tree.c (protected_set_expr_location): Don't check whether T is non-null here.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent, but occasionally
28 calls language-dependent routines defined (for C) in typecheck.c. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "stor-layout.h"
37 #include "calls.h"
38 #include "attribs.h"
39 #include "varasm.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h" /* get_random_seed */
44 #include "hashtab.h"
45 #include "inchash.h"
46 #include "filenames.h"
47 #include "output.h"
48 #include "target.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "basic-block.h"
54 #include "bitmap.h"
55 #include "tree-ssa-alias.h"
56 #include "internal-fn.h"
57 #include "gimple-expr.h"
58 #include "is-a.h"
59 #include "gimple.h"
60 #include "gimple-iterator.h"
61 #include "gimplify.h"
62 #include "gimple-ssa.h"
63 #include "cgraph.h"
64 #include "tree-phinodes.h"
65 #include "stringpool.h"
66 #include "tree-ssanames.h"
67 #include "expr.h"
68 #include "tree-dfa.h"
69 #include "params.h"
70 #include "tree-pass.h"
71 #include "langhooks-def.h"
72 #include "diagnostic.h"
73 #include "tree-diagnostic.h"
74 #include "tree-pretty-print.h"
75 #include "except.h"
76 #include "debug.h"
77 #include "intl.h"
78 #include "wide-int.h"
79 #include "builtins.h"
80
81 /* Tree code classes. */
82
83 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
84 #define END_OF_BASE_TREE_CODES tcc_exceptional,
85
86 const enum tree_code_class tree_code_type[] = {
87 #include "all-tree.def"
88 };
89
90 #undef DEFTREECODE
91 #undef END_OF_BASE_TREE_CODES
92
93 /* Table indexed by tree code giving number of expression
94 operands beyond the fixed part of the node structure.
95 Not used for types or decls. */
96
97 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
98 #define END_OF_BASE_TREE_CODES 0,
99
100 const unsigned char tree_code_length[] = {
101 #include "all-tree.def"
102 };
103
104 #undef DEFTREECODE
105 #undef END_OF_BASE_TREE_CODES
106
107 /* Names of tree components.
108 Used for printing out the tree and error messages. */
109 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
110 #define END_OF_BASE_TREE_CODES "@dummy",
111
112 static const char *const tree_code_name[] = {
113 #include "all-tree.def"
114 };
115
116 #undef DEFTREECODE
117 #undef END_OF_BASE_TREE_CODES
118
119 /* Each tree code class has an associated string representation.
120 These must correspond to the tree_code_class entries. */
121
122 const char *const tree_code_class_strings[] =
123 {
124 "exceptional",
125 "constant",
126 "type",
127 "declaration",
128 "reference",
129 "comparison",
130 "unary",
131 "binary",
132 "statement",
133 "vl_exp",
134 "expression"
135 };
136
137 /* obstack.[ch] explicitly declined to prototype this. */
138 extern int _obstack_allocated_p (struct obstack *h, void *obj);
139
140 /* Statistics-gathering stuff. */
141
142 static int tree_code_counts[MAX_TREE_CODES];
143 int tree_node_counts[(int) all_kinds];
144 int tree_node_sizes[(int) all_kinds];
145
146 /* Keep in sync with tree.h:enum tree_node_kind. */
147 static const char * const tree_node_kind_names[] = {
148 "decls",
149 "types",
150 "blocks",
151 "stmts",
152 "refs",
153 "exprs",
154 "constants",
155 "identifiers",
156 "vecs",
157 "binfos",
158 "ssa names",
159 "constructors",
160 "random kinds",
161 "lang_decl kinds",
162 "lang_type kinds",
163 "omp clauses",
164 };
165
166 /* Unique id for next decl created. */
167 static GTY(()) int next_decl_uid;
168 /* Unique id for next type created. */
169 static GTY(()) int next_type_uid = 1;
170 /* Unique id for next debug decl created. Use negative numbers,
171 to catch erroneous uses. */
172 static GTY(()) int next_debug_decl_uid;
173
174 /* Since we cannot rehash a type after it is in the table, we have to
175 keep the hash code. */
176
177 struct GTY(()) type_hash {
178 unsigned long hash;
179 tree type;
180 };
181
182 /* Initial size of the hash table (rounded to next prime). */
183 #define TYPE_HASH_INITIAL_SIZE 1000
184
185 /* Now here is the hash table. When recording a type, it is added to
186 the slot whose index is the hash code. Note that the hash table is
187 used for several kinds of types (function types, array types and
188 array index range types, for now). While all these live in the
189 same table, they are completely independent, and the hash code is
190 computed differently for each of these. */
191
192 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
193 htab_t type_hash_table;
194
195 /* Hash table and temporary node for larger integer const values. */
196 static GTY (()) tree int_cst_node;
197 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
198 htab_t int_cst_hash_table;
199
200 /* Hash table for optimization flags and target option flags. Use the same
201 hash table for both sets of options. Nodes for building the current
202 optimization and target option nodes. The assumption is most of the time
203 the options created will already be in the hash table, so we avoid
204 allocating and freeing up a node repeatably. */
205 static GTY (()) tree cl_optimization_node;
206 static GTY (()) tree cl_target_option_node;
207 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
208 htab_t cl_option_hash_table;
209
210 /* General tree->tree mapping structure for use in hash tables. */
211
212
213 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
214 htab_t debug_expr_for_decl;
215
216 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
217 htab_t value_expr_for_decl;
218
219 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
220 htab_t debug_args_for_decl;
221
222 static void set_type_quals (tree, int);
223 static int type_hash_eq (const void *, const void *);
224 static hashval_t type_hash_hash (const void *);
225 static hashval_t int_cst_hash_hash (const void *);
226 static int int_cst_hash_eq (const void *, const void *);
227 static hashval_t cl_option_hash_hash (const void *);
228 static int cl_option_hash_eq (const void *, const void *);
229 static void print_type_hash_statistics (void);
230 static void print_debug_expr_statistics (void);
231 static void print_value_expr_statistics (void);
232 static int type_hash_marked_p (const void *);
233 static void type_hash_list (const_tree, inchash::hash &);
234 static void attribute_hash_list (const_tree, inchash::hash &);
235
236 tree global_trees[TI_MAX];
237 tree integer_types[itk_none];
238
239 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
240
241 /* Number of operands for each OpenMP clause. */
242 unsigned const char omp_clause_num_ops[] =
243 {
244 0, /* OMP_CLAUSE_ERROR */
245 1, /* OMP_CLAUSE_PRIVATE */
246 1, /* OMP_CLAUSE_SHARED */
247 1, /* OMP_CLAUSE_FIRSTPRIVATE */
248 2, /* OMP_CLAUSE_LASTPRIVATE */
249 4, /* OMP_CLAUSE_REDUCTION */
250 1, /* OMP_CLAUSE_COPYIN */
251 1, /* OMP_CLAUSE_COPYPRIVATE */
252 3, /* OMP_CLAUSE_LINEAR */
253 2, /* OMP_CLAUSE_ALIGNED */
254 1, /* OMP_CLAUSE_DEPEND */
255 1, /* OMP_CLAUSE_UNIFORM */
256 2, /* OMP_CLAUSE_FROM */
257 2, /* OMP_CLAUSE_TO */
258 2, /* OMP_CLAUSE_MAP */
259 1, /* OMP_CLAUSE__LOOPTEMP_ */
260 1, /* OMP_CLAUSE_IF */
261 1, /* OMP_CLAUSE_NUM_THREADS */
262 1, /* OMP_CLAUSE_SCHEDULE */
263 0, /* OMP_CLAUSE_NOWAIT */
264 0, /* OMP_CLAUSE_ORDERED */
265 0, /* OMP_CLAUSE_DEFAULT */
266 3, /* OMP_CLAUSE_COLLAPSE */
267 0, /* OMP_CLAUSE_UNTIED */
268 1, /* OMP_CLAUSE_FINAL */
269 0, /* OMP_CLAUSE_MERGEABLE */
270 1, /* OMP_CLAUSE_DEVICE */
271 1, /* OMP_CLAUSE_DIST_SCHEDULE */
272 0, /* OMP_CLAUSE_INBRANCH */
273 0, /* OMP_CLAUSE_NOTINBRANCH */
274 1, /* OMP_CLAUSE_NUM_TEAMS */
275 1, /* OMP_CLAUSE_THREAD_LIMIT */
276 0, /* OMP_CLAUSE_PROC_BIND */
277 1, /* OMP_CLAUSE_SAFELEN */
278 1, /* OMP_CLAUSE_SIMDLEN */
279 0, /* OMP_CLAUSE_FOR */
280 0, /* OMP_CLAUSE_PARALLEL */
281 0, /* OMP_CLAUSE_SECTIONS */
282 0, /* OMP_CLAUSE_TASKGROUP */
283 1, /* OMP_CLAUSE__SIMDUID_ */
284 1, /* OMP_CLAUSE__CILK_FOR_COUNT_ */
285 };
286
287 const char * const omp_clause_code_name[] =
288 {
289 "error_clause",
290 "private",
291 "shared",
292 "firstprivate",
293 "lastprivate",
294 "reduction",
295 "copyin",
296 "copyprivate",
297 "linear",
298 "aligned",
299 "depend",
300 "uniform",
301 "from",
302 "to",
303 "map",
304 "_looptemp_",
305 "if",
306 "num_threads",
307 "schedule",
308 "nowait",
309 "ordered",
310 "default",
311 "collapse",
312 "untied",
313 "final",
314 "mergeable",
315 "device",
316 "dist_schedule",
317 "inbranch",
318 "notinbranch",
319 "num_teams",
320 "thread_limit",
321 "proc_bind",
322 "safelen",
323 "simdlen",
324 "for",
325 "parallel",
326 "sections",
327 "taskgroup",
328 "_simduid_",
329 "_Cilk_for_count_"
330 };
331
332
333 /* Return the tree node structure used by tree code CODE. */
334
335 static inline enum tree_node_structure_enum
336 tree_node_structure_for_code (enum tree_code code)
337 {
338 switch (TREE_CODE_CLASS (code))
339 {
340 case tcc_declaration:
341 {
342 switch (code)
343 {
344 case FIELD_DECL:
345 return TS_FIELD_DECL;
346 case PARM_DECL:
347 return TS_PARM_DECL;
348 case VAR_DECL:
349 return TS_VAR_DECL;
350 case LABEL_DECL:
351 return TS_LABEL_DECL;
352 case RESULT_DECL:
353 return TS_RESULT_DECL;
354 case DEBUG_EXPR_DECL:
355 return TS_DECL_WRTL;
356 case CONST_DECL:
357 return TS_CONST_DECL;
358 case TYPE_DECL:
359 return TS_TYPE_DECL;
360 case FUNCTION_DECL:
361 return TS_FUNCTION_DECL;
362 case TRANSLATION_UNIT_DECL:
363 return TS_TRANSLATION_UNIT_DECL;
364 default:
365 return TS_DECL_NON_COMMON;
366 }
367 }
368 case tcc_type:
369 return TS_TYPE_NON_COMMON;
370 case tcc_reference:
371 case tcc_comparison:
372 case tcc_unary:
373 case tcc_binary:
374 case tcc_expression:
375 case tcc_statement:
376 case tcc_vl_exp:
377 return TS_EXP;
378 default: /* tcc_constant and tcc_exceptional */
379 break;
380 }
381 switch (code)
382 {
383 /* tcc_constant cases. */
384 case VOID_CST: return TS_TYPED;
385 case INTEGER_CST: return TS_INT_CST;
386 case REAL_CST: return TS_REAL_CST;
387 case FIXED_CST: return TS_FIXED_CST;
388 case COMPLEX_CST: return TS_COMPLEX;
389 case VECTOR_CST: return TS_VECTOR;
390 case STRING_CST: return TS_STRING;
391 /* tcc_exceptional cases. */
392 case ERROR_MARK: return TS_COMMON;
393 case IDENTIFIER_NODE: return TS_IDENTIFIER;
394 case TREE_LIST: return TS_LIST;
395 case TREE_VEC: return TS_VEC;
396 case SSA_NAME: return TS_SSA_NAME;
397 case PLACEHOLDER_EXPR: return TS_COMMON;
398 case STATEMENT_LIST: return TS_STATEMENT_LIST;
399 case BLOCK: return TS_BLOCK;
400 case CONSTRUCTOR: return TS_CONSTRUCTOR;
401 case TREE_BINFO: return TS_BINFO;
402 case OMP_CLAUSE: return TS_OMP_CLAUSE;
403 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
404 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
405
406 default:
407 gcc_unreachable ();
408 }
409 }
410
411
412 /* Initialize tree_contains_struct to describe the hierarchy of tree
413 nodes. */
414
415 static void
416 initialize_tree_contains_struct (void)
417 {
418 unsigned i;
419
420 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
421 {
422 enum tree_code code;
423 enum tree_node_structure_enum ts_code;
424
425 code = (enum tree_code) i;
426 ts_code = tree_node_structure_for_code (code);
427
428 /* Mark the TS structure itself. */
429 tree_contains_struct[code][ts_code] = 1;
430
431 /* Mark all the structures that TS is derived from. */
432 switch (ts_code)
433 {
434 case TS_TYPED:
435 case TS_BLOCK:
436 MARK_TS_BASE (code);
437 break;
438
439 case TS_COMMON:
440 case TS_INT_CST:
441 case TS_REAL_CST:
442 case TS_FIXED_CST:
443 case TS_VECTOR:
444 case TS_STRING:
445 case TS_COMPLEX:
446 case TS_SSA_NAME:
447 case TS_CONSTRUCTOR:
448 case TS_EXP:
449 case TS_STATEMENT_LIST:
450 MARK_TS_TYPED (code);
451 break;
452
453 case TS_IDENTIFIER:
454 case TS_DECL_MINIMAL:
455 case TS_TYPE_COMMON:
456 case TS_LIST:
457 case TS_VEC:
458 case TS_BINFO:
459 case TS_OMP_CLAUSE:
460 case TS_OPTIMIZATION:
461 case TS_TARGET_OPTION:
462 MARK_TS_COMMON (code);
463 break;
464
465 case TS_TYPE_WITH_LANG_SPECIFIC:
466 MARK_TS_TYPE_COMMON (code);
467 break;
468
469 case TS_TYPE_NON_COMMON:
470 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
471 break;
472
473 case TS_DECL_COMMON:
474 MARK_TS_DECL_MINIMAL (code);
475 break;
476
477 case TS_DECL_WRTL:
478 case TS_CONST_DECL:
479 MARK_TS_DECL_COMMON (code);
480 break;
481
482 case TS_DECL_NON_COMMON:
483 MARK_TS_DECL_WITH_VIS (code);
484 break;
485
486 case TS_DECL_WITH_VIS:
487 case TS_PARM_DECL:
488 case TS_LABEL_DECL:
489 case TS_RESULT_DECL:
490 MARK_TS_DECL_WRTL (code);
491 break;
492
493 case TS_FIELD_DECL:
494 MARK_TS_DECL_COMMON (code);
495 break;
496
497 case TS_VAR_DECL:
498 MARK_TS_DECL_WITH_VIS (code);
499 break;
500
501 case TS_TYPE_DECL:
502 case TS_FUNCTION_DECL:
503 MARK_TS_DECL_NON_COMMON (code);
504 break;
505
506 case TS_TRANSLATION_UNIT_DECL:
507 MARK_TS_DECL_COMMON (code);
508 break;
509
510 default:
511 gcc_unreachable ();
512 }
513 }
514
515 /* Basic consistency checks for attributes used in fold. */
516 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
517 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
518 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
519 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
520 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
521 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
522 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
523 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
524 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
525 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
526 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
527 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
528 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
529 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
530 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
531 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
532 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
533 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
534 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
535 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
536 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
537 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
538 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
539 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
540 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
541 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
542 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
543 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
544 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
545 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
546 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
547 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
548 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
549 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
550 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
551 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
552 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
553 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
554 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
555 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
556 }
557
558
559 /* Init tree.c. */
560
561 void
562 init_ttree (void)
563 {
564 /* Initialize the hash table of types. */
565 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
566 type_hash_eq, 0);
567
568 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
569 tree_decl_map_eq, 0);
570
571 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
572 tree_decl_map_eq, 0);
573
574 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
575 int_cst_hash_eq, NULL);
576
577 int_cst_node = make_int_cst (1, 1);
578
579 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
580 cl_option_hash_eq, NULL);
581
582 cl_optimization_node = make_node (OPTIMIZATION_NODE);
583 cl_target_option_node = make_node (TARGET_OPTION_NODE);
584
585 /* Initialize the tree_contains_struct array. */
586 initialize_tree_contains_struct ();
587 lang_hooks.init_ts ();
588 }
589
590 \f
591 /* The name of the object as the assembler will see it (but before any
592 translations made by ASM_OUTPUT_LABELREF). Often this is the same
593 as DECL_NAME. It is an IDENTIFIER_NODE. */
594 tree
595 decl_assembler_name (tree decl)
596 {
597 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
598 lang_hooks.set_decl_assembler_name (decl);
599 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
600 }
601
602 /* When the target supports COMDAT groups, this indicates which group the
603 DECL is associated with. This can be either an IDENTIFIER_NODE or a
604 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
605 tree
606 decl_comdat_group (const_tree node)
607 {
608 struct symtab_node *snode = symtab_node::get (node);
609 if (!snode)
610 return NULL;
611 return snode->get_comdat_group ();
612 }
613
614 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
615 tree
616 decl_comdat_group_id (const_tree node)
617 {
618 struct symtab_node *snode = symtab_node::get (node);
619 if (!snode)
620 return NULL;
621 return snode->get_comdat_group_id ();
622 }
623
624 /* When the target supports named section, return its name as IDENTIFIER_NODE
625 or NULL if it is in no section. */
626 const char *
627 decl_section_name (const_tree node)
628 {
629 struct symtab_node *snode = symtab_node::get (node);
630 if (!snode)
631 return NULL;
632 return snode->get_section ();
633 }
634
635 /* Set section section name of NODE to VALUE (that is expected to
636 be identifier node) */
637 void
638 set_decl_section_name (tree node, const char *value)
639 {
640 struct symtab_node *snode;
641
642 if (value == NULL)
643 {
644 snode = symtab_node::get (node);
645 if (!snode)
646 return;
647 }
648 else if (TREE_CODE (node) == VAR_DECL)
649 snode = varpool_node::get_create (node);
650 else
651 snode = cgraph_node::get_create (node);
652 snode->set_section (value);
653 }
654
655 /* Return TLS model of a variable NODE. */
656 enum tls_model
657 decl_tls_model (const_tree node)
658 {
659 struct varpool_node *snode = varpool_node::get (node);
660 if (!snode)
661 return TLS_MODEL_NONE;
662 return snode->tls_model;
663 }
664
665 /* Set TLS model of variable NODE to MODEL. */
666 void
667 set_decl_tls_model (tree node, enum tls_model model)
668 {
669 struct varpool_node *vnode;
670
671 if (model == TLS_MODEL_NONE)
672 {
673 vnode = varpool_node::get (node);
674 if (!vnode)
675 return;
676 }
677 else
678 vnode = varpool_node::get_create (node);
679 vnode->tls_model = model;
680 }
681
682 /* Compute the number of bytes occupied by a tree with code CODE.
683 This function cannot be used for nodes that have variable sizes,
684 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
685 size_t
686 tree_code_size (enum tree_code code)
687 {
688 switch (TREE_CODE_CLASS (code))
689 {
690 case tcc_declaration: /* A decl node */
691 {
692 switch (code)
693 {
694 case FIELD_DECL:
695 return sizeof (struct tree_field_decl);
696 case PARM_DECL:
697 return sizeof (struct tree_parm_decl);
698 case VAR_DECL:
699 return sizeof (struct tree_var_decl);
700 case LABEL_DECL:
701 return sizeof (struct tree_label_decl);
702 case RESULT_DECL:
703 return sizeof (struct tree_result_decl);
704 case CONST_DECL:
705 return sizeof (struct tree_const_decl);
706 case TYPE_DECL:
707 return sizeof (struct tree_type_decl);
708 case FUNCTION_DECL:
709 return sizeof (struct tree_function_decl);
710 case DEBUG_EXPR_DECL:
711 return sizeof (struct tree_decl_with_rtl);
712 case TRANSLATION_UNIT_DECL:
713 return sizeof (struct tree_translation_unit_decl);
714 case NAMESPACE_DECL:
715 case IMPORTED_DECL:
716 case NAMELIST_DECL:
717 return sizeof (struct tree_decl_non_common);
718 default:
719 return lang_hooks.tree_size (code);
720 }
721 }
722
723 case tcc_type: /* a type node */
724 return sizeof (struct tree_type_non_common);
725
726 case tcc_reference: /* a reference */
727 case tcc_expression: /* an expression */
728 case tcc_statement: /* an expression with side effects */
729 case tcc_comparison: /* a comparison expression */
730 case tcc_unary: /* a unary arithmetic expression */
731 case tcc_binary: /* a binary arithmetic expression */
732 return (sizeof (struct tree_exp)
733 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
734
735 case tcc_constant: /* a constant */
736 switch (code)
737 {
738 case VOID_CST: return sizeof (struct tree_typed);
739 case INTEGER_CST: gcc_unreachable ();
740 case REAL_CST: return sizeof (struct tree_real_cst);
741 case FIXED_CST: return sizeof (struct tree_fixed_cst);
742 case COMPLEX_CST: return sizeof (struct tree_complex);
743 case VECTOR_CST: return sizeof (struct tree_vector);
744 case STRING_CST: gcc_unreachable ();
745 default:
746 return lang_hooks.tree_size (code);
747 }
748
749 case tcc_exceptional: /* something random, like an identifier. */
750 switch (code)
751 {
752 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
753 case TREE_LIST: return sizeof (struct tree_list);
754
755 case ERROR_MARK:
756 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
757
758 case TREE_VEC:
759 case OMP_CLAUSE: gcc_unreachable ();
760
761 case SSA_NAME: return sizeof (struct tree_ssa_name);
762
763 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
764 case BLOCK: return sizeof (struct tree_block);
765 case CONSTRUCTOR: return sizeof (struct tree_constructor);
766 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
767 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
768
769 default:
770 return lang_hooks.tree_size (code);
771 }
772
773 default:
774 gcc_unreachable ();
775 }
776 }
777
778 /* Compute the number of bytes occupied by NODE. This routine only
779 looks at TREE_CODE, except for those nodes that have variable sizes. */
780 size_t
781 tree_size (const_tree node)
782 {
783 const enum tree_code code = TREE_CODE (node);
784 switch (code)
785 {
786 case INTEGER_CST:
787 return (sizeof (struct tree_int_cst)
788 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
789
790 case TREE_BINFO:
791 return (offsetof (struct tree_binfo, base_binfos)
792 + vec<tree, va_gc>
793 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
794
795 case TREE_VEC:
796 return (sizeof (struct tree_vec)
797 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
798
799 case VECTOR_CST:
800 return (sizeof (struct tree_vector)
801 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
802
803 case STRING_CST:
804 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
805
806 case OMP_CLAUSE:
807 return (sizeof (struct tree_omp_clause)
808 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
809 * sizeof (tree));
810
811 default:
812 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
813 return (sizeof (struct tree_exp)
814 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
815 else
816 return tree_code_size (code);
817 }
818 }
819
820 /* Record interesting allocation statistics for a tree node with CODE
821 and LENGTH. */
822
823 static void
824 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
825 size_t length ATTRIBUTE_UNUSED)
826 {
827 enum tree_code_class type = TREE_CODE_CLASS (code);
828 tree_node_kind kind;
829
830 if (!GATHER_STATISTICS)
831 return;
832
833 switch (type)
834 {
835 case tcc_declaration: /* A decl node */
836 kind = d_kind;
837 break;
838
839 case tcc_type: /* a type node */
840 kind = t_kind;
841 break;
842
843 case tcc_statement: /* an expression with side effects */
844 kind = s_kind;
845 break;
846
847 case tcc_reference: /* a reference */
848 kind = r_kind;
849 break;
850
851 case tcc_expression: /* an expression */
852 case tcc_comparison: /* a comparison expression */
853 case tcc_unary: /* a unary arithmetic expression */
854 case tcc_binary: /* a binary arithmetic expression */
855 kind = e_kind;
856 break;
857
858 case tcc_constant: /* a constant */
859 kind = c_kind;
860 break;
861
862 case tcc_exceptional: /* something random, like an identifier. */
863 switch (code)
864 {
865 case IDENTIFIER_NODE:
866 kind = id_kind;
867 break;
868
869 case TREE_VEC:
870 kind = vec_kind;
871 break;
872
873 case TREE_BINFO:
874 kind = binfo_kind;
875 break;
876
877 case SSA_NAME:
878 kind = ssa_name_kind;
879 break;
880
881 case BLOCK:
882 kind = b_kind;
883 break;
884
885 case CONSTRUCTOR:
886 kind = constr_kind;
887 break;
888
889 case OMP_CLAUSE:
890 kind = omp_clause_kind;
891 break;
892
893 default:
894 kind = x_kind;
895 break;
896 }
897 break;
898
899 case tcc_vl_exp:
900 kind = e_kind;
901 break;
902
903 default:
904 gcc_unreachable ();
905 }
906
907 tree_code_counts[(int) code]++;
908 tree_node_counts[(int) kind]++;
909 tree_node_sizes[(int) kind] += length;
910 }
911
912 /* Allocate and return a new UID from the DECL_UID namespace. */
913
914 int
915 allocate_decl_uid (void)
916 {
917 return next_decl_uid++;
918 }
919
920 /* Return a newly allocated node of code CODE. For decl and type
921 nodes, some other fields are initialized. The rest of the node is
922 initialized to zero. This function cannot be used for TREE_VEC,
923 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
924 tree_code_size.
925
926 Achoo! I got a code in the node. */
927
928 tree
929 make_node_stat (enum tree_code code MEM_STAT_DECL)
930 {
931 tree t;
932 enum tree_code_class type = TREE_CODE_CLASS (code);
933 size_t length = tree_code_size (code);
934
935 record_node_allocation_statistics (code, length);
936
937 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
938 TREE_SET_CODE (t, code);
939
940 switch (type)
941 {
942 case tcc_statement:
943 TREE_SIDE_EFFECTS (t) = 1;
944 break;
945
946 case tcc_declaration:
947 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
948 {
949 if (code == FUNCTION_DECL)
950 {
951 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
952 DECL_MODE (t) = FUNCTION_MODE;
953 }
954 else
955 DECL_ALIGN (t) = 1;
956 }
957 DECL_SOURCE_LOCATION (t) = input_location;
958 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
959 DECL_UID (t) = --next_debug_decl_uid;
960 else
961 {
962 DECL_UID (t) = allocate_decl_uid ();
963 SET_DECL_PT_UID (t, -1);
964 }
965 if (TREE_CODE (t) == LABEL_DECL)
966 LABEL_DECL_UID (t) = -1;
967
968 break;
969
970 case tcc_type:
971 TYPE_UID (t) = next_type_uid++;
972 TYPE_ALIGN (t) = BITS_PER_UNIT;
973 TYPE_USER_ALIGN (t) = 0;
974 TYPE_MAIN_VARIANT (t) = t;
975 TYPE_CANONICAL (t) = t;
976
977 /* Default to no attributes for type, but let target change that. */
978 TYPE_ATTRIBUTES (t) = NULL_TREE;
979 targetm.set_default_type_attributes (t);
980
981 /* We have not yet computed the alias set for this type. */
982 TYPE_ALIAS_SET (t) = -1;
983 break;
984
985 case tcc_constant:
986 TREE_CONSTANT (t) = 1;
987 break;
988
989 case tcc_expression:
990 switch (code)
991 {
992 case INIT_EXPR:
993 case MODIFY_EXPR:
994 case VA_ARG_EXPR:
995 case PREDECREMENT_EXPR:
996 case PREINCREMENT_EXPR:
997 case POSTDECREMENT_EXPR:
998 case POSTINCREMENT_EXPR:
999 /* All of these have side-effects, no matter what their
1000 operands are. */
1001 TREE_SIDE_EFFECTS (t) = 1;
1002 break;
1003
1004 default:
1005 break;
1006 }
1007 break;
1008
1009 default:
1010 /* Other classes need no special treatment. */
1011 break;
1012 }
1013
1014 return t;
1015 }
1016 \f
1017 /* Return a new node with the same contents as NODE except that its
1018 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1019
1020 tree
1021 copy_node_stat (tree node MEM_STAT_DECL)
1022 {
1023 tree t;
1024 enum tree_code code = TREE_CODE (node);
1025 size_t length;
1026
1027 gcc_assert (code != STATEMENT_LIST);
1028
1029 length = tree_size (node);
1030 record_node_allocation_statistics (code, length);
1031 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1032 memcpy (t, node, length);
1033
1034 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1035 TREE_CHAIN (t) = 0;
1036 TREE_ASM_WRITTEN (t) = 0;
1037 TREE_VISITED (t) = 0;
1038
1039 if (TREE_CODE_CLASS (code) == tcc_declaration)
1040 {
1041 if (code == DEBUG_EXPR_DECL)
1042 DECL_UID (t) = --next_debug_decl_uid;
1043 else
1044 {
1045 DECL_UID (t) = allocate_decl_uid ();
1046 if (DECL_PT_UID_SET_P (node))
1047 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1048 }
1049 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
1050 && DECL_HAS_VALUE_EXPR_P (node))
1051 {
1052 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1053 DECL_HAS_VALUE_EXPR_P (t) = 1;
1054 }
1055 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1056 if (TREE_CODE (node) == VAR_DECL)
1057 {
1058 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1059 t->decl_with_vis.symtab_node = NULL;
1060 }
1061 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
1062 {
1063 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1064 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1065 }
1066 if (TREE_CODE (node) == FUNCTION_DECL)
1067 {
1068 DECL_STRUCT_FUNCTION (t) = NULL;
1069 t->decl_with_vis.symtab_node = NULL;
1070 }
1071 }
1072 else if (TREE_CODE_CLASS (code) == tcc_type)
1073 {
1074 TYPE_UID (t) = next_type_uid++;
1075 /* The following is so that the debug code for
1076 the copy is different from the original type.
1077 The two statements usually duplicate each other
1078 (because they clear fields of the same union),
1079 but the optimizer should catch that. */
1080 TYPE_SYMTAB_POINTER (t) = 0;
1081 TYPE_SYMTAB_ADDRESS (t) = 0;
1082
1083 /* Do not copy the values cache. */
1084 if (TYPE_CACHED_VALUES_P (t))
1085 {
1086 TYPE_CACHED_VALUES_P (t) = 0;
1087 TYPE_CACHED_VALUES (t) = NULL_TREE;
1088 }
1089 }
1090
1091 return t;
1092 }
1093
1094 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1095 For example, this can copy a list made of TREE_LIST nodes. */
1096
1097 tree
1098 copy_list (tree list)
1099 {
1100 tree head;
1101 tree prev, next;
1102
1103 if (list == 0)
1104 return 0;
1105
1106 head = prev = copy_node (list);
1107 next = TREE_CHAIN (list);
1108 while (next)
1109 {
1110 TREE_CHAIN (prev) = copy_node (next);
1111 prev = TREE_CHAIN (prev);
1112 next = TREE_CHAIN (next);
1113 }
1114 return head;
1115 }
1116
1117 \f
1118 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1119 INTEGER_CST with value CST and type TYPE. */
1120
1121 static unsigned int
1122 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1123 {
1124 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1125 /* We need an extra zero HWI if CST is an unsigned integer with its
1126 upper bit set, and if CST occupies a whole number of HWIs. */
1127 if (TYPE_UNSIGNED (type)
1128 && wi::neg_p (cst)
1129 && (cst.get_precision () % HOST_BITS_PER_WIDE_INT) == 0)
1130 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1131 return cst.get_len ();
1132 }
1133
1134 /* Return a new INTEGER_CST with value CST and type TYPE. */
1135
1136 static tree
1137 build_new_int_cst (tree type, const wide_int &cst)
1138 {
1139 unsigned int len = cst.get_len ();
1140 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1141 tree nt = make_int_cst (len, ext_len);
1142
1143 if (len < ext_len)
1144 {
1145 --ext_len;
1146 TREE_INT_CST_ELT (nt, ext_len) = 0;
1147 for (unsigned int i = len; i < ext_len; ++i)
1148 TREE_INT_CST_ELT (nt, i) = -1;
1149 }
1150 else if (TYPE_UNSIGNED (type)
1151 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1152 {
1153 len--;
1154 TREE_INT_CST_ELT (nt, len)
1155 = zext_hwi (cst.elt (len),
1156 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1157 }
1158
1159 for (unsigned int i = 0; i < len; i++)
1160 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1161 TREE_TYPE (nt) = type;
1162 return nt;
1163 }
1164
1165 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1166
1167 tree
1168 build_int_cst (tree type, HOST_WIDE_INT low)
1169 {
1170 /* Support legacy code. */
1171 if (!type)
1172 type = integer_type_node;
1173
1174 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1175 }
1176
1177 tree
1178 build_int_cstu (tree type, unsigned HOST_WIDE_INT cst)
1179 {
1180 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1181 }
1182
1183 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1184
1185 tree
1186 build_int_cst_type (tree type, HOST_WIDE_INT low)
1187 {
1188 gcc_assert (type);
1189 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1190 }
1191
1192 /* Constructs tree in type TYPE from with value given by CST. Signedness
1193 of CST is assumed to be the same as the signedness of TYPE. */
1194
1195 tree
1196 double_int_to_tree (tree type, double_int cst)
1197 {
1198 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1199 }
1200
1201 /* We force the wide_int CST to the range of the type TYPE by sign or
1202 zero extending it. OVERFLOWABLE indicates if we are interested in
1203 overflow of the value, when >0 we are only interested in signed
1204 overflow, for <0 we are interested in any overflow. OVERFLOWED
1205 indicates whether overflow has already occurred. CONST_OVERFLOWED
1206 indicates whether constant overflow has already occurred. We force
1207 T's value to be within range of T's type (by setting to 0 or 1 all
1208 the bits outside the type's range). We set TREE_OVERFLOWED if,
1209 OVERFLOWED is nonzero,
1210 or OVERFLOWABLE is >0 and signed overflow occurs
1211 or OVERFLOWABLE is <0 and any overflow occurs
1212 We return a new tree node for the extended wide_int. The node
1213 is shared if no overflow flags are set. */
1214
1215
1216 tree
1217 force_fit_type (tree type, const wide_int_ref &cst,
1218 int overflowable, bool overflowed)
1219 {
1220 signop sign = TYPE_SIGN (type);
1221
1222 /* If we need to set overflow flags, return a new unshared node. */
1223 if (overflowed || !wi::fits_to_tree_p (cst, type))
1224 {
1225 if (overflowed
1226 || overflowable < 0
1227 || (overflowable > 0 && sign == SIGNED))
1228 {
1229 wide_int tmp = wide_int::from (cst, TYPE_PRECISION (type), sign);
1230 tree t = build_new_int_cst (type, tmp);
1231 TREE_OVERFLOW (t) = 1;
1232 return t;
1233 }
1234 }
1235
1236 /* Else build a shared node. */
1237 return wide_int_to_tree (type, cst);
1238 }
1239
1240 /* These are the hash table functions for the hash table of INTEGER_CST
1241 nodes of a sizetype. */
1242
1243 /* Return the hash code code X, an INTEGER_CST. */
1244
1245 static hashval_t
1246 int_cst_hash_hash (const void *x)
1247 {
1248 const_tree const t = (const_tree) x;
1249 hashval_t code = htab_hash_pointer (TREE_TYPE (t));
1250 int i;
1251
1252 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1253 code ^= TREE_INT_CST_ELT (t, i);
1254
1255 return code;
1256 }
1257
1258 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1259 is the same as that given by *Y, which is the same. */
1260
1261 static int
1262 int_cst_hash_eq (const void *x, const void *y)
1263 {
1264 const_tree const xt = (const_tree) x;
1265 const_tree const yt = (const_tree) y;
1266
1267 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1268 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1269 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1270 return false;
1271
1272 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1273 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1274 return false;
1275
1276 return true;
1277 }
1278
1279 /* Create an INT_CST node of TYPE and value CST.
1280 The returned node is always shared. For small integers we use a
1281 per-type vector cache, for larger ones we use a single hash table.
1282 The value is extended from its precision according to the sign of
1283 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1284 the upper bits and ensures that hashing and value equality based
1285 upon the underlying HOST_WIDE_INTs works without masking. */
1286
1287 tree
1288 wide_int_to_tree (tree type, const wide_int_ref &pcst)
1289 {
1290 tree t;
1291 int ix = -1;
1292 int limit = 0;
1293
1294 gcc_assert (type);
1295 unsigned int prec = TYPE_PRECISION (type);
1296 signop sgn = TYPE_SIGN (type);
1297
1298 /* Verify that everything is canonical. */
1299 int l = pcst.get_len ();
1300 if (l > 1)
1301 {
1302 if (pcst.elt (l - 1) == 0)
1303 gcc_checking_assert (pcst.elt (l - 2) < 0);
1304 if (pcst.elt (l - 1) == (HOST_WIDE_INT) -1)
1305 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1306 }
1307
1308 wide_int cst = wide_int::from (pcst, prec, sgn);
1309 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1310
1311 if (ext_len == 1)
1312 {
1313 /* We just need to store a single HOST_WIDE_INT. */
1314 HOST_WIDE_INT hwi;
1315 if (TYPE_UNSIGNED (type))
1316 hwi = cst.to_uhwi ();
1317 else
1318 hwi = cst.to_shwi ();
1319
1320 switch (TREE_CODE (type))
1321 {
1322 case NULLPTR_TYPE:
1323 gcc_assert (hwi == 0);
1324 /* Fallthru. */
1325
1326 case POINTER_TYPE:
1327 case REFERENCE_TYPE:
1328 /* Cache NULL pointer. */
1329 if (hwi == 0)
1330 {
1331 limit = 1;
1332 ix = 0;
1333 }
1334 break;
1335
1336 case BOOLEAN_TYPE:
1337 /* Cache false or true. */
1338 limit = 2;
1339 if (hwi < 2)
1340 ix = hwi;
1341 break;
1342
1343 case INTEGER_TYPE:
1344 case OFFSET_TYPE:
1345 if (TYPE_SIGN (type) == UNSIGNED)
1346 {
1347 /* Cache [0, N). */
1348 limit = INTEGER_SHARE_LIMIT;
1349 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1350 ix = hwi;
1351 }
1352 else
1353 {
1354 /* Cache [-1, N). */
1355 limit = INTEGER_SHARE_LIMIT + 1;
1356 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1357 ix = hwi + 1;
1358 }
1359 break;
1360
1361 case ENUMERAL_TYPE:
1362 break;
1363
1364 default:
1365 gcc_unreachable ();
1366 }
1367
1368 if (ix >= 0)
1369 {
1370 /* Look for it in the type's vector of small shared ints. */
1371 if (!TYPE_CACHED_VALUES_P (type))
1372 {
1373 TYPE_CACHED_VALUES_P (type) = 1;
1374 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1375 }
1376
1377 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1378 if (t)
1379 /* Make sure no one is clobbering the shared constant. */
1380 gcc_checking_assert (TREE_TYPE (t) == type
1381 && TREE_INT_CST_NUNITS (t) == 1
1382 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1383 && TREE_INT_CST_EXT_NUNITS (t) == 1
1384 && TREE_INT_CST_ELT (t, 0) == hwi);
1385 else
1386 {
1387 /* Create a new shared int. */
1388 t = build_new_int_cst (type, cst);
1389 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1390 }
1391 }
1392 else
1393 {
1394 /* Use the cache of larger shared ints, using int_cst_node as
1395 a temporary. */
1396 void **slot;
1397
1398 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1399 TREE_TYPE (int_cst_node) = type;
1400
1401 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1402 t = (tree) *slot;
1403 if (!t)
1404 {
1405 /* Insert this one into the hash table. */
1406 t = int_cst_node;
1407 *slot = t;
1408 /* Make a new node for next time round. */
1409 int_cst_node = make_int_cst (1, 1);
1410 }
1411 }
1412 }
1413 else
1414 {
1415 /* The value either hashes properly or we drop it on the floor
1416 for the gc to take care of. There will not be enough of them
1417 to worry about. */
1418 void **slot;
1419
1420 tree nt = build_new_int_cst (type, cst);
1421 slot = htab_find_slot (int_cst_hash_table, nt, INSERT);
1422 t = (tree) *slot;
1423 if (!t)
1424 {
1425 /* Insert this one into the hash table. */
1426 t = nt;
1427 *slot = t;
1428 }
1429 }
1430
1431 return t;
1432 }
1433
1434 void
1435 cache_integer_cst (tree t)
1436 {
1437 tree type = TREE_TYPE (t);
1438 int ix = -1;
1439 int limit = 0;
1440 int prec = TYPE_PRECISION (type);
1441
1442 gcc_assert (!TREE_OVERFLOW (t));
1443
1444 switch (TREE_CODE (type))
1445 {
1446 case NULLPTR_TYPE:
1447 gcc_assert (integer_zerop (t));
1448 /* Fallthru. */
1449
1450 case POINTER_TYPE:
1451 case REFERENCE_TYPE:
1452 /* Cache NULL pointer. */
1453 if (integer_zerop (t))
1454 {
1455 limit = 1;
1456 ix = 0;
1457 }
1458 break;
1459
1460 case BOOLEAN_TYPE:
1461 /* Cache false or true. */
1462 limit = 2;
1463 if (wi::ltu_p (t, 2))
1464 ix = TREE_INT_CST_ELT (t, 0);
1465 break;
1466
1467 case INTEGER_TYPE:
1468 case OFFSET_TYPE:
1469 if (TYPE_UNSIGNED (type))
1470 {
1471 /* Cache 0..N */
1472 limit = INTEGER_SHARE_LIMIT;
1473
1474 /* This is a little hokie, but if the prec is smaller than
1475 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1476 obvious test will not get the correct answer. */
1477 if (prec < HOST_BITS_PER_WIDE_INT)
1478 {
1479 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1480 ix = tree_to_uhwi (t);
1481 }
1482 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1483 ix = tree_to_uhwi (t);
1484 }
1485 else
1486 {
1487 /* Cache -1..N */
1488 limit = INTEGER_SHARE_LIMIT + 1;
1489
1490 if (integer_minus_onep (t))
1491 ix = 0;
1492 else if (!wi::neg_p (t))
1493 {
1494 if (prec < HOST_BITS_PER_WIDE_INT)
1495 {
1496 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1497 ix = tree_to_shwi (t) + 1;
1498 }
1499 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1500 ix = tree_to_shwi (t) + 1;
1501 }
1502 }
1503 break;
1504
1505 case ENUMERAL_TYPE:
1506 break;
1507
1508 default:
1509 gcc_unreachable ();
1510 }
1511
1512 if (ix >= 0)
1513 {
1514 /* Look for it in the type's vector of small shared ints. */
1515 if (!TYPE_CACHED_VALUES_P (type))
1516 {
1517 TYPE_CACHED_VALUES_P (type) = 1;
1518 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1519 }
1520
1521 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1522 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1523 }
1524 else
1525 {
1526 /* Use the cache of larger shared ints. */
1527 void **slot;
1528
1529 slot = htab_find_slot (int_cst_hash_table, t, INSERT);
1530 /* If there is already an entry for the number verify it's the
1531 same. */
1532 if (*slot)
1533 gcc_assert (wi::eq_p (tree (*slot), t));
1534 else
1535 /* Otherwise insert this one into the hash table. */
1536 *slot = t;
1537 }
1538 }
1539
1540
1541 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1542 and the rest are zeros. */
1543
1544 tree
1545 build_low_bits_mask (tree type, unsigned bits)
1546 {
1547 gcc_assert (bits <= TYPE_PRECISION (type));
1548
1549 return wide_int_to_tree (type, wi::mask (bits, false,
1550 TYPE_PRECISION (type)));
1551 }
1552
1553 /* Checks that X is integer constant that can be expressed in (unsigned)
1554 HOST_WIDE_INT without loss of precision. */
1555
1556 bool
1557 cst_and_fits_in_hwi (const_tree x)
1558 {
1559 if (TREE_CODE (x) != INTEGER_CST)
1560 return false;
1561
1562 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1563 return false;
1564
1565 return TREE_INT_CST_NUNITS (x) == 1;
1566 }
1567
1568 /* Build a newly constructed TREE_VEC node of length LEN. */
1569
1570 tree
1571 make_vector_stat (unsigned len MEM_STAT_DECL)
1572 {
1573 tree t;
1574 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1575
1576 record_node_allocation_statistics (VECTOR_CST, length);
1577
1578 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1579
1580 TREE_SET_CODE (t, VECTOR_CST);
1581 TREE_CONSTANT (t) = 1;
1582
1583 return t;
1584 }
1585
1586 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1587 are in a list pointed to by VALS. */
1588
1589 tree
1590 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1591 {
1592 int over = 0;
1593 unsigned cnt = 0;
1594 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1595 TREE_TYPE (v) = type;
1596
1597 /* Iterate through elements and check for overflow. */
1598 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1599 {
1600 tree value = vals[cnt];
1601
1602 VECTOR_CST_ELT (v, cnt) = value;
1603
1604 /* Don't crash if we get an address constant. */
1605 if (!CONSTANT_CLASS_P (value))
1606 continue;
1607
1608 over |= TREE_OVERFLOW (value);
1609 }
1610
1611 TREE_OVERFLOW (v) = over;
1612 return v;
1613 }
1614
1615 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1616 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1617
1618 tree
1619 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1620 {
1621 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1622 unsigned HOST_WIDE_INT idx;
1623 tree value;
1624
1625 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1626 vec[idx] = value;
1627 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1628 vec[idx] = build_zero_cst (TREE_TYPE (type));
1629
1630 return build_vector (type, vec);
1631 }
1632
1633 /* Build a vector of type VECTYPE where all the elements are SCs. */
1634 tree
1635 build_vector_from_val (tree vectype, tree sc)
1636 {
1637 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1638
1639 if (sc == error_mark_node)
1640 return sc;
1641
1642 /* Verify that the vector type is suitable for SC. Note that there
1643 is some inconsistency in the type-system with respect to restrict
1644 qualifications of pointers. Vector types always have a main-variant
1645 element type and the qualification is applied to the vector-type.
