tree-ssa-ccp.c (maybe_fold_offset_to_array_ref): Use type of offset to build the...
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file contains the low level primitives for operating on tree nodes,
24 including allocation, list operations, interning of identifiers,
25 construction of data type nodes and statement nodes,
26 and construction of type conversion nodes. It also contains
27 tables index by tree code that describe how to take apart
28 nodes of that code.
29
30 It is intended to be language-independent, but occasionally
31 calls language-dependent routines defined (for C) in typecheck.c. */
32
33 #include "config.h"
34 #include "system.h"
35 #include "coretypes.h"
36 #include "tm.h"
37 #include "flags.h"
38 #include "tree.h"
39 #include "real.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54
55 /* Each tree code class has an associated string representation.
56 These must correspond to the tree_code_class entries. */
57
58 const char *const tree_code_class_strings[] =
59 {
60 "exceptional",
61 "constant",
62 "type",
63 "declaration",
64 "reference",
65 "comparison",
66 "unary",
67 "binary",
68 "statement",
69 "expression",
70 };
71
72 /* obstack.[ch] explicitly declined to prototype this. */
73 extern int _obstack_allocated_p (struct obstack *h, void *obj);
74
75 #ifdef GATHER_STATISTICS
76 /* Statistics-gathering stuff. */
77
78 int tree_node_counts[(int) all_kinds];
79 int tree_node_sizes[(int) all_kinds];
80
81 /* Keep in sync with tree.h:enum tree_node_kind. */
82 static const char * const tree_node_kind_names[] = {
83 "decls",
84 "types",
85 "blocks",
86 "stmts",
87 "refs",
88 "exprs",
89 "constants",
90 "identifiers",
91 "perm_tree_lists",
92 "temp_tree_lists",
93 "vecs",
94 "binfos",
95 "phi_nodes",
96 "ssa names",
97 "constructors",
98 "random kinds",
99 "lang_decl kinds",
100 "lang_type kinds",
101 "omp clauses",
102 "gimple statements"
103 };
104 #endif /* GATHER_STATISTICS */
105
106 /* Unique id for next decl created. */
107 static GTY(()) int next_decl_uid;
108 /* Unique id for next type created. */
109 static GTY(()) int next_type_uid = 1;
110
111 /* Since we cannot rehash a type after it is in the table, we have to
112 keep the hash code. */
113
114 struct type_hash GTY(())
115 {
116 unsigned long hash;
117 tree type;
118 };
119
120 /* Initial size of the hash table (rounded to next prime). */
121 #define TYPE_HASH_INITIAL_SIZE 1000
122
123 /* Now here is the hash table. When recording a type, it is added to
124 the slot whose index is the hash code. Note that the hash table is
125 used for several kinds of types (function types, array types and
126 array index range types, for now). While all these live in the
127 same table, they are completely independent, and the hash code is
128 computed differently for each of these. */
129
130 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
131 htab_t type_hash_table;
132
133 /* Hash table and temporary node for larger integer const values. */
134 static GTY (()) tree int_cst_node;
135 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
136 htab_t int_cst_hash_table;
137
138 /* General tree->tree mapping structure for use in hash tables. */
139
140
141 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
142 htab_t debug_expr_for_decl;
143
144 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
145 htab_t value_expr_for_decl;
146
147 static GTY ((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
148 htab_t init_priority_for_decl;
149
150 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
151 htab_t restrict_base_for_decl;
152
153 struct tree_int_map GTY(())
154 {
155 tree from;
156 unsigned short to;
157 };
158 static unsigned int tree_int_map_hash (const void *);
159 static int tree_int_map_eq (const void *, const void *);
160 static int tree_int_map_marked_p (const void *);
161 static void set_type_quals (tree, int);
162 static int type_hash_eq (const void *, const void *);
163 static hashval_t type_hash_hash (const void *);
164 static hashval_t int_cst_hash_hash (const void *);
165 static int int_cst_hash_eq (const void *, const void *);
166 static void print_type_hash_statistics (void);
167 static void print_debug_expr_statistics (void);
168 static void print_value_expr_statistics (void);
169 static int type_hash_marked_p (const void *);
170 static unsigned int type_hash_list (tree, hashval_t);
171 static unsigned int attribute_hash_list (tree, hashval_t);
172
173 tree global_trees[TI_MAX];
174 tree integer_types[itk_none];
175
176 unsigned char tree_contains_struct[256][64];
177
178 /* Number of operands for each OpenMP clause. */
179 unsigned const char omp_clause_num_ops[] =
180 {
181 0, /* OMP_CLAUSE_ERROR */
182 1, /* OMP_CLAUSE_PRIVATE */
183 1, /* OMP_CLAUSE_SHARED */
184 1, /* OMP_CLAUSE_FIRSTPRIVATE */
185 1, /* OMP_CLAUSE_LASTPRIVATE */
186 4, /* OMP_CLAUSE_REDUCTION */
187 1, /* OMP_CLAUSE_COPYIN */
188 1, /* OMP_CLAUSE_COPYPRIVATE */
189 1, /* OMP_CLAUSE_IF */
190 1, /* OMP_CLAUSE_NUM_THREADS */
191 1, /* OMP_CLAUSE_SCHEDULE */
192 0, /* OMP_CLAUSE_NOWAIT */
193 0, /* OMP_CLAUSE_ORDERED */
194 0 /* OMP_CLAUSE_DEFAULT */
195 };
196
197 const char * const omp_clause_code_name[] =
198 {
199 "error_clause",
200 "private",
201 "shared",
202 "firstprivate",
203 "lastprivate",
204 "reduction",
205 "copyin",
206 "copyprivate",
207 "if",
208 "num_threads",
209 "schedule",
210 "nowait",
211 "ordered",
212 "default"
213 };
214 \f
215 /* Init tree.c. */
216
217 void
218 init_ttree (void)
219 {
220 /* Initialize the hash table of types. */
221 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
222 type_hash_eq, 0);
223
224 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
225 tree_map_eq, 0);
226
227 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
228 tree_map_eq, 0);
229 init_priority_for_decl = htab_create_ggc (512, tree_int_map_hash,
230 tree_int_map_eq, 0);
231 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
232 tree_map_eq, 0);
233
234 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
235 int_cst_hash_eq, NULL);
236
237 int_cst_node = make_node (INTEGER_CST);
238
239 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
240 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
241 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
242
243
244 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
245 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
246 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
247 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
248 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
249 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
250 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
251 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
252 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
253
254
255 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
256 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
257 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
258 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
259 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
260 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
261
262 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
263 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
264 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
265 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
266 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
267 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
268 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
269 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
270 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
271 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
272 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
273 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
274 tree_contains_struct[MEMORY_PARTITION_TAG][TS_DECL_MINIMAL] = 1;
275
276 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
277 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
278 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
279 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_TAG] = 1;
280
281 tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
282 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_PARTITION_TAG] = 1;
283
284 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
285 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
286 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
287 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
288
289 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
290 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
291 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
292 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
293 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
294 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
295 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
296 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
297
298 lang_hooks.init_ts ();
299 }
300
301 \f
302 /* The name of the object as the assembler will see it (but before any
303 translations made by ASM_OUTPUT_LABELREF). Often this is the same
304 as DECL_NAME. It is an IDENTIFIER_NODE. */
305 tree
306 decl_assembler_name (tree decl)
307 {
308 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
309 lang_hooks.set_decl_assembler_name (decl);
310 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
311 }
312
313 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
314
315 bool
316 decl_assembler_name_equal (tree decl, tree asmname)
317 {
318 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
319
320 if (decl_asmname == asmname)
321 return true;
322
323 /* If the target assembler name was set by the user, things are trickier.
324 We have a leading '*' to begin with. After that, it's arguable what
325 is the correct thing to do with -fleading-underscore. Arguably, we've
326 historically been doing the wrong thing in assemble_alias by always
327 printing the leading underscore. Since we're not changing that, make
328 sure user_label_prefix follows the '*' before matching. */
329 if (IDENTIFIER_POINTER (decl_asmname)[0] == '*')
330 {
331 const char *decl_str = IDENTIFIER_POINTER (decl_asmname) + 1;
332 size_t ulp_len = strlen (user_label_prefix);
333
334 if (ulp_len == 0)
335 ;
336 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
337 decl_str += ulp_len;
338 else
339 return false;
340
341 return strcmp (decl_str, IDENTIFIER_POINTER (asmname)) == 0;
342 }
343
344 return false;
345 }
346
347 /* Compute the number of bytes occupied by a tree with code CODE.
348 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
349 codes, which are of variable length. */
350 size_t
351 tree_code_size (enum tree_code code)
352 {
353 switch (TREE_CODE_CLASS (code))
354 {
355 case tcc_declaration: /* A decl node */
356 {
357 switch (code)
358 {
359 case FIELD_DECL:
360 return sizeof (struct tree_field_decl);
361 case PARM_DECL:
362 return sizeof (struct tree_parm_decl);
363 case VAR_DECL:
364 return sizeof (struct tree_var_decl);
365 case LABEL_DECL:
366 return sizeof (struct tree_label_decl);
367 case RESULT_DECL:
368 return sizeof (struct tree_result_decl);
369 case CONST_DECL:
370 return sizeof (struct tree_const_decl);
371 case TYPE_DECL:
372 return sizeof (struct tree_type_decl);
373 case FUNCTION_DECL:
374 return sizeof (struct tree_function_decl);
375 case NAME_MEMORY_TAG:
376 case SYMBOL_MEMORY_TAG:
377 return sizeof (struct tree_memory_tag);
378 case STRUCT_FIELD_TAG:
379 return sizeof (struct tree_struct_field_tag);
380 case MEMORY_PARTITION_TAG:
381 return sizeof (struct tree_memory_partition_tag);
382 default:
383 return sizeof (struct tree_decl_non_common);
384 }
385 }
386
387 case tcc_type: /* a type node */
388 return sizeof (struct tree_type);
389
390 case tcc_reference: /* a reference */
391 case tcc_expression: /* an expression */
392 case tcc_statement: /* an expression with side effects */
393 case tcc_comparison: /* a comparison expression */
394 case tcc_unary: /* a unary arithmetic expression */
395 case tcc_binary: /* a binary arithmetic expression */
396 return (sizeof (struct tree_exp)
397 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
398
399 case tcc_gimple_stmt:
400 return (sizeof (struct gimple_stmt)
401 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
402
403 case tcc_constant: /* a constant */
404 switch (code)
405 {
406 case INTEGER_CST: return sizeof (struct tree_int_cst);
407 case REAL_CST: return sizeof (struct tree_real_cst);
408 case COMPLEX_CST: return sizeof (struct tree_complex);
409 case VECTOR_CST: return sizeof (struct tree_vector);
410 case STRING_CST: gcc_unreachable ();
411 default:
412 return lang_hooks.tree_size (code);
413 }
414
415 case tcc_exceptional: /* something random, like an identifier. */
416 switch (code)
417 {
418 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
419 case TREE_LIST: return sizeof (struct tree_list);
420
421 case ERROR_MARK:
422 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
423
424 case TREE_VEC:
425 case OMP_CLAUSE:
426 case PHI_NODE: gcc_unreachable ();
427
428 case SSA_NAME: return sizeof (struct tree_ssa_name);
429
430 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
431 case BLOCK: return sizeof (struct tree_block);
432 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
433 case CONSTRUCTOR: return sizeof (struct tree_constructor);
434
435 default:
436 return lang_hooks.tree_size (code);
437 }
438
439 default:
440 gcc_unreachable ();
441 }
442 }
443
444 /* Compute the number of bytes occupied by NODE. This routine only
445 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
446 size_t
447 tree_size (tree node)
448 {
449 enum tree_code code = TREE_CODE (node);
450 switch (code)
451 {
452 case PHI_NODE:
453 return (sizeof (struct tree_phi_node)
454 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
455
456 case TREE_BINFO:
457 return (offsetof (struct tree_binfo, base_binfos)
458 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
459
460 case TREE_VEC:
461 return (sizeof (struct tree_vec)
462 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
463
464 case STRING_CST:
465 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
466
467 case OMP_CLAUSE:
468 return (sizeof (struct tree_omp_clause)
469 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
470 * sizeof (tree));
471
472 default:
473 return tree_code_size (code);
474 }
475 }
476
477 /* Return a newly allocated node of code CODE. For decl and type
478 nodes, some other fields are initialized. The rest of the node is
479 initialized to zero. This function cannot be used for PHI_NODE,
480 TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
481 tree_code_size.
482
483 Achoo! I got a code in the node. */
484
485 tree
486 make_node_stat (enum tree_code code MEM_STAT_DECL)
487 {
488 tree t;
489 enum tree_code_class type = TREE_CODE_CLASS (code);
490 size_t length = tree_code_size (code);
491 #ifdef GATHER_STATISTICS
492 tree_node_kind kind;
493
494 switch (type)
495 {
496 case tcc_declaration: /* A decl node */
497 kind = d_kind;
498 break;
499
500 case tcc_type: /* a type node */
501 kind = t_kind;
502 break;
503
504 case tcc_statement: /* an expression with side effects */
505 kind = s_kind;
506 break;
507
508 case tcc_reference: /* a reference */
509 kind = r_kind;
510 break;
511
512 case tcc_expression: /* an expression */
513 case tcc_comparison: /* a comparison expression */
514 case tcc_unary: /* a unary arithmetic expression */
515 case tcc_binary: /* a binary arithmetic expression */
516 kind = e_kind;
517 break;
518
519 case tcc_constant: /* a constant */
520 kind = c_kind;
521 break;
522
523 case tcc_gimple_stmt:
524 kind = gimple_stmt_kind;
525 break;
526
527 case tcc_exceptional: /* something random, like an identifier. */
528 switch (code)
529 {
530 case IDENTIFIER_NODE:
531 kind = id_kind;
532 break;
533
534 case TREE_VEC:
535 kind = vec_kind;
536 break;
537
538 case TREE_BINFO:
539 kind = binfo_kind;
540 break;
541
542 case PHI_NODE:
543 kind = phi_kind;
544 break;
545
546 case SSA_NAME:
547 kind = ssa_name_kind;
548 break;
549
550 case BLOCK:
551 kind = b_kind;
552 break;
553
554 case CONSTRUCTOR:
555 kind = constr_kind;
556 break;
557
558 default:
559 kind = x_kind;
560 break;
561 }
562 break;
563
564 default:
565 gcc_unreachable ();
566 }
567
568 tree_node_counts[(int) kind]++;
569 tree_node_sizes[(int) kind] += length;
570 #endif
571
572 if (code == IDENTIFIER_NODE)
573 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
574 else
575 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
576
577 memset (t, 0, length);
578
579 TREE_SET_CODE (t, code);
580
581 switch (type)
582 {
583 case tcc_statement:
584 TREE_SIDE_EFFECTS (t) = 1;
585 break;
586
587 case tcc_declaration:
588 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
589 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
590 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
591 {
592 if (code != FUNCTION_DECL)
593 DECL_ALIGN (t) = 1;
594 DECL_USER_ALIGN (t) = 0;
595 /* We have not yet computed the alias set for this declaration. */
596 DECL_POINTER_ALIAS_SET (t) = -1;
597 }
598 DECL_SOURCE_LOCATION (t) = input_location;
599 DECL_UID (t) = next_decl_uid++;
600
601 break;
602
603 case tcc_type:
604 TYPE_UID (t) = next_type_uid++;
605 TYPE_ALIGN (t) = BITS_PER_UNIT;
606 TYPE_USER_ALIGN (t) = 0;
607 TYPE_MAIN_VARIANT (t) = t;
608 TYPE_CANONICAL (t) = t;
609
610 /* Default to no attributes for type, but let target change that. */
611 TYPE_ATTRIBUTES (t) = NULL_TREE;
612 targetm.set_default_type_attributes (t);
613
614 /* We have not yet computed the alias set for this type. */
615 TYPE_ALIAS_SET (t) = -1;
616 break;
617
618 case tcc_constant:
619 TREE_CONSTANT (t) = 1;
620 TREE_INVARIANT (t) = 1;
621 break;
622
623 case tcc_expression:
624 switch (code)
625 {
626 case INIT_EXPR:
627 case MODIFY_EXPR:
628 case VA_ARG_EXPR:
629 case PREDECREMENT_EXPR:
630 case PREINCREMENT_EXPR:
631 case POSTDECREMENT_EXPR:
632 case POSTINCREMENT_EXPR:
633 /* All of these have side-effects, no matter what their
634 operands are. */
635 TREE_SIDE_EFFECTS (t) = 1;
636 break;
637
638 default:
639 break;
640 }
641 break;
642
643 case tcc_gimple_stmt:
644 switch (code)
645 {
646 case GIMPLE_MODIFY_STMT:
647 TREE_SIDE_EFFECTS (t) = 1;
648 break;
649
650 default:
651 break;
652 }
653
654 default:
655 /* Other classes need no special treatment. */
656 break;
657 }
658
659 return t;
660 }
661 \f
662 /* Return a new node with the same contents as NODE except that its
663 TREE_CHAIN is zero and it has a fresh uid. */
664
665 tree
666 copy_node_stat (tree node MEM_STAT_DECL)
667 {
668 tree t;
669 enum tree_code code = TREE_CODE (node);
670 size_t length;
671
672 gcc_assert (code != STATEMENT_LIST);
673
674 length = tree_size (node);
675 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
676 memcpy (t, node, length);
677
678 if (!GIMPLE_TUPLE_P (node))
679 TREE_CHAIN (t) = 0;
680 TREE_ASM_WRITTEN (t) = 0;
681 TREE_VISITED (t) = 0;
682 t->base.ann = 0;
683
684 if (TREE_CODE_CLASS (code) == tcc_declaration)
685 {
686 DECL_UID (t) = next_decl_uid++;
687 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
688 && DECL_HAS_VALUE_EXPR_P (node))
689 {
690 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
691 DECL_HAS_VALUE_EXPR_P (t) = 1;
692 }
693 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
694 {
695 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
696 DECL_HAS_INIT_PRIORITY_P (t) = 1;
697 }
698 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
699 {
700 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
701 DECL_BASED_ON_RESTRICT_P (t) = 1;
702 }
703 }
704 else if (TREE_CODE_CLASS (code) == tcc_type)
705 {
706 TYPE_UID (t) = next_type_uid++;
707 /* The following is so that the debug code for
708 the copy is different from the original type.
709 The two statements usually duplicate each other
710 (because they clear fields of the same union),
711 but the optimizer should catch that. */
712 TYPE_SYMTAB_POINTER (t) = 0;
713 TYPE_SYMTAB_ADDRESS (t) = 0;
714
715 /* Do not copy the values cache. */
716 if (TYPE_CACHED_VALUES_P(t))
717 {
718 TYPE_CACHED_VALUES_P (t) = 0;
719 TYPE_CACHED_VALUES (t) = NULL_TREE;
720 }
721 }
722
723 return t;
724 }
725
726 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
727 For example, this can copy a list made of TREE_LIST nodes. */
728
729 tree
730 copy_list (tree list)
731 {
732 tree head;
733 tree prev, next;
734
735 if (list == 0)
736 return 0;
737
738 head = prev = copy_node (list);
739 next = TREE_CHAIN (list);
740 while (next)
741 {
742 TREE_CHAIN (prev) = copy_node (next);
743 prev = TREE_CHAIN (prev);
744 next = TREE_CHAIN (next);
745 }
746 return head;
747 }
748
749 \f
750 /* Create an INT_CST node with a LOW value sign extended. */
751
752 tree
753 build_int_cst (tree type, HOST_WIDE_INT low)
754 {
755 /* Support legacy code. */
756 if (!type)
757 type = integer_type_node;
758
759 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
760 }
761
762 /* Create an INT_CST node with a LOW value zero extended. */
763
764 tree
765 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
766 {
767 return build_int_cst_wide (type, low, 0);
768 }
769
770 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
771 if it is negative. This function is similar to build_int_cst, but
772 the extra bits outside of the type precision are cleared. Constants
773 with these extra bits may confuse the fold so that it detects overflows
774 even in cases when they do not occur, and in general should be avoided.
775 We cannot however make this a default behavior of build_int_cst without
776 more intrusive changes, since there are parts of gcc that rely on the extra
777 precision of the integer constants. */
778
779 tree
780 build_int_cst_type (tree type, HOST_WIDE_INT low)
781 {
782 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
783 unsigned HOST_WIDE_INT hi, mask;
784 unsigned bits;
785 bool signed_p;
786 bool negative;
787
788 if (!type)
789 type = integer_type_node;
790
791 bits = TYPE_PRECISION (type);
792 signed_p = !TYPE_UNSIGNED (type);
793
794 if (bits >= HOST_BITS_PER_WIDE_INT)
795 negative = (low < 0);
796 else
797 {
798 /* If the sign bit is inside precision of LOW, use it to determine
799 the sign of the constant. */
800 negative = ((val >> (bits - 1)) & 1) != 0;
801
802 /* Mask out the bits outside of the precision of the constant. */
803 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
804
805 if (signed_p && negative)
806 val |= ~mask;
807 else
808 val &= mask;
809 }
810
811 /* Determine the high bits. */
812 hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
813
814 /* For unsigned type we need to mask out the bits outside of the type
815 precision. */
816 if (!signed_p)
817 {
818 if (bits <= HOST_BITS_PER_WIDE_INT)
819 hi = 0;
820 else
821 {
822 bits -= HOST_BITS_PER_WIDE_INT;
823 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
824 hi &= mask;
825 }
826 }
827
828 return build_int_cst_wide (type, val, hi);
829 }
830
831 /* These are the hash table functions for the hash table of INTEGER_CST
832 nodes of a sizetype. */
833
834 /* Return the hash code code X, an INTEGER_CST. */
835
836 static hashval_t
837 int_cst_hash_hash (const void *x)
838 {
839 tree t = (tree) x;
840
841 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
842 ^ htab_hash_pointer (TREE_TYPE (t)));
843 }
844
845 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
846 is the same as that given by *Y, which is the same. */
847
848 static int
849 int_cst_hash_eq (const void *x, const void *y)
850 {
851 tree xt = (tree) x;
852 tree yt = (tree) y;
853
854 return (TREE_TYPE (xt) == TREE_TYPE (yt)
855 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
856 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
857 }
858
859 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
860 integer_type_node is used. The returned node is always shared.
861 For small integers we use a per-type vector cache, for larger ones
862 we use a single hash table. */
863
864 tree
865 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
866 {
867 tree t;
868 int ix = -1;
869 int limit = 0;
870
871 gcc_assert (type);
872
873 switch (TREE_CODE (type))
874 {
875 case POINTER_TYPE:
876 case REFERENCE_TYPE:
877 /* Cache NULL pointer. */
878 if (!hi && !low)
879 {
880 limit = 1;
881 ix = 0;
882 }
883 break;
884
885 case BOOLEAN_TYPE:
886 /* Cache false or true. */
887 limit = 2;
888 if (!hi && low < 2)
889 ix = low;
890 break;
891
892 case INTEGER_TYPE:
893 case OFFSET_TYPE:
894 if (TYPE_UNSIGNED (type))
895 {
896 /* Cache 0..N */
897 limit = INTEGER_SHARE_LIMIT;
898 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
899 ix = low;
900 }
901 else
902 {
903 /* Cache -1..N */
904 limit = INTEGER_SHARE_LIMIT + 1;
905 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
906 ix = low + 1;
907 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
908 ix = 0;
909 }
910 break;
911
912 case ENUMERAL_TYPE:
913 break;
914
915 default:
916 gcc_unreachable ();
917 }
918
919 if (ix >= 0)
920 {
921 /* Look for it in the type's vector of small shared ints. */
922 if (!TYPE_CACHED_VALUES_P (type))
923 {
924 TYPE_CACHED_VALUES_P (type) = 1;
925 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
926 }
927
928 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
929 if (t)
930 {
931 /* Make sure no one is clobbering the shared constant. */
932 gcc_assert (TREE_TYPE (t) == type);
933 gcc_assert (TREE_INT_CST_LOW (t) == low);
934 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
935 }
936 else
937 {
938 /* Create a new shared int. */
939 t = make_node (INTEGER_CST);
940
941 TREE_INT_CST_LOW (t) = low;
942 TREE_INT_CST_HIGH (t) = hi;
943 TREE_TYPE (t) = type;
944
945 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
946 }
947 }
948 else
949 {
950 /* Use the cache of larger shared ints. */
951 void **slot;
952
953 TREE_INT_CST_LOW (int_cst_node) = low;
954 TREE_INT_CST_HIGH (int_cst_node) = hi;
955 TREE_TYPE (int_cst_node) = type;
956
957 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
958 t = *slot;
959 if (!t)
960 {
961 /* Insert this one into the hash table. */
962 t = int_cst_node;
963 *slot = t;
964 /* Make a new node for next time round. */
965 int_cst_node = make_node (INTEGER_CST);
966 }
967 }
968
969 return t;
970 }
971
972 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
973 and the rest are zeros. */
974
975 tree
976 build_low_bits_mask (tree type, unsigned bits)
977 {
978 unsigned HOST_WIDE_INT low;
979 HOST_WIDE_INT high;
980 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
981
982 gcc_assert (bits <= TYPE_PRECISION (type));
983
984 if (bits == TYPE_PRECISION (type)
985 && !TYPE_UNSIGNED (type))
986 {
987 /* Sign extended all-ones mask. */
988 low = all_ones;
989 high = -1;
990 }
991 else if (bits <= HOST_BITS_PER_WIDE_INT)
992 {
993 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
994 high = 0;
995 }
996 else
997 {
998 bits -= HOST_BITS_PER_WIDE_INT;
999 low = all_ones;
1000 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1001 }
1002
1003 return build_int_cst_wide (type, low, high);
1004 }
1005
1006 /* Checks that X is integer constant that can be expressed in (unsigned)
1007 HOST_WIDE_INT without loss of precision. */
1008
1009 bool
1010 cst_and_fits_in_hwi (tree x)
1011 {
1012 if (TREE_CODE (x) != INTEGER_CST)
1013 return false;
1014
1015 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1016 return false;
1017
1018 return (TREE_INT_CST_HIGH (x) == 0
1019 || TREE_INT_CST_HIGH (x) == -1);
1020 }
1021
1022 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1023 are in a list pointed to by VALS. */
1024
1025 tree
1026 build_vector (tree type, tree vals)
1027 {
1028 tree v = make_node (VECTOR_CST);
1029 int over1 = 0, over2 = 0;
1030 tree link;
1031
1032 TREE_VECTOR_CST_ELTS (v) = vals;
1033 TREE_TYPE (v) = type;
1034
1035 /* Iterate through elements and check for overflow. */
1036 for (link = vals; link; link = TREE_CHAIN (link))
1037 {
1038 tree value = TREE_VALUE (link);
1039
1040 /* Don't crash if we get an address constant. */
1041 if (!CONSTANT_CLASS_P (value))
1042 continue;
1043
1044 over1 |= TREE_OVERFLOW (value);
1045 over2 |= TREE_CONSTANT_OVERFLOW (value);
1046 }
1047
1048 TREE_OVERFLOW (v) = over1;
1049 TREE_CONSTANT_OVERFLOW (v) = over2;
1050
1051 return v;
1052 }
1053
1054 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1055 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1056
1057 tree
1058 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1059 {
1060 tree list = NULL_TREE;
1061 unsigned HOST_WIDE_INT idx;
1062 tree value;
1063
1064 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1065 list = tree_cons (NULL_TREE, value, list);
1066 return build_vector (type, nreverse (list));
1067 }
1068
1069 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1070 are in the VEC pointed to by VALS. */
1071 tree
1072 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1073 {
1074 tree c = make_node (CONSTRUCTOR);
1075 TREE_TYPE (c) = type;
1076 CONSTRUCTOR_ELTS (c) = vals;
1077 return c;
1078 }
1079
1080 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1081 INDEX and VALUE. */
1082 tree
1083 build_constructor_single (tree type, tree index, tree value)
1084 {
1085 VEC(constructor_elt,gc) *v;
1086 constructor_elt *elt;
1087 tree t;
1088
1089 v = VEC_alloc (constructor_elt, gc, 1);
1090 elt = VEC_quick_push (constructor_elt, v, NULL);
1091 elt->index = index;
1092 elt->value = value;
1093
1094 t = build_constructor (type, v);
1095 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1096 return t;
1097 }
1098
1099
1100 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1101 are in a list pointed to by VALS. */
1102 tree
1103 build_constructor_from_list (tree type, tree vals)
1104 {
1105 tree t, val;
1106 VEC(constructor_elt,gc) *v = NULL;
1107 bool constant_p = true;
1108
1109 if (vals)
1110 {
1111 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1112 for (t = vals; t; t = TREE_CHAIN (t))
1113 {
1114 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1115 val = TREE_VALUE (t);
1116 elt->index = TREE_PURPOSE (t);
1117 elt->value = val;
1118 if (!TREE_CONSTANT (val))
1119 constant_p = false;
1120 }
1121 }
1122
1123 t = build_constructor (type, v);
1124 TREE_CONSTANT (t) = constant_p;
1125 return t;
1126 }
1127
1128
1129 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1130
1131 tree
1132 build_real (tree type, REAL_VALUE_TYPE d)
1133 {
1134 tree v;
1135 REAL_VALUE_TYPE *dp;
1136 int overflow = 0;
1137
1138 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1139 Consider doing it via real_convert now. */
1140
1141 v = make_node (REAL_CST);
1142 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1143 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1144
1145 TREE_TYPE (v) = type;
1146 TREE_REAL_CST_PTR (v) = dp;
1147 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1148 return v;
1149 }
1150
1151 /* Return a new REAL_CST node whose type is TYPE
1152 and whose value is the integer value of the INTEGER_CST node I. */
1153
1154 REAL_VALUE_TYPE
1155 real_value_from_int_cst (tree type, tree i)
1156 {
1157 REAL_VALUE_TYPE d;
1158
1159 /* Clear all bits of the real value type so that we can later do
1160 bitwise comparisons to see if two values are the same. */
1161 memset (&d, 0, sizeof d);
1162
1163 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1164 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1165 TYPE_UNSIGNED (TREE_TYPE (i)));
1166 return d;
1167 }
1168
1169 /* Given a tree representing an integer constant I, return a tree
1170 representing the same value as a floating-point constant of type TYPE. */
1171
1172 tree
1173 build_real_from_int_cst (tree type, tree i)
1174 {
1175 tree v;
1176 int overflow = TREE_OVERFLOW (i);
1177
1178 v = build_real (type, real_value_from_int_cst (type, i));
1179
1180 TREE_OVERFLOW (v) |= overflow;
1181 TREE_CONSTANT_OVERFLOW (v) |= overflow;
1182 return v;
1183 }
1184
1185 /* Return a newly constructed STRING_CST node whose value is
1186 the LEN characters at STR.
