tree.c (int_fits_type_p): A narrower type always fits in a wider one...
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52
53 /* Each tree code class has an associated string representation.
54 These must correspond to the tree_code_class entries. */
55
56 const char *const tree_code_class_strings[] =
57 {
58 "exceptional",
59 "constant",
60 "type",
61 "declaration",
62 "reference",
63 "comparison",
64 "unary",
65 "binary",
66 "statement",
67 "expression",
68 };
69
70 /* obstack.[ch] explicitly declined to prototype this. */
71 extern int _obstack_allocated_p (struct obstack *h, void *obj);
72
73 #ifdef GATHER_STATISTICS
74 /* Statistics-gathering stuff. */
75
76 int tree_node_counts[(int) all_kinds];
77 int tree_node_sizes[(int) all_kinds];
78
79 /* Keep in sync with tree.h:enum tree_node_kind. */
80 static const char * const tree_node_kind_names[] = {
81 "decls",
82 "types",
83 "blocks",
84 "stmts",
85 "refs",
86 "exprs",
87 "constants",
88 "identifiers",
89 "perm_tree_lists",
90 "temp_tree_lists",
91 "vecs",
92 "binfos",
93 "phi_nodes",
94 "ssa names",
95 "random kinds",
96 "lang_decl kinds",
97 "lang_type kinds"
98 };
99 #endif /* GATHER_STATISTICS */
100
101 /* Unique id for next decl created. */
102 static GTY(()) int next_decl_uid;
103 /* Unique id for next type created. */
104 static GTY(()) int next_type_uid = 1;
105
106 /* Since we cannot rehash a type after it is in the table, we have to
107 keep the hash code. */
108
109 struct type_hash GTY(())
110 {
111 unsigned long hash;
112 tree type;
113 };
114
115 /* Initial size of the hash table (rounded to next prime). */
116 #define TYPE_HASH_INITIAL_SIZE 1000
117
118 /* Now here is the hash table. When recording a type, it is added to
119 the slot whose index is the hash code. Note that the hash table is
120 used for several kinds of types (function types, array types and
121 array index range types, for now). While all these live in the
122 same table, they are completely independent, and the hash code is
123 computed differently for each of these. */
124
125 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
126 htab_t type_hash_table;
127
128 /* Hash table and temporary node for larger integer const values. */
129 static GTY (()) tree int_cst_node;
130 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
131 htab_t int_cst_hash_table;
132
133 static void set_type_quals (tree, int);
134 static int type_hash_eq (const void *, const void *);
135 static hashval_t type_hash_hash (const void *);
136 static hashval_t int_cst_hash_hash (const void *);
137 static int int_cst_hash_eq (const void *, const void *);
138 static void print_type_hash_statistics (void);
139 static tree make_vector_type (tree, int, enum machine_mode);
140 static int type_hash_marked_p (const void *);
141 static unsigned int type_hash_list (tree, hashval_t);
142 static unsigned int attribute_hash_list (tree, hashval_t);
143
144 tree global_trees[TI_MAX];
145 tree integer_types[itk_none];
146 \f
147 /* Init tree.c. */
148
149 void
150 init_ttree (void)
151 {
152 /* Initialize the hash table of types. */
153 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
154 type_hash_eq, 0);
155 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
156 int_cst_hash_eq, NULL);
157 int_cst_node = make_node (INTEGER_CST);
158 }
159
160 \f
161 /* The name of the object as the assembler will see it (but before any
162 translations made by ASM_OUTPUT_LABELREF). Often this is the same
163 as DECL_NAME. It is an IDENTIFIER_NODE. */
164 tree
165 decl_assembler_name (tree decl)
166 {
167 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
168 lang_hooks.set_decl_assembler_name (decl);
169 return DECL_CHECK (decl)->decl.assembler_name;
170 }
171
172 /* Compute the number of bytes occupied by a tree with code CODE.
173 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
174 codes, which are of variable length. */
175 size_t
176 tree_code_size (enum tree_code code)
177 {
178 switch (TREE_CODE_CLASS (code))
179 {
180 case tcc_declaration: /* A decl node */
181 return sizeof (struct tree_decl);
182
183 case tcc_type: /* a type node */
184 return sizeof (struct tree_type);
185
186 case tcc_reference: /* a reference */
187 case tcc_expression: /* an expression */
188 case tcc_statement: /* an expression with side effects */
189 case tcc_comparison: /* a comparison expression */
190 case tcc_unary: /* a unary arithmetic expression */
191 case tcc_binary: /* a binary arithmetic expression */
192 return (sizeof (struct tree_exp)
193 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
194
195 case tcc_constant: /* a constant */
196 switch (code)
197 {
198 case INTEGER_CST: return sizeof (struct tree_int_cst);
199 case REAL_CST: return sizeof (struct tree_real_cst);
200 case COMPLEX_CST: return sizeof (struct tree_complex);
201 case VECTOR_CST: return sizeof (struct tree_vector);
202 case STRING_CST: gcc_unreachable ();
203 default:
204 return lang_hooks.tree_size (code);
205 }
206
207 case tcc_exceptional: /* something random, like an identifier. */
208 switch (code)
209 {
210 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
211 case TREE_LIST: return sizeof (struct tree_list);
212
213 case ERROR_MARK:
214 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
215
216 case TREE_VEC:
217 case PHI_NODE: gcc_unreachable ();
218
219 case SSA_NAME: return sizeof (struct tree_ssa_name);
220
221 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
222 case BLOCK: return sizeof (struct tree_block);
223 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
224
225 default:
226 return lang_hooks.tree_size (code);
227 }
228
229 default:
230 gcc_unreachable ();
231 }
232 }
233
234 /* Compute the number of bytes occupied by NODE. This routine only
235 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
236 size_t
237 tree_size (tree node)
238 {
239 enum tree_code code = TREE_CODE (node);
240 switch (code)
241 {
242 case PHI_NODE:
243 return (sizeof (struct tree_phi_node)
244 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
245
246 case TREE_VEC:
247 return (sizeof (struct tree_vec)
248 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
249
250 case STRING_CST:
251 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
252
253 default:
254 return tree_code_size (code);
255 }
256 }
257
258 /* Return a newly allocated node of code CODE. For decl and type
259 nodes, some other fields are initialized. The rest of the node is
260 initialized to zero. This function cannot be used for PHI_NODE or
261 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
262
263 Achoo! I got a code in the node. */
264
265 tree
266 make_node_stat (enum tree_code code MEM_STAT_DECL)
267 {
268 tree t;
269 enum tree_code_class type = TREE_CODE_CLASS (code);
270 size_t length = tree_code_size (code);
271 #ifdef GATHER_STATISTICS
272 tree_node_kind kind;
273
274 switch (type)
275 {
276 case tcc_declaration: /* A decl node */
277 kind = d_kind;
278 break;
279
280 case tcc_type: /* a type node */
281 kind = t_kind;
282 break;
283
284 case tcc_statement: /* an expression with side effects */
285 kind = s_kind;
286 break;
287
288 case tcc_reference: /* a reference */
289 kind = r_kind;
290 break;
291
292 case tcc_expression: /* an expression */
293 case tcc_comparison: /* a comparison expression */
294 case tcc_unary: /* a unary arithmetic expression */
295 case tcc_binary: /* a binary arithmetic expression */
296 kind = e_kind;
297 break;
298
299 case tcc_constant: /* a constant */
300 kind = c_kind;
301 break;
302
303 case tcc_exceptional: /* something random, like an identifier. */
304 switch (code)
305 {
306 case IDENTIFIER_NODE:
307 kind = id_kind;
308 break;
309
310 case TREE_VEC:;
311 kind = vec_kind;
312 break;
313
314 case TREE_BINFO:
315 kind = binfo_kind;
316 break;
317
318 case PHI_NODE:
319 kind = phi_kind;
320 break;
321
322 case SSA_NAME:
323 kind = ssa_name_kind;
324 break;
325
326 case BLOCK:
327 kind = b_kind;
328 break;
329
330 default:
331 kind = x_kind;
332 break;
333 }
334 break;
335
336 default:
337 gcc_unreachable ();
338 }
339
340 tree_node_counts[(int) kind]++;
341 tree_node_sizes[(int) kind] += length;
342 #endif
343
344 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
345
346 memset (t, 0, length);
347
348 TREE_SET_CODE (t, code);
349
350 switch (type)
351 {
352 case tcc_statement:
353 TREE_SIDE_EFFECTS (t) = 1;
354 break;
355
356 case tcc_declaration:
357 if (code != FUNCTION_DECL)
358 DECL_ALIGN (t) = 1;
359 DECL_USER_ALIGN (t) = 0;
360 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
361 DECL_SOURCE_LOCATION (t) = input_location;
362 DECL_UID (t) = next_decl_uid++;
363
364 /* We have not yet computed the alias set for this declaration. */
365 DECL_POINTER_ALIAS_SET (t) = -1;
366 break;
367
368 case tcc_type:
369 TYPE_UID (t) = next_type_uid++;
370 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
371 TYPE_USER_ALIGN (t) = 0;
372 TYPE_MAIN_VARIANT (t) = t;
373
374 /* Default to no attributes for type, but let target change that. */
375 TYPE_ATTRIBUTES (t) = NULL_TREE;
376 targetm.set_default_type_attributes (t);
377
378 /* We have not yet computed the alias set for this type. */
379 TYPE_ALIAS_SET (t) = -1;
380 break;
381
382 case tcc_constant:
383 TREE_CONSTANT (t) = 1;
384 TREE_INVARIANT (t) = 1;
385 break;
386
387 case tcc_expression:
388 switch (code)
389 {
390 case INIT_EXPR:
391 case MODIFY_EXPR:
392 case VA_ARG_EXPR:
393 case PREDECREMENT_EXPR:
394 case PREINCREMENT_EXPR:
395 case POSTDECREMENT_EXPR:
396 case POSTINCREMENT_EXPR:
397 /* All of these have side-effects, no matter what their
398 operands are. */
399 TREE_SIDE_EFFECTS (t) = 1;
400 break;
401
402 default:
403 break;
404 }
405 break;
406
407 default:
408 /* Other classes need no special treatment. */
409 break;
410 }
411
412 return t;
413 }
414 \f
415 /* Return a new node with the same contents as NODE except that its
416 TREE_CHAIN is zero and it has a fresh uid. */
417
418 tree
419 copy_node_stat (tree node MEM_STAT_DECL)
420 {
421 tree t;
422 enum tree_code code = TREE_CODE (node);
423 size_t length;
424
425 gcc_assert (code != STATEMENT_LIST);
426
427 length = tree_size (node);
428 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
429 memcpy (t, node, length);
430
431 TREE_CHAIN (t) = 0;
432 TREE_ASM_WRITTEN (t) = 0;
433 TREE_VISITED (t) = 0;
434 t->common.ann = 0;
435
436 if (TREE_CODE_CLASS (code) == tcc_declaration)
437 DECL_UID (t) = next_decl_uid++;
438 else if (TREE_CODE_CLASS (code) == tcc_type)
439 {
440 TYPE_UID (t) = next_type_uid++;
441 /* The following is so that the debug code for
442 the copy is different from the original type.
443 The two statements usually duplicate each other
444 (because they clear fields of the same union),
445 but the optimizer should catch that. */
446 TYPE_SYMTAB_POINTER (t) = 0;
447 TYPE_SYMTAB_ADDRESS (t) = 0;
448
449 /* Do not copy the values cache. */
450 if (TYPE_CACHED_VALUES_P(t))
451 {
452 TYPE_CACHED_VALUES_P (t) = 0;
453 TYPE_CACHED_VALUES (t) = NULL_TREE;
454 }
455 }
456
457 return t;
458 }
459
460 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
461 For example, this can copy a list made of TREE_LIST nodes. */
462
463 tree
464 copy_list (tree list)
465 {
466 tree head;
467 tree prev, next;
468
469 if (list == 0)
470 return 0;
471
472 head = prev = copy_node (list);
473 next = TREE_CHAIN (list);
474 while (next)
475 {
476 TREE_CHAIN (prev) = copy_node (next);
477 prev = TREE_CHAIN (prev);
478 next = TREE_CHAIN (next);
479 }
480 return head;
481 }
482
483 \f
484 /* Create an INT_CST node with a LOW value sign extended. */
485
486 tree
487 build_int_cst (tree type, HOST_WIDE_INT low)
488 {
489 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
490 }
491
492 /* Create an INT_CST node with a LOW value zero extended. */
493
494 tree
495 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
496 {
497 return build_int_cst_wide (type, low, 0);
498 }
499
500 /* Create an INT_CST node with a LOW value zero or sign extended depending
501 on the type. */
502
503 tree
504 build_int_cst_type (tree type, HOST_WIDE_INT low)
505 {
506 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
507 unsigned bits;
508 bool signed_p;
509 bool negative;
510 tree ret;
511
512 if (!type)
513 type = integer_type_node;
514
515 bits = TYPE_PRECISION (type);
516 signed_p = !TYPE_UNSIGNED (type);
517 negative = ((val >> (bits - 1)) & 1) != 0;
518
519 if (signed_p && negative)
520 {
521 if (bits < HOST_BITS_PER_WIDE_INT)
522 val = val | ((~(unsigned HOST_WIDE_INT) 0) << bits);
523 ret = build_int_cst_wide (type, val, ~(unsigned HOST_WIDE_INT) 0);
524 }
525 else
526 {
527 if (bits < HOST_BITS_PER_WIDE_INT)
528 val = val & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
529 ret = build_int_cst_wide (type, val, 0);
530 }
531
532 return ret;
533 }
534
535 /* These are the hash table functions for the hash table of INTEGER_CST
536 nodes of a sizetype. */
537
538 /* Return the hash code code X, an INTEGER_CST. */
539
540 static hashval_t
541 int_cst_hash_hash (const void *x)
542 {
543 tree t = (tree) x;
544
545 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
546 ^ htab_hash_pointer (TREE_TYPE (t)));
547 }
548
549 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
550 is the same as that given by *Y, which is the same. */
551
552 static int
553 int_cst_hash_eq (const void *x, const void *y)
554 {
555 tree xt = (tree) x;
556 tree yt = (tree) y;
557
558 return (TREE_TYPE (xt) == TREE_TYPE (yt)
559 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
560 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
561 }
562
563 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
564 integer_type_node is used. The returned node is always shared.
565 For small integers we use a per-type vector cache, for larger ones
566 we use a single hash table. */
567
568 tree
569 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
570 {
571 tree t;
572 int ix = -1;
573 int limit = 0;
574
575 if (!type)
576 type = integer_type_node;
577
578 switch (TREE_CODE (type))
579 {
580 case POINTER_TYPE:
581 case REFERENCE_TYPE:
582 /* Cache NULL pointer. */
583 if (!hi && !low)
584 {
585 limit = 1;
586 ix = 0;
587 }
588 break;
589
590 case BOOLEAN_TYPE:
591 /* Cache false or true. */
592 limit = 2;
593 if (!hi && low < 2)
594 ix = low;
595 break;
596
597 case INTEGER_TYPE:
598 case CHAR_TYPE:
599 case OFFSET_TYPE:
600 if (TYPE_UNSIGNED (type))
601 {
602 /* Cache 0..N */
603 limit = INTEGER_SHARE_LIMIT;
604 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
605 ix = low;
606 }
607 else
608 {
609 /* Cache -1..N */
610 limit = INTEGER_SHARE_LIMIT + 1;
611 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
612 ix = low + 1;
613 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
614 ix = 0;
615 }
616 break;
617 default:
618 break;
619 }
620
621 if (ix >= 0)
622 {
623 /* Look for it in the type's vector of small shared ints. */
624 if (!TYPE_CACHED_VALUES_P (type))
625 {
626 TYPE_CACHED_VALUES_P (type) = 1;
627 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
628 }
629
630 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
631 if (t)
632 {
633 /* Make sure no one is clobbering the shared constant. */
634 gcc_assert (TREE_TYPE (t) == type);
635 gcc_assert (TREE_INT_CST_LOW (t) == low);
636 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
637 }
638 else
639 {
640 /* Create a new shared int. */
641 t = make_node (INTEGER_CST);
642
643 TREE_INT_CST_LOW (t) = low;
644 TREE_INT_CST_HIGH (t) = hi;
645 TREE_TYPE (t) = type;
646
647 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
648 }
649 }
650 else
651 {
652 /* Use the cache of larger shared ints. */
653 void **slot;
654
655 TREE_INT_CST_LOW (int_cst_node) = low;
656 TREE_INT_CST_HIGH (int_cst_node) = hi;
657 TREE_TYPE (int_cst_node) = type;
658
659 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
660 t = *slot;
661 if (!t)
662 {
663 /* Insert this one into the hash table. */
664 t = int_cst_node;
665 *slot = t;
666 /* Make a new node for next time round. */
667 int_cst_node = make_node (INTEGER_CST);
668 }
669 }
670
671 return t;
672 }
673
674 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
675 and the rest are zeros. */
676
677 tree
678 build_low_bits_mask (tree type, unsigned bits)
679 {
680 unsigned HOST_WIDE_INT low;
681 HOST_WIDE_INT high;
682 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
683
684 gcc_assert (bits <= TYPE_PRECISION (type));
685
686 if (bits == TYPE_PRECISION (type)
687 && !TYPE_UNSIGNED (type))
688 {
689 /* Sign extended all-ones mask. */
690 low = all_ones;
691 high = -1;
692 }
693 else if (bits <= HOST_BITS_PER_WIDE_INT)
694 {
695 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
696 high = 0;
697 }
698 else
699 {
700 bits -= HOST_BITS_PER_WIDE_INT;
701 low = all_ones;
702 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
703 }
704
705 return build_int_cst_wide (type, low, high);
706 }
707
708 /* Checks that X is integer constant that can be expressed in (unsigned)
709 HOST_WIDE_INT without loss of precision. */
710
711 bool
712 cst_and_fits_in_hwi (tree x)
713 {
714 if (TREE_CODE (x) != INTEGER_CST)
715 return false;
716
717 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
718 return false;
719
720 return (TREE_INT_CST_HIGH (x) == 0
721 || TREE_INT_CST_HIGH (x) == -1);
722 }
723
724 /* Return a new VECTOR_CST node whose type is TYPE and whose values
725 are in a list pointed by VALS. */
726
727 tree
728 build_vector (tree type, tree vals)
729 {
730 tree v = make_node (VECTOR_CST);
731 int over1 = 0, over2 = 0;
732 tree link;
733
734 TREE_VECTOR_CST_ELTS (v) = vals;
735 TREE_TYPE (v) = type;
736
737 /* Iterate through elements and check for overflow. */
738 for (link = vals; link; link = TREE_CHAIN (link))
739 {
740 tree value = TREE_VALUE (link);
741
742 over1 |= TREE_OVERFLOW (value);
743 over2 |= TREE_CONSTANT_OVERFLOW (value);
744 }
745
746 TREE_OVERFLOW (v) = over1;
747 TREE_CONSTANT_OVERFLOW (v) = over2;
748
749 return v;
750 }
751
752 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
753 are in a list pointed to by VALS. */
754 tree
755 build_constructor (tree type, tree vals)
756 {
757 tree c = make_node (CONSTRUCTOR);
758 TREE_TYPE (c) = type;
759 CONSTRUCTOR_ELTS (c) = vals;
760
761 /* ??? May not be necessary. Mirrors what build does. */
762 if (vals)
763 {
764 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
765 TREE_READONLY (c) = TREE_READONLY (vals);
766 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
767 TREE_INVARIANT (c) = TREE_INVARIANT (vals);
768 }
769
770 return c;
771 }
772
773 /* Return a new REAL_CST node whose type is TYPE and value is D. */
774
775 tree
776 build_real (tree type, REAL_VALUE_TYPE d)
777 {
778 tree v;
779 REAL_VALUE_TYPE *dp;
780 int overflow = 0;
781
782 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
783 Consider doing it via real_convert now. */
784
785 v = make_node (REAL_CST);
786 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
787 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
788
789 TREE_TYPE (v) = type;
790 TREE_REAL_CST_PTR (v) = dp;
791 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
792 return v;
793 }
794
795 /* Return a new REAL_CST node whose type is TYPE
796 and whose value is the integer value of the INTEGER_CST node I. */
797
798 REAL_VALUE_TYPE
799 real_value_from_int_cst (tree type, tree i)
800 {
801 REAL_VALUE_TYPE d;
802
803 /* Clear all bits of the real value type so that we can later do
804 bitwise comparisons to see if two values are the same. */
805 memset (&d, 0, sizeof d);
806
807 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
808 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
809 TYPE_UNSIGNED (TREE_TYPE (i)));
810 return d;
811 }
812
813 /* Given a tree representing an integer constant I, return a tree
814 representing the same value as a floating-point constant of type TYPE. */
815
816 tree
817 build_real_from_int_cst (tree type, tree i)
818 {
819 tree v;
820 int overflow = TREE_OVERFLOW (i);
821
822 v = build_real (type, real_value_from_int_cst (type, i));
823
824 TREE_OVERFLOW (v) |= overflow;
825 TREE_CONSTANT_OVERFLOW (v) |= overflow;
826 return v;
827 }
828
829 /* Return a newly constructed STRING_CST node whose value is
830 the LEN characters at STR.
831 The TREE_TYPE is not initialized. */
832
833 tree
834 build_string (int len, const char *str)
835 {
836 tree s;
837 size_t length;
838
839 length = len + sizeof (struct tree_string);
840
841 #ifdef GATHER_STATISTICS
842 tree_node_counts[(int) c_kind]++;
843 tree_node_sizes[(int) c_kind] += length;
844 #endif
845
846 s = ggc_alloc_tree (length);
847
848 memset (s, 0, sizeof (struct tree_common));
849 TREE_SET_CODE (s, STRING_CST);
850 TREE_STRING_LENGTH (s) = len;
851 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
852 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
853
854 return s;
855 }
856
857 /* Return a newly constructed COMPLEX_CST node whose value is
858 specified by the real and imaginary parts REAL and IMAG.
