dearly: Emit DIEs for decls early in the compilation process.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent, but occasionally
28 calls language-dependent routines defined (for C) in typecheck.c. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "stor-layout.h"
37 #include "calls.h"
38 #include "attribs.h"
39 #include "varasm.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h" /* get_random_seed */
44 #include "hashtab.h"
45 #include "inchash.h"
46 #include "filenames.h"
47 #include "output.h"
48 #include "target.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "basic-block.h"
54 #include "bitmap.h"
55 #include "tree-ssa-alias.h"
56 #include "internal-fn.h"
57 #include "gimple-expr.h"
58 #include "is-a.h"
59 #include "gimple.h"
60 #include "gimple-iterator.h"
61 #include "gimplify.h"
62 #include "gimple-ssa.h"
63 #include "cgraph.h"
64 #include "tree-phinodes.h"
65 #include "stringpool.h"
66 #include "tree-ssanames.h"
67 #include "expr.h"
68 #include "tree-dfa.h"
69 #include "params.h"
70 #include "tree-pass.h"
71 #include "langhooks-def.h"
72 #include "diagnostic.h"
73 #include "tree-diagnostic.h"
74 #include "tree-pretty-print.h"
75 #include "except.h"
76 #include "debug.h"
77 #include "intl.h"
78 #include "wide-int.h"
79 #include "builtins.h"
80
81 /* Tree code classes. */
82
83 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
84 #define END_OF_BASE_TREE_CODES tcc_exceptional,
85
86 const enum tree_code_class tree_code_type[] = {
87 #include "all-tree.def"
88 };
89
90 #undef DEFTREECODE
91 #undef END_OF_BASE_TREE_CODES
92
93 /* Table indexed by tree code giving number of expression
94 operands beyond the fixed part of the node structure.
95 Not used for types or decls. */
96
97 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
98 #define END_OF_BASE_TREE_CODES 0,
99
100 const unsigned char tree_code_length[] = {
101 #include "all-tree.def"
102 };
103
104 #undef DEFTREECODE
105 #undef END_OF_BASE_TREE_CODES
106
107 /* Names of tree components.
108 Used for printing out the tree and error messages. */
109 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
110 #define END_OF_BASE_TREE_CODES "@dummy",
111
112 static const char *const tree_code_name[] = {
113 #include "all-tree.def"
114 };
115
116 #undef DEFTREECODE
117 #undef END_OF_BASE_TREE_CODES
118
119 /* Each tree code class has an associated string representation.
120 These must correspond to the tree_code_class entries. */
121
122 const char *const tree_code_class_strings[] =
123 {
124 "exceptional",
125 "constant",
126 "type",
127 "declaration",
128 "reference",
129 "comparison",
130 "unary",
131 "binary",
132 "statement",
133 "vl_exp",
134 "expression"
135 };
136
137 /* obstack.[ch] explicitly declined to prototype this. */
138 extern int _obstack_allocated_p (struct obstack *h, void *obj);
139
140 /* Statistics-gathering stuff. */
141
142 static int tree_code_counts[MAX_TREE_CODES];
143 int tree_node_counts[(int) all_kinds];
144 int tree_node_sizes[(int) all_kinds];
145
146 /* Keep in sync with tree.h:enum tree_node_kind. */
147 static const char * const tree_node_kind_names[] = {
148 "decls",
149 "types",
150 "blocks",
151 "stmts",
152 "refs",
153 "exprs",
154 "constants",
155 "identifiers",
156 "vecs",
157 "binfos",
158 "ssa names",
159 "constructors",
160 "random kinds",
161 "lang_decl kinds",
162 "lang_type kinds",
163 "omp clauses",
164 };
165
166 /* Unique id for next decl created. */
167 static GTY(()) int next_decl_uid;
168 /* Unique id for next type created. */
169 static GTY(()) int next_type_uid = 1;
170 /* Unique id for next debug decl created. Use negative numbers,
171 to catch erroneous uses. */
172 static GTY(()) int next_debug_decl_uid;
173
174 /* Since we cannot rehash a type after it is in the table, we have to
175 keep the hash code. */
176
177 struct GTY(()) type_hash {
178 unsigned long hash;
179 tree type;
180 };
181
182 /* Initial size of the hash table (rounded to next prime). */
183 #define TYPE_HASH_INITIAL_SIZE 1000
184
185 /* Now here is the hash table. When recording a type, it is added to
186 the slot whose index is the hash code. Note that the hash table is
187 used for several kinds of types (function types, array types and
188 array index range types, for now). While all these live in the
189 same table, they are completely independent, and the hash code is
190 computed differently for each of these. */
191
192 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
193 htab_t type_hash_table;
194
195 /* Hash table and temporary node for larger integer const values. */
196 static GTY (()) tree int_cst_node;
197 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
198 htab_t int_cst_hash_table;
199
200 /* Hash table for optimization flags and target option flags. Use the same
201 hash table for both sets of options. Nodes for building the current
202 optimization and target option nodes. The assumption is most of the time
203 the options created will already be in the hash table, so we avoid
204 allocating and freeing up a node repeatably. */
205 static GTY (()) tree cl_optimization_node;
206 static GTY (()) tree cl_target_option_node;
207 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
208 htab_t cl_option_hash_table;
209
210 /* General tree->tree mapping structure for use in hash tables. */
211
212
213 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
214 htab_t debug_expr_for_decl;
215
216 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
217 htab_t value_expr_for_decl;
218
219 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
220 htab_t debug_args_for_decl;
221
222 static void set_type_quals (tree, int);
223 static int type_hash_eq (const void *, const void *);
224 static hashval_t type_hash_hash (const void *);
225 static hashval_t int_cst_hash_hash (const void *);
226 static int int_cst_hash_eq (const void *, const void *);
227 static hashval_t cl_option_hash_hash (const void *);
228 static int cl_option_hash_eq (const void *, const void *);
229 static void print_type_hash_statistics (void);
230 static void print_debug_expr_statistics (void);
231 static void print_value_expr_statistics (void);
232 static int type_hash_marked_p (const void *);
233 static void type_hash_list (const_tree, inchash::hash &);
234 static void attribute_hash_list (const_tree, inchash::hash &);
235
236 tree global_trees[TI_MAX];
237 tree integer_types[itk_none];
238
239 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
240
241 /* Number of operands for each OpenMP clause. */
242 unsigned const char omp_clause_num_ops[] =
243 {
244 0, /* OMP_CLAUSE_ERROR */
245 1, /* OMP_CLAUSE_PRIVATE */
246 1, /* OMP_CLAUSE_SHARED */
247 1, /* OMP_CLAUSE_FIRSTPRIVATE */
248 2, /* OMP_CLAUSE_LASTPRIVATE */
249 4, /* OMP_CLAUSE_REDUCTION */
250 1, /* OMP_CLAUSE_COPYIN */
251 1, /* OMP_CLAUSE_COPYPRIVATE */
252 3, /* OMP_CLAUSE_LINEAR */
253 2, /* OMP_CLAUSE_ALIGNED */
254 1, /* OMP_CLAUSE_DEPEND */
255 1, /* OMP_CLAUSE_UNIFORM */
256 2, /* OMP_CLAUSE_FROM */
257 2, /* OMP_CLAUSE_TO */
258 2, /* OMP_CLAUSE_MAP */
259 1, /* OMP_CLAUSE__LOOPTEMP_ */
260 1, /* OMP_CLAUSE_IF */
261 1, /* OMP_CLAUSE_NUM_THREADS */
262 1, /* OMP_CLAUSE_SCHEDULE */
263 0, /* OMP_CLAUSE_NOWAIT */
264 0, /* OMP_CLAUSE_ORDERED */
265 0, /* OMP_CLAUSE_DEFAULT */
266 3, /* OMP_CLAUSE_COLLAPSE */
267 0, /* OMP_CLAUSE_UNTIED */
268 1, /* OMP_CLAUSE_FINAL */
269 0, /* OMP_CLAUSE_MERGEABLE */
270 1, /* OMP_CLAUSE_DEVICE */
271 1, /* OMP_CLAUSE_DIST_SCHEDULE */
272 0, /* OMP_CLAUSE_INBRANCH */
273 0, /* OMP_CLAUSE_NOTINBRANCH */
274 1, /* OMP_CLAUSE_NUM_TEAMS */
275 1, /* OMP_CLAUSE_THREAD_LIMIT */
276 0, /* OMP_CLAUSE_PROC_BIND */
277 1, /* OMP_CLAUSE_SAFELEN */
278 1, /* OMP_CLAUSE_SIMDLEN */
279 0, /* OMP_CLAUSE_FOR */
280 0, /* OMP_CLAUSE_PARALLEL */
281 0, /* OMP_CLAUSE_SECTIONS */
282 0, /* OMP_CLAUSE_TASKGROUP */
283 1, /* OMP_CLAUSE__SIMDUID_ */
284 1, /* OMP_CLAUSE__CILK_FOR_COUNT_ */
285 };
286
287 const char * const omp_clause_code_name[] =
288 {
289 "error_clause",
290 "private",
291 "shared",
292 "firstprivate",
293 "lastprivate",
294 "reduction",
295 "copyin",
296 "copyprivate",
297 "linear",
298 "aligned",
299 "depend",
300 "uniform",
301 "from",
302 "to",
303 "map",
304 "_looptemp_",
305 "if",
306 "num_threads",
307 "schedule",
308 "nowait",
309 "ordered",
310 "default",
311 "collapse",
312 "untied",
313 "final",
314 "mergeable",
315 "device",
316 "dist_schedule",
317 "inbranch",
318 "notinbranch",
319 "num_teams",
320 "thread_limit",
321 "proc_bind",
322 "safelen",
323 "simdlen",
324 "for",
325 "parallel",
326 "sections",
327 "taskgroup",
328 "_simduid_",
329 "_Cilk_for_count_"
330 };
331
332
333 /* Return the tree node structure used by tree code CODE. */
334
335 static inline enum tree_node_structure_enum
336 tree_node_structure_for_code (enum tree_code code)
337 {
338 switch (TREE_CODE_CLASS (code))
339 {
340 case tcc_declaration:
341 {
342 switch (code)
343 {
344 case FIELD_DECL:
345 return TS_FIELD_DECL;
346 case PARM_DECL:
347 return TS_PARM_DECL;
348 case VAR_DECL:
349 return TS_VAR_DECL;
350 case LABEL_DECL:
351 return TS_LABEL_DECL;
352 case RESULT_DECL:
353 return TS_RESULT_DECL;
354 case DEBUG_EXPR_DECL:
355 return TS_DECL_WRTL;
356 case CONST_DECL:
357 return TS_CONST_DECL;
358 case TYPE_DECL:
359 return TS_TYPE_DECL;
360 case FUNCTION_DECL:
361 return TS_FUNCTION_DECL;
362 case TRANSLATION_UNIT_DECL:
363 return TS_TRANSLATION_UNIT_DECL;
364 default:
365 return TS_DECL_NON_COMMON;
366 }
367 }
368 case tcc_type:
369 return TS_TYPE_NON_COMMON;
370 case tcc_reference:
371 case tcc_comparison:
372 case tcc_unary:
373 case tcc_binary:
374 case tcc_expression:
375 case tcc_statement:
376 case tcc_vl_exp:
377 return TS_EXP;
378 default: /* tcc_constant and tcc_exceptional */
379 break;
380 }
381 switch (code)
382 {
383 /* tcc_constant cases. */
384 case VOID_CST: return TS_TYPED;
385 case INTEGER_CST: return TS_INT_CST;
386 case REAL_CST: return TS_REAL_CST;
387 case FIXED_CST: return TS_FIXED_CST;
388 case COMPLEX_CST: return TS_COMPLEX;
389 case VECTOR_CST: return TS_VECTOR;
390 case STRING_CST: return TS_STRING;
391 /* tcc_exceptional cases. */
392 case ERROR_MARK: return TS_COMMON;
393 case IDENTIFIER_NODE: return TS_IDENTIFIER;
394 case TREE_LIST: return TS_LIST;
395 case TREE_VEC: return TS_VEC;
396 case SSA_NAME: return TS_SSA_NAME;
397 case PLACEHOLDER_EXPR: return TS_COMMON;
398 case STATEMENT_LIST: return TS_STATEMENT_LIST;
399 case BLOCK: return TS_BLOCK;
400 case CONSTRUCTOR: return TS_CONSTRUCTOR;
401 case TREE_BINFO: return TS_BINFO;
402 case OMP_CLAUSE: return TS_OMP_CLAUSE;
403 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
404 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
405
406 default:
407 gcc_unreachable ();
408 }
409 }
410
411
412 /* Initialize tree_contains_struct to describe the hierarchy of tree
413 nodes. */
414
415 static void
416 initialize_tree_contains_struct (void)
417 {
418 unsigned i;
419
420 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
421 {
422 enum tree_code code;
423 enum tree_node_structure_enum ts_code;
424
425 code = (enum tree_code) i;
426 ts_code = tree_node_structure_for_code (code);
427
428 /* Mark the TS structure itself. */
429 tree_contains_struct[code][ts_code] = 1;
430
431 /* Mark all the structures that TS is derived from. */
432 switch (ts_code)
433 {
434 case TS_TYPED:
435 case TS_BLOCK:
436 MARK_TS_BASE (code);
437 break;
438
439 case TS_COMMON:
440 case TS_INT_CST:
441 case TS_REAL_CST:
442 case TS_FIXED_CST:
443 case TS_VECTOR:
444 case TS_STRING:
445 case TS_COMPLEX:
446 case TS_SSA_NAME:
447 case TS_CONSTRUCTOR:
448 case TS_EXP:
449 case TS_STATEMENT_LIST:
450 MARK_TS_TYPED (code);
451 break;
452
453 case TS_IDENTIFIER:
454 case TS_DECL_MINIMAL:
455 case TS_TYPE_COMMON:
456 case TS_LIST:
457 case TS_VEC:
458 case TS_BINFO:
459 case TS_OMP_CLAUSE:
460 case TS_OPTIMIZATION:
461 case TS_TARGET_OPTION:
462 MARK_TS_COMMON (code);
463 break;
464
465 case TS_TYPE_WITH_LANG_SPECIFIC:
466 MARK_TS_TYPE_COMMON (code);
467 break;
468
469 case TS_TYPE_NON_COMMON:
470 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
471 break;
472
473 case TS_DECL_COMMON:
474 MARK_TS_DECL_MINIMAL (code);
475 break;
476
477 case TS_DECL_WRTL:
478 case TS_CONST_DECL:
479 MARK_TS_DECL_COMMON (code);
480 break;
481
482 case TS_DECL_NON_COMMON:
483 MARK_TS_DECL_WITH_VIS (code);
484 break;
485
486 case TS_DECL_WITH_VIS:
487 case TS_PARM_DECL:
488 case TS_LABEL_DECL:
489 case TS_RESULT_DECL:
490 MARK_TS_DECL_WRTL (code);
491 break;
492
493 case TS_FIELD_DECL:
494 MARK_TS_DECL_COMMON (code);
495 break;
496
497 case TS_VAR_DECL:
498 MARK_TS_DECL_WITH_VIS (code);
499 break;
500
501 case TS_TYPE_DECL:
502 case TS_FUNCTION_DECL:
503 MARK_TS_DECL_NON_COMMON (code);
504 break;
505
506 case TS_TRANSLATION_UNIT_DECL:
507 MARK_TS_DECL_COMMON (code);
508 break;
509
510 default:
511 gcc_unreachable ();
512 }
513 }
514
515 /* Basic consistency checks for attributes used in fold. */
516 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
517 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
518 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
519 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
520 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
521 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
522 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
523 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
524 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
525 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
526 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
527 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
528 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
529 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
530 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
531 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
532 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
533 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
534 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
535 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
536 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
537 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
538 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
539 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
540 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
541 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
542 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
543 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
544 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
545 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
546 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
547 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
548 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
549 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
550 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
551 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
552 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
553 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
554 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
555 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
556 }
557
558
559 /* Init tree.c. */
560
561 void
562 init_ttree (void)
563 {
564 /* Initialize the hash table of types. */
565 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
566 type_hash_eq, 0);
567
568 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
569 tree_decl_map_eq, 0);
570
571 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
572 tree_decl_map_eq, 0);
573
574 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
575 int_cst_hash_eq, NULL);
576
577 int_cst_node = make_int_cst (1, 1);
578
579 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
580 cl_option_hash_eq, NULL);
581
582 cl_optimization_node = make_node (OPTIMIZATION_NODE);
583 cl_target_option_node = make_node (TARGET_OPTION_NODE);
584
585 /* Initialize the tree_contains_struct array. */
586 initialize_tree_contains_struct ();
587 lang_hooks.init_ts ();
588 }
589
590 \f
591 /* The name of the object as the assembler will see it (but before any
592 translations made by ASM_OUTPUT_LABELREF). Often this is the same
593 as DECL_NAME. It is an IDENTIFIER_NODE. */
594 tree
595 decl_assembler_name (tree decl)
596 {
597 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
598 lang_hooks.set_decl_assembler_name (decl);
599 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
600 }
601
602 /* When the target supports COMDAT groups, this indicates which group the
603 DECL is associated with. This can be either an IDENTIFIER_NODE or a
604 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
605 tree
606 decl_comdat_group (const_tree node)
607 {
608 struct symtab_node *snode = symtab_node::get (node);
609 if (!snode)
610 return NULL;
611 return snode->get_comdat_group ();
612 }
613
614 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
615 tree
616 decl_comdat_group_id (const_tree node)
617 {
618 struct symtab_node *snode = symtab_node::get (node);
619 if (!snode)
620 return NULL;
621 return snode->get_comdat_group_id ();
622 }
623
624 /* When the target supports named section, return its name as IDENTIFIER_NODE
625 or NULL if it is in no section. */
626 const char *
627 decl_section_name (const_tree node)
628 {
629 struct symtab_node *snode = symtab_node::get (node);
630 if (!snode)
631 return NULL;
632 return snode->get_section ();
633 }
634
635 /* Set section section name of NODE to VALUE (that is expected to
636 be identifier node) */
637 void
638 set_decl_section_name (tree node, const char *value)
639 {
640 struct symtab_node *snode;
641
642 if (value == NULL)
643 {
644 snode = symtab_node::get (node);
645 if (!snode)
646 return;
647 }
648 else if (TREE_CODE (node) == VAR_DECL)
649 snode = varpool_node::get_create (node);
650 else
651 snode = cgraph_node::get_create (node);
652 snode->set_section (value);
653 }
654
655 /* Return TLS model of a variable NODE. */
656 enum tls_model
657 decl_tls_model (const_tree node)
658 {
659 struct varpool_node *snode = varpool_node::get (node);
660 if (!snode)
661 return TLS_MODEL_NONE;
662 return snode->tls_model;
663 }
664
665 /* Set TLS model of variable NODE to MODEL. */
666 void
667 set_decl_tls_model (tree node, enum tls_model model)
668 {
669 struct varpool_node *vnode;
670
671 if (model == TLS_MODEL_NONE)
672 {
673 vnode = varpool_node::get (node);
674 if (!vnode)
675 return;
676 }
677 else
678 vnode = varpool_node::get_create (node);
679 vnode->tls_model = model;
680 }
681
682 /* Compute the number of bytes occupied by a tree with code CODE.
683 This function cannot be used for nodes that have variable sizes,
684 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
685 size_t
686 tree_code_size (enum tree_code code)
687 {
688 switch (TREE_CODE_CLASS (code))
689 {
690 case tcc_declaration: /* A decl node */
691 {
692 switch (code)
693 {
694 case FIELD_DECL:
695 return sizeof (struct tree_field_decl);
696 case PARM_DECL:
697 return sizeof (struct tree_parm_decl);
698 case VAR_DECL:
699 return sizeof (struct tree_var_decl);
700 case LABEL_DECL:
701 return sizeof (struct tree_label_decl);
702 case RESULT_DECL:
703 return sizeof (struct tree_result_decl);
704 case CONST_DECL:
705 return sizeof (struct tree_const_decl);
706 case TYPE_DECL:
707 return sizeof (struct tree_type_decl);
708 case FUNCTION_DECL:
709 return sizeof (struct tree_function_decl);
710 case DEBUG_EXPR_DECL:
711 return sizeof (struct tree_decl_with_rtl);
712 case TRANSLATION_UNIT_DECL:
713 return sizeof (struct tree_translation_unit_decl);
714 case NAMESPACE_DECL:
715 case IMPORTED_DECL:
716 case NAMELIST_DECL:
717 return sizeof (struct tree_decl_non_common);
718 default:
719 return lang_hooks.tree_size (code);
720 }
721 }
722
723 case tcc_type: /* a type node */
724 return sizeof (struct tree_type_non_common);
725
726 case tcc_reference: /* a reference */
727 case tcc_expression: /* an expression */
728 case tcc_statement: /* an expression with side effects */
729 case tcc_comparison: /* a comparison expression */
730 case tcc_unary: /* a unary arithmetic expression */
731 case tcc_binary: /* a binary arithmetic expression */
732 return (sizeof (struct tree_exp)
733 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
734
735 case tcc_constant: /* a constant */
736 switch (code)
737 {
738 case VOID_CST: return sizeof (struct tree_typed);
739 case INTEGER_CST: gcc_unreachable ();
740 case REAL_CST: return sizeof (struct tree_real_cst);
741 case FIXED_CST: return sizeof (struct tree_fixed_cst);
742 case COMPLEX_CST: return sizeof (struct tree_complex);
743 case VECTOR_CST: return sizeof (struct tree_vector);
744 case STRING_CST: gcc_unreachable ();
745 default:
746 return lang_hooks.tree_size (code);
747 }
748
749 case tcc_exceptional: /* something random, like an identifier. */
750 switch (code)
751 {
752 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
753 case TREE_LIST: return sizeof (struct tree_list);
754
755 case ERROR_MARK:
756 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
757
758 case TREE_VEC:
759 case OMP_CLAUSE: gcc_unreachable ();
760
761 case SSA_NAME: return sizeof (struct tree_ssa_name);
762
763 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
764 case BLOCK: return sizeof (struct tree_block);
765 case CONSTRUCTOR: return sizeof (struct tree_constructor);
766 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
767 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
768
769 default:
770 return lang_hooks.tree_size (code);
771 }
772
773 default:
774 gcc_unreachable ();
775 }
776 }
777
778 /* Compute the number of bytes occupied by NODE. This routine only
779 looks at TREE_CODE, except for those nodes that have variable sizes. */
780 size_t
781 tree_size (const_tree node)
782 {
783 const enum tree_code code = TREE_CODE (node);
784 switch (code)
785 {
786 case INTEGER_CST:
787 return (sizeof (struct tree_int_cst)
788 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
789
790 case TREE_BINFO:
791 return (offsetof (struct tree_binfo, base_binfos)
792 + vec<tree, va_gc>
793 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
794
795 case TREE_VEC:
796 return (sizeof (struct tree_vec)
797 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
798
799 case VECTOR_CST:
800 return (sizeof (struct tree_vector)
801 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
802
803 case STRING_CST:
804 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
805
806 case OMP_CLAUSE:
807 return (sizeof (struct tree_omp_clause)
808 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
809 * sizeof (tree));
810
811 default:
812 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
813 return (sizeof (struct tree_exp)
814 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
815 else
816 return tree_code_size (code);
817 }
818 }
819
820 /* Record interesting allocation statistics for a tree node with CODE
821 and LENGTH. */
822
823 static void
824 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
825 size_t length ATTRIBUTE_UNUSED)
826 {
827 enum tree_code_class type = TREE_CODE_CLASS (code);
828 tree_node_kind kind;
829
830 if (!GATHER_STATISTICS)
831 return;
832
833 switch (type)
834 {
835 case tcc_declaration: /* A decl node */
836 kind = d_kind;
837 break;
838
839 case tcc_type: /* a type node */
840 kind = t_kind;
841 break;
842
843 case tcc_statement: /* an expression with side effects */
844 kind = s_kind;
845 break;
846
847 case tcc_reference: /* a reference */
848 kind = r_kind;
849 break;
850
851 case tcc_expression: /* an expression */
852 case tcc_comparison: /* a comparison expression */
853 case tcc_unary: /* a unary arithmetic expression */
854 case tcc_binary: /* a binary arithmetic expression */
855 kind = e_kind;
856 break;
857
858 case tcc_constant: /* a constant */
859 kind = c_kind;
860 break;
861
862 case tcc_exceptional: /* something random, like an identifier. */
863 switch (code)
864 {
865 case IDENTIFIER_NODE:
866 kind = id_kind;
867 break;
868
869 case TREE_VEC:
870 kind = vec_kind;
871 break;
872
873 case TREE_BINFO:
874 kind = binfo_kind;
875 break;
876
877 case SSA_NAME:
878 kind = ssa_name_kind;
879 break;
880
881 case BLOCK:
882 kind = b_kind;
883 break;
884
885 case CONSTRUCTOR:
886 kind = constr_kind;
887 break;
888
889 case OMP_CLAUSE:
890 kind = omp_clause_kind;
891 break;
892
893 default:
894 kind = x_kind;
895 break;
896 }
897 break;
898
899 case tcc_vl_exp:
900 kind = e_kind;
901 break;
902
903 default:
904 gcc_unreachable ();
905 }
906
907 tree_code_counts[(int) code]++;
908 tree_node_counts[(int) kind]++;
909 tree_node_sizes[(int) kind] += length;
910 }
911
912 /* Allocate and return a new UID from the DECL_UID namespace. */
913
914 int
915 allocate_decl_uid (void)
916 {
917 return next_decl_uid++;
918 }
919
920 /* Return a newly allocated node of code CODE. For decl and type
921 nodes, some other fields are initialized. The rest of the node is
922 initialized to zero. This function cannot be used for TREE_VEC,
923 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
924 tree_code_size.
925
926 Achoo! I got a code in the node. */
927
928 tree
929 make_node_stat (enum tree_code code MEM_STAT_DECL)
930 {
931 tree t;
932 enum tree_code_class type = TREE_CODE_CLASS (code);
933 size_t length = tree_code_size (code);
934
935 record_node_allocation_statistics (code, length);
936
937 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
938 TREE_SET_CODE (t, code);
939
940 switch (type)
941 {
942 case tcc_statement:
943 TREE_SIDE_EFFECTS (t) = 1;
944 break;
945
946 case tcc_declaration:
947 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
948 {
949 if (code == FUNCTION_DECL)
950 {
951 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
952 DECL_MODE (t) = FUNCTION_MODE;
953 }
954 else
955 DECL_ALIGN (t) = 1;
956 }
957 DECL_SOURCE_LOCATION (t) = input_location;
958 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
959 DECL_UID (t) = --next_debug_decl_uid;
960 else
961 {
962 DECL_UID (t) = allocate_decl_uid ();
963 SET_DECL_PT_UID (t, -1);
964 }
965 if (TREE_CODE (t) == LABEL_DECL)
966 LABEL_DECL_UID (t) = -1;
967
968 break;
969
970 case tcc_type:
971 TYPE_UID (t) = next_type_uid++;
972 TYPE_ALIGN (t) = BITS_PER_UNIT;
973 TYPE_USER_ALIGN (t) = 0;
974 TYPE_MAIN_VARIANT (t) = t;
975 TYPE_CANONICAL (t) = t;
976
977 /* Default to no attributes for type, but let target change that. */
978 TYPE_ATTRIBUTES (t) = NULL_TREE;
979 targetm.set_default_type_attributes (t);
980
981 /* We have not yet computed the alias set for this type. */
982 TYPE_ALIAS_SET (t) = -1;
983 break;
984
985 case tcc_constant:
986 TREE_CONSTANT (t) = 1;
987 break;
988
989 case tcc_expression:
990 switch (code)
991 {
992 case INIT_EXPR:
993 case MODIFY_EXPR:
994 case VA_ARG_EXPR:
995 case PREDECREMENT_EXPR:
996 case PREINCREMENT_EXPR:
997 case POSTDECREMENT_EXPR:
998 case POSTINCREMENT_EXPR:
999 /* All of these have side-effects, no matter what their
1000 operands are. */
1001 TREE_SIDE_EFFECTS (t) = 1;
1002 break;
1003
1004 default:
1005 break;
1006 }
1007 break;
1008
1009 default:
1010 /* Other classes need no special treatment. */
1011 break;
1012 }
1013
1014 return t;
1015 }
1016 \f
1017 /* Return a new node with the same contents as NODE except that its
1018 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1019
1020 tree
1021 copy_node_stat (tree node MEM_STAT_DECL)
1022 {
1023 tree t;
1024 enum tree_code code = TREE_CODE (node);
1025 size_t length;
1026
1027 gcc_assert (code != STATEMENT_LIST);
1028
1029 length = tree_size (node);
1030 record_node_allocation_statistics (code, length);
1031 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1032 memcpy (t, node, length);
1033
1034 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1035 TREE_CHAIN (t) = 0;
1036 TREE_ASM_WRITTEN (t) = 0;
1037 TREE_VISITED (t) = 0;
1038
1039 if (TREE_CODE_CLASS (code) == tcc_declaration)
1040 {
1041 if (code == DEBUG_EXPR_DECL)
1042 DECL_UID (t) = --next_debug_decl_uid;
1043 else
1044 {
1045 DECL_UID (t) = allocate_decl_uid ();
1046 if (DECL_PT_UID_SET_P (node))
1047 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1048 }
1049 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
1050 && DECL_HAS_VALUE_EXPR_P (node))
1051 {
1052 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1053 DECL_HAS_VALUE_EXPR_P (t) = 1;
1054 }
1055 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1056 if (TREE_CODE (node) == VAR_DECL)
1057 {
1058 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1059 t->decl_with_vis.symtab_node = NULL;
1060 }
1061 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
1062 {
1063 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1064 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1065 }
1066 if (TREE_CODE (node) == FUNCTION_DECL)
1067 {
1068 DECL_STRUCT_FUNCTION (t) = NULL;
1069 t->decl_with_vis.symtab_node = NULL;
1070 }
1071 }
1072 else if (TREE_CODE_CLASS (code) == tcc_type)
1073 {
1074 TYPE_UID (t) = next_type_uid++;
1075 /* The following is so that the debug code for
1076 the copy is different from the original type.
1077 The two statements usually duplicate each other
1078 (because they clear fields of the same union),
1079 but the optimizer should catch that. */
1080 TYPE_SYMTAB_POINTER (t) = 0;
1081 TYPE_SYMTAB_ADDRESS (t) = 0;
1082
1083 /* Do not copy the values cache. */
1084 if (TYPE_CACHED_VALUES_P (t))
1085 {
1086 TYPE_CACHED_VALUES_P (t) = 0;
1087 TYPE_CACHED_VALUES (t) = NULL_TREE;
1088 }
1089 }
1090
1091 return t;
1092 }
1093
1094 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1095 For example, this can copy a list made of TREE_LIST nodes. */
1096
1097 tree
1098 copy_list (tree list)
1099 {
1100 tree head;
1101 tree prev, next;
1102
1103 if (list == 0)
1104 return 0;
1105
1106 head = prev = copy_node (list);
1107 next = TREE_CHAIN (list);
1108 while (next)
1109 {
1110 TREE_CHAIN (prev) = copy_node (next);
1111 prev = TREE_CHAIN (prev);
1112 next = TREE_CHAIN (next);
1113 }
1114 return head;
1115 }
1116
1117 \f
1118 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1119 INTEGER_CST with value CST and type TYPE. */
1120
1121 static unsigned int
1122 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1123 {
1124 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1125 /* We need an extra zero HWI if CST is an unsigned integer with its
1126 upper bit set, and if CST occupies a whole number of HWIs. */
1127 if (TYPE_UNSIGNED (type)
1128 && wi::neg_p (cst)
1129 && (cst.get_precision () % HOST_BITS_PER_WIDE_INT) == 0)
1130 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1131 return cst.get_len ();
1132 }
1133
1134 /* Return a new INTEGER_CST with value CST and type TYPE. */
1135
1136 static tree
1137 build_new_int_cst (tree type, const wide_int &cst)
1138 {
1139 unsigned int len = cst.get_len ();
1140 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1141 tree nt = make_int_cst (len, ext_len);
1142
1143 if (len < ext_len)
1144 {
1145 --ext_len;
1146 TREE_INT_CST_ELT (nt, ext_len) = 0;
1147 for (unsigned int i = len; i < ext_len; ++i)
1148 TREE_INT_CST_ELT (nt, i) = -1;
1149 }
1150 else if (TYPE_UNSIGNED (type)
1151 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1152 {
1153 len--;
1154 TREE_INT_CST_ELT (nt, len)
1155 = zext_hwi (cst.elt (len),
1156 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1157 }
1158
1159 for (unsigned int i = 0; i < len; i++)
1160 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1161 TREE_TYPE (nt) = type;
1162 return nt;
1163 }
1164
1165 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1166
1167 tree
1168 build_int_cst (tree type, HOST_WIDE_INT low)
1169 {
1170 /* Support legacy code. */
1171 if (!type)
1172 type = integer_type_node;
1173
1174 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1175 }
1176
1177 tree
1178 build_int_cstu (tree type, unsigned HOST_WIDE_INT cst)
1179 {
1180 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1181 }
1182
1183 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1184
1185 tree
1186 build_int_cst_type (tree type, HOST_WIDE_INT low)
1187 {
1188 gcc_assert (type);
1189 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1190 }
1191
1192 /* Constructs tree in type TYPE from with value given by CST. Signedness
1193 of CST is assumed to be the same as the signedness of TYPE. */
1194
1195 tree
1196 double_int_to_tree (tree type, double_int cst)
1197 {
1198 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1199 }
1200
1201 /* We force the wide_int CST to the range of the type TYPE by sign or
1202 zero extending it. OVERFLOWABLE indicates if we are interested in
1203 overflow of the value, when >0 we are only interested in signed
1204 overflow, for <0 we are interested in any overflow. OVERFLOWED
1205 indicates whether overflow has already occurred. CONST_OVERFLOWED
1206 indicates whether constant overflow has already occurred. We force
1207 T's value to be within range of T's type (by setting to 0 or 1 all
1208 the bits outside the type's range). We set TREE_OVERFLOWED if,
1209 OVERFLOWED is nonzero,
1210 or OVERFLOWABLE is >0 and signed overflow occurs
1211 or OVERFLOWABLE is <0 and any overflow occurs
1212 We return a new tree node for the extended wide_int. The node
1213 is shared if no overflow flags are set. */
1214
1215
1216 tree
1217 force_fit_type (tree type, const wide_int_ref &cst,
1218 int overflowable, bool overflowed)
1219 {
1220 signop sign = TYPE_SIGN (type);
1221
1222 /* If we need to set overflow flags, return a new unshared node. */
1223 if (overflowed || !wi::fits_to_tree_p (cst, type))
1224 {
1225 if (overflowed
1226 || overflowable < 0
1227 || (overflowable > 0 && sign == SIGNED))
1228 {
1229 wide_int tmp = wide_int::from (cst, TYPE_PRECISION (type), sign);
1230 tree t = build_new_int_cst (type, tmp);
1231 TREE_OVERFLOW (t) = 1;
1232 return t;
1233 }
1234 }
1235
1236 /* Else build a shared node. */
1237 return wide_int_to_tree (type, cst);
1238 }
1239
1240 /* These are the hash table functions for the hash table of INTEGER_CST
1241 nodes of a sizetype. */
1242
1243 /* Return the hash code code X, an INTEGER_CST. */
1244
1245 static hashval_t
1246 int_cst_hash_hash (const void *x)
1247 {
1248 const_tree const t = (const_tree) x;
1249 hashval_t code = htab_hash_pointer (TREE_TYPE (t));
1250 int i;
1251
1252 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1253 code ^= TREE_INT_CST_ELT (t, i);
1254
1255 return code;
1256 }
1257
1258 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1259 is the same as that given by *Y, which is the same. */
1260
1261 static int
1262 int_cst_hash_eq (const void *x, const void *y)
1263 {
1264 const_tree const xt = (const_tree) x;
1265 const_tree const yt = (const_tree) y;
1266
1267 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1268 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1269 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1270 return false;
1271
1272 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1273 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1274 return false;
1275
1276 return true;
1277 }
1278
1279 /* Create an INT_CST node of TYPE and value CST.
1280 The returned node is always shared. For small integers we use a
1281 per-type vector cache, for larger ones we use a single hash table.
1282 The value is extended from its precision according to the sign of
1283 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1284 the upper bits and ensures that hashing and value equality based
1285 upon the underlying HOST_WIDE_INTs works without masking. */
1286
1287 tree
1288 wide_int_to_tree (tree type, const wide_int_ref &pcst)
1289 {
1290 tree t;
1291 int ix = -1;
1292 int limit = 0;
1293
1294 gcc_assert (type);
1295 unsigned int prec = TYPE_PRECISION (type);
1296 signop sgn = TYPE_SIGN (type);
1297
1298 /* Verify that everything is canonical. */
1299 int l = pcst.get_len ();
1300 if (l > 1)
1301 {
1302 if (pcst.elt (l - 1) == 0)
1303 gcc_checking_assert (pcst.elt (l - 2) < 0);
1304 if (pcst.elt (l - 1) == (HOST_WIDE_INT) -1)
1305 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1306 }
1307
1308 wide_int cst = wide_int::from (pcst, prec, sgn);
1309 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1310
1311 if (ext_len == 1)
1312 {
1313 /* We just need to store a single HOST_WIDE_INT. */
1314 HOST_WIDE_INT hwi;
1315 if (TYPE_UNSIGNED (type))
1316 hwi = cst.to_uhwi ();
1317 else
1318 hwi = cst.to_shwi ();
1319
1320 switch (TREE_CODE (type))
1321 {
1322 case NULLPTR_TYPE:
1323 gcc_assert (hwi == 0);
1324 /* Fallthru. */
1325
1326 case POINTER_TYPE:
1327 case REFERENCE_TYPE:
1328 /* Cache NULL pointer. */
1329 if (hwi == 0)
1330 {
1331 limit = 1;
1332 ix = 0;
1333 }
1334 break;
1335
1336 case BOOLEAN_TYPE:
1337 /* Cache false or true. */
1338 limit = 2;
1339 if (hwi < 2)
1340 ix = hwi;
1341 break;
1342
1343 case INTEGER_TYPE:
1344 case OFFSET_TYPE:
1345 if (TYPE_SIGN (type) == UNSIGNED)
1346 {
1347 /* Cache [0, N). */
1348 limit = INTEGER_SHARE_LIMIT;
1349 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1350 ix = hwi;
1351 }
1352 else
1353 {
1354 /* Cache [-1, N). */
1355 limit = INTEGER_SHARE_LIMIT + 1;
1356 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1357 ix = hwi + 1;
1358 }
1359 break;
1360
1361 case ENUMERAL_TYPE:
1362 break;
1363
1364 default:
1365 gcc_unreachable ();
1366 }
1367
1368 if (ix >= 0)
1369 {
1370 /* Look for it in the type's vector of small shared ints. */
1371 if (!TYPE_CACHED_VALUES_P (type))
1372 {
1373 TYPE_CACHED_VALUES_P (type) = 1;
1374 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1375 }
1376
1377 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1378 if (t)
1379 /* Make sure no one is clobbering the shared constant. */
1380 gcc_checking_assert (TREE_TYPE (t) == type
1381 && TREE_INT_CST_NUNITS (t) == 1
1382 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1383 && TREE_INT_CST_EXT_NUNITS (t) == 1
1384 && TREE_INT_CST_ELT (t, 0) == hwi);
1385 else
1386 {
1387 /* Create a new shared int. */
1388 t = build_new_int_cst (type, cst);
1389 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1390 }
1391 }
1392 else
1393 {
1394 /* Use the cache of larger shared ints, using int_cst_node as
1395 a temporary. */
1396 void **slot;
1397
1398 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1399 TREE_TYPE (int_cst_node) = type;
1400
1401 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1402 t = (tree) *slot;
1403 if (!t)
1404 {
1405 /* Insert this one into the hash table. */
1406 t = int_cst_node;
1407 *slot = t;
1408 /* Make a new node for next time round. */
1409 int_cst_node = make_int_cst (1, 1);
1410 }
1411 }
1412 }
1413 else
1414 {
1415 /* The value either hashes properly or we drop it on the floor
1416 for the gc to take care of. There will not be enough of them
1417 to worry about. */
1418 void **slot;
1419
1420 tree nt = build_new_int_cst (type, cst);
1421 slot = htab_find_slot (int_cst_hash_table, nt, INSERT);
1422 t = (tree) *slot;
1423 if (!t)
1424 {
1425 /* Insert this one into the hash table. */
1426 t = nt;
1427 *slot = t;
1428 }
1429 }
1430
1431 return t;
1432 }
1433
1434 void
1435 cache_integer_cst (tree t)
1436 {
1437 tree type = TREE_TYPE (t);
1438 int ix = -1;
1439 int limit = 0;
1440 int prec = TYPE_PRECISION (type);
1441
1442 gcc_assert (!TREE_OVERFLOW (t));
1443
1444 switch (TREE_CODE (type))
1445 {
1446 case NULLPTR_TYPE:
1447 gcc_assert (integer_zerop (t));
1448 /* Fallthru. */
1449
1450 case POINTER_TYPE:
1451 case REFERENCE_TYPE:
1452 /* Cache NULL pointer. */
1453 if (integer_zerop (t))
1454 {
1455 limit = 1;
1456 ix = 0;
1457 }
1458 break;
1459
1460 case BOOLEAN_TYPE:
1461 /* Cache false or true. */
1462 limit = 2;
1463 if (wi::ltu_p (t, 2))
1464 ix = TREE_INT_CST_ELT (t, 0);
1465 break;
1466
1467 case INTEGER_TYPE:
1468 case OFFSET_TYPE:
1469 if (TYPE_UNSIGNED (type))
1470 {
1471 /* Cache 0..N */
1472 limit = INTEGER_SHARE_LIMIT;
1473
1474 /* This is a little hokie, but if the prec is smaller than
1475 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1476 obvious test will not get the correct answer. */
1477 if (prec < HOST_BITS_PER_WIDE_INT)
1478 {
1479 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1480 ix = tree_to_uhwi (t);
1481 }
1482 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1483 ix = tree_to_uhwi (t);
1484 }
1485 else
1486 {
1487 /* Cache -1..N */
1488 limit = INTEGER_SHARE_LIMIT + 1;
1489
1490 if (integer_minus_onep (t))
1491 ix = 0;
1492 else if (!wi::neg_p (t))
1493 {
1494 if (prec < HOST_BITS_PER_WIDE_INT)
1495 {
1496 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1497 ix = tree_to_shwi (t) + 1;
1498 }
1499 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1500 ix = tree_to_shwi (t) + 1;
1501 }
1502 }
1503 break;
1504
1505 case ENUMERAL_TYPE:
1506 break;
1507
1508 default:
1509 gcc_unreachable ();
1510 }
1511
1512 if (ix >= 0)
1513 {
1514 /* Look for it in the type's vector of small shared ints. */
1515 if (!TYPE_CACHED_VALUES_P (type))
1516 {
1517 TYPE_CACHED_VALUES_P (type) = 1;
1518 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1519 }
1520
1521 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1522 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1523 }
1524 else
1525 {
1526 /* Use the cache of larger shared ints. */
1527 void **slot;
1528
1529 slot = htab_find_slot (int_cst_hash_table, t, INSERT);
1530 /* If there is already an entry for the number verify it's the
1531 same. */
1532 if (*slot)
1533 gcc_assert (wi::eq_p (tree (*slot), t));
1534 else
1535 /* Otherwise insert this one into the hash table. */
1536 *slot = t;
1537 }
1538 }
1539
1540
1541 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1542 and the rest are zeros. */
1543
1544 tree
1545 build_low_bits_mask (tree type, unsigned bits)
1546 {
1547 gcc_assert (bits <= TYPE_PRECISION (type));
1548
1549 return wide_int_to_tree (type, wi::mask (bits, false,
1550 TYPE_PRECISION (type)));
1551 }
1552
1553 /* Checks that X is integer constant that can be expressed in (unsigned)
1554 HOST_WIDE_INT without loss of precision. */
1555
1556 bool
1557 cst_and_fits_in_hwi (const_tree x)
1558 {
1559 if (TREE_CODE (x) != INTEGER_CST)
1560 return false;
1561
1562 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1563 return false;
1564
1565 return TREE_INT_CST_NUNITS (x) == 1;
1566 }
1567
1568 /* Build a newly constructed TREE_VEC node of length LEN. */
1569
1570 tree
1571 make_vector_stat (unsigned len MEM_STAT_DECL)
1572 {
1573 tree t;
1574 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1575
1576 record_node_allocation_statistics (VECTOR_CST, length);
1577
1578 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1579
1580 TREE_SET_CODE (t, VECTOR_CST);
1581 TREE_CONSTANT (t) = 1;
1582
1583 return t;
1584 }
1585
1586 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1587 are in a list pointed to by VALS. */
1588
1589 tree
1590 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1591 {
1592 int over = 0;
1593 unsigned cnt = 0;
1594 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1595 TREE_TYPE (v) = type;
1596
1597 /* Iterate through elements and check for overflow. */
1598 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1599 {
1600 tree value = vals[cnt];
1601
1602 VECTOR_CST_ELT (v, cnt) = value;
1603
1604 /* Don't crash if we get an address constant. */
1605 if (!CONSTANT_CLASS_P (value))
1606 continue;
1607
1608 over |= TREE_OVERFLOW (value);
1609 }
1610
1611 TREE_OVERFLOW (v) = over;
1612 return v;
1613 }
1614
1615 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1616 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1617
1618 tree
1619 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1620 {
1621 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1622 unsigned HOST_WIDE_INT idx;
1623 tree value;
1624
1625 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1626 vec[idx] = value;
1627 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1628 vec[idx] = build_zero_cst (TREE_TYPE (type));
1629
1630 return build_vector (type, vec);
1631 }
1632
1633 /* Build a vector of type VECTYPE where all the elements are SCs. */
1634 tree
1635 build_vector_from_val (tree vectype, tree sc)
1636 {
1637 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1638
1639 if (sc == error_mark_node)
1640 return sc;
1641
1642 /* Verify that the vector type is suitable for SC. Note that there
1643 is some inconsistency in the type-system with respect to restrict
1644 qualifications of pointers. Vector types always have a main-variant
1645 element type and the qualification is applied to the vector-type.