1187 The TREE_TYPE is not initialized. */
1188
1189 tree
1190 build_string (int len, const char *str)
1191 {
1192 tree s;
1193 size_t length;
1194
1195 /* Do not waste bytes provided by padding of struct tree_string. */
1196 length = len + offsetof (struct tree_string, str) + 1;
1197
1198 #ifdef GATHER_STATISTICS
1199 tree_node_counts[(int) c_kind]++;
1200 tree_node_sizes[(int) c_kind] += length;
1201 #endif
1202
1203 s = ggc_alloc_tree (length);
1204
1205 memset (s, 0, sizeof (struct tree_common));
1206 TREE_SET_CODE (s, STRING_CST);
1207 TREE_CONSTANT (s) = 1;
1208 TREE_INVARIANT (s) = 1;
1209 TREE_STRING_LENGTH (s) = len;
1210 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1211 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1212
1213 return s;
1214 }
1215
1216 /* Return a newly constructed COMPLEX_CST node whose value is
1217 specified by the real and imaginary parts REAL and IMAG.
1218 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1219 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1220
1221 tree
1222 build_complex (tree type, tree real, tree imag)
1223 {
1224 tree t = make_node (COMPLEX_CST);
1225
1226 TREE_REALPART (t) = real;
1227 TREE_IMAGPART (t) = imag;
1228 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1229 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1230 TREE_CONSTANT_OVERFLOW (t)
1231 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1232 return t;
1233 }
1234
1235 /* Return a constant of arithmetic type TYPE which is the
1236 multiplicative identity of the set TYPE. */
1237
1238 tree
1239 build_one_cst (tree type)
1240 {
1241 switch (TREE_CODE (type))
1242 {
1243 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1244 case POINTER_TYPE: case REFERENCE_TYPE:
1245 case OFFSET_TYPE:
1246 return build_int_cst (type, 1);
1247
1248 case REAL_TYPE:
1249 return build_real (type, dconst1);
1250
1251 case VECTOR_TYPE:
1252 {
1253 tree scalar, cst;
1254 int i;
1255
1256 scalar = build_one_cst (TREE_TYPE (type));
1257
1258 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1259 cst = NULL_TREE;
1260 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1261 cst = tree_cons (NULL_TREE, scalar, cst);
1262
1263 return build_vector (type, cst);
1264 }
1265
1266 case COMPLEX_TYPE:
1267 return build_complex (type,
1268 build_one_cst (TREE_TYPE (type)),
1269 fold_convert (TREE_TYPE (type), integer_zero_node));
1270
1271 default:
1272 gcc_unreachable ();
1273 }
1274 }
1275
1276 /* Build a BINFO with LEN language slots. */
1277
1278 tree
1279 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1280 {
1281 tree t;
1282 size_t length = (offsetof (struct tree_binfo, base_binfos)
1283 + VEC_embedded_size (tree, base_binfos));
1284
1285 #ifdef GATHER_STATISTICS
1286 tree_node_counts[(int) binfo_kind]++;
1287 tree_node_sizes[(int) binfo_kind] += length;
1288 #endif
1289
1290 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1291
1292 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1293
1294 TREE_SET_CODE (t, TREE_BINFO);
1295
1296 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1297
1298 return t;
1299 }
1300
1301
1302 /* Build a newly constructed TREE_VEC node of length LEN. */
1303
1304 tree
1305 make_tree_vec_stat (int len MEM_STAT_DECL)
1306 {
1307 tree t;
1308 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1309
1310 #ifdef GATHER_STATISTICS
1311 tree_node_counts[(int) vec_kind]++;
1312 tree_node_sizes[(int) vec_kind] += length;
1313 #endif
1314
1315 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1316
1317 memset (t, 0, length);
1318
1319 TREE_SET_CODE (t, TREE_VEC);
1320 TREE_VEC_LENGTH (t) = len;
1321
1322 return t;
1323 }
1324 \f
1325 /* Return 1 if EXPR is the integer constant zero or a complex constant
1326 of zero. */
1327
1328 int
1329 integer_zerop (tree expr)
1330 {
1331 STRIP_NOPS (expr);
1332
1333 return ((TREE_CODE (expr) == INTEGER_CST
1334 && TREE_INT_CST_LOW (expr) == 0
1335 && TREE_INT_CST_HIGH (expr) == 0)
1336 || (TREE_CODE (expr) == COMPLEX_CST
1337 && integer_zerop (TREE_REALPART (expr))
1338 && integer_zerop (TREE_IMAGPART (expr))));
1339 }
1340
1341 /* Return 1 if EXPR is the integer constant one or the corresponding
1342 complex constant. */
1343
1344 int
1345 integer_onep (tree expr)
1346 {
1347 STRIP_NOPS (expr);
1348
1349 return ((TREE_CODE (expr) == INTEGER_CST
1350 && TREE_INT_CST_LOW (expr) == 1
1351 && TREE_INT_CST_HIGH (expr) == 0)
1352 || (TREE_CODE (expr) == COMPLEX_CST
1353 && integer_onep (TREE_REALPART (expr))
1354 && integer_zerop (TREE_IMAGPART (expr))));
1355 }
1356
1357 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1358 it contains. Likewise for the corresponding complex constant. */
1359
1360 int
1361 integer_all_onesp (tree expr)
1362 {
1363 int prec;
1364 int uns;
1365
1366 STRIP_NOPS (expr);
1367
1368 if (TREE_CODE (expr) == COMPLEX_CST
1369 && integer_all_onesp (TREE_REALPART (expr))
1370 && integer_zerop (TREE_IMAGPART (expr)))
1371 return 1;
1372
1373 else if (TREE_CODE (expr) != INTEGER_CST)
1374 return 0;
1375
1376 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1377 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1378 && TREE_INT_CST_HIGH (expr) == -1)
1379 return 1;
1380 if (!uns)
1381 return 0;
1382
1383 /* Note that using TYPE_PRECISION here is wrong. We care about the
1384 actual bits, not the (arbitrary) range of the type. */
1385 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1386 if (prec >= HOST_BITS_PER_WIDE_INT)
1387 {
1388 HOST_WIDE_INT high_value;
1389 int shift_amount;
1390
1391 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1392
1393 /* Can not handle precisions greater than twice the host int size. */
1394 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1395 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1396 /* Shifting by the host word size is undefined according to the ANSI
1397 standard, so we must handle this as a special case. */
1398 high_value = -1;
1399 else
1400 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1401
1402 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1403 && TREE_INT_CST_HIGH (expr) == high_value);
1404 }
1405 else
1406 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1407 }
1408
1409 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1410 one bit on). */
1411
1412 int
1413 integer_pow2p (tree expr)
1414 {
1415 int prec;
1416 HOST_WIDE_INT high, low;
1417
1418 STRIP_NOPS (expr);
1419
1420 if (TREE_CODE (expr) == COMPLEX_CST
1421 && integer_pow2p (TREE_REALPART (expr))
1422 && integer_zerop (TREE_IMAGPART (expr)))
1423 return 1;
1424
1425 if (TREE_CODE (expr) != INTEGER_CST)
1426 return 0;
1427
1428 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1429 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1430 high = TREE_INT_CST_HIGH (expr);
1431 low = TREE_INT_CST_LOW (expr);
1432
1433 /* First clear all bits that are beyond the type's precision in case
1434 we've been sign extended. */
1435
1436 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1437 ;
1438 else if (prec > HOST_BITS_PER_WIDE_INT)
1439 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1440 else
1441 {
1442 high = 0;
1443 if (prec < HOST_BITS_PER_WIDE_INT)
1444 low &= ~((HOST_WIDE_INT) (-1) << prec);
1445 }
1446
1447 if (high == 0 && low == 0)
1448 return 0;
1449
1450 return ((high == 0 && (low & (low - 1)) == 0)
1451 || (low == 0 && (high & (high - 1)) == 0));
1452 }
1453
1454 /* Return 1 if EXPR is an integer constant other than zero or a
1455 complex constant other than zero. */
1456
1457 int
1458 integer_nonzerop (tree expr)
1459 {
1460 STRIP_NOPS (expr);
1461
1462 return ((TREE_CODE (expr) == INTEGER_CST
1463 && (TREE_INT_CST_LOW (expr) != 0
1464 || TREE_INT_CST_HIGH (expr) != 0))
1465 || (TREE_CODE (expr) == COMPLEX_CST
1466 && (integer_nonzerop (TREE_REALPART (expr))
1467 || integer_nonzerop (TREE_IMAGPART (expr)))));
1468 }
1469
1470 /* Return the power of two represented by a tree node known to be a
1471 power of two. */
1472
1473 int
1474 tree_log2 (tree expr)
1475 {
1476 int prec;
1477 HOST_WIDE_INT high, low;
1478
1479 STRIP_NOPS (expr);
1480
1481 if (TREE_CODE (expr) == COMPLEX_CST)
1482 return tree_log2 (TREE_REALPART (expr));
1483
1484 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1485 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1486
1487 high = TREE_INT_CST_HIGH (expr);
1488 low = TREE_INT_CST_LOW (expr);
1489
1490 /* First clear all bits that are beyond the type's precision in case
1491 we've been sign extended. */
1492
1493 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1494 ;
1495 else if (prec > HOST_BITS_PER_WIDE_INT)
1496 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1497 else
1498 {
1499 high = 0;
1500 if (prec < HOST_BITS_PER_WIDE_INT)
1501 low &= ~((HOST_WIDE_INT) (-1) << prec);
1502 }
1503
1504 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1505 : exact_log2 (low));
1506 }
1507
1508 /* Similar, but return the largest integer Y such that 2 ** Y is less
1509 than or equal to EXPR. */
1510
1511 int
1512 tree_floor_log2 (tree expr)
1513 {
1514 int prec;
1515 HOST_WIDE_INT high, low;
1516
1517 STRIP_NOPS (expr);
1518
1519 if (TREE_CODE (expr) == COMPLEX_CST)
1520 return tree_log2 (TREE_REALPART (expr));
1521
1522 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1523 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1524
1525 high = TREE_INT_CST_HIGH (expr);
1526 low = TREE_INT_CST_LOW (expr);
1527
1528 /* First clear all bits that are beyond the type's precision in case
1529 we've been sign extended. Ignore if type's precision hasn't been set
1530 since what we are doing is setting it. */
1531
1532 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1533 ;
1534 else if (prec > HOST_BITS_PER_WIDE_INT)
1535 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1536 else
1537 {
1538 high = 0;
1539 if (prec < HOST_BITS_PER_WIDE_INT)
1540 low &= ~((HOST_WIDE_INT) (-1) << prec);
1541 }
1542
1543 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1544 : floor_log2 (low));
1545 }
1546
1547 /* Return 1 if EXPR is the real constant zero. */
1548
1549 int
1550 real_zerop (tree expr)
1551 {
1552 STRIP_NOPS (expr);
1553
1554 return ((TREE_CODE (expr) == REAL_CST
1555 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1556 || (TREE_CODE (expr) == COMPLEX_CST
1557 && real_zerop (TREE_REALPART (expr))
1558 && real_zerop (TREE_IMAGPART (expr))));
1559 }
1560
1561 /* Return 1 if EXPR is the real constant one in real or complex form. */
1562
1563 int
1564 real_onep (tree expr)
1565 {
1566 STRIP_NOPS (expr);
1567
1568 return ((TREE_CODE (expr) == REAL_CST
1569 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1570 || (TREE_CODE (expr) == COMPLEX_CST
1571 && real_onep (TREE_REALPART (expr))
1572 && real_zerop (TREE_IMAGPART (expr))));
1573 }
1574
1575 /* Return 1 if EXPR is the real constant two. */
1576
1577 int
1578 real_twop (tree expr)
1579 {
1580 STRIP_NOPS (expr);
1581
1582 return ((TREE_CODE (expr) == REAL_CST
1583 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1584 || (TREE_CODE (expr) == COMPLEX_CST
1585 && real_twop (TREE_REALPART (expr))
1586 && real_zerop (TREE_IMAGPART (expr))));
1587 }
1588
1589 /* Return 1 if EXPR is the real constant minus one. */
1590
1591 int
1592 real_minus_onep (tree expr)
1593 {
1594 STRIP_NOPS (expr);
1595
1596 return ((TREE_CODE (expr) == REAL_CST
1597 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1598 || (TREE_CODE (expr) == COMPLEX_CST
1599 && real_minus_onep (TREE_REALPART (expr))
1600 && real_zerop (TREE_IMAGPART (expr))));
1601 }
1602
1603 /* Nonzero if EXP is a constant or a cast of a constant. */
1604
1605 int
1606 really_constant_p (tree exp)
1607 {
1608 /* This is not quite the same as STRIP_NOPS. It does more. */
1609 while (TREE_CODE (exp) == NOP_EXPR
1610 || TREE_CODE (exp) == CONVERT_EXPR
1611 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1612 exp = TREE_OPERAND (exp, 0);
1613 return TREE_CONSTANT (exp);
1614 }
1615 \f
1616 /* Return first list element whose TREE_VALUE is ELEM.
1617 Return 0 if ELEM is not in LIST. */
1618
1619 tree
1620 value_member (tree elem, tree list)
1621 {
1622 while (list)
1623 {
1624 if (elem == TREE_VALUE (list))
1625 return list;
1626 list = TREE_CHAIN (list);
1627 }
1628 return NULL_TREE;
1629 }
1630
1631 /* Return first list element whose TREE_PURPOSE is ELEM.
1632 Return 0 if ELEM is not in LIST. */
1633
1634 tree
1635 purpose_member (tree elem, tree list)
1636 {
1637 while (list)
1638 {
1639 if (elem == TREE_PURPOSE (list))
1640 return list;
1641 list = TREE_CHAIN (list);
1642 }
1643 return NULL_TREE;
1644 }
1645
1646 /* Return nonzero if ELEM is part of the chain CHAIN. */
1647
1648 int
1649 chain_member (tree elem, tree chain)
1650 {
1651 while (chain)
1652 {
1653 if (elem == chain)
1654 return 1;
1655 chain = TREE_CHAIN (chain);
1656 }
1657
1658 return 0;
1659 }
1660
1661 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1662 We expect a null pointer to mark the end of the chain.
1663 This is the Lisp primitive `length'. */
1664
1665 int
1666 list_length (tree t)
1667 {
1668 tree p = t;
1669 #ifdef ENABLE_TREE_CHECKING
1670 tree q = t;
1671 #endif
1672 int len = 0;
1673
1674 while (p)
1675 {
1676 p = TREE_CHAIN (p);
1677 #ifdef ENABLE_TREE_CHECKING
1678 if (len % 2)
1679 q = TREE_CHAIN (q);
1680 gcc_assert (p != q);
1681 #endif
1682 len++;
1683 }
1684
1685 return len;
1686 }
1687
1688 /* Returns the number of FIELD_DECLs in TYPE. */
1689
1690 int
1691 fields_length (tree type)
1692 {
1693 tree t = TYPE_FIELDS (type);
1694 int count = 0;
1695
1696 for (; t; t = TREE_CHAIN (t))
1697 if (TREE_CODE (t) == FIELD_DECL)
1698 ++count;
1699
1700 return count;
1701 }
1702
1703 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1704 by modifying the last node in chain 1 to point to chain 2.
1705 This is the Lisp primitive `nconc'. */
1706
1707 tree
1708 chainon (tree op1, tree op2)
1709 {
1710 tree t1;
1711
1712 if (!op1)
1713 return op2;
1714 if (!op2)
1715 return op1;
1716
1717 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1718 continue;
1719 TREE_CHAIN (t1) = op2;
1720
1721 #ifdef ENABLE_TREE_CHECKING
1722 {
1723 tree t2;
1724 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1725 gcc_assert (t2 != t1);
1726 }
1727 #endif
1728
1729 return op1;
1730 }
1731
1732 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1733
1734 tree
1735 tree_last (tree chain)
1736 {
1737 tree next;
1738 if (chain)
1739 while ((next = TREE_CHAIN (chain)))
1740 chain = next;
1741 return chain;
1742 }
1743
1744 /* Reverse the order of elements in the chain T,
1745 and return the new head of the chain (old last element). */
1746
1747 tree
1748 nreverse (tree t)
1749 {
1750 tree prev = 0, decl, next;
1751 for (decl = t; decl; decl = next)
1752 {
1753 next = TREE_CHAIN (decl);
1754 TREE_CHAIN (decl) = prev;
1755 prev = decl;
1756 }
1757 return prev;
1758 }
1759 \f
1760 /* Return a newly created TREE_LIST node whose
1761 purpose and value fields are PARM and VALUE. */
1762
1763 tree
1764 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1765 {
1766 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1767 TREE_PURPOSE (t) = parm;
1768 TREE_VALUE (t) = value;
1769 return t;
1770 }
1771
1772 /* Return a newly created TREE_LIST node whose
1773 purpose and value fields are PURPOSE and VALUE
1774 and whose TREE_CHAIN is CHAIN. */
1775
1776 tree
1777 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1778 {
1779 tree node;
1780
1781 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1782
1783 memset (node, 0, sizeof (struct tree_common));
1784
1785 #ifdef GATHER_STATISTICS
1786 tree_node_counts[(int) x_kind]++;
1787 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1788 #endif
1789
1790 TREE_SET_CODE (node, TREE_LIST);
1791 TREE_CHAIN (node) = chain;
1792 TREE_PURPOSE (node) = purpose;
1793 TREE_VALUE (node) = value;
1794 return node;
1795 }
1796
1797 \f
1798 /* Return the size nominally occupied by an object of type TYPE
1799 when it resides in memory. The value is measured in units of bytes,
1800 and its data type is that normally used for type sizes
1801 (which is the first type created by make_signed_type or
1802 make_unsigned_type). */
1803
1804 tree
1805 size_in_bytes (tree type)
1806 {
1807 tree t;
1808
1809 if (type == error_mark_node)
1810 return integer_zero_node;
1811
1812 type = TYPE_MAIN_VARIANT (type);
1813 t = TYPE_SIZE_UNIT (type);
1814
1815 if (t == 0)
1816 {
1817 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1818 return size_zero_node;
1819 }
1820
1821 if (TREE_CODE (t) == INTEGER_CST)
1822 t = force_fit_type (t, 0, false, false);
1823
1824 return t;
1825 }
1826
1827 /* Return the size of TYPE (in bytes) as a wide integer
1828 or return -1 if the size can vary or is larger than an integer. */
1829
1830 HOST_WIDE_INT
1831 int_size_in_bytes (tree type)
1832 {
1833 tree t;
1834
1835 if (type == error_mark_node)
1836 return 0;
1837
1838 type = TYPE_MAIN_VARIANT (type);
1839 t = TYPE_SIZE_UNIT (type);
1840 if (t == 0
1841 || TREE_CODE (t) != INTEGER_CST
1842 || TREE_INT_CST_HIGH (t) != 0
1843 /* If the result would appear negative, it's too big to represent. */
1844 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1845 return -1;
1846
1847 return TREE_INT_CST_LOW (t);
1848 }
1849
1850 /* Return the maximum size of TYPE (in bytes) as a wide integer
1851 or return -1 if the size can vary or is larger than an integer. */
1852
1853 HOST_WIDE_INT
1854 max_int_size_in_bytes (tree type)
1855 {
1856 HOST_WIDE_INT size = -1;
1857 tree size_tree;
1858
1859 /* If this is an array type, check for a possible MAX_SIZE attached. */
1860
1861 if (TREE_CODE (type) == ARRAY_TYPE)
1862 {
1863 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1864
1865 if (size_tree && host_integerp (size_tree, 1))
1866 size = tree_low_cst (size_tree, 1);
1867 }
1868
1869 /* If we still haven't been able to get a size, see if the language
1870 can compute a maximum size. */
1871
1872 if (size == -1)
1873 {
1874 size_tree = lang_hooks.types.max_size (type);
1875
1876 if (size_tree && host_integerp (size_tree, 1))
1877 size = tree_low_cst (size_tree, 1);
1878 }
1879
1880 return size;
1881 }
1882 \f
1883 /* Return the bit position of FIELD, in bits from the start of the record.
1884 This is a tree of type bitsizetype. */
1885
1886 tree
1887 bit_position (tree field)
1888 {
1889 return bit_from_pos (DECL_FIELD_OFFSET (field),
1890 DECL_FIELD_BIT_OFFSET (field));
1891 }
1892
1893 /* Likewise, but return as an integer. It must be representable in
1894 that way (since it could be a signed value, we don't have the
1895 option of returning -1 like int_size_in_byte can. */
1896
1897 HOST_WIDE_INT
1898 int_bit_position (tree field)
1899 {
1900 return tree_low_cst (bit_position (field), 0);
1901 }
1902 \f
1903 /* Return the byte position of FIELD, in bytes from the start of the record.
1904 This is a tree of type sizetype. */
1905
1906 tree
1907 byte_position (tree field)
1908 {
1909 return byte_from_pos (DECL_FIELD_OFFSET (field),
1910 DECL_FIELD_BIT_OFFSET (field));
1911 }
1912
1913 /* Likewise, but return as an integer. It must be representable in
1914 that way (since it could be a signed value, we don't have the
1915 option of returning -1 like int_size_in_byte can. */
1916
1917 HOST_WIDE_INT
1918 int_byte_position (tree field)
1919 {
1920 return tree_low_cst (byte_position (field), 0);
1921 }
1922 \f
1923 /* Return the strictest alignment, in bits, that T is known to have. */
1924
1925 unsigned int
1926 expr_align (tree t)
1927 {
1928 unsigned int align0, align1;
1929
1930 switch (TREE_CODE (t))
1931 {
1932 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1933 /* If we have conversions, we know that the alignment of the
1934 object must meet each of the alignments of the types. */
1935 align0 = expr_align (TREE_OPERAND (t, 0));
1936 align1 = TYPE_ALIGN (TREE_TYPE (t));
1937 return MAX (align0, align1);
1938
1939 case MODIFY_EXPR:
1940 /* FIXME tuples: It is unclear to me if this function, which
1941 is only called from ADA, is called on gimple or non gimple
1942 trees. Let's assume it's from gimple trees unless we hit
1943 this abort. */
1944 gcc_unreachable ();
1945
1946 case SAVE_EXPR: case COMPOUND_EXPR: case GIMPLE_MODIFY_STMT:
1947 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1948 case CLEANUP_POINT_EXPR:
1949 /* These don't change the alignment of an object. */
1950 return expr_align (TREE_OPERAND (t, 0));
1951
1952 case COND_EXPR:
1953 /* The best we can do is say that the alignment is the least aligned
1954 of the two arms. */
1955 align0 = expr_align (TREE_OPERAND (t, 1));
1956 align1 = expr_align (TREE_OPERAND (t, 2));
1957 return MIN (align0, align1);
1958
1959 case LABEL_DECL: case CONST_DECL:
1960 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1961 if (DECL_ALIGN (t) != 0)
1962 return DECL_ALIGN (t);
1963 break;
1964
1965 case FUNCTION_DECL:
1966 return FUNCTION_BOUNDARY;
1967
1968 default:
1969 break;
1970 }
1971
1972 /* Otherwise take the alignment from that of the type. */
1973 return TYPE_ALIGN (TREE_TYPE (t));
1974 }
1975 \f
1976 /* Return, as a tree node, the number of elements for TYPE (which is an
1977 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1978
1979 tree
1980 array_type_nelts (tree type)
1981 {
1982 tree index_type, min, max;
1983
1984 /* If they did it with unspecified bounds, then we should have already
1985 given an error about it before we got here. */
1986 if (! TYPE_DOMAIN (type))
1987 return error_mark_node;
1988
1989 index_type = TYPE_DOMAIN (type);
1990 min = TYPE_MIN_VALUE (index_type);
1991 max = TYPE_MAX_VALUE (index_type);
1992
1993 return (integer_zerop (min)
1994 ? max
1995 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1996 }
1997 \f
1998 /* If arg is static -- a reference to an object in static storage -- then
1999 return the object. This is not the same as the C meaning of `static'.
2000 If arg isn't static, return NULL. */
2001
2002 tree
2003 staticp (tree arg)
2004 {
2005 switch (TREE_CODE (arg))
2006 {
2007 case FUNCTION_DECL:
2008 /* Nested functions are static, even though taking their address will
2009 involve a trampoline as we unnest the nested function and create
2010 the trampoline on the tree level. */
2011 return arg;
2012
2013 case VAR_DECL:
2014 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2015 && ! DECL_THREAD_LOCAL_P (arg)
2016 && ! DECL_DLLIMPORT_P (arg)
2017 ? arg : NULL);
2018
2019 case CONST_DECL:
2020 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2021 ? arg : NULL);
2022
2023 case CONSTRUCTOR:
2024 return TREE_STATIC (arg) ? arg : NULL;
2025
2026 case LABEL_DECL:
2027 case STRING_CST:
2028 return arg;
2029
2030 case COMPONENT_REF:
2031 /* If the thing being referenced is not a field, then it is
2032 something language specific. */
2033 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
2034 return (*lang_hooks.staticp) (arg);
2035
2036 /* If we are referencing a bitfield, we can't evaluate an
2037 ADDR_EXPR at compile time and so it isn't a constant. */
2038 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2039 return NULL;
2040
2041 return staticp (TREE_OPERAND (arg, 0));
2042
2043 case BIT_FIELD_REF:
2044 return NULL;
2045
2046 case MISALIGNED_INDIRECT_REF:
2047 case ALIGN_INDIRECT_REF:
2048 case INDIRECT_REF:
2049 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2050
2051 case ARRAY_REF:
2052 case ARRAY_RANGE_REF:
2053 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2054 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2055 return staticp (TREE_OPERAND (arg, 0));
2056 else
2057 return false;
2058
2059 default:
2060 if ((unsigned int) TREE_CODE (arg)
2061 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
2062 return lang_hooks.staticp (arg);
2063 else
2064 return NULL;
2065 }
2066 }
2067 \f
2068 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2069 Do this to any expression which may be used in more than one place,
2070 but must be evaluated only once.
2071
2072 Normally, expand_expr would reevaluate the expression each time.
2073 Calling save_expr produces something that is evaluated and recorded
2074 the first time expand_expr is called on it. Subsequent calls to
2075 expand_expr just reuse the recorded value.
2076
2077 The call to expand_expr that generates code that actually computes
2078 the value is the first call *at compile time*. Subsequent calls
2079 *at compile time* generate code to use the saved value.
2080 This produces correct result provided that *at run time* control
2081 always flows through the insns made by the first expand_expr
2082 before reaching the other places where the save_expr was evaluated.
2083 You, the caller of save_expr, must make sure this is so.
2084
2085 Constants, and certain read-only nodes, are returned with no
2086 SAVE_EXPR because that is safe. Expressions containing placeholders
2087 are not touched; see tree.def for an explanation of what these
2088 are used for. */
2089
2090 tree
2091 save_expr (tree expr)
2092 {
2093 tree t = fold (expr);
2094 tree inner;
2095
2096 /* If the tree evaluates to a constant, then we don't want to hide that
2097 fact (i.e. this allows further folding, and direct checks for constants).
2098 However, a read-only object that has side effects cannot be bypassed.
2099 Since it is no problem to reevaluate literals, we just return the
2100 literal node. */
2101 inner = skip_simple_arithmetic (t);
2102
2103 if (TREE_INVARIANT (inner)
2104 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2105 || TREE_CODE (inner) == SAVE_EXPR
2106 || TREE_CODE (inner) == ERROR_MARK)
2107 return t;
2108
2109 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2110 it means that the size or offset of some field of an object depends on
2111 the value within another field.
