re PR c++/89507 (bogus "size of array exceeds maximum object size")
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70
71 /* Tree code classes. */
72
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82
83 /* Table indexed by tree code giving number of expression
84 operands beyond the fixed part of the node structure.
85 Not used for types or decls. */
86
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96
97 /* Names of tree components.
98 Used for printing out the tree and error messages. */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108
109 /* Each tree code class has an associated string representation.
110 These must correspond to the tree_code_class entries. */
111
112 const char *const tree_code_class_strings[] =
113 {
114 "exceptional",
115 "constant",
116 "type",
117 "declaration",
118 "reference",
119 "comparison",
120 "unary",
121 "binary",
122 "statement",
123 "vl_exp",
124 "expression"
125 };
126
127 /* obstack.[ch] explicitly declined to prototype this. */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129
130 /* Statistics-gathering stuff. */
131
132 static uint64_t tree_code_counts[MAX_TREE_CODES];
133 uint64_t tree_node_counts[(int) all_kinds];
134 uint64_t tree_node_sizes[(int) all_kinds];
135
136 /* Keep in sync with tree.h:enum tree_node_kind. */
137 static const char * const tree_node_kind_names[] = {
138 "decls",
139 "types",
140 "blocks",
141 "stmts",
142 "refs",
143 "exprs",
144 "constants",
145 "identifiers",
146 "vecs",
147 "binfos",
148 "ssa names",
149 "constructors",
150 "random kinds",
151 "lang_decl kinds",
152 "lang_type kinds",
153 "omp clauses",
154 };
155
156 /* Unique id for next decl created. */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created. */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created. Use negative numbers,
161 to catch erroneous uses. */
162 static GTY(()) int next_debug_decl_uid;
163
164 /* Since we cannot rehash a type after it is in the table, we have to
165 keep the hash code. */
166
167 struct GTY((for_user)) type_hash {
168 unsigned long hash;
169 tree type;
170 };
171
172 /* Initial size of the hash table (rounded to next prime). */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177 static hashval_t hash (type_hash *t) { return t->hash; }
178 static bool equal (type_hash *a, type_hash *b);
179
180 static int
181 keep_cache_entry (type_hash *&t)
182 {
183 return ggc_marked_p (t->type);
184 }
185 };
186
187 /* Now here is the hash table. When recording a type, it is added to
188 the slot whose index is the hash code. Note that the hash table is
189 used for several kinds of types (function types, array types and
190 array index range types, for now). While all these live in the
191 same table, they are completely independent, and the hash code is
192 computed differently for each of these. */
193
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195
196 /* Hash table and temporary node for larger integer const values. */
197 static GTY (()) tree int_cst_node;
198
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201 static hashval_t hash (tree t);
202 static bool equal (tree x, tree y);
203 };
204
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208 for a given value. */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211 typedef std::pair<tree, const poly_wide_int *> compare_type;
212 static hashval_t hash (tree t);
213 static bool equal (tree x, const compare_type &y);
214 };
215
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217
218 /* Hash table for optimization flags and target option flags. Use the same
219 hash table for both sets of options. Nodes for building the current
220 optimization and target option nodes. The assumption is most of the time
221 the options created will already be in the hash table, so we avoid
222 allocating and freeing up a node repeatably. */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228 static hashval_t hash (tree t);
229 static bool equal (tree x, tree y);
230 };
231
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233
234 /* General tree->tree mapping structure for use in hash tables. */
235
236
237 static GTY ((cache))
238 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239
240 static GTY ((cache))
241 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246
247 static bool
248 equal (tree_vec_map *a, tree_vec_map *b)
249 {
250 return a->base.from == b->base.from;
251 }
252
253 static int
254 keep_cache_entry (tree_vec_map *&m)
255 {
256 return ggc_marked_p (m->base.from);
257 }
258 };
259
260 static GTY ((cache))
261 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267
268 static tree build_array_type_1 (tree, tree, bool, bool);
269
270 tree global_trees[TI_MAX];
271 tree integer_types[itk_none];
272
273 bool int_n_enabled_p[NUM_INT_N_ENTS];
274 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
275
276 bool tree_contains_struct[MAX_TREE_CODES][64];
277
278 /* Number of operands for each OpenMP clause. */
279 unsigned const char omp_clause_num_ops[] =
280 {
281 0, /* OMP_CLAUSE_ERROR */
282 1, /* OMP_CLAUSE_PRIVATE */
283 1, /* OMP_CLAUSE_SHARED */
284 1, /* OMP_CLAUSE_FIRSTPRIVATE */
285 2, /* OMP_CLAUSE_LASTPRIVATE */
286 5, /* OMP_CLAUSE_REDUCTION */
287 5, /* OMP_CLAUSE_TASK_REDUCTION */
288 5, /* OMP_CLAUSE_IN_REDUCTION */
289 1, /* OMP_CLAUSE_COPYIN */
290 1, /* OMP_CLAUSE_COPYPRIVATE */
291 3, /* OMP_CLAUSE_LINEAR */
292 2, /* OMP_CLAUSE_ALIGNED */
293 1, /* OMP_CLAUSE_DEPEND */
294 1, /* OMP_CLAUSE_NONTEMPORAL */
295 1, /* OMP_CLAUSE_UNIFORM */
296 1, /* OMP_CLAUSE_TO_DECLARE */
297 1, /* OMP_CLAUSE_LINK */
298 2, /* OMP_CLAUSE_FROM */
299 2, /* OMP_CLAUSE_TO */
300 2, /* OMP_CLAUSE_MAP */
301 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
302 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
303 2, /* OMP_CLAUSE__CACHE_ */
304 2, /* OMP_CLAUSE_GANG */
305 1, /* OMP_CLAUSE_ASYNC */
306 1, /* OMP_CLAUSE_WAIT */
307 0, /* OMP_CLAUSE_AUTO */
308 0, /* OMP_CLAUSE_SEQ */
309 1, /* OMP_CLAUSE__LOOPTEMP_ */
310 1, /* OMP_CLAUSE__REDUCTEMP_ */
311 1, /* OMP_CLAUSE_IF */
312 1, /* OMP_CLAUSE_NUM_THREADS */
313 1, /* OMP_CLAUSE_SCHEDULE */
314 0, /* OMP_CLAUSE_NOWAIT */
315 1, /* OMP_CLAUSE_ORDERED */
316 0, /* OMP_CLAUSE_DEFAULT */
317 3, /* OMP_CLAUSE_COLLAPSE */
318 0, /* OMP_CLAUSE_UNTIED */
319 1, /* OMP_CLAUSE_FINAL */
320 0, /* OMP_CLAUSE_MERGEABLE */
321 1, /* OMP_CLAUSE_DEVICE */
322 1, /* OMP_CLAUSE_DIST_SCHEDULE */
323 0, /* OMP_CLAUSE_INBRANCH */
324 0, /* OMP_CLAUSE_NOTINBRANCH */
325 1, /* OMP_CLAUSE_NUM_TEAMS */
326 1, /* OMP_CLAUSE_THREAD_LIMIT */
327 0, /* OMP_CLAUSE_PROC_BIND */
328 1, /* OMP_CLAUSE_SAFELEN */
329 1, /* OMP_CLAUSE_SIMDLEN */
330 0, /* OMP_CLAUSE_FOR */
331 0, /* OMP_CLAUSE_PARALLEL */
332 0, /* OMP_CLAUSE_SECTIONS */
333 0, /* OMP_CLAUSE_TASKGROUP */
334 1, /* OMP_CLAUSE_PRIORITY */
335 1, /* OMP_CLAUSE_GRAINSIZE */
336 1, /* OMP_CLAUSE_NUM_TASKS */
337 0, /* OMP_CLAUSE_NOGROUP */
338 0, /* OMP_CLAUSE_THREADS */
339 0, /* OMP_CLAUSE_SIMD */
340 1, /* OMP_CLAUSE_HINT */
341 0, /* OMP_CLAUSE_DEFALTMAP */
342 1, /* OMP_CLAUSE__SIMDUID_ */
343 0, /* OMP_CLAUSE__SIMT_ */
344 0, /* OMP_CLAUSE_INDEPENDENT */
345 1, /* OMP_CLAUSE_WORKER */
346 1, /* OMP_CLAUSE_VECTOR */
347 1, /* OMP_CLAUSE_NUM_GANGS */
348 1, /* OMP_CLAUSE_NUM_WORKERS */
349 1, /* OMP_CLAUSE_VECTOR_LENGTH */
350 3, /* OMP_CLAUSE_TILE */
351 2, /* OMP_CLAUSE__GRIDDIM_ */
352 0, /* OMP_CLAUSE_IF_PRESENT */
353 0, /* OMP_CLAUSE_FINALIZE */
354 };
355
356 const char * const omp_clause_code_name[] =
357 {
358 "error_clause",
359 "private",
360 "shared",
361 "firstprivate",
362 "lastprivate",
363 "reduction",
364 "task_reduction",
365 "in_reduction",
366 "copyin",
367 "copyprivate",
368 "linear",
369 "aligned",
370 "depend",
371 "nontemporal",
372 "uniform",
373 "to",
374 "link",
375 "from",
376 "to",
377 "map",
378 "use_device_ptr",
379 "is_device_ptr",
380 "_cache_",
381 "gang",
382 "async",
383 "wait",
384 "auto",
385 "seq",
386 "_looptemp_",
387 "_reductemp_",
388 "if",
389 "num_threads",
390 "schedule",
391 "nowait",
392 "ordered",
393 "default",
394 "collapse",
395 "untied",
396 "final",
397 "mergeable",
398 "device",
399 "dist_schedule",
400 "inbranch",
401 "notinbranch",
402 "num_teams",
403 "thread_limit",
404 "proc_bind",
405 "safelen",
406 "simdlen",
407 "for",
408 "parallel",
409 "sections",
410 "taskgroup",
411 "priority",
412 "grainsize",
413 "num_tasks",
414 "nogroup",
415 "threads",
416 "simd",
417 "hint",
418 "defaultmap",
419 "_simduid_",
420 "_simt_",
421 "independent",
422 "worker",
423 "vector",
424 "num_gangs",
425 "num_workers",
426 "vector_length",
427 "tile",
428 "_griddim_",
429 "if_present",
430 "finalize",
431 };
432
433
434 /* Return the tree node structure used by tree code CODE. */
435
436 static inline enum tree_node_structure_enum
437 tree_node_structure_for_code (enum tree_code code)
438 {
439 switch (TREE_CODE_CLASS (code))
440 {
441 case tcc_declaration:
442 {
443 switch (code)
444 {
445 case FIELD_DECL:
446 return TS_FIELD_DECL;
447 case PARM_DECL:
448 return TS_PARM_DECL;
449 case VAR_DECL:
450 return TS_VAR_DECL;
451 case LABEL_DECL:
452 return TS_LABEL_DECL;
453 case RESULT_DECL:
454 return TS_RESULT_DECL;
455 case DEBUG_EXPR_DECL:
456 return TS_DECL_WRTL;
457 case CONST_DECL:
458 return TS_CONST_DECL;
459 case TYPE_DECL:
460 return TS_TYPE_DECL;
461 case FUNCTION_DECL:
462 return TS_FUNCTION_DECL;
463 case TRANSLATION_UNIT_DECL:
464 return TS_TRANSLATION_UNIT_DECL;
465 default:
466 return TS_DECL_NON_COMMON;
467 }
468 }
469 case tcc_type:
470 return TS_TYPE_NON_COMMON;
471 case tcc_reference:
472 case tcc_comparison:
473 case tcc_unary:
474 case tcc_binary:
475 case tcc_expression:
476 case tcc_statement:
477 case tcc_vl_exp:
478 return TS_EXP;
479 default: /* tcc_constant and tcc_exceptional */
480 break;
481 }
482 switch (code)
483 {
484 /* tcc_constant cases. */
485 case VOID_CST: return TS_TYPED;
486 case INTEGER_CST: return TS_INT_CST;
487 case POLY_INT_CST: return TS_POLY_INT_CST;
488 case REAL_CST: return TS_REAL_CST;
489 case FIXED_CST: return TS_FIXED_CST;
490 case COMPLEX_CST: return TS_COMPLEX;
491 case VECTOR_CST: return TS_VECTOR;
492 case STRING_CST: return TS_STRING;
493 /* tcc_exceptional cases. */
494 case ERROR_MARK: return TS_COMMON;
495 case IDENTIFIER_NODE: return TS_IDENTIFIER;
496 case TREE_LIST: return TS_LIST;
497 case TREE_VEC: return TS_VEC;
498 case SSA_NAME: return TS_SSA_NAME;
499 case PLACEHOLDER_EXPR: return TS_COMMON;
500 case STATEMENT_LIST: return TS_STATEMENT_LIST;
501 case BLOCK: return TS_BLOCK;
502 case CONSTRUCTOR: return TS_CONSTRUCTOR;
503 case TREE_BINFO: return TS_BINFO;
504 case OMP_CLAUSE: return TS_OMP_CLAUSE;
505 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
506 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
507
508 default:
509 gcc_unreachable ();
510 }
511 }
512
513
514 /* Initialize tree_contains_struct to describe the hierarchy of tree
515 nodes. */
516
517 static void
518 initialize_tree_contains_struct (void)
519 {
520 unsigned i;
521
522 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
523 {
524 enum tree_code code;
525 enum tree_node_structure_enum ts_code;
526
527 code = (enum tree_code) i;
528 ts_code = tree_node_structure_for_code (code);
529
530 /* Mark the TS structure itself. */
531 tree_contains_struct[code][ts_code] = 1;
532
533 /* Mark all the structures that TS is derived from. */
534 switch (ts_code)
535 {
536 case TS_TYPED:
537 case TS_BLOCK:
538 case TS_OPTIMIZATION:
539 case TS_TARGET_OPTION:
540 MARK_TS_BASE (code);
541 break;
542
543 case TS_COMMON:
544 case TS_INT_CST:
545 case TS_POLY_INT_CST:
546 case TS_REAL_CST:
547 case TS_FIXED_CST:
548 case TS_VECTOR:
549 case TS_STRING:
550 case TS_COMPLEX:
551 case TS_SSA_NAME:
552 case TS_CONSTRUCTOR:
553 case TS_EXP:
554 case TS_STATEMENT_LIST:
555 MARK_TS_TYPED (code);
556 break;
557
558 case TS_IDENTIFIER:
559 case TS_DECL_MINIMAL:
560 case TS_TYPE_COMMON:
561 case TS_LIST:
562 case TS_VEC:
563 case TS_BINFO:
564 case TS_OMP_CLAUSE:
565 MARK_TS_COMMON (code);
566 break;
567
568 case TS_TYPE_WITH_LANG_SPECIFIC:
569 MARK_TS_TYPE_COMMON (code);
570 break;
571
572 case TS_TYPE_NON_COMMON:
573 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
574 break;
575
576 case TS_DECL_COMMON:
577 MARK_TS_DECL_MINIMAL (code);
578 break;
579
580 case TS_DECL_WRTL:
581 case TS_CONST_DECL:
582 MARK_TS_DECL_COMMON (code);
583 break;
584
585 case TS_DECL_NON_COMMON:
586 MARK_TS_DECL_WITH_VIS (code);
587 break;
588
589 case TS_DECL_WITH_VIS:
590 case TS_PARM_DECL:
591 case TS_LABEL_DECL:
592 case TS_RESULT_DECL:
593 MARK_TS_DECL_WRTL (code);
594 break;
595
596 case TS_FIELD_DECL:
597 MARK_TS_DECL_COMMON (code);
598 break;
599
600 case TS_VAR_DECL:
601 MARK_TS_DECL_WITH_VIS (code);
602 break;
603
604 case TS_TYPE_DECL:
605 case TS_FUNCTION_DECL:
606 MARK_TS_DECL_NON_COMMON (code);
607 break;
608
609 case TS_TRANSLATION_UNIT_DECL:
610 MARK_TS_DECL_COMMON (code);
611 break;
612
613 default:
614 gcc_unreachable ();
615 }
616 }
617
618 /* Basic consistency checks for attributes used in fold. */
619 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
620 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
621 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
622 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
623 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
624 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
625 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
626 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
627 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
628 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
629 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
630 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
631 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
632 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
633 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
634 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
635 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
636 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
637 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
638 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
639 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
640 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
641 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
642 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
643 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
644 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
645 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
646 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
647 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
648 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
649 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
650 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
651 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
652 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
653 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
654 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
655 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
656 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
657 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
658 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
659 }
660
661
662 /* Init tree.c. */
663
664 void
665 init_ttree (void)
666 {
667 /* Initialize the hash table of types. */
668 type_hash_table
669 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
670
671 debug_expr_for_decl
672 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
673
674 value_expr_for_decl
675 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
676
677 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
678
679 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
680
681 int_cst_node = make_int_cst (1, 1);
682
683 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
684
685 cl_optimization_node = make_node (OPTIMIZATION_NODE);
686 cl_target_option_node = make_node (TARGET_OPTION_NODE);
687
688 /* Initialize the tree_contains_struct array. */
689 initialize_tree_contains_struct ();
690 lang_hooks.init_ts ();
691 }
692
693 \f
694 /* The name of the object as the assembler will see it (but before any
695 translations made by ASM_OUTPUT_LABELREF). Often this is the same
696 as DECL_NAME. It is an IDENTIFIER_NODE. */
697 tree
698 decl_assembler_name (tree decl)
699 {
700 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
701 lang_hooks.set_decl_assembler_name (decl);
702 return DECL_ASSEMBLER_NAME_RAW (decl);
703 }
704
705 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
706 (either of which may be NULL). Inform the FE, if this changes the
707 name. */
708
709 void
710 overwrite_decl_assembler_name (tree decl, tree name)
711 {
712 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
713 lang_hooks.overwrite_decl_assembler_name (decl, name);
714 }
715
716 /* When the target supports COMDAT groups, this indicates which group the
717 DECL is associated with. This can be either an IDENTIFIER_NODE or a
718 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
719 tree
720 decl_comdat_group (const_tree node)
721 {
722 struct symtab_node *snode = symtab_node::get (node);
723 if (!snode)
724 return NULL;
725 return snode->get_comdat_group ();
726 }
727
728 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
729 tree
730 decl_comdat_group_id (const_tree node)
731 {
732 struct symtab_node *snode = symtab_node::get (node);
733 if (!snode)
734 return NULL;
735 return snode->get_comdat_group_id ();
736 }
737
738 /* When the target supports named section, return its name as IDENTIFIER_NODE
739 or NULL if it is in no section. */
740 const char *
741 decl_section_name (const_tree node)
742 {
743 struct symtab_node *snode = symtab_node::get (node);
744 if (!snode)
745 return NULL;
746 return snode->get_section ();
747 }
748
749 /* Set section name of NODE to VALUE (that is expected to be
750 identifier node) */
751 void
752 set_decl_section_name (tree node, const char *value)
753 {
754 struct symtab_node *snode;
755
756 if (value == NULL)
757 {
758 snode = symtab_node::get (node);
759 if (!snode)
760 return;
761 }
762 else if (VAR_P (node))
763 snode = varpool_node::get_create (node);
764 else
765 snode = cgraph_node::get_create (node);
766 snode->set_section (value);
767 }
768
769 /* Return TLS model of a variable NODE. */
770 enum tls_model
771 decl_tls_model (const_tree node)
772 {
773 struct varpool_node *snode = varpool_node::get (node);
774 if (!snode)
775 return TLS_MODEL_NONE;
776 return snode->tls_model;
777 }
778
779 /* Set TLS model of variable NODE to MODEL. */
780 void
781 set_decl_tls_model (tree node, enum tls_model model)
782 {
783 struct varpool_node *vnode;
784
785 if (model == TLS_MODEL_NONE)
786 {
787 vnode = varpool_node::get (node);
788 if (!vnode)
789 return;
790 }
791 else
792 vnode = varpool_node::get_create (node);
793 vnode->tls_model = model;
794 }
795
796 /* Compute the number of bytes occupied by a tree with code CODE.
797 This function cannot be used for nodes that have variable sizes,
798 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
799 size_t
800 tree_code_size (enum tree_code code)
801 {
802 switch (TREE_CODE_CLASS (code))
803 {
804 case tcc_declaration: /* A decl node */
805 switch (code)
806 {
807 case FIELD_DECL: return sizeof (tree_field_decl);
808 case PARM_DECL: return sizeof (tree_parm_decl);
809 case VAR_DECL: return sizeof (tree_var_decl);
810 case LABEL_DECL: return sizeof (tree_label_decl);
811 case RESULT_DECL: return sizeof (tree_result_decl);
812 case CONST_DECL: return sizeof (tree_const_decl);
813 case TYPE_DECL: return sizeof (tree_type_decl);
814 case FUNCTION_DECL: return sizeof (tree_function_decl);
815 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
816 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
817 case NAMESPACE_DECL:
818 case IMPORTED_DECL:
819 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
820 default:
821 gcc_checking_assert (code >= NUM_TREE_CODES);
822 return lang_hooks.tree_size (code);
823 }
824
825 case tcc_type: /* a type node */
826 switch (code)
827 {
828 case OFFSET_TYPE:
829 case ENUMERAL_TYPE:
830 case BOOLEAN_TYPE:
831 case INTEGER_TYPE:
832 case REAL_TYPE:
833 case POINTER_TYPE:
834 case REFERENCE_TYPE:
835 case NULLPTR_TYPE:
836 case FIXED_POINT_TYPE:
837 case COMPLEX_TYPE:
838 case VECTOR_TYPE:
839 case ARRAY_TYPE:
840 case RECORD_TYPE:
841 case UNION_TYPE:
842 case QUAL_UNION_TYPE:
843 case VOID_TYPE:
844 case FUNCTION_TYPE:
845 case METHOD_TYPE:
846 case LANG_TYPE: return sizeof (tree_type_non_common);
847 default:
848 gcc_checking_assert (code >= NUM_TREE_CODES);
849 return lang_hooks.tree_size (code);
850 }
851
852 case tcc_reference: /* a reference */
853 case tcc_expression: /* an expression */
854 case tcc_statement: /* an expression with side effects */
855 case tcc_comparison: /* a comparison expression */
856 case tcc_unary: /* a unary arithmetic expression */
857 case tcc_binary: /* a binary arithmetic expression */
858 return (sizeof (struct tree_exp)
859 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
860
861 case tcc_constant: /* a constant */
862 switch (code)
863 {
864 case VOID_CST: return sizeof (tree_typed);
865 case INTEGER_CST: gcc_unreachable ();
866 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
867 case REAL_CST: return sizeof (tree_real_cst);
868 case FIXED_CST: return sizeof (tree_fixed_cst);
869 case COMPLEX_CST: return sizeof (tree_complex);
870 case VECTOR_CST: gcc_unreachable ();
871 case STRING_CST: gcc_unreachable ();
872 default:
873 gcc_checking_assert (code >= NUM_TREE_CODES);
874 return lang_hooks.tree_size (code);
875 }
876
877 case tcc_exceptional: /* something random, like an identifier. */
878 switch (code)
879 {
880 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
881 case TREE_LIST: return sizeof (tree_list);
882
883 case ERROR_MARK:
884 case PLACEHOLDER_EXPR: return sizeof (tree_common);
885
886 case TREE_VEC: gcc_unreachable ();
887 case OMP_CLAUSE: gcc_unreachable ();
888
889 case SSA_NAME: return sizeof (tree_ssa_name);
890
891 case STATEMENT_LIST: return sizeof (tree_statement_list);
892 case BLOCK: return sizeof (struct tree_block);
893 case CONSTRUCTOR: return sizeof (tree_constructor);
894 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
895 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
896
897 default:
898 gcc_checking_assert (code >= NUM_TREE_CODES);
899 return lang_hooks.tree_size (code);
900 }
901
902 default:
903 gcc_unreachable ();
904 }
905 }
906
907 /* Compute the number of bytes occupied by NODE. This routine only
908 looks at TREE_CODE, except for those nodes that have variable sizes. */
909 size_t
910 tree_size (const_tree node)
911 {
912 const enum tree_code code = TREE_CODE (node);
913 switch (code)
914 {
915 case INTEGER_CST:
916 return (sizeof (struct tree_int_cst)
917 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
918
919 case TREE_BINFO:
920 return (offsetof (struct tree_binfo, base_binfos)
921 + vec<tree, va_gc>
922 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
923
924 case TREE_VEC:
925 return (sizeof (struct tree_vec)
926 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
927
928 case VECTOR_CST:
929 return (sizeof (struct tree_vector)
930 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
931
932 case STRING_CST:
933 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
934
935 case OMP_CLAUSE:
936 return (sizeof (struct tree_omp_clause)
937 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
938 * sizeof (tree));
939
940 default:
941 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
942 return (sizeof (struct tree_exp)
943 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
944 else
945 return tree_code_size (code);
946 }
947 }
948
949 /* Return tree node kind based on tree CODE. */
950
951 static tree_node_kind
952 get_stats_node_kind (enum tree_code code)
953 {
954 enum tree_code_class type = TREE_CODE_CLASS (code);
955
956 switch (type)
957 {
958 case tcc_declaration: /* A decl node */
959 return d_kind;
960 case tcc_type: /* a type node */
961 return t_kind;
962 case tcc_statement: /* an expression with side effects */
963 return s_kind;
964 case tcc_reference: /* a reference */
965 return r_kind;
966 case tcc_expression: /* an expression */
967 case tcc_comparison: /* a comparison expression */
968 case tcc_unary: /* a unary arithmetic expression */
969 case tcc_binary: /* a binary arithmetic expression */
970 return e_kind;
971 case tcc_constant: /* a constant */
972 return c_kind;
973 case tcc_exceptional: /* something random, like an identifier. */
974 switch (code)
975 {
976 case IDENTIFIER_NODE:
977 return id_kind;
978 case TREE_VEC:
979 return vec_kind;
980 case TREE_BINFO:
981 return binfo_kind;
982 case SSA_NAME:
983 return ssa_name_kind;
984 case BLOCK:
985 return b_kind;
986 case CONSTRUCTOR:
987 return constr_kind;
988 case OMP_CLAUSE:
989 return omp_clause_kind;
990 default:
991 return x_kind;
992 }
993 break;
994 case tcc_vl_exp:
995 return e_kind;
996 default:
997 gcc_unreachable ();
998 }
999 }
1000
1001 /* Record interesting allocation statistics for a tree node with CODE
1002 and LENGTH. */
1003
1004 static void
1005 record_node_allocation_statistics (enum tree_code code, size_t length)
1006 {
1007 if (!GATHER_STATISTICS)
1008 return;
1009
1010 tree_node_kind kind = get_stats_node_kind (code);
1011
1012 tree_code_counts[(int) code]++;
1013 tree_node_counts[(int) kind]++;
1014 tree_node_sizes[(int) kind] += length;
1015 }
1016
1017 /* Allocate and return a new UID from the DECL_UID namespace. */
1018
1019 int
1020 allocate_decl_uid (void)
1021 {
1022 return next_decl_uid++;
1023 }
1024
1025 /* Return a newly allocated node of code CODE. For decl and type
1026 nodes, some other fields are initialized. The rest of the node is
1027 initialized to zero. This function cannot be used for TREE_VEC,
1028 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1029 tree_code_size.
1030
1031 Achoo! I got a code in the node. */
1032
1033 tree
1034 make_node (enum tree_code code MEM_STAT_DECL)
1035 {
1036 tree t;
1037 enum tree_code_class type = TREE_CODE_CLASS (code);
1038 size_t length = tree_code_size (code);
1039
1040 record_node_allocation_statistics (code, length);
1041
1042 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1043 TREE_SET_CODE (t, code);
1044
1045 switch (type)
1046 {
1047 case tcc_statement:
1048 if (code != DEBUG_BEGIN_STMT)
1049 TREE_SIDE_EFFECTS (t) = 1;
1050 break;
1051
1052 case tcc_declaration:
1053 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1054 {
1055 if (code == FUNCTION_DECL)
1056 {
1057 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1058 SET_DECL_MODE (t, FUNCTION_MODE);
1059 }
1060 else
1061 SET_DECL_ALIGN (t, 1);
1062 }
1063 DECL_SOURCE_LOCATION (t) = input_location;
1064 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1065 DECL_UID (t) = --next_debug_decl_uid;
1066 else
1067 {
1068 DECL_UID (t) = allocate_decl_uid ();
1069 SET_DECL_PT_UID (t, -1);
1070 }
1071 if (TREE_CODE (t) == LABEL_DECL)
1072 LABEL_DECL_UID (t) = -1;
1073
1074 break;
1075
1076 case tcc_type:
1077 TYPE_UID (t) = next_type_uid++;
1078 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1079 TYPE_USER_ALIGN (t) = 0;
1080 TYPE_MAIN_VARIANT (t) = t;
1081 TYPE_CANONICAL (t) = t;
1082
1083 /* Default to no attributes for type, but let target change that. */
1084 TYPE_ATTRIBUTES (t) = NULL_TREE;
1085 targetm.set_default_type_attributes (t);
1086
1087 /* We have not yet computed the alias set for this type. */
1088 TYPE_ALIAS_SET (t) = -1;
1089 break;
1090
1091 case tcc_constant:
1092 TREE_CONSTANT (t) = 1;
1093 break;
1094
1095 case tcc_expression:
1096 switch (code)
1097 {
1098 case INIT_EXPR:
1099 case MODIFY_EXPR:
1100 case VA_ARG_EXPR:
1101 case PREDECREMENT_EXPR:
1102 case PREINCREMENT_EXPR:
1103 case POSTDECREMENT_EXPR:
1104 case POSTINCREMENT_EXPR:
1105 /* All of these have side-effects, no matter what their
1106 operands are. */
1107 TREE_SIDE_EFFECTS (t) = 1;
1108 break;
1109
1110 default:
1111 break;
1112 }
1113 break;
1114
1115 case tcc_exceptional:
1116 switch (code)
1117 {
1118 case TARGET_OPTION_NODE:
1119 TREE_TARGET_OPTION(t)
1120 = ggc_cleared_alloc<struct cl_target_option> ();
1121 break;
1122
1123 case OPTIMIZATION_NODE:
1124 TREE_OPTIMIZATION (t)
1125 = ggc_cleared_alloc<struct cl_optimization> ();
1126 break;
1127
1128 default:
1129 break;
1130 }
1131 break;
1132
1133 default:
1134 /* Other classes need no special treatment. */
1135 break;
1136 }
1137
1138 return t;
1139 }
1140
1141 /* Free tree node. */
1142
1143 void
1144 free_node (tree node)
1145 {
1146 enum tree_code code = TREE_CODE (node);
1147 if (GATHER_STATISTICS)
1148 {
1149 enum tree_node_kind kind = get_stats_node_kind (code);
1150
1151 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1152 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1153 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1154
1155 tree_code_counts[(int) TREE_CODE (node)]--;
1156 tree_node_counts[(int) kind]--;
1157 tree_node_sizes[(int) kind] -= tree_size (node);
1158 }
1159 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1160 vec_free (CONSTRUCTOR_ELTS (node));
1161 else if (code == BLOCK)
1162 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1163 else if (code == TREE_BINFO)
1164 vec_free (BINFO_BASE_ACCESSES (node));
1165 ggc_free (node);
1166 }
1167 \f
1168 /* Return a new node with the same contents as NODE except that its
1169 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1170
1171 tree
1172 copy_node (tree node MEM_STAT_DECL)
1173 {
1174 tree t;
1175 enum tree_code code = TREE_CODE (node);
1176 size_t length;
1177
1178 gcc_assert (code != STATEMENT_LIST);
1179
1180 length = tree_size (node);
1181 record_node_allocation_statistics (code, length);
1182 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1183 memcpy (t, node, length);
1184
1185 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1186 TREE_CHAIN (t) = 0;
1187 TREE_ASM_WRITTEN (t) = 0;
1188 TREE_VISITED (t) = 0;
1189
1190 if (TREE_CODE_CLASS (code) == tcc_declaration)
1191 {
1192 if (code == DEBUG_EXPR_DECL)
1193 DECL_UID (t) = --next_debug_decl_uid;
1194 else
1195 {
1196 DECL_UID (t) = allocate_decl_uid ();
1197 if (DECL_PT_UID_SET_P (node))
1198 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1199 }
1200 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1201 && DECL_HAS_VALUE_EXPR_P (node))
1202 {
1203 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1204 DECL_HAS_VALUE_EXPR_P (t) = 1;
1205 }
1206 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1207 if (VAR_P (node))
1208 {
1209 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1210 t->decl_with_vis.symtab_node = NULL;
1211 }
1212 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1213 {
1214 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1215 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1216 }
1217 if (TREE_CODE (node) == FUNCTION_DECL)
1218 {
1219 DECL_STRUCT_FUNCTION (t) = NULL;
1220 t->decl_with_vis.symtab_node = NULL;
1221 }
1222 }
1223 else if (TREE_CODE_CLASS (code) == tcc_type)
1224 {
1225 TYPE_UID (t) = next_type_uid++;
1226 /* The following is so that the debug code for
1227 the copy is different from the original type.
1228 The two statements usually duplicate each other
1229 (because they clear fields of the same union),
1230 but the optimizer should catch that. */
1231 TYPE_SYMTAB_ADDRESS (t) = 0;
1232 TYPE_SYMTAB_DIE (t) = 0;
1233
1234 /* Do not copy the values cache. */
1235 if (TYPE_CACHED_VALUES_P (t))
1236 {
1237 TYPE_CACHED_VALUES_P (t) = 0;
1238 TYPE_CACHED_VALUES (t) = NULL_TREE;
1239 }
1240 }
1241 else if (code == TARGET_OPTION_NODE)
1242 {
1243 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1244 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1245 sizeof (struct cl_target_option));
1246 }
1247 else if (code == OPTIMIZATION_NODE)
1248 {
1249 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1250 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1251 sizeof (struct cl_optimization));
1252 }
1253
1254 return t;
1255 }
1256
1257 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1258 For example, this can copy a list made of TREE_LIST nodes. */
1259
1260 tree
1261 copy_list (tree list)
1262 {
1263 tree head;
1264 tree prev, next;
1265
1266 if (list == 0)
1267 return 0;
1268
1269 head = prev = copy_node (list);
1270 next = TREE_CHAIN (list);
1271 while (next)
1272 {
1273 TREE_CHAIN (prev) = copy_node (next);
1274 prev = TREE_CHAIN (prev);
1275 next = TREE_CHAIN (next);
1276 }
1277 return head;
1278 }
1279
1280 \f
1281 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1282 INTEGER_CST with value CST and type TYPE. */
1283
1284 static unsigned int
1285 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1286 {
1287 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1288 /* We need extra HWIs if CST is an unsigned integer with its
1289 upper bit set. */
1290 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1291 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1292 return cst.get_len ();
1293 }
1294
1295 /* Return a new INTEGER_CST with value CST and type TYPE. */
1296
1297 static tree
1298 build_new_int_cst (tree type, const wide_int &cst)
1299 {
1300 unsigned int len = cst.get_len ();
1301 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1302 tree nt = make_int_cst (len, ext_len);
1303
1304 if (len < ext_len)
1305 {
1306 --ext_len;
1307 TREE_INT_CST_ELT (nt, ext_len)
1308 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1309 for (unsigned int i = len; i < ext_len; ++i)
1310 TREE_INT_CST_ELT (nt, i) = -1;
1311 }
1312 else if (TYPE_UNSIGNED (type)
1313 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1314 {
1315 len--;
1316 TREE_INT_CST_ELT (nt, len)
1317 = zext_hwi (cst.elt (len),
1318 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1319 }
1320
1321 for (unsigned int i = 0; i < len; i++)
1322 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1323 TREE_TYPE (nt) = type;
1324 return nt;
1325 }
1326
1327 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1328
1329 static tree
1330 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1331 CXX_MEM_STAT_INFO)
1332 {
1333 size_t length = sizeof (struct tree_poly_int_cst);
1334 record_node_allocation_statistics (POLY_INT_CST, length);
1335
1336 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1337
1338 TREE_SET_CODE (t, POLY_INT_CST);
1339 TREE_CONSTANT (t) = 1;
1340 TREE_TYPE (t) = type;
1341 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1342 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1343 return t;
1344 }
1345
1346 /* Create a constant tree that contains CST sign-extended to TYPE. */
1347
1348 tree
1349 build_int_cst (tree type, poly_int64 cst)
1350 {
1351 /* Support legacy code. */
1352 if (!type)
1353 type = integer_type_node;
1354
1355 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1356 }
1357
1358 /* Create a constant tree that contains CST zero-extended to TYPE. */
1359
1360 tree
1361 build_int_cstu (tree type, poly_uint64 cst)
1362 {
1363 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1364 }
1365
1366 /* Create a constant tree that contains CST sign-extended to TYPE. */
1367
1368 tree
1369 build_int_cst_type (tree type, poly_int64 cst)
1370 {
1371 gcc_assert (type);
1372 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1373 }
1374
1375 /* Constructs tree in type TYPE from with value given by CST. Signedness
1376 of CST is assumed to be the same as the signedness of TYPE. */
1377
1378 tree
1379 double_int_to_tree (tree type, double_int cst)
1380 {
1381 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1382 }
1383
1384 /* We force the wide_int CST to the range of the type TYPE by sign or
1385 zero extending it. OVERFLOWABLE indicates if we are interested in
1386 overflow of the value, when >0 we are only interested in signed
1387 overflow, for <0 we are interested in any overflow. OVERFLOWED
1388 indicates whether overflow has already occurred. CONST_OVERFLOWED
1389 indicates whether constant overflow has already occurred. We force
1390 T's value to be within range of T's type (by setting to 0 or 1 all
1391 the bits outside the type's range). We set TREE_OVERFLOWED if,
1392 OVERFLOWED is nonzero,
1393 or OVERFLOWABLE is >0 and signed overflow occurs
1394 or OVERFLOWABLE is <0 and any overflow occurs
1395 We return a new tree node for the extended wide_int. The node
1396 is shared if no overflow flags are set. */
1397
1398
1399 tree
1400 force_fit_type (tree type, const poly_wide_int_ref &cst,
1401 int overflowable, bool overflowed)
1402 {
1403 signop sign = TYPE_SIGN (type);
1404
1405 /* If we need to set overflow flags, return a new unshared node. */
1406 if (overflowed || !wi::fits_to_tree_p (cst, type))
1407 {
1408 if (overflowed
1409 || overflowable < 0
1410 || (overflowable > 0 && sign == SIGNED))
1411 {
1412 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1413 sign);
1414 tree t;
1415 if (tmp.is_constant ())
1416 t = build_new_int_cst (type, tmp.coeffs[0]);
1417 else
1418 {
1419 tree coeffs[NUM_POLY_INT_COEFFS];
1420 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1421 {
1422 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1423 TREE_OVERFLOW (coeffs[i]) = 1;
1424 }
1425 t = build_new_poly_int_cst (type, coeffs);
1426 }
1427 TREE_OVERFLOW (t) = 1;
1428 return t;
1429 }
1430 }
1431
1432 /* Else build a shared node. */
1433 return wide_int_to_tree (type, cst);
1434 }
1435
1436 /* These are the hash table functions for the hash table of INTEGER_CST
1437 nodes of a sizetype. */
1438
1439 /* Return the hash code X, an INTEGER_CST. */
1440
1441 hashval_t
1442 int_cst_hasher::hash (tree x)
1443 {
1444 const_tree const t = x;
1445 hashval_t code = TYPE_UID (TREE_TYPE (t));
1446 int i;
1447
1448 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1449 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1450
1451 return code;
1452 }
1453
1454 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1455 is the same as that given by *Y, which is the same. */
1456
1457 bool
1458 int_cst_hasher::equal (tree x, tree y)
1459 {
1460 const_tree const xt = x;
1461 const_tree const yt = y;
1462
1463 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1464 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1465 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1466 return false;
1467
1468 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1469 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1470 return false;
1471
1472 return true;
1473 }
1474
1475 /* Create an INT_CST node of TYPE and value CST.
1476 The returned node is always shared. For small integers we use a
1477 per-type vector cache, for larger ones we use a single hash table.
1478 The value is extended from its precision according to the sign of
1479 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1480 the upper bits and ensures that hashing and value equality based
1481 upon the underlying HOST_WIDE_INTs works without masking. */
1482
1483 static tree
1484 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1485 {
1486 tree t;
1487 int ix = -1;
1488 int limit = 0;
1489
1490 gcc_assert (type);
1491 unsigned int prec = TYPE_PRECISION (type);
1492 signop sgn = TYPE_SIGN (type);
1493
1494 /* Verify that everything is canonical. */
1495 int l = pcst.get_len ();
1496 if (l > 1)
1497 {
1498 if (pcst.elt (l - 1) == 0)
1499 gcc_checking_assert (pcst.elt (l - 2) < 0);
1500 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1501 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1502 }
1503
1504 wide_int cst = wide_int::from (pcst, prec, sgn);
1505 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1506
1507 if (ext_len == 1)
1508 {
1509 /* We just need to store a single HOST_WIDE_INT. */
1510 HOST_WIDE_INT hwi;
1511 if (TYPE_UNSIGNED (type))
1512 hwi = cst.to_uhwi ();
1513 else
1514 hwi = cst.to_shwi ();
1515
1516 switch (TREE_CODE (type))
1517 {
1518 case NULLPTR_TYPE:
1519 gcc_assert (hwi == 0);
1520 /* Fallthru. */
1521
1522 case POINTER_TYPE:
1523 case REFERENCE_TYPE:
1524 /* Cache NULL pointer and zero bounds. */
1525 if (hwi == 0)
1526 {
1527 limit = 1;
1528 ix = 0;
1529 }
1530 break;
1531
1532 case BOOLEAN_TYPE:
1533 /* Cache false or true. */
1534 limit = 2;
1535 if (IN_RANGE (hwi, 0, 1))
1536 ix = hwi;
1537 break;
1538
1539 case INTEGER_TYPE:
1540 case OFFSET_TYPE:
1541 if (TYPE_SIGN (type) == UNSIGNED)
1542 {
1543 /* Cache [0, N). */
1544 limit = INTEGER_SHARE_LIMIT;
1545 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1546 ix = hwi;
1547 }
1548 else
1549 {
1550 /* Cache [-1, N). */
1551 limit = INTEGER_SHARE_LIMIT + 1;
1552 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1553 ix = hwi + 1;
1554 }
1555 break;
1556
1557 case ENUMERAL_TYPE:
1558 break;
1559
1560 default:
1561 gcc_unreachable ();
1562 }
1563
1564 if (ix >= 0)
1565 {
1566 /* Look for it in the type's vector of small shared ints. */
1567 if (!TYPE_CACHED_VALUES_P (type))
1568 {
1569 TYPE_CACHED_VALUES_P (type) = 1;
1570 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1571 }
1572
1573 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1574 if (t)
1575 /* Make sure no one is clobbering the shared constant. */
1576 gcc_checking_assert (TREE_TYPE (t) == type
1577 && TREE_INT_CST_NUNITS (t) == 1
1578 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1579 && TREE_INT_CST_EXT_NUNITS (t) == 1
1580 && TREE_INT_CST_ELT (t, 0) == hwi);
1581 else
1582 {
1583 /* Create a new shared int. */
1584 t = build_new_int_cst (type, cst);
1585 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1586 }
1587 }
1588 else
1589 {
1590 /* Use the cache of larger shared ints, using int_cst_node as
1591 a temporary. */
1592
1593 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1594 TREE_TYPE (int_cst_node) = type;
1595
1596 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1597 t = *slot;
1598 if (!t)
1599 {
1600 /* Insert this one into the hash table. */
1601 t = int_cst_node;
1602 *slot = t;
1603 /* Make a new node for next time round. */
1604 int_cst_node = make_int_cst (1, 1);
1605 }
1606 }
1607 }
1608 else
1609 {
1610 /* The value either hashes properly or we drop it on the floor
1611 for the gc to take care of. There will not be enough of them
1612 to worry about. */
1613
1614 tree nt = build_new_int_cst (type, cst);
1615 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1616 t = *slot;
1617 if (!t)
1618 {
1619 /* Insert this one into the hash table. */
1620 t = nt;
1621 *slot = t;
1622 }
1623 else
1624 ggc_free (nt);
1625 }
1626
1627 return t;
1628 }
1629
1630 hashval_t
1631 poly_int_cst_hasher::hash (tree t)
1632 {
1633 inchash::hash hstate;
1634
1635 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1636 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1637 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1638
1639 return hstate.end ();
1640 }
1641
1642 bool
1643 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1644 {
1645 if (TREE_TYPE (x) != y.first)
1646 return false;
1647 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1648 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1649 return false;
1650 return true;
1651 }
1652
1653 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1654 The elements must also have type TYPE. */
1655
1656 tree
1657 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1658 {
1659 unsigned int prec = TYPE_PRECISION (type);
1660 gcc_assert (prec <= values.coeffs[0].get_precision ());
1661 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1662
1663 inchash::hash h;
1664 h.add_int (TYPE_UID (type));
1665 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1666 h.add_wide_int (c.coeffs[i]);
1667 poly_int_cst_hasher::compare_type comp (type, &c);
1668 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1669 INSERT);
1670 if (*slot == NULL_TREE)
1671 {
1672 tree coeffs[NUM_POLY_INT_COEFFS];
1673 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1674 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1675 *slot = build_new_poly_int_cst (type, coeffs);
1676 }
1677 return *slot;
1678 }
1679
1680 /* Create a constant tree with value VALUE in type TYPE. */
1681
1682 tree
1683 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1684 {
1685 if (value.is_constant ())
1686 return wide_int_to_tree_1 (type, value.coeffs[0]);
1687 return build_poly_int_cst (type, value);
1688 }
1689
1690 void
1691 cache_integer_cst (tree t)
1692 {
1693 tree type = TREE_TYPE (t);
1694 int ix = -1;
1695 int limit = 0;
1696 int prec = TYPE_PRECISION (type);
1697
1698 gcc_assert (!TREE_OVERFLOW (t));
1699
1700 switch (TREE_CODE (type))
1701 {
1702 case NULLPTR_TYPE:
1703 gcc_assert (integer_zerop (t));
1704 /* Fallthru. */
1705
1706 case POINTER_TYPE:
1707 case REFERENCE_TYPE:
1708 /* Cache NULL pointer. */
1709 if (integer_zerop (t))
1710 {
1711 limit = 1;
1712 ix = 0;
1713 }
1714 break;
1715
1716 case BOOLEAN_TYPE:
1717 /* Cache false or true. */
1718 limit = 2;
1719 if (wi::ltu_p (wi::to_wide (t), 2))
1720 ix = TREE_INT_CST_ELT (t, 0);
1721 break;
1722
1723 case INTEGER_TYPE:
1724 case OFFSET_TYPE:
1725 if (TYPE_UNSIGNED (type))
1726 {
1727 /* Cache 0..N */
1728 limit = INTEGER_SHARE_LIMIT;
1729
1730 /* This is a little hokie, but if the prec is smaller than
1731 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1732 obvious test will not get the correct answer. */
1733 if (prec < HOST_BITS_PER_WIDE_INT)
1734 {
1735 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1736 ix = tree_to_uhwi (t);
1737 }
1738 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1739 ix = tree_to_uhwi (t);
1740 }
1741 else
1742 {
1743 /* Cache -1..N */
1744 limit = INTEGER_SHARE_LIMIT + 1;
1745
1746 if (integer_minus_onep (t))
1747 ix = 0;
1748 else if (!wi::neg_p (wi::to_wide (t)))
1749 {
1750 if (prec < HOST_BITS_PER_WIDE_INT)
1751 {
1752 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1753 ix = tree_to_shwi (t) + 1;
1754 }
1755 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1756 ix = tree_to_shwi (t) + 1;
1757 }
1758 }
1759 break;
1760
1761 case ENUMERAL_TYPE:
1762 break;
1763
1764 default:
1765 gcc_unreachable ();
1766 }
1767
1768 if (ix >= 0)
1769 {
1770 /* Look for it in the type's vector of small shared ints. */
1771 if (!TYPE_CACHED_VALUES_P (type))
1772 {
1773 TYPE_CACHED_VALUES_P (type) = 1;
1774 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1775 }
1776
1777 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1778 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1779 }
1780 else
1781 {
1782 /* Use the cache of larger shared ints. */
1783 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1784 /* If there is already an entry for the number verify it's the
1785 same. */
1786 if (*slot)
1787 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1788 else
1789 /* Otherwise insert this one into the hash table. */
1790 *slot = t;
1791 }
1792 }
1793
1794
1795 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1796 and the rest are zeros. */
1797
1798 tree
1799 build_low_bits_mask (tree type, unsigned bits)
1800 {
1801 gcc_assert (bits <= TYPE_PRECISION (type));
1802
1803 return wide_int_to_tree (type, wi::mask (bits, false,
1804 TYPE_PRECISION (type)));
1805 }
1806
1807 /* Checks that X is integer constant that can be expressed in (unsigned)
1808 HOST_WIDE_INT without loss of precision. */
1809
1810 bool
1811 cst_and_fits_in_hwi (const_tree x)
1812 {
1813 return (TREE_CODE (x) == INTEGER_CST
1814 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1815 }
1816
1817 /* Build a newly constructed VECTOR_CST with the given values of
1818 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1819
1820 tree
1821 make_vector (unsigned log2_npatterns,
1822 unsigned int nelts_per_pattern MEM_STAT_DECL)
1823 {
1824 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1825 tree t;
1826 unsigned npatterns = 1 << log2_npatterns;
1827 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1828 unsigned length = (sizeof (struct tree_vector)
1829 + (encoded_nelts - 1) * sizeof (tree));
1830
1831 record_node_allocation_statistics (VECTOR_CST, length);
1832
1833 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1834
1835 TREE_SET_CODE (t, VECTOR_CST);
1836 TREE_CONSTANT (t) = 1;
1837 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1838 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1839
1840 return t;
1841 }
1842
1843 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1844 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1845
1846 tree
1847 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1848 {
1849 unsigned HOST_WIDE_INT idx, nelts;
1850 tree value;
1851
1852 /* We can't construct a VECTOR_CST for a variable number of elements. */
1853 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1854 tree_vector_builder vec (type, nelts, 1);
1855 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1856 {
1857 if (TREE_CODE (value) == VECTOR_CST)
1858 {
1859 /* If NELTS is constant then this must be too. */
1860 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1861 for (unsigned i = 0; i < sub_nelts; ++i)
1862 vec.quick_push (VECTOR_CST_ELT (value, i));
1863 }
1864 else
1865 vec.quick_push (value);
1866 }
1867 while (vec.length () < nelts)
1868 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1869
1870 return vec.build ();
1871 }
1872
1873 /* Build a vector of type VECTYPE where all the elements are SCs. */
1874 tree
1875 build_vector_from_val (tree vectype, tree sc)
1876 {
1877 unsigned HOST_WIDE_INT i, nunits;
1878
1879 if (sc == error_mark_node)
1880 return sc;
1881
1882 /* Verify that the vector type is suitable for SC. Note that there
1883 is some inconsistency in the type-system with respect to restrict
1884 qualifications of pointers. Vector types always have a main-variant
1885 element type and the qualification is applied to the vector-type.
1886 So TREE_TYPE (vector-type) does not return a properly qualified
1887 vector element-type. */
1888 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1889 TREE_TYPE (vectype)));
1890
1891 if (CONSTANT_CLASS_P (sc))
1892 {
1893 tree_vector_builder v (vectype, 1, 1);
1894 v.quick_push (sc);
1895 return v.build ();
1896 }
1897 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1898 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1899 else
1900 {
1901 vec<constructor_elt, va_gc> *v;
1902 vec_alloc (v, nunits);
1903 for (i = 0; i < nunits; ++i)
1904 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1905 return build_constructor (vectype, v);
1906 }
1907 }
1908
1909 /* If TYPE is not a vector type, just return SC, otherwise return
1910 build_vector_from_val (TYPE, SC). */
1911
1912 tree
1913 build_uniform_cst (tree type, tree sc)
1914 {
1915 if (!VECTOR_TYPE_P (type))
1916 return sc;
1917
1918 return build_vector_from_val (type, sc);
1919 }
1920
1921 /* Build a vector series of type TYPE in which element I has the value
1922 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1923 and a VEC_SERIES_EXPR otherwise. */
1924
1925 tree
1926 build_vec_series (tree type, tree base, tree step)
1927 {
1928 if (integer_zerop (step))
1929 return build_vector_from_val (type, base);
1930 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1931 {
1932 tree_vector_builder builder (type, 1, 3);
1933 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1934 wi::to_wide (base) + wi::to_wide (step));
1935 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1936 wi::to_wide (elt1) + wi::to_wide (step));
1937 builder.quick_push (base);
1938 builder.quick_push (elt1);
1939 builder.quick_push (elt2);
1940 return builder.build ();
1941 }
1942 return build2 (VEC_SERIES_EXPR, type, base, step);
1943 }
1944
1945 /* Return a vector with the same number of units and number of bits
1946 as VEC_TYPE, but in which the elements are a linear series of unsigned
1947 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1948
1949 tree
1950 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1951 {
1952 tree index_vec_type = vec_type;
1953 tree index_elt_type = TREE_TYPE (vec_type);
1954 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1955 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1956 {
1957 index_elt_type = build_nonstandard_integer_type
1958 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1959 index_vec_type = build_vector_type (index_elt_type, nunits);
1960 }
1961
1962 tree_vector_builder v (index_vec_type, 1, 3);
1963 for (unsigned int i = 0; i < 3; ++i)
1964 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1965 return v.build ();
1966 }
1967
1968 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1969 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1970
1971 void
1972 recompute_constructor_flags (tree c)
1973 {
1974 unsigned int i;
1975 tree val;
1976 bool constant_p = true;
1977 bool side_effects_p = false;
1978 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1979
1980 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1981 {
1982 /* Mostly ctors will have elts that don't have side-effects, so
1983 the usual case is to scan all the elements. Hence a single
1984 loop for both const and side effects, rather than one loop
1985 each (with early outs). */
1986 if (!TREE_CONSTANT (val))
1987 constant_p = false;
1988 if (TREE_SIDE_EFFECTS (val))
1989 side_effects_p = true;
1990 }
1991
1992 TREE_SIDE_EFFECTS (c) = side_effects_p;
1993 TREE_CONSTANT (c) = constant_p;
1994 }
1995
1996 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1997 CONSTRUCTOR C. */
1998
1999 void
2000 verify_constructor_flags (tree c)
2001 {
2002 unsigned int i;
2003 tree val;
2004 bool constant_p = TREE_CONSTANT (c);
2005 bool side_effects_p = TREE_SIDE_EFFECTS (c);
2006 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2007
2008 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2009 {
2010 if (constant_p && !TREE_CONSTANT (val))
2011 internal_error ("non-constant element in constant CONSTRUCTOR");
2012 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
2013 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
2014 }
2015 }
2016
2017 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2018 are in the vec pointed to by VALS. */
2019 tree
2020 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
2021 {
2022 tree c = make_node (CONSTRUCTOR);
2023
2024 TREE_TYPE (c) = type;
2025 CONSTRUCTOR_ELTS (c) = vals;
2026
2027 recompute_constructor_flags (c);
2028
2029 return c;
2030 }
2031
2032 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2033 INDEX and VALUE. */
2034 tree
2035 build_constructor_single (tree type, tree index, tree value)
2036 {
2037 vec<constructor_elt, va_gc> *v;
2038 constructor_elt elt = {index, value};
2039
2040 vec_alloc (v, 1);
2041 v->quick_push (elt);
2042
2043 return build_constructor (type, v);
2044 }
2045
2046
2047 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2048 are in a list pointed to by VALS. */
2049 tree
2050 build_constructor_from_list (tree type, tree vals)
2051 {
2052 tree t;
2053 vec<constructor_elt, va_gc> *v = NULL;
2054
2055 if (vals)
2056 {
2057 vec_alloc (v, list_length (vals));
2058 for (t = vals; t; t = TREE_CHAIN (t))
2059 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2060 }
2061
2062 return build_constructor (type, v);
2063 }
2064
2065 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2066 of elements, provided as index/value pairs. */
2067
2068 tree
2069 build_constructor_va (tree type, int nelts, ...)
2070 {
2071 vec<constructor_elt, va_gc> *v = NULL;
2072 va_list p;
2073
2074 va_start (p, nelts);
2075 vec_alloc (v, nelts);
2076 while (nelts--)
2077 {
2078 tree index = va_arg (p, tree);
2079 tree value = va_arg (p, tree);
2080 CONSTRUCTOR_APPEND_ELT (v, index, value);
2081 }
2082 va_end (p);
2083 return build_constructor (type, v);
2084 }
2085
2086 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2087
2088 tree
2089 build_clobber (tree type)
2090 {
2091 tree clobber = build_constructor (type, NULL);
2092 TREE_THIS_VOLATILE (clobber) = true;
2093 return clobber;
2094 }
2095
2096 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2097
2098 tree
2099 build_fixed (tree type, FIXED_VALUE_TYPE f)
2100 {
2101 tree v;
2102 FIXED_VALUE_TYPE *fp;
2103
2104 v = make_node (FIXED_CST);
2105 fp = ggc_alloc<fixed_value> ();
2106 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2107
2108 TREE_TYPE (v) = type;
2109 TREE_FIXED_CST_PTR (v) = fp;
2110 return v;
2111 }
2112
2113 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2114
2115 tree
2116 build_real (tree type, REAL_VALUE_TYPE d)
2117 {
2118 tree v;
2119 REAL_VALUE_TYPE *dp;
2120 int overflow = 0;
2121
2122 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2123 Consider doing it via real_convert now. */
2124
2125 v = make_node (REAL_CST);
2126 dp = ggc_alloc<real_value> ();
2127 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2128
2129 TREE_TYPE (v) = type;
2130 TREE_REAL_CST_PTR (v) = dp;
2131 TREE_OVERFLOW (v) = overflow;
2132 return v;
2133 }
2134
2135 /* Like build_real, but first truncate D to the type. */
2136
2137 tree
2138 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2139 {
2140 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2141 }
2142
2143 /* Return a new REAL_CST node whose type is TYPE
2144 and whose value is the integer value of the INTEGER_CST node I. */
2145
2146 REAL_VALUE_TYPE
2147 real_value_from_int_cst (const_tree type, const_tree i)
2148 {
2149 REAL_VALUE_TYPE d;
2150
2151 /* Clear all bits of the real value type so that we can later do
2152 bitwise comparisons to see if two values are the same. */
2153 memset (&d, 0, sizeof d);
2154
2155 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2156 TYPE_SIGN (TREE_TYPE (i)));
2157 return d;
2158 }
2159
2160 /* Given a tree representing an integer constant I, return a tree
2161 representing the same value as a floating-point constant of type TYPE. */
2162
2163 tree
2164 build_real_from_int_cst (tree type, const_tree i)
2165 {
2166 tree v;
2167 int overflow = TREE_OVERFLOW (i);
2168
2169 v = build_real (type, real_value_from_int_cst (type, i));
2170
2171 TREE_OVERFLOW (v) |= overflow;
2172 return v;
2173 }
2174
2175 /* Return a newly constructed STRING_CST node whose value is
2176 the LEN characters at STR.