1646 So TREE_TYPE (vector-type) does not return a properly qualified
1647 vector element-type. */
1648 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1649 TREE_TYPE (vectype)));
1650
1651 if (CONSTANT_CLASS_P (sc))
1652 {
1653 tree *v = XALLOCAVEC (tree, nunits);
1654 for (i = 0; i < nunits; ++i)
1655 v[i] = sc;
1656 return build_vector (vectype, v);
1657 }
1658 else
1659 {
1660 vec<constructor_elt, va_gc> *v;
1661 vec_alloc (v, nunits);
1662 for (i = 0; i < nunits; ++i)
1663 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1664 return build_constructor (vectype, v);
1665 }
1666 }
1667
1668 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1669 are in the vec pointed to by VALS. */
1670 tree
1671 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1672 {
1673 tree c = make_node (CONSTRUCTOR);
1674 unsigned int i;
1675 constructor_elt *elt;
1676 bool constant_p = true;
1677 bool side_effects_p = false;
1678
1679 TREE_TYPE (c) = type;
1680 CONSTRUCTOR_ELTS (c) = vals;
1681
1682 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1683 {
1684 /* Mostly ctors will have elts that don't have side-effects, so
1685 the usual case is to scan all the elements. Hence a single
1686 loop for both const and side effects, rather than one loop
1687 each (with early outs). */
1688 if (!TREE_CONSTANT (elt->value))
1689 constant_p = false;
1690 if (TREE_SIDE_EFFECTS (elt->value))
1691 side_effects_p = true;
1692 }
1693
1694 TREE_SIDE_EFFECTS (c) = side_effects_p;
1695 TREE_CONSTANT (c) = constant_p;
1696
1697 return c;
1698 }
1699
1700 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1701 INDEX and VALUE. */
1702 tree
1703 build_constructor_single (tree type, tree index, tree value)
1704 {
1705 vec<constructor_elt, va_gc> *v;
1706 constructor_elt elt = {index, value};
1707
1708 vec_alloc (v, 1);
1709 v->quick_push (elt);
1710
1711 return build_constructor (type, v);
1712 }
1713
1714
1715 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1716 are in a list pointed to by VALS. */
1717 tree
1718 build_constructor_from_list (tree type, tree vals)
1719 {
1720 tree t;
1721 vec<constructor_elt, va_gc> *v = NULL;
1722
1723 if (vals)
1724 {
1725 vec_alloc (v, list_length (vals));
1726 for (t = vals; t; t = TREE_CHAIN (t))
1727 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1728 }
1729
1730 return build_constructor (type, v);
1731 }
1732
1733 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1734 of elements, provided as index/value pairs. */
1735
1736 tree
1737 build_constructor_va (tree type, int nelts, ...)
1738 {
1739 vec<constructor_elt, va_gc> *v = NULL;
1740 va_list p;
1741
1742 va_start (p, nelts);
1743 vec_alloc (v, nelts);
1744 while (nelts--)
1745 {
1746 tree index = va_arg (p, tree);
1747 tree value = va_arg (p, tree);
1748 CONSTRUCTOR_APPEND_ELT (v, index, value);
1749 }
1750 va_end (p);
1751 return build_constructor (type, v);
1752 }
1753
1754 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1755
1756 tree
1757 build_fixed (tree type, FIXED_VALUE_TYPE f)
1758 {
1759 tree v;
1760 FIXED_VALUE_TYPE *fp;
1761
1762 v = make_node (FIXED_CST);
1763 fp = ggc_alloc<fixed_value> ();
1764 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1765
1766 TREE_TYPE (v) = type;
1767 TREE_FIXED_CST_PTR (v) = fp;
1768 return v;
1769 }
1770
1771 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1772
1773 tree
1774 build_real (tree type, REAL_VALUE_TYPE d)
1775 {
1776 tree v;
1777 REAL_VALUE_TYPE *dp;
1778 int overflow = 0;
1779
1780 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1781 Consider doing it via real_convert now. */
1782
1783 v = make_node (REAL_CST);
1784 dp = ggc_alloc<real_value> ();
1785 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1786
1787 TREE_TYPE (v) = type;
1788 TREE_REAL_CST_PTR (v) = dp;
1789 TREE_OVERFLOW (v) = overflow;
1790 return v;
1791 }
1792
1793 /* Return a new REAL_CST node whose type is TYPE
1794 and whose value is the integer value of the INTEGER_CST node I. */
1795
1796 REAL_VALUE_TYPE
1797 real_value_from_int_cst (const_tree type, const_tree i)
1798 {
1799 REAL_VALUE_TYPE d;
1800
1801 /* Clear all bits of the real value type so that we can later do
1802 bitwise comparisons to see if two values are the same. */
1803 memset (&d, 0, sizeof d);
1804
1805 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, i,
1806 TYPE_SIGN (TREE_TYPE (i)));
1807 return d;
1808 }
1809
1810 /* Given a tree representing an integer constant I, return a tree
1811 representing the same value as a floating-point constant of type TYPE. */
1812
1813 tree
1814 build_real_from_int_cst (tree type, const_tree i)
1815 {
1816 tree v;
1817 int overflow = TREE_OVERFLOW (i);
1818
1819 v = build_real (type, real_value_from_int_cst (type, i));
1820
1821 TREE_OVERFLOW (v) |= overflow;
1822 return v;
1823 }
1824
1825 /* Return a newly constructed STRING_CST node whose value is
1826 the LEN characters at STR.
1827 Note that for a C string literal, LEN should include the trailing NUL.
1828 The TREE_TYPE is not initialized. */
1829
1830 tree
1831 build_string (int len, const char *str)
1832 {
1833 tree s;
1834 size_t length;
1835
1836 /* Do not waste bytes provided by padding of struct tree_string. */
1837 length = len + offsetof (struct tree_string, str) + 1;
1838
1839 record_node_allocation_statistics (STRING_CST, length);
1840
1841 s = (tree) ggc_internal_alloc (length);
1842
1843 memset (s, 0, sizeof (struct tree_typed));
1844 TREE_SET_CODE (s, STRING_CST);
1845 TREE_CONSTANT (s) = 1;
1846 TREE_STRING_LENGTH (s) = len;
1847 memcpy (s->string.str, str, len);
1848 s->string.str[len] = '\0';
1849
1850 return s;
1851 }
1852
1853 /* Return a newly constructed COMPLEX_CST node whose value is
1854 specified by the real and imaginary parts REAL and IMAG.
1855 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1856 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1857
1858 tree
1859 build_complex (tree type, tree real, tree imag)
1860 {
1861 tree t = make_node (COMPLEX_CST);
1862
1863 TREE_REALPART (t) = real;
1864 TREE_IMAGPART (t) = imag;
1865 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1866 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1867 return t;
1868 }
1869
1870 /* Return a constant of arithmetic type TYPE which is the
1871 multiplicative identity of the set TYPE. */
1872
1873 tree
1874 build_one_cst (tree type)
1875 {
1876 switch (TREE_CODE (type))
1877 {
1878 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1879 case POINTER_TYPE: case REFERENCE_TYPE:
1880 case OFFSET_TYPE:
1881 return build_int_cst (type, 1);
1882
1883 case REAL_TYPE:
1884 return build_real (type, dconst1);
1885
1886 case FIXED_POINT_TYPE:
1887 /* We can only generate 1 for accum types. */
1888 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1889 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
1890
1891 case VECTOR_TYPE:
1892 {
1893 tree scalar = build_one_cst (TREE_TYPE (type));
1894
1895 return build_vector_from_val (type, scalar);
1896 }
1897
1898 case COMPLEX_TYPE:
1899 return build_complex (type,
1900 build_one_cst (TREE_TYPE (type)),
1901 build_zero_cst (TREE_TYPE (type)));
1902
1903 default:
1904 gcc_unreachable ();
1905 }
1906 }
1907
1908 /* Return an integer of type TYPE containing all 1's in as much precision as
1909 it contains, or a complex or vector whose subparts are such integers. */
1910
1911 tree
1912 build_all_ones_cst (tree type)
1913 {
1914 if (TREE_CODE (type) == COMPLEX_TYPE)
1915 {
1916 tree scalar = build_all_ones_cst (TREE_TYPE (type));
1917 return build_complex (type, scalar, scalar);
1918 }
1919 else
1920 return build_minus_one_cst (type);
1921 }
1922
1923 /* Return a constant of arithmetic type TYPE which is the
1924 opposite of the multiplicative identity of the set TYPE. */
1925
1926 tree
1927 build_minus_one_cst (tree type)
1928 {
1929 switch (TREE_CODE (type))
1930 {
1931 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1932 case POINTER_TYPE: case REFERENCE_TYPE:
1933 case OFFSET_TYPE:
1934 return build_int_cst (type, -1);
1935
1936 case REAL_TYPE:
1937 return build_real (type, dconstm1);
1938
1939 case FIXED_POINT_TYPE:
1940 /* We can only generate 1 for accum types. */
1941 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1942 return build_fixed (type, fixed_from_double_int (double_int_minus_one,
1943 TYPE_MODE (type)));
1944
1945 case VECTOR_TYPE:
1946 {
1947 tree scalar = build_minus_one_cst (TREE_TYPE (type));
1948
1949 return build_vector_from_val (type, scalar);
1950 }
1951
1952 case COMPLEX_TYPE:
1953 return build_complex (type,
1954 build_minus_one_cst (TREE_TYPE (type)),
1955 build_zero_cst (TREE_TYPE (type)));
1956
1957 default:
1958 gcc_unreachable ();
1959 }
1960 }
1961
1962 /* Build 0 constant of type TYPE. This is used by constructor folding
1963 and thus the constant should be represented in memory by
1964 zero(es). */
1965
1966 tree
1967 build_zero_cst (tree type)
1968 {
1969 switch (TREE_CODE (type))
1970 {
1971 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1972 case POINTER_TYPE: case REFERENCE_TYPE:
1973 case OFFSET_TYPE: case NULLPTR_TYPE:
1974 return build_int_cst (type, 0);
1975
1976 case REAL_TYPE:
1977 return build_real (type, dconst0);
1978
1979 case FIXED_POINT_TYPE:
1980 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1981
1982 case VECTOR_TYPE:
1983 {
1984 tree scalar = build_zero_cst (TREE_TYPE (type));
1985
1986 return build_vector_from_val (type, scalar);
1987 }
1988
1989 case COMPLEX_TYPE:
1990 {
1991 tree zero = build_zero_cst (TREE_TYPE (type));
1992
1993 return build_complex (type, zero, zero);
1994 }
1995
1996 default:
1997 if (!AGGREGATE_TYPE_P (type))
1998 return fold_convert (type, integer_zero_node);
1999 return build_constructor (type, NULL);
2000 }
2001 }
2002
2003
2004 /* Build a BINFO with LEN language slots. */
2005
2006 tree
2007 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
2008 {
2009 tree t;
2010 size_t length = (offsetof (struct tree_binfo, base_binfos)
2011 + vec<tree, va_gc>::embedded_size (base_binfos));
2012
2013 record_node_allocation_statistics (TREE_BINFO, length);
2014
2015 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2016
2017 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2018
2019 TREE_SET_CODE (t, TREE_BINFO);
2020
2021 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2022
2023 return t;
2024 }
2025
2026 /* Create a CASE_LABEL_EXPR tree node and return it. */
2027
2028 tree
2029 build_case_label (tree low_value, tree high_value, tree label_decl)
2030 {
2031 tree t = make_node (CASE_LABEL_EXPR);
2032
2033 TREE_TYPE (t) = void_type_node;
2034 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2035
2036 CASE_LOW (t) = low_value;
2037 CASE_HIGH (t) = high_value;
2038 CASE_LABEL (t) = label_decl;
2039 CASE_CHAIN (t) = NULL_TREE;
2040
2041 return t;
2042 }
2043
2044 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2045 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2046 The latter determines the length of the HOST_WIDE_INT vector. */
2047
2048 tree
2049 make_int_cst_stat (int len, int ext_len MEM_STAT_DECL)
2050 {
2051 tree t;
2052 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2053 + sizeof (struct tree_int_cst));
2054
2055 gcc_assert (len);
2056 record_node_allocation_statistics (INTEGER_CST, length);
2057
2058 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2059
2060 TREE_SET_CODE (t, INTEGER_CST);
2061 TREE_INT_CST_NUNITS (t) = len;
2062 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2063 /* to_offset can only be applied to trees that are offset_int-sized
2064 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2065 must be exactly the precision of offset_int and so LEN is correct. */
2066 if (ext_len <= OFFSET_INT_ELTS)
2067 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2068 else
2069 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2070
2071 TREE_CONSTANT (t) = 1;
2072
2073 return t;
2074 }
2075
2076 /* Build a newly constructed TREE_VEC node of length LEN. */
2077
2078 tree
2079 make_tree_vec_stat (int len MEM_STAT_DECL)
2080 {
2081 tree t;
2082 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2083
2084 record_node_allocation_statistics (TREE_VEC, length);
2085
2086 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2087
2088 TREE_SET_CODE (t, TREE_VEC);
2089 TREE_VEC_LENGTH (t) = len;
2090
2091 return t;
2092 }
2093
2094 /* Grow a TREE_VEC node to new length LEN. */
2095
2096 tree
2097 grow_tree_vec_stat (tree v, int len MEM_STAT_DECL)
2098 {
2099 gcc_assert (TREE_CODE (v) == TREE_VEC);
2100
2101 int oldlen = TREE_VEC_LENGTH (v);
2102 gcc_assert (len > oldlen);
2103
2104 int oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2105 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2106
2107 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2108
2109 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2110
2111 TREE_VEC_LENGTH (v) = len;
2112
2113 return v;
2114 }
2115 \f
2116 /* Return 1 if EXPR is the integer constant zero or a complex constant
2117 of zero. */
2118
2119 int
2120 integer_zerop (const_tree expr)
2121 {
2122 STRIP_NOPS (expr);
2123
2124 switch (TREE_CODE (expr))
2125 {
2126 case INTEGER_CST:
2127 return wi::eq_p (expr, 0);
2128 case COMPLEX_CST:
2129 return (integer_zerop (TREE_REALPART (expr))
2130 && integer_zerop (TREE_IMAGPART (expr)));
2131 case VECTOR_CST:
2132 {
2133 unsigned i;
2134 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2135 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
2136 return false;
2137 return true;
2138 }
2139 default:
2140 return false;
2141 }
2142 }
2143
2144 /* Return 1 if EXPR is the integer constant one or the corresponding
2145 complex constant. */
2146
2147 int
2148 integer_onep (const_tree expr)
2149 {
2150 STRIP_NOPS (expr);
2151
2152 switch (TREE_CODE (expr))
2153 {
2154 case INTEGER_CST:
2155 return wi::eq_p (wi::to_widest (expr), 1);
2156 case COMPLEX_CST:
2157 return (integer_onep (TREE_REALPART (expr))
2158 && integer_zerop (TREE_IMAGPART (expr)));
2159 case VECTOR_CST:
2160 {
2161 unsigned i;
2162 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2163 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
2164 return false;
2165 return true;
2166 }
2167 default:
2168 return false;
2169 }
2170 }
2171
2172 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2173 it contains, or a complex or vector whose subparts are such integers. */
2174
2175 int
2176 integer_all_onesp (const_tree expr)
2177 {
2178 STRIP_NOPS (expr);
2179
2180 if (TREE_CODE (expr) == COMPLEX_CST
2181 && integer_all_onesp (TREE_REALPART (expr))
2182 && integer_all_onesp (TREE_IMAGPART (expr)))
2183 return 1;
2184
2185 else if (TREE_CODE (expr) == VECTOR_CST)
2186 {
2187 unsigned i;
2188 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2189 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
2190 return 0;
2191 return 1;
2192 }
2193
2194 else if (TREE_CODE (expr) != INTEGER_CST)
2195 return 0;
2196
2197 return wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED) == expr;
2198 }
2199
2200 /* Return 1 if EXPR is the integer constant minus one. */
2201
2202 int
2203 integer_minus_onep (const_tree expr)
2204 {
2205 STRIP_NOPS (expr);
2206
2207 if (TREE_CODE (expr) == COMPLEX_CST)
2208 return (integer_all_onesp (TREE_REALPART (expr))
2209 && integer_zerop (TREE_IMAGPART (expr)));
2210 else
2211 return integer_all_onesp (expr);
2212 }
2213
2214 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2215 one bit on). */
2216
2217 int
2218 integer_pow2p (const_tree expr)
2219 {
2220 STRIP_NOPS (expr);
2221
2222 if (TREE_CODE (expr) == COMPLEX_CST
2223 && integer_pow2p (TREE_REALPART (expr))
2224 && integer_zerop (TREE_IMAGPART (expr)))
2225 return 1;
2226
2227 if (TREE_CODE (expr) != INTEGER_CST)
2228 return 0;
2229
2230 return wi::popcount (expr) == 1;
2231 }
2232
2233 /* Return 1 if EXPR is an integer constant other than zero or a
2234 complex constant other than zero. */
2235
2236 int
2237 integer_nonzerop (const_tree expr)
2238 {
2239 STRIP_NOPS (expr);
2240
2241 return ((TREE_CODE (expr) == INTEGER_CST
2242 && !wi::eq_p (expr, 0))
2243 || (TREE_CODE (expr) == COMPLEX_CST
2244 && (integer_nonzerop (TREE_REALPART (expr))
2245 || integer_nonzerop (TREE_IMAGPART (expr)))));
2246 }
2247
2248 /* Return 1 if EXPR is the fixed-point constant zero. */
2249
2250 int
2251 fixed_zerop (const_tree expr)
2252 {
2253 return (TREE_CODE (expr) == FIXED_CST
2254 && TREE_FIXED_CST (expr).data.is_zero ());
2255 }
2256
2257 /* Return the power of two represented by a tree node known to be a
2258 power of two. */
2259
2260 int
2261 tree_log2 (const_tree expr)
2262 {
2263 STRIP_NOPS (expr);
2264
2265 if (TREE_CODE (expr) == COMPLEX_CST)
2266 return tree_log2 (TREE_REALPART (expr));
2267
2268 return wi::exact_log2 (expr);
2269 }
2270
2271 /* Similar, but return the largest integer Y such that 2 ** Y is less
2272 than or equal to EXPR. */
2273
2274 int
2275 tree_floor_log2 (const_tree expr)
2276 {
2277 STRIP_NOPS (expr);
2278
2279 if (TREE_CODE (expr) == COMPLEX_CST)
2280 return tree_log2 (TREE_REALPART (expr));
2281
2282 return wi::floor_log2 (expr);
2283 }
2284
2285 /* Return number of known trailing zero bits in EXPR, or, if the value of
2286 EXPR is known to be zero, the precision of it's type. */
2287
2288 unsigned int
2289 tree_ctz (const_tree expr)
2290 {
2291 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2292 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2293 return 0;
2294
2295 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2296 switch (TREE_CODE (expr))
2297 {
2298 case INTEGER_CST:
2299 ret1 = wi::ctz (expr);
2300 return MIN (ret1, prec);
2301 case SSA_NAME:
2302 ret1 = wi::ctz (get_nonzero_bits (expr));
2303 return MIN (ret1, prec);
2304 case PLUS_EXPR:
2305 case MINUS_EXPR:
2306 case BIT_IOR_EXPR:
2307 case BIT_XOR_EXPR:
2308 case MIN_EXPR:
2309 case MAX_EXPR:
2310 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2311 if (ret1 == 0)
2312 return ret1;
2313 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2314 return MIN (ret1, ret2);
2315 case POINTER_PLUS_EXPR:
2316 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2317 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2318 /* Second operand is sizetype, which could be in theory
2319 wider than pointer's precision. Make sure we never
2320 return more than prec. */
2321 ret2 = MIN (ret2, prec);
2322 return MIN (ret1, ret2);
2323 case BIT_AND_EXPR:
2324 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2325 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2326 return MAX (ret1, ret2);
2327 case MULT_EXPR:
2328 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2329 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2330 return MIN (ret1 + ret2, prec);
2331 case LSHIFT_EXPR:
2332 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2333 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2334 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2335 {
2336 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2337 return MIN (ret1 + ret2, prec);
2338 }
2339 return ret1;
2340 case RSHIFT_EXPR:
2341 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2342 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2343 {
2344 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2345 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2346 if (ret1 > ret2)
2347 return ret1 - ret2;
2348 }
2349 return 0;
2350 case TRUNC_DIV_EXPR:
2351 case CEIL_DIV_EXPR:
2352 case FLOOR_DIV_EXPR:
2353 case ROUND_DIV_EXPR:
2354 case EXACT_DIV_EXPR:
2355 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2356 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2357 {
2358 int l = tree_log2 (TREE_OPERAND (expr, 1));
2359 if (l >= 0)
2360 {
2361 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2362 ret2 = l;
2363 if (ret1 > ret2)
2364 return ret1 - ret2;
2365 }
2366 }
2367 return 0;
2368 CASE_CONVERT:
2369 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2370 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2371 ret1 = prec;
2372 return MIN (ret1, prec);
2373 case SAVE_EXPR:
2374 return tree_ctz (TREE_OPERAND (expr, 0));
2375 case COND_EXPR:
2376 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2377 if (ret1 == 0)
2378 return 0;
2379 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2380 return MIN (ret1, ret2);
2381 case COMPOUND_EXPR:
2382 return tree_ctz (TREE_OPERAND (expr, 1));
2383 case ADDR_EXPR:
2384 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2385 if (ret1 > BITS_PER_UNIT)
2386 {
2387 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2388 return MIN (ret1, prec);
2389 }
2390 return 0;
2391 default:
2392 return 0;
2393 }
2394 }
2395
2396 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2397 decimal float constants, so don't return 1 for them. */
2398
2399 int
2400 real_zerop (const_tree expr)
2401 {
2402 STRIP_NOPS (expr);
2403
2404 switch (TREE_CODE (expr))
2405 {
2406 case REAL_CST:
2407 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
2408 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2409 case COMPLEX_CST:
2410 return real_zerop (TREE_REALPART (expr))
2411 && real_zerop (TREE_IMAGPART (expr));
2412 case VECTOR_CST:
2413 {
2414 unsigned i;
2415 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2416 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2417 return false;
2418 return true;
2419 }
2420 default:
2421 return false;
2422 }
2423 }
2424
2425 /* Return 1 if EXPR is the real constant one in real or complex form.
2426 Trailing zeroes matter for decimal float constants, so don't return
2427 1 for them. */
2428
2429 int
2430 real_onep (const_tree expr)
2431 {
2432 STRIP_NOPS (expr);
2433
2434 switch (TREE_CODE (expr))
2435 {
2436 case REAL_CST:
2437 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2438 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2439 case COMPLEX_CST:
2440 return real_onep (TREE_REALPART (expr))
2441 && real_zerop (TREE_IMAGPART (expr));
2442 case VECTOR_CST:
2443 {
2444 unsigned i;
2445 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2446 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2447 return false;
2448 return true;
2449 }
2450 default:
2451 return false;
2452 }
2453 }
2454
2455 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2456 matter for decimal float constants, so don't return 1 for them. */
2457
2458 int
2459 real_minus_onep (const_tree expr)
2460 {
2461 STRIP_NOPS (expr);
2462
2463 switch (TREE_CODE (expr))
2464 {
2465 case REAL_CST:
2466 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2467 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2468 case COMPLEX_CST:
2469 return real_minus_onep (TREE_REALPART (expr))
2470 && real_zerop (TREE_IMAGPART (expr));
2471 case VECTOR_CST:
2472 {
2473 unsigned i;
2474 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2475 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2476 return false;
2477 return true;
2478 }
2479 default:
2480 return false;
2481 }
2482 }
2483
2484 /* Nonzero if EXP is a constant or a cast of a constant. */
2485
2486 int
2487 really_constant_p (const_tree exp)
2488 {
2489 /* This is not quite the same as STRIP_NOPS. It does more. */
2490 while (CONVERT_EXPR_P (exp)
2491 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2492 exp = TREE_OPERAND (exp, 0);
2493 return TREE_CONSTANT (exp);
2494 }
2495 \f
2496 /* Return first list element whose TREE_VALUE is ELEM.
2497 Return 0 if ELEM is not in LIST. */
2498
2499 tree
2500 value_member (tree elem, tree list)
2501 {
2502 while (list)
2503 {
2504 if (elem == TREE_VALUE (list))
2505 return list;
2506 list = TREE_CHAIN (list);
2507 }
2508 return NULL_TREE;
2509 }
2510
2511 /* Return first list element whose TREE_PURPOSE is ELEM.
2512 Return 0 if ELEM is not in LIST. */
2513
2514 tree
2515 purpose_member (const_tree elem, tree list)
2516 {
2517 while (list)
2518 {
2519 if (elem == TREE_PURPOSE (list))
2520 return list;
2521 list = TREE_CHAIN (list);
2522 }
2523 return NULL_TREE;
2524 }
2525
2526 /* Return true if ELEM is in V. */
2527
2528 bool
2529 vec_member (const_tree elem, vec<tree, va_gc> *v)
2530 {
2531 unsigned ix;
2532 tree t;
2533 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2534 if (elem == t)
2535 return true;
2536 return false;
2537 }
2538
2539 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2540 NULL_TREE. */
2541
2542 tree
2543 chain_index (int idx, tree chain)
2544 {
2545 for (; chain && idx > 0; --idx)
2546 chain = TREE_CHAIN (chain);
2547 return chain;
2548 }
2549
2550 /* Return nonzero if ELEM is part of the chain CHAIN. */
2551
2552 int
2553 chain_member (const_tree elem, const_tree chain)
2554 {
2555 while (chain)
2556 {
2557 if (elem == chain)
2558 return 1;
2559 chain = DECL_CHAIN (chain);
2560 }
2561
2562 return 0;
2563 }
2564
2565 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2566 We expect a null pointer to mark the end of the chain.
2567 This is the Lisp primitive `length'. */
2568
2569 int
2570 list_length (const_tree t)
2571 {
2572 const_tree p = t;
2573 #ifdef ENABLE_TREE_CHECKING
2574 const_tree q = t;
2575 #endif
2576 int len = 0;
2577
2578 while (p)
2579 {
2580 p = TREE_CHAIN (p);
2581 #ifdef ENABLE_TREE_CHECKING
2582 if (len % 2)
2583 q = TREE_CHAIN (q);
2584 gcc_assert (p != q);
2585 #endif
2586 len++;
2587 }
2588
2589 return len;
2590 }
2591
2592 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2593 UNION_TYPE TYPE, or NULL_TREE if none. */
2594
2595 tree
2596 first_field (const_tree type)
2597 {
2598 tree t = TYPE_FIELDS (type);
2599 while (t && TREE_CODE (t) != FIELD_DECL)
2600 t = TREE_CHAIN (t);
2601 return t;
2602 }
2603
2604 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2605 by modifying the last node in chain 1 to point to chain 2.
2606 This is the Lisp primitive `nconc'. */
2607
2608 tree
2609 chainon (tree op1, tree op2)
2610 {
2611 tree t1;
2612
2613 if (!op1)
2614 return op2;
2615 if (!op2)
2616 return op1;
2617
2618 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2619 continue;
2620 TREE_CHAIN (t1) = op2;
2621
2622 #ifdef ENABLE_TREE_CHECKING
2623 {
2624 tree t2;
2625 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2626 gcc_assert (t2 != t1);
2627 }
2628 #endif
2629
2630 return op1;
2631 }
2632
2633 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2634
2635 tree
2636 tree_last (tree chain)
2637 {
2638 tree next;
2639 if (chain)
2640 while ((next = TREE_CHAIN (chain)))
2641 chain = next;
2642 return chain;
2643 }
2644
2645 /* Reverse the order of elements in the chain T,
2646 and return the new head of the chain (old last element). */
2647
2648 tree
2649 nreverse (tree t)
2650 {
2651 tree prev = 0, decl, next;
2652 for (decl = t; decl; decl = next)
2653 {
2654 /* We shouldn't be using this function to reverse BLOCK chains; we
2655 have blocks_nreverse for that. */
2656 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2657 next = TREE_CHAIN (decl);
2658 TREE_CHAIN (decl) = prev;
2659 prev = decl;
2660 }
2661 return prev;
2662 }
2663 \f
2664 /* Return a newly created TREE_LIST node whose
2665 purpose and value fields are PARM and VALUE. */
2666
2667 tree
2668 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2669 {
2670 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2671 TREE_PURPOSE (t) = parm;
2672 TREE_VALUE (t) = value;
2673 return t;
2674 }
2675
2676 /* Build a chain of TREE_LIST nodes from a vector. */
2677
2678 tree
2679 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2680 {
2681 tree ret = NULL_TREE;
2682 tree *pp = &ret;
2683 unsigned int i;
2684 tree t;
2685 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2686 {
2687 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2688 pp = &TREE_CHAIN (*pp);
2689 }
2690 return ret;
2691 }
2692
2693 /* Return a newly created TREE_LIST node whose
2694 purpose and value fields are PURPOSE and VALUE
2695 and whose TREE_CHAIN is CHAIN. */
2696
2697 tree
2698 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2699 {
2700 tree node;
2701
2702 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2703 memset (node, 0, sizeof (struct tree_common));
2704
2705 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2706
2707 TREE_SET_CODE (node, TREE_LIST);
2708 TREE_CHAIN (node) = chain;
2709 TREE_PURPOSE (node) = purpose;
2710 TREE_VALUE (node) = value;
2711 return node;
2712 }
2713
2714 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2715 trees. */
2716
2717 vec<tree, va_gc> *
2718 ctor_to_vec (tree ctor)
2719 {
2720 vec<tree, va_gc> *vec;
2721 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2722 unsigned int ix;
2723 tree val;
2724
2725 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2726 vec->quick_push (val);
2727
2728 return vec;
2729 }
2730 \f
2731 /* Return the size nominally occupied by an object of type TYPE
2732 when it resides in memory. The value is measured in units of bytes,
2733 and its data type is that normally used for type sizes
2734 (which is the first type created by make_signed_type or
2735 make_unsigned_type). */
2736
2737 tree
2738 size_in_bytes (const_tree type)
2739 {
2740 tree t;
2741
2742 if (type == error_mark_node)
2743 return integer_zero_node;
2744
2745 type = TYPE_MAIN_VARIANT (type);
2746 t = TYPE_SIZE_UNIT (type);
2747
2748 if (t == 0)
2749 {
2750 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2751 return size_zero_node;
2752 }
2753
2754 return t;
2755 }
2756
2757 /* Return the size of TYPE (in bytes) as a wide integer
2758 or return -1 if the size can vary or is larger than an integer. */
2759
2760 HOST_WIDE_INT
2761 int_size_in_bytes (const_tree type)
2762 {
2763 tree t;
2764
2765 if (type == error_mark_node)
2766 return 0;
2767
2768 type = TYPE_MAIN_VARIANT (type);
2769 t = TYPE_SIZE_UNIT (type);
2770
2771 if (t && tree_fits_uhwi_p (t))
2772 return TREE_INT_CST_LOW (t);
2773 else
2774 return -1;
2775 }
2776
2777 /* Return the maximum size of TYPE (in bytes) as a wide integer
2778 or return -1 if the size can vary or is larger than an integer. */
2779
2780 HOST_WIDE_INT
2781 max_int_size_in_bytes (const_tree type)
2782 {
2783 HOST_WIDE_INT size = -1;
2784 tree size_tree;
2785
2786 /* If this is an array type, check for a possible MAX_SIZE attached. */
2787
2788 if (TREE_CODE (type) == ARRAY_TYPE)
2789 {
2790 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2791
2792 if (size_tree && tree_fits_uhwi_p (size_tree))
2793 size = tree_to_uhwi (size_tree);
2794 }
2795
2796 /* If we still haven't been able to get a size, see if the language
2797 can compute a maximum size. */
2798
2799 if (size == -1)
2800 {
2801 size_tree = lang_hooks.types.max_size (type);
2802
2803 if (size_tree && tree_fits_uhwi_p (size_tree))
2804 size = tree_to_uhwi (size_tree);
2805 }
2806
2807 return size;
2808 }
2809 \f
2810 /* Return the bit position of FIELD, in bits from the start of the record.
2811 This is a tree of type bitsizetype. */
2812
2813 tree
2814 bit_position (const_tree field)
2815 {
2816 return bit_from_pos (DECL_FIELD_OFFSET (field),
2817 DECL_FIELD_BIT_OFFSET (field));
2818 }
2819
2820 /* Likewise, but return as an integer. It must be representable in
2821 that way (since it could be a signed value, we don't have the
2822 option of returning -1 like int_size_in_byte can. */
2823
2824 HOST_WIDE_INT
2825 int_bit_position (const_tree field)
2826 {
2827 return tree_to_shwi (bit_position (field));
2828 }
2829 \f
2830 /* Return the byte position of FIELD, in bytes from the start of the record.
2831 This is a tree of type sizetype. */
2832
2833 tree
2834 byte_position (const_tree field)
2835 {
2836 return byte_from_pos (DECL_FIELD_OFFSET (field),
2837 DECL_FIELD_BIT_OFFSET (field));
2838 }
2839
2840 /* Likewise, but return as an integer. It must be representable in
2841 that way (since it could be a signed value, we don't have the
2842 option of returning -1 like int_size_in_byte can. */
2843
2844 HOST_WIDE_INT
2845 int_byte_position (const_tree field)
2846 {
2847 return tree_to_shwi (byte_position (field));
2848 }
2849 \f
2850 /* Return the strictest alignment, in bits, that T is known to have. */
2851
2852 unsigned int
2853 expr_align (const_tree t)
2854 {
2855 unsigned int align0, align1;
2856
2857 switch (TREE_CODE (t))
2858 {
2859 CASE_CONVERT: case NON_LVALUE_EXPR:
2860 /* If we have conversions, we know that the alignment of the
2861 object must meet each of the alignments of the types. */
2862 align0 = expr_align (TREE_OPERAND (t, 0));
2863 align1 = TYPE_ALIGN (TREE_TYPE (t));
2864 return MAX (align0, align1);
2865
2866 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2867 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2868 case CLEANUP_POINT_EXPR:
2869 /* These don't change the alignment of an object. */
2870 return expr_align (TREE_OPERAND (t, 0));
2871
2872 case COND_EXPR:
2873 /* The best we can do is say that the alignment is the least aligned
2874 of the two arms. */
2875 align0 = expr_align (TREE_OPERAND (t, 1));
2876 align1 = expr_align (TREE_OPERAND (t, 2));
2877 return MIN (align0, align1);
2878
2879 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2880 meaningfully, it's always 1. */
2881 case LABEL_DECL: case CONST_DECL:
2882 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2883 case FUNCTION_DECL:
2884 gcc_assert (DECL_ALIGN (t) != 0);
2885 return DECL_ALIGN (t);
2886
2887 default:
2888 break;
2889 }
2890
2891 /* Otherwise take the alignment from that of the type. */
2892 return TYPE_ALIGN (TREE_TYPE (t));
2893 }
2894 \f
2895 /* Return, as a tree node, the number of elements for TYPE (which is an
2896 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2897
2898 tree
2899 array_type_nelts (const_tree type)
2900 {
2901 tree index_type, min, max;
2902
2903 /* If they did it with unspecified bounds, then we should have already
2904 given an error about it before we got here. */
2905 if (! TYPE_DOMAIN (type))
2906 return error_mark_node;
2907
2908 index_type = TYPE_DOMAIN (type);
2909 min = TYPE_MIN_VALUE (index_type);
2910 max = TYPE_MAX_VALUE (index_type);
2911
2912 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2913 if (!max)
2914 return error_mark_node;
2915
2916 return (integer_zerop (min)
2917 ? max
2918 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2919 }
2920 \f
2921 /* If arg is static -- a reference to an object in static storage -- then
2922 return the object. This is not the same as the C meaning of `static'.
2923 If arg isn't static, return NULL. */
2924
2925 tree
2926 staticp (tree arg)
2927 {
2928 switch (TREE_CODE (arg))
2929 {
2930 case FUNCTION_DECL:
2931 /* Nested functions are static, even though taking their address will
2932 involve a trampoline as we unnest the nested function and create
2933 the trampoline on the tree level. */
2934 return arg;
2935
2936 case VAR_DECL:
2937 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2938 && ! DECL_THREAD_LOCAL_P (arg)
2939 && ! DECL_DLLIMPORT_P (arg)
2940 ? arg : NULL);
2941
2942 case CONST_DECL:
2943 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2944 ? arg : NULL);
2945
2946 case CONSTRUCTOR:
2947 return TREE_STATIC (arg) ? arg : NULL;
2948
2949 case LABEL_DECL:
2950 case STRING_CST:
2951 return arg;
2952
2953 case COMPONENT_REF:
2954 /* If the thing being referenced is not a field, then it is
2955 something language specific. */
2956 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2957
2958 /* If we are referencing a bitfield, we can't evaluate an
2959 ADDR_EXPR at compile time and so it isn't a constant. */
2960 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2961 return NULL;
2962
2963 return staticp (TREE_OPERAND (arg, 0));
2964
2965 case BIT_FIELD_REF:
2966 return NULL;
2967
2968 case INDIRECT_REF:
2969 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2970
2971 case ARRAY_REF:
2972 case ARRAY_RANGE_REF:
2973 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2974 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2975 return staticp (TREE_OPERAND (arg, 0));
2976 else
2977 return NULL;
2978
2979 case COMPOUND_LITERAL_EXPR:
2980 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2981
2982 default:
2983 return NULL;
2984 }
2985 }
2986
2987 \f
2988
2989
2990 /* Return whether OP is a DECL whose address is function-invariant. */
2991
2992 bool
2993 decl_address_invariant_p (const_tree op)
2994 {
2995 /* The conditions below are slightly less strict than the one in
2996 staticp. */
2997
2998 switch (TREE_CODE (op))
2999 {
3000 case PARM_DECL:
3001 case RESULT_DECL:
3002 case LABEL_DECL:
3003 case FUNCTION_DECL:
3004 return true;
3005
3006 case VAR_DECL:
3007 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3008 || DECL_THREAD_LOCAL_P (op)
3009 || DECL_CONTEXT (op) == current_function_decl
3010 || decl_function_context (op) == current_function_decl)
3011 return true;
3012 break;
3013
3014 case CONST_DECL:
3015 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3016 || decl_function_context (op) == current_function_decl)
3017 return true;
3018 break;
3019
3020 default:
3021 break;
3022 }
3023
3024 return false;
3025 }
3026
3027 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3028
3029 bool
3030 decl_address_ip_invariant_p (const_tree op)
3031 {
3032 /* The conditions below are slightly less strict than the one in
3033 staticp. */
3034
3035 switch (TREE_CODE (op))
3036 {
3037 case LABEL_DECL:
3038 case FUNCTION_DECL:
3039 case STRING_CST:
3040 return true;
3041
3042 case VAR_DECL:
3043 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3044 && !DECL_DLLIMPORT_P (op))
3045 || DECL_THREAD_LOCAL_P (op))
3046 return true;
3047 break;
3048
3049 case CONST_DECL:
3050 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3051 return true;
3052 break;
3053
3054 default:
3055 break;
3056 }
3057
3058 return false;
3059 }
3060
3061
3062 /* Return true if T is function-invariant (internal function, does
3063 not handle arithmetic; that's handled in skip_simple_arithmetic and
3064 tree_invariant_p). */
3065
3066 static bool tree_invariant_p (tree t);
3067
3068 static bool
3069 tree_invariant_p_1 (tree t)
3070 {
3071 tree op;
3072
3073 if (TREE_CONSTANT (t)
3074 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3075 return true;
3076
3077 switch (TREE_CODE (t))
3078 {
3079 case SAVE_EXPR:
3080 return true;
3081
3082 case ADDR_EXPR:
3083 op = TREE_OPERAND (t, 0);
3084 while (handled_component_p (op))
3085 {
3086 switch (TREE_CODE (op))
3087 {
3088 case ARRAY_REF:
3089 case ARRAY_RANGE_REF:
3090 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3091 || TREE_OPERAND (op, 2) != NULL_TREE
3092 || TREE_OPERAND (op, 3) != NULL_TREE)
3093 return false;
3094 break;
3095
3096 case COMPONENT_REF:
3097 if (TREE_OPERAND (op, 2) != NULL_TREE)
3098 return false;
3099 break;
3100
3101 default:;
3102 }
3103 op = TREE_OPERAND (op, 0);
3104 }
3105
3106 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3107
3108 default:
3109 break;
3110 }
3111
3112 return false;
3113 }
3114
3115 /* Return true if T is function-invariant. */
3116
3117 static bool
3118 tree_invariant_p (tree t)
3119 {
3120 tree inner = skip_simple_arithmetic (t);
3121 return tree_invariant_p_1 (inner);
3122 }
3123
3124 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3125 Do this to any expression which may be used in more than one place,
3126 but must be evaluated only once.
3127
3128 Normally, expand_expr would reevaluate the expression each time.
3129 Calling save_expr produces something that is evaluated and recorded
3130 the first time expand_expr is called on it. Subsequent calls to
3131 expand_expr just reuse the recorded value.
3132
3133 The call to expand_expr that generates code that actually computes
3134 the value is the first call *at compile time*. Subsequent calls
3135 *at compile time* generate code to use the saved value.
3136 This produces correct result provided that *at run time* control
3137 always flows through the insns made by the first expand_expr
3138 before reaching the other places where the save_expr was evaluated.
