tree.c (build_function_decl_skip_args): Fix grammar.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "cgraph.h"
57 #include "timevar.h"
58 #include "except.h"
59 #include "debug.h"
60 #include "intl.h"
61
62 /* Tree code classes. */
63
64 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
65 #define END_OF_BASE_TREE_CODES tcc_exceptional,
66
67 const enum tree_code_class tree_code_type[] = {
68 #include "all-tree.def"
69 };
70
71 #undef DEFTREECODE
72 #undef END_OF_BASE_TREE_CODES
73
74 /* Table indexed by tree code giving number of expression
75 operands beyond the fixed part of the node structure.
76 Not used for types or decls. */
77
78 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
79 #define END_OF_BASE_TREE_CODES 0,
80
81 const unsigned char tree_code_length[] = {
82 #include "all-tree.def"
83 };
84
85 #undef DEFTREECODE
86 #undef END_OF_BASE_TREE_CODES
87
88 /* Names of tree components.
89 Used for printing out the tree and error messages. */
90 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
91 #define END_OF_BASE_TREE_CODES "@dummy",
92
93 const char *const tree_code_name[] = {
94 #include "all-tree.def"
95 };
96
97 #undef DEFTREECODE
98 #undef END_OF_BASE_TREE_CODES
99
100 /* Each tree code class has an associated string representation.
101 These must correspond to the tree_code_class entries. */
102
103 const char *const tree_code_class_strings[] =
104 {
105 "exceptional",
106 "constant",
107 "type",
108 "declaration",
109 "reference",
110 "comparison",
111 "unary",
112 "binary",
113 "statement",
114 "vl_exp",
115 "expression"
116 };
117
118 /* obstack.[ch] explicitly declined to prototype this. */
119 extern int _obstack_allocated_p (struct obstack *h, void *obj);
120
121 #ifdef GATHER_STATISTICS
122 /* Statistics-gathering stuff. */
123
124 int tree_node_counts[(int) all_kinds];
125 int tree_node_sizes[(int) all_kinds];
126
127 /* Keep in sync with tree.h:enum tree_node_kind. */
128 static const char * const tree_node_kind_names[] = {
129 "decls",
130 "types",
131 "blocks",
132 "stmts",
133 "refs",
134 "exprs",
135 "constants",
136 "identifiers",
137 "perm_tree_lists",
138 "temp_tree_lists",
139 "vecs",
140 "binfos",
141 "ssa names",
142 "constructors",
143 "random kinds",
144 "lang_decl kinds",
145 "lang_type kinds",
146 "omp clauses",
147 };
148 #endif /* GATHER_STATISTICS */
149
150 /* Unique id for next decl created. */
151 static GTY(()) int next_decl_uid;
152 /* Unique id for next type created. */
153 static GTY(()) int next_type_uid = 1;
154 /* Unique id for next debug decl created. Use negative numbers,
155 to catch erroneous uses. */
156 static GTY(()) int next_debug_decl_uid;
157
158 /* Since we cannot rehash a type after it is in the table, we have to
159 keep the hash code. */
160
161 struct GTY(()) type_hash {
162 unsigned long hash;
163 tree type;
164 };
165
166 /* Initial size of the hash table (rounded to next prime). */
167 #define TYPE_HASH_INITIAL_SIZE 1000
168
169 /* Now here is the hash table. When recording a type, it is added to
170 the slot whose index is the hash code. Note that the hash table is
171 used for several kinds of types (function types, array types and
172 array index range types, for now). While all these live in the
173 same table, they are completely independent, and the hash code is
174 computed differently for each of these. */
175
176 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
177 htab_t type_hash_table;
178
179 /* Hash table and temporary node for larger integer const values. */
180 static GTY (()) tree int_cst_node;
181 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
182 htab_t int_cst_hash_table;
183
184 /* Hash table for optimization flags and target option flags. Use the same
185 hash table for both sets of options. Nodes for building the current
186 optimization and target option nodes. The assumption is most of the time
187 the options created will already be in the hash table, so we avoid
188 allocating and freeing up a node repeatably. */
189 static GTY (()) tree cl_optimization_node;
190 static GTY (()) tree cl_target_option_node;
191 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
192 htab_t cl_option_hash_table;
193
194 /* General tree->tree mapping structure for use in hash tables. */
195
196
197 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
198 htab_t debug_expr_for_decl;
199
200 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
201 htab_t value_expr_for_decl;
202
203 static GTY ((if_marked ("tree_priority_map_marked_p"),
204 param_is (struct tree_priority_map)))
205 htab_t init_priority_for_decl;
206
207 static void set_type_quals (tree, int);
208 static int type_hash_eq (const void *, const void *);
209 static hashval_t type_hash_hash (const void *);
210 static hashval_t int_cst_hash_hash (const void *);
211 static int int_cst_hash_eq (const void *, const void *);
212 static hashval_t cl_option_hash_hash (const void *);
213 static int cl_option_hash_eq (const void *, const void *);
214 static void print_type_hash_statistics (void);
215 static void print_debug_expr_statistics (void);
216 static void print_value_expr_statistics (void);
217 static int type_hash_marked_p (const void *);
218 static unsigned int type_hash_list (const_tree, hashval_t);
219 static unsigned int attribute_hash_list (const_tree, hashval_t);
220
221 tree global_trees[TI_MAX];
222 tree integer_types[itk_none];
223
224 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
225
226 /* Number of operands for each OpenMP clause. */
227 unsigned const char omp_clause_num_ops[] =
228 {
229 0, /* OMP_CLAUSE_ERROR */
230 1, /* OMP_CLAUSE_PRIVATE */
231 1, /* OMP_CLAUSE_SHARED */
232 1, /* OMP_CLAUSE_FIRSTPRIVATE */
233 2, /* OMP_CLAUSE_LASTPRIVATE */
234 4, /* OMP_CLAUSE_REDUCTION */
235 1, /* OMP_CLAUSE_COPYIN */
236 1, /* OMP_CLAUSE_COPYPRIVATE */
237 1, /* OMP_CLAUSE_IF */
238 1, /* OMP_CLAUSE_NUM_THREADS */
239 1, /* OMP_CLAUSE_SCHEDULE */
240 0, /* OMP_CLAUSE_NOWAIT */
241 0, /* OMP_CLAUSE_ORDERED */
242 0, /* OMP_CLAUSE_DEFAULT */
243 3, /* OMP_CLAUSE_COLLAPSE */
244 0 /* OMP_CLAUSE_UNTIED */
245 };
246
247 const char * const omp_clause_code_name[] =
248 {
249 "error_clause",
250 "private",
251 "shared",
252 "firstprivate",
253 "lastprivate",
254 "reduction",
255 "copyin",
256 "copyprivate",
257 "if",
258 "num_threads",
259 "schedule",
260 "nowait",
261 "ordered",
262 "default",
263 "collapse",
264 "untied"
265 };
266
267
268 /* Return the tree node structure used by tree code CODE. */
269
270 static inline enum tree_node_structure_enum
271 tree_node_structure_for_code (enum tree_code code)
272 {
273 switch (TREE_CODE_CLASS (code))
274 {
275 case tcc_declaration:
276 {
277 switch (code)
278 {
279 case FIELD_DECL:
280 return TS_FIELD_DECL;
281 case PARM_DECL:
282 return TS_PARM_DECL;
283 case VAR_DECL:
284 return TS_VAR_DECL;
285 case LABEL_DECL:
286 return TS_LABEL_DECL;
287 case RESULT_DECL:
288 return TS_RESULT_DECL;
289 case DEBUG_EXPR_DECL:
290 return TS_DECL_WRTL;
291 case CONST_DECL:
292 return TS_CONST_DECL;
293 case TYPE_DECL:
294 return TS_TYPE_DECL;
295 case FUNCTION_DECL:
296 return TS_FUNCTION_DECL;
297 default:
298 return TS_DECL_NON_COMMON;
299 }
300 }
301 case tcc_type:
302 return TS_TYPE;
303 case tcc_reference:
304 case tcc_comparison:
305 case tcc_unary:
306 case tcc_binary:
307 case tcc_expression:
308 case tcc_statement:
309 case tcc_vl_exp:
310 return TS_EXP;
311 default: /* tcc_constant and tcc_exceptional */
312 break;
313 }
314 switch (code)
315 {
316 /* tcc_constant cases. */
317 case INTEGER_CST: return TS_INT_CST;
318 case REAL_CST: return TS_REAL_CST;
319 case FIXED_CST: return TS_FIXED_CST;
320 case COMPLEX_CST: return TS_COMPLEX;
321 case VECTOR_CST: return TS_VECTOR;
322 case STRING_CST: return TS_STRING;
323 /* tcc_exceptional cases. */
324 case ERROR_MARK: return TS_COMMON;
325 case IDENTIFIER_NODE: return TS_IDENTIFIER;
326 case TREE_LIST: return TS_LIST;
327 case TREE_VEC: return TS_VEC;
328 case SSA_NAME: return TS_SSA_NAME;
329 case PLACEHOLDER_EXPR: return TS_COMMON;
330 case STATEMENT_LIST: return TS_STATEMENT_LIST;
331 case BLOCK: return TS_BLOCK;
332 case CONSTRUCTOR: return TS_CONSTRUCTOR;
333 case TREE_BINFO: return TS_BINFO;
334 case OMP_CLAUSE: return TS_OMP_CLAUSE;
335 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
336 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
337
338 default:
339 gcc_unreachable ();
340 }
341 }
342
343
344 /* Initialize tree_contains_struct to describe the hierarchy of tree
345 nodes. */
346
347 static void
348 initialize_tree_contains_struct (void)
349 {
350 unsigned i;
351
352 #define MARK_TS_BASE(C) \
353 do { \
354 tree_contains_struct[C][TS_BASE] = 1; \
355 } while (0)
356
357 #define MARK_TS_COMMON(C) \
358 do { \
359 MARK_TS_BASE (C); \
360 tree_contains_struct[C][TS_COMMON] = 1; \
361 } while (0)
362
363 #define MARK_TS_DECL_MINIMAL(C) \
364 do { \
365 MARK_TS_COMMON (C); \
366 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
367 } while (0)
368
369 #define MARK_TS_DECL_COMMON(C) \
370 do { \
371 MARK_TS_DECL_MINIMAL (C); \
372 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
373 } while (0)
374
375 #define MARK_TS_DECL_WRTL(C) \
376 do { \
377 MARK_TS_DECL_COMMON (C); \
378 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
379 } while (0)
380
381 #define MARK_TS_DECL_WITH_VIS(C) \
382 do { \
383 MARK_TS_DECL_WRTL (C); \
384 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
385 } while (0)
386
387 #define MARK_TS_DECL_NON_COMMON(C) \
388 do { \
389 MARK_TS_DECL_WITH_VIS (C); \
390 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
391 } while (0)
392
393 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
394 {
395 enum tree_code code;
396 enum tree_node_structure_enum ts_code;
397
398 code = (enum tree_code) i;
399 ts_code = tree_node_structure_for_code (code);
400
401 /* Mark the TS structure itself. */
402 tree_contains_struct[code][ts_code] = 1;
403
404 /* Mark all the structures that TS is derived from. */
405 switch (ts_code)
406 {
407 case TS_COMMON:
408 MARK_TS_BASE (code);
409 break;
410
411 case TS_INT_CST:
412 case TS_REAL_CST:
413 case TS_FIXED_CST:
414 case TS_VECTOR:
415 case TS_STRING:
416 case TS_COMPLEX:
417 case TS_IDENTIFIER:
418 case TS_DECL_MINIMAL:
419 case TS_TYPE:
420 case TS_LIST:
421 case TS_VEC:
422 case TS_EXP:
423 case TS_SSA_NAME:
424 case TS_BLOCK:
425 case TS_BINFO:
426 case TS_STATEMENT_LIST:
427 case TS_CONSTRUCTOR:
428 case TS_OMP_CLAUSE:
429 case TS_OPTIMIZATION:
430 case TS_TARGET_OPTION:
431 MARK_TS_COMMON (code);
432 break;
433
434 case TS_DECL_COMMON:
435 MARK_TS_DECL_MINIMAL (code);
436 break;
437
438 case TS_DECL_WRTL:
439 MARK_TS_DECL_COMMON (code);
440 break;
441
442 case TS_DECL_NON_COMMON:
443 MARK_TS_DECL_WITH_VIS (code);
444 break;
445
446 case TS_DECL_WITH_VIS:
447 case TS_PARM_DECL:
448 case TS_LABEL_DECL:
449 case TS_RESULT_DECL:
450 case TS_CONST_DECL:
451 MARK_TS_DECL_WRTL (code);
452 break;
453
454 case TS_FIELD_DECL:
455 MARK_TS_DECL_COMMON (code);
456 break;
457
458 case TS_VAR_DECL:
459 MARK_TS_DECL_WITH_VIS (code);
460 break;
461
462 case TS_TYPE_DECL:
463 case TS_FUNCTION_DECL:
464 MARK_TS_DECL_NON_COMMON (code);
465 break;
466
467 default:
468 gcc_unreachable ();
469 }
470 }
471
472 /* Basic consistency checks for attributes used in fold. */
473 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
474 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON]);
475 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
476 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
477 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
478 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
479 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
480 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
481 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
486 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
487 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
488 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
489 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
490 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
492 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
493 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
494 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
495 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
496 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
501 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
502 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
503 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS]);
504 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
505 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
506 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
507 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
508 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
509 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
510 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
511 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
512 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
513 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
514
515 #undef MARK_TS_BASE
516 #undef MARK_TS_COMMON
517 #undef MARK_TS_DECL_MINIMAL
518 #undef MARK_TS_DECL_COMMON
519 #undef MARK_TS_DECL_WRTL
520 #undef MARK_TS_DECL_WITH_VIS
521 #undef MARK_TS_DECL_NON_COMMON
522 }
523
524
525 /* Init tree.c. */
526
527 void
528 init_ttree (void)
529 {
530 /* Initialize the hash table of types. */
531 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
532 type_hash_eq, 0);
533
534 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
535 tree_map_eq, 0);
536
537 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
538 tree_map_eq, 0);
539 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
540 tree_priority_map_eq, 0);
541
542 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
543 int_cst_hash_eq, NULL);
544
545 int_cst_node = make_node (INTEGER_CST);
546
547 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
548 cl_option_hash_eq, NULL);
549
550 cl_optimization_node = make_node (OPTIMIZATION_NODE);
551 cl_target_option_node = make_node (TARGET_OPTION_NODE);
552
553 /* Initialize the tree_contains_struct array. */
554 initialize_tree_contains_struct ();
555 lang_hooks.init_ts ();
556 }
557
558 \f
559 /* The name of the object as the assembler will see it (but before any
560 translations made by ASM_OUTPUT_LABELREF). Often this is the same
561 as DECL_NAME. It is an IDENTIFIER_NODE. */
562 tree
563 decl_assembler_name (tree decl)
564 {
565 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
566 lang_hooks.set_decl_assembler_name (decl);
567 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
568 }
569
570 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
571
572 bool
573 decl_assembler_name_equal (tree decl, const_tree asmname)
574 {
575 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
576 const char *decl_str;
577 const char *asmname_str;
578 bool test = false;
579
580 if (decl_asmname == asmname)
581 return true;
582
583 decl_str = IDENTIFIER_POINTER (decl_asmname);
584 asmname_str = IDENTIFIER_POINTER (asmname);
585
586
587 /* If the target assembler name was set by the user, things are trickier.
588 We have a leading '*' to begin with. After that, it's arguable what
589 is the correct thing to do with -fleading-underscore. Arguably, we've
590 historically been doing the wrong thing in assemble_alias by always
591 printing the leading underscore. Since we're not changing that, make
592 sure user_label_prefix follows the '*' before matching. */
593 if (decl_str[0] == '*')
594 {
595 size_t ulp_len = strlen (user_label_prefix);
596
597 decl_str ++;
598
599 if (ulp_len == 0)
600 test = true;
601 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
602 decl_str += ulp_len, test=true;
603 else
604 decl_str --;
605 }
606 if (asmname_str[0] == '*')
607 {
608 size_t ulp_len = strlen (user_label_prefix);
609
610 asmname_str ++;
611
612 if (ulp_len == 0)
613 test = true;
614 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
615 asmname_str += ulp_len, test=true;
616 else
617 asmname_str --;
618 }
619
620 if (!test)
621 return false;
622 return strcmp (decl_str, asmname_str) == 0;
623 }
624
625 /* Hash asmnames ignoring the user specified marks. */
626
627 hashval_t
628 decl_assembler_name_hash (const_tree asmname)
629 {
630 if (IDENTIFIER_POINTER (asmname)[0] == '*')
631 {
632 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
633 size_t ulp_len = strlen (user_label_prefix);
634
635 if (ulp_len == 0)
636 ;
637 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
638 decl_str += ulp_len;
639
640 return htab_hash_string (decl_str);
641 }
642
643 return htab_hash_string (IDENTIFIER_POINTER (asmname));
644 }
645
646 /* Compute the number of bytes occupied by a tree with code CODE.