2177 Note that for a C string literal, LEN should include the trailing NUL.
2178 The TREE_TYPE is not initialized. */
2179
2180 tree
2181 build_string (int len, const char *str)
2182 {
2183 tree s;
2184 size_t length;
2185
2186 /* Do not waste bytes provided by padding of struct tree_string. */
2187 length = len + offsetof (struct tree_string, str) + 1;
2188
2189 record_node_allocation_statistics (STRING_CST, length);
2190
2191 s = (tree) ggc_internal_alloc (length);
2192
2193 memset (s, 0, sizeof (struct tree_typed));
2194 TREE_SET_CODE (s, STRING_CST);
2195 TREE_CONSTANT (s) = 1;
2196 TREE_STRING_LENGTH (s) = len;
2197 memcpy (s->string.str, str, len);
2198 s->string.str[len] = '\0';
2199
2200 return s;
2201 }
2202
2203 /* Return a newly constructed COMPLEX_CST node whose value is
2204 specified by the real and imaginary parts REAL and IMAG.
2205 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2206 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2207
2208 tree
2209 build_complex (tree type, tree real, tree imag)
2210 {
2211 gcc_assert (CONSTANT_CLASS_P (real));
2212 gcc_assert (CONSTANT_CLASS_P (imag));
2213
2214 tree t = make_node (COMPLEX_CST);
2215
2216 TREE_REALPART (t) = real;
2217 TREE_IMAGPART (t) = imag;
2218 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2219 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2220 return t;
2221 }
2222
2223 /* Build a complex (inf +- 0i), such as for the result of cproj.
2224 TYPE is the complex tree type of the result. If NEG is true, the
2225 imaginary zero is negative. */
2226
2227 tree
2228 build_complex_inf (tree type, bool neg)
2229 {
2230 REAL_VALUE_TYPE rinf, rzero = dconst0;
2231
2232 real_inf (&rinf);
2233 rzero.sign = neg;
2234 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2235 build_real (TREE_TYPE (type), rzero));
2236 }
2237
2238 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2239 element is set to 1. In particular, this is 1 + i for complex types. */
2240
2241 tree
2242 build_each_one_cst (tree type)
2243 {
2244 if (TREE_CODE (type) == COMPLEX_TYPE)
2245 {
2246 tree scalar = build_one_cst (TREE_TYPE (type));
2247 return build_complex (type, scalar, scalar);
2248 }
2249 else
2250 return build_one_cst (type);
2251 }
2252
2253 /* Return a constant of arithmetic type TYPE which is the
2254 multiplicative identity of the set TYPE. */
2255
2256 tree
2257 build_one_cst (tree type)
2258 {
2259 switch (TREE_CODE (type))
2260 {
2261 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2262 case POINTER_TYPE: case REFERENCE_TYPE:
2263 case OFFSET_TYPE:
2264 return build_int_cst (type, 1);
2265
2266 case REAL_TYPE:
2267 return build_real (type, dconst1);
2268
2269 case FIXED_POINT_TYPE:
2270 /* We can only generate 1 for accum types. */
2271 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2272 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2273
2274 case VECTOR_TYPE:
2275 {
2276 tree scalar = build_one_cst (TREE_TYPE (type));
2277
2278 return build_vector_from_val (type, scalar);
2279 }
2280
2281 case COMPLEX_TYPE:
2282 return build_complex (type,
2283 build_one_cst (TREE_TYPE (type)),
2284 build_zero_cst (TREE_TYPE (type)));
2285
2286 default:
2287 gcc_unreachable ();
2288 }
2289 }
2290
2291 /* Return an integer of type TYPE containing all 1's in as much precision as
2292 it contains, or a complex or vector whose subparts are such integers. */
2293
2294 tree
2295 build_all_ones_cst (tree type)
2296 {
2297 if (TREE_CODE (type) == COMPLEX_TYPE)
2298 {
2299 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2300 return build_complex (type, scalar, scalar);
2301 }
2302 else
2303 return build_minus_one_cst (type);
2304 }
2305
2306 /* Return a constant of arithmetic type TYPE which is the
2307 opposite of the multiplicative identity of the set TYPE. */
2308
2309 tree
2310 build_minus_one_cst (tree type)
2311 {
2312 switch (TREE_CODE (type))
2313 {
2314 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2315 case POINTER_TYPE: case REFERENCE_TYPE:
2316 case OFFSET_TYPE:
2317 return build_int_cst (type, -1);
2318
2319 case REAL_TYPE:
2320 return build_real (type, dconstm1);
2321
2322 case FIXED_POINT_TYPE:
2323 /* We can only generate 1 for accum types. */
2324 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2325 return build_fixed (type,
2326 fixed_from_double_int (double_int_minus_one,
2327 SCALAR_TYPE_MODE (type)));
2328
2329 case VECTOR_TYPE:
2330 {
2331 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2332
2333 return build_vector_from_val (type, scalar);
2334 }
2335
2336 case COMPLEX_TYPE:
2337 return build_complex (type,
2338 build_minus_one_cst (TREE_TYPE (type)),
2339 build_zero_cst (TREE_TYPE (type)));
2340
2341 default:
2342 gcc_unreachable ();
2343 }
2344 }
2345
2346 /* Build 0 constant of type TYPE. This is used by constructor folding
2347 and thus the constant should be represented in memory by
2348 zero(es). */
2349
2350 tree
2351 build_zero_cst (tree type)
2352 {
2353 switch (TREE_CODE (type))
2354 {
2355 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2356 case POINTER_TYPE: case REFERENCE_TYPE:
2357 case OFFSET_TYPE: case NULLPTR_TYPE:
2358 return build_int_cst (type, 0);
2359
2360 case REAL_TYPE:
2361 return build_real (type, dconst0);
2362
2363 case FIXED_POINT_TYPE:
2364 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2365
2366 case VECTOR_TYPE:
2367 {
2368 tree scalar = build_zero_cst (TREE_TYPE (type));
2369
2370 return build_vector_from_val (type, scalar);
2371 }
2372
2373 case COMPLEX_TYPE:
2374 {
2375 tree zero = build_zero_cst (TREE_TYPE (type));
2376
2377 return build_complex (type, zero, zero);
2378 }
2379
2380 default:
2381 if (!AGGREGATE_TYPE_P (type))
2382 return fold_convert (type, integer_zero_node);
2383 return build_constructor (type, NULL);
2384 }
2385 }
2386
2387
2388 /* Build a BINFO with LEN language slots. */
2389
2390 tree
2391 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2392 {
2393 tree t;
2394 size_t length = (offsetof (struct tree_binfo, base_binfos)
2395 + vec<tree, va_gc>::embedded_size (base_binfos));
2396
2397 record_node_allocation_statistics (TREE_BINFO, length);
2398
2399 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2400
2401 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2402
2403 TREE_SET_CODE (t, TREE_BINFO);
2404
2405 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2406
2407 return t;
2408 }
2409
2410 /* Create a CASE_LABEL_EXPR tree node and return it. */
2411
2412 tree
2413 build_case_label (tree low_value, tree high_value, tree label_decl)
2414 {
2415 tree t = make_node (CASE_LABEL_EXPR);
2416
2417 TREE_TYPE (t) = void_type_node;
2418 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2419
2420 CASE_LOW (t) = low_value;
2421 CASE_HIGH (t) = high_value;
2422 CASE_LABEL (t) = label_decl;
2423 CASE_CHAIN (t) = NULL_TREE;
2424
2425 return t;
2426 }
2427
2428 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2429 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2430 The latter determines the length of the HOST_WIDE_INT vector. */
2431
2432 tree
2433 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2434 {
2435 tree t;
2436 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2437 + sizeof (struct tree_int_cst));
2438
2439 gcc_assert (len);
2440 record_node_allocation_statistics (INTEGER_CST, length);
2441
2442 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2443
2444 TREE_SET_CODE (t, INTEGER_CST);
2445 TREE_INT_CST_NUNITS (t) = len;
2446 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2447 /* to_offset can only be applied to trees that are offset_int-sized
2448 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2449 must be exactly the precision of offset_int and so LEN is correct. */
2450 if (ext_len <= OFFSET_INT_ELTS)
2451 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2452 else
2453 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2454
2455 TREE_CONSTANT (t) = 1;
2456
2457 return t;
2458 }
2459
2460 /* Build a newly constructed TREE_VEC node of length LEN. */
2461
2462 tree
2463 make_tree_vec (int len MEM_STAT_DECL)
2464 {
2465 tree t;
2466 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2467
2468 record_node_allocation_statistics (TREE_VEC, length);
2469
2470 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2471
2472 TREE_SET_CODE (t, TREE_VEC);
2473 TREE_VEC_LENGTH (t) = len;
2474
2475 return t;
2476 }
2477
2478 /* Grow a TREE_VEC node to new length LEN. */
2479
2480 tree
2481 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2482 {
2483 gcc_assert (TREE_CODE (v) == TREE_VEC);
2484
2485 int oldlen = TREE_VEC_LENGTH (v);
2486 gcc_assert (len > oldlen);
2487
2488 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2489 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2490
2491 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2492
2493 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2494
2495 TREE_VEC_LENGTH (v) = len;
2496
2497 return v;
2498 }
2499 \f
2500 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2501 fixed, and scalar, complex or vector. */
2502
2503 bool
2504 zerop (const_tree expr)
2505 {
2506 return (integer_zerop (expr)
2507 || real_zerop (expr)
2508 || fixed_zerop (expr));
2509 }
2510
2511 /* Return 1 if EXPR is the integer constant zero or a complex constant
2512 of zero, or a location wrapper for such a constant. */
2513
2514 bool
2515 integer_zerop (const_tree expr)
2516 {
2517 STRIP_ANY_LOCATION_WRAPPER (expr);
2518
2519 switch (TREE_CODE (expr))
2520 {
2521 case INTEGER_CST:
2522 return wi::to_wide (expr) == 0;
2523 case COMPLEX_CST:
2524 return (integer_zerop (TREE_REALPART (expr))
2525 && integer_zerop (TREE_IMAGPART (expr)));
2526 case VECTOR_CST:
2527 return (VECTOR_CST_NPATTERNS (expr) == 1
2528 && VECTOR_CST_DUPLICATE_P (expr)
2529 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2530 default:
2531 return false;
2532 }
2533 }
2534
2535 /* Return 1 if EXPR is the integer constant one or the corresponding
2536 complex constant, or a location wrapper for such a constant. */
2537
2538 bool
2539 integer_onep (const_tree expr)
2540 {
2541 STRIP_ANY_LOCATION_WRAPPER (expr);
2542
2543 switch (TREE_CODE (expr))
2544 {
2545 case INTEGER_CST:
2546 return wi::eq_p (wi::to_widest (expr), 1);
2547 case COMPLEX_CST:
2548 return (integer_onep (TREE_REALPART (expr))
2549 && integer_zerop (TREE_IMAGPART (expr)));
2550 case VECTOR_CST:
2551 return (VECTOR_CST_NPATTERNS (expr) == 1
2552 && VECTOR_CST_DUPLICATE_P (expr)
2553 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2554 default:
2555 return false;
2556 }
2557 }
2558
2559 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2560 return 1 if every piece is the integer constant one.
2561 Also return 1 for location wrappers for such a constant. */
2562
2563 bool
2564 integer_each_onep (const_tree expr)
2565 {
2566 STRIP_ANY_LOCATION_WRAPPER (expr);
2567
2568 if (TREE_CODE (expr) == COMPLEX_CST)
2569 return (integer_onep (TREE_REALPART (expr))
2570 && integer_onep (TREE_IMAGPART (expr)));
2571 else
2572 return integer_onep (expr);
2573 }
2574
2575 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2576 it contains, or a complex or vector whose subparts are such integers,
2577 or a location wrapper for such a constant. */
2578
2579 bool
2580 integer_all_onesp (const_tree expr)
2581 {
2582 STRIP_ANY_LOCATION_WRAPPER (expr);
2583
2584 if (TREE_CODE (expr) == COMPLEX_CST
2585 && integer_all_onesp (TREE_REALPART (expr))
2586 && integer_all_onesp (TREE_IMAGPART (expr)))
2587 return true;
2588
2589 else if (TREE_CODE (expr) == VECTOR_CST)
2590 return (VECTOR_CST_NPATTERNS (expr) == 1
2591 && VECTOR_CST_DUPLICATE_P (expr)
2592 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2593
2594 else if (TREE_CODE (expr) != INTEGER_CST)
2595 return false;
2596
2597 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2598 == wi::to_wide (expr));
2599 }
2600
2601 /* Return 1 if EXPR is the integer constant minus one, or a location wrapper
2602 for such a constant. */
2603
2604 bool
2605 integer_minus_onep (const_tree expr)
2606 {
2607 STRIP_ANY_LOCATION_WRAPPER (expr);
2608
2609 if (TREE_CODE (expr) == COMPLEX_CST)
2610 return (integer_all_onesp (TREE_REALPART (expr))
2611 && integer_zerop (TREE_IMAGPART (expr)));
2612 else
2613 return integer_all_onesp (expr);
2614 }
2615
2616 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2617 one bit on), or a location wrapper for such a constant. */
2618
2619 bool
2620 integer_pow2p (const_tree expr)
2621 {
2622 STRIP_ANY_LOCATION_WRAPPER (expr);
2623
2624 if (TREE_CODE (expr) == COMPLEX_CST
2625 && integer_pow2p (TREE_REALPART (expr))
2626 && integer_zerop (TREE_IMAGPART (expr)))
2627 return true;
2628
2629 if (TREE_CODE (expr) != INTEGER_CST)
2630 return false;
2631
2632 return wi::popcount (wi::to_wide (expr)) == 1;
2633 }
2634
2635 /* Return 1 if EXPR is an integer constant other than zero or a
2636 complex constant other than zero, or a location wrapper for such a
2637 constant. */
2638
2639 bool
2640 integer_nonzerop (const_tree expr)
2641 {
2642 STRIP_ANY_LOCATION_WRAPPER (expr);
2643
2644 return ((TREE_CODE (expr) == INTEGER_CST
2645 && wi::to_wide (expr) != 0)
2646 || (TREE_CODE (expr) == COMPLEX_CST
2647 && (integer_nonzerop (TREE_REALPART (expr))
2648 || integer_nonzerop (TREE_IMAGPART (expr)))));
2649 }
2650
2651 /* Return 1 if EXPR is the integer constant one. For vector,
2652 return 1 if every piece is the integer constant minus one
2653 (representing the value TRUE).
2654 Also return 1 for location wrappers for such a constant. */
2655
2656 bool
2657 integer_truep (const_tree expr)
2658 {
2659 STRIP_ANY_LOCATION_WRAPPER (expr);
2660
2661 if (TREE_CODE (expr) == VECTOR_CST)
2662 return integer_all_onesp (expr);
2663 return integer_onep (expr);
2664 }
2665
2666 /* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper
2667 for such a constant. */
2668
2669 bool
2670 fixed_zerop (const_tree expr)
2671 {
2672 STRIP_ANY_LOCATION_WRAPPER (expr);
2673
2674 return (TREE_CODE (expr) == FIXED_CST
2675 && TREE_FIXED_CST (expr).data.is_zero ());
2676 }
2677
2678 /* Return the power of two represented by a tree node known to be a
2679 power of two. */
2680
2681 int
2682 tree_log2 (const_tree expr)
2683 {
2684 if (TREE_CODE (expr) == COMPLEX_CST)
2685 return tree_log2 (TREE_REALPART (expr));
2686
2687 return wi::exact_log2 (wi::to_wide (expr));
2688 }
2689
2690 /* Similar, but return the largest integer Y such that 2 ** Y is less
2691 than or equal to EXPR. */
2692
2693 int
2694 tree_floor_log2 (const_tree expr)
2695 {
2696 if (TREE_CODE (expr) == COMPLEX_CST)
2697 return tree_log2 (TREE_REALPART (expr));
2698
2699 return wi::floor_log2 (wi::to_wide (expr));
2700 }
2701
2702 /* Return number of known trailing zero bits in EXPR, or, if the value of
2703 EXPR is known to be zero, the precision of it's type. */
2704
2705 unsigned int
2706 tree_ctz (const_tree expr)
2707 {
2708 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2709 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2710 return 0;
2711
2712 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2713 switch (TREE_CODE (expr))
2714 {
2715 case INTEGER_CST:
2716 ret1 = wi::ctz (wi::to_wide (expr));
2717 return MIN (ret1, prec);
2718 case SSA_NAME:
2719 ret1 = wi::ctz (get_nonzero_bits (expr));
2720 return MIN (ret1, prec);
2721 case PLUS_EXPR:
2722 case MINUS_EXPR:
2723 case BIT_IOR_EXPR:
2724 case BIT_XOR_EXPR:
2725 case MIN_EXPR:
2726 case MAX_EXPR:
2727 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2728 if (ret1 == 0)
2729 return ret1;
2730 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2731 return MIN (ret1, ret2);
2732 case POINTER_PLUS_EXPR:
2733 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2734 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2735 /* Second operand is sizetype, which could be in theory
2736 wider than pointer's precision. Make sure we never
2737 return more than prec. */
2738 ret2 = MIN (ret2, prec);
2739 return MIN (ret1, ret2);
2740 case BIT_AND_EXPR:
2741 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2742 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2743 return MAX (ret1, ret2);
2744 case MULT_EXPR:
2745 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2746 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2747 return MIN (ret1 + ret2, prec);
2748 case LSHIFT_EXPR:
2749 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2750 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2751 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2752 {
2753 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2754 return MIN (ret1 + ret2, prec);
2755 }
2756 return ret1;
2757 case RSHIFT_EXPR:
2758 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2759 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2760 {
2761 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2762 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2763 if (ret1 > ret2)
2764 return ret1 - ret2;
2765 }
2766 return 0;
2767 case TRUNC_DIV_EXPR:
2768 case CEIL_DIV_EXPR:
2769 case FLOOR_DIV_EXPR:
2770 case ROUND_DIV_EXPR:
2771 case EXACT_DIV_EXPR:
2772 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2773 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2774 {
2775 int l = tree_log2 (TREE_OPERAND (expr, 1));
2776 if (l >= 0)
2777 {
2778 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2779 ret2 = l;
2780 if (ret1 > ret2)
2781 return ret1 - ret2;
2782 }
2783 }
2784 return 0;
2785 CASE_CONVERT:
2786 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2787 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2788 ret1 = prec;
2789 return MIN (ret1, prec);
2790 case SAVE_EXPR:
2791 return tree_ctz (TREE_OPERAND (expr, 0));
2792 case COND_EXPR:
2793 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2794 if (ret1 == 0)
2795 return 0;
2796 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2797 return MIN (ret1, ret2);
2798 case COMPOUND_EXPR:
2799 return tree_ctz (TREE_OPERAND (expr, 1));
2800 case ADDR_EXPR:
2801 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2802 if (ret1 > BITS_PER_UNIT)
2803 {
2804 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2805 return MIN (ret1, prec);
2806 }
2807 return 0;
2808 default:
2809 return 0;
2810 }
2811 }
2812
2813 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2814 decimal float constants, so don't return 1 for them.
2815 Also return 1 for location wrappers around such a constant. */
2816
2817 bool
2818 real_zerop (const_tree expr)
2819 {
2820 STRIP_ANY_LOCATION_WRAPPER (expr);
2821
2822 switch (TREE_CODE (expr))
2823 {
2824 case REAL_CST:
2825 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2826 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2827 case COMPLEX_CST:
2828 return real_zerop (TREE_REALPART (expr))
2829 && real_zerop (TREE_IMAGPART (expr));
2830 case VECTOR_CST:
2831 {
2832 /* Don't simply check for a duplicate because the predicate
2833 accepts both +0.0 and -0.0. */
2834 unsigned count = vector_cst_encoded_nelts (expr);
2835 for (unsigned int i = 0; i < count; ++i)
2836 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2837 return false;
2838 return true;
2839 }
2840 default:
2841 return false;
2842 }
2843 }
2844
2845 /* Return 1 if EXPR is the real constant one in real or complex form.
2846 Trailing zeroes matter for decimal float constants, so don't return
2847 1 for them.
2848 Also return 1 for location wrappers around such a constant. */
2849
2850 bool
2851 real_onep (const_tree expr)
2852 {
2853 STRIP_ANY_LOCATION_WRAPPER (expr);
2854
2855 switch (TREE_CODE (expr))
2856 {
2857 case REAL_CST:
2858 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2859 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2860 case COMPLEX_CST:
2861 return real_onep (TREE_REALPART (expr))
2862 && real_zerop (TREE_IMAGPART (expr));
2863 case VECTOR_CST:
2864 return (VECTOR_CST_NPATTERNS (expr) == 1
2865 && VECTOR_CST_DUPLICATE_P (expr)
2866 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2867 default:
2868 return false;
2869 }
2870 }
2871
2872 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2873 matter for decimal float constants, so don't return 1 for them.
2874 Also return 1 for location wrappers around such a constant. */
2875
2876 bool
2877 real_minus_onep (const_tree expr)
2878 {
2879 STRIP_ANY_LOCATION_WRAPPER (expr);
2880
2881 switch (TREE_CODE (expr))
2882 {
2883 case REAL_CST:
2884 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2885 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2886 case COMPLEX_CST:
2887 return real_minus_onep (TREE_REALPART (expr))
2888 && real_zerop (TREE_IMAGPART (expr));
2889 case VECTOR_CST:
2890 return (VECTOR_CST_NPATTERNS (expr) == 1
2891 && VECTOR_CST_DUPLICATE_P (expr)
2892 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2893 default:
2894 return false;
2895 }
2896 }
2897
2898 /* Nonzero if EXP is a constant or a cast of a constant. */
2899
2900 bool
2901 really_constant_p (const_tree exp)
2902 {
2903 /* This is not quite the same as STRIP_NOPS. It does more. */
2904 while (CONVERT_EXPR_P (exp)
2905 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2906 exp = TREE_OPERAND (exp, 0);
2907 return TREE_CONSTANT (exp);
2908 }
2909
2910 /* Return true if T holds a polynomial pointer difference, storing it in
2911 *VALUE if so. A true return means that T's precision is no greater
2912 than 64 bits, which is the largest address space we support, so *VALUE
2913 never loses precision. However, the signedness of the result does
2914 not necessarily match the signedness of T: sometimes an unsigned type
2915 like sizetype is used to encode a value that is actually negative. */
2916
2917 bool
2918 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2919 {
2920 if (!t)
2921 return false;
2922 if (TREE_CODE (t) == INTEGER_CST)
2923 {
2924 if (!cst_and_fits_in_hwi (t))
2925 return false;
2926 *value = int_cst_value (t);
2927 return true;
2928 }
2929 if (POLY_INT_CST_P (t))
2930 {
2931 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2932 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2933 return false;
2934 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2935 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2936 return true;
2937 }
2938 return false;
2939 }
2940
2941 poly_int64
2942 tree_to_poly_int64 (const_tree t)
2943 {
2944 gcc_assert (tree_fits_poly_int64_p (t));
2945 if (POLY_INT_CST_P (t))
2946 return poly_int_cst_value (t).force_shwi ();
2947 return TREE_INT_CST_LOW (t);
2948 }
2949
2950 poly_uint64
2951 tree_to_poly_uint64 (const_tree t)
2952 {
2953 gcc_assert (tree_fits_poly_uint64_p (t));
2954 if (POLY_INT_CST_P (t))
2955 return poly_int_cst_value (t).force_uhwi ();
2956 return TREE_INT_CST_LOW (t);
2957 }
2958 \f
2959 /* Return first list element whose TREE_VALUE is ELEM.
2960 Return 0 if ELEM is not in LIST. */
2961
2962 tree
2963 value_member (tree elem, tree list)
2964 {
2965 while (list)
2966 {
2967 if (elem == TREE_VALUE (list))
2968 return list;
2969 list = TREE_CHAIN (list);
2970 }
2971 return NULL_TREE;
2972 }
2973
2974 /* Return first list element whose TREE_PURPOSE is ELEM.
2975 Return 0 if ELEM is not in LIST. */
2976
2977 tree
2978 purpose_member (const_tree elem, tree list)
2979 {
2980 while (list)
2981 {
2982 if (elem == TREE_PURPOSE (list))
2983 return list;
2984 list = TREE_CHAIN (list);
2985 }
2986 return NULL_TREE;
2987 }
2988
2989 /* Return true if ELEM is in V. */
2990
2991 bool
2992 vec_member (const_tree elem, vec<tree, va_gc> *v)
2993 {
2994 unsigned ix;
2995 tree t;
2996 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2997 if (elem == t)
2998 return true;
2999 return false;
3000 }
3001
3002 /* Returns element number IDX (zero-origin) of chain CHAIN, or
3003 NULL_TREE. */
3004
3005 tree
3006 chain_index (int idx, tree chain)
3007 {
3008 for (; chain && idx > 0; --idx)
3009 chain = TREE_CHAIN (chain);
3010 return chain;
3011 }
3012
3013 /* Return nonzero if ELEM is part of the chain CHAIN. */
3014
3015 bool
3016 chain_member (const_tree elem, const_tree chain)
3017 {
3018 while (chain)
3019 {
3020 if (elem == chain)
3021 return true;
3022 chain = DECL_CHAIN (chain);
3023 }
3024
3025 return false;
3026 }
3027
3028 /* Return the length of a chain of nodes chained through TREE_CHAIN.
3029 We expect a null pointer to mark the end of the chain.
3030 This is the Lisp primitive `length'. */
3031
3032 int
3033 list_length (const_tree t)
3034 {
3035 const_tree p = t;
3036 #ifdef ENABLE_TREE_CHECKING
3037 const_tree q = t;
3038 #endif
3039 int len = 0;
3040
3041 while (p)
3042 {
3043 p = TREE_CHAIN (p);
3044 #ifdef ENABLE_TREE_CHECKING
3045 if (len % 2)
3046 q = TREE_CHAIN (q);
3047 gcc_assert (p != q);
3048 #endif
3049 len++;
3050 }
3051
3052 return len;
3053 }
3054
3055 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3056 UNION_TYPE TYPE, or NULL_TREE if none. */
3057
3058 tree
3059 first_field (const_tree type)
3060 {
3061 tree t = TYPE_FIELDS (type);
3062 while (t && TREE_CODE (t) != FIELD_DECL)
3063 t = TREE_CHAIN (t);
3064 return t;
3065 }
3066
3067 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3068 by modifying the last node in chain 1 to point to chain 2.
3069 This is the Lisp primitive `nconc'. */
3070
3071 tree
3072 chainon (tree op1, tree op2)
3073 {
3074 tree t1;
3075
3076 if (!op1)
3077 return op2;
3078 if (!op2)
3079 return op1;
3080
3081 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3082 continue;
3083 TREE_CHAIN (t1) = op2;
3084
3085 #ifdef ENABLE_TREE_CHECKING
3086 {
3087 tree t2;
3088 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3089 gcc_assert (t2 != t1);
3090 }
3091 #endif
3092
3093 return op1;
3094 }
3095
3096 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3097
3098 tree
3099 tree_last (tree chain)
3100 {
3101 tree next;
3102 if (chain)
3103 while ((next = TREE_CHAIN (chain)))
3104 chain = next;
3105 return chain;
3106 }
3107
3108 /* Reverse the order of elements in the chain T,
3109 and return the new head of the chain (old last element). */
3110
3111 tree
3112 nreverse (tree t)
3113 {
3114 tree prev = 0, decl, next;
3115 for (decl = t; decl; decl = next)
3116 {
3117 /* We shouldn't be using this function to reverse BLOCK chains; we
3118 have blocks_nreverse for that. */
3119 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3120 next = TREE_CHAIN (decl);
3121 TREE_CHAIN (decl) = prev;
3122 prev = decl;
3123 }
3124 return prev;
3125 }
3126 \f
3127 /* Return a newly created TREE_LIST node whose
3128 purpose and value fields are PARM and VALUE. */
3129
3130 tree
3131 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3132 {
3133 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3134 TREE_PURPOSE (t) = parm;
3135 TREE_VALUE (t) = value;
3136 return t;
3137 }
3138
3139 /* Build a chain of TREE_LIST nodes from a vector. */
3140
3141 tree
3142 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3143 {
3144 tree ret = NULL_TREE;
3145 tree *pp = &ret;
3146 unsigned int i;
3147 tree t;
3148 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3149 {
3150 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3151 pp = &TREE_CHAIN (*pp);
3152 }
3153 return ret;
3154 }
3155
3156 /* Return a newly created TREE_LIST node whose
3157 purpose and value fields are PURPOSE and VALUE
3158 and whose TREE_CHAIN is CHAIN. */
3159
3160 tree
3161 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3162 {
3163 tree node;
3164
3165 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3166 memset (node, 0, sizeof (struct tree_common));
3167
3168 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3169
3170 TREE_SET_CODE (node, TREE_LIST);
3171 TREE_CHAIN (node) = chain;
3172 TREE_PURPOSE (node) = purpose;
3173 TREE_VALUE (node) = value;
3174 return node;
3175 }
3176
3177 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3178 trees. */
3179
3180 vec<tree, va_gc> *
3181 ctor_to_vec (tree ctor)
3182 {
3183 vec<tree, va_gc> *vec;
3184 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3185 unsigned int ix;
3186 tree val;
3187
3188 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3189 vec->quick_push (val);
3190
3191 return vec;
3192 }
3193 \f
3194 /* Return the size nominally occupied by an object of type TYPE
3195 when it resides in memory. The value is measured in units of bytes,
3196 and its data type is that normally used for type sizes
3197 (which is the first type created by make_signed_type or
3198 make_unsigned_type). */
3199
3200 tree
3201 size_in_bytes_loc (location_t loc, const_tree type)
3202 {
3203 tree t;
3204
3205 if (type == error_mark_node)
3206 return integer_zero_node;
3207
3208 type = TYPE_MAIN_VARIANT (type);
3209 t = TYPE_SIZE_UNIT (type);
3210
3211 if (t == 0)
3212 {
3213 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3214 return size_zero_node;
3215 }
3216
3217 return t;
3218 }
3219
3220 /* Return the size of TYPE (in bytes) as a wide integer
3221 or return -1 if the size can vary or is larger than an integer. */
3222
3223 HOST_WIDE_INT
3224 int_size_in_bytes (const_tree type)
3225 {
3226 tree t;
3227
3228 if (type == error_mark_node)
3229 return 0;
3230
3231 type = TYPE_MAIN_VARIANT (type);
3232 t = TYPE_SIZE_UNIT (type);
3233
3234 if (t && tree_fits_uhwi_p (t))
3235 return TREE_INT_CST_LOW (t);
3236 else
3237 return -1;
3238 }
3239
3240 /* Return the maximum size of TYPE (in bytes) as a wide integer
3241 or return -1 if the size can vary or is larger than an integer. */
3242
3243 HOST_WIDE_INT
3244 max_int_size_in_bytes (const_tree type)
3245 {
3246 HOST_WIDE_INT size = -1;
3247 tree size_tree;
3248
3249 /* If this is an array type, check for a possible MAX_SIZE attached. */
3250
3251 if (TREE_CODE (type) == ARRAY_TYPE)
3252 {
3253 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3254
3255 if (size_tree && tree_fits_uhwi_p (size_tree))
3256 size = tree_to_uhwi (size_tree);
3257 }
3258
3259 /* If we still haven't been able to get a size, see if the language
3260 can compute a maximum size. */
3261
3262 if (size == -1)
3263 {
3264 size_tree = lang_hooks.types.max_size (type);
3265
3266 if (size_tree && tree_fits_uhwi_p (size_tree))
3267 size = tree_to_uhwi (size_tree);
3268 }
3269
3270 return size;
3271 }
3272 \f
3273 /* Return the bit position of FIELD, in bits from the start of the record.
3274 This is a tree of type bitsizetype. */
3275
3276 tree
3277 bit_position (const_tree field)
3278 {
3279 return bit_from_pos (DECL_FIELD_OFFSET (field),
3280 DECL_FIELD_BIT_OFFSET (field));
3281 }
3282 \f
3283 /* Return the byte position of FIELD, in bytes from the start of the record.
3284 This is a tree of type sizetype. */
3285
3286 tree
3287 byte_position (const_tree field)
3288 {
3289 return byte_from_pos (DECL_FIELD_OFFSET (field),
3290 DECL_FIELD_BIT_OFFSET (field));
3291 }
3292
3293 /* Likewise, but return as an integer. It must be representable in
3294 that way (since it could be a signed value, we don't have the
3295 option of returning -1 like int_size_in_byte can. */
3296
3297 HOST_WIDE_INT
3298 int_byte_position (const_tree field)
3299 {
3300 return tree_to_shwi (byte_position (field));
3301 }
3302 \f
3303 /* Return the strictest alignment, in bits, that T is known to have. */
3304
3305 unsigned int
3306 expr_align (const_tree t)
3307 {
3308 unsigned int align0, align1;
3309
3310 switch (TREE_CODE (t))
3311 {
3312 CASE_CONVERT: case NON_LVALUE_EXPR:
3313 /* If we have conversions, we know that the alignment of the
3314 object must meet each of the alignments of the types. */
3315 align0 = expr_align (TREE_OPERAND (t, 0));
3316 align1 = TYPE_ALIGN (TREE_TYPE (t));
3317 return MAX (align0, align1);
3318
3319 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3320 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3321 case CLEANUP_POINT_EXPR:
3322 /* These don't change the alignment of an object. */
3323 return expr_align (TREE_OPERAND (t, 0));
3324
3325 case COND_EXPR:
3326 /* The best we can do is say that the alignment is the least aligned
3327 of the two arms. */
3328 align0 = expr_align (TREE_OPERAND (t, 1));
3329 align1 = expr_align (TREE_OPERAND (t, 2));
3330 return MIN (align0, align1);
3331
3332 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3333 meaningfully, it's always 1. */
3334 case LABEL_DECL: case CONST_DECL:
3335 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3336 case FUNCTION_DECL:
3337 gcc_assert (DECL_ALIGN (t) != 0);
3338 return DECL_ALIGN (t);
3339
3340 default:
3341 break;
3342 }
3343
3344 /* Otherwise take the alignment from that of the type. */
3345 return TYPE_ALIGN (TREE_TYPE (t));
3346 }
3347 \f
3348 /* Return, as a tree node, the number of elements for TYPE (which is an
3349 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3350
3351 tree
3352 array_type_nelts (const_tree type)
3353 {
3354 tree index_type, min, max;
3355
3356 /* If they did it with unspecified bounds, then we should have already
3357 given an error about it before we got here. */
3358 if (! TYPE_DOMAIN (type))
3359 return error_mark_node;
3360
3361 index_type = TYPE_DOMAIN (type);
3362 min = TYPE_MIN_VALUE (index_type);
3363 max = TYPE_MAX_VALUE (index_type);
3364
3365 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3366 if (!max)
3367 return error_mark_node;
3368
3369 return (integer_zerop (min)
3370 ? max
3371 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3372 }
3373 \f
3374 /* If arg is static -- a reference to an object in static storage -- then
3375 return the object. This is not the same as the C meaning of `static'.
3376 If arg isn't static, return NULL. */
3377
3378 tree
3379 staticp (tree arg)
3380 {
3381 switch (TREE_CODE (arg))
3382 {
3383 case FUNCTION_DECL:
3384 /* Nested functions are static, even though taking their address will
3385 involve a trampoline as we unnest the nested function and create
3386 the trampoline on the tree level. */
3387 return arg;
3388
3389 case VAR_DECL:
3390 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3391 && ! DECL_THREAD_LOCAL_P (arg)
3392 && ! DECL_DLLIMPORT_P (arg)
3393 ? arg : NULL);
3394
3395 case CONST_DECL:
3396 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3397 ? arg : NULL);
3398
3399 case CONSTRUCTOR:
3400 return TREE_STATIC (arg) ? arg : NULL;
3401
3402 case LABEL_DECL:
3403 case STRING_CST:
3404 return arg;
3405
3406 case COMPONENT_REF:
3407 /* If the thing being referenced is not a field, then it is
3408 something language specific. */
3409 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3410
3411 /* If we are referencing a bitfield, we can't evaluate an
3412 ADDR_EXPR at compile time and so it isn't a constant. */
3413 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3414 return NULL;
3415
3416 return staticp (TREE_OPERAND (arg, 0));
3417
3418 case BIT_FIELD_REF:
3419 return NULL;
3420
3421 case INDIRECT_REF:
3422 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3423
3424 case ARRAY_REF:
3425 case ARRAY_RANGE_REF:
3426 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3427 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3428 return staticp (TREE_OPERAND (arg, 0));
3429 else
3430 return NULL;
3431
3432 case COMPOUND_LITERAL_EXPR:
3433 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3434
3435 default:
3436 return NULL;
3437 }
3438 }
3439
3440 \f
3441
3442
3443 /* Return whether OP is a DECL whose address is function-invariant. */
3444
3445 bool
3446 decl_address_invariant_p (const_tree op)
3447 {
3448 /* The conditions below are slightly less strict than the one in
3449 staticp. */
3450
3451 switch (TREE_CODE (op))
3452 {
3453 case PARM_DECL:
3454 case RESULT_DECL:
3455 case LABEL_DECL:
3456 case FUNCTION_DECL:
3457 return true;
3458
3459 case VAR_DECL:
3460 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3461 || DECL_THREAD_LOCAL_P (op)
3462 || DECL_CONTEXT (op) == current_function_decl
3463 || decl_function_context (op) == current_function_decl)
3464 return true;
3465 break;
3466
3467 case CONST_DECL:
3468 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3469 || decl_function_context (op) == current_function_decl)
3470 return true;
3471 break;
3472
3473 default:
3474 break;
3475 }
3476
3477 return false;
3478 }
3479
3480 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3481
3482 bool
3483 decl_address_ip_invariant_p (const_tree op)
3484 {
3485 /* The conditions below are slightly less strict than the one in
3486 staticp. */
3487
3488 switch (TREE_CODE (op))
3489 {
3490 case LABEL_DECL:
3491 case FUNCTION_DECL:
3492 case STRING_CST:
3493 return true;
3494
3495 case VAR_DECL:
3496 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3497 && !DECL_DLLIMPORT_P (op))
3498 || DECL_THREAD_LOCAL_P (op))
3499 return true;
3500 break;
3501
3502 case CONST_DECL:
3503 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3504 return true;
3505 break;
3506
3507 default:
3508 break;
3509 }
3510
3511 return false;
3512 }
3513
3514
3515 /* Return true if T is function-invariant (internal function, does
3516 not handle arithmetic; that's handled in skip_simple_arithmetic and
3517 tree_invariant_p). */
3518
3519 static bool
3520 tree_invariant_p_1 (tree t)
3521 {
3522 tree op;
3523
3524 if (TREE_CONSTANT (t)
3525 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3526 return true;
3527
3528 switch (TREE_CODE (t))
3529 {
3530 case SAVE_EXPR:
3531 return true;
3532
3533 case ADDR_EXPR:
3534 op = TREE_OPERAND (t, 0);
3535 while (handled_component_p (op))
3536 {
3537 switch (TREE_CODE (op))
3538 {
3539 case ARRAY_REF:
3540 case ARRAY_RANGE_REF:
3541 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3542 || TREE_OPERAND (op, 2) != NULL_TREE
3543 || TREE_OPERAND (op, 3) != NULL_TREE)
3544 return false;
3545 break;
3546
3547 case COMPONENT_REF:
3548 if (TREE_OPERAND (op, 2) != NULL_TREE)
3549 return false;
3550 break;
3551
3552 default:;
3553 }
3554 op = TREE_OPERAND (op, 0);
3555 }
3556
3557 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3558
3559 default:
3560 break;
3561 }
3562
3563 return false;
3564 }
3565
3566 /* Return true if T is function-invariant. */
3567
3568 bool
3569 tree_invariant_p (tree t)
3570 {
3571 tree inner = skip_simple_arithmetic (t);
3572 return tree_invariant_p_1 (inner);
3573 }
3574
3575 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3576 Do this to any expression which may be used in more than one place,
3577 but must be evaluated only once.
3578
3579 Normally, expand_expr would reevaluate the expression each time.
3580 Calling save_expr produces something that is evaluated and recorded
3581 the first time expand_expr is called on it. Subsequent calls to
3582 expand_expr just reuse the recorded value.
3583
3584 The call to expand_expr that generates code that actually computes
3585 the value is the first call *at compile time*. Subsequent calls
3586 *at compile time* generate code to use the saved value.
3587 This produces correct result provided that *at run time* control
3588 always flows through the insns made by the first expand_expr
3589 before reaching the other places where the save_expr was evaluated.
3590 You, the caller of save_expr, must make sure this is so.
3591
3592 Constants, and certain read-only nodes, are returned with no
3593 SAVE_EXPR because that is safe. Expressions containing placeholders
3594 are not touched; see tree.def for an explanation of what these
3595 are used for. */
3596
3597 tree
3598 save_expr (tree expr)
3599 {
3600 tree inner;
3601
3602 /* If the tree evaluates to a constant, then we don't want to hide that
3603 fact (i.e. this allows further folding, and direct checks for constants).
3604 However, a read-only object that has side effects cannot be bypassed.
3605 Since it is no problem to reevaluate literals, we just return the
3606 literal node. */
3607 inner = skip_simple_arithmetic (expr);
3608 if (TREE_CODE (inner) == ERROR_MARK)
3609 return inner;
3610
3611 if (tree_invariant_p_1 (inner))
3612 return expr;
3613
3614 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3615 it means that the size or offset of some field of an object depends on
3616 the value within another field.
3617
3618 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3619 and some variable since it would then need to be both evaluated once and
3620 evaluated more than once. Front-ends must assure this case cannot
3621 happen by surrounding any such subexpressions in their own SAVE_EXPR
3622 and forcing evaluation at the proper time. */
3623 if (contains_placeholder_p (inner))
3624 return expr;
3625
3626 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3627
3628 /* This expression might be placed ahead of a jump to ensure that the
3629 value was computed on both sides of the jump. So make sure it isn't
3630 eliminated as dead. */
3631 TREE_SIDE_EFFECTS (expr) = 1;
3632 return expr;
3633 }
3634
3635 /* Look inside EXPR into any simple arithmetic operations. Return the
3636 outermost non-arithmetic or non-invariant node. */
3637
3638 tree
3639 skip_simple_arithmetic (tree expr)
3640 {
3641 /* We don't care about whether this can be used as an lvalue in this
3642 context. */
3643 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3644 expr = TREE_OPERAND (expr, 0);
3645
3646 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3647 a constant, it will be more efficient to not make another SAVE_EXPR since
3648 it will allow better simplification and GCSE will be able to merge the
3649 computations if they actually occur. */
3650 while (true)
3651 {
3652 if (UNARY_CLASS_P (expr))
3653 expr = TREE_OPERAND (expr, 0);
3654 else if (BINARY_CLASS_P (expr))
3655 {
3656 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3657 expr = TREE_OPERAND (expr, 0);
3658 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3659 expr = TREE_OPERAND (expr, 1);
3660 else
3661 break;
3662 }
3663 else
3664 break;
3665 }
3666
3667 return expr;
3668 }
3669
3670 /* Look inside EXPR into simple arithmetic operations involving constants.
3671 Return the outermost non-arithmetic or non-constant node. */
3672
3673 tree
3674 skip_simple_constant_arithmetic (tree expr)
3675 {
3676 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3677 expr = TREE_OPERAND (expr, 0);
3678
3679 while (true)
3680 {
3681 if (UNARY_CLASS_P (expr))
3682 expr = TREE_OPERAND (expr, 0);
3683 else if (BINARY_CLASS_P (expr))
3684 {
3685 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3686 expr = TREE_OPERAND (expr, 0);
3687 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3688 expr = TREE_OPERAND (expr, 1);
3689 else
3690 break;
3691 }
3692 else
3693 break;
3694 }
3695
3696 return expr;
3697 }
3698
3699 /* Return which tree structure is used by T. */
3700
3701 enum tree_node_structure_enum
3702 tree_node_structure (const_tree t)
3703 {
3704 const enum tree_code code = TREE_CODE (t);
3705 return tree_node_structure_for_code (code);
3706 }
3707
3708 /* Set various status flags when building a CALL_EXPR object T. */
3709
3710 static void
3711 process_call_operands (tree t)
3712 {
3713 bool side_effects = TREE_SIDE_EFFECTS (t);
3714 bool read_only = false;
3715 int i = call_expr_flags (t);
3716
3717 /* Calls have side-effects, except those to const or pure functions. */
3718 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3719 side_effects = true;
3720 /* Propagate TREE_READONLY of arguments for const functions. */
3721 if (i & ECF_CONST)
3722 read_only = true;
3723
3724 if (!side_effects || read_only)
3725 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3726 {
3727 tree op = TREE_OPERAND (t, i);
3728 if (op && TREE_SIDE_EFFECTS (op))
3729 side_effects = true;
3730 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3731 read_only = false;
3732 }
3733
3734 TREE_SIDE_EFFECTS (t) = side_effects;
3735 TREE_READONLY (t) = read_only;
3736 }
3737 \f
3738 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3739 size or offset that depends on a field within a record. */
3740
3741 bool
3742 contains_placeholder_p (const_tree exp)
3743 {
3744 enum tree_code code;
3745
3746 if (!exp)
3747 return 0;
3748
3749 code = TREE_CODE (exp);
3750 if (code == PLACEHOLDER_EXPR)
3751 return 1;
3752
3753 switch (TREE_CODE_CLASS (code))
3754 {
3755 case tcc_reference:
3756 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3757 position computations since they will be converted into a
3758 WITH_RECORD_EXPR involving the reference, which will assume
3759 here will be valid. */
3760 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3761
3762 case tcc_exceptional:
3763 if (code == TREE_LIST)
3764 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3765 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3766 break;
3767
3768 case tcc_unary:
3769 case tcc_binary:
3770 case tcc_comparison:
3771 case tcc_expression:
3772 switch (code)
3773 {
3774 case COMPOUND_EXPR:
3775 /* Ignoring the first operand isn't quite right, but works best. */
3776 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3777
3778 case COND_EXPR:
3779 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3780 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3781 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3782
3783 case SAVE_EXPR:
3784 /* The save_expr function never wraps anything containing
3785 a PLACEHOLDER_EXPR. */
3786 return 0;
3787
3788 default:
3789 break;
3790 }
3791
3792 switch (TREE_CODE_LENGTH (code))
3793 {
3794 case 1:
3795 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3796 case 2:
3797 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3798 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3799 default:
3800 return 0;
3801 }
3802
3803 case tcc_vl_exp:
3804 switch (code)
3805 {
3806 case CALL_EXPR:
3807 {
3808 const_tree arg;
3809 const_call_expr_arg_iterator iter;
3810 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3811 if (CONTAINS_PLACEHOLDER_P (arg))
3812 return 1;
3813 return 0;
3814 }
3815 default:
3816 return 0;
3817 }
3818
3819 default:
3820 return 0;
3821 }
3822 return 0;
3823 }
3824
3825 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3826 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3827 field positions. */
3828
3829 static bool
3830 type_contains_placeholder_1 (const_tree type)
3831 {
3832 /* If the size contains a placeholder or the parent type (component type in
3833 the case of arrays) type involves a placeholder, this type does. */
3834 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3835 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3836 || (!POINTER_TYPE_P (type)
3837 && TREE_TYPE (type)
3838 && type_contains_placeholder_p (TREE_TYPE (type))))
3839 return true;
3840
3841 /* Now do type-specific checks. Note that the last part of the check above
3842 greatly limits what we have to do below. */
3843 switch (TREE_CODE (type))
3844 {
3845 case VOID_TYPE:
3846 case COMPLEX_TYPE:
3847 case ENUMERAL_TYPE:
3848 case BOOLEAN_TYPE:
3849 case POINTER_TYPE:
3850 case OFFSET_TYPE:
3851 case REFERENCE_TYPE:
3852 case METHOD_TYPE:
3853 case FUNCTION_TYPE:
3854 case VECTOR_TYPE:
3855 case NULLPTR_TYPE:
3856 return false;
3857
3858 case INTEGER_TYPE:
3859 case REAL_TYPE:
3860 case FIXED_POINT_TYPE:
3861 /* Here we just check the bounds. */
3862 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3863 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3864
3865 case ARRAY_TYPE:
3866 /* We have already checked the component type above, so just check
3867 the domain type. Flexible array members have a null domain. */
3868 return TYPE_DOMAIN (type) ?
3869 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3870
3871 case RECORD_TYPE:
3872 case UNION_TYPE:
3873 case QUAL_UNION_TYPE:
3874 {
3875 tree field;
3876
3877 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3878 if (TREE_CODE (field) == FIELD_DECL
3879 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3880 || (TREE_CODE (type) == QUAL_UNION_TYPE
3881 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3882 || type_contains_placeholder_p (TREE_TYPE (field))))
3883 return true;
3884
3885 return false;
3886 }
3887
3888 default:
3889 gcc_unreachable ();
3890 }
3891 }
3892
3893 /* Wrapper around above function used to cache its result. */
3894
3895 bool
3896 type_contains_placeholder_p (tree type)
3897 {
3898 bool result;
3899
3900 /* If the contains_placeholder_bits field has been initialized,
3901 then we know the answer. */
3902 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3903 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3904
3905 /* Indicate that we've seen this type node, and the answer is false.
3906 This is what we want to return if we run into recursion via fields. */
3907 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3908
3909 /* Compute the real value. */
3910 result = type_contains_placeholder_1 (type);
3911
3912 /* Store the real value. */
3913 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3914
3915 return result;
3916 }
3917 \f
3918 /* Push tree EXP onto vector QUEUE if it is not already present. */
3919
3920 static void
3921 push_without_duplicates (tree exp, vec<tree> *queue)
3922 {
3923 unsigned int i;
3924 tree iter;
3925
3926 FOR_EACH_VEC_ELT (*queue, i, iter)
3927 if (simple_cst_equal (iter, exp) == 1)
3928 break;
3929
3930 if (!iter)
3931 queue->safe_push (exp);
3932 }
3933
3934 /* Given a tree EXP, find all occurrences of references to fields
3935 in a PLACEHOLDER_EXPR and place them in vector REFS without
3936 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3937 we assume here that EXP contains only arithmetic expressions
3938 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3939 argument list. */
3940
3941 void
3942 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3943 {
3944 enum tree_code code = TREE_CODE (exp);
3945 tree inner;
3946 int i;
3947
3948 /* We handle TREE_LIST and COMPONENT_REF separately. */
3949 if (code == TREE_LIST)
3950 {
3951 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3952 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3953 }
3954 else if (code == COMPONENT_REF)
3955 {
3956 for (inner = TREE_OPERAND (exp, 0);
3957 REFERENCE_CLASS_P (inner);
3958 inner = TREE_OPERAND (inner, 0))
3959 ;
3960
3961 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3962 push_without_duplicates (exp, refs);
3963 else
3964 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3965 }
3966 else
3967 switch (TREE_CODE_CLASS (code))
3968 {
3969 case tcc_constant:
3970 break;
3971
3972 case tcc_declaration:
3973 /* Variables allocated to static storage can stay. */
3974 if (!TREE_STATIC (exp))
3975 push_without_duplicates (exp, refs);
3976 break;
3977
3978 case tcc_expression:
3979 /* This is the pattern built in ada/make_aligning_type. */
3980 if (code == ADDR_EXPR
3981 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3982 {
3983 push_without_duplicates (exp, refs);
3984 break;
3985 }
3986
3987 /* Fall through. */
3988
3989 case tcc_exceptional:
3990 case tcc_unary:
3991 case tcc_binary:
3992 case tcc_comparison:
3993 case tcc_reference:
3994 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3995 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3996 break;
3997
3998 case tcc_vl_exp:
3999 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4000 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4001 break;
4002
4003 default:
4004 gcc_unreachable ();
4005 }
4006 }
4007
4008 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
4009 return a tree with all occurrences of references to F in a
4010 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
4011 CONST_DECLs. Note that we assume here that EXP contains only
4012 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
4013 occurring only in their argument list. */
4014
4015 tree
4016 substitute_in_expr (tree exp, tree f, tree r)
4017 {
4018 enum tree_code code = TREE_CODE (exp);
4019 tree op0, op1, op2, op3;
4020 tree new_tree;
4021
4022 /* We handle TREE_LIST and COMPONENT_REF separately. */
4023 if (code == TREE_LIST)
4024 {
4025 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
4026 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
4027 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4028 return exp;
4029
4030 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4031 }
4032 else if (code == COMPONENT_REF)
4033 {
4034 tree inner;
4035
4036 /* If this expression is getting a value from a PLACEHOLDER_EXPR
4037 and it is the right field, replace it with R. */
4038 for (inner = TREE_OPERAND (exp, 0);
4039 REFERENCE_CLASS_P (inner);
4040 inner = TREE_OPERAND (inner, 0))
4041 ;
4042
4043 /* The field. */
4044 op1 = TREE_OPERAND (exp, 1);
4045
4046 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
4047 return r;
4048
4049 /* If this expression hasn't been completed let, leave it alone. */
4050 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
4051 return exp;
4052
4053 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4054 if (op0 == TREE_OPERAND (exp, 0))
4055 return exp;
4056
4057 new_tree
4058 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4059 }
4060 else
4061 switch (TREE_CODE_CLASS (code))
4062 {
4063 case tcc_constant:
4064 return exp;
4065
4066 case tcc_declaration:
4067 if (exp == f)
4068 return r;
4069 else
4070 return exp;
4071
4072 case tcc_expression:
4073 if (exp == f)
4074 return r;
4075
4076 /* Fall through. */
4077
4078 case tcc_exceptional:
4079 case tcc_unary:
4080 case tcc_binary:
4081 case tcc_comparison:
4082 case tcc_reference:
4083 switch (TREE_CODE_LENGTH (code))
4084 {
4085 case 0:
4086 return exp;
4087
4088 case 1:
4089 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4090 if (op0 == TREE_OPERAND (exp, 0))
4091 return exp;
4092
4093 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4094 break;
4095
4096 case 2:
4097 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4098 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4099
4100 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4101 return exp;
4102
4103 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4104 break;
4105
4106 case 3:
4107 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4108 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4109 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4110
4111 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4112 && op2 == TREE_OPERAND (exp, 2))
4113 return exp;
4114
4115 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4116 break;
4117
4118 case 4:
4119 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4120 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4121 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4122 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4123
4124 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4125 && op2 == TREE_OPERAND (exp, 2)
4126 && op3 == TREE_OPERAND (exp, 3))
4127 return exp;
4128
4129 new_tree
4130 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4131 break;
4132
4133 default:
4134 gcc_unreachable ();
4135 }
4136 break;
4137
4138 case tcc_vl_exp:
4139 {
4140 int i;
4141
4142 new_tree = NULL_TREE;
4143
4144 /* If we are trying to replace F with a constant or with another
4145 instance of one of the arguments of the call, inline back
4146 functions which do nothing else than computing a value from
4147 the arguments they are passed. This makes it possible to
4148 fold partially or entirely the replacement expression. */
4149 if (code == CALL_EXPR)
4150 {
4151 bool maybe_inline = false;
4152 if (CONSTANT_CLASS_P (r))
4153 maybe_inline = true;
4154 else
4155 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4156 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4157 {
4158 maybe_inline = true;
4159 break;
4160 }
4161 if (maybe_inline)
4162 {
4163 tree t = maybe_inline_call_in_expr (exp);
4164 if (t)
4165 return SUBSTITUTE_IN_EXPR (t, f, r);
4166 }
4167 }
4168
4169 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4170 {
4171 tree op = TREE_OPERAND (exp, i);
4172 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4173 if (new_op != op)
4174 {
4175 if (!new_tree)
4176 new_tree = copy_node (exp);
4177 TREE_OPERAND (new_tree, i) = new_op;
4178 }
4179 }
4180
4181 if (new_tree)
4182 {
4183 new_tree = fold (new_tree);
4184 if (TREE_CODE (new_tree) == CALL_EXPR)
4185 process_call_operands (new_tree);
4186 }
4187 else
4188 return exp;
4189 }
4190 break;
4191
4192 default:
4193 gcc_unreachable ();
4194 }
4195
4196 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4197
4198 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4199 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4200
4201 return new_tree;
4202 }
4203
4204 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4205 for it within OBJ, a tree that is an object or a chain of references. */
4206
4207 tree
4208 substitute_placeholder_in_expr (tree exp, tree obj)
4209 {
4210 enum tree_code code = TREE_CODE (exp);
4211 tree op0, op1, op2, op3;
4212 tree new_tree;
4213
4214 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4215 in the chain of OBJ. */
4216 if (code == PLACEHOLDER_EXPR)
4217 {
4218 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4219 tree elt;
4220
4221 for (elt = obj; elt != 0;
4222 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4223 || TREE_CODE (elt) == COND_EXPR)
4224 ? TREE_OPERAND (elt, 1)
4225 : (REFERENCE_CLASS_P (elt)
4226 || UNARY_CLASS_P (elt)
4227 || BINARY_CLASS_P (elt)
4228 || VL_EXP_CLASS_P (elt)
4229 || EXPRESSION_CLASS_P (elt))
4230 ? TREE_OPERAND (elt, 0) : 0))
4231 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4232 return elt;
4233
4234 for (elt = obj; elt != 0;
4235 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4236 || TREE_CODE (elt) == COND_EXPR)
4237 ? TREE_OPERAND (elt, 1)
4238 : (REFERENCE_CLASS_P (elt)
4239 || UNARY_CLASS_P (elt)
4240 || BINARY_CLASS_P (elt)
4241 || VL_EXP_CLASS_P (elt)
4242 || EXPRESSION_CLASS_P (elt))
4243 ? TREE_OPERAND (elt, 0) : 0))
4244 if (POINTER_TYPE_P (TREE_TYPE (elt))
4245 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4246 == need_type))
4247 return fold_build1 (INDIRECT_REF, need_type, elt);
4248
4249 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4250 survives until RTL generation, there will be an error. */
4251 return exp;
4252 }
4253
4254 /* TREE_LIST is special because we need to look at TREE_VALUE
4255 and TREE_CHAIN, not TREE_OPERANDS. */
4256 else if (code == TREE_LIST)
4257 {
4258 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4259 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4260 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4261 return exp;
4262
4263 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4264 }
4265 else
4266 switch (TREE_CODE_CLASS (code))
4267 {
4268 case tcc_constant:
4269 case tcc_declaration:
4270 return exp;
4271
4272 case tcc_exceptional:
4273 case tcc_unary:
4274 case tcc_binary:
4275 case tcc_comparison:
4276 case tcc_expression:
4277 case tcc_reference:
4278 case tcc_statement:
4279 switch (TREE_CODE_LENGTH (code))
4280 {
4281 case 0:
4282 return exp;
4283
4284 case 1:
4285 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4286 if (op0 == TREE_OPERAND (exp, 0))
4287 return exp;
4288
4289 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4290 break;
4291
4292 case 2:
4293 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4294 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4295
4296 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4297 return exp;
4298
4299 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4300 break;
4301
4302 case 3:
4303 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4304 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4305 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4306
4307 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4308 && op2 == TREE_OPERAND (exp, 2))
4309 return exp;
4310
4311 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4312 break;
4313
4314 case 4:
4315 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4316 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4317 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4318 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4319
4320 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4321 && op2 == TREE_OPERAND (exp, 2)
4322 && op3 == TREE_OPERAND (exp, 3))
4323 return exp;
4324
4325 new_tree
4326 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4327 break;
4328
4329 default:
4330 gcc_unreachable ();
4331 }
4332 break;
4333
4334 case tcc_vl_exp:
4335 {
4336 int i;
4337
4338 new_tree = NULL_TREE;
4339
4340 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4341 {
4342 tree op = TREE_OPERAND (exp, i);
4343 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4344 if (new_op != op)
4345 {
4346 if (!new_tree)
4347 new_tree = copy_node (exp);
4348 TREE_OPERAND (new_tree, i) = new_op;
4349 }
4350 }
4351
4352 if (new_tree)
4353 {
4354 new_tree = fold (new_tree);
4355 if (TREE_CODE (new_tree) == CALL_EXPR)
4356 process_call_operands (new_tree);
4357 }
4358 else
4359 return exp;
4360 }
4361 break;
4362
4363 default:
4364 gcc_unreachable ();
4365 }
4366
4367 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4368
4369 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4370 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4371
4372 return new_tree;
4373 }
4374 \f
4375
4376 /* Subroutine of stabilize_reference; this is called for subtrees of
4377 references. Any expression with side-effects must be put in a SAVE_EXPR
4378 to ensure that it is only evaluated once.