3139 You, the caller of save_expr, must make sure this is so.
3140
3141 Constants, and certain read-only nodes, are returned with no
3142 SAVE_EXPR because that is safe. Expressions containing placeholders
3143 are not touched; see tree.def for an explanation of what these
3144 are used for. */
3145
3146 tree
3147 save_expr (tree expr)
3148 {
3149 tree t = fold (expr);
3150 tree inner;
3151
3152 /* If the tree evaluates to a constant, then we don't want to hide that
3153 fact (i.e. this allows further folding, and direct checks for constants).
3154 However, a read-only object that has side effects cannot be bypassed.
3155 Since it is no problem to reevaluate literals, we just return the
3156 literal node. */
3157 inner = skip_simple_arithmetic (t);
3158 if (TREE_CODE (inner) == ERROR_MARK)
3159 return inner;
3160
3161 if (tree_invariant_p_1 (inner))
3162 return t;
3163
3164 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3165 it means that the size or offset of some field of an object depends on
3166 the value within another field.
3167
3168 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
3169 and some variable since it would then need to be both evaluated once and
3170 evaluated more than once. Front-ends must assure this case cannot
3171 happen by surrounding any such subexpressions in their own SAVE_EXPR
3172 and forcing evaluation at the proper time. */
3173 if (contains_placeholder_p (inner))
3174 return t;
3175
3176 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
3177 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
3178
3179 /* This expression might be placed ahead of a jump to ensure that the
3180 value was computed on both sides of the jump. So make sure it isn't
3181 eliminated as dead. */
3182 TREE_SIDE_EFFECTS (t) = 1;
3183 return t;
3184 }
3185
3186 /* Look inside EXPR into any simple arithmetic operations. Return the
3187 outermost non-arithmetic or non-invariant node. */
3188
3189 tree
3190 skip_simple_arithmetic (tree expr)
3191 {
3192 /* We don't care about whether this can be used as an lvalue in this
3193 context. */
3194 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3195 expr = TREE_OPERAND (expr, 0);
3196
3197 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3198 a constant, it will be more efficient to not make another SAVE_EXPR since
3199 it will allow better simplification and GCSE will be able to merge the
3200 computations if they actually occur. */
3201 while (true)
3202 {
3203 if (UNARY_CLASS_P (expr))
3204 expr = TREE_OPERAND (expr, 0);
3205 else if (BINARY_CLASS_P (expr))
3206 {
3207 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3208 expr = TREE_OPERAND (expr, 0);
3209 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3210 expr = TREE_OPERAND (expr, 1);
3211 else
3212 break;
3213 }
3214 else
3215 break;
3216 }
3217
3218 return expr;
3219 }
3220
3221 /* Look inside EXPR into simple arithmetic operations involving constants.
3222 Return the outermost non-arithmetic or non-constant node. */
3223
3224 tree
3225 skip_simple_constant_arithmetic (tree expr)
3226 {
3227 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3228 expr = TREE_OPERAND (expr, 0);
3229
3230 while (true)
3231 {
3232 if (UNARY_CLASS_P (expr))
3233 expr = TREE_OPERAND (expr, 0);
3234 else if (BINARY_CLASS_P (expr))
3235 {
3236 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3237 expr = TREE_OPERAND (expr, 0);
3238 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3239 expr = TREE_OPERAND (expr, 1);
3240 else
3241 break;
3242 }
3243 else
3244 break;
3245 }
3246
3247 return expr;
3248 }
3249
3250 /* Return which tree structure is used by T. */
3251
3252 enum tree_node_structure_enum
3253 tree_node_structure (const_tree t)
3254 {
3255 const enum tree_code code = TREE_CODE (t);
3256 return tree_node_structure_for_code (code);
3257 }
3258
3259 /* Set various status flags when building a CALL_EXPR object T. */
3260
3261 static void
3262 process_call_operands (tree t)
3263 {
3264 bool side_effects = TREE_SIDE_EFFECTS (t);
3265 bool read_only = false;
3266 int i = call_expr_flags (t);
3267
3268 /* Calls have side-effects, except those to const or pure functions. */
3269 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3270 side_effects = true;
3271 /* Propagate TREE_READONLY of arguments for const functions. */
3272 if (i & ECF_CONST)
3273 read_only = true;
3274
3275 if (!side_effects || read_only)
3276 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3277 {
3278 tree op = TREE_OPERAND (t, i);
3279 if (op && TREE_SIDE_EFFECTS (op))
3280 side_effects = true;
3281 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3282 read_only = false;
3283 }
3284
3285 TREE_SIDE_EFFECTS (t) = side_effects;
3286 TREE_READONLY (t) = read_only;
3287 }
3288 \f
3289 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3290 size or offset that depends on a field within a record. */
3291
3292 bool
3293 contains_placeholder_p (const_tree exp)
3294 {
3295 enum tree_code code;
3296
3297 if (!exp)
3298 return 0;
3299
3300 code = TREE_CODE (exp);
3301 if (code == PLACEHOLDER_EXPR)
3302 return 1;
3303
3304 switch (TREE_CODE_CLASS (code))
3305 {
3306 case tcc_reference:
3307 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3308 position computations since they will be converted into a
3309 WITH_RECORD_EXPR involving the reference, which will assume
3310 here will be valid. */
3311 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3312
3313 case tcc_exceptional:
3314 if (code == TREE_LIST)
3315 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3316 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3317 break;
3318
3319 case tcc_unary:
3320 case tcc_binary:
3321 case tcc_comparison:
3322 case tcc_expression:
3323 switch (code)
3324 {
3325 case COMPOUND_EXPR:
3326 /* Ignoring the first operand isn't quite right, but works best. */
3327 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3328
3329 case COND_EXPR:
3330 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3331 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3332 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3333
3334 case SAVE_EXPR:
3335 /* The save_expr function never wraps anything containing
3336 a PLACEHOLDER_EXPR. */
3337 return 0;
3338
3339 default:
3340 break;
3341 }
3342
3343 switch (TREE_CODE_LENGTH (code))
3344 {
3345 case 1:
3346 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3347 case 2:
3348 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3349 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3350 default:
3351 return 0;
3352 }
3353
3354 case tcc_vl_exp:
3355 switch (code)
3356 {
3357 case CALL_EXPR:
3358 {
3359 const_tree arg;
3360 const_call_expr_arg_iterator iter;
3361 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3362 if (CONTAINS_PLACEHOLDER_P (arg))
3363 return 1;
3364 return 0;
3365 }
3366 default:
3367 return 0;
3368 }
3369
3370 default:
3371 return 0;
3372 }
3373 return 0;
3374 }
3375
3376 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3377 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3378 field positions. */
3379
3380 static bool
3381 type_contains_placeholder_1 (const_tree type)
3382 {
3383 /* If the size contains a placeholder or the parent type (component type in
3384 the case of arrays) type involves a placeholder, this type does. */
3385 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3386 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3387 || (!POINTER_TYPE_P (type)
3388 && TREE_TYPE (type)
3389 && type_contains_placeholder_p (TREE_TYPE (type))))
3390 return true;
3391
3392 /* Now do type-specific checks. Note that the last part of the check above
3393 greatly limits what we have to do below. */
3394 switch (TREE_CODE (type))
3395 {
3396 case VOID_TYPE:
3397 case COMPLEX_TYPE:
3398 case ENUMERAL_TYPE:
3399 case BOOLEAN_TYPE:
3400 case POINTER_TYPE:
3401 case OFFSET_TYPE:
3402 case REFERENCE_TYPE:
3403 case METHOD_TYPE:
3404 case FUNCTION_TYPE:
3405 case VECTOR_TYPE:
3406 case NULLPTR_TYPE:
3407 return false;
3408
3409 case INTEGER_TYPE:
3410 case REAL_TYPE:
3411 case FIXED_POINT_TYPE:
3412 /* Here we just check the bounds. */
3413 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3414 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3415
3416 case ARRAY_TYPE:
3417 /* We have already checked the component type above, so just check the
3418 domain type. */
3419 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3420
3421 case RECORD_TYPE:
3422 case UNION_TYPE:
3423 case QUAL_UNION_TYPE:
3424 {
3425 tree field;
3426
3427 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3428 if (TREE_CODE (field) == FIELD_DECL
3429 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3430 || (TREE_CODE (type) == QUAL_UNION_TYPE
3431 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3432 || type_contains_placeholder_p (TREE_TYPE (field))))
3433 return true;
3434
3435 return false;
3436 }
3437
3438 default:
3439 gcc_unreachable ();
3440 }
3441 }
3442
3443 /* Wrapper around above function used to cache its result. */
3444
3445 bool
3446 type_contains_placeholder_p (tree type)
3447 {
3448 bool result;
3449
3450 /* If the contains_placeholder_bits field has been initialized,
3451 then we know the answer. */
3452 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3453 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3454
3455 /* Indicate that we've seen this type node, and the answer is false.
3456 This is what we want to return if we run into recursion via fields. */
3457 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3458
3459 /* Compute the real value. */
3460 result = type_contains_placeholder_1 (type);
3461
3462 /* Store the real value. */
3463 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3464
3465 return result;
3466 }
3467 \f
3468 /* Push tree EXP onto vector QUEUE if it is not already present. */
3469
3470 static void
3471 push_without_duplicates (tree exp, vec<tree> *queue)
3472 {
3473 unsigned int i;
3474 tree iter;
3475
3476 FOR_EACH_VEC_ELT (*queue, i, iter)
3477 if (simple_cst_equal (iter, exp) == 1)
3478 break;
3479
3480 if (!iter)
3481 queue->safe_push (exp);
3482 }
3483
3484 /* Given a tree EXP, find all occurrences of references to fields
3485 in a PLACEHOLDER_EXPR and place them in vector REFS without
3486 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3487 we assume here that EXP contains only arithmetic expressions
3488 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3489 argument list. */
3490
3491 void
3492 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3493 {
3494 enum tree_code code = TREE_CODE (exp);
3495 tree inner;
3496 int i;
3497
3498 /* We handle TREE_LIST and COMPONENT_REF separately. */
3499 if (code == TREE_LIST)
3500 {
3501 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3502 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3503 }
3504 else if (code == COMPONENT_REF)
3505 {
3506 for (inner = TREE_OPERAND (exp, 0);
3507 REFERENCE_CLASS_P (inner);
3508 inner = TREE_OPERAND (inner, 0))
3509 ;
3510
3511 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3512 push_without_duplicates (exp, refs);
3513 else
3514 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3515 }
3516 else
3517 switch (TREE_CODE_CLASS (code))
3518 {
3519 case tcc_constant:
3520 break;
3521
3522 case tcc_declaration:
3523 /* Variables allocated to static storage can stay. */
3524 if (!TREE_STATIC (exp))
3525 push_without_duplicates (exp, refs);
3526 break;
3527
3528 case tcc_expression:
3529 /* This is the pattern built in ada/make_aligning_type. */
3530 if (code == ADDR_EXPR
3531 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3532 {
3533 push_without_duplicates (exp, refs);
3534 break;
3535 }
3536
3537 /* Fall through... */
3538
3539 case tcc_exceptional:
3540 case tcc_unary:
3541 case tcc_binary:
3542 case tcc_comparison:
3543 case tcc_reference:
3544 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3545 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3546 break;
3547
3548 case tcc_vl_exp:
3549 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3550 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3551 break;
3552
3553 default:
3554 gcc_unreachable ();
3555 }
3556 }
3557
3558 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3559 return a tree with all occurrences of references to F in a
3560 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3561 CONST_DECLs. Note that we assume here that EXP contains only
3562 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3563 occurring only in their argument list. */
3564
3565 tree
3566 substitute_in_expr (tree exp, tree f, tree r)
3567 {
3568 enum tree_code code = TREE_CODE (exp);
3569 tree op0, op1, op2, op3;
3570 tree new_tree;
3571
3572 /* We handle TREE_LIST and COMPONENT_REF separately. */
3573 if (code == TREE_LIST)
3574 {
3575 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3576 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3577 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3578 return exp;
3579
3580 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3581 }
3582 else if (code == COMPONENT_REF)
3583 {
3584 tree inner;
3585
3586 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3587 and it is the right field, replace it with R. */
3588 for (inner = TREE_OPERAND (exp, 0);
3589 REFERENCE_CLASS_P (inner);
3590 inner = TREE_OPERAND (inner, 0))
3591 ;
3592
3593 /* The field. */
3594 op1 = TREE_OPERAND (exp, 1);
3595
3596 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3597 return r;
3598
3599 /* If this expression hasn't been completed let, leave it alone. */
3600 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3601 return exp;
3602
3603 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3604 if (op0 == TREE_OPERAND (exp, 0))
3605 return exp;
3606
3607 new_tree
3608 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3609 }
3610 else
3611 switch (TREE_CODE_CLASS (code))
3612 {
3613 case tcc_constant:
3614 return exp;
3615
3616 case tcc_declaration:
3617 if (exp == f)
3618 return r;
3619 else
3620 return exp;
3621
3622 case tcc_expression:
3623 if (exp == f)
3624 return r;
3625
3626 /* Fall through... */
3627
3628 case tcc_exceptional:
3629 case tcc_unary:
3630 case tcc_binary:
3631 case tcc_comparison:
3632 case tcc_reference:
3633 switch (TREE_CODE_LENGTH (code))
3634 {
3635 case 0:
3636 return exp;
3637
3638 case 1:
3639 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3640 if (op0 == TREE_OPERAND (exp, 0))
3641 return exp;
3642
3643 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3644 break;
3645
3646 case 2:
3647 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3648 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3649
3650 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3651 return exp;
3652
3653 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3654 break;
3655
3656 case 3:
3657 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3658 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3659 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3660
3661 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3662 && op2 == TREE_OPERAND (exp, 2))
3663 return exp;
3664
3665 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3666 break;
3667
3668 case 4:
3669 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3670 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3671 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3672 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3673
3674 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3675 && op2 == TREE_OPERAND (exp, 2)
3676 && op3 == TREE_OPERAND (exp, 3))
3677 return exp;
3678
3679 new_tree
3680 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3681 break;
3682
3683 default:
3684 gcc_unreachable ();
3685 }
3686 break;
3687
3688 case tcc_vl_exp:
3689 {
3690 int i;
3691
3692 new_tree = NULL_TREE;
3693
3694 /* If we are trying to replace F with a constant, inline back
3695 functions which do nothing else than computing a value from
3696 the arguments they are passed. This makes it possible to
3697 fold partially or entirely the replacement expression. */
3698 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3699 {
3700 tree t = maybe_inline_call_in_expr (exp);
3701 if (t)
3702 return SUBSTITUTE_IN_EXPR (t, f, r);
3703 }
3704
3705 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3706 {
3707 tree op = TREE_OPERAND (exp, i);
3708 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3709 if (new_op != op)
3710 {
3711 if (!new_tree)
3712 new_tree = copy_node (exp);
3713 TREE_OPERAND (new_tree, i) = new_op;
3714 }
3715 }
3716
3717 if (new_tree)
3718 {
3719 new_tree = fold (new_tree);
3720 if (TREE_CODE (new_tree) == CALL_EXPR)
3721 process_call_operands (new_tree);
3722 }
3723 else
3724 return exp;
3725 }
3726 break;
3727
3728 default:
3729 gcc_unreachable ();
3730 }
3731
3732 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3733
3734 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3735 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3736
3737 return new_tree;
3738 }
3739
3740 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3741 for it within OBJ, a tree that is an object or a chain of references. */
3742
3743 tree
3744 substitute_placeholder_in_expr (tree exp, tree obj)
3745 {
3746 enum tree_code code = TREE_CODE (exp);
3747 tree op0, op1, op2, op3;
3748 tree new_tree;
3749
3750 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3751 in the chain of OBJ. */
3752 if (code == PLACEHOLDER_EXPR)
3753 {
3754 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3755 tree elt;
3756
3757 for (elt = obj; elt != 0;
3758 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3759 || TREE_CODE (elt) == COND_EXPR)
3760 ? TREE_OPERAND (elt, 1)
3761 : (REFERENCE_CLASS_P (elt)
3762 || UNARY_CLASS_P (elt)
3763 || BINARY_CLASS_P (elt)
3764 || VL_EXP_CLASS_P (elt)
3765 || EXPRESSION_CLASS_P (elt))
3766 ? TREE_OPERAND (elt, 0) : 0))
3767 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3768 return elt;
3769
3770 for (elt = obj; elt != 0;
3771 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3772 || TREE_CODE (elt) == COND_EXPR)
3773 ? TREE_OPERAND (elt, 1)
3774 : (REFERENCE_CLASS_P (elt)
3775 || UNARY_CLASS_P (elt)
3776 || BINARY_CLASS_P (elt)
3777 || VL_EXP_CLASS_P (elt)
3778 || EXPRESSION_CLASS_P (elt))
3779 ? TREE_OPERAND (elt, 0) : 0))
3780 if (POINTER_TYPE_P (TREE_TYPE (elt))
3781 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3782 == need_type))
3783 return fold_build1 (INDIRECT_REF, need_type, elt);
3784
3785 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3786 survives until RTL generation, there will be an error. */
3787 return exp;
3788 }
3789
3790 /* TREE_LIST is special because we need to look at TREE_VALUE
3791 and TREE_CHAIN, not TREE_OPERANDS. */
3792 else if (code == TREE_LIST)
3793 {
3794 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3795 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3796 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3797 return exp;
3798
3799 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3800 }
3801 else
3802 switch (TREE_CODE_CLASS (code))
3803 {
3804 case tcc_constant:
3805 case tcc_declaration:
3806 return exp;
3807
3808 case tcc_exceptional:
3809 case tcc_unary:
3810 case tcc_binary:
3811 case tcc_comparison:
3812 case tcc_expression:
3813 case tcc_reference:
3814 case tcc_statement:
3815 switch (TREE_CODE_LENGTH (code))
3816 {
3817 case 0:
3818 return exp;
3819
3820 case 1:
3821 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3822 if (op0 == TREE_OPERAND (exp, 0))
3823 return exp;
3824
3825 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3826 break;
3827
3828 case 2:
3829 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3830 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3831
3832 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3833 return exp;
3834
3835 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3836 break;
3837
3838 case 3:
3839 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3840 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3841 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3842
3843 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3844 && op2 == TREE_OPERAND (exp, 2))
3845 return exp;
3846
3847 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3848 break;
3849
3850 case 4:
3851 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3852 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3853 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3854 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3855
3856 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3857 && op2 == TREE_OPERAND (exp, 2)
3858 && op3 == TREE_OPERAND (exp, 3))
3859 return exp;
3860
3861 new_tree
3862 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3863 break;
3864
3865 default:
3866 gcc_unreachable ();
3867 }
3868 break;
3869
3870 case tcc_vl_exp:
3871 {
3872 int i;
3873
3874 new_tree = NULL_TREE;
3875
3876 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3877 {
3878 tree op = TREE_OPERAND (exp, i);
3879 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3880 if (new_op != op)
3881 {
3882 if (!new_tree)
3883 new_tree = copy_node (exp);
3884 TREE_OPERAND (new_tree, i) = new_op;
3885 }
3886 }
3887
3888 if (new_tree)
3889 {
3890 new_tree = fold (new_tree);
3891 if (TREE_CODE (new_tree) == CALL_EXPR)
3892 process_call_operands (new_tree);
3893 }
3894 else
3895 return exp;
3896 }
3897 break;
3898
3899 default:
3900 gcc_unreachable ();
3901 }
3902
3903 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3904
3905 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3906 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3907
3908 return new_tree;
3909 }
3910 \f
3911
3912 /* Subroutine of stabilize_reference; this is called for subtrees of
3913 references. Any expression with side-effects must be put in a SAVE_EXPR
3914 to ensure that it is only evaluated once.
3915
3916 We don't put SAVE_EXPR nodes around everything, because assigning very
3917 simple expressions to temporaries causes us to miss good opportunities
3918 for optimizations. Among other things, the opportunity to fold in the
3919 addition of a constant into an addressing mode often gets lost, e.g.
3920 "y[i+1] += x;". In general, we take the approach that we should not make
3921 an assignment unless we are forced into it - i.e., that any non-side effect
3922 operator should be allowed, and that cse should take care of coalescing
3923 multiple utterances of the same expression should that prove fruitful. */
3924
3925 static tree
3926 stabilize_reference_1 (tree e)
3927 {
3928 tree result;
3929 enum tree_code code = TREE_CODE (e);
3930
3931 /* We cannot ignore const expressions because it might be a reference
3932 to a const array but whose index contains side-effects. But we can
3933 ignore things that are actual constant or that already have been
3934 handled by this function. */
3935
3936 if (tree_invariant_p (e))
3937 return e;
3938
3939 switch (TREE_CODE_CLASS (code))
3940 {
3941 case tcc_exceptional:
3942 case tcc_type:
3943 case tcc_declaration:
3944 case tcc_comparison:
3945 case tcc_statement:
3946 case tcc_expression:
3947 case tcc_reference:
3948 case tcc_vl_exp:
3949 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3950 so that it will only be evaluated once. */
3951 /* The reference (r) and comparison (<) classes could be handled as
3952 below, but it is generally faster to only evaluate them once. */
3953 if (TREE_SIDE_EFFECTS (e))
3954 return save_expr (e);
3955 return e;
3956
3957 case tcc_constant:
3958 /* Constants need no processing. In fact, we should never reach
3959 here. */
3960 return e;
3961
3962 case tcc_binary:
3963 /* Division is slow and tends to be compiled with jumps,
3964 especially the division by powers of 2 that is often
3965 found inside of an array reference. So do it just once. */
3966 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3967 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3968 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3969 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3970 return save_expr (e);
3971 /* Recursively stabilize each operand. */
3972 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3973 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3974 break;
3975
3976 case tcc_unary:
3977 /* Recursively stabilize each operand. */
3978 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3979 break;
3980
3981 default:
3982 gcc_unreachable ();
3983 }
3984
3985 TREE_TYPE (result) = TREE_TYPE (e);
3986 TREE_READONLY (result) = TREE_READONLY (e);
3987 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3988 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3989
3990 return result;
3991 }
3992
3993 /* Stabilize a reference so that we can use it any number of times
3994 without causing its operands to be evaluated more than once.
3995 Returns the stabilized reference. This works by means of save_expr,
3996 so see the caveats in the comments about save_expr.
3997
3998 Also allows conversion expressions whose operands are references.
3999 Any other kind of expression is returned unchanged. */
4000
4001 tree
4002 stabilize_reference (tree ref)
4003 {
4004 tree result;
4005 enum tree_code code = TREE_CODE (ref);
4006
4007 switch (code)
4008 {
4009 case VAR_DECL:
4010 case PARM_DECL:
4011 case RESULT_DECL:
4012 /* No action is needed in this case. */
4013 return ref;
4014
4015 CASE_CONVERT:
4016 case FLOAT_EXPR:
4017 case FIX_TRUNC_EXPR:
4018 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4019 break;
4020
4021 case INDIRECT_REF:
4022 result = build_nt (INDIRECT_REF,
4023 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4024 break;
4025
4026 case COMPONENT_REF:
4027 result = build_nt (COMPONENT_REF,
4028 stabilize_reference (TREE_OPERAND (ref, 0)),
4029 TREE_OPERAND (ref, 1), NULL_TREE);
4030 break;
4031
4032 case BIT_FIELD_REF:
4033 result = build_nt (BIT_FIELD_REF,
4034 stabilize_reference (TREE_OPERAND (ref, 0)),
4035 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4036 break;
4037
4038 case ARRAY_REF:
4039 result = build_nt (ARRAY_REF,
4040 stabilize_reference (TREE_OPERAND (ref, 0)),
4041 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4042 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4043 break;
4044
4045 case ARRAY_RANGE_REF:
4046 result = build_nt (ARRAY_RANGE_REF,
4047 stabilize_reference (TREE_OPERAND (ref, 0)),
4048 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4049 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4050 break;
4051
4052 case COMPOUND_EXPR:
4053 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4054 it wouldn't be ignored. This matters when dealing with
4055 volatiles. */
4056 return stabilize_reference_1 (ref);
4057
4058 /* If arg isn't a kind of lvalue we recognize, make no change.
4059 Caller should recognize the error for an invalid lvalue. */
4060 default:
4061 return ref;
4062
4063 case ERROR_MARK:
4064 return error_mark_node;
4065 }
4066
4067 TREE_TYPE (result) = TREE_TYPE (ref);
4068 TREE_READONLY (result) = TREE_READONLY (ref);
4069 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4070 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4071
4072 return result;
4073 }
4074 \f
4075 /* Low-level constructors for expressions. */
4076
4077 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4078 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4079
4080 void
4081 recompute_tree_invariant_for_addr_expr (tree t)
4082 {
4083 tree node;
4084 bool tc = true, se = false;
4085
4086 /* We started out assuming this address is both invariant and constant, but
4087 does not have side effects. Now go down any handled components and see if
4088 any of them involve offsets that are either non-constant or non-invariant.
4089 Also check for side-effects.
4090
4091 ??? Note that this code makes no attempt to deal with the case where
4092 taking the address of something causes a copy due to misalignment. */
4093
4094 #define UPDATE_FLAGS(NODE) \
4095 do { tree _node = (NODE); \
4096 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4097 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4098
4099 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4100 node = TREE_OPERAND (node, 0))
4101 {
4102 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4103 array reference (probably made temporarily by the G++ front end),
4104 so ignore all the operands. */
4105 if ((TREE_CODE (node) == ARRAY_REF
4106 || TREE_CODE (node) == ARRAY_RANGE_REF)
4107 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4108 {
4109 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4110 if (TREE_OPERAND (node, 2))
4111 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4112 if (TREE_OPERAND (node, 3))
4113 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4114 }
4115 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4116 FIELD_DECL, apparently. The G++ front end can put something else
4117 there, at least temporarily. */
4118 else if (TREE_CODE (node) == COMPONENT_REF
4119 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4120 {
4121 if (TREE_OPERAND (node, 2))
4122 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4123 }
4124 }
4125
4126 node = lang_hooks.expr_to_decl (node, &tc, &se);
4127
4128 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4129 the address, since &(*a)->b is a form of addition. If it's a constant, the
4130 address is constant too. If it's a decl, its address is constant if the
4131 decl is static. Everything else is not constant and, furthermore,
4132 taking the address of a volatile variable is not volatile. */
4133 if (TREE_CODE (node) == INDIRECT_REF
4134 || TREE_CODE (node) == MEM_REF)
4135 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4136 else if (CONSTANT_CLASS_P (node))
4137 ;
4138 else if (DECL_P (node))
4139 tc &= (staticp (node) != NULL_TREE);
4140 else
4141 {
4142 tc = false;
4143 se |= TREE_SIDE_EFFECTS (node);
4144 }
4145
4146
4147 TREE_CONSTANT (t) = tc;
4148 TREE_SIDE_EFFECTS (t) = se;
4149 #undef UPDATE_FLAGS
4150 }
4151
4152 /* Build an expression of code CODE, data type TYPE, and operands as
4153 specified. Expressions and reference nodes can be created this way.
4154 Constants, decls, types and misc nodes cannot be.
4155
4156 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4157 enough for all extant tree codes. */
4158
4159 tree
4160 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
4161 {
4162 tree t;
4163
4164 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4165
4166 t = make_node_stat (code PASS_MEM_STAT);
4167 TREE_TYPE (t) = tt;
4168
4169 return t;
4170 }
4171
4172 tree
4173 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4174 {
4175 int length = sizeof (struct tree_exp);
4176 tree t;
4177
4178 record_node_allocation_statistics (code, length);
4179
4180 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4181
4182 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4183
4184 memset (t, 0, sizeof (struct tree_common));
4185
4186 TREE_SET_CODE (t, code);
4187
4188 TREE_TYPE (t) = type;
4189 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4190 TREE_OPERAND (t, 0) = node;
4191 if (node && !TYPE_P (node))
4192 {
4193 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4194 TREE_READONLY (t) = TREE_READONLY (node);
4195 }
4196
4197 if (TREE_CODE_CLASS (code) == tcc_statement)
4198 TREE_SIDE_EFFECTS (t) = 1;
4199 else switch (code)
4200 {
4201 case VA_ARG_EXPR:
4202 /* All of these have side-effects, no matter what their
4203 operands are. */
4204 TREE_SIDE_EFFECTS (t) = 1;
4205 TREE_READONLY (t) = 0;
4206 break;
4207
4208 case INDIRECT_REF:
4209 /* Whether a dereference is readonly has nothing to do with whether
4210 its operand is readonly. */
4211 TREE_READONLY (t) = 0;
4212 break;
4213
4214 case ADDR_EXPR:
4215 if (node)
4216 recompute_tree_invariant_for_addr_expr (t);
4217 break;
4218
4219 default:
4220 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4221 && node && !TYPE_P (node)
4222 && TREE_CONSTANT (node))
4223 TREE_CONSTANT (t) = 1;
4224 if (TREE_CODE_CLASS (code) == tcc_reference
4225 && node && TREE_THIS_VOLATILE (node))
4226 TREE_THIS_VOLATILE (t) = 1;
4227 break;
4228 }
4229
4230 return t;
4231 }
4232
4233 #define PROCESS_ARG(N) \
4234 do { \
4235 TREE_OPERAND (t, N) = arg##N; \
4236 if (arg##N &&!TYPE_P (arg##N)) \
4237 { \
4238 if (TREE_SIDE_EFFECTS (arg##N)) \
4239 side_effects = 1; \
4240 if (!TREE_READONLY (arg##N) \
4241 && !CONSTANT_CLASS_P (arg##N)) \
4242 (void) (read_only = 0); \
4243 if (!TREE_CONSTANT (arg##N)) \
4244 (void) (constant = 0); \
4245 } \
4246 } while (0)
4247
4248 tree
4249 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4250 {
4251 bool constant, read_only, side_effects;
4252 tree t;
4253
4254 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4255
4256 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4257 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4258 /* When sizetype precision doesn't match that of pointers
4259 we need to be able to build explicit extensions or truncations
4260 of the offset argument. */
4261 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4262 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4263 && TREE_CODE (arg1) == INTEGER_CST);
4264
4265 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4266 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4267 && ptrofftype_p (TREE_TYPE (arg1)));
4268
4269 t = make_node_stat (code PASS_MEM_STAT);
4270 TREE_TYPE (t) = tt;
4271
4272 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4273 result based on those same flags for the arguments. But if the
4274 arguments aren't really even `tree' expressions, we shouldn't be trying
4275 to do this. */
4276
4277 /* Expressions without side effects may be constant if their
4278 arguments are as well. */
4279 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4280 || TREE_CODE_CLASS (code) == tcc_binary);
4281 read_only = 1;
4282 side_effects = TREE_SIDE_EFFECTS (t);
4283
4284 PROCESS_ARG (0);
4285 PROCESS_ARG (1);
4286
4287 TREE_READONLY (t) = read_only;
4288 TREE_CONSTANT (t) = constant;
4289 TREE_SIDE_EFFECTS (t) = side_effects;
4290 TREE_THIS_VOLATILE (t)
4291 = (TREE_CODE_CLASS (code) == tcc_reference
4292 && arg0 && TREE_THIS_VOLATILE (arg0));
4293
4294 return t;
4295 }
4296
4297
4298 tree
4299 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4300 tree arg2 MEM_STAT_DECL)
4301 {
4302 bool constant, read_only, side_effects;
4303 tree t;
4304
4305 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4306 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4307
4308 t = make_node_stat (code PASS_MEM_STAT);
4309 TREE_TYPE (t) = tt;
4310
4311 read_only = 1;
4312
4313 /* As a special exception, if COND_EXPR has NULL branches, we
4314 assume that it is a gimple statement and always consider
4315 it to have side effects. */
4316 if (code == COND_EXPR
4317 && tt == void_type_node
4318 && arg1 == NULL_TREE
4319 && arg2 == NULL_TREE)
4320 side_effects = true;
4321 else
4322 side_effects = TREE_SIDE_EFFECTS (t);
4323
4324 PROCESS_ARG (0);
4325 PROCESS_ARG (1);
4326 PROCESS_ARG (2);
4327
4328 if (code == COND_EXPR)
4329 TREE_READONLY (t) = read_only;
4330
4331 TREE_SIDE_EFFECTS (t) = side_effects;
4332 TREE_THIS_VOLATILE (t)
4333 = (TREE_CODE_CLASS (code) == tcc_reference
4334 && arg0 && TREE_THIS_VOLATILE (arg0));
4335
4336 return t;
4337 }
4338
4339 tree
4340 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4341 tree arg2, tree arg3 MEM_STAT_DECL)
4342 {
4343 bool constant, read_only, side_effects;
4344 tree t;
4345
4346 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4347
4348 t = make_node_stat (code PASS_MEM_STAT);
4349 TREE_TYPE (t) = tt;
4350
4351 side_effects = TREE_SIDE_EFFECTS (t);
4352
4353 PROCESS_ARG (0);
4354 PROCESS_ARG (1);
4355 PROCESS_ARG (2);
4356 PROCESS_ARG (3);
4357
4358 TREE_SIDE_EFFECTS (t) = side_effects;
4359 TREE_THIS_VOLATILE (t)
4360 = (TREE_CODE_CLASS (code) == tcc_reference
4361 && arg0 && TREE_THIS_VOLATILE (arg0));
4362
4363 return t;
4364 }
4365
4366 tree
4367 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4368 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4369 {
4370 bool constant, read_only, side_effects;
4371 tree t;
4372
4373 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4374
4375 t = make_node_stat (code PASS_MEM_STAT);
4376 TREE_TYPE (t) = tt;
4377
4378 side_effects = TREE_SIDE_EFFECTS (t);
4379
4380 PROCESS_ARG (0);
4381 PROCESS_ARG (1);
4382 PROCESS_ARG (2);
4383 PROCESS_ARG (3);
4384 PROCESS_ARG (4);
4385
4386 TREE_SIDE_EFFECTS (t) = side_effects;
4387 TREE_THIS_VOLATILE (t)
4388 = (TREE_CODE_CLASS (code) == tcc_reference
4389 && arg0 && TREE_THIS_VOLATILE (arg0));
4390
4391 return t;
4392 }
4393
4394 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4395 on the pointer PTR. */
4396
4397 tree
4398 build_simple_mem_ref_loc (location_t loc, tree ptr)
4399 {
4400 HOST_WIDE_INT offset = 0;
4401 tree ptype = TREE_TYPE (ptr);
4402 tree tem;
4403 /* For convenience allow addresses that collapse to a simple base
4404 and offset. */
4405 if (TREE_CODE (ptr) == ADDR_EXPR
4406 && (handled_component_p (TREE_OPERAND (ptr, 0))
4407 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4408 {
4409 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4410 gcc_assert (ptr);
4411 ptr = build_fold_addr_expr (ptr);
4412 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4413 }
4414 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4415 ptr, build_int_cst (ptype, offset));
4416 SET_EXPR_LOCATION (tem, loc);
4417 return tem;
4418 }
4419
4420 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4421
4422 offset_int
4423 mem_ref_offset (const_tree t)
4424 {
4425 return offset_int::from (TREE_OPERAND (t, 1), SIGNED);
4426 }
4427
4428 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4429 offsetted by OFFSET units. */
4430
4431 tree
4432 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4433 {
4434 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4435 build_fold_addr_expr (base),
4436 build_int_cst (ptr_type_node, offset));
4437 tree addr = build1 (ADDR_EXPR, type, ref);
4438 recompute_tree_invariant_for_addr_expr (addr);
4439 return addr;
4440 }
4441
4442 /* Similar except don't specify the TREE_TYPE
4443 and leave the TREE_SIDE_EFFECTS as 0.
4444 It is permissible for arguments to be null,
4445 or even garbage if their values do not matter. */
4446
4447 tree
4448 build_nt (enum tree_code code, ...)
4449 {
4450 tree t;
4451 int length;
4452 int i;
4453 va_list p;
4454
4455 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4456
4457 va_start (p, code);
4458
4459 t = make_node (code);
4460 length = TREE_CODE_LENGTH (code);
4461
4462 for (i = 0; i < length; i++)
4463 TREE_OPERAND (t, i) = va_arg (p, tree);
4464
4465 va_end (p);
4466 return t;
4467 }
4468
4469 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4470 tree vec. */
4471
4472 tree
4473 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4474 {
4475 tree ret, t;
4476 unsigned int ix;
4477
4478 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4479 CALL_EXPR_FN (ret) = fn;
4480 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4481 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4482 CALL_EXPR_ARG (ret, ix) = t;
4483 return ret;
4484 }
4485 \f
4486 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4487 We do NOT enter this node in any sort of symbol table.
4488
4489 LOC is the location of the decl.
4490
4491 layout_decl is used to set up the decl's storage layout.
4492 Other slots are initialized to 0 or null pointers. */
4493
4494 tree
4495 build_decl_stat (location_t loc, enum tree_code code, tree name,
4496 tree type MEM_STAT_DECL)
4497 {
4498 tree t;
4499
4500 t = make_node_stat (code PASS_MEM_STAT);
4501 DECL_SOURCE_LOCATION (t) = loc;
4502
4503 /* if (type == error_mark_node)
4504 type = integer_type_node; */
4505 /* That is not done, deliberately, so that having error_mark_node
4506 as the type can suppress useless errors in the use of this variable. */
4507
4508 DECL_NAME (t) = name;
4509 TREE_TYPE (t) = type;
4510
4511 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4512 layout_decl (t, 0);
4513
4514 return t;
4515 }
4516
4517 /* Builds and returns function declaration with NAME and TYPE. */
4518
4519 tree
4520 build_fn_decl (const char *name, tree type)
4521 {
4522 tree id = get_identifier (name);
4523 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4524
4525 DECL_EXTERNAL (decl) = 1;
4526 TREE_PUBLIC (decl) = 1;
4527 DECL_ARTIFICIAL (decl) = 1;
4528 TREE_NOTHROW (decl) = 1;
4529
4530 return decl;
4531 }
4532
4533 vec<tree, va_gc> *all_translation_units;
4534
4535 /* Builds a new translation-unit decl with name NAME, queues it in the
4536 global list of translation-unit decls and returns it. */
4537
4538 tree
4539 build_translation_unit_decl (tree name)
4540 {
4541 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4542 name, NULL_TREE);
4543 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4544 vec_safe_push (all_translation_units, tu);
4545 return tu;
4546 }
4547
4548 \f
4549 /* BLOCK nodes are used to represent the structure of binding contours
4550 and declarations, once those contours have been exited and their contents
4551 compiled. This information is used for outputting debugging info. */
4552
4553 tree
4554 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4555 {
4556 tree block = make_node (BLOCK);
4557
4558 BLOCK_VARS (block) = vars;
4559 BLOCK_SUBBLOCKS (block) = subblocks;
4560 BLOCK_SUPERCONTEXT (block) = supercontext;
4561 BLOCK_CHAIN (block) = chain;
4562 return block;
4563 }
4564
4565 \f
4566 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4567
4568 LOC is the location to use in tree T. */
4569
4570 void
4571 protected_set_expr_location (tree t, location_t loc)
4572 {
4573 if (t && CAN_HAVE_LOCATION_P (t))
4574 SET_EXPR_LOCATION (t, loc);
4575 }
4576 \f
4577 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4578 is ATTRIBUTE. */
4579
4580 tree
4581 build_decl_attribute_variant (tree ddecl, tree attribute)
4582 {
4583 DECL_ATTRIBUTES (ddecl) = attribute;
4584 return ddecl;
4585 }
4586
4587 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4588 is ATTRIBUTE and its qualifiers are QUALS.
4589
4590 Record such modified types already made so we don't make duplicates. */
4591
4592 tree
4593 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4594 {
4595 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4596 {
4597 inchash::hash hstate;
4598 tree ntype;
4599 int i;
4600 tree t;
4601 enum tree_code code = TREE_CODE (ttype);
4602
4603 /* Building a distinct copy of a tagged type is inappropriate; it
4604 causes breakage in code that expects there to be a one-to-one
4605 relationship between a struct and its fields.
4606 build_duplicate_type is another solution (as used in
4607 handle_transparent_union_attribute), but that doesn't play well
4608 with the stronger C++ type identity model. */
4609 if (TREE_CODE (ttype) == RECORD_TYPE
4610 || TREE_CODE (ttype) == UNION_TYPE
4611 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4612 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4613 {
4614 warning (OPT_Wattributes,
4615 "ignoring attributes applied to %qT after definition",
4616 TYPE_MAIN_VARIANT (ttype));
4617 return build_qualified_type (ttype, quals);
4618 }
4619
4620 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4621 ntype = build_distinct_type_copy (ttype);
4622
4623 TYPE_ATTRIBUTES (ntype) = attribute;
4624
4625 hstate.add_int (code);
4626 if (TREE_TYPE (ntype))
4627 hstate.add_object (TYPE_HASH (TREE_TYPE (ntype)));
4628 attribute_hash_list (attribute, hstate);
4629
4630 switch (TREE_CODE (ntype))
4631 {
4632 case FUNCTION_TYPE:
4633 type_hash_list (TYPE_ARG_TYPES (ntype), hstate);
4634 break;
4635 case ARRAY_TYPE:
4636 if (TYPE_DOMAIN (ntype))
4637 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (ntype)));
4638 break;
4639 case INTEGER_TYPE:
4640 t = TYPE_MAX_VALUE (ntype);
4641 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
4642 hstate.add_object (TREE_INT_CST_ELT (t, i));
4643 break;
4644 case REAL_TYPE:
4645 case FIXED_POINT_TYPE:
4646 {
4647 unsigned int precision = TYPE_PRECISION (ntype);
4648 hstate.add_object (precision);
4649 }
4650 break;
4651 default:
4652 break;
4653 }
4654
4655 ntype = type_hash_canon (hstate.end(), ntype);
4656
4657 /* If the target-dependent attributes make NTYPE different from
4658 its canonical type, we will need to use structural equality
4659 checks for this type. */
4660 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4661 || !comp_type_attributes (ntype, ttype))
4662 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4663 else if (TYPE_CANONICAL (ntype) == ntype)
4664 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4665
4666 ttype = build_qualified_type (ntype, quals);
4667 }
4668 else if (TYPE_QUALS (ttype) != quals)
4669 ttype = build_qualified_type (ttype, quals);
4670
4671 return ttype;
4672 }
4673
4674 /* Check if "omp declare simd" attribute arguments, CLAUSES1 and CLAUSES2, are
4675 the same. */
4676
4677 static bool
4678 omp_declare_simd_clauses_equal (tree clauses1, tree clauses2)
4679 {
4680 tree cl1, cl2;
4681 for (cl1 = clauses1, cl2 = clauses2;
4682 cl1 && cl2;
4683 cl1 = OMP_CLAUSE_CHAIN (cl1), cl2 = OMP_CLAUSE_CHAIN (cl2))
4684 {
4685 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_CODE (cl2))
4686 return false;
4687 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_SIMDLEN)
4688 {
4689 if (simple_cst_equal (OMP_CLAUSE_DECL (cl1),
4690 OMP_CLAUSE_DECL (cl2)) != 1)
4691 return false;
4692 }
4693 switch (OMP_CLAUSE_CODE (cl1))
4694 {
4695 case OMP_CLAUSE_ALIGNED:
4696 if (simple_cst_equal (OMP_CLAUSE_ALIGNED_ALIGNMENT (cl1),
4697 OMP_CLAUSE_ALIGNED_ALIGNMENT (cl2)) != 1)
4698 return false;
4699 break;
4700 case OMP_CLAUSE_LINEAR:
4701 if (simple_cst_equal (OMP_CLAUSE_LINEAR_STEP (cl1),
4702 OMP_CLAUSE_LINEAR_STEP (cl2)) != 1)
4703 return false;
4704 break;
4705 case OMP_CLAUSE_SIMDLEN:
4706 if (simple_cst_equal (OMP_CLAUSE_SIMDLEN_EXPR (cl1),
4707 OMP_CLAUSE_SIMDLEN_EXPR (cl2)) != 1)
4708 return false;
4709 default:
4710 break;
4711 }
4712 }
4713 return true;
4714 }
4715
4716 /* Compare two constructor-element-type constants. Return 1 if the lists
4717 are known to be equal; otherwise return 0. */
4718
4719 static bool
4720 simple_cst_list_equal (const_tree l1, const_tree l2)
4721 {
4722 while (l1 != NULL_TREE && l2 != NULL_TREE)
4723 {
4724 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4725 return false;
4726
4727 l1 = TREE_CHAIN (l1);
4728 l2 = TREE_CHAIN (l2);
4729 }
4730
4731 return l1 == l2;
4732 }
4733
4734 /* Compare two attributes for their value identity. Return true if the
4735 attribute values are known to be equal; otherwise return false.