2112
2113 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2114 and some variable since it would then need to be both evaluated once and
2115 evaluated more than once. Front-ends must assure this case cannot
2116 happen by surrounding any such subexpressions in their own SAVE_EXPR
2117 and forcing evaluation at the proper time. */
2118 if (contains_placeholder_p (inner))
2119 return t;
2120
2121 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2122
2123 /* This expression might be placed ahead of a jump to ensure that the
2124 value was computed on both sides of the jump. So make sure it isn't
2125 eliminated as dead. */
2126 TREE_SIDE_EFFECTS (t) = 1;
2127 TREE_INVARIANT (t) = 1;
2128 return t;
2129 }
2130
2131 /* Look inside EXPR and into any simple arithmetic operations. Return
2132 the innermost non-arithmetic node. */
2133
2134 tree
2135 skip_simple_arithmetic (tree expr)
2136 {
2137 tree inner;
2138
2139 /* We don't care about whether this can be used as an lvalue in this
2140 context. */
2141 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2142 expr = TREE_OPERAND (expr, 0);
2143
2144 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2145 a constant, it will be more efficient to not make another SAVE_EXPR since
2146 it will allow better simplification and GCSE will be able to merge the
2147 computations if they actually occur. */
2148 inner = expr;
2149 while (1)
2150 {
2151 if (UNARY_CLASS_P (inner))
2152 inner = TREE_OPERAND (inner, 0);
2153 else if (BINARY_CLASS_P (inner))
2154 {
2155 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2156 inner = TREE_OPERAND (inner, 0);
2157 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2158 inner = TREE_OPERAND (inner, 1);
2159 else
2160 break;
2161 }
2162 else
2163 break;
2164 }
2165
2166 return inner;
2167 }
2168
2169 /* Return which tree structure is used by T. */
2170
2171 enum tree_node_structure_enum
2172 tree_node_structure (tree t)
2173 {
2174 enum tree_code code = TREE_CODE (t);
2175
2176 switch (TREE_CODE_CLASS (code))
2177 {
2178 case tcc_declaration:
2179 {
2180 switch (code)
2181 {
2182 case FIELD_DECL:
2183 return TS_FIELD_DECL;
2184 case PARM_DECL:
2185 return TS_PARM_DECL;
2186 case VAR_DECL:
2187 return TS_VAR_DECL;
2188 case LABEL_DECL:
2189 return TS_LABEL_DECL;
2190 case RESULT_DECL:
2191 return TS_RESULT_DECL;
2192 case CONST_DECL:
2193 return TS_CONST_DECL;
2194 case TYPE_DECL:
2195 return TS_TYPE_DECL;
2196 case FUNCTION_DECL:
2197 return TS_FUNCTION_DECL;
2198 case SYMBOL_MEMORY_TAG:
2199 case NAME_MEMORY_TAG:
2200 case STRUCT_FIELD_TAG:
2201 case MEMORY_PARTITION_TAG:
2202 return TS_MEMORY_TAG;
2203 default:
2204 return TS_DECL_NON_COMMON;
2205 }
2206 }
2207 case tcc_type:
2208 return TS_TYPE;
2209 case tcc_reference:
2210 case tcc_comparison:
2211 case tcc_unary:
2212 case tcc_binary:
2213 case tcc_expression:
2214 case tcc_statement:
2215 return TS_EXP;
2216 case tcc_gimple_stmt:
2217 return TS_GIMPLE_STATEMENT;
2218 default: /* tcc_constant and tcc_exceptional */
2219 break;
2220 }
2221 switch (code)
2222 {
2223 /* tcc_constant cases. */
2224 case INTEGER_CST: return TS_INT_CST;
2225 case REAL_CST: return TS_REAL_CST;
2226 case COMPLEX_CST: return TS_COMPLEX;
2227 case VECTOR_CST: return TS_VECTOR;
2228 case STRING_CST: return TS_STRING;
2229 /* tcc_exceptional cases. */
2230 /* FIXME tuples: eventually this should be TS_BASE. For now, nothing
2231 returns TS_BASE. */
2232 case ERROR_MARK: return TS_COMMON;
2233 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2234 case TREE_LIST: return TS_LIST;
2235 case TREE_VEC: return TS_VEC;
2236 case PHI_NODE: return TS_PHI_NODE;
2237 case SSA_NAME: return TS_SSA_NAME;
2238 case PLACEHOLDER_EXPR: return TS_COMMON;
2239 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2240 case BLOCK: return TS_BLOCK;
2241 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2242 case TREE_BINFO: return TS_BINFO;
2243 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2244 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2245
2246 default:
2247 gcc_unreachable ();
2248 }
2249 }
2250 \f
2251 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2252 or offset that depends on a field within a record. */
2253
2254 bool
2255 contains_placeholder_p (tree exp)
2256 {
2257 enum tree_code code;
2258
2259 if (!exp)
2260 return 0;
2261
2262 code = TREE_CODE (exp);
2263 if (code == PLACEHOLDER_EXPR)
2264 return 1;
2265
2266 switch (TREE_CODE_CLASS (code))
2267 {
2268 case tcc_reference:
2269 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2270 position computations since they will be converted into a
2271 WITH_RECORD_EXPR involving the reference, which will assume
2272 here will be valid. */
2273 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2274
2275 case tcc_exceptional:
2276 if (code == TREE_LIST)
2277 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2278 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2279 break;
2280
2281 case tcc_unary:
2282 case tcc_binary:
2283 case tcc_comparison:
2284 case tcc_expression:
2285 switch (code)
2286 {
2287 case COMPOUND_EXPR:
2288 /* Ignoring the first operand isn't quite right, but works best. */
2289 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2290
2291 case COND_EXPR:
2292 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2293 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2294 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2295
2296 case CALL_EXPR:
2297 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2298
2299 default:
2300 break;
2301 }
2302
2303 switch (TREE_CODE_LENGTH (code))
2304 {
2305 case 1:
2306 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2307 case 2:
2308 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2309 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2310 default:
2311 return 0;
2312 }
2313
2314 default:
2315 return 0;
2316 }
2317 return 0;
2318 }
2319
2320 /* Return true if any part of the computation of TYPE involves a
2321 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2322 (for QUAL_UNION_TYPE) and field positions. */
2323
2324 static bool
2325 type_contains_placeholder_1 (tree type)
2326 {
2327 /* If the size contains a placeholder or the parent type (component type in
2328 the case of arrays) type involves a placeholder, this type does. */
2329 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2330 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2331 || (TREE_TYPE (type) != 0
2332 && type_contains_placeholder_p (TREE_TYPE (type))))
2333 return true;
2334
2335 /* Now do type-specific checks. Note that the last part of the check above
2336 greatly limits what we have to do below. */
2337 switch (TREE_CODE (type))
2338 {
2339 case VOID_TYPE:
2340 case COMPLEX_TYPE:
2341 case ENUMERAL_TYPE:
2342 case BOOLEAN_TYPE:
2343 case POINTER_TYPE:
2344 case OFFSET_TYPE:
2345 case REFERENCE_TYPE:
2346 case METHOD_TYPE:
2347 case FUNCTION_TYPE:
2348 case VECTOR_TYPE:
2349 return false;
2350
2351 case INTEGER_TYPE:
2352 case REAL_TYPE:
2353 /* Here we just check the bounds. */
2354 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2355 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2356
2357 case ARRAY_TYPE:
2358 /* We're already checked the component type (TREE_TYPE), so just check
2359 the index type. */
2360 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2361
2362 case RECORD_TYPE:
2363 case UNION_TYPE:
2364 case QUAL_UNION_TYPE:
2365 {
2366 tree field;
2367
2368 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2369 if (TREE_CODE (field) == FIELD_DECL
2370 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2371 || (TREE_CODE (type) == QUAL_UNION_TYPE
2372 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2373 || type_contains_placeholder_p (TREE_TYPE (field))))
2374 return true;
2375
2376 return false;
2377 }
2378
2379 default:
2380 gcc_unreachable ();
2381 }
2382 }
2383
2384 bool
2385 type_contains_placeholder_p (tree type)
2386 {
2387 bool result;
2388
2389 /* If the contains_placeholder_bits field has been initialized,
2390 then we know the answer. */
2391 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2392 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2393
2394 /* Indicate that we've seen this type node, and the answer is false.
2395 This is what we want to return if we run into recursion via fields. */
2396 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2397
2398 /* Compute the real value. */
2399 result = type_contains_placeholder_1 (type);
2400
2401 /* Store the real value. */
2402 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2403
2404 return result;
2405 }
2406 \f
2407 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2408 return a tree with all occurrences of references to F in a
2409 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2410 contains only arithmetic expressions or a CALL_EXPR with a
2411 PLACEHOLDER_EXPR occurring only in its arglist. */
2412
2413 tree
2414 substitute_in_expr (tree exp, tree f, tree r)
2415 {
2416 enum tree_code code = TREE_CODE (exp);
2417 tree op0, op1, op2, op3;
2418 tree new;
2419 tree inner;
2420
2421 /* We handle TREE_LIST and COMPONENT_REF separately. */
2422 if (code == TREE_LIST)
2423 {
2424 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2425 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2426 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2427 return exp;
2428
2429 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2430 }
2431 else if (code == COMPONENT_REF)
2432 {
2433 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2434 and it is the right field, replace it with R. */
2435 for (inner = TREE_OPERAND (exp, 0);
2436 REFERENCE_CLASS_P (inner);
2437 inner = TREE_OPERAND (inner, 0))
2438 ;
2439 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2440 && TREE_OPERAND (exp, 1) == f)
2441 return r;
2442
2443 /* If this expression hasn't been completed let, leave it alone. */
2444 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2445 return exp;
2446
2447 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2448 if (op0 == TREE_OPERAND (exp, 0))
2449 return exp;
2450
2451 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2452 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2453 }
2454 else
2455 switch (TREE_CODE_CLASS (code))
2456 {
2457 case tcc_constant:
2458 case tcc_declaration:
2459 return exp;
2460
2461 case tcc_exceptional:
2462 case tcc_unary:
2463 case tcc_binary:
2464 case tcc_comparison:
2465 case tcc_expression:
2466 case tcc_reference:
2467 switch (TREE_CODE_LENGTH (code))
2468 {
2469 case 0:
2470 return exp;
2471
2472 case 1:
2473 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2474 if (op0 == TREE_OPERAND (exp, 0))
2475 return exp;
2476
2477 new = fold_build1 (code, TREE_TYPE (exp), op0);
2478 break;
2479
2480 case 2:
2481 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2482 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2483
2484 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2485 return exp;
2486
2487 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2488 break;
2489
2490 case 3:
2491 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2492 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2493 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2494
2495 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2496 && op2 == TREE_OPERAND (exp, 2))
2497 return exp;
2498
2499 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2500 break;
2501
2502 case 4:
2503 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2504 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2505 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2506 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2507
2508 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2509 && op2 == TREE_OPERAND (exp, 2)
2510 && op3 == TREE_OPERAND (exp, 3))
2511 return exp;
2512
2513 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2514 break;
2515
2516 default:
2517 gcc_unreachable ();
2518 }
2519 break;
2520
2521 default:
2522 gcc_unreachable ();
2523 }
2524
2525 TREE_READONLY (new) = TREE_READONLY (exp);
2526 return new;
2527 }
2528
2529 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2530 for it within OBJ, a tree that is an object or a chain of references. */
2531
2532 tree
2533 substitute_placeholder_in_expr (tree exp, tree obj)
2534 {
2535 enum tree_code code = TREE_CODE (exp);
2536 tree op0, op1, op2, op3;
2537
2538 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2539 in the chain of OBJ. */
2540 if (code == PLACEHOLDER_EXPR)
2541 {
2542 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2543 tree elt;
2544
2545 for (elt = obj; elt != 0;
2546 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2547 || TREE_CODE (elt) == COND_EXPR)
2548 ? TREE_OPERAND (elt, 1)
2549 : (REFERENCE_CLASS_P (elt)
2550 || UNARY_CLASS_P (elt)
2551 || BINARY_CLASS_P (elt)
2552 || EXPRESSION_CLASS_P (elt))
2553 ? TREE_OPERAND (elt, 0) : 0))
2554 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2555 return elt;
2556
2557 for (elt = obj; elt != 0;
2558 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2559 || TREE_CODE (elt) == COND_EXPR)
2560 ? TREE_OPERAND (elt, 1)
2561 : (REFERENCE_CLASS_P (elt)
2562 || UNARY_CLASS_P (elt)
2563 || BINARY_CLASS_P (elt)
2564 || EXPRESSION_CLASS_P (elt))
2565 ? TREE_OPERAND (elt, 0) : 0))
2566 if (POINTER_TYPE_P (TREE_TYPE (elt))
2567 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2568 == need_type))
2569 return fold_build1 (INDIRECT_REF, need_type, elt);
2570
2571 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2572 survives until RTL generation, there will be an error. */
2573 return exp;
2574 }
2575
2576 /* TREE_LIST is special because we need to look at TREE_VALUE
2577 and TREE_CHAIN, not TREE_OPERANDS. */
2578 else if (code == TREE_LIST)
2579 {
2580 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2581 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2582 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2583 return exp;
2584
2585 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2586 }
2587 else
2588 switch (TREE_CODE_CLASS (code))
2589 {
2590 case tcc_constant:
2591 case tcc_declaration:
2592 return exp;
2593
2594 case tcc_exceptional:
2595 case tcc_unary:
2596 case tcc_binary:
2597 case tcc_comparison:
2598 case tcc_expression:
2599 case tcc_reference:
2600 case tcc_statement:
2601 switch (TREE_CODE_LENGTH (code))
2602 {
2603 case 0:
2604 return exp;
2605
2606 case 1:
2607 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2608 if (op0 == TREE_OPERAND (exp, 0))
2609 return exp;
2610 else
2611 return fold_build1 (code, TREE_TYPE (exp), op0);
2612
2613 case 2:
2614 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2615 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2616
2617 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2618 return exp;
2619 else
2620 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2621
2622 case 3:
2623 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2624 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2625 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2626
2627 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2628 && op2 == TREE_OPERAND (exp, 2))
2629 return exp;
2630 else
2631 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2632
2633 case 4:
2634 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2635 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2636 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2637 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2638
2639 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2640 && op2 == TREE_OPERAND (exp, 2)
2641 && op3 == TREE_OPERAND (exp, 3))
2642 return exp;
2643 else
2644 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2645
2646 default:
2647 gcc_unreachable ();
2648 }
2649 break;
2650
2651 default:
2652 gcc_unreachable ();
2653 }
2654 }
2655 \f
2656 /* Stabilize a reference so that we can use it any number of times
2657 without causing its operands to be evaluated more than once.
2658 Returns the stabilized reference. This works by means of save_expr,
2659 so see the caveats in the comments about save_expr.
2660
2661 Also allows conversion expressions whose operands are references.
2662 Any other kind of expression is returned unchanged. */
2663
2664 tree
2665 stabilize_reference (tree ref)
2666 {
2667 tree result;
2668 enum tree_code code = TREE_CODE (ref);
2669
2670 switch (code)
2671 {
2672 case VAR_DECL:
2673 case PARM_DECL:
2674 case RESULT_DECL:
2675 /* No action is needed in this case. */
2676 return ref;
2677
2678 case NOP_EXPR:
2679 case CONVERT_EXPR:
2680 case FLOAT_EXPR:
2681 case FIX_TRUNC_EXPR:
2682 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2683 break;
2684
2685 case INDIRECT_REF:
2686 result = build_nt (INDIRECT_REF,
2687 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2688 break;
2689
2690 case COMPONENT_REF:
2691 result = build_nt (COMPONENT_REF,
2692 stabilize_reference (TREE_OPERAND (ref, 0)),
2693 TREE_OPERAND (ref, 1), NULL_TREE);
2694 break;
2695
2696 case BIT_FIELD_REF:
2697 result = build_nt (BIT_FIELD_REF,
2698 stabilize_reference (TREE_OPERAND (ref, 0)),
2699 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2700 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2701 break;
2702
2703 case ARRAY_REF:
2704 result = build_nt (ARRAY_REF,
2705 stabilize_reference (TREE_OPERAND (ref, 0)),
2706 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2707 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2708 break;
2709
2710 case ARRAY_RANGE_REF:
2711 result = build_nt (ARRAY_RANGE_REF,
2712 stabilize_reference (TREE_OPERAND (ref, 0)),
2713 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2714 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2715 break;
2716
2717 case COMPOUND_EXPR:
2718 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2719 it wouldn't be ignored. This matters when dealing with
2720 volatiles. */
2721 return stabilize_reference_1 (ref);
2722
2723 /* If arg isn't a kind of lvalue we recognize, make no change.
2724 Caller should recognize the error for an invalid lvalue. */
2725 default:
2726 return ref;
2727
2728 case ERROR_MARK:
2729 return error_mark_node;
2730 }
2731
2732 TREE_TYPE (result) = TREE_TYPE (ref);
2733 TREE_READONLY (result) = TREE_READONLY (ref);
2734 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2735 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2736
2737 return result;
2738 }
2739
2740 /* Subroutine of stabilize_reference; this is called for subtrees of
2741 references. Any expression with side-effects must be put in a SAVE_EXPR
2742 to ensure that it is only evaluated once.
2743
2744 We don't put SAVE_EXPR nodes around everything, because assigning very
2745 simple expressions to temporaries causes us to miss good opportunities
2746 for optimizations. Among other things, the opportunity to fold in the
2747 addition of a constant into an addressing mode often gets lost, e.g.
2748 "y[i+1] += x;". In general, we take the approach that we should not make
2749 an assignment unless we are forced into it - i.e., that any non-side effect
2750 operator should be allowed, and that cse should take care of coalescing
2751 multiple utterances of the same expression should that prove fruitful. */
2752
2753 tree
2754 stabilize_reference_1 (tree e)
2755 {
2756 tree result;
2757 enum tree_code code = TREE_CODE (e);
2758
2759 /* We cannot ignore const expressions because it might be a reference
2760 to a const array but whose index contains side-effects. But we can
2761 ignore things that are actual constant or that already have been
2762 handled by this function. */
2763
2764 if (TREE_INVARIANT (e))
2765 return e;
2766
2767 switch (TREE_CODE_CLASS (code))
2768 {
2769 case tcc_exceptional:
2770 case tcc_type:
2771 case tcc_declaration:
2772 case tcc_comparison:
2773 case tcc_statement:
2774 case tcc_expression:
2775 case tcc_reference:
2776 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2777 so that it will only be evaluated once. */
2778 /* The reference (r) and comparison (<) classes could be handled as
2779 below, but it is generally faster to only evaluate them once. */
2780 if (TREE_SIDE_EFFECTS (e))
2781 return save_expr (e);
2782 return e;
2783
2784 case tcc_constant:
2785 /* Constants need no processing. In fact, we should never reach
2786 here. */
2787 return e;
2788
2789 case tcc_binary:
2790 /* Division is slow and tends to be compiled with jumps,
2791 especially the division by powers of 2 that is often
2792 found inside of an array reference. So do it just once. */
2793 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2794 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2795 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2796 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2797 return save_expr (e);
2798 /* Recursively stabilize each operand. */
2799 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2800 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2801 break;
2802
2803 case tcc_unary:
2804 /* Recursively stabilize each operand. */
2805 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2806 break;
2807
2808 default:
2809 gcc_unreachable ();
2810 }
2811
2812 TREE_TYPE (result) = TREE_TYPE (e);
2813 TREE_READONLY (result) = TREE_READONLY (e);
2814 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2815 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2816 TREE_INVARIANT (result) = 1;
2817
2818 return result;
2819 }
2820 \f
2821 /* Low-level constructors for expressions. */
2822
2823 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2824 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2825
2826 void
2827 recompute_tree_invariant_for_addr_expr (tree t)
2828 {
2829 tree node;
2830 bool tc = true, ti = true, se = false;
2831
2832 /* We started out assuming this address is both invariant and constant, but
2833 does not have side effects. Now go down any handled components and see if
2834 any of them involve offsets that are either non-constant or non-invariant.
2835 Also check for side-effects.
2836
2837 ??? Note that this code makes no attempt to deal with the case where
2838 taking the address of something causes a copy due to misalignment. */
2839
2840 #define UPDATE_TITCSE(NODE) \
2841 do { tree _node = (NODE); \
2842 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2843 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2844 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2845
2846 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2847 node = TREE_OPERAND (node, 0))
2848 {
2849 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2850 array reference (probably made temporarily by the G++ front end),
2851 so ignore all the operands. */
2852 if ((TREE_CODE (node) == ARRAY_REF
2853 || TREE_CODE (node) == ARRAY_RANGE_REF)
2854 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2855 {
2856 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2857 if (TREE_OPERAND (node, 2))
2858 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2859 if (TREE_OPERAND (node, 3))
2860 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2861 }
2862 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2863 FIELD_DECL, apparently. The G++ front end can put something else
2864 there, at least temporarily. */
2865 else if (TREE_CODE (node) == COMPONENT_REF
2866 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2867 {
2868 if (TREE_OPERAND (node, 2))
2869 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2870 }
2871 else if (TREE_CODE (node) == BIT_FIELD_REF)
2872 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2873 }
2874
2875 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2876
2877 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2878 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2879 invariant and constant if the decl is static. It's also invariant if it's
2880 a decl in the current function. Taking the address of a volatile variable
2881 is not volatile. If it's a constant, the address is both invariant and
2882 constant. Otherwise it's neither. */
2883 if (TREE_CODE (node) == INDIRECT_REF)
2884 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2885 else if (DECL_P (node))
2886 {
2887 if (staticp (node))
2888 ;
2889 else if (decl_function_context (node) == current_function_decl
2890 /* Addresses of thread-local variables are invariant. */
2891 || (TREE_CODE (node) == VAR_DECL
2892 && DECL_THREAD_LOCAL_P (node)))
2893 tc = false;
2894 else
2895 ti = tc = false;
2896 }
2897 else if (CONSTANT_CLASS_P (node))
2898 ;
2899 else
2900 {
2901 ti = tc = false;
2902 se |= TREE_SIDE_EFFECTS (node);
2903 }
2904
2905 TREE_CONSTANT (t) = tc;
2906 TREE_INVARIANT (t) = ti;
2907 TREE_SIDE_EFFECTS (t) = se;
2908 #undef UPDATE_TITCSE
2909 }
2910
2911 /* Build an expression of code CODE, data type TYPE, and operands as
2912 specified. Expressions and reference nodes can be created this way.
2913 Constants, decls, types and misc nodes cannot be.
2914
2915 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2916 enough for all extant tree codes. */
2917
2918 tree
2919 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2920 {
2921 tree t;
2922
2923 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2924
2925 t = make_node_stat (code PASS_MEM_STAT);
2926 TREE_TYPE (t) = tt;
2927
2928 return t;
2929 }
2930
2931 tree
2932 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2933 {
2934 int length = sizeof (struct tree_exp);
2935 #ifdef GATHER_STATISTICS
2936 tree_node_kind kind;
2937 #endif
2938 tree t;
2939
2940 #ifdef GATHER_STATISTICS
2941 switch (TREE_CODE_CLASS (code))
2942 {
2943 case tcc_statement: /* an expression with side effects */
2944 kind = s_kind;
2945 break;
2946 case tcc_reference: /* a reference */
2947 kind = r_kind;
2948 break;
2949 default:
2950 kind = e_kind;
2951 break;
2952 }
2953
2954 tree_node_counts[(int) kind]++;
2955 tree_node_sizes[(int) kind] += length;
2956 #endif
2957
2958 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2959
2960 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2961
2962 memset (t, 0, sizeof (struct tree_common));
2963
2964 TREE_SET_CODE (t, code);
2965
2966 TREE_TYPE (t) = type;
2967 #ifdef USE_MAPPED_LOCATION
2968 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2969 #else
2970 SET_EXPR_LOCUS (t, NULL);
2971 #endif
2972 TREE_COMPLEXITY (t) = 0;
2973 TREE_OPERAND (t, 0) = node;
2974 TREE_BLOCK (t) = NULL_TREE;
2975 if (node && !TYPE_P (node))
2976 {
2977 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2978 TREE_READONLY (t) = TREE_READONLY (node);
2979 }
2980
2981 if (TREE_CODE_CLASS (code) == tcc_statement)
2982 TREE_SIDE_EFFECTS (t) = 1;
2983 else switch (code)
2984 {
2985 case VA_ARG_EXPR:
2986 /* All of these have side-effects, no matter what their
2987 operands are. */
2988 TREE_SIDE_EFFECTS (t) = 1;
2989 TREE_READONLY (t) = 0;
2990 break;
2991
2992 case MISALIGNED_INDIRECT_REF:
2993 case ALIGN_INDIRECT_REF:
2994 case INDIRECT_REF:
2995 /* Whether a dereference is readonly has nothing to do with whether
2996 its operand is readonly. */
2997 TREE_READONLY (t) = 0;
2998 break;
2999
3000 case ADDR_EXPR:
3001 if (node)
3002 recompute_tree_invariant_for_addr_expr (t);
3003 break;
3004
3005 default:
3006 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3007 && node && !TYPE_P (node)
3008 && TREE_CONSTANT (node))
3009 TREE_CONSTANT (t) = 1;
3010 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3011 && node && TREE_INVARIANT (node))
3012 TREE_INVARIANT (t) = 1;
3013 if (TREE_CODE_CLASS (code) == tcc_reference
3014 && node && TREE_THIS_VOLATILE (node))
3015 TREE_THIS_VOLATILE (t) = 1;
3016 break;
3017 }
3018
3019 return t;
3020 }
3021
3022 #define PROCESS_ARG(N) \
3023 do { \
3024 TREE_OPERAND (t, N) = arg##N; \
3025 if (arg##N &&!TYPE_P (arg##N)) \
3026 { \
3027 if (TREE_SIDE_EFFECTS (arg##N)) \
3028 side_effects = 1; \
3029 if (!TREE_READONLY (arg##N)) \
3030 read_only = 0; \
3031 if (!TREE_CONSTANT (arg##N)) \
3032 constant = 0; \
3033 if (!TREE_INVARIANT (arg##N)) \
3034 invariant = 0; \
3035 } \
3036 } while (0)
3037
3038 tree
3039 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3040 {
3041 bool constant, read_only, side_effects, invariant;
3042 tree t;
3043
3044 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3045
3046 if (code == MODIFY_EXPR && cfun && cfun->gimplified)
3047 {
3048 /* We should be talking GIMPLE_MODIFY_STMT by now. */
3049 gcc_unreachable ();
3050 }
3051
3052 /* FIXME tuples: For now let's be lazy; later we must rewrite all
3053 build2 calls to build2_gimple calls. */
3054 if (TREE_CODE_CLASS (code) == tcc_gimple_stmt)
3055 return build2_gimple (code, arg0, arg1);
3056
3057 t = make_node_stat (code PASS_MEM_STAT);
3058 TREE_TYPE (t) = tt;
3059
3060 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3061 result based on those same flags for the arguments. But if the
3062 arguments aren't really even `tree' expressions, we shouldn't be trying
3063 to do this. */
3064
3065 /* Expressions without side effects may be constant if their
3066 arguments are as well. */
3067 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3068 || TREE_CODE_CLASS (code) == tcc_binary);
3069 read_only = 1;
3070 side_effects = TREE_SIDE_EFFECTS (t);
3071 invariant = constant;
3072
3073 PROCESS_ARG(0);
3074 PROCESS_ARG(1);
3075
3076 TREE_READONLY (t) = read_only;
3077 TREE_CONSTANT (t) = constant;
3078 TREE_INVARIANT (t) = invariant;
3079 TREE_SIDE_EFFECTS (t) = side_effects;
3080 TREE_THIS_VOLATILE (t)
3081 = (TREE_CODE_CLASS (code) == tcc_reference
3082 && arg0 && TREE_THIS_VOLATILE (arg0));
3083
3084 return t;
3085 }
3086
3087
3088 /* Similar as build2_stat, but for GIMPLE tuples. For convenience's sake,
3089 arguments and return type are trees. */
3090
3091 tree
3092 build2_gimple_stat (enum tree_code code, tree arg0, tree arg1 MEM_STAT_DECL)
3093 {
3094 bool side_effects;
3095 tree t;
3096
3097 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3098
3099 t = make_node_stat (code PASS_MEM_STAT);
3100
3101 side_effects = TREE_SIDE_EFFECTS (t);
3102
3103 /* ?? We don't care about setting flags for tuples... */
3104 GIMPLE_STMT_OPERAND (t, 0) = arg0;
3105 GIMPLE_STMT_OPERAND (t, 1) = arg1;
3106
3107 /* ...except perhaps side_effects and volatility. ?? */
3108 TREE_SIDE_EFFECTS (t) = side_effects;
3109 TREE_THIS_VOLATILE (t) = (TREE_CODE_CLASS (code) == tcc_reference
3110 && arg0 && TREE_THIS_VOLATILE (arg0));
3111
3112
3113 return t;
3114 }
3115
3116 tree
3117 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3118 tree arg2 MEM_STAT_DECL)
3119 {
3120 bool constant, read_only, side_effects, invariant;
3121 tree t;
3122
3123 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3124
3125 t = make_node_stat (code PASS_MEM_STAT);
3126 TREE_TYPE (t) = tt;
3127
3128 side_effects = TREE_SIDE_EFFECTS (t);
3129
3130 PROCESS_ARG(0);
3131 PROCESS_ARG(1);
3132 PROCESS_ARG(2);
3133
3134 if (code == CALL_EXPR && !side_effects)
3135 {
3136 tree node;
3137 int i;
3138
3139 /* Calls have side-effects, except those to const or
3140 pure functions. */
3141 i = call_expr_flags (t);
3142 if (!(i & (ECF_CONST | ECF_PURE)))
3143 side_effects = 1;
3144
3145 /* And even those have side-effects if their arguments do. */
3146 else for (node = arg1; node; node = TREE_CHAIN (node))
3147 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
3148 {
3149 side_effects = 1;
3150 break;
3151 }
3152 }
3153
3154 TREE_SIDE_EFFECTS (t) = side_effects;
3155 TREE_THIS_VOLATILE (t)
3156 = (TREE_CODE_CLASS (code) == tcc_reference
3157 && arg0 && TREE_THIS_VOLATILE (arg0));
3158
3159 return t;
3160 }
3161
3162 tree
3163 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3164 tree arg2, tree arg3 MEM_STAT_DECL)
3165 {
3166 bool constant, read_only, side_effects, invariant;
3167 tree t;
3168
3169 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3170
3171 t = make_node_stat (code PASS_MEM_STAT);
3172 TREE_TYPE (t) = tt;
3173
3174 side_effects = TREE_SIDE_EFFECTS (t);
3175
3176 PROCESS_ARG(0);
3177 PROCESS_ARG(1);
3178 PROCESS_ARG(2);
3179 PROCESS_ARG(3);
3180
3181 TREE_SIDE_EFFECTS (t) = side_effects;
3182 TREE_THIS_VOLATILE (t)
3183 = (TREE_CODE_CLASS (code) == tcc_reference
3184 && arg0 && TREE_THIS_VOLATILE (arg0));
3185
3186 return t;
3187 }
3188
3189 tree
3190 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3191 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3192 {
3193 bool constant, read_only, side_effects, invariant;
3194 tree t;
3195
3196 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3197
3198 t = make_node_stat (code PASS_MEM_STAT);
3199 TREE_TYPE (t) = tt;
3200
3201 side_effects = TREE_SIDE_EFFECTS (t);
3202
3203 PROCESS_ARG(0);
3204 PROCESS_ARG(1);
3205 PROCESS_ARG(2);
3206 PROCESS_ARG(3);
3207 PROCESS_ARG(4);
3208
3209 TREE_SIDE_EFFECTS (t) = side_effects;
3210 TREE_THIS_VOLATILE (t)
3211 = (TREE_CODE_CLASS (code) == tcc_reference
3212 && arg0 && TREE_THIS_VOLATILE (arg0));
3213
3214 return t;
3215 }
3216
3217 tree
3218 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3219 tree arg2, tree arg3, tree arg4, tree arg5,
3220 tree arg6 MEM_STAT_DECL)
3221 {
3222 bool constant, read_only, side_effects, invariant;
3223 tree t;
3224
3225 gcc_assert (code == TARGET_MEM_REF);
3226
3227 t = make_node_stat (code PASS_MEM_STAT);
3228 TREE_TYPE (t) = tt;
3229
3230 side_effects = TREE_SIDE_EFFECTS (t);
3231
3232 PROCESS_ARG(0);
3233 PROCESS_ARG(1);
3234 PROCESS_ARG(2);
3235 PROCESS_ARG(3);
3236 PROCESS_ARG(4);
3237 PROCESS_ARG(5);
3238 PROCESS_ARG(6);
3239
3240 TREE_SIDE_EFFECTS (t) = side_effects;
3241 TREE_THIS_VOLATILE (t) = 0;
3242
3243 return t;
3244 }
3245
3246 /* Similar except don't specify the TREE_TYPE
3247 and leave the TREE_SIDE_EFFECTS as 0.
