re PR tree-optimization/45957 (g++.dg/ext/fnname3.C FAILs with -flto/-fwhopr)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "vecs",
140 "binfos",
141 "ssa names",
142 "constructors",
143 "random kinds",
144 "lang_decl kinds",
145 "lang_type kinds",
146 "omp clauses",
147 };
148 #endif /* GATHER_STATISTICS */
149
150 /* Unique id for next decl created. */
151 static GTY(()) int next_decl_uid;
152 /* Unique id for next type created. */
153 static GTY(()) int next_type_uid = 1;
154 /* Unique id for next debug decl created. Use negative numbers,
155 to catch erroneous uses. */
156 static GTY(()) int next_debug_decl_uid;
157
158 /* Since we cannot rehash a type after it is in the table, we have to
159 keep the hash code. */
160
161 struct GTY(()) type_hash {
162 unsigned long hash;
163 tree type;
164 };
165
166 /* Initial size of the hash table (rounded to next prime). */
167 #define TYPE_HASH_INITIAL_SIZE 1000
168
169 /* Now here is the hash table. When recording a type, it is added to
170 the slot whose index is the hash code. Note that the hash table is
171 used for several kinds of types (function types, array types and
172 array index range types, for now). While all these live in the
173 same table, they are completely independent, and the hash code is
174 computed differently for each of these. */
175
176 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
177 htab_t type_hash_table;
178
179 /* Hash table and temporary node for larger integer const values. */
180 static GTY (()) tree int_cst_node;
181 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
182 htab_t int_cst_hash_table;
183
184 /* Hash table for optimization flags and target option flags. Use the same
185 hash table for both sets of options. Nodes for building the current
186 optimization and target option nodes. The assumption is most of the time
187 the options created will already be in the hash table, so we avoid
188 allocating and freeing up a node repeatably. */
189 static GTY (()) tree cl_optimization_node;
190 static GTY (()) tree cl_target_option_node;
191 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
192 htab_t cl_option_hash_table;
193
194 /* General tree->tree mapping structure for use in hash tables. */
195
196
197 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
198 htab_t debug_expr_for_decl;
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t value_expr_for_decl;
202
203 static GTY ((if_marked ("tree_priority_map_marked_p"),
204 param_is (struct tree_priority_map)))
205 htab_t init_priority_for_decl;
206
207 static void set_type_quals (tree, int);
208 static int type_hash_eq (const void *, const void *);
209 static hashval_t type_hash_hash (const void *);
210 static hashval_t int_cst_hash_hash (const void *);
211 static int int_cst_hash_eq (const void *, const void *);
212 static hashval_t cl_option_hash_hash (const void *);
213 static int cl_option_hash_eq (const void *, const void *);
214 static void print_type_hash_statistics (void);
215 static void print_debug_expr_statistics (void);
216 static void print_value_expr_statistics (void);
217 static int type_hash_marked_p (const void *);
218 static unsigned int type_hash_list (const_tree, hashval_t);
219 static unsigned int attribute_hash_list (const_tree, hashval_t);
220
221 tree global_trees[TI_MAX];
222 tree integer_types[itk_none];
223
224 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
225
226 /* Number of operands for each OpenMP clause. */
227 unsigned const char omp_clause_num_ops[] =
228 {
229 0, /* OMP_CLAUSE_ERROR */
230 1, /* OMP_CLAUSE_PRIVATE */
231 1, /* OMP_CLAUSE_SHARED */
232 1, /* OMP_CLAUSE_FIRSTPRIVATE */
233 2, /* OMP_CLAUSE_LASTPRIVATE */
234 4, /* OMP_CLAUSE_REDUCTION */
235 1, /* OMP_CLAUSE_COPYIN */
236 1, /* OMP_CLAUSE_COPYPRIVATE */
237 1, /* OMP_CLAUSE_IF */
238 1, /* OMP_CLAUSE_NUM_THREADS */
239 1, /* OMP_CLAUSE_SCHEDULE */
240 0, /* OMP_CLAUSE_NOWAIT */
241 0, /* OMP_CLAUSE_ORDERED */
242 0, /* OMP_CLAUSE_DEFAULT */
243 3, /* OMP_CLAUSE_COLLAPSE */
244 0 /* OMP_CLAUSE_UNTIED */
245 };
246
247 const char * const omp_clause_code_name[] =
248 {
249 "error_clause",
250 "private",
251 "shared",
252 "firstprivate",
253 "lastprivate",
254 "reduction",
255 "copyin",
256 "copyprivate",
257 "if",
258 "num_threads",
259 "schedule",
260 "nowait",
261 "ordered",
262 "default",
263 "collapse",
264 "untied"
265 };
266
267
268 /* Return the tree node structure used by tree code CODE. */
269
270 static inline enum tree_node_structure_enum
271 tree_node_structure_for_code (enum tree_code code)
272 {
273 switch (TREE_CODE_CLASS (code))
274 {
275 case tcc_declaration:
276 {
277 switch (code)
278 {
279 case FIELD_DECL:
280 return TS_FIELD_DECL;
281 case PARM_DECL:
282 return TS_PARM_DECL;
283 case VAR_DECL:
284 return TS_VAR_DECL;
285 case LABEL_DECL:
286 return TS_LABEL_DECL;
287 case RESULT_DECL:
288 return TS_RESULT_DECL;
289 case DEBUG_EXPR_DECL:
290 return TS_DECL_WRTL;
291 case CONST_DECL:
292 return TS_CONST_DECL;
293 case TYPE_DECL:
294 return TS_TYPE_DECL;
295 case FUNCTION_DECL:
296 return TS_FUNCTION_DECL;
297 case TRANSLATION_UNIT_DECL:
298 return TS_TRANSLATION_UNIT_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 case TS_TRANSLATION_UNIT_DECL:
470 MARK_TS_DECL_COMMON (code);
471 break;
472
473 default:
474 gcc_unreachable ();
475 }
476 }
477
478 /* Basic consistency checks for attributes used in fold. */
479 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
480 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
481 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
488 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
489 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
490 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
494 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
495 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
496 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
503 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
504 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
505 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
507 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
508 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
509 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
510 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
511 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
512 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
513 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
514 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
515 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
516 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
517 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
518
519 #undef MARK_TS_BASE
520 #undef MARK_TS_COMMON
521 #undef MARK_TS_DECL_MINIMAL
522 #undef MARK_TS_DECL_COMMON
523 #undef MARK_TS_DECL_WRTL
524 #undef MARK_TS_DECL_WITH_VIS
525 #undef MARK_TS_DECL_NON_COMMON
526 }
527
528
529 /* Init tree.c. */
530
531 void
532 init_ttree (void)
533 {
534 /* Initialize the hash table of types. */
535 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
536 type_hash_eq, 0);
537
538 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
539 tree_decl_map_eq, 0);
540
541 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
542 tree_decl_map_eq, 0);
543 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
544 tree_priority_map_eq, 0);
545
546 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
547 int_cst_hash_eq, NULL);
548
549 int_cst_node = make_node (INTEGER_CST);
550
551 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
552 cl_option_hash_eq, NULL);
553
554 cl_optimization_node = make_node (OPTIMIZATION_NODE);
555 cl_target_option_node = make_node (TARGET_OPTION_NODE);
556
557 /* Initialize the tree_contains_struct array. */
558 initialize_tree_contains_struct ();
559 lang_hooks.init_ts ();
560 }
561
562 \f
563 /* The name of the object as the assembler will see it (but before any
564 translations made by ASM_OUTPUT_LABELREF). Often this is the same
565 as DECL_NAME. It is an IDENTIFIER_NODE. */
566 tree
567 decl_assembler_name (tree decl)
568 {
569 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
570 lang_hooks.set_decl_assembler_name (decl);
571 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
572 }
573
574 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
575
576 bool
577 decl_assembler_name_equal (tree decl, const_tree asmname)
578 {
579 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
580 const char *decl_str;
581 const char *asmname_str;
582 bool test = false;
583
584 if (decl_asmname == asmname)
585 return true;
586
587 decl_str = IDENTIFIER_POINTER (decl_asmname);
588 asmname_str = IDENTIFIER_POINTER (asmname);
589
590
591 /* If the target assembler name was set by the user, things are trickier.
592 We have a leading '*' to begin with. After that, it's arguable what
593 is the correct thing to do with -fleading-underscore. Arguably, we've
594 historically been doing the wrong thing in assemble_alias by always
595 printing the leading underscore. Since we're not changing that, make
596 sure user_label_prefix follows the '*' before matching. */
597 if (decl_str[0] == '*')
598 {
599 size_t ulp_len = strlen (user_label_prefix);
600
601 decl_str ++;
602
603 if (ulp_len == 0)
604 test = true;
605 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
606 decl_str += ulp_len, test=true;
607 else
608 decl_str --;
609 }
610 if (asmname_str[0] == '*')
611 {
612 size_t ulp_len = strlen (user_label_prefix);
613
614 asmname_str ++;
615
616 if (ulp_len == 0)
617 test = true;
618 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
619 asmname_str += ulp_len, test=true;
620 else
621 asmname_str --;
622 }
623
624 if (!test)
625 return false;
626 return strcmp (decl_str, asmname_str) == 0;
627 }
628
629 /* Hash asmnames ignoring the user specified marks. */
630
631 hashval_t
632 decl_assembler_name_hash (const_tree asmname)
633 {
634 if (IDENTIFIER_POINTER (asmname)[0] == '*')
635 {
636 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
637 size_t ulp_len = strlen (user_label_prefix);
638
639 if (ulp_len == 0)
640 ;
641 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
642 decl_str += ulp_len;
643
644 return htab_hash_string (decl_str);
645 }
646
647 return htab_hash_string (IDENTIFIER_POINTER (asmname));
648 }
649
650 /* Compute the number of bytes occupied by a tree with code CODE.
651 This function cannot be used for nodes that have variable sizes,
652 including TREE_VEC, STRING_CST, and CALL_EXPR. */
653 size_t
654 tree_code_size (enum tree_code code)
655 {
656 switch (TREE_CODE_CLASS (code))
657 {
658 case tcc_declaration: /* A decl node */
659 {
660 switch (code)
661 {
662 case FIELD_DECL:
663 return sizeof (struct tree_field_decl);
664 case PARM_DECL:
665 return sizeof (struct tree_parm_decl);
666 case VAR_DECL:
667 return sizeof (struct tree_var_decl);
668 case LABEL_DECL:
669 return sizeof (struct tree_label_decl);
670 case RESULT_DECL:
671 return sizeof (struct tree_result_decl);
672 case CONST_DECL:
673 return sizeof (struct tree_const_decl);
674 case TYPE_DECL:
675 return sizeof (struct tree_type_decl);
676 case FUNCTION_DECL:
677 return sizeof (struct tree_function_decl);
678 case DEBUG_EXPR_DECL:
679 return sizeof (struct tree_decl_with_rtl);
680 default:
681 return sizeof (struct tree_decl_non_common);
682 }
683 }
684
685 case tcc_type: /* a type node */
686 return sizeof (struct tree_type);
687
688 case tcc_reference: /* a reference */
689 case tcc_expression: /* an expression */
690 case tcc_statement: /* an expression with side effects */
691 case tcc_comparison: /* a comparison expression */
692 case tcc_unary: /* a unary arithmetic expression */
693 case tcc_binary: /* a binary arithmetic expression */
694 return (sizeof (struct tree_exp)
695 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
696
697 case tcc_constant: /* a constant */
698 switch (code)
699 {
700 case INTEGER_CST: return sizeof (struct tree_int_cst);
701 case REAL_CST: return sizeof (struct tree_real_cst);
702 case FIXED_CST: return sizeof (struct tree_fixed_cst);
703 case COMPLEX_CST: return sizeof (struct tree_complex);
704 case VECTOR_CST: return sizeof (struct tree_vector);
705 case STRING_CST: gcc_unreachable ();
706 default:
707 return lang_hooks.tree_size (code);
708 }
709
710 case tcc_exceptional: /* something random, like an identifier. */
711 switch (code)
712 {
713 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
714 case TREE_LIST: return sizeof (struct tree_list);
715
716 case ERROR_MARK:
717 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
718
719 case TREE_VEC:
720 case OMP_CLAUSE: gcc_unreachable ();
721
722 case SSA_NAME: return sizeof (struct tree_ssa_name);
723
724 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
725 case BLOCK: return sizeof (struct tree_block);
726 case CONSTRUCTOR: return sizeof (struct tree_constructor);
727 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
728 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
729
730 default:
731 return lang_hooks.tree_size (code);
732 }
733
734 default:
735 gcc_unreachable ();
736 }
737 }
738
739 /* Compute the number of bytes occupied by NODE. This routine only
740 looks at TREE_CODE, except for those nodes that have variable sizes. */
741 size_t
742 tree_size (const_tree node)
743 {
744 const enum tree_code code = TREE_CODE (node);
745 switch (code)
746 {
747 case TREE_BINFO:
748 return (offsetof (struct tree_binfo, base_binfos)
749 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
750
751 case TREE_VEC:
752 return (sizeof (struct tree_vec)
753 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
754
755 case STRING_CST:
756 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
757
758 case OMP_CLAUSE:
759 return (sizeof (struct tree_omp_clause)
760 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
761 * sizeof (tree));
762
763 default:
764 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
765 return (sizeof (struct tree_exp)
766 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
767 else
768 return tree_code_size (code);
769 }
770 }
771
772 /* Return a newly allocated node of code CODE. For decl and type
773 nodes, some other fields are initialized. The rest of the node is
774 initialized to zero. This function cannot be used for TREE_VEC or
775 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
776
777 Achoo! I got a code in the node. */
778
779 tree
780 make_node_stat (enum tree_code code MEM_STAT_DECL)
781 {
782 tree t;
783 enum tree_code_class type = TREE_CODE_CLASS (code);
784 size_t length = tree_code_size (code);
785 #ifdef GATHER_STATISTICS
786 tree_node_kind kind;
787
788 switch (type)
789 {
790 case tcc_declaration: /* A decl node */
791 kind = d_kind;
792 break;
793
794 case tcc_type: /* a type node */
795 kind = t_kind;
796 break;
797
798 case tcc_statement: /* an expression with side effects */
799 kind = s_kind;
800 break;
801
802 case tcc_reference: /* a reference */
803 kind = r_kind;
804 break;
805
806 case tcc_expression: /* an expression */
807 case tcc_comparison: /* a comparison expression */
808 case tcc_unary: /* a unary arithmetic expression */
809 case tcc_binary: /* a binary arithmetic expression */
810 kind = e_kind;
811 break;
812
813 case tcc_constant: /* a constant */
814 kind = c_kind;
815 break;
816
817 case tcc_exceptional: /* something random, like an identifier. */
818 switch (code)
819 {
820 case IDENTIFIER_NODE:
821 kind = id_kind;
822 break;
823
824 case TREE_VEC:
825 kind = vec_kind;
826 break;
827
828 case TREE_BINFO:
829 kind = binfo_kind;
830 break;
831
832 case SSA_NAME:
833 kind = ssa_name_kind;
834 break;
835
836 case BLOCK:
837 kind = b_kind;
838 break;
839
840 case CONSTRUCTOR:
841 kind = constr_kind;
842 break;
843
844 default:
845 kind = x_kind;
846 break;
847 }
848 break;
849
850 default:
851 gcc_unreachable ();
852 }
853
854 tree_node_counts[(int) kind]++;
855 tree_node_sizes[(int) kind] += length;
856 #endif
857
858 t = ggc_alloc_zone_cleared_tree_node_stat (
859 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
860 length PASS_MEM_STAT);
861 TREE_SET_CODE (t, code);
862
863 switch (type)
864 {
865 case tcc_statement:
866 TREE_SIDE_EFFECTS (t) = 1;
867 break;
868
869 case tcc_declaration:
870 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
871 {
872 if (code == FUNCTION_DECL)
873 {
874 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
875 DECL_MODE (t) = FUNCTION_MODE;
876 }
877 else
878 DECL_ALIGN (t) = 1;
879 }
880 DECL_SOURCE_LOCATION (t) = input_location;
881 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
882 DECL_UID (t) = --next_debug_decl_uid;
883 else
884 {
885 DECL_UID (t) = next_decl_uid++;
886 SET_DECL_PT_UID (t, -1);
887 }
888 if (TREE_CODE (t) == LABEL_DECL)
889 LABEL_DECL_UID (t) = -1;
890
891 break;
892
893 case tcc_type:
894 TYPE_UID (t) = next_type_uid++;
895 TYPE_ALIGN (t) = BITS_PER_UNIT;
896 TYPE_USER_ALIGN (t) = 0;
897 TYPE_MAIN_VARIANT (t) = t;
898 TYPE_CANONICAL (t) = t;
899
900 /* Default to no attributes for type, but let target change that. */
901 TYPE_ATTRIBUTES (t) = NULL_TREE;
902 targetm.set_default_type_attributes (t);
903
904 /* We have not yet computed the alias set for this type. */
905 TYPE_ALIAS_SET (t) = -1;
906 break;
907
908 case tcc_constant:
909 TREE_CONSTANT (t) = 1;
910 break;
911
912 case tcc_expression:
913 switch (code)
914 {
915 case INIT_EXPR:
916 case MODIFY_EXPR:
917 case VA_ARG_EXPR:
918 case PREDECREMENT_EXPR:
919 case PREINCREMENT_EXPR:
920 case POSTDECREMENT_EXPR:
921 case POSTINCREMENT_EXPR:
922 /* All of these have side-effects, no matter what their
923 operands are. */
924 TREE_SIDE_EFFECTS (t) = 1;
925 break;
926
927 default:
928 break;
929 }
930 break;
931
932 default:
933 /* Other classes need no special treatment. */
934 break;
935 }
936
937 return t;
938 }
939 \f
940 /* Return a new node with the same contents as NODE except that its
941 TREE_CHAIN is zero and it has a fresh uid. */
942
943 tree
944 copy_node_stat (tree node MEM_STAT_DECL)
945 {
946 tree t;
947 enum tree_code code = TREE_CODE (node);
948 size_t length;
949
950 gcc_assert (code != STATEMENT_LIST);
951
952 length = tree_size (node);
953 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
954 memcpy (t, node, length);
955
956 TREE_CHAIN (t) = 0;
957 TREE_ASM_WRITTEN (t) = 0;
958 TREE_VISITED (t) = 0;
959 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
960 *DECL_VAR_ANN_PTR (t) = 0;
961
962 if (TREE_CODE_CLASS (code) == tcc_declaration)
963 {
964 if (code == DEBUG_EXPR_DECL)
965 DECL_UID (t) = --next_debug_decl_uid;
966 else
967 {
968 DECL_UID (t) = next_decl_uid++;
969 if (DECL_PT_UID_SET_P (node))
970 SET_DECL_PT_UID (t, DECL_PT_UID (node));
971 }
972 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
973 && DECL_HAS_VALUE_EXPR_P (node))
974 {
975 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
976 DECL_HAS_VALUE_EXPR_P (t) = 1;
977 }
978 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
979 {
980 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
981 DECL_HAS_INIT_PRIORITY_P (t) = 1;
982 }
983 }
984 else if (TREE_CODE_CLASS (code) == tcc_type)
985 {
986 TYPE_UID (t) = next_type_uid++;
987 /* The following is so that the debug code for
988 the copy is different from the original type.
989 The two statements usually duplicate each other
990 (because they clear fields of the same union),
991 but the optimizer should catch that. */
992 TYPE_SYMTAB_POINTER (t) = 0;
993 TYPE_SYMTAB_ADDRESS (t) = 0;
994
995 /* Do not copy the values cache. */
996 if (TYPE_CACHED_VALUES_P(t))
997 {
998 TYPE_CACHED_VALUES_P (t) = 0;
999 TYPE_CACHED_VALUES (t) = NULL_TREE;
1000 }
1001 }
1002
1003 return t;
1004 }
1005
1006 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1007 For example, this can copy a list made of TREE_LIST nodes. */
1008
1009 tree
1010 copy_list (tree list)
1011 {
1012 tree head;
1013 tree prev, next;
1014
1015 if (list == 0)
1016 return 0;
1017
1018 head = prev = copy_node (list);
1019 next = TREE_CHAIN (list);
1020 while (next)
1021 {
1022 TREE_CHAIN (prev) = copy_node (next);
1023 prev = TREE_CHAIN (prev);
1024 next = TREE_CHAIN (next);
1025 }
1026 return head;
1027 }
1028
1029 \f
1030 /* Create an INT_CST node with a LOW value sign extended. */
1031
1032 tree
1033 build_int_cst (tree type, HOST_WIDE_INT low)
1034 {
1035 /* Support legacy code. */
1036 if (!type)
1037 type = integer_type_node;
1038
1039 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1040 }
1041
1042 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1043 if it is negative. This function is similar to build_int_cst, but
1044 the extra bits outside of the type precision are cleared. Constants
1045 with these extra bits may confuse the fold so that it detects overflows
1046 even in cases when they do not occur, and in general should be avoided.
1047 We cannot however make this a default behavior of build_int_cst without
1048 more intrusive changes, since there are parts of gcc that rely on the extra
1049 precision of the integer constants. */
1050
1051 tree
1052 build_int_cst_type (tree type, HOST_WIDE_INT low)
1053 {
1054 gcc_assert (type);
1055
1056 return double_int_to_tree (type, shwi_to_double_int (low));
1057 }
1058
1059 /* Constructs tree in type TYPE from with value given by CST. Signedness
1060 of CST is assumed to be the same as the signedness of TYPE. */
1061
1062 tree
1063 double_int_to_tree (tree type, double_int cst)
1064 {
1065 /* Size types *are* sign extended. */
1066 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1067 || (TREE_CODE (type) == INTEGER_TYPE
1068 && TYPE_IS_SIZETYPE (type)));
1069
1070 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1071
1072 return build_int_cst_wide (type, cst.low, cst.high);
1073 }
1074
1075 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1076 to be the same as the signedness of TYPE. */
1077
1078 bool
1079 double_int_fits_to_tree_p (const_tree type, double_int cst)
1080 {
1081 /* Size types *are* sign extended. */
1082 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1083 || (TREE_CODE (type) == INTEGER_TYPE
1084 && TYPE_IS_SIZETYPE (type)));
1085
1086 double_int ext
1087 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1088
1089 return double_int_equal_p (cst, ext);
1090 }
1091
1092 /* We force the double_int CST to the range of the type TYPE by sign or
1093 zero extending it. OVERFLOWABLE indicates if we are interested in
1094 overflow of the value, when >0 we are only interested in signed
1095 overflow, for <0 we are interested in any overflow. OVERFLOWED
1096 indicates whether overflow has already occurred. CONST_OVERFLOWED
1097 indicates whether constant overflow has already occurred. We force
1098 T's value to be within range of T's type (by setting to 0 or 1 all
1099 the bits outside the type's range). We set TREE_OVERFLOWED if,
1100 OVERFLOWED is nonzero,
1101 or OVERFLOWABLE is >0 and signed overflow occurs
1102 or OVERFLOWABLE is <0 and any overflow occurs
1103 We return a new tree node for the extended double_int. The node
1104 is shared if no overflow flags are set. */
1105
1106
1107 tree
1108 force_fit_type_double (tree type, double_int cst, int overflowable,
1109 bool overflowed)
1110 {
1111 bool sign_extended_type;
1112
1113 /* Size types *are* sign extended. */
1114 sign_extended_type = (!TYPE_UNSIGNED (type)
1115 || (TREE_CODE (type) == INTEGER_TYPE
1116 && TYPE_IS_SIZETYPE (type)));
1117
1118 /* If we need to set overflow flags, return a new unshared node. */
1119 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1120 {
1121 if (overflowed
1122 || overflowable < 0
1123 || (overflowable > 0 && sign_extended_type))
1124 {
1125 tree t = make_node (INTEGER_CST);
1126 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1127 !sign_extended_type);
1128 TREE_TYPE (t) = type;
1129 TREE_OVERFLOW (t) = 1;
1130 return t;
1131 }
1132 }
1133
1134 /* Else build a shared node. */
1135 return double_int_to_tree (type, cst);
1136 }
1137
1138 /* These are the hash table functions for the hash table of INTEGER_CST
1139 nodes of a sizetype. */
1140
1141 /* Return the hash code code X, an INTEGER_CST. */
1142
1143 static hashval_t
1144 int_cst_hash_hash (const void *x)
1145 {
1146 const_tree const t = (const_tree) x;
1147
1148 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1149 ^ htab_hash_pointer (TREE_TYPE (t)));
1150 }
1151
1152 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1153 is the same as that given by *Y, which is the same. */
1154
1155 static int
1156 int_cst_hash_eq (const void *x, const void *y)
1157 {
1158 const_tree const xt = (const_tree) x;
1159 const_tree const yt = (const_tree) y;
1160
1161 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1162 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1163 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1164 }
1165
1166 /* Create an INT_CST node of TYPE and value HI:LOW.
1167 The returned node is always shared. For small integers we use a
1168 per-type vector cache, for larger ones we use a single hash table. */
1169
1170 tree
1171 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1172 {
1173 tree t;
1174 int ix = -1;
1175 int limit = 0;
1176
1177 gcc_assert (type);
1178
1179 switch (TREE_CODE (type))
1180 {
1181 case NULLPTR_TYPE:
1182 gcc_assert (hi == 0 && low == 0);
1183 /* Fallthru. */
1184
1185 case POINTER_TYPE:
1186 case REFERENCE_TYPE:
1187 /* Cache NULL pointer. */
1188 if (!hi && !low)
1189 {
1190 limit = 1;
1191 ix = 0;
1192 }
1193 break;
1194
1195 case BOOLEAN_TYPE:
1196 /* Cache false or true. */
1197 limit = 2;
1198 if (!hi && low < 2)
1199 ix = low;
1200 break;
1201
1202 case INTEGER_TYPE:
1203 case OFFSET_TYPE:
1204 if (TYPE_UNSIGNED (type))
1205 {
1206 /* Cache 0..N */
1207 limit = INTEGER_SHARE_LIMIT;
1208 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1209 ix = low;
1210 }
1211 else
1212 {
1213 /* Cache -1..N */
1214 limit = INTEGER_SHARE_LIMIT + 1;
1215 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1216 ix = low + 1;
1217 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1218 ix = 0;
1219 }
1220 break;
1221
1222 case ENUMERAL_TYPE:
1223 break;
1224
1225 default:
1226 gcc_unreachable ();
1227 }
1228
1229 if (ix >= 0)
1230 {
1231 /* Look for it in the type's vector of small shared ints. */
1232 if (!TYPE_CACHED_VALUES_P (type))
1233 {
1234 TYPE_CACHED_VALUES_P (type) = 1;
1235 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1236 }
1237
1238 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1239 if (t)
1240 {
1241 /* Make sure no one is clobbering the shared constant. */
1242 gcc_assert (TREE_TYPE (t) == type);
1243 gcc_assert (TREE_INT_CST_LOW (t) == low);
1244 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1245 }
1246 else
1247 {
1248 /* Create a new shared int. */
1249 t = make_node (INTEGER_CST);
1250
1251 TREE_INT_CST_LOW (t) = low;
1252 TREE_INT_CST_HIGH (t) = hi;
1253 TREE_TYPE (t) = type;
1254
1255 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1256 }
1257 }
1258 else
1259 {
1260 /* Use the cache of larger shared ints. */
1261 void **slot;
1262
1263 TREE_INT_CST_LOW (int_cst_node) = low;
1264 TREE_INT_CST_HIGH (int_cst_node) = hi;
1265 TREE_TYPE (int_cst_node) = type;
1266
1267 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1268 t = (tree) *slot;
1269 if (!t)
1270 {
1271 /* Insert this one into the hash table. */
1272 t = int_cst_node;
1273 *slot = t;
1274 /* Make a new node for next time round. */
1275 int_cst_node = make_node (INTEGER_CST);
1276 }
1277 }
1278
1279 return t;
1280 }
1281
1282 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1283 and the rest are zeros. */
1284
1285 tree
1286 build_low_bits_mask (tree type, unsigned bits)
1287 {
1288 double_int mask;
1289
1290 gcc_assert (bits <= TYPE_PRECISION (type));
1291
1292 if (bits == TYPE_PRECISION (type)
1293 && !TYPE_UNSIGNED (type))
1294 /* Sign extended all-ones mask. */
1295 mask = double_int_minus_one;
1296 else
1297 mask = double_int_mask (bits);
1298
1299 return build_int_cst_wide (type, mask.low, mask.high);
1300 }
1301
1302 /* Checks that X is integer constant that can be expressed in (unsigned)
1303 HOST_WIDE_INT without loss of precision. */
1304
1305 bool
1306 cst_and_fits_in_hwi (const_tree x)
1307 {
1308 if (TREE_CODE (x) != INTEGER_CST)
1309 return false;
1310
1311 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1312 return false;
1313
1314 return (TREE_INT_CST_HIGH (x) == 0
1315 || TREE_INT_CST_HIGH (x) == -1);
1316 }
1317
1318 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1319 are in a list pointed to by VALS. */
1320
1321 tree
1322 build_vector (tree type, tree vals)
1323 {
1324 tree v = make_node (VECTOR_CST);
1325 int over = 0;
1326 tree link;
1327 unsigned cnt = 0;
1328
1329 TREE_VECTOR_CST_ELTS (v) = vals;
1330 TREE_TYPE (v) = type;
1331
1332 /* Iterate through elements and check for overflow. */
1333 for (link = vals; link; link = TREE_CHAIN (link))
1334 {
1335 tree value = TREE_VALUE (link);
1336 cnt++;
1337
1338 /* Don't crash if we get an address constant. */
1339 if (!CONSTANT_CLASS_P (value))
1340 continue;
1341
1342 over |= TREE_OVERFLOW (value);
1343 }
1344
1345 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1346
1347 TREE_OVERFLOW (v) = over;
1348 return v;
1349 }
1350
1351 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1352 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1353
1354 tree
1355 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1356 {
1357 tree list = NULL_TREE;
1358 unsigned HOST_WIDE_INT idx;
1359 tree value;
1360
1361 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1362 list = tree_cons (NULL_TREE, value, list);
1363 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1364 list = tree_cons (NULL_TREE,
1365 fold_convert (TREE_TYPE (type), integer_zero_node), list);
1366 return build_vector (type, nreverse (list));
1367 }
1368
1369 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1370 are in the VEC pointed to by VALS. */
1371 tree
1372 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1373 {
1374 tree c = make_node (CONSTRUCTOR);
1375 unsigned int i;
1376 constructor_elt *elt;
1377 bool constant_p = true;
1378
1379 TREE_TYPE (c) = type;
1380 CONSTRUCTOR_ELTS (c) = vals;
1381
1382 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1383 if (!TREE_CONSTANT (elt->value))
1384 {
1385 constant_p = false;
1386 break;
1387 }
1388
1389 TREE_CONSTANT (c) = constant_p;
1390
1391 return c;
1392 }
1393
1394 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1395 INDEX and VALUE. */
1396 tree
1397 build_constructor_single (tree type, tree index, tree value)
1398 {
1399 VEC(constructor_elt,gc) *v;
1400 constructor_elt *elt;
1401
1402 v = VEC_alloc (constructor_elt, gc, 1);
1403 elt = VEC_quick_push (constructor_elt, v, NULL);
1404 elt->index = index;
1405 elt->value = value;
1406
1407 return build_constructor (type, v);
1408 }
1409
1410
1411 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1412 are in a list pointed to by VALS. */
1413 tree
1414 build_constructor_from_list (tree type, tree vals)
1415 {
1416 tree t;
1417 VEC(constructor_elt,gc) *v = NULL;
1418
1419 if (vals)
1420 {
1421 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1422 for (t = vals; t; t = TREE_CHAIN (t))
1423 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1424 }
1425
1426 return build_constructor (type, v);
1427 }
1428
1429 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1430
1431 tree
1432 build_fixed (tree type, FIXED_VALUE_TYPE f)
1433 {
1434 tree v;
1435 FIXED_VALUE_TYPE *fp;
1436
1437 v = make_node (FIXED_CST);
1438 fp = ggc_alloc_fixed_value ();
1439 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1440
1441 TREE_TYPE (v) = type;
1442 TREE_FIXED_CST_PTR (v) = fp;
1443 return v;
1444 }
1445
1446 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1447
1448 tree
1449 build_real (tree type, REAL_VALUE_TYPE d)
1450 {
1451 tree v;
1452 REAL_VALUE_TYPE *dp;
1453 int overflow = 0;
1454
1455 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1456 Consider doing it via real_convert now. */
1457
1458 v = make_node (REAL_CST);
1459 dp = ggc_alloc_real_value ();
1460 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1461
1462 TREE_TYPE (v) = type;
1463 TREE_REAL_CST_PTR (v) = dp;
1464 TREE_OVERFLOW (v) = overflow;
1465 return v;
1466 }
1467
1468 /* Return a new REAL_CST node whose type is TYPE
1469 and whose value is the integer value of the INTEGER_CST node I. */
1470
1471 REAL_VALUE_TYPE
1472 real_value_from_int_cst (const_tree type, const_tree i)
1473 {
1474 REAL_VALUE_TYPE d;
1475
1476 /* Clear all bits of the real value type so that we can later do
1477 bitwise comparisons to see if two values are the same. */
1478 memset (&d, 0, sizeof d);
1479
1480 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1481 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1482 TYPE_UNSIGNED (TREE_TYPE (i)));
1483 return d;
1484 }
1485
1486 /* Given a tree representing an integer constant I, return a tree
1487 representing the same value as a floating-point constant of type TYPE. */
1488
1489 tree
1490 build_real_from_int_cst (tree type, const_tree i)
1491 {
1492 tree v;
1493 int overflow = TREE_OVERFLOW (i);
1494
1495 v = build_real (type, real_value_from_int_cst (type, i));
1496
1497 TREE_OVERFLOW (v) |= overflow;
1498 return v;
1499 }
1500
1501 /* Return a newly constructed STRING_CST node whose value is
1502 the LEN characters at STR.
1503 The TREE_TYPE is not initialized. */
1504
1505 tree
1506 build_string (int len, const char *str)
1507 {
1508 tree s;
1509 size_t length;
1510
1511 /* Do not waste bytes provided by padding of struct tree_string. */
1512 length = len + offsetof (struct tree_string, str) + 1;
1513
1514 #ifdef GATHER_STATISTICS
1515 tree_node_counts[(int) c_kind]++;
1516 tree_node_sizes[(int) c_kind] += length;
1517 #endif
1518
1519 s = ggc_alloc_tree_node (length);
1520
1521 memset (s, 0, sizeof (struct tree_common));
1522 TREE_SET_CODE (s, STRING_CST);
1523 TREE_CONSTANT (s) = 1;
1524 TREE_STRING_LENGTH (s) = len;
1525 memcpy (s->string.str, str, len);
1526 s->string.str[len] = '\0';
1527
1528 return s;
1529 }
1530
1531 /* Return a newly constructed COMPLEX_CST node whose value is
1532 specified by the real and imaginary parts REAL and IMAG.