4736 */
4737
4738 static bool
4739 attribute_value_equal (const_tree attr1, const_tree attr2)
4740 {
4741 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4742 return true;
4743
4744 if (TREE_VALUE (attr1) != NULL_TREE
4745 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4746 && TREE_VALUE (attr2) != NULL
4747 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4748 return (simple_cst_list_equal (TREE_VALUE (attr1),
4749 TREE_VALUE (attr2)) == 1);
4750
4751 if ((flag_openmp || flag_openmp_simd)
4752 && TREE_VALUE (attr1) && TREE_VALUE (attr2)
4753 && TREE_CODE (TREE_VALUE (attr1)) == OMP_CLAUSE
4754 && TREE_CODE (TREE_VALUE (attr2)) == OMP_CLAUSE)
4755 return omp_declare_simd_clauses_equal (TREE_VALUE (attr1),
4756 TREE_VALUE (attr2));
4757
4758 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4759 }
4760
4761 /* Return 0 if the attributes for two types are incompatible, 1 if they
4762 are compatible, and 2 if they are nearly compatible (which causes a
4763 warning to be generated). */
4764 int
4765 comp_type_attributes (const_tree type1, const_tree type2)
4766 {
4767 const_tree a1 = TYPE_ATTRIBUTES (type1);
4768 const_tree a2 = TYPE_ATTRIBUTES (type2);
4769 const_tree a;
4770
4771 if (a1 == a2)
4772 return 1;
4773 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4774 {
4775 const struct attribute_spec *as;
4776 const_tree attr;
4777
4778 as = lookup_attribute_spec (get_attribute_name (a));
4779 if (!as || as->affects_type_identity == false)
4780 continue;
4781
4782 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4783 if (!attr || !attribute_value_equal (a, attr))
4784 break;
4785 }
4786 if (!a)
4787 {
4788 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4789 {
4790 const struct attribute_spec *as;
4791
4792 as = lookup_attribute_spec (get_attribute_name (a));
4793 if (!as || as->affects_type_identity == false)
4794 continue;
4795
4796 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4797 break;
4798 /* We don't need to compare trees again, as we did this
4799 already in first loop. */
4800 }
4801 /* All types - affecting identity - are equal, so
4802 there is no need to call target hook for comparison. */
4803 if (!a)
4804 return 1;
4805 }
4806 /* As some type combinations - like default calling-convention - might
4807 be compatible, we have to call the target hook to get the final result. */
4808 return targetm.comp_type_attributes (type1, type2);
4809 }
4810
4811 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4812 is ATTRIBUTE.
4813
4814 Record such modified types already made so we don't make duplicates. */
4815
4816 tree
4817 build_type_attribute_variant (tree ttype, tree attribute)
4818 {
4819 return build_type_attribute_qual_variant (ttype, attribute,
4820 TYPE_QUALS (ttype));
4821 }
4822
4823
4824 /* Reset the expression *EXPR_P, a size or position.
4825
4826 ??? We could reset all non-constant sizes or positions. But it's cheap
4827 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4828
4829 We need to reset self-referential sizes or positions because they cannot
4830 be gimplified and thus can contain a CALL_EXPR after the gimplification
4831 is finished, which will run afoul of LTO streaming. And they need to be
4832 reset to something essentially dummy but not constant, so as to preserve
4833 the properties of the object they are attached to. */
4834
4835 static inline void
4836 free_lang_data_in_one_sizepos (tree *expr_p)
4837 {
4838 tree expr = *expr_p;
4839 if (CONTAINS_PLACEHOLDER_P (expr))
4840 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4841 }
4842
4843
4844 /* Reset all the fields in a binfo node BINFO. We only keep
4845 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4846
4847 static void
4848 free_lang_data_in_binfo (tree binfo)
4849 {
4850 unsigned i;
4851 tree t;
4852
4853 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4854
4855 BINFO_VIRTUALS (binfo) = NULL_TREE;
4856 BINFO_BASE_ACCESSES (binfo) = NULL;
4857 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4858 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4859
4860 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4861 free_lang_data_in_binfo (t);
4862 }
4863
4864
4865 /* Reset all language specific information still present in TYPE. */
4866
4867 static void
4868 free_lang_data_in_type (tree type)
4869 {
4870 gcc_assert (TYPE_P (type));
4871
4872 /* Give the FE a chance to remove its own data first. */
4873 lang_hooks.free_lang_data (type);
4874
4875 TREE_LANG_FLAG_0 (type) = 0;
4876 TREE_LANG_FLAG_1 (type) = 0;
4877 TREE_LANG_FLAG_2 (type) = 0;
4878 TREE_LANG_FLAG_3 (type) = 0;
4879 TREE_LANG_FLAG_4 (type) = 0;
4880 TREE_LANG_FLAG_5 (type) = 0;
4881 TREE_LANG_FLAG_6 (type) = 0;
4882
4883 if (TREE_CODE (type) == FUNCTION_TYPE)
4884 {
4885 /* Remove the const and volatile qualifiers from arguments. The
4886 C++ front end removes them, but the C front end does not,
4887 leading to false ODR violation errors when merging two
4888 instances of the same function signature compiled by
4889 different front ends. */
4890 tree p;
4891
4892 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4893 {
4894 tree arg_type = TREE_VALUE (p);
4895
4896 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4897 {
4898 int quals = TYPE_QUALS (arg_type)
4899 & ~TYPE_QUAL_CONST
4900 & ~TYPE_QUAL_VOLATILE;
4901 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4902 free_lang_data_in_type (TREE_VALUE (p));
4903 }
4904 }
4905 }
4906
4907 /* Remove members that are not actually FIELD_DECLs from the field
4908 list of an aggregate. These occur in C++. */
4909 if (RECORD_OR_UNION_TYPE_P (type))
4910 {
4911 tree prev, member;
4912
4913 /* Note that TYPE_FIELDS can be shared across distinct
4914 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4915 to be removed, we cannot set its TREE_CHAIN to NULL.
4916 Otherwise, we would not be able to find all the other fields
4917 in the other instances of this TREE_TYPE.
4918
4919 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4920 prev = NULL_TREE;
4921 member = TYPE_FIELDS (type);
4922 while (member)
4923 {
4924 if (TREE_CODE (member) == FIELD_DECL
4925 || TREE_CODE (member) == TYPE_DECL)
4926 {
4927 if (prev)
4928 TREE_CHAIN (prev) = member;
4929 else
4930 TYPE_FIELDS (type) = member;
4931 prev = member;
4932 }
4933
4934 member = TREE_CHAIN (member);
4935 }
4936
4937 if (prev)
4938 TREE_CHAIN (prev) = NULL_TREE;
4939 else
4940 TYPE_FIELDS (type) = NULL_TREE;
4941
4942 TYPE_METHODS (type) = NULL_TREE;
4943 if (TYPE_BINFO (type))
4944 free_lang_data_in_binfo (TYPE_BINFO (type));
4945 }
4946 else
4947 {
4948 /* For non-aggregate types, clear out the language slot (which
4949 overloads TYPE_BINFO). */
4950 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4951
4952 if (INTEGRAL_TYPE_P (type)
4953 || SCALAR_FLOAT_TYPE_P (type)
4954 || FIXED_POINT_TYPE_P (type))
4955 {
4956 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4957 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4958 }
4959 }
4960
4961 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4962 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4963
4964 if (TYPE_CONTEXT (type)
4965 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4966 {
4967 tree ctx = TYPE_CONTEXT (type);
4968 do
4969 {
4970 ctx = BLOCK_SUPERCONTEXT (ctx);
4971 }
4972 while (ctx && TREE_CODE (ctx) == BLOCK);
4973 TYPE_CONTEXT (type) = ctx;
4974 }
4975 }
4976
4977
4978 /* Return true if DECL may need an assembler name to be set. */
4979
4980 static inline bool
4981 need_assembler_name_p (tree decl)
4982 {
4983 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4984 if (TREE_CODE (decl) != FUNCTION_DECL
4985 && TREE_CODE (decl) != VAR_DECL)
4986 return false;
4987
4988 /* If DECL already has its assembler name set, it does not need a
4989 new one. */
4990 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4991 || DECL_ASSEMBLER_NAME_SET_P (decl))
4992 return false;
4993
4994 /* Abstract decls do not need an assembler name. */
4995 if (DECL_ABSTRACT (decl))
4996 return false;
4997
4998 /* For VAR_DECLs, only static, public and external symbols need an
4999 assembler name. */
5000 if (TREE_CODE (decl) == VAR_DECL
5001 && !TREE_STATIC (decl)
5002 && !TREE_PUBLIC (decl)
5003 && !DECL_EXTERNAL (decl))
5004 return false;
5005
5006 if (TREE_CODE (decl) == FUNCTION_DECL)
5007 {
5008 /* Do not set assembler name on builtins. Allow RTL expansion to
5009 decide whether to expand inline or via a regular call. */
5010 if (DECL_BUILT_IN (decl)
5011 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5012 return false;
5013
5014 /* Functions represented in the callgraph need an assembler name. */
5015 if (cgraph_node::get (decl) != NULL)
5016 return true;
5017
5018 /* Unused and not public functions don't need an assembler name. */
5019 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5020 return false;
5021 }
5022
5023 return true;
5024 }
5025
5026
5027 /* Reset all language specific information still present in symbol
5028 DECL. */
5029
5030 static void
5031 free_lang_data_in_decl (tree decl)
5032 {
5033 gcc_assert (DECL_P (decl));
5034
5035 /* Early dumping of DECLs before we lose language data. */
5036 if (debug_info_level > DINFO_LEVEL_NONE)
5037 dwarf2out_early_decl (decl);
5038
5039 /* Give the FE a chance to remove its own data first. */
5040 lang_hooks.free_lang_data (decl);
5041
5042 TREE_LANG_FLAG_0 (decl) = 0;
5043 TREE_LANG_FLAG_1 (decl) = 0;
5044 TREE_LANG_FLAG_2 (decl) = 0;
5045 TREE_LANG_FLAG_3 (decl) = 0;
5046 TREE_LANG_FLAG_4 (decl) = 0;
5047 TREE_LANG_FLAG_5 (decl) = 0;
5048 TREE_LANG_FLAG_6 (decl) = 0;
5049
5050 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5051 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5052 if (TREE_CODE (decl) == FIELD_DECL)
5053 {
5054 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5055 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5056 DECL_QUALIFIER (decl) = NULL_TREE;
5057 }
5058
5059 if (TREE_CODE (decl) == FUNCTION_DECL)
5060 {
5061 struct cgraph_node *node;
5062 if (!(node = cgraph_node::get (decl))
5063 || (!node->definition && !node->clones))
5064 {
5065 if (node)
5066 node->release_body ();
5067 else
5068 {
5069 release_function_body (decl);
5070 DECL_ARGUMENTS (decl) = NULL;
5071 DECL_RESULT (decl) = NULL;
5072 DECL_INITIAL (decl) = error_mark_node;
5073 }
5074 }
5075 if (gimple_has_body_p (decl))
5076 {
5077 tree t;
5078
5079 /* If DECL has a gimple body, then the context for its
5080 arguments must be DECL. Otherwise, it doesn't really
5081 matter, as we will not be emitting any code for DECL. In
5082 general, there may be other instances of DECL created by
5083 the front end and since PARM_DECLs are generally shared,
5084 their DECL_CONTEXT changes as the replicas of DECL are
5085 created. The only time where DECL_CONTEXT is important
5086 is for the FUNCTION_DECLs that have a gimple body (since
5087 the PARM_DECL will be used in the function's body). */
5088 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5089 DECL_CONTEXT (t) = decl;
5090 }
5091
5092 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5093 At this point, it is not needed anymore. */
5094 DECL_SAVED_TREE (decl) = NULL_TREE;
5095
5096 /* Clear the abstract origin if it refers to a method. Otherwise
5097 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
5098 origin will not be output correctly. */
5099 if (DECL_ABSTRACT_ORIGIN (decl)
5100 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5101 && RECORD_OR_UNION_TYPE_P
5102 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5103 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5104
5105 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5106 DECL_VINDEX referring to itself into a vtable slot number as it
5107 should. Happens with functions that are copied and then forgotten
5108 about. Just clear it, it won't matter anymore. */
5109 if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5110 DECL_VINDEX (decl) = NULL_TREE;
5111 }
5112 else if (TREE_CODE (decl) == VAR_DECL)
5113 {
5114 if ((DECL_EXTERNAL (decl)
5115 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5116 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5117 DECL_INITIAL (decl) = NULL_TREE;
5118 }
5119 else if (TREE_CODE (decl) == TYPE_DECL
5120 || TREE_CODE (decl) == FIELD_DECL)
5121 DECL_INITIAL (decl) = NULL_TREE;
5122 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5123 && DECL_INITIAL (decl)
5124 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5125 {
5126 /* Strip builtins from the translation-unit BLOCK. We still have targets
5127 without builtin_decl_explicit support and also builtins are shared
5128 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5129 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5130 while (*nextp)
5131 {
5132 tree var = *nextp;
5133 if (TREE_CODE (var) == FUNCTION_DECL
5134 && DECL_BUILT_IN (var))
5135 *nextp = TREE_CHAIN (var);
5136 else
5137 nextp = &TREE_CHAIN (var);
5138 }
5139 }
5140 }
5141
5142
5143 /* Data used when collecting DECLs and TYPEs for language data removal. */
5144
5145 struct free_lang_data_d
5146 {
5147 /* Worklist to avoid excessive recursion. */
5148 vec<tree> worklist;
5149
5150 /* Set of traversed objects. Used to avoid duplicate visits. */
5151 hash_set<tree> *pset;
5152
5153 /* Array of symbols to process with free_lang_data_in_decl. */
5154 vec<tree> decls;
5155
5156 /* Array of types to process with free_lang_data_in_type. */
5157 vec<tree> types;
5158 };
5159
5160
5161 /* Save all language fields needed to generate proper debug information
5162 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
5163
5164 static void
5165 save_debug_info_for_decl (tree t)
5166 {
5167 /*struct saved_debug_info_d *sdi;*/
5168
5169 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5170
5171 /* FIXME. Partial implementation for saving debug info removed. */
5172 }
5173
5174
5175 /* Save all language fields needed to generate proper debug information
5176 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5177
5178 static void
5179 save_debug_info_for_type (tree t)
5180 {
5181 /*struct saved_debug_info_d *sdi;*/
5182
5183 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5184
5185 /* FIXME. Partial implementation for saving debug info removed. */
5186 }
5187
5188
5189 /* Add type or decl T to one of the list of tree nodes that need their
5190 language data removed. The lists are held inside FLD. */
5191
5192 static void
5193 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5194 {
5195 if (DECL_P (t))
5196 {
5197 fld->decls.safe_push (t);
5198 if (debug_info_level > DINFO_LEVEL_TERSE)
5199 save_debug_info_for_decl (t);
5200 }
5201 else if (TYPE_P (t))
5202 {
5203 fld->types.safe_push (t);
5204 if (debug_info_level > DINFO_LEVEL_TERSE)
5205 save_debug_info_for_type (t);
5206 }
5207 else
5208 gcc_unreachable ();
5209 }
5210
5211 /* Push tree node T into FLD->WORKLIST. */
5212
5213 static inline void
5214 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5215 {
5216 if (t && !is_lang_specific (t) && !fld->pset->contains (t))
5217 fld->worklist.safe_push ((t));
5218 }
5219
5220
5221 /* Operand callback helper for free_lang_data_in_node. *TP is the
5222 subtree operand being considered. */
5223
5224 static tree
5225 find_decls_types_r (tree *tp, int *ws, void *data)
5226 {
5227 tree t = *tp;
5228 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5229
5230 if (TREE_CODE (t) == TREE_LIST)
5231 return NULL_TREE;
5232
5233 /* Language specific nodes will be removed, so there is no need
5234 to gather anything under them. */
5235 if (is_lang_specific (t))
5236 {
5237 *ws = 0;
5238 return NULL_TREE;
5239 }
5240
5241 if (DECL_P (t))
5242 {
5243 /* Note that walk_tree does not traverse every possible field in
5244 decls, so we have to do our own traversals here. */
5245 add_tree_to_fld_list (t, fld);
5246
5247 fld_worklist_push (DECL_NAME (t), fld);
5248 fld_worklist_push (DECL_CONTEXT (t), fld);
5249 fld_worklist_push (DECL_SIZE (t), fld);
5250 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5251
5252 /* We are going to remove everything under DECL_INITIAL for
5253 TYPE_DECLs. No point walking them. */
5254 if (TREE_CODE (t) != TYPE_DECL)
5255 fld_worklist_push (DECL_INITIAL (t), fld);
5256
5257 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5258 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5259
5260 if (TREE_CODE (t) == FUNCTION_DECL)
5261 {
5262 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5263 fld_worklist_push (DECL_RESULT (t), fld);
5264 }
5265 else if (TREE_CODE (t) == TYPE_DECL)
5266 {
5267 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5268 }
5269 else if (TREE_CODE (t) == FIELD_DECL)
5270 {
5271 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5272 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5273 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5274 fld_worklist_push (DECL_FCONTEXT (t), fld);
5275 }
5276
5277 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
5278 && DECL_HAS_VALUE_EXPR_P (t))
5279 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5280
5281 if (TREE_CODE (t) != FIELD_DECL
5282 && TREE_CODE (t) != TYPE_DECL)
5283 fld_worklist_push (TREE_CHAIN (t), fld);
5284 *ws = 0;
5285 }
5286 else if (TYPE_P (t))
5287 {
5288 /* Note that walk_tree does not traverse every possible field in
5289 types, so we have to do our own traversals here. */
5290 add_tree_to_fld_list (t, fld);
5291
5292 if (!RECORD_OR_UNION_TYPE_P (t))
5293 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5294 fld_worklist_push (TYPE_SIZE (t), fld);
5295 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5296 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5297 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5298 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5299 fld_worklist_push (TYPE_NAME (t), fld);
5300 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5301 them and thus do not and want not to reach unused pointer types
5302 this way. */
5303 if (!POINTER_TYPE_P (t))
5304 fld_worklist_push (TYPE_MINVAL (t), fld);
5305 if (!RECORD_OR_UNION_TYPE_P (t))
5306 fld_worklist_push (TYPE_MAXVAL (t), fld);
5307 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5308 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5309 do not and want not to reach unused variants this way. */
5310 if (TYPE_CONTEXT (t))
5311 {
5312 tree ctx = TYPE_CONTEXT (t);
5313 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5314 So push that instead. */
5315 while (ctx && TREE_CODE (ctx) == BLOCK)
5316 ctx = BLOCK_SUPERCONTEXT (ctx);
5317 fld_worklist_push (ctx, fld);
5318 }
5319 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5320 and want not to reach unused types this way. */
5321
5322 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5323 {
5324 unsigned i;
5325 tree tem;
5326 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5327 fld_worklist_push (TREE_TYPE (tem), fld);
5328 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
5329 if (tem
5330 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
5331 && TREE_CODE (tem) == TREE_LIST)
5332 do
5333 {
5334 fld_worklist_push (TREE_VALUE (tem), fld);
5335 tem = TREE_CHAIN (tem);
5336 }
5337 while (tem);
5338 }
5339 if (RECORD_OR_UNION_TYPE_P (t))
5340 {
5341 tree tem;
5342 /* Push all TYPE_FIELDS - there can be interleaving interesting
5343 and non-interesting things. */
5344 tem = TYPE_FIELDS (t);
5345 while (tem)
5346 {
5347 if (TREE_CODE (tem) == FIELD_DECL
5348 || TREE_CODE (tem) == TYPE_DECL)
5349 fld_worklist_push (tem, fld);
5350 tem = TREE_CHAIN (tem);
5351 }
5352 }
5353
5354 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5355 *ws = 0;
5356 }
5357 else if (TREE_CODE (t) == BLOCK)
5358 {
5359 tree tem;
5360 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5361 fld_worklist_push (tem, fld);
5362 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5363 fld_worklist_push (tem, fld);
5364 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5365 }
5366
5367 if (TREE_CODE (t) != IDENTIFIER_NODE
5368 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5369 fld_worklist_push (TREE_TYPE (t), fld);
5370
5371 return NULL_TREE;
5372 }
5373
5374
5375 /* Find decls and types in T. */
5376
5377 static void
5378 find_decls_types (tree t, struct free_lang_data_d *fld)
5379 {
5380 while (1)
5381 {
5382 if (!fld->pset->contains (t))
5383 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5384 if (fld->worklist.is_empty ())
5385 break;
5386 t = fld->worklist.pop ();
5387 }
5388 }
5389
5390 /* Translate all the types in LIST with the corresponding runtime
5391 types. */
5392
5393 static tree
5394 get_eh_types_for_runtime (tree list)
5395 {
5396 tree head, prev;
5397
5398 if (list == NULL_TREE)
5399 return NULL_TREE;
5400
5401 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5402 prev = head;
5403 list = TREE_CHAIN (list);
5404 while (list)
5405 {
5406 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5407 TREE_CHAIN (prev) = n;
5408 prev = TREE_CHAIN (prev);
5409 list = TREE_CHAIN (list);
5410 }
5411
5412 return head;
5413 }
5414
5415
5416 /* Find decls and types referenced in EH region R and store them in
5417 FLD->DECLS and FLD->TYPES. */
5418
5419 static void
5420 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5421 {
5422 switch (r->type)
5423 {
5424 case ERT_CLEANUP:
5425 break;
5426
5427 case ERT_TRY:
5428 {
5429 eh_catch c;
5430
5431 /* The types referenced in each catch must first be changed to the
5432 EH types used at runtime. This removes references to FE types
5433 in the region. */
5434 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5435 {
5436 c->type_list = get_eh_types_for_runtime (c->type_list);
5437 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5438 }
5439 }
5440 break;
5441
5442 case ERT_ALLOWED_EXCEPTIONS:
5443 r->u.allowed.type_list
5444 = get_eh_types_for_runtime (r->u.allowed.type_list);
5445 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5446 break;
5447
5448 case ERT_MUST_NOT_THROW:
5449 walk_tree (&r->u.must_not_throw.failure_decl,
5450 find_decls_types_r, fld, fld->pset);
5451 break;
5452 }
5453 }
5454
5455
5456 /* Find decls and types referenced in cgraph node N and store them in
5457 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5458 look for *every* kind of DECL and TYPE node reachable from N,
5459 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5460 NAMESPACE_DECLs, etc). */
5461
5462 static void
5463 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5464 {
5465 basic_block bb;
5466 struct function *fn;
5467 unsigned ix;
5468 tree t;
5469
5470 find_decls_types (n->decl, fld);
5471
5472 if (!gimple_has_body_p (n->decl))
5473 return;
5474
5475 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5476
5477 fn = DECL_STRUCT_FUNCTION (n->decl);
5478
5479 /* Traverse locals. */
5480 FOR_EACH_LOCAL_DECL (fn, ix, t)
5481 find_decls_types (t, fld);
5482
5483 /* Traverse EH regions in FN. */
5484 {
5485 eh_region r;
5486 FOR_ALL_EH_REGION_FN (r, fn)
5487 find_decls_types_in_eh_region (r, fld);
5488 }
5489
5490 /* Traverse every statement in FN. */
5491 FOR_EACH_BB_FN (bb, fn)
5492 {
5493 gimple_stmt_iterator si;
5494 unsigned i;
5495
5496 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5497 {
5498 gimple phi = gsi_stmt (si);
5499
5500 for (i = 0; i < gimple_phi_num_args (phi); i++)
5501 {
5502 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5503 find_decls_types (*arg_p, fld);
5504 }
5505 }
5506
5507 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5508 {
5509 gimple stmt = gsi_stmt (si);
5510
5511 if (is_gimple_call (stmt))
5512 find_decls_types (gimple_call_fntype (stmt), fld);
5513
5514 for (i = 0; i < gimple_num_ops (stmt); i++)
5515 {
5516 tree arg = gimple_op (stmt, i);
5517 find_decls_types (arg, fld);
5518 }
5519 }
5520 }
5521 }
5522
5523
5524 /* Find decls and types referenced in varpool node N and store them in
5525 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5526 look for *every* kind of DECL and TYPE node reachable from N,
5527 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5528 NAMESPACE_DECLs, etc). */
5529
5530 static void
5531 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5532 {
5533 find_decls_types (v->decl, fld);
5534 }
5535
5536 /* If T needs an assembler name, have one created for it. */
5537
5538 void
5539 assign_assembler_name_if_neeeded (tree t)
5540 {
5541 if (need_assembler_name_p (t))
5542 {
5543 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5544 diagnostics that use input_location to show locus
5545 information. The problem here is that, at this point,
5546 input_location is generally anchored to the end of the file
5547 (since the parser is long gone), so we don't have a good
5548 position to pin it to.
5549
5550 To alleviate this problem, this uses the location of T's
5551 declaration. Examples of this are
5552 testsuite/g++.dg/template/cond2.C and
5553 testsuite/g++.dg/template/pr35240.C. */
5554 location_t saved_location = input_location;
5555 input_location = DECL_SOURCE_LOCATION (t);
5556
5557 decl_assembler_name (t);
5558
5559 input_location = saved_location;
5560 }
5561 }
5562
5563
5564 /* Free language specific information for every operand and expression
5565 in every node of the call graph. This process operates in three stages:
5566
5567 1- Every callgraph node and varpool node is traversed looking for
5568 decls and types embedded in them. This is a more exhaustive
5569 search than that done by find_referenced_vars, because it will
5570 also collect individual fields, decls embedded in types, etc.
5571
5572 2- All the decls found are sent to free_lang_data_in_decl.
5573
5574 3- All the types found are sent to free_lang_data_in_type.
5575
5576 The ordering between decls and types is important because
5577 free_lang_data_in_decl sets assembler names, which includes
5578 mangling. So types cannot be freed up until assembler names have
5579 been set up. */
5580
5581 static void
5582 free_lang_data_in_cgraph (void)
5583 {
5584 struct cgraph_node *n;
5585 varpool_node *v;
5586 struct free_lang_data_d fld;
5587 tree t;
5588 unsigned i;
5589 alias_pair *p;
5590
5591 /* Initialize sets and arrays to store referenced decls and types. */
5592 fld.pset = new hash_set<tree>;
5593 fld.worklist.create (0);
5594 fld.decls.create (100);
5595 fld.types.create (100);
5596
5597 /* Find decls and types in the body of every function in the callgraph. */
5598 FOR_EACH_FUNCTION (n)
5599 find_decls_types_in_node (n, &fld);
5600
5601 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5602 find_decls_types (p->decl, &fld);
5603
5604 /* Find decls and types in every varpool symbol. */
5605 FOR_EACH_VARIABLE (v)
5606 find_decls_types_in_var (v, &fld);
5607
5608 /* Set the assembler name on every decl found. We need to do this
5609 now because free_lang_data_in_decl will invalidate data needed
5610 for mangling. This breaks mangling on interdependent decls. */
5611 FOR_EACH_VEC_ELT (fld.decls, i, t)
5612 assign_assembler_name_if_neeeded (t);
5613
5614 /* Traverse every decl found freeing its language data. */
5615 FOR_EACH_VEC_ELT (fld.decls, i, t)
5616 free_lang_data_in_decl (t);
5617
5618 /* Traverse every type found freeing its language data. */
5619 FOR_EACH_VEC_ELT (fld.types, i, t)
5620 free_lang_data_in_type (t);
5621
5622 delete fld.pset;
5623 fld.worklist.release ();
5624 fld.decls.release ();
5625 fld.types.release ();
5626 }
5627
5628
5629 /* Free resources that are used by FE but are not needed once they are done. */
5630
5631 static unsigned
5632 free_lang_data (void)
5633 {
5634 unsigned i;
5635
5636 /* If we are the LTO frontend we have freed lang-specific data already. */
5637 if (in_lto_p)
5638 return 0;
5639
5640 /* Allocate and assign alias sets to the standard integer types
5641 while the slots are still in the way the frontends generated them. */
5642 for (i = 0; i < itk_none; ++i)
5643 if (integer_types[i])
5644 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5645
5646 /* Traverse the IL resetting language specific information for
5647 operands, expressions, etc. */
5648 free_lang_data_in_cgraph ();
5649
5650 /* Create gimple variants for common types. */
5651 ptrdiff_type_node = integer_type_node;
5652 fileptr_type_node = ptr_type_node;
5653
5654 /* Reset some langhooks. Do not reset types_compatible_p, it may
5655 still be used indirectly via the get_alias_set langhook. */
5656 lang_hooks.dwarf_name = lhd_dwarf_name;
5657 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5658 /* We do not want the default decl_assembler_name implementation,
5659 rather if we have fixed everything we want a wrapper around it
5660 asserting that all non-local symbols already got their assembler
5661 name and only produce assembler names for local symbols. Or rather
5662 make sure we never call decl_assembler_name on local symbols and
5663 devise a separate, middle-end private scheme for it. */
5664
5665 /* Reset diagnostic machinery. */
5666 tree_diagnostics_defaults (global_dc);
5667
5668 return 0;
5669 }
5670
5671
5672 namespace {
5673
5674 const pass_data pass_data_ipa_free_lang_data =
5675 {
5676 SIMPLE_IPA_PASS, /* type */
5677 "*free_lang_data", /* name */
5678 OPTGROUP_NONE, /* optinfo_flags */
5679 TV_IPA_FREE_LANG_DATA, /* tv_id */
5680 0, /* properties_required */
5681 0, /* properties_provided */
5682 0, /* properties_destroyed */
5683 0, /* todo_flags_start */
5684 0, /* todo_flags_finish */
5685 };
5686
5687 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5688 {
5689 public:
5690 pass_ipa_free_lang_data (gcc::context *ctxt)
5691 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5692 {}
5693
5694 /* opt_pass methods: */
5695 virtual unsigned int execute (function *) { return free_lang_data (); }
5696
5697 }; // class pass_ipa_free_lang_data
5698
5699 } // anon namespace
5700
5701 simple_ipa_opt_pass *
5702 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5703 {
5704 return new pass_ipa_free_lang_data (ctxt);
5705 }
5706
5707 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5708 ATTR_NAME. Also used internally by remove_attribute(). */
5709 bool
5710 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5711 {
5712 size_t ident_len = IDENTIFIER_LENGTH (ident);
5713
5714 if (ident_len == attr_len)
5715 {
5716 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5717 return true;
5718 }
5719 else if (ident_len == attr_len + 4)
5720 {
5721 /* There is the possibility that ATTR is 'text' and IDENT is
5722 '__text__'. */
5723 const char *p = IDENTIFIER_POINTER (ident);
5724 if (p[0] == '_' && p[1] == '_'
5725 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5726 && strncmp (attr_name, p + 2, attr_len) == 0)
5727 return true;
5728 }
5729
5730 return false;
5731 }
5732
5733 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5734 of ATTR_NAME, and LIST is not NULL_TREE. */
5735 tree
5736 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5737 {
5738 while (list)
5739 {
5740 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5741
5742 if (ident_len == attr_len)
5743 {
5744 if (!strcmp (attr_name,
5745 IDENTIFIER_POINTER (get_attribute_name (list))))
5746 break;
5747 }
5748 /* TODO: If we made sure that attributes were stored in the
5749 canonical form without '__...__' (ie, as in 'text' as opposed
5750 to '__text__') then we could avoid the following case. */
5751 else if (ident_len == attr_len + 4)
5752 {
5753 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5754 if (p[0] == '_' && p[1] == '_'
5755 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5756 && strncmp (attr_name, p + 2, attr_len) == 0)
5757 break;
5758 }
5759 list = TREE_CHAIN (list);
5760 }
5761
5762 return list;
5763 }
5764
5765 /* Given an attribute name ATTR_NAME and a list of attributes LIST,
5766 return a pointer to the attribute's list first element if the attribute
5767 starts with ATTR_NAME. ATTR_NAME must be in the form 'text' (not
5768 '__text__'). */
5769
5770 tree
5771 private_lookup_attribute_by_prefix (const char *attr_name, size_t attr_len,
5772 tree list)
5773 {
5774 while (list)
5775 {
5776 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5777
5778 if (attr_len > ident_len)
5779 {
5780 list = TREE_CHAIN (list);
5781 continue;
5782 }
5783
5784 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5785
5786 if (strncmp (attr_name, p, attr_len) == 0)
5787 break;
5788
5789 /* TODO: If we made sure that attributes were stored in the
5790 canonical form without '__...__' (ie, as in 'text' as opposed
5791 to '__text__') then we could avoid the following case. */
5792 if (p[0] == '_' && p[1] == '_' &&
5793 strncmp (attr_name, p + 2, attr_len) == 0)
5794 break;
5795
5796 list = TREE_CHAIN (list);
5797 }
5798
5799 return list;
5800 }
5801
5802
5803 /* A variant of lookup_attribute() that can be used with an identifier
5804 as the first argument, and where the identifier can be either
5805 'text' or '__text__'.
5806
5807 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5808 return a pointer to the attribute's list element if the attribute
5809 is part of the list, or NULL_TREE if not found. If the attribute
5810 appears more than once, this only returns the first occurrence; the
5811 TREE_CHAIN of the return value should be passed back in if further
5812 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5813 can be in the form 'text' or '__text__'. */
5814 static tree
5815 lookup_ident_attribute (tree attr_identifier, tree list)
5816 {
5817 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5818
5819 while (list)
5820 {
5821 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5822 == IDENTIFIER_NODE);
5823
5824 /* Identifiers can be compared directly for equality. */
5825 if (attr_identifier == get_attribute_name (list))
5826 break;
5827
5828 /* If they are not equal, they may still be one in the form
5829 'text' while the other one is in the form '__text__'. TODO:
5830 If we were storing attributes in normalized 'text' form, then
5831 this could all go away and we could take full advantage of
5832 the fact that we're comparing identifiers. :-) */
5833 {
5834 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5835 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5836
5837 if (ident_len == attr_len + 4)
5838 {
5839 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5840 const char *q = IDENTIFIER_POINTER (attr_identifier);
5841 if (p[0] == '_' && p[1] == '_'
5842 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5843 && strncmp (q, p + 2, attr_len) == 0)
5844 break;
5845 }
5846 else if (ident_len + 4 == attr_len)
5847 {
5848 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5849 const char *q = IDENTIFIER_POINTER (attr_identifier);
5850 if (q[0] == '_' && q[1] == '_'
5851 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5852 && strncmp (q + 2, p, ident_len) == 0)
5853 break;
5854 }
5855 }
5856 list = TREE_CHAIN (list);
5857 }
5858
5859 return list;
5860 }
5861
5862 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5863 modified list. */
5864
5865 tree
5866 remove_attribute (const char *attr_name, tree list)
5867 {
5868 tree *p;
5869 size_t attr_len = strlen (attr_name);
5870
5871 gcc_checking_assert (attr_name[0] != '_');
5872
5873 for (p = &list; *p; )
5874 {
5875 tree l = *p;
5876 /* TODO: If we were storing attributes in normalized form, here
5877 we could use a simple strcmp(). */
5878 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5879 *p = TREE_CHAIN (l);
5880 else
5881 p = &TREE_CHAIN (l);
5882 }
5883
5884 return list;
5885 }
5886
5887 /* Return an attribute list that is the union of a1 and a2. */
5888
5889 tree
5890 merge_attributes (tree a1, tree a2)
5891 {
5892 tree attributes;
5893
5894 /* Either one unset? Take the set one. */
5895
5896 if ((attributes = a1) == 0)
5897 attributes = a2;
5898
5899 /* One that completely contains the other? Take it. */
5900
5901 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5902 {
5903 if (attribute_list_contained (a2, a1))
5904 attributes = a2;
5905 else
5906 {
5907 /* Pick the longest list, and hang on the other list. */
5908
5909 if (list_length (a1) < list_length (a2))
5910 attributes = a2, a2 = a1;
5911
5912 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5913 {
5914 tree a;
5915 for (a = lookup_ident_attribute (get_attribute_name (a2),
5916 attributes);
5917 a != NULL_TREE && !attribute_value_equal (a, a2);
5918 a = lookup_ident_attribute (get_attribute_name (a2),
5919 TREE_CHAIN (a)))
5920 ;
5921 if (a == NULL_TREE)
5922 {
5923 a1 = copy_node (a2);
5924 TREE_CHAIN (a1) = attributes;
5925 attributes = a1;
5926 }
5927 }
5928 }
5929 }
5930 return attributes;
5931 }
5932
5933 /* Given types T1 and T2, merge their attributes and return
5934 the result. */
5935
5936 tree
5937 merge_type_attributes (tree t1, tree t2)
5938 {
5939 return merge_attributes (TYPE_ATTRIBUTES (t1),
5940 TYPE_ATTRIBUTES (t2));
5941 }
5942
5943 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5944 the result. */
5945
5946 tree
5947 merge_decl_attributes (tree olddecl, tree newdecl)
5948 {
5949 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5950 DECL_ATTRIBUTES (newdecl));
5951 }
5952
5953 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5954
5955 /* Specialization of merge_decl_attributes for various Windows targets.
5956
5957 This handles the following situation:
5958
5959 __declspec (dllimport) int foo;
5960 int foo;
5961
5962 The second instance of `foo' nullifies the dllimport. */
5963
5964 tree
5965 merge_dllimport_decl_attributes (tree old, tree new_tree)
5966 {
5967 tree a;
5968 int delete_dllimport_p = 1;
5969
5970 /* What we need to do here is remove from `old' dllimport if it doesn't
5971 appear in `new'. dllimport behaves like extern: if a declaration is
5972 marked dllimport and a definition appears later, then the object
5973 is not dllimport'd. We also remove a `new' dllimport if the old list
5974 contains dllexport: dllexport always overrides dllimport, regardless
5975 of the order of declaration. */
5976 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5977 delete_dllimport_p = 0;
5978 else if (DECL_DLLIMPORT_P (new_tree)
5979 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5980 {
5981 DECL_DLLIMPORT_P (new_tree) = 0;
5982 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5983 "dllimport ignored", new_tree);
5984 }
5985 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5986 {
5987 /* Warn about overriding a symbol that has already been used, e.g.:
5988 extern int __attribute__ ((dllimport)) foo;
5989 int* bar () {return &foo;}
5990 int foo;
5991 */
5992 if (TREE_USED (old))
5993 {
5994 warning (0, "%q+D redeclared without dllimport attribute "
5995 "after being referenced with dll linkage", new_tree);
5996 /* If we have used a variable's address with dllimport linkage,
5997 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5998 decl may already have had TREE_CONSTANT computed.
5999 We still remove the attribute so that assembler code refers
6000 to '&foo rather than '_imp__foo'. */
6001 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
6002 DECL_DLLIMPORT_P (new_tree) = 1;
6003 }
6004
6005 /* Let an inline definition silently override the external reference,
6006 but otherwise warn about attribute inconsistency. */
6007 else if (TREE_CODE (new_tree) == VAR_DECL
6008 || !DECL_DECLARED_INLINE_P (new_tree))
6009 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
6010 "previous dllimport ignored", new_tree);
6011 }
6012 else
6013 delete_dllimport_p = 0;
6014
6015 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
6016
6017 if (delete_dllimport_p)
6018 a = remove_attribute ("dllimport", a);
6019
6020 return a;
6021 }
6022
6023 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
6024 struct attribute_spec.handler. */
6025
6026 tree
6027 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
6028 bool *no_add_attrs)
6029 {
6030 tree node = *pnode;
6031 bool is_dllimport;
6032
6033 /* These attributes may apply to structure and union types being created,
6034 but otherwise should pass to the declaration involved. */
6035 if (!DECL_P (node))
6036 {
6037 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
6038 | (int) ATTR_FLAG_ARRAY_NEXT))
6039 {
6040 *no_add_attrs = true;
6041 return tree_cons (name, args, NULL_TREE);
6042 }
6043 if (TREE_CODE (node) == RECORD_TYPE
6044 || TREE_CODE (node) == UNION_TYPE)
6045 {
6046 node = TYPE_NAME (node);
6047 if (!node)
6048 return NULL_TREE;
6049 }
6050 else
6051 {
6052 warning (OPT_Wattributes, "%qE attribute ignored",
6053 name);
6054 *no_add_attrs = true;
6055 return NULL_TREE;
6056 }
6057 }
6058
6059 if (TREE_CODE (node) != FUNCTION_DECL
6060 && TREE_CODE (node) != VAR_DECL
6061 && TREE_CODE (node) != TYPE_DECL)
6062 {
6063 *no_add_attrs = true;
6064 warning (OPT_Wattributes, "%qE attribute ignored",
6065 name);
6066 return NULL_TREE;
6067 }
6068
6069 if (TREE_CODE (node) == TYPE_DECL
6070 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
6071 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
6072 {
6073 *no_add_attrs = true;
6074 warning (OPT_Wattributes, "%qE attribute ignored",
6075 name);
6076 return NULL_TREE;
6077 }
6078
6079 is_dllimport = is_attribute_p ("dllimport", name);
6080
6081 /* Report error on dllimport ambiguities seen now before they cause
6082 any damage. */
6083 if (is_dllimport)
6084 {
6085 /* Honor any target-specific overrides. */
6086 if (!targetm.valid_dllimport_attribute_p (node))
6087 *no_add_attrs = true;
6088
6089 else if (TREE_CODE (node) == FUNCTION_DECL
6090 && DECL_DECLARED_INLINE_P (node))
6091 {
6092 warning (OPT_Wattributes, "inline function %q+D declared as "
6093 " dllimport: attribute ignored", node);
6094 *no_add_attrs = true;
6095 }
6096 /* Like MS, treat definition of dllimported variables and
6097 non-inlined functions on declaration as syntax errors. */
6098 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
6099 {
6100 error ("function %q+D definition is marked dllimport", node);
6101 *no_add_attrs = true;
6102 }
6103
6104 else if (TREE_CODE (node) == VAR_DECL)
6105 {
6106 if (DECL_INITIAL (node))
6107 {
6108 error ("variable %q+D definition is marked dllimport",
6109 node);
6110 *no_add_attrs = true;
6111 }
6112
6113 /* `extern' needn't be specified with dllimport.