4379
4380 We don't put SAVE_EXPR nodes around everything, because assigning very
4381 simple expressions to temporaries causes us to miss good opportunities
4382 for optimizations. Among other things, the opportunity to fold in the
4383 addition of a constant into an addressing mode often gets lost, e.g.
4384 "y[i+1] += x;". In general, we take the approach that we should not make
4385 an assignment unless we are forced into it - i.e., that any non-side effect
4386 operator should be allowed, and that cse should take care of coalescing
4387 multiple utterances of the same expression should that prove fruitful. */
4388
4389 static tree
4390 stabilize_reference_1 (tree e)
4391 {
4392 tree result;
4393 enum tree_code code = TREE_CODE (e);
4394
4395 /* We cannot ignore const expressions because it might be a reference
4396 to a const array but whose index contains side-effects. But we can
4397 ignore things that are actual constant or that already have been
4398 handled by this function. */
4399
4400 if (tree_invariant_p (e))
4401 return e;
4402
4403 switch (TREE_CODE_CLASS (code))
4404 {
4405 case tcc_exceptional:
4406 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4407 have side-effects. */
4408 if (code == STATEMENT_LIST)
4409 return save_expr (e);
4410 /* FALLTHRU */
4411 case tcc_type:
4412 case tcc_declaration:
4413 case tcc_comparison:
4414 case tcc_statement:
4415 case tcc_expression:
4416 case tcc_reference:
4417 case tcc_vl_exp:
4418 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4419 so that it will only be evaluated once. */
4420 /* The reference (r) and comparison (<) classes could be handled as
4421 below, but it is generally faster to only evaluate them once. */
4422 if (TREE_SIDE_EFFECTS (e))
4423 return save_expr (e);
4424 return e;
4425
4426 case tcc_constant:
4427 /* Constants need no processing. In fact, we should never reach
4428 here. */
4429 return e;
4430
4431 case tcc_binary:
4432 /* Division is slow and tends to be compiled with jumps,
4433 especially the division by powers of 2 that is often
4434 found inside of an array reference. So do it just once. */
4435 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4436 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4437 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4438 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4439 return save_expr (e);
4440 /* Recursively stabilize each operand. */
4441 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4442 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4443 break;
4444
4445 case tcc_unary:
4446 /* Recursively stabilize each operand. */
4447 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4448 break;
4449
4450 default:
4451 gcc_unreachable ();
4452 }
4453
4454 TREE_TYPE (result) = TREE_TYPE (e);
4455 TREE_READONLY (result) = TREE_READONLY (e);
4456 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4457 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4458
4459 return result;
4460 }
4461
4462 /* Stabilize a reference so that we can use it any number of times
4463 without causing its operands to be evaluated more than once.
4464 Returns the stabilized reference. This works by means of save_expr,
4465 so see the caveats in the comments about save_expr.
4466
4467 Also allows conversion expressions whose operands are references.
4468 Any other kind of expression is returned unchanged. */
4469
4470 tree
4471 stabilize_reference (tree ref)
4472 {
4473 tree result;
4474 enum tree_code code = TREE_CODE (ref);
4475
4476 switch (code)
4477 {
4478 case VAR_DECL:
4479 case PARM_DECL:
4480 case RESULT_DECL:
4481 /* No action is needed in this case. */
4482 return ref;
4483
4484 CASE_CONVERT:
4485 case FLOAT_EXPR:
4486 case FIX_TRUNC_EXPR:
4487 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4488 break;
4489
4490 case INDIRECT_REF:
4491 result = build_nt (INDIRECT_REF,
4492 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4493 break;
4494
4495 case COMPONENT_REF:
4496 result = build_nt (COMPONENT_REF,
4497 stabilize_reference (TREE_OPERAND (ref, 0)),
4498 TREE_OPERAND (ref, 1), NULL_TREE);
4499 break;
4500
4501 case BIT_FIELD_REF:
4502 result = build_nt (BIT_FIELD_REF,
4503 stabilize_reference (TREE_OPERAND (ref, 0)),
4504 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4505 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4506 break;
4507
4508 case ARRAY_REF:
4509 result = build_nt (ARRAY_REF,
4510 stabilize_reference (TREE_OPERAND (ref, 0)),
4511 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4512 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4513 break;
4514
4515 case ARRAY_RANGE_REF:
4516 result = build_nt (ARRAY_RANGE_REF,
4517 stabilize_reference (TREE_OPERAND (ref, 0)),
4518 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4519 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4520 break;
4521
4522 case COMPOUND_EXPR:
4523 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4524 it wouldn't be ignored. This matters when dealing with
4525 volatiles. */
4526 return stabilize_reference_1 (ref);
4527
4528 /* If arg isn't a kind of lvalue we recognize, make no change.
4529 Caller should recognize the error for an invalid lvalue. */
4530 default:
4531 return ref;
4532
4533 case ERROR_MARK:
4534 return error_mark_node;
4535 }
4536
4537 TREE_TYPE (result) = TREE_TYPE (ref);
4538 TREE_READONLY (result) = TREE_READONLY (ref);
4539 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4540 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4541
4542 return result;
4543 }
4544 \f
4545 /* Low-level constructors for expressions. */
4546
4547 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4548 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4549
4550 void
4551 recompute_tree_invariant_for_addr_expr (tree t)
4552 {
4553 tree node;
4554 bool tc = true, se = false;
4555
4556 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4557
4558 /* We started out assuming this address is both invariant and constant, but
4559 does not have side effects. Now go down any handled components and see if
4560 any of them involve offsets that are either non-constant or non-invariant.
4561 Also check for side-effects.
4562
4563 ??? Note that this code makes no attempt to deal with the case where
4564 taking the address of something causes a copy due to misalignment. */
4565
4566 #define UPDATE_FLAGS(NODE) \
4567 do { tree _node = (NODE); \
4568 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4569 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4570
4571 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4572 node = TREE_OPERAND (node, 0))
4573 {
4574 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4575 array reference (probably made temporarily by the G++ front end),
4576 so ignore all the operands. */
4577 if ((TREE_CODE (node) == ARRAY_REF
4578 || TREE_CODE (node) == ARRAY_RANGE_REF)
4579 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4580 {
4581 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4582 if (TREE_OPERAND (node, 2))
4583 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4584 if (TREE_OPERAND (node, 3))
4585 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4586 }
4587 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4588 FIELD_DECL, apparently. The G++ front end can put something else
4589 there, at least temporarily. */
4590 else if (TREE_CODE (node) == COMPONENT_REF
4591 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4592 {
4593 if (TREE_OPERAND (node, 2))
4594 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4595 }
4596 }
4597
4598 node = lang_hooks.expr_to_decl (node, &tc, &se);
4599
4600 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4601 the address, since &(*a)->b is a form of addition. If it's a constant, the
4602 address is constant too. If it's a decl, its address is constant if the
4603 decl is static. Everything else is not constant and, furthermore,
4604 taking the address of a volatile variable is not volatile. */
4605 if (TREE_CODE (node) == INDIRECT_REF
4606 || TREE_CODE (node) == MEM_REF)
4607 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4608 else if (CONSTANT_CLASS_P (node))
4609 ;
4610 else if (DECL_P (node))
4611 tc &= (staticp (node) != NULL_TREE);
4612 else
4613 {
4614 tc = false;
4615 se |= TREE_SIDE_EFFECTS (node);
4616 }
4617
4618
4619 TREE_CONSTANT (t) = tc;
4620 TREE_SIDE_EFFECTS (t) = se;
4621 #undef UPDATE_FLAGS
4622 }
4623
4624 /* Build an expression of code CODE, data type TYPE, and operands as
4625 specified. Expressions and reference nodes can be created this way.
4626 Constants, decls, types and misc nodes cannot be.
4627
4628 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4629 enough for all extant tree codes. */
4630
4631 tree
4632 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4633 {
4634 tree t;
4635
4636 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4637
4638 t = make_node (code PASS_MEM_STAT);
4639 TREE_TYPE (t) = tt;
4640
4641 return t;
4642 }
4643
4644 tree
4645 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4646 {
4647 int length = sizeof (struct tree_exp);
4648 tree t;
4649
4650 record_node_allocation_statistics (code, length);
4651
4652 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4653
4654 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4655
4656 memset (t, 0, sizeof (struct tree_common));
4657
4658 TREE_SET_CODE (t, code);
4659
4660 TREE_TYPE (t) = type;
4661 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4662 TREE_OPERAND (t, 0) = node;
4663 if (node && !TYPE_P (node))
4664 {
4665 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4666 TREE_READONLY (t) = TREE_READONLY (node);
4667 }
4668
4669 if (TREE_CODE_CLASS (code) == tcc_statement)
4670 {
4671 if (code != DEBUG_BEGIN_STMT)
4672 TREE_SIDE_EFFECTS (t) = 1;
4673 }
4674 else switch (code)
4675 {
4676 case VA_ARG_EXPR:
4677 /* All of these have side-effects, no matter what their
4678 operands are. */
4679 TREE_SIDE_EFFECTS (t) = 1;
4680 TREE_READONLY (t) = 0;
4681 break;
4682
4683 case INDIRECT_REF:
4684 /* Whether a dereference is readonly has nothing to do with whether
4685 its operand is readonly. */
4686 TREE_READONLY (t) = 0;
4687 break;
4688
4689 case ADDR_EXPR:
4690 if (node)
4691 recompute_tree_invariant_for_addr_expr (t);
4692 break;
4693
4694 default:
4695 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4696 && node && !TYPE_P (node)
4697 && TREE_CONSTANT (node))
4698 TREE_CONSTANT (t) = 1;
4699 if (TREE_CODE_CLASS (code) == tcc_reference
4700 && node && TREE_THIS_VOLATILE (node))
4701 TREE_THIS_VOLATILE (t) = 1;
4702 break;
4703 }
4704
4705 return t;
4706 }
4707
4708 #define PROCESS_ARG(N) \
4709 do { \
4710 TREE_OPERAND (t, N) = arg##N; \
4711 if (arg##N &&!TYPE_P (arg##N)) \
4712 { \
4713 if (TREE_SIDE_EFFECTS (arg##N)) \
4714 side_effects = 1; \
4715 if (!TREE_READONLY (arg##N) \
4716 && !CONSTANT_CLASS_P (arg##N)) \
4717 (void) (read_only = 0); \
4718 if (!TREE_CONSTANT (arg##N)) \
4719 (void) (constant = 0); \
4720 } \
4721 } while (0)
4722
4723 tree
4724 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4725 {
4726 bool constant, read_only, side_effects, div_by_zero;
4727 tree t;
4728
4729 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4730
4731 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4732 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4733 /* When sizetype precision doesn't match that of pointers
4734 we need to be able to build explicit extensions or truncations
4735 of the offset argument. */
4736 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4737 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4738 && TREE_CODE (arg1) == INTEGER_CST);
4739
4740 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4741 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4742 && ptrofftype_p (TREE_TYPE (arg1)));
4743
4744 t = make_node (code PASS_MEM_STAT);
4745 TREE_TYPE (t) = tt;
4746
4747 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4748 result based on those same flags for the arguments. But if the
4749 arguments aren't really even `tree' expressions, we shouldn't be trying
4750 to do this. */
4751
4752 /* Expressions without side effects may be constant if their
4753 arguments are as well. */
4754 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4755 || TREE_CODE_CLASS (code) == tcc_binary);
4756 read_only = 1;
4757 side_effects = TREE_SIDE_EFFECTS (t);
4758
4759 switch (code)
4760 {
4761 case TRUNC_DIV_EXPR:
4762 case CEIL_DIV_EXPR:
4763 case FLOOR_DIV_EXPR:
4764 case ROUND_DIV_EXPR:
4765 case EXACT_DIV_EXPR:
4766 case CEIL_MOD_EXPR:
4767 case FLOOR_MOD_EXPR:
4768 case ROUND_MOD_EXPR:
4769 case TRUNC_MOD_EXPR:
4770 div_by_zero = integer_zerop (arg1);
4771 break;
4772 default:
4773 div_by_zero = false;
4774 }
4775
4776 PROCESS_ARG (0);
4777 PROCESS_ARG (1);
4778
4779 TREE_SIDE_EFFECTS (t) = side_effects;
4780 if (code == MEM_REF)
4781 {
4782 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4783 {
4784 tree o = TREE_OPERAND (arg0, 0);
4785 TREE_READONLY (t) = TREE_READONLY (o);
4786 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4787 }
4788 }
4789 else
4790 {
4791 TREE_READONLY (t) = read_only;
4792 /* Don't mark X / 0 as constant. */
4793 TREE_CONSTANT (t) = constant && !div_by_zero;
4794 TREE_THIS_VOLATILE (t)
4795 = (TREE_CODE_CLASS (code) == tcc_reference
4796 && arg0 && TREE_THIS_VOLATILE (arg0));
4797 }
4798
4799 return t;
4800 }
4801
4802
4803 tree
4804 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4805 tree arg2 MEM_STAT_DECL)
4806 {
4807 bool constant, read_only, side_effects;
4808 tree t;
4809
4810 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4811 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4812
4813 t = make_node (code PASS_MEM_STAT);
4814 TREE_TYPE (t) = tt;
4815
4816 read_only = 1;
4817
4818 /* As a special exception, if COND_EXPR has NULL branches, we
4819 assume that it is a gimple statement and always consider
4820 it to have side effects. */
4821 if (code == COND_EXPR
4822 && tt == void_type_node
4823 && arg1 == NULL_TREE
4824 && arg2 == NULL_TREE)
4825 side_effects = true;
4826 else
4827 side_effects = TREE_SIDE_EFFECTS (t);
4828
4829 PROCESS_ARG (0);
4830 PROCESS_ARG (1);
4831 PROCESS_ARG (2);
4832
4833 if (code == COND_EXPR)
4834 TREE_READONLY (t) = read_only;
4835
4836 TREE_SIDE_EFFECTS (t) = side_effects;
4837 TREE_THIS_VOLATILE (t)
4838 = (TREE_CODE_CLASS (code) == tcc_reference
4839 && arg0 && TREE_THIS_VOLATILE (arg0));
4840
4841 return t;
4842 }
4843
4844 tree
4845 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4846 tree arg2, tree arg3 MEM_STAT_DECL)
4847 {
4848 bool constant, read_only, side_effects;
4849 tree t;
4850
4851 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4852
4853 t = make_node (code PASS_MEM_STAT);
4854 TREE_TYPE (t) = tt;
4855
4856 side_effects = TREE_SIDE_EFFECTS (t);
4857
4858 PROCESS_ARG (0);
4859 PROCESS_ARG (1);
4860 PROCESS_ARG (2);
4861 PROCESS_ARG (3);
4862
4863 TREE_SIDE_EFFECTS (t) = side_effects;
4864 TREE_THIS_VOLATILE (t)
4865 = (TREE_CODE_CLASS (code) == tcc_reference
4866 && arg0 && TREE_THIS_VOLATILE (arg0));
4867
4868 return t;
4869 }
4870
4871 tree
4872 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4873 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4874 {
4875 bool constant, read_only, side_effects;
4876 tree t;
4877
4878 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4879
4880 t = make_node (code PASS_MEM_STAT);
4881 TREE_TYPE (t) = tt;
4882
4883 side_effects = TREE_SIDE_EFFECTS (t);
4884
4885 PROCESS_ARG (0);
4886 PROCESS_ARG (1);
4887 PROCESS_ARG (2);
4888 PROCESS_ARG (3);
4889 PROCESS_ARG (4);
4890
4891 TREE_SIDE_EFFECTS (t) = side_effects;
4892 if (code == TARGET_MEM_REF)
4893 {
4894 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4895 {
4896 tree o = TREE_OPERAND (arg0, 0);
4897 TREE_READONLY (t) = TREE_READONLY (o);
4898 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4899 }
4900 }
4901 else
4902 TREE_THIS_VOLATILE (t)
4903 = (TREE_CODE_CLASS (code) == tcc_reference
4904 && arg0 && TREE_THIS_VOLATILE (arg0));
4905
4906 return t;
4907 }
4908
4909 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4910 on the pointer PTR. */
4911
4912 tree
4913 build_simple_mem_ref_loc (location_t loc, tree ptr)
4914 {
4915 poly_int64 offset = 0;
4916 tree ptype = TREE_TYPE (ptr);
4917 tree tem;
4918 /* For convenience allow addresses that collapse to a simple base
4919 and offset. */
4920 if (TREE_CODE (ptr) == ADDR_EXPR
4921 && (handled_component_p (TREE_OPERAND (ptr, 0))
4922 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4923 {
4924 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4925 gcc_assert (ptr);
4926 if (TREE_CODE (ptr) == MEM_REF)
4927 {
4928 offset += mem_ref_offset (ptr).force_shwi ();
4929 ptr = TREE_OPERAND (ptr, 0);
4930 }
4931 else
4932 ptr = build_fold_addr_expr (ptr);
4933 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4934 }
4935 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4936 ptr, build_int_cst (ptype, offset));
4937 SET_EXPR_LOCATION (tem, loc);
4938 return tem;
4939 }
4940
4941 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4942
4943 poly_offset_int
4944 mem_ref_offset (const_tree t)
4945 {
4946 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4947 SIGNED);
4948 }
4949
4950 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4951 offsetted by OFFSET units. */
4952
4953 tree
4954 build_invariant_address (tree type, tree base, poly_int64 offset)
4955 {
4956 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4957 build_fold_addr_expr (base),
4958 build_int_cst (ptr_type_node, offset));
4959 tree addr = build1 (ADDR_EXPR, type, ref);
4960 recompute_tree_invariant_for_addr_expr (addr);
4961 return addr;
4962 }
4963
4964 /* Similar except don't specify the TREE_TYPE
4965 and leave the TREE_SIDE_EFFECTS as 0.
4966 It is permissible for arguments to be null,
4967 or even garbage if their values do not matter. */
4968
4969 tree
4970 build_nt (enum tree_code code, ...)
4971 {
4972 tree t;
4973 int length;
4974 int i;
4975 va_list p;
4976
4977 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4978
4979 va_start (p, code);
4980
4981 t = make_node (code);
4982 length = TREE_CODE_LENGTH (code);
4983
4984 for (i = 0; i < length; i++)
4985 TREE_OPERAND (t, i) = va_arg (p, tree);
4986
4987 va_end (p);
4988 return t;
4989 }
4990
4991 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4992 tree vec. */
4993
4994 tree
4995 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4996 {
4997 tree ret, t;
4998 unsigned int ix;
4999
5000 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
5001 CALL_EXPR_FN (ret) = fn;
5002 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
5003 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
5004 CALL_EXPR_ARG (ret, ix) = t;
5005 return ret;
5006 }
5007 \f
5008 /* Create a DECL_... node of code CODE, name NAME (if non-null)
5009 and data type TYPE.
5010 We do NOT enter this node in any sort of symbol table.
5011
5012 LOC is the location of the decl.
5013
5014 layout_decl is used to set up the decl's storage layout.
5015 Other slots are initialized to 0 or null pointers. */
5016
5017 tree
5018 build_decl (location_t loc, enum tree_code code, tree name,
5019 tree type MEM_STAT_DECL)
5020 {
5021 tree t;
5022
5023 t = make_node (code PASS_MEM_STAT);
5024 DECL_SOURCE_LOCATION (t) = loc;
5025
5026 /* if (type == error_mark_node)
5027 type = integer_type_node; */
5028 /* That is not done, deliberately, so that having error_mark_node
5029 as the type can suppress useless errors in the use of this variable. */
5030
5031 DECL_NAME (t) = name;
5032 TREE_TYPE (t) = type;
5033
5034 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
5035 layout_decl (t, 0);
5036
5037 return t;
5038 }
5039
5040 /* Builds and returns function declaration with NAME and TYPE. */
5041
5042 tree
5043 build_fn_decl (const char *name, tree type)
5044 {
5045 tree id = get_identifier (name);
5046 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
5047
5048 DECL_EXTERNAL (decl) = 1;
5049 TREE_PUBLIC (decl) = 1;
5050 DECL_ARTIFICIAL (decl) = 1;
5051 TREE_NOTHROW (decl) = 1;
5052
5053 return decl;
5054 }
5055
5056 vec<tree, va_gc> *all_translation_units;
5057
5058 /* Builds a new translation-unit decl with name NAME, queues it in the
5059 global list of translation-unit decls and returns it. */
5060
5061 tree
5062 build_translation_unit_decl (tree name)
5063 {
5064 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5065 name, NULL_TREE);
5066 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5067 vec_safe_push (all_translation_units, tu);
5068 return tu;
5069 }
5070
5071 \f
5072 /* BLOCK nodes are used to represent the structure of binding contours
5073 and declarations, once those contours have been exited and their contents
5074 compiled. This information is used for outputting debugging info. */
5075
5076 tree
5077 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5078 {
5079 tree block = make_node (BLOCK);
5080
5081 BLOCK_VARS (block) = vars;
5082 BLOCK_SUBBLOCKS (block) = subblocks;
5083 BLOCK_SUPERCONTEXT (block) = supercontext;
5084 BLOCK_CHAIN (block) = chain;
5085 return block;
5086 }
5087
5088 \f
5089 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5090
5091 LOC is the location to use in tree T. */
5092
5093 void
5094 protected_set_expr_location (tree t, location_t loc)
5095 {
5096 if (CAN_HAVE_LOCATION_P (t))
5097 SET_EXPR_LOCATION (t, loc);
5098 }
5099
5100 /* Data used when collecting DECLs and TYPEs for language data removal. */
5101
5102 struct free_lang_data_d
5103 {
5104 free_lang_data_d () : decls (100), types (100) {}
5105
5106 /* Worklist to avoid excessive recursion. */
5107 auto_vec<tree> worklist;
5108
5109 /* Set of traversed objects. Used to avoid duplicate visits. */
5110 hash_set<tree> pset;
5111
5112 /* Array of symbols to process with free_lang_data_in_decl. */
5113 auto_vec<tree> decls;
5114
5115 /* Array of types to process with free_lang_data_in_type. */
5116 auto_vec<tree> types;
5117 };
5118
5119
5120 /* Add type or decl T to one of the list of tree nodes that need their
5121 language data removed. The lists are held inside FLD. */
5122
5123 static void
5124 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5125 {
5126 if (DECL_P (t))
5127 fld->decls.safe_push (t);
5128 else if (TYPE_P (t))
5129 fld->types.safe_push (t);
5130 else
5131 gcc_unreachable ();
5132 }
5133
5134 /* Push tree node T into FLD->WORKLIST. */
5135
5136 static inline void
5137 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5138 {
5139 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5140 fld->worklist.safe_push ((t));
5141 }
5142
5143
5144 \f
5145 /* Return simplified TYPE_NAME of TYPE. */
5146
5147 static tree
5148 fld_simplified_type_name (tree type)
5149 {
5150 if (!TYPE_NAME (type) || TREE_CODE (TYPE_NAME (type)) != TYPE_DECL)
5151 return TYPE_NAME (type);
5152 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5153 TYPE_DECL if the type doesn't have linkage.
5154 this must match fld_ */
5155 if (type != TYPE_MAIN_VARIANT (type)
5156 || (!DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (type))
5157 && (TREE_CODE (type) != RECORD_TYPE
5158 || !TYPE_BINFO (type)
5159 || !BINFO_VTABLE (TYPE_BINFO (type)))))
5160 return DECL_NAME (TYPE_NAME (type));
5161 return TYPE_NAME (type);
5162 }
5163
5164 /* Do same comparsion as check_qualified_type skipping lang part of type
5165 and be more permissive about type names: we only care that names are
5166 same (for diagnostics) and that ODR names are the same.
5167 If INNER_TYPE is non-NULL, be sure that TREE_TYPE match it. */
5168
5169 static bool
5170 fld_type_variant_equal_p (tree t, tree v, tree inner_type)
5171 {
5172 if (TYPE_QUALS (t) != TYPE_QUALS (v)
5173 /* We want to match incomplete variants with complete types.
5174 In this case we need to ignore alignment. */
5175 || ((!RECORD_OR_UNION_TYPE_P (t) || COMPLETE_TYPE_P (v))
5176 && (TYPE_ALIGN (t) != TYPE_ALIGN (v)
5177 || TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (v)))
5178 || fld_simplified_type_name (t) != fld_simplified_type_name (v)
5179 || !attribute_list_equal (TYPE_ATTRIBUTES (t),
5180 TYPE_ATTRIBUTES (v))
5181 || (inner_type && TREE_TYPE (v) != inner_type))
5182 return false;
5183
5184 return true;
5185 }
5186
5187 /* Find variant of FIRST that match T and create new one if necessary.
5188 Set TREE_TYPE to INNER_TYPE if non-NULL. */
5189
5190 static tree
5191 fld_type_variant (tree first, tree t, struct free_lang_data_d *fld,
5192 tree inner_type = NULL)
5193 {
5194 if (first == TYPE_MAIN_VARIANT (t))
5195 return t;
5196 for (tree v = first; v; v = TYPE_NEXT_VARIANT (v))
5197 if (fld_type_variant_equal_p (t, v, inner_type))
5198 return v;
5199 tree v = build_variant_type_copy (first);
5200 TYPE_READONLY (v) = TYPE_READONLY (t);
5201 TYPE_VOLATILE (v) = TYPE_VOLATILE (t);
5202 TYPE_ATOMIC (v) = TYPE_ATOMIC (t);
5203 TYPE_RESTRICT (v) = TYPE_RESTRICT (t);
5204 TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t);
5205 TYPE_NAME (v) = TYPE_NAME (t);
5206 TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t);
5207 TYPE_CANONICAL (v) = TYPE_CANONICAL (t);
5208 /* Variants of incomplete types should have alignment
5209 set to BITS_PER_UNIT. Do not copy the actual alignment. */
5210 if (!RECORD_OR_UNION_TYPE_P (v) || COMPLETE_TYPE_P (v))
5211 {
5212 SET_TYPE_ALIGN (v, TYPE_ALIGN (t));
5213 TYPE_USER_ALIGN (v) = TYPE_USER_ALIGN (t);
5214 }
5215 if (inner_type)
5216 TREE_TYPE (v) = inner_type;
5217 gcc_checking_assert (fld_type_variant_equal_p (t,v, inner_type));
5218 add_tree_to_fld_list (v, fld);
5219 return v;
5220 }
5221
5222 /* Map complete types to incomplete types. */
5223
5224 static hash_map<tree, tree> *fld_incomplete_types;
5225
5226 /* Map types to simplified types. */
5227
5228 static hash_map<tree, tree> *fld_simplified_types;
5229
5230 /* Produce variant of T whose TREE_TYPE is T2. If it is main variant,
5231 use MAP to prevent duplicates. */
5232
5233 static tree
5234 fld_process_array_type (tree t, tree t2, hash_map<tree, tree> *map,
5235 struct free_lang_data_d *fld)
5236 {
5237 if (TREE_TYPE (t) == t2)
5238 return t;
5239
5240 if (TYPE_MAIN_VARIANT (t) != t)
5241 {
5242 return fld_type_variant
5243 (fld_process_array_type (TYPE_MAIN_VARIANT (t),
5244 TYPE_MAIN_VARIANT (t2), map, fld),
5245 t, fld, t2);
5246 }
5247
5248 bool existed;
5249 tree &array
5250 = map->get_or_insert (t, &existed);
5251 if (!existed)
5252 {
5253 array = build_array_type_1 (t2, TYPE_DOMAIN (t),
5254 TYPE_TYPELESS_STORAGE (t), false);
5255 TYPE_CANONICAL (array) = TYPE_CANONICAL (t);
5256 add_tree_to_fld_list (array, fld);
5257 }
5258 return array;
5259 }
5260
5261 /* Return CTX after removal of contexts that are not relevant */
5262
5263 static tree
5264 fld_decl_context (tree ctx)
5265 {
5266 /* Variably modified types are needed for tree_is_indexable to decide
5267 whether the type needs to go to local or global section.
5268 This code is semi-broken but for now it is easiest to keep contexts
5269 as expected. */
5270 if (ctx && TYPE_P (ctx)
5271 && !variably_modified_type_p (ctx, NULL_TREE))
5272 {
5273 while (ctx && TYPE_P (ctx))
5274 ctx = TYPE_CONTEXT (ctx);
5275 }
5276 return ctx;
5277 }
5278
5279 /* For T being aggregate type try to turn it into a incomplete variant.
5280 Return T if no simplification is possible. */
5281
5282 static tree
5283 fld_incomplete_type_of (tree t, struct free_lang_data_d *fld)
5284 {
5285 if (!t)
5286 return NULL;
5287 if (POINTER_TYPE_P (t))
5288 {
5289 tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld);
5290 if (t2 != TREE_TYPE (t))
5291 {
5292 tree first;
5293 if (TREE_CODE (t) == POINTER_TYPE)
5294 first = build_pointer_type_for_mode (t2, TYPE_MODE (t),
5295 TYPE_REF_CAN_ALIAS_ALL (t));
5296 else
5297 first = build_reference_type_for_mode (t2, TYPE_MODE (t),
5298 TYPE_REF_CAN_ALIAS_ALL (t));
5299 gcc_assert (TYPE_CANONICAL (t2) != t2
5300 && TYPE_CANONICAL (t2) == TYPE_CANONICAL (TREE_TYPE (t)));
5301 add_tree_to_fld_list (first, fld);
5302 return fld_type_variant (first, t, fld);
5303 }
5304 return t;
5305 }
5306 if (TREE_CODE (t) == ARRAY_TYPE)
5307 return fld_process_array_type (t,
5308 fld_incomplete_type_of (TREE_TYPE (t), fld),
5309 fld_incomplete_types, fld);
5310 if ((!RECORD_OR_UNION_TYPE_P (t) && TREE_CODE (t) != ENUMERAL_TYPE)
5311 || !COMPLETE_TYPE_P (t))
5312 return t;
5313 if (TYPE_MAIN_VARIANT (t) == t)
5314 {
5315 bool existed;
5316 tree &copy
5317 = fld_incomplete_types->get_or_insert (t, &existed);
5318
5319 if (!existed)
5320 {
5321 copy = build_distinct_type_copy (t);
5322
5323 /* It is possible that type was not seen by free_lang_data yet. */
5324 add_tree_to_fld_list (copy, fld);
5325 TYPE_SIZE (copy) = NULL;
5326 TYPE_USER_ALIGN (copy) = 0;
5327 TYPE_SIZE_UNIT (copy) = NULL;
5328 TYPE_CANONICAL (copy) = TYPE_CANONICAL (t);
5329 TREE_ADDRESSABLE (copy) = 0;
5330 if (AGGREGATE_TYPE_P (t))
5331 {
5332 SET_TYPE_MODE (copy, VOIDmode);
5333 SET_TYPE_ALIGN (copy, BITS_PER_UNIT);
5334 TYPE_TYPELESS_STORAGE (copy) = 0;
5335 TYPE_FIELDS (copy) = NULL;
5336 TYPE_BINFO (copy) = NULL;
5337 }
5338 else
5339 TYPE_VALUES (copy) = NULL;
5340
5341 /* Build copy of TYPE_DECL in TYPE_NAME if necessary.
5342 This is needed for ODR violation warnings to come out right (we
5343 want duplicate TYPE_DECLs whenever the type is duplicated because
5344 of ODR violation. Because lang data in the TYPE_DECL may not
5345 have been freed yet, rebuild it from scratch and copy relevant
5346 fields. */
5347 TYPE_NAME (copy) = fld_simplified_type_name (copy);
5348 tree name = TYPE_NAME (copy);
5349
5350 if (name && TREE_CODE (name) == TYPE_DECL)
5351 {
5352 gcc_checking_assert (TREE_TYPE (name) == t);
5353 tree name2 = build_decl (DECL_SOURCE_LOCATION (name), TYPE_DECL,
5354 DECL_NAME (name), copy);
5355 if (DECL_ASSEMBLER_NAME_SET_P (name))
5356 SET_DECL_ASSEMBLER_NAME (name2, DECL_ASSEMBLER_NAME (name));
5357 SET_DECL_ALIGN (name2, 0);
5358 DECL_CONTEXT (name2) = fld_decl_context
5359 (DECL_CONTEXT (name));
5360 TYPE_NAME (copy) = name2;
5361 }
5362 }
5363 return copy;
5364 }
5365 return (fld_type_variant
5366 (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld));
5367 }
5368
5369 /* Simplify type T for scenarios where we do not need complete pointer
5370 types. */
5371
5372 static tree
5373 fld_simplified_type (tree t, struct free_lang_data_d *fld)
5374 {
5375 if (!t)
5376 return t;
5377 if (POINTER_TYPE_P (t))
5378 return fld_incomplete_type_of (t, fld);
5379 /* FIXME: This triggers verification error, see PR88140. */
5380 if (TREE_CODE (t) == ARRAY_TYPE && 0)
5381 return fld_process_array_type (t, fld_simplified_type (TREE_TYPE (t), fld),
5382 fld_simplified_types, fld);
5383 return t;
5384 }
5385
5386 /* Reset the expression *EXPR_P, a size or position.
5387
5388 ??? We could reset all non-constant sizes or positions. But it's cheap
5389 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5390
5391 We need to reset self-referential sizes or positions because they cannot
5392 be gimplified and thus can contain a CALL_EXPR after the gimplification
5393 is finished, which will run afoul of LTO streaming. And they need to be
5394 reset to something essentially dummy but not constant, so as to preserve
5395 the properties of the object they are attached to. */
5396
5397 static inline void
5398 free_lang_data_in_one_sizepos (tree *expr_p)
5399 {
5400 tree expr = *expr_p;
5401 if (CONTAINS_PLACEHOLDER_P (expr))
5402 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5403 }
5404
5405
5406 /* Reset all the fields in a binfo node BINFO. We only keep
5407 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5408
5409 static void
5410 free_lang_data_in_binfo (tree binfo)
5411 {
5412 unsigned i;
5413 tree t;
5414
5415 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5416
5417 BINFO_VIRTUALS (binfo) = NULL_TREE;
5418 BINFO_BASE_ACCESSES (binfo) = NULL;
5419 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5420 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5421 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5422
5423 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5424 free_lang_data_in_binfo (t);
5425 }
5426
5427
5428 /* Reset all language specific information still present in TYPE. */
5429
5430 static void
5431 free_lang_data_in_type (tree type, struct free_lang_data_d *fld)
5432 {
5433 gcc_assert (TYPE_P (type));
5434
5435 /* Give the FE a chance to remove its own data first. */
5436 lang_hooks.free_lang_data (type);
5437
5438 TREE_LANG_FLAG_0 (type) = 0;
5439 TREE_LANG_FLAG_1 (type) = 0;
5440 TREE_LANG_FLAG_2 (type) = 0;
5441 TREE_LANG_FLAG_3 (type) = 0;
5442 TREE_LANG_FLAG_4 (type) = 0;
5443 TREE_LANG_FLAG_5 (type) = 0;
5444 TREE_LANG_FLAG_6 (type) = 0;
5445
5446 TYPE_NEEDS_CONSTRUCTING (type) = 0;
5447
5448 if (TREE_CODE (type) == FUNCTION_TYPE)
5449 {
5450 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5451 /* Remove the const and volatile qualifiers from arguments. The
5452 C++ front end removes them, but the C front end does not,
5453 leading to false ODR violation errors when merging two
5454 instances of the same function signature compiled by
5455 different front ends. */
5456 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5457 {
5458 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5459 tree arg_type = TREE_VALUE (p);
5460
5461 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5462 {
5463 int quals = TYPE_QUALS (arg_type)
5464 & ~TYPE_QUAL_CONST
5465 & ~TYPE_QUAL_VOLATILE;
5466 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5467 free_lang_data_in_type (TREE_VALUE (p), fld);
5468 }
5469 /* C++ FE uses TREE_PURPOSE to store initial values. */
5470 TREE_PURPOSE (p) = NULL;
5471 }
5472 }
5473 else if (TREE_CODE (type) == METHOD_TYPE)
5474 {
5475 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5476 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5477 {
5478 /* C++ FE uses TREE_PURPOSE to store initial values. */
5479 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5480 TREE_PURPOSE (p) = NULL;
5481 }
5482 }
5483 else if (RECORD_OR_UNION_TYPE_P (type))
5484 {
5485 /* Remove members that are not FIELD_DECLs from the field list
5486 of an aggregate. These occur in C++. */
5487 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5488 if (TREE_CODE (member) == FIELD_DECL)
5489 prev = &DECL_CHAIN (member);
5490 else
5491 *prev = DECL_CHAIN (member);
5492
5493 TYPE_VFIELD (type) = NULL_TREE;
5494
5495 if (TYPE_BINFO (type))
5496 {
5497 free_lang_data_in_binfo (TYPE_BINFO (type));
5498 /* We need to preserve link to bases and virtual table for all
5499 polymorphic types to make devirtualization machinery working. */
5500 if (!BINFO_VTABLE (TYPE_BINFO (type))
5501 || !flag_devirtualize)
5502 TYPE_BINFO (type) = NULL;
5503 }
5504 }
5505 else if (INTEGRAL_TYPE_P (type)
5506 || SCALAR_FLOAT_TYPE_P (type)
5507 || FIXED_POINT_TYPE_P (type))
5508 {
5509 if (TREE_CODE (type) == ENUMERAL_TYPE)
5510 {
5511 /* Type values are used only for C++ ODR checking. Drop them
5512 for all type variants and non-ODR types.
5513 For ODR types the data is freed in free_odr_warning_data. */
5514 if (TYPE_MAIN_VARIANT (type) != type
5515 || !type_with_linkage_p (type))
5516 TYPE_VALUES (type) = NULL;
5517 else
5518 /* Simplify representation by recording only values rather
5519 than const decls. */
5520 for (tree e = TYPE_VALUES (type); e; e = TREE_CHAIN (e))
5521 if (TREE_CODE (TREE_VALUE (e)) == CONST_DECL)
5522 TREE_VALUE (e) = DECL_INITIAL (TREE_VALUE (e));
5523 }
5524 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5525 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5526 }
5527
5528 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5529
5530 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5531 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5532
5533 if (TYPE_CONTEXT (type)
5534 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5535 {
5536 tree ctx = TYPE_CONTEXT (type);
5537 do
5538 {
5539 ctx = BLOCK_SUPERCONTEXT (ctx);
5540 }
5541 while (ctx && TREE_CODE (ctx) == BLOCK);
5542 TYPE_CONTEXT (type) = ctx;
5543 }
5544
5545 TYPE_STUB_DECL (type) = NULL;
5546 TYPE_NAME (type) = fld_simplified_type_name (type);
5547 }
5548
5549
5550 /* Return true if DECL may need an assembler name to be set. */
5551
5552 static inline bool
5553 need_assembler_name_p (tree decl)
5554 {
5555 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5556 Rule merging. This makes type_odr_p to return true on those types during
5557 LTO and by comparing the mangled name, we can say what types are intended
5558 to be equivalent across compilation unit.
5559
5560 We do not store names of type_in_anonymous_namespace_p.
5561
5562 Record, union and enumeration type have linkage that allows use
5563 to check type_in_anonymous_namespace_p. We do not mangle compound types
5564 that always can be compared structurally.
5565
5566 Similarly for builtin types, we compare properties of their main variant.
5567 A special case are integer types where mangling do make differences
5568 between char/signed char/unsigned char etc. Storing name for these makes
5569 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5570 See cp/mangle.c:write_builtin_type for details. */
5571
5572 if (TREE_CODE (decl) == TYPE_DECL)
5573 {
5574 if (flag_lto_odr_type_mering
5575 && DECL_NAME (decl)
5576 && decl == TYPE_NAME (TREE_TYPE (decl))
5577 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5578 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5579 && (type_with_linkage_p (TREE_TYPE (decl))
5580 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5581 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5582 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5583 return false;
5584 }
5585 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5586 if (!VAR_OR_FUNCTION_DECL_P (decl))
5587 return false;
5588
5589 /* If DECL already has its assembler name set, it does not need a
5590 new one. */
5591 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5592 || DECL_ASSEMBLER_NAME_SET_P (decl))
5593 return false;
5594
5595 /* Abstract decls do not need an assembler name. */
5596 if (DECL_ABSTRACT_P (decl))
5597 return false;
5598
5599 /* For VAR_DECLs, only static, public and external symbols need an
5600 assembler name. */
5601 if (VAR_P (decl)
5602 && !TREE_STATIC (decl)
5603 && !TREE_PUBLIC (decl)
5604 && !DECL_EXTERNAL (decl))
5605 return false;
5606
5607 if (TREE_CODE (decl) == FUNCTION_DECL)
5608 {
5609 /* Do not set assembler name on builtins. Allow RTL expansion to
5610 decide whether to expand inline or via a regular call. */
5611 if (fndecl_built_in_p (decl)
5612 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5613 return false;
5614
5615 /* Functions represented in the callgraph need an assembler name. */
5616 if (cgraph_node::get (decl) != NULL)
5617 return true;
5618
5619 /* Unused and not public functions don't need an assembler name. */
5620 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5621 return false;
5622 }
5623
5624 return true;
5625 }
5626
5627
5628 /* Reset all language specific information still present in symbol
5629 DECL. */
5630
5631 static void
5632 free_lang_data_in_decl (tree decl, struct free_lang_data_d *fld)
5633 {
5634 gcc_assert (DECL_P (decl));
5635
5636 /* Give the FE a chance to remove its own data first. */
5637 lang_hooks.free_lang_data (decl);
5638
5639 TREE_LANG_FLAG_0 (decl) = 0;
5640 TREE_LANG_FLAG_1 (decl) = 0;
5641 TREE_LANG_FLAG_2 (decl) = 0;
5642 TREE_LANG_FLAG_3 (decl) = 0;
5643 TREE_LANG_FLAG_4 (decl) = 0;
5644 TREE_LANG_FLAG_5 (decl) = 0;
5645 TREE_LANG_FLAG_6 (decl) = 0;
5646
5647 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5648 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5649 if (TREE_CODE (decl) == FIELD_DECL)
5650 {
5651 DECL_FCONTEXT (decl) = NULL;
5652 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5653 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5654 DECL_QUALIFIER (decl) = NULL_TREE;
5655 }
5656
5657 if (TREE_CODE (decl) == FUNCTION_DECL)
5658 {
5659 struct cgraph_node *node;
5660 /* Frontends do not set TREE_ADDRESSABLE on public variables even though
5661 the address may be taken in other unit, so this flag has no practical
5662 use for middle-end.
5663
5664 It would make more sense if frontends set TREE_ADDRESSABLE to 0 only
5665 for public objects that indeed cannot be adressed, but it is not
5666 the case. Set the flag to true so we do not get merge failures for
5667 i.e. virtual tables between units that take address of it and
5668 units that don't. */
5669 if (TREE_PUBLIC (decl))
5670 TREE_ADDRESSABLE (decl) = true;
5671 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5672 if (!(node = cgraph_node::get (decl))
5673 || (!node->definition && !node->clones))
5674 {
5675 if (node)
5676 node->release_body ();
5677 else
5678 {
5679 release_function_body (decl);
5680 DECL_ARGUMENTS (decl) = NULL;
5681 DECL_RESULT (decl) = NULL;
5682 DECL_INITIAL (decl) = error_mark_node;
5683 }
5684 }
5685 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5686 {
5687 tree t;
5688
5689 /* If DECL has a gimple body, then the context for its
5690 arguments must be DECL. Otherwise, it doesn't really
5691 matter, as we will not be emitting any code for DECL. In
5692 general, there may be other instances of DECL created by
5693 the front end and since PARM_DECLs are generally shared,
5694 their DECL_CONTEXT changes as the replicas of DECL are
5695 created. The only time where DECL_CONTEXT is important
5696 is for the FUNCTION_DECLs that have a gimple body (since
5697 the PARM_DECL will be used in the function's body). */
5698 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5699 DECL_CONTEXT (t) = decl;
5700 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5701 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5702 = target_option_default_node;
5703 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5704 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5705 = optimization_default_node;
5706 }
5707
5708 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5709 At this point, it is not needed anymore. */
5710 DECL_SAVED_TREE (decl) = NULL_TREE;
5711
5712 /* Clear the abstract origin if it refers to a method.
5713 Otherwise dwarf2out.c will ICE as we splice functions out of
5714 TYPE_FIELDS and thus the origin will not be output
5715 correctly. */
5716 if (DECL_ABSTRACT_ORIGIN (decl)
5717 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5718 && RECORD_OR_UNION_TYPE_P
5719 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5720 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5721
5722 DECL_VINDEX (decl) = NULL_TREE;
5723 }
5724 else if (VAR_P (decl))
5725 {
5726 /* See comment above why we set the flag for functoins. */
5727 if (TREE_PUBLIC (decl))
5728 TREE_ADDRESSABLE (decl) = true;
5729 if ((DECL_EXTERNAL (decl)
5730 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5731 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5732 DECL_INITIAL (decl) = NULL_TREE;
5733 }
5734 else if (TREE_CODE (decl) == TYPE_DECL)
5735 {
5736 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5737 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5738 TREE_PUBLIC (decl) = 0;
5739 TREE_PRIVATE (decl) = 0;
5740 DECL_ARTIFICIAL (decl) = 0;
5741 TYPE_DECL_SUPPRESS_DEBUG (decl) = 0;
5742 DECL_INITIAL (decl) = NULL_TREE;
5743 DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5744 DECL_MODE (decl) = VOIDmode;
5745 SET_DECL_ALIGN (decl, 0);
5746 /* TREE_TYPE is cleared at WPA time in free_odr_warning_data. */
5747 }
5748 else if (TREE_CODE (decl) == FIELD_DECL)
5749 {
5750 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5751 DECL_INITIAL (decl) = NULL_TREE;
5752 }
5753 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5754 && DECL_INITIAL (decl)
5755 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5756 {
5757 /* Strip builtins from the translation-unit BLOCK. We still have targets
5758 without builtin_decl_explicit support and also builtins are shared
5759 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5760 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5761 while (*nextp)
5762 {
5763 tree var = *nextp;
5764 if (fndecl_built_in_p (var))
5765 *nextp = TREE_CHAIN (var);
5766 else
5767 nextp = &TREE_CHAIN (var);
5768 }
5769 }
5770 /* We need to keep field decls associated with their trees. Otherwise tree
5771 merging may merge some fileds and keep others disjoint wich in turn will
5772 not do well with TREE_CHAIN pointers linking them.
5773
5774 Also do not drop containing types for virtual methods and tables because
5775 these are needed by devirtualization. */
5776 if (TREE_CODE (decl) != FIELD_DECL
5777 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5778 || !DECL_VIRTUAL_P (decl)))
5779 DECL_CONTEXT (decl) = fld_decl_context (DECL_CONTEXT (decl));
5780 }
5781
5782
5783 /* Operand callback helper for free_lang_data_in_node. *TP is the
5784 subtree operand being considered. */
5785
5786 static tree
5787 find_decls_types_r (tree *tp, int *ws, void *data)
5788 {
5789 tree t = *tp;
5790 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5791
5792 if (TREE_CODE (t) == TREE_LIST)
5793 return NULL_TREE;
5794
5795 /* Language specific nodes will be removed, so there is no need
5796 to gather anything under them. */
5797 if (is_lang_specific (t))
5798 {
5799 *ws = 0;
5800 return NULL_TREE;
5801 }
5802
5803 if (DECL_P (t))
5804 {
5805 /* Note that walk_tree does not traverse every possible field in
5806 decls, so we have to do our own traversals here. */
5807 add_tree_to_fld_list (t, fld);
5808
5809 fld_worklist_push (DECL_NAME (t), fld);
5810 fld_worklist_push (DECL_CONTEXT (t), fld);
5811 fld_worklist_push (DECL_SIZE (t), fld);
5812 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5813
5814 /* We are going to remove everything under DECL_INITIAL for
5815 TYPE_DECLs. No point walking them. */
5816 if (TREE_CODE (t) != TYPE_DECL)
5817 fld_worklist_push (DECL_INITIAL (t), fld);
5818
5819 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5820 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5821
5822 if (TREE_CODE (t) == FUNCTION_DECL)
5823 {
5824 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5825 fld_worklist_push (DECL_RESULT (t), fld);
5826 }
5827 else if (TREE_CODE (t) == FIELD_DECL)
5828 {
5829 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5830 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5831 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5832 fld_worklist_push (DECL_FCONTEXT (t), fld);
5833 }
5834
5835 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5836 && DECL_HAS_VALUE_EXPR_P (t))
5837 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5838
5839 if (TREE_CODE (t) != FIELD_DECL
5840 && TREE_CODE (t) != TYPE_DECL)
5841 fld_worklist_push (TREE_CHAIN (t), fld);
5842 *ws = 0;
5843 }
5844 else if (TYPE_P (t))
5845 {
5846 /* Note that walk_tree does not traverse every possible field in
5847 types, so we have to do our own traversals here. */
5848 add_tree_to_fld_list (t, fld);
5849
5850 if (!RECORD_OR_UNION_TYPE_P (t))
5851 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5852 fld_worklist_push (TYPE_SIZE (t), fld);
5853 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5854 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5855 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5856 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5857 fld_worklist_push (TYPE_NAME (t), fld);
5858 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
5859 lists, we may look types up in these lists and use them while
5860 optimizing the function body. Thus we need to free lang data
5861 in them. */
5862 if (TREE_CODE (t) == POINTER_TYPE)
5863 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
5864 if (TREE_CODE (t) == REFERENCE_TYPE)
5865 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
5866 if (!POINTER_TYPE_P (t))
5867 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5868 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5869 if (!RECORD_OR_UNION_TYPE_P (t))
5870 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5871 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5872 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5873 do not and want not to reach unused variants this way. */
5874 if (TYPE_CONTEXT (t))
5875 {
5876 tree ctx = TYPE_CONTEXT (t);
5877 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5878 So push that instead. */
5879 while (ctx && TREE_CODE (ctx) == BLOCK)
5880 ctx = BLOCK_SUPERCONTEXT (ctx);
5881 fld_worklist_push (ctx, fld);
5882 }
5883 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5884 and want not to reach unused types this way. */
5885
5886 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5887 {
5888 unsigned i;
5889 tree tem;
5890 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5891 fld_worklist_push (TREE_TYPE (tem), fld);
5892 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5893 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5894 }
5895 if (RECORD_OR_UNION_TYPE_P (t))
5896 {
5897 tree tem;
5898 /* Push all TYPE_FIELDS - there can be interleaving interesting
5899 and non-interesting things. */
5900 tem = TYPE_FIELDS (t);
5901 while (tem)
5902 {
5903 if (TREE_CODE (tem) == FIELD_DECL)
5904 fld_worklist_push (tem, fld);
5905 tem = TREE_CHAIN (tem);
5906 }
5907 }
5908 if (FUNC_OR_METHOD_TYPE_P (t))
5909 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5910
5911 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5912 *ws = 0;
5913 }
5914 else if (TREE_CODE (t) == BLOCK)
5915 {
5916 for (tree *tem = &BLOCK_VARS (t); *tem; )
5917 {
5918 if (TREE_CODE (*tem) != VAR_DECL
5919 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem)))
5920 {
5921 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
5922 && TREE_CODE (*tem) != PARM_DECL);
5923 *tem = TREE_CHAIN (*tem);
5924 }
5925 else
5926 {
5927 fld_worklist_push (*tem, fld);
5928 tem = &TREE_CHAIN (*tem);
5929 }
5930 }
5931 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5932 fld_worklist_push (tem, fld);
5933 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5934 }
5935
5936 if (TREE_CODE (t) != IDENTIFIER_NODE
5937 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5938 fld_worklist_push (TREE_TYPE (t), fld);
5939
5940 return NULL_TREE;
5941 }
5942
5943
5944 /* Find decls and types in T. */
5945
5946 static void
5947 find_decls_types (tree t, struct free_lang_data_d *fld)
5948 {
5949 while (1)
5950 {
5951 if (!fld->pset.contains (t))
5952 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5953 if (fld->worklist.is_empty ())
5954 break;
5955 t = fld->worklist.pop ();
5956 }
5957 }
5958
5959 /* Translate all the types in LIST with the corresponding runtime
5960 types. */
5961
5962 static tree
5963 get_eh_types_for_runtime (tree list)
5964 {
5965 tree head, prev;
5966
5967 if (list == NULL_TREE)
5968 return NULL_TREE;
5969
5970 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5971 prev = head;
5972 list = TREE_CHAIN (list);
5973 while (list)
5974 {
5975 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5976 TREE_CHAIN (prev) = n;
5977 prev = TREE_CHAIN (prev);
5978 list = TREE_CHAIN (list);
5979 }
5980
5981 return head;
5982 }
5983
5984
5985 /* Find decls and types referenced in EH region R and store them in
5986 FLD->DECLS and FLD->TYPES. */
5987
5988 static void
5989 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5990 {
5991 switch (r->type)
5992 {
5993 case ERT_CLEANUP:
5994 break;
5995
5996 case ERT_TRY:
5997 {
5998 eh_catch c;
5999
6000 /* The types referenced in each catch must first be changed to the
6001 EH types used at runtime. This removes references to FE types
6002 in the region. */
6003 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
6004 {
6005 c->type_list = get_eh_types_for_runtime (c->type_list);
6006 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
6007 }
6008 }
6009 break;
6010
6011 case ERT_ALLOWED_EXCEPTIONS:
6012 r->u.allowed.type_list
6013 = get_eh_types_for_runtime (r->u.allowed.type_list);
6014 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
6015 break;
6016
6017 case ERT_MUST_NOT_THROW:
6018 walk_tree (&r->u.must_not_throw.failure_decl,
6019 find_decls_types_r, fld, &fld->pset);
6020 break;
6021 }
6022 }
6023
6024
6025 /* Find decls and types referenced in cgraph node N and store them in
6026 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6027 look for *every* kind of DECL and TYPE node reachable from N,
6028 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6029 NAMESPACE_DECLs, etc). */
6030
6031 static void
6032 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
6033 {
6034 basic_block bb;
6035 struct function *fn;
6036 unsigned ix;
6037 tree t;
6038
6039 find_decls_types (n->decl, fld);
6040
6041 if (!gimple_has_body_p (n->decl))
6042 return;
6043
6044 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
6045
6046 fn = DECL_STRUCT_FUNCTION (n->decl);
6047
6048 /* Traverse locals. */
6049 FOR_EACH_LOCAL_DECL (fn, ix, t)
6050 find_decls_types (t, fld);
6051
6052 /* Traverse EH regions in FN. */
6053 {
6054 eh_region r;
6055 FOR_ALL_EH_REGION_FN (r, fn)
6056 find_decls_types_in_eh_region (r, fld);
6057 }
6058
6059 /* Traverse every statement in FN. */
6060 FOR_EACH_BB_FN (bb, fn)
6061 {
6062 gphi_iterator psi;
6063 gimple_stmt_iterator si;
6064 unsigned i;
6065
6066 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
6067 {
6068 gphi *phi = psi.phi ();
6069
6070 for (i = 0; i < gimple_phi_num_args (phi); i++)
6071 {
6072 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
6073 find_decls_types (*arg_p, fld);
6074 }
6075 }
6076
6077 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6078 {
6079 gimple *stmt = gsi_stmt (si);
6080
6081 if (is_gimple_call (stmt))
6082 find_decls_types (gimple_call_fntype (stmt), fld);
6083
6084 for (i = 0; i < gimple_num_ops (stmt); i++)
6085 {
6086 tree arg = gimple_op (stmt, i);
6087 find_decls_types (arg, fld);
6088 }
6089 }
6090 }
6091 }
6092
6093
6094 /* Find decls and types referenced in varpool node N and store them in
6095 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6096 look for *every* kind of DECL and TYPE node reachable from N,
6097 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6098 NAMESPACE_DECLs, etc). */
6099
6100 static void
6101 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
6102 {
6103 find_decls_types (v->decl, fld);
6104 }
6105
6106 /* If T needs an assembler name, have one created for it. */
6107
6108 void
6109 assign_assembler_name_if_needed (tree t)
6110 {
6111 if (need_assembler_name_p (t))
6112 {
6113 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
6114 diagnostics that use input_location to show locus
6115 information. The problem here is that, at this point,
6116 input_location is generally anchored to the end of the file
6117 (since the parser is long gone), so we don't have a good
6118 position to pin it to.