647 This function cannot be used for nodes that have variable sizes,
648 including TREE_VEC, STRING_CST, and CALL_EXPR. */
649 size_t
650 tree_code_size (enum tree_code code)
651 {
652 switch (TREE_CODE_CLASS (code))
653 {
654 case tcc_declaration: /* A decl node */
655 {
656 switch (code)
657 {
658 case FIELD_DECL:
659 return sizeof (struct tree_field_decl);
660 case PARM_DECL:
661 return sizeof (struct tree_parm_decl);
662 case VAR_DECL:
663 return sizeof (struct tree_var_decl);
664 case LABEL_DECL:
665 return sizeof (struct tree_label_decl);
666 case RESULT_DECL:
667 return sizeof (struct tree_result_decl);
668 case CONST_DECL:
669 return sizeof (struct tree_const_decl);
670 case TYPE_DECL:
671 return sizeof (struct tree_type_decl);
672 case FUNCTION_DECL:
673 return sizeof (struct tree_function_decl);
674 case DEBUG_EXPR_DECL:
675 return sizeof (struct tree_decl_with_rtl);
676 default:
677 return sizeof (struct tree_decl_non_common);
678 }
679 }
680
681 case tcc_type: /* a type node */
682 return sizeof (struct tree_type);
683
684 case tcc_reference: /* a reference */
685 case tcc_expression: /* an expression */
686 case tcc_statement: /* an expression with side effects */
687 case tcc_comparison: /* a comparison expression */
688 case tcc_unary: /* a unary arithmetic expression */
689 case tcc_binary: /* a binary arithmetic expression */
690 return (sizeof (struct tree_exp)
691 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
692
693 case tcc_constant: /* a constant */
694 switch (code)
695 {
696 case INTEGER_CST: return sizeof (struct tree_int_cst);
697 case REAL_CST: return sizeof (struct tree_real_cst);
698 case FIXED_CST: return sizeof (struct tree_fixed_cst);
699 case COMPLEX_CST: return sizeof (struct tree_complex);
700 case VECTOR_CST: return sizeof (struct tree_vector);
701 case STRING_CST: gcc_unreachable ();
702 default:
703 return lang_hooks.tree_size (code);
704 }
705
706 case tcc_exceptional: /* something random, like an identifier. */
707 switch (code)
708 {
709 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
710 case TREE_LIST: return sizeof (struct tree_list);
711
712 case ERROR_MARK:
713 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
714
715 case TREE_VEC:
716 case OMP_CLAUSE: gcc_unreachable ();
717
718 case SSA_NAME: return sizeof (struct tree_ssa_name);
719
720 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
721 case BLOCK: return sizeof (struct tree_block);
722 case CONSTRUCTOR: return sizeof (struct tree_constructor);
723 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
724 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
725
726 default:
727 return lang_hooks.tree_size (code);
728 }
729
730 default:
731 gcc_unreachable ();
732 }
733 }
734
735 /* Compute the number of bytes occupied by NODE. This routine only
736 looks at TREE_CODE, except for those nodes that have variable sizes. */
737 size_t
738 tree_size (const_tree node)
739 {
740 const enum tree_code code = TREE_CODE (node);
741 switch (code)
742 {
743 case TREE_BINFO:
744 return (offsetof (struct tree_binfo, base_binfos)
745 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
746
747 case TREE_VEC:
748 return (sizeof (struct tree_vec)
749 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
750
751 case STRING_CST:
752 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
753
754 case OMP_CLAUSE:
755 return (sizeof (struct tree_omp_clause)
756 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
757 * sizeof (tree));
758
759 default:
760 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
761 return (sizeof (struct tree_exp)
762 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
763 else
764 return tree_code_size (code);
765 }
766 }
767
768 /* Return a newly allocated node of code CODE. For decl and type
769 nodes, some other fields are initialized. The rest of the node is
770 initialized to zero. This function cannot be used for TREE_VEC or
771 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
772
773 Achoo! I got a code in the node. */
774
775 tree
776 make_node_stat (enum tree_code code MEM_STAT_DECL)
777 {
778 tree t;
779 enum tree_code_class type = TREE_CODE_CLASS (code);
780 size_t length = tree_code_size (code);
781 #ifdef GATHER_STATISTICS
782 tree_node_kind kind;
783
784 switch (type)
785 {
786 case tcc_declaration: /* A decl node */
787 kind = d_kind;
788 break;
789
790 case tcc_type: /* a type node */
791 kind = t_kind;
792 break;
793
794 case tcc_statement: /* an expression with side effects */
795 kind = s_kind;
796 break;
797
798 case tcc_reference: /* a reference */
799 kind = r_kind;
800 break;
801
802 case tcc_expression: /* an expression */
803 case tcc_comparison: /* a comparison expression */
804 case tcc_unary: /* a unary arithmetic expression */
805 case tcc_binary: /* a binary arithmetic expression */
806 kind = e_kind;
807 break;
808
809 case tcc_constant: /* a constant */
810 kind = c_kind;
811 break;
812
813 case tcc_exceptional: /* something random, like an identifier. */
814 switch (code)
815 {
816 case IDENTIFIER_NODE:
817 kind = id_kind;
818 break;
819
820 case TREE_VEC:
821 kind = vec_kind;
822 break;
823
824 case TREE_BINFO:
825 kind = binfo_kind;
826 break;
827
828 case SSA_NAME:
829 kind = ssa_name_kind;
830 break;
831
832 case BLOCK:
833 kind = b_kind;
834 break;
835
836 case CONSTRUCTOR:
837 kind = constr_kind;
838 break;
839
840 default:
841 kind = x_kind;
842 break;
843 }
844 break;
845
846 default:
847 gcc_unreachable ();
848 }
849
850 tree_node_counts[(int) kind]++;
851 tree_node_sizes[(int) kind] += length;
852 #endif
853
854 if (code == IDENTIFIER_NODE)
855 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_id_zone);
856 else
857 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
858
859 memset (t, 0, length);
860
861 TREE_SET_CODE (t, code);
862
863 switch (type)
864 {
865 case tcc_statement:
866 TREE_SIDE_EFFECTS (t) = 1;
867 break;
868
869 case tcc_declaration:
870 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
871 {
872 if (code == FUNCTION_DECL)
873 {
874 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
875 DECL_MODE (t) = FUNCTION_MODE;
876 }
877 else
878 DECL_ALIGN (t) = 1;
879 }
880 DECL_SOURCE_LOCATION (t) = input_location;
881 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
882 DECL_UID (t) = --next_debug_decl_uid;
883 else
884 {
885 DECL_UID (t) = next_decl_uid++;
886 SET_DECL_PT_UID (t, -1);
887 }
888 if (TREE_CODE (t) == LABEL_DECL)
889 LABEL_DECL_UID (t) = -1;
890
891 break;
892
893 case tcc_type:
894 TYPE_UID (t) = next_type_uid++;
895 TYPE_ALIGN (t) = BITS_PER_UNIT;
896 TYPE_USER_ALIGN (t) = 0;
897 TYPE_MAIN_VARIANT (t) = t;
898 TYPE_CANONICAL (t) = t;
899
900 /* Default to no attributes for type, but let target change that. */
901 TYPE_ATTRIBUTES (t) = NULL_TREE;
902 targetm.set_default_type_attributes (t);
903
904 /* We have not yet computed the alias set for this type. */
905 TYPE_ALIAS_SET (t) = -1;
906 break;
907
908 case tcc_constant:
909 TREE_CONSTANT (t) = 1;
910 break;
911
912 case tcc_expression:
913 switch (code)
914 {
915 case INIT_EXPR:
916 case MODIFY_EXPR:
917 case VA_ARG_EXPR:
918 case PREDECREMENT_EXPR:
919 case PREINCREMENT_EXPR:
920 case POSTDECREMENT_EXPR:
921 case POSTINCREMENT_EXPR:
922 /* All of these have side-effects, no matter what their
923 operands are. */
924 TREE_SIDE_EFFECTS (t) = 1;
925 break;
926
927 default:
928 break;
929 }
930 break;
931
932 default:
933 /* Other classes need no special treatment. */
934 break;
935 }
936
937 return t;
938 }
939 \f
940 /* Return a new node with the same contents as NODE except that its
941 TREE_CHAIN is zero and it has a fresh uid. */
942
943 tree
944 copy_node_stat (tree node MEM_STAT_DECL)
945 {
946 tree t;
947 enum tree_code code = TREE_CODE (node);
948 size_t length;
949
950 gcc_assert (code != STATEMENT_LIST);
951
952 length = tree_size (node);
953 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
954 memcpy (t, node, length);
955
956 TREE_CHAIN (t) = 0;
957 TREE_ASM_WRITTEN (t) = 0;
958 TREE_VISITED (t) = 0;
959 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
960 *DECL_VAR_ANN_PTR (t) = 0;
961
962 if (TREE_CODE_CLASS (code) == tcc_declaration)
963 {
964 if (code == DEBUG_EXPR_DECL)
965 DECL_UID (t) = --next_debug_decl_uid;
966 else
967 {
968 DECL_UID (t) = next_decl_uid++;
969 if (DECL_PT_UID_SET_P (node))
970 SET_DECL_PT_UID (t, DECL_PT_UID (node));
971 }
972 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
973 && DECL_HAS_VALUE_EXPR_P (node))
974 {
975 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
976 DECL_HAS_VALUE_EXPR_P (t) = 1;
977 }
978 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
979 {
980 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
981 DECL_HAS_INIT_PRIORITY_P (t) = 1;
982 }
983 }
984 else if (TREE_CODE_CLASS (code) == tcc_type)
985 {
986 TYPE_UID (t) = next_type_uid++;
987 /* The following is so that the debug code for
988 the copy is different from the original type.
989 The two statements usually duplicate each other
990 (because they clear fields of the same union),
991 but the optimizer should catch that. */
992 TYPE_SYMTAB_POINTER (t) = 0;
993 TYPE_SYMTAB_ADDRESS (t) = 0;
994
995 /* Do not copy the values cache. */
996 if (TYPE_CACHED_VALUES_P(t))
997 {
998 TYPE_CACHED_VALUES_P (t) = 0;
999 TYPE_CACHED_VALUES (t) = NULL_TREE;
1000 }
1001 }
1002
1003 return t;
1004 }
1005
1006 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1007 For example, this can copy a list made of TREE_LIST nodes. */
1008
1009 tree
1010 copy_list (tree list)
1011 {
1012 tree head;
1013 tree prev, next;
1014
1015 if (list == 0)
1016 return 0;
1017
1018 head = prev = copy_node (list);
1019 next = TREE_CHAIN (list);
1020 while (next)
1021 {
1022 TREE_CHAIN (prev) = copy_node (next);
1023 prev = TREE_CHAIN (prev);
1024 next = TREE_CHAIN (next);
1025 }
1026 return head;
1027 }
1028
1029 \f
1030 /* Create an INT_CST node with a LOW value sign extended. */
1031
1032 tree
1033 build_int_cst (tree type, HOST_WIDE_INT low)
1034 {
1035 /* Support legacy code. */
1036 if (!type)
1037 type = integer_type_node;
1038
1039 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1040 }
1041
1042 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1043 if it is negative. This function is similar to build_int_cst, but
1044 the extra bits outside of the type precision are cleared. Constants
1045 with these extra bits may confuse the fold so that it detects overflows
1046 even in cases when they do not occur, and in general should be avoided.
1047 We cannot however make this a default behavior of build_int_cst without
1048 more intrusive changes, since there are parts of gcc that rely on the extra
1049 precision of the integer constants. */
1050
1051 tree
1052 build_int_cst_type (tree type, HOST_WIDE_INT low)
1053 {
1054 unsigned HOST_WIDE_INT low1;
1055 HOST_WIDE_INT hi;
1056
1057 gcc_assert (type);
1058
1059 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
1060
1061 return build_int_cst_wide (type, low1, hi);
1062 }
1063
1064 /* Constructs tree in type TYPE from with value given by CST. Signedness
1065 of CST is assumed to be the same as the signedness of TYPE. */
1066
1067 tree
1068 double_int_to_tree (tree type, double_int cst)
1069 {
1070 /* Size types *are* sign extended. */
1071 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1072 || (TREE_CODE (type) == INTEGER_TYPE
1073 && TYPE_IS_SIZETYPE (type)));
1074
1075 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1076
1077 return build_int_cst_wide (type, cst.low, cst.high);
1078 }
1079
1080 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1081 to be the same as the signedness of TYPE. */
1082
1083 bool
1084 double_int_fits_to_tree_p (const_tree type, double_int cst)
1085 {
1086 /* Size types *are* sign extended. */
1087 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1088 || (TREE_CODE (type) == INTEGER_TYPE
1089 && TYPE_IS_SIZETYPE (type)));
1090
1091 double_int ext
1092 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1093
1094 return double_int_equal_p (cst, ext);
1095 }
1096
1097 /* These are the hash table functions for the hash table of INTEGER_CST
1098 nodes of a sizetype. */
1099
1100 /* Return the hash code code X, an INTEGER_CST. */
1101
1102 static hashval_t
1103 int_cst_hash_hash (const void *x)
1104 {
1105 const_tree const t = (const_tree) x;
1106
1107 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1108 ^ htab_hash_pointer (TREE_TYPE (t)));
1109 }
1110
1111 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1112 is the same as that given by *Y, which is the same. */
1113
1114 static int
1115 int_cst_hash_eq (const void *x, const void *y)
1116 {
1117 const_tree const xt = (const_tree) x;
1118 const_tree const yt = (const_tree) y;
1119
1120 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1121 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1122 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1123 }
1124
1125 /* Create an INT_CST node of TYPE and value HI:LOW.
1126 The returned node is always shared. For small integers we use a
1127 per-type vector cache, for larger ones we use a single hash table. */
1128
1129 tree
1130 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1131 {
1132 tree t;
1133 int ix = -1;
1134 int limit = 0;
1135
1136 gcc_assert (type);
1137
1138 switch (TREE_CODE (type))
1139 {
1140 case POINTER_TYPE:
1141 case REFERENCE_TYPE:
1142 /* Cache NULL pointer. */
1143 if (!hi && !low)
1144 {
1145 limit = 1;
1146 ix = 0;
1147 }
1148 break;
1149
1150 case BOOLEAN_TYPE:
1151 /* Cache false or true. */
1152 limit = 2;
1153 if (!hi && low < 2)
1154 ix = low;
1155 break;
1156
1157 case INTEGER_TYPE:
1158 case OFFSET_TYPE:
1159 if (TYPE_UNSIGNED (type))
1160 {
1161 /* Cache 0..N */
1162 limit = INTEGER_SHARE_LIMIT;
1163 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1164 ix = low;
1165 }
1166 else
1167 {
1168 /* Cache -1..N */
1169 limit = INTEGER_SHARE_LIMIT + 1;
1170 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1171 ix = low + 1;
1172 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1173 ix = 0;
1174 }
1175 break;
1176
1177 case ENUMERAL_TYPE:
1178 break;
1179
1180 default:
1181 gcc_unreachable ();
1182 }
1183
1184 if (ix >= 0)
1185 {
1186 /* Look for it in the type's vector of small shared ints. */
1187 if (!TYPE_CACHED_VALUES_P (type))
1188 {
1189 TYPE_CACHED_VALUES_P (type) = 1;
1190 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1191 }
1192
1193 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1194 if (t)
1195 {
1196 /* Make sure no one is clobbering the shared constant. */
1197 gcc_assert (TREE_TYPE (t) == type);
1198 gcc_assert (TREE_INT_CST_LOW (t) == low);
1199 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1200 }
1201 else
1202 {
1203 /* Create a new shared int. */
1204 t = make_node (INTEGER_CST);
1205
1206 TREE_INT_CST_LOW (t) = low;
1207 TREE_INT_CST_HIGH (t) = hi;
1208 TREE_TYPE (t) = type;
1209
1210 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1211 }
1212 }
1213 else
1214 {
1215 /* Use the cache of larger shared ints. */
1216 void **slot;
1217
1218 TREE_INT_CST_LOW (int_cst_node) = low;
1219 TREE_INT_CST_HIGH (int_cst_node) = hi;
1220 TREE_TYPE (int_cst_node) = type;
1221
1222 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1223 t = (tree) *slot;
1224 if (!t)
1225 {
1226 /* Insert this one into the hash table. */
1227 t = int_cst_node;
1228 *slot = t;
1229 /* Make a new node for next time round. */
1230 int_cst_node = make_node (INTEGER_CST);
1231 }
1232 }
1233
1234 return t;
1235 }
1236
1237 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1238 and the rest are zeros. */
1239
1240 tree
1241 build_low_bits_mask (tree type, unsigned bits)
1242 {
1243 double_int mask;
1244
1245 gcc_assert (bits <= TYPE_PRECISION (type));
1246
1247 if (bits == TYPE_PRECISION (type)
1248 && !TYPE_UNSIGNED (type))
1249 /* Sign extended all-ones mask. */
1250 mask = double_int_minus_one;
1251 else
1252 mask = double_int_mask (bits);
1253
1254 return build_int_cst_wide (type, mask.low, mask.high);
1255 }
1256
1257 /* Checks that X is integer constant that can be expressed in (unsigned)
1258 HOST_WIDE_INT without loss of precision. */
1259
1260 bool
1261 cst_and_fits_in_hwi (const_tree x)
1262 {
1263 if (TREE_CODE (x) != INTEGER_CST)
1264 return false;
1265
1266 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1267 return false;
1268
1269 return (TREE_INT_CST_HIGH (x) == 0
1270 || TREE_INT_CST_HIGH (x) == -1);
1271 }
1272
1273 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1274 are in a list pointed to by VALS. */
1275
1276 tree
1277 build_vector (tree type, tree vals)
1278 {
1279 tree v = make_node (VECTOR_CST);
1280 int over = 0;
1281 tree link;
1282
1283 TREE_VECTOR_CST_ELTS (v) = vals;
1284 TREE_TYPE (v) = type;
1285
1286 /* Iterate through elements and check for overflow. */
1287 for (link = vals; link; link = TREE_CHAIN (link))
1288 {
1289 tree value = TREE_VALUE (link);
1290
1291 /* Don't crash if we get an address constant. */
1292 if (!CONSTANT_CLASS_P (value))
1293 continue;
1294
1295 over |= TREE_OVERFLOW (value);
1296 }
1297
1298 TREE_OVERFLOW (v) = over;
1299 return v;
1300 }
1301
1302 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1303 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1304
1305 tree
1306 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1307 {
1308 tree list = NULL_TREE;
1309 unsigned HOST_WIDE_INT idx;
1310 tree value;
1311
1312 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1313 list = tree_cons (NULL_TREE, value, list);
1314 return build_vector (type, nreverse (list));
1315 }
1316
1317 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1318 are in the VEC pointed to by VALS. */
1319 tree
1320 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1321 {
1322 tree c = make_node (CONSTRUCTOR);
1323 unsigned int i;
1324 constructor_elt *elt;
1325 bool constant_p = true;
1326
1327 TREE_TYPE (c) = type;
1328 CONSTRUCTOR_ELTS (c) = vals;
1329
1330 for (i = 0; VEC_iterate (constructor_elt, vals, i, elt); i++)
1331 if (!TREE_CONSTANT (elt->value))
1332 {
1333 constant_p = false;
1334 break;
1335 }
1336
1337 TREE_CONSTANT (c) = constant_p;
1338
1339 return c;
1340 }
1341
1342 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1343 INDEX and VALUE. */
1344 tree
1345 build_constructor_single (tree type, tree index, tree value)
1346 {
1347 VEC(constructor_elt,gc) *v;
1348 constructor_elt *elt;
1349
1350 v = VEC_alloc (constructor_elt, gc, 1);
1351 elt = VEC_quick_push (constructor_elt, v, NULL);
1352 elt->index = index;
1353 elt->value = value;
1354
1355 return build_constructor (type, v);
1356 }
1357
1358
1359 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1360 are in a list pointed to by VALS. */
1361 tree
1362 build_constructor_from_list (tree type, tree vals)
1363 {
1364 tree t;
1365 VEC(constructor_elt,gc) *v = NULL;
1366
1367 if (vals)
1368 {
1369 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1370 for (t = vals; t; t = TREE_CHAIN (t))
1371 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1372 }
1373
1374 return build_constructor (type, v);
1375 }
1376
1377 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1378
1379 tree
1380 build_fixed (tree type, FIXED_VALUE_TYPE f)
1381 {
1382 tree v;
1383 FIXED_VALUE_TYPE *fp;
1384
1385 v = make_node (FIXED_CST);
1386 fp = GGC_NEW (FIXED_VALUE_TYPE);
1387 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1388
1389 TREE_TYPE (v) = type;
1390 TREE_FIXED_CST_PTR (v) = fp;
1391 return v;
1392 }
1393
1394 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1395
1396 tree
1397 build_real (tree type, REAL_VALUE_TYPE d)
1398 {
1399 tree v;
1400 REAL_VALUE_TYPE *dp;
1401 int overflow = 0;
1402
1403 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1404 Consider doing it via real_convert now. */
1405
1406 v = make_node (REAL_CST);
1407 dp = GGC_NEW (REAL_VALUE_TYPE);
1408 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1409
1410 TREE_TYPE (v) = type;
1411 TREE_REAL_CST_PTR (v) = dp;
1412 TREE_OVERFLOW (v) = overflow;
1413 return v;
1414 }
1415
1416 /* Return a new REAL_CST node whose type is TYPE
1417 and whose value is the integer value of the INTEGER_CST node I. */
1418
1419 REAL_VALUE_TYPE
1420 real_value_from_int_cst (const_tree type, const_tree i)
1421 {
1422 REAL_VALUE_TYPE d;
1423
1424 /* Clear all bits of the real value type so that we can later do
1425 bitwise comparisons to see if two values are the same. */
1426 memset (&d, 0, sizeof d);
1427
1428 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1429 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1430 TYPE_UNSIGNED (TREE_TYPE (i)));
1431 return d;
1432 }
1433
1434 /* Given a tree representing an integer constant I, return a tree
1435 representing the same value as a floating-point constant of type TYPE. */
1436
1437 tree
1438 build_real_from_int_cst (tree type, const_tree i)
1439 {
1440 tree v;
1441 int overflow = TREE_OVERFLOW (i);
1442
1443 v = build_real (type, real_value_from_int_cst (type, i));
1444
1445 TREE_OVERFLOW (v) |= overflow;
1446 return v;
1447 }
1448
1449 /* Return a newly constructed STRING_CST node whose value is
1450 the LEN characters at STR.