1646 So TREE_TYPE (vector-type) does not return a properly qualified
1647 vector element-type. */
1648 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1649 TREE_TYPE (vectype)));
1650
1651 if (CONSTANT_CLASS_P (sc))
1652 {
1653 tree *v = XALLOCAVEC (tree, nunits);
1654 for (i = 0; i < nunits; ++i)
1655 v[i] = sc;
1656 return build_vector (vectype, v);
1657 }
1658 else
1659 {
1660 vec<constructor_elt, va_gc> *v;
1661 vec_alloc (v, nunits);
1662 for (i = 0; i < nunits; ++i)
1663 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1664 return build_constructor (vectype, v);
1665 }
1666 }
1667
1668 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1669 are in the vec pointed to by VALS. */
1670 tree
1671 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1672 {
1673 tree c = make_node (CONSTRUCTOR);
1674 unsigned int i;
1675 constructor_elt *elt;
1676 bool constant_p = true;
1677 bool side_effects_p = false;
1678
1679 TREE_TYPE (c) = type;
1680 CONSTRUCTOR_ELTS (c) = vals;
1681
1682 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1683 {
1684 /* Mostly ctors will have elts that don't have side-effects, so
1685 the usual case is to scan all the elements. Hence a single
1686 loop for both const and side effects, rather than one loop
1687 each (with early outs). */
1688 if (!TREE_CONSTANT (elt->value))
1689 constant_p = false;
1690 if (TREE_SIDE_EFFECTS (elt->value))
1691 side_effects_p = true;
1692 }
1693
1694 TREE_SIDE_EFFECTS (c) = side_effects_p;
1695 TREE_CONSTANT (c) = constant_p;
1696
1697 return c;
1698 }
1699
1700 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1701 INDEX and VALUE. */
1702 tree
1703 build_constructor_single (tree type, tree index, tree value)
1704 {
1705 vec<constructor_elt, va_gc> *v;
1706 constructor_elt elt = {index, value};
1707
1708 vec_alloc (v, 1);
1709 v->quick_push (elt);
1710
1711 return build_constructor (type, v);
1712 }
1713
1714
1715 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1716 are in a list pointed to by VALS. */
1717 tree
1718 build_constructor_from_list (tree type, tree vals)
1719 {
1720 tree t;
1721 vec<constructor_elt, va_gc> *v = NULL;
1722
1723 if (vals)
1724 {
1725 vec_alloc (v, list_length (vals));
1726 for (t = vals; t; t = TREE_CHAIN (t))
1727 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1728 }
1729
1730 return build_constructor (type, v);
1731 }
1732
1733 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1734 of elements, provided as index/value pairs. */
1735
1736 tree
1737 build_constructor_va (tree type, int nelts, ...)
1738 {
1739 vec<constructor_elt, va_gc> *v = NULL;
1740 va_list p;
1741
1742 va_start (p, nelts);
1743 vec_alloc (v, nelts);
1744 while (nelts--)
1745 {
1746 tree index = va_arg (p, tree);
1747 tree value = va_arg (p, tree);
1748 CONSTRUCTOR_APPEND_ELT (v, index, value);
1749 }
1750 va_end (p);
1751 return build_constructor (type, v);
1752 }
1753
1754 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1755
1756 tree
1757 build_fixed (tree type, FIXED_VALUE_TYPE f)
1758 {
1759 tree v;
1760 FIXED_VALUE_TYPE *fp;
1761
1762 v = make_node (FIXED_CST);
1763 fp = ggc_alloc<fixed_value> ();
1764 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1765
1766 TREE_TYPE (v) = type;
1767 TREE_FIXED_CST_PTR (v) = fp;
1768 return v;
1769 }
1770
1771 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1772
1773 tree
1774 build_real (tree type, REAL_VALUE_TYPE d)
1775 {
1776 tree v;
1777 REAL_VALUE_TYPE *dp;
1778 int overflow = 0;
1779
1780 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1781 Consider doing it via real_convert now. */
1782
1783 v = make_node (REAL_CST);
1784 dp = ggc_alloc<real_value> ();
1785 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1786
1787 TREE_TYPE (v) = type;
1788 TREE_REAL_CST_PTR (v) = dp;
1789 TREE_OVERFLOW (v) = overflow;
1790 return v;
1791 }
1792
1793 /* Return a new REAL_CST node whose type is TYPE
1794 and whose value is the integer value of the INTEGER_CST node I. */
1795
1796 REAL_VALUE_TYPE
1797 real_value_from_int_cst (const_tree type, const_tree i)
1798 {
1799 REAL_VALUE_TYPE d;
1800
1801 /* Clear all bits of the real value type so that we can later do
1802 bitwise comparisons to see if two values are the same. */
1803 memset (&d, 0, sizeof d);
1804
1805 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, i,
1806 TYPE_SIGN (TREE_TYPE (i)));
1807 return d;
1808 }
1809
1810 /* Given a tree representing an integer constant I, return a tree
1811 representing the same value as a floating-point constant of type TYPE. */
1812
1813 tree
1814 build_real_from_int_cst (tree type, const_tree i)
1815 {
1816 tree v;
1817 int overflow = TREE_OVERFLOW (i);
1818
1819 v = build_real (type, real_value_from_int_cst (type, i));
1820
1821 TREE_OVERFLOW (v) |= overflow;
1822 return v;
1823 }
1824
1825 /* Return a newly constructed STRING_CST node whose value is
1826 the LEN characters at STR.
1827 Note that for a C string literal, LEN should include the trailing NUL.
1828 The TREE_TYPE is not initialized. */
1829
1830 tree
1831 build_string (int len, const char *str)
1832 {
1833 tree s;
1834 size_t length;
1835
1836 /* Do not waste bytes provided by padding of struct tree_string. */
1837 length = len + offsetof (struct tree_string, str) + 1;
1838
1839 record_node_allocation_statistics (STRING_CST, length);
1840
1841 s = (tree) ggc_internal_alloc (length);
1842
1843 memset (s, 0, sizeof (struct tree_typed));
1844 TREE_SET_CODE (s, STRING_CST);
1845 TREE_CONSTANT (s) = 1;
1846 TREE_STRING_LENGTH (s) = len;
1847 memcpy (s->string.str, str, len);
1848 s->string.str[len] = '\0';
1849
1850 return s;
1851 }
1852
1853 /* Return a newly constructed COMPLEX_CST node whose value is
1854 specified by the real and imaginary parts REAL and IMAG.
1855 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1856 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1857
1858 tree
1859 build_complex (tree type, tree real, tree imag)
1860 {
1861 tree t = make_node (COMPLEX_CST);
1862
1863 TREE_REALPART (t) = real;
1864 TREE_IMAGPART (t) = imag;
1865 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1866 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1867 return t;
1868 }
1869
1870 /* Return a constant of arithmetic type TYPE which is the
1871 multiplicative identity of the set TYPE. */
1872
1873 tree
1874 build_one_cst (tree type)
1875 {
1876 switch (TREE_CODE (type))
1877 {
1878 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1879 case POINTER_TYPE: case REFERENCE_TYPE:
1880 case OFFSET_TYPE:
1881 return build_int_cst (type, 1);
1882
1883 case REAL_TYPE:
1884 return build_real (type, dconst1);
1885
1886 case FIXED_POINT_TYPE:
1887 /* We can only generate 1 for accum types. */
1888 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1889 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
1890
1891 case VECTOR_TYPE:
1892 {
1893 tree scalar = build_one_cst (TREE_TYPE (type));
1894
1895 return build_vector_from_val (type, scalar);
1896 }
1897
1898 case COMPLEX_TYPE:
1899 return build_complex (type,
1900 build_one_cst (TREE_TYPE (type)),
1901 build_zero_cst (TREE_TYPE (type)));
1902
1903 default:
1904 gcc_unreachable ();
1905 }
1906 }
1907
1908 /* Return an integer of type TYPE containing all 1's in as much precision as
1909 it contains, or a complex or vector whose subparts are such integers. */
1910
1911 tree
1912 build_all_ones_cst (tree type)
1913 {
1914 if (TREE_CODE (type) == COMPLEX_TYPE)
1915 {
1916 tree scalar = build_all_ones_cst (TREE_TYPE (type));
1917 return build_complex (type, scalar, scalar);
1918 }
1919 else
1920 return build_minus_one_cst (type);
1921 }
1922
1923 /* Return a constant of arithmetic type TYPE which is the
1924 opposite of the multiplicative identity of the set TYPE. */
1925
1926 tree
1927 build_minus_one_cst (tree type)
1928 {
1929 switch (TREE_CODE (type))
1930 {
1931 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1932 case POINTER_TYPE: case REFERENCE_TYPE:
1933 case OFFSET_TYPE:
1934 return build_int_cst (type, -1);
1935
1936 case REAL_TYPE:
1937 return build_real (type, dconstm1);
1938
1939 case FIXED_POINT_TYPE:
1940 /* We can only generate 1 for accum types. */
1941 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1942 return build_fixed (type, fixed_from_double_int (double_int_minus_one,
1943 TYPE_MODE (type)));
1944
1945 case VECTOR_TYPE:
1946 {
1947 tree scalar = build_minus_one_cst (TREE_TYPE (type));
1948
1949 return build_vector_from_val (type, scalar);
1950 }
1951
1952 case COMPLEX_TYPE:
1953 return build_complex (type,
1954 build_minus_one_cst (TREE_TYPE (type)),
1955 build_zero_cst (TREE_TYPE (type)));
1956
1957 default:
1958 gcc_unreachable ();
1959 }
1960 }
1961
1962 /* Build 0 constant of type TYPE. This is used by constructor folding
1963 and thus the constant should be represented in memory by
1964 zero(es). */
1965
1966 tree
1967 build_zero_cst (tree type)
1968 {
1969 switch (TREE_CODE (type))
1970 {
1971 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1972 case POINTER_TYPE: case REFERENCE_TYPE:
1973 case OFFSET_TYPE: case NULLPTR_TYPE:
1974 return build_int_cst (type, 0);
1975
1976 case REAL_TYPE:
1977 return build_real (type, dconst0);
1978
1979 case FIXED_POINT_TYPE:
1980 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1981
1982 case VECTOR_TYPE:
1983 {
1984 tree scalar = build_zero_cst (TREE_TYPE (type));
1985
1986 return build_vector_from_val (type, scalar);
1987 }
1988
1989 case COMPLEX_TYPE:
1990 {
1991 tree zero = build_zero_cst (TREE_TYPE (type));
1992
1993 return build_complex (type, zero, zero);
1994 }
1995
1996 default:
1997 if (!AGGREGATE_TYPE_P (type))
1998 return fold_convert (type, integer_zero_node);
1999 return build_constructor (type, NULL);
2000 }
2001 }
2002
2003
2004 /* Build a BINFO with LEN language slots. */
2005
2006 tree
2007 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
2008 {
2009 tree t;
2010 size_t length = (offsetof (struct tree_binfo, base_binfos)
2011 + vec<tree, va_gc>::embedded_size (base_binfos));
2012
2013 record_node_allocation_statistics (TREE_BINFO, length);
2014
2015 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2016
2017 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2018
2019 TREE_SET_CODE (t, TREE_BINFO);
2020
2021 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2022
2023 return t;
2024 }
2025
2026 /* Create a CASE_LABEL_EXPR tree node and return it. */
2027
2028 tree
2029 build_case_label (tree low_value, tree high_value, tree label_decl)
2030 {
2031 tree t = make_node (CASE_LABEL_EXPR);
2032
2033 TREE_TYPE (t) = void_type_node;
2034 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2035
2036 CASE_LOW (t) = low_value;
2037 CASE_HIGH (t) = high_value;
2038 CASE_LABEL (t) = label_decl;
2039 CASE_CHAIN (t) = NULL_TREE;
2040
2041 return t;
2042 }
2043
2044 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2045 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2046 The latter determines the length of the HOST_WIDE_INT vector. */
2047
2048 tree
2049 make_int_cst_stat (int len, int ext_len MEM_STAT_DECL)
2050 {
2051 tree t;
2052 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2053 + sizeof (struct tree_int_cst));
2054
2055 gcc_assert (len);
2056 record_node_allocation_statistics (INTEGER_CST, length);
2057
2058 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2059
2060 TREE_SET_CODE (t, INTEGER_CST);
2061 TREE_INT_CST_NUNITS (t) = len;
2062 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2063 /* to_offset can only be applied to trees that are offset_int-sized
2064 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2065 must be exactly the precision of offset_int and so LEN is correct. */
2066 if (ext_len <= OFFSET_INT_ELTS)
2067 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2068 else
2069 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2070
2071 TREE_CONSTANT (t) = 1;
2072
2073 return t;
2074 }
2075
2076 /* Build a newly constructed TREE_VEC node of length LEN. */
2077
2078 tree
2079 make_tree_vec_stat (int len MEM_STAT_DECL)
2080 {
2081 tree t;
2082 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2083
2084 record_node_allocation_statistics (TREE_VEC, length);
2085
2086 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2087
2088 TREE_SET_CODE (t, TREE_VEC);
2089 TREE_VEC_LENGTH (t) = len;
2090
2091 return t;
2092 }
2093
2094 /* Grow a TREE_VEC node to new length LEN. */
2095
2096 tree
2097 grow_tree_vec_stat (tree v, int len MEM_STAT_DECL)
2098 {
2099 gcc_assert (TREE_CODE (v) == TREE_VEC);
2100
2101 int oldlen = TREE_VEC_LENGTH (v);
2102 gcc_assert (len > oldlen);
2103
2104 int oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2105 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2106
2107 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2108
2109 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2110
2111 TREE_VEC_LENGTH (v) = len;
2112
2113 return v;
2114 }
2115 \f
2116 /* Return 1 if EXPR is the integer constant zero or a complex constant
2117 of zero. */
2118
2119 int
2120 integer_zerop (const_tree expr)
2121 {
2122 STRIP_NOPS (expr);
2123
2124 switch (TREE_CODE (expr))
2125 {
2126 case INTEGER_CST:
2127 return wi::eq_p (expr, 0);
2128 case COMPLEX_CST:
2129 return (integer_zerop (TREE_REALPART (expr))
2130 && integer_zerop (TREE_IMAGPART (expr)));
2131 case VECTOR_CST:
2132 {
2133 unsigned i;
2134 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2135 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
2136 return false;
2137 return true;
2138 }
2139 default:
2140 return false;
2141 }
2142 }
2143
2144 /* Return 1 if EXPR is the integer constant one or the corresponding
2145 complex constant. */
2146
2147 int
2148 integer_onep (const_tree expr)
2149 {
2150 STRIP_NOPS (expr);
2151
2152 switch (TREE_CODE (expr))
2153 {
2154 case INTEGER_CST:
2155 return wi::eq_p (wi::to_widest (expr), 1);
2156 case COMPLEX_CST:
2157 return (integer_onep (TREE_REALPART (expr))
2158 && integer_zerop (TREE_IMAGPART (expr)));
2159 case VECTOR_CST:
2160 {
2161 unsigned i;
2162 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2163 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
2164 return false;
2165 return true;
2166 }
2167 default:
2168 return false;
2169 }
2170 }
2171
2172 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2173 return 1 if every piece is the integer constant one. */
2174
2175 int
2176 integer_each_onep (const_tree expr)
2177 {
2178 STRIP_NOPS (expr);
2179
2180 if (TREE_CODE (expr) == COMPLEX_CST)
2181 return (integer_onep (TREE_REALPART (expr))
2182 && integer_onep (TREE_IMAGPART (expr)));
2183 else
2184 return integer_onep (expr);
2185 }
2186
2187 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2188 it contains, or a complex or vector whose subparts are such integers. */
2189
2190 int
2191 integer_all_onesp (const_tree expr)
2192 {
2193 STRIP_NOPS (expr);
2194
2195 if (TREE_CODE (expr) == COMPLEX_CST
2196 && integer_all_onesp (TREE_REALPART (expr))
2197 && integer_all_onesp (TREE_IMAGPART (expr)))
2198 return 1;
2199
2200 else if (TREE_CODE (expr) == VECTOR_CST)
2201 {
2202 unsigned i;
2203 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2204 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
2205 return 0;
2206 return 1;
2207 }
2208
2209 else if (TREE_CODE (expr) != INTEGER_CST)
2210 return 0;
2211
2212 return wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED) == expr;
2213 }
2214
2215 /* Return 1 if EXPR is the integer constant minus one. */
2216
2217 int
2218 integer_minus_onep (const_tree expr)
2219 {
2220 STRIP_NOPS (expr);
2221
2222 if (TREE_CODE (expr) == COMPLEX_CST)
2223 return (integer_all_onesp (TREE_REALPART (expr))
2224 && integer_zerop (TREE_IMAGPART (expr)));
2225 else
2226 return integer_all_onesp (expr);
2227 }
2228
2229 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2230 one bit on). */
2231
2232 int
2233 integer_pow2p (const_tree expr)
2234 {
2235 STRIP_NOPS (expr);
2236
2237 if (TREE_CODE (expr) == COMPLEX_CST
2238 && integer_pow2p (TREE_REALPART (expr))
2239 && integer_zerop (TREE_IMAGPART (expr)))
2240 return 1;
2241
2242 if (TREE_CODE (expr) != INTEGER_CST)
2243 return 0;
2244
2245 return wi::popcount (expr) == 1;
2246 }
2247
2248 /* Return 1 if EXPR is an integer constant other than zero or a
2249 complex constant other than zero. */
2250
2251 int
2252 integer_nonzerop (const_tree expr)
2253 {
2254 STRIP_NOPS (expr);
2255
2256 return ((TREE_CODE (expr) == INTEGER_CST
2257 && !wi::eq_p (expr, 0))
2258 || (TREE_CODE (expr) == COMPLEX_CST
2259 && (integer_nonzerop (TREE_REALPART (expr))
2260 || integer_nonzerop (TREE_IMAGPART (expr)))));
2261 }
2262
2263 /* Return 1 if EXPR is the fixed-point constant zero. */
2264
2265 int
2266 fixed_zerop (const_tree expr)
2267 {
2268 return (TREE_CODE (expr) == FIXED_CST
2269 && TREE_FIXED_CST (expr).data.is_zero ());
2270 }
2271
2272 /* Return the power of two represented by a tree node known to be a
2273 power of two. */
2274
2275 int
2276 tree_log2 (const_tree expr)
2277 {
2278 STRIP_NOPS (expr);
2279
2280 if (TREE_CODE (expr) == COMPLEX_CST)
2281 return tree_log2 (TREE_REALPART (expr));
2282
2283 return wi::exact_log2 (expr);
2284 }
2285
2286 /* Similar, but return the largest integer Y such that 2 ** Y is less
2287 than or equal to EXPR. */
2288
2289 int
2290 tree_floor_log2 (const_tree expr)
2291 {
2292 STRIP_NOPS (expr);
2293
2294 if (TREE_CODE (expr) == COMPLEX_CST)
2295 return tree_log2 (TREE_REALPART (expr));
2296
2297 return wi::floor_log2 (expr);
2298 }
2299
2300 /* Return number of known trailing zero bits in EXPR, or, if the value of
2301 EXPR is known to be zero, the precision of it's type. */
2302
2303 unsigned int
2304 tree_ctz (const_tree expr)
2305 {
2306 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2307 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2308 return 0;
2309
2310 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2311 switch (TREE_CODE (expr))
2312 {
2313 case INTEGER_CST:
2314 ret1 = wi::ctz (expr);
2315 return MIN (ret1, prec);
2316 case SSA_NAME:
2317 ret1 = wi::ctz (get_nonzero_bits (expr));
2318 return MIN (ret1, prec);
2319 case PLUS_EXPR:
2320 case MINUS_EXPR:
2321 case BIT_IOR_EXPR:
2322 case BIT_XOR_EXPR:
2323 case MIN_EXPR:
2324 case MAX_EXPR:
2325 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2326 if (ret1 == 0)
2327 return ret1;
2328 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2329 return MIN (ret1, ret2);
2330 case POINTER_PLUS_EXPR:
2331 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2332 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2333 /* Second operand is sizetype, which could be in theory
2334 wider than pointer's precision. Make sure we never
2335 return more than prec. */
2336 ret2 = MIN (ret2, prec);
2337 return MIN (ret1, ret2);
2338 case BIT_AND_EXPR:
2339 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2340 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2341 return MAX (ret1, ret2);
2342 case MULT_EXPR:
2343 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2344 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2345 return MIN (ret1 + ret2, prec);
2346 case LSHIFT_EXPR:
2347 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2348 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2349 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2350 {
2351 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2352 return MIN (ret1 + ret2, prec);
2353 }
2354 return ret1;
2355 case RSHIFT_EXPR:
2356 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2357 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2358 {
2359 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2360 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2361 if (ret1 > ret2)
2362 return ret1 - ret2;
2363 }
2364 return 0;
2365 case TRUNC_DIV_EXPR:
2366 case CEIL_DIV_EXPR:
2367 case FLOOR_DIV_EXPR:
2368 case ROUND_DIV_EXPR:
2369 case EXACT_DIV_EXPR:
2370 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2371 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2372 {
2373 int l = tree_log2 (TREE_OPERAND (expr, 1));
2374 if (l >= 0)
2375 {
2376 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2377 ret2 = l;
2378 if (ret1 > ret2)
2379 return ret1 - ret2;
2380 }
2381 }
2382 return 0;
2383 CASE_CONVERT:
2384 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2385 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2386 ret1 = prec;
2387 return MIN (ret1, prec);
2388 case SAVE_EXPR:
2389 return tree_ctz (TREE_OPERAND (expr, 0));
2390 case COND_EXPR:
2391 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2392 if (ret1 == 0)
2393 return 0;
2394 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2395 return MIN (ret1, ret2);
2396 case COMPOUND_EXPR:
2397 return tree_ctz (TREE_OPERAND (expr, 1));
2398 case ADDR_EXPR:
2399 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2400 if (ret1 > BITS_PER_UNIT)
2401 {
2402 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2403 return MIN (ret1, prec);
2404 }
2405 return 0;
2406 default:
2407 return 0;
2408 }
2409 }
2410
2411 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2412 decimal float constants, so don't return 1 for them. */
2413
2414 int
2415 real_zerop (const_tree expr)
2416 {
2417 STRIP_NOPS (expr);
2418
2419 switch (TREE_CODE (expr))
2420 {
2421 case REAL_CST:
2422 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
2423 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2424 case COMPLEX_CST:
2425 return real_zerop (TREE_REALPART (expr))
2426 && real_zerop (TREE_IMAGPART (expr));
2427 case VECTOR_CST:
2428 {
2429 unsigned i;
2430 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2431 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2432 return false;
2433 return true;
2434 }
2435 default:
2436 return false;
2437 }
2438 }
2439
2440 /* Return 1 if EXPR is the real constant one in real or complex form.
2441 Trailing zeroes matter for decimal float constants, so don't return
2442 1 for them. */
2443
2444 int
2445 real_onep (const_tree expr)
2446 {
2447 STRIP_NOPS (expr);
2448
2449 switch (TREE_CODE (expr))
2450 {
2451 case REAL_CST:
2452 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2453 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2454 case COMPLEX_CST:
2455 return real_onep (TREE_REALPART (expr))
2456 && real_zerop (TREE_IMAGPART (expr));
2457 case VECTOR_CST:
2458 {
2459 unsigned i;
2460 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2461 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2462 return false;
2463 return true;
2464 }
2465 default:
2466 return false;
2467 }
2468 }
2469
2470 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2471 matter for decimal float constants, so don't return 1 for them. */
2472
2473 int
2474 real_minus_onep (const_tree expr)
2475 {
2476 STRIP_NOPS (expr);
2477
2478 switch (TREE_CODE (expr))
2479 {
2480 case REAL_CST:
2481 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2482 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2483 case COMPLEX_CST:
2484 return real_minus_onep (TREE_REALPART (expr))
2485 && real_zerop (TREE_IMAGPART (expr));
2486 case VECTOR_CST:
2487 {
2488 unsigned i;
2489 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2490 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2491 return false;
2492 return true;
2493 }
2494 default:
2495 return false;
2496 }
2497 }
2498
2499 /* Nonzero if EXP is a constant or a cast of a constant. */
2500
2501 int
2502 really_constant_p (const_tree exp)
2503 {
2504 /* This is not quite the same as STRIP_NOPS. It does more. */
2505 while (CONVERT_EXPR_P (exp)
2506 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2507 exp = TREE_OPERAND (exp, 0);
2508 return TREE_CONSTANT (exp);
2509 }
2510 \f
2511 /* Return first list element whose TREE_VALUE is ELEM.
2512 Return 0 if ELEM is not in LIST. */
2513
2514 tree
2515 value_member (tree elem, tree list)
2516 {
2517 while (list)
2518 {
2519 if (elem == TREE_VALUE (list))
2520 return list;
2521 list = TREE_CHAIN (list);
2522 }
2523 return NULL_TREE;
2524 }
2525
2526 /* Return first list element whose TREE_PURPOSE is ELEM.
2527 Return 0 if ELEM is not in LIST. */
2528
2529 tree
2530 purpose_member (const_tree elem, tree list)
2531 {
2532 while (list)
2533 {
2534 if (elem == TREE_PURPOSE (list))
2535 return list;
2536 list = TREE_CHAIN (list);
2537 }
2538 return NULL_TREE;
2539 }
2540
2541 /* Return true if ELEM is in V. */
2542
2543 bool
2544 vec_member (const_tree elem, vec<tree, va_gc> *v)
2545 {
2546 unsigned ix;
2547 tree t;
2548 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2549 if (elem == t)
2550 return true;
2551 return false;
2552 }
2553
2554 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2555 NULL_TREE. */
2556
2557 tree
2558 chain_index (int idx, tree chain)
2559 {
2560 for (; chain && idx > 0; --idx)
2561 chain = TREE_CHAIN (chain);
2562 return chain;
2563 }
2564
2565 /* Return nonzero if ELEM is part of the chain CHAIN. */
2566
2567 int
2568 chain_member (const_tree elem, const_tree chain)
2569 {
2570 while (chain)
2571 {
2572 if (elem == chain)
2573 return 1;
2574 chain = DECL_CHAIN (chain);
2575 }
2576
2577 return 0;
2578 }
2579
2580 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2581 We expect a null pointer to mark the end of the chain.
2582 This is the Lisp primitive `length'. */
2583
2584 int
2585 list_length (const_tree t)
2586 {
2587 const_tree p = t;
2588 #ifdef ENABLE_TREE_CHECKING
2589 const_tree q = t;
2590 #endif
2591 int len = 0;
2592
2593 while (p)
2594 {
2595 p = TREE_CHAIN (p);
2596 #ifdef ENABLE_TREE_CHECKING
2597 if (len % 2)
2598 q = TREE_CHAIN (q);
2599 gcc_assert (p != q);
2600 #endif
2601 len++;
2602 }
2603
2604 return len;
2605 }
2606
2607 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2608 UNION_TYPE TYPE, or NULL_TREE if none. */
2609
2610 tree
2611 first_field (const_tree type)
2612 {
2613 tree t = TYPE_FIELDS (type);
2614 while (t && TREE_CODE (t) != FIELD_DECL)
2615 t = TREE_CHAIN (t);
2616 return t;
2617 }
2618
2619 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2620 by modifying the last node in chain 1 to point to chain 2.
2621 This is the Lisp primitive `nconc'. */
2622
2623 tree
2624 chainon (tree op1, tree op2)
2625 {
2626 tree t1;
2627
2628 if (!op1)
2629 return op2;
2630 if (!op2)
2631 return op1;
2632
2633 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2634 continue;
2635 TREE_CHAIN (t1) = op2;
2636
2637 #ifdef ENABLE_TREE_CHECKING
2638 {
2639 tree t2;
2640 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2641 gcc_assert (t2 != t1);
2642 }
2643 #endif
2644
2645 return op1;
2646 }
2647
2648 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2649
2650 tree
2651 tree_last (tree chain)
2652 {
2653 tree next;
2654 if (chain)
2655 while ((next = TREE_CHAIN (chain)))
2656 chain = next;
2657 return chain;
2658 }
2659
2660 /* Reverse the order of elements in the chain T,
2661 and return the new head of the chain (old last element). */
2662
2663 tree
2664 nreverse (tree t)
2665 {
2666 tree prev = 0, decl, next;
2667 for (decl = t; decl; decl = next)
2668 {
2669 /* We shouldn't be using this function to reverse BLOCK chains; we
2670 have blocks_nreverse for that. */
2671 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2672 next = TREE_CHAIN (decl);
2673 TREE_CHAIN (decl) = prev;
2674 prev = decl;
2675 }
2676 return prev;
2677 }
2678 \f
2679 /* Return a newly created TREE_LIST node whose
2680 purpose and value fields are PARM and VALUE. */
2681
2682 tree
2683 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2684 {
2685 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2686 TREE_PURPOSE (t) = parm;
2687 TREE_VALUE (t) = value;
2688 return t;
2689 }
2690
2691 /* Build a chain of TREE_LIST nodes from a vector. */
2692
2693 tree
2694 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2695 {
2696 tree ret = NULL_TREE;
2697 tree *pp = &ret;
2698 unsigned int i;
2699 tree t;
2700 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2701 {
2702 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2703 pp = &TREE_CHAIN (*pp);
2704 }
2705 return ret;
2706 }
2707
2708 /* Return a newly created TREE_LIST node whose
2709 purpose and value fields are PURPOSE and VALUE
2710 and whose TREE_CHAIN is CHAIN. */
2711
2712 tree
2713 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2714 {
2715 tree node;
2716
2717 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2718 memset (node, 0, sizeof (struct tree_common));
2719
2720 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2721
2722 TREE_SET_CODE (node, TREE_LIST);
2723 TREE_CHAIN (node) = chain;
2724 TREE_PURPOSE (node) = purpose;
2725 TREE_VALUE (node) = value;
2726 return node;
2727 }
2728
2729 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2730 trees. */
2731
2732 vec<tree, va_gc> *
2733 ctor_to_vec (tree ctor)
2734 {
2735 vec<tree, va_gc> *vec;
2736 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2737 unsigned int ix;
2738 tree val;
2739
2740 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2741 vec->quick_push (val);
2742
2743 return vec;
2744 }
2745 \f
2746 /* Return the size nominally occupied by an object of type TYPE
2747 when it resides in memory. The value is measured in units of bytes,
2748 and its data type is that normally used for type sizes
2749 (which is the first type created by make_signed_type or
2750 make_unsigned_type). */
2751
2752 tree
2753 size_in_bytes (const_tree type)
2754 {
2755 tree t;
2756
2757 if (type == error_mark_node)
2758 return integer_zero_node;
2759
2760 type = TYPE_MAIN_VARIANT (type);
2761 t = TYPE_SIZE_UNIT (type);
2762
2763 if (t == 0)
2764 {
2765 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2766 return size_zero_node;
2767 }
2768
2769 return t;
2770 }
2771
2772 /* Return the size of TYPE (in bytes) as a wide integer
2773 or return -1 if the size can vary or is larger than an integer. */
2774
2775 HOST_WIDE_INT
2776 int_size_in_bytes (const_tree type)
2777 {
2778 tree t;
2779
2780 if (type == error_mark_node)
2781 return 0;
2782
2783 type = TYPE_MAIN_VARIANT (type);
2784 t = TYPE_SIZE_UNIT (type);
2785
2786 if (t && tree_fits_uhwi_p (t))
2787 return TREE_INT_CST_LOW (t);
2788 else
2789 return -1;
2790 }
2791
2792 /* Return the maximum size of TYPE (in bytes) as a wide integer
2793 or return -1 if the size can vary or is larger than an integer. */
2794
2795 HOST_WIDE_INT
2796 max_int_size_in_bytes (const_tree type)
2797 {
2798 HOST_WIDE_INT size = -1;
2799 tree size_tree;
2800
2801 /* If this is an array type, check for a possible MAX_SIZE attached. */
2802
2803 if (TREE_CODE (type) == ARRAY_TYPE)
2804 {
2805 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2806
2807 if (size_tree && tree_fits_uhwi_p (size_tree))
2808 size = tree_to_uhwi (size_tree);
2809 }
2810
2811 /* If we still haven't been able to get a size, see if the language
2812 can compute a maximum size. */
2813
2814 if (size == -1)
2815 {
2816 size_tree = lang_hooks.types.max_size (type);
2817
2818 if (size_tree && tree_fits_uhwi_p (size_tree))
2819 size = tree_to_uhwi (size_tree);
2820 }
2821
2822 return size;
2823 }
2824 \f
2825 /* Return the bit position of FIELD, in bits from the start of the record.
2826 This is a tree of type bitsizetype. */
2827
2828 tree
2829 bit_position (const_tree field)
2830 {
2831 return bit_from_pos (DECL_FIELD_OFFSET (field),
2832 DECL_FIELD_BIT_OFFSET (field));
2833 }
2834
2835 /* Likewise, but return as an integer. It must be representable in
2836 that way (since it could be a signed value, we don't have the
2837 option of returning -1 like int_size_in_byte can. */
2838
2839 HOST_WIDE_INT
2840 int_bit_position (const_tree field)
2841 {
2842 return tree_to_shwi (bit_position (field));
2843 }
2844 \f
2845 /* Return the byte position of FIELD, in bytes from the start of the record.
2846 This is a tree of type sizetype. */
2847
2848 tree
2849 byte_position (const_tree field)
2850 {
2851 return byte_from_pos (DECL_FIELD_OFFSET (field),
2852 DECL_FIELD_BIT_OFFSET (field));
2853 }
2854
2855 /* Likewise, but return as an integer. It must be representable in
2856 that way (since it could be a signed value, we don't have the
2857 option of returning -1 like int_size_in_byte can. */
2858
2859 HOST_WIDE_INT
2860 int_byte_position (const_tree field)
2861 {
2862 return tree_to_shwi (byte_position (field));
2863 }
2864 \f
2865 /* Return the strictest alignment, in bits, that T is known to have. */
2866
2867 unsigned int
2868 expr_align (const_tree t)
2869 {
2870 unsigned int align0, align1;
2871
2872 switch (TREE_CODE (t))
2873 {
2874 CASE_CONVERT: case NON_LVALUE_EXPR:
2875 /* If we have conversions, we know that the alignment of the
2876 object must meet each of the alignments of the types. */
2877 align0 = expr_align (TREE_OPERAND (t, 0));
2878 align1 = TYPE_ALIGN (TREE_TYPE (t));
2879 return MAX (align0, align1);
2880
2881 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2882 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2883 case CLEANUP_POINT_EXPR:
2884 /* These don't change the alignment of an object. */
2885 return expr_align (TREE_OPERAND (t, 0));
2886
2887 case COND_EXPR:
2888 /* The best we can do is say that the alignment is the least aligned
2889 of the two arms. */
2890 align0 = expr_align (TREE_OPERAND (t, 1));
2891 align1 = expr_align (TREE_OPERAND (t, 2));
2892 return MIN (align0, align1);
2893
2894 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2895 meaningfully, it's always 1. */
2896 case LABEL_DECL: case CONST_DECL:
2897 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2898 case FUNCTION_DECL:
2899 gcc_assert (DECL_ALIGN (t) != 0);
2900 return DECL_ALIGN (t);
2901
2902 default:
2903 break;
2904 }
2905
2906 /* Otherwise take the alignment from that of the type. */
2907 return TYPE_ALIGN (TREE_TYPE (t));
2908 }
2909 \f
2910 /* Return, as a tree node, the number of elements for TYPE (which is an
2911 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2912
2913 tree
2914 array_type_nelts (const_tree type)
2915 {
2916 tree index_type, min, max;
2917
2918 /* If they did it with unspecified bounds, then we should have already
2919 given an error about it before we got here. */
2920 if (! TYPE_DOMAIN (type))
2921 return error_mark_node;
2922
2923 index_type = TYPE_DOMAIN (type);
2924 min = TYPE_MIN_VALUE (index_type);
2925 max = TYPE_MAX_VALUE (index_type);
2926
2927 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2928 if (!max)
2929 return error_mark_node;
2930
2931 return (integer_zerop (min)
2932 ? max
2933 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2934 }
2935 \f
2936 /* If arg is static -- a reference to an object in static storage -- then
2937 return the object. This is not the same as the C meaning of `static'.
2938 If arg isn't static, return NULL. */
2939
2940 tree
2941 staticp (tree arg)
2942 {
2943 switch (TREE_CODE (arg))
2944 {
2945 case FUNCTION_DECL:
2946 /* Nested functions are static, even though taking their address will
2947 involve a trampoline as we unnest the nested function and create
2948 the trampoline on the tree level. */
2949 return arg;
2950
2951 case VAR_DECL:
2952 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2953 && ! DECL_THREAD_LOCAL_P (arg)
2954 && ! DECL_DLLIMPORT_P (arg)
2955 ? arg : NULL);
2956
2957 case CONST_DECL:
2958 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2959 ? arg : NULL);
2960
2961 case CONSTRUCTOR:
2962 return TREE_STATIC (arg) ? arg : NULL;
2963
2964 case LABEL_DECL:
2965 case STRING_CST:
2966 return arg;
2967
2968 case COMPONENT_REF:
2969 /* If the thing being referenced is not a field, then it is
2970 something language specific. */
2971 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2972
2973 /* If we are referencing a bitfield, we can't evaluate an
2974 ADDR_EXPR at compile time and so it isn't a constant. */
2975 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2976 return NULL;
2977
2978 return staticp (TREE_OPERAND (arg, 0));
2979
2980 case BIT_FIELD_REF:
2981 return NULL;
2982
2983 case INDIRECT_REF:
2984 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2985
2986 case ARRAY_REF:
2987 case ARRAY_RANGE_REF:
2988 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2989 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2990 return staticp (TREE_OPERAND (arg, 0));
2991 else
2992 return NULL;
2993
2994 case COMPOUND_LITERAL_EXPR:
2995 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2996
2997 default:
2998 return NULL;
2999 }
3000 }
3001
3002 \f
3003
3004
3005 /* Return whether OP is a DECL whose address is function-invariant. */
3006
3007 bool
3008 decl_address_invariant_p (const_tree op)
3009 {
3010 /* The conditions below are slightly less strict than the one in
3011 staticp. */
3012
3013 switch (TREE_CODE (op))
3014 {
3015 case PARM_DECL:
3016 case RESULT_DECL:
3017 case LABEL_DECL:
3018 case FUNCTION_DECL:
3019 return true;
3020
3021 case VAR_DECL:
3022 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3023 || DECL_THREAD_LOCAL_P (op)
3024 || DECL_CONTEXT (op) == current_function_decl
3025 || decl_function_context (op) == current_function_decl)
3026 return true;
3027 break;
3028
3029 case CONST_DECL:
3030 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3031 || decl_function_context (op) == current_function_decl)
3032 return true;
3033 break;
3034
3035 default:
3036 break;
3037 }
3038
3039 return false;
3040 }
3041
3042 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3043
3044 bool
3045 decl_address_ip_invariant_p (const_tree op)
3046 {
3047 /* The conditions below are slightly less strict than the one in
3048 staticp. */
3049
3050 switch (TREE_CODE (op))
3051 {
3052 case LABEL_DECL:
3053 case FUNCTION_DECL:
3054 case STRING_CST:
3055 return true;
3056
3057 case VAR_DECL:
3058 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3059 && !DECL_DLLIMPORT_P (op))
3060 || DECL_THREAD_LOCAL_P (op))
3061 return true;
3062 break;
3063
3064 case CONST_DECL:
3065 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3066 return true;
3067 break;
3068
3069 default:
3070 break;
3071 }
3072
3073 return false;
3074 }
3075
3076
3077 /* Return true if T is function-invariant (internal function, does
3078 not handle arithmetic; that's handled in skip_simple_arithmetic and
3079 tree_invariant_p). */
3080
3081 static bool tree_invariant_p (tree t);
3082
3083 static bool
3084 tree_invariant_p_1 (tree t)
3085 {
3086 tree op;
3087
3088 if (TREE_CONSTANT (t)
3089 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3090 return true;
3091
3092 switch (TREE_CODE (t))
3093 {
3094 case SAVE_EXPR:
3095 return true;
3096
3097 case ADDR_EXPR:
3098 op = TREE_OPERAND (t, 0);
3099 while (handled_component_p (op))
3100 {
3101 switch (TREE_CODE (op))
3102 {
3103 case ARRAY_REF:
3104 case ARRAY_RANGE_REF:
3105 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3106 || TREE_OPERAND (op, 2) != NULL_TREE
3107 || TREE_OPERAND (op, 3) != NULL_TREE)
3108 return false;
3109 break;
3110
3111 case COMPONENT_REF:
3112 if (TREE_OPERAND (op, 2) != NULL_TREE)
3113 return false;
3114 break;
3115
3116 default:;
3117 }
3118 op = TREE_OPERAND (op, 0);
3119 }
3120
3121 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3122
3123 default:
3124 break;
3125 }
3126
3127 return false;
3128 }
3129
3130 /* Return true if T is function-invariant. */
3131
3132 static bool
3133 tree_invariant_p (tree t)
3134 {
3135 tree inner = skip_simple_arithmetic (t);
3136 return tree_invariant_p_1 (inner);
3137 }
3138
3139 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3140 Do this to any expression which may be used in more than one place,
3141 but must be evaluated only once.
3142
3143 Normally, expand_expr would reevaluate the expression each time.
3144 Calling save_expr produces something that is evaluated and recorded
3145 the first time expand_expr is called on it. Subsequent calls to
3146 expand_expr just reuse the recorded value.
