alias.c: Fix comment formatting.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack *h, void *obj);
51
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
54
55 int tree_node_counts[(int) all_kinds];
56 int tree_node_sizes[(int) all_kinds];
57
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names[] = {
60 "decls",
61 "types",
62 "blocks",
63 "stmts",
64 "refs",
65 "exprs",
66 "constants",
67 "identifiers",
68 "perm_tree_lists",
69 "temp_tree_lists",
70 "vecs",
71 "random kinds",
72 "lang_decl kinds",
73 "lang_type kinds"
74 };
75 #endif /* GATHER_STATISTICS */
76
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid = 1;
81
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
84
85 struct type_hash GTY(())
86 {
87 unsigned long hash;
88 tree type;
89 };
90
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
93
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
100
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
102 htab_t type_hash_table;
103
104 static void set_type_quals (tree, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree);
109 static tree make_vector (enum machine_mode, tree, int);
110 static int type_hash_marked_p (const void *);
111
112 tree global_trees[TI_MAX];
113 tree integer_types[itk_none];
114 \f
115 /* Init tree.c. */
116
117 void
118 init_ttree (void)
119 {
120 /* Initialize the hash table of types. */
121 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
122 type_hash_eq, 0);
123 }
124
125 \f
126 /* The name of the object as the assembler will see it (but before any
127 translations made by ASM_OUTPUT_LABELREF). Often this is the same
128 as DECL_NAME. It is an IDENTIFIER_NODE. */
129 tree
130 decl_assembler_name (tree decl)
131 {
132 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
133 (*lang_hooks.set_decl_assembler_name) (decl);
134 return DECL_CHECK (decl)->decl.assembler_name;
135 }
136
137 /* Compute the number of bytes occupied by 'node'. This routine only
138 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
139 size_t
140 tree_size (tree node)
141 {
142 enum tree_code code = TREE_CODE (node);
143
144 switch (TREE_CODE_CLASS (code))
145 {
146 case 'd': /* A decl node */
147 return sizeof (struct tree_decl);
148
149 case 't': /* a type node */
150 return sizeof (struct tree_type);
151
152 case 'b': /* a lexical block node */
153 return sizeof (struct tree_block);
154
155 case 'r': /* a reference */
156 case 'e': /* an expression */
157 case 's': /* an expression with side effects */
158 case '<': /* a comparison expression */
159 case '1': /* a unary arithmetic expression */
160 case '2': /* a binary arithmetic expression */
161 return (sizeof (struct tree_exp)
162 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
163
164 case 'c': /* a constant */
165 switch (code)
166 {
167 case INTEGER_CST: return sizeof (struct tree_int_cst);
168 case REAL_CST: return sizeof (struct tree_real_cst);
169 case COMPLEX_CST: return sizeof (struct tree_complex);
170 case VECTOR_CST: return sizeof (struct tree_vector);
171 case STRING_CST: return sizeof (struct tree_string);
172 default:
173 return (*lang_hooks.tree_size) (code);
174 }
175
176 case 'x': /* something random, like an identifier. */
177 switch (code)
178 {
179 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
180 case TREE_LIST: return sizeof (struct tree_list);
181 case TREE_VEC: return (sizeof (struct tree_vec)
182 + TREE_VEC_LENGTH(node) * sizeof(char *)
183 - sizeof (char *));
184
185 case ERROR_MARK:
186 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
187
188 default:
189 return (*lang_hooks.tree_size) (code);
190 }
191
192 default:
193 abort ();
194 }
195 }
196
197 /* Return a newly allocated node of code CODE.
198 For decl and type nodes, some other fields are initialized.
199 The rest of the node is initialized to zero.
200
201 Achoo! I got a code in the node. */
202
203 tree
204 make_node (enum tree_code code)
205 {
206 tree t;
207 int type = TREE_CODE_CLASS (code);
208 size_t length;
209 #ifdef GATHER_STATISTICS
210 tree_node_kind kind;
211 #endif
212 struct tree_common ttmp;
213
214 /* We can't allocate a TREE_VEC without knowing how many elements
215 it will have. */
216 if (code == TREE_VEC)
217 abort ();
218
219 TREE_SET_CODE ((tree)&ttmp, code);
220 length = tree_size ((tree)&ttmp);
221
222 #ifdef GATHER_STATISTICS
223 switch (type)
224 {
225 case 'd': /* A decl node */
226 kind = d_kind;
227 break;
228
229 case 't': /* a type node */
230 kind = t_kind;
231 break;
232
233 case 'b': /* a lexical block */
234 kind = b_kind;
235 break;
236
237 case 's': /* an expression with side effects */
238 kind = s_kind;
239 break;
240
241 case 'r': /* a reference */
242 kind = r_kind;
243 break;
244
245 case 'e': /* an expression */
246 case '<': /* a comparison expression */
247 case '1': /* a unary arithmetic expression */
248 case '2': /* a binary arithmetic expression */
249 kind = e_kind;
250 break;
251
252 case 'c': /* a constant */
253 kind = c_kind;
254 break;
255
256 case 'x': /* something random, like an identifier. */
257 if (code == IDENTIFIER_NODE)
258 kind = id_kind;
259 else if (code == TREE_VEC)
260 kind = vec_kind;
261 else
262 kind = x_kind;
263 break;
264
265 default:
266 abort ();
267 }
268
269 tree_node_counts[(int) kind]++;
270 tree_node_sizes[(int) kind] += length;
271 #endif
272
273 t = ggc_alloc_tree (length);
274
275 memset (t, 0, length);
276
277 TREE_SET_CODE (t, code);
278
279 switch (type)
280 {
281 case 's':
282 TREE_SIDE_EFFECTS (t) = 1;
283 break;
284
285 case 'd':
286 if (code != FUNCTION_DECL)
287 DECL_ALIGN (t) = 1;
288 DECL_USER_ALIGN (t) = 0;
289 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
290 DECL_SOURCE_LOCATION (t) = input_location;
291 DECL_UID (t) = next_decl_uid++;
292
293 /* We have not yet computed the alias set for this declaration. */
294 DECL_POINTER_ALIAS_SET (t) = -1;
295 break;
296
297 case 't':
298 TYPE_UID (t) = next_type_uid++;
299 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
300 TYPE_USER_ALIGN (t) = 0;
301 TYPE_MAIN_VARIANT (t) = t;
302
303 /* Default to no attributes for type, but let target change that. */
304 TYPE_ATTRIBUTES (t) = NULL_TREE;
305 (*targetm.set_default_type_attributes) (t);
306
307 /* We have not yet computed the alias set for this type. */
308 TYPE_ALIAS_SET (t) = -1;
309 break;
310
311 case 'c':
312 TREE_CONSTANT (t) = 1;
313 break;
314
315 case 'e':
316 switch (code)
317 {
318 case INIT_EXPR:
319 case MODIFY_EXPR:
320 case VA_ARG_EXPR:
321 case RTL_EXPR:
322 case PREDECREMENT_EXPR:
323 case PREINCREMENT_EXPR:
324 case POSTDECREMENT_EXPR:
325 case POSTINCREMENT_EXPR:
326 /* All of these have side-effects, no matter what their
327 operands are. */
328 TREE_SIDE_EFFECTS (t) = 1;
329 break;
330
331 default:
332 break;
333 }
334 break;
335 }
336
337 return t;
338 }
339 \f
340 /* Return a new node with the same contents as NODE except that its
341 TREE_CHAIN is zero and it has a fresh uid. */
342
343 tree
344 copy_node (tree node)
345 {
346 tree t;
347 enum tree_code code = TREE_CODE (node);
348 size_t length;
349
350 length = tree_size (node);
351 t = ggc_alloc_tree (length);
352 memcpy (t, node, length);
353
354 TREE_CHAIN (t) = 0;
355 TREE_ASM_WRITTEN (t) = 0;
356
357 if (TREE_CODE_CLASS (code) == 'd')
358 DECL_UID (t) = next_decl_uid++;
359 else if (TREE_CODE_CLASS (code) == 't')
360 {
361 TYPE_UID (t) = next_type_uid++;
362 /* The following is so that the debug code for
363 the copy is different from the original type.
364 The two statements usually duplicate each other
365 (because they clear fields of the same union),
366 but the optimizer should catch that. */
367 TYPE_SYMTAB_POINTER (t) = 0;
368 TYPE_SYMTAB_ADDRESS (t) = 0;
369 }
370
371 return t;
372 }
373
374 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
375 For example, this can copy a list made of TREE_LIST nodes. */
376
377 tree
378 copy_list (tree list)
379 {
380 tree head;
381 tree prev, next;
382
383 if (list == 0)
384 return 0;
385
386 head = prev = copy_node (list);
387 next = TREE_CHAIN (list);
388 while (next)
389 {
390 TREE_CHAIN (prev) = copy_node (next);
391 prev = TREE_CHAIN (prev);
392 next = TREE_CHAIN (next);
393 }
394 return head;
395 }
396
397 \f
398 /* Return a newly constructed INTEGER_CST node whose constant value
399 is specified by the two ints LOW and HI.
400 The TREE_TYPE is set to `int'.
401
402 This function should be used via the `build_int_2' macro. */
403
404 tree
405 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
406 {
407 tree t = make_node (INTEGER_CST);
408
409 TREE_INT_CST_LOW (t) = low;
410 TREE_INT_CST_HIGH (t) = hi;
411 TREE_TYPE (t) = integer_type_node;
412 return t;
413 }
414
415 /* Return a new VECTOR_CST node whose type is TYPE and whose values
416 are in a list pointed by VALS. */
417
418 tree
419 build_vector (tree type, tree vals)
420 {
421 tree v = make_node (VECTOR_CST);
422 int over1 = 0, over2 = 0;
423 tree link;
424
425 TREE_VECTOR_CST_ELTS (v) = vals;
426 TREE_TYPE (v) = type;
427
428 /* Iterate through elements and check for overflow. */
429 for (link = vals; link; link = TREE_CHAIN (link))
430 {
431 tree value = TREE_VALUE (link);
432
433 over1 |= TREE_OVERFLOW (value);
434 over2 |= TREE_CONSTANT_OVERFLOW (value);
435 }
436
437 TREE_OVERFLOW (v) = over1;
438 TREE_CONSTANT_OVERFLOW (v) = over2;
439
440 return v;
441 }
442
443 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
444 are in a list pointed to by VALS. */
445 tree
446 build_constructor (tree type, tree vals)
447 {
448 tree c = make_node (CONSTRUCTOR);
449 TREE_TYPE (c) = type;
450 CONSTRUCTOR_ELTS (c) = vals;
451
452 /* ??? May not be necessary. Mirrors what build does. */
453 if (vals)
454 {
455 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
456 TREE_READONLY (c) = TREE_READONLY (vals);
457 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
458 }
459 else
460 TREE_CONSTANT (c) = 0; /* safe side */
461
462 return c;
463 }
464
465 /* Return a new REAL_CST node whose type is TYPE and value is D. */
466
467 tree
468 build_real (tree type, REAL_VALUE_TYPE d)
469 {
470 tree v;
471 REAL_VALUE_TYPE *dp;
472 int overflow = 0;
473
474 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
475 Consider doing it via real_convert now. */
476
477 v = make_node (REAL_CST);
478 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
479 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
480
481 TREE_TYPE (v) = type;
482 TREE_REAL_CST_PTR (v) = dp;
483 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
484 return v;
485 }
486
487 /* Return a new REAL_CST node whose type is TYPE
488 and whose value is the integer value of the INTEGER_CST node I. */
489
490 REAL_VALUE_TYPE
491 real_value_from_int_cst (tree type ATTRIBUTE_UNUSED, tree i)
492 {
493 REAL_VALUE_TYPE d;
494
495 /* Clear all bits of the real value type so that we can later do
496 bitwise comparisons to see if two values are the same. */
497 memset (&d, 0, sizeof d);
498
499 if (! TREE_UNSIGNED (TREE_TYPE (i)))
500 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
501 TYPE_MODE (type));
502 else
503 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
504 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
505 return d;
506 }
507
508 /* Given a tree representing an integer constant I, return a tree
509 representing the same value as a floating-point constant of type TYPE. */
510
511 tree
512 build_real_from_int_cst (tree type, tree i)
513 {
514 tree v;
515 int overflow = TREE_OVERFLOW (i);
516
517 v = build_real (type, real_value_from_int_cst (type, i));
518
519 TREE_OVERFLOW (v) |= overflow;
520 TREE_CONSTANT_OVERFLOW (v) |= overflow;
521 return v;
522 }
523
524 /* Return a newly constructed STRING_CST node whose value is
525 the LEN characters at STR.
526 The TREE_TYPE is not initialized. */
527
528 tree
529 build_string (int len, const char *str)
530 {
531 tree s = make_node (STRING_CST);
532
533 TREE_STRING_LENGTH (s) = len;
534 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
535
536 return s;
537 }
538
539 /* Return a newly constructed COMPLEX_CST node whose value is
540 specified by the real and imaginary parts REAL and IMAG.