1451 The TREE_TYPE is not initialized. */
1452
1453 tree
1454 build_string (int len, const char *str)
1455 {
1456 tree s;
1457 size_t length;
1458
1459 /* Do not waste bytes provided by padding of struct tree_string. */
1460 length = len + offsetof (struct tree_string, str) + 1;
1461
1462 #ifdef GATHER_STATISTICS
1463 tree_node_counts[(int) c_kind]++;
1464 tree_node_sizes[(int) c_kind] += length;
1465 #endif
1466
1467 s = ggc_alloc_tree (length);
1468
1469 memset (s, 0, sizeof (struct tree_common));
1470 TREE_SET_CODE (s, STRING_CST);
1471 TREE_CONSTANT (s) = 1;
1472 TREE_STRING_LENGTH (s) = len;
1473 memcpy (s->string.str, str, len);
1474 s->string.str[len] = '\0';
1475
1476 return s;
1477 }
1478
1479 /* Return a newly constructed COMPLEX_CST node whose value is
1480 specified by the real and imaginary parts REAL and IMAG.
1481 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1482 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1483
1484 tree
1485 build_complex (tree type, tree real, tree imag)
1486 {
1487 tree t = make_node (COMPLEX_CST);
1488
1489 TREE_REALPART (t) = real;
1490 TREE_IMAGPART (t) = imag;
1491 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1492 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1493 return t;
1494 }
1495
1496 /* Return a constant of arithmetic type TYPE which is the
1497 multiplicative identity of the set TYPE. */
1498
1499 tree
1500 build_one_cst (tree type)
1501 {
1502 switch (TREE_CODE (type))
1503 {
1504 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1505 case POINTER_TYPE: case REFERENCE_TYPE:
1506 case OFFSET_TYPE:
1507 return build_int_cst (type, 1);
1508
1509 case REAL_TYPE:
1510 return build_real (type, dconst1);
1511
1512 case FIXED_POINT_TYPE:
1513 /* We can only generate 1 for accum types. */
1514 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1515 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1516
1517 case VECTOR_TYPE:
1518 {
1519 tree scalar, cst;
1520 int i;
1521
1522 scalar = build_one_cst (TREE_TYPE (type));
1523
1524 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1525 cst = NULL_TREE;
1526 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1527 cst = tree_cons (NULL_TREE, scalar, cst);
1528
1529 return build_vector (type, cst);
1530 }
1531
1532 case COMPLEX_TYPE:
1533 return build_complex (type,
1534 build_one_cst (TREE_TYPE (type)),
1535 fold_convert (TREE_TYPE (type), integer_zero_node));
1536
1537 default:
1538 gcc_unreachable ();
1539 }
1540 }
1541
1542 /* Build a BINFO with LEN language slots. */
1543
1544 tree
1545 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1546 {
1547 tree t;
1548 size_t length = (offsetof (struct tree_binfo, base_binfos)
1549 + VEC_embedded_size (tree, base_binfos));
1550
1551 #ifdef GATHER_STATISTICS
1552 tree_node_counts[(int) binfo_kind]++;
1553 tree_node_sizes[(int) binfo_kind] += length;
1554 #endif
1555
1556 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1557
1558 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1559
1560 TREE_SET_CODE (t, TREE_BINFO);
1561
1562 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1563
1564 return t;
1565 }
1566
1567
1568 /* Build a newly constructed TREE_VEC node of length LEN. */
1569
1570 tree
1571 make_tree_vec_stat (int len MEM_STAT_DECL)
1572 {
1573 tree t;
1574 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1575
1576 #ifdef GATHER_STATISTICS
1577 tree_node_counts[(int) vec_kind]++;
1578 tree_node_sizes[(int) vec_kind] += length;
1579 #endif
1580
1581 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1582
1583 memset (t, 0, length);
1584
1585 TREE_SET_CODE (t, TREE_VEC);
1586 TREE_VEC_LENGTH (t) = len;
1587
1588 return t;
1589 }
1590 \f
1591 /* Return 1 if EXPR is the integer constant zero or a complex constant
1592 of zero. */
1593
1594 int
1595 integer_zerop (const_tree expr)
1596 {
1597 STRIP_NOPS (expr);
1598
1599 return ((TREE_CODE (expr) == INTEGER_CST
1600 && TREE_INT_CST_LOW (expr) == 0
1601 && TREE_INT_CST_HIGH (expr) == 0)
1602 || (TREE_CODE (expr) == COMPLEX_CST
1603 && integer_zerop (TREE_REALPART (expr))
1604 && integer_zerop (TREE_IMAGPART (expr))));
1605 }
1606
1607 /* Return 1 if EXPR is the integer constant one or the corresponding
1608 complex constant. */
1609
1610 int
1611 integer_onep (const_tree expr)
1612 {
1613 STRIP_NOPS (expr);
1614
1615 return ((TREE_CODE (expr) == INTEGER_CST
1616 && TREE_INT_CST_LOW (expr) == 1
1617 && TREE_INT_CST_HIGH (expr) == 0)
1618 || (TREE_CODE (expr) == COMPLEX_CST
1619 && integer_onep (TREE_REALPART (expr))
1620 && integer_zerop (TREE_IMAGPART (expr))));
1621 }
1622
1623 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1624 it contains. Likewise for the corresponding complex constant. */
1625
1626 int
1627 integer_all_onesp (const_tree expr)
1628 {
1629 int prec;
1630 int uns;
1631
1632 STRIP_NOPS (expr);
1633
1634 if (TREE_CODE (expr) == COMPLEX_CST
1635 && integer_all_onesp (TREE_REALPART (expr))
1636 && integer_zerop (TREE_IMAGPART (expr)))
1637 return 1;
1638
1639 else if (TREE_CODE (expr) != INTEGER_CST)
1640 return 0;
1641
1642 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1643 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1644 && TREE_INT_CST_HIGH (expr) == -1)
1645 return 1;
1646 if (!uns)
1647 return 0;
1648
1649 /* Note that using TYPE_PRECISION here is wrong. We care about the
1650 actual bits, not the (arbitrary) range of the type. */
1651 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1652 if (prec >= HOST_BITS_PER_WIDE_INT)
1653 {
1654 HOST_WIDE_INT high_value;
1655 int shift_amount;
1656
1657 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1658
1659 /* Can not handle precisions greater than twice the host int size. */
1660 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1661 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1662 /* Shifting by the host word size is undefined according to the ANSI
1663 standard, so we must handle this as a special case. */
1664 high_value = -1;
1665 else
1666 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1667
1668 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1669 && TREE_INT_CST_HIGH (expr) == high_value);
1670 }
1671 else
1672 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1673 }
1674
1675 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1676 one bit on). */
1677
1678 int
1679 integer_pow2p (const_tree expr)
1680 {
1681 int prec;
1682 HOST_WIDE_INT high, low;
1683
1684 STRIP_NOPS (expr);
1685
1686 if (TREE_CODE (expr) == COMPLEX_CST
1687 && integer_pow2p (TREE_REALPART (expr))
1688 && integer_zerop (TREE_IMAGPART (expr)))
1689 return 1;
1690
1691 if (TREE_CODE (expr) != INTEGER_CST)
1692 return 0;
1693
1694 prec = TYPE_PRECISION (TREE_TYPE (expr));
1695 high = TREE_INT_CST_HIGH (expr);
1696 low = TREE_INT_CST_LOW (expr);
1697
1698 /* First clear all bits that are beyond the type's precision in case
1699 we've been sign extended. */
1700
1701 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1702 ;
1703 else if (prec > HOST_BITS_PER_WIDE_INT)
1704 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1705 else
1706 {
1707 high = 0;
1708 if (prec < HOST_BITS_PER_WIDE_INT)
1709 low &= ~((HOST_WIDE_INT) (-1) << prec);
1710 }
1711
1712 if (high == 0 && low == 0)
1713 return 0;
1714
1715 return ((high == 0 && (low & (low - 1)) == 0)
1716 || (low == 0 && (high & (high - 1)) == 0));
1717 }
1718
1719 /* Return 1 if EXPR is an integer constant other than zero or a
1720 complex constant other than zero. */
1721
1722 int
1723 integer_nonzerop (const_tree expr)
1724 {
1725 STRIP_NOPS (expr);
1726
1727 return ((TREE_CODE (expr) == INTEGER_CST
1728 && (TREE_INT_CST_LOW (expr) != 0
1729 || TREE_INT_CST_HIGH (expr) != 0))
1730 || (TREE_CODE (expr) == COMPLEX_CST
1731 && (integer_nonzerop (TREE_REALPART (expr))
1732 || integer_nonzerop (TREE_IMAGPART (expr)))));
1733 }
1734
1735 /* Return 1 if EXPR is the fixed-point constant zero. */
1736
1737 int
1738 fixed_zerop (const_tree expr)
1739 {
1740 return (TREE_CODE (expr) == FIXED_CST
1741 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1742 }
1743
1744 /* Return the power of two represented by a tree node known to be a
1745 power of two. */
1746
1747 int
1748 tree_log2 (const_tree expr)
1749 {
1750 int prec;
1751 HOST_WIDE_INT high, low;
1752
1753 STRIP_NOPS (expr);
1754
1755 if (TREE_CODE (expr) == COMPLEX_CST)
1756 return tree_log2 (TREE_REALPART (expr));
1757
1758 prec = TYPE_PRECISION (TREE_TYPE (expr));
1759 high = TREE_INT_CST_HIGH (expr);
1760 low = TREE_INT_CST_LOW (expr);
1761
1762 /* First clear all bits that are beyond the type's precision in case
1763 we've been sign extended. */
1764
1765 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1766 ;
1767 else if (prec > HOST_BITS_PER_WIDE_INT)
1768 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1769 else
1770 {
1771 high = 0;
1772 if (prec < HOST_BITS_PER_WIDE_INT)
1773 low &= ~((HOST_WIDE_INT) (-1) << prec);
1774 }
1775
1776 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1777 : exact_log2 (low));
1778 }
1779
1780 /* Similar, but return the largest integer Y such that 2 ** Y is less
1781 than or equal to EXPR. */
1782
1783 int
1784 tree_floor_log2 (const_tree expr)
1785 {
1786 int prec;
1787 HOST_WIDE_INT high, low;
1788
1789 STRIP_NOPS (expr);
1790
1791 if (TREE_CODE (expr) == COMPLEX_CST)
1792 return tree_log2 (TREE_REALPART (expr));
1793
1794 prec = TYPE_PRECISION (TREE_TYPE (expr));
1795 high = TREE_INT_CST_HIGH (expr);
1796 low = TREE_INT_CST_LOW (expr);
1797
1798 /* First clear all bits that are beyond the type's precision in case
1799 we've been sign extended. Ignore if type's precision hasn't been set
1800 since what we are doing is setting it. */
1801
1802 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1803 ;
1804 else if (prec > HOST_BITS_PER_WIDE_INT)
1805 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1806 else
1807 {
1808 high = 0;
1809 if (prec < HOST_BITS_PER_WIDE_INT)
1810 low &= ~((HOST_WIDE_INT) (-1) << prec);
1811 }
1812
1813 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1814 : floor_log2 (low));
1815 }
1816
1817 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1818 decimal float constants, so don't return 1 for them. */
1819
1820 int
1821 real_zerop (const_tree expr)
1822 {
1823 STRIP_NOPS (expr);
1824
1825 return ((TREE_CODE (expr) == REAL_CST
1826 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1827 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1828 || (TREE_CODE (expr) == COMPLEX_CST
1829 && real_zerop (TREE_REALPART (expr))
1830 && real_zerop (TREE_IMAGPART (expr))));
1831 }
1832
1833 /* Return 1 if EXPR is the real constant one in real or complex form.
1834 Trailing zeroes matter for decimal float constants, so don't return
1835 1 for them. */
1836
1837 int
1838 real_onep (const_tree expr)
1839 {
1840 STRIP_NOPS (expr);
1841
1842 return ((TREE_CODE (expr) == REAL_CST
1843 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1844 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1845 || (TREE_CODE (expr) == COMPLEX_CST
1846 && real_onep (TREE_REALPART (expr))
1847 && real_zerop (TREE_IMAGPART (expr))));
1848 }
1849
1850 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1851 for decimal float constants, so don't return 1 for them. */
1852
1853 int
1854 real_twop (const_tree expr)
1855 {
1856 STRIP_NOPS (expr);
1857
1858 return ((TREE_CODE (expr) == REAL_CST
1859 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1860 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1861 || (TREE_CODE (expr) == COMPLEX_CST
1862 && real_twop (TREE_REALPART (expr))
1863 && real_zerop (TREE_IMAGPART (expr))));
1864 }
1865
1866 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1867 matter for decimal float constants, so don't return 1 for them. */
1868
1869 int
1870 real_minus_onep (const_tree expr)
1871 {
1872 STRIP_NOPS (expr);
1873
1874 return ((TREE_CODE (expr) == REAL_CST
1875 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1876 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1877 || (TREE_CODE (expr) == COMPLEX_CST
1878 && real_minus_onep (TREE_REALPART (expr))
1879 && real_zerop (TREE_IMAGPART (expr))));
1880 }
1881
1882 /* Nonzero if EXP is a constant or a cast of a constant. */
1883
1884 int
1885 really_constant_p (const_tree exp)
1886 {
1887 /* This is not quite the same as STRIP_NOPS. It does more. */
1888 while (CONVERT_EXPR_P (exp)
1889 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1890 exp = TREE_OPERAND (exp, 0);
1891 return TREE_CONSTANT (exp);
1892 }
1893 \f
1894 /* Return first list element whose TREE_VALUE is ELEM.
1895 Return 0 if ELEM is not in LIST. */
1896
1897 tree
1898 value_member (tree elem, tree list)
1899 {
1900 while (list)
1901 {
1902 if (elem == TREE_VALUE (list))
1903 return list;
1904 list = TREE_CHAIN (list);
1905 }
1906 return NULL_TREE;
1907 }
1908
1909 /* Return first list element whose TREE_PURPOSE is ELEM.