3147
3148 The call to expand_expr that generates code that actually computes
3149 the value is the first call *at compile time*. Subsequent calls
3150 *at compile time* generate code to use the saved value.
3151 This produces correct result provided that *at run time* control
3152 always flows through the insns made by the first expand_expr
3153 before reaching the other places where the save_expr was evaluated.
3154 You, the caller of save_expr, must make sure this is so.
3155
3156 Constants, and certain read-only nodes, are returned with no
3157 SAVE_EXPR because that is safe. Expressions containing placeholders
3158 are not touched; see tree.def for an explanation of what these
3159 are used for. */
3160
3161 tree
3162 save_expr (tree expr)
3163 {
3164 tree t = fold (expr);
3165 tree inner;
3166
3167 /* If the tree evaluates to a constant, then we don't want to hide that
3168 fact (i.e. this allows further folding, and direct checks for constants).
3169 However, a read-only object that has side effects cannot be bypassed.
3170 Since it is no problem to reevaluate literals, we just return the
3171 literal node. */
3172 inner = skip_simple_arithmetic (t);
3173 if (TREE_CODE (inner) == ERROR_MARK)
3174 return inner;
3175
3176 if (tree_invariant_p_1 (inner))
3177 return t;
3178
3179 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3180 it means that the size or offset of some field of an object depends on
3181 the value within another field.
3182
3183 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
3184 and some variable since it would then need to be both evaluated once and
3185 evaluated more than once. Front-ends must assure this case cannot
3186 happen by surrounding any such subexpressions in their own SAVE_EXPR
3187 and forcing evaluation at the proper time. */
3188 if (contains_placeholder_p (inner))
3189 return t;
3190
3191 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
3192 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
3193
3194 /* This expression might be placed ahead of a jump to ensure that the
3195 value was computed on both sides of the jump. So make sure it isn't
3196 eliminated as dead. */
3197 TREE_SIDE_EFFECTS (t) = 1;
3198 return t;
3199 }
3200
3201 /* Look inside EXPR into any simple arithmetic operations. Return the
3202 outermost non-arithmetic or non-invariant node. */
3203
3204 tree
3205 skip_simple_arithmetic (tree expr)
3206 {
3207 /* We don't care about whether this can be used as an lvalue in this
3208 context. */
3209 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3210 expr = TREE_OPERAND (expr, 0);
3211
3212 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3213 a constant, it will be more efficient to not make another SAVE_EXPR since
3214 it will allow better simplification and GCSE will be able to merge the
3215 computations if they actually occur. */
3216 while (true)
3217 {
3218 if (UNARY_CLASS_P (expr))
3219 expr = TREE_OPERAND (expr, 0);
3220 else if (BINARY_CLASS_P (expr))
3221 {
3222 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3223 expr = TREE_OPERAND (expr, 0);
3224 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3225 expr = TREE_OPERAND (expr, 1);
3226 else
3227 break;
3228 }
3229 else
3230 break;
3231 }
3232
3233 return expr;
3234 }
3235
3236 /* Look inside EXPR into simple arithmetic operations involving constants.
3237 Return the outermost non-arithmetic or non-constant node. */
3238
3239 tree
3240 skip_simple_constant_arithmetic (tree expr)
3241 {
3242 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3243 expr = TREE_OPERAND (expr, 0);
3244
3245 while (true)
3246 {
3247 if (UNARY_CLASS_P (expr))
3248 expr = TREE_OPERAND (expr, 0);
3249 else if (BINARY_CLASS_P (expr))
3250 {
3251 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3252 expr = TREE_OPERAND (expr, 0);
3253 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3254 expr = TREE_OPERAND (expr, 1);
3255 else
3256 break;
3257 }
3258 else
3259 break;
3260 }
3261
3262 return expr;
3263 }
3264
3265 /* Return which tree structure is used by T. */
3266
3267 enum tree_node_structure_enum
3268 tree_node_structure (const_tree t)
3269 {
3270 const enum tree_code code = TREE_CODE (t);
3271 return tree_node_structure_for_code (code);
3272 }
3273
3274 /* Set various status flags when building a CALL_EXPR object T. */
3275
3276 static void
3277 process_call_operands (tree t)
3278 {
3279 bool side_effects = TREE_SIDE_EFFECTS (t);
3280 bool read_only = false;
3281 int i = call_expr_flags (t);
3282
3283 /* Calls have side-effects, except those to const or pure functions. */
3284 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3285 side_effects = true;
3286 /* Propagate TREE_READONLY of arguments for const functions. */
3287 if (i & ECF_CONST)
3288 read_only = true;
3289
3290 if (!side_effects || read_only)
3291 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3292 {
3293 tree op = TREE_OPERAND (t, i);
3294 if (op && TREE_SIDE_EFFECTS (op))
3295 side_effects = true;
3296 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3297 read_only = false;
3298 }
3299
3300 TREE_SIDE_EFFECTS (t) = side_effects;
3301 TREE_READONLY (t) = read_only;
3302 }
3303 \f
3304 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3305 size or offset that depends on a field within a record. */
3306
3307 bool
3308 contains_placeholder_p (const_tree exp)
3309 {
3310 enum tree_code code;
3311
3312 if (!exp)
3313 return 0;
3314
3315 code = TREE_CODE (exp);
3316 if (code == PLACEHOLDER_EXPR)
3317 return 1;
3318
3319 switch (TREE_CODE_CLASS (code))
3320 {
3321 case tcc_reference:
3322 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3323 position computations since they will be converted into a
3324 WITH_RECORD_EXPR involving the reference, which will assume
3325 here will be valid. */
3326 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3327
3328 case tcc_exceptional:
3329 if (code == TREE_LIST)
3330 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3331 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3332 break;
3333
3334 case tcc_unary:
3335 case tcc_binary:
3336 case tcc_comparison:
3337 case tcc_expression:
3338 switch (code)
3339 {
3340 case COMPOUND_EXPR:
3341 /* Ignoring the first operand isn't quite right, but works best. */
3342 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3343
3344 case COND_EXPR:
3345 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3346 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3347 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3348
3349 case SAVE_EXPR:
3350 /* The save_expr function never wraps anything containing
3351 a PLACEHOLDER_EXPR. */
3352 return 0;
3353
3354 default:
3355 break;
3356 }
3357
3358 switch (TREE_CODE_LENGTH (code))
3359 {
3360 case 1:
3361 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3362 case 2:
3363 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3364 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3365 default:
3366 return 0;
3367 }
3368
3369 case tcc_vl_exp:
3370 switch (code)
3371 {
3372 case CALL_EXPR:
3373 {
3374 const_tree arg;
3375 const_call_expr_arg_iterator iter;
3376 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3377 if (CONTAINS_PLACEHOLDER_P (arg))
3378 return 1;
3379 return 0;
3380 }
3381 default:
3382 return 0;
3383 }
3384
3385 default:
3386 return 0;
3387 }
3388 return 0;
3389 }
3390
3391 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3392 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3393 field positions. */
3394
3395 static bool
3396 type_contains_placeholder_1 (const_tree type)
3397 {
3398 /* If the size contains a placeholder or the parent type (component type in
3399 the case of arrays) type involves a placeholder, this type does. */
3400 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3401 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3402 || (!POINTER_TYPE_P (type)
3403 && TREE_TYPE (type)
3404 && type_contains_placeholder_p (TREE_TYPE (type))))
3405 return true;
3406
3407 /* Now do type-specific checks. Note that the last part of the check above
3408 greatly limits what we have to do below. */
3409 switch (TREE_CODE (type))
3410 {
3411 case VOID_TYPE:
3412 case COMPLEX_TYPE:
3413 case ENUMERAL_TYPE:
3414 case BOOLEAN_TYPE:
3415 case POINTER_TYPE:
3416 case OFFSET_TYPE:
3417 case REFERENCE_TYPE:
3418 case METHOD_TYPE:
3419 case FUNCTION_TYPE:
3420 case VECTOR_TYPE:
3421 case NULLPTR_TYPE:
3422 return false;
3423
3424 case INTEGER_TYPE:
3425 case REAL_TYPE:
3426 case FIXED_POINT_TYPE:
3427 /* Here we just check the bounds. */
3428 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3429 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3430
3431 case ARRAY_TYPE:
3432 /* We have already checked the component type above, so just check the
3433 domain type. */
3434 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3435
3436 case RECORD_TYPE:
3437 case UNION_TYPE:
3438 case QUAL_UNION_TYPE:
3439 {
3440 tree field;
3441
3442 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3443 if (TREE_CODE (field) == FIELD_DECL
3444 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3445 || (TREE_CODE (type) == QUAL_UNION_TYPE
3446 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3447 || type_contains_placeholder_p (TREE_TYPE (field))))
3448 return true;
3449
3450 return false;
3451 }
3452
3453 default:
3454 gcc_unreachable ();
3455 }
3456 }
3457
3458 /* Wrapper around above function used to cache its result. */
3459
3460 bool
3461 type_contains_placeholder_p (tree type)
3462 {
3463 bool result;
3464
3465 /* If the contains_placeholder_bits field has been initialized,
3466 then we know the answer. */
3467 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3468 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3469
3470 /* Indicate that we've seen this type node, and the answer is false.
3471 This is what we want to return if we run into recursion via fields. */
3472 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3473
3474 /* Compute the real value. */
3475 result = type_contains_placeholder_1 (type);
3476
3477 /* Store the real value. */
3478 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3479
3480 return result;
3481 }
3482 \f
3483 /* Push tree EXP onto vector QUEUE if it is not already present. */
3484
3485 static void
3486 push_without_duplicates (tree exp, vec<tree> *queue)
3487 {
3488 unsigned int i;
3489 tree iter;
3490
3491 FOR_EACH_VEC_ELT (*queue, i, iter)
3492 if (simple_cst_equal (iter, exp) == 1)
3493 break;
3494
3495 if (!iter)
3496 queue->safe_push (exp);
3497 }
3498
3499 /* Given a tree EXP, find all occurrences of references to fields
3500 in a PLACEHOLDER_EXPR and place them in vector REFS without
3501 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3502 we assume here that EXP contains only arithmetic expressions
3503 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3504 argument list. */
3505
3506 void
3507 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3508 {
3509 enum tree_code code = TREE_CODE (exp);
3510 tree inner;
3511 int i;
3512
3513 /* We handle TREE_LIST and COMPONENT_REF separately. */
3514 if (code == TREE_LIST)
3515 {
3516 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3517 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3518 }
3519 else if (code == COMPONENT_REF)
3520 {
3521 for (inner = TREE_OPERAND (exp, 0);
3522 REFERENCE_CLASS_P (inner);
3523 inner = TREE_OPERAND (inner, 0))
3524 ;
3525
3526 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3527 push_without_duplicates (exp, refs);
3528 else
3529 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3530 }
3531 else
3532 switch (TREE_CODE_CLASS (code))
3533 {
3534 case tcc_constant:
3535 break;
3536
3537 case tcc_declaration:
3538 /* Variables allocated to static storage can stay. */
3539 if (!TREE_STATIC (exp))
3540 push_without_duplicates (exp, refs);
3541 break;
3542
3543 case tcc_expression:
3544 /* This is the pattern built in ada/make_aligning_type. */
3545 if (code == ADDR_EXPR
3546 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3547 {
3548 push_without_duplicates (exp, refs);
3549 break;
3550 }
3551
3552 /* Fall through... */
3553
3554 case tcc_exceptional:
3555 case tcc_unary:
3556 case tcc_binary:
3557 case tcc_comparison:
3558 case tcc_reference:
3559 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3560 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3561 break;
3562
3563 case tcc_vl_exp:
3564 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3565 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3566 break;
3567
3568 default:
3569 gcc_unreachable ();
3570 }
3571 }
3572
3573 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3574 return a tree with all occurrences of references to F in a
3575 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3576 CONST_DECLs. Note that we assume here that EXP contains only
3577 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3578 occurring only in their argument list. */
3579
3580 tree
3581 substitute_in_expr (tree exp, tree f, tree r)
3582 {
3583 enum tree_code code = TREE_CODE (exp);
3584 tree op0, op1, op2, op3;
3585 tree new_tree;
3586
3587 /* We handle TREE_LIST and COMPONENT_REF separately. */
3588 if (code == TREE_LIST)
3589 {
3590 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3591 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3592 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3593 return exp;
3594
3595 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3596 }
3597 else if (code == COMPONENT_REF)
3598 {
3599 tree inner;
3600
3601 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3602 and it is the right field, replace it with R. */
3603 for (inner = TREE_OPERAND (exp, 0);
3604 REFERENCE_CLASS_P (inner);
3605 inner = TREE_OPERAND (inner, 0))
3606 ;
3607
3608 /* The field. */
3609 op1 = TREE_OPERAND (exp, 1);
3610
3611 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3612 return r;
3613
3614 /* If this expression hasn't been completed let, leave it alone. */
3615 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3616 return exp;
3617
3618 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3619 if (op0 == TREE_OPERAND (exp, 0))
3620 return exp;
3621
3622 new_tree
3623 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3624 }
3625 else
3626 switch (TREE_CODE_CLASS (code))
3627 {
3628 case tcc_constant:
3629 return exp;
3630
3631 case tcc_declaration:
3632 if (exp == f)
3633 return r;
3634 else
3635 return exp;
3636
3637 case tcc_expression:
3638 if (exp == f)
3639 return r;
3640
3641 /* Fall through... */
3642
3643 case tcc_exceptional:
3644 case tcc_unary:
3645 case tcc_binary:
3646 case tcc_comparison:
3647 case tcc_reference:
3648 switch (TREE_CODE_LENGTH (code))
3649 {
3650 case 0:
3651 return exp;
3652
3653 case 1:
3654 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3655 if (op0 == TREE_OPERAND (exp, 0))
3656 return exp;
3657
3658 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3659 break;
3660
3661 case 2:
3662 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3663 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3664
3665 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3666 return exp;
3667
3668 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3669 break;
3670
3671 case 3:
3672 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3673 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3674 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3675
3676 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3677 && op2 == TREE_OPERAND (exp, 2))
3678 return exp;
3679
3680 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3681 break;
3682
3683 case 4:
3684 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3685 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3686 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3687 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3688
3689 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3690 && op2 == TREE_OPERAND (exp, 2)
3691 && op3 == TREE_OPERAND (exp, 3))
3692 return exp;
3693
3694 new_tree
3695 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3696 break;
3697
3698 default:
3699 gcc_unreachable ();
3700 }
3701 break;
3702
3703 case tcc_vl_exp:
3704 {
3705 int i;
3706
3707 new_tree = NULL_TREE;
3708
3709 /* If we are trying to replace F with a constant, inline back
3710 functions which do nothing else than computing a value from
3711 the arguments they are passed. This makes it possible to
3712 fold partially or entirely the replacement expression. */
3713 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3714 {
3715 tree t = maybe_inline_call_in_expr (exp);
3716 if (t)
3717 return SUBSTITUTE_IN_EXPR (t, f, r);
3718 }
3719
3720 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3721 {
3722 tree op = TREE_OPERAND (exp, i);
3723 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3724 if (new_op != op)
3725 {
3726 if (!new_tree)
3727 new_tree = copy_node (exp);
3728 TREE_OPERAND (new_tree, i) = new_op;
3729 }
3730 }
3731
3732 if (new_tree)
3733 {
3734 new_tree = fold (new_tree);
3735 if (TREE_CODE (new_tree) == CALL_EXPR)
3736 process_call_operands (new_tree);
3737 }
3738 else
3739 return exp;
3740 }
3741 break;
3742
3743 default:
3744 gcc_unreachable ();
3745 }
3746
3747 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3748
3749 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3750 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3751
3752 return new_tree;
3753 }
3754
3755 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3756 for it within OBJ, a tree that is an object or a chain of references. */
3757
3758 tree
3759 substitute_placeholder_in_expr (tree exp, tree obj)
3760 {
3761 enum tree_code code = TREE_CODE (exp);
3762 tree op0, op1, op2, op3;
3763 tree new_tree;
3764
3765 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3766 in the chain of OBJ. */
3767 if (code == PLACEHOLDER_EXPR)
3768 {
3769 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3770 tree elt;
3771
3772 for (elt = obj; elt != 0;
3773 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3774 || TREE_CODE (elt) == COND_EXPR)
3775 ? TREE_OPERAND (elt, 1)
3776 : (REFERENCE_CLASS_P (elt)
3777 || UNARY_CLASS_P (elt)
3778 || BINARY_CLASS_P (elt)
3779 || VL_EXP_CLASS_P (elt)
3780 || EXPRESSION_CLASS_P (elt))
3781 ? TREE_OPERAND (elt, 0) : 0))
3782 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3783 return elt;
3784
3785 for (elt = obj; elt != 0;
3786 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3787 || TREE_CODE (elt) == COND_EXPR)
3788 ? TREE_OPERAND (elt, 1)
3789 : (REFERENCE_CLASS_P (elt)
3790 || UNARY_CLASS_P (elt)
3791 || BINARY_CLASS_P (elt)
3792 || VL_EXP_CLASS_P (elt)
3793 || EXPRESSION_CLASS_P (elt))
3794 ? TREE_OPERAND (elt, 0) : 0))
3795 if (POINTER_TYPE_P (TREE_TYPE (elt))
3796 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3797 == need_type))
3798 return fold_build1 (INDIRECT_REF, need_type, elt);
3799
3800 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3801 survives until RTL generation, there will be an error. */
3802 return exp;
3803 }
3804
3805 /* TREE_LIST is special because we need to look at TREE_VALUE
3806 and TREE_CHAIN, not TREE_OPERANDS. */
3807 else if (code == TREE_LIST)
3808 {
3809 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3810 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3811 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3812 return exp;
3813
3814 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3815 }
3816 else
3817 switch (TREE_CODE_CLASS (code))
3818 {
3819 case tcc_constant:
3820 case tcc_declaration:
3821 return exp;
3822
3823 case tcc_exceptional:
3824 case tcc_unary:
3825 case tcc_binary:
3826 case tcc_comparison:
3827 case tcc_expression:
3828 case tcc_reference:
3829 case tcc_statement:
3830 switch (TREE_CODE_LENGTH (code))
3831 {
3832 case 0:
3833 return exp;
3834
3835 case 1:
3836 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3837 if (op0 == TREE_OPERAND (exp, 0))
3838 return exp;
3839
3840 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3841 break;
3842
3843 case 2:
3844 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3845 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3846
3847 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3848 return exp;
3849
3850 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3851 break;
3852
3853 case 3:
3854 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3855 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3856 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3857
3858 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3859 && op2 == TREE_OPERAND (exp, 2))
3860 return exp;
3861
3862 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3863 break;
3864
3865 case 4:
3866 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3867 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3868 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3869 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3870
3871 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3872 && op2 == TREE_OPERAND (exp, 2)
3873 && op3 == TREE_OPERAND (exp, 3))
3874 return exp;
3875
3876 new_tree
3877 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3878 break;
3879
3880 default:
3881 gcc_unreachable ();
3882 }
3883 break;
3884
3885 case tcc_vl_exp:
3886 {
3887 int i;
3888
3889 new_tree = NULL_TREE;
3890
3891 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3892 {
3893 tree op = TREE_OPERAND (exp, i);
3894 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3895 if (new_op != op)
3896 {
3897 if (!new_tree)
3898 new_tree = copy_node (exp);
3899 TREE_OPERAND (new_tree, i) = new_op;
3900 }
3901 }
3902
3903 if (new_tree)
3904 {
3905 new_tree = fold (new_tree);
3906 if (TREE_CODE (new_tree) == CALL_EXPR)
3907 process_call_operands (new_tree);
3908 }
3909 else
3910 return exp;
3911 }
3912 break;
3913
3914 default:
3915 gcc_unreachable ();
3916 }
3917
3918 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3919
3920 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3921 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3922
3923 return new_tree;
3924 }
3925 \f
3926
3927 /* Subroutine of stabilize_reference; this is called for subtrees of
3928 references. Any expression with side-effects must be put in a SAVE_EXPR
3929 to ensure that it is only evaluated once.
3930
3931 We don't put SAVE_EXPR nodes around everything, because assigning very
3932 simple expressions to temporaries causes us to miss good opportunities
3933 for optimizations. Among other things, the opportunity to fold in the
3934 addition of a constant into an addressing mode often gets lost, e.g.
3935 "y[i+1] += x;". In general, we take the approach that we should not make
3936 an assignment unless we are forced into it - i.e., that any non-side effect
3937 operator should be allowed, and that cse should take care of coalescing
3938 multiple utterances of the same expression should that prove fruitful. */
3939
3940 static tree
3941 stabilize_reference_1 (tree e)
3942 {
3943 tree result;
3944 enum tree_code code = TREE_CODE (e);
3945
3946 /* We cannot ignore const expressions because it might be a reference
3947 to a const array but whose index contains side-effects. But we can
3948 ignore things that are actual constant or that already have been
3949 handled by this function. */
3950
3951 if (tree_invariant_p (e))
3952 return e;
3953
3954 switch (TREE_CODE_CLASS (code))
3955 {
3956 case tcc_exceptional:
3957 case tcc_type:
3958 case tcc_declaration:
3959 case tcc_comparison:
3960 case tcc_statement:
3961 case tcc_expression:
3962 case tcc_reference:
3963 case tcc_vl_exp:
3964 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3965 so that it will only be evaluated once. */
3966 /* The reference (r) and comparison (<) classes could be handled as
3967 below, but it is generally faster to only evaluate them once. */
3968 if (TREE_SIDE_EFFECTS (e))
3969 return save_expr (e);
3970 return e;
3971
3972 case tcc_constant:
3973 /* Constants need no processing. In fact, we should never reach
3974 here. */
3975 return e;
3976
3977 case tcc_binary:
3978 /* Division is slow and tends to be compiled with jumps,
3979 especially the division by powers of 2 that is often
3980 found inside of an array reference. So do it just once. */
3981 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3982 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3983 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3984 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3985 return save_expr (e);
3986 /* Recursively stabilize each operand. */
3987 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3988 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3989 break;
3990
3991 case tcc_unary:
3992 /* Recursively stabilize each operand. */
3993 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3994 break;
3995
3996 default:
3997 gcc_unreachable ();
3998 }
3999
4000 TREE_TYPE (result) = TREE_TYPE (e);
4001 TREE_READONLY (result) = TREE_READONLY (e);
4002 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4003 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4004
4005 return result;
4006 }
4007
4008 /* Stabilize a reference so that we can use it any number of times
4009 without causing its operands to be evaluated more than once.
4010 Returns the stabilized reference. This works by means of save_expr,
4011 so see the caveats in the comments about save_expr.
4012
4013 Also allows conversion expressions whose operands are references.
4014 Any other kind of expression is returned unchanged. */
4015
4016 tree
4017 stabilize_reference (tree ref)
4018 {
4019 tree result;
4020 enum tree_code code = TREE_CODE (ref);
4021
4022 switch (code)
4023 {
4024 case VAR_DECL:
4025 case PARM_DECL:
4026 case RESULT_DECL:
4027 /* No action is needed in this case. */
4028 return ref;
4029
4030 CASE_CONVERT:
4031 case FLOAT_EXPR:
4032 case FIX_TRUNC_EXPR:
4033 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4034 break;
4035
4036 case INDIRECT_REF:
4037 result = build_nt (INDIRECT_REF,
4038 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4039 break;
4040
4041 case COMPONENT_REF:
4042 result = build_nt (COMPONENT_REF,
4043 stabilize_reference (TREE_OPERAND (ref, 0)),
4044 TREE_OPERAND (ref, 1), NULL_TREE);
4045 break;
4046
4047 case BIT_FIELD_REF:
4048 result = build_nt (BIT_FIELD_REF,
4049 stabilize_reference (TREE_OPERAND (ref, 0)),
4050 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4051 break;
4052
4053 case ARRAY_REF:
4054 result = build_nt (ARRAY_REF,
4055 stabilize_reference (TREE_OPERAND (ref, 0)),
4056 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4057 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4058 break;
4059
4060 case ARRAY_RANGE_REF:
4061 result = build_nt (ARRAY_RANGE_REF,
4062 stabilize_reference (TREE_OPERAND (ref, 0)),
4063 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4064 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4065 break;
4066
4067 case COMPOUND_EXPR:
4068 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4069 it wouldn't be ignored. This matters when dealing with
4070 volatiles. */
4071 return stabilize_reference_1 (ref);
4072
4073 /* If arg isn't a kind of lvalue we recognize, make no change.
4074 Caller should recognize the error for an invalid lvalue. */
4075 default:
4076 return ref;
4077
4078 case ERROR_MARK:
4079 return error_mark_node;
4080 }
4081
4082 TREE_TYPE (result) = TREE_TYPE (ref);
4083 TREE_READONLY (result) = TREE_READONLY (ref);
4084 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4085 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4086
4087 return result;
4088 }
4089 \f
4090 /* Low-level constructors for expressions. */
4091
4092 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4093 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4094
4095 void
4096 recompute_tree_invariant_for_addr_expr (tree t)
4097 {
4098 tree node;
4099 bool tc = true, se = false;
4100
4101 /* We started out assuming this address is both invariant and constant, but
4102 does not have side effects. Now go down any handled components and see if
4103 any of them involve offsets that are either non-constant or non-invariant.
4104 Also check for side-effects.
4105
4106 ??? Note that this code makes no attempt to deal with the case where
4107 taking the address of something causes a copy due to misalignment. */
4108
4109 #define UPDATE_FLAGS(NODE) \
4110 do { tree _node = (NODE); \
4111 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4112 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4113
4114 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4115 node = TREE_OPERAND (node, 0))
4116 {
4117 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4118 array reference (probably made temporarily by the G++ front end),
4119 so ignore all the operands. */
4120 if ((TREE_CODE (node) == ARRAY_REF
4121 || TREE_CODE (node) == ARRAY_RANGE_REF)
4122 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4123 {
4124 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4125 if (TREE_OPERAND (node, 2))
4126 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4127 if (TREE_OPERAND (node, 3))
4128 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4129 }
4130 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4131 FIELD_DECL, apparently. The G++ front end can put something else
4132 there, at least temporarily. */
4133 else if (TREE_CODE (node) == COMPONENT_REF
4134 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4135 {
4136 if (TREE_OPERAND (node, 2))
4137 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4138 }
4139 }
4140
4141 node = lang_hooks.expr_to_decl (node, &tc, &se);
4142
4143 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4144 the address, since &(*a)->b is a form of addition. If it's a constant, the
4145 address is constant too. If it's a decl, its address is constant if the
4146 decl is static. Everything else is not constant and, furthermore,
4147 taking the address of a volatile variable is not volatile. */
4148 if (TREE_CODE (node) == INDIRECT_REF
4149 || TREE_CODE (node) == MEM_REF)
4150 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4151 else if (CONSTANT_CLASS_P (node))
4152 ;
4153 else if (DECL_P (node))
4154 tc &= (staticp (node) != NULL_TREE);
4155 else
4156 {
4157 tc = false;
4158 se |= TREE_SIDE_EFFECTS (node);
4159 }
4160
4161
4162 TREE_CONSTANT (t) = tc;
4163 TREE_SIDE_EFFECTS (t) = se;
4164 #undef UPDATE_FLAGS
4165 }
4166
4167 /* Build an expression of code CODE, data type TYPE, and operands as
4168 specified. Expressions and reference nodes can be created this way.
4169 Constants, decls, types and misc nodes cannot be.
4170
4171 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4172 enough for all extant tree codes. */
4173
4174 tree
4175 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
4176 {
4177 tree t;
4178
4179 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4180
4181 t = make_node_stat (code PASS_MEM_STAT);
4182 TREE_TYPE (t) = tt;
4183
4184 return t;
4185 }
4186
4187 tree
4188 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4189 {
4190 int length = sizeof (struct tree_exp);
4191 tree t;
4192
4193 record_node_allocation_statistics (code, length);
4194
4195 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4196
4197 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4198
4199 memset (t, 0, sizeof (struct tree_common));
4200
4201 TREE_SET_CODE (t, code);
4202
4203 TREE_TYPE (t) = type;
4204 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4205 TREE_OPERAND (t, 0) = node;
4206 if (node && !TYPE_P (node))
4207 {
4208 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4209 TREE_READONLY (t) = TREE_READONLY (node);
4210 }
4211
4212 if (TREE_CODE_CLASS (code) == tcc_statement)
4213 TREE_SIDE_EFFECTS (t) = 1;
4214 else switch (code)
4215 {
4216 case VA_ARG_EXPR:
4217 /* All of these have side-effects, no matter what their
4218 operands are. */
4219 TREE_SIDE_EFFECTS (t) = 1;
4220 TREE_READONLY (t) = 0;
4221 break;
4222
4223 case INDIRECT_REF:
4224 /* Whether a dereference is readonly has nothing to do with whether
4225 its operand is readonly. */
4226 TREE_READONLY (t) = 0;
4227 break;
4228
4229 case ADDR_EXPR:
4230 if (node)
4231 recompute_tree_invariant_for_addr_expr (t);
4232 break;
4233
4234 default:
4235 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4236 && node && !TYPE_P (node)
4237 && TREE_CONSTANT (node))
4238 TREE_CONSTANT (t) = 1;
4239 if (TREE_CODE_CLASS (code) == tcc_reference
4240 && node && TREE_THIS_VOLATILE (node))
4241 TREE_THIS_VOLATILE (t) = 1;
4242 break;
4243 }
4244
4245 return t;
4246 }
4247
4248 #define PROCESS_ARG(N) \
4249 do { \
4250 TREE_OPERAND (t, N) = arg##N; \
4251 if (arg##N &&!TYPE_P (arg##N)) \
4252 { \
4253 if (TREE_SIDE_EFFECTS (arg##N)) \
4254 side_effects = 1; \
4255 if (!TREE_READONLY (arg##N) \
4256 && !CONSTANT_CLASS_P (arg##N)) \
4257 (void) (read_only = 0); \
4258 if (!TREE_CONSTANT (arg##N)) \
4259 (void) (constant = 0); \
4260 } \
4261 } while (0)
4262
4263 tree
4264 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4265 {
4266 bool constant, read_only, side_effects;
4267 tree t;
4268
4269 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4270
4271 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4272 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4273 /* When sizetype precision doesn't match that of pointers
4274 we need to be able to build explicit extensions or truncations
4275 of the offset argument. */
4276 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4277 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4278 && TREE_CODE (arg1) == INTEGER_CST);
4279
4280 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4281 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4282 && ptrofftype_p (TREE_TYPE (arg1)));
4283
4284 t = make_node_stat (code PASS_MEM_STAT);
4285 TREE_TYPE (t) = tt;
4286
4287 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4288 result based on those same flags for the arguments. But if the
4289 arguments aren't really even `tree' expressions, we shouldn't be trying
4290 to do this. */
4291
4292 /* Expressions without side effects may be constant if their
4293 arguments are as well. */
4294 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4295 || TREE_CODE_CLASS (code) == tcc_binary);
4296 read_only = 1;
4297 side_effects = TREE_SIDE_EFFECTS (t);
4298
4299 PROCESS_ARG (0);
4300 PROCESS_ARG (1);
4301
4302 TREE_READONLY (t) = read_only;
4303 TREE_CONSTANT (t) = constant;
4304 TREE_SIDE_EFFECTS (t) = side_effects;
4305 TREE_THIS_VOLATILE (t)
4306 = (TREE_CODE_CLASS (code) == tcc_reference
4307 && arg0 && TREE_THIS_VOLATILE (arg0));
4308
4309 return t;
4310 }
4311
4312
4313 tree
4314 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4315 tree arg2 MEM_STAT_DECL)
4316 {
4317 bool constant, read_only, side_effects;
4318 tree t;
4319
4320 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4321 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4322
4323 t = make_node_stat (code PASS_MEM_STAT);
4324 TREE_TYPE (t) = tt;
4325
4326 read_only = 1;
4327
4328 /* As a special exception, if COND_EXPR has NULL branches, we
4329 assume that it is a gimple statement and always consider
4330 it to have side effects. */
4331 if (code == COND_EXPR
4332 && tt == void_type_node
4333 && arg1 == NULL_TREE
4334 && arg2 == NULL_TREE)
4335 side_effects = true;
4336 else
4337 side_effects = TREE_SIDE_EFFECTS (t);
4338
4339 PROCESS_ARG (0);
4340 PROCESS_ARG (1);
4341 PROCESS_ARG (2);
4342
4343 if (code == COND_EXPR)
4344 TREE_READONLY (t) = read_only;
4345
4346 TREE_SIDE_EFFECTS (t) = side_effects;
4347 TREE_THIS_VOLATILE (t)
4348 = (TREE_CODE_CLASS (code) == tcc_reference
4349 && arg0 && TREE_THIS_VOLATILE (arg0));
4350
4351 return t;
4352 }
4353
4354 tree
4355 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4356 tree arg2, tree arg3 MEM_STAT_DECL)
4357 {
4358 bool constant, read_only, side_effects;
4359 tree t;
4360
4361 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4362
4363 t = make_node_stat (code PASS_MEM_STAT);
4364 TREE_TYPE (t) = tt;
4365
4366 side_effects = TREE_SIDE_EFFECTS (t);
4367
4368 PROCESS_ARG (0);
4369 PROCESS_ARG (1);
4370 PROCESS_ARG (2);
4371 PROCESS_ARG (3);
4372
4373 TREE_SIDE_EFFECTS (t) = side_effects;
4374 TREE_THIS_VOLATILE (t)
4375 = (TREE_CODE_CLASS (code) == tcc_reference
4376 && arg0 && TREE_THIS_VOLATILE (arg0));
4377
4378 return t;
4379 }
4380
4381 tree
4382 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4383 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4384 {
4385 bool constant, read_only, side_effects;
4386 tree t;
4387
4388 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4389
4390 t = make_node_stat (code PASS_MEM_STAT);
4391 TREE_TYPE (t) = tt;
4392
4393 side_effects = TREE_SIDE_EFFECTS (t);
4394
4395 PROCESS_ARG (0);
4396 PROCESS_ARG (1);
4397 PROCESS_ARG (2);
4398 PROCESS_ARG (3);
4399 PROCESS_ARG (4);
4400
4401 TREE_SIDE_EFFECTS (t) = side_effects;
4402 TREE_THIS_VOLATILE (t)
4403 = (TREE_CODE_CLASS (code) == tcc_reference
4404 && arg0 && TREE_THIS_VOLATILE (arg0));
4405
4406 return t;
4407 }
4408
4409 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4410 on the pointer PTR. */
4411
4412 tree
4413 build_simple_mem_ref_loc (location_t loc, tree ptr)
4414 {
4415 HOST_WIDE_INT offset = 0;
4416 tree ptype = TREE_TYPE (ptr);
4417 tree tem;
4418 /* For convenience allow addresses that collapse to a simple base
4419 and offset. */
4420 if (TREE_CODE (ptr) == ADDR_EXPR
4421 && (handled_component_p (TREE_OPERAND (ptr, 0))
4422 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4423 {
4424 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4425 gcc_assert (ptr);
4426 ptr = build_fold_addr_expr (ptr);
4427 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4428 }
4429 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4430 ptr, build_int_cst (ptype, offset));
4431 SET_EXPR_LOCATION (tem, loc);
4432 return tem;
4433 }
4434
4435 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4436
4437 offset_int
4438 mem_ref_offset (const_tree t)
4439 {
4440 return offset_int::from (TREE_OPERAND (t, 1), SIGNED);
4441 }
4442
4443 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4444 offsetted by OFFSET units. */
4445
4446 tree
4447 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4448 {
4449 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4450 build_fold_addr_expr (base),
4451 build_int_cst (ptr_type_node, offset));
4452 tree addr = build1 (ADDR_EXPR, type, ref);
4453 recompute_tree_invariant_for_addr_expr (addr);
4454 return addr;
4455 }
4456
4457 /* Similar except don't specify the TREE_TYPE
4458 and leave the TREE_SIDE_EFFECTS as 0.
4459 It is permissible for arguments to be null,
4460 or even garbage if their values do not matter. */
4461
4462 tree
4463 build_nt (enum tree_code code, ...)
4464 {
4465 tree t;
4466 int length;
4467 int i;
4468 va_list p;
4469
4470 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4471
4472 va_start (p, code);
4473
4474 t = make_node (code);
4475 length = TREE_CODE_LENGTH (code);
4476
4477 for (i = 0; i < length; i++)
4478 TREE_OPERAND (t, i) = va_arg (p, tree);
4479
4480 va_end (p);
4481 return t;
4482 }
4483
4484 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4485 tree vec. */
4486
4487 tree
4488 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4489 {
4490 tree ret, t;
4491 unsigned int ix;
4492
4493 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4494 CALL_EXPR_FN (ret) = fn;
4495 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4496 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4497 CALL_EXPR_ARG (ret, ix) = t;
4498 return ret;
4499 }
4500 \f
4501 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4502 We do NOT enter this node in any sort of symbol table.
4503
4504 LOC is the location of the decl.
4505
4506 layout_decl is used to set up the decl's storage layout.
4507 Other slots are initialized to 0 or null pointers. */
4508
4509 tree
4510 build_decl_stat (location_t loc, enum tree_code code, tree name,
4511 tree type MEM_STAT_DECL)
4512 {
4513 tree t;
4514
4515 t = make_node_stat (code PASS_MEM_STAT);
4516 DECL_SOURCE_LOCATION (t) = loc;
4517
4518 /* if (type == error_mark_node)
4519 type = integer_type_node; */
4520 /* That is not done, deliberately, so that having error_mark_node
4521 as the type can suppress useless errors in the use of this variable. */
4522
4523 DECL_NAME (t) = name;
4524 TREE_TYPE (t) = type;
4525
4526 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4527 layout_decl (t, 0);
4528
4529 return t;
4530 }
4531
4532 /* Builds and returns function declaration with NAME and TYPE. */
4533
4534 tree
4535 build_fn_decl (const char *name, tree type)
4536 {
4537 tree id = get_identifier (name);
4538 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4539
4540 DECL_EXTERNAL (decl) = 1;
4541 TREE_PUBLIC (decl) = 1;
4542 DECL_ARTIFICIAL (decl) = 1;
4543 TREE_NOTHROW (decl) = 1;
4544
4545 return decl;
4546 }
4547
4548 vec<tree, va_gc> *all_translation_units;
4549
4550 /* Builds a new translation-unit decl with name NAME, queues it in the
4551 global list of translation-unit decls and returns it. */
4552
4553 tree
4554 build_translation_unit_decl (tree name)
4555 {
4556 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4557 name, NULL_TREE);
4558 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4559 vec_safe_push (all_translation_units, tu);
4560 return tu;
4561 }
4562
4563 \f
4564 /* BLOCK nodes are used to represent the structure of binding contours
4565 and declarations, once those contours have been exited and their contents
4566 compiled. This information is used for outputting debugging info. */
4567
4568 tree
4569 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4570 {
4571 tree block = make_node (BLOCK);
4572
4573 BLOCK_VARS (block) = vars;
4574 BLOCK_SUBBLOCKS (block) = subblocks;
4575 BLOCK_SUPERCONTEXT (block) = supercontext;
4576 BLOCK_CHAIN (block) = chain;
4577 return block;
4578 }
4579
4580 \f
4581 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4582
4583 LOC is the location to use in tree T. */
4584
4585 void
4586 protected_set_expr_location (tree t, location_t loc)
4587 {
4588 if (CAN_HAVE_LOCATION_P (t))
4589 SET_EXPR_LOCATION (t, loc);
4590 }
4591 \f
4592 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4593 is ATTRIBUTE. */
4594
4595 tree
4596 build_decl_attribute_variant (tree ddecl, tree attribute)
4597 {
4598 DECL_ATTRIBUTES (ddecl) = attribute;
4599 return ddecl;
4600 }
4601
4602 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4603 is ATTRIBUTE and its qualifiers are QUALS.
4604
4605 Record such modified types already made so we don't make duplicates. */
4606
4607 tree
4608 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4609 {
4610 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4611 {
4612 inchash::hash hstate;
4613 tree ntype;
4614 int i;
4615 tree t;
4616 enum tree_code code = TREE_CODE (ttype);
4617
4618 /* Building a distinct copy of a tagged type is inappropriate; it
4619 causes breakage in code that expects there to be a one-to-one
4620 relationship between a struct and its fields.
4621 build_duplicate_type is another solution (as used in
4622 handle_transparent_union_attribute), but that doesn't play well
4623 with the stronger C++ type identity model. */
4624 if (TREE_CODE (ttype) == RECORD_TYPE
4625 || TREE_CODE (ttype) == UNION_TYPE
4626 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4627 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4628 {
4629 warning (OPT_Wattributes,
4630 "ignoring attributes applied to %qT after definition",
4631 TYPE_MAIN_VARIANT (ttype));
4632 return build_qualified_type (ttype, quals);
4633 }
4634
4635 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4636 ntype = build_distinct_type_copy (ttype);
4637
4638 TYPE_ATTRIBUTES (ntype) = attribute;
4639
4640 hstate.add_int (code);
4641 if (TREE_TYPE (ntype))
4642 hstate.add_object (TYPE_HASH (TREE_TYPE (ntype)));
4643 attribute_hash_list (attribute, hstate);
4644
4645 switch (TREE_CODE (ntype))
4646 {
4647 case FUNCTION_TYPE:
4648 type_hash_list (TYPE_ARG_TYPES (ntype), hstate);
4649 break;
4650 case ARRAY_TYPE:
4651 if (TYPE_DOMAIN (ntype))
4652 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (ntype)));
4653 break;
4654 case INTEGER_TYPE:
4655 t = TYPE_MAX_VALUE (ntype);
4656 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
4657 hstate.add_object (TREE_INT_CST_ELT (t, i));
4658 break;
4659 case REAL_TYPE:
4660 case FIXED_POINT_TYPE:
4661 {
4662 unsigned int precision = TYPE_PRECISION (ntype);
4663 hstate.add_object (precision);
4664 }
4665 break;
4666 default:
4667 break;
4668 }
4669
4670 ntype = type_hash_canon (hstate.end(), ntype);
4671
4672 /* If the target-dependent attributes make NTYPE different from
4673 its canonical type, we will need to use structural equality
4674 checks for this type. */
4675 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4676 || !comp_type_attributes (ntype, ttype))
4677 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4678 else if (TYPE_CANONICAL (ntype) == ntype)
4679 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4680
4681 ttype = build_qualified_type (ntype, quals);
4682 }
4683 else if (TYPE_QUALS (ttype) != quals)
4684 ttype = build_qualified_type (ttype, quals);
4685
4686 return ttype;
4687 }
4688
4689 /* Check if "omp declare simd" attribute arguments, CLAUSES1 and CLAUSES2, are
4690 the same. */
4691
4692 static bool
4693 omp_declare_simd_clauses_equal (tree clauses1, tree clauses2)
4694 {
4695 tree cl1, cl2;
4696 for (cl1 = clauses1, cl2 = clauses2;
4697 cl1 && cl2;
4698 cl1 = OMP_CLAUSE_CHAIN (cl1), cl2 = OMP_CLAUSE_CHAIN (cl2))
4699 {
4700 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_CODE (cl2))
4701 return false;
4702 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_SIMDLEN)
4703 {
4704 if (simple_cst_equal (OMP_CLAUSE_DECL (cl1),
4705 OMP_CLAUSE_DECL (cl2)) != 1)
4706 return false;
4707 }
4708 switch (OMP_CLAUSE_CODE (cl1))
4709 {
4710 case OMP_CLAUSE_ALIGNED:
4711 if (simple_cst_equal (OMP_CLAUSE_ALIGNED_ALIGNMENT (cl1),
4712 OMP_CLAUSE_ALIGNED_ALIGNMENT (cl2)) != 1)
4713 return false;
4714 break;
4715 case OMP_CLAUSE_LINEAR:
4716 if (simple_cst_equal (OMP_CLAUSE_LINEAR_STEP (cl1),
4717 OMP_CLAUSE_LINEAR_STEP (cl2)) != 1)
4718 return false;
4719 break;
4720 case OMP_CLAUSE_SIMDLEN:
4721 if (simple_cst_equal (OMP_CLAUSE_SIMDLEN_EXPR (cl1),
4722 OMP_CLAUSE_SIMDLEN_EXPR (cl2)) != 1)
4723 return false;
4724 default:
4725 break;
4726 }
4727 }
4728 return true;
4729 }
4730
4731 /* Compare two constructor-element-type constants. Return 1 if the lists
4732 are known to be equal; otherwise return 0. */
4733
4734 static bool
4735 simple_cst_list_equal (const_tree l1, const_tree l2)
4736 {
4737 while (l1 != NULL_TREE && l2 != NULL_TREE)
4738 {
4739 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4740 return false;
4741
4742 l1 = TREE_CHAIN (l1);
4743 l2 = TREE_CHAIN (l2);
4744 }
4745
4746 return l1 == l2;
4747 }
4748
4749 /* Compare two attributes for their value identity. Return true if the
4750 attribute values are known to be equal; otherwise return false.
4751 */
4752
4753 static bool
4754 attribute_value_equal (const_tree attr1, const_tree attr2)
4755 {
4756 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4757 return true;
4758
4759 if (TREE_VALUE (attr1) != NULL_TREE
4760 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4761 && TREE_VALUE (attr2) != NULL
4762 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4763 return (simple_cst_list_equal (TREE_VALUE (attr1),
4764 TREE_VALUE (attr2)) == 1);
4765
4766 if ((flag_openmp || flag_openmp_simd)
4767 && TREE_VALUE (attr1) && TREE_VALUE (attr2)
4768 && TREE_CODE (TREE_VALUE (attr1)) == OMP_CLAUSE
4769 && TREE_CODE (TREE_VALUE (attr2)) == OMP_CLAUSE)
4770 return omp_declare_simd_clauses_equal (TREE_VALUE (attr1),
4771 TREE_VALUE (attr2));
4772
4773 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4774 }
4775
4776 /* Return 0 if the attributes for two types are incompatible, 1 if they
4777 are compatible, and 2 if they are nearly compatible (which causes a
4778 warning to be generated). */
4779 int
4780 comp_type_attributes (const_tree type1, const_tree type2)
4781 {
4782 const_tree a1 = TYPE_ATTRIBUTES (type1);
4783 const_tree a2 = TYPE_ATTRIBUTES (type2);
4784 const_tree a;
4785
4786 if (a1 == a2)
4787 return 1;
4788 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4789 {
4790 const struct attribute_spec *as;
4791 const_tree attr;
4792
4793 as = lookup_attribute_spec (get_attribute_name (a));
4794 if (!as || as->affects_type_identity == false)
4795 continue;
4796
4797 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4798 if (!attr || !attribute_value_equal (a, attr))
4799 break;
4800 }
4801 if (!a)
4802 {
4803 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4804 {
4805 const struct attribute_spec *as;
4806
4807 as = lookup_attribute_spec (get_attribute_name (a));
4808 if (!as || as->affects_type_identity == false)
4809 continue;
4810
4811 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4812 break;
4813 /* We don't need to compare trees again, as we did this
4814 already in first loop. */
4815 }
4816 /* All types - affecting identity - are equal, so
4817 there is no need to call target hook for comparison. */
4818 if (!a)
4819 return 1;
4820 }
4821 /* As some type combinations - like default calling-convention - might
4822 be compatible, we have to call the target hook to get the final result. */
4823 return targetm.comp_type_attributes (type1, type2);
4824 }
4825
4826 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4827 is ATTRIBUTE.
4828
4829 Record such modified types already made so we don't make duplicates. */
4830
4831 tree
4832 build_type_attribute_variant (tree ttype, tree attribute)
4833 {
4834 return build_type_attribute_qual_variant (ttype, attribute,
4835 TYPE_QUALS (ttype));
4836 }
4837
4838
4839 /* Reset the expression *EXPR_P, a size or position.
4840
4841 ??? We could reset all non-constant sizes or positions. But it's cheap
4842 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4843
4844 We need to reset self-referential sizes or positions because they cannot
4845 be gimplified and thus can contain a CALL_EXPR after the gimplification
4846 is finished, which will run afoul of LTO streaming. And they need to be
4847 reset to something essentially dummy but not constant, so as to preserve
4848 the properties of the object they are attached to. */
4849
4850 static inline void
4851 free_lang_data_in_one_sizepos (tree *expr_p)
4852 {
4853 tree expr = *expr_p;
4854 if (CONTAINS_PLACEHOLDER_P (expr))
4855 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4856 }
4857
4858
4859 /* Reset all the fields in a binfo node BINFO. We only keep
4860 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4861
4862 static void
4863 free_lang_data_in_binfo (tree binfo)
4864 {
4865 unsigned i;
4866 tree t;
4867
4868 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4869
4870 BINFO_VIRTUALS (binfo) = NULL_TREE;
4871 BINFO_BASE_ACCESSES (binfo) = NULL;
4872 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4873 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4874
4875 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4876 free_lang_data_in_binfo (t);
4877 }
4878
4879
4880 /* Reset all language specific information still present in TYPE. */
4881
4882 static void
4883 free_lang_data_in_type (tree type)
4884 {
4885 gcc_assert (TYPE_P (type));
4886
4887 /* Give the FE a chance to remove its own data first. */
4888 lang_hooks.free_lang_data (type);
4889
4890 TREE_LANG_FLAG_0 (type) = 0;
4891 TREE_LANG_FLAG_1 (type) = 0;
4892 TREE_LANG_FLAG_2 (type) = 0;
4893 TREE_LANG_FLAG_3 (type) = 0;
4894 TREE_LANG_FLAG_4 (type) = 0;
4895 TREE_LANG_FLAG_5 (type) = 0;
4896 TREE_LANG_FLAG_6 (type) = 0;
4897
4898 if (TREE_CODE (type) == FUNCTION_TYPE)
4899 {
4900 /* Remove the const and volatile qualifiers from arguments. The
4901 C++ front end removes them, but the C front end does not,
4902 leading to false ODR violation errors when merging two
4903 instances of the same function signature compiled by
4904 different front ends. */
4905 tree p;
4906
4907 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4908 {
4909 tree arg_type = TREE_VALUE (p);
4910
4911 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4912 {
4913 int quals = TYPE_QUALS (arg_type)
4914 & ~TYPE_QUAL_CONST
4915 & ~TYPE_QUAL_VOLATILE;
4916 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4917 free_lang_data_in_type (TREE_VALUE (p));
4918 }
4919 }
4920 }
4921
4922 /* Remove members that are not actually FIELD_DECLs from the field
4923 list of an aggregate. These occur in C++. */
4924 if (RECORD_OR_UNION_TYPE_P (type))
4925 {
4926 tree prev, member;
4927
4928 /* Note that TYPE_FIELDS can be shared across distinct
4929 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4930 to be removed, we cannot set its TREE_CHAIN to NULL.
4931 Otherwise, we would not be able to find all the other fields
4932 in the other instances of this TREE_TYPE.
4933
4934 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4935 prev = NULL_TREE;
4936 member = TYPE_FIELDS (type);
4937 while (member)
4938 {
4939 if (TREE_CODE (member) == FIELD_DECL
4940 || TREE_CODE (member) == TYPE_DECL)
4941 {
4942 if (prev)
4943 TREE_CHAIN (prev) = member;
4944 else
4945 TYPE_FIELDS (type) = member;
4946 prev = member;
4947 }
4948
4949 member = TREE_CHAIN (member);
4950 }
4951
4952 if (prev)
4953 TREE_CHAIN (prev) = NULL_TREE;
4954 else
4955 TYPE_FIELDS (type) = NULL_TREE;
4956
4957 TYPE_METHODS (type) = NULL_TREE;
4958 if (TYPE_BINFO (type))
4959 free_lang_data_in_binfo (TYPE_BINFO (type));
4960 }
4961 else
4962 {
4963 /* For non-aggregate types, clear out the language slot (which
4964 overloads TYPE_BINFO). */
4965 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4966
4967 if (INTEGRAL_TYPE_P (type)
4968 || SCALAR_FLOAT_TYPE_P (type)
4969 || FIXED_POINT_TYPE_P (type))
4970 {
4971 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4972 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4973 }
4974 }
4975
4976 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4977 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4978
4979 if (TYPE_CONTEXT (type)
4980 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4981 {
4982 tree ctx = TYPE_CONTEXT (type);
4983 do
4984 {
4985 ctx = BLOCK_SUPERCONTEXT (ctx);
4986 }
4987 while (ctx && TREE_CODE (ctx) == BLOCK);
4988 TYPE_CONTEXT (type) = ctx;
4989 }
4990 }
4991
4992
4993 /* Return true if DECL may need an assembler name to be set. */
4994
4995 static inline bool
4996 need_assembler_name_p (tree decl)
4997 {
4998 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition Rule
4999 merging. */
5000 if (flag_lto_odr_type_mering
5001 && TREE_CODE (decl) == TYPE_DECL
5002 && DECL_NAME (decl)
5003 && decl == TYPE_NAME (TREE_TYPE (decl))
5004 && !is_lang_specific (TREE_TYPE (decl))
5005 && !type_in_anonymous_namespace_p (TREE_TYPE (decl)))
5006 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5007 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5008 if (TREE_CODE (decl) != FUNCTION_DECL
5009 && TREE_CODE (decl) != VAR_DECL)
5010 return false;
5011
5012 /* If DECL already has its assembler name set, it does not need a
5013 new one. */
5014 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5015 || DECL_ASSEMBLER_NAME_SET_P (decl))
5016 return false;
5017
5018 /* Abstract decls do not need an assembler name. */
5019 if (DECL_ABSTRACT (decl))
5020 return false;
5021
5022 /* For VAR_DECLs, only static, public and external symbols need an
5023 assembler name. */
5024 if (TREE_CODE (decl) == VAR_DECL
5025 && !TREE_STATIC (decl)
5026 && !TREE_PUBLIC (decl)
5027 && !DECL_EXTERNAL (decl))
5028 return false;
5029
5030 if (TREE_CODE (decl) == FUNCTION_DECL)
5031 {
5032 /* Do not set assembler name on builtins. Allow RTL expansion to
5033 decide whether to expand inline or via a regular call. */
5034 if (DECL_BUILT_IN (decl)
5035 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5036 return false;
5037
5038 /* Functions represented in the callgraph need an assembler name. */
5039 if (cgraph_node::get (decl) != NULL)
5040 return true;
5041
5042 /* Unused and not public functions don't need an assembler name. */
5043 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5044 return false;
5045 }
5046
5047 return true;
5048 }
5049
5050
5051 /* Reset all language specific information still present in symbol
5052 DECL. */
5053
5054 static void
5055 free_lang_data_in_decl (tree decl)
5056 {
5057 gcc_assert (DECL_P (decl));
5058
5059 /* Give the FE a chance to remove its own data first. */
5060 lang_hooks.free_lang_data (decl);
5061
5062 TREE_LANG_FLAG_0 (decl) = 0;
5063 TREE_LANG_FLAG_1 (decl) = 0;
5064 TREE_LANG_FLAG_2 (decl) = 0;
5065 TREE_LANG_FLAG_3 (decl) = 0;
5066 TREE_LANG_FLAG_4 (decl) = 0;
5067 TREE_LANG_FLAG_5 (decl) = 0;
5068 TREE_LANG_FLAG_6 (decl) = 0;
5069
5070 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5071 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5072 if (TREE_CODE (decl) == FIELD_DECL)
5073 {
5074 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5075 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5076 DECL_QUALIFIER (decl) = NULL_TREE;
5077 }
5078
5079 if (TREE_CODE (decl) == FUNCTION_DECL)
5080 {
5081 struct cgraph_node *node;
5082 if (!(node = cgraph_node::get (decl))
5083 || (!node->definition && !node->clones))
5084 {
5085 if (node)
5086 node->release_body ();
5087 else
5088 {
5089 release_function_body (decl);
5090 DECL_ARGUMENTS (decl) = NULL;
5091 DECL_RESULT (decl) = NULL;
5092 DECL_INITIAL (decl) = error_mark_node;
5093 }
5094 }
5095 if (gimple_has_body_p (decl))
5096 {
5097 tree t;
5098
5099 /* If DECL has a gimple body, then the context for its
5100 arguments must be DECL. Otherwise, it doesn't really
5101 matter, as we will not be emitting any code for DECL. In
5102 general, there may be other instances of DECL created by
5103 the front end and since PARM_DECLs are generally shared,
5104 their DECL_CONTEXT changes as the replicas of DECL are
5105 created. The only time where DECL_CONTEXT is important
5106 is for the FUNCTION_DECLs that have a gimple body (since
5107 the PARM_DECL will be used in the function's body). */
5108 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5109 DECL_CONTEXT (t) = decl;
5110 }
5111
5112 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5113 At this point, it is not needed anymore. */
5114 DECL_SAVED_TREE (decl) = NULL_TREE;
5115
5116 /* Clear the abstract origin if it refers to a method. Otherwise
5117 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
5118 origin will not be output correctly. */
5119 if (DECL_ABSTRACT_ORIGIN (decl)
5120 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5121 && RECORD_OR_UNION_TYPE_P
5122 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5123 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5124
5125 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5126 DECL_VINDEX referring to itself into a vtable slot number as it
5127 should. Happens with functions that are copied and then forgotten
5128 about. Just clear it, it won't matter anymore. */
5129 if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5130 DECL_VINDEX (decl) = NULL_TREE;
5131 }
5132 else if (TREE_CODE (decl) == VAR_DECL)
5133 {
5134 if ((DECL_EXTERNAL (decl)
5135 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5136 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5137 DECL_INITIAL (decl) = NULL_TREE;
5138 }
5139 else if (TREE_CODE (decl) == TYPE_DECL
5140 || TREE_CODE (decl) == FIELD_DECL)
5141 DECL_INITIAL (decl) = NULL_TREE;
5142 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5143 && DECL_INITIAL (decl)
5144 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5145 {
5146 /* Strip builtins from the translation-unit BLOCK. We still have targets
5147 without builtin_decl_explicit support and also builtins are shared
5148 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5149 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5150 while (*nextp)
5151 {
5152 tree var = *nextp;
5153 if (TREE_CODE (var) == FUNCTION_DECL
5154 && DECL_BUILT_IN (var))
5155 *nextp = TREE_CHAIN (var);
5156 else
5157 nextp = &TREE_CHAIN (var);
5158 }
5159 }
5160 }
5161
5162
5163 /* Data used when collecting DECLs and TYPEs for language data removal. */
5164
5165 struct free_lang_data_d
5166 {
5167 /* Worklist to avoid excessive recursion. */
5168 vec<tree> worklist;
5169
5170 /* Set of traversed objects. Used to avoid duplicate visits. */
5171 hash_set<tree> *pset;
5172
5173 /* Array of symbols to process with free_lang_data_in_decl. */
5174 vec<tree> decls;
5175
5176 /* Array of types to process with free_lang_data_in_type. */
5177 vec<tree> types;
5178 };
5179
5180
5181 /* Save all language fields needed to generate proper debug information
5182 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
5183
5184 static void
5185 save_debug_info_for_decl (tree t)
5186 {
5187 /*struct saved_debug_info_d *sdi;*/
5188
5189 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5190
5191 /* FIXME. Partial implementation for saving debug info removed. */
5192 }
5193
5194
5195 /* Save all language fields needed to generate proper debug information
5196 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5197
5198 static void
5199 save_debug_info_for_type (tree t)
5200 {
5201 /*struct saved_debug_info_d *sdi;*/
5202
5203 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5204
5205 /* FIXME. Partial implementation for saving debug info removed. */
5206 }
5207
5208
5209 /* Add type or decl T to one of the list of tree nodes that need their
5210 language data removed. The lists are held inside FLD. */
5211
5212 static void
5213 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5214 {
5215 if (DECL_P (t))
5216 {
5217 fld->decls.safe_push (t);
5218 if (debug_info_level > DINFO_LEVEL_TERSE)
5219 save_debug_info_for_decl (t);
5220 }
5221 else if (TYPE_P (t))
5222 {
5223 fld->types.safe_push (t);
5224 if (debug_info_level > DINFO_LEVEL_TERSE)
5225 save_debug_info_for_type (t);
5226 }
5227 else
5228 gcc_unreachable ();
5229 }
5230
5231 /* Push tree node T into FLD->WORKLIST. */
5232
5233 static inline void
5234 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5235 {
5236 if (t && !is_lang_specific (t) && !fld->pset->contains (t))
5237 fld->worklist.safe_push ((t));
5238 }
5239
5240
5241 /* Operand callback helper for free_lang_data_in_node. *TP is the
5242 subtree operand being considered. */
5243
5244 static tree
5245 find_decls_types_r (tree *tp, int *ws, void *data)
5246 {
5247 tree t = *tp;
5248 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5249
5250 if (TREE_CODE (t) == TREE_LIST)
5251 return NULL_TREE;
5252
5253 /* Language specific nodes will be removed, so there is no need
5254 to gather anything under them. */
5255 if (is_lang_specific (t))
5256 {
5257 *ws = 0;
5258 return NULL_TREE;
5259 }
5260
5261 if (DECL_P (t))
5262 {
5263 /* Note that walk_tree does not traverse every possible field in
5264 decls, so we have to do our own traversals here. */
5265 add_tree_to_fld_list (t, fld);
5266
5267 fld_worklist_push (DECL_NAME (t), fld);
5268 fld_worklist_push (DECL_CONTEXT (t), fld);
5269 fld_worklist_push (DECL_SIZE (t), fld);
5270 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5271
5272 /* We are going to remove everything under DECL_INITIAL for
5273 TYPE_DECLs. No point walking them. */
5274 if (TREE_CODE (t) != TYPE_DECL)
5275 fld_worklist_push (DECL_INITIAL (t), fld);
5276
5277 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5278 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5279
5280 if (TREE_CODE (t) == FUNCTION_DECL)
5281 {
5282 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5283 fld_worklist_push (DECL_RESULT (t), fld);
5284 }
5285 else if (TREE_CODE (t) == TYPE_DECL)
5286 {
5287 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5288 }
5289 else if (TREE_CODE (t) == FIELD_DECL)
5290 {
5291 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5292 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5293 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5294 fld_worklist_push (DECL_FCONTEXT (t), fld);
5295 }
5296
5297 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
5298 && DECL_HAS_VALUE_EXPR_P (t))
5299 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5300
5301 if (TREE_CODE (t) != FIELD_DECL
5302 && TREE_CODE (t) != TYPE_DECL)
5303 fld_worklist_push (TREE_CHAIN (t), fld);
5304 *ws = 0;
5305 }
5306 else if (TYPE_P (t))
5307 {
5308 /* Note that walk_tree does not traverse every possible field in
5309 types, so we have to do our own traversals here. */
5310 add_tree_to_fld_list (t, fld);
5311
5312 if (!RECORD_OR_UNION_TYPE_P (t))
5313 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5314 fld_worklist_push (TYPE_SIZE (t), fld);
5315 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5316 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5317 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5318 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5319 fld_worklist_push (TYPE_NAME (t), fld);
5320 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5321 them and thus do not and want not to reach unused pointer types
5322 this way. */
5323 if (!POINTER_TYPE_P (t))
5324 fld_worklist_push (TYPE_MINVAL (t), fld);
5325 if (!RECORD_OR_UNION_TYPE_P (t))
5326 fld_worklist_push (TYPE_MAXVAL (t), fld);
5327 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5328 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5329 do not and want not to reach unused variants this way. */
5330 if (TYPE_CONTEXT (t))
5331 {
5332 tree ctx = TYPE_CONTEXT (t);
5333 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5334 So push that instead. */
5335 while (ctx && TREE_CODE (ctx) == BLOCK)
5336 ctx = BLOCK_SUPERCONTEXT (ctx);
5337 fld_worklist_push (ctx, fld);
5338 }
5339 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5340 and want not to reach unused types this way. */
5341
5342 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5343 {
5344 unsigned i;
5345 tree tem;
5346 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5347 fld_worklist_push (TREE_TYPE (tem), fld);
5348 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
5349 if (tem
5350 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
5351 && TREE_CODE (tem) == TREE_LIST)
5352 do
5353 {
5354 fld_worklist_push (TREE_VALUE (tem), fld);
5355 tem = TREE_CHAIN (tem);
5356 }
5357 while (tem);
5358 }
5359 if (RECORD_OR_UNION_TYPE_P (t))
5360 {
5361 tree tem;
5362 /* Push all TYPE_FIELDS - there can be interleaving interesting
5363 and non-interesting things. */
5364 tem = TYPE_FIELDS (t);
5365 while (tem)
5366 {
5367 if (TREE_CODE (tem) == FIELD_DECL
5368 || TREE_CODE (tem) == TYPE_DECL)
5369 fld_worklist_push (tem, fld);
5370 tem = TREE_CHAIN (tem);
5371 }
5372 }
5373
5374 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5375 *ws = 0;
5376 }
5377 else if (TREE_CODE (t) == BLOCK)
5378 {
5379 tree tem;
5380 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5381 fld_worklist_push (tem, fld);
5382 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5383 fld_worklist_push (tem, fld);
5384 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5385 }
5386
5387 if (TREE_CODE (t) != IDENTIFIER_NODE
5388 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5389 fld_worklist_push (TREE_TYPE (t), fld);
5390
5391 return NULL_TREE;
5392 }
5393
5394
5395 /* Find decls and types in T. */
5396
5397 static void
5398 find_decls_types (tree t, struct free_lang_data_d *fld)
5399 {
5400 while (1)
5401 {
5402 if (!fld->pset->contains (t))
5403 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5404 if (fld->worklist.is_empty ())
5405 break;
5406 t = fld->worklist.pop ();
5407 }
5408 }
5409
5410 /* Translate all the types in LIST with the corresponding runtime
5411 types. */
5412
5413 static tree
5414 get_eh_types_for_runtime (tree list)
5415 {
5416 tree head, prev;
5417
5418 if (list == NULL_TREE)
5419 return NULL_TREE;
5420
5421 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5422 prev = head;
5423 list = TREE_CHAIN (list);
5424 while (list)
5425 {
5426 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5427 TREE_CHAIN (prev) = n;
5428 prev = TREE_CHAIN (prev);
5429 list = TREE_CHAIN (list);
5430 }
5431
5432 return head;
5433 }
5434
5435
5436 /* Find decls and types referenced in EH region R and store them in
5437 FLD->DECLS and FLD->TYPES. */
5438
5439 static void
5440 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5441 {
5442 switch (r->type)
5443 {
5444 case ERT_CLEANUP:
5445 break;
5446
5447 case ERT_TRY:
5448 {
5449 eh_catch c;
5450
5451 /* The types referenced in each catch must first be changed to the
5452 EH types used at runtime. This removes references to FE types
5453 in the region. */
5454 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5455 {
5456 c->type_list = get_eh_types_for_runtime (c->type_list);
5457 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5458 }
5459 }
5460 break;
5461
5462 case ERT_ALLOWED_EXCEPTIONS:
5463 r->u.allowed.type_list
5464 = get_eh_types_for_runtime (r->u.allowed.type_list);
5465 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5466 break;
5467
5468 case ERT_MUST_NOT_THROW:
5469 walk_tree (&r->u.must_not_throw.failure_decl,
5470 find_decls_types_r, fld, fld->pset);
5471 break;
5472 }
5473 }
5474
5475
5476 /* Find decls and types referenced in cgraph node N and store them in
5477 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5478 look for *every* kind of DECL and TYPE node reachable from N,
5479 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5480 NAMESPACE_DECLs, etc). */
5481
5482 static void
5483 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5484 {
5485 basic_block bb;
5486 struct function *fn;
5487 unsigned ix;
5488 tree t;
5489
5490 find_decls_types (n->decl, fld);
5491
5492 if (!gimple_has_body_p (n->decl))
5493 return;
5494
5495 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5496
5497 fn = DECL_STRUCT_FUNCTION (n->decl);
5498
5499 /* Traverse locals. */
5500 FOR_EACH_LOCAL_DECL (fn, ix, t)
5501 find_decls_types (t, fld);
5502
5503 /* Traverse EH regions in FN. */
5504 {
5505 eh_region r;
5506 FOR_ALL_EH_REGION_FN (r, fn)
5507 find_decls_types_in_eh_region (r, fld);
5508 }
5509
5510 /* Traverse every statement in FN. */
5511 FOR_EACH_BB_FN (bb, fn)
5512 {
5513 gimple_stmt_iterator si;
5514 unsigned i;
5515
5516 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5517 {
5518 gimple phi = gsi_stmt (si);
5519
5520 for (i = 0; i < gimple_phi_num_args (phi); i++)
5521 {
5522 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5523 find_decls_types (*arg_p, fld);
5524 }
5525 }
5526
5527 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5528 {
5529 gimple stmt = gsi_stmt (si);
5530
5531 if (is_gimple_call (stmt))
5532 find_decls_types (gimple_call_fntype (stmt), fld);
5533
5534 for (i = 0; i < gimple_num_ops (stmt); i++)
5535 {
5536 tree arg = gimple_op (stmt, i);
5537 find_decls_types (arg, fld);
5538 }
5539 }
5540 }
5541 }
5542
5543
5544 /* Find decls and types referenced in varpool node N and store them in
5545 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5546 look for *every* kind of DECL and TYPE node reachable from N,
5547 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5548 NAMESPACE_DECLs, etc). */
5549
5550 static void
5551 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5552 {
5553 find_decls_types (v->decl, fld);
5554 }
5555
5556 /* If T needs an assembler name, have one created for it. */
5557
5558 void
5559 assign_assembler_name_if_neeeded (tree t)
5560 {
5561 if (need_assembler_name_p (t))
5562 {
5563 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5564 diagnostics that use input_location to show locus
5565 information. The problem here is that, at this point,
5566 input_location is generally anchored to the end of the file
5567 (since the parser is long gone), so we don't have a good
5568 position to pin it to.
5569
5570 To alleviate this problem, this uses the location of T's
5571 declaration. Examples of this are
5572 testsuite/g++.dg/template/cond2.C and
5573 testsuite/g++.dg/template/pr35240.C. */
5574 location_t saved_location = input_location;
5575 input_location = DECL_SOURCE_LOCATION (t);
5576
5577 decl_assembler_name (t);
5578
5579 input_location = saved_location;
5580 }
5581 }
5582
5583
5584 /* Free language specific information for every operand and expression
5585 in every node of the call graph. This process operates in three stages:
5586
5587 1- Every callgraph node and varpool node is traversed looking for
5588 decls and types embedded in them. This is a more exhaustive
5589 search than that done by find_referenced_vars, because it will
5590 also collect individual fields, decls embedded in types, etc.
5591
5592 2- All the decls found are sent to free_lang_data_in_decl.
5593
5594 3- All the types found are sent to free_lang_data_in_type.
5595
5596 The ordering between decls and types is important because
5597 free_lang_data_in_decl sets assembler names, which includes
5598 mangling. So types cannot be freed up until assembler names have
5599 been set up. */
5600
5601 static void
5602 free_lang_data_in_cgraph (void)
5603 {
5604 struct cgraph_node *n;
5605 varpool_node *v;
5606 struct free_lang_data_d fld;
5607 tree t;
5608 unsigned i;
5609 alias_pair *p;
5610
5611 /* Initialize sets and arrays to store referenced decls and types. */
5612 fld.pset = new hash_set<tree>;
5613 fld.worklist.create (0);
5614 fld.decls.create (100);
5615 fld.types.create (100);
5616
5617 /* Find decls and types in the body of every function in the callgraph. */
5618 FOR_EACH_FUNCTION (n)
5619 find_decls_types_in_node (n, &fld);
5620
5621 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5622 find_decls_types (p->decl, &fld);
5623
5624 /* Find decls and types in every varpool symbol. */
5625 FOR_EACH_VARIABLE (v)
5626 find_decls_types_in_var (v, &fld);
5627
5628 /* Set the assembler name on every decl found. We need to do this
5629 now because free_lang_data_in_decl will invalidate data needed
5630 for mangling. This breaks mangling on interdependent decls. */
5631 FOR_EACH_VEC_ELT (fld.decls, i, t)
5632 assign_assembler_name_if_neeeded (t);
5633
5634 /* Traverse every decl found freeing its language data. */
5635 FOR_EACH_VEC_ELT (fld.decls, i, t)
5636 free_lang_data_in_decl (t);
5637
5638 /* Traverse every type found freeing its language data. */
5639 FOR_EACH_VEC_ELT (fld.types, i, t)
5640 free_lang_data_in_type (t);
5641
5642 delete fld.pset;
5643 fld.worklist.release ();
5644 fld.decls.release ();
5645 fld.types.release ();
5646 }
5647
5648
5649 /* Free resources that are used by FE but are not needed once they are done. */
5650
5651 static unsigned
5652 free_lang_data (void)
5653 {
5654 unsigned i;
5655
5656 /* If we are the LTO frontend we have freed lang-specific data already. */
5657 if (in_lto_p
5658 || !flag_generate_lto)
5659 return 0;
5660
5661 /* Allocate and assign alias sets to the standard integer types
5662 while the slots are still in the way the frontends generated them. */
5663 for (i = 0; i < itk_none; ++i)
5664 if (integer_types[i])
5665 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5666
5667 /* Traverse the IL resetting language specific information for
5668 operands, expressions, etc. */
5669 free_lang_data_in_cgraph ();
5670
5671 /* Create gimple variants for common types. */
5672 ptrdiff_type_node = integer_type_node;
5673 fileptr_type_node = ptr_type_node;
5674
5675 /* Reset some langhooks. Do not reset types_compatible_p, it may
5676 still be used indirectly via the get_alias_set langhook. */
5677 lang_hooks.dwarf_name = lhd_dwarf_name;
5678 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5679 /* We do not want the default decl_assembler_name implementation,
5680 rather if we have fixed everything we want a wrapper around it
5681 asserting that all non-local symbols already got their assembler
5682 name and only produce assembler names for local symbols. Or rather
5683 make sure we never call decl_assembler_name on local symbols and
5684 devise a separate, middle-end private scheme for it. */
5685
5686 /* Reset diagnostic machinery. */
5687 tree_diagnostics_defaults (global_dc);
5688
5689 return 0;
5690 }
5691
5692
5693 namespace {
5694
5695 const pass_data pass_data_ipa_free_lang_data =
5696 {
5697 SIMPLE_IPA_PASS, /* type */
5698 "*free_lang_data", /* name */
5699 OPTGROUP_NONE, /* optinfo_flags */
5700 TV_IPA_FREE_LANG_DATA, /* tv_id */
5701 0, /* properties_required */
5702 0, /* properties_provided */
5703 0, /* properties_destroyed */
5704 0, /* todo_flags_start */
5705 0, /* todo_flags_finish */
5706 };
5707
5708 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5709 {
5710 public:
5711 pass_ipa_free_lang_data (gcc::context *ctxt)
5712 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5713 {}
5714
5715 /* opt_pass methods: */
5716 virtual unsigned int execute (function *) { return free_lang_data (); }
5717
5718 }; // class pass_ipa_free_lang_data
5719
5720 } // anon namespace
5721
5722 simple_ipa_opt_pass *
5723 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5724 {
5725 return new pass_ipa_free_lang_data (ctxt);
5726 }
5727
5728 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5729 ATTR_NAME. Also used internally by remove_attribute(). */
5730 bool
5731 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5732 {
5733 size_t ident_len = IDENTIFIER_LENGTH (ident);
5734
5735 if (ident_len == attr_len)
5736 {
5737 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5738 return true;
5739 }
5740 else if (ident_len == attr_len + 4)
5741 {
5742 /* There is the possibility that ATTR is 'text' and IDENT is
5743 '__text__'. */
5744 const char *p = IDENTIFIER_POINTER (ident);
5745 if (p[0] == '_' && p[1] == '_'
5746 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5747 && strncmp (attr_name, p + 2, attr_len) == 0)
5748 return true;
5749 }
5750
5751 return false;
5752 }
5753
5754 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5755 of ATTR_NAME, and LIST is not NULL_TREE. */
5756 tree
5757 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5758 {
5759 while (list)
5760 {
5761 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5762
5763 if (ident_len == attr_len)
5764 {
5765 if (!strcmp (attr_name,
5766 IDENTIFIER_POINTER (get_attribute_name (list))))
5767 break;
5768 }
5769 /* TODO: If we made sure that attributes were stored in the
5770 canonical form without '__...__' (ie, as in 'text' as opposed
5771 to '__text__') then we could avoid the following case. */
5772 else if (ident_len == attr_len + 4)
5773 {
5774 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5775 if (p[0] == '_' && p[1] == '_'
5776 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5777 && strncmp (attr_name, p + 2, attr_len) == 0)
5778 break;
5779 }
5780 list = TREE_CHAIN (list);
5781 }
5782
5783 return list;
5784 }
5785
5786 /* Given an attribute name ATTR_NAME and a list of attributes LIST,
5787 return a pointer to the attribute's list first element if the attribute
5788 starts with ATTR_NAME. ATTR_NAME must be in the form 'text' (not
5789 '__text__'). */
5790
5791 tree
5792 private_lookup_attribute_by_prefix (const char *attr_name, size_t attr_len,
5793 tree list)
5794 {
5795 while (list)
5796 {
5797 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5798
5799 if (attr_len > ident_len)
5800 {
5801 list = TREE_CHAIN (list);
5802 continue;
5803 }
5804
5805 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5806
5807 if (strncmp (attr_name, p, attr_len) == 0)
5808 break;
5809
5810 /* TODO: If we made sure that attributes were stored in the
5811 canonical form without '__...__' (ie, as in 'text' as opposed
5812 to '__text__') then we could avoid the following case. */
5813 if (p[0] == '_' && p[1] == '_' &&
5814 strncmp (attr_name, p + 2, attr_len) == 0)
5815 break;
5816
5817 list = TREE_CHAIN (list);
5818 }
5819
5820 return list;
5821 }
5822
5823
5824 /* A variant of lookup_attribute() that can be used with an identifier
5825 as the first argument, and where the identifier can be either
5826 'text' or '__text__'.
5827
5828 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5829 return a pointer to the attribute's list element if the attribute
5830 is part of the list, or NULL_TREE if not found. If the attribute
5831 appears more than once, this only returns the first occurrence; the
5832 TREE_CHAIN of the return value should be passed back in if further
5833 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5834 can be in the form 'text' or '__text__'. */
5835 static tree
5836 lookup_ident_attribute (tree attr_identifier, tree list)
5837 {
5838 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5839
5840 while (list)
5841 {
5842 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5843 == IDENTIFIER_NODE);
5844
5845 /* Identifiers can be compared directly for equality. */
5846 if (attr_identifier == get_attribute_name (list))
5847 break;
5848
5849 /* If they are not equal, they may still be one in the form
5850 'text' while the other one is in the form '__text__'. TODO:
5851 If we were storing attributes in normalized 'text' form, then
5852 this could all go away and we could take full advantage of
5853 the fact that we're comparing identifiers. :-) */
5854 {
5855 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5856 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5857
5858 if (ident_len == attr_len + 4)
5859 {
5860 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5861 const char *q = IDENTIFIER_POINTER (attr_identifier);
5862 if (p[0] == '_' && p[1] == '_'
5863 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5864 && strncmp (q, p + 2, attr_len) == 0)
5865 break;
5866 }
5867 else if (ident_len + 4 == attr_len)
5868 {
5869 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5870 const char *q = IDENTIFIER_POINTER (attr_identifier);
5871 if (q[0] == '_' && q[1] == '_'
5872 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5873 && strncmp (q + 2, p, ident_len) == 0)
5874 break;
5875 }
5876 }
5877 list = TREE_CHAIN (list);
5878 }
5879
5880 return list;
5881 }
5882
5883 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5884 modified list. */
5885
5886 tree
5887 remove_attribute (const char *attr_name, tree list)
5888 {
5889 tree *p;
5890 size_t attr_len = strlen (attr_name);
5891
5892 gcc_checking_assert (attr_name[0] != '_');
5893
5894 for (p = &list; *p; )
5895 {
5896 tree l = *p;
5897 /* TODO: If we were storing attributes in normalized form, here
5898 we could use a simple strcmp(). */
5899 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5900 *p = TREE_CHAIN (l);
5901 else
5902 p = &TREE_CHAIN (l);
5903 }
5904
5905 return list;
5906 }
5907
5908 /* Return an attribute list that is the union of a1 and a2. */
5909
5910 tree
5911 merge_attributes (tree a1, tree a2)
5912 {
5913 tree attributes;
5914
5915 /* Either one unset? Take the set one. */
5916
5917 if ((attributes = a1) == 0)
5918 attributes = a2;
5919
5920 /* One that completely contains the other? Take it. */
5921
5922 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5923 {
5924 if (attribute_list_contained (a2, a1))
5925 attributes = a2;
5926 else
5927 {
5928 /* Pick the longest list, and hang on the other list. */
5929
5930 if (list_length (a1) < list_length (a2))
5931 attributes = a2, a2 = a1;
5932
5933 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5934 {
5935 tree a;
5936 for (a = lookup_ident_attribute (get_attribute_name (a2),
5937 attributes);
5938 a != NULL_TREE && !attribute_value_equal (a, a2);
5939 a = lookup_ident_attribute (get_attribute_name (a2),
5940 TREE_CHAIN (a)))
5941 ;
5942 if (a == NULL_TREE)
5943 {
5944 a1 = copy_node (a2);
5945 TREE_CHAIN (a1) = attributes;
5946 attributes = a1;
5947 }
5948 }
5949 }
5950 }
5951 return attributes;
5952 }
5953
5954 /* Given types T1 and T2, merge their attributes and return
5955 the result. */
5956
5957 tree
5958 merge_type_attributes (tree t1, tree t2)
5959 {
5960 return merge_attributes (TYPE_ATTRIBUTES (t1),
5961 TYPE_ATTRIBUTES (t2));
5962 }
5963
5964 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5965 the result. */
5966
5967 tree
5968 merge_decl_attributes (tree olddecl, tree newdecl)
5969 {
5970 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5971 DECL_ATTRIBUTES (newdecl));
5972 }
5973
5974 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5975
5976 /* Specialization of merge_decl_attributes for various Windows targets.
5977
5978 This handles the following situation:
5979
5980 __declspec (dllimport) int foo;
5981 int foo;
5982
5983 The second instance of `foo' nullifies the dllimport. */
5984
5985 tree
5986 merge_dllimport_decl_attributes (tree old, tree new_tree)
5987 {
5988 tree a;
5989 int delete_dllimport_p = 1;
5990
5991 /* What we need to do here is remove from `old' dllimport if it doesn't
5992 appear in `new'. dllimport behaves like extern: if a declaration is
5993 marked dllimport and a definition appears later, then the object
5994 is not dllimport'd. We also remove a `new' dllimport if the old list
5995 contains dllexport: dllexport always overrides dllimport, regardless
5996 of the order of declaration. */
5997 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5998 delete_dllimport_p = 0;
5999 else if (DECL_DLLIMPORT_P (new_tree)
6000 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
6001 {
6002 DECL_DLLIMPORT_P (new_tree) = 0;
6003 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
6004 "dllimport ignored", new_tree);
6005 }
6006 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
6007 {
6008 /* Warn about overriding a symbol that has already been used, e.g.:
6009 extern int __attribute__ ((dllimport)) foo;
6010 int* bar () {return &foo;}
6011 int foo;
6012 */
6013 if (TREE_USED (old))
6014 {
6015 warning (0, "%q+D redeclared without dllimport attribute "
6016 "after being referenced with dll linkage", new_tree);
6017 /* If we have used a variable's address with dllimport linkage,
6018 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
6019 decl may already have had TREE_CONSTANT computed.
6020 We still remove the attribute so that assembler code refers
6021 to '&foo rather than '_imp__foo'. */
6022 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
6023 DECL_DLLIMPORT_P (new_tree) = 1;
6024 }
6025
6026 /* Let an inline definition silently override the external reference,
6027 but otherwise warn about attribute inconsistency. */
6028 else if (TREE_CODE (new_tree) == VAR_DECL
6029 || !DECL_DECLARED_INLINE_P (new_tree))
6030 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
6031 "previous dllimport ignored", new_tree);
6032 }
6033 else
6034 delete_dllimport_p = 0;
6035
6036 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
6037
6038 if (delete_dllimport_p)
6039 a = remove_attribute ("dllimport", a);
6040
6041 return a;
6042 }
6043
6044 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
6045 struct attribute_spec.handler. */
6046
6047 tree
6048 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
6049 bool *no_add_attrs)
6050 {
6051 tree node = *pnode;
6052 bool is_dllimport;
6053
6054 /* These attributes may apply to structure and union types being created,
6055 but otherwise should pass to the declaration involved. */
6056 if (!DECL_P (node))
6057 {
6058 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
6059 | (int) ATTR_FLAG_ARRAY_NEXT))
6060 {
6061 *no_add_attrs = true;
6062 return tree_cons (name, args, NULL_TREE);
6063 }
6064 if (TREE_CODE (node) == RECORD_TYPE
6065 || TREE_CODE (node) == UNION_TYPE)
6066 {
6067 node = TYPE_NAME (node);
6068 if (!node)
6069 return NULL_TREE;
6070 }
6071 else
6072 {
6073 warning (OPT_Wattributes, "%qE attribute ignored",
6074 name);
6075 *no_add_attrs = true;
6076 return NULL_TREE;
6077 }
6078 }
6079
6080 if (TREE_CODE (node) != FUNCTION_DECL
6081 && TREE_CODE (node) != VAR_DECL
6082 && TREE_CODE (node) != TYPE_DECL)
6083 {
6084 *no_add_attrs = true;
6085 warning (OPT_Wattributes, "%qE attribute ignored",
6086 name);
6087 return NULL_TREE;
6088 }
6089
6090 if (TREE_CODE (node) == TYPE_DECL
6091 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
6092 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
6093 {
6094 *no_add_attrs = true;
6095 warning (OPT_Wattributes, "%qE attribute ignored",
6096 name);
6097 return NULL_TREE;
6098 }
6099
6100 is_dllimport = is_attribute_p ("dllimport", name);
6101
6102 /* Report error on dllimport ambiguities seen now before they cause
6103 any damage. */
6104 if (is_dllimport)
6105 {
6106 /* Honor any target-specific overrides. */
6107 if (!targetm.valid_dllimport_attribute_p (node))
6108 *no_add_attrs = true;
6109
6110 else if (TREE_CODE (node) == FUNCTION_DECL
6111 && DECL_DECLARED_INLINE_P (node))
6112 {
6113 warning (OPT_Wattributes, "inline function %q+D declared as "
6114 " dllimport: attribute ignored", node);
6115 *no_add_attrs = true;
6116 }
6117 /* Like MS, treat definition of dllimported variables and
6118 non-inlined functions on declaration as syntax errors. */
6119 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
6120 {
6121 error ("function %q+D definition is marked dllimport", node);
6122 *no_add_attrs = true;
6123 }
6124
6125 else if (TREE_CODE (node) == VAR_DECL)
6126 {
6127 if (DECL_INITIAL (node))
6128 {
6129 error ("variable %q+D definition is marked dllimport",
6130 node);
6131 *no_add_attrs = true;
6132 }
6133
6134 /* `extern' needn't be specified with dllimport.
6135 Specify `extern' now and hope for the best. Sigh. */
6136 DECL_EXTERNAL (node) = 1;
6137 /* Also, implicitly give dllimport'd variables declared within
6138 a function global scope, unless declared static. */
6139 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
6140 TREE_PUBLIC (node) = 1;
6141 }
6142
6143 if (*no_add_attrs == false)
6144 DECL_DLLIMPORT_P (node) = 1;
6145 }
6146 else if (TREE_CODE (node) == FUNCTION_DECL
6147 && DECL_DECLARED_INLINE_P (node)
6148 && flag_keep_inline_dllexport)
6149 /* An exported function, even if inline, must be emitted. */
6150 DECL_EXTERNAL (node) = 0;
6151
6152 /* Report error if symbol is not accessible at global scope. */
6153 if (!TREE_PUBLIC (node)
6154 && (TREE_CODE (node) == VAR_DECL
6155 || TREE_CODE (node) == FUNCTION_DECL))
6156 {
6157 error ("external linkage required for symbol %q+D because of "
6158 "%qE attribute", node, name);
6159 *no_add_attrs = true;
6160 }
6161
6162 /* A dllexport'd entity must have default visibility so that other
6163 program units (shared libraries or the main executable) can see
6164 it. A dllimport'd entity must have default visibility so that
6165 the linker knows that undefined references within this program
6166 unit can be resolved by the dynamic linker. */
6167 if (!*no_add_attrs)
6168 {
6169 if (DECL_VISIBILITY_SPECIFIED (node)
6170 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
6171 error ("%qE implies default visibility, but %qD has already "
6172 "been declared with a different visibility",
6173 name, node);
6174 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
6175 DECL_VISIBILITY_SPECIFIED (node) = 1;
6176 }
6177
6178 return NULL_TREE;
6179 }
6180
6181 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
6182 \f
6183 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6184 of the various TYPE_QUAL values. */
6185
6186 static void
6187 set_type_quals (tree type, int type_quals)
6188 {
6189 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6190 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6191 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6192 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6193 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6194 }
6195
6196 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6197
6198 bool
6199 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6200 {
6201 return (TYPE_QUALS (cand) == type_quals
6202 && TYPE_NAME (cand) == TYPE_NAME (base)
6203 /* Apparently this is needed for Objective-C. */
6204 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6205 /* Check alignment. */
6206 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6207 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6208 TYPE_ATTRIBUTES (base)));
6209 }
6210
6211 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6212
6213 static bool
6214 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6215 {
6216 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6217 && TYPE_NAME (cand) == TYPE_NAME (base)
6218 /* Apparently this is needed for Objective-C. */
6219 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6220 /* Check alignment. */
6221 && TYPE_ALIGN (cand) == align
6222 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6223 TYPE_ATTRIBUTES (base)));
6224 }
6225
6226 /* This function checks to see if TYPE matches the size one of the built-in
6227 atomic types, and returns that core atomic type. */
6228
6229 static tree
6230 find_atomic_core_type (tree type)
6231 {
6232 tree base_atomic_type;
6233
6234 /* Only handle complete types. */
6235 if (TYPE_SIZE (type) == NULL_TREE)
6236 return NULL_TREE;
6237
6238 HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
6239 switch (type_size)
6240 {
6241 case 8:
6242 base_atomic_type = atomicQI_type_node;
6243 break;
6244
6245 case 16:
6246 base_atomic_type = atomicHI_type_node;
6247 break;
6248
6249 case 32:
6250 base_atomic_type = atomicSI_type_node;
6251 break;
6252
6253 case 64:
6254 base_atomic_type = atomicDI_type_node;
6255 break;
6256
6257 case 128:
6258 base_atomic_type = atomicTI_type_node;
6259 break;
6260
6261 default:
6262 base_atomic_type = NULL_TREE;
6263 }
6264
6265 return base_atomic_type;
6266 }
6267
6268 /* Return a version of the TYPE, qualified as indicated by the
6269 TYPE_QUALS, if one exists. If no qualified version exists yet,
6270 return NULL_TREE. */
6271
6272 tree
6273 get_qualified_type (tree type, int type_quals)
6274 {
6275 tree t;
6276
6277 if (TYPE_QUALS (type) == type_quals)
6278 return type;
6279
6280 /* Search the chain of variants to see if there is already one there just
6281 like the one we need to have. If so, use that existing one. We must
6282 preserve the TYPE_NAME, since there is code that depends on this. */
6283 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6284 if (check_qualified_type (t, type, type_quals))
6285 return t;
6286
6287 return NULL_TREE;
6288 }
6289
6290 /* Like get_qualified_type, but creates the type if it does not
6291 exist. This function never returns NULL_TREE. */
6292
6293 tree
6294 build_qualified_type (tree type, int type_quals)
6295 {
6296 tree t;
6297
6298 /* See if we already have the appropriate qualified variant. */
6299 t = get_qualified_type (type, type_quals);
6300
6301 /* If not, build it. */
6302 if (!t)
6303 {
6304 t = build_variant_type_copy (type);
6305 set_type_quals (t, type_quals);
6306
6307 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6308 {
6309 /* See if this object can map to a basic atomic type. */
6310 tree atomic_type = find_atomic_core_type (type);
6311 if (atomic_type)
6312 {
6313 /* Ensure the alignment of this type is compatible with
6314 the required alignment of the atomic type. */
6315 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6316 TYPE_ALIGN (t) = TYPE_ALIGN (atomic_type);
6317 }
6318 }
6319
6320 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6321 /* Propagate structural equality. */
6322 SET_TYPE_STRUCTURAL_EQUALITY (t);
6323 else if (TYPE_CANONICAL (type) != type)
6324 /* Build the underlying canonical type, since it is different
6325 from TYPE. */
6326 {
6327 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6328 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6329 }
6330 else
6331 /* T is its own canonical type. */
6332 TYPE_CANONICAL (t) = t;
6333
6334 }
6335
6336 return t;
6337 }
6338
6339 /* Create a variant of type T with alignment ALIGN. */
6340
6341 tree
6342 build_aligned_type (tree type, unsigned int align)
6343 {
6344 tree t;
6345
6346 if (TYPE_PACKED (type)
6347 || TYPE_ALIGN (type) == align)
6348 return type;
6349
6350 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6351 if (check_aligned_type (t, type, align))
6352 return t;
6353
6354 t = build_variant_type_copy (type);
6355 TYPE_ALIGN (t) = align;
6356
6357 return t;
6358 }
6359
6360 /* Create a new distinct copy of TYPE. The new type is made its own
6361 MAIN_VARIANT. If TYPE requires structural equality checks, the
6362 resulting type requires structural equality checks; otherwise, its
6363 TYPE_CANONICAL points to itself. */
6364
6365 tree
6366 build_distinct_type_copy (tree type)
6367 {
6368 tree t = copy_node (type);
6369
6370 TYPE_POINTER_TO (t) = 0;
6371 TYPE_REFERENCE_TO (t) = 0;
6372
6373 /* Set the canonical type either to a new equivalence class, or
6374 propagate the need for structural equality checks. */
6375 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6376 SET_TYPE_STRUCTURAL_EQUALITY (t);
6377 else
6378 TYPE_CANONICAL (t) = t;
6379
6380 /* Make it its own variant. */
6381 TYPE_MAIN_VARIANT (t) = t;
6382 TYPE_NEXT_VARIANT (t) = 0;
6383
6384 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6385 whose TREE_TYPE is not t. This can also happen in the Ada
6386 frontend when using subtypes. */
6387
6388 return t;
6389 }
6390
6391 /* Create a new variant of TYPE, equivalent but distinct. This is so
6392 the caller can modify it. TYPE_CANONICAL for the return type will
6393 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6394 are considered equal by the language itself (or that both types
6395 require structural equality checks). */
6396
6397 tree
6398 build_variant_type_copy (tree type)
6399 {
6400 tree t, m = TYPE_MAIN_VARIANT (type);
6401
6402 t = build_distinct_type_copy (type);
6403
6404 /* Since we're building a variant, assume that it is a non-semantic
6405 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6406 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6407
6408 /* Add the new type to the chain of variants of TYPE. */
6409 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6410 TYPE_NEXT_VARIANT (m) = t;
6411 TYPE_MAIN_VARIANT (t) = m;
6412
6413 return t;
6414 }
6415 \f
6416 /* Return true if the from tree in both tree maps are equal. */
6417
6418 int
6419 tree_map_base_eq (const void *va, const void *vb)
6420 {
6421 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6422 *const b = (const struct tree_map_base *) vb;
6423 return (a->from == b->from);
6424 }
6425
6426 /* Hash a from tree in a tree_base_map. */
6427
6428 unsigned int
6429 tree_map_base_hash (const void *item)
6430 {
6431 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6432 }
6433
6434 /* Return true if this tree map structure is marked for garbage collection
6435 purposes. We simply return true if the from tree is marked, so that this
6436 structure goes away when the from tree goes away. */
6437
6438 int
6439 tree_map_base_marked_p (const void *p)
6440 {
6441 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6442 }
6443
6444 /* Hash a from tree in a tree_map. */
6445
6446 unsigned int
6447 tree_map_hash (const void *item)
6448 {
6449 return (((const struct tree_map *) item)->hash);
6450 }
6451
6452 /* Hash a from tree in a tree_decl_map. */
6453
6454 unsigned int
6455 tree_decl_map_hash (const void *item)
6456 {
6457 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6458 }
6459
6460 /* Return the initialization priority for DECL. */
6461
6462 priority_type
6463 decl_init_priority_lookup (tree decl)
6464 {
6465 symtab_node *snode = symtab_node::get (decl);
6466
6467 if (!snode)
6468 return DEFAULT_INIT_PRIORITY;
6469 return
6470 snode->get_init_priority ();
6471 }
6472
6473 /* Return the finalization priority for DECL. */
6474
6475 priority_type
6476 decl_fini_priority_lookup (tree decl)
6477 {
6478 cgraph_node *node = cgraph_node::get (decl);
6479
6480 if (!node)
6481 return DEFAULT_INIT_PRIORITY;
6482 return
6483 node->get_fini_priority ();
6484 }
6485
6486 /* Set the initialization priority for DECL to PRIORITY. */
6487
6488 void
6489 decl_init_priority_insert (tree decl, priority_type priority)
6490 {
6491 struct symtab_node *snode;
6492
6493 if (priority == DEFAULT_INIT_PRIORITY)
6494 {
6495 snode = symtab_node::get (decl);
6496 if (!snode)
6497 return;
6498 }
6499 else if (TREE_CODE (decl) == VAR_DECL)
6500 snode = varpool_node::get_create (decl);
6501 else
6502 snode = cgraph_node::get_create (decl);
6503 snode->set_init_priority (priority);
6504 }
6505
6506 /* Set the finalization priority for DECL to PRIORITY. */
6507
6508 void
6509 decl_fini_priority_insert (tree decl, priority_type priority)
6510 {
6511 struct cgraph_node *node;
6512
6513 if (priority == DEFAULT_INIT_PRIORITY)
6514 {
6515 node = cgraph_node::get (decl);
6516 if (!node)
6517 return;
6518 }
6519 else
6520 node = cgraph_node::get_create (decl);
6521 node->set_fini_priority (priority);
6522 }
6523
6524 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6525
6526 static void
6527 print_debug_expr_statistics (void)
6528 {
6529 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6530 (long) htab_size (debug_expr_for_decl),
6531 (long) htab_elements (debug_expr_for_decl),
6532 htab_collisions (debug_expr_for_decl));
6533 }
6534
6535 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6536
6537 static void
6538 print_value_expr_statistics (void)
6539 {
6540 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6541 (long) htab_size (value_expr_for_decl),
6542 (long) htab_elements (value_expr_for_decl),
6543 htab_collisions (value_expr_for_decl));
6544 }
6545
6546 /* Lookup a debug expression for FROM, and return it if we find one. */
6547
6548 tree
6549 decl_debug_expr_lookup (tree from)
6550 {
6551 struct tree_decl_map *h, in;
6552 in.base.from = from;
6553
6554 h = (struct tree_decl_map *)
6555 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6556 if (h)
6557 return h->to;
6558 return NULL_TREE;
6559 }
6560
6561 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6562
6563 void
6564 decl_debug_expr_insert (tree from, tree to)
6565 {
6566 struct tree_decl_map *h;
6567 void **loc;
6568
6569 h = ggc_alloc<tree_decl_map> ();
6570 h->base.from = from;
6571 h->to = to;
6572 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6573 INSERT);
6574 *(struct tree_decl_map **) loc = h;
6575 }
6576
6577 /* Lookup a value expression for FROM, and return it if we find one. */
6578
6579 tree
6580 decl_value_expr_lookup (tree from)
6581 {
6582 struct tree_decl_map *h, in;
6583 in.base.from = from;
6584
6585 h = (struct tree_decl_map *)
6586 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6587 if (h)
6588 return h->to;
6589 return NULL_TREE;
6590 }
6591
6592 /* Insert a mapping FROM->TO in the value expression hashtable. */
6593
6594 void
6595 decl_value_expr_insert (tree from, tree to)
6596 {
6597 struct tree_decl_map *h;
6598 void **loc;
6599
6600 h = ggc_alloc<tree_decl_map> ();
6601 h->base.from = from;
6602 h->to = to;
6603 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6604 INSERT);
6605 *(struct tree_decl_map **) loc = h;
6606 }
6607
6608 /* Lookup a vector of debug arguments for FROM, and return it if we
6609 find one. */
6610
6611 vec<tree, va_gc> **
6612 decl_debug_args_lookup (tree from)
6613 {
6614 struct tree_vec_map *h, in;
6615
6616 if (!DECL_HAS_DEBUG_ARGS_P (from))
6617 return NULL;
6618 gcc_checking_assert (debug_args_for_decl != NULL);
6619 in.base.from = from;
6620 h = (struct tree_vec_map *)
6621 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6622 if (h)
6623 return &h->to;
6624 return NULL;
6625 }
6626
6627 /* Insert a mapping FROM->empty vector of debug arguments in the value
6628 expression hashtable. */
6629
6630 vec<tree, va_gc> **
6631 decl_debug_args_insert (tree from)
6632 {
6633 struct tree_vec_map *h;
6634 void **loc;
6635
6636 if (DECL_HAS_DEBUG_ARGS_P (from))
6637 return decl_debug_args_lookup (from);
6638 if (debug_args_for_decl == NULL)
6639 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6640 tree_vec_map_eq, 0);
6641 h = ggc_alloc<tree_vec_map> ();
6642 h->base.from = from;
6643 h->to = NULL;
6644 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6645 INSERT);
6646 *(struct tree_vec_map **) loc = h;
6647 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6648 return &h->to;
6649 }
6650
6651 /* Hashing of types so that we don't make duplicates.
6652 The entry point is `type_hash_canon'. */
6653
6654 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6655 with types in the TREE_VALUE slots), by adding the hash codes
6656 of the individual types. */
6657
6658 static void
6659 type_hash_list (const_tree list, inchash::hash &hstate)
6660 {
6661 const_tree tail;
6662
6663 for (tail = list; tail; tail = TREE_CHAIN (tail))
6664 if (TREE_VALUE (tail) != error_mark_node)
6665 hstate.add_object (TYPE_HASH (TREE_VALUE (tail)));
6666 }
6667
6668 /* These are the Hashtable callback functions. */
6669
6670 /* Returns true iff the types are equivalent. */
6671
6672 static int
6673 type_hash_eq (const void *va, const void *vb)
6674 {
6675 const struct type_hash *const a = (const struct type_hash *) va,
6676 *const b = (const struct type_hash *) vb;
6677
6678 /* First test the things that are the same for all types. */
6679 if (a->hash != b->hash
6680 || TREE_CODE (a->type) != TREE_CODE (b->type)
6681 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6682 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6683 TYPE_ATTRIBUTES (b->type))
6684 || (TREE_CODE (a->type) != COMPLEX_TYPE
6685 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6686 return 0;
6687
6688 /* Be careful about comparing arrays before and after the element type
6689 has been completed; don't compare TYPE_ALIGN unless both types are
6690 complete. */
6691 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6692 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6693 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6694 return 0;
6695
6696 switch (TREE_CODE (a->type))
6697 {
6698 case VOID_TYPE:
6699 case COMPLEX_TYPE:
6700 case POINTER_TYPE:
6701 case REFERENCE_TYPE:
6702 case NULLPTR_TYPE:
6703 return 1;
6704
6705 case VECTOR_TYPE:
6706 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6707
6708 case ENUMERAL_TYPE:
6709 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6710 && !(TYPE_VALUES (a->type)
6711 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6712 && TYPE_VALUES (b->type)
6713 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6714 && type_list_equal (TYPE_VALUES (a->type),
6715 TYPE_VALUES (b->type))))
6716 return 0;
6717
6718 /* ... fall through ... */
6719
6720 case INTEGER_TYPE:
6721 case REAL_TYPE:
6722 case BOOLEAN_TYPE:
6723 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6724 return false;
6725 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6726 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6727 TYPE_MAX_VALUE (b->type)))
6728 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6729 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6730 TYPE_MIN_VALUE (b->type))));
6731
6732 case FIXED_POINT_TYPE:
6733 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6734
6735 case OFFSET_TYPE:
6736 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6737
6738 case METHOD_TYPE:
6739 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6740 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6741 || (TYPE_ARG_TYPES (a->type)
6742 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6743 && TYPE_ARG_TYPES (b->type)
6744 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6745 && type_list_equal (TYPE_ARG_TYPES (a->type),
6746 TYPE_ARG_TYPES (b->type)))))
6747 break;
6748 return 0;
6749 case ARRAY_TYPE:
6750 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6751
6752 case RECORD_TYPE:
6753 case UNION_TYPE:
6754 case QUAL_UNION_TYPE:
6755 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6756 || (TYPE_FIELDS (a->type)
6757 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6758 && TYPE_FIELDS (b->type)
6759 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6760 && type_list_equal (TYPE_FIELDS (a->type),
6761 TYPE_FIELDS (b->type))));
6762
6763 case FUNCTION_TYPE:
6764 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6765 || (TYPE_ARG_TYPES (a->type)
6766 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6767 && TYPE_ARG_TYPES (b->type)
6768 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6769 && type_list_equal (TYPE_ARG_TYPES (a->type),
6770 TYPE_ARG_TYPES (b->type))))
6771 break;
6772 return 0;
6773
6774 default:
6775 return 0;
6776 }
6777
6778 if (lang_hooks.types.type_hash_eq != NULL)
6779 return lang_hooks.types.type_hash_eq (a->type, b->type);
6780
6781 return 1;
6782 }
6783
6784 /* Return the cached hash value. */
6785
6786 static hashval_t
6787 type_hash_hash (const void *item)
6788 {
6789 return ((const struct type_hash *) item)->hash;
6790 }
6791
6792 /* Given TYPE, and HASHCODE its hash code, return the canonical
6793 object for an identical type if one already exists.
6794 Otherwise, return TYPE, and record it as the canonical object.
6795
6796 To use this function, first create a type of the sort you want.
6797 Then compute its hash code from the fields of the type that
6798 make it different from other similar types.
6799 Then call this function and use the value. */
6800
6801 tree
6802 type_hash_canon (unsigned int hashcode, tree type)
6803 {
6804 type_hash in;
6805 void **loc;
6806
6807 /* The hash table only contains main variants, so ensure that's what we're
6808 being passed. */
6809 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6810
6811 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6812 must call that routine before comparing TYPE_ALIGNs. */
6813 layout_type (type);
6814
6815 in.hash = hashcode;
6816 in.type = type;
6817
6818 loc = htab_find_slot_with_hash (type_hash_table, &in, hashcode, INSERT);
6819 if (*loc)
6820 {
6821 tree t1 = ((type_hash *) *loc)->type;
6822 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1);
6823 if (GATHER_STATISTICS)
6824 {
6825 tree_code_counts[(int) TREE_CODE (type)]--;
6826 tree_node_counts[(int) t_kind]--;
6827 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6828 }
6829 return t1;
6830 }
6831 else
6832 {
6833 struct type_hash *h;
6834
6835 h = ggc_alloc<type_hash> ();
6836 h->hash = hashcode;
6837 h->type = type;
6838 *loc = (void *)h;
6839
6840 return type;
6841 }
6842 }
6843
6844 /* See if the data pointed to by the type hash table is marked. We consider
6845 it marked if the type is marked or if a debug type number or symbol
6846 table entry has been made for the type. */
6847
6848 static int
6849 type_hash_marked_p (const void *p)
6850 {
6851 const_tree const type = ((const struct type_hash *) p)->type;
6852
6853 return ggc_marked_p (type);
6854 }
6855
6856 static void
6857 print_type_hash_statistics (void)
6858 {
6859 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6860 (long) htab_size (type_hash_table),
6861 (long) htab_elements (type_hash_table),
6862 htab_collisions (type_hash_table));
6863 }
6864
6865 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6866 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6867 by adding the hash codes of the individual attributes. */
6868
6869 static void
6870 attribute_hash_list (const_tree list, inchash::hash &hstate)
6871 {
6872 const_tree tail;
6873
6874 for (tail = list; tail; tail = TREE_CHAIN (tail))
6875 /* ??? Do we want to add in TREE_VALUE too? */
6876 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)));
6877 }
6878
6879 /* Given two lists of attributes, return true if list l2 is
6880 equivalent to l1. */
6881
6882 int
6883 attribute_list_equal (const_tree l1, const_tree l2)
6884 {
6885 if (l1 == l2)
6886 return 1;
6887
6888 return attribute_list_contained (l1, l2)
6889 && attribute_list_contained (l2, l1);
6890 }
6891
6892 /* Given two lists of attributes, return true if list L2 is
6893 completely contained within L1. */
6894 /* ??? This would be faster if attribute names were stored in a canonicalized
6895 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6896 must be used to show these elements are equivalent (which they are). */
6897 /* ??? It's not clear that attributes with arguments will always be handled
6898 correctly. */
6899
6900 int
6901 attribute_list_contained (const_tree l1, const_tree l2)
6902 {
6903 const_tree t1, t2;
6904
6905 /* First check the obvious, maybe the lists are identical. */
6906 if (l1 == l2)
6907 return 1;
6908
6909 /* Maybe the lists are similar. */
6910 for (t1 = l1, t2 = l2;
6911 t1 != 0 && t2 != 0
6912 && get_attribute_name (t1) == get_attribute_name (t2)
6913 && TREE_VALUE (t1) == TREE_VALUE (t2);
6914 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6915 ;
6916
6917 /* Maybe the lists are equal. */
6918 if (t1 == 0 && t2 == 0)
6919 return 1;
6920
6921 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6922 {
6923 const_tree attr;
6924 /* This CONST_CAST is okay because lookup_attribute does not
6925 modify its argument and the return value is assigned to a
6926 const_tree. */
6927 for (attr = lookup_ident_attribute (get_attribute_name (t2),
6928 CONST_CAST_TREE (l1));
6929 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6930 attr = lookup_ident_attribute (get_attribute_name (t2),
6931 TREE_CHAIN (attr)))
6932 ;
6933
6934 if (attr == NULL_TREE)
6935 return 0;
6936 }
6937
6938 return 1;
6939 }
6940
6941 /* Given two lists of types
6942 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6943 return 1 if the lists contain the same types in the same order.
6944 Also, the TREE_PURPOSEs must match. */
6945
6946 int
6947 type_list_equal (const_tree l1, const_tree l2)
6948 {
6949 const_tree t1, t2;
6950
6951 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6952 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6953 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6954 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6955 && (TREE_TYPE (TREE_PURPOSE (t1))
6956 == TREE_TYPE (TREE_PURPOSE (t2))))))
6957 return 0;
6958
6959 return t1 == t2;
6960 }
6961
6962 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6963 given by TYPE. If the argument list accepts variable arguments,
6964 then this function counts only the ordinary arguments. */
6965
6966 int
6967 type_num_arguments (const_tree type)
6968 {
6969 int i = 0;
6970 tree t;
6971
6972 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6973 /* If the function does not take a variable number of arguments,
6974 the last element in the list will have type `void'. */
6975 if (VOID_TYPE_P (TREE_VALUE (t)))
6976 break;
6977 else
6978 ++i;
6979
6980 return i;
6981 }
6982
6983 /* Nonzero if integer constants T1 and T2
6984 represent the same constant value. */
6985
6986 int
6987 tree_int_cst_equal (const_tree t1, const_tree t2)
6988 {
6989 if (t1 == t2)
6990 return 1;
6991
6992 if (t1 == 0 || t2 == 0)
6993 return 0;
6994
6995 if (TREE_CODE (t1) == INTEGER_CST
6996 && TREE_CODE (t2) == INTEGER_CST
6997 && wi::to_widest (t1) == wi::to_widest (t2))
6998 return 1;
6999
7000 return 0;
7001 }
7002
7003 /* Return true if T is an INTEGER_CST whose numerical value (extended
7004 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7005
7006 bool
7007 tree_fits_shwi_p (const_tree t)
7008 {
7009 return (t != NULL_TREE
7010 && TREE_CODE (t) == INTEGER_CST
7011 && wi::fits_shwi_p (wi::to_widest (t)));
7012 }
7013
7014 /* Return true if T is an INTEGER_CST whose numerical value (extended
7015 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7016
7017 bool
7018 tree_fits_uhwi_p (const_tree t)
7019 {
7020 return (t != NULL_TREE
7021 && TREE_CODE (t) == INTEGER_CST
7022 && wi::fits_uhwi_p (wi::to_widest (t)));
7023 }
7024
7025 /* T is an INTEGER_CST whose numerical value (extended according to
7026 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7027 HOST_WIDE_INT. */
7028
7029 HOST_WIDE_INT
7030 tree_to_shwi (const_tree t)
7031 {
7032 gcc_assert (tree_fits_shwi_p (t));
7033 return TREE_INT_CST_LOW (t);
7034 }
7035
7036 /* T is an INTEGER_CST whose numerical value (extended according to
7037 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7038 HOST_WIDE_INT. */
7039
7040 unsigned HOST_WIDE_INT
7041 tree_to_uhwi (const_tree t)
7042 {
7043 gcc_assert (tree_fits_uhwi_p (t));
7044 return TREE_INT_CST_LOW (t);
7045 }
7046
7047 /* Return the most significant (sign) bit of T. */
7048
7049 int
7050 tree_int_cst_sign_bit (const_tree t)
7051 {
7052 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7053
7054 return wi::extract_uhwi (t, bitno, 1);
7055 }
7056
7057 /* Return an indication of the sign of the integer constant T.
7058 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7059 Note that -1 will never be returned if T's type is unsigned. */
7060
7061 int
7062 tree_int_cst_sgn (const_tree t)
7063 {
7064 if (wi::eq_p (t, 0))
7065 return 0;
7066 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7067 return 1;
7068 else if (wi::neg_p (t))
7069 return -1;
7070 else
7071 return 1;
7072 }
7073
7074 /* Return the minimum number of bits needed to represent VALUE in a
7075 signed or unsigned type, UNSIGNEDP says which. */
7076
7077 unsigned int
7078 tree_int_cst_min_precision (tree value, signop sgn)
7079 {
7080 /* If the value is negative, compute its negative minus 1. The latter
7081 adjustment is because the absolute value of the largest negative value
7082 is one larger than the largest positive value. This is equivalent to
7083 a bit-wise negation, so use that operation instead. */
7084
7085 if (tree_int_cst_sgn (value) < 0)
7086 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7087
7088 /* Return the number of bits needed, taking into account the fact
7089 that we need one more bit for a signed than unsigned type.
7090 If value is 0 or -1, the minimum precision is 1 no matter
7091 whether unsignedp is true or false. */
7092
7093 if (integer_zerop (value))
7094 return 1;
7095 else
7096 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7097 }
7098
7099 /* Return truthvalue of whether T1 is the same tree structure as T2.
7100 Return 1 if they are the same.
7101 Return 0 if they are understandably different.
7102 Return -1 if either contains tree structure not understood by
7103 this function. */
7104
7105 int
7106 simple_cst_equal (const_tree t1, const_tree t2)
7107 {
7108 enum tree_code code1, code2;
7109 int cmp;
7110 int i;
7111
7112 if (t1 == t2)
7113 return 1;
7114 if (t1 == 0 || t2 == 0)
7115 return 0;
7116
7117 code1 = TREE_CODE (t1);
7118 code2 = TREE_CODE (t2);
7119
7120 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7121 {
7122 if (CONVERT_EXPR_CODE_P (code2)
7123 || code2 == NON_LVALUE_EXPR)
7124 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7125 else
7126 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7127 }
7128
7129 else if (CONVERT_EXPR_CODE_P (code2)
7130 || code2 == NON_LVALUE_EXPR)
7131 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7132
7133 if (code1 != code2)
7134 return 0;
7135
7136 switch (code1)
7137 {
7138 case INTEGER_CST:
7139 return wi::to_widest (t1) == wi::to_widest (t2);
7140
7141 case REAL_CST:
7142 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
7143
7144 case FIXED_CST:
7145 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7146
7147 case STRING_CST:
7148 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7149 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7150 TREE_STRING_LENGTH (t1)));
7151
7152 case CONSTRUCTOR:
7153 {
7154 unsigned HOST_WIDE_INT idx;
7155 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7156 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7157
7158 if (vec_safe_length (v1) != vec_safe_length (v2))
7159 return false;
7160
7161 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7162 /* ??? Should we handle also fields here? */
7163 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7164 return false;
7165 return true;
7166 }
7167
7168 case SAVE_EXPR:
7169 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7170
7171 case CALL_EXPR:
7172 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7173 if (cmp <= 0)
7174 return cmp;
7175 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7176 return 0;
7177 {
7178 const_tree arg1, arg2;
7179 const_call_expr_arg_iterator iter1, iter2;
7180 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7181 arg2 = first_const_call_expr_arg (t2, &iter2);
7182 arg1 && arg2;
7183 arg1 = next_const_call_expr_arg (&iter1),
7184 arg2 = next_const_call_expr_arg (&iter2))
7185 {
7186 cmp = simple_cst_equal (arg1, arg2);
7187 if (cmp <= 0)
7188 return cmp;
7189 }
7190 return arg1 == arg2;
7191 }
7192
7193 case TARGET_EXPR:
7194 /* Special case: if either target is an unallocated VAR_DECL,
7195 it means that it's going to be unified with whatever the
7196 TARGET_EXPR is really supposed to initialize, so treat it
7197 as being equivalent to anything. */
7198 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7199 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7200 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7201 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7202 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7203 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7204 cmp = 1;
7205 else
7206 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7207
7208 if (cmp <= 0)
7209 return cmp;
7210
7211 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7212
7213 case WITH_CLEANUP_EXPR:
7214 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7215 if (cmp <= 0)
7216 return cmp;
7217
7218 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7219
7220 case COMPONENT_REF:
7221 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7222 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7223
7224 return 0;
7225
7226 case VAR_DECL:
7227 case PARM_DECL:
7228 case CONST_DECL:
7229 case FUNCTION_DECL:
7230 return 0;
7231
7232 default:
7233 break;
7234 }
7235
7236 /* This general rule works for most tree codes. All exceptions should be
7237 handled above. If this is a language-specific tree code, we can't
7238 trust what might be in the operand, so say we don't know
7239 the situation. */
7240 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7241 return -1;
7242
7243 switch (TREE_CODE_CLASS (code1))
7244 {
7245 case tcc_unary:
7246 case tcc_binary:
7247 case tcc_comparison:
7248 case tcc_expression:
7249 case tcc_reference:
7250 case tcc_statement:
7251 cmp = 1;
7252 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7253 {
7254 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7255 if (cmp <= 0)
7256 return cmp;
7257 }
7258
7259 return cmp;
7260
7261 default:
7262 return -1;
7263 }
7264 }
7265
7266 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7267 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7268 than U, respectively. */
7269
7270 int
7271 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7272 {
7273 if (tree_int_cst_sgn (t) < 0)
7274 return -1;
7275 else if (!tree_fits_uhwi_p (t))
7276 return 1;
7277 else if (TREE_INT_CST_LOW (t) == u)
7278 return 0;
7279 else if (TREE_INT_CST_LOW (t) < u)
7280 return -1;
7281 else
7282 return 1;
7283 }
7284
7285 /* Return true if SIZE represents a constant size that is in bounds of
7286 what the middle-end and the backend accepts (covering not more than
7287 half of the address-space). */
7288
7289 bool
7290 valid_constant_size_p (const_tree size)
7291 {
7292 if (! tree_fits_uhwi_p (size)
7293 || TREE_OVERFLOW (size)
7294 || tree_int_cst_sign_bit (size) != 0)
7295 return false;
7296 return true;
7297 }
7298
7299 /* Return the precision of the type, or for a complex or vector type the
7300 precision of the type of its elements. */
7301
7302 unsigned int
7303 element_precision (const_tree type)
7304 {
7305 enum tree_code code = TREE_CODE (type);
7306 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7307 type = TREE_TYPE (type);
7308
7309 return TYPE_PRECISION (type);
7310 }
7311
7312 /* Return true if CODE represents an associative tree code. Otherwise
7313 return false. */
7314 bool
7315 associative_tree_code (enum tree_code code)
7316 {
7317 switch (code)
7318 {
7319 case BIT_IOR_EXPR:
7320 case BIT_AND_EXPR:
7321 case BIT_XOR_EXPR:
7322 case PLUS_EXPR:
7323 case MULT_EXPR:
7324 case MIN_EXPR:
7325 case MAX_EXPR:
7326 return true;
7327
7328 default:
7329 break;
7330 }
7331 return false;
7332 }
7333
7334 /* Return true if CODE represents a commutative tree code. Otherwise
7335 return false. */
7336 bool
7337 commutative_tree_code (enum tree_code code)
7338 {
7339 switch (code)
7340 {
7341 case PLUS_EXPR:
7342 case MULT_EXPR:
7343 case MULT_HIGHPART_EXPR:
7344 case MIN_EXPR:
7345 case MAX_EXPR:
7346 case BIT_IOR_EXPR:
7347 case BIT_XOR_EXPR:
7348 case BIT_AND_EXPR:
7349 case NE_EXPR:
7350 case EQ_EXPR:
7351 case UNORDERED_EXPR:
7352 case ORDERED_EXPR:
7353 case UNEQ_EXPR:
7354 case LTGT_EXPR:
7355 case TRUTH_AND_EXPR:
7356 case TRUTH_XOR_EXPR:
7357 case TRUTH_OR_EXPR:
7358 case WIDEN_MULT_EXPR:
7359 case VEC_WIDEN_MULT_HI_EXPR:
7360 case VEC_WIDEN_MULT_LO_EXPR:
7361 case VEC_WIDEN_MULT_EVEN_EXPR:
7362 case VEC_WIDEN_MULT_ODD_EXPR:
7363 return true;
7364
7365 default:
7366 break;
7367 }
7368 return false;
7369 }
7370
7371 /* Return true if CODE represents a ternary tree code for which the
7372 first two operands are commutative. Otherwise return false. */
7373 bool
7374 commutative_ternary_tree_code (enum tree_code code)
7375 {
7376 switch (code)
7377 {
7378 case WIDEN_MULT_PLUS_EXPR:
7379 case WIDEN_MULT_MINUS_EXPR:
7380 return true;
7381
7382 default:
7383 break;
7384 }
7385 return false;
7386 }
7387
7388 namespace inchash
7389 {
7390
7391 /* Generate a hash value for an expression. This can be used iteratively
7392 by passing a previous result as the HSTATE argument.
7393
7394 This function is intended to produce the same hash for expressions which
7395 would compare equal using operand_equal_p. */
7396 void
7397 add_expr (const_tree t, inchash::hash &hstate)
7398 {
7399 int i;
7400 enum tree_code code;
7401 enum tree_code_class tclass;
7402
7403 if (t == NULL_TREE)
7404 {
7405 hstate.merge_hash (0);
7406 return;
7407 }
7408
7409 code = TREE_CODE (t);
7410
7411 switch (code)
7412 {
7413 /* Alas, constants aren't shared, so we can't rely on pointer
7414 identity. */
7415 case VOID_CST:
7416 hstate.merge_hash (0);
7417 return;
7418 case INTEGER_CST:
7419 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
7420 hstate.add_wide_int (TREE_INT_CST_ELT (t, i));
7421 return;
7422 case REAL_CST:
7423 {
7424 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7425 hstate.merge_hash (val2);
7426 return;
7427 }
7428 case FIXED_CST:
7429 {
7430 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7431 hstate.merge_hash (val2);
7432 return;
7433 }
7434 case STRING_CST:
7435 hstate.add ((const void *) TREE_STRING_POINTER (t), TREE_STRING_LENGTH (t));
7436 return;
7437 case COMPLEX_CST:
7438 inchash::add_expr (TREE_REALPART (t), hstate);
7439 inchash::add_expr (TREE_IMAGPART (t), hstate);
7440 return;
7441 case VECTOR_CST:
7442 {
7443 unsigned i;
7444 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7445 inchash::add_expr (VECTOR_CST_ELT (t, i), hstate);
7446 return;
7447 }
7448 case SSA_NAME:
7449 /* We can just compare by pointer. */
7450 hstate.add_wide_int (SSA_NAME_VERSION (t));
7451 return;
7452 case PLACEHOLDER_EXPR:
7453 /* The node itself doesn't matter. */
7454 return;
7455 case TREE_LIST:
7456 /* A list of expressions, for a CALL_EXPR or as the elements of a
7457 VECTOR_CST. */
7458 for (; t; t = TREE_CHAIN (t))
7459 inchash::add_expr (TREE_VALUE (t), hstate);
7460 return;
7461 case CONSTRUCTOR:
7462 {
7463 unsigned HOST_WIDE_INT idx;
7464 tree field, value;
7465 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7466 {
7467 inchash::add_expr (field, hstate);
7468 inchash::add_expr (value, hstate);
7469 }
7470 return;
7471 }
7472 case FUNCTION_DECL:
7473 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7474 Otherwise nodes that compare equal according to operand_equal_p might
7475 get different hash codes. However, don't do this for machine specific
7476 or front end builtins, since the function code is overloaded in those
7477 cases. */
7478 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7479 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7480 {
7481 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7482 code = TREE_CODE (t);
7483 }
7484 /* FALL THROUGH */
7485 default:
7486 tclass = TREE_CODE_CLASS (code);
7487
7488 if (tclass == tcc_declaration)
7489 {
7490 /* DECL's have a unique ID */
7491 hstate.add_wide_int (DECL_UID (t));
7492 }
7493 else
7494 {
7495 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7496
7497 hstate.add_object (code);
7498
7499 /* Don't hash the type, that can lead to having nodes which
7500 compare equal according to operand_equal_p, but which
7501 have different hash codes. */
7502 if (CONVERT_EXPR_CODE_P (code)
7503 || code == NON_LVALUE_EXPR)
7504 {
7505 /* Make sure to include signness in the hash computation. */
7506 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7507 inchash::add_expr (TREE_OPERAND (t, 0), hstate);
7508 }
7509
7510 else if (commutative_tree_code (code))
7511 {
7512 /* It's a commutative expression. We want to hash it the same
7513 however it appears. We do this by first hashing both operands
7514 and then rehashing based on the order of their independent
7515 hashes. */
7516 inchash::hash one, two;
7517 inchash::add_expr (TREE_OPERAND (t, 0), one);
7518 inchash::add_expr (TREE_OPERAND (t, 1), two);
7519 hstate.add_commutative (one, two);
7520 }
7521 else
7522 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7523 inchash::add_expr (TREE_OPERAND (t, i), hstate);
7524 }
7525 return;
7526 }
7527 }
7528
7529 }
7530
7531 /* Constructors for pointer, array and function types.
7532 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7533 constructed by language-dependent code, not here.) */
7534
7535 /* Construct, lay out and return the type of pointers to TO_TYPE with
7536 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7537 reference all of memory. If such a type has already been
7538 constructed, reuse it. */
7539
7540 tree
7541 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7542 bool can_alias_all)
7543 {
7544 tree t;
7545
7546 if (to_type == error_mark_node)
7547 return error_mark_node;
7548
7549 /* If the pointed-to type has the may_alias attribute set, force
7550 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7551 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7552 can_alias_all = true;
7553
7554 /* In some cases, languages will have things that aren't a POINTER_TYPE
7555 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7556 In that case, return that type without regard to the rest of our
7557 operands.
7558
7559 ??? This is a kludge, but consistent with the way this function has
7560 always operated and there doesn't seem to be a good way to avoid this
7561 at the moment. */
7562 if (TYPE_POINTER_TO (to_type) != 0
7563 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7564 return TYPE_POINTER_TO (to_type);
7565
7566 /* First, if we already have a type for pointers to TO_TYPE and it's
7567 the proper mode, use it. */
7568 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7569 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7570 return t;
7571
7572 t = make_node (POINTER_TYPE);
7573
7574 TREE_TYPE (t) = to_type;
7575 SET_TYPE_MODE (t, mode);
7576 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7577 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7578 TYPE_POINTER_TO (to_type) = t;
7579
7580 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7581 SET_TYPE_STRUCTURAL_EQUALITY (t);
7582 else if (TYPE_CANONICAL (to_type) != to_type)
7583 TYPE_CANONICAL (t)
7584 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7585 mode, can_alias_all);
7586
7587 /* Lay out the type. This function has many callers that are concerned
7588 with expression-construction, and this simplifies them all. */
7589 layout_type (t);
7590
7591 return t;
7592 }
7593
7594 /* By default build pointers in ptr_mode. */
7595
7596 tree
7597 build_pointer_type (tree to_type)
7598 {
7599 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7600 : TYPE_ADDR_SPACE (to_type);
7601 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7602 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7603 }
7604
7605 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7606
7607 tree
7608 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7609 bool can_alias_all)
7610 {
7611 tree t;
7612
7613 if (to_type == error_mark_node)
7614 return error_mark_node;
7615
7616 /* If the pointed-to type has the may_alias attribute set, force
7617 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7618 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7619 can_alias_all = true;
7620
7621 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7622 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7623 In that case, return that type without regard to the rest of our
7624 operands.
7625
7626 ??? This is a kludge, but consistent with the way this function has
7627 always operated and there doesn't seem to be a good way to avoid this
7628 at the moment. */
7629 if (TYPE_REFERENCE_TO (to_type) != 0
7630 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7631 return TYPE_REFERENCE_TO (to_type);
7632
7633 /* First, if we already have a type for pointers to TO_TYPE and it's
7634 the proper mode, use it. */
7635 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7636 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7637 return t;
7638
7639 t = make_node (REFERENCE_TYPE);
7640
7641 TREE_TYPE (t) = to_type;
7642 SET_TYPE_MODE (t, mode);
7643 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7644 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7645 TYPE_REFERENCE_TO (to_type) = t;
7646
7647 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7648 SET_TYPE_STRUCTURAL_EQUALITY (t);
7649 else if (TYPE_CANONICAL (to_type) != to_type)
7650 TYPE_CANONICAL (t)
7651 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7652 mode, can_alias_all);
7653
7654 layout_type (t);
7655
7656 return t;
7657 }
7658
7659
7660 /* Build the node for the type of references-to-TO_TYPE by default
7661 in ptr_mode. */
7662
7663 tree
7664 build_reference_type (tree to_type)
7665 {
7666 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7667 : TYPE_ADDR_SPACE (to_type);
7668 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7669 return build_reference_type_for_mode (to_type, pointer_mode, false);
7670 }
7671
7672 #define MAX_INT_CACHED_PREC \
7673 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7674 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7675
7676 /* Builds a signed or unsigned integer type of precision PRECISION.
7677 Used for C bitfields whose precision does not match that of
7678 built-in target types. */
7679 tree
7680 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7681 int unsignedp)
7682 {
7683 tree itype, ret;
7684
7685 if (unsignedp)
7686 unsignedp = MAX_INT_CACHED_PREC + 1;
7687
7688 if (precision <= MAX_INT_CACHED_PREC)
7689 {
7690 itype = nonstandard_integer_type_cache[precision + unsignedp];
7691 if (itype)
7692 return itype;
7693 }
7694
7695 itype = make_node (INTEGER_TYPE);
7696 TYPE_PRECISION (itype) = precision;
7697
7698 if (unsignedp)
7699 fixup_unsigned_type (itype);
7700 else
7701 fixup_signed_type (itype);
7702
7703 ret = itype;
7704 if (tree_fits_uhwi_p (TYPE_MAX_VALUE (itype)))
7705 ret = type_hash_canon (tree_to_uhwi (TYPE_MAX_VALUE (itype)), itype);
7706 if (precision <= MAX_INT_CACHED_PREC)
7707 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7708
7709 return ret;
7710 }
7711
7712 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7713 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7714 is true, reuse such a type that has already been constructed. */
7715
7716 static tree
7717 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7718 {
7719 tree itype = make_node (INTEGER_TYPE);
7720 inchash::hash hstate;
7721
7722 TREE_TYPE (itype) = type;
7723
7724 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7725 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7726
7727 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7728 SET_TYPE_MODE (itype, TYPE_MODE (type));
7729 TYPE_SIZE (itype) = TYPE_SIZE (type);
7730 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7731 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7732 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7733
7734 if (!shared)
7735 return itype;
7736
7737 if ((TYPE_MIN_VALUE (itype)
7738 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7739 || (TYPE_MAX_VALUE (itype)
7740 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7741 {
7742 /* Since we cannot reliably merge this type, we need to compare it using
7743 structural equality checks. */
7744 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7745 return itype;
7746 }
7747
7748 inchash::add_expr (TYPE_MIN_VALUE (itype), hstate);
7749 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7750 hstate.merge_hash (TYPE_HASH (type));
7751 itype = type_hash_canon (hstate.end (), itype);
7752
7753 return itype;
7754 }
7755
7756 /* Wrapper around build_range_type_1 with SHARED set to true. */
7757
7758 tree
7759 build_range_type (tree type, tree lowval, tree highval)
7760 {
7761 return build_range_type_1 (type, lowval, highval, true);
7762 }
7763
7764 /* Wrapper around build_range_type_1 with SHARED set to false. */
7765
7766 tree
7767 build_nonshared_range_type (tree type, tree lowval, tree highval)
7768 {
7769 return build_range_type_1 (type, lowval, highval, false);
7770 }
7771
7772 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7773 MAXVAL should be the maximum value in the domain
7774 (one less than the length of the array).
7775
7776 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7777 We don't enforce this limit, that is up to caller (e.g. language front end).
7778 The limit exists because the result is a signed type and we don't handle
7779 sizes that use more than one HOST_WIDE_INT. */
7780
7781 tree
7782 build_index_type (tree maxval)
7783 {
7784 return build_range_type (sizetype, size_zero_node, maxval);
7785 }
7786
7787 /* Return true if the debug information for TYPE, a subtype, should be emitted
7788 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7789 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7790 debug info and doesn't reflect the source code. */
7791
7792 bool
7793 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7794 {
7795 tree base_type = TREE_TYPE (type), low, high;
7796
7797 /* Subrange types have a base type which is an integral type. */
7798 if (!INTEGRAL_TYPE_P (base_type))
7799 return false;
7800
7801 /* Get the real bounds of the subtype. */
7802 if (lang_hooks.types.get_subrange_bounds)
7803 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7804 else
7805 {
7806 low = TYPE_MIN_VALUE (type);
7807 high = TYPE_MAX_VALUE (type);
7808 }
7809
7810 /* If the type and its base type have the same representation and the same
7811 name, then the type is not a subrange but a copy of the base type. */
7812 if ((TREE_CODE (base_type) == INTEGER_TYPE
7813 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7814 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7815 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7816 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7817 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7818 return false;
7819
7820 if (lowval)
7821 *lowval = low;
7822 if (highval)
7823 *highval = high;
7824 return true;
7825 }
7826
7827 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7828 and number of elements specified by the range of values of INDEX_TYPE.
7829 If SHARED is true, reuse such a type that has already been constructed. */
7830
7831 static tree
7832 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7833 {
7834 tree t;
7835
7836 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7837 {
7838 error ("arrays of functions are not meaningful");
7839 elt_type = integer_type_node;
7840 }
7841
7842 t = make_node (ARRAY_TYPE);
7843 TREE_TYPE (t) = elt_type;
7844 TYPE_DOMAIN (t) = index_type;
7845 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7846 layout_type (t);
7847
7848 /* If the element type is incomplete at this point we get marked for
7849 structural equality. Do not record these types in the canonical
7850 type hashtable. */
7851 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7852 return t;
7853
7854 if (shared)
7855 {
7856 inchash::hash hstate;
7857 hstate.add_object (TYPE_HASH (elt_type));
7858 if (index_type)
7859 hstate.add_object (TYPE_HASH (index_type));
7860 t = type_hash_canon (hstate.end (), t);
7861 }
7862
7863 if (TYPE_CANONICAL (t) == t)
7864 {
7865 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7866 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7867 SET_TYPE_STRUCTURAL_EQUALITY (t);
7868 else if (TYPE_CANONICAL (elt_type) != elt_type
7869 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7870 TYPE_CANONICAL (t)
7871 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7872 index_type
7873 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7874 shared);
7875 }
7876
7877 return t;
7878 }
7879
7880 /* Wrapper around build_array_type_1 with SHARED set to true. */
7881
7882 tree
7883 build_array_type (tree elt_type, tree index_type)
7884 {
7885 return build_array_type_1 (elt_type, index_type, true);
7886 }
7887
7888 /* Wrapper around build_array_type_1 with SHARED set to false. */
7889
7890 tree
7891 build_nonshared_array_type (tree elt_type, tree index_type)
7892 {
7893 return build_array_type_1 (elt_type, index_type, false);
7894 }
7895
7896 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7897 sizetype. */
7898
7899 tree
7900 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7901 {
7902 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7903 }
7904
7905 /* Recursively examines the array elements of TYPE, until a non-array
7906 element type is found. */
7907
7908 tree
7909 strip_array_types (tree type)
7910 {
7911 while (TREE_CODE (type) == ARRAY_TYPE)
7912 type = TREE_TYPE (type);
7913
7914 return type;
7915 }
7916
7917 /* Computes the canonical argument types from the argument type list
7918 ARGTYPES.
7919
7920 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7921 on entry to this function, or if any of the ARGTYPES are
7922 structural.
7923
7924 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7925 true on entry to this function, or if any of the ARGTYPES are
7926 non-canonical.
7927
7928 Returns a canonical argument list, which may be ARGTYPES when the
7929 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7930 true) or would not differ from ARGTYPES. */
7931
7932 static tree
7933 maybe_canonicalize_argtypes (tree argtypes,
7934 bool *any_structural_p,
7935 bool *any_noncanonical_p)
7936 {
7937 tree arg;
7938 bool any_noncanonical_argtypes_p = false;
7939
7940 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7941 {
7942 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7943 /* Fail gracefully by stating that the type is structural. */
7944 *any_structural_p = true;
7945 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7946 *any_structural_p = true;
7947 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7948 || TREE_PURPOSE (arg))
7949 /* If the argument has a default argument, we consider it
7950 non-canonical even though the type itself is canonical.
7951 That way, different variants of function and method types
7952 with default arguments will all point to the variant with
7953 no defaults as their canonical type. */
7954 any_noncanonical_argtypes_p = true;
7955 }
7956
7957 if (*any_structural_p)
7958 return argtypes;
7959
7960 if (any_noncanonical_argtypes_p)
7961 {
7962 /* Build the canonical list of argument types. */
7963 tree canon_argtypes = NULL_TREE;
7964 bool is_void = false;
7965
7966 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7967 {
7968 if (arg == void_list_node)
7969 is_void = true;
7970 else
7971 canon_argtypes = tree_cons (NULL_TREE,
7972 TYPE_CANONICAL (TREE_VALUE (arg)),
7973 canon_argtypes);
7974 }
7975
7976 canon_argtypes = nreverse (canon_argtypes);
7977 if (is_void)
7978 canon_argtypes = chainon (canon_argtypes, void_list_node);
7979
7980 /* There is a non-canonical type. */
7981 *any_noncanonical_p = true;
7982 return canon_argtypes;
7983 }
7984
7985 /* The canonical argument types are the same as ARGTYPES. */
7986 return argtypes;
7987 }
7988
7989 /* Construct, lay out and return
7990 the type of functions returning type VALUE_TYPE
7991 given arguments of types ARG_TYPES.
7992 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7993 are data type nodes for the arguments of the function.
7994 If such a type has already been constructed, reuse it. */
7995
7996 tree
7997 build_function_type (tree value_type, tree arg_types)
7998 {
7999 tree t;
8000 inchash::hash hstate;
8001 bool any_structural_p, any_noncanonical_p;
8002 tree canon_argtypes;
8003
8004 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8005 {
8006 error ("function return type cannot be function");
8007 value_type = integer_type_node;
8008 }
8009
8010 /* Make a node of the sort we want. */
8011 t = make_node (FUNCTION_TYPE);
8012 TREE_TYPE (t) = value_type;
8013 TYPE_ARG_TYPES (t) = arg_types;
8014
8015 /* If we already have such a type, use the old one. */
8016 hstate.add_object (TYPE_HASH (value_type));
8017 type_hash_list (arg_types, hstate);
8018 t = type_hash_canon (hstate.end (), t);
8019
8020 /* Set up the canonical type. */
8021 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8022 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8023 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8024 &any_structural_p,
8025 &any_noncanonical_p);
8026 if (any_structural_p)
8027 SET_TYPE_STRUCTURAL_EQUALITY (t);
8028 else if (any_noncanonical_p)
8029 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8030 canon_argtypes);
8031
8032 if (!COMPLETE_TYPE_P (t))
8033 layout_type (t);
8034 return t;
8035 }
8036
8037 /* Build a function type. The RETURN_TYPE is the type returned by the
8038 function. If VAARGS is set, no void_type_node is appended to the
8039 the list. ARGP must be always be terminated be a NULL_TREE. */
8040
8041 static tree
8042 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8043 {
8044 tree t, args, last;
8045
8046 t = va_arg (argp, tree);
8047 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8048 args = tree_cons (NULL_TREE, t, args);
8049
8050 if (vaargs)
8051 {
8052 last = args;
8053 if (args != NULL_TREE)
8054 args = nreverse (args);
8055 gcc_assert (last != void_list_node);
8056 }
8057 else if (args == NULL_TREE)
8058 args = void_list_node;
8059 else
8060 {
8061 last = args;
8062 args = nreverse (args);
8063 TREE_CHAIN (last) = void_list_node;
8064 }
8065 args = build_function_type (return_type, args);
8066
8067 return args;
8068 }
8069
8070 /* Build a function type. The RETURN_TYPE is the type returned by the
8071 function. If additional arguments are provided, they are
8072 additional argument types. The list of argument types must always
8073 be terminated by NULL_TREE. */
8074
8075 tree
8076 build_function_type_list (tree return_type, ...)
8077 {
8078 tree args;
8079 va_list p;
8080
8081 va_start (p, return_type);
8082 args = build_function_type_list_1 (false, return_type, p);
8083 va_end (p);
8084 return args;
8085 }
8086
8087 /* Build a variable argument function type. The RETURN_TYPE is the
8088 type returned by the function. If additional arguments are provided,
8089 they are additional argument types. The list of argument types must
8090 always be terminated by NULL_TREE. */
8091
8092 tree
8093 build_varargs_function_type_list (tree return_type, ...)
8094 {
8095 tree args;
8096 va_list p;
8097
8098 va_start (p, return_type);
8099 args = build_function_type_list_1 (true, return_type, p);
8100 va_end (p);
8101
8102 return args;
8103 }
8104
8105 /* Build a function type. RETURN_TYPE is the type returned by the
8106 function; VAARGS indicates whether the function takes varargs. The
8107 function takes N named arguments, the types of which are provided in
8108 ARG_TYPES. */
8109
8110 static tree
8111 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8112 tree *arg_types)
8113 {
8114 int i;
8115 tree t = vaargs ? NULL_TREE : void_list_node;
8116
8117 for (i = n - 1; i >= 0; i--)
8118 t = tree_cons (NULL_TREE, arg_types[i], t);
8119
8120 return build_function_type (return_type, t);
8121 }
8122
8123 /* Build a function type. RETURN_TYPE is the type returned by the
8124 function. The function takes N named arguments, the types of which
8125 are provided in ARG_TYPES. */
8126
8127 tree
8128 build_function_type_array (tree return_type, int n, tree *arg_types)
8129 {
8130 return build_function_type_array_1 (false, return_type, n, arg_types);
8131 }
8132
8133 /* Build a variable argument function type. RETURN_TYPE is the type
8134 returned by the function. The function takes N named arguments, the
8135 types of which are provided in ARG_TYPES. */
8136
8137 tree
8138 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8139 {
8140 return build_function_type_array_1 (true, return_type, n, arg_types);
8141 }
8142
8143 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8144 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8145 for the method. An implicit additional parameter (of type
8146 pointer-to-BASETYPE) is added to the ARGTYPES. */
8147
8148 tree
8149 build_method_type_directly (tree basetype,
8150 tree rettype,
8151 tree argtypes)
8152 {
8153 tree t;
8154 tree ptype;
8155 inchash::hash hstate;
8156 bool any_structural_p, any_noncanonical_p;
8157 tree canon_argtypes;
8158
8159 /* Make a node of the sort we want. */
8160 t = make_node (METHOD_TYPE);
8161
8162 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8163 TREE_TYPE (t) = rettype;
8164 ptype = build_pointer_type (basetype);
8165
8166 /* The actual arglist for this function includes a "hidden" argument
8167 which is "this". Put it into the list of argument types. */
8168 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8169 TYPE_ARG_TYPES (t) = argtypes;
8170
8171 /* If we already have such a type, use the old one. */
8172 hstate.add_object (TYPE_HASH (basetype));
8173 hstate.add_object (TYPE_HASH (rettype));
8174 type_hash_list (argtypes, hstate);
8175 t = type_hash_canon (hstate.end (), t);
8176
8177 /* Set up the canonical type. */
8178 any_structural_p
8179 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8180 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8181 any_noncanonical_p
8182 = (TYPE_CANONICAL (basetype) != basetype
8183 || TYPE_CANONICAL (rettype) != rettype);
8184 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8185 &any_structural_p,
8186 &any_noncanonical_p);
8187 if (any_structural_p)
8188 SET_TYPE_STRUCTURAL_EQUALITY (t);
8189 else if (any_noncanonical_p)
8190 TYPE_CANONICAL (t)
8191 = build_method_type_directly (TYPE_CANONICAL (basetype),
8192 TYPE_CANONICAL (rettype),
8193 canon_argtypes);
8194 if (!COMPLETE_TYPE_P (t))
8195 layout_type (t);
8196
8197 return t;
8198 }
8199
8200 /* Construct, lay out and return the type of methods belonging to class
8201 BASETYPE and whose arguments and values are described by TYPE.
8202 If that type exists already, reuse it.
8203 TYPE must be a FUNCTION_TYPE node. */
8204
8205 tree
8206 build_method_type (tree basetype, tree type)
8207 {
8208 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8209
8210 return build_method_type_directly (basetype,
8211 TREE_TYPE (type),
8212 TYPE_ARG_TYPES (type));
8213 }
8214
8215 /* Construct, lay out and return the type of offsets to a value
8216 of type TYPE, within an object of type BASETYPE.
8217 If a suitable offset type exists already, reuse it. */
8218
8219 tree
8220 build_offset_type (tree basetype, tree type)
8221 {
8222 tree t;
8223 inchash::hash hstate;
8224
8225 /* Make a node of the sort we want. */
8226 t = make_node (OFFSET_TYPE);
8227
8228 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8229 TREE_TYPE (t) = type;
8230
8231 /* If we already have such a type, use the old one. */
8232 hstate.add_object (TYPE_HASH (basetype));
8233 hstate.add_object (TYPE_HASH (type));
8234 t = type_hash_canon (hstate.end (), t);
8235
8236 if (!COMPLETE_TYPE_P (t))
8237 layout_type (t);
8238
8239 if (TYPE_CANONICAL (t) == t)
8240 {
8241 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8242 || TYPE_STRUCTURAL_EQUALITY_P (type))
8243 SET_TYPE_STRUCTURAL_EQUALITY (t);
8244 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8245 || TYPE_CANONICAL (type) != type)
8246 TYPE_CANONICAL (t)
8247 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8248 TYPE_CANONICAL (type));
8249 }
8250
8251 return t;
8252 }
8253
8254 /* Create a complex type whose components are COMPONENT_TYPE. */
8255
8256 tree
8257 build_complex_type (tree component_type)
8258 {
8259 tree t;
8260 inchash::hash hstate;
8261
8262 gcc_assert (INTEGRAL_TYPE_P (component_type)
8263 || SCALAR_FLOAT_TYPE_P (component_type)
8264 || FIXED_POINT_TYPE_P (component_type));
8265
8266 /* Make a node of the sort we want. */
8267 t = make_node (COMPLEX_TYPE);
8268
8269 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8270
8271 /* If we already have such a type, use the old one. */
8272 hstate.add_object (TYPE_HASH (component_type));
8273 t = type_hash_canon (hstate.end (), t);
8274
8275 if (!COMPLETE_TYPE_P (t))
8276 layout_type (t);
8277
8278 if (TYPE_CANONICAL (t) == t)
8279 {
8280 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8281 SET_TYPE_STRUCTURAL_EQUALITY (t);
8282 else if (TYPE_CANONICAL (component_type) != component_type)
8283 TYPE_CANONICAL (t)
8284 = build_complex_type (TYPE_CANONICAL (component_type));
8285 }
8286
8287 /* We need to create a name, since complex is a fundamental type. */
8288 if (! TYPE_NAME (t))
8289 {
8290 const char *name;
8291 if (component_type == char_type_node)
8292 name = "complex char";
8293 else if (component_type == signed_char_type_node)
8294 name = "complex signed char";
8295 else if (component_type == unsigned_char_type_node)
8296 name = "complex unsigned char";
8297 else if (component_type == short_integer_type_node)
8298 name = "complex short int";
8299 else if (component_type == short_unsigned_type_node)
8300 name = "complex short unsigned int";
8301 else if (component_type == integer_type_node)
8302 name = "complex int";
8303 else if (component_type == unsigned_type_node)
8304 name = "complex unsigned int";
8305 else if (component_type == long_integer_type_node)
8306 name = "complex long int";
8307 else if (component_type == long_unsigned_type_node)
8308 name = "complex long unsigned int";
8309 else if (component_type == long_long_integer_type_node)
8310 name = "complex long long int";
8311 else if (component_type == long_long_unsigned_type_node)
8312 name = "complex long long unsigned int";
8313 else
8314 name = 0;
8315
8316 if (name != 0)
8317 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8318 get_identifier (name), t);
8319 }
8320
8321 return build_qualified_type (t, TYPE_QUALS (component_type));
8322 }
8323
8324 /* If TYPE is a real or complex floating-point type and the target
8325 does not directly support arithmetic on TYPE then return the wider
8326 type to be used for arithmetic on TYPE. Otherwise, return
8327 NULL_TREE. */
8328
8329 tree
8330 excess_precision_type (tree type)
8331 {
8332 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8333 {
8334 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8335 switch (TREE_CODE (type))
8336 {
8337 case REAL_TYPE:
8338 switch (flt_eval_method)
8339 {
8340 case 1:
8341 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8342 return double_type_node;
8343 break;
8344 case 2:
8345 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8346 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8347 return long_double_type_node;
8348 break;
8349 default:
8350 gcc_unreachable ();
8351 }
8352 break;
8353 case COMPLEX_TYPE:
8354 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8355 return NULL_TREE;
8356 switch (flt_eval_method)
8357 {
8358 case 1:
8359 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8360 return complex_double_type_node;
8361 break;
8362 case 2:
8363 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8364 || (TYPE_MODE (TREE_TYPE (type))
8365 == TYPE_MODE (double_type_node)))
8366 return complex_long_double_type_node;
8367 break;
8368 default:
8369 gcc_unreachable ();
8370 }
8371 break;
8372 default:
8373 break;
8374 }
8375 }
8376 return NULL_TREE;
8377 }
8378 \f
8379 /* Return OP, stripped of any conversions to wider types as much as is safe.
8380 Converting the value back to OP's type makes a value equivalent to OP.
8381
8382 If FOR_TYPE is nonzero, we return a value which, if converted to
8383 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8384
8385 OP must have integer, real or enumeral type. Pointers are not allowed!
8386
8387 There are some cases where the obvious value we could return
8388 would regenerate to OP if converted to OP's type,
8389 but would not extend like OP to wider types.
8390 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8391 For example, if OP is (unsigned short)(signed char)-1,
8392 we avoid returning (signed char)-1 if FOR_TYPE is int,
8393 even though extending that to an unsigned short would regenerate OP,
8394 since the result of extending (signed char)-1 to (int)
8395 is different from (int) OP. */
8396
8397 tree
8398 get_unwidened (tree op, tree for_type)
8399 {
8400 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8401 tree type = TREE_TYPE (op);
8402 unsigned final_prec
8403 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8404 int uns
8405 = (for_type != 0 && for_type != type
8406 && final_prec > TYPE_PRECISION (type)
8407 && TYPE_UNSIGNED (type));
8408 tree win = op;
8409
8410 while (CONVERT_EXPR_P (op))
8411 {
8412 int bitschange;
8413
8414 /* TYPE_PRECISION on vector types has different meaning
8415 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8416 so avoid them here. */
8417 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8418 break;
8419
8420 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8421 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8422
8423 /* Truncations are many-one so cannot be removed.
8424 Unless we are later going to truncate down even farther. */
8425 if (bitschange < 0
8426 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8427 break;
8428
8429 /* See what's inside this conversion. If we decide to strip it,
8430 we will set WIN. */
8431 op = TREE_OPERAND (op, 0);
8432
8433 /* If we have not stripped any zero-extensions (uns is 0),
8434 we can strip any kind of extension.
8435 If we have previously stripped a zero-extension,
8436 only zero-extensions can safely be stripped.
8437 Any extension can be stripped if the bits it would produce
8438 are all going to be discarded later by truncating to FOR_TYPE. */
8439
8440 if (bitschange > 0)
8441 {
8442 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8443 win = op;
8444 /* TYPE_UNSIGNED says whether this is a zero-extension.
8445 Let's avoid computing it if it does not affect WIN
8446 and if UNS will not be needed again. */
8447 if ((uns
8448 || CONVERT_EXPR_P (op))
8449 && TYPE_UNSIGNED (TREE_TYPE (op)))
8450 {
8451 uns = 1;
8452 win = op;
8453 }
8454 }
8455 }
8456
8457 /* If we finally reach a constant see if it fits in for_type and
8458 in that case convert it. */
8459 if (for_type
8460 && TREE_CODE (win) == INTEGER_CST
8461 && TREE_TYPE (win) != for_type
8462 && int_fits_type_p (win, for_type))
8463 win = fold_convert (for_type, win);
8464
8465 return win;
8466 }
8467 \f
8468 /* Return OP or a simpler expression for a narrower value
8469 which can be sign-extended or zero-extended to give back OP.
8470 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8471 or 0 if the value should be sign-extended. */
8472
8473 tree
8474 get_narrower (tree op, int *unsignedp_ptr)
8475 {
8476 int uns = 0;
8477 int first = 1;
8478 tree win = op;
8479 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8480
8481 while (TREE_CODE (op) == NOP_EXPR)
8482 {
8483 int bitschange
8484 = (TYPE_PRECISION (TREE_TYPE (op))
8485 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8486
8487 /* Truncations are many-one so cannot be removed. */
8488 if (bitschange < 0)
8489 break;
8490
8491 /* See what's inside this conversion. If we decide to strip it,
8492 we will set WIN. */
8493
8494 if (bitschange > 0)
8495 {
8496 op = TREE_OPERAND (op, 0);
8497 /* An extension: the outermost one can be stripped,
8498 but remember whether it is zero or sign extension. */
8499 if (first)
8500 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8501 /* Otherwise, if a sign extension has been stripped,
8502 only sign extensions can now be stripped;
8503 if a zero extension has been stripped, only zero-extensions. */
8504 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8505 break;
8506 first = 0;
8507 }
8508 else /* bitschange == 0 */
8509 {
8510 /* A change in nominal type can always be stripped, but we must
8511 preserve the unsignedness. */
8512 if (first)
8513 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8514 first = 0;
8515 op = TREE_OPERAND (op, 0);
8516 /* Keep trying to narrow, but don't assign op to win if it
8517 would turn an integral type into something else. */
8518 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8519 continue;
8520 }
8521
8522 win = op;
8523 }
8524
8525 if (TREE_CODE (op) == COMPONENT_REF
8526 /* Since type_for_size always gives an integer type. */
8527 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8528 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8529 /* Ensure field is laid out already. */
8530 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8531 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8532 {
8533 unsigned HOST_WIDE_INT innerprec
8534 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8535 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8536 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8537 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8538
8539 /* We can get this structure field in a narrower type that fits it,
8540 but the resulting extension to its nominal type (a fullword type)
8541 must satisfy the same conditions as for other extensions.
8542
8543 Do this only for fields that are aligned (not bit-fields),
8544 because when bit-field insns will be used there is no
8545 advantage in doing this. */
8546
8547 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8548 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8549 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8550 && type != 0)
8551 {
8552 if (first)
8553 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8554 win = fold_convert (type, op);
8555 }
8556 }
8557
8558 *unsignedp_ptr = uns;
8559 return win;
8560 }
8561 \f
8562 /* Returns true if integer constant C has a value that is permissible
8563 for type TYPE (an INTEGER_TYPE). */
8564
8565 bool
8566 int_fits_type_p (const_tree c, const_tree type)
8567 {
8568 tree type_low_bound, type_high_bound;
8569 bool ok_for_low_bound, ok_for_high_bound;
8570 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8571
8572 retry:
8573 type_low_bound = TYPE_MIN_VALUE (type);
8574 type_high_bound = TYPE_MAX_VALUE (type);
8575
8576 /* If at least one bound of the type is a constant integer, we can check
8577 ourselves and maybe make a decision. If no such decision is possible, but
8578 this type is a subtype, try checking against that. Otherwise, use
8579 fits_to_tree_p, which checks against the precision.
8580
8581 Compute the status for each possibly constant bound, and return if we see
8582 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8583 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8584 for "constant known to fit". */
8585
8586 /* Check if c >= type_low_bound. */
8587 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8588 {
8589 if (tree_int_cst_lt (c, type_low_bound))
8590 return false;
8591 ok_for_low_bound = true;
8592 }
8593 else
8594 ok_for_low_bound = false;
8595
8596 /* Check if c <= type_high_bound. */
8597 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8598 {
8599 if (tree_int_cst_lt (type_high_bound, c))
8600 return false;
8601 ok_for_high_bound = true;
8602 }
8603 else
8604 ok_for_high_bound = false;
8605
8606 /* If the constant fits both bounds, the result is known. */
8607 if (ok_for_low_bound && ok_for_high_bound)
8608 return true;
8609
8610 /* Perform some generic filtering which may allow making a decision
8611 even if the bounds are not constant. First, negative integers
8612 never fit in unsigned types, */
8613 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (c))
8614 return false;
8615
8616 /* Second, narrower types always fit in wider ones. */
8617 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8618 return true;
8619
8620 /* Third, unsigned integers with top bit set never fit signed types. */
8621 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8622 {
8623 int prec = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (c))) - 1;
8624 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8625 {
8626 /* When a tree_cst is converted to a wide-int, the precision
8627 is taken from the type. However, if the precision of the
8628 mode underneath the type is smaller than that, it is
8629 possible that the value will not fit. The test below
8630 fails if any bit is set between the sign bit of the
8631 underlying mode and the top bit of the type. */
8632 if (wi::ne_p (wi::zext (c, prec - 1), c))
8633 return false;
8634 }
8635 else if (wi::neg_p (c))
8636 return false;
8637 }
8638
8639 /* If we haven't been able to decide at this point, there nothing more we
8640 can check ourselves here. Look at the base type if we have one and it
8641 has the same precision. */
8642 if (TREE_CODE (type) == INTEGER_TYPE
8643 && TREE_TYPE (type) != 0
8644 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8645 {
8646 type = TREE_TYPE (type);
8647 goto retry;
8648 }
8649
8650 /* Or to fits_to_tree_p, if nothing else. */
8651 return wi::fits_to_tree_p (c, type);
8652 }
8653
8654 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8655 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8656 represented (assuming two's-complement arithmetic) within the bit
8657 precision of the type are returned instead. */
8658
8659 void
8660 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8661 {
8662 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8663 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8664 wi::to_mpz (TYPE_MIN_VALUE (type), min, TYPE_SIGN (type));
8665 else
8666 {
8667 if (TYPE_UNSIGNED (type))
8668 mpz_set_ui (min, 0);
8669 else
8670 {
8671 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8672 wi::to_mpz (mn, min, SIGNED);
8673 }
8674 }
8675
8676 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8677 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8678 wi::to_mpz (TYPE_MAX_VALUE (type), max, TYPE_SIGN (type));
8679 else
8680 {
8681 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8682 wi::to_mpz (mn, max, TYPE_SIGN (type));
8683 }
8684 }
8685
8686 /* Return true if VAR is an automatic variable defined in function FN. */
8687
8688 bool
8689 auto_var_in_fn_p (const_tree var, const_tree fn)
8690 {
8691 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8692 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8693 || TREE_CODE (var) == PARM_DECL)
8694 && ! TREE_STATIC (var))
8695 || TREE_CODE (var) == LABEL_DECL
8696 || TREE_CODE (var) == RESULT_DECL));
8697 }
8698
8699 /* Subprogram of following function. Called by walk_tree.
8700
8701 Return *TP if it is an automatic variable or parameter of the
8702 function passed in as DATA. */
8703
8704 static tree
8705 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8706 {
8707 tree fn = (tree) data;
8708
8709 if (TYPE_P (*tp))
8710 *walk_subtrees = 0;
8711
8712 else if (DECL_P (*tp)
8713 && auto_var_in_fn_p (*tp, fn))
8714 return *tp;
8715
8716 return NULL_TREE;
8717 }
8718
8719 /* Returns true if T is, contains, or refers to a type with variable
8720 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8721 arguments, but not the return type. If FN is nonzero, only return
8722 true if a modifier of the type or position of FN is a variable or
8723 parameter inside FN.
8724
8725 This concept is more general than that of C99 'variably modified types':
8726 in C99, a struct type is never variably modified because a VLA may not
8727 appear as a structure member. However, in GNU C code like:
8728
8729 struct S { int i[f()]; };
8730
8731 is valid, and other languages may define similar constructs. */
8732
8733 bool
8734 variably_modified_type_p (tree type, tree fn)
8735 {
8736 tree t;
8737
8738 /* Test if T is either variable (if FN is zero) or an expression containing
8739 a variable in FN. If TYPE isn't gimplified, return true also if
8740 gimplify_one_sizepos would gimplify the expression into a local
8741 variable. */
8742 #define RETURN_TRUE_IF_VAR(T) \
8743 do { tree _t = (T); \
8744 if (_t != NULL_TREE \
8745 && _t != error_mark_node \
8746 && TREE_CODE (_t) != INTEGER_CST \
8747 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8748 && (!fn \
8749 || (!TYPE_SIZES_GIMPLIFIED (type) \
8750 && !is_gimple_sizepos (_t)) \
8751 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8752 return true; } while (0)
8753
8754 if (type == error_mark_node)
8755 return false;
8756
8757 /* If TYPE itself has variable size, it is variably modified. */
8758 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8759 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8760
8761 switch (TREE_CODE (type))
8762 {
8763 case POINTER_TYPE:
8764 case REFERENCE_TYPE:
8765 case VECTOR_TYPE:
8766 if (variably_modified_type_p (TREE_TYPE (type), fn))
8767 return true;
8768 break;
8769
8770 case FUNCTION_TYPE:
8771 case METHOD_TYPE:
8772 /* If TYPE is a function type, it is variably modified if the
8773 return type is variably modified. */
8774 if (variably_modified_type_p (TREE_TYPE (type), fn))
8775 return true;
8776 break;
8777
8778 case INTEGER_TYPE:
8779 case REAL_TYPE:
8780 case FIXED_POINT_TYPE:
8781 case ENUMERAL_TYPE:
8782 case BOOLEAN_TYPE:
8783 /* Scalar types are variably modified if their end points
8784 aren't constant. */
8785 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8786 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8787 break;
8788
8789 case RECORD_TYPE:
8790 case UNION_TYPE:
8791 case QUAL_UNION_TYPE:
8792 /* We can't see if any of the fields are variably-modified by the
8793 definition we normally use, since that would produce infinite
8794 recursion via pointers. */
8795 /* This is variably modified if some field's type is. */
8796 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8797 if (TREE_CODE (t) == FIELD_DECL)
8798 {
8799 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8800 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8801 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8802
8803 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8804 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8805 }
8806 break;
8807
8808 case ARRAY_TYPE:
8809 /* Do not call ourselves to avoid infinite recursion. This is
8810 variably modified if the element type is. */
8811 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8812 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8813 break;
8814
8815 default:
8816 break;
8817 }
8818
8819 /* The current language may have other cases to check, but in general,
8820 all other types are not variably modified. */
8821 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8822
8823 #undef RETURN_TRUE_IF_VAR
8824 }
8825
8826 /* Given a DECL or TYPE, return the scope in which it was declared, or
8827 NULL_TREE if there is no containing scope. */
8828
8829 tree
8830 get_containing_scope (const_tree t)
8831 {
8832 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8833 }
8834
8835 /* Return the innermost context enclosing DECL that is
8836 a FUNCTION_DECL, or zero if none. */
8837
8838 tree
8839 decl_function_context (const_tree decl)
8840 {
8841 tree context;
8842
8843 if (TREE_CODE (decl) == ERROR_MARK)
8844 return 0;
8845
8846 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8847 where we look up the function at runtime. Such functions always take
8848 a first argument of type 'pointer to real context'.
8849
8850 C++ should really be fixed to use DECL_CONTEXT for the real context,
8851 and use something else for the "virtual context". */
8852 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8853 context
8854 = TYPE_MAIN_VARIANT
8855 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8856 else
8857 context = DECL_CONTEXT (decl);
8858
8859 while (context && TREE_CODE (context) != FUNCTION_DECL)
8860 {
8861 if (TREE_CODE (context) == BLOCK)
8862 context = BLOCK_SUPERCONTEXT (context);
8863 else
8864 context = get_containing_scope (context);
8865 }
8866
8867 return context;
8868 }
8869
8870 /* Return the innermost context enclosing DECL that is
8871 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8872 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8873
8874 tree
8875 decl_type_context (const_tree decl)
8876 {
8877 tree context = DECL_CONTEXT (decl);
8878
8879 while (context)
8880 switch (TREE_CODE (context))
8881 {
8882 case NAMESPACE_DECL:
8883 case TRANSLATION_UNIT_DECL:
8884 return NULL_TREE;
8885
8886 case RECORD_TYPE:
8887 case UNION_TYPE:
8888 case QUAL_UNION_TYPE:
8889 return context;
8890
8891 case TYPE_DECL:
8892 case FUNCTION_DECL:
8893 context = DECL_CONTEXT (context);
8894 break;
8895
8896 case BLOCK:
8897 context = BLOCK_SUPERCONTEXT (context);
8898 break;
8899
8900 default:
8901 gcc_unreachable ();
8902 }
8903
8904 return NULL_TREE;
8905 }
8906
8907 /* CALL is a CALL_EXPR. Return the declaration for the function
8908 called, or NULL_TREE if the called function cannot be
8909 determined. */
8910
8911 tree
8912 get_callee_fndecl (const_tree call)
8913 {
8914 tree addr;
8915
8916 if (call == error_mark_node)
8917 return error_mark_node;
8918
8919 /* It's invalid to call this function with anything but a
8920 CALL_EXPR. */
8921 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8922
8923 /* The first operand to the CALL is the address of the function
8924 called. */
8925 addr = CALL_EXPR_FN (call);
8926
8927 /* If there is no function, return early. */
8928 if (addr == NULL_TREE)
8929 return NULL_TREE;
8930
8931 STRIP_NOPS (addr);
8932
8933 /* If this is a readonly function pointer, extract its initial value. */
8934 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8935 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8936 && DECL_INITIAL (addr))
8937 addr = DECL_INITIAL (addr);
8938
8939 /* If the address is just `&f' for some function `f', then we know
8940 that `f' is being called. */
8941 if (TREE_CODE (addr) == ADDR_EXPR
8942 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8943 return TREE_OPERAND (addr, 0);
8944
8945 /* We couldn't figure out what was being called. */
8946 return NULL_TREE;
8947 }
8948
8949 /* Print debugging information about tree nodes generated during the compile,
8950 and any language-specific information. */
8951
8952 void
8953 dump_tree_statistics (void)
8954 {
8955 if (GATHER_STATISTICS)
8956 {
8957 int i;
8958 int total_nodes, total_bytes;
8959 fprintf (stderr, "Kind Nodes Bytes\n");
8960 fprintf (stderr, "---------------------------------------\n");
8961 total_nodes = total_bytes = 0;
8962 for (i = 0; i < (int) all_kinds; i++)
8963 {
8964 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8965 tree_node_counts[i], tree_node_sizes[i]);
8966 total_nodes += tree_node_counts[i];
8967 total_bytes += tree_node_sizes[i];
8968 }
8969 fprintf (stderr, "---------------------------------------\n");
8970 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8971 fprintf (stderr, "---------------------------------------\n");
8972 fprintf (stderr, "Code Nodes\n");
8973 fprintf (stderr, "----------------------------\n");
8974 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8975 fprintf (stderr, "%-20s %7d\n", get_tree_code_name ((enum tree_code) i),
8976 tree_code_counts[i]);
8977 fprintf (stderr, "----------------------------\n");
8978 ssanames_print_statistics ();
8979 phinodes_print_statistics ();
8980 }
8981 else
8982 fprintf (stderr, "(No per-node statistics)\n");
8983
8984 print_type_hash_statistics ();
8985 print_debug_expr_statistics ();
8986 print_value_expr_statistics ();
8987 lang_hooks.print_statistics ();
8988 }
8989 \f
8990 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8991
8992 /* Generate a crc32 of a byte. */
8993
8994 static unsigned
8995 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
8996 {
8997 unsigned ix;
8998
8999 for (ix = bits; ix--; value <<= 1)
9000 {
9001 unsigned feedback;
9002
9003 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
9004 chksum <<= 1;
9005 chksum ^= feedback;
9006 }
9007 return chksum;
9008 }
9009
9010 /* Generate a crc32 of a 32-bit unsigned. */
9011
9012 unsigned
9013 crc32_unsigned (unsigned chksum, unsigned value)
9014 {
9015 return crc32_unsigned_bits (chksum, value, 32);
9016 }
9017
9018 /* Generate a crc32 of a byte. */
9019
9020 unsigned
9021 crc32_byte (unsigned chksum, char byte)
9022 {
9023 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
9024 }
9025
9026 /* Generate a crc32 of a string. */
9027
9028 unsigned
9029 crc32_string (unsigned chksum, const char *string)
9030 {
9031 do
9032 {
9033 chksum = crc32_byte (chksum, *string);
9034 }
9035 while (*string++);
9036 return chksum;
9037 }
9038
9039 /* P is a string that will be used in a symbol. Mask out any characters
9040 that are not valid in that context. */
9041
9042 void
9043 clean_symbol_name (char *p)
9044 {
9045 for (; *p; p++)
9046 if (! (ISALNUM (*p)
9047 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9048 || *p == '$'
9049 #endif
9050 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9051 || *p == '.'
9052 #endif
9053 ))
9054 *p = '_';
9055 }
9056
9057 /* Generate a name for a special-purpose function.
9058 The generated name may need to be unique across the whole link.
9059 Changes to this function may also require corresponding changes to
9060 xstrdup_mask_random.
9061 TYPE is some string to identify the purpose of this function to the
9062 linker or collect2; it must start with an uppercase letter,
9063 one of:
9064 I - for constructors
9065 D - for destructors
9066 N - for C++ anonymous namespaces
9067 F - for DWARF unwind frame information. */
9068
9069 tree
9070 get_file_function_name (const char *type)
9071 {
9072 char *buf;
9073 const char *p;
9074 char *q;
9075
9076 /* If we already have a name we know to be unique, just use that. */
9077 if (first_global_object_name)
9078 p = q = ASTRDUP (first_global_object_name);
9079 /* If the target is handling the constructors/destructors, they
9080 will be local to this file and the name is only necessary for
9081 debugging purposes.
9082 We also assign sub_I and sub_D sufixes to constructors called from
9083 the global static constructors. These are always local. */
9084 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9085 || (strncmp (type, "sub_", 4) == 0
9086 && (type[4] == 'I' || type[4] == 'D')))
9087 {
9088 const char *file = main_input_filename;
9089 if (! file)
9090 file = LOCATION_FILE (input_location);
9091 /* Just use the file's basename, because the full pathname
9092 might be quite long. */
9093 p = q = ASTRDUP (lbasename (file));
9094 }
9095 else
9096 {
9097 /* Otherwise, the name must be unique across the entire link.
9098 We don't have anything that we know to be unique to this translation
9099 unit, so use what we do have and throw in some randomness. */
9100 unsigned len;
9101 const char *name = weak_global_object_name;
9102 const char *file = main_input_filename;
9103
9104 if (! name)
9105 name = "";
9106 if (! file)
9107 file = LOCATION_FILE (input_location);
9108
9109 len = strlen (file);
9110 q = (char *) alloca (9 + 17 + len + 1);
9111 memcpy (q, file, len + 1);
9112
9113 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9114 crc32_string (0, name), get_random_seed (false));
9115
9116 p = q;
9117 }
9118
9119 clean_symbol_name (q);
9120 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9121 + strlen (type));
9122
9123 /* Set up the name of the file-level functions we may need.
9124 Use a global object (which is already required to be unique over
9125 the program) rather than the file name (which imposes extra
9126 constraints). */
9127 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9128
9129 return get_identifier (buf);
9130 }
9131 \f
9132 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9133
9134 /* Complain that the tree code of NODE does not match the expected 0
9135 terminated list of trailing codes. The trailing code list can be
9136 empty, for a more vague error message. FILE, LINE, and FUNCTION
9137 are of the caller. */
9138
9139 void
9140 tree_check_failed (const_tree node, const char *file,
9141 int line, const char *function, ...)
9142 {
9143 va_list args;
9144 const char *buffer;
9145 unsigned length = 0;
9146 enum tree_code code;
9147
9148 va_start (args, function);
9149 while ((code = (enum tree_code) va_arg (args, int)))
9150 length += 4 + strlen (get_tree_code_name (code));
9151 va_end (args);
9152 if (length)
9153 {
9154 char *tmp;
9155 va_start (args, function);
9156 length += strlen ("expected ");
9157 buffer = tmp = (char *) alloca (length);
9158 length = 0;
9159 while ((code = (enum tree_code) va_arg (args, int)))
9160 {
9161 const char *prefix = length ? " or " : "expected ";
9162
9163 strcpy (tmp + length, prefix);
9164 length += strlen (prefix);
9165 strcpy (tmp + length, get_tree_code_name (code));
9166 length += strlen (get_tree_code_name (code));
9167 }
9168 va_end (args);
9169 }
9170 else
9171 buffer = "unexpected node";
9172
9173 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9174 buffer, get_tree_code_name (TREE_CODE (node)),
9175 function, trim_filename (file), line);
9176 }
9177
9178 /* Complain that the tree code of NODE does match the expected 0
9179 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9180 the caller. */
9181
9182 void
9183 tree_not_check_failed (const_tree node, const char *file,
9184 int line, const char *function, ...)
9185 {
9186 va_list args;
9187 char *buffer;
9188 unsigned length = 0;
9189 enum tree_code code;
9190
9191 va_start (args, function);
9192 while ((code = (enum tree_code) va_arg (args, int)))
9193 length += 4 + strlen (get_tree_code_name (code));
9194 va_end (args);
9195 va_start (args, function);
9196 buffer = (char *) alloca (length);
9197 length = 0;
9198 while ((code = (enum tree_code) va_arg (args, int)))
9199 {
9200 if (length)
9201 {
9202 strcpy (buffer + length, " or ");
9203 length += 4;
9204 }
9205 strcpy (buffer + length, get_tree_code_name (code));
9206 length += strlen (get_tree_code_name (code));
9207 }
9208 va_end (args);
9209
9210 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9211 buffer, get_tree_code_name (TREE_CODE (node)),
9212 function, trim_filename (file), line);
9213 }
9214
9215 /* Similar to tree_check_failed, except that we check for a class of tree
9216 code, given in CL. */
9217
9218 void
9219 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9220 const char *file, int line, const char *function)
9221 {
9222 internal_error
9223 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9224 TREE_CODE_CLASS_STRING (cl),
9225 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9226 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9227 }
9228
9229 /* Similar to tree_check_failed, except that instead of specifying a
9230 dozen codes, use the knowledge that they're all sequential. */
9231
9232 void
9233 tree_range_check_failed (const_tree node, const char *file, int line,
9234 const char *function, enum tree_code c1,
9235 enum tree_code c2)
9236 {
9237 char *buffer;
9238 unsigned length = 0;
9239 unsigned int c;
9240
9241 for (c = c1; c <= c2; ++c)
9242 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9243
9244 length += strlen ("expected ");
9245 buffer = (char *) alloca (length);
9246 length = 0;
9247
9248 for (c = c1; c <= c2; ++c)
9249 {
9250 const char *prefix = length ? " or " : "expected ";
9251
9252 strcpy (buffer + length, prefix);
9253 length += strlen (prefix);
9254 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9255 length += strlen (get_tree_code_name ((enum tree_code) c));
9256 }
9257
9258 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9259 buffer, get_tree_code_name (TREE_CODE (node)),
9260 function, trim_filename (file), line);
9261 }
9262
9263
9264 /* Similar to tree_check_failed, except that we check that a tree does
9265 not have the specified code, given in CL. */
9266
9267 void
9268 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9269 const char *file, int line, const char *function)
9270 {
9271 internal_error
9272 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9273 TREE_CODE_CLASS_STRING (cl),
9274 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9275 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9276 }
9277
9278
9279 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9280
9281 void
9282 omp_clause_check_failed (const_tree node, const char *file, int line,
9283 const char *function, enum omp_clause_code code)
9284 {
9285 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9286 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9287 function, trim_filename (file), line);
9288 }
9289
9290
9291 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9292
9293 void
9294 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9295 const char *function, enum omp_clause_code c1,
9296 enum omp_clause_code c2)
9297 {
9298 char *buffer;
9299 unsigned length = 0;
9300 unsigned int c;
9301
9302 for (c = c1; c <= c2; ++c)
9303 length += 4 + strlen (omp_clause_code_name[c]);
9304
9305 length += strlen ("expected ");
9306 buffer = (char *) alloca (length);
9307 length = 0;
9308
9309 for (c = c1; c <= c2; ++c)
9310 {
9311 const char *prefix = length ? " or " : "expected ";
9312
9313 strcpy (buffer + length, prefix);
9314 length += strlen (prefix);
9315 strcpy (buffer + length, omp_clause_code_name[c]);
9316 length += strlen (omp_clause_code_name[c]);
9317 }
9318
9319 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9320 buffer, omp_clause_code_name[TREE_CODE (node)],
9321 function, trim_filename (file), line);
9322 }
9323
9324
9325 #undef DEFTREESTRUCT
9326 #define DEFTREESTRUCT(VAL, NAME) NAME,
9327
9328 static const char *ts_enum_names[] = {
9329 #include "treestruct.def"
9330 };
9331 #undef DEFTREESTRUCT
9332
9333 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9334
9335 /* Similar to tree_class_check_failed, except that we check for
9336 whether CODE contains the tree structure identified by EN. */
9337
9338 void
9339 tree_contains_struct_check_failed (const_tree node,
9340 const enum tree_node_structure_enum en,
9341 const char *file, int line,
9342 const char *function)
9343 {
9344 internal_error
9345 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9346 TS_ENUM_NAME (en),
9347 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9348 }
9349
9350
9351 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9352 (dynamically sized) vector. */
9353
9354 void
9355 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9356 const char *function)
9357 {
9358 internal_error
9359 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9360 idx + 1, len, function, trim_filename (file), line);
9361 }
9362
9363 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9364 (dynamically sized) vector. */
9365
9366 void
9367 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9368 const char *function)
9369 {
9370 internal_error
9371 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9372 idx + 1, len, function, trim_filename (file), line);
9373 }
9374
9375 /* Similar to above, except that the check is for the bounds of the operand
9376 vector of an expression node EXP. */
9377
9378 void
9379 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9380 int line, const char *function)
9381 {
9382 enum tree_code code = TREE_CODE (exp);
9383 internal_error
9384 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9385 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9386 function, trim_filename (file), line);
9387 }
9388
9389 /* Similar to above, except that the check is for the number of
9390 operands of an OMP_CLAUSE node. */
9391
9392 void
9393 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9394 int line, const char *function)
9395 {
9396 internal_error
9397 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9398 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9399 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9400 trim_filename (file), line);
9401 }
9402 #endif /* ENABLE_TREE_CHECKING */
9403 \f
9404 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9405 and mapped to the machine mode MODE. Initialize its fields and build
9406 the information necessary for debugging output. */
9407
9408 static tree
9409 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9410 {
9411 tree t;
9412 inchash::hash hstate;
9413
9414 t = make_node (VECTOR_TYPE);
9415 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9416 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9417 SET_TYPE_MODE (t, mode);
9418
9419 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9420 SET_TYPE_STRUCTURAL_EQUALITY (t);
9421 else if (TYPE_CANONICAL (innertype) != innertype
9422 || mode != VOIDmode)
9423 TYPE_CANONICAL (t)
9424 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9425
9426 layout_type (t);
9427
9428 hstate.add_wide_int (VECTOR_TYPE);
9429 hstate.add_wide_int (nunits);
9430 hstate.add_wide_int (mode);
9431 hstate.add_object (TYPE_HASH (TREE_TYPE (t)));
9432 t = type_hash_canon (hstate.end (), t);
9433
9434 /* We have built a main variant, based on the main variant of the
9435 inner type. Use it to build the variant we return. */
9436 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9437 && TREE_TYPE (t) != innertype)
9438 return build_type_attribute_qual_variant (t,
9439 TYPE_ATTRIBUTES (innertype),
9440 TYPE_QUALS (innertype));
9441
9442 return t;
9443 }
9444
9445 static tree
9446 make_or_reuse_type (unsigned size, int unsignedp)
9447 {
9448 if (size == INT_TYPE_SIZE)
9449 return unsignedp ? unsigned_type_node : integer_type_node;
9450 if (size == CHAR_TYPE_SIZE)
9451 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9452 if (size == SHORT_TYPE_SIZE)
9453 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9454 if (size == LONG_TYPE_SIZE)
9455 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9456 if (size == LONG_LONG_TYPE_SIZE)
9457 return (unsignedp ? long_long_unsigned_type_node
9458 : long_long_integer_type_node);
9459 if (size == 128 && int128_integer_type_node)
9460 return (unsignedp ? int128_unsigned_type_node
9461 : int128_integer_type_node);
9462
9463 if (unsignedp)
9464 return make_unsigned_type (size);
9465 else
9466 return make_signed_type (size);
9467 }
9468
9469 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9470
9471 static tree
9472 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9473 {
9474 if (satp)
9475 {
9476 if (size == SHORT_FRACT_TYPE_SIZE)
9477 return unsignedp ? sat_unsigned_short_fract_type_node
9478 : sat_short_fract_type_node;
9479 if (size == FRACT_TYPE_SIZE)
9480 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9481 if (size == LONG_FRACT_TYPE_SIZE)
9482 return unsignedp ? sat_unsigned_long_fract_type_node
9483 : sat_long_fract_type_node;
9484 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9485 return unsignedp ? sat_unsigned_long_long_fract_type_node
9486 : sat_long_long_fract_type_node;
9487 }
9488 else
9489 {
9490 if (size == SHORT_FRACT_TYPE_SIZE)
9491 return unsignedp ? unsigned_short_fract_type_node
9492 : short_fract_type_node;
9493 if (size == FRACT_TYPE_SIZE)
9494 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9495 if (size == LONG_FRACT_TYPE_SIZE)
9496 return unsignedp ? unsigned_long_fract_type_node
9497 : long_fract_type_node;
9498 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9499 return unsignedp ? unsigned_long_long_fract_type_node
9500 : long_long_fract_type_node;
9501 }
9502
9503 return make_fract_type (size, unsignedp, satp);
9504 }
9505
9506 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9507
9508 static tree
9509 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9510 {
9511 if (satp)
9512 {
9513 if (size == SHORT_ACCUM_TYPE_SIZE)
9514 return unsignedp ? sat_unsigned_short_accum_type_node
9515 : sat_short_accum_type_node;
9516 if (size == ACCUM_TYPE_SIZE)
9517 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9518 if (size == LONG_ACCUM_TYPE_SIZE)
9519 return unsignedp ? sat_unsigned_long_accum_type_node
9520 : sat_long_accum_type_node;
9521 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9522 return unsignedp ? sat_unsigned_long_long_accum_type_node
9523 : sat_long_long_accum_type_node;
9524 }
9525 else
9526 {
9527 if (size == SHORT_ACCUM_TYPE_SIZE)
9528 return unsignedp ? unsigned_short_accum_type_node
9529 : short_accum_type_node;
9530 if (size == ACCUM_TYPE_SIZE)
9531 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9532 if (size == LONG_ACCUM_TYPE_SIZE)
9533 return unsignedp ? unsigned_long_accum_type_node
9534 : long_accum_type_node;
9535 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9536 return unsignedp ? unsigned_long_long_accum_type_node
9537 : long_long_accum_type_node;
9538 }
9539
9540 return make_accum_type (size, unsignedp, satp);
9541 }
9542
9543
9544 /* Create an atomic variant node for TYPE. This routine is called
9545 during initialization of data types to create the 5 basic atomic
9546 types. The generic build_variant_type function requires these to
9547 already be set up in order to function properly, so cannot be
9548 called from there. If ALIGN is non-zero, then ensure alignment is
9549 overridden to this value. */
9550
9551 static tree
9552 build_atomic_base (tree type, unsigned int align)
9553 {
9554 tree t;
9555
9556 /* Make sure its not already registered. */
9557 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9558 return t;
9559
9560 t = build_variant_type_copy (type);
9561 set_type_quals (t, TYPE_QUAL_ATOMIC);
9562
9563 if (align)
9564 TYPE_ALIGN (t) = align;
9565
9566 return t;
9567 }
9568
9569 /* Create nodes for all integer types (and error_mark_node) using the sizes
9570 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9571 SHORT_DOUBLE specifies whether double should be of the same precision
9572 as float. */
9573
9574 void
9575 build_common_tree_nodes (bool signed_char, bool short_double)
9576 {
9577 error_mark_node = make_node (ERROR_MARK);
9578 TREE_TYPE (error_mark_node) = error_mark_node;
9579
9580 initialize_sizetypes ();
9581
9582 /* Define both `signed char' and `unsigned char'. */
9583 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9584 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9585 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9586 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9587
9588 /* Define `char', which is like either `signed char' or `unsigned char'
9589 but not the same as either. */
9590 char_type_node
9591 = (signed_char
9592 ? make_signed_type (CHAR_TYPE_SIZE)
9593 : make_unsigned_type (CHAR_TYPE_SIZE));
9594 TYPE_STRING_FLAG (char_type_node) = 1;
9595
9596 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9597 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9598 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9599 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9600 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9601 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9602 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9603 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9604 #if HOST_BITS_PER_WIDE_INT >= 64
9605 /* TODO: This isn't correct, but as logic depends at the moment on
9606 host's instead of target's wide-integer.
9607 If there is a target not supporting TImode, but has an 128-bit
9608 integer-scalar register, this target check needs to be adjusted. */
9609 if (targetm.scalar_mode_supported_p (TImode))
9610 {
9611 int128_integer_type_node = make_signed_type (128);
9612 int128_unsigned_type_node = make_unsigned_type (128);
9613 }
9614 #endif
9615
9616 /* Define a boolean type. This type only represents boolean values but
9617 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9618 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9619 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9620 TYPE_PRECISION (boolean_type_node) = 1;
9621 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9622
9623 /* Define what type to use for size_t. */
9624 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9625 size_type_node = unsigned_type_node;
9626 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9627 size_type_node = long_unsigned_type_node;
9628 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9629 size_type_node = long_long_unsigned_type_node;
9630 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9631 size_type_node = short_unsigned_type_node;
9632 else
9633 gcc_unreachable ();
9634
9635 /* Fill in the rest of the sized types. Reuse existing type nodes
9636 when possible. */
9637 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9638 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9639 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9640 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9641 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9642
9643 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9644 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9645 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9646 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9647 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9648
9649 /* Don't call build_qualified type for atomics. That routine does
9650 special processing for atomics, and until they are initialized
9651 it's better not to make that call.
9652
9653 Check to see if there is a target override for atomic types. */
9654
9655 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9656 targetm.atomic_align_for_mode (QImode));
9657 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9658 targetm.atomic_align_for_mode (HImode));
9659 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9660 targetm.atomic_align_for_mode (SImode));
9661 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9662 targetm.atomic_align_for_mode (DImode));
9663 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9664 targetm.atomic_align_for_mode (TImode));
9665
9666 access_public_node = get_identifier ("public");
9667 access_protected_node = get_identifier ("protected");
9668 access_private_node = get_identifier ("private");
9669
9670 /* Define these next since types below may used them. */
9671 integer_zero_node = build_int_cst (integer_type_node, 0);
9672 integer_one_node = build_int_cst (integer_type_node, 1);
9673 integer_three_node = build_int_cst (integer_type_node, 3);
9674 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9675
9676 size_zero_node = size_int (0);
9677 size_one_node = size_int (1);
9678 bitsize_zero_node = bitsize_int (0);
9679 bitsize_one_node = bitsize_int (1);
9680 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9681
9682 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9683 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9684
9685 void_type_node = make_node (VOID_TYPE);
9686 layout_type (void_type_node);
9687
9688 /* We are not going to have real types in C with less than byte alignment,
9689 so we might as well not have any types that claim to have it. */
9690 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9691 TYPE_USER_ALIGN (void_type_node) = 0;
9692
9693 void_node = make_node (VOID_CST);
9694 TREE_TYPE (void_node) = void_type_node;
9695
9696 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9697 layout_type (TREE_TYPE (null_pointer_node));
9698
9699 ptr_type_node = build_pointer_type (void_type_node);
9700 const_ptr_type_node
9701 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9702 fileptr_type_node = ptr_type_node;
9703
9704 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9705
9706 float_type_node = make_node (REAL_TYPE);
9707 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9708 layout_type (float_type_node);
9709
9710 double_type_node = make_node (REAL_TYPE);
9711 if (short_double)
9712 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9713 else
9714 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9715 layout_type (double_type_node);
9716
9717 long_double_type_node = make_node (REAL_TYPE);
9718 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9719 layout_type (long_double_type_node);
9720
9721 float_ptr_type_node = build_pointer_type (float_type_node);
9722 double_ptr_type_node = build_pointer_type (double_type_node);
9723 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9724 integer_ptr_type_node = build_pointer_type (integer_type_node);
9725
9726 /* Fixed size integer types. */
9727 uint16_type_node = make_or_reuse_type (16, 1);
9728 uint32_type_node = make_or_reuse_type (32, 1);
9729 uint64_type_node = make_or_reuse_type (64, 1);
9730
9731 /* Decimal float types. */
9732 dfloat32_type_node = make_node (REAL_TYPE);
9733 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9734 layout_type (dfloat32_type_node);
9735 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9736 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9737
9738 dfloat64_type_node = make_node (REAL_TYPE);
9739 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9740 layout_type (dfloat64_type_node);
9741 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9742 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9743
9744 dfloat128_type_node = make_node (REAL_TYPE);
9745 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9746 layout_type (dfloat128_type_node);
9747 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9748 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9749
9750 complex_integer_type_node = build_complex_type (integer_type_node);
9751 complex_float_type_node = build_complex_type (float_type_node);
9752 complex_double_type_node = build_complex_type (double_type_node);
9753 complex_long_double_type_node = build_complex_type (long_double_type_node);
9754
9755 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9756 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9757 sat_ ## KIND ## _type_node = \
9758 make_sat_signed_ ## KIND ## _type (SIZE); \
9759 sat_unsigned_ ## KIND ## _type_node = \
9760 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9761 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9762 unsigned_ ## KIND ## _type_node = \
9763 make_unsigned_ ## KIND ## _type (SIZE);
9764
9765 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9766 sat_ ## WIDTH ## KIND ## _type_node = \
9767 make_sat_signed_ ## KIND ## _type (SIZE); \
9768 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9769 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9770 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9771 unsigned_ ## WIDTH ## KIND ## _type_node = \
9772 make_unsigned_ ## KIND ## _type (SIZE);
9773
9774 /* Make fixed-point type nodes based on four different widths. */
9775 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9776 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9777 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9778 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9779 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9780
9781 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9782 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9783 NAME ## _type_node = \
9784 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9785 u ## NAME ## _type_node = \
9786 make_or_reuse_unsigned_ ## KIND ## _type \
9787 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9788 sat_ ## NAME ## _type_node = \
9789 make_or_reuse_sat_signed_ ## KIND ## _type \
9790 (GET_MODE_BITSIZE (MODE ## mode)); \
9791 sat_u ## NAME ## _type_node = \
9792 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9793 (GET_MODE_BITSIZE (U ## MODE ## mode));
9794
9795 /* Fixed-point type and mode nodes. */
9796 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9797 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9798 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9799 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9800 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9801 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9802 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9803 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9804 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9805 MAKE_FIXED_MODE_NODE (accum, da, DA)
9806 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9807
9808 {
9809 tree t = targetm.build_builtin_va_list ();
9810
9811 /* Many back-ends define record types without setting TYPE_NAME.
9812 If we copied the record type here, we'd keep the original
9813 record type without a name. This breaks name mangling. So,
9814 don't copy record types and let c_common_nodes_and_builtins()
9815 declare the type to be __builtin_va_list. */
9816 if (TREE_CODE (t) != RECORD_TYPE)
9817 t = build_variant_type_copy (t);
9818
9819 va_list_type_node = t;
9820 }
9821 }
9822
9823 /* Modify DECL for given flags.
9824 TM_PURE attribute is set only on types, so the function will modify
9825 DECL's type when ECF_TM_PURE is used. */
9826
9827 void
9828 set_call_expr_flags (tree decl, int flags)
9829 {
9830 if (flags & ECF_NOTHROW)
9831 TREE_NOTHROW (decl) = 1;
9832 if (flags & ECF_CONST)
9833 TREE_READONLY (decl) = 1;
9834 if (flags & ECF_PURE)
9835 DECL_PURE_P (decl) = 1;
9836 if (flags & ECF_LOOPING_CONST_OR_PURE)
9837 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9838 if (flags & ECF_NOVOPS)
9839 DECL_IS_NOVOPS (decl) = 1;
9840 if (flags & ECF_NORETURN)
9841 TREE_THIS_VOLATILE (decl) = 1;
9842 if (flags & ECF_MALLOC)
9843 DECL_IS_MALLOC (decl) = 1;
9844 if (flags & ECF_RETURNS_TWICE)
9845 DECL_IS_RETURNS_TWICE (decl) = 1;
9846 if (flags & ECF_LEAF)
9847 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9848 NULL, DECL_ATTRIBUTES (decl));
9849 if ((flags & ECF_TM_PURE) && flag_tm)
9850 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9851 /* Looping const or pure is implied by noreturn.
9852 There is currently no way to declare looping const or looping pure alone. */
9853 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9854 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9855 }
9856
9857
9858 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9859
9860 static void
9861 local_define_builtin (const char *name, tree type, enum built_in_function code,
9862 const char *library_name, int ecf_flags)
9863 {
9864 tree decl;
9865
9866 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9867 library_name, NULL_TREE);
9868 set_call_expr_flags (decl, ecf_flags);
9869
9870 set_builtin_decl (code, decl, true);
9871 }
9872
9873 /* Call this function after instantiating all builtins that the language
9874 front end cares about. This will build the rest of the builtins
9875 and internal functions that are relied upon by the tree optimizers and
9876 the middle-end. */
9877
9878 void
9879 build_common_builtin_nodes (void)
9880 {
9881 tree tmp, ftype;
9882 int ecf_flags;
9883
9884 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9885 {
9886 ftype = build_function_type (void_type_node, void_list_node);
9887 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
9888 "__builtin_unreachable",
9889 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9890 | ECF_CONST | ECF_LEAF);
9891 }
9892
9893 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9894 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9895 {
9896 ftype = build_function_type_list (ptr_type_node,
9897 ptr_type_node, const_ptr_type_node,
9898 size_type_node, NULL_TREE);
9899
9900 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9901 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9902 "memcpy", ECF_NOTHROW | ECF_LEAF);
9903 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9904 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9905 "memmove", ECF_NOTHROW | ECF_LEAF);
9906 }
9907
9908 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9909 {
9910 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9911 const_ptr_type_node, size_type_node,
9912 NULL_TREE);
9913 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9914 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9915 }
9916
9917 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9918 {
9919 ftype = build_function_type_list (ptr_type_node,
9920 ptr_type_node, integer_type_node,
9921 size_type_node, NULL_TREE);
9922 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9923 "memset", ECF_NOTHROW | ECF_LEAF);
9924 }
9925
9926 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9927 {
9928 ftype = build_function_type_list (ptr_type_node,
9929 size_type_node, NULL_TREE);
9930 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9931 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9932 }
9933
9934 ftype = build_function_type_list (ptr_type_node, size_type_node,
9935 size_type_node, NULL_TREE);
9936 local_define_builtin ("__builtin_alloca_with_align", ftype,
9937 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9938 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9939
9940 /* If we're checking the stack, `alloca' can throw. */
9941 if (flag_stack_check)
9942 {
9943 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9944 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9945 }
9946
9947 ftype = build_function_type_list (void_type_node,
9948 ptr_type_node, ptr_type_node,
9949 ptr_type_node, NULL_TREE);
9950 local_define_builtin ("__builtin_init_trampoline", ftype,
9951 BUILT_IN_INIT_TRAMPOLINE,
9952 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9953 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9954 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9955 "__builtin_init_heap_trampoline",
9956 ECF_NOTHROW | ECF_LEAF);
9957
9958 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9959 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9960 BUILT_IN_ADJUST_TRAMPOLINE,
9961 "__builtin_adjust_trampoline",
9962 ECF_CONST | ECF_NOTHROW);
9963
9964 ftype = build_function_type_list (void_type_node,
9965 ptr_type_node, ptr_type_node, NULL_TREE);
9966 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9967 BUILT_IN_NONLOCAL_GOTO,
9968 "__builtin_nonlocal_goto",
9969 ECF_NORETURN | ECF_NOTHROW);
9970
9971 ftype = build_function_type_list (void_type_node,
9972 ptr_type_node, ptr_type_node, NULL_TREE);
9973 local_define_builtin ("__builtin_setjmp_setup", ftype,
9974 BUILT_IN_SETJMP_SETUP,
9975 "__builtin_setjmp_setup", ECF_NOTHROW);
9976
9977 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9978 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9979 BUILT_IN_SETJMP_RECEIVER,
9980 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
9981
9982 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9983 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9984 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9985
9986 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9987 local_define_builtin ("__builtin_stack_restore", ftype,
9988 BUILT_IN_STACK_RESTORE,
9989 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9990
9991 /* If there's a possibility that we might use the ARM EABI, build the
9992 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9993 if (targetm.arm_eabi_unwinder)
9994 {
9995 ftype = build_function_type_list (void_type_node, NULL_TREE);
9996 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9997 BUILT_IN_CXA_END_CLEANUP,
9998 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9999 }
10000
10001 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10002 local_define_builtin ("__builtin_unwind_resume", ftype,
10003 BUILT_IN_UNWIND_RESUME,
10004 ((targetm_common.except_unwind_info (&global_options)
10005 == UI_SJLJ)
10006 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10007 ECF_NORETURN);
10008
10009 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10010 {
10011 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10012 NULL_TREE);
10013 local_define_builtin ("__builtin_return_address", ftype,
10014 BUILT_IN_RETURN_ADDRESS,
10015 "__builtin_return_address",
10016 ECF_NOTHROW);
10017 }
10018
10019 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10020 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10021 {
10022 ftype = build_function_type_list (void_type_node, ptr_type_node,
10023 ptr_type_node, NULL_TREE);
10024 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10025 local_define_builtin ("__cyg_profile_func_enter", ftype,
10026 BUILT_IN_PROFILE_FUNC_ENTER,
10027 "__cyg_profile_func_enter", 0);
10028 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10029 local_define_builtin ("__cyg_profile_func_exit", ftype,
10030 BUILT_IN_PROFILE_FUNC_EXIT,
10031 "__cyg_profile_func_exit", 0);
10032 }
10033
10034 /* The exception object and filter values from the runtime. The argument
10035 must be zero before exception lowering, i.e. from the front end. After
10036 exception lowering, it will be the region number for the exception
10037 landing pad. These functions are PURE instead of CONST to prevent
10038 them from being hoisted past the exception edge that will initialize
10039 its value in the landing pad. */
10040 ftype = build_function_type_list (ptr_type_node,
10041 integer_type_node, NULL_TREE);
10042 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10043 /* Only use TM_PURE if we we have TM language support. */
10044 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10045 ecf_flags |= ECF_TM_PURE;
10046 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10047 "__builtin_eh_pointer", ecf_flags);
10048
10049 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10050 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10051 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10052 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10053
10054 ftype = build_function_type_list (void_type_node,
10055 integer_type_node, integer_type_node,
10056 NULL_TREE);
10057 local_define_builtin ("__builtin_eh_copy_values", ftype,
10058 BUILT_IN_EH_COPY_VALUES,
10059 "__builtin_eh_copy_values", ECF_NOTHROW);
10060
10061 /* Complex multiplication and division. These are handled as builtins
10062 rather than optabs because emit_library_call_value doesn't support
10063 complex. Further, we can do slightly better with folding these
10064 beasties if the real and complex parts of the arguments are separate. */
10065 {
10066 int mode;
10067
10068 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10069 {
10070 char mode_name_buf[4], *q;
10071 const char *p;
10072 enum built_in_function mcode, dcode;
10073 tree type, inner_type;
10074 const char *prefix = "__";
10075
10076 if (targetm.libfunc_gnu_prefix)
10077 prefix = "__gnu_";
10078
10079 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
10080 if (type == NULL)
10081 continue;
10082 inner_type = TREE_TYPE (type);
10083
10084 ftype = build_function_type_list (type, inner_type, inner_type,
10085 inner_type, inner_type, NULL_TREE);
10086
10087 mcode = ((enum built_in_function)
10088 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10089 dcode = ((enum built_in_function)
10090 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10091
10092 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10093 *q = TOLOWER (*p);
10094 *q = '\0';
10095
10096 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10097 NULL);
10098 local_define_builtin (built_in_names[mcode], ftype, mcode,
10099 built_in_names[mcode],
10100 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10101
10102 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10103 NULL);
10104 local_define_builtin (built_in_names[dcode], ftype, dcode,
10105 built_in_names[dcode],
10106 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10107 }
10108 }
10109
10110 init_internal_fns ();
10111 }
10112
10113 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10114 better way.
10115
10116 If we requested a pointer to a vector, build up the pointers that
10117 we stripped off while looking for the inner type. Similarly for
10118 return values from functions.
10119
10120 The argument TYPE is the top of the chain, and BOTTOM is the
10121 new type which we will point to. */
10122
10123 tree
10124 reconstruct_complex_type (tree type, tree bottom)
10125 {
10126 tree inner, outer;
10127
10128 if (TREE_CODE (type) == POINTER_TYPE)
10129 {
10130 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10131 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10132 TYPE_REF_CAN_ALIAS_ALL (type));
10133 }
10134 else if (TREE_CODE (type) == REFERENCE_TYPE)
10135 {
10136 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10137 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10138 TYPE_REF_CAN_ALIAS_ALL (type));
10139 }
10140 else if (TREE_CODE (type) == ARRAY_TYPE)
10141 {
10142 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10143 outer = build_array_type (inner, TYPE_DOMAIN (type));
10144 }
10145 else if (TREE_CODE (type) == FUNCTION_TYPE)
10146 {
10147 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10148 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10149 }
10150 else if (TREE_CODE (type) == METHOD_TYPE)
10151 {
10152 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10153 /* The build_method_type_directly() routine prepends 'this' to argument list,
10154 so we must compensate by getting rid of it. */
10155 outer
10156 = build_method_type_directly
10157 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10158 inner,
10159 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10160 }
10161 else if (TREE_CODE (type) == OFFSET_TYPE)
10162 {
10163 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10164 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10165 }
10166 else
10167 return bottom;
10168
10169 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10170 TYPE_QUALS (type));
10171 }
10172
10173 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10174 the inner type. */
10175 tree
10176 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
10177 {
10178 int nunits;
10179
10180 switch (GET_MODE_CLASS (mode))
10181 {
10182 case MODE_VECTOR_INT:
10183 case MODE_VECTOR_FLOAT:
10184 case MODE_VECTOR_FRACT:
10185 case MODE_VECTOR_UFRACT:
10186 case MODE_VECTOR_ACCUM:
10187 case MODE_VECTOR_UACCUM:
10188 nunits = GET_MODE_NUNITS (mode);
10189 break;
10190
10191 case MODE_INT:
10192 /* Check that there are no leftover bits. */
10193 gcc_assert (GET_MODE_BITSIZE (mode)
10194 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10195
10196 nunits = GET_MODE_BITSIZE (mode)
10197 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10198 break;
10199
10200 default:
10201 gcc_unreachable ();
10202 }
10203
10204 return make_vector_type (innertype, nunits, mode);
10205 }
10206
10207 /* Similarly, but takes the inner type and number of units, which must be
10208 a power of two. */
10209
10210 tree
10211 build_vector_type (tree innertype, int nunits)
10212 {
10213 return make_vector_type (innertype, nunits, VOIDmode);
10214 }
10215
10216 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10217
10218 tree
10219 build_opaque_vector_type (tree innertype, int nunits)
10220 {
10221 tree t = make_vector_type (innertype, nunits, VOIDmode);
10222 tree cand;
10223 /* We always build the non-opaque variant before the opaque one,
10224 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10225 cand = TYPE_NEXT_VARIANT (t);
10226 if (cand
10227 && TYPE_VECTOR_OPAQUE (cand)
10228 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10229 return cand;
10230 /* Othewise build a variant type and make sure to queue it after
10231 the non-opaque type. */
10232 cand = build_distinct_type_copy (t);
10233 TYPE_VECTOR_OPAQUE (cand) = true;
10234 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10235 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10236 TYPE_NEXT_VARIANT (t) = cand;
10237 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10238 return cand;
10239 }
10240
10241
10242 /* Given an initializer INIT, return TRUE if INIT is zero or some
10243 aggregate of zeros. Otherwise return FALSE. */
10244 bool
10245 initializer_zerop (const_tree init)
10246 {
10247 tree elt;
10248
10249 STRIP_NOPS (init);
10250
10251 switch (TREE_CODE (init))
10252 {
10253 case INTEGER_CST:
10254 return integer_zerop (init);
10255
10256 case REAL_CST:
10257 /* ??? Note that this is not correct for C4X float formats. There,
10258 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10259 negative exponent. */
10260 return real_zerop (init)
10261 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10262
10263 case FIXED_CST:
10264 return fixed_zerop (init);
10265
10266 case COMPLEX_CST:
10267 return integer_zerop (init)
10268 || (real_zerop (init)
10269 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10270 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10271
10272 case VECTOR_CST:
10273 {
10274 unsigned i;
10275 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10276 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10277 return false;
10278 return true;
10279 }
10280
10281 case CONSTRUCTOR:
10282 {
10283 unsigned HOST_WIDE_INT idx;
10284
10285 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10286 if (!initializer_zerop (elt))
10287 return false;
10288 return true;
10289 }
10290
10291 case STRING_CST:
10292 {
10293 int i;
10294
10295 /* We need to loop through all elements to handle cases like
10296 "\0" and "\0foobar". */
10297 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10298 if (TREE_STRING_POINTER (init)[i] != '\0')
10299 return false;
10300
10301 return true;
10302 }
10303
10304 default:
10305 return false;
10306 }
10307 }
10308
10309 /* Check if vector VEC consists of all the equal elements and
10310 that the number of elements corresponds to the type of VEC.
10311 The function returns first element of the vector
10312 or NULL_TREE if the vector is not uniform. */
10313 tree
10314 uniform_vector_p (const_tree vec)
10315 {
10316 tree first, t;
10317 unsigned i;
10318
10319 if (vec == NULL_TREE)
10320 return NULL_TREE;
10321
10322 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10323
10324 if (TREE_CODE (vec) == VECTOR_CST)
10325 {
10326 first = VECTOR_CST_ELT (vec, 0);
10327 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10328 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10329 return NULL_TREE;
10330
10331 return first;
10332 }
10333
10334 else if (TREE_CODE (vec) == CONSTRUCTOR)
10335 {
10336 first = error_mark_node;
10337
10338 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10339 {
10340 if (i == 0)
10341 {
10342 first = t;
10343 continue;
10344 }
10345 if (!operand_equal_p (first, t, 0))
10346 return NULL_TREE;
10347 }
10348 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10349 return NULL_TREE;
10350
10351 return first;
10352 }
10353
10354 return NULL_TREE;
10355 }
10356
10357 /* Build an empty statement at location LOC. */
10358
10359 tree
10360 build_empty_stmt (location_t loc)
10361 {
10362 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10363 SET_EXPR_LOCATION (t, loc);
10364 return t;
10365 }
10366
10367
10368 /* Build an OpenMP clause with code CODE. LOC is the location of the
10369 clause. */
10370
10371 tree
10372 build_omp_clause (location_t loc, enum omp_clause_code code)
10373 {
10374 tree t;
10375 int size, length;
10376
10377 length = omp_clause_num_ops[code];
10378 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10379
10380 record_node_allocation_statistics (OMP_CLAUSE, size);
10381
10382 t = (tree) ggc_internal_alloc (size);
10383 memset (t, 0, size);
10384 TREE_SET_CODE (t, OMP_CLAUSE);
10385 OMP_CLAUSE_SET_CODE (t, code);
10386 OMP_CLAUSE_LOCATION (t) = loc;
10387
10388 return t;
10389 }
10390
10391 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10392 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10393 Except for the CODE and operand count field, other storage for the
10394 object is initialized to zeros. */
10395
10396 tree
10397 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10398 {
10399 tree t;
10400 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10401
10402 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10403 gcc_assert (len >= 1);
10404
10405 record_node_allocation_statistics (code, length);
10406
10407 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10408
10409 TREE_SET_CODE (t, code);
10410
10411 /* Can't use TREE_OPERAND to store the length because if checking is
10412 enabled, it will try to check the length before we store it. :-P */
10413 t->exp.operands[0] = build_int_cst (sizetype, len);
10414
10415 return t;
10416 }
10417
10418 /* Helper function for build_call_* functions; build a CALL_EXPR with
10419 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10420 the argument slots. */
10421
10422 static tree
10423 build_call_1 (tree return_type, tree fn, int nargs)
10424 {
10425 tree t;
10426
10427 t = build_vl_exp (CALL_EXPR, nargs + 3);
10428 TREE_TYPE (t) = return_type;
10429 CALL_EXPR_FN (t) = fn;
10430 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10431
10432 return t;
10433 }
10434
10435 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10436 FN and a null static chain slot. NARGS is the number of call arguments
10437 which are specified as "..." arguments. */
10438
10439 tree
10440 build_call_nary (tree return_type, tree fn, int nargs, ...)
10441 {
10442 tree ret;
10443 va_list args;
10444 va_start (args, nargs);
10445 ret = build_call_valist (return_type, fn, nargs, args);
10446 va_end (args);
10447 return ret;
10448 }
10449
10450 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10451 FN and a null static chain slot. NARGS is the number of call arguments
10452 which are specified as a va_list ARGS. */
10453
10454 tree
10455 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10456 {
10457 tree t;
10458 int i;
10459
10460 t = build_call_1 (return_type, fn, nargs);
10461 for (i = 0; i < nargs; i++)
10462 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10463 process_call_operands (t);
10464 return t;
10465 }
10466
10467 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10468 FN and a null static chain slot. NARGS is the number of call arguments
10469 which are specified as a tree array ARGS. */
10470
10471 tree
10472 build_call_array_loc (location_t loc, tree return_type, tree fn,
10473 int nargs, const tree *args)
10474 {
10475 tree t;
10476 int i;
10477
10478 t = build_call_1 (return_type, fn, nargs);
10479 for (i = 0; i < nargs; i++)
10480 CALL_EXPR_ARG (t, i) = args[i];
10481 process_call_operands (t);
10482 SET_EXPR_LOCATION (t, loc);
10483 return t;
10484 }
10485
10486 /* Like build_call_array, but takes a vec. */
10487
10488 tree
10489 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10490 {
10491 tree ret, t;
10492 unsigned int ix;
10493
10494 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10495 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10496 CALL_EXPR_ARG (ret, ix) = t;
10497 process_call_operands (ret);
10498 return ret;
10499 }
10500
10501 /* Conveniently construct a function call expression. FNDECL names the
10502 function to be called and N arguments are passed in the array
10503 ARGARRAY. */
10504
10505 tree
10506 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10507 {
10508 tree fntype = TREE_TYPE (fndecl);
10509 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10510
10511 return fold_builtin_call_array (loc, TREE_TYPE (fntype), fn, n, argarray);
10512 }
10513
10514 /* Conveniently construct a function call expression. FNDECL names the
10515 function to be called and the arguments are passed in the vector
10516 VEC. */
10517
10518 tree
10519 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10520 {
10521 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10522 vec_safe_address (vec));
10523 }
10524
10525
10526 /* Conveniently construct a function call expression. FNDECL names the
10527 function to be called, N is the number of arguments, and the "..."
10528 parameters are the argument expressions. */
10529
10530 tree
10531 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10532 {
10533 va_list ap;
10534 tree *argarray = XALLOCAVEC (tree, n);
10535 int i;
10536
10537 va_start (ap, n);
10538 for (i = 0; i < n; i++)
10539 argarray[i] = va_arg (ap, tree);
10540 va_end (ap);
10541 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10542 }
10543
10544 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10545 varargs macros aren't supported by all bootstrap compilers. */
10546
10547 tree
10548 build_call_expr (tree fndecl, int n, ...)
10549 {
10550 va_list ap;
10551 tree *argarray = XALLOCAVEC (tree, n);
10552 int i;
10553
10554 va_start (ap, n);
10555 for (i = 0; i < n; i++)
10556 argarray[i] = va_arg (ap, tree);
10557 va_end (ap);
10558 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10559 }
10560
10561 /* Build internal call expression. This is just like CALL_EXPR, except
10562 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10563 internal function. */
10564
10565 tree
10566 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10567 tree type, int n, ...)
10568 {
10569 va_list ap;
10570 int i;
10571
10572 tree fn = build_call_1 (type, NULL_TREE, n);
10573 va_start (ap, n);
10574 for (i = 0; i < n; i++)
10575 CALL_EXPR_ARG (fn, i) = va_arg (ap, tree);
10576 va_end (ap);
10577 SET_EXPR_LOCATION (fn, loc);
10578 CALL_EXPR_IFN (fn) = ifn;
10579 return fn;
10580 }
10581
10582 /* Create a new constant string literal and return a char* pointer to it.
10583 The STRING_CST value is the LEN characters at STR. */
10584 tree
10585 build_string_literal (int len, const char *str)
10586 {
10587 tree t, elem, index, type;
10588
10589 t = build_string (len, str);
10590 elem = build_type_variant (char_type_node, 1, 0);
10591 index = build_index_type (size_int (len - 1));
10592 type = build_array_type (elem, index);
10593 TREE_TYPE (t) = type;
10594 TREE_CONSTANT (t) = 1;
10595 TREE_READONLY (t) = 1;
10596 TREE_STATIC (t) = 1;
10597
10598 type = build_pointer_type (elem);
10599 t = build1 (ADDR_EXPR, type,
10600 build4 (ARRAY_REF, elem,
10601 t, integer_zero_node, NULL_TREE, NULL_TREE));
10602 return t;
10603 }
10604
10605
10606
10607 /* Return true if T (assumed to be a DECL) must be assigned a memory
10608 location. */
10609
10610 bool
10611 needs_to_live_in_memory (const_tree t)
10612 {
10613 return (TREE_ADDRESSABLE (t)
10614 || is_global_var (t)
10615 || (TREE_CODE (t) == RESULT_DECL
10616 && !DECL_BY_REFERENCE (t)
10617 && aggregate_value_p (t, current_function_decl)));
10618 }
10619
10620 /* Return value of a constant X and sign-extend it. */
10621
10622 HOST_WIDE_INT
10623 int_cst_value (const_tree x)
10624 {
10625 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10626 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10627
10628 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10629 gcc_assert (cst_and_fits_in_hwi (x));
10630
10631 if (bits < HOST_BITS_PER_WIDE_INT)
10632 {
10633 bool negative = ((val >> (bits - 1)) & 1) != 0;
10634 if (negative)
10635 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10636 else
10637 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10638 }
10639
10640 return val;
10641 }
10642
10643 /* If TYPE is an integral or pointer type, return an integer type with
10644 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10645 if TYPE is already an integer type of signedness UNSIGNEDP. */
10646
10647 tree
10648 signed_or_unsigned_type_for (int unsignedp, tree type)
10649 {
10650 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10651 return type;
10652
10653 if (TREE_CODE (type) == VECTOR_TYPE)
10654 {
10655 tree inner = TREE_TYPE (type);
10656 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10657 if (!inner2)
10658 return NULL_TREE;
10659 if (inner == inner2)
10660 return type;
10661 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10662 }
10663
10664 if (!INTEGRAL_TYPE_P (type)
10665 && !POINTER_TYPE_P (type)
10666 && TREE_CODE (type) != OFFSET_TYPE)
10667 return NULL_TREE;
10668
10669 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10670 }
10671
10672 /* If TYPE is an integral or pointer type, return an integer type with
10673 the same precision which is unsigned, or itself if TYPE is already an
10674 unsigned integer type. */
10675
10676 tree
10677 unsigned_type_for (tree type)
10678 {
10679 return signed_or_unsigned_type_for (1, type);
10680 }
10681
10682 /* If TYPE is an integral or pointer type, return an integer type with
10683 the same precision which is signed, or itself if TYPE is already a
10684 signed integer type. */
10685
10686 tree
10687 signed_type_for (tree type)
10688 {
10689 return signed_or_unsigned_type_for (0, type);
10690 }
10691
10692 /* If TYPE is a vector type, return a signed integer vector type with the
10693 same width and number of subparts. Otherwise return boolean_type_node. */
10694
10695 tree
10696 truth_type_for (tree type)
10697 {
10698 if (TREE_CODE (type) == VECTOR_TYPE)
10699 {
10700 tree elem = lang_hooks.types.type_for_size
10701 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10702 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10703 }
10704 else
10705 return boolean_type_node;
10706 }
10707
10708 /* Returns the largest value obtainable by casting something in INNER type to
10709 OUTER type. */
10710
10711 tree
10712 upper_bound_in_type (tree outer, tree inner)
10713 {
10714 unsigned int det = 0;
10715 unsigned oprec = TYPE_PRECISION (outer);
10716 unsigned iprec = TYPE_PRECISION (inner);
10717 unsigned prec;
10718
10719 /* Compute a unique number for every combination. */
10720 det |= (oprec > iprec) ? 4 : 0;
10721 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10722 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10723
10724 /* Determine the exponent to use. */
10725 switch (det)
10726 {
10727 case 0:
10728 case 1:
10729 /* oprec <= iprec, outer: signed, inner: don't care. */
10730 prec = oprec - 1;
10731 break;
10732 case 2:
10733 case 3:
10734 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10735 prec = oprec;
10736 break;
10737 case 4:
10738 /* oprec > iprec, outer: signed, inner: signed. */
10739 prec = iprec - 1;
10740 break;
10741 case 5:
10742 /* oprec > iprec, outer: signed, inner: unsigned. */
10743 prec = iprec;
10744 break;
10745 case 6:
10746 /* oprec > iprec, outer: unsigned, inner: signed. */
10747 prec = oprec;
10748 break;
10749 case 7:
10750 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10751 prec = iprec;
10752 break;
10753 default:
10754 gcc_unreachable ();
10755 }
10756
10757 return wide_int_to_tree (outer,
10758 wi::mask (prec, false, TYPE_PRECISION (outer)));
10759 }
10760
10761 /* Returns the smallest value obtainable by casting something in INNER type to
10762 OUTER type. */
10763
10764 tree
10765 lower_bound_in_type (tree outer, tree inner)
10766 {
10767 unsigned oprec = TYPE_PRECISION (outer);
10768 unsigned iprec = TYPE_PRECISION (inner);
10769
10770 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10771 and obtain 0. */
10772 if (TYPE_UNSIGNED (outer)
10773 /* If we are widening something of an unsigned type, OUTER type
10774 contains all values of INNER type. In particular, both INNER
10775 and OUTER types have zero in common. */
10776 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10777 return build_int_cst (outer, 0);
10778 else
10779 {
10780 /* If we are widening a signed type to another signed type, we
10781 want to obtain -2^^(iprec-1). If we are keeping the
10782 precision or narrowing to a signed type, we want to obtain
10783 -2^(oprec-1). */
10784 unsigned prec = oprec > iprec ? iprec : oprec;
10785 return wide_int_to_tree (outer,
10786 wi::mask (prec - 1, true,
10787 TYPE_PRECISION (outer)));
10788 }
10789 }
10790
10791 /* Return nonzero if two operands that are suitable for PHI nodes are
10792 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10793 SSA_NAME or invariant. Note that this is strictly an optimization.
10794 That is, callers of this function can directly call operand_equal_p
10795 and get the same result, only slower. */
10796
10797 int
10798 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10799 {
10800 if (arg0 == arg1)
10801 return 1;
10802 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10803 return 0;
10804 return operand_equal_p (arg0, arg1, 0);
10805 }
10806
10807 /* Returns number of zeros at the end of binary representation of X. */
10808
10809 tree
10810 num_ending_zeros (const_tree x)
10811 {
10812 return build_int_cst (TREE_TYPE (x), wi::ctz (x));
10813 }
10814
10815
10816 #define WALK_SUBTREE(NODE) \
10817 do \
10818 { \
10819 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10820 if (result) \
10821 return result; \
10822 } \
10823 while (0)
10824
10825 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10826 be walked whenever a type is seen in the tree. Rest of operands and return
10827 value are as for walk_tree. */
10828
10829 static tree
10830 walk_type_fields (tree type, walk_tree_fn func, void *data,
10831 hash_set<tree> *pset, walk_tree_lh lh)
10832 {
10833 tree result = NULL_TREE;
10834
10835 switch (TREE_CODE (type))
10836 {
10837 case POINTER_TYPE:
10838 case REFERENCE_TYPE:
10839 case VECTOR_TYPE:
10840 /* We have to worry about mutually recursive pointers. These can't
10841 be written in C. They can in Ada. It's pathological, but
10842 there's an ACATS test (c38102a) that checks it. Deal with this
10843 by checking if we're pointing to another pointer, that one
10844 points to another pointer, that one does too, and we have no htab.
10845 If so, get a hash table. We check three levels deep to avoid
10846 the cost of the hash table if we don't need one. */
10847 if (POINTER_TYPE_P (TREE_TYPE (type))
10848 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10849 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10850 && !pset)
10851 {
10852 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10853 func, data);
10854 if (result)
10855 return result;
10856
10857 break;
10858 }
10859
10860 /* ... fall through ... */
10861
10862 case COMPLEX_TYPE:
10863 WALK_SUBTREE (TREE_TYPE (type));
10864 break;
10865
10866 case METHOD_TYPE:
10867 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10868
10869 /* Fall through. */
10870
10871 case FUNCTION_TYPE:
10872 WALK_SUBTREE (TREE_TYPE (type));
10873 {
10874 tree arg;
10875
10876 /* We never want to walk into default arguments. */
10877 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10878 WALK_SUBTREE (TREE_VALUE (arg));
10879 }
10880 break;
10881
10882 case ARRAY_TYPE:
10883 /* Don't follow this nodes's type if a pointer for fear that
10884 we'll have infinite recursion. If we have a PSET, then we
10885 need not fear. */
10886 if (pset
10887 || (!POINTER_TYPE_P (TREE_TYPE (type))
10888 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10889 WALK_SUBTREE (TREE_TYPE (type));
10890 WALK_SUBTREE (TYPE_DOMAIN (type));
10891 break;
10892
10893 case OFFSET_TYPE:
10894 WALK_SUBTREE (TREE_TYPE (type));
10895 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10896 break;
10897
10898 default:
10899 break;
10900 }
10901
10902 return NULL_TREE;
10903 }
10904
10905 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10906 called with the DATA and the address of each sub-tree. If FUNC returns a
10907 non-NULL value, the traversal is stopped, and the value returned by FUNC
10908 is returned. If PSET is non-NULL it is used to record the nodes visited,
10909 and to avoid visiting a node more than once. */
10910
10911 tree
10912 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10913 hash_set<tree> *pset, walk_tree_lh lh)
10914 {
10915 enum tree_code code;
10916 int walk_subtrees;
10917 tree result;
10918
10919 #define WALK_SUBTREE_TAIL(NODE) \
10920 do \
10921 { \
10922 tp = & (NODE); \
10923 goto tail_recurse; \
10924 } \
10925 while (0)
10926
10927 tail_recurse:
10928 /* Skip empty subtrees. */
10929 if (!*tp)
10930 return NULL_TREE;
10931
10932 /* Don't walk the same tree twice, if the user has requested
10933 that we avoid doing so. */
10934 if (pset && pset->add (*tp))
10935 return NULL_TREE;
10936
10937 /* Call the function. */
10938 walk_subtrees = 1;
10939 result = (*func) (tp, &walk_subtrees, data);
10940
10941 /* If we found something, return it. */
10942 if (result)
10943 return result;
10944
10945 code = TREE_CODE (*tp);
10946
10947 /* Even if we didn't, FUNC may have decided that there was nothing
10948 interesting below this point in the tree. */
10949 if (!walk_subtrees)
10950 {
10951 /* But we still need to check our siblings. */
10952 if (code == TREE_LIST)
10953 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10954 else if (code == OMP_CLAUSE)
10955 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10956 else
10957 return NULL_TREE;
10958 }
10959
10960 if (lh)
10961 {
10962 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10963 if (result || !walk_subtrees)
10964 return result;
10965 }
10966
10967 switch (code)
10968 {
10969 case ERROR_MARK:
10970 case IDENTIFIER_NODE:
10971 case INTEGER_CST:
10972 case REAL_CST:
10973 case FIXED_CST:
10974 case VECTOR_CST:
10975 case STRING_CST:
10976 case BLOCK:
10977 case PLACEHOLDER_EXPR:
10978 case SSA_NAME:
10979 case FIELD_DECL:
10980 case RESULT_DECL:
10981 /* None of these have subtrees other than those already walked
10982 above. */
10983 break;
10984
10985 case TREE_LIST:
10986 WALK_SUBTREE (TREE_VALUE (*tp));
10987 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10988 break;
10989
10990 case TREE_VEC:
10991 {
10992 int len = TREE_VEC_LENGTH (*tp);
10993
10994 if (len == 0)
10995 break;
10996
10997 /* Walk all elements but the first. */
10998 while (--len)
10999 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11000
11001 /* Now walk the first one as a tail call. */
11002 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11003 }
11004
11005 case COMPLEX_CST:
11006 WALK_SUBTREE (TREE_REALPART (*tp));
11007 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11008
11009 case CONSTRUCTOR:
11010 {
11011 unsigned HOST_WIDE_INT idx;
11012 constructor_elt *ce;
11013
11014 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11015 idx++)
11016 WALK_SUBTREE (ce->value);
11017 }
11018 break;
11019
11020 case SAVE_EXPR:
11021 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11022
11023 case BIND_EXPR:
11024 {
11025 tree decl;
11026 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11027 {
11028 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11029 into declarations that are just mentioned, rather than
11030 declared; they don't really belong to this part of the tree.
11031 And, we can see cycles: the initializer for a declaration
11032 can refer to the declaration itself. */
11033 WALK_SUBTREE (DECL_INITIAL (decl));
11034 WALK_SUBTREE (DECL_SIZE (decl));
11035 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11036 }
11037 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11038 }
11039
11040 case STATEMENT_LIST:
11041 {
11042 tree_stmt_iterator i;
11043 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11044 WALK_SUBTREE (*tsi_stmt_ptr (i));
11045 }
11046 break;
11047
11048 case OMP_CLAUSE:
11049 switch (OMP_CLAUSE_CODE (*tp))
11050 {
11051 case OMP_CLAUSE_PRIVATE:
11052 case OMP_CLAUSE_SHARED:
11053 case OMP_CLAUSE_FIRSTPRIVATE:
11054 case OMP_CLAUSE_COPYIN:
11055 case OMP_CLAUSE_COPYPRIVATE:
11056 case OMP_CLAUSE_FINAL:
11057 case OMP_CLAUSE_IF:
11058 case OMP_CLAUSE_NUM_THREADS:
11059 case OMP_CLAUSE_SCHEDULE:
11060 case OMP_CLAUSE_UNIFORM:
11061 case OMP_CLAUSE_DEPEND:
11062 case OMP_CLAUSE_NUM_TEAMS:
11063 case OMP_CLAUSE_THREAD_LIMIT:
11064 case OMP_CLAUSE_DEVICE:
11065 case OMP_CLAUSE_DIST_SCHEDULE:
11066 case OMP_CLAUSE_SAFELEN:
11067 case OMP_CLAUSE_SIMDLEN:
11068 case OMP_CLAUSE__LOOPTEMP_:
11069 case OMP_CLAUSE__SIMDUID_:
11070 case OMP_CLAUSE__CILK_FOR_COUNT_:
11071 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11072 /* FALLTHRU */
11073
11074 case OMP_CLAUSE_NOWAIT:
11075 case OMP_CLAUSE_ORDERED:
11076 case OMP_CLAUSE_DEFAULT:
11077 case OMP_CLAUSE_UNTIED:
11078 case OMP_CLAUSE_MERGEABLE:
11079 case OMP_CLAUSE_PROC_BIND:
11080 case OMP_CLAUSE_INBRANCH:
11081 case OMP_CLAUSE_NOTINBRANCH:
11082 case OMP_CLAUSE_FOR:
11083 case OMP_CLAUSE_PARALLEL:
11084 case OMP_CLAUSE_SECTIONS:
11085 case OMP_CLAUSE_TASKGROUP:
11086 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11087
11088 case OMP_CLAUSE_LASTPRIVATE:
11089 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11090 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11091 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11092
11093 case OMP_CLAUSE_COLLAPSE:
11094 {
11095 int i;
11096 for (i = 0; i < 3; i++)
11097 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11098 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11099 }
11100
11101 case OMP_CLAUSE_LINEAR:
11102 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11103 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11104 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11105 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11106
11107 case OMP_CLAUSE_ALIGNED:
11108 case OMP_CLAUSE_FROM:
11109 case OMP_CLAUSE_TO:
11110 case OMP_CLAUSE_MAP:
11111 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11112 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11113 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11114
11115 case OMP_CLAUSE_REDUCTION:
11116 {
11117 int i;
11118 for (i = 0; i < 4; i++)
11119 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11120 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11121 }
11122
11123 default:
11124 gcc_unreachable ();
11125 }
11126 break;
11127
11128 case TARGET_EXPR:
11129 {
11130 int i, len;
11131
11132 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11133 But, we only want to walk once. */
11134 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11135 for (i = 0; i < len; ++i)
11136 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11137 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11138 }
11139
11140 case DECL_EXPR:
11141 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11142 defining. We only want to walk into these fields of a type in this
11143 case and not in the general case of a mere reference to the type.
11144
11145 The criterion is as follows: if the field can be an expression, it
11146 must be walked only here. This should be in keeping with the fields
11147 that are directly gimplified in gimplify_type_sizes in order for the
11148 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11149 variable-sized types.
11150
11151 Note that DECLs get walked as part of processing the BIND_EXPR. */
11152 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11153 {
11154 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11155 if (TREE_CODE (*type_p) == ERROR_MARK)
11156 return NULL_TREE;
11157
11158 /* Call the function for the type. See if it returns anything or
11159 doesn't want us to continue. If we are to continue, walk both
11160 the normal fields and those for the declaration case. */
11161 result = (*func) (type_p, &walk_subtrees, data);
11162 if (result || !walk_subtrees)
11163 return result;
11164
11165 /* But do not walk a pointed-to type since it may itself need to
11166 be walked in the declaration case if it isn't anonymous. */
11167 if (!POINTER_TYPE_P (*type_p))
11168 {
11169 result = walk_type_fields (*type_p, func, data, pset, lh);
11170 if (result)
11171 return result;
11172 }
11173
11174 /* If this is a record type, also walk the fields. */
11175 if (RECORD_OR_UNION_TYPE_P (*type_p))
11176 {
11177 tree field;
11178
11179 for (field = TYPE_FIELDS (*type_p); field;
11180 field = DECL_CHAIN (field))
11181 {
11182 /* We'd like to look at the type of the field, but we can
11183 easily get infinite recursion. So assume it's pointed
11184 to elsewhere in the tree. Also, ignore things that
11185 aren't fields. */
11186 if (TREE_CODE (field) != FIELD_DECL)
11187 continue;
11188
11189 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11190 WALK_SUBTREE (DECL_SIZE (field));
11191 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11192 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11193 WALK_SUBTREE (DECL_QUALIFIER (field));
11194 }
11195 }
11196
11197 /* Same for scalar types. */
11198 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11199 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11200 || TREE_CODE (*type_p) == INTEGER_TYPE
11201 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11202 || TREE_CODE (*type_p) == REAL_TYPE)
11203 {
11204 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11205 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11206 }
11207
11208 WALK_SUBTREE (TYPE_SIZE (*type_p));
11209 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11210 }
11211 /* FALLTHRU */
11212
11213 default:
11214 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11215 {
11216 int i, len;
11217
11218 /* Walk over all the sub-trees of this operand. */
11219 len = TREE_OPERAND_LENGTH (*tp);
11220
11221 /* Go through the subtrees. We need to do this in forward order so
11222 that the scope of a FOR_EXPR is handled properly. */
11223 if (len)
11224 {
11225 for (i = 0; i < len - 1; ++i)
11226 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11227 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11228 }
11229 }
11230 /* If this is a type, walk the needed fields in the type. */
11231 else if (TYPE_P (*tp))
11232 return walk_type_fields (*tp, func, data, pset, lh);
11233 break;
11234 }
11235
11236 /* We didn't find what we were looking for. */
11237 return NULL_TREE;
11238
11239 #undef WALK_SUBTREE_TAIL
11240 }
11241 #undef WALK_SUBTREE
11242
11243 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11244
11245 tree
11246 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11247 walk_tree_lh lh)
11248 {
11249 tree result;
11250
11251 hash_set<tree> pset;
11252 result = walk_tree_1 (tp, func, data, &pset, lh);
11253 return result;
11254 }
11255
11256
11257 tree
11258 tree_block (tree t)
11259 {
11260 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11261
11262 if (IS_EXPR_CODE_CLASS (c))
11263 return LOCATION_BLOCK (t->exp.locus);
11264 gcc_unreachable ();
11265 return NULL;
11266 }
11267
11268 void
11269 tree_set_block (tree t, tree b)
11270 {
11271 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11272
11273 if (IS_EXPR_CODE_CLASS (c))
11274 {
11275 if (b)
11276 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
11277 else
11278 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
11279 }
11280 else
11281 gcc_unreachable ();
11282 }
11283
11284 /* Create a nameless artificial label and put it in the current
11285 function context. The label has a location of LOC. Returns the
11286 newly created label. */
11287
11288 tree
11289 create_artificial_label (location_t loc)
11290 {
11291 tree lab = build_decl (loc,
11292 LABEL_DECL, NULL_TREE, void_type_node);
11293
11294 DECL_ARTIFICIAL (lab) = 1;
11295 DECL_IGNORED_P (lab) = 1;
11296 DECL_CONTEXT (lab) = current_function_decl;
11297 return lab;
11298 }
11299
11300 /* Given a tree, try to return a useful variable name that we can use
11301 to prefix a temporary that is being assigned the value of the tree.
11302 I.E. given <temp> = &A, return A. */
11303
11304 const char *
11305 get_name (tree t)
11306 {
11307 tree stripped_decl;
11308
11309 stripped_decl = t;
11310 STRIP_NOPS (stripped_decl);
11311 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11312 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11313 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11314 {
11315 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11316 if (!name)
11317 return NULL;
11318 return IDENTIFIER_POINTER (name);
11319 }
11320 else
11321 {
11322 switch (TREE_CODE (stripped_decl))
11323 {
11324 case ADDR_EXPR:
11325 return get_name (TREE_OPERAND (stripped_decl, 0));
11326 default:
11327 return NULL;
11328 }
11329 }
11330 }
11331
11332 /* Return true if TYPE has a variable argument list. */
11333
11334 bool
11335 stdarg_p (const_tree fntype)
11336 {
11337 function_args_iterator args_iter;
11338 tree n = NULL_TREE, t;
11339
11340 if (!fntype)
11341 return false;
11342
11343 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11344 {
11345 n = t;
11346 }
11347
11348 return n != NULL_TREE && n != void_type_node;
11349 }
11350
11351 /* Return true if TYPE has a prototype. */
11352
11353 bool
11354 prototype_p (tree fntype)
11355 {
11356 tree t;
11357
11358 gcc_assert (fntype != NULL_TREE);
11359
11360 t = TYPE_ARG_TYPES (fntype);
11361 return (t != NULL_TREE);
11362 }
11363
11364 /* If BLOCK is inlined from an __attribute__((__artificial__))
11365 routine, return pointer to location from where it has been
11366 called. */
11367 location_t *
11368 block_nonartificial_location (tree block)
11369 {
11370 location_t *ret = NULL;
11371
11372 while (block && TREE_CODE (block) == BLOCK
11373 && BLOCK_ABSTRACT_ORIGIN (block))
11374 {
11375 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11376
11377 while (TREE_CODE (ao) == BLOCK
11378 && BLOCK_ABSTRACT_ORIGIN (ao)
11379 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11380 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11381
11382 if (TREE_CODE (ao) == FUNCTION_DECL)
11383 {
11384 /* If AO is an artificial inline, point RET to the
11385 call site locus at which it has been inlined and continue
11386 the loop, in case AO's caller is also an artificial
11387 inline. */
11388 if (DECL_DECLARED_INLINE_P (ao)
11389 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11390 ret = &BLOCK_SOURCE_LOCATION (block);
11391 else
11392 break;
11393 }
11394 else if (TREE_CODE (ao) != BLOCK)
11395 break;
11396
11397 block = BLOCK_SUPERCONTEXT (block);
11398 }
11399 return ret;
11400 }
11401
11402
11403 /* If EXP is inlined from an __attribute__((__artificial__))
11404 function, return the location of the original call expression. */
11405
11406 location_t
11407 tree_nonartificial_location (tree exp)
11408 {
11409 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11410
11411 if (loc)
11412 return *loc;
11413 else
11414 return EXPR_LOCATION (exp);
11415 }
11416
11417
11418 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11419 nodes. */
11420
11421 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11422
11423 static hashval_t
11424 cl_option_hash_hash (const void *x)
11425 {
11426 const_tree const t = (const_tree) x;
11427 const char *p;
11428 size_t i;
11429 size_t len = 0;
11430 hashval_t hash = 0;
11431
11432 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11433 {
11434 p = (const char *)TREE_OPTIMIZATION (t);
11435 len = sizeof (struct cl_optimization);
11436 }
11437
11438 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11439 {
11440 p = (const char *)TREE_TARGET_OPTION (t);
11441 len = sizeof (struct cl_target_option);
11442 }
11443
11444 else
11445 gcc_unreachable ();
11446
11447 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11448 something else. */
11449 for (i = 0; i < len; i++)
11450 if (p[i])
11451 hash = (hash << 4) ^ ((i << 2) | p[i]);
11452
11453 return hash;
11454 }
11455
11456 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11457 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11458 same. */
11459
11460 static int
11461 cl_option_hash_eq (const void *x, const void *y)
11462 {
11463 const_tree const xt = (const_tree) x;
11464 const_tree const yt = (const_tree) y;
11465 const char *xp;
11466 const char *yp;
11467 size_t len;
11468
11469 if (TREE_CODE (xt) != TREE_CODE (yt))
11470 return 0;
11471
11472 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11473 {
11474 xp = (const char *)TREE_OPTIMIZATION (xt);
11475 yp = (const char *)TREE_OPTIMIZATION (yt);
11476 len = sizeof (struct cl_optimization);
11477 }
11478
11479 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11480 {
11481 xp = (const char *)TREE_TARGET_OPTION (xt);
11482 yp = (const char *)TREE_TARGET_OPTION (yt);
11483 len = sizeof (struct cl_target_option);
11484 }
11485
11486 else
11487 gcc_unreachable ();
11488
11489 return (memcmp (xp, yp, len) == 0);
11490 }
11491
11492 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11493
11494 tree
11495 build_optimization_node (struct gcc_options *opts)
11496 {
11497 tree t;
11498 void **slot;
11499
11500 /* Use the cache of optimization nodes. */
11501
11502 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11503 opts);
11504
11505 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11506 t = (tree) *slot;
11507 if (!t)
11508 {
11509 /* Insert this one into the hash table. */
11510 t = cl_optimization_node;
11511 *slot = t;
11512
11513 /* Make a new node for next time round. */
11514 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11515 }
11516
11517 return t;
11518 }
11519
11520 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
11521
11522 tree
11523 build_target_option_node (struct gcc_options *opts)
11524 {
11525 tree t;
11526 void **slot;
11527
11528 /* Use the cache of optimization nodes. */
11529
11530 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11531 opts);
11532
11533 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11534 t = (tree) *slot;
11535 if (!t)
11536 {
11537 /* Insert this one into the hash table. */
11538 t = cl_target_option_node;
11539 *slot = t;
11540
11541 /* Make a new node for next time round. */
11542 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11543 }
11544
11545 return t;
11546 }
11547
11548 /* Reset TREE_TARGET_GLOBALS cache for TARGET_OPTION_NODE.
11549 Called through htab_traverse. */
11550
11551 static int
11552 prepare_target_option_node_for_pch (void **slot, void *)
11553 {
11554 tree node = (tree) *slot;
11555 if (TREE_CODE (node) == TARGET_OPTION_NODE)
11556 TREE_TARGET_GLOBALS (node) = NULL;
11557 return 1;
11558 }
11559
11560 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
11561 so that they aren't saved during PCH writing. */
11562
11563 void
11564 prepare_target_option_nodes_for_pch (void)
11565 {
11566 htab_traverse (cl_option_hash_table, prepare_target_option_node_for_pch,
11567 NULL);
11568 }
11569
11570 /* Determine the "ultimate origin" of a block. The block may be an inlined
11571 instance of an inlined instance of a block which is local to an inline
11572 function, so we have to trace all of the way back through the origin chain
11573 to find out what sort of node actually served as the original seed for the
11574 given block. */
11575
11576 tree
11577 block_ultimate_origin (const_tree block)
11578 {
11579 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11580
11581 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11582 nodes in the function to point to themselves; ignore that if
11583 we're trying to output the abstract instance of this function. */
11584 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11585 return NULL_TREE;
11586
11587 if (immediate_origin == NULL_TREE)
11588 return NULL_TREE;
11589 else
11590 {
11591 tree ret_val;
11592 tree lookahead = immediate_origin;
11593
11594 do
11595 {
11596 ret_val = lookahead;
11597 lookahead = (TREE_CODE (ret_val) == BLOCK
11598 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11599 }
11600 while (lookahead != NULL && lookahead != ret_val);
11601
11602 /* The block's abstract origin chain may not be the *ultimate* origin of
11603 the block. It could lead to a DECL that has an abstract origin set.
11604 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11605 will give us if it has one). Note that DECL's abstract origins are
11606 supposed to be the most distant ancestor (or so decl_ultimate_origin
11607 claims), so we don't need to loop following the DECL origins. */
11608 if (DECL_P (ret_val))
11609 return DECL_ORIGIN (ret_val);
11610
11611 return ret_val;
11612 }
11613 }
11614
11615 /* Return true iff conversion in EXP generates no instruction. Mark
11616 it inline so that we fully inline into the stripping functions even
11617 though we have two uses of this function. */
11618
11619 static inline bool
11620 tree_nop_conversion (const_tree exp)
11621 {
11622 tree outer_type, inner_type;
11623
11624 if (!CONVERT_EXPR_P (exp)
11625 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11626 return false;
11627 if (TREE_OPERAND (exp, 0) == error_mark_node)
11628 return false;
11629
11630 outer_type = TREE_TYPE (exp);
11631 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11632
11633 if (!inner_type)
11634 return false;
11635
11636 /* Use precision rather then machine mode when we can, which gives
11637 the correct answer even for submode (bit-field) types. */
11638 if ((INTEGRAL_TYPE_P (outer_type)
11639 || POINTER_TYPE_P (outer_type)
11640 || TREE_CODE (outer_type) == OFFSET_TYPE)
11641 && (INTEGRAL_TYPE_P (inner_type)
11642 || POINTER_TYPE_P (inner_type)
11643 || TREE_CODE (inner_type) == OFFSET_TYPE))
11644 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11645
11646 /* Otherwise fall back on comparing machine modes (e.g. for
11647 aggregate types, floats). */
11648 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11649 }
11650
11651 /* Return true iff conversion in EXP generates no instruction. Don't
11652 consider conversions changing the signedness. */
11653
11654 static bool
11655 tree_sign_nop_conversion (const_tree exp)
11656 {
11657 tree outer_type, inner_type;
11658
11659 if (!tree_nop_conversion (exp))
11660 return false;
11661
11662 outer_type = TREE_TYPE (exp);
11663 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11664
11665 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11666 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11667 }
11668
11669 /* Strip conversions from EXP according to tree_nop_conversion and
11670 return the resulting expression. */
11671
11672 tree
11673 tree_strip_nop_conversions (tree exp)
11674 {
11675 while (tree_nop_conversion (exp))
11676 exp = TREE_OPERAND (exp, 0);
11677 return exp;
11678 }
11679
11680 /* Strip conversions from EXP according to tree_sign_nop_conversion
11681 and return the resulting expression. */
11682
11683 tree
11684 tree_strip_sign_nop_conversions (tree exp)
11685 {
11686 while (tree_sign_nop_conversion (exp))
11687 exp = TREE_OPERAND (exp, 0);
11688 return exp;
11689 }
11690
11691 /* Avoid any floating point extensions from EXP. */
11692 tree
11693 strip_float_extensions (tree exp)
11694 {
11695 tree sub, expt, subt;
11696
11697 /* For floating point constant look up the narrowest type that can hold
11698 it properly and handle it like (type)(narrowest_type)constant.
11699 This way we can optimize for instance a=a*2.0 where "a" is float
11700 but 2.0 is double constant. */
11701 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11702 {
11703 REAL_VALUE_TYPE orig;
11704 tree type = NULL;
11705
11706 orig = TREE_REAL_CST (exp);
11707 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11708 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11709 type = float_type_node;
11710 else if (TYPE_PRECISION (TREE_TYPE (exp))
11711 > TYPE_PRECISION (double_type_node)
11712 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11713 type = double_type_node;
11714 if (type)
11715 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11716 }
11717
11718 if (!CONVERT_EXPR_P (exp))
11719 return exp;
11720
11721 sub = TREE_OPERAND (exp, 0);
11722 subt = TREE_TYPE (sub);
11723 expt = TREE_TYPE (exp);
11724
11725 if (!FLOAT_TYPE_P (subt))
11726 return exp;
11727
11728 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11729 return exp;
11730
11731 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11732 return exp;
11733
11734 return strip_float_extensions (sub);
11735 }
11736
11737 /* Strip out all handled components that produce invariant
11738 offsets. */
11739
11740 const_tree
11741 strip_invariant_refs (const_tree op)
11742 {
11743 while (handled_component_p (op))
11744 {
11745 switch (TREE_CODE (op))
11746 {
11747 case ARRAY_REF:
11748 case ARRAY_RANGE_REF:
11749 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11750 || TREE_OPERAND (op, 2) != NULL_TREE
11751 || TREE_OPERAND (op, 3) != NULL_TREE)
11752 return NULL;
11753 break;
11754
11755 case COMPONENT_REF:
11756 if (TREE_OPERAND (op, 2) != NULL_TREE)
11757 return NULL;
11758 break;
11759
11760 default:;
11761 }
11762 op = TREE_OPERAND (op, 0);
11763 }
11764
11765 return op;
11766 }
11767
11768 static GTY(()) tree gcc_eh_personality_decl;
11769
11770 /* Return the GCC personality function decl. */
11771
11772 tree
11773 lhd_gcc_personality (void)
11774 {
11775 if (!gcc_eh_personality_decl)
11776 gcc_eh_personality_decl = build_personality_function ("gcc");
11777 return gcc_eh_personality_decl;
11778 }
11779
11780 /* TARGET is a call target of GIMPLE call statement
11781 (obtained by gimple_call_fn). Return true if it is
11782 OBJ_TYPE_REF representing an virtual call of C++ method.
11783 (As opposed to OBJ_TYPE_REF representing objc calls
11784 through a cast where middle-end devirtualization machinery
11785 can't apply.) */
11786
11787 bool
11788 virtual_method_call_p (tree target)
11789 {
11790 if (TREE_CODE (target) != OBJ_TYPE_REF)
11791 return false;
11792 target = TREE_TYPE (target);
11793 gcc_checking_assert (TREE_CODE (target) == POINTER_TYPE);
11794 target = TREE_TYPE (target);
11795 if (TREE_CODE (target) == FUNCTION_TYPE)
11796 return false;
11797 gcc_checking_assert (TREE_CODE (target) == METHOD_TYPE);
11798 return true;
11799 }
11800
11801 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
11802
11803 tree
11804 obj_type_ref_class (tree ref)
11805 {
11806 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
11807 ref = TREE_TYPE (ref);
11808 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11809 ref = TREE_TYPE (ref);
11810 /* We look for type THIS points to. ObjC also builds
11811 OBJ_TYPE_REF with non-method calls, Their first parameter
11812 ID however also corresponds to class type. */
11813 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
11814 || TREE_CODE (ref) == FUNCTION_TYPE);
11815 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
11816 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11817 return TREE_TYPE (ref);
11818 }
11819
11820 /* Return true if T is in anonymous namespace. */
11821
11822 bool
11823 type_in_anonymous_namespace_p (const_tree t)
11824 {
11825 /* TREE_PUBLIC of TYPE_STUB_DECL may not be properly set for
11826 bulitin types; those have CONTEXT NULL. */
11827 if (!TYPE_CONTEXT (t))
11828 return false;
11829 return (TYPE_STUB_DECL (t) && !TREE_PUBLIC (TYPE_STUB_DECL (t)));
11830 }
11831
11832 /* Try to find a base info of BINFO that would have its field decl at offset
11833 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11834 found, return, otherwise return NULL_TREE. */
11835
11836 tree
11837 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11838 {
11839 tree type = BINFO_TYPE (binfo);
11840
11841 while (true)
11842 {
11843 HOST_WIDE_INT pos, size;
11844 tree fld;
11845 int i;
11846
11847 if (types_same_for_odr (type, expected_type))
11848 return binfo;
11849 if (offset < 0)
11850 return NULL_TREE;
11851
11852 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11853 {
11854 if (TREE_CODE (fld) != FIELD_DECL)
11855 continue;
11856
11857 pos = int_bit_position (fld);
11858 size = tree_to_uhwi (DECL_SIZE (fld));
11859 if (pos <= offset && (pos + size) > offset)
11860 break;
11861 }
11862 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11863 return NULL_TREE;
11864
11865 if (!DECL_ARTIFICIAL (fld))
11866 {
11867 binfo = TYPE_BINFO (TREE_TYPE (fld));
11868 if (!binfo)
11869 return NULL_TREE;
11870 }
11871 /* Offset 0 indicates the primary base, whose vtable contents are
11872 represented in the binfo for the derived class. */
11873 else if (offset != 0)
11874 {
11875 tree base_binfo, binfo2 = binfo;
11876
11877 /* Find BINFO corresponding to FLD. This is bit harder
11878 by a fact that in virtual inheritance we may need to walk down
11879 the non-virtual inheritance chain. */
11880 while (true)
11881 {
11882 tree containing_binfo = NULL, found_binfo = NULL;
11883 for (i = 0; BINFO_BASE_ITERATE (binfo2, i, base_binfo); i++)
11884 if (types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
11885 {
11886 found_binfo = base_binfo;
11887 break;
11888 }
11889 else
11890 if ((tree_to_shwi (BINFO_OFFSET (base_binfo))
11891 - tree_to_shwi (BINFO_OFFSET (binfo)))
11892 * BITS_PER_UNIT < pos
11893 /* Rule out types with no virtual methods or we can get confused
11894 here by zero sized bases. */
11895 && BINFO_VTABLE (TYPE_BINFO (BINFO_TYPE (base_binfo)))
11896 && (!containing_binfo
11897 || (tree_to_shwi (BINFO_OFFSET (containing_binfo))
11898 < tree_to_shwi (BINFO_OFFSET (base_binfo)))))
11899 containing_binfo = base_binfo;
11900 if (found_binfo)
11901 {
11902 binfo = found_binfo;
11903 break;
11904 }
11905 if (!containing_binfo)
11906 return NULL_TREE;
11907 binfo2 = containing_binfo;
11908 }
11909 }
11910
11911 type = TREE_TYPE (fld);
11912 offset -= pos;
11913 }
11914 }
11915
11916 /* Returns true if X is a typedef decl. */
11917
11918 bool
11919 is_typedef_decl (tree x)
11920 {
11921 return (x && TREE_CODE (x) == TYPE_DECL
11922 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11923 }
11924
11925 /* Returns true iff TYPE is a type variant created for a typedef. */
11926
11927 bool
11928 typedef_variant_p (tree type)
11929 {
11930 return is_typedef_decl (TYPE_NAME (type));
11931 }
11932
11933 /* Warn about a use of an identifier which was marked deprecated. */
11934 void
11935 warn_deprecated_use (tree node, tree attr)
11936 {
11937 const char *msg;
11938
11939 if (node == 0 || !warn_deprecated_decl)
11940 return;
11941
11942 if (!attr)
11943 {
11944 if (DECL_P (node))
11945 attr = DECL_ATTRIBUTES (node);
11946 else if (TYPE_P (node))
11947 {
11948 tree decl = TYPE_STUB_DECL (node);
11949 if (decl)
11950 attr = lookup_attribute ("deprecated",
11951 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11952 }
11953 }
11954
11955 if (attr)
11956 attr = lookup_attribute ("deprecated", attr);
11957
11958 if (attr)
11959 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11960 else
11961 msg = NULL;
11962
11963 if (DECL_P (node))
11964 {
11965 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11966 if (msg)
11967 warning (OPT_Wdeprecated_declarations,
11968 "%qD is deprecated (declared at %r%s:%d%R): %s",
11969 node, "locus", xloc.file, xloc.line, msg);
11970 else
11971 warning (OPT_Wdeprecated_declarations,
11972 "%qD is deprecated (declared at %r%s:%d%R)",
11973 node, "locus", xloc.file, xloc.line);
11974 }
11975 else if (TYPE_P (node))
11976 {
11977 tree what = NULL_TREE;
11978 tree decl = TYPE_STUB_DECL (node);
11979
11980 if (TYPE_NAME (node))
11981 {
11982 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11983 what = TYPE_NAME (node);
11984 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11985 && DECL_NAME (TYPE_NAME (node)))
11986 what = DECL_NAME (TYPE_NAME (node));
11987 }
11988
11989 if (decl)
11990 {
11991 expanded_location xloc
11992 = expand_location (DECL_SOURCE_LOCATION (decl));
11993 if (what)
11994 {
11995 if (msg)
11996 warning (OPT_Wdeprecated_declarations,
11997 "%qE is deprecated (declared at %r%s:%d%R): %s",
11998 what, "locus", xloc.file, xloc.line, msg);
11999 else
12000 warning (OPT_Wdeprecated_declarations,
12001 "%qE is deprecated (declared at %r%s:%d%R)",
12002 what, "locus", xloc.file, xloc.line);
12003 }
12004 else
12005 {
12006 if (msg)
12007 warning (OPT_Wdeprecated_declarations,
12008 "type is deprecated (declared at %r%s:%d%R): %s",
12009 "locus", xloc.file, xloc.line, msg);
12010 else
12011 warning (OPT_Wdeprecated_declarations,
12012 "type is deprecated (declared at %r%s:%d%R)",
12013 "locus", xloc.file, xloc.line);
12014 }
12015 }
12016 else
12017 {
12018 if (what)
12019 {
12020 if (msg)
12021 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12022 what, msg);
12023 else
12024 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12025 }
12026 else
12027 {
12028 if (msg)
12029 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12030 msg);
12031 else
12032 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12033 }
12034 }
12035 }
12036 }
12037
12038 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12039 somewhere in it. */
12040
12041 bool
12042 contains_bitfld_component_ref_p (const_tree ref)
12043 {
12044 while (handled_component_p (ref))
12045 {
12046 if (TREE_CODE (ref) == COMPONENT_REF
12047 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12048 return true;
12049 ref = TREE_OPERAND (ref, 0);
12050 }
12051
12052 return false;
12053 }
12054
12055 /* Try to determine whether a TRY_CATCH expression can fall through.
12056 This is a subroutine of block_may_fallthru. */
12057
12058 static bool
12059 try_catch_may_fallthru (const_tree stmt)
12060 {
12061 tree_stmt_iterator i;
12062
12063 /* If the TRY block can fall through, the whole TRY_CATCH can
12064 fall through. */
12065 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12066 return true;
12067
12068 i = tsi_start (TREE_OPERAND (stmt, 1));
12069 switch (TREE_CODE (tsi_stmt (i)))
12070 {
12071 case CATCH_EXPR:
12072 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12073 catch expression and a body. The whole TRY_CATCH may fall
12074 through iff any of the catch bodies falls through. */
12075 for (; !tsi_end_p (i); tsi_next (&i))
12076 {
12077 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12078 return true;
12079 }
12080 return false;
12081
12082 case EH_FILTER_EXPR:
12083 /* The exception filter expression only matters if there is an
12084 exception. If the exception does not match EH_FILTER_TYPES,
12085 we will execute EH_FILTER_FAILURE, and we will fall through
12086 if that falls through. If the exception does match
12087 EH_FILTER_TYPES, the stack unwinder will continue up the
12088 stack, so we will not fall through. We don't know whether we
12089 will throw an exception which matches EH_FILTER_TYPES or not,
12090 so we just ignore EH_FILTER_TYPES and assume that we might
12091 throw an exception which doesn't match. */
12092 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12093
12094 default:
12095 /* This case represents statements to be executed when an
12096 exception occurs. Those statements are implicitly followed
12097 by a RESX statement to resume execution after the exception.
12098 So in this case the TRY_CATCH never falls through. */
12099 return false;
12100 }
12101 }
12102
12103 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12104 need not be 100% accurate; simply be conservative and return true if we
12105 don't know. This is used only to avoid stupidly generating extra code.
12106 If we're wrong, we'll just delete the extra code later. */
12107
12108 bool
12109 block_may_fallthru (const_tree block)
12110 {
12111 /* This CONST_CAST is okay because expr_last returns its argument
12112 unmodified and we assign it to a const_tree. */
12113 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12114
12115 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12116 {
12117 case GOTO_EXPR:
12118 case RETURN_EXPR:
12119 /* Easy cases. If the last statement of the block implies
12120 control transfer, then we can't fall through. */
12121 return false;
12122
12123 case SWITCH_EXPR:
12124 /* If SWITCH_LABELS is set, this is lowered, and represents a
12125 branch to a selected label and hence can not fall through.
12126 Otherwise SWITCH_BODY is set, and the switch can fall
12127 through. */
12128 return SWITCH_LABELS (stmt) == NULL_TREE;
12129
12130 case COND_EXPR:
12131 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12132 return true;
12133 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12134
12135 case BIND_EXPR:
12136 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12137
12138 case TRY_CATCH_EXPR:
12139 return try_catch_may_fallthru (stmt);
12140
12141 case TRY_FINALLY_EXPR:
12142 /* The finally clause is always executed after the try clause,
12143 so if it does not fall through, then the try-finally will not
12144 fall through. Otherwise, if the try clause does not fall
12145 through, then when the finally clause falls through it will
12146 resume execution wherever the try clause was going. So the
12147 whole try-finally will only fall through if both the try
12148 clause and the finally clause fall through. */
12149 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12150 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12151
12152 case MODIFY_EXPR:
12153 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12154 stmt = TREE_OPERAND (stmt, 1);
12155 else
12156 return true;
12157 /* FALLTHRU */
12158
12159 case CALL_EXPR:
12160 /* Functions that do not return do not fall through. */
12161 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12162
12163 case CLEANUP_POINT_EXPR:
12164 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12165
12166 case TARGET_EXPR:
12167 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12168
12169 case ERROR_MARK:
12170 return true;
12171
12172 default:
12173 return lang_hooks.block_may_fallthru (stmt);
12174 }
12175 }
12176
12177 /* True if we are using EH to handle cleanups. */
12178 static bool using_eh_for_cleanups_flag = false;
12179
12180 /* This routine is called from front ends to indicate eh should be used for
12181 cleanups. */
12182 void
12183 using_eh_for_cleanups (void)
12184 {
12185 using_eh_for_cleanups_flag = true;
12186 }
12187
12188 /* Query whether EH is used for cleanups. */
12189 bool
12190 using_eh_for_cleanups_p (void)
12191 {
12192 return using_eh_for_cleanups_flag;
12193 }
12194
12195 /* Wrapper for tree_code_name to ensure that tree code is valid */
12196 const char *
12197 get_tree_code_name (enum tree_code code)
12198 {
12199 const char *invalid = "<invalid tree code>";
12200
12201 if (code >= MAX_TREE_CODES)
12202 return invalid;
12203
12204 return tree_code_name[code];
12205 }
12206
12207 /* Drops the TREE_OVERFLOW flag from T. */
12208
12209 tree
12210 drop_tree_overflow (tree t)
12211 {
12212 gcc_checking_assert (TREE_OVERFLOW (t));
12213
12214 /* For tree codes with a sharing machinery re-build the result. */
12215 if (TREE_CODE (t) == INTEGER_CST)
12216 return wide_int_to_tree (TREE_TYPE (t), t);
12217
12218 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12219 and drop the flag. */
12220 t = copy_node (t);
12221 TREE_OVERFLOW (t) = 0;
12222 return t;
12223 }
12224
12225 /* Given a memory reference expression T, return its base address.
12226 The base address of a memory reference expression is the main
12227 object being referenced. For instance, the base address for
12228 'array[i].fld[j]' is 'array'. You can think of this as stripping
12229 away the offset part from a memory address.
12230
12231 This function calls handled_component_p to strip away all the inner
12232 parts of the memory reference until it reaches the base object. */
12233
12234 tree
12235 get_base_address (tree t)
12236 {
12237 while (handled_component_p (t))
12238 t = TREE_OPERAND (t, 0);
12239
12240 if ((TREE_CODE (t) == MEM_REF
12241 || TREE_CODE (t) == TARGET_MEM_REF)
12242 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12243 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12244
12245 /* ??? Either the alias oracle or all callers need to properly deal
12246 with WITH_SIZE_EXPRs before we can look through those. */
12247 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12248 return NULL_TREE;
12249
12250 return t;
12251 }
12252
12253 #include "gt-tree.h"