PR optimization/9325, PR java/6391
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack *h, void *obj);
51
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
54
55 int tree_node_counts[(int) all_kinds];
56 int tree_node_sizes[(int) all_kinds];
57
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names[] = {
60 "decls",
61 "types",
62 "blocks",
63 "stmts",
64 "refs",
65 "exprs",
66 "constants",
67 "identifiers",
68 "perm_tree_lists",
69 "temp_tree_lists",
70 "vecs",
71 "random kinds",
72 "lang_decl kinds",
73 "lang_type kinds"
74 };
75 #endif /* GATHER_STATISTICS */
76
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid = 1;
81
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
84
85 struct type_hash GTY(())
86 {
87 unsigned long hash;
88 tree type;
89 };
90
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
93
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
100
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
102 htab_t type_hash_table;
103
104 static void set_type_quals (tree, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree);
109 static tree make_vector (enum machine_mode, tree, int);
110 static int type_hash_marked_p (const void *);
111
112 tree global_trees[TI_MAX];
113 tree integer_types[itk_none];
114 \f
115 /* Init tree.c. */
116
117 void
118 init_ttree (void)
119 {
120 /* Initialize the hash table of types. */
121 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
122 type_hash_eq, 0);
123 }
124
125 \f
126 /* The name of the object as the assembler will see it (but before any
127 translations made by ASM_OUTPUT_LABELREF). Often this is the same
128 as DECL_NAME. It is an IDENTIFIER_NODE. */
129 tree
130 decl_assembler_name (tree decl)
131 {
132 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
133 (*lang_hooks.set_decl_assembler_name) (decl);
134 return DECL_CHECK (decl)->decl.assembler_name;
135 }
136
137 /* Compute the number of bytes occupied by 'node'. This routine only
138 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
139 size_t
140 tree_size (tree node)
141 {
142 enum tree_code code = TREE_CODE (node);
143
144 switch (TREE_CODE_CLASS (code))
145 {
146 case 'd': /* A decl node */
147 return sizeof (struct tree_decl);
148
149 case 't': /* a type node */
150 return sizeof (struct tree_type);
151
152 case 'b': /* a lexical block node */
153 return sizeof (struct tree_block);
154
155 case 'r': /* a reference */
156 case 'e': /* an expression */
157 case 's': /* an expression with side effects */
158 case '<': /* a comparison expression */
159 case '1': /* a unary arithmetic expression */
160 case '2': /* a binary arithmetic expression */
161 return (sizeof (struct tree_exp)
162 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
163
164 case 'c': /* a constant */
165 switch (code)
166 {
167 case INTEGER_CST: return sizeof (struct tree_int_cst);
168 case REAL_CST: return sizeof (struct tree_real_cst);
169 case COMPLEX_CST: return sizeof (struct tree_complex);
170 case VECTOR_CST: return sizeof (struct tree_vector);
171 case STRING_CST: return sizeof (struct tree_string);
172 default:
173 return (*lang_hooks.tree_size) (code);
174 }
175
176 case 'x': /* something random, like an identifier. */
177 switch (code)
178 {
179 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
180 case TREE_LIST: return sizeof (struct tree_list);
181 case TREE_VEC: return (sizeof (struct tree_vec)
182 + TREE_VEC_LENGTH(node) * sizeof(char *)
183 - sizeof (char *));
184
185 case ERROR_MARK:
186 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
187
188 default:
189 return (*lang_hooks.tree_size) (code);
190 }
191
192 default:
193 abort ();
194 }
195 }
196
197 /* Return a newly allocated node of code CODE.
198 For decl and type nodes, some other fields are initialized.
199 The rest of the node is initialized to zero.
200
201 Achoo! I got a code in the node. */
202
203 tree
204 make_node (enum tree_code code)
205 {
206 tree t;
207 int type = TREE_CODE_CLASS (code);
208 size_t length;
209 #ifdef GATHER_STATISTICS
210 tree_node_kind kind;
211 #endif
212 struct tree_common ttmp;
213
214 /* We can't allocate a TREE_VEC without knowing how many elements
215 it will have. */
216 if (code == TREE_VEC)
217 abort ();
218
219 TREE_SET_CODE ((tree)&ttmp, code);
220 length = tree_size ((tree)&ttmp);
221
222 #ifdef GATHER_STATISTICS
223 switch (type)
224 {
225 case 'd': /* A decl node */
226 kind = d_kind;
227 break;
228
229 case 't': /* a type node */
230 kind = t_kind;
231 break;
232
233 case 'b': /* a lexical block */
234 kind = b_kind;
235 break;
236
237 case 's': /* an expression with side effects */
238 kind = s_kind;
239 break;
240
241 case 'r': /* a reference */
242 kind = r_kind;
243 break;
244
245 case 'e': /* an expression */
246 case '<': /* a comparison expression */
247 case '1': /* a unary arithmetic expression */
248 case '2': /* a binary arithmetic expression */
249 kind = e_kind;
250 break;
251
252 case 'c': /* a constant */
253 kind = c_kind;
254 break;
255
256 case 'x': /* something random, like an identifier. */
257 if (code == IDENTIFIER_NODE)
258 kind = id_kind;
259 else if (code == TREE_VEC)
260 kind = vec_kind;
261 else
262 kind = x_kind;
263 break;
264
265 default:
266 abort ();
267 }
268
269 tree_node_counts[(int) kind]++;
270 tree_node_sizes[(int) kind] += length;
271 #endif
272
273 t = ggc_alloc_tree (length);
274
275 memset (t, 0, length);
276
277 TREE_SET_CODE (t, code);
278
279 switch (type)
280 {
281 case 's':
282 TREE_SIDE_EFFECTS (t) = 1;
283 break;
284
285 case 'd':
286 if (code != FUNCTION_DECL)
287 DECL_ALIGN (t) = 1;
288 DECL_USER_ALIGN (t) = 0;
289 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
290 DECL_SOURCE_LOCATION (t) = input_location;
291 DECL_UID (t) = next_decl_uid++;
292
293 /* We have not yet computed the alias set for this declaration. */
294 DECL_POINTER_ALIAS_SET (t) = -1;
295 break;
296
297 case 't':
298 TYPE_UID (t) = next_type_uid++;
299 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
300 TYPE_USER_ALIGN (t) = 0;
301 TYPE_MAIN_VARIANT (t) = t;
302
303 /* Default to no attributes for type, but let target change that. */
304 TYPE_ATTRIBUTES (t) = NULL_TREE;
305 (*targetm.set_default_type_attributes) (t);
306
307 /* We have not yet computed the alias set for this type. */
308 TYPE_ALIAS_SET (t) = -1;
309 break;
310
311 case 'c':
312 TREE_CONSTANT (t) = 1;
313 break;
314
315 case 'e':
316 switch (code)
317 {
318 case INIT_EXPR:
319 case MODIFY_EXPR:
320 case VA_ARG_EXPR:
321 case RTL_EXPR:
322 case PREDECREMENT_EXPR:
323 case PREINCREMENT_EXPR:
324 case POSTDECREMENT_EXPR:
325 case POSTINCREMENT_EXPR:
326 /* All of these have side-effects, no matter what their
327 operands are. */
328 TREE_SIDE_EFFECTS (t) = 1;
329 break;
330
331 default:
332 break;
333 }
334 break;
335 }
336
337 return t;
338 }
339 \f
340 /* Return a new node with the same contents as NODE except that its
341 TREE_CHAIN is zero and it has a fresh uid. */
342
343 tree
344 copy_node (tree node)
345 {
346 tree t;
347 enum tree_code code = TREE_CODE (node);
348 size_t length;
349
350 length = tree_size (node);
351 t = ggc_alloc_tree (length);
352 memcpy (t, node, length);
353
354 TREE_CHAIN (t) = 0;
355 TREE_ASM_WRITTEN (t) = 0;
356
357 if (TREE_CODE_CLASS (code) == 'd')
358 DECL_UID (t) = next_decl_uid++;
359 else if (TREE_CODE_CLASS (code) == 't')
360 {
361 TYPE_UID (t) = next_type_uid++;
362 /* The following is so that the debug code for
363 the copy is different from the original type.
364 The two statements usually duplicate each other
365 (because they clear fields of the same union),
366 but the optimizer should catch that. */
367 TYPE_SYMTAB_POINTER (t) = 0;
368 TYPE_SYMTAB_ADDRESS (t) = 0;
369 }
370
371 return t;
372 }
373
374 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
375 For example, this can copy a list made of TREE_LIST nodes. */
376
377 tree
378 copy_list (tree list)
379 {
380 tree head;
381 tree prev, next;
382
383 if (list == 0)
384 return 0;
385
386 head = prev = copy_node (list);
387 next = TREE_CHAIN (list);
388 while (next)
389 {
390 TREE_CHAIN (prev) = copy_node (next);
391 prev = TREE_CHAIN (prev);
392 next = TREE_CHAIN (next);
393 }
394 return head;
395 }
396
397 \f
398 /* Return a newly constructed INTEGER_CST node whose constant value
399 is specified by the two ints LOW and HI.
400 The TREE_TYPE is set to `int'.
401
402 This function should be used via the `build_int_2' macro. */
403
404 tree
405 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
406 {
407 tree t = make_node (INTEGER_CST);
408
409 TREE_INT_CST_LOW (t) = low;
410 TREE_INT_CST_HIGH (t) = hi;
411 TREE_TYPE (t) = integer_type_node;
412 return t;
413 }
414
415 /* Return a new VECTOR_CST node whose type is TYPE and whose values
416 are in a list pointed by VALS. */
417
418 tree
419 build_vector (tree type, tree vals)
420 {
421 tree v = make_node (VECTOR_CST);
422 int over1 = 0, over2 = 0;
423 tree link;
424
425 TREE_VECTOR_CST_ELTS (v) = vals;
426 TREE_TYPE (v) = type;
427
428 /* Iterate through elements and check for overflow. */
429 for (link = vals; link; link = TREE_CHAIN (link))
430 {
431 tree value = TREE_VALUE (link);
432
433 over1 |= TREE_OVERFLOW (value);
434 over2 |= TREE_CONSTANT_OVERFLOW (value);
435 }
436
437 TREE_OVERFLOW (v) = over1;
438 TREE_CONSTANT_OVERFLOW (v) = over2;
439
440 return v;
441 }
442
443 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
444 are in a list pointed to by VALS. */
445 tree
446 build_constructor (tree type, tree vals)
447 {
448 tree c = make_node (CONSTRUCTOR);
449 TREE_TYPE (c) = type;
450 CONSTRUCTOR_ELTS (c) = vals;
451
452 /* ??? May not be necessary. Mirrors what build does. */
453 if (vals)
454 {
455 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
456 TREE_READONLY (c) = TREE_READONLY (vals);
457 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
458 }
459 else
460 TREE_CONSTANT (c) = 0; /* safe side */
461
462 return c;
463 }
464
465 /* Return a new REAL_CST node whose type is TYPE and value is D. */
466
467 tree
468 build_real (tree type, REAL_VALUE_TYPE d)
469 {
470 tree v;
471 REAL_VALUE_TYPE *dp;
472 int overflow = 0;
473
474 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
475 Consider doing it via real_convert now. */
476
477 v = make_node (REAL_CST);
478 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
479 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
480
481 TREE_TYPE (v) = type;
482 TREE_REAL_CST_PTR (v) = dp;
483 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
484 return v;
485 }
486
487 /* Return a new REAL_CST node whose type is TYPE
488 and whose value is the integer value of the INTEGER_CST node I. */
489
490 REAL_VALUE_TYPE
491 real_value_from_int_cst (tree type, tree i)
492 {
493 REAL_VALUE_TYPE d;
494
495 /* Clear all bits of the real value type so that we can later do
496 bitwise comparisons to see if two values are the same. */
497 memset (&d, 0, sizeof d);
498
499 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
500 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
501 TREE_UNSIGNED (TREE_TYPE (i)));
502 return d;
503 }
504
505 /* Given a tree representing an integer constant I, return a tree
506 representing the same value as a floating-point constant of type TYPE. */
507
508 tree
509 build_real_from_int_cst (tree type, tree i)
510 {
511 tree v;
512 int overflow = TREE_OVERFLOW (i);
513
514 v = build_real (type, real_value_from_int_cst (type, i));
515
516 TREE_OVERFLOW (v) |= overflow;
517 TREE_CONSTANT_OVERFLOW (v) |= overflow;
518 return v;
519 }
520
521 /* Return a newly constructed STRING_CST node whose value is
522 the LEN characters at STR.
523 The TREE_TYPE is not initialized. */
524
525 tree
526 build_string (int len, const char *str)
527 {
528 tree s = make_node (STRING_CST);
529
530 TREE_STRING_LENGTH (s) = len;
531 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
532
533 return s;
534 }
535
536 /* Return a newly constructed COMPLEX_CST node whose value is
537 specified by the real and imaginary parts REAL and IMAG.