1910 Return 0 if ELEM is not in LIST. */
1911
1912 tree
1913 purpose_member (const_tree elem, tree list)
1914 {
1915 while (list)
1916 {
1917 if (elem == TREE_PURPOSE (list))
1918 return list;
1919 list = TREE_CHAIN (list);
1920 }
1921 return NULL_TREE;
1922 }
1923
1924 /* Returns element number IDX (zero-origin) of chain CHAIN, or
1925 NULL_TREE. */
1926
1927 tree
1928 chain_index (int idx, tree chain)
1929 {
1930 for (; chain && idx > 0; --idx)
1931 chain = TREE_CHAIN (chain);
1932 return chain;
1933 }
1934
1935 /* Return nonzero if ELEM is part of the chain CHAIN. */
1936
1937 int
1938 chain_member (const_tree elem, const_tree chain)
1939 {
1940 while (chain)
1941 {
1942 if (elem == chain)
1943 return 1;
1944 chain = TREE_CHAIN (chain);
1945 }
1946
1947 return 0;
1948 }
1949
1950 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1951 We expect a null pointer to mark the end of the chain.
1952 This is the Lisp primitive `length'. */
1953
1954 int
1955 list_length (const_tree t)
1956 {
1957 const_tree p = t;
1958 #ifdef ENABLE_TREE_CHECKING
1959 const_tree q = t;
1960 #endif
1961 int len = 0;
1962
1963 while (p)
1964 {
1965 p = TREE_CHAIN (p);
1966 #ifdef ENABLE_TREE_CHECKING
1967 if (len % 2)
1968 q = TREE_CHAIN (q);
1969 gcc_assert (p != q);
1970 #endif
1971 len++;
1972 }
1973
1974 return len;
1975 }
1976
1977 /* Returns the number of FIELD_DECLs in TYPE. */
1978
1979 int
1980 fields_length (const_tree type)
1981 {
1982 tree t = TYPE_FIELDS (type);
1983 int count = 0;
1984
1985 for (; t; t = TREE_CHAIN (t))
1986 if (TREE_CODE (t) == FIELD_DECL)
1987 ++count;
1988
1989 return count;
1990 }
1991
1992 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
1993 UNION_TYPE TYPE, or NULL_TREE if none. */
1994
1995 tree
1996 first_field (const_tree type)
1997 {
1998 tree t = TYPE_FIELDS (type);
1999 while (t && TREE_CODE (t) != FIELD_DECL)
2000 t = TREE_CHAIN (t);
2001 return t;
2002 }
2003
2004 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2005 by modifying the last node in chain 1 to point to chain 2.
2006 This is the Lisp primitive `nconc'. */
2007
2008 tree
2009 chainon (tree op1, tree op2)
2010 {
2011 tree t1;
2012
2013 if (!op1)
2014 return op2;
2015 if (!op2)
2016 return op1;
2017
2018 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2019 continue;
2020 TREE_CHAIN (t1) = op2;
2021
2022 #ifdef ENABLE_TREE_CHECKING
2023 {
2024 tree t2;
2025 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2026 gcc_assert (t2 != t1);
2027 }
2028 #endif
2029
2030 return op1;
2031 }
2032
2033 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2034
2035 tree
2036 tree_last (tree chain)
2037 {
2038 tree next;
2039 if (chain)
2040 while ((next = TREE_CHAIN (chain)))
2041 chain = next;
2042 return chain;
2043 }
2044
2045 /* Reverse the order of elements in the chain T,
2046 and return the new head of the chain (old last element). */
2047
2048 tree
2049 nreverse (tree t)
2050 {
2051 tree prev = 0, decl, next;
2052 for (decl = t; decl; decl = next)
2053 {
2054 next = TREE_CHAIN (decl);
2055 TREE_CHAIN (decl) = prev;
2056 prev = decl;
2057 }
2058 return prev;
2059 }
2060 \f
2061 /* Return a newly created TREE_LIST node whose
2062 purpose and value fields are PARM and VALUE. */
2063
2064 tree
2065 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2066 {
2067 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2068 TREE_PURPOSE (t) = parm;
2069 TREE_VALUE (t) = value;
2070 return t;
2071 }
2072
2073 /* Build a chain of TREE_LIST nodes from a vector. */
2074
2075 tree
2076 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2077 {
2078 tree ret = NULL_TREE;
2079 tree *pp = &ret;
2080 unsigned int i;
2081 tree t;
2082 for (i = 0; VEC_iterate (tree, vec, i, t); ++i)
2083 {
2084 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2085 pp = &TREE_CHAIN (*pp);
2086 }
2087 return ret;
2088 }
2089
2090 /* Return a newly created TREE_LIST node whose
2091 purpose and value fields are PURPOSE and VALUE
2092 and whose TREE_CHAIN is CHAIN. */
2093
2094 tree
2095 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2096 {
2097 tree node;
2098
2099 node = (tree) ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
2100
2101 memset (node, 0, sizeof (struct tree_common));
2102
2103 #ifdef GATHER_STATISTICS
2104 tree_node_counts[(int) x_kind]++;
2105 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2106 #endif
2107
2108 TREE_SET_CODE (node, TREE_LIST);
2109 TREE_CHAIN (node) = chain;
2110 TREE_PURPOSE (node) = purpose;
2111 TREE_VALUE (node) = value;
2112 return node;
2113 }
2114
2115 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2116 trees. */
2117
2118 VEC(tree,gc) *
2119 ctor_to_vec (tree ctor)
2120 {
2121 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2122 unsigned int ix;
2123 tree val;
2124
2125 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2126 VEC_quick_push (tree, vec, val);
2127
2128 return vec;
2129 }
2130 \f
2131 /* Return the size nominally occupied by an object of type TYPE
2132 when it resides in memory. The value is measured in units of bytes,
2133 and its data type is that normally used for type sizes
2134 (which is the first type created by make_signed_type or
2135 make_unsigned_type). */
2136
2137 tree
2138 size_in_bytes (const_tree type)
2139 {
2140 tree t;
2141
2142 if (type == error_mark_node)
2143 return integer_zero_node;
2144
2145 type = TYPE_MAIN_VARIANT (type);
2146 t = TYPE_SIZE_UNIT (type);
2147
2148 if (t == 0)
2149 {
2150 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2151 return size_zero_node;
2152 }
2153
2154 return t;
2155 }
2156
2157 /* Return the size of TYPE (in bytes) as a wide integer
2158 or return -1 if the size can vary or is larger than an integer. */
2159
2160 HOST_WIDE_INT
2161 int_size_in_bytes (const_tree type)
2162 {
2163 tree t;
2164
2165 if (type == error_mark_node)
2166 return 0;
2167
2168 type = TYPE_MAIN_VARIANT (type);
2169 t = TYPE_SIZE_UNIT (type);
2170 if (t == 0
2171 || TREE_CODE (t) != INTEGER_CST
2172 || TREE_INT_CST_HIGH (t) != 0
2173 /* If the result would appear negative, it's too big to represent. */
2174 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2175 return -1;
2176
2177 return TREE_INT_CST_LOW (t);
2178 }
2179
2180 /* Return the maximum size of TYPE (in bytes) as a wide integer
2181 or return -1 if the size can vary or is larger than an integer. */
2182
2183 HOST_WIDE_INT
2184 max_int_size_in_bytes (const_tree type)
2185 {
2186 HOST_WIDE_INT size = -1;
2187 tree size_tree;
2188
2189 /* If this is an array type, check for a possible MAX_SIZE attached. */
2190
2191 if (TREE_CODE (type) == ARRAY_TYPE)
2192 {
2193 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2194
2195 if (size_tree && host_integerp (size_tree, 1))
2196 size = tree_low_cst (size_tree, 1);
2197 }
2198
2199 /* If we still haven't been able to get a size, see if the language
2200 can compute a maximum size. */
2201
2202 if (size == -1)
2203 {
2204 size_tree = lang_hooks.types.max_size (type);
2205
2206 if (size_tree && host_integerp (size_tree, 1))
2207 size = tree_low_cst (size_tree, 1);
2208 }
2209
2210 return size;
2211 }
2212
2213 /* Returns a tree for the size of EXP in bytes. */
2214
2215 tree
2216 tree_expr_size (const_tree exp)
2217 {
2218 if (DECL_P (exp)
2219 && DECL_SIZE_UNIT (exp) != 0)
2220 return DECL_SIZE_UNIT (exp);
2221 else
2222 return size_in_bytes (TREE_TYPE (exp));
2223 }
2224 \f
2225 /* Return the bit position of FIELD, in bits from the start of the record.
2226 This is a tree of type bitsizetype. */
2227
2228 tree
2229 bit_position (const_tree field)
2230 {
2231 return bit_from_pos (DECL_FIELD_OFFSET (field),
2232 DECL_FIELD_BIT_OFFSET (field));
2233 }
2234
2235 /* Likewise, but return as an integer. It must be representable in
2236 that way (since it could be a signed value, we don't have the
2237 option of returning -1 like int_size_in_byte can. */
2238
2239 HOST_WIDE_INT
2240 int_bit_position (const_tree field)
2241 {
2242 return tree_low_cst (bit_position (field), 0);
2243 }
2244 \f
2245 /* Return the byte position of FIELD, in bytes from the start of the record.
2246 This is a tree of type sizetype. */
2247
2248 tree
2249 byte_position (const_tree field)
2250 {
2251 return byte_from_pos (DECL_FIELD_OFFSET (field),
2252 DECL_FIELD_BIT_OFFSET (field));
2253 }
2254
2255 /* Likewise, but return as an integer. It must be representable in
2256 that way (since it could be a signed value, we don't have the
2257 option of returning -1 like int_size_in_byte can. */
2258
2259 HOST_WIDE_INT
2260 int_byte_position (const_tree field)
2261 {
2262 return tree_low_cst (byte_position (field), 0);
2263 }
2264 \f
2265 /* Return the strictest alignment, in bits, that T is known to have. */
2266
2267 unsigned int
2268 expr_align (const_tree t)
2269 {
2270 unsigned int align0, align1;
2271
2272 switch (TREE_CODE (t))
2273 {
2274 CASE_CONVERT: case NON_LVALUE_EXPR:
2275 /* If we have conversions, we know that the alignment of the
2276 object must meet each of the alignments of the types. */
2277 align0 = expr_align (TREE_OPERAND (t, 0));
2278 align1 = TYPE_ALIGN (TREE_TYPE (t));
2279 return MAX (align0, align1);
2280
2281 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2282 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2283 case CLEANUP_POINT_EXPR:
2284 /* These don't change the alignment of an object. */
2285 return expr_align (TREE_OPERAND (t, 0));
2286
2287 case COND_EXPR:
2288 /* The best we can do is say that the alignment is the least aligned
2289 of the two arms. */
2290 align0 = expr_align (TREE_OPERAND (t, 1));
2291 align1 = expr_align (TREE_OPERAND (t, 2));
2292 return MIN (align0, align1);
2293
2294 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2295 meaningfully, it's always 1. */
2296 case LABEL_DECL: case CONST_DECL:
2297 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2298 case FUNCTION_DECL:
2299 gcc_assert (DECL_ALIGN (t) != 0);
2300 return DECL_ALIGN (t);
2301
2302 default:
2303 break;
2304 }
2305
2306 /* Otherwise take the alignment from that of the type. */
2307 return TYPE_ALIGN (TREE_TYPE (t));
2308 }
2309 \f
2310 /* Return, as a tree node, the number of elements for TYPE (which is an
2311 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2312
2313 tree
2314 array_type_nelts (const_tree type)
2315 {
2316 tree index_type, min, max;
2317
2318 /* If they did it with unspecified bounds, then we should have already
2319 given an error about it before we got here. */
2320 if (! TYPE_DOMAIN (type))
2321 return error_mark_node;
2322
2323 index_type = TYPE_DOMAIN (type);
2324 min = TYPE_MIN_VALUE (index_type);
2325 max = TYPE_MAX_VALUE (index_type);
2326
2327 return (integer_zerop (min)
2328 ? max
2329 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2330 }
2331 \f
2332 /* If arg is static -- a reference to an object in static storage -- then
2333 return the object. This is not the same as the C meaning of `static'.
2334 If arg isn't static, return NULL. */
2335
2336 tree
2337 staticp (tree arg)
2338 {
2339 switch (TREE_CODE (arg))
2340 {
2341 case FUNCTION_DECL:
2342 /* Nested functions are static, even though taking their address will
2343 involve a trampoline as we unnest the nested function and create
2344 the trampoline on the tree level. */
2345 return arg;
2346
2347 case VAR_DECL:
2348 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2349 && ! DECL_THREAD_LOCAL_P (arg)
2350 && ! DECL_DLLIMPORT_P (arg)
2351 ? arg : NULL);
2352
2353 case CONST_DECL:
2354 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2355 ? arg : NULL);
2356
2357 case CONSTRUCTOR:
2358 return TREE_STATIC (arg) ? arg : NULL;
2359
2360 case LABEL_DECL:
2361 case STRING_CST:
2362 return arg;
2363
2364 case COMPONENT_REF:
2365 /* If the thing being referenced is not a field, then it is
2366 something language specific. */
2367 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2368
2369 /* If we are referencing a bitfield, we can't evaluate an
2370 ADDR_EXPR at compile time and so it isn't a constant. */
2371 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2372 return NULL;
2373
2374 return staticp (TREE_OPERAND (arg, 0));
2375
2376 case BIT_FIELD_REF:
2377 return NULL;
2378
2379 case MISALIGNED_INDIRECT_REF:
2380 case ALIGN_INDIRECT_REF:
2381 case INDIRECT_REF:
2382 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2383
2384 case ARRAY_REF:
2385 case ARRAY_RANGE_REF:
2386 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2387 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2388 return staticp (TREE_OPERAND (arg, 0));
2389 else
2390 return NULL;
2391
2392 case COMPOUND_LITERAL_EXPR:
2393 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2394
2395 default:
2396 return NULL;
2397 }
2398 }
2399
2400 \f
2401
2402
2403 /* Return whether OP is a DECL whose address is function-invariant. */
2404
2405 bool
2406 decl_address_invariant_p (const_tree op)
2407 {
2408 /* The conditions below are slightly less strict than the one in
2409 staticp. */
2410
2411 switch (TREE_CODE (op))
2412 {
2413 case PARM_DECL:
2414 case RESULT_DECL:
2415 case LABEL_DECL:
2416 case FUNCTION_DECL:
2417 return true;
2418
2419 case VAR_DECL:
2420 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2421 && !DECL_DLLIMPORT_P (op))
2422 || DECL_THREAD_LOCAL_P (op)
2423 || DECL_CONTEXT (op) == current_function_decl
2424 || decl_function_context (op) == current_function_decl)
2425 return true;
2426 break;
2427
2428 case CONST_DECL:
2429 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2430 || decl_function_context (op) == current_function_decl)
2431 return true;
2432 break;
2433
2434 default:
2435 break;
2436 }
2437
2438 return false;
2439 }
2440
2441 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2442
2443 bool
2444 decl_address_ip_invariant_p (const_tree op)
2445 {
2446 /* The conditions below are slightly less strict than the one in
2447 staticp. */
2448
2449 switch (TREE_CODE (op))
2450 {
2451 case LABEL_DECL:
2452 case FUNCTION_DECL:
2453 case STRING_CST:
2454 return true;
2455
2456 case VAR_DECL:
2457 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2458 && !DECL_DLLIMPORT_P (op))
2459 || DECL_THREAD_LOCAL_P (op))
2460 return true;
2461 break;
2462
2463 case CONST_DECL:
2464 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2465 return true;
2466 break;
2467
2468 default:
2469 break;
2470 }
2471
2472 return false;
2473 }
2474
2475
2476 /* Return true if T is function-invariant (internal function, does
2477 not handle arithmetic; that's handled in skip_simple_arithmetic and
2478 tree_invariant_p). */
2479
2480 static bool tree_invariant_p (tree t);
2481
2482 static bool
2483 tree_invariant_p_1 (tree t)
2484 {
2485 tree op;
2486
2487 if (TREE_CONSTANT (t)
2488 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2489 return true;
2490
2491 switch (TREE_CODE (t))
2492 {
2493 case SAVE_EXPR:
2494 return true;
2495
2496 case ADDR_EXPR:
2497 op = TREE_OPERAND (t, 0);
2498 while (handled_component_p (op))
2499 {
2500 switch (TREE_CODE (op))
2501 {
2502 case ARRAY_REF:
2503 case ARRAY_RANGE_REF:
2504 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2505 || TREE_OPERAND (op, 2) != NULL_TREE
2506 || TREE_OPERAND (op, 3) != NULL_TREE)
2507 return false;
2508 break;
2509
2510 case COMPONENT_REF:
2511 if (TREE_OPERAND (op, 2) != NULL_TREE)
2512 return false;
2513 break;
2514
2515 default:;
2516 }
2517 op = TREE_OPERAND (op, 0);
2518 }
2519
2520 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2521
2522 default:
2523 break;
2524 }
2525
2526 return false;
2527 }
2528
2529 /* Return true if T is function-invariant. */
2530
2531 static bool
2532 tree_invariant_p (tree t)
2533 {
2534 tree inner = skip_simple_arithmetic (t);
2535 return tree_invariant_p_1 (inner);
2536 }
2537
2538 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2539 Do this to any expression which may be used in more than one place,
2540 but must be evaluated only once.
2541
2542 Normally, expand_expr would reevaluate the expression each time.
2543 Calling save_expr produces something that is evaluated and recorded
2544 the first time expand_expr is called on it. Subsequent calls to
2545 expand_expr just reuse the recorded value.
2546
2547 The call to expand_expr that generates code that actually computes
2548 the value is the first call *at compile time*. Subsequent calls
2549 *at compile time* generate code to use the saved value.
2550 This produces correct result provided that *at run time* control
2551 always flows through the insns made by the first expand_expr
2552 before reaching the other places where the save_expr was evaluated.