6119
6120 To alleviate this problem, this uses the location of T's
6121 declaration. Examples of this are
6122 testsuite/g++.dg/template/cond2.C and
6123 testsuite/g++.dg/template/pr35240.C. */
6124 location_t saved_location = input_location;
6125 input_location = DECL_SOURCE_LOCATION (t);
6126
6127 decl_assembler_name (t);
6128
6129 input_location = saved_location;
6130 }
6131 }
6132
6133
6134 /* Free language specific information for every operand and expression
6135 in every node of the call graph. This process operates in three stages:
6136
6137 1- Every callgraph node and varpool node is traversed looking for
6138 decls and types embedded in them. This is a more exhaustive
6139 search than that done by find_referenced_vars, because it will
6140 also collect individual fields, decls embedded in types, etc.
6141
6142 2- All the decls found are sent to free_lang_data_in_decl.
6143
6144 3- All the types found are sent to free_lang_data_in_type.
6145
6146 The ordering between decls and types is important because
6147 free_lang_data_in_decl sets assembler names, which includes
6148 mangling. So types cannot be freed up until assembler names have
6149 been set up. */
6150
6151 static void
6152 free_lang_data_in_cgraph (struct free_lang_data_d *fld)
6153 {
6154 struct cgraph_node *n;
6155 varpool_node *v;
6156 tree t;
6157 unsigned i;
6158 alias_pair *p;
6159
6160 /* Find decls and types in the body of every function in the callgraph. */
6161 FOR_EACH_FUNCTION (n)
6162 find_decls_types_in_node (n, fld);
6163
6164 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
6165 find_decls_types (p->decl, fld);
6166
6167 /* Find decls and types in every varpool symbol. */
6168 FOR_EACH_VARIABLE (v)
6169 find_decls_types_in_var (v, fld);
6170
6171 /* Set the assembler name on every decl found. We need to do this
6172 now because free_lang_data_in_decl will invalidate data needed
6173 for mangling. This breaks mangling on interdependent decls. */
6174 FOR_EACH_VEC_ELT (fld->decls, i, t)
6175 assign_assembler_name_if_needed (t);
6176
6177 /* Traverse every decl found freeing its language data. */
6178 FOR_EACH_VEC_ELT (fld->decls, i, t)
6179 free_lang_data_in_decl (t, fld);
6180
6181 /* Traverse every type found freeing its language data. */
6182 FOR_EACH_VEC_ELT (fld->types, i, t)
6183 free_lang_data_in_type (t, fld);
6184 }
6185
6186
6187 /* Free resources that are used by FE but are not needed once they are done. */
6188
6189 static unsigned
6190 free_lang_data (void)
6191 {
6192 unsigned i;
6193 struct free_lang_data_d fld;
6194
6195 /* If we are the LTO frontend we have freed lang-specific data already. */
6196 if (in_lto_p
6197 || (!flag_generate_lto && !flag_generate_offload))
6198 {
6199 /* Rebuild type inheritance graph even when not doing LTO to get
6200 consistent profile data. */
6201 rebuild_type_inheritance_graph ();
6202 return 0;
6203 }
6204
6205 fld_incomplete_types = new hash_map<tree, tree>;
6206 fld_simplified_types = new hash_map<tree, tree>;
6207
6208 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
6209 if (vec_safe_is_empty (all_translation_units))
6210 build_translation_unit_decl (NULL_TREE);
6211
6212 /* Allocate and assign alias sets to the standard integer types
6213 while the slots are still in the way the frontends generated them. */
6214 for (i = 0; i < itk_none; ++i)
6215 if (integer_types[i])
6216 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
6217
6218 /* Traverse the IL resetting language specific information for
6219 operands, expressions, etc. */
6220 free_lang_data_in_cgraph (&fld);
6221
6222 /* Create gimple variants for common types. */
6223 for (unsigned i = 0;
6224 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
6225 ++i)
6226 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
6227
6228 /* Reset some langhooks. Do not reset types_compatible_p, it may
6229 still be used indirectly via the get_alias_set langhook. */
6230 lang_hooks.dwarf_name = lhd_dwarf_name;
6231 lang_hooks.decl_printable_name = gimple_decl_printable_name;
6232 lang_hooks.gimplify_expr = lhd_gimplify_expr;
6233 lang_hooks.overwrite_decl_assembler_name = lhd_overwrite_decl_assembler_name;
6234 lang_hooks.print_xnode = lhd_print_tree_nothing;
6235 lang_hooks.print_decl = lhd_print_tree_nothing;
6236 lang_hooks.print_type = lhd_print_tree_nothing;
6237 lang_hooks.print_identifier = lhd_print_tree_nothing;
6238
6239 lang_hooks.tree_inlining.var_mod_type_p = hook_bool_tree_tree_false;
6240
6241 if (flag_checking)
6242 {
6243 int i;
6244 tree t;
6245
6246 FOR_EACH_VEC_ELT (fld.types, i, t)
6247 verify_type (t);
6248 }
6249
6250 /* We do not want the default decl_assembler_name implementation,
6251 rather if we have fixed everything we want a wrapper around it
6252 asserting that all non-local symbols already got their assembler
6253 name and only produce assembler names for local symbols. Or rather
6254 make sure we never call decl_assembler_name on local symbols and
6255 devise a separate, middle-end private scheme for it. */
6256
6257 /* Reset diagnostic machinery. */
6258 tree_diagnostics_defaults (global_dc);
6259
6260 rebuild_type_inheritance_graph ();
6261
6262 delete fld_incomplete_types;
6263 delete fld_simplified_types;
6264
6265 return 0;
6266 }
6267
6268
6269 namespace {
6270
6271 const pass_data pass_data_ipa_free_lang_data =
6272 {
6273 SIMPLE_IPA_PASS, /* type */
6274 "*free_lang_data", /* name */
6275 OPTGROUP_NONE, /* optinfo_flags */
6276 TV_IPA_FREE_LANG_DATA, /* tv_id */
6277 0, /* properties_required */
6278 0, /* properties_provided */
6279 0, /* properties_destroyed */
6280 0, /* todo_flags_start */
6281 0, /* todo_flags_finish */
6282 };
6283
6284 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6285 {
6286 public:
6287 pass_ipa_free_lang_data (gcc::context *ctxt)
6288 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6289 {}
6290
6291 /* opt_pass methods: */
6292 virtual unsigned int execute (function *) { return free_lang_data (); }
6293
6294 }; // class pass_ipa_free_lang_data
6295
6296 } // anon namespace
6297
6298 simple_ipa_opt_pass *
6299 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6300 {
6301 return new pass_ipa_free_lang_data (ctxt);
6302 }
6303 \f
6304 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6305 of the various TYPE_QUAL values. */
6306
6307 static void
6308 set_type_quals (tree type, int type_quals)
6309 {
6310 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6311 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6312 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6313 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6314 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6315 }
6316
6317 /* Returns true iff CAND and BASE have equivalent language-specific
6318 qualifiers. */
6319
6320 bool
6321 check_lang_type (const_tree cand, const_tree base)
6322 {
6323 if (lang_hooks.types.type_hash_eq == NULL)
6324 return true;
6325 /* type_hash_eq currently only applies to these types. */
6326 if (TREE_CODE (cand) != FUNCTION_TYPE
6327 && TREE_CODE (cand) != METHOD_TYPE)
6328 return true;
6329 return lang_hooks.types.type_hash_eq (cand, base);
6330 }
6331
6332 /* Returns true iff unqualified CAND and BASE are equivalent. */
6333
6334 bool
6335 check_base_type (const_tree cand, const_tree base)
6336 {
6337 return (TYPE_NAME (cand) == TYPE_NAME (base)
6338 /* Apparently this is needed for Objective-C. */
6339 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6340 /* Check alignment. */
6341 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6342 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6343 TYPE_ATTRIBUTES (base)));
6344 }
6345
6346 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6347
6348 bool
6349 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6350 {
6351 return (TYPE_QUALS (cand) == type_quals
6352 && check_base_type (cand, base)
6353 && check_lang_type (cand, base));
6354 }
6355
6356 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6357
6358 static bool
6359 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6360 {
6361 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6362 && TYPE_NAME (cand) == TYPE_NAME (base)
6363 /* Apparently this is needed for Objective-C. */
6364 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6365 /* Check alignment. */
6366 && TYPE_ALIGN (cand) == align
6367 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6368 TYPE_ATTRIBUTES (base))
6369 && check_lang_type (cand, base));
6370 }
6371
6372 /* This function checks to see if TYPE matches the size one of the built-in
6373 atomic types, and returns that core atomic type. */
6374
6375 static tree
6376 find_atomic_core_type (tree type)
6377 {
6378 tree base_atomic_type;
6379
6380 /* Only handle complete types. */
6381 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6382 return NULL_TREE;
6383
6384 switch (tree_to_uhwi (TYPE_SIZE (type)))
6385 {
6386 case 8:
6387 base_atomic_type = atomicQI_type_node;
6388 break;
6389
6390 case 16:
6391 base_atomic_type = atomicHI_type_node;
6392 break;
6393
6394 case 32:
6395 base_atomic_type = atomicSI_type_node;
6396 break;
6397
6398 case 64:
6399 base_atomic_type = atomicDI_type_node;
6400 break;
6401
6402 case 128:
6403 base_atomic_type = atomicTI_type_node;
6404 break;
6405
6406 default:
6407 base_atomic_type = NULL_TREE;
6408 }
6409
6410 return base_atomic_type;
6411 }
6412
6413 /* Return a version of the TYPE, qualified as indicated by the
6414 TYPE_QUALS, if one exists. If no qualified version exists yet,
6415 return NULL_TREE. */
6416
6417 tree
6418 get_qualified_type (tree type, int type_quals)
6419 {
6420 tree t;
6421
6422 if (TYPE_QUALS (type) == type_quals)
6423 return type;
6424
6425 /* Search the chain of variants to see if there is already one there just
6426 like the one we need to have. If so, use that existing one. We must
6427 preserve the TYPE_NAME, since there is code that depends on this. */
6428 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6429 if (check_qualified_type (t, type, type_quals))
6430 return t;
6431
6432 return NULL_TREE;
6433 }
6434
6435 /* Like get_qualified_type, but creates the type if it does not
6436 exist. This function never returns NULL_TREE. */
6437
6438 tree
6439 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6440 {
6441 tree t;
6442
6443 /* See if we already have the appropriate qualified variant. */
6444 t = get_qualified_type (type, type_quals);
6445
6446 /* If not, build it. */
6447 if (!t)
6448 {
6449 t = build_variant_type_copy (type PASS_MEM_STAT);
6450 set_type_quals (t, type_quals);
6451
6452 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6453 {
6454 /* See if this object can map to a basic atomic type. */
6455 tree atomic_type = find_atomic_core_type (type);
6456 if (atomic_type)
6457 {
6458 /* Ensure the alignment of this type is compatible with
6459 the required alignment of the atomic type. */
6460 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6461 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6462 }
6463 }
6464
6465 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6466 /* Propagate structural equality. */
6467 SET_TYPE_STRUCTURAL_EQUALITY (t);
6468 else if (TYPE_CANONICAL (type) != type)
6469 /* Build the underlying canonical type, since it is different
6470 from TYPE. */
6471 {
6472 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6473 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6474 }
6475 else
6476 /* T is its own canonical type. */
6477 TYPE_CANONICAL (t) = t;
6478
6479 }
6480
6481 return t;
6482 }
6483
6484 /* Create a variant of type T with alignment ALIGN. */
6485
6486 tree
6487 build_aligned_type (tree type, unsigned int align)
6488 {
6489 tree t;
6490
6491 if (TYPE_PACKED (type)
6492 || TYPE_ALIGN (type) == align)
6493 return type;
6494
6495 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6496 if (check_aligned_type (t, type, align))
6497 return t;
6498
6499 t = build_variant_type_copy (type);
6500 SET_TYPE_ALIGN (t, align);
6501 TYPE_USER_ALIGN (t) = 1;
6502
6503 return t;
6504 }
6505
6506 /* Create a new distinct copy of TYPE. The new type is made its own
6507 MAIN_VARIANT. If TYPE requires structural equality checks, the
6508 resulting type requires structural equality checks; otherwise, its
6509 TYPE_CANONICAL points to itself. */
6510
6511 tree
6512 build_distinct_type_copy (tree type MEM_STAT_DECL)
6513 {
6514 tree t = copy_node (type PASS_MEM_STAT);
6515
6516 TYPE_POINTER_TO (t) = 0;
6517 TYPE_REFERENCE_TO (t) = 0;
6518
6519 /* Set the canonical type either to a new equivalence class, or
6520 propagate the need for structural equality checks. */
6521 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6522 SET_TYPE_STRUCTURAL_EQUALITY (t);
6523 else
6524 TYPE_CANONICAL (t) = t;
6525
6526 /* Make it its own variant. */
6527 TYPE_MAIN_VARIANT (t) = t;
6528 TYPE_NEXT_VARIANT (t) = 0;
6529
6530 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6531 whose TREE_TYPE is not t. This can also happen in the Ada
6532 frontend when using subtypes. */
6533
6534 return t;
6535 }
6536
6537 /* Create a new variant of TYPE, equivalent but distinct. This is so
6538 the caller can modify it. TYPE_CANONICAL for the return type will
6539 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6540 are considered equal by the language itself (or that both types
6541 require structural equality checks). */
6542
6543 tree
6544 build_variant_type_copy (tree type MEM_STAT_DECL)
6545 {
6546 tree t, m = TYPE_MAIN_VARIANT (type);
6547
6548 t = build_distinct_type_copy (type PASS_MEM_STAT);
6549
6550 /* Since we're building a variant, assume that it is a non-semantic
6551 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6552 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6553 /* Type variants have no alias set defined. */
6554 TYPE_ALIAS_SET (t) = -1;
6555
6556 /* Add the new type to the chain of variants of TYPE. */
6557 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6558 TYPE_NEXT_VARIANT (m) = t;
6559 TYPE_MAIN_VARIANT (t) = m;
6560
6561 return t;
6562 }
6563 \f
6564 /* Return true if the from tree in both tree maps are equal. */
6565
6566 int
6567 tree_map_base_eq (const void *va, const void *vb)
6568 {
6569 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6570 *const b = (const struct tree_map_base *) vb;
6571 return (a->from == b->from);
6572 }
6573
6574 /* Hash a from tree in a tree_base_map. */
6575
6576 unsigned int
6577 tree_map_base_hash (const void *item)
6578 {
6579 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6580 }
6581
6582 /* Return true if this tree map structure is marked for garbage collection
6583 purposes. We simply return true if the from tree is marked, so that this
6584 structure goes away when the from tree goes away. */
6585
6586 int
6587 tree_map_base_marked_p (const void *p)
6588 {
6589 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6590 }
6591
6592 /* Hash a from tree in a tree_map. */
6593
6594 unsigned int
6595 tree_map_hash (const void *item)
6596 {
6597 return (((const struct tree_map *) item)->hash);
6598 }
6599
6600 /* Hash a from tree in a tree_decl_map. */
6601
6602 unsigned int
6603 tree_decl_map_hash (const void *item)
6604 {
6605 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6606 }
6607
6608 /* Return the initialization priority for DECL. */
6609
6610 priority_type
6611 decl_init_priority_lookup (tree decl)
6612 {
6613 symtab_node *snode = symtab_node::get (decl);
6614
6615 if (!snode)
6616 return DEFAULT_INIT_PRIORITY;
6617 return
6618 snode->get_init_priority ();
6619 }
6620
6621 /* Return the finalization priority for DECL. */
6622
6623 priority_type
6624 decl_fini_priority_lookup (tree decl)
6625 {
6626 cgraph_node *node = cgraph_node::get (decl);
6627
6628 if (!node)
6629 return DEFAULT_INIT_PRIORITY;
6630 return
6631 node->get_fini_priority ();
6632 }
6633
6634 /* Set the initialization priority for DECL to PRIORITY. */
6635
6636 void
6637 decl_init_priority_insert (tree decl, priority_type priority)
6638 {
6639 struct symtab_node *snode;
6640
6641 if (priority == DEFAULT_INIT_PRIORITY)
6642 {
6643 snode = symtab_node::get (decl);
6644 if (!snode)
6645 return;
6646 }
6647 else if (VAR_P (decl))
6648 snode = varpool_node::get_create (decl);
6649 else
6650 snode = cgraph_node::get_create (decl);
6651 snode->set_init_priority (priority);
6652 }
6653
6654 /* Set the finalization priority for DECL to PRIORITY. */
6655
6656 void
6657 decl_fini_priority_insert (tree decl, priority_type priority)
6658 {
6659 struct cgraph_node *node;
6660
6661 if (priority == DEFAULT_INIT_PRIORITY)
6662 {
6663 node = cgraph_node::get (decl);
6664 if (!node)
6665 return;
6666 }
6667 else
6668 node = cgraph_node::get_create (decl);
6669 node->set_fini_priority (priority);
6670 }
6671
6672 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6673
6674 static void
6675 print_debug_expr_statistics (void)
6676 {
6677 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6678 (long) debug_expr_for_decl->size (),
6679 (long) debug_expr_for_decl->elements (),
6680 debug_expr_for_decl->collisions ());
6681 }
6682
6683 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6684
6685 static void
6686 print_value_expr_statistics (void)
6687 {
6688 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6689 (long) value_expr_for_decl->size (),
6690 (long) value_expr_for_decl->elements (),
6691 value_expr_for_decl->collisions ());
6692 }
6693
6694 /* Lookup a debug expression for FROM, and return it if we find one. */
6695
6696 tree
6697 decl_debug_expr_lookup (tree from)
6698 {
6699 struct tree_decl_map *h, in;
6700 in.base.from = from;
6701
6702 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6703 if (h)
6704 return h->to;
6705 return NULL_TREE;
6706 }
6707
6708 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6709
6710 void
6711 decl_debug_expr_insert (tree from, tree to)
6712 {
6713 struct tree_decl_map *h;
6714
6715 h = ggc_alloc<tree_decl_map> ();
6716 h->base.from = from;
6717 h->to = to;
6718 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6719 }
6720
6721 /* Lookup a value expression for FROM, and return it if we find one. */
6722
6723 tree
6724 decl_value_expr_lookup (tree from)
6725 {
6726 struct tree_decl_map *h, in;
6727 in.base.from = from;
6728
6729 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6730 if (h)
6731 return h->to;
6732 return NULL_TREE;
6733 }
6734
6735 /* Insert a mapping FROM->TO in the value expression hashtable. */
6736
6737 void
6738 decl_value_expr_insert (tree from, tree to)
6739 {
6740 struct tree_decl_map *h;
6741
6742 h = ggc_alloc<tree_decl_map> ();
6743 h->base.from = from;
6744 h->to = to;
6745 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6746 }
6747
6748 /* Lookup a vector of debug arguments for FROM, and return it if we
6749 find one. */
6750
6751 vec<tree, va_gc> **
6752 decl_debug_args_lookup (tree from)
6753 {
6754 struct tree_vec_map *h, in;
6755
6756 if (!DECL_HAS_DEBUG_ARGS_P (from))
6757 return NULL;
6758 gcc_checking_assert (debug_args_for_decl != NULL);
6759 in.base.from = from;
6760 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6761 if (h)
6762 return &h->to;
6763 return NULL;
6764 }
6765
6766 /* Insert a mapping FROM->empty vector of debug arguments in the value
6767 expression hashtable. */
6768
6769 vec<tree, va_gc> **
6770 decl_debug_args_insert (tree from)
6771 {
6772 struct tree_vec_map *h;
6773 tree_vec_map **loc;
6774
6775 if (DECL_HAS_DEBUG_ARGS_P (from))
6776 return decl_debug_args_lookup (from);
6777 if (debug_args_for_decl == NULL)
6778 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6779 h = ggc_alloc<tree_vec_map> ();
6780 h->base.from = from;
6781 h->to = NULL;
6782 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6783 *loc = h;
6784 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6785 return &h->to;
6786 }
6787
6788 /* Hashing of types so that we don't make duplicates.
6789 The entry point is `type_hash_canon'. */
6790
6791 /* Generate the default hash code for TYPE. This is designed for
6792 speed, rather than maximum entropy. */
6793
6794 hashval_t
6795 type_hash_canon_hash (tree type)
6796 {
6797 inchash::hash hstate;
6798
6799 hstate.add_int (TREE_CODE (type));
6800
6801 if (TREE_TYPE (type))
6802 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6803
6804 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6805 /* Just the identifier is adequate to distinguish. */
6806 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6807
6808 switch (TREE_CODE (type))
6809 {
6810 case METHOD_TYPE:
6811 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6812 /* FALLTHROUGH. */
6813 case FUNCTION_TYPE:
6814 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6815 if (TREE_VALUE (t) != error_mark_node)
6816 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6817 break;
6818
6819 case OFFSET_TYPE:
6820 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6821 break;
6822
6823 case ARRAY_TYPE:
6824 {
6825 if (TYPE_DOMAIN (type))
6826 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6827 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6828 {
6829 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6830 hstate.add_object (typeless);
6831 }
6832 }
6833 break;
6834
6835 case INTEGER_TYPE:
6836 {
6837 tree t = TYPE_MAX_VALUE (type);
6838 if (!t)
6839 t = TYPE_MIN_VALUE (type);
6840 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6841 hstate.add_object (TREE_INT_CST_ELT (t, i));
6842 break;
6843 }
6844
6845 case REAL_TYPE:
6846 case FIXED_POINT_TYPE:
6847 {
6848 unsigned prec = TYPE_PRECISION (type);
6849 hstate.add_object (prec);
6850 break;
6851 }
6852
6853 case VECTOR_TYPE:
6854 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6855 break;
6856
6857 default:
6858 break;
6859 }
6860
6861 return hstate.end ();
6862 }
6863
6864 /* These are the Hashtable callback functions. */
6865
6866 /* Returns true iff the types are equivalent. */
6867
6868 bool
6869 type_cache_hasher::equal (type_hash *a, type_hash *b)
6870 {
6871 /* First test the things that are the same for all types. */
6872 if (a->hash != b->hash
6873 || TREE_CODE (a->type) != TREE_CODE (b->type)
6874 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6875 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6876 TYPE_ATTRIBUTES (b->type))
6877 || (TREE_CODE (a->type) != COMPLEX_TYPE
6878 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6879 return 0;
6880
6881 /* Be careful about comparing arrays before and after the element type
6882 has been completed; don't compare TYPE_ALIGN unless both types are
6883 complete. */
6884 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6885 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6886 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6887 return 0;
6888
6889 switch (TREE_CODE (a->type))
6890 {
6891 case VOID_TYPE:
6892 case COMPLEX_TYPE:
6893 case POINTER_TYPE:
6894 case REFERENCE_TYPE:
6895 case NULLPTR_TYPE:
6896 return 1;
6897
6898 case VECTOR_TYPE:
6899 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6900 TYPE_VECTOR_SUBPARTS (b->type));
6901
6902 case ENUMERAL_TYPE:
6903 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6904 && !(TYPE_VALUES (a->type)
6905 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6906 && TYPE_VALUES (b->type)
6907 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6908 && type_list_equal (TYPE_VALUES (a->type),
6909 TYPE_VALUES (b->type))))
6910 return 0;
6911
6912 /* fall through */
6913
6914 case INTEGER_TYPE:
6915 case REAL_TYPE:
6916 case BOOLEAN_TYPE:
6917 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6918 return false;
6919 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6920 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6921 TYPE_MAX_VALUE (b->type)))
6922 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6923 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6924 TYPE_MIN_VALUE (b->type))));
6925
6926 case FIXED_POINT_TYPE:
6927 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6928
6929 case OFFSET_TYPE:
6930 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6931
6932 case METHOD_TYPE:
6933 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6934 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6935 || (TYPE_ARG_TYPES (a->type)
6936 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6937 && TYPE_ARG_TYPES (b->type)
6938 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6939 && type_list_equal (TYPE_ARG_TYPES (a->type),
6940 TYPE_ARG_TYPES (b->type)))))
6941 break;
6942 return 0;
6943 case ARRAY_TYPE:
6944 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6945 where the flag should be inherited from the element type
6946 and can change after ARRAY_TYPEs are created; on non-aggregates
6947 compare it and hash it, scalars will never have that flag set
6948 and we need to differentiate between arrays created by different
6949 front-ends or middle-end created arrays. */
6950 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6951 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6952 || (TYPE_TYPELESS_STORAGE (a->type)
6953 == TYPE_TYPELESS_STORAGE (b->type))));
6954
6955 case RECORD_TYPE:
6956 case UNION_TYPE:
6957 case QUAL_UNION_TYPE:
6958 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6959 || (TYPE_FIELDS (a->type)
6960 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6961 && TYPE_FIELDS (b->type)
6962 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6963 && type_list_equal (TYPE_FIELDS (a->type),
6964 TYPE_FIELDS (b->type))));
6965
6966 case FUNCTION_TYPE:
6967 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6968 || (TYPE_ARG_TYPES (a->type)
6969 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6970 && TYPE_ARG_TYPES (b->type)
6971 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6972 && type_list_equal (TYPE_ARG_TYPES (a->type),
6973 TYPE_ARG_TYPES (b->type))))
6974 break;
6975 return 0;
6976
6977 default:
6978 return 0;
6979 }
6980
6981 if (lang_hooks.types.type_hash_eq != NULL)
6982 return lang_hooks.types.type_hash_eq (a->type, b->type);
6983
6984 return 1;
6985 }
6986
6987 /* Given TYPE, and HASHCODE its hash code, return the canonical
6988 object for an identical type if one already exists.
6989 Otherwise, return TYPE, and record it as the canonical object.
6990
6991 To use this function, first create a type of the sort you want.
6992 Then compute its hash code from the fields of the type that
6993 make it different from other similar types.
6994 Then call this function and use the value. */
6995
6996 tree
6997 type_hash_canon (unsigned int hashcode, tree type)
6998 {
6999 type_hash in;
7000 type_hash **loc;
7001
7002 /* The hash table only contains main variants, so ensure that's what we're
7003 being passed. */
7004 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
7005
7006 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
7007 must call that routine before comparing TYPE_ALIGNs. */
7008 layout_type (type);
7009
7010 in.hash = hashcode;
7011 in.type = type;
7012
7013 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
7014 if (*loc)
7015 {
7016 tree t1 = ((type_hash *) *loc)->type;
7017 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
7018 && t1 != type);
7019 if (TYPE_UID (type) + 1 == next_type_uid)
7020 --next_type_uid;
7021 /* Free also min/max values and the cache for integer
7022 types. This can't be done in free_node, as LTO frees
7023 those on its own. */
7024 if (TREE_CODE (type) == INTEGER_TYPE)
7025 {
7026 if (TYPE_MIN_VALUE (type)
7027 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
7028 {
7029 /* Zero is always in TYPE_CACHED_VALUES. */
7030 if (! TYPE_UNSIGNED (type))
7031 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
7032 ggc_free (TYPE_MIN_VALUE (type));
7033 }
7034 if (TYPE_MAX_VALUE (type)
7035 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
7036 {
7037 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
7038 ggc_free (TYPE_MAX_VALUE (type));
7039 }
7040 if (TYPE_CACHED_VALUES_P (type))
7041 ggc_free (TYPE_CACHED_VALUES (type));
7042 }
7043 free_node (type);
7044 return t1;
7045 }
7046 else
7047 {
7048 struct type_hash *h;
7049
7050 h = ggc_alloc<type_hash> ();
7051 h->hash = hashcode;
7052 h->type = type;
7053 *loc = h;
7054
7055 return type;
7056 }
7057 }
7058
7059 static void
7060 print_type_hash_statistics (void)
7061 {
7062 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
7063 (long) type_hash_table->size (),
7064 (long) type_hash_table->elements (),
7065 type_hash_table->collisions ());
7066 }
7067
7068 /* Given two lists of types
7069 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
7070 return 1 if the lists contain the same types in the same order.
7071 Also, the TREE_PURPOSEs must match. */
7072
7073 bool
7074 type_list_equal (const_tree l1, const_tree l2)
7075 {
7076 const_tree t1, t2;
7077
7078 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
7079 if (TREE_VALUE (t1) != TREE_VALUE (t2)
7080 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
7081 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
7082 && (TREE_TYPE (TREE_PURPOSE (t1))
7083 == TREE_TYPE (TREE_PURPOSE (t2))))))
7084 return false;
7085
7086 return t1 == t2;
7087 }
7088
7089 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
7090 given by TYPE. If the argument list accepts variable arguments,
7091 then this function counts only the ordinary arguments. */
7092
7093 int
7094 type_num_arguments (const_tree fntype)
7095 {
7096 int i = 0;
7097
7098 for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
7099 /* If the function does not take a variable number of arguments,
7100 the last element in the list will have type `void'. */
7101 if (VOID_TYPE_P (TREE_VALUE (t)))
7102 break;
7103 else
7104 ++i;
7105
7106 return i;
7107 }
7108
7109 /* Return the type of the function TYPE's argument ARGNO if known.
7110 For vararg function's where ARGNO refers to one of the variadic
7111 arguments return null. Otherwise, return a void_type_node for
7112 out-of-bounds ARGNO. */
7113
7114 tree
7115 type_argument_type (const_tree fntype, unsigned argno)
7116 {
7117 /* Treat zero the same as an out-of-bounds argument number. */
7118 if (!argno)
7119 return void_type_node;
7120
7121 function_args_iterator iter;
7122
7123 tree argtype;
7124 unsigned i = 1;
7125 FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
7126 {
7127 /* A vararg function's argument list ends in a null. Otherwise,
7128 an ordinary function's argument list ends with void. Return
7129 null if ARGNO refers to a vararg argument, void_type_node if
7130 it's out of bounds, and the formal argument type otherwise. */
7131 if (!argtype)
7132 break;
7133
7134 if (i == argno || VOID_TYPE_P (argtype))
7135 return argtype;
7136
7137 ++i;
7138 }
7139
7140 return NULL_TREE;
7141 }
7142
7143 /* Nonzero if integer constants T1 and T2
7144 represent the same constant value. */
7145
7146 int
7147 tree_int_cst_equal (const_tree t1, const_tree t2)
7148 {
7149 if (t1 == t2)
7150 return 1;
7151
7152 if (t1 == 0 || t2 == 0)
7153 return 0;
7154
7155 STRIP_ANY_LOCATION_WRAPPER (t1);
7156 STRIP_ANY_LOCATION_WRAPPER (t2);
7157
7158 if (TREE_CODE (t1) == INTEGER_CST
7159 && TREE_CODE (t2) == INTEGER_CST
7160 && wi::to_widest (t1) == wi::to_widest (t2))
7161 return 1;
7162
7163 return 0;
7164 }
7165
7166 /* Return true if T is an INTEGER_CST whose numerical value (extended
7167 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7168
7169 bool
7170 tree_fits_shwi_p (const_tree t)
7171 {
7172 return (t != NULL_TREE
7173 && TREE_CODE (t) == INTEGER_CST
7174 && wi::fits_shwi_p (wi::to_widest (t)));
7175 }
7176
7177 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7178 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
7179
7180 bool
7181 tree_fits_poly_int64_p (const_tree t)
7182 {
7183 if (t == NULL_TREE)
7184 return false;
7185 if (POLY_INT_CST_P (t))
7186 {
7187 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7188 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
7189 return false;
7190 return true;
7191 }
7192 return (TREE_CODE (t) == INTEGER_CST
7193 && wi::fits_shwi_p (wi::to_widest (t)));
7194 }
7195
7196 /* Return true if T is an INTEGER_CST whose numerical value (extended
7197 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7198
7199 bool
7200 tree_fits_uhwi_p (const_tree t)
7201 {
7202 return (t != NULL_TREE
7203 && TREE_CODE (t) == INTEGER_CST
7204 && wi::fits_uhwi_p (wi::to_widest (t)));
7205 }
7206
7207 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7208 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
7209
7210 bool
7211 tree_fits_poly_uint64_p (const_tree t)
7212 {
7213 if (t == NULL_TREE)
7214 return false;
7215 if (POLY_INT_CST_P (t))
7216 {
7217 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7218 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
7219 return false;
7220 return true;
7221 }
7222 return (TREE_CODE (t) == INTEGER_CST
7223 && wi::fits_uhwi_p (wi::to_widest (t)));
7224 }
7225
7226 /* T is an INTEGER_CST whose numerical value (extended according to
7227 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7228 HOST_WIDE_INT. */
7229
7230 HOST_WIDE_INT
7231 tree_to_shwi (const_tree t)
7232 {
7233 gcc_assert (tree_fits_shwi_p (t));
7234 return TREE_INT_CST_LOW (t);
7235 }
7236
7237 /* T is an INTEGER_CST whose numerical value (extended according to
7238 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7239 HOST_WIDE_INT. */
7240
7241 unsigned HOST_WIDE_INT
7242 tree_to_uhwi (const_tree t)
7243 {
7244 gcc_assert (tree_fits_uhwi_p (t));
7245 return TREE_INT_CST_LOW (t);
7246 }
7247
7248 /* Return the most significant (sign) bit of T. */
7249
7250 int
7251 tree_int_cst_sign_bit (const_tree t)
7252 {
7253 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7254
7255 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
7256 }
7257
7258 /* Return an indication of the sign of the integer constant T.
7259 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7260 Note that -1 will never be returned if T's type is unsigned. */
7261
7262 int
7263 tree_int_cst_sgn (const_tree t)
7264 {
7265 if (wi::to_wide (t) == 0)
7266 return 0;
7267 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7268 return 1;
7269 else if (wi::neg_p (wi::to_wide (t)))
7270 return -1;
7271 else
7272 return 1;
7273 }
7274
7275 /* Return the minimum number of bits needed to represent VALUE in a
7276 signed or unsigned type, UNSIGNEDP says which. */
7277
7278 unsigned int
7279 tree_int_cst_min_precision (tree value, signop sgn)
7280 {
7281 /* If the value is negative, compute its negative minus 1. The latter
7282 adjustment is because the absolute value of the largest negative value
7283 is one larger than the largest positive value. This is equivalent to
7284 a bit-wise negation, so use that operation instead. */
7285
7286 if (tree_int_cst_sgn (value) < 0)
7287 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7288
7289 /* Return the number of bits needed, taking into account the fact
7290 that we need one more bit for a signed than unsigned type.
7291 If value is 0 or -1, the minimum precision is 1 no matter
7292 whether unsignedp is true or false. */
7293
7294 if (integer_zerop (value))
7295 return 1;
7296 else
7297 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7298 }
7299
7300 /* Return truthvalue of whether T1 is the same tree structure as T2.
7301 Return 1 if they are the same.
7302 Return 0 if they are understandably different.
7303 Return -1 if either contains tree structure not understood by
7304 this function. */
7305
7306 int
7307 simple_cst_equal (const_tree t1, const_tree t2)
7308 {
7309 enum tree_code code1, code2;
7310 int cmp;
7311 int i;
7312
7313 if (t1 == t2)
7314 return 1;
7315 if (t1 == 0 || t2 == 0)
7316 return 0;
7317
7318 /* For location wrappers to be the same, they must be at the same
7319 source location (and wrap the same thing). */
7320 if (location_wrapper_p (t1) && location_wrapper_p (t2))
7321 {
7322 if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
7323 return 0;
7324 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7325 }
7326
7327 code1 = TREE_CODE (t1);
7328 code2 = TREE_CODE (t2);
7329
7330 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7331 {
7332 if (CONVERT_EXPR_CODE_P (code2)
7333 || code2 == NON_LVALUE_EXPR)
7334 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7335 else
7336 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7337 }
7338
7339 else if (CONVERT_EXPR_CODE_P (code2)
7340 || code2 == NON_LVALUE_EXPR)
7341 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7342
7343 if (code1 != code2)
7344 return 0;
7345
7346 switch (code1)
7347 {
7348 case INTEGER_CST:
7349 return wi::to_widest (t1) == wi::to_widest (t2);
7350
7351 case REAL_CST:
7352 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7353
7354 case FIXED_CST:
7355 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7356
7357 case STRING_CST:
7358 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7359 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7360 TREE_STRING_LENGTH (t1)));
7361
7362 case CONSTRUCTOR:
7363 {
7364 unsigned HOST_WIDE_INT idx;
7365 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7366 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7367
7368 if (vec_safe_length (v1) != vec_safe_length (v2))
7369 return false;
7370
7371 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7372 /* ??? Should we handle also fields here? */
7373 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7374 return false;
7375 return true;
7376 }
7377
7378 case SAVE_EXPR:
7379 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7380
7381 case CALL_EXPR:
7382 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7383 if (cmp <= 0)
7384 return cmp;
7385 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7386 return 0;
7387 {
7388 const_tree arg1, arg2;
7389 const_call_expr_arg_iterator iter1, iter2;
7390 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7391 arg2 = first_const_call_expr_arg (t2, &iter2);
7392 arg1 && arg2;
7393 arg1 = next_const_call_expr_arg (&iter1),
7394 arg2 = next_const_call_expr_arg (&iter2))
7395 {
7396 cmp = simple_cst_equal (arg1, arg2);
7397 if (cmp <= 0)
7398 return cmp;
7399 }
7400 return arg1 == arg2;
7401 }
7402
7403 case TARGET_EXPR:
7404 /* Special case: if either target is an unallocated VAR_DECL,
7405 it means that it's going to be unified with whatever the
7406 TARGET_EXPR is really supposed to initialize, so treat it
7407 as being equivalent to anything. */
7408 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7409 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7410 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7411 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7412 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7413 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7414 cmp = 1;
7415 else
7416 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7417
7418 if (cmp <= 0)
7419 return cmp;
7420
7421 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7422
7423 case WITH_CLEANUP_EXPR:
7424 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7425 if (cmp <= 0)
7426 return cmp;
7427
7428 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7429
7430 case COMPONENT_REF:
7431 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7432 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7433
7434 return 0;
7435
7436 case VAR_DECL:
7437 case PARM_DECL:
7438 case CONST_DECL:
7439 case FUNCTION_DECL:
7440 return 0;
7441
7442 default:
7443 if (POLY_INT_CST_P (t1))
7444 /* A false return means maybe_ne rather than known_ne. */
7445 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7446 TYPE_SIGN (TREE_TYPE (t1))),
7447 poly_widest_int::from (poly_int_cst_value (t2),
7448 TYPE_SIGN (TREE_TYPE (t2))));
7449 break;
7450 }
7451
7452 /* This general rule works for most tree codes. All exceptions should be
7453 handled above. If this is a language-specific tree code, we can't
7454 trust what might be in the operand, so say we don't know
7455 the situation. */
7456 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7457 return -1;
7458
7459 switch (TREE_CODE_CLASS (code1))
7460 {
7461 case tcc_unary:
7462 case tcc_binary:
7463 case tcc_comparison:
7464 case tcc_expression:
7465 case tcc_reference:
7466 case tcc_statement:
7467 cmp = 1;
7468 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7469 {
7470 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7471 if (cmp <= 0)
7472 return cmp;
7473 }
7474
7475 return cmp;
7476
7477 default:
7478 return -1;
7479 }
7480 }
7481
7482 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7483 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7484 than U, respectively. */
7485
7486 int
7487 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7488 {
7489 if (tree_int_cst_sgn (t) < 0)
7490 return -1;
7491 else if (!tree_fits_uhwi_p (t))
7492 return 1;
7493 else if (TREE_INT_CST_LOW (t) == u)
7494 return 0;
7495 else if (TREE_INT_CST_LOW (t) < u)
7496 return -1;
7497 else
7498 return 1;
7499 }
7500
7501 /* Return true if SIZE represents a constant size that is in bounds of
7502 what the middle-end and the backend accepts (covering not more than
7503 half of the address-space).
7504 When PERR is non-null, set *PERR on failure to the description of
7505 why SIZE is not valid. */
7506
7507 bool
7508 valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */)
7509 {
7510 if (POLY_INT_CST_P (size))
7511 {
7512 if (TREE_OVERFLOW (size))
7513 return false;
7514 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7515 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7516 return false;
7517 return true;
7518 }
7519
7520 cst_size_error error;
7521 if (!perr)
7522 perr = &error;
7523
7524 if (TREE_CODE (size) != INTEGER_CST)
7525 {
7526 *perr = cst_size_not_constant;
7527 return false;
7528 }
7529
7530 if (TREE_OVERFLOW_P (size))
7531 {
7532 *perr = cst_size_overflow;
7533 return false;
7534 }
7535
7536 if (tree_int_cst_sgn (size) < 0)
7537 {
7538 *perr = cst_size_negative;
7539 return false;
7540 }
7541 if (!tree_fits_uhwi_p (size)
7542 || (wi::to_widest (TYPE_MAX_VALUE (sizetype))
7543 < wi::to_widest (size) * 2))
7544 {
7545 *perr = cst_size_too_big;
7546 return false;
7547 }
7548
7549 return true;
7550 }
7551
7552 /* Return the precision of the type, or for a complex or vector type the
7553 precision of the type of its elements. */
7554
7555 unsigned int
7556 element_precision (const_tree type)
7557 {
7558 if (!TYPE_P (type))
7559 type = TREE_TYPE (type);
7560 enum tree_code code = TREE_CODE (type);
7561 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7562 type = TREE_TYPE (type);
7563
7564 return TYPE_PRECISION (type);
7565 }
7566
7567 /* Return true if CODE represents an associative tree code. Otherwise
7568 return false. */
7569 bool
7570 associative_tree_code (enum tree_code code)
7571 {
7572 switch (code)
7573 {
7574 case BIT_IOR_EXPR:
7575 case BIT_AND_EXPR:
7576 case BIT_XOR_EXPR:
7577 case PLUS_EXPR:
7578 case MULT_EXPR:
7579 case MIN_EXPR:
7580 case MAX_EXPR:
7581 return true;
7582
7583 default:
7584 break;
7585 }
7586 return false;
7587 }
7588
7589 /* Return true if CODE represents a commutative tree code. Otherwise
7590 return false. */
7591 bool
7592 commutative_tree_code (enum tree_code code)
7593 {
7594 switch (code)
7595 {
7596 case PLUS_EXPR:
7597 case MULT_EXPR:
7598 case MULT_HIGHPART_EXPR:
7599 case MIN_EXPR:
7600 case MAX_EXPR:
7601 case BIT_IOR_EXPR:
7602 case BIT_XOR_EXPR:
7603 case BIT_AND_EXPR:
7604 case NE_EXPR:
7605 case EQ_EXPR:
7606 case UNORDERED_EXPR:
7607 case ORDERED_EXPR:
7608 case UNEQ_EXPR:
7609 case LTGT_EXPR:
7610 case TRUTH_AND_EXPR:
7611 case TRUTH_XOR_EXPR:
7612 case TRUTH_OR_EXPR:
7613 case WIDEN_MULT_EXPR:
7614 case VEC_WIDEN_MULT_HI_EXPR:
7615 case VEC_WIDEN_MULT_LO_EXPR:
7616 case VEC_WIDEN_MULT_EVEN_EXPR:
7617 case VEC_WIDEN_MULT_ODD_EXPR:
7618 return true;
7619
7620 default:
7621 break;
7622 }
7623 return false;
7624 }
7625
7626 /* Return true if CODE represents a ternary tree code for which the
7627 first two operands are commutative. Otherwise return false. */
7628 bool
7629 commutative_ternary_tree_code (enum tree_code code)
7630 {
7631 switch (code)
7632 {
7633 case WIDEN_MULT_PLUS_EXPR:
7634 case WIDEN_MULT_MINUS_EXPR:
7635 case DOT_PROD_EXPR:
7636 return true;
7637
7638 default:
7639 break;
7640 }
7641 return false;
7642 }
7643
7644 /* Returns true if CODE can overflow. */
7645
7646 bool
7647 operation_can_overflow (enum tree_code code)
7648 {
7649 switch (code)
7650 {
7651 case PLUS_EXPR:
7652 case MINUS_EXPR:
7653 case MULT_EXPR:
7654 case LSHIFT_EXPR:
7655 /* Can overflow in various ways. */
7656 return true;
7657 case TRUNC_DIV_EXPR:
7658 case EXACT_DIV_EXPR:
7659 case FLOOR_DIV_EXPR:
7660 case CEIL_DIV_EXPR:
7661 /* For INT_MIN / -1. */
7662 return true;
7663 case NEGATE_EXPR:
7664 case ABS_EXPR:
7665 /* For -INT_MIN. */
7666 return true;
7667 default:
7668 /* These operators cannot overflow. */
7669 return false;
7670 }
7671 }
7672
7673 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7674 ftrapv doesn't generate trapping insns for CODE. */
7675
7676 bool
7677 operation_no_trapping_overflow (tree type, enum tree_code code)
7678 {
7679 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7680
7681 /* We don't generate instructions that trap on overflow for complex or vector
7682 types. */
7683 if (!INTEGRAL_TYPE_P (type))
7684 return true;
7685
7686 if (!TYPE_OVERFLOW_TRAPS (type))
7687 return true;
7688
7689 switch (code)
7690 {
7691 case PLUS_EXPR:
7692 case MINUS_EXPR:
7693 case MULT_EXPR:
7694 case NEGATE_EXPR:
7695 case ABS_EXPR:
7696 /* These operators can overflow, and -ftrapv generates trapping code for
7697 these. */
7698 return false;
7699 case TRUNC_DIV_EXPR:
7700 case EXACT_DIV_EXPR:
7701 case FLOOR_DIV_EXPR:
7702 case CEIL_DIV_EXPR:
7703 case LSHIFT_EXPR:
7704 /* These operators can overflow, but -ftrapv does not generate trapping
7705 code for these. */
7706 return true;
7707 default:
7708 /* These operators cannot overflow. */
7709 return true;
7710 }
7711 }
7712
7713 namespace inchash
7714 {
7715
7716 /* Generate a hash value for an expression. This can be used iteratively
7717 by passing a previous result as the HSTATE argument.
7718
7719 This function is intended to produce the same hash for expressions which
7720 would compare equal using operand_equal_p. */
7721 void
7722 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7723 {
7724 int i;
7725 enum tree_code code;
7726 enum tree_code_class tclass;
7727
7728 if (t == NULL_TREE || t == error_mark_node)
7729 {
7730 hstate.merge_hash (0);
7731 return;
7732 }
7733
7734 if (!(flags & OEP_ADDRESS_OF))
7735 STRIP_NOPS (t);
7736
7737 code = TREE_CODE (t);
7738
7739 switch (code)
7740 {
7741 /* Alas, constants aren't shared, so we can't rely on pointer
7742 identity. */
7743 case VOID_CST:
7744 hstate.merge_hash (0);
7745 return;
7746 case INTEGER_CST:
7747 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7748 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7749 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7750 return;
7751 case REAL_CST:
7752 {
7753 unsigned int val2;
7754 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7755 val2 = rvc_zero;
7756 else
7757 val2 = real_hash (TREE_REAL_CST_PTR (t));
7758 hstate.merge_hash (val2);
7759 return;
7760 }
7761 case FIXED_CST:
7762 {
7763 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7764 hstate.merge_hash (val2);
7765 return;
7766 }
7767 case STRING_CST:
7768 hstate.add ((const void *) TREE_STRING_POINTER (t),
7769 TREE_STRING_LENGTH (t));
7770 return;
7771 case COMPLEX_CST:
7772 inchash::add_expr (TREE_REALPART (t), hstate, flags);
7773 inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7774 return;
7775 case VECTOR_CST:
7776 {
7777 hstate.add_int (VECTOR_CST_NPATTERNS (t));
7778 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7779 unsigned int count = vector_cst_encoded_nelts (t);
7780 for (unsigned int i = 0; i < count; ++i)
7781 inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7782 return;
7783 }
7784 case SSA_NAME:
7785 /* We can just compare by pointer. */
7786 hstate.add_hwi (SSA_NAME_VERSION (t));
7787 return;
7788 case PLACEHOLDER_EXPR:
7789 /* The node itself doesn't matter. */
7790 return;
7791 case BLOCK:
7792 case OMP_CLAUSE:
7793 /* Ignore. */
7794 return;
7795 case TREE_LIST:
7796 /* A list of expressions, for a CALL_EXPR or as the elements of a
7797 VECTOR_CST. */
7798 for (; t; t = TREE_CHAIN (t))
7799 inchash::add_expr (TREE_VALUE (t), hstate, flags);
7800 return;
7801 case CONSTRUCTOR:
7802 {
7803 unsigned HOST_WIDE_INT idx;
7804 tree field, value;
7805 flags &= ~OEP_ADDRESS_OF;
7806 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7807 {
7808 inchash::add_expr (field, hstate, flags);
7809 inchash::add_expr (value, hstate, flags);
7810 }
7811 return;
7812 }
7813 case STATEMENT_LIST:
7814 {
7815 tree_stmt_iterator i;
7816 for (i = tsi_start (CONST_CAST_TREE (t));
7817 !tsi_end_p (i); tsi_next (&i))
7818 inchash::add_expr (tsi_stmt (i), hstate, flags);
7819 return;
7820 }
7821 case TREE_VEC:
7822 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7823 inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7824 return;
7825 case IDENTIFIER_NODE:
7826 hstate.add_object (IDENTIFIER_HASH_VALUE (t));
7827 return;
7828 case FUNCTION_DECL:
7829 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7830 Otherwise nodes that compare equal according to operand_equal_p might
7831 get different hash codes. However, don't do this for machine specific
7832 or front end builtins, since the function code is overloaded in those
7833 cases. */
7834 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7835 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7836 {
7837 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7838 code = TREE_CODE (t);
7839 }
7840 /* FALL THROUGH */
7841 default:
7842 if (POLY_INT_CST_P (t))
7843 {
7844 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7845 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7846 return;
7847 }
7848 tclass = TREE_CODE_CLASS (code);
7849
7850 if (tclass == tcc_declaration)
7851 {
7852 /* DECL's have a unique ID */
7853 hstate.add_hwi (DECL_UID (t));
7854 }
7855 else if (tclass == tcc_comparison && !commutative_tree_code (code))
7856 {
7857 /* For comparisons that can be swapped, use the lower
7858 tree code. */
7859 enum tree_code ccode = swap_tree_comparison (code);
7860 if (code < ccode)
7861 ccode = code;
7862 hstate.add_object (ccode);
7863 inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7864 inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7865 }
7866 else if (CONVERT_EXPR_CODE_P (code))
7867 {
7868 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7869 operand_equal_p. */
7870 enum tree_code ccode = NOP_EXPR;
7871 hstate.add_object (ccode);
7872
7873 /* Don't hash the type, that can lead to having nodes which
7874 compare equal according to operand_equal_p, but which
7875 have different hash codes. Make sure to include signedness
7876 in the hash computation. */
7877 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7878 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7879 }
7880 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7881 else if (code == MEM_REF
7882 && (flags & OEP_ADDRESS_OF) != 0
7883 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7884 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7885 && integer_zerop (TREE_OPERAND (t, 1)))
7886 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7887 hstate, flags);
7888 /* Don't ICE on FE specific trees, or their arguments etc.
7889 during operand_equal_p hash verification. */
7890 else if (!IS_EXPR_CODE_CLASS (tclass))
7891 gcc_assert (flags & OEP_HASH_CHECK);
7892 else
7893 {
7894 unsigned int sflags = flags;
7895
7896 hstate.add_object (code);
7897
7898 switch (code)
7899 {
7900 case ADDR_EXPR:
7901 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7902 flags |= OEP_ADDRESS_OF;
7903 sflags = flags;
7904 break;
7905
7906 case INDIRECT_REF:
7907 case MEM_REF:
7908 case TARGET_MEM_REF:
7909 flags &= ~OEP_ADDRESS_OF;
7910 sflags = flags;
7911 break;
7912
7913 case ARRAY_REF:
7914 case ARRAY_RANGE_REF:
7915 case COMPONENT_REF:
7916 case BIT_FIELD_REF:
7917 sflags &= ~OEP_ADDRESS_OF;
7918 break;
7919
7920 case COND_EXPR:
7921 flags &= ~OEP_ADDRESS_OF;
7922 break;
7923
7924 case WIDEN_MULT_PLUS_EXPR:
7925 case WIDEN_MULT_MINUS_EXPR:
7926 {
7927 /* The multiplication operands are commutative. */
7928 inchash::hash one, two;
7929 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7930 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7931 hstate.add_commutative (one, two);
7932 inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7933 return;
7934 }
7935
7936 case CALL_EXPR:
7937 if (CALL_EXPR_FN (t) == NULL_TREE)
7938 hstate.add_int (CALL_EXPR_IFN (t));
7939 break;
7940
7941 case TARGET_EXPR:
7942 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7943 Usually different TARGET_EXPRs just should use
7944 different temporaries in their slots. */
7945 inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7946 return;
7947
7948 default:
7949 break;
7950 }
7951
7952 /* Don't hash the type, that can lead to having nodes which
7953 compare equal according to operand_equal_p, but which
7954 have different hash codes. */
7955 if (code == NON_LVALUE_EXPR)
7956 {
7957 /* Make sure to include signness in the hash computation. */
7958 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7959 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7960 }
7961
7962 else if (commutative_tree_code (code))
7963 {
7964 /* It's a commutative expression. We want to hash it the same
7965 however it appears. We do this by first hashing both operands
7966 and then rehashing based on the order of their independent
7967 hashes. */
7968 inchash::hash one, two;
7969 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7970 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7971 hstate.add_commutative (one, two);
7972 }
7973 else
7974 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7975 inchash::add_expr (TREE_OPERAND (t, i), hstate,
7976 i == 0 ? flags : sflags);
7977 }
7978 return;
7979 }
7980 }
7981
7982 }
7983
7984 /* Constructors for pointer, array and function types.
7985 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7986 constructed by language-dependent code, not here.) */
7987
7988 /* Construct, lay out and return the type of pointers to TO_TYPE with
7989 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7990 reference all of memory. If such a type has already been
7991 constructed, reuse it. */
7992
7993 tree
7994 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7995 bool can_alias_all)
7996 {
7997 tree t;
7998 bool could_alias = can_alias_all;
7999
8000 if (to_type == error_mark_node)
8001 return error_mark_node;
8002
8003 /* If the pointed-to type has the may_alias attribute set, force
8004 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
8005 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
8006 can_alias_all = true;
8007
8008 /* In some cases, languages will have things that aren't a POINTER_TYPE
8009 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
8010 In that case, return that type without regard to the rest of our
8011 operands.
8012
8013 ??? This is a kludge, but consistent with the way this function has
8014 always operated and there doesn't seem to be a good way to avoid this
8015 at the moment. */
8016 if (TYPE_POINTER_TO (to_type) != 0
8017 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
8018 return TYPE_POINTER_TO (to_type);
8019
8020 /* First, if we already have a type for pointers to TO_TYPE and it's
8021 the proper mode, use it. */
8022 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
8023 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
8024 return t;
8025
8026 t = make_node (POINTER_TYPE);
8027
8028 TREE_TYPE (t) = to_type;
8029 SET_TYPE_MODE (t, mode);
8030 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
8031 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
8032 TYPE_POINTER_TO (to_type) = t;
8033
8034 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
8035 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
8036 SET_TYPE_STRUCTURAL_EQUALITY (t);
8037 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
8038 TYPE_CANONICAL (t)
8039 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
8040 mode, false);
8041
8042 /* Lay out the type. This function has many callers that are concerned
8043 with expression-construction, and this simplifies them all. */
8044 layout_type (t);
8045
8046 return t;
8047 }
8048
8049 /* By default build pointers in ptr_mode. */
8050
8051 tree
8052 build_pointer_type (tree to_type)
8053 {
8054 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
8055 : TYPE_ADDR_SPACE (to_type);
8056 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
8057 return build_pointer_type_for_mode (to_type, pointer_mode, false);
8058 }
8059
8060 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
8061
8062 tree
8063 build_reference_type_for_mode (tree to_type, machine_mode mode,
8064 bool can_alias_all)
8065 {
8066 tree t;
8067 bool could_alias = can_alias_all;
8068
8069 if (to_type == error_mark_node)
8070 return error_mark_node;
8071
8072 /* If the pointed-to type has the may_alias attribute set, force
8073 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
8074 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
8075 can_alias_all = true;
8076
8077 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
8078 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
8079 In that case, return that type without regard to the rest of our
8080 operands.
8081
8082 ??? This is a kludge, but consistent with the way this function has
8083 always operated and there doesn't seem to be a good way to avoid this
8084 at the moment. */
8085 if (TYPE_REFERENCE_TO (to_type) != 0
8086 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
8087 return TYPE_REFERENCE_TO (to_type);
8088
8089 /* First, if we already have a type for pointers to TO_TYPE and it's
8090 the proper mode, use it. */
8091 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
8092 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
8093 return t;
8094
8095 t = make_node (REFERENCE_TYPE);
8096
8097 TREE_TYPE (t) = to_type;
8098 SET_TYPE_MODE (t, mode);
8099 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
8100 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
8101 TYPE_REFERENCE_TO (to_type) = t;
8102
8103 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
8104 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
8105 SET_TYPE_STRUCTURAL_EQUALITY (t);
8106 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
8107 TYPE_CANONICAL (t)
8108 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
8109 mode, false);
8110
8111 layout_type (t);
8112
8113 return t;
8114 }
8115
8116
8117 /* Build the node for the type of references-to-TO_TYPE by default
8118 in ptr_mode. */
8119
8120 tree
8121 build_reference_type (tree to_type)
8122 {
8123 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
8124 : TYPE_ADDR_SPACE (to_type);
8125 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
8126 return build_reference_type_for_mode (to_type, pointer_mode, false);
8127 }
8128
8129 #define MAX_INT_CACHED_PREC \
8130 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8131 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
8132
8133 /* Builds a signed or unsigned integer type of precision PRECISION.