859 Both REAL and IMAG should be constant nodes. TYPE, if specified,
860 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
861
862 tree
863 build_complex (tree type, tree real, tree imag)
864 {
865 tree t = make_node (COMPLEX_CST);
866
867 TREE_REALPART (t) = real;
868 TREE_IMAGPART (t) = imag;
869 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
870 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
871 TREE_CONSTANT_OVERFLOW (t)
872 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
873 return t;
874 }
875
876 /* Build a BINFO with LEN language slots. */
877
878 tree
879 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
880 {
881 tree t;
882 size_t length = (offsetof (struct tree_binfo, base_binfos)
883 + VEC_embedded_size (tree, base_binfos));
884
885 #ifdef GATHER_STATISTICS
886 tree_node_counts[(int) binfo_kind]++;
887 tree_node_sizes[(int) binfo_kind] += length;
888 #endif
889
890 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
891
892 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
893
894 TREE_SET_CODE (t, TREE_BINFO);
895
896 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
897
898 return t;
899 }
900
901
902 /* Build a newly constructed TREE_VEC node of length LEN. */
903
904 tree
905 make_tree_vec_stat (int len MEM_STAT_DECL)
906 {
907 tree t;
908 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
909
910 #ifdef GATHER_STATISTICS
911 tree_node_counts[(int) vec_kind]++;
912 tree_node_sizes[(int) vec_kind] += length;
913 #endif
914
915 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
916
917 memset (t, 0, length);
918
919 TREE_SET_CODE (t, TREE_VEC);
920 TREE_VEC_LENGTH (t) = len;
921
922 return t;
923 }
924 \f
925 /* Return 1 if EXPR is the integer constant zero or a complex constant
926 of zero. */
927
928 int
929 integer_zerop (tree expr)
930 {
931 STRIP_NOPS (expr);
932
933 return ((TREE_CODE (expr) == INTEGER_CST
934 && ! TREE_CONSTANT_OVERFLOW (expr)
935 && TREE_INT_CST_LOW (expr) == 0
936 && TREE_INT_CST_HIGH (expr) == 0)
937 || (TREE_CODE (expr) == COMPLEX_CST
938 && integer_zerop (TREE_REALPART (expr))
939 && integer_zerop (TREE_IMAGPART (expr))));
940 }
941
942 /* Return 1 if EXPR is the integer constant one or the corresponding
943 complex constant. */
944
945 int
946 integer_onep (tree expr)
947 {
948 STRIP_NOPS (expr);
949
950 return ((TREE_CODE (expr) == INTEGER_CST
951 && ! TREE_CONSTANT_OVERFLOW (expr)
952 && TREE_INT_CST_LOW (expr) == 1
953 && TREE_INT_CST_HIGH (expr) == 0)
954 || (TREE_CODE (expr) == COMPLEX_CST
955 && integer_onep (TREE_REALPART (expr))
956 && integer_zerop (TREE_IMAGPART (expr))));
957 }
958
959 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
960 it contains. Likewise for the corresponding complex constant. */
961
962 int
963 integer_all_onesp (tree expr)
964 {
965 int prec;
966 int uns;
967
968 STRIP_NOPS (expr);
969
970 if (TREE_CODE (expr) == COMPLEX_CST
971 && integer_all_onesp (TREE_REALPART (expr))
972 && integer_zerop (TREE_IMAGPART (expr)))
973 return 1;
974
975 else if (TREE_CODE (expr) != INTEGER_CST
976 || TREE_CONSTANT_OVERFLOW (expr))
977 return 0;
978
979 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
980 if (!uns)
981 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
982 && TREE_INT_CST_HIGH (expr) == -1);
983
984 /* Note that using TYPE_PRECISION here is wrong. We care about the
985 actual bits, not the (arbitrary) range of the type. */
986 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
987 if (prec >= HOST_BITS_PER_WIDE_INT)
988 {
989 HOST_WIDE_INT high_value;
990 int shift_amount;
991
992 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
993
994 /* Can not handle precisions greater than twice the host int size. */
995 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
996 if (shift_amount == HOST_BITS_PER_WIDE_INT)
997 /* Shifting by the host word size is undefined according to the ANSI
998 standard, so we must handle this as a special case. */
999 high_value = -1;
1000 else
1001 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1002
1003 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1004 && TREE_INT_CST_HIGH (expr) == high_value);
1005 }
1006 else
1007 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1008 }
1009
1010 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1011 one bit on). */
1012
1013 int
1014 integer_pow2p (tree expr)
1015 {
1016 int prec;
1017 HOST_WIDE_INT high, low;
1018
1019 STRIP_NOPS (expr);
1020
1021 if (TREE_CODE (expr) == COMPLEX_CST
1022 && integer_pow2p (TREE_REALPART (expr))
1023 && integer_zerop (TREE_IMAGPART (expr)))
1024 return 1;
1025
1026 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1027 return 0;
1028
1029 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1030 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1031 high = TREE_INT_CST_HIGH (expr);
1032 low = TREE_INT_CST_LOW (expr);
1033
1034 /* First clear all bits that are beyond the type's precision in case
1035 we've been sign extended. */
1036
1037 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1038 ;
1039 else if (prec > HOST_BITS_PER_WIDE_INT)
1040 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1041 else
1042 {
1043 high = 0;
1044 if (prec < HOST_BITS_PER_WIDE_INT)
1045 low &= ~((HOST_WIDE_INT) (-1) << prec);
1046 }
1047
1048 if (high == 0 && low == 0)
1049 return 0;
1050
1051 return ((high == 0 && (low & (low - 1)) == 0)
1052 || (low == 0 && (high & (high - 1)) == 0));
1053 }
1054
1055 /* Return 1 if EXPR is an integer constant other than zero or a
1056 complex constant other than zero. */
1057
1058 int
1059 integer_nonzerop (tree expr)
1060 {
1061 STRIP_NOPS (expr);
1062
1063 return ((TREE_CODE (expr) == INTEGER_CST
1064 && ! TREE_CONSTANT_OVERFLOW (expr)
1065 && (TREE_INT_CST_LOW (expr) != 0
1066 || TREE_INT_CST_HIGH (expr) != 0))
1067 || (TREE_CODE (expr) == COMPLEX_CST
1068 && (integer_nonzerop (TREE_REALPART (expr))
1069 || integer_nonzerop (TREE_IMAGPART (expr)))));
1070 }
1071
1072 /* Return the power of two represented by a tree node known to be a
1073 power of two. */
1074
1075 int
1076 tree_log2 (tree expr)
1077 {
1078 int prec;
1079 HOST_WIDE_INT high, low;
1080
1081 STRIP_NOPS (expr);
1082
1083 if (TREE_CODE (expr) == COMPLEX_CST)
1084 return tree_log2 (TREE_REALPART (expr));
1085
1086 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1087 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1088
1089 high = TREE_INT_CST_HIGH (expr);
1090 low = TREE_INT_CST_LOW (expr);
1091
1092 /* First clear all bits that are beyond the type's precision in case
1093 we've been sign extended. */
1094
1095 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1096 ;
1097 else if (prec > HOST_BITS_PER_WIDE_INT)
1098 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1099 else
1100 {
1101 high = 0;
1102 if (prec < HOST_BITS_PER_WIDE_INT)
1103 low &= ~((HOST_WIDE_INT) (-1) << prec);
1104 }
1105
1106 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1107 : exact_log2 (low));
1108 }
1109
1110 /* Similar, but return the largest integer Y such that 2 ** Y is less
1111 than or equal to EXPR. */
1112
1113 int
1114 tree_floor_log2 (tree expr)
1115 {
1116 int prec;
1117 HOST_WIDE_INT high, low;
1118
1119 STRIP_NOPS (expr);
1120
1121 if (TREE_CODE (expr) == COMPLEX_CST)
1122 return tree_log2 (TREE_REALPART (expr));
1123
1124 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1125 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1126
1127 high = TREE_INT_CST_HIGH (expr);
1128 low = TREE_INT_CST_LOW (expr);
1129
1130 /* First clear all bits that are beyond the type's precision in case
1131 we've been sign extended. Ignore if type's precision hasn't been set
1132 since what we are doing is setting it. */
1133
1134 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1135 ;
1136 else if (prec > HOST_BITS_PER_WIDE_INT)
1137 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1138 else
1139 {
1140 high = 0;
1141 if (prec < HOST_BITS_PER_WIDE_INT)
1142 low &= ~((HOST_WIDE_INT) (-1) << prec);
1143 }
1144
1145 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1146 : floor_log2 (low));
1147 }
1148
1149 /* Return 1 if EXPR is the real constant zero. */
1150
1151 int
1152 real_zerop (tree expr)
1153 {
1154 STRIP_NOPS (expr);
1155
1156 return ((TREE_CODE (expr) == REAL_CST
1157 && ! TREE_CONSTANT_OVERFLOW (expr)
1158 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1159 || (TREE_CODE (expr) == COMPLEX_CST
1160 && real_zerop (TREE_REALPART (expr))
1161 && real_zerop (TREE_IMAGPART (expr))));
1162 }
1163
1164 /* Return 1 if EXPR is the real constant one in real or complex form. */
1165
1166 int
1167 real_onep (tree expr)
1168 {
1169 STRIP_NOPS (expr);
1170
1171 return ((TREE_CODE (expr) == REAL_CST
1172 && ! TREE_CONSTANT_OVERFLOW (expr)
1173 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1174 || (TREE_CODE (expr) == COMPLEX_CST
1175 && real_onep (TREE_REALPART (expr))
1176 && real_zerop (TREE_IMAGPART (expr))));
1177 }
1178
1179 /* Return 1 if EXPR is the real constant two. */
1180
1181 int
1182 real_twop (tree expr)
1183 {
1184 STRIP_NOPS (expr);
1185
1186 return ((TREE_CODE (expr) == REAL_CST
1187 && ! TREE_CONSTANT_OVERFLOW (expr)
1188 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1189 || (TREE_CODE (expr) == COMPLEX_CST
1190 && real_twop (TREE_REALPART (expr))
1191 && real_zerop (TREE_IMAGPART (expr))));
1192 }
1193
1194 /* Return 1 if EXPR is the real constant minus one. */
1195
1196 int
1197 real_minus_onep (tree expr)
1198 {
1199 STRIP_NOPS (expr);
1200
1201 return ((TREE_CODE (expr) == REAL_CST
1202 && ! TREE_CONSTANT_OVERFLOW (expr)
1203 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1204 || (TREE_CODE (expr) == COMPLEX_CST
1205 && real_minus_onep (TREE_REALPART (expr))
1206 && real_zerop (TREE_IMAGPART (expr))));
1207 }
1208
1209 /* Nonzero if EXP is a constant or a cast of a constant. */
1210
1211 int
1212 really_constant_p (tree exp)
1213 {
1214 /* This is not quite the same as STRIP_NOPS. It does more. */
1215 while (TREE_CODE (exp) == NOP_EXPR
1216 || TREE_CODE (exp) == CONVERT_EXPR
1217 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1218 exp = TREE_OPERAND (exp, 0);
1219 return TREE_CONSTANT (exp);
1220 }
1221 \f
1222 /* Return first list element whose TREE_VALUE is ELEM.
1223 Return 0 if ELEM is not in LIST. */
1224
1225 tree
1226 value_member (tree elem, tree list)
1227 {
1228 while (list)
1229 {
1230 if (elem == TREE_VALUE (list))
1231 return list;
1232 list = TREE_CHAIN (list);
1233 }
1234 return NULL_TREE;
1235 }
1236
1237 /* Return first list element whose TREE_PURPOSE is ELEM.
1238 Return 0 if ELEM is not in LIST. */
1239
1240 tree
1241 purpose_member (tree elem, tree list)
1242 {
1243 while (list)
1244 {
1245 if (elem == TREE_PURPOSE (list))
1246 return list;
1247 list = TREE_CHAIN (list);
1248 }
1249 return NULL_TREE;
1250 }
1251
1252 /* Return nonzero if ELEM is part of the chain CHAIN. */
1253
1254 int
1255 chain_member (tree elem, tree chain)
1256 {
1257 while (chain)
1258 {
1259 if (elem == chain)
1260 return 1;
1261 chain = TREE_CHAIN (chain);
1262 }
1263
1264 return 0;
1265 }
1266
1267 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1268 We expect a null pointer to mark the end of the chain.
1269 This is the Lisp primitive `length'. */
1270
1271 int
1272 list_length (tree t)
1273 {
1274 tree p = t;
1275 #ifdef ENABLE_TREE_CHECKING
1276 tree q = t;
1277 #endif
1278 int len = 0;
1279
1280 while (p)
1281 {
1282 p = TREE_CHAIN (p);
1283 #ifdef ENABLE_TREE_CHECKING
1284 if (len % 2)
1285 q = TREE_CHAIN (q);
1286 gcc_assert (p != q);
1287 #endif
1288 len++;
1289 }
1290
1291 return len;
1292 }
1293
1294 /* Returns the number of FIELD_DECLs in TYPE. */
1295
1296 int
1297 fields_length (tree type)
1298 {
1299 tree t = TYPE_FIELDS (type);
1300 int count = 0;
1301
1302 for (; t; t = TREE_CHAIN (t))
1303 if (TREE_CODE (t) == FIELD_DECL)
1304 ++count;
1305
1306 return count;
1307 }
1308
1309 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1310 by modifying the last node in chain 1 to point to chain 2.
1311 This is the Lisp primitive `nconc'. */
1312
1313 tree
1314 chainon (tree op1, tree op2)
1315 {
1316 tree t1;
1317
1318 if (!op1)
1319 return op2;
1320 if (!op2)
1321 return op1;
1322
1323 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1324 continue;
1325 TREE_CHAIN (t1) = op2;
1326
1327 #ifdef ENABLE_TREE_CHECKING
1328 {
1329 tree t2;
1330 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1331 gcc_assert (t2 != t1);
1332 }
1333 #endif
1334
1335 return op1;
1336 }
1337
1338 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1339
1340 tree
1341 tree_last (tree chain)
1342 {
1343 tree next;
1344 if (chain)
1345 while ((next = TREE_CHAIN (chain)))
1346 chain = next;
1347 return chain;
1348 }
1349
1350 /* Reverse the order of elements in the chain T,
1351 and return the new head of the chain (old last element). */
1352
1353 tree
1354 nreverse (tree t)
1355 {
1356 tree prev = 0, decl, next;
1357 for (decl = t; decl; decl = next)
1358 {
1359 next = TREE_CHAIN (decl);
1360 TREE_CHAIN (decl) = prev;
1361 prev = decl;
1362 }
1363 return prev;
1364 }
1365 \f
1366 /* Return a newly created TREE_LIST node whose
1367 purpose and value fields are PARM and VALUE. */
1368
1369 tree
1370 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1371 {
1372 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1373 TREE_PURPOSE (t) = parm;
1374 TREE_VALUE (t) = value;
1375 return t;
1376 }
1377
1378 /* Return a newly created TREE_LIST node whose
1379 purpose and value fields are PURPOSE and VALUE
1380 and whose TREE_CHAIN is CHAIN. */
1381
1382 tree
1383 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1384 {
1385 tree node;
1386
1387 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1388 tree_zone PASS_MEM_STAT);
1389
1390 memset (node, 0, sizeof (struct tree_common));
1391
1392 #ifdef GATHER_STATISTICS
1393 tree_node_counts[(int) x_kind]++;
1394 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1395 #endif
1396
1397 TREE_SET_CODE (node, TREE_LIST);
1398 TREE_CHAIN (node) = chain;
1399 TREE_PURPOSE (node) = purpose;
1400 TREE_VALUE (node) = value;
1401 return node;
1402 }
1403
1404 \f
1405 /* Return the size nominally occupied by an object of type TYPE
1406 when it resides in memory. The value is measured in units of bytes,
1407 and its data type is that normally used for type sizes
1408 (which is the first type created by make_signed_type or
1409 make_unsigned_type). */
1410
1411 tree
1412 size_in_bytes (tree type)
1413 {
1414 tree t;
1415
1416 if (type == error_mark_node)
1417 return integer_zero_node;
1418
1419 type = TYPE_MAIN_VARIANT (type);
1420 t = TYPE_SIZE_UNIT (type);
1421
1422 if (t == 0)
1423 {
1424 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1425 return size_zero_node;
1426 }
1427
1428 if (TREE_CODE (t) == INTEGER_CST)
1429 t = force_fit_type (t, 0, false, false);
1430
1431 return t;
1432 }
1433
1434 /* Return the size of TYPE (in bytes) as a wide integer
1435 or return -1 if the size can vary or is larger than an integer. */
1436
1437 HOST_WIDE_INT
1438 int_size_in_bytes (tree type)
1439 {
1440 tree t;
1441
1442 if (type == error_mark_node)
1443 return 0;
1444
1445 type = TYPE_MAIN_VARIANT (type);
1446 t = TYPE_SIZE_UNIT (type);
1447 if (t == 0
1448 || TREE_CODE (t) != INTEGER_CST
1449 || TREE_OVERFLOW (t)
1450 || TREE_INT_CST_HIGH (t) != 0
1451 /* If the result would appear negative, it's too big to represent. */
1452 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1453 return -1;
1454
1455 return TREE_INT_CST_LOW (t);
1456 }
1457 \f
1458 /* Return the bit position of FIELD, in bits from the start of the record.
1459 This is a tree of type bitsizetype. */
1460
1461 tree
1462 bit_position (tree field)
1463 {
1464 return bit_from_pos (DECL_FIELD_OFFSET (field),
1465 DECL_FIELD_BIT_OFFSET (field));
1466 }
1467
1468 /* Likewise, but return as an integer. Abort if it cannot be represented
1469 in that way (since it could be a signed value, we don't have the option
1470 of returning -1 like int_size_in_byte can. */
1471
1472 HOST_WIDE_INT
1473 int_bit_position (tree field)
1474 {
1475 return tree_low_cst (bit_position (field), 0);
1476 }
1477 \f
1478 /* Return the byte position of FIELD, in bytes from the start of the record.
1479 This is a tree of type sizetype. */
1480
1481 tree
1482 byte_position (tree field)
1483 {
1484 return byte_from_pos (DECL_FIELD_OFFSET (field),
1485 DECL_FIELD_BIT_OFFSET (field));
1486 }
1487
1488 /* Likewise, but return as an integer. Abort if it cannot be represented
1489 in that way (since it could be a signed value, we don't have the option
1490 of returning -1 like int_size_in_byte can. */
1491
1492 HOST_WIDE_INT
1493 int_byte_position (tree field)
1494 {
1495 return tree_low_cst (byte_position (field), 0);
1496 }
1497 \f
1498 /* Return the strictest alignment, in bits, that T is known to have. */
1499
1500 unsigned int
1501 expr_align (tree t)
1502 {
1503 unsigned int align0, align1;
1504
1505 switch (TREE_CODE (t))
1506 {
1507 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1508 /* If we have conversions, we know that the alignment of the
1509 object must meet each of the alignments of the types. */
1510 align0 = expr_align (TREE_OPERAND (t, 0));
1511 align1 = TYPE_ALIGN (TREE_TYPE (t));
1512 return MAX (align0, align1);
1513
1514 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1515 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1516 case CLEANUP_POINT_EXPR:
1517 /* These don't change the alignment of an object. */
1518 return expr_align (TREE_OPERAND (t, 0));
1519
1520 case COND_EXPR:
1521 /* The best we can do is say that the alignment is the least aligned
1522 of the two arms. */
1523 align0 = expr_align (TREE_OPERAND (t, 1));
1524 align1 = expr_align (TREE_OPERAND (t, 2));
1525 return MIN (align0, align1);
1526
1527 case LABEL_DECL: case CONST_DECL:
1528 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1529 if (DECL_ALIGN (t) != 0)
1530 return DECL_ALIGN (t);
1531 break;
1532
1533 case FUNCTION_DECL:
1534 return FUNCTION_BOUNDARY;
1535
1536 default:
1537 break;
1538 }
1539
1540 /* Otherwise take the alignment from that of the type. */
1541 return TYPE_ALIGN (TREE_TYPE (t));
1542 }
1543 \f
1544 /* Return, as a tree node, the number of elements for TYPE (which is an
1545 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1546
1547 tree
1548 array_type_nelts (tree type)
1549 {
1550 tree index_type, min, max;
1551
1552 /* If they did it with unspecified bounds, then we should have already
1553 given an error about it before we got here. */
1554 if (! TYPE_DOMAIN (type))
1555 return error_mark_node;
1556
1557 index_type = TYPE_DOMAIN (type);
1558 min = TYPE_MIN_VALUE (index_type);
1559 max = TYPE_MAX_VALUE (index_type);
1560
1561 return (integer_zerop (min)
1562 ? max
1563 : fold (build2 (MINUS_EXPR, TREE_TYPE (max), max, min)));
1564 }
1565 \f
1566 /* If arg is static -- a reference to an object in static storage -- then
1567 return the object. This is not the same as the C meaning of `static'.