2553 You, the caller of save_expr, must make sure this is so.
2554
2555 Constants, and certain read-only nodes, are returned with no
2556 SAVE_EXPR because that is safe. Expressions containing placeholders
2557 are not touched; see tree.def for an explanation of what these
2558 are used for. */
2559
2560 tree
2561 save_expr (tree expr)
2562 {
2563 tree t = fold (expr);
2564 tree inner;
2565
2566 /* If the tree evaluates to a constant, then we don't want to hide that
2567 fact (i.e. this allows further folding, and direct checks for constants).
2568 However, a read-only object that has side effects cannot be bypassed.
2569 Since it is no problem to reevaluate literals, we just return the
2570 literal node. */
2571 inner = skip_simple_arithmetic (t);
2572 if (TREE_CODE (inner) == ERROR_MARK)
2573 return inner;
2574
2575 if (tree_invariant_p_1 (inner))
2576 return t;
2577
2578 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2579 it means that the size or offset of some field of an object depends on
2580 the value within another field.
2581
2582 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2583 and some variable since it would then need to be both evaluated once and
2584 evaluated more than once. Front-ends must assure this case cannot
2585 happen by surrounding any such subexpressions in their own SAVE_EXPR
2586 and forcing evaluation at the proper time. */
2587 if (contains_placeholder_p (inner))
2588 return t;
2589
2590 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2591 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2592
2593 /* This expression might be placed ahead of a jump to ensure that the
2594 value was computed on both sides of the jump. So make sure it isn't
2595 eliminated as dead. */
2596 TREE_SIDE_EFFECTS (t) = 1;
2597 return t;
2598 }
2599
2600 /* Look inside EXPR and into any simple arithmetic operations. Return
2601 the innermost non-arithmetic node. */
2602
2603 tree
2604 skip_simple_arithmetic (tree expr)
2605 {
2606 tree inner;
2607
2608 /* We don't care about whether this can be used as an lvalue in this
2609 context. */
2610 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2611 expr = TREE_OPERAND (expr, 0);
2612
2613 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2614 a constant, it will be more efficient to not make another SAVE_EXPR since
2615 it will allow better simplification and GCSE will be able to merge the
2616 computations if they actually occur. */
2617 inner = expr;
2618 while (1)
2619 {
2620 if (UNARY_CLASS_P (inner))
2621 inner = TREE_OPERAND (inner, 0);
2622 else if (BINARY_CLASS_P (inner))
2623 {
2624 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2625 inner = TREE_OPERAND (inner, 0);
2626 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2627 inner = TREE_OPERAND (inner, 1);
2628 else
2629 break;
2630 }
2631 else
2632 break;
2633 }
2634
2635 return inner;
2636 }
2637
2638
2639 /* Return which tree structure is used by T. */
2640
2641 enum tree_node_structure_enum
2642 tree_node_structure (const_tree t)
2643 {
2644 const enum tree_code code = TREE_CODE (t);
2645 return tree_node_structure_for_code (code);
2646 }
2647
2648 /* Set various status flags when building a CALL_EXPR object T. */
2649
2650 static void
2651 process_call_operands (tree t)
2652 {
2653 bool side_effects = TREE_SIDE_EFFECTS (t);
2654 bool read_only = false;
2655 int i = call_expr_flags (t);
2656
2657 /* Calls have side-effects, except those to const or pure functions. */
2658 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2659 side_effects = true;
2660 /* Propagate TREE_READONLY of arguments for const functions. */
2661 if (i & ECF_CONST)
2662 read_only = true;
2663
2664 if (!side_effects || read_only)
2665 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2666 {
2667 tree op = TREE_OPERAND (t, i);
2668 if (op && TREE_SIDE_EFFECTS (op))
2669 side_effects = true;
2670 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2671 read_only = false;
2672 }
2673
2674 TREE_SIDE_EFFECTS (t) = side_effects;
2675 TREE_READONLY (t) = read_only;
2676 }
2677 \f
2678 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2679 or offset that depends on a field within a record. */
2680
2681 bool
2682 contains_placeholder_p (const_tree exp)
2683 {
2684 enum tree_code code;
2685
2686 if (!exp)
2687 return 0;
2688
2689 code = TREE_CODE (exp);
2690 if (code == PLACEHOLDER_EXPR)
2691 return 1;
2692
2693 switch (TREE_CODE_CLASS (code))
2694 {
2695 case tcc_reference:
2696 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2697 position computations since they will be converted into a
2698 WITH_RECORD_EXPR involving the reference, which will assume
2699 here will be valid. */
2700 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2701
2702 case tcc_exceptional:
2703 if (code == TREE_LIST)
2704 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2705 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2706 break;
2707
2708 case tcc_unary:
2709 case tcc_binary:
2710 case tcc_comparison:
2711 case tcc_expression:
2712 switch (code)
2713 {
2714 case COMPOUND_EXPR:
2715 /* Ignoring the first operand isn't quite right, but works best. */
2716 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2717
2718 case COND_EXPR:
2719 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2720 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2721 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2722
2723 case SAVE_EXPR:
2724 /* The save_expr function never wraps anything containing
2725 a PLACEHOLDER_EXPR. */
2726 return 0;
2727
2728 default:
2729 break;
2730 }
2731
2732 switch (TREE_CODE_LENGTH (code))
2733 {
2734 case 1:
2735 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2736 case 2:
2737 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2738 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2739 default:
2740 return 0;
2741 }
2742
2743 case tcc_vl_exp:
2744 switch (code)
2745 {
2746 case CALL_EXPR:
2747 {
2748 const_tree arg;
2749 const_call_expr_arg_iterator iter;
2750 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2751 if (CONTAINS_PLACEHOLDER_P (arg))
2752 return 1;
2753 return 0;
2754 }
2755 default:
2756 return 0;
2757 }
2758
2759 default:
2760 return 0;
2761 }
2762 return 0;
2763 }
2764
2765 /* Return true if any part of the computation of TYPE involves a
2766 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2767 (for QUAL_UNION_TYPE) and field positions. */
2768
2769 static bool
2770 type_contains_placeholder_1 (const_tree type)
2771 {
2772 /* If the size contains a placeholder or the parent type (component type in
2773 the case of arrays) type involves a placeholder, this type does. */
2774 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2775 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2776 || (TREE_TYPE (type) != 0
2777 && type_contains_placeholder_p (TREE_TYPE (type))))
2778 return true;
2779
2780 /* Now do type-specific checks. Note that the last part of the check above
2781 greatly limits what we have to do below. */
2782 switch (TREE_CODE (type))
2783 {
2784 case VOID_TYPE:
2785 case COMPLEX_TYPE:
2786 case ENUMERAL_TYPE:
2787 case BOOLEAN_TYPE:
2788 case POINTER_TYPE:
2789 case OFFSET_TYPE:
2790 case REFERENCE_TYPE:
2791 case METHOD_TYPE:
2792 case FUNCTION_TYPE:
2793 case VECTOR_TYPE:
2794 return false;
2795
2796 case INTEGER_TYPE:
2797 case REAL_TYPE:
2798 case FIXED_POINT_TYPE:
2799 /* Here we just check the bounds. */
2800 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2801 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2802
2803 case ARRAY_TYPE:
2804 /* We're already checked the component type (TREE_TYPE), so just check
2805 the index type. */
2806 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2807
2808 case RECORD_TYPE:
2809 case UNION_TYPE:
2810 case QUAL_UNION_TYPE:
2811 {
2812 tree field;
2813
2814 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2815 if (TREE_CODE (field) == FIELD_DECL
2816 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2817 || (TREE_CODE (type) == QUAL_UNION_TYPE
2818 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2819 || type_contains_placeholder_p (TREE_TYPE (field))))
2820 return true;
2821
2822 return false;
2823 }
2824
2825 default:
2826 gcc_unreachable ();
2827 }
2828 }
2829
2830 bool
2831 type_contains_placeholder_p (tree type)
2832 {
2833 bool result;
2834
2835 /* If the contains_placeholder_bits field has been initialized,
2836 then we know the answer. */
2837 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2838 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2839
2840 /* Indicate that we've seen this type node, and the answer is false.
2841 This is what we want to return if we run into recursion via fields. */
2842 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2843
2844 /* Compute the real value. */
2845 result = type_contains_placeholder_1 (type);
2846
2847 /* Store the real value. */
2848 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2849
2850 return result;
2851 }
2852 \f
2853 /* Push tree EXP onto vector QUEUE if it is not already present. */
2854
2855 static void
2856 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2857 {
2858 unsigned int i;
2859 tree iter;
2860
2861 for (i = 0; VEC_iterate (tree, *queue, i, iter); i++)
2862 if (simple_cst_equal (iter, exp) == 1)
2863 break;
2864
2865 if (!iter)
2866 VEC_safe_push (tree, heap, *queue, exp);
2867 }
2868
2869 /* Given a tree EXP, find all occurences of references to fields
2870 in a PLACEHOLDER_EXPR and place them in vector REFS without
2871 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2872 we assume here that EXP contains only arithmetic expressions
2873 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2874 argument list. */
2875
2876 void
2877 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2878 {
2879 enum tree_code code = TREE_CODE (exp);
2880 tree inner;
2881 int i;
2882
2883 /* We handle TREE_LIST and COMPONENT_REF separately. */
2884 if (code == TREE_LIST)
2885 {
2886 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2887 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2888 }
2889 else if (code == COMPONENT_REF)
2890 {
2891 for (inner = TREE_OPERAND (exp, 0);
2892 REFERENCE_CLASS_P (inner);
2893 inner = TREE_OPERAND (inner, 0))
2894 ;
2895
2896 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2897 push_without_duplicates (exp, refs);
2898 else
2899 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2900 }
2901 else
2902 switch (TREE_CODE_CLASS (code))
2903 {
2904 case tcc_constant:
2905 break;
2906
2907 case tcc_declaration:
2908 /* Variables allocated to static storage can stay. */
2909 if (!TREE_STATIC (exp))
2910 push_without_duplicates (exp, refs);
2911 break;
2912
2913 case tcc_expression:
2914 /* This is the pattern built in ada/make_aligning_type. */
2915 if (code == ADDR_EXPR
2916 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2917 {
2918 push_without_duplicates (exp, refs);
2919 break;
2920 }
2921
2922 /* Fall through... */
2923
2924 case tcc_exceptional:
2925 case tcc_unary:
2926 case tcc_binary:
2927 case tcc_comparison:
2928 case tcc_reference:
2929 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
2930 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2931 break;
2932
2933 case tcc_vl_exp:
2934 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2935 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2936 break;
2937
2938 default:
2939 gcc_unreachable ();
2940 }
2941 }
2942
2943 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2944 return a tree with all occurrences of references to F in a
2945 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
2946 CONST_DECLs. Note that we assume here that EXP contains only
2947 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
2948 occurring only in their argument list. */
2949
2950 tree
2951 substitute_in_expr (tree exp, tree f, tree r)
2952 {
2953 enum tree_code code = TREE_CODE (exp);
2954 tree op0, op1, op2, op3;
2955 tree new_tree;
2956
2957 /* We handle TREE_LIST and COMPONENT_REF separately. */
2958 if (code == TREE_LIST)
2959 {
2960 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2961 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2962 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2963 return exp;
2964
2965 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2966 }
2967 else if (code == COMPONENT_REF)
2968 {
2969 tree inner;
2970
2971 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2972 and it is the right field, replace it with R. */
2973 for (inner = TREE_OPERAND (exp, 0);
2974 REFERENCE_CLASS_P (inner);
2975 inner = TREE_OPERAND (inner, 0))
2976 ;
2977
2978 /* The field. */
2979 op1 = TREE_OPERAND (exp, 1);
2980
2981 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
2982 return r;
2983
2984 /* If this expression hasn't been completed let, leave it alone. */
2985 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
2986 return exp;
2987
2988 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2989 if (op0 == TREE_OPERAND (exp, 0))
2990 return exp;
2991
2992 new_tree
2993 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
2994 }
2995 else
2996 switch (TREE_CODE_CLASS (code))
2997 {
2998 case tcc_constant:
2999 return exp;
3000
3001 case tcc_declaration:
3002 if (exp == f)
3003 return r;
3004 else
3005 return exp;
3006
3007 case tcc_expression:
3008 if (exp == f)
3009 return r;
3010
3011 /* Fall through... */
3012
3013 case tcc_exceptional:
3014 case tcc_unary:
3015 case tcc_binary:
3016 case tcc_comparison:
3017 case tcc_reference:
3018 switch (TREE_CODE_LENGTH (code))
3019 {
3020 case 0:
3021 return exp;
3022
3023 case 1:
3024 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3025 if (op0 == TREE_OPERAND (exp, 0))
3026 return exp;
3027
3028 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3029 break;
3030
3031 case 2:
3032 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3033 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3034
3035 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3036 return exp;
3037
3038 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3039 break;
3040
3041 case 3:
3042 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3043 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3044 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3045
3046 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3047 && op2 == TREE_OPERAND (exp, 2))
3048 return exp;
3049
3050 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3051 break;
3052
3053 case 4:
3054 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3055 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3056 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3057 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3058
3059 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3060 && op2 == TREE_OPERAND (exp, 2)
3061 && op3 == TREE_OPERAND (exp, 3))
3062 return exp;
3063
3064 new_tree
3065 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3066 break;
3067
3068 default:
3069 gcc_unreachable ();
3070 }
3071 break;
3072
3073 case tcc_vl_exp:
3074 {
3075 int i;
3076
3077 new_tree = NULL_TREE;
3078
3079 /* If we are trying to replace F with a constant, inline back
3080 functions which do nothing else than computing a value from
3081 the arguments they are passed. This makes it possible to
3082 fold partially or entirely the replacement expression. */
3083 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3084 {
3085 tree t = maybe_inline_call_in_expr (exp);
3086 if (t)
3087 return SUBSTITUTE_IN_EXPR (t, f, r);
3088 }
3089
3090 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3091 {
3092 tree op = TREE_OPERAND (exp, i);
3093 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3094 if (new_op != op)
3095 {
3096 if (!new_tree)
3097 new_tree = copy_node (exp);
3098 TREE_OPERAND (new_tree, i) = new_op;
3099 }
3100 }
3101
3102 if (new_tree)
3103 {
3104 new_tree = fold (new_tree);
3105 if (TREE_CODE (new_tree) == CALL_EXPR)
3106 process_call_operands (new_tree);
3107 }
3108 else
3109 return exp;
3110 }
3111 break;
3112
3113 default:
3114 gcc_unreachable ();
3115 }
3116
3117 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3118 return new_tree;
3119 }
3120
3121 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3122 for it within OBJ, a tree that is an object or a chain of references. */
3123
3124 tree
3125 substitute_placeholder_in_expr (tree exp, tree obj)
3126 {
3127 enum tree_code code = TREE_CODE (exp);
3128 tree op0, op1, op2, op3;
3129 tree new_tree;
3130
3131 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3132 in the chain of OBJ. */
3133 if (code == PLACEHOLDER_EXPR)
3134 {
3135 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3136 tree elt;
3137
3138 for (elt = obj; elt != 0;
3139 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3140 || TREE_CODE (elt) == COND_EXPR)
3141 ? TREE_OPERAND (elt, 1)
3142 : (REFERENCE_CLASS_P (elt)
3143 || UNARY_CLASS_P (elt)
3144 || BINARY_CLASS_P (elt)
3145 || VL_EXP_CLASS_P (elt)
3146 || EXPRESSION_CLASS_P (elt))
3147 ? TREE_OPERAND (elt, 0) : 0))
3148 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3149 return elt;
3150
3151 for (elt = obj; elt != 0;
3152 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3153 || TREE_CODE (elt) == COND_EXPR)
3154 ? TREE_OPERAND (elt, 1)
3155 : (REFERENCE_CLASS_P (elt)
3156 || UNARY_CLASS_P (elt)
3157 || BINARY_CLASS_P (elt)
3158 || VL_EXP_CLASS_P (elt)
3159 || EXPRESSION_CLASS_P (elt))
3160 ? TREE_OPERAND (elt, 0) : 0))
3161 if (POINTER_TYPE_P (TREE_TYPE (elt))
3162 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3163 == need_type))
3164 return fold_build1 (INDIRECT_REF, need_type, elt);
3165
3166 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3167 survives until RTL generation, there will be an error. */
3168 return exp;
3169 }
3170
3171 /* TREE_LIST is special because we need to look at TREE_VALUE
3172 and TREE_CHAIN, not TREE_OPERANDS. */
3173 else if (code == TREE_LIST)
3174 {
3175 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3176 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3177 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3178 return exp;
3179
3180 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3181 }
3182 else
3183 switch (TREE_CODE_CLASS (code))
3184 {
3185 case tcc_constant:
3186 case tcc_declaration:
3187 return exp;
3188
3189 case tcc_exceptional:
3190 case tcc_unary:
3191 case tcc_binary:
3192 case tcc_comparison:
3193 case tcc_expression:
3194 case tcc_reference:
3195 case tcc_statement:
3196 switch (TREE_CODE_LENGTH (code))
3197 {
3198 case 0:
3199 return exp;
3200
3201 case 1:
3202 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3203 if (op0 == TREE_OPERAND (exp, 0))
3204 return exp;
3205
3206 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3207 break;
3208
3209 case 2:
3210 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3211 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3212
3213 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3214 return exp;
3215
3216 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3217 break;
3218
3219 case 3:
3220 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3221 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3222 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3223
3224 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3225 && op2 == TREE_OPERAND (exp, 2))
3226 return exp;
3227
3228 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3229 break;
3230
3231 case 4:
3232 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3233 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3234 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3235 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3236
3237 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3238 && op2 == TREE_OPERAND (exp, 2)
3239 && op3 == TREE_OPERAND (exp, 3))
3240 return exp;
3241
3242 new_tree
3243 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3244 break;
3245
3246 default:
3247 gcc_unreachable ();
3248 }
3249 break;
3250
3251 case tcc_vl_exp:
3252 {
3253 int i;
3254
3255 new_tree = NULL_TREE;
3256
3257 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3258 {
3259 tree op = TREE_OPERAND (exp, i);
3260 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3261 if (new_op != op)
3262 {
3263 if (!new_tree)
3264 new_tree = copy_node (exp);
3265 TREE_OPERAND (new_tree, i) = new_op;
3266 }
3267 }
3268
3269 if (new_tree)
3270 {
3271 new_tree = fold (new_tree);
3272 if (TREE_CODE (new_tree) == CALL_EXPR)
3273 process_call_operands (new_tree);
3274 }
3275 else
3276 return exp;
3277 }
3278 break;
3279
3280 default:
3281 gcc_unreachable ();
3282 }
3283
3284 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3285 return new_tree;
3286 }
3287 \f
3288 /* Stabilize a reference so that we can use it any number of times
3289 without causing its operands to be evaluated more than once.