541 Both REAL and IMAG should be constant nodes. TYPE, if specified,
542 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
543
544 tree
545 build_complex (tree type, tree real, tree imag)
546 {
547 tree t = make_node (COMPLEX_CST);
548
549 TREE_REALPART (t) = real;
550 TREE_IMAGPART (t) = imag;
551 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
552 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
553 TREE_CONSTANT_OVERFLOW (t)
554 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
555 return t;
556 }
557
558 /* Build a newly constructed TREE_VEC node of length LEN. */
559
560 tree
561 make_tree_vec (int len)
562 {
563 tree t;
564 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
565
566 #ifdef GATHER_STATISTICS
567 tree_node_counts[(int) vec_kind]++;
568 tree_node_sizes[(int) vec_kind] += length;
569 #endif
570
571 t = ggc_alloc_tree (length);
572
573 memset (t, 0, length);
574 TREE_SET_CODE (t, TREE_VEC);
575 TREE_VEC_LENGTH (t) = len;
576
577 return t;
578 }
579 \f
580 /* Return 1 if EXPR is the integer constant zero or a complex constant
581 of zero. */
582
583 int
584 integer_zerop (tree expr)
585 {
586 STRIP_NOPS (expr);
587
588 return ((TREE_CODE (expr) == INTEGER_CST
589 && ! TREE_CONSTANT_OVERFLOW (expr)
590 && TREE_INT_CST_LOW (expr) == 0
591 && TREE_INT_CST_HIGH (expr) == 0)
592 || (TREE_CODE (expr) == COMPLEX_CST
593 && integer_zerop (TREE_REALPART (expr))
594 && integer_zerop (TREE_IMAGPART (expr))));
595 }
596
597 /* Return 1 if EXPR is the integer constant one or the corresponding
598 complex constant. */
599
600 int
601 integer_onep (tree expr)
602 {
603 STRIP_NOPS (expr);
604
605 return ((TREE_CODE (expr) == INTEGER_CST
606 && ! TREE_CONSTANT_OVERFLOW (expr)
607 && TREE_INT_CST_LOW (expr) == 1
608 && TREE_INT_CST_HIGH (expr) == 0)
609 || (TREE_CODE (expr) == COMPLEX_CST
610 && integer_onep (TREE_REALPART (expr))
611 && integer_zerop (TREE_IMAGPART (expr))));
612 }
613
614 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
615 it contains. Likewise for the corresponding complex constant. */
616
617 int
618 integer_all_onesp (tree expr)
619 {
620 int prec;
621 int uns;
622
623 STRIP_NOPS (expr);
624
625 if (TREE_CODE (expr) == COMPLEX_CST
626 && integer_all_onesp (TREE_REALPART (expr))
627 && integer_zerop (TREE_IMAGPART (expr)))
628 return 1;
629
630 else if (TREE_CODE (expr) != INTEGER_CST
631 || TREE_CONSTANT_OVERFLOW (expr))
632 return 0;
633
634 uns = TREE_UNSIGNED (TREE_TYPE (expr));
635 if (!uns)
636 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
637 && TREE_INT_CST_HIGH (expr) == -1);
638
639 /* Note that using TYPE_PRECISION here is wrong. We care about the
640 actual bits, not the (arbitrary) range of the type. */
641 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
642 if (prec >= HOST_BITS_PER_WIDE_INT)
643 {
644 HOST_WIDE_INT high_value;
645 int shift_amount;
646
647 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
648
649 if (shift_amount > HOST_BITS_PER_WIDE_INT)
650 /* Can not handle precisions greater than twice the host int size. */
651 abort ();
652 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
653 /* Shifting by the host word size is undefined according to the ANSI
654 standard, so we must handle this as a special case. */
655 high_value = -1;
656 else
657 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
658
659 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
660 && TREE_INT_CST_HIGH (expr) == high_value);
661 }
662 else
663 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
664 }
665
666 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
667 one bit on). */
668
669 int
670 integer_pow2p (tree expr)
671 {
672 int prec;
673 HOST_WIDE_INT high, low;
674
675 STRIP_NOPS (expr);
676
677 if (TREE_CODE (expr) == COMPLEX_CST
678 && integer_pow2p (TREE_REALPART (expr))
679 && integer_zerop (TREE_IMAGPART (expr)))
680 return 1;
681
682 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
683 return 0;
684
685 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
686 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
687 high = TREE_INT_CST_HIGH (expr);
688 low = TREE_INT_CST_LOW (expr);
689
690 /* First clear all bits that are beyond the type's precision in case
691 we've been sign extended. */
692
693 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
694 ;
695 else if (prec > HOST_BITS_PER_WIDE_INT)
696 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
697 else
698 {
699 high = 0;
700 if (prec < HOST_BITS_PER_WIDE_INT)
701 low &= ~((HOST_WIDE_INT) (-1) << prec);
702 }
703
704 if (high == 0 && low == 0)
705 return 0;
706
707 return ((high == 0 && (low & (low - 1)) == 0)
708 || (low == 0 && (high & (high - 1)) == 0));
709 }
710
711 /* Return 1 if EXPR is an integer constant other than zero or a
712 complex constant other than zero. */
713
714 int
715 integer_nonzerop (tree expr)
716 {
717 STRIP_NOPS (expr);
718
719 return ((TREE_CODE (expr) == INTEGER_CST
720 && ! TREE_CONSTANT_OVERFLOW (expr)
721 && (TREE_INT_CST_LOW (expr) != 0
722 || TREE_INT_CST_HIGH (expr) != 0))
723 || (TREE_CODE (expr) == COMPLEX_CST
724 && (integer_nonzerop (TREE_REALPART (expr))
725 || integer_nonzerop (TREE_IMAGPART (expr)))));
726 }
727
728 /* Return the power of two represented by a tree node known to be a
729 power of two. */
730
731 int
732 tree_log2 (tree expr)
733 {
734 int prec;
735 HOST_WIDE_INT high, low;
736
737 STRIP_NOPS (expr);
738
739 if (TREE_CODE (expr) == COMPLEX_CST)
740 return tree_log2 (TREE_REALPART (expr));
741
742 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
743 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
744
745 high = TREE_INT_CST_HIGH (expr);
746 low = TREE_INT_CST_LOW (expr);
747
748 /* First clear all bits that are beyond the type's precision in case
749 we've been sign extended. */
750
751 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
752 ;
753 else if (prec > HOST_BITS_PER_WIDE_INT)
754 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
755 else
756 {
757 high = 0;
758 if (prec < HOST_BITS_PER_WIDE_INT)
759 low &= ~((HOST_WIDE_INT) (-1) << prec);
760 }
761
762 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
763 : exact_log2 (low));
764 }
765
766 /* Similar, but return the largest integer Y such that 2 ** Y is less
767 than or equal to EXPR. */
768
769 int
770 tree_floor_log2 (tree expr)
771 {
772 int prec;
773 HOST_WIDE_INT high, low;
774
775 STRIP_NOPS (expr);
776
777 if (TREE_CODE (expr) == COMPLEX_CST)
778 return tree_log2 (TREE_REALPART (expr));
779
780 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
781 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
782
783 high = TREE_INT_CST_HIGH (expr);
784 low = TREE_INT_CST_LOW (expr);
785
786 /* First clear all bits that are beyond the type's precision in case
787 we've been sign extended. Ignore if type's precision hasn't been set
788 since what we are doing is setting it. */
789
790 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
791 ;
792 else if (prec > HOST_BITS_PER_WIDE_INT)
793 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
794 else
795 {
796 high = 0;
797 if (prec < HOST_BITS_PER_WIDE_INT)
798 low &= ~((HOST_WIDE_INT) (-1) << prec);
799 }
800
801 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
802 : floor_log2 (low));
803 }
804
805 /* Return 1 if EXPR is the real constant zero. */
806
807 int
808 real_zerop (tree expr)
809 {
810 STRIP_NOPS (expr);
811
812 return ((TREE_CODE (expr) == REAL_CST
813 && ! TREE_CONSTANT_OVERFLOW (expr)
814 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
815 || (TREE_CODE (expr) == COMPLEX_CST
816 && real_zerop (TREE_REALPART (expr))
817 && real_zerop (TREE_IMAGPART (expr))));
818 }
819
820 /* Return 1 if EXPR is the real constant one in real or complex form. */
821
822 int
823 real_onep (tree expr)
824 {
825 STRIP_NOPS (expr);
826
827 return ((TREE_CODE (expr) == REAL_CST
828 && ! TREE_CONSTANT_OVERFLOW (expr)
829 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
830 || (TREE_CODE (expr) == COMPLEX_CST
831 && real_onep (TREE_REALPART (expr))
832 && real_zerop (TREE_IMAGPART (expr))));
833 }
834
835 /* Return 1 if EXPR is the real constant two. */
836
837 int
838 real_twop (tree expr)
839 {
840 STRIP_NOPS (expr);
841
842 return ((TREE_CODE (expr) == REAL_CST
843 && ! TREE_CONSTANT_OVERFLOW (expr)
844 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
845 || (TREE_CODE (expr) == COMPLEX_CST
846 && real_twop (TREE_REALPART (expr))
847 && real_zerop (TREE_IMAGPART (expr))));
848 }
849
850 /* Return 1 if EXPR is the real constant minus one. */
851
852 int
853 real_minus_onep (tree expr)
854 {
855 STRIP_NOPS (expr);
856
857 return ((TREE_CODE (expr) == REAL_CST
858 && ! TREE_CONSTANT_OVERFLOW (expr)
859 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
860 || (TREE_CODE (expr) == COMPLEX_CST
861 && real_minus_onep (TREE_REALPART (expr))
862 && real_zerop (TREE_IMAGPART (expr))));
863 }
864
865 /* Nonzero if EXP is a constant or a cast of a constant. */
866
867 int
868 really_constant_p (tree exp)
869 {
870 /* This is not quite the same as STRIP_NOPS. It does more. */
871 while (TREE_CODE (exp) == NOP_EXPR
872 || TREE_CODE (exp) == CONVERT_EXPR
873 || TREE_CODE (exp) == NON_LVALUE_EXPR)
874 exp = TREE_OPERAND (exp, 0);
875 return TREE_CONSTANT (exp);
876 }
877 \f
878 /* Return first list element whose TREE_VALUE is ELEM.
879 Return 0 if ELEM is not in LIST. */
880
881 tree
882 value_member (tree elem, tree list)
883 {
884 while (list)
885 {
886 if (elem == TREE_VALUE (list))
887 return list;
888 list = TREE_CHAIN (list);
889 }
890 return NULL_TREE;
891 }
892
893 /* Return first list element whose TREE_PURPOSE is ELEM.
894 Return 0 if ELEM is not in LIST. */
895
896 tree
897 purpose_member (tree elem, tree list)
898 {
899 while (list)
900 {
901 if (elem == TREE_PURPOSE (list))
902 return list;
903 list = TREE_CHAIN (list);
904 }
905 return NULL_TREE;
906 }
907
908 /* Return first list element whose BINFO_TYPE is ELEM.
909 Return 0 if ELEM is not in LIST. */
910
911 tree
912 binfo_member (tree elem, tree list)
913 {
914 while (list)
915 {
916 if (elem == BINFO_TYPE (list))
917 return list;
918 list = TREE_CHAIN (list);
919 }
920 return NULL_TREE;
921 }
922
923 /* Return nonzero if ELEM is part of the chain CHAIN. */
924
925 int
926 chain_member (tree elem, tree chain)
927 {
928 while (chain)
929 {
930 if (elem == chain)
931 return 1;
932 chain = TREE_CHAIN (chain);
933 }
934
935 return 0;
936 }
937
938 /* Return the length of a chain of nodes chained through TREE_CHAIN.
939 We expect a null pointer to mark the end of the chain.
940 This is the Lisp primitive `length'. */
941
942 int
943 list_length (tree t)
944 {
945 tree tail;
946 int len = 0;
947
948 for (tail = t; tail; tail = TREE_CHAIN (tail))
949 len++;
950
951 return len;
952 }
953
954 /* Returns the number of FIELD_DECLs in TYPE. */
955
956 int
957 fields_length (tree type)
958 {
959 tree t = TYPE_FIELDS (type);
960 int count = 0;
961
962 for (; t; t = TREE_CHAIN (t))
963 if (TREE_CODE (t) == FIELD_DECL)
964 ++count;
965
966 return count;
967 }
968
969 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
970 by modifying the last node in chain 1 to point to chain 2.
971 This is the Lisp primitive `nconc'. */
972
973 tree
974 chainon (tree op1, tree op2)
975 {
976 tree t1;
977
978 if (!op1)
979 return op2;
980 if (!op2)
981 return op1;
982
983 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
984 continue;
985 TREE_CHAIN (t1) = op2;
986
987 #ifdef ENABLE_TREE_CHECKING
988 {
989 tree t2;
990 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
991 if (t2 == t1)
992 abort (); /* Circularity created. */
993 }
994 #endif
995
996 return op1;
997 }
998
999 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1000
1001 tree
1002 tree_last (tree chain)
1003 {
1004 tree next;
1005 if (chain)
1006 while ((next = TREE_CHAIN (chain)))
1007 chain = next;
1008 return chain;
1009 }
1010
1011 /* Reverse the order of elements in the chain T,
1012 and return the new head of the chain (old last element). */
1013
1014 tree
1015 nreverse (tree t)
1016 {
1017 tree prev = 0, decl, next;
1018 for (decl = t; decl; decl = next)
1019 {
1020 next = TREE_CHAIN (decl);
1021 TREE_CHAIN (decl) = prev;
1022 prev = decl;
1023 }
1024 return prev;
1025 }
1026 \f
1027 /* Return a newly created TREE_LIST node whose
1028 purpose and value fields are PARM and VALUE. */
1029
1030 tree
1031 build_tree_list (tree parm, tree value)
1032 {
1033 tree t = make_node (TREE_LIST);
1034 TREE_PURPOSE (t) = parm;
1035 TREE_VALUE (t) = value;
1036 return t;
1037 }
1038
1039 /* Return a newly created TREE_LIST node whose
1040 purpose and value fields are PURPOSE and VALUE
1041 and whose TREE_CHAIN is CHAIN. */
1042
1043 tree
1044 tree_cons (tree purpose, tree value, tree chain)
1045 {
1046 tree node;
1047
1048 node = ggc_alloc_tree (sizeof (struct tree_list));
1049
1050 memset (node, 0, sizeof (struct tree_common));
1051
1052 #ifdef GATHER_STATISTICS
1053 tree_node_counts[(int) x_kind]++;
1054 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1055 #endif
1056
1057 TREE_SET_CODE (node, TREE_LIST);
1058 TREE_CHAIN (node) = chain;
1059 TREE_PURPOSE (node) = purpose;
1060 TREE_VALUE (node) = value;
1061 return node;
1062 }
1063
1064 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1065
1066 tree
1067 expr_first (tree expr)
1068 {
1069 if (expr == NULL_TREE)
1070 return expr;
1071 while (TREE_CODE (expr) == COMPOUND_EXPR)
1072 expr = TREE_OPERAND (expr, 0);
1073 return expr;
1074 }
1075
1076 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1077
1078 tree
1079 expr_last (tree expr)
1080 {
1081 if (expr == NULL_TREE)
1082 return expr;
1083 while (TREE_CODE (expr) == COMPOUND_EXPR)
1084 expr = TREE_OPERAND (expr, 1);
1085 return expr;
1086 }
1087
1088 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1089
1090 int
1091 expr_length (tree expr)
1092 {
1093 int len = 0;
1094
1095 if (expr == NULL_TREE)
1096 return 0;
1097 for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
1098 len += expr_length (TREE_OPERAND (expr, 0));
1099 ++len;
1100 return len;
1101 }
1102 \f
1103 /* Return the size nominally occupied by an object of type TYPE
1104 when it resides in memory. The value is measured in units of bytes,
1105 and its data type is that normally used for type sizes
1106 (which is the first type created by make_signed_type or
1107 make_unsigned_type). */
1108
1109 tree
1110 size_in_bytes (tree type)
1111 {
1112 tree t;
1113
1114 if (type == error_mark_node)
1115 return integer_zero_node;
1116
1117 type = TYPE_MAIN_VARIANT (type);
1118 t = TYPE_SIZE_UNIT (type);
1119
1120 if (t == 0)
1121 {
1122 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1123 return size_zero_node;
1124 }
1125
1126 if (TREE_CODE (t) == INTEGER_CST)
1127 force_fit_type (t, 0);
1128
1129 return t;
1130 }
1131
1132 /* Return the size of TYPE (in bytes) as a wide integer
1133 or return -1 if the size can vary or is larger than an integer. */
1134
1135 HOST_WIDE_INT
1136 int_size_in_bytes (tree type)
1137 {
1138 tree t;
1139
1140 if (type == error_mark_node)
1141 return 0;
1142
1143 type = TYPE_MAIN_VARIANT (type);
1144 t = TYPE_SIZE_UNIT (type);
1145 if (t == 0
1146 || TREE_CODE (t) != INTEGER_CST
1147 || TREE_OVERFLOW (t)
1148 || TREE_INT_CST_HIGH (t) != 0
1149 /* If the result would appear negative, it's too big to represent. */
1150 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1151 return -1;
1152
1153 return TREE_INT_CST_LOW (t);
1154 }
1155 \f
1156 /* Return the bit position of FIELD, in bits from the start of the record.
1157 This is a tree of type bitsizetype. */
1158
1159 tree
1160 bit_position (tree field)
1161 {
1162 return bit_from_pos (DECL_FIELD_OFFSET (field),
1163 DECL_FIELD_BIT_OFFSET (field));
1164 }
1165
1166 /* Likewise, but return as an integer. Abort if it cannot be represented
1167 in that way (since it could be a signed value, we don't have the option
1168 of returning -1 like int_size_in_byte can. */
1169
1170 HOST_WIDE_INT
1171 int_bit_position (tree field)
1172 {
1173 return tree_low_cst (bit_position (field), 0);
1174 }
1175 \f
1176 /* Return the byte position of FIELD, in bytes from the start of the record.
1177 This is a tree of type sizetype. */
1178
1179 tree
1180 byte_position (tree field)
1181 {
1182 return byte_from_pos (DECL_FIELD_OFFSET (field),
1183 DECL_FIELD_BIT_OFFSET (field));
1184 }
1185
1186 /* Likewise, but return as an integer. Abort if it cannot be represented
1187 in that way (since it could be a signed value, we don't have the option
1188 of returning -1 like int_size_in_byte can. */
1189
1190 HOST_WIDE_INT
1191 int_byte_position (tree field)
1192 {
1193 return tree_low_cst (byte_position (field), 0);
1194 }
1195 \f
1196 /* Return the strictest alignment, in bits, that T is known to have. */
1197
1198 unsigned int
1199 expr_align (tree t)
1200 {
1201 unsigned int align0, align1;
1202
1203 switch (TREE_CODE (t))
1204 {
1205 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1206 /* If we have conversions, we know that the alignment of the
1207 object must meet each of the alignments of the types. */
1208 align0 = expr_align (TREE_OPERAND (t, 0));
1209 align1 = TYPE_ALIGN (TREE_TYPE (t));
1210 return MAX (align0, align1);
1211
1212 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1213 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1214 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1215 /* These don't change the alignment of an object. */
1216 return expr_align (TREE_OPERAND (t, 0));
1217
1218 case COND_EXPR:
1219 /* The best we can do is say that the alignment is the least aligned
1220 of the two arms. */
1221 align0 = expr_align (TREE_OPERAND (t, 1));
1222 align1 = expr_align (TREE_OPERAND (t, 2));
1223 return MIN (align0, align1);
1224
1225 case LABEL_DECL: case CONST_DECL:
1226 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1227 if (DECL_ALIGN (t) != 0)
1228 return DECL_ALIGN (t);
1229 break;
1230
1231 case FUNCTION_DECL:
1232 return FUNCTION_BOUNDARY;
1233
1234 default:
1235 break;
1236 }
1237
1238 /* Otherwise take the alignment from that of the type. */
1239 return TYPE_ALIGN (TREE_TYPE (t));
1240 }
1241 \f
1242 /* Return, as a tree node, the number of elements for TYPE (which is an
1243 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1244
1245 tree
1246 array_type_nelts (tree type)
1247 {
1248 tree index_type, min, max;
1249
1250 /* If they did it with unspecified bounds, then we should have already
1251 given an error about it before we got here. */
1252 if (! TYPE_DOMAIN (type))
1253 return error_mark_node;
1254
1255 index_type = TYPE_DOMAIN (type);
1256 min = TYPE_MIN_VALUE (index_type);
1257 max = TYPE_MAX_VALUE (index_type);
1258
1259 return (integer_zerop (min)
1260 ? max
1261 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1262 }
1263 \f
1264 /* Return nonzero if arg is static -- a reference to an object in
1265 static storage. This is not the same as the C meaning of `static'. */
1266
1267 int
1268 staticp (tree arg)
1269 {
1270 switch (TREE_CODE (arg))
1271 {
1272 case FUNCTION_DECL:
1273 /* Nested functions aren't static, since taking their address
1274 involves a trampoline. */
1275 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1276 && ! DECL_NON_ADDR_CONST_P (arg));
1277
1278 case VAR_DECL:
1279 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1280 && ! DECL_THREAD_LOCAL (arg)
1281 && ! DECL_NON_ADDR_CONST_P (arg));
1282
1283 case CONSTRUCTOR:
1284 return TREE_STATIC (arg);
1285
1286 case LABEL_DECL:
1287 case STRING_CST:
1288 return 1;
1289
1290 /* If we are referencing a bitfield, we can't evaluate an
1291 ADDR_EXPR at compile time and so it isn't a constant. */
1292 case COMPONENT_REF:
1293 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1294 && staticp (TREE_OPERAND (arg, 0)));
1295
1296 case BIT_FIELD_REF:
1297 return 0;
1298
1299 #if 0
1300 /* This case is technically correct, but results in setting
1301 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1302 compile time. */
1303 case INDIRECT_REF:
1304 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1305 #endif
1306
1307 case ARRAY_REF:
1308 case ARRAY_RANGE_REF:
1309 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1310 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1311 return staticp (TREE_OPERAND (arg, 0));
1312
1313 default:
1314 if ((unsigned int) TREE_CODE (arg)
1315 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1316 return (*lang_hooks.staticp) (arg);
1317 else
1318 return 0;
1319 }
1320 }
1321 \f
1322 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1323 Do this to any expression which may be used in more than one place,
1324 but must be evaluated only once.