1568 If arg isn't static, return NULL. */
1569
1570 tree
1571 staticp (tree arg)
1572 {
1573 switch (TREE_CODE (arg))
1574 {
1575 case FUNCTION_DECL:
1576 /* Nested functions are static, even though taking their address will
1577 involve a trampoline as we unnest the nested function and create
1578 the trampoline on the tree level. */
1579 return arg;
1580
1581 case VAR_DECL:
1582 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1583 && ! DECL_THREAD_LOCAL (arg)
1584 && ! DECL_NON_ADDR_CONST_P (arg)
1585 ? arg : NULL);
1586
1587 case CONST_DECL:
1588 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1589 ? arg : NULL);
1590
1591 case CONSTRUCTOR:
1592 return TREE_STATIC (arg) ? arg : NULL;
1593
1594 case LABEL_DECL:
1595 case STRING_CST:
1596 return arg;
1597
1598 case COMPONENT_REF:
1599 /* If the thing being referenced is not a field, then it is
1600 something language specific. */
1601 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1602 return (*lang_hooks.staticp) (arg);
1603
1604 /* If we are referencing a bitfield, we can't evaluate an
1605 ADDR_EXPR at compile time and so it isn't a constant. */
1606 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1607 return NULL;
1608
1609 return staticp (TREE_OPERAND (arg, 0));
1610
1611 case BIT_FIELD_REF:
1612 return NULL;
1613
1614 case MISALIGNED_INDIRECT_REF:
1615 case ALIGN_INDIRECT_REF:
1616 case INDIRECT_REF:
1617 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1618
1619 case ARRAY_REF:
1620 case ARRAY_RANGE_REF:
1621 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1622 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1623 return staticp (TREE_OPERAND (arg, 0));
1624 else
1625 return false;
1626
1627 default:
1628 if ((unsigned int) TREE_CODE (arg)
1629 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1630 return lang_hooks.staticp (arg);
1631 else
1632 return NULL;
1633 }
1634 }
1635 \f
1636 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1637 Do this to any expression which may be used in more than one place,
1638 but must be evaluated only once.
1639
1640 Normally, expand_expr would reevaluate the expression each time.
1641 Calling save_expr produces something that is evaluated and recorded
1642 the first time expand_expr is called on it. Subsequent calls to
1643 expand_expr just reuse the recorded value.
1644
1645 The call to expand_expr that generates code that actually computes
1646 the value is the first call *at compile time*. Subsequent calls
1647 *at compile time* generate code to use the saved value.
1648 This produces correct result provided that *at run time* control
1649 always flows through the insns made by the first expand_expr
1650 before reaching the other places where the save_expr was evaluated.
1651 You, the caller of save_expr, must make sure this is so.
1652
1653 Constants, and certain read-only nodes, are returned with no
1654 SAVE_EXPR because that is safe. Expressions containing placeholders
1655 are not touched; see tree.def for an explanation of what these
1656 are used for. */
1657
1658 tree
1659 save_expr (tree expr)
1660 {
1661 tree t = fold (expr);
1662 tree inner;
1663
1664 /* If the tree evaluates to a constant, then we don't want to hide that
1665 fact (i.e. this allows further folding, and direct checks for constants).
1666 However, a read-only object that has side effects cannot be bypassed.
1667 Since it is no problem to reevaluate literals, we just return the
1668 literal node. */
1669 inner = skip_simple_arithmetic (t);
1670
1671 if (TREE_INVARIANT (inner)
1672 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1673 || TREE_CODE (inner) == SAVE_EXPR
1674 || TREE_CODE (inner) == ERROR_MARK)
1675 return t;
1676
1677 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1678 it means that the size or offset of some field of an object depends on
1679 the value within another field.
1680
1681 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1682 and some variable since it would then need to be both evaluated once and
1683 evaluated more than once. Front-ends must assure this case cannot
1684 happen by surrounding any such subexpressions in their own SAVE_EXPR
1685 and forcing evaluation at the proper time. */
1686 if (contains_placeholder_p (inner))
1687 return t;
1688
1689 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1690
1691 /* This expression might be placed ahead of a jump to ensure that the
1692 value was computed on both sides of the jump. So make sure it isn't
1693 eliminated as dead. */
1694 TREE_SIDE_EFFECTS (t) = 1;
1695 TREE_INVARIANT (t) = 1;
1696 return t;
1697 }
1698
1699 /* Look inside EXPR and into any simple arithmetic operations. Return
1700 the innermost non-arithmetic node. */
1701
1702 tree
1703 skip_simple_arithmetic (tree expr)
1704 {
1705 tree inner;
1706
1707 /* We don't care about whether this can be used as an lvalue in this
1708 context. */
1709 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1710 expr = TREE_OPERAND (expr, 0);
1711
1712 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1713 a constant, it will be more efficient to not make another SAVE_EXPR since
1714 it will allow better simplification and GCSE will be able to merge the
1715 computations if they actually occur. */
1716 inner = expr;
1717 while (1)
1718 {
1719 if (UNARY_CLASS_P (inner))
1720 inner = TREE_OPERAND (inner, 0);
1721 else if (BINARY_CLASS_P (inner))
1722 {
1723 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1724 inner = TREE_OPERAND (inner, 0);
1725 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1726 inner = TREE_OPERAND (inner, 1);
1727 else
1728 break;
1729 }
1730 else
1731 break;
1732 }
1733
1734 return inner;
1735 }
1736
1737 /* Return which tree structure is used by T. */
1738
1739 enum tree_node_structure_enum
1740 tree_node_structure (tree t)
1741 {
1742 enum tree_code code = TREE_CODE (t);
1743
1744 switch (TREE_CODE_CLASS (code))
1745 {
1746 case tcc_declaration:
1747 return TS_DECL;
1748 case tcc_type:
1749 return TS_TYPE;
1750 case tcc_reference:
1751 case tcc_comparison:
1752 case tcc_unary:
1753 case tcc_binary:
1754 case tcc_expression:
1755 case tcc_statement:
1756 return TS_EXP;
1757 default: /* tcc_constant and tcc_exceptional */
1758 break;
1759 }
1760 switch (code)
1761 {
1762 /* tcc_constant cases. */
1763 case INTEGER_CST: return TS_INT_CST;
1764 case REAL_CST: return TS_REAL_CST;
1765 case COMPLEX_CST: return TS_COMPLEX;
1766 case VECTOR_CST: return TS_VECTOR;
1767 case STRING_CST: return TS_STRING;
1768 /* tcc_exceptional cases. */
1769 case ERROR_MARK: return TS_COMMON;
1770 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1771 case TREE_LIST: return TS_LIST;
1772 case TREE_VEC: return TS_VEC;
1773 case PHI_NODE: return TS_PHI_NODE;
1774 case SSA_NAME: return TS_SSA_NAME;
1775 case PLACEHOLDER_EXPR: return TS_COMMON;
1776 case STATEMENT_LIST: return TS_STATEMENT_LIST;
1777 case BLOCK: return TS_BLOCK;
1778 case TREE_BINFO: return TS_BINFO;
1779 case VALUE_HANDLE: return TS_VALUE_HANDLE;
1780
1781 default:
1782 gcc_unreachable ();
1783 }
1784 }
1785 \f
1786 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1787 or offset that depends on a field within a record. */
1788
1789 bool
1790 contains_placeholder_p (tree exp)
1791 {
1792 enum tree_code code;
1793
1794 if (!exp)
1795 return 0;
1796
1797 code = TREE_CODE (exp);
1798 if (code == PLACEHOLDER_EXPR)
1799 return 1;
1800
1801 switch (TREE_CODE_CLASS (code))
1802 {
1803 case tcc_reference:
1804 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1805 position computations since they will be converted into a
1806 WITH_RECORD_EXPR involving the reference, which will assume
1807 here will be valid. */
1808 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1809
1810 case tcc_exceptional:
1811 if (code == TREE_LIST)
1812 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1813 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1814 break;
1815
1816 case tcc_unary:
1817 case tcc_binary:
1818 case tcc_comparison:
1819 case tcc_expression:
1820 switch (code)
1821 {
1822 case COMPOUND_EXPR:
1823 /* Ignoring the first operand isn't quite right, but works best. */
1824 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1825
1826 case COND_EXPR:
1827 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1828 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1829 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1830
1831 default:
1832 break;
1833 }
1834
1835 switch (TREE_CODE_LENGTH (code))
1836 {
1837 case 1:
1838 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1839 case 2:
1840 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1841 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1842 default:
1843 return 0;
1844 }
1845
1846 default:
1847 return 0;
1848 }
1849 return 0;
1850 }
1851
1852 /* Return true if any part of the computation of TYPE involves a
1853 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
1854 (for QUAL_UNION_TYPE) and field positions. */
1855
1856 static bool
1857 type_contains_placeholder_1 (tree type)
1858 {
1859 /* If the size contains a placeholder or the parent type (component type in
1860 the case of arrays) type involves a placeholder, this type does. */
1861 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1862 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1863 || (TREE_TYPE (type) != 0
1864 && type_contains_placeholder_p (TREE_TYPE (type))))
1865 return true;
1866
1867 /* Now do type-specific checks. Note that the last part of the check above
1868 greatly limits what we have to do below. */
1869 switch (TREE_CODE (type))
1870 {
1871 case VOID_TYPE:
1872 case COMPLEX_TYPE:
1873 case ENUMERAL_TYPE:
1874 case BOOLEAN_TYPE:
1875 case CHAR_TYPE:
1876 case POINTER_TYPE:
1877 case OFFSET_TYPE:
1878 case REFERENCE_TYPE:
1879 case METHOD_TYPE:
1880 case FILE_TYPE:
1881 case FUNCTION_TYPE:
1882 case VECTOR_TYPE:
1883 return false;
1884
1885 case INTEGER_TYPE:
1886 case REAL_TYPE:
1887 /* Here we just check the bounds. */
1888 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1889 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1890
1891 case ARRAY_TYPE:
1892 /* We're already checked the component type (TREE_TYPE), so just check
1893 the index type. */
1894 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1895
1896 case RECORD_TYPE:
1897 case UNION_TYPE:
1898 case QUAL_UNION_TYPE:
1899 {
1900 tree field;
1901
1902 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1903 if (TREE_CODE (field) == FIELD_DECL
1904 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1905 || (TREE_CODE (type) == QUAL_UNION_TYPE
1906 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1907 || type_contains_placeholder_p (TREE_TYPE (field))))
1908 return true;
1909
1910 return false;
1911 }
1912
1913 default:
1914 gcc_unreachable ();
1915 }
1916 }
1917
1918 bool
1919 type_contains_placeholder_p (tree type)
1920 {
1921 bool result;
1922
1923 /* If the contains_placeholder_bits field has been initialized,
1924 then we know the answer. */
1925 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
1926 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
1927
1928 /* Indicate that we've seen this type node, and the answer is false.
1929 This is what we want to return if we run into recursion via fields. */
1930 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
1931
1932 /* Compute the real value. */
1933 result = type_contains_placeholder_1 (type);
1934
1935 /* Store the real value. */
1936 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
1937
1938 return result;
1939 }
1940 \f
1941 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1942 return a tree with all occurrences of references to F in a
1943 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1944 contains only arithmetic expressions or a CALL_EXPR with a
1945 PLACEHOLDER_EXPR occurring only in its arglist. */
1946
1947 tree
1948 substitute_in_expr (tree exp, tree f, tree r)
1949 {
1950 enum tree_code code = TREE_CODE (exp);
1951 tree op0, op1, op2;
1952 tree new;
1953 tree inner;
1954
1955 /* We handle TREE_LIST and COMPONENT_REF separately. */
1956 if (code == TREE_LIST)
1957 {
1958 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1959 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1960 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1961 return exp;
1962
1963 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1964 }
1965 else if (code == COMPONENT_REF)
1966 {
1967 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1968 and it is the right field, replace it with R. */
1969 for (inner = TREE_OPERAND (exp, 0);
1970 REFERENCE_CLASS_P (inner);
1971 inner = TREE_OPERAND (inner, 0))
1972 ;
1973 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1974 && TREE_OPERAND (exp, 1) == f)
1975 return r;
1976
1977 /* If this expression hasn't been completed let, leave it alone. */
1978 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
1979 return exp;
1980
1981 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1982 if (op0 == TREE_OPERAND (exp, 0))
1983 return exp;
1984
1985 new = fold (build3 (COMPONENT_REF, TREE_TYPE (exp),
1986 op0, TREE_OPERAND (exp, 1), NULL_TREE));
1987 }
1988 else
1989 switch (TREE_CODE_CLASS (code))
1990 {
1991 case tcc_constant:
1992 case tcc_declaration:
1993 return exp;
1994
1995 case tcc_exceptional:
1996 case tcc_unary:
1997 case tcc_binary:
1998 case tcc_comparison:
1999 case tcc_expression:
2000 case tcc_reference:
2001 switch (TREE_CODE_LENGTH (code))
2002 {
2003 case 0:
2004 return exp;
2005
2006 case 1:
2007 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2008 if (op0 == TREE_OPERAND (exp, 0))
2009 return exp;
2010
2011 new = fold (build1 (code, TREE_TYPE (exp), op0));
2012 break;
2013
2014 case 2:
2015 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2016 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2017
2018 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2019 return exp;
2020
2021 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
2022 break;
2023
2024 case 3:
2025 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2026 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2027 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2028
2029 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2030 && op2 == TREE_OPERAND (exp, 2))
2031 return exp;
2032
2033 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2034 break;
2035
2036 default:
2037 gcc_unreachable ();
2038 }
2039 break;
2040
2041 default:
2042 gcc_unreachable ();
2043 }
2044
2045 TREE_READONLY (new) = TREE_READONLY (exp);
2046 return new;
2047 }
2048
2049 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2050 for it within OBJ, a tree that is an object or a chain of references. */
2051
2052 tree
2053 substitute_placeholder_in_expr (tree exp, tree obj)
2054 {
2055 enum tree_code code = TREE_CODE (exp);
2056 tree op0, op1, op2, op3;
2057
2058 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2059 in the chain of OBJ. */
2060 if (code == PLACEHOLDER_EXPR)
2061 {
2062 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2063 tree elt;
2064
2065 for (elt = obj; elt != 0;
2066 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2067 || TREE_CODE (elt) == COND_EXPR)
2068 ? TREE_OPERAND (elt, 1)
2069 : (REFERENCE_CLASS_P (elt)
2070 || UNARY_CLASS_P (elt)
2071 || BINARY_CLASS_P (elt)
2072 || EXPRESSION_CLASS_P (elt))
2073 ? TREE_OPERAND (elt, 0) : 0))
2074 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2075 return elt;
2076
2077 for (elt = obj; elt != 0;
2078 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2079 || TREE_CODE (elt) == COND_EXPR)
2080 ? TREE_OPERAND (elt, 1)
2081 : (REFERENCE_CLASS_P (elt)
2082 || UNARY_CLASS_P (elt)
2083 || BINARY_CLASS_P (elt)
2084 || EXPRESSION_CLASS_P (elt))
2085 ? TREE_OPERAND (elt, 0) : 0))
2086 if (POINTER_TYPE_P (TREE_TYPE (elt))
2087 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2088 == need_type))
2089 return fold (build1 (INDIRECT_REF, need_type, elt));
2090
2091 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2092 survives until RTL generation, there will be an error. */
2093 return exp;
2094 }
2095
2096 /* TREE_LIST is special because we need to look at TREE_VALUE
2097 and TREE_CHAIN, not TREE_OPERANDS. */
2098 else if (code == TREE_LIST)
2099 {
2100 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2101 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2102 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2103 return exp;
2104
2105 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2106 }
2107 else
2108 switch (TREE_CODE_CLASS (code))
2109 {
2110 case tcc_constant:
2111 case tcc_declaration:
2112 return exp;
2113
2114 case tcc_exceptional:
2115 case tcc_unary:
2116 case tcc_binary:
2117 case tcc_comparison:
2118 case tcc_expression:
2119 case tcc_reference:
2120 case tcc_statement:
2121 switch (TREE_CODE_LENGTH (code))
2122 {
2123 case 0:
2124 return exp;
2125
2126 case 1:
2127 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2128 if (op0 == TREE_OPERAND (exp, 0))
2129 return exp;
2130 else
2131 return fold (build1 (code, TREE_TYPE (exp), op0));
2132
2133 case 2:
2134 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2135 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2136
2137 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2138 return exp;
2139 else
2140 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2141
2142 case 3:
2143 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2144 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2145 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2146
2147 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2148 && op2 == TREE_OPERAND (exp, 2))
2149 return exp;
2150 else
2151 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2152
2153 case 4:
2154 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2155 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2156 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2157 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2158
2159 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2160 && op2 == TREE_OPERAND (exp, 2)
2161 && op3 == TREE_OPERAND (exp, 3))
2162 return exp;
2163 else
2164 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2165
2166 default:
2167 gcc_unreachable ();
2168 }
2169 break;
2170
2171 default:
2172 gcc_unreachable ();
2173 }
2174 }
2175 \f
2176 /* Stabilize a reference so that we can use it any number of times
2177 without causing its operands to be evaluated more than once.
2178 Returns the stabilized reference. This works by means of save_expr,
2179 so see the caveats in the comments about save_expr.
2180
2181 Also allows conversion expressions whose operands are references.
2182 Any other kind of expression is returned unchanged. */
2183
2184 tree
2185 stabilize_reference (tree ref)
2186 {
2187 tree result;
2188 enum tree_code code = TREE_CODE (ref);
2189
2190 switch (code)
2191 {
2192 case VAR_DECL:
2193 case PARM_DECL:
2194 case RESULT_DECL:
2195 /* No action is needed in this case. */
2196 return ref;
2197
2198 case NOP_EXPR:
2199 case CONVERT_EXPR:
2200 case FLOAT_EXPR:
2201 case FIX_TRUNC_EXPR:
2202 case FIX_FLOOR_EXPR:
2203 case FIX_ROUND_EXPR:
2204 case FIX_CEIL_EXPR:
2205 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2206 break;
2207
2208 case INDIRECT_REF:
2209 result = build_nt (INDIRECT_REF,
2210 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2211 break;
2212
2213 case COMPONENT_REF:
2214 result = build_nt (COMPONENT_REF,
2215 stabilize_reference (TREE_OPERAND (ref, 0)),
2216 TREE_OPERAND (ref, 1), NULL_TREE);
2217 break;
2218
2219 case BIT_FIELD_REF:
2220 result = build_nt (BIT_FIELD_REF,
2221 stabilize_reference (TREE_OPERAND (ref, 0)),
2222 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2223 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2224 break;
2225
2226 case ARRAY_REF:
2227 result = build_nt (ARRAY_REF,
2228 stabilize_reference (TREE_OPERAND (ref, 0)),
2229 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2230 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2231 break;
2232
2233 case ARRAY_RANGE_REF:
2234 result = build_nt (ARRAY_RANGE_REF,
2235 stabilize_reference (TREE_OPERAND (ref, 0)),
2236 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2237 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2238 break;
2239
2240 case COMPOUND_EXPR:
2241 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2242 it wouldn't be ignored. This matters when dealing with
2243 volatiles. */
2244 return stabilize_reference_1 (ref);
2245
2246 /* If arg isn't a kind of lvalue we recognize, make no change.
2247 Caller should recognize the error for an invalid lvalue. */
2248 default:
2249 return ref;
2250
2251 case ERROR_MARK:
2252 return error_mark_node;
2253 }
2254
2255 TREE_TYPE (result) = TREE_TYPE (ref);
2256 TREE_READONLY (result) = TREE_READONLY (ref);
2257 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2258 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2259
2260 return result;
2261 }
2262
2263 /* Subroutine of stabilize_reference; this is called for subtrees of
2264 references. Any expression with side-effects must be put in a SAVE_EXPR
2265 to ensure that it is only evaluated once.
2266
2267 We don't put SAVE_EXPR nodes around everything, because assigning very
2268 simple expressions to temporaries causes us to miss good opportunities
2269 for optimizations. Among other things, the opportunity to fold in the
2270 addition of a constant into an addressing mode often gets lost, e.g.
2271 "y[i+1] += x;". In general, we take the approach that we should not make
2272 an assignment unless we are forced into it - i.e., that any non-side effect
2273 operator should be allowed, and that cse should take care of coalescing
2274 multiple utterances of the same expression should that prove fruitful. */
2275
2276 tree
2277 stabilize_reference_1 (tree e)
2278 {
2279 tree result;
2280 enum tree_code code = TREE_CODE (e);
2281
2282 /* We cannot ignore const expressions because it might be a reference
2283 to a const array but whose index contains side-effects. But we can
2284 ignore things that are actual constant or that already have been
2285 handled by this function. */
2286
2287 if (TREE_INVARIANT (e))
2288 return e;
2289
2290 switch (TREE_CODE_CLASS (code))
2291 {
2292 case tcc_exceptional:
2293 case tcc_type:
2294 case tcc_declaration:
2295 case tcc_comparison:
2296 case tcc_statement:
2297 case tcc_expression:
2298 case tcc_reference:
2299 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2300 so that it will only be evaluated once. */
2301 /* The reference (r) and comparison (<) classes could be handled as
2302 below, but it is generally faster to only evaluate them once. */
2303 if (TREE_SIDE_EFFECTS (e))
2304 return save_expr (e);
2305 return e;
2306
2307 case tcc_constant:
2308 /* Constants need no processing. In fact, we should never reach
2309 here. */
2310 return e;
2311
2312 case tcc_binary:
2313 /* Division is slow and tends to be compiled with jumps,
2314 especially the division by powers of 2 that is often
2315 found inside of an array reference. So do it just once. */
2316 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2317 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2318 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2319 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2320 return save_expr (e);
2321 /* Recursively stabilize each operand. */
2322 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2323 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2324 break;
2325
2326 case tcc_unary:
2327 /* Recursively stabilize each operand. */
2328 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2329 break;
2330
2331 default:
2332 gcc_unreachable ();
2333 }
2334
2335 TREE_TYPE (result) = TREE_TYPE (e);
2336 TREE_READONLY (result) = TREE_READONLY (e);
2337 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2338 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2339 TREE_INVARIANT (result) = 1;
2340
2341 return result;
2342 }
2343 \f
2344 /* Low-level constructors for expressions. */
2345
2346 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2347 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2348
2349 void
2350 recompute_tree_invarant_for_addr_expr (tree t)
2351 {
2352 tree node;
2353 bool tc = true, ti = true, se = false;
2354
2355 /* We started out assuming this address is both invariant and constant, but
2356 does not have side effects. Now go down any handled components and see if
2357 any of them involve offsets that are either non-constant or non-invariant.