6114 Specify `extern' now and hope for the best. Sigh. */
6115 DECL_EXTERNAL (node) = 1;
6116 /* Also, implicitly give dllimport'd variables declared within
6117 a function global scope, unless declared static. */
6118 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
6119 TREE_PUBLIC (node) = 1;
6120 }
6121
6122 if (*no_add_attrs == false)
6123 DECL_DLLIMPORT_P (node) = 1;
6124 }
6125 else if (TREE_CODE (node) == FUNCTION_DECL
6126 && DECL_DECLARED_INLINE_P (node)
6127 && flag_keep_inline_dllexport)
6128 /* An exported function, even if inline, must be emitted. */
6129 DECL_EXTERNAL (node) = 0;
6130
6131 /* Report error if symbol is not accessible at global scope. */
6132 if (!TREE_PUBLIC (node)
6133 && (TREE_CODE (node) == VAR_DECL
6134 || TREE_CODE (node) == FUNCTION_DECL))
6135 {
6136 error ("external linkage required for symbol %q+D because of "
6137 "%qE attribute", node, name);
6138 *no_add_attrs = true;
6139 }
6140
6141 /* A dllexport'd entity must have default visibility so that other
6142 program units (shared libraries or the main executable) can see
6143 it. A dllimport'd entity must have default visibility so that
6144 the linker knows that undefined references within this program
6145 unit can be resolved by the dynamic linker. */
6146 if (!*no_add_attrs)
6147 {
6148 if (DECL_VISIBILITY_SPECIFIED (node)
6149 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
6150 error ("%qE implies default visibility, but %qD has already "
6151 "been declared with a different visibility",
6152 name, node);
6153 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
6154 DECL_VISIBILITY_SPECIFIED (node) = 1;
6155 }
6156
6157 return NULL_TREE;
6158 }
6159
6160 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
6161 \f
6162 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6163 of the various TYPE_QUAL values. */
6164
6165 static void
6166 set_type_quals (tree type, int type_quals)
6167 {
6168 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6169 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6170 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6171 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6172 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6173 }
6174
6175 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6176
6177 bool
6178 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6179 {
6180 return (TYPE_QUALS (cand) == type_quals
6181 && TYPE_NAME (cand) == TYPE_NAME (base)
6182 /* Apparently this is needed for Objective-C. */
6183 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6184 /* Check alignment. */
6185 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6186 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6187 TYPE_ATTRIBUTES (base)));
6188 }
6189
6190 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6191
6192 static bool
6193 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6194 {
6195 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6196 && TYPE_NAME (cand) == TYPE_NAME (base)
6197 /* Apparently this is needed for Objective-C. */
6198 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6199 /* Check alignment. */
6200 && TYPE_ALIGN (cand) == align
6201 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6202 TYPE_ATTRIBUTES (base)));
6203 }
6204
6205 /* This function checks to see if TYPE matches the size one of the built-in
6206 atomic types, and returns that core atomic type. */
6207
6208 static tree
6209 find_atomic_core_type (tree type)
6210 {
6211 tree base_atomic_type;
6212
6213 /* Only handle complete types. */
6214 if (TYPE_SIZE (type) == NULL_TREE)
6215 return NULL_TREE;
6216
6217 HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
6218 switch (type_size)
6219 {
6220 case 8:
6221 base_atomic_type = atomicQI_type_node;
6222 break;
6223
6224 case 16:
6225 base_atomic_type = atomicHI_type_node;
6226 break;
6227
6228 case 32:
6229 base_atomic_type = atomicSI_type_node;
6230 break;
6231
6232 case 64:
6233 base_atomic_type = atomicDI_type_node;
6234 break;
6235
6236 case 128:
6237 base_atomic_type = atomicTI_type_node;
6238 break;
6239
6240 default:
6241 base_atomic_type = NULL_TREE;
6242 }
6243
6244 return base_atomic_type;
6245 }
6246
6247 /* Return a version of the TYPE, qualified as indicated by the
6248 TYPE_QUALS, if one exists. If no qualified version exists yet,
6249 return NULL_TREE. */
6250
6251 tree
6252 get_qualified_type (tree type, int type_quals)
6253 {
6254 tree t;
6255
6256 if (TYPE_QUALS (type) == type_quals)
6257 return type;
6258
6259 /* Search the chain of variants to see if there is already one there just
6260 like the one we need to have. If so, use that existing one. We must
6261 preserve the TYPE_NAME, since there is code that depends on this. */
6262 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6263 if (check_qualified_type (t, type, type_quals))
6264 return t;
6265
6266 return NULL_TREE;
6267 }
6268
6269 /* Like get_qualified_type, but creates the type if it does not
6270 exist. This function never returns NULL_TREE. */
6271
6272 tree
6273 build_qualified_type (tree type, int type_quals)
6274 {
6275 tree t;
6276
6277 /* See if we already have the appropriate qualified variant. */
6278 t = get_qualified_type (type, type_quals);
6279
6280 /* If not, build it. */
6281 if (!t)
6282 {
6283 t = build_variant_type_copy (type);
6284 set_type_quals (t, type_quals);
6285
6286 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6287 {
6288 /* See if this object can map to a basic atomic type. */
6289 tree atomic_type = find_atomic_core_type (type);
6290 if (atomic_type)
6291 {
6292 /* Ensure the alignment of this type is compatible with
6293 the required alignment of the atomic type. */
6294 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6295 TYPE_ALIGN (t) = TYPE_ALIGN (atomic_type);
6296 }
6297 }
6298
6299 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6300 /* Propagate structural equality. */
6301 SET_TYPE_STRUCTURAL_EQUALITY (t);
6302 else if (TYPE_CANONICAL (type) != type)
6303 /* Build the underlying canonical type, since it is different
6304 from TYPE. */
6305 {
6306 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6307 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6308 }
6309 else
6310 /* T is its own canonical type. */
6311 TYPE_CANONICAL (t) = t;
6312
6313 }
6314
6315 return t;
6316 }
6317
6318 /* Create a variant of type T with alignment ALIGN. */
6319
6320 tree
6321 build_aligned_type (tree type, unsigned int align)
6322 {
6323 tree t;
6324
6325 if (TYPE_PACKED (type)
6326 || TYPE_ALIGN (type) == align)
6327 return type;
6328
6329 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6330 if (check_aligned_type (t, type, align))
6331 return t;
6332
6333 t = build_variant_type_copy (type);
6334 TYPE_ALIGN (t) = align;
6335
6336 return t;
6337 }
6338
6339 /* Create a new distinct copy of TYPE. The new type is made its own
6340 MAIN_VARIANT. If TYPE requires structural equality checks, the
6341 resulting type requires structural equality checks; otherwise, its
6342 TYPE_CANONICAL points to itself. */
6343
6344 tree
6345 build_distinct_type_copy (tree type)
6346 {
6347 tree t = copy_node (type);
6348
6349 TYPE_POINTER_TO (t) = 0;
6350 TYPE_REFERENCE_TO (t) = 0;
6351
6352 /* Set the canonical type either to a new equivalence class, or
6353 propagate the need for structural equality checks. */
6354 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6355 SET_TYPE_STRUCTURAL_EQUALITY (t);
6356 else
6357 TYPE_CANONICAL (t) = t;
6358
6359 /* Make it its own variant. */
6360 TYPE_MAIN_VARIANT (t) = t;
6361 TYPE_NEXT_VARIANT (t) = 0;
6362
6363 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6364 whose TREE_TYPE is not t. This can also happen in the Ada
6365 frontend when using subtypes. */
6366
6367 return t;
6368 }
6369
6370 /* Create a new variant of TYPE, equivalent but distinct. This is so
6371 the caller can modify it. TYPE_CANONICAL for the return type will
6372 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6373 are considered equal by the language itself (or that both types
6374 require structural equality checks). */
6375
6376 tree
6377 build_variant_type_copy (tree type)
6378 {
6379 tree t, m = TYPE_MAIN_VARIANT (type);
6380
6381 t = build_distinct_type_copy (type);
6382
6383 /* Since we're building a variant, assume that it is a non-semantic
6384 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6385 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6386
6387 /* Add the new type to the chain of variants of TYPE. */
6388 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6389 TYPE_NEXT_VARIANT (m) = t;
6390 TYPE_MAIN_VARIANT (t) = m;
6391
6392 return t;
6393 }
6394 \f
6395 /* Return true if the from tree in both tree maps are equal. */
6396
6397 int
6398 tree_map_base_eq (const void *va, const void *vb)
6399 {
6400 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6401 *const b = (const struct tree_map_base *) vb;
6402 return (a->from == b->from);
6403 }
6404
6405 /* Hash a from tree in a tree_base_map. */
6406
6407 unsigned int
6408 tree_map_base_hash (const void *item)
6409 {
6410 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6411 }
6412
6413 /* Return true if this tree map structure is marked for garbage collection
6414 purposes. We simply return true if the from tree is marked, so that this
6415 structure goes away when the from tree goes away. */
6416
6417 int
6418 tree_map_base_marked_p (const void *p)
6419 {
6420 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6421 }
6422
6423 /* Hash a from tree in a tree_map. */
6424
6425 unsigned int
6426 tree_map_hash (const void *item)
6427 {
6428 return (((const struct tree_map *) item)->hash);
6429 }
6430
6431 /* Hash a from tree in a tree_decl_map. */
6432
6433 unsigned int
6434 tree_decl_map_hash (const void *item)
6435 {
6436 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6437 }
6438
6439 /* Return the initialization priority for DECL. */
6440
6441 priority_type
6442 decl_init_priority_lookup (tree decl)
6443 {
6444 symtab_node *snode = symtab_node::get (decl);
6445
6446 if (!snode)
6447 return DEFAULT_INIT_PRIORITY;
6448 return
6449 snode->get_init_priority ();
6450 }
6451
6452 /* Return the finalization priority for DECL. */
6453
6454 priority_type
6455 decl_fini_priority_lookup (tree decl)
6456 {
6457 cgraph_node *node = cgraph_node::get (decl);
6458
6459 if (!node)
6460 return DEFAULT_INIT_PRIORITY;
6461 return
6462 node->get_fini_priority ();
6463 }
6464
6465 /* Set the initialization priority for DECL to PRIORITY. */
6466
6467 void
6468 decl_init_priority_insert (tree decl, priority_type priority)
6469 {
6470 struct symtab_node *snode;
6471
6472 if (priority == DEFAULT_INIT_PRIORITY)
6473 {
6474 snode = symtab_node::get (decl);
6475 if (!snode)
6476 return;
6477 }
6478 else if (TREE_CODE (decl) == VAR_DECL)
6479 snode = varpool_node::get_create (decl);
6480 else
6481 snode = cgraph_node::get_create (decl);
6482 snode->set_init_priority (priority);
6483 }
6484
6485 /* Set the finalization priority for DECL to PRIORITY. */
6486
6487 void
6488 decl_fini_priority_insert (tree decl, priority_type priority)
6489 {
6490 struct cgraph_node *node;
6491
6492 if (priority == DEFAULT_INIT_PRIORITY)
6493 {
6494 node = cgraph_node::get (decl);
6495 if (!node)
6496 return;
6497 }
6498 else
6499 node = cgraph_node::get_create (decl);
6500 node->set_fini_priority (priority);
6501 }
6502
6503 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6504
6505 static void
6506 print_debug_expr_statistics (void)
6507 {
6508 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6509 (long) htab_size (debug_expr_for_decl),
6510 (long) htab_elements (debug_expr_for_decl),
6511 htab_collisions (debug_expr_for_decl));
6512 }
6513
6514 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6515
6516 static void
6517 print_value_expr_statistics (void)
6518 {
6519 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6520 (long) htab_size (value_expr_for_decl),
6521 (long) htab_elements (value_expr_for_decl),
6522 htab_collisions (value_expr_for_decl));
6523 }
6524
6525 /* Lookup a debug expression for FROM, and return it if we find one. */
6526
6527 tree
6528 decl_debug_expr_lookup (tree from)
6529 {
6530 struct tree_decl_map *h, in;
6531 in.base.from = from;
6532
6533 h = (struct tree_decl_map *)
6534 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6535 if (h)
6536 return h->to;
6537 return NULL_TREE;
6538 }
6539
6540 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6541
6542 void
6543 decl_debug_expr_insert (tree from, tree to)
6544 {
6545 struct tree_decl_map *h;
6546 void **loc;
6547
6548 h = ggc_alloc<tree_decl_map> ();
6549 h->base.from = from;
6550 h->to = to;
6551 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6552 INSERT);
6553 *(struct tree_decl_map **) loc = h;
6554 }
6555
6556 /* Lookup a value expression for FROM, and return it if we find one. */
6557
6558 tree
6559 decl_value_expr_lookup (tree from)
6560 {
6561 struct tree_decl_map *h, in;
6562 in.base.from = from;
6563
6564 h = (struct tree_decl_map *)
6565 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6566 if (h)
6567 return h->to;
6568 return NULL_TREE;
6569 }
6570
6571 /* Insert a mapping FROM->TO in the value expression hashtable. */
6572
6573 void
6574 decl_value_expr_insert (tree from, tree to)
6575 {
6576 struct tree_decl_map *h;
6577 void **loc;
6578
6579 h = ggc_alloc<tree_decl_map> ();
6580 h->base.from = from;
6581 h->to = to;
6582 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6583 INSERT);
6584 *(struct tree_decl_map **) loc = h;
6585 }
6586
6587 /* Lookup a vector of debug arguments for FROM, and return it if we
6588 find one. */
6589
6590 vec<tree, va_gc> **
6591 decl_debug_args_lookup (tree from)
6592 {
6593 struct tree_vec_map *h, in;
6594
6595 if (!DECL_HAS_DEBUG_ARGS_P (from))
6596 return NULL;
6597 gcc_checking_assert (debug_args_for_decl != NULL);
6598 in.base.from = from;
6599 h = (struct tree_vec_map *)
6600 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6601 if (h)
6602 return &h->to;
6603 return NULL;
6604 }
6605
6606 /* Insert a mapping FROM->empty vector of debug arguments in the value
6607 expression hashtable. */
6608
6609 vec<tree, va_gc> **
6610 decl_debug_args_insert (tree from)
6611 {
6612 struct tree_vec_map *h;
6613 void **loc;
6614
6615 if (DECL_HAS_DEBUG_ARGS_P (from))
6616 return decl_debug_args_lookup (from);
6617 if (debug_args_for_decl == NULL)
6618 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6619 tree_vec_map_eq, 0);
6620 h = ggc_alloc<tree_vec_map> ();
6621 h->base.from = from;
6622 h->to = NULL;
6623 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6624 INSERT);
6625 *(struct tree_vec_map **) loc = h;
6626 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6627 return &h->to;
6628 }
6629
6630 /* Hashing of types so that we don't make duplicates.
6631 The entry point is `type_hash_canon'. */
6632
6633 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6634 with types in the TREE_VALUE slots), by adding the hash codes
6635 of the individual types. */
6636
6637 static void
6638 type_hash_list (const_tree list, inchash::hash &hstate)
6639 {
6640 const_tree tail;
6641
6642 for (tail = list; tail; tail = TREE_CHAIN (tail))
6643 if (TREE_VALUE (tail) != error_mark_node)
6644 hstate.add_object (TYPE_HASH (TREE_VALUE (tail)));
6645 }
6646
6647 /* These are the Hashtable callback functions. */
6648
6649 /* Returns true iff the types are equivalent. */
6650
6651 static int
6652 type_hash_eq (const void *va, const void *vb)
6653 {
6654 const struct type_hash *const a = (const struct type_hash *) va,
6655 *const b = (const struct type_hash *) vb;
6656
6657 /* First test the things that are the same for all types. */
6658 if (a->hash != b->hash
6659 || TREE_CODE (a->type) != TREE_CODE (b->type)
6660 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6661 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6662 TYPE_ATTRIBUTES (b->type))
6663 || (TREE_CODE (a->type) != COMPLEX_TYPE
6664 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6665 return 0;
6666
6667 /* Be careful about comparing arrays before and after the element type
6668 has been completed; don't compare TYPE_ALIGN unless both types are
6669 complete. */
6670 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6671 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6672 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6673 return 0;
6674
6675 switch (TREE_CODE (a->type))
6676 {
6677 case VOID_TYPE:
6678 case COMPLEX_TYPE:
6679 case POINTER_TYPE:
6680 case REFERENCE_TYPE:
6681 case NULLPTR_TYPE:
6682 return 1;
6683
6684 case VECTOR_TYPE:
6685 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6686
6687 case ENUMERAL_TYPE:
6688 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6689 && !(TYPE_VALUES (a->type)
6690 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6691 && TYPE_VALUES (b->type)
6692 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6693 && type_list_equal (TYPE_VALUES (a->type),
6694 TYPE_VALUES (b->type))))
6695 return 0;
6696
6697 /* ... fall through ... */
6698
6699 case INTEGER_TYPE:
6700 case REAL_TYPE:
6701 case BOOLEAN_TYPE:
6702 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6703 return false;
6704 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6705 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6706 TYPE_MAX_VALUE (b->type)))
6707 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6708 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6709 TYPE_MIN_VALUE (b->type))));
6710
6711 case FIXED_POINT_TYPE:
6712 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6713
6714 case OFFSET_TYPE:
6715 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6716
6717 case METHOD_TYPE:
6718 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6719 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6720 || (TYPE_ARG_TYPES (a->type)
6721 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6722 && TYPE_ARG_TYPES (b->type)
6723 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6724 && type_list_equal (TYPE_ARG_TYPES (a->type),
6725 TYPE_ARG_TYPES (b->type)))))
6726 break;
6727 return 0;
6728 case ARRAY_TYPE:
6729 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6730
6731 case RECORD_TYPE:
6732 case UNION_TYPE:
6733 case QUAL_UNION_TYPE:
6734 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6735 || (TYPE_FIELDS (a->type)
6736 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6737 && TYPE_FIELDS (b->type)
6738 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6739 && type_list_equal (TYPE_FIELDS (a->type),
6740 TYPE_FIELDS (b->type))));
6741
6742 case FUNCTION_TYPE:
6743 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6744 || (TYPE_ARG_TYPES (a->type)
6745 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6746 && TYPE_ARG_TYPES (b->type)
6747 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6748 && type_list_equal (TYPE_ARG_TYPES (a->type),
6749 TYPE_ARG_TYPES (b->type))))
6750 break;
6751 return 0;
6752
6753 default:
6754 return 0;
6755 }
6756
6757 if (lang_hooks.types.type_hash_eq != NULL)
6758 return lang_hooks.types.type_hash_eq (a->type, b->type);
6759
6760 return 1;
6761 }
6762
6763 /* Return the cached hash value. */
6764
6765 static hashval_t
6766 type_hash_hash (const void *item)
6767 {
6768 return ((const struct type_hash *) item)->hash;
6769 }
6770
6771 /* Given TYPE, and HASHCODE its hash code, return the canonical
6772 object for an identical type if one already exists.
6773 Otherwise, return TYPE, and record it as the canonical object.
6774
6775 To use this function, first create a type of the sort you want.
6776 Then compute its hash code from the fields of the type that
6777 make it different from other similar types.
6778 Then call this function and use the value. */
6779
6780 tree
6781 type_hash_canon (unsigned int hashcode, tree type)
6782 {
6783 type_hash in;
6784 void **loc;
6785
6786 /* The hash table only contains main variants, so ensure that's what we're
6787 being passed. */
6788 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6789
6790 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6791 must call that routine before comparing TYPE_ALIGNs. */
6792 layout_type (type);
6793
6794 in.hash = hashcode;
6795 in.type = type;
6796
6797 loc = htab_find_slot_with_hash (type_hash_table, &in, hashcode, INSERT);
6798 if (*loc)
6799 {
6800 tree t1 = ((type_hash *) *loc)->type;
6801 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1);
6802 if (GATHER_STATISTICS)
6803 {
6804 tree_code_counts[(int) TREE_CODE (type)]--;
6805 tree_node_counts[(int) t_kind]--;
6806 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6807 }
6808 return t1;
6809 }
6810 else
6811 {
6812 struct type_hash *h;
6813
6814 h = ggc_alloc<type_hash> ();
6815 h->hash = hashcode;
6816 h->type = type;
6817 *loc = (void *)h;
6818
6819 return type;
6820 }
6821 }
6822
6823 /* See if the data pointed to by the type hash table is marked. We consider
6824 it marked if the type is marked or if a debug type number or symbol
6825 table entry has been made for the type. */
6826
6827 static int
6828 type_hash_marked_p (const void *p)
6829 {
6830 const_tree const type = ((const struct type_hash *) p)->type;
6831
6832 return ggc_marked_p (type);
6833 }
6834
6835 static void
6836 print_type_hash_statistics (void)
6837 {
6838 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6839 (long) htab_size (type_hash_table),
6840 (long) htab_elements (type_hash_table),
6841 htab_collisions (type_hash_table));
6842 }
6843
6844 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6845 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6846 by adding the hash codes of the individual attributes. */
6847
6848 static void
6849 attribute_hash_list (const_tree list, inchash::hash &hstate)
6850 {
6851 const_tree tail;
6852
6853 for (tail = list; tail; tail = TREE_CHAIN (tail))
6854 /* ??? Do we want to add in TREE_VALUE too? */
6855 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)));
6856 }
6857
6858 /* Given two lists of attributes, return true if list l2 is
6859 equivalent to l1. */
6860
6861 int
6862 attribute_list_equal (const_tree l1, const_tree l2)
6863 {
6864 if (l1 == l2)
6865 return 1;
6866
6867 return attribute_list_contained (l1, l2)
6868 && attribute_list_contained (l2, l1);
6869 }
6870
6871 /* Given two lists of attributes, return true if list L2 is
6872 completely contained within L1. */
6873 /* ??? This would be faster if attribute names were stored in a canonicalized
6874 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6875 must be used to show these elements are equivalent (which they are). */
6876 /* ??? It's not clear that attributes with arguments will always be handled
6877 correctly. */
6878
6879 int
6880 attribute_list_contained (const_tree l1, const_tree l2)
6881 {
6882 const_tree t1, t2;
6883
6884 /* First check the obvious, maybe the lists are identical. */
6885 if (l1 == l2)
6886 return 1;
6887
6888 /* Maybe the lists are similar. */
6889 for (t1 = l1, t2 = l2;
6890 t1 != 0 && t2 != 0
6891 && get_attribute_name (t1) == get_attribute_name (t2)
6892 && TREE_VALUE (t1) == TREE_VALUE (t2);
6893 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6894 ;
6895
6896 /* Maybe the lists are equal. */
6897 if (t1 == 0 && t2 == 0)
6898 return 1;
6899
6900 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6901 {
6902 const_tree attr;
6903 /* This CONST_CAST is okay because lookup_attribute does not
6904 modify its argument and the return value is assigned to a
6905 const_tree. */
6906 for (attr = lookup_ident_attribute (get_attribute_name (t2),
6907 CONST_CAST_TREE (l1));
6908 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6909 attr = lookup_ident_attribute (get_attribute_name (t2),
6910 TREE_CHAIN (attr)))
6911 ;
6912
6913 if (attr == NULL_TREE)
6914 return 0;
6915 }
6916
6917 return 1;
6918 }
6919
6920 /* Given two lists of types
6921 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6922 return 1 if the lists contain the same types in the same order.
6923 Also, the TREE_PURPOSEs must match. */
6924
6925 int
6926 type_list_equal (const_tree l1, const_tree l2)
6927 {
6928 const_tree t1, t2;
6929
6930 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6931 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6932 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6933 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6934 && (TREE_TYPE (TREE_PURPOSE (t1))
6935 == TREE_TYPE (TREE_PURPOSE (t2))))))
6936 return 0;
6937
6938 return t1 == t2;
6939 }
6940
6941 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6942 given by TYPE. If the argument list accepts variable arguments,
6943 then this function counts only the ordinary arguments. */
6944
6945 int
6946 type_num_arguments (const_tree type)
6947 {
6948 int i = 0;
6949 tree t;
6950
6951 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6952 /* If the function does not take a variable number of arguments,
6953 the last element in the list will have type `void'. */
6954 if (VOID_TYPE_P (TREE_VALUE (t)))
6955 break;
6956 else
6957 ++i;
6958
6959 return i;
6960 }
6961
6962 /* Nonzero if integer constants T1 and T2
6963 represent the same constant value. */
6964
6965 int
6966 tree_int_cst_equal (const_tree t1, const_tree t2)
6967 {
6968 if (t1 == t2)
6969 return 1;
6970
6971 if (t1 == 0 || t2 == 0)
6972 return 0;
6973
6974 if (TREE_CODE (t1) == INTEGER_CST
6975 && TREE_CODE (t2) == INTEGER_CST
6976 && wi::to_widest (t1) == wi::to_widest (t2))
6977 return 1;
6978
6979 return 0;
6980 }
6981
6982 /* Return true if T is an INTEGER_CST whose numerical value (extended
6983 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6984
6985 bool
6986 tree_fits_shwi_p (const_tree t)
6987 {
6988 return (t != NULL_TREE
6989 && TREE_CODE (t) == INTEGER_CST
6990 && wi::fits_shwi_p (wi::to_widest (t)));
6991 }
6992
6993 /* Return true if T is an INTEGER_CST whose numerical value (extended
6994 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6995
6996 bool
6997 tree_fits_uhwi_p (const_tree t)
6998 {
6999 return (t != NULL_TREE
7000 && TREE_CODE (t) == INTEGER_CST
7001 && wi::fits_uhwi_p (wi::to_widest (t)));
7002 }
7003
7004 /* T is an INTEGER_CST whose numerical value (extended according to
7005 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7006 HOST_WIDE_INT. */
7007
7008 HOST_WIDE_INT
7009 tree_to_shwi (const_tree t)
7010 {
7011 gcc_assert (tree_fits_shwi_p (t));
7012 return TREE_INT_CST_LOW (t);
7013 }
7014
7015 /* T is an INTEGER_CST whose numerical value (extended according to
7016 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7017 HOST_WIDE_INT. */
7018
7019 unsigned HOST_WIDE_INT
7020 tree_to_uhwi (const_tree t)
7021 {
7022 gcc_assert (tree_fits_uhwi_p (t));
7023 return TREE_INT_CST_LOW (t);
7024 }
7025
7026 /* Return the most significant (sign) bit of T. */
7027
7028 int
7029 tree_int_cst_sign_bit (const_tree t)
7030 {
7031 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7032
7033 return wi::extract_uhwi (t, bitno, 1);
7034 }
7035
7036 /* Return an indication of the sign of the integer constant T.
7037 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7038 Note that -1 will never be returned if T's type is unsigned. */
7039
7040 int
7041 tree_int_cst_sgn (const_tree t)
7042 {
7043 if (wi::eq_p (t, 0))
7044 return 0;
7045 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7046 return 1;
7047 else if (wi::neg_p (t))
7048 return -1;
7049 else
7050 return 1;
7051 }
7052
7053 /* Return the minimum number of bits needed to represent VALUE in a
7054 signed or unsigned type, UNSIGNEDP says which. */
7055
7056 unsigned int
7057 tree_int_cst_min_precision (tree value, signop sgn)
7058 {
7059 /* If the value is negative, compute its negative minus 1. The latter
7060 adjustment is because the absolute value of the largest negative value
7061 is one larger than the largest positive value. This is equivalent to
7062 a bit-wise negation, so use that operation instead. */
7063
7064 if (tree_int_cst_sgn (value) < 0)
7065 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7066
7067 /* Return the number of bits needed, taking into account the fact
7068 that we need one more bit for a signed than unsigned type.
7069 If value is 0 or -1, the minimum precision is 1 no matter
7070 whether unsignedp is true or false. */
7071
7072 if (integer_zerop (value))
7073 return 1;
7074 else
7075 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7076 }
7077
7078 /* Return truthvalue of whether T1 is the same tree structure as T2.
7079 Return 1 if they are the same.
7080 Return 0 if they are understandably different.
7081 Return -1 if either contains tree structure not understood by
7082 this function. */
7083
7084 int
7085 simple_cst_equal (const_tree t1, const_tree t2)
7086 {
7087 enum tree_code code1, code2;
7088 int cmp;
7089 int i;
7090
7091 if (t1 == t2)
7092 return 1;
7093 if (t1 == 0 || t2 == 0)
7094 return 0;
7095
7096 code1 = TREE_CODE (t1);
7097 code2 = TREE_CODE (t2);
7098
7099 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7100 {
7101 if (CONVERT_EXPR_CODE_P (code2)
7102 || code2 == NON_LVALUE_EXPR)
7103 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7104 else
7105 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7106 }
7107
7108 else if (CONVERT_EXPR_CODE_P (code2)
7109 || code2 == NON_LVALUE_EXPR)
7110 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7111
7112 if (code1 != code2)
7113 return 0;
7114
7115 switch (code1)
7116 {
7117 case INTEGER_CST:
7118 return wi::to_widest (t1) == wi::to_widest (t2);
7119
7120 case REAL_CST:
7121 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
7122
7123 case FIXED_CST:
7124 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7125
7126 case STRING_CST:
7127 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7128 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7129 TREE_STRING_LENGTH (t1)));
7130
7131 case CONSTRUCTOR:
7132 {
7133 unsigned HOST_WIDE_INT idx;
7134 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7135 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7136
7137 if (vec_safe_length (v1) != vec_safe_length (v2))
7138 return false;
7139
7140 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7141 /* ??? Should we handle also fields here? */
7142 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7143 return false;
7144 return true;
7145 }
7146
7147 case SAVE_EXPR:
7148 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7149
7150 case CALL_EXPR:
7151 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7152 if (cmp <= 0)
7153 return cmp;
7154 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7155 return 0;
7156 {
7157 const_tree arg1, arg2;
7158 const_call_expr_arg_iterator iter1, iter2;
7159 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7160 arg2 = first_const_call_expr_arg (t2, &iter2);
7161 arg1 && arg2;
7162 arg1 = next_const_call_expr_arg (&iter1),
7163 arg2 = next_const_call_expr_arg (&iter2))
7164 {
7165 cmp = simple_cst_equal (arg1, arg2);
7166 if (cmp <= 0)
7167 return cmp;
7168 }
7169 return arg1 == arg2;
7170 }
7171
7172 case TARGET_EXPR:
7173 /* Special case: if either target is an unallocated VAR_DECL,
7174 it means that it's going to be unified with whatever the
7175 TARGET_EXPR is really supposed to initialize, so treat it
7176 as being equivalent to anything. */
7177 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7178 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7179 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7180 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7181 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7182 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7183 cmp = 1;
7184 else
7185 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7186
7187 if (cmp <= 0)
7188 return cmp;
7189
7190 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7191
7192 case WITH_CLEANUP_EXPR:
7193 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7194 if (cmp <= 0)
7195 return cmp;
7196
7197 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7198
7199 case COMPONENT_REF:
7200 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7201 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7202
7203 return 0;
7204
7205 case VAR_DECL:
7206 case PARM_DECL:
7207 case CONST_DECL:
7208 case FUNCTION_DECL:
7209 return 0;
7210
7211 default:
7212 break;
7213 }
7214
7215 /* This general rule works for most tree codes. All exceptions should be
7216 handled above. If this is a language-specific tree code, we can't
7217 trust what might be in the operand, so say we don't know
7218 the situation. */
7219 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7220 return -1;
7221
7222 switch (TREE_CODE_CLASS (code1))
7223 {
7224 case tcc_unary:
7225 case tcc_binary:
7226 case tcc_comparison:
7227 case tcc_expression:
7228 case tcc_reference:
7229 case tcc_statement:
7230 cmp = 1;
7231 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7232 {
7233 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7234 if (cmp <= 0)
7235 return cmp;
7236 }
7237
7238 return cmp;
7239
7240 default:
7241 return -1;
7242 }
7243 }
7244
7245 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7246 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7247 than U, respectively. */
7248
7249 int
7250 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7251 {
7252 if (tree_int_cst_sgn (t) < 0)
7253 return -1;
7254 else if (!tree_fits_uhwi_p (t))
7255 return 1;
7256 else if (TREE_INT_CST_LOW (t) == u)
7257 return 0;
7258 else if (TREE_INT_CST_LOW (t) < u)
7259 return -1;
7260 else
7261 return 1;
7262 }
7263
7264 /* Return true if SIZE represents a constant size that is in bounds of
7265 what the middle-end and the backend accepts (covering not more than
7266 half of the address-space). */
7267
7268 bool
7269 valid_constant_size_p (const_tree size)
7270 {
7271 if (! tree_fits_uhwi_p (size)
7272 || TREE_OVERFLOW (size)
7273 || tree_int_cst_sign_bit (size) != 0)
7274 return false;
7275 return true;
7276 }
7277
7278 /* Return the precision of the type, or for a complex or vector type the
7279 precision of the type of its elements. */
7280
7281 unsigned int
7282 element_precision (const_tree type)
7283 {
7284 enum tree_code code = TREE_CODE (type);
7285 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7286 type = TREE_TYPE (type);
7287
7288 return TYPE_PRECISION (type);
7289 }
7290
7291 /* Return true if CODE represents an associative tree code. Otherwise
7292 return false. */
7293 bool
7294 associative_tree_code (enum tree_code code)
7295 {
7296 switch (code)
7297 {
7298 case BIT_IOR_EXPR:
7299 case BIT_AND_EXPR:
7300 case BIT_XOR_EXPR:
7301 case PLUS_EXPR:
7302 case MULT_EXPR:
7303 case MIN_EXPR:
7304 case MAX_EXPR:
7305 return true;
7306
7307 default:
7308 break;
7309 }
7310 return false;
7311 }
7312
7313 /* Return true if CODE represents a commutative tree code. Otherwise
7314 return false. */
7315 bool
7316 commutative_tree_code (enum tree_code code)
7317 {
7318 switch (code)
7319 {
7320 case PLUS_EXPR:
7321 case MULT_EXPR:
7322 case MULT_HIGHPART_EXPR:
7323 case MIN_EXPR:
7324 case MAX_EXPR:
7325 case BIT_IOR_EXPR:
7326 case BIT_XOR_EXPR:
7327 case BIT_AND_EXPR:
7328 case NE_EXPR:
7329 case EQ_EXPR:
7330 case UNORDERED_EXPR:
7331 case ORDERED_EXPR:
7332 case UNEQ_EXPR:
7333 case LTGT_EXPR:
7334 case TRUTH_AND_EXPR:
7335 case TRUTH_XOR_EXPR:
7336 case TRUTH_OR_EXPR:
7337 case WIDEN_MULT_EXPR:
7338 case VEC_WIDEN_MULT_HI_EXPR:
7339 case VEC_WIDEN_MULT_LO_EXPR:
7340 case VEC_WIDEN_MULT_EVEN_EXPR:
7341 case VEC_WIDEN_MULT_ODD_EXPR:
7342 return true;
7343
7344 default:
7345 break;
7346 }
7347 return false;
7348 }
7349
7350 /* Return true if CODE represents a ternary tree code for which the
7351 first two operands are commutative. Otherwise return false. */
7352 bool
7353 commutative_ternary_tree_code (enum tree_code code)
7354 {
7355 switch (code)
7356 {
7357 case WIDEN_MULT_PLUS_EXPR:
7358 case WIDEN_MULT_MINUS_EXPR:
7359 return true;
7360
7361 default:
7362 break;
7363 }
7364 return false;
7365 }
7366
7367 namespace inchash
7368 {
7369
7370 /* Generate a hash value for an expression. This can be used iteratively
7371 by passing a previous result as the HSTATE argument.
7372
7373 This function is intended to produce the same hash for expressions which
7374 would compare equal using operand_equal_p. */
7375 void
7376 add_expr (const_tree t, inchash::hash &hstate)
7377 {
7378 int i;
7379 enum tree_code code;
7380 enum tree_code_class tclass;
7381
7382 if (t == NULL_TREE)
7383 {
7384 hstate.merge_hash (0);
7385 return;
7386 }
7387
7388 code = TREE_CODE (t);
7389
7390 switch (code)
7391 {
7392 /* Alas, constants aren't shared, so we can't rely on pointer
7393 identity. */
7394 case VOID_CST:
7395 hstate.merge_hash (0);
7396 return;
7397 case INTEGER_CST:
7398 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
7399 hstate.add_wide_int (TREE_INT_CST_ELT (t, i));
7400 return;
7401 case REAL_CST:
7402 {
7403 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7404 hstate.merge_hash (val2);
7405 return;
7406 }
7407 case FIXED_CST:
7408 {
7409 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7410 hstate.merge_hash (val2);
7411 return;
7412 }
7413 case STRING_CST:
7414 hstate.add ((const void *) TREE_STRING_POINTER (t), TREE_STRING_LENGTH (t));
7415 return;
7416 case COMPLEX_CST:
7417 inchash::add_expr (TREE_REALPART (t), hstate);
7418 inchash::add_expr (TREE_IMAGPART (t), hstate);
7419 return;
7420 case VECTOR_CST:
7421 {
7422 unsigned i;
7423 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7424 inchash::add_expr (VECTOR_CST_ELT (t, i), hstate);
7425 return;
7426 }
7427 case SSA_NAME:
7428 /* We can just compare by pointer. */
7429 hstate.add_wide_int (SSA_NAME_VERSION (t));
7430 return;
7431 case PLACEHOLDER_EXPR:
7432 /* The node itself doesn't matter. */
7433 return;
7434 case TREE_LIST:
7435 /* A list of expressions, for a CALL_EXPR or as the elements of a
7436 VECTOR_CST. */
7437 for (; t; t = TREE_CHAIN (t))
7438 inchash::add_expr (TREE_VALUE (t), hstate);
7439 return;
7440 case CONSTRUCTOR:
7441 {
7442 unsigned HOST_WIDE_INT idx;
7443 tree field, value;
7444 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7445 {
7446 inchash::add_expr (field, hstate);
7447 inchash::add_expr (value, hstate);
7448 }
7449 return;
7450 }
7451 case FUNCTION_DECL:
7452 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7453 Otherwise nodes that compare equal according to operand_equal_p might
7454 get different hash codes. However, don't do this for machine specific
7455 or front end builtins, since the function code is overloaded in those
7456 cases. */
7457 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7458 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7459 {
7460 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7461 code = TREE_CODE (t);
7462 }
7463 /* FALL THROUGH */
7464 default:
7465 tclass = TREE_CODE_CLASS (code);
7466
7467 if (tclass == tcc_declaration)
7468 {
7469 /* DECL's have a unique ID */
7470 hstate.add_wide_int (DECL_UID (t));
7471 }
7472 else
7473 {
7474 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7475
7476 hstate.add_object (code);
7477
7478 /* Don't hash the type, that can lead to having nodes which
7479 compare equal according to operand_equal_p, but which
7480 have different hash codes. */
7481 if (CONVERT_EXPR_CODE_P (code)
7482 || code == NON_LVALUE_EXPR)
7483 {
7484 /* Make sure to include signness in the hash computation. */
7485 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7486 inchash::add_expr (TREE_OPERAND (t, 0), hstate);
7487 }
7488
7489 else if (commutative_tree_code (code))
7490 {
7491 /* It's a commutative expression. We want to hash it the same
7492 however it appears. We do this by first hashing both operands
7493 and then rehashing based on the order of their independent
7494 hashes. */
7495 inchash::hash one, two;
7496 inchash::add_expr (TREE_OPERAND (t, 0), one);
7497 inchash::add_expr (TREE_OPERAND (t, 1), two);
7498 hstate.add_commutative (one, two);
7499 }
7500 else
7501 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7502 inchash::add_expr (TREE_OPERAND (t, i), hstate);
7503 }
7504 return;
7505 }
7506 }
7507
7508 }
7509
7510 /* Constructors for pointer, array and function types.
7511 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7512 constructed by language-dependent code, not here.) */
7513
7514 /* Construct, lay out and return the type of pointers to TO_TYPE with
7515 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7516 reference all of memory. If such a type has already been
7517 constructed, reuse it. */
7518
7519 tree
7520 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7521 bool can_alias_all)
7522 {
7523 tree t;
7524
7525 if (to_type == error_mark_node)
7526 return error_mark_node;
7527
7528 /* If the pointed-to type has the may_alias attribute set, force
7529 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7530 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7531 can_alias_all = true;
7532
7533 /* In some cases, languages will have things that aren't a POINTER_TYPE
7534 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7535 In that case, return that type without regard to the rest of our
7536 operands.
7537
7538 ??? This is a kludge, but consistent with the way this function has
7539 always operated and there doesn't seem to be a good way to avoid this
7540 at the moment. */
7541 if (TYPE_POINTER_TO (to_type) != 0
7542 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7543 return TYPE_POINTER_TO (to_type);
7544
7545 /* First, if we already have a type for pointers to TO_TYPE and it's
7546 the proper mode, use it. */
7547 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7548 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7549 return t;
7550
7551 t = make_node (POINTER_TYPE);
7552
7553 TREE_TYPE (t) = to_type;
7554 SET_TYPE_MODE (t, mode);
7555 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7556 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7557 TYPE_POINTER_TO (to_type) = t;
7558
7559 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7560 SET_TYPE_STRUCTURAL_EQUALITY (t);
7561 else if (TYPE_CANONICAL (to_type) != to_type)
7562 TYPE_CANONICAL (t)
7563 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7564 mode, can_alias_all);
7565
7566 /* Lay out the type. This function has many callers that are concerned
7567 with expression-construction, and this simplifies them all. */
7568 layout_type (t);
7569
7570 return t;
7571 }
7572
7573 /* By default build pointers in ptr_mode. */
7574
7575 tree
7576 build_pointer_type (tree to_type)
7577 {
7578 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7579 : TYPE_ADDR_SPACE (to_type);
7580 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7581 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7582 }
7583
7584 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7585
7586 tree
7587 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7588 bool can_alias_all)
7589 {
7590 tree t;
7591
7592 if (to_type == error_mark_node)
7593 return error_mark_node;
7594
7595 /* If the pointed-to type has the may_alias attribute set, force
7596 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7597 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7598 can_alias_all = true;
7599
7600 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7601 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7602 In that case, return that type without regard to the rest of our
7603 operands.
7604
7605 ??? This is a kludge, but consistent with the way this function has
7606 always operated and there doesn't seem to be a good way to avoid this
7607 at the moment. */
7608 if (TYPE_REFERENCE_TO (to_type) != 0
7609 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7610 return TYPE_REFERENCE_TO (to_type);
7611
7612 /* First, if we already have a type for pointers to TO_TYPE and it's
7613 the proper mode, use it. */
7614 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7615 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7616 return t;
7617
7618 t = make_node (REFERENCE_TYPE);
7619
7620 TREE_TYPE (t) = to_type;
7621 SET_TYPE_MODE (t, mode);
7622 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7623 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7624 TYPE_REFERENCE_TO (to_type) = t;
7625
7626 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7627 SET_TYPE_STRUCTURAL_EQUALITY (t);
7628 else if (TYPE_CANONICAL (to_type) != to_type)
7629 TYPE_CANONICAL (t)
7630 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7631 mode, can_alias_all);
7632
7633 layout_type (t);
7634
7635 return t;
7636 }
7637
7638
7639 /* Build the node for the type of references-to-TO_TYPE by default
7640 in ptr_mode. */
7641
7642 tree
7643 build_reference_type (tree to_type)
7644 {
7645 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7646 : TYPE_ADDR_SPACE (to_type);
7647 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7648 return build_reference_type_for_mode (to_type, pointer_mode, false);
7649 }
7650
7651 #define MAX_INT_CACHED_PREC \
7652 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7653 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7654
7655 /* Builds a signed or unsigned integer type of precision PRECISION.
7656 Used for C bitfields whose precision does not match that of
7657 built-in target types. */
7658 tree
7659 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7660 int unsignedp)
7661 {
7662 tree itype, ret;
7663
7664 if (unsignedp)
7665 unsignedp = MAX_INT_CACHED_PREC + 1;
7666
7667 if (precision <= MAX_INT_CACHED_PREC)
7668 {
7669 itype = nonstandard_integer_type_cache[precision + unsignedp];
7670 if (itype)
7671 return itype;
7672 }
7673
7674 itype = make_node (INTEGER_TYPE);
7675 TYPE_PRECISION (itype) = precision;
7676
7677 if (unsignedp)
7678 fixup_unsigned_type (itype);
7679 else
7680 fixup_signed_type (itype);
7681
7682 ret = itype;
7683 if (tree_fits_uhwi_p (TYPE_MAX_VALUE (itype)))
7684 ret = type_hash_canon (tree_to_uhwi (TYPE_MAX_VALUE (itype)), itype);
7685 if (precision <= MAX_INT_CACHED_PREC)
7686 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7687
7688 return ret;
7689 }
7690
7691 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7692 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7693 is true, reuse such a type that has already been constructed. */
7694
7695 static tree
7696 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7697 {
7698 tree itype = make_node (INTEGER_TYPE);
7699 inchash::hash hstate;
7700
7701 TREE_TYPE (itype) = type;
7702
7703 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7704 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7705
7706 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7707 SET_TYPE_MODE (itype, TYPE_MODE (type));
7708 TYPE_SIZE (itype) = TYPE_SIZE (type);
7709 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7710 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7711 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7712
7713 if (!shared)
7714 return itype;
7715
7716 if ((TYPE_MIN_VALUE (itype)
7717 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7718 || (TYPE_MAX_VALUE (itype)
7719 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7720 {
7721 /* Since we cannot reliably merge this type, we need to compare it using
7722 structural equality checks. */
7723 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7724 return itype;
7725 }
7726
7727 inchash::add_expr (TYPE_MIN_VALUE (itype), hstate);
7728 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7729 hstate.merge_hash (TYPE_HASH (type));
7730 itype = type_hash_canon (hstate.end (), itype);
7731
7732 return itype;
7733 }
7734
7735 /* Wrapper around build_range_type_1 with SHARED set to true. */
7736
7737 tree
7738 build_range_type (tree type, tree lowval, tree highval)
7739 {
7740 return build_range_type_1 (type, lowval, highval, true);
7741 }
7742
7743 /* Wrapper around build_range_type_1 with SHARED set to false. */
7744
7745 tree
7746 build_nonshared_range_type (tree type, tree lowval, tree highval)
7747 {
7748 return build_range_type_1 (type, lowval, highval, false);
7749 }
7750
7751 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7752 MAXVAL should be the maximum value in the domain
7753 (one less than the length of the array).