1325
1326 Normally, expand_expr would reevaluate the expression each time.
1327 Calling save_expr produces something that is evaluated and recorded
1328 the first time expand_expr is called on it. Subsequent calls to
1329 expand_expr just reuse the recorded value.
1330
1331 The call to expand_expr that generates code that actually computes
1332 the value is the first call *at compile time*. Subsequent calls
1333 *at compile time* generate code to use the saved value.
1334 This produces correct result provided that *at run time* control
1335 always flows through the insns made by the first expand_expr
1336 before reaching the other places where the save_expr was evaluated.
1337 You, the caller of save_expr, must make sure this is so.
1338
1339 Constants, and certain read-only nodes, are returned with no
1340 SAVE_EXPR because that is safe. Expressions containing placeholders
1341 are not touched; see tree.def for an explanation of what these
1342 are used for. */
1343
1344 tree
1345 save_expr (tree expr)
1346 {
1347 tree t = fold (expr);
1348 tree inner;
1349
1350 /* If the tree evaluates to a constant, then we don't want to hide that
1351 fact (i.e. this allows further folding, and direct checks for constants).
1352 However, a read-only object that has side effects cannot be bypassed.
1353 Since it is no problem to reevaluate literals, we just return the
1354 literal node. */
1355 inner = skip_simple_arithmetic (t);
1356 if (TREE_CONSTANT (inner)
1357 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1358 || TREE_CODE (inner) == SAVE_EXPR
1359 || TREE_CODE (inner) == ERROR_MARK)
1360 return t;
1361
1362 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1363 it means that the size or offset of some field of an object depends on
1364 the value within another field.
1365
1366 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1367 and some variable since it would then need to be both evaluated once and
1368 evaluated more than once. Front-ends must assure this case cannot
1369 happen by surrounding any such subexpressions in their own SAVE_EXPR
1370 and forcing evaluation at the proper time. */
1371 if (contains_placeholder_p (inner))
1372 return t;
1373
1374 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1375
1376 /* This expression might be placed ahead of a jump to ensure that the
1377 value was computed on both sides of the jump. So make sure it isn't
1378 eliminated as dead. */
1379 TREE_SIDE_EFFECTS (t) = 1;
1380 TREE_READONLY (t) = 1;
1381 return t;
1382 }
1383
1384 /* Look inside EXPR and into any simple arithmetic operations. Return
1385 the innermost non-arithmetic node. */
1386
1387 tree
1388 skip_simple_arithmetic (tree expr)
1389 {
1390 tree inner;
1391
1392 /* We don't care about whether this can be used as an lvalue in this
1393 context. */
1394 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1395 expr = TREE_OPERAND (expr, 0);
1396
1397 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1398 a constant, it will be more efficient to not make another SAVE_EXPR since
1399 it will allow better simplification and GCSE will be able to merge the
1400 computations if they actually occur. */
1401 inner = expr;
1402 while (1)
1403 {
1404 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1405 inner = TREE_OPERAND (inner, 0);
1406 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1407 {
1408 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1409 inner = TREE_OPERAND (inner, 0);
1410 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1411 inner = TREE_OPERAND (inner, 1);
1412 else
1413 break;
1414 }
1415 else
1416 break;
1417 }
1418
1419 return inner;
1420 }
1421
1422 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1423 SAVE_EXPR. Return FALSE otherwise. */
1424
1425 bool
1426 saved_expr_p (tree expr)
1427 {
1428 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1429 }
1430
1431 /* Arrange for an expression to be expanded multiple independent
1432 times. This is useful for cleanup actions, as the backend can
1433 expand them multiple times in different places. */
1434
1435 tree
1436 unsave_expr (tree expr)
1437 {
1438 tree t;
1439
1440 /* If this is already protected, no sense in protecting it again. */
1441 if (TREE_CODE (expr) == UNSAVE_EXPR)
1442 return expr;
1443
1444 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1445 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1446 return t;
1447 }
1448
1449 /* Returns the index of the first non-tree operand for CODE, or the number
1450 of operands if all are trees. */
1451
1452 int
1453 first_rtl_op (enum tree_code code)
1454 {
1455 switch (code)
1456 {
1457 case SAVE_EXPR:
1458 return 2;
1459 case GOTO_SUBROUTINE_EXPR:
1460 case RTL_EXPR:
1461 return 0;
1462 case WITH_CLEANUP_EXPR:
1463 return 2;
1464 default:
1465 return TREE_CODE_LENGTH (code);
1466 }
1467 }
1468
1469 /* Return which tree structure is used by T. */
1470
1471 enum tree_node_structure_enum
1472 tree_node_structure (tree t)
1473 {
1474 enum tree_code code = TREE_CODE (t);
1475
1476 switch (TREE_CODE_CLASS (code))
1477 {
1478 case 'd': return TS_DECL;
1479 case 't': return TS_TYPE;
1480 case 'b': return TS_BLOCK;
1481 case 'r': case '<': case '1': case '2': case 'e': case 's':
1482 return TS_EXP;
1483 default: /* 'c' and 'x' */
1484 break;
1485 }
1486 switch (code)
1487 {
1488 /* 'c' cases. */
1489 case INTEGER_CST: return TS_INT_CST;
1490 case REAL_CST: return TS_REAL_CST;
1491 case COMPLEX_CST: return TS_COMPLEX;
1492 case VECTOR_CST: return TS_VECTOR;
1493 case STRING_CST: return TS_STRING;
1494 /* 'x' cases. */
1495 case ERROR_MARK: return TS_COMMON;
1496 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1497 case TREE_LIST: return TS_LIST;
1498 case TREE_VEC: return TS_VEC;
1499 case PLACEHOLDER_EXPR: return TS_COMMON;
1500
1501 default:
1502 abort ();
1503 }
1504 }
1505
1506 /* Perform any modifications to EXPR required when it is unsaved. Does
1507 not recurse into EXPR's subtrees. */
1508
1509 void
1510 unsave_expr_1 (tree expr)
1511 {
1512 switch (TREE_CODE (expr))
1513 {
1514 case SAVE_EXPR:
1515 if (! SAVE_EXPR_PERSISTENT_P (expr))
1516 SAVE_EXPR_RTL (expr) = 0;
1517 break;
1518
1519 case TARGET_EXPR:
1520 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1521 It's OK for this to happen if it was part of a subtree that
1522 isn't immediately expanded, such as operand 2 of another
1523 TARGET_EXPR. */
1524 if (TREE_OPERAND (expr, 1))
1525 break;
1526
1527 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1528 TREE_OPERAND (expr, 3) = NULL_TREE;
1529 break;
1530
1531 case RTL_EXPR:
1532 /* I don't yet know how to emit a sequence multiple times. */
1533 if (RTL_EXPR_SEQUENCE (expr) != 0)
1534 abort ();
1535 break;
1536
1537 default:
1538 break;
1539 }
1540 }
1541
1542 /* Default lang hook for "unsave_expr_now". */
1543
1544 tree
1545 lhd_unsave_expr_now (tree expr)
1546 {
1547 enum tree_code code;
1548
1549 /* There's nothing to do for NULL_TREE. */
1550 if (expr == 0)
1551 return expr;
1552
1553 unsave_expr_1 (expr);
1554
1555 code = TREE_CODE (expr);
1556 switch (TREE_CODE_CLASS (code))
1557 {
1558 case 'c': /* a constant */
1559 case 't': /* a type node */
1560 case 'd': /* A decl node */
1561 case 'b': /* A block node */
1562 break;
1563
1564 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1565 if (code == TREE_LIST)
1566 {
1567 lhd_unsave_expr_now (TREE_VALUE (expr));
1568 lhd_unsave_expr_now (TREE_CHAIN (expr));
1569 }
1570 break;
1571
1572 case 'e': /* an expression */
1573 case 'r': /* a reference */
1574 case 's': /* an expression with side effects */
1575 case '<': /* a comparison expression */
1576 case '2': /* a binary arithmetic expression */
1577 case '1': /* a unary arithmetic expression */
1578 {
1579 int i;
1580
1581 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1582 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1583 }
1584 break;
1585
1586 default:
1587 abort ();
1588 }
1589
1590 return expr;
1591 }
1592
1593 /* Return 0 if it is safe to evaluate EXPR multiple times,
1594 return 1 if it is safe if EXPR is unsaved afterward, or
1595 return 2 if it is completely unsafe.
1596
1597 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1598 an expression tree, so that it safe to unsave them and the surrounding
1599 context will be correct.
1600
1601 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1602 occasionally across the whole of a function. It is therefore only
1603 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1604 below the UNSAVE_EXPR.
1605
1606 RTL_EXPRs consume their rtl during evaluation. It is therefore
1607 never possible to unsave them. */
1608
1609 int
1610 unsafe_for_reeval (tree expr)
1611 {
1612 int unsafeness = 0;
1613 enum tree_code code;
1614 int i, tmp, tmp2;
1615 tree exp;
1616 int first_rtl;
1617
1618 if (expr == NULL_TREE)
1619 return 1;
1620
1621 code = TREE_CODE (expr);
1622 first_rtl = first_rtl_op (code);
1623
1624 switch (code)
1625 {
1626 case SAVE_EXPR:
1627 case RTL_EXPR:
1628 return 2;
1629
1630 case TREE_LIST:
1631 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1632 {
1633 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1634 unsafeness = MAX (tmp, unsafeness);
1635 }
1636
1637 return unsafeness;
1638
1639 case CALL_EXPR:
1640 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1641 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1642 return MAX (MAX (tmp, 1), tmp2);
1643
1644 case TARGET_EXPR:
1645 unsafeness = 1;
1646 break;
1647
1648 default:
1649 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1650 if (tmp >= 0)
1651 return tmp;
1652 break;
1653 }
1654
1655 switch (TREE_CODE_CLASS (code))
1656 {
1657 case 'c': /* a constant */
1658 case 't': /* a type node */
1659 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1660 case 'd': /* A decl node */
1661 case 'b': /* A block node */
1662 return 0;
1663
1664 case 'e': /* an expression */
1665 case 'r': /* a reference */
1666 case 's': /* an expression with side effects */
1667 case '<': /* a comparison expression */
1668 case '2': /* a binary arithmetic expression */
1669 case '1': /* a unary arithmetic expression */
1670 for (i = first_rtl - 1; i >= 0; i--)
1671 {
1672 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1673 unsafeness = MAX (tmp, unsafeness);
1674 }
1675
1676 return unsafeness;
1677
1678 default:
1679 return 2;
1680 }
1681 }
1682 \f
1683 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1684 or offset that depends on a field within a record. */
1685
1686 bool
1687 contains_placeholder_p (tree exp)
1688 {
1689 enum tree_code code;
1690 int result;
1691
1692 if (!exp)
1693 return 0;
1694
1695 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1696 in it since it is supplying a value for it. */
1697 code = TREE_CODE (exp);
1698 if (code == WITH_RECORD_EXPR)
1699 return 0;
1700 else if (code == PLACEHOLDER_EXPR)
1701 return 1;
1702
1703 switch (TREE_CODE_CLASS (code))
1704 {
1705 case 'r':
1706 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1707 position computations since they will be converted into a
1708 WITH_RECORD_EXPR involving the reference, which will assume
1709 here will be valid. */
1710 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1711
1712 case 'x':
1713 if (code == TREE_LIST)
1714 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1715 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1716 break;
1717
1718 case '1':
1719 case '2': case '<':
1720 case 'e':
1721 switch (code)
1722 {
1723 case COMPOUND_EXPR:
1724 /* Ignoring the first operand isn't quite right, but works best. */
1725 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1726
1727 case RTL_EXPR:
1728 case CONSTRUCTOR:
1729 return 0;
1730
1731 case COND_EXPR:
1732 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1733 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1734 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1735
1736 case SAVE_EXPR:
1737 /* If we already know this doesn't have a placeholder, don't
1738 check again. */
1739 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1740 return 0;
1741
1742 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1743 result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1744 if (result)
1745 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1746
1747 return result;
1748
1749 case CALL_EXPR:
1750 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1751
1752 default:
1753 break;
1754 }
1755
1756 switch (TREE_CODE_LENGTH (code))
1757 {
1758 case 1:
1759 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1760 case 2:
1761 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1762 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1763 default:
1764 return 0;
1765 }
1766
1767 default:
1768 return 0;
1769 }
1770 return 0;
1771 }
1772
1773 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1774 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1775 positions. */
1776
1777 bool
1778 type_contains_placeholder_p (tree type)
1779 {
1780 /* If the size contains a placeholder or the parent type (component type in
1781 the case of arrays) type involves a placeholder, this type does. */
1782 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1783 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1784 || (TREE_TYPE (type) != 0
1785 && type_contains_placeholder_p (TREE_TYPE (type))))
1786 return 1;
1787
1788 /* Now do type-specific checks. Note that the last part of the check above
1789 greatly limits what we have to do below. */
1790 switch (TREE_CODE (type))
1791 {
1792 case VOID_TYPE:
1793 case COMPLEX_TYPE:
1794 case VECTOR_TYPE:
1795 case ENUMERAL_TYPE:
1796 case BOOLEAN_TYPE:
1797 case CHAR_TYPE:
1798 case POINTER_TYPE:
1799 case OFFSET_TYPE:
1800 case REFERENCE_TYPE:
1801 case METHOD_TYPE:
1802 case FILE_TYPE:
1803 case FUNCTION_TYPE:
1804 return 0;
1805
1806 case INTEGER_TYPE:
1807 case REAL_TYPE:
1808 /* Here we just check the bounds. */
1809 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1810 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1811
1812 case ARRAY_TYPE:
1813 case SET_TYPE:
1814 /* We're already checked the component type (TREE_TYPE), so just check
1815 the index type. */
1816 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1817
1818 case RECORD_TYPE:
1819 case UNION_TYPE:
1820 case QUAL_UNION_TYPE:
1821 {
1822 static tree seen_types = 0;
1823 tree field;
1824 bool ret = 0;
1825
1826 /* We have to be careful here that we don't end up in infinite
1827 recursions due to a field of a type being a pointer to that type
1828 or to a mutually-recursive type. So we store a list of record
1829 types that we've seen and see if this type is in them. To save
1830 memory, we don't use a list for just one type. Here we check
1831 whether we've seen this type before and store it if not. */
1832 if (seen_types == 0)
1833 seen_types = type;
1834 else if (TREE_CODE (seen_types) != TREE_LIST)
1835 {
1836 if (seen_types == type)
1837 return 0;
1838
1839 seen_types = tree_cons (NULL_TREE, type,
1840 build_tree_list (NULL_TREE, seen_types));
1841 }
1842 else
1843 {
1844 if (value_member (type, seen_types) != 0)
1845 return 0;
1846
1847 seen_types = tree_cons (NULL_TREE, type, seen_types);
1848 }
1849
1850 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1851 if (TREE_CODE (field) == FIELD_DECL
1852 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1853 || (TREE_CODE (type) == QUAL_UNION_TYPE
1854 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1855 || type_contains_placeholder_p (TREE_TYPE (field))))
1856 {
1857 ret = true;
1858 break;
1859 }
1860
1861 /* Now remove us from seen_types and return the result. */
1862 if (seen_types == type)
1863 seen_types = 0;
1864 else
1865 seen_types = TREE_CHAIN (seen_types);
1866
1867 return ret;
1868 }
1869
1870 default:
1871 abort ();
1872 }
1873 }
1874
1875 /* Return 1 if EXP contains any expressions that produce cleanups for an
1876 outer scope to deal with. Used by fold. */
1877
1878 int
1879 has_cleanups (tree exp)
1880 {
1881 int i, nops, cmp;
1882
1883 if (! TREE_SIDE_EFFECTS (exp))
1884 return 0;
1885
1886 switch (TREE_CODE (exp))
1887 {
1888 case TARGET_EXPR:
1889 case GOTO_SUBROUTINE_EXPR:
1890 case WITH_CLEANUP_EXPR:
1891 return 1;
1892
1893 case CLEANUP_POINT_EXPR:
1894 return 0;
1895
1896 case CALL_EXPR:
1897 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1898 {
1899 cmp = has_cleanups (TREE_VALUE (exp));
1900 if (cmp)
1901 return cmp;
1902 }
1903 return 0;
1904
1905 default:
1906 break;
1907 }
1908
1909 /* This general rule works for most tree codes. All exceptions should be
1910 handled above. If this is a language-specific tree code, we can't
1911 trust what might be in the operand, so say we don't know
1912 the situation. */
1913 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1914 return -1;
1915
1916 nops = first_rtl_op (TREE_CODE (exp));
1917 for (i = 0; i < nops; i++)
1918 if (TREE_OPERAND (exp, i) != 0)
1919 {
1920 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1921 if (type == 'e' || type == '<' || type == '1' || type == '2'
1922 || type == 'r' || type == 's')
1923 {
1924 cmp = has_cleanups (TREE_OPERAND (exp, i));
1925 if (cmp)
1926 return cmp;
1927 }
1928 }
1929
1930 return 0;
1931 }
1932 \f
1933 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1934 return a tree with all occurrences of references to F in a
1935 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1936 contains only arithmetic expressions or a CALL_EXPR with a
1937 PLACEHOLDER_EXPR occurring only in its arglist. */
1938
1939 tree
1940 substitute_in_expr (tree exp, tree f, tree r)
1941 {
1942 enum tree_code code = TREE_CODE (exp);
1943 tree op0, op1, op2;
1944 tree new;
1945 tree inner;
1946
1947 switch (TREE_CODE_CLASS (code))
1948 {
1949 case 'c':
1950 case 'd':
1951 return exp;
1952
1953 case 'x':
1954 if (code == PLACEHOLDER_EXPR)
1955 return exp;
1956 else if (code == TREE_LIST)
1957 {
1958 op0 = (TREE_CHAIN (exp) == 0
1959 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1960 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1961 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1962 return exp;
1963
1964 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1965 }
1966
1967 abort ();
1968
1969 case '1':
1970 case '2':
1971 case '<':
1972 case 'e':
1973 switch (TREE_CODE_LENGTH (code))
1974 {
1975 case 1:
1976 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1977 if (op0 == TREE_OPERAND (exp, 0))
1978 return exp;
1979
1980 if (code == NON_LVALUE_EXPR)
1981 return op0;
1982
1983 new = fold (build1 (code, TREE_TYPE (exp), op0));
1984 break;
1985
1986 case 2:
1987 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1988 could, but we don't support it. */
1989 if (code == RTL_EXPR)
1990 return exp;
1991 else if (code == CONSTRUCTOR)
1992 abort ();
1993
1994 op0 = TREE_OPERAND (exp, 0);
1995 op1 = TREE_OPERAND (exp, 1);
1996 if (CONTAINS_PLACEHOLDER_P (op0))
1997 op0 = substitute_in_expr (op0, f, r);
1998 if (CONTAINS_PLACEHOLDER_P (op1))
1999 op1 = substitute_in_expr (op1, f, r);
2000
2001 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2002 return exp;
2003
2004 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2005 break;
2006
2007 case 3:
2008 /* It cannot be that anything inside a SAVE_EXPR contains a
2009 PLACEHOLDER_EXPR. */
2010 if (code == SAVE_EXPR)
2011 return exp;
2012
2013 else if (code == CALL_EXPR)
2014 {
2015 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2016 if (op1 == TREE_OPERAND (exp, 1))
2017 return exp;
2018
2019 return build (code, TREE_TYPE (exp),
2020 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2021 }
2022
2023 else if (code != COND_EXPR)
2024 abort ();
2025
2026 op0 = TREE_OPERAND (exp, 0);
2027 op1 = TREE_OPERAND (exp, 1);
2028 op2 = TREE_OPERAND (exp, 2);
2029
2030 if (CONTAINS_PLACEHOLDER_P (op0))
2031 op0 = substitute_in_expr (op0, f, r);
2032 if (CONTAINS_PLACEHOLDER_P (op1))
2033 op1 = substitute_in_expr (op1, f, r);
2034 if (CONTAINS_PLACEHOLDER_P (op2))
2035 op2 = substitute_in_expr (op2, f, r);
2036
2037 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2038 && op2 == TREE_OPERAND (exp, 2))
2039 return exp;
2040
2041 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2042 break;
2043
2044 default:
2045 abort ();
2046 }
2047
2048 break;
2049
2050 case 'r':
2051 switch (code)
2052 {
2053 case COMPONENT_REF:
2054 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2055 and it is the right field, replace it with R. */
2056 for (inner = TREE_OPERAND (exp, 0);
2057 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2058 inner = TREE_OPERAND (inner, 0))
2059 ;
2060 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2061 && TREE_OPERAND (exp, 1) == f)
2062 return r;
2063
2064 /* If this expression hasn't been completed let, leave it
2065 alone. */
2066 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2067 && TREE_TYPE (inner) == 0)
2068 return exp;
2069
2070 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2071 if (op0 == TREE_OPERAND (exp, 0))
2072 return exp;
2073
2074 new = fold (build (code, TREE_TYPE (exp), op0,
2075 TREE_OPERAND (exp, 1)));
2076 break;
2077
2078 case BIT_FIELD_REF:
2079 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2080 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2081 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2082 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2083 && op2 == TREE_OPERAND (exp, 2))
2084 return exp;
2085
2086 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2087 break;
2088
2089 case INDIRECT_REF:
2090 case BUFFER_REF:
2091 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2092 if (op0 == TREE_OPERAND (exp, 0))
2093 return exp;
2094
2095 new = fold (build1 (code, TREE_TYPE (exp), op0));
2096 break;
2097
2098 default:
2099 abort ();
2100 }
2101 break;
2102
2103 default:
2104 abort ();
2105 }
2106
2107 TREE_READONLY (new) = TREE_READONLY (exp);
2108 return new;
2109 }
2110 \f
2111 /* Stabilize a reference so that we can use it any number of times
2112 without causing its operands to be evaluated more than once.
2113 Returns the stabilized reference. This works by means of save_expr,
2114 so see the caveats in the comments about save_expr.
2115
2116 Also allows conversion expressions whose operands are references.
2117 Any other kind of expression is returned unchanged. */
2118
2119 tree
2120 stabilize_reference (tree ref)
2121 {
2122 tree result;
2123 enum tree_code code = TREE_CODE (ref);
2124
2125 switch (code)
2126 {
2127 case VAR_DECL:
2128 case PARM_DECL:
2129 case RESULT_DECL:
2130 /* No action is needed in this case. */
2131 return ref;
2132
2133 case NOP_EXPR:
2134 case CONVERT_EXPR:
2135 case FLOAT_EXPR:
2136 case FIX_TRUNC_EXPR:
2137 case FIX_FLOOR_EXPR:
2138 case FIX_ROUND_EXPR:
2139 case FIX_CEIL_EXPR:
2140 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2141 break;
2142
2143 case INDIRECT_REF:
2144 result = build_nt (INDIRECT_REF,
2145 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2146 break;
2147
2148 case COMPONENT_REF:
2149 result = build_nt (COMPONENT_REF,
2150 stabilize_reference (TREE_OPERAND (ref, 0)),
2151 TREE_OPERAND (ref, 1));
2152 break;
2153
2154 case BIT_FIELD_REF:
2155 result = build_nt (BIT_FIELD_REF,
2156 stabilize_reference (TREE_OPERAND (ref, 0)),
2157 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2158 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2159 break;
2160
2161 case ARRAY_REF:
2162 result = build_nt (ARRAY_REF,
2163 stabilize_reference (TREE_OPERAND (ref, 0)),
2164 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2165 break;
2166
2167 case ARRAY_RANGE_REF:
2168 result = build_nt (ARRAY_RANGE_REF,
2169 stabilize_reference (TREE_OPERAND (ref, 0)),
2170 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2171 break;
2172
2173 case COMPOUND_EXPR:
2174 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2175 it wouldn't be ignored. This matters when dealing with
2176 volatiles. */
2177 return stabilize_reference_1 (ref);
2178
2179 case RTL_EXPR:
2180 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2181 save_expr (build1 (ADDR_EXPR,
2182 build_pointer_type (TREE_TYPE (ref)),
2183 ref)));
2184 break;
2185
2186 /* If arg isn't a kind of lvalue we recognize, make no change.
2187 Caller should recognize the error for an invalid lvalue. */
2188 default:
2189 return ref;
2190
2191 case ERROR_MARK:
2192 return error_mark_node;
2193 }
2194
2195 TREE_TYPE (result) = TREE_TYPE (ref);
2196 TREE_READONLY (result) = TREE_READONLY (ref);
2197 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2198 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2199
2200 return result;
2201 }
2202
2203 /* Subroutine of stabilize_reference; this is called for subtrees of
2204 references. Any expression with side-effects must be put in a SAVE_EXPR
2205 to ensure that it is only evaluated once.
2206
2207 We don't put SAVE_EXPR nodes around everything, because assigning very
2208 simple expressions to temporaries causes us to miss good opportunities
2209 for optimizations. Among other things, the opportunity to fold in the
2210 addition of a constant into an addressing mode often gets lost, e.g.
2211 "y[i+1] += x;". In general, we take the approach that we should not make
2212 an assignment unless we are forced into it - i.e., that any non-side effect
2213 operator should be allowed, and that cse should take care of coalescing
2214 multiple utterances of the same expression should that prove fruitful. */
2215
2216 tree
2217 stabilize_reference_1 (tree e)
2218 {
2219 tree result;
2220 enum tree_code code = TREE_CODE (e);
2221
2222 /* We cannot ignore const expressions because it might be a reference
2223 to a const array but whose index contains side-effects. But we can
2224 ignore things that are actual constant or that already have been
2225 handled by this function. */
2226
2227 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2228 return e;
2229
2230 switch (TREE_CODE_CLASS (code))
2231 {
2232 case 'x':
2233 case 't':
2234 case 'd':
2235 case 'b':
2236 case '<':
2237 case 's':
2238 case 'e':
2239 case 'r':
2240 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2241 so that it will only be evaluated once. */
2242 /* The reference (r) and comparison (<) classes could be handled as
2243 below, but it is generally faster to only evaluate them once. */
2244 if (TREE_SIDE_EFFECTS (e))
2245 return save_expr (e);
2246 return e;
2247
2248 case 'c':
2249 /* Constants need no processing. In fact, we should never reach
2250 here. */
2251 return e;
2252
2253 case '2':
2254 /* Division is slow and tends to be compiled with jumps,
2255 especially the division by powers of 2 that is often
2256 found inside of an array reference. So do it just once. */
2257 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2258 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2259 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2260 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2261 return save_expr (e);
2262 /* Recursively stabilize each operand. */
2263 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2264 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2265 break;
2266
2267 case '1':
2268 /* Recursively stabilize each operand. */
2269 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2270 break;
2271
2272 default:
2273 abort ();
2274 }
2275
2276 TREE_TYPE (result) = TREE_TYPE (e);
2277 TREE_READONLY (result) = TREE_READONLY (e);
2278 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2279 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2280
2281 return result;
2282 }
2283 \f
2284 /* Low-level constructors for expressions. */
2285
2286 /* Build an expression of code CODE, data type TYPE,
2287 and operands as specified by the arguments ARG1 and following arguments.
2288 Expressions and reference nodes can be created this way.
2289 Constants, decls, types and misc nodes cannot be. */
2290
2291 tree
2292 build (enum tree_code code, tree tt, ...)
2293 {
2294 tree t;
2295 int length;
2296 int i;
2297 int fro;
2298 int constant;
2299 va_list p;
2300
2301 va_start (p, tt);
2302
2303 t = make_node (code);
2304 length = TREE_CODE_LENGTH (code);
2305 TREE_TYPE (t) = tt;
2306
2307 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2308 result based on those same flags for the arguments. But if the
2309 arguments aren't really even `tree' expressions, we shouldn't be trying
2310 to do this. */
2311 fro = first_rtl_op (code);
2312
2313 /* Expressions without side effects may be constant if their
2314 arguments are as well. */
2315 constant = (TREE_CODE_CLASS (code) == '<'
2316 || TREE_CODE_CLASS (code) == '1'
2317 || TREE_CODE_CLASS (code) == '2'
2318 || TREE_CODE_CLASS (code) == 'c');
2319
2320 if (length == 2)
2321 {
2322 /* This is equivalent to the loop below, but faster. */
2323 tree arg0 = va_arg (p, tree);
2324 tree arg1 = va_arg (p, tree);
2325
2326 TREE_OPERAND (t, 0) = arg0;
2327 TREE_OPERAND (t, 1) = arg1;
2328 TREE_READONLY (t) = 1;
2329 if (arg0 && fro > 0)
2330 {
2331 if (TREE_SIDE_EFFECTS (arg0))
2332 TREE_SIDE_EFFECTS (t) = 1;
2333 if (!TREE_READONLY (arg0))
2334 TREE_READONLY (t) = 0;
2335 if (!TREE_CONSTANT (arg0))
2336 constant = 0;
2337 }
2338
2339 if (arg1 && fro > 1)
2340 {
2341 if (TREE_SIDE_EFFECTS (arg1))
2342 TREE_SIDE_EFFECTS (t) = 1;
2343 if (!TREE_READONLY (arg1))
2344 TREE_READONLY (t) = 0;
2345 if (!TREE_CONSTANT (arg1))
2346 constant = 0;
2347 }
2348 }
2349 else if (length == 1)
2350 {
2351 tree arg0 = va_arg (p, tree);
2352
2353 /* The only one-operand cases we handle here are those with side-effects.
2354 Others are handled with build1. So don't bother checked if the
2355 arg has side-effects since we'll already have set it.
2356
2357 ??? This really should use build1 too. */
2358 if (TREE_CODE_CLASS (code) != 's')
2359 abort ();
2360 TREE_OPERAND (t, 0) = arg0;
2361 }
2362 else
2363 {
2364 for (i = 0; i < length; i++)
2365 {
2366 tree operand = va_arg (p, tree);
2367
2368 TREE_OPERAND (t, i) = operand;
2369 if (operand && fro > i)
2370 {
2371 if (TREE_SIDE_EFFECTS (operand))
2372 TREE_SIDE_EFFECTS (t) = 1;
2373 if (!TREE_CONSTANT (operand))
2374 constant = 0;
2375 }
2376 }
2377 }
2378 va_end (p);
2379
2380 TREE_CONSTANT (t) = constant;
2381 return t;
2382 }
2383
2384 /* Same as above, but only builds for unary operators.
2385 Saves lions share of calls to `build'; cuts down use
2386 of varargs, which is expensive for RISC machines. */
2387
2388 tree
2389 build1 (enum tree_code code, tree type, tree node)
2390 {
2391 int length = sizeof (struct tree_exp);
2392 #ifdef GATHER_STATISTICS
2393 tree_node_kind kind;
2394 #endif
2395 tree t;
2396
2397 #ifdef GATHER_STATISTICS
2398 switch (TREE_CODE_CLASS (code))
2399 {
2400 case 's': /* an expression with side effects */
2401 kind = s_kind;
2402 break;
2403 case 'r': /* a reference */
2404 kind = r_kind;
2405 break;
2406 default:
2407 kind = e_kind;
2408 break;
2409 }
2410
2411 tree_node_counts[(int) kind]++;
2412 tree_node_sizes[(int) kind] += length;
2413 #endif
2414
2415 #ifdef ENABLE_CHECKING
2416 if (TREE_CODE_CLASS (code) == '2'
2417 || TREE_CODE_CLASS (code) == '<'
2418 || TREE_CODE_LENGTH (code) != 1)
2419 abort ();
2420 #endif /* ENABLE_CHECKING */
2421
2422 t = ggc_alloc_tree (length);
2423
2424 memset (t, 0, sizeof (struct tree_common));
2425
2426 TREE_SET_CODE (t, code);
2427
2428 TREE_TYPE (t) = type;
2429 TREE_COMPLEXITY (t) = 0;
2430 TREE_OPERAND (t, 0) = node;
2431 if (node && first_rtl_op (code) != 0)
2432 {
2433 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2434 TREE_READONLY (t) = TREE_READONLY (node);
2435 }
2436
2437 if (TREE_CODE_CLASS (code) == 's')
2438 TREE_SIDE_EFFECTS (t) = 1;
2439 else switch (code)
2440 {
2441 case INIT_EXPR:
2442 case MODIFY_EXPR:
2443 case VA_ARG_EXPR:
2444 case RTL_EXPR:
2445 case PREDECREMENT_EXPR:
2446 case PREINCREMENT_EXPR:
2447 case POSTDECREMENT_EXPR:
2448 case POSTINCREMENT_EXPR:
2449 /* All of these have side-effects, no matter what their
2450 operands are. */
2451 TREE_SIDE_EFFECTS (t) = 1;
2452 TREE_READONLY (t) = 0;
2453 break;
2454
2455 case INDIRECT_REF:
2456 /* Whether a dereference is readonly has nothing to do with whether
2457 its operand is readonly. */
2458 TREE_READONLY (t) = 0;
2459 break;
2460
2461 default:
2462 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2463 TREE_CONSTANT (t) = 1;
2464 break;
2465 }
2466
2467 return t;
2468 }
2469
2470 /* Similar except don't specify the TREE_TYPE
2471 and leave the TREE_SIDE_EFFECTS as 0.