2358 Also check for side-effects.
2359
2360 ??? Note that this code makes no attempt to deal with the case where
2361 taking the address of something causes a copy due to misalignment. */
2362
2363 #define UPDATE_TITCSE(NODE) \
2364 do { tree _node = (NODE); \
2365 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2366 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2367 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2368
2369 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2370 node = TREE_OPERAND (node, 0))
2371 {
2372 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2373 array reference (probably made temporarily by the G++ front end),
2374 so ignore all the operands. */
2375 if ((TREE_CODE (node) == ARRAY_REF
2376 || TREE_CODE (node) == ARRAY_RANGE_REF)
2377 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2378 {
2379 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2380 if (TREE_OPERAND (node, 2))
2381 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2382 if (TREE_OPERAND (node, 3))
2383 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2384 }
2385 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2386 FIELD_DECL, apparently. The G++ front end can put something else
2387 there, at least temporarily. */
2388 else if (TREE_CODE (node) == COMPONENT_REF
2389 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2390 {
2391 if (TREE_OPERAND (node, 2))
2392 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2393 }
2394 else if (TREE_CODE (node) == BIT_FIELD_REF)
2395 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2396 }
2397
2398 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2399 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2400 invariant and constant if the decl is static. It's also invariant if it's
2401 a decl in the current function. Taking the address of a volatile variable
2402 is not volatile. If it's a constant, the address is both invariant and
2403 constant. Otherwise it's neither. */
2404 if (TREE_CODE (node) == INDIRECT_REF)
2405 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2406 else if (DECL_P (node))
2407 {
2408 if (staticp (node))
2409 ;
2410 else if (decl_function_context (node) == current_function_decl
2411 /* Addresses of thread-local variables are invariant. */
2412 || (TREE_CODE (node) == VAR_DECL && DECL_THREAD_LOCAL (node)))
2413 tc = false;
2414 else
2415 ti = tc = false;
2416 }
2417 else if (CONSTANT_CLASS_P (node))
2418 ;
2419 else
2420 {
2421 ti = tc = false;
2422 se |= TREE_SIDE_EFFECTS (node);
2423 }
2424
2425 TREE_CONSTANT (t) = tc;
2426 TREE_INVARIANT (t) = ti;
2427 TREE_SIDE_EFFECTS (t) = se;
2428 #undef UPDATE_TITCSE
2429 }
2430
2431 /* Build an expression of code CODE, data type TYPE, and operands as
2432 specified. Expressions and reference nodes can be created this way.
2433 Constants, decls, types and misc nodes cannot be.
2434
2435 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2436 enough for all extant tree codes. These functions can be called
2437 directly (preferably!), but can also be obtained via GCC preprocessor
2438 magic within the build macro. */
2439
2440 tree
2441 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2442 {
2443 tree t;
2444
2445 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2446
2447 t = make_node_stat (code PASS_MEM_STAT);
2448 TREE_TYPE (t) = tt;
2449
2450 return t;
2451 }
2452
2453 tree
2454 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2455 {
2456 int length = sizeof (struct tree_exp);
2457 #ifdef GATHER_STATISTICS
2458 tree_node_kind kind;
2459 #endif
2460 tree t;
2461
2462 #ifdef GATHER_STATISTICS
2463 switch (TREE_CODE_CLASS (code))
2464 {
2465 case tcc_statement: /* an expression with side effects */
2466 kind = s_kind;
2467 break;
2468 case tcc_reference: /* a reference */
2469 kind = r_kind;
2470 break;
2471 default:
2472 kind = e_kind;
2473 break;
2474 }
2475
2476 tree_node_counts[(int) kind]++;
2477 tree_node_sizes[(int) kind] += length;
2478 #endif
2479
2480 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2481
2482 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2483
2484 memset (t, 0, sizeof (struct tree_common));
2485
2486 TREE_SET_CODE (t, code);
2487
2488 TREE_TYPE (t) = type;
2489 #ifdef USE_MAPPED_LOCATION
2490 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2491 #else
2492 SET_EXPR_LOCUS (t, NULL);
2493 #endif
2494 TREE_COMPLEXITY (t) = 0;
2495 TREE_OPERAND (t, 0) = node;
2496 TREE_BLOCK (t) = NULL_TREE;
2497 if (node && !TYPE_P (node))
2498 {
2499 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2500 TREE_READONLY (t) = TREE_READONLY (node);
2501 }
2502
2503 if (TREE_CODE_CLASS (code) == tcc_statement)
2504 TREE_SIDE_EFFECTS (t) = 1;
2505 else switch (code)
2506 {
2507 case INIT_EXPR:
2508 case MODIFY_EXPR:
2509 case VA_ARG_EXPR:
2510 case PREDECREMENT_EXPR:
2511 case PREINCREMENT_EXPR:
2512 case POSTDECREMENT_EXPR:
2513 case POSTINCREMENT_EXPR:
2514 /* All of these have side-effects, no matter what their
2515 operands are. */
2516 TREE_SIDE_EFFECTS (t) = 1;
2517 TREE_READONLY (t) = 0;
2518 break;
2519
2520 case MISALIGNED_INDIRECT_REF:
2521 case ALIGN_INDIRECT_REF:
2522 case INDIRECT_REF:
2523 /* Whether a dereference is readonly has nothing to do with whether
2524 its operand is readonly. */
2525 TREE_READONLY (t) = 0;
2526 break;
2527
2528 case ADDR_EXPR:
2529 if (node)
2530 recompute_tree_invarant_for_addr_expr (t);
2531 break;
2532
2533 default:
2534 if (TREE_CODE_CLASS (code) == tcc_unary
2535 && node && !TYPE_P (node)
2536 && TREE_CONSTANT (node))
2537 TREE_CONSTANT (t) = 1;
2538 if (TREE_CODE_CLASS (code) == tcc_unary
2539 && node && TREE_INVARIANT (node))
2540 TREE_INVARIANT (t) = 1;
2541 if (TREE_CODE_CLASS (code) == tcc_reference
2542 && node && TREE_THIS_VOLATILE (node))
2543 TREE_THIS_VOLATILE (t) = 1;
2544 break;
2545 }
2546
2547 return t;
2548 }
2549
2550 #define PROCESS_ARG(N) \
2551 do { \
2552 TREE_OPERAND (t, N) = arg##N; \
2553 if (arg##N &&!TYPE_P (arg##N)) \
2554 { \
2555 if (TREE_SIDE_EFFECTS (arg##N)) \
2556 side_effects = 1; \
2557 if (!TREE_READONLY (arg##N)) \
2558 read_only = 0; \
2559 if (!TREE_CONSTANT (arg##N)) \
2560 constant = 0; \
2561 if (!TREE_INVARIANT (arg##N)) \
2562 invariant = 0; \
2563 } \
2564 } while (0)
2565
2566 tree
2567 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2568 {
2569 bool constant, read_only, side_effects, invariant;
2570 tree t;
2571
2572 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2573
2574 t = make_node_stat (code PASS_MEM_STAT);
2575 TREE_TYPE (t) = tt;
2576
2577 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2578 result based on those same flags for the arguments. But if the
2579 arguments aren't really even `tree' expressions, we shouldn't be trying
2580 to do this. */
2581
2582 /* Expressions without side effects may be constant if their
2583 arguments are as well. */
2584 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2585 || TREE_CODE_CLASS (code) == tcc_binary);
2586 read_only = 1;
2587 side_effects = TREE_SIDE_EFFECTS (t);
2588 invariant = constant;
2589
2590 PROCESS_ARG(0);
2591 PROCESS_ARG(1);
2592
2593 TREE_READONLY (t) = read_only;
2594 TREE_CONSTANT (t) = constant;
2595 TREE_INVARIANT (t) = invariant;
2596 TREE_SIDE_EFFECTS (t) = side_effects;
2597 TREE_THIS_VOLATILE (t)
2598 = (TREE_CODE_CLASS (code) == tcc_reference
2599 && arg0 && TREE_THIS_VOLATILE (arg0));
2600
2601 return t;
2602 }
2603
2604 tree
2605 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2606 tree arg2 MEM_STAT_DECL)
2607 {
2608 bool constant, read_only, side_effects, invariant;
2609 tree t;
2610
2611 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2612
2613 t = make_node_stat (code PASS_MEM_STAT);
2614 TREE_TYPE (t) = tt;
2615
2616 side_effects = TREE_SIDE_EFFECTS (t);
2617
2618 PROCESS_ARG(0);
2619 PROCESS_ARG(1);
2620 PROCESS_ARG(2);
2621
2622 if (code == CALL_EXPR && !side_effects)
2623 {
2624 tree node;
2625 int i;
2626
2627 /* Calls have side-effects, except those to const or
2628 pure functions. */
2629 i = call_expr_flags (t);
2630 if (!(i & (ECF_CONST | ECF_PURE)))
2631 side_effects = 1;
2632
2633 /* And even those have side-effects if their arguments do. */
2634 else for (node = arg1; node; node = TREE_CHAIN (node))
2635 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2636 {
2637 side_effects = 1;
2638 break;
2639 }
2640 }
2641
2642 TREE_SIDE_EFFECTS (t) = side_effects;
2643 TREE_THIS_VOLATILE (t)
2644 = (TREE_CODE_CLASS (code) == tcc_reference
2645 && arg0 && TREE_THIS_VOLATILE (arg0));
2646
2647 return t;
2648 }
2649
2650 tree
2651 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2652 tree arg2, tree arg3 MEM_STAT_DECL)
2653 {
2654 bool constant, read_only, side_effects, invariant;
2655 tree t;
2656
2657 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2658
2659 t = make_node_stat (code PASS_MEM_STAT);
2660 TREE_TYPE (t) = tt;
2661
2662 side_effects = TREE_SIDE_EFFECTS (t);
2663
2664 PROCESS_ARG(0);
2665 PROCESS_ARG(1);
2666 PROCESS_ARG(2);
2667 PROCESS_ARG(3);
2668
2669 TREE_SIDE_EFFECTS (t) = side_effects;
2670 TREE_THIS_VOLATILE (t)
2671 = (TREE_CODE_CLASS (code) == tcc_reference
2672 && arg0 && TREE_THIS_VOLATILE (arg0));
2673
2674 return t;
2675 }
2676
2677 /* Backup definition for non-gcc build compilers. */
2678
2679 tree
2680 (build) (enum tree_code code, tree tt, ...)
2681 {
2682 tree t, arg0, arg1, arg2, arg3;
2683 int length = TREE_CODE_LENGTH (code);
2684 va_list p;
2685
2686 va_start (p, tt);
2687 switch (length)
2688 {
2689 case 0:
2690 t = build0 (code, tt);
2691 break;
2692 case 1:
2693 arg0 = va_arg (p, tree);
2694 t = build1 (code, tt, arg0);
2695 break;
2696 case 2:
2697 arg0 = va_arg (p, tree);
2698 arg1 = va_arg (p, tree);
2699 t = build2 (code, tt, arg0, arg1);
2700 break;
2701 case 3:
2702 arg0 = va_arg (p, tree);
2703 arg1 = va_arg (p, tree);
2704 arg2 = va_arg (p, tree);
2705 t = build3 (code, tt, arg0, arg1, arg2);
2706 break;
2707 case 4:
2708 arg0 = va_arg (p, tree);
2709 arg1 = va_arg (p, tree);
2710 arg2 = va_arg (p, tree);
2711 arg3 = va_arg (p, tree);
2712 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2713 break;
2714 default:
2715 gcc_unreachable ();
2716 }
2717 va_end (p);
2718
2719 return t;
2720 }
2721
2722 /* Similar except don't specify the TREE_TYPE
2723 and leave the TREE_SIDE_EFFECTS as 0.
2724 It is permissible for arguments to be null,
2725 or even garbage if their values do not matter. */
2726
2727 tree
2728 build_nt (enum tree_code code, ...)
2729 {
2730 tree t;
2731 int length;
2732 int i;
2733 va_list p;
2734
2735 va_start (p, code);
2736
2737 t = make_node (code);
2738 length = TREE_CODE_LENGTH (code);
2739
2740 for (i = 0; i < length; i++)
2741 TREE_OPERAND (t, i) = va_arg (p, tree);
2742
2743 va_end (p);
2744 return t;
2745 }
2746 \f
2747 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2748 We do NOT enter this node in any sort of symbol table.
2749
2750 layout_decl is used to set up the decl's storage layout.
2751 Other slots are initialized to 0 or null pointers. */
2752
2753 tree
2754 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2755 {
2756 tree t;
2757
2758 t = make_node_stat (code PASS_MEM_STAT);
2759
2760 /* if (type == error_mark_node)
2761 type = integer_type_node; */
2762 /* That is not done, deliberately, so that having error_mark_node
2763 as the type can suppress useless errors in the use of this variable. */
2764
2765 DECL_NAME (t) = name;
2766 TREE_TYPE (t) = type;
2767
2768 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2769 layout_decl (t, 0);
2770 else if (code == FUNCTION_DECL)
2771 DECL_MODE (t) = FUNCTION_MODE;
2772
2773 /* Set default visibility to whatever the user supplied with
2774 visibility_specified depending on #pragma GCC visibility. */
2775 DECL_VISIBILITY (t) = default_visibility;
2776 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
2777
2778 return t;
2779 }
2780 \f
2781 /* BLOCK nodes are used to represent the structure of binding contours
2782 and declarations, once those contours have been exited and their contents
2783 compiled. This information is used for outputting debugging info. */
2784
2785 tree
2786 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2787 tree supercontext, tree chain)
2788 {
2789 tree block = make_node (BLOCK);
2790
2791 BLOCK_VARS (block) = vars;
2792 BLOCK_SUBBLOCKS (block) = subblocks;
2793 BLOCK_SUPERCONTEXT (block) = supercontext;
2794 BLOCK_CHAIN (block) = chain;
2795 return block;
2796 }
2797
2798 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
2799 /* ??? gengtype doesn't handle conditionals */
2800 static GTY(()) tree last_annotated_node;
2801 #endif
2802
2803 #ifdef USE_MAPPED_LOCATION
2804
2805 expanded_location
2806 expand_location (source_location loc)
2807 {
2808 expanded_location xloc;
2809 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
2810 else
2811 {
2812 const struct line_map *map = linemap_lookup (&line_table, loc);
2813 xloc.file = map->to_file;
2814 xloc.line = SOURCE_LINE (map, loc);
2815 xloc.column = SOURCE_COLUMN (map, loc);
2816 };
2817 return xloc;
2818 }
2819
2820 #else
2821
2822 /* Record the exact location where an expression or an identifier were
2823 encountered. */
2824
2825 void
2826 annotate_with_file_line (tree node, const char *file, int line)
2827 {
2828 /* Roughly one percent of the calls to this function are to annotate
2829 a node with the same information already attached to that node!
2830 Just return instead of wasting memory. */
2831 if (EXPR_LOCUS (node)
2832 && (EXPR_FILENAME (node) == file
2833 || ! strcmp (EXPR_FILENAME (node), file))
2834 && EXPR_LINENO (node) == line)
2835 {
2836 last_annotated_node = node;
2837 return;
2838 }
2839
2840 /* In heavily macroized code (such as GCC itself) this single
2841 entry cache can reduce the number of allocations by more
2842 than half. */
2843 if (last_annotated_node
2844 && EXPR_LOCUS (last_annotated_node)
2845 && (EXPR_FILENAME (last_annotated_node) == file
2846 || ! strcmp (EXPR_FILENAME (last_annotated_node), file))
2847 && EXPR_LINENO (last_annotated_node) == line)
2848 {
2849 SET_EXPR_LOCUS (node, EXPR_LOCUS (last_annotated_node));
2850 return;
2851 }
2852
2853 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
2854 EXPR_LINENO (node) = line;
2855 EXPR_FILENAME (node) = file;
2856 last_annotated_node = node;
2857 }
2858
2859 void
2860 annotate_with_locus (tree node, location_t locus)
2861 {
2862 annotate_with_file_line (node, locus.file, locus.line);
2863 }
2864 #endif
2865 \f
2866 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2867 is ATTRIBUTE. */
2868
2869 tree
2870 build_decl_attribute_variant (tree ddecl, tree attribute)
2871 {
2872 DECL_ATTRIBUTES (ddecl) = attribute;
2873 return ddecl;
2874 }
2875
2876 /* Borrowed from hashtab.c iterative_hash implementation. */
2877 #define mix(a,b,c) \
2878 { \
2879 a -= b; a -= c; a ^= (c>>13); \
2880 b -= c; b -= a; b ^= (a<< 8); \
2881 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
2882 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
2883 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
2884 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
2885 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
2886 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
2887 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
2888 }
2889
2890
2891 /* Produce good hash value combining VAL and VAL2. */
2892 static inline hashval_t
2893 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
2894 {
2895 /* the golden ratio; an arbitrary value. */
2896 hashval_t a = 0x9e3779b9;
2897
2898 mix (a, val, val2);
2899 return val2;
2900 }
2901
2902 /* Produce good hash value combining PTR and VAL2. */
2903 static inline hashval_t
2904 iterative_hash_pointer (void *ptr, hashval_t val2)
2905 {
2906 if (sizeof (ptr) == sizeof (hashval_t))
2907 return iterative_hash_hashval_t ((size_t) ptr, val2);
2908 else
2909 {
2910 hashval_t a = (hashval_t) (size_t) ptr;
2911 /* Avoid warnings about shifting of more than the width of the type on
2912 hosts that won't execute this path. */
2913 int zero = 0;
2914 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
2915 mix (a, b, val2);
2916 return val2;
2917 }
2918 }
2919
2920 /* Produce good hash value combining VAL and VAL2. */
2921 static inline hashval_t
2922 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
2923 {
2924 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
2925 return iterative_hash_hashval_t (val, val2);
2926 else
2927 {
2928 hashval_t a = (hashval_t) val;
2929 /* Avoid warnings about shifting of more than the width of the type on
2930 hosts that won't execute this path. */
2931 int zero = 0;
2932 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
2933 mix (a, b, val2);
2934 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
2935 {
2936 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
2937 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
2938 mix (a, b, val2);
2939 }
2940 return val2;
2941 }
2942 }
2943
2944 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2945 is ATTRIBUTE.
2946
2947 Record such modified types already made so we don't make duplicates. */
2948
2949 tree
2950 build_type_attribute_variant (tree ttype, tree attribute)
2951 {
2952 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2953 {
2954 hashval_t hashcode = 0;
2955 tree ntype;
2956 enum tree_code code = TREE_CODE (ttype);
2957
2958 ntype = copy_node (ttype);
2959
2960 TYPE_POINTER_TO (ntype) = 0;
2961 TYPE_REFERENCE_TO (ntype) = 0;
2962 TYPE_ATTRIBUTES (ntype) = attribute;
2963
2964 /* Create a new main variant of TYPE. */
2965 TYPE_MAIN_VARIANT (ntype) = ntype;
2966 TYPE_NEXT_VARIANT (ntype) = 0;
2967 set_type_quals (ntype, TYPE_UNQUALIFIED);
2968
2969 hashcode = iterative_hash_object (code, hashcode);
2970 if (TREE_TYPE (ntype))
2971 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2972 hashcode);
2973 hashcode = attribute_hash_list (attribute, hashcode);
2974
2975 switch (TREE_CODE (ntype))
2976 {
2977 case FUNCTION_TYPE:
2978 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
2979 break;
2980 case ARRAY_TYPE:
2981 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
2982 hashcode);
2983 break;
2984 case INTEGER_TYPE:
2985 hashcode = iterative_hash_object
2986 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
2987 hashcode = iterative_hash_object
2988 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
2989 break;
2990 case REAL_TYPE:
2991 {
2992 unsigned int precision = TYPE_PRECISION (ntype);
2993 hashcode = iterative_hash_object (precision, hashcode);
2994 }
2995 break;
2996 default:
2997 break;
2998 }
2999
3000 ntype = type_hash_canon (hashcode, ntype);
3001 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3002 }
3003
3004 return ttype;
3005 }
3006
3007
3008 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3009 or zero if not.
3010
3011 We try both `text' and `__text__', ATTR may be either one. */
3012 /* ??? It might be a reasonable simplification to require ATTR to be only
3013 `text'. One might then also require attribute lists to be stored in
3014 their canonicalized form. */
3015
3016 static int
3017 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3018 {
3019 int ident_len;
3020 const char *p;
3021
3022 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3023 return 0;
3024
3025 p = IDENTIFIER_POINTER (ident);
3026 ident_len = IDENTIFIER_LENGTH (ident);
3027
3028 if (ident_len == attr_len
3029 && strcmp (attr, p) == 0)
3030 return 1;
3031
3032 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3033 if (attr[0] == '_')
3034 {
3035 gcc_assert (attr[1] == '_');
3036 gcc_assert (attr[attr_len - 2] == '_');
3037 gcc_assert (attr[attr_len - 1] == '_');
3038 gcc_assert (attr[1] == '_');
3039 if (ident_len == attr_len - 4
3040 && strncmp (attr + 2, p, attr_len - 4) == 0)
3041 return 1;
3042 }
3043 else
3044 {
3045 if (ident_len == attr_len + 4
3046 && p[0] == '_' && p[1] == '_'
3047 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3048 && strncmp (attr, p + 2, attr_len) == 0)
3049 return 1;
3050 }
3051
3052 return 0;
3053 }
3054
3055 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3056 or zero if not.
3057
3058 We try both `text' and `__text__', ATTR may be either one. */
3059
3060 int
3061 is_attribute_p (const char *attr, tree ident)
3062 {
3063 return is_attribute_with_length_p (attr, strlen (attr), ident);
3064 }
3065
3066 /* Given an attribute name and a list of attributes, return a pointer to the
3067 attribute's list element if the attribute is part of the list, or NULL_TREE
3068 if not found. If the attribute appears more than once, this only
3069 returns the first occurrence; the TREE_CHAIN of the return value should
3070 be passed back in if further occurrences are wanted. */
3071
3072 tree
3073 lookup_attribute (const char *attr_name, tree list)
3074 {
3075 tree l;
3076 size_t attr_len = strlen (attr_name);
3077
3078 for (l = list; l; l = TREE_CHAIN (l))
3079 {
3080 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3081 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3082 return l;
3083 }
3084
3085 return NULL_TREE;
3086 }
3087
3088 /* Return an attribute list that is the union of a1 and a2. */
3089
3090 tree
3091 merge_attributes (tree a1, tree a2)
3092 {
3093 tree attributes;
3094
3095 /* Either one unset? Take the set one. */
3096
3097 if ((attributes = a1) == 0)
3098 attributes = a2;
3099
3100 /* One that completely contains the other? Take it. */
3101
3102 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3103 {
3104 if (attribute_list_contained (a2, a1))
3105 attributes = a2;
3106 else
3107 {
3108 /* Pick the longest list, and hang on the other list. */
3109
3110 if (list_length (a1) < list_length (a2))
3111 attributes = a2, a2 = a1;
3112
3113 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3114 {
3115 tree a;
3116 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3117 attributes);
3118 a != NULL_TREE;
3119 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3120 TREE_CHAIN (a)))
3121 {
3122 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3123 break;
3124 }
3125 if (a == NULL_TREE)
3126 {
3127 a1 = copy_node (a2);
3128 TREE_CHAIN (a1) = attributes;
3129 attributes = a1;
3130 }
3131 }
3132 }
3133 }
3134 return attributes;
3135 }
3136
3137 /* Given types T1 and T2, merge their attributes and return
3138 the result. */
3139
3140 tree
3141 merge_type_attributes (tree t1, tree t2)
3142 {
3143 return merge_attributes (TYPE_ATTRIBUTES (t1),
3144 TYPE_ATTRIBUTES (t2));
3145 }
3146
3147 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3148 the result. */
3149
3150 tree
3151 merge_decl_attributes (tree olddecl, tree newdecl)
3152 {
3153 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3154 DECL_ATTRIBUTES (newdecl));
3155 }
3156
3157 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3158
3159 /* Specialization of merge_decl_attributes for various Windows targets.
3160
3161 This handles the following situation:
3162
3163 __declspec (dllimport) int foo;
3164 int foo;
3165
3166 The second instance of `foo' nullifies the dllimport. */
3167
3168 tree
3169 merge_dllimport_decl_attributes (tree old, tree new)
3170 {
3171 tree a;
3172 int delete_dllimport_p;
3173
3174 old = DECL_ATTRIBUTES (old);
3175 new = DECL_ATTRIBUTES (new);
3176
3177 /* What we need to do here is remove from `old' dllimport if it doesn't
3178 appear in `new'. dllimport behaves like extern: if a declaration is
3179 marked dllimport and a definition appears later, then the object
3180 is not dllimport'd. */
3181 if (lookup_attribute ("dllimport", old) != NULL_TREE
3182 && lookup_attribute ("dllimport", new) == NULL_TREE)
3183 delete_dllimport_p = 1;
3184 else
3185 delete_dllimport_p = 0;
3186
3187 a = merge_attributes (old, new);
3188
3189 if (delete_dllimport_p)
3190 {
3191 tree prev, t;
3192
3193 /* Scan the list for dllimport and delete it. */
3194 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3195 {
3196 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3197 {
3198 if (prev == NULL_TREE)
3199 a = TREE_CHAIN (a);
3200 else
3201 TREE_CHAIN (prev) = TREE_CHAIN (t);
3202 break;
3203 }
3204 }
3205 }
3206
3207 return a;
3208 }
3209
3210 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3211 struct attribute_spec.handler. */
3212
3213 tree
3214 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3215 bool *no_add_attrs)
3216 {
3217 tree node = *pnode;
3218
3219 /* These attributes may apply to structure and union types being created,
3220 but otherwise should pass to the declaration involved. */
3221 if (!DECL_P (node))
3222 {
3223 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3224 | (int) ATTR_FLAG_ARRAY_NEXT))
3225 {
3226 *no_add_attrs = true;
3227 return tree_cons (name, args, NULL_TREE);
3228 }
3229 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3230 {
3231 warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
3232 *no_add_attrs = true;
3233 }
3234
3235 return NULL_TREE;
3236 }
3237
3238 /* Report error on dllimport ambiguities seen now before they cause
3239 any damage. */
3240 if (is_attribute_p ("dllimport", name))
3241 {
3242 /* Like MS, treat definition of dllimported variables and
3243 non-inlined functions on declaration as syntax errors. We
3244 allow the attribute for function definitions if declared
3245 inline. */
3246 if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node)
3247 && !DECL_DECLARED_INLINE_P (node))
3248 {
3249 error ("%Jfunction %qD definition is marked dllimport.", node, node);
3250 *no_add_attrs = true;
3251 }
3252
3253 else if (TREE_CODE (node) == VAR_DECL)
3254 {
3255 if (DECL_INITIAL (node))
3256 {
3257 error ("%Jvariable %qD definition is marked dllimport.",
3258 node, node);
3259 *no_add_attrs = true;
3260 }
3261
3262 /* `extern' needn't be specified with dllimport.
3263 Specify `extern' now and hope for the best. Sigh. */
3264 DECL_EXTERNAL (node) = 1;
3265 /* Also, implicitly give dllimport'd variables declared within
3266 a function global scope, unless declared static. */
3267 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3268 TREE_PUBLIC (node) = 1;
3269 }
3270 }
3271
3272 /* Report error if symbol is not accessible at global scope. */
3273 if (!TREE_PUBLIC (node)
3274 && (TREE_CODE (node) == VAR_DECL
3275 || TREE_CODE (node) == FUNCTION_DECL))
3276 {
3277 error ("%Jexternal linkage required for symbol %qD because of "
3278 "%qs attribute.", node, node, IDENTIFIER_POINTER (name));
3279 *no_add_attrs = true;
3280 }
3281
3282 return NULL_TREE;
3283 }
3284
3285 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3286 \f
3287 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3288 of the various TYPE_QUAL values. */
3289
3290 static void
3291 set_type_quals (tree type, int type_quals)
3292 {
3293 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3294 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3295 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3296 }
3297
3298 /* Returns true iff cand is equivalent to base with type_quals. */
3299
3300 bool
3301 check_qualified_type (tree cand, tree base, int type_quals)
3302 {
3303 return (TYPE_QUALS (cand) == type_quals
3304 && TYPE_NAME (cand) == TYPE_NAME (base)
3305 /* Apparently this is needed for Objective-C. */
3306 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3307 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3308 TYPE_ATTRIBUTES (base)));
3309 }
3310
3311 /* Return a version of the TYPE, qualified as indicated by the
3312 TYPE_QUALS, if one exists. If no qualified version exists yet,
3313 return NULL_TREE. */
3314
3315 tree
3316 get_qualified_type (tree type, int type_quals)
3317 {
3318 tree t;
3319
3320 if (TYPE_QUALS (type) == type_quals)
3321 return type;
3322
3323 /* Search the chain of variants to see if there is already one there just
3324 like the one we need to have. If so, use that existing one. We must
3325 preserve the TYPE_NAME, since there is code that depends on this. */
3326 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3327 if (check_qualified_type (t, type, type_quals))
3328 return t;
3329
3330 return NULL_TREE;
3331 }
3332
3333 /* Like get_qualified_type, but creates the type if it does not
3334 exist. This function never returns NULL_TREE. */
3335
3336 tree
3337 build_qualified_type (tree type, int type_quals)
3338 {
3339 tree t;
3340
3341 /* See if we already have the appropriate qualified variant. */
3342 t = get_qualified_type (type, type_quals);
3343
3344 /* If not, build it. */
3345 if (!t)
3346 {
3347 t = build_variant_type_copy (type);
3348 set_type_quals (t, type_quals);
3349 }
3350
3351 return t;
3352 }
3353
3354 /* Create a new distinct copy of TYPE. The new type is made its own
3355 MAIN_VARIANT. */
3356
3357 tree
3358 build_distinct_type_copy (tree type)
3359 {
3360 tree t = copy_node (type);
3361
3362 TYPE_POINTER_TO (t) = 0;
3363 TYPE_REFERENCE_TO (t) = 0;
3364
3365 /* Make it its own variant. */
3366 TYPE_MAIN_VARIANT (t) = t;
3367 TYPE_NEXT_VARIANT (t) = 0;
3368
3369 return t;
3370 }
3371
3372 /* Create a new variant of TYPE, equivalent but distinct.
3373 This is so the caller can modify it. */
3374
3375 tree
3376 build_variant_type_copy (tree type)
3377 {
3378 tree t, m = TYPE_MAIN_VARIANT (type);
3379
3380 t = build_distinct_type_copy (type);
3381
3382 /* Add the new type to the chain of variants of TYPE. */
3383 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3384 TYPE_NEXT_VARIANT (m) = t;
3385 TYPE_MAIN_VARIANT (t) = m;
3386
3387 return t;
3388 }
3389 \f
3390 /* Hashing of types so that we don't make duplicates.
3391 The entry point is `type_hash_canon'. */
3392
3393 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3394 with types in the TREE_VALUE slots), by adding the hash codes
3395 of the individual types. */
3396
3397 unsigned int
3398 type_hash_list (tree list, hashval_t hashcode)
3399 {
3400 tree tail;
3401
3402 for (tail = list; tail; tail = TREE_CHAIN (tail))
3403 if (TREE_VALUE (tail) != error_mark_node)
3404 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3405 hashcode);
3406
3407 return hashcode;
3408 }
3409
3410 /* These are the Hashtable callback functions. */
3411
3412 /* Returns true iff the types are equivalent. */
3413
3414 static int
3415 type_hash_eq (const void *va, const void *vb)
3416 {
3417 const struct type_hash *a = va, *b = vb;
3418
3419 /* First test the things that are the same for all types. */
3420 if (a->hash != b->hash
3421 || TREE_CODE (a->type) != TREE_CODE (b->type)
3422 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3423 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3424 TYPE_ATTRIBUTES (b->type))
3425 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3426 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3427 return 0;
3428
3429 switch (TREE_CODE (a->type))
3430 {
3431 case VOID_TYPE:
3432 case COMPLEX_TYPE:
3433 case POINTER_TYPE:
3434 case REFERENCE_TYPE:
3435 return 1;
3436
3437 case VECTOR_TYPE:
3438 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
3439
3440 case ENUMERAL_TYPE:
3441 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3442 && !(TYPE_VALUES (a->type)
3443 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3444 && TYPE_VALUES (b->type)
3445 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3446 && type_list_equal (TYPE_VALUES (a->type),
3447 TYPE_VALUES (b->type))))
3448 return 0;
3449
3450 /* ... fall through ... */
3451
3452 case INTEGER_TYPE:
3453 case REAL_TYPE:
3454 case BOOLEAN_TYPE:
3455 case CHAR_TYPE:
3456 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3457 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3458 TYPE_MAX_VALUE (b->type)))
3459 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3460 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3461 TYPE_MIN_VALUE (b->type))));
3462
3463 case OFFSET_TYPE:
3464 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3465
3466 case METHOD_TYPE:
3467 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3468 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3469 || (TYPE_ARG_TYPES (a->type)
3470 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3471 && TYPE_ARG_TYPES (b->type)
3472 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3473 && type_list_equal (TYPE_ARG_TYPES (a->type),
3474 TYPE_ARG_TYPES (b->type)))));
3475
3476 case ARRAY_TYPE:
3477 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3478
3479 case RECORD_TYPE:
3480 case UNION_TYPE:
3481 case QUAL_UNION_TYPE:
3482 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3483 || (TYPE_FIELDS (a->type)
3484 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3485 && TYPE_FIELDS (b->type)
3486 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3487 && type_list_equal (TYPE_FIELDS (a->type),
3488 TYPE_FIELDS (b->type))));
3489
3490 case FUNCTION_TYPE:
3491 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3492 || (TYPE_ARG_TYPES (a->type)
3493 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3494 && TYPE_ARG_TYPES (b->type)
3495 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3496 && type_list_equal (TYPE_ARG_TYPES (a->type),
3497 TYPE_ARG_TYPES (b->type))));
3498
3499 default:
3500 return 0;
3501 }
3502 }
3503
3504 /* Return the cached hash value. */
3505
3506 static hashval_t
3507 type_hash_hash (const void *item)
3508 {
3509 return ((const struct type_hash *) item)->hash;
3510 }
3511
3512 /* Look in the type hash table for a type isomorphic to TYPE.
3513 If one is found, return it. Otherwise return 0. */
3514
3515 tree
3516 type_hash_lookup (hashval_t hashcode, tree type)
3517 {
3518 struct type_hash *h, in;
3519
3520 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3521 must call that routine before comparing TYPE_ALIGNs. */
3522 layout_type (type);
3523
3524 in.hash = hashcode;
3525 in.type = type;
3526
3527 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3528 if (h)
3529 return h->type;
3530 return NULL_TREE;
3531 }
3532
3533 /* Add an entry to the type-hash-table
3534 for a type TYPE whose hash code is HASHCODE. */
3535
3536 void
3537 type_hash_add (hashval_t hashcode, tree type)
3538 {
3539 struct type_hash *h;
3540 void **loc;
3541
3542 h = ggc_alloc (sizeof (struct type_hash));
3543 h->hash = hashcode;
3544 h->type = type;
3545 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3546 *(struct type_hash **) loc = h;
3547 }
3548
3549 /* Given TYPE, and HASHCODE its hash code, return the canonical
3550 object for an identical type if one already exists.
3551 Otherwise, return TYPE, and record it as the canonical object.
3552
3553 To use this function, first create a type of the sort you want.
3554 Then compute its hash code from the fields of the type that
3555 make it different from other similar types.
3556 Then call this function and use the value. */
3557
3558 tree
3559 type_hash_canon (unsigned int hashcode, tree type)
3560 {
3561 tree t1;
3562
3563 /* The hash table only contains main variants, so ensure that's what we're
3564 being passed. */
3565 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
3566
3567 if (!lang_hooks.types.hash_types)
3568 return type;
3569
3570 /* See if the type is in the hash table already. If so, return it.
3571 Otherwise, add the type. */
3572 t1 = type_hash_lookup (hashcode, type);
3573 if (t1 != 0)
3574 {
3575 #ifdef GATHER_STATISTICS
3576 tree_node_counts[(int) t_kind]--;
3577 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3578 #endif
3579 return t1;
3580 }
3581 else
3582 {
3583 type_hash_add (hashcode, type);
3584 return type;
3585 }
3586 }
3587
3588 /* See if the data pointed to by the type hash table is marked. We consider
3589 it marked if the type is marked or if a debug type number or symbol
3590 table entry has been made for the type. This reduces the amount of
3591 debugging output and eliminates that dependency of the debug output on
3592 the number of garbage collections. */
3593
3594 static int
3595 type_hash_marked_p (const void *p)
3596 {
3597 tree type = ((struct type_hash *) p)->type;
3598
3599 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3600 }
3601
3602 static void
3603 print_type_hash_statistics (void)
3604 {
3605 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3606 (long) htab_size (type_hash_table),
3607 (long) htab_elements (type_hash_table),
3608 htab_collisions (type_hash_table));
3609 }
3610
3611 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3612 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3613 by adding the hash codes of the individual attributes. */
3614
3615 unsigned int
3616 attribute_hash_list (tree list, hashval_t hashcode)
3617 {
3618 tree tail;
3619
3620 for (tail = list; tail; tail = TREE_CHAIN (tail))
3621 /* ??? Do we want to add in TREE_VALUE too? */
3622 hashcode = iterative_hash_object
3623 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3624 return hashcode;
3625 }
3626
3627 /* Given two lists of attributes, return true if list l2 is
3628 equivalent to l1. */
3629
3630 int
3631 attribute_list_equal (tree l1, tree l2)
3632 {
3633 return attribute_list_contained (l1, l2)
3634 && attribute_list_contained (l2, l1);
3635 }
3636
3637 /* Given two lists of attributes, return true if list L2 is
3638 completely contained within L1. */
3639 /* ??? This would be faster if attribute names were stored in a canonicalized
3640 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3641 must be used to show these elements are equivalent (which they are). */
3642 /* ??? It's not clear that attributes with arguments will always be handled
3643 correctly. */
3644
3645 int
3646 attribute_list_contained (tree l1, tree l2)
3647 {
3648 tree t1, t2;
3649
3650 /* First check the obvious, maybe the lists are identical. */
3651 if (l1 == l2)
3652 return 1;
3653
3654 /* Maybe the lists are similar. */
3655 for (t1 = l1, t2 = l2;
3656 t1 != 0 && t2 != 0
3657 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3658 && TREE_VALUE (t1) == TREE_VALUE (t2);
3659 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3660
3661 /* Maybe the lists are equal. */
3662 if (t1 == 0 && t2 == 0)
3663 return 1;
3664
3665 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3666 {
3667 tree attr;
3668 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3669 attr != NULL_TREE;
3670 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3671 TREE_CHAIN (attr)))
3672 {
3673 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3674 break;
3675 }
3676
3677 if (attr == 0)
3678 return 0;
3679
3680 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3681 return 0;
3682 }
3683
3684 return 1;
3685 }
3686
3687 /* Given two lists of types
3688 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3689 return 1 if the lists contain the same types in the same order.
3690 Also, the TREE_PURPOSEs must match. */
3691
3692 int
3693 type_list_equal (tree l1, tree l2)
3694 {
3695 tree t1, t2;
3696
3697 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3698 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3699 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3700 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3701 && (TREE_TYPE (TREE_PURPOSE (t1))
3702 == TREE_TYPE (TREE_PURPOSE (t2))))))
3703 return 0;
3704
3705 return t1 == t2;
3706 }
3707
3708 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3709 given by TYPE. If the argument list accepts variable arguments,
3710 then this function counts only the ordinary arguments. */
3711
3712 int
3713 type_num_arguments (tree type)
3714 {
3715 int i = 0;
3716 tree t;
3717
3718 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3719 /* If the function does not take a variable number of arguments,
3720 the last element in the list will have type `void'. */
3721 if (VOID_TYPE_P (TREE_VALUE (t)))
3722 break;
3723 else
3724 ++i;
3725
3726 return i;
3727 }
3728
3729 /* Nonzero if integer constants T1 and T2
3730 represent the same constant value. */
3731
3732 int
3733 tree_int_cst_equal (tree t1, tree t2)
3734 {
3735 if (t1 == t2)
3736 return 1;
3737
3738 if (t1 == 0 || t2 == 0)
3739 return 0;
3740
3741 if (TREE_CODE (t1) == INTEGER_CST
3742 && TREE_CODE (t2) == INTEGER_CST
3743 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3744 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3745 return 1;
3746
3747 return 0;
3748 }
3749
3750 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3751 The precise way of comparison depends on their data type. */
3752
3753 int
3754 tree_int_cst_lt (tree t1, tree t2)
3755 {
3756 if (t1 == t2)
3757 return 0;
3758
3759 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3760 {
3761 int t1_sgn = tree_int_cst_sgn (t1);
3762 int t2_sgn = tree_int_cst_sgn (t2);
3763
3764 if (t1_sgn < t2_sgn)
3765 return 1;
3766 else if (t1_sgn > t2_sgn)
3767 return 0;
3768 /* Otherwise, both are non-negative, so we compare them as
3769 unsigned just in case one of them would overflow a signed
3770 type. */
3771 }
3772 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3773 return INT_CST_LT (t1, t2);
3774
3775 return INT_CST_LT_UNSIGNED (t1, t2);
3776 }
3777
3778 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3779
3780 int
3781 tree_int_cst_compare (tree t1, tree t2)
3782 {
3783 if (tree_int_cst_lt (t1, t2))
3784 return -1;
3785 else if (tree_int_cst_lt (t2, t1))
3786 return 1;
3787 else
3788 return 0;
3789 }
3790
3791 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3792 the host. If POS is zero, the value can be represented in a single
3793 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3794 be represented in a single unsigned HOST_WIDE_INT. */
3795
3796 int
3797 host_integerp (tree t, int pos)
3798 {
3799 return (TREE_CODE (t) == INTEGER_CST
3800 && ! TREE_OVERFLOW (t)
3801 && ((TREE_INT_CST_HIGH (t) == 0
3802 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3803 || (! pos && TREE_INT_CST_HIGH (t) == -1
3804 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3805 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3806 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3807 }
3808
3809 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3810 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3811 be positive. Abort if we cannot satisfy the above conditions. */
3812
3813 HOST_WIDE_INT
3814 tree_low_cst (tree t, int pos)
3815 {
3816 gcc_assert (host_integerp (t, pos));
3817 return TREE_INT_CST_LOW (t);
3818 }
3819
3820 /* Return the most significant bit of the integer constant T. */
3821
3822 int
3823 tree_int_cst_msb (tree t)
3824 {
3825 int prec;
3826 HOST_WIDE_INT h;
3827 unsigned HOST_WIDE_INT l;
3828
3829 /* Note that using TYPE_PRECISION here is wrong. We care about the
3830 actual bits, not the (arbitrary) range of the type. */
3831 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3832 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3833 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3834 return (l & 1) == 1;
3835 }
3836
3837 /* Return an indication of the sign of the integer constant T.
3838 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3839 Note that -1 will never be returned it T's type is unsigned. */
3840
3841 int
3842 tree_int_cst_sgn (tree t)
3843 {
3844 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3845 return 0;
3846 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3847 return 1;
3848 else if (TREE_INT_CST_HIGH (t) < 0)
3849 return -1;
3850 else
3851 return 1;
3852 }
3853
3854 /* Compare two constructor-element-type constants. Return 1 if the lists
3855 are known to be equal; otherwise return 0. */
3856
3857 int
3858 simple_cst_list_equal (tree l1, tree l2)
3859 {
3860 while (l1 != NULL_TREE && l2 != NULL_TREE)
3861 {
3862 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3863 return 0;
3864
3865 l1 = TREE_CHAIN (l1);
3866 l2 = TREE_CHAIN (l2);
3867 }
3868
3869 return l1 == l2;
3870 }
3871
3872 /* Return truthvalue of whether T1 is the same tree structure as T2.