3290 Returns the stabilized reference. This works by means of save_expr,
3291 so see the caveats in the comments about save_expr.
3292
3293 Also allows conversion expressions whose operands are references.
3294 Any other kind of expression is returned unchanged. */
3295
3296 tree
3297 stabilize_reference (tree ref)
3298 {
3299 tree result;
3300 enum tree_code code = TREE_CODE (ref);
3301
3302 switch (code)
3303 {
3304 case VAR_DECL:
3305 case PARM_DECL:
3306 case RESULT_DECL:
3307 /* No action is needed in this case. */
3308 return ref;
3309
3310 CASE_CONVERT:
3311 case FLOAT_EXPR:
3312 case FIX_TRUNC_EXPR:
3313 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3314 break;
3315
3316 case INDIRECT_REF:
3317 result = build_nt (INDIRECT_REF,
3318 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3319 break;
3320
3321 case COMPONENT_REF:
3322 result = build_nt (COMPONENT_REF,
3323 stabilize_reference (TREE_OPERAND (ref, 0)),
3324 TREE_OPERAND (ref, 1), NULL_TREE);
3325 break;
3326
3327 case BIT_FIELD_REF:
3328 result = build_nt (BIT_FIELD_REF,
3329 stabilize_reference (TREE_OPERAND (ref, 0)),
3330 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3331 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3332 break;
3333
3334 case ARRAY_REF:
3335 result = build_nt (ARRAY_REF,
3336 stabilize_reference (TREE_OPERAND (ref, 0)),
3337 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3338 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3339 break;
3340
3341 case ARRAY_RANGE_REF:
3342 result = build_nt (ARRAY_RANGE_REF,
3343 stabilize_reference (TREE_OPERAND (ref, 0)),
3344 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3345 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3346 break;
3347
3348 case COMPOUND_EXPR:
3349 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3350 it wouldn't be ignored. This matters when dealing with
3351 volatiles. */
3352 return stabilize_reference_1 (ref);
3353
3354 /* If arg isn't a kind of lvalue we recognize, make no change.
3355 Caller should recognize the error for an invalid lvalue. */
3356 default:
3357 return ref;
3358
3359 case ERROR_MARK:
3360 return error_mark_node;
3361 }
3362
3363 TREE_TYPE (result) = TREE_TYPE (ref);
3364 TREE_READONLY (result) = TREE_READONLY (ref);
3365 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3366 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3367
3368 return result;
3369 }
3370
3371 /* Subroutine of stabilize_reference; this is called for subtrees of
3372 references. Any expression with side-effects must be put in a SAVE_EXPR
3373 to ensure that it is only evaluated once.
3374
3375 We don't put SAVE_EXPR nodes around everything, because assigning very
3376 simple expressions to temporaries causes us to miss good opportunities
3377 for optimizations. Among other things, the opportunity to fold in the
3378 addition of a constant into an addressing mode often gets lost, e.g.
3379 "y[i+1] += x;". In general, we take the approach that we should not make
3380 an assignment unless we are forced into it - i.e., that any non-side effect
3381 operator should be allowed, and that cse should take care of coalescing
3382 multiple utterances of the same expression should that prove fruitful. */
3383
3384 tree
3385 stabilize_reference_1 (tree e)
3386 {
3387 tree result;
3388 enum tree_code code = TREE_CODE (e);
3389
3390 /* We cannot ignore const expressions because it might be a reference
3391 to a const array but whose index contains side-effects. But we can
3392 ignore things that are actual constant or that already have been
3393 handled by this function. */
3394
3395 if (tree_invariant_p (e))
3396 return e;
3397
3398 switch (TREE_CODE_CLASS (code))
3399 {
3400 case tcc_exceptional:
3401 case tcc_type:
3402 case tcc_declaration:
3403 case tcc_comparison:
3404 case tcc_statement:
3405 case tcc_expression:
3406 case tcc_reference:
3407 case tcc_vl_exp:
3408 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3409 so that it will only be evaluated once. */
3410 /* The reference (r) and comparison (<) classes could be handled as
3411 below, but it is generally faster to only evaluate them once. */
3412 if (TREE_SIDE_EFFECTS (e))
3413 return save_expr (e);
3414 return e;
3415
3416 case tcc_constant:
3417 /* Constants need no processing. In fact, we should never reach
3418 here. */
3419 return e;
3420
3421 case tcc_binary:
3422 /* Division is slow and tends to be compiled with jumps,
3423 especially the division by powers of 2 that is often
3424 found inside of an array reference. So do it just once. */
3425 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3426 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3427 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3428 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3429 return save_expr (e);
3430 /* Recursively stabilize each operand. */
3431 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3432 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3433 break;
3434
3435 case tcc_unary:
3436 /* Recursively stabilize each operand. */
3437 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3438 break;
3439
3440 default:
3441 gcc_unreachable ();
3442 }
3443
3444 TREE_TYPE (result) = TREE_TYPE (e);
3445 TREE_READONLY (result) = TREE_READONLY (e);
3446 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3447 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3448
3449 return result;
3450 }
3451 \f
3452 /* Low-level constructors for expressions. */
3453
3454 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3455 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3456
3457 void
3458 recompute_tree_invariant_for_addr_expr (tree t)
3459 {
3460 tree node;
3461 bool tc = true, se = false;
3462
3463 /* We started out assuming this address is both invariant and constant, but
3464 does not have side effects. Now go down any handled components and see if
3465 any of them involve offsets that are either non-constant or non-invariant.
3466 Also check for side-effects.
3467
3468 ??? Note that this code makes no attempt to deal with the case where
3469 taking the address of something causes a copy due to misalignment. */
3470
3471 #define UPDATE_FLAGS(NODE) \
3472 do { tree _node = (NODE); \
3473 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3474 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3475
3476 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3477 node = TREE_OPERAND (node, 0))
3478 {
3479 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3480 array reference (probably made temporarily by the G++ front end),
3481 so ignore all the operands. */
3482 if ((TREE_CODE (node) == ARRAY_REF
3483 || TREE_CODE (node) == ARRAY_RANGE_REF)
3484 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3485 {
3486 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3487 if (TREE_OPERAND (node, 2))
3488 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3489 if (TREE_OPERAND (node, 3))
3490 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3491 }
3492 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3493 FIELD_DECL, apparently. The G++ front end can put something else
3494 there, at least temporarily. */
3495 else if (TREE_CODE (node) == COMPONENT_REF
3496 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3497 {
3498 if (TREE_OPERAND (node, 2))
3499 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3500 }
3501 else if (TREE_CODE (node) == BIT_FIELD_REF)
3502 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3503 }
3504
3505 node = lang_hooks.expr_to_decl (node, &tc, &se);
3506
3507 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3508 the address, since &(*a)->b is a form of addition. If it's a constant, the
3509 address is constant too. If it's a decl, its address is constant if the
3510 decl is static. Everything else is not constant and, furthermore,
3511 taking the address of a volatile variable is not volatile. */
3512 if (TREE_CODE (node) == INDIRECT_REF)
3513 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3514 else if (CONSTANT_CLASS_P (node))
3515 ;
3516 else if (DECL_P (node))
3517 tc &= (staticp (node) != NULL_TREE);
3518 else
3519 {
3520 tc = false;
3521 se |= TREE_SIDE_EFFECTS (node);
3522 }
3523
3524
3525 TREE_CONSTANT (t) = tc;
3526 TREE_SIDE_EFFECTS (t) = se;
3527 #undef UPDATE_FLAGS
3528 }
3529
3530 /* Build an expression of code CODE, data type TYPE, and operands as
3531 specified. Expressions and reference nodes can be created this way.
3532 Constants, decls, types and misc nodes cannot be.
3533
3534 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3535 enough for all extant tree codes. */
3536
3537 tree
3538 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3539 {
3540 tree t;
3541
3542 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3543
3544 t = make_node_stat (code PASS_MEM_STAT);
3545 TREE_TYPE (t) = tt;
3546
3547 return t;
3548 }
3549
3550 tree
3551 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3552 {
3553 int length = sizeof (struct tree_exp);
3554 #ifdef GATHER_STATISTICS
3555 tree_node_kind kind;
3556 #endif
3557 tree t;
3558
3559 #ifdef GATHER_STATISTICS
3560 switch (TREE_CODE_CLASS (code))
3561 {
3562 case tcc_statement: /* an expression with side effects */
3563 kind = s_kind;
3564 break;
3565 case tcc_reference: /* a reference */
3566 kind = r_kind;
3567 break;
3568 default:
3569 kind = e_kind;
3570 break;
3571 }
3572
3573 tree_node_counts[(int) kind]++;
3574 tree_node_sizes[(int) kind] += length;
3575 #endif
3576
3577 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3578
3579 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
3580
3581 memset (t, 0, sizeof (struct tree_common));
3582
3583 TREE_SET_CODE (t, code);
3584
3585 TREE_TYPE (t) = type;
3586 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3587 TREE_OPERAND (t, 0) = node;
3588 TREE_BLOCK (t) = NULL_TREE;
3589 if (node && !TYPE_P (node))
3590 {
3591 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3592 TREE_READONLY (t) = TREE_READONLY (node);
3593 }
3594
3595 if (TREE_CODE_CLASS (code) == tcc_statement)
3596 TREE_SIDE_EFFECTS (t) = 1;
3597 else switch (code)
3598 {
3599 case VA_ARG_EXPR:
3600 /* All of these have side-effects, no matter what their
3601 operands are. */
3602 TREE_SIDE_EFFECTS (t) = 1;
3603 TREE_READONLY (t) = 0;
3604 break;
3605
3606 case MISALIGNED_INDIRECT_REF:
3607 case ALIGN_INDIRECT_REF:
3608 case INDIRECT_REF:
3609 /* Whether a dereference is readonly has nothing to do with whether
3610 its operand is readonly. */
3611 TREE_READONLY (t) = 0;
3612 break;
3613
3614 case ADDR_EXPR:
3615 if (node)
3616 recompute_tree_invariant_for_addr_expr (t);
3617 break;
3618
3619 default:
3620 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3621 && node && !TYPE_P (node)
3622 && TREE_CONSTANT (node))
3623 TREE_CONSTANT (t) = 1;
3624 if (TREE_CODE_CLASS (code) == tcc_reference
3625 && node && TREE_THIS_VOLATILE (node))
3626 TREE_THIS_VOLATILE (t) = 1;
3627 break;
3628 }
3629
3630 return t;
3631 }
3632
3633 #define PROCESS_ARG(N) \
3634 do { \
3635 TREE_OPERAND (t, N) = arg##N; \
3636 if (arg##N &&!TYPE_P (arg##N)) \
3637 { \
3638 if (TREE_SIDE_EFFECTS (arg##N)) \
3639 side_effects = 1; \
3640 if (!TREE_READONLY (arg##N) \
3641 && !CONSTANT_CLASS_P (arg##N)) \
3642 (void) (read_only = 0); \
3643 if (!TREE_CONSTANT (arg##N)) \
3644 (void) (constant = 0); \
3645 } \
3646 } while (0)
3647
3648 tree
3649 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3650 {
3651 bool constant, read_only, side_effects;
3652 tree t;
3653
3654 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3655
3656 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3657 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3658 /* When sizetype precision doesn't match that of pointers
3659 we need to be able to build explicit extensions or truncations
3660 of the offset argument. */
3661 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3662 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3663 && TREE_CODE (arg1) == INTEGER_CST);
3664
3665 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3666 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3667 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3668 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3669
3670 t = make_node_stat (code PASS_MEM_STAT);
3671 TREE_TYPE (t) = tt;
3672
3673 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3674 result based on those same flags for the arguments. But if the
3675 arguments aren't really even `tree' expressions, we shouldn't be trying
3676 to do this. */
3677
3678 /* Expressions without side effects may be constant if their
3679 arguments are as well. */
3680 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3681 || TREE_CODE_CLASS (code) == tcc_binary);
3682 read_only = 1;
3683 side_effects = TREE_SIDE_EFFECTS (t);
3684
3685 PROCESS_ARG(0);
3686 PROCESS_ARG(1);
3687
3688 TREE_READONLY (t) = read_only;
3689 TREE_CONSTANT (t) = constant;
3690 TREE_SIDE_EFFECTS (t) = side_effects;
3691 TREE_THIS_VOLATILE (t)
3692 = (TREE_CODE_CLASS (code) == tcc_reference
3693 && arg0 && TREE_THIS_VOLATILE (arg0));
3694
3695 return t;
3696 }
3697
3698
3699 tree
3700 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3701 tree arg2 MEM_STAT_DECL)
3702 {
3703 bool constant, read_only, side_effects;
3704 tree t;
3705
3706 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3707 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3708
3709 t = make_node_stat (code PASS_MEM_STAT);
3710 TREE_TYPE (t) = tt;
3711
3712 read_only = 1;
3713
3714 /* As a special exception, if COND_EXPR has NULL branches, we
3715 assume that it is a gimple statement and always consider
3716 it to have side effects. */
3717 if (code == COND_EXPR
3718 && tt == void_type_node
3719 && arg1 == NULL_TREE
3720 && arg2 == NULL_TREE)
3721 side_effects = true;
3722 else
3723 side_effects = TREE_SIDE_EFFECTS (t);
3724
3725 PROCESS_ARG(0);
3726 PROCESS_ARG(1);
3727 PROCESS_ARG(2);
3728
3729 if (code == COND_EXPR)
3730 TREE_READONLY (t) = read_only;
3731
3732 TREE_SIDE_EFFECTS (t) = side_effects;
3733 TREE_THIS_VOLATILE (t)
3734 = (TREE_CODE_CLASS (code) == tcc_reference
3735 && arg0 && TREE_THIS_VOLATILE (arg0));
3736
3737 return t;
3738 }
3739
3740 tree
3741 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3742 tree arg2, tree arg3 MEM_STAT_DECL)
3743 {
3744 bool constant, read_only, side_effects;
3745 tree t;
3746
3747 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3748
3749 t = make_node_stat (code PASS_MEM_STAT);
3750 TREE_TYPE (t) = tt;
3751
3752 side_effects = TREE_SIDE_EFFECTS (t);
3753
3754 PROCESS_ARG(0);
3755 PROCESS_ARG(1);
3756 PROCESS_ARG(2);
3757 PROCESS_ARG(3);
3758
3759 TREE_SIDE_EFFECTS (t) = side_effects;
3760 TREE_THIS_VOLATILE (t)
3761 = (TREE_CODE_CLASS (code) == tcc_reference
3762 && arg0 && TREE_THIS_VOLATILE (arg0));
3763
3764 return t;
3765 }
3766
3767 tree
3768 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3769 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3770 {
3771 bool constant, read_only, side_effects;
3772 tree t;
3773
3774 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3775
3776 t = make_node_stat (code PASS_MEM_STAT);
3777 TREE_TYPE (t) = tt;
3778
3779 side_effects = TREE_SIDE_EFFECTS (t);
3780
3781 PROCESS_ARG(0);
3782 PROCESS_ARG(1);
3783 PROCESS_ARG(2);
3784 PROCESS_ARG(3);
3785 PROCESS_ARG(4);
3786
3787 TREE_SIDE_EFFECTS (t) = side_effects;
3788 TREE_THIS_VOLATILE (t)
3789 = (TREE_CODE_CLASS (code) == tcc_reference
3790 && arg0 && TREE_THIS_VOLATILE (arg0));
3791
3792 return t;
3793 }
3794
3795 tree
3796 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3797 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3798 {
3799 bool constant, read_only, side_effects;
3800 tree t;
3801
3802 gcc_assert (code == TARGET_MEM_REF);
3803
3804 t = make_node_stat (code PASS_MEM_STAT);
3805 TREE_TYPE (t) = tt;
3806
3807 side_effects = TREE_SIDE_EFFECTS (t);
3808
3809 PROCESS_ARG(0);
3810 PROCESS_ARG(1);
3811 PROCESS_ARG(2);
3812 PROCESS_ARG(3);
3813 PROCESS_ARG(4);
3814 if (code == TARGET_MEM_REF)
3815 side_effects = 0;
3816 PROCESS_ARG(5);
3817
3818 TREE_SIDE_EFFECTS (t) = side_effects;
3819 TREE_THIS_VOLATILE (t)
3820 = (code == TARGET_MEM_REF
3821 && arg5 && TREE_THIS_VOLATILE (arg5));
3822
3823 return t;
3824 }
3825
3826 /* Similar except don't specify the TREE_TYPE
3827 and leave the TREE_SIDE_EFFECTS as 0.
3828 It is permissible for arguments to be null,
3829 or even garbage if their values do not matter. */
3830
3831 tree
3832 build_nt (enum tree_code code, ...)