8134 Used for C bitfields whose precision does not match that of
8135 built-in target types. */
8136 tree
8137 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
8138 int unsignedp)
8139 {
8140 tree itype, ret;
8141
8142 if (unsignedp)
8143 unsignedp = MAX_INT_CACHED_PREC + 1;
8144
8145 if (precision <= MAX_INT_CACHED_PREC)
8146 {
8147 itype = nonstandard_integer_type_cache[precision + unsignedp];
8148 if (itype)
8149 return itype;
8150 }
8151
8152 itype = make_node (INTEGER_TYPE);
8153 TYPE_PRECISION (itype) = precision;
8154
8155 if (unsignedp)
8156 fixup_unsigned_type (itype);
8157 else
8158 fixup_signed_type (itype);
8159
8160 ret = itype;
8161
8162 inchash::hash hstate;
8163 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
8164 ret = type_hash_canon (hstate.end (), itype);
8165 if (precision <= MAX_INT_CACHED_PREC)
8166 nonstandard_integer_type_cache[precision + unsignedp] = ret;
8167
8168 return ret;
8169 }
8170
8171 #define MAX_BOOL_CACHED_PREC \
8172 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8173 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
8174
8175 /* Builds a boolean type of precision PRECISION.
8176 Used for boolean vectors to choose proper vector element size. */
8177 tree
8178 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
8179 {
8180 tree type;
8181
8182 if (precision <= MAX_BOOL_CACHED_PREC)
8183 {
8184 type = nonstandard_boolean_type_cache[precision];
8185 if (type)
8186 return type;
8187 }
8188
8189 type = make_node (BOOLEAN_TYPE);
8190 TYPE_PRECISION (type) = precision;
8191 fixup_signed_type (type);
8192
8193 if (precision <= MAX_INT_CACHED_PREC)
8194 nonstandard_boolean_type_cache[precision] = type;
8195
8196 return type;
8197 }
8198
8199 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
8200 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
8201 is true, reuse such a type that has already been constructed. */
8202
8203 static tree
8204 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
8205 {
8206 tree itype = make_node (INTEGER_TYPE);
8207
8208 TREE_TYPE (itype) = type;
8209
8210 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
8211 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
8212
8213 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
8214 SET_TYPE_MODE (itype, TYPE_MODE (type));
8215 TYPE_SIZE (itype) = TYPE_SIZE (type);
8216 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
8217 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
8218 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
8219 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
8220
8221 if (!shared)
8222 return itype;
8223
8224 if ((TYPE_MIN_VALUE (itype)
8225 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
8226 || (TYPE_MAX_VALUE (itype)
8227 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
8228 {
8229 /* Since we cannot reliably merge this type, we need to compare it using
8230 structural equality checks. */
8231 SET_TYPE_STRUCTURAL_EQUALITY (itype);
8232 return itype;
8233 }
8234
8235 hashval_t hash = type_hash_canon_hash (itype);
8236 itype = type_hash_canon (hash, itype);
8237
8238 return itype;
8239 }
8240
8241 /* Wrapper around build_range_type_1 with SHARED set to true. */
8242
8243 tree
8244 build_range_type (tree type, tree lowval, tree highval)
8245 {
8246 return build_range_type_1 (type, lowval, highval, true);
8247 }
8248
8249 /* Wrapper around build_range_type_1 with SHARED set to false. */
8250
8251 tree
8252 build_nonshared_range_type (tree type, tree lowval, tree highval)
8253 {
8254 return build_range_type_1 (type, lowval, highval, false);
8255 }
8256
8257 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
8258 MAXVAL should be the maximum value in the domain
8259 (one less than the length of the array).
8260
8261 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
8262 We don't enforce this limit, that is up to caller (e.g. language front end).
8263 The limit exists because the result is a signed type and we don't handle
8264 sizes that use more than one HOST_WIDE_INT. */
8265
8266 tree
8267 build_index_type (tree maxval)
8268 {
8269 return build_range_type (sizetype, size_zero_node, maxval);
8270 }
8271
8272 /* Return true if the debug information for TYPE, a subtype, should be emitted
8273 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
8274 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
8275 debug info and doesn't reflect the source code. */
8276
8277 bool
8278 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
8279 {
8280 tree base_type = TREE_TYPE (type), low, high;
8281
8282 /* Subrange types have a base type which is an integral type. */
8283 if (!INTEGRAL_TYPE_P (base_type))
8284 return false;
8285
8286 /* Get the real bounds of the subtype. */
8287 if (lang_hooks.types.get_subrange_bounds)
8288 lang_hooks.types.get_subrange_bounds (type, &low, &high);
8289 else
8290 {
8291 low = TYPE_MIN_VALUE (type);
8292 high = TYPE_MAX_VALUE (type);
8293 }
8294
8295 /* If the type and its base type have the same representation and the same
8296 name, then the type is not a subrange but a copy of the base type. */
8297 if ((TREE_CODE (base_type) == INTEGER_TYPE
8298 || TREE_CODE (base_type) == BOOLEAN_TYPE)
8299 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
8300 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
8301 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
8302 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
8303 return false;
8304
8305 if (lowval)
8306 *lowval = low;
8307 if (highval)
8308 *highval = high;
8309 return true;
8310 }
8311
8312 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8313 and number of elements specified by the range of values of INDEX_TYPE.
8314 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
8315 If SHARED is true, reuse such a type that has already been constructed. */
8316
8317 static tree
8318 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
8319 bool shared)
8320 {
8321 tree t;
8322
8323 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8324 {
8325 error ("arrays of functions are not meaningful");
8326 elt_type = integer_type_node;
8327 }
8328
8329 t = make_node (ARRAY_TYPE);
8330 TREE_TYPE (t) = elt_type;
8331 TYPE_DOMAIN (t) = index_type;
8332 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8333 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
8334 layout_type (t);
8335
8336 /* If the element type is incomplete at this point we get marked for
8337 structural equality. Do not record these types in the canonical
8338 type hashtable. */
8339 if (TYPE_STRUCTURAL_EQUALITY_P (t))
8340 return t;
8341
8342 if (shared)
8343 {
8344 hashval_t hash = type_hash_canon_hash (t);
8345 t = type_hash_canon (hash, t);
8346 }
8347
8348 if (TYPE_CANONICAL (t) == t)
8349 {
8350 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8351 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8352 || in_lto_p)
8353 SET_TYPE_STRUCTURAL_EQUALITY (t);
8354 else if (TYPE_CANONICAL (elt_type) != elt_type
8355 || (index_type && TYPE_CANONICAL (index_type) != index_type))
8356 TYPE_CANONICAL (t)
8357 = build_array_type_1 (TYPE_CANONICAL (elt_type),
8358 index_type
8359 ? TYPE_CANONICAL (index_type) : NULL_TREE,
8360 typeless_storage, shared);
8361 }
8362
8363 return t;
8364 }
8365
8366 /* Wrapper around build_array_type_1 with SHARED set to true. */
8367
8368 tree
8369 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
8370 {
8371 return build_array_type_1 (elt_type, index_type, typeless_storage, true);
8372 }
8373
8374 /* Wrapper around build_array_type_1 with SHARED set to false. */
8375
8376 tree
8377 build_nonshared_array_type (tree elt_type, tree index_type)
8378 {
8379 return build_array_type_1 (elt_type, index_type, false, false);
8380 }
8381
8382 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8383 sizetype. */
8384
8385 tree
8386 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
8387 {
8388 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8389 }
8390
8391 /* Recursively examines the array elements of TYPE, until a non-array
8392 element type is found. */
8393
8394 tree
8395 strip_array_types (tree type)
8396 {
8397 while (TREE_CODE (type) == ARRAY_TYPE)
8398 type = TREE_TYPE (type);
8399
8400 return type;
8401 }
8402
8403 /* Computes the canonical argument types from the argument type list
8404 ARGTYPES.
8405
8406 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8407 on entry to this function, or if any of the ARGTYPES are
8408 structural.
8409
8410 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8411 true on entry to this function, or if any of the ARGTYPES are
8412 non-canonical.
8413
8414 Returns a canonical argument list, which may be ARGTYPES when the
8415 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8416 true) or would not differ from ARGTYPES. */
8417
8418 static tree
8419 maybe_canonicalize_argtypes (tree argtypes,
8420 bool *any_structural_p,
8421 bool *any_noncanonical_p)
8422 {
8423 tree arg;
8424 bool any_noncanonical_argtypes_p = false;
8425
8426 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8427 {
8428 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8429 /* Fail gracefully by stating that the type is structural. */
8430 *any_structural_p = true;
8431 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8432 *any_structural_p = true;
8433 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8434 || TREE_PURPOSE (arg))
8435 /* If the argument has a default argument, we consider it
8436 non-canonical even though the type itself is canonical.
8437 That way, different variants of function and method types
8438 with default arguments will all point to the variant with
8439 no defaults as their canonical type. */
8440 any_noncanonical_argtypes_p = true;
8441 }
8442
8443 if (*any_structural_p)
8444 return argtypes;
8445
8446 if (any_noncanonical_argtypes_p)
8447 {
8448 /* Build the canonical list of argument types. */
8449 tree canon_argtypes = NULL_TREE;
8450 bool is_void = false;
8451
8452 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8453 {
8454 if (arg == void_list_node)
8455 is_void = true;
8456 else
8457 canon_argtypes = tree_cons (NULL_TREE,
8458 TYPE_CANONICAL (TREE_VALUE (arg)),
8459 canon_argtypes);
8460 }
8461
8462 canon_argtypes = nreverse (canon_argtypes);
8463 if (is_void)
8464 canon_argtypes = chainon (canon_argtypes, void_list_node);
8465
8466 /* There is a non-canonical type. */
8467 *any_noncanonical_p = true;
8468 return canon_argtypes;
8469 }
8470
8471 /* The canonical argument types are the same as ARGTYPES. */
8472 return argtypes;
8473 }
8474
8475 /* Construct, lay out and return
8476 the type of functions returning type VALUE_TYPE
8477 given arguments of types ARG_TYPES.
8478 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8479 are data type nodes for the arguments of the function.
8480 If such a type has already been constructed, reuse it. */
8481
8482 tree
8483 build_function_type (tree value_type, tree arg_types)
8484 {
8485 tree t;
8486 inchash::hash hstate;
8487 bool any_structural_p, any_noncanonical_p;
8488 tree canon_argtypes;
8489
8490 gcc_assert (arg_types != error_mark_node);
8491
8492 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8493 {
8494 error ("function return type cannot be function");
8495 value_type = integer_type_node;
8496 }
8497
8498 /* Make a node of the sort we want. */
8499 t = make_node (FUNCTION_TYPE);
8500 TREE_TYPE (t) = value_type;
8501 TYPE_ARG_TYPES (t) = arg_types;
8502
8503 /* If we already have such a type, use the old one. */
8504 hashval_t hash = type_hash_canon_hash (t);
8505 t = type_hash_canon (hash, t);
8506
8507 /* Set up the canonical type. */
8508 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8509 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8510 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8511 &any_structural_p,
8512 &any_noncanonical_p);
8513 if (any_structural_p)
8514 SET_TYPE_STRUCTURAL_EQUALITY (t);
8515 else if (any_noncanonical_p)
8516 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8517 canon_argtypes);
8518
8519 if (!COMPLETE_TYPE_P (t))
8520 layout_type (t);
8521 return t;
8522 }
8523
8524 /* Build a function type. The RETURN_TYPE is the type returned by the
8525 function. If VAARGS is set, no void_type_node is appended to the
8526 list. ARGP must be always be terminated be a NULL_TREE. */
8527
8528 static tree
8529 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8530 {
8531 tree t, args, last;
8532
8533 t = va_arg (argp, tree);
8534 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8535 args = tree_cons (NULL_TREE, t, args);
8536
8537 if (vaargs)
8538 {
8539 last = args;
8540 if (args != NULL_TREE)
8541 args = nreverse (args);
8542 gcc_assert (last != void_list_node);
8543 }
8544 else if (args == NULL_TREE)
8545 args = void_list_node;
8546 else
8547 {
8548 last = args;
8549 args = nreverse (args);
8550 TREE_CHAIN (last) = void_list_node;
8551 }
8552 args = build_function_type (return_type, args);
8553
8554 return args;
8555 }
8556
8557 /* Build a function type. The RETURN_TYPE is the type returned by the
8558 function. If additional arguments are provided, they are
8559 additional argument types. The list of argument types must always
8560 be terminated by NULL_TREE. */
8561
8562 tree
8563 build_function_type_list (tree return_type, ...)
8564 {
8565 tree args;
8566 va_list p;
8567
8568 va_start (p, return_type);
8569 args = build_function_type_list_1 (false, return_type, p);
8570 va_end (p);
8571 return args;
8572 }
8573
8574 /* Build a variable argument function type. The RETURN_TYPE is the
8575 type returned by the function. If additional arguments are provided,
8576 they are additional argument types. The list of argument types must
8577 always be terminated by NULL_TREE. */
8578
8579 tree
8580 build_varargs_function_type_list (tree return_type, ...)
8581 {
8582 tree args;
8583 va_list p;
8584
8585 va_start (p, return_type);
8586 args = build_function_type_list_1 (true, return_type, p);
8587 va_end (p);
8588
8589 return args;
8590 }
8591
8592 /* Build a function type. RETURN_TYPE is the type returned by the
8593 function; VAARGS indicates whether the function takes varargs. The
8594 function takes N named arguments, the types of which are provided in
8595 ARG_TYPES. */
8596
8597 static tree
8598 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8599 tree *arg_types)
8600 {
8601 int i;
8602 tree t = vaargs ? NULL_TREE : void_list_node;
8603
8604 for (i = n - 1; i >= 0; i--)
8605 t = tree_cons (NULL_TREE, arg_types[i], t);
8606
8607 return build_function_type (return_type, t);
8608 }
8609
8610 /* Build a function type. RETURN_TYPE is the type returned by the
8611 function. The function takes N named arguments, the types of which
8612 are provided in ARG_TYPES. */
8613
8614 tree
8615 build_function_type_array (tree return_type, int n, tree *arg_types)
8616 {
8617 return build_function_type_array_1 (false, return_type, n, arg_types);
8618 }
8619
8620 /* Build a variable argument function type. RETURN_TYPE is the type
8621 returned by the function. The function takes N named arguments, the
8622 types of which are provided in ARG_TYPES. */
8623
8624 tree
8625 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8626 {
8627 return build_function_type_array_1 (true, return_type, n, arg_types);
8628 }
8629
8630 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8631 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8632 for the method. An implicit additional parameter (of type
8633 pointer-to-BASETYPE) is added to the ARGTYPES. */
8634
8635 tree
8636 build_method_type_directly (tree basetype,
8637 tree rettype,
8638 tree argtypes)
8639 {
8640 tree t;
8641 tree ptype;
8642 bool any_structural_p, any_noncanonical_p;
8643 tree canon_argtypes;
8644
8645 /* Make a node of the sort we want. */
8646 t = make_node (METHOD_TYPE);
8647
8648 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8649 TREE_TYPE (t) = rettype;
8650 ptype = build_pointer_type (basetype);
8651
8652 /* The actual arglist for this function includes a "hidden" argument
8653 which is "this". Put it into the list of argument types. */
8654 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8655 TYPE_ARG_TYPES (t) = argtypes;
8656
8657 /* If we already have such a type, use the old one. */
8658 hashval_t hash = type_hash_canon_hash (t);
8659 t = type_hash_canon (hash, t);
8660
8661 /* Set up the canonical type. */
8662 any_structural_p
8663 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8664 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8665 any_noncanonical_p
8666 = (TYPE_CANONICAL (basetype) != basetype
8667 || TYPE_CANONICAL (rettype) != rettype);
8668 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8669 &any_structural_p,
8670 &any_noncanonical_p);
8671 if (any_structural_p)
8672 SET_TYPE_STRUCTURAL_EQUALITY (t);
8673 else if (any_noncanonical_p)
8674 TYPE_CANONICAL (t)
8675 = build_method_type_directly (TYPE_CANONICAL (basetype),
8676 TYPE_CANONICAL (rettype),
8677 canon_argtypes);
8678 if (!COMPLETE_TYPE_P (t))
8679 layout_type (t);
8680
8681 return t;
8682 }
8683
8684 /* Construct, lay out and return the type of methods belonging to class
8685 BASETYPE and whose arguments and values are described by TYPE.
8686 If that type exists already, reuse it.
8687 TYPE must be a FUNCTION_TYPE node. */
8688
8689 tree
8690 build_method_type (tree basetype, tree type)
8691 {
8692 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8693
8694 return build_method_type_directly (basetype,
8695 TREE_TYPE (type),
8696 TYPE_ARG_TYPES (type));
8697 }
8698
8699 /* Construct, lay out and return the type of offsets to a value
8700 of type TYPE, within an object of type BASETYPE.
8701 If a suitable offset type exists already, reuse it. */
8702
8703 tree
8704 build_offset_type (tree basetype, tree type)
8705 {
8706 tree t;
8707
8708 /* Make a node of the sort we want. */
8709 t = make_node (OFFSET_TYPE);
8710
8711 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8712 TREE_TYPE (t) = type;
8713
8714 /* If we already have such a type, use the old one. */
8715 hashval_t hash = type_hash_canon_hash (t);
8716 t = type_hash_canon (hash, t);
8717
8718 if (!COMPLETE_TYPE_P (t))
8719 layout_type (t);
8720
8721 if (TYPE_CANONICAL (t) == t)
8722 {
8723 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8724 || TYPE_STRUCTURAL_EQUALITY_P (type))
8725 SET_TYPE_STRUCTURAL_EQUALITY (t);
8726 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8727 || TYPE_CANONICAL (type) != type)
8728 TYPE_CANONICAL (t)
8729 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8730 TYPE_CANONICAL (type));
8731 }
8732
8733 return t;
8734 }
8735
8736 /* Create a complex type whose components are COMPONENT_TYPE.
8737
8738 If NAMED is true, the type is given a TYPE_NAME. We do not always
8739 do so because this creates a DECL node and thus make the DECL_UIDs
8740 dependent on the type canonicalization hashtable, which is GC-ed,
8741 so the DECL_UIDs would not be stable wrt garbage collection. */
8742
8743 tree
8744 build_complex_type (tree component_type, bool named)
8745 {
8746 gcc_assert (INTEGRAL_TYPE_P (component_type)
8747 || SCALAR_FLOAT_TYPE_P (component_type)
8748 || FIXED_POINT_TYPE_P (component_type));
8749
8750 /* Make a node of the sort we want. */
8751 tree probe = make_node (COMPLEX_TYPE);
8752
8753 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8754
8755 /* If we already have such a type, use the old one. */
8756 hashval_t hash = type_hash_canon_hash (probe);
8757 tree t = type_hash_canon (hash, probe);
8758
8759 if (t == probe)
8760 {
8761 /* We created a new type. The hash insertion will have laid
8762 out the type. We need to check the canonicalization and
8763 maybe set the name. */
8764 gcc_checking_assert (COMPLETE_TYPE_P (t)
8765 && !TYPE_NAME (t)
8766 && TYPE_CANONICAL (t) == t);
8767
8768 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8769 SET_TYPE_STRUCTURAL_EQUALITY (t);
8770 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8771 TYPE_CANONICAL (t)
8772 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8773
8774 /* We need to create a name, since complex is a fundamental type. */
8775 if (named)
8776 {
8777 const char *name = NULL;
8778
8779 if (TREE_TYPE (t) == char_type_node)
8780 name = "complex char";
8781 else if (TREE_TYPE (t) == signed_char_type_node)
8782 name = "complex signed char";
8783 else if (TREE_TYPE (t) == unsigned_char_type_node)
8784 name = "complex unsigned char";
8785 else if (TREE_TYPE (t) == short_integer_type_node)
8786 name = "complex short int";
8787 else if (TREE_TYPE (t) == short_unsigned_type_node)
8788 name = "complex short unsigned int";
8789 else if (TREE_TYPE (t) == integer_type_node)
8790 name = "complex int";
8791 else if (TREE_TYPE (t) == unsigned_type_node)
8792 name = "complex unsigned int";
8793 else if (TREE_TYPE (t) == long_integer_type_node)
8794 name = "complex long int";
8795 else if (TREE_TYPE (t) == long_unsigned_type_node)
8796 name = "complex long unsigned int";
8797 else if (TREE_TYPE (t) == long_long_integer_type_node)
8798 name = "complex long long int";
8799 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8800 name = "complex long long unsigned int";
8801
8802 if (name != NULL)
8803 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8804 get_identifier (name), t);
8805 }
8806 }
8807
8808 return build_qualified_type (t, TYPE_QUALS (component_type));
8809 }
8810
8811 /* If TYPE is a real or complex floating-point type and the target
8812 does not directly support arithmetic on TYPE then return the wider
8813 type to be used for arithmetic on TYPE. Otherwise, return
8814 NULL_TREE. */
8815
8816 tree
8817 excess_precision_type (tree type)
8818 {
8819 /* The target can give two different responses to the question of
8820 which excess precision mode it would like depending on whether we
8821 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8822
8823 enum excess_precision_type requested_type
8824 = (flag_excess_precision == EXCESS_PRECISION_FAST
8825 ? EXCESS_PRECISION_TYPE_FAST
8826 : EXCESS_PRECISION_TYPE_STANDARD);
8827
8828 enum flt_eval_method target_flt_eval_method
8829 = targetm.c.excess_precision (requested_type);
8830
8831 /* The target should not ask for unpredictable float evaluation (though
8832 it might advertise that implicitly the evaluation is unpredictable,
8833 but we don't care about that here, it will have been reported
8834 elsewhere). If it does ask for unpredictable evaluation, we have
8835 nothing to do here. */
8836 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8837
8838 /* Nothing to do. The target has asked for all types we know about
8839 to be computed with their native precision and range. */
8840 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8841 return NULL_TREE;
8842
8843 /* The target will promote this type in a target-dependent way, so excess
8844 precision ought to leave it alone. */
8845 if (targetm.promoted_type (type) != NULL_TREE)
8846 return NULL_TREE;
8847
8848 machine_mode float16_type_mode = (float16_type_node
8849 ? TYPE_MODE (float16_type_node)
8850 : VOIDmode);
8851 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8852 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8853
8854 switch (TREE_CODE (type))
8855 {
8856 case REAL_TYPE:
8857 {
8858 machine_mode type_mode = TYPE_MODE (type);
8859 switch (target_flt_eval_method)
8860 {
8861 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8862 if (type_mode == float16_type_mode)
8863 return float_type_node;
8864 break;
8865 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8866 if (type_mode == float16_type_mode
8867 || type_mode == float_type_mode)
8868 return double_type_node;
8869 break;
8870 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8871 if (type_mode == float16_type_mode
8872 || type_mode == float_type_mode
8873 || type_mode == double_type_mode)
8874 return long_double_type_node;
8875 break;
8876 default:
8877 gcc_unreachable ();
8878 }
8879 break;
8880 }
8881 case COMPLEX_TYPE:
8882 {
8883 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8884 return NULL_TREE;
8885 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8886 switch (target_flt_eval_method)
8887 {
8888 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8889 if (type_mode == float16_type_mode)
8890 return complex_float_type_node;
8891 break;
8892 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8893 if (type_mode == float16_type_mode
8894 || type_mode == float_type_mode)
8895 return complex_double_type_node;
8896 break;
8897 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8898 if (type_mode == float16_type_mode
8899 || type_mode == float_type_mode
8900 || type_mode == double_type_mode)
8901 return complex_long_double_type_node;
8902 break;
8903 default:
8904 gcc_unreachable ();
8905 }
8906 break;
8907 }
8908 default:
8909 break;
8910 }
8911
8912 return NULL_TREE;
8913 }
8914 \f
8915 /* Return OP, stripped of any conversions to wider types as much as is safe.
8916 Converting the value back to OP's type makes a value equivalent to OP.
8917
8918 If FOR_TYPE is nonzero, we return a value which, if converted to
8919 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8920
8921 OP must have integer, real or enumeral type. Pointers are not allowed!
8922
8923 There are some cases where the obvious value we could return
8924 would regenerate to OP if converted to OP's type,
8925 but would not extend like OP to wider types.
8926 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8927 For example, if OP is (unsigned short)(signed char)-1,
8928 we avoid returning (signed char)-1 if FOR_TYPE is int,
8929 even though extending that to an unsigned short would regenerate OP,
8930 since the result of extending (signed char)-1 to (int)
8931 is different from (int) OP. */
8932
8933 tree
8934 get_unwidened (tree op, tree for_type)
8935 {
8936 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8937 tree type = TREE_TYPE (op);
8938 unsigned final_prec
8939 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8940 int uns
8941 = (for_type != 0 && for_type != type
8942 && final_prec > TYPE_PRECISION (type)
8943 && TYPE_UNSIGNED (type));
8944 tree win = op;
8945
8946 while (CONVERT_EXPR_P (op))
8947 {
8948 int bitschange;
8949
8950 /* TYPE_PRECISION on vector types has different meaning
8951 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8952 so avoid them here. */
8953 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8954 break;
8955
8956 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8957 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8958
8959 /* Truncations are many-one so cannot be removed.
8960 Unless we are later going to truncate down even farther. */
8961 if (bitschange < 0
8962 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8963 break;
8964
8965 /* See what's inside this conversion. If we decide to strip it,
8966 we will set WIN. */
8967 op = TREE_OPERAND (op, 0);
8968
8969 /* If we have not stripped any zero-extensions (uns is 0),
8970 we can strip any kind of extension.
8971 If we have previously stripped a zero-extension,
8972 only zero-extensions can safely be stripped.
8973 Any extension can be stripped if the bits it would produce
8974 are all going to be discarded later by truncating to FOR_TYPE. */
8975
8976 if (bitschange > 0)
8977 {
8978 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8979 win = op;
8980 /* TYPE_UNSIGNED says whether this is a zero-extension.
8981 Let's avoid computing it if it does not affect WIN
8982 and if UNS will not be needed again. */
8983 if ((uns
8984 || CONVERT_EXPR_P (op))
8985 && TYPE_UNSIGNED (TREE_TYPE (op)))
8986 {
8987 uns = 1;
8988 win = op;
8989 }
8990 }
8991 }
8992
8993 /* If we finally reach a constant see if it fits in sth smaller and
8994 in that case convert it. */
8995 if (TREE_CODE (win) == INTEGER_CST)
8996 {
8997 tree wtype = TREE_TYPE (win);
8998 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8999 if (for_type)
9000 prec = MAX (prec, final_prec);
9001 if (prec < TYPE_PRECISION (wtype))
9002 {
9003 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
9004 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
9005 win = fold_convert (t, win);
9006 }
9007 }
9008
9009 return win;
9010 }
9011 \f
9012 /* Return OP or a simpler expression for a narrower value
9013 which can be sign-extended or zero-extended to give back OP.
9014 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
9015 or 0 if the value should be sign-extended. */
9016
9017 tree
9018 get_narrower (tree op, int *unsignedp_ptr)
9019 {
9020 int uns = 0;
9021 int first = 1;
9022 tree win = op;
9023 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
9024
9025 while (TREE_CODE (op) == NOP_EXPR)
9026 {
9027 int bitschange
9028 = (TYPE_PRECISION (TREE_TYPE (op))
9029 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
9030
9031 /* Truncations are many-one so cannot be removed. */
9032 if (bitschange < 0)
9033 break;
9034
9035 /* See what's inside this conversion. If we decide to strip it,
9036 we will set WIN. */
9037
9038 if (bitschange > 0)
9039 {
9040 op = TREE_OPERAND (op, 0);
9041 /* An extension: the outermost one can be stripped,
9042 but remember whether it is zero or sign extension. */
9043 if (first)
9044 uns = TYPE_UNSIGNED (TREE_TYPE (op));
9045 /* Otherwise, if a sign extension has been stripped,
9046 only sign extensions can now be stripped;
9047 if a zero extension has been stripped, only zero-extensions. */
9048 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
9049 break;
9050 first = 0;
9051 }
9052 else /* bitschange == 0 */
9053 {
9054 /* A change in nominal type can always be stripped, but we must
9055 preserve the unsignedness. */
9056 if (first)
9057 uns = TYPE_UNSIGNED (TREE_TYPE (op));
9058 first = 0;
9059 op = TREE_OPERAND (op, 0);
9060 /* Keep trying to narrow, but don't assign op to win if it
9061 would turn an integral type into something else. */
9062 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
9063 continue;
9064 }
9065
9066 win = op;
9067 }
9068
9069 if (TREE_CODE (op) == COMPONENT_REF
9070 /* Since type_for_size always gives an integer type. */
9071 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
9072 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
9073 /* Ensure field is laid out already. */
9074 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
9075 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
9076 {
9077 unsigned HOST_WIDE_INT innerprec
9078 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
9079 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
9080 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
9081 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
9082
9083 /* We can get this structure field in a narrower type that fits it,
9084 but the resulting extension to its nominal type (a fullword type)
9085 must satisfy the same conditions as for other extensions.
9086
9087 Do this only for fields that are aligned (not bit-fields),
9088 because when bit-field insns will be used there is no
9089 advantage in doing this. */
9090
9091 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
9092 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
9093 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
9094 && type != 0)
9095 {
9096 if (first)
9097 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
9098 win = fold_convert (type, op);
9099 }
9100 }
9101
9102 *unsignedp_ptr = uns;
9103 return win;
9104 }
9105 \f
9106 /* Return true if integer constant C has a value that is permissible
9107 for TYPE, an integral type. */
9108
9109 bool
9110 int_fits_type_p (const_tree c, const_tree type)
9111 {
9112 tree type_low_bound, type_high_bound;
9113 bool ok_for_low_bound, ok_for_high_bound;
9114 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
9115
9116 /* Non-standard boolean types can have arbitrary precision but various
9117 transformations assume that they can only take values 0 and +/-1. */
9118 if (TREE_CODE (type) == BOOLEAN_TYPE)
9119 return wi::fits_to_boolean_p (wi::to_wide (c), type);
9120
9121 retry:
9122 type_low_bound = TYPE_MIN_VALUE (type);
9123 type_high_bound = TYPE_MAX_VALUE (type);
9124
9125 /* If at least one bound of the type is a constant integer, we can check
9126 ourselves and maybe make a decision. If no such decision is possible, but
9127 this type is a subtype, try checking against that. Otherwise, use
9128 fits_to_tree_p, which checks against the precision.
9129
9130 Compute the status for each possibly constant bound, and return if we see
9131 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
9132 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
9133 for "constant known to fit". */
9134
9135 /* Check if c >= type_low_bound. */
9136 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
9137 {
9138 if (tree_int_cst_lt (c, type_low_bound))
9139 return false;
9140 ok_for_low_bound = true;
9141 }
9142 else
9143 ok_for_low_bound = false;
9144
9145 /* Check if c <= type_high_bound. */
9146 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
9147 {
9148 if (tree_int_cst_lt (type_high_bound, c))
9149 return false;
9150 ok_for_high_bound = true;
9151 }
9152 else
9153 ok_for_high_bound = false;
9154
9155 /* If the constant fits both bounds, the result is known. */
9156 if (ok_for_low_bound && ok_for_high_bound)
9157 return true;
9158
9159 /* Perform some generic filtering which may allow making a decision
9160 even if the bounds are not constant. First, negative integers
9161 never fit in unsigned types, */
9162 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
9163 return false;
9164
9165 /* Second, narrower types always fit in wider ones. */
9166 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
9167 return true;
9168
9169 /* Third, unsigned integers with top bit set never fit signed types. */
9170 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
9171 {
9172 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
9173 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
9174 {
9175 /* When a tree_cst is converted to a wide-int, the precision
9176 is taken from the type. However, if the precision of the
9177 mode underneath the type is smaller than that, it is
9178 possible that the value will not fit. The test below
9179 fails if any bit is set between the sign bit of the
9180 underlying mode and the top bit of the type. */
9181 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
9182 return false;
9183 }
9184 else if (wi::neg_p (wi::to_wide (c)))
9185 return false;
9186 }
9187
9188 /* If we haven't been able to decide at this point, there nothing more we
9189 can check ourselves here. Look at the base type if we have one and it
9190 has the same precision. */
9191 if (TREE_CODE (type) == INTEGER_TYPE
9192 && TREE_TYPE (type) != 0
9193 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
9194 {
9195 type = TREE_TYPE (type);
9196 goto retry;
9197 }
9198
9199 /* Or to fits_to_tree_p, if nothing else. */
9200 return wi::fits_to_tree_p (wi::to_wide (c), type);
9201 }
9202
9203 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
9204 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
9205 represented (assuming two's-complement arithmetic) within the bit
9206 precision of the type are returned instead. */
9207
9208 void
9209 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
9210 {
9211 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
9212 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
9213 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
9214 else
9215 {
9216 if (TYPE_UNSIGNED (type))
9217 mpz_set_ui (min, 0);
9218 else
9219 {
9220 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
9221 wi::to_mpz (mn, min, SIGNED);
9222 }
9223 }
9224
9225 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
9226 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
9227 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
9228 else
9229 {
9230 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
9231 wi::to_mpz (mn, max, TYPE_SIGN (type));
9232 }
9233 }
9234
9235 /* Return true if VAR is an automatic variable defined in function FN. */
9236
9237 bool
9238 auto_var_in_fn_p (const_tree var, const_tree fn)
9239 {
9240 return (DECL_P (var) && DECL_CONTEXT (var) == fn
9241 && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
9242 || TREE_CODE (var) == PARM_DECL)
9243 && ! TREE_STATIC (var))
9244 || TREE_CODE (var) == LABEL_DECL
9245 || TREE_CODE (var) == RESULT_DECL));
9246 }
9247
9248 /* Subprogram of following function. Called by walk_tree.
9249
9250 Return *TP if it is an automatic variable or parameter of the
9251 function passed in as DATA. */
9252
9253 static tree
9254 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
9255 {
9256 tree fn = (tree) data;
9257
9258 if (TYPE_P (*tp))
9259 *walk_subtrees = 0;
9260
9261 else if (DECL_P (*tp)
9262 && auto_var_in_fn_p (*tp, fn))
9263 return *tp;
9264
9265 return NULL_TREE;
9266 }
9267
9268 /* Returns true if T is, contains, or refers to a type with variable
9269 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
9270 arguments, but not the return type. If FN is nonzero, only return
9271 true if a modifier of the type or position of FN is a variable or
9272 parameter inside FN.
9273
9274 This concept is more general than that of C99 'variably modified types':
9275 in C99, a struct type is never variably modified because a VLA may not
9276 appear as a structure member. However, in GNU C code like:
9277
9278 struct S { int i[f()]; };
9279
9280 is valid, and other languages may define similar constructs. */
9281
9282 bool
9283 variably_modified_type_p (tree type, tree fn)
9284 {
9285 tree t;
9286
9287 /* Test if T is either variable (if FN is zero) or an expression containing
9288 a variable in FN. If TYPE isn't gimplified, return true also if
9289 gimplify_one_sizepos would gimplify the expression into a local
9290 variable. */
9291 #define RETURN_TRUE_IF_VAR(T) \
9292 do { tree _t = (T); \
9293 if (_t != NULL_TREE \
9294 && _t != error_mark_node \
9295 && !CONSTANT_CLASS_P (_t) \
9296 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
9297 && (!fn \
9298 || (!TYPE_SIZES_GIMPLIFIED (type) \
9299 && (TREE_CODE (_t) != VAR_DECL \
9300 && !CONTAINS_PLACEHOLDER_P (_t))) \
9301 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
9302 return true; } while (0)
9303
9304 if (type == error_mark_node)
9305 return false;
9306
9307 /* If TYPE itself has variable size, it is variably modified. */
9308 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9309 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9310
9311 switch (TREE_CODE (type))
9312 {
9313 case POINTER_TYPE:
9314 case REFERENCE_TYPE:
9315 case VECTOR_TYPE:
9316 /* Ada can have pointer types refering to themselves indirectly. */
9317 if (TREE_VISITED (type))
9318 return false;
9319 TREE_VISITED (type) = true;
9320 if (variably_modified_type_p (TREE_TYPE (type), fn))
9321 {
9322 TREE_VISITED (type) = false;
9323 return true;
9324 }
9325 TREE_VISITED (type) = false;
9326 break;
9327
9328 case FUNCTION_TYPE:
9329 case METHOD_TYPE:
9330 /* If TYPE is a function type, it is variably modified if the
9331 return type is variably modified. */
9332 if (variably_modified_type_p (TREE_TYPE (type), fn))
9333 return true;
9334 break;
9335
9336 case INTEGER_TYPE:
9337 case REAL_TYPE:
9338 case FIXED_POINT_TYPE:
9339 case ENUMERAL_TYPE:
9340 case BOOLEAN_TYPE:
9341 /* Scalar types are variably modified if their end points
9342 aren't constant. */
9343 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9344 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9345 break;
9346
9347 case RECORD_TYPE:
9348 case UNION_TYPE:
9349 case QUAL_UNION_TYPE:
9350 /* We can't see if any of the fields are variably-modified by the
9351 definition we normally use, since that would produce infinite
9352 recursion via pointers. */
9353 /* This is variably modified if some field's type is. */
9354 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9355 if (TREE_CODE (t) == FIELD_DECL)
9356 {
9357 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9358 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9359 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9360
9361 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9362 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9363 }
9364 break;
9365
9366 case ARRAY_TYPE:
9367 /* Do not call ourselves to avoid infinite recursion. This is
9368 variably modified if the element type is. */
9369 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9370 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9371 break;
9372
9373 default:
9374 break;
9375 }
9376
9377 /* The current language may have other cases to check, but in general,
9378 all other types are not variably modified. */
9379 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9380
9381 #undef RETURN_TRUE_IF_VAR
9382 }
9383
9384 /* Given a DECL or TYPE, return the scope in which it was declared, or
9385 NULL_TREE if there is no containing scope. */
9386
9387 tree
9388 get_containing_scope (const_tree t)
9389 {
9390 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9391 }
9392
9393 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
9394
9395 const_tree
9396 get_ultimate_context (const_tree decl)
9397 {
9398 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
9399 {
9400 if (TREE_CODE (decl) == BLOCK)
9401 decl = BLOCK_SUPERCONTEXT (decl);
9402 else
9403 decl = get_containing_scope (decl);
9404 }
9405 return decl;
9406 }
9407
9408 /* Return the innermost context enclosing DECL that is
9409 a FUNCTION_DECL, or zero if none. */
9410
9411 tree
9412 decl_function_context (const_tree decl)
9413 {
9414 tree context;
9415
9416 if (TREE_CODE (decl) == ERROR_MARK)
9417 return 0;
9418
9419 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9420 where we look up the function at runtime. Such functions always take
9421 a first argument of type 'pointer to real context'.
9422
9423 C++ should really be fixed to use DECL_CONTEXT for the real context,
9424 and use something else for the "virtual context". */
9425 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
9426 context
9427 = TYPE_MAIN_VARIANT
9428 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9429 else
9430 context = DECL_CONTEXT (decl);
9431
9432 while (context && TREE_CODE (context) != FUNCTION_DECL)
9433 {
9434 if (TREE_CODE (context) == BLOCK)
9435 context = BLOCK_SUPERCONTEXT (context);
9436 else
9437 context = get_containing_scope (context);
9438 }
9439
9440 return context;
9441 }
9442
9443 /* Return the innermost context enclosing DECL that is
9444 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9445 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9446
9447 tree
9448 decl_type_context (const_tree decl)
9449 {
9450 tree context = DECL_CONTEXT (decl);
9451
9452 while (context)
9453 switch (TREE_CODE (context))
9454 {
9455 case NAMESPACE_DECL:
9456 case TRANSLATION_UNIT_DECL:
9457 return NULL_TREE;
9458
9459 case RECORD_TYPE:
9460 case UNION_TYPE:
9461 case QUAL_UNION_TYPE:
9462 return context;
9463
9464 case TYPE_DECL:
9465 case FUNCTION_DECL:
9466 context = DECL_CONTEXT (context);
9467 break;
9468
9469 case BLOCK:
9470 context = BLOCK_SUPERCONTEXT (context);
9471 break;
9472
9473 default:
9474 gcc_unreachable ();
9475 }
9476
9477 return NULL_TREE;
9478 }
9479
9480 /* CALL is a CALL_EXPR. Return the declaration for the function
9481 called, or NULL_TREE if the called function cannot be
9482 determined. */
9483
9484 tree
9485 get_callee_fndecl (const_tree call)
9486 {
9487 tree addr;
9488
9489 if (call == error_mark_node)
9490 return error_mark_node;
9491
9492 /* It's invalid to call this function with anything but a
9493 CALL_EXPR. */
9494 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9495
9496 /* The first operand to the CALL is the address of the function
9497 called. */
9498 addr = CALL_EXPR_FN (call);
9499
9500 /* If there is no function, return early. */
9501 if (addr == NULL_TREE)
9502 return NULL_TREE;
9503
9504 STRIP_NOPS (addr);
9505
9506 /* If this is a readonly function pointer, extract its initial value. */
9507 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9508 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9509 && DECL_INITIAL (addr))
9510 addr = DECL_INITIAL (addr);
9511
9512 /* If the address is just `&f' for some function `f', then we know
9513 that `f' is being called. */
9514 if (TREE_CODE (addr) == ADDR_EXPR
9515 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9516 return TREE_OPERAND (addr, 0);
9517
9518 /* We couldn't figure out what was being called. */
9519 return NULL_TREE;
9520 }
9521
9522 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9523 return the associated function code, otherwise return CFN_LAST. */
9524
9525 combined_fn
9526 get_call_combined_fn (const_tree call)
9527 {
9528 /* It's invalid to call this function with anything but a CALL_EXPR. */
9529 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9530
9531 if (!CALL_EXPR_FN (call))
9532 return as_combined_fn (CALL_EXPR_IFN (call));
9533
9534 tree fndecl = get_callee_fndecl (call);
9535 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9536 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9537
9538 return CFN_LAST;
9539 }
9540
9541 /* Comparator of indices based on tree_node_counts. */
9542
9543 static int
9544 tree_nodes_cmp (const void *p1, const void *p2)
9545 {
9546 const unsigned *n1 = (const unsigned *)p1;
9547 const unsigned *n2 = (const unsigned *)p2;
9548
9549 return tree_node_counts[*n1] - tree_node_counts[*n2];
9550 }
9551
9552 /* Comparator of indices based on tree_code_counts. */
9553
9554 static int
9555 tree_codes_cmp (const void *p1, const void *p2)
9556 {
9557 const unsigned *n1 = (const unsigned *)p1;
9558 const unsigned *n2 = (const unsigned *)p2;
9559
9560 return tree_code_counts[*n1] - tree_code_counts[*n2];
9561 }
9562
9563 #define TREE_MEM_USAGE_SPACES 40
9564
9565 /* Print debugging information about tree nodes generated during the compile,
9566 and any language-specific information. */
9567
9568 void
9569 dump_tree_statistics (void)
9570 {
9571 if (GATHER_STATISTICS)
9572 {
9573 uint64_t total_nodes, total_bytes;
9574 fprintf (stderr, "\nKind Nodes Bytes\n");
9575 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9576 total_nodes = total_bytes = 0;
9577
9578 {
9579 auto_vec<unsigned> indices (all_kinds);
9580 for (unsigned i = 0; i < all_kinds; i++)
9581 indices.quick_push (i);
9582 indices.qsort (tree_nodes_cmp);
9583
9584 for (unsigned i = 0; i < (int) all_kinds; i++)
9585 {
9586 unsigned j = indices[i];
9587 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
9588 tree_node_kind_names[i], SIZE_AMOUNT (tree_node_counts[j]),
9589 SIZE_AMOUNT (tree_node_sizes[j]));
9590 total_nodes += tree_node_counts[j];
9591 total_bytes += tree_node_sizes[j];
9592 }
9593 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9594 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
9595 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
9596 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9597 }
9598
9599 {
9600 fprintf (stderr, "Code Nodes\n");
9601 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9602
9603 auto_vec<unsigned> indices (MAX_TREE_CODES);
9604 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9605 indices.quick_push (i);
9606 indices.qsort (tree_codes_cmp);
9607
9608 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9609 {
9610 unsigned j = indices[i];
9611 fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
9612 get_tree_code_name ((enum tree_code) j),
9613 SIZE_AMOUNT (tree_code_counts[j]));
9614 }
9615 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9616 fprintf (stderr, "\n");
9617 ssanames_print_statistics ();
9618 fprintf (stderr, "\n");
9619 phinodes_print_statistics ();
9620 fprintf (stderr, "\n");
9621 }
9622 }
9623 else
9624 fprintf (stderr, "(No per-node statistics)\n");
9625
9626 print_type_hash_statistics ();
9627 print_debug_expr_statistics ();
9628 print_value_expr_statistics ();
9629 lang_hooks.print_statistics ();
9630 }
9631 \f
9632 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9633
9634 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9635
9636 unsigned
9637 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9638 {
9639 /* This relies on the raw feedback's top 4 bits being zero. */
9640 #define FEEDBACK(X) ((X) * 0x04c11db7)
9641 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9642 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9643 static const unsigned syndromes[16] =
9644 {
9645 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9646 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9647 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9648 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9649 };
9650 #undef FEEDBACK
9651 #undef SYNDROME
9652
9653 value <<= (32 - bytes * 8);
9654 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9655 {
9656 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9657
9658 chksum = (chksum << 4) ^ feedback;
9659 }
9660
9661 return chksum;
9662 }
9663
9664 /* Generate a crc32 of a string. */
9665
9666 unsigned
9667 crc32_string (unsigned chksum, const char *string)
9668 {
9669 do
9670 chksum = crc32_byte (chksum, *string);
9671 while (*string++);
9672 return chksum;
9673 }
9674
9675 /* P is a string that will be used in a symbol. Mask out any characters
9676 that are not valid in that context. */
9677
9678 void
9679 clean_symbol_name (char *p)
9680 {
9681 for (; *p; p++)
9682 if (! (ISALNUM (*p)
9683 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9684 || *p == '$'
9685 #endif
9686 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9687 || *p == '.'
9688 #endif
9689 ))
9690 *p = '_';
9691 }
9692
9693 /* For anonymous aggregate types, we need some sort of name to
9694 hold on to. In practice, this should not appear, but it should
9695 not be harmful if it does. */
9696 bool
9697 anon_aggrname_p(const_tree id_node)
9698 {
9699 #ifndef NO_DOT_IN_LABEL
9700 return (IDENTIFIER_POINTER (id_node)[0] == '.'
9701 && IDENTIFIER_POINTER (id_node)[1] == '_');
9702 #else /* NO_DOT_IN_LABEL */
9703 #ifndef NO_DOLLAR_IN_LABEL
9704 return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9705 && IDENTIFIER_POINTER (id_node)[1] == '_');
9706 #else /* NO_DOLLAR_IN_LABEL */
9707 #define ANON_AGGRNAME_PREFIX "__anon_"
9708 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9709 sizeof (ANON_AGGRNAME_PREFIX) - 1));
9710 #endif /* NO_DOLLAR_IN_LABEL */
9711 #endif /* NO_DOT_IN_LABEL */
9712 }
9713
9714 /* Return a format for an anonymous aggregate name. */
9715 const char *
9716 anon_aggrname_format()
9717 {
9718 #ifndef NO_DOT_IN_LABEL
9719 return "._%d";
9720 #else /* NO_DOT_IN_LABEL */
9721 #ifndef NO_DOLLAR_IN_LABEL
9722 return "$_%d";
9723 #else /* NO_DOLLAR_IN_LABEL */
9724 return "__anon_%d";
9725 #endif /* NO_DOLLAR_IN_LABEL */
9726 #endif /* NO_DOT_IN_LABEL */
9727 }
9728
9729 /* Generate a name for a special-purpose function.
9730 The generated name may need to be unique across the whole link.
9731 Changes to this function may also require corresponding changes to
9732 xstrdup_mask_random.
9733 TYPE is some string to identify the purpose of this function to the
9734 linker or collect2; it must start with an uppercase letter,
9735 one of:
9736 I - for constructors
9737 D - for destructors
9738 N - for C++ anonymous namespaces
9739 F - for DWARF unwind frame information. */
9740
9741 tree
9742 get_file_function_name (const char *type)
9743 {
9744 char *buf;
9745 const char *p;
9746 char *q;
9747
9748 /* If we already have a name we know to be unique, just use that. */
9749 if (first_global_object_name)
9750 p = q = ASTRDUP (first_global_object_name);
9751 /* If the target is handling the constructors/destructors, they
9752 will be local to this file and the name is only necessary for
9753 debugging purposes.
9754 We also assign sub_I and sub_D sufixes to constructors called from
9755 the global static constructors. These are always local. */
9756 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9757 || (strncmp (type, "sub_", 4) == 0
9758 && (type[4] == 'I' || type[4] == 'D')))
9759 {
9760 const char *file = main_input_filename;
9761 if (! file)
9762 file = LOCATION_FILE (input_location);
9763 /* Just use the file's basename, because the full pathname
9764 might be quite long. */
9765 p = q = ASTRDUP (lbasename (file));
9766 }
9767 else
9768 {
9769 /* Otherwise, the name must be unique across the entire link.
9770 We don't have anything that we know to be unique to this translation
9771 unit, so use what we do have and throw in some randomness. */
9772 unsigned len;
9773 const char *name = weak_global_object_name;
9774 const char *file = main_input_filename;
9775
9776 if (! name)
9777 name = "";
9778 if (! file)
9779 file = LOCATION_FILE (input_location);
9780
9781 len = strlen (file);
9782 q = (char *) alloca (9 + 19 + len + 1);
9783 memcpy (q, file, len + 1);
9784
9785 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9786 crc32_string (0, name), get_random_seed (false));
9787
9788 p = q;
9789 }
9790
9791 clean_symbol_name (q);
9792 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9793 + strlen (type));
9794
9795 /* Set up the name of the file-level functions we may need.
9796 Use a global object (which is already required to be unique over
9797 the program) rather than the file name (which imposes extra
9798 constraints). */
9799 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9800
9801 return get_identifier (buf);
9802 }
9803 \f
9804 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9805
9806 /* Complain that the tree code of NODE does not match the expected 0
9807 terminated list of trailing codes. The trailing code list can be
9808 empty, for a more vague error message. FILE, LINE, and FUNCTION
9809 are of the caller. */
9810
9811 void
9812 tree_check_failed (const_tree node, const char *file,
9813 int line, const char *function, ...)
9814 {
9815 va_list args;
9816 const char *buffer;
9817 unsigned length = 0;
9818 enum tree_code code;
9819
9820 va_start (args, function);
9821 while ((code = (enum tree_code) va_arg (args, int)))
9822 length += 4 + strlen (get_tree_code_name (code));
9823 va_end (args);
9824 if (length)
9825 {
9826 char *tmp;
9827 va_start (args, function);
9828 length += strlen ("expected ");
9829 buffer = tmp = (char *) alloca (length);
9830 length = 0;
9831 while ((code = (enum tree_code) va_arg (args, int)))
9832 {
9833 const char *prefix = length ? " or " : "expected ";
9834
9835 strcpy (tmp + length, prefix);
9836 length += strlen (prefix);
9837 strcpy (tmp + length, get_tree_code_name (code));
9838 length += strlen (get_tree_code_name (code));
9839 }
9840 va_end (args);
9841 }
9842 else
9843 buffer = "unexpected node";
9844
9845 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9846 buffer, get_tree_code_name (TREE_CODE (node)),
9847 function, trim_filename (file), line);
9848 }
9849
9850 /* Complain that the tree code of NODE does match the expected 0
9851 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9852 the caller. */
9853
9854 void
9855 tree_not_check_failed (const_tree node, const char *file,
9856 int line, const char *function, ...)