1533 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1534 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1535
1536 tree
1537 build_complex (tree type, tree real, tree imag)
1538 {
1539 tree t = make_node (COMPLEX_CST);
1540
1541 TREE_REALPART (t) = real;
1542 TREE_IMAGPART (t) = imag;
1543 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1544 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1545 return t;
1546 }
1547
1548 /* Return a constant of arithmetic type TYPE which is the
1549 multiplicative identity of the set TYPE. */
1550
1551 tree
1552 build_one_cst (tree type)
1553 {
1554 switch (TREE_CODE (type))
1555 {
1556 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1557 case POINTER_TYPE: case REFERENCE_TYPE:
1558 case OFFSET_TYPE:
1559 return build_int_cst (type, 1);
1560
1561 case REAL_TYPE:
1562 return build_real (type, dconst1);
1563
1564 case FIXED_POINT_TYPE:
1565 /* We can only generate 1 for accum types. */
1566 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1567 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1568
1569 case VECTOR_TYPE:
1570 {
1571 tree scalar, cst;
1572 int i;
1573
1574 scalar = build_one_cst (TREE_TYPE (type));
1575
1576 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1577 cst = NULL_TREE;
1578 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1579 cst = tree_cons (NULL_TREE, scalar, cst);
1580
1581 return build_vector (type, cst);
1582 }
1583
1584 case COMPLEX_TYPE:
1585 return build_complex (type,
1586 build_one_cst (TREE_TYPE (type)),
1587 fold_convert (TREE_TYPE (type), integer_zero_node));
1588
1589 default:
1590 gcc_unreachable ();
1591 }
1592 }
1593
1594 /* Build 0 constant of type TYPE. This is used by constructor folding and thus
1595 the constant should correspond zero in memory representation. */
1596
1597 tree
1598 build_zero_cst (tree type)
1599 {
1600 if (!AGGREGATE_TYPE_P (type))
1601 return fold_convert (type, integer_zero_node);
1602 return build_constructor (type, NULL);
1603 }
1604
1605
1606 /* Build a BINFO with LEN language slots. */
1607
1608 tree
1609 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1610 {
1611 tree t;
1612 size_t length = (offsetof (struct tree_binfo, base_binfos)
1613 + VEC_embedded_size (tree, base_binfos));
1614
1615 #ifdef GATHER_STATISTICS
1616 tree_node_counts[(int) binfo_kind]++;
1617 tree_node_sizes[(int) binfo_kind] += length;
1618 #endif
1619
1620 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1621
1622 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1623
1624 TREE_SET_CODE (t, TREE_BINFO);
1625
1626 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1627
1628 return t;
1629 }
1630
1631
1632 /* Build a newly constructed TREE_VEC node of length LEN. */
1633
1634 tree
1635 make_tree_vec_stat (int len MEM_STAT_DECL)
1636 {
1637 tree t;
1638 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1639
1640 #ifdef GATHER_STATISTICS
1641 tree_node_counts[(int) vec_kind]++;
1642 tree_node_sizes[(int) vec_kind] += length;
1643 #endif
1644
1645 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1646
1647 TREE_SET_CODE (t, TREE_VEC);
1648 TREE_VEC_LENGTH (t) = len;
1649
1650 return t;
1651 }
1652 \f
1653 /* Return 1 if EXPR is the integer constant zero or a complex constant
1654 of zero. */
1655
1656 int
1657 integer_zerop (const_tree expr)
1658 {
1659 STRIP_NOPS (expr);
1660
1661 return ((TREE_CODE (expr) == INTEGER_CST
1662 && TREE_INT_CST_LOW (expr) == 0
1663 && TREE_INT_CST_HIGH (expr) == 0)
1664 || (TREE_CODE (expr) == COMPLEX_CST
1665 && integer_zerop (TREE_REALPART (expr))
1666 && integer_zerop (TREE_IMAGPART (expr))));
1667 }
1668
1669 /* Return 1 if EXPR is the integer constant one or the corresponding
1670 complex constant. */
1671
1672 int
1673 integer_onep (const_tree expr)
1674 {
1675 STRIP_NOPS (expr);
1676
1677 return ((TREE_CODE (expr) == INTEGER_CST
1678 && TREE_INT_CST_LOW (expr) == 1
1679 && TREE_INT_CST_HIGH (expr) == 0)
1680 || (TREE_CODE (expr) == COMPLEX_CST
1681 && integer_onep (TREE_REALPART (expr))
1682 && integer_zerop (TREE_IMAGPART (expr))));
1683 }
1684
1685 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1686 it contains. Likewise for the corresponding complex constant. */
1687
1688 int
1689 integer_all_onesp (const_tree expr)
1690 {
1691 int prec;
1692 int uns;
1693
1694 STRIP_NOPS (expr);
1695
1696 if (TREE_CODE (expr) == COMPLEX_CST
1697 && integer_all_onesp (TREE_REALPART (expr))
1698 && integer_zerop (TREE_IMAGPART (expr)))
1699 return 1;
1700
1701 else if (TREE_CODE (expr) != INTEGER_CST)
1702 return 0;
1703
1704 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1705 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1706 && TREE_INT_CST_HIGH (expr) == -1)
1707 return 1;
1708 if (!uns)
1709 return 0;
1710
1711 /* Note that using TYPE_PRECISION here is wrong. We care about the
1712 actual bits, not the (arbitrary) range of the type. */
1713 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1714 if (prec >= HOST_BITS_PER_WIDE_INT)
1715 {
1716 HOST_WIDE_INT high_value;
1717 int shift_amount;
1718
1719 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1720
1721 /* Can not handle precisions greater than twice the host int size. */
1722 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1723 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1724 /* Shifting by the host word size is undefined according to the ANSI
1725 standard, so we must handle this as a special case. */
1726 high_value = -1;
1727 else
1728 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1729
1730 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1731 && TREE_INT_CST_HIGH (expr) == high_value);
1732 }
1733 else
1734 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1735 }
1736
1737 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1738 one bit on). */
1739
1740 int
1741 integer_pow2p (const_tree expr)
1742 {
1743 int prec;
1744 HOST_WIDE_INT high, low;
1745
1746 STRIP_NOPS (expr);
1747
1748 if (TREE_CODE (expr) == COMPLEX_CST
1749 && integer_pow2p (TREE_REALPART (expr))
1750 && integer_zerop (TREE_IMAGPART (expr)))
1751 return 1;
1752
1753 if (TREE_CODE (expr) != INTEGER_CST)
1754 return 0;
1755
1756 prec = TYPE_PRECISION (TREE_TYPE (expr));
1757 high = TREE_INT_CST_HIGH (expr);
1758 low = TREE_INT_CST_LOW (expr);
1759
1760 /* First clear all bits that are beyond the type's precision in case
1761 we've been sign extended. */
1762
1763 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1764 ;
1765 else if (prec > HOST_BITS_PER_WIDE_INT)
1766 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1767 else
1768 {
1769 high = 0;
1770 if (prec < HOST_BITS_PER_WIDE_INT)
1771 low &= ~((HOST_WIDE_INT) (-1) << prec);
1772 }
1773
1774 if (high == 0 && low == 0)
1775 return 0;
1776
1777 return ((high == 0 && (low & (low - 1)) == 0)
1778 || (low == 0 && (high & (high - 1)) == 0));
1779 }
1780
1781 /* Return 1 if EXPR is an integer constant other than zero or a
1782 complex constant other than zero. */
1783
1784 int
1785 integer_nonzerop (const_tree expr)
1786 {
1787 STRIP_NOPS (expr);
1788
1789 return ((TREE_CODE (expr) == INTEGER_CST
1790 && (TREE_INT_CST_LOW (expr) != 0
1791 || TREE_INT_CST_HIGH (expr) != 0))
1792 || (TREE_CODE (expr) == COMPLEX_CST
1793 && (integer_nonzerop (TREE_REALPART (expr))
1794 || integer_nonzerop (TREE_IMAGPART (expr)))));
1795 }
1796
1797 /* Return 1 if EXPR is the fixed-point constant zero. */
1798
1799 int
1800 fixed_zerop (const_tree expr)
1801 {
1802 return (TREE_CODE (expr) == FIXED_CST
1803 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1804 }
1805
1806 /* Return the power of two represented by a tree node known to be a
1807 power of two. */
1808
1809 int
1810 tree_log2 (const_tree expr)
1811 {
1812 int prec;
1813 HOST_WIDE_INT high, low;
1814
1815 STRIP_NOPS (expr);
1816
1817 if (TREE_CODE (expr) == COMPLEX_CST)
1818 return tree_log2 (TREE_REALPART (expr));
1819
1820 prec = TYPE_PRECISION (TREE_TYPE (expr));
1821 high = TREE_INT_CST_HIGH (expr);
1822 low = TREE_INT_CST_LOW (expr);
1823
1824 /* First clear all bits that are beyond the type's precision in case
1825 we've been sign extended. */
1826
1827 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1828 ;
1829 else if (prec > HOST_BITS_PER_WIDE_INT)
1830 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1831 else
1832 {
1833 high = 0;
1834 if (prec < HOST_BITS_PER_WIDE_INT)
1835 low &= ~((HOST_WIDE_INT) (-1) << prec);
1836 }
1837
1838 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1839 : exact_log2 (low));
1840 }
1841
1842 /* Similar, but return the largest integer Y such that 2 ** Y is less
1843 than or equal to EXPR. */
1844
1845 int
1846 tree_floor_log2 (const_tree expr)
1847 {
1848 int prec;
1849 HOST_WIDE_INT high, low;
1850
1851 STRIP_NOPS (expr);
1852
1853 if (TREE_CODE (expr) == COMPLEX_CST)
1854 return tree_log2 (TREE_REALPART (expr));
1855
1856 prec = TYPE_PRECISION (TREE_TYPE (expr));
1857 high = TREE_INT_CST_HIGH (expr);
1858 low = TREE_INT_CST_LOW (expr);
1859
1860 /* First clear all bits that are beyond the type's precision in case
1861 we've been sign extended. Ignore if type's precision hasn't been set
1862 since what we are doing is setting it. */
1863
1864 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1865 ;
1866 else if (prec > HOST_BITS_PER_WIDE_INT)
1867 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1868 else
1869 {
1870 high = 0;
1871 if (prec < HOST_BITS_PER_WIDE_INT)
1872 low &= ~((HOST_WIDE_INT) (-1) << prec);
1873 }
1874
1875 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1876 : floor_log2 (low));
1877 }
1878
1879 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1880 decimal float constants, so don't return 1 for them. */
1881
1882 int
1883 real_zerop (const_tree expr)
1884 {
1885 STRIP_NOPS (expr);
1886
1887 return ((TREE_CODE (expr) == REAL_CST
1888 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1889 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1890 || (TREE_CODE (expr) == COMPLEX_CST
1891 && real_zerop (TREE_REALPART (expr))
1892 && real_zerop (TREE_IMAGPART (expr))));
1893 }
1894
1895 /* Return 1 if EXPR is the real constant one in real or complex form.
1896 Trailing zeroes matter for decimal float constants, so don't return
1897 1 for them. */
1898
1899 int
1900 real_onep (const_tree expr)
1901 {
1902 STRIP_NOPS (expr);
1903
1904 return ((TREE_CODE (expr) == REAL_CST
1905 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1906 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1907 || (TREE_CODE (expr) == COMPLEX_CST
1908 && real_onep (TREE_REALPART (expr))
1909 && real_zerop (TREE_IMAGPART (expr))));
1910 }
1911
1912 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1913 for decimal float constants, so don't return 1 for them. */
1914
1915 int
1916 real_twop (const_tree expr)
1917 {
1918 STRIP_NOPS (expr);
1919
1920 return ((TREE_CODE (expr) == REAL_CST
1921 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1922 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1923 || (TREE_CODE (expr) == COMPLEX_CST
1924 && real_twop (TREE_REALPART (expr))
1925 && real_zerop (TREE_IMAGPART (expr))));
1926 }
1927
1928 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1929 matter for decimal float constants, so don't return 1 for them. */
1930
1931 int
1932 real_minus_onep (const_tree expr)
1933 {
1934 STRIP_NOPS (expr);
1935
1936 return ((TREE_CODE (expr) == REAL_CST
1937 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1938 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1939 || (TREE_CODE (expr) == COMPLEX_CST
1940 && real_minus_onep (TREE_REALPART (expr))
1941 && real_zerop (TREE_IMAGPART (expr))));
1942 }
1943
1944 /* Nonzero if EXP is a constant or a cast of a constant. */
1945
1946 int
1947 really_constant_p (const_tree exp)
1948 {
1949 /* This is not quite the same as STRIP_NOPS. It does more. */
1950 while (CONVERT_EXPR_P (exp)
1951 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1952 exp = TREE_OPERAND (exp, 0);
1953 return TREE_CONSTANT (exp);
1954 }
1955 \f
1956 /* Return first list element whose TREE_VALUE is ELEM.
1957 Return 0 if ELEM is not in LIST. */
1958
1959 tree
1960 value_member (tree elem, tree list)
1961 {
1962 while (list)
1963 {
1964 if (elem == TREE_VALUE (list))
1965 return list;
1966 list = TREE_CHAIN (list);
1967 }
1968 return NULL_TREE;
1969 }
1970
1971 /* Return first list element whose TREE_PURPOSE is ELEM.
1972 Return 0 if ELEM is not in LIST. */
1973
1974 tree
1975 purpose_member (const_tree elem, tree list)
1976 {
1977 while (list)
1978 {
1979 if (elem == TREE_PURPOSE (list))
1980 return list;
1981 list = TREE_CHAIN (list);
1982 }
1983 return NULL_TREE;
1984 }
1985
1986 /* Return true if ELEM is in V. */
1987
1988 bool
1989 vec_member (const_tree elem, VEC(tree,gc) *v)
1990 {
1991 unsigned ix;
1992 tree t;
1993 FOR_EACH_VEC_ELT (tree, v, ix, t)
1994 if (elem == t)
1995 return true;
1996 return false;
1997 }
1998
1999 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2000 NULL_TREE. */
2001
2002 tree
2003 chain_index (int idx, tree chain)
2004 {
2005 for (; chain && idx > 0; --idx)
2006 chain = TREE_CHAIN (chain);
2007 return chain;
2008 }
2009
2010 /* Return nonzero if ELEM is part of the chain CHAIN. */
2011
2012 int
2013 chain_member (const_tree elem, const_tree chain)
2014 {
2015 while (chain)
2016 {
2017 if (elem == chain)
2018 return 1;
2019 chain = DECL_CHAIN (chain);
2020 }
2021
2022 return 0;
2023 }
2024
2025 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2026 We expect a null pointer to mark the end of the chain.
2027 This is the Lisp primitive `length'. */
2028
2029 int
2030 list_length (const_tree t)
2031 {
2032 const_tree p = t;
2033 #ifdef ENABLE_TREE_CHECKING
2034 const_tree q = t;
2035 #endif
2036 int len = 0;
2037
2038 while (p)
2039 {
2040 p = TREE_CHAIN (p);
2041 #ifdef ENABLE_TREE_CHECKING
2042 if (len % 2)
2043 q = TREE_CHAIN (q);
2044 gcc_assert (p != q);
2045 #endif
2046 len++;
2047 }
2048
2049 return len;
2050 }
2051
2052 /* Returns the number of FIELD_DECLs in TYPE. */
2053
2054 int
2055 fields_length (const_tree type)
2056 {
2057 tree t = TYPE_FIELDS (type);
2058 int count = 0;
2059
2060 for (; t; t = DECL_CHAIN (t))
2061 if (TREE_CODE (t) == FIELD_DECL)
2062 ++count;
2063
2064 return count;
2065 }
2066
2067 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2068 UNION_TYPE TYPE, or NULL_TREE if none. */
2069
2070 tree
2071 first_field (const_tree type)
2072 {
2073 tree t = TYPE_FIELDS (type);
2074 while (t && TREE_CODE (t) != FIELD_DECL)
2075 t = TREE_CHAIN (t);
2076 return t;
2077 }
2078
2079 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2080 by modifying the last node in chain 1 to point to chain 2.
2081 This is the Lisp primitive `nconc'. */
2082
2083 tree
2084 chainon (tree op1, tree op2)
2085 {
2086 tree t1;
2087
2088 if (!op1)
2089 return op2;
2090 if (!op2)
2091 return op1;
2092
2093 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2094 continue;
2095 TREE_CHAIN (t1) = op2;
2096
2097 #ifdef ENABLE_TREE_CHECKING
2098 {
2099 tree t2;
2100 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2101 gcc_assert (t2 != t1);
2102 }
2103 #endif
2104
2105 return op1;
2106 }
2107
2108 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2109
2110 tree
2111 tree_last (tree chain)
2112 {
2113 tree next;
2114 if (chain)
2115 while ((next = TREE_CHAIN (chain)))
2116 chain = next;
2117 return chain;
2118 }
2119
2120 /* Reverse the order of elements in the chain T,
2121 and return the new head of the chain (old last element). */
2122
2123 tree
2124 nreverse (tree t)
2125 {
2126 tree prev = 0, decl, next;
2127 for (decl = t; decl; decl = next)
2128 {
2129 /* We shouldn't be using this function to reverse BLOCK chains; we
2130 have blocks_nreverse for that. */
2131 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2132 next = TREE_CHAIN (decl);
2133 TREE_CHAIN (decl) = prev;
2134 prev = decl;
2135 }
2136 return prev;
2137 }
2138 \f
2139 /* Return a newly created TREE_LIST node whose
2140 purpose and value fields are PARM and VALUE. */
2141
2142 tree
2143 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2144 {
2145 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2146 TREE_PURPOSE (t) = parm;
2147 TREE_VALUE (t) = value;
2148 return t;
2149 }
2150
2151 /* Build a chain of TREE_LIST nodes from a vector. */
2152
2153 tree
2154 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2155 {
2156 tree ret = NULL_TREE;
2157 tree *pp = &ret;
2158 unsigned int i;
2159 tree t;
2160 FOR_EACH_VEC_ELT (tree, vec, i, t)
2161 {
2162 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2163 pp = &TREE_CHAIN (*pp);
2164 }
2165 return ret;
2166 }
2167
2168 /* Return a newly created TREE_LIST node whose
2169 purpose and value fields are PURPOSE and VALUE
2170 and whose TREE_CHAIN is CHAIN. */
2171
2172 tree
2173 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2174 {
2175 tree node;
2176
2177 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2178 PASS_MEM_STAT);
2179 memset (node, 0, sizeof (struct tree_common));
2180
2181 #ifdef GATHER_STATISTICS
2182 tree_node_counts[(int) x_kind]++;
2183 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2184 #endif
2185
2186 TREE_SET_CODE (node, TREE_LIST);
2187 TREE_CHAIN (node) = chain;
2188 TREE_PURPOSE (node) = purpose;
2189 TREE_VALUE (node) = value;
2190 return node;
2191 }
2192
2193 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2194 trees. */
2195
2196 VEC(tree,gc) *
2197 ctor_to_vec (tree ctor)
2198 {
2199 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2200 unsigned int ix;
2201 tree val;
2202
2203 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2204 VEC_quick_push (tree, vec, val);
2205
2206 return vec;
2207 }
2208 \f
2209 /* Return the size nominally occupied by an object of type TYPE
2210 when it resides in memory. The value is measured in units of bytes,
2211 and its data type is that normally used for type sizes
2212 (which is the first type created by make_signed_type or
2213 make_unsigned_type). */
2214
2215 tree
2216 size_in_bytes (const_tree type)
2217 {
2218 tree t;
2219
2220 if (type == error_mark_node)
2221 return integer_zero_node;
2222
2223 type = TYPE_MAIN_VARIANT (type);
2224 t = TYPE_SIZE_UNIT (type);
2225
2226 if (t == 0)
2227 {
2228 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2229 return size_zero_node;
2230 }
2231
2232 return t;
2233 }
2234
2235 /* Return the size of TYPE (in bytes) as a wide integer
2236 or return -1 if the size can vary or is larger than an integer. */
2237
2238 HOST_WIDE_INT
2239 int_size_in_bytes (const_tree type)
2240 {
2241 tree t;
2242
2243 if (type == error_mark_node)
2244 return 0;
2245
2246 type = TYPE_MAIN_VARIANT (type);
2247 t = TYPE_SIZE_UNIT (type);
2248 if (t == 0
2249 || TREE_CODE (t) != INTEGER_CST
2250 || TREE_INT_CST_HIGH (t) != 0
2251 /* If the result would appear negative, it's too big to represent. */
2252 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2253 return -1;
2254
2255 return TREE_INT_CST_LOW (t);
2256 }
2257
2258 /* Return the maximum size of TYPE (in bytes) as a wide integer
2259 or return -1 if the size can vary or is larger than an integer. */
2260
2261 HOST_WIDE_INT
2262 max_int_size_in_bytes (const_tree type)
2263 {
2264 HOST_WIDE_INT size = -1;
2265 tree size_tree;
2266
2267 /* If this is an array type, check for a possible MAX_SIZE attached. */
2268
2269 if (TREE_CODE (type) == ARRAY_TYPE)
2270 {
2271 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2272
2273 if (size_tree && host_integerp (size_tree, 1))
2274 size = tree_low_cst (size_tree, 1);
2275 }
2276
2277 /* If we still haven't been able to get a size, see if the language
2278 can compute a maximum size. */
2279
2280 if (size == -1)
2281 {
2282 size_tree = lang_hooks.types.max_size (type);
2283
2284 if (size_tree && host_integerp (size_tree, 1))
2285 size = tree_low_cst (size_tree, 1);
2286 }
2287
2288 return size;
2289 }
2290
2291 /* Returns a tree for the size of EXP in bytes. */
2292
2293 tree
2294 tree_expr_size (const_tree exp)
2295 {
2296 if (DECL_P (exp)
2297 && DECL_SIZE_UNIT (exp) != 0)
2298 return DECL_SIZE_UNIT (exp);
2299 else
2300 return size_in_bytes (TREE_TYPE (exp));
2301 }
2302 \f
2303 /* Return the bit position of FIELD, in bits from the start of the record.
2304 This is a tree of type bitsizetype. */
2305
2306 tree
2307 bit_position (const_tree field)
2308 {
2309 return bit_from_pos (DECL_FIELD_OFFSET (field),
2310 DECL_FIELD_BIT_OFFSET (field));
2311 }
2312
2313 /* Likewise, but return as an integer. It must be representable in
2314 that way (since it could be a signed value, we don't have the
2315 option of returning -1 like int_size_in_byte can. */
2316
2317 HOST_WIDE_INT
2318 int_bit_position (const_tree field)
2319 {
2320 return tree_low_cst (bit_position (field), 0);
2321 }
2322 \f
2323 /* Return the byte position of FIELD, in bytes from the start of the record.
2324 This is a tree of type sizetype. */
2325
2326 tree
2327 byte_position (const_tree field)
2328 {
2329 return byte_from_pos (DECL_FIELD_OFFSET (field),
2330 DECL_FIELD_BIT_OFFSET (field));
2331 }
2332
2333 /* Likewise, but return as an integer. It must be representable in
2334 that way (since it could be a signed value, we don't have the
2335 option of returning -1 like int_size_in_byte can. */
2336
2337 HOST_WIDE_INT
2338 int_byte_position (const_tree field)
2339 {
2340 return tree_low_cst (byte_position (field), 0);
2341 }
2342 \f
2343 /* Return the strictest alignment, in bits, that T is known to have. */
2344
2345 unsigned int
2346 expr_align (const_tree t)
2347 {
2348 unsigned int align0, align1;
2349
2350 switch (TREE_CODE (t))
2351 {
2352 CASE_CONVERT: case NON_LVALUE_EXPR:
2353 /* If we have conversions, we know that the alignment of the
2354 object must meet each of the alignments of the types. */
2355 align0 = expr_align (TREE_OPERAND (t, 0));
2356 align1 = TYPE_ALIGN (TREE_TYPE (t));
2357 return MAX (align0, align1);
2358
2359 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2360 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2361 case CLEANUP_POINT_EXPR:
2362 /* These don't change the alignment of an object. */
2363 return expr_align (TREE_OPERAND (t, 0));
2364
2365 case COND_EXPR:
2366 /* The best we can do is say that the alignment is the least aligned
2367 of the two arms. */
2368 align0 = expr_align (TREE_OPERAND (t, 1));
2369 align1 = expr_align (TREE_OPERAND (t, 2));
2370 return MIN (align0, align1);
2371
2372 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2373 meaningfully, it's always 1. */
2374 case LABEL_DECL: case CONST_DECL:
2375 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2376 case FUNCTION_DECL:
2377 gcc_assert (DECL_ALIGN (t) != 0);
2378 return DECL_ALIGN (t);
2379
2380 default:
2381 break;
2382 }
2383
2384 /* Otherwise take the alignment from that of the type. */
2385 return TYPE_ALIGN (TREE_TYPE (t));
2386 }
2387 \f
2388 /* Return, as a tree node, the number of elements for TYPE (which is an
2389 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2390
2391 tree
2392 array_type_nelts (const_tree type)
2393 {
2394 tree index_type, min, max;
2395
2396 /* If they did it with unspecified bounds, then we should have already
2397 given an error about it before we got here. */
2398 if (! TYPE_DOMAIN (type))
2399 return error_mark_node;
2400
2401 index_type = TYPE_DOMAIN (type);
2402 min = TYPE_MIN_VALUE (index_type);
2403 max = TYPE_MAX_VALUE (index_type);
2404
2405 return (integer_zerop (min)
2406 ? max
2407 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2408 }
2409 \f
2410 /* If arg is static -- a reference to an object in static storage -- then
2411 return the object. This is not the same as the C meaning of `static'.
2412 If arg isn't static, return NULL. */
2413
2414 tree
2415 staticp (tree arg)
2416 {
2417 switch (TREE_CODE (arg))
2418 {
2419 case FUNCTION_DECL:
2420 /* Nested functions are static, even though taking their address will
2421 involve a trampoline as we unnest the nested function and create
2422 the trampoline on the tree level. */
2423 return arg;
2424
2425 case VAR_DECL:
2426 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2427 && ! DECL_THREAD_LOCAL_P (arg)
2428 && ! DECL_DLLIMPORT_P (arg)
2429 ? arg : NULL);
2430
2431 case CONST_DECL:
2432 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2433 ? arg : NULL);
2434
2435 case CONSTRUCTOR:
2436 return TREE_STATIC (arg) ? arg : NULL;
2437
2438 case LABEL_DECL:
2439 case STRING_CST:
2440 return arg;
2441
2442 case COMPONENT_REF:
2443 /* If the thing being referenced is not a field, then it is
2444 something language specific. */
2445 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2446
2447 /* If we are referencing a bitfield, we can't evaluate an
2448 ADDR_EXPR at compile time and so it isn't a constant. */
2449 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2450 return NULL;
2451
2452 return staticp (TREE_OPERAND (arg, 0));
2453
2454 case BIT_FIELD_REF:
2455 return NULL;
2456
2457 case INDIRECT_REF:
2458 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2459
2460 case ARRAY_REF:
2461 case ARRAY_RANGE_REF:
2462 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2463 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2464 return staticp (TREE_OPERAND (arg, 0));
2465 else
2466 return NULL;
2467
2468 case COMPOUND_LITERAL_EXPR:
2469 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2470
2471 default:
2472 return NULL;
2473 }
2474 }
2475
2476 \f
2477
2478
2479 /* Return whether OP is a DECL whose address is function-invariant. */
2480
2481 bool
2482 decl_address_invariant_p (const_tree op)
2483 {
2484 /* The conditions below are slightly less strict than the one in
2485 staticp. */
2486
2487 switch (TREE_CODE (op))
2488 {
2489 case PARM_DECL:
2490 case RESULT_DECL:
2491 case LABEL_DECL:
2492 case FUNCTION_DECL:
2493 return true;
2494
2495 case VAR_DECL:
2496 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2497 || DECL_THREAD_LOCAL_P (op)
2498 || DECL_CONTEXT (op) == current_function_decl
2499 || decl_function_context (op) == current_function_decl)
2500 return true;
2501 break;
2502
2503 case CONST_DECL:
2504 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2505 || decl_function_context (op) == current_function_decl)
2506 return true;
2507 break;
2508
2509 default:
2510 break;
2511 }
2512
2513 return false;
2514 }
2515
2516 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2517
2518 bool
2519 decl_address_ip_invariant_p (const_tree op)
2520 {
2521 /* The conditions below are slightly less strict than the one in
2522 staticp. */
2523
2524 switch (TREE_CODE (op))
2525 {
2526 case LABEL_DECL:
2527 case FUNCTION_DECL:
2528 case STRING_CST:
2529 return true;
2530
2531 case VAR_DECL:
2532 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2533 && !DECL_DLLIMPORT_P (op))
2534 || DECL_THREAD_LOCAL_P (op))
2535 return true;
2536 break;
2537
2538 case CONST_DECL:
2539 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2540 return true;
2541 break;
2542
2543 default:
2544 break;
2545 }
2546
2547 return false;
2548 }
2549
2550
2551 /* Return true if T is function-invariant (internal function, does
2552 not handle arithmetic; that's handled in skip_simple_arithmetic and
2553 tree_invariant_p). */
2554
2555 static bool tree_invariant_p (tree t);
2556
2557 static bool
2558 tree_invariant_p_1 (tree t)
2559 {
2560 tree op;
2561
2562 if (TREE_CONSTANT (t)
2563 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2564 return true;
2565
2566 switch (TREE_CODE (t))
2567 {
2568 case SAVE_EXPR:
2569 return true;
2570
2571 case ADDR_EXPR:
2572 op = TREE_OPERAND (t, 0);
2573 while (handled_component_p (op))
2574 {
2575 switch (TREE_CODE (op))
2576 {
2577 case ARRAY_REF:
2578 case ARRAY_RANGE_REF:
2579 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2580 || TREE_OPERAND (op, 2) != NULL_TREE
2581 || TREE_OPERAND (op, 3) != NULL_TREE)
2582 return false;
2583 break;
2584
2585 case COMPONENT_REF:
2586 if (TREE_OPERAND (op, 2) != NULL_TREE)
2587 return false;
2588 break;
2589
2590 default:;
2591 }
2592 op = TREE_OPERAND (op, 0);
2593 }
2594
2595 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2596
2597 default:
2598 break;
2599 }
2600
2601 return false;
2602 }
2603
2604 /* Return true if T is function-invariant. */
2605
2606 static bool
2607 tree_invariant_p (tree t)
2608 {
2609 tree inner = skip_simple_arithmetic (t);
2610 return tree_invariant_p_1 (inner);
2611 }
2612
2613 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2614 Do this to any expression which may be used in more than one place,
2615 but must be evaluated only once.
2616
2617 Normally, expand_expr would reevaluate the expression each time.
2618 Calling save_expr produces something that is evaluated and recorded
2619 the first time expand_expr is called on it. Subsequent calls to
2620 expand_expr just reuse the recorded value.
2621
2622 The call to expand_expr that generates code that actually computes
2623 the value is the first call *at compile time*. Subsequent calls
2624 *at compile time* generate code to use the saved value.
2625 This produces correct result provided that *at run time* control
2626 always flows through the insns made by the first expand_expr
2627 before reaching the other places where the save_expr was evaluated.
2628 You, the caller of save_expr, must make sure this is so.
2629
2630 Constants, and certain read-only nodes, are returned with no
2631 SAVE_EXPR because that is safe. Expressions containing placeholders
2632 are not touched; see tree.def for an explanation of what these
2633 are used for. */
2634
2635 tree
2636 save_expr (tree expr)
2637 {
2638 tree t = fold (expr);
2639 tree inner;
2640
2641 /* If the tree evaluates to a constant, then we don't want to hide that
2642 fact (i.e. this allows further folding, and direct checks for constants).
2643 However, a read-only object that has side effects cannot be bypassed.
2644 Since it is no problem to reevaluate literals, we just return the
2645 literal node. */
2646 inner = skip_simple_arithmetic (t);
2647 if (TREE_CODE (inner) == ERROR_MARK)
2648 return inner;
2649
2650 if (tree_invariant_p_1 (inner))
2651 return t;
2652
2653 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2654 it means that the size or offset of some field of an object depends on
2655 the value within another field.
2656
2657 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2658 and some variable since it would then need to be both evaluated once and
2659 evaluated more than once. Front-ends must assure this case cannot
2660 happen by surrounding any such subexpressions in their own SAVE_EXPR
2661 and forcing evaluation at the proper time. */
2662 if (contains_placeholder_p (inner))
2663 return t;
2664
2665 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2666 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2667
2668 /* This expression might be placed ahead of a jump to ensure that the
2669 value was computed on both sides of the jump. So make sure it isn't
2670 eliminated as dead. */
2671 TREE_SIDE_EFFECTS (t) = 1;
2672 return t;
2673 }
2674
2675 /* Look inside EXPR and into any simple arithmetic operations. Return
2676 the innermost non-arithmetic node. */
2677
2678 tree
2679 skip_simple_arithmetic (tree expr)
2680 {
2681 tree inner;
2682
2683 /* We don't care about whether this can be used as an lvalue in this
2684 context. */
2685 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2686 expr = TREE_OPERAND (expr, 0);
2687
2688 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2689 a constant, it will be more efficient to not make another SAVE_EXPR since
2690 it will allow better simplification and GCSE will be able to merge the
2691 computations if they actually occur. */
2692 inner = expr;
2693 while (1)
2694 {
2695 if (UNARY_CLASS_P (inner))
2696 inner = TREE_OPERAND (inner, 0);
2697 else if (BINARY_CLASS_P (inner))
2698 {
2699 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2700 inner = TREE_OPERAND (inner, 0);
2701 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2702 inner = TREE_OPERAND (inner, 1);
2703 else
2704 break;
2705 }
2706 else
2707 break;
2708 }
2709
2710 return inner;
2711 }
2712
2713
2714 /* Return which tree structure is used by T. */
2715
2716 enum tree_node_structure_enum
2717 tree_node_structure (const_tree t)
2718 {
2719 const enum tree_code code = TREE_CODE (t);
2720 return tree_node_structure_for_code (code);
2721 }
2722
2723 /* Set various status flags when building a CALL_EXPR object T. */
2724
2725 static void
2726 process_call_operands (tree t)
2727 {
2728 bool side_effects = TREE_SIDE_EFFECTS (t);
2729 bool read_only = false;
2730 int i = call_expr_flags (t);
2731
2732 /* Calls have side-effects, except those to const or pure functions. */
2733 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2734 side_effects = true;
2735 /* Propagate TREE_READONLY of arguments for const functions. */
2736 if (i & ECF_CONST)
2737 read_only = true;
2738
2739 if (!side_effects || read_only)
2740 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2741 {
2742 tree op = TREE_OPERAND (t, i);
2743 if (op && TREE_SIDE_EFFECTS (op))
2744 side_effects = true;
2745 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2746 read_only = false;
2747 }
2748
2749 TREE_SIDE_EFFECTS (t) = side_effects;
2750 TREE_READONLY (t) = read_only;
2751 }
2752 \f
2753 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2754 or offset that depends on a field within a record. */
2755
2756 bool
2757 contains_placeholder_p (const_tree exp)
2758 {
2759 enum tree_code code;
2760
2761 if (!exp)
2762 return 0;
2763
2764 code = TREE_CODE (exp);
2765 if (code == PLACEHOLDER_EXPR)
2766 return 1;
2767
2768 switch (TREE_CODE_CLASS (code))
2769 {
2770 case tcc_reference:
2771 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2772 position computations since they will be converted into a
2773 WITH_RECORD_EXPR involving the reference, which will assume
2774 here will be valid. */
2775 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2776
2777 case tcc_exceptional:
2778 if (code == TREE_LIST)
2779 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2780 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2781 break;
2782
2783 case tcc_unary:
2784 case tcc_binary:
2785 case tcc_comparison:
2786 case tcc_expression:
2787 switch (code)
2788 {
2789 case COMPOUND_EXPR:
2790 /* Ignoring the first operand isn't quite right, but works best. */
2791 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2792
2793 case COND_EXPR:
2794 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2795 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2796 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2797
2798 case SAVE_EXPR:
2799 /* The save_expr function never wraps anything containing
2800 a PLACEHOLDER_EXPR. */
2801 return 0;
2802
2803 default:
2804 break;
2805 }
2806
2807 switch (TREE_CODE_LENGTH (code))
2808 {
2809 case 1:
2810 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2811 case 2:
2812 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2813 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2814 default:
2815 return 0;
2816 }
2817
2818 case tcc_vl_exp:
2819 switch (code)
2820 {
2821 case CALL_EXPR:
2822 {
2823 const_tree arg;
2824 const_call_expr_arg_iterator iter;
2825 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2826 if (CONTAINS_PLACEHOLDER_P (arg))
2827 return 1;
2828 return 0;
2829 }
2830 default:
2831 return 0;
2832 }
2833
2834 default:
2835 return 0;
2836 }
2837 return 0;
2838 }
2839
2840 /* Return true if any part of the computation of TYPE involves a
2841 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2842 (for QUAL_UNION_TYPE) and field positions. */
2843
2844 static bool
2845 type_contains_placeholder_1 (const_tree type)
2846 {
2847 /* If the size contains a placeholder or the parent type (component type in
2848 the case of arrays) type involves a placeholder, this type does. */
2849 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2850 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2851 || (TREE_TYPE (type) != 0
2852 && type_contains_placeholder_p (TREE_TYPE (type))))
2853 return true;
2854
2855 /* Now do type-specific checks. Note that the last part of the check above
2856 greatly limits what we have to do below. */
2857 switch (TREE_CODE (type))
2858 {
2859 case VOID_TYPE:
2860 case COMPLEX_TYPE:
2861 case ENUMERAL_TYPE:
2862 case BOOLEAN_TYPE:
2863 case POINTER_TYPE:
2864 case OFFSET_TYPE:
2865 case REFERENCE_TYPE:
2866 case METHOD_TYPE:
2867 case FUNCTION_TYPE:
2868 case VECTOR_TYPE:
2869 return false;
2870
2871 case INTEGER_TYPE:
2872 case REAL_TYPE:
2873 case FIXED_POINT_TYPE:
2874 /* Here we just check the bounds. */
2875 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2876 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2877
2878 case ARRAY_TYPE:
2879 /* We're already checked the component type (TREE_TYPE), so just check
2880 the index type. */
2881 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2882
2883 case RECORD_TYPE:
2884 case UNION_TYPE:
2885 case QUAL_UNION_TYPE:
2886 {
2887 tree field;
2888
2889 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2890 if (TREE_CODE (field) == FIELD_DECL
2891 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2892 || (TREE_CODE (type) == QUAL_UNION_TYPE
2893 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2894 || type_contains_placeholder_p (TREE_TYPE (field))))
2895 return true;
2896
2897 return false;
2898 }
2899
2900 default:
2901 gcc_unreachable ();
2902 }
2903 }
2904
2905 bool
2906 type_contains_placeholder_p (tree type)
2907 {
2908 bool result;
2909
2910 /* If the contains_placeholder_bits field has been initialized,
2911 then we know the answer. */
2912 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2913 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2914
2915 /* Indicate that we've seen this type node, and the answer is false.