3873 Return 1 if they are the same.
3874 Return 0 if they are understandably different.
3875 Return -1 if either contains tree structure not understood by
3876 this function. */
3877
3878 int
3879 simple_cst_equal (tree t1, tree t2)
3880 {
3881 enum tree_code code1, code2;
3882 int cmp;
3883 int i;
3884
3885 if (t1 == t2)
3886 return 1;
3887 if (t1 == 0 || t2 == 0)
3888 return 0;
3889
3890 code1 = TREE_CODE (t1);
3891 code2 = TREE_CODE (t2);
3892
3893 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3894 {
3895 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3896 || code2 == NON_LVALUE_EXPR)
3897 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3898 else
3899 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3900 }
3901
3902 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3903 || code2 == NON_LVALUE_EXPR)
3904 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3905
3906 if (code1 != code2)
3907 return 0;
3908
3909 switch (code1)
3910 {
3911 case INTEGER_CST:
3912 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3913 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3914
3915 case REAL_CST:
3916 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3917
3918 case STRING_CST:
3919 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3920 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3921 TREE_STRING_LENGTH (t1)));
3922
3923 case CONSTRUCTOR:
3924 return simple_cst_list_equal (CONSTRUCTOR_ELTS (t1),
3925 CONSTRUCTOR_ELTS (t2));
3926
3927 case SAVE_EXPR:
3928 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3929
3930 case CALL_EXPR:
3931 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3932 if (cmp <= 0)
3933 return cmp;
3934 return
3935 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3936
3937 case TARGET_EXPR:
3938 /* Special case: if either target is an unallocated VAR_DECL,
3939 it means that it's going to be unified with whatever the
3940 TARGET_EXPR is really supposed to initialize, so treat it
3941 as being equivalent to anything. */
3942 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3943 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3944 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3945 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3946 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3947 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3948 cmp = 1;
3949 else
3950 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3951
3952 if (cmp <= 0)
3953 return cmp;
3954
3955 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3956
3957 case WITH_CLEANUP_EXPR:
3958 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3959 if (cmp <= 0)
3960 return cmp;
3961
3962 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3963
3964 case COMPONENT_REF:
3965 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3966 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3967
3968 return 0;
3969
3970 case VAR_DECL:
3971 case PARM_DECL:
3972 case CONST_DECL:
3973 case FUNCTION_DECL:
3974 return 0;
3975
3976 default:
3977 break;
3978 }
3979
3980 /* This general rule works for most tree codes. All exceptions should be
3981 handled above. If this is a language-specific tree code, we can't
3982 trust what might be in the operand, so say we don't know
3983 the situation. */
3984 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3985 return -1;
3986
3987 switch (TREE_CODE_CLASS (code1))
3988 {
3989 case tcc_unary:
3990 case tcc_binary:
3991 case tcc_comparison:
3992 case tcc_expression:
3993 case tcc_reference:
3994 case tcc_statement:
3995 cmp = 1;
3996 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3997 {
3998 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3999 if (cmp <= 0)
4000 return cmp;
4001 }
4002
4003 return cmp;
4004
4005 default:
4006 return -1;
4007 }
4008 }
4009
4010 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4011 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4012 than U, respectively. */
4013
4014 int
4015 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4016 {
4017 if (tree_int_cst_sgn (t) < 0)
4018 return -1;
4019 else if (TREE_INT_CST_HIGH (t) != 0)
4020 return 1;
4021 else if (TREE_INT_CST_LOW (t) == u)
4022 return 0;
4023 else if (TREE_INT_CST_LOW (t) < u)
4024 return -1;
4025 else
4026 return 1;
4027 }
4028
4029 /* Return true if CODE represents an associative tree code. Otherwise
4030 return false. */
4031 bool
4032 associative_tree_code (enum tree_code code)
4033 {
4034 switch (code)
4035 {
4036 case BIT_IOR_EXPR:
4037 case BIT_AND_EXPR:
4038 case BIT_XOR_EXPR:
4039 case PLUS_EXPR:
4040 case MULT_EXPR:
4041 case MIN_EXPR:
4042 case MAX_EXPR:
4043 return true;
4044
4045 default:
4046 break;
4047 }
4048 return false;
4049 }
4050
4051 /* Return true if CODE represents a commutative tree code. Otherwise
4052 return false. */
4053 bool
4054 commutative_tree_code (enum tree_code code)
4055 {
4056 switch (code)
4057 {
4058 case PLUS_EXPR:
4059 case MULT_EXPR:
4060 case MIN_EXPR:
4061 case MAX_EXPR:
4062 case BIT_IOR_EXPR:
4063 case BIT_XOR_EXPR:
4064 case BIT_AND_EXPR:
4065 case NE_EXPR:
4066 case EQ_EXPR:
4067 case UNORDERED_EXPR:
4068 case ORDERED_EXPR:
4069 case UNEQ_EXPR:
4070 case LTGT_EXPR:
4071 case TRUTH_AND_EXPR:
4072 case TRUTH_XOR_EXPR:
4073 case TRUTH_OR_EXPR:
4074 return true;
4075
4076 default:
4077 break;
4078 }
4079 return false;
4080 }
4081
4082 /* Generate a hash value for an expression. This can be used iteratively
4083 by passing a previous result as the "val" argument.
4084
4085 This function is intended to produce the same hash for expressions which
4086 would compare equal using operand_equal_p. */
4087
4088 hashval_t
4089 iterative_hash_expr (tree t, hashval_t val)
4090 {
4091 int i;
4092 enum tree_code code;
4093 char class;
4094
4095 if (t == NULL_TREE)
4096 return iterative_hash_pointer (t, val);
4097
4098 code = TREE_CODE (t);
4099
4100 switch (code)
4101 {
4102 /* Alas, constants aren't shared, so we can't rely on pointer
4103 identity. */
4104 case INTEGER_CST:
4105 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4106 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4107 case REAL_CST:
4108 {
4109 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4110
4111 return iterative_hash_hashval_t (val2, val);
4112 }
4113 case STRING_CST:
4114 return iterative_hash (TREE_STRING_POINTER (t),
4115 TREE_STRING_LENGTH (t), val);
4116 case COMPLEX_CST:
4117 val = iterative_hash_expr (TREE_REALPART (t), val);
4118 return iterative_hash_expr (TREE_IMAGPART (t), val);
4119 case VECTOR_CST:
4120 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4121
4122 case SSA_NAME:
4123 case VALUE_HANDLE:
4124 /* we can just compare by pointer. */
4125 return iterative_hash_pointer (t, val);
4126
4127 case TREE_LIST:
4128 /* A list of expressions, for a CALL_EXPR or as the elements of a
4129 VECTOR_CST. */
4130 for (; t; t = TREE_CHAIN (t))
4131 val = iterative_hash_expr (TREE_VALUE (t), val);
4132 return val;
4133 case FUNCTION_DECL:
4134 /* When referring to a built-in FUNCTION_DECL, use the
4135 __builtin__ form. Otherwise nodes that compare equal
4136 according to operand_equal_p might get different
4137 hash codes. */
4138 if (DECL_BUILT_IN (t))
4139 {
4140 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
4141 val);
4142 return val;
4143 }
4144 /* else FALL THROUGH */
4145 default:
4146 class = TREE_CODE_CLASS (code);
4147
4148 if (class == tcc_declaration)
4149 {
4150 /* Otherwise, we can just compare decls by pointer. */
4151 val = iterative_hash_pointer (t, val);
4152 }
4153 else
4154 {
4155 gcc_assert (IS_EXPR_CODE_CLASS (class));
4156
4157 val = iterative_hash_object (code, val);
4158
4159 /* Don't hash the type, that can lead to having nodes which
4160 compare equal according to operand_equal_p, but which
4161 have different hash codes. */
4162 if (code == NOP_EXPR
4163 || code == CONVERT_EXPR
4164 || code == NON_LVALUE_EXPR)
4165 {
4166 /* Make sure to include signness in the hash computation. */
4167 val += TYPE_UNSIGNED (TREE_TYPE (t));
4168 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4169 }
4170
4171 else if (commutative_tree_code (code))
4172 {
4173 /* It's a commutative expression. We want to hash it the same
4174 however it appears. We do this by first hashing both operands
4175 and then rehashing based on the order of their independent
4176 hashes. */
4177 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4178 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4179 hashval_t t;
4180
4181 if (one > two)
4182 t = one, one = two, two = t;
4183
4184 val = iterative_hash_hashval_t (one, val);
4185 val = iterative_hash_hashval_t (two, val);
4186 }
4187 else
4188 for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4189 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4190 }
4191 return val;
4192 break;
4193 }
4194 }
4195 \f
4196 /* Constructors for pointer, array and function types.
4197 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4198 constructed by language-dependent code, not here.) */
4199
4200 /* Construct, lay out and return the type of pointers to TO_TYPE with
4201 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4202 reference all of memory. If such a type has already been
4203 constructed, reuse it. */
4204
4205 tree
4206 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4207 bool can_alias_all)
4208 {
4209 tree t;
4210
4211 /* In some cases, languages will have things that aren't a POINTER_TYPE
4212 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4213 In that case, return that type without regard to the rest of our
4214 operands.
4215
4216 ??? This is a kludge, but consistent with the way this function has
4217 always operated and there doesn't seem to be a good way to avoid this
4218 at the moment. */
4219 if (TYPE_POINTER_TO (to_type) != 0
4220 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4221 return TYPE_POINTER_TO (to_type);
4222
4223 /* First, if we already have a type for pointers to TO_TYPE and it's
4224 the proper mode, use it. */
4225 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4226 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4227 return t;
4228
4229 t = make_node (POINTER_TYPE);
4230
4231 TREE_TYPE (t) = to_type;
4232 TYPE_MODE (t) = mode;
4233 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4234 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4235 TYPE_POINTER_TO (to_type) = t;
4236
4237 /* Lay out the type. This function has many callers that are concerned
4238 with expression-construction, and this simplifies them all. */
4239 layout_type (t);
4240
4241 return t;
4242 }
4243
4244 /* By default build pointers in ptr_mode. */
4245
4246 tree
4247 build_pointer_type (tree to_type)
4248 {
4249 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4250 }
4251
4252 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4253
4254 tree
4255 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4256 bool can_alias_all)
4257 {
4258 tree t;
4259
4260 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4261 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4262 In that case, return that type without regard to the rest of our
4263 operands.
4264
4265 ??? This is a kludge, but consistent with the way this function has
4266 always operated and there doesn't seem to be a good way to avoid this
4267 at the moment. */
4268 if (TYPE_REFERENCE_TO (to_type) != 0
4269 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4270 return TYPE_REFERENCE_TO (to_type);
4271
4272 /* First, if we already have a type for pointers to TO_TYPE and it's
4273 the proper mode, use it. */
4274 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4275 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4276 return t;
4277
4278 t = make_node (REFERENCE_TYPE);
4279
4280 TREE_TYPE (t) = to_type;
4281 TYPE_MODE (t) = mode;
4282 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4283 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4284 TYPE_REFERENCE_TO (to_type) = t;
4285
4286 layout_type (t);
4287
4288 return t;
4289 }
4290
4291
4292 /* Build the node for the type of references-to-TO_TYPE by default
4293 in ptr_mode. */
4294
4295 tree
4296 build_reference_type (tree to_type)
4297 {
4298 return build_reference_type_for_mode (to_type, ptr_mode, false);
4299 }
4300
4301 /* Build a type that is compatible with t but has no cv quals anywhere
4302 in its type, thus
4303
4304 const char *const *const * -> char ***. */
4305
4306 tree
4307 build_type_no_quals (tree t)
4308 {
4309 switch (TREE_CODE (t))
4310 {
4311 case POINTER_TYPE:
4312 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4313 TYPE_MODE (t),
4314 TYPE_REF_CAN_ALIAS_ALL (t));
4315 case REFERENCE_TYPE:
4316 return
4317 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4318 TYPE_MODE (t),
4319 TYPE_REF_CAN_ALIAS_ALL (t));
4320 default:
4321 return TYPE_MAIN_VARIANT (t);
4322 }
4323 }
4324
4325 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4326 MAXVAL should be the maximum value in the domain
4327 (one less than the length of the array).
4328
4329 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4330 We don't enforce this limit, that is up to caller (e.g. language front end).
4331 The limit exists because the result is a signed type and we don't handle
4332 sizes that use more than one HOST_WIDE_INT. */
4333
4334 tree
4335 build_index_type (tree maxval)
4336 {
4337 tree itype = make_node (INTEGER_TYPE);
4338
4339 TREE_TYPE (itype) = sizetype;
4340 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4341 TYPE_MIN_VALUE (itype) = size_zero_node;
4342 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
4343 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4344 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4345 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4346 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4347 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4348
4349 if (host_integerp (maxval, 1))
4350 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4351 else
4352 return itype;
4353 }
4354
4355 /* Builds a signed or unsigned integer type of precision PRECISION.
4356 Used for C bitfields whose precision does not match that of
4357 built-in target types. */
4358 tree
4359 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4360 int unsignedp)
4361 {
4362 tree itype = make_node (INTEGER_TYPE);
4363
4364 TYPE_PRECISION (itype) = precision;
4365
4366 if (unsignedp)
4367 fixup_unsigned_type (itype);
4368 else
4369 fixup_signed_type (itype);
4370
4371 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4372 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4373
4374 return itype;
4375 }
4376
4377 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4378 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4379 low bound LOWVAL and high bound HIGHVAL.
4380 if TYPE==NULL_TREE, sizetype is used. */
4381
4382 tree
4383 build_range_type (tree type, tree lowval, tree highval)
4384 {
4385 tree itype = make_node (INTEGER_TYPE);
4386
4387 TREE_TYPE (itype) = type;
4388 if (type == NULL_TREE)
4389 type = sizetype;
4390
4391 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4392 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4393
4394 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4395 TYPE_MODE (itype) = TYPE_MODE (type);
4396 TYPE_SIZE (itype) = TYPE_SIZE (type);
4397 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4398 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4399 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4400
4401 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4402 return type_hash_canon (tree_low_cst (highval, 0)
4403 - tree_low_cst (lowval, 0),
4404 itype);
4405 else
4406 return itype;
4407 }
4408
4409 /* Just like build_index_type, but takes lowval and highval instead
4410 of just highval (maxval). */
4411
4412 tree
4413 build_index_2_type (tree lowval, tree highval)
4414 {
4415 return build_range_type (sizetype, lowval, highval);
4416 }
4417
4418 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4419 and number of elements specified by the range of values of INDEX_TYPE.
4420 If such a type has already been constructed, reuse it. */
4421
4422 tree
4423 build_array_type (tree elt_type, tree index_type)
4424 {
4425 tree t;
4426 hashval_t hashcode = 0;
4427
4428 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4429 {
4430 error ("arrays of functions are not meaningful");
4431 elt_type = integer_type_node;
4432 }
4433
4434 t = make_node (ARRAY_TYPE);
4435 TREE_TYPE (t) = elt_type;
4436 TYPE_DOMAIN (t) = index_type;
4437
4438 if (index_type == 0)
4439 {
4440 layout_type (t);
4441 return t;
4442 }
4443
4444 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4445 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4446 t = type_hash_canon (hashcode, t);
4447
4448 if (!COMPLETE_TYPE_P (t))
4449 layout_type (t);
4450 return t;
4451 }
4452
4453 /* Return the TYPE of the elements comprising
4454 the innermost dimension of ARRAY. */
4455
4456 tree
4457 get_inner_array_type (tree array)
4458 {
4459 tree type = TREE_TYPE (array);
4460
4461 while (TREE_CODE (type) == ARRAY_TYPE)
4462 type = TREE_TYPE (type);
4463
4464 return type;
4465 }
4466
4467 /* Construct, lay out and return
4468 the type of functions returning type VALUE_TYPE
4469 given arguments of types ARG_TYPES.
4470 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4471 are data type nodes for the arguments of the function.
4472 If such a type has already been constructed, reuse it. */
4473
4474 tree
4475 build_function_type (tree value_type, tree arg_types)
4476 {
4477 tree t;
4478 hashval_t hashcode = 0;
4479
4480 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4481 {
4482 error ("function return type cannot be function");
4483 value_type = integer_type_node;
4484 }
4485
4486 /* Make a node of the sort we want. */
4487 t = make_node (FUNCTION_TYPE);
4488 TREE_TYPE (t) = value_type;
4489 TYPE_ARG_TYPES (t) = arg_types;
4490
4491 /* If we already have such a type, use the old one. */
4492 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4493 hashcode = type_hash_list (arg_types, hashcode);
4494 t = type_hash_canon (hashcode, t);
4495
4496 if (!COMPLETE_TYPE_P (t))
4497 layout_type (t);
4498 return t;
4499 }
4500
4501 /* Build a function type. The RETURN_TYPE is the type returned by the
4502 function. If additional arguments are provided, they are
4503 additional argument types. The list of argument types must always
4504 be terminated by NULL_TREE. */
4505
4506 tree
4507 build_function_type_list (tree return_type, ...)
4508 {
4509 tree t, args, last;
4510 va_list p;
4511
4512 va_start (p, return_type);
4513
4514 t = va_arg (p, tree);
4515 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4516 args = tree_cons (NULL_TREE, t, args);
4517
4518 last = args;
4519 args = nreverse (args);
4520 TREE_CHAIN (last) = void_list_node;
4521 args = build_function_type (return_type, args);
4522
4523 va_end (p);
4524 return args;
4525 }
4526
4527 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4528 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4529 for the method. An implicit additional parameter (of type
4530 pointer-to-BASETYPE) is added to the ARGTYPES. */
4531
4532 tree
4533 build_method_type_directly (tree basetype,
4534 tree rettype,
4535 tree argtypes)
4536 {
4537 tree t;
4538 tree ptype;
4539 int hashcode = 0;
4540
4541 /* Make a node of the sort we want. */
4542 t = make_node (METHOD_TYPE);
4543
4544 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4545 TREE_TYPE (t) = rettype;
4546 ptype = build_pointer_type (basetype);
4547
4548 /* The actual arglist for this function includes a "hidden" argument
4549 which is "this". Put it into the list of argument types. */
4550 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4551 TYPE_ARG_TYPES (t) = argtypes;
4552
4553 /* If we already have such a type, use the old one. */
4554 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4555 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4556 hashcode = type_hash_list (argtypes, hashcode);
4557 t = type_hash_canon (hashcode, t);
4558
4559 if (!COMPLETE_TYPE_P (t))
4560 layout_type (t);
4561
4562 return t;
4563 }
4564
4565 /* Construct, lay out and return the type of methods belonging to class
4566 BASETYPE and whose arguments and values are described by TYPE.
4567 If that type exists already, reuse it.
4568 TYPE must be a FUNCTION_TYPE node. */
4569
4570 tree
4571 build_method_type (tree basetype, tree type)
4572 {
4573 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
4574
4575 return build_method_type_directly (basetype,
4576 TREE_TYPE (type),
4577 TYPE_ARG_TYPES (type));
4578 }
4579
4580 /* Construct, lay out and return the type of offsets to a value
4581 of type TYPE, within an object of type BASETYPE.
4582 If a suitable offset type exists already, reuse it. */
4583
4584 tree
4585 build_offset_type (tree basetype, tree type)
4586 {
4587 tree t;
4588 hashval_t hashcode = 0;
4589
4590 /* Make a node of the sort we want. */
4591 t = make_node (OFFSET_TYPE);
4592
4593 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4594 TREE_TYPE (t) = type;
4595
4596 /* If we already have such a type, use the old one. */
4597 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4598 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4599 t = type_hash_canon (hashcode, t);
4600
4601 if (!COMPLETE_TYPE_P (t))
4602 layout_type (t);
4603
4604 return t;
4605 }
4606
4607 /* Create a complex type whose components are COMPONENT_TYPE. */
4608
4609 tree
4610 build_complex_type (tree component_type)
4611 {
4612 tree t;
4613 hashval_t hashcode;
4614
4615 /* Make a node of the sort we want. */
4616 t = make_node (COMPLEX_TYPE);
4617
4618 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4619
4620 /* If we already have such a type, use the old one. */
4621 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4622 t = type_hash_canon (hashcode, t);
4623
4624 if (!COMPLETE_TYPE_P (t))
4625 layout_type (t);
4626
4627 /* If we are writing Dwarf2 output we need to create a name,
4628 since complex is a fundamental type. */
4629 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4630 && ! TYPE_NAME (t))
4631 {
4632 const char *name;
4633 if (component_type == char_type_node)
4634 name = "complex char";
4635 else if (component_type == signed_char_type_node)
4636 name = "complex signed char";
4637 else if (component_type == unsigned_char_type_node)
4638 name = "complex unsigned char";
4639 else if (component_type == short_integer_type_node)
4640 name = "complex short int";
4641 else if (component_type == short_unsigned_type_node)
4642 name = "complex short unsigned int";
4643 else if (component_type == integer_type_node)
4644 name = "complex int";
4645 else if (component_type == unsigned_type_node)
4646 name = "complex unsigned int";
4647 else if (component_type == long_integer_type_node)
4648 name = "complex long int";
4649 else if (component_type == long_unsigned_type_node)
4650 name = "complex long unsigned int";
4651 else if (component_type == long_long_integer_type_node)
4652 name = "complex long long int";
4653 else if (component_type == long_long_unsigned_type_node)
4654 name = "complex long long unsigned int";
4655 else
4656 name = 0;
4657
4658 if (name != 0)
4659 TYPE_NAME (t) = get_identifier (name);
4660 }
4661
4662 return build_qualified_type (t, TYPE_QUALS (component_type));
4663 }
4664 \f
4665 /* Return OP, stripped of any conversions to wider types as much as is safe.
4666 Converting the value back to OP's type makes a value equivalent to OP.
4667
4668 If FOR_TYPE is nonzero, we return a value which, if converted to
4669 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4670
4671 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4672 narrowest type that can hold the value, even if they don't exactly fit.
4673 Otherwise, bit-field references are changed to a narrower type
4674 only if they can be fetched directly from memory in that type.
4675
4676 OP must have integer, real or enumeral type. Pointers are not allowed!
4677
4678 There are some cases where the obvious value we could return
4679 would regenerate to OP if converted to OP's type,
4680 but would not extend like OP to wider types.
4681 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4682 For example, if OP is (unsigned short)(signed char)-1,
4683 we avoid returning (signed char)-1 if FOR_TYPE is int,
4684 even though extending that to an unsigned short would regenerate OP,
4685 since the result of extending (signed char)-1 to (int)
4686 is different from (int) OP. */
4687
4688 tree
4689 get_unwidened (tree op, tree for_type)
4690 {
4691 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4692 tree type = TREE_TYPE (op);
4693 unsigned final_prec
4694 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4695 int uns
4696 = (for_type != 0 && for_type != type
4697 && final_prec > TYPE_PRECISION (type)
4698 && TYPE_UNSIGNED (type));
4699 tree win = op;
4700
4701 while (TREE_CODE (op) == NOP_EXPR)
4702 {
4703 int bitschange
4704 = TYPE_PRECISION (TREE_TYPE (op))
4705 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4706
4707 /* Truncations are many-one so cannot be removed.
4708 Unless we are later going to truncate down even farther. */
4709 if (bitschange < 0
4710 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4711 break;
4712
4713 /* See what's inside this conversion. If we decide to strip it,
4714 we will set WIN. */
4715 op = TREE_OPERAND (op, 0);
4716
4717 /* If we have not stripped any zero-extensions (uns is 0),
4718 we can strip any kind of extension.
4719 If we have previously stripped a zero-extension,
4720 only zero-extensions can safely be stripped.
4721 Any extension can be stripped if the bits it would produce
4722 are all going to be discarded later by truncating to FOR_TYPE. */
4723
4724 if (bitschange > 0)
4725 {
4726 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4727 win = op;
4728 /* TYPE_UNSIGNED says whether this is a zero-extension.
4729 Let's avoid computing it if it does not affect WIN
4730 and if UNS will not be needed again. */
4731 if ((uns || TREE_CODE (op) == NOP_EXPR)
4732 && TYPE_UNSIGNED (TREE_TYPE (op)))
4733 {
4734 uns = 1;
4735 win = op;
4736 }
4737 }
4738 }
4739
4740 if (TREE_CODE (op) == COMPONENT_REF
4741 /* Since type_for_size always gives an integer type. */
4742 && TREE_CODE (type) != REAL_TYPE
4743 /* Don't crash if field not laid out yet. */
4744 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4745 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4746 {
4747 unsigned int innerprec
4748 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4749 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4750 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4751 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4752
4753 /* We can get this structure field in the narrowest type it fits in.
4754 If FOR_TYPE is 0, do this only for a field that matches the
4755 narrower type exactly and is aligned for it
4756 The resulting extension to its nominal type (a fullword type)
4757 must fit the same conditions as for other extensions. */
4758
4759 if (type != 0
4760 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4761 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4762 && (! uns || final_prec <= innerprec || unsignedp))
4763 {
4764 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4765 TREE_OPERAND (op, 1), NULL_TREE);
4766 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4767 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4768 }
4769 }
4770
4771 return win;
4772 }
4773 \f
4774 /* Return OP or a simpler expression for a narrower value
4775 which can be sign-extended or zero-extended to give back OP.
4776 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4777 or 0 if the value should be sign-extended. */
4778
4779 tree
4780 get_narrower (tree op, int *unsignedp_ptr)
4781 {
4782 int uns = 0;
4783 int first = 1;
4784 tree win = op;
4785 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
4786
4787 while (TREE_CODE (op) == NOP_EXPR)
4788 {
4789 int bitschange
4790 = (TYPE_PRECISION (TREE_TYPE (op))
4791 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4792
4793 /* Truncations are many-one so cannot be removed. */
4794 if (bitschange < 0)
4795 break;
4796
4797 /* See what's inside this conversion. If we decide to strip it,
4798 we will set WIN. */
4799
4800 if (bitschange > 0)
4801 {
4802 op = TREE_OPERAND (op, 0);
4803 /* An extension: the outermost one can be stripped,
4804 but remember whether it is zero or sign extension. */
4805 if (first)
4806 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4807 /* Otherwise, if a sign extension has been stripped,
4808 only sign extensions can now be stripped;
4809 if a zero extension has been stripped, only zero-extensions. */
4810 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4811 break;
4812 first = 0;
4813 }
4814 else /* bitschange == 0 */
4815 {
4816 /* A change in nominal type can always be stripped, but we must
4817 preserve the unsignedness. */
4818 if (first)
4819 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4820 first = 0;
4821 op = TREE_OPERAND (op, 0);
4822 /* Keep trying to narrow, but don't assign op to win if it
4823 would turn an integral type into something else. */
4824 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
4825 continue;
4826 }
4827
4828 win = op;
4829 }
4830
4831 if (TREE_CODE (op) == COMPONENT_REF
4832 /* Since type_for_size always gives an integer type. */
4833 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4834 /* Ensure field is laid out already. */
4835 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4836 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4837 {
4838 unsigned HOST_WIDE_INT innerprec
4839 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4840 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4841 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4842 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4843
4844 /* We can get this structure field in a narrower type that fits it,
4845 but the resulting extension to its nominal type (a fullword type)
4846 must satisfy the same conditions as for other extensions.
4847
4848 Do this only for fields that are aligned (not bit-fields),
4849 because when bit-field insns will be used there is no
4850 advantage in doing this. */
4851
4852 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4853 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4854 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4855 && type != 0)
4856 {
4857 if (first)
4858 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4859 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4860 TREE_OPERAND (op, 1), NULL_TREE);
4861 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4862 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4863 }
4864 }
4865 *unsignedp_ptr = uns;
4866 return win;
4867 }
4868 \f
4869 /* Nonzero if integer constant C has a value that is permissible
4870 for type TYPE (an INTEGER_TYPE). */
4871
4872 int
4873 int_fits_type_p (tree c, tree type)
4874 {
4875 tree type_low_bound = TYPE_MIN_VALUE (type);
4876 tree type_high_bound = TYPE_MAX_VALUE (type);
4877 int ok_for_low_bound, ok_for_high_bound;
4878
4879 /* Perform some generic filtering first, which may allow making a decision
4880 even if the bounds are not constant. First, negative integers never fit
4881 in unsigned types, */
4882 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4883 return 0;
4884
4885 /* Second, narrower types always fit in wider ones. */
4886 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
4887 return 1;
4888
4889 /* Third, unsigned integers with top bit set never fit signed types. */
4890 if (! TYPE_UNSIGNED (type)
4891 && TYPE_UNSIGNED (TREE_TYPE (c))
4892 && tree_int_cst_msb (c))
4893 return 0;
4894
4895 /* If at least one bound of the type is a constant integer, we can check
4896 ourselves and maybe make a decision. If no such decision is possible, but
4897 this type is a subtype, try checking against that. Otherwise, use
4898 force_fit_type, which checks against the precision.
4899
4900 Compute the status for each possibly constant bound, and return if we see
4901 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4902 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4903 for "constant known to fit". */
4904
4905 ok_for_low_bound = -1;
4906 ok_for_high_bound = -1;
4907
4908 /* Check if C >= type_low_bound. */
4909 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4910 {
4911 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4912 if (! ok_for_low_bound)
4913 return 0;
4914 }
4915
4916 /* Check if c <= type_high_bound. */
4917 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4918 {
4919 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4920 if (! ok_for_high_bound)
4921 return 0;
4922 }
4923
4924 /* If the constant fits both bounds, the result is known. */
4925 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4926 return 1;
4927
4928 /* If we haven't been able to decide at this point, there nothing more we
4929 can check ourselves here. Look at the base type if we have one. */
4930 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4931 return int_fits_type_p (c, TREE_TYPE (type));
4932
4933 /* Or to force_fit_type, if nothing else. */
4934 else
4935 {
4936 tree n = copy_node (c);
4937 TREE_TYPE (n) = type;
4938 n = force_fit_type (n, -1, false, false);
4939 return TREE_INT_CST_HIGH (n) == TREE_INT_CST_HIGH (c)
4940 && TREE_INT_CST_LOW (n) == TREE_INT_CST_LOW (c);
4941 }
4942 }
4943
4944 /* Subprogram of following function. Called by walk_tree.
4945
4946 Return *TP if it is an automatic variable or parameter of the
4947 function passed in as DATA. */
4948
4949 static tree
4950 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
4951 {
4952 tree fn = (tree) data;
4953
4954 if (TYPE_P (*tp))
4955 *walk_subtrees = 0;
4956
4957 else if (DECL_P (*tp)
4958 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
4959 return *tp;
4960
4961 return NULL_TREE;
4962 }
4963
4964 /* Returns true if T is, contains, or refers to a type with variable
4965 size. If FN is nonzero, only return true if a modifier of the type
4966 or position of FN is a variable or parameter inside FN.
4967
4968 This concept is more general than that of C99 'variably modified types':
4969 in C99, a struct type is never variably modified because a VLA may not
4970 appear as a structure member. However, in GNU C code like:
4971
4972 struct S { int i[f()]; };
4973
4974 is valid, and other languages may define similar constructs. */
4975
4976 bool
4977 variably_modified_type_p (tree type, tree fn)
4978 {
4979 tree t;
4980
4981 /* Test if T is either variable (if FN is zero) or an expression containing
4982 a variable in FN. */
4983 #define RETURN_TRUE_IF_VAR(T) \
4984 do { tree _t = (T); \
4985 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
4986 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
4987 return true; } while (0)
4988
4989 if (type == error_mark_node)
4990 return false;
4991
4992 /* If TYPE itself has variable size, it is variably modified.
4993
4994 We do not yet have a representation of the C99 '[*]' syntax.
4995 When a representation is chosen, this function should be modified
4996 to test for that case as well. */
4997 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
4998 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
4999
5000 switch (TREE_CODE (type))
5001 {
5002 case POINTER_TYPE:
5003 case REFERENCE_TYPE:
5004 case ARRAY_TYPE:
5005 case VECTOR_TYPE:
5006 if (variably_modified_type_p (TREE_TYPE (type), fn))
5007 return true;
5008 break;
5009
5010 case FUNCTION_TYPE:
5011 case METHOD_TYPE:
5012 /* If TYPE is a function type, it is variably modified if any of the
5013 parameters or the return type are variably modified. */
5014 if (variably_modified_type_p (TREE_TYPE (type), fn))
5015 return true;
5016
5017 for (t = TYPE_ARG_TYPES (type);
5018 t && t != void_list_node;
5019 t = TREE_CHAIN (t))
5020 if (variably_modified_type_p (TREE_VALUE (t), fn))
5021 return true;
5022 break;
5023
5024 case INTEGER_TYPE:
5025 case REAL_TYPE:
5026 case ENUMERAL_TYPE:
5027 case BOOLEAN_TYPE:
5028 case CHAR_TYPE:
5029 /* Scalar types are variably modified if their end points
5030 aren't constant. */
5031 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5032 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5033 break;
5034
5035 case RECORD_TYPE:
5036 case UNION_TYPE:
5037 case QUAL_UNION_TYPE:
5038 /* We can't see if any of the field are variably-modified by the
5039 definition we normally use, since that would produce infinite
5040 recursion via pointers. */
5041 /* This is variably modified if some field's type is. */
5042 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5043 if (TREE_CODE (t) == FIELD_DECL)
5044 {
5045 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5046 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5047 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5048
5049 if (TREE_CODE (type) == QUAL_UNION_TYPE)
5050 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5051 }
5052 break;
5053
5054 default:
5055 break;
5056 }
5057
5058 /* The current language may have other cases to check, but in general,
5059 all other types are not variably modified. */
5060 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5061
5062 #undef RETURN_TRUE_IF_VAR
5063 }
5064
5065 /* Given a DECL or TYPE, return the scope in which it was declared, or
5066 NULL_TREE if there is no containing scope. */
5067
5068 tree
5069 get_containing_scope (tree t)
5070 {
5071 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5072 }
5073
5074 /* Return the innermost context enclosing DECL that is
5075 a FUNCTION_DECL, or zero if none. */
5076
5077 tree
5078 decl_function_context (tree decl)
5079 {
5080 tree context;
5081
5082 if (TREE_CODE (decl) == ERROR_MARK)
5083 return 0;
5084
5085 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5086 where we look up the function at runtime. Such functions always take
5087 a first argument of type 'pointer to real context'.
5088
5089 C++ should really be fixed to use DECL_CONTEXT for the real context,
5090 and use something else for the "virtual context". */
5091 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5092 context
5093 = TYPE_MAIN_VARIANT
5094 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5095 else
5096 context = DECL_CONTEXT (decl);
5097
5098 while (context && TREE_CODE (context) != FUNCTION_DECL)
5099 {
5100 if (TREE_CODE (context) == BLOCK)
5101 context = BLOCK_SUPERCONTEXT (context);
5102 else
5103 context = get_containing_scope (context);
5104 }
5105
5106 return context;
5107 }
5108
5109 /* Return the innermost context enclosing DECL that is
5110 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5111 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5112
5113 tree
5114 decl_type_context (tree decl)
5115 {
5116 tree context = DECL_CONTEXT (decl);
5117
5118 while (context)
5119 switch (TREE_CODE (context))
5120 {
5121 case NAMESPACE_DECL:
5122 case TRANSLATION_UNIT_DECL:
5123 return NULL_TREE;
5124
5125 case RECORD_TYPE:
5126 case UNION_TYPE:
5127 case QUAL_UNION_TYPE:
5128 return context;
5129
5130 case TYPE_DECL:
5131 case FUNCTION_DECL:
5132 context = DECL_CONTEXT (context);
5133 break;
5134
5135 case BLOCK:
5136 context = BLOCK_SUPERCONTEXT (context);
5137 break;
5138
5139 default:
5140 gcc_unreachable ();
5141 }
5142
5143 return NULL_TREE;
5144 }
5145
5146 /* CALL is a CALL_EXPR. Return the declaration for the function
5147 called, or NULL_TREE if the called function cannot be
5148 determined. */
5149
5150 tree
5151 get_callee_fndecl (tree call)
5152 {
5153 tree addr;
5154
5155 /* It's invalid to call this function with anything but a
5156 CALL_EXPR. */
5157 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5158
5159 /* The first operand to the CALL is the address of the function
5160 called. */
5161 addr = TREE_OPERAND (call, 0);
5162
5163 STRIP_NOPS (addr);
5164
5165 /* If this is a readonly function pointer, extract its initial value. */
5166 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5167 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5168 && DECL_INITIAL (addr))
5169 addr = DECL_INITIAL (addr);
5170
5171 /* If the address is just `&f' for some function `f', then we know
5172 that `f' is being called. */
5173 if (TREE_CODE (addr) == ADDR_EXPR
5174 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5175 return TREE_OPERAND (addr, 0);
5176
5177 /* We couldn't figure out what was being called. Maybe the front
5178 end has some idea. */
5179 return lang_hooks.lang_get_callee_fndecl (call);
5180 }
5181
5182 /* Print debugging information about tree nodes generated during the compile,
5183 and any language-specific information. */
5184
5185 void
5186 dump_tree_statistics (void)
5187 {
5188 #ifdef GATHER_STATISTICS
5189 int i;
5190 int total_nodes, total_bytes;
5191 #endif
5192
5193 fprintf (stderr, "\n??? tree nodes created\n\n");
5194 #ifdef GATHER_STATISTICS
5195 fprintf (stderr, "Kind Nodes Bytes\n");
5196 fprintf (stderr, "---------------------------------------\n");
5197 total_nodes = total_bytes = 0;
5198 for (i = 0; i < (int) all_kinds; i++)
5199 {
5200 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5201 tree_node_counts[i], tree_node_sizes[i]);
5202 total_nodes += tree_node_counts[i];
5203 total_bytes += tree_node_sizes[i];
5204 }
5205 fprintf (stderr, "---------------------------------------\n");
5206 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5207 fprintf (stderr, "---------------------------------------\n");
5208 ssanames_print_statistics ();
5209 phinodes_print_statistics ();
5210 #else
5211 fprintf (stderr, "(No per-node statistics)\n");
5212 #endif
5213 print_type_hash_statistics ();
5214 lang_hooks.print_statistics ();
5215 }
5216 \f
5217 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5218
5219 /* Generate a crc32 of a string. */
5220
5221 unsigned
5222 crc32_string (unsigned chksum, const char *string)
5223 {
5224 do
5225 {
5226 unsigned value = *string << 24;
5227 unsigned ix;
5228
5229 for (ix = 8; ix--; value <<= 1)
5230 {
5231 unsigned feedback;
5232
5233 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5234 chksum <<= 1;
5235 chksum ^= feedback;
5236 }
5237 }
5238 while (*string++);
5239 return chksum;
5240 }
5241
5242 /* P is a string that will be used in a symbol. Mask out any characters
5243 that are not valid in that context. */
5244
5245 void
5246 clean_symbol_name (char *p)
5247 {
5248 for (; *p; p++)
5249 if (! (ISALNUM (*p)
5250 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5251 || *p == '$'
5252 #endif
5253 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5254 || *p == '.'
5255 #endif
5256 ))
5257 *p = '_';
5258 }
5259
5260 /* Generate a name for a function unique to this translation unit.
5261 TYPE is some string to identify the purpose of this function to the
5262 linker or collect2. */
5263
5264 tree
5265 get_file_function_name_long (const char *type)
5266 {
5267 char *buf;
5268 const char *p;
5269 char *q;
5270
5271 if (first_global_object_name)
5272 p = first_global_object_name;
5273 else
5274 {
5275 /* We don't have anything that we know to be unique to this translation
5276 unit, so use what we do have and throw in some randomness. */
5277 unsigned len;
5278 const char *name = weak_global_object_name;
5279 const char *file = main_input_filename;
5280
5281 if (! name)
5282 name = "";
5283 if (! file)
5284 file = input_filename;
5285
5286 len = strlen (file);
5287 q = alloca (9 * 2 + len + 1);
5288 memcpy (q, file, len + 1);
5289 clean_symbol_name (q);
5290
5291 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5292 crc32_string (0, flag_random_seed));
5293
5294 p = q;
5295 }
5296
5297 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5298
5299 /* Set up the name of the file-level functions we may need.
5300 Use a global object (which is already required to be unique over
5301 the program) rather than the file name (which imposes extra
5302 constraints). */
5303 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5304
5305 return get_identifier (buf);
5306 }
5307
5308 /* If KIND=='I', return a suitable global initializer (constructor) name.
5309 If KIND=='D', return a suitable global clean-up (destructor) name. */
5310
5311 tree
5312 get_file_function_name (int kind)
5313 {
5314 char p[2];
5315
5316 p[0] = kind;
5317 p[1] = 0;
5318
5319 return get_file_function_name_long (p);
5320 }
5321 \f
5322 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5323 The result is placed in BUFFER (which has length BIT_SIZE),
5324 with one bit in each char ('\000' or '\001').
5325
5326 If the constructor is constant, NULL_TREE is returned.
5327 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5328
5329 tree
5330 get_set_constructor_bits (tree init, char *buffer, int bit_size)
5331 {
5332 int i;
5333 tree vals;
5334 HOST_WIDE_INT domain_min
5335 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
5336 tree non_const_bits = NULL_TREE;
5337
5338 for (i = 0; i < bit_size; i++)
5339 buffer[i] = 0;
5340
5341 for (vals = TREE_OPERAND (init, 1);
5342 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5343 {
5344 if (!host_integerp (TREE_VALUE (vals), 0)
5345 || (TREE_PURPOSE (vals) != NULL_TREE
5346 && !host_integerp (TREE_PURPOSE (vals), 0)))
5347 non_const_bits
5348 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5349 else if (TREE_PURPOSE (vals) != NULL_TREE)
5350 {
5351 /* Set a range of bits to ones. */
5352 HOST_WIDE_INT lo_index
5353 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5354 HOST_WIDE_INT hi_index
5355 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5356
5357 gcc_assert (lo_index >= 0);
5358 gcc_assert (lo_index < bit_size);
5359 gcc_assert (hi_index >= 0);
5360 gcc_assert (hi_index < bit_size);
5361 for (; lo_index <= hi_index; lo_index++)
5362 buffer[lo_index] = 1;
5363 }
5364 else
5365 {
5366 /* Set a single bit to one. */
5367 HOST_WIDE_INT index
5368 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5369 if (index < 0 || index >= bit_size)
5370 {
5371 error ("invalid initializer for bit string");
5372 return NULL_TREE;
5373 }
5374 buffer[index] = 1;
5375 }
5376 }
5377 return non_const_bits;
5378 }
5379
5380 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5381 The result is placed in BUFFER (which is an array of bytes).
5382 If the constructor is constant, NULL_TREE is returned.
5383 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5384
5385 tree
5386 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5387 {
5388 int i;
5389 int set_word_size = BITS_PER_UNIT;
5390 int bit_size = wd_size * set_word_size;
5391 int bit_pos = 0;
5392 unsigned char *bytep = buffer;
5393 char *bit_buffer = alloca (bit_size);
5394 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5395
5396 for (i = 0; i < wd_size; i++)
5397 buffer[i] = 0;
5398
5399 for (i = 0; i < bit_size; i++)
5400 {
5401 if (bit_buffer[i])
5402 {
5403 if (BYTES_BIG_ENDIAN)
5404 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5405 else
5406 *bytep |= 1 << bit_pos;
5407 }
5408 bit_pos++;
5409 if (bit_pos >= set_word_size)
5410 bit_pos = 0, bytep++;
5411 }
5412 return non_const_bits;
5413 }
5414 \f
5415 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5416
5417 /* Complain that the tree code of NODE does not match the expected 0
5418 terminated list of trailing codes. The trailing code list can be
5419 empty, for a more vague error message. FILE, LINE, and FUNCTION
5420 are of the caller. */
5421
5422 void
5423 tree_check_failed (const tree node, const char *file,
5424 int line, const char *function, ...)