9857 {
9858 va_list args;
9859 char *buffer;
9860 unsigned length = 0;
9861 enum tree_code code;
9862
9863 va_start (args, function);
9864 while ((code = (enum tree_code) va_arg (args, int)))
9865 length += 4 + strlen (get_tree_code_name (code));
9866 va_end (args);
9867 va_start (args, function);
9868 buffer = (char *) alloca (length);
9869 length = 0;
9870 while ((code = (enum tree_code) va_arg (args, int)))
9871 {
9872 if (length)
9873 {
9874 strcpy (buffer + length, " or ");
9875 length += 4;
9876 }
9877 strcpy (buffer + length, get_tree_code_name (code));
9878 length += strlen (get_tree_code_name (code));
9879 }
9880 va_end (args);
9881
9882 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9883 buffer, get_tree_code_name (TREE_CODE (node)),
9884 function, trim_filename (file), line);
9885 }
9886
9887 /* Similar to tree_check_failed, except that we check for a class of tree
9888 code, given in CL. */
9889
9890 void
9891 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9892 const char *file, int line, const char *function)
9893 {
9894 internal_error
9895 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9896 TREE_CODE_CLASS_STRING (cl),
9897 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9898 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9899 }
9900
9901 /* Similar to tree_check_failed, except that instead of specifying a
9902 dozen codes, use the knowledge that they're all sequential. */
9903
9904 void
9905 tree_range_check_failed (const_tree node, const char *file, int line,
9906 const char *function, enum tree_code c1,
9907 enum tree_code c2)
9908 {
9909 char *buffer;
9910 unsigned length = 0;
9911 unsigned int c;
9912
9913 for (c = c1; c <= c2; ++c)
9914 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9915
9916 length += strlen ("expected ");
9917 buffer = (char *) alloca (length);
9918 length = 0;
9919
9920 for (c = c1; c <= c2; ++c)
9921 {
9922 const char *prefix = length ? " or " : "expected ";
9923
9924 strcpy (buffer + length, prefix);
9925 length += strlen (prefix);
9926 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9927 length += strlen (get_tree_code_name ((enum tree_code) c));
9928 }
9929
9930 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9931 buffer, get_tree_code_name (TREE_CODE (node)),
9932 function, trim_filename (file), line);
9933 }
9934
9935
9936 /* Similar to tree_check_failed, except that we check that a tree does
9937 not have the specified code, given in CL. */
9938
9939 void
9940 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9941 const char *file, int line, const char *function)
9942 {
9943 internal_error
9944 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9945 TREE_CODE_CLASS_STRING (cl),
9946 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9947 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9948 }
9949
9950
9951 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9952
9953 void
9954 omp_clause_check_failed (const_tree node, const char *file, int line,
9955 const char *function, enum omp_clause_code code)
9956 {
9957 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9958 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9959 function, trim_filename (file), line);
9960 }
9961
9962
9963 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9964
9965 void
9966 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9967 const char *function, enum omp_clause_code c1,
9968 enum omp_clause_code c2)
9969 {
9970 char *buffer;
9971 unsigned length = 0;
9972 unsigned int c;
9973
9974 for (c = c1; c <= c2; ++c)
9975 length += 4 + strlen (omp_clause_code_name[c]);
9976
9977 length += strlen ("expected ");
9978 buffer = (char *) alloca (length);
9979 length = 0;
9980
9981 for (c = c1; c <= c2; ++c)
9982 {
9983 const char *prefix = length ? " or " : "expected ";
9984
9985 strcpy (buffer + length, prefix);
9986 length += strlen (prefix);
9987 strcpy (buffer + length, omp_clause_code_name[c]);
9988 length += strlen (omp_clause_code_name[c]);
9989 }
9990
9991 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9992 buffer, omp_clause_code_name[TREE_CODE (node)],
9993 function, trim_filename (file), line);
9994 }
9995
9996
9997 #undef DEFTREESTRUCT
9998 #define DEFTREESTRUCT(VAL, NAME) NAME,
9999
10000 static const char *ts_enum_names[] = {
10001 #include "treestruct.def"
10002 };
10003 #undef DEFTREESTRUCT
10004
10005 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
10006
10007 /* Similar to tree_class_check_failed, except that we check for
10008 whether CODE contains the tree structure identified by EN. */
10009
10010 void
10011 tree_contains_struct_check_failed (const_tree node,
10012 const enum tree_node_structure_enum en,
10013 const char *file, int line,
10014 const char *function)
10015 {
10016 internal_error
10017 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
10018 TS_ENUM_NAME (en),
10019 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
10020 }
10021
10022
10023 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
10024 (dynamically sized) vector. */
10025
10026 void
10027 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
10028 const char *function)
10029 {
10030 internal_error
10031 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
10032 idx + 1, len, function, trim_filename (file), line);
10033 }
10034
10035 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
10036 (dynamically sized) vector. */
10037
10038 void
10039 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
10040 const char *function)
10041 {
10042 internal_error
10043 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
10044 idx + 1, len, function, trim_filename (file), line);
10045 }
10046
10047 /* Similar to above, except that the check is for the bounds of the operand
10048 vector of an expression node EXP. */
10049
10050 void
10051 tree_operand_check_failed (int idx, const_tree exp, const char *file,
10052 int line, const char *function)
10053 {
10054 enum tree_code code = TREE_CODE (exp);
10055 internal_error
10056 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
10057 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
10058 function, trim_filename (file), line);
10059 }
10060
10061 /* Similar to above, except that the check is for the number of
10062 operands of an OMP_CLAUSE node. */
10063
10064 void
10065 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
10066 int line, const char *function)
10067 {
10068 internal_error
10069 ("tree check: accessed operand %d of omp_clause %s with %d operands "
10070 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
10071 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
10072 trim_filename (file), line);
10073 }
10074 #endif /* ENABLE_TREE_CHECKING */
10075 \f
10076 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
10077 and mapped to the machine mode MODE. Initialize its fields and build
10078 the information necessary for debugging output. */
10079
10080 static tree
10081 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
10082 {
10083 tree t;
10084 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
10085
10086 t = make_node (VECTOR_TYPE);
10087 TREE_TYPE (t) = mv_innertype;
10088 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
10089 SET_TYPE_MODE (t, mode);
10090
10091 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
10092 SET_TYPE_STRUCTURAL_EQUALITY (t);
10093 else if ((TYPE_CANONICAL (mv_innertype) != innertype
10094 || mode != VOIDmode)
10095 && !VECTOR_BOOLEAN_TYPE_P (t))
10096 TYPE_CANONICAL (t)
10097 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
10098
10099 layout_type (t);
10100
10101 hashval_t hash = type_hash_canon_hash (t);
10102 t = type_hash_canon (hash, t);
10103
10104 /* We have built a main variant, based on the main variant of the
10105 inner type. Use it to build the variant we return. */
10106 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
10107 && TREE_TYPE (t) != innertype)
10108 return build_type_attribute_qual_variant (t,
10109 TYPE_ATTRIBUTES (innertype),
10110 TYPE_QUALS (innertype));
10111
10112 return t;
10113 }
10114
10115 static tree
10116 make_or_reuse_type (unsigned size, int unsignedp)
10117 {
10118 int i;
10119
10120 if (size == INT_TYPE_SIZE)
10121 return unsignedp ? unsigned_type_node : integer_type_node;
10122 if (size == CHAR_TYPE_SIZE)
10123 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
10124 if (size == SHORT_TYPE_SIZE)
10125 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
10126 if (size == LONG_TYPE_SIZE)
10127 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
10128 if (size == LONG_LONG_TYPE_SIZE)
10129 return (unsignedp ? long_long_unsigned_type_node
10130 : long_long_integer_type_node);
10131
10132 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10133 if (size == int_n_data[i].bitsize
10134 && int_n_enabled_p[i])
10135 return (unsignedp ? int_n_trees[i].unsigned_type
10136 : int_n_trees[i].signed_type);
10137
10138 if (unsignedp)
10139 return make_unsigned_type (size);
10140 else
10141 return make_signed_type (size);
10142 }
10143
10144 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
10145
10146 static tree
10147 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
10148 {
10149 if (satp)
10150 {
10151 if (size == SHORT_FRACT_TYPE_SIZE)
10152 return unsignedp ? sat_unsigned_short_fract_type_node
10153 : sat_short_fract_type_node;
10154 if (size == FRACT_TYPE_SIZE)
10155 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
10156 if (size == LONG_FRACT_TYPE_SIZE)
10157 return unsignedp ? sat_unsigned_long_fract_type_node
10158 : sat_long_fract_type_node;
10159 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10160 return unsignedp ? sat_unsigned_long_long_fract_type_node
10161 : sat_long_long_fract_type_node;
10162 }
10163 else
10164 {
10165 if (size == SHORT_FRACT_TYPE_SIZE)
10166 return unsignedp ? unsigned_short_fract_type_node
10167 : short_fract_type_node;
10168 if (size == FRACT_TYPE_SIZE)
10169 return unsignedp ? unsigned_fract_type_node : fract_type_node;
10170 if (size == LONG_FRACT_TYPE_SIZE)
10171 return unsignedp ? unsigned_long_fract_type_node
10172 : long_fract_type_node;
10173 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10174 return unsignedp ? unsigned_long_long_fract_type_node
10175 : long_long_fract_type_node;
10176 }
10177
10178 return make_fract_type (size, unsignedp, satp);
10179 }
10180
10181 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
10182
10183 static tree
10184 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
10185 {
10186 if (satp)
10187 {
10188 if (size == SHORT_ACCUM_TYPE_SIZE)
10189 return unsignedp ? sat_unsigned_short_accum_type_node
10190 : sat_short_accum_type_node;
10191 if (size == ACCUM_TYPE_SIZE)
10192 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
10193 if (size == LONG_ACCUM_TYPE_SIZE)
10194 return unsignedp ? sat_unsigned_long_accum_type_node
10195 : sat_long_accum_type_node;
10196 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10197 return unsignedp ? sat_unsigned_long_long_accum_type_node
10198 : sat_long_long_accum_type_node;
10199 }
10200 else
10201 {
10202 if (size == SHORT_ACCUM_TYPE_SIZE)
10203 return unsignedp ? unsigned_short_accum_type_node
10204 : short_accum_type_node;
10205 if (size == ACCUM_TYPE_SIZE)
10206 return unsignedp ? unsigned_accum_type_node : accum_type_node;
10207 if (size == LONG_ACCUM_TYPE_SIZE)
10208 return unsignedp ? unsigned_long_accum_type_node
10209 : long_accum_type_node;
10210 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10211 return unsignedp ? unsigned_long_long_accum_type_node
10212 : long_long_accum_type_node;
10213 }
10214
10215 return make_accum_type (size, unsignedp, satp);
10216 }
10217
10218
10219 /* Create an atomic variant node for TYPE. This routine is called
10220 during initialization of data types to create the 5 basic atomic
10221 types. The generic build_variant_type function requires these to
10222 already be set up in order to function properly, so cannot be
10223 called from there. If ALIGN is non-zero, then ensure alignment is
10224 overridden to this value. */
10225
10226 static tree
10227 build_atomic_base (tree type, unsigned int align)
10228 {
10229 tree t;
10230
10231 /* Make sure its not already registered. */
10232 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
10233 return t;
10234
10235 t = build_variant_type_copy (type);
10236 set_type_quals (t, TYPE_QUAL_ATOMIC);
10237
10238 if (align)
10239 SET_TYPE_ALIGN (t, align);
10240
10241 return t;
10242 }
10243
10244 /* Information about the _FloatN and _FloatNx types. This must be in
10245 the same order as the corresponding TI_* enum values. */
10246 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
10247 {
10248 { 16, false },
10249 { 32, false },
10250 { 64, false },
10251 { 128, false },
10252 { 32, true },
10253 { 64, true },
10254 { 128, true },
10255 };
10256
10257
10258 /* Create nodes for all integer types (and error_mark_node) using the sizes
10259 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
10260
10261 void
10262 build_common_tree_nodes (bool signed_char)
10263 {
10264 int i;
10265
10266 error_mark_node = make_node (ERROR_MARK);
10267 TREE_TYPE (error_mark_node) = error_mark_node;
10268
10269 initialize_sizetypes ();
10270
10271 /* Define both `signed char' and `unsigned char'. */
10272 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
10273 TYPE_STRING_FLAG (signed_char_type_node) = 1;
10274 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
10275 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
10276
10277 /* Define `char', which is like either `signed char' or `unsigned char'
10278 but not the same as either. */
10279 char_type_node
10280 = (signed_char
10281 ? make_signed_type (CHAR_TYPE_SIZE)
10282 : make_unsigned_type (CHAR_TYPE_SIZE));
10283 TYPE_STRING_FLAG (char_type_node) = 1;
10284
10285 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
10286 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
10287 integer_type_node = make_signed_type (INT_TYPE_SIZE);
10288 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
10289 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
10290 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
10291 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
10292 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
10293
10294 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10295 {
10296 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
10297 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
10298
10299 if (int_n_enabled_p[i])
10300 {
10301 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
10302 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
10303 }
10304 }
10305
10306 /* Define a boolean type. This type only represents boolean values but
10307 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
10308 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
10309 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
10310 TYPE_PRECISION (boolean_type_node) = 1;
10311 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
10312
10313 /* Define what type to use for size_t. */
10314 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
10315 size_type_node = unsigned_type_node;
10316 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
10317 size_type_node = long_unsigned_type_node;
10318 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
10319 size_type_node = long_long_unsigned_type_node;
10320 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
10321 size_type_node = short_unsigned_type_node;
10322 else
10323 {
10324 int i;
10325
10326 size_type_node = NULL_TREE;
10327 for (i = 0; i < NUM_INT_N_ENTS; i++)
10328 if (int_n_enabled_p[i])
10329 {
10330 char name[50];
10331 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
10332
10333 if (strcmp (name, SIZE_TYPE) == 0)
10334 {
10335 size_type_node = int_n_trees[i].unsigned_type;
10336 }
10337 }
10338 if (size_type_node == NULL_TREE)
10339 gcc_unreachable ();
10340 }
10341
10342 /* Define what type to use for ptrdiff_t. */
10343 if (strcmp (PTRDIFF_TYPE, "int") == 0)
10344 ptrdiff_type_node = integer_type_node;
10345 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
10346 ptrdiff_type_node = long_integer_type_node;
10347 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
10348 ptrdiff_type_node = long_long_integer_type_node;
10349 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
10350 ptrdiff_type_node = short_integer_type_node;
10351 else
10352 {
10353 ptrdiff_type_node = NULL_TREE;
10354 for (int i = 0; i < NUM_INT_N_ENTS; i++)
10355 if (int_n_enabled_p[i])
10356 {
10357 char name[50];
10358 sprintf (name, "__int%d", int_n_data[i].bitsize);
10359 if (strcmp (name, PTRDIFF_TYPE) == 0)
10360 ptrdiff_type_node = int_n_trees[i].signed_type;
10361 }
10362 if (ptrdiff_type_node == NULL_TREE)
10363 gcc_unreachable ();
10364 }
10365
10366 /* Fill in the rest of the sized types. Reuse existing type nodes
10367 when possible. */
10368 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10369 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10370 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10371 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10372 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10373
10374 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10375 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10376 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10377 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10378 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10379
10380 /* Don't call build_qualified type for atomics. That routine does
10381 special processing for atomics, and until they are initialized
10382 it's better not to make that call.
10383
10384 Check to see if there is a target override for atomic types. */
10385
10386 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10387 targetm.atomic_align_for_mode (QImode));
10388 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10389 targetm.atomic_align_for_mode (HImode));
10390 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10391 targetm.atomic_align_for_mode (SImode));
10392 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10393 targetm.atomic_align_for_mode (DImode));
10394 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10395 targetm.atomic_align_for_mode (TImode));
10396
10397 access_public_node = get_identifier ("public");
10398 access_protected_node = get_identifier ("protected");
10399 access_private_node = get_identifier ("private");
10400
10401 /* Define these next since types below may used them. */
10402 integer_zero_node = build_int_cst (integer_type_node, 0);
10403 integer_one_node = build_int_cst (integer_type_node, 1);
10404 integer_three_node = build_int_cst (integer_type_node, 3);
10405 integer_minus_one_node = build_int_cst (integer_type_node, -1);
10406
10407 size_zero_node = size_int (0);
10408 size_one_node = size_int (1);
10409 bitsize_zero_node = bitsize_int (0);
10410 bitsize_one_node = bitsize_int (1);
10411 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10412
10413 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10414 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10415
10416 void_type_node = make_node (VOID_TYPE);
10417 layout_type (void_type_node);
10418
10419 /* We are not going to have real types in C with less than byte alignment,
10420 so we might as well not have any types that claim to have it. */
10421 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
10422 TYPE_USER_ALIGN (void_type_node) = 0;
10423
10424 void_node = make_node (VOID_CST);
10425 TREE_TYPE (void_node) = void_type_node;
10426
10427 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10428 layout_type (TREE_TYPE (null_pointer_node));
10429
10430 ptr_type_node = build_pointer_type (void_type_node);
10431 const_ptr_type_node
10432 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10433 for (unsigned i = 0;
10434 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
10435 ++i)
10436 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
10437
10438 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10439
10440 float_type_node = make_node (REAL_TYPE);
10441 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10442 layout_type (float_type_node);
10443
10444 double_type_node = make_node (REAL_TYPE);
10445 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10446 layout_type (double_type_node);
10447
10448 long_double_type_node = make_node (REAL_TYPE);
10449 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10450 layout_type (long_double_type_node);
10451
10452 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10453 {
10454 int n = floatn_nx_types[i].n;
10455 bool extended = floatn_nx_types[i].extended;
10456 scalar_float_mode mode;
10457 if (!targetm.floatn_mode (n, extended).exists (&mode))
10458 continue;
10459 int precision = GET_MODE_PRECISION (mode);
10460 /* Work around the rs6000 KFmode having precision 113 not
10461 128. */
10462 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
10463 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
10464 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
10465 if (!extended)
10466 gcc_assert (min_precision == n);
10467 if (precision < min_precision)
10468 precision = min_precision;
10469 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
10470 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
10471 layout_type (FLOATN_NX_TYPE_NODE (i));
10472 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
10473 }
10474
10475 float_ptr_type_node = build_pointer_type (float_type_node);
10476 double_ptr_type_node = build_pointer_type (double_type_node);
10477 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10478 integer_ptr_type_node = build_pointer_type (integer_type_node);
10479
10480 /* Fixed size integer types. */
10481 uint16_type_node = make_or_reuse_type (16, 1);
10482 uint32_type_node = make_or_reuse_type (32, 1);
10483 uint64_type_node = make_or_reuse_type (64, 1);
10484
10485 /* Decimal float types. */
10486 dfloat32_type_node = make_node (REAL_TYPE);
10487 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10488 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10489 layout_type (dfloat32_type_node);
10490 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
10491
10492 dfloat64_type_node = make_node (REAL_TYPE);
10493 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10494 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10495 layout_type (dfloat64_type_node);
10496 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
10497
10498 dfloat128_type_node = make_node (REAL_TYPE);
10499 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10500 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10501 layout_type (dfloat128_type_node);
10502 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
10503
10504 complex_integer_type_node = build_complex_type (integer_type_node, true);
10505 complex_float_type_node = build_complex_type (float_type_node, true);
10506 complex_double_type_node = build_complex_type (double_type_node, true);
10507 complex_long_double_type_node = build_complex_type (long_double_type_node,
10508 true);
10509
10510 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10511 {
10512 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10513 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10514 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10515 }
10516
10517 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10518 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10519 sat_ ## KIND ## _type_node = \
10520 make_sat_signed_ ## KIND ## _type (SIZE); \
10521 sat_unsigned_ ## KIND ## _type_node = \
10522 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10523 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10524 unsigned_ ## KIND ## _type_node = \
10525 make_unsigned_ ## KIND ## _type (SIZE);
10526
10527 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10528 sat_ ## WIDTH ## KIND ## _type_node = \
10529 make_sat_signed_ ## KIND ## _type (SIZE); \
10530 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10531 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10532 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10533 unsigned_ ## WIDTH ## KIND ## _type_node = \
10534 make_unsigned_ ## KIND ## _type (SIZE);
10535
10536 /* Make fixed-point type nodes based on four different widths. */
10537 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10538 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10539 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10540 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10541 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10542
10543 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10544 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10545 NAME ## _type_node = \
10546 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10547 u ## NAME ## _type_node = \
10548 make_or_reuse_unsigned_ ## KIND ## _type \
10549 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10550 sat_ ## NAME ## _type_node = \
10551 make_or_reuse_sat_signed_ ## KIND ## _type \
10552 (GET_MODE_BITSIZE (MODE ## mode)); \
10553 sat_u ## NAME ## _type_node = \
10554 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10555 (GET_MODE_BITSIZE (U ## MODE ## mode));
10556
10557 /* Fixed-point type and mode nodes. */
10558 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10559 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10560 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10561 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10562 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10563 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10564 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10565 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10566 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10567 MAKE_FIXED_MODE_NODE (accum, da, DA)
10568 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10569
10570 {
10571 tree t = targetm.build_builtin_va_list ();
10572
10573 /* Many back-ends define record types without setting TYPE_NAME.
10574 If we copied the record type here, we'd keep the original
10575 record type without a name. This breaks name mangling. So,
10576 don't copy record types and let c_common_nodes_and_builtins()
10577 declare the type to be __builtin_va_list. */
10578 if (TREE_CODE (t) != RECORD_TYPE)
10579 t = build_variant_type_copy (t);
10580
10581 va_list_type_node = t;
10582 }
10583 }
10584
10585 /* Modify DECL for given flags.
10586 TM_PURE attribute is set only on types, so the function will modify
10587 DECL's type when ECF_TM_PURE is used. */
10588
10589 void
10590 set_call_expr_flags (tree decl, int flags)
10591 {
10592 if (flags & ECF_NOTHROW)
10593 TREE_NOTHROW (decl) = 1;
10594 if (flags & ECF_CONST)
10595 TREE_READONLY (decl) = 1;
10596 if (flags & ECF_PURE)
10597 DECL_PURE_P (decl) = 1;
10598 if (flags & ECF_LOOPING_CONST_OR_PURE)
10599 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10600 if (flags & ECF_NOVOPS)
10601 DECL_IS_NOVOPS (decl) = 1;
10602 if (flags & ECF_NORETURN)
10603 TREE_THIS_VOLATILE (decl) = 1;
10604 if (flags & ECF_MALLOC)
10605 DECL_IS_MALLOC (decl) = 1;
10606 if (flags & ECF_RETURNS_TWICE)
10607 DECL_IS_RETURNS_TWICE (decl) = 1;
10608 if (flags & ECF_LEAF)
10609 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10610 NULL, DECL_ATTRIBUTES (decl));
10611 if (flags & ECF_COLD)
10612 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10613 NULL, DECL_ATTRIBUTES (decl));
10614 if (flags & ECF_RET1)
10615 DECL_ATTRIBUTES (decl)
10616 = tree_cons (get_identifier ("fn spec"),
10617 build_tree_list (NULL_TREE, build_string (1, "1")),
10618 DECL_ATTRIBUTES (decl));
10619 if ((flags & ECF_TM_PURE) && flag_tm)
10620 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10621 /* Looping const or pure is implied by noreturn.
10622 There is currently no way to declare looping const or looping pure alone. */
10623 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10624 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10625 }
10626
10627
10628 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10629
10630 static void
10631 local_define_builtin (const char *name, tree type, enum built_in_function code,
10632 const char *library_name, int ecf_flags)
10633 {
10634 tree decl;
10635
10636 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10637 library_name, NULL_TREE);
10638 set_call_expr_flags (decl, ecf_flags);
10639
10640 set_builtin_decl (code, decl, true);
10641 }
10642
10643 /* Call this function after instantiating all builtins that the language
10644 front end cares about. This will build the rest of the builtins
10645 and internal functions that are relied upon by the tree optimizers and
10646 the middle-end. */
10647
10648 void
10649 build_common_builtin_nodes (void)
10650 {
10651 tree tmp, ftype;
10652 int ecf_flags;
10653
10654 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10655 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10656 {
10657 ftype = build_function_type (void_type_node, void_list_node);
10658 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10659 local_define_builtin ("__builtin_unreachable", ftype,
10660 BUILT_IN_UNREACHABLE,
10661 "__builtin_unreachable",
10662 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10663 | ECF_CONST | ECF_COLD);
10664 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10665 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10666 "abort",
10667 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10668 }
10669
10670 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10671 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10672 {
10673 ftype = build_function_type_list (ptr_type_node,
10674 ptr_type_node, const_ptr_type_node,
10675 size_type_node, NULL_TREE);
10676
10677 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10678 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10679 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10680 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10681 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10682 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10683 }
10684
10685 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10686 {
10687 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10688 const_ptr_type_node, size_type_node,
10689 NULL_TREE);
10690 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10691 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10692 }
10693
10694 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10695 {
10696 ftype = build_function_type_list (ptr_type_node,
10697 ptr_type_node, integer_type_node,
10698 size_type_node, NULL_TREE);
10699 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10700 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10701 }
10702
10703 /* If we're checking the stack, `alloca' can throw. */
10704 const int alloca_flags
10705 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10706
10707 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10708 {
10709 ftype = build_function_type_list (ptr_type_node,
10710 size_type_node, NULL_TREE);
10711 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10712 "alloca", alloca_flags);
10713 }
10714
10715 ftype = build_function_type_list (ptr_type_node, size_type_node,
10716 size_type_node, NULL_TREE);
10717 local_define_builtin ("__builtin_alloca_with_align", ftype,
10718 BUILT_IN_ALLOCA_WITH_ALIGN,
10719 "__builtin_alloca_with_align",
10720 alloca_flags);
10721
10722 ftype = build_function_type_list (ptr_type_node, size_type_node,
10723 size_type_node, size_type_node, NULL_TREE);
10724 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10725 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10726 "__builtin_alloca_with_align_and_max",
10727 alloca_flags);
10728
10729 ftype = build_function_type_list (void_type_node,
10730 ptr_type_node, ptr_type_node,
10731 ptr_type_node, NULL_TREE);
10732 local_define_builtin ("__builtin_init_trampoline", ftype,
10733 BUILT_IN_INIT_TRAMPOLINE,
10734 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10735 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10736 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10737 "__builtin_init_heap_trampoline",
10738 ECF_NOTHROW | ECF_LEAF);
10739 local_define_builtin ("__builtin_init_descriptor", ftype,
10740 BUILT_IN_INIT_DESCRIPTOR,
10741 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10742
10743 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10744 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10745 BUILT_IN_ADJUST_TRAMPOLINE,
10746 "__builtin_adjust_trampoline",
10747 ECF_CONST | ECF_NOTHROW);
10748 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10749 BUILT_IN_ADJUST_DESCRIPTOR,
10750 "__builtin_adjust_descriptor",
10751 ECF_CONST | ECF_NOTHROW);
10752
10753 ftype = build_function_type_list (void_type_node,
10754 ptr_type_node, ptr_type_node, NULL_TREE);
10755 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10756 BUILT_IN_NONLOCAL_GOTO,
10757 "__builtin_nonlocal_goto",
10758 ECF_NORETURN | ECF_NOTHROW);
10759
10760 ftype = build_function_type_list (void_type_node,
10761 ptr_type_node, ptr_type_node, NULL_TREE);
10762 local_define_builtin ("__builtin_setjmp_setup", ftype,
10763 BUILT_IN_SETJMP_SETUP,
10764 "__builtin_setjmp_setup", ECF_NOTHROW);
10765
10766 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10767 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10768 BUILT_IN_SETJMP_RECEIVER,
10769 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10770
10771 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10772 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10773 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10774
10775 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10776 local_define_builtin ("__builtin_stack_restore", ftype,
10777 BUILT_IN_STACK_RESTORE,
10778 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10779
10780 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10781 const_ptr_type_node, size_type_node,
10782 NULL_TREE);
10783 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10784 "__builtin_memcmp_eq",
10785 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10786
10787 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10788 "__builtin_strncmp_eq",
10789 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10790
10791 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10792 "__builtin_strcmp_eq",
10793 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10794
10795 /* If there's a possibility that we might use the ARM EABI, build the
10796 alternate __cxa_end_cleanup node used to resume from C++. */
10797 if (targetm.arm_eabi_unwinder)
10798 {
10799 ftype = build_function_type_list (void_type_node, NULL_TREE);
10800 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10801 BUILT_IN_CXA_END_CLEANUP,
10802 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10803 }
10804
10805 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10806 local_define_builtin ("__builtin_unwind_resume", ftype,
10807 BUILT_IN_UNWIND_RESUME,
10808 ((targetm_common.except_unwind_info (&global_options)
10809 == UI_SJLJ)
10810 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10811 ECF_NORETURN);
10812
10813 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10814 {
10815 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10816 NULL_TREE);
10817 local_define_builtin ("__builtin_return_address", ftype,
10818 BUILT_IN_RETURN_ADDRESS,
10819 "__builtin_return_address",
10820 ECF_NOTHROW);
10821 }
10822
10823 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10824 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10825 {
10826 ftype = build_function_type_list (void_type_node, ptr_type_node,
10827 ptr_type_node, NULL_TREE);
10828 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10829 local_define_builtin ("__cyg_profile_func_enter", ftype,
10830 BUILT_IN_PROFILE_FUNC_ENTER,
10831 "__cyg_profile_func_enter", 0);
10832 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10833 local_define_builtin ("__cyg_profile_func_exit", ftype,
10834 BUILT_IN_PROFILE_FUNC_EXIT,
10835 "__cyg_profile_func_exit", 0);
10836 }
10837
10838 /* The exception object and filter values from the runtime. The argument
10839 must be zero before exception lowering, i.e. from the front end. After
10840 exception lowering, it will be the region number for the exception
10841 landing pad. These functions are PURE instead of CONST to prevent
10842 them from being hoisted past the exception edge that will initialize
10843 its value in the landing pad. */
10844 ftype = build_function_type_list (ptr_type_node,
10845 integer_type_node, NULL_TREE);
10846 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10847 /* Only use TM_PURE if we have TM language support. */
10848 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10849 ecf_flags |= ECF_TM_PURE;
10850 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10851 "__builtin_eh_pointer", ecf_flags);
10852
10853 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10854 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10855 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10856 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10857
10858 ftype = build_function_type_list (void_type_node,
10859 integer_type_node, integer_type_node,
10860 NULL_TREE);
10861 local_define_builtin ("__builtin_eh_copy_values", ftype,
10862 BUILT_IN_EH_COPY_VALUES,
10863 "__builtin_eh_copy_values", ECF_NOTHROW);
10864
10865 /* Complex multiplication and division. These are handled as builtins
10866 rather than optabs because emit_library_call_value doesn't support
10867 complex. Further, we can do slightly better with folding these
10868 beasties if the real and complex parts of the arguments are separate. */
10869 {
10870 int mode;
10871
10872 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10873 {
10874 char mode_name_buf[4], *q;
10875 const char *p;
10876 enum built_in_function mcode, dcode;
10877 tree type, inner_type;
10878 const char *prefix = "__";
10879
10880 if (targetm.libfunc_gnu_prefix)
10881 prefix = "__gnu_";
10882
10883 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10884 if (type == NULL)
10885 continue;
10886 inner_type = TREE_TYPE (type);
10887
10888 ftype = build_function_type_list (type, inner_type, inner_type,
10889 inner_type, inner_type, NULL_TREE);
10890
10891 mcode = ((enum built_in_function)
10892 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10893 dcode = ((enum built_in_function)
10894 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10895
10896 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10897 *q = TOLOWER (*p);
10898 *q = '\0';
10899
10900 /* For -ftrapping-math these should throw from a former
10901 -fnon-call-exception stmt. */
10902 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10903 NULL);
10904 local_define_builtin (built_in_names[mcode], ftype, mcode,
10905 built_in_names[mcode],
10906 ECF_CONST | ECF_LEAF);
10907
10908 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10909 NULL);
10910 local_define_builtin (built_in_names[dcode], ftype, dcode,
10911 built_in_names[dcode],
10912 ECF_CONST | ECF_LEAF);
10913 }
10914 }
10915
10916 init_internal_fns ();
10917 }
10918
10919 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10920 better way.
10921
10922 If we requested a pointer to a vector, build up the pointers that
10923 we stripped off while looking for the inner type. Similarly for
10924 return values from functions.
10925
10926 The argument TYPE is the top of the chain, and BOTTOM is the
10927 new type which we will point to. */
10928
10929 tree
10930 reconstruct_complex_type (tree type, tree bottom)
10931 {
10932 tree inner, outer;
10933
10934 if (TREE_CODE (type) == POINTER_TYPE)
10935 {
10936 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10937 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10938 TYPE_REF_CAN_ALIAS_ALL (type));
10939 }
10940 else if (TREE_CODE (type) == REFERENCE_TYPE)
10941 {
10942 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10943 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10944 TYPE_REF_CAN_ALIAS_ALL (type));
10945 }
10946 else if (TREE_CODE (type) == ARRAY_TYPE)
10947 {
10948 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10949 outer = build_array_type (inner, TYPE_DOMAIN (type));
10950 }
10951 else if (TREE_CODE (type) == FUNCTION_TYPE)
10952 {
10953 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10954 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10955 }
10956 else if (TREE_CODE (type) == METHOD_TYPE)
10957 {
10958 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10959 /* The build_method_type_directly() routine prepends 'this' to argument list,
10960 so we must compensate by getting rid of it. */
10961 outer
10962 = build_method_type_directly
10963 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10964 inner,
10965 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10966 }
10967 else if (TREE_CODE (type) == OFFSET_TYPE)
10968 {
10969 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10970 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10971 }
10972 else
10973 return bottom;
10974
10975 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10976 TYPE_QUALS (type));
10977 }
10978
10979 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10980 the inner type. */
10981 tree
10982 build_vector_type_for_mode (tree innertype, machine_mode mode)
10983 {
10984 poly_int64 nunits;
10985 unsigned int bitsize;
10986
10987 switch (GET_MODE_CLASS (mode))
10988 {
10989 case MODE_VECTOR_BOOL:
10990 case MODE_VECTOR_INT:
10991 case MODE_VECTOR_FLOAT:
10992 case MODE_VECTOR_FRACT:
10993 case MODE_VECTOR_UFRACT:
10994 case MODE_VECTOR_ACCUM:
10995 case MODE_VECTOR_UACCUM:
10996 nunits = GET_MODE_NUNITS (mode);
10997 break;
10998
10999 case MODE_INT:
11000 /* Check that there are no leftover bits. */
11001 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
11002 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
11003 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
11004 break;
11005
11006 default:
11007 gcc_unreachable ();
11008 }
11009
11010 return make_vector_type (innertype, nunits, mode);
11011 }
11012
11013 /* Similarly, but takes the inner type and number of units, which must be
11014 a power of two. */
11015
11016 tree
11017 build_vector_type (tree innertype, poly_int64 nunits)
11018 {
11019 return make_vector_type (innertype, nunits, VOIDmode);
11020 }
11021
11022 /* Build truth vector with specified length and number of units. */
11023
11024 tree
11025 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
11026 {
11027 machine_mode mask_mode
11028 = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
11029
11030 poly_uint64 vsize;
11031 if (mask_mode == BLKmode)
11032 vsize = vector_size * BITS_PER_UNIT;
11033 else
11034 vsize = GET_MODE_BITSIZE (mask_mode);
11035
11036 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
11037
11038 tree bool_type = build_nonstandard_boolean_type (esize);
11039
11040 return make_vector_type (bool_type, nunits, mask_mode);
11041 }
11042
11043 /* Returns a vector type corresponding to a comparison of VECTYPE. */
11044
11045 tree
11046 build_same_sized_truth_vector_type (tree vectype)
11047 {
11048 if (VECTOR_BOOLEAN_TYPE_P (vectype))
11049 return vectype;
11050
11051 poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
11052
11053 if (known_eq (size, 0U))
11054 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
11055
11056 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
11057 }
11058
11059 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
11060
11061 tree
11062 build_opaque_vector_type (tree innertype, poly_int64 nunits)
11063 {
11064 tree t = make_vector_type (innertype, nunits, VOIDmode);
11065 tree cand;
11066 /* We always build the non-opaque variant before the opaque one,
11067 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
11068 cand = TYPE_NEXT_VARIANT (t);
11069 if (cand
11070 && TYPE_VECTOR_OPAQUE (cand)
11071 && check_qualified_type (cand, t, TYPE_QUALS (t)))
11072 return cand;
11073 /* Othewise build a variant type and make sure to queue it after
11074 the non-opaque type. */
11075 cand = build_distinct_type_copy (t);
11076 TYPE_VECTOR_OPAQUE (cand) = true;
11077 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
11078 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
11079 TYPE_NEXT_VARIANT (t) = cand;
11080 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
11081 return cand;
11082 }
11083
11084 /* Return the value of element I of VECTOR_CST T as a wide_int. */
11085
11086 wide_int
11087 vector_cst_int_elt (const_tree t, unsigned int i)
11088 {
11089 /* First handle elements that are directly encoded. */
11090 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
11091 if (i < encoded_nelts)
11092 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
11093
11094 /* Identify the pattern that contains element I and work out the index of
11095 the last encoded element for that pattern. */
11096 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11097 unsigned int pattern = i % npatterns;
11098 unsigned int count = i / npatterns;
11099 unsigned int final_i = encoded_nelts - npatterns + pattern;
11100
11101 /* If there are no steps, the final encoded value is the right one. */
11102 if (!VECTOR_CST_STEPPED_P (t))
11103 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
11104
11105 /* Otherwise work out the value from the last two encoded elements. */
11106 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
11107 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
11108 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
11109 return wi::to_wide (v2) + (count - 2) * diff;
11110 }
11111
11112 /* Return the value of element I of VECTOR_CST T. */
11113
11114 tree
11115 vector_cst_elt (const_tree t, unsigned int i)
11116 {
11117 /* First handle elements that are directly encoded. */
11118 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
11119 if (i < encoded_nelts)
11120 return VECTOR_CST_ENCODED_ELT (t, i);
11121
11122 /* If there are no steps, the final encoded value is the right one. */
11123 if (!VECTOR_CST_STEPPED_P (t))
11124 {
11125 /* Identify the pattern that contains element I and work out the index of
11126 the last encoded element for that pattern. */
11127 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11128 unsigned int pattern = i % npatterns;
11129 unsigned int final_i = encoded_nelts - npatterns + pattern;
11130 return VECTOR_CST_ENCODED_ELT (t, final_i);
11131 }
11132
11133 /* Otherwise work out the value from the last two encoded elements. */
11134 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
11135 vector_cst_int_elt (t, i));
11136 }
11137
11138 /* Given an initializer INIT, return TRUE if INIT is zero or some
11139 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
11140 null, set *NONZERO if and only if INIT is known not to be all
11141 zeros. The combination of return value of false and *NONZERO
11142 false implies that INIT may but need not be all zeros. Other
11143 combinations indicate definitive answers. */
11144
11145 bool
11146 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
11147 {
11148 bool dummy;
11149 if (!nonzero)
11150 nonzero = &dummy;
11151
11152 /* Conservatively clear NONZERO and set it only if INIT is definitely
11153 not all zero. */
11154 *nonzero = false;
11155
11156 STRIP_NOPS (init);
11157
11158 unsigned HOST_WIDE_INT off = 0;
11159
11160 switch (TREE_CODE (init))
11161 {
11162 case INTEGER_CST:
11163 if (integer_zerop (init))
11164 return true;
11165
11166 *nonzero = true;
11167 return false;
11168
11169 case REAL_CST:
11170 /* ??? Note that this is not correct for C4X float formats. There,
11171 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
11172 negative exponent. */
11173 if (real_zerop (init)
11174 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
11175 return true;
11176
11177 *nonzero = true;
11178 return false;
11179
11180 case FIXED_CST:
11181 if (fixed_zerop (init))
11182 return true;
11183
11184 *nonzero = true;
11185 return false;
11186
11187 case COMPLEX_CST:
11188 if (integer_zerop (init)
11189 || (real_zerop (init)
11190 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
11191 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
11192 return true;
11193
11194 *nonzero = true;
11195 return false;
11196
11197 case VECTOR_CST:
11198 if (VECTOR_CST_NPATTERNS (init) == 1
11199 && VECTOR_CST_DUPLICATE_P (init)
11200 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
11201 return true;
11202
11203 *nonzero = true;
11204 return false;
11205
11206 case CONSTRUCTOR:
11207 {
11208 if (TREE_CLOBBER_P (init))
11209 return false;
11210
11211 unsigned HOST_WIDE_INT idx;
11212 tree elt;
11213
11214 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
11215 if (!initializer_zerop (elt, nonzero))
11216 return false;
11217
11218 return true;
11219 }
11220
11221 case MEM_REF:
11222 {
11223 tree arg = TREE_OPERAND (init, 0);
11224 if (TREE_CODE (arg) != ADDR_EXPR)
11225 return false;
11226 tree offset = TREE_OPERAND (init, 1);
11227 if (TREE_CODE (offset) != INTEGER_CST
11228 || !tree_fits_uhwi_p (offset))
11229 return false;
11230 off = tree_to_uhwi (offset);
11231 if (INT_MAX < off)
11232 return false;
11233 arg = TREE_OPERAND (arg, 0);
11234 if (TREE_CODE (arg) != STRING_CST)
11235 return false;
11236 init = arg;
11237 }
11238 /* Fall through. */
11239
11240 case STRING_CST:
11241 {
11242 gcc_assert (off <= INT_MAX);
11243
11244 int i = off;
11245 int n = TREE_STRING_LENGTH (init);
11246 if (n <= i)
11247 return false;
11248
11249 /* We need to loop through all elements to handle cases like
11250 "\0" and "\0foobar". */
11251 for (i = 0; i < n; ++i)
11252 if (TREE_STRING_POINTER (init)[i] != '\0')
11253 {
11254 *nonzero = true;
11255 return false;
11256 }
11257
11258 return true;
11259 }
11260
11261 default:
11262 return false;
11263 }
11264 }
11265
11266 /* Return true if EXPR is an initializer expression in which every element
11267 is a constant that is numerically equal to 0 or 1. The elements do not
11268 need to be equal to each other. */
11269
11270 bool
11271 initializer_each_zero_or_onep (const_tree expr)
11272 {
11273 STRIP_ANY_LOCATION_WRAPPER (expr);
11274
11275 switch (TREE_CODE (expr))
11276 {
11277 case INTEGER_CST:
11278 return integer_zerop (expr) || integer_onep (expr);
11279
11280 case REAL_CST:
11281 return real_zerop (expr) || real_onep (expr);
11282
11283 case VECTOR_CST:
11284 {
11285 unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
11286 if (VECTOR_CST_STEPPED_P (expr)
11287 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
11288 return false;
11289
11290 for (unsigned int i = 0; i < nelts; ++i)
11291 {
11292 tree elt = vector_cst_elt (expr, i);
11293 if (!initializer_each_zero_or_onep (elt))
11294 return false;
11295 }
11296
11297 return true;
11298 }
11299
11300 default:
11301 return false;
11302 }
11303 }
11304
11305 /* Check if vector VEC consists of all the equal elements and
11306 that the number of elements corresponds to the type of VEC.
11307 The function returns first element of the vector
11308 or NULL_TREE if the vector is not uniform. */
11309 tree
11310 uniform_vector_p (const_tree vec)
11311 {
11312 tree first, t;
11313 unsigned HOST_WIDE_INT i, nelts;
11314
11315 if (vec == NULL_TREE)
11316 return NULL_TREE;
11317
11318 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
11319
11320 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
11321 return TREE_OPERAND (vec, 0);
11322
11323 else if (TREE_CODE (vec) == VECTOR_CST)
11324 {
11325 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
11326 return VECTOR_CST_ENCODED_ELT (vec, 0);
11327 return NULL_TREE;
11328 }
11329
11330 else if (TREE_CODE (vec) == CONSTRUCTOR
11331 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
11332 {
11333 first = error_mark_node;
11334
11335 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
11336 {
11337 if (i == 0)
11338 {
11339 first = t;
11340 continue;
11341 }
11342 if (!operand_equal_p (first, t, 0))
11343 return NULL_TREE;
11344 }
11345 if (i != nelts)
11346 return NULL_TREE;
11347
11348 return first;
11349 }
11350
11351 return NULL_TREE;
11352 }
11353
11354 /* If the argument is INTEGER_CST, return it. If the argument is vector
11355 with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise
11356 return NULL_TREE.
11357 Look through location wrappers. */
11358
11359 tree
11360 uniform_integer_cst_p (tree t)
11361 {
11362 STRIP_ANY_LOCATION_WRAPPER (t);
11363
11364 if (TREE_CODE (t) == INTEGER_CST)
11365 return t;
11366
11367 if (VECTOR_TYPE_P (TREE_TYPE (t)))
11368 {
11369 t = uniform_vector_p (t);
11370 if (t && TREE_CODE (t) == INTEGER_CST)
11371 return t;
11372 }
11373
11374 return NULL_TREE;
11375 }
11376
11377 /* If VECTOR_CST T has a single nonzero element, return the index of that
11378 element, otherwise return -1. */
11379
11380 int
11381 single_nonzero_element (const_tree t)
11382 {
11383 unsigned HOST_WIDE_INT nelts;
11384 unsigned int repeat_nelts;
11385 if (VECTOR_CST_NELTS (t).is_constant (&nelts))
11386 repeat_nelts = nelts;
11387 else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
11388 {
11389 nelts = vector_cst_encoded_nelts (t);
11390 repeat_nelts = VECTOR_CST_NPATTERNS (t);
11391 }
11392 else
11393 return -1;
11394
11395 int res = -1;
11396 for (unsigned int i = 0; i < nelts; ++i)
11397 {
11398 tree elt = vector_cst_elt (t, i);
11399 if (!integer_zerop (elt) && !real_zerop (elt))
11400 {
11401 if (res >= 0 || i >= repeat_nelts)
11402 return -1;
11403 res = i;
11404 }
11405 }
11406 return res;
11407 }
11408
11409 /* Build an empty statement at location LOC. */
11410
11411 tree
11412 build_empty_stmt (location_t loc)
11413 {
11414 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
11415 SET_EXPR_LOCATION (t, loc);
11416 return t;
11417 }
11418
11419
11420 /* Build an OpenMP clause with code CODE. LOC is the location of the
11421 clause. */
11422
11423 tree
11424 build_omp_clause (location_t loc, enum omp_clause_code code)
11425 {
11426 tree t;
11427 int size, length;
11428
11429 length = omp_clause_num_ops[code];
11430 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
11431
11432 record_node_allocation_statistics (OMP_CLAUSE, size);
11433
11434 t = (tree) ggc_internal_alloc (size);
11435 memset (t, 0, size);
11436 TREE_SET_CODE (t, OMP_CLAUSE);
11437 OMP_CLAUSE_SET_CODE (t, code);
11438 OMP_CLAUSE_LOCATION (t) = loc;
11439
11440 return t;
11441 }
11442
11443 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
11444 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
11445 Except for the CODE and operand count field, other storage for the
11446 object is initialized to zeros. */
11447
11448 tree
11449 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
11450 {
11451 tree t;
11452 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
11453
11454 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
11455 gcc_assert (len >= 1);
11456
11457 record_node_allocation_statistics (code, length);
11458
11459 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
11460
11461 TREE_SET_CODE (t, code);
11462
11463 /* Can't use TREE_OPERAND to store the length because if checking is
11464 enabled, it will try to check the length before we store it. :-P */
11465 t->exp.operands[0] = build_int_cst (sizetype, len);
11466
11467 return t;
11468 }
11469
11470 /* Helper function for build_call_* functions; build a CALL_EXPR with
11471 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
11472 the argument slots. */
11473
11474 static tree
11475 build_call_1 (tree return_type, tree fn, int nargs)
11476 {
11477 tree t;
11478
11479 t = build_vl_exp (CALL_EXPR, nargs + 3);
11480 TREE_TYPE (t) = return_type;
11481 CALL_EXPR_FN (t) = fn;
11482 CALL_EXPR_STATIC_CHAIN (t) = NULL;
11483
11484 return t;
11485 }
11486
11487 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11488 FN and a null static chain slot. NARGS is the number of call arguments
11489 which are specified as "..." arguments. */
11490
11491 tree
11492 build_call_nary (tree return_type, tree fn, int nargs, ...)
11493 {
11494 tree ret;
11495 va_list args;
11496 va_start (args, nargs);
11497 ret = build_call_valist (return_type, fn, nargs, args);
11498 va_end (args);
11499 return ret;
11500 }
11501
11502 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11503 FN and a null static chain slot. NARGS is the number of call arguments
11504 which are specified as a va_list ARGS. */
11505
11506 tree
11507 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
11508 {
11509 tree t;
11510 int i;
11511
11512 t = build_call_1 (return_type, fn, nargs);
11513 for (i = 0; i < nargs; i++)
11514 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
11515 process_call_operands (t);
11516 return t;
11517 }
11518
11519 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11520 FN and a null static chain slot. NARGS is the number of call arguments
11521 which are specified as a tree array ARGS. */
11522
11523 tree
11524 build_call_array_loc (location_t loc, tree return_type, tree fn,
11525 int nargs, const tree *args)
11526 {
11527 tree t;
11528 int i;
11529
11530 t = build_call_1 (return_type, fn, nargs);
11531 for (i = 0; i < nargs; i++)
11532 CALL_EXPR_ARG (t, i) = args[i];
11533 process_call_operands (t);
11534 SET_EXPR_LOCATION (t, loc);
11535 return t;
11536 }
11537
11538 /* Like build_call_array, but takes a vec. */
11539
11540 tree
11541 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
11542 {
11543 tree ret, t;
11544 unsigned int ix;
11545
11546 ret = build_call_1 (return_type, fn, vec_safe_length (args));
11547 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
11548 CALL_EXPR_ARG (ret, ix) = t;
11549 process_call_operands (ret);
11550 return ret;
11551 }
11552
11553 /* Conveniently construct a function call expression. FNDECL names the
11554 function to be called and N arguments are passed in the array
11555 ARGARRAY. */
11556
11557 tree
11558 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11559 {
11560 tree fntype = TREE_TYPE (fndecl);
11561 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11562
11563 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11564 }
11565
11566 /* Conveniently construct a function call expression. FNDECL names the
11567 function to be called and the arguments are passed in the vector
11568 VEC. */
11569
11570 tree
11571 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11572 {
11573 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11574 vec_safe_address (vec));
11575 }
11576
11577
11578 /* Conveniently construct a function call expression. FNDECL names the
11579 function to be called, N is the number of arguments, and the "..."
11580 parameters are the argument expressions. */
11581
11582 tree
11583 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11584 {
11585 va_list ap;
11586 tree *argarray = XALLOCAVEC (tree, n);
11587 int i;
11588
11589 va_start (ap, n);
11590 for (i = 0; i < n; i++)
11591 argarray[i] = va_arg (ap, tree);
11592 va_end (ap);
11593 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11594 }
11595
11596 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11597 varargs macros aren't supported by all bootstrap compilers. */
11598
11599 tree
11600 build_call_expr (tree fndecl, int n, ...)
11601 {
11602 va_list ap;
11603 tree *argarray = XALLOCAVEC (tree, n);
11604 int i;
11605
11606 va_start (ap, n);
11607 for (i = 0; i < n; i++)
11608 argarray[i] = va_arg (ap, tree);
11609 va_end (ap);
11610 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11611 }
11612
11613 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11614 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11615 It will get gimplified later into an ordinary internal function. */
11616
11617 tree
11618 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11619 tree type, int n, const tree *args)
11620 {
11621 tree t = build_call_1 (type, NULL_TREE, n);
11622 for (int i = 0; i < n; ++i)
11623 CALL_EXPR_ARG (t, i) = args[i];
11624 SET_EXPR_LOCATION (t, loc);
11625 CALL_EXPR_IFN (t) = ifn;
11626 return t;
11627 }
11628
11629 /* Build internal call expression. This is just like CALL_EXPR, except
11630 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11631 internal function. */
11632
11633 tree
11634 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11635 tree type, int n, ...)
11636 {
11637 va_list ap;
11638 tree *argarray = XALLOCAVEC (tree, n);
11639 int i;
11640
11641 va_start (ap, n);
11642 for (i = 0; i < n; i++)
11643 argarray[i] = va_arg (ap, tree);
11644 va_end (ap);
11645 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11646 }
11647
11648 /* Return a function call to FN, if the target is guaranteed to support it,
11649 or null otherwise.
11650
11651 N is the number of arguments, passed in the "...", and TYPE is the
11652 type of the return value. */
11653
11654 tree
11655 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11656 int n, ...)
11657 {
11658 va_list ap;
11659 tree *argarray = XALLOCAVEC (tree, n);
11660 int i;
11661
11662 va_start (ap, n);
11663 for (i = 0; i < n; i++)
11664 argarray[i] = va_arg (ap, tree);
11665 va_end (ap);
11666 if (internal_fn_p (fn))
11667 {
11668 internal_fn ifn = as_internal_fn (fn);
11669 if (direct_internal_fn_p (ifn))
11670 {
11671 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11672 if (!direct_internal_fn_supported_p (ifn, types,
11673 OPTIMIZE_FOR_BOTH))
11674 return NULL_TREE;
11675 }
11676 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11677 }
11678 else
11679 {
11680 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11681 if (!fndecl)
11682 return NULL_TREE;
11683 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11684 }
11685 }
11686
11687 /* Return a function call to the appropriate builtin alloca variant.
11688
11689 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11690 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11691 bound for SIZE in case it is not a fixed value. */
11692
11693 tree
11694 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11695 {
11696 if (max_size >= 0)
11697 {
11698 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11699 return
11700 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11701 }
11702 else if (align > 0)
11703 {
11704 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11705 return build_call_expr (t, 2, size, size_int (align));
11706 }
11707 else
11708 {
11709 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11710 return build_call_expr (t, 1, size);
11711 }
11712 }
11713
11714 /* Create a new constant string literal consisting of elements of type
11715 ELTYPE and return a tree node representing char* pointer to it as
11716 an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). The STRING_CST value is
11717 the LEN bytes at STR (the representation of the string, which may
11718 be wide). */
11719
11720 tree
11721 build_string_literal (int len, const char *str,
11722 tree eltype /* = char_type_node */)
11723 {
11724 tree t = build_string (len, str);
11725 tree index = build_index_type (size_int (len - 1));
11726 eltype = build_type_variant (eltype, 1, 0);
11727 tree type = build_array_type (eltype, index);
11728 TREE_TYPE (t) = type;
11729 TREE_CONSTANT (t) = 1;
11730 TREE_READONLY (t) = 1;
11731 TREE_STATIC (t) = 1;
11732
11733 type = build_pointer_type (eltype);
11734 t = build1 (ADDR_EXPR, type,
11735 build4 (ARRAY_REF, eltype,
11736 t, integer_zero_node, NULL_TREE, NULL_TREE));
11737 return t;
11738 }
11739
11740
11741
11742 /* Return true if T (assumed to be a DECL) must be assigned a memory
11743 location. */
11744
11745 bool
11746 needs_to_live_in_memory (const_tree t)
11747 {
11748 return (TREE_ADDRESSABLE (t)
11749 || is_global_var (t)
11750 || (TREE_CODE (t) == RESULT_DECL
11751 && !DECL_BY_REFERENCE (t)
11752 && aggregate_value_p (t, current_function_decl)));
11753 }
11754
11755 /* Return value of a constant X and sign-extend it. */
11756
11757 HOST_WIDE_INT
11758 int_cst_value (const_tree x)
11759 {
11760 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11761 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11762
11763 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11764 gcc_assert (cst_and_fits_in_hwi (x));
11765
11766 if (bits < HOST_BITS_PER_WIDE_INT)
11767 {
11768 bool negative = ((val >> (bits - 1)) & 1) != 0;
11769 if (negative)
11770 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11771 else
11772 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11773 }
11774
11775 return val;
11776 }
11777
11778 /* If TYPE is an integral or pointer type, return an integer type with
11779 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11780 if TYPE is already an integer type of signedness UNSIGNEDP.
11781 If TYPE is a floating-point type, return an integer type with the same
11782 bitsize and with the signedness given by UNSIGNEDP; this is useful
11783 when doing bit-level operations on a floating-point value. */
11784
11785 tree
11786 signed_or_unsigned_type_for (int unsignedp, tree type)
11787 {
11788 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11789 return type;
11790
11791 if (TREE_CODE (type) == VECTOR_TYPE)
11792 {
11793 tree inner = TREE_TYPE (type);
11794 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11795 if (!inner2)
11796 return NULL_TREE;
11797 if (inner == inner2)
11798 return type;
11799 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11800 }
11801
11802 if (TREE_CODE (type) == COMPLEX_TYPE)
11803 {
11804 tree inner = TREE_TYPE (type);
11805 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11806 if (!inner2)
11807 return NULL_TREE;
11808 if (inner == inner2)
11809 return type;
11810 return build_complex_type (inner2);
11811 }
11812
11813 unsigned int bits;
11814 if (INTEGRAL_TYPE_P (type)
11815 || POINTER_TYPE_P (type)
11816 || TREE_CODE (type) == OFFSET_TYPE)
11817 bits = TYPE_PRECISION (type);
11818 else if (TREE_CODE (type) == REAL_TYPE)
11819 bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
11820 else
11821 return NULL_TREE;
11822
11823 return build_nonstandard_integer_type (bits, unsignedp);
11824 }
11825
11826 /* If TYPE is an integral or pointer type, return an integer type with
11827 the same precision which is unsigned, or itself if TYPE is already an
11828 unsigned integer type. If TYPE is a floating-point type, return an
11829 unsigned integer type with the same bitsize as TYPE. */
11830
11831 tree
11832 unsigned_type_for (tree type)
11833 {
11834 return signed_or_unsigned_type_for (1, type);
11835 }
11836
11837 /* If TYPE is an integral or pointer type, return an integer type with
11838 the same precision which is signed, or itself if TYPE is already a
11839 signed integer type. If TYPE is a floating-point type, return a
11840 signed integer type with the same bitsize as TYPE. */
11841
11842 tree
11843 signed_type_for (tree type)
11844 {
11845 return signed_or_unsigned_type_for (0, type);
11846 }
11847
11848 /* If TYPE is a vector type, return a signed integer vector type with the
11849 same width and number of subparts. Otherwise return boolean_type_node. */
11850
11851 tree
11852 truth_type_for (tree type)
11853 {
11854 if (TREE_CODE (type) == VECTOR_TYPE)
11855 {
11856 if (VECTOR_BOOLEAN_TYPE_P (type))
11857 return type;
11858 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11859 GET_MODE_SIZE (TYPE_MODE (type)));
11860 }
11861 else
11862 return boolean_type_node;
11863 }
11864
11865 /* Returns the largest value obtainable by casting something in INNER type to
11866 OUTER type. */
11867
11868 tree
11869 upper_bound_in_type (tree outer, tree inner)
11870 {
11871 unsigned int det = 0;
11872 unsigned oprec = TYPE_PRECISION (outer);
11873 unsigned iprec = TYPE_PRECISION (inner);
11874 unsigned prec;
11875
11876 /* Compute a unique number for every combination. */
11877 det |= (oprec > iprec) ? 4 : 0;
11878 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11879 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11880
11881 /* Determine the exponent to use. */
11882 switch (det)
11883 {
11884 case 0:
11885 case 1:
11886 /* oprec <= iprec, outer: signed, inner: don't care. */
11887 prec = oprec - 1;
11888 break;
11889 case 2:
11890 case 3:
11891 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11892 prec = oprec;
11893 break;
11894 case 4:
11895 /* oprec > iprec, outer: signed, inner: signed. */
11896 prec = iprec - 1;
11897 break;
11898 case 5:
11899 /* oprec > iprec, outer: signed, inner: unsigned. */
11900 prec = iprec;
11901 break;
11902 case 6:
11903 /* oprec > iprec, outer: unsigned, inner: signed. */
11904 prec = oprec;
11905 break;
11906 case 7:
11907 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11908 prec = iprec;
11909 break;
11910 default:
11911 gcc_unreachable ();
11912 }
11913
11914 return wide_int_to_tree (outer,
11915 wi::mask (prec, false, TYPE_PRECISION (outer)));
11916 }
11917
11918 /* Returns the smallest value obtainable by casting something in INNER type to
11919 OUTER type. */
11920
11921 tree
11922 lower_bound_in_type (tree outer, tree inner)
11923 {
11924 unsigned oprec = TYPE_PRECISION (outer);
11925 unsigned iprec = TYPE_PRECISION (inner);
11926
11927 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11928 and obtain 0. */
11929 if (TYPE_UNSIGNED (outer)
11930 /* If we are widening something of an unsigned type, OUTER type
11931 contains all values of INNER type. In particular, both INNER
11932 and OUTER types have zero in common. */
11933 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11934 return build_int_cst (outer, 0);
11935 else
11936 {
11937 /* If we are widening a signed type to another signed type, we
11938 want to obtain -2^^(iprec-1). If we are keeping the
11939 precision or narrowing to a signed type, we want to obtain
11940 -2^(oprec-1). */
11941 unsigned prec = oprec > iprec ? iprec : oprec;
11942 return wide_int_to_tree (outer,
11943 wi::mask (prec - 1, true,
11944 TYPE_PRECISION (outer)));
11945 }
11946 }
11947
11948 /* Return nonzero if two operands that are suitable for PHI nodes are
11949 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11950 SSA_NAME or invariant. Note that this is strictly an optimization.
11951 That is, callers of this function can directly call operand_equal_p
11952 and get the same result, only slower. */
11953
11954 int
11955 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11956 {
11957 if (arg0 == arg1)
11958 return 1;
11959 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11960 return 0;
11961 return operand_equal_p (arg0, arg1, 0);
11962 }
11963
11964 /* Returns number of zeros at the end of binary representation of X. */
11965
11966 tree
11967 num_ending_zeros (const_tree x)
11968 {
11969 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11970 }
11971
11972
11973 #define WALK_SUBTREE(NODE) \
11974 do \
11975 { \
11976 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11977 if (result) \
11978 return result; \
11979 } \
11980 while (0)
11981
11982 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11983 be walked whenever a type is seen in the tree. Rest of operands and return
11984 value are as for walk_tree. */
11985
11986 static tree
11987 walk_type_fields (tree type, walk_tree_fn func, void *data,
11988 hash_set<tree> *pset, walk_tree_lh lh)
11989 {
11990 tree result = NULL_TREE;
11991
11992 switch (TREE_CODE (type))
11993 {
11994 case POINTER_TYPE:
11995 case REFERENCE_TYPE:
11996 case VECTOR_TYPE:
11997 /* We have to worry about mutually recursive pointers. These can't
11998 be written in C. They can in Ada. It's pathological, but
11999 there's an ACATS test (c38102a) that checks it. Deal with this
12000 by checking if we're pointing to another pointer, that one
12001 points to another pointer, that one does too, and we have no htab.
