tree-complex.c (expand_complex_libcall): New.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52
53 /* Each tree code class has an associated string representation.
54 These must correspond to the tree_code_class entries. */
55
56 const char *const tree_code_class_strings[] =
57 {
58 "exceptional",
59 "constant",
60 "type",
61 "declaration",
62 "reference",
63 "comparison",
64 "unary",
65 "binary",
66 "statement",
67 "expression",
68 };
69
70 /* obstack.[ch] explicitly declined to prototype this. */
71 extern int _obstack_allocated_p (struct obstack *h, void *obj);
72
73 #ifdef GATHER_STATISTICS
74 /* Statistics-gathering stuff. */
75
76 int tree_node_counts[(int) all_kinds];
77 int tree_node_sizes[(int) all_kinds];
78
79 /* Keep in sync with tree.h:enum tree_node_kind. */
80 static const char * const tree_node_kind_names[] = {
81 "decls",
82 "types",
83 "blocks",
84 "stmts",
85 "refs",
86 "exprs",
87 "constants",
88 "identifiers",
89 "perm_tree_lists",
90 "temp_tree_lists",
91 "vecs",
92 "binfos",
93 "phi_nodes",
94 "ssa names",
95 "random kinds",
96 "lang_decl kinds",
97 "lang_type kinds"
98 };
99 #endif /* GATHER_STATISTICS */
100
101 /* Unique id for next decl created. */
102 static GTY(()) int next_decl_uid;
103 /* Unique id for next type created. */
104 static GTY(()) int next_type_uid = 1;
105
106 /* Since we cannot rehash a type after it is in the table, we have to
107 keep the hash code. */
108
109 struct type_hash GTY(())
110 {
111 unsigned long hash;
112 tree type;
113 };
114
115 /* Initial size of the hash table (rounded to next prime). */
116 #define TYPE_HASH_INITIAL_SIZE 1000
117
118 /* Now here is the hash table. When recording a type, it is added to
119 the slot whose index is the hash code. Note that the hash table is
120 used for several kinds of types (function types, array types and
121 array index range types, for now). While all these live in the
122 same table, they are completely independent, and the hash code is
123 computed differently for each of these. */
124
125 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
126 htab_t type_hash_table;
127
128 /* Hash table and temporary node for larger integer const values. */
129 static GTY (()) tree int_cst_node;
130 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
131 htab_t int_cst_hash_table;
132
133 static void set_type_quals (tree, int);
134 static int type_hash_eq (const void *, const void *);
135 static hashval_t type_hash_hash (const void *);
136 static hashval_t int_cst_hash_hash (const void *);
137 static int int_cst_hash_eq (const void *, const void *);
138 static void print_type_hash_statistics (void);
139 static tree make_vector_type (tree, int, enum machine_mode);
140 static int type_hash_marked_p (const void *);
141 static unsigned int type_hash_list (tree, hashval_t);
142 static unsigned int attribute_hash_list (tree, hashval_t);
143
144 tree global_trees[TI_MAX];
145 tree integer_types[itk_none];
146 \f
147 /* Init tree.c. */
148
149 void
150 init_ttree (void)
151 {
152 /* Initialize the hash table of types. */
153 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
154 type_hash_eq, 0);
155 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
156 int_cst_hash_eq, NULL);
157 int_cst_node = make_node (INTEGER_CST);
158 }
159
160 \f
161 /* The name of the object as the assembler will see it (but before any
162 translations made by ASM_OUTPUT_LABELREF). Often this is the same
163 as DECL_NAME. It is an IDENTIFIER_NODE. */
164 tree
165 decl_assembler_name (tree decl)
166 {
167 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
168 lang_hooks.set_decl_assembler_name (decl);
169 return DECL_CHECK (decl)->decl.assembler_name;
170 }
171
172 /* Compute the number of bytes occupied by a tree with code CODE.
173 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
174 codes, which are of variable length. */
175 size_t
176 tree_code_size (enum tree_code code)
177 {
178 switch (TREE_CODE_CLASS (code))
179 {
180 case tcc_declaration: /* A decl node */
181 return sizeof (struct tree_decl);
182
183 case tcc_type: /* a type node */
184 return sizeof (struct tree_type);
185
186 case tcc_reference: /* a reference */
187 case tcc_expression: /* an expression */
188 case tcc_statement: /* an expression with side effects */
189 case tcc_comparison: /* a comparison expression */
190 case tcc_unary: /* a unary arithmetic expression */
191 case tcc_binary: /* a binary arithmetic expression */
192 return (sizeof (struct tree_exp)
193 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
194
195 case tcc_constant: /* a constant */
196 switch (code)
197 {
198 case INTEGER_CST: return sizeof (struct tree_int_cst);
199 case REAL_CST: return sizeof (struct tree_real_cst);
200 case COMPLEX_CST: return sizeof (struct tree_complex);
201 case VECTOR_CST: return sizeof (struct tree_vector);
202 case STRING_CST: gcc_unreachable ();
203 default:
204 return lang_hooks.tree_size (code);
205 }
206
207 case tcc_exceptional: /* something random, like an identifier. */
208 switch (code)
209 {
210 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
211 case TREE_LIST: return sizeof (struct tree_list);
212
213 case ERROR_MARK:
214 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
215
216 case TREE_VEC:
217 case PHI_NODE: gcc_unreachable ();
218
219 case SSA_NAME: return sizeof (struct tree_ssa_name);
220
221 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
222 case BLOCK: return sizeof (struct tree_block);
223 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
224
225 default:
226 return lang_hooks.tree_size (code);
227 }
228
229 default:
230 gcc_unreachable ();
231 }
232 }
233
234 /* Compute the number of bytes occupied by NODE. This routine only
235 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
236 size_t
237 tree_size (tree node)
238 {
239 enum tree_code code = TREE_CODE (node);
240 switch (code)
241 {
242 case PHI_NODE:
243 return (sizeof (struct tree_phi_node)
244 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
245
246 case TREE_VEC:
247 return (sizeof (struct tree_vec)
248 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
249
250 case STRING_CST:
251 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
252
253 default:
254 return tree_code_size (code);
255 }
256 }
257
258 /* Return a newly allocated node of code CODE. For decl and type
259 nodes, some other fields are initialized. The rest of the node is
260 initialized to zero. This function cannot be used for PHI_NODE or
261 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
262
263 Achoo! I got a code in the node. */
264
265 tree
266 make_node_stat (enum tree_code code MEM_STAT_DECL)
267 {
268 tree t;
269 enum tree_code_class type = TREE_CODE_CLASS (code);
270 size_t length = tree_code_size (code);
271 #ifdef GATHER_STATISTICS
272 tree_node_kind kind;
273
274 switch (type)
275 {
276 case tcc_declaration: /* A decl node */
277 kind = d_kind;
278 break;
279
280 case tcc_type: /* a type node */
281 kind = t_kind;
282 break;
283
284 case tcc_statement: /* an expression with side effects */
285 kind = s_kind;
286 break;
287
288 case tcc_reference: /* a reference */
289 kind = r_kind;
290 break;
291
292 case tcc_expression: /* an expression */
293 case tcc_comparison: /* a comparison expression */
294 case tcc_unary: /* a unary arithmetic expression */
295 case tcc_binary: /* a binary arithmetic expression */
296 kind = e_kind;
297 break;
298
299 case tcc_constant: /* a constant */
300 kind = c_kind;
301 break;
302
303 case tcc_exceptional: /* something random, like an identifier. */
304 switch (code)
305 {
306 case IDENTIFIER_NODE:
307 kind = id_kind;
308 break;
309
310 case TREE_VEC:;
311 kind = vec_kind;
312 break;
313
314 case TREE_BINFO:
315 kind = binfo_kind;
316 break;
317
318 case PHI_NODE:
319 kind = phi_kind;
320 break;
321
322 case SSA_NAME:
323 kind = ssa_name_kind;
324 break;
325
326 case BLOCK:
327 kind = b_kind;
328 break;
329
330 default:
331 kind = x_kind;
332 break;
333 }
334 break;
335
336 default:
337 gcc_unreachable ();
338 }
339
340 tree_node_counts[(int) kind]++;
341 tree_node_sizes[(int) kind] += length;
342 #endif
343
344 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
345
346 memset (t, 0, length);
347
348 TREE_SET_CODE (t, code);
349
350 switch (type)
351 {
352 case tcc_statement:
353 TREE_SIDE_EFFECTS (t) = 1;
354 break;
355
356 case tcc_declaration:
357 if (code != FUNCTION_DECL)
358 DECL_ALIGN (t) = 1;
359 DECL_USER_ALIGN (t) = 0;
360 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
361 DECL_SOURCE_LOCATION (t) = input_location;
362 DECL_UID (t) = next_decl_uid++;
363
364 /* We have not yet computed the alias set for this declaration. */
365 DECL_POINTER_ALIAS_SET (t) = -1;
366 break;
367
368 case tcc_type:
369 TYPE_UID (t) = next_type_uid++;
370 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
371 TYPE_USER_ALIGN (t) = 0;
372 TYPE_MAIN_VARIANT (t) = t;
373
374 /* Default to no attributes for type, but let target change that. */
375 TYPE_ATTRIBUTES (t) = NULL_TREE;
376 targetm.set_default_type_attributes (t);
377
378 /* We have not yet computed the alias set for this type. */
379 TYPE_ALIAS_SET (t) = -1;
380 break;
381
382 case tcc_constant:
383 TREE_CONSTANT (t) = 1;
384 TREE_INVARIANT (t) = 1;
385 break;
386
387 case tcc_expression:
388 switch (code)
389 {
390 case INIT_EXPR:
391 case MODIFY_EXPR:
392 case VA_ARG_EXPR:
393 case PREDECREMENT_EXPR:
394 case PREINCREMENT_EXPR:
395 case POSTDECREMENT_EXPR:
396 case POSTINCREMENT_EXPR:
397 /* All of these have side-effects, no matter what their
398 operands are. */
399 TREE_SIDE_EFFECTS (t) = 1;
400 break;
401
402 default:
403 break;
404 }
405 break;
406
407 default:
408 /* Other classes need no special treatment. */
409 break;
410 }
411
412 return t;
413 }
414 \f
415 /* Return a new node with the same contents as NODE except that its
416 TREE_CHAIN is zero and it has a fresh uid. */
417
418 tree
419 copy_node_stat (tree node MEM_STAT_DECL)
420 {
421 tree t;
422 enum tree_code code = TREE_CODE (node);
423 size_t length;
424
425 gcc_assert (code != STATEMENT_LIST);
426
427 length = tree_size (node);
428 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
429 memcpy (t, node, length);
430
431 TREE_CHAIN (t) = 0;
432 TREE_ASM_WRITTEN (t) = 0;
433 TREE_VISITED (t) = 0;
434 t->common.ann = 0;
435
436 if (TREE_CODE_CLASS (code) == tcc_declaration)
437 DECL_UID (t) = next_decl_uid++;
438 else if (TREE_CODE_CLASS (code) == tcc_type)
439 {
440 TYPE_UID (t) = next_type_uid++;
441 /* The following is so that the debug code for
442 the copy is different from the original type.
443 The two statements usually duplicate each other
444 (because they clear fields of the same union),
445 but the optimizer should catch that. */
446 TYPE_SYMTAB_POINTER (t) = 0;
447 TYPE_SYMTAB_ADDRESS (t) = 0;
448
449 /* Do not copy the values cache. */
450 if (TYPE_CACHED_VALUES_P(t))
451 {
452 TYPE_CACHED_VALUES_P (t) = 0;
453 TYPE_CACHED_VALUES (t) = NULL_TREE;
454 }
455 }
456
457 return t;
458 }
459
460 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
461 For example, this can copy a list made of TREE_LIST nodes. */
462
463 tree
464 copy_list (tree list)
465 {
466 tree head;
467 tree prev, next;
468
469 if (list == 0)
470 return 0;
471
472 head = prev = copy_node (list);
473 next = TREE_CHAIN (list);
474 while (next)
475 {
476 TREE_CHAIN (prev) = copy_node (next);
477 prev = TREE_CHAIN (prev);
478 next = TREE_CHAIN (next);
479 }
480 return head;
481 }
482
483 \f
484 /* Create an INT_CST node with a LOW value sign extended. */
485
486 tree
487 build_int_cst (tree type, HOST_WIDE_INT low)
488 {
489 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
490 }
491
492 /* Create an INT_CST node with a LOW value zero extended. */
493
494 tree
495 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
496 {
497 return build_int_cst_wide (type, low, 0);
498 }
499
500 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
501 if it is negative. This function is similar to build_int_cst, but
502 the extra bits outside of the type precision are cleared. Constants
503 with these extra bits may confuse the fold so that it detects overflows
504 even in cases when they do not occur, and in general should be avoided.
505 We cannot however make this a default behavior of build_int_cst without
506 more intrusive changes, since there are parts of gcc that rely on the extra
507 precision of the integer constants. */
508
509 tree
510 build_int_cst_type (tree type, HOST_WIDE_INT low)
511 {
512 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
513 unsigned HOST_WIDE_INT hi;
514 unsigned bits;
515 bool signed_p;
516 bool negative;
517
518 if (!type)
519 type = integer_type_node;
520
521 bits = TYPE_PRECISION (type);
522 signed_p = !TYPE_UNSIGNED (type);
523
524 if (bits >= HOST_BITS_PER_WIDE_INT)
525 negative = (low < 0);
526 else
527 {
528 /* If the sign bit is inside precision of LOW, use it to determine
529 the sign of the constant. */
530 negative = ((val >> (bits - 1)) & 1) != 0;
531
532 /* Mask out the bits outside of the precision of the constant. */
533 if (signed_p && negative)
534 val = val | ((~(unsigned HOST_WIDE_INT) 0) << bits);
535 else
536 val = val & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
537 }
538
539 /* Determine the high bits. */
540 hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
541
542 /* For unsigned type we need to mask out the bits outside of the type
543 precision. */
544 if (!signed_p)
545 {
546 if (bits <= HOST_BITS_PER_WIDE_INT)
547 hi = 0;
548 else
549 {
550 bits -= HOST_BITS_PER_WIDE_INT;
551 hi = hi & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
552 }
553 }
554
555 return build_int_cst_wide (type, val, hi);
556 }
557
558 /* These are the hash table functions for the hash table of INTEGER_CST
559 nodes of a sizetype. */
560
561 /* Return the hash code code X, an INTEGER_CST. */
562
563 static hashval_t
564 int_cst_hash_hash (const void *x)
565 {
566 tree t = (tree) x;
567
568 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
569 ^ htab_hash_pointer (TREE_TYPE (t)));
570 }
571
572 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
573 is the same as that given by *Y, which is the same. */
574
575 static int
576 int_cst_hash_eq (const void *x, const void *y)
577 {
578 tree xt = (tree) x;
579 tree yt = (tree) y;
580
581 return (TREE_TYPE (xt) == TREE_TYPE (yt)
582 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
583 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
584 }
585
586 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
587 integer_type_node is used. The returned node is always shared.
588 For small integers we use a per-type vector cache, for larger ones
589 we use a single hash table. */
590
591 tree
592 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
593 {
594 tree t;
595 int ix = -1;
596 int limit = 0;
597
598 if (!type)
599 type = integer_type_node;
600
601 switch (TREE_CODE (type))
602 {
603 case POINTER_TYPE:
604 case REFERENCE_TYPE:
605 /* Cache NULL pointer. */
606 if (!hi && !low)
607 {
608 limit = 1;
609 ix = 0;
610 }
611 break;
612
613 case BOOLEAN_TYPE:
614 /* Cache false or true. */
615 limit = 2;
616 if (!hi && low < 2)
617 ix = low;
618 break;
619
620 case INTEGER_TYPE:
621 case CHAR_TYPE:
622 case OFFSET_TYPE:
623 if (TYPE_UNSIGNED (type))
624 {
625 /* Cache 0..N */
626 limit = INTEGER_SHARE_LIMIT;
627 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
628 ix = low;
629 }
630 else
631 {
632 /* Cache -1..N */
633 limit = INTEGER_SHARE_LIMIT + 1;
634 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
635 ix = low + 1;
636 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
637 ix = 0;
638 }
639 break;
640 default:
641 break;
642 }
643
644 if (ix >= 0)
645 {
646 /* Look for it in the type's vector of small shared ints. */
647 if (!TYPE_CACHED_VALUES_P (type))
648 {
649 TYPE_CACHED_VALUES_P (type) = 1;
650 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
651 }
652
653 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
654 if (t)
655 {
656 /* Make sure no one is clobbering the shared constant. */
657 gcc_assert (TREE_TYPE (t) == type);
658 gcc_assert (TREE_INT_CST_LOW (t) == low);
659 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
660 }
661 else
662 {
663 /* Create a new shared int. */
664 t = make_node (INTEGER_CST);
665
666 TREE_INT_CST_LOW (t) = low;
667 TREE_INT_CST_HIGH (t) = hi;
668 TREE_TYPE (t) = type;
669
670 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
671 }
672 }
673 else
674 {
675 /* Use the cache of larger shared ints. */
676 void **slot;
677
678 TREE_INT_CST_LOW (int_cst_node) = low;
679 TREE_INT_CST_HIGH (int_cst_node) = hi;
680 TREE_TYPE (int_cst_node) = type;
681
682 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
683 t = *slot;
684 if (!t)
685 {
686 /* Insert this one into the hash table. */
687 t = int_cst_node;
688 *slot = t;
689 /* Make a new node for next time round. */
690 int_cst_node = make_node (INTEGER_CST);
691 }
692 }
693
694 return t;
695 }
696
697 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
698 and the rest are zeros. */
699
700 tree
701 build_low_bits_mask (tree type, unsigned bits)
702 {
703 unsigned HOST_WIDE_INT low;
704 HOST_WIDE_INT high;
705 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
706
707 gcc_assert (bits <= TYPE_PRECISION (type));
708
709 if (bits == TYPE_PRECISION (type)
710 && !TYPE_UNSIGNED (type))
711 {
712 /* Sign extended all-ones mask. */
713 low = all_ones;
714 high = -1;
715 }
716 else if (bits <= HOST_BITS_PER_WIDE_INT)
717 {
718 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
719 high = 0;
720 }
721 else
722 {
723 bits -= HOST_BITS_PER_WIDE_INT;
724 low = all_ones;
725 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
726 }
727
728 return build_int_cst_wide (type, low, high);
729 }
730
731 /* Checks that X is integer constant that can be expressed in (unsigned)
732 HOST_WIDE_INT without loss of precision. */
733
734 bool
735 cst_and_fits_in_hwi (tree x)
736 {
737 if (TREE_CODE (x) != INTEGER_CST)
738 return false;
739
740 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
741 return false;
742
743 return (TREE_INT_CST_HIGH (x) == 0
744 || TREE_INT_CST_HIGH (x) == -1);
745 }
746
747 /* Return a new VECTOR_CST node whose type is TYPE and whose values
748 are in a list pointed by VALS. */
749
750 tree
751 build_vector (tree type, tree vals)
752 {
753 tree v = make_node (VECTOR_CST);
754 int over1 = 0, over2 = 0;
755 tree link;
756
757 TREE_VECTOR_CST_ELTS (v) = vals;
758 TREE_TYPE (v) = type;
759
760 /* Iterate through elements and check for overflow. */
761 for (link = vals; link; link = TREE_CHAIN (link))
762 {
763 tree value = TREE_VALUE (link);
764
765 over1 |= TREE_OVERFLOW (value);
766 over2 |= TREE_CONSTANT_OVERFLOW (value);
767 }
768
769 TREE_OVERFLOW (v) = over1;
770 TREE_CONSTANT_OVERFLOW (v) = over2;
771
772 return v;
773 }
774
775 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
776 are in a list pointed to by VALS. */
777 tree
778 build_constructor (tree type, tree vals)
779 {
780 tree c = make_node (CONSTRUCTOR);
781 TREE_TYPE (c) = type;
782 CONSTRUCTOR_ELTS (c) = vals;
783
784 /* ??? May not be necessary. Mirrors what build does. */
785 if (vals)
786 {
787 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
788 TREE_READONLY (c) = TREE_READONLY (vals);
789 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
790 TREE_INVARIANT (c) = TREE_INVARIANT (vals);
791 }
792
793 return c;
794 }
795
796 /* Return a new REAL_CST node whose type is TYPE and value is D. */
797
798 tree
799 build_real (tree type, REAL_VALUE_TYPE d)
800 {
801 tree v;
802 REAL_VALUE_TYPE *dp;
803 int overflow = 0;
804
805 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
806 Consider doing it via real_convert now. */
807
808 v = make_node (REAL_CST);
809 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
810 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
811
812 TREE_TYPE (v) = type;
813 TREE_REAL_CST_PTR (v) = dp;
814 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
815 return v;
816 }
817
818 /* Return a new REAL_CST node whose type is TYPE
819 and whose value is the integer value of the INTEGER_CST node I. */
820
821 REAL_VALUE_TYPE
822 real_value_from_int_cst (tree type, tree i)
823 {
824 REAL_VALUE_TYPE d;
825
826 /* Clear all bits of the real value type so that we can later do
827 bitwise comparisons to see if two values are the same. */
828 memset (&d, 0, sizeof d);
829
830 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
831 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
832 TYPE_UNSIGNED (TREE_TYPE (i)));
833 return d;
834 }
835
836 /* Given a tree representing an integer constant I, return a tree
837 representing the same value as a floating-point constant of type TYPE. */
838
839 tree
840 build_real_from_int_cst (tree type, tree i)
841 {
842 tree v;
843 int overflow = TREE_OVERFLOW (i);
844
845 v = build_real (type, real_value_from_int_cst (type, i));
846
847 TREE_OVERFLOW (v) |= overflow;
848 TREE_CONSTANT_OVERFLOW (v) |= overflow;
849 return v;
850 }
851
852 /* Return a newly constructed STRING_CST node whose value is
853 the LEN characters at STR.
854 The TREE_TYPE is not initialized. */
855
856 tree
857 build_string (int len, const char *str)
858 {
859 tree s;
860 size_t length;
861
862 length = len + sizeof (struct tree_string);
863
864 #ifdef GATHER_STATISTICS
865 tree_node_counts[(int) c_kind]++;
866 tree_node_sizes[(int) c_kind] += length;
867 #endif
868
869 s = ggc_alloc_tree (length);
870
871 memset (s, 0, sizeof (struct tree_common));
872 TREE_SET_CODE (s, STRING_CST);
873 TREE_STRING_LENGTH (s) = len;
874 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
875 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
876
877 return s;
878 }
879
880 /* Return a newly constructed COMPLEX_CST node whose value is
881 specified by the real and imaginary parts REAL and IMAG.