5425 {
5426 va_list args;
5427 char *buffer;
5428 unsigned length = 0;
5429 int code;
5430
5431 va_start (args, function);
5432 while ((code = va_arg (args, int)))
5433 length += 4 + strlen (tree_code_name[code]);
5434 va_end (args);
5435 if (length)
5436 {
5437 va_start (args, function);
5438 length += strlen ("expected ");
5439 buffer = alloca (length);
5440 length = 0;
5441 while ((code = va_arg (args, int)))
5442 {
5443 const char *prefix = length ? " or " : "expected ";
5444
5445 strcpy (buffer + length, prefix);
5446 length += strlen (prefix);
5447 strcpy (buffer + length, tree_code_name[code]);
5448 length += strlen (tree_code_name[code]);
5449 }
5450 va_end (args);
5451 }
5452 else
5453 buffer = (char *)"unexpected node";
5454
5455 internal_error ("tree check: %s, have %s in %s, at %s:%d",
5456 buffer, tree_code_name[TREE_CODE (node)],
5457 function, trim_filename (file), line);
5458 }
5459
5460 /* Complain that the tree code of NODE does match the expected 0
5461 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5462 the caller. */
5463
5464 void
5465 tree_not_check_failed (const tree node, const char *file,
5466 int line, const char *function, ...)
5467 {
5468 va_list args;
5469 char *buffer;
5470 unsigned length = 0;
5471 int code;
5472
5473 va_start (args, function);
5474 while ((code = va_arg (args, int)))
5475 length += 4 + strlen (tree_code_name[code]);
5476 va_end (args);
5477 va_start (args, function);
5478 buffer = alloca (length);
5479 length = 0;
5480 while ((code = va_arg (args, int)))
5481 {
5482 if (length)
5483 {
5484 strcpy (buffer + length, " or ");
5485 length += 4;
5486 }
5487 strcpy (buffer + length, tree_code_name[code]);
5488 length += strlen (tree_code_name[code]);
5489 }
5490 va_end (args);
5491
5492 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5493 buffer, tree_code_name[TREE_CODE (node)],
5494 function, trim_filename (file), line);
5495 }
5496
5497 /* Similar to tree_check_failed, except that we check for a class of tree
5498 code, given in CL. */
5499
5500 void
5501 tree_class_check_failed (const tree node, const enum tree_code_class cl,
5502 const char *file, int line, const char *function)
5503 {
5504 internal_error
5505 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
5506 TREE_CODE_CLASS_STRING (cl),
5507 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
5508 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5509 }
5510
5511 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5512 (dynamically sized) vector. */
5513
5514 void
5515 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5516 const char *function)
5517 {
5518 internal_error
5519 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5520 idx + 1, len, function, trim_filename (file), line);
5521 }
5522
5523 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
5524 (dynamically sized) vector. */
5525
5526 void
5527 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
5528 const char *function)
5529 {
5530 internal_error
5531 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
5532 idx + 1, len, function, trim_filename (file), line);
5533 }
5534
5535 /* Similar to above, except that the check is for the bounds of the operand
5536 vector of an expression node. */
5537
5538 void
5539 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5540 int line, const char *function)
5541 {
5542 internal_error
5543 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5544 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5545 function, trim_filename (file), line);
5546 }
5547 #endif /* ENABLE_TREE_CHECKING */
5548 \f
5549 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
5550 and mapped to the machine mode MODE. Initialize its fields and build
5551 the information necessary for debugging output. */
5552
5553 static tree
5554 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
5555 {
5556 tree t = make_node (VECTOR_TYPE);
5557
5558 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
5559 TYPE_VECTOR_SUBPARTS (t) = nunits;
5560 TYPE_MODE (t) = mode;
5561 TYPE_READONLY (t) = TYPE_READONLY (innertype);
5562 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
5563
5564 layout_type (t);
5565
5566 {
5567 tree index = build_int_cst (NULL_TREE, nunits - 1);
5568 tree array = build_array_type (innertype, build_index_type (index));
5569 tree rt = make_node (RECORD_TYPE);
5570
5571 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5572 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5573 layout_type (rt);
5574 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5575 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5576 the representation type, and we want to find that die when looking up
5577 the vector type. This is most easily achieved by making the TYPE_UID
5578 numbers equal. */
5579 TYPE_UID (rt) = TYPE_UID (t);
5580 }
5581
5582 /* Build our main variant, based on the main variant of the inner type. */
5583 if (TYPE_MAIN_VARIANT (innertype) != innertype)
5584 {
5585 tree innertype_main_variant = TYPE_MAIN_VARIANT (innertype);
5586 unsigned int hash = TYPE_HASH (innertype_main_variant);
5587 TYPE_MAIN_VARIANT (t)
5588 = type_hash_canon (hash, make_vector_type (innertype_main_variant,
5589 nunits, mode));
5590 }
5591
5592 return t;
5593 }
5594
5595 static tree
5596 make_or_reuse_type (unsigned size, int unsignedp)
5597 {
5598 if (size == INT_TYPE_SIZE)
5599 return unsignedp ? unsigned_type_node : integer_type_node;
5600 if (size == CHAR_TYPE_SIZE)
5601 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5602 if (size == SHORT_TYPE_SIZE)
5603 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5604 if (size == LONG_TYPE_SIZE)
5605 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5606 if (size == LONG_LONG_TYPE_SIZE)
5607 return (unsignedp ? long_long_unsigned_type_node
5608 : long_long_integer_type_node);
5609
5610 if (unsignedp)
5611 return make_unsigned_type (size);
5612 else
5613 return make_signed_type (size);
5614 }
5615
5616 /* Create nodes for all integer types (and error_mark_node) using the sizes
5617 of C datatypes. The caller should call set_sizetype soon after calling
5618 this function to select one of the types as sizetype. */
5619
5620 void
5621 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
5622 {
5623 error_mark_node = make_node (ERROR_MARK);
5624 TREE_TYPE (error_mark_node) = error_mark_node;
5625
5626 initialize_sizetypes (signed_sizetype);
5627
5628 /* Define both `signed char' and `unsigned char'. */
5629 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5630 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5631
5632 /* Define `char', which is like either `signed char' or `unsigned char'
5633 but not the same as either. */
5634 char_type_node
5635 = (signed_char
5636 ? make_signed_type (CHAR_TYPE_SIZE)
5637 : make_unsigned_type (CHAR_TYPE_SIZE));
5638
5639 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5640 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5641 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5642 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5643 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5644 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5645 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5646 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5647
5648 /* Define a boolean type. This type only represents boolean values but
5649 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5650 Front ends which want to override this size (i.e. Java) can redefine
5651 boolean_type_node before calling build_common_tree_nodes_2. */
5652 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5653 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5654 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5655 TYPE_PRECISION (boolean_type_node) = 1;
5656
5657 /* Fill in the rest of the sized types. Reuse existing type nodes
5658 when possible. */
5659 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
5660 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
5661 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
5662 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
5663 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
5664
5665 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
5666 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
5667 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
5668 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
5669 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
5670
5671 access_public_node = get_identifier ("public");
5672 access_protected_node = get_identifier ("protected");
5673 access_private_node = get_identifier ("private");
5674 }
5675
5676 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5677 It will create several other common tree nodes. */
5678
5679 void
5680 build_common_tree_nodes_2 (int short_double)
5681 {
5682 /* Define these next since types below may used them. */
5683 integer_zero_node = build_int_cst (NULL_TREE, 0);
5684 integer_one_node = build_int_cst (NULL_TREE, 1);
5685 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
5686
5687 size_zero_node = size_int (0);
5688 size_one_node = size_int (1);
5689 bitsize_zero_node = bitsize_int (0);
5690 bitsize_one_node = bitsize_int (1);
5691 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5692
5693 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5694 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5695
5696 void_type_node = make_node (VOID_TYPE);
5697 layout_type (void_type_node);
5698
5699 /* We are not going to have real types in C with less than byte alignment,
5700 so we might as well not have any types that claim to have it. */
5701 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5702 TYPE_USER_ALIGN (void_type_node) = 0;
5703
5704 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
5705 layout_type (TREE_TYPE (null_pointer_node));
5706
5707 ptr_type_node = build_pointer_type (void_type_node);
5708 const_ptr_type_node
5709 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5710 fileptr_type_node = ptr_type_node;
5711
5712 float_type_node = make_node (REAL_TYPE);
5713 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5714 layout_type (float_type_node);
5715
5716 double_type_node = make_node (REAL_TYPE);
5717 if (short_double)
5718 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5719 else
5720 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5721 layout_type (double_type_node);
5722
5723 long_double_type_node = make_node (REAL_TYPE);
5724 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5725 layout_type (long_double_type_node);
5726
5727 float_ptr_type_node = build_pointer_type (float_type_node);
5728 double_ptr_type_node = build_pointer_type (double_type_node);
5729 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5730 integer_ptr_type_node = build_pointer_type (integer_type_node);
5731
5732 complex_integer_type_node = make_node (COMPLEX_TYPE);
5733 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5734 layout_type (complex_integer_type_node);
5735
5736 complex_float_type_node = make_node (COMPLEX_TYPE);
5737 TREE_TYPE (complex_float_type_node) = float_type_node;
5738 layout_type (complex_float_type_node);
5739
5740 complex_double_type_node = make_node (COMPLEX_TYPE);
5741 TREE_TYPE (complex_double_type_node) = double_type_node;
5742 layout_type (complex_double_type_node);
5743
5744 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5745 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5746 layout_type (complex_long_double_type_node);
5747
5748 {
5749 tree t = targetm.build_builtin_va_list ();
5750
5751 /* Many back-ends define record types without setting TYPE_NAME.
5752 If we copied the record type here, we'd keep the original
5753 record type without a name. This breaks name mangling. So,
5754 don't copy record types and let c_common_nodes_and_builtins()
5755 declare the type to be __builtin_va_list. */
5756 if (TREE_CODE (t) != RECORD_TYPE)
5757 t = build_variant_type_copy (t);
5758
5759 va_list_type_node = t;
5760 }
5761 }
5762
5763 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5764 better way.
5765
5766 If we requested a pointer to a vector, build up the pointers that
5767 we stripped off while looking for the inner type. Similarly for
5768 return values from functions.
5769
5770 The argument TYPE is the top of the chain, and BOTTOM is the
5771 new type which we will point to. */
5772
5773 tree
5774 reconstruct_complex_type (tree type, tree bottom)
5775 {
5776 tree inner, outer;
5777
5778 if (POINTER_TYPE_P (type))
5779 {
5780 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5781 outer = build_pointer_type (inner);
5782 }
5783 else if (TREE_CODE (type) == ARRAY_TYPE)
5784 {
5785 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5786 outer = build_array_type (inner, TYPE_DOMAIN (type));
5787 }
5788 else if (TREE_CODE (type) == FUNCTION_TYPE)
5789 {
5790 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5791 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5792 }
5793 else if (TREE_CODE (type) == METHOD_TYPE)
5794 {
5795 tree argtypes;
5796 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5797 /* The build_method_type_directly() routine prepends 'this' to argument list,
5798 so we must compensate by getting rid of it. */
5799 argtypes = TYPE_ARG_TYPES (type);
5800 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5801 inner,
5802 TYPE_ARG_TYPES (type));
5803 TYPE_ARG_TYPES (outer) = argtypes;
5804 }
5805 else
5806 return bottom;
5807
5808 TYPE_READONLY (outer) = TYPE_READONLY (type);
5809 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5810
5811 return outer;
5812 }
5813
5814 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
5815 the inner type. */
5816 tree
5817 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5818 {
5819 int nunits;
5820
5821 switch (GET_MODE_CLASS (mode))
5822 {
5823 case MODE_VECTOR_INT:
5824 case MODE_VECTOR_FLOAT:
5825 nunits = GET_MODE_NUNITS (mode);
5826 break;
5827
5828 case MODE_INT:
5829 /* Check that there are no leftover bits. */
5830 gcc_assert (GET_MODE_BITSIZE (mode)
5831 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
5832
5833 nunits = GET_MODE_BITSIZE (mode)
5834 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
5835 break;
5836
5837 default:
5838 gcc_unreachable ();
5839 }
5840
5841 return make_vector_type (innertype, nunits, mode);
5842 }
5843
5844 /* Similarly, but takes the inner type and number of units, which must be
5845 a power of two. */
5846
5847 tree
5848 build_vector_type (tree innertype, int nunits)
5849 {
5850 return make_vector_type (innertype, nunits, VOIDmode);
5851 }
5852
5853 /* Given an initializer INIT, return TRUE if INIT is zero or some
5854 aggregate of zeros. Otherwise return FALSE. */
5855 bool
5856 initializer_zerop (tree init)
5857 {
5858 tree elt;
5859
5860 STRIP_NOPS (init);
5861
5862 switch (TREE_CODE (init))
5863 {
5864 case INTEGER_CST:
5865 return integer_zerop (init);
5866
5867 case REAL_CST:
5868 /* ??? Note that this is not correct for C4X float formats. There,
5869 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
5870 negative exponent. */
5871 return real_zerop (init)
5872 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5873
5874 case COMPLEX_CST:
5875 return integer_zerop (init)
5876 || (real_zerop (init)
5877 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5878 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5879
5880 case VECTOR_CST:
5881 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
5882 if (!initializer_zerop (TREE_VALUE (elt)))
5883 return false;
5884 return true;
5885
5886 case CONSTRUCTOR:
5887 elt = CONSTRUCTOR_ELTS (init);
5888 if (elt == NULL_TREE)
5889 return true;
5890
5891 for (; elt ; elt = TREE_CHAIN (elt))
5892 if (! initializer_zerop (TREE_VALUE (elt)))
5893 return false;
5894 return true;
5895
5896 default:
5897 return false;
5898 }
5899 }
5900
5901 void
5902 add_var_to_bind_expr (tree bind_expr, tree var)
5903 {
5904 BIND_EXPR_VARS (bind_expr)
5905 = chainon (BIND_EXPR_VARS (bind_expr), var);
5906 if (BIND_EXPR_BLOCK (bind_expr))
5907 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
5908 = BIND_EXPR_VARS (bind_expr);
5909 }
5910
5911 /* Build an empty statement. */
5912
5913 tree
5914 build_empty_stmt (void)
5915 {
5916 return build1 (NOP_EXPR, void_type_node, size_zero_node);
5917 }
5918
5919
5920 /* Returns true if it is possible to prove that the index of
5921 an array access REF (an ARRAY_REF expression) falls into the
5922 array bounds. */
5923
5924 bool
5925 in_array_bounds_p (tree ref)
5926 {
5927 tree idx = TREE_OPERAND (ref, 1);
5928 tree min, max;
5929
5930 if (TREE_CODE (idx) != INTEGER_CST)
5931 return false;
5932
5933 min = array_ref_low_bound (ref);
5934 max = array_ref_up_bound (ref);
5935 if (!min
5936 || !max
5937 || TREE_CODE (min) != INTEGER_CST
5938 || TREE_CODE (max) != INTEGER_CST)
5939 return false;
5940
5941 if (tree_int_cst_lt (idx, min)
5942 || tree_int_cst_lt (max, idx))
5943 return false;
5944
5945 return true;
5946 }
5947
5948 /* Return true if T (assumed to be a DECL) is a global variable. */
5949
5950 bool
5951 is_global_var (tree t)
5952 {
5953 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
5954 }
5955
5956 /* Return true if T (assumed to be a DECL) must be assigned a memory
5957 location. */
5958
5959 bool
5960 needs_to_live_in_memory (tree t)
5961 {
5962 return (TREE_ADDRESSABLE (t)
5963 || is_global_var (t)
5964 || (TREE_CODE (t) == RESULT_DECL
5965 && aggregate_value_p (t, current_function_decl)));
5966 }
5967
5968 /* There are situations in which a language considers record types
5969 compatible which have different field lists. Decide if two fields
5970 are compatible. It is assumed that the parent records are compatible. */
5971
5972 bool
5973 fields_compatible_p (tree f1, tree f2)
5974 {
5975 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
5976 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
5977 return false;
5978
5979 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
5980 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
5981 return false;
5982
5983 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
5984 return false;
5985
5986 return true;
5987 }
5988
5989 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
5990
5991 tree
5992 find_compatible_field (tree record, tree orig_field)
5993 {
5994 tree f;
5995
5996 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
5997 if (TREE_CODE (f) == FIELD_DECL
5998 && fields_compatible_p (f, orig_field))
5999 return f;
6000
6001 /* ??? Why isn't this on the main fields list? */
6002 f = TYPE_VFIELD (record);
6003 if (f && TREE_CODE (f) == FIELD_DECL
6004 && fields_compatible_p (f, orig_field))
6005 return f;
6006
6007 /* ??? We should abort here, but Java appears to do Bad Things
6008 with inherited fields. */
6009 return orig_field;
6010 }
6011
6012 /* Return value of a constant X. */
6013
6014 HOST_WIDE_INT
6015 int_cst_value (tree x)
6016 {
6017 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
6018 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
6019 bool negative = ((val >> (bits - 1)) & 1) != 0;
6020
6021 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
6022
6023 if (negative)
6024 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
6025 else
6026 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
6027
6028 return val;
6029 }
6030
6031 /* Returns the greatest common divisor of A and B, which must be
6032 INTEGER_CSTs. */
6033
6034 tree
6035 tree_fold_gcd (tree a, tree b)
6036 {
6037 tree a_mod_b;
6038 tree type = TREE_TYPE (a);
6039
6040 gcc_assert (TREE_CODE (a) == INTEGER_CST);
6041 gcc_assert (TREE_CODE (b) == INTEGER_CST);
6042
6043 if (integer_zerop (a))
6044 return b;
6045
6046 if (integer_zerop (b))
6047 return a;
6048
6049 if (tree_int_cst_sgn (a) == -1)
6050 a = fold (build2 (MULT_EXPR, type, a,
6051 convert (type, integer_minus_one_node)));
6052
6053 if (tree_int_cst_sgn (b) == -1)
6054 b = fold (build2 (MULT_EXPR, type, b,
6055 convert (type, integer_minus_one_node)));
6056
6057 while (1)
6058 {
6059 a_mod_b = fold (build2 (FLOOR_MOD_EXPR, type, a, b));
6060
6061 if (!TREE_INT_CST_LOW (a_mod_b)
6062 && !TREE_INT_CST_HIGH (a_mod_b))
6063 return b;
6064
6065 a = b;
6066 b = a_mod_b;
6067 }
6068 }
6069
6070 /* Returns unsigned variant of TYPE. */
6071
6072 tree
6073 unsigned_type_for (tree type)
6074 {
6075 return lang_hooks.types.unsigned_type (type);
6076 }
6077
6078 /* Returns signed variant of TYPE. */
6079
6080 tree
6081 signed_type_for (tree type)
6082 {
6083 return lang_hooks.types.signed_type (type);
6084 }
6085
6086 /* Returns the largest value obtainable by casting something in INNER type to
6087 OUTER type. */
6088
6089 tree
6090 upper_bound_in_type (tree outer, tree inner)
6091 {
6092 unsigned HOST_WIDE_INT lo, hi;
6093 unsigned bits = TYPE_PRECISION (inner);
6094
6095 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6096 {
6097 /* Zero extending in these cases. */
6098 if (bits <= HOST_BITS_PER_WIDE_INT)
6099 {
6100 hi = 0;
6101 lo = (~(unsigned HOST_WIDE_INT) 0)
6102 >> (HOST_BITS_PER_WIDE_INT - bits);
6103 }
6104 else
6105 {
6106 hi = (~(unsigned HOST_WIDE_INT) 0)
6107 >> (2 * HOST_BITS_PER_WIDE_INT - bits);
6108 lo = ~(unsigned HOST_WIDE_INT) 0;
6109 }
6110 }
6111 else
6112 {
6113 /* Sign extending in these cases. */
6114 if (bits <= HOST_BITS_PER_WIDE_INT)
6115 {
6116 hi = 0;
6117 lo = (~(unsigned HOST_WIDE_INT) 0)
6118 >> (HOST_BITS_PER_WIDE_INT - bits) >> 1;
6119 }
6120 else
6121 {
6122 hi = (~(unsigned HOST_WIDE_INT) 0)
6123 >> (2 * HOST_BITS_PER_WIDE_INT - bits) >> 1;
6124 lo = ~(unsigned HOST_WIDE_INT) 0;
6125 }
6126 }
6127
6128 return fold_convert (outer,
6129 build_int_cst_wide (inner, lo, hi));
6130 }
6131
6132 /* Returns the smallest value obtainable by casting something in INNER type to
6133 OUTER type. */
6134
6135 tree
6136 lower_bound_in_type (tree outer, tree inner)
6137 {
6138 unsigned HOST_WIDE_INT lo, hi;
6139 unsigned bits = TYPE_PRECISION (inner);
6140
6141 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6142 lo = hi = 0;
6143 else if (bits <= HOST_BITS_PER_WIDE_INT)
6144 {
6145 hi = ~(unsigned HOST_WIDE_INT) 0;
6146 lo = (~(unsigned HOST_WIDE_INT) 0) << (bits - 1);
6147 }
6148 else
6149 {
6150 hi = (~(unsigned HOST_WIDE_INT) 0) << (bits - HOST_BITS_PER_WIDE_INT - 1);
6151 lo = 0;
6152 }
6153
6154 return fold_convert (outer,
6155 build_int_cst_wide (inner, lo, hi));
6156 }
6157
6158 /* Return nonzero if two operands that are suitable for PHI nodes are
6159 necessarily equal. Specifically, both ARG0 and ARG1 must be either
6160 SSA_NAME or invariant. Note that this is strictly an optimization.
6161 That is, callers of this function can directly call operand_equal_p
6162 and get the same result, only slower. */
6163
6164 int
6165 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
6166 {
6167 if (arg0 == arg1)
6168 return 1;
6169 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
6170 return 0;
6171 return operand_equal_p (arg0, arg1, 0);
6172 }
6173
6174 #include "gt-tree.h"