2916 This is what we want to return if we run into recursion via fields. */
2917 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2918
2919 /* Compute the real value. */
2920 result = type_contains_placeholder_1 (type);
2921
2922 /* Store the real value. */
2923 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2924
2925 return result;
2926 }
2927 \f
2928 /* Push tree EXP onto vector QUEUE if it is not already present. */
2929
2930 static void
2931 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2932 {
2933 unsigned int i;
2934 tree iter;
2935
2936 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2937 if (simple_cst_equal (iter, exp) == 1)
2938 break;
2939
2940 if (!iter)
2941 VEC_safe_push (tree, heap, *queue, exp);
2942 }
2943
2944 /* Given a tree EXP, find all occurences of references to fields
2945 in a PLACEHOLDER_EXPR and place them in vector REFS without
2946 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2947 we assume here that EXP contains only arithmetic expressions
2948 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2949 argument list. */
2950
2951 void
2952 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2953 {
2954 enum tree_code code = TREE_CODE (exp);
2955 tree inner;
2956 int i;
2957
2958 /* We handle TREE_LIST and COMPONENT_REF separately. */
2959 if (code == TREE_LIST)
2960 {
2961 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2962 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2963 }
2964 else if (code == COMPONENT_REF)
2965 {
2966 for (inner = TREE_OPERAND (exp, 0);
2967 REFERENCE_CLASS_P (inner);
2968 inner = TREE_OPERAND (inner, 0))
2969 ;
2970
2971 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2972 push_without_duplicates (exp, refs);
2973 else
2974 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2975 }
2976 else
2977 switch (TREE_CODE_CLASS (code))
2978 {
2979 case tcc_constant:
2980 break;
2981
2982 case tcc_declaration:
2983 /* Variables allocated to static storage can stay. */
2984 if (!TREE_STATIC (exp))
2985 push_without_duplicates (exp, refs);
2986 break;
2987
2988 case tcc_expression:
2989 /* This is the pattern built in ada/make_aligning_type. */
2990 if (code == ADDR_EXPR
2991 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2992 {
2993 push_without_duplicates (exp, refs);
2994 break;
2995 }
2996
2997 /* Fall through... */
2998
2999 case tcc_exceptional:
3000 case tcc_unary:
3001 case tcc_binary:
3002 case tcc_comparison:
3003 case tcc_reference:
3004 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3005 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3006 break;
3007
3008 case tcc_vl_exp:
3009 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3010 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3011 break;
3012
3013 default:
3014 gcc_unreachable ();
3015 }
3016 }
3017
3018 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3019 return a tree with all occurrences of references to F in a
3020 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3021 CONST_DECLs. Note that we assume here that EXP contains only
3022 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3023 occurring only in their argument list. */
3024
3025 tree
3026 substitute_in_expr (tree exp, tree f, tree r)
3027 {
3028 enum tree_code code = TREE_CODE (exp);
3029 tree op0, op1, op2, op3;
3030 tree new_tree;
3031
3032 /* We handle TREE_LIST and COMPONENT_REF separately. */
3033 if (code == TREE_LIST)
3034 {
3035 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3036 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3037 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3038 return exp;
3039
3040 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3041 }
3042 else if (code == COMPONENT_REF)
3043 {
3044 tree inner;
3045
3046 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3047 and it is the right field, replace it with R. */
3048 for (inner = TREE_OPERAND (exp, 0);
3049 REFERENCE_CLASS_P (inner);
3050 inner = TREE_OPERAND (inner, 0))
3051 ;
3052
3053 /* The field. */
3054 op1 = TREE_OPERAND (exp, 1);
3055
3056 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3057 return r;
3058
3059 /* If this expression hasn't been completed let, leave it alone. */
3060 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3061 return exp;
3062
3063 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3064 if (op0 == TREE_OPERAND (exp, 0))
3065 return exp;
3066
3067 new_tree
3068 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3069 }
3070 else
3071 switch (TREE_CODE_CLASS (code))
3072 {
3073 case tcc_constant:
3074 return exp;
3075
3076 case tcc_declaration:
3077 if (exp == f)
3078 return r;
3079 else
3080 return exp;
3081
3082 case tcc_expression:
3083 if (exp == f)
3084 return r;
3085
3086 /* Fall through... */
3087
3088 case tcc_exceptional:
3089 case tcc_unary:
3090 case tcc_binary:
3091 case tcc_comparison:
3092 case tcc_reference:
3093 switch (TREE_CODE_LENGTH (code))
3094 {
3095 case 0:
3096 return exp;
3097
3098 case 1:
3099 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3100 if (op0 == TREE_OPERAND (exp, 0))
3101 return exp;
3102
3103 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3104 break;
3105
3106 case 2:
3107 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3108 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3109
3110 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3111 return exp;
3112
3113 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3114 break;
3115
3116 case 3:
3117 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3118 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3119 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3120
3121 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3122 && op2 == TREE_OPERAND (exp, 2))
3123 return exp;
3124
3125 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3126 break;
3127
3128 case 4:
3129 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3130 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3131 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3132 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3133
3134 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3135 && op2 == TREE_OPERAND (exp, 2)
3136 && op3 == TREE_OPERAND (exp, 3))
3137 return exp;
3138
3139 new_tree
3140 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3141 break;
3142
3143 default:
3144 gcc_unreachable ();
3145 }
3146 break;
3147
3148 case tcc_vl_exp:
3149 {
3150 int i;
3151
3152 new_tree = NULL_TREE;
3153
3154 /* If we are trying to replace F with a constant, inline back
3155 functions which do nothing else than computing a value from
3156 the arguments they are passed. This makes it possible to
3157 fold partially or entirely the replacement expression. */
3158 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3159 {
3160 tree t = maybe_inline_call_in_expr (exp);
3161 if (t)
3162 return SUBSTITUTE_IN_EXPR (t, f, r);
3163 }
3164
3165 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3166 {
3167 tree op = TREE_OPERAND (exp, i);
3168 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3169 if (new_op != op)
3170 {
3171 if (!new_tree)
3172 new_tree = copy_node (exp);
3173 TREE_OPERAND (new_tree, i) = new_op;
3174 }
3175 }
3176
3177 if (new_tree)
3178 {
3179 new_tree = fold (new_tree);
3180 if (TREE_CODE (new_tree) == CALL_EXPR)
3181 process_call_operands (new_tree);
3182 }
3183 else
3184 return exp;
3185 }
3186 break;
3187
3188 default:
3189 gcc_unreachable ();
3190 }
3191
3192 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3193
3194 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3195 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3196
3197 return new_tree;
3198 }
3199
3200 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3201 for it within OBJ, a tree that is an object or a chain of references. */
3202
3203 tree
3204 substitute_placeholder_in_expr (tree exp, tree obj)
3205 {
3206 enum tree_code code = TREE_CODE (exp);
3207 tree op0, op1, op2, op3;
3208 tree new_tree;
3209
3210 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3211 in the chain of OBJ. */
3212 if (code == PLACEHOLDER_EXPR)
3213 {
3214 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3215 tree elt;
3216
3217 for (elt = obj; elt != 0;
3218 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3219 || TREE_CODE (elt) == COND_EXPR)
3220 ? TREE_OPERAND (elt, 1)
3221 : (REFERENCE_CLASS_P (elt)
3222 || UNARY_CLASS_P (elt)
3223 || BINARY_CLASS_P (elt)
3224 || VL_EXP_CLASS_P (elt)
3225 || EXPRESSION_CLASS_P (elt))
3226 ? TREE_OPERAND (elt, 0) : 0))
3227 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3228 return elt;
3229
3230 for (elt = obj; elt != 0;
3231 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3232 || TREE_CODE (elt) == COND_EXPR)
3233 ? TREE_OPERAND (elt, 1)
3234 : (REFERENCE_CLASS_P (elt)
3235 || UNARY_CLASS_P (elt)
3236 || BINARY_CLASS_P (elt)
3237 || VL_EXP_CLASS_P (elt)
3238 || EXPRESSION_CLASS_P (elt))
3239 ? TREE_OPERAND (elt, 0) : 0))
3240 if (POINTER_TYPE_P (TREE_TYPE (elt))
3241 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3242 == need_type))
3243 return fold_build1 (INDIRECT_REF, need_type, elt);
3244
3245 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3246 survives until RTL generation, there will be an error. */
3247 return exp;
3248 }
3249
3250 /* TREE_LIST is special because we need to look at TREE_VALUE
3251 and TREE_CHAIN, not TREE_OPERANDS. */
3252 else if (code == TREE_LIST)
3253 {
3254 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3255 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3256 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3257 return exp;
3258
3259 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3260 }
3261 else
3262 switch (TREE_CODE_CLASS (code))
3263 {
3264 case tcc_constant:
3265 case tcc_declaration:
3266 return exp;
3267
3268 case tcc_exceptional:
3269 case tcc_unary:
3270 case tcc_binary:
3271 case tcc_comparison:
3272 case tcc_expression:
3273 case tcc_reference:
3274 case tcc_statement:
3275 switch (TREE_CODE_LENGTH (code))
3276 {
3277 case 0:
3278 return exp;
3279
3280 case 1:
3281 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3282 if (op0 == TREE_OPERAND (exp, 0))
3283 return exp;
3284
3285 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3286 break;
3287
3288 case 2:
3289 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3290 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3291
3292 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3293 return exp;
3294
3295 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3296 break;
3297
3298 case 3:
3299 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3300 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3301 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3302
3303 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3304 && op2 == TREE_OPERAND (exp, 2))
3305 return exp;
3306
3307 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3308 break;
3309
3310 case 4:
3311 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3312 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3313 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3314 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3315
3316 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3317 && op2 == TREE_OPERAND (exp, 2)
3318 && op3 == TREE_OPERAND (exp, 3))
3319 return exp;
3320
3321 new_tree
3322 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3323 break;
3324
3325 default:
3326 gcc_unreachable ();
3327 }
3328 break;
3329
3330 case tcc_vl_exp:
3331 {
3332 int i;
3333
3334 new_tree = NULL_TREE;
3335
3336 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3337 {
3338 tree op = TREE_OPERAND (exp, i);
3339 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3340 if (new_op != op)
3341 {
3342 if (!new_tree)
3343 new_tree = copy_node (exp);
3344 TREE_OPERAND (new_tree, i) = new_op;
3345 }
3346 }
3347
3348 if (new_tree)
3349 {
3350 new_tree = fold (new_tree);
3351 if (TREE_CODE (new_tree) == CALL_EXPR)
3352 process_call_operands (new_tree);
3353 }
3354 else
3355 return exp;
3356 }
3357 break;
3358
3359 default:
3360 gcc_unreachable ();
3361 }
3362
3363 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3364
3365 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3366 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3367
3368 return new_tree;
3369 }
3370 \f
3371 /* Stabilize a reference so that we can use it any number of times
3372 without causing its operands to be evaluated more than once.
3373 Returns the stabilized reference. This works by means of save_expr,
3374 so see the caveats in the comments about save_expr.
3375
3376 Also allows conversion expressions whose operands are references.
3377 Any other kind of expression is returned unchanged. */
3378
3379 tree
3380 stabilize_reference (tree ref)
3381 {
3382 tree result;
3383 enum tree_code code = TREE_CODE (ref);
3384
3385 switch (code)
3386 {
3387 case VAR_DECL:
3388 case PARM_DECL:
3389 case RESULT_DECL:
3390 /* No action is needed in this case. */
3391 return ref;
3392
3393 CASE_CONVERT:
3394 case FLOAT_EXPR:
3395 case FIX_TRUNC_EXPR:
3396 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3397 break;
3398
3399 case INDIRECT_REF:
3400 result = build_nt (INDIRECT_REF,
3401 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3402 break;
3403
3404 case COMPONENT_REF:
3405 result = build_nt (COMPONENT_REF,
3406 stabilize_reference (TREE_OPERAND (ref, 0)),
3407 TREE_OPERAND (ref, 1), NULL_TREE);
3408 break;
3409
3410 case BIT_FIELD_REF:
3411 result = build_nt (BIT_FIELD_REF,
3412 stabilize_reference (TREE_OPERAND (ref, 0)),
3413 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3414 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3415 break;
3416
3417 case ARRAY_REF:
3418 result = build_nt (ARRAY_REF,
3419 stabilize_reference (TREE_OPERAND (ref, 0)),
3420 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3421 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3422 break;
3423
3424 case ARRAY_RANGE_REF:
3425 result = build_nt (ARRAY_RANGE_REF,
3426 stabilize_reference (TREE_OPERAND (ref, 0)),
3427 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3428 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3429 break;
3430
3431 case COMPOUND_EXPR:
3432 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3433 it wouldn't be ignored. This matters when dealing with
3434 volatiles. */
3435 return stabilize_reference_1 (ref);
3436
3437 /* If arg isn't a kind of lvalue we recognize, make no change.
3438 Caller should recognize the error for an invalid lvalue. */
3439 default:
3440 return ref;
3441
3442 case ERROR_MARK:
3443 return error_mark_node;
3444 }
3445
3446 TREE_TYPE (result) = TREE_TYPE (ref);
3447 TREE_READONLY (result) = TREE_READONLY (ref);
3448 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3449 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3450
3451 return result;
3452 }
3453
3454 /* Subroutine of stabilize_reference; this is called for subtrees of
3455 references. Any expression with side-effects must be put in a SAVE_EXPR
3456 to ensure that it is only evaluated once.
3457
3458 We don't put SAVE_EXPR nodes around everything, because assigning very
3459 simple expressions to temporaries causes us to miss good opportunities
3460 for optimizations. Among other things, the opportunity to fold in the
3461 addition of a constant into an addressing mode often gets lost, e.g.
3462 "y[i+1] += x;". In general, we take the approach that we should not make
3463 an assignment unless we are forced into it - i.e., that any non-side effect
3464 operator should be allowed, and that cse should take care of coalescing
3465 multiple utterances of the same expression should that prove fruitful. */
3466
3467 tree
3468 stabilize_reference_1 (tree e)
3469 {
3470 tree result;
3471 enum tree_code code = TREE_CODE (e);
3472
3473 /* We cannot ignore const expressions because it might be a reference
3474 to a const array but whose index contains side-effects. But we can
3475 ignore things that are actual constant or that already have been
3476 handled by this function. */
3477
3478 if (tree_invariant_p (e))
3479 return e;
3480
3481 switch (TREE_CODE_CLASS (code))
3482 {
3483 case tcc_exceptional:
3484 case tcc_type:
3485 case tcc_declaration:
3486 case tcc_comparison:
3487 case tcc_statement:
3488 case tcc_expression:
3489 case tcc_reference:
3490 case tcc_vl_exp:
3491 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3492 so that it will only be evaluated once. */
3493 /* The reference (r) and comparison (<) classes could be handled as
3494 below, but it is generally faster to only evaluate them once. */
3495 if (TREE_SIDE_EFFECTS (e))
3496 return save_expr (e);
3497 return e;
3498
3499 case tcc_constant:
3500 /* Constants need no processing. In fact, we should never reach
3501 here. */
3502 return e;
3503
3504 case tcc_binary:
3505 /* Division is slow and tends to be compiled with jumps,
3506 especially the division by powers of 2 that is often
3507 found inside of an array reference. So do it just once. */
3508 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3509 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3510 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3511 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3512 return save_expr (e);
3513 /* Recursively stabilize each operand. */
3514 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3515 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3516 break;
3517
3518 case tcc_unary:
3519 /* Recursively stabilize each operand. */
3520 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3521 break;
3522
3523 default:
3524 gcc_unreachable ();
3525 }
3526
3527 TREE_TYPE (result) = TREE_TYPE (e);
3528 TREE_READONLY (result) = TREE_READONLY (e);
3529 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3530 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3531
3532 return result;
3533 }
3534 \f
3535 /* Low-level constructors for expressions. */
3536
3537 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3538 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3539
3540 void
3541 recompute_tree_invariant_for_addr_expr (tree t)
3542 {
3543 tree node;
3544 bool tc = true, se = false;
3545
3546 /* We started out assuming this address is both invariant and constant, but
3547 does not have side effects. Now go down any handled components and see if
3548 any of them involve offsets that are either non-constant or non-invariant.
3549 Also check for side-effects.
3550
3551 ??? Note that this code makes no attempt to deal with the case where
3552 taking the address of something causes a copy due to misalignment. */
3553
3554 #define UPDATE_FLAGS(NODE) \
3555 do { tree _node = (NODE); \
3556 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3557 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3558
3559 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3560 node = TREE_OPERAND (node, 0))
3561 {
3562 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3563 array reference (probably made temporarily by the G++ front end),
3564 so ignore all the operands. */
3565 if ((TREE_CODE (node) == ARRAY_REF
3566 || TREE_CODE (node) == ARRAY_RANGE_REF)
3567 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3568 {
3569 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3570 if (TREE_OPERAND (node, 2))
3571 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3572 if (TREE_OPERAND (node, 3))
3573 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3574 }
3575 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3576 FIELD_DECL, apparently. The G++ front end can put something else
3577 there, at least temporarily. */
3578 else if (TREE_CODE (node) == COMPONENT_REF
3579 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3580 {
3581 if (TREE_OPERAND (node, 2))
3582 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3583 }
3584 else if (TREE_CODE (node) == BIT_FIELD_REF)
3585 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3586 }
3587
3588 node = lang_hooks.expr_to_decl (node, &tc, &se);
3589
3590 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3591 the address, since &(*a)->b is a form of addition. If it's a constant, the
3592 address is constant too. If it's a decl, its address is constant if the
3593 decl is static. Everything else is not constant and, furthermore,
3594 taking the address of a volatile variable is not volatile. */
3595 if (TREE_CODE (node) == INDIRECT_REF
3596 || TREE_CODE (node) == MEM_REF)
3597 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3598 else if (CONSTANT_CLASS_P (node))
3599 ;
3600 else if (DECL_P (node))
3601 tc &= (staticp (node) != NULL_TREE);
3602 else
3603 {
3604 tc = false;
3605 se |= TREE_SIDE_EFFECTS (node);
3606 }
3607
3608
3609 TREE_CONSTANT (t) = tc;
3610 TREE_SIDE_EFFECTS (t) = se;
3611 #undef UPDATE_FLAGS
3612 }
3613
3614 /* Build an expression of code CODE, data type TYPE, and operands as
3615 specified. Expressions and reference nodes can be created this way.
3616 Constants, decls, types and misc nodes cannot be.
3617
3618 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3619 enough for all extant tree codes. */
3620
3621 tree
3622 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3623 {
3624 tree t;
3625
3626 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3627
3628 t = make_node_stat (code PASS_MEM_STAT);
3629 TREE_TYPE (t) = tt;
3630
3631 return t;
3632 }
3633
3634 tree
3635 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3636 {
3637 int length = sizeof (struct tree_exp);
3638 #ifdef GATHER_STATISTICS
3639 tree_node_kind kind;
3640 #endif
3641 tree t;
3642
3643 #ifdef GATHER_STATISTICS
3644 switch (TREE_CODE_CLASS (code))
3645 {
3646 case tcc_statement: /* an expression with side effects */
3647 kind = s_kind;
3648 break;
3649 case tcc_reference: /* a reference */
3650 kind = r_kind;
3651 break;
3652 default:
3653 kind = e_kind;
3654 break;
3655 }
3656
3657 tree_node_counts[(int) kind]++;
3658 tree_node_sizes[(int) kind] += length;
3659 #endif
3660
3661 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3662
3663 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3664
3665 memset (t, 0, sizeof (struct tree_common));
3666
3667 TREE_SET_CODE (t, code);
3668
3669 TREE_TYPE (t) = type;
3670 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3671 TREE_OPERAND (t, 0) = node;
3672 TREE_BLOCK (t) = NULL_TREE;
3673 if (node && !TYPE_P (node))
3674 {
3675 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3676 TREE_READONLY (t) = TREE_READONLY (node);
3677 }
3678
3679 if (TREE_CODE_CLASS (code) == tcc_statement)
3680 TREE_SIDE_EFFECTS (t) = 1;
3681 else switch (code)
3682 {
3683 case VA_ARG_EXPR:
3684 /* All of these have side-effects, no matter what their
3685 operands are. */
3686 TREE_SIDE_EFFECTS (t) = 1;
3687 TREE_READONLY (t) = 0;
3688 break;
3689
3690 case INDIRECT_REF:
3691 /* Whether a dereference is readonly has nothing to do with whether
3692 its operand is readonly. */
3693 TREE_READONLY (t) = 0;
3694 break;
3695
3696 case ADDR_EXPR:
3697 if (node)
3698 recompute_tree_invariant_for_addr_expr (t);
3699 break;
3700
3701 default:
3702 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3703 && node && !TYPE_P (node)
3704 && TREE_CONSTANT (node))
3705 TREE_CONSTANT (t) = 1;
3706 if (TREE_CODE_CLASS (code) == tcc_reference
3707 && node && TREE_THIS_VOLATILE (node))
3708 TREE_THIS_VOLATILE (t) = 1;
3709 break;
3710 }
3711
3712 return t;
3713 }
3714
3715 #define PROCESS_ARG(N) \
3716 do { \
3717 TREE_OPERAND (t, N) = arg##N; \
3718 if (arg##N &&!TYPE_P (arg##N)) \
3719 { \
3720 if (TREE_SIDE_EFFECTS (arg##N)) \
3721 side_effects = 1; \
3722 if (!TREE_READONLY (arg##N) \
3723 && !CONSTANT_CLASS_P (arg##N)) \
3724 (void) (read_only = 0); \
3725 if (!TREE_CONSTANT (arg##N)) \
3726 (void) (constant = 0); \
3727 } \
3728 } while (0)
3729
3730 tree
3731 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3732 {
3733 bool constant, read_only, side_effects;
3734 tree t;
3735
3736 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3737
3738 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3739 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3740 /* When sizetype precision doesn't match that of pointers
3741 we need to be able to build explicit extensions or truncations
3742 of the offset argument. */
3743 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3744 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3745 && TREE_CODE (arg1) == INTEGER_CST);
3746
3747 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3748 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3749 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3750 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3751
3752 t = make_node_stat (code PASS_MEM_STAT);
3753 TREE_TYPE (t) = tt;
3754
3755 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3756 result based on those same flags for the arguments. But if the
3757 arguments aren't really even `tree' expressions, we shouldn't be trying
3758 to do this. */
3759
3760 /* Expressions without side effects may be constant if their
3761 arguments are as well. */
3762 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3763 || TREE_CODE_CLASS (code) == tcc_binary);
3764 read_only = 1;
3765 side_effects = TREE_SIDE_EFFECTS (t);
3766
3767 PROCESS_ARG(0);
3768 PROCESS_ARG(1);
3769
3770 TREE_READONLY (t) = read_only;
3771 TREE_CONSTANT (t) = constant;
3772 TREE_SIDE_EFFECTS (t) = side_effects;
3773 TREE_THIS_VOLATILE (t)
3774 = (TREE_CODE_CLASS (code) == tcc_reference
3775 && arg0 && TREE_THIS_VOLATILE (arg0));
3776
3777 return t;
3778 }
3779
3780
3781 tree
3782 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3783 tree arg2 MEM_STAT_DECL)
3784 {
3785 bool constant, read_only, side_effects;
3786 tree t;
3787
3788 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3789 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3790
3791 t = make_node_stat (code PASS_MEM_STAT);
3792 TREE_TYPE (t) = tt;
3793
3794 read_only = 1;
3795
3796 /* As a special exception, if COND_EXPR has NULL branches, we
3797 assume that it is a gimple statement and always consider
3798 it to have side effects. */
3799 if (code == COND_EXPR
3800 && tt == void_type_node
3801 && arg1 == NULL_TREE
3802 && arg2 == NULL_TREE)
3803 side_effects = true;
3804 else
3805 side_effects = TREE_SIDE_EFFECTS (t);
3806
3807 PROCESS_ARG(0);
3808 PROCESS_ARG(1);
3809 PROCESS_ARG(2);
3810
3811 if (code == COND_EXPR)
3812 TREE_READONLY (t) = read_only;
3813
3814 TREE_SIDE_EFFECTS (t) = side_effects;
3815 TREE_THIS_VOLATILE (t)
3816 = (TREE_CODE_CLASS (code) == tcc_reference
3817 && arg0 && TREE_THIS_VOLATILE (arg0));
3818
3819 return t;
3820 }
3821
3822 tree
3823 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3824 tree arg2, tree arg3 MEM_STAT_DECL)
3825 {
3826 bool constant, read_only, side_effects;
3827 tree t;
3828
3829 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3830
3831 t = make_node_stat (code PASS_MEM_STAT);
3832 TREE_TYPE (t) = tt;
3833
3834 side_effects = TREE_SIDE_EFFECTS (t);
3835
3836 PROCESS_ARG(0);
3837 PROCESS_ARG(1);
3838 PROCESS_ARG(2);
3839 PROCESS_ARG(3);
3840
3841 TREE_SIDE_EFFECTS (t) = side_effects;
3842 TREE_THIS_VOLATILE (t)
3843 = (TREE_CODE_CLASS (code) == tcc_reference
3844 && arg0 && TREE_THIS_VOLATILE (arg0));
3845
3846 return t;
3847 }
3848
3849 tree
3850 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3851 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3852 {
3853 bool constant, read_only, side_effects;
3854 tree t;
3855
3856 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3857
3858 t = make_node_stat (code PASS_MEM_STAT);
3859 TREE_TYPE (t) = tt;
3860
3861 side_effects = TREE_SIDE_EFFECTS (t);
3862
3863 PROCESS_ARG(0);
3864 PROCESS_ARG(1);
3865 PROCESS_ARG(2);
3866 PROCESS_ARG(3);
3867 PROCESS_ARG(4);
3868
3869 TREE_SIDE_EFFECTS (t) = side_effects;
3870 TREE_THIS_VOLATILE (t)
3871 = (TREE_CODE_CLASS (code) == tcc_reference
3872 && arg0 && TREE_THIS_VOLATILE (arg0));
3873
3874 return t;
3875 }
3876
3877 tree
3878 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3879 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3880 {
3881 bool constant, read_only, side_effects;
3882 tree t;
3883
3884 gcc_assert (code == TARGET_MEM_REF);
3885
3886 t = make_node_stat (code PASS_MEM_STAT);
3887 TREE_TYPE (t) = tt;
3888
3889 side_effects = TREE_SIDE_EFFECTS (t);
3890
3891 PROCESS_ARG(0);
3892 PROCESS_ARG(1);
3893 PROCESS_ARG(2);
3894 PROCESS_ARG(3);
3895 PROCESS_ARG(4);
3896 if (code == TARGET_MEM_REF)
3897 side_effects = 0;
3898 PROCESS_ARG(5);
3899
3900 TREE_SIDE_EFFECTS (t) = side_effects;
3901 TREE_THIS_VOLATILE (t)
3902 = (code == TARGET_MEM_REF
3903 && arg5 && TREE_THIS_VOLATILE (arg5));
3904
3905 return t;
3906 }
3907
3908 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3909 on the pointer PTR. */
3910
3911 tree
3912 build_simple_mem_ref_loc (location_t loc, tree ptr)
3913 {
3914 HOST_WIDE_INT offset = 0;
3915 tree ptype = TREE_TYPE (ptr);
3916 tree tem;
3917 /* For convenience allow addresses that collapse to a simple base
3918 and offset. */
3919 if (TREE_CODE (ptr) == ADDR_EXPR
3920 && (handled_component_p (TREE_OPERAND (ptr, 0))
3921 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3922 {
3923 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3924 gcc_assert (ptr);
3925 ptr = build_fold_addr_expr (ptr);
3926 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3927 }
3928 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3929 ptr, build_int_cst (ptype, offset));
3930 SET_EXPR_LOCATION (tem, loc);
3931 return tem;
3932 }
3933
3934 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3935
3936 double_int
3937 mem_ref_offset (const_tree t)
3938 {
3939 tree toff = TREE_OPERAND (t, 1);
3940 return double_int_sext (tree_to_double_int (toff),
3941 TYPE_PRECISION (TREE_TYPE (toff)));
3942 }
3943
3944 /* Return the pointer-type relevant for TBAA purposes from the
3945 gimple memory reference tree T. This is the type to be used for
3946 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3947
3948 tree
3949 reference_alias_ptr_type (const_tree t)
3950 {
3951 const_tree base = t;
3952 while (handled_component_p (base))
3953 base = TREE_OPERAND (base, 0);
3954 if (TREE_CODE (base) == MEM_REF)
3955 return TREE_TYPE (TREE_OPERAND (base, 1));
3956 else if (TREE_CODE (base) == TARGET_MEM_REF)
3957 return TREE_TYPE (TMR_OFFSET (base));
3958 else
3959 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
3960 }
3961
3962 /* Similar except don't specify the TREE_TYPE
3963 and leave the TREE_SIDE_EFFECTS as 0.
3964 It is permissible for arguments to be null,
3965 or even garbage if their values do not matter. */
3966
3967 tree
3968 build_nt (enum tree_code code, ...)
3969 {
3970 tree t;
3971 int length;
3972 int i;
3973 va_list p;
3974
3975 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3976
3977 va_start (p, code);
3978
3979 t = make_node (code);
3980 length = TREE_CODE_LENGTH (code);
3981
3982 for (i = 0; i < length; i++)
3983 TREE_OPERAND (t, i) = va_arg (p, tree);
3984
3985 va_end (p);
3986 return t;
3987 }
3988
3989 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3990 tree VEC. */
3991
3992 tree
3993 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3994 {
3995 tree ret, t;
3996 unsigned int ix;
3997
3998 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3999 CALL_EXPR_FN (ret) = fn;
4000 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4001 FOR_EACH_VEC_ELT (tree, args, ix, t)
4002 CALL_EXPR_ARG (ret, ix) = t;
4003 return ret;
4004 }
4005 \f
4006 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4007 We do NOT enter this node in any sort of symbol table.
4008
4009 LOC is the location of the decl.
4010
4011 layout_decl is used to set up the decl's storage layout.
4012 Other slots are initialized to 0 or null pointers. */
4013
4014 tree
4015 build_decl_stat (location_t loc, enum tree_code code, tree name,
4016 tree type MEM_STAT_DECL)
4017 {
4018 tree t;
4019
4020 t = make_node_stat (code PASS_MEM_STAT);
4021 DECL_SOURCE_LOCATION (t) = loc;
4022
4023 /* if (type == error_mark_node)
4024 type = integer_type_node; */
4025 /* That is not done, deliberately, so that having error_mark_node
4026 as the type can suppress useless errors in the use of this variable. */
4027
4028 DECL_NAME (t) = name;
4029 TREE_TYPE (t) = type;
4030
4031 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4032 layout_decl (t, 0);
4033
4034 return t;
4035 }
4036
4037 /* Builds and returns function declaration with NAME and TYPE. */
4038
4039 tree
4040 build_fn_decl (const char *name, tree type)
4041 {
4042 tree id = get_identifier (name);
4043 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4044
4045 DECL_EXTERNAL (decl) = 1;
4046 TREE_PUBLIC (decl) = 1;
4047 DECL_ARTIFICIAL (decl) = 1;
4048 TREE_NOTHROW (decl) = 1;
4049
4050 return decl;
4051 }
4052
4053 VEC(tree,gc) *all_translation_units;
4054
4055 /* Builds a new translation-unit decl with name NAME, queues it in the
4056 global list of translation-unit decls and returns it. */
4057
4058 tree
4059 build_translation_unit_decl (tree name)
4060 {
4061 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4062 name, NULL_TREE);
4063 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4064 VEC_safe_push (tree, gc, all_translation_units, tu);
4065 return tu;
4066 }
4067
4068 \f
4069 /* BLOCK nodes are used to represent the structure of binding contours
4070 and declarations, once those contours have been exited and their contents
4071 compiled. This information is used for outputting debugging info. */
4072
4073 tree
4074 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4075 {
4076 tree block = make_node (BLOCK);
4077
4078 BLOCK_VARS (block) = vars;
4079 BLOCK_SUBBLOCKS (block) = subblocks;
4080 BLOCK_SUPERCONTEXT (block) = supercontext;
4081 BLOCK_CHAIN (block) = chain;
4082 return block;
4083 }
4084
4085 \f
4086 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4087
4088 LOC is the location to use in tree T. */
4089
4090 void
4091 protected_set_expr_location (tree t, location_t loc)
4092 {
4093 if (t && CAN_HAVE_LOCATION_P (t))
4094 SET_EXPR_LOCATION (t, loc);
4095 }
4096 \f
4097 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4098 is ATTRIBUTE. */
4099
4100 tree
4101 build_decl_attribute_variant (tree ddecl, tree attribute)
4102 {
4103 DECL_ATTRIBUTES (ddecl) = attribute;
4104 return ddecl;
4105 }
4106
4107 /* Borrowed from hashtab.c iterative_hash implementation. */
4108 #define mix(a,b,c) \
4109 { \
4110 a -= b; a -= c; a ^= (c>>13); \
4111 b -= c; b -= a; b ^= (a<< 8); \
4112 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4113 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4114 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4115 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4116 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4117 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4118 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4119 }
4120
4121
4122 /* Produce good hash value combining VAL and VAL2. */
4123 hashval_t
4124 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4125 {
4126 /* the golden ratio; an arbitrary value. */
4127 hashval_t a = 0x9e3779b9;
4128
4129 mix (a, val, val2);
4130 return val2;
4131 }
4132
4133 /* Produce good hash value combining VAL and VAL2. */
4134 hashval_t
4135 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4136 {
4137 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4138 return iterative_hash_hashval_t (val, val2);
4139 else
4140 {
4141 hashval_t a = (hashval_t) val;
4142 /* Avoid warnings about shifting of more than the width of the type on
4143 hosts that won't execute this path. */
4144 int zero = 0;
4145 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4146 mix (a, b, val2);
4147 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4148 {
4149 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4150 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4151 mix (a, b, val2);
4152 }
4153 return val2;
4154 }
4155 }
4156
4157 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4158 is ATTRIBUTE and its qualifiers are QUALS.
4159
4160 Record such modified types already made so we don't make duplicates. */
4161
4162 tree
4163 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4164 {
4165 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4166 {
4167 hashval_t hashcode = 0;
4168 tree ntype;
4169 enum tree_code code = TREE_CODE (ttype);
4170
4171 /* Building a distinct copy of a tagged type is inappropriate; it
4172 causes breakage in code that expects there to be a one-to-one
4173 relationship between a struct and its fields.
4174 build_duplicate_type is another solution (as used in
4175 handle_transparent_union_attribute), but that doesn't play well
4176 with the stronger C++ type identity model. */
4177 if (TREE_CODE (ttype) == RECORD_TYPE
4178 || TREE_CODE (ttype) == UNION_TYPE
4179 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4180 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4181 {
4182 warning (OPT_Wattributes,
4183 "ignoring attributes applied to %qT after definition",
4184 TYPE_MAIN_VARIANT (ttype));
4185 return build_qualified_type (ttype, quals);
4186 }
4187
4188 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4189 ntype = build_distinct_type_copy (ttype);
4190
4191 TYPE_ATTRIBUTES (ntype) = attribute;
4192
4193 hashcode = iterative_hash_object (code, hashcode);
4194 if (TREE_TYPE (ntype))
4195 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4196 hashcode);
4197 hashcode = attribute_hash_list (attribute, hashcode);
4198
4199 switch (TREE_CODE (ntype))
4200 {
4201 case FUNCTION_TYPE:
4202 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4203 break;
4204 case ARRAY_TYPE:
4205 if (TYPE_DOMAIN (ntype))
4206 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4207 hashcode);
4208 break;
4209 case INTEGER_TYPE:
4210 hashcode = iterative_hash_object
4211 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4212 hashcode = iterative_hash_object
4213 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4214 break;
4215 case REAL_TYPE:
4216 case FIXED_POINT_TYPE:
4217 {
4218 unsigned int precision = TYPE_PRECISION (ntype);
4219 hashcode = iterative_hash_object (precision, hashcode);
4220 }
4221 break;
4222 default:
4223 break;
4224 }
4225
4226 ntype = type_hash_canon (hashcode, ntype);
4227
4228 /* If the target-dependent attributes make NTYPE different from
4229 its canonical type, we will need to use structural equality
4230 checks for this type. */
4231 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4232 || !targetm.comp_type_attributes (ntype, ttype))
4233 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4234 else if (TYPE_CANONICAL (ntype) == ntype)
4235 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4236
4237 ttype = build_qualified_type (ntype, quals);
4238 }
4239 else if (TYPE_QUALS (ttype) != quals)
4240 ttype = build_qualified_type (ttype, quals);
4241
4242 return ttype;
4243 }
4244
4245
4246 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4247 is ATTRIBUTE.
4248
4249 Record such modified types already made so we don't make duplicates. */
4250
4251 tree
4252 build_type_attribute_variant (tree ttype, tree attribute)
4253 {
4254 return build_type_attribute_qual_variant (ttype, attribute,
4255 TYPE_QUALS (ttype));
4256 }
4257
4258
4259 /* Reset the expression *EXPR_P, a size or position.
4260
4261 ??? We could reset all non-constant sizes or positions. But it's cheap
4262 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4263
4264 We need to reset self-referential sizes or positions because they cannot
4265 be gimplified and thus can contain a CALL_EXPR after the gimplification
4266 is finished, which will run afoul of LTO streaming. And they need to be
4267 reset to something essentially dummy but not constant, so as to preserve
4268 the properties of the object they are attached to. */
4269
4270 static inline void
4271 free_lang_data_in_one_sizepos (tree *expr_p)
4272 {
4273 tree expr = *expr_p;
4274 if (CONTAINS_PLACEHOLDER_P (expr))
4275 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4276 }
4277
4278
4279 /* Reset all the fields in a binfo node BINFO. We only keep
4280 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4281
4282 static void
4283 free_lang_data_in_binfo (tree binfo)
4284 {
4285 unsigned i;
4286 tree t;
4287
4288 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4289
4290 BINFO_VTABLE (binfo) = NULL_TREE;
4291 BINFO_BASE_ACCESSES (binfo) = NULL;
4292 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4293 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4294
4295 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4296 free_lang_data_in_binfo (t);
4297 }
4298
4299
4300 /* Reset all language specific information still present in TYPE. */
4301
4302 static void
4303 free_lang_data_in_type (tree type)
4304 {
4305 gcc_assert (TYPE_P (type));
4306
4307 /* Give the FE a chance to remove its own data first. */
4308 lang_hooks.free_lang_data (type);
4309
4310 TREE_LANG_FLAG_0 (type) = 0;
4311 TREE_LANG_FLAG_1 (type) = 0;
4312 TREE_LANG_FLAG_2 (type) = 0;
4313 TREE_LANG_FLAG_3 (type) = 0;
4314 TREE_LANG_FLAG_4 (type) = 0;
4315 TREE_LANG_FLAG_5 (type) = 0;
4316 TREE_LANG_FLAG_6 (type) = 0;
4317
4318 if (TREE_CODE (type) == FUNCTION_TYPE)
4319 {
4320 /* Remove the const and volatile qualifiers from arguments. The
4321 C++ front end removes them, but the C front end does not,
4322 leading to false ODR violation errors when merging two
4323 instances of the same function signature compiled by
4324 different front ends. */
4325 tree p;
4326
4327 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4328 {
4329 tree arg_type = TREE_VALUE (p);
4330
4331 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4332 {
4333 int quals = TYPE_QUALS (arg_type)
4334 & ~TYPE_QUAL_CONST
4335 & ~TYPE_QUAL_VOLATILE;
4336 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4337 free_lang_data_in_type (TREE_VALUE (p));
4338 }
4339 }
4340 }
4341
4342 /* Remove members that are not actually FIELD_DECLs from the field
4343 list of an aggregate. These occur in C++. */
4344 if (RECORD_OR_UNION_TYPE_P (type))
4345 {
4346 tree prev, member;
4347
4348 /* Note that TYPE_FIELDS can be shared across distinct
4349 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4350 to be removed, we cannot set its TREE_CHAIN to NULL.