7754
7755 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7756 We don't enforce this limit, that is up to caller (e.g. language front end).
7757 The limit exists because the result is a signed type and we don't handle
7758 sizes that use more than one HOST_WIDE_INT. */
7759
7760 tree
7761 build_index_type (tree maxval)
7762 {
7763 return build_range_type (sizetype, size_zero_node, maxval);
7764 }
7765
7766 /* Return true if the debug information for TYPE, a subtype, should be emitted
7767 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7768 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7769 debug info and doesn't reflect the source code. */
7770
7771 bool
7772 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7773 {
7774 tree base_type = TREE_TYPE (type), low, high;
7775
7776 /* Subrange types have a base type which is an integral type. */
7777 if (!INTEGRAL_TYPE_P (base_type))
7778 return false;
7779
7780 /* Get the real bounds of the subtype. */
7781 if (lang_hooks.types.get_subrange_bounds)
7782 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7783 else
7784 {
7785 low = TYPE_MIN_VALUE (type);
7786 high = TYPE_MAX_VALUE (type);
7787 }
7788
7789 /* If the type and its base type have the same representation and the same
7790 name, then the type is not a subrange but a copy of the base type. */
7791 if ((TREE_CODE (base_type) == INTEGER_TYPE
7792 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7793 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7794 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7795 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7796 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7797 return false;
7798
7799 if (lowval)
7800 *lowval = low;
7801 if (highval)
7802 *highval = high;
7803 return true;
7804 }
7805
7806 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7807 and number of elements specified by the range of values of INDEX_TYPE.
7808 If SHARED is true, reuse such a type that has already been constructed. */
7809
7810 static tree
7811 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7812 {
7813 tree t;
7814
7815 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7816 {
7817 error ("arrays of functions are not meaningful");
7818 elt_type = integer_type_node;
7819 }
7820
7821 t = make_node (ARRAY_TYPE);
7822 TREE_TYPE (t) = elt_type;
7823 TYPE_DOMAIN (t) = index_type;
7824 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7825 layout_type (t);
7826
7827 /* If the element type is incomplete at this point we get marked for
7828 structural equality. Do not record these types in the canonical
7829 type hashtable. */
7830 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7831 return t;
7832
7833 if (shared)
7834 {
7835 inchash::hash hstate;
7836 hstate.add_object (TYPE_HASH (elt_type));
7837 if (index_type)
7838 hstate.add_object (TYPE_HASH (index_type));
7839 t = type_hash_canon (hstate.end (), t);
7840 }
7841
7842 if (TYPE_CANONICAL (t) == t)
7843 {
7844 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7845 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7846 SET_TYPE_STRUCTURAL_EQUALITY (t);
7847 else if (TYPE_CANONICAL (elt_type) != elt_type
7848 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7849 TYPE_CANONICAL (t)
7850 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7851 index_type
7852 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7853 shared);
7854 }
7855
7856 return t;
7857 }
7858
7859 /* Wrapper around build_array_type_1 with SHARED set to true. */
7860
7861 tree
7862 build_array_type (tree elt_type, tree index_type)
7863 {
7864 return build_array_type_1 (elt_type, index_type, true);
7865 }
7866
7867 /* Wrapper around build_array_type_1 with SHARED set to false. */
7868
7869 tree
7870 build_nonshared_array_type (tree elt_type, tree index_type)
7871 {
7872 return build_array_type_1 (elt_type, index_type, false);
7873 }
7874
7875 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7876 sizetype. */
7877
7878 tree
7879 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7880 {
7881 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7882 }
7883
7884 /* Recursively examines the array elements of TYPE, until a non-array
7885 element type is found. */
7886
7887 tree
7888 strip_array_types (tree type)
7889 {
7890 while (TREE_CODE (type) == ARRAY_TYPE)
7891 type = TREE_TYPE (type);
7892
7893 return type;
7894 }
7895
7896 /* Computes the canonical argument types from the argument type list
7897 ARGTYPES.
7898
7899 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7900 on entry to this function, or if any of the ARGTYPES are
7901 structural.
7902
7903 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7904 true on entry to this function, or if any of the ARGTYPES are
7905 non-canonical.
7906
7907 Returns a canonical argument list, which may be ARGTYPES when the
7908 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7909 true) or would not differ from ARGTYPES. */
7910
7911 static tree
7912 maybe_canonicalize_argtypes (tree argtypes,
7913 bool *any_structural_p,
7914 bool *any_noncanonical_p)
7915 {
7916 tree arg;
7917 bool any_noncanonical_argtypes_p = false;
7918
7919 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7920 {
7921 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7922 /* Fail gracefully by stating that the type is structural. */
7923 *any_structural_p = true;
7924 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7925 *any_structural_p = true;
7926 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7927 || TREE_PURPOSE (arg))
7928 /* If the argument has a default argument, we consider it
7929 non-canonical even though the type itself is canonical.
7930 That way, different variants of function and method types
7931 with default arguments will all point to the variant with
7932 no defaults as their canonical type. */
7933 any_noncanonical_argtypes_p = true;
7934 }
7935
7936 if (*any_structural_p)
7937 return argtypes;
7938
7939 if (any_noncanonical_argtypes_p)
7940 {
7941 /* Build the canonical list of argument types. */
7942 tree canon_argtypes = NULL_TREE;
7943 bool is_void = false;
7944
7945 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7946 {
7947 if (arg == void_list_node)
7948 is_void = true;
7949 else
7950 canon_argtypes = tree_cons (NULL_TREE,
7951 TYPE_CANONICAL (TREE_VALUE (arg)),
7952 canon_argtypes);
7953 }
7954
7955 canon_argtypes = nreverse (canon_argtypes);
7956 if (is_void)
7957 canon_argtypes = chainon (canon_argtypes, void_list_node);
7958
7959 /* There is a non-canonical type. */
7960 *any_noncanonical_p = true;
7961 return canon_argtypes;
7962 }
7963
7964 /* The canonical argument types are the same as ARGTYPES. */
7965 return argtypes;
7966 }
7967
7968 /* Construct, lay out and return
7969 the type of functions returning type VALUE_TYPE
7970 given arguments of types ARG_TYPES.
7971 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7972 are data type nodes for the arguments of the function.
7973 If such a type has already been constructed, reuse it. */
7974
7975 tree
7976 build_function_type (tree value_type, tree arg_types)
7977 {
7978 tree t;
7979 inchash::hash hstate;
7980 bool any_structural_p, any_noncanonical_p;
7981 tree canon_argtypes;
7982
7983 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7984 {
7985 error ("function return type cannot be function");
7986 value_type = integer_type_node;
7987 }
7988
7989 /* Make a node of the sort we want. */
7990 t = make_node (FUNCTION_TYPE);
7991 TREE_TYPE (t) = value_type;
7992 TYPE_ARG_TYPES (t) = arg_types;
7993
7994 /* If we already have such a type, use the old one. */
7995 hstate.add_object (TYPE_HASH (value_type));
7996 type_hash_list (arg_types, hstate);
7997 t = type_hash_canon (hstate.end (), t);
7998
7999 /* Set up the canonical type. */
8000 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8001 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8002 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8003 &any_structural_p,
8004 &any_noncanonical_p);
8005 if (any_structural_p)
8006 SET_TYPE_STRUCTURAL_EQUALITY (t);
8007 else if (any_noncanonical_p)
8008 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8009 canon_argtypes);
8010
8011 if (!COMPLETE_TYPE_P (t))
8012 layout_type (t);
8013 return t;
8014 }
8015
8016 /* Build a function type. The RETURN_TYPE is the type returned by the
8017 function. If VAARGS is set, no void_type_node is appended to the
8018 the list. ARGP must be always be terminated be a NULL_TREE. */
8019
8020 static tree
8021 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8022 {
8023 tree t, args, last;
8024
8025 t = va_arg (argp, tree);
8026 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8027 args = tree_cons (NULL_TREE, t, args);
8028
8029 if (vaargs)
8030 {
8031 last = args;
8032 if (args != NULL_TREE)
8033 args = nreverse (args);
8034 gcc_assert (last != void_list_node);
8035 }
8036 else if (args == NULL_TREE)
8037 args = void_list_node;
8038 else
8039 {
8040 last = args;
8041 args = nreverse (args);
8042 TREE_CHAIN (last) = void_list_node;
8043 }
8044 args = build_function_type (return_type, args);
8045
8046 return args;
8047 }
8048
8049 /* Build a function type. The RETURN_TYPE is the type returned by the
8050 function. If additional arguments are provided, they are
8051 additional argument types. The list of argument types must always
8052 be terminated by NULL_TREE. */
8053
8054 tree
8055 build_function_type_list (tree return_type, ...)
8056 {
8057 tree args;
8058 va_list p;
8059
8060 va_start (p, return_type);
8061 args = build_function_type_list_1 (false, return_type, p);
8062 va_end (p);
8063 return args;
8064 }
8065
8066 /* Build a variable argument function type. The RETURN_TYPE is the
8067 type returned by the function. If additional arguments are provided,
8068 they are additional argument types. The list of argument types must
8069 always be terminated by NULL_TREE. */
8070
8071 tree
8072 build_varargs_function_type_list (tree return_type, ...)
8073 {
8074 tree args;
8075 va_list p;
8076
8077 va_start (p, return_type);
8078 args = build_function_type_list_1 (true, return_type, p);
8079 va_end (p);
8080
8081 return args;
8082 }
8083
8084 /* Build a function type. RETURN_TYPE is the type returned by the
8085 function; VAARGS indicates whether the function takes varargs. The
8086 function takes N named arguments, the types of which are provided in
8087 ARG_TYPES. */
8088
8089 static tree
8090 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8091 tree *arg_types)
8092 {
8093 int i;
8094 tree t = vaargs ? NULL_TREE : void_list_node;
8095
8096 for (i = n - 1; i >= 0; i--)
8097 t = tree_cons (NULL_TREE, arg_types[i], t);
8098
8099 return build_function_type (return_type, t);
8100 }
8101
8102 /* Build a function type. RETURN_TYPE is the type returned by the
8103 function. The function takes N named arguments, the types of which
8104 are provided in ARG_TYPES. */
8105
8106 tree
8107 build_function_type_array (tree return_type, int n, tree *arg_types)
8108 {
8109 return build_function_type_array_1 (false, return_type, n, arg_types);
8110 }
8111
8112 /* Build a variable argument function type. RETURN_TYPE is the type
8113 returned by the function. The function takes N named arguments, the
8114 types of which are provided in ARG_TYPES. */
8115
8116 tree
8117 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8118 {
8119 return build_function_type_array_1 (true, return_type, n, arg_types);
8120 }
8121
8122 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8123 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8124 for the method. An implicit additional parameter (of type
8125 pointer-to-BASETYPE) is added to the ARGTYPES. */
8126
8127 tree
8128 build_method_type_directly (tree basetype,
8129 tree rettype,
8130 tree argtypes)
8131 {
8132 tree t;
8133 tree ptype;
8134 inchash::hash hstate;
8135 bool any_structural_p, any_noncanonical_p;
8136 tree canon_argtypes;
8137
8138 /* Make a node of the sort we want. */
8139 t = make_node (METHOD_TYPE);
8140
8141 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8142 TREE_TYPE (t) = rettype;
8143 ptype = build_pointer_type (basetype);
8144
8145 /* The actual arglist for this function includes a "hidden" argument
8146 which is "this". Put it into the list of argument types. */
8147 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8148 TYPE_ARG_TYPES (t) = argtypes;
8149
8150 /* If we already have such a type, use the old one. */
8151 hstate.add_object (TYPE_HASH (basetype));
8152 hstate.add_object (TYPE_HASH (rettype));
8153 type_hash_list (argtypes, hstate);
8154 t = type_hash_canon (hstate.end (), t);
8155
8156 /* Set up the canonical type. */
8157 any_structural_p
8158 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8159 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8160 any_noncanonical_p
8161 = (TYPE_CANONICAL (basetype) != basetype
8162 || TYPE_CANONICAL (rettype) != rettype);
8163 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8164 &any_structural_p,
8165 &any_noncanonical_p);
8166 if (any_structural_p)
8167 SET_TYPE_STRUCTURAL_EQUALITY (t);
8168 else if (any_noncanonical_p)
8169 TYPE_CANONICAL (t)
8170 = build_method_type_directly (TYPE_CANONICAL (basetype),
8171 TYPE_CANONICAL (rettype),
8172 canon_argtypes);
8173 if (!COMPLETE_TYPE_P (t))
8174 layout_type (t);
8175
8176 return t;
8177 }
8178
8179 /* Construct, lay out and return the type of methods belonging to class
8180 BASETYPE and whose arguments and values are described by TYPE.
8181 If that type exists already, reuse it.
8182 TYPE must be a FUNCTION_TYPE node. */
8183
8184 tree
8185 build_method_type (tree basetype, tree type)
8186 {
8187 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8188
8189 return build_method_type_directly (basetype,
8190 TREE_TYPE (type),
8191 TYPE_ARG_TYPES (type));
8192 }
8193
8194 /* Construct, lay out and return the type of offsets to a value
8195 of type TYPE, within an object of type BASETYPE.
8196 If a suitable offset type exists already, reuse it. */
8197
8198 tree
8199 build_offset_type (tree basetype, tree type)
8200 {
8201 tree t;
8202 inchash::hash hstate;
8203
8204 /* Make a node of the sort we want. */
8205 t = make_node (OFFSET_TYPE);
8206
8207 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8208 TREE_TYPE (t) = type;
8209
8210 /* If we already have such a type, use the old one. */
8211 hstate.add_object (TYPE_HASH (basetype));
8212 hstate.add_object (TYPE_HASH (type));
8213 t = type_hash_canon (hstate.end (), t);
8214
8215 if (!COMPLETE_TYPE_P (t))
8216 layout_type (t);
8217
8218 if (TYPE_CANONICAL (t) == t)
8219 {
8220 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8221 || TYPE_STRUCTURAL_EQUALITY_P (type))
8222 SET_TYPE_STRUCTURAL_EQUALITY (t);
8223 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8224 || TYPE_CANONICAL (type) != type)
8225 TYPE_CANONICAL (t)
8226 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8227 TYPE_CANONICAL (type));
8228 }
8229
8230 return t;
8231 }
8232
8233 /* Create a complex type whose components are COMPONENT_TYPE. */
8234
8235 tree
8236 build_complex_type (tree component_type)
8237 {
8238 tree t;
8239 inchash::hash hstate;
8240
8241 gcc_assert (INTEGRAL_TYPE_P (component_type)
8242 || SCALAR_FLOAT_TYPE_P (component_type)
8243 || FIXED_POINT_TYPE_P (component_type));
8244
8245 /* Make a node of the sort we want. */
8246 t = make_node (COMPLEX_TYPE);
8247
8248 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8249
8250 /* If we already have such a type, use the old one. */
8251 hstate.add_object (TYPE_HASH (component_type));
8252 t = type_hash_canon (hstate.end (), t);
8253
8254 if (!COMPLETE_TYPE_P (t))
8255 layout_type (t);
8256
8257 if (TYPE_CANONICAL (t) == t)
8258 {
8259 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8260 SET_TYPE_STRUCTURAL_EQUALITY (t);
8261 else if (TYPE_CANONICAL (component_type) != component_type)
8262 TYPE_CANONICAL (t)
8263 = build_complex_type (TYPE_CANONICAL (component_type));
8264 }
8265
8266 /* We need to create a name, since complex is a fundamental type. */
8267 if (! TYPE_NAME (t))
8268 {
8269 const char *name;
8270 if (component_type == char_type_node)
8271 name = "complex char";
8272 else if (component_type == signed_char_type_node)
8273 name = "complex signed char";
8274 else if (component_type == unsigned_char_type_node)
8275 name = "complex unsigned char";
8276 else if (component_type == short_integer_type_node)
8277 name = "complex short int";
8278 else if (component_type == short_unsigned_type_node)
8279 name = "complex short unsigned int";
8280 else if (component_type == integer_type_node)
8281 name = "complex int";
8282 else if (component_type == unsigned_type_node)
8283 name = "complex unsigned int";
8284 else if (component_type == long_integer_type_node)
8285 name = "complex long int";
8286 else if (component_type == long_unsigned_type_node)
8287 name = "complex long unsigned int";
8288 else if (component_type == long_long_integer_type_node)
8289 name = "complex long long int";
8290 else if (component_type == long_long_unsigned_type_node)
8291 name = "complex long long unsigned int";
8292 else
8293 name = 0;
8294
8295 if (name != 0)
8296 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8297 get_identifier (name), t);
8298 }
8299
8300 return build_qualified_type (t, TYPE_QUALS (component_type));
8301 }
8302
8303 /* If TYPE is a real or complex floating-point type and the target
8304 does not directly support arithmetic on TYPE then return the wider
8305 type to be used for arithmetic on TYPE. Otherwise, return
8306 NULL_TREE. */
8307
8308 tree
8309 excess_precision_type (tree type)
8310 {
8311 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8312 {
8313 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8314 switch (TREE_CODE (type))
8315 {
8316 case REAL_TYPE:
8317 switch (flt_eval_method)
8318 {
8319 case 1:
8320 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8321 return double_type_node;
8322 break;
8323 case 2:
8324 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8325 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8326 return long_double_type_node;
8327 break;
8328 default:
8329 gcc_unreachable ();
8330 }
8331 break;
8332 case COMPLEX_TYPE:
8333 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8334 return NULL_TREE;
8335 switch (flt_eval_method)
8336 {
8337 case 1:
8338 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8339 return complex_double_type_node;
8340 break;
8341 case 2:
8342 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8343 || (TYPE_MODE (TREE_TYPE (type))
8344 == TYPE_MODE (double_type_node)))
8345 return complex_long_double_type_node;
8346 break;
8347 default:
8348 gcc_unreachable ();
8349 }
8350 break;
8351 default:
8352 break;
8353 }
8354 }
8355 return NULL_TREE;
8356 }
8357 \f
8358 /* Return OP, stripped of any conversions to wider types as much as is safe.
8359 Converting the value back to OP's type makes a value equivalent to OP.
8360
8361 If FOR_TYPE is nonzero, we return a value which, if converted to
8362 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8363
8364 OP must have integer, real or enumeral type. Pointers are not allowed!
8365
8366 There are some cases where the obvious value we could return
8367 would regenerate to OP if converted to OP's type,
8368 but would not extend like OP to wider types.
8369 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8370 For example, if OP is (unsigned short)(signed char)-1,
8371 we avoid returning (signed char)-1 if FOR_TYPE is int,
8372 even though extending that to an unsigned short would regenerate OP,
8373 since the result of extending (signed char)-1 to (int)
8374 is different from (int) OP. */
8375
8376 tree
8377 get_unwidened (tree op, tree for_type)
8378 {
8379 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8380 tree type = TREE_TYPE (op);
8381 unsigned final_prec
8382 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8383 int uns
8384 = (for_type != 0 && for_type != type
8385 && final_prec > TYPE_PRECISION (type)
8386 && TYPE_UNSIGNED (type));
8387 tree win = op;
8388
8389 while (CONVERT_EXPR_P (op))
8390 {
8391 int bitschange;
8392
8393 /* TYPE_PRECISION on vector types has different meaning
8394 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8395 so avoid them here. */
8396 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8397 break;
8398
8399 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8400 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8401
8402 /* Truncations are many-one so cannot be removed.
8403 Unless we are later going to truncate down even farther. */
8404 if (bitschange < 0
8405 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8406 break;
8407
8408 /* See what's inside this conversion. If we decide to strip it,
8409 we will set WIN. */
8410 op = TREE_OPERAND (op, 0);
8411
8412 /* If we have not stripped any zero-extensions (uns is 0),
8413 we can strip any kind of extension.
8414 If we have previously stripped a zero-extension,
8415 only zero-extensions can safely be stripped.
8416 Any extension can be stripped if the bits it would produce
8417 are all going to be discarded later by truncating to FOR_TYPE. */
8418
8419 if (bitschange > 0)
8420 {
8421 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8422 win = op;
8423 /* TYPE_UNSIGNED says whether this is a zero-extension.
8424 Let's avoid computing it if it does not affect WIN
8425 and if UNS will not be needed again. */
8426 if ((uns
8427 || CONVERT_EXPR_P (op))
8428 && TYPE_UNSIGNED (TREE_TYPE (op)))
8429 {
8430 uns = 1;
8431 win = op;
8432 }
8433 }
8434 }
8435
8436 /* If we finally reach a constant see if it fits in for_type and
8437 in that case convert it. */
8438 if (for_type
8439 && TREE_CODE (win) == INTEGER_CST
8440 && TREE_TYPE (win) != for_type
8441 && int_fits_type_p (win, for_type))
8442 win = fold_convert (for_type, win);
8443
8444 return win;
8445 }
8446 \f
8447 /* Return OP or a simpler expression for a narrower value
8448 which can be sign-extended or zero-extended to give back OP.
8449 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8450 or 0 if the value should be sign-extended. */
8451
8452 tree
8453 get_narrower (tree op, int *unsignedp_ptr)
8454 {
8455 int uns = 0;
8456 int first = 1;
8457 tree win = op;
8458 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8459
8460 while (TREE_CODE (op) == NOP_EXPR)
8461 {
8462 int bitschange
8463 = (TYPE_PRECISION (TREE_TYPE (op))
8464 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8465
8466 /* Truncations are many-one so cannot be removed. */
8467 if (bitschange < 0)
8468 break;
8469
8470 /* See what's inside this conversion. If we decide to strip it,
8471 we will set WIN. */
8472
8473 if (bitschange > 0)
8474 {
8475 op = TREE_OPERAND (op, 0);
8476 /* An extension: the outermost one can be stripped,
8477 but remember whether it is zero or sign extension. */
8478 if (first)
8479 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8480 /* Otherwise, if a sign extension has been stripped,
8481 only sign extensions can now be stripped;
8482 if a zero extension has been stripped, only zero-extensions. */
8483 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8484 break;
8485 first = 0;
8486 }
8487 else /* bitschange == 0 */
8488 {
8489 /* A change in nominal type can always be stripped, but we must
8490 preserve the unsignedness. */
8491 if (first)
8492 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8493 first = 0;
8494 op = TREE_OPERAND (op, 0);
8495 /* Keep trying to narrow, but don't assign op to win if it
8496 would turn an integral type into something else. */
8497 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8498 continue;
8499 }
8500
8501 win = op;
8502 }
8503
8504 if (TREE_CODE (op) == COMPONENT_REF
8505 /* Since type_for_size always gives an integer type. */
8506 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8507 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8508 /* Ensure field is laid out already. */
8509 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8510 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8511 {
8512 unsigned HOST_WIDE_INT innerprec
8513 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8514 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8515 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8516 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8517
8518 /* We can get this structure field in a narrower type that fits it,
8519 but the resulting extension to its nominal type (a fullword type)
8520 must satisfy the same conditions as for other extensions.
8521
8522 Do this only for fields that are aligned (not bit-fields),
8523 because when bit-field insns will be used there is no
8524 advantage in doing this. */
8525
8526 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8527 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8528 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8529 && type != 0)
8530 {
8531 if (first)
8532 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8533 win = fold_convert (type, op);
8534 }
8535 }
8536
8537 *unsignedp_ptr = uns;
8538 return win;
8539 }
8540 \f
8541 /* Returns true if integer constant C has a value that is permissible
8542 for type TYPE (an INTEGER_TYPE). */
8543
8544 bool
8545 int_fits_type_p (const_tree c, const_tree type)
8546 {
8547 tree type_low_bound, type_high_bound;
8548 bool ok_for_low_bound, ok_for_high_bound;
8549 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8550
8551 retry:
8552 type_low_bound = TYPE_MIN_VALUE (type);
8553 type_high_bound = TYPE_MAX_VALUE (type);
8554
8555 /* If at least one bound of the type is a constant integer, we can check
8556 ourselves and maybe make a decision. If no such decision is possible, but
8557 this type is a subtype, try checking against that. Otherwise, use
8558 fits_to_tree_p, which checks against the precision.
8559
8560 Compute the status for each possibly constant bound, and return if we see
8561 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8562 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8563 for "constant known to fit". */
8564
8565 /* Check if c >= type_low_bound. */
8566 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8567 {
8568 if (tree_int_cst_lt (c, type_low_bound))
8569 return false;
8570 ok_for_low_bound = true;
8571 }
8572 else
8573 ok_for_low_bound = false;
8574
8575 /* Check if c <= type_high_bound. */
8576 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8577 {
8578 if (tree_int_cst_lt (type_high_bound, c))
8579 return false;
8580 ok_for_high_bound = true;
8581 }
8582 else
8583 ok_for_high_bound = false;
8584
8585 /* If the constant fits both bounds, the result is known. */
8586 if (ok_for_low_bound && ok_for_high_bound)
8587 return true;
8588
8589 /* Perform some generic filtering which may allow making a decision
8590 even if the bounds are not constant. First, negative integers
8591 never fit in unsigned types, */
8592 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (c))
8593 return false;
8594
8595 /* Second, narrower types always fit in wider ones. */
8596 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8597 return true;
8598
8599 /* Third, unsigned integers with top bit set never fit signed types. */
8600 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8601 {
8602 int prec = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (c))) - 1;
8603 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8604 {
8605 /* When a tree_cst is converted to a wide-int, the precision
8606 is taken from the type. However, if the precision of the
8607 mode underneath the type is smaller than that, it is
8608 possible that the value will not fit. The test below
8609 fails if any bit is set between the sign bit of the
8610 underlying mode and the top bit of the type. */
8611 if (wi::ne_p (wi::zext (c, prec - 1), c))
8612 return false;
8613 }
8614 else if (wi::neg_p (c))
8615 return false;
8616 }
8617
8618 /* If we haven't been able to decide at this point, there nothing more we
8619 can check ourselves here. Look at the base type if we have one and it
8620 has the same precision. */
8621 if (TREE_CODE (type) == INTEGER_TYPE
8622 && TREE_TYPE (type) != 0
8623 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8624 {
8625 type = TREE_TYPE (type);
8626 goto retry;
8627 }
8628
8629 /* Or to fits_to_tree_p, if nothing else. */
8630 return wi::fits_to_tree_p (c, type);
8631 }
8632
8633 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8634 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8635 represented (assuming two's-complement arithmetic) within the bit
8636 precision of the type are returned instead. */
8637
8638 void
8639 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8640 {
8641 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8642 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8643 wi::to_mpz (TYPE_MIN_VALUE (type), min, TYPE_SIGN (type));
8644 else
8645 {
8646 if (TYPE_UNSIGNED (type))
8647 mpz_set_ui (min, 0);
8648 else
8649 {
8650 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8651 wi::to_mpz (mn, min, SIGNED);
8652 }
8653 }
8654
8655 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8656 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8657 wi::to_mpz (TYPE_MAX_VALUE (type), max, TYPE_SIGN (type));
8658 else
8659 {
8660 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8661 wi::to_mpz (mn, max, TYPE_SIGN (type));
8662 }
8663 }
8664
8665 /* Return true if VAR is an automatic variable defined in function FN. */
8666
8667 bool
8668 auto_var_in_fn_p (const_tree var, const_tree fn)
8669 {
8670 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8671 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8672 || TREE_CODE (var) == PARM_DECL)
8673 && ! TREE_STATIC (var))
8674 || TREE_CODE (var) == LABEL_DECL
8675 || TREE_CODE (var) == RESULT_DECL));
8676 }
8677
8678 /* Subprogram of following function. Called by walk_tree.
8679
8680 Return *TP if it is an automatic variable or parameter of the
8681 function passed in as DATA. */
8682
8683 static tree
8684 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8685 {
8686 tree fn = (tree) data;
8687
8688 if (TYPE_P (*tp))
8689 *walk_subtrees = 0;
8690
8691 else if (DECL_P (*tp)
8692 && auto_var_in_fn_p (*tp, fn))
8693 return *tp;
8694
8695 return NULL_TREE;
8696 }
8697
8698 /* Returns true if T is, contains, or refers to a type with variable
8699 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8700 arguments, but not the return type. If FN is nonzero, only return
8701 true if a modifier of the type or position of FN is a variable or
8702 parameter inside FN.
8703
8704 This concept is more general than that of C99 'variably modified types':
8705 in C99, a struct type is never variably modified because a VLA may not
8706 appear as a structure member. However, in GNU C code like:
8707
8708 struct S { int i[f()]; };
8709
8710 is valid, and other languages may define similar constructs. */
8711
8712 bool
8713 variably_modified_type_p (tree type, tree fn)
8714 {
8715 tree t;
8716
8717 /* Test if T is either variable (if FN is zero) or an expression containing
8718 a variable in FN. If TYPE isn't gimplified, return true also if
8719 gimplify_one_sizepos would gimplify the expression into a local
8720 variable. */
8721 #define RETURN_TRUE_IF_VAR(T) \
8722 do { tree _t = (T); \
8723 if (_t != NULL_TREE \
8724 && _t != error_mark_node \
8725 && TREE_CODE (_t) != INTEGER_CST \
8726 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8727 && (!fn \
8728 || (!TYPE_SIZES_GIMPLIFIED (type) \
8729 && !is_gimple_sizepos (_t)) \
8730 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8731 return true; } while (0)
8732
8733 if (type == error_mark_node)
8734 return false;
8735
8736 /* If TYPE itself has variable size, it is variably modified. */
8737 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8738 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8739
8740 switch (TREE_CODE (type))
8741 {
8742 case POINTER_TYPE:
8743 case REFERENCE_TYPE:
8744 case VECTOR_TYPE:
8745 if (variably_modified_type_p (TREE_TYPE (type), fn))
8746 return true;
8747 break;
8748
8749 case FUNCTION_TYPE:
8750 case METHOD_TYPE:
8751 /* If TYPE is a function type, it is variably modified if the
8752 return type is variably modified. */
8753 if (variably_modified_type_p (TREE_TYPE (type), fn))
8754 return true;
8755 break;
8756
8757 case INTEGER_TYPE:
8758 case REAL_TYPE:
8759 case FIXED_POINT_TYPE:
8760 case ENUMERAL_TYPE:
8761 case BOOLEAN_TYPE:
8762 /* Scalar types are variably modified if their end points
8763 aren't constant. */
8764 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8765 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8766 break;
8767
8768 case RECORD_TYPE:
8769 case UNION_TYPE:
8770 case QUAL_UNION_TYPE:
8771 /* We can't see if any of the fields are variably-modified by the
8772 definition we normally use, since that would produce infinite
8773 recursion via pointers. */
8774 /* This is variably modified if some field's type is. */
8775 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8776 if (TREE_CODE (t) == FIELD_DECL)
8777 {
8778 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8779 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8780 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8781
8782 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8783 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8784 }
8785 break;
8786
8787 case ARRAY_TYPE:
8788 /* Do not call ourselves to avoid infinite recursion. This is
8789 variably modified if the element type is. */
8790 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8791 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8792 break;
8793
8794 default:
8795 break;
8796 }
8797
8798 /* The current language may have other cases to check, but in general,
8799 all other types are not variably modified. */
8800 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8801
8802 #undef RETURN_TRUE_IF_VAR
8803 }
8804
8805 /* Given a DECL or TYPE, return the scope in which it was declared, or
8806 NULL_TREE if there is no containing scope. */
8807
8808 tree
8809 get_containing_scope (const_tree t)
8810 {
8811 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8812 }
8813
8814 /* Return the innermost context enclosing DECL that is
8815 a FUNCTION_DECL, or zero if none. */
8816
8817 tree
8818 decl_function_context (const_tree decl)
8819 {
8820 tree context;
8821
8822 if (TREE_CODE (decl) == ERROR_MARK)
8823 return 0;
8824
8825 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8826 where we look up the function at runtime. Such functions always take
8827 a first argument of type 'pointer to real context'.
8828
8829 C++ should really be fixed to use DECL_CONTEXT for the real context,
8830 and use something else for the "virtual context". */
8831 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8832 context
8833 = TYPE_MAIN_VARIANT
8834 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8835 else
8836 context = DECL_CONTEXT (decl);
8837
8838 while (context && TREE_CODE (context) != FUNCTION_DECL)
8839 {
8840 if (TREE_CODE (context) == BLOCK)
8841 context = BLOCK_SUPERCONTEXT (context);
8842 else
8843 context = get_containing_scope (context);
8844 }
8845
8846 return context;
8847 }
8848
8849 /* Return the innermost context enclosing DECL that is
8850 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8851 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8852
8853 tree
8854 decl_type_context (const_tree decl)
8855 {
8856 tree context = DECL_CONTEXT (decl);
8857
8858 while (context)
8859 switch (TREE_CODE (context))
8860 {
8861 case NAMESPACE_DECL:
8862 case TRANSLATION_UNIT_DECL:
8863 return NULL_TREE;
8864
8865 case RECORD_TYPE:
8866 case UNION_TYPE:
8867 case QUAL_UNION_TYPE:
8868 return context;
8869
8870 case TYPE_DECL:
8871 case FUNCTION_DECL:
8872 context = DECL_CONTEXT (context);
8873 break;
8874
8875 case BLOCK:
8876 context = BLOCK_SUPERCONTEXT (context);
8877 break;
8878
8879 default:
8880 gcc_unreachable ();
8881 }
8882
8883 return NULL_TREE;
8884 }
8885
8886 /* CALL is a CALL_EXPR. Return the declaration for the function
8887 called, or NULL_TREE if the called function cannot be
8888 determined. */
8889
8890 tree
8891 get_callee_fndecl (const_tree call)
8892 {
8893 tree addr;
8894
8895 if (call == error_mark_node)
8896 return error_mark_node;
8897
8898 /* It's invalid to call this function with anything but a
8899 CALL_EXPR. */
8900 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8901
8902 /* The first operand to the CALL is the address of the function
8903 called. */
8904 addr = CALL_EXPR_FN (call);
8905
8906 /* If there is no function, return early. */
8907 if (addr == NULL_TREE)
8908 return NULL_TREE;
8909
8910 STRIP_NOPS (addr);
8911
8912 /* If this is a readonly function pointer, extract its initial value. */
8913 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8914 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8915 && DECL_INITIAL (addr))
8916 addr = DECL_INITIAL (addr);
8917
8918 /* If the address is just `&f' for some function `f', then we know
8919 that `f' is being called. */
8920 if (TREE_CODE (addr) == ADDR_EXPR
8921 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8922 return TREE_OPERAND (addr, 0);
8923
8924 /* We couldn't figure out what was being called. */
8925 return NULL_TREE;
8926 }
8927
8928 /* Print debugging information about tree nodes generated during the compile,
8929 and any language-specific information. */
8930
8931 void
8932 dump_tree_statistics (void)
8933 {
8934 if (GATHER_STATISTICS)
8935 {
8936 int i;
8937 int total_nodes, total_bytes;
8938 fprintf (stderr, "Kind Nodes Bytes\n");
8939 fprintf (stderr, "---------------------------------------\n");
8940 total_nodes = total_bytes = 0;
8941 for (i = 0; i < (int) all_kinds; i++)
8942 {
8943 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8944 tree_node_counts[i], tree_node_sizes[i]);
8945 total_nodes += tree_node_counts[i];
8946 total_bytes += tree_node_sizes[i];
8947 }
8948 fprintf (stderr, "---------------------------------------\n");
8949 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8950 fprintf (stderr, "---------------------------------------\n");
8951 fprintf (stderr, "Code Nodes\n");
8952 fprintf (stderr, "----------------------------\n");
8953 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8954 fprintf (stderr, "%-20s %7d\n", get_tree_code_name ((enum tree_code) i),
8955 tree_code_counts[i]);
8956 fprintf (stderr, "----------------------------\n");
8957 ssanames_print_statistics ();
8958 phinodes_print_statistics ();
8959 }
8960 else
8961 fprintf (stderr, "(No per-node statistics)\n");
8962
8963 print_type_hash_statistics ();
8964 print_debug_expr_statistics ();
8965 print_value_expr_statistics ();
8966 lang_hooks.print_statistics ();
8967 }
8968 \f
8969 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8970
8971 /* Generate a crc32 of a byte. */
8972
8973 static unsigned
8974 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
8975 {
8976 unsigned ix;
8977
8978 for (ix = bits; ix--; value <<= 1)
8979 {
8980 unsigned feedback;
8981
8982 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8983 chksum <<= 1;
8984 chksum ^= feedback;
8985 }
8986 return chksum;
8987 }
8988
8989 /* Generate a crc32 of a 32-bit unsigned. */
8990
8991 unsigned
8992 crc32_unsigned (unsigned chksum, unsigned value)
8993 {
8994 return crc32_unsigned_bits (chksum, value, 32);
8995 }
8996
8997 /* Generate a crc32 of a byte. */
8998
8999 unsigned
9000 crc32_byte (unsigned chksum, char byte)
9001 {
9002 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
9003 }
9004
9005 /* Generate a crc32 of a string. */
9006
9007 unsigned
9008 crc32_string (unsigned chksum, const char *string)
9009 {
9010 do
9011 {
9012 chksum = crc32_byte (chksum, *string);
9013 }
9014 while (*string++);
9015 return chksum;
9016 }
9017
9018 /* P is a string that will be used in a symbol. Mask out any characters
9019 that are not valid in that context. */
9020
9021 void
9022 clean_symbol_name (char *p)
9023 {
9024 for (; *p; p++)
9025 if (! (ISALNUM (*p)
9026 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9027 || *p == '$'
9028 #endif
9029 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9030 || *p == '.'
9031 #endif
9032 ))
9033 *p = '_';
9034 }
9035
9036 /* Generate a name for a special-purpose function.
9037 The generated name may need to be unique across the whole link.
9038 Changes to this function may also require corresponding changes to
9039 xstrdup_mask_random.
9040 TYPE is some string to identify the purpose of this function to the
9041 linker or collect2; it must start with an uppercase letter,
9042 one of:
9043 I - for constructors
9044 D - for destructors
9045 N - for C++ anonymous namespaces
9046 F - for DWARF unwind frame information. */
9047
9048 tree
9049 get_file_function_name (const char *type)
9050 {
9051 char *buf;
9052 const char *p;
9053 char *q;
9054
9055 /* If we already have a name we know to be unique, just use that. */
9056 if (first_global_object_name)
9057 p = q = ASTRDUP (first_global_object_name);
9058 /* If the target is handling the constructors/destructors, they
9059 will be local to this file and the name is only necessary for
9060 debugging purposes.
9061 We also assign sub_I and sub_D sufixes to constructors called from
9062 the global static constructors. These are always local. */
9063 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9064 || (strncmp (type, "sub_", 4) == 0
9065 && (type[4] == 'I' || type[4] == 'D')))
9066 {
9067 const char *file = main_input_filename;
9068 if (! file)
9069 file = LOCATION_FILE (input_location);
9070 /* Just use the file's basename, because the full pathname
9071 might be quite long. */
9072 p = q = ASTRDUP (lbasename (file));
9073 }
9074 else
9075 {
9076 /* Otherwise, the name must be unique across the entire link.
9077 We don't have anything that we know to be unique to this translation
9078 unit, so use what we do have and throw in some randomness. */
9079 unsigned len;
9080 const char *name = weak_global_object_name;
9081 const char *file = main_input_filename;
9082
9083 if (! name)
9084 name = "";
9085 if (! file)
9086 file = LOCATION_FILE (input_location);
9087
9088 len = strlen (file);
9089 q = (char *) alloca (9 + 17 + len + 1);
9090 memcpy (q, file, len + 1);
9091
9092 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9093 crc32_string (0, name), get_random_seed (false));
9094
9095 p = q;
9096 }
9097
9098 clean_symbol_name (q);
9099 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9100 + strlen (type));
9101
9102 /* Set up the name of the file-level functions we may need.
9103 Use a global object (which is already required to be unique over
9104 the program) rather than the file name (which imposes extra
9105 constraints). */
9106 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9107
9108 return get_identifier (buf);
9109 }
9110 \f
9111 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9112
9113 /* Complain that the tree code of NODE does not match the expected 0
9114 terminated list of trailing codes. The trailing code list can be
9115 empty, for a more vague error message. FILE, LINE, and FUNCTION
9116 are of the caller. */
9117
9118 void
9119 tree_check_failed (const_tree node, const char *file,
9120 int line, const char *function, ...)
9121 {
9122 va_list args;
9123 const char *buffer;
9124 unsigned length = 0;
9125 enum tree_code code;
9126
9127 va_start (args, function);
9128 while ((code = (enum tree_code) va_arg (args, int)))
9129 length += 4 + strlen (get_tree_code_name (code));
9130 va_end (args);
9131 if (length)
9132 {
9133 char *tmp;
9134 va_start (args, function);
9135 length += strlen ("expected ");
9136 buffer = tmp = (char *) alloca (length);
9137 length = 0;
9138 while ((code = (enum tree_code) va_arg (args, int)))
9139 {
9140 const char *prefix = length ? " or " : "expected ";
9141
9142 strcpy (tmp + length, prefix);
9143 length += strlen (prefix);
9144 strcpy (tmp + length, get_tree_code_name (code));
9145 length += strlen (get_tree_code_name (code));
9146 }
9147 va_end (args);
9148 }
9149 else
9150 buffer = "unexpected node";
9151
9152 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9153 buffer, get_tree_code_name (TREE_CODE (node)),
9154 function, trim_filename (file), line);
9155 }
9156
9157 /* Complain that the tree code of NODE does match the expected 0
9158 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9159 the caller. */
9160
9161 void
9162 tree_not_check_failed (const_tree node, const char *file,
9163 int line, const char *function, ...)