3833 {
3834 tree t;
3835 int length;
3836 int i;
3837 va_list p;
3838
3839 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3840
3841 va_start (p, code);
3842
3843 t = make_node (code);
3844 length = TREE_CODE_LENGTH (code);
3845
3846 for (i = 0; i < length; i++)
3847 TREE_OPERAND (t, i) = va_arg (p, tree);
3848
3849 va_end (p);
3850 return t;
3851 }
3852
3853 /* Similar to build_nt, but for creating a CALL_EXPR object with
3854 ARGLIST passed as a list. */
3855
3856 tree
3857 build_nt_call_list (tree fn, tree arglist)
3858 {
3859 tree t;
3860 int i;
3861
3862 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3863 CALL_EXPR_FN (t) = fn;
3864 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3865 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3866 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3867 return t;
3868 }
3869
3870 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3871 tree VEC. */
3872
3873 tree
3874 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3875 {
3876 tree ret, t;
3877 unsigned int ix;
3878
3879 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3880 CALL_EXPR_FN (ret) = fn;
3881 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3882 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
3883 CALL_EXPR_ARG (ret, ix) = t;
3884 return ret;
3885 }
3886 \f
3887 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3888 We do NOT enter this node in any sort of symbol table.
3889
3890 LOC is the location of the decl.
3891
3892 layout_decl is used to set up the decl's storage layout.
3893 Other slots are initialized to 0 or null pointers. */
3894
3895 tree
3896 build_decl_stat (location_t loc, enum tree_code code, tree name,
3897 tree type MEM_STAT_DECL)
3898 {
3899 tree t;
3900
3901 t = make_node_stat (code PASS_MEM_STAT);
3902 DECL_SOURCE_LOCATION (t) = loc;
3903
3904 /* if (type == error_mark_node)
3905 type = integer_type_node; */
3906 /* That is not done, deliberately, so that having error_mark_node
3907 as the type can suppress useless errors in the use of this variable. */
3908
3909 DECL_NAME (t) = name;
3910 TREE_TYPE (t) = type;
3911
3912 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3913 layout_decl (t, 0);
3914
3915 return t;
3916 }
3917
3918 /* Builds and returns function declaration with NAME and TYPE. */
3919
3920 tree
3921 build_fn_decl (const char *name, tree type)
3922 {
3923 tree id = get_identifier (name);
3924 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
3925
3926 DECL_EXTERNAL (decl) = 1;
3927 TREE_PUBLIC (decl) = 1;
3928 DECL_ARTIFICIAL (decl) = 1;
3929 TREE_NOTHROW (decl) = 1;
3930
3931 return decl;
3932 }
3933
3934 \f
3935 /* BLOCK nodes are used to represent the structure of binding contours
3936 and declarations, once those contours have been exited and their contents
3937 compiled. This information is used for outputting debugging info. */
3938
3939 tree
3940 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3941 {
3942 tree block = make_node (BLOCK);
3943
3944 BLOCK_VARS (block) = vars;
3945 BLOCK_SUBBLOCKS (block) = subblocks;
3946 BLOCK_SUPERCONTEXT (block) = supercontext;
3947 BLOCK_CHAIN (block) = chain;
3948 return block;
3949 }
3950
3951 expanded_location
3952 expand_location (source_location loc)
3953 {
3954 expanded_location xloc;
3955 if (loc <= BUILTINS_LOCATION)
3956 {
3957 xloc.file = loc == UNKNOWN_LOCATION ? NULL : _("<built-in>");
3958 xloc.line = 0;
3959 xloc.column = 0;
3960 xloc.sysp = 0;
3961 }
3962 else
3963 {
3964 const struct line_map *map = linemap_lookup (line_table, loc);
3965 xloc.file = map->to_file;
3966 xloc.line = SOURCE_LINE (map, loc);
3967 xloc.column = SOURCE_COLUMN (map, loc);
3968 xloc.sysp = map->sysp != 0;
3969 };
3970 return xloc;
3971 }
3972
3973 \f
3974 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
3975
3976 LOC is the location to use in tree T. */
3977
3978 void
3979 protected_set_expr_location (tree t, location_t loc)
3980 {
3981 if (t && CAN_HAVE_LOCATION_P (t))
3982 SET_EXPR_LOCATION (t, loc);
3983 }
3984 \f
3985 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3986 is ATTRIBUTE. */
3987
3988 tree
3989 build_decl_attribute_variant (tree ddecl, tree attribute)
3990 {
3991 DECL_ATTRIBUTES (ddecl) = attribute;
3992 return ddecl;
3993 }
3994
3995 /* Borrowed from hashtab.c iterative_hash implementation. */
3996 #define mix(a,b,c) \
3997 { \
3998 a -= b; a -= c; a ^= (c>>13); \
3999 b -= c; b -= a; b ^= (a<< 8); \
4000 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4001 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4002 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4003 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4004 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4005 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4006 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4007 }
4008
4009
4010 /* Produce good hash value combining VAL and VAL2. */
4011 hashval_t
4012 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4013 {
4014 /* the golden ratio; an arbitrary value. */
4015 hashval_t a = 0x9e3779b9;
4016
4017 mix (a, val, val2);
4018 return val2;
4019 }
4020
4021 /* Produce good hash value combining VAL and VAL2. */
4022 hashval_t
4023 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4024 {
4025 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4026 return iterative_hash_hashval_t (val, val2);
4027 else
4028 {
4029 hashval_t a = (hashval_t) val;
4030 /* Avoid warnings about shifting of more than the width of the type on
4031 hosts that won't execute this path. */
4032 int zero = 0;
4033 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4034 mix (a, b, val2);
4035 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4036 {
4037 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4038 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4039 mix (a, b, val2);
4040 }
4041 return val2;
4042 }
4043 }
4044
4045 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4046 is ATTRIBUTE and its qualifiers are QUALS.
4047
4048 Record such modified types already made so we don't make duplicates. */
4049
4050 tree
4051 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4052 {
4053 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4054 {
4055 hashval_t hashcode = 0;
4056 tree ntype;
4057 enum tree_code code = TREE_CODE (ttype);
4058
4059 /* Building a distinct copy of a tagged type is inappropriate; it
4060 causes breakage in code that expects there to be a one-to-one
4061 relationship between a struct and its fields.
4062 build_duplicate_type is another solution (as used in
4063 handle_transparent_union_attribute), but that doesn't play well
4064 with the stronger C++ type identity model. */
4065 if (TREE_CODE (ttype) == RECORD_TYPE
4066 || TREE_CODE (ttype) == UNION_TYPE
4067 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4068 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4069 {
4070 warning (OPT_Wattributes,
4071 "ignoring attributes applied to %qT after definition",
4072 TYPE_MAIN_VARIANT (ttype));
4073 return build_qualified_type (ttype, quals);
4074 }
4075
4076 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4077 ntype = build_distinct_type_copy (ttype);
4078
4079 TYPE_ATTRIBUTES (ntype) = attribute;
4080
4081 hashcode = iterative_hash_object (code, hashcode);
4082 if (TREE_TYPE (ntype))
4083 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4084 hashcode);
4085 hashcode = attribute_hash_list (attribute, hashcode);
4086
4087 switch (TREE_CODE (ntype))
4088 {
4089 case FUNCTION_TYPE:
4090 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4091 break;
4092 case ARRAY_TYPE:
4093 if (TYPE_DOMAIN (ntype))
4094 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4095 hashcode);
4096 break;
4097 case INTEGER_TYPE:
4098 hashcode = iterative_hash_object
4099 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4100 hashcode = iterative_hash_object
4101 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4102 break;
4103 case REAL_TYPE:
4104 case FIXED_POINT_TYPE:
4105 {
4106 unsigned int precision = TYPE_PRECISION (ntype);
4107 hashcode = iterative_hash_object (precision, hashcode);
4108 }
4109 break;
4110 default:
4111 break;
4112 }
4113
4114 ntype = type_hash_canon (hashcode, ntype);
4115
4116 /* If the target-dependent attributes make NTYPE different from
4117 its canonical type, we will need to use structural equality
4118 checks for this type. */
4119 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4120 || !targetm.comp_type_attributes (ntype, ttype))
4121 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4122 else if (TYPE_CANONICAL (ntype) == ntype)
4123 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4124
4125 ttype = build_qualified_type (ntype, quals);
4126 }
4127 else if (TYPE_QUALS (ttype) != quals)
4128 ttype = build_qualified_type (ttype, quals);
4129
4130 return ttype;
4131 }
4132
4133
4134 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4135 is ATTRIBUTE.
4136
4137 Record such modified types already made so we don't make duplicates. */
4138
4139 tree
4140 build_type_attribute_variant (tree ttype, tree attribute)
4141 {
4142 return build_type_attribute_qual_variant (ttype, attribute,
4143 TYPE_QUALS (ttype));
4144 }
4145
4146
4147 /* Reset the expression *EXPR_P, a size or position.
4148
4149 ??? We could reset all non-constant sizes or positions. But it's cheap
4150 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4151
4152 We need to reset self-referential sizes or positions because they cannot
4153 be gimplified and thus can contain a CALL_EXPR after the gimplification
4154 is finished, which will run afoul of LTO streaming. And they need to be
4155 reset to something essentially dummy but not constant, so as to preserve
4156 the properties of the object they are attached to. */
4157
4158 static inline void
4159 free_lang_data_in_one_sizepos (tree *expr_p)
4160 {
4161 tree expr = *expr_p;
4162 if (CONTAINS_PLACEHOLDER_P (expr))
4163 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4164 }
4165
4166
4167 /* Reset all the fields in a binfo node BINFO. We only keep
4168 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4169
4170 static void
4171 free_lang_data_in_binfo (tree binfo)
4172 {
4173 unsigned i;
4174 tree t;
4175
4176 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4177
4178 BINFO_VTABLE (binfo) = NULL_TREE;
4179 BINFO_BASE_ACCESSES (binfo) = NULL;
4180 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4181 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4182
4183 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (binfo), i, t); i++)
4184 free_lang_data_in_binfo (t);
4185 }
4186
4187
4188 /* Reset all language specific information still present in TYPE. */
4189
4190 static void
4191 free_lang_data_in_type (tree type)
4192 {
4193 gcc_assert (TYPE_P (type));
4194
4195 /* Give the FE a chance to remove its own data first. */
4196 lang_hooks.free_lang_data (type);
4197
4198 TREE_LANG_FLAG_0 (type) = 0;
4199 TREE_LANG_FLAG_1 (type) = 0;
4200 TREE_LANG_FLAG_2 (type) = 0;
4201 TREE_LANG_FLAG_3 (type) = 0;
4202 TREE_LANG_FLAG_4 (type) = 0;
4203 TREE_LANG_FLAG_5 (type) = 0;
4204 TREE_LANG_FLAG_6 (type) = 0;
4205
4206 if (TREE_CODE (type) == FUNCTION_TYPE)
4207 {
4208 /* Remove the const and volatile qualifiers from arguments. The
4209 C++ front end removes them, but the C front end does not,
4210 leading to false ODR violation errors when merging two
4211 instances of the same function signature compiled by
4212 different front ends. */
4213 tree p;
4214
4215 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4216 {
4217 tree arg_type = TREE_VALUE (p);
4218
4219 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4220 {
4221 int quals = TYPE_QUALS (arg_type)
4222 & ~TYPE_QUAL_CONST
4223 & ~TYPE_QUAL_VOLATILE;
4224 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4225 free_lang_data_in_type (TREE_VALUE (p));
4226 }
4227 }
4228 }
4229
4230 /* Remove members that are not actually FIELD_DECLs from the field
4231 list of an aggregate. These occur in C++. */
4232 if (RECORD_OR_UNION_TYPE_P (type))
4233 {
4234 tree prev, member;
4235
4236 /* Note that TYPE_FIELDS can be shared across distinct
4237 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4238 to be removed, we cannot set its TREE_CHAIN to NULL.
4239 Otherwise, we would not be able to find all the other fields
4240 in the other instances of this TREE_TYPE.
4241
4242 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4243 prev = NULL_TREE;
4244 member = TYPE_FIELDS (type);
4245 while (member)
4246 {
4247 if (TREE_CODE (member) == FIELD_DECL)
4248 {
4249 if (prev)
4250 TREE_CHAIN (prev) = member;
4251 else
4252 TYPE_FIELDS (type) = member;
4253 prev = member;
4254 }
4255
4256 member = TREE_CHAIN (member);
4257 }
4258
4259 if (prev)
4260 TREE_CHAIN (prev) = NULL_TREE;
4261 else
4262 TYPE_FIELDS (type) = NULL_TREE;
4263
4264 TYPE_METHODS (type) = NULL_TREE;
4265 if (TYPE_BINFO (type))
4266 free_lang_data_in_binfo (TYPE_BINFO (type));
4267 }
4268 else
4269 {
4270 /* For non-aggregate types, clear out the language slot (which
4271 overloads TYPE_BINFO). */
4272 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4273
4274 if (INTEGRAL_TYPE_P (type)
4275 || SCALAR_FLOAT_TYPE_P (type)
4276 || FIXED_POINT_TYPE_P (type))
4277 {
4278 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4279 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4280 }
4281 }
4282
4283 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4284 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4285
4286 if (debug_info_level < DINFO_LEVEL_TERSE
4287 || (TYPE_CONTEXT (type)
4288 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4289 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4290 TYPE_CONTEXT (type) = NULL_TREE;
4291
4292 if (debug_info_level < DINFO_LEVEL_TERSE)
4293 TYPE_STUB_DECL (type) = NULL_TREE;
4294 }
4295
4296
4297 /* Return true if DECL may need an assembler name to be set. */
4298
4299 static inline bool
4300 need_assembler_name_p (tree decl)
4301 {
4302 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4303 if (TREE_CODE (decl) != FUNCTION_DECL
4304 && TREE_CODE (decl) != VAR_DECL)
4305 return false;
4306
4307 /* If DECL already has its assembler name set, it does not need a
4308 new one. */
4309 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4310 || DECL_ASSEMBLER_NAME_SET_P (decl))
4311 return false;
4312
4313 /* Abstract decls do not need an assembler name. */
4314 if (DECL_ABSTRACT (decl))
4315 return false;
4316
4317 /* For VAR_DECLs, only static, public and external symbols need an
4318 assembler name. */
4319 if (TREE_CODE (decl) == VAR_DECL
4320 && !TREE_STATIC (decl)
4321 && !TREE_PUBLIC (decl)
4322 && !DECL_EXTERNAL (decl))
4323 return false;
4324
4325 if (TREE_CODE (decl) == FUNCTION_DECL)
4326 {
4327 /* Do not set assembler name on builtins. Allow RTL expansion to
4328 decide whether to expand inline or via a regular call. */
4329 if (DECL_BUILT_IN (decl)
4330 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4331 return false;
4332
4333 /* Functions represented in the callgraph need an assembler name. */
4334 if (cgraph_get_node (decl) != NULL)
4335 return true;
4336
4337 /* Unused and not public functions don't need an assembler name. */
4338 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4339 return false;
4340 }
4341
4342 return true;
4343 }
4344
4345
4346 /* Remove all the non-variable decls from BLOCK. LOCALS is the set of
4347 variables in DECL_STRUCT_FUNCTION (FN)->local_decls. Every decl
4348 in BLOCK that is not in LOCALS is removed. */
4349
4350 static void
4351 free_lang_data_in_block (tree fn, tree block, struct pointer_set_t *locals)
4352 {
4353 tree *tp, t;
4354
4355 tp = &BLOCK_VARS (block);
4356 while (*tp)
4357 {
4358 if (!pointer_set_contains (locals, *tp))
4359 *tp = TREE_CHAIN (*tp);
4360 else
4361 tp = &TREE_CHAIN (*tp);
4362 }
4363
4364 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4365 free_lang_data_in_block (fn, t, locals);
4366 }
4367
4368
4369 /* Reset all language specific information still present in symbol
4370 DECL. */
4371
4372 static void
4373 free_lang_data_in_decl (tree decl)
4374 {
4375 gcc_assert (DECL_P (decl));
4376
4377 /* Give the FE a chance to remove its own data first. */
4378 lang_hooks.free_lang_data (decl);
4379
4380 TREE_LANG_FLAG_0 (decl) = 0;
4381 TREE_LANG_FLAG_1 (decl) = 0;
4382 TREE_LANG_FLAG_2 (decl) = 0;
4383 TREE_LANG_FLAG_3 (decl) = 0;
4384 TREE_LANG_FLAG_4 (decl) = 0;
4385 TREE_LANG_FLAG_5 (decl) = 0;
4386 TREE_LANG_FLAG_6 (decl) = 0;
4387
4388 /* Identifiers need not have a type. */
4389 if (DECL_NAME (decl))
4390 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4391
4392 /* Ignore any intervening types, because we are going to clear their
4393 TYPE_CONTEXT fields. */
4394 if (TREE_CODE (decl) != FIELD_DECL
4395 && TREE_CODE (decl) != FUNCTION_DECL)
4396 DECL_CONTEXT (decl) = decl_function_context (decl);
4397
4398 if (DECL_CONTEXT (decl)
4399 && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
4400 DECL_CONTEXT (decl) = NULL_TREE;
4401
4402 if (TREE_CODE (decl) == VAR_DECL)
4403 {
4404 tree context = DECL_CONTEXT (decl);
4405
4406 if (context)
4407 {
4408 enum tree_code code = TREE_CODE (context);
4409 if (code == FUNCTION_DECL && DECL_ABSTRACT (context))
4410 {
4411 /* Do not clear the decl context here, that will promote
4412 all vars to global ones. */
4413 DECL_INITIAL (decl) = NULL_TREE;
4414 }
4415
4416 if (TREE_STATIC (decl))
4417 DECL_CONTEXT (decl) = NULL_TREE;
4418 }
4419 }
4420
4421 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4422 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4423 if (TREE_CODE (decl) == FIELD_DECL)
4424 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4425
4426 /* DECL_FCONTEXT is only used for debug info generation. */
4427 if (TREE_CODE (decl) == FIELD_DECL