4351 Otherwise, we would not be able to find all the other fields
4352 in the other instances of this TREE_TYPE.
4353
4354 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4355 prev = NULL_TREE;
4356 member = TYPE_FIELDS (type);
4357 while (member)
4358 {
4359 if (TREE_CODE (member) == FIELD_DECL)
4360 {
4361 if (prev)
4362 TREE_CHAIN (prev) = member;
4363 else
4364 TYPE_FIELDS (type) = member;
4365 prev = member;
4366 }
4367
4368 member = TREE_CHAIN (member);
4369 }
4370
4371 if (prev)
4372 TREE_CHAIN (prev) = NULL_TREE;
4373 else
4374 TYPE_FIELDS (type) = NULL_TREE;
4375
4376 TYPE_METHODS (type) = NULL_TREE;
4377 if (TYPE_BINFO (type))
4378 free_lang_data_in_binfo (TYPE_BINFO (type));
4379 }
4380 else
4381 {
4382 /* For non-aggregate types, clear out the language slot (which
4383 overloads TYPE_BINFO). */
4384 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4385
4386 if (INTEGRAL_TYPE_P (type)
4387 || SCALAR_FLOAT_TYPE_P (type)
4388 || FIXED_POINT_TYPE_P (type))
4389 {
4390 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4391 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4392 }
4393 }
4394
4395 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4396 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4397
4398 if (debug_info_level < DINFO_LEVEL_TERSE
4399 || (TYPE_CONTEXT (type)
4400 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4401 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4402 TYPE_CONTEXT (type) = NULL_TREE;
4403
4404 if (debug_info_level < DINFO_LEVEL_TERSE)
4405 TYPE_STUB_DECL (type) = NULL_TREE;
4406 }
4407
4408
4409 /* Return true if DECL may need an assembler name to be set. */
4410
4411 static inline bool
4412 need_assembler_name_p (tree decl)
4413 {
4414 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4415 if (TREE_CODE (decl) != FUNCTION_DECL
4416 && TREE_CODE (decl) != VAR_DECL)
4417 return false;
4418
4419 /* If DECL already has its assembler name set, it does not need a
4420 new one. */
4421 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4422 || DECL_ASSEMBLER_NAME_SET_P (decl))
4423 return false;
4424
4425 /* Abstract decls do not need an assembler name. */
4426 if (DECL_ABSTRACT (decl))
4427 return false;
4428
4429 /* For VAR_DECLs, only static, public and external symbols need an
4430 assembler name. */
4431 if (TREE_CODE (decl) == VAR_DECL
4432 && !TREE_STATIC (decl)
4433 && !TREE_PUBLIC (decl)
4434 && !DECL_EXTERNAL (decl))
4435 return false;
4436
4437 if (TREE_CODE (decl) == FUNCTION_DECL)
4438 {
4439 /* Do not set assembler name on builtins. Allow RTL expansion to
4440 decide whether to expand inline or via a regular call. */
4441 if (DECL_BUILT_IN (decl)
4442 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4443 return false;
4444
4445 /* Functions represented in the callgraph need an assembler name. */
4446 if (cgraph_get_node (decl) != NULL)
4447 return true;
4448
4449 /* Unused and not public functions don't need an assembler name. */
4450 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4451 return false;
4452 }
4453
4454 return true;
4455 }
4456
4457
4458 /* Reset all language specific information still present in symbol
4459 DECL. */
4460
4461 static void
4462 free_lang_data_in_decl (tree decl)
4463 {
4464 gcc_assert (DECL_P (decl));
4465
4466 /* Give the FE a chance to remove its own data first. */
4467 lang_hooks.free_lang_data (decl);
4468
4469 TREE_LANG_FLAG_0 (decl) = 0;
4470 TREE_LANG_FLAG_1 (decl) = 0;
4471 TREE_LANG_FLAG_2 (decl) = 0;
4472 TREE_LANG_FLAG_3 (decl) = 0;
4473 TREE_LANG_FLAG_4 (decl) = 0;
4474 TREE_LANG_FLAG_5 (decl) = 0;
4475 TREE_LANG_FLAG_6 (decl) = 0;
4476
4477 /* Identifiers need not have a type. */
4478 if (DECL_NAME (decl))
4479 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4480
4481 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4482 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4483 if (TREE_CODE (decl) == FIELD_DECL)
4484 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4485
4486 /* DECL_FCONTEXT is only used for debug info generation. */
4487 if (TREE_CODE (decl) == FIELD_DECL
4488 && debug_info_level < DINFO_LEVEL_TERSE)
4489 DECL_FCONTEXT (decl) = NULL_TREE;
4490
4491 if (TREE_CODE (decl) == FUNCTION_DECL)
4492 {
4493 if (gimple_has_body_p (decl))
4494 {
4495 tree t;
4496
4497 /* If DECL has a gimple body, then the context for its
4498 arguments must be DECL. Otherwise, it doesn't really
4499 matter, as we will not be emitting any code for DECL. In
4500 general, there may be other instances of DECL created by
4501 the front end and since PARM_DECLs are generally shared,
4502 their DECL_CONTEXT changes as the replicas of DECL are
4503 created. The only time where DECL_CONTEXT is important
4504 is for the FUNCTION_DECLs that have a gimple body (since
4505 the PARM_DECL will be used in the function's body). */
4506 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4507 DECL_CONTEXT (t) = decl;
4508 }
4509
4510 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4511 At this point, it is not needed anymore. */
4512 DECL_SAVED_TREE (decl) = NULL_TREE;
4513 }
4514 else if (TREE_CODE (decl) == VAR_DECL)
4515 {
4516 if (DECL_EXTERNAL (decl)
4517 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4518 DECL_INITIAL (decl) = NULL_TREE;
4519 }
4520 else if (TREE_CODE (decl) == TYPE_DECL)
4521 DECL_INITIAL (decl) = NULL_TREE;
4522 }
4523
4524
4525 /* Data used when collecting DECLs and TYPEs for language data removal. */
4526
4527 struct free_lang_data_d
4528 {
4529 /* Worklist to avoid excessive recursion. */
4530 VEC(tree,heap) *worklist;
4531
4532 /* Set of traversed objects. Used to avoid duplicate visits. */
4533 struct pointer_set_t *pset;
4534
4535 /* Array of symbols to process with free_lang_data_in_decl. */
4536 VEC(tree,heap) *decls;
4537
4538 /* Array of types to process with free_lang_data_in_type. */
4539 VEC(tree,heap) *types;
4540 };
4541
4542
4543 /* Save all language fields needed to generate proper debug information
4544 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4545
4546 static void
4547 save_debug_info_for_decl (tree t)
4548 {
4549 /*struct saved_debug_info_d *sdi;*/
4550
4551 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4552
4553 /* FIXME. Partial implementation for saving debug info removed. */
4554 }
4555
4556
4557 /* Save all language fields needed to generate proper debug information
4558 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4559
4560 static void
4561 save_debug_info_for_type (tree t)
4562 {
4563 /*struct saved_debug_info_d *sdi;*/
4564
4565 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4566
4567 /* FIXME. Partial implementation for saving debug info removed. */
4568 }
4569
4570
4571 /* Add type or decl T to one of the list of tree nodes that need their
4572 language data removed. The lists are held inside FLD. */
4573
4574 static void
4575 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4576 {
4577 if (DECL_P (t))
4578 {
4579 VEC_safe_push (tree, heap, fld->decls, t);
4580 if (debug_info_level > DINFO_LEVEL_TERSE)
4581 save_debug_info_for_decl (t);
4582 }
4583 else if (TYPE_P (t))
4584 {
4585 VEC_safe_push (tree, heap, fld->types, t);
4586 if (debug_info_level > DINFO_LEVEL_TERSE)
4587 save_debug_info_for_type (t);
4588 }
4589 else
4590 gcc_unreachable ();
4591 }
4592
4593 /* Push tree node T into FLD->WORKLIST. */
4594
4595 static inline void
4596 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4597 {
4598 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4599 VEC_safe_push (tree, heap, fld->worklist, (t));
4600 }
4601
4602
4603 /* Operand callback helper for free_lang_data_in_node. *TP is the
4604 subtree operand being considered. */
4605
4606 static tree
4607 find_decls_types_r (tree *tp, int *ws, void *data)
4608 {
4609 tree t = *tp;
4610 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4611
4612 if (TREE_CODE (t) == TREE_LIST)
4613 return NULL_TREE;
4614
4615 /* Language specific nodes will be removed, so there is no need
4616 to gather anything under them. */
4617 if (is_lang_specific (t))
4618 {
4619 *ws = 0;
4620 return NULL_TREE;
4621 }
4622
4623 if (DECL_P (t))
4624 {
4625 /* Note that walk_tree does not traverse every possible field in
4626 decls, so we have to do our own traversals here. */
4627 add_tree_to_fld_list (t, fld);
4628
4629 fld_worklist_push (DECL_NAME (t), fld);
4630 fld_worklist_push (DECL_CONTEXT (t), fld);
4631 fld_worklist_push (DECL_SIZE (t), fld);
4632 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4633
4634 /* We are going to remove everything under DECL_INITIAL for
4635 TYPE_DECLs. No point walking them. */
4636 if (TREE_CODE (t) != TYPE_DECL)
4637 fld_worklist_push (DECL_INITIAL (t), fld);
4638
4639 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4640 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4641
4642 if (TREE_CODE (t) == FUNCTION_DECL)
4643 {
4644 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4645 fld_worklist_push (DECL_RESULT (t), fld);
4646 }
4647 else if (TREE_CODE (t) == TYPE_DECL)
4648 {
4649 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4650 fld_worklist_push (DECL_VINDEX (t), fld);
4651 }
4652 else if (TREE_CODE (t) == FIELD_DECL)
4653 {
4654 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4655 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4656 fld_worklist_push (DECL_QUALIFIER (t), fld);
4657 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4658 fld_worklist_push (DECL_FCONTEXT (t), fld);
4659 }
4660 else if (TREE_CODE (t) == VAR_DECL)
4661 {
4662 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4663 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4664 }
4665
4666 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4667 && DECL_HAS_VALUE_EXPR_P (t))
4668 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4669
4670 if (TREE_CODE (t) != FIELD_DECL
4671 && TREE_CODE (t) != TYPE_DECL)
4672 fld_worklist_push (TREE_CHAIN (t), fld);
4673 *ws = 0;
4674 }
4675 else if (TYPE_P (t))
4676 {
4677 /* Note that walk_tree does not traverse every possible field in
4678 types, so we have to do our own traversals here. */
4679 add_tree_to_fld_list (t, fld);
4680
4681 if (!RECORD_OR_UNION_TYPE_P (t))
4682 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4683 fld_worklist_push (TYPE_SIZE (t), fld);
4684 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4685 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4686 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4687 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4688 fld_worklist_push (TYPE_NAME (t), fld);
4689 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4690 them and thus do not and want not to reach unused pointer types
4691 this way. */
4692 if (!POINTER_TYPE_P (t))
4693 fld_worklist_push (TYPE_MINVAL (t), fld);
4694 if (!RECORD_OR_UNION_TYPE_P (t))
4695 fld_worklist_push (TYPE_MAXVAL (t), fld);
4696 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4697 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4698 do not and want not to reach unused variants this way. */
4699 fld_worklist_push (TYPE_CONTEXT (t), fld);
4700 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4701 and want not to reach unused types this way. */
4702
4703 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4704 {
4705 unsigned i;
4706 tree tem;
4707 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4708 i, tem); ++i)
4709 fld_worklist_push (TREE_TYPE (tem), fld);
4710 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4711 if (tem
4712 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4713 && TREE_CODE (tem) == TREE_LIST)
4714 do
4715 {
4716 fld_worklist_push (TREE_VALUE (tem), fld);
4717 tem = TREE_CHAIN (tem);
4718 }
4719 while (tem);
4720 }
4721 if (RECORD_OR_UNION_TYPE_P (t))
4722 {
4723 tree tem;
4724 /* Push all TYPE_FIELDS - there can be interleaving interesting
4725 and non-interesting things. */
4726 tem = TYPE_FIELDS (t);
4727 while (tem)
4728 {
4729 if (TREE_CODE (tem) == FIELD_DECL)
4730 fld_worklist_push (tem, fld);
4731 tem = TREE_CHAIN (tem);
4732 }
4733 }
4734
4735 fld_worklist_push (TREE_CHAIN (t), fld);
4736 *ws = 0;
4737 }
4738 else if (TREE_CODE (t) == BLOCK)
4739 {
4740 tree tem;
4741 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4742 fld_worklist_push (tem, fld);
4743 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4744 fld_worklist_push (tem, fld);
4745 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4746 }
4747
4748 fld_worklist_push (TREE_TYPE (t), fld);
4749
4750 return NULL_TREE;
4751 }
4752
4753
4754 /* Find decls and types in T. */
4755
4756 static void
4757 find_decls_types (tree t, struct free_lang_data_d *fld)
4758 {
4759 while (1)
4760 {
4761 if (!pointer_set_contains (fld->pset, t))
4762 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4763 if (VEC_empty (tree, fld->worklist))
4764 break;
4765 t = VEC_pop (tree, fld->worklist);
4766 }
4767 }
4768
4769 /* Translate all the types in LIST with the corresponding runtime
4770 types. */
4771
4772 static tree
4773 get_eh_types_for_runtime (tree list)
4774 {
4775 tree head, prev;
4776
4777 if (list == NULL_TREE)
4778 return NULL_TREE;
4779
4780 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4781 prev = head;
4782 list = TREE_CHAIN (list);
4783 while (list)
4784 {
4785 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4786 TREE_CHAIN (prev) = n;
4787 prev = TREE_CHAIN (prev);
4788 list = TREE_CHAIN (list);
4789 }
4790
4791 return head;
4792 }
4793
4794
4795 /* Find decls and types referenced in EH region R and store them in
4796 FLD->DECLS and FLD->TYPES. */
4797
4798 static void
4799 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4800 {
4801 switch (r->type)
4802 {
4803 case ERT_CLEANUP:
4804 break;
4805
4806 case ERT_TRY:
4807 {
4808 eh_catch c;
4809
4810 /* The types referenced in each catch must first be changed to the
4811 EH types used at runtime. This removes references to FE types
4812 in the region. */
4813 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4814 {
4815 c->type_list = get_eh_types_for_runtime (c->type_list);
4816 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4817 }
4818 }
4819 break;
4820
4821 case ERT_ALLOWED_EXCEPTIONS:
4822 r->u.allowed.type_list
4823 = get_eh_types_for_runtime (r->u.allowed.type_list);
4824 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4825 break;
4826
4827 case ERT_MUST_NOT_THROW:
4828 walk_tree (&r->u.must_not_throw.failure_decl,
4829 find_decls_types_r, fld, fld->pset);
4830 break;
4831 }
4832 }
4833
4834
4835 /* Find decls and types referenced in cgraph node N and store them in
4836 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4837 look for *every* kind of DECL and TYPE node reachable from N,
4838 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4839 NAMESPACE_DECLs, etc). */
4840
4841 static void
4842 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4843 {
4844 basic_block bb;
4845 struct function *fn;
4846 unsigned ix;
4847 tree t;
4848
4849 find_decls_types (n->decl, fld);
4850
4851 if (!gimple_has_body_p (n->decl))
4852 return;
4853
4854 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4855
4856 fn = DECL_STRUCT_FUNCTION (n->decl);
4857
4858 /* Traverse locals. */
4859 FOR_EACH_LOCAL_DECL (fn, ix, t)
4860 find_decls_types (t, fld);
4861
4862 /* Traverse EH regions in FN. */
4863 {
4864 eh_region r;
4865 FOR_ALL_EH_REGION_FN (r, fn)
4866 find_decls_types_in_eh_region (r, fld);
4867 }
4868
4869 /* Traverse every statement in FN. */
4870 FOR_EACH_BB_FN (bb, fn)
4871 {
4872 gimple_stmt_iterator si;
4873 unsigned i;
4874
4875 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4876 {
4877 gimple phi = gsi_stmt (si);
4878
4879 for (i = 0; i < gimple_phi_num_args (phi); i++)
4880 {
4881 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4882 find_decls_types (*arg_p, fld);
4883 }
4884 }
4885
4886 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4887 {
4888 gimple stmt = gsi_stmt (si);
4889
4890 for (i = 0; i < gimple_num_ops (stmt); i++)
4891 {
4892 tree arg = gimple_op (stmt, i);
4893 find_decls_types (arg, fld);
4894 }
4895 }
4896 }
4897 }
4898
4899
4900 /* Find decls and types referenced in varpool node N and store them in
4901 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4902 look for *every* kind of DECL and TYPE node reachable from N,
4903 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4904 NAMESPACE_DECLs, etc). */
4905
4906 static void
4907 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4908 {
4909 find_decls_types (v->decl, fld);
4910 }
4911
4912 /* If T needs an assembler name, have one created for it. */
4913
4914 void
4915 assign_assembler_name_if_neeeded (tree t)
4916 {
4917 if (need_assembler_name_p (t))
4918 {
4919 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4920 diagnostics that use input_location to show locus
4921 information. The problem here is that, at this point,
4922 input_location is generally anchored to the end of the file
4923 (since the parser is long gone), so we don't have a good
4924 position to pin it to.
4925
4926 To alleviate this problem, this uses the location of T's
4927 declaration. Examples of this are
4928 testsuite/g++.dg/template/cond2.C and
4929 testsuite/g++.dg/template/pr35240.C. */
4930 location_t saved_location = input_location;
4931 input_location = DECL_SOURCE_LOCATION (t);
4932
4933 decl_assembler_name (t);
4934
4935 input_location = saved_location;
4936 }
4937 }
4938
4939
4940 /* Free language specific information for every operand and expression
4941 in every node of the call graph. This process operates in three stages:
4942
4943 1- Every callgraph node and varpool node is traversed looking for
4944 decls and types embedded in them. This is a more exhaustive
4945 search than that done by find_referenced_vars, because it will
4946 also collect individual fields, decls embedded in types, etc.
4947
4948 2- All the decls found are sent to free_lang_data_in_decl.
4949
4950 3- All the types found are sent to free_lang_data_in_type.
4951
4952 The ordering between decls and types is important because
4953 free_lang_data_in_decl sets assembler names, which includes
4954 mangling. So types cannot be freed up until assembler names have
4955 been set up. */
4956
4957 static void
4958 free_lang_data_in_cgraph (void)
4959 {
4960 struct cgraph_node *n;
4961 struct varpool_node *v;
4962 struct free_lang_data_d fld;
4963 tree t;
4964 unsigned i;
4965 alias_pair *p;
4966
4967 /* Initialize sets and arrays to store referenced decls and types. */
4968 fld.pset = pointer_set_create ();
4969 fld.worklist = NULL;
4970 fld.decls = VEC_alloc (tree, heap, 100);
4971 fld.types = VEC_alloc (tree, heap, 100);
4972
4973 /* Find decls and types in the body of every function in the callgraph. */
4974 for (n = cgraph_nodes; n; n = n->next)
4975 find_decls_types_in_node (n, &fld);
4976
4977 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
4978 find_decls_types (p->decl, &fld);
4979
4980 /* Find decls and types in every varpool symbol. */
4981 for (v = varpool_nodes; v; v = v->next)
4982 find_decls_types_in_var (v, &fld);
4983
4984 /* Set the assembler name on every decl found. We need to do this
4985 now because free_lang_data_in_decl will invalidate data needed
4986 for mangling. This breaks mangling on interdependent decls. */
4987 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
4988 assign_assembler_name_if_neeeded (t);
4989
4990 /* Traverse every decl found freeing its language data. */
4991 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
4992 free_lang_data_in_decl (t);
4993
4994 /* Traverse every type found freeing its language data. */
4995 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
4996 free_lang_data_in_type (t);
4997
4998 pointer_set_destroy (fld.pset);
4999 VEC_free (tree, heap, fld.worklist);
5000 VEC_free (tree, heap, fld.decls);
5001 VEC_free (tree, heap, fld.types);
5002 }
5003
5004
5005 /* Free resources that are used by FE but are not needed once they are done. */
5006
5007 static unsigned
5008 free_lang_data (void)
5009 {
5010 unsigned i;
5011
5012 /* If we are the LTO frontend we have freed lang-specific data already. */
5013 if (in_lto_p
5014 || !flag_generate_lto)
5015 return 0;
5016
5017 /* Allocate and assign alias sets to the standard integer types
5018 while the slots are still in the way the frontends generated them. */
5019 for (i = 0; i < itk_none; ++i)
5020 if (integer_types[i])
5021 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5022
5023 /* Traverse the IL resetting language specific information for
5024 operands, expressions, etc. */
5025 free_lang_data_in_cgraph ();
5026
5027 /* Create gimple variants for common types. */
5028 ptrdiff_type_node = integer_type_node;
5029 fileptr_type_node = ptr_type_node;
5030 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
5031 || (TYPE_MODE (boolean_type_node)
5032 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
5033 || TYPE_PRECISION (boolean_type_node) != 1
5034 || !TYPE_UNSIGNED (boolean_type_node))
5035 {
5036 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5037 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5038 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5039 TYPE_PRECISION (boolean_type_node) = 1;
5040 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5041 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5042 }
5043
5044 /* Unify char_type_node with its properly signed variant. */
5045 if (TYPE_UNSIGNED (char_type_node))
5046 unsigned_char_type_node = char_type_node;
5047 else
5048 signed_char_type_node = char_type_node;
5049
5050 /* Reset some langhooks. Do not reset types_compatible_p, it may
5051 still be used indirectly via the get_alias_set langhook. */
5052 lang_hooks.callgraph.analyze_expr = NULL;
5053 lang_hooks.dwarf_name = lhd_dwarf_name;
5054 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5055 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
5056
5057 /* Reset diagnostic machinery. */
5058 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5059 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5060 diagnostic_format_decoder (global_dc) = default_tree_printer;
5061
5062 return 0;
5063 }
5064
5065
5066 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5067 {
5068 {
5069 SIMPLE_IPA_PASS,
5070 "*free_lang_data", /* name */
5071 NULL, /* gate */
5072 free_lang_data, /* execute */
5073 NULL, /* sub */
5074 NULL, /* next */
5075 0, /* static_pass_number */
5076 TV_IPA_FREE_LANG_DATA, /* tv_id */
5077 0, /* properties_required */
5078 0, /* properties_provided */
5079 0, /* properties_destroyed */
5080 0, /* todo_flags_start */
5081 TODO_ggc_collect /* todo_flags_finish */
5082 }
5083 };
5084
5085 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5086 or zero if not.
5087
5088 We try both `text' and `__text__', ATTR may be either one. */
5089 /* ??? It might be a reasonable simplification to require ATTR to be only
5090 `text'. One might then also require attribute lists to be stored in
5091 their canonicalized form. */
5092
5093 static int
5094 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5095 {
5096 int ident_len;
5097 const char *p;
5098
5099 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5100 return 0;
5101
5102 p = IDENTIFIER_POINTER (ident);
5103 ident_len = IDENTIFIER_LENGTH (ident);
5104
5105 if (ident_len == attr_len
5106 && strcmp (attr, p) == 0)
5107 return 1;
5108
5109 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5110 if (attr[0] == '_')
5111 {
5112 gcc_assert (attr[1] == '_');
5113 gcc_assert (attr[attr_len - 2] == '_');
5114 gcc_assert (attr[attr_len - 1] == '_');
5115 if (ident_len == attr_len - 4
5116 && strncmp (attr + 2, p, attr_len - 4) == 0)
5117 return 1;
5118 }
5119 else
5120 {
5121 if (ident_len == attr_len + 4
5122 && p[0] == '_' && p[1] == '_'
5123 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5124 && strncmp (attr, p + 2, attr_len) == 0)
5125 return 1;
5126 }
5127
5128 return 0;
5129 }
5130
5131 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5132 or zero if not.
5133
5134 We try both `text' and `__text__', ATTR may be either one. */
5135
5136 int
5137 is_attribute_p (const char *attr, const_tree ident)
5138 {
5139 return is_attribute_with_length_p (attr, strlen (attr), ident);
5140 }
5141
5142 /* Given an attribute name and a list of attributes, return a pointer to the
5143 attribute's list element if the attribute is part of the list, or NULL_TREE
5144 if not found. If the attribute appears more than once, this only
5145 returns the first occurrence; the TREE_CHAIN of the return value should
5146 be passed back in if further occurrences are wanted. */
5147
5148 tree
5149 lookup_attribute (const char *attr_name, tree list)
5150 {
5151 tree l;
5152 size_t attr_len = strlen (attr_name);
5153
5154 for (l = list; l; l = TREE_CHAIN (l))
5155 {
5156 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5157 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5158 return l;
5159 }
5160 return NULL_TREE;
5161 }
5162
5163 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5164 modified list. */
5165
5166 tree
5167 remove_attribute (const char *attr_name, tree list)
5168 {
5169 tree *p;
5170 size_t attr_len = strlen (attr_name);
5171
5172 for (p = &list; *p; )
5173 {
5174 tree l = *p;
5175 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5176 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5177 *p = TREE_CHAIN (l);
5178 else
5179 p = &TREE_CHAIN (l);
5180 }
5181
5182 return list;
5183 }
5184
5185 /* Return an attribute list that is the union of a1 and a2. */
5186
5187 tree
5188 merge_attributes (tree a1, tree a2)
5189 {
5190 tree attributes;
5191
5192 /* Either one unset? Take the set one. */
5193
5194 if ((attributes = a1) == 0)
5195 attributes = a2;
5196
5197 /* One that completely contains the other? Take it. */
5198
5199 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5200 {
5201 if (attribute_list_contained (a2, a1))
5202 attributes = a2;
5203 else
5204 {
5205 /* Pick the longest list, and hang on the other list. */
5206
5207 if (list_length (a1) < list_length (a2))
5208 attributes = a2, a2 = a1;
5209
5210 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5211 {
5212 tree a;
5213 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5214 attributes);
5215 a != NULL_TREE;
5216 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5217 TREE_CHAIN (a)))
5218 {
5219 if (TREE_VALUE (a) != NULL
5220 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5221 && TREE_VALUE (a2) != NULL
5222 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5223 {
5224 if (simple_cst_list_equal (TREE_VALUE (a),
5225 TREE_VALUE (a2)) == 1)
5226 break;
5227 }
5228 else if (simple_cst_equal (TREE_VALUE (a),
5229 TREE_VALUE (a2)) == 1)
5230 break;
5231 }
5232 if (a == NULL_TREE)
5233 {
5234 a1 = copy_node (a2);
5235 TREE_CHAIN (a1) = attributes;
5236 attributes = a1;
5237 }
5238 }
5239 }
5240 }
5241 return attributes;
5242 }
5243
5244 /* Given types T1 and T2, merge their attributes and return
5245 the result. */
5246
5247 tree
5248 merge_type_attributes (tree t1, tree t2)
5249 {
5250 return merge_attributes (TYPE_ATTRIBUTES (t1),
5251 TYPE_ATTRIBUTES (t2));
5252 }
5253
5254 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5255 the result. */
5256
5257 tree
5258 merge_decl_attributes (tree olddecl, tree newdecl)
5259 {
5260 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5261 DECL_ATTRIBUTES (newdecl));
5262 }
5263
5264 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5265
5266 /* Specialization of merge_decl_attributes for various Windows targets.
5267
5268 This handles the following situation:
5269
5270 __declspec (dllimport) int foo;
5271 int foo;
5272
5273 The second instance of `foo' nullifies the dllimport. */
5274
5275 tree
5276 merge_dllimport_decl_attributes (tree old, tree new_tree)
5277 {
5278 tree a;
5279 int delete_dllimport_p = 1;
5280
5281 /* What we need to do here is remove from `old' dllimport if it doesn't
5282 appear in `new'. dllimport behaves like extern: if a declaration is
5283 marked dllimport and a definition appears later, then the object
5284 is not dllimport'd. We also remove a `new' dllimport if the old list
5285 contains dllexport: dllexport always overrides dllimport, regardless
5286 of the order of declaration. */
5287 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5288 delete_dllimport_p = 0;
5289 else if (DECL_DLLIMPORT_P (new_tree)
5290 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5291 {
5292 DECL_DLLIMPORT_P (new_tree) = 0;
5293 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5294 "dllimport ignored", new_tree);
5295 }
5296 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5297 {
5298 /* Warn about overriding a symbol that has already been used, e.g.:
5299 extern int __attribute__ ((dllimport)) foo;
5300 int* bar () {return &foo;}
5301 int foo;
5302 */
5303 if (TREE_USED (old))
5304 {
5305 warning (0, "%q+D redeclared without dllimport attribute "
5306 "after being referenced with dll linkage", new_tree);
5307 /* If we have used a variable's address with dllimport linkage,
5308 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5309 decl may already have had TREE_CONSTANT computed.
5310 We still remove the attribute so that assembler code refers
5311 to '&foo rather than '_imp__foo'. */
5312 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5313 DECL_DLLIMPORT_P (new_tree) = 1;
5314 }
5315
5316 /* Let an inline definition silently override the external reference,
5317 but otherwise warn about attribute inconsistency. */
5318 else if (TREE_CODE (new_tree) == VAR_DECL
5319 || !DECL_DECLARED_INLINE_P (new_tree))
5320 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5321 "previous dllimport ignored", new_tree);
5322 }
5323 else
5324 delete_dllimport_p = 0;
5325
5326 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5327
5328 if (delete_dllimport_p)
5329 {
5330 tree prev, t;
5331 const size_t attr_len = strlen ("dllimport");
5332
5333 /* Scan the list for dllimport and delete it. */
5334 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5335 {
5336 if (is_attribute_with_length_p ("dllimport", attr_len,
5337 TREE_PURPOSE (t)))
5338 {
5339 if (prev == NULL_TREE)
5340 a = TREE_CHAIN (a);
5341 else
5342 TREE_CHAIN (prev) = TREE_CHAIN (t);
5343 break;
5344 }
5345 }
5346 }
5347
5348 return a;
5349 }
5350
5351 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5352 struct attribute_spec.handler. */
5353
5354 tree
5355 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5356 bool *no_add_attrs)
5357 {
5358 tree node = *pnode;
5359 bool is_dllimport;
5360
5361 /* These attributes may apply to structure and union types being created,
5362 but otherwise should pass to the declaration involved. */
5363 if (!DECL_P (node))
5364 {
5365 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5366 | (int) ATTR_FLAG_ARRAY_NEXT))
5367 {
5368 *no_add_attrs = true;
5369 return tree_cons (name, args, NULL_TREE);
5370 }
5371 if (TREE_CODE (node) == RECORD_TYPE
5372 || TREE_CODE (node) == UNION_TYPE)
5373 {
5374 node = TYPE_NAME (node);
5375 if (!node)
5376 return NULL_TREE;
5377 }
5378 else
5379 {
5380 warning (OPT_Wattributes, "%qE attribute ignored",
5381 name);
5382 *no_add_attrs = true;
5383 return NULL_TREE;
5384 }
5385 }
5386
5387 if (TREE_CODE (node) != FUNCTION_DECL
5388 && TREE_CODE (node) != VAR_DECL
5389 && TREE_CODE (node) != TYPE_DECL)
5390 {
5391 *no_add_attrs = true;
5392 warning (OPT_Wattributes, "%qE attribute ignored",
5393 name);
5394 return NULL_TREE;
5395 }
5396
5397 if (TREE_CODE (node) == TYPE_DECL
5398 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5399 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5400 {
5401 *no_add_attrs = true;
5402 warning (OPT_Wattributes, "%qE attribute ignored",
5403 name);
5404 return NULL_TREE;
5405 }
5406
5407 is_dllimport = is_attribute_p ("dllimport", name);
5408
5409 /* Report error on dllimport ambiguities seen now before they cause
5410 any damage. */
5411 if (is_dllimport)
5412 {
5413 /* Honor any target-specific overrides. */
5414 if (!targetm.valid_dllimport_attribute_p (node))
5415 *no_add_attrs = true;
5416
5417 else if (TREE_CODE (node) == FUNCTION_DECL
5418 && DECL_DECLARED_INLINE_P (node))
5419 {
5420 warning (OPT_Wattributes, "inline function %q+D declared as "
5421 " dllimport: attribute ignored", node);
5422 *no_add_attrs = true;
5423 }
5424 /* Like MS, treat definition of dllimported variables and
5425 non-inlined functions on declaration as syntax errors. */
5426 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5427 {
5428 error ("function %q+D definition is marked dllimport", node);
5429 *no_add_attrs = true;
5430 }
5431
5432 else if (TREE_CODE (node) == VAR_DECL)
5433 {
5434 if (DECL_INITIAL (node))
5435 {
5436 error ("variable %q+D definition is marked dllimport",
5437 node);
5438 *no_add_attrs = true;
5439 }
5440
5441 /* `extern' needn't be specified with dllimport.