9164 {
9165 va_list args;
9166 char *buffer;
9167 unsigned length = 0;
9168 enum tree_code code;
9169
9170 va_start (args, function);
9171 while ((code = (enum tree_code) va_arg (args, int)))
9172 length += 4 + strlen (get_tree_code_name (code));
9173 va_end (args);
9174 va_start (args, function);
9175 buffer = (char *) alloca (length);
9176 length = 0;
9177 while ((code = (enum tree_code) va_arg (args, int)))
9178 {
9179 if (length)
9180 {
9181 strcpy (buffer + length, " or ");
9182 length += 4;
9183 }
9184 strcpy (buffer + length, get_tree_code_name (code));
9185 length += strlen (get_tree_code_name (code));
9186 }
9187 va_end (args);
9188
9189 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9190 buffer, get_tree_code_name (TREE_CODE (node)),
9191 function, trim_filename (file), line);
9192 }
9193
9194 /* Similar to tree_check_failed, except that we check for a class of tree
9195 code, given in CL. */
9196
9197 void
9198 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9199 const char *file, int line, const char *function)
9200 {
9201 internal_error
9202 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9203 TREE_CODE_CLASS_STRING (cl),
9204 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9205 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9206 }
9207
9208 /* Similar to tree_check_failed, except that instead of specifying a
9209 dozen codes, use the knowledge that they're all sequential. */
9210
9211 void
9212 tree_range_check_failed (const_tree node, const char *file, int line,
9213 const char *function, enum tree_code c1,
9214 enum tree_code c2)
9215 {
9216 char *buffer;
9217 unsigned length = 0;
9218 unsigned int c;
9219
9220 for (c = c1; c <= c2; ++c)
9221 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9222
9223 length += strlen ("expected ");
9224 buffer = (char *) alloca (length);
9225 length = 0;
9226
9227 for (c = c1; c <= c2; ++c)
9228 {
9229 const char *prefix = length ? " or " : "expected ";
9230
9231 strcpy (buffer + length, prefix);
9232 length += strlen (prefix);
9233 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9234 length += strlen (get_tree_code_name ((enum tree_code) c));
9235 }
9236
9237 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9238 buffer, get_tree_code_name (TREE_CODE (node)),
9239 function, trim_filename (file), line);
9240 }
9241
9242
9243 /* Similar to tree_check_failed, except that we check that a tree does
9244 not have the specified code, given in CL. */
9245
9246 void
9247 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9248 const char *file, int line, const char *function)
9249 {
9250 internal_error
9251 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9252 TREE_CODE_CLASS_STRING (cl),
9253 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9254 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9255 }
9256
9257
9258 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9259
9260 void
9261 omp_clause_check_failed (const_tree node, const char *file, int line,
9262 const char *function, enum omp_clause_code code)
9263 {
9264 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9265 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9266 function, trim_filename (file), line);
9267 }
9268
9269
9270 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9271
9272 void
9273 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9274 const char *function, enum omp_clause_code c1,
9275 enum omp_clause_code c2)
9276 {
9277 char *buffer;
9278 unsigned length = 0;
9279 unsigned int c;
9280
9281 for (c = c1; c <= c2; ++c)
9282 length += 4 + strlen (omp_clause_code_name[c]);
9283
9284 length += strlen ("expected ");
9285 buffer = (char *) alloca (length);
9286 length = 0;
9287
9288 for (c = c1; c <= c2; ++c)
9289 {
9290 const char *prefix = length ? " or " : "expected ";
9291
9292 strcpy (buffer + length, prefix);
9293 length += strlen (prefix);
9294 strcpy (buffer + length, omp_clause_code_name[c]);
9295 length += strlen (omp_clause_code_name[c]);
9296 }
9297
9298 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9299 buffer, omp_clause_code_name[TREE_CODE (node)],
9300 function, trim_filename (file), line);
9301 }
9302
9303
9304 #undef DEFTREESTRUCT
9305 #define DEFTREESTRUCT(VAL, NAME) NAME,
9306
9307 static const char *ts_enum_names[] = {
9308 #include "treestruct.def"
9309 };
9310 #undef DEFTREESTRUCT
9311
9312 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9313
9314 /* Similar to tree_class_check_failed, except that we check for
9315 whether CODE contains the tree structure identified by EN. */
9316
9317 void
9318 tree_contains_struct_check_failed (const_tree node,
9319 const enum tree_node_structure_enum en,
9320 const char *file, int line,
9321 const char *function)
9322 {
9323 internal_error
9324 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9325 TS_ENUM_NAME (en),
9326 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9327 }
9328
9329
9330 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9331 (dynamically sized) vector. */
9332
9333 void
9334 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9335 const char *function)
9336 {
9337 internal_error
9338 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9339 idx + 1, len, function, trim_filename (file), line);
9340 }
9341
9342 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9343 (dynamically sized) vector. */
9344
9345 void
9346 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9347 const char *function)
9348 {
9349 internal_error
9350 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9351 idx + 1, len, function, trim_filename (file), line);
9352 }
9353
9354 /* Similar to above, except that the check is for the bounds of the operand
9355 vector of an expression node EXP. */
9356
9357 void
9358 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9359 int line, const char *function)
9360 {
9361 enum tree_code code = TREE_CODE (exp);
9362 internal_error
9363 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9364 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9365 function, trim_filename (file), line);
9366 }
9367
9368 /* Similar to above, except that the check is for the number of
9369 operands of an OMP_CLAUSE node. */
9370
9371 void
9372 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9373 int line, const char *function)
9374 {
9375 internal_error
9376 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9377 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9378 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9379 trim_filename (file), line);
9380 }
9381 #endif /* ENABLE_TREE_CHECKING */
9382 \f
9383 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9384 and mapped to the machine mode MODE. Initialize its fields and build
9385 the information necessary for debugging output. */
9386
9387 static tree
9388 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9389 {
9390 tree t;
9391 inchash::hash hstate;
9392
9393 t = make_node (VECTOR_TYPE);
9394 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9395 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9396 SET_TYPE_MODE (t, mode);
9397
9398 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9399 SET_TYPE_STRUCTURAL_EQUALITY (t);
9400 else if (TYPE_CANONICAL (innertype) != innertype
9401 || mode != VOIDmode)
9402 TYPE_CANONICAL (t)
9403 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9404
9405 layout_type (t);
9406
9407 hstate.add_wide_int (VECTOR_TYPE);
9408 hstate.add_wide_int (nunits);
9409 hstate.add_wide_int (mode);
9410 hstate.add_object (TYPE_HASH (TREE_TYPE (t)));
9411 t = type_hash_canon (hstate.end (), t);
9412
9413 /* We have built a main variant, based on the main variant of the
9414 inner type. Use it to build the variant we return. */
9415 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9416 && TREE_TYPE (t) != innertype)
9417 return build_type_attribute_qual_variant (t,
9418 TYPE_ATTRIBUTES (innertype),
9419 TYPE_QUALS (innertype));
9420
9421 return t;
9422 }
9423
9424 static tree
9425 make_or_reuse_type (unsigned size, int unsignedp)
9426 {
9427 if (size == INT_TYPE_SIZE)
9428 return unsignedp ? unsigned_type_node : integer_type_node;
9429 if (size == CHAR_TYPE_SIZE)
9430 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9431 if (size == SHORT_TYPE_SIZE)
9432 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9433 if (size == LONG_TYPE_SIZE)
9434 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9435 if (size == LONG_LONG_TYPE_SIZE)
9436 return (unsignedp ? long_long_unsigned_type_node
9437 : long_long_integer_type_node);
9438 if (size == 128 && int128_integer_type_node)
9439 return (unsignedp ? int128_unsigned_type_node
9440 : int128_integer_type_node);
9441
9442 if (unsignedp)
9443 return make_unsigned_type (size);
9444 else
9445 return make_signed_type (size);
9446 }
9447
9448 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9449
9450 static tree
9451 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9452 {
9453 if (satp)
9454 {
9455 if (size == SHORT_FRACT_TYPE_SIZE)
9456 return unsignedp ? sat_unsigned_short_fract_type_node
9457 : sat_short_fract_type_node;
9458 if (size == FRACT_TYPE_SIZE)
9459 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9460 if (size == LONG_FRACT_TYPE_SIZE)
9461 return unsignedp ? sat_unsigned_long_fract_type_node
9462 : sat_long_fract_type_node;
9463 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9464 return unsignedp ? sat_unsigned_long_long_fract_type_node
9465 : sat_long_long_fract_type_node;
9466 }
9467 else
9468 {
9469 if (size == SHORT_FRACT_TYPE_SIZE)
9470 return unsignedp ? unsigned_short_fract_type_node
9471 : short_fract_type_node;
9472 if (size == FRACT_TYPE_SIZE)
9473 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9474 if (size == LONG_FRACT_TYPE_SIZE)
9475 return unsignedp ? unsigned_long_fract_type_node
9476 : long_fract_type_node;
9477 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9478 return unsignedp ? unsigned_long_long_fract_type_node
9479 : long_long_fract_type_node;
9480 }
9481
9482 return make_fract_type (size, unsignedp, satp);
9483 }
9484
9485 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9486
9487 static tree
9488 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9489 {
9490 if (satp)
9491 {
9492 if (size == SHORT_ACCUM_TYPE_SIZE)
9493 return unsignedp ? sat_unsigned_short_accum_type_node
9494 : sat_short_accum_type_node;
9495 if (size == ACCUM_TYPE_SIZE)
9496 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9497 if (size == LONG_ACCUM_TYPE_SIZE)
9498 return unsignedp ? sat_unsigned_long_accum_type_node
9499 : sat_long_accum_type_node;
9500 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9501 return unsignedp ? sat_unsigned_long_long_accum_type_node
9502 : sat_long_long_accum_type_node;
9503 }
9504 else
9505 {
9506 if (size == SHORT_ACCUM_TYPE_SIZE)
9507 return unsignedp ? unsigned_short_accum_type_node
9508 : short_accum_type_node;
9509 if (size == ACCUM_TYPE_SIZE)
9510 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9511 if (size == LONG_ACCUM_TYPE_SIZE)
9512 return unsignedp ? unsigned_long_accum_type_node
9513 : long_accum_type_node;
9514 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9515 return unsignedp ? unsigned_long_long_accum_type_node
9516 : long_long_accum_type_node;
9517 }
9518
9519 return make_accum_type (size, unsignedp, satp);
9520 }
9521
9522
9523 /* Create an atomic variant node for TYPE. This routine is called
9524 during initialization of data types to create the 5 basic atomic
9525 types. The generic build_variant_type function requires these to
9526 already be set up in order to function properly, so cannot be
9527 called from there. If ALIGN is non-zero, then ensure alignment is
9528 overridden to this value. */
9529
9530 static tree
9531 build_atomic_base (tree type, unsigned int align)
9532 {
9533 tree t;
9534
9535 /* Make sure its not already registered. */
9536 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9537 return t;
9538
9539 t = build_variant_type_copy (type);
9540 set_type_quals (t, TYPE_QUAL_ATOMIC);
9541
9542 if (align)
9543 TYPE_ALIGN (t) = align;
9544
9545 return t;
9546 }
9547
9548 /* Create nodes for all integer types (and error_mark_node) using the sizes
9549 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9550 SHORT_DOUBLE specifies whether double should be of the same precision
9551 as float. */
9552
9553 void
9554 build_common_tree_nodes (bool signed_char, bool short_double)
9555 {
9556 error_mark_node = make_node (ERROR_MARK);
9557 TREE_TYPE (error_mark_node) = error_mark_node;
9558
9559 initialize_sizetypes ();
9560
9561 /* Define both `signed char' and `unsigned char'. */
9562 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9563 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9564 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9565 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9566
9567 /* Define `char', which is like either `signed char' or `unsigned char'
9568 but not the same as either. */
9569 char_type_node
9570 = (signed_char
9571 ? make_signed_type (CHAR_TYPE_SIZE)
9572 : make_unsigned_type (CHAR_TYPE_SIZE));
9573 TYPE_STRING_FLAG (char_type_node) = 1;
9574
9575 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9576 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9577 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9578 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9579 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9580 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9581 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9582 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9583 #if HOST_BITS_PER_WIDE_INT >= 64
9584 /* TODO: This isn't correct, but as logic depends at the moment on
9585 host's instead of target's wide-integer.
9586 If there is a target not supporting TImode, but has an 128-bit
9587 integer-scalar register, this target check needs to be adjusted. */
9588 if (targetm.scalar_mode_supported_p (TImode))
9589 {
9590 int128_integer_type_node = make_signed_type (128);
9591 int128_unsigned_type_node = make_unsigned_type (128);
9592 }
9593 #endif
9594
9595 /* Define a boolean type. This type only represents boolean values but
9596 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9597 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9598 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9599 TYPE_PRECISION (boolean_type_node) = 1;
9600 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9601
9602 /* Define what type to use for size_t. */
9603 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9604 size_type_node = unsigned_type_node;
9605 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9606 size_type_node = long_unsigned_type_node;
9607 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9608 size_type_node = long_long_unsigned_type_node;
9609 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9610 size_type_node = short_unsigned_type_node;
9611 else
9612 gcc_unreachable ();
9613
9614 /* Fill in the rest of the sized types. Reuse existing type nodes
9615 when possible. */
9616 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9617 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9618 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9619 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9620 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9621
9622 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9623 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9624 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9625 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9626 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9627
9628 /* Don't call build_qualified type for atomics. That routine does
9629 special processing for atomics, and until they are initialized
9630 it's better not to make that call.
9631
9632 Check to see if there is a target override for atomic types. */
9633
9634 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9635 targetm.atomic_align_for_mode (QImode));
9636 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9637 targetm.atomic_align_for_mode (HImode));
9638 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9639 targetm.atomic_align_for_mode (SImode));
9640 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9641 targetm.atomic_align_for_mode (DImode));
9642 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9643 targetm.atomic_align_for_mode (TImode));
9644
9645 access_public_node = get_identifier ("public");
9646 access_protected_node = get_identifier ("protected");
9647 access_private_node = get_identifier ("private");
9648
9649 /* Define these next since types below may used them. */
9650 integer_zero_node = build_int_cst (integer_type_node, 0);
9651 integer_one_node = build_int_cst (integer_type_node, 1);
9652 integer_three_node = build_int_cst (integer_type_node, 3);
9653 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9654
9655 size_zero_node = size_int (0);
9656 size_one_node = size_int (1);
9657 bitsize_zero_node = bitsize_int (0);
9658 bitsize_one_node = bitsize_int (1);
9659 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9660
9661 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9662 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9663
9664 void_type_node = make_node (VOID_TYPE);
9665 layout_type (void_type_node);
9666
9667 /* We are not going to have real types in C with less than byte alignment,
9668 so we might as well not have any types that claim to have it. */
9669 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9670 TYPE_USER_ALIGN (void_type_node) = 0;
9671
9672 void_node = make_node (VOID_CST);
9673 TREE_TYPE (void_node) = void_type_node;
9674
9675 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9676 layout_type (TREE_TYPE (null_pointer_node));
9677
9678 ptr_type_node = build_pointer_type (void_type_node);
9679 const_ptr_type_node
9680 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9681 fileptr_type_node = ptr_type_node;
9682
9683 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9684
9685 float_type_node = make_node (REAL_TYPE);
9686 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9687 layout_type (float_type_node);
9688
9689 double_type_node = make_node (REAL_TYPE);
9690 if (short_double)
9691 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9692 else
9693 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9694 layout_type (double_type_node);
9695
9696 long_double_type_node = make_node (REAL_TYPE);
9697 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9698 layout_type (long_double_type_node);
9699
9700 float_ptr_type_node = build_pointer_type (float_type_node);
9701 double_ptr_type_node = build_pointer_type (double_type_node);
9702 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9703 integer_ptr_type_node = build_pointer_type (integer_type_node);
9704
9705 /* Fixed size integer types. */
9706 uint16_type_node = make_or_reuse_type (16, 1);
9707 uint32_type_node = make_or_reuse_type (32, 1);
9708 uint64_type_node = make_or_reuse_type (64, 1);
9709
9710 /* Decimal float types. */
9711 dfloat32_type_node = make_node (REAL_TYPE);
9712 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9713 layout_type (dfloat32_type_node);
9714 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9715 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9716
9717 dfloat64_type_node = make_node (REAL_TYPE);
9718 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9719 layout_type (dfloat64_type_node);
9720 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9721 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9722
9723 dfloat128_type_node = make_node (REAL_TYPE);
9724 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9725 layout_type (dfloat128_type_node);
9726 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9727 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9728
9729 complex_integer_type_node = build_complex_type (integer_type_node);
9730 complex_float_type_node = build_complex_type (float_type_node);
9731 complex_double_type_node = build_complex_type (double_type_node);
9732 complex_long_double_type_node = build_complex_type (long_double_type_node);
9733
9734 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9735 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9736 sat_ ## KIND ## _type_node = \
9737 make_sat_signed_ ## KIND ## _type (SIZE); \
9738 sat_unsigned_ ## KIND ## _type_node = \
9739 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9740 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9741 unsigned_ ## KIND ## _type_node = \
9742 make_unsigned_ ## KIND ## _type (SIZE);
9743
9744 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9745 sat_ ## WIDTH ## KIND ## _type_node = \
9746 make_sat_signed_ ## KIND ## _type (SIZE); \
9747 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9748 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9749 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9750 unsigned_ ## WIDTH ## KIND ## _type_node = \
9751 make_unsigned_ ## KIND ## _type (SIZE);
9752
9753 /* Make fixed-point type nodes based on four different widths. */
9754 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9755 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9756 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9757 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9758 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9759
9760 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9761 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9762 NAME ## _type_node = \
9763 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9764 u ## NAME ## _type_node = \
9765 make_or_reuse_unsigned_ ## KIND ## _type \
9766 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9767 sat_ ## NAME ## _type_node = \
9768 make_or_reuse_sat_signed_ ## KIND ## _type \
9769 (GET_MODE_BITSIZE (MODE ## mode)); \
9770 sat_u ## NAME ## _type_node = \
9771 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9772 (GET_MODE_BITSIZE (U ## MODE ## mode));
9773
9774 /* Fixed-point type and mode nodes. */
9775 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9776 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9777 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9778 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9779 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9780 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9781 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9782 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9783 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9784 MAKE_FIXED_MODE_NODE (accum, da, DA)
9785 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9786
9787 {
9788 tree t = targetm.build_builtin_va_list ();
9789
9790 /* Many back-ends define record types without setting TYPE_NAME.
9791 If we copied the record type here, we'd keep the original
9792 record type without a name. This breaks name mangling. So,
9793 don't copy record types and let c_common_nodes_and_builtins()
9794 declare the type to be __builtin_va_list. */
9795 if (TREE_CODE (t) != RECORD_TYPE)
9796 t = build_variant_type_copy (t);
9797
9798 va_list_type_node = t;
9799 }
9800 }
9801
9802 /* Modify DECL for given flags.
9803 TM_PURE attribute is set only on types, so the function will modify
9804 DECL's type when ECF_TM_PURE is used. */
9805
9806 void
9807 set_call_expr_flags (tree decl, int flags)
9808 {
9809 if (flags & ECF_NOTHROW)
9810 TREE_NOTHROW (decl) = 1;
9811 if (flags & ECF_CONST)
9812 TREE_READONLY (decl) = 1;
9813 if (flags & ECF_PURE)
9814 DECL_PURE_P (decl) = 1;
9815 if (flags & ECF_LOOPING_CONST_OR_PURE)
9816 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9817 if (flags & ECF_NOVOPS)
9818 DECL_IS_NOVOPS (decl) = 1;
9819 if (flags & ECF_NORETURN)
9820 TREE_THIS_VOLATILE (decl) = 1;
9821 if (flags & ECF_MALLOC)
9822 DECL_IS_MALLOC (decl) = 1;
9823 if (flags & ECF_RETURNS_TWICE)
9824 DECL_IS_RETURNS_TWICE (decl) = 1;
9825 if (flags & ECF_LEAF)
9826 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9827 NULL, DECL_ATTRIBUTES (decl));
9828 if ((flags & ECF_TM_PURE) && flag_tm)
9829 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9830 /* Looping const or pure is implied by noreturn.
9831 There is currently no way to declare looping const or looping pure alone. */
9832 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9833 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9834 }
9835
9836
9837 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9838
9839 static void
9840 local_define_builtin (const char *name, tree type, enum built_in_function code,
9841 const char *library_name, int ecf_flags)
9842 {
9843 tree decl;
9844
9845 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9846 library_name, NULL_TREE);
9847 set_call_expr_flags (decl, ecf_flags);
9848
9849 set_builtin_decl (code, decl, true);
9850 }
9851
9852 /* Call this function after instantiating all builtins that the language
9853 front end cares about. This will build the rest of the builtins
9854 and internal functions that are relied upon by the tree optimizers and
9855 the middle-end. */
9856
9857 void
9858 build_common_builtin_nodes (void)
9859 {
9860 tree tmp, ftype;
9861 int ecf_flags;
9862
9863 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9864 {
9865 ftype = build_function_type (void_type_node, void_list_node);
9866 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
9867 "__builtin_unreachable",
9868 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9869 | ECF_CONST | ECF_LEAF);
9870 }
9871
9872 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9873 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9874 {
9875 ftype = build_function_type_list (ptr_type_node,
9876 ptr_type_node, const_ptr_type_node,
9877 size_type_node, NULL_TREE);
9878
9879 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9880 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9881 "memcpy", ECF_NOTHROW | ECF_LEAF);
9882 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9883 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9884 "memmove", ECF_NOTHROW | ECF_LEAF);
9885 }
9886
9887 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9888 {
9889 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9890 const_ptr_type_node, size_type_node,
9891 NULL_TREE);
9892 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9893 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9894 }
9895
9896 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9897 {
9898 ftype = build_function_type_list (ptr_type_node,
9899 ptr_type_node, integer_type_node,
9900 size_type_node, NULL_TREE);
9901 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9902 "memset", ECF_NOTHROW | ECF_LEAF);
9903 }
9904
9905 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9906 {
9907 ftype = build_function_type_list (ptr_type_node,
9908 size_type_node, NULL_TREE);
9909 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9910 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9911 }
9912
9913 ftype = build_function_type_list (ptr_type_node, size_type_node,
9914 size_type_node, NULL_TREE);
9915 local_define_builtin ("__builtin_alloca_with_align", ftype,
9916 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9917 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9918
9919 /* If we're checking the stack, `alloca' can throw. */
9920 if (flag_stack_check)
9921 {
9922 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9923 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9924 }
9925
9926 ftype = build_function_type_list (void_type_node,
9927 ptr_type_node, ptr_type_node,
9928 ptr_type_node, NULL_TREE);
9929 local_define_builtin ("__builtin_init_trampoline", ftype,
9930 BUILT_IN_INIT_TRAMPOLINE,
9931 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9932 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9933 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9934 "__builtin_init_heap_trampoline",
9935 ECF_NOTHROW | ECF_LEAF);
9936
9937 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9938 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9939 BUILT_IN_ADJUST_TRAMPOLINE,
9940 "__builtin_adjust_trampoline",
9941 ECF_CONST | ECF_NOTHROW);
9942
9943 ftype = build_function_type_list (void_type_node,
9944 ptr_type_node, ptr_type_node, NULL_TREE);
9945 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9946 BUILT_IN_NONLOCAL_GOTO,
9947 "__builtin_nonlocal_goto",
9948 ECF_NORETURN | ECF_NOTHROW);
9949
9950 ftype = build_function_type_list (void_type_node,
9951 ptr_type_node, ptr_type_node, NULL_TREE);
9952 local_define_builtin ("__builtin_setjmp_setup", ftype,
9953 BUILT_IN_SETJMP_SETUP,
9954 "__builtin_setjmp_setup", ECF_NOTHROW);
9955
9956 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9957 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9958 BUILT_IN_SETJMP_RECEIVER,
9959 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
9960
9961 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9962 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9963 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9964
9965 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9966 local_define_builtin ("__builtin_stack_restore", ftype,
9967 BUILT_IN_STACK_RESTORE,
9968 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9969
9970 /* If there's a possibility that we might use the ARM EABI, build the
9971 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9972 if (targetm.arm_eabi_unwinder)
9973 {
9974 ftype = build_function_type_list (void_type_node, NULL_TREE);
9975 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9976 BUILT_IN_CXA_END_CLEANUP,
9977 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9978 }
9979
9980 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9981 local_define_builtin ("__builtin_unwind_resume", ftype,
9982 BUILT_IN_UNWIND_RESUME,
9983 ((targetm_common.except_unwind_info (&global_options)
9984 == UI_SJLJ)
9985 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9986 ECF_NORETURN);
9987
9988 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
9989 {
9990 ftype = build_function_type_list (ptr_type_node, integer_type_node,
9991 NULL_TREE);
9992 local_define_builtin ("__builtin_return_address", ftype,
9993 BUILT_IN_RETURN_ADDRESS,
9994 "__builtin_return_address",
9995 ECF_NOTHROW);
9996 }
9997
9998 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
9999 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10000 {
10001 ftype = build_function_type_list (void_type_node, ptr_type_node,
10002 ptr_type_node, NULL_TREE);
10003 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10004 local_define_builtin ("__cyg_profile_func_enter", ftype,
10005 BUILT_IN_PROFILE_FUNC_ENTER,
10006 "__cyg_profile_func_enter", 0);
10007 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10008 local_define_builtin ("__cyg_profile_func_exit", ftype,
10009 BUILT_IN_PROFILE_FUNC_EXIT,
10010 "__cyg_profile_func_exit", 0);
10011 }
10012
10013 /* The exception object and filter values from the runtime. The argument
10014 must be zero before exception lowering, i.e. from the front end. After
10015 exception lowering, it will be the region number for the exception
10016 landing pad. These functions are PURE instead of CONST to prevent
10017 them from being hoisted past the exception edge that will initialize
10018 its value in the landing pad. */
10019 ftype = build_function_type_list (ptr_type_node,
10020 integer_type_node, NULL_TREE);
10021 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10022 /* Only use TM_PURE if we we have TM language support. */
10023 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10024 ecf_flags |= ECF_TM_PURE;
10025 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10026 "__builtin_eh_pointer", ecf_flags);
10027
10028 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10029 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10030 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10031 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10032
10033 ftype = build_function_type_list (void_type_node,
10034 integer_type_node, integer_type_node,
10035 NULL_TREE);
10036 local_define_builtin ("__builtin_eh_copy_values", ftype,
10037 BUILT_IN_EH_COPY_VALUES,
10038 "__builtin_eh_copy_values", ECF_NOTHROW);
10039
10040 /* Complex multiplication and division. These are handled as builtins
10041 rather than optabs because emit_library_call_value doesn't support
10042 complex. Further, we can do slightly better with folding these
10043 beasties if the real and complex parts of the arguments are separate. */
10044 {
10045 int mode;
10046
10047 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10048 {
10049 char mode_name_buf[4], *q;
10050 const char *p;
10051 enum built_in_function mcode, dcode;
10052 tree type, inner_type;
10053 const char *prefix = "__";
10054
10055 if (targetm.libfunc_gnu_prefix)
10056 prefix = "__gnu_";
10057
10058 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
10059 if (type == NULL)
10060 continue;
10061 inner_type = TREE_TYPE (type);
10062
10063 ftype = build_function_type_list (type, inner_type, inner_type,
10064 inner_type, inner_type, NULL_TREE);
10065
10066 mcode = ((enum built_in_function)
10067 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10068 dcode = ((enum built_in_function)
10069 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10070
10071 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10072 *q = TOLOWER (*p);
10073 *q = '\0';
10074
10075 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10076 NULL);
10077 local_define_builtin (built_in_names[mcode], ftype, mcode,
10078 built_in_names[mcode],
10079 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10080
10081 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10082 NULL);
10083 local_define_builtin (built_in_names[dcode], ftype, dcode,
10084 built_in_names[dcode],
10085 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10086 }
10087 }
10088
10089 init_internal_fns ();
10090 }
10091
10092 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10093 better way.
10094
10095 If we requested a pointer to a vector, build up the pointers that
10096 we stripped off while looking for the inner type. Similarly for
10097 return values from functions.
10098
10099 The argument TYPE is the top of the chain, and BOTTOM is the
10100 new type which we will point to. */
10101
10102 tree
10103 reconstruct_complex_type (tree type, tree bottom)
10104 {
10105 tree inner, outer;
10106
10107 if (TREE_CODE (type) == POINTER_TYPE)
10108 {
10109 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10110 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10111 TYPE_REF_CAN_ALIAS_ALL (type));
10112 }
10113 else if (TREE_CODE (type) == REFERENCE_TYPE)
10114 {
10115 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10116 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10117 TYPE_REF_CAN_ALIAS_ALL (type));
10118 }
10119 else if (TREE_CODE (type) == ARRAY_TYPE)
10120 {
10121 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10122 outer = build_array_type (inner, TYPE_DOMAIN (type));
10123 }
10124 else if (TREE_CODE (type) == FUNCTION_TYPE)
10125 {
10126 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10127 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10128 }
10129 else if (TREE_CODE (type) == METHOD_TYPE)
10130 {
10131 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10132 /* The build_method_type_directly() routine prepends 'this' to argument list,
10133 so we must compensate by getting rid of it. */
10134 outer
10135 = build_method_type_directly
10136 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10137 inner,
10138 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10139 }
10140 else if (TREE_CODE (type) == OFFSET_TYPE)
10141 {
10142 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10143 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10144 }
10145 else
10146 return bottom;
10147
10148 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10149 TYPE_QUALS (type));
10150 }
10151
10152 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10153 the inner type. */
10154 tree
10155 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
10156 {
10157 int nunits;
10158
10159 switch (GET_MODE_CLASS (mode))
10160 {
10161 case MODE_VECTOR_INT:
10162 case MODE_VECTOR_FLOAT:
10163 case MODE_VECTOR_FRACT:
10164 case MODE_VECTOR_UFRACT:
10165 case MODE_VECTOR_ACCUM:
10166 case MODE_VECTOR_UACCUM:
10167 nunits = GET_MODE_NUNITS (mode);
10168 break;
10169
10170 case MODE_INT:
10171 /* Check that there are no leftover bits. */
10172 gcc_assert (GET_MODE_BITSIZE (mode)
10173 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10174
10175 nunits = GET_MODE_BITSIZE (mode)
10176 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10177 break;
10178
10179 default:
10180 gcc_unreachable ();
10181 }
10182
10183 return make_vector_type (innertype, nunits, mode);
10184 }
10185
10186 /* Similarly, but takes the inner type and number of units, which must be
10187 a power of two. */
10188
10189 tree
10190 build_vector_type (tree innertype, int nunits)
10191 {
10192 return make_vector_type (innertype, nunits, VOIDmode);
10193 }
10194
10195 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10196
10197 tree
10198 build_opaque_vector_type (tree innertype, int nunits)
10199 {
10200 tree t = make_vector_type (innertype, nunits, VOIDmode);
10201 tree cand;
10202 /* We always build the non-opaque variant before the opaque one,
10203 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10204 cand = TYPE_NEXT_VARIANT (t);
10205 if (cand
10206 && TYPE_VECTOR_OPAQUE (cand)
10207 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10208 return cand;
10209 /* Othewise build a variant type and make sure to queue it after
10210 the non-opaque type. */
10211 cand = build_distinct_type_copy (t);
10212 TYPE_VECTOR_OPAQUE (cand) = true;
10213 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10214 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10215 TYPE_NEXT_VARIANT (t) = cand;
10216 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10217 return cand;
10218 }
10219
10220
10221 /* Given an initializer INIT, return TRUE if INIT is zero or some
10222 aggregate of zeros. Otherwise return FALSE. */
10223 bool
10224 initializer_zerop (const_tree init)
10225 {
10226 tree elt;
10227
10228 STRIP_NOPS (init);
10229
10230 switch (TREE_CODE (init))
10231 {
10232 case INTEGER_CST:
10233 return integer_zerop (init);
10234
10235 case REAL_CST:
10236 /* ??? Note that this is not correct for C4X float formats. There,
10237 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10238 negative exponent. */
10239 return real_zerop (init)
10240 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10241
10242 case FIXED_CST:
10243 return fixed_zerop (init);
10244
10245 case COMPLEX_CST:
10246 return integer_zerop (init)
10247 || (real_zerop (init)
10248 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10249 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10250
10251 case VECTOR_CST:
10252 {
10253 unsigned i;
10254 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10255 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10256 return false;
10257 return true;
10258 }
10259
10260 case CONSTRUCTOR:
10261 {
10262 unsigned HOST_WIDE_INT idx;
10263
10264 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10265 if (!initializer_zerop (elt))
10266 return false;
10267 return true;
10268 }
10269
10270 case STRING_CST:
10271 {
10272 int i;
10273
10274 /* We need to loop through all elements to handle cases like
10275 "\0" and "\0foobar". */
10276 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10277 if (TREE_STRING_POINTER (init)[i] != '\0')
10278 return false;
10279
10280 return true;
10281 }
10282
10283 default:
10284 return false;
10285 }
10286 }
10287
10288 /* Check if vector VEC consists of all the equal elements and
10289 that the number of elements corresponds to the type of VEC.
10290 The function returns first element of the vector
10291 or NULL_TREE if the vector is not uniform. */
10292 tree
10293 uniform_vector_p (const_tree vec)
10294 {
10295 tree first, t;
10296 unsigned i;
10297
10298 if (vec == NULL_TREE)
10299 return NULL_TREE;
10300
10301 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10302
10303 if (TREE_CODE (vec) == VECTOR_CST)
10304 {
10305 first = VECTOR_CST_ELT (vec, 0);
10306 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10307 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10308 return NULL_TREE;
10309
10310 return first;
10311 }
10312
10313 else if (TREE_CODE (vec) == CONSTRUCTOR)
10314 {
10315 first = error_mark_node;
10316
10317 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10318 {
10319 if (i == 0)
10320 {
10321 first = t;
10322 continue;
10323 }
10324 if (!operand_equal_p (first, t, 0))
10325 return NULL_TREE;
10326 }
10327 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10328 return NULL_TREE;
10329
10330 return first;
10331 }
10332
10333 return NULL_TREE;
10334 }
10335
10336 /* Build an empty statement at location LOC. */
10337
10338 tree
10339 build_empty_stmt (location_t loc)
10340 {
10341 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10342 SET_EXPR_LOCATION (t, loc);
10343 return t;
10344 }
10345
10346
10347 /* Build an OpenMP clause with code CODE. LOC is the location of the
10348 clause. */
10349
10350 tree
10351 build_omp_clause (location_t loc, enum omp_clause_code code)
10352 {
10353 tree t;
10354 int size, length;
10355
10356 length = omp_clause_num_ops[code];
10357 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10358
10359 record_node_allocation_statistics (OMP_CLAUSE, size);
10360
10361 t = (tree) ggc_internal_alloc (size);
10362 memset (t, 0, size);
10363 TREE_SET_CODE (t, OMP_CLAUSE);
10364 OMP_CLAUSE_SET_CODE (t, code);
10365 OMP_CLAUSE_LOCATION (t) = loc;
10366
10367 return t;
10368 }
10369
10370 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10371 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10372 Except for the CODE and operand count field, other storage for the
10373 object is initialized to zeros. */
10374
10375 tree
10376 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10377 {
10378 tree t;
10379 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10380
10381 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10382 gcc_assert (len >= 1);
10383
10384 record_node_allocation_statistics (code, length);
10385
10386 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10387
10388 TREE_SET_CODE (t, code);
10389
10390 /* Can't use TREE_OPERAND to store the length because if checking is
10391 enabled, it will try to check the length before we store it. :-P */
10392 t->exp.operands[0] = build_int_cst (sizetype, len);
10393
10394 return t;
10395 }
10396
10397 /* Helper function for build_call_* functions; build a CALL_EXPR with
10398 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10399 the argument slots. */
10400
10401 static tree
10402 build_call_1 (tree return_type, tree fn, int nargs)
10403 {
10404 tree t;
10405
10406 t = build_vl_exp (CALL_EXPR, nargs + 3);
10407 TREE_TYPE (t) = return_type;
10408 CALL_EXPR_FN (t) = fn;
10409 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10410
10411 return t;
10412 }
10413
10414 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10415 FN and a null static chain slot. NARGS is the number of call arguments
10416 which are specified as "..." arguments. */
10417
10418 tree
10419 build_call_nary (tree return_type, tree fn, int nargs, ...)
10420 {
10421 tree ret;
10422 va_list args;
10423 va_start (args, nargs);
10424 ret = build_call_valist (return_type, fn, nargs, args);
10425 va_end (args);
10426 return ret;
10427 }
10428
10429 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10430 FN and a null static chain slot. NARGS is the number of call arguments
10431 which are specified as a va_list ARGS. */
10432
10433 tree
10434 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10435 {
10436 tree t;
10437 int i;
10438
10439 t = build_call_1 (return_type, fn, nargs);
10440 for (i = 0; i < nargs; i++)
10441 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10442 process_call_operands (t);
10443 return t;
10444 }
10445
10446 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10447 FN and a null static chain slot. NARGS is the number of call arguments
10448 which are specified as a tree array ARGS. */
10449
10450 tree
10451 build_call_array_loc (location_t loc, tree return_type, tree fn,
10452 int nargs, const tree *args)
10453 {
10454 tree t;
10455 int i;
10456
10457 t = build_call_1 (return_type, fn, nargs);
10458 for (i = 0; i < nargs; i++)
10459 CALL_EXPR_ARG (t, i) = args[i];
10460 process_call_operands (t);
10461 SET_EXPR_LOCATION (t, loc);
10462 return t;
10463 }
10464
10465 /* Like build_call_array, but takes a vec. */
10466
10467 tree
10468 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10469 {
10470 tree ret, t;
10471 unsigned int ix;
10472
10473 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10474 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10475 CALL_EXPR_ARG (ret, ix) = t;
10476 process_call_operands (ret);
10477 return ret;
10478 }
10479
10480 /* Conveniently construct a function call expression. FNDECL names the
10481 function to be called and N arguments are passed in the array
10482 ARGARRAY. */
10483
10484 tree
10485 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10486 {
10487 tree fntype = TREE_TYPE (fndecl);
10488 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10489
10490 return fold_builtin_call_array (loc, TREE_TYPE (fntype), fn, n, argarray);
10491 }
10492
10493 /* Conveniently construct a function call expression. FNDECL names the
10494 function to be called and the arguments are passed in the vector
10495 VEC. */
10496
10497 tree
10498 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10499 {
10500 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10501 vec_safe_address (vec));
10502 }
10503
10504
10505 /* Conveniently construct a function call expression. FNDECL names the
10506 function to be called, N is the number of arguments, and the "..."
10507 parameters are the argument expressions. */
10508
10509 tree
10510 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10511 {
10512 va_list ap;
10513 tree *argarray = XALLOCAVEC (tree, n);
10514 int i;
10515
10516 va_start (ap, n);
10517 for (i = 0; i < n; i++)
10518 argarray[i] = va_arg (ap, tree);
10519 va_end (ap);
10520 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10521 }
10522
10523 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10524 varargs macros aren't supported by all bootstrap compilers. */
10525
10526 tree
10527 build_call_expr (tree fndecl, int n, ...)
10528 {
10529 va_list ap;
10530 tree *argarray = XALLOCAVEC (tree, n);
10531 int i;
10532
10533 va_start (ap, n);
10534 for (i = 0; i < n; i++)
10535 argarray[i] = va_arg (ap, tree);
10536 va_end (ap);
10537 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10538 }
10539
10540 /* Build internal call expression. This is just like CALL_EXPR, except
10541 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10542 internal function. */
10543
10544 tree
10545 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10546 tree type, int n, ...)
10547 {
10548 va_list ap;
10549 int i;
10550
10551 tree fn = build_call_1 (type, NULL_TREE, n);
10552 va_start (ap, n);
10553 for (i = 0; i < n; i++)
10554 CALL_EXPR_ARG (fn, i) = va_arg (ap, tree);
10555 va_end (ap);
10556 SET_EXPR_LOCATION (fn, loc);
10557 CALL_EXPR_IFN (fn) = ifn;
10558 return fn;
10559 }
10560
10561 /* Create a new constant string literal and return a char* pointer to it.
10562 The STRING_CST value is the LEN characters at STR. */
10563 tree
10564 build_string_literal (int len, const char *str)
10565 {
10566 tree t, elem, index, type;
10567
10568 t = build_string (len, str);
10569 elem = build_type_variant (char_type_node, 1, 0);
10570 index = build_index_type (size_int (len - 1));
10571 type = build_array_type (elem, index);
10572 TREE_TYPE (t) = type;
10573 TREE_CONSTANT (t) = 1;
10574 TREE_READONLY (t) = 1;
10575 TREE_STATIC (t) = 1;
10576
10577 type = build_pointer_type (elem);
10578 t = build1 (ADDR_EXPR, type,
10579 build4 (ARRAY_REF, elem,
10580 t, integer_zero_node, NULL_TREE, NULL_TREE));
10581 return t;
10582 }
10583
10584
10585
10586 /* Return true if T (assumed to be a DECL) must be assigned a memory
10587 location. */
10588
10589 bool
10590 needs_to_live_in_memory (const_tree t)
10591 {
10592 return (TREE_ADDRESSABLE (t)
10593 || is_global_var (t)
10594 || (TREE_CODE (t) == RESULT_DECL
10595 && !DECL_BY_REFERENCE (t)
10596 && aggregate_value_p (t, current_function_decl)));
10597 }
10598
10599 /* Return value of a constant X and sign-extend it. */
10600
10601 HOST_WIDE_INT
10602 int_cst_value (const_tree x)
10603 {
10604 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10605 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10606
10607 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10608 gcc_assert (cst_and_fits_in_hwi (x));
10609
10610 if (bits < HOST_BITS_PER_WIDE_INT)
10611 {
10612 bool negative = ((val >> (bits - 1)) & 1) != 0;
10613 if (negative)
10614 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10615 else
10616 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10617 }
10618
10619 return val;
10620 }
10621
10622 /* If TYPE is an integral or pointer type, return an integer type with
10623 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10624 if TYPE is already an integer type of signedness UNSIGNEDP. */
10625
10626 tree
10627 signed_or_unsigned_type_for (int unsignedp, tree type)
10628 {
10629 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10630 return type;
10631
10632 if (TREE_CODE (type) == VECTOR_TYPE)
10633 {
10634 tree inner = TREE_TYPE (type);
10635 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10636 if (!inner2)
10637 return NULL_TREE;
10638 if (inner == inner2)
10639 return type;
10640 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10641 }
10642
10643 if (!INTEGRAL_TYPE_P (type)
10644 && !POINTER_TYPE_P (type)
10645 && TREE_CODE (type) != OFFSET_TYPE)
10646 return NULL_TREE;
10647
10648 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10649 }
10650
10651 /* If TYPE is an integral or pointer type, return an integer type with
10652 the same precision which is unsigned, or itself if TYPE is already an
10653 unsigned integer type. */
10654
10655 tree
10656 unsigned_type_for (tree type)
10657 {
10658 return signed_or_unsigned_type_for (1, type);
10659 }
10660
10661 /* If TYPE is an integral or pointer type, return an integer type with
10662 the same precision which is signed, or itself if TYPE is already a
10663 signed integer type. */
10664
10665 tree
10666 signed_type_for (tree type)
10667 {
10668 return signed_or_unsigned_type_for (0, type);
10669 }
10670
10671 /* If TYPE is a vector type, return a signed integer vector type with the
10672 same width and number of subparts. Otherwise return boolean_type_node. */
10673
10674 tree
10675 truth_type_for (tree type)
10676 {
10677 if (TREE_CODE (type) == VECTOR_TYPE)
10678 {
10679 tree elem = lang_hooks.types.type_for_size
10680 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10681 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10682 }
10683 else
10684 return boolean_type_node;
10685 }
10686
10687 /* Returns the largest value obtainable by casting something in INNER type to
10688 OUTER type. */
10689
10690 tree
10691 upper_bound_in_type (tree outer, tree inner)
10692 {
10693 unsigned int det = 0;
10694 unsigned oprec = TYPE_PRECISION (outer);
10695 unsigned iprec = TYPE_PRECISION (inner);
10696 unsigned prec;
10697
10698 /* Compute a unique number for every combination. */
10699 det |= (oprec > iprec) ? 4 : 0;
10700 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10701 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10702
10703 /* Determine the exponent to use. */
10704 switch (det)
10705 {
10706 case 0:
10707 case 1:
10708 /* oprec <= iprec, outer: signed, inner: don't care. */
10709 prec = oprec - 1;
10710 break;
10711 case 2:
10712 case 3:
10713 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10714 prec = oprec;
10715 break;
10716 case 4:
10717 /* oprec > iprec, outer: signed, inner: signed. */
10718 prec = iprec - 1;
10719 break;
10720 case 5:
10721 /* oprec > iprec, outer: signed, inner: unsigned. */
10722 prec = iprec;
10723 break;
10724 case 6:
10725 /* oprec > iprec, outer: unsigned, inner: signed. */
10726 prec = oprec;
10727 break;
10728 case 7:
10729 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10730 prec = iprec;
10731 break;
10732 default:
10733 gcc_unreachable ();
10734 }
10735
10736 return wide_int_to_tree (outer,
10737 wi::mask (prec, false, TYPE_PRECISION (outer)));
10738 }
10739
10740 /* Returns the smallest value obtainable by casting something in INNER type to
10741 OUTER type. */
10742
10743 tree
10744 lower_bound_in_type (tree outer, tree inner)
10745 {
10746 unsigned oprec = TYPE_PRECISION (outer);
10747 unsigned iprec = TYPE_PRECISION (inner);
10748
10749 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10750 and obtain 0. */
10751 if (TYPE_UNSIGNED (outer)
10752 /* If we are widening something of an unsigned type, OUTER type
10753 contains all values of INNER type. In particular, both INNER
10754 and OUTER types have zero in common. */
10755 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10756 return build_int_cst (outer, 0);
10757 else
10758 {
10759 /* If we are widening a signed type to another signed type, we
10760 want to obtain -2^^(iprec-1). If we are keeping the
10761 precision or narrowing to a signed type, we want to obtain
10762 -2^(oprec-1). */
10763 unsigned prec = oprec > iprec ? iprec : oprec;
10764 return wide_int_to_tree (outer,
10765 wi::mask (prec - 1, true,
10766 TYPE_PRECISION (outer)));
10767 }
10768 }
10769
10770 /* Return nonzero if two operands that are suitable for PHI nodes are
10771 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10772 SSA_NAME or invariant. Note that this is strictly an optimization.