882 Both REAL and IMAG should be constant nodes. TYPE, if specified,
883 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
884
885 tree
886 build_complex (tree type, tree real, tree imag)
887 {
888 tree t = make_node (COMPLEX_CST);
889
890 TREE_REALPART (t) = real;
891 TREE_IMAGPART (t) = imag;
892 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
893 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
894 TREE_CONSTANT_OVERFLOW (t)
895 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
896 return t;
897 }
898
899 /* Build a BINFO with LEN language slots. */
900
901 tree
902 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
903 {
904 tree t;
905 size_t length = (offsetof (struct tree_binfo, base_binfos)
906 + VEC_embedded_size (tree, base_binfos));
907
908 #ifdef GATHER_STATISTICS
909 tree_node_counts[(int) binfo_kind]++;
910 tree_node_sizes[(int) binfo_kind] += length;
911 #endif
912
913 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
914
915 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
916
917 TREE_SET_CODE (t, TREE_BINFO);
918
919 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
920
921 return t;
922 }
923
924
925 /* Build a newly constructed TREE_VEC node of length LEN. */
926
927 tree
928 make_tree_vec_stat (int len MEM_STAT_DECL)
929 {
930 tree t;
931 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
932
933 #ifdef GATHER_STATISTICS
934 tree_node_counts[(int) vec_kind]++;
935 tree_node_sizes[(int) vec_kind] += length;
936 #endif
937
938 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
939
940 memset (t, 0, length);
941
942 TREE_SET_CODE (t, TREE_VEC);
943 TREE_VEC_LENGTH (t) = len;
944
945 return t;
946 }
947 \f
948 /* Return 1 if EXPR is the integer constant zero or a complex constant
949 of zero. */
950
951 int
952 integer_zerop (tree expr)
953 {
954 STRIP_NOPS (expr);
955
956 return ((TREE_CODE (expr) == INTEGER_CST
957 && ! TREE_CONSTANT_OVERFLOW (expr)
958 && TREE_INT_CST_LOW (expr) == 0
959 && TREE_INT_CST_HIGH (expr) == 0)
960 || (TREE_CODE (expr) == COMPLEX_CST
961 && integer_zerop (TREE_REALPART (expr))
962 && integer_zerop (TREE_IMAGPART (expr))));
963 }
964
965 /* Return 1 if EXPR is the integer constant one or the corresponding
966 complex constant. */
967
968 int
969 integer_onep (tree expr)
970 {
971 STRIP_NOPS (expr);
972
973 return ((TREE_CODE (expr) == INTEGER_CST
974 && ! TREE_CONSTANT_OVERFLOW (expr)
975 && TREE_INT_CST_LOW (expr) == 1
976 && TREE_INT_CST_HIGH (expr) == 0)
977 || (TREE_CODE (expr) == COMPLEX_CST
978 && integer_onep (TREE_REALPART (expr))
979 && integer_zerop (TREE_IMAGPART (expr))));
980 }
981
982 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
983 it contains. Likewise for the corresponding complex constant. */
984
985 int
986 integer_all_onesp (tree expr)
987 {
988 int prec;
989 int uns;
990
991 STRIP_NOPS (expr);
992
993 if (TREE_CODE (expr) == COMPLEX_CST
994 && integer_all_onesp (TREE_REALPART (expr))
995 && integer_zerop (TREE_IMAGPART (expr)))
996 return 1;
997
998 else if (TREE_CODE (expr) != INTEGER_CST
999 || TREE_CONSTANT_OVERFLOW (expr))
1000 return 0;
1001
1002 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1003 if (!uns)
1004 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1005 && TREE_INT_CST_HIGH (expr) == -1);
1006
1007 /* Note that using TYPE_PRECISION here is wrong. We care about the
1008 actual bits, not the (arbitrary) range of the type. */
1009 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1010 if (prec >= HOST_BITS_PER_WIDE_INT)
1011 {
1012 HOST_WIDE_INT high_value;
1013 int shift_amount;
1014
1015 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1016
1017 /* Can not handle precisions greater than twice the host int size. */
1018 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1019 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1020 /* Shifting by the host word size is undefined according to the ANSI
1021 standard, so we must handle this as a special case. */
1022 high_value = -1;
1023 else
1024 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1025
1026 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1027 && TREE_INT_CST_HIGH (expr) == high_value);
1028 }
1029 else
1030 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1031 }
1032
1033 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1034 one bit on). */
1035
1036 int
1037 integer_pow2p (tree expr)
1038 {
1039 int prec;
1040 HOST_WIDE_INT high, low;
1041
1042 STRIP_NOPS (expr);
1043
1044 if (TREE_CODE (expr) == COMPLEX_CST
1045 && integer_pow2p (TREE_REALPART (expr))
1046 && integer_zerop (TREE_IMAGPART (expr)))
1047 return 1;
1048
1049 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1050 return 0;
1051
1052 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1053 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1054 high = TREE_INT_CST_HIGH (expr);
1055 low = TREE_INT_CST_LOW (expr);
1056
1057 /* First clear all bits that are beyond the type's precision in case
1058 we've been sign extended. */
1059
1060 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1061 ;
1062 else if (prec > HOST_BITS_PER_WIDE_INT)
1063 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1064 else
1065 {
1066 high = 0;
1067 if (prec < HOST_BITS_PER_WIDE_INT)
1068 low &= ~((HOST_WIDE_INT) (-1) << prec);
1069 }
1070
1071 if (high == 0 && low == 0)
1072 return 0;
1073
1074 return ((high == 0 && (low & (low - 1)) == 0)
1075 || (low == 0 && (high & (high - 1)) == 0));
1076 }
1077
1078 /* Return 1 if EXPR is an integer constant other than zero or a
1079 complex constant other than zero. */
1080
1081 int
1082 integer_nonzerop (tree expr)
1083 {
1084 STRIP_NOPS (expr);
1085
1086 return ((TREE_CODE (expr) == INTEGER_CST
1087 && ! TREE_CONSTANT_OVERFLOW (expr)
1088 && (TREE_INT_CST_LOW (expr) != 0
1089 || TREE_INT_CST_HIGH (expr) != 0))
1090 || (TREE_CODE (expr) == COMPLEX_CST
1091 && (integer_nonzerop (TREE_REALPART (expr))
1092 || integer_nonzerop (TREE_IMAGPART (expr)))));
1093 }
1094
1095 /* Return the power of two represented by a tree node known to be a
1096 power of two. */
1097
1098 int
1099 tree_log2 (tree expr)
1100 {
1101 int prec;
1102 HOST_WIDE_INT high, low;
1103
1104 STRIP_NOPS (expr);
1105
1106 if (TREE_CODE (expr) == COMPLEX_CST)
1107 return tree_log2 (TREE_REALPART (expr));
1108
1109 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1110 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1111
1112 high = TREE_INT_CST_HIGH (expr);
1113 low = TREE_INT_CST_LOW (expr);
1114
1115 /* First clear all bits that are beyond the type's precision in case
1116 we've been sign extended. */
1117
1118 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1119 ;
1120 else if (prec > HOST_BITS_PER_WIDE_INT)
1121 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1122 else
1123 {
1124 high = 0;
1125 if (prec < HOST_BITS_PER_WIDE_INT)
1126 low &= ~((HOST_WIDE_INT) (-1) << prec);
1127 }
1128
1129 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1130 : exact_log2 (low));
1131 }
1132
1133 /* Similar, but return the largest integer Y such that 2 ** Y is less
1134 than or equal to EXPR. */
1135
1136 int
1137 tree_floor_log2 (tree expr)
1138 {
1139 int prec;
1140 HOST_WIDE_INT high, low;
1141
1142 STRIP_NOPS (expr);
1143
1144 if (TREE_CODE (expr) == COMPLEX_CST)
1145 return tree_log2 (TREE_REALPART (expr));
1146
1147 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1148 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1149
1150 high = TREE_INT_CST_HIGH (expr);
1151 low = TREE_INT_CST_LOW (expr);
1152
1153 /* First clear all bits that are beyond the type's precision in case
1154 we've been sign extended. Ignore if type's precision hasn't been set
1155 since what we are doing is setting it. */
1156
1157 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1158 ;
1159 else if (prec > HOST_BITS_PER_WIDE_INT)
1160 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1161 else
1162 {
1163 high = 0;
1164 if (prec < HOST_BITS_PER_WIDE_INT)
1165 low &= ~((HOST_WIDE_INT) (-1) << prec);
1166 }
1167
1168 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1169 : floor_log2 (low));
1170 }
1171
1172 /* Return 1 if EXPR is the real constant zero. */
1173
1174 int
1175 real_zerop (tree expr)
1176 {
1177 STRIP_NOPS (expr);
1178
1179 return ((TREE_CODE (expr) == REAL_CST
1180 && ! TREE_CONSTANT_OVERFLOW (expr)
1181 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1182 || (TREE_CODE (expr) == COMPLEX_CST
1183 && real_zerop (TREE_REALPART (expr))
1184 && real_zerop (TREE_IMAGPART (expr))));
1185 }
1186
1187 /* Return 1 if EXPR is the real constant one in real or complex form. */
1188
1189 int
1190 real_onep (tree expr)
1191 {
1192 STRIP_NOPS (expr);
1193
1194 return ((TREE_CODE (expr) == REAL_CST
1195 && ! TREE_CONSTANT_OVERFLOW (expr)
1196 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1197 || (TREE_CODE (expr) == COMPLEX_CST
1198 && real_onep (TREE_REALPART (expr))
1199 && real_zerop (TREE_IMAGPART (expr))));
1200 }
1201
1202 /* Return 1 if EXPR is the real constant two. */
1203
1204 int
1205 real_twop (tree expr)
1206 {
1207 STRIP_NOPS (expr);
1208
1209 return ((TREE_CODE (expr) == REAL_CST
1210 && ! TREE_CONSTANT_OVERFLOW (expr)
1211 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1212 || (TREE_CODE (expr) == COMPLEX_CST
1213 && real_twop (TREE_REALPART (expr))
1214 && real_zerop (TREE_IMAGPART (expr))));
1215 }
1216
1217 /* Return 1 if EXPR is the real constant minus one. */
1218
1219 int
1220 real_minus_onep (tree expr)
1221 {
1222 STRIP_NOPS (expr);
1223
1224 return ((TREE_CODE (expr) == REAL_CST
1225 && ! TREE_CONSTANT_OVERFLOW (expr)
1226 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1227 || (TREE_CODE (expr) == COMPLEX_CST
1228 && real_minus_onep (TREE_REALPART (expr))
1229 && real_zerop (TREE_IMAGPART (expr))));
1230 }
1231
1232 /* Nonzero if EXP is a constant or a cast of a constant. */
1233
1234 int
1235 really_constant_p (tree exp)
1236 {
1237 /* This is not quite the same as STRIP_NOPS. It does more. */
1238 while (TREE_CODE (exp) == NOP_EXPR
1239 || TREE_CODE (exp) == CONVERT_EXPR
1240 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1241 exp = TREE_OPERAND (exp, 0);
1242 return TREE_CONSTANT (exp);
1243 }
1244 \f
1245 /* Return first list element whose TREE_VALUE is ELEM.
1246 Return 0 if ELEM is not in LIST. */
1247
1248 tree
1249 value_member (tree elem, tree list)
1250 {
1251 while (list)
1252 {
1253 if (elem == TREE_VALUE (list))
1254 return list;
1255 list = TREE_CHAIN (list);
1256 }
1257 return NULL_TREE;
1258 }
1259
1260 /* Return first list element whose TREE_PURPOSE is ELEM.
1261 Return 0 if ELEM is not in LIST. */
1262
1263 tree
1264 purpose_member (tree elem, tree list)
1265 {
1266 while (list)
1267 {
1268 if (elem == TREE_PURPOSE (list))
1269 return list;
1270 list = TREE_CHAIN (list);
1271 }
1272 return NULL_TREE;
1273 }
1274
1275 /* Return nonzero if ELEM is part of the chain CHAIN. */
1276
1277 int
1278 chain_member (tree elem, tree chain)
1279 {
1280 while (chain)
1281 {
1282 if (elem == chain)
1283 return 1;
1284 chain = TREE_CHAIN (chain);
1285 }
1286
1287 return 0;
1288 }
1289
1290 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1291 We expect a null pointer to mark the end of the chain.
1292 This is the Lisp primitive `length'. */
1293
1294 int
1295 list_length (tree t)
1296 {
1297 tree p = t;
1298 #ifdef ENABLE_TREE_CHECKING
1299 tree q = t;
1300 #endif
1301 int len = 0;
1302
1303 while (p)
1304 {
1305 p = TREE_CHAIN (p);
1306 #ifdef ENABLE_TREE_CHECKING
1307 if (len % 2)
1308 q = TREE_CHAIN (q);
1309 gcc_assert (p != q);
1310 #endif
1311 len++;
1312 }
1313
1314 return len;
1315 }
1316
1317 /* Returns the number of FIELD_DECLs in TYPE. */
1318
1319 int
1320 fields_length (tree type)
1321 {
1322 tree t = TYPE_FIELDS (type);
1323 int count = 0;
1324
1325 for (; t; t = TREE_CHAIN (t))
1326 if (TREE_CODE (t) == FIELD_DECL)
1327 ++count;
1328
1329 return count;
1330 }
1331
1332 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1333 by modifying the last node in chain 1 to point to chain 2.
1334 This is the Lisp primitive `nconc'. */
1335
1336 tree
1337 chainon (tree op1, tree op2)
1338 {
1339 tree t1;
1340
1341 if (!op1)
1342 return op2;
1343 if (!op2)
1344 return op1;
1345
1346 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1347 continue;
1348 TREE_CHAIN (t1) = op2;
1349
1350 #ifdef ENABLE_TREE_CHECKING
1351 {
1352 tree t2;
1353 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1354 gcc_assert (t2 != t1);
1355 }
1356 #endif
1357
1358 return op1;
1359 }
1360
1361 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1362
1363 tree
1364 tree_last (tree chain)
1365 {
1366 tree next;
1367 if (chain)
1368 while ((next = TREE_CHAIN (chain)))
1369 chain = next;
1370 return chain;
1371 }
1372
1373 /* Reverse the order of elements in the chain T,
1374 and return the new head of the chain (old last element). */
1375
1376 tree
1377 nreverse (tree t)
1378 {
1379 tree prev = 0, decl, next;
1380 for (decl = t; decl; decl = next)
1381 {
1382 next = TREE_CHAIN (decl);
1383 TREE_CHAIN (decl) = prev;
1384 prev = decl;
1385 }
1386 return prev;
1387 }
1388 \f
1389 /* Return a newly created TREE_LIST node whose
1390 purpose and value fields are PARM and VALUE. */
1391
1392 tree
1393 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1394 {
1395 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1396 TREE_PURPOSE (t) = parm;
1397 TREE_VALUE (t) = value;
1398 return t;
1399 }
1400
1401 /* Return a newly created TREE_LIST node whose
1402 purpose and value fields are PURPOSE and VALUE
1403 and whose TREE_CHAIN is CHAIN. */
1404
1405 tree
1406 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1407 {
1408 tree node;
1409
1410 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1411 tree_zone PASS_MEM_STAT);
1412
1413 memset (node, 0, sizeof (struct tree_common));
1414
1415 #ifdef GATHER_STATISTICS
1416 tree_node_counts[(int) x_kind]++;
1417 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1418 #endif
1419
1420 TREE_SET_CODE (node, TREE_LIST);
1421 TREE_CHAIN (node) = chain;
1422 TREE_PURPOSE (node) = purpose;
1423 TREE_VALUE (node) = value;
1424 return node;
1425 }
1426
1427 \f
1428 /* Return the size nominally occupied by an object of type TYPE
1429 when it resides in memory. The value is measured in units of bytes,
1430 and its data type is that normally used for type sizes
1431 (which is the first type created by make_signed_type or
1432 make_unsigned_type). */
1433
1434 tree
1435 size_in_bytes (tree type)
1436 {
1437 tree t;
1438
1439 if (type == error_mark_node)
1440 return integer_zero_node;
1441
1442 type = TYPE_MAIN_VARIANT (type);
1443 t = TYPE_SIZE_UNIT (type);
1444
1445 if (t == 0)
1446 {
1447 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1448 return size_zero_node;
1449 }
1450
1451 if (TREE_CODE (t) == INTEGER_CST)
1452 t = force_fit_type (t, 0, false, false);
1453
1454 return t;
1455 }
1456
1457 /* Return the size of TYPE (in bytes) as a wide integer
1458 or return -1 if the size can vary or is larger than an integer. */
1459
1460 HOST_WIDE_INT
1461 int_size_in_bytes (tree type)
1462 {
1463 tree t;
1464
1465 if (type == error_mark_node)
1466 return 0;
1467
1468 type = TYPE_MAIN_VARIANT (type);
1469 t = TYPE_SIZE_UNIT (type);
1470 if (t == 0
1471 || TREE_CODE (t) != INTEGER_CST
1472 || TREE_OVERFLOW (t)
1473 || TREE_INT_CST_HIGH (t) != 0
1474 /* If the result would appear negative, it's too big to represent. */
1475 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1476 return -1;
1477
1478 return TREE_INT_CST_LOW (t);
1479 }
1480 \f
1481 /* Return the bit position of FIELD, in bits from the start of the record.
1482 This is a tree of type bitsizetype. */
1483
1484 tree
1485 bit_position (tree field)
1486 {
1487 return bit_from_pos (DECL_FIELD_OFFSET (field),
1488 DECL_FIELD_BIT_OFFSET (field));
1489 }
1490
1491 /* Likewise, but return as an integer. Abort if it cannot be represented
1492 in that way (since it could be a signed value, we don't have the option
1493 of returning -1 like int_size_in_byte can. */
1494
1495 HOST_WIDE_INT
1496 int_bit_position (tree field)
1497 {
1498 return tree_low_cst (bit_position (field), 0);
1499 }
1500 \f
1501 /* Return the byte position of FIELD, in bytes from the start of the record.
1502 This is a tree of type sizetype. */
1503
1504 tree
1505 byte_position (tree field)
1506 {
1507 return byte_from_pos (DECL_FIELD_OFFSET (field),
1508 DECL_FIELD_BIT_OFFSET (field));
1509 }
1510
1511 /* Likewise, but return as an integer. Abort if it cannot be represented
1512 in that way (since it could be a signed value, we don't have the option
1513 of returning -1 like int_size_in_byte can. */
1514
1515 HOST_WIDE_INT
1516 int_byte_position (tree field)
1517 {
1518 return tree_low_cst (byte_position (field), 0);
1519 }
1520 \f
1521 /* Return the strictest alignment, in bits, that T is known to have. */
1522
1523 unsigned int
1524 expr_align (tree t)
1525 {
1526 unsigned int align0, align1;
1527
1528 switch (TREE_CODE (t))
1529 {
1530 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1531 /* If we have conversions, we know that the alignment of the
1532 object must meet each of the alignments of the types. */
1533 align0 = expr_align (TREE_OPERAND (t, 0));
1534 align1 = TYPE_ALIGN (TREE_TYPE (t));
1535 return MAX (align0, align1);
1536
1537 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1538 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1539 case CLEANUP_POINT_EXPR:
1540 /* These don't change the alignment of an object. */
1541 return expr_align (TREE_OPERAND (t, 0));
1542
1543 case COND_EXPR:
1544 /* The best we can do is say that the alignment is the least aligned
1545 of the two arms. */
1546 align0 = expr_align (TREE_OPERAND (t, 1));
1547 align1 = expr_align (TREE_OPERAND (t, 2));
1548 return MIN (align0, align1);
1549
1550 case LABEL_DECL: case CONST_DECL:
1551 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1552 if (DECL_ALIGN (t) != 0)
1553 return DECL_ALIGN (t);
1554 break;
1555
1556 case FUNCTION_DECL:
1557 return FUNCTION_BOUNDARY;
1558
1559 default:
1560 break;
1561 }
1562
1563 /* Otherwise take the alignment from that of the type. */
1564 return TYPE_ALIGN (TREE_TYPE (t));
1565 }
1566 \f
1567 /* Return, as a tree node, the number of elements for TYPE (which is an
1568 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1569
1570 tree
1571 array_type_nelts (tree type)
1572 {
1573 tree index_type, min, max;
1574
1575 /* If they did it with unspecified bounds, then we should have already
1576 given an error about it before we got here. */
1577 if (! TYPE_DOMAIN (type))
1578 return error_mark_node;
1579
1580 index_type = TYPE_DOMAIN (type);
1581 min = TYPE_MIN_VALUE (index_type);
1582 max = TYPE_MAX_VALUE (index_type);
1583
1584 return (integer_zerop (min)
1585 ? max
1586 : fold (build2 (MINUS_EXPR, TREE_TYPE (max), max, min)));
1587 }
1588 \f
1589 /* If arg is static -- a reference to an object in static storage -- then
1590 return the object. This is not the same as the C meaning of `static'.
1591 If arg isn't static, return NULL. */
1592
1593 tree
1594 staticp (tree arg)
1595 {
1596 switch (TREE_CODE (arg))
1597 {
1598 case FUNCTION_DECL:
1599 /* Nested functions are static, even though taking their address will
1600 involve a trampoline as we unnest the nested function and create
1601 the trampoline on the tree level. */
1602 return arg;
1603
1604 case VAR_DECL:
1605 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1606 && ! DECL_THREAD_LOCAL (arg)
1607 && ! DECL_NON_ADDR_CONST_P (arg)
1608 ? arg : NULL);
1609
1610 case CONST_DECL:
1611 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1612 ? arg : NULL);
1613
1614 case CONSTRUCTOR:
1615 return TREE_STATIC (arg) ? arg : NULL;
1616
1617 case LABEL_DECL:
1618 case STRING_CST:
1619 return arg;
1620
1621 case COMPONENT_REF:
1622 /* If the thing being referenced is not a field, then it is
1623 something language specific. */
1624 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1625 return (*lang_hooks.staticp) (arg);
1626
1627 /* If we are referencing a bitfield, we can't evaluate an
1628 ADDR_EXPR at compile time and so it isn't a constant. */
1629 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1630 return NULL;
1631
1632 return staticp (TREE_OPERAND (arg, 0));
1633
1634 case BIT_FIELD_REF:
1635 return NULL;
1636
1637 case MISALIGNED_INDIRECT_REF:
1638 case ALIGN_INDIRECT_REF:
1639 case INDIRECT_REF:
1640 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1641
1642 case ARRAY_REF:
1643 case ARRAY_RANGE_REF:
1644 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1645 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1646 return staticp (TREE_OPERAND (arg, 0));
1647 else
1648 return false;
1649
1650 default:
1651 if ((unsigned int) TREE_CODE (arg)
1652 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1653 return lang_hooks.staticp (arg);
1654 else
1655 return NULL;
1656 }
1657 }
1658 \f
1659 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1660 Do this to any expression which may be used in more than one place,
1661 but must be evaluated only once.
1662
1663 Normally, expand_expr would reevaluate the expression each time.
1664 Calling save_expr produces something that is evaluated and recorded
1665 the first time expand_expr is called on it. Subsequent calls to
1666 expand_expr just reuse the recorded value.
1667
1668 The call to expand_expr that generates code that actually computes
1669 the value is the first call *at compile time*. Subsequent calls
1670 *at compile time* generate code to use the saved value.
1671 This produces correct result provided that *at run time* control
1672 always flows through the insns made by the first expand_expr
1673 before reaching the other places where the save_expr was evaluated.
1674 You, the caller of save_expr, must make sure this is so.
1675
1676 Constants, and certain read-only nodes, are returned with no
1677 SAVE_EXPR because that is safe. Expressions containing placeholders
1678 are not touched; see tree.def for an explanation of what these
1679 are used for. */
1680
1681 tree
1682 save_expr (tree expr)
1683 {
1684 tree t = fold (expr);
1685 tree inner;
1686
1687 /* If the tree evaluates to a constant, then we don't want to hide that
1688 fact (i.e. this allows further folding, and direct checks for constants).
1689 However, a read-only object that has side effects cannot be bypassed.
1690 Since it is no problem to reevaluate literals, we just return the
1691 literal node. */
1692 inner = skip_simple_arithmetic (t);
1693
1694 if (TREE_INVARIANT (inner)
1695 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1696 || TREE_CODE (inner) == SAVE_EXPR
1697 || TREE_CODE (inner) == ERROR_MARK)
1698 return t;
1699
1700 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1701 it means that the size or offset of some field of an object depends on
1702 the value within another field.
1703
1704 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1705 and some variable since it would then need to be both evaluated once and
1706 evaluated more than once. Front-ends must assure this case cannot
1707 happen by surrounding any such subexpressions in their own SAVE_EXPR
1708 and forcing evaluation at the proper time. */
1709 if (contains_placeholder_p (inner))
1710 return t;
1711
1712 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1713
1714 /* This expression might be placed ahead of a jump to ensure that the
1715 value was computed on both sides of the jump. So make sure it isn't
1716 eliminated as dead. */
1717 TREE_SIDE_EFFECTS (t) = 1;
1718 TREE_INVARIANT (t) = 1;
1719 return t;
1720 }
1721
1722 /* Look inside EXPR and into any simple arithmetic operations. Return
1723 the innermost non-arithmetic node. */
1724
1725 tree
1726 skip_simple_arithmetic (tree expr)
1727 {
1728 tree inner;
1729
1730 /* We don't care about whether this can be used as an lvalue in this
1731 context. */
1732 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1733 expr = TREE_OPERAND (expr, 0);
1734
1735 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1736 a constant, it will be more efficient to not make another SAVE_EXPR since
1737 it will allow better simplification and GCSE will be able to merge the
1738 computations if they actually occur. */
1739 inner = expr;
1740 while (1)
1741 {
1742 if (UNARY_CLASS_P (inner))
1743 inner = TREE_OPERAND (inner, 0);
1744 else if (BINARY_CLASS_P (inner))
1745 {
1746 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1747 inner = TREE_OPERAND (inner, 0);
1748 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1749 inner = TREE_OPERAND (inner, 1);
1750 else
1751 break;
1752 }
1753 else
1754 break;
1755 }
1756
1757 return inner;
1758 }
1759
1760 /* Return which tree structure is used by T. */
1761
1762 enum tree_node_structure_enum
1763 tree_node_structure (tree t)
1764 {
1765 enum tree_code code = TREE_CODE (t);
1766
1767 switch (TREE_CODE_CLASS (code))
1768 {
1769 case tcc_declaration:
1770 return TS_DECL;
1771 case tcc_type:
1772 return TS_TYPE;
1773 case tcc_reference:
1774 case tcc_comparison:
1775 case tcc_unary:
1776 case tcc_binary:
1777 case tcc_expression:
1778 case tcc_statement:
1779 return TS_EXP;
1780 default: /* tcc_constant and tcc_exceptional */
1781 break;
1782 }
1783 switch (code)
1784 {
1785 /* tcc_constant cases. */
1786 case INTEGER_CST: return TS_INT_CST;
1787 case REAL_CST: return TS_REAL_CST;
1788 case COMPLEX_CST: return TS_COMPLEX;
1789 case VECTOR_CST: return TS_VECTOR;
1790 case STRING_CST: return TS_STRING;
1791 /* tcc_exceptional cases. */
1792 case ERROR_MARK: return TS_COMMON;
1793 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1794 case TREE_LIST: return TS_LIST;
1795 case TREE_VEC: return TS_VEC;
1796 case PHI_NODE: return TS_PHI_NODE;
1797 case SSA_NAME: return TS_SSA_NAME;
1798 case PLACEHOLDER_EXPR: return TS_COMMON;
1799 case STATEMENT_LIST: return TS_STATEMENT_LIST;
1800 case BLOCK: return TS_BLOCK;
1801 case TREE_BINFO: return TS_BINFO;
1802 case VALUE_HANDLE: return TS_VALUE_HANDLE;
1803
1804 default:
1805 gcc_unreachable ();
1806 }
1807 }
1808 \f
1809 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1810 or offset that depends on a field within a record. */
1811
1812 bool
1813 contains_placeholder_p (tree exp)
1814 {
1815 enum tree_code code;
1816
1817 if (!exp)
1818 return 0;
1819
1820 code = TREE_CODE (exp);
1821 if (code == PLACEHOLDER_EXPR)
1822 return 1;
1823
1824 switch (TREE_CODE_CLASS (code))
1825 {
1826 case tcc_reference:
1827 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1828 position computations since they will be converted into a
1829 WITH_RECORD_EXPR involving the reference, which will assume
1830 here will be valid. */
1831 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1832
1833 case tcc_exceptional:
1834 if (code == TREE_LIST)
1835 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1836 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1837 break;
1838
1839 case tcc_unary:
1840 case tcc_binary:
1841 case tcc_comparison:
1842 case tcc_expression:
1843 switch (code)
1844 {
1845 case COMPOUND_EXPR:
1846 /* Ignoring the first operand isn't quite right, but works best. */
1847 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1848
1849 case COND_EXPR:
1850 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1851 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1852 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1853
1854 default:
1855 break;
1856 }
1857
1858 switch (TREE_CODE_LENGTH (code))
1859 {
1860 case 1:
1861 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1862 case 2:
1863 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1864 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1865 default:
1866 return 0;
1867 }
1868
1869 default:
1870 return 0;
1871 }
1872 return 0;
1873 }
1874
1875 /* Return true if any part of the computation of TYPE involves a
1876 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
1877 (for QUAL_UNION_TYPE) and field positions. */
1878
1879 static bool
1880 type_contains_placeholder_1 (tree type)
1881 {
1882 /* If the size contains a placeholder or the parent type (component type in
1883 the case of arrays) type involves a placeholder, this type does. */
1884 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1885 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1886 || (TREE_TYPE (type) != 0
1887 && type_contains_placeholder_p (TREE_TYPE (type))))
1888 return true;
1889
1890 /* Now do type-specific checks. Note that the last part of the check above
1891 greatly limits what we have to do below. */
1892 switch (TREE_CODE (type))
1893 {
1894 case VOID_TYPE:
1895 case COMPLEX_TYPE:
1896 case ENUMERAL_TYPE:
1897 case BOOLEAN_TYPE:
1898 case CHAR_TYPE:
1899 case POINTER_TYPE:
1900 case OFFSET_TYPE:
1901 case REFERENCE_TYPE:
1902 case METHOD_TYPE:
1903 case FILE_TYPE:
1904 case FUNCTION_TYPE:
1905 case VECTOR_TYPE:
1906 return false;
1907
1908 case INTEGER_TYPE:
1909 case REAL_TYPE:
1910 /* Here we just check the bounds. */
1911 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1912 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1913
1914 case ARRAY_TYPE:
1915 /* We're already checked the component type (TREE_TYPE), so just check
1916 the index type. */
1917 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1918
1919 case RECORD_TYPE:
1920 case UNION_TYPE:
1921 case QUAL_UNION_TYPE:
1922 {
1923 tree field;
1924
1925 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1926 if (TREE_CODE (field) == FIELD_DECL
1927 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1928 || (TREE_CODE (type) == QUAL_UNION_TYPE
1929 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1930 || type_contains_placeholder_p (TREE_TYPE (field))))
1931 return true;
1932
1933 return false;
1934 }
1935
1936 default:
1937 gcc_unreachable ();
1938 }
1939 }
1940
1941 bool
1942 type_contains_placeholder_p (tree type)
1943 {
1944 bool result;
1945
1946 /* If the contains_placeholder_bits field has been initialized,
1947 then we know the answer. */
1948 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
1949 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
1950
1951 /* Indicate that we've seen this type node, and the answer is false.
1952 This is what we want to return if we run into recursion via fields. */
1953 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
1954
1955 /* Compute the real value. */
1956 result = type_contains_placeholder_1 (type);
1957
1958 /* Store the real value. */
1959 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
1960
1961 return result;
1962 }
1963 \f
1964 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1965 return a tree with all occurrences of references to F in a
1966 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1967 contains only arithmetic expressions or a CALL_EXPR with a
1968 PLACEHOLDER_EXPR occurring only in its arglist. */
1969
1970 tree
1971 substitute_in_expr (tree exp, tree f, tree r)
1972 {
1973 enum tree_code code = TREE_CODE (exp);
1974 tree op0, op1, op2;
1975 tree new;
1976 tree inner;
1977
1978 /* We handle TREE_LIST and COMPONENT_REF separately. */
1979 if (code == TREE_LIST)
1980 {
1981 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1982 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1983 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1984 return exp;
1985
1986 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1987 }
1988 else if (code == COMPONENT_REF)
1989 {
1990 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1991 and it is the right field, replace it with R. */
1992 for (inner = TREE_OPERAND (exp, 0);
1993 REFERENCE_CLASS_P (inner);
1994 inner = TREE_OPERAND (inner, 0))
1995 ;
1996 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1997 && TREE_OPERAND (exp, 1) == f)
1998 return r;
1999
2000 /* If this expression hasn't been completed let, leave it alone. */
2001 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2002 return exp;
2003
2004 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2005 if (op0 == TREE_OPERAND (exp, 0))
2006 return exp;
2007
2008 new = fold (build3 (COMPONENT_REF, TREE_TYPE (exp),
2009 op0, TREE_OPERAND (exp, 1), NULL_TREE));
2010 }
2011 else
2012 switch (TREE_CODE_CLASS (code))
2013 {
2014 case tcc_constant:
2015 case tcc_declaration:
2016 return exp;
2017
2018 case tcc_exceptional:
2019 case tcc_unary:
2020 case tcc_binary:
2021 case tcc_comparison:
2022 case tcc_expression:
2023 case tcc_reference:
2024 switch (TREE_CODE_LENGTH (code))
2025 {
2026 case 0:
2027 return exp;
2028
2029 case 1:
2030 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2031 if (op0 == TREE_OPERAND (exp, 0))
2032 return exp;
2033
2034 new = fold (build1 (code, TREE_TYPE (exp), op0));
2035 break;
2036
2037 case 2:
2038 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2039 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2040
2041 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2042 return exp;
2043
2044 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
2045 break;
2046
2047 case 3:
2048 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2049 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2050 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2051
2052 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2053 && op2 == TREE_OPERAND (exp, 2))
2054 return exp;
2055
2056 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2057 break;
2058
2059 default:
2060 gcc_unreachable ();
2061 }
2062 break;
2063
2064 default:
2065 gcc_unreachable ();
2066 }
2067
2068 TREE_READONLY (new) = TREE_READONLY (exp);
2069 return new;
2070 }
2071
2072 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2073 for it within OBJ, a tree that is an object or a chain of references. */
2074
2075 tree
2076 substitute_placeholder_in_expr (tree exp, tree obj)
2077 {
2078 enum tree_code code = TREE_CODE (exp);
2079 tree op0, op1, op2, op3;
2080
2081 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2082 in the chain of OBJ. */
2083 if (code == PLACEHOLDER_EXPR)
2084 {
2085 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2086 tree elt;
2087
2088 for (elt = obj; elt != 0;
2089 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2090 || TREE_CODE (elt) == COND_EXPR)
2091 ? TREE_OPERAND (elt, 1)
2092 : (REFERENCE_CLASS_P (elt)
2093 || UNARY_CLASS_P (elt)
2094 || BINARY_CLASS_P (elt)
2095 || EXPRESSION_CLASS_P (elt))
2096 ? TREE_OPERAND (elt, 0) : 0))
2097 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2098 return elt;
2099
2100 for (elt = obj; elt != 0;
2101 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2102 || TREE_CODE (elt) == COND_EXPR)
2103 ? TREE_OPERAND (elt, 1)
2104 : (REFERENCE_CLASS_P (elt)
2105 || UNARY_CLASS_P (elt)
2106 || BINARY_CLASS_P (elt)
2107 || EXPRESSION_CLASS_P (elt))
2108 ? TREE_OPERAND (elt, 0) : 0))
2109 if (POINTER_TYPE_P (TREE_TYPE (elt))
2110 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2111 == need_type))
2112 return fold (build1 (INDIRECT_REF, need_type, elt));
2113
2114 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2115 survives until RTL generation, there will be an error. */
2116 return exp;
2117 }
2118
2119 /* TREE_LIST is special because we need to look at TREE_VALUE
2120 and TREE_CHAIN, not TREE_OPERANDS. */
2121 else if (code == TREE_LIST)
2122 {
2123 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2124 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2125 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2126 return exp;
2127
2128 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2129 }
2130 else
2131 switch (TREE_CODE_CLASS (code))
2132 {
2133 case tcc_constant:
2134 case tcc_declaration:
2135 return exp;
2136
2137 case tcc_exceptional:
2138 case tcc_unary:
2139 case tcc_binary:
2140 case tcc_comparison:
2141 case tcc_expression:
2142 case tcc_reference:
2143 case tcc_statement:
2144 switch (TREE_CODE_LENGTH (code))
2145 {
2146 case 0:
2147 return exp;
2148
2149 case 1:
2150 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2151 if (op0 == TREE_OPERAND (exp, 0))
2152 return exp;
2153 else
2154 return fold (build1 (code, TREE_TYPE (exp), op0));
2155
2156 case 2:
2157 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2158 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2159
2160 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2161 return exp;
2162 else
2163 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2164
2165 case 3:
2166 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2167 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2168 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2169
2170 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2171 && op2 == TREE_OPERAND (exp, 2))
2172 return exp;
2173 else
2174 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2175
2176 case 4:
2177 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2178 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2179 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2180 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2181
2182 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2183 && op2 == TREE_OPERAND (exp, 2)
2184 && op3 == TREE_OPERAND (exp, 3))
2185 return exp;
2186 else
2187 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2188
2189 default:
2190 gcc_unreachable ();
2191 }
2192 break;
2193
2194 default:
2195 gcc_unreachable ();
2196 }
2197 }
2198 \f
2199 /* Stabilize a reference so that we can use it any number of times
2200 without causing its operands to be evaluated more than once.
2201 Returns the stabilized reference. This works by means of save_expr,
2202 so see the caveats in the comments about save_expr.
2203
2204 Also allows conversion expressions whose operands are references.
2205 Any other kind of expression is returned unchanged. */
2206
2207 tree
2208 stabilize_reference (tree ref)
2209 {
2210 tree result;
2211 enum tree_code code = TREE_CODE (ref);
2212
2213 switch (code)
2214 {
2215 case VAR_DECL:
2216 case PARM_DECL:
2217 case RESULT_DECL:
2218 /* No action is needed in this case. */
2219 return ref;
2220
2221 case NOP_EXPR:
2222 case CONVERT_EXPR:
2223 case FLOAT_EXPR:
2224 case FIX_TRUNC_EXPR:
2225 case FIX_FLOOR_EXPR:
2226 case FIX_ROUND_EXPR:
2227 case FIX_CEIL_EXPR:
2228 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2229 break;
2230
2231 case INDIRECT_REF:
2232 result = build_nt (INDIRECT_REF,
2233 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2234 break;
2235
2236 case COMPONENT_REF:
2237 result = build_nt (COMPONENT_REF,
2238 stabilize_reference (TREE_OPERAND (ref, 0)),
2239 TREE_OPERAND (ref, 1), NULL_TREE);
2240 break;
2241
2242 case BIT_FIELD_REF:
2243 result = build_nt (BIT_FIELD_REF,
2244 stabilize_reference (TREE_OPERAND (ref, 0)),
2245 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2246 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2247 break;
2248
2249 case ARRAY_REF:
2250 result = build_nt (ARRAY_REF,
2251 stabilize_reference (TREE_OPERAND (ref, 0)),
2252 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2253 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2254 break;
2255
2256 case ARRAY_RANGE_REF:
2257 result = build_nt (ARRAY_RANGE_REF,
2258 stabilize_reference (TREE_OPERAND (ref, 0)),
2259 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2260 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2261 break;
2262
2263 case COMPOUND_EXPR:
2264 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2265 it wouldn't be ignored. This matters when dealing with
2266 volatiles. */
2267 return stabilize_reference_1 (ref);
2268
2269 /* If arg isn't a kind of lvalue we recognize, make no change.
2270 Caller should recognize the error for an invalid lvalue. */
2271 default:
2272 return ref;
2273
2274 case ERROR_MARK:
2275 return error_mark_node;
2276 }
2277
2278 TREE_TYPE (result) = TREE_TYPE (ref);
2279 TREE_READONLY (result) = TREE_READONLY (ref);
2280 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2281 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2282
2283 return result;
2284 }
2285
2286 /* Subroutine of stabilize_reference; this is called for subtrees of
2287 references. Any expression with side-effects must be put in a SAVE_EXPR
2288 to ensure that it is only evaluated once.
2289
2290 We don't put SAVE_EXPR nodes around everything, because assigning very
2291 simple expressions to temporaries causes us to miss good opportunities
2292 for optimizations. Among other things, the opportunity to fold in the
2293 addition of a constant into an addressing mode often gets lost, e.g.
2294 "y[i+1] += x;". In general, we take the approach that we should not make
2295 an assignment unless we are forced into it - i.e., that any non-side effect
2296 operator should be allowed, and that cse should take care of coalescing
2297 multiple utterances of the same expression should that prove fruitful. */
2298
2299 tree
2300 stabilize_reference_1 (tree e)
2301 {
2302 tree result;
2303 enum tree_code code = TREE_CODE (e);
2304
2305 /* We cannot ignore const expressions because it might be a reference
2306 to a const array but whose index contains side-effects. But we can
2307 ignore things that are actual constant or that already have been
2308 handled by this function. */
2309
2310 if (TREE_INVARIANT (e))
2311 return e;
2312
2313 switch (TREE_CODE_CLASS (code))
2314 {
2315 case tcc_exceptional:
2316 case tcc_type:
2317 case tcc_declaration:
2318 case tcc_comparison:
2319 case tcc_statement:
2320 case tcc_expression:
2321 case tcc_reference:
2322 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2323 so that it will only be evaluated once. */
2324 /* The reference (r) and comparison (<) classes could be handled as
2325 below, but it is generally faster to only evaluate them once. */
2326 if (TREE_SIDE_EFFECTS (e))
2327 return save_expr (e);
2328 return e;
2329
2330 case tcc_constant:
2331 /* Constants need no processing. In fact, we should never reach
2332 here. */
2333 return e;
2334
2335 case tcc_binary:
2336 /* Division is slow and tends to be compiled with jumps,
2337 especially the division by powers of 2 that is often
2338 found inside of an array reference. So do it just once. */
2339 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2340 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2341 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2342 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2343 return save_expr (e);
2344 /* Recursively stabilize each operand. */
2345 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2346 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2347 break;
2348
2349 case tcc_unary:
2350 /* Recursively stabilize each operand. */
2351 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2352 break;
2353
2354 default:
2355 gcc_unreachable ();
2356 }
2357
2358 TREE_TYPE (result) = TREE_TYPE (e);
2359 TREE_READONLY (result) = TREE_READONLY (e);
2360 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2361 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2362 TREE_INVARIANT (result) = 1;
2363
2364 return result;
2365 }
2366 \f
2367 /* Low-level constructors for expressions. */
2368
2369 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2370 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2371
2372 void
2373 recompute_tree_invarant_for_addr_expr (tree t)
2374 {
2375 tree node;
2376 bool tc = true, ti = true, se = false;
2377
2378 /* We started out assuming this address is both invariant and constant, but
2379 does not have side effects. Now go down any handled components and see if
2380 any of them involve offsets that are either non-constant or non-invariant.
2381 Also check for side-effects.
2382
2383 ??? Note that this code makes no attempt to deal with the case where
2384 taking the address of something causes a copy due to misalignment. */
2385
2386 #define UPDATE_TITCSE(NODE) \
2387 do { tree _node = (NODE); \
2388 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2389 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2390 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2391
2392 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2393 node = TREE_OPERAND (node, 0))
2394 {
2395 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2396 array reference (probably made temporarily by the G++ front end),
2397 so ignore all the operands. */
2398 if ((TREE_CODE (node) == ARRAY_REF
2399 || TREE_CODE (node) == ARRAY_RANGE_REF)
2400 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2401 {
2402 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2403 if (TREE_OPERAND (node, 2))
2404 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2405 if (TREE_OPERAND (node, 3))
2406 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2407 }
2408 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2409 FIELD_DECL, apparently. The G++ front end can put something else
2410 there, at least temporarily. */
2411 else if (TREE_CODE (node) == COMPONENT_REF
2412 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2413 {
2414 if (TREE_OPERAND (node, 2))
2415 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2416 }
2417 else if (TREE_CODE (node) == BIT_FIELD_REF)
2418 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2419 }
2420
2421 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2422 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2423 invariant and constant if the decl is static. It's also invariant if it's
2424 a decl in the current function. Taking the address of a volatile variable
2425 is not volatile. If it's a constant, the address is both invariant and
2426 constant. Otherwise it's neither. */
2427 if (TREE_CODE (node) == INDIRECT_REF)
2428 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2429 else if (DECL_P (node))
2430 {
2431 if (staticp (node))
2432 ;
2433 else if (decl_function_context (node) == current_function_decl
2434 /* Addresses of thread-local variables are invariant. */
2435 || (TREE_CODE (node) == VAR_DECL && DECL_THREAD_LOCAL (node)))
2436 tc = false;
2437 else
2438 ti = tc = false;
2439 }
2440 else if (CONSTANT_CLASS_P (node))
2441 ;
2442 else
2443 {
2444 ti = tc = false;
2445 se |= TREE_SIDE_EFFECTS (node);
2446 }
2447
2448 TREE_CONSTANT (t) = tc;
2449 TREE_INVARIANT (t) = ti;
2450 TREE_SIDE_EFFECTS (t) = se;
2451 #undef UPDATE_TITCSE
2452 }
2453
2454 /* Build an expression of code CODE, data type TYPE, and operands as
2455 specified. Expressions and reference nodes can be created this way.
2456 Constants, decls, types and misc nodes cannot be.
2457
2458 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2459 enough for all extant tree codes. These functions can be called
2460 directly (preferably!), but can also be obtained via GCC preprocessor
2461 magic within the build macro. */
2462
2463 tree
2464 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2465 {
2466 tree t;
2467
2468 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2469
2470 t = make_node_stat (code PASS_MEM_STAT);
2471 TREE_TYPE (t) = tt;
2472
2473 return t;
2474 }
2475
2476 tree
2477 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2478 {
2479 int length = sizeof (struct tree_exp);
2480 #ifdef GATHER_STATISTICS
2481 tree_node_kind kind;
2482 #endif
2483 tree t;
2484
2485 #ifdef GATHER_STATISTICS
2486 switch (TREE_CODE_CLASS (code))
2487 {
2488 case tcc_statement: /* an expression with side effects */
2489 kind = s_kind;
2490 break;
2491 case tcc_reference: /* a reference */
2492 kind = r_kind;
2493 break;
2494 default:
2495 kind = e_kind;
2496 break;
2497 }
2498
2499 tree_node_counts[(int) kind]++;
2500 tree_node_sizes[(int) kind] += length;
2501 #endif
2502
2503 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2504
2505 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2506
2507 memset (t, 0, sizeof (struct tree_common));
2508
2509 TREE_SET_CODE (t, code);
2510
2511 TREE_TYPE (t) = type;
2512 #ifdef USE_MAPPED_LOCATION
2513 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2514 #else
2515 SET_EXPR_LOCUS (t, NULL);
2516 #endif
2517 TREE_COMPLEXITY (t) = 0;
2518 TREE_OPERAND (t, 0) = node;
2519 TREE_BLOCK (t) = NULL_TREE;
2520 if (node && !TYPE_P (node))
2521 {
2522 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2523 TREE_READONLY (t) = TREE_READONLY (node);
2524 }
2525
2526 if (TREE_CODE_CLASS (code) == tcc_statement)
2527 TREE_SIDE_EFFECTS (t) = 1;
2528 else switch (code)
2529 {
2530 case INIT_EXPR:
2531 case MODIFY_EXPR:
2532 case VA_ARG_EXPR:
2533 case PREDECREMENT_EXPR:
2534 case PREINCREMENT_EXPR:
2535 case POSTDECREMENT_EXPR:
2536 case POSTINCREMENT_EXPR:
2537 /* All of these have side-effects, no matter what their
2538 operands are. */
2539 TREE_SIDE_EFFECTS (t) = 1;
2540 TREE_READONLY (t) = 0;
2541 break;
2542
2543 case MISALIGNED_INDIRECT_REF:
2544 case ALIGN_INDIRECT_REF:
2545 case INDIRECT_REF:
2546 /* Whether a dereference is readonly has nothing to do with whether
2547 its operand is readonly. */
2548 TREE_READONLY (t) = 0;
2549 break;
2550
2551 case ADDR_EXPR:
2552 if (node)
2553 recompute_tree_invarant_for_addr_expr (t);
2554 break;
2555
2556 default:
2557 if (TREE_CODE_CLASS (code) == tcc_unary
2558 && node && !TYPE_P (node)
2559 && TREE_CONSTANT (node))
2560 TREE_CONSTANT (t) = 1;
2561 if (TREE_CODE_CLASS (code) == tcc_unary
2562 && node && TREE_INVARIANT (node))
2563 TREE_INVARIANT (t) = 1;
2564 if (TREE_CODE_CLASS (code) == tcc_reference
2565 && node && TREE_THIS_VOLATILE (node))
2566 TREE_THIS_VOLATILE (t) = 1;
2567 break;
2568 }
2569
2570 return t;
2571 }
2572
2573 #define PROCESS_ARG(N) \
2574 do { \
2575 TREE_OPERAND (t, N) = arg##N; \
2576 if (arg##N &&!TYPE_P (arg##N)) \
2577 { \
2578 if (TREE_SIDE_EFFECTS (arg##N)) \
2579 side_effects = 1; \
2580 if (!TREE_READONLY (arg##N)) \
2581 read_only = 0; \
2582 if (!TREE_CONSTANT (arg##N)) \
2583 constant = 0; \
2584 if (!TREE_INVARIANT (arg##N)) \
2585 invariant = 0; \
2586 } \
2587 } while (0)
2588
2589 tree
2590 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2591 {
2592 bool constant, read_only, side_effects, invariant;
2593 tree t;
2594
2595 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2596
2597 t = make_node_stat (code PASS_MEM_STAT);
2598 TREE_TYPE (t) = tt;
2599
2600 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2601 result based on those same flags for the arguments. But if the
2602 arguments aren't really even `tree' expressions, we shouldn't be trying
2603 to do this. */
2604
2605 /* Expressions without side effects may be constant if their
2606 arguments are as well. */
2607 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2608 || TREE_CODE_CLASS (code) == tcc_binary);
2609 read_only = 1;
2610 side_effects = TREE_SIDE_EFFECTS (t);
2611 invariant = constant;
2612
2613 PROCESS_ARG(0);
2614 PROCESS_ARG(1);
2615
2616 TREE_READONLY (t) = read_only;
2617 TREE_CONSTANT (t) = constant;
2618 TREE_INVARIANT (t) = invariant;
2619 TREE_SIDE_EFFECTS (t) = side_effects;
2620 TREE_THIS_VOLATILE (t)
2621 = (TREE_CODE_CLASS (code) == tcc_reference
2622 && arg0 && TREE_THIS_VOLATILE (arg0));
2623
2624 return t;
2625 }
2626
2627 tree
2628 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2629 tree arg2 MEM_STAT_DECL)
2630 {
2631 bool constant, read_only, side_effects, invariant;
2632 tree t;
2633
2634 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2635
2636 t = make_node_stat (code PASS_MEM_STAT);
2637 TREE_TYPE (t) = tt;
2638
2639 side_effects = TREE_SIDE_EFFECTS (t);
2640
2641 PROCESS_ARG(0);
2642 PROCESS_ARG(1);
2643 PROCESS_ARG(2);
2644
2645 if (code == CALL_EXPR && !side_effects)
2646 {
2647 tree node;
2648 int i;
2649
2650 /* Calls have side-effects, except those to const or
2651 pure functions. */
2652 i = call_expr_flags (t);
2653 if (!(i & (ECF_CONST | ECF_PURE)))
2654 side_effects = 1;
2655
2656 /* And even those have side-effects if their arguments do. */
2657 else for (node = arg1; node; node = TREE_CHAIN (node))
2658 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2659 {
2660 side_effects = 1;
2661 break;
2662 }
2663 }
2664
2665 TREE_SIDE_EFFECTS (t) = side_effects;
2666 TREE_THIS_VOLATILE (t)
2667 = (TREE_CODE_CLASS (code) == tcc_reference
2668 && arg0 && TREE_THIS_VOLATILE (arg0));
2669
2670 return t;
2671 }
2672
2673 tree
2674 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2675 tree arg2, tree arg3 MEM_STAT_DECL)
2676 {
2677 bool constant, read_only, side_effects, invariant;
2678 tree t;
2679
2680 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2681
2682 t = make_node_stat (code PASS_MEM_STAT);
2683 TREE_TYPE (t) = tt;
2684
2685 side_effects = TREE_SIDE_EFFECTS (t);
2686
2687 PROCESS_ARG(0);
2688 PROCESS_ARG(1);
2689 PROCESS_ARG(2);
2690 PROCESS_ARG(3);
2691
2692 TREE_SIDE_EFFECTS (t) = side_effects;
2693 TREE_THIS_VOLATILE (t)
2694 = (TREE_CODE_CLASS (code) == tcc_reference
2695 && arg0 && TREE_THIS_VOLATILE (arg0));
2696
2697 return t;
2698 }
2699
2700 /* Backup definition for non-gcc build compilers. */
2701
2702 tree
2703 (build) (enum tree_code code, tree tt, ...)
2704 {
2705 tree t, arg0, arg1, arg2, arg3;
2706 int length = TREE_CODE_LENGTH (code);
2707 va_list p;
2708
2709 va_start (p, tt);
2710 switch (length)
2711 {
2712 case 0:
2713 t = build0 (code, tt);
2714 break;
2715 case 1:
2716 arg0 = va_arg (p, tree);
2717 t = build1 (code, tt, arg0);
2718 break;
2719 case 2:
2720 arg0 = va_arg (p, tree);
2721 arg1 = va_arg (p, tree);
2722 t = build2 (code, tt, arg0, arg1);
2723 break;
2724 case 3:
2725 arg0 = va_arg (p, tree);
2726 arg1 = va_arg (p, tree);
2727 arg2 = va_arg (p, tree);
2728 t = build3 (code, tt, arg0, arg1, arg2);
2729 break;
2730 case 4:
2731 arg0 = va_arg (p, tree);
2732 arg1 = va_arg (p, tree);
2733 arg2 = va_arg (p, tree);
2734 arg3 = va_arg (p, tree);
2735 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2736 break;
2737 default:
2738 gcc_unreachable ();
2739 }
2740 va_end (p);
2741
2742 return t;
2743 }
2744
2745 /* Similar except don't specify the TREE_TYPE
2746 and leave the TREE_SIDE_EFFECTS as 0.
2747 It is permissible for arguments to be null,
2748 or even garbage if their values do not matter. */
2749
2750 tree
2751 build_nt (enum tree_code code, ...)
2752 {
2753 tree t;
2754 int length;
2755 int i;
2756 va_list p;
2757
2758 va_start (p, code);
2759
2760 t = make_node (code);
2761 length = TREE_CODE_LENGTH (code);
2762
2763 for (i = 0; i < length; i++)
2764 TREE_OPERAND (t, i) = va_arg (p, tree);
2765
2766 va_end (p);
2767 return t;
2768 }
2769 \f
2770 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2771 We do NOT enter this node in any sort of symbol table.
2772
2773 layout_decl is used to set up the decl's storage layout.
2774 Other slots are initialized to 0 or null pointers. */
2775
2776 tree
2777 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2778 {
2779 tree t;
2780
2781 t = make_node_stat (code PASS_MEM_STAT);
2782
2783 /* if (type == error_mark_node)
2784 type = integer_type_node; */
2785 /* That is not done, deliberately, so that having error_mark_node
2786 as the type can suppress useless errors in the use of this variable. */
2787
2788 DECL_NAME (t) = name;
2789 TREE_TYPE (t) = type;
2790
2791 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2792 layout_decl (t, 0);
2793 else if (code == FUNCTION_DECL)
2794 DECL_MODE (t) = FUNCTION_MODE;
2795
2796 /* Set default visibility to whatever the user supplied with
2797 visibility_specified depending on #pragma GCC visibility. */
2798 DECL_VISIBILITY (t) = default_visibility;
2799 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
2800
2801 return t;
2802 }
2803 \f
2804 /* BLOCK nodes are used to represent the structure of binding contours
2805 and declarations, once those contours have been exited and their contents
2806 compiled. This information is used for outputting debugging info. */
2807
2808 tree
2809 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2810 tree supercontext, tree chain)
2811 {
2812 tree block = make_node (BLOCK);
2813
2814 BLOCK_VARS (block) = vars;
2815 BLOCK_SUBBLOCKS (block) = subblocks;
2816 BLOCK_SUPERCONTEXT (block) = supercontext;
2817 BLOCK_CHAIN (block) = chain;
2818 return block;
2819 }
2820
2821 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
2822 /* ??? gengtype doesn't handle conditionals */
2823 static GTY(()) tree last_annotated_node;
2824 #endif
2825
2826 #ifdef USE_MAPPED_LOCATION
2827
2828 expanded_location
2829 expand_location (source_location loc)
2830 {
2831 expanded_location xloc;
2832 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
2833 else
2834 {
2835 const struct line_map *map = linemap_lookup (&line_table, loc);
2836 xloc.file = map->to_file;
2837 xloc.line = SOURCE_LINE (map, loc);
2838 xloc.column = SOURCE_COLUMN (map, loc);
2839 };
2840 return xloc;
2841 }
2842
2843 #else
2844
2845 /* Record the exact location where an expression or an identifier were
2846 encountered. */
2847
2848 void
2849 annotate_with_file_line (tree node, const char *file, int line)
2850 {
2851 /* Roughly one percent of the calls to this function are to annotate
2852 a node with the same information already attached to that node!
2853 Just return instead of wasting memory. */
2854 if (EXPR_LOCUS (node)
2855 && (EXPR_FILENAME (node) == file
2856 || ! strcmp (EXPR_FILENAME (node), file))
2857 && EXPR_LINENO (node) == line)
2858 {
2859 last_annotated_node = node;
2860 return;
2861 }
2862
2863 /* In heavily macroized code (such as GCC itself) this single
2864 entry cache can reduce the number of allocations by more
2865 than half. */
2866 if (last_annotated_node
2867 && EXPR_LOCUS (last_annotated_node)
2868 && (EXPR_FILENAME (last_annotated_node) == file
2869 || ! strcmp (EXPR_FILENAME (last_annotated_node), file))
2870 && EXPR_LINENO (last_annotated_node) == line)
2871 {
2872 SET_EXPR_LOCUS (node, EXPR_LOCUS (last_annotated_node));
2873 return;
2874 }
2875
2876 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
2877 EXPR_LINENO (node) = line;
2878 EXPR_FILENAME (node) = file;
2879 last_annotated_node = node;
2880 }
2881
2882 void
2883 annotate_with_locus (tree node, location_t locus)
2884 {
2885 annotate_with_file_line (node, locus.file, locus.line);
2886 }
2887 #endif
2888 \f
2889 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2890 is ATTRIBUTE. */
2891
2892 tree
2893 build_decl_attribute_variant (tree ddecl, tree attribute)
2894 {
2895 DECL_ATTRIBUTES (ddecl) = attribute;
2896 return ddecl;
2897 }
2898
2899 /* Borrowed from hashtab.c iterative_hash implementation. */
2900 #define mix(a,b,c) \
2901 { \
2902 a -= b; a -= c; a ^= (c>>13); \
2903 b -= c; b -= a; b ^= (a<< 8); \
2904 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
2905 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
2906 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
2907 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
2908 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
2909 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
2910 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
2911 }
2912
2913
2914 /* Produce good hash value combining VAL and VAL2. */
2915 static inline hashval_t
2916 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
2917 {
2918 /* the golden ratio; an arbitrary value. */
2919 hashval_t a = 0x9e3779b9;
2920
2921 mix (a, val, val2);
2922 return val2;
2923 }
2924
2925 /* Produce good hash value combining PTR and VAL2. */
2926 static inline hashval_t
2927 iterative_hash_pointer (void *ptr, hashval_t val2)
2928 {
2929 if (sizeof (ptr) == sizeof (hashval_t))
2930 return iterative_hash_hashval_t ((size_t) ptr, val2);
2931 else
2932 {
2933 hashval_t a = (hashval_t) (size_t) ptr;
2934 /* Avoid warnings about shifting of more than the width of the type on
2935 hosts that won't execute this path. */
2936 int zero = 0;
2937 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
2938 mix (a, b, val2);
2939 return val2;
2940 }
2941 }
2942
2943 /* Produce good hash value combining VAL and VAL2. */
2944 static inline hashval_t
2945 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
2946 {
2947 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
2948 return iterative_hash_hashval_t (val, val2);
2949 else
2950 {
2951 hashval_t a = (hashval_t) val;
2952 /* Avoid warnings about shifting of more than the width of the type on
2953 hosts that won't execute this path. */
2954 int zero = 0;
2955 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
2956 mix (a, b, val2);
2957 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
2958 {
2959 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
2960 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
2961 mix (a, b, val2);
2962 }
2963 return val2;
2964 }
2965 }
2966
2967 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2968 is ATTRIBUTE.
2969
2970 Record such modified types already made so we don't make duplicates. */
2971
2972 tree
2973 build_type_attribute_variant (tree ttype, tree attribute)
2974 {
2975 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2976 {
2977 hashval_t hashcode = 0;
2978 tree ntype;
2979 enum tree_code code = TREE_CODE (ttype);
2980
2981 ntype = copy_node (ttype);
2982
2983 TYPE_POINTER_TO (ntype) = 0;
2984 TYPE_REFERENCE_TO (ntype) = 0;
2985 TYPE_ATTRIBUTES (ntype) = attribute;
2986
2987 /* Create a new main variant of TYPE. */
2988 TYPE_MAIN_VARIANT (ntype) = ntype;
2989 TYPE_NEXT_VARIANT (ntype) = 0;
2990 set_type_quals (ntype, TYPE_UNQUALIFIED);
2991
2992 hashcode = iterative_hash_object (code, hashcode);
2993 if (TREE_TYPE (ntype))
2994 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2995 hashcode);
2996 hashcode = attribute_hash_list (attribute, hashcode);
2997
2998 switch (TREE_CODE (ntype))
2999 {
3000 case FUNCTION_TYPE:
3001 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3002 break;
3003 case ARRAY_TYPE:
3004 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3005 hashcode);
3006 break;
3007 case INTEGER_TYPE:
3008 hashcode = iterative_hash_object
3009 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3010 hashcode = iterative_hash_object
3011 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3012 break;
3013 case REAL_TYPE:
3014 {
3015 unsigned int precision = TYPE_PRECISION (ntype);
3016 hashcode = iterative_hash_object (precision, hashcode);
3017 }
3018 break;
3019 default:
3020 break;
3021 }
3022
3023 ntype = type_hash_canon (hashcode, ntype);
3024 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3025 }
3026
3027 return ttype;
3028 }
3029
3030
3031 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3032 or zero if not.
3033
3034 We try both `text' and `__text__', ATTR may be either one. */
3035 /* ??? It might be a reasonable simplification to require ATTR to be only
3036 `text'. One might then also require attribute lists to be stored in
3037 their canonicalized form. */
3038
3039 static int
3040 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3041 {
3042 int ident_len;
3043 const char *p;
3044
3045 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3046 return 0;
3047
3048 p = IDENTIFIER_POINTER (ident);
3049 ident_len = IDENTIFIER_LENGTH (ident);
3050
3051 if (ident_len == attr_len
3052 && strcmp (attr, p) == 0)
3053 return 1;
3054
3055 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3056 if (attr[0] == '_')
3057 {
3058 gcc_assert (attr[1] == '_');
3059 gcc_assert (attr[attr_len - 2] == '_');
3060 gcc_assert (attr[attr_len - 1] == '_');
3061 gcc_assert (attr[1] == '_');
3062 if (ident_len == attr_len - 4
3063 && strncmp (attr + 2, p, attr_len - 4) == 0)
3064 return 1;
3065 }
3066 else
3067 {
3068 if (ident_len == attr_len + 4
3069 && p[0] == '_' && p[1] == '_'
3070 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3071 && strncmp (attr, p + 2, attr_len) == 0)
3072 return 1;
3073 }
3074
3075 return 0;
3076 }
3077
3078 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3079 or zero if not.
3080
3081 We try both `text' and `__text__', ATTR may be either one. */
3082
3083 int
3084 is_attribute_p (const char *attr, tree ident)
3085 {
3086 return is_attribute_with_length_p (attr, strlen (attr), ident);
3087 }
3088
3089 /* Given an attribute name and a list of attributes, return a pointer to the
3090 attribute's list element if the attribute is part of the list, or NULL_TREE
3091 if not found. If the attribute appears more than once, this only
3092 returns the first occurrence; the TREE_CHAIN of the return value should
3093 be passed back in if further occurrences are wanted. */
3094
3095 tree
3096 lookup_attribute (const char *attr_name, tree list)
3097 {
3098 tree l;
3099 size_t attr_len = strlen (attr_name);
3100
3101 for (l = list; l; l = TREE_CHAIN (l))
3102 {
3103 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3104 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3105 return l;
3106 }
3107
3108 return NULL_TREE;
3109 }
3110
3111 /* Return an attribute list that is the union of a1 and a2. */
3112
3113 tree
3114 merge_attributes (tree a1, tree a2)
3115 {
3116 tree attributes;
3117
3118 /* Either one unset? Take the set one. */
3119
3120 if ((attributes = a1) == 0)
3121 attributes = a2;
3122
3123 /* One that completely contains the other? Take it. */
3124
3125 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3126 {
3127 if (attribute_list_contained (a2, a1))
3128 attributes = a2;
3129 else
3130 {
3131 /* Pick the longest list, and hang on the other list. */
3132
3133 if (list_length (a1) < list_length (a2))
3134 attributes = a2, a2 = a1;
3135
3136 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3137 {
3138 tree a;
3139 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3140 attributes);
3141 a != NULL_TREE;
3142 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3143 TREE_CHAIN (a)))
3144 {
3145 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3146 break;
3147 }
3148 if (a == NULL_TREE)
3149 {
3150 a1 = copy_node (a2);
3151 TREE_CHAIN (a1) = attributes;
3152 attributes = a1;
3153 }
3154 }
3155 }
3156 }
3157 return attributes;
3158 }
3159
3160 /* Given types T1 and T2, merge their attributes and return
3161 the result. */
3162
3163 tree
3164 merge_type_attributes (tree t1, tree t2)
3165 {
3166 return merge_attributes (TYPE_ATTRIBUTES (t1),
3167 TYPE_ATTRIBUTES (t2));
3168 }
3169
3170 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3171 the result. */
3172
3173 tree
3174 merge_decl_attributes (tree olddecl, tree newdecl)
3175 {
3176 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3177 DECL_ATTRIBUTES (newdecl));
3178 }
3179
3180 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3181
3182 /* Specialization of merge_decl_attributes for various Windows targets.
3183
3184 This handles the following situation:
3185
3186 __declspec (dllimport) int foo;
3187 int foo;
3188
3189 The second instance of `foo' nullifies the dllimport. */
3190
3191 tree
3192 merge_dllimport_decl_attributes (tree old, tree new)
3193 {
3194 tree a;
3195 int delete_dllimport_p;
3196
3197 old = DECL_ATTRIBUTES (old);
3198 new = DECL_ATTRIBUTES (new);
3199
3200 /* What we need to do here is remove from `old' dllimport if it doesn't
3201 appear in `new'. dllimport behaves like extern: if a declaration is
3202 marked dllimport and a definition appears later, then the object
3203 is not dllimport'd. */
3204 if (lookup_attribute ("dllimport", old) != NULL_TREE
3205 && lookup_attribute ("dllimport", new) == NULL_TREE)
3206 delete_dllimport_p = 1;
3207 else
3208 delete_dllimport_p = 0;
3209
3210 a = merge_attributes (old, new);
3211
3212 if (delete_dllimport_p)
3213 {
3214 tree prev, t;
3215
3216 /* Scan the list for dllimport and delete it. */
3217 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3218 {
3219 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3220 {
3221 if (prev == NULL_TREE)
3222 a = TREE_CHAIN (a);
3223 else
3224 TREE_CHAIN (prev) = TREE_CHAIN (t);
3225 break;
3226 }
3227 }
3228 }
3229
3230 return a;
3231 }
3232
3233 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3234 struct attribute_spec.handler. */
3235
3236 tree
3237 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3238 bool *no_add_attrs)
3239 {
3240 tree node = *pnode;
3241
3242 /* These attributes may apply to structure and union types being created,
3243 but otherwise should pass to the declaration involved. */
3244 if (!DECL_P (node))
3245 {
3246 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3247 | (int) ATTR_FLAG_ARRAY_NEXT))
3248 {
3249 *no_add_attrs = true;
3250 return tree_cons (name, args, NULL_TREE);
3251 }
3252 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3253 {
3254 warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
3255 *no_add_attrs = true;
3256 }
3257
3258 return NULL_TREE;
3259 }
3260
3261 /* Report error on dllimport ambiguities seen now before they cause
3262 any damage. */
3263 if (is_attribute_p ("dllimport", name))
3264 {
3265 /* Like MS, treat definition of dllimported variables and
3266 non-inlined functions on declaration as syntax errors. We
3267 allow the attribute for function definitions if declared
3268 inline. */
3269 if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node)
3270 && !DECL_DECLARED_INLINE_P (node))
3271 {
3272 error ("%Jfunction %qD definition is marked dllimport.", node, node);
3273 *no_add_attrs = true;
3274 }
3275
3276 else if (TREE_CODE (node) == VAR_DECL)
3277 {
3278 if (DECL_INITIAL (node))
3279 {
3280 error ("%Jvariable %qD definition is marked dllimport.",
3281 node, node);
3282 *no_add_attrs = true;
3283 }
3284
3285 /* `extern' needn't be specified with dllimport.
3286 Specify `extern' now and hope for the best. Sigh. */
3287 DECL_EXTERNAL (node) = 1;
3288 /* Also, implicitly give dllimport'd variables declared within
3289 a function global scope, unless declared static. */
3290 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3291 TREE_PUBLIC (node) = 1;
3292 }
3293 }
3294
3295 /* Report error if symbol is not accessible at global scope. */
3296 if (!TREE_PUBLIC (node)
3297 && (TREE_CODE (node) == VAR_DECL
3298 || TREE_CODE (node) == FUNCTION_DECL))
3299 {
3300 error ("%Jexternal linkage required for symbol %qD because of "
3301 "%qs attribute.", node, node, IDENTIFIER_POINTER (name));
3302 *no_add_attrs = true;
3303 }
3304
3305 return NULL_TREE;
3306 }
3307
3308 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3309 \f
3310 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3311 of the various TYPE_QUAL values. */
3312
3313 static void
3314 set_type_quals (tree type, int type_quals)
3315 {
3316 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3317 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3318 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3319 }
3320
3321 /* Returns true iff cand is equivalent to base with type_quals. */
3322
3323 bool
3324 check_qualified_type (tree cand, tree base, int type_quals)
3325 {
3326 return (TYPE_QUALS (cand) == type_quals
3327 && TYPE_NAME (cand) == TYPE_NAME (base)
3328 /* Apparently this is needed for Objective-C. */
3329 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3330 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3331 TYPE_ATTRIBUTES (base)));
3332 }
3333
3334 /* Return a version of the TYPE, qualified as indicated by the
3335 TYPE_QUALS, if one exists. If no qualified version exists yet,
3336 return NULL_TREE. */
3337
3338 tree
3339 get_qualified_type (tree type, int type_quals)
3340 {
3341 tree t;
3342
3343 if (TYPE_QUALS (type) == type_quals)
3344 return type;
3345
3346 /* Search the chain of variants to see if there is already one there just
3347 like the one we need to have. If so, use that existing one. We must
3348 preserve the TYPE_NAME, since there is code that depends on this. */
3349 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3350 if (check_qualified_type (t, type, type_quals))
3351 return t;
3352
3353 return NULL_TREE;
3354 }
3355
3356 /* Like get_qualified_type, but creates the type if it does not
3357 exist. This function never returns NULL_TREE. */
3358
3359 tree
3360 build_qualified_type (tree type, int type_quals)
3361 {
3362 tree t;
3363
3364 /* See if we already have the appropriate qualified variant. */
3365 t = get_qualified_type (type, type_quals);
3366
3367 /* If not, build it. */
3368 if (!t)
3369 {
3370 t = build_variant_type_copy (type);
3371 set_type_quals (t, type_quals);
3372 }
3373
3374 return t;
3375 }
3376
3377 /* Create a new distinct copy of TYPE. The new type is made its own
3378 MAIN_VARIANT. */
3379
3380 tree
3381 build_distinct_type_copy (tree type)
3382 {
3383 tree t = copy_node (type);
3384
3385 TYPE_POINTER_TO (t) = 0;
3386 TYPE_REFERENCE_TO (t) = 0;
3387
3388 /* Make it its own variant. */
3389 TYPE_MAIN_VARIANT (t) = t;
3390 TYPE_NEXT_VARIANT (t) = 0;
3391
3392 return t;
3393 }
3394
3395 /* Create a new variant of TYPE, equivalent but distinct.
3396 This is so the caller can modify it. */
3397
3398 tree
3399 build_variant_type_copy (tree type)
3400 {
3401 tree t, m = TYPE_MAIN_VARIANT (type);
3402
3403 t = build_distinct_type_copy (type);
3404
3405 /* Add the new type to the chain of variants of TYPE. */
3406 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3407 TYPE_NEXT_VARIANT (m) = t;
3408 TYPE_MAIN_VARIANT (t) = m;
3409
3410 return t;
3411 }
3412 \f
3413 /* Hashing of types so that we don't make duplicates.
3414 The entry point is `type_hash_canon'. */
3415
3416 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3417 with types in the TREE_VALUE slots), by adding the hash codes
3418 of the individual types. */
3419
3420 unsigned int
3421 type_hash_list (tree list, hashval_t hashcode)
3422 {
3423 tree tail;
3424
3425 for (tail = list; tail; tail = TREE_CHAIN (tail))
3426 if (TREE_VALUE (tail) != error_mark_node)
3427 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3428 hashcode);
3429
3430 return hashcode;
3431 }
3432
3433 /* These are the Hashtable callback functions. */
3434
3435 /* Returns true iff the types are equivalent. */
3436
3437 static int
3438 type_hash_eq (const void *va, const void *vb)
3439 {
3440 const struct type_hash *a = va, *b = vb;
3441
3442 /* First test the things that are the same for all types. */
3443 if (a->hash != b->hash
3444 || TREE_CODE (a->type) != TREE_CODE (b->type)
3445 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3446 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3447 TYPE_ATTRIBUTES (b->type))
3448 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3449 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3450 return 0;
3451
3452 switch (TREE_CODE (a->type))
3453 {
3454 case VOID_TYPE:
3455 case COMPLEX_TYPE:
3456 case POINTER_TYPE:
3457 case REFERENCE_TYPE:
3458 return 1;
3459
3460 case VECTOR_TYPE:
3461 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
3462
3463 case ENUMERAL_TYPE:
3464 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3465 && !(TYPE_VALUES (a->type)
3466 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3467 && TYPE_VALUES (b->type)
3468 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3469 && type_list_equal (TYPE_VALUES (a->type),
3470 TYPE_VALUES (b->type))))
3471 return 0;
3472
3473 /* ... fall through ... */
3474
3475 case INTEGER_TYPE:
3476 case REAL_TYPE:
3477 case BOOLEAN_TYPE:
3478 case CHAR_TYPE:
3479 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3480 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3481 TYPE_MAX_VALUE (b->type)))
3482 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3483 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3484 TYPE_MIN_VALUE (b->type))));
3485
3486 case OFFSET_TYPE:
3487 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3488
3489 case METHOD_TYPE:
3490 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3491 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3492 || (TYPE_ARG_TYPES (a->type)
3493 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3494 && TYPE_ARG_TYPES (b->type)
3495 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3496 && type_list_equal (TYPE_ARG_TYPES (a->type),
3497 TYPE_ARG_TYPES (b->type)))));
3498
3499 case ARRAY_TYPE:
3500 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3501
3502 case RECORD_TYPE:
3503 case UNION_TYPE:
3504 case QUAL_UNION_TYPE:
3505 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3506 || (TYPE_FIELDS (a->type)
3507 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3508 && TYPE_FIELDS (b->type)
3509 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3510 && type_list_equal (TYPE_FIELDS (a->type),
3511 TYPE_FIELDS (b->type))));
3512
3513 case FUNCTION_TYPE:
3514 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3515 || (TYPE_ARG_TYPES (a->type)
3516 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3517 && TYPE_ARG_TYPES (b->type)
3518 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3519 && type_list_equal (TYPE_ARG_TYPES (a->type),
3520 TYPE_ARG_TYPES (b->type))));
3521
3522 default:
3523 return 0;
3524 }
3525 }
3526
3527 /* Return the cached hash value. */
3528
3529 static hashval_t
3530 type_hash_hash (const void *item)
3531 {
3532 return ((const struct type_hash *) item)->hash;
3533 }
3534
3535 /* Look in the type hash table for a type isomorphic to TYPE.
3536 If one is found, return it. Otherwise return 0. */
3537
3538 tree
3539 type_hash_lookup (hashval_t hashcode, tree type)
3540 {
3541 struct type_hash *h, in;
3542
3543 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3544 must call that routine before comparing TYPE_ALIGNs. */
3545 layout_type (type);
3546
3547 in.hash = hashcode;
3548 in.type = type;
3549
3550 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3551 if (h)
3552 return h->type;
3553 return NULL_TREE;
3554 }
3555
3556 /* Add an entry to the type-hash-table
3557 for a type TYPE whose hash code is HASHCODE. */
3558
3559 void
3560 type_hash_add (hashval_t hashcode, tree type)
3561 {
3562 struct type_hash *h;
3563 void **loc;
3564
3565 h = ggc_alloc (sizeof (struct type_hash));
3566 h->hash = hashcode;
3567 h->type = type;
3568 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3569 *(struct type_hash **) loc = h;
3570 }
3571
3572 /* Given TYPE, and HASHCODE its hash code, return the canonical
3573 object for an identical type if one already exists.
3574 Otherwise, return TYPE, and record it as the canonical object.
3575
3576 To use this function, first create a type of the sort you want.
3577 Then compute its hash code from the fields of the type that
3578 make it different from other similar types.
3579 Then call this function and use the value. */
3580
3581 tree
3582 type_hash_canon (unsigned int hashcode, tree type)
3583 {
3584 tree t1;
3585
3586 /* The hash table only contains main variants, so ensure that's what we're
3587 being passed. */
3588 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
3589
3590 if (!lang_hooks.types.hash_types)
3591 return type;
3592
3593 /* See if the type is in the hash table already. If so, return it.
3594 Otherwise, add the type. */
3595 t1 = type_hash_lookup (hashcode, type);
3596 if (t1 != 0)
3597 {
3598 #ifdef GATHER_STATISTICS
3599 tree_node_counts[(int) t_kind]--;
3600 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3601 #endif
3602 return t1;
3603 }
3604 else
3605 {
3606 type_hash_add (hashcode, type);
3607 return type;
3608 }
3609 }
3610
3611 /* See if the data pointed to by the type hash table is marked. We consider
3612 it marked if the type is marked or if a debug type number or symbol
3613 table entry has been made for the type. This reduces the amount of
3614 debugging output and eliminates that dependency of the debug output on
3615 the number of garbage collections. */
3616
3617 static int
3618 type_hash_marked_p (const void *p)
3619 {
3620 tree type = ((struct type_hash *) p)->type;
3621
3622 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3623 }
3624
3625 static void
3626 print_type_hash_statistics (void)
3627 {
3628 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3629 (long) htab_size (type_hash_table),
3630 (long) htab_elements (type_hash_table),
3631 htab_collisions (type_hash_table));
3632 }
3633
3634 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3635 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3636 by adding the hash codes of the individual attributes. */
3637
3638 unsigned int
3639 attribute_hash_list (tree list, hashval_t hashcode)
3640 {
3641 tree tail;
3642
3643 for (tail = list; tail; tail = TREE_CHAIN (tail))
3644 /* ??? Do we want to add in TREE_VALUE too? */
3645 hashcode = iterative_hash_object
3646 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3647 return hashcode;
3648 }
3649
3650 /* Given two lists of attributes, return true if list l2 is
3651 equivalent to l1. */
3652
3653 int
3654 attribute_list_equal (tree l1, tree l2)
3655 {
3656 return attribute_list_contained (l1, l2)
3657 && attribute_list_contained (l2, l1);
3658 }
3659
3660 /* Given two lists of attributes, return true if list L2 is
3661 completely contained within L1. */
3662 /* ??? This would be faster if attribute names were stored in a canonicalized
3663 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3664 must be used to show these elements are equivalent (which they are). */
3665 /* ??? It's not clear that attributes with arguments will always be handled
3666 correctly. */
3667
3668 int
3669 attribute_list_contained (tree l1, tree l2)
3670 {
3671 tree t1, t2;
3672
3673 /* First check the obvious, maybe the lists are identical. */
3674 if (l1 == l2)
3675 return 1;
3676
3677 /* Maybe the lists are similar. */
3678 for (t1 = l1, t2 = l2;
3679 t1 != 0 && t2 != 0
3680 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3681 && TREE_VALUE (t1) == TREE_VALUE (t2);
3682 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3683
3684 /* Maybe the lists are equal. */
3685 if (t1 == 0 && t2 == 0)
3686 return 1;
3687
3688 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3689 {
3690 tree attr;
3691 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3692 attr != NULL_TREE;
3693 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3694 TREE_CHAIN (attr)))
3695 {
3696 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3697 break;
3698 }
3699
3700 if (attr == 0)
3701 return 0;
3702
3703 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3704 return 0;
3705 }
3706
3707 return 1;
3708 }
3709
3710 /* Given two lists of types
3711 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3712 return 1 if the lists contain the same types in the same order.
3713 Also, the TREE_PURPOSEs must match. */
3714
3715 int
3716 type_list_equal (tree l1, tree l2)
3717 {
3718 tree t1, t2;
3719
3720 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3721 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3722 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3723 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3724 && (TREE_TYPE (TREE_PURPOSE (t1))
3725 == TREE_TYPE (TREE_PURPOSE (t2))))))
3726 return 0;
3727
3728 return t1 == t2;
3729 }
3730
3731 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3732 given by TYPE. If the argument list accepts variable arguments,
3733 then this function counts only the ordinary arguments. */
3734
3735 int
3736 type_num_arguments (tree type)
3737 {
3738 int i = 0;
3739 tree t;
3740
3741 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3742 /* If the function does not take a variable number of arguments,
3743 the last element in the list will have type `void'. */
3744 if (VOID_TYPE_P (TREE_VALUE (t)))
3745 break;
3746 else
3747 ++i;
3748
3749 return i;
3750 }
3751
3752 /* Nonzero if integer constants T1 and T2
3753 represent the same constant value. */
3754
3755 int
3756 tree_int_cst_equal (tree t1, tree t2)
3757 {
3758 if (t1 == t2)
3759 return 1;
3760
3761 if (t1 == 0 || t2 == 0)
3762 return 0;
3763
3764 if (TREE_CODE (t1) == INTEGER_CST
3765 && TREE_CODE (t2) == INTEGER_CST
3766 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3767 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3768 return 1;
3769
3770 return 0;
3771 }
3772
3773 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3774 The precise way of comparison depends on their data type. */
3775
3776 int
3777 tree_int_cst_lt (tree t1, tree t2)
3778 {
3779 if (t1 == t2)
3780 return 0;
3781
3782 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3783 {
3784 int t1_sgn = tree_int_cst_sgn (t1);
3785 int t2_sgn = tree_int_cst_sgn (t2);
3786
3787 if (t1_sgn < t2_sgn)
3788 return 1;
3789 else if (t1_sgn > t2_sgn)
3790 return 0;
3791 /* Otherwise, both are non-negative, so we compare them as
3792 unsigned just in case one of them would overflow a signed
3793 type. */
3794 }
3795 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3796 return INT_CST_LT (t1, t2);
3797
3798 return INT_CST_LT_UNSIGNED (t1, t2);
3799 }
3800
3801 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3802
3803 int
3804 tree_int_cst_compare (tree t1, tree t2)
3805 {
3806 if (tree_int_cst_lt (t1, t2))
3807 return -1;
3808 else if (tree_int_cst_lt (t2, t1))
3809 return 1;
3810 else
3811 return 0;
3812 }
3813
3814 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3815 the host. If POS is zero, the value can be represented in a single
3816 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3817 be represented in a single unsigned HOST_WIDE_INT. */
3818
3819 int
3820 host_integerp (tree t, int pos)
3821 {
3822 return (TREE_CODE (t) == INTEGER_CST
3823 && ! TREE_OVERFLOW (t)
3824 && ((TREE_INT_CST_HIGH (t) == 0
3825 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3826 || (! pos && TREE_INT_CST_HIGH (t) == -1
3827 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3828 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3829 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3830 }
3831
3832 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3833 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3834 be positive. Abort if we cannot satisfy the above conditions. */
3835
3836 HOST_WIDE_INT
3837 tree_low_cst (tree t, int pos)
3838 {
3839 gcc_assert (host_integerp (t, pos));
3840 return TREE_INT_CST_LOW (t);
3841 }
3842
3843 /* Return the most significant bit of the integer constant T. */
3844
3845 int
3846 tree_int_cst_msb (tree t)
3847 {
3848 int prec;
3849 HOST_WIDE_INT h;
3850 unsigned HOST_WIDE_INT l;
3851
3852 /* Note that using TYPE_PRECISION here is wrong. We care about the
3853 actual bits, not the (arbitrary) range of the type. */
3854 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3855 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3856 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3857 return (l & 1) == 1;
3858 }
3859
3860 /* Return an indication of the sign of the integer constant T.
3861 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3862 Note that -1 will never be returned it T's type is unsigned. */
3863
3864 int
3865 tree_int_cst_sgn (tree t)
3866 {
3867 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3868 return 0;
3869 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3870 return 1;
3871 else if (TREE_INT_CST_HIGH (t) < 0)
3872 return -1;
3873 else
3874 return 1;
3875 }
3876
3877 /* Compare two constructor-element-type constants. Return 1 if the lists
3878 are known to be equal; otherwise return 0. */
3879
3880 int
3881 simple_cst_list_equal (tree l1, tree l2)
3882 {
3883 while (l1 != NULL_TREE && l2 != NULL_TREE)
3884 {
3885 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3886 return 0;
3887
3888 l1 = TREE_CHAIN (l1);
3889 l2 = TREE_CHAIN (l2);
3890 }
3891
3892 return l1 == l2;
3893 }
3894
3895 /* Return truthvalue of whether T1 is the same tree structure as T2.
3896 Return 1 if they are the same.
3897 Return 0 if they are understandably different.
3898 Return -1 if either contains tree structure not understood by
3899 this function. */
3900
3901 int
3902 simple_cst_equal (tree t1, tree t2)
3903 {
3904 enum tree_code code1, code2;
3905 int cmp;
3906 int i;
3907
3908 if (t1 == t2)
3909 return 1;
3910 if (t1 == 0 || t2 == 0)
3911 return 0;
3912
3913 code1 = TREE_CODE (t1);
3914 code2 = TREE_CODE (t2);
3915
3916 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3917 {
3918 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3919 || code2 == NON_LVALUE_EXPR)
3920 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3921 else
3922 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3923 }
3924
3925 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3926 || code2 == NON_LVALUE_EXPR)
3927 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3928
3929 if (code1 != code2)
3930 return 0;
3931
3932 switch (code1)
3933 {
3934 case INTEGER_CST:
3935 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3936 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3937
3938 case REAL_CST:
3939 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3940
3941 case STRING_CST:
3942 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3943 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3944 TREE_STRING_LENGTH (t1)));
3945
3946 case CONSTRUCTOR:
3947 return simple_cst_list_equal (CONSTRUCTOR_ELTS (t1),
3948 CONSTRUCTOR_ELTS (t2));
3949
3950 case SAVE_EXPR:
3951 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3952
3953 case CALL_EXPR:
3954 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3955 if (cmp <= 0)
3956 return cmp;
3957 return
3958 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3959
3960 case TARGET_EXPR:
3961 /* Special case: if either target is an unallocated VAR_DECL,
3962 it means that it's going to be unified with whatever the
3963 TARGET_EXPR is really supposed to initialize, so treat it
3964 as being equivalent to anything. */
3965 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3966 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3967 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3968 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3969 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3970 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3971 cmp = 1;
3972 else
3973 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3974
3975 if (cmp <= 0)
3976 return cmp;
3977
3978 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3979
3980 case WITH_CLEANUP_EXPR:
3981 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3982 if (cmp <= 0)
3983 return cmp;
3984
3985 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3986
3987 case COMPONENT_REF:
3988 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3989 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3990
3991 return 0;
3992
3993 case VAR_DECL:
3994 case PARM_DECL:
3995 case CONST_DECL:
3996 case FUNCTION_DECL:
3997 return 0;
3998
3999 default:
4000 break;
4001 }
4002
4003 /* This general rule works for most tree codes. All exceptions should be
4004 handled above. If this is a language-specific tree code, we can't
4005 trust what might be in the operand, so say we don't know
4006 the situation. */
4007 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4008 return -1;
4009
4010 switch (TREE_CODE_CLASS (code1))
4011 {
4012 case tcc_unary:
4013 case tcc_binary:
4014 case tcc_comparison:
4015 case tcc_expression:
4016 case tcc_reference:
4017 case tcc_statement:
4018 cmp = 1;
4019 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4020 {
4021 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4022 if (cmp <= 0)
4023 return cmp;
4024 }
4025
4026 return cmp;
4027
4028 default:
4029 return -1;
4030 }
4031 }
4032
4033 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4034 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4035 than U, respectively. */
4036
4037 int
4038 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4039 {
4040 if (tree_int_cst_sgn (t) < 0)
4041 return -1;
4042 else if (TREE_INT_CST_HIGH (t) != 0)
4043 return 1;
4044 else if (TREE_INT_CST_LOW (t) == u)
4045 return 0;
4046 else if (TREE_INT_CST_LOW (t) < u)
4047 return -1;
4048 else
4049 return 1;
4050 }
4051
4052 /* Return true if CODE represents an associative tree code. Otherwise
4053 return false. */
4054 bool
4055 associative_tree_code (enum tree_code code)
4056 {
4057 switch (code)
4058 {
4059 case BIT_IOR_EXPR:
4060 case BIT_AND_EXPR:
4061 case BIT_XOR_EXPR:
4062 case PLUS_EXPR:
4063 case MULT_EXPR:
4064 case MIN_EXPR:
4065 case MAX_EXPR:
4066 return true;
4067
4068 default:
4069 break;
4070 }
4071 return false;
4072 }
4073
4074 /* Return true if CODE represents a commutative tree code. Otherwise
4075 return false. */
4076 bool
4077 commutative_tree_code (enum tree_code code)
4078 {
4079 switch (code)
4080 {
4081 case PLUS_EXPR:
4082 case MULT_EXPR:
4083 case MIN_EXPR:
4084 case MAX_EXPR:
4085 case BIT_IOR_EXPR:
4086 case BIT_XOR_EXPR:
4087 case BIT_AND_EXPR:
4088 case NE_EXPR:
4089 case EQ_EXPR:
4090 case UNORDERED_EXPR:
4091 case ORDERED_EXPR:
4092 case UNEQ_EXPR:
4093 case LTGT_EXPR:
4094 case TRUTH_AND_EXPR:
4095 case TRUTH_XOR_EXPR:
4096 case TRUTH_OR_EXPR:
4097 return true;
4098
4099 default:
4100 break;
4101 }
4102 return false;
4103 }
4104
4105 /* Generate a hash value for an expression. This can be used iteratively
4106 by passing a previous result as the "val" argument.
4107
4108 This function is intended to produce the same hash for expressions which
4109 would compare equal using operand_equal_p. */
4110
4111 hashval_t
4112 iterative_hash_expr (tree t, hashval_t val)
4113 {
4114 int i;
4115 enum tree_code code;
4116 char class;
4117
4118 if (t == NULL_TREE)
4119 return iterative_hash_pointer (t, val);
4120
4121 code = TREE_CODE (t);
4122
4123 switch (code)
4124 {
4125 /* Alas, constants aren't shared, so we can't rely on pointer
4126 identity. */
4127 case INTEGER_CST:
4128 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4129 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4130 case REAL_CST:
4131 {
4132 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4133
4134 return iterative_hash_hashval_t (val2, val);
4135 }
4136 case STRING_CST:
4137 return iterative_hash (TREE_STRING_POINTER (t),
4138 TREE_STRING_LENGTH (t), val);
4139 case COMPLEX_CST:
4140 val = iterative_hash_expr (TREE_REALPART (t), val);
4141 return iterative_hash_expr (TREE_IMAGPART (t), val);
4142 case VECTOR_CST:
4143 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4144
4145 case SSA_NAME:
4146 case VALUE_HANDLE:
4147 /* we can just compare by pointer. */
4148 return iterative_hash_pointer (t, val);
4149
4150 case TREE_LIST:
4151 /* A list of expressions, for a CALL_EXPR or as the elements of a
4152 VECTOR_CST. */
4153 for (; t; t = TREE_CHAIN (t))
4154 val = iterative_hash_expr (TREE_VALUE (t), val);
4155 return val;
4156 case FUNCTION_DECL:
4157 /* When referring to a built-in FUNCTION_DECL, use the
4158 __builtin__ form. Otherwise nodes that compare equal
4159 according to operand_equal_p might get different
4160 hash codes. */
4161 if (DECL_BUILT_IN (t))
4162 {
4163 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
4164 val);
4165 return val;
4166 }
4167 /* else FALL THROUGH */
4168 default:
4169 class = TREE_CODE_CLASS (code);
4170
4171 if (class == tcc_declaration)
4172 {
4173 /* Otherwise, we can just compare decls by pointer. */
4174 val = iterative_hash_pointer (t, val);
4175 }
4176 else
4177 {
4178 gcc_assert (IS_EXPR_CODE_CLASS (class));
4179
4180 val = iterative_hash_object (code, val);
4181
4182 /* Don't hash the type, that can lead to having nodes which
4183 compare equal according to operand_equal_p, but which
4184 have different hash codes. */
4185 if (code == NOP_EXPR
4186 || code == CONVERT_EXPR
4187 || code == NON_LVALUE_EXPR)
4188 {
4189 /* Make sure to include signness in the hash computation. */
4190 val += TYPE_UNSIGNED (TREE_TYPE (t));
4191 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4192 }
4193
4194 else if (commutative_tree_code (code))
4195 {
4196 /* It's a commutative expression. We want to hash it the same
4197 however it appears. We do this by first hashing both operands
4198 and then rehashing based on the order of their independent
4199 hashes. */
4200 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4201 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4202 hashval_t t;
4203
4204 if (one > two)
4205 t = one, one = two, two = t;
4206
4207 val = iterative_hash_hashval_t (one, val);
4208 val = iterative_hash_hashval_t (two, val);
4209 }
4210 else
4211 for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4212 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4213 }
4214 return val;
4215 break;
4216 }
4217 }
4218 \f
4219 /* Constructors for pointer, array and function types.
4220 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4221 constructed by language-dependent code, not here.) */
4222
4223 /* Construct, lay out and return the type of pointers to TO_TYPE with
4224 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4225 reference all of memory. If such a type has already been
4226 constructed, reuse it. */
4227
4228 tree
4229 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4230 bool can_alias_all)
4231 {
4232 tree t;
4233
4234 /* In some cases, languages will have things that aren't a POINTER_TYPE
4235 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4236 In that case, return that type without regard to the rest of our
4237 operands.
4238
4239 ??? This is a kludge, but consistent with the way this function has
4240 always operated and there doesn't seem to be a good way to avoid this
4241 at the moment. */
4242 if (TYPE_POINTER_TO (to_type) != 0
4243 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4244 return TYPE_POINTER_TO (to_type);
4245
4246 /* First, if we already have a type for pointers to TO_TYPE and it's
4247 the proper mode, use it. */
4248 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4249 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4250 return t;
4251
4252 t = make_node (POINTER_TYPE);
4253
4254 TREE_TYPE (t) = to_type;
4255 TYPE_MODE (t) = mode;
4256 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4257 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4258 TYPE_POINTER_TO (to_type) = t;
4259
4260 /* Lay out the type. This function has many callers that are concerned
4261 with expression-construction, and this simplifies them all. */
4262 layout_type (t);
4263
4264 return t;
4265 }
4266
4267 /* By default build pointers in ptr_mode. */
4268
4269 tree
4270 build_pointer_type (tree to_type)
4271 {
4272 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4273 }
4274
4275 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4276
4277 tree
4278 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4279 bool can_alias_all)
4280 {
4281 tree t;
4282
4283 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4284 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4285 In that case, return that type without regard to the rest of our
4286 operands.
4287
4288 ??? This is a kludge, but consistent with the way this function has
4289 always operated and there doesn't seem to be a good way to avoid this
4290 at the moment. */
4291 if (TYPE_REFERENCE_TO (to_type) != 0
4292 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4293 return TYPE_REFERENCE_TO (to_type);
4294
4295 /* First, if we already have a type for pointers to TO_TYPE and it's
4296 the proper mode, use it. */
4297 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4298 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4299 return t;
4300
4301 t = make_node (REFERENCE_TYPE);
4302
4303 TREE_TYPE (t) = to_type;
4304 TYPE_MODE (t) = mode;
4305 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4306 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4307 TYPE_REFERENCE_TO (to_type) = t;
4308
4309 layout_type (t);
4310
4311 return t;
4312 }
4313
4314
4315 /* Build the node for the type of references-to-TO_TYPE by default
4316 in ptr_mode. */
4317
4318 tree
4319 build_reference_type (tree to_type)
4320 {
4321 return build_reference_type_for_mode (to_type, ptr_mode, false);
4322 }
4323
4324 /* Build a type that is compatible with t but has no cv quals anywhere
4325 in its type, thus
4326
4327 const char *const *const * -> char ***. */
4328
4329 tree
4330 build_type_no_quals (tree t)
4331 {
4332 switch (TREE_CODE (t))
4333 {
4334 case POINTER_TYPE:
4335 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4336 TYPE_MODE (t),
4337 TYPE_REF_CAN_ALIAS_ALL (t));
4338 case REFERENCE_TYPE:
4339 return
4340 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4341 TYPE_MODE (t),
4342 TYPE_REF_CAN_ALIAS_ALL (t));
4343 default:
4344 return TYPE_MAIN_VARIANT (t);
4345 }
4346 }
4347
4348 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4349 MAXVAL should be the maximum value in the domain
4350 (one less than the length of the array).
4351
4352 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4353 We don't enforce this limit, that is up to caller (e.g. language front end).
4354 The limit exists because the result is a signed type and we don't handle
4355 sizes that use more than one HOST_WIDE_INT. */
4356
4357 tree
4358 build_index_type (tree maxval)
4359 {
4360 tree itype = make_node (INTEGER_TYPE);
4361
4362 TREE_TYPE (itype) = sizetype;
4363 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4364 TYPE_MIN_VALUE (itype) = size_zero_node;
4365 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
4366 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4367 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4368 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4369 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4370 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4371
4372 if (host_integerp (maxval, 1))
4373 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4374 else
4375 return itype;
4376 }
4377
4378 /* Builds a signed or unsigned integer type of precision PRECISION.
4379 Used for C bitfields whose precision does not match that of
4380 built-in target types. */
4381 tree
4382 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4383 int unsignedp)
4384 {
4385 tree itype = make_node (INTEGER_TYPE);
4386
4387 TYPE_PRECISION (itype) = precision;
4388
4389 if (unsignedp)
4390 fixup_unsigned_type (itype);
4391 else
4392 fixup_signed_type (itype);
4393
4394 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4395 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4396
4397 return itype;
4398 }
4399
4400 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4401 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4402 low bound LOWVAL and high bound HIGHVAL.
4403 if TYPE==NULL_TREE, sizetype is used. */
4404
4405 tree
4406 build_range_type (tree type, tree lowval, tree highval)
4407 {
4408 tree itype = make_node (INTEGER_TYPE);
4409
4410 TREE_TYPE (itype) = type;
4411 if (type == NULL_TREE)
4412 type = sizetype;
4413
4414 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4415 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4416
4417 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4418 TYPE_MODE (itype) = TYPE_MODE (type);
4419 TYPE_SIZE (itype) = TYPE_SIZE (type);
4420 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4421 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4422 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4423
4424 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4425 return type_hash_canon (tree_low_cst (highval, 0)
4426 - tree_low_cst (lowval, 0),
4427 itype);
4428 else
4429 return itype;
4430 }
4431
4432 /* Just like build_index_type, but takes lowval and highval instead
4433 of just highval (maxval). */
4434
4435 tree
4436 build_index_2_type (tree lowval, tree highval)
4437 {
4438 return build_range_type (sizetype, lowval, highval);
4439 }
4440
4441 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4442 and number of elements specified by the range of values of INDEX_TYPE.
4443 If such a type has already been constructed, reuse it. */
4444
4445 tree
4446 build_array_type (tree elt_type, tree index_type)
4447 {
4448 tree t;
4449 hashval_t hashcode = 0;
4450
4451 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4452 {
4453 error ("arrays of functions are not meaningful");
4454 elt_type = integer_type_node;
4455 }
4456
4457 t = make_node (ARRAY_TYPE);
4458 TREE_TYPE (t) = elt_type;
4459 TYPE_DOMAIN (t) = index_type;
4460
4461 if (index_type == 0)
4462 {
4463 layout_type (t);
4464 return t;
4465 }
4466
4467 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4468 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4469 t = type_hash_canon (hashcode, t);
4470
4471 if (!COMPLETE_TYPE_P (t))
4472 layout_type (t);
4473 return t;
4474 }
4475
4476 /* Return the TYPE of the elements comprising
4477 the innermost dimension of ARRAY. */
4478
4479 tree
4480 get_inner_array_type (tree array)
4481 {
4482 tree type = TREE_TYPE (array);
4483
4484 while (TREE_CODE (type) == ARRAY_TYPE)
4485 type = TREE_TYPE (type);
4486
4487 return type;
4488 }
4489
4490 /* Construct, lay out and return
4491 the type of functions returning type VALUE_TYPE
4492 given arguments of types ARG_TYPES.
4493 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4494 are data type nodes for the arguments of the function.
4495 If such a type has already been constructed, reuse it. */
4496
4497 tree
4498 build_function_type (tree value_type, tree arg_types)
4499 {
4500 tree t;
4501 hashval_t hashcode = 0;
4502
4503 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4504 {
4505 error ("function return type cannot be function");
4506 value_type = integer_type_node;
4507 }
4508
4509 /* Make a node of the sort we want. */
4510 t = make_node (FUNCTION_TYPE);
4511 TREE_TYPE (t) = value_type;
4512 TYPE_ARG_TYPES (t) = arg_types;
4513
4514 /* If we already have such a type, use the old one. */
4515 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4516 hashcode = type_hash_list (arg_types, hashcode);
4517 t = type_hash_canon (hashcode, t);
4518
4519 if (!COMPLETE_TYPE_P (t))
4520 layout_type (t);
4521 return t;
4522 }
4523
4524 /* Build a function type. The RETURN_TYPE is the type returned by the
4525 function. If additional arguments are provided, they are
4526 additional argument types. The list of argument types must always
4527 be terminated by NULL_TREE. */
4528
4529 tree
4530 build_function_type_list (tree return_type, ...)
4531 {
4532 tree t, args, last;
4533 va_list p;
4534
4535 va_start (p, return_type);
4536
4537 t = va_arg (p, tree);
4538 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4539 args = tree_cons (NULL_TREE, t, args);
4540
4541 if (args == NULL_TREE)
4542 args = void_list_node;
4543 else
4544 {
4545 last = args;
4546 args = nreverse (args);
4547 TREE_CHAIN (last) = void_list_node;
4548 }
4549 args = build_function_type (return_type, args);
4550
4551 va_end (p);
4552 return args;
4553 }
4554
4555 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4556 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4557 for the method. An implicit additional parameter (of type
4558 pointer-to-BASETYPE) is added to the ARGTYPES. */
4559
4560 tree
4561 build_method_type_directly (tree basetype,
4562 tree rettype,
4563 tree argtypes)
4564 {
4565 tree t;
4566 tree ptype;
4567 int hashcode = 0;
4568
4569 /* Make a node of the sort we want. */
4570 t = make_node (METHOD_TYPE);
4571
4572 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4573 TREE_TYPE (t) = rettype;
4574 ptype = build_pointer_type (basetype);
4575
4576 /* The actual arglist for this function includes a "hidden" argument
4577 which is "this". Put it into the list of argument types. */
4578 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4579 TYPE_ARG_TYPES (t) = argtypes;
4580
4581 /* If we already have such a type, use the old one. */
4582 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4583 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4584 hashcode = type_hash_list (argtypes, hashcode);
4585 t = type_hash_canon (hashcode, t);
4586
4587 if (!COMPLETE_TYPE_P (t))
4588 layout_type (t);
4589
4590 return t;
4591 }
4592
4593 /* Construct, lay out and return the type of methods belonging to class
4594 BASETYPE and whose arguments and values are described by TYPE.
4595 If that type exists already, reuse it.
4596 TYPE must be a FUNCTION_TYPE node. */
4597
4598 tree
4599 build_method_type (tree basetype, tree type)
4600 {
4601 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
4602
4603 return build_method_type_directly (basetype,
4604 TREE_TYPE (type),
4605 TYPE_ARG_TYPES (type));
4606 }
4607
4608 /* Construct, lay out and return the type of offsets to a value
4609 of type TYPE, within an object of type BASETYPE.
4610 If a suitable offset type exists already, reuse it. */
4611
4612 tree
4613 build_offset_type (tree basetype, tree type)
4614 {
4615 tree t;
4616 hashval_t hashcode = 0;
4617
4618 /* Make a node of the sort we want. */
4619 t = make_node (OFFSET_TYPE);
4620
4621 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4622 TREE_TYPE (t) = type;
4623
4624 /* If we already have such a type, use the old one. */
4625 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4626 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4627 t = type_hash_canon (hashcode, t);
4628
4629 if (!COMPLETE_TYPE_P (t))
4630 layout_type (t);
4631
4632 return t;
4633 }
4634
4635 /* Create a complex type whose components are COMPONENT_TYPE. */
4636
4637 tree
4638 build_complex_type (tree component_type)
4639 {
4640 tree t;
4641 hashval_t hashcode;
4642
4643 /* Make a node of the sort we want. */
4644 t = make_node (COMPLEX_TYPE);
4645
4646 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4647
4648 /* If we already have such a type, use the old one. */
4649 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4650 t = type_hash_canon (hashcode, t);
4651
4652 if (!COMPLETE_TYPE_P (t))
4653 layout_type (t);
4654
4655 /* If we are writing Dwarf2 output we need to create a name,
4656 since complex is a fundamental type. */
4657 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4658 && ! TYPE_NAME (t))
4659 {
4660 const char *name;
4661 if (component_type == char_type_node)
4662 name = "complex char";
4663 else if (component_type == signed_char_type_node)
4664 name = "complex signed char";
4665 else if (component_type == unsigned_char_type_node)
4666 name = "complex unsigned char";
4667 else if (component_type == short_integer_type_node)
4668 name = "complex short int";
4669 else if (component_type == short_unsigned_type_node)
4670 name = "complex short unsigned int";
4671 else if (component_type == integer_type_node)
4672 name = "complex int";
4673 else if (component_type == unsigned_type_node)
4674 name = "complex unsigned int";
4675 else if (component_type == long_integer_type_node)
4676 name = "complex long int";
4677 else if (component_type == long_unsigned_type_node)
4678 name = "complex long unsigned int";
4679 else if (component_type == long_long_integer_type_node)
4680 name = "complex long long int";
4681 else if (component_type == long_long_unsigned_type_node)
4682 name = "complex long long unsigned int";
4683 else
4684 name = 0;
4685
4686 if (name != 0)
4687 TYPE_NAME (t) = get_identifier (name);
4688 }
4689
4690 return build_qualified_type (t, TYPE_QUALS (component_type));
4691 }
4692 \f
4693 /* Return OP, stripped of any conversions to wider types as much as is safe.
4694 Converting the value back to OP's type makes a value equivalent to OP.
4695
4696 If FOR_TYPE is nonzero, we return a value which, if converted to
4697 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4698
4699 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4700 narrowest type that can hold the value, even if they don't exactly fit.
4701 Otherwise, bit-field references are changed to a narrower type
4702 only if they can be fetched directly from memory in that type.
4703
4704 OP must have integer, real or enumeral type. Pointers are not allowed!
4705
4706 There are some cases where the obvious value we could return
4707 would regenerate to OP if converted to OP's type,
4708 but would not extend like OP to wider types.
4709 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4710 For example, if OP is (unsigned short)(signed char)-1,
4711 we avoid returning (signed char)-1 if FOR_TYPE is int,
4712 even though extending that to an unsigned short would regenerate OP,
4713 since the result of extending (signed char)-1 to (int)
4714 is different from (int) OP. */
4715
4716 tree
4717 get_unwidened (tree op, tree for_type)
4718 {
4719 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4720 tree type = TREE_TYPE (op);
4721 unsigned final_prec
4722 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4723 int uns
4724 = (for_type != 0 && for_type != type
4725 && final_prec > TYPE_PRECISION (type)
4726 && TYPE_UNSIGNED (type));
4727 tree win = op;
4728
4729 while (TREE_CODE (op) == NOP_EXPR)
4730 {
4731 int bitschange
4732 = TYPE_PRECISION (TREE_TYPE (op))
4733 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4734
4735 /* Truncations are many-one so cannot be removed.
4736 Unless we are later going to truncate down even farther. */
4737 if (bitschange < 0
4738 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4739 break;
4740
4741 /* See what's inside this conversion. If we decide to strip it,
4742 we will set WIN. */
4743 op = TREE_OPERAND (op, 0);
4744
4745 /* If we have not stripped any zero-extensions (uns is 0),
4746 we can strip any kind of extension.
4747 If we have previously stripped a zero-extension,
4748 only zero-extensions can safely be stripped.
4749 Any extension can be stripped if the bits it would produce
4750 are all going to be discarded later by truncating to FOR_TYPE. */
4751
4752 if (bitschange > 0)
4753 {
4754 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4755 win = op;
4756 /* TYPE_UNSIGNED says whether this is a zero-extension.
4757 Let's avoid computing it if it does not affect WIN
4758 and if UNS will not be needed again. */
4759 if ((uns || TREE_CODE (op) == NOP_EXPR)
4760 && TYPE_UNSIGNED (TREE_TYPE (op)))
4761 {
4762 uns = 1;
4763 win = op;
4764 }
4765 }
4766 }
4767
4768 if (TREE_CODE (op) == COMPONENT_REF
4769 /* Since type_for_size always gives an integer type. */
4770 && TREE_CODE (type) != REAL_TYPE
4771 /* Don't crash if field not laid out yet. */
4772 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4773 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4774 {
4775 unsigned int innerprec
4776 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4777 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4778 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4779 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4780
4781 /* We can get this structure field in the narrowest type it fits in.
4782 If FOR_TYPE is 0, do this only for a field that matches the
4783 narrower type exactly and is aligned for it
4784 The resulting extension to its nominal type (a fullword type)
4785 must fit the same conditions as for other extensions. */
4786
4787 if (type != 0
4788 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4789 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4790 && (! uns || final_prec <= innerprec || unsignedp))
4791 {
4792 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4793 TREE_OPERAND (op, 1), NULL_TREE);
4794 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4795 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4796 }
4797 }
4798
4799 return win;
4800 }
4801 \f
4802 /* Return OP or a simpler expression for a narrower value
4803 which can be sign-extended or zero-extended to give back OP.
4804 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4805 or 0 if the value should be sign-extended. */
4806
4807 tree
4808 get_narrower (tree op, int *unsignedp_ptr)
4809 {
4810 int uns = 0;
4811 int first = 1;
4812 tree win = op;
4813 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
4814
4815 while (TREE_CODE (op) == NOP_EXPR)
4816 {
4817 int bitschange
4818 = (TYPE_PRECISION (TREE_TYPE (op))
4819 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4820
4821 /* Truncations are many-one so cannot be removed. */
4822 if (bitschange < 0)
4823 break;
4824
4825 /* See what's inside this conversion. If we decide to strip it,
4826 we will set WIN. */
4827
4828 if (bitschange > 0)
4829 {
4830 op = TREE_OPERAND (op, 0);
4831 /* An extension: the outermost one can be stripped,
4832 but remember whether it is zero or sign extension. */
4833 if (first)
4834 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4835 /* Otherwise, if a sign extension has been stripped,
4836 only sign extensions can now be stripped;
4837 if a zero extension has been stripped, only zero-extensions. */
4838 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4839 break;
4840 first = 0;
4841 }
4842 else /* bitschange == 0 */
4843 {
4844 /* A change in nominal type can always be stripped, but we must
4845 preserve the unsignedness. */
4846 if (first)
4847 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4848 first = 0;
4849 op = TREE_OPERAND (op, 0);
4850 /* Keep trying to narrow, but don't assign op to win if it
4851 would turn an integral type into something else. */
4852 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
4853 continue;
4854 }
4855
4856 win = op;
4857 }
4858
4859 if (TREE_CODE (op) == COMPONENT_REF
4860 /* Since type_for_size always gives an integer type. */
4861 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4862 /* Ensure field is laid out already. */
4863 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4864 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4865 {
4866 unsigned HOST_WIDE_INT innerprec
4867 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4868 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4869 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4870 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4871
4872 /* We can get this structure field in a narrower type that fits it,
4873 but the resulting extension to its nominal type (a fullword type)
4874 must satisfy the same conditions as for other extensions.
4875
4876 Do this only for fields that are aligned (not bit-fields),
4877 because when bit-field insns will be used there is no
4878 advantage in doing this. */
4879
4880 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4881 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4882 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4883 && type != 0)
4884 {
4885 if (first)
4886 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4887 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4888 TREE_OPERAND (op, 1), NULL_TREE);
4889 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4890 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4891 }
4892 }
4893 *unsignedp_ptr = uns;
4894 return win;
4895 }
4896 \f
4897 /* Nonzero if integer constant C has a value that is permissible
4898 for type TYPE (an INTEGER_TYPE). */
4899
4900 int
4901 int_fits_type_p (tree c, tree type)
4902 {
4903 tree type_low_bound = TYPE_MIN_VALUE (type);
4904 tree type_high_bound = TYPE_MAX_VALUE (type);
4905 bool ok_for_low_bound, ok_for_high_bound;
4906 tree tmp;
4907
4908 /* If at least one bound of the type is a constant integer, we can check
4909 ourselves and maybe make a decision. If no such decision is possible, but
4910 this type is a subtype, try checking against that. Otherwise, use
4911 force_fit_type, which checks against the precision.
4912
4913 Compute the status for each possibly constant bound, and return if we see
4914 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4915 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4916 for "constant known to fit". */
4917
4918 /* Check if C >= type_low_bound. */
4919 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4920 {
4921 if (tree_int_cst_lt (c, type_low_bound))
4922 return 0;
4923 ok_for_low_bound = true;
4924 }
4925 else
4926 ok_for_low_bound = false;
4927
4928 /* Check if c <= type_high_bound. */
4929 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4930 {
4931 if (tree_int_cst_lt (type_high_bound, c))
4932 return 0;
4933 ok_for_high_bound = true;
4934 }
4935 else
4936 ok_for_high_bound = false;
4937
4938 /* If the constant fits both bounds, the result is known. */
4939 if (ok_for_low_bound && ok_for_high_bound)
4940 return 1;
4941
4942 /* Perform some generic filtering which may allow making a decision
4943 even if the bounds are not constant. First, negative integers
4944 never fit in unsigned types, */
4945 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4946 return 0;
4947
4948 /* Second, narrower types always fit in wider ones. */
4949 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
4950 return 1;
4951
4952 /* Third, unsigned integers with top bit set never fit signed types. */
4953 if (! TYPE_UNSIGNED (type)
4954 && TYPE_UNSIGNED (TREE_TYPE (c))
4955 && tree_int_cst_msb (c))
4956 return 0;
4957
4958 /* If we haven't been able to decide at this point, there nothing more we
4959 can check ourselves here. Look at the base type if we have one. */
4960 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4961 return int_fits_type_p (c, TREE_TYPE (type));
4962
4963 /* Or to force_fit_type, if nothing else. */
4964 tmp = copy_node (c);
4965 TREE_TYPE (tmp) = type;
4966 tmp = force_fit_type (tmp, -1, false, false);
4967 return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
4968 && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
4969 }
4970
4971 /* Subprogram of following function. Called by walk_tree.
4972
4973 Return *TP if it is an automatic variable or parameter of the
4974 function passed in as DATA. */
4975
4976 static tree
4977 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
4978 {
4979 tree fn = (tree) data;
4980
4981 if (TYPE_P (*tp))
4982 *walk_subtrees = 0;
4983
4984 else if (DECL_P (*tp)
4985 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
4986 return *tp;
4987
4988 return NULL_TREE;
4989 }
4990
4991 /* Returns true if T is, contains, or refers to a type with variable
4992 size. If FN is nonzero, only return true if a modifier of the type
4993 or position of FN is a variable or parameter inside FN.
4994
4995 This concept is more general than that of C99 'variably modified types':
4996 in C99, a struct type is never variably modified because a VLA may not
4997 appear as a structure member. However, in GNU C code like:
4998
4999 struct S { int i[f()]; };
5000
5001 is valid, and other languages may define similar constructs. */
5002
5003 bool
5004 variably_modified_type_p (tree type, tree fn)
5005 {
5006 tree t;
5007
5008 /* Test if T is either variable (if FN is zero) or an expression containing
5009 a variable in FN. */
5010 #define RETURN_TRUE_IF_VAR(T) \
5011 do { tree _t = (T); \
5012 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
5013 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
5014 return true; } while (0)
5015
5016 if (type == error_mark_node)
5017 return false;
5018
5019 /* If TYPE itself has variable size, it is variably modified.
5020
5021 We do not yet have a representation of the C99 '[*]' syntax.
5022 When a representation is chosen, this function should be modified
5023 to test for that case as well. */
5024 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5025 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
5026
5027 switch (TREE_CODE (type))
5028 {
5029 case POINTER_TYPE:
5030 case REFERENCE_TYPE:
5031 case ARRAY_TYPE:
5032 case VECTOR_TYPE:
5033 if (variably_modified_type_p (TREE_TYPE (type), fn))
5034 return true;
5035 break;
5036
5037 case FUNCTION_TYPE:
5038 case METHOD_TYPE:
5039 /* If TYPE is a function type, it is variably modified if any of the
5040 parameters or the return type are variably modified. */
5041 if (variably_modified_type_p (TREE_TYPE (type), fn))
5042 return true;
5043
5044 for (t = TYPE_ARG_TYPES (type);
5045 t && t != void_list_node;
5046 t = TREE_CHAIN (t))
5047 if (variably_modified_type_p (TREE_VALUE (t), fn))
5048 return true;
5049 break;
5050
5051 case INTEGER_TYPE:
5052 case REAL_TYPE:
5053 case ENUMERAL_TYPE:
5054 case BOOLEAN_TYPE:
5055 case CHAR_TYPE:
5056 /* Scalar types are variably modified if their end points
5057 aren't constant. */
5058 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5059 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5060 break;
5061
5062 case RECORD_TYPE:
5063 case UNION_TYPE:
5064 case QUAL_UNION_TYPE:
5065 /* We can't see if any of the field are variably-modified by the
5066 definition we normally use, since that would produce infinite
5067 recursion via pointers. */
5068 /* This is variably modified if some field's type is. */
5069 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5070 if (TREE_CODE (t) == FIELD_DECL)
5071 {
5072 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5073 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5074 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5075
5076 if (TREE_CODE (type) == QUAL_UNION_TYPE)
5077 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5078 }
5079 break;
5080
5081 default:
5082 break;
5083 }
5084
5085 /* The current language may have other cases to check, but in general,
5086 all other types are not variably modified. */
5087 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5088
5089 #undef RETURN_TRUE_IF_VAR
5090 }
5091
5092 /* Given a DECL or TYPE, return the scope in which it was declared, or
5093 NULL_TREE if there is no containing scope. */
5094
5095 tree
5096 get_containing_scope (tree t)
5097 {
5098 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5099 }
5100
5101 /* Return the innermost context enclosing DECL that is
5102 a FUNCTION_DECL, or zero if none. */
5103
5104 tree
5105 decl_function_context (tree decl)
5106 {
5107 tree context;
5108
5109 if (TREE_CODE (decl) == ERROR_MARK)
5110 return 0;
5111
5112 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5113 where we look up the function at runtime. Such functions always take
5114 a first argument of type 'pointer to real context'.
5115
5116 C++ should really be fixed to use DECL_CONTEXT for the real context,
5117 and use something else for the "virtual context". */
5118 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5119 context
5120 = TYPE_MAIN_VARIANT
5121 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5122 else
5123 context = DECL_CONTEXT (decl);
5124
5125 while (context && TREE_CODE (context) != FUNCTION_DECL)
5126 {
5127 if (TREE_CODE (context) == BLOCK)
5128 context = BLOCK_SUPERCONTEXT (context);
5129 else
5130 context = get_containing_scope (context);
5131 }
5132
5133 return context;
5134 }
5135
5136 /* Return the innermost context enclosing DECL that is
5137 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5138 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5139
5140 tree
5141 decl_type_context (tree decl)
5142 {
5143 tree context = DECL_CONTEXT (decl);
5144
5145 while (context)
5146 switch (TREE_CODE (context))
5147 {
5148 case NAMESPACE_DECL:
5149 case TRANSLATION_UNIT_DECL:
5150 return NULL_TREE;
5151
5152 case RECORD_TYPE:
5153 case UNION_TYPE:
5154 case QUAL_UNION_TYPE:
5155 return context;
5156
5157 case TYPE_DECL:
5158 case FUNCTION_DECL:
5159 context = DECL_CONTEXT (context);
5160 break;
5161
5162 case BLOCK:
5163 context = BLOCK_SUPERCONTEXT (context);
5164 break;
5165
5166 default:
5167 gcc_unreachable ();
5168 }
5169
5170 return NULL_TREE;
5171 }
5172
5173 /* CALL is a CALL_EXPR. Return the declaration for the function
5174 called, or NULL_TREE if the called function cannot be
5175 determined. */
5176
5177 tree
5178 get_callee_fndecl (tree call)
5179 {
5180 tree addr;
5181
5182 /* It's invalid to call this function with anything but a
5183 CALL_EXPR. */
5184 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5185
5186 /* The first operand to the CALL is the address of the function
5187 called. */
5188 addr = TREE_OPERAND (call, 0);
5189
5190 STRIP_NOPS (addr);
5191
5192 /* If this is a readonly function pointer, extract its initial value. */
5193 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5194 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5195 && DECL_INITIAL (addr))
5196 addr = DECL_INITIAL (addr);
5197
5198 /* If the address is just `&f' for some function `f', then we know
5199 that `f' is being called. */
5200 if (TREE_CODE (addr) == ADDR_EXPR
5201 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5202 return TREE_OPERAND (addr, 0);
5203
5204 /* We couldn't figure out what was being called. Maybe the front
5205 end has some idea. */
5206 return lang_hooks.lang_get_callee_fndecl (call);
5207 }
5208
5209 /* Print debugging information about tree nodes generated during the compile,
5210 and any language-specific information. */
5211
5212 void
5213 dump_tree_statistics (void)
5214 {
5215 #ifdef GATHER_STATISTICS
5216 int i;
5217 int total_nodes, total_bytes;
5218 #endif
5219
5220 fprintf (stderr, "\n??? tree nodes created\n\n");
5221 #ifdef GATHER_STATISTICS
5222 fprintf (stderr, "Kind Nodes Bytes\n");
5223 fprintf (stderr, "---------------------------------------\n");
5224 total_nodes = total_bytes = 0;
5225 for (i = 0; i < (int) all_kinds; i++)
5226 {
5227 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5228 tree_node_counts[i], tree_node_sizes[i]);
5229 total_nodes += tree_node_counts[i];
5230 total_bytes += tree_node_sizes[i];
5231 }
5232 fprintf (stderr, "---------------------------------------\n");
5233 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5234 fprintf (stderr, "---------------------------------------\n");
5235 ssanames_print_statistics ();
5236 phinodes_print_statistics ();
5237 #else
5238 fprintf (stderr, "(No per-node statistics)\n");
5239 #endif
5240 print_type_hash_statistics ();
5241 lang_hooks.print_statistics ();
5242 }
5243 \f
5244 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5245
5246 /* Generate a crc32 of a string. */
5247
5248 unsigned
5249 crc32_string (unsigned chksum, const char *string)
5250 {
5251 do
5252 {
5253 unsigned value = *string << 24;
5254 unsigned ix;
5255
5256 for (ix = 8; ix--; value <<= 1)
5257 {
5258 unsigned feedback;
5259
5260 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5261 chksum <<= 1;
5262 chksum ^= feedback;
5263 }
5264 }
5265 while (*string++);
5266 return chksum;
5267 }
5268
5269 /* P is a string that will be used in a symbol. Mask out any characters
5270 that are not valid in that context. */
5271
5272 void
5273 clean_symbol_name (char *p)
5274 {
5275 for (; *p; p++)
5276 if (! (ISALNUM (*p)
5277 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5278 || *p == '$'
5279 #endif
5280 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5281 || *p == '.'
5282 #endif
5283 ))
5284 *p = '_';
5285 }
5286
5287 /* Generate a name for a function unique to this translation unit.
5288 TYPE is some string to identify the purpose of this function to the
5289 linker or collect2. */
5290
5291 tree
5292 get_file_function_name_long (const char *type)
5293 {
5294 char *buf;
5295 const char *p;
5296 char *q;
5297
5298 if (first_global_object_name)
5299 p = first_global_object_name;
5300 else
5301 {
5302 /* We don't have anything that we know to be unique to this translation
5303 unit, so use what we do have and throw in some randomness. */
5304 unsigned len;
5305 const char *name = weak_global_object_name;
5306 const char *file = main_input_filename;
5307
5308 if (! name)
5309 name = "";
5310 if (! file)
5311 file = input_filename;
5312
5313 len = strlen (file);
5314 q = alloca (9 * 2 + len + 1);
5315 memcpy (q, file, len + 1);
5316 clean_symbol_name (q);
5317
5318 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5319 crc32_string (0, flag_random_seed));
5320
5321 p = q;
5322 }
5323
5324 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5325
5326 /* Set up the name of the file-level functions we may need.
5327 Use a global object (which is already required to be unique over
5328 the program) rather than the file name (which imposes extra
5329 constraints). */
5330 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5331
5332 return get_identifier (buf);
5333 }
5334
5335 /* If KIND=='I', return a suitable global initializer (constructor) name.
5336 If KIND=='D', return a suitable global clean-up (destructor) name. */
5337
5338 tree
5339 get_file_function_name (int kind)
5340 {
5341 char p[2];
5342
5343 p[0] = kind;
5344 p[1] = 0;
5345
5346 return get_file_function_name_long (p);
5347 }
5348 \f
5349 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5350 The result is placed in BUFFER (which has length BIT_SIZE),
5351 with one bit in each char ('\000' or '\001').
5352
5353 If the constructor is constant, NULL_TREE is returned.
5354 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5355
5356 tree
5357 get_set_constructor_bits (tree init, char *buffer, int bit_size)
5358 {
5359 int i;
5360 tree vals;
5361 HOST_WIDE_INT domain_min
5362 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
5363 tree non_const_bits = NULL_TREE;
5364
5365 for (i = 0; i < bit_size; i++)
5366 buffer[i] = 0;
5367
5368 for (vals = TREE_OPERAND (init, 1);
5369 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5370 {
5371 if (!host_integerp (TREE_VALUE (vals), 0)
5372 || (TREE_PURPOSE (vals) != NULL_TREE
5373 && !host_integerp (TREE_PURPOSE (vals), 0)))
5374 non_const_bits
5375 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5376 else if (TREE_PURPOSE (vals) != NULL_TREE)
5377 {
5378 /* Set a range of bits to ones. */
5379 HOST_WIDE_INT lo_index
5380 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5381 HOST_WIDE_INT hi_index
5382 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5383
5384 gcc_assert (lo_index >= 0);
5385 gcc_assert (lo_index < bit_size);
5386 gcc_assert (hi_index >= 0);
5387 gcc_assert (hi_index < bit_size);
5388 for (; lo_index <= hi_index; lo_index++)
5389 buffer[lo_index] = 1;
5390 }
5391 else
5392 {
5393 /* Set a single bit to one. */
5394 HOST_WIDE_INT index
5395 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5396 if (index < 0 || index >= bit_size)
5397 {
5398 error ("invalid initializer for bit string");
5399 return NULL_TREE;
5400 }
5401 buffer[index] = 1;
5402 }
5403 }
5404 return non_const_bits;
5405 }
5406
5407 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5408 The result is placed in BUFFER (which is an array of bytes).
5409 If the constructor is constant, NULL_TREE is returned.
5410 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5411
5412 tree
5413 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5414 {
5415 int i;
5416 int set_word_size = BITS_PER_UNIT;
5417 int bit_size = wd_size * set_word_size;
5418 int bit_pos = 0;
5419 unsigned char *bytep = buffer;
5420 char *bit_buffer = alloca (bit_size);
5421 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5422
5423 for (i = 0; i < wd_size; i++)
5424 buffer[i] = 0;
5425
5426 for (i = 0; i < bit_size; i++)
5427 {
5428 if (bit_buffer[i])
5429 {
5430 if (BYTES_BIG_ENDIAN)
5431 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5432 else
5433 *bytep |= 1 << bit_pos;
5434 }
5435 bit_pos++;
5436 if (bit_pos >= set_word_size)
5437 bit_pos = 0, bytep++;
5438 }
5439 return non_const_bits;
5440 }
5441 \f
5442 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5443
5444 /* Complain that the tree code of NODE does not match the expected 0
5445 terminated list of trailing codes. The trailing code list can be
5446 empty, for a more vague error message. FILE, LINE, and FUNCTION
5447 are of the caller. */
5448
5449 void
5450 tree_check_failed (const tree node, const char *file,
5451 int line, const char *function, ...)
5452 {
5453 va_list args;
5454 char *buffer;
5455 unsigned length = 0;
5456 int code;
5457
5458 va_start (args, function);
5459 while ((code = va_arg (args, int)))
5460 length += 4 + strlen (tree_code_name[code]);
5461 va_end (args);
5462 if (length)
5463 {
5464 va_start (args, function);
5465 length += strlen ("expected ");
5466 buffer = alloca (length);
5467 length = 0;
5468 while ((code = va_arg (args, int)))
5469 {
5470 const char *prefix = length ? " or " : "expected ";
5471
5472 strcpy (buffer + length, prefix);
5473 length += strlen (prefix);
5474 strcpy (buffer + length, tree_code_name[code]);
5475 length += strlen (tree_code_name[code]);
5476 }
5477 va_end (args);
5478 }
5479 else
5480 buffer = (char *)"unexpected node";
5481
5482 internal_error ("tree check: %s, have %s in %s, at %s:%d",
5483 buffer, tree_code_name[TREE_CODE (node)],
5484 function, trim_filename (file), line);
5485 }
5486
5487 /* Complain that the tree code of NODE does match the expected 0
5488 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5489 the caller. */
5490
5491 void
5492 tree_not_check_failed (const tree node, const char *file,
5493 int line, const char *function, ...)
5494 {
5495 va_list args;
5496 char *buffer;
5497 unsigned length = 0;
5498 int code;
5499
5500 va_start (args, function);
5501 while ((code = va_arg (args, int)))
5502 length += 4 + strlen (tree_code_name[code]);
5503 va_end (args);
5504 va_start (args, function);
5505 buffer = alloca (length);
5506 length = 0;
5507 while ((code = va_arg (args, int)))
5508 {
5509 if (length)
5510 {
5511 strcpy (buffer + length, " or ");
5512 length += 4;
5513 }
5514 strcpy (buffer + length, tree_code_name[code]);
5515 length += strlen (tree_code_name[code]);
5516 }
5517 va_end (args);
5518
5519 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5520 buffer, tree_code_name[TREE_CODE (node)],
5521 function, trim_filename (file), line);
5522 }
5523
5524 /* Similar to tree_check_failed, except that we check for a class of tree
5525 code, given in CL. */
5526
5527 void
5528 tree_class_check_failed (const tree node, const enum tree_code_class cl,
5529 const char *file, int line, const char *function)
5530 {
5531 internal_error
5532 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
5533 TREE_CODE_CLASS_STRING (cl),
5534 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
5535 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5536 }
5537
5538 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5539 (dynamically sized) vector. */
5540
5541 void
5542 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5543 const char *function)
5544 {
5545 internal_error
5546 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5547 idx + 1, len, function, trim_filename (file), line);
5548 }
5549
5550 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
5551 (dynamically sized) vector. */
5552
5553 void
5554 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
5555 const char *function)
5556 {
5557 internal_error
5558 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
5559 idx + 1, len, function, trim_filename (file), line);
5560 }
5561
5562 /* Similar to above, except that the check is for the bounds of the operand
5563 vector of an expression node. */
5564
5565 void
5566 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5567 int line, const char *function)
5568 {
5569 internal_error
5570 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5571 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5572 function, trim_filename (file), line);
5573 }
5574 #endif /* ENABLE_TREE_CHECKING */
5575 \f
5576 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
5577 and mapped to the machine mode MODE. Initialize its fields and build
5578 the information necessary for debugging output. */
5579
5580 static tree
5581 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
5582 {
5583 tree t = make_node (VECTOR_TYPE);
5584
5585 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
5586 TYPE_VECTOR_SUBPARTS (t) = nunits;
5587 TYPE_MODE (t) = mode;
5588 TYPE_READONLY (t) = TYPE_READONLY (innertype);
5589 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
5590
5591 layout_type (t);
5592
5593 {
5594 tree index = build_int_cst (NULL_TREE, nunits - 1);
5595 tree array = build_array_type (innertype, build_index_type (index));
5596 tree rt = make_node (RECORD_TYPE);
5597
5598 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5599 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5600 layout_type (rt);
5601 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5602 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5603 the representation type, and we want to find that die when looking up
5604 the vector type. This is most easily achieved by making the TYPE_UID
5605 numbers equal. */
5606 TYPE_UID (rt) = TYPE_UID (t);
5607 }
5608
5609 /* Build our main variant, based on the main variant of the inner type. */
5610 if (TYPE_MAIN_VARIANT (innertype) != innertype)
5611 {
5612 tree innertype_main_variant = TYPE_MAIN_VARIANT (innertype);
5613 unsigned int hash = TYPE_HASH (innertype_main_variant);
5614 TYPE_MAIN_VARIANT (t)
5615 = type_hash_canon (hash, make_vector_type (innertype_main_variant,
5616 nunits, mode));
5617 }
5618
5619 return t;
5620 }
5621
5622 static tree
5623 make_or_reuse_type (unsigned size, int unsignedp)
5624 {
5625 if (size == INT_TYPE_SIZE)
5626 return unsignedp ? unsigned_type_node : integer_type_node;
5627 if (size == CHAR_TYPE_SIZE)
5628 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5629 if (size == SHORT_TYPE_SIZE)
5630 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5631 if (size == LONG_TYPE_SIZE)
5632 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5633 if (size == LONG_LONG_TYPE_SIZE)
5634 return (unsignedp ? long_long_unsigned_type_node
5635 : long_long_integer_type_node);
5636
5637 if (unsignedp)
5638 return make_unsigned_type (size);
5639 else
5640 return make_signed_type (size);
5641 }
5642
5643 /* Create nodes for all integer types (and error_mark_node) using the sizes
5644 of C datatypes. The caller should call set_sizetype soon after calling
5645 this function to select one of the types as sizetype. */
5646
5647 void
5648 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
5649 {
5650 error_mark_node = make_node (ERROR_MARK);
5651 TREE_TYPE (error_mark_node) = error_mark_node;
5652
5653 initialize_sizetypes (signed_sizetype);
5654
5655 /* Define both `signed char' and `unsigned char'. */
5656 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5657 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5658
5659 /* Define `char', which is like either `signed char' or `unsigned char'
5660 but not the same as either. */
5661 char_type_node
5662 = (signed_char
5663 ? make_signed_type (CHAR_TYPE_SIZE)
5664 : make_unsigned_type (CHAR_TYPE_SIZE));
5665
5666 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5667 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5668 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5669 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5670 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5671 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5672 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5673 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5674
5675 /* Define a boolean type. This type only represents boolean values but
5676 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5677 Front ends which want to override this size (i.e. Java) can redefine
5678 boolean_type_node before calling build_common_tree_nodes_2. */
5679 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5680 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5681 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5682 TYPE_PRECISION (boolean_type_node) = 1;
5683
5684 /* Fill in the rest of the sized types. Reuse existing type nodes
5685 when possible. */
5686 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
5687 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
5688 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
5689 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
5690 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
5691
5692 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
5693 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
5694 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
5695 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
5696 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
5697
5698 access_public_node = get_identifier ("public");
5699 access_protected_node = get_identifier ("protected");
5700 access_private_node = get_identifier ("private");
5701 }
5702
5703 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5704 It will create several other common tree nodes. */
5705
5706 void
5707 build_common_tree_nodes_2 (int short_double)
5708 {
5709 /* Define these next since types below may used them. */
5710 integer_zero_node = build_int_cst (NULL_TREE, 0);
5711 integer_one_node = build_int_cst (NULL_TREE, 1);
5712 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
5713
5714 size_zero_node = size_int (0);
5715 size_one_node = size_int (1);
5716 bitsize_zero_node = bitsize_int (0);
5717 bitsize_one_node = bitsize_int (1);
5718 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5719
5720 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5721 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5722
5723 void_type_node = make_node (VOID_TYPE);
5724 layout_type (void_type_node);
5725
5726 /* We are not going to have real types in C with less than byte alignment,
5727 so we might as well not have any types that claim to have it. */
5728 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5729 TYPE_USER_ALIGN (void_type_node) = 0;
5730
5731 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
5732 layout_type (TREE_TYPE (null_pointer_node));
5733
5734 ptr_type_node = build_pointer_type (void_type_node);
5735 const_ptr_type_node
5736 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5737 fileptr_type_node = ptr_type_node;
5738
5739 float_type_node = make_node (REAL_TYPE);
5740 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5741 layout_type (float_type_node);
5742
5743 double_type_node = make_node (REAL_TYPE);
5744 if (short_double)
5745 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5746 else
5747 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5748 layout_type (double_type_node);
5749
5750 long_double_type_node = make_node (REAL_TYPE);
5751 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5752 layout_type (long_double_type_node);
5753
5754 float_ptr_type_node = build_pointer_type (float_type_node);
5755 double_ptr_type_node = build_pointer_type (double_type_node);
5756 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5757 integer_ptr_type_node = build_pointer_type (integer_type_node);
5758
5759 complex_integer_type_node = make_node (COMPLEX_TYPE);
5760 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5761 layout_type (complex_integer_type_node);
5762
5763 complex_float_type_node = make_node (COMPLEX_TYPE);
5764 TREE_TYPE (complex_float_type_node) = float_type_node;
5765 layout_type (complex_float_type_node);
5766
5767 complex_double_type_node = make_node (COMPLEX_TYPE);
5768 TREE_TYPE (complex_double_type_node) = double_type_node;
5769 layout_type (complex_double_type_node);
5770
5771 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5772 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5773 layout_type (complex_long_double_type_node);
5774
5775 {
5776 tree t = targetm.build_builtin_va_list ();
5777
5778 /* Many back-ends define record types without setting TYPE_NAME.
5779 If we copied the record type here, we'd keep the original
5780 record type without a name. This breaks name mangling. So,
5781 don't copy record types and let c_common_nodes_and_builtins()
5782 declare the type to be __builtin_va_list. */
5783 if (TREE_CODE (t) != RECORD_TYPE)
5784 t = build_variant_type_copy (t);
5785
5786 va_list_type_node = t;
5787 }
5788 }
5789
5790 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
5791
5792 static void
5793 local_define_builtin (const char *name, tree type, enum built_in_function code,
5794 const char *library_name, int ecf_flags)
5795 {
5796 tree decl;
5797
5798 decl = lang_hooks.builtin_function (name, type, code, BUILT_IN_NORMAL,
5799 library_name, NULL_TREE);
5800 if (ecf_flags & ECF_CONST)
5801 TREE_READONLY (decl) = 1;
5802 if (ecf_flags & ECF_PURE)
5803 DECL_IS_PURE (decl) = 1;
5804 if (ecf_flags & ECF_NORETURN)
5805 TREE_THIS_VOLATILE (decl) = 1;
5806 if (ecf_flags & ECF_NOTHROW)
5807 TREE_NOTHROW (decl) = 1;
5808 if (ecf_flags & ECF_MALLOC)
5809 DECL_IS_MALLOC (decl) = 1;
5810
5811 built_in_decls[code] = decl;
5812 implicit_built_in_decls[code] = decl;
5813 }
5814
5815 /* Call this function after instantiating all builtins that the language
5816 front end cares about. This will build the rest of the builtins that
5817 are relied upon by the tree optimizers and the middle-end. */
5818
5819 void
5820 build_common_builtin_nodes (void)
5821 {
5822 tree tmp, ftype;
5823
5824 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
5825 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
5826 {
5827 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
5828 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
5829 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
5830 ftype = build_function_type (ptr_type_node, tmp);
5831
5832 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
5833 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
5834 "memcpy", ECF_NOTHROW);
5835 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
5836 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
5837 "memmove", ECF_NOTHROW);
5838 }
5839
5840 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
5841 {
5842 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
5843 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
5844 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
5845 ftype = build_function_type (ptr_type_node, tmp);
5846 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
5847 "memcmp", ECF_PURE | ECF_NOTHROW);
5848 }
5849
5850 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
5851 {
5852 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
5853 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
5854 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
5855 ftype = build_function_type (ptr_type_node, tmp);
5856 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
5857 "memset", ECF_NOTHROW);
5858 }
5859
5860 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
5861 {
5862 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
5863 ftype = build_function_type (ptr_type_node, tmp);
5864 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
5865 "alloca", ECF_NOTHROW | ECF_MALLOC);
5866 }
5867
5868 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
5869 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
5870 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
5871 ftype = build_function_type (void_type_node, tmp);
5872 local_define_builtin ("__builtin_init_trampoline", ftype,
5873 BUILT_IN_INIT_TRAMPOLINE,
5874 "__builtin_init_trampoline", ECF_NOTHROW);
5875
5876 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
5877 ftype = build_function_type (ptr_type_node, tmp);
5878 local_define_builtin ("__builtin_adjust_trampoline", ftype,
5879 BUILT_IN_ADJUST_TRAMPOLINE,
5880 "__builtin_adjust_trampoline",
5881 ECF_CONST | ECF_NOTHROW);
5882
5883 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
5884 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
5885 ftype = build_function_type (void_type_node, tmp);
5886 local_define_builtin ("__builtin_nonlocal_goto", ftype,
5887 BUILT_IN_NONLOCAL_GOTO,
5888 "__builtin_nonlocal_goto",
5889 ECF_NORETURN | ECF_NOTHROW);
5890
5891 ftype = build_function_type (ptr_type_node, void_list_node);
5892 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
5893 "__builtin_stack_save", ECF_NOTHROW);
5894
5895 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
5896 ftype = build_function_type (void_type_node, tmp);
5897 local_define_builtin ("__builtin_stack_restore", ftype,
5898 BUILT_IN_STACK_RESTORE,
5899 "__builtin_stack_restore", ECF_NOTHROW);
5900
5901 ftype = build_function_type (void_type_node, void_list_node);
5902 local_define_builtin ("__builtin_profile_func_enter", ftype,
5903 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
5904 local_define_builtin ("__builtin_profile_func_exit", ftype,
5905 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
5906
5907 /* Complex multiplication and division. These are handled as builtins
5908 rather than optabs because emit_library_call_value doesn't support
5909 complex. Further, we can do slightly better with folding these
5910 beasties if the real and complex parts of the arguments are separate. */
5911 {
5912 enum machine_mode mode;
5913
5914 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
5915 {
5916 char mode_name_buf[4], *q;
5917 const char *p;
5918 enum built_in_function mcode, dcode;
5919 tree type, inner_type;
5920
5921 type = lang_hooks.types.type_for_mode (mode, 0);
5922 if (type == NULL)
5923 continue;
5924 inner_type = TREE_TYPE (type);
5925
5926 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
5927 tmp = tree_cons (NULL_TREE, inner_type, tmp);
5928 tmp = tree_cons (NULL_TREE, inner_type, tmp);
5929 tmp = tree_cons (NULL_TREE, inner_type, tmp);
5930 ftype = build_function_type (type, tmp);
5931
5932 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
5933 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
5934
5935 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
5936 *q = TOLOWER (*p);
5937 *q = '\0';
5938
5939 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
5940 local_define_builtin (built_in_names[mcode], ftype, mcode,
5941 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
5942
5943 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
5944 local_define_builtin (built_in_names[dcode], ftype, dcode,
5945 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
5946 }
5947 }
5948 }
5949
5950 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5951 better way.
5952
5953 If we requested a pointer to a vector, build up the pointers that
5954 we stripped off while looking for the inner type. Similarly for
5955 return values from functions.
5956
5957 The argument TYPE is the top of the chain, and BOTTOM is the
5958 new type which we will point to. */
5959
5960 tree
5961 reconstruct_complex_type (tree type, tree bottom)
5962 {
5963 tree inner, outer;
5964
5965 if (POINTER_TYPE_P (type))
5966 {
5967 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5968 outer = build_pointer_type (inner);
5969 }
5970 else if (TREE_CODE (type) == ARRAY_TYPE)
5971 {
5972 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5973 outer = build_array_type (inner, TYPE_DOMAIN (type));
5974 }
5975 else if (TREE_CODE (type) == FUNCTION_TYPE)
5976 {
5977 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5978 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5979 }
5980 else if (TREE_CODE (type) == METHOD_TYPE)
5981 {
5982 tree argtypes;
5983 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5984 /* The build_method_type_directly() routine prepends 'this' to argument list,
5985 so we must compensate by getting rid of it. */
5986 argtypes = TYPE_ARG_TYPES (type);
5987 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5988 inner,
5989 TYPE_ARG_TYPES (type));
5990 TYPE_ARG_TYPES (outer) = argtypes;
5991 }
5992 else
5993 return bottom;
5994
5995 TYPE_READONLY (outer) = TYPE_READONLY (type);
5996 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5997
5998 return outer;
5999 }
6000
6001 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
6002 the inner type. */
6003 tree
6004 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
6005 {
6006 int nunits;
6007
6008 switch (GET_MODE_CLASS (mode))
6009 {
6010 case MODE_VECTOR_INT:
6011 case MODE_VECTOR_FLOAT:
6012 nunits = GET_MODE_NUNITS (mode);
6013 break;
6014
6015 case MODE_INT:
6016 /* Check that there are no leftover bits. */
6017 gcc_assert (GET_MODE_BITSIZE (mode)
6018 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
6019
6020 nunits = GET_MODE_BITSIZE (mode)
6021 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
6022 break;
6023
6024 default:
6025 gcc_unreachable ();
6026 }
6027
6028 return make_vector_type (innertype, nunits, mode);
6029 }
6030
6031 /* Similarly, but takes the inner type and number of units, which must be
6032 a power of two. */
6033
6034 tree
6035 build_vector_type (tree innertype, int nunits)
6036 {
6037 return make_vector_type (innertype, nunits, VOIDmode);
6038 }
6039
6040 /* Given an initializer INIT, return TRUE if INIT is zero or some
6041 aggregate of zeros. Otherwise return FALSE. */
6042 bool
6043 initializer_zerop (tree init)
6044 {
6045 tree elt;
6046
6047 STRIP_NOPS (init);
6048
6049 switch (TREE_CODE (init))
6050 {
6051 case INTEGER_CST:
6052 return integer_zerop (init);
6053
6054 case REAL_CST:
6055 /* ??? Note that this is not correct for C4X float formats. There,
6056 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
6057 negative exponent. */
6058 return real_zerop (init)
6059 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
6060
6061 case COMPLEX_CST:
6062 return integer_zerop (init)
6063 || (real_zerop (init)
6064 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
6065 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
6066
6067 case VECTOR_CST:
6068 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
6069 if (!initializer_zerop (TREE_VALUE (elt)))
6070 return false;
6071 return true;
6072
6073 case CONSTRUCTOR:
6074 elt = CONSTRUCTOR_ELTS (init);
6075 if (elt == NULL_TREE)
6076 return true;
6077
6078 for (; elt ; elt = TREE_CHAIN (elt))
6079 if (! initializer_zerop (TREE_VALUE (elt)))
6080 return false;
6081 return true;
6082
6083 default:
6084 return false;
6085 }
6086 }
6087
6088 void
6089 add_var_to_bind_expr (tree bind_expr, tree var)
6090 {
6091 BIND_EXPR_VARS (bind_expr)
6092 = chainon (BIND_EXPR_VARS (bind_expr), var);
6093 if (BIND_EXPR_BLOCK (bind_expr))
6094 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
6095 = BIND_EXPR_VARS (bind_expr);
6096 }
6097
6098 /* Build an empty statement. */
6099
6100 tree
6101 build_empty_stmt (void)
6102 {
6103 return build1 (NOP_EXPR, void_type_node, size_zero_node);
6104 }
6105
6106
6107 /* Returns true if it is possible to prove that the index of
6108 an array access REF (an ARRAY_REF expression) falls into the
6109 array bounds. */
6110
6111 bool
6112 in_array_bounds_p (tree ref)
6113 {
6114 tree idx = TREE_OPERAND (ref, 1);
6115 tree min, max;
6116
6117 if (TREE_CODE (idx) != INTEGER_CST)
6118 return false;
6119
6120 min = array_ref_low_bound (ref);
6121 max = array_ref_up_bound (ref);
6122 if (!min
6123 || !max
6124 || TREE_CODE (min) != INTEGER_CST
6125 || TREE_CODE (max) != INTEGER_CST)
6126 return false;
6127
6128 if (tree_int_cst_lt (idx, min)
6129 || tree_int_cst_lt (max, idx))
6130 return false;
6131
6132 return true;
6133 }
6134
6135 /* Return true if T (assumed to be a DECL) is a global variable. */
6136
6137 bool
6138 is_global_var (tree t)
6139 {
6140 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
6141 }
6142
6143 /* Return true if T (assumed to be a DECL) must be assigned a memory
6144 location. */
6145
6146 bool
6147 needs_to_live_in_memory (tree t)
6148 {
6149 return (TREE_ADDRESSABLE (t)
6150 || is_global_var (t)
6151 || (TREE_CODE (t) == RESULT_DECL
6152 && aggregate_value_p (t, current_function_decl)));
6153 }
6154
6155 /* There are situations in which a language considers record types
6156 compatible which have different field lists. Decide if two fields
6157 are compatible. It is assumed that the parent records are compatible. */
6158
6159 bool
6160 fields_compatible_p (tree f1, tree f2)
6161 {
6162 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
6163 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
6164 return false;
6165
6166 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
6167 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
6168 return false;
6169
6170 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
6171 return false;
6172
6173 return true;
6174 }
6175
6176 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
6177
6178 tree
6179 find_compatible_field (tree record, tree orig_field)
6180 {
6181 tree f;
6182
6183 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
6184 if (TREE_CODE (f) == FIELD_DECL
6185 && fields_compatible_p (f, orig_field))
6186 return f;
6187
6188 /* ??? Why isn't this on the main fields list? */
6189 f = TYPE_VFIELD (record);
6190 if (f && TREE_CODE (f) == FIELD_DECL
6191 && fields_compatible_p (f, orig_field))
6192 return f;
6193
6194 /* ??? We should abort here, but Java appears to do Bad Things
6195 with inherited fields. */
6196 return orig_field;
6197 }
6198
6199 /* Return value of a constant X. */
6200
6201 HOST_WIDE_INT
6202 int_cst_value (tree x)
6203 {
6204 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
6205 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
6206 bool negative = ((val >> (bits - 1)) & 1) != 0;
6207
6208 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
6209
6210 if (negative)
6211 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
6212 else
6213 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
6214
6215 return val;
6216 }
6217
6218 /* Returns the greatest common divisor of A and B, which must be
6219 INTEGER_CSTs. */
6220
6221 tree
6222 tree_fold_gcd (tree a, tree b)
6223 {
6224 tree a_mod_b;
6225 tree type = TREE_TYPE (a);
6226
6227 gcc_assert (TREE_CODE (a) == INTEGER_CST);
6228 gcc_assert (TREE_CODE (b) == INTEGER_CST);
6229
6230 if (integer_zerop (a))
6231 return b;
6232
6233 if (integer_zerop (b))
6234 return a;
6235
6236 if (tree_int_cst_sgn (a) == -1)
6237 a = fold (build2 (MULT_EXPR, type, a,
6238 convert (type, integer_minus_one_node)));
6239
6240 if (tree_int_cst_sgn (b) == -1)
6241 b = fold (build2 (MULT_EXPR, type, b,
6242 convert (type, integer_minus_one_node)));
6243
6244 while (1)
6245 {
6246 a_mod_b = fold (build2 (FLOOR_MOD_EXPR, type, a, b));
6247
6248 if (!TREE_INT_CST_LOW (a_mod_b)
6249 && !TREE_INT_CST_HIGH (a_mod_b))
6250 return b;
6251
6252 a = b;
6253 b = a_mod_b;
6254 }
6255 }
6256
6257 /* Returns unsigned variant of TYPE. */
6258
6259 tree
6260 unsigned_type_for (tree type)
6261 {
6262 return lang_hooks.types.unsigned_type (type);
6263 }
6264
6265 /* Returns signed variant of TYPE. */
6266
6267 tree
6268 signed_type_for (tree type)
6269 {
6270 return lang_hooks.types.signed_type (type);
6271 }
6272
6273 /* Returns the largest value obtainable by casting something in INNER type to
6274 OUTER type. */
6275
6276 tree
6277 upper_bound_in_type (tree outer, tree inner)
6278 {
6279 unsigned HOST_WIDE_INT lo, hi;
6280 unsigned bits = TYPE_PRECISION (inner);
6281
6282 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6283 {
6284 /* Zero extending in these cases. */
6285 if (bits <= HOST_BITS_PER_WIDE_INT)
6286 {
6287 hi = 0;
6288 lo = (~(unsigned HOST_WIDE_INT) 0)
6289 >> (HOST_BITS_PER_WIDE_INT - bits);
6290 }
6291 else
6292 {
6293 hi = (~(unsigned HOST_WIDE_INT) 0)
6294 >> (2 * HOST_BITS_PER_WIDE_INT - bits);
6295 lo = ~(unsigned HOST_WIDE_INT) 0;
6296 }
6297 }
6298 else
6299 {
6300 /* Sign extending in these cases. */
6301 if (bits <= HOST_BITS_PER_WIDE_INT)
6302 {
6303 hi = 0;
6304 lo = (~(unsigned HOST_WIDE_INT) 0)
6305 >> (HOST_BITS_PER_WIDE_INT - bits) >> 1;
6306 }
6307 else
6308 {
6309 hi = (~(unsigned HOST_WIDE_INT) 0)
6310 >> (2 * HOST_BITS_PER_WIDE_INT - bits) >> 1;
6311 lo = ~(unsigned HOST_WIDE_INT) 0;
6312 }
6313 }
6314
6315 return fold_convert (outer,
6316 build_int_cst_wide (inner, lo, hi));
6317 }
6318
6319 /* Returns the smallest value obtainable by casting something in INNER type to
6320 OUTER type. */
6321
6322 tree
6323 lower_bound_in_type (tree outer, tree inner)
6324 {
6325 unsigned HOST_WIDE_INT lo, hi;
6326 unsigned bits = TYPE_PRECISION (inner);
6327
6328 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6329 lo = hi = 0;
6330 else if (bits <= HOST_BITS_PER_WIDE_INT)
6331 {
6332 hi = ~(unsigned HOST_WIDE_INT) 0;
6333 lo = (~(unsigned HOST_WIDE_INT) 0) << (bits - 1);
6334 }
6335 else
6336 {
6337 hi = (~(unsigned HOST_WIDE_INT) 0) << (bits - HOST_BITS_PER_WIDE_INT - 1);
6338 lo = 0;
6339 }
6340
6341 return fold_convert (outer,
6342 build_int_cst_wide (inner, lo, hi));
6343 }
6344
6345 /* Return nonzero if two operands that are suitable for PHI nodes are
6346 necessarily equal. Specifically, both ARG0 and ARG1 must be either
6347 SSA_NAME or invariant. Note that this is strictly an optimization.
6348 That is, callers of this function can directly call operand_equal_p
6349 and get the same result, only slower. */
6350
6351 int
6352 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
6353 {
6354 if (arg0 == arg1)
6355 return 1;
6356 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
6357 return 0;
6358 return operand_equal_p (arg0, arg1, 0);
6359 }
6360
6361 /* Returns number of zeros at the end of binary representation of X.
6362
6363 ??? Use ffs if available? */
6364
6365 tree
6366 num_ending_zeros (tree x)
6367 {
6368 unsigned HOST_WIDE_INT fr, nfr;
6369 unsigned num, abits;
6370 tree type = TREE_TYPE (x);
6371
6372 if (TREE_INT_CST_LOW (x) == 0)
6373 {
6374 num = HOST_BITS_PER_WIDE_INT;
6375 fr = TREE_INT_CST_HIGH (x);
6376 }
6377 else
6378 {
6379 num = 0;
6380 fr = TREE_INT_CST_LOW (x);
6381 }
6382
6383 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
6384 {
6385 nfr = fr >> abits;
6386 if (nfr << abits == fr)
6387 {
6388 num += abits;
6389 fr = nfr;
6390 }
6391 }
6392
6393 if (num > TYPE_PRECISION (type))
6394 num = TYPE_PRECISION (type);
6395
6396 return build_int_cst_type (type, num);
6397 }
6398
6399 #include "gt-tree.h"