5442 Specify `extern' now and hope for the best. Sigh. */
5443 DECL_EXTERNAL (node) = 1;
5444 /* Also, implicitly give dllimport'd variables declared within
5445 a function global scope, unless declared static. */
5446 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5447 TREE_PUBLIC (node) = 1;
5448 }
5449
5450 if (*no_add_attrs == false)
5451 DECL_DLLIMPORT_P (node) = 1;
5452 }
5453 else if (TREE_CODE (node) == FUNCTION_DECL
5454 && DECL_DECLARED_INLINE_P (node))
5455 /* An exported function, even if inline, must be emitted. */
5456 DECL_EXTERNAL (node) = 0;
5457
5458 /* Report error if symbol is not accessible at global scope. */
5459 if (!TREE_PUBLIC (node)
5460 && (TREE_CODE (node) == VAR_DECL
5461 || TREE_CODE (node) == FUNCTION_DECL))
5462 {
5463 error ("external linkage required for symbol %q+D because of "
5464 "%qE attribute", node, name);
5465 *no_add_attrs = true;
5466 }
5467
5468 /* A dllexport'd entity must have default visibility so that other
5469 program units (shared libraries or the main executable) can see
5470 it. A dllimport'd entity must have default visibility so that
5471 the linker knows that undefined references within this program
5472 unit can be resolved by the dynamic linker. */
5473 if (!*no_add_attrs)
5474 {
5475 if (DECL_VISIBILITY_SPECIFIED (node)
5476 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5477 error ("%qE implies default visibility, but %qD has already "
5478 "been declared with a different visibility",
5479 name, node);
5480 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5481 DECL_VISIBILITY_SPECIFIED (node) = 1;
5482 }
5483
5484 return NULL_TREE;
5485 }
5486
5487 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5488 \f
5489 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5490 of the various TYPE_QUAL values. */
5491
5492 static void
5493 set_type_quals (tree type, int type_quals)
5494 {
5495 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5496 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5497 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5498 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5499 }
5500
5501 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5502
5503 bool
5504 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5505 {
5506 return (TYPE_QUALS (cand) == type_quals
5507 && TYPE_NAME (cand) == TYPE_NAME (base)
5508 /* Apparently this is needed for Objective-C. */
5509 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5510 /* Check alignment. */
5511 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5512 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5513 TYPE_ATTRIBUTES (base)));
5514 }
5515
5516 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5517
5518 static bool
5519 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5520 {
5521 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5522 && TYPE_NAME (cand) == TYPE_NAME (base)
5523 /* Apparently this is needed for Objective-C. */
5524 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5525 /* Check alignment. */
5526 && TYPE_ALIGN (cand) == align
5527 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5528 TYPE_ATTRIBUTES (base)));
5529 }
5530
5531 /* Return a version of the TYPE, qualified as indicated by the
5532 TYPE_QUALS, if one exists. If no qualified version exists yet,
5533 return NULL_TREE. */
5534
5535 tree
5536 get_qualified_type (tree type, int type_quals)
5537 {
5538 tree t;
5539
5540 if (TYPE_QUALS (type) == type_quals)
5541 return type;
5542
5543 /* Search the chain of variants to see if there is already one there just
5544 like the one we need to have. If so, use that existing one. We must
5545 preserve the TYPE_NAME, since there is code that depends on this. */
5546 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5547 if (check_qualified_type (t, type, type_quals))
5548 return t;
5549
5550 return NULL_TREE;
5551 }
5552
5553 /* Like get_qualified_type, but creates the type if it does not
5554 exist. This function never returns NULL_TREE. */
5555
5556 tree
5557 build_qualified_type (tree type, int type_quals)
5558 {
5559 tree t;
5560
5561 /* See if we already have the appropriate qualified variant. */
5562 t = get_qualified_type (type, type_quals);
5563
5564 /* If not, build it. */
5565 if (!t)
5566 {
5567 t = build_variant_type_copy (type);
5568 set_type_quals (t, type_quals);
5569
5570 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5571 /* Propagate structural equality. */
5572 SET_TYPE_STRUCTURAL_EQUALITY (t);
5573 else if (TYPE_CANONICAL (type) != type)
5574 /* Build the underlying canonical type, since it is different
5575 from TYPE. */
5576 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5577 type_quals);
5578 else
5579 /* T is its own canonical type. */
5580 TYPE_CANONICAL (t) = t;
5581
5582 }
5583
5584 return t;
5585 }
5586
5587 /* Create a variant of type T with alignment ALIGN. */
5588
5589 tree
5590 build_aligned_type (tree type, unsigned int align)
5591 {
5592 tree t;
5593
5594 if (TYPE_PACKED (type)
5595 || TYPE_ALIGN (type) == align)
5596 return type;
5597
5598 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5599 if (check_aligned_type (t, type, align))
5600 return t;
5601
5602 t = build_variant_type_copy (type);
5603 TYPE_ALIGN (t) = align;
5604
5605 return t;
5606 }
5607
5608 /* Create a new distinct copy of TYPE. The new type is made its own
5609 MAIN_VARIANT. If TYPE requires structural equality checks, the
5610 resulting type requires structural equality checks; otherwise, its
5611 TYPE_CANONICAL points to itself. */
5612
5613 tree
5614 build_distinct_type_copy (tree type)
5615 {
5616 tree t = copy_node (type);
5617
5618 TYPE_POINTER_TO (t) = 0;
5619 TYPE_REFERENCE_TO (t) = 0;
5620
5621 /* Set the canonical type either to a new equivalence class, or
5622 propagate the need for structural equality checks. */
5623 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5624 SET_TYPE_STRUCTURAL_EQUALITY (t);
5625 else
5626 TYPE_CANONICAL (t) = t;
5627
5628 /* Make it its own variant. */
5629 TYPE_MAIN_VARIANT (t) = t;
5630 TYPE_NEXT_VARIANT (t) = 0;
5631
5632 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5633 whose TREE_TYPE is not t. This can also happen in the Ada
5634 frontend when using subtypes. */
5635
5636 return t;
5637 }
5638
5639 /* Create a new variant of TYPE, equivalent but distinct. This is so
5640 the caller can modify it. TYPE_CANONICAL for the return type will
5641 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5642 are considered equal by the language itself (or that both types
5643 require structural equality checks). */
5644
5645 tree
5646 build_variant_type_copy (tree type)
5647 {
5648 tree t, m = TYPE_MAIN_VARIANT (type);
5649
5650 t = build_distinct_type_copy (type);
5651
5652 /* Since we're building a variant, assume that it is a non-semantic
5653 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5654 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5655
5656 /* Add the new type to the chain of variants of TYPE. */
5657 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5658 TYPE_NEXT_VARIANT (m) = t;
5659 TYPE_MAIN_VARIANT (t) = m;
5660
5661 return t;
5662 }
5663 \f
5664 /* Return true if the from tree in both tree maps are equal. */
5665
5666 int
5667 tree_map_base_eq (const void *va, const void *vb)
5668 {
5669 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5670 *const b = (const struct tree_map_base *) vb;
5671 return (a->from == b->from);
5672 }
5673
5674 /* Hash a from tree in a tree_base_map. */
5675
5676 unsigned int
5677 tree_map_base_hash (const void *item)
5678 {
5679 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5680 }
5681
5682 /* Return true if this tree map structure is marked for garbage collection
5683 purposes. We simply return true if the from tree is marked, so that this
5684 structure goes away when the from tree goes away. */
5685
5686 int
5687 tree_map_base_marked_p (const void *p)
5688 {
5689 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5690 }
5691
5692 /* Hash a from tree in a tree_map. */
5693
5694 unsigned int
5695 tree_map_hash (const void *item)
5696 {
5697 return (((const struct tree_map *) item)->hash);
5698 }
5699
5700 /* Hash a from tree in a tree_decl_map. */
5701
5702 unsigned int
5703 tree_decl_map_hash (const void *item)
5704 {
5705 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5706 }
5707
5708 /* Return the initialization priority for DECL. */
5709
5710 priority_type
5711 decl_init_priority_lookup (tree decl)
5712 {
5713 struct tree_priority_map *h;
5714 struct tree_map_base in;
5715
5716 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5717 in.from = decl;
5718 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5719 return h ? h->init : DEFAULT_INIT_PRIORITY;
5720 }
5721
5722 /* Return the finalization priority for DECL. */
5723
5724 priority_type
5725 decl_fini_priority_lookup (tree decl)
5726 {
5727 struct tree_priority_map *h;
5728 struct tree_map_base in;
5729
5730 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5731 in.from = decl;
5732 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5733 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5734 }
5735
5736 /* Return the initialization and finalization priority information for
5737 DECL. If there is no previous priority information, a freshly
5738 allocated structure is returned. */
5739
5740 static struct tree_priority_map *
5741 decl_priority_info (tree decl)
5742 {
5743 struct tree_priority_map in;
5744 struct tree_priority_map *h;
5745 void **loc;
5746
5747 in.base.from = decl;
5748 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5749 h = (struct tree_priority_map *) *loc;
5750 if (!h)
5751 {
5752 h = ggc_alloc_cleared_tree_priority_map ();
5753 *loc = h;
5754 h->base.from = decl;
5755 h->init = DEFAULT_INIT_PRIORITY;
5756 h->fini = DEFAULT_INIT_PRIORITY;
5757 }
5758
5759 return h;
5760 }
5761
5762 /* Set the initialization priority for DECL to PRIORITY. */
5763
5764 void
5765 decl_init_priority_insert (tree decl, priority_type priority)
5766 {
5767 struct tree_priority_map *h;
5768
5769 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5770 h = decl_priority_info (decl);
5771 h->init = priority;
5772 }
5773
5774 /* Set the finalization priority for DECL to PRIORITY. */
5775
5776 void
5777 decl_fini_priority_insert (tree decl, priority_type priority)
5778 {
5779 struct tree_priority_map *h;
5780
5781 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5782 h = decl_priority_info (decl);
5783 h->fini = priority;
5784 }
5785
5786 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5787
5788 static void
5789 print_debug_expr_statistics (void)
5790 {
5791 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5792 (long) htab_size (debug_expr_for_decl),
5793 (long) htab_elements (debug_expr_for_decl),
5794 htab_collisions (debug_expr_for_decl));
5795 }
5796
5797 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5798
5799 static void
5800 print_value_expr_statistics (void)
5801 {
5802 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5803 (long) htab_size (value_expr_for_decl),
5804 (long) htab_elements (value_expr_for_decl),
5805 htab_collisions (value_expr_for_decl));
5806 }
5807
5808 /* Lookup a debug expression for FROM, and return it if we find one. */
5809
5810 tree
5811 decl_debug_expr_lookup (tree from)
5812 {
5813 struct tree_decl_map *h, in;
5814 in.base.from = from;
5815
5816 h = (struct tree_decl_map *)
5817 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5818 if (h)
5819 return h->to;
5820 return NULL_TREE;
5821 }
5822
5823 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5824
5825 void
5826 decl_debug_expr_insert (tree from, tree to)
5827 {
5828 struct tree_decl_map *h;
5829 void **loc;
5830
5831 h = ggc_alloc_tree_decl_map ();
5832 h->base.from = from;
5833 h->to = to;
5834 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5835 INSERT);
5836 *(struct tree_decl_map **) loc = h;
5837 }
5838
5839 /* Lookup a value expression for FROM, and return it if we find one. */
5840
5841 tree
5842 decl_value_expr_lookup (tree from)
5843 {
5844 struct tree_decl_map *h, in;
5845 in.base.from = from;
5846
5847 h = (struct tree_decl_map *)
5848 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5849 if (h)
5850 return h->to;
5851 return NULL_TREE;
5852 }
5853
5854 /* Insert a mapping FROM->TO in the value expression hashtable. */
5855
5856 void
5857 decl_value_expr_insert (tree from, tree to)
5858 {
5859 struct tree_decl_map *h;
5860 void **loc;
5861
5862 h = ggc_alloc_tree_decl_map ();
5863 h->base.from = from;
5864 h->to = to;
5865 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
5866 INSERT);
5867 *(struct tree_decl_map **) loc = h;
5868 }
5869
5870 /* Hashing of types so that we don't make duplicates.
5871 The entry point is `type_hash_canon'. */
5872
5873 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5874 with types in the TREE_VALUE slots), by adding the hash codes
5875 of the individual types. */
5876
5877 static unsigned int
5878 type_hash_list (const_tree list, hashval_t hashcode)
5879 {
5880 const_tree tail;
5881
5882 for (tail = list; tail; tail = TREE_CHAIN (tail))
5883 if (TREE_VALUE (tail) != error_mark_node)
5884 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5885 hashcode);
5886
5887 return hashcode;
5888 }
5889
5890 /* These are the Hashtable callback functions. */
5891
5892 /* Returns true iff the types are equivalent. */
5893
5894 static int
5895 type_hash_eq (const void *va, const void *vb)
5896 {
5897 const struct type_hash *const a = (const struct type_hash *) va,
5898 *const b = (const struct type_hash *) vb;
5899
5900 /* First test the things that are the same for all types. */
5901 if (a->hash != b->hash
5902 || TREE_CODE (a->type) != TREE_CODE (b->type)
5903 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5904 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5905 TYPE_ATTRIBUTES (b->type))
5906 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5907 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5908 || (TREE_CODE (a->type) != COMPLEX_TYPE
5909 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5910 return 0;
5911
5912 switch (TREE_CODE (a->type))
5913 {
5914 case VOID_TYPE:
5915 case COMPLEX_TYPE:
5916 case POINTER_TYPE:
5917 case REFERENCE_TYPE:
5918 return 1;
5919
5920 case VECTOR_TYPE:
5921 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5922
5923 case ENUMERAL_TYPE:
5924 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5925 && !(TYPE_VALUES (a->type)
5926 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5927 && TYPE_VALUES (b->type)
5928 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5929 && type_list_equal (TYPE_VALUES (a->type),
5930 TYPE_VALUES (b->type))))
5931 return 0;
5932
5933 /* ... fall through ... */
5934
5935 case INTEGER_TYPE:
5936 case REAL_TYPE:
5937 case BOOLEAN_TYPE:
5938 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5939 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5940 TYPE_MAX_VALUE (b->type)))
5941 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5942 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5943 TYPE_MIN_VALUE (b->type))));
5944
5945 case FIXED_POINT_TYPE:
5946 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5947
5948 case OFFSET_TYPE:
5949 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5950
5951 case METHOD_TYPE:
5952 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5953 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5954 || (TYPE_ARG_TYPES (a->type)
5955 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5956 && TYPE_ARG_TYPES (b->type)
5957 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5958 && type_list_equal (TYPE_ARG_TYPES (a->type),
5959 TYPE_ARG_TYPES (b->type)))));
5960
5961 case ARRAY_TYPE:
5962 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5963
5964 case RECORD_TYPE:
5965 case UNION_TYPE:
5966 case QUAL_UNION_TYPE:
5967 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5968 || (TYPE_FIELDS (a->type)
5969 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5970 && TYPE_FIELDS (b->type)
5971 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5972 && type_list_equal (TYPE_FIELDS (a->type),
5973 TYPE_FIELDS (b->type))));
5974
5975 case FUNCTION_TYPE:
5976 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5977 || (TYPE_ARG_TYPES (a->type)
5978 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5979 && TYPE_ARG_TYPES (b->type)
5980 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5981 && type_list_equal (TYPE_ARG_TYPES (a->type),
5982 TYPE_ARG_TYPES (b->type))))
5983 break;
5984 return 0;
5985
5986 default:
5987 return 0;
5988 }
5989
5990 if (lang_hooks.types.type_hash_eq != NULL)
5991 return lang_hooks.types.type_hash_eq (a->type, b->type);
5992
5993 return 1;
5994 }
5995
5996 /* Return the cached hash value. */
5997
5998 static hashval_t
5999 type_hash_hash (const void *item)
6000 {
6001 return ((const struct type_hash *) item)->hash;
6002 }
6003
6004 /* Look in the type hash table for a type isomorphic to TYPE.
6005 If one is found, return it. Otherwise return 0. */
6006
6007 tree
6008 type_hash_lookup (hashval_t hashcode, tree type)
6009 {
6010 struct type_hash *h, in;
6011
6012 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6013 must call that routine before comparing TYPE_ALIGNs. */
6014 layout_type (type);
6015
6016 in.hash = hashcode;
6017 in.type = type;
6018
6019 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6020 hashcode);
6021 if (h)
6022 return h->type;
6023 return NULL_TREE;
6024 }
6025
6026 /* Add an entry to the type-hash-table
6027 for a type TYPE whose hash code is HASHCODE. */
6028
6029 void
6030 type_hash_add (hashval_t hashcode, tree type)
6031 {
6032 struct type_hash *h;
6033 void **loc;
6034
6035 h = ggc_alloc_type_hash ();
6036 h->hash = hashcode;
6037 h->type = type;
6038 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6039 *loc = (void *)h;
6040 }
6041
6042 /* Given TYPE, and HASHCODE its hash code, return the canonical
6043 object for an identical type if one already exists.
6044 Otherwise, return TYPE, and record it as the canonical object.
6045
6046 To use this function, first create a type of the sort you want.
6047 Then compute its hash code from the fields of the type that
6048 make it different from other similar types.
6049 Then call this function and use the value. */
6050
6051 tree
6052 type_hash_canon (unsigned int hashcode, tree type)
6053 {
6054 tree t1;
6055
6056 /* The hash table only contains main variants, so ensure that's what we're
6057 being passed. */
6058 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6059
6060 /* See if the type is in the hash table already. If so, return it.
6061 Otherwise, add the type. */
6062 t1 = type_hash_lookup (hashcode, type);
6063 if (t1 != 0)
6064 {
6065 #ifdef GATHER_STATISTICS
6066 tree_node_counts[(int) t_kind]--;
6067 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
6068 #endif
6069 return t1;
6070 }
6071 else
6072 {
6073 type_hash_add (hashcode, type);
6074 return type;
6075 }
6076 }
6077
6078 /* See if the data pointed to by the type hash table is marked. We consider
6079 it marked if the type is marked or if a debug type number or symbol
6080 table entry has been made for the type. */
6081
6082 static int
6083 type_hash_marked_p (const void *p)
6084 {
6085 const_tree const type = ((const struct type_hash *) p)->type;
6086
6087 return ggc_marked_p (type);
6088 }
6089
6090 static void
6091 print_type_hash_statistics (void)
6092 {
6093 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6094 (long) htab_size (type_hash_table),
6095 (long) htab_elements (type_hash_table),
6096 htab_collisions (type_hash_table));
6097 }
6098
6099 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6100 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6101 by adding the hash codes of the individual attributes. */
6102
6103 static unsigned int
6104 attribute_hash_list (const_tree list, hashval_t hashcode)
6105 {
6106 const_tree tail;
6107
6108 for (tail = list; tail; tail = TREE_CHAIN (tail))
6109 /* ??? Do we want to add in TREE_VALUE too? */
6110 hashcode = iterative_hash_object
6111 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6112 return hashcode;
6113 }
6114
6115 /* Given two lists of attributes, return true if list l2 is
6116 equivalent to l1. */
6117
6118 int
6119 attribute_list_equal (const_tree l1, const_tree l2)
6120 {
6121 return attribute_list_contained (l1, l2)
6122 && attribute_list_contained (l2, l1);
6123 }
6124
6125 /* Given two lists of attributes, return true if list L2 is
6126 completely contained within L1. */
6127 /* ??? This would be faster if attribute names were stored in a canonicalized
6128 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6129 must be used to show these elements are equivalent (which they are). */
6130 /* ??? It's not clear that attributes with arguments will always be handled
6131 correctly. */
6132
6133 int
6134 attribute_list_contained (const_tree l1, const_tree l2)
6135 {
6136 const_tree t1, t2;
6137
6138 /* First check the obvious, maybe the lists are identical. */
6139 if (l1 == l2)
6140 return 1;
6141
6142 /* Maybe the lists are similar. */
6143 for (t1 = l1, t2 = l2;
6144 t1 != 0 && t2 != 0
6145 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6146 && TREE_VALUE (t1) == TREE_VALUE (t2);
6147 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6148
6149 /* Maybe the lists are equal. */
6150 if (t1 == 0 && t2 == 0)
6151 return 1;
6152
6153 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6154 {
6155 const_tree attr;
6156 /* This CONST_CAST is okay because lookup_attribute does not
6157 modify its argument and the return value is assigned to a
6158 const_tree. */
6159 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6160 CONST_CAST_TREE(l1));
6161 attr != NULL_TREE;
6162 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6163 TREE_CHAIN (attr)))
6164 {
6165 if (TREE_VALUE (t2) != NULL
6166 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6167 && TREE_VALUE (attr) != NULL
6168 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6169 {
6170 if (simple_cst_list_equal (TREE_VALUE (t2),
6171 TREE_VALUE (attr)) == 1)
6172 break;
6173 }
6174 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6175 break;
6176 }
6177
6178 if (attr == 0)
6179 return 0;
6180 }
6181
6182 return 1;
6183 }
6184
6185 /* Given two lists of types
6186 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6187 return 1 if the lists contain the same types in the same order.
6188 Also, the TREE_PURPOSEs must match. */
6189
6190 int
6191 type_list_equal (const_tree l1, const_tree l2)
6192 {
6193 const_tree t1, t2;
6194
6195 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6196 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6197 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6198 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6199 && (TREE_TYPE (TREE_PURPOSE (t1))
6200 == TREE_TYPE (TREE_PURPOSE (t2))))))
6201 return 0;
6202
6203 return t1 == t2;
6204 }
6205
6206 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6207 given by TYPE. If the argument list accepts variable arguments,
6208 then this function counts only the ordinary arguments. */
6209
6210 int
6211 type_num_arguments (const_tree type)
6212 {
6213 int i = 0;
6214 tree t;
6215
6216 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6217 /* If the function does not take a variable number of arguments,
6218 the last element in the list will have type `void'. */
6219 if (VOID_TYPE_P (TREE_VALUE (t)))
6220 break;
6221 else
6222 ++i;
6223
6224 return i;
6225 }
6226
6227 /* Nonzero if integer constants T1 and T2
6228 represent the same constant value. */
6229
6230 int
6231 tree_int_cst_equal (const_tree t1, const_tree t2)
6232 {
6233 if (t1 == t2)
6234 return 1;
6235
6236 if (t1 == 0 || t2 == 0)
6237 return 0;
6238
6239 if (TREE_CODE (t1) == INTEGER_CST
6240 && TREE_CODE (t2) == INTEGER_CST
6241 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6242 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6243 return 1;
6244
6245 return 0;
6246 }
6247
6248 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6249 The precise way of comparison depends on their data type. */
6250
6251 int
6252 tree_int_cst_lt (const_tree t1, const_tree t2)
6253 {
6254 if (t1 == t2)
6255 return 0;
6256
6257 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6258 {
6259 int t1_sgn = tree_int_cst_sgn (t1);
6260 int t2_sgn = tree_int_cst_sgn (t2);
6261
6262 if (t1_sgn < t2_sgn)
6263 return 1;
6264 else if (t1_sgn > t2_sgn)
6265 return 0;
6266 /* Otherwise, both are non-negative, so we compare them as
6267 unsigned just in case one of them would overflow a signed
6268 type. */
6269 }
6270 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6271 return INT_CST_LT (t1, t2);
6272
6273 return INT_CST_LT_UNSIGNED (t1, t2);
6274 }
6275
6276 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6277
6278 int
6279 tree_int_cst_compare (const_tree t1, const_tree t2)
6280 {
6281 if (tree_int_cst_lt (t1, t2))
6282 return -1;
6283 else if (tree_int_cst_lt (t2, t1))
6284 return 1;
6285 else
6286 return 0;
6287 }
6288
6289 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6290 the host. If POS is zero, the value can be represented in a single
6291 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6292 be represented in a single unsigned HOST_WIDE_INT. */
6293
6294 int
6295 host_integerp (const_tree t, int pos)
6296 {
6297 if (t == NULL_TREE)
6298 return 0;
6299
6300 return (TREE_CODE (t) == INTEGER_CST
6301 && ((TREE_INT_CST_HIGH (t) == 0
6302 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6303 || (! pos && TREE_INT_CST_HIGH (t) == -1
6304 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6305 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6306 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6307 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6308 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6309 }
6310
6311 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6312 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6313 be non-negative. We must be able to satisfy the above conditions. */
6314
6315 HOST_WIDE_INT
6316 tree_low_cst (const_tree t, int pos)
6317 {
6318 gcc_assert (host_integerp (t, pos));
6319 return TREE_INT_CST_LOW (t);
6320 }
6321
6322 /* Return the most significant bit of the integer constant T. */
6323
6324 int
6325 tree_int_cst_msb (const_tree t)
6326 {
6327 int prec;
6328 HOST_WIDE_INT h;
6329 unsigned HOST_WIDE_INT l;
6330
6331 /* Note that using TYPE_PRECISION here is wrong. We care about the
6332 actual bits, not the (arbitrary) range of the type. */
6333 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6334 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6335 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6336 return (l & 1) == 1;
6337 }
6338
6339 /* Return an indication of the sign of the integer constant T.
6340 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6341 Note that -1 will never be returned if T's type is unsigned. */
6342
6343 int
6344 tree_int_cst_sgn (const_tree t)
6345 {
6346 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6347 return 0;
6348 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6349 return 1;
6350 else if (TREE_INT_CST_HIGH (t) < 0)
6351 return -1;
6352 else
6353 return 1;
6354 }
6355
6356 /* Return the minimum number of bits needed to represent VALUE in a
6357 signed or unsigned type, UNSIGNEDP says which. */
6358
6359 unsigned int
6360 tree_int_cst_min_precision (tree value, bool unsignedp)
6361 {
6362 int log;
6363
6364 /* If the value is negative, compute its negative minus 1. The latter
6365 adjustment is because the absolute value of the largest negative value
6366 is one larger than the largest positive value. This is equivalent to
6367 a bit-wise negation, so use that operation instead. */
6368
6369 if (tree_int_cst_sgn (value) < 0)
6370 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6371
6372 /* Return the number of bits needed, taking into account the fact
6373 that we need one more bit for a signed than unsigned type. */
6374
6375 if (integer_zerop (value))
6376 log = 0;
6377 else
6378 log = tree_floor_log2 (value);
6379
6380 return log + 1 + !unsignedp;
6381 }
6382
6383 /* Compare two constructor-element-type constants. Return 1 if the lists
6384 are known to be equal; otherwise return 0. */
6385
6386 int
6387 simple_cst_list_equal (const_tree l1, const_tree l2)
6388 {
6389 while (l1 != NULL_TREE && l2 != NULL_TREE)
6390 {
6391 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6392 return 0;
6393
6394 l1 = TREE_CHAIN (l1);
6395 l2 = TREE_CHAIN (l2);
6396 }
6397
6398 return l1 == l2;
6399 }
6400
6401 /* Return truthvalue of whether T1 is the same tree structure as T2.
6402 Return 1 if they are the same.
6403 Return 0 if they are understandably different.
6404 Return -1 if either contains tree structure not understood by
6405 this function. */
6406
6407 int
6408 simple_cst_equal (const_tree t1, const_tree t2)
6409 {
6410 enum tree_code code1, code2;
6411 int cmp;
6412 int i;
6413
6414 if (t1 == t2)
6415 return 1;
6416 if (t1 == 0 || t2 == 0)
6417 return 0;
6418
6419 code1 = TREE_CODE (t1);
6420 code2 = TREE_CODE (t2);
6421
6422 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6423 {
6424 if (CONVERT_EXPR_CODE_P (code2)
6425 || code2 == NON_LVALUE_EXPR)
6426 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6427 else
6428 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6429 }
6430
6431 else if (CONVERT_EXPR_CODE_P (code2)
6432 || code2 == NON_LVALUE_EXPR)
6433 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6434
6435 if (code1 != code2)
6436 return 0;
6437
6438 switch (code1)
6439 {
6440 case INTEGER_CST:
6441 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6442 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6443
6444 case REAL_CST:
6445 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6446
6447 case FIXED_CST:
6448 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6449
6450 case STRING_CST:
6451 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6452 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6453 TREE_STRING_LENGTH (t1)));
6454
6455 case CONSTRUCTOR:
6456 {
6457 unsigned HOST_WIDE_INT idx;
6458 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6459 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6460
6461 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6462 return false;
6463
6464 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6465 /* ??? Should we handle also fields here? */
6466 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6467 VEC_index (constructor_elt, v2, idx)->value))
6468 return false;
6469 return true;
6470 }
6471
6472 case SAVE_EXPR:
6473 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6474
6475 case CALL_EXPR:
6476 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6477 if (cmp <= 0)
6478 return cmp;
6479 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6480 return 0;
6481 {
6482 const_tree arg1, arg2;
6483 const_call_expr_arg_iterator iter1, iter2;
6484 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6485 arg2 = first_const_call_expr_arg (t2, &iter2);
6486 arg1 && arg2;
6487 arg1 = next_const_call_expr_arg (&iter1),
6488 arg2 = next_const_call_expr_arg (&iter2))
6489 {
6490 cmp = simple_cst_equal (arg1, arg2);
6491 if (cmp <= 0)
6492 return cmp;
6493 }
6494 return arg1 == arg2;
6495 }
6496
6497 case TARGET_EXPR:
6498 /* Special case: if either target is an unallocated VAR_DECL,
6499 it means that it's going to be unified with whatever the
6500 TARGET_EXPR is really supposed to initialize, so treat it
6501 as being equivalent to anything. */
6502 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6503 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6504 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6505 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6506 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6507 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6508 cmp = 1;
6509 else
6510 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6511
6512 if (cmp <= 0)
6513 return cmp;
6514
6515 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6516
6517 case WITH_CLEANUP_EXPR:
6518 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6519 if (cmp <= 0)
6520 return cmp;
6521
6522 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6523
6524 case COMPONENT_REF:
6525 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6526 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6527
6528 return 0;
6529
6530 case VAR_DECL:
6531 case PARM_DECL:
6532 case CONST_DECL:
6533 case FUNCTION_DECL:
6534 return 0;
6535
6536 default:
6537 break;
6538 }
6539
6540 /* This general rule works for most tree codes. All exceptions should be
6541 handled above. If this is a language-specific tree code, we can't
6542 trust what might be in the operand, so say we don't know
6543 the situation. */
6544 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6545 return -1;
6546
6547 switch (TREE_CODE_CLASS (code1))
6548 {
6549 case tcc_unary:
6550 case tcc_binary:
6551 case tcc_comparison:
6552 case tcc_expression:
6553 case tcc_reference:
6554 case tcc_statement:
6555 cmp = 1;
6556 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6557 {
6558 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6559 if (cmp <= 0)
6560 return cmp;
6561 }
6562
6563 return cmp;
6564
6565 default:
6566 return -1;
6567 }
6568 }
6569
6570 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6571 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6572 than U, respectively. */
6573
6574 int
6575 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6576 {
6577 if (tree_int_cst_sgn (t) < 0)
6578 return -1;
6579 else if (TREE_INT_CST_HIGH (t) != 0)
6580 return 1;
6581 else if (TREE_INT_CST_LOW (t) == u)
6582 return 0;
6583 else if (TREE_INT_CST_LOW (t) < u)
6584 return -1;
6585 else
6586 return 1;
6587 }
6588
6589 /* Return true if CODE represents an associative tree code. Otherwise
6590 return false. */
6591 bool
6592 associative_tree_code (enum tree_code code)
6593 {
6594 switch (code)
6595 {
6596 case BIT_IOR_EXPR:
6597 case BIT_AND_EXPR:
6598 case BIT_XOR_EXPR:
6599 case PLUS_EXPR:
6600 case MULT_EXPR:
6601 case MIN_EXPR:
6602 case MAX_EXPR:
6603 return true;
6604
6605 default:
6606 break;
6607 }
6608 return false;
6609 }
6610
6611 /* Return true if CODE represents a commutative tree code. Otherwise
6612 return false. */
6613 bool
6614 commutative_tree_code (enum tree_code code)
6615 {
6616 switch (code)
6617 {
6618 case PLUS_EXPR:
6619 case MULT_EXPR:
6620 case MIN_EXPR:
6621 case MAX_EXPR:
6622 case BIT_IOR_EXPR:
6623 case BIT_XOR_EXPR:
6624 case BIT_AND_EXPR:
6625 case NE_EXPR:
6626 case EQ_EXPR:
6627 case UNORDERED_EXPR:
6628 case ORDERED_EXPR:
6629 case UNEQ_EXPR:
6630 case LTGT_EXPR:
6631 case TRUTH_AND_EXPR:
6632 case TRUTH_XOR_EXPR:
6633 case TRUTH_OR_EXPR:
6634 return true;
6635
6636 default:
6637 break;
6638 }
6639 return false;
6640 }
6641
6642 /* Return true if CODE represents a ternary tree code for which the
6643 first two operands are commutative. Otherwise return false. */
6644 bool
6645 commutative_ternary_tree_code (enum tree_code code)
6646 {
6647 switch (code)
6648 {
6649 case WIDEN_MULT_PLUS_EXPR:
6650 case WIDEN_MULT_MINUS_EXPR:
6651 return true;
6652
6653 default:
6654 break;
6655 }
6656 return false;
6657 }
6658
6659 /* Generate a hash value for an expression. This can be used iteratively
6660 by passing a previous result as the VAL argument.
6661
6662 This function is intended to produce the same hash for expressions which
6663 would compare equal using operand_equal_p. */
6664
6665 hashval_t
6666 iterative_hash_expr (const_tree t, hashval_t val)
6667 {
6668 int i;
6669 enum tree_code code;
6670 char tclass;
6671
6672 if (t == NULL_TREE)
6673 return iterative_hash_hashval_t (0, val);
6674
6675 code = TREE_CODE (t);
6676
6677 switch (code)
6678 {
6679 /* Alas, constants aren't shared, so we can't rely on pointer
6680 identity. */
6681 case INTEGER_CST:
6682 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6683 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6684 case REAL_CST:
6685 {
6686 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6687
6688 return iterative_hash_hashval_t (val2, val);
6689 }
6690 case FIXED_CST:
6691 {
6692 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6693
6694 return iterative_hash_hashval_t (val2, val);
6695 }
6696 case STRING_CST:
6697 return iterative_hash (TREE_STRING_POINTER (t),
6698 TREE_STRING_LENGTH (t), val);
6699 case COMPLEX_CST:
6700 val = iterative_hash_expr (TREE_REALPART (t), val);
6701 return iterative_hash_expr (TREE_IMAGPART (t), val);
6702 case VECTOR_CST:
6703 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6704 case SSA_NAME:
6705 /* We can just compare by pointer. */
6706 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6707 case PLACEHOLDER_EXPR:
6708 /* The node itself doesn't matter. */
6709 return val;
6710 case TREE_LIST:
6711 /* A list of expressions, for a CALL_EXPR or as the elements of a
6712 VECTOR_CST. */
6713 for (; t; t = TREE_CHAIN (t))
6714 val = iterative_hash_expr (TREE_VALUE (t), val);
6715 return val;
6716 case CONSTRUCTOR:
6717 {
6718 unsigned HOST_WIDE_INT idx;
6719 tree field, value;
6720 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6721 {
6722 val = iterative_hash_expr (field, val);
6723 val = iterative_hash_expr (value, val);
6724 }
6725 return val;
6726 }
6727 case MEM_REF:
6728 {
6729 /* The type of the second operand is relevant, except for
6730 its top-level qualifiers. */
6731 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6732
6733 val = iterative_hash_object (TYPE_HASH (type), val);
6734
6735 /* We could use the standard hash computation from this point
6736 on. */
6737 val = iterative_hash_object (code, val);
6738 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6739 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6740 return val;
6741 }
6742 case FUNCTION_DECL:
6743 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6744 Otherwise nodes that compare equal according to operand_equal_p might
6745 get different hash codes. However, don't do this for machine specific
6746 or front end builtins, since the function code is overloaded in those
6747 cases. */
6748 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6749 && built_in_decls[DECL_FUNCTION_CODE (t)])
6750 {
6751 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6752 code = TREE_CODE (t);
6753 }
6754 /* FALL THROUGH */
6755 default:
6756 tclass = TREE_CODE_CLASS (code);
6757
6758 if (tclass == tcc_declaration)
6759 {
6760 /* DECL's have a unique ID */
6761 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6762 }
6763 else
6764 {
6765 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6766
6767 val = iterative_hash_object (code, val);
6768
6769 /* Don't hash the type, that can lead to having nodes which
6770 compare equal according to operand_equal_p, but which
6771 have different hash codes. */
6772 if (CONVERT_EXPR_CODE_P (code)
6773 || code == NON_LVALUE_EXPR)
6774 {
6775 /* Make sure to include signness in the hash computation. */
6776 val += TYPE_UNSIGNED (TREE_TYPE (t));
6777 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6778 }
6779
6780 else if (commutative_tree_code (code))
6781 {
6782 /* It's a commutative expression. We want to hash it the same
6783 however it appears. We do this by first hashing both operands
6784 and then rehashing based on the order of their independent
6785 hashes. */
6786 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6787 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6788 hashval_t t;
6789
6790 if (one > two)
6791 t = one, one = two, two = t;
6792
6793 val = iterative_hash_hashval_t (one, val);
6794 val = iterative_hash_hashval_t (two, val);
6795 }
6796 else
6797 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6798 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6799 }
6800 return val;
6801 break;
6802 }
6803 }
6804
6805 /* Generate a hash value for a pair of expressions. This can be used
6806 iteratively by passing a previous result as the VAL argument.
6807
6808 The same hash value is always returned for a given pair of expressions,
6809 regardless of the order in which they are presented. This is useful in
6810 hashing the operands of commutative functions. */
6811
6812 hashval_t
6813 iterative_hash_exprs_commutative (const_tree t1,
6814 const_tree t2, hashval_t val)
6815 {
6816 hashval_t one = iterative_hash_expr (t1, 0);
6817 hashval_t two = iterative_hash_expr (t2, 0);
6818 hashval_t t;
6819
6820 if (one > two)
6821 t = one, one = two, two = t;
6822 val = iterative_hash_hashval_t (one, val);
6823 val = iterative_hash_hashval_t (two, val);
6824
6825 return val;
6826 }
6827 \f
6828 /* Constructors for pointer, array and function types.
6829 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6830 constructed by language-dependent code, not here.) */
6831
6832 /* Construct, lay out and return the type of pointers to TO_TYPE with
6833 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6834 reference all of memory. If such a type has already been
6835 constructed, reuse it. */
6836
6837 tree
6838 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6839 bool can_alias_all)
6840 {
6841 tree t;
6842
6843 if (to_type == error_mark_node)
6844 return error_mark_node;
6845
6846 /* If the pointed-to type has the may_alias attribute set, force
6847 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6848 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6849 can_alias_all = true;
6850
6851 /* In some cases, languages will have things that aren't a POINTER_TYPE
6852 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6853 In that case, return that type without regard to the rest of our
6854 operands.
6855
6856 ??? This is a kludge, but consistent with the way this function has
6857 always operated and there doesn't seem to be a good way to avoid this
6858 at the moment. */
6859 if (TYPE_POINTER_TO (to_type) != 0
6860 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6861 return TYPE_POINTER_TO (to_type);
6862
6863 /* First, if we already have a type for pointers to TO_TYPE and it's
6864 the proper mode, use it. */
6865 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6866 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6867 return t;
6868
6869 t = make_node (POINTER_TYPE);
6870
6871 TREE_TYPE (t) = to_type;
6872 SET_TYPE_MODE (t, mode);
6873 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6874 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6875 TYPE_POINTER_TO (to_type) = t;
6876
6877 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6878 SET_TYPE_STRUCTURAL_EQUALITY (t);
6879 else if (TYPE_CANONICAL (to_type) != to_type)
6880 TYPE_CANONICAL (t)
6881 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6882 mode, can_alias_all);
6883
6884 /* Lay out the type. This function has many callers that are concerned
6885 with expression-construction, and this simplifies them all. */
6886 layout_type (t);
6887
6888 return t;
6889 }
6890
6891 /* By default build pointers in ptr_mode. */
6892
6893 tree
6894 build_pointer_type (tree to_type)
6895 {
6896 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6897 : TYPE_ADDR_SPACE (to_type);
6898 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6899 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6900 }
6901
6902 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6903
6904 tree
6905 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6906 bool can_alias_all)
6907 {
6908 tree t;
6909
6910 if (to_type == error_mark_node)
6911 return error_mark_node;
6912
6913 /* If the pointed-to type has the may_alias attribute set, force
6914 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6915 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6916 can_alias_all = true;
6917
6918 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6919 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6920 In that case, return that type without regard to the rest of our
6921 operands.
6922
6923 ??? This is a kludge, but consistent with the way this function has
6924 always operated and there doesn't seem to be a good way to avoid this
6925 at the moment. */
6926 if (TYPE_REFERENCE_TO (to_type) != 0
6927 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6928 return TYPE_REFERENCE_TO (to_type);
6929
6930 /* First, if we already have a type for pointers to TO_TYPE and it's
6931 the proper mode, use it. */
6932 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6933 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6934 return t;
6935
6936 t = make_node (REFERENCE_TYPE);
6937
6938 TREE_TYPE (t) = to_type;
6939 SET_TYPE_MODE (t, mode);
6940 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6941 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6942 TYPE_REFERENCE_TO (to_type) = t;
6943
6944 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6945 SET_TYPE_STRUCTURAL_EQUALITY (t);
6946 else if (TYPE_CANONICAL (to_type) != to_type)
6947 TYPE_CANONICAL (t)
6948 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6949 mode, can_alias_all);
6950
6951 layout_type (t);
6952
6953 return t;
6954 }
6955
6956
6957 /* Build the node for the type of references-to-TO_TYPE by default
6958 in ptr_mode. */
6959
6960 tree
6961 build_reference_type (tree to_type)
6962 {
6963 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6964 : TYPE_ADDR_SPACE (to_type);
6965 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6966 return build_reference_type_for_mode (to_type, pointer_mode, false);
6967 }
6968
6969 /* Build a type that is compatible with t but has no cv quals anywhere
6970 in its type, thus
6971
6972 const char *const *const * -> char ***. */
6973
6974 tree
6975 build_type_no_quals (tree t)
6976 {
6977 switch (TREE_CODE (t))
6978 {
6979 case POINTER_TYPE:
6980 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6981 TYPE_MODE (t),
6982 TYPE_REF_CAN_ALIAS_ALL (t));
6983 case REFERENCE_TYPE:
6984 return
6985 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6986 TYPE_MODE (t),
6987 TYPE_REF_CAN_ALIAS_ALL (t));
6988 default:
6989 return TYPE_MAIN_VARIANT (t);
6990 }
6991 }
6992
6993 #define MAX_INT_CACHED_PREC \
6994 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
6995 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
6996
6997 /* Builds a signed or unsigned integer type of precision PRECISION.