12002 If so, get a hash table. We check three levels deep to avoid
12003 the cost of the hash table if we don't need one. */
12004 if (POINTER_TYPE_P (TREE_TYPE (type))
12005 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
12006 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
12007 && !pset)
12008 {
12009 result = walk_tree_without_duplicates (&TREE_TYPE (type),
12010 func, data);
12011 if (result)
12012 return result;
12013
12014 break;
12015 }
12016
12017 /* fall through */
12018
12019 case COMPLEX_TYPE:
12020 WALK_SUBTREE (TREE_TYPE (type));
12021 break;
12022
12023 case METHOD_TYPE:
12024 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
12025
12026 /* Fall through. */
12027
12028 case FUNCTION_TYPE:
12029 WALK_SUBTREE (TREE_TYPE (type));
12030 {
12031 tree arg;
12032
12033 /* We never want to walk into default arguments. */
12034 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
12035 WALK_SUBTREE (TREE_VALUE (arg));
12036 }
12037 break;
12038
12039 case ARRAY_TYPE:
12040 /* Don't follow this nodes's type if a pointer for fear that
12041 we'll have infinite recursion. If we have a PSET, then we
12042 need not fear. */
12043 if (pset
12044 || (!POINTER_TYPE_P (TREE_TYPE (type))
12045 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
12046 WALK_SUBTREE (TREE_TYPE (type));
12047 WALK_SUBTREE (TYPE_DOMAIN (type));
12048 break;
12049
12050 case OFFSET_TYPE:
12051 WALK_SUBTREE (TREE_TYPE (type));
12052 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
12053 break;
12054
12055 default:
12056 break;
12057 }
12058
12059 return NULL_TREE;
12060 }
12061
12062 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
12063 called with the DATA and the address of each sub-tree. If FUNC returns a
12064 non-NULL value, the traversal is stopped, and the value returned by FUNC
12065 is returned. If PSET is non-NULL it is used to record the nodes visited,
12066 and to avoid visiting a node more than once. */
12067
12068 tree
12069 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
12070 hash_set<tree> *pset, walk_tree_lh lh)
12071 {
12072 enum tree_code code;
12073 int walk_subtrees;
12074 tree result;
12075
12076 #define WALK_SUBTREE_TAIL(NODE) \
12077 do \
12078 { \
12079 tp = & (NODE); \
12080 goto tail_recurse; \
12081 } \
12082 while (0)
12083
12084 tail_recurse:
12085 /* Skip empty subtrees. */
12086 if (!*tp)
12087 return NULL_TREE;
12088
12089 /* Don't walk the same tree twice, if the user has requested
12090 that we avoid doing so. */
12091 if (pset && pset->add (*tp))
12092 return NULL_TREE;
12093
12094 /* Call the function. */
12095 walk_subtrees = 1;
12096 result = (*func) (tp, &walk_subtrees, data);
12097
12098 /* If we found something, return it. */
12099 if (result)
12100 return result;
12101
12102 code = TREE_CODE (*tp);
12103
12104 /* Even if we didn't, FUNC may have decided that there was nothing
12105 interesting below this point in the tree. */
12106 if (!walk_subtrees)
12107 {
12108 /* But we still need to check our siblings. */
12109 if (code == TREE_LIST)
12110 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12111 else if (code == OMP_CLAUSE)
12112 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12113 else
12114 return NULL_TREE;
12115 }
12116
12117 if (lh)
12118 {
12119 result = (*lh) (tp, &walk_subtrees, func, data, pset);
12120 if (result || !walk_subtrees)
12121 return result;
12122 }
12123
12124 switch (code)
12125 {
12126 case ERROR_MARK:
12127 case IDENTIFIER_NODE:
12128 case INTEGER_CST:
12129 case REAL_CST:
12130 case FIXED_CST:
12131 case VECTOR_CST:
12132 case STRING_CST:
12133 case BLOCK:
12134 case PLACEHOLDER_EXPR:
12135 case SSA_NAME:
12136 case FIELD_DECL:
12137 case RESULT_DECL:
12138 /* None of these have subtrees other than those already walked
12139 above. */
12140 break;
12141
12142 case TREE_LIST:
12143 WALK_SUBTREE (TREE_VALUE (*tp));
12144 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12145 break;
12146
12147 case TREE_VEC:
12148 {
12149 int len = TREE_VEC_LENGTH (*tp);
12150
12151 if (len == 0)
12152 break;
12153
12154 /* Walk all elements but the first. */
12155 while (--len)
12156 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
12157
12158 /* Now walk the first one as a tail call. */
12159 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
12160 }
12161
12162 case COMPLEX_CST:
12163 WALK_SUBTREE (TREE_REALPART (*tp));
12164 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
12165
12166 case CONSTRUCTOR:
12167 {
12168 unsigned HOST_WIDE_INT idx;
12169 constructor_elt *ce;
12170
12171 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
12172 idx++)
12173 WALK_SUBTREE (ce->value);
12174 }
12175 break;
12176
12177 case SAVE_EXPR:
12178 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
12179
12180 case BIND_EXPR:
12181 {
12182 tree decl;
12183 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
12184 {
12185 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
12186 into declarations that are just mentioned, rather than
12187 declared; they don't really belong to this part of the tree.
12188 And, we can see cycles: the initializer for a declaration
12189 can refer to the declaration itself. */
12190 WALK_SUBTREE (DECL_INITIAL (decl));
12191 WALK_SUBTREE (DECL_SIZE (decl));
12192 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
12193 }
12194 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
12195 }
12196
12197 case STATEMENT_LIST:
12198 {
12199 tree_stmt_iterator i;
12200 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
12201 WALK_SUBTREE (*tsi_stmt_ptr (i));
12202 }
12203 break;
12204
12205 case OMP_CLAUSE:
12206 switch (OMP_CLAUSE_CODE (*tp))
12207 {
12208 case OMP_CLAUSE_GANG:
12209 case OMP_CLAUSE__GRIDDIM_:
12210 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12211 /* FALLTHRU */
12212
12213 case OMP_CLAUSE_ASYNC:
12214 case OMP_CLAUSE_WAIT:
12215 case OMP_CLAUSE_WORKER:
12216 case OMP_CLAUSE_VECTOR:
12217 case OMP_CLAUSE_NUM_GANGS:
12218 case OMP_CLAUSE_NUM_WORKERS:
12219 case OMP_CLAUSE_VECTOR_LENGTH:
12220 case OMP_CLAUSE_PRIVATE:
12221 case OMP_CLAUSE_SHARED:
12222 case OMP_CLAUSE_FIRSTPRIVATE:
12223 case OMP_CLAUSE_COPYIN:
12224 case OMP_CLAUSE_COPYPRIVATE:
12225 case OMP_CLAUSE_FINAL:
12226 case OMP_CLAUSE_IF:
12227 case OMP_CLAUSE_NUM_THREADS:
12228 case OMP_CLAUSE_SCHEDULE:
12229 case OMP_CLAUSE_UNIFORM:
12230 case OMP_CLAUSE_DEPEND:
12231 case OMP_CLAUSE_NONTEMPORAL:
12232 case OMP_CLAUSE_NUM_TEAMS:
12233 case OMP_CLAUSE_THREAD_LIMIT:
12234 case OMP_CLAUSE_DEVICE:
12235 case OMP_CLAUSE_DIST_SCHEDULE:
12236 case OMP_CLAUSE_SAFELEN:
12237 case OMP_CLAUSE_SIMDLEN:
12238 case OMP_CLAUSE_ORDERED:
12239 case OMP_CLAUSE_PRIORITY:
12240 case OMP_CLAUSE_GRAINSIZE:
12241 case OMP_CLAUSE_NUM_TASKS:
12242 case OMP_CLAUSE_HINT:
12243 case OMP_CLAUSE_TO_DECLARE:
12244 case OMP_CLAUSE_LINK:
12245 case OMP_CLAUSE_USE_DEVICE_PTR:
12246 case OMP_CLAUSE_IS_DEVICE_PTR:
12247 case OMP_CLAUSE__LOOPTEMP_:
12248 case OMP_CLAUSE__REDUCTEMP_:
12249 case OMP_CLAUSE__SIMDUID_:
12250 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
12251 /* FALLTHRU */
12252
12253 case OMP_CLAUSE_INDEPENDENT:
12254 case OMP_CLAUSE_NOWAIT:
12255 case OMP_CLAUSE_DEFAULT:
12256 case OMP_CLAUSE_UNTIED:
12257 case OMP_CLAUSE_MERGEABLE:
12258 case OMP_CLAUSE_PROC_BIND:
12259 case OMP_CLAUSE_INBRANCH:
12260 case OMP_CLAUSE_NOTINBRANCH:
12261 case OMP_CLAUSE_FOR:
12262 case OMP_CLAUSE_PARALLEL:
12263 case OMP_CLAUSE_SECTIONS:
12264 case OMP_CLAUSE_TASKGROUP:
12265 case OMP_CLAUSE_NOGROUP:
12266 case OMP_CLAUSE_THREADS:
12267 case OMP_CLAUSE_SIMD:
12268 case OMP_CLAUSE_DEFAULTMAP:
12269 case OMP_CLAUSE_AUTO:
12270 case OMP_CLAUSE_SEQ:
12271 case OMP_CLAUSE_TILE:
12272 case OMP_CLAUSE__SIMT_:
12273 case OMP_CLAUSE_IF_PRESENT:
12274 case OMP_CLAUSE_FINALIZE:
12275 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12276
12277 case OMP_CLAUSE_LASTPRIVATE:
12278 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12279 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
12280 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12281
12282 case OMP_CLAUSE_COLLAPSE:
12283 {
12284 int i;
12285 for (i = 0; i < 3; i++)
12286 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12287 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12288 }
12289
12290 case OMP_CLAUSE_LINEAR:
12291 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12292 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
12293 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
12294 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12295
12296 case OMP_CLAUSE_ALIGNED:
12297 case OMP_CLAUSE_FROM:
12298 case OMP_CLAUSE_TO:
12299 case OMP_CLAUSE_MAP:
12300 case OMP_CLAUSE__CACHE_:
12301 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12302 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12303 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12304
12305 case OMP_CLAUSE_REDUCTION:
12306 case OMP_CLAUSE_TASK_REDUCTION:
12307 case OMP_CLAUSE_IN_REDUCTION:
12308 {
12309 int i;
12310 for (i = 0; i < 5; i++)
12311 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12312 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12313 }
12314
12315 default:
12316 gcc_unreachable ();
12317 }
12318 break;
12319
12320 case TARGET_EXPR:
12321 {
12322 int i, len;
12323
12324 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
12325 But, we only want to walk once. */
12326 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
12327 for (i = 0; i < len; ++i)
12328 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12329 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
12330 }
12331
12332 case DECL_EXPR:
12333 /* If this is a TYPE_DECL, walk into the fields of the type that it's
12334 defining. We only want to walk into these fields of a type in this
12335 case and not in the general case of a mere reference to the type.
12336
12337 The criterion is as follows: if the field can be an expression, it
12338 must be walked only here. This should be in keeping with the fields
12339 that are directly gimplified in gimplify_type_sizes in order for the
12340 mark/copy-if-shared/unmark machinery of the gimplifier to work with
12341 variable-sized types.
12342
12343 Note that DECLs get walked as part of processing the BIND_EXPR. */
12344 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
12345 {
12346 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
12347 if (TREE_CODE (*type_p) == ERROR_MARK)
12348 return NULL_TREE;
12349
12350 /* Call the function for the type. See if it returns anything or
12351 doesn't want us to continue. If we are to continue, walk both
12352 the normal fields and those for the declaration case. */
12353 result = (*func) (type_p, &walk_subtrees, data);
12354 if (result || !walk_subtrees)
12355 return result;
12356
12357 /* But do not walk a pointed-to type since it may itself need to
12358 be walked in the declaration case if it isn't anonymous. */
12359 if (!POINTER_TYPE_P (*type_p))
12360 {
12361 result = walk_type_fields (*type_p, func, data, pset, lh);
12362 if (result)
12363 return result;
12364 }
12365
12366 /* If this is a record type, also walk the fields. */
12367 if (RECORD_OR_UNION_TYPE_P (*type_p))
12368 {
12369 tree field;
12370
12371 for (field = TYPE_FIELDS (*type_p); field;
12372 field = DECL_CHAIN (field))
12373 {
12374 /* We'd like to look at the type of the field, but we can
12375 easily get infinite recursion. So assume it's pointed
12376 to elsewhere in the tree. Also, ignore things that
12377 aren't fields. */
12378 if (TREE_CODE (field) != FIELD_DECL)
12379 continue;
12380
12381 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
12382 WALK_SUBTREE (DECL_SIZE (field));
12383 WALK_SUBTREE (DECL_SIZE_UNIT (field));
12384 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
12385 WALK_SUBTREE (DECL_QUALIFIER (field));
12386 }
12387 }
12388
12389 /* Same for scalar types. */
12390 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
12391 || TREE_CODE (*type_p) == ENUMERAL_TYPE
12392 || TREE_CODE (*type_p) == INTEGER_TYPE
12393 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
12394 || TREE_CODE (*type_p) == REAL_TYPE)
12395 {
12396 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
12397 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
12398 }
12399
12400 WALK_SUBTREE (TYPE_SIZE (*type_p));
12401 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
12402 }
12403 /* FALLTHRU */
12404
12405 default:
12406 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
12407 {
12408 int i, len;
12409
12410 /* Walk over all the sub-trees of this operand. */
12411 len = TREE_OPERAND_LENGTH (*tp);
12412
12413 /* Go through the subtrees. We need to do this in forward order so
12414 that the scope of a FOR_EXPR is handled properly. */
12415 if (len)
12416 {
12417 for (i = 0; i < len - 1; ++i)
12418 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12419 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
12420 }
12421 }
12422 /* If this is a type, walk the needed fields in the type. */
12423 else if (TYPE_P (*tp))
12424 return walk_type_fields (*tp, func, data, pset, lh);
12425 break;
12426 }
12427
12428 /* We didn't find what we were looking for. */
12429 return NULL_TREE;
12430
12431 #undef WALK_SUBTREE_TAIL
12432 }
12433 #undef WALK_SUBTREE
12434
12435 /* Like walk_tree, but does not walk duplicate nodes more than once. */
12436
12437 tree
12438 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
12439 walk_tree_lh lh)
12440 {
12441 tree result;
12442
12443 hash_set<tree> pset;
12444 result = walk_tree_1 (tp, func, data, &pset, lh);
12445 return result;
12446 }
12447
12448
12449 tree
12450 tree_block (tree t)
12451 {
12452 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12453
12454 if (IS_EXPR_CODE_CLASS (c))
12455 return LOCATION_BLOCK (t->exp.locus);
12456 gcc_unreachable ();
12457 return NULL;
12458 }
12459
12460 void
12461 tree_set_block (tree t, tree b)
12462 {
12463 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12464
12465 if (IS_EXPR_CODE_CLASS (c))
12466 {
12467 t->exp.locus = set_block (t->exp.locus, b);
12468 }
12469 else
12470 gcc_unreachable ();
12471 }
12472
12473 /* Create a nameless artificial label and put it in the current
12474 function context. The label has a location of LOC. Returns the
12475 newly created label. */
12476
12477 tree
12478 create_artificial_label (location_t loc)
12479 {
12480 tree lab = build_decl (loc,
12481 LABEL_DECL, NULL_TREE, void_type_node);
12482
12483 DECL_ARTIFICIAL (lab) = 1;
12484 DECL_IGNORED_P (lab) = 1;
12485 DECL_CONTEXT (lab) = current_function_decl;
12486 return lab;
12487 }
12488
12489 /* Given a tree, try to return a useful variable name that we can use
12490 to prefix a temporary that is being assigned the value of the tree.
12491 I.E. given <temp> = &A, return A. */
12492
12493 const char *
12494 get_name (tree t)
12495 {
12496 tree stripped_decl;
12497
12498 stripped_decl = t;
12499 STRIP_NOPS (stripped_decl);
12500 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
12501 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
12502 else if (TREE_CODE (stripped_decl) == SSA_NAME)
12503 {
12504 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
12505 if (!name)
12506 return NULL;
12507 return IDENTIFIER_POINTER (name);
12508 }
12509 else
12510 {
12511 switch (TREE_CODE (stripped_decl))
12512 {
12513 case ADDR_EXPR:
12514 return get_name (TREE_OPERAND (stripped_decl, 0));
12515 default:
12516 return NULL;
12517 }
12518 }
12519 }
12520
12521 /* Return true if TYPE has a variable argument list. */
12522
12523 bool
12524 stdarg_p (const_tree fntype)
12525 {
12526 function_args_iterator args_iter;
12527 tree n = NULL_TREE, t;
12528
12529 if (!fntype)
12530 return false;
12531
12532 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
12533 {
12534 n = t;
12535 }
12536
12537 return n != NULL_TREE && n != void_type_node;
12538 }
12539
12540 /* Return true if TYPE has a prototype. */
12541
12542 bool
12543 prototype_p (const_tree fntype)
12544 {
12545 tree t;
12546
12547 gcc_assert (fntype != NULL_TREE);
12548
12549 t = TYPE_ARG_TYPES (fntype);
12550 return (t != NULL_TREE);
12551 }
12552
12553 /* If BLOCK is inlined from an __attribute__((__artificial__))
12554 routine, return pointer to location from where it has been
12555 called. */
12556 location_t *
12557 block_nonartificial_location (tree block)
12558 {
12559 location_t *ret = NULL;
12560
12561 while (block && TREE_CODE (block) == BLOCK
12562 && BLOCK_ABSTRACT_ORIGIN (block))
12563 {
12564 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12565 if (TREE_CODE (ao) == FUNCTION_DECL)
12566 {
12567 /* If AO is an artificial inline, point RET to the
12568 call site locus at which it has been inlined and continue
12569 the loop, in case AO's caller is also an artificial
12570 inline. */
12571 if (DECL_DECLARED_INLINE_P (ao)
12572 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
12573 ret = &BLOCK_SOURCE_LOCATION (block);
12574 else
12575 break;
12576 }
12577 else if (TREE_CODE (ao) != BLOCK)
12578 break;
12579
12580 block = BLOCK_SUPERCONTEXT (block);
12581 }
12582 return ret;
12583 }
12584
12585
12586 /* If EXP is inlined from an __attribute__((__artificial__))
12587 function, return the location of the original call expression. */
12588
12589 location_t
12590 tree_nonartificial_location (tree exp)
12591 {
12592 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12593
12594 if (loc)
12595 return *loc;
12596 else
12597 return EXPR_LOCATION (exp);
12598 }
12599
12600
12601 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12602 nodes. */
12603
12604 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12605
12606 hashval_t
12607 cl_option_hasher::hash (tree x)
12608 {
12609 const_tree const t = x;
12610 const char *p;
12611 size_t i;
12612 size_t len = 0;
12613 hashval_t hash = 0;
12614
12615 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12616 {
12617 p = (const char *)TREE_OPTIMIZATION (t);
12618 len = sizeof (struct cl_optimization);
12619 }
12620
12621 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12622 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12623
12624 else
12625 gcc_unreachable ();
12626
12627 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12628 something else. */
12629 for (i = 0; i < len; i++)
12630 if (p[i])
12631 hash = (hash << 4) ^ ((i << 2) | p[i]);
12632
12633 return hash;
12634 }
12635
12636 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12637 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12638 same. */
12639
12640 bool
12641 cl_option_hasher::equal (tree x, tree y)
12642 {
12643 const_tree const xt = x;
12644 const_tree const yt = y;
12645
12646 if (TREE_CODE (xt) != TREE_CODE (yt))
12647 return 0;
12648
12649 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12650 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12651 TREE_OPTIMIZATION (yt));
12652 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12653 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12654 TREE_TARGET_OPTION (yt));
12655 else
12656 gcc_unreachable ();
12657 }
12658
12659 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
12660
12661 tree
12662 build_optimization_node (struct gcc_options *opts)
12663 {
12664 tree t;
12665
12666 /* Use the cache of optimization nodes. */
12667
12668 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12669 opts);
12670
12671 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12672 t = *slot;
12673 if (!t)
12674 {
12675 /* Insert this one into the hash table. */
12676 t = cl_optimization_node;
12677 *slot = t;
12678
12679 /* Make a new node for next time round. */
12680 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12681 }
12682
12683 return t;
12684 }
12685
12686 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12687
12688 tree
12689 build_target_option_node (struct gcc_options *opts)
12690 {
12691 tree t;
12692
12693 /* Use the cache of optimization nodes. */
12694
12695 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12696 opts);
12697
12698 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12699 t = *slot;
12700 if (!t)
12701 {
12702 /* Insert this one into the hash table. */
12703 t = cl_target_option_node;
12704 *slot = t;
12705
12706 /* Make a new node for next time round. */
12707 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12708 }
12709
12710 return t;
12711 }
12712
12713 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12714 so that they aren't saved during PCH writing. */
12715
12716 void
12717 prepare_target_option_nodes_for_pch (void)
12718 {
12719 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12720 for (; iter != cl_option_hash_table->end (); ++iter)
12721 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12722 TREE_TARGET_GLOBALS (*iter) = NULL;
12723 }
12724
12725 /* Determine the "ultimate origin" of a block. */
12726
12727 tree
12728 block_ultimate_origin (const_tree block)
12729 {
12730 tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12731
12732 if (origin == NULL_TREE)
12733 return NULL_TREE;
12734 else
12735 {
12736 gcc_checking_assert ((DECL_P (origin)
12737 && DECL_ORIGIN (origin) == origin)
12738 || BLOCK_ORIGIN (origin) == origin);
12739 return origin;
12740 }
12741 }
12742
12743 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12744 no instruction. */
12745
12746 bool
12747 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12748 {
12749 /* Do not strip casts into or out of differing address spaces. */
12750 if (POINTER_TYPE_P (outer_type)
12751 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12752 {
12753 if (!POINTER_TYPE_P (inner_type)
12754 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12755 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12756 return false;
12757 }
12758 else if (POINTER_TYPE_P (inner_type)
12759 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12760 {
12761 /* We already know that outer_type is not a pointer with
12762 a non-generic address space. */
12763 return false;
12764 }
12765
12766 /* Use precision rather then machine mode when we can, which gives
12767 the correct answer even for submode (bit-field) types. */
12768 if ((INTEGRAL_TYPE_P (outer_type)
12769 || POINTER_TYPE_P (outer_type)
12770 || TREE_CODE (outer_type) == OFFSET_TYPE)
12771 && (INTEGRAL_TYPE_P (inner_type)
12772 || POINTER_TYPE_P (inner_type)
12773 || TREE_CODE (inner_type) == OFFSET_TYPE))
12774 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12775
12776 /* Otherwise fall back on comparing machine modes (e.g. for
12777 aggregate types, floats). */
12778 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12779 }
12780
12781 /* Return true iff conversion in EXP generates no instruction. Mark
12782 it inline so that we fully inline into the stripping functions even
12783 though we have two uses of this function. */
12784
12785 static inline bool
12786 tree_nop_conversion (const_tree exp)
12787 {
12788 tree outer_type, inner_type;
12789
12790 if (location_wrapper_p (exp))
12791 return true;
12792 if (!CONVERT_EXPR_P (exp)
12793 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12794 return false;
12795 if (TREE_OPERAND (exp, 0) == error_mark_node)
12796 return false;
12797
12798 outer_type = TREE_TYPE (exp);
12799 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12800
12801 if (!inner_type)
12802 return false;
12803
12804 return tree_nop_conversion_p (outer_type, inner_type);
12805 }
12806
12807 /* Return true iff conversion in EXP generates no instruction. Don't
12808 consider conversions changing the signedness. */
12809
12810 static bool
12811 tree_sign_nop_conversion (const_tree exp)
12812 {
12813 tree outer_type, inner_type;
12814
12815 if (!tree_nop_conversion (exp))
12816 return false;
12817
12818 outer_type = TREE_TYPE (exp);
12819 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12820
12821 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12822 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12823 }
12824
12825 /* Strip conversions from EXP according to tree_nop_conversion and
12826 return the resulting expression. */
12827
12828 tree
12829 tree_strip_nop_conversions (tree exp)
12830 {
12831 while (tree_nop_conversion (exp))
12832 exp = TREE_OPERAND (exp, 0);
12833 return exp;
12834 }
12835
12836 /* Strip conversions from EXP according to tree_sign_nop_conversion
12837 and return the resulting expression. */
12838
12839 tree
12840 tree_strip_sign_nop_conversions (tree exp)
12841 {
12842 while (tree_sign_nop_conversion (exp))
12843 exp = TREE_OPERAND (exp, 0);
12844 return exp;
12845 }
12846
12847 /* Avoid any floating point extensions from EXP. */
12848 tree
12849 strip_float_extensions (tree exp)
12850 {
12851 tree sub, expt, subt;
12852
12853 /* For floating point constant look up the narrowest type that can hold
12854 it properly and handle it like (type)(narrowest_type)constant.
12855 This way we can optimize for instance a=a*2.0 where "a" is float
12856 but 2.0 is double constant. */
12857 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12858 {
12859 REAL_VALUE_TYPE orig;
12860 tree type = NULL;
12861
12862 orig = TREE_REAL_CST (exp);
12863 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12864 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12865 type = float_type_node;
12866 else if (TYPE_PRECISION (TREE_TYPE (exp))
12867 > TYPE_PRECISION (double_type_node)
12868 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12869 type = double_type_node;
12870 if (type)
12871 return build_real_truncate (type, orig);
12872 }
12873
12874 if (!CONVERT_EXPR_P (exp))
12875 return exp;
12876
12877 sub = TREE_OPERAND (exp, 0);
12878 subt = TREE_TYPE (sub);
12879 expt = TREE_TYPE (exp);
12880
12881 if (!FLOAT_TYPE_P (subt))
12882 return exp;
12883
12884 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12885 return exp;
12886
12887 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12888 return exp;
12889
12890 return strip_float_extensions (sub);
12891 }
12892
12893 /* Strip out all handled components that produce invariant
12894 offsets. */
12895
12896 const_tree
12897 strip_invariant_refs (const_tree op)
12898 {
12899 while (handled_component_p (op))
12900 {
12901 switch (TREE_CODE (op))
12902 {
12903 case ARRAY_REF:
12904 case ARRAY_RANGE_REF:
12905 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12906 || TREE_OPERAND (op, 2) != NULL_TREE
12907 || TREE_OPERAND (op, 3) != NULL_TREE)
12908 return NULL;
12909 break;
12910
12911 case COMPONENT_REF:
12912 if (TREE_OPERAND (op, 2) != NULL_TREE)
12913 return NULL;
12914 break;
12915
12916 default:;
12917 }
12918 op = TREE_OPERAND (op, 0);
12919 }
12920
12921 return op;
12922 }
12923
12924 static GTY(()) tree gcc_eh_personality_decl;
12925
12926 /* Return the GCC personality function decl. */
12927
12928 tree
12929 lhd_gcc_personality (void)
12930 {
12931 if (!gcc_eh_personality_decl)
12932 gcc_eh_personality_decl = build_personality_function ("gcc");
12933 return gcc_eh_personality_decl;
12934 }
12935
12936 /* TARGET is a call target of GIMPLE call statement
12937 (obtained by gimple_call_fn). Return true if it is
12938 OBJ_TYPE_REF representing an virtual call of C++ method.
12939 (As opposed to OBJ_TYPE_REF representing objc calls
12940 through a cast where middle-end devirtualization machinery
12941 can't apply.) */
12942
12943 bool
12944 virtual_method_call_p (const_tree target)
12945 {
12946 if (TREE_CODE (target) != OBJ_TYPE_REF)
12947 return false;
12948 tree t = TREE_TYPE (target);
12949 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12950 t = TREE_TYPE (t);
12951 if (TREE_CODE (t) == FUNCTION_TYPE)
12952 return false;
12953 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12954 /* If we do not have BINFO associated, it means that type was built
12955 without devirtualization enabled. Do not consider this a virtual
12956 call. */
12957 if (!TYPE_BINFO (obj_type_ref_class (target)))
12958 return false;
12959 return true;
12960 }
12961
12962 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12963
12964 static tree
12965 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12966 {
12967 unsigned int i;
12968 tree base_binfo, b;
12969
12970 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12971 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12972 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12973 return base_binfo;
12974 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12975 return b;
12976 return NULL;
12977 }
12978
12979 /* Try to find a base info of BINFO that would have its field decl at offset
12980 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12981 found, return, otherwise return NULL_TREE. */
12982
12983 tree
12984 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12985 {
12986 tree type = BINFO_TYPE (binfo);
12987
12988 while (true)
12989 {
12990 HOST_WIDE_INT pos, size;
12991 tree fld;
12992 int i;
12993
12994 if (types_same_for_odr (type, expected_type))
12995 return binfo;
12996 if (maybe_lt (offset, 0))
12997 return NULL_TREE;
12998
12999 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
13000 {
13001 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
13002 continue;
13003
13004 pos = int_bit_position (fld);
13005 size = tree_to_uhwi (DECL_SIZE (fld));
13006 if (known_in_range_p (offset, pos, size))
13007 break;
13008 }
13009 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
13010 return NULL_TREE;
13011
13012 /* Offset 0 indicates the primary base, whose vtable contents are
13013 represented in the binfo for the derived class. */
13014 else if (maybe_ne (offset, 0))
13015 {
13016 tree found_binfo = NULL, base_binfo;
13017 /* Offsets in BINFO are in bytes relative to the whole structure
13018 while POS is in bits relative to the containing field. */
13019 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
13020 / BITS_PER_UNIT);
13021
13022 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
13023 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
13024 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
13025 {
13026 found_binfo = base_binfo;
13027 break;
13028 }
13029 if (found_binfo)
13030 binfo = found_binfo;
13031 else
13032 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
13033 binfo_offset);
13034 }
13035
13036 type = TREE_TYPE (fld);
13037 offset -= pos;
13038 }
13039 }
13040
13041 /* Returns true if X is a typedef decl. */
13042
13043 bool
13044 is_typedef_decl (const_tree x)
13045 {
13046 return (x && TREE_CODE (x) == TYPE_DECL
13047 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
13048 }
13049
13050 /* Returns true iff TYPE is a type variant created for a typedef. */
13051
13052 bool
13053 typedef_variant_p (const_tree type)
13054 {
13055 return is_typedef_decl (TYPE_NAME (type));
13056 }
13057
13058 /* A class to handle converting a string that might contain
13059 control characters, (eg newline, form-feed, etc), into one
13060 in which contains escape sequences instead. */
13061
13062 class escaped_string
13063 {
13064 public:
13065 escaped_string () { m_owned = false; m_str = NULL; };
13066 ~escaped_string () { if (m_owned) free (m_str); }
13067 operator const char *() const { return (const char *) m_str; }
13068 void escape (const char *);
13069 private:
13070 char *m_str;
13071 bool m_owned;
13072 };
13073
13074 /* PR 84195: Replace control characters in "unescaped" with their
13075 escaped equivalents. Allow newlines if -fmessage-length has
13076 been set to a non-zero value. This is done here, rather than
13077 where the attribute is recorded as the message length can
13078 change between these two locations. */
13079
13080 void
13081 escaped_string::escape (const char *unescaped)
13082 {
13083 char *escaped;
13084 size_t i, new_i, len;
13085
13086 if (m_owned)
13087 free (m_str);
13088
13089 m_str = const_cast<char *> (unescaped);
13090 m_owned = false;
13091
13092 if (unescaped == NULL || *unescaped == 0)
13093 return;
13094
13095 len = strlen (unescaped);
13096 escaped = NULL;
13097 new_i = 0;
13098
13099 for (i = 0; i < len; i++)
13100 {
13101 char c = unescaped[i];
13102
13103 if (!ISCNTRL (c))
13104 {
13105 if (escaped)
13106 escaped[new_i++] = c;
13107 continue;
13108 }
13109
13110 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
13111 {
13112 if (escaped == NULL)
13113 {
13114 /* We only allocate space for a new string if we
13115 actually encounter a control character that
13116 needs replacing. */
13117 escaped = (char *) xmalloc (len * 2 + 1);
13118 strncpy (escaped, unescaped, i);
13119 new_i = i;
13120 }
13121
13122 escaped[new_i++] = '\\';
13123
13124 switch (c)
13125 {
13126 case '\a': escaped[new_i++] = 'a'; break;
13127 case '\b': escaped[new_i++] = 'b'; break;
13128 case '\f': escaped[new_i++] = 'f'; break;
13129 case '\n': escaped[new_i++] = 'n'; break;
13130 case '\r': escaped[new_i++] = 'r'; break;
13131 case '\t': escaped[new_i++] = 't'; break;
13132 case '\v': escaped[new_i++] = 'v'; break;
13133 default: escaped[new_i++] = '?'; break;
13134 }
13135 }
13136 else if (escaped)
13137 escaped[new_i++] = c;
13138 }
13139
13140 if (escaped)
13141 {
13142 escaped[new_i] = 0;
13143 m_str = escaped;
13144 m_owned = true;
13145 }
13146 }
13147
13148 /* Warn about a use of an identifier which was marked deprecated. Returns
13149 whether a warning was given. */
13150
13151 bool
13152 warn_deprecated_use (tree node, tree attr)
13153 {
13154 escaped_string msg;
13155
13156 if (node == 0 || !warn_deprecated_decl)
13157 return false;
13158
13159 if (!attr)
13160 {
13161 if (DECL_P (node))
13162 attr = DECL_ATTRIBUTES (node);
13163 else if (TYPE_P (node))
13164 {
13165 tree decl = TYPE_STUB_DECL (node);
13166 if (decl)
13167 attr = lookup_attribute ("deprecated",
13168 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
13169 }
13170 }
13171
13172 if (attr)
13173 attr = lookup_attribute ("deprecated", attr);
13174
13175 if (attr)
13176 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
13177
13178 bool w = false;
13179 if (DECL_P (node))
13180 {
13181 auto_diagnostic_group d;
13182 if (msg)
13183 w = warning (OPT_Wdeprecated_declarations,
13184 "%qD is deprecated: %s", node, (const char *) msg);
13185 else
13186 w = warning (OPT_Wdeprecated_declarations,
13187 "%qD is deprecated", node);
13188 if (w)
13189 inform (DECL_SOURCE_LOCATION (node), "declared here");
13190 }
13191 else if (TYPE_P (node))
13192 {
13193 tree what = NULL_TREE;
13194 tree decl = TYPE_STUB_DECL (node);
13195
13196 if (TYPE_NAME (node))
13197 {
13198 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
13199 what = TYPE_NAME (node);
13200 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
13201 && DECL_NAME (TYPE_NAME (node)))
13202 what = DECL_NAME (TYPE_NAME (node));
13203 }
13204
13205 auto_diagnostic_group d;
13206 if (what)
13207 {
13208 if (msg)
13209 w = warning (OPT_Wdeprecated_declarations,
13210 "%qE is deprecated: %s", what, (const char *) msg);
13211 else
13212 w = warning (OPT_Wdeprecated_declarations,
13213 "%qE is deprecated", what);
13214 }
13215 else
13216 {
13217 if (msg)
13218 w = warning (OPT_Wdeprecated_declarations,
13219 "type is deprecated: %s", (const char *) msg);
13220 else
13221 w = warning (OPT_Wdeprecated_declarations,
13222 "type is deprecated");
13223 }
13224
13225 if (w && decl)
13226 inform (DECL_SOURCE_LOCATION (decl), "declared here");
13227 }
13228
13229 return w;
13230 }
13231
13232 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
13233 somewhere in it. */
13234
13235 bool
13236 contains_bitfld_component_ref_p (const_tree ref)
13237 {
13238 while (handled_component_p (ref))
13239 {
13240 if (TREE_CODE (ref) == COMPONENT_REF
13241 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
13242 return true;
13243 ref = TREE_OPERAND (ref, 0);
13244 }
13245
13246 return false;
13247 }
13248
13249 /* Try to determine whether a TRY_CATCH expression can fall through.
13250 This is a subroutine of block_may_fallthru. */
13251
13252 static bool
13253 try_catch_may_fallthru (const_tree stmt)
13254 {
13255 tree_stmt_iterator i;
13256
13257 /* If the TRY block can fall through, the whole TRY_CATCH can
13258 fall through. */
13259 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
13260 return true;
13261
13262 i = tsi_start (TREE_OPERAND (stmt, 1));
13263 switch (TREE_CODE (tsi_stmt (i)))
13264 {
13265 case CATCH_EXPR:
13266 /* We expect to see a sequence of CATCH_EXPR trees, each with a
13267 catch expression and a body. The whole TRY_CATCH may fall
13268 through iff any of the catch bodies falls through. */
13269 for (; !tsi_end_p (i); tsi_next (&i))
13270 {
13271 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
13272 return true;
13273 }
13274 return false;
13275
13276 case EH_FILTER_EXPR:
13277 /* The exception filter expression only matters if there is an
13278 exception. If the exception does not match EH_FILTER_TYPES,
13279 we will execute EH_FILTER_FAILURE, and we will fall through
13280 if that falls through. If the exception does match
13281 EH_FILTER_TYPES, the stack unwinder will continue up the
13282 stack, so we will not fall through. We don't know whether we
13283 will throw an exception which matches EH_FILTER_TYPES or not,
13284 so we just ignore EH_FILTER_TYPES and assume that we might
13285 throw an exception which doesn't match. */
13286 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
13287
13288 default:
13289 /* This case represents statements to be executed when an
13290 exception occurs. Those statements are implicitly followed
13291 by a RESX statement to resume execution after the exception.
13292 So in this case the TRY_CATCH never falls through. */
13293 return false;
13294 }
13295 }
13296
13297 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
13298 need not be 100% accurate; simply be conservative and return true if we
13299 don't know. This is used only to avoid stupidly generating extra code.
13300 If we're wrong, we'll just delete the extra code later. */
13301
13302 bool
13303 block_may_fallthru (const_tree block)
13304 {
13305 /* This CONST_CAST is okay because expr_last returns its argument
13306 unmodified and we assign it to a const_tree. */
13307 const_tree stmt = expr_last (CONST_CAST_TREE (block));
13308
13309 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
13310 {
13311 case GOTO_EXPR:
13312 case RETURN_EXPR:
13313 /* Easy cases. If the last statement of the block implies
13314 control transfer, then we can't fall through. */
13315 return false;
13316
13317 case SWITCH_EXPR:
13318 /* If there is a default: label or case labels cover all possible
13319 SWITCH_COND values, then the SWITCH_EXPR will transfer control
13320 to some case label in all cases and all we care is whether the
13321 SWITCH_BODY falls through. */
13322 if (SWITCH_ALL_CASES_P (stmt))
13323 return block_may_fallthru (SWITCH_BODY (stmt));
13324 return true;
13325
13326 case COND_EXPR:
13327 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
13328 return true;
13329 return block_may_fallthru (COND_EXPR_ELSE (stmt));
13330
13331 case BIND_EXPR:
13332 return block_may_fallthru (BIND_EXPR_BODY (stmt));
13333
13334 case TRY_CATCH_EXPR:
13335 return try_catch_may_fallthru (stmt);
13336
13337 case TRY_FINALLY_EXPR:
13338 /* The finally clause is always executed after the try clause,
13339 so if it does not fall through, then the try-finally will not
13340 fall through. Otherwise, if the try clause does not fall
13341 through, then when the finally clause falls through it will
13342 resume execution wherever the try clause was going. So the
13343 whole try-finally will only fall through if both the try
13344 clause and the finally clause fall through. */
13345 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
13346 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
13347
13348 case MODIFY_EXPR:
13349 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
13350 stmt = TREE_OPERAND (stmt, 1);
13351 else
13352 return true;
13353 /* FALLTHRU */
13354
13355 case CALL_EXPR:
13356 /* Functions that do not return do not fall through. */
13357 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
13358
13359 case CLEANUP_POINT_EXPR:
13360 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13361
13362 case TARGET_EXPR:
13363 return block_may_fallthru (TREE_OPERAND (stmt, 1));
13364
13365 case ERROR_MARK:
13366 return true;
13367
13368 default:
13369 return lang_hooks.block_may_fallthru (stmt);
13370 }
13371 }
13372
13373 /* True if we are using EH to handle cleanups. */
13374 static bool using_eh_for_cleanups_flag = false;
13375
13376 /* This routine is called from front ends to indicate eh should be used for
13377 cleanups. */
13378 void
13379 using_eh_for_cleanups (void)
13380 {
13381 using_eh_for_cleanups_flag = true;
13382 }
13383
13384 /* Query whether EH is used for cleanups. */
13385 bool
13386 using_eh_for_cleanups_p (void)
13387 {
13388 return using_eh_for_cleanups_flag;
13389 }
13390
13391 /* Wrapper for tree_code_name to ensure that tree code is valid */
13392 const char *
13393 get_tree_code_name (enum tree_code code)
13394 {
13395 const char *invalid = "<invalid tree code>";
13396
13397 if (code >= MAX_TREE_CODES)
13398 return invalid;
13399
13400 return tree_code_name[code];
13401 }
13402
13403 /* Drops the TREE_OVERFLOW flag from T. */
13404
13405 tree
13406 drop_tree_overflow (tree t)
13407 {
13408 gcc_checking_assert (TREE_OVERFLOW (t));
13409
13410 /* For tree codes with a sharing machinery re-build the result. */
13411 if (poly_int_tree_p (t))
13412 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
13413
13414 /* For VECTOR_CST, remove the overflow bits from the encoded elements
13415 and canonicalize the result. */
13416 if (TREE_CODE (t) == VECTOR_CST)
13417 {
13418 tree_vector_builder builder;
13419 builder.new_unary_operation (TREE_TYPE (t), t, true);
13420 unsigned int count = builder.encoded_nelts ();
13421 for (unsigned int i = 0; i < count; ++i)
13422 {
13423 tree elt = VECTOR_CST_ELT (t, i);
13424 if (TREE_OVERFLOW (elt))
13425 elt = drop_tree_overflow (elt);
13426 builder.quick_push (elt);
13427 }
13428 return builder.build ();
13429 }
13430
13431 /* Otherwise, as all tcc_constants are possibly shared, copy the node
13432 and drop the flag. */
13433 t = copy_node (t);
13434 TREE_OVERFLOW (t) = 0;
13435
13436 /* For constants that contain nested constants, drop the flag
13437 from those as well. */
13438 if (TREE_CODE (t) == COMPLEX_CST)
13439 {
13440 if (TREE_OVERFLOW (TREE_REALPART (t)))
13441 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
13442 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
13443 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
13444 }
13445
13446 return t;
13447 }
13448
13449 /* Given a memory reference expression T, return its base address.
13450 The base address of a memory reference expression is the main
13451 object being referenced. For instance, the base address for
13452 'array[i].fld[j]' is 'array'. You can think of this as stripping
13453 away the offset part from a memory address.
13454
13455 This function calls handled_component_p to strip away all the inner
13456 parts of the memory reference until it reaches the base object. */
13457
13458 tree
13459 get_base_address (tree t)
13460 {
13461 while (handled_component_p (t))
13462 t = TREE_OPERAND (t, 0);
13463
13464 if ((TREE_CODE (t) == MEM_REF
13465 || TREE_CODE (t) == TARGET_MEM_REF)
13466 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
13467 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
13468
13469 /* ??? Either the alias oracle or all callers need to properly deal
13470 with WITH_SIZE_EXPRs before we can look through those. */
13471 if (TREE_CODE (t) == WITH_SIZE_EXPR)
13472 return NULL_TREE;
13473
13474 return t;
13475 }
13476
13477 /* Return a tree of sizetype representing the size, in bytes, of the element
13478 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13479
13480 tree
13481 array_ref_element_size (tree exp)
13482 {
13483 tree aligned_size = TREE_OPERAND (exp, 3);
13484 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
13485 location_t loc = EXPR_LOCATION (exp);
13486
13487 /* If a size was specified in the ARRAY_REF, it's the size measured
13488 in alignment units of the element type. So multiply by that value. */
13489 if (aligned_size)
13490 {
13491 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13492 sizetype from another type of the same width and signedness. */
13493 if (TREE_TYPE (aligned_size) != sizetype)
13494 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
13495 return size_binop_loc (loc, MULT_EXPR, aligned_size,
13496 size_int (TYPE_ALIGN_UNIT (elmt_type)));
13497 }
13498
13499 /* Otherwise, take the size from that of the element type. Substitute
13500 any PLACEHOLDER_EXPR that we have. */
13501 else
13502 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
13503 }
13504
13505 /* Return a tree representing the lower bound of the array mentioned in
13506 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13507
13508 tree
13509 array_ref_low_bound (tree exp)
13510 {
13511 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13512
13513 /* If a lower bound is specified in EXP, use it. */
13514 if (TREE_OPERAND (exp, 2))
13515 return TREE_OPERAND (exp, 2);
13516
13517 /* Otherwise, if there is a domain type and it has a lower bound, use it,
13518 substituting for a PLACEHOLDER_EXPR as needed. */
13519 if (domain_type && TYPE_MIN_VALUE (domain_type))
13520 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
13521
13522 /* Otherwise, return a zero of the appropriate type. */
13523 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
13524 }
13525
13526 /* Return a tree representing the upper bound of the array mentioned in
13527 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13528
13529 tree
13530 array_ref_up_bound (tree exp)
13531 {
13532 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13533
13534 /* If there is a domain type and it has an upper bound, use it, substituting
13535 for a PLACEHOLDER_EXPR as needed. */
13536 if (domain_type && TYPE_MAX_VALUE (domain_type))
13537 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
13538
13539 /* Otherwise fail. */
13540 return NULL_TREE;
13541 }
13542
13543 /* Returns true if REF is an array reference or a component reference
13544 to an array at the end of a structure.
13545 If this is the case, the array may be allocated larger
13546 than its upper bound implies. */
13547
13548 bool
13549 array_at_struct_end_p (tree ref)
13550 {
13551 tree atype;
13552
13553 if (TREE_CODE (ref) == ARRAY_REF
13554 || TREE_CODE (ref) == ARRAY_RANGE_REF)
13555 {
13556 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13557 ref = TREE_OPERAND (ref, 0);
13558 }
13559 else if (TREE_CODE (ref) == COMPONENT_REF
13560 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13561 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13562 else
13563 return false;
13564
13565 if (TREE_CODE (ref) == STRING_CST)
13566 return false;
13567
13568 tree ref_to_array = ref;
13569 while (handled_component_p (ref))
13570 {
13571 /* If the reference chain contains a component reference to a
13572 non-union type and there follows another field the reference
13573 is not at the end of a structure. */
13574 if (TREE_CODE (ref) == COMPONENT_REF)
13575 {
13576 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13577 {
13578 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13579 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13580 nextf = DECL_CHAIN (nextf);
13581 if (nextf)
13582 return false;
13583 }
13584 }
13585 /* If we have a multi-dimensional array we do not consider
13586 a non-innermost dimension as flex array if the whole
13587 multi-dimensional array is at struct end.
13588 Same for an array of aggregates with a trailing array
13589 member. */
13590 else if (TREE_CODE (ref) == ARRAY_REF)
13591 return false;
13592 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13593 ;
13594 /* If we view an underlying object as sth else then what we
13595 gathered up to now is what we have to rely on. */
13596 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13597 break;
13598 else
13599 gcc_unreachable ();
13600
13601 ref = TREE_OPERAND (ref, 0);
13602 }
13603
13604 /* The array now is at struct end. Treat flexible arrays as
13605 always subject to extend, even into just padding constrained by
13606 an underlying decl. */
13607 if (! TYPE_SIZE (atype)
13608 || ! TYPE_DOMAIN (atype)
13609 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13610 return true;
13611
13612 if (TREE_CODE (ref) == MEM_REF
13613 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13614 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13615
13616 /* If the reference is based on a declared entity, the size of the array
13617 is constrained by its given domain. (Do not trust commons PR/69368). */
13618 if (DECL_P (ref)
13619 && !(flag_unconstrained_commons
13620 && VAR_P (ref) && DECL_COMMON (ref))
13621 && DECL_SIZE_UNIT (ref)
13622 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13623 {
13624 /* Check whether the array domain covers all of the available
13625 padding. */
13626 poly_int64 offset;
13627 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13628 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13629 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13630 return true;
13631 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13632 return true;
13633
13634 /* If at least one extra element fits it is a flexarray. */
13635 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13636 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13637 + 2)
13638 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13639 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13640 return true;
13641
13642 return false;
13643 }
13644
13645 return true;
13646 }
13647
13648 /* Return a tree representing the offset, in bytes, of the field referenced
13649 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13650
13651 tree
13652 component_ref_field_offset (tree exp)
13653 {
13654 tree aligned_offset = TREE_OPERAND (exp, 2);
13655 tree field = TREE_OPERAND (exp, 1);
13656 location_t loc = EXPR_LOCATION (exp);
13657
13658 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13659 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13660 value. */
13661 if (aligned_offset)
13662 {
13663 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13664 sizetype from another type of the same width and signedness. */
13665 if (TREE_TYPE (aligned_offset) != sizetype)
13666 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13667 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13668 size_int (DECL_OFFSET_ALIGN (field)
13669 / BITS_PER_UNIT));
13670 }
13671
13672 /* Otherwise, take the offset from that of the field. Substitute
13673 any PLACEHOLDER_EXPR that we have. */
13674 else
13675 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13676 }
13677
13678 /* Return the machine mode of T. For vectors, returns the mode of the
13679 inner type. The main use case is to feed the result to HONOR_NANS,
13680 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13681
13682 machine_mode
13683 element_mode (const_tree t)
13684 {
13685 if (!TYPE_P (t))
13686 t = TREE_TYPE (t);
13687 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13688 t = TREE_TYPE (t);
13689 return TYPE_MODE (t);
13690 }
13691
13692 /* Vector types need to re-check the target flags each time we report
13693 the machine mode. We need to do this because attribute target can
13694 change the result of vector_mode_supported_p and have_regs_of_mode
13695 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13696 change on a per-function basis. */
13697 /* ??? Possibly a better solution is to run through all the types
13698 referenced by a function and re-compute the TYPE_MODE once, rather
13699 than make the TYPE_MODE macro call a function. */
13700
13701 machine_mode
13702 vector_type_mode (const_tree t)
13703 {
13704 machine_mode mode;
13705
13706 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13707
13708 mode = t->type_common.mode;
13709 if (VECTOR_MODE_P (mode)
13710 && (!targetm.vector_mode_supported_p (mode)
13711 || !have_regs_of_mode[mode]))
13712 {
13713 scalar_int_mode innermode;
13714
13715 /* For integers, try mapping it to a same-sized scalar mode. */
13716 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13717 {
13718 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13719 * GET_MODE_BITSIZE (innermode));
13720 scalar_int_mode mode;
13721 if (int_mode_for_size (size, 0).exists (&mode)
13722 && have_regs_of_mode[mode])
13723 return mode;
13724 }
13725
13726 return BLKmode;
13727 }
13728
13729 return mode;
13730 }
13731
13732 /* Verify that basic properties of T match TV and thus T can be a variant of
13733 TV. TV should be the more specified variant (i.e. the main variant). */
13734
13735 static bool
13736 verify_type_variant (const_tree t, tree tv)
13737 {
13738 /* Type variant can differ by:
13739
13740 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13741 ENCODE_QUAL_ADDR_SPACE.
13742 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13743 in this case some values may not be set in the variant types
13744 (see TYPE_COMPLETE_P checks).
13745 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13746 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13747 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13748 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13749 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13750 this is necessary to make it possible to merge types form different TUs
13751 - arrays, pointers and references may have TREE_TYPE that is a variant
13752 of TREE_TYPE of their main variants.
13753 - aggregates may have new TYPE_FIELDS list that list variants of
13754 the main variant TYPE_FIELDS.
13755 - vector types may differ by TYPE_VECTOR_OPAQUE
13756 */
13757
13758 /* Convenience macro for matching individual fields. */
13759 #define verify_variant_match(flag) \
13760 do { \
13761 if (flag (tv) != flag (t)) \
13762 { \
13763 error ("type variant differs by %s", #flag); \
13764 debug_tree (tv); \
13765 return false; \
13766 } \
13767 } while (false)
13768
13769 /* tree_base checks. */
13770
13771 verify_variant_match (TREE_CODE);
13772 /* FIXME: Ada builds non-artificial variants of artificial types. */
13773 if (TYPE_ARTIFICIAL (tv) && 0)
13774 verify_variant_match (TYPE_ARTIFICIAL);
13775 if (POINTER_TYPE_P (tv))
13776 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13777 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13778 verify_variant_match (TYPE_UNSIGNED);
13779 verify_variant_match (TYPE_PACKED);
13780 if (TREE_CODE (t) == REFERENCE_TYPE)
13781 verify_variant_match (TYPE_REF_IS_RVALUE);
13782 if (AGGREGATE_TYPE_P (t))
13783 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13784 else
13785 verify_variant_match (TYPE_SATURATING);
13786 /* FIXME: This check trigger during libstdc++ build. */
13787 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13788 verify_variant_match (TYPE_FINAL_P);
13789
13790 /* tree_type_common checks. */
13791
13792 if (COMPLETE_TYPE_P (t))
13793 {
13794 verify_variant_match (TYPE_MODE);
13795 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13796 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13797 verify_variant_match (TYPE_SIZE);
13798 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13799 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13800 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13801 {
13802 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13803 TYPE_SIZE_UNIT (tv), 0));
13804 error ("type variant has different TYPE_SIZE_UNIT");
13805 debug_tree (tv);
13806 error ("type variant's TYPE_SIZE_UNIT");
13807 debug_tree (TYPE_SIZE_UNIT (tv));
13808 error ("type's TYPE_SIZE_UNIT");
13809 debug_tree (TYPE_SIZE_UNIT (t));
13810 return false;
13811 }
13812 }
13813 verify_variant_match (TYPE_PRECISION);
13814 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13815 if (RECORD_OR_UNION_TYPE_P (t))
13816 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13817 else if (TREE_CODE (t) == ARRAY_TYPE)
13818 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13819 /* During LTO we merge variant lists from diferent translation units
13820 that may differ BY TYPE_CONTEXT that in turn may point
13821 to TRANSLATION_UNIT_DECL.
13822 Ada also builds variants of types with different TYPE_CONTEXT. */
13823 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13824 verify_variant_match (TYPE_CONTEXT);
13825 verify_variant_match (TYPE_STRING_FLAG);
13826 if (TYPE_ALIAS_SET_KNOWN_P (t))
13827 {
13828 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13829 debug_tree (tv);
13830 return false;
13831 }
13832
13833 /* tree_type_non_common checks. */
13834
13835 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13836 and dangle the pointer from time to time. */
13837 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13838 && (in_lto_p || !TYPE_VFIELD (tv)
13839 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13840 {
13841 error ("type variant has different TYPE_VFIELD");
13842 debug_tree (tv);
13843 return false;
13844 }
13845 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13846 || TREE_CODE (t) == INTEGER_TYPE
13847 || TREE_CODE (t) == BOOLEAN_TYPE
13848 || TREE_CODE (t) == REAL_TYPE
13849 || TREE_CODE (t) == FIXED_POINT_TYPE)
13850 {
13851 verify_variant_match (TYPE_MAX_VALUE);
13852 verify_variant_match (TYPE_MIN_VALUE);
13853 }
13854 if (TREE_CODE (t) == METHOD_TYPE)
13855 verify_variant_match (TYPE_METHOD_BASETYPE);
13856 if (TREE_CODE (t) == OFFSET_TYPE)
13857 verify_variant_match (TYPE_OFFSET_BASETYPE);
13858 if (TREE_CODE (t) == ARRAY_TYPE)
13859 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13860 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13861 or even type's main variant. This is needed to make bootstrap pass
13862 and the bug seems new in GCC 5.
13863 C++ FE should be updated to make this consistent and we should check
13864 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13865 is a match with main variant.
13866
13867 Also disable the check for Java for now because of parser hack that builds
13868 first an dummy BINFO and then sometimes replace it by real BINFO in some
13869 of the copies. */
13870 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13871 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13872 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13873 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13874 at LTO time only. */
13875 && (in_lto_p && odr_type_p (t)))
13876 {
13877 error ("type variant has different TYPE_BINFO");
13878 debug_tree (tv);
13879 error ("type variant's TYPE_BINFO");
13880 debug_tree (TYPE_BINFO (tv));
13881 error ("type's TYPE_BINFO");
13882 debug_tree (TYPE_BINFO (t));
13883 return false;
13884 }
13885
13886 /* Check various uses of TYPE_VALUES_RAW. */
13887 if (TREE_CODE (t) == ENUMERAL_TYPE
13888 && TYPE_VALUES (t))
13889 verify_variant_match (TYPE_VALUES);
13890 else if (TREE_CODE (t) == ARRAY_TYPE)
13891 verify_variant_match (TYPE_DOMAIN);
13892 /* Permit incomplete variants of complete type. While FEs may complete
13893 all variants, this does not happen for C++ templates in all cases. */
13894 else if (RECORD_OR_UNION_TYPE_P (t)
13895 && COMPLETE_TYPE_P (t)
13896 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13897 {
13898 tree f1, f2;
13899
13900 /* Fortran builds qualified variants as new records with items of
13901 qualified type. Verify that they looks same. */
13902 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13903 f1 && f2;
13904 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13905 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13906 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13907 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13908 /* FIXME: gfc_nonrestricted_type builds all types as variants
13909 with exception of pointer types. It deeply copies the type
13910 which means that we may end up with a variant type
13911 referring non-variant pointer. We may change it to
13912 produce types as variants, too, like
13913 objc_get_protocol_qualified_type does. */
13914 && !POINTER_TYPE_P (TREE_TYPE (f1)))
13915 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13916 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13917 break;
13918 if (f1 || f2)
13919 {
13920 error ("type variant has different TYPE_FIELDS");
13921 debug_tree (tv);
13922 error ("first mismatch is field");
13923 debug_tree (f1);
13924 error ("and field");
13925 debug_tree (f2);
13926 return false;
13927 }
13928 }
13929 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13930 verify_variant_match (TYPE_ARG_TYPES);
13931 /* For C++ the qualified variant of array type is really an array type
13932 of qualified TREE_TYPE.