538 Both REAL and IMAG should be constant nodes. TYPE, if specified,
539 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
540
541 tree
542 build_complex (tree type, tree real, tree imag)
543 {
544 tree t = make_node (COMPLEX_CST);
545
546 TREE_REALPART (t) = real;
547 TREE_IMAGPART (t) = imag;
548 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
549 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
550 TREE_CONSTANT_OVERFLOW (t)
551 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
552 return t;
553 }
554
555 /* Build a newly constructed TREE_VEC node of length LEN. */
556
557 tree
558 make_tree_vec (int len)
559 {
560 tree t;
561 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
562
563 #ifdef GATHER_STATISTICS
564 tree_node_counts[(int) vec_kind]++;
565 tree_node_sizes[(int) vec_kind] += length;
566 #endif
567
568 t = ggc_alloc_tree (length);
569
570 memset (t, 0, length);
571 TREE_SET_CODE (t, TREE_VEC);
572 TREE_VEC_LENGTH (t) = len;
573
574 return t;
575 }
576 \f
577 /* Return 1 if EXPR is the integer constant zero or a complex constant
578 of zero. */
579
580 int
581 integer_zerop (tree expr)
582 {
583 STRIP_NOPS (expr);
584
585 return ((TREE_CODE (expr) == INTEGER_CST
586 && ! TREE_CONSTANT_OVERFLOW (expr)
587 && TREE_INT_CST_LOW (expr) == 0
588 && TREE_INT_CST_HIGH (expr) == 0)
589 || (TREE_CODE (expr) == COMPLEX_CST
590 && integer_zerop (TREE_REALPART (expr))
591 && integer_zerop (TREE_IMAGPART (expr))));
592 }
593
594 /* Return 1 if EXPR is the integer constant one or the corresponding
595 complex constant. */
596
597 int
598 integer_onep (tree expr)
599 {
600 STRIP_NOPS (expr);
601
602 return ((TREE_CODE (expr) == INTEGER_CST
603 && ! TREE_CONSTANT_OVERFLOW (expr)
604 && TREE_INT_CST_LOW (expr) == 1
605 && TREE_INT_CST_HIGH (expr) == 0)
606 || (TREE_CODE (expr) == COMPLEX_CST
607 && integer_onep (TREE_REALPART (expr))
608 && integer_zerop (TREE_IMAGPART (expr))));
609 }
610
611 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
612 it contains. Likewise for the corresponding complex constant. */
613
614 int
615 integer_all_onesp (tree expr)
616 {
617 int prec;
618 int uns;
619
620 STRIP_NOPS (expr);
621
622 if (TREE_CODE (expr) == COMPLEX_CST
623 && integer_all_onesp (TREE_REALPART (expr))
624 && integer_zerop (TREE_IMAGPART (expr)))
625 return 1;
626
627 else if (TREE_CODE (expr) != INTEGER_CST
628 || TREE_CONSTANT_OVERFLOW (expr))
629 return 0;
630
631 uns = TREE_UNSIGNED (TREE_TYPE (expr));
632 if (!uns)
633 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
634 && TREE_INT_CST_HIGH (expr) == -1);
635
636 /* Note that using TYPE_PRECISION here is wrong. We care about the
637 actual bits, not the (arbitrary) range of the type. */
638 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
639 if (prec >= HOST_BITS_PER_WIDE_INT)
640 {
641 HOST_WIDE_INT high_value;
642 int shift_amount;
643
644 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
645
646 if (shift_amount > HOST_BITS_PER_WIDE_INT)
647 /* Can not handle precisions greater than twice the host int size. */
648 abort ();
649 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
650 /* Shifting by the host word size is undefined according to the ANSI
651 standard, so we must handle this as a special case. */
652 high_value = -1;
653 else
654 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
655
656 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
657 && TREE_INT_CST_HIGH (expr) == high_value);
658 }
659 else
660 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
661 }
662
663 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
664 one bit on). */
665
666 int
667 integer_pow2p (tree expr)
668 {
669 int prec;
670 HOST_WIDE_INT high, low;
671
672 STRIP_NOPS (expr);
673
674 if (TREE_CODE (expr) == COMPLEX_CST
675 && integer_pow2p (TREE_REALPART (expr))
676 && integer_zerop (TREE_IMAGPART (expr)))
677 return 1;
678
679 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
680 return 0;
681
682 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
683 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
684 high = TREE_INT_CST_HIGH (expr);
685 low = TREE_INT_CST_LOW (expr);
686
687 /* First clear all bits that are beyond the type's precision in case
688 we've been sign extended. */
689
690 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
691 ;
692 else if (prec > HOST_BITS_PER_WIDE_INT)
693 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
694 else
695 {
696 high = 0;
697 if (prec < HOST_BITS_PER_WIDE_INT)
698 low &= ~((HOST_WIDE_INT) (-1) << prec);
699 }
700
701 if (high == 0 && low == 0)
702 return 0;
703
704 return ((high == 0 && (low & (low - 1)) == 0)
705 || (low == 0 && (high & (high - 1)) == 0));
706 }
707
708 /* Return 1 if EXPR is an integer constant other than zero or a
709 complex constant other than zero. */
710
711 int
712 integer_nonzerop (tree expr)
713 {
714 STRIP_NOPS (expr);
715
716 return ((TREE_CODE (expr) == INTEGER_CST
717 && ! TREE_CONSTANT_OVERFLOW (expr)
718 && (TREE_INT_CST_LOW (expr) != 0
719 || TREE_INT_CST_HIGH (expr) != 0))
720 || (TREE_CODE (expr) == COMPLEX_CST
721 && (integer_nonzerop (TREE_REALPART (expr))
722 || integer_nonzerop (TREE_IMAGPART (expr)))));
723 }
724
725 /* Return the power of two represented by a tree node known to be a
726 power of two. */
727
728 int
729 tree_log2 (tree expr)
730 {
731 int prec;
732 HOST_WIDE_INT high, low;
733
734 STRIP_NOPS (expr);
735
736 if (TREE_CODE (expr) == COMPLEX_CST)
737 return tree_log2 (TREE_REALPART (expr));
738
739 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
740 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
741
742 high = TREE_INT_CST_HIGH (expr);
743 low = TREE_INT_CST_LOW (expr);
744
745 /* First clear all bits that are beyond the type's precision in case
746 we've been sign extended. */
747
748 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
749 ;
750 else if (prec > HOST_BITS_PER_WIDE_INT)
751 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
752 else
753 {
754 high = 0;
755 if (prec < HOST_BITS_PER_WIDE_INT)
756 low &= ~((HOST_WIDE_INT) (-1) << prec);
757 }
758
759 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
760 : exact_log2 (low));
761 }
762
763 /* Similar, but return the largest integer Y such that 2 ** Y is less
764 than or equal to EXPR. */
765
766 int
767 tree_floor_log2 (tree expr)
768 {
769 int prec;
770 HOST_WIDE_INT high, low;
771
772 STRIP_NOPS (expr);
773
774 if (TREE_CODE (expr) == COMPLEX_CST)
775 return tree_log2 (TREE_REALPART (expr));
776
777 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
778 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
779
780 high = TREE_INT_CST_HIGH (expr);
781 low = TREE_INT_CST_LOW (expr);
782
783 /* First clear all bits that are beyond the type's precision in case
784 we've been sign extended. Ignore if type's precision hasn't been set
785 since what we are doing is setting it. */
786
787 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
788 ;
789 else if (prec > HOST_BITS_PER_WIDE_INT)
790 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
791 else
792 {
793 high = 0;
794 if (prec < HOST_BITS_PER_WIDE_INT)
795 low &= ~((HOST_WIDE_INT) (-1) << prec);
796 }
797
798 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
799 : floor_log2 (low));
800 }
801
802 /* Return 1 if EXPR is the real constant zero. */
803
804 int
805 real_zerop (tree expr)
806 {
807 STRIP_NOPS (expr);
808
809 return ((TREE_CODE (expr) == REAL_CST
810 && ! TREE_CONSTANT_OVERFLOW (expr)
811 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
812 || (TREE_CODE (expr) == COMPLEX_CST
813 && real_zerop (TREE_REALPART (expr))
814 && real_zerop (TREE_IMAGPART (expr))));
815 }
816
817 /* Return 1 if EXPR is the real constant one in real or complex form. */
818
819 int
820 real_onep (tree expr)
821 {
822 STRIP_NOPS (expr);
823
824 return ((TREE_CODE (expr) == REAL_CST
825 && ! TREE_CONSTANT_OVERFLOW (expr)
826 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
827 || (TREE_CODE (expr) == COMPLEX_CST
828 && real_onep (TREE_REALPART (expr))
829 && real_zerop (TREE_IMAGPART (expr))));
830 }
831
832 /* Return 1 if EXPR is the real constant two. */
833
834 int
835 real_twop (tree expr)
836 {
837 STRIP_NOPS (expr);
838
839 return ((TREE_CODE (expr) == REAL_CST
840 && ! TREE_CONSTANT_OVERFLOW (expr)
841 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
842 || (TREE_CODE (expr) == COMPLEX_CST
843 && real_twop (TREE_REALPART (expr))
844 && real_zerop (TREE_IMAGPART (expr))));
845 }
846
847 /* Return 1 if EXPR is the real constant minus one. */
848
849 int
850 real_minus_onep (tree expr)
851 {
852 STRIP_NOPS (expr);
853
854 return ((TREE_CODE (expr) == REAL_CST
855 && ! TREE_CONSTANT_OVERFLOW (expr)
856 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
857 || (TREE_CODE (expr) == COMPLEX_CST
858 && real_minus_onep (TREE_REALPART (expr))
859 && real_zerop (TREE_IMAGPART (expr))));
860 }
861
862 /* Nonzero if EXP is a constant or a cast of a constant. */
863
864 int
865 really_constant_p (tree exp)
866 {
867 /* This is not quite the same as STRIP_NOPS. It does more. */
868 while (TREE_CODE (exp) == NOP_EXPR
869 || TREE_CODE (exp) == CONVERT_EXPR
870 || TREE_CODE (exp) == NON_LVALUE_EXPR)
871 exp = TREE_OPERAND (exp, 0);
872 return TREE_CONSTANT (exp);
873 }
874 \f
875 /* Return first list element whose TREE_VALUE is ELEM.
876 Return 0 if ELEM is not in LIST. */
877
878 tree
879 value_member (tree elem, tree list)
880 {
881 while (list)
882 {
883 if (elem == TREE_VALUE (list))
884 return list;
885 list = TREE_CHAIN (list);
886 }
887 return NULL_TREE;
888 }
889
890 /* Return first list element whose TREE_PURPOSE is ELEM.
891 Return 0 if ELEM is not in LIST. */
892
893 tree
894 purpose_member (tree elem, tree list)
895 {
896 while (list)
897 {
898 if (elem == TREE_PURPOSE (list))
899 return list;
900 list = TREE_CHAIN (list);
901 }
902 return NULL_TREE;
903 }
904
905 /* Return first list element whose BINFO_TYPE is ELEM.
906 Return 0 if ELEM is not in LIST. */
907
908 tree
909 binfo_member (tree elem, tree list)
910 {
911 while (list)
912 {
913 if (elem == BINFO_TYPE (list))
914 return list;
915 list = TREE_CHAIN (list);
916 }
917 return NULL_TREE;
918 }
919
920 /* Return nonzero if ELEM is part of the chain CHAIN. */
921
922 int
923 chain_member (tree elem, tree chain)
924 {
925 while (chain)
926 {
927 if (elem == chain)
928 return 1;
929 chain = TREE_CHAIN (chain);
930 }
931
932 return 0;
933 }
934
935 /* Return the length of a chain of nodes chained through TREE_CHAIN.
936 We expect a null pointer to mark the end of the chain.
937 This is the Lisp primitive `length'. */
938
939 int
940 list_length (tree t)
941 {
942 tree tail;
943 int len = 0;
944
945 for (tail = t; tail; tail = TREE_CHAIN (tail))
946 len++;
947
948 return len;
949 }
950
951 /* Returns the number of FIELD_DECLs in TYPE. */
952
953 int
954 fields_length (tree type)
955 {
956 tree t = TYPE_FIELDS (type);
957 int count = 0;
958
959 for (; t; t = TREE_CHAIN (t))
960 if (TREE_CODE (t) == FIELD_DECL)
961 ++count;
962
963 return count;
964 }
965
966 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
967 by modifying the last node in chain 1 to point to chain 2.
968 This is the Lisp primitive `nconc'. */
969
970 tree
971 chainon (tree op1, tree op2)
972 {
973 tree t1;
974
975 if (!op1)
976 return op2;
977 if (!op2)
978 return op1;
979
980 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
981 continue;
982 TREE_CHAIN (t1) = op2;
983
984 #ifdef ENABLE_TREE_CHECKING
985 {
986 tree t2;
987 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
988 if (t2 == t1)
989 abort (); /* Circularity created. */
990 }
991 #endif
992
993 return op1;
994 }
995
996 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
997
998 tree
999 tree_last (tree chain)
1000 {
1001 tree next;
1002 if (chain)
1003 while ((next = TREE_CHAIN (chain)))
1004 chain = next;
1005 return chain;
1006 }
1007
1008 /* Reverse the order of elements in the chain T,
1009 and return the new head of the chain (old last element). */
1010
1011 tree
1012 nreverse (tree t)
1013 {
1014 tree prev = 0, decl, next;
1015 for (decl = t; decl; decl = next)
1016 {
1017 next = TREE_CHAIN (decl);
1018 TREE_CHAIN (decl) = prev;
1019 prev = decl;
1020 }
1021 return prev;
1022 }
1023 \f
1024 /* Return a newly created TREE_LIST node whose
1025 purpose and value fields are PARM and VALUE. */
1026
1027 tree
1028 build_tree_list (tree parm, tree value)
1029 {
1030 tree t = make_node (TREE_LIST);
1031 TREE_PURPOSE (t) = parm;
1032 TREE_VALUE (t) = value;
1033 return t;
1034 }
1035
1036 /* Return a newly created TREE_LIST node whose
1037 purpose and value fields are PURPOSE and VALUE
1038 and whose TREE_CHAIN is CHAIN. */
1039
1040 tree
1041 tree_cons (tree purpose, tree value, tree chain)
1042 {
1043 tree node;
1044
1045 node = ggc_alloc_tree (sizeof (struct tree_list));
1046
1047 memset (node, 0, sizeof (struct tree_common));
1048
1049 #ifdef GATHER_STATISTICS
1050 tree_node_counts[(int) x_kind]++;
1051 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1052 #endif
1053
1054 TREE_SET_CODE (node, TREE_LIST);
1055 TREE_CHAIN (node) = chain;
1056 TREE_PURPOSE (node) = purpose;
1057 TREE_VALUE (node) = value;
1058 return node;
1059 }
1060
1061 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1062
1063 tree
1064 expr_first (tree expr)
1065 {
1066 if (expr == NULL_TREE)
1067 return expr;
1068 while (TREE_CODE (expr) == COMPOUND_EXPR)
1069 expr = TREE_OPERAND (expr, 0);
1070 return expr;
1071 }
1072
1073 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1074
1075 tree
1076 expr_last (tree expr)
1077 {
1078 if (expr == NULL_TREE)
1079 return expr;
1080 while (TREE_CODE (expr) == COMPOUND_EXPR)
1081 expr = TREE_OPERAND (expr, 1);
1082 return expr;
1083 }
1084
1085 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1086
1087 int
1088 expr_length (tree expr)
1089 {
1090 int len = 0;
1091
1092 if (expr == NULL_TREE)
1093 return 0;
1094 for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
1095 len += expr_length (TREE_OPERAND (expr, 0));
1096 ++len;
1097 return len;
1098 }
1099 \f
1100 /* Return the size nominally occupied by an object of type TYPE
1101 when it resides in memory. The value is measured in units of bytes,
1102 and its data type is that normally used for type sizes
1103 (which is the first type created by make_signed_type or
1104 make_unsigned_type). */
1105
1106 tree
1107 size_in_bytes (tree type)
1108 {
1109 tree t;
1110
1111 if (type == error_mark_node)
1112 return integer_zero_node;
1113
1114 type = TYPE_MAIN_VARIANT (type);
1115 t = TYPE_SIZE_UNIT (type);
1116
1117 if (t == 0)
1118 {
1119 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1120 return size_zero_node;
1121 }
1122
1123 if (TREE_CODE (t) == INTEGER_CST)
1124 force_fit_type (t, 0);
1125
1126 return t;
1127 }
1128
1129 /* Return the size of TYPE (in bytes) as a wide integer
1130 or return -1 if the size can vary or is larger than an integer. */
1131
1132 HOST_WIDE_INT
1133 int_size_in_bytes (tree type)
1134 {
1135 tree t;
1136
1137 if (type == error_mark_node)
1138 return 0;
1139
1140 type = TYPE_MAIN_VARIANT (type);
1141 t = TYPE_SIZE_UNIT (type);
1142 if (t == 0
1143 || TREE_CODE (t) != INTEGER_CST
1144 || TREE_OVERFLOW (t)
1145 || TREE_INT_CST_HIGH (t) != 0
1146 /* If the result would appear negative, it's too big to represent. */
1147 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1148 return -1;
1149
1150 return TREE_INT_CST_LOW (t);
1151 }
1152 \f
1153 /* Return the bit position of FIELD, in bits from the start of the record.
1154 This is a tree of type bitsizetype. */
1155
1156 tree
1157 bit_position (tree field)
1158 {
1159 return bit_from_pos (DECL_FIELD_OFFSET (field),
1160 DECL_FIELD_BIT_OFFSET (field));
1161 }
1162
1163 /* Likewise, but return as an integer. Abort if it cannot be represented
1164 in that way (since it could be a signed value, we don't have the option
1165 of returning -1 like int_size_in_byte can. */
1166
1167 HOST_WIDE_INT
1168 int_bit_position (tree field)
1169 {
1170 return tree_low_cst (bit_position (field), 0);
1171 }
1172 \f
1173 /* Return the byte position of FIELD, in bytes from the start of the record.
1174 This is a tree of type sizetype. */
1175
1176 tree
1177 byte_position (tree field)
1178 {
1179 return byte_from_pos (DECL_FIELD_OFFSET (field),
1180 DECL_FIELD_BIT_OFFSET (field));
1181 }
1182
1183 /* Likewise, but return as an integer. Abort if it cannot be represented
1184 in that way (since it could be a signed value, we don't have the option
1185 of returning -1 like int_size_in_byte can. */
1186
1187 HOST_WIDE_INT
1188 int_byte_position (tree field)
1189 {
1190 return tree_low_cst (byte_position (field), 0);
1191 }
1192 \f
1193 /* Return the strictest alignment, in bits, that T is known to have. */
1194
1195 unsigned int
1196 expr_align (tree t)
1197 {
1198 unsigned int align0, align1;
1199
1200 switch (TREE_CODE (t))
1201 {
1202 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1203 /* If we have conversions, we know that the alignment of the
1204 object must meet each of the alignments of the types. */
1205 align0 = expr_align (TREE_OPERAND (t, 0));
1206 align1 = TYPE_ALIGN (TREE_TYPE (t));
1207 return MAX (align0, align1);
1208
1209 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1210 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1211 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1212 /* These don't change the alignment of an object. */
1213 return expr_align (TREE_OPERAND (t, 0));
1214
1215 case COND_EXPR:
1216 /* The best we can do is say that the alignment is the least aligned
1217 of the two arms. */
1218 align0 = expr_align (TREE_OPERAND (t, 1));
1219 align1 = expr_align (TREE_OPERAND (t, 2));
1220 return MIN (align0, align1);
1221
1222 case LABEL_DECL: case CONST_DECL:
1223 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1224 if (DECL_ALIGN (t) != 0)
1225 return DECL_ALIGN (t);
1226 break;
1227
1228 case FUNCTION_DECL:
1229 return FUNCTION_BOUNDARY;
1230
1231 default:
1232 break;
1233 }
1234
1235 /* Otherwise take the alignment from that of the type. */
1236 return TYPE_ALIGN (TREE_TYPE (t));
1237 }
1238 \f
1239 /* Return, as a tree node, the number of elements for TYPE (which is an
1240 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1241
1242 tree
1243 array_type_nelts (tree type)
1244 {
1245 tree index_type, min, max;
1246
1247 /* If they did it with unspecified bounds, then we should have already
1248 given an error about it before we got here. */
1249 if (! TYPE_DOMAIN (type))
1250 return error_mark_node;
1251
1252 index_type = TYPE_DOMAIN (type);
1253 min = TYPE_MIN_VALUE (index_type);
1254 max = TYPE_MAX_VALUE (index_type);
1255
1256 return (integer_zerop (min)
1257 ? max
1258 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1259 }
1260 \f
1261 /* Return nonzero if arg is static -- a reference to an object in
1262 static storage. This is not the same as the C meaning of `static'. */
1263
1264 int
1265 staticp (tree arg)
1266 {
1267 switch (TREE_CODE (arg))
1268 {
1269 case FUNCTION_DECL:
1270 /* Nested functions aren't static, since taking their address
1271 involves a trampoline. */
1272 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1273 && ! DECL_NON_ADDR_CONST_P (arg));
1274
1275 case VAR_DECL:
1276 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1277 && ! DECL_THREAD_LOCAL (arg)
1278 && ! DECL_NON_ADDR_CONST_P (arg));
1279
1280 case CONSTRUCTOR:
1281 return TREE_STATIC (arg);
1282
1283 case LABEL_DECL:
1284 case STRING_CST:
1285 return 1;
1286
1287 /* If we are referencing a bitfield, we can't evaluate an
1288 ADDR_EXPR at compile time and so it isn't a constant. */
1289 case COMPONENT_REF:
1290 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1291 && staticp (TREE_OPERAND (arg, 0)));
1292
1293 case BIT_FIELD_REF:
1294 return 0;
1295
1296 #if 0
1297 /* This case is technically correct, but results in setting
1298 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1299 compile time. */
1300 case INDIRECT_REF:
1301 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1302 #endif
1303
1304 case ARRAY_REF:
1305 case ARRAY_RANGE_REF:
1306 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1307 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1308 return staticp (TREE_OPERAND (arg, 0));
1309
1310 default:
1311 if ((unsigned int) TREE_CODE (arg)
1312 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1313 return (*lang_hooks.staticp) (arg);
1314 else
1315 return 0;
1316 }
1317 }
1318 \f
1319 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1320 Do this to any expression which may be used in more than one place,
1321 but must be evaluated only once.
1322
1323 Normally, expand_expr would reevaluate the expression each time.
1324 Calling save_expr produces something that is evaluated and recorded
1325 the first time expand_expr is called on it. Subsequent calls to
1326 expand_expr just reuse the recorded value.
1327
1328 The call to expand_expr that generates code that actually computes
1329 the value is the first call *at compile time*. Subsequent calls
1330 *at compile time* generate code to use the saved value.
1331 This produces correct result provided that *at run time* control
1332 always flows through the insns made by the first expand_expr
1333 before reaching the other places where the save_expr was evaluated.
1334 You, the caller of save_expr, must make sure this is so.
1335
1336 Constants, and certain read-only nodes, are returned with no
1337 SAVE_EXPR because that is safe. Expressions containing placeholders
1338 are not touched; see tree.def for an explanation of what these
1339 are used for. */
1340
1341 tree
1342 save_expr (tree expr)
1343 {
1344 tree t = fold (expr);
1345 tree inner;
1346
1347 /* If the tree evaluates to a constant, then we don't want to hide that
1348 fact (i.e. this allows further folding, and direct checks for constants).
1349 However, a read-only object that has side effects cannot be bypassed.
1350 Since it is no problem to reevaluate literals, we just return the
1351 literal node. */
1352 inner = skip_simple_arithmetic (t);
1353 if (TREE_CONSTANT (inner)
1354 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1355 || TREE_CODE (inner) == SAVE_EXPR
1356 || TREE_CODE (inner) == ERROR_MARK)
1357 return t;
1358
1359 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1360 it means that the size or offset of some field of an object depends on
1361 the value within another field.
1362
1363 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1364 and some variable since it would then need to be both evaluated once and
1365 evaluated more than once. Front-ends must assure this case cannot
1366 happen by surrounding any such subexpressions in their own SAVE_EXPR
1367 and forcing evaluation at the proper time. */
1368 if (contains_placeholder_p (inner))
1369 return t;
1370
1371 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1372
1373 /* This expression might be placed ahead of a jump to ensure that the
1374 value was computed on both sides of the jump. So make sure it isn't
1375 eliminated as dead. */
1376 TREE_SIDE_EFFECTS (t) = 1;
1377 TREE_READONLY (t) = 1;
1378 return t;
1379 }
1380
1381 /* Look inside EXPR and into any simple arithmetic operations. Return
1382 the innermost non-arithmetic node. */
1383
1384 tree
1385 skip_simple_arithmetic (tree expr)
1386 {
1387 tree inner;
1388
1389 /* We don't care about whether this can be used as an lvalue in this
1390 context. */
1391 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1392 expr = TREE_OPERAND (expr, 0);
1393
1394 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1395 a constant, it will be more efficient to not make another SAVE_EXPR since
1396 it will allow better simplification and GCSE will be able to merge the
1397 computations if they actually occur. */
1398 inner = expr;
1399 while (1)
1400 {
1401 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1402 inner = TREE_OPERAND (inner, 0);
1403 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1404 {
1405 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1406 inner = TREE_OPERAND (inner, 0);
1407 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1408 inner = TREE_OPERAND (inner, 1);
1409 else
1410 break;
1411 }
1412 else
1413 break;
1414 }
1415
1416 return inner;
1417 }
1418
1419 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1420 SAVE_EXPR. Return FALSE otherwise. */
1421
1422 bool
1423 saved_expr_p (tree expr)
1424 {
1425 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1426 }
1427
1428 /* Arrange for an expression to be expanded multiple independent
1429 times. This is useful for cleanup actions, as the backend can
1430 expand them multiple times in different places. */
1431
1432 tree
1433 unsave_expr (tree expr)
1434 {
1435 tree t;
1436
1437 /* If this is already protected, no sense in protecting it again. */
1438 if (TREE_CODE (expr) == UNSAVE_EXPR)
1439 return expr;
1440
1441 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1442 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1443 return t;
1444 }
1445
1446 /* Returns the index of the first non-tree operand for CODE, or the number
1447 of operands if all are trees. */
1448
1449 int
1450 first_rtl_op (enum tree_code code)
1451 {
1452 switch (code)
1453 {
1454 case SAVE_EXPR:
1455 return 2;
1456 case GOTO_SUBROUTINE_EXPR:
1457 case RTL_EXPR:
1458 return 0;
1459 case WITH_CLEANUP_EXPR:
1460 return 2;
1461 default:
1462 return TREE_CODE_LENGTH (code);
1463 }
1464 }
1465
1466 /* Return which tree structure is used by T. */
1467
1468 enum tree_node_structure_enum
1469 tree_node_structure (tree t)
1470 {
1471 enum tree_code code = TREE_CODE (t);
1472
1473 switch (TREE_CODE_CLASS (code))
1474 {
1475 case 'd': return TS_DECL;
1476 case 't': return TS_TYPE;
1477 case 'b': return TS_BLOCK;
1478 case 'r': case '<': case '1': case '2': case 'e': case 's':
1479 return TS_EXP;
1480 default: /* 'c' and 'x' */
1481 break;
1482 }
1483 switch (code)
1484 {
1485 /* 'c' cases. */
1486 case INTEGER_CST: return TS_INT_CST;
1487 case REAL_CST: return TS_REAL_CST;
1488 case COMPLEX_CST: return TS_COMPLEX;
1489 case VECTOR_CST: return TS_VECTOR;
1490 case STRING_CST: return TS_STRING;
1491 /* 'x' cases. */
1492 case ERROR_MARK: return TS_COMMON;
1493 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1494 case TREE_LIST: return TS_LIST;
1495 case TREE_VEC: return TS_VEC;
1496 case PLACEHOLDER_EXPR: return TS_COMMON;
1497
1498 default:
1499 abort ();
1500 }
1501 }
1502
1503 /* Perform any modifications to EXPR required when it is unsaved. Does
1504 not recurse into EXPR's subtrees. */
1505
1506 void
1507 unsave_expr_1 (tree expr)
1508 {
1509 switch (TREE_CODE (expr))
1510 {
1511 case SAVE_EXPR:
1512 if (! SAVE_EXPR_PERSISTENT_P (expr))
1513 SAVE_EXPR_RTL (expr) = 0;
1514 break;
1515
1516 case TARGET_EXPR:
1517 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1518 It's OK for this to happen if it was part of a subtree that
1519 isn't immediately expanded, such as operand 2 of another
1520 TARGET_EXPR. */
1521 if (TREE_OPERAND (expr, 1))
1522 break;
1523
1524 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1525 TREE_OPERAND (expr, 3) = NULL_TREE;
1526 break;
1527
1528 case RTL_EXPR:
1529 /* I don't yet know how to emit a sequence multiple times. */
1530 if (RTL_EXPR_SEQUENCE (expr) != 0)
1531 abort ();
1532 break;
1533
1534 default:
1535 break;
1536 }
1537 }
1538
1539 /* Default lang hook for "unsave_expr_now". */
1540
1541 tree
1542 lhd_unsave_expr_now (tree expr)
1543 {
1544 enum tree_code code;
1545
1546 /* There's nothing to do for NULL_TREE. */
1547 if (expr == 0)
1548 return expr;
1549
1550 unsave_expr_1 (expr);
1551
1552 code = TREE_CODE (expr);
1553 switch (TREE_CODE_CLASS (code))
1554 {
1555 case 'c': /* a constant */
1556 case 't': /* a type node */
1557 case 'd': /* A decl node */
1558 case 'b': /* A block node */
1559 break;
1560
1561 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1562 if (code == TREE_LIST)
1563 {
1564 lhd_unsave_expr_now (TREE_VALUE (expr));
1565 lhd_unsave_expr_now (TREE_CHAIN (expr));
1566 }
1567 break;
1568
1569 case 'e': /* an expression */
1570 case 'r': /* a reference */
1571 case 's': /* an expression with side effects */
1572 case '<': /* a comparison expression */
1573 case '2': /* a binary arithmetic expression */
1574 case '1': /* a unary arithmetic expression */
1575 {
1576 int i;
1577
1578 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1579 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1580 }
1581 break;
1582
1583 default:
1584 abort ();
1585 }
1586
1587 return expr;
1588 }
1589
1590 /* Return 0 if it is safe to evaluate EXPR multiple times,
1591 return 1 if it is safe if EXPR is unsaved afterward, or
1592 return 2 if it is completely unsafe.
1593
1594 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1595 an expression tree, so that it safe to unsave them and the surrounding
1596 context will be correct.
1597
1598 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1599 occasionally across the whole of a function. It is therefore only
1600 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1601 below the UNSAVE_EXPR.
1602
1603 RTL_EXPRs consume their rtl during evaluation. It is therefore
1604 never possible to unsave them. */
1605
1606 int
1607 unsafe_for_reeval (tree expr)
1608 {
1609 int unsafeness = 0;
1610 enum tree_code code;
1611 int i, tmp, tmp2;
1612 tree exp;
1613 int first_rtl;
1614
1615 if (expr == NULL_TREE)
1616 return 1;
1617
1618 code = TREE_CODE (expr);
1619 first_rtl = first_rtl_op (code);
1620
1621 switch (code)
1622 {
1623 case SAVE_EXPR:
1624 case RTL_EXPR:
1625 return 2;
1626
1627 case TREE_LIST:
1628 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1629 {
1630 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1631 unsafeness = MAX (tmp, unsafeness);
1632 }
1633
1634 return unsafeness;
1635
1636 case CALL_EXPR:
1637 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1638 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1639 return MAX (MAX (tmp, 1), tmp2);
1640
1641 case TARGET_EXPR:
1642 unsafeness = 1;
1643 break;
1644
1645 default:
1646 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1647 if (tmp >= 0)
1648 return tmp;
1649 break;
1650 }
1651
1652 switch (TREE_CODE_CLASS (code))
1653 {
1654 case 'c': /* a constant */
1655 case 't': /* a type node */
1656 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1657 case 'd': /* A decl node */
1658 case 'b': /* A block node */
1659 return 0;
1660
1661 case 'e': /* an expression */
1662 case 'r': /* a reference */
1663 case 's': /* an expression with side effects */
1664 case '<': /* a comparison expression */
1665 case '2': /* a binary arithmetic expression */
1666 case '1': /* a unary arithmetic expression */
1667 for (i = first_rtl - 1; i >= 0; i--)
1668 {
1669 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1670 unsafeness = MAX (tmp, unsafeness);
1671 }
1672
1673 return unsafeness;
1674
1675 default:
1676 return 2;
1677 }
1678 }
1679 \f
1680 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1681 or offset that depends on a field within a record. */
1682
1683 bool
1684 contains_placeholder_p (tree exp)
1685 {
1686 enum tree_code code;
1687 int result;
1688
1689 if (!exp)
1690 return 0;
1691
1692 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1693 in it since it is supplying a value for it. */
1694 code = TREE_CODE (exp);
1695 if (code == WITH_RECORD_EXPR)
1696 return 0;
1697 else if (code == PLACEHOLDER_EXPR)
1698 return 1;
1699
1700 switch (TREE_CODE_CLASS (code))
1701 {
1702 case 'r':
1703 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1704 position computations since they will be converted into a
1705 WITH_RECORD_EXPR involving the reference, which will assume
1706 here will be valid. */
1707 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1708
1709 case 'x':
1710 if (code == TREE_LIST)
1711 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1712 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1713 break;
1714
1715 case '1':
1716 case '2': case '<':
1717 case 'e':
1718 switch (code)
1719 {
1720 case COMPOUND_EXPR:
1721 /* Ignoring the first operand isn't quite right, but works best. */
1722 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1723
1724 case RTL_EXPR:
1725 case CONSTRUCTOR:
1726 return 0;
1727
1728 case COND_EXPR:
1729 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1730 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1731 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1732
1733 case SAVE_EXPR:
1734 /* If we already know this doesn't have a placeholder, don't
1735 check again. */
1736 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1737 return 0;
1738
1739 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1740 result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1741 if (result)
1742 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1743
1744 return result;
1745
1746 case CALL_EXPR:
1747 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1748
1749 default:
1750 break;
1751 }
1752
1753 switch (TREE_CODE_LENGTH (code))
1754 {
1755 case 1:
1756 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1757 case 2:
1758 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1759 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1760 default:
1761 return 0;
1762 }
1763
1764 default:
1765 return 0;
1766 }
1767 return 0;
1768 }
1769
1770 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1771 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1772 positions. */
1773
1774 bool
1775 type_contains_placeholder_p (tree type)
1776 {
1777 /* If the size contains a placeholder or the parent type (component type in
1778 the case of arrays) type involves a placeholder, this type does. */
1779 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1780 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1781 || (TREE_TYPE (type) != 0
1782 && type_contains_placeholder_p (TREE_TYPE (type))))
1783 return 1;
1784
1785 /* Now do type-specific checks. Note that the last part of the check above
1786 greatly limits what we have to do below. */
1787 switch (TREE_CODE (type))
1788 {
1789 case VOID_TYPE:
1790 case COMPLEX_TYPE:
1791 case VECTOR_TYPE:
1792 case ENUMERAL_TYPE:
1793 case BOOLEAN_TYPE:
1794 case CHAR_TYPE:
1795 case POINTER_TYPE:
1796 case OFFSET_TYPE:
1797 case REFERENCE_TYPE:
1798 case METHOD_TYPE:
1799 case FILE_TYPE:
1800 case FUNCTION_TYPE:
1801 return 0;
1802
1803 case INTEGER_TYPE:
1804 case REAL_TYPE:
1805 /* Here we just check the bounds. */
1806 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1807 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1808
1809 case ARRAY_TYPE:
1810 case SET_TYPE:
1811 /* We're already checked the component type (TREE_TYPE), so just check
1812 the index type. */
1813 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1814
1815 case RECORD_TYPE:
1816 case UNION_TYPE:
1817 case QUAL_UNION_TYPE:
1818 {
1819 static tree seen_types = 0;
1820 tree field;
1821 bool ret = 0;
1822
1823 /* We have to be careful here that we don't end up in infinite
1824 recursions due to a field of a type being a pointer to that type
1825 or to a mutually-recursive type. So we store a list of record
1826 types that we've seen and see if this type is in them. To save
1827 memory, we don't use a list for just one type. Here we check
1828 whether we've seen this type before and store it if not. */
1829 if (seen_types == 0)
1830 seen_types = type;
1831 else if (TREE_CODE (seen_types) != TREE_LIST)
1832 {
1833 if (seen_types == type)
1834 return 0;
1835
1836 seen_types = tree_cons (NULL_TREE, type,
1837 build_tree_list (NULL_TREE, seen_types));
1838 }
1839 else
1840 {
1841 if (value_member (type, seen_types) != 0)
1842 return 0;
1843
1844 seen_types = tree_cons (NULL_TREE, type, seen_types);
1845 }
1846
1847 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1848 if (TREE_CODE (field) == FIELD_DECL
1849 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1850 || (TREE_CODE (type) == QUAL_UNION_TYPE
1851 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1852 || type_contains_placeholder_p (TREE_TYPE (field))))
1853 {
1854 ret = true;
1855 break;
1856 }
1857
1858 /* Now remove us from seen_types and return the result. */
1859 if (seen_types == type)
1860 seen_types = 0;
1861 else
1862 seen_types = TREE_CHAIN (seen_types);
1863
1864 return ret;
1865 }
1866
1867 default:
1868 abort ();
1869 }
1870 }
1871
1872 /* Return 1 if EXP contains any expressions that produce cleanups for an
1873 outer scope to deal with. Used by fold. */
1874
1875 int
1876 has_cleanups (tree exp)
1877 {
1878 int i, nops, cmp;
1879
1880 if (! TREE_SIDE_EFFECTS (exp))
1881 return 0;
1882
1883 switch (TREE_CODE (exp))
1884 {
1885 case TARGET_EXPR:
1886 case GOTO_SUBROUTINE_EXPR:
1887 case WITH_CLEANUP_EXPR:
1888 return 1;
1889
1890 case CLEANUP_POINT_EXPR:
1891 return 0;
1892
1893 case CALL_EXPR:
1894 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1895 {
1896 cmp = has_cleanups (TREE_VALUE (exp));
1897 if (cmp)
1898 return cmp;
1899 }
1900 return 0;
1901
1902 default:
1903 break;
1904 }
1905
1906 /* This general rule works for most tree codes. All exceptions should be
1907 handled above. If this is a language-specific tree code, we can't
1908 trust what might be in the operand, so say we don't know
1909 the situation. */
1910 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1911 return -1;
1912
1913 nops = first_rtl_op (TREE_CODE (exp));
1914 for (i = 0; i < nops; i++)
1915 if (TREE_OPERAND (exp, i) != 0)
1916 {
1917 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1918 if (type == 'e' || type == '<' || type == '1' || type == '2'
1919 || type == 'r' || type == 's')
1920 {
1921 cmp = has_cleanups (TREE_OPERAND (exp, i));
1922 if (cmp)
1923 return cmp;
1924 }
1925 }
1926
1927 return 0;
1928 }
1929 \f
1930 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1931 return a tree with all occurrences of references to F in a
1932 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1933 contains only arithmetic expressions or a CALL_EXPR with a
1934 PLACEHOLDER_EXPR occurring only in its arglist. */
1935
1936 tree
1937 substitute_in_expr (tree exp, tree f, tree r)
1938 {
1939 enum tree_code code = TREE_CODE (exp);
1940 tree op0, op1, op2;
1941 tree new;
1942 tree inner;
1943
1944 switch (TREE_CODE_CLASS (code))
1945 {
1946 case 'c':
1947 case 'd':
1948 return exp;
1949
1950 case 'x':
1951 if (code == PLACEHOLDER_EXPR)
1952 return exp;
1953 else if (code == TREE_LIST)
1954 {
1955 op0 = (TREE_CHAIN (exp) == 0
1956 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1957 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1958 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1959 return exp;
1960
1961 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1962 }
1963
1964 abort ();
1965
1966 case '1':
1967 case '2':
1968 case '<':
1969 case 'e':
1970 switch (TREE_CODE_LENGTH (code))
1971 {
1972 case 1:
1973 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1974 if (op0 == TREE_OPERAND (exp, 0))
1975 return exp;
1976
1977 if (code == NON_LVALUE_EXPR)
1978 return op0;
1979
1980 new = fold (build1 (code, TREE_TYPE (exp), op0));
1981 break;
1982
1983 case 2:
1984 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1985 could, but we don't support it. */
1986 if (code == RTL_EXPR)
1987 return exp;
1988 else if (code == CONSTRUCTOR)
1989 abort ();
1990
1991 op0 = TREE_OPERAND (exp, 0);
1992 op1 = TREE_OPERAND (exp, 1);
1993 if (CONTAINS_PLACEHOLDER_P (op0))
1994 op0 = substitute_in_expr (op0, f, r);
1995 if (CONTAINS_PLACEHOLDER_P (op1))
1996 op1 = substitute_in_expr (op1, f, r);
1997
1998 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1999 return exp;
2000
2001 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2002 break;
2003
2004 case 3:
2005 /* It cannot be that anything inside a SAVE_EXPR contains a
2006 PLACEHOLDER_EXPR. */
2007 if (code == SAVE_EXPR)
2008 return exp;
2009
2010 else if (code == CALL_EXPR)
2011 {
2012 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2013 if (op1 == TREE_OPERAND (exp, 1))
2014 return exp;
2015
2016 return build (code, TREE_TYPE (exp),
2017 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2018 }
2019
2020 else if (code != COND_EXPR)
2021 abort ();
2022
2023 op0 = TREE_OPERAND (exp, 0);
2024 op1 = TREE_OPERAND (exp, 1);
2025 op2 = TREE_OPERAND (exp, 2);
2026
2027 if (CONTAINS_PLACEHOLDER_P (op0))
2028 op0 = substitute_in_expr (op0, f, r);
2029 if (CONTAINS_PLACEHOLDER_P (op1))
2030 op1 = substitute_in_expr (op1, f, r);
2031 if (CONTAINS_PLACEHOLDER_P (op2))
2032 op2 = substitute_in_expr (op2, f, r);
2033
2034 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2035 && op2 == TREE_OPERAND (exp, 2))
2036 return exp;
2037
2038 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2039 break;
2040
2041 default:
2042 abort ();
2043 }
2044
2045 break;
2046
2047 case 'r':
2048 switch (code)
2049 {
2050 case COMPONENT_REF:
2051 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2052 and it is the right field, replace it with R. */
2053 for (inner = TREE_OPERAND (exp, 0);
2054 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2055 inner = TREE_OPERAND (inner, 0))
2056 ;
2057 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2058 && TREE_OPERAND (exp, 1) == f)
2059 return r;
2060
2061 /* If this expression hasn't been completed let, leave it
2062 alone. */
2063 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2064 && TREE_TYPE (inner) == 0)
2065 return exp;
2066
2067 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2068 if (op0 == TREE_OPERAND (exp, 0))
2069 return exp;
2070
2071 new = fold (build (code, TREE_TYPE (exp), op0,
2072 TREE_OPERAND (exp, 1)));
2073 break;
2074
2075 case BIT_FIELD_REF:
2076 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2077 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2078 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2079 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2080 && op2 == TREE_OPERAND (exp, 2))
2081 return exp;
2082
2083 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2084 break;
2085
2086 case INDIRECT_REF:
2087 case BUFFER_REF:
2088 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2089 if (op0 == TREE_OPERAND (exp, 0))
2090 return exp;
2091
2092 new = fold (build1 (code, TREE_TYPE (exp), op0));
2093 break;
2094
2095 default:
2096 abort ();
2097 }
2098 break;
2099
2100 default:
2101 abort ();
2102 }
2103
2104 TREE_READONLY (new) = TREE_READONLY (exp);
2105 return new;
2106 }
2107 \f
2108 /* Stabilize a reference so that we can use it any number of times
2109 without causing its operands to be evaluated more than once.
2110 Returns the stabilized reference. This works by means of save_expr,
2111 so see the caveats in the comments about save_expr.
2112
2113 Also allows conversion expressions whose operands are references.
2114 Any other kind of expression is returned unchanged. */
2115
2116 tree
2117 stabilize_reference (tree ref)
2118 {
2119 tree result;
2120 enum tree_code code = TREE_CODE (ref);
2121
2122 switch (code)
2123 {
2124 case VAR_DECL:
2125 case PARM_DECL:
2126 case RESULT_DECL:
2127 /* No action is needed in this case. */
2128 return ref;
2129
2130 case NOP_EXPR:
2131 case CONVERT_EXPR:
2132 case FLOAT_EXPR:
2133 case FIX_TRUNC_EXPR:
2134 case FIX_FLOOR_EXPR:
2135 case FIX_ROUND_EXPR:
2136 case FIX_CEIL_EXPR:
2137 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2138 break;
2139
2140 case INDIRECT_REF:
2141 result = build_nt (INDIRECT_REF,
2142 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2143 break;
2144
2145 case COMPONENT_REF:
2146 result = build_nt (COMPONENT_REF,
2147 stabilize_reference (TREE_OPERAND (ref, 0)),
2148 TREE_OPERAND (ref, 1));
2149 break;
2150
2151 case BIT_FIELD_REF:
2152 result = build_nt (BIT_FIELD_REF,
2153 stabilize_reference (TREE_OPERAND (ref, 0)),
2154 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2155 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2156 break;
2157
2158 case ARRAY_REF:
2159 result = build_nt (ARRAY_REF,
2160 stabilize_reference (TREE_OPERAND (ref, 0)),
2161 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2162 break;
2163
2164 case ARRAY_RANGE_REF:
2165 result = build_nt (ARRAY_RANGE_REF,
2166 stabilize_reference (TREE_OPERAND (ref, 0)),
2167 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2168 break;
2169
2170 case COMPOUND_EXPR:
2171 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2172 it wouldn't be ignored. This matters when dealing with
2173 volatiles. */
2174 return stabilize_reference_1 (ref);
2175
2176 case RTL_EXPR:
2177 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2178 save_expr (build1 (ADDR_EXPR,
2179 build_pointer_type (TREE_TYPE (ref)),
2180 ref)));
2181 break;
2182
2183 /* If arg isn't a kind of lvalue we recognize, make no change.
2184 Caller should recognize the error for an invalid lvalue. */
2185 default:
2186 return ref;
2187
2188 case ERROR_MARK:
2189 return error_mark_node;
2190 }
2191
2192 TREE_TYPE (result) = TREE_TYPE (ref);
2193 TREE_READONLY (result) = TREE_READONLY (ref);
2194 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2195 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2196
2197 return result;
2198 }
2199
2200 /* Subroutine of stabilize_reference; this is called for subtrees of
2201 references. Any expression with side-effects must be put in a SAVE_EXPR
2202 to ensure that it is only evaluated once.
2203
2204 We don't put SAVE_EXPR nodes around everything, because assigning very
2205 simple expressions to temporaries causes us to miss good opportunities
2206 for optimizations. Among other things, the opportunity to fold in the
2207 addition of a constant into an addressing mode often gets lost, e.g.
2208 "y[i+1] += x;". In general, we take the approach that we should not make
2209 an assignment unless we are forced into it - i.e., that any non-side effect
2210 operator should be allowed, and that cse should take care of coalescing
2211 multiple utterances of the same expression should that prove fruitful. */
2212
2213 tree
2214 stabilize_reference_1 (tree e)
2215 {
2216 tree result;
2217 enum tree_code code = TREE_CODE (e);
2218
2219 /* We cannot ignore const expressions because it might be a reference
2220 to a const array but whose index contains side-effects. But we can
2221 ignore things that are actual constant or that already have been
2222 handled by this function. */
2223
2224 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2225 return e;
2226
2227 switch (TREE_CODE_CLASS (code))
2228 {
2229 case 'x':
2230 case 't':
2231 case 'd':
2232 case 'b':
2233 case '<':
2234 case 's':
2235 case 'e':
2236 case 'r':
2237 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2238 so that it will only be evaluated once. */
2239 /* The reference (r) and comparison (<) classes could be handled as
2240 below, but it is generally faster to only evaluate them once. */
2241 if (TREE_SIDE_EFFECTS (e))
2242 return save_expr (e);
2243 return e;
2244
2245 case 'c':
2246 /* Constants need no processing. In fact, we should never reach
2247 here. */
2248 return e;
2249
2250 case '2':
2251 /* Division is slow and tends to be compiled with jumps,
2252 especially the division by powers of 2 that is often
2253 found inside of an array reference. So do it just once. */
2254 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2255 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2256 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2257 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2258 return save_expr (e);
2259 /* Recursively stabilize each operand. */
2260 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2261 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2262 break;
2263
2264 case '1':
2265 /* Recursively stabilize each operand. */
2266 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2267 break;
2268
2269 default:
2270 abort ();
2271 }
2272
2273 TREE_TYPE (result) = TREE_TYPE (e);
2274 TREE_READONLY (result) = TREE_READONLY (e);
2275 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2276 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2277
2278 return result;
2279 }
2280 \f
2281 /* Low-level constructors for expressions. */
2282
2283 /* Build an expression of code CODE, data type TYPE,
2284 and operands as specified by the arguments ARG1 and following arguments.
2285 Expressions and reference nodes can be created this way.
2286 Constants, decls, types and misc nodes cannot be. */
2287
2288 tree
2289 build (enum tree_code code, tree tt, ...)
2290 {
2291 tree t;
2292 int length;
2293 int i;
2294 int fro;
2295 int constant;
2296 va_list p;
2297
2298 va_start (p, tt);
2299
2300 t = make_node (code);
2301 length = TREE_CODE_LENGTH (code);
2302 TREE_TYPE (t) = tt;
2303
2304 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2305 result based on those same flags for the arguments. But if the
2306 arguments aren't really even `tree' expressions, we shouldn't be trying
2307 to do this. */
2308 fro = first_rtl_op (code);
2309
2310 /* Expressions without side effects may be constant if their
2311 arguments are as well. */
2312 constant = (TREE_CODE_CLASS (code) == '<'
2313 || TREE_CODE_CLASS (code) == '1'
2314 || TREE_CODE_CLASS (code) == '2'
2315 || TREE_CODE_CLASS (code) == 'c');
2316
2317 if (length == 2)
2318 {
2319 /* This is equivalent to the loop below, but faster. */
2320 tree arg0 = va_arg (p, tree);
2321 tree arg1 = va_arg (p, tree);
2322
2323 TREE_OPERAND (t, 0) = arg0;
2324 TREE_OPERAND (t, 1) = arg1;
2325 TREE_READONLY (t) = 1;
2326 if (arg0 && fro > 0)
2327 {
2328 if (TREE_SIDE_EFFECTS (arg0))
2329 TREE_SIDE_EFFECTS (t) = 1;
2330 if (!TREE_READONLY (arg0))
2331 TREE_READONLY (t) = 0;
2332 if (!TREE_CONSTANT (arg0))
2333 constant = 0;
2334 }
2335
2336 if (arg1 && fro > 1)
2337 {
2338 if (TREE_SIDE_EFFECTS (arg1))
2339 TREE_SIDE_EFFECTS (t) = 1;
2340 if (!TREE_READONLY (arg1))
2341 TREE_READONLY (t) = 0;
2342 if (!TREE_CONSTANT (arg1))
2343 constant = 0;
2344 }
2345 }
2346 else if (length == 1)
2347 {
2348 tree arg0 = va_arg (p, tree);
2349
2350 /* The only one-operand cases we handle here are those with side-effects.
2351 Others are handled with build1. So don't bother checked if the
2352 arg has side-effects since we'll already have set it.
2353
2354 ??? This really should use build1 too. */
2355 if (TREE_CODE_CLASS (code) != 's')
2356 abort ();
2357 TREE_OPERAND (t, 0) = arg0;
2358 }
2359 else
2360 {
2361 for (i = 0; i < length; i++)
2362 {
2363 tree operand = va_arg (p, tree);
2364
2365 TREE_OPERAND (t, i) = operand;
2366 if (operand && fro > i)
2367 {
2368 if (TREE_SIDE_EFFECTS (operand))
2369 TREE_SIDE_EFFECTS (t) = 1;
2370 if (!TREE_CONSTANT (operand))
2371 constant = 0;
2372 }
2373 }
2374 }
2375 va_end (p);
2376
2377 TREE_CONSTANT (t) = constant;
2378
2379 if (code == CALL_EXPR && !TREE_SIDE_EFFECTS (t))
2380 {
2381 /* Calls have side-effects, except those to const or
2382 pure functions. */
2383 tree fn = get_callee_fndecl (t);
2384
2385 if (!fn || (!DECL_IS_PURE (fn) && !TREE_READONLY (fn)))
2386 TREE_SIDE_EFFECTS (t) = 1;
2387 }
2388
2389 return t;
2390 }
2391
2392 /* Same as above, but only builds for unary operators.
2393 Saves lions share of calls to `build'; cuts down use
2394 of varargs, which is expensive for RISC machines. */
2395
2396 tree
2397 build1 (enum tree_code code, tree type, tree node)
2398 {
2399 int length = sizeof (struct tree_exp);
2400 #ifdef GATHER_STATISTICS
2401 tree_node_kind kind;
2402 #endif
2403 tree t;
2404
2405 #ifdef GATHER_STATISTICS
2406 switch (TREE_CODE_CLASS (code))
2407 {
2408 case 's': /* an expression with side effects */
2409 kind = s_kind;
2410 break;
2411 case 'r': /* a reference */
2412 kind = r_kind;
2413 break;
2414 default:
2415 kind = e_kind;
2416 break;
2417 }
2418
2419 tree_node_counts[(int) kind]++;
2420 tree_node_sizes[(int) kind] += length;
2421 #endif
2422
2423 #ifdef ENABLE_CHECKING
2424 if (TREE_CODE_CLASS (code) == '2'
2425 || TREE_CODE_CLASS (code) == '<'
2426 || TREE_CODE_LENGTH (code) != 1)
2427 abort ();
2428 #endif /* ENABLE_CHECKING */
2429
2430 t = ggc_alloc_tree (length);
2431
2432 memset (t, 0, sizeof (struct tree_common));
2433
2434 TREE_SET_CODE (t, code);
2435
2436 TREE_TYPE (t) = type;
2437 TREE_COMPLEXITY (t) = 0;
2438 TREE_OPERAND (t, 0) = node;
2439 if (node && first_rtl_op (code) != 0)
2440 {
2441 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2442 TREE_READONLY (t) = TREE_READONLY (node);
2443 }
2444
2445 if (TREE_CODE_CLASS (code) == 's')
2446 TREE_SIDE_EFFECTS (t) = 1;
2447 else switch (code)
2448 {
2449 case INIT_EXPR:
2450 case MODIFY_EXPR:
2451 case VA_ARG_EXPR:
2452 case RTL_EXPR:
2453 case PREDECREMENT_EXPR:
2454 case PREINCREMENT_EXPR:
2455 case POSTDECREMENT_EXPR:
2456 case POSTINCREMENT_EXPR:
2457 /* All of these have side-effects, no matter what their
2458 operands are. */
2459 TREE_SIDE_EFFECTS (t) = 1;
2460 TREE_READONLY (t) = 0;
2461 break;
2462
2463 case INDIRECT_REF:
2464 /* Whether a dereference is readonly has nothing to do with whether
2465 its operand is readonly. */
2466 TREE_READONLY (t) = 0;
2467 break;
2468
2469 default:
2470 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2471 TREE_CONSTANT (t) = 1;
2472 break;
2473 }
2474
2475 return t;
2476 }
2477
2478 /* Similar except don't specify the TREE_TYPE
2479 and leave the TREE_SIDE_EFFECTS as 0.
2480 It is permissible for arguments to be null,
2481 or even garbage if their values do not matter. */
2482
2483 tree
2484 build_nt (enum tree_code code, ...)
2485 {
2486 tree t;
2487 int length;
2488 int i;
2489 va_list p;
2490
2491 va_start (p, code);
2492
2493 t = make_node (code);
2494 length = TREE_CODE_LENGTH (code);
2495
2496 for (i = 0; i < length; i++)
2497 TREE_OPERAND (t, i) = va_arg (p, tree);
2498
2499 va_end (p);
2500 return t;
2501 }
2502 \f
2503 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2504 We do NOT enter this node in any sort of symbol table.
2505
2506 layout_decl is used to set up the decl's storage layout.
2507 Other slots are initialized to 0 or null pointers. */
2508
2509 tree
2510 build_decl (enum tree_code code, tree name, tree type)
2511 {
2512 tree t;
2513
2514 t = make_node (code);
2515
2516 /* if (type == error_mark_node)
2517 type = integer_type_node; */
2518 /* That is not done, deliberately, so that having error_mark_node
2519 as the type can suppress useless errors in the use of this variable. */
2520
2521 DECL_NAME (t) = name;
2522 TREE_TYPE (t) = type;
2523
2524 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2525 layout_decl (t, 0);
2526 else if (code == FUNCTION_DECL)
2527 DECL_MODE (t) = FUNCTION_MODE;
2528
2529 return t;
2530 }
2531 \f
2532 /* BLOCK nodes are used to represent the structure of binding contours
2533 and declarations, once those contours have been exited and their contents
2534 compiled. This information is used for outputting debugging info. */
2535
2536 tree
2537 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2538 tree supercontext, tree chain)
2539 {
2540 tree block = make_node (BLOCK);
2541
2542 BLOCK_VARS (block) = vars;
2543 BLOCK_SUBBLOCKS (block) = subblocks;
2544 BLOCK_SUPERCONTEXT (block) = supercontext;
2545 BLOCK_CHAIN (block) = chain;
2546 return block;
2547 }
2548
2549 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2550 location where an expression or an identifier were encountered. It
2551 is necessary for languages where the frontend parser will handle
2552 recursively more than one file (Java is one of them). */
2553
2554 tree
2555 build_expr_wfl (tree node, const char *file, int line, int col)
2556 {
2557 static const char *last_file = 0;
2558 static tree last_filenode = NULL_TREE;
2559 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2560
2561 EXPR_WFL_NODE (wfl) = node;
2562 EXPR_WFL_SET_LINECOL (wfl, line, col);
2563 if (file != last_file)
2564 {
2565 last_file = file;
2566 last_filenode = file ? get_identifier (file) : NULL_TREE;
2567 }
2568
2569 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2570 if (node)
2571 {
2572 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2573 TREE_TYPE (wfl) = TREE_TYPE (node);
2574 }
2575
2576 return wfl;
2577 }
2578 \f
2579 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2580 is ATTRIBUTE. */
2581
2582 tree
2583 build_decl_attribute_variant (tree ddecl, tree attribute)
2584 {
2585 DECL_ATTRIBUTES (ddecl) = attribute;
2586 return ddecl;
2587 }
2588
2589 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2590 is ATTRIBUTE.
2591
2592 Record such modified types already made so we don't make duplicates. */
2593
2594 tree
2595 build_type_attribute_variant (tree ttype, tree attribute)
2596 {
2597 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2598 {
2599 unsigned int hashcode;
2600 tree ntype;
2601
2602 ntype = copy_node (ttype);
2603
2604 TYPE_POINTER_TO (ntype) = 0;
2605 TYPE_REFERENCE_TO (ntype) = 0;
2606 TYPE_ATTRIBUTES (ntype) = attribute;
2607
2608 /* Create a new main variant of TYPE. */
2609 TYPE_MAIN_VARIANT (ntype) = ntype;
2610 TYPE_NEXT_VARIANT (ntype) = 0;
2611 set_type_quals (ntype, TYPE_UNQUALIFIED);
2612
2613 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2614 + TYPE_HASH (TREE_TYPE (ntype))
2615 + attribute_hash_list (attribute));
2616
2617 switch (TREE_CODE (ntype))
2618 {
2619 case FUNCTION_TYPE:
2620 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2621 break;
2622 case ARRAY_TYPE:
2623 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2624 break;
2625 case INTEGER_TYPE:
2626 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2627 break;
2628 case REAL_TYPE:
2629 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2630 break;
2631 default:
2632 break;
2633 }
2634
2635 ntype = type_hash_canon (hashcode, ntype);
2636 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2637 }
2638
2639 return ttype;
2640 }
2641
2642 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2643 or zero if not.
2644
2645 We try both `text' and `__text__', ATTR may be either one. */
2646 /* ??? It might be a reasonable simplification to require ATTR to be only
2647 `text'. One might then also require attribute lists to be stored in
2648 their canonicalized form. */
2649
2650 int
2651 is_attribute_p (const char *attr, tree ident)
2652 {
2653 int ident_len, attr_len;
2654 const char *p;
2655
2656 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2657 return 0;
2658
2659 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2660 return 1;
2661
2662 p = IDENTIFIER_POINTER (ident);
2663 ident_len = strlen (p);
2664 attr_len = strlen (attr);
2665
2666 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2667 if (attr[0] == '_')
2668 {
2669 if (attr[1] != '_'
2670 || attr[attr_len - 2] != '_'
2671 || attr[attr_len - 1] != '_')
2672 abort ();
2673 if (ident_len == attr_len - 4
2674 && strncmp (attr + 2, p, attr_len - 4) == 0)
2675 return 1;
2676 }
2677 else
2678 {
2679 if (ident_len == attr_len + 4
2680 && p[0] == '_' && p[1] == '_'
2681 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2682 && strncmp (attr, p + 2, attr_len) == 0)
2683 return 1;
2684 }
2685
2686 return 0;
2687 }
2688
2689 /* Given an attribute name and a list of attributes, return a pointer to the
2690 attribute's list element if the attribute is part of the list, or NULL_TREE
2691 if not found. If the attribute appears more than once, this only
2692 returns the first occurrence; the TREE_CHAIN of the return value should
2693 be passed back in if further occurrences are wanted. */
2694
2695 tree
2696 lookup_attribute (const char *attr_name, tree list)
2697 {
2698 tree l;
2699
2700 for (l = list; l; l = TREE_CHAIN (l))
2701 {
2702 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2703 abort ();
2704 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2705 return l;
2706 }
2707
2708 return NULL_TREE;
2709 }
2710
2711 /* Return an attribute list that is the union of a1 and a2. */
2712
2713 tree
2714 merge_attributes (tree a1, tree a2)
2715 {
2716 tree attributes;
2717
2718 /* Either one unset? Take the set one. */
2719
2720 if ((attributes = a1) == 0)
2721 attributes = a2;
2722
2723 /* One that completely contains the other? Take it. */
2724
2725 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2726 {
2727 if (attribute_list_contained (a2, a1))
2728 attributes = a2;
2729 else
2730 {
2731 /* Pick the longest list, and hang on the other list. */
2732
2733 if (list_length (a1) < list_length (a2))
2734 attributes = a2, a2 = a1;
2735
2736 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2737 {
2738 tree a;
2739 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2740 attributes);
2741 a != NULL_TREE;
2742 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2743 TREE_CHAIN (a)))
2744 {
2745 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2746 break;
2747 }
2748 if (a == NULL_TREE)
2749 {
2750 a1 = copy_node (a2);
2751 TREE_CHAIN (a1) = attributes;
2752 attributes = a1;
2753 }
2754 }
2755 }
2756 }
2757 return attributes;
2758 }
2759
2760 /* Given types T1 and T2, merge their attributes and return
2761 the result. */
2762
2763 tree
2764 merge_type_attributes (tree t1, tree t2)
2765 {
2766 return merge_attributes (TYPE_ATTRIBUTES (t1),
2767 TYPE_ATTRIBUTES (t2));
2768 }
2769
2770 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2771 the result. */
2772
2773 tree
2774 merge_decl_attributes (tree olddecl, tree newdecl)
2775 {
2776 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2777 DECL_ATTRIBUTES (newdecl));
2778 }
2779
2780 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2781
2782 /* Specialization of merge_decl_attributes for various Windows targets.
2783
2784 This handles the following situation:
2785
2786 __declspec (dllimport) int foo;
2787 int foo;
2788
2789 The second instance of `foo' nullifies the dllimport. */
2790
2791 tree
2792 merge_dllimport_decl_attributes (tree old, tree new)
2793 {
2794 tree a;
2795 int delete_dllimport_p;
2796
2797 old = DECL_ATTRIBUTES (old);
2798 new = DECL_ATTRIBUTES (new);
2799
2800 /* What we need to do here is remove from `old' dllimport if it doesn't
2801 appear in `new'. dllimport behaves like extern: if a declaration is
2802 marked dllimport and a definition appears later, then the object
2803 is not dllimport'd. */
2804 if (lookup_attribute ("dllimport", old) != NULL_TREE
2805 && lookup_attribute ("dllimport", new) == NULL_TREE)
2806 delete_dllimport_p = 1;
2807 else
2808 delete_dllimport_p = 0;
2809
2810 a = merge_attributes (old, new);
2811
2812 if (delete_dllimport_p)
2813 {
2814 tree prev, t;
2815
2816 /* Scan the list for dllimport and delete it. */
2817 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2818 {
2819 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2820 {
2821 if (prev == NULL_TREE)
2822 a = TREE_CHAIN (a);
2823 else
2824 TREE_CHAIN (prev) = TREE_CHAIN (t);
2825 break;
2826 }
2827 }
2828 }
2829
2830 return a;
2831 }
2832
2833 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2834 \f
2835 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2836 of the various TYPE_QUAL values. */
2837
2838 static void
2839 set_type_quals (tree type, int type_quals)
2840 {
2841 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2842 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2843 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2844 }
2845
2846 /* Return a version of the TYPE, qualified as indicated by the
2847 TYPE_QUALS, if one exists. If no qualified version exists yet,
2848 return NULL_TREE. */
2849
2850 tree
2851 get_qualified_type (tree type, int type_quals)
2852 {
2853 tree t;
2854
2855 /* Search the chain of variants to see if there is already one there just
2856 like the one we need to have. If so, use that existing one. We must
2857 preserve the TYPE_NAME, since there is code that depends on this. */
2858 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2859 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2860 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
2861 && attribute_list_equal (TYPE_ATTRIBUTES (t), TYPE_ATTRIBUTES (type)))
2862 return t;
2863
2864 return NULL_TREE;
2865 }
2866
2867 /* Like get_qualified_type, but creates the type if it does not
2868 exist. This function never returns NULL_TREE. */
2869
2870 tree
2871 build_qualified_type (tree type, int type_quals)
2872 {
2873 tree t;
2874
2875 /* See if we already have the appropriate qualified variant. */
2876 t = get_qualified_type (type, type_quals);
2877
2878 /* If not, build it. */
2879 if (!t)
2880 {
2881 t = build_type_copy (type);
2882 set_type_quals (t, type_quals);
2883 }
2884
2885 return t;
2886 }
2887
2888 /* Create a new variant of TYPE, equivalent but distinct.
2889 This is so the caller can modify it. */
2890
2891 tree
2892 build_type_copy (tree type)
2893 {
2894 tree t, m = TYPE_MAIN_VARIANT (type);
2895
2896 t = copy_node (type);
2897
2898 TYPE_POINTER_TO (t) = 0;
2899 TYPE_REFERENCE_TO (t) = 0;
2900
2901 /* Add this type to the chain of variants of TYPE. */
2902 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2903 TYPE_NEXT_VARIANT (m) = t;
2904
2905 return t;
2906 }
2907 \f
2908 /* Hashing of types so that we don't make duplicates.
2909 The entry point is `type_hash_canon'. */
2910
2911 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2912 with types in the TREE_VALUE slots), by adding the hash codes
2913 of the individual types. */
2914
2915 unsigned int
2916 type_hash_list (tree list)
2917 {
2918 unsigned int hashcode;
2919 tree tail;
2920
2921 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2922 hashcode += TYPE_HASH (TREE_VALUE (tail));
2923
2924 return hashcode;
2925 }
2926
2927 /* These are the Hashtable callback functions. */
2928
2929 /* Returns true if the types are equal. */
2930
2931 static int
2932 type_hash_eq (const void *va, const void *vb)
2933 {
2934 const struct type_hash *a = va, *b = vb;
2935 if (a->hash == b->hash
2936 && TREE_CODE (a->type) == TREE_CODE (b->type)
2937 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2938 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2939 TYPE_ATTRIBUTES (b->type))
2940 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2941 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2942 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2943 TYPE_MAX_VALUE (b->type)))
2944 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2945 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2946 TYPE_MIN_VALUE (b->type)))
2947 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2948 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2949 || (TYPE_DOMAIN (a->type)
2950 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2951 && TYPE_DOMAIN (b->type)
2952 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2953 && type_list_equal (TYPE_DOMAIN (a->type),
2954 TYPE_DOMAIN (b->type)))))
2955 return 1;
2956 return 0;
2957 }
2958
2959 /* Return the cached hash value. */
2960
2961 static hashval_t
2962 type_hash_hash (const void *item)
2963 {
2964 return ((const struct type_hash *) item)->hash;
2965 }
2966
2967 /* Look in the type hash table for a type isomorphic to TYPE.
2968 If one is found, return it. Otherwise return 0. */
2969
2970 tree
2971 type_hash_lookup (unsigned int hashcode, tree type)
2972 {
2973 struct type_hash *h, in;
2974
2975 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2976 must call that routine before comparing TYPE_ALIGNs. */
2977 layout_type (type);
2978
2979 in.hash = hashcode;
2980 in.type = type;
2981
2982 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2983 if (h)
2984 return h->type;
2985 return NULL_TREE;
2986 }
2987
2988 /* Add an entry to the type-hash-table
2989 for a type TYPE whose hash code is HASHCODE. */
2990
2991 void
2992 type_hash_add (unsigned int hashcode, tree type)
2993 {
2994 struct type_hash *h;
2995 void **loc;
2996
2997 h = ggc_alloc (sizeof (struct type_hash));
2998 h->hash = hashcode;
2999 h->type = type;
3000 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3001 *(struct type_hash **) loc = h;
3002 }
3003
3004 /* Given TYPE, and HASHCODE its hash code, return the canonical
3005 object for an identical type if one already exists.
3006 Otherwise, return TYPE, and record it as the canonical object
3007 if it is a permanent object.
3008
3009 To use this function, first create a type of the sort you want.
3010 Then compute its hash code from the fields of the type that
3011 make it different from other similar types.
3012 Then call this function and use the value.
3013 This function frees the type you pass in if it is a duplicate. */
3014
3015 /* Set to 1 to debug without canonicalization. Never set by program. */
3016 int debug_no_type_hash = 0;
3017
3018 tree
3019 type_hash_canon (unsigned int hashcode, tree type)
3020 {
3021 tree t1;
3022
3023 if (debug_no_type_hash)
3024 return type;
3025
3026 /* See if the type is in the hash table already. If so, return it.
3027 Otherwise, add the type. */
3028 t1 = type_hash_lookup (hashcode, type);
3029 if (t1 != 0)
3030 {
3031 #ifdef GATHER_STATISTICS
3032 tree_node_counts[(int) t_kind]--;
3033 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3034 #endif
3035 return t1;
3036 }
3037 else
3038 {
3039 type_hash_add (hashcode, type);
3040 return type;
3041 }
3042 }
3043
3044 /* See if the data pointed to by the type hash table is marked. We consider
3045 it marked if the type is marked or if a debug type number or symbol
3046 table entry has been made for the type. This reduces the amount of
3047 debugging output and eliminates that dependency of the debug output on
3048 the number of garbage collections. */
3049
3050 static int
3051 type_hash_marked_p (const void *p)
3052 {
3053 tree type = ((struct type_hash *) p)->type;
3054
3055 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3056 }
3057
3058 static void
3059 print_type_hash_statistics (void)
3060 {
3061 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3062 (long) htab_size (type_hash_table),
3063 (long) htab_elements (type_hash_table),
3064 htab_collisions (type_hash_table));
3065 }
3066
3067 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3068 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3069 by adding the hash codes of the individual attributes. */
3070
3071 unsigned int
3072 attribute_hash_list (tree list)
3073 {
3074 unsigned int hashcode;
3075 tree tail;
3076
3077 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3078 /* ??? Do we want to add in TREE_VALUE too? */
3079 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3080 return hashcode;
3081 }
3082
3083 /* Given two lists of attributes, return true if list l2 is
3084 equivalent to l1. */
3085
3086 int
3087 attribute_list_equal (tree l1, tree l2)
3088 {
3089 return attribute_list_contained (l1, l2)
3090 && attribute_list_contained (l2, l1);
3091 }
3092
3093 /* Given two lists of attributes, return true if list L2 is
3094 completely contained within L1. */
3095 /* ??? This would be faster if attribute names were stored in a canonicalized
3096 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3097 must be used to show these elements are equivalent (which they are). */
3098 /* ??? It's not clear that attributes with arguments will always be handled
3099 correctly. */
3100
3101 int
3102 attribute_list_contained (tree l1, tree l2)
3103 {
3104 tree t1, t2;
3105
3106 /* First check the obvious, maybe the lists are identical. */
3107 if (l1 == l2)
3108 return 1;
3109
3110 /* Maybe the lists are similar. */
3111 for (t1 = l1, t2 = l2;
3112 t1 != 0 && t2 != 0
3113 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3114 && TREE_VALUE (t1) == TREE_VALUE (t2);
3115 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3116
3117 /* Maybe the lists are equal. */
3118 if (t1 == 0 && t2 == 0)
3119 return 1;
3120
3121 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3122 {
3123 tree attr;
3124 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3125 attr != NULL_TREE;
3126 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3127 TREE_CHAIN (attr)))
3128 {
3129 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3130 break;
3131 }
3132
3133 if (attr == 0)
3134 return 0;
3135
3136 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3137 return 0;
3138 }
3139
3140 return 1;
3141 }
3142
3143 /* Given two lists of types
3144 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3145 return 1 if the lists contain the same types in the same order.
3146 Also, the TREE_PURPOSEs must match. */
3147
3148 int
3149 type_list_equal (tree l1, tree l2)
3150 {
3151 tree t1, t2;
3152
3153 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3154 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3155 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3156 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3157 && (TREE_TYPE (TREE_PURPOSE (t1))
3158 == TREE_TYPE (TREE_PURPOSE (t2))))))
3159 return 0;
3160
3161 return t1 == t2;
3162 }
3163
3164 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3165 given by TYPE. If the argument list accepts variable arguments,
3166 then this function counts only the ordinary arguments. */
3167
3168 int
3169 type_num_arguments (tree type)
3170 {
3171 int i = 0;
3172 tree t;
3173
3174 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3175 /* If the function does not take a variable number of arguments,
3176 the last element in the list will have type `void'. */
3177 if (VOID_TYPE_P (TREE_VALUE (t)))
3178 break;
3179 else
3180 ++i;
3181
3182 return i;
3183 }
3184
3185 /* Nonzero if integer constants T1 and T2
3186 represent the same constant value. */
3187
3188 int
3189 tree_int_cst_equal (tree t1, tree t2)
3190 {
3191 if (t1 == t2)
3192 return 1;
3193
3194 if (t1 == 0 || t2 == 0)
3195 return 0;
3196
3197 if (TREE_CODE (t1) == INTEGER_CST
3198 && TREE_CODE (t2) == INTEGER_CST
3199 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3200 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3201 return 1;
3202
3203 return 0;
3204 }
3205
3206 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3207 The precise way of comparison depends on their data type. */
3208
3209 int
3210 tree_int_cst_lt (tree t1, tree t2)
3211 {
3212 if (t1 == t2)
3213 return 0;
3214
3215 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3216 {
3217 int t1_sgn = tree_int_cst_sgn (t1);
3218 int t2_sgn = tree_int_cst_sgn (t2);
3219
3220 if (t1_sgn < t2_sgn)
3221 return 1;
3222 else if (t1_sgn > t2_sgn)
3223 return 0;
3224 /* Otherwise, both are non-negative, so we compare them as
3225 unsigned just in case one of them would overflow a signed
3226 type. */
3227 }
3228 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3229 return INT_CST_LT (t1, t2);
3230
3231 return INT_CST_LT_UNSIGNED (t1, t2);
3232 }
3233
3234 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3235
3236 int
3237 tree_int_cst_compare (tree t1, tree t2)
3238 {
3239 if (tree_int_cst_lt (t1, t2))
3240 return -1;
3241 else if (tree_int_cst_lt (t2, t1))
3242 return 1;
3243 else
3244 return 0;
3245 }
3246
3247 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3248 the host. If POS is zero, the value can be represented in a single
3249 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3250 be represented in a single unsigned HOST_WIDE_INT. */
3251
3252 int
3253 host_integerp (tree t, int pos)
3254 {
3255 return (TREE_CODE (t) == INTEGER_CST
3256 && ! TREE_OVERFLOW (t)
3257 && ((TREE_INT_CST_HIGH (t) == 0
3258 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3259 || (! pos && TREE_INT_CST_HIGH (t) == -1
3260 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3261 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3262 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3263 }
3264
3265 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3266 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3267 be positive. Abort if we cannot satisfy the above conditions. */
3268
3269 HOST_WIDE_INT
3270 tree_low_cst (tree t, int pos)
3271 {
3272 if (host_integerp (t, pos))
3273 return TREE_INT_CST_LOW (t);
3274 else
3275 abort ();
3276 }
3277
3278 /* Return the most significant bit of the integer constant T. */
3279
3280 int
3281 tree_int_cst_msb (tree t)
3282 {
3283 int prec;
3284 HOST_WIDE_INT h;
3285 unsigned HOST_WIDE_INT l;
3286
3287 /* Note that using TYPE_PRECISION here is wrong. We care about the
3288 actual bits, not the (arbitrary) range of the type. */
3289 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3290 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3291 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3292 return (l & 1) == 1;
3293 }
3294
3295 /* Return an indication of the sign of the integer constant T.
3296 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3297 Note that -1 will never be returned it T's type is unsigned. */
3298
3299 int
3300 tree_int_cst_sgn (tree t)
3301 {
3302 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3303 return 0;
3304 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3305 return 1;
3306 else if (TREE_INT_CST_HIGH (t) < 0)
3307 return -1;
3308 else
3309 return 1;
3310 }
3311
3312 /* Compare two constructor-element-type constants. Return 1 if the lists
3313 are known to be equal; otherwise return 0. */
3314
3315 int
3316 simple_cst_list_equal (tree l1, tree l2)
3317 {
3318 while (l1 != NULL_TREE && l2 != NULL_TREE)
3319 {
3320 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3321 return 0;
3322
3323 l1 = TREE_CHAIN (l1);
3324 l2 = TREE_CHAIN (l2);
3325 }
3326
3327 return l1 == l2;
3328 }
3329
3330 /* Return truthvalue of whether T1 is the same tree structure as T2.
3331 Return 1 if they are the same.
3332 Return 0 if they are understandably different.
3333 Return -1 if either contains tree structure not understood by
3334 this function. */
3335
3336 int
3337 simple_cst_equal (tree t1, tree t2)
3338 {
3339 enum tree_code code1, code2;
3340 int cmp;
3341 int i;
3342
3343 if (t1 == t2)
3344 return 1;
3345 if (t1 == 0 || t2 == 0)
3346 return 0;
3347
3348 code1 = TREE_CODE (t1);
3349 code2 = TREE_CODE (t2);
3350
3351 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3352 {
3353 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3354 || code2 == NON_LVALUE_EXPR)
3355 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3356 else
3357 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3358 }
3359
3360 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3361 || code2 == NON_LVALUE_EXPR)
3362 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3363
3364 if (code1 != code2)
3365 return 0;
3366
3367 switch (code1)
3368 {
3369 case INTEGER_CST:
3370 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3371 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3372
3373 case REAL_CST:
3374 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3375
3376 case STRING_CST:
3377 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3378 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3379 TREE_STRING_LENGTH (t1)));
3380
3381 case CONSTRUCTOR:
3382 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3383 return 1;
3384 else
3385 abort ();
3386
3387 case SAVE_EXPR:
3388 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3389
3390 case CALL_EXPR:
3391 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3392 if (cmp <= 0)
3393 return cmp;
3394 return
3395 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3396
3397 case TARGET_EXPR:
3398 /* Special case: if either target is an unallocated VAR_DECL,
3399 it means that it's going to be unified with whatever the
3400 TARGET_EXPR is really supposed to initialize, so treat it
3401 as being equivalent to anything. */
3402 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3403 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3404 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3405 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3406 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3407 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3408 cmp = 1;
3409 else
3410 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3411
3412 if (cmp <= 0)
3413 return cmp;
3414
3415 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3416
3417 case WITH_CLEANUP_EXPR:
3418 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3419 if (cmp <= 0)
3420 return cmp;
3421
3422 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3423
3424 case COMPONENT_REF:
3425 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3426 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3427
3428 return 0;
3429
3430 case VAR_DECL:
3431 case PARM_DECL:
3432 case CONST_DECL:
3433 case FUNCTION_DECL:
3434 return 0;
3435
3436 default:
3437 break;
3438 }
3439
3440 /* This general rule works for most tree codes. All exceptions should be
3441 handled above. If this is a language-specific tree code, we can't
3442 trust what might be in the operand, so say we don't know
3443 the situation. */
3444 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3445 return -1;
3446
3447 switch (TREE_CODE_CLASS (code1))
3448 {
3449 case '1':
3450 case '2':
3451 case '<':
3452 case 'e':
3453 case 'r':
3454 case 's':
3455 cmp = 1;
3456 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3457 {
3458 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3459 if (cmp <= 0)
3460 return cmp;
3461 }
3462
3463 return cmp;
3464
3465 default:
3466 return -1;
3467 }
3468 }
3469
3470 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3471 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3472 than U, respectively. */
3473
3474 int
3475 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3476 {
3477 if (tree_int_cst_sgn (t) < 0)
3478 return -1;
3479 else if (TREE_INT_CST_HIGH (t) != 0)
3480 return 1;
3481 else if (TREE_INT_CST_LOW (t) == u)
3482 return 0;
3483 else if (TREE_INT_CST_LOW (t) < u)
3484 return -1;
3485 else
3486 return 1;
3487 }
3488
3489 /* Generate a hash value for an expression. This can be used iteratively
3490 by passing a previous result as the "val" argument.
3491
3492 This function is intended to produce the same hash for expressions which
3493 would compare equal using operand_equal_p. */
3494
3495 hashval_t
3496 iterative_hash_expr (tree t, hashval_t val)
3497 {
3498 int i;
3499 enum tree_code code;
3500 char class;
3501
3502 if (t == NULL_TREE)
3503 return iterative_hash_object (t, val);
3504
3505 code = TREE_CODE (t);
3506 class = TREE_CODE_CLASS (code);
3507
3508 if (class == 'd')
3509 {
3510 /* Decls we can just compare by pointer. */
3511 val = iterative_hash_object (t, val);
3512 }
3513 else if (class == 'c')
3514 {
3515 /* Alas, constants aren't shared, so we can't rely on pointer
3516 identity. */
3517 if (code == INTEGER_CST)
3518 {
3519 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3520 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3521 }
3522 else if (code == REAL_CST)
3523 val = iterative_hash (TREE_REAL_CST_PTR (t),
3524 sizeof (REAL_VALUE_TYPE), val);
3525 else if (code == STRING_CST)
3526 val = iterative_hash (TREE_STRING_POINTER (t),
3527 TREE_STRING_LENGTH (t), val);
3528 else if (code == COMPLEX_CST)
3529 {
3530 val = iterative_hash_expr (TREE_REALPART (t), val);
3531 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3532 }
3533 else if (code == VECTOR_CST)
3534 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3535 else
3536 abort ();
3537 }
3538 else if (IS_EXPR_CODE_CLASS (class))
3539 {
3540 val = iterative_hash_object (code, val);
3541
3542 if (code == NOP_EXPR || code == CONVERT_EXPR
3543 || code == NON_LVALUE_EXPR)
3544 val = iterative_hash_object (TREE_TYPE (t), val);
3545
3546 if (code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
3547 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
3548 || code == BIT_AND_EXPR || code == NE_EXPR || code == EQ_EXPR)
3549 {
3550 /* It's a commutative expression. We want to hash it the same
3551 however it appears. We do this by first hashing both operands
3552 and then rehashing based on the order of their independent
3553 hashes. */
3554 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3555 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3556 hashval_t t;
3557
3558 if (one > two)
3559 t = one, one = two, two = t;
3560
3561 val = iterative_hash_object (one, val);
3562 val = iterative_hash_object (two, val);
3563 }
3564 else
3565 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3566 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3567 }
3568 else if (code == TREE_LIST)
3569 {
3570 /* A list of expressions, for a CALL_EXPR or as the elements of a
3571 VECTOR_CST. */
3572 for (; t; t = TREE_CHAIN (t))
3573 val = iterative_hash_expr (TREE_VALUE (t), val);
3574 }
3575 else
3576 abort ();
3577
3578 return val;
3579 }
3580 \f
3581 /* Constructors for pointer, array and function types.
3582 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3583 constructed by language-dependent code, not here.) */
3584
3585 /* Construct, lay out and return the type of pointers to TO_TYPE
3586 with mode MODE. If such a type has already been constructed,
3587 reuse it. */
3588
3589 tree
3590 build_pointer_type_for_mode (tree to_type, enum machine_mode mode)
3591 {
3592 tree t = TYPE_POINTER_TO (to_type);
3593
3594 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3595 if (t != 0 && mode == ptr_mode)
3596 return t;
3597
3598 t = make_node (POINTER_TYPE);
3599
3600 TREE_TYPE (t) = to_type;
3601 TYPE_MODE (t) = mode;
3602
3603 /* Record this type as the pointer to TO_TYPE. */
3604 if (mode == ptr_mode)
3605 TYPE_POINTER_TO (to_type) = t;
3606
3607 /* Lay out the type. This function has many callers that are concerned
3608 with expression-construction, and this simplifies them all.
3609 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3610 layout_type (t);
3611
3612 return t;
3613 }
3614
3615 /* By default build pointers in ptr_mode. */
3616
3617 tree
3618 build_pointer_type (tree to_type)
3619 {
3620 return build_pointer_type_for_mode (to_type, ptr_mode);
3621 }
3622
3623 /* Construct, lay out and return the type of references to TO_TYPE
3624 with mode MODE. If such a type has already been constructed,
3625 reuse it. */
3626
3627 tree
3628 build_reference_type_for_mode (tree to_type, enum machine_mode mode)
3629 {
3630 tree t = TYPE_REFERENCE_TO (to_type);
3631
3632 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3633 if (t != 0 && mode == ptr_mode)
3634 return t;
3635
3636 t = make_node (REFERENCE_TYPE);
3637
3638 TREE_TYPE (t) = to_type;
3639 TYPE_MODE (t) = mode;
3640
3641 /* Record this type as the pointer to TO_TYPE. */
3642 if (mode == ptr_mode)
3643 TYPE_REFERENCE_TO (to_type) = t;
3644
3645 layout_type (t);
3646
3647 return t;
3648 }
3649
3650
3651 /* Build the node for the type of references-to-TO_TYPE by default
3652 in ptr_mode. */
3653
3654 tree
3655 build_reference_type (tree to_type)
3656 {
3657 return build_reference_type_for_mode (to_type, ptr_mode);
3658 }
3659
3660 /* Build a type that is compatible with t but has no cv quals anywhere
3661 in its type, thus
3662
3663 const char *const *const * -> char ***. */
3664
3665 tree
3666 build_type_no_quals (tree t)
3667 {
3668 switch (TREE_CODE (t))
3669 {
3670 case POINTER_TYPE:
3671 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3672 case REFERENCE_TYPE:
3673 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3674 default:
3675 return TYPE_MAIN_VARIANT (t);
3676 }
3677 }
3678
3679 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3680 MAXVAL should be the maximum value in the domain
3681 (one less than the length of the array).
3682
3683 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3684 We don't enforce this limit, that is up to caller (e.g. language front end).
3685 The limit exists because the result is a signed type and we don't handle
3686 sizes that use more than one HOST_WIDE_INT. */
3687
3688 tree
3689 build_index_type (tree maxval)
3690 {
3691 tree itype = make_node (INTEGER_TYPE);
3692
3693 TREE_TYPE (itype) = sizetype;
3694 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3695 TYPE_MIN_VALUE (itype) = size_zero_node;
3696 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3697 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3698 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3699 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3700 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3701 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3702
3703 if (host_integerp (maxval, 1))
3704 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3705 else
3706 return itype;
3707 }
3708
3709 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3710 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3711 low bound LOWVAL and high bound HIGHVAL.
3712 if TYPE==NULL_TREE, sizetype is used. */
3713
3714 tree
3715 build_range_type (tree type, tree lowval, tree highval)
3716 {
3717 tree itype = make_node (INTEGER_TYPE);
3718
3719 TREE_TYPE (itype) = type;
3720 if (type == NULL_TREE)
3721 type = sizetype;
3722
3723 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3724 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3725
3726 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3727 TYPE_MODE (itype) = TYPE_MODE (type);
3728 TYPE_SIZE (itype) = TYPE_SIZE (type);
3729 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3730 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3731 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3732
3733 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3734 return type_hash_canon (tree_low_cst (highval, 0)
3735 - tree_low_cst (lowval, 0),
3736 itype);
3737 else
3738 return itype;
3739 }
3740
3741 /* Just like build_index_type, but takes lowval and highval instead
3742 of just highval (maxval). */
3743
3744 tree
3745 build_index_2_type (tree lowval, tree highval)
3746 {
3747 return build_range_type (sizetype, lowval, highval);
3748 }
3749
3750 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3751 and number of elements specified by the range of values of INDEX_TYPE.
3752 If such a type has already been constructed, reuse it. */
3753
3754 tree
3755 build_array_type (tree elt_type, tree index_type)
3756 {
3757 tree t;
3758 unsigned int hashcode;
3759
3760 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3761 {
3762 error ("arrays of functions are not meaningful");
3763 elt_type = integer_type_node;
3764 }
3765
3766 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3767 build_pointer_type (elt_type);
3768
3769 /* Allocate the array after the pointer type,
3770 in case we free it in type_hash_canon. */
3771 t = make_node (ARRAY_TYPE);
3772 TREE_TYPE (t) = elt_type;
3773 TYPE_DOMAIN (t) = index_type;
3774
3775 if (index_type == 0)
3776 {
3777 return t;
3778 }
3779
3780 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3781 t = type_hash_canon (hashcode, t);
3782
3783 if (!COMPLETE_TYPE_P (t))
3784 layout_type (t);
3785 return t;
3786 }
3787
3788 /* Return the TYPE of the elements comprising
3789 the innermost dimension of ARRAY. */
3790
3791 tree
3792 get_inner_array_type (tree array)
3793 {
3794 tree type = TREE_TYPE (array);
3795
3796 while (TREE_CODE (type) == ARRAY_TYPE)
3797 type = TREE_TYPE (type);
3798
3799 return type;
3800 }
3801
3802 /* Construct, lay out and return
3803 the type of functions returning type VALUE_TYPE
3804 given arguments of types ARG_TYPES.
3805 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3806 are data type nodes for the arguments of the function.
3807 If such a type has already been constructed, reuse it. */
3808
3809 tree
3810 build_function_type (tree value_type, tree arg_types)
3811 {
3812 tree t;
3813 unsigned int hashcode;
3814
3815 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3816 {
3817 error ("function return type cannot be function");
3818 value_type = integer_type_node;
3819 }
3820
3821 /* Make a node of the sort we want. */
3822 t = make_node (FUNCTION_TYPE);
3823 TREE_TYPE (t) = value_type;
3824 TYPE_ARG_TYPES (t) = arg_types;
3825
3826 /* If we already have such a type, use the old one and free this one. */
3827 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3828 t = type_hash_canon (hashcode, t);
3829
3830 if (!COMPLETE_TYPE_P (t))
3831 layout_type (t);
3832 return t;
3833 }
3834
3835 /* Build a function type. The RETURN_TYPE is the type returned by the
3836 function. If additional arguments are provided, they are
3837 additional argument types. The list of argument types must always
3838 be terminated by NULL_TREE. */
3839
3840 tree
3841 build_function_type_list (tree return_type, ...)
3842 {
3843 tree t, args, last;
3844 va_list p;
3845
3846 va_start (p, return_type);
3847
3848 t = va_arg (p, tree);
3849 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3850 args = tree_cons (NULL_TREE, t, args);
3851
3852 last = args;
3853 args = nreverse (args);
3854 TREE_CHAIN (last) = void_list_node;
3855 args = build_function_type (return_type, args);
3856
3857 va_end (p);
3858 return args;
3859 }
3860
3861 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
3862 and ARGTYPES (a TREE_LIST) are the return type and arguments types
3863 for the method. An implicit additional parameter (of type
3864 pointer-to-BASETYPE) is added to the ARGTYPES. */
3865
3866 tree
3867 build_method_type_directly (tree basetype,
3868 tree rettype,
3869 tree argtypes)
3870 {
3871 tree t;
3872 tree ptype;
3873 int hashcode;
3874
3875 /* Make a node of the sort we want. */
3876 t = make_node (METHOD_TYPE);
3877
3878 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3879 TREE_TYPE (t) = rettype;
3880 ptype = build_pointer_type (basetype);
3881
3882 /* The actual arglist for this function includes a "hidden" argument
3883 which is "this". Put it into the list of argument types. */
3884 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
3885 TYPE_ARG_TYPES (t) = argtypes;
3886
3887 /* If we already have such a type, use the old one and free this one.
3888 Note that it also frees up the above cons cell if found. */
3889 hashcode = TYPE_HASH (basetype) + TYPE_HASH (rettype) +
3890 type_hash_list (argtypes);
3891
3892 t = type_hash_canon (hashcode, t);
3893
3894 if (!COMPLETE_TYPE_P (t))
3895 layout_type (t);
3896
3897 return t;
3898 }
3899
3900 /* Construct, lay out and return the type of methods belonging to class
3901 BASETYPE and whose arguments and values are described by TYPE.
3902 If that type exists already, reuse it.
3903 TYPE must be a FUNCTION_TYPE node. */
3904
3905 tree
3906 build_method_type (tree basetype, tree type)
3907 {
3908 if (TREE_CODE (type) != FUNCTION_TYPE)
3909 abort ();
3910
3911 return build_method_type_directly (basetype,
3912 TREE_TYPE (type),
3913 TYPE_ARG_TYPES (type));
3914 }
3915
3916 /* Construct, lay out and return the type of offsets to a value
3917 of type TYPE, within an object of type BASETYPE.
3918 If a suitable offset type exists already, reuse it. */
3919
3920 tree
3921 build_offset_type (tree basetype, tree type)
3922 {
3923 tree t;
3924 unsigned int hashcode;
3925
3926 /* Make a node of the sort we want. */
3927 t = make_node (OFFSET_TYPE);
3928
3929 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3930 TREE_TYPE (t) = type;
3931
3932 /* If we already have such a type, use the old one and free this one. */
3933 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3934 t = type_hash_canon (hashcode, t);
3935
3936 if (!COMPLETE_TYPE_P (t))
3937 layout_type (t);
3938
3939 return t;
3940 }
3941
3942 /* Create a complex type whose components are COMPONENT_TYPE. */
3943
3944 tree
3945 build_complex_type (tree component_type)
3946 {
3947 tree t;
3948 unsigned int hashcode;
3949
3950 /* Make a node of the sort we want. */
3951 t = make_node (COMPLEX_TYPE);
3952
3953 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3954 set_type_quals (t, TYPE_QUALS (component_type));
3955
3956 /* If we already have such a type, use the old one and free this one. */
3957 hashcode = TYPE_HASH (component_type);
3958 t = type_hash_canon (hashcode, t);
3959
3960 if (!COMPLETE_TYPE_P (t))
3961 layout_type (t);
3962
3963 /* If we are writing Dwarf2 output we need to create a name,
3964 since complex is a fundamental type. */
3965 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3966 && ! TYPE_NAME (t))
3967 {
3968 const char *name;
3969 if (component_type == char_type_node)
3970 name = "complex char";
3971 else if (component_type == signed_char_type_node)
3972 name = "complex signed char";
3973 else if (component_type == unsigned_char_type_node)
3974 name = "complex unsigned char";
3975 else if (component_type == short_integer_type_node)
3976 name = "complex short int";
3977 else if (component_type == short_unsigned_type_node)
3978 name = "complex short unsigned int";
3979 else if (component_type == integer_type_node)
3980 name = "complex int";
3981 else if (component_type == unsigned_type_node)
3982 name = "complex unsigned int";
3983 else if (component_type == long_integer_type_node)
3984 name = "complex long int";
3985 else if (component_type == long_unsigned_type_node)
3986 name = "complex long unsigned int";
3987 else if (component_type == long_long_integer_type_node)
3988 name = "complex long long int";
3989 else if (component_type == long_long_unsigned_type_node)
3990 name = "complex long long unsigned int";
3991 else
3992 name = 0;
3993
3994 if (name != 0)
3995 TYPE_NAME (t) = get_identifier (name);
3996 }
3997
3998 return t;
3999 }
4000 \f
4001 /* Return OP, stripped of any conversions to wider types as much as is safe.
4002 Converting the value back to OP's type makes a value equivalent to OP.
4003
4004 If FOR_TYPE is nonzero, we return a value which, if converted to
4005 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4006
4007 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4008 narrowest type that can hold the value, even if they don't exactly fit.
4009 Otherwise, bit-field references are changed to a narrower type
4010 only if they can be fetched directly from memory in that type.
4011
4012 OP must have integer, real or enumeral type. Pointers are not allowed!
4013
4014 There are some cases where the obvious value we could return
4015 would regenerate to OP if converted to OP's type,
4016 but would not extend like OP to wider types.
4017 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4018 For example, if OP is (unsigned short)(signed char)-1,
4019 we avoid returning (signed char)-1 if FOR_TYPE is int,
4020 even though extending that to an unsigned short would regenerate OP,
4021 since the result of extending (signed char)-1 to (int)
4022 is different from (int) OP. */
4023
4024 tree
4025 get_unwidened (tree op, tree for_type)
4026 {
4027 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4028 tree type = TREE_TYPE (op);
4029 unsigned final_prec
4030 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4031 int uns
4032 = (for_type != 0 && for_type != type
4033 && final_prec > TYPE_PRECISION (type)
4034 && TREE_UNSIGNED (type));
4035 tree win = op;
4036
4037 while (TREE_CODE (op) == NOP_EXPR)
4038 {
4039 int bitschange
4040 = TYPE_PRECISION (TREE_TYPE (op))
4041 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4042
4043 /* Truncations are many-one so cannot be removed.
4044 Unless we are later going to truncate down even farther. */
4045 if (bitschange < 0
4046 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4047 break;
4048
4049 /* See what's inside this conversion. If we decide to strip it,
4050 we will set WIN. */
4051 op = TREE_OPERAND (op, 0);
4052
4053 /* If we have not stripped any zero-extensions (uns is 0),
4054 we can strip any kind of extension.
4055 If we have previously stripped a zero-extension,
4056 only zero-extensions can safely be stripped.
4057 Any extension can be stripped if the bits it would produce
4058 are all going to be discarded later by truncating to FOR_TYPE. */
4059
4060 if (bitschange > 0)
4061 {
4062 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4063 win = op;
4064 /* TREE_UNSIGNED says whether this is a zero-extension.
4065 Let's avoid computing it if it does not affect WIN
4066 and if UNS will not be needed again. */
4067 if ((uns || TREE_CODE (op) == NOP_EXPR)
4068 && TREE_UNSIGNED (TREE_TYPE (op)))
4069 {
4070 uns = 1;
4071 win = op;
4072 }
4073 }
4074 }
4075
4076 if (TREE_CODE (op) == COMPONENT_REF
4077 /* Since type_for_size always gives an integer type. */
4078 && TREE_CODE (type) != REAL_TYPE
4079 /* Don't crash if field not laid out yet. */
4080 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4081 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4082 {
4083 unsigned int innerprec
4084 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4085 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4086 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4087
4088 /* We can get this structure field in the narrowest type it fits in.
4089 If FOR_TYPE is 0, do this only for a field that matches the
4090 narrower type exactly and is aligned for it
4091 The resulting extension to its nominal type (a fullword type)
4092 must fit the same conditions as for other extensions. */
4093
4094 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4095 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4096 && (! uns || final_prec <= innerprec || unsignedp)
4097 && type != 0)
4098 {
4099 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4100 TREE_OPERAND (op, 1));
4101 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4102 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4103 }
4104 }
4105
4106 return win;
4107 }
4108 \f
4109 /* Return OP or a simpler expression for a narrower value
4110 which can be sign-extended or zero-extended to give back OP.
4111 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4112 or 0 if the value should be sign-extended. */
4113
4114 tree
4115 get_narrower (tree op, int *unsignedp_ptr)
4116 {
4117 int uns = 0;
4118 int first = 1;
4119 tree win = op;
4120
4121 while (TREE_CODE (op) == NOP_EXPR)
4122 {
4123 int bitschange
4124 = (TYPE_PRECISION (TREE_TYPE (op))
4125 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4126
4127 /* Truncations are many-one so cannot be removed. */
4128 if (bitschange < 0)
4129 break;
4130
4131 /* See what's inside this conversion. If we decide to strip it,
4132 we will set WIN. */
4133
4134 if (bitschange > 0)
4135 {
4136 op = TREE_OPERAND (op, 0);
4137 /* An extension: the outermost one can be stripped,
4138 but remember whether it is zero or sign extension. */
4139 if (first)
4140 uns = TREE_UNSIGNED (TREE_TYPE (op));
4141 /* Otherwise, if a sign extension has been stripped,
4142 only sign extensions can now be stripped;
4143 if a zero extension has been stripped, only zero-extensions. */
4144 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4145 break;
4146 first = 0;
4147 }
4148 else /* bitschange == 0 */
4149 {
4150 /* A change in nominal type can always be stripped, but we must
4151 preserve the unsignedness. */
4152 if (first)
4153 uns = TREE_UNSIGNED (TREE_TYPE (op));
4154 first = 0;
4155 op = TREE_OPERAND (op, 0);
4156 }
4157
4158 win = op;
4159 }
4160
4161 if (TREE_CODE (op) == COMPONENT_REF
4162 /* Since type_for_size always gives an integer type. */
4163 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4164 /* Ensure field is laid out already. */
4165 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4166 {
4167 unsigned HOST_WIDE_INT innerprec
4168 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4169 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4170 TREE_UNSIGNED (op));
4171
4172 /* We can get this structure field in a narrower type that fits it,
4173 but the resulting extension to its nominal type (a fullword type)
4174 must satisfy the same conditions as for other extensions.
4175
4176 Do this only for fields that are aligned (not bit-fields),
4177 because when bit-field insns will be used there is no
4178 advantage in doing this. */
4179
4180 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4181 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4182 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4183 && type != 0)
4184 {
4185 if (first)
4186 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4187 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4188 TREE_OPERAND (op, 1));
4189 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4190 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4191 }
4192 }
4193 *unsignedp_ptr = uns;
4194 return win;
4195 }
4196 \f
4197 /* Nonzero if integer constant C has a value that is permissible
4198 for type TYPE (an INTEGER_TYPE). */
4199
4200 int
4201 int_fits_type_p (tree c, tree type)
4202 {
4203 tree type_low_bound = TYPE_MIN_VALUE (type);
4204 tree type_high_bound = TYPE_MAX_VALUE (type);
4205 int ok_for_low_bound, ok_for_high_bound;
4206
4207 /* Perform some generic filtering first, which may allow making a decision
4208 even if the bounds are not constant. First, negative integers never fit
4209 in unsigned types, */
4210 if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4211 /* Also, unsigned integers with top bit set never fit signed types. */
4212 || (! TREE_UNSIGNED (type)
4213 && TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4214 return 0;
4215
4216 /* If at least one bound of the type is a constant integer, we can check
4217 ourselves and maybe make a decision. If no such decision is possible, but
4218 this type is a subtype, try checking against that. Otherwise, use
4219 force_fit_type, which checks against the precision.
4220
4221 Compute the status for each possibly constant bound, and return if we see
4222 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4223 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4224 for "constant known to fit". */
4225
4226 ok_for_low_bound = -1;
4227 ok_for_high_bound = -1;
4228
4229 /* Check if C >= type_low_bound. */
4230 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4231 {
4232 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4233 if (! ok_for_low_bound)
4234 return 0;
4235 }
4236
4237 /* Check if c <= type_high_bound. */
4238 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4239 {
4240 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4241 if (! ok_for_high_bound)
4242 return 0;
4243 }
4244
4245 /* If the constant fits both bounds, the result is known. */
4246 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4247 return 1;
4248
4249 /* If we haven't been able to decide at this point, there nothing more we
4250 can check ourselves here. Look at the base type if we have one. */
4251 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4252 return int_fits_type_p (c, TREE_TYPE (type));
4253
4254 /* Or to force_fit_type, if nothing else. */
4255 else
4256 {
4257 c = copy_node (c);
4258 TREE_TYPE (c) = type;
4259 return !force_fit_type (c, 0);
4260 }
4261 }
4262
4263 /* Returns true if T is, contains, or refers to a type with variable
4264 size. This concept is more general than that of C99 'variably
4265 modified types': in C99, a struct type is never variably modified
4266 because a VLA may not appear as a structure member. However, in
4267 GNU C code like:
4268
4269 struct S { int i[f()]; };
4270
4271 is valid, and other languages may define similar constructs. */
4272
4273 bool
4274 variably_modified_type_p (tree type)
4275 {
4276 if (type == error_mark_node)
4277 return false;
4278
4279 /* If TYPE itself has variable size, it is variably modified.
4280
4281 We do not yet have a representation of the C99 '[*]' syntax.
4282 When a representation is chosen, this function should be modified
4283 to test for that case as well. */
4284 if (TYPE_SIZE (type)
4285 && TYPE_SIZE (type) != error_mark_node
4286 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4287 return true;
4288
4289 /* If TYPE is a pointer or reference, it is variably modified if
4290 the type pointed to is variably modified. */
4291 if ((TREE_CODE (type) == POINTER_TYPE
4292 || TREE_CODE (type) == REFERENCE_TYPE)
4293 && variably_modified_type_p (TREE_TYPE (type)))
4294 return true;
4295
4296 /* If TYPE is an array, it is variably modified if the array
4297 elements are. (Note that the VLA case has already been checked
4298 above.) */
4299 if (TREE_CODE (type) == ARRAY_TYPE
4300 && variably_modified_type_p (TREE_TYPE (type)))
4301 return true;
4302
4303 /* If TYPE is a function type, it is variably modified if any of the
4304 parameters or the return type are variably modified. */
4305 if (TREE_CODE (type) == FUNCTION_TYPE
4306 || TREE_CODE (type) == METHOD_TYPE)
4307 {
4308 tree parm;
4309
4310 if (variably_modified_type_p (TREE_TYPE (type)))
4311 return true;
4312 for (parm = TYPE_ARG_TYPES (type);
4313 parm && parm != void_list_node;
4314 parm = TREE_CHAIN (parm))
4315 if (variably_modified_type_p (TREE_VALUE (parm)))
4316 return true;
4317 }
4318
4319 /* The current language may have other cases to check, but in general,
4320 all other types are not variably modified. */
4321 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4322 }
4323
4324 /* Given a DECL or TYPE, return the scope in which it was declared, or
4325 NULL_TREE if there is no containing scope. */
4326
4327 tree
4328 get_containing_scope (tree t)
4329 {
4330 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4331 }
4332
4333 /* Return the innermost context enclosing DECL that is
4334 a FUNCTION_DECL, or zero if none. */
4335
4336 tree
4337 decl_function_context (tree decl)
4338 {
4339 tree context;
4340
4341 if (TREE_CODE (decl) == ERROR_MARK)
4342 return 0;
4343
4344 if (TREE_CODE (decl) == SAVE_EXPR)
4345 context = SAVE_EXPR_CONTEXT (decl);
4346
4347 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4348 where we look up the function at runtime. Such functions always take
4349 a first argument of type 'pointer to real context'.
4350
4351 C++ should really be fixed to use DECL_CONTEXT for the real context,
4352 and use something else for the "virtual context". */
4353 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4354 context
4355 = TYPE_MAIN_VARIANT
4356 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4357 else
4358 context = DECL_CONTEXT (decl);
4359
4360 while (context && TREE_CODE (context) != FUNCTION_DECL)
4361 {
4362 if (TREE_CODE (context) == BLOCK)
4363 context = BLOCK_SUPERCONTEXT (context);
4364 else
4365 context = get_containing_scope (context);
4366 }
4367
4368 return context;
4369 }
4370
4371 /* Return the innermost context enclosing DECL that is
4372 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4373 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4374
4375 tree
4376 decl_type_context (tree decl)
4377 {
4378 tree context = DECL_CONTEXT (decl);
4379
4380 while (context)
4381 switch (TREE_CODE (context))
4382 {
4383 case NAMESPACE_DECL:
4384 case TRANSLATION_UNIT_DECL:
4385 return NULL_TREE;
4386
4387 case RECORD_TYPE:
4388 case UNION_TYPE:
4389 case QUAL_UNION_TYPE:
4390 return context;
4391
4392 case TYPE_DECL:
4393 case FUNCTION_DECL:
4394 context = DECL_CONTEXT (context);
4395 break;
4396
4397 case BLOCK:
4398 context = BLOCK_SUPERCONTEXT (context);
4399 break;
4400
4401 default:
4402 abort ();
4403 }
4404
4405 return NULL_TREE;
4406 }
4407
4408 /* CALL is a CALL_EXPR. Return the declaration for the function
4409 called, or NULL_TREE if the called function cannot be
4410 determined. */
4411
4412 tree
4413 get_callee_fndecl (tree call)
4414 {
4415 tree addr;
4416
4417 /* It's invalid to call this function with anything but a
4418 CALL_EXPR. */
4419 if (TREE_CODE (call) != CALL_EXPR)
4420 abort ();
4421
4422 /* The first operand to the CALL is the address of the function
4423 called. */
4424 addr = TREE_OPERAND (call, 0);
4425
4426 STRIP_NOPS (addr);
4427
4428 /* If this is a readonly function pointer, extract its initial value. */
4429 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4430 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4431 && DECL_INITIAL (addr))
4432 addr = DECL_INITIAL (addr);
4433
4434 /* If the address is just `&f' for some function `f', then we know
4435 that `f' is being called. */
4436 if (TREE_CODE (addr) == ADDR_EXPR
4437 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4438 return TREE_OPERAND (addr, 0);
4439
4440 /* We couldn't figure out what was being called. */
4441 return NULL_TREE;
4442 }
4443
4444 /* Print debugging information about tree nodes generated during the compile,
4445 and any language-specific information. */
4446
4447 void
4448 dump_tree_statistics (void)
4449 {
4450 #ifdef GATHER_STATISTICS
4451 int i;
4452 int total_nodes, total_bytes;
4453 #endif
4454
4455 fprintf (stderr, "\n??? tree nodes created\n\n");
4456 #ifdef GATHER_STATISTICS
4457 fprintf (stderr, "Kind Nodes Bytes\n");
4458 fprintf (stderr, "---------------------------------------\n");
4459 total_nodes = total_bytes = 0;
4460 for (i = 0; i < (int) all_kinds; i++)
4461 {
4462 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
4463 tree_node_counts[i], tree_node_sizes[i]);
4464 total_nodes += tree_node_counts[i];
4465 total_bytes += tree_node_sizes[i];
4466 }
4467 fprintf (stderr, "---------------------------------------\n");
4468 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
4469 fprintf (stderr, "---------------------------------------\n");
4470 #else
4471 fprintf (stderr, "(No per-node statistics)\n");
4472 #endif
4473 print_type_hash_statistics ();
4474 (*lang_hooks.print_statistics) ();
4475 }
4476 \f
4477 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4478
4479 /* Generate a crc32 of a string. */
4480
4481 unsigned
4482 crc32_string (unsigned chksum, const char *string)
4483 {
4484 do
4485 {
4486 unsigned value = *string << 24;
4487 unsigned ix;
4488
4489 for (ix = 8; ix--; value <<= 1)
4490 {
4491 unsigned feedback;
4492
4493 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4494 chksum <<= 1;
4495 chksum ^= feedback;
4496 }
4497 }
4498 while (*string++);
4499 return chksum;
4500 }
4501
4502 /* P is a string that will be used in a symbol. Mask out any characters
4503 that are not valid in that context. */
4504
4505 void
4506 clean_symbol_name (char *p)
4507 {
4508 for (; *p; p++)
4509 if (! (ISALNUM (*p)
4510 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4511 || *p == '$'
4512 #endif
4513 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4514 || *p == '.'
4515 #endif
4516 ))
4517 *p = '_';
4518 }
4519
4520 /* Generate a name for a function unique to this translation unit.
4521 TYPE is some string to identify the purpose of this function to the
4522 linker or collect2. */
4523
4524 tree
4525 get_file_function_name_long (const char *type)
4526 {
4527 char *buf;
4528 const char *p;
4529 char *q;
4530
4531 if (first_global_object_name)
4532 p = first_global_object_name;
4533 else
4534 {
4535 /* We don't have anything that we know to be unique to this translation
4536 unit, so use what we do have and throw in some randomness. */
4537 unsigned len;
4538 const char *name = weak_global_object_name;
4539 const char *file = main_input_filename;
4540
4541 if (! name)
4542 name = "";
4543 if (! file)
4544 file = input_filename;
4545
4546 len = strlen (file);
4547 q = alloca (9 * 2 + len + 1);
4548 memcpy (q, file, len + 1);
4549 clean_symbol_name (q);
4550
4551 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
4552 crc32_string (0, flag_random_seed));
4553
4554 p = q;
4555 }
4556
4557 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
4558
4559 /* Set up the name of the file-level functions we may need.
4560 Use a global object (which is already required to be unique over
4561 the program) rather than the file name (which imposes extra
4562 constraints). */
4563 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4564
4565 return get_identifier (buf);
4566 }
4567
4568 /* If KIND=='I', return a suitable global initializer (constructor) name.
4569 If KIND=='D', return a suitable global clean-up (destructor) name. */
4570
4571 tree
4572 get_file_function_name (int kind)
4573 {
4574 char p[2];
4575
4576 p[0] = kind;
4577 p[1] = 0;
4578
4579 return get_file_function_name_long (p);
4580 }
4581 \f
4582 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4583 The result is placed in BUFFER (which has length BIT_SIZE),
4584 with one bit in each char ('\000' or '\001').
4585
4586 If the constructor is constant, NULL_TREE is returned.
4587 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4588
4589 tree
4590 get_set_constructor_bits (tree init, char *buffer, int bit_size)
4591 {
4592 int i;
4593 tree vals;
4594 HOST_WIDE_INT domain_min
4595 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4596 tree non_const_bits = NULL_TREE;
4597
4598 for (i = 0; i < bit_size; i++)
4599 buffer[i] = 0;
4600
4601 for (vals = TREE_OPERAND (init, 1);
4602 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4603 {
4604 if (!host_integerp (TREE_VALUE (vals), 0)
4605 || (TREE_PURPOSE (vals) != NULL_TREE
4606 && !host_integerp (TREE_PURPOSE (vals), 0)))
4607 non_const_bits
4608 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4609 else if (TREE_PURPOSE (vals) != NULL_TREE)
4610 {
4611 /* Set a range of bits to ones. */
4612 HOST_WIDE_INT lo_index
4613 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4614 HOST_WIDE_INT hi_index
4615 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4616
4617 if (lo_index < 0 || lo_index >= bit_size
4618 || hi_index < 0 || hi_index >= bit_size)
4619 abort ();
4620 for (; lo_index <= hi_index; lo_index++)
4621 buffer[lo_index] = 1;
4622 }
4623 else
4624 {
4625 /* Set a single bit to one. */
4626 HOST_WIDE_INT index
4627 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4628 if (index < 0 || index >= bit_size)
4629 {
4630 error ("invalid initializer for bit string");
4631 return NULL_TREE;
4632 }
4633 buffer[index] = 1;
4634 }
4635 }
4636 return non_const_bits;
4637 }
4638
4639 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4640 The result is placed in BUFFER (which is an array of bytes).
4641 If the constructor is constant, NULL_TREE is returned.
4642 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4643
4644 tree
4645 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
4646 {
4647 int i;
4648 int set_word_size = BITS_PER_UNIT;
4649 int bit_size = wd_size * set_word_size;
4650 int bit_pos = 0;
4651 unsigned char *bytep = buffer;
4652 char *bit_buffer = alloca (bit_size);
4653 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4654
4655 for (i = 0; i < wd_size; i++)
4656 buffer[i] = 0;
4657
4658 for (i = 0; i < bit_size; i++)
4659 {
4660 if (bit_buffer[i])
4661 {
4662 if (BYTES_BIG_ENDIAN)
4663 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4664 else
4665 *bytep |= 1 << bit_pos;
4666 }
4667 bit_pos++;
4668 if (bit_pos >= set_word_size)
4669 bit_pos = 0, bytep++;
4670 }
4671 return non_const_bits;
4672 }
4673 \f
4674 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4675 /* Complain that the tree code of NODE does not match the expected CODE.
4676 FILE, LINE, and FUNCTION are of the caller. */
4677
4678 void
4679 tree_check_failed (const tree node, enum tree_code code, const char *file,
4680 int line, const char *function)
4681 {
4682 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4683 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4684 function, trim_filename (file), line);
4685 }
4686
4687 /* Similar to above, except that we check for a class of tree
4688 code, given in CL. */
4689
4690 void
4691 tree_class_check_failed (const tree node, int cl, const char *file,
4692 int line, const char *function)
4693 {
4694 internal_error
4695 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4696 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4697 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4698 }
4699
4700 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4701 (dynamically sized) vector. */
4702
4703 void
4704 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
4705 const char *function)
4706 {
4707 internal_error
4708 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4709 idx + 1, len, function, trim_filename (file), line);
4710 }
4711
4712 /* Similar to above, except that the check is for the bounds of the operand
4713 vector of an expression node. */
4714
4715 void
4716 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
4717 int line, const char *function)
4718 {
4719 internal_error
4720 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4721 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
4722 function, trim_filename (file), line);
4723 }
4724 #endif /* ENABLE_TREE_CHECKING */
4725 \f
4726 /* For a new vector type node T, build the information necessary for
4727 debugging output. */
4728
4729 static void
4730 finish_vector_type (tree t)
4731 {
4732 layout_type (t);
4733
4734 {
4735 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4736 tree array = build_array_type (TREE_TYPE (t),
4737 build_index_type (index));
4738 tree rt = make_node (RECORD_TYPE);
4739
4740 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4741 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4742 layout_type (rt);
4743 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4744 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4745 the representation type, and we want to find that die when looking up
4746 the vector type. This is most easily achieved by making the TYPE_UID
4747 numbers equal. */
4748 TYPE_UID (rt) = TYPE_UID (t);
4749 }
4750 }
4751
4752 /* Create nodes for all integer types (and error_mark_node) using the sizes
4753 of C datatypes. The caller should call set_sizetype soon after calling
4754 this function to select one of the types as sizetype. */
4755
4756 void
4757 build_common_tree_nodes (int signed_char)
4758 {
4759 error_mark_node = make_node (ERROR_MARK);
4760 TREE_TYPE (error_mark_node) = error_mark_node;
4761
4762 initialize_sizetypes ();
4763
4764 /* Define both `signed char' and `unsigned char'. */
4765 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4766 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4767
4768 /* Define `char', which is like either `signed char' or `unsigned char'
4769 but not the same as either. */
4770 char_type_node
4771 = (signed_char
4772 ? make_signed_type (CHAR_TYPE_SIZE)
4773 : make_unsigned_type (CHAR_TYPE_SIZE));
4774
4775 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4776 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4777 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4778 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4779 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4780 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4781 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4782 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4783
4784 /* Define a boolean type. This type only represents boolean values but
4785 may be larger than char depending on the value of BOOL_TYPE_SIZE.
4786 Front ends which want to override this size (i.e. Java) can redefine
4787 boolean_type_node before calling build_common_tree_nodes_2. */
4788 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
4789 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
4790 TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
4791 TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
4792 TYPE_PRECISION (boolean_type_node) = 1;
4793
4794 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4795 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4796 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4797 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4798 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4799
4800 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4801 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4802 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4803 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4804 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4805 }
4806
4807 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4808 It will create several other common tree nodes. */
4809
4810 void
4811 build_common_tree_nodes_2 (int short_double)
4812 {
4813 /* Define these next since types below may used them. */
4814 integer_zero_node = build_int_2 (0, 0);
4815 integer_one_node = build_int_2 (1, 0);
4816 integer_minus_one_node = build_int_2 (-1, -1);
4817
4818 size_zero_node = size_int (0);
4819 size_one_node = size_int (1);
4820 bitsize_zero_node = bitsize_int (0);
4821 bitsize_one_node = bitsize_int (1);
4822 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4823
4824 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
4825 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
4826
4827 void_type_node = make_node (VOID_TYPE);
4828 layout_type (void_type_node);
4829
4830 /* We are not going to have real types in C with less than byte alignment,
4831 so we might as well not have any types that claim to have it. */
4832 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4833 TYPE_USER_ALIGN (void_type_node) = 0;
4834
4835 null_pointer_node = build_int_2 (0, 0);
4836 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4837 layout_type (TREE_TYPE (null_pointer_node));
4838
4839 ptr_type_node = build_pointer_type (void_type_node);
4840 const_ptr_type_node
4841 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4842
4843 float_type_node = make_node (REAL_TYPE);
4844 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4845 layout_type (float_type_node);
4846
4847 double_type_node = make_node (REAL_TYPE);
4848 if (short_double)
4849 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4850 else
4851 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4852 layout_type (double_type_node);
4853
4854 long_double_type_node = make_node (REAL_TYPE);
4855 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4856 layout_type (long_double_type_node);
4857
4858 float_ptr_type_node = build_pointer_type (float_type_node);
4859 double_ptr_type_node = build_pointer_type (double_type_node);
4860 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
4861 integer_ptr_type_node = build_pointer_type (integer_type_node);
4862
4863 complex_integer_type_node = make_node (COMPLEX_TYPE);
4864 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4865 layout_type (complex_integer_type_node);
4866
4867 complex_float_type_node = make_node (COMPLEX_TYPE);
4868 TREE_TYPE (complex_float_type_node) = float_type_node;
4869 layout_type (complex_float_type_node);
4870
4871 complex_double_type_node = make_node (COMPLEX_TYPE);
4872 TREE_TYPE (complex_double_type_node) = double_type_node;
4873 layout_type (complex_double_type_node);
4874
4875 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4876 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4877 layout_type (complex_long_double_type_node);
4878
4879 {
4880 tree t;
4881 BUILD_VA_LIST_TYPE (t);
4882
4883 /* Many back-ends define record types without setting TYPE_NAME.
4884 If we copied the record type here, we'd keep the original
4885 record type without a name. This breaks name mangling. So,
4886 don't copy record types and let c_common_nodes_and_builtins()
4887 declare the type to be __builtin_va_list. */
4888 if (TREE_CODE (t) != RECORD_TYPE)
4889 t = build_type_copy (t);
4890
4891 va_list_type_node = t;
4892 }
4893
4894 unsigned_V4SI_type_node
4895 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4896 unsigned_V2HI_type_node
4897 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
4898 unsigned_V2SI_type_node
4899 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4900 unsigned_V2DI_type_node
4901 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4902 unsigned_V4HI_type_node
4903 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4904 unsigned_V8QI_type_node
4905 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4906 unsigned_V8HI_type_node
4907 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4908 unsigned_V16QI_type_node
4909 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4910 unsigned_V1DI_type_node
4911 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4912
4913 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4914 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4915 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4916 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
4917 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4918 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4919 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4920 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4921 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4922 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4923 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4924 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4925 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4926 V4DF_type_node = make_vector (V4DFmode, double_type_node, 0);
4927 }
4928
4929 /* Returns a vector tree node given a vector mode, the inner type, and
4930 the signness. */
4931
4932 static tree
4933 make_vector (enum machine_mode mode, tree innertype, int unsignedp)
4934 {
4935 tree t;
4936
4937 t = make_node (VECTOR_TYPE);
4938 TREE_TYPE (t) = innertype;
4939 TYPE_MODE (t) = mode;
4940 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4941 finish_vector_type (t);
4942
4943 return t;
4944 }
4945
4946 /* Given an initializer INIT, return TRUE if INIT is zero or some
4947 aggregate of zeros. Otherwise return FALSE. */
4948
4949 bool
4950 initializer_zerop (tree init)
4951 {
4952 STRIP_NOPS (init);
4953
4954 switch (TREE_CODE (init))
4955 {
4956 case INTEGER_CST:
4957 return integer_zerop (init);
4958 case REAL_CST:
4959 return real_zerop (init)
4960 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4961 case COMPLEX_CST:
4962 return integer_zerop (init)
4963 || (real_zerop (init)
4964 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4965 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4966 case CONSTRUCTOR:
4967 {
4968 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4969 {
4970 tree aggr_init = CONSTRUCTOR_ELTS (init);
4971
4972 while (aggr_init)
4973 {
4974 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4975 return false;
4976 aggr_init = TREE_CHAIN (aggr_init);
4977 }
4978 return true;
4979 }
4980 return false;
4981 }
4982 default:
4983 return false;
4984 }
4985 }
4986
4987 #include "gt-tree.h"