6998 Used for C bitfields whose precision does not match that of
6999 built-in target types. */
7000 tree
7001 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7002 int unsignedp)
7003 {
7004 tree itype, ret;
7005
7006 if (unsignedp)
7007 unsignedp = MAX_INT_CACHED_PREC + 1;
7008
7009 if (precision <= MAX_INT_CACHED_PREC)
7010 {
7011 itype = nonstandard_integer_type_cache[precision + unsignedp];
7012 if (itype)
7013 return itype;
7014 }
7015
7016 itype = make_node (INTEGER_TYPE);
7017 TYPE_PRECISION (itype) = precision;
7018
7019 if (unsignedp)
7020 fixup_unsigned_type (itype);
7021 else
7022 fixup_signed_type (itype);
7023
7024 ret = itype;
7025 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7026 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7027 if (precision <= MAX_INT_CACHED_PREC)
7028 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7029
7030 return ret;
7031 }
7032
7033 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7034 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7035 is true, reuse such a type that has already been constructed. */
7036
7037 static tree
7038 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7039 {
7040 tree itype = make_node (INTEGER_TYPE);
7041
7042 TREE_TYPE (itype) = type;
7043
7044 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7045 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7046
7047 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7048 SET_TYPE_MODE (itype, TYPE_MODE (type));
7049 TYPE_SIZE (itype) = TYPE_SIZE (type);
7050 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7051 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7052 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7053
7054 if ((TYPE_MIN_VALUE (itype)
7055 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7056 || (TYPE_MAX_VALUE (itype)
7057 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7058 {
7059 /* Since we cannot reliably merge this type, we need to compare it using
7060 structural equality checks. */
7061 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7062 return itype;
7063 }
7064
7065 if (shared)
7066 {
7067 hashval_t hash = iterative_hash_expr (TYPE_MIN_VALUE (itype), 0);
7068 hash = iterative_hash_expr (TYPE_MAX_VALUE (itype), hash);
7069 hash = iterative_hash_hashval_t (TYPE_HASH (type), hash);
7070 itype = type_hash_canon (hash, itype);
7071 }
7072
7073 return itype;
7074 }
7075
7076 /* Wrapper around build_range_type_1 with SHARED set to true. */
7077
7078 tree
7079 build_range_type (tree type, tree lowval, tree highval)
7080 {
7081 return build_range_type_1 (type, lowval, highval, true);
7082 }
7083
7084 /* Wrapper around build_range_type_1 with SHARED set to false. */
7085
7086 tree
7087 build_nonshared_range_type (tree type, tree lowval, tree highval)
7088 {
7089 return build_range_type_1 (type, lowval, highval, false);
7090 }
7091
7092 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7093 MAXVAL should be the maximum value in the domain
7094 (one less than the length of the array).
7095
7096 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7097 We don't enforce this limit, that is up to caller (e.g. language front end).
7098 The limit exists because the result is a signed type and we don't handle
7099 sizes that use more than one HOST_WIDE_INT. */
7100
7101 tree
7102 build_index_type (tree maxval)
7103 {
7104 return build_range_type (sizetype, size_zero_node, maxval);
7105 }
7106
7107 /* Return true if the debug information for TYPE, a subtype, should be emitted
7108 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7109 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7110 debug info and doesn't reflect the source code. */
7111
7112 bool
7113 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7114 {
7115 tree base_type = TREE_TYPE (type), low, high;
7116
7117 /* Subrange types have a base type which is an integral type. */
7118 if (!INTEGRAL_TYPE_P (base_type))
7119 return false;
7120
7121 /* Get the real bounds of the subtype. */
7122 if (lang_hooks.types.get_subrange_bounds)
7123 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7124 else
7125 {
7126 low = TYPE_MIN_VALUE (type);
7127 high = TYPE_MAX_VALUE (type);
7128 }
7129
7130 /* If the type and its base type have the same representation and the same
7131 name, then the type is not a subrange but a copy of the base type. */
7132 if ((TREE_CODE (base_type) == INTEGER_TYPE
7133 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7134 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7135 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7136 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7137 {
7138 tree type_name = TYPE_NAME (type);
7139 tree base_type_name = TYPE_NAME (base_type);
7140
7141 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7142 type_name = DECL_NAME (type_name);
7143
7144 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7145 base_type_name = DECL_NAME (base_type_name);
7146
7147 if (type_name == base_type_name)
7148 return false;
7149 }
7150
7151 if (lowval)
7152 *lowval = low;
7153 if (highval)
7154 *highval = high;
7155 return true;
7156 }
7157
7158 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7159 and number of elements specified by the range of values of INDEX_TYPE.
7160 If SHARED is true, reuse such a type that has already been constructed. */
7161
7162 static tree
7163 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7164 {
7165 tree t;
7166
7167 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7168 {
7169 error ("arrays of functions are not meaningful");
7170 elt_type = integer_type_node;
7171 }
7172
7173 t = make_node (ARRAY_TYPE);
7174 TREE_TYPE (t) = elt_type;
7175 TYPE_DOMAIN (t) = index_type;
7176 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7177 layout_type (t);
7178
7179 /* If the element type is incomplete at this point we get marked for
7180 structural equality. Do not record these types in the canonical
7181 type hashtable. */
7182 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7183 return t;
7184
7185 if (shared)
7186 {
7187 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7188 if (index_type)
7189 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7190 t = type_hash_canon (hashcode, t);
7191 }
7192
7193 if (TYPE_CANONICAL (t) == t)
7194 {
7195 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7196 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7197 SET_TYPE_STRUCTURAL_EQUALITY (t);
7198 else if (TYPE_CANONICAL (elt_type) != elt_type
7199 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7200 TYPE_CANONICAL (t)
7201 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7202 index_type
7203 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7204 shared);
7205 }
7206
7207 return t;
7208 }
7209
7210 /* Wrapper around build_array_type_1 with SHARED set to true. */
7211
7212 tree
7213 build_array_type (tree elt_type, tree index_type)
7214 {
7215 return build_array_type_1 (elt_type, index_type, true);
7216 }
7217
7218 /* Wrapper around build_array_type_1 with SHARED set to false. */
7219
7220 tree
7221 build_nonshared_array_type (tree elt_type, tree index_type)
7222 {
7223 return build_array_type_1 (elt_type, index_type, false);
7224 }
7225
7226 /* Recursively examines the array elements of TYPE, until a non-array
7227 element type is found. */
7228
7229 tree
7230 strip_array_types (tree type)
7231 {
7232 while (TREE_CODE (type) == ARRAY_TYPE)
7233 type = TREE_TYPE (type);
7234
7235 return type;
7236 }
7237
7238 /* Computes the canonical argument types from the argument type list
7239 ARGTYPES.
7240
7241 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7242 on entry to this function, or if any of the ARGTYPES are
7243 structural.
7244
7245 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7246 true on entry to this function, or if any of the ARGTYPES are
7247 non-canonical.
7248
7249 Returns a canonical argument list, which may be ARGTYPES when the
7250 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7251 true) or would not differ from ARGTYPES. */
7252
7253 static tree
7254 maybe_canonicalize_argtypes(tree argtypes,
7255 bool *any_structural_p,
7256 bool *any_noncanonical_p)
7257 {
7258 tree arg;
7259 bool any_noncanonical_argtypes_p = false;
7260
7261 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7262 {
7263 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7264 /* Fail gracefully by stating that the type is structural. */
7265 *any_structural_p = true;
7266 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7267 *any_structural_p = true;
7268 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7269 || TREE_PURPOSE (arg))
7270 /* If the argument has a default argument, we consider it
7271 non-canonical even though the type itself is canonical.
7272 That way, different variants of function and method types
7273 with default arguments will all point to the variant with
7274 no defaults as their canonical type. */
7275 any_noncanonical_argtypes_p = true;
7276 }
7277
7278 if (*any_structural_p)
7279 return argtypes;
7280
7281 if (any_noncanonical_argtypes_p)
7282 {
7283 /* Build the canonical list of argument types. */
7284 tree canon_argtypes = NULL_TREE;
7285 bool is_void = false;
7286
7287 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7288 {
7289 if (arg == void_list_node)
7290 is_void = true;
7291 else
7292 canon_argtypes = tree_cons (NULL_TREE,
7293 TYPE_CANONICAL (TREE_VALUE (arg)),
7294 canon_argtypes);
7295 }
7296
7297 canon_argtypes = nreverse (canon_argtypes);
7298 if (is_void)
7299 canon_argtypes = chainon (canon_argtypes, void_list_node);
7300
7301 /* There is a non-canonical type. */
7302 *any_noncanonical_p = true;
7303 return canon_argtypes;
7304 }
7305
7306 /* The canonical argument types are the same as ARGTYPES. */
7307 return argtypes;
7308 }
7309
7310 /* Construct, lay out and return
7311 the type of functions returning type VALUE_TYPE
7312 given arguments of types ARG_TYPES.
7313 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7314 are data type nodes for the arguments of the function.
7315 If such a type has already been constructed, reuse it. */
7316
7317 tree
7318 build_function_type (tree value_type, tree arg_types)
7319 {
7320 tree t;
7321 hashval_t hashcode = 0;
7322 bool any_structural_p, any_noncanonical_p;
7323 tree canon_argtypes;
7324
7325 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7326 {
7327 error ("function return type cannot be function");
7328 value_type = integer_type_node;
7329 }
7330
7331 /* Make a node of the sort we want. */
7332 t = make_node (FUNCTION_TYPE);
7333 TREE_TYPE (t) = value_type;
7334 TYPE_ARG_TYPES (t) = arg_types;
7335
7336 /* If we already have such a type, use the old one. */
7337 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7338 hashcode = type_hash_list (arg_types, hashcode);
7339 t = type_hash_canon (hashcode, t);
7340
7341 /* Set up the canonical type. */
7342 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7343 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7344 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7345 &any_structural_p,
7346 &any_noncanonical_p);
7347 if (any_structural_p)
7348 SET_TYPE_STRUCTURAL_EQUALITY (t);
7349 else if (any_noncanonical_p)
7350 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7351 canon_argtypes);
7352
7353 if (!COMPLETE_TYPE_P (t))
7354 layout_type (t);
7355 return t;
7356 }
7357
7358 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7359
7360 tree
7361 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7362 {
7363 tree new_type = NULL;
7364 tree args, new_args = NULL, t;
7365 tree new_reversed;
7366 int i = 0;
7367
7368 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7369 args = TREE_CHAIN (args), i++)
7370 if (!bitmap_bit_p (args_to_skip, i))
7371 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7372
7373 new_reversed = nreverse (new_args);
7374 if (args)
7375 {
7376 if (new_reversed)
7377 TREE_CHAIN (new_args) = void_list_node;
7378 else
7379 new_reversed = void_list_node;
7380 }
7381
7382 /* Use copy_node to preserve as much as possible from original type
7383 (debug info, attribute lists etc.)
7384 Exception is METHOD_TYPEs must have THIS argument.
7385 When we are asked to remove it, we need to build new FUNCTION_TYPE
7386 instead. */
7387 if (TREE_CODE (orig_type) != METHOD_TYPE
7388 || !bitmap_bit_p (args_to_skip, 0))
7389 {
7390 new_type = build_distinct_type_copy (orig_type);
7391 TYPE_ARG_TYPES (new_type) = new_reversed;
7392 }
7393 else
7394 {
7395 new_type
7396 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7397 new_reversed));
7398 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7399 }
7400
7401 /* This is a new type, not a copy of an old type. Need to reassociate
7402 variants. We can handle everything except the main variant lazily. */
7403 t = TYPE_MAIN_VARIANT (orig_type);
7404 if (orig_type != t)
7405 {
7406 TYPE_MAIN_VARIANT (new_type) = t;
7407 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7408 TYPE_NEXT_VARIANT (t) = new_type;
7409 }
7410 else
7411 {
7412 TYPE_MAIN_VARIANT (new_type) = new_type;
7413 TYPE_NEXT_VARIANT (new_type) = NULL;
7414 }
7415 return new_type;
7416 }
7417
7418 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7419
7420 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7421 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7422 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7423
7424 tree
7425 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7426 {
7427 tree new_decl = copy_node (orig_decl);
7428 tree new_type;
7429
7430 new_type = TREE_TYPE (orig_decl);
7431 if (prototype_p (new_type))
7432 new_type = build_function_type_skip_args (new_type, args_to_skip);
7433 TREE_TYPE (new_decl) = new_type;
7434
7435 /* For declarations setting DECL_VINDEX (i.e. methods)
7436 we expect first argument to be THIS pointer. */
7437 if (bitmap_bit_p (args_to_skip, 0))
7438 DECL_VINDEX (new_decl) = NULL_TREE;
7439
7440 /* When signature changes, we need to clear builtin info. */
7441 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7442 {
7443 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7444 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7445 }
7446 return new_decl;
7447 }
7448
7449 /* Build a function type. The RETURN_TYPE is the type returned by the
7450 function. If VAARGS is set, no void_type_node is appended to the
7451 the list. ARGP must be always be terminated be a NULL_TREE. */
7452
7453 static tree
7454 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7455 {
7456 tree t, args, last;
7457
7458 t = va_arg (argp, tree);
7459 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7460 args = tree_cons (NULL_TREE, t, args);
7461
7462 if (vaargs)
7463 {
7464 last = args;
7465 if (args != NULL_TREE)
7466 args = nreverse (args);
7467 gcc_assert (last != void_list_node);
7468 }
7469 else if (args == NULL_TREE)
7470 args = void_list_node;
7471 else
7472 {
7473 last = args;
7474 args = nreverse (args);
7475 TREE_CHAIN (last) = void_list_node;
7476 }
7477 args = build_function_type (return_type, args);
7478
7479 return args;
7480 }
7481
7482 /* Build a function type. The RETURN_TYPE is the type returned by the
7483 function. If additional arguments are provided, they are
7484 additional argument types. The list of argument types must always
7485 be terminated by NULL_TREE. */
7486
7487 tree
7488 build_function_type_list (tree return_type, ...)
7489 {
7490 tree args;
7491 va_list p;
7492
7493 va_start (p, return_type);
7494 args = build_function_type_list_1 (false, return_type, p);
7495 va_end (p);
7496 return args;
7497 }
7498
7499 /* Build a variable argument function type. The RETURN_TYPE is the
7500 type returned by the function. If additional arguments are provided,
7501 they are additional argument types. The list of argument types must
7502 always be terminated by NULL_TREE. */
7503
7504 tree
7505 build_varargs_function_type_list (tree return_type, ...)
7506 {
7507 tree args;
7508 va_list p;
7509
7510 va_start (p, return_type);
7511 args = build_function_type_list_1 (true, return_type, p);
7512 va_end (p);
7513
7514 return args;
7515 }
7516
7517 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7518 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7519 for the method. An implicit additional parameter (of type
7520 pointer-to-BASETYPE) is added to the ARGTYPES. */
7521
7522 tree
7523 build_method_type_directly (tree basetype,
7524 tree rettype,
7525 tree argtypes)
7526 {
7527 tree t;
7528 tree ptype;
7529 int hashcode = 0;
7530 bool any_structural_p, any_noncanonical_p;
7531 tree canon_argtypes;
7532
7533 /* Make a node of the sort we want. */
7534 t = make_node (METHOD_TYPE);
7535
7536 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7537 TREE_TYPE (t) = rettype;
7538 ptype = build_pointer_type (basetype);
7539
7540 /* The actual arglist for this function includes a "hidden" argument
7541 which is "this". Put it into the list of argument types. */
7542 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7543 TYPE_ARG_TYPES (t) = argtypes;
7544
7545 /* If we already have such a type, use the old one. */
7546 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7547 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7548 hashcode = type_hash_list (argtypes, hashcode);
7549 t = type_hash_canon (hashcode, t);
7550
7551 /* Set up the canonical type. */
7552 any_structural_p
7553 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7554 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7555 any_noncanonical_p
7556 = (TYPE_CANONICAL (basetype) != basetype
7557 || TYPE_CANONICAL (rettype) != rettype);
7558 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7559 &any_structural_p,
7560 &any_noncanonical_p);
7561 if (any_structural_p)
7562 SET_TYPE_STRUCTURAL_EQUALITY (t);
7563 else if (any_noncanonical_p)
7564 TYPE_CANONICAL (t)
7565 = build_method_type_directly (TYPE_CANONICAL (basetype),
7566 TYPE_CANONICAL (rettype),
7567 canon_argtypes);
7568 if (!COMPLETE_TYPE_P (t))
7569 layout_type (t);
7570
7571 return t;
7572 }
7573
7574 /* Construct, lay out and return the type of methods belonging to class
7575 BASETYPE and whose arguments and values are described by TYPE.
7576 If that type exists already, reuse it.
7577 TYPE must be a FUNCTION_TYPE node. */
7578
7579 tree
7580 build_method_type (tree basetype, tree type)
7581 {
7582 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7583
7584 return build_method_type_directly (basetype,
7585 TREE_TYPE (type),
7586 TYPE_ARG_TYPES (type));
7587 }
7588
7589 /* Construct, lay out and return the type of offsets to a value
7590 of type TYPE, within an object of type BASETYPE.
7591 If a suitable offset type exists already, reuse it. */
7592
7593 tree
7594 build_offset_type (tree basetype, tree type)
7595 {
7596 tree t;
7597 hashval_t hashcode = 0;
7598
7599 /* Make a node of the sort we want. */
7600 t = make_node (OFFSET_TYPE);
7601
7602 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7603 TREE_TYPE (t) = type;
7604
7605 /* If we already have such a type, use the old one. */
7606 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7607 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7608 t = type_hash_canon (hashcode, t);
7609
7610 if (!COMPLETE_TYPE_P (t))
7611 layout_type (t);
7612
7613 if (TYPE_CANONICAL (t) == t)
7614 {
7615 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7616 || TYPE_STRUCTURAL_EQUALITY_P (type))
7617 SET_TYPE_STRUCTURAL_EQUALITY (t);
7618 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7619 || TYPE_CANONICAL (type) != type)
7620 TYPE_CANONICAL (t)
7621 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7622 TYPE_CANONICAL (type));
7623 }
7624
7625 return t;
7626 }
7627
7628 /* Create a complex type whose components are COMPONENT_TYPE. */
7629
7630 tree
7631 build_complex_type (tree component_type)
7632 {
7633 tree t;
7634 hashval_t hashcode;
7635
7636 gcc_assert (INTEGRAL_TYPE_P (component_type)
7637 || SCALAR_FLOAT_TYPE_P (component_type)
7638 || FIXED_POINT_TYPE_P (component_type));
7639
7640 /* Make a node of the sort we want. */
7641 t = make_node (COMPLEX_TYPE);
7642
7643 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7644
7645 /* If we already have such a type, use the old one. */
7646 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7647 t = type_hash_canon (hashcode, t);
7648
7649 if (!COMPLETE_TYPE_P (t))
7650 layout_type (t);
7651
7652 if (TYPE_CANONICAL (t) == t)
7653 {
7654 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7655 SET_TYPE_STRUCTURAL_EQUALITY (t);
7656 else if (TYPE_CANONICAL (component_type) != component_type)
7657 TYPE_CANONICAL (t)
7658 = build_complex_type (TYPE_CANONICAL (component_type));
7659 }
7660
7661 /* We need to create a name, since complex is a fundamental type. */
7662 if (! TYPE_NAME (t))
7663 {
7664 const char *name;
7665 if (component_type == char_type_node)
7666 name = "complex char";
7667 else if (component_type == signed_char_type_node)
7668 name = "complex signed char";
7669 else if (component_type == unsigned_char_type_node)
7670 name = "complex unsigned char";
7671 else if (component_type == short_integer_type_node)
7672 name = "complex short int";
7673 else if (component_type == short_unsigned_type_node)
7674 name = "complex short unsigned int";
7675 else if (component_type == integer_type_node)
7676 name = "complex int";
7677 else if (component_type == unsigned_type_node)
7678 name = "complex unsigned int";
7679 else if (component_type == long_integer_type_node)
7680 name = "complex long int";
7681 else if (component_type == long_unsigned_type_node)
7682 name = "complex long unsigned int";
7683 else if (component_type == long_long_integer_type_node)
7684 name = "complex long long int";
7685 else if (component_type == long_long_unsigned_type_node)
7686 name = "complex long long unsigned int";
7687 else
7688 name = 0;
7689
7690 if (name != 0)
7691 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7692 get_identifier (name), t);
7693 }
7694
7695 return build_qualified_type (t, TYPE_QUALS (component_type));
7696 }
7697
7698 /* If TYPE is a real or complex floating-point type and the target
7699 does not directly support arithmetic on TYPE then return the wider
7700 type to be used for arithmetic on TYPE. Otherwise, return
7701 NULL_TREE. */
7702
7703 tree
7704 excess_precision_type (tree type)
7705 {
7706 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7707 {
7708 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7709 switch (TREE_CODE (type))
7710 {
7711 case REAL_TYPE:
7712 switch (flt_eval_method)
7713 {
7714 case 1:
7715 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7716 return double_type_node;
7717 break;
7718 case 2:
7719 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7720 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7721 return long_double_type_node;
7722 break;
7723 default:
7724 gcc_unreachable ();
7725 }
7726 break;
7727 case COMPLEX_TYPE:
7728 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7729 return NULL_TREE;
7730 switch (flt_eval_method)
7731 {
7732 case 1:
7733 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7734 return complex_double_type_node;
7735 break;
7736 case 2:
7737 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7738 || (TYPE_MODE (TREE_TYPE (type))
7739 == TYPE_MODE (double_type_node)))
7740 return complex_long_double_type_node;
7741 break;
7742 default:
7743 gcc_unreachable ();
7744 }
7745 break;
7746 default:
7747 break;
7748 }
7749 }
7750 return NULL_TREE;
7751 }
7752 \f
7753 /* Return OP, stripped of any conversions to wider types as much as is safe.
7754 Converting the value back to OP's type makes a value equivalent to OP.
7755
7756 If FOR_TYPE is nonzero, we return a value which, if converted to
7757 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7758
7759 OP must have integer, real or enumeral type. Pointers are not allowed!
7760
7761 There are some cases where the obvious value we could return
7762 would regenerate to OP if converted to OP's type,
7763 but would not extend like OP to wider types.
7764 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7765 For example, if OP is (unsigned short)(signed char)-1,
7766 we avoid returning (signed char)-1 if FOR_TYPE is int,
7767 even though extending that to an unsigned short would regenerate OP,
7768 since the result of extending (signed char)-1 to (int)
7769 is different from (int) OP. */
7770
7771 tree
7772 get_unwidened (tree op, tree for_type)
7773 {
7774 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7775 tree type = TREE_TYPE (op);
7776 unsigned final_prec
7777 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7778 int uns
7779 = (for_type != 0 && for_type != type
7780 && final_prec > TYPE_PRECISION (type)
7781 && TYPE_UNSIGNED (type));
7782 tree win = op;
7783
7784 while (CONVERT_EXPR_P (op))
7785 {
7786 int bitschange;
7787
7788 /* TYPE_PRECISION on vector types has different meaning
7789 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7790 so avoid them here. */
7791 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7792 break;
7793
7794 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7795 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7796
7797 /* Truncations are many-one so cannot be removed.
7798 Unless we are later going to truncate down even farther. */
7799 if (bitschange < 0
7800 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7801 break;
7802
7803 /* See what's inside this conversion. If we decide to strip it,
7804 we will set WIN. */
7805 op = TREE_OPERAND (op, 0);
7806
7807 /* If we have not stripped any zero-extensions (uns is 0),
7808 we can strip any kind of extension.
7809 If we have previously stripped a zero-extension,
7810 only zero-extensions can safely be stripped.
7811 Any extension can be stripped if the bits it would produce
7812 are all going to be discarded later by truncating to FOR_TYPE. */
7813
7814 if (bitschange > 0)
7815 {
7816 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7817 win = op;
7818 /* TYPE_UNSIGNED says whether this is a zero-extension.
7819 Let's avoid computing it if it does not affect WIN
7820 and if UNS will not be needed again. */
7821 if ((uns
7822 || CONVERT_EXPR_P (op))
7823 && TYPE_UNSIGNED (TREE_TYPE (op)))
7824 {
7825 uns = 1;
7826 win = op;
7827 }
7828 }
7829 }
7830
7831 /* If we finally reach a constant see if it fits in for_type and
7832 in that case convert it. */
7833 if (for_type
7834 && TREE_CODE (win) == INTEGER_CST
7835 && TREE_TYPE (win) != for_type
7836 && int_fits_type_p (win, for_type))
7837 win = fold_convert (for_type, win);
7838
7839 return win;
7840 }
7841 \f
7842 /* Return OP or a simpler expression for a narrower value
7843 which can be sign-extended or zero-extended to give back OP.
7844 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7845 or 0 if the value should be sign-extended. */
7846
7847 tree
7848 get_narrower (tree op, int *unsignedp_ptr)
7849 {
7850 int uns = 0;
7851 int first = 1;
7852 tree win = op;
7853 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7854
7855 while (TREE_CODE (op) == NOP_EXPR)
7856 {
7857 int bitschange
7858 = (TYPE_PRECISION (TREE_TYPE (op))
7859 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7860
7861 /* Truncations are many-one so cannot be removed. */
7862 if (bitschange < 0)
7863 break;
7864
7865 /* See what's inside this conversion. If we decide to strip it,
7866 we will set WIN. */
7867
7868 if (bitschange > 0)
7869 {
7870 op = TREE_OPERAND (op, 0);
7871 /* An extension: the outermost one can be stripped,
7872 but remember whether it is zero or sign extension. */
7873 if (first)
7874 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7875 /* Otherwise, if a sign extension has been stripped,
7876 only sign extensions can now be stripped;
7877 if a zero extension has been stripped, only zero-extensions. */
7878 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7879 break;
7880 first = 0;
7881 }
7882 else /* bitschange == 0 */
7883 {
7884 /* A change in nominal type can always be stripped, but we must
7885 preserve the unsignedness. */
7886 if (first)
7887 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7888 first = 0;
7889 op = TREE_OPERAND (op, 0);
7890 /* Keep trying to narrow, but don't assign op to win if it
7891 would turn an integral type into something else. */
7892 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7893 continue;
7894 }
7895
7896 win = op;
7897 }
7898
7899 if (TREE_CODE (op) == COMPONENT_REF
7900 /* Since type_for_size always gives an integer type. */
7901 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7902 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7903 /* Ensure field is laid out already. */
7904 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7905 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7906 {
7907 unsigned HOST_WIDE_INT innerprec
7908 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7909 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7910 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7911 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7912
7913 /* We can get this structure field in a narrower type that fits it,
7914 but the resulting extension to its nominal type (a fullword type)
7915 must satisfy the same conditions as for other extensions.
7916
7917 Do this only for fields that are aligned (not bit-fields),
7918 because when bit-field insns will be used there is no
7919 advantage in doing this. */
7920
7921 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7922 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7923 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7924 && type != 0)
7925 {
7926 if (first)
7927 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7928 win = fold_convert (type, op);
7929 }
7930 }
7931
7932 *unsignedp_ptr = uns;
7933 return win;
7934 }
7935 \f
7936 /* Returns true if integer constant C has a value that is permissible
7937 for type TYPE (an INTEGER_TYPE). */
7938
7939 bool
7940 int_fits_type_p (const_tree c, const_tree type)
7941 {
7942 tree type_low_bound, type_high_bound;
7943 bool ok_for_low_bound, ok_for_high_bound, unsc;
7944 double_int dc, dd;
7945
7946 dc = tree_to_double_int (c);
7947 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7948
7949 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7950 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7951 && unsc)
7952 /* So c is an unsigned integer whose type is sizetype and type is not.
7953 sizetype'd integers are sign extended even though they are
7954 unsigned. If the integer value fits in the lower end word of c,
7955 and if the higher end word has all its bits set to 1, that
7956 means the higher end bits are set to 1 only for sign extension.
7957 So let's convert c into an equivalent zero extended unsigned
7958 integer. */
7959 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7960
7961 retry:
7962 type_low_bound = TYPE_MIN_VALUE (type);
7963 type_high_bound = TYPE_MAX_VALUE (type);
7964
7965 /* If at least one bound of the type is a constant integer, we can check
7966 ourselves and maybe make a decision. If no such decision is possible, but
7967 this type is a subtype, try checking against that. Otherwise, use
7968 double_int_fits_to_tree_p, which checks against the precision.
7969
7970 Compute the status for each possibly constant bound, and return if we see
7971 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7972 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7973 for "constant known to fit". */
7974
7975 /* Check if c >= type_low_bound. */
7976 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7977 {
7978 dd = tree_to_double_int (type_low_bound);
7979 if (TREE_CODE (type) == INTEGER_TYPE
7980 && TYPE_IS_SIZETYPE (type)
7981 && TYPE_UNSIGNED (type))
7982 dd = double_int_zext (dd, TYPE_PRECISION (type));
7983 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7984 {
7985 int c_neg = (!unsc && double_int_negative_p (dc));
7986 int t_neg = (unsc && double_int_negative_p (dd));
7987
7988 if (c_neg && !t_neg)
7989 return false;
7990 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
7991 return false;
7992 }
7993 else if (double_int_cmp (dc, dd, unsc) < 0)
7994 return false;
7995 ok_for_low_bound = true;
7996 }
7997 else
7998 ok_for_low_bound = false;
7999
8000 /* Check if c <= type_high_bound. */
8001 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8002 {
8003 dd = tree_to_double_int (type_high_bound);
8004 if (TREE_CODE (type) == INTEGER_TYPE
8005 && TYPE_IS_SIZETYPE (type)
8006 && TYPE_UNSIGNED (type))
8007 dd = double_int_zext (dd, TYPE_PRECISION (type));
8008 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8009 {
8010 int c_neg = (!unsc && double_int_negative_p (dc));
8011 int t_neg = (unsc && double_int_negative_p (dd));
8012
8013 if (t_neg && !c_neg)
8014 return false;
8015 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8016 return false;
8017 }
8018 else if (double_int_cmp (dc, dd, unsc) > 0)
8019 return false;
8020 ok_for_high_bound = true;
8021 }
8022 else
8023 ok_for_high_bound = false;
8024
8025 /* If the constant fits both bounds, the result is known. */
8026 if (ok_for_low_bound && ok_for_high_bound)
8027 return true;
8028
8029 /* Perform some generic filtering which may allow making a decision
8030 even if the bounds are not constant. First, negative integers
8031 never fit in unsigned types, */
8032 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8033 return false;
8034
8035 /* Second, narrower types always fit in wider ones. */
8036 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8037 return true;
8038
8039 /* Third, unsigned integers with top bit set never fit signed types. */
8040 if (! TYPE_UNSIGNED (type) && unsc)
8041 {
8042 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8043 if (prec < HOST_BITS_PER_WIDE_INT)
8044 {
8045 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8046 return false;
8047 }
8048 else if (((((unsigned HOST_WIDE_INT) 1)
8049 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8050 return false;
8051 }
8052
8053 /* If we haven't been able to decide at this point, there nothing more we
8054 can check ourselves here. Look at the base type if we have one and it
8055 has the same precision. */
8056 if (TREE_CODE (type) == INTEGER_TYPE
8057 && TREE_TYPE (type) != 0
8058 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8059 {
8060 type = TREE_TYPE (type);
8061 goto retry;
8062 }
8063
8064 /* Or to double_int_fits_to_tree_p, if nothing else. */
8065 return double_int_fits_to_tree_p (type, dc);
8066 }
8067
8068 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8069 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8070 represented (assuming two's-complement arithmetic) within the bit
8071 precision of the type are returned instead. */
8072
8073 void
8074 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8075 {
8076 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8077 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8078 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8079 TYPE_UNSIGNED (type));
8080 else
8081 {
8082 if (TYPE_UNSIGNED (type))
8083 mpz_set_ui (min, 0);
8084 else
8085 {
8086 double_int mn;
8087 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8088 mn = double_int_sext (double_int_add (mn, double_int_one),
8089 TYPE_PRECISION (type));
8090 mpz_set_double_int (min, mn, false);
8091 }
8092 }
8093
8094 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8095 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8096 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8097 TYPE_UNSIGNED (type));
8098 else
8099 {
8100 if (TYPE_UNSIGNED (type))
8101 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8102 true);
8103 else
8104 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8105 true);
8106 }
8107 }
8108
8109 /* Return true if VAR is an automatic variable defined in function FN. */
8110
8111 bool
8112 auto_var_in_fn_p (const_tree var, const_tree fn)
8113 {
8114 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8115 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8116 || TREE_CODE (var) == PARM_DECL)
8117 && ! TREE_STATIC (var))
8118 || TREE_CODE (var) == LABEL_DECL
8119 || TREE_CODE (var) == RESULT_DECL));
8120 }
8121
8122 /* Subprogram of following function. Called by walk_tree.
8123
8124 Return *TP if it is an automatic variable or parameter of the
8125 function passed in as DATA. */
8126
8127 static tree
8128 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8129 {
8130 tree fn = (tree) data;
8131
8132 if (TYPE_P (*tp))
8133 *walk_subtrees = 0;
8134
8135 else if (DECL_P (*tp)
8136 && auto_var_in_fn_p (*tp, fn))
8137 return *tp;
8138
8139 return NULL_TREE;
8140 }
8141
8142 /* Returns true if T is, contains, or refers to a type with variable
8143 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8144 arguments, but not the return type. If FN is nonzero, only return
8145 true if a modifier of the type or position of FN is a variable or
8146 parameter inside FN.
8147
8148 This concept is more general than that of C99 'variably modified types':
8149 in C99, a struct type is never variably modified because a VLA may not
8150 appear as a structure member. However, in GNU C code like:
8151
8152 struct S { int i[f()]; };
8153
8154 is valid, and other languages may define similar constructs. */
8155
8156 bool
8157 variably_modified_type_p (tree type, tree fn)
8158 {
8159 tree t;
8160
8161 /* Test if T is either variable (if FN is zero) or an expression containing
8162 a variable in FN. */
8163 #define RETURN_TRUE_IF_VAR(T) \
8164 do { tree _t = (T); \
8165 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8166 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8167 return true; } while (0)
8168
8169 if (type == error_mark_node)
8170 return false;
8171
8172 /* If TYPE itself has variable size, it is variably modified. */
8173 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8174 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8175
8176 switch (TREE_CODE (type))
8177 {
8178 case POINTER_TYPE:
8179 case REFERENCE_TYPE:
8180 case VECTOR_TYPE:
8181 if (variably_modified_type_p (TREE_TYPE (type), fn))
8182 return true;
8183 break;
8184
8185 case FUNCTION_TYPE:
8186 case METHOD_TYPE:
8187 /* If TYPE is a function type, it is variably modified if the
8188 return type is variably modified. */
8189 if (variably_modified_type_p (TREE_TYPE (type), fn))
8190 return true;
8191 break;
8192
8193 case INTEGER_TYPE:
8194 case REAL_TYPE:
8195 case FIXED_POINT_TYPE:
8196 case ENUMERAL_TYPE:
8197 case BOOLEAN_TYPE:
8198 /* Scalar types are variably modified if their end points
8199 aren't constant. */
8200 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8201 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8202 break;
8203
8204 case RECORD_TYPE:
8205 case UNION_TYPE:
8206 case QUAL_UNION_TYPE:
8207 /* We can't see if any of the fields are variably-modified by the
8208 definition we normally use, since that would produce infinite
8209 recursion via pointers. */
8210 /* This is variably modified if some field's type is. */
8211 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8212 if (TREE_CODE (t) == FIELD_DECL)
8213 {
8214 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8215 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8216 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8217
8218 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8219 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8220 }
8221 break;
8222
8223 case ARRAY_TYPE:
8224 /* Do not call ourselves to avoid infinite recursion. This is
8225 variably modified if the element type is. */
8226 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8227 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8228 break;
8229
8230 default:
8231 break;
8232 }
8233
8234 /* The current language may have other cases to check, but in general,
8235 all other types are not variably modified. */
8236 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8237
8238 #undef RETURN_TRUE_IF_VAR
8239 }
8240
8241 /* Given a DECL or TYPE, return the scope in which it was declared, or
8242 NULL_TREE if there is no containing scope. */
8243
8244 tree
8245 get_containing_scope (const_tree t)
8246 {
8247 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8248 }
8249
8250 /* Return the innermost context enclosing DECL that is
8251 a FUNCTION_DECL, or zero if none. */
8252
8253 tree
8254 decl_function_context (const_tree decl)
8255 {
8256 tree context;
8257
8258 if (TREE_CODE (decl) == ERROR_MARK)
8259 return 0;
8260
8261 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8262 where we look up the function at runtime. Such functions always take
8263 a first argument of type 'pointer to real context'.