13933 objc builds variants of pointer where pointer to type is a variant, too
13934 in objc_get_protocol_qualified_type. */
13935 if (TREE_TYPE (t) != TREE_TYPE (tv)
13936 && ((TREE_CODE (t) != ARRAY_TYPE
13937 && !POINTER_TYPE_P (t))
13938 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13939 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13940 {
13941 error ("type variant has different TREE_TYPE");
13942 debug_tree (tv);
13943 error ("type variant's TREE_TYPE");
13944 debug_tree (TREE_TYPE (tv));
13945 error ("type's TREE_TYPE");
13946 debug_tree (TREE_TYPE (t));
13947 return false;
13948 }
13949 if (type_with_alias_set_p (t)
13950 && !gimple_canonical_types_compatible_p (t, tv, false))
13951 {
13952 error ("type is not compatible with its variant");
13953 debug_tree (tv);
13954 error ("type variant's TREE_TYPE");
13955 debug_tree (TREE_TYPE (tv));
13956 error ("type's TREE_TYPE");
13957 debug_tree (TREE_TYPE (t));
13958 return false;
13959 }
13960 return true;
13961 #undef verify_variant_match
13962 }
13963
13964
13965 /* The TYPE_CANONICAL merging machinery. It should closely resemble
13966 the middle-end types_compatible_p function. It needs to avoid
13967 claiming types are different for types that should be treated
13968 the same with respect to TBAA. Canonical types are also used
13969 for IL consistency checks via the useless_type_conversion_p
13970 predicate which does not handle all type kinds itself but falls
13971 back to pointer-comparison of TYPE_CANONICAL for aggregates
13972 for example. */
13973
13974 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13975 type calculation because we need to allow inter-operability between signed
13976 and unsigned variants. */
13977
13978 bool
13979 type_with_interoperable_signedness (const_tree type)
13980 {
13981 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13982 signed char and unsigned char. Similarly fortran FE builds
13983 C_SIZE_T as signed type, while C defines it unsigned. */
13984
13985 return tree_code_for_canonical_type_merging (TREE_CODE (type))
13986 == INTEGER_TYPE
13987 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13988 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13989 }
13990
13991 /* Return true iff T1 and T2 are structurally identical for what
13992 TBAA is concerned.
13993 This function is used both by lto.c canonical type merging and by the
13994 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
13995 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
13996 only for LTO because only in these cases TYPE_CANONICAL equivalence
13997 correspond to one defined by gimple_canonical_types_compatible_p. */
13998
13999 bool
14000 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
14001 bool trust_type_canonical)
14002 {
14003 /* Type variants should be same as the main variant. When not doing sanity
14004 checking to verify this fact, go to main variants and save some work. */
14005 if (trust_type_canonical)
14006 {
14007 t1 = TYPE_MAIN_VARIANT (t1);
14008 t2 = TYPE_MAIN_VARIANT (t2);
14009 }
14010
14011 /* Check first for the obvious case of pointer identity. */
14012 if (t1 == t2)
14013 return true;
14014
14015 /* Check that we have two types to compare. */
14016 if (t1 == NULL_TREE || t2 == NULL_TREE)
14017 return false;
14018
14019 /* We consider complete types always compatible with incomplete type.
14020 This does not make sense for canonical type calculation and thus we
14021 need to ensure that we are never called on it.
14022
14023 FIXME: For more correctness the function probably should have three modes
14024 1) mode assuming that types are complete mathcing their structure
14025 2) mode allowing incomplete types but producing equivalence classes
14026 and thus ignoring all info from complete types
14027 3) mode allowing incomplete types to match complete but checking
14028 compatibility between complete types.
14029
14030 1 and 2 can be used for canonical type calculation. 3 is the real
14031 definition of type compatibility that can be used i.e. for warnings during
14032 declaration merging. */
14033
14034 gcc_assert (!trust_type_canonical
14035 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
14036 /* If the types have been previously registered and found equal
14037 they still are. */
14038
14039 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
14040 && trust_type_canonical)
14041 {
14042 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
14043 they are always NULL, but they are set to non-NULL for types
14044 constructed by build_pointer_type and variants. In this case the
14045 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
14046 all pointers are considered equal. Be sure to not return false
14047 negatives. */
14048 gcc_checking_assert (canonical_type_used_p (t1)
14049 && canonical_type_used_p (t2));
14050 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
14051 }
14052
14053 /* Can't be the same type if the types don't have the same code. */
14054 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
14055 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
14056 return false;
14057
14058 /* Qualifiers do not matter for canonical type comparison purposes. */
14059
14060 /* Void types and nullptr types are always the same. */
14061 if (TREE_CODE (t1) == VOID_TYPE
14062 || TREE_CODE (t1) == NULLPTR_TYPE)
14063 return true;
14064
14065 /* Can't be the same type if they have different mode. */
14066 if (TYPE_MODE (t1) != TYPE_MODE (t2))
14067 return false;
14068
14069 /* Non-aggregate types can be handled cheaply. */
14070 if (INTEGRAL_TYPE_P (t1)
14071 || SCALAR_FLOAT_TYPE_P (t1)
14072 || FIXED_POINT_TYPE_P (t1)
14073 || TREE_CODE (t1) == VECTOR_TYPE
14074 || TREE_CODE (t1) == COMPLEX_TYPE
14075 || TREE_CODE (t1) == OFFSET_TYPE
14076 || POINTER_TYPE_P (t1))
14077 {
14078 /* Can't be the same type if they have different recision. */
14079 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
14080 return false;
14081
14082 /* In some cases the signed and unsigned types are required to be
14083 inter-operable. */
14084 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
14085 && !type_with_interoperable_signedness (t1))
14086 return false;
14087
14088 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
14089 interoperable with "signed char". Unless all frontends are revisited
14090 to agree on these types, we must ignore the flag completely. */
14091
14092 /* Fortran standard define C_PTR type that is compatible with every
14093 C pointer. For this reason we need to glob all pointers into one.
14094 Still pointers in different address spaces are not compatible. */
14095 if (POINTER_TYPE_P (t1))
14096 {
14097 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
14098 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
14099 return false;
14100 }
14101
14102 /* Tail-recurse to components. */
14103 if (TREE_CODE (t1) == VECTOR_TYPE
14104 || TREE_CODE (t1) == COMPLEX_TYPE)
14105 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
14106 TREE_TYPE (t2),
14107 trust_type_canonical);
14108
14109 return true;
14110 }
14111
14112 /* Do type-specific comparisons. */
14113 switch (TREE_CODE (t1))
14114 {
14115 case ARRAY_TYPE:
14116 /* Array types are the same if the element types are the same and
14117 the number of elements are the same. */
14118 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14119 trust_type_canonical)
14120 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
14121 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
14122 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
14123 return false;
14124 else
14125 {
14126 tree i1 = TYPE_DOMAIN (t1);
14127 tree i2 = TYPE_DOMAIN (t2);
14128
14129 /* For an incomplete external array, the type domain can be
14130 NULL_TREE. Check this condition also. */
14131 if (i1 == NULL_TREE && i2 == NULL_TREE)
14132 return true;
14133 else if (i1 == NULL_TREE || i2 == NULL_TREE)
14134 return false;
14135 else
14136 {
14137 tree min1 = TYPE_MIN_VALUE (i1);
14138 tree min2 = TYPE_MIN_VALUE (i2);
14139 tree max1 = TYPE_MAX_VALUE (i1);
14140 tree max2 = TYPE_MAX_VALUE (i2);
14141
14142 /* The minimum/maximum values have to be the same. */
14143 if ((min1 == min2
14144 || (min1 && min2
14145 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
14146 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
14147 || operand_equal_p (min1, min2, 0))))
14148 && (max1 == max2
14149 || (max1 && max2
14150 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
14151 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
14152 || operand_equal_p (max1, max2, 0)))))
14153 return true;
14154 else
14155 return false;
14156 }
14157 }
14158
14159 case METHOD_TYPE:
14160 case FUNCTION_TYPE:
14161 /* Function types are the same if the return type and arguments types
14162 are the same. */
14163 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14164 trust_type_canonical))
14165 return false;
14166
14167 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
14168 return true;
14169 else
14170 {
14171 tree parms1, parms2;
14172
14173 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
14174 parms1 && parms2;
14175 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
14176 {
14177 if (!gimple_canonical_types_compatible_p
14178 (TREE_VALUE (parms1), TREE_VALUE (parms2),
14179 trust_type_canonical))
14180 return false;
14181 }
14182
14183 if (parms1 || parms2)
14184 return false;
14185
14186 return true;
14187 }
14188
14189 case RECORD_TYPE:
14190 case UNION_TYPE:
14191 case QUAL_UNION_TYPE:
14192 {
14193 tree f1, f2;
14194
14195 /* Don't try to compare variants of an incomplete type, before
14196 TYPE_FIELDS has been copied around. */
14197 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
14198 return true;
14199
14200
14201 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
14202 return false;
14203
14204 /* For aggregate types, all the fields must be the same. */
14205 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
14206 f1 || f2;
14207 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14208 {
14209 /* Skip non-fields and zero-sized fields. */
14210 while (f1 && (TREE_CODE (f1) != FIELD_DECL
14211 || (DECL_SIZE (f1)
14212 && integer_zerop (DECL_SIZE (f1)))))
14213 f1 = TREE_CHAIN (f1);
14214 while (f2 && (TREE_CODE (f2) != FIELD_DECL
14215 || (DECL_SIZE (f2)
14216 && integer_zerop (DECL_SIZE (f2)))))
14217 f2 = TREE_CHAIN (f2);
14218 if (!f1 || !f2)
14219 break;
14220 /* The fields must have the same name, offset and type. */
14221 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
14222 || !gimple_compare_field_offset (f1, f2)
14223 || !gimple_canonical_types_compatible_p
14224 (TREE_TYPE (f1), TREE_TYPE (f2),
14225 trust_type_canonical))
14226 return false;
14227 }
14228
14229 /* If one aggregate has more fields than the other, they
14230 are not the same. */
14231 if (f1 || f2)
14232 return false;
14233
14234 return true;
14235 }
14236
14237 default:
14238 /* Consider all types with language specific trees in them mutually
14239 compatible. This is executed only from verify_type and false
14240 positives can be tolerated. */
14241 gcc_assert (!in_lto_p);
14242 return true;
14243 }
14244 }
14245
14246 /* Verify type T. */
14247
14248 void
14249 verify_type (const_tree t)
14250 {
14251 bool error_found = false;
14252 tree mv = TYPE_MAIN_VARIANT (t);
14253 if (!mv)
14254 {
14255 error ("Main variant is not defined");
14256 error_found = true;
14257 }
14258 else if (mv != TYPE_MAIN_VARIANT (mv))
14259 {
14260 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
14261 debug_tree (mv);
14262 error_found = true;
14263 }
14264 else if (t != mv && !verify_type_variant (t, mv))
14265 error_found = true;
14266
14267 tree ct = TYPE_CANONICAL (t);
14268 if (!ct)
14269 ;
14270 else if (TYPE_CANONICAL (t) != ct)
14271 {
14272 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
14273 debug_tree (ct);
14274 error_found = true;
14275 }
14276 /* Method and function types cannot be used to address memory and thus
14277 TYPE_CANONICAL really matters only for determining useless conversions.
14278
14279 FIXME: C++ FE produce declarations of builtin functions that are not
14280 compatible with main variants. */
14281 else if (TREE_CODE (t) == FUNCTION_TYPE)
14282 ;
14283 else if (t != ct
14284 /* FIXME: gimple_canonical_types_compatible_p cannot compare types
14285 with variably sized arrays because their sizes possibly
14286 gimplified to different variables. */
14287 && !variably_modified_type_p (ct, NULL)
14288 && !gimple_canonical_types_compatible_p (t, ct, false)
14289 && COMPLETE_TYPE_P (t))
14290 {
14291 error ("TYPE_CANONICAL is not compatible");
14292 debug_tree (ct);
14293 error_found = true;
14294 }
14295
14296 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
14297 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
14298 {
14299 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
14300 debug_tree (ct);
14301 error_found = true;
14302 }
14303 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
14304 {
14305 error ("TYPE_CANONICAL of main variant is not main variant");
14306 debug_tree (ct);
14307 debug_tree (TYPE_MAIN_VARIANT (ct));
14308 error_found = true;
14309 }
14310
14311
14312 /* Check various uses of TYPE_MIN_VALUE_RAW. */
14313 if (RECORD_OR_UNION_TYPE_P (t))
14314 {
14315 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
14316 and danagle the pointer from time to time. */
14317 if (TYPE_VFIELD (t)
14318 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
14319 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
14320 {
14321 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
14322 debug_tree (TYPE_VFIELD (t));
14323 error_found = true;
14324 }
14325 }
14326 else if (TREE_CODE (t) == POINTER_TYPE)
14327 {
14328 if (TYPE_NEXT_PTR_TO (t)
14329 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
14330 {
14331 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
14332 debug_tree (TYPE_NEXT_PTR_TO (t));
14333 error_found = true;
14334 }
14335 }
14336 else if (TREE_CODE (t) == REFERENCE_TYPE)
14337 {
14338 if (TYPE_NEXT_REF_TO (t)
14339 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
14340 {
14341 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
14342 debug_tree (TYPE_NEXT_REF_TO (t));
14343 error_found = true;
14344 }
14345 }
14346 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14347 || TREE_CODE (t) == FIXED_POINT_TYPE)
14348 {
14349 /* FIXME: The following check should pass:
14350 useless_type_conversion_p (const_cast <tree> (t),
14351 TREE_TYPE (TYPE_MIN_VALUE (t))
14352 but does not for C sizetypes in LTO. */
14353 }
14354
14355 /* Check various uses of TYPE_MAXVAL_RAW. */
14356 if (RECORD_OR_UNION_TYPE_P (t))
14357 {
14358 if (!TYPE_BINFO (t))
14359 ;
14360 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
14361 {
14362 error ("TYPE_BINFO is not TREE_BINFO");
14363 debug_tree (TYPE_BINFO (t));
14364 error_found = true;
14365 }
14366 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
14367 {
14368 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
14369 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
14370 error_found = true;
14371 }
14372 }
14373 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14374 {
14375 if (TYPE_METHOD_BASETYPE (t)
14376 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
14377 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
14378 {
14379 error ("TYPE_METHOD_BASETYPE is not record nor union");
14380 debug_tree (TYPE_METHOD_BASETYPE (t));
14381 error_found = true;
14382 }
14383 }
14384 else if (TREE_CODE (t) == OFFSET_TYPE)
14385 {
14386 if (TYPE_OFFSET_BASETYPE (t)
14387 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
14388 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
14389 {
14390 error ("TYPE_OFFSET_BASETYPE is not record nor union");
14391 debug_tree (TYPE_OFFSET_BASETYPE (t));
14392 error_found = true;
14393 }
14394 }
14395 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14396 || TREE_CODE (t) == FIXED_POINT_TYPE)
14397 {
14398 /* FIXME: The following check should pass:
14399 useless_type_conversion_p (const_cast <tree> (t),
14400 TREE_TYPE (TYPE_MAX_VALUE (t))
14401 but does not for C sizetypes in LTO. */
14402 }
14403 else if (TREE_CODE (t) == ARRAY_TYPE)
14404 {
14405 if (TYPE_ARRAY_MAX_SIZE (t)
14406 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
14407 {
14408 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
14409 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
14410 error_found = true;
14411 }
14412 }
14413 else if (TYPE_MAX_VALUE_RAW (t))
14414 {
14415 error ("TYPE_MAX_VALUE_RAW non-NULL");
14416 debug_tree (TYPE_MAX_VALUE_RAW (t));
14417 error_found = true;
14418 }
14419
14420 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
14421 {
14422 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
14423 debug_tree (TYPE_LANG_SLOT_1 (t));
14424 error_found = true;
14425 }
14426
14427 /* Check various uses of TYPE_VALUES_RAW. */
14428 if (TREE_CODE (t) == ENUMERAL_TYPE)
14429 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
14430 {
14431 tree value = TREE_VALUE (l);
14432 tree name = TREE_PURPOSE (l);
14433
14434 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
14435 CONST_DECL of ENUMERAL TYPE. */
14436 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
14437 {
14438 error ("Enum value is not CONST_DECL or INTEGER_CST");
14439 debug_tree (value);
14440 debug_tree (name);
14441 error_found = true;
14442 }
14443 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
14444 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
14445 {
14446 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
14447 debug_tree (value);
14448 debug_tree (name);
14449 error_found = true;
14450 }
14451 if (TREE_CODE (name) != IDENTIFIER_NODE)
14452 {
14453 error ("Enum value name is not IDENTIFIER_NODE");
14454 debug_tree (value);
14455 debug_tree (name);
14456 error_found = true;
14457 }
14458 }
14459 else if (TREE_CODE (t) == ARRAY_TYPE)
14460 {
14461 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14462 {
14463 error ("Array TYPE_DOMAIN is not integer type");
14464 debug_tree (TYPE_DOMAIN (t));
14465 error_found = true;
14466 }
14467 }
14468 else if (RECORD_OR_UNION_TYPE_P (t))
14469 {
14470 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14471 {
14472 error ("TYPE_FIELDS defined in incomplete type");
14473 error_found = true;
14474 }
14475 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14476 {
14477 /* TODO: verify properties of decls. */
14478 if (TREE_CODE (fld) == FIELD_DECL)
14479 ;
14480 else if (TREE_CODE (fld) == TYPE_DECL)
14481 ;
14482 else if (TREE_CODE (fld) == CONST_DECL)
14483 ;
14484 else if (VAR_P (fld))
14485 ;
14486 else if (TREE_CODE (fld) == TEMPLATE_DECL)
14487 ;
14488 else if (TREE_CODE (fld) == USING_DECL)
14489 ;
14490 else if (TREE_CODE (fld) == FUNCTION_DECL)
14491 ;
14492 else
14493 {
14494 error ("Wrong tree in TYPE_FIELDS list");
14495 debug_tree (fld);
14496 error_found = true;
14497 }
14498 }
14499 }
14500 else if (TREE_CODE (t) == INTEGER_TYPE
14501 || TREE_CODE (t) == BOOLEAN_TYPE
14502 || TREE_CODE (t) == OFFSET_TYPE
14503 || TREE_CODE (t) == REFERENCE_TYPE
14504 || TREE_CODE (t) == NULLPTR_TYPE
14505 || TREE_CODE (t) == POINTER_TYPE)
14506 {
14507 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14508 {
14509 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
14510 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14511 error_found = true;
14512 }
14513 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14514 {
14515 error ("TYPE_CACHED_VALUES is not TREE_VEC");
14516 debug_tree (TYPE_CACHED_VALUES (t));
14517 error_found = true;
14518 }
14519 /* Verify just enough of cache to ensure that no one copied it to new type.
14520 All copying should go by copy_node that should clear it. */
14521 else if (TYPE_CACHED_VALUES_P (t))
14522 {
14523 int i;
14524 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14525 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14526 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14527 {
14528 error ("wrong TYPE_CACHED_VALUES entry");
14529 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14530 error_found = true;
14531 break;
14532 }
14533 }
14534 }
14535 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14536 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14537 {
14538 /* C++ FE uses TREE_PURPOSE to store initial values. */
14539 if (TREE_PURPOSE (l) && in_lto_p)
14540 {
14541 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
14542 debug_tree (l);
14543 error_found = true;
14544 }
14545 if (!TYPE_P (TREE_VALUE (l)))
14546 {
14547 error ("Wrong entry in TYPE_ARG_TYPES list");
14548 debug_tree (l);
14549 error_found = true;
14550 }
14551 }
14552 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14553 {
14554 error ("TYPE_VALUES_RAW field is non-NULL");
14555 debug_tree (TYPE_VALUES_RAW (t));
14556 error_found = true;
14557 }
14558 if (TREE_CODE (t) != INTEGER_TYPE
14559 && TREE_CODE (t) != BOOLEAN_TYPE
14560 && TREE_CODE (t) != OFFSET_TYPE
14561 && TREE_CODE (t) != REFERENCE_TYPE
14562 && TREE_CODE (t) != NULLPTR_TYPE
14563 && TREE_CODE (t) != POINTER_TYPE
14564 && TYPE_CACHED_VALUES_P (t))
14565 {
14566 error ("TYPE_CACHED_VALUES_P is set while it should not");
14567 error_found = true;
14568 }
14569 if (TYPE_STRING_FLAG (t)
14570 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
14571 {
14572 error ("TYPE_STRING_FLAG is set on wrong type code");
14573 error_found = true;
14574 }
14575
14576 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14577 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14578 of a type. */
14579 if (TREE_CODE (t) == METHOD_TYPE
14580 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14581 {
14582 error ("TYPE_METHOD_BASETYPE is not main variant");
14583 error_found = true;
14584 }
14585
14586 if (error_found)
14587 {
14588 debug_tree (const_cast <tree> (t));
14589 internal_error ("verify_type failed");
14590 }
14591 }
14592
14593
14594 /* Return 1 if ARG interpreted as signed in its precision is known to be
14595 always positive or 2 if ARG is known to be always negative, or 3 if
14596 ARG may be positive or negative. */
14597
14598 int
14599 get_range_pos_neg (tree arg)
14600 {
14601 if (arg == error_mark_node)
14602 return 3;
14603
14604 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14605 int cnt = 0;
14606 if (TREE_CODE (arg) == INTEGER_CST)
14607 {
14608 wide_int w = wi::sext (wi::to_wide (arg), prec);
14609 if (wi::neg_p (w))
14610 return 2;
14611 else
14612 return 1;
14613 }
14614 while (CONVERT_EXPR_P (arg)
14615 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14616 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14617 {
14618 arg = TREE_OPERAND (arg, 0);
14619 /* Narrower value zero extended into wider type
14620 will always result in positive values. */
14621 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14622 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14623 return 1;
14624 prec = TYPE_PRECISION (TREE_TYPE (arg));
14625 if (++cnt > 30)
14626 return 3;
14627 }
14628
14629 if (TREE_CODE (arg) != SSA_NAME)
14630 return 3;
14631 wide_int arg_min, arg_max;
14632 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14633 {
14634 gimple *g = SSA_NAME_DEF_STMT (arg);
14635 if (is_gimple_assign (g)
14636 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14637 {
14638 tree t = gimple_assign_rhs1 (g);
14639 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14640 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14641 {
14642 if (TYPE_UNSIGNED (TREE_TYPE (t))
14643 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14644 return 1;
14645 prec = TYPE_PRECISION (TREE_TYPE (t));
14646 arg = t;
14647 if (++cnt > 30)
14648 return 3;
14649 continue;
14650 }
14651 }
14652 return 3;
14653 }
14654 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14655 {
14656 /* For unsigned values, the "positive" range comes
14657 below the "negative" range. */
14658 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14659 return 1;
14660 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14661 return 2;
14662 }
14663 else
14664 {
14665 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14666 return 1;
14667 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14668 return 2;
14669 }
14670 return 3;
14671 }
14672
14673
14674
14675
14676 /* Return true if ARG is marked with the nonnull attribute in the
14677 current function signature. */
14678
14679 bool
14680 nonnull_arg_p (const_tree arg)
14681 {
14682 tree t, attrs, fntype;
14683 unsigned HOST_WIDE_INT arg_num;
14684
14685 gcc_assert (TREE_CODE (arg) == PARM_DECL
14686 && (POINTER_TYPE_P (TREE_TYPE (arg))
14687 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14688
14689 /* The static chain decl is always non null. */
14690 if (arg == cfun->static_chain_decl)
14691 return true;
14692
14693 /* THIS argument of method is always non-NULL. */
14694 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14695 && arg == DECL_ARGUMENTS (cfun->decl)
14696 && flag_delete_null_pointer_checks)
14697 return true;
14698
14699 /* Values passed by reference are always non-NULL. */
14700 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14701 && flag_delete_null_pointer_checks)
14702 return true;
14703
14704 fntype = TREE_TYPE (cfun->decl);
14705 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14706 {
14707 attrs = lookup_attribute ("nonnull", attrs);
14708
14709 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14710 if (attrs == NULL_TREE)
14711 return false;
14712
14713 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14714 if (TREE_VALUE (attrs) == NULL_TREE)
14715 return true;
14716
14717 /* Get the position number for ARG in the function signature. */
14718 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14719 t;
14720 t = DECL_CHAIN (t), arg_num++)
14721 {
14722 if (t == arg)
14723 break;
14724 }
14725
14726 gcc_assert (t == arg);
14727
14728 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14729 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14730 {
14731 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14732 return true;
14733 }
14734 }
14735
14736 return false;
14737 }
14738
14739 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14740 information. */
14741
14742 location_t
14743 set_block (location_t loc, tree block)
14744 {
14745 location_t pure_loc = get_pure_location (loc);
14746 source_range src_range = get_range_from_loc (line_table, loc);
14747 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14748 }
14749
14750 location_t
14751 set_source_range (tree expr, location_t start, location_t finish)
14752 {
14753 source_range src_range;
14754 src_range.m_start = start;
14755 src_range.m_finish = finish;
14756 return set_source_range (expr, src_range);
14757 }
14758
14759 location_t
14760 set_source_range (tree expr, source_range src_range)
14761 {
14762 if (!EXPR_P (expr))
14763 return UNKNOWN_LOCATION;
14764
14765 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14766 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14767 pure_loc,
14768 src_range,
14769 NULL);
14770 SET_EXPR_LOCATION (expr, adhoc);
14771 return adhoc;
14772 }
14773
14774 /* Return EXPR, potentially wrapped with a node expression LOC,
14775 if !CAN_HAVE_LOCATION_P (expr).
14776
14777 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14778 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14779
14780 Wrapper nodes can be identified using location_wrapper_p. */
14781
14782 tree
14783 maybe_wrap_with_location (tree expr, location_t loc)
14784 {
14785 if (expr == NULL)
14786 return NULL;
14787 if (loc == UNKNOWN_LOCATION)
14788 return expr;
14789 if (CAN_HAVE_LOCATION_P (expr))
14790 return expr;
14791 /* We should only be adding wrappers for constants and for decls,
14792 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14793 gcc_assert (CONSTANT_CLASS_P (expr)
14794 || DECL_P (expr)
14795 || EXCEPTIONAL_CLASS_P (expr));
14796
14797 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14798 any impact of the wrapper nodes. */
14799 if (EXCEPTIONAL_CLASS_P (expr))
14800 return expr;
14801
14802 /* If any auto_suppress_location_wrappers are active, don't create
14803 wrappers. */
14804 if (suppress_location_wrappers > 0)
14805 return expr;
14806
14807 tree_code code
14808 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14809 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14810 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14811 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14812 /* Mark this node as being a wrapper. */
14813 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14814 return wrapper;
14815 }
14816
14817 int suppress_location_wrappers;
14818
14819 /* Return the name of combined function FN, for debugging purposes. */
14820
14821 const char *
14822 combined_fn_name (combined_fn fn)
14823 {
14824 if (builtin_fn_p (fn))
14825 {
14826 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14827 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14828 }
14829 else
14830 return internal_fn_name (as_internal_fn (fn));
14831 }
14832
14833 /* Return a bitmap with a bit set corresponding to each argument in
14834 a function call type FNTYPE declared with attribute nonnull,
14835 or null if none of the function's argument are nonnull. The caller
14836 must free the bitmap. */
14837
14838 bitmap
14839 get_nonnull_args (const_tree fntype)
14840 {
14841 if (fntype == NULL_TREE)
14842 return NULL;
14843
14844 tree attrs = TYPE_ATTRIBUTES (fntype);
14845 if (!attrs)
14846 return NULL;
14847
14848 bitmap argmap = NULL;
14849
14850 /* A function declaration can specify multiple attribute nonnull,
14851 each with zero or more arguments. The loop below creates a bitmap
14852 representing a union of all the arguments. An empty (but non-null)
14853 bitmap means that all arguments have been declaraed nonnull. */
14854 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14855 {
14856 attrs = lookup_attribute ("nonnull", attrs);
14857 if (!attrs)
14858 break;
14859
14860 if (!argmap)
14861 argmap = BITMAP_ALLOC (NULL);
14862
14863 if (!TREE_VALUE (attrs))
14864 {
14865 /* Clear the bitmap in case a previous attribute nonnull
14866 set it and this one overrides it for all arguments. */
14867 bitmap_clear (argmap);
14868 return argmap;
14869 }
14870
14871 /* Iterate over the indices of the format arguments declared nonnull
14872 and set a bit for each. */
14873 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14874 {
14875 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14876 bitmap_set_bit (argmap, val);
14877 }
14878 }
14879
14880 return argmap;
14881 }
14882
14883 /* Returns true if TYPE is a type where it and all of its subobjects
14884 (recursively) are of structure, union, or array type. */
14885
14886 static bool
14887 default_is_empty_type (tree type)
14888 {
14889 if (RECORD_OR_UNION_TYPE_P (type))
14890 {
14891 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14892 if (TREE_CODE (field) == FIELD_DECL
14893 && !DECL_PADDING_P (field)
14894 && !default_is_empty_type (TREE_TYPE (field)))
14895 return false;
14896 return true;
14897 }
14898 else if (TREE_CODE (type) == ARRAY_TYPE)
14899 return (integer_minus_onep (array_type_nelts (type))
14900 || TYPE_DOMAIN (type) == NULL_TREE
14901 || default_is_empty_type (TREE_TYPE (type)));
14902 return false;
14903 }
14904
14905 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14906 that shouldn't be passed via stack. */
14907
14908 bool
14909 default_is_empty_record (const_tree type)
14910 {
14911 if (!abi_version_at_least (12))
14912 return false;
14913
14914 if (type == error_mark_node)
14915 return false;
14916
14917 if (TREE_ADDRESSABLE (type))
14918 return false;
14919
14920 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14921 }
14922
14923 /* Like int_size_in_bytes, but handle empty records specially. */
14924
14925 HOST_WIDE_INT
14926 arg_int_size_in_bytes (const_tree type)
14927 {
14928 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14929 }
14930
14931 /* Like size_in_bytes, but handle empty records specially. */
14932
14933 tree
14934 arg_size_in_bytes (const_tree type)
14935 {
14936 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14937 }
14938
14939 /* Return true if an expression with CODE has to have the same result type as
14940 its first operand. */
14941
14942 bool
14943 expr_type_first_operand_type_p (tree_code code)
14944 {
14945 switch (code)
14946 {
14947 case NEGATE_EXPR:
14948 case ABS_EXPR:
14949 case BIT_NOT_EXPR:
14950 case PAREN_EXPR:
14951 case CONJ_EXPR:
14952
14953 case PLUS_EXPR:
14954 case MINUS_EXPR:
14955 case MULT_EXPR:
14956 case TRUNC_DIV_EXPR:
14957 case CEIL_DIV_EXPR:
14958 case FLOOR_DIV_EXPR:
14959 case ROUND_DIV_EXPR:
14960 case TRUNC_MOD_EXPR:
14961 case CEIL_MOD_EXPR:
14962 case FLOOR_MOD_EXPR:
14963 case ROUND_MOD_EXPR:
14964 case RDIV_EXPR:
14965 case EXACT_DIV_EXPR:
14966 case MIN_EXPR:
14967 case MAX_EXPR:
14968 case BIT_IOR_EXPR:
14969 case BIT_XOR_EXPR:
14970 case BIT_AND_EXPR:
14971
14972 case LSHIFT_EXPR:
14973 case RSHIFT_EXPR:
14974 case LROTATE_EXPR:
14975 case RROTATE_EXPR:
14976 return true;
14977
14978 default:
14979 return false;
14980 }
14981 }
14982
14983 /* Return a typenode for the "standard" C type with a given name. */
14984 tree
14985 get_typenode_from_name (const char *name)
14986 {
14987 if (name == NULL || *name == '\0')
14988 return NULL_TREE;
14989
14990 if (strcmp (name, "char") == 0)
14991 return char_type_node;
14992 if (strcmp (name, "unsigned char") == 0)
14993 return unsigned_char_type_node;
14994 if (strcmp (name, "signed char") == 0)
14995 return signed_char_type_node;
14996
14997 if (strcmp (name, "short int") == 0)
14998 return short_integer_type_node;
14999 if (strcmp (name, "short unsigned int") == 0)
15000 return short_unsigned_type_node;
15001
15002 if (strcmp (name, "int") == 0)
15003 return integer_type_node;
15004 if (strcmp (name, "unsigned int") == 0)
15005 return unsigned_type_node;
15006
15007 if (strcmp (name, "long int") == 0)
15008 return long_integer_type_node;
15009 if (strcmp (name, "long unsigned int") == 0)
15010 return long_unsigned_type_node;
15011
15012 if (strcmp (name, "long long int") == 0)
15013 return long_long_integer_type_node;
15014 if (strcmp (name, "long long unsigned int") == 0)
15015 return long_long_unsigned_type_node;
15016
15017 gcc_unreachable ();
15018 }
15019
15020 /* List of pointer types used to declare builtins before we have seen their
15021 real declaration.
15022
15023 Keep the size up to date in tree.h ! */
15024 const builtin_structptr_type builtin_structptr_types[6] =
15025 {
15026 { fileptr_type_node, ptr_type_node, "FILE" },
15027 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
15028 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
15029 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
15030 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
15031 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
15032 };
15033
15034 /* Return the maximum object size. */
15035
15036 tree
15037 max_object_size (void)
15038 {
15039 /* To do: Make this a configurable parameter. */
15040 return TYPE_MAX_VALUE (ptrdiff_type_node);
15041 }
15042
15043 #if CHECKING_P
15044
15045 namespace selftest {
15046
15047 /* Selftests for tree. */
15048
15049 /* Verify that integer constants are sane. */
15050
15051 static void
15052 test_integer_constants ()
15053 {
15054 ASSERT_TRUE (integer_type_node != NULL);
15055 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
15056
15057 tree type = integer_type_node;
15058
15059 tree zero = build_zero_cst (type);
15060 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
15061 ASSERT_EQ (type, TREE_TYPE (zero));
15062
15063 tree one = build_int_cst (type, 1);
15064 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
15065 ASSERT_EQ (type, TREE_TYPE (zero));
15066 }
15067
15068 /* Verify identifiers. */
15069
15070 static void
15071 test_identifiers ()
15072 {
15073 tree identifier = get_identifier ("foo");
15074 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
15075 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
15076 }
15077
15078 /* Verify LABEL_DECL. */
15079
15080 static void
15081 test_labels ()
15082 {
15083 tree identifier = get_identifier ("err");
15084 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
15085 identifier, void_type_node);
15086 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
15087 ASSERT_FALSE (FORCED_LABEL (label_decl));
15088 }
15089
15090 /* Return a new VECTOR_CST node whose type is TYPE and whose values
15091 are given by VALS. */
15092
15093 static tree
15094 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
15095 {
15096 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
15097 tree_vector_builder builder (type, vals.length (), 1);
15098 builder.splice (vals);
15099 return builder.build ();
15100 }
15101
15102 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
15103
15104 static void
15105 check_vector_cst (vec<tree> expected, tree actual)
15106 {
15107 ASSERT_KNOWN_EQ (expected.length (),
15108 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
15109 for (unsigned int i = 0; i < expected.length (); ++i)
15110 ASSERT_EQ (wi::to_wide (expected[i]),
15111 wi::to_wide (vector_cst_elt (actual, i)));
15112 }
15113
15114 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
15115 and that its elements match EXPECTED. */
15116
15117 static void
15118 check_vector_cst_duplicate (vec<tree> expected, tree actual,
15119 unsigned int npatterns)
15120 {
15121 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15122 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
15123 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
15124 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
15125 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15126 check_vector_cst (expected, actual);
15127 }
15128
15129 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
15130 and NPATTERNS background elements, and that its elements match
15131 EXPECTED. */
15132
15133 static void
15134 check_vector_cst_fill (vec<tree> expected, tree actual,
15135 unsigned int npatterns)
15136 {
15137 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15138 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
15139 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
15140 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15141 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15142 check_vector_cst (expected, actual);
15143 }
15144
15145 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
15146 and that its elements match EXPECTED. */
15147
15148 static void
15149 check_vector_cst_stepped (vec<tree> expected, tree actual,
15150 unsigned int npatterns)
15151 {
15152 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15153 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
15154 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
15155 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15156 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
15157 check_vector_cst (expected, actual);
15158 }
15159
15160 /* Test the creation of VECTOR_CSTs. */
15161
15162 static void
15163 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
15164 {
15165 auto_vec<tree, 8> elements (8);
15166 elements.quick_grow (8);
15167 tree element_type = build_nonstandard_integer_type (16, true);
15168 tree vector_type = build_vector_type (element_type, 8);
15169
15170 /* Test a simple linear series with a base of 0 and a step of 1:
15171 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
15172 for (unsigned int i = 0; i < 8; ++i)
15173 elements[i] = build_int_cst (element_type, i);
15174 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
15175 check_vector_cst_stepped (elements, vector, 1);
15176
15177 /* Try the same with the first element replaced by 100:
15178 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
15179 elements[0] = build_int_cst (element_type, 100);
15180 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15181 check_vector_cst_stepped (elements, vector, 1);
15182
15183 /* Try a series that wraps around.
15184 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
15185 for (unsigned int i = 1; i < 8; ++i)
15186 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
15187 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15188 check_vector_cst_stepped (elements, vector, 1);
15189
15190 /* Try a downward series:
15191 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
15192 for (unsigned int i = 1; i < 8; ++i)
15193 elements[i] = build_int_cst (element_type, 80 - i);
15194 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15195 check_vector_cst_stepped (elements, vector, 1);
15196
15197 /* Try two interleaved series with different bases and steps:
15198 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
15199 elements[1] = build_int_cst (element_type, 53);
15200 for (unsigned int i = 2; i < 8; i += 2)
15201 {
15202 elements[i] = build_int_cst (element_type, 70 - i * 2);
15203 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
15204 }
15205 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15206 check_vector_cst_stepped (elements, vector, 2);
15207
15208 /* Try a duplicated value:
15209 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
15210 for (unsigned int i = 1; i < 8; ++i)
15211 elements[i] = elements[0];
15212 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15213 check_vector_cst_duplicate (elements, vector, 1);
15214
15215 /* Try an interleaved duplicated value:
15216 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
15217 elements[1] = build_int_cst (element_type, 55);
15218 for (unsigned int i = 2; i < 8; ++i)
15219 elements[i] = elements[i - 2];
15220 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15221 check_vector_cst_duplicate (elements, vector, 2);
15222
15223 /* Try a duplicated value with 2 exceptions
15224 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
15225 elements[0] = build_int_cst (element_type, 41);
15226 elements[1] = build_int_cst (element_type, 97);
15227 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15228 check_vector_cst_fill (elements, vector, 2);
15229
15230 /* Try with and without a step
15231 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
15232 for (unsigned int i = 3; i < 8; i += 2)
15233 elements[i] = build_int_cst (element_type, i * 7);
15234 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15235 check_vector_cst_stepped (elements, vector, 2);
15236
15237 /* Try a fully-general constant:
15238 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
15239 elements[5] = build_int_cst (element_type, 9990);
15240 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15241 check_vector_cst_fill (elements, vector, 4);
15242 }
15243
15244 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
15245 Helper function for test_location_wrappers, to deal with STRIP_NOPS
15246 modifying its argument in-place. */
15247
15248 static void
15249 check_strip_nops (tree node, tree expected)
15250 {
15251 STRIP_NOPS (node);
15252 ASSERT_EQ (expected, node);
15253 }
15254
15255 /* Verify location wrappers. */
15256
15257 static void
15258 test_location_wrappers ()
15259 {
15260 location_t loc = BUILTINS_LOCATION;
15261
15262 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
15263
15264 /* Wrapping a constant. */
15265 tree int_cst = build_int_cst (integer_type_node, 42);
15266 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
15267 ASSERT_FALSE (location_wrapper_p (int_cst));
15268
15269 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
15270 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
15271 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
15272 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
15273
15274 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
15275 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
15276
15277 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
15278 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
15279 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
15280 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
15281
15282 /* Wrapping a STRING_CST. */
15283 tree string_cst = build_string (4, "foo");
15284 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
15285 ASSERT_FALSE (location_wrapper_p (string_cst));
15286
15287 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
15288 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
15289 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
15290 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
15291 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
15292
15293
15294 /* Wrapping a variable. */
15295 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
15296 get_identifier ("some_int_var"),
15297 integer_type_node);
15298 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
15299 ASSERT_FALSE (location_wrapper_p (int_var));
15300
15301 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
15302 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
15303 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
15304 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
15305
15306 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
15307 wrapper. */
15308 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
15309 ASSERT_FALSE (location_wrapper_p (r_cast));
15310 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
15311
15312 /* Verify that STRIP_NOPS removes wrappers. */
15313 check_strip_nops (wrapped_int_cst, int_cst);
15314 check_strip_nops (wrapped_string_cst, string_cst);
15315 check_strip_nops (wrapped_int_var, int_var);
15316 }
15317
15318 /* Test various tree predicates. Verify that location wrappers don't
15319 affect the results. */
15320
15321 static void
15322 test_predicates ()
15323 {
15324 /* Build various constants and wrappers around them. */
15325
15326 location_t loc = BUILTINS_LOCATION;
15327
15328 tree i_0 = build_int_cst (integer_type_node, 0);
15329 tree wr_i_0 = maybe_wrap_with_location (i_0, loc);
15330
15331 tree i_1 = build_int_cst (integer_type_node, 1);
15332 tree wr_i_1 = maybe_wrap_with_location (i_1, loc);
15333
15334 tree i_m1 = build_int_cst (integer_type_node, -1);
15335 tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);
15336
15337 tree f_0 = build_real_from_int_cst (float_type_node, i_0);
15338 tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
15339 tree f_1 = build_real_from_int_cst (float_type_node, i_1);
15340 tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
15341 tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
15342 tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);
15343
15344 tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
15345 tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
15346 tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);
15347
15348 tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
15349 tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
15350 tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);
15351
15352 /* TODO: vector constants. */
15353
15354 /* Test integer_onep. */
15355 ASSERT_FALSE (integer_onep (i_0));
15356 ASSERT_FALSE (integer_onep (wr_i_0));
15357 ASSERT_TRUE (integer_onep (i_1));
15358 ASSERT_TRUE (integer_onep (wr_i_1));
15359 ASSERT_FALSE (integer_onep (i_m1));
15360 ASSERT_FALSE (integer_onep (wr_i_m1));
15361 ASSERT_FALSE (integer_onep (f_0));
15362 ASSERT_FALSE (integer_onep (wr_f_0));
15363 ASSERT_FALSE (integer_onep (f_1));
15364 ASSERT_FALSE (integer_onep (wr_f_1));
15365 ASSERT_FALSE (integer_onep (f_m1));
15366 ASSERT_FALSE (integer_onep (wr_f_m1));
15367 ASSERT_FALSE (integer_onep (c_i_0));
15368 ASSERT_TRUE (integer_onep (c_i_1));
15369 ASSERT_FALSE (integer_onep (c_i_m1));
15370 ASSERT_FALSE (integer_onep (c_f_0));
15371 ASSERT_FALSE (integer_onep (c_f_1));
15372 ASSERT_FALSE (integer_onep (c_f_m1));
15373
15374 /* Test integer_zerop. */
15375 ASSERT_TRUE (integer_zerop (i_0));
15376 ASSERT_TRUE (integer_zerop (wr_i_0));
15377 ASSERT_FALSE (integer_zerop (i_1));
15378 ASSERT_FALSE (integer_zerop (wr_i_1));
15379 ASSERT_FALSE (integer_zerop (i_m1));
15380 ASSERT_FALSE (integer_zerop (wr_i_m1));
15381 ASSERT_FALSE (integer_zerop (f_0));
15382 ASSERT_FALSE (integer_zerop (wr_f_0));
15383 ASSERT_FALSE (integer_zerop (f_1));
15384 ASSERT_FALSE (integer_zerop (wr_f_1));
15385 ASSERT_FALSE (integer_zerop (f_m1));
15386 ASSERT_FALSE (integer_zerop (wr_f_m1));
15387 ASSERT_TRUE (integer_zerop (c_i_0));
15388 ASSERT_FALSE (integer_zerop (c_i_1));
15389 ASSERT_FALSE (integer_zerop (c_i_m1));
15390 ASSERT_FALSE (integer_zerop (c_f_0));
15391 ASSERT_FALSE (integer_zerop (c_f_1));
15392 ASSERT_FALSE (integer_zerop (c_f_m1));
15393
15394 /* Test integer_all_onesp. */
15395 ASSERT_FALSE (integer_all_onesp (i_0));
15396 ASSERT_FALSE (integer_all_onesp (wr_i_0));
15397 ASSERT_FALSE (integer_all_onesp (i_1));
15398 ASSERT_FALSE (integer_all_onesp (wr_i_1));
15399 ASSERT_TRUE (integer_all_onesp (i_m1));
15400 ASSERT_TRUE (integer_all_onesp (wr_i_m1));
15401 ASSERT_FALSE (integer_all_onesp (f_0));
15402 ASSERT_FALSE (integer_all_onesp (wr_f_0));
15403 ASSERT_FALSE (integer_all_onesp (f_1));
15404 ASSERT_FALSE (integer_all_onesp (wr_f_1));
15405 ASSERT_FALSE (integer_all_onesp (f_m1));
15406 ASSERT_FALSE (integer_all_onesp (wr_f_m1));
15407 ASSERT_FALSE (integer_all_onesp (c_i_0));
15408 ASSERT_FALSE (integer_all_onesp (c_i_1));
15409 ASSERT_FALSE (integer_all_onesp (c_i_m1));
15410 ASSERT_FALSE (integer_all_onesp (c_f_0));
15411 ASSERT_FALSE (integer_all_onesp (c_f_1));
15412 ASSERT_FALSE (integer_all_onesp (c_f_m1));
15413
15414 /* Test integer_minus_onep. */
15415 ASSERT_FALSE (integer_minus_onep (i_0));
15416 ASSERT_FALSE (integer_minus_onep (wr_i_0));
15417 ASSERT_FALSE (integer_minus_onep (i_1));
15418 ASSERT_FALSE (integer_minus_onep (wr_i_1));
15419 ASSERT_TRUE (integer_minus_onep (i_m1));
15420 ASSERT_TRUE (integer_minus_onep (wr_i_m1));
15421 ASSERT_FALSE (integer_minus_onep (f_0));
15422 ASSERT_FALSE (integer_minus_onep (wr_f_0));
15423 ASSERT_FALSE (integer_minus_onep (f_1));
15424 ASSERT_FALSE (integer_minus_onep (wr_f_1));
15425 ASSERT_FALSE (integer_minus_onep (f_m1));
15426 ASSERT_FALSE (integer_minus_onep (wr_f_m1));
15427 ASSERT_FALSE (integer_minus_onep (c_i_0));
15428 ASSERT_FALSE (integer_minus_onep (c_i_1));
15429 ASSERT_TRUE (integer_minus_onep (c_i_m1));
15430 ASSERT_FALSE (integer_minus_onep (c_f_0));
15431 ASSERT_FALSE (integer_minus_onep (c_f_1));
15432 ASSERT_FALSE (integer_minus_onep (c_f_m1));
15433
15434 /* Test integer_each_onep. */
15435 ASSERT_FALSE (integer_each_onep (i_0));
15436 ASSERT_FALSE (integer_each_onep (wr_i_0));
15437 ASSERT_TRUE (integer_each_onep (i_1));
15438 ASSERT_TRUE (integer_each_onep (wr_i_1));
15439 ASSERT_FALSE (integer_each_onep (i_m1));
15440 ASSERT_FALSE (integer_each_onep (wr_i_m1));
15441 ASSERT_FALSE (integer_each_onep (f_0));
15442 ASSERT_FALSE (integer_each_onep (wr_f_0));
15443 ASSERT_FALSE (integer_each_onep (f_1));
15444 ASSERT_FALSE (integer_each_onep (wr_f_1));
15445 ASSERT_FALSE (integer_each_onep (f_m1));
15446 ASSERT_FALSE (integer_each_onep (wr_f_m1));
15447 ASSERT_FALSE (integer_each_onep (c_i_0));
15448 ASSERT_FALSE (integer_each_onep (c_i_1));
15449 ASSERT_FALSE (integer_each_onep (c_i_m1));
15450 ASSERT_FALSE (integer_each_onep (c_f_0));
15451 ASSERT_FALSE (integer_each_onep (c_f_1));
15452 ASSERT_FALSE (integer_each_onep (c_f_m1));
15453
15454 /* Test integer_truep. */
15455 ASSERT_FALSE (integer_truep (i_0));
15456 ASSERT_FALSE (integer_truep (wr_i_0));
15457 ASSERT_TRUE (integer_truep (i_1));
15458 ASSERT_TRUE (integer_truep (wr_i_1));
15459 ASSERT_FALSE (integer_truep (i_m1));
15460 ASSERT_FALSE (integer_truep (wr_i_m1));
15461 ASSERT_FALSE (integer_truep (f_0));
15462 ASSERT_FALSE (integer_truep (wr_f_0));
15463 ASSERT_FALSE (integer_truep (f_1));
15464 ASSERT_FALSE (integer_truep (wr_f_1));
15465 ASSERT_FALSE (integer_truep (f_m1));
15466 ASSERT_FALSE (integer_truep (wr_f_m1));
15467 ASSERT_FALSE (integer_truep (c_i_0));
15468 ASSERT_TRUE (integer_truep (c_i_1));
15469 ASSERT_FALSE (integer_truep (c_i_m1));
15470 ASSERT_FALSE (integer_truep (c_f_0));
15471 ASSERT_FALSE (integer_truep (c_f_1));
15472 ASSERT_FALSE (integer_truep (c_f_m1));
15473
15474 /* Test integer_nonzerop. */
15475 ASSERT_FALSE (integer_nonzerop (i_0));
15476 ASSERT_FALSE (integer_nonzerop (wr_i_0));
15477 ASSERT_TRUE (integer_nonzerop (i_1));
15478 ASSERT_TRUE (integer_nonzerop (wr_i_1));
15479 ASSERT_TRUE (integer_nonzerop (i_m1));
15480 ASSERT_TRUE (integer_nonzerop (wr_i_m1));
15481 ASSERT_FALSE (integer_nonzerop (f_0));
15482 ASSERT_FALSE (integer_nonzerop (wr_f_0));
15483 ASSERT_FALSE (integer_nonzerop (f_1));
15484 ASSERT_FALSE (integer_nonzerop (wr_f_1));
15485 ASSERT_FALSE (integer_nonzerop (f_m1));
15486 ASSERT_FALSE (integer_nonzerop (wr_f_m1));
15487 ASSERT_FALSE (integer_nonzerop (c_i_0));
15488 ASSERT_TRUE (integer_nonzerop (c_i_1));
15489 ASSERT_TRUE (integer_nonzerop (c_i_m1));
15490 ASSERT_FALSE (integer_nonzerop (c_f_0));
15491 ASSERT_FALSE (integer_nonzerop (c_f_1));
15492 ASSERT_FALSE (integer_nonzerop (c_f_m1));
15493
15494 /* Test real_zerop. */
15495 ASSERT_FALSE (real_zerop (i_0));
15496 ASSERT_FALSE (real_zerop (wr_i_0));
15497 ASSERT_FALSE (real_zerop (i_1));
15498 ASSERT_FALSE (real_zerop (wr_i_1));
15499 ASSERT_FALSE (real_zerop (i_m1));
15500 ASSERT_FALSE (real_zerop (wr_i_m1));
15501 ASSERT_TRUE (real_zerop (f_0));
15502 ASSERT_TRUE (real_zerop (wr_f_0));
15503 ASSERT_FALSE (real_zerop (f_1));
15504 ASSERT_FALSE (real_zerop (wr_f_1));
15505 ASSERT_FALSE (real_zerop (f_m1));
15506 ASSERT_FALSE (real_zerop (wr_f_m1));
15507 ASSERT_FALSE (real_zerop (c_i_0));
15508 ASSERT_FALSE (real_zerop (c_i_1));
15509 ASSERT_FALSE (real_zerop (c_i_m1));
15510 ASSERT_TRUE (real_zerop (c_f_0));
15511 ASSERT_FALSE (real_zerop (c_f_1));
15512 ASSERT_FALSE (real_zerop (c_f_m1));
15513
15514 /* Test real_onep. */
15515 ASSERT_FALSE (real_onep (i_0));
15516 ASSERT_FALSE (real_onep (wr_i_0));
15517 ASSERT_FALSE (real_onep (i_1));
15518 ASSERT_FALSE (real_onep (wr_i_1));
15519 ASSERT_FALSE (real_onep (i_m1));
15520 ASSERT_FALSE (real_onep (wr_i_m1));
15521 ASSERT_FALSE (real_onep (f_0));
15522 ASSERT_FALSE (real_onep (wr_f_0));
15523 ASSERT_TRUE (real_onep (f_1));
15524 ASSERT_TRUE (real_onep (wr_f_1));
15525 ASSERT_FALSE (real_onep (f_m1));
15526 ASSERT_FALSE (real_onep (wr_f_m1));
15527 ASSERT_FALSE (real_onep (c_i_0));
15528 ASSERT_FALSE (real_onep (c_i_1));
15529 ASSERT_FALSE (real_onep (c_i_m1));
15530 ASSERT_FALSE (real_onep (c_f_0));
15531 ASSERT_TRUE (real_onep (c_f_1));
15532 ASSERT_FALSE (real_onep (c_f_m1));
15533
15534 /* Test real_minus_onep. */
15535 ASSERT_FALSE (real_minus_onep (i_0));
15536 ASSERT_FALSE (real_minus_onep (wr_i_0));
15537 ASSERT_FALSE (real_minus_onep (i_1));
15538 ASSERT_FALSE (real_minus_onep (wr_i_1));
15539 ASSERT_FALSE (real_minus_onep (i_m1));
15540 ASSERT_FALSE (real_minus_onep (wr_i_m1));
15541 ASSERT_FALSE (real_minus_onep (f_0));
15542 ASSERT_FALSE (real_minus_onep (wr_f_0));
15543 ASSERT_FALSE (real_minus_onep (f_1));
15544 ASSERT_FALSE (real_minus_onep (wr_f_1));
15545 ASSERT_TRUE (real_minus_onep (f_m1));
15546 ASSERT_TRUE (real_minus_onep (wr_f_m1));
15547 ASSERT_FALSE (real_minus_onep (c_i_0));
15548 ASSERT_FALSE (real_minus_onep (c_i_1));
15549 ASSERT_FALSE (real_minus_onep (c_i_m1));
15550 ASSERT_FALSE (real_minus_onep (c_f_0));
15551 ASSERT_FALSE (real_minus_onep (c_f_1));
15552 ASSERT_TRUE (real_minus_onep (c_f_m1));
15553
15554 /* Test zerop. */
15555 ASSERT_TRUE (zerop (i_0));
15556 ASSERT_TRUE (zerop (wr_i_0));
15557 ASSERT_FALSE (zerop (i_1));
15558 ASSERT_FALSE (zerop (wr_i_1));
15559 ASSERT_FALSE (zerop (i_m1));
15560 ASSERT_FALSE (zerop (wr_i_m1));
15561 ASSERT_TRUE (zerop (f_0));
15562 ASSERT_TRUE (zerop (wr_f_0));
15563 ASSERT_FALSE (zerop (f_1));
15564 ASSERT_FALSE (zerop (wr_f_1));
15565 ASSERT_FALSE (zerop (f_m1));
15566 ASSERT_FALSE (zerop (wr_f_m1));
15567 ASSERT_TRUE (zerop (c_i_0));
15568 ASSERT_FALSE (zerop (c_i_1));
15569 ASSERT_FALSE (zerop (c_i_m1));
15570 ASSERT_TRUE (zerop (c_f_0));
15571 ASSERT_FALSE (zerop (c_f_1));
15572 ASSERT_FALSE (zerop (c_f_m1));
15573
15574 /* Test tree_expr_nonnegative_p. */
15575 ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
15576 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
15577 ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
15578 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
15579 ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
15580 ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
15581 ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
15582 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
15583 ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
15584 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
15585 ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
15586 ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
15587 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
15588 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
15589 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
15590 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
15591 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
15592 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));
15593
15594 /* Test tree_expr_nonzero_p. */
15595 ASSERT_FALSE (tree_expr_nonzero_p (i_0));
15596 ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
15597 ASSERT_TRUE (tree_expr_nonzero_p (i_1));
15598 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
15599 ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
15600 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));
15601
15602 /* Test integer_valued_real_p. */
15603 ASSERT_FALSE (integer_valued_real_p (i_0));
15604 ASSERT_TRUE (integer_valued_real_p (f_0));
15605 ASSERT_TRUE (integer_valued_real_p (wr_f_0));
15606 ASSERT_TRUE (integer_valued_real_p (f_1));
15607 ASSERT_TRUE (integer_valued_real_p (wr_f_1));
15608
15609 /* Test integer_pow2p. */
15610 ASSERT_FALSE (integer_pow2p (i_0));
15611 ASSERT_TRUE (integer_pow2p (i_1));
15612 ASSERT_TRUE (integer_pow2p (wr_i_1));
15613
15614 /* Test uniform_integer_cst_p. */
15615 ASSERT_TRUE (uniform_integer_cst_p (i_0));
15616 ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
15617 ASSERT_TRUE (uniform_integer_cst_p (i_1));
15618 ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
15619 ASSERT_TRUE (uniform_integer_cst_p (i_m1));
15620 ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
15621 ASSERT_FALSE (uniform_integer_cst_p (f_0));
15622 ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
15623 ASSERT_FALSE (uniform_integer_cst_p (f_1));
15624 ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
15625 ASSERT_FALSE (uniform_integer_cst_p (f_m1));
15626 ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
15627 ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
15628 ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
15629 ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
15630 ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
15631 ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
15632 ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
15633 }
15634
15635 /* Check that string escaping works correctly. */
15636
15637 static void
15638 test_escaped_strings (void)
15639 {
15640 int saved_cutoff;
15641 escaped_string msg;
15642
15643 msg.escape (NULL);
15644 /* ASSERT_STREQ does not accept NULL as a valid test
15645 result, so we have to use ASSERT_EQ instead. */
15646 ASSERT_EQ (NULL, (const char *) msg);
15647
15648 msg.escape ("");
15649 ASSERT_STREQ ("", (const char *) msg);
15650
15651 msg.escape ("foobar");
15652 ASSERT_STREQ ("foobar", (const char *) msg);
15653
15654 /* Ensure that we have -fmessage-length set to 0. */
15655 saved_cutoff = pp_line_cutoff (global_dc->printer);
15656 pp_line_cutoff (global_dc->printer) = 0;
15657
15658 msg.escape ("foo\nbar");
15659 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
15660
15661 msg.escape ("\a\b\f\n\r\t\v");
15662 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
15663
15664 /* Now repeat the tests with -fmessage-length set to 5. */
15665 pp_line_cutoff (global_dc->printer) = 5;
15666
15667 /* Note that the newline is not translated into an escape. */
15668 msg.escape ("foo\nbar");
15669 ASSERT_STREQ ("foo\nbar", (const char *) msg);
15670
15671 msg.escape ("\a\b\f\n\r\t\v");
15672 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
15673
15674 /* Restore the original message length setting. */
15675 pp_line_cutoff (global_dc->printer) = saved_cutoff;
15676 }
15677
15678 /* Run all of the selftests within this file. */
15679
15680 void
15681 tree_c_tests ()
15682 {
15683 test_integer_constants ();
15684 test_identifiers ();
15685 test_labels ();
15686 test_vector_cst_patterns ();
15687 test_location_wrappers ();
15688 test_predicates ();
15689 test_escaped_strings ();
15690 }
15691
15692 } // namespace selftest
15693
15694 #endif /* CHECKING_P */
15695
15696 #include "gt-tree.h"