4428 && debug_info_level < DINFO_LEVEL_TERSE)
4429 DECL_FCONTEXT (decl) = NULL_TREE;
4430
4431 if (TREE_CODE (decl) == FUNCTION_DECL)
4432 {
4433 if (gimple_has_body_p (decl))
4434 {
4435 tree t;
4436 struct pointer_set_t *locals;
4437
4438 /* If DECL has a gimple body, then the context for its
4439 arguments must be DECL. Otherwise, it doesn't really
4440 matter, as we will not be emitting any code for DECL. In
4441 general, there may be other instances of DECL created by
4442 the front end and since PARM_DECLs are generally shared,
4443 their DECL_CONTEXT changes as the replicas of DECL are
4444 created. The only time where DECL_CONTEXT is important
4445 is for the FUNCTION_DECLs that have a gimple body (since
4446 the PARM_DECL will be used in the function's body). */
4447 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4448 DECL_CONTEXT (t) = decl;
4449
4450 /* Collect all the symbols declared in DECL. */
4451 locals = pointer_set_create ();
4452 t = DECL_STRUCT_FUNCTION (decl)->local_decls;
4453 for (; t; t = TREE_CHAIN (t))
4454 {
4455 pointer_set_insert (locals, TREE_VALUE (t));
4456
4457 /* All the local symbols should have DECL as their
4458 context. */
4459 DECL_CONTEXT (TREE_VALUE (t)) = decl;
4460 }
4461
4462 /* Get rid of any decl not in local_decls. */
4463 free_lang_data_in_block (decl, DECL_INITIAL (decl), locals);
4464
4465 pointer_set_destroy (locals);
4466 }
4467
4468 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4469 At this point, it is not needed anymore. */
4470 DECL_SAVED_TREE (decl) = NULL_TREE;
4471 }
4472 else if (TREE_CODE (decl) == VAR_DECL)
4473 {
4474 tree expr = DECL_DEBUG_EXPR (decl);
4475 if (expr
4476 && TREE_CODE (expr) == VAR_DECL
4477 && !TREE_STATIC (expr) && !DECL_EXTERNAL (expr))
4478 SET_DECL_DEBUG_EXPR (decl, NULL_TREE);
4479
4480 if (DECL_EXTERNAL (decl)
4481 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4482 DECL_INITIAL (decl) = NULL_TREE;
4483 }
4484 else if (TREE_CODE (decl) == TYPE_DECL)
4485 {
4486 DECL_INITIAL (decl) = NULL_TREE;
4487
4488 /* DECL_CONTEXT is overloaded as DECL_FIELD_CONTEXT for
4489 FIELD_DECLs, which should be preserved. Otherwise,
4490 we shouldn't be concerned with source-level lexical
4491 nesting beyond this point. */
4492 DECL_CONTEXT (decl) = NULL_TREE;
4493 }
4494 }
4495
4496
4497 /* Data used when collecting DECLs and TYPEs for language data removal. */
4498
4499 struct free_lang_data_d
4500 {
4501 /* Worklist to avoid excessive recursion. */
4502 VEC(tree,heap) *worklist;
4503
4504 /* Set of traversed objects. Used to avoid duplicate visits. */
4505 struct pointer_set_t *pset;
4506
4507 /* Array of symbols to process with free_lang_data_in_decl. */
4508 VEC(tree,heap) *decls;
4509
4510 /* Array of types to process with free_lang_data_in_type. */
4511 VEC(tree,heap) *types;
4512 };
4513
4514
4515 /* Save all language fields needed to generate proper debug information
4516 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4517
4518 static void
4519 save_debug_info_for_decl (tree t)
4520 {
4521 /*struct saved_debug_info_d *sdi;*/
4522
4523 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4524
4525 /* FIXME. Partial implementation for saving debug info removed. */
4526 }
4527
4528
4529 /* Save all language fields needed to generate proper debug information
4530 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4531
4532 static void
4533 save_debug_info_for_type (tree t)
4534 {
4535 /*struct saved_debug_info_d *sdi;*/
4536
4537 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4538
4539 /* FIXME. Partial implementation for saving debug info removed. */
4540 }
4541
4542
4543 /* Add type or decl T to one of the list of tree nodes that need their
4544 language data removed. The lists are held inside FLD. */
4545
4546 static void
4547 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4548 {
4549 if (DECL_P (t))
4550 {
4551 VEC_safe_push (tree, heap, fld->decls, t);
4552 if (debug_info_level > DINFO_LEVEL_TERSE)
4553 save_debug_info_for_decl (t);
4554 }
4555 else if (TYPE_P (t))
4556 {
4557 VEC_safe_push (tree, heap, fld->types, t);
4558 if (debug_info_level > DINFO_LEVEL_TERSE)
4559 save_debug_info_for_type (t);
4560 }
4561 else
4562 gcc_unreachable ();
4563 }
4564
4565 /* Push tree node T into FLD->WORKLIST. */
4566
4567 static inline void
4568 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4569 {
4570 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4571 VEC_safe_push (tree, heap, fld->worklist, (t));
4572 }
4573
4574
4575 /* Operand callback helper for free_lang_data_in_node. *TP is the
4576 subtree operand being considered. */
4577
4578 static tree
4579 find_decls_types_r (tree *tp, int *ws, void *data)
4580 {
4581 tree t = *tp;
4582 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4583
4584 if (TREE_CODE (t) == TREE_LIST)
4585 return NULL_TREE;
4586
4587 /* Language specific nodes will be removed, so there is no need
4588 to gather anything under them. */
4589 if (is_lang_specific (t))
4590 {
4591 *ws = 0;
4592 return NULL_TREE;
4593 }
4594
4595 if (DECL_P (t))
4596 {
4597 /* Note that walk_tree does not traverse every possible field in
4598 decls, so we have to do our own traversals here. */
4599 add_tree_to_fld_list (t, fld);
4600
4601 fld_worklist_push (DECL_NAME (t), fld);
4602 fld_worklist_push (DECL_CONTEXT (t), fld);
4603 fld_worklist_push (DECL_SIZE (t), fld);
4604 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4605
4606 /* We are going to remove everything under DECL_INITIAL for
4607 TYPE_DECLs. No point walking them. */
4608 if (TREE_CODE (t) != TYPE_DECL)
4609 fld_worklist_push (DECL_INITIAL (t), fld);
4610
4611 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4612 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4613
4614 if (TREE_CODE (t) == FUNCTION_DECL)
4615 {
4616 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4617 fld_worklist_push (DECL_RESULT (t), fld);
4618 }
4619 else if (TREE_CODE (t) == TYPE_DECL)
4620 {
4621 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4622 fld_worklist_push (DECL_VINDEX (t), fld);
4623 }
4624 else if (TREE_CODE (t) == FIELD_DECL)
4625 {
4626 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4627 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4628 fld_worklist_push (DECL_QUALIFIER (t), fld);
4629 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4630 fld_worklist_push (DECL_FCONTEXT (t), fld);
4631 }
4632 else if (TREE_CODE (t) == VAR_DECL)
4633 {
4634 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4635 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4636 }
4637
4638 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4639 && DECL_HAS_VALUE_EXPR_P (t))
4640 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4641
4642 if (TREE_CODE (t) != FIELD_DECL)
4643 fld_worklist_push (TREE_CHAIN (t), fld);
4644 *ws = 0;
4645 }
4646 else if (TYPE_P (t))
4647 {
4648 /* Note that walk_tree does not traverse every possible field in
4649 types, so we have to do our own traversals here. */
4650 add_tree_to_fld_list (t, fld);
4651
4652 if (!RECORD_OR_UNION_TYPE_P (t))
4653 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4654 fld_worklist_push (TYPE_SIZE (t), fld);
4655 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4656 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4657 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4658 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4659 fld_worklist_push (TYPE_NAME (t), fld);
4660 fld_worklist_push (TYPE_MINVAL (t), fld);
4661 if (!RECORD_OR_UNION_TYPE_P (t))
4662 fld_worklist_push (TYPE_MAXVAL (t), fld);
4663 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4664 fld_worklist_push (TYPE_NEXT_VARIANT (t), fld);
4665 fld_worklist_push (TYPE_CONTEXT (t), fld);
4666 fld_worklist_push (TYPE_CANONICAL (t), fld);
4667
4668 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4669 {
4670 unsigned i;
4671 tree tem;
4672 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4673 i, tem); ++i)
4674 fld_worklist_push (TREE_TYPE (tem), fld);
4675 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4676 if (tem
4677 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4678 && TREE_CODE (tem) == TREE_LIST)
4679 do
4680 {
4681 fld_worklist_push (TREE_VALUE (tem), fld);
4682 tem = TREE_CHAIN (tem);
4683 }
4684 while (tem);
4685 }
4686 if (RECORD_OR_UNION_TYPE_P (t))
4687 {
4688 tree tem;
4689 /* Push all TYPE_FIELDS - there can be interleaving interesting
4690 and non-interesting things. */
4691 tem = TYPE_FIELDS (t);
4692 while (tem)
4693 {
4694 if (TREE_CODE (tem) == FIELD_DECL)
4695 fld_worklist_push (tem, fld);
4696 tem = TREE_CHAIN (tem);
4697 }
4698 }
4699
4700 fld_worklist_push (TREE_CHAIN (t), fld);
4701 *ws = 0;
4702 }
4703 else if (TREE_CODE (t) == BLOCK)
4704 {
4705 tree tem;
4706 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4707 fld_worklist_push (tem, fld);
4708 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4709 fld_worklist_push (tem, fld);
4710 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4711 }
4712
4713 fld_worklist_push (TREE_TYPE (t), fld);
4714
4715 return NULL_TREE;
4716 }
4717
4718
4719 /* Find decls and types in T. */
4720
4721 static void
4722 find_decls_types (tree t, struct free_lang_data_d *fld)
4723 {
4724 while (1)
4725 {
4726 if (!pointer_set_contains (fld->pset, t))
4727 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4728 if (VEC_empty (tree, fld->worklist))
4729 break;
4730 t = VEC_pop (tree, fld->worklist);
4731 }
4732 }
4733
4734 /* Translate all the types in LIST with the corresponding runtime
4735 types. */
4736
4737 static tree
4738 get_eh_types_for_runtime (tree list)
4739 {
4740 tree head, prev;
4741
4742 if (list == NULL_TREE)
4743 return NULL_TREE;
4744
4745 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4746 prev = head;
4747 list = TREE_CHAIN (list);
4748 while (list)
4749 {
4750 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4751 TREE_CHAIN (prev) = n;
4752 prev = TREE_CHAIN (prev);
4753 list = TREE_CHAIN (list);
4754 }
4755
4756 return head;
4757 }
4758
4759
4760 /* Find decls and types referenced in EH region R and store them in
4761 FLD->DECLS and FLD->TYPES. */
4762
4763 static void
4764 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4765 {
4766 switch (r->type)
4767 {
4768 case ERT_CLEANUP:
4769 break;
4770
4771 case ERT_TRY:
4772 {
4773 eh_catch c;
4774
4775 /* The types referenced in each catch must first be changed to the
4776 EH types used at runtime. This removes references to FE types
4777 in the region. */
4778 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4779 {
4780 c->type_list = get_eh_types_for_runtime (c->type_list);
4781 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4782 }
4783 }
4784 break;
4785
4786 case ERT_ALLOWED_EXCEPTIONS:
4787 r->u.allowed.type_list
4788 = get_eh_types_for_runtime (r->u.allowed.type_list);
4789 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4790 break;
4791
4792 case ERT_MUST_NOT_THROW:
4793 walk_tree (&r->u.must_not_throw.failure_decl,
4794 find_decls_types_r, fld, fld->pset);
4795 break;
4796 }
4797 }
4798
4799
4800 /* Find decls and types referenced in cgraph node N and store them in
4801 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4802 look for *every* kind of DECL and TYPE node reachable from N,
4803 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4804 NAMESPACE_DECLs, etc). */
4805
4806 static void
4807 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4808 {
4809 basic_block bb;
4810 struct function *fn;
4811 tree t;
4812
4813 find_decls_types (n->decl, fld);
4814
4815 if (!gimple_has_body_p (n->decl))
4816 return;
4817
4818 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4819
4820 fn = DECL_STRUCT_FUNCTION (n->decl);
4821
4822 /* Traverse locals. */
4823 for (t = fn->local_decls; t; t = TREE_CHAIN (t))
4824 find_decls_types (TREE_VALUE (t), fld);
4825
4826 /* Traverse EH regions in FN. */
4827 {
4828 eh_region r;
4829 FOR_ALL_EH_REGION_FN (r, fn)
4830 find_decls_types_in_eh_region (r, fld);
4831 }
4832
4833 /* Traverse every statement in FN. */
4834 FOR_EACH_BB_FN (bb, fn)
4835 {
4836 gimple_stmt_iterator si;
4837 unsigned i;
4838
4839 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4840 {
4841 gimple phi = gsi_stmt (si);
4842
4843 for (i = 0; i < gimple_phi_num_args (phi); i++)
4844 {
4845 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4846 find_decls_types (*arg_p, fld);
4847 }
4848 }
4849
4850 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4851 {
4852 gimple stmt = gsi_stmt (si);
4853
4854 for (i = 0; i < gimple_num_ops (stmt); i++)
4855 {
4856 tree arg = gimple_op (stmt, i);
4857 find_decls_types (arg, fld);
4858 }
4859 }
4860 }
4861 }
4862
4863
4864 /* Find decls and types referenced in varpool node N and store them in
4865 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4866 look for *every* kind of DECL and TYPE node reachable from N,
4867 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4868 NAMESPACE_DECLs, etc). */
4869
4870 static void
4871 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4872 {
4873 find_decls_types (v->decl, fld);
4874 }
4875
4876 /* If T needs an assembler name, have one created for it. */
4877
4878 void
4879 assign_assembler_name_if_neeeded (tree t)
4880 {
4881 if (need_assembler_name_p (t))
4882 {
4883 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4884 diagnostics that use input_location to show locus
4885 information. The problem here is that, at this point,
4886 input_location is generally anchored to the end of the file
4887 (since the parser is long gone), so we don't have a good
4888 position to pin it to.
4889
4890 To alleviate this problem, this uses the location of T's
4891 declaration. Examples of this are
4892 testsuite/g++.dg/template/cond2.C and
4893 testsuite/g++.dg/template/pr35240.C. */
4894 location_t saved_location = input_location;
4895 input_location = DECL_SOURCE_LOCATION (t);
4896
4897 decl_assembler_name (t);
4898
4899 input_location = saved_location;
4900 }
4901 }
4902
4903
4904 /* Free language specific information for every operand and expression
4905 in every node of the call graph. This process operates in three stages:
4906
4907 1- Every callgraph node and varpool node is traversed looking for
4908 decls and types embedded in them. This is a more exhaustive
4909 search than that done by find_referenced_vars, because it will
4910 also collect individual fields, decls embedded in types, etc.
4911
4912 2- All the decls found are sent to free_lang_data_in_decl.
4913
4914 3- All the types found are sent to free_lang_data_in_type.
4915
4916 The ordering between decls and types is important because
4917 free_lang_data_in_decl sets assembler names, which includes
4918 mangling. So types cannot be freed up until assembler names have
4919 been set up. */
4920
4921 static void
4922 free_lang_data_in_cgraph (void)
4923 {
4924 struct cgraph_node *n;
4925 struct varpool_node *v;
4926 struct free_lang_data_d fld;
4927 tree t;
4928 unsigned i;
4929 alias_pair *p;
4930
4931 /* Initialize sets and arrays to store referenced decls and types. */
4932 fld.pset = pointer_set_create ();
4933 fld.worklist = NULL;
4934 fld.decls = VEC_alloc (tree, heap, 100);
4935 fld.types = VEC_alloc (tree, heap, 100);
4936
4937 /* Find decls and types in the body of every function in the callgraph. */
4938 for (n = cgraph_nodes; n; n = n->next)
4939 find_decls_types_in_node (n, &fld);
4940
4941 for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); i++)
4942 find_decls_types (p->decl, &fld);
4943
4944 /* Find decls and types in every varpool symbol. */
4945 for (v = varpool_nodes_queue; v; v = v->next_needed)
4946 find_decls_types_in_var (v, &fld);
4947
4948 /* Set the assembler name on every decl found. We need to do this
4949 now because free_lang_data_in_decl will invalidate data needed
4950 for mangling. This breaks mangling on interdependent decls. */
4951 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4952 assign_assembler_name_if_neeeded (t);
4953
4954 /* Traverse every decl found freeing its language data. */
4955 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4956 free_lang_data_in_decl (t);
4957
4958 /* Traverse every type found freeing its language data. */
4959 for (i = 0; VEC_iterate (tree, fld.types, i, t); i++)
4960 free_lang_data_in_type (t);
4961
4962 pointer_set_destroy (fld.pset);
4963 VEC_free (tree, heap, fld.worklist);
4964 VEC_free (tree, heap, fld.decls);
4965 VEC_free (tree, heap, fld.types);
4966 }
4967
4968
4969 /* Free resources that are used by FE but are not needed once they are done. */
4970
4971 static unsigned
4972 free_lang_data (void)
4973 {
4974 unsigned i;
4975
4976 /* If we are the LTO frontend we have freed lang-specific data already. */
4977 if (in_lto_p
4978 || !flag_generate_lto)
4979 return 0;
4980
4981 /* Allocate and assign alias sets to the standard integer types
4982 while the slots are still in the way the frontends generated them. */
4983 for (i = 0; i < itk_none; ++i)
4984 if (integer_types[i])
4985 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
4986
4987 /* Traverse the IL resetting language specific information for
4988 operands, expressions, etc. */
4989 free_lang_data_in_cgraph ();
4990
4991 /* Create gimple variants for common types. */
4992 ptrdiff_type_node = integer_type_node;
4993 fileptr_type_node = ptr_type_node;
4994 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
4995 || (TYPE_MODE (boolean_type_node)
4996 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
4997 || TYPE_PRECISION (boolean_type_node) != 1
4998 || !TYPE_UNSIGNED (boolean_type_node))
4999 {
5000 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5001 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5002 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5003 TYPE_PRECISION (boