425 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
6426
6427 tree
6428 decl_type_context (const_tree decl)
6429 {
6430 tree context = DECL_CONTEXT (decl);
6431
6432 while (context)
6433 switch (TREE_CODE (context))
6434 {
6435 case NAMESPACE_DECL:
6436 case TRANSLATION_UNIT_DECL:
6437 return NULL_TREE;
6438
6439 case RECORD_TYPE:
6440 case UNION_TYPE:
6441 case QUAL_UNION_TYPE:
6442 return context;
6443
6444 case TYPE_DECL:
6445 case FUNCTION_DECL:
6446 context = DECL_CONTEXT (context);
6447 break;
6448
6449 case BLOCK:
6450 context = BLOCK_SUPERCONTEXT (context);
6451 break;
6452
6453 default:
6454 gcc_unreachable ();
6455 }
6456
6457 return NULL_TREE;
6458 }
6459
6460 /* CALL is a CALL_EXPR. Return the declaration for the function
6461 called, or NULL_TREE if the called function cannot be
6462 determined. */
6463
6464 tree
6465 get_callee_fndecl (const_tree call)
6466 {
6467 tree addr;
6468
6469 if (call == error_mark_node)
6470 return error_mark_node;
6471
6472 /* It's invalid to call this function with anything but a
6473 CALL_EXPR. */
6474 gcc_assert (TREE_CODE (call) == CALL_EXPR);
6475
6476 /* The first operand to the CALL is the address of the function
6477 called. */
6478 addr = CALL_EXPR_FN (call);
6479
6480 STRIP_NOPS (addr);
6481
6482 /* If this is a readonly function pointer, extract its initial value. */
6483 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
6484 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
6485 && DECL_INITIAL (addr))
6486 addr = DECL_INITIAL (addr);
6487
6488 /* If the address is just `&f' for some function `f', then we know
6489 that `f' is being called. */
6490 if (TREE_CODE (addr) == ADDR_EXPR
6491 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
6492 return TREE_OPERAND (addr, 0);
6493
6494 /* We couldn't figure out what was being called. Maybe the front
6495 end has some idea. */
6496 return lang_hooks.lang_get_callee_fndecl (call);
6497 }
6498
6499 /* Print debugging information about tree nodes generated during the compile,
6500 and any language-specific information. */
6501
6502 void
6503 dump_tree_statistics (void)
6504 {
6505 #ifdef GATHER_STATISTICS
6506 int i;
6507 int total_nodes, total_bytes;
6508 #endif
6509
6510 fprintf (stderr, "\n??? tree nodes created\n\n");
6511 #ifdef GATHER_STATISTICS
6512 fprintf (stderr, "Kind Nodes Bytes\n");
6513 fprintf (stderr, "---------------------------------------\n");
6514 total_nodes = total_bytes = 0;
6515 for (i = 0; i < (int) all_kinds; i++)
6516 {
6517 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
6518 tree_node_counts[i], tree_node_sizes[i]);
6519 total_nodes += tree_node_counts[i];
6520 total_bytes += tree_node_sizes[i];
6521 }
6522 fprintf (stderr, "---------------------------------------\n");
6523 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
6524 fprintf (stderr, "---------------------------------------\n");
6525 ssanames_print_statistics ();
6526 phinodes_print_statistics ();
6527 #else
6528 fprintf (stderr, "(No per-node statistics)\n");
6529 #endif
6530 print_type_hash_statistics ();
6531 print_debug_expr_statistics ();
6532 print_value_expr_statistics ();
6533 print_restrict_base_statistics ();
6534 lang_hooks.print_statistics ();
6535 }
6536 \f
6537 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6538
6539 /* Generate a crc32 of a string. */
6540
6541 unsigned
6542 crc32_string (unsigned chksum, const char *string)
6543 {
6544 do
6545 {
6546 unsigned value = *string << 24;
6547 unsigned ix;
6548
6549 for (ix = 8; ix--; value <<= 1)
6550 {
6551 unsigned feedback;
6552
6553 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6554 chksum <<= 1;
6555 chksum ^= feedback;
6556 }
6557 }
6558 while (*string++);
6559 return chksum;
6560 }
6561
6562 /* P is a string that will be used in a symbol. Mask out any characters
6563 that are not valid in that context. */
6564
6565 void
6566 clean_symbol_name (char *p)
6567 {
6568 for (; *p; p++)
6569 if (! (ISALNUM (*p)
6570 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6571 || *p == '$'
6572 #endif
6573 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6574 || *p == '.'
6575 #endif
6576 ))
6577 *p = '_';
6578 }
6579
6580 /* Generate a name for a special-purpose function function.
6581 The generated name may need to be unique across the whole link.
6582 TYPE is some string to identify the purpose of this function to the
6583 linker or collect2; it must start with an uppercase letter,
6584 one of:
6585 I - for constructors
6586 D - for destructors
6587 N - for C++ anonymous namespaces
6588 F - for DWARF unwind frame information. */
6589
6590 tree
6591 get_file_function_name (const char *type)
6592 {
6593 char *buf;
6594 const char *p;
6595 char *q;
6596
6597 /* If we already have a name we know to be unique, just use that. */
6598 if (first_global_object_name)
6599 p = first_global_object_name;
6600 /* If the target is handling the constructors/destructors, they
6601 will be local to this file and the name is only necessary for
6602 debugging purposes. */
6603 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6604 {
6605 const char *file = main_input_filename;
6606 if (! file)
6607 file = input_filename;
6608 /* Just use the file's basename, because the full pathname
6609 might be quite long. */
6610 p = strrchr (file, '/');
6611 if (p)
6612 p++;
6613 else
6614 p = file;
6615 p = q = ASTRDUP (p);
6616 clean_symbol_name (q);
6617 }
6618 else
6619 {
6620 /* Otherwise, the name must be unique across the entire link.
6621 We don't have anything that we know to be unique to this translation
6622 unit, so use what we do have and throw in some randomness. */
6623 unsigned len;
6624 const char *name = weak_global_object_name;
6625 const char *file = main_input_filename;
6626
6627 if (! name)
6628 name = "";
6629 if (! file)
6630 file = input_filename;
6631
6632 len = strlen (file);
6633 q = alloca (9 * 2 + len + 1);
6634 memcpy (q, file, len + 1);
6635 clean_symbol_name (q);
6636
6637 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6638 crc32_string (0, get_random_seed (false)));
6639
6640 p = q;
6641 }
6642
6643 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6644
6645 /* Set up the name of the file-level functions we may need.
6646 Use a global object (which is already required to be unique over
6647 the program) rather than the file name (which imposes extra
6648 constraints). */
6649 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6650
6651 return get_identifier (buf);
6652 }
6653 \f
6654 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6655
6656 /* Complain that the tree code of NODE does not match the expected 0
6657 terminated list of trailing codes. The trailing code list can be
6658 empty, for a more vague error message. FILE, LINE, and FUNCTION
6659 are of the caller. */
6660
6661 void
6662 tree_check_failed (const_tree node, const char *file,
6663 int line, const char *function, ...)
6664 {
6665 va_list args;
6666 const char *buffer;
6667 unsigned length = 0;
6668 int code;
6669
6670 va_start (args, function);
6671 while ((code = va_arg (args, int)))
6672 length += 4 + strlen (tree_code_name[code]);
6673 va_end (args);
6674 if (length)
6675 {
6676 char *tmp;
6677 va_start (args, function);
6678 length += strlen ("expected ");
6679 buffer = tmp = alloca (length);
6680 length = 0;
6681 while ((code = va_arg (args, int)))
6682 {
6683 const char *prefix = length ? " or " : "expected ";
6684
6685 strcpy (tmp + length, prefix);
6686 length += strlen (prefix);
6687 strcpy (tmp + length, tree_code_name[code]);
6688 length += strlen (tree_code_name[code]);
6689 }
6690 va_end (args);
6691 }
6692 else
6693 buffer = "unexpected node";
6694
6695 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6696 buffer, tree_code_name[TREE_CODE (node)],
6697 function, trim_filename (file), line);
6698 }
6699
6700 /* Complain that the tree code of NODE does match the expected 0
6701 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6702 the caller. */
6703
6704 void
6705 tree_not_check_failed (const_tree node, const char *file,
6706 int line, const char *function, ...)
6707 {
6708 va_list args;
6709 char *buffer;
6710 unsigned length = 0;
6711 int code;
6712
6713 va_start (args, function);
6714 while ((code = va_arg (args, int)))
6715 length += 4 + strlen (tree_code_name[code]);
6716 va_end (args);
6717 va_start (args, function);
6718 buffer = alloca (length);
6719 length = 0;
6720 while ((code = va_arg (args, int)))
6721 {
6722 if (length)
6723 {
6724 strcpy (buffer + length, " or ");
6725 length += 4;
6726 }
6727 strcpy (buffer + length, tree_code_name[code]);
6728 length += strlen (tree_code_name[code]);
6729 }
6730 va_end (args);
6731
6732 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6733 buffer, tree_code_name[TREE_CODE (node)],
6734 function, trim_filename (file), line);
6735 }
6736
6737 /* Similar to tree_check_failed, except that we check for a class of tree
6738 code, given in CL. */
6739
6740 void
6741 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
6742 const char *file, int line, const char *function)
6743 {
6744 internal_error
6745 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6746 TREE_CODE_CLASS_STRING (cl),
6747 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6748 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6749 }
6750
6751 /* Similar to tree_check_failed, except that instead of specifying a
6752 dozen codes, use the knowledge that they're all sequential. */
6753
6754 void
6755 tree_range_check_failed (const_tree node, const char *file, int line,
6756 const char *function, enum tree_code c1,
6757 enum tree_code c2)
6758 {
6759 char *buffer;
6760 unsigned length = 0;
6761 enum tree_code c;
6762
6763 for (c = c1; c <= c2; ++c)
6764 length += 4 + strlen (tree_code_name[c]);
6765
6766 length += strlen ("expected ");
6767 buffer = alloca (length);
6768 length = 0;
6769
6770 for (c = c1; c <= c2; ++c)
6771 {
6772 const char *prefix = length ? " or " : "expected ";
6773
6774 strcpy (buffer + length, prefix);
6775 length += strlen (prefix);
6776 strcpy (buffer + length, tree_code_name[c]);
6777 length += strlen (tree_code_name[c]);
6778 }
6779
6780 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6781 buffer, tree_code_name[TREE_CODE (node)],
6782 function, trim_filename (file), line);
6783 }
6784
6785
6786 /* Similar to tree_check_failed, except that we check that a tree does
6787 not have the specified code, given in CL. */
6788
6789 void
6790 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
6791 const char *file, int line, const char *function)
6792 {
6793 internal_error
6794 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6795 TREE_CODE_CLASS_STRING (cl),
6796 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6797 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6798 }
6799
6800
6801 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
6802
6803 void
6804 omp_clause_check_failed (const_tree node, const char *file, int line,
6805 const char *function, enum omp_clause_code code)
6806 {
6807 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6808 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6809 function, trim_filename (file), line);
6810 }
6811
6812
6813 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
6814
6815 void
6816 omp_clause_range_check_failed (const_tree node, const char *file, int line,
6817 const char *function, enum omp_clause_code c1,
6818 enum omp_clause_code c2)
6819 {
6820 char *buffer;
6821 unsigned length = 0;
6822 enum omp_clause_code c;
6823
6824 for (c = c1; c <= c2; ++c)
6825 length += 4 + strlen (omp_clause_code_name[c]);
6826
6827 length += strlen ("expected ");
6828 buffer = alloca (length);
6829 length = 0;
6830
6831 for (c = c1; c <= c2; ++c)
6832 {
6833 const char *prefix = length ? " or " : "expected ";
6834
6835 strcpy (buffer + length, prefix);
6836 length += strlen (prefix);
6837 strcpy (buffer + length, omp_clause_code_name[c]);
6838 length += strlen (omp_clause_code_name[c]);
6839 }
6840
6841 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6842 buffer, omp_clause_code_name[TREE_CODE (node)],
6843 function, trim_filename (file), line);
6844 }
6845
6846
6847 #undef DEFTREESTRUCT
6848 #define DEFTREESTRUCT(VAL, NAME) NAME,
6849
6850 static const char *ts_enum_names[] = {
6851 #include "treestruct.def"
6852 };
6853 #undef DEFTREESTRUCT
6854
6855 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6856
6857 /* Similar to tree_class_check_failed, except that we check for
6858 whether CODE contains the tree structure identified by EN. */
6859
6860 void
6861 tree_contains_struct_check_failed (const_tree node,
6862 const enum tree_node_structure_enum en,
6863 const char *file, int line,
6864 const char *function)
6865 {
6866 internal_error
6867 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6868 TS_ENUM_NAME(en),
6869 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6870 }
6871
6872
6873 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6874 (dynamically sized) vector. */
6875
6876 void
6877 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6878 const char *function)
6879 {
6880 internal_error
6881 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6882 idx + 1, len, function, trim_filename (file), line);
6883 }
6884
6885 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6886 (dynamically sized) vector. */
6887
6888 void
6889 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6890 const char *function)
6891 {
6892 internal_error
6893 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6894 idx + 1, len, function, trim_filename (file), line);
6895 }
6896
6897 /* Similar to above, except that the check is for the bounds of the operand
6898 vector of an expression node EXP. */
6899
6900 void
6901 tree_operand_check_failed (int idx, const_tree exp, const char *file,
6902 int line, const char *function)
6903 {
6904 int code = TREE_CODE (exp);
6905 internal_error
6906 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6907 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
6908 function, trim_filename (file), line);
6909 }
6910
6911 /* Similar to above, except that the check is for the number of
6912 operands of an OMP_CLAUSE node. */
6913
6914 void
6915 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
6916 int line, const char *function)
6917 {
6918 internal_error
6919 ("tree check: accessed operand %d of omp_clause %s with %d operands "
6920 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6921 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6922 trim_filename (file), line);
6923 }
6924 #endif /* ENABLE_TREE_CHECKING */
6925 \f
6926 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6927 and mapped to the machine mode MODE. Initialize its fields and build
6928 the information necessary for debugging output. */
6929
6930 static tree
6931 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6932 {
6933 tree t;
6934 hashval_t hashcode = 0;
6935
6936 /* Build a main variant, based on the main variant of the inner type, then
6937 use it to build the variant we return. */
6938 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6939 && TYPE_MAIN_VARIANT (innertype) != innertype)
6940 return build_type_attribute_qual_variant (
6941 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6942 TYPE_ATTRIBUTES (innertype),
6943 TYPE_QUALS (innertype));
6944
6945 t = make_node (VECTOR_TYPE);
6946 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6947 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6948 TYPE_MODE (t) = mode;
6949 TYPE_READONLY (t) = TYPE_READONLY (innertype);
6950 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6951
6952 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
6953 SET_TYPE_STRUCTURAL_EQUALITY (t);
6954 else if (TYPE_CANONICAL (innertype) != innertype
6955 || mode != VOIDmode)
6956 TYPE_CANONICAL (t)
6957 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
6958
6959 layout_type (t);
6960
6961 {
6962 tree index = build_int_cst (NULL_TREE, nunits - 1);
6963 tree array = build_array_type (innertype, build_index_type (index));
6964 tree rt = make_node (RECORD_TYPE);
6965
6966 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6967 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6968 layout_type (rt);
6969 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6970 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
6971 the representation type, and we want to find that die when looking up
6972 the vector type. This is most easily achieved by making the TYPE_UID
6973 numbers equal. */
6974 TYPE_UID (rt) = TYPE_UID (t);
6975 }
6976
6977 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6978 hashcode = iterative_hash_host_wide_int (mode, hashcode);
6979 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6980 return type_hash_canon (hashcode, t);
6981 }
6982
6983 static tree
6984 make_or_reuse_type (unsigned size, int unsignedp)
6985 {
6986 if (size == INT_TYPE_SIZE)
6987 return unsignedp ? unsigned_type_node : integer_type_node;
6988 if (size == CHAR_TYPE_SIZE)
6989 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6990 if (size == SHORT_TYPE_SIZE)
6991 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6992 if (size == LONG_TYPE_SIZE)
6993 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6994 if (size == LONG_LONG_TYPE_SIZE)
6995 return (unsignedp ? long_long_unsigned_type_node
6996 : long_long_integer_type_node);
6997
6998 if (unsignedp)
6999 return make_unsigned_type (size);
7000 else
7001 return make_signed_type (size);
7002 }
7003
7004 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
7005
7006 static tree
7007 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
7008 {
7009 if (satp)
7010 {
7011 if (size == SHORT_FRACT_TYPE_SIZE)
7012 return unsignedp ? sat_unsigned_short_fract_type_node
7013 : sat_short_fract_type_node;
7014 if (size == FRACT_TYPE_SIZE)
7015 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
7016 if (size == LONG_FRACT_TYPE_SIZE)
7017 return unsignedp ? sat_unsigned_long_fract_type_node
7018 : sat_long_fract_type_node;
7019 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7020 return unsignedp ? sat_unsigned_long_long_fract_type_node
7021 : sat_long_long_fract_type_node;
7022 }
7023 else
7024 {
7025 if (size == SHORT_FRACT_TYPE_SIZE)
7026 return unsignedp ? unsigned_short_fract_type_node
7027 : short_fract_type_node;
7028 if (size == FRACT_TYPE_SIZE)
7029 return unsignedp ? unsigned_fract_type_node : fract_type_node;
7030 if (size == LONG_FRACT_TYPE_SIZE)
7031 return unsignedp ? unsigned_long_fract_type_node
7032 : long_fract_type_node;
7033 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7034 return unsignedp ? unsigned_long_long_fract_type_node
7035 : long_long_fract_type_node;
7036 }
7037
7038 return make_fract_type (size, unsignedp, satp);
7039 }
7040
7041 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
7042
7043 static tree
7044 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
7045 {
7046 if (satp)
7047 {
7048 if (size == SHORT_ACCUM_TYPE_SIZE)
7049 return unsignedp ? sat_unsigned_short_accum_type_node
7050 : sat_short_accum_type_node;
7051 if (size == ACCUM_TYPE_SIZE)
7052 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
7053 if (size == LONG_ACCUM_TYPE_SIZE)
7054 return unsignedp ? sat_unsigned_long_accum_type_node
7055 : sat_long_accum_type_node;
7056 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7057 return unsignedp ? sat_unsigned_long_long_accum_type_node
7058 : sat_long_long_accum_type_node;
7059 }
7060 else
7061 {
7062 if (size == SHORT_ACCUM_TYPE_SIZE)
7063 return unsignedp ? unsigned_short_accum_type_node
7064 : short_accum_type_node;
7065 if (size == ACCUM_TYPE_SIZE)
7066 return unsignedp ? unsigned_accum_type_node : accum_type_node;
7067 if (size == LONG_ACCUM_TYPE_SIZE)
7068 return unsignedp ? unsigned_long_accum_type_node
7069 : long_accum_type_node;
7070 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7071 return unsignedp ? unsigned_long_long_accum_type_node
7072 : long_long_accum_type_node;
7073 }
7074
7075 return make_accum_type (size, unsignedp, satp);
7076 }
7077
7078 /* Create nodes for all integer types (and error_mark_node) using the sizes
7079 of C datatypes. The caller should call set_sizetype soon after calling
7080 this function to select one of the types as sizetype. */
7081
7082 void
7083 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
7084 {
7085 error_mark_node = make_node (ERROR_MARK);
7086 TREE_TYPE (error_mark_node) = error_mark_node;
7087
7088 initialize_sizetypes (signed_sizetype);
7089
7090 /* Define both `signed char' and `unsigned char'. */
7091 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
7092 TYPE_STRING_FLAG (signed_char_type_node) = 1;
7093 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
7094 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
7095
7096 /* Define `char', which is like either `signed char' or `unsigned char'
7097 but not the same as either. */
7098 char_type_node
7099 = (signed_char
7100 ? make_signed_type (CHAR_TYPE_SIZE)
7101 : make_unsigned_type (CHAR_TYPE_SIZE));
7102 TYPE_STRING_FLAG (char_type_node) = 1;
7103
7104 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
7105 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
7106 integer_type_node = make_signed_type (INT_TYPE_SIZE);
7107 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
7108 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
7109 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
7110 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
7111 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
7112
7113 /* Define a boolean type. This type only represents boolean values but
7114 may be larger than char depending on the value of BOOL_TYPE_SIZE.
7115 Front ends which want to override this size (i.e. Java) can redefine
7116 boolean_type_node before calling build_common_tree_nodes_2. */
7117 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
7118 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
7119 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
7120 TYPE_PRECISION (boolean_type_node) = 1;
7121
7122 /* Fill in the rest of the sized types. Reuse existing type nodes
7123 when possible. */
7124 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
7125 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
7126 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
7127 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
7128 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
7129
7130 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
7131 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
7132 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
7133 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
7134 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
7135
7136 access_public_node = get_identifier ("public");
7137 access_protected_node = get_identifier ("protected");
7138 access_private_node = get_identifier ("private");
7139 }
7140
7141 /* Call this function after calling build_common_tree_nodes and set_sizetype.
7142 It will create several other common tree nodes. */
7143
7144 void
7145 build_common_tree_nodes_2 (int short_double)
7146 {
7147 /* Define these next since types below may used them. */
7148 integer_zero_node = build_int_cst (NULL_TREE, 0);
7149 integer_one_node = build_int_cst (NULL_TREE, 1);
7150 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
7151
7152 size_zero_node = size_int (0);
7153 size_one_node = size_int (1);
7154 bitsize_zero_node = bitsize_int (0);
7155 bitsize_one_node = bitsize_int (1);
7156 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
7157
7158 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
7159 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
7160
7161 void_type_node = make_node (VOID_TYPE);
7162 layout_type (void_type_node);
7163
7164 /* We are not going to have real types in C with less than byte alignment,
7165 so we might as well not have any types that claim to have it. */
7166 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
7167 TYPE_USER_ALIGN (void_type_node) = 0;
7168
7169 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
7170 layout_type (TREE_TYPE (null_pointer_node));
7171
7172 ptr_type_node = build_pointer_type (void_type_node);
7173 const_ptr_type_node
7174 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
7175 fileptr_type_node = ptr_type_node;
7176
7177 float_type_node = make_node (REAL_TYPE);
7178 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
7179 layout_type (float_type_node);
7180
7181 double_type_node = make_node (REAL_TYPE);
7182 if (short_double)
7183 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
7184 else
7185 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
7186 layout_type (double_type_node);
7187
7188 long_double_type_node = make_node (REAL_TYPE);
7189 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
7190 layout_type (long_double_type_node);
7191
7192 float_ptr_type_node = build_pointer_type (float_type_node);
7193 double_ptr_type_node = build_pointer_type (double_type_node);
7194 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
7195 integer_ptr_type_node = build_pointer_type (integer_type_node);
7196
7197 /* Fixed size integer types. */
7198 uint32_type_node = build_nonstandard_integer_type (32, true);
7199 uint64_type_node = build_nonstandard_integer_type (64, true);
7200
7201 /* Decimal float types. */
7202 dfloat32_type_node = make_node (REAL_TYPE);
7203 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
7204 layout_type (dfloat32_type_node);
7205 TYPE_MODE (dfloat32_type_node) = SDmode;
7206 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
7207
7208 dfloat64_type_node = make_node (REAL_TYPE);
7209 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
7210 layout_type (dfloat64_type_node);
7211 TYPE_MODE (dfloat64_type_node) = DDmode;
7212 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
7213
7214 dfloat128_type_node = make_node (REAL_TYPE);
7215 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
7216 layout_type (dfloat128_type_node);
7217 TYPE_MODE (dfloat128_type_node) = TDmode;
7218 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
7219
7220 complex_integer_type_node = build_complex_type (integer_type_node);
7221 complex_float_type_node = build_complex_type (float_type_node);
7222 complex_double_type_node = build_complex_type (double_type_node);
7223 complex_long_double_type_node = build_complex_type (long_double_type_node);
7224
7225 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
7226 #define MAKE_FIXED_TYPE_NODE(KIND,WIDTH,SIZE) \
7227 sat_ ## WIDTH ## KIND ## _type_node = \
7228 make_sat_signed_ ## KIND ## _type (SIZE); \
7229 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
7230 make_sat_unsigned_ ## KIND ## _type (SIZE); \
7231 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
7232 unsigned_ ## WIDTH ## KIND ## _type_node = \
7233 make_unsigned_ ## KIND ## _type (SIZE);
7234
7235 /* Make fixed-point type nodes based on four different widths. */
7236 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
7237 MAKE_FIXED_TYPE_NODE (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
7238 MAKE_FIXED_TYPE_NODE (N1, , N2 ## _TYPE_SIZE) \
7239 MAKE_FIXED_TYPE_NODE (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
7240 MAKE_FIXED_TYPE_NODE (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
7241
7242 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
7243 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
7244 NAME ## _type_node = \
7245 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
7246 u ## NAME ## _type_node = \
7247 make_or_reuse_unsigned_ ## KIND ## _type \
7248 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
7249 sat_ ## NAME ## _type_node = \
7250 make_or_reuse_sat_signed_ ## KIND ## _type \
7251 (GET_MODE_BITSIZE (MODE ## mode)); \
7252 sat_u ## NAME ## _type_node = \
7253 make_or_reuse_sat_unsigned_ ## KIND ## _type \
7254 (GET_MODE_BITSIZE (U ## MODE ## mode));
7255
7256 /* Fixed-point type and mode nodes. */
7257 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
7258 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
7259 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
7260 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
7261 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
7262 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
7263 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
7264 MAKE_FIXED_MODE_NODE (accum, ha, HA)
7265 MAKE_FIXED_MODE_NODE (accum, sa, SA)
7266 MAKE_FIXED_MODE_NODE (accum, da, DA)
7267 MAKE_FIXED_MODE_NODE (accum, ta, TA)
7268
7269 {
7270 tree t = targetm.build_builtin_va_list ();
7271
7272 /* Many back-ends define record types without setting TYPE_NAME.
7273 If we copied the record type here, we'd keep the original
7274 record type without a name. This breaks name mangling. So,
7275 don't copy record types and let c_common_nodes_and_builtins()
7276 declare the type to be __builtin_va_list. */
7277 if (TREE_CODE (t) != RECORD_TYPE)
7278 t = build_variant_type_copy (t);
7279
7280 va_list_type_node = t;
7281 }
7282 }
7283
7284 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
7285
7286 static void
7287 local_define_builtin (const char *name, tree type, enum built_in_function code,
7288 const char *library_name, int ecf_flags)
7289 {
7290 tree decl;
7291
7292 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
7293 library_name, NULL_TREE);
7294 if (ecf_flags & ECF_CONST)
7295 TREE_READONLY (decl) = 1;
7296 if (ecf_flags & ECF_PURE)
7297 DECL_IS_PURE (decl) = 1;
7298 if (ecf_flags & ECF_NORETURN)
7299 TREE_THIS_VOLATILE (decl) = 1;
7300 if (ecf_flags & ECF_NOTHROW)
7301 TREE_NOTHROW (decl) = 1;
7302 if (ecf_flags & ECF_MALLOC)
7303 DECL_IS_MALLOC (decl) = 1;
7304
7305 built_in_decls[code] = decl;
7306 implicit_built_in_decls[code] = decl;
7307 }
7308
7309 /* Call this function after instantiating all builtins that the language
7310 front end cares about. This will build the rest of the builtins that
7311 are relied upon by the tree optimizers and the middle-end. */
7312
7313 void
7314 build_common_builtin_nodes (void)
7315 {
7316 tree tmp, ftype;
7317
7318 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
7319 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7320 {
7321 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7322 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7323 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7324 ftype = build_function_type (ptr_type_node, tmp);
7325
7326 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
7327 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
7328 "memcpy", ECF_NOTHROW);
7329 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7330 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
7331 "memmove", ECF_NOTHROW);
7332 }
7333
7334 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
7335 {
7336 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7337 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7338 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7339 ftype = build_function_type (integer_type_node, tmp);
7340 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
7341 "memcmp", ECF_PURE | ECF_NOTHROW);
7342 }
7343
7344 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
7345 {
7346 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7347 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
7348 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7349 ftype = build_function_type (ptr_type_node, tmp);
7350 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
7351 "memset", ECF_NOTHROW);
7352 }
7353
7354 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
7355 {
7356 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7357 ftype = build_function_type (ptr_type_node, tmp);
7358 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
7359 "alloca", ECF_NOTHROW | ECF_MALLOC);
7360 }
7361
7362 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7363 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7364 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7365 ftype = build_function_type (void_type_node, tmp);
7366 local_define_builtin ("__builtin_init_trampoline", ftype,
7367 BUILT_IN_INIT_TRAMPOLINE,
7368 "__builtin_init_trampoline", ECF_NOTHROW);
7369
7370 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7371 ftype = build_function_type (ptr_type_node, tmp);
7372 local_define_builtin ("__builtin_adjust_trampoline", ftype,
7373 BUILT_IN_ADJUST_TRAMPOLINE,
7374 "__builtin_adjust_trampoline",
7375 ECF_CONST | ECF_NOTHROW);
7376
7377 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7378 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7379 ftype = build_function_type (void_type_node, tmp);
7380 local_define_builtin ("__builtin_nonlocal_goto", ftype,
7381 BUILT_IN_NONLOCAL_GOTO,
7382 "__builtin_nonlocal_goto",
7383 ECF_NORETURN | ECF_NOTHROW);
7384
7385 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7386 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7387 ftype = build_function_type (void_type_node, tmp);
7388 local_define_builtin ("__builtin_setjmp_setup", ftype,
7389 BUILT_IN_SETJMP_SETUP,
7390 "__builtin_setjmp_setup", ECF_NOTHROW);
7391
7392 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7393 ftype = build_function_type (ptr_type_node, tmp);
7394 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
7395 BUILT_IN_SETJMP_DISPATCHER,
7396 "__builtin_setjmp_dispatcher",
7397 ECF_PURE | ECF_NOTHROW);
7398
7399 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7400 ftype = build_function_type (void_type_node, tmp);
7401 local_define_builtin ("__builtin_setjmp_receiver", ftype,
7402 BUILT_IN_SETJMP_RECEIVER,
7403 "__builtin_setjmp_receiver", ECF_NOTHROW);
7404
7405 ftype = build_function_type (ptr_type_node, void_list_node);
7406 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
7407 "__builtin_stack_save", ECF_NOTHROW);
7408
7409 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7410 ftype = build_function_type (void_type_node, tmp);
7411 local_define_builtin ("__builtin_stack_restore", ftype,
7412 BUILT_IN_STACK_RESTORE,
7413 "__builtin_stack_restore", ECF_NOTHROW);
7414
7415 ftype = build_function_type (void_type_node, void_list_node);
7416 local_define_builtin ("__builtin_profile_func_enter", ftype,
7417 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
7418 local_define_builtin ("__builtin_profile_func_exit", ftype,
7419 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
7420
7421 /* Complex multiplication and division. These are handled as builtins
7422 rather than optabs because emit_library_call_value doesn't support
7423 complex. Further, we can do slightly better with folding these
7424 beasties if the real and complex parts of the arguments are separate. */
7425 {
7426 enum machine_mode mode;
7427
7428 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
7429 {
7430 char mode_name_buf[4], *q;
7431 const char *p;
7432 enum built_in_function mcode, dcode;
7433 tree type, inner_type;
7434
7435 type = lang_hooks.types.type_for_mode (mode, 0);
7436 if (type == NULL)
7437 continue;
7438 inner_type = TREE_TYPE (type);
7439
7440 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
7441 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7442 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7443 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7444 ftype = build_function_type (type, tmp);
7445
7446 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7447 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7448
7449 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
7450 *q = TOLOWER (*p);
7451 *q = '\0';
7452
7453 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
7454 local_define_builtin (built_in_names[mcode], ftype, mcode,
7455 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
7456
7457 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
7458 local_define_builtin (built_in_names[dcode], ftype, dcode,
7459 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
7460 }
7461 }
7462 }
7463
7464 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
7465 better way.
7466
7467 If we requested a pointer to a vector, build up the pointers that
7468 we stripped off while looking for the inner type. Similarly for
7469 return values from functions.
7470
7471 The argument TYPE is the top of the chain, and BOTTOM is the
7472 new type which we will point to. */
7473
7474 tree
7475 reconstruct_complex_type (tree type, tree bottom)
7476 {
7477 tree inner, outer;
7478
7479 if (TREE_CODE (type) == POINTER_TYPE)
7480 {
7481 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7482 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
7483 TYPE_REF_CAN_ALIAS_ALL (type));
7484 }
7485 else if (TREE_CODE (type) == REFERENCE_TYPE)
7486 {
7487 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7488 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
7489 TYPE_REF_CAN_ALIAS_ALL (type));
7490 }
7491 else if (TREE_CODE (type) == ARRAY_TYPE)
7492 {
7493 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7494 outer = build_array_type (inner, TYPE_DOMAIN (type));
7495 }
7496 else if (TREE_CODE (type) == FUNCTION_TYPE)
7497 {
7498 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7499 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
7500 }
7501 else if (TREE_CODE (type) == METHOD_TYPE)
7502 {
7503 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7504 /* The build_method_type_directly() routine prepends 'this' to argument list,
7505 so we must compensate by getting rid of it. */
7506 outer
7507 = build_method_type_directly
7508 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
7509 inner,
7510 TREE_CHAIN (TYPE_ARG_TYPES (type)));
7511 }
7512 else if (TREE_CODE (type) == OFFSET_TYPE)
7513 {
7514 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7515 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
7516 }
7517 else
7518 return bottom;
7519
7520 return build_qualified_type (outer, TYPE_QUALS (type));
7521 }
7522
7523 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
7524 the inner type. */
7525 tree
7526 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
7527 {
7528 int nunits;
7529
7530 switch (GET_MODE_CLASS (mode))
7531 {
7532 case MODE_VECTOR_INT:
7533 case MODE_VECTOR_FLOAT:
7534 case MODE_VECTOR_FRACT:
7535 case MODE_VECTOR_UFRACT:
7536 case MODE_VECTOR_ACCUM:
7537 case MODE_VECTOR_UACCUM:
7538 nunits = GET_MODE_NUNITS (mode);
7539 break;
7540
7541 case MODE_INT:
7542 /* Check that there are no leftover bits. */
7543 gcc_assert (GET_MODE_BITSIZE (mode)
7544 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
7545
7546 nunits = GET_MODE_BITSIZE (mode)
7547 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
7548 break;
7549
7550 default:
7551 gcc_unreachable ();
7552 }
7553
7554 return make_vector_type (innertype, nunits, mode);
7555 }
7556
7557 /* Similarly, but takes the inner type and number of units, which must be
7558 a power of two. */
7559
7560 tree
7561 build_vector_type (tree innertype, int nunits)
7562 {
7563 return make_vector_type (innertype, nunits, VOIDmode);
7564 }
7565
7566
7567 /* Build RESX_EXPR with given REGION_NUMBER. */
7568 tree
7569 build_resx (int region_number)
7570 {
7571 tree t;
7572 t = build1 (RESX_EXPR, void_type_node,
7573 build_int_cst (NULL_TREE, region_number));
7574 return t;
7575 }
7576
7577 /* Given an initializer INIT, return TRUE if INIT is zero or some
7578 aggregate of zeros. Otherwise return FALSE. */
7579 bool
7580 initializer_zerop (const_tree init)
7581 {
7582 tree elt;
7583
7584 STRIP_NOPS (init);
7585
7586 switch (TREE_CODE (init))
7587 {
7588 case INTEGER_CST:
7589 return integer_zerop (init);
7590
7591 case REAL_CST:
7592 /* ??? Note that this is not correct for C4X float formats. There,
7593 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
7594 negative exponent. */
7595 return real_zerop (init)
7596 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
7597
7598 case FIXED_CST:
7599 return fixed_zerop (init);
7600
7601 case COMPLEX_CST:
7602 return integer_zerop (init)
7603 || (real_zerop (init)
7604 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
7605 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
7606
7607 case VECTOR_CST:
7608 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
7609 if (!initializer_zerop (TREE_VALUE (elt)))
7610 return false;
7611 return true;
7612
7613 case CONSTRUCTOR:
7614 {
7615 unsigned HOST_WIDE_INT idx;
7616
7617 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
7618 if (!initializer_zerop (elt))
7619 return false;
7620 return true;
7621 }
7622
7623 default:
7624 return false;
7625 }
7626 }
7627
7628 /* Build an empty statement. */
7629
7630 tree
7631 build_empty_stmt (void)
7632 {
7633 return build1 (NOP_EXPR, void_type_node, size_zero_node);
7634 }
7635
7636
7637 /* Build an OpenMP clause with code CODE. */
7638
7639 tree
7640 build_omp_clause (enum omp_clause_code code)
7641 {
7642 tree t;
7643 int size, length;
7644
7645 length = omp_clause_num_ops[code];
7646 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
7647
7648 t = ggc_alloc (size);
7649 memset (t, 0, size);
7650 TREE_SET_CODE (t, OMP_CLAUSE);
7651 OMP_CLAUSE_SET_CODE (t, code);
7652
7653 #ifdef GATHER_STATISTICS
7654 tree_node_counts[(int) omp_clause_kind]++;
7655 tree_node_sizes[(int) omp_clause_kind] += size;
7656 #endif
7657
7658 return t;
7659 }
7660
7661 /* Set various status flags when building a CALL_EXPR object T. */
7662
7663 static void
7664 process_call_operands (tree t)
7665 {
7666 bool side_effects;
7667
7668 side_effects = TREE_SIDE_EFFECTS (t);
7669 if (!side_effects)
7670 {
7671 int i, n;
7672 n = TREE_OPERAND_LENGTH (t);
7673 for (i = 1; i < n; i++)
7674 {
7675 tree op = TREE_OPERAND (t, i);
7676 if (op && TREE_SIDE_EFFECTS (op))
7677 {
7678 side_effects = 1;
7679 break;
7680 }
7681 }
7682 }
7683 if (!side_effects)
7684 {
7685 int i;
7686
7687 /* Calls have side-effects, except those to const or
7688 pure functions. */
7689 i = call_expr_flags (t);
7690 if (!(i & (ECF_CONST | ECF_PURE)))
7691 side_effects = 1;
7692 }
7693 TREE_SIDE_EFFECTS (t) = side_effects;
7694 }
7695
7696 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
7697 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
7698 Except for the CODE and operand count field, other storage for the
7699 object is initialized to zeros. */
7700
7701 tree
7702 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
7703 {
7704 tree t;
7705 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
7706
7707 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
7708 gcc_assert (len >= 1);
7709
7710 #ifdef GATHER_STATISTICS
7711 tree_node_counts[(int) e_kind]++;
7712 tree_node_sizes[(int) e_kind] += length;
7713 #endif
7714
7715 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
7716
7717 memset (t, 0, length);
7718
7719 TREE_SET_CODE (t, code);
7720
7721 /* Can't use TREE_OPERAND to store the length because if checking is
7722 enabled, it will try to check the length before we store it. :-P */
7723 t->exp.operands[0] = build_int_cst (sizetype, len);
7724
7725 return t;
7726 }
7727
7728
7729 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
7730 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
7731 arguments. */
7732
7733 tree
7734 build_call_list (tree return_type, tree fn, tree arglist)
7735 {
7736 tree t;
7737 int i;
7738
7739 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
7740 TREE_TYPE (t) = return_type;
7741 CALL_EXPR_FN (t) = fn;
7742 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7743 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
7744 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
7745 process_call_operands (t);
7746 return t;
7747 }
7748
7749 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7750 FN and a null static chain slot. NARGS is the number of call arguments
7751 which are specified as "..." arguments. */
7752
7753 tree
7754 build_call_nary (tree return_type, tree fn, int nargs, ...)
7755 {
7756 tree ret;
7757 va_list args;
7758 va_start (args, nargs);
7759 ret = build_call_valist (return_type, fn, nargs, args);
7760 va_end (args);
7761 return ret;
7762 }
7763
7764 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7765 FN and a null static chain slot. NARGS is the number of call arguments
7766 which are specified as a va_list ARGS. */
7767
7768 tree
7769 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
7770 {
7771 tree t;
7772 int i;
7773
7774 t = build_vl_exp (CALL_EXPR, nargs + 3);
7775 TREE_TYPE (t) = return_type;
7776 CALL_EXPR_FN (t) = fn;
7777 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7778 for (i = 0; i < nargs; i++)
7779 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
7780 process_call_operands (t);
7781 return t;
7782 }
7783
7784 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7785 FN and a null static chain slot. NARGS is the number of call arguments
7786 which are specified as a tree array ARGS. */
7787
7788 tree
7789 build_call_array (tree return_type, tree fn, int nargs, tree *args)
7790 {
7791 tree t;
7792 int i;
7793
7794 t = build_vl_exp (CALL_EXPR, nargs + 3);
7795 TREE_TYPE (t) = return_type;
7796 CALL_EXPR_FN (t) = fn;
7797 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7798 for (i = 0; i < nargs; i++)
7799 CALL_EXPR_ARG (t, i) = args[i];
7800 process_call_operands (t);
7801 return t;
7802 }
7803
7804
7805 /* Returns true if it is possible to prove that the index of
7806 an array access REF (an ARRAY_REF expression) falls into the
7807 array bounds. */
7808
7809 bool
7810 in_array_bounds_p (tree ref)
7811 {
7812 tree idx = TREE_OPERAND (ref, 1);
7813 tree min, max;
7814
7815 if (TREE_CODE (idx) != INTEGER_CST)
7816 return false;
7817
7818 min = array_ref_low_bound (ref);
7819 max = array_ref_up_bound (ref);
7820 if (!min
7821 || !max
7822 || TREE_CODE (min) != INTEGER_CST
7823 || TREE_CODE (max) != INTEGER_CST)
7824 return false;
7825
7826 if (tree_int_cst_lt (idx, min)
7827 || tree_int_cst_lt (max, idx))
7828 return false;
7829
7830 return true;
7831 }
7832
7833 /* Returns true if it is possible to prove that the range of
7834 an array access REF (an ARRAY_RANGE_REF expression) falls
7835 into the array bounds. */
7836
7837 bool
7838 range_in_array_bounds_p (tree ref)
7839 {
7840 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7841 tree range_min, range_max, min, max;
7842
7843 range_min = TYPE_MIN_VALUE (domain_type);
7844 range_max = TYPE_MAX_VALUE (domain_type);
7845 if (!range_min
7846 || !range_max
7847 || TREE_CODE (range_min) != INTEGER_CST
7848 || TREE_CODE (range_max) != INTEGER_CST)
7849 return false;
7850
7851 min = array_ref_low_bound (ref);
7852 max = array_ref_up_bound (ref);
7853 if (!min
7854 || !max
7855 || TREE_CODE (min) != INTEGER_CST
7856 || TREE_CODE (max) != INTEGER_CST)
7857 return false;
7858
7859 if (tree_int_cst_lt (range_min, min)
7860 || tree_int_cst_lt (max, range_max))
7861 return false;
7862
7863 return true;
7864 }
7865
7866 /* Return true if T (assumed to be a DECL) must be assigned a memory
7867 location. */
7868
7869 bool
7870 needs_to_live_in_memory (const_tree t)
7871 {
7872 if (TREE_CODE (t) == SSA_NAME)
7873 t = SSA_NAME_VAR (t);
7874
7875 return (TREE_ADDRESSABLE (t)
7876 || is_global_var (t)
7877 || (TREE_CODE (t) == RESULT_DECL
7878 && aggregate_value_p (t, current_function_decl)));
7879 }
7880
7881 /* There are situations in which a language considers record types
7882 compatible which have different field lists. Decide if two fields
7883 are compatible. It is assumed that the parent records are compatible. */
7884
7885 bool
7886 fields_compatible_p (const_tree f1, const_tree f2)
7887 {
7888 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7889 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7890 return false;
7891
7892 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7893 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7894 return false;
7895
7896 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7897 return false;
7898
7899 return true;
7900 }
7901
7902 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
7903
7904 tree
7905 find_compatible_field (tree record, tree orig_field)
7906 {
7907 tree f;
7908
7909 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7910 if (TREE_CODE (f) == FIELD_DECL
7911 && fields_compatible_p (f, orig_field))
7912 return f;
7913
7914 /* ??? Why isn't this on the main fields list? */
7915 f = TYPE_VFIELD (record);
7916 if (f && TREE_CODE (f) == FIELD_DECL
7917 && fields_compatible_p (f, orig_field))
7918 return f;
7919
7920 /* ??? We should abort here, but Java appears to do Bad Things
7921 with inherited fields. */
7922 return orig_field;
7923 }
7924
7925 /* Return value of a constant X and sign-extend it. */
7926
7927 HOST_WIDE_INT
7928 int_cst_value (const_tree x)
7929 {
7930 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7931 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7932
7933 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
7934 gcc_assert (TREE_INT_CST_HIGH (x) == 0
7935 || TREE_INT_CST_HIGH (x) == -1);
7936
7937 if (bits < HOST_BITS_PER_WIDE_INT)
7938 {
7939 bool negative = ((val >> (bits - 1)) & 1) != 0;
7940 if (negative)
7941 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7942 else
7943 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7944 }
7945
7946 return val;
7947 }
7948
7949 /* If TYPE is an integral type, return an equivalent type which is
7950 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
7951 return TYPE itself. */
7952
7953 tree
7954 signed_or_unsigned_type_for (int unsignedp, tree type)
7955 {
7956 tree t = type;
7957 if (POINTER_TYPE_P (type))
7958 t = size_type_node;
7959
7960 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
7961 return t;
7962
7963 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
7964 }
7965
7966 /* Returns unsigned variant of TYPE. */
7967
7968 tree
7969 unsigned_type_for (tree type)
7970 {
7971 return signed_or_unsigned_type_for (1, type);
7972 }
7973
7974 /* Returns signed variant of TYPE. */
7975
7976 tree
7977 signed_type_for (tree type)
7978 {
7979 return signed_or_unsigned_type_for (0, type);
7980 }
7981
7982 /* Returns the largest value obtainable by casting something in INNER type to
7983 OUTER type. */
7984
7985 tree
7986 upper_bound_in_type (tree outer, tree inner)
7987 {
7988 unsigned HOST_WIDE_INT lo, hi;
7989 unsigned int det = 0;
7990 unsigned oprec = TYPE_PRECISION (outer);
7991 unsigned iprec = TYPE_PRECISION (inner);
7992 unsigned prec;
7993
7994 /* Compute a unique number for every combination. */
7995 det |= (oprec > iprec) ? 4 : 0;
7996 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7997 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7998
7999 /* Determine the exponent to use. */
8000 switch (det)
8001 {
8002 case 0:
8003 case 1:
8004 /* oprec <= iprec, outer: signed, inner: don't care. */
8005 prec = oprec - 1;
8006 break;
8007 case 2:
8008 case 3:
8009 /* oprec <= iprec, outer: unsigned, inner: don't care. */
8010 prec = oprec;
8011 break;
8012 case 4:
8013 /* oprec > iprec, outer: signed, inner: signed. */
8014 prec = iprec - 1;
8015 break;
8016 case 5:
8017 /* oprec > iprec, outer: signed, inner: unsigned. */
8018 prec = iprec;
8019 break;
8020 case 6:
8021 /* oprec > iprec, outer: unsigned, inner: signed. */
8022 prec = oprec;
8023 break;
8024 case 7:
8025 /* oprec > iprec, outer: unsigned, inner: unsigned. */
8026 prec = iprec;
8027 break;
8028 default:
8029 gcc_unreachable ();
8030 }
8031
8032 /* Compute 2^^prec - 1. */
8033 if (prec <= HOST_BITS_PER_WIDE_INT)
8034 {
8035 hi = 0;
8036 lo = ((~(unsigned HOST_WIDE_INT) 0)
8037 >> (HOST_BITS_PER_WIDE_INT - prec));
8038 }
8039 else
8040 {
8041 hi = ((~(unsigned HOST_WIDE_INT) 0)
8042 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
8043 lo = ~(unsigned HOST_WIDE_INT) 0;
8044 }
8045
8046 return build_int_cst_wide (outer, lo, hi);
8047 }
8048
8049 /* Returns the smallest value obtainable by casting something in INNER type to
8050 OUTER type. */
8051
8052 tree
8053 lower_bound_in_type (tree outer, tree inner)
8054 {
8055 unsigned HOST_WIDE_INT lo, hi;
8056 unsigned oprec = TYPE_PRECISION (outer);
8057 unsigned iprec = TYPE_PRECISION (inner);
8058
8059 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
8060 and obtain 0. */
8061 if (TYPE_UNSIGNED (outer)
8062 /* If we are widening something of an unsigned type, OUTER type
8063 contains all values of INNER type. In particular, both INNER
8064 and OUTER types have zero in common. */
8065 || (oprec > iprec && TYPE_UNSIGNED (inner)))
8066 lo = hi = 0;
8067 else
8068 {
8069 /* If we are widening a signed type to another signed type, we
8070 want to obtain -2^^(iprec-1). If we are keeping the
8071 precision or narrowing to a signed type, we want to obtain
8072 -2^(oprec-1). */
8073 unsigned prec = oprec > iprec ? iprec : oprec;
8074
8075 if (prec <= HOST_BITS_PER_WIDE_INT)
8076 {
8077 hi = ~(unsigned HOST_WIDE_INT) 0;
8078 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
8079 }
8080 else
8081 {
8082 hi = ((~(unsigned HOST_WIDE_INT) 0)
8083 << (prec - HOST_BITS_PER_WIDE_INT - 1));
8084 lo = 0;
8085 }
8086 }
8087
8088 return build_int_cst_wide (outer, lo, hi);
8089 }
8090
8091 /* Return nonzero if two operands that are suitable for PHI nodes are
8092 necessarily equal. Specifically, both ARG0 and ARG1 must be either
8093 SSA_NAME or invariant. Note that this is strictly an optimization.
8094 That is, callers of this function can directly call operand_equal_p
8095 and get the same result, only slower. */
8096
8097 int
8098 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
8099 {
8100 if (arg0 == arg1)
8101 return 1;
8102 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
8103 return 0;
8104 return operand_equal_p (arg0, arg1, 0);
8105 }
8106
8107 /* Returns number of zeros at the end of binary representation of X.
8108
8109 ??? Use ffs if available? */
8110
8111 tree
8112 num_ending_zeros (const_tree x)
8113 {
8114 unsigned HOST_WIDE_INT fr, nfr;
8115 unsigned num, abits;
8116 tree type = TREE_TYPE (x);
8117
8118 if (TREE_INT_CST_LOW (x) == 0)
8119 {
8120 num = HOST_BITS_PER_WIDE_INT;
8121 fr = TREE_INT_CST_HIGH (x);
8122 }
8123 else
8124 {
8125 num = 0;
8126 fr = TREE_INT_CST_LOW (x);
8127 }
8128
8129 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
8130 {
8131 nfr = fr >> abits;
8132 if (nfr << abits == fr)
8133 {
8134 num += abits;
8135 fr = nfr;
8136 }
8137 }
8138
8139 if (num > TYPE_PRECISION (type))
8140 num = TYPE_PRECISION (type);
8141
8142 return build_int_cst_type (type, num);
8143 }
8144
8145
8146 #define WALK_SUBTREE(NODE) \
8147 do \
8148 { \
8149 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
8150 if (result) \
8151 return result; \
8152 } \
8153 while (0)
8154
8155 /* This is a subroutine of walk_tree that walks field of TYPE that are to
8156 be walked whenever a type is seen in the tree. Rest of operands and return
8157 value are as for walk_tree. */
8158
8159 static tree
8160 walk_type_fields (tree type, walk_tree_fn func, void *data,
8161 struct pointer_set_t *pset, walk_tree_lh lh)
8162 {
8163 tree result = NULL_TREE;
8164
8165 switch (TREE_CODE (type))
8166 {
8167 case POINTER_TYPE:
8168 case REFERENCE_TYPE:
8169 /* We have to worry about mutually recursive pointers. These can't
8170 be written in C. They can in Ada. It's pathological, but
8171 there's an ACATS test (c38102a) that checks it. Deal with this
8172 by checking if we're pointing to another pointer, that one
8173 points to another pointer, that one does too, and we have no htab.
8174 If so, get a hash table. We check three levels deep to avoid
8175 the cost of the hash table if we don't need one. */
8176 if (POINTER_TYPE_P (TREE_TYPE (type))
8177 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
8178 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
8179 && !pset)
8180 {
8181 result = walk_tree_without_duplicates (&TREE_TYPE (type),
8182 func, data);
8183 if (result)
8184 return result;
8185
8186 break;
8187 }
8188
8189 /* ... fall through ... */
8190
8191 case COMPLEX_TYPE:
8192 WALK_SUBTREE (TREE_TYPE (type));
8193 break;
8194
8195 case METHOD_TYPE:
8196 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
8197
8198 /* Fall through. */
8199
8200 case FUNCTION_TYPE:
8201 WALK_SUBTREE (TREE_TYPE (type));
8202 {
8203 tree arg;
8204
8205 /* We never want to walk into default arguments. */
8206 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
8207 WALK_SUBTREE (TREE_VALUE (arg));
8208 }
8209 break;
8210
8211 case ARRAY_TYPE:
8212 /* Don't follow this nodes's type if a pointer for fear that
8213 we'll have infinite recursion. If we have a PSET, then we
8214 need not fear. */
8215 if (pset
8216 || (!POINTER_TYPE_P (TREE_TYPE (type))
8217 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
8218 WALK_SUBTREE (TREE_TYPE (type));
8219 WALK_SUBTREE (TYPE_DOMAIN (type));
8220 break;
8221
8222 case OFFSET_TYPE:
8223 WALK_SUBTREE (TREE_TYPE (type));
8224 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
8225 break;
8226
8227 default:
8228 break;
8229 }
8230
8231 return NULL_TREE;
8232 }
8233
8234 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
8235 called with the DATA and the address of each sub-tree. If FUNC returns a
8236 non-NULL value, the traversal is stopped, and the value returned by FUNC
8237 is returned. If PSET is non-NULL it is used to record the nodes visited,
8238 and to avoid visiting a node more than once. */
8239
8240 tree
8241 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
8242 struct pointer_set_t *pset, walk_tree_lh lh)
8243 {
8244 enum tree_code code;
8245 int walk_subtrees;
8246 tree result;
8247
8248 #define WALK_SUBTREE_TAIL(NODE) \
8249 do \
8250 { \
8251 tp = & (NODE); \
8252 goto tail_recurse; \
8253 } \
8254 while (0)
8255
8256 tail_recurse:
8257 /* Skip empty subtrees. */
8258 if (!*tp)
8259 return NULL_TREE;
8260
8261 /* Don't walk the same tree twice, if the user has requested
8262 that we avoid doing so. */
8263 if (pset && pointer_set_insert (pset, *tp))
8264 return NULL_TREE;
8265
8266 /* Call the function. */
8267 walk_subtrees = 1;
8268 result = (*func) (tp, &walk_subtrees, data);
8269
8270 /* If we found something, return it. */
8271 if (result)
8272 return result;
8273
8274 code = TREE_CODE (*tp);
8275
8276 /* Even if we didn't, FUNC may have decided that there was nothing
8277 interesting below this point in the tree. */
8278 if (!walk_subtrees)
8279 {
8280 /* But we still need to check our siblings. */
8281 if (code == TREE_LIST)
8282 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8283 else if (code == OMP_CLAUSE)
8284 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8285 else
8286 return NULL_TREE;
8287 }
8288
8289 if (lh)
8290 {
8291 result = (*lh) (tp, &walk_subtrees, func, data, pset);
8292 if (result || !walk_subtrees)
8293 return result;
8294 }
8295
8296 switch (code)
8297 {
8298 case ERROR_MARK:
8299 case IDENTIFIER_NODE:
8300 case INTEGER_CST:
8301 case REAL_CST:
8302 case FIXED_CST:
8303 case VECTOR_CST:
8304 case STRING_CST:
8305 case BLOCK:
8306 case PLACEHOLDER_EXPR:
8307 case SSA_NAME:
8308 case FIELD_DECL:
8309 case RESULT_DECL:
8310 /* None of these have subtrees other than those already walked
8311 above. */
8312 break;
8313
8314 case TREE_LIST:
8315 WALK_SUBTREE (TREE_VALUE (*tp));
8316 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8317 break;
8318
8319 case TREE_VEC:
8320 {
8321 int len = TREE_VEC_LENGTH (*tp);
8322
8323 if (len == 0)
8324 break;
8325
8326 /* Walk all elements but the first. */
8327 while (--len)
8328 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
8329
8330 /* Now walk the first one as a tail call. */
8331 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
8332 }
8333
8334 case COMPLEX_CST:
8335 WALK_SUBTREE (TREE_REALPART (*tp));
8336 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
8337
8338 case CONSTRUCTOR:
8339 {
8340 unsigned HOST_WIDE_INT idx;
8341 constructor_elt *ce;
8342
8343 for (idx = 0;
8344 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
8345 idx++)
8346 WALK_SUBTREE (ce->value);
8347 }
8348 break;
8349
8350 case SAVE_EXPR:
8351 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
8352
8353 case BIND_EXPR:
8354 {
8355 tree decl;
8356 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
8357 {
8358 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
8359 into declarations that are just mentioned, rather than
8360 declared; they don't really belong to this part of the tree.
8361 And, we can see cycles: the initializer for a declaration
8362 can refer to the declaration itself. */
8363 WALK_SUBTREE (DECL_INITIAL (decl));
8364 WALK_SUBTREE (DECL_SIZE (decl));
8365 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
8366 }
8367 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
8368 }
8369
8370 case STATEMENT_LIST:
8371 {
8372 tree_stmt_iterator i;
8373 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
8374 WALK_SUBTREE (*tsi_stmt_ptr (i));
8375 }
8376 break;
8377
8378 case OMP_CLAUSE:
8379 switch (OMP_CLAUSE_CODE (*tp))
8380 {
8381 case OMP_CLAUSE_PRIVATE:
8382 case OMP_CLAUSE_SHARED:
8383 case OMP_CLAUSE_FIRSTPRIVATE:
8384 case OMP_CLAUSE_LASTPRIVATE:
8385 case OMP_CLAUSE_COPYIN:
8386 case OMP_CLAUSE_COPYPRIVATE:
8387 case OMP_CLAUSE_IF:
8388 case OMP_CLAUSE_NUM_THREADS:
8389 case OMP_CLAUSE_SCHEDULE:
8390 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
8391 /* FALLTHRU */
8392
8393 case OMP_CLAUSE_NOWAIT:
8394 case OMP_CLAUSE_ORDERED:
8395 case OMP_CLAUSE_DEFAULT:
8396 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8397
8398 case OMP_CLAUSE_REDUCTION:
8399 {
8400 int i;
8401 for (i = 0; i < 4; i++)
8402 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
8403 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8404 }
8405
8406 default:
8407 gcc_unreachable ();
8408 }
8409 break;
8410
8411 case TARGET_EXPR:
8412 {
8413 int i, len;
8414
8415 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
8416 But, we only want to walk once. */
8417 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
8418 for (i = 0; i < len; ++i)
8419 WALK_SUBTREE (TREE_OPERAND (*tp, i));
8420 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
8421 }
8422
8423 case DECL_EXPR:
8424 /* If this is a TYPE_DECL, walk into the fields of the type that it's
8425 defining. We only want to walk into these fields of a type in this
8426 case and not in the general case of a mere reference to the type.
8427
8428 The criterion is as follows: if the field can be an expression, it
8429 must be walked only here. This should be in keeping with the fields
8430 that are directly gimplified in gimplify_type_sizes in order for the
8431 mark/copy-if-shared/unmark machinery of the gimplifier to work with
8432 variable-sized types.
8433
8434 Note that DECLs get walked as part of processing the BIND_EXPR. */
8435 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
8436 {
8437 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
8438 if (TREE_CODE (*type_p) == ERROR_MARK)
8439 return NULL_TREE;
8440
8441 /* Call the function for the type. See if it returns anything or
8442 doesn't want us to continue. If we are to continue, walk both
8443 the normal fields and those for the declaration case. */
8444 result = (*func) (type_p, &walk_subtrees, data);
8445 if (result || !walk_subtrees)
8446 return result;
8447
8448 result = walk_type_fields (*type_p, func, data, pset, lh);
8449 if (result)
8450 return result;
8451
8452 /* If this is a record type, also walk the fields. */
8453 if (TREE_CODE (*type_p) == RECORD_TYPE
8454 || TREE_CODE (*type_p) == UNION_TYPE
8455 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8456 {
8457 tree field;
8458
8459 for (field = TYPE_FIELDS (*type_p); field;
8460 field = TREE_CHAIN (field))
8461 {
8462 /* We'd like to look at the type of the field, but we can
8463 easily get infinite recursion. So assume it's pointed
8464 to elsewhere in the tree. Also, ignore things that
8465 aren't fields. */
8466 if (TREE_CODE (field) != FIELD_DECL)
8467 continue;
8468
8469 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
8470 WALK_SUBTREE (DECL_SIZE (field));
8471 WALK_SUBTREE (DECL_SIZE_UNIT (field));
8472 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8473 WALK_SUBTREE (DECL_QUALIFIER (field));
8474 }
8475 }
8476
8477 /* Same for scalar types. */
8478 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
8479 || TREE_CODE (*type_p) == ENUMERAL_TYPE
8480 || TREE_CODE (*type_p) == INTEGER_TYPE
8481 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
8482 || TREE_CODE (*type_p) == REAL_TYPE)
8483 {
8484 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
8485 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
8486 }
8487
8488 WALK_SUBTREE (TYPE_SIZE (*type_p));
8489 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
8490 }
8491 /* FALLTHRU */
8492
8493 default:
8494 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
8495 || IS_GIMPLE_STMT_CODE_CLASS (TREE_CODE_CLASS (code)))
8496 {
8497 int i, len;
8498
8499 /* Walk over all the sub-trees of this operand. */
8500 len = TREE_OPERAND_LENGTH (*tp);
8501
8502 /* Go through the subtrees. We need to do this in forward order so
8503 that the scope of a FOR_EXPR is handled properly. */
8504 if (len)
8505 {
8506 for (i = 0; i < len - 1; ++i)
8507 WALK_SUBTREE (GENERIC_TREE_OPERAND (*tp, i));
8508 WALK_SUBTREE_TAIL (GENERIC_TREE_OPERAND (*tp, len - 1));
8509 }
8510 }
8511 /* If this is a type, walk the needed fields in the type. */
8512 else if (TYPE_P (*tp))
8513 return walk_type_fields (*tp, func, data, pset, lh);
8514 break;
8515 }
8516
8517 /* We didn't find what we were looking for. */
8518 return NULL_TREE;
8519
8520 #undef WALK_SUBTREE_TAIL
8521 }
8522 #undef WALK_SUBTREE
8523
8524 /* Like walk_tree, but does not walk duplicate nodes more than once. */
8525
8526 tree
8527 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
8528 walk_tree_lh lh)
8529 {
8530 tree result;
8531 struct pointer_set_t *pset;
8532
8533 pset = pointer_set_create ();
8534 result = walk_tree_1 (tp, func, data, pset, lh);
8535 pointer_set_destroy (pset);
8536 return result;
8537 }
8538
8539
8540 /* Return true if STMT is an empty statement or contains nothing but
8541 empty statements. */
8542
8543 bool
8544 empty_body_p (tree stmt)
8545 {
8546 tree_stmt_iterator i;
8547 tree body;
8548
8549 if (IS_EMPTY_STMT (stmt))
8550 return true;
8551 else if (TREE_CODE (stmt) == BIND_EXPR)
8552 body = BIND_EXPR_BODY (stmt);
8553 else if (TREE_CODE (stmt) == STATEMENT_LIST)
8554 body = stmt;
8555 else
8556 return false;
8557
8558 for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
8559 if (!empty_body_p (tsi_stmt (i)))
8560 return false;
8561
8562 return true;
8563 }
8564
8565 tree *
8566 tree_block (tree t)
8567 {
8568 char const c = TREE_CODE_CLASS (TREE_CODE (t));
8569
8570 if (IS_EXPR_CODE_CLASS (c))
8571 return &t->exp.block;
8572 else if (IS_GIMPLE_STMT_CODE_CLASS (c))
8573 return &GIMPLE_STMT_BLOCK (t);
8574 gcc_unreachable ();
8575 return NULL;
8576 }
8577
8578 tree *
8579 generic_tree_operand (tree node, int i)
8580 {
8581 if (GIMPLE_STMT_P (node))
8582 return &GIMPLE_STMT_OPERAND (node, i);
8583 return &TREE_OPERAND (node, i);
8584 }
8585
8586 tree *
8587 generic_tree_type (tree node)
8588 {
8589 if (GIMPLE_STMT_P (node))
8590 return &void_type_node;
8591 return &TREE_TYPE (node);
8592 }
8593
8594 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
8595 FIXME: don't use this function. It exists for compatibility with
8596 the old representation of CALL_EXPRs where a list was used to hold the
8597 arguments. Places that currently extract the arglist from a CALL_EXPR
8598 ought to be rewritten to use the CALL_EXPR itself. */
8599 tree
8600 call_expr_arglist (tree exp)
8601 {
8602 tree arglist = NULL_TREE;
8603 int i;
8604 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
8605 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
8606 return arglist;
8607 }
8608
8609 /* Return true if TYPE has a variable argument list. */
8610
8611 bool
8612 stdarg_p (tree fntype)
8613 {
8614 function_args_iterator args_iter;
8615 tree n = NULL_TREE, t;
8616
8617 if (!fntype)
8618 return false;
8619
8620 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
8621 {
8622 n = t;
8623 }
8624
8625 return n != NULL_TREE && n != void_type_node;
8626 }
8627
8628 /* Return true if TYPE has a prototype. */
8629
8630 bool
8631 prototype_p (tree fntype)
8632 {
8633 tree t;
8634
8635 gcc_assert (fntype != NULL_TREE);
8636
8637 t = TYPE_ARG_TYPES (fntype);
8638 return (t != NULL_TREE);
8639 }
8640
8641 /* Return the number of arguments that a function has. */
8642
8643 int
8644 function_args_count (tree fntype)
8645 {
8646 function_args_iterator args_iter;
8647 tree t;
8648 int num = 0;
8649
8650 if (fntype)
8651 {
8652 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
8653 {
8654 num++;
8655 }
8656 }
8657
8658 return num;
8659 }
8660
8661 /* If BLOCK is inlined from an __attribute__((__artificial__))
8662 routine, return pointer to location from where it has been
8663 called. */
8664 location_t *
8665 block_nonartificial_location (tree block)
8666 {
8667 location_t *ret = NULL;
8668
8669 while (block && TREE_CODE (block) == BLOCK
8670 && BLOCK_ABSTRACT_ORIGIN (block))
8671 {
8672 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
8673
8674 while (TREE_CODE (ao) == BLOCK && BLOCK_ABSTRACT_ORIGIN (ao))
8675 ao = BLOCK_ABSTRACT_ORIGIN (ao);
8676
8677 if (TREE_CODE (ao) == FUNCTION_DECL)
8678 {
8679 /* If AO is an artificial inline, point RET to the
8680 call site locus at which it has been inlined and continue
8681 the loop, in case AO's caller is also an artificial
8682 inline. */
8683 if (DECL_DECLARED_INLINE_P (ao)
8684 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
8685 ret = &BLOCK_SOURCE_LOCATION (block);
8686 else
8687 break;
8688 }
8689 else if (TREE_CODE (ao) != BLOCK)
8690 break;
8691
8692 block = BLOCK_SUPERCONTEXT (block);
8693 }
8694 return ret;
8695 }
8696
8697 #include "gt-tree.h"