3248 It is permissible for arguments to be null,
3249 or even garbage if their values do not matter. */
3250
3251 tree
3252 build_nt (enum tree_code code, ...)
3253 {
3254 tree t;
3255 int length;
3256 int i;
3257 va_list p;
3258
3259 va_start (p, code);
3260
3261 t = make_node (code);
3262 length = TREE_CODE_LENGTH (code);
3263
3264 for (i = 0; i < length; i++)
3265 TREE_OPERAND (t, i) = va_arg (p, tree);
3266
3267 va_end (p);
3268 return t;
3269 }
3270 \f
3271 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3272 We do NOT enter this node in any sort of symbol table.
3273
3274 layout_decl is used to set up the decl's storage layout.
3275 Other slots are initialized to 0 or null pointers. */
3276
3277 tree
3278 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3279 {
3280 tree t;
3281
3282 t = make_node_stat (code PASS_MEM_STAT);
3283
3284 /* if (type == error_mark_node)
3285 type = integer_type_node; */
3286 /* That is not done, deliberately, so that having error_mark_node
3287 as the type can suppress useless errors in the use of this variable. */
3288
3289 DECL_NAME (t) = name;
3290 TREE_TYPE (t) = type;
3291
3292 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3293 layout_decl (t, 0);
3294 else if (code == FUNCTION_DECL)
3295 DECL_MODE (t) = FUNCTION_MODE;
3296
3297 return t;
3298 }
3299
3300 /* Builds and returns function declaration with NAME and TYPE. */
3301
3302 tree
3303 build_fn_decl (const char *name, tree type)
3304 {
3305 tree id = get_identifier (name);
3306 tree decl = build_decl (FUNCTION_DECL, id, type);
3307
3308 DECL_EXTERNAL (decl) = 1;
3309 TREE_PUBLIC (decl) = 1;
3310 DECL_ARTIFICIAL (decl) = 1;
3311 TREE_NOTHROW (decl) = 1;
3312
3313 return decl;
3314 }
3315
3316 \f
3317 /* BLOCK nodes are used to represent the structure of binding contours
3318 and declarations, once those contours have been exited and their contents
3319 compiled. This information is used for outputting debugging info. */
3320
3321 tree
3322 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3323 {
3324 tree block = make_node (BLOCK);
3325
3326 BLOCK_VARS (block) = vars;
3327 BLOCK_SUBBLOCKS (block) = subblocks;
3328 BLOCK_SUPERCONTEXT (block) = supercontext;
3329 BLOCK_CHAIN (block) = chain;
3330 return block;
3331 }
3332
3333 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3334 /* ??? gengtype doesn't handle conditionals */
3335 static GTY(()) source_locus last_annotated_node;
3336 #endif
3337
3338 #ifdef USE_MAPPED_LOCATION
3339
3340 expanded_location
3341 expand_location (source_location loc)
3342 {
3343 expanded_location xloc;
3344 if (loc == 0)
3345 {
3346 xloc.file = NULL;
3347 xloc.line = 0;
3348 xloc.column = 0;
3349 }
3350 else
3351 {
3352 const struct line_map *map = linemap_lookup (&line_table, loc);
3353 xloc.file = map->to_file;
3354 xloc.line = SOURCE_LINE (map, loc);
3355 xloc.column = SOURCE_COLUMN (map, loc);
3356 };
3357 return xloc;
3358 }
3359
3360 #else
3361
3362 /* Record the exact location where an expression or an identifier were
3363 encountered. */
3364
3365 void
3366 annotate_with_file_line (tree node, const char *file, int line)
3367 {
3368 /* Roughly one percent of the calls to this function are to annotate
3369 a node with the same information already attached to that node!
3370 Just return instead of wasting memory. */
3371 if (EXPR_LOCUS (node)
3372 && EXPR_LINENO (node) == line
3373 && (EXPR_FILENAME (node) == file
3374 || !strcmp (EXPR_FILENAME (node), file)))
3375 {
3376 last_annotated_node = EXPR_LOCUS (node);
3377 return;
3378 }
3379
3380 /* In heavily macroized code (such as GCC itself) this single
3381 entry cache can reduce the number of allocations by more
3382 than half. */
3383 if (last_annotated_node
3384 && last_annotated_node->line == line
3385 && (last_annotated_node->file == file
3386 || !strcmp (last_annotated_node->file, file)))
3387 {
3388 SET_EXPR_LOCUS (node, last_annotated_node);
3389 return;
3390 }
3391
3392 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3393 EXPR_LINENO (node) = line;
3394 EXPR_FILENAME (node) = file;
3395 last_annotated_node = EXPR_LOCUS (node);
3396 }
3397
3398 void
3399 annotate_with_locus (tree node, location_t locus)
3400 {
3401 annotate_with_file_line (node, locus.file, locus.line);
3402 }
3403 #endif
3404 \f
3405 /* Source location accessor functions. */
3406
3407
3408 /* The source location of this expression. Non-tree_exp nodes such as
3409 decls and constants can be shared among multiple locations, so
3410 return nothing. */
3411 location_t
3412 expr_location (tree node)
3413 {
3414 #ifdef USE_MAPPED_LOCATION
3415 if (GIMPLE_STMT_P (node))
3416 return GIMPLE_STMT_LOCUS (node);
3417 return EXPR_P (node) ? node->exp.locus : UNKNOWN_LOCATION;
3418 #else
3419 if (GIMPLE_STMT_P (node))
3420 return EXPR_HAS_LOCATION (node)
3421 ? *GIMPLE_STMT_LOCUS (node) : UNKNOWN_LOCATION;
3422 return EXPR_HAS_LOCATION (node) ? *node->exp.locus : UNKNOWN_LOCATION;
3423 #endif
3424 }
3425
3426 void
3427 set_expr_location (tree node, location_t locus)
3428 {
3429 #ifdef USE_MAPPED_LOCATION
3430 if (GIMPLE_STMT_P (node))
3431 GIMPLE_STMT_LOCUS (node) = locus;
3432 else
3433 EXPR_CHECK (node)->exp.locus = locus;
3434 #else
3435 annotate_with_locus (node, locus);
3436 #endif
3437 }
3438
3439 bool
3440 expr_has_location (tree node)
3441 {
3442 #ifdef USE_MAPPED_LOCATION
3443 return expr_location (node) != UNKNOWN_LOCATION;
3444 #else
3445 return expr_locus (node) != NULL;
3446 #endif
3447 }
3448
3449 #ifdef USE_MAPPED_LOCATION
3450 source_location *
3451 #else
3452 source_locus
3453 #endif
3454 expr_locus (tree node)
3455 {
3456 #ifdef USE_MAPPED_LOCATION
3457 if (GIMPLE_STMT_P (node))
3458 return &GIMPLE_STMT_LOCUS (node);
3459 return EXPR_P (node) ? &node->exp.locus : (location_t *) NULL;
3460 #else
3461 if (GIMPLE_STMT_P (node))
3462 return GIMPLE_STMT_LOCUS (node);
3463 /* ?? The cast below was originally "(location_t *)" in the macro,
3464 but that makes no sense. ?? */
3465 return EXPR_P (node) ? node->exp.locus : (source_locus) NULL;
3466 #endif
3467 }
3468
3469 void
3470 set_expr_locus (tree node,
3471 #ifdef USE_MAPPED_LOCATION
3472 source_location *loc
3473 #else
3474 source_locus loc
3475 #endif
3476 )
3477 {
3478 #ifdef USE_MAPPED_LOCATION
3479 if (loc == NULL)
3480 {
3481 if (GIMPLE_STMT_P (node))
3482 GIMPLE_STMT_LOCUS (node) = UNKNOWN_LOCATION;
3483 else
3484 EXPR_CHECK (node)->exp.locus = UNKNOWN_LOCATION;
3485 }
3486 else
3487 {
3488 if (GIMPLE_STMT_P (node))
3489 GIMPLE_STMT_LOCUS (node) = *loc;
3490 else
3491 EXPR_CHECK (node)->exp.locus = *loc;
3492 }
3493 #else
3494 if (GIMPLE_STMT_P (node))
3495 GIMPLE_STMT_LOCUS (node) = loc;
3496 else
3497 EXPR_CHECK (node)->exp.locus = loc;
3498 #endif
3499 }
3500
3501 const char **
3502 expr_filename (tree node)
3503 {
3504 #ifdef USE_MAPPED_LOCATION
3505 if (GIMPLE_STMT_P (node))
3506 return &LOCATION_FILE (GIMPLE_STMT_LOCUS (node));
3507 return &LOCATION_FILE (EXPR_CHECK (node)->exp.locus);
3508 #else
3509 if (GIMPLE_STMT_P (node))
3510 return &GIMPLE_STMT_LOCUS (node)->file;
3511 return &(EXPR_CHECK (node)->exp.locus->file);
3512 #endif
3513 }
3514
3515 int *
3516 expr_lineno (tree node)
3517 {
3518 #ifdef USE_MAPPED_LOCATION
3519 if (GIMPLE_STMT_P (node))
3520 return &LOCATION_LINE (GIMPLE_STMT_LOCUS (node));
3521 return &LOCATION_LINE (EXPR_CHECK (node)->exp.locus);
3522 #else
3523 if (GIMPLE_STMT_P (node))
3524 return &GIMPLE_STMT_LOCUS (node)->line;
3525 return &EXPR_CHECK (node)->exp.locus->line;
3526 #endif
3527 }
3528 \f
3529 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3530 is ATTRIBUTE. */
3531
3532 tree
3533 build_decl_attribute_variant (tree ddecl, tree attribute)
3534 {
3535 DECL_ATTRIBUTES (ddecl) = attribute;
3536 return ddecl;
3537 }
3538
3539 /* Borrowed from hashtab.c iterative_hash implementation. */
3540 #define mix(a,b,c) \
3541 { \
3542 a -= b; a -= c; a ^= (c>>13); \
3543 b -= c; b -= a; b ^= (a<< 8); \
3544 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3545 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3546 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3547 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3548 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3549 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3550 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3551 }
3552
3553
3554 /* Produce good hash value combining VAL and VAL2. */
3555 static inline hashval_t
3556 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3557 {
3558 /* the golden ratio; an arbitrary value. */
3559 hashval_t a = 0x9e3779b9;
3560
3561 mix (a, val, val2);
3562 return val2;
3563 }
3564
3565 /* Produce good hash value combining PTR and VAL2. */
3566 static inline hashval_t
3567 iterative_hash_pointer (void *ptr, hashval_t val2)
3568 {
3569 if (sizeof (ptr) == sizeof (hashval_t))
3570 return iterative_hash_hashval_t ((size_t) ptr, val2);
3571 else
3572 {
3573 hashval_t a = (hashval_t) (size_t) ptr;
3574 /* Avoid warnings about shifting of more than the width of the type on
3575 hosts that won't execute this path. */
3576 int zero = 0;
3577 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3578 mix (a, b, val2);
3579 return val2;
3580 }
3581 }
3582
3583 /* Produce good hash value combining VAL and VAL2. */
3584 static inline hashval_t
3585 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3586 {
3587 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3588 return iterative_hash_hashval_t (val, val2);
3589 else
3590 {
3591 hashval_t a = (hashval_t) val;
3592 /* Avoid warnings about shifting of more than the width of the type on
3593 hosts that won't execute this path. */
3594 int zero = 0;
3595 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3596 mix (a, b, val2);
3597 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3598 {
3599 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3600 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3601 mix (a, b, val2);
3602 }
3603 return val2;
3604 }
3605 }
3606
3607 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3608 is ATTRIBUTE and its qualifiers are QUALS.
3609
3610 Record such modified types already made so we don't make duplicates. */
3611
3612 static tree
3613 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3614 {
3615 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3616 {
3617 hashval_t hashcode = 0;
3618 tree ntype;
3619 enum tree_code code = TREE_CODE (ttype);
3620
3621 ntype = copy_node (ttype);
3622
3623 TYPE_POINTER_TO (ntype) = 0;
3624 TYPE_REFERENCE_TO (ntype) = 0;
3625 TYPE_ATTRIBUTES (ntype) = attribute;
3626
3627 if (TYPE_STRUCTURAL_EQUALITY_P (ttype))
3628 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3629 else
3630 TYPE_CANONICAL (ntype)
3631 = build_qualified_type (TYPE_CANONICAL (ttype), quals);
3632
3633 /* Create a new main variant of TYPE. */
3634 TYPE_MAIN_VARIANT (ntype) = ntype;
3635 TYPE_NEXT_VARIANT (ntype) = 0;
3636 set_type_quals (ntype, TYPE_UNQUALIFIED);
3637
3638 hashcode = iterative_hash_object (code, hashcode);
3639 if (TREE_TYPE (ntype))
3640 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3641 hashcode);
3642 hashcode = attribute_hash_list (attribute, hashcode);
3643
3644 switch (TREE_CODE (ntype))
3645 {
3646 case FUNCTION_TYPE:
3647 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3648 break;
3649 case ARRAY_TYPE:
3650 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3651 hashcode);
3652 break;
3653 case INTEGER_TYPE:
3654 hashcode = iterative_hash_object
3655 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3656 hashcode = iterative_hash_object
3657 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3658 break;
3659 case REAL_TYPE:
3660 {
3661 unsigned int precision = TYPE_PRECISION (ntype);
3662 hashcode = iterative_hash_object (precision, hashcode);
3663 }
3664 break;
3665 default:
3666 break;
3667 }
3668
3669 ntype = type_hash_canon (hashcode, ntype);
3670
3671 /* If the target-dependent attributes make NTYPE different from
3672 its canonical type, we will need to use structural equality
3673 checks for this qualified type. */
3674 if (!targetm.comp_type_attributes (ntype, ttype))
3675 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3676
3677 ttype = build_qualified_type (ntype, quals);
3678 }
3679
3680 return ttype;
3681 }
3682
3683
3684 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3685 is ATTRIBUTE.
3686
3687 Record such modified types already made so we don't make duplicates. */
3688
3689 tree
3690 build_type_attribute_variant (tree ttype, tree attribute)
3691 {
3692 return build_type_attribute_qual_variant (ttype, attribute,
3693 TYPE_QUALS (ttype));
3694 }
3695
3696 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3697 or zero if not.
3698
3699 We try both `text' and `__text__', ATTR may be either one. */
3700 /* ??? It might be a reasonable simplification to require ATTR to be only
3701 `text'. One might then also require attribute lists to be stored in
3702 their canonicalized form. */
3703
3704 static int
3705 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3706 {
3707 int ident_len;
3708 const char *p;
3709
3710 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3711 return 0;
3712
3713 p = IDENTIFIER_POINTER (ident);
3714 ident_len = IDENTIFIER_LENGTH (ident);
3715
3716 if (ident_len == attr_len
3717 && strcmp (attr, p) == 0)
3718 return 1;
3719
3720 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3721 if (attr[0] == '_')
3722 {
3723 gcc_assert (attr[1] == '_');
3724 gcc_assert (attr[attr_len - 2] == '_');
3725 gcc_assert (attr[attr_len - 1] == '_');
3726 if (ident_len == attr_len - 4
3727 && strncmp (attr + 2, p, attr_len - 4) == 0)
3728 return 1;
3729 }
3730 else
3731 {
3732 if (ident_len == attr_len + 4
3733 && p[0] == '_' && p[1] == '_'
3734 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3735 && strncmp (attr, p + 2, attr_len) == 0)
3736 return 1;
3737 }
3738
3739 return 0;
3740 }
3741
3742 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3743 or zero if not.
3744
3745 We try both `text' and `__text__', ATTR may be either one. */
3746
3747 int
3748 is_attribute_p (const char *attr, tree ident)
3749 {
3750 return is_attribute_with_length_p (attr, strlen (attr), ident);
3751 }
3752
3753 /* Given an attribute name and a list of attributes, return a pointer to the
3754 attribute's list element if the attribute is part of the list, or NULL_TREE
3755 if not found. If the attribute appears more than once, this only
3756 returns the first occurrence; the TREE_CHAIN of the return value should
3757 be passed back in if further occurrences are wanted. */
3758
3759 tree
3760 lookup_attribute (const char *attr_name, tree list)
3761 {
3762 tree l;
3763 size_t attr_len = strlen (attr_name);
3764
3765 for (l = list; l; l = TREE_CHAIN (l))
3766 {
3767 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3768 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3769 return l;
3770 }
3771
3772 return NULL_TREE;
3773 }
3774
3775 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3776 modified list. */
3777
3778 tree
3779 remove_attribute (const char *attr_name, tree list)
3780 {
3781 tree *p;
3782 size_t attr_len = strlen (attr_name);
3783
3784 for (p = &list; *p; )
3785 {
3786 tree l = *p;
3787 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3788 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3789 *p = TREE_CHAIN (l);
3790 else
3791 p = &TREE_CHAIN (l);
3792 }
3793
3794 return list;
3795 }
3796
3797 /* Return an attribute list that is the union of a1 and a2. */
3798
3799 tree
3800 merge_attributes (tree a1, tree a2)
3801 {
3802 tree attributes;
3803
3804 /* Either one unset? Take the set one. */
3805
3806 if ((attributes = a1) == 0)
3807 attributes = a2;
3808
3809 /* One that completely contains the other? Take it. */
3810
3811 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3812 {
3813 if (attribute_list_contained (a2, a1))
3814 attributes = a2;
3815 else
3816 {
3817 /* Pick the longest list, and hang on the other list. */
3818
3819 if (list_length (a1) < list_length (a2))
3820 attributes = a2, a2 = a1;
3821
3822 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3823 {
3824 tree a;
3825 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3826 attributes);
3827 a != NULL_TREE;
3828 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3829 TREE_CHAIN (a)))
3830 {
3831 if (TREE_VALUE (a) != NULL
3832 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3833 && TREE_VALUE (a2) != NULL
3834 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3835 {
3836 if (simple_cst_list_equal (TREE_VALUE (a),
3837 TREE_VALUE (a2)) == 1)
3838 break;
3839 }
3840 else if (simple_cst_equal (TREE_VALUE (a),
3841 TREE_VALUE (a2)) == 1)
3842 break;
3843 }
3844 if (a == NULL_TREE)
3845 {
3846 a1 = copy_node (a2);
3847 TREE_CHAIN (a1) = attributes;
3848 attributes = a1;
3849 }
3850 }
3851 }
3852 }
3853 return attributes;
3854 }
3855
3856 /* Given types T1 and T2, merge their attributes and return
3857 the result. */
3858
3859 tree
3860 merge_type_attributes (tree t1, tree t2)
3861 {
3862 return merge_attributes (TYPE_ATTRIBUTES (t1),
3863 TYPE_ATTRIBUTES (t2));
3864 }
3865
3866 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3867 the result. */
3868
3869 tree
3870 merge_decl_attributes (tree olddecl, tree newdecl)
3871 {
3872 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3873 DECL_ATTRIBUTES (newdecl));
3874 }
3875
3876 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3877
3878 /* Specialization of merge_decl_attributes for various Windows targets.
3879
3880 This handles the following situation:
3881
3882 __declspec (dllimport) int foo;
3883 int foo;
3884
3885 The second instance of `foo' nullifies the dllimport. */
3886
3887 tree
3888 merge_dllimport_decl_attributes (tree old, tree new)
3889 {
3890 tree a;
3891 int delete_dllimport_p = 1;
3892
3893 /* What we need to do here is remove from `old' dllimport if it doesn't
3894 appear in `new'. dllimport behaves like extern: if a declaration is
3895 marked dllimport and a definition appears later, then the object
3896 is not dllimport'd. We also remove a `new' dllimport if the old list
3897 contains dllexport: dllexport always overrides dllimport, regardless
3898 of the order of declaration. */
3899 if (!VAR_OR_FUNCTION_DECL_P (new))
3900 delete_dllimport_p = 0;
3901 else if (DECL_DLLIMPORT_P (new)
3902 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3903 {
3904 DECL_DLLIMPORT_P (new) = 0;
3905 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3906 "dllimport ignored", new);
3907 }
3908 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3909 {
3910 /* Warn about overriding a symbol that has already been used. eg:
3911 extern int __attribute__ ((dllimport)) foo;
3912 int* bar () {return &foo;}
3913 int foo;
3914 */
3915 if (TREE_USED (old))
3916 {
3917 warning (0, "%q+D redeclared without dllimport attribute "
3918 "after being referenced with dll linkage", new);
3919 /* If we have used a variable's address with dllimport linkage,
3920 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3921 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3922 computed.
3923 We still remove the attribute so that assembler code refers
3924 to '&foo rather than '_imp__foo'. */
3925 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3926 DECL_DLLIMPORT_P (new) = 1;
3927 }
3928
3929 /* Let an inline definition silently override the external reference,
3930 but otherwise warn about attribute inconsistency. */
3931 else if (TREE_CODE (new) == VAR_DECL
3932 || !DECL_DECLARED_INLINE_P (new))
3933 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3934 "previous dllimport ignored", new);
3935 }
3936 else
3937 delete_dllimport_p = 0;
3938
3939 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3940
3941 if (delete_dllimport_p)
3942 {
3943 tree prev, t;
3944 const size_t attr_len = strlen ("dllimport");
3945
3946 /* Scan the list for dllimport and delete it. */
3947 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3948 {
3949 if (is_attribute_with_length_p ("dllimport", attr_len,
3950 TREE_PURPOSE (t)))
3951 {
3952 if (prev == NULL_TREE)
3953 a = TREE_CHAIN (a);
3954 else
3955 TREE_CHAIN (prev) = TREE_CHAIN (t);
3956 break;
3957 }
3958 }
3959 }
3960
3961 return a;
3962 }
3963
3964 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3965 struct attribute_spec.handler. */
3966
3967 tree
3968 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3969 bool *no_add_attrs)
3970 {
3971 tree node = *pnode;
3972
3973 /* These attributes may apply to structure and union types being created,
3974 but otherwise should pass to the declaration involved. */
3975 if (!DECL_P (node))
3976 {
3977 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3978 | (int) ATTR_FLAG_ARRAY_NEXT))
3979 {
3980 *no_add_attrs = true;
3981 return tree_cons (name, args, NULL_TREE);
3982 }
3983 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3984 {
3985 warning (OPT_Wattributes, "%qs attribute ignored",
3986 IDENTIFIER_POINTER (name));
3987 *no_add_attrs = true;
3988 }
3989
3990 return NULL_TREE;
3991 }
3992
3993 if (TREE_CODE (node) != FUNCTION_DECL
3994 && TREE_CODE (node) != VAR_DECL)
3995 {
3996 *no_add_attrs = true;
3997 warning (OPT_Wattributes, "%qs attribute ignored",
3998 IDENTIFIER_POINTER (name));
3999 return NULL_TREE;
4000 }
4001
4002 /* Report error on dllimport ambiguities seen now before they cause
4003 any damage. */
4004 else if (is_attribute_p ("dllimport", name))
4005 {
4006 /* Honor any target-specific overrides. */
4007 if (!targetm.valid_dllimport_attribute_p (node))
4008 *no_add_attrs = true;
4009
4010 else if (TREE_CODE (node) == FUNCTION_DECL
4011 && DECL_DECLARED_INLINE_P (node))
4012 {
4013 warning (OPT_Wattributes, "inline function %q+D declared as "
4014 " dllimport: attribute ignored", node);
4015 *no_add_attrs = true;
4016 }
4017 /* Like MS, treat definition of dllimported variables and
4018 non-inlined functions on declaration as syntax errors. */
4019 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
4020 {
4021 error ("function %q+D definition is marked dllimport", node);
4022 *no_add_attrs = true;
4023 }
4024
4025 else if (TREE_CODE (node) == VAR_DECL)
4026 {
4027 if (DECL_INITIAL (node))
4028 {
4029 error ("variable %q+D definition is marked dllimport",
4030 node);
4031 *no_add_attrs = true;
4032 }
4033
4034 /* `extern' needn't be specified with dllimport.