8264
8265 C++ should really be fixed to use DECL_CONTEXT for the real context,
8266 and use something else for the "virtual context". */
8267 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8268 context
8269 = TYPE_MAIN_VARIANT
8270 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8271 else
8272 context = DECL_CONTEXT (decl);
8273
8274 while (context && TREE_CODE (context) != FUNCTION_DECL)
8275 {
8276 if (TREE_CODE (context) == BLOCK)
8277 context = BLOCK_SUPERCONTEXT (context);
8278 else
8279 context = get_containing_scope (context);
8280 }
8281
8282 return context;
8283 }
8284
8285 /* Return the innermost context enclosing DECL that is
8286 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8287 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8288
8289 tree
8290 decl_type_context (const_tree decl)
8291 {
8292 tree context = DECL_CONTEXT (decl);
8293
8294 while (context)
8295 switch (TREE_CODE (context))
8296 {
8297 case NAMESPACE_DECL:
8298 case TRANSLATION_UNIT_DECL:
8299 return NULL_TREE;
8300
8301 case RECORD_TYPE:
8302 case UNION_TYPE:
8303 case QUAL_UNION_TYPE:
8304 return context;
8305
8306 case TYPE_DECL:
8307 case FUNCTION_DECL:
8308 context = DECL_CONTEXT (context);
8309 break;
8310
8311 case BLOCK:
8312 context = BLOCK_SUPERCONTEXT (context);
8313 break;
8314
8315 default:
8316 gcc_unreachable ();
8317 }
8318
8319 return NULL_TREE;
8320 }
8321
8322 /* CALL is a CALL_EXPR. Return the declaration for the function
8323 called, or NULL_TREE if the called function cannot be
8324 determined. */
8325
8326 tree
8327 get_callee_fndecl (const_tree call)
8328 {
8329 tree addr;
8330
8331 if (call == error_mark_node)
8332 return error_mark_node;
8333
8334 /* It's invalid to call this function with anything but a
8335 CALL_EXPR. */
8336 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8337
8338 /* The first operand to the CALL is the address of the function
8339 called. */
8340 addr = CALL_EXPR_FN (call);
8341
8342 STRIP_NOPS (addr);
8343
8344 /* If this is a readonly function pointer, extract its initial value. */
8345 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8346 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8347 && DECL_INITIAL (addr))
8348 addr = DECL_INITIAL (addr);
8349
8350 /* If the address is just `&f' for some function `f', then we know
8351 that `f' is being called. */
8352 if (TREE_CODE (addr) == ADDR_EXPR
8353 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8354 return TREE_OPERAND (addr, 0);
8355
8356 /* We couldn't figure out what was being called. */
8357 return NULL_TREE;
8358 }
8359
8360 /* Print debugging information about tree nodes generated during the compile,
8361 and any language-specific information. */
8362
8363 void
8364 dump_tree_statistics (void)
8365 {
8366 #ifdef GATHER_STATISTICS
8367 int i;
8368 int total_nodes, total_bytes;
8369 #endif
8370
8371 fprintf (stderr, "\n??? tree nodes created\n\n");
8372 #ifdef GATHER_STATISTICS
8373 fprintf (stderr, "Kind Nodes Bytes\n");
8374 fprintf (stderr, "---------------------------------------\n");
8375 total_nodes = total_bytes = 0;
8376 for (i = 0; i < (int) all_kinds; i++)
8377 {
8378 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8379 tree_node_counts[i], tree_node_sizes[i]);
8380 total_nodes += tree_node_counts[i];
8381 total_bytes += tree_node_sizes[i];
8382 }
8383 fprintf (stderr, "---------------------------------------\n");
8384 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8385 fprintf (stderr, "---------------------------------------\n");
8386 ssanames_print_statistics ();
8387 phinodes_print_statistics ();
8388 #else
8389 fprintf (stderr, "(No per-node statistics)\n");
8390 #endif
8391 print_type_hash_statistics ();
8392 print_debug_expr_statistics ();
8393 print_value_expr_statistics ();
8394 lang_hooks.print_statistics ();
8395 }
8396 \f
8397 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8398
8399 /* Generate a crc32 of a string. */
8400
8401 unsigned
8402 crc32_string (unsigned chksum, const char *string)
8403 {
8404 do
8405 {
8406 unsigned value = *string << 24;
8407 unsigned ix;
8408
8409 for (ix = 8; ix--; value <<= 1)
8410 {
8411 unsigned feedback;
8412
8413 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8414 chksum <<= 1;
8415 chksum ^= feedback;
8416 }
8417 }
8418 while (*string++);
8419 return chksum;
8420 }
8421
8422 /* P is a string that will be used in a symbol. Mask out any characters
8423 that are not valid in that context. */
8424
8425 void
8426 clean_symbol_name (char *p)
8427 {
8428 for (; *p; p++)
8429 if (! (ISALNUM (*p)
8430 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8431 || *p == '$'
8432 #endif
8433 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8434 || *p == '.'
8435 #endif
8436 ))
8437 *p = '_';
8438 }
8439
8440 /* Generate a name for a special-purpose function function.
8441 The generated name may need to be unique across the whole link.
8442 TYPE is some string to identify the purpose of this function to the
8443 linker or collect2; it must start with an uppercase letter,
8444 one of:
8445 I - for constructors
8446 D - for destructors
8447 N - for C++ anonymous namespaces
8448 F - for DWARF unwind frame information. */
8449
8450 tree
8451 get_file_function_name (const char *type)
8452 {
8453 char *buf;
8454 const char *p;
8455 char *q;
8456
8457 /* If we already have a name we know to be unique, just use that. */
8458 if (first_global_object_name)
8459 p = q = ASTRDUP (first_global_object_name);
8460 /* If the target is handling the constructors/destructors, they
8461 will be local to this file and the name is only necessary for
8462 debugging purposes. */
8463 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8464 {
8465 const char *file = main_input_filename;
8466 if (! file)
8467 file = input_filename;
8468 /* Just use the file's basename, because the full pathname
8469 might be quite long. */
8470 p = strrchr (file, '/');
8471 if (p)
8472 p++;
8473 else
8474 p = file;
8475 p = q = ASTRDUP (p);
8476 }
8477 else
8478 {
8479 /* Otherwise, the name must be unique across the entire link.
8480 We don't have anything that we know to be unique to this translation
8481 unit, so use what we do have and throw in some randomness. */
8482 unsigned len;
8483 const char *name = weak_global_object_name;
8484 const char *file = main_input_filename;
8485
8486 if (! name)
8487 name = "";
8488 if (! file)
8489 file = input_filename;
8490
8491 len = strlen (file);
8492 q = (char *) alloca (9 * 2 + len + 1);
8493 memcpy (q, file, len + 1);
8494
8495 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8496 crc32_string (0, get_random_seed (false)));
8497
8498 p = q;
8499 }
8500
8501 clean_symbol_name (q);
8502 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8503 + strlen (type));
8504
8505 /* Set up the name of the file-level functions we may need.
8506 Use a global object (which is already required to be unique over
8507 the program) rather than the file name (which imposes extra
8508 constraints). */
8509 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8510
8511 return get_identifier (buf);
8512 }
8513 \f
8514 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8515
8516 /* Complain that the tree code of NODE does not match the expected 0
8517 terminated list of trailing codes. The trailing code list can be
8518 empty, for a more vague error message. FILE, LINE, and FUNCTION
8519 are of the caller. */
8520
8521 void
8522 tree_check_failed (const_tree node, const char *file,
8523 int line, const char *function, ...)
8524 {
8525 va_list args;
8526 const char *buffer;
8527 unsigned length = 0;
8528 int code;
8529
8530 va_start (args, function);
8531 while ((code = va_arg (args, int)))
8532 length += 4 + strlen (tree_code_name[code]);
8533 va_end (args);
8534 if (length)
8535 {
8536 char *tmp;
8537 va_start (args, function);
8538 length += strlen ("expected ");
8539 buffer = tmp = (char *) alloca (length);
8540 length = 0;
8541 while ((code = va_arg (args, int)))
8542 {
8543 const char *prefix = length ? " or " : "expected ";
8544
8545 strcpy (tmp + length, prefix);
8546 length += strlen (prefix);
8547 strcpy (tmp + length, tree_code_name[code]);
8548 length += strlen (tree_code_name[code]);
8549 }
8550 va_end (args);
8551 }
8552 else
8553 buffer = "unexpected node";
8554
8555 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8556 buffer, tree_code_name[TREE_CODE (node)],
8557 function, trim_filename (file), line);
8558 }
8559
8560 /* Complain that the tree code of NODE does match the expected 0
8561 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8562 the caller. */
8563
8564 void
8565 tree_not_check_failed (const_tree node, const char *file,
8566 int line, const char *function, ...)
8567 {
8568 va_list args;
8569 char *buffer;
8570 unsigned length = 0;
8571 int code;
8572
8573 va_start (args, function);
8574 while ((code = va_arg (args, int)))
8575 length += 4 + strlen (tree_code_name[code]);
8576 va_end (args);
8577 va_start (args, function);
8578 buffer = (char *) alloca (length);
8579 length = 0;
8580 while ((code = va_arg (args, int)))
8581 {
8582 if (length)
8583 {
8584 strcpy (buffer + length, " or ");
8585 length += 4;
8586 }
8587 strcpy (buffer + length, tree_code_name[code]);
8588 length += strlen (tree_code_name[code]);
8589 }
8590 va_end (args);
8591
8592 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8593 buffer, tree_code_name[TREE_CODE (node)],
8594 function, trim_filename (file), line);
8595 }
8596
8597 /* Similar to tree_check_failed, except that we check for a class of tree
8598 code, given in CL. */
8599
8600 void
8601 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8602 const char *file, int line, const char *function)
8603 {
8604 internal_error
8605 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8606 TREE_CODE_CLASS_STRING (cl),
8607 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8608 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8609 }
8610
8611 /* Similar to tree_check_failed, except that instead of specifying a
8612 dozen codes, use the knowledge that they're all sequential. */
8613
8614 void
8615 tree_range_check_failed (const_tree node, const char *file, int line,
8616 const char *function, enum tree_code c1,
8617 enum tree_code c2)
8618 {
8619 char *buffer;
8620 unsigned length = 0;
8621 unsigned int c;
8622
8623 for (c = c1; c <= c2; ++c)
8624 length += 4 + strlen (tree_code_name[c]);
8625
8626 length += strlen ("expected ");
8627 buffer = (char *) alloca (length);
8628 length = 0;
8629
8630 for (c = c1; c <= c2; ++c)
8631 {
8632 const char *prefix = length ? " or " : "expected ";
8633
8634 strcpy (buffer + length, prefix);
8635 length += strlen (prefix);
8636 strcpy (buffer + length, tree_code_name[c]);
8637 length += strlen (tree_code_name[c]);
8638 }
8639
8640 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8641 buffer, tree_code_name[TREE_CODE (node)],
8642 function, trim_filename (file), line);
8643 }
8644
8645
8646 /* Similar to tree_check_failed, except that we check that a tree does
8647 not have the specified code, given in CL. */
8648
8649 void
8650 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8651 const char *file, int line, const char *function)
8652 {
8653 internal_error
8654 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8655 TREE_CODE_CLASS_STRING (cl),
8656 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8657 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8658 }
8659
8660
8661 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8662
8663 void
8664 omp_clause_check_failed (const_tree node, const char *file, int line,
8665 const char *function, enum omp_clause_code code)
8666 {
8667 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8668 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8669 function, trim_filename (file), line);
8670 }
8671
8672
8673 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8674
8675 void
8676 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8677 const char *function, enum omp_clause_code c1,
8678 enum omp_clause_code c2)
8679 {
8680 char *buffer;
8681 unsigned length = 0;
8682 unsigned int c;
8683
8684 for (c = c1; c <= c2; ++c)
8685 length += 4 + strlen (omp_clause_code_name[c]);
8686
8687 length += strlen ("expected ");
8688 buffer = (char *) alloca (length);
8689 length = 0;
8690
8691 for (c = c1; c <= c2; ++c)
8692 {
8693 const char *prefix = length ? " or " : "expected ";
8694
8695 strcpy (buffer + length, prefix);
8696 length += strlen (prefix);
8697 strcpy (buffer + length, omp_clause_code_name[c]);
8698 length += strlen (omp_clause_code_name[c]);
8699 }
8700
8701 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8702 buffer, omp_clause_code_name[TREE_CODE (node)],
8703 function, trim_filename (file), line);
8704 }
8705
8706
8707 #undef DEFTREESTRUCT
8708 #define DEFTREESTRUCT(VAL, NAME) NAME,
8709
8710 static const char *ts_enum_names[] = {
8711 #include "treestruct.def"
8712 };
8713 #undef DEFTREESTRUCT
8714
8715 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8716
8717 /* Similar to tree_class_check_failed, except that we check for
8718 whether CODE contains the tree structure identified by EN. */
8719
8720 void
8721 tree_contains_struct_check_failed (const_tree node,
8722 const enum tree_node_structure_enum en,
8723 const char *file, int line,
8724 const char *function)
8725 {
8726 internal_error
8727 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8728 TS_ENUM_NAME(en),
8729 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8730 }
8731
8732
8733 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8734 (dynamically sized) vector. */
8735
8736 void
8737 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8738 const char *function)
8739 {
8740 internal_error
8741 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8742 idx + 1, len, function, trim_filename (file), line);
8743 }
8744
8745 /* Similar to above, except that the check is for the bounds of the operand
8746 vector of an expression node EXP. */
8747
8748 void
8749 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8750 int line, const char *function)
8751 {
8752 int code = TREE_CODE (exp);
8753 internal_error
8754 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8755 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8756 function, trim_filename (file), line);
8757 }
8758
8759 /* Similar to above, except that the check is for the number of
8760 operands of an OMP_CLAUSE node. */
8761
8762 void
8763 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8764 int line, const char *function)
8765 {
8766 internal_error
8767 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8768 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8769 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8770 trim_filename (file), line);
8771 }
8772 #endif /* ENABLE_TREE_CHECKING */
8773 \f
8774 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8775 and mapped to the machine mode MODE. Initialize its fields and build
8776 the information necessary for debugging output. */
8777
8778 static tree
8779 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8780 {
8781 tree t;
8782 hashval_t hashcode = 0;
8783
8784 t = make_node (VECTOR_TYPE);
8785 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8786 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8787 SET_TYPE_MODE (t, mode);
8788
8789 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8790 SET_TYPE_STRUCTURAL_EQUALITY (t);
8791 else if (TYPE_CANONICAL (innertype) != innertype
8792 || mode != VOIDmode)
8793 TYPE_CANONICAL (t)
8794 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8795
8796 layout_type (t);
8797
8798 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8799 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8800 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8801 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8802 t = type_hash_canon (hashcode, t);
8803
8804 /* We have built a main variant, based on the main variant of the
8805 inner type. Use it to build the variant we return. */
8806 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8807 && TREE_TYPE (t) != innertype)
8808 return build_type_attribute_qual_variant (t,
8809 TYPE_ATTRIBUTES (innertype),
8810 TYPE_QUALS (innertype));
8811
8812 return t;
8813 }
8814
8815 static tree
8816 make_or_reuse_type (unsigned size, int unsignedp)
8817 {
8818 if (size == INT_TYPE_SIZE)
8819 return unsignedp ? unsigned_type_node : integer_type_node;
8820 if (size == CHAR_TYPE_SIZE)
8821 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8822 if (size == SHORT_TYPE_SIZE)
8823 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8824 if (size == LONG_TYPE_SIZE)
8825 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8826 if (size == LONG_LONG_TYPE_SIZE)
8827 return (unsignedp ? long_long_unsigned_type_node
8828 : long_long_integer_type_node);
8829 if (size == 128 && int128_integer_type_node)
8830 return (unsignedp ? int128_unsigned_type_node
8831 : int128_integer_type_node);
8832
8833 if (unsignedp)
8834 return make_unsigned_type (size);
8835 else
8836 return make_signed_type (size);
8837 }
8838
8839 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8840
8841 static tree
8842 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8843 {
8844 if (satp)
8845 {
8846 if (size == SHORT_FRACT_TYPE_SIZE)
8847 return unsignedp ? sat_unsigned_short_fract_type_node
8848 : sat_short_fract_type_node;
8849 if (size == FRACT_TYPE_SIZE)
8850 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8851 if (size == LONG_FRACT_TYPE_SIZE)
8852 return unsignedp ? sat_unsigned_long_fract_type_node
8853 : sat_long_fract_type_node;
8854 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8855 return unsignedp ? sat_unsigned_long_long_fract_type_node
8856 : sat_long_long_fract_type_node;
8857 }
8858 else
8859 {
8860 if (size == SHORT_FRACT_TYPE_SIZE)
8861 return unsignedp ? unsigned_short_fract_type_node
8862 : short_fract_type_node;
8863 if (size == FRACT_TYPE_SIZE)
8864 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8865 if (size == LONG_FRACT_TYPE_SIZE)
8866 return unsignedp ? unsigned_long_fract_type_node
8867 : long_fract_type_node;
8868 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8869 return unsignedp ? unsigned_long_long_fract_type_node
8870 : long_long_fract_type_node;
8871 }
8872
8873 return make_fract_type (size, unsignedp, satp);
8874 }
8875
8876 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8877
8878 static tree
8879 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8880 {
8881 if (satp)
8882 {
8883 if (size == SHORT_ACCUM_TYPE_SIZE)
8884 return unsignedp ? sat_unsigned_short_accum_type_node
8885 : sat_short_accum_type_node;
8886 if (size == ACCUM_TYPE_SIZE)
8887 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8888 if (size == LONG_ACCUM_TYPE_SIZE)
8889 return unsignedp ? sat_unsigned_long_accum_type_node
8890 : sat_long_accum_type_node;
8891 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8892 return unsignedp ? sat_unsigned_long_long_accum_type_node
8893 : sat_long_long_accum_type_node;
8894 }
8895 else
8896 {
8897 if (size == SHORT_ACCUM_TYPE_SIZE)
8898 return unsignedp ? unsigned_short_accum_type_node
8899 : short_accum_type_node;
8900 if (size == ACCUM_TYPE_SIZE)
8901 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8902 if (size == LONG_ACCUM_TYPE_SIZE)
8903 return unsignedp ? unsigned_long_accum_type_node
8904 : long_accum_type_node;
8905 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8906 return unsignedp ? unsigned_long_long_accum_type_node
8907 : long_long_accum_type_node;
8908 }
8909
8910 return make_accum_type (size, unsignedp, satp);
8911 }
8912
8913 /* Create nodes for all integer types (and error_mark_node) using the sizes
8914 of C datatypes. The caller should call set_sizetype soon after calling
8915 this function to select one of the types as sizetype. */
8916
8917 void
8918 build_common_tree_nodes (bool signed_char)
8919 {
8920 error_mark_node = make_node (ERROR_MARK);
8921 TREE_TYPE (error_mark_node) = error_mark_node;
8922
8923 initialize_sizetypes ();
8924
8925 /* Define both `signed char' and `unsigned char'. */
8926 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8927 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8928 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8929 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8930
8931 /* Define `char', which is like either `signed char' or `unsigned char'
8932 but not the same as either. */
8933 char_type_node
8934 = (signed_char
8935 ? make_signed_type (CHAR_TYPE_SIZE)
8936 : make_unsigned_type (CHAR_TYPE_SIZE));
8937 TYPE_STRING_FLAG (char_type_node) = 1;
8938
8939 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8940 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8941 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8942 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8943 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8944 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8945 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8946 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8947 #if HOST_BITS_PER_WIDE_INT >= 64
8948 /* TODO: This isn't correct, but as logic depends at the moment on
8949 host's instead of target's wide-integer.
8950 If there is a target not supporting TImode, but has an 128-bit
8951 integer-scalar register, this target check needs to be adjusted. */
8952 if (targetm.scalar_mode_supported_p (TImode))
8953 {
8954 int128_integer_type_node = make_signed_type (128);
8955 int128_unsigned_type_node = make_unsigned_type (128);
8956 }
8957 #endif
8958 /* Define a boolean type. This type only represents boolean values but
8959 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8960 Front ends which want to override this size (i.e. Java) can redefine
8961 boolean_type_node before calling build_common_tree_nodes_2. */
8962 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8963 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8964 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8965 TYPE_PRECISION (boolean_type_node) = 1;
8966
8967 /* Fill in the rest of the sized types. Reuse existing type nodes
8968 when possible. */
8969 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8970 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8971 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8972 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8973 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8974
8975 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8976 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8977 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8978 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8979 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8980
8981 access_public_node = get_identifier ("public");
8982 access_protected_node = get_identifier ("protected");
8983 access_private_node = get_identifier ("private");
8984 }
8985
8986 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8987 It will create several other common tree nodes. */
8988
8989 void
8990 build_common_tree_nodes_2 (int short_double)
8991 {
8992 /* Define these next since types below may used them. */
8993 integer_zero_node = build_int_cst (integer_type_node, 0);
8994 integer_one_node = build_int_cst (integer_type_node, 1);
8995 integer_three_node = build_int_cst (integer_type_node, 3);
8996 integer_minus_one_node = build_int_cst (integer_type_node, -1);
8997
8998 size_zero_node = size_int (0);
8999 size_one_node = size_int (1);
9000 bitsize_zero_node = bitsize_int (0);
9001 bitsize_one_node = bitsize_int (1);
9002 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9003
9004 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9005 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9006
9007 void_type_node = make_node (VOID_TYPE);
9008 layout_type (void_type_node);
9009
9010 /* We are not going to have real types in C with less than byte alignment,
9011 so we might as well not have any types that claim to have it. */
9012 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9013 TYPE_USER_ALIGN (void_type_node) = 0;
9014
9015 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9016 layout_type (TREE_TYPE (null_pointer_node));
9017
9018 ptr_type_node = build_pointer_type (void_type_node);
9019 const_ptr_type_node
9020 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9021 fileptr_type_node = ptr_type_node;
9022
9023 float_type_node = make_node (REAL_TYPE);
9024 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9025 layout_type (float_type_node);
9026
9027 double_type_node = make_node (REAL_TYPE);
9028 if (short_double)
9029 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9030 else
9031 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9032 layout_type (double_type_node);
9033
9034 long_double_type_node = make_node (REAL_TYPE);
9035 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9036 layout_type (long_double_type_node);
9037
9038 float_ptr_type_node = build_pointer_type (float_type_node);
9039 double_ptr_type_node = build_pointer_type (double_type_node);
9040 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9041 integer_ptr_type_node = build_pointer_type (integer_type_node);
9042
9043 /* Fixed size integer types. */
9044 uint32_type_node = build_nonstandard_integer_type (32, true);
9045 uint64_type_node = build_nonstandard_integer_type (64, true);
9046
9047 /* Decimal float types. */
9048 dfloat32_type_node = make_node (REAL_TYPE);
9049 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9050 layout_type (dfloat32_type_node);
9051 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9052 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9053
9054 dfloat64_type_node = make_node (REAL_TYPE);
9055 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9056 layout_type (dfloat64_type_node);
9057 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9058 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9059
9060 dfloat128_type_node = make_node (REAL_TYPE);
9061 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9062 layout_type (dfloat128_type_node);
9063 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9064 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9065
9066 complex_integer_type_node = build_complex_type (integer_type_node);
9067 complex_float_type_node = build_complex_type (float_type_node);
9068 complex_double_type_node = build_complex_type (double_type_node);
9069 complex_long_double_type_node = build_complex_type (long_double_type_node);
9070
9071 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9072 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9073 sat_ ## KIND ## _type_node = \
9074 make_sat_signed_ ## KIND ## _type (SIZE); \
9075 sat_unsigned_ ## KIND ## _type_node = \
9076 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9077 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9078 unsigned_ ## KIND ## _type_node = \
9079 make_unsigned_ ## KIND ## _type (SIZE);
9080
9081 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9082 sat_ ## WIDTH ## KIND ## _type_node = \
9083 make_sat_signed_ ## KIND ## _type (SIZE); \
9084 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9085 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9086 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9087 unsigned_ ## WIDTH ## KIND ## _type_node = \
9088 make_unsigned_ ## KIND ## _type (SIZE);
9089
9090 /* Make fixed-point type nodes based on four different widths. */
9091 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9092 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9093 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9094 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9095 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9096
9097 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9098 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9099 NAME ## _type_node = \
9100 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9101 u ## NAME ## _type_node = \
9102 make_or_reuse_unsigned_ ## KIND ## _type \
9103 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9104 sat_ ## NAME ## _type_node = \
9105 make_or_reuse_sat_signed_ ## KIND ## _type \
9106 (GET_MODE_BITSIZE (MODE ## mode)); \
9107 sat_u ## NAME ## _type_node = \
9108 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9109 (GET_MODE_BITSIZE (U ## MODE ## mode));
9110
9111 /* Fixed-point type and mode nodes. */
9112 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9113 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9114 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9115 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9116 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9117 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9118 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9119 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9120 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9121 MAKE_FIXED_MODE_NODE (accum, da, DA)
9122 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9123
9124 {
9125 tree t = targetm.build_builtin_va_list ();
9126
9127 /* Many back-ends define record types without setting TYPE_NAME.
9128 If we copied the record type here, we'd keep the original
9129 record type without a name. This breaks name mangling. So,
9130 don't copy record types and let c_common_nodes_and_builtins()
9131 declare the type to be __builtin_va_list. */
9132 if (TREE_CODE (t) != RECORD_TYPE)
9133 t = build_variant_type_copy (t);
9134
9135 va_list_type_node = t;
9136 }
9137 }
9138
9139 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9140
9141 static void
9142 local_define_builtin (const char *name, tree type, enum built_in_function code,
9143 const char *library_name, int ecf_flags)
9144 {
9145 tree decl;
9146
9147 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9148 library_name, NULL_TREE);
9149 if (ecf_flags & ECF_CONST)
9150 TREE_READONLY (decl) = 1;
9151 if (ecf_flags & ECF_PURE)
9152 DECL_PURE_P (decl) = 1;
9153 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9154 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9155 if (ecf_flags & ECF_NORETURN)
9156 TREE_THIS_VOLATILE (decl) = 1;
9157 if (ecf_flags & ECF_NOTHROW)
9158 TREE_NOTHROW (decl) = 1;
9159 if (ecf_flags & ECF_MALLOC)
9160 DECL_IS_MALLOC (decl) = 1;
9161 if (ecf_flags & ECF_LEAF)
9162 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9163 NULL, DECL_ATTRIBUTES (decl));
9164
9165 built_in_decls[code] = decl;
9166 implicit_built_in_decls[code] = decl;
9167 }
9168
9169 /* Call this function after instantiating all builtins that the language
9170 front end cares about. This will build the rest of the builtins that
9171 are relied upon by the tree optimizers and the middle-end. */
9172
9173 void
9174 build_common_builtin_nodes (void)
9175 {
9176 tree tmp, ftype;
9177
9178 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9179 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9180 {
9181 ftype = build_function_type_list (ptr_type_node,
9182 ptr_type_node, const_ptr_type_node,
9183 size_type_node, NULL_TREE);
9184
9185 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9186 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9187 "memcpy", ECF_NOTHROW | ECF_LEAF);
9188 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9189 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9190 "memmove", ECF_NOTHROW | ECF_LEAF);
9191 }
9192
9193 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9194 {
9195 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9196 const_ptr_type_node, size_type_node,
9197 NULL_TREE);
9198 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9199 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9200 }
9201
9202 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9203 {
9204 ftype = build_function_type_list (ptr_type_node,
9205 ptr_type_node, integer_type_node,
9206 size_type_node, NULL_TREE);
9207 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9208 "memset", ECF_NOTHROW | ECF_LEAF);
9209 }
9210
9211 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9212 {
9213 ftype = build_function_type_list (ptr_type_node,
9214 size_type_node, NULL_TREE);
9215 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9216 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9217 }
9218
9219 /* If we're checking the stack, `alloca' can throw. */
9220 if (flag_stack_check)
9221 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9222
9223 ftype = build_function_type_list (void_type_node,
9224 ptr_type_node, ptr_type_node,
9225 ptr_type_node, NULL_TREE);
9226 local_define_builtin ("__builtin_init_trampoline", ftype,
9227 BUILT_IN_INIT_TRAMPOLINE,
9228 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9229
9230 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9231 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9232 BUILT_IN_ADJUST_TRAMPOLINE,
9233 "__builtin_adjust_trampoline",
9234 ECF_CONST | ECF_NOTHROW);
9235
9236 ftype = build_function_type_list (void_type_node,
9237 ptr_type_node, ptr_type_node, NULL_TREE);
9238 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9239 BUILT_IN_NONLOCAL_GOTO,
9240 "__builtin_nonlocal_goto",
9241 ECF_NORETURN | ECF_NOTHROW);
9242
9243 ftype = build_function_type_list (void_type_node,
9244 ptr_type_node, ptr_type_node, NULL_TREE);
9245 local_define_builtin ("__builtin_setjmp_setup", ftype,
9246 BUILT_IN_SETJMP_SETUP,
9247 "__builtin_setjmp_setup", ECF_NOTHROW);
9248
9249 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9250 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9251 BUILT_IN_SETJMP_DISPATCHER,
9252 "__builtin_setjmp_dispatcher",
9253 ECF_PURE | ECF_NOTHROW);
9254
9255 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9256 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9257 BUILT_IN_SETJMP_RECEIVER,
9258 "__builtin_setjmp_receiver", ECF_NOTHROW);
9259
9260 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9261 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9262 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9263
9264 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9265 local_define_builtin ("__builtin_stack_restore", ftype,
9266 BUILT_IN_STACK_RESTORE,
9267 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9268
9269 ftype = build_function_type_list (void_type_node, NULL_TREE);
9270 local_define_builtin ("__builtin_profile_func_enter", ftype,
9271 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9272 local_define_builtin ("__builtin_profile_func_exit", ftype,
9273 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9274
9275 /* If there's a possibility that we might use the ARM EABI, build the
9276 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9277 if (targetm.arm_eabi_unwinder)
9278 {
9279 ftype = build_function_type_list (void_type_node, NULL_TREE);
9280 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9281 BUILT_IN_CXA_END_CLEANUP,
9282 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9283 }
9284
9285 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9286 local_define_builtin ("__builtin_unwind_resume", ftype,
9287 BUILT_IN_UNWIND_RESUME,
9288 (targetm.except_unwind_info () == UI_SJLJ
9289 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9290 ECF_NORETURN);
9291
9292 /* The exception object and filter values from the runtime. The argument
9293 must be zero before exception lowering, i.e. from the front end. After
9294 exception lowering, it will be the region number for the exception
9295 landing pad. These functions are PURE instead of CONST to prevent
9296 them from being hoisted past the exception edge that will initialize
9297 its value in the landing pad. */
9298 ftype = build_function_type_list (ptr_type_node,
9299 integer_type_node, NULL_TREE);
9300 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9301 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9302
9303 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9304 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9305 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9306 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9307
9308 ftype = build_function_type_list (void_type_node,
9309 integer_type_node, integer_type_node,
9310 NULL_TREE);
9311 local_define_builtin ("__builtin_eh_copy_values", ftype,
9312 BUILT_IN_EH_COPY_VALUES,
9313 "__builtin_eh_copy_values", ECF_NOTHROW);
9314
9315 /* Complex multiplication and division. These are handled as builtins
9316 rather than optabs because emit_library_call_value doesn't support
9317 complex. Further, we can do slightly better with folding these
9318 beasties if the real and complex parts of the arguments are separate. */
9319 {
9320 int mode;
9321
9322 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9323 {
9324 char mode_name_buf[4], *q;
9325 const char *p;
9326 enum built_in_function mcode, dcode;
9327 tree type, inner_type;
9328
9329 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9330 if (type == NULL)
9331 continue;
9332 inner_type = TREE_TYPE (type);
9333
9334 ftype = build_function_type_list (type, inner_type, inner_type,
9335 inner_type, inner_type, NULL_TREE);
9336
9337 mcode = ((enum built_in_function)
9338 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9339 dcode = ((enum built_in_function)
9340 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9341
9342 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9343 *q = TOLOWER (*p);
9344 *q = '\0';
9345
9346 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9347 local_define_builtin (built_in_names[mcode], ftype, mcode,
9348 built_in_names[mcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9349
9350 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9351 local_define_builtin (built_in_names[dcode], ftype, dcode,
9352 built_in_names[dcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9353 }
9354 }
9355 }
9356
9357 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9358 better way.
9359
9360 If we requested a pointer to a vector, build up the pointers that
9361 we stripped off while looking for the inner type. Similarly for
9362 return values from functions.
9363
9364 The argument TYPE is the top of the chain, and BOTTOM is the
9365 new type which we will point to. */
9366
9367 tree
9368 reconstruct_complex_type (tree type, tree bottom)
9369 {
9370 tree inner, outer;
9371
9372 if (TREE_CODE (type) == POINTER_TYPE)
9373 {
9374 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9375 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9376 TYPE_REF_CAN_ALIAS_ALL (type));
9377 }
9378 else if (TREE_CODE (type) == REFERENCE_TYPE)
9379 {
9380 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9381 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9382 TYPE_REF_CAN_ALIAS_ALL (type));
9383 }
9384 else if (TREE_CODE (type) == ARRAY_TYPE)
9385 {
9386 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9387 outer = build_array_type (inner, TYPE_DOMAIN (type));
9388 }
9389 else if (TREE_CODE (type) == FUNCTION_TYPE)
9390 {
9391 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9392 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9393 }
9394 else if (TREE_CODE (type) == METHOD_TYPE)
9395 {
9396 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9397 /* The build_method_type_directly() routine prepends 'this' to argument list,
9398 so we must compensate by getting rid of it. */
9399 outer
9400 = build_method_type_directly
9401 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9402 inner,
9403 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9404 }
9405 else if (TREE_CODE (type) == OFFSET_TYPE)
9406 {
9407 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9408 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9409 }
9410 else
9411 return bottom;
9412
9413 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9414 TYPE_QUALS (type));
9415 }
9416
9417 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9418 the inner type. */
9419 tree
9420 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9421 {
9422 int nunits;
9423
9424 switch (GET_MODE_CLASS (mode))
9425 {
9426 case MODE_VECTOR_INT:
9427 case MODE_VECTOR_FLOAT:
9428 case MODE_VECTOR_FRACT:
9429 case MODE_VECTOR_UFRACT:
9430 case MODE_VECTOR_ACCUM:
9431 case MODE_VECTOR_UACCUM:
9432 nunits = GET_MODE_NUNITS (mode);
9433 break;
9434
9435 case MODE_INT:
9436 /* Check that there are no leftover bits. */
9437 gcc_assert (GET_MODE_BITSIZE (mode)
9438 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9439
9440 nunits = GET_MODE_BITSIZE (mode)
9441 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9442 break;
9443
9444 default:
9445 gcc_unreachable ();
9446 }
9447
9448 return make_vector_type (innertype, nunits, mode);
9449 }
9450
9451 /* Similarly, but takes the inner type and number of units, which must be
9452 a power of two. */
9453
9454 tree
9455 build_vector_type (tree innertype, int nunits)
9456 {
9457 return make_vector_type (innertype, nunits, VOIDmode);
9458 }
9459
9460 /* Similarly, but takes the inner type and number of units, which must be
9461 a power of two. */
9462
9463 tree
9464 build_opaque_vector_type (tree innertype, int nunits)
9465 {
9466 tree t;
9467 innertype = build_distinct_type_copy (innertype);
9468 t = make_vector_type (innertype, nunits, VOIDmode);
9469 TYPE_VECTOR_OPAQUE (t) = true;
9470 return t;
9471 }
9472
9473
9474 /* Given an initializer INIT, return TRUE if INIT is zero or some
9475 aggregate of zeros. Otherwise return FALSE. */
9476 bool
9477 initializer_zerop (const_tree init)
9478 {
9479 tree elt;
9480
9481 STRIP_NOPS (init);
9482
9483 switch (TREE_CODE (init))
9484 {
9485 case INTEGER_CST:
9486 return integer_zerop (init);
9487
9488 case REAL_CST:
9489 /* ??? Note that this is not correct for C4X float formats. There,
9490 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9491 negative exponent. */
9492 return real_zerop (init)
9493 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9494
9495 case FIXED_CST:
9496 return fixed_zerop (init);
9497
9498 case COMPLEX_CST:
9499 return integer_zerop (init)
9500 || (real_zerop (init)
9501 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9502 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9503
9504 case VECTOR_CST:
9505 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9506 if (!initializer_zerop (TREE_VALUE (elt)))
9507 return false;
9508 return true;
9509
9510 case CONSTRUCTOR:
9511 {
9512 unsigned HOST_WIDE_INT idx;
9513
9514 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9515 if (!initializer_zerop (elt))
9516 return false;
9517 return true;
9518 }
9519
9520 case STRING_CST:
9521 {
9522 int i;
9523
9524 /* We need to loop through all elements to handle cases like
9525 "\0" and "\0foobar". */
9526 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9527 if (TREE_STRING_POINTER (init)[i] != '\0')
9528 return false;
9529
9530 return true;
9531 }
9532
9533 default:
9534 return false;
9535 }
9536 }
9537
9538 /* Build an empty statement at location LOC. */
9539
9540 tree
9541 build_empty_stmt (location_t loc)
9542 {
9543 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9544 SET_EXPR_LOCATION (t, loc);
9545 return t;
9546 }
9547
9548
9549 /* Build an OpenMP clause with code CODE. LOC is the location of the
9550 clause. */
9551
9552 tree
9553 build_omp_clause (location_t loc, enum omp_clause_code code)
9554 {
9555 tree t;
9556 int size, length;
9557
9558 length = omp_clause_num_ops[code];
9559 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9560
9561 t = ggc_alloc_tree_node (size);
9562 memset (t, 0, size);
9563 TREE_SET_CODE (t, OMP_CLAUSE);
9564 OMP_CLAUSE_SET_CODE (t, code);
9565 OMP_CLAUSE_LOCATION (t) = loc;
9566
9567 #ifdef GATHER_STATISTICS
9568 tree_node_counts[(int) omp_clause_kind]++;
9569 tree_node_sizes[(int) omp_clause_kind] += size;
9570 #endif
9571
9572 return t;
9573 }
9574
9575 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9576 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9577 Except for the CODE and operand count field, other storage for the
9578 object is initialized to zeros. */
9579
9580 tree
9581 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9582 {
9583 tree t;
9584 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9585
9586 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9587 gcc_assert (len >= 1);
9588
9589 #ifdef GATHER_STATISTICS
9590 tree_node_counts[(int) e_kind]++;
9591 tree_node_sizes[(int) e_kind] += length;
9592 #endif
9593
9594 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9595
9596 TREE_SET_CODE (t, code);
9597
9598 /* Can't use TREE_OPERAND to store the length because if checking is
9599 enabled, it will try to check the length before we store it. :-P */
9600 t->exp.operands[0] = build_int_cst (sizetype, len);
9601
9602 return t;
9603 }
9604
9605 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9606 FN and a null static chain slot. NARGS is the number of call arguments
9607 which are specified as "..." arguments. */
9608
9609 tree
9610 build_call_nary (tree return_type, tree fn, int nargs, ...)
9611 {
9612 tree ret;
9613 va_list args;
9614 va_start (args, nargs);
9615 ret = build_call_valist (return_type, fn, nargs, args);
9616 va_end (args);
9617 return ret;
9618 }
9619
9620 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9621 FN and a null static chain slot. NARGS is the number of call arguments
9622 which are specified as a va_list ARGS. */
9623
9624 tree
9625 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9626 {
9627 tree t;
9628 int i;
9629
9630 t = build_vl_exp (CALL_EXPR, nargs + 3);
9631 TREE_TYPE (t) = return_type;
9632 CALL_EXPR_FN (t) = fn;
9633 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9634 for (i = 0; i < nargs; i++)
9635 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9636 process_call_operands (t);
9637 return t;
9638 }
9639
9640 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9641 FN and a null static chain slot. NARGS is the number of call arguments
9642 which are specified as a tree array ARGS. */
9643
9644 tree
9645 build_call_array_loc (location_t loc, tree return_type, tree fn,
9646 int nargs, const tree *args)
9647 {
9648 tree t;
9649 int i;
9650
9651 t = build_vl_exp (CALL_EXPR, nargs + 3);
9652 TREE_TYPE (t) = return_type;
9653 CALL_EXPR_FN (t) = fn;
9654 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9655 for (i = 0; i < nargs; i++)
9656 CALL_EXPR_ARG (t, i) = args[i];
9657 process_call_operands (t);
9658 SET_EXPR_LOCATION (t, loc);
9659 return t;
9660 }
9661
9662 /* Like build_call_array, but takes a VEC. */
9663
9664 tree
9665 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9666 {
9667 tree ret, t;
9668 unsigned int ix;
9669
9670 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9671 TREE_TYPE (ret) = return_type;
9672 CALL_EXPR_FN (ret) = fn;
9673 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9674 FOR_EACH_VEC_ELT (tree, args, ix, t)
9675 CALL_EXPR_ARG (ret, ix) = t;
9676 process_call_operands (ret);
9677 return ret;
9678 }
9679
9680
9681 /* Returns true if it is possible to prove that the index of
9682 an array access REF (an ARRAY_REF expression) falls into the
9683 array bounds. */
9684
9685 bool
9686 in_array_bounds_p (tree ref)
9687 {
9688 tree idx = TREE_OPERAND (ref, 1);
9689 tree min, max;
9690
9691 if (TREE_CODE (idx) != INTEGER_CST)
9692 return false;
9693
9694 min = array_ref_low_bound (ref);
9695 max = array_ref_up_bound (ref);
9696 if (!min
9697 || !max
9698 || TREE_CODE (min) != INTEGER_CST
9699 || TREE_CODE (max) != INTEGER_CST)
9700 return false;
9701
9702 if (tree_int_cst_lt (idx, min)
9703 || tree_int_cst_lt (max, idx))
9704 return false;
9705
9706 return true;
9707 }
9708
9709 /* Returns true if it is possible to prove that the range of
9710 an array access REF (an ARRAY_RANGE_REF expression) falls
9711 into the array bounds. */
9712
9713 bool
9714 range_in_array_bounds_p (tree ref)
9715 {
9716 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9717 tree range_min, range_max, min, max;
9718
9719 range_min = TYPE_MIN_VALUE (domain_type);
9720 range_max = TYPE_MAX_VALUE (domain_type);
9721 if (!range_min
9722 || !range_max
9723 || TREE_CODE (range_min) != INTEGER_CST
9724 || TREE_CODE (range_max) != INTEGER_CST)
9725 return false;
9726
9727 min = array_ref_low_bound (ref);
9728 max = array_ref_up_bound (ref);
9729 if (!min
9730 || !max
9731 || TREE_CODE (min) != INTEGER_CST
9732 || TREE_CODE (max) != INTEGER_CST)
9733 return false;
9734
9735 if (tree_int_cst_lt (range_min, min)
9736 || tree_int_cst_lt (max, range_max))
9737 return false;
9738
9739 return true;
9740 }
9741
9742 /* Return true if T (assumed to be a DECL) must be assigned a memory
9743 location. */
9744
9745 bool
9746 needs_to_live_in_memory (const_tree t)
9747 {
9748 if (TREE_CODE (t) == SSA_NAME)
9749 t = SSA_NAME_VAR (t);
9750
9751 return (TREE_ADDRESSABLE (t)
9752 || is_global_var (t)
9753 || (TREE_CODE (t) == RESULT_DECL
9754 && !DECL_BY_REFERENCE (t)
9755 && aggregate_value_p (t, current_function_decl)));
9756 }
9757
9758 /* There are situations in which a language considers record types
9759 compatible which have different field lists. Decide if two fields
9760 are compatible. It is assumed that the parent records are compatible. */
9761
9762 bool
9763 fields_compatible_p (const_tree f1, const_tree f2)
9764 {
9765 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9766 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9767 return false;
9768
9769 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9770 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9771 return false;
9772
9773 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9774 return false;
9775
9776 return true;
9777 }
9778
9779 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9780
9781 tree
9782 find_compatible_field (tree record, tree orig_field)
9783 {
9784 tree f;
9785
9786 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9787 if (TREE_CODE (f) == FIELD_DECL
9788 && fields_compatible_p (f, orig_field))
9789 return f;
9790
9791 /* ??? Why isn't this on the main fields list? */
9792 f = TYPE_VFIELD (record);
9793 if (f && TREE_CODE (f) == FIELD_DECL
9794 && fields_compatible_p (f, orig_field))
9795 return f;
9796
9797 /* ??? We should abort here, but Java appears to do Bad Things
9798 with inherited fields. */
9799 return orig_field;
9800 }
9801
9802 /* Return value of a constant X and sign-extend it. */
9803
9804 HOST_WIDE_INT
9805 int_cst_value (const_tree x)
9806 {
9807 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9808 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9809
9810 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9811 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9812 || TREE_INT_CST_HIGH (x) == -1);
9813
9814 if (bits < HOST_BITS_PER_WIDE_INT)
9815 {
9816 bool negative = ((val >> (bits - 1)) & 1) != 0;
9817 if (negative)
9818 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9819 else
9820 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9821 }
9822
9823 return val;
9824 }
9825
9826 /* Return value of a constant X and sign-extend it. */
9827
9828 HOST_WIDEST_INT
9829 widest_int_cst_value (const_tree x)
9830 {
9831 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9832 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9833
9834 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9835 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9836 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9837 << HOST_BITS_PER_WIDE_INT);
9838 #else
9839 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9840 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9841 || TREE_INT_CST_HIGH (x) == -1);
9842 #endif
9843
9844 if (bits < HOST_BITS_PER_WIDEST_INT)
9845 {
9846 bool negative = ((val >> (bits - 1)) & 1) != 0;
9847 if (negative)
9848 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9849 else
9850 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9851 }
9852
9853 return val;
9854 }
9855
9856 /* If TYPE is an integral type, return an equivalent type which is
9857 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9858 return TYPE itself. */
9859
9860 tree
9861 signed_or_unsigned_type_for (int unsignedp, tree type)
9862 {
9863 tree t = type;
9864 if (POINTER_TYPE_P (type))
9865 {
9866 /* If the pointer points to the normal address space, use the
9867 size_type_node. Otherwise use an appropriate size for the pointer
9868 based on the named address space it points to. */
9869 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9870 t = size_type_node;
9871 else
9872 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9873 }
9874
9875 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9876 return t;
9877
9878 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9879 }
9880
9881 /* Returns unsigned variant of TYPE. */
9882
9883 tree
9884 unsigned_type_for (tree type)
9885 {
9886 return signed_or_unsigned_type_for (1, type);
9887 }
9888
9889 /* Returns signed variant of TYPE. */
9890
9891 tree
9892 signed_type_for (tree type)
9893 {
9894 return signed_or_unsigned_type_for (0, type);
9895 }
9896
9897 /* Returns the largest value obtainable by casting something in INNER type to
9898 OUTER type. */
9899
9900 tree
9901 upper_bound_in_type (tree outer, tree inner)
9902 {
9903 unsigned HOST_WIDE_INT lo, hi;
9904 unsigned int det = 0;
9905 unsigned oprec = TYPE_PRECISION (outer);
9906 unsigned iprec = TYPE_PRECISION (inner);
9907 unsigned prec;
9908
9909 /* Compute a unique number for every combination. */
9910 det |= (oprec > iprec) ? 4 : 0;
9911 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9912 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9913
9914 /* Determine the exponent to use. */
9915 switch (det)
9916 {
9917 case 0:
9918 case 1:
9919 /* oprec <= iprec, outer: signed, inner: don't care. */
9920 prec = oprec - 1;
9921 break;
9922 case 2:
9923 case 3:
9924 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9925 prec = oprec;
9926 break;
9927 case 4:
9928 /* oprec > iprec, outer: signed, inner: signed. */
9929 prec = iprec - 1;
9930 break;
9931 case 5:
9932 /* oprec > iprec, outer: signed, inner: unsigned. */
9933 prec = iprec;
9934 break;
9935 case 6:
9936 /* oprec > iprec, outer: unsigned, inner: signed. */
9937 prec = oprec;
9938 break;
9939 case 7:
9940 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9941 prec = iprec;
9942 break;
9943 default:
9944 gcc_unreachable ();
9945 }
9946
9947 /* Compute 2^^prec - 1. */
9948 if (prec <= HOST_BITS_PER_WIDE_INT)
9949 {
9950 hi = 0;
9951 lo = ((~(unsigned HOST_WIDE_INT) 0)
9952 >> (HOST_BITS_PER_WIDE_INT - prec));
9953 }
9954 else
9955 {
9956 hi = ((~(unsigned HOST_WIDE_INT) 0)
9957 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9958 lo = ~(unsigned HOST_WIDE_INT) 0;
9959 }
9960
9961 return build_int_cst_wide (outer, lo, hi);
9962 }
9963
9964 /* Returns the smallest value obtainable by casting something in INNER type to
9965 OUTER type. */
9966
9967 tree
9968 lower_bound_in_type (tree outer, tree inner)
9969 {
9970 unsigned HOST_WIDE_INT lo, hi;
9971 unsigned oprec = TYPE_PRECISION (outer);
9972 unsigned iprec = TYPE_PRECISION (inner);
9973
9974 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9975 and obtain 0. */
9976 if (TYPE_UNSIGNED (outer)
9977 /* If we are widening something of an unsigned type, OUTER type
9978 contains all values of INNER type. In particular, both INNER
9979 and OUTER types have zero in common. */
9980 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9981 lo = hi = 0;
9982 else
9983 {
9984 /* If we are widening a signed type to another signed type, we
9985 want to obtain -2^^(iprec-1). If we are keeping the
9986 precision or narrowing to a signed type, we want to obtain
9987 -2^(oprec-1). */
9988 unsigned prec = oprec > iprec ? iprec : oprec;
9989
9990 if (prec <= HOST_BITS_PER_WIDE_INT)
9991 {
9992 hi = ~(unsigned HOST_WIDE_INT) 0;
9993 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
9994 }
9995 else
9996 {
9997 hi = ((~(unsigned HOST_WIDE_INT) 0)
9998 << (prec - HOST_BITS_PER_WIDE_INT - 1));
9999 lo = 0;
10000 }
10001 }
10002
10003 return build_int_cst_wide (outer, lo, hi);
10004 }
10005
10006 /* Return nonzero if two operands that are suitable for PHI nodes are
10007 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10008 SSA_NAME or invariant. Note that this is strictly an optimization.
10009 That is, callers of this function can directly call operand_equal_p
10010 and get the same result, only slower. */
10011
10012 int
10013 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10014 {
10015 if (arg0 == arg1)
10016 return 1;
10017 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10018 return 0;
10019 return operand_equal_p (arg0, arg1, 0);
10020 }
10021
10022 /* Returns number of zeros at the end of binary representation of X.
10023
10024 ??? Use ffs if available? */
10025
10026 tree
10027 num_ending_zeros (const_tree x)
10028 {
10029 unsigned HOST_WIDE_INT fr, nfr;
10030 unsigned num, abits;
10031 tree type = TREE_TYPE (x);
10032
10033 if (TREE_INT_CST_LOW (x) == 0)
10034 {
10035 num = HOST_BITS_PER_WIDE_INT;
10036 fr = TREE_INT_CST_HIGH (x);
10037 }
10038 else
10039 {
10040 num = 0;
10041 fr = TREE_INT_CST_LOW (x);
10042 }
10043
10044 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10045 {
10046 nfr = fr >> abits;
10047 if (nfr << abits == fr)
10048 {
10049 num += abits;
10050 fr = nfr;
10051 }
10052 }
10053
10054 if (num > TYPE_PRECISION (type))
10055 num = TYPE_PRECISION (type);
10056
10057 return build_int_cst_type (type, num);
10058 }
10059
10060
10061 #define WALK_SUBTREE(NODE) \
10062 do \
10063 { \
10064 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10065 if (result) \
10066 return result; \
10067 } \
10068 while (0)
10069
10070 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10071 be walked whenever a type is seen in the tree. Rest of operands and return
10072 value are as for walk_tree. */
10073
10074 static tree
10075 walk_type_fields (tree type, walk_tree_fn func, void *data,
10076 struct pointer_set_t *pset, walk_tree_lh lh)
10077 {
10078 tree result = NULL_TREE;
10079
10080 switch (TREE_CODE (type))
10081 {
10082 case POINTER_TYPE:
10083 case REFERENCE_TYPE:
10084 /* We have to worry about mutually recursive pointers. These can't
10085 be written in C. They can in Ada. It's pathological, but
10086 there's an ACATS test (c38102a) that checks it. Deal with this
10087 by checking if we're pointing to another pointer, that one
10088 points to another pointer, that one does too, and we have no htab.
10089 If so, get a hash table. We check three levels deep to avoid
10090 the cost of the hash table if we don't need one. */
10091 if (POINTER_TYPE_P (TREE_TYPE (type))
10092 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10093 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10094 && !pset)
10095 {
10096 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10097 func, data);
10098 if (result)
10099 return result;
10100
10101 break;
10102 }
10103
10104 /* ... fall through ... */
10105
10106 case COMPLEX_TYPE:
10107 WALK_SUBTREE (TREE_TYPE (type));
10108 break;
10109
10110 case METHOD_TYPE:
10111 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10112
10113 /* Fall through. */
10114
10115 case FUNCTION_TYPE:
10116 WALK_SUBTREE (TREE_TYPE (type));
10117 {
10118 tree arg;
10119
10120 /* We never want to walk into default arguments. */
10121 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10122 WALK_SUBTREE (TREE_VALUE (arg));
10123 }
10124 break;
10125
10126 case ARRAY_TYPE:
10127 /* Don't follow this nodes's type if a pointer for fear that
10128 we'll have infinite recursion. If we have a PSET, then we
10129 need not fear. */
10130 if (pset
10131 || (!POINTER_TYPE_P (TREE_TYPE (type))
10132 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10133 WALK_SUBTREE (TREE_TYPE (type));
10134 WALK_SUBTREE (TYPE_DOMAIN (type));
10135 break;
10136
10137 case OFFSET_TYPE:
10138 WALK_SUBTREE (TREE_TYPE (type));
10139 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10140 break;
10141
10142 default:
10143 break;
10144 }
10145
10146 return NULL_TREE;
10147 }
10148
10149 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10150 called with the DATA and the address of each sub-tree. If FUNC returns a
10151 non-NULL value, the traversal is stopped, and the value returned by FUNC
10152 is returned. If PSET is non-NULL it is used to record the nodes visited,
10153 and to avoid visiting a node more than once. */
10154
10155 tree
10156 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10157 struct pointer_set_t *pset, walk_tree_lh lh)
10158 {
10159 enum tree_code code;
10160 int walk_subtrees;
10161 tree result;
10162
10163 #define WALK_SUBTREE_TAIL(NODE) \
10164 do \
10165 { \
10166 tp = & (NODE); \
10167 goto tail_recurse; \
10168 } \
10169 while (0)
10170
10171 tail_recurse:
10172 /* Skip empty subtrees. */
10173 if (!*tp)
10174 return NULL_TREE;
10175
10176 /* Don't walk the same tree twice, if the user has requested
10177 that we avoid doing so. */
10178 if (pset && pointer_set_insert (pset, *tp))
10179 return NULL_TREE;
10180
10181 /* Call the function. */
10182 walk_subtrees = 1;
10183 result = (*func) (tp, &walk_subtrees, data);
10184
10185 /* If we found something, return it. */
10186 if (result)
10187 return result;
10188
10189 code = TREE_CODE (*tp);
10190
10191 /* Even if we didn't, FUNC may have decided that there was nothing
10192 interesting below this point in the tree. */
10193 if (!walk_subtrees)
10194 {
10195 /* But we still need to check our siblings. */
10196 if (code == TREE_LIST)
10197 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10198 else if (code == OMP_CLAUSE)
10199 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10200 else
10201 return NULL_TREE;
10202 }
10203
10204 if (lh)
10205 {
10206 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10207 if (result || !walk_subtrees)
10208 return result;
10209 }
10210
10211 switch (code)
10212 {
10213 case ERROR_MARK:
10214 case IDENTIFIER_NODE:
10215 case INTEGER_CST:
10216 case REAL_CST:
10217 case FIXED_CST:
10218 case VECTOR_CST:
10219 case STRING_CST:
10220 case BLOCK:
10221 case PLACEHOLDER_EXPR:
10222 case SSA_NAME:
10223 case FIELD_DECL:
10224 case RESULT_DECL:
10225 /* None of these have subtrees other than those already walked
10226 above. */
10227 break;
10228
10229 case TREE_LIST:
10230 WALK_SUBTREE (TREE_VALUE (*tp));
10231 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10232 break;
10233
10234 case TREE_VEC:
10235 {
10236 int len = TREE_VEC_LENGTH (*tp);
10237
10238 if (len == 0)
10239 break;
10240
10241 /* Walk all elements but the first. */
10242 while (--len)
10243 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10244
10245 /* Now walk the first one as a tail call. */
10246 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10247 }
10248
10249 case COMPLEX_CST:
10250 WALK_SUBTREE (TREE_REALPART (*tp));
10251 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10252
10253 case CONSTRUCTOR:
10254 {
10255 unsigned HOST_WIDE_INT idx;
10256 constructor_elt *ce;
10257
10258 for (idx = 0;
10259 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10260 idx++)
10261 WALK_SUBTREE (ce->value);
10262 }
10263 break;
10264
10265 case SAVE_EXPR:
10266 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10267
10268 case BIND_EXPR:
10269 {
10270 tree decl;
10271 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10272 {
10273 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10274 into declarations that are just mentioned, rather than
10275 declared; they don't really belong to this part of the tree.
10276 And, we can see cycles: the initializer for a declaration
10277 can refer to the declaration itself. */
10278 WALK_SUBTREE (DECL_INITIAL (decl));
10279 WALK_SUBTREE (DECL_SIZE (decl));
10280 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10281 }
10282 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10283 }
10284
10285 case STATEMENT_LIST:
10286 {
10287 tree_stmt_iterator i;
10288 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10289 WALK_SUBTREE (*tsi_stmt_ptr (i));
10290 }
10291 break;
10292
10293 case OMP_CLAUSE:
10294 switch (OMP_CLAUSE_CODE (*tp))
10295 {
10296 case OMP_CLAUSE_PRIVATE:
10297 case OMP_CLAUSE_SHARED:
10298 case OMP_CLAUSE_FIRSTPRIVATE:
10299 case OMP_CLAUSE_COPYIN:
10300 case OMP_CLAUSE_COPYPRIVATE:
10301 case OMP_CLAUSE_IF:
10302 case OMP_CLAUSE_NUM_THREADS:
10303 case OMP_CLAUSE_SCHEDULE:
10304 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10305 /* FALLTHRU */
10306
10307 case OMP_CLAUSE_NOWAIT:
10308 case OMP_CLAUSE_ORDERED:
10309 case OMP_CLAUSE_DEFAULT:
10310 case OMP_CLAUSE_UNTIED:
10311 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10312
10313 case OMP_CLAUSE_LASTPRIVATE:
10314 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10315 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10316 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10317
10318 case OMP_CLAUSE_COLLAPSE:
10319 {
10320 int i;
10321 for (i = 0; i < 3; i++)
10322 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10323 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10324 }
10325
10326 case OMP_CLAUSE_REDUCTION:
10327 {
10328 int i;
10329 for (i = 0; i < 4; i++)
10330 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10331 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10332 }
10333
10334 default:
10335 gcc_unreachable ();
10336 }
10337 break;
10338
10339 case TARGET_EXPR:
10340 {
10341 int i, len;
10342
10343 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10344 But, we only want to walk once. */
10345 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10346 for (i = 0; i < len; ++i)
10347 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10348 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10349 }
10350
10351 case DECL_EXPR:
10352 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10353 defining. We only want to walk into these fields of a type in this
10354 case and not in the general case of a mere reference to the type.
10355
10356 The criterion is as follows: if the field can be an expression, it
10357 must be walked only here. This should be in keeping with the fields
10358 that are directly gimplified in gimplify_type_sizes in order for the
10359 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10360 variable-sized types.
10361
10362 Note that DECLs get walked as part of processing the BIND_EXPR. */
10363 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10364 {
10365 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10366 if (TREE_CODE (*type_p) == ERROR_MARK)
10367 return NULL_TREE;
10368
10369 /* Call the function for the type. See if it returns anything or
10370 doesn't want us to continue. If we are to continue, walk both
10371 the normal fields and those for the declaration case. */
10372 result = (*func) (type_p, &walk_subtrees, data);
10373 if (result || !walk_subtrees)
10374 return result;
10375
10376 result = walk_type_fields (*type_p, func, data, pset, lh);
10377 if (result)
10378 return result;
10379
10380 /* If this is a record type, also walk the fields. */
10381 if (RECORD_OR_UNION_TYPE_P (*type_p))
10382 {
10383 tree field;
10384
10385 for (field = TYPE_FIELDS (*type_p); field;
10386 field = DECL_CHAIN (field))
10387 {
10388 /* We'd like to look at the type of the field, but we can
10389 easily get infinite recursion. So assume it's pointed
10390 to elsewhere in the tree. Also, ignore things that
10391 aren't fields. */
10392 if (TREE_CODE (field) != FIELD_DECL)
10393 continue;
10394
10395 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10396 WALK_SUBTREE (DECL_SIZE (field));
10397 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10398 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10399 WALK_SUBTREE (DECL_QUALIFIER (field));
10400 }
10401 }
10402
10403 /* Same for scalar types. */
10404 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10405 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10406 || TREE_CODE (*type_p) == INTEGER_TYPE
10407 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10408 || TREE_CODE (*type_p) == REAL_TYPE)
10409 {
10410 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10411 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10412 }
10413
10414 WALK_SUBTREE (TYPE_SIZE (*type_p));
10415 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10416 }
10417 /* FALLTHRU */
10418
10419 default:
10420 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10421 {
10422 int i, len;
10423
10424 /* Walk over all the sub-trees of this operand. */
10425 len = TREE_OPERAND_LENGTH (*tp);
10426
10427 /* Go through the subtrees. We need to do this in forward order so
10428 that the scope of a FOR_EXPR is handled properly. */
10429 if (len)
10430 {
10431 for (i = 0; i < len - 1; ++i)
10432 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10433 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10434 }
10435 }
10436 /* If this is a type, walk the needed fields in the type. */
10437 else if (TYPE_P (*tp))
10438 return walk_type_fields (*tp, func, data, pset, lh);
10439 break;
10440 }
10441
10442 /* We didn't find what we were looking for. */
10443 return NULL_TREE;
10444
10445 #undef WALK_SUBTREE_TAIL
10446 }
10447 #undef WALK_SUBTREE
10448
10449 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10450
10451 tree
10452 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10453 walk_tree_lh lh)
10454 {
10455 tree result;
10456 struct pointer_set_t *pset;
10457
10458 pset = pointer_set_create ();
10459 result = walk_tree_1 (tp, func, data, pset, lh);
10460 pointer_set_destroy (pset);
10461 return result;
10462 }
10463
10464
10465 tree *
10466 tree_block (tree t)
10467 {
10468 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10469
10470 if (IS_EXPR_CODE_CLASS (c))
10471 return &t->exp.block;
10472 gcc_unreachable ();
10473 return NULL;
10474 }
10475
10476 /* Create a nameless artificial label and put it in the current
10477 function context. The label has a location of LOC. Returns the
10478 newly created label. */
10479
10480 tree
10481 create_artificial_label (location_t loc)
10482 {
10483 tree lab = build_decl (loc,
10484 LABEL_DECL, NULL_TREE, void_type_node);
10485
10486 DECL_ARTIFICIAL (lab) = 1;
10487 DECL_IGNORED_P (lab) = 1;
10488 DECL_CONTEXT (lab) = current_function_decl;
10489 return lab;
10490 }
10491
10492 /* Given a tree, try to return a useful variable name that we can use
10493 to prefix a temporary that is being assigned the value of the tree.
10494 I.E. given <temp> = &A, return A. */
10495
10496 const char *
10497 get_name (tree t)
10498 {
10499 tree stripped_decl;
10500
10501 stripped_decl = t;
10502 STRIP_NOPS (stripped_decl);
10503 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10504 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10505 else
10506 {
10507 switch (TREE_CODE (stripped_decl))
10508 {
10509 case ADDR_EXPR:
10510 return get_name (TREE_OPERAND (stripped_decl, 0));
10511 default:
10512 return NULL;
10513 }
10514 }
10515 }
10516
10517 /* Return true if TYPE has a variable argument list. */
10518
10519 bool
10520 stdarg_p (const_tree fntype)
10521 {
10522 function_args_iterator args_iter;
10523 tree n = NULL_TREE, t;
10524
10525 if (!fntype)
10526 return false;
10527
10528 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10529 {
10530 n = t;
10531 }
10532
10533 return n != NULL_TREE && n != void_type_node;
10534 }
10535
10536 /* Return true if TYPE has a prototype. */
10537
10538 bool
10539 prototype_p (tree fntype)
10540 {
10541 tree t;
10542
10543 gcc_assert (fntype != NULL_TREE);
10544
10545 t = TYPE_ARG_TYPES (fntype);
10546 return (t != NULL_TREE);
10547 }
10548
10549 /* If BLOCK is inlined from an __attribute__((__artificial__))
10550 routine, return pointer to location from where it has been
10551 called. */
10552 location_t *
10553 block_nonartificial_location (tree block)
10554 {
10555 location_t *ret = NULL;
10556
10557 while (block && TREE_CODE (block) == BLOCK
10558 && BLOCK_ABSTRACT_ORIGIN (block))
10559 {
10560 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10561
10562 while (TREE_CODE (ao) == BLOCK
10563 && BLOCK_ABSTRACT_ORIGIN (ao)
10564 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10565 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10566
10567 if (TREE_CODE (ao) == FUNCTION_DECL)
10568 {
10569 /* If AO is an artificial inline, point RET to the
10570 call site locus at which it has been inlined and continue
10571 the loop, in case AO's caller is also an artificial
10572 inline. */
10573 if (DECL_DECLARED_INLINE_P (ao)
10574 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10575 ret = &BLOCK_SOURCE_LOCATION (block);
10576 else
10577 break;
10578 }
10579 else if (TREE_CODE (ao) != BLOCK)
10580 break;
10581
10582 block = BLOCK_SUPERCONTEXT (block);
10583 }
10584 return ret;
10585 }
10586
10587
10588 /* If EXP is inlined from an __attribute__((__artificial__))
10589 function, return the location of the original call expression. */
10590
10591 location_t
10592 tree_nonartificial_location (tree exp)
10593 {
10594 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10595
10596 if (loc)
10597 return *loc;
10598 else
10599 return EXPR_LOCATION (exp);
10600 }
10601
10602
10603 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10604 nodes. */
10605
10606 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10607
10608 static hashval_t
10609 cl_option_hash_hash (const void *x)
10610 {
10611 const_tree const t = (const_tree) x;
10612 const char *p;
10613 size_t i;
10614 size_t len = 0;
10615 hashval_t hash = 0;
10616
10617 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10618 {
10619 p = (const char *)TREE_OPTIMIZATION (t);
10620 len = sizeof (struct cl_optimization);
10621 }
10622
10623 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10624 {
10625 p = (const char *)TREE_TARGET_OPTION (t);
10626 len = sizeof (struct cl_target_option);
10627 }
10628
10629 else
10630 gcc_unreachable ();
10631
10632 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10633 something else. */
10634 for (i = 0; i < len; i++)
10635 if (p[i])
10636 hash = (hash << 4) ^ ((i << 2) | p[i]);
10637
10638 return hash;
10639 }
10640
10641 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10642 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10643 same. */
10644
10645 static int
10646 cl_option_hash_eq (const void *x, const void *y)
10647 {
10648 const_tree const xt = (const_tree) x;
10649 const_tree const yt = (const_tree) y;
10650 const char *xp;
10651 const char *yp;
10652 size_t len;
10653
10654 if (TREE_CODE (xt) != TREE_CODE (yt))
10655 return 0;
10656
10657 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10658 {
10659 xp = (const char *)TREE_OPTIMIZATION (xt);
10660 yp = (const char *)TREE_OPTIMIZATION (yt);
10661 len = sizeof (struct cl_optimization);
10662 }
10663
10664 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10665 {
10666 xp = (const char *)TREE_TARGET_OPTION (xt);
10667 yp = (const char *)TREE_TARGET_OPTION (yt);
10668 len = sizeof (struct cl_target_option);
10669 }
10670
10671 else
10672 gcc_unreachable ();
10673
10674 return (memcmp (xp, yp, len) == 0);
10675 }
10676
10677 /* Build an OPTIMIZATION_NODE based on the current options. */
10678
10679 tree
10680 build_optimization_node (void)
10681 {
10682 tree t;
10683 void **slot;
10684
10685 /* Use the cache of optimization nodes. */
10686
10687 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
10688 &global_options);
10689
10690 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10691 t = (tree) *slot;
10692 if (!t)
10693 {
10694 /* Insert this one into the hash table. */
10695 t = cl_optimization_node;
10696 *slot = t;
10697
10698 /* Make a new node for next time round. */
10699 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10700 }
10701
10702 return t;
10703 }
10704
10705 /* Build a TARGET_OPTION_NODE based on the current options. */
10706
10707 tree
10708 build_target_option_node (void)
10709 {
10710 tree t;
10711 void **slot;
10712
10713 /* Use the cache of optimization nodes. */
10714
10715 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
10716 &global_options);
10717
10718 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10719 t = (tree) *slot;
10720 if (!t)
10721 {
10722 /* Insert this one into the hash table. */
10723 t = cl_target_option_node;
10724 *slot = t;
10725
10726 /* Make a new node for next time round. */
10727 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10728 }
10729
10730 return t;
10731 }
10732
10733 /* Determine the "ultimate origin" of a block. The block may be an inlined
10734 instance of an inlined instance of a block which is local to an inline
10735 function, so we have to trace all of the way back through the origin chain
10736 to find out what sort of node actually served as the original seed for the
10737 given block. */
10738
10739 tree
10740 block_ultimate_origin (const_tree block)
10741 {
10742 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10743
10744 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10745 nodes in the function to point to themselves; ignore that if
10746 we're trying to output the abstract instance of this function. */
10747 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10748 return NULL_TREE;
10749
10750 if (immediate_origin == NULL_TREE)
10751 return NULL_TREE;
10752 else
10753 {
10754 tree ret_val;
10755 tree lookahead = immediate_origin;
10756
10757 do
10758 {
10759 ret_val = lookahead;
10760 lookahead = (TREE_CODE (ret_val) == BLOCK
10761 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10762 }
10763 while (lookahead != NULL && lookahead != ret_val);
10764
10765 /* The block's abstract origin chain may not be the *ultimate* origin of
10766 the block. It could lead to a DECL that has an abstract origin set.
10767 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10768 will give us if it has one). Note that DECL's abstract origins are
10769 supposed to be the most distant ancestor (or so decl_ultimate_origin
10770 claims), so we don't need to loop following the DECL origins. */
10771 if (DECL_P (ret_val))
10772 return DECL_ORIGIN (ret_val);
10773
10774 return ret_val;
10775 }
10776 }
10777
10778 /* Return true if T1 and T2 are equivalent lists. */
10779
10780 bool
10781 list_equal_p (const_tree t1, const_tree t2)
10782 {
10783 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10784 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10785 return false;
10786 return !t1 && !t2;
10787 }
10788
10789 /* Return true iff conversion in EXP generates no instruction. Mark
10790 it inline so that we fully inline into the stripping functions even
10791 though we have two uses of this function. */
10792
10793 static inline bool
10794 tree_nop_conversion (const_tree exp)
10795 {
10796 tree outer_type, inner_type;
10797
10798 if (!CONVERT_EXPR_P (exp)
10799 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10800 return false;
10801 if (TREE_OPERAND (exp, 0) == error_mark_node)
10802 return false;
10803
10804 outer_type = TREE_TYPE (exp);
10805 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10806
10807 if (!inner_type)
10808 return false;
10809
10810 /* Use precision rather then machine mode when we can, which gives
10811 the correct answer even for submode (bit-field) types. */
10812 if ((INTEGRAL_TYPE_P (outer_type)
10813 || POINTER_TYPE_P (outer_type)
10814 || TREE_CODE (outer_type) == OFFSET_TYPE)
10815 && (INTEGRAL_TYPE_P (inner_type)
10816 || POINTER_TYPE_P (inner_type)
10817 || TREE_CODE (inner_type) == OFFSET_TYPE))
10818 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10819
10820 /* Otherwise fall back on comparing machine modes (e.g. for
10821 aggregate types, floats). */
10822 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10823 }
10824
10825 /* Return true iff conversion in EXP generates no instruction. Don't
10826 consider conversions changing the signedness. */
10827
10828 static bool
10829 tree_sign_nop_conversion (const_tree exp)
10830 {
10831 tree outer_type, inner_type;
10832
10833 if (!tree_nop_conversion (exp))
10834 return false;
10835
10836 outer_type = TREE_TYPE (exp);
10837 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10838
10839 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10840 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10841 }
10842
10843 /* Strip conversions from EXP according to tree_nop_conversion and
10844 return the resulting expression. */
10845
10846 tree
10847 tree_strip_nop_conversions (tree exp)
10848 {
10849 while (tree_nop_conversion (exp))
10850 exp = TREE_OPERAND (exp, 0);
10851 return exp;
10852 }
10853
10854 /* Strip conversions from EXP according to tree_sign_nop_conversion
10855 and return the resulting expression. */
10856
10857 tree
10858 tree_strip_sign_nop_conversions (tree exp)
10859 {
10860 while (tree_sign_nop_conversion (exp))
10861 exp = TREE_OPERAND (exp, 0);
10862 return exp;
10863 }
10864
10865 static GTY(()) tree gcc_eh_personality_decl;
10866
10867 /* Return the GCC personality function decl. */
10868
10869 tree
10870 lhd_gcc_personality (void)
10871 {
10872 if (!gcc_eh_personality_decl)
10873 gcc_eh_personality_decl = build_personality_function ("gcc");
10874 return gcc_eh_personality_decl;
10875 }
10876
10877 /* Try to find a base info of BINFO that would have its field decl at offset
10878 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10879 found, return, otherwise return NULL_TREE. */
10880
10881 tree
10882 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10883 {
10884 tree type;
10885
10886 if (offset == 0)
10887 return binfo;
10888
10889 type = TREE_TYPE (binfo);
10890 while (offset > 0)
10891 {
10892 tree base_binfo, found_binfo;
10893 HOST_WIDE_INT pos, size;
10894 tree fld;
10895 int i;
10896
10897 if (TREE_CODE (type) != RECORD_TYPE)
10898 return NULL_TREE;
10899
10900 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
10901 {
10902 if (TREE_CODE (fld) != FIELD_DECL)
10903 continue;
10904
10905 pos = int_bit_position (fld);
10906 size = tree_low_cst (DECL_SIZE (fld), 1);
10907 if (pos <= offset && (pos + size) > offset)
10908 break;
10909 }
10910 if (!fld)
10911 return NULL_TREE;
10912
10913 found_binfo = NULL_TREE;
10914 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
10915 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
10916 {
10917 found_binfo = base_binfo;
10918 break;
10919 }
10920
10921 if (!found_binfo)
10922 return NULL_TREE;
10923
10924 type = TREE_TYPE (fld);
10925 binfo = found_binfo;
10926 offset -= pos;
10927 }
10928 if (type != expected_type)
10929 return NULL_TREE;
10930 return binfo;
10931 }
10932
10933 /* Returns true if X is a typedef decl. */
10934
10935 bool
10936 is_typedef_decl (tree x)
10937 {
10938 return (x && TREE_CODE (x) == TYPE_DECL
10939 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
10940 }
10941
10942 /* Returns true iff TYPE is a type variant created for a typedef. */
10943
10944 bool
10945 typedef_variant_p (tree type)
10946 {
10947 return is_typedef_decl (TYPE_NAME (type));
10948 }
10949
10950 #include "gt-tree.h"