10773 That is, callers of this function can directly call operand_equal_p
10774 and get the same result, only slower. */
10775
10776 int
10777 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10778 {
10779 if (arg0 == arg1)
10780 return 1;
10781 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10782 return 0;
10783 return operand_equal_p (arg0, arg1, 0);
10784 }
10785
10786 /* Returns number of zeros at the end of binary representation of X. */
10787
10788 tree
10789 num_ending_zeros (const_tree x)
10790 {
10791 return build_int_cst (TREE_TYPE (x), wi::ctz (x));
10792 }
10793
10794
10795 #define WALK_SUBTREE(NODE) \
10796 do \
10797 { \
10798 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10799 if (result) \
10800 return result; \
10801 } \
10802 while (0)
10803
10804 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10805 be walked whenever a type is seen in the tree. Rest of operands and return
10806 value are as for walk_tree. */
10807
10808 static tree
10809 walk_type_fields (tree type, walk_tree_fn func, void *data,
10810 hash_set<tree> *pset, walk_tree_lh lh)
10811 {
10812 tree result = NULL_TREE;
10813
10814 switch (TREE_CODE (type))
10815 {
10816 case POINTER_TYPE:
10817 case REFERENCE_TYPE:
10818 case VECTOR_TYPE:
10819 /* We have to worry about mutually recursive pointers. These can't
10820 be written in C. They can in Ada. It's pathological, but
10821 there's an ACATS test (c38102a) that checks it. Deal with this
10822 by checking if we're pointing to another pointer, that one
10823 points to another pointer, that one does too, and we have no htab.
10824 If so, get a hash table. We check three levels deep to avoid
10825 the cost of the hash table if we don't need one. */
10826 if (POINTER_TYPE_P (TREE_TYPE (type))
10827 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10828 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10829 && !pset)
10830 {
10831 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10832 func, data);
10833 if (result)
10834 return result;
10835
10836 break;
10837 }
10838
10839 /* ... fall through ... */
10840
10841 case COMPLEX_TYPE:
10842 WALK_SUBTREE (TREE_TYPE (type));
10843 break;
10844
10845 case METHOD_TYPE:
10846 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10847
10848 /* Fall through. */
10849
10850 case FUNCTION_TYPE:
10851 WALK_SUBTREE (TREE_TYPE (type));
10852 {
10853 tree arg;
10854
10855 /* We never want to walk into default arguments. */
10856 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10857 WALK_SUBTREE (TREE_VALUE (arg));
10858 }
10859 break;
10860
10861 case ARRAY_TYPE:
10862 /* Don't follow this nodes's type if a pointer for fear that
10863 we'll have infinite recursion. If we have a PSET, then we
10864 need not fear. */
10865 if (pset
10866 || (!POINTER_TYPE_P (TREE_TYPE (type))
10867 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10868 WALK_SUBTREE (TREE_TYPE (type));
10869 WALK_SUBTREE (TYPE_DOMAIN (type));
10870 break;
10871
10872 case OFFSET_TYPE:
10873 WALK_SUBTREE (TREE_TYPE (type));
10874 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10875 break;
10876
10877 default:
10878 break;
10879 }
10880
10881 return NULL_TREE;
10882 }
10883
10884 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10885 called with the DATA and the address of each sub-tree. If FUNC returns a
10886 non-NULL value, the traversal is stopped, and the value returned by FUNC
10887 is returned. If PSET is non-NULL it is used to record the nodes visited,
10888 and to avoid visiting a node more than once. */
10889
10890 tree
10891 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10892 hash_set<tree> *pset, walk_tree_lh lh)
10893 {
10894 enum tree_code code;
10895 int walk_subtrees;
10896 tree result;
10897
10898 #define WALK_SUBTREE_TAIL(NODE) \
10899 do \
10900 { \
10901 tp = & (NODE); \
10902 goto tail_recurse; \
10903 } \
10904 while (0)
10905
10906 tail_recurse:
10907 /* Skip empty subtrees. */
10908 if (!*tp)
10909 return NULL_TREE;
10910
10911 /* Don't walk the same tree twice, if the user has requested
10912 that we avoid doing so. */
10913 if (pset && pset->add (*tp))
10914 return NULL_TREE;
10915
10916 /* Call the function. */
10917 walk_subtrees = 1;
10918 result = (*func) (tp, &walk_subtrees, data);
10919
10920 /* If we found something, return it. */
10921 if (result)
10922 return result;
10923
10924 code = TREE_CODE (*tp);
10925
10926 /* Even if we didn't, FUNC may have decided that there was nothing
10927 interesting below this point in the tree. */
10928 if (!walk_subtrees)
10929 {
10930 /* But we still need to check our siblings. */
10931 if (code == TREE_LIST)
10932 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10933 else if (code == OMP_CLAUSE)
10934 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10935 else
10936 return NULL_TREE;
10937 }
10938
10939 if (lh)
10940 {
10941 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10942 if (result || !walk_subtrees)
10943 return result;
10944 }
10945
10946 switch (code)
10947 {
10948 case ERROR_MARK:
10949 case IDENTIFIER_NODE:
10950 case INTEGER_CST:
10951 case REAL_CST:
10952 case FIXED_CST:
10953 case VECTOR_CST:
10954 case STRING_CST:
10955 case BLOCK:
10956 case PLACEHOLDER_EXPR:
10957 case SSA_NAME:
10958 case FIELD_DECL:
10959 case RESULT_DECL:
10960 /* None of these have subtrees other than those already walked
10961 above. */
10962 break;
10963
10964 case TREE_LIST:
10965 WALK_SUBTREE (TREE_VALUE (*tp));
10966 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10967 break;
10968
10969 case TREE_VEC:
10970 {
10971 int len = TREE_VEC_LENGTH (*tp);
10972
10973 if (len == 0)
10974 break;
10975
10976 /* Walk all elements but the first. */
10977 while (--len)
10978 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10979
10980 /* Now walk the first one as a tail call. */
10981 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10982 }
10983
10984 case COMPLEX_CST:
10985 WALK_SUBTREE (TREE_REALPART (*tp));
10986 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10987
10988 case CONSTRUCTOR:
10989 {
10990 unsigned HOST_WIDE_INT idx;
10991 constructor_elt *ce;
10992
10993 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
10994 idx++)
10995 WALK_SUBTREE (ce->value);
10996 }
10997 break;
10998
10999 case SAVE_EXPR:
11000 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11001
11002 case BIND_EXPR:
11003 {
11004 tree decl;
11005 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11006 {
11007 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11008 into declarations that are just mentioned, rather than
11009 declared; they don't really belong to this part of the tree.
11010 And, we can see cycles: the initializer for a declaration
11011 can refer to the declaration itself. */
11012 WALK_SUBTREE (DECL_INITIAL (decl));
11013 WALK_SUBTREE (DECL_SIZE (decl));
11014 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11015 }
11016 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11017 }
11018
11019 case STATEMENT_LIST:
11020 {
11021 tree_stmt_iterator i;
11022 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11023 WALK_SUBTREE (*tsi_stmt_ptr (i));
11024 }
11025 break;
11026
11027 case OMP_CLAUSE:
11028 switch (OMP_CLAUSE_CODE (*tp))
11029 {
11030 case OMP_CLAUSE_PRIVATE:
11031 case OMP_CLAUSE_SHARED:
11032 case OMP_CLAUSE_FIRSTPRIVATE:
11033 case OMP_CLAUSE_COPYIN:
11034 case OMP_CLAUSE_COPYPRIVATE:
11035 case OMP_CLAUSE_FINAL:
11036 case OMP_CLAUSE_IF:
11037 case OMP_CLAUSE_NUM_THREADS:
11038 case OMP_CLAUSE_SCHEDULE:
11039 case OMP_CLAUSE_UNIFORM:
11040 case OMP_CLAUSE_DEPEND:
11041 case OMP_CLAUSE_NUM_TEAMS:
11042 case OMP_CLAUSE_THREAD_LIMIT:
11043 case OMP_CLAUSE_DEVICE:
11044 case OMP_CLAUSE_DIST_SCHEDULE:
11045 case OMP_CLAUSE_SAFELEN:
11046 case OMP_CLAUSE_SIMDLEN:
11047 case OMP_CLAUSE__LOOPTEMP_:
11048 case OMP_CLAUSE__SIMDUID_:
11049 case OMP_CLAUSE__CILK_FOR_COUNT_:
11050 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11051 /* FALLTHRU */
11052
11053 case OMP_CLAUSE_NOWAIT:
11054 case OMP_CLAUSE_ORDERED:
11055 case OMP_CLAUSE_DEFAULT:
11056 case OMP_CLAUSE_UNTIED:
11057 case OMP_CLAUSE_MERGEABLE:
11058 case OMP_CLAUSE_PROC_BIND:
11059 case OMP_CLAUSE_INBRANCH:
11060 case OMP_CLAUSE_NOTINBRANCH:
11061 case OMP_CLAUSE_FOR:
11062 case OMP_CLAUSE_PARALLEL:
11063 case OMP_CLAUSE_SECTIONS:
11064 case OMP_CLAUSE_TASKGROUP:
11065 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11066
11067 case OMP_CLAUSE_LASTPRIVATE:
11068 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11069 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11070 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11071
11072 case OMP_CLAUSE_COLLAPSE:
11073 {
11074 int i;
11075 for (i = 0; i < 3; i++)
11076 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11077 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11078 }
11079
11080 case OMP_CLAUSE_LINEAR:
11081 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11082 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11083 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11084 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11085
11086 case OMP_CLAUSE_ALIGNED:
11087 case OMP_CLAUSE_FROM:
11088 case OMP_CLAUSE_TO:
11089 case OMP_CLAUSE_MAP:
11090 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11091 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11092 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11093
11094 case OMP_CLAUSE_REDUCTION:
11095 {
11096 int i;
11097 for (i = 0; i < 4; i++)
11098 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11099 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11100 }
11101
11102 default:
11103 gcc_unreachable ();
11104 }
11105 break;
11106
11107 case TARGET_EXPR:
11108 {
11109 int i, len;
11110
11111 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11112 But, we only want to walk once. */
11113 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11114 for (i = 0; i < len; ++i)
11115 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11116 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11117 }
11118
11119 case DECL_EXPR:
11120 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11121 defining. We only want to walk into these fields of a type in this
11122 case and not in the general case of a mere reference to the type.
11123
11124 The criterion is as follows: if the field can be an expression, it
11125 must be walked only here. This should be in keeping with the fields
11126 that are directly gimplified in gimplify_type_sizes in order for the
11127 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11128 variable-sized types.
11129
11130 Note that DECLs get walked as part of processing the BIND_EXPR. */
11131 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11132 {
11133 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11134 if (TREE_CODE (*type_p) == ERROR_MARK)
11135 return NULL_TREE;
11136
11137 /* Call the function for the type. See if it returns anything or
11138 doesn't want us to continue. If we are to continue, walk both
11139 the normal fields and those for the declaration case. */
11140 result = (*func) (type_p, &walk_subtrees, data);
11141 if (result || !walk_subtrees)
11142 return result;
11143
11144 /* But do not walk a pointed-to type since it may itself need to
11145 be walked in the declaration case if it isn't anonymous. */
11146 if (!POINTER_TYPE_P (*type_p))
11147 {
11148 result = walk_type_fields (*type_p, func, data, pset, lh);
11149 if (result)
11150 return result;
11151 }
11152
11153 /* If this is a record type, also walk the fields. */
11154 if (RECORD_OR_UNION_TYPE_P (*type_p))
11155 {
11156 tree field;
11157
11158 for (field = TYPE_FIELDS (*type_p); field;
11159 field = DECL_CHAIN (field))
11160 {
11161 /* We'd like to look at the type of the field, but we can
11162 easily get infinite recursion. So assume it's pointed
11163 to elsewhere in the tree. Also, ignore things that
11164 aren't fields. */
11165 if (TREE_CODE (field) != FIELD_DECL)
11166 continue;
11167
11168 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11169 WALK_SUBTREE (DECL_SIZE (field));
11170 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11171 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11172 WALK_SUBTREE (DECL_QUALIFIER (field));
11173 }
11174 }
11175
11176 /* Same for scalar types. */
11177 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11178 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11179 || TREE_CODE (*type_p) == INTEGER_TYPE
11180 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11181 || TREE_CODE (*type_p) == REAL_TYPE)
11182 {
11183 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11184 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11185 }
11186
11187 WALK_SUBTREE (TYPE_SIZE (*type_p));
11188 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11189 }
11190 /* FALLTHRU */
11191
11192 default:
11193 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11194 {
11195 int i, len;
11196
11197 /* Walk over all the sub-trees of this operand. */
11198 len = TREE_OPERAND_LENGTH (*tp);
11199
11200 /* Go through the subtrees. We need to do this in forward order so
11201 that the scope of a FOR_EXPR is handled properly. */
11202 if (len)
11203 {
11204 for (i = 0; i < len - 1; ++i)
11205 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11206 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11207 }
11208 }
11209 /* If this is a type, walk the needed fields in the type. */
11210 else if (TYPE_P (*tp))
11211 return walk_type_fields (*tp, func, data, pset, lh);
11212 break;
11213 }
11214
11215 /* We didn't find what we were looking for. */
11216 return NULL_TREE;
11217
11218 #undef WALK_SUBTREE_TAIL
11219 }
11220 #undef WALK_SUBTREE
11221
11222 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11223
11224 tree
11225 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11226 walk_tree_lh lh)
11227 {
11228 tree result;
11229
11230 hash_set<tree> pset;
11231 result = walk_tree_1 (tp, func, data, &pset, lh);
11232 return result;
11233 }
11234
11235
11236 tree
11237 tree_block (tree t)
11238 {
11239 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11240
11241 if (IS_EXPR_CODE_CLASS (c))
11242 return LOCATION_BLOCK (t->exp.locus);
11243 gcc_unreachable ();
11244 return NULL;
11245 }
11246
11247 void
11248 tree_set_block (tree t, tree b)
11249 {
11250 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11251
11252 if (IS_EXPR_CODE_CLASS (c))
11253 {
11254 if (b)
11255 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
11256 else
11257 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
11258 }
11259 else
11260 gcc_unreachable ();
11261 }
11262
11263 /* Create a nameless artificial label and put it in the current
11264 function context. The label has a location of LOC. Returns the
11265 newly created label. */
11266
11267 tree
11268 create_artificial_label (location_t loc)
11269 {
11270 tree lab = build_decl (loc,
11271 LABEL_DECL, NULL_TREE, void_type_node);
11272
11273 DECL_ARTIFICIAL (lab) = 1;
11274 DECL_IGNORED_P (lab) = 1;
11275 DECL_CONTEXT (lab) = current_function_decl;
11276 return lab;
11277 }
11278
11279 /* Given a tree, try to return a useful variable name that we can use
11280 to prefix a temporary that is being assigned the value of the tree.
11281 I.E. given <temp> = &A, return A. */
11282
11283 const char *
11284 get_name (tree t)
11285 {
11286 tree stripped_decl;
11287
11288 stripped_decl = t;
11289 STRIP_NOPS (stripped_decl);
11290 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11291 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11292 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11293 {
11294 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11295 if (!name)
11296 return NULL;
11297 return IDENTIFIER_POINTER (name);
11298 }
11299 else
11300 {
11301 switch (TREE_CODE (stripped_decl))
11302 {
11303 case ADDR_EXPR:
11304 return get_name (TREE_OPERAND (stripped_decl, 0));
11305 default:
11306 return NULL;
11307 }
11308 }
11309 }
11310
11311 /* Return true if TYPE has a variable argument list. */
11312
11313 bool
11314 stdarg_p (const_tree fntype)
11315 {
11316 function_args_iterator args_iter;
11317 tree n = NULL_TREE, t;
11318
11319 if (!fntype)
11320 return false;
11321
11322 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11323 {
11324 n = t;
11325 }
11326
11327 return n != NULL_TREE && n != void_type_node;
11328 }
11329
11330 /* Return true if TYPE has a prototype. */
11331
11332 bool
11333 prototype_p (tree fntype)
11334 {
11335 tree t;
11336
11337 gcc_assert (fntype != NULL_TREE);
11338
11339 t = TYPE_ARG_TYPES (fntype);
11340 return (t != NULL_TREE);
11341 }
11342
11343 /* If BLOCK is inlined from an __attribute__((__artificial__))
11344 routine, return pointer to location from where it has been
11345 called. */
11346 location_t *
11347 block_nonartificial_location (tree block)
11348 {
11349 location_t *ret = NULL;
11350
11351 while (block && TREE_CODE (block) == BLOCK
11352 && BLOCK_ABSTRACT_ORIGIN (block))
11353 {
11354 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11355
11356 while (TREE_CODE (ao) == BLOCK
11357 && BLOCK_ABSTRACT_ORIGIN (ao)
11358 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11359 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11360
11361 if (TREE_CODE (ao) == FUNCTION_DECL)
11362 {
11363 /* If AO is an artificial inline, point RET to the
11364 call site locus at which it has been inlined and continue
11365 the loop, in case AO's caller is also an artificial
11366 inline. */
11367 if (DECL_DECLARED_INLINE_P (ao)
11368 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11369 ret = &BLOCK_SOURCE_LOCATION (block);
11370 else
11371 break;
11372 }
11373 else if (TREE_CODE (ao) != BLOCK)
11374 break;
11375
11376 block = BLOCK_SUPERCONTEXT (block);
11377 }
11378 return ret;
11379 }
11380
11381
11382 /* If EXP is inlined from an __attribute__((__artificial__))
11383 function, return the location of the original call expression. */
11384
11385 location_t
11386 tree_nonartificial_location (tree exp)
11387 {
11388 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11389
11390 if (loc)
11391 return *loc;
11392 else
11393 return EXPR_LOCATION (exp);
11394 }
11395
11396
11397 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11398 nodes. */
11399
11400 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11401
11402 static hashval_t
11403 cl_option_hash_hash (const void *x)
11404 {
11405 const_tree const t = (const_tree) x;
11406 const char *p;
11407 size_t i;
11408 size_t len = 0;
11409 hashval_t hash = 0;
11410
11411 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11412 {
11413 p = (const char *)TREE_OPTIMIZATION (t);
11414 len = sizeof (struct cl_optimization);
11415 }
11416
11417 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11418 {
11419 p = (const char *)TREE_TARGET_OPTION (t);
11420 len = sizeof (struct cl_target_option);
11421 }
11422
11423 else
11424 gcc_unreachable ();
11425
11426 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11427 something else. */
11428 for (i = 0; i < len; i++)
11429 if (p[i])
11430 hash = (hash << 4) ^ ((i << 2) | p[i]);
11431
11432 return hash;
11433 }
11434
11435 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11436 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11437 same. */
11438
11439 static int
11440 cl_option_hash_eq (const void *x, const void *y)
11441 {
11442 const_tree const xt = (const_tree) x;
11443 const_tree const yt = (const_tree) y;
11444 const char *xp;
11445 const char *yp;
11446 size_t len;
11447
11448 if (TREE_CODE (xt) != TREE_CODE (yt))
11449 return 0;
11450
11451 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11452 {
11453 xp = (const char *)TREE_OPTIMIZATION (xt);
11454 yp = (const char *)TREE_OPTIMIZATION (yt);
11455 len = sizeof (struct cl_optimization);
11456 }
11457
11458 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11459 {
11460 xp = (const char *)TREE_TARGET_OPTION (xt);
11461 yp = (const char *)TREE_TARGET_OPTION (yt);
11462 len = sizeof (struct cl_target_option);
11463 }
11464
11465 else
11466 gcc_unreachable ();
11467
11468 return (memcmp (xp, yp, len) == 0);
11469 }
11470
11471 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11472
11473 tree
11474 build_optimization_node (struct gcc_options *opts)
11475 {
11476 tree t;
11477 void **slot;
11478
11479 /* Use the cache of optimization nodes. */
11480
11481 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11482 opts);
11483
11484 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11485 t = (tree) *slot;
11486 if (!t)
11487 {
11488 /* Insert this one into the hash table. */
11489 t = cl_optimization_node;
11490 *slot = t;
11491
11492 /* Make a new node for next time round. */
11493 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11494 }
11495
11496 return t;
11497 }
11498
11499 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
11500
11501 tree
11502 build_target_option_node (struct gcc_options *opts)
11503 {
11504 tree t;
11505 void **slot;
11506
11507 /* Use the cache of optimization nodes. */
11508
11509 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11510 opts);
11511
11512 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11513 t = (tree) *slot;
11514 if (!t)
11515 {
11516 /* Insert this one into the hash table. */
11517 t = cl_target_option_node;
11518 *slot = t;
11519
11520 /* Make a new node for next time round. */
11521 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11522 }
11523
11524 return t;
11525 }
11526
11527 /* Reset TREE_TARGET_GLOBALS cache for TARGET_OPTION_NODE.
11528 Called through htab_traverse. */
11529
11530 static int
11531 prepare_target_option_node_for_pch (void **slot, void *)
11532 {
11533 tree node = (tree) *slot;
11534 if (TREE_CODE (node) == TARGET_OPTION_NODE)
11535 TREE_TARGET_GLOBALS (node) = NULL;
11536 return 1;
11537 }
11538
11539 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
11540 so that they aren't saved during PCH writing. */
11541
11542 void
11543 prepare_target_option_nodes_for_pch (void)
11544 {
11545 htab_traverse (cl_option_hash_table, prepare_target_option_node_for_pch,
11546 NULL);
11547 }
11548
11549 /* Determine the "ultimate origin" of a block. The block may be an inlined
11550 instance of an inlined instance of a block which is local to an inline
11551 function, so we have to trace all of the way back through the origin chain
11552 to find out what sort of node actually served as the original seed for the
11553 given block. */
11554
11555 tree
11556 block_ultimate_origin (const_tree block)
11557 {
11558 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11559
11560 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11561 nodes in the function to point to themselves; ignore that if
11562 we're trying to output the abstract instance of this function. */
11563 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11564 return NULL_TREE;
11565
11566 if (immediate_origin == NULL_TREE)
11567 return NULL_TREE;
11568 else
11569 {
11570 tree ret_val;
11571 tree lookahead = immediate_origin;
11572
11573 do
11574 {
11575 ret_val = lookahead;
11576 lookahead = (TREE_CODE (ret_val) == BLOCK
11577 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11578 }
11579 while (lookahead != NULL && lookahead != ret_val);
11580
11581 /* The block's abstract origin chain may not be the *ultimate* origin of
11582 the block. It could lead to a DECL that has an abstract origin set.
11583 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11584 will give us if it has one). Note that DECL's abstract origins are
11585 supposed to be the most distant ancestor (or so decl_ultimate_origin
11586 claims), so we don't need to loop following the DECL origins. */
11587 if (DECL_P (ret_val))
11588 return DECL_ORIGIN (ret_val);
11589
11590 return ret_val;
11591 }
11592 }
11593
11594 /* Return true iff conversion in EXP generates no instruction. Mark
11595 it inline so that we fully inline into the stripping functions even
11596 though we have two uses of this function. */
11597
11598 static inline bool
11599 tree_nop_conversion (const_tree exp)
11600 {
11601 tree outer_type, inner_type;
11602
11603 if (!CONVERT_EXPR_P (exp)
11604 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11605 return false;
11606 if (TREE_OPERAND (exp, 0) == error_mark_node)
11607 return false;
11608
11609 outer_type = TREE_TYPE (exp);
11610 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11611
11612 if (!inner_type)
11613 return false;
11614
11615 /* Use precision rather then machine mode when we can, which gives
11616 the correct answer even for submode (bit-field) types. */
11617 if ((INTEGRAL_TYPE_P (outer_type)
11618 || POINTER_TYPE_P (outer_type)
11619 || TREE_CODE (outer_type) == OFFSET_TYPE)
11620 && (INTEGRAL_TYPE_P (inner_type)
11621 || POINTER_TYPE_P (inner_type)
11622 || TREE_CODE (inner_type) == OFFSET_TYPE))
11623 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11624
11625 /* Otherwise fall back on comparing machine modes (e.g. for
11626 aggregate types, floats). */
11627 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11628 }
11629
11630 /* Return true iff conversion in EXP generates no instruction. Don't
11631 consider conversions changing the signedness. */
11632
11633 static bool
11634 tree_sign_nop_conversion (const_tree exp)
11635 {
11636 tree outer_type, inner_type;
11637
11638 if (!tree_nop_conversion (exp))
11639 return false;
11640
11641 outer_type = TREE_TYPE (exp);
11642 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11643
11644 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11645 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11646 }
11647
11648 /* Strip conversions from EXP according to tree_nop_conversion and
11649 return the resulting expression. */
11650
11651 tree
11652 tree_strip_nop_conversions (tree exp)
11653 {
11654 while (tree_nop_conversion (exp))
11655 exp = TREE_OPERAND (exp, 0);
11656 return exp;
11657 }
11658
11659 /* Strip conversions from EXP according to tree_sign_nop_conversion
11660 and return the resulting expression. */
11661
11662 tree
11663 tree_strip_sign_nop_conversions (tree exp)
11664 {
11665 while (tree_sign_nop_conversion (exp))
11666 exp = TREE_OPERAND (exp, 0);
11667 return exp;
11668 }
11669
11670 /* Avoid any floating point extensions from EXP. */
11671 tree
11672 strip_float_extensions (tree exp)
11673 {
11674 tree sub, expt, subt;
11675
11676 /* For floating point constant look up the narrowest type that can hold
11677 it properly and handle it like (type)(narrowest_type)constant.
11678 This way we can optimize for instance a=a*2.0 where "a" is float
11679 but 2.0 is double constant. */
11680 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11681 {
11682 REAL_VALUE_TYPE orig;
11683 tree type = NULL;
11684
11685 orig = TREE_REAL_CST (exp);
11686 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11687 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11688 type = float_type_node;
11689 else if (TYPE_PRECISION (TREE_TYPE (exp))
11690 > TYPE_PRECISION (double_type_node)
11691 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11692 type = double_type_node;
11693 if (type)
11694 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11695 }
11696
11697 if (!CONVERT_EXPR_P (exp))
11698 return exp;
11699
11700 sub = TREE_OPERAND (exp, 0);
11701 subt = TREE_TYPE (sub);
11702 expt = TREE_TYPE (exp);
11703
11704 if (!FLOAT_TYPE_P (subt))
11705 return exp;
11706
11707 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11708 return exp;
11709
11710 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11711 return exp;
11712
11713 return strip_float_extensions (sub);
11714 }
11715
11716 /* Strip out all handled components that produce invariant
11717 offsets. */
11718
11719 const_tree
11720 strip_invariant_refs (const_tree op)
11721 {
11722 while (handled_component_p (op))
11723 {
11724 switch (TREE_CODE (op))
11725 {
11726 case ARRAY_REF:
11727 case ARRAY_RANGE_REF:
11728 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11729 || TREE_OPERAND (op, 2) != NULL_TREE
11730 || TREE_OPERAND (op, 3) != NULL_TREE)
11731 return NULL;
11732 break;
11733
11734 case COMPONENT_REF:
11735 if (TREE_OPERAND (op, 2) != NULL_TREE)
11736 return NULL;
11737 break;
11738
11739 default:;
11740 }
11741 op = TREE_OPERAND (op, 0);
11742 }
11743
11744 return op;
11745 }
11746
11747 static GTY(()) tree gcc_eh_personality_decl;
11748
11749 /* Return the GCC personality function decl. */
11750
11751 tree
11752 lhd_gcc_personality (void)
11753 {
11754 if (!gcc_eh_personality_decl)
11755 gcc_eh_personality_decl = build_personality_function ("gcc");
11756 return gcc_eh_personality_decl;
11757 }
11758
11759 /* TARGET is a call target of GIMPLE call statement
11760 (obtained by gimple_call_fn). Return true if it is
11761 OBJ_TYPE_REF representing an virtual call of C++ method.
11762 (As opposed to OBJ_TYPE_REF representing objc calls
11763 through a cast where middle-end devirtualization machinery
11764 can't apply.) */
11765
11766 bool
11767 virtual_method_call_p (tree target)
11768 {
11769 if (TREE_CODE (target) != OBJ_TYPE_REF)
11770 return false;
11771 target = TREE_TYPE (target);
11772 gcc_checking_assert (TREE_CODE (target) == POINTER_TYPE);
11773 target = TREE_TYPE (target);
11774 if (TREE_CODE (target) == FUNCTION_TYPE)
11775 return false;
11776 gcc_checking_assert (TREE_CODE (target) == METHOD_TYPE);
11777 return true;
11778 }
11779
11780 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
11781
11782 tree
11783 obj_type_ref_class (tree ref)
11784 {
11785 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
11786 ref = TREE_TYPE (ref);
11787 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11788 ref = TREE_TYPE (ref);
11789 /* We look for type THIS points to. ObjC also builds
11790 OBJ_TYPE_REF with non-method calls, Their first parameter
11791 ID however also corresponds to class type. */
11792 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
11793 || TREE_CODE (ref) == FUNCTION_TYPE);
11794 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
11795 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11796 return TREE_TYPE (ref);
11797 }
11798
11799 /* Return true if T is in anonymous namespace. */
11800
11801 bool
11802 type_in_anonymous_namespace_p (const_tree t)
11803 {
11804 /* TREE_PUBLIC of TYPE_STUB_DECL may not be properly set for
11805 bulitin types; those have CONTEXT NULL. */
11806 if (!TYPE_CONTEXT (t))
11807 return false;
11808 return (TYPE_STUB_DECL (t) && !TREE_PUBLIC (TYPE_STUB_DECL (t)));
11809 }
11810
11811 /* Try to find a base info of BINFO that would have its field decl at offset
11812 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11813 found, return, otherwise return NULL_TREE. */
11814
11815 tree
11816 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11817 {
11818 tree type = BINFO_TYPE (binfo);
11819
11820 while (true)
11821 {
11822 HOST_WIDE_INT pos, size;
11823 tree fld;
11824 int i;
11825
11826 if (types_same_for_odr (type, expected_type))
11827 return binfo;
11828 if (offset < 0)
11829 return NULL_TREE;
11830
11831 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11832 {
11833 if (TREE_CODE (fld) != FIELD_DECL)
11834 continue;
11835
11836 pos = int_bit_position (fld);
11837 size = tree_to_uhwi (DECL_SIZE (fld));
11838 if (pos <= offset && (pos + size) > offset)
11839 break;
11840 }
11841 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11842 return NULL_TREE;
11843
11844 if (!DECL_ARTIFICIAL (fld))
11845 {
11846 binfo = TYPE_BINFO (TREE_TYPE (fld));
11847 if (!binfo)
11848 return NULL_TREE;
11849 }
11850 /* Offset 0 indicates the primary base, whose vtable contents are
11851 represented in the binfo for the derived class. */
11852 else if (offset != 0)
11853 {
11854 tree base_binfo, binfo2 = binfo;
11855
11856 /* Find BINFO corresponding to FLD. This is bit harder
11857 by a fact that in virtual inheritance we may need to walk down
11858 the non-virtual inheritance chain. */
11859 while (true)
11860 {
11861 tree containing_binfo = NULL, found_binfo = NULL;
11862 for (i = 0; BINFO_BASE_ITERATE (binfo2, i, base_binfo); i++)
11863 if (types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
11864 {
11865 found_binfo = base_binfo;
11866 break;
11867 }
11868 else
11869 if ((tree_to_shwi (BINFO_OFFSET (base_binfo))
11870 - tree_to_shwi (BINFO_OFFSET (binfo)))
11871 * BITS_PER_UNIT < pos
11872 /* Rule out types with no virtual methods or we can get confused
11873 here by zero sized bases. */
11874 && BINFO_VTABLE (TYPE_BINFO (BINFO_TYPE (base_binfo)))
11875 && (!containing_binfo
11876 || (tree_to_shwi (BINFO_OFFSET (containing_binfo))
11877 < tree_to_shwi (BINFO_OFFSET (base_binfo)))))
11878 containing_binfo = base_binfo;
11879 if (found_binfo)
11880 {
11881 binfo = found_binfo;
11882 break;
11883 }
11884 if (!containing_binfo)
11885 return NULL_TREE;
11886 binfo2 = containing_binfo;
11887 }
11888 }
11889
11890 type = TREE_TYPE (fld);
11891 offset -= pos;
11892 }
11893 }
11894
11895 /* Returns true if X is a typedef decl. */
11896
11897 bool
11898 is_typedef_decl (tree x)
11899 {
11900 return (x && TREE_CODE (x) == TYPE_DECL
11901 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11902 }
11903
11904 /* Returns true iff TYPE is a type variant created for a typedef. */
11905
11906 bool
11907 typedef_variant_p (tree type)
11908 {
11909 return is_typedef_decl (TYPE_NAME (type));
11910 }
11911
11912 /* Warn about a use of an identifier which was marked deprecated. */
11913 void
11914 warn_deprecated_use (tree node, tree attr)
11915 {
11916 const char *msg;
11917
11918 if (node == 0 || !warn_deprecated_decl)
11919 return;
11920
11921 if (!attr)
11922 {
11923 if (DECL_P (node))
11924 attr = DECL_ATTRIBUTES (node);
11925 else if (TYPE_P (node))
11926 {
11927 tree decl = TYPE_STUB_DECL (node);
11928 if (decl)
11929 attr = lookup_attribute ("deprecated",
11930 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11931 }
11932 }
11933
11934 if (attr)
11935 attr = lookup_attribute ("deprecated", attr);
11936
11937 if (attr)
11938 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11939 else
11940 msg = NULL;
11941
11942 if (DECL_P (node))
11943 {
11944 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11945 if (msg)
11946 warning (OPT_Wdeprecated_declarations,
11947 "%qD is deprecated (declared at %r%s:%d%R): %s",
11948 node, "locus", xloc.file, xloc.line, msg);
11949 else
11950 warning (OPT_Wdeprecated_declarations,
11951 "%qD is deprecated (declared at %r%s:%d%R)",
11952 node, "locus", xloc.file, xloc.line);
11953 }
11954 else if (TYPE_P (node))
11955 {
11956 tree what = NULL_TREE;
11957 tree decl = TYPE_STUB_DECL (node);
11958
11959 if (TYPE_NAME (node))
11960 {
11961 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11962 what = TYPE_NAME (node);
11963 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11964 && DECL_NAME (TYPE_NAME (node)))
11965 what = DECL_NAME (TYPE_NAME (node));
11966 }
11967
11968 if (decl)
11969 {
11970 expanded_location xloc
11971 = expand_location (DECL_SOURCE_LOCATION (decl));
11972 if (what)
11973 {
11974 if (msg)
11975 warning (OPT_Wdeprecated_declarations,
11976 "%qE is deprecated (declared at %r%s:%d%R): %s",
11977 what, "locus", xloc.file, xloc.line, msg);
11978 else
11979 warning (OPT_Wdeprecated_declarations,
11980 "%qE is deprecated (declared at %r%s:%d%R)",
11981 what, "locus", xloc.file, xloc.line);
11982 }
11983 else
11984 {
11985 if (msg)
11986 warning (OPT_Wdeprecated_declarations,
11987 "type is deprecated (declared at %r%s:%d%R): %s",
11988 "locus", xloc.file, xloc.line, msg);
11989 else
11990 warning (OPT_Wdeprecated_declarations,
11991 "type is deprecated (declared at %r%s:%d%R)",
11992 "locus", xloc.file, xloc.line);
11993 }
11994 }
11995 else
11996 {
11997 if (what)
11998 {
11999 if (msg)
12000 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12001 what, msg);
12002 else
12003 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12004 }
12005 else
12006 {
12007 if (msg)
12008 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12009 msg);
12010 else
12011 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12012 }
12013 }
12014 }
12015 }
12016
12017 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12018 somewhere in it. */
12019
12020 bool
12021 contains_bitfld_component_ref_p (const_tree ref)
12022 {
12023 while (handled_component_p (ref))
12024 {
12025 if (TREE_CODE (ref) == COMPONENT_REF
12026 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12027 return true;
12028 ref = TREE_OPERAND (ref, 0);
12029 }
12030
12031 return false;
12032 }
12033
12034 /* Try to determine whether a TRY_CATCH expression can fall through.
12035 This is a subroutine of block_may_fallthru. */
12036
12037 static bool
12038 try_catch_may_fallthru (const_tree stmt)
12039 {
12040 tree_stmt_iterator i;
12041
12042 /* If the TRY block can fall through, the whole TRY_CATCH can
12043 fall through. */
12044 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12045 return true;
12046
12047 i = tsi_start (TREE_OPERAND (stmt, 1));
12048 switch (TREE_CODE (tsi_stmt (i)))
12049 {
12050 case CATCH_EXPR:
12051 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12052 catch expression and a body. The whole TRY_CATCH may fall
12053 through iff any of the catch bodies falls through. */
12054 for (; !tsi_end_p (i); tsi_next (&i))
12055 {
12056 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12057 return true;
12058 }
12059 return false;
12060
12061 case EH_FILTER_EXPR:
12062 /* The exception filter expression only matters if there is an
12063 exception. If the exception does not match EH_FILTER_TYPES,
12064 we will execute EH_FILTER_FAILURE, and we will fall through
12065 if that falls through. If the exception does match
12066 EH_FILTER_TYPES, the stack unwinder will continue up the
12067 stack, so we will not fall through. We don't know whether we
12068 will throw an exception which matches EH_FILTER_TYPES or not,
12069 so we just ignore EH_FILTER_TYPES and assume that we might
12070 throw an exception which doesn't match. */
12071 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12072
12073 default:
12074 /* This case represents statements to be executed when an
12075 exception occurs. Those statements are implicitly followed
12076 by a RESX statement to resume execution after the exception.
12077 So in this case the TRY_CATCH never falls through. */
12078 return false;
12079 }
12080 }
12081
12082 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12083 need not be 100% accurate; simply be conservative and return true if we
12084 don't know. This is used only to avoid stupidly generating extra code.
12085 If we're wrong, we'll just delete the extra code later. */
12086
12087 bool
12088 block_may_fallthru (const_tree block)
12089 {
12090 /* This CONST_CAST is okay because expr_last returns its argument
12091 unmodified and we assign it to a const_tree. */
12092 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12093
12094 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12095 {
12096 case GOTO_EXPR:
12097 case RETURN_EXPR:
12098 /* Easy cases. If the last statement of the block implies
12099 control transfer, then we can't fall through. */
12100 return false;
12101
12102 case SWITCH_EXPR:
12103 /* If SWITCH_LABELS is set, this is lowered, and represents a
12104 branch to a selected label and hence can not fall through.
12105 Otherwise SWITCH_BODY is set, and the switch can fall
12106 through. */
12107 return SWITCH_LABELS (stmt) == NULL_TREE;
12108
12109 case COND_EXPR:
12110 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12111 return true;
12112 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12113
12114 case BIND_EXPR:
12115 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12116
12117 case TRY_CATCH_EXPR:
12118 return try_catch_may_fallthru (stmt);
12119
12120 case TRY_FINALLY_EXPR:
12121 /* The finally clause is always executed after the try clause,
12122 so if it does not fall through, then the try-finally will not
12123 fall through. Otherwise, if the try clause does not fall
12124 through, then when the finally clause falls through it will
12125 resume execution wherever the try clause was going. So the
12126 whole try-finally will only fall through if both the try
12127 clause and the finally clause fall through. */
12128 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12129 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12130
12131 case MODIFY_EXPR:
12132 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12133 stmt = TREE_OPERAND (stmt, 1);
12134 else
12135 return true;
12136 /* FALLTHRU */
12137
12138 case CALL_EXPR:
12139 /* Functions that do not return do not fall through. */
12140 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12141
12142 case CLEANUP_POINT_EXPR:
12143 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12144
12145 case TARGET_EXPR:
12146 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12147
12148 case ERROR_MARK:
12149 return true;
12150
12151 default:
12152 return lang_hooks.block_may_fallthru (stmt);
12153 }
12154 }
12155
12156 /* True if we are using EH to handle cleanups. */
12157 static bool using_eh_for_cleanups_flag = false;
12158
12159 /* This routine is called from front ends to indicate eh should be used for
12160 cleanups. */
12161 void
12162 using_eh_for_cleanups (void)
12163 {
12164 using_eh_for_cleanups_flag = true;
12165 }
12166
12167 /* Query whether EH is used for cleanups. */
12168 bool
12169 using_eh_for_cleanups_p (void)
12170 {
12171 return using_eh_for_cleanups_flag;
12172 }
12173
12174 /* Wrapper for tree_code_name to ensure that tree code is valid */
12175 const char *
12176 get_tree_code_name (enum tree_code code)
12177 {
12178 const char *invalid = "<invalid tree code>";
12179
12180 if (code >= MAX_TREE_CODES)
12181 return invalid;
12182
12183 return tree_code_name[code];
12184 }
12185
12186 /* Drops the TREE_OVERFLOW flag from T. */
12187
12188 tree
12189 drop_tree_overflow (tree t)
12190 {
12191 gcc_checking_assert (TREE_OVERFLOW (t));
12192
12193 /* For tree codes with a sharing machinery re-build the result. */
12194 if (TREE_CODE (t) == INTEGER_CST)
12195 return wide_int_to_tree (TREE_TYPE (t), t);
12196
12197 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12198 and drop the flag. */
12199 t = copy_node (t);
12200 TREE_OVERFLOW (t) = 0;
12201 return t;
12202 }
12203
12204 /* Given a memory reference expression T, return its base address.
12205 The base address of a memory reference expression is the main
12206 object being referenced. For instance, the base address for
12207 'array[i].fld[j]' is 'array'. You can think of this as stripping
12208 away the offset part from a memory address.
12209
12210 This function calls handled_component_p to strip away all the inner
12211 parts of the memory reference until it reaches the base object. */
12212
12213 tree
12214 get_base_address (tree t)
12215 {
12216 while (handled_component_p (t))
12217 t = TREE_OPERAND (t, 0);
12218
12219 if ((TREE_CODE (t) == MEM_REF
12220 || TREE_CODE (t) == TARGET_MEM_REF)
12221 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12222 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12223
12224 /* ??? Either the alias oracle or all callers need to properly deal
12225 with WITH_SIZE_EXPRs before we can look through those. */
12226 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12227 return NULL_TREE;
12228
12229 return t;
12230 }
12231
12232 #include "gt-tree.h"