2472 It is permissible for arguments to be null,
2473 or even garbage if their values do not matter. */
2474
2475 tree
2476 build_nt (enum tree_code code, ...)
2477 {
2478 tree t;
2479 int length;
2480 int i;
2481 va_list p;
2482
2483 va_start (p, code);
2484
2485 t = make_node (code);
2486 length = TREE_CODE_LENGTH (code);
2487
2488 for (i = 0; i < length; i++)
2489 TREE_OPERAND (t, i) = va_arg (p, tree);
2490
2491 va_end (p);
2492 return t;
2493 }
2494 \f
2495 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2496 We do NOT enter this node in any sort of symbol table.
2497
2498 layout_decl is used to set up the decl's storage layout.
2499 Other slots are initialized to 0 or null pointers. */
2500
2501 tree
2502 build_decl (enum tree_code code, tree name, tree type)
2503 {
2504 tree t;
2505
2506 t = make_node (code);
2507
2508 /* if (type == error_mark_node)
2509 type = integer_type_node; */
2510 /* That is not done, deliberately, so that having error_mark_node
2511 as the type can suppress useless errors in the use of this variable. */
2512
2513 DECL_NAME (t) = name;
2514 TREE_TYPE (t) = type;
2515
2516 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2517 layout_decl (t, 0);
2518 else if (code == FUNCTION_DECL)
2519 DECL_MODE (t) = FUNCTION_MODE;
2520
2521 return t;
2522 }
2523 \f
2524 /* BLOCK nodes are used to represent the structure of binding contours
2525 and declarations, once those contours have been exited and their contents
2526 compiled. This information is used for outputting debugging info. */
2527
2528 tree
2529 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2530 tree supercontext, tree chain)
2531 {
2532 tree block = make_node (BLOCK);
2533
2534 BLOCK_VARS (block) = vars;
2535 BLOCK_SUBBLOCKS (block) = subblocks;
2536 BLOCK_SUPERCONTEXT (block) = supercontext;
2537 BLOCK_CHAIN (block) = chain;
2538 return block;
2539 }
2540
2541 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2542 location where an expression or an identifier were encountered. It
2543 is necessary for languages where the frontend parser will handle
2544 recursively more than one file (Java is one of them). */
2545
2546 tree
2547 build_expr_wfl (tree node, const char *file, int line, int col)
2548 {
2549 static const char *last_file = 0;
2550 static tree last_filenode = NULL_TREE;
2551 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2552
2553 EXPR_WFL_NODE (wfl) = node;
2554 EXPR_WFL_SET_LINECOL (wfl, line, col);
2555 if (file != last_file)
2556 {
2557 last_file = file;
2558 last_filenode = file ? get_identifier (file) : NULL_TREE;
2559 }
2560
2561 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2562 if (node)
2563 {
2564 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2565 TREE_TYPE (wfl) = TREE_TYPE (node);
2566 }
2567
2568 return wfl;
2569 }
2570 \f
2571 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2572 is ATTRIBUTE. */
2573
2574 tree
2575 build_decl_attribute_variant (tree ddecl, tree attribute)
2576 {
2577 DECL_ATTRIBUTES (ddecl) = attribute;
2578 return ddecl;
2579 }
2580
2581 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2582 is ATTRIBUTE.
2583
2584 Record such modified types already made so we don't make duplicates. */
2585
2586 tree
2587 build_type_attribute_variant (tree ttype, tree attribute)
2588 {
2589 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2590 {
2591 unsigned int hashcode;
2592 tree ntype;
2593
2594 ntype = copy_node (ttype);
2595
2596 TYPE_POINTER_TO (ntype) = 0;
2597 TYPE_REFERENCE_TO (ntype) = 0;
2598 TYPE_ATTRIBUTES (ntype) = attribute;
2599
2600 /* Create a new main variant of TYPE. */
2601 TYPE_MAIN_VARIANT (ntype) = ntype;
2602 TYPE_NEXT_VARIANT (ntype) = 0;
2603 set_type_quals (ntype, TYPE_UNQUALIFIED);
2604
2605 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2606 + TYPE_HASH (TREE_TYPE (ntype))
2607 + attribute_hash_list (attribute));
2608
2609 switch (TREE_CODE (ntype))
2610 {
2611 case FUNCTION_TYPE:
2612 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2613 break;
2614 case ARRAY_TYPE:
2615 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2616 break;
2617 case INTEGER_TYPE:
2618 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2619 break;
2620 case REAL_TYPE:
2621 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2622 break;
2623 default:
2624 break;
2625 }
2626
2627 ntype = type_hash_canon (hashcode, ntype);
2628 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2629 }
2630
2631 return ttype;
2632 }
2633
2634 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2635 or zero if not.
2636
2637 We try both `text' and `__text__', ATTR may be either one. */
2638 /* ??? It might be a reasonable simplification to require ATTR to be only
2639 `text'. One might then also require attribute lists to be stored in
2640 their canonicalized form. */
2641
2642 int
2643 is_attribute_p (const char *attr, tree ident)
2644 {
2645 int ident_len, attr_len;
2646 const char *p;
2647
2648 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2649 return 0;
2650
2651 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2652 return 1;
2653
2654 p = IDENTIFIER_POINTER (ident);
2655 ident_len = strlen (p);
2656 attr_len = strlen (attr);
2657
2658 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2659 if (attr[0] == '_')
2660 {
2661 if (attr[1] != '_'
2662 || attr[attr_len - 2] != '_'
2663 || attr[attr_len - 1] != '_')
2664 abort ();
2665 if (ident_len == attr_len - 4
2666 && strncmp (attr + 2, p, attr_len - 4) == 0)
2667 return 1;
2668 }
2669 else
2670 {
2671 if (ident_len == attr_len + 4
2672 && p[0] == '_' && p[1] == '_'
2673 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2674 && strncmp (attr, p + 2, attr_len) == 0)
2675 return 1;
2676 }
2677
2678 return 0;
2679 }
2680
2681 /* Given an attribute name and a list of attributes, return a pointer to the
2682 attribute's list element if the attribute is part of the list, or NULL_TREE
2683 if not found. If the attribute appears more than once, this only
2684 returns the first occurrence; the TREE_CHAIN of the return value should
2685 be passed back in if further occurrences are wanted. */
2686
2687 tree
2688 lookup_attribute (const char *attr_name, tree list)
2689 {
2690 tree l;
2691
2692 for (l = list; l; l = TREE_CHAIN (l))
2693 {
2694 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2695 abort ();
2696 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2697 return l;
2698 }
2699
2700 return NULL_TREE;
2701 }
2702
2703 /* Return an attribute list that is the union of a1 and a2. */
2704
2705 tree
2706 merge_attributes (tree a1, tree a2)
2707 {
2708 tree attributes;
2709
2710 /* Either one unset? Take the set one. */
2711
2712 if ((attributes = a1) == 0)
2713 attributes = a2;
2714
2715 /* One that completely contains the other? Take it. */
2716
2717 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2718 {
2719 if (attribute_list_contained (a2, a1))
2720 attributes = a2;
2721 else
2722 {
2723 /* Pick the longest list, and hang on the other list. */
2724
2725 if (list_length (a1) < list_length (a2))
2726 attributes = a2, a2 = a1;
2727
2728 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2729 {
2730 tree a;
2731 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2732 attributes);
2733 a != NULL_TREE;
2734 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2735 TREE_CHAIN (a)))
2736 {
2737 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2738 break;
2739 }
2740 if (a == NULL_TREE)
2741 {
2742 a1 = copy_node (a2);
2743 TREE_CHAIN (a1) = attributes;
2744 attributes = a1;
2745 }
2746 }
2747 }
2748 }
2749 return attributes;
2750 }
2751
2752 /* Given types T1 and T2, merge their attributes and return
2753 the result. */
2754
2755 tree
2756 merge_type_attributes (tree t1, tree t2)
2757 {
2758 return merge_attributes (TYPE_ATTRIBUTES (t1),
2759 TYPE_ATTRIBUTES (t2));
2760 }
2761
2762 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2763 the result. */
2764
2765 tree
2766 merge_decl_attributes (tree olddecl, tree newdecl)
2767 {
2768 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2769 DECL_ATTRIBUTES (newdecl));
2770 }
2771
2772 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2773
2774 /* Specialization of merge_decl_attributes for various Windows targets.
2775
2776 This handles the following situation:
2777
2778 __declspec (dllimport) int foo;
2779 int foo;
2780
2781 The second instance of `foo' nullifies the dllimport. */
2782
2783 tree
2784 merge_dllimport_decl_attributes (tree old, tree new)
2785 {
2786 tree a;
2787 int delete_dllimport_p;
2788
2789 old = DECL_ATTRIBUTES (old);
2790 new = DECL_ATTRIBUTES (new);
2791
2792 /* What we need to do here is remove from `old' dllimport if it doesn't
2793 appear in `new'. dllimport behaves like extern: if a declaration is
2794 marked dllimport and a definition appears later, then the object
2795 is not dllimport'd. */
2796 if (lookup_attribute ("dllimport", old) != NULL_TREE
2797 && lookup_attribute ("dllimport", new) == NULL_TREE)
2798 delete_dllimport_p = 1;
2799 else
2800 delete_dllimport_p = 0;
2801
2802 a = merge_attributes (old, new);
2803
2804 if (delete_dllimport_p)
2805 {
2806 tree prev, t;
2807
2808 /* Scan the list for dllimport and delete it. */
2809 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2810 {
2811 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2812 {
2813 if (prev == NULL_TREE)
2814 a = TREE_CHAIN (a);
2815 else
2816 TREE_CHAIN (prev) = TREE_CHAIN (t);
2817 break;
2818 }
2819 }
2820 }
2821
2822 return a;
2823 }
2824
2825 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2826 \f
2827 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2828 of the various TYPE_QUAL values. */
2829
2830 static void
2831 set_type_quals (tree type, int type_quals)
2832 {
2833 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2834 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2835 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2836 }
2837
2838 /* Return a version of the TYPE, qualified as indicated by the
2839 TYPE_QUALS, if one exists. If no qualified version exists yet,
2840 return NULL_TREE. */
2841
2842 tree
2843 get_qualified_type (tree type, int type_quals)
2844 {
2845 tree t;
2846
2847 /* Search the chain of variants to see if there is already one there just
2848 like the one we need to have. If so, use that existing one. We must
2849 preserve the TYPE_NAME, since there is code that depends on this. */
2850 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2851 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2852 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
2853 return t;
2854
2855 return NULL_TREE;
2856 }
2857
2858 /* Like get_qualified_type, but creates the type if it does not
2859 exist. This function never returns NULL_TREE. */
2860
2861 tree
2862 build_qualified_type (tree type, int type_quals)
2863 {
2864 tree t;
2865
2866 /* See if we already have the appropriate qualified variant. */
2867 t = get_qualified_type (type, type_quals);
2868
2869 /* If not, build it. */
2870 if (!t)
2871 {
2872 t = build_type_copy (type);
2873 set_type_quals (t, type_quals);
2874 }
2875
2876 return t;
2877 }
2878
2879 /* Create a new variant of TYPE, equivalent but distinct.
2880 This is so the caller can modify it. */
2881
2882 tree
2883 build_type_copy (tree type)
2884 {
2885 tree t, m = TYPE_MAIN_VARIANT (type);
2886
2887 t = copy_node (type);
2888
2889 TYPE_POINTER_TO (t) = 0;
2890 TYPE_REFERENCE_TO (t) = 0;
2891
2892 /* Add this type to the chain of variants of TYPE. */
2893 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2894 TYPE_NEXT_VARIANT (m) = t;
2895
2896 return t;
2897 }
2898 \f
2899 /* Hashing of types so that we don't make duplicates.
2900 The entry point is `type_hash_canon'. */
2901
2902 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2903 with types in the TREE_VALUE slots), by adding the hash codes
2904 of the individual types. */
2905
2906 unsigned int
2907 type_hash_list (tree list)
2908 {
2909 unsigned int hashcode;
2910 tree tail;
2911
2912 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2913 hashcode += TYPE_HASH (TREE_VALUE (tail));
2914
2915 return hashcode;
2916 }
2917
2918 /* These are the Hashtable callback functions. */
2919
2920 /* Returns true if the types are equal. */
2921
2922 static int
2923 type_hash_eq (const void *va, const void *vb)
2924 {
2925 const struct type_hash *a = va, *b = vb;
2926 if (a->hash == b->hash
2927 && TREE_CODE (a->type) == TREE_CODE (b->type)
2928 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2929 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2930 TYPE_ATTRIBUTES (b->type))
2931 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2932 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2933 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2934 TYPE_MAX_VALUE (b->type)))
2935 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2936 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2937 TYPE_MIN_VALUE (b->type)))
2938 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2939 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2940 || (TYPE_DOMAIN (a->type)
2941 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2942 && TYPE_DOMAIN (b->type)
2943 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2944 && type_list_equal (TYPE_DOMAIN (a->type),
2945 TYPE_DOMAIN (b->type)))))
2946 return 1;
2947 return 0;
2948 }
2949
2950 /* Return the cached hash value. */
2951
2952 static hashval_t
2953 type_hash_hash (const void *item)
2954 {
2955 return ((const struct type_hash *) item)->hash;
2956 }
2957
2958 /* Look in the type hash table for a type isomorphic to TYPE.
2959 If one is found, return it. Otherwise return 0. */
2960
2961 tree
2962 type_hash_lookup (unsigned int hashcode, tree type)
2963 {
2964 struct type_hash *h, in;
2965
2966 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2967 must call that routine before comparing TYPE_ALIGNs. */
2968 layout_type (type);
2969
2970 in.hash = hashcode;
2971 in.type = type;
2972
2973 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2974 if (h)
2975 return h->type;
2976 return NULL_TREE;
2977 }
2978
2979 /* Add an entry to the type-hash-table
2980 for a type TYPE whose hash code is HASHCODE. */
2981
2982 void
2983 type_hash_add (unsigned int hashcode, tree type)
2984 {
2985 struct type_hash *h;
2986 void **loc;
2987
2988 h = ggc_alloc (sizeof (struct type_hash));
2989 h->hash = hashcode;
2990 h->type = type;
2991 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
2992 *(struct type_hash **) loc = h;
2993 }
2994
2995 /* Given TYPE, and HASHCODE its hash code, return the canonical
2996 object for an identical type if one already exists.
2997 Otherwise, return TYPE, and record it as the canonical object
2998 if it is a permanent object.
2999
3000 To use this function, first create a type of the sort you want.
3001 Then compute its hash code from the fields of the type that
3002 make it different from other similar types.
3003 Then call this function and use the value.
3004 This function frees the type you pass in if it is a duplicate. */
3005
3006 /* Set to 1 to debug without canonicalization. Never set by program. */
3007 int debug_no_type_hash = 0;
3008
3009 tree
3010 type_hash_canon (unsigned int hashcode, tree type)
3011 {
3012 tree t1;
3013
3014 if (debug_no_type_hash)
3015 return type;
3016
3017 /* See if the type is in the hash table already. If so, return it.
3018 Otherwise, add the type. */
3019 t1 = type_hash_lookup (hashcode, type);
3020 if (t1 != 0)
3021 {
3022 #ifdef GATHER_STATISTICS
3023 tree_node_counts[(int) t_kind]--;
3024 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3025 #endif
3026 return t1;
3027 }
3028 else
3029 {
3030 type_hash_add (hashcode, type);
3031 return type;
3032 }
3033 }
3034
3035 /* See if the data pointed to by the type hash table is marked. We consider
3036 it marked if the type is marked or if a debug type number or symbol
3037 table entry has been made for the type. This reduces the amount of
3038 debugging output and eliminates that dependency of the debug output on
3039 the number of garbage collections. */
3040
3041 static int
3042 type_hash_marked_p (const void *p)
3043 {
3044 tree type = ((struct type_hash *) p)->type;
3045
3046 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3047 }
3048
3049 static void
3050 print_type_hash_statistics (void)
3051 {
3052 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3053 (long) htab_size (type_hash_table),
3054 (long) htab_elements (type_hash_table),
3055 htab_collisions (type_hash_table));
3056 }
3057
3058 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3059 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3060 by adding the hash codes of the individual attributes. */
3061
3062 unsigned int
3063 attribute_hash_list (tree list)
3064 {
3065 unsigned int hashcode;
3066 tree tail;
3067
3068 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3069 /* ??? Do we want to add in TREE_VALUE too? */
3070 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3071 return hashcode;
3072 }
3073
3074 /* Given two lists of attributes, return true if list l2 is
3075 equivalent to l1. */
3076
3077 int
3078 attribute_list_equal (tree l1, tree l2)
3079 {
3080 return attribute_list_contained (l1, l2)
3081 && attribute_list_contained (l2, l1);
3082 }
3083
3084 /* Given two lists of attributes, return true if list L2 is
3085 completely contained within L1. */
3086 /* ??? This would be faster if attribute names were stored in a canonicalized
3087 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3088 must be used to show these elements are equivalent (which they are). */
3089 /* ??? It's not clear that attributes with arguments will always be handled
3090 correctly. */
3091
3092 int
3093 attribute_list_contained (tree l1, tree l2)
3094 {
3095 tree t1, t2;
3096
3097 /* First check the obvious, maybe the lists are identical. */
3098 if (l1 == l2)
3099 return 1;
3100
3101 /* Maybe the lists are similar. */
3102 for (t1 = l1, t2 = l2;
3103 t1 != 0 && t2 != 0
3104 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3105 && TREE_VALUE (t1) == TREE_VALUE (t2);
3106 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3107
3108 /* Maybe the lists are equal. */
3109 if (t1 == 0 && t2 == 0)
3110 return 1;
3111
3112 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3113 {
3114 tree attr;
3115 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3116 attr != NULL_TREE;
3117 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3118 TREE_CHAIN (attr)))
3119 {
3120 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3121 break;
3122 }
3123
3124 if (attr == 0)
3125 return 0;
3126
3127 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3128 return 0;
3129 }
3130
3131 return 1;
3132 }
3133
3134 /* Given two lists of types
3135 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3136 return 1 if the lists contain the same types in the same order.