4035 Specify `extern' now and hope for the best. Sigh. */
4036 DECL_EXTERNAL (node) = 1;
4037 /* Also, implicitly give dllimport'd variables declared within
4038 a function global scope, unless declared static. */
4039 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
4040 TREE_PUBLIC (node) = 1;
4041 }
4042
4043 if (*no_add_attrs == false)
4044 DECL_DLLIMPORT_P (node) = 1;
4045 }
4046
4047 /* Report error if symbol is not accessible at global scope. */
4048 if (!TREE_PUBLIC (node)
4049 && (TREE_CODE (node) == VAR_DECL
4050 || TREE_CODE (node) == FUNCTION_DECL))
4051 {
4052 error ("external linkage required for symbol %q+D because of "
4053 "%qs attribute", node, IDENTIFIER_POINTER (name));
4054 *no_add_attrs = true;
4055 }
4056
4057 return NULL_TREE;
4058 }
4059
4060 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
4061 \f
4062 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
4063 of the various TYPE_QUAL values. */
4064
4065 static void
4066 set_type_quals (tree type, int type_quals)
4067 {
4068 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
4069 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
4070 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
4071 }
4072
4073 /* Returns true iff cand is equivalent to base with type_quals. */
4074
4075 bool
4076 check_qualified_type (tree cand, tree base, int type_quals)
4077 {
4078 return (TYPE_QUALS (cand) == type_quals
4079 && TYPE_NAME (cand) == TYPE_NAME (base)
4080 /* Apparently this is needed for Objective-C. */
4081 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
4082 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
4083 TYPE_ATTRIBUTES (base)));
4084 }
4085
4086 /* Return a version of the TYPE, qualified as indicated by the
4087 TYPE_QUALS, if one exists. If no qualified version exists yet,
4088 return NULL_TREE. */
4089
4090 tree
4091 get_qualified_type (tree type, int type_quals)
4092 {
4093 tree t;
4094
4095 if (TYPE_QUALS (type) == type_quals)
4096 return type;
4097
4098 /* Search the chain of variants to see if there is already one there just
4099 like the one we need to have. If so, use that existing one. We must
4100 preserve the TYPE_NAME, since there is code that depends on this. */
4101 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
4102 if (check_qualified_type (t, type, type_quals))
4103 return t;
4104
4105 return NULL_TREE;
4106 }
4107
4108 /* Like get_qualified_type, but creates the type if it does not
4109 exist. This function never returns NULL_TREE. */
4110
4111 tree
4112 build_qualified_type (tree type, int type_quals)
4113 {
4114 tree t;
4115
4116 /* See if we already have the appropriate qualified variant. */
4117 t = get_qualified_type (type, type_quals);
4118
4119 /* If not, build it. */
4120 if (!t)
4121 {
4122 t = build_variant_type_copy (type);
4123 set_type_quals (t, type_quals);
4124
4125 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4126 /* Propagate structural equality. */
4127 SET_TYPE_STRUCTURAL_EQUALITY (t);
4128 else if (TYPE_CANONICAL (type) != type)
4129 /* Build the underlying canonical type, since it is different
4130 from TYPE. */
4131 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
4132 type_quals);
4133 else
4134 /* T is its own canonical type. */
4135 TYPE_CANONICAL (t) = t;
4136
4137 }
4138
4139 return t;
4140 }
4141
4142 /* Create a new distinct copy of TYPE. The new type is made its own
4143 MAIN_VARIANT. If TYPE requires structural equality checks, the
4144 resulting type requires structural equality checks; otherwise, its
4145 TYPE_CANONICAL points to itself. */
4146
4147 tree
4148 build_distinct_type_copy (tree type)
4149 {
4150 tree t = copy_node (type);
4151
4152 TYPE_POINTER_TO (t) = 0;
4153 TYPE_REFERENCE_TO (t) = 0;
4154
4155 /* Set the canonical type either to a new equivalence class, or
4156 propagate the need for structural equality checks. */
4157 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4158 SET_TYPE_STRUCTURAL_EQUALITY (t);
4159 else
4160 TYPE_CANONICAL (t) = t;
4161
4162 /* Make it its own variant. */
4163 TYPE_MAIN_VARIANT (t) = t;
4164 TYPE_NEXT_VARIANT (t) = 0;
4165
4166 return t;
4167 }
4168
4169 /* Create a new variant of TYPE, equivalent but distinct. This is so
4170 the caller can modify it. TYPE_CANONICAL for the return type will
4171 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
4172 are considered equal by the language itself (or that both types
4173 require structural equality checks). */
4174
4175 tree
4176 build_variant_type_copy (tree type)
4177 {
4178 tree t, m = TYPE_MAIN_VARIANT (type);
4179
4180 t = build_distinct_type_copy (type);
4181
4182 /* Since we're building a variant, assume that it is a non-semantic
4183 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
4184 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
4185
4186 /* Add the new type to the chain of variants of TYPE. */
4187 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
4188 TYPE_NEXT_VARIANT (m) = t;
4189 TYPE_MAIN_VARIANT (t) = m;
4190
4191 return t;
4192 }
4193 \f
4194 /* Return true if the from tree in both tree maps are equal. */
4195
4196 int
4197 tree_map_eq (const void *va, const void *vb)
4198 {
4199 const struct tree_map *a = va, *b = vb;
4200 return (a->from == b->from);
4201 }
4202
4203 /* Hash a from tree in a tree_map. */
4204
4205 unsigned int
4206 tree_map_hash (const void *item)
4207 {
4208 return (((const struct tree_map *) item)->hash);
4209 }
4210
4211 /* Return true if this tree map structure is marked for garbage collection
4212 purposes. We simply return true if the from tree is marked, so that this
4213 structure goes away when the from tree goes away. */
4214
4215 int
4216 tree_map_marked_p (const void *p)
4217 {
4218 tree from = ((struct tree_map *) p)->from;
4219
4220 return ggc_marked_p (from);
4221 }
4222
4223 /* Return true if the trees in the tree_int_map *'s VA and VB are equal. */
4224
4225 static int
4226 tree_int_map_eq (const void *va, const void *vb)
4227 {
4228 const struct tree_int_map *a = va, *b = vb;
4229 return (a->from == b->from);
4230 }
4231
4232 /* Hash a from tree in the tree_int_map * ITEM. */
4233
4234 static unsigned int
4235 tree_int_map_hash (const void *item)
4236 {
4237 return htab_hash_pointer (((const struct tree_int_map *)item)->from);
4238 }
4239
4240 /* Return true if this tree int map structure is marked for garbage collection
4241 purposes. We simply return true if the from tree_int_map *P's from tree is marked, so that this
4242 structure goes away when the from tree goes away. */
4243
4244 static int
4245 tree_int_map_marked_p (const void *p)
4246 {
4247 tree from = ((struct tree_int_map *) p)->from;
4248
4249 return ggc_marked_p (from);
4250 }
4251 /* Lookup an init priority for FROM, and return it if we find one. */
4252
4253 unsigned short
4254 decl_init_priority_lookup (tree from)
4255 {
4256 struct tree_int_map *h, in;
4257 in.from = from;
4258
4259 h = htab_find_with_hash (init_priority_for_decl,
4260 &in, htab_hash_pointer (from));
4261 if (h)
4262 return h->to;
4263 return 0;
4264 }
4265
4266 /* Insert a mapping FROM->TO in the init priority hashtable. */
4267
4268 void
4269 decl_init_priority_insert (tree from, unsigned short to)
4270 {
4271 struct tree_int_map *h;
4272 void **loc;
4273
4274 h = ggc_alloc (sizeof (struct tree_int_map));
4275 h->from = from;
4276 h->to = to;
4277 loc = htab_find_slot_with_hash (init_priority_for_decl, h,
4278 htab_hash_pointer (from), INSERT);
4279 *(struct tree_int_map **) loc = h;
4280 }
4281
4282 /* Look up a restrict qualified base decl for FROM. */
4283
4284 tree
4285 decl_restrict_base_lookup (tree from)
4286 {
4287 struct tree_map *h;
4288 struct tree_map in;
4289
4290 in.from = from;
4291 h = htab_find_with_hash (restrict_base_for_decl, &in,
4292 htab_hash_pointer (from));
4293 return h ? h->to : NULL_TREE;
4294 }
4295
4296 /* Record the restrict qualified base TO for FROM. */
4297
4298 void
4299 decl_restrict_base_insert (tree from, tree to)
4300 {
4301 struct tree_map *h;
4302 void **loc;
4303
4304 h = ggc_alloc (sizeof (struct tree_map));
4305 h->hash = htab_hash_pointer (from);
4306 h->from = from;
4307 h->to = to;
4308 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4309 *(struct tree_map **) loc = h;
4310 }
4311
4312 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4313
4314 static void
4315 print_debug_expr_statistics (void)
4316 {
4317 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4318 (long) htab_size (debug_expr_for_decl),
4319 (long) htab_elements (debug_expr_for_decl),
4320 htab_collisions (debug_expr_for_decl));
4321 }
4322
4323 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4324
4325 static void
4326 print_value_expr_statistics (void)
4327 {
4328 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4329 (long) htab_size (value_expr_for_decl),
4330 (long) htab_elements (value_expr_for_decl),
4331 htab_collisions (value_expr_for_decl));
4332 }
4333
4334 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4335 don't print anything if the table is empty. */
4336
4337 static void
4338 print_restrict_base_statistics (void)
4339 {
4340 if (htab_elements (restrict_base_for_decl) != 0)
4341 fprintf (stderr,
4342 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4343 (long) htab_size (restrict_base_for_decl),
4344 (long) htab_elements (restrict_base_for_decl),
4345 htab_collisions (restrict_base_for_decl));
4346 }
4347
4348 /* Lookup a debug expression for FROM, and return it if we find one. */
4349
4350 tree
4351 decl_debug_expr_lookup (tree from)
4352 {
4353 struct tree_map *h, in;
4354 in.from = from;
4355
4356 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4357 if (h)
4358 return h->to;
4359 return NULL_TREE;
4360 }
4361
4362 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4363
4364 void
4365 decl_debug_expr_insert (tree from, tree to)
4366 {
4367 struct tree_map *h;
4368 void **loc;
4369
4370 h = ggc_alloc (sizeof (struct tree_map));
4371 h->hash = htab_hash_pointer (from);
4372 h->from = from;
4373 h->to = to;
4374 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4375 *(struct tree_map **) loc = h;
4376 }
4377
4378 /* Lookup a value expression for FROM, and return it if we find one. */
4379
4380 tree
4381 decl_value_expr_lookup (tree from)
4382 {
4383 struct tree_map *h, in;
4384 in.from = from;
4385
4386 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4387 if (h)
4388 return h->to;
4389 return NULL_TREE;
4390 }
4391
4392 /* Insert a mapping FROM->TO in the value expression hashtable. */
4393
4394 void
4395 decl_value_expr_insert (tree from, tree to)
4396 {
4397 struct tree_map *h;
4398 void **loc;
4399
4400 h = ggc_alloc (sizeof (struct tree_map));
4401 h->hash = htab_hash_pointer (from);
4402 h->from = from;
4403 h->to = to;
4404 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4405 *(struct tree_map **) loc = h;
4406 }
4407
4408 /* Hashing of types so that we don't make duplicates.
4409 The entry point is `type_hash_canon'. */
4410
4411 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4412 with types in the TREE_VALUE slots), by adding the hash codes
4413 of the individual types. */
4414
4415 unsigned int
4416 type_hash_list (tree list, hashval_t hashcode)
4417 {
4418 tree tail;
4419
4420 for (tail = list; tail; tail = TREE_CHAIN (tail))
4421 if (TREE_VALUE (tail) != error_mark_node)
4422 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4423 hashcode);
4424
4425 return hashcode;
4426 }
4427
4428 /* These are the Hashtable callback functions. */
4429
4430 /* Returns true iff the types are equivalent. */
4431
4432 static int
4433 type_hash_eq (const void *va, const void *vb)
4434 {
4435 const struct type_hash *a = va, *b = vb;
4436
4437 /* First test the things that are the same for all types. */
4438 if (a->hash != b->hash
4439 || TREE_CODE (a->type) != TREE_CODE (b->type)
4440 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4441 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4442 TYPE_ATTRIBUTES (b->type))
4443 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4444 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4445 return 0;
4446
4447 switch (TREE_CODE (a->type))
4448 {
4449 case VOID_TYPE:
4450 case COMPLEX_TYPE:
4451 case POINTER_TYPE:
4452 case REFERENCE_TYPE:
4453 return 1;
4454
4455 case VECTOR_TYPE:
4456 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4457
4458 case ENUMERAL_TYPE:
4459 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4460 && !(TYPE_VALUES (a->type)
4461 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4462 && TYPE_VALUES (b->type)
4463 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4464 && type_list_equal (TYPE_VALUES (a->type),
4465 TYPE_VALUES (b->type))))
4466 return 0;
4467
4468 /* ... fall through ... */
4469
4470 case INTEGER_TYPE:
4471 case REAL_TYPE:
4472 case BOOLEAN_TYPE:
4473 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4474 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4475 TYPE_MAX_VALUE (b->type)))
4476 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4477 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4478 TYPE_MIN_VALUE (b->type))));
4479
4480 case OFFSET_TYPE:
4481 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4482
4483 case METHOD_TYPE:
4484 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4485 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4486 || (TYPE_ARG_TYPES (a->type)
4487 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4488 && TYPE_ARG_TYPES (b->type)
4489 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4490 && type_list_equal (TYPE_ARG_TYPES (a->type),
4491 TYPE_ARG_TYPES (b->type)))));
4492
4493 case ARRAY_TYPE:
4494 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4495
4496 case RECORD_TYPE:
4497 case UNION_TYPE:
4498 case QUAL_UNION_TYPE:
4499 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4500 || (TYPE_FIELDS (a->type)
4501 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4502 && TYPE_FIELDS (b->type)
4503 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4504 && type_list_equal (TYPE_FIELDS (a->type),
4505 TYPE_FIELDS (b->type))));
4506
4507 case FUNCTION_TYPE:
4508 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4509 || (TYPE_ARG_TYPES (a->type)
4510 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4511 && TYPE_ARG_TYPES (b->type)
4512 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4513 && type_list_equal (TYPE_ARG_TYPES (a->type),
4514 TYPE_ARG_TYPES (b->type))));
4515
4516 default:
4517 return 0;
4518 }
4519 }
4520
4521 /* Return the cached hash value. */
4522
4523 static hashval_t
4524 type_hash_hash (const void *item)
4525 {
4526 return ((const struct type_hash *) item)->hash;
4527 }
4528
4529 /* Look in the type hash table for a type isomorphic to TYPE.
4530 If one is found, return it. Otherwise return 0. */
4531
4532 tree
4533 type_hash_lookup (hashval_t hashcode, tree type)
4534 {
4535 struct type_hash *h, in;
4536
4537 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4538 must call that routine before comparing TYPE_ALIGNs. */
4539 layout_type (type);
4540
4541 in.hash = hashcode;
4542 in.type = type;
4543
4544 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4545 if (h)
4546 return h->type;
4547 return NULL_TREE;
4548 }
4549
4550 /* Add an entry to the type-hash-table
4551 for a type TYPE whose hash code is HASHCODE. */
4552
4553 void
4554 type_hash_add (hashval_t hashcode, tree type)
4555 {
4556 struct type_hash *h;
4557 void **loc;
4558
4559 h = ggc_alloc (sizeof (struct type_hash));
4560 h->hash = hashcode;
4561 h->type = type;
4562 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4563 *(struct type_hash **) loc = h;
4564 }
4565
4566 /* Given TYPE, and HASHCODE its hash code, return the canonical
4567 object for an identical type if one already exists.
4568 Otherwise, return TYPE, and record it as the canonical object.
4569
4570 To use this function, first create a type of the sort you want.
4571 Then compute its hash code from the fields of the type that
4572 make it different from other similar types.
4573 Then call this function and use the value. */
4574
4575 tree
4576 type_hash_canon (unsigned int hashcode, tree type)
4577 {
4578 tree t1;
4579
4580 /* The hash table only contains main variants, so ensure that's what we're
4581 being passed. */
4582 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4583
4584 if (!lang_hooks.types.hash_types)
4585 return type;
4586
4587 /* See if the type is in the hash table already. If so, return it.
4588 Otherwise, add the type. */
4589 t1 = type_hash_lookup (hashcode, type);
4590 if (t1 != 0)
4591 {
4592 #ifdef GATHER_STATISTICS
4593 tree_node_counts[(int) t_kind]--;
4594 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4595 #endif
4596 return t1;
4597 }
4598 else
4599 {
4600 type_hash_add (hashcode, type);
4601 return type;
4602 }
4603 }
4604
4605 /* See if the data pointed to by the type hash table is marked. We consider
4606 it marked if the type is marked or if a debug type number or symbol
4607 table entry has been made for the type. This reduces the amount of
4608 debugging output and eliminates that dependency of the debug output on
4609 the number of garbage collections. */
4610
4611 static int
4612 type_hash_marked_p (const void *p)
4613 {
4614 tree type = ((struct type_hash *) p)->type;
4615
4616 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4617 }
4618
4619 static void
4620 print_type_hash_statistics (void)
4621 {
4622 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4623 (long) htab_size (type_hash_table),
4624 (long) htab_elements (type_hash_table),
4625 htab_collisions (type_hash_table));
4626 }
4627
4628 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4629 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4630 by adding the hash codes of the individual attributes. */
4631
4632 unsigned int
4633 attribute_hash_list (tree list, hashval_t hashcode)
4634 {
4635 tree tail;
4636
4637 for (tail = list; tail; tail = TREE_CHAIN (tail))
4638 /* ??? Do we want to add in TREE_VALUE too? */
4639 hashcode = iterative_hash_object
4640 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4641 return hashcode;
4642 }
4643
4644 /* Given two lists of attributes, return true if list l2 is
4645 equivalent to l1. */
4646
4647 int
4648 attribute_list_equal (tree l1, tree l2)
4649 {
4650 return attribute_list_contained (l1, l2)
4651 && attribute_list_contained (l2, l1);
4652 }
4653
4654 /* Given two lists of attributes, return true if list L2 is
4655 completely contained within L1. */
4656 /* ??? This would be faster if attribute names were stored in a canonicalized
4657 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4658 must be used to show these elements are equivalent (which they are). */
4659 /* ??? It's not clear that attributes with arguments will always be handled
4660 correctly. */
4661
4662 int
4663 attribute_list_contained (tree l1, tree l2)
4664 {
4665 tree t1, t2;
4666
4667 /* First check the obvious, maybe the lists are identical. */
4668 if (l1 == l2)
4669 return 1;
4670
4671 /* Maybe the lists are similar. */
4672 for (t1 = l1, t2 = l2;
4673 t1 != 0 && t2 != 0
4674 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4675 && TREE_VALUE (t1) == TREE_VALUE (t2);
4676 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4677
4678 /* Maybe the lists are equal. */
4679 if (t1 == 0 && t2 == 0)
4680 return 1;
4681
4682 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4683 {
4684 tree attr;
4685 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4686 attr != NULL_TREE;
4687 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4688 TREE_CHAIN (attr)))
4689 {
4690 if (TREE_VALUE (t2) != NULL
4691 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4692 && TREE_VALUE (attr) != NULL
4693 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4694 {
4695 if (simple_cst_list_equal (TREE_VALUE (t2),
4696 TREE_VALUE (attr)) == 1)
4697 break;
4698 }
4699 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4700 break;
4701 }
4702
4703 if (attr == 0)
4704 return 0;
4705 }
4706
4707 return 1;
4708 }
4709
4710 /* Given two lists of types
4711 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4712 return 1 if the lists contain the same types in the same order.
4713 Also, the TREE_PURPOSEs must match. */
4714
4715 int
4716 type_list_equal (tree l1, tree l2)
4717 {
4718 tree t1, t2;
4719
4720 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4721 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4722 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4723 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4724 && (TREE_TYPE (TREE_PURPOSE (t1))
4725 == TREE_TYPE (TREE_PURPOSE (t2))))))
4726 return 0;
4727
4728 return t1 == t2;
4729 }
4730
4731 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4732 given by TYPE. If the argument list accepts variable arguments,
4733 then this function counts only the ordinary arguments. */
4734
4735 int
4736 type_num_arguments (tree type)
4737 {
4738 int i = 0;
4739 tree t;
4740
4741 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4742 /* If the function does not take a variable number of arguments,
4743 the last element in the list will have type `void'. */
4744 if (VOID_TYPE_P (TREE_VALUE (t)))
4745 break;
4746 else
4747 ++i;
4748
4749 return i;
4750 }
4751
4752 /* Nonzero if integer constants T1 and T2
4753 represent the same constant value. */
4754
4755 int
4756 tree_int_cst_equal (tree t1, tree t2)
4757 {
4758 if (t1 == t2)
4759 return 1;
4760
4761 if (t1 == 0 || t2 == 0)
4762 return 0;
4763
4764 if (TREE_CODE (t1) == INTEGER_CST
4765 && TREE_CODE (t2) == INTEGER_CST
4766 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4767 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4768 return 1;
4769
4770 return 0;
4771 }
4772
4773 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4774 The precise way of comparison depends on their data type. */
4775
4776 int
4777 tree_int_cst_lt (tree t1, tree t2)
4778 {
4779 if (t1 == t2)
4780 return 0;
4781
4782 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4783 {
4784 int t1_sgn = tree_int_cst_sgn (t1);
4785 int t2_sgn = tree_int_cst_sgn (t2);
4786
4787 if (t1_sgn < t2_sgn)
4788 return 1;
4789 else if (t1_sgn > t2_sgn)
4790 return 0;
4791 /* Otherwise, both are non-negative, so we compare them as
4792 unsigned just in case one of them would overflow a signed
4793 type. */
4794 }
4795 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4796 return INT_CST_LT (t1, t2);
4797
4798 return INT_CST_LT_UNSIGNED (t1, t2);
4799 }
4800
4801 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4802
4803 int
4804 tree_int_cst_compare (tree t1, tree t2)
4805 {
4806 if (tree_int_cst_lt (t1, t2))
4807 return -1;
4808 else if (tree_int_cst_lt (t2, t1))
4809 return 1;
4810 else
4811 return 0;
4812 }
4813
4814 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4815 the host. If POS is zero, the value can be represented in a single
4816 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4817 be represented in a single unsigned HOST_WIDE_INT. */
4818
4819 int
4820 host_integerp (tree t, int pos)
4821 {
4822 return (TREE_CODE (t) == INTEGER_CST
4823 && ((TREE_INT_CST_HIGH (t) == 0
4824 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4825 || (! pos && TREE_INT_CST_HIGH (t) == -1
4826 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4827 && !TYPE_UNSIGNED (TREE_TYPE (t)))
4828 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4829 }
4830
4831 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4832 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4833 be non-negative. We must be able to satisfy the above conditions. */
4834
4835 HOST_WIDE_INT
4836 tree_low_cst (tree t, int pos)
4837 {
4838 gcc_assert (host_integerp (t, pos));
4839 return TREE_INT_CST_LOW (t);
4840 }
4841
4842 /* Return the most significant bit of the integer constant T. */
4843
4844 int
4845 tree_int_cst_msb (tree t)
4846 {
4847 int prec;
4848 HOST_WIDE_INT h;
4849 unsigned HOST_WIDE_INT l;
4850
4851 /* Note that using TYPE_PRECISION here is wrong. We care about the
4852 actual bits, not the (arbitrary) range of the type. */
4853 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4854 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4855 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4856 return (l & 1) == 1;
4857 }
4858
4859 /* Return an indication of the sign of the integer constant T.
4860 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4861 Note that -1 will never be returned if T's type is unsigned. */
4862
4863 int
4864 tree_int_cst_sgn (tree t)
4865 {
4866 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4867 return 0;
4868 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4869 return 1;
4870 else if (TREE_INT_CST_HIGH (t) < 0)
4871 return -1;
4872 else
4873 return 1;
4874 }
4875
4876 /* Compare two constructor-element-type constants. Return 1 if the lists
4877 are known to be equal; otherwise return 0. */
4878
4879 int
4880 simple_cst_list_equal (tree l1, tree l2)
4881 {
4882 while (l1 != NULL_TREE && l2 != NULL_TREE)
4883 {
4884 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4885 return 0;
4886
4887 l1 = TREE_CHAIN (l1);
4888 l2 = TREE_CHAIN (l2);
4889 }
4890
4891 return l1 == l2;
4892 }
4893
4894 /* Return truthvalue of whether T1 is the same tree structure as T2.
4895 Return 1 if they are the same.
4896 Return 0 if they are understandably different.
4897 Return -1 if either contains tree structure not understood by
4898 this function. */
4899
4900 int
4901 simple_cst_equal (tree t1, tree t2)
4902 {
4903 enum tree_code code1, code2;
4904 int cmp;
4905 int i;
4906
4907 if (t1 == t2)
4908 return 1;
4909 if (t1 == 0 || t2 == 0)
4910 return 0;
4911
4912 code1 = TREE_CODE (t1);
4913 code2 = TREE_CODE (t2);
4914
4915 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4916 {
4917 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4918 || code2 == NON_LVALUE_EXPR)
4919 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4920 else
4921 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4922 }
4923
4924 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4925 || code2 == NON_LVALUE_EXPR)
4926 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4927
4928 if (code1 != code2)
4929 return 0;
4930
4931 switch (code1)
4932 {
4933 case INTEGER_CST:
4934 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4935 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4936
4937 case REAL_CST:
4938 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4939
4940 case STRING_CST:
4941 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4942 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4943 TREE_STRING_LENGTH (t1)));
4944
4945 case CONSTRUCTOR:
4946 {
4947 unsigned HOST_WIDE_INT idx;
4948 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4949 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4950
4951 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4952 return false;
4953
4954 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4955 /* ??? Should we handle also fields here? */
4956 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
4957 VEC_index (constructor_elt, v2, idx)->value))
4958 return false;
4959 return true;
4960 }
4961
4962 case SAVE_EXPR:
4963 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4964
4965 case CALL_EXPR:
4966 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4967 if (cmp <= 0)
4968 return cmp;
4969 return
4970 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4971
4972 case TARGET_EXPR:
4973 /* Special case: if either target is an unallocated VAR_DECL,
4974 it means that it's going to be unified with whatever the
4975 TARGET_EXPR is really supposed to initialize, so treat it
4976 as being equivalent to anything. */
4977 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4978 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4979 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
4980 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4981 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4982 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
4983 cmp = 1;
4984 else
4985 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4986
4987 if (cmp <= 0)
4988 return cmp;
4989
4990 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4991
4992 case WITH_CLEANUP_EXPR:
4993 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4994 if (cmp <= 0)
4995 return cmp;
4996
4997 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
4998
4999 case COMPONENT_REF:
5000 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
5001 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5002
5003 return 0;
5004
5005 case VAR_DECL:
5006 case PARM_DECL:
5007 case CONST_DECL:
5008 case FUNCTION_DECL:
5009 return 0;
5010
5011 default:
5012 break;
5013 }
5014
5015 /* This general rule works for most tree codes. All exceptions should be
5016 handled above. If this is a language-specific tree code, we can't
5017 trust what might be in the operand, so say we don't know
5018 the situation. */
5019 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
5020 return -1;
5021
5022 switch (TREE_CODE_CLASS (code1))
5023 {
5024 case tcc_unary:
5025 case tcc_binary:
5026 case tcc_comparison:
5027 case tcc_expression:
5028 case tcc_reference:
5029 case tcc_statement:
5030 cmp = 1;
5031 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
5032 {
5033 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
5034 if (cmp <= 0)
5035 return cmp;
5036 }
5037
5038 return cmp;
5039
5040 default:
5041 return -1;
5042 }
5043 }
5044
5045 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
5046 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
5047 than U, respectively. */
5048
5049 int
5050 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
5051 {
5052 if (tree_int_cst_sgn (t) < 0)
5053 return -1;
5054 else if (TREE_INT_CST_HIGH (t) != 0)
5055 return 1;
5056 else if (TREE_INT_CST_LOW (t) == u)
5057 return 0;
5058 else if (TREE_INT_CST_LOW (t) < u)
5059 return -1;
5060 else
5061 return 1;
5062 }
5063
5064 /* Return true if CODE represents an associative tree code. Otherwise
5065 return false. */
5066 bool
5067 associative_tree_code (enum tree_code code)
5068 {
5069 switch (code)
5070 {
5071 case BIT_IOR_EXPR:
5072 case BIT_AND_EXPR:
5073 case BIT_XOR_EXPR:
5074 case PLUS_EXPR:
5075 case MULT_EXPR:
5076 case MIN_EXPR:
5077 case MAX_EXPR:
5078 return true;
5079
5080 default:
5081 break;
5082 }
5083 return false;
5084 }
5085
5086 /* Return true if CODE represents a commutative tree code. Otherwise
5087 return false. */
5088 bool
5089 commutative_tree_code (enum tree_code code)
5090 {
5091 switch (code)
5092 {
5093 case PLUS_EXPR:
5094 case MULT_EXPR:
5095 case MIN_EXPR:
5096 case MAX_EXPR:
5097 case BIT_IOR_EXPR:
5098 case BIT_XOR_EXPR:
5099 case BIT_AND_EXPR:
5100 case NE_EXPR:
5101 case EQ_EXPR:
5102 case UNORDERED_EXPR:
5103 case ORDERED_EXPR:
5104 case UNEQ_EXPR:
5105 case LTGT_EXPR:
5106 case TRUTH_AND_EXPR:
5107 case TRUTH_XOR_EXPR:
5108 case TRUTH_OR_EXPR:
5109 return true;
5110
5111 default:
5112 break;
5113 }
5114 return false;
5115 }
5116
5117 /* Generate a hash value for an expression. This can be used iteratively
5118 by passing a previous result as the "val" argument.
5119
5120 This function is intended to produce the same hash for expressions which
5121 would compare equal using operand_equal_p. */
5122
5123 hashval_t
5124 iterative_hash_expr (tree t, hashval_t val)
5125 {
5126 int i;
5127 enum tree_code code;
5128 char class;
5129
5130 if (t == NULL_TREE)
5131 return iterative_hash_pointer (t, val);
5132
5133 code = TREE_CODE (t);
5134
5135 switch (code)
5136 {
5137 /* Alas, constants aren't shared, so we can't rely on pointer
5138 identity. */
5139 case INTEGER_CST:
5140 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
5141 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
5142 case REAL_CST:
5143 {
5144 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
5145
5146 return iterative_hash_hashval_t (val2, val);
5147 }
5148 case STRING_CST:
5149 return iterative_hash (TREE_STRING_POINTER (t),
5150 TREE_STRING_LENGTH (t), val);
5151 case COMPLEX_CST:
5152 val = iterative_hash_expr (TREE_REALPART (t), val);
5153 return iterative_hash_expr (TREE_IMAGPART (t), val);
5154 case VECTOR_CST:
5155 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
5156
5157 case SSA_NAME:
5158 case VALUE_HANDLE:
5159 /* we can just compare by pointer. */
5160 return iterative_hash_pointer (t, val);
5161
5162 case TREE_LIST:
5163 /* A list of expressions, for a CALL_EXPR or as the elements of a
5164 VECTOR_CST. */
5165 for (; t; t = TREE_CHAIN (t))
5166 val = iterative_hash_expr (TREE_VALUE (t), val);
5167 return val;
5168 case CONSTRUCTOR:
5169 {
5170 unsigned HOST_WIDE_INT idx;
5171 tree field, value;
5172 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
5173 {
5174 val = iterative_hash_expr (field, val);
5175 val = iterative_hash_expr (value, val);
5176 }
5177 return val;
5178 }
5179 case FUNCTION_DECL:
5180 /* When referring to a built-in FUNCTION_DECL, use the
5181 __builtin__ form. Otherwise nodes that compare equal
5182 according to operand_equal_p might get different
5183 hash codes. */
5184 if (DECL_BUILT_IN (t))
5185 {
5186 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
5187 val);
5188 return val;
5189 }
5190 /* else FALL THROUGH */
5191 default:
5192 class = TREE_CODE_CLASS (code);
5193
5194 if (class == tcc_declaration)
5195 {
5196 /* DECL's have a unique ID */
5197 val = iterative_hash_host_wide_int (DECL_UID (t), val);
5198 }
5199 else
5200 {
5201 gcc_assert (IS_EXPR_CODE_CLASS (class));
5202
5203 val = iterative_hash_object (code, val);
5204
5205 /* Don't hash the type, that can lead to having nodes which
5206 compare equal according to operand_equal_p, but which
5207 have different hash codes. */
5208 if (code == NOP_EXPR
5209 || code == CONVERT_EXPR
5210 || code == NON_LVALUE_EXPR)
5211 {
5212 /* Make sure to include signness in the hash computation. */
5213 val += TYPE_UNSIGNED (TREE_TYPE (t));
5214 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
5215 }
5216
5217 else if (commutative_tree_code (code))
5218 {
5219 /* It's a commutative expression. We want to hash it the same
5220 however it appears. We do this by first hashing both operands
5221 and then rehashing based on the order of their independent
5222 hashes. */
5223 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
5224 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
5225 hashval_t t;
5226
5227 if (one > two)
5228 t = one, one = two, two = t;
5229
5230 val = iterative_hash_hashval_t (one, val);
5231 val = iterative_hash_hashval_t (two, val);
5232 }
5233 else
5234 for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
5235 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
5236 }
5237 return val;
5238 break;
5239 }
5240 }
5241 \f
5242 /* Constructors for pointer, array and function types.
5243 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
5244 constructed by language-dependent code, not here.) */
5245
5246 /* Construct, lay out and return the type of pointers to TO_TYPE with
5247 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
5248 reference all of memory. If such a type has already been
5249 constructed, reuse it. */
5250
5251 tree
5252 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
5253 bool can_alias_all)
5254 {
5255 tree t;
5256
5257 if (to_type == error_mark_node)
5258 return error_mark_node;
5259
5260 /* In some cases, languages will have things that aren't a POINTER_TYPE
5261 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
5262 In that case, return that type without regard to the rest of our
5263 operands.
5264
5265 ??? This is a kludge, but consistent with the way this function has
5266 always operated and there doesn't seem to be a good way to avoid this
5267 at the moment. */
5268 if (TYPE_POINTER_TO (to_type) != 0
5269 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
5270 return TYPE_POINTER_TO (to_type);
5271
5272 /* First, if we already have a type for pointers to TO_TYPE and it's
5273 the proper mode, use it. */
5274 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
5275 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5276 return t;
5277
5278 t = make_node (POINTER_TYPE);
5279
5280 TREE_TYPE (t) = to_type;
5281 TYPE_MODE (t) = mode;
5282 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5283 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5284 TYPE_POINTER_TO (to_type) = t;
5285
5286 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5287 SET_TYPE_STRUCTURAL_EQUALITY (t);
5288 else if (TYPE_CANONICAL (to_type) != to_type)
5289 TYPE_CANONICAL (t)
5290 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
5291 mode, can_alias_all);
5292
5293 /* Lay out the type. This function has many callers that are concerned
5294 with expression-construction, and this simplifies them all. */
5295 layout_type (t);
5296
5297 return t;
5298 }
5299
5300 /* By default build pointers in ptr_mode. */
5301
5302 tree
5303 build_pointer_type (tree to_type)
5304 {
5305 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5306 }
5307
5308 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5309
5310 tree
5311 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5312 bool can_alias_all)
5313 {
5314 tree t;
5315
5316 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5317 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5318 In that case, return that type without regard to the rest of our
5319 operands.
5320
5321 ??? This is a kludge, but consistent with the way this function has
5322 always operated and there doesn't seem to be a good way to avoid this
5323 at the moment. */
5324 if (TYPE_REFERENCE_TO (to_type) != 0
5325 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5326 return TYPE_REFERENCE_TO (to_type);
5327
5328 /* First, if we already have a type for pointers to TO_TYPE and it's
5329 the proper mode, use it. */
5330 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5331 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5332 return t;
5333
5334 t = make_node (REFERENCE_TYPE);
5335
5336 TREE_TYPE (t) = to_type;
5337 TYPE_MODE (t) = mode;
5338 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5339 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5340 TYPE_REFERENCE_TO (to_type) = t;
5341
5342 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5343 SET_TYPE_STRUCTURAL_EQUALITY (t);
5344 else if (TYPE_CANONICAL (to_type) != to_type)
5345 TYPE_CANONICAL (t)
5346 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
5347 mode, can_alias_all);
5348
5349 layout_type (t);
5350
5351 return t;
5352 }
5353
5354
5355 /* Build the node for the type of references-to-TO_TYPE by default
5356 in ptr_mode. */
5357
5358 tree
5359 build_reference_type (tree to_type)
5360 {
5361 return build_reference_type_for_mode (to_type, ptr_mode, false);
5362 }
5363
5364 /* Build a type that is compatible with t but has no cv quals anywhere
5365 in its type, thus
5366
5367 const char *const *const * -> char ***. */
5368
5369 tree
5370 build_type_no_quals (tree t)
5371 {
5372 switch (TREE_CODE (t))
5373 {
5374 case POINTER_TYPE:
5375 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5376 TYPE_MODE (t),
5377 TYPE_REF_CAN_ALIAS_ALL (t));
5378 case REFERENCE_TYPE:
5379 return
5380 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5381 TYPE_MODE (t),
5382 TYPE_REF_CAN_ALIAS_ALL (t));
5383 default:
5384 return TYPE_MAIN_VARIANT (t);
5385 }
5386 }
5387
5388 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5389 MAXVAL should be the maximum value in the domain
5390 (one less than the length of the array).
5391
5392 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5393 We don't enforce this limit, that is up to caller (e.g. language front end).
5394 The limit exists because the result is a signed type and we don't handle
5395 sizes that use more than one HOST_WIDE_INT. */
5396
5397 tree
5398 build_index_type (tree maxval)
5399 {
5400 tree itype = make_node (INTEGER_TYPE);
5401
5402 TREE_TYPE (itype) = sizetype;
5403 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5404 TYPE_MIN_VALUE (itype) = size_zero_node;
5405 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5406 TYPE_MODE (itype) = TYPE_MODE (sizetype);
5407 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5408 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5409 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5410 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5411
5412 if (host_integerp (maxval, 1))
5413 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5414 else
5415 {
5416 /* Since we cannot hash this type, we need to compare it using
5417 structural equality checks. */
5418 SET_TYPE_STRUCTURAL_EQUALITY (itype);
5419 return itype;
5420 }
5421 }
5422
5423 /* Builds a signed or unsigned integer type of precision PRECISION.
5424 Used for C bitfields whose precision does not match that of
5425 built-in target types. */
5426 tree
5427 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5428 int unsignedp)
5429 {
5430 tree itype = make_node (INTEGER_TYPE);
5431
5432 TYPE_PRECISION (itype) = precision;
5433
5434 if (unsignedp)
5435 fixup_unsigned_type (itype);
5436 else
5437 fixup_signed_type (itype);
5438
5439 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5440 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5441
5442 return itype;
5443 }
5444
5445 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5446 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5447 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5448
5449 tree
5450 build_range_type (tree type, tree lowval, tree highval)
5451 {
5452 tree itype = make_node (INTEGER_TYPE);
5453
5454 TREE_TYPE (itype) = type;
5455 if (type == NULL_TREE)
5456 type = sizetype;
5457
5458 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5459 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5460
5461 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5462 TYPE_MODE (itype) = TYPE_MODE (type);
5463 TYPE_SIZE (itype) = TYPE_SIZE (type);
5464 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5465 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5466 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5467
5468 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5469 return type_hash_canon (tree_low_cst (highval, 0)
5470 - tree_low_cst (lowval, 0),
5471 itype);
5472 else
5473 return itype;
5474 }
5475
5476 /* Just like build_index_type, but takes lowval and highval instead
5477 of just highval (maxval). */
5478
5479 tree
5480 build_index_2_type (tree lowval, tree highval)
5481 {
5482 return build_range_type (sizetype, lowval, highval);
5483 }
5484
5485 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5486 and number of elements specified by the range of values of INDEX_TYPE.
5487 If such a type has already been constructed, reuse it. */
5488
5489 tree
5490 build_array_type (tree elt_type, tree index_type)
5491 {
5492 tree t;
5493 hashval_t hashcode = 0;
5494
5495 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5496 {
5497 error ("arrays of functions are not meaningful");
5498 elt_type = integer_type_node;
5499 }
5500
5501 t = make_node (ARRAY_TYPE);
5502 TREE_TYPE (t) = elt_type;
5503 TYPE_DOMAIN (t) = index_type;
5504
5505 if (index_type == 0)
5506 {
5507 tree save = t;
5508 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5509 t = type_hash_canon (hashcode, t);
5510 if (save == t)
5511 layout_type (t);
5512
5513 if (TYPE_CANONICAL (t) == t)
5514 {
5515 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
5516 SET_TYPE_STRUCTURAL_EQUALITY (t);
5517 else if (TYPE_CANONICAL (elt_type) != elt_type)
5518 TYPE_CANONICAL (t)
5519 = build_array_type (TYPE_CANONICAL (elt_type), index_type);
5520 }
5521
5522 return t;
5523 }
5524
5525 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5526 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5527 t = type_hash_canon (hashcode, t);
5528
5529 if (!COMPLETE_TYPE_P (t))
5530 layout_type (t);
5531
5532 if (TYPE_CANONICAL (t) == t)
5533 {
5534 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
5535 || TYPE_STRUCTURAL_EQUALITY_P (index_type))
5536 SET_TYPE_STRUCTURAL_EQUALITY (t);
5537 else if (TYPE_CANONICAL (elt_type) != elt_type
5538 || TYPE_CANONICAL (index_type) != index_type)
5539 TYPE_CANONICAL (t)
5540 = build_array_type (TYPE_CANONICAL (elt_type),
5541 TYPE_CANONICAL (index_type));
5542 }
5543
5544 return t;
5545 }
5546
5547 /* Return the TYPE of the elements comprising
5548 the innermost dimension of ARRAY. */
5549
5550 tree
5551 get_inner_array_type (tree array)
5552 {
5553 tree type = TREE_TYPE (array);
5554
5555 while (TREE_CODE (type) == ARRAY_TYPE)
5556 type = TREE_TYPE (type);
5557
5558 return type;
5559 }
5560
5561 /* Construct, lay out and return
5562 the type of functions returning type VALUE_TYPE
5563 given arguments of types ARG_TYPES.
5564 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5565 are data type nodes for the arguments of the function.
5566 If such a type has already been constructed, reuse it. */
5567
5568 tree
5569 build_function_type (tree value_type, tree arg_types)
5570 {
5571 tree t;
5572 hashval_t hashcode = 0;
5573
5574 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5575 {
5576 error ("function return type cannot be function");
5577 value_type = integer_type_node;
5578 }
5579
5580 /* Make a node of the sort we want. */
5581 t = make_node (FUNCTION_TYPE);
5582 TREE_TYPE (t) = value_type;
5583 TYPE_ARG_TYPES (t) = arg_types;
5584
5585 /* We don't have canonicalization of function types, yet. */
5586 SET_TYPE_STRUCTURAL_EQUALITY (t);
5587
5588 /* If we already have such a type, use the old one. */
5589 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5590 hashcode = type_hash_list (arg_types, hashcode);
5591 t = type_hash_canon (hashcode, t);
5592
5593 if (!COMPLETE_TYPE_P (t))
5594 layout_type (t);
5595 return t;
5596 }
5597
5598 /* Build a function type. The RETURN_TYPE is the type returned by the
5599 function. If additional arguments are provided, they are
5600 additional argument types. The list of argument types must always
5601 be terminated by NULL_TREE. */
5602
5603 tree
5604 build_function_type_list (tree return_type, ...)
5605 {
5606 tree t, args, last;
5607 va_list p;
5608
5609 va_start (p, return_type);
5610
5611 t = va_arg (p, tree);
5612 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5613 args = tree_cons (NULL_TREE, t, args);
5614
5615 if (args == NULL_TREE)
5616 args = void_list_node;
5617 else
5618 {
5619 last = args;
5620 args = nreverse (args);
5621 TREE_CHAIN (last) = void_list_node;
5622 }
5623 args = build_function_type (return_type, args);
5624
5625 va_end (p);
5626 return args;
5627 }
5628
5629 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5630 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5631 for the method. An implicit additional parameter (of type
5632 pointer-to-BASETYPE) is added to the ARGTYPES. */
5633
5634 tree
5635 build_method_type_directly (tree basetype,
5636 tree rettype,
5637 tree argtypes)
5638 {
5639 tree t;
5640 tree ptype;
5641 int hashcode = 0;
5642
5643 /* Make a node of the sort we want. */
5644 t = make_node (METHOD_TYPE);
5645
5646 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5647 TREE_TYPE (t) = rettype;
5648 ptype = build_pointer_type (basetype);
5649
5650 /* The actual arglist for this function includes a "hidden" argument
5651 which is "this". Put it into the list of argument types. */
5652 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5653 TYPE_ARG_TYPES (t) = argtypes;
5654
5655 /* We don't have canonicalization of method types yet. */
5656 SET_TYPE_STRUCTURAL_EQUALITY (t);
5657
5658 /* If we already have such a type, use the old one. */
5659 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5660 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5661 hashcode = type_hash_list (argtypes, hashcode);
5662 t = type_hash_canon (hashcode, t);
5663
5664 if (!COMPLETE_TYPE_P (t))
5665 layout_type (t);
5666
5667 return t;
5668 }
5669
5670 /* Construct, lay out and return the type of methods belonging to class
5671 BASETYPE and whose arguments and values are described by TYPE.
5672 If that type exists already, reuse it.
5673 TYPE must be a FUNCTION_TYPE node. */
5674
5675 tree
5676 build_method_type (tree basetype, tree type)
5677 {
5678 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5679
5680 return build_method_type_directly (basetype,
5681 TREE_TYPE (type),
5682 TYPE_ARG_TYPES (type));
5683 }
5684
5685 /* Construct, lay out and return the type of offsets to a value
5686 of type TYPE, within an object of type BASETYPE.
5687 If a suitable offset type exists already, reuse it. */
5688
5689 tree
5690 build_offset_type (tree basetype, tree type)
5691 {
5692 tree t;
5693 hashval_t hashcode = 0;
5694
5695 /* Make a node of the sort we want. */
5696 t = make_node (OFFSET_TYPE);
5697
5698 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5699 TREE_TYPE (t) = type;
5700
5701 /* If we already have such a type, use the old one. */
5702 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5703 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5704 t = type_hash_canon (hashcode, t);
5705
5706 if (!COMPLETE_TYPE_P (t))
5707 layout_type (t);
5708
5709 if (TYPE_CANONICAL (t) == t)
5710 {
5711 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5712 || TYPE_STRUCTURAL_EQUALITY_P (type))
5713 SET_TYPE_STRUCTURAL_EQUALITY (t);
5714 else if (TYPE_CANONICAL (basetype) != basetype
5715 || TYPE_CANONICAL (type) != type)
5716 TYPE_CANONICAL (t)
5717 = build_offset_type (TYPE_CANONICAL (basetype),
5718 TYPE_CANONICAL (type));
5719 }
5720
5721 return t;
5722 }
5723
5724 /* Create a complex type whose components are COMPONENT_TYPE. */
5725
5726 tree
5727 build_complex_type (tree component_type)
5728 {
5729 tree t;
5730 hashval_t hashcode;
5731
5732 /* Make a node of the sort we want. */
5733 t = make_node (COMPLEX_TYPE);
5734
5735 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5736
5737 /* If we already have such a type, use the old one. */
5738 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5739 t = type_hash_canon (hashcode, t);
5740
5741 if (!COMPLETE_TYPE_P (t))
5742 layout_type (t);
5743
5744 if (TYPE_CANONICAL (t) == t)
5745 {
5746 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
5747 SET_TYPE_STRUCTURAL_EQUALITY (t);
5748 else if (TYPE_CANONICAL (component_type) != component_type)
5749 TYPE_CANONICAL (t)
5750 = build_complex_type (TYPE_CANONICAL (component_type));
5751 }
5752
5753 /* If we are writing Dwarf2 output we need to create a name,
5754 since complex is a fundamental type. */
5755 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5756 && ! TYPE_NAME (t))
5757 {
5758 const char *name;
5759 if (component_type == char_type_node)
5760 name = "complex char";
5761 else if (component_type == signed_char_type_node)
5762 name = "complex signed char";
5763 else if (component_type == unsigned_char_type_node)
5764 name = "complex unsigned char";
5765 else if (component_type == short_integer_type_node)
5766 name = "complex short int";
5767 else if (component_type == short_unsigned_type_node)
5768 name = "complex short unsigned int";
5769 else if (component_type == integer_type_node)
5770 name = "complex int";
5771 else if (component_type == unsigned_type_node)
5772 name = "complex unsigned int";
5773 else if (component_type == long_integer_type_node)
5774 name = "complex long int";
5775 else if (component_type == long_unsigned_type_node)
5776 name = "complex long unsigned int";
5777 else if (component_type == long_long_integer_type_node)
5778 name = "complex long long int";
5779 else if (component_type == long_long_unsigned_type_node)
5780 name = "complex long long unsigned int";
5781 else
5782 name = 0;
5783
5784 if (name != 0)
5785 TYPE_NAME (t) = get_identifier (name);
5786 }
5787
5788 return build_qualified_type (t, TYPE_QUALS (component_type));
5789 }
5790 \f
5791 /* Return OP, stripped of any conversions to wider types as much as is safe.
5792 Converting the value back to OP's type makes a value equivalent to OP.
5793
5794 If FOR_TYPE is nonzero, we return a value which, if converted to
5795 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5796
5797 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5798 narrowest type that can hold the value, even if they don't exactly fit.
5799 Otherwise, bit-field references are changed to a narrower type
5800 only if they can be fetched directly from memory in that type.
5801
5802 OP must have integer, real or enumeral type. Pointers are not allowed!
5803
5804 There are some cases where the obvious value we could return
5805 would regenerate to OP if converted to OP's type,
5806 but would not extend like OP to wider types.
5807 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5808 For example, if OP is (unsigned short)(signed char)-1,
5809 we avoid returning (signed char)-1 if FOR_TYPE is int,
5810 even though extending that to an unsigned short would regenerate OP,
5811 since the result of extending (signed char)-1 to (int)
5812 is different from (int) OP. */
5813
5814 tree
5815 get_unwidened (tree op, tree for_type)
5816 {
5817 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
5818 tree type = TREE_TYPE (op);
5819 unsigned final_prec
5820 = TYPE_PRECISION (for_type != 0 ? for_type : type);
5821 int uns
5822 = (for_type != 0 && for_type != type
5823 && final_prec > TYPE_PRECISION (type)
5824 && TYPE_UNSIGNED (type));
5825 tree win = op;
5826
5827 while (TREE_CODE (op) == NOP_EXPR
5828 || TREE_CODE (op) == CONVERT_EXPR)
5829 {
5830 int bitschange;
5831
5832 /* TYPE_PRECISION on vector types has different meaning
5833 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5834 so avoid them here. */
5835 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5836 break;
5837
5838 bitschange = TYPE_PRECISION (TREE_TYPE (op))
5839 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5840
5841 /* Truncations are many-one so cannot be removed.
5842 Unless we are later going to truncate down even farther. */
5843 if (bitschange < 0
5844 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5845 break;
5846
5847 /* See what's inside this conversion. If we decide to strip it,
5848 we will set WIN. */
5849 op = TREE_OPERAND (op, 0);
5850
5851 /* If we have not stripped any zero-extensions (uns is 0),
5852 we can strip any kind of extension.
5853 If we have previously stripped a zero-extension,
5854 only zero-extensions can safely be stripped.
5855 Any extension can be stripped if the bits it would produce
5856 are all going to be discarded later by truncating to FOR_TYPE. */
5857
5858 if (bitschange > 0)
5859 {
5860 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5861 win = op;
5862 /* TYPE_UNSIGNED says whether this is a zero-extension.
5863 Let's avoid computing it if it does not affect WIN
5864 and if UNS will not be needed again. */
5865 if ((uns
5866 || TREE_CODE (op) == NOP_EXPR
5867 || TREE_CODE (op) == CONVERT_EXPR)
5868 && TYPE_UNSIGNED (TREE_TYPE (op)))
5869 {
5870 uns = 1;
5871 win = op;
5872 }
5873 }
5874 }
5875
5876 if (TREE_CODE (op) == COMPONENT_REF
5877 /* Since type_for_size always gives an integer type. */
5878 && TREE_CODE (type) != REAL_TYPE
5879 /* Don't crash if field not laid out yet. */
5880 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5881 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5882 {
5883 unsigned int innerprec
5884 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5885 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5886 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5887 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5888
5889 /* We can get this structure field in the narrowest type it fits in.
5890 If FOR_TYPE is 0, do this only for a field that matches the
5891 narrower type exactly and is aligned for it
5892 The resulting extension to its nominal type (a fullword type)
5893 must fit the same conditions as for other extensions. */
5894
5895 if (type != 0
5896 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5897 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5898 && (! uns || final_prec <= innerprec || unsignedp))
5899 {
5900 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5901 TREE_OPERAND (op, 1), NULL_TREE);
5902 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5903 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5904 }
5905 }
5906
5907 return win;
5908 }
5909 \f
5910 /* Return OP or a simpler expression for a narrower value
5911 which can be sign-extended or zero-extended to give back OP.
5912 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5913 or 0 if the value should be sign-extended. */
5914
5915 tree
5916 get_narrower (tree op, int *unsignedp_ptr)
5917 {
5918 int uns = 0;
5919 int first = 1;
5920 tree win = op;
5921 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5922
5923 while (TREE_CODE (op) == NOP_EXPR)
5924 {
5925 int bitschange
5926 = (TYPE_PRECISION (TREE_TYPE (op))
5927 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5928
5929 /* Truncations are many-one so cannot be removed. */
5930 if (bitschange < 0)
5931 break;
5932
5933 /* See what's inside this conversion. If we decide to strip it,
5934 we will set WIN. */
5935
5936 if (bitschange > 0)
5937 {
5938 op = TREE_OPERAND (op, 0);
5939 /* An extension: the outermost one can be stripped,
5940 but remember whether it is zero or sign extension. */
5941 if (first)
5942 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5943 /* Otherwise, if a sign extension has been stripped,
5944 only sign extensions can now be stripped;
5945 if a zero extension has been stripped, only zero-extensions. */
5946 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
5947 break;
5948 first = 0;
5949 }
5950 else /* bitschange == 0 */
5951 {
5952 /* A change in nominal type can always be stripped, but we must
5953 preserve the unsignedness. */
5954 if (first)
5955 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5956 first = 0;
5957 op = TREE_OPERAND (op, 0);
5958 /* Keep trying to narrow, but don't assign op to win if it
5959 would turn an integral type into something else. */
5960 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
5961 continue;
5962 }
5963
5964 win = op;
5965 }
5966
5967 if (TREE_CODE (op) == COMPONENT_REF
5968 /* Since type_for_size always gives an integer type. */
5969 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
5970 /* Ensure field is laid out already. */
5971 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5972 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5973 {
5974 unsigned HOST_WIDE_INT innerprec
5975 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5976 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5977 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5978 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5979
5980 /* We can get this structure field in a narrower type that fits it,
5981 but the resulting extension to its nominal type (a fullword type)
5982 must satisfy the same conditions as for other extensions.
5983
5984 Do this only for fields that are aligned (not bit-fields),
5985 because when bit-field insns will be used there is no
5986 advantage in doing this. */
5987
5988 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
5989 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
5990 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
5991 && type != 0)
5992 {
5993 if (first)
5994 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
5995 win = fold_convert (type, op);
5996 }
5997 }
5998
5999 *unsignedp_ptr = uns;
6000 return win;
6001 }
6002 \f
6003 /* Nonzero if integer constant C has a value that is permissible
6004 for type TYPE (an INTEGER_TYPE). */
6005
6006 int
6007 int_fits_type_p (tree c, tree type)
6008 {
6009 tree type_low_bound = TYPE_MIN_VALUE (type);
6010 tree type_high_bound = TYPE_MAX_VALUE (type);
6011 bool ok_for_low_bound, ok_for_high_bound;
6012 tree tmp;
6013
6014 /* If at least one bound of the type is a constant integer, we can check
6015 ourselves and maybe make a decision. If no such decision is possible, but
6016 this type is a subtype, try checking against that. Otherwise, use
6017 force_fit_type, which checks against the precision.
6018
6019 Compute the status for each possibly constant bound, and return if we see
6020 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
6021 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
6022 for "constant known to fit". */
6023
6024 /* Check if C >= type_low_bound. */
6025 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
6026 {
6027 if (tree_int_cst_lt (c, type_low_bound))
6028 return 0;
6029 ok_for_low_bound = true;
6030 }
6031 else
6032 ok_for_low_bound = false;
6033
6034 /* Check if c <= type_high_bound. */
6035 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
6036 {
6037 if (tree_int_cst_lt (type_high_bound, c))
6038 return 0;
6039 ok_for_high_bound = true;
6040 }
6041 else
6042 ok_for_high_bound = false;
6043
6044 /* If the constant fits both bounds, the result is known. */
6045 if (ok_for_low_bound && ok_for_high_bound)
6046 return 1;
6047
6048 /* Perform some generic filtering which may allow making a decision
6049 even if the bounds are not constant. First, negative integers
6050 never fit in unsigned types, */
6051 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
6052 return 0;
6053
6054 /* Second, narrower types always fit in wider ones. */
6055 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
6056 return 1;
6057
6058 /* Third, unsigned integers with top bit set never fit signed types. */
6059 if (! TYPE_UNSIGNED (type)
6060 && TYPE_UNSIGNED (TREE_TYPE (c))
6061 && tree_int_cst_msb (c))
6062 return 0;
6063
6064 /* If we haven't been able to decide at this point, there nothing more we
6065 can check ourselves here. Look at the base type if we have one and it
6066 has the same precision. */
6067 if (TREE_CODE (type) == INTEGER_TYPE
6068 && TREE_TYPE (type) != 0
6069 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
6070 return int_fits_type_p (c, TREE_TYPE (type));
6071
6072 /* Or to force_fit_type, if nothing else. */
6073 tmp = copy_node (c);
6074 TREE_TYPE (tmp) = type;
6075 tmp = force_fit_type (tmp, -1, false, false);
6076 return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
6077 && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
6078 }
6079
6080 /* Subprogram of following function. Called by walk_tree.
6081
6082 Return *TP if it is an automatic variable or parameter of the
6083 function passed in as DATA. */
6084
6085 static tree
6086 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
6087 {
6088 tree fn = (tree) data;
6089
6090 if (TYPE_P (*tp))
6091 *walk_subtrees = 0;
6092
6093 else if (DECL_P (*tp)
6094 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
6095 return *tp;
6096
6097 return NULL_TREE;
6098 }
6099
6100 /* Returns true if T is, contains, or refers to a type with variable
6101 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
6102 arguments, but not the return type. If FN is nonzero, only return
6103 true if a modifier of the type or position of FN is a variable or
6104 parameter inside FN.
6105
6106 This concept is more general than that of C99 'variably modified types':
6107 in C99, a struct type is never variably modified because a VLA may not
6108 appear as a structure member. However, in GNU C code like:
6109
6110 struct S { int i[f()]; };
6111
6112 is valid, and other languages may define similar constructs. */
6113
6114 bool
6115 variably_modified_type_p (tree type, tree fn)
6116 {
6117 tree t;
6118
6119 /* Test if T is either variable (if FN is zero) or an expression containing
6120 a variable in FN. */
6121 #define RETURN_TRUE_IF_VAR(T) \
6122 do { tree _t = (T); \
6123 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
6124 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
6125 return true; } while (0)
6126
6127 if (type == error_mark_node)
6128 return false;
6129
6130 /* If TYPE itself has variable size, it is variably modified. */
6131 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
6132 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
6133
6134 switch (TREE_CODE (type))
6135 {
6136 case POINTER_TYPE:
6137 case REFERENCE_TYPE:
6138 case VECTOR_TYPE:
6139 if (variably_modified_type_p (TREE_TYPE (type), fn))
6140 return true;
6141 break;
6142
6143 case FUNCTION_TYPE:
6144 case METHOD_TYPE:
6145 /* If TYPE is a function type, it is variably modified if the
6146 return type is variably modified. */
6147 if (variably_modified_type_p (TREE_TYPE (type), fn))
6148 return true;
6149 break;
6150
6151 case INTEGER_TYPE:
6152 case REAL_TYPE:
6153 case ENUMERAL_TYPE:
6154 case BOOLEAN_TYPE:
6155 /* Scalar types are variably modified if their end points
6156 aren't constant. */
6157 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
6158 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
6159 break;
6160
6161 case RECORD_TYPE:
6162 case UNION_TYPE:
6163 case QUAL_UNION_TYPE:
6164 /* We can't see if any of the fields are variably-modified by the
6165 definition we normally use, since that would produce infinite
6166 recursion via pointers. */
6167 /* This is variably modified if some field's type is. */
6168 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
6169 if (TREE_CODE (t) == FIELD_DECL)
6170 {
6171 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
6172 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
6173 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
6174
6175 if (TREE_CODE (type) == QUAL_UNION_TYPE)
6176 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
6177 }
6178 break;
6179
6180 case ARRAY_TYPE:
6181 /* Do not call ourselves to avoid infinite recursion. This is
6182 variably modified if the element type is. */
6183 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
6184 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
6185 break;
6186
6187 default:
6188 break;
6189 }
6190
6191 /* The current language may have other cases to check, but in general,
6192 all other types are not variably modified. */
6193 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
6194
6195 #undef RETURN_TRUE_IF_VAR
6196 }
6197
6198 /* Given a DECL or TYPE, return the scope in which it was declared, or
6199 NULL_TREE if there is no containing scope. */
6200
6201 tree
6202 get_containing_scope (tree t)
6203 {
6204 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
6205 }
6206
6207 /* Return the innermost context enclosing DECL that is
6208 a FUNCTION_DECL, or zero if none. */
6209
6210 tree
6211 decl_function_context (tree decl)
6212 {
6213 tree context;
6214
6215 if (TREE_CODE (decl) == ERROR_MARK)
6216 return 0;
6217
6218 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
6219 where we look up the function at runtime. Such functions always take
6220 a first argument of type 'pointer to real context'.
6221
6222 C++ should really be fixed to use DECL_CONTEXT for the real context,
6223 and use something else for the "virtual context". */
6224 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
6225 context
6226 = TYPE_MAIN_VARIANT
6227 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6228 else
6229 context = DECL_CONTEXT (decl);
6230
6231 while (context && TREE_CODE (context) != FUNCTION_DECL)
6232 {
6233 if (TREE_CODE (context) == BLOCK)
6234 context = BLOCK_SUPERCONTEXT (context);
6235 else
6236 context = get_containing_scope (context);
6237 }
6238
6239 return context;
6240 }
6241
6242 /* Return the innermost context enclosing DECL that is
6243 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
6244 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
6245
6246 tree
6247 decl_type_context (tree decl)
6248 {
6249 tree context = DECL_CONTEXT (decl);
6250
6251 while (context)
6252 switch (TREE_CODE (context))
6253 {
6254 case NAMESPACE_DECL:
6255 case TRANSLATION_UNIT_DECL:
6256 return NULL_TREE;
6257
6258 case RECORD_TYPE:
6259 case UNION_TYPE:
6260 case QUAL_UNION_TYPE:
6261 return context;
6262
6263 case TYPE_DECL:
6264 case FUNCTION_DECL:
6265 context = DECL_CONTEXT (context);
6266 break;
6267
6268 case BLOCK:
6269 context = BLOCK_SUPERCONTEXT (context);
6270 break;
6271
6272 default:
6273 gcc_unreachable ();
6274 }
6275
6276 return NULL_TREE;
6277 }
6278
6279 /* CALL is a CALL_EXPR. Return the declaration for the function
6280 called, or NULL_TREE if the called function cannot be
6281 determined. */
6282
6283 tree
6284 get_callee_fndecl (tree call)
6285 {
6286 tree addr;
6287
6288 if (call == error_mark_node)
6289 return call;
6290
6291 /* It's invalid to call this function with anything but a
6292 CALL_EXPR. */
6293 gcc_assert (TREE_CODE (call) == CALL_EXPR);
6294
6295 /* The first operand to the CALL is the address of the function
6296 called. */
6297 addr = TREE_OPERAND (call, 0);
6298
6299 STRIP_NOPS (addr);
6300
6301 /* If this is a readonly function pointer, extract its initial value. */
6302 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
6303 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
6304 && DECL_INITIAL (addr))
6305 addr = DECL_INITIAL (addr);
6306
6307 /* If the address is just `&f' for some function `f', then we know
6308 that `f' is being called. */
6309 if (TREE_CODE (addr) == ADDR_EXPR
6310 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
6311 return TREE_OPERAND (addr, 0);
6312
6313 /* We couldn't figure out what was being called. Maybe the front
6314 end has some idea. */
6315 return lang_hooks.lang_get_callee_fndecl (call);
6316 }
6317
6318 /* Print debugging information about tree nodes generated during the compile,
6319 and any language-specific information. */
6320
6321 void
6322 dump_tree_statistics (void)
6323 {
6324 #ifdef GATHER_STATISTICS
6325 int i;
6326 int total_nodes, total_bytes;
6327 #endif
6328
6329 fprintf (stderr, "\n??? tree nodes created\n\n");
6330 #ifdef GATHER_STATISTICS
6331 fprintf (stderr, "Kind Nodes Bytes\n");
6332 fprintf (stderr, "---------------------------------------\n");
6333 total_nodes = total_bytes = 0;
6334 for (i = 0; i < (int) all_kinds; i++)
6335 {
6336 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
6337 tree_node_counts[i], tree_node_sizes[i]);
6338 total_nodes += tree_node_counts[i];
6339 total_bytes += tree_node_sizes[i];
6340 }
6341 fprintf (stderr, "---------------------------------------\n");
6342 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
6343 fprintf (stderr, "---------------------------------------\n");
6344 ssanames_print_statistics ();
6345 phinodes_print_statistics ();
6346 #else
6347 fprintf (stderr, "(No per-node statistics)\n");
6348 #endif
6349 print_type_hash_statistics ();
6350 print_debug_expr_statistics ();
6351 print_value_expr_statistics ();
6352 print_restrict_base_statistics ();
6353 lang_hooks.print_statistics ();
6354 }
6355 \f
6356 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6357
6358 /* Generate a crc32 of a string. */
6359
6360 unsigned
6361 crc32_string (unsigned chksum, const char *string)
6362 {
6363 do
6364 {
6365 unsigned value = *string << 24;
6366 unsigned ix;
6367
6368 for (ix = 8; ix--; value <<= 1)
6369 {
6370 unsigned feedback;
6371
6372 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6373 chksum <<= 1;
6374 chksum ^= feedback;
6375 }
6376 }
6377 while (*string++);
6378 return chksum;
6379 }
6380
6381 /* P is a string that will be used in a symbol. Mask out any characters
6382 that are not valid in that context. */
6383
6384 void
6385 clean_symbol_name (char *p)
6386 {
6387 for (; *p; p++)
6388 if (! (ISALNUM (*p)
6389 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6390 || *p == '$'
6391 #endif
6392 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6393 || *p == '.'
6394 #endif
6395 ))
6396 *p = '_';
6397 }
6398
6399 /* Generate a name for a special-purpose function function.
6400 The generated name may need to be unique across the whole link.
6401 TYPE is some string to identify the purpose of this function to the
6402 linker or collect2; it must start with an uppercase letter,
6403 one of:
6404 I - for constructors
6405 D - for destructors
6406 N - for C++ anonymous namespaces
6407 F - for DWARF unwind frame information. */
6408
6409 tree
6410 get_file_function_name (const char *type)
6411 {
6412 char *buf;
6413 const char *p;
6414 char *q;
6415
6416 /* If we already have a name we know to be unique, just use that. */
6417 if (first_global_object_name)
6418 p = first_global_object_name;
6419 /* If the target is handling the constructors/destructors, they
6420 will be local to this file and the name is only necessary for
6421 debugging purposes. */
6422 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6423 {
6424 const char *file = main_input_filename;
6425 if (! file)
6426 file = input_filename;
6427 /* Just use the file's basename, because the full pathname
6428 might be quite long. */
6429 p = strrchr (file, '/');
6430 if (p)
6431 p++;
6432 else
6433 p = file;
6434 p = q = ASTRDUP (p);
6435 clean_symbol_name (q);
6436 }
6437 else
6438 {
6439 /* Otherwise, the name must be unique across the entire link.
6440 We don't have anything that we know to be unique to this translation
6441 unit, so use what we do have and throw in some randomness. */
6442 unsigned len;
6443 const char *name = weak_global_object_name;
6444 const char *file = main_input_filename;
6445
6446 if (! name)
6447 name = "";
6448 if (! file)
6449 file = input_filename;
6450
6451 len = strlen (file);
6452 q = alloca (9 * 2 + len + 1);
6453 memcpy (q, file, len + 1);
6454 clean_symbol_name (q);
6455
6456 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6457 crc32_string (0, flag_random_seed));
6458
6459 p = q;
6460 }
6461
6462 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6463
6464 /* Set up the name of the file-level functions we may need.
6465 Use a global object (which is already required to be unique over
6466 the program) rather than the file name (which imposes extra
6467 constraints). */
6468 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6469
6470 return get_identifier (buf);
6471 }
6472 \f
6473 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6474
6475 /* Complain that the tree code of NODE does not match the expected 0
6476 terminated list of trailing codes. The trailing code list can be
6477 empty, for a more vague error message. FILE, LINE, and FUNCTION
6478 are of the caller. */
6479
6480 void
6481 tree_check_failed (const tree node, const char *file,
6482 int line, const char *function, ...)
6483 {
6484 va_list args;
6485 char *buffer;
6486 unsigned length = 0;
6487 int code;
6488
6489 va_start (args, function);
6490 while ((code = va_arg (args, int)))
6491 length += 4 + strlen (tree_code_name[code]);
6492 va_end (args);
6493 if (length)
6494 {
6495 va_start (args, function);
6496 length += strlen ("expected ");
6497 buffer = alloca (length);
6498 length = 0;
6499 while ((code = va_arg (args, int)))
6500 {
6501 const char *prefix = length ? " or " : "expected ";
6502
6503 strcpy (buffer + length, prefix);
6504 length += strlen (prefix);
6505 strcpy (buffer + length, tree_code_name[code]);
6506 length += strlen (tree_code_name[code]);
6507 }
6508 va_end (args);
6509 }
6510 else
6511 buffer = (char *)"unexpected node";
6512
6513 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6514 buffer, tree_code_name[TREE_CODE (node)],
6515 function, trim_filename (file), line);
6516 }
6517
6518 /* Complain that the tree code of NODE does match the expected 0
6519 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6520 the caller. */
6521
6522 void
6523 tree_not_check_failed (const tree node, const char *file,
6524 int line, const char *function, ...)
6525 {
6526 va_list args;
6527 char *buffer;
6528 unsigned length = 0;
6529 int code;
6530
6531 va_start (args, function);
6532 while ((code = va_arg (args, int)))
6533 length += 4 + strlen (tree_code_name[code]);
6534 va_end (args);
6535 va_start (args, function);
6536 buffer = alloca (length);
6537 length = 0;
6538 while ((code = va_arg (args, int)))
6539 {
6540 if (length)
6541 {
6542 strcpy (buffer + length, " or ");
6543 length += 4;
6544 }
6545 strcpy (buffer + length, tree_code_name[code]);
6546 length += strlen (tree_code_name[code]);
6547 }
6548 va_end (args);
6549
6550 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6551 buffer, tree_code_name[TREE_CODE (node)],
6552 function, trim_filename (file), line);
6553 }
6554
6555 /* Similar to tree_check_failed, except that we check for a class of tree
6556 code, given in CL. */
6557
6558 void
6559 tree_class_check_failed (const tree node, const enum tree_code_class cl,
6560 const char *file, int line, const char *function)
6561 {
6562 internal_error
6563 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6564 TREE_CODE_CLASS_STRING (cl),
6565 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6566 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6567 }
6568
6569 /* Similar to tree_check_failed, except that instead of specifying a
6570 dozen codes, use the knowledge that they're all sequential. */
6571
6572 void
6573 tree_range_check_failed (const tree node, const char *file, int line,
6574 const char *function, enum tree_code c1,
6575 enum tree_code c2)
6576 {
6577 char *buffer;
6578 unsigned length = 0;
6579 enum tree_code c;
6580
6581 for (c = c1; c <= c2; ++c)
6582 length += 4 + strlen (tree_code_name[c]);
6583
6584 length += strlen ("expected ");
6585 buffer = alloca (length);
6586 length = 0;
6587
6588 for (c = c1; c <= c2; ++c)
6589 {
6590 const char *prefix = length ? " or " : "expected ";
6591
6592 strcpy (buffer + length, prefix);
6593 length += strlen (prefix);
6594 strcpy (buffer + length, tree_code_name[c]);
6595 length += strlen (tree_code_name[c]);
6596 }
6597
6598 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6599 buffer, tree_code_name[TREE_CODE (node)],
6600 function, trim_filename (file), line);
6601 }
6602
6603
6604 /* Similar to tree_check_failed, except that we check that a tree does
6605 not have the specified code, given in CL. */
6606
6607 void
6608 tree_not_class_check_failed (const tree node, const enum tree_code_class cl,
6609 const char *file, int line, const char *function)
6610 {
6611 internal_error
6612 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6613 TREE_CODE_CLASS_STRING (cl),
6614 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6615 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6616 }
6617
6618
6619 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
6620
6621 void
6622 omp_clause_check_failed (const tree node, const char *file, int line,
6623 const char *function, enum omp_clause_code code)
6624 {
6625 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6626 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6627 function, trim_filename (file), line);
6628 }
6629
6630
6631 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
6632
6633 void
6634 omp_clause_range_check_failed (const tree node, const char *file, int line,
6635 const char *function, enum omp_clause_code c1,
6636 enum omp_clause_code c2)
6637 {
6638 char *buffer;
6639 unsigned length = 0;
6640 enum omp_clause_code c;
6641
6642 for (c = c1; c <= c2; ++c)
6643 length += 4 + strlen (omp_clause_code_name[c]);
6644
6645 length += strlen ("expected ");
6646 buffer = alloca (length);
6647 length = 0;
6648
6649 for (c = c1; c <= c2; ++c)
6650 {
6651 const char *prefix = length ? " or " : "expected ";
6652
6653 strcpy (buffer + length, prefix);
6654 length += strlen (prefix);
6655 strcpy (buffer + length, omp_clause_code_name[c]);
6656 length += strlen (omp_clause_code_name[c]);
6657 }
6658
6659 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6660 buffer, omp_clause_code_name[TREE_CODE (node)],
6661 function, trim_filename (file), line);
6662 }
6663
6664
6665 #undef DEFTREESTRUCT
6666 #define DEFTREESTRUCT(VAL, NAME) NAME,
6667
6668 static const char *ts_enum_names[] = {
6669 #include "treestruct.def"
6670 };
6671 #undef DEFTREESTRUCT
6672
6673 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6674
6675 /* Similar to tree_class_check_failed, except that we check for
6676 whether CODE contains the tree structure identified by EN. */
6677
6678 void
6679 tree_contains_struct_check_failed (const tree node,
6680 const enum tree_node_structure_enum en,
6681 const char *file, int line,
6682 const char *function)
6683 {
6684 internal_error
6685 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6686 TS_ENUM_NAME(en),
6687 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6688 }
6689
6690
6691 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6692 (dynamically sized) vector. */
6693
6694 void
6695 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6696 const char *function)
6697 {
6698 internal_error
6699 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6700 idx + 1, len, function, trim_filename (file), line);
6701 }
6702
6703 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6704 (dynamically sized) vector. */
6705
6706 void
6707 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6708 const char *function)
6709 {
6710 internal_error
6711 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6712 idx + 1, len, function, trim_filename (file), line);
6713 }
6714
6715 /* Similar to above, except that the check is for the bounds of the operand
6716 vector of an expression node. */
6717
6718 void
6719 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
6720 int line, const char *function)
6721 {
6722 internal_error
6723 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6724 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
6725 function, trim_filename (file), line);
6726 }
6727
6728 /* Similar to above, except that the check is for the number of
6729 operands of an OMP_CLAUSE node. */
6730
6731 void
6732 omp_clause_operand_check_failed (int idx, tree t, const char *file,
6733 int line, const char *function)
6734 {
6735 internal_error
6736 ("tree check: accessed operand %d of omp_clause %s with %d operands "
6737 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6738 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6739 trim_filename (file), line);
6740 }
6741 #endif /* ENABLE_TREE_CHECKING */
6742 \f
6743 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6744 and mapped to the machine mode MODE. Initialize its fields and build
6745 the information necessary for debugging output. */
6746
6747 static tree
6748 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6749 {
6750 tree t;
6751 hashval_t hashcode = 0;
6752
6753 /* Build a main variant, based on the main variant of the inner type, then
6754 use it to build the variant we return. */
6755 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6756 && TYPE_MAIN_VARIANT (innertype) != innertype)
6757 return build_type_attribute_qual_variant (
6758 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6759 TYPE_ATTRIBUTES (innertype),
6760 TYPE_QUALS (innertype));
6761
6762 t = make_node (VECTOR_TYPE);
6763 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6764 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6765 TYPE_MODE (t) = mode;
6766 TYPE_READONLY (t) = TYPE_READONLY (innertype);
6767 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6768
6769 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
6770 SET_TYPE_STRUCTURAL_EQUALITY (t);
6771 else if (TYPE_CANONICAL (innertype) != innertype
6772 || mode != VOIDmode)
6773 TYPE_CANONICAL (t)
6774 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
6775
6776 layout_type (t);
6777
6778 {
6779 tree index = build_int_cst (NULL_TREE, nunits - 1);
6780 tree array = build_array_type (innertype, build_index_type (index));
6781 tree rt = make_node (RECORD_TYPE);
6782
6783 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6784 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6785 layout_type (rt);
6786 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6787 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
6788 the representation type, and we want to find that die when looking up
6789 the vector type. This is most easily achieved by making the TYPE_UID
6790 numbers equal. */
6791 TYPE_UID (rt) = TYPE_UID (t);
6792 }
6793
6794 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6795 hashcode = iterative_hash_host_wide_int (mode, hashcode);
6796 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6797 return type_hash_canon (hashcode, t);
6798 }
6799
6800 static tree
6801 make_or_reuse_type (unsigned size, int unsignedp)
6802 {
6803 if (size == INT_TYPE_SIZE)
6804 return unsignedp ? unsigned_type_node : integer_type_node;
6805 if (size == CHAR_TYPE_SIZE)
6806 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6807 if (size == SHORT_TYPE_SIZE)
6808 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6809 if (size == LONG_TYPE_SIZE)
6810 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6811 if (size == LONG_LONG_TYPE_SIZE)
6812 return (unsignedp ? long_long_unsigned_type_node
6813 : long_long_integer_type_node);
6814
6815 if (unsignedp)
6816 return make_unsigned_type (size);
6817 else
6818 return make_signed_type (size);
6819 }
6820
6821 /* Create nodes for all integer types (and error_mark_node) using the sizes
6822 of C datatypes. The caller should call set_sizetype soon after calling
6823 this function to select one of the types as sizetype. */
6824
6825 void
6826 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6827 {
6828 error_mark_node = make_node (ERROR_MARK);
6829 TREE_TYPE (error_mark_node) = error_mark_node;
6830
6831 initialize_sizetypes (signed_sizetype);
6832
6833 /* Define both `signed char' and `unsigned char'. */
6834 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6835 TYPE_STRING_FLAG (signed_char_type_node) = 1;
6836 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6837 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
6838
6839 /* Define `char', which is like either `signed char' or `unsigned char'
6840 but not the same as either. */
6841 char_type_node
6842 = (signed_char
6843 ? make_signed_type (CHAR_TYPE_SIZE)
6844 : make_unsigned_type (CHAR_TYPE_SIZE));
6845 TYPE_STRING_FLAG (char_type_node) = 1;
6846
6847 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6848 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6849 integer_type_node = make_signed_type (INT_TYPE_SIZE);
6850 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6851 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6852 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6853 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6854 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6855
6856 /* Define a boolean type. This type only represents boolean values but
6857 may be larger than char depending on the value of BOOL_TYPE_SIZE.
6858 Front ends which want to override this size (i.e. Java) can redefine
6859 boolean_type_node before calling build_common_tree_nodes_2. */
6860 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6861 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6862 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6863 TYPE_PRECISION (boolean_type_node) = 1;
6864
6865 /* Fill in the rest of the sized types. Reuse existing type nodes
6866 when possible. */
6867 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6868 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6869 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6870 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6871 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6872
6873 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6874 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6875 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6876 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6877 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6878
6879 access_public_node = get_identifier ("public");
6880 access_protected_node = get_identifier ("protected");
6881 access_private_node = get_identifier ("private");
6882 }
6883
6884 /* Call this function after calling build_common_tree_nodes and set_sizetype.
6885 It will create several other common tree nodes. */
6886
6887 void
6888 build_common_tree_nodes_2 (int short_double)
6889 {
6890 /* Define these next since types below may used them. */
6891 integer_zero_node = build_int_cst (NULL_TREE, 0);
6892 integer_one_node = build_int_cst (NULL_TREE, 1);
6893 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6894
6895 size_zero_node = size_int (0);
6896 size_one_node = size_int (1);
6897 bitsize_zero_node = bitsize_int (0);
6898 bitsize_one_node = bitsize_int (1);
6899 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6900
6901 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6902 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6903
6904 void_type_node = make_node (VOID_TYPE);
6905 layout_type (void_type_node);
6906
6907 /* We are not going to have real types in C with less than byte alignment,
6908 so we might as well not have any types that claim to have it. */
6909 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6910 TYPE_USER_ALIGN (void_type_node) = 0;
6911
6912 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6913 layout_type (TREE_TYPE (null_pointer_node));
6914
6915 ptr_type_node = build_pointer_type (void_type_node);
6916 const_ptr_type_node
6917 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6918 fileptr_type_node = ptr_type_node;
6919
6920 float_type_node = make_node (REAL_TYPE);
6921 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6922 layout_type (float_type_node);
6923
6924 double_type_node = make_node (REAL_TYPE);
6925 if (short_double)
6926 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6927 else
6928 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6929 layout_type (double_type_node);
6930
6931 long_double_type_node = make_node (REAL_TYPE);
6932 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6933 layout_type (long_double_type_node);
6934
6935 float_ptr_type_node = build_pointer_type (float_type_node);
6936 double_ptr_type_node = build_pointer_type (double_type_node);
6937 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
6938 integer_ptr_type_node = build_pointer_type (integer_type_node);
6939
6940 /* Fixed size integer types. */
6941 uint32_type_node = build_nonstandard_integer_type (32, true);
6942 uint64_type_node = build_nonstandard_integer_type (64, true);
6943
6944 /* Decimal float types. */
6945 dfloat32_type_node = make_node (REAL_TYPE);
6946 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
6947 layout_type (dfloat32_type_node);
6948 TYPE_MODE (dfloat32_type_node) = SDmode;
6949 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
6950
6951 dfloat64_type_node = make_node (REAL_TYPE);
6952 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
6953 layout_type (dfloat64_type_node);
6954 TYPE_MODE (dfloat64_type_node) = DDmode;
6955 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
6956
6957 dfloat128_type_node = make_node (REAL_TYPE);
6958 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
6959 layout_type (dfloat128_type_node);
6960 TYPE_MODE (dfloat128_type_node) = TDmode;
6961 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
6962
6963 complex_integer_type_node = make_node (COMPLEX_TYPE);
6964 TREE_TYPE (complex_integer_type_node) = integer_type_node;
6965 layout_type (complex_integer_type_node);
6966
6967 complex_float_type_node = make_node (COMPLEX_TYPE);
6968 TREE_TYPE (complex_float_type_node) = float_type_node;
6969 layout_type (complex_float_type_node);
6970
6971 complex_double_type_node = make_node (COMPLEX_TYPE);
6972 TREE_TYPE (complex_double_type_node) = double_type_node;
6973 layout_type (complex_double_type_node);
6974
6975 complex_long_double_type_node = make_node (COMPLEX_TYPE);
6976 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
6977 layout_type (complex_long_double_type_node);
6978
6979 {
6980 tree t = targetm.build_builtin_va_list ();
6981
6982 /* Many back-ends define record types without setting TYPE_NAME.
6983 If we copied the record type here, we'd keep the original
6984 record type without a name. This breaks name mangling. So,
6985 don't copy record types and let c_common_nodes_and_builtins()
6986 declare the type to be __builtin_va_list. */
6987 if (TREE_CODE (t) != RECORD_TYPE)
6988 t = build_variant_type_copy (t);
6989
6990 va_list_type_node = t;
6991 }
6992 }
6993
6994 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
6995
6996 static void
6997 local_define_builtin (const char *name, tree type, enum built_in_function code,
6998 const char *library_name, int ecf_flags)
6999 {
7000 tree decl;
7001
7002 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
7003 library_name, NULL_TREE);
7004 if (ecf_flags & ECF_CONST)
7005 TREE_READONLY (decl) = 1;
7006 if (ecf_flags & ECF_PURE)
7007 DECL_IS_PURE (decl) = 1;
7008 if (ecf_flags & ECF_NORETURN)
7009 TREE_THIS_VOLATILE (decl) = 1;
7010 if (ecf_flags & ECF_NOTHROW)
7011 TREE_NOTHROW (decl) = 1;
7012 if (ecf_flags & ECF_MALLOC)
7013 DECL_IS_MALLOC (decl) = 1;
7014
7015 built_in_decls[code] = decl;
7016 implicit_built_in_decls[code] = decl;
7017 }
7018
7019 /* Call this function after instantiating all builtins that the language
7020 front end cares about. This will build the rest of the builtins that
7021 are relied upon by the tree optimizers and the middle-end. */
7022
7023 void
7024 build_common_builtin_nodes (void)
7025 {
7026 tree tmp, ftype;
7027
7028 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
7029 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7030 {
7031 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7032 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7033 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7034 ftype = build_function_type (ptr_type_node, tmp);
7035
7036 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
7037 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
7038 "memcpy", ECF_NOTHROW);
7039 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7040 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
7041 "memmove", ECF_NOTHROW);
7042 }
7043
7044 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
7045 {
7046 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7047 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7048 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7049 ftype = build_function_type (integer_type_node, tmp);
7050 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
7051 "memcmp", ECF_PURE | ECF_NOTHROW);
7052 }
7053
7054 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
7055 {
7056 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7057 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
7058 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7059 ftype = build_function_type (ptr_type_node, tmp);
7060 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
7061 "memset", ECF_NOTHROW);
7062 }
7063
7064 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
7065 {
7066 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7067 ftype = build_function_type (ptr_type_node, tmp);
7068 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
7069 "alloca", ECF_NOTHROW | ECF_MALLOC);
7070 }
7071
7072 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7073 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7074 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7075 ftype = build_function_type (void_type_node, tmp);
7076 local_define_builtin ("__builtin_init_trampoline", ftype,
7077 BUILT_IN_INIT_TRAMPOLINE,
7078 "__builtin_init_trampoline", ECF_NOTHROW);
7079
7080 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7081 ftype = build_function_type (ptr_type_node, tmp);
7082 local_define_builtin ("__builtin_adjust_trampoline", ftype,
7083 BUILT_IN_ADJUST_TRAMPOLINE,
7084 "__builtin_adjust_trampoline",
7085 ECF_CONST | ECF_NOTHROW);
7086
7087 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7088 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7089 ftype = build_function_type (void_type_node, tmp);
7090 local_define_builtin ("__builtin_nonlocal_goto", ftype,
7091 BUILT_IN_NONLOCAL_GOTO,
7092 "__builtin_nonlocal_goto",
7093 ECF_NORETURN | ECF_NOTHROW);
7094
7095 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7096 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7097 ftype = build_function_type (void_type_node, tmp);
7098 local_define_builtin ("__builtin_setjmp_setup", ftype,
7099 BUILT_IN_SETJMP_SETUP,
7100 "__builtin_setjmp_setup", ECF_NOTHROW);
7101
7102 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7103 ftype = build_function_type (ptr_type_node, tmp);
7104 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
7105 BUILT_IN_SETJMP_DISPATCHER,
7106 "__builtin_setjmp_dispatcher",
7107 ECF_PURE | ECF_NOTHROW);
7108
7109 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7110 ftype = build_function_type (void_type_node, tmp);
7111 local_define_builtin ("__builtin_setjmp_receiver", ftype,
7112 BUILT_IN_SETJMP_RECEIVER,
7113 "__builtin_setjmp_receiver", ECF_NOTHROW);
7114
7115 ftype = build_function_type (ptr_type_node, void_list_node);
7116 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
7117 "__builtin_stack_save", ECF_NOTHROW);
7118
7119 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7120 ftype = build_function_type (void_type_node, tmp);
7121 local_define_builtin ("__builtin_stack_restore", ftype,
7122 BUILT_IN_STACK_RESTORE,
7123 "__builtin_stack_restore", ECF_NOTHROW);
7124
7125 ftype = build_function_type (void_type_node, void_list_node);
7126 local_define_builtin ("__builtin_profile_func_enter", ftype,
7127 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
7128 local_define_builtin ("__builtin_profile_func_exit", ftype,
7129 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
7130
7131 /* Complex multiplication and division. These are handled as builtins
7132 rather than optabs because emit_library_call_value doesn't support
7133 complex. Further, we can do slightly better with folding these
7134 beasties if the real and complex parts of the arguments are separate. */
7135 {
7136 enum machine_mode mode;
7137
7138 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
7139 {
7140 char mode_name_buf[4], *q;
7141 const char *p;
7142 enum built_in_function mcode, dcode;
7143 tree type, inner_type;
7144
7145 type = lang_hooks.types.type_for_mode (mode, 0);
7146 if (type == NULL)
7147 continue;
7148 inner_type = TREE_TYPE (type);
7149
7150 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
7151 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7152 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7153 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7154 ftype = build_function_type (type, tmp);
7155
7156 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7157 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7158
7159 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
7160 *q = TOLOWER (*p);
7161 *q = '\0';
7162
7163 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
7164 local_define_builtin (built_in_names[mcode], ftype, mcode,
7165 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
7166
7167 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
7168 local_define_builtin (built_in_names[dcode], ftype, dcode,
7169 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
7170 }
7171 }
7172 }
7173
7174 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
7175 better way.
7176
7177 If we requested a pointer to a vector, build up the pointers that
7178 we stripped off while looking for the inner type. Similarly for
7179 return values from functions.
7180
7181 The argument TYPE is the top of the chain, and BOTTOM is the
7182 new type which we will point to. */
7183
7184 tree
7185 reconstruct_complex_type (tree type, tree bottom)
7186 {
7187 tree inner, outer;
7188
7189 if (POINTER_TYPE_P (type))
7190 {
7191 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7192 outer = build_pointer_type (inner);
7193 }
7194 else if (TREE_CODE (type) == ARRAY_TYPE)
7195 {
7196 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7197 outer = build_array_type (inner, TYPE_DOMAIN (type));
7198 }
7199 else if (TREE_CODE (type) == FUNCTION_TYPE)
7200 {
7201 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7202 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
7203 }
7204 else if (TREE_CODE (type) == METHOD_TYPE)
7205 {
7206 tree argtypes;
7207 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7208 /* The build_method_type_directly() routine prepends 'this' to argument list,
7209 so we must compensate by getting rid of it. */
7210 argtypes = TYPE_ARG_TYPES (type);
7211 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
7212 inner,
7213 TYPE_ARG_TYPES (type));
7214 TYPE_ARG_TYPES (outer) = argtypes;
7215 }
7216 else
7217 return bottom;
7218
7219 TYPE_READONLY (outer) = TYPE_READONLY (type);
7220 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
7221
7222 return outer;
7223 }
7224
7225 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
7226 the inner type. */
7227 tree
7228 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
7229 {
7230 int nunits;
7231
7232 switch (GET_MODE_CLASS (mode))
7233 {
7234 case MODE_VECTOR_INT:
7235 case MODE_VECTOR_FLOAT:
7236 nunits = GET_MODE_NUNITS (mode);
7237 break;
7238
7239 case MODE_INT:
7240 /* Check that there are no leftover bits. */
7241 gcc_assert (GET_MODE_BITSIZE (mode)
7242 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
7243
7244 nunits = GET_MODE_BITSIZE (mode)
7245 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
7246 break;
7247
7248 default:
7249 gcc_unreachable ();
7250 }
7251
7252 return make_vector_type (innertype, nunits, mode);
7253 }
7254
7255 /* Similarly, but takes the inner type and number of units, which must be
7256 a power of two. */
7257
7258 tree
7259 build_vector_type (tree innertype, int nunits)
7260 {
7261 return make_vector_type (innertype, nunits, VOIDmode);
7262 }
7263
7264
7265 /* Build RESX_EXPR with given REGION_NUMBER. */
7266 tree
7267 build_resx (int region_number)
7268 {
7269 tree t;
7270 t = build1 (RESX_EXPR, void_type_node,
7271 build_int_cst (NULL_TREE, region_number));
7272 return t;
7273 }
7274
7275 /* Given an initializer INIT, return TRUE if INIT is zero or some
7276 aggregate of zeros. Otherwise return FALSE. */
7277 bool
7278 initializer_zerop (tree init)
7279 {
7280 tree elt;
7281
7282 STRIP_NOPS (init);
7283
7284 switch (TREE_CODE (init))
7285 {
7286 case INTEGER_CST:
7287 return integer_zerop (init);
7288
7289 case REAL_CST:
7290 /* ??? Note that this is not correct for C4X float formats. There,
7291 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
7292 negative exponent. */
7293 return real_zerop (init)
7294 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
7295
7296 case COMPLEX_CST:
7297 return integer_zerop (init)
7298 || (real_zerop (init)
7299 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
7300 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
7301
7302 case VECTOR_CST:
7303 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
7304 if (!initializer_zerop (TREE_VALUE (elt)))
7305 return false;
7306 return true;
7307
7308 case CONSTRUCTOR:
7309 {
7310 unsigned HOST_WIDE_INT idx;
7311
7312 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
7313 if (!initializer_zerop (elt))
7314 return false;
7315 return true;
7316 }
7317
7318 default:
7319 return false;
7320 }
7321 }
7322
7323 /* Build an empty statement. */
7324
7325 tree
7326 build_empty_stmt (void)
7327 {
7328 return build1 (NOP_EXPR, void_type_node, size_zero_node);
7329 }
7330
7331
7332 /* Build an OpenMP clause with code CODE. */
7333
7334 tree
7335 build_omp_clause (enum omp_clause_code code)
7336 {
7337 tree t;
7338 int size, length;
7339
7340 length = omp_clause_num_ops[code];
7341 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
7342
7343 t = ggc_alloc (size);
7344 memset (t, 0, size);
7345 TREE_SET_CODE (t, OMP_CLAUSE);
7346 OMP_CLAUSE_SET_CODE (t, code);
7347
7348 #ifdef GATHER_STATISTICS
7349 tree_node_counts[(int) omp_clause_kind]++;
7350 tree_node_sizes[(int) omp_clause_kind] += size;
7351 #endif
7352
7353 return t;
7354 }
7355
7356
7357 /* Returns true if it is possible to prove that the index of
7358 an array access REF (an ARRAY_REF expression) falls into the
7359 array bounds. */
7360
7361 bool
7362 in_array_bounds_p (tree ref)
7363 {
7364 tree idx = TREE_OPERAND (ref, 1);
7365 tree min, max;
7366
7367 if (TREE_CODE (idx) != INTEGER_CST)
7368 return false;
7369
7370 min = array_ref_low_bound (ref);
7371 max = array_ref_up_bound (ref);
7372 if (!min
7373 || !max
7374 || TREE_CODE (min) != INTEGER_CST
7375 || TREE_CODE (max) != INTEGER_CST)
7376 return false;
7377
7378 if (tree_int_cst_lt (idx, min)
7379 || tree_int_cst_lt (max, idx))
7380 return false;
7381
7382 return true;
7383 }
7384
7385 /* Returns true if it is possible to prove that the range of
7386 an array access REF (an ARRAY_RANGE_REF expression) falls
7387 into the array bounds. */
7388
7389 bool
7390 range_in_array_bounds_p (tree ref)
7391 {
7392 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7393 tree range_min, range_max, min, max;
7394
7395 range_min = TYPE_MIN_VALUE (domain_type);
7396 range_max = TYPE_MAX_VALUE (domain_type);
7397 if (!range_min
7398 || !range_max
7399 || TREE_CODE (range_min) != INTEGER_CST
7400 || TREE_CODE (range_max) != INTEGER_CST)
7401 return false;
7402
7403 min = array_ref_low_bound (ref);
7404 max = array_ref_up_bound (ref);
7405 if (!min
7406 || !max
7407 || TREE_CODE (min) != INTEGER_CST
7408 || TREE_CODE (max) != INTEGER_CST)
7409 return false;
7410
7411 if (tree_int_cst_lt (range_min, min)
7412 || tree_int_cst_lt (max, range_max))
7413 return false;
7414
7415 return true;
7416 }
7417
7418 /* Return true if T (assumed to be a DECL) is a global variable. */
7419
7420 bool
7421 is_global_var (tree t)
7422 {
7423 if (MTAG_P (t))
7424 return (TREE_STATIC (t) || MTAG_GLOBAL (t));
7425 else
7426 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
7427 }
7428
7429 /* Return true if T (assumed to be a DECL) must be assigned a memory
7430 location. */
7431
7432 bool
7433 needs_to_live_in_memory (tree t)
7434 {
7435 if (TREE_CODE (t) == SSA_NAME)
7436 t = SSA_NAME_VAR (t);
7437
7438 return (TREE_ADDRESSABLE (t)
7439 || is_global_var (t)
7440 || (TREE_CODE (t) == RESULT_DECL
7441 && aggregate_value_p (t, current_function_decl)));
7442 }
7443
7444 /* There are situations in which a language considers record types
7445 compatible which have different field lists. Decide if two fields
7446 are compatible. It is assumed that the parent records are compatible. */
7447
7448 bool
7449 fields_compatible_p (tree f1, tree f2)
7450 {
7451 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7452 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7453 return false;
7454
7455 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7456 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7457 return false;
7458
7459 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7460 return false;
7461
7462 return true;
7463 }
7464
7465 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
7466
7467 tree
7468 find_compatible_field (tree record, tree orig_field)
7469 {
7470 tree f;
7471
7472 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7473 if (TREE_CODE (f) == FIELD_DECL
7474 && fields_compatible_p (f, orig_field))
7475 return f;
7476
7477 /* ??? Why isn't this on the main fields list? */
7478 f = TYPE_VFIELD (record);
7479 if (f && TREE_CODE (f) == FIELD_DECL
7480 && fields_compatible_p (f, orig_field))
7481 return f;
7482
7483 /* ??? We should abort here, but Java appears to do Bad Things
7484 with inherited fields. */
7485 return orig_field;
7486 }
7487
7488 /* Return value of a constant X. */
7489
7490 HOST_WIDE_INT
7491 int_cst_value (tree x)
7492 {
7493 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7494 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7495 bool negative = ((val >> (bits - 1)) & 1) != 0;
7496
7497 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
7498
7499 if (negative)
7500 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7501 else
7502 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7503
7504 return val;
7505 }
7506
7507 /* Returns the greatest common divisor of A and B, which must be
7508 INTEGER_CSTs. */
7509
7510 tree
7511 tree_fold_gcd (tree a, tree b)
7512 {
7513 tree a_mod_b;
7514 tree type = TREE_TYPE (a);
7515
7516 gcc_assert (TREE_CODE (a) == INTEGER_CST);
7517 gcc_assert (TREE_CODE (b) == INTEGER_CST);
7518
7519 if (integer_zerop (a))
7520 return b;
7521
7522 if (integer_zerop (b))
7523 return a;
7524
7525 if (tree_int_cst_sgn (a) == -1)
7526 a = fold_build2 (MULT_EXPR, type, a,
7527 build_int_cst (type, -1));
7528
7529 if (tree_int_cst_sgn (b) == -1)
7530 b = fold_build2 (MULT_EXPR, type, b,
7531 build_int_cst (type, -1));
7532
7533 while (1)
7534 {
7535 a_mod_b = fold_build2 (FLOOR_MOD_EXPR, type, a, b);
7536
7537 if (!TREE_INT_CST_LOW (a_mod_b)
7538 && !TREE_INT_CST_HIGH (a_mod_b))
7539 return b;
7540
7541 a = b;
7542 b = a_mod_b;
7543 }
7544 }
7545
7546 /* Returns unsigned variant of TYPE. */
7547
7548 tree
7549 unsigned_type_for (tree type)
7550 {
7551 if (POINTER_TYPE_P (type))
7552 return lang_hooks.types.unsigned_type (size_type_node);
7553 return lang_hooks.types.unsigned_type (type);
7554 }
7555
7556 /* Returns signed variant of TYPE. */
7557
7558 tree
7559 signed_type_for (tree type)
7560 {
7561 if (POINTER_TYPE_P (type))
7562 return lang_hooks.types.signed_type (size_type_node);
7563 return lang_hooks.types.signed_type (type);
7564 }
7565
7566 /* Returns the largest value obtainable by casting something in INNER type to
7567 OUTER type. */
7568
7569 tree
7570 upper_bound_in_type (tree outer, tree inner)
7571 {
7572 unsigned HOST_WIDE_INT lo, hi;
7573 unsigned int det = 0;
7574 unsigned oprec = TYPE_PRECISION (outer);
7575 unsigned iprec = TYPE_PRECISION (inner);
7576 unsigned prec;
7577
7578 /* Compute a unique number for every combination. */
7579 det |= (oprec > iprec) ? 4 : 0;
7580 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7581 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7582
7583 /* Determine the exponent to use. */
7584 switch (det)
7585 {
7586 case 0:
7587 case 1:
7588 /* oprec <= iprec, outer: signed, inner: don't care. */
7589 prec = oprec - 1;
7590 break;
7591 case 2:
7592 case 3:
7593 /* oprec <= iprec, outer: unsigned, inner: don't care. */
7594 prec = oprec;
7595 break;
7596 case 4:
7597 /* oprec > iprec, outer: signed, inner: signed. */
7598 prec = iprec - 1;
7599 break;
7600 case 5:
7601 /* oprec > iprec, outer: signed, inner: unsigned. */
7602 prec = iprec;
7603 break;
7604 case 6:
7605 /* oprec > iprec, outer: unsigned, inner: signed. */
7606 prec = oprec;
7607 break;
7608 case 7:
7609 /* oprec > iprec, outer: unsigned, inner: unsigned. */
7610 prec = iprec;
7611 break;
7612 default:
7613 gcc_unreachable ();
7614 }
7615
7616 /* Compute 2^^prec - 1. */
7617 if (prec <= HOST_BITS_PER_WIDE_INT)
7618 {
7619 hi = 0;
7620 lo = ((~(unsigned HOST_WIDE_INT) 0)
7621 >> (HOST_BITS_PER_WIDE_INT - prec));
7622 }
7623 else
7624 {
7625 hi = ((~(unsigned HOST_WIDE_INT) 0)
7626 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
7627 lo = ~(unsigned HOST_WIDE_INT) 0;
7628 }
7629
7630 return build_int_cst_wide (outer, lo, hi);
7631 }
7632
7633 /* Returns the smallest value obtainable by casting something in INNER type to
7634 OUTER type. */
7635
7636 tree
7637 lower_bound_in_type (tree outer, tree inner)
7638 {
7639 unsigned HOST_WIDE_INT lo, hi;
7640 unsigned oprec = TYPE_PRECISION (outer);
7641 unsigned iprec = TYPE_PRECISION (inner);
7642
7643 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
7644 and obtain 0. */
7645 if (TYPE_UNSIGNED (outer)
7646 /* If we are widening something of an unsigned type, OUTER type
7647 contains all values of INNER type. In particular, both INNER
7648 and OUTER types have zero in common. */
7649 || (oprec > iprec && TYPE_UNSIGNED (inner)))
7650 lo = hi = 0;
7651 else
7652 {
7653 /* If we are widening a signed type to another signed type, we
7654 want to obtain -2^^(iprec-1). If we are keeping the
7655 precision or narrowing to a signed type, we want to obtain
7656 -2^(oprec-1). */
7657 unsigned prec = oprec > iprec ? iprec : oprec;
7658
7659 if (prec <= HOST_BITS_PER_WIDE_INT)
7660 {
7661 hi = ~(unsigned HOST_WIDE_INT) 0;
7662 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
7663 }
7664 else
7665 {
7666 hi = ((~(unsigned HOST_WIDE_INT) 0)
7667 << (prec - HOST_BITS_PER_WIDE_INT - 1));
7668 lo = 0;
7669 }
7670 }
7671
7672 return build_int_cst_wide (outer, lo, hi);
7673 }
7674
7675 /* Return nonzero if two operands that are suitable for PHI nodes are
7676 necessarily equal. Specifically, both ARG0 and ARG1 must be either
7677 SSA_NAME or invariant. Note that this is strictly an optimization.
7678 That is, callers of this function can directly call operand_equal_p
7679 and get the same result, only slower. */
7680
7681 int
7682 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
7683 {
7684 if (arg0 == arg1)
7685 return 1;
7686 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
7687 return 0;
7688 return operand_equal_p (arg0, arg1, 0);
7689 }
7690
7691 /* Returns number of zeros at the end of binary representation of X.
7692
7693 ??? Use ffs if available? */
7694
7695 tree
7696 num_ending_zeros (tree x)
7697 {
7698 unsigned HOST_WIDE_INT fr, nfr;
7699 unsigned num, abits;
7700 tree type = TREE_TYPE (x);
7701
7702 if (TREE_INT_CST_LOW (x) == 0)
7703 {
7704 num = HOST_BITS_PER_WIDE_INT;
7705 fr = TREE_INT_CST_HIGH (x);
7706 }
7707 else
7708 {
7709 num = 0;
7710 fr = TREE_INT_CST_LOW (x);
7711 }
7712
7713 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
7714 {
7715 nfr = fr >> abits;
7716 if (nfr << abits == fr)
7717 {
7718 num += abits;
7719 fr = nfr;
7720 }
7721 }
7722
7723 if (num > TYPE_PRECISION (type))
7724 num = TYPE_PRECISION (type);
7725
7726 return build_int_cst_type (type, num);
7727 }
7728
7729
7730 #define WALK_SUBTREE(NODE) \
7731 do \
7732 { \
7733 result = walk_tree (&(NODE), func, data, pset); \
7734 if (result) \
7735 return result; \
7736 } \
7737 while (0)
7738
7739 /* This is a subroutine of walk_tree that walks field of TYPE that are to
7740 be walked whenever a type is seen in the tree. Rest of operands and return
7741 value are as for walk_tree. */
7742
7743 static tree
7744 walk_type_fields (tree type, walk_tree_fn func, void *data,
7745 struct pointer_set_t *pset)
7746 {
7747 tree result = NULL_TREE;
7748
7749 switch (TREE_CODE (type))
7750 {
7751 case POINTER_TYPE:
7752 case REFERENCE_TYPE:
7753 /* We have to worry about mutually recursive pointers. These can't
7754 be written in C. They can in Ada. It's pathological, but
7755 there's an ACATS test (c38102a) that checks it. Deal with this
7756 by checking if we're pointing to another pointer, that one
7757 points to another pointer, that one does too, and we have no htab.
7758 If so, get a hash table. We check three levels deep to avoid
7759 the cost of the hash table if we don't need one. */
7760 if (POINTER_TYPE_P (TREE_TYPE (type))
7761 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7762 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7763 && !pset)
7764 {
7765 result = walk_tree_without_duplicates (&TREE_TYPE (type),
7766 func, data);
7767 if (result)
7768 return result;
7769
7770 break;
7771 }
7772
7773 /* ... fall through ... */
7774
7775 case COMPLEX_TYPE:
7776 WALK_SUBTREE (TREE_TYPE (type));
7777 break;
7778
7779 case METHOD_TYPE:
7780 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7781
7782 /* Fall through. */
7783
7784 case FUNCTION_TYPE:
7785 WALK_SUBTREE (TREE_TYPE (type));
7786 {
7787 tree arg;
7788
7789 /* We never want to walk into default arguments. */
7790 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7791 WALK_SUBTREE (TREE_VALUE (arg));
7792 }
7793 break;
7794
7795 case ARRAY_TYPE:
7796 /* Don't follow this nodes's type if a pointer for fear that we'll
7797 have infinite recursion. Those types are uninteresting anyway. */
7798 if (!POINTER_TYPE_P (TREE_TYPE (type))
7799 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE)
7800 WALK_SUBTREE (TREE_TYPE (type));
7801 WALK_SUBTREE (TYPE_DOMAIN (type));
7802 break;
7803
7804 case OFFSET_TYPE:
7805 WALK_SUBTREE (TREE_TYPE (type));
7806 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7807 break;
7808
7809 default:
7810 break;
7811 }
7812
7813 return NULL_TREE;
7814 }
7815
7816 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
7817 called with the DATA and the address of each sub-tree. If FUNC returns a
7818 non-NULL value, the traversal is stopped, and the value returned by FUNC
7819 is returned. If PSET is non-NULL it is used to record the nodes visited,
7820 and to avoid visiting a node more than once. */
7821
7822 tree
7823 walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7824 {
7825 enum tree_code code;
7826 int walk_subtrees;
7827 tree result;
7828
7829 #define WALK_SUBTREE_TAIL(NODE) \
7830 do \
7831 { \
7832 tp = & (NODE); \
7833 goto tail_recurse; \
7834 } \
7835 while (0)
7836
7837 tail_recurse:
7838 /* Skip empty subtrees. */
7839 if (!*tp)
7840 return NULL_TREE;
7841
7842 /* Don't walk the same tree twice, if the user has requested
7843 that we avoid doing so. */
7844 if (pset && pointer_set_insert (pset, *tp))
7845 return NULL_TREE;
7846
7847 /* Call the function. */
7848 walk_subtrees = 1;
7849 result = (*func) (tp, &walk_subtrees, data);
7850
7851 /* If we found something, return it. */
7852 if (result)
7853 return result;
7854
7855 code = TREE_CODE (*tp);
7856
7857 /* Even if we didn't, FUNC may have decided that there was nothing
7858 interesting below this point in the tree. */
7859 if (!walk_subtrees)
7860 {
7861 /* But we still need to check our siblings. */
7862 if (code == TREE_LIST)
7863 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7864 else if (code == OMP_CLAUSE)
7865 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7866 else
7867 return NULL_TREE;
7868 }
7869
7870 result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
7871 data, pset);
7872 if (result || !walk_subtrees)
7873 return result;
7874
7875 switch (code)
7876 {
7877 case ERROR_MARK:
7878 case IDENTIFIER_NODE:
7879 case INTEGER_CST:
7880 case REAL_CST:
7881 case VECTOR_CST:
7882 case STRING_CST:
7883 case BLOCK:
7884 case PLACEHOLDER_EXPR:
7885 case SSA_NAME:
7886 case FIELD_DECL:
7887 case RESULT_DECL:
7888 /* None of these have subtrees other than those already walked
7889 above. */
7890 break;
7891
7892 case TREE_LIST:
7893 WALK_SUBTREE (TREE_VALUE (*tp));
7894 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7895 break;
7896
7897 case TREE_VEC:
7898 {
7899 int len = TREE_VEC_LENGTH (*tp);
7900
7901 if (len == 0)
7902 break;
7903
7904 /* Walk all elements but the first. */
7905 while (--len)
7906 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
7907
7908 /* Now walk the first one as a tail call. */
7909 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
7910 }
7911
7912 case COMPLEX_CST:
7913 WALK_SUBTREE (TREE_REALPART (*tp));
7914 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
7915
7916 case CONSTRUCTOR:
7917 {
7918 unsigned HOST_WIDE_INT idx;
7919 constructor_elt *ce;
7920
7921 for (idx = 0;
7922 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
7923 idx++)
7924 WALK_SUBTREE (ce->value);
7925 }
7926 break;
7927
7928 case SAVE_EXPR:
7929 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
7930
7931 case BIND_EXPR:
7932 {
7933 tree decl;
7934 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
7935 {
7936 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
7937 into declarations that are just mentioned, rather than
7938 declared; they don't really belong to this part of the tree.
7939 And, we can see cycles: the initializer for a declaration
7940 can refer to the declaration itself. */
7941 WALK_SUBTREE (DECL_INITIAL (decl));
7942 WALK_SUBTREE (DECL_SIZE (decl));
7943 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
7944 }
7945 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
7946 }
7947
7948 case STATEMENT_LIST:
7949 {
7950 tree_stmt_iterator i;
7951 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
7952 WALK_SUBTREE (*tsi_stmt_ptr (i));
7953 }
7954 break;
7955
7956 case OMP_CLAUSE:
7957 switch (OMP_CLAUSE_CODE (*tp))
7958 {
7959 case OMP_CLAUSE_PRIVATE:
7960 case OMP_CLAUSE_SHARED:
7961 case OMP_CLAUSE_FIRSTPRIVATE:
7962 case OMP_CLAUSE_LASTPRIVATE:
7963 case OMP_CLAUSE_COPYIN:
7964 case OMP_CLAUSE_COPYPRIVATE:
7965 case OMP_CLAUSE_IF:
7966 case OMP_CLAUSE_NUM_THREADS:
7967 case OMP_CLAUSE_SCHEDULE:
7968 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
7969 /* FALLTHRU */
7970
7971 case OMP_CLAUSE_NOWAIT:
7972 case OMP_CLAUSE_ORDERED:
7973 case OMP_CLAUSE_DEFAULT:
7974 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7975
7976 case OMP_CLAUSE_REDUCTION:
7977 {
7978 int i;
7979 for (i = 0; i < 4; i++)
7980 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
7981 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7982 }
7983
7984 default:
7985 gcc_unreachable ();
7986 }
7987 break;
7988
7989 case TARGET_EXPR:
7990 {
7991 int i, len;
7992
7993 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
7994 But, we only want to walk once. */
7995 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
7996 for (i = 0; i < len; ++i)
7997 WALK_SUBTREE (TREE_OPERAND (*tp, i));
7998 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
7999 }
8000
8001 case DECL_EXPR:
8002 /* If this is a TYPE_DECL, walk into the fields of the type that it's
8003 defining. We only want to walk into these fields of a type in this
8004 case and not in the general case of a mere reference to the type.
8005
8006 The criterion is as follows: if the field can be an expression, it
8007 must be walked only here. This should be in keeping with the fields
8008 that are directly gimplified in gimplify_type_sizes in order for the
8009 mark/copy-if-shared/unmark machinery of the gimplifier to work with
8010 variable-sized types.
8011
8012 Note that DECLs get walked as part of processing the BIND_EXPR. */
8013 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
8014 {
8015 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
8016 if (TREE_CODE (*type_p) == ERROR_MARK)
8017 return NULL_TREE;
8018
8019 /* Call the function for the type. See if it returns anything or
8020 doesn't want us to continue. If we are to continue, walk both
8021 the normal fields and those for the declaration case. */
8022 result = (*func) (type_p, &walk_subtrees, data);
8023 if (result || !walk_subtrees)
8024 return result;
8025
8026 result = walk_type_fields (*type_p, func, data, pset);
8027 if (result)
8028 return result;
8029
8030 /* If this is a record type, also walk the fields. */
8031 if (TREE_CODE (*type_p) == RECORD_TYPE
8032 || TREE_CODE (*type_p) == UNION_TYPE
8033 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8034 {
8035 tree field;
8036
8037 for (field = TYPE_FIELDS (*type_p); field;
8038 field = TREE_CHAIN (field))
8039 {
8040 /* We'd like to look at the type of the field, but we can
8041 easily get infinite recursion. So assume it's pointed
8042 to elsewhere in the tree. Also, ignore things that
8043 aren't fields. */
8044 if (TREE_CODE (field) != FIELD_DECL)
8045 continue;
8046
8047 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
8048 WALK_SUBTREE (DECL_SIZE (field));
8049 WALK_SUBTREE (DECL_SIZE_UNIT (field));
8050 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8051 WALK_SUBTREE (DECL_QUALIFIER (field));
8052 }
8053 }
8054
8055 /* Same for scalar types. */
8056 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
8057 || TREE_CODE (*type_p) == ENUMERAL_TYPE
8058 || TREE_CODE (*type_p) == INTEGER_TYPE
8059 || TREE_CODE (*type_p) == REAL_TYPE)
8060 {
8061 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
8062 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
8063 }
8064
8065 WALK_SUBTREE (TYPE_SIZE (*type_p));
8066 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
8067 }
8068 /* FALLTHRU */
8069
8070 default:
8071 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
8072 || IS_GIMPLE_STMT_CODE_CLASS (TREE_CODE_CLASS (code)))
8073 {
8074 int i, len;
8075
8076 /* Walk over all the sub-trees of this operand. */
8077 len = TREE_CODE_LENGTH (code);
8078
8079 /* Go through the subtrees. We need to do this in forward order so
8080 that the scope of a FOR_EXPR is handled properly. */
8081 if (len)
8082 {
8083 for (i = 0; i < len - 1; ++i)
8084 WALK_SUBTREE (GENERIC_TREE_OPERAND (*tp, i));
8085 WALK_SUBTREE_TAIL (GENERIC_TREE_OPERAND (*tp, len - 1));
8086 }
8087 }
8088 /* If this is a type, walk the needed fields in the type. */
8089 else if (TYPE_P (*tp))
8090 return walk_type_fields (*tp, func, data, pset);
8091 break;
8092 }
8093
8094 /* We didn't find what we were looking for. */
8095 return NULL_TREE;
8096
8097 #undef WALK_SUBTREE_TAIL
8098 }
8099 #undef WALK_SUBTREE
8100
8101 /* Like walk_tree, but does not walk duplicate nodes more than once. */
8102
8103 tree
8104 walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
8105 {
8106 tree result;
8107 struct pointer_set_t *pset;
8108
8109 pset = pointer_set_create ();
8110 result = walk_tree (tp, func, data, pset);
8111 pointer_set_destroy (pset);
8112 return result;
8113 }
8114
8115
8116 /* Return true if STMT is an empty statement or contains nothing but
8117 empty statements. */
8118
8119 bool
8120 empty_body_p (tree stmt)
8121 {
8122 tree_stmt_iterator i;
8123 tree body;
8124
8125 if (IS_EMPTY_STMT (stmt))
8126 return true;
8127 else if (TREE_CODE (stmt) == BIND_EXPR)
8128 body = BIND_EXPR_BODY (stmt);
8129 else if (TREE_CODE (stmt) == STATEMENT_LIST)
8130 body = stmt;
8131 else
8132 return false;
8133
8134 for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
8135 if (!empty_body_p (tsi_stmt (i)))
8136 return false;
8137
8138 return true;
8139 }
8140
8141 tree *
8142 tree_block (tree t)
8143 {
8144 char const c = TREE_CODE_CLASS (TREE_CODE (t));
8145
8146 if (IS_EXPR_CODE_CLASS (c))
8147 return &t->exp.block;
8148 else if (IS_GIMPLE_STMT_CODE_CLASS (c))
8149 return &GIMPLE_STMT_BLOCK (t);
8150 gcc_unreachable ();
8151 return NULL;
8152 }
8153
8154 tree *
8155 generic_tree_operand (tree node, int i)
8156 {
8157 if (GIMPLE_STMT_P (node))
8158 return &GIMPLE_STMT_OPERAND (node, i);
8159 return &TREE_OPERAND (node, i);
8160 }
8161
8162 tree *
8163 generic_tree_type (tree node)
8164 {
8165 if (GIMPLE_STMT_P (node))
8166 return &void_type_node;
8167 return &TREE_TYPE (node);
8168 }
8169
8170 #include "gt-tree.h"