3137 Also, the TREE_PURPOSEs must match. */
3138
3139 int
3140 type_list_equal (tree l1, tree l2)
3141 {
3142 tree t1, t2;
3143
3144 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3145 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3146 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3147 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3148 && (TREE_TYPE (TREE_PURPOSE (t1))
3149 == TREE_TYPE (TREE_PURPOSE (t2))))))
3150 return 0;
3151
3152 return t1 == t2;
3153 }
3154
3155 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3156 given by TYPE. If the argument list accepts variable arguments,
3157 then this function counts only the ordinary arguments. */
3158
3159 int
3160 type_num_arguments (tree type)
3161 {
3162 int i = 0;
3163 tree t;
3164
3165 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3166 /* If the function does not take a variable number of arguments,
3167 the last element in the list will have type `void'. */
3168 if (VOID_TYPE_P (TREE_VALUE (t)))
3169 break;
3170 else
3171 ++i;
3172
3173 return i;
3174 }
3175
3176 /* Nonzero if integer constants T1 and T2
3177 represent the same constant value. */
3178
3179 int
3180 tree_int_cst_equal (tree t1, tree t2)
3181 {
3182 if (t1 == t2)
3183 return 1;
3184
3185 if (t1 == 0 || t2 == 0)
3186 return 0;
3187
3188 if (TREE_CODE (t1) == INTEGER_CST
3189 && TREE_CODE (t2) == INTEGER_CST
3190 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3191 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3192 return 1;
3193
3194 return 0;
3195 }
3196
3197 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3198 The precise way of comparison depends on their data type. */
3199
3200 int
3201 tree_int_cst_lt (tree t1, tree t2)
3202 {
3203 if (t1 == t2)
3204 return 0;
3205
3206 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3207 {
3208 int t1_sgn = tree_int_cst_sgn (t1);
3209 int t2_sgn = tree_int_cst_sgn (t2);
3210
3211 if (t1_sgn < t2_sgn)
3212 return 1;
3213 else if (t1_sgn > t2_sgn)
3214 return 0;
3215 /* Otherwise, both are non-negative, so we compare them as
3216 unsigned just in case one of them would overflow a signed
3217 type. */
3218 }
3219 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3220 return INT_CST_LT (t1, t2);
3221
3222 return INT_CST_LT_UNSIGNED (t1, t2);
3223 }
3224
3225 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3226
3227 int
3228 tree_int_cst_compare (tree t1, tree t2)
3229 {
3230 if (tree_int_cst_lt (t1, t2))
3231 return -1;
3232 else if (tree_int_cst_lt (t2, t1))
3233 return 1;
3234 else
3235 return 0;
3236 }
3237
3238 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3239 the host. If POS is zero, the value can be represented in a single
3240 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3241 be represented in a single unsigned HOST_WIDE_INT. */
3242
3243 int
3244 host_integerp (tree t, int pos)
3245 {
3246 return (TREE_CODE (t) == INTEGER_CST
3247 && ! TREE_OVERFLOW (t)
3248 && ((TREE_INT_CST_HIGH (t) == 0
3249 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3250 || (! pos && TREE_INT_CST_HIGH (t) == -1
3251 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3252 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3253 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3254 }
3255
3256 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3257 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3258 be positive. Abort if we cannot satisfy the above conditions. */
3259
3260 HOST_WIDE_INT
3261 tree_low_cst (tree t, int pos)
3262 {
3263 if (host_integerp (t, pos))
3264 return TREE_INT_CST_LOW (t);
3265 else
3266 abort ();
3267 }
3268
3269 /* Return the most significant bit of the integer constant T. */
3270
3271 int
3272 tree_int_cst_msb (tree t)
3273 {
3274 int prec;
3275 HOST_WIDE_INT h;
3276 unsigned HOST_WIDE_INT l;
3277
3278 /* Note that using TYPE_PRECISION here is wrong. We care about the
3279 actual bits, not the (arbitrary) range of the type. */
3280 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3281 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3282 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3283 return (l & 1) == 1;
3284 }
3285
3286 /* Return an indication of the sign of the integer constant T.
3287 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3288 Note that -1 will never be returned it T's type is unsigned. */
3289
3290 int
3291 tree_int_cst_sgn (tree t)
3292 {
3293 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3294 return 0;
3295 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3296 return 1;
3297 else if (TREE_INT_CST_HIGH (t) < 0)
3298 return -1;
3299 else
3300 return 1;
3301 }
3302
3303 /* Compare two constructor-element-type constants. Return 1 if the lists
3304 are known to be equal; otherwise return 0. */
3305
3306 int
3307 simple_cst_list_equal (tree l1, tree l2)
3308 {
3309 while (l1 != NULL_TREE && l2 != NULL_TREE)
3310 {
3311 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3312 return 0;
3313
3314 l1 = TREE_CHAIN (l1);
3315 l2 = TREE_CHAIN (l2);
3316 }
3317
3318 return l1 == l2;
3319 }
3320
3321 /* Return truthvalue of whether T1 is the same tree structure as T2.
3322 Return 1 if they are the same.
3323 Return 0 if they are understandably different.
3324 Return -1 if either contains tree structure not understood by
3325 this function. */
3326
3327 int
3328 simple_cst_equal (tree t1, tree t2)
3329 {
3330 enum tree_code code1, code2;
3331 int cmp;
3332 int i;
3333
3334 if (t1 == t2)
3335 return 1;
3336 if (t1 == 0 || t2 == 0)
3337 return 0;
3338
3339 code1 = TREE_CODE (t1);
3340 code2 = TREE_CODE (t2);
3341
3342 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3343 {
3344 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3345 || code2 == NON_LVALUE_EXPR)
3346 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3347 else
3348 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3349 }
3350
3351 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3352 || code2 == NON_LVALUE_EXPR)
3353 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3354
3355 if (code1 != code2)
3356 return 0;
3357
3358 switch (code1)
3359 {
3360 case INTEGER_CST:
3361 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3362 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3363
3364 case REAL_CST:
3365 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3366
3367 case STRING_CST:
3368 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3369 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3370 TREE_STRING_LENGTH (t1)));
3371
3372 case CONSTRUCTOR:
3373 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3374 return 1;
3375 else
3376 abort ();
3377
3378 case SAVE_EXPR:
3379 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3380
3381 case CALL_EXPR:
3382 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3383 if (cmp <= 0)
3384 return cmp;
3385 return
3386 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3387
3388 case TARGET_EXPR:
3389 /* Special case: if either target is an unallocated VAR_DECL,
3390 it means that it's going to be unified with whatever the
3391 TARGET_EXPR is really supposed to initialize, so treat it
3392 as being equivalent to anything. */
3393 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3394 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3395 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3396 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3397 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3398 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3399 cmp = 1;
3400 else
3401 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3402
3403 if (cmp <= 0)
3404 return cmp;
3405
3406 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3407
3408 case WITH_CLEANUP_EXPR:
3409 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3410 if (cmp <= 0)
3411 return cmp;
3412
3413 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3414
3415 case COMPONENT_REF:
3416 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3417 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3418
3419 return 0;
3420
3421 case VAR_DECL:
3422 case PARM_DECL:
3423 case CONST_DECL:
3424 case FUNCTION_DECL:
3425 return 0;
3426
3427 default:
3428 break;
3429 }
3430
3431 /* This general rule works for most tree codes. All exceptions should be
3432 handled above. If this is a language-specific tree code, we can't
3433 trust what might be in the operand, so say we don't know
3434 the situation. */
3435 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3436 return -1;
3437
3438 switch (TREE_CODE_CLASS (code1))
3439 {
3440 case '1':
3441 case '2':
3442 case '<':
3443 case 'e':
3444 case 'r':
3445 case 's':
3446 cmp = 1;
3447 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3448 {
3449 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3450 if (cmp <= 0)
3451 return cmp;
3452 }
3453
3454 return cmp;
3455
3456 default:
3457 return -1;
3458 }
3459 }
3460
3461 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3462 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3463 than U, respectively. */
3464
3465 int
3466 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3467 {
3468 if (tree_int_cst_sgn (t) < 0)
3469 return -1;
3470 else if (TREE_INT_CST_HIGH (t) != 0)
3471 return 1;
3472 else if (TREE_INT_CST_LOW (t) == u)
3473 return 0;
3474 else if (TREE_INT_CST_LOW (t) < u)
3475 return -1;
3476 else
3477 return 1;
3478 }
3479
3480 /* Generate a hash value for an expression. This can be used iteratively
3481 by passing a previous result as the "val" argument.
3482
3483 This function is intended to produce the same hash for expressions which
3484 would compare equal using operand_equal_p. */
3485
3486 hashval_t
3487 iterative_hash_expr (tree t, hashval_t val)
3488 {
3489 int i;
3490 enum tree_code code;
3491 char class;
3492
3493 if (t == NULL_TREE)
3494 return iterative_hash_object (t, val);
3495
3496 code = TREE_CODE (t);
3497 class = TREE_CODE_CLASS (code);
3498
3499 if (class == 'd')
3500 {
3501 /* Decls we can just compare by pointer. */
3502 val = iterative_hash_object (t, val);
3503 }
3504 else if (class == 'c')
3505 {
3506 /* Alas, constants aren't shared, so we can't rely on pointer
3507 identity. */
3508 if (code == INTEGER_CST)
3509 {
3510 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3511 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3512 }
3513 else if (code == REAL_CST)
3514 val = iterative_hash (TREE_REAL_CST_PTR (t),
3515 sizeof (REAL_VALUE_TYPE), val);
3516 else if (code == STRING_CST)
3517 val = iterative_hash (TREE_STRING_POINTER (t),
3518 TREE_STRING_LENGTH (t), val);
3519 else if (code == COMPLEX_CST)
3520 {
3521 val = iterative_hash_expr (TREE_REALPART (t), val);
3522 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3523 }
3524 else if (code == VECTOR_CST)
3525 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3526 else
3527 abort ();
3528 }
3529 else if (IS_EXPR_CODE_CLASS (class) || class == 'r')
3530 {
3531 val = iterative_hash_object (code, val);
3532
3533 if (code == NOP_EXPR || code == CONVERT_EXPR
3534 || code == NON_LVALUE_EXPR)
3535 val = iterative_hash_object (TREE_TYPE (t), val);
3536
3537 if (code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
3538 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
3539 || code == BIT_AND_EXPR || code == NE_EXPR || code == EQ_EXPR)
3540 {
3541 /* It's a commutative expression. We want to hash it the same
3542 however it appears. We do this by first hashing both operands
3543 and then rehashing based on the order of their independent
3544 hashes. */
3545 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3546 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3547 hashval_t t;
3548
3549 if (one > two)
3550 t = one, one = two, two = t;
3551
3552 val = iterative_hash_object (one, val);
3553 val = iterative_hash_object (two, val);
3554 }
3555 else
3556 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3557 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3558 }
3559 else if (code == TREE_LIST)
3560 {
3561 /* A list of expressions, for a CALL_EXPR or as the elements of a
3562 VECTOR_CST. */
3563 for (; t; t = TREE_CHAIN (t))
3564 val = iterative_hash_expr (TREE_VALUE (t), val);
3565 }
3566 else
3567 abort ();
3568
3569 return val;
3570 }
3571 \f
3572 /* Constructors for pointer, array and function types.
3573 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3574 constructed by language-dependent code, not here.) */
3575
3576 /* Construct, lay out and return the type of pointers to TO_TYPE
3577 with mode MODE. If such a type has already been constructed,
3578 reuse it. */
3579
3580 tree
3581 build_pointer_type_for_mode (tree to_type, enum machine_mode mode)
3582 {
3583 tree t = TYPE_POINTER_TO (to_type);
3584
3585 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3586 if (t != 0 && mode == ptr_mode)
3587 return t;
3588
3589 t = make_node (POINTER_TYPE);
3590
3591 TREE_TYPE (t) = to_type;
3592 TYPE_MODE (t) = mode;
3593
3594 /* Record this type as the pointer to TO_TYPE. */
3595 if (mode == ptr_mode)
3596 TYPE_POINTER_TO (to_type) = t;
3597
3598 /* Lay out the type. This function has many callers that are concerned
3599 with expression-construction, and this simplifies them all.
3600 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3601 layout_type (t);
3602
3603 return t;
3604 }
3605
3606 /* By default build pointers in ptr_mode. */
3607
3608 tree
3609 build_pointer_type (tree to_type)
3610 {
3611 return build_pointer_type_for_mode (to_type, ptr_mode);
3612 }
3613
3614 /* Construct, lay out and return the type of references to TO_TYPE
3615 with mode MODE. If such a type has already been constructed,
3616 reuse it. */
3617
3618 tree
3619 build_reference_type_for_mode (tree to_type, enum machine_mode mode)
3620 {
3621 tree t = TYPE_REFERENCE_TO (to_type);
3622
3623 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3624 if (t != 0 && mode == ptr_mode)
3625 return t;
3626
3627 t = make_node (REFERENCE_TYPE);
3628
3629 TREE_TYPE (t) = to_type;
3630 TYPE_MODE (t) = mode;
3631
3632 /* Record this type as the pointer to TO_TYPE. */
3633 if (mode == ptr_mode)
3634 TYPE_REFERENCE_TO (to_type) = t;
3635
3636 layout_type (t);
3637
3638 return t;
3639 }
3640
3641
3642 /* Build the node for the type of references-to-TO_TYPE by default
3643 in ptr_mode. */
3644
3645 tree
3646 build_reference_type (tree to_type)
3647 {
3648 return build_reference_type_for_mode (to_type, ptr_mode);
3649 }
3650
3651 /* Build a type that is compatible with t but has no cv quals anywhere
3652 in its type, thus
3653
3654 const char *const *const * -> char ***. */
3655
3656 tree
3657 build_type_no_quals (tree t)
3658 {
3659 switch (TREE_CODE (t))
3660 {
3661 case POINTER_TYPE:
3662 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3663 case REFERENCE_TYPE:
3664 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3665 default:
3666 return TYPE_MAIN_VARIANT (t);
3667 }
3668 }
3669
3670 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3671 MAXVAL should be the maximum value in the domain
3672 (one less than the length of the array).
3673
3674 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3675 We don't enforce this limit, that is up to caller (e.g. language front end).
3676 The limit exists because the result is a signed type and we don't handle
3677 sizes that use more than one HOST_WIDE_INT. */
3678
3679 tree
3680 build_index_type (tree maxval)
3681 {
3682 tree itype = make_node (INTEGER_TYPE);
3683
3684 TREE_TYPE (itype) = sizetype;
3685 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3686 TYPE_MIN_VALUE (itype) = size_zero_node;
3687 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3688 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3689 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3690 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3691 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3692 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3693
3694 if (host_integerp (maxval, 1))
3695 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3696 else
3697 return itype;
3698 }
3699
3700 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3701 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3702 low bound LOWVAL and high bound HIGHVAL.
3703 if TYPE==NULL_TREE, sizetype is used. */
3704
3705 tree
3706 build_range_type (tree type, tree lowval, tree highval)
3707 {
3708 tree itype = make_node (INTEGER_TYPE);
3709
3710 TREE_TYPE (itype) = type;
3711 if (type == NULL_TREE)
3712 type = sizetype;
3713
3714 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3715 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3716
3717 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3718 TYPE_MODE (itype) = TYPE_MODE (type);
3719 TYPE_SIZE (itype) = TYPE_SIZE (type);
3720 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3721 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3722 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3723
3724 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3725 return type_hash_canon (tree_low_cst (highval, 0)
3726 - tree_low_cst (lowval, 0),
3727 itype);
3728 else
3729 return itype;
3730 }
3731
3732 /* Just like build_index_type, but takes lowval and highval instead
3733 of just highval (maxval). */
3734
3735 tree
3736 build_index_2_type (tree lowval, tree highval)
3737 {
3738 return build_range_type (sizetype, lowval, highval);
3739 }
3740
3741 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3742 and number of elements specified by the range of values of INDEX_TYPE.
3743 If such a type has already been constructed, reuse it. */
3744
3745 tree
3746 build_array_type (tree elt_type, tree index_type)
3747 {
3748 tree t;
3749 unsigned int hashcode;
3750
3751 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3752 {
3753 error ("arrays of functions are not meaningful");
3754 elt_type = integer_type_node;
3755 }
3756
3757 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3758 build_pointer_type (elt_type);
3759
3760 /* Allocate the array after the pointer type,
3761 in case we free it in type_hash_canon. */
3762 t = make_node (ARRAY_TYPE);
3763 TREE_TYPE (t) = elt_type;
3764 TYPE_DOMAIN (t) = index_type;
3765
3766 if (index_type == 0)
3767 {
3768 return t;
3769 }
3770
3771 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3772 t = type_hash_canon (hashcode, t);
3773
3774 if (!COMPLETE_TYPE_P (t))
3775 layout_type (t);
3776 return t;
3777 }
3778
3779 /* Return the TYPE of the elements comprising
3780 the innermost dimension of ARRAY. */
3781
3782 tree
3783 get_inner_array_type (tree array)
3784 {
3785 tree type = TREE_TYPE (array);
3786
3787 while (TREE_CODE (type) == ARRAY_TYPE)
3788 type = TREE_TYPE (type);
3789
3790 return type;
3791 }
3792
3793 /* Construct, lay out and return
3794 the type of functions returning type VALUE_TYPE
3795 given arguments of types ARG_TYPES.
3796 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3797 are data type nodes for the arguments of the function.
3798 If such a type has already been constructed, reuse it. */
3799
3800 tree
3801 build_function_type (tree value_type, tree arg_types)
3802 {
3803 tree t;
3804 unsigned int hashcode;
3805
3806 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3807 {
3808 error ("function return type cannot be function");
3809 value_type = integer_type_node;
3810 }
3811
3812 /* Make a node of the sort we want. */
3813 t = make_node (FUNCTION_TYPE);
3814 TREE_TYPE (t) = value_type;
3815 TYPE_ARG_TYPES (t) = arg_types;
3816
3817 /* If we already have such a type, use the old one and free this one. */
3818 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3819 t = type_hash_canon (hashcode, t);
3820
3821 if (!COMPLETE_TYPE_P (t))
3822 layout_type (t);
3823 return t;
3824 }
3825
3826 /* Build a function type. The RETURN_TYPE is the type retured by the
3827 function. If additional arguments are provided, they are
3828 additional argument types. The list of argument types must always
3829 be terminated by NULL_TREE. */
3830
3831 tree
3832 build_function_type_list (tree return_type, ...)
3833 {
3834 tree t, args, last;
3835 va_list p;
3836
3837 va_start (p, return_type);
3838
3839 t = va_arg (p, tree);
3840 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3841 args = tree_cons (NULL_TREE, t, args);
3842
3843 last = args;
3844 args = nreverse (args);
3845 TREE_CHAIN (last) = void_list_node;
3846 args = build_function_type (return_type, args);
3847
3848 va_end (p);
3849 return args;
3850 }
3851
3852 /* Construct, lay out and return the type of methods belonging to class
3853 BASETYPE and whose arguments and values are described by TYPE.
3854 If that type exists already, reuse it.
3855 TYPE must be a FUNCTION_TYPE node. */
3856
3857 tree
3858 build_method_type (tree basetype, tree type)
3859 {
3860 tree t;
3861 unsigned int hashcode;
3862
3863 /* Make a node of the sort we want. */
3864 t = make_node (METHOD_TYPE);
3865
3866 if (TREE_CODE (type) != FUNCTION_TYPE)
3867 abort ();
3868
3869 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3870 TREE_TYPE (t) = TREE_TYPE (type);
3871
3872 /* The actual arglist for this function includes a "hidden" argument
3873 which is "this". Put it into the list of argument types. */
3874
3875 TYPE_ARG_TYPES (t)
3876 = tree_cons (NULL_TREE,
3877 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3878
3879 /* If we already have such a type, use the old one and free this one. */
3880 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3881 t = type_hash_canon (hashcode, t);
3882
3883 if (!COMPLETE_TYPE_P (t))
3884 layout_type (t);
3885
3886 return t;
3887 }
3888
3889 /* Construct, lay out and return the type of offsets to a value
3890 of type TYPE, within an object of type BASETYPE.
3891 If a suitable offset type exists already, reuse it. */
3892
3893 tree
3894 build_offset_type (tree basetype, tree type)
3895 {
3896 tree t;
3897 unsigned int hashcode;
3898
3899 /* Make a node of the sort we want. */
3900 t = make_node (OFFSET_TYPE);
3901
3902 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3903 TREE_TYPE (t) = type;
3904
3905 /* If we already have such a type, use the old one and free this one. */
3906 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3907 t = type_hash_canon (hashcode, t);
3908
3909 if (!COMPLETE_TYPE_P (t))
3910 layout_type (t);
3911
3912 return t;
3913 }
3914
3915 /* Create a complex type whose components are COMPONENT_TYPE. */
3916
3917 tree
3918 build_complex_type (tree component_type)
3919 {
3920 tree t;
3921 unsigned int hashcode;
3922
3923 /* Make a node of the sort we want. */
3924 t = make_node (COMPLEX_TYPE);
3925
3926 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3927 set_type_quals (t, TYPE_QUALS (component_type));
3928
3929 /* If we already have such a type, use the old one and free this one. */
3930 hashcode = TYPE_HASH (component_type);
3931 t = type_hash_canon (hashcode, t);
3932
3933 if (!COMPLETE_TYPE_P (t))
3934 layout_type (t);
3935
3936 /* If we are writing Dwarf2 output we need to create a name,
3937 since complex is a fundamental type. */
3938 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3939 && ! TYPE_NAME (t))
3940 {
3941 const char *name;
3942 if (component_type == char_type_node)
3943 name = "complex char";
3944 else if (component_type == signed_char_type_node)
3945 name = "complex signed char";
3946 else if (component_type == unsigned_char_type_node)
3947 name = "complex unsigned char";
3948 else if (component_type == short_integer_type_node)
3949 name = "complex short int";
3950 else if (component_type == short_unsigned_type_node)
3951 name = "complex short unsigned int";
3952 else if (component_type == integer_type_node)
3953 name = "complex int";
3954 else if (component_type == unsigned_type_node)
3955 name = "complex unsigned int";
3956 else if (component_type == long_integer_type_node)
3957 name = "complex long int";
3958 else if (component_type == long_unsigned_type_node)
3959 name = "complex long unsigned int";
3960 else if (component_type == long_long_integer_type_node)
3961 name = "complex long long int";
3962 else if (component_type == long_long_unsigned_type_node)
3963 name = "complex long long unsigned int";
3964 else
3965 name = 0;
3966
3967 if (name != 0)
3968 TYPE_NAME (t) = get_identifier (name);
3969 }
3970
3971 return t;
3972 }
3973 \f
3974 /* Return OP, stripped of any conversions to wider types as much as is safe.
3975 Converting the value back to OP's type makes a value equivalent to OP.
3976
3977 If FOR_TYPE is nonzero, we return a value which, if converted to
3978 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3979
3980 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3981 narrowest type that can hold the value, even if they don't exactly fit.
3982 Otherwise, bit-field references are changed to a narrower type
3983 only if they can be fetched directly from memory in that type.
3984
3985 OP must have integer, real or enumeral type. Pointers are not allowed!
3986
3987 There are some cases where the obvious value we could return
3988 would regenerate to OP if converted to OP's type,
3989 but would not extend like OP to wider types.
3990 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3991 For example, if OP is (unsigned short)(signed char)-1,
3992 we avoid returning (signed char)-1 if FOR_TYPE is int,
3993 even though extending that to an unsigned short would regenerate OP,
3994 since the result of extending (signed char)-1 to (int)
3995 is different from (int) OP. */
3996
3997 tree
3998 get_unwidened (tree op, tree for_type)
3999 {
4000 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4001 tree type = TREE_TYPE (op);
4002 unsigned final_prec
4003 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4004 int uns
4005 = (for_type != 0 && for_type != type
4006 && final_prec > TYPE_PRECISION (type)
4007 && TREE_UNSIGNED (type));
4008 tree win = op;
4009
4010 while (TREE_CODE (op) == NOP_EXPR)
4011 {
4012 int bitschange
4013 = TYPE_PRECISION (TREE_TYPE (op))
4014 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4015
4016 /* Truncations are many-one so cannot be removed.
4017 Unless we are later going to truncate down even farther. */
4018 if (bitschange < 0
4019 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4020 break;
4021
4022 /* See what's inside this conversion. If we decide to strip it,
4023 we will set WIN. */
4024 op = TREE_OPERAND (op, 0);
4025
4026 /* If we have not stripped any zero-extensions (uns is 0),
4027 we can strip any kind of extension.
4028 If we have previously stripped a zero-extension,
4029 only zero-extensions can safely be stripped.
4030 Any extension can be stripped if the bits it would produce
4031 are all going to be discarded later by truncating to FOR_TYPE. */
4032
4033 if (bitschange > 0)
4034 {
4035 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4036 win = op;
4037 /* TREE_UNSIGNED says whether this is a zero-extension.
4038 Let's avoid computing it if it does not affect WIN
4039 and if UNS will not be needed again. */
4040 if ((uns || TREE_CODE (op) == NOP_EXPR)
4041 && TREE_UNSIGNED (TREE_TYPE (op)))
4042 {
4043 uns = 1;
4044 win = op;
4045 }
4046 }
4047 }
4048
4049 if (TREE_CODE (op) == COMPONENT_REF
4050 /* Since type_for_size always gives an integer type. */
4051 && TREE_CODE (type) != REAL_TYPE
4052 /* Don't crash if field not laid out yet. */
4053 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4054 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4055 {
4056 unsigned int innerprec
4057 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4058 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4059 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4060
4061 /* We can get this structure field in the narrowest type it fits in.
4062 If FOR_TYPE is 0, do this only for a field that matches the
4063 narrower type exactly and is aligned for it
4064 The resulting extension to its nominal type (a fullword type)
4065 must fit the same conditions as for other extensions. */
4066
4067 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4068 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4069 && (! uns || final_prec <= innerprec || unsignedp)
4070 && type != 0)
4071 {
4072 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4073 TREE_OPERAND (op, 1));
4074 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4075 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4076 }
4077 }
4078
4079 return win;
4080 }
4081 \f
4082 /* Return OP or a simpler expression for a narrower value
4083 which can be sign-extended or zero-extended to give back OP.
4084 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4085 or 0 if the value should be sign-extended. */
4086
4087 tree
4088 get_narrower (tree op, int *unsignedp_ptr)
4089 {
4090 int uns = 0;
4091 int first = 1;
4092 tree win = op;
4093
4094 while (TREE_CODE (op) == NOP_EXPR)
4095 {
4096 int bitschange
4097 = (TYPE_PRECISION (TREE_TYPE (op))
4098 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4099
4100 /* Truncations are many-one so cannot be removed. */
4101 if (bitschange < 0)
4102 break;
4103
4104 /* See what's inside this conversion. If we decide to strip it,
4105 we will set WIN. */
4106
4107 if (bitschange > 0)
4108 {
4109 op = TREE_OPERAND (op, 0);
4110 /* An extension: the outermost one can be stripped,
4111 but remember whether it is zero or sign extension. */
4112 if (first)
4113 uns = TREE_UNSIGNED (TREE_TYPE (op));
4114 /* Otherwise, if a sign extension has been stripped,
4115 only sign extensions can now be stripped;
4116 if a zero extension has been stripped, only zero-extensions. */
4117 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4118 break;
4119 first = 0;
4120 }
4121 else /* bitschange == 0 */
4122 {
4123 /* A change in nominal type can always be stripped, but we must
4124 preserve the unsignedness. */
4125 if (first)
4126 uns = TREE_UNSIGNED (TREE_TYPE (op));
4127 first = 0;
4128 op = TREE_OPERAND (op, 0);
4129 }
4130
4131 win = op;
4132 }
4133
4134 if (TREE_CODE (op) == COMPONENT_REF
4135 /* Since type_for_size always gives an integer type. */
4136 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4137 /* Ensure field is laid out already. */
4138 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4139 {
4140 unsigned HOST_WIDE_INT innerprec
4141 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4142 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4143 TREE_UNSIGNED (op));
4144
4145 /* We can get this structure field in a narrower type that fits it,
4146 but the resulting extension to its nominal type (a fullword type)
4147 must satisfy the same conditions as for other extensions.
4148
4149 Do this only for fields that are aligned (not bit-fields),
4150 because when bit-field insns will be used there is no
4151 advantage in doing this. */
4152
4153 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4154 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4155 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4156 && type != 0)
4157 {
4158 if (first)
4159 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4160 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4161 TREE_OPERAND (op, 1));
4162 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4163 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4164 }
4165 }
4166 *unsignedp_ptr = uns;
4167 return win;
4168 }
4169 \f
4170 /* Nonzero if integer constant C has a value that is permissible
4171 for type TYPE (an INTEGER_TYPE). */
4172
4173 int
4174 int_fits_type_p (tree c, tree type)
4175 {
4176 tree type_low_bound = TYPE_MIN_VALUE (type);
4177 tree type_high_bound = TYPE_MAX_VALUE (type);
4178 int ok_for_low_bound, ok_for_high_bound;
4179
4180 /* Perform some generic filtering first, which may allow making a decision
4181 even if the bounds are not constant. First, negative integers never fit
4182 in unsigned types, */
4183 if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4184 /* Also, unsigned integers with top bit set never fit signed types. */
4185 || (! TREE_UNSIGNED (type)
4186 && TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4187 return 0;
4188
4189 /* If at least one bound of the type is a constant integer, we can check
4190 ourselves and maybe make a decision. If no such decision is possible, but
4191 this type is a subtype, try checking against that. Otherwise, use
4192 force_fit_type, which checks against the precision.
4193
4194 Compute the status for each possibly constant bound, and return if we see
4195 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4196 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4197 for "constant known to fit". */
4198
4199 ok_for_low_bound = -1;
4200 ok_for_high_bound = -1;
4201
4202 /* Check if C >= type_low_bound. */
4203 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4204 {
4205 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4206 if (! ok_for_low_bound)
4207 return 0;
4208 }
4209
4210 /* Check if c <= type_high_bound. */
4211 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4212 {
4213 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4214 if (! ok_for_high_bound)
4215 return 0;
4216 }
4217
4218 /* If the constant fits both bounds, the result is known. */
4219 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4220 return 1;
4221
4222 /* If we haven't been able to decide at this point, there nothing more we
4223 can check ourselves here. Look at the base type if we have one. */
4224 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4225 return int_fits_type_p (c, TREE_TYPE (type));
4226
4227 /* Or to force_fit_type, if nothing else. */
4228 else
4229 {
4230 c = copy_node (c);
4231 TREE_TYPE (c) = type;
4232 return !force_fit_type (c, 0);
4233 }
4234 }
4235
4236 /* Returns true if T is, contains, or refers to a type with variable
4237 size. This concept is more general than that of C99 'variably
4238 modified types': in C99, a struct type is never variably modified
4239 because a VLA may not appear as a structure member. However, in
4240 GNU C code like:
4241
4242 struct S { int i[f()]; };
4243
4244 is valid, and other languages may define similar constructs. */
4245
4246 bool
4247 variably_modified_type_p (tree type)
4248 {
4249 if (type == error_mark_node)
4250 return false;
4251
4252 /* If TYPE itself has variable size, it is variably modified.
4253
4254 We do not yet have a representation of the C99 '[*]' syntax.
4255 When a representation is chosen, this function should be modified
4256 to test for that case as well. */
4257 if (TYPE_SIZE (type)
4258 && TYPE_SIZE (type) != error_mark_node
4259 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4260 return true;
4261
4262 /* If TYPE is a pointer or reference, it is variably modified if
4263 the type pointed to is variably modified. */
4264 if ((TREE_CODE (type) == POINTER_TYPE
4265 || TREE_CODE (type) == REFERENCE_TYPE)
4266 && variably_modified_type_p (TREE_TYPE (type)))
4267 return true;
4268
4269 /* If TYPE is an array, it is variably modified if the array
4270 elements are. (Note that the VLA case has already been checked
4271 above.) */
4272 if (TREE_CODE (type) == ARRAY_TYPE
4273 && variably_modified_type_p (TREE_TYPE (type)))
4274 return true;
4275
4276 /* If TYPE is a function type, it is variably modified if any of the
4277 parameters or the return type are variably modified. */
4278 if (TREE_CODE (type) == FUNCTION_TYPE
4279 || TREE_CODE (type) == METHOD_TYPE)
4280 {
4281 tree parm;
4282
4283 if (variably_modified_type_p (TREE_TYPE (type)))
4284 return true;
4285 for (parm = TYPE_ARG_TYPES (type);
4286 parm && parm != void_list_node;
4287 parm = TREE_CHAIN (parm))
4288 if (variably_modified_type_p (TREE_VALUE (parm)))
4289 return true;
4290 }
4291
4292 /* The current language may have other cases to check, but in general,
4293 all other types are not variably modified. */
4294 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4295 }
4296
4297 /* Given a DECL or TYPE, return the scope in which it was declared, or
4298 NULL_TREE if there is no containing scope. */
4299
4300 tree
4301 get_containing_scope (tree t)
4302 {
4303 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4304 }
4305
4306 /* Return the innermost context enclosing DECL that is
4307 a FUNCTION_DECL, or zero if none. */
4308
4309 tree
4310 decl_function_context (tree decl)
4311 {
4312 tree context;
4313
4314 if (TREE_CODE (decl) == ERROR_MARK)
4315 return 0;
4316
4317 if (TREE_CODE (decl) == SAVE_EXPR)
4318 context = SAVE_EXPR_CONTEXT (decl);
4319
4320 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4321 where we look up the function at runtime. Such functions always take
4322 a first argument of type 'pointer to real context'.
4323
4324 C++ should really be fixed to use DECL_CONTEXT for the real context,
4325 and use something else for the "virtual context". */
4326 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4327 context
4328 = TYPE_MAIN_VARIANT
4329 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4330 else
4331 context = DECL_CONTEXT (decl);
4332
4333 while (context && TREE_CODE (context) != FUNCTION_DECL)
4334 {
4335 if (TREE_CODE (context) == BLOCK)
4336 context = BLOCK_SUPERCONTEXT (context);
4337 else
4338 context = get_containing_scope (context);
4339 }
4340
4341 return context;
4342 }
4343
4344 /* Return the innermost context enclosing DECL that is
4345 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4346 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4347
4348 tree
4349 decl_type_context (tree decl)
4350 {
4351 tree context = DECL_CONTEXT (decl);
4352
4353 while (context)
4354 switch (TREE_CODE (context))
4355 {
4356 case NAMESPACE_DECL:
4357 case TRANSLATION_UNIT_DECL:
4358 return NULL_TREE;
4359
4360 case RECORD_TYPE:
4361 case UNION_TYPE:
4362 case QUAL_UNION_TYPE:
4363 return context;
4364
4365 case TYPE_DECL:
4366 case FUNCTION_DECL:
4367 context = DECL_CONTEXT (context);
4368 break;
4369
4370 case BLOCK:
4371 context = BLOCK_SUPERCONTEXT (context);
4372 break;
4373
4374 default:
4375 abort ();
4376 }
4377
4378 return NULL_TREE;
4379 }
4380
4381 /* CALL is a CALL_EXPR. Return the declaration for the function
4382 called, or NULL_TREE if the called function cannot be
4383 determined. */
4384
4385 tree
4386 get_callee_fndecl (tree call)
4387 {
4388 tree addr;
4389
4390 /* It's invalid to call this function with anything but a
4391 CALL_EXPR. */
4392 if (TREE_CODE (call) != CALL_EXPR)
4393 abort ();
4394
4395 /* The first operand to the CALL is the address of the function
4396 called. */
4397 addr = TREE_OPERAND (call, 0);
4398
4399 STRIP_NOPS (addr);
4400
4401 /* If this is a readonly function pointer, extract its initial value. */
4402 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4403 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4404 && DECL_INITIAL (addr))
4405 addr = DECL_INITIAL (addr);
4406
4407 /* If the address is just `&f' for some function `f', then we know
4408 that `f' is being called. */
4409 if (TREE_CODE (addr) == ADDR_EXPR
4410 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4411 return TREE_OPERAND (addr, 0);
4412
4413 /* We couldn't figure out what was being called. */
4414 return NULL_TREE;
4415 }
4416
4417 /* Print debugging information about tree nodes generated during the compile,
4418 and any language-specific information. */
4419
4420 void
4421 dump_tree_statistics (void)
4422 {
4423 #ifdef GATHER_STATISTICS
4424 int i;
4425 int total_nodes, total_bytes;
4426 #endif
4427
4428 fprintf (stderr, "\n??? tree nodes created\n\n");
4429 #ifdef GATHER_STATISTICS
4430 fprintf (stderr, "Kind Nodes Bytes\n");
4431 fprintf (stderr, "---------------------------------------\n");
4432 total_nodes = total_bytes = 0;
4433 for (i = 0; i < (int) all_kinds; i++)
4434 {
4435 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
4436 tree_node_counts[i], tree_node_sizes[i]);
4437 total_nodes += tree_node_counts[i];
4438 total_bytes += tree_node_sizes[i];
4439 }
4440 fprintf (stderr, "---------------------------------------\n");
4441 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
4442 fprintf (stderr, "---------------------------------------\n");
4443 #else
4444 fprintf (stderr, "(No per-node statistics)\n");
4445 #endif
4446 print_type_hash_statistics ();
4447 (*lang_hooks.print_statistics) ();
4448 }
4449 \f
4450 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4451
4452 /* Generate a crc32 of a string. */
4453
4454 unsigned
4455 crc32_string (unsigned chksum, const char *string)
4456 {
4457 do
4458 {
4459 unsigned value = *string << 24;
4460 unsigned ix;
4461
4462 for (ix = 8; ix--; value <<= 1)
4463 {
4464 unsigned feedback;
4465
4466 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4467 chksum <<= 1;
4468 chksum ^= feedback;
4469 }
4470 }
4471 while (*string++);
4472 return chksum;
4473 }
4474
4475 /* P is a string that will be used in a symbol. Mask out any characters
4476 that are not valid in that context. */
4477
4478 void
4479 clean_symbol_name (char *p)
4480 {
4481 for (; *p; p++)
4482 if (! (ISALNUM (*p)
4483 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4484 || *p == '$'
4485 #endif
4486 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4487 || *p == '.'
4488 #endif
4489 ))
4490 *p = '_';
4491 }
4492
4493 /* Generate a name for a function unique to this translation unit.
4494 TYPE is some string to identify the purpose of this function to the
4495 linker or collect2. */
4496
4497 tree
4498 get_file_function_name_long (const char *type)
4499 {
4500 char *buf;
4501 const char *p;
4502 char *q;
4503
4504 if (first_global_object_name)
4505 p = first_global_object_name;
4506 else
4507 {
4508 /* We don't have anything that we know to be unique to this translation
4509 unit, so use what we do have and throw in some randomness. */
4510 unsigned len;
4511 const char *name = weak_global_object_name;
4512 const char *file = main_input_filename;
4513
4514 if (! name)
4515 name = "";
4516 if (! file)
4517 file = input_filename;
4518
4519 len = strlen (file);
4520 q = alloca (9 * 2 + len);
4521 memcpy (q, file, len + 1);
4522 clean_symbol_name (q);
4523
4524 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
4525 crc32_string (0, flag_random_seed));
4526
4527 p = q;
4528 }
4529
4530 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
4531
4532 /* Set up the name of the file-level functions we may need.
4533 Use a global object (which is already required to be unique over
4534 the program) rather than the file name (which imposes extra
4535 constraints). */
4536 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4537
4538 return get_identifier (buf);
4539 }
4540
4541 /* If KIND=='I', return a suitable global initializer (constructor) name.
4542 If KIND=='D', return a suitable global clean-up (destructor) name. */
4543
4544 tree
4545 get_file_function_name (int kind)
4546 {
4547 char p[2];
4548
4549 p[0] = kind;
4550 p[1] = 0;
4551
4552 return get_file_function_name_long (p);
4553 }
4554 \f
4555 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4556 The result is placed in BUFFER (which has length BIT_SIZE),
4557 with one bit in each char ('\000' or '\001').
4558
4559 If the constructor is constant, NULL_TREE is returned.
4560 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4561
4562 tree
4563 get_set_constructor_bits (tree init, char *buffer, int bit_size)
4564 {
4565 int i;
4566 tree vals;
4567 HOST_WIDE_INT domain_min
4568 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4569 tree non_const_bits = NULL_TREE;
4570
4571 for (i = 0; i < bit_size; i++)
4572 buffer[i] = 0;
4573
4574 for (vals = TREE_OPERAND (init, 1);
4575 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4576 {
4577 if (!host_integerp (TREE_VALUE (vals), 0)
4578 || (TREE_PURPOSE (vals) != NULL_TREE
4579 && !host_integerp (TREE_PURPOSE (vals), 0)))
4580 non_const_bits
4581 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4582 else if (TREE_PURPOSE (vals) != NULL_TREE)
4583 {
4584 /* Set a range of bits to ones. */
4585 HOST_WIDE_INT lo_index
4586 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4587 HOST_WIDE_INT hi_index
4588 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4589
4590 if (lo_index < 0 || lo_index >= bit_size
4591 || hi_index < 0 || hi_index >= bit_size)
4592 abort ();
4593 for (; lo_index <= hi_index; lo_index++)
4594 buffer[lo_index] = 1;
4595 }
4596 else
4597 {
4598 /* Set a single bit to one. */
4599 HOST_WIDE_INT index
4600 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4601 if (index < 0 || index >= bit_size)
4602 {
4603 error ("invalid initializer for bit string");
4604 return NULL_TREE;
4605 }
4606 buffer[index] = 1;
4607 }
4608 }
4609 return non_const_bits;
4610 }
4611
4612 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4613 The result is placed in BUFFER (which is an array of bytes).
4614 If the constructor is constant, NULL_TREE is returned.
4615 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4616
4617 tree
4618 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
4619 {
4620 int i;
4621 int set_word_size = BITS_PER_UNIT;
4622 int bit_size = wd_size * set_word_size;
4623 int bit_pos = 0;
4624 unsigned char *bytep = buffer;
4625 char *bit_buffer = alloca (bit_size);
4626 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4627
4628 for (i = 0; i < wd_size; i++)
4629 buffer[i] = 0;
4630
4631 for (i = 0; i < bit_size; i++)
4632 {
4633 if (bit_buffer[i])
4634 {
4635 if (BYTES_BIG_ENDIAN)
4636 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4637 else
4638 *bytep |= 1 << bit_pos;
4639 }
4640 bit_pos++;
4641 if (bit_pos >= set_word_size)
4642 bit_pos = 0, bytep++;
4643 }
4644 return non_const_bits;
4645 }
4646 \f
4647 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4648 /* Complain that the tree code of NODE does not match the expected CODE.
4649 FILE, LINE, and FUNCTION are of the caller. */
4650
4651 void
4652 tree_check_failed (const tree node, enum tree_code code, const char *file,
4653 int line, const char *function)
4654 {
4655 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4656 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4657 function, trim_filename (file), line);
4658 }
4659
4660 /* Similar to above, except that we check for a class of tree
4661 code, given in CL. */
4662
4663 void
4664 tree_class_check_failed (const tree node, int cl, const char *file,
4665 int line, const char *function)
4666 {
4667 internal_error
4668 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4669 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4670 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4671 }
4672
4673 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4674 (dynamically sized) vector. */
4675
4676 void
4677 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
4678 const char *function)
4679 {
4680 internal_error
4681 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4682 idx + 1, len, function, trim_filename (file), line);
4683 }
4684
4685 /* Similar to above, except that the check is for the bounds of the operand
4686 vector of an expression node. */
4687
4688 void
4689 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
4690 int line, const char *function)
4691 {
4692 internal_error
4693 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4694 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
4695 function, trim_filename (file), line);
4696 }
4697 #endif /* ENABLE_TREE_CHECKING */
4698 \f
4699 /* For a new vector type node T, build the information necessary for
4700 debugging output. */
4701
4702 static void
4703 finish_vector_type (tree t)
4704 {
4705 layout_type (t);
4706
4707 {
4708 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4709 tree array = build_array_type (TREE_TYPE (t),
4710 build_index_type (index));
4711 tree rt = make_node (RECORD_TYPE);
4712
4713 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4714 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4715 layout_type (rt);
4716 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4717 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4718 the representation type, and we want to find that die when looking up
4719 the vector type. This is most easily achieved by making the TYPE_UID
4720 numbers equal. */
4721 TYPE_UID (rt) = TYPE_UID (t);
4722 }
4723 }
4724
4725 /* Create nodes for all integer types (and error_mark_node) using the sizes
4726 of C datatypes. The caller should call set_sizetype soon after calling
4727 this function to select one of the types as sizetype. */
4728
4729 void
4730 build_common_tree_nodes (int signed_char)
4731 {
4732 error_mark_node = make_node (ERROR_MARK);
4733 TREE_TYPE (error_mark_node) = error_mark_node;
4734
4735 initialize_sizetypes ();
4736
4737 /* Define both `signed char' and `unsigned char'. */
4738 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4739 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4740
4741 /* Define `char', which is like either `signed char' or `unsigned char'
4742 but not the same as either. */
4743 char_type_node
4744 = (signed_char
4745 ? make_signed_type (CHAR_TYPE_SIZE)
4746 : make_unsigned_type (CHAR_TYPE_SIZE));
4747
4748 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4749 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4750 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4751 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4752 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4753 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4754 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4755 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4756
4757 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4758 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4759 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4760 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4761 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4762
4763 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4764 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4765 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4766 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4767 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4768 }
4769
4770 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4771 It will create several other common tree nodes. */
4772
4773 void
4774 build_common_tree_nodes_2 (int short_double)
4775 {
4776 /* Define these next since types below may used them. */
4777 integer_zero_node = build_int_2 (0, 0);
4778 integer_one_node = build_int_2 (1, 0);
4779 integer_minus_one_node = build_int_2 (-1, -1);
4780
4781 size_zero_node = size_int (0);
4782 size_one_node = size_int (1);
4783 bitsize_zero_node = bitsize_int (0);
4784 bitsize_one_node = bitsize_int (1);
4785 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4786
4787 void_type_node = make_node (VOID_TYPE);
4788 layout_type (void_type_node);
4789
4790 /* We are not going to have real types in C with less than byte alignment,
4791 so we might as well not have any types that claim to have it. */
4792 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4793 TYPE_USER_ALIGN (void_type_node) = 0;
4794
4795 null_pointer_node = build_int_2 (0, 0);
4796 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4797 layout_type (TREE_TYPE (null_pointer_node));
4798
4799 ptr_type_node = build_pointer_type (void_type_node);
4800 const_ptr_type_node
4801 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4802
4803 float_type_node = make_node (REAL_TYPE);
4804 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4805 layout_type (float_type_node);
4806
4807 double_type_node = make_node (REAL_TYPE);
4808 if (short_double)
4809 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4810 else
4811 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4812 layout_type (double_type_node);
4813
4814 long_double_type_node = make_node (REAL_TYPE);
4815 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4816 layout_type (long_double_type_node);
4817
4818 complex_integer_type_node = make_node (COMPLEX_TYPE);
4819 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4820 layout_type (complex_integer_type_node);
4821
4822 complex_float_type_node = make_node (COMPLEX_TYPE);
4823 TREE_TYPE (complex_float_type_node) = float_type_node;
4824 layout_type (complex_float_type_node);
4825
4826 complex_double_type_node = make_node (COMPLEX_TYPE);
4827 TREE_TYPE (complex_double_type_node) = double_type_node;
4828 layout_type (complex_double_type_node);
4829
4830 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4831 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4832 layout_type (complex_long_double_type_node);
4833
4834 {
4835 tree t;
4836 BUILD_VA_LIST_TYPE (t);
4837
4838 /* Many back-ends define record types without setting TYPE_NAME.
4839 If we copied the record type here, we'd keep the original
4840 record type without a name. This breaks name mangling. So,
4841 don't copy record types and let c_common_nodes_and_builtins()
4842 declare the type to be __builtin_va_list. */
4843 if (TREE_CODE (t) != RECORD_TYPE)
4844 t = build_type_copy (t);
4845
4846 va_list_type_node = t;
4847 }
4848
4849 unsigned_V4SI_type_node
4850 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4851 unsigned_V2HI_type_node
4852 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
4853 unsigned_V2SI_type_node
4854 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4855 unsigned_V2DI_type_node
4856 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4857 unsigned_V4HI_type_node
4858 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4859 unsigned_V8QI_type_node
4860 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4861 unsigned_V8HI_type_node
4862 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4863 unsigned_V16QI_type_node
4864 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4865 unsigned_V1DI_type_node
4866 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4867
4868 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4869 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4870 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4871 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
4872 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4873 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4874 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4875 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4876 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4877 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4878 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4879 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4880 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4881 V4DF_type_node = make_vector (V4DFmode, double_type_node, 0);
4882 }
4883
4884 /* Returns a vector tree node given a vector mode, the inner type, and
4885 the signness. */
4886
4887 static tree
4888 make_vector (enum machine_mode mode, tree innertype, int unsignedp)
4889 {
4890 tree t;
4891
4892 t = make_node (VECTOR_TYPE);
4893 TREE_TYPE (t) = innertype;
4894 TYPE_MODE (t) = mode;
4895 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4896 finish_vector_type (t);
4897
4898 return t;
4899 }
4900
4901 /* Given an initializer INIT, return TRUE if INIT is zero or some
4902 aggregate of zeros. Otherwise return FALSE. */
4903
4904 bool
4905 initializer_zerop (tree init)
4906 {
4907 STRIP_NOPS (init);
4908
4909 switch (TREE_CODE (init))
4910 {
4911 case INTEGER_CST:
4912 return integer_zerop (init);
4913 case REAL_CST:
4914 return real_zerop (init)
4915 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4916 case COMPLEX_CST:
4917 return integer_zerop (init)
4918 || (real_zerop (init)
4919 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4920 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4921 case CONSTRUCTOR:
4922 {
4923 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4924 {
4925 tree aggr_init = CONSTRUCTOR_ELTS (init);
4926
4927 while (aggr_init)
4928 {
4929 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4930 return false;
4931 aggr_init = TREE_CHAIN (aggr_init);
4932 }
4933 return true;
4934 }
4935 return false;
4936 }
4937 default:
4938 return false;
4939 }
4940 }
4941
4942 #include "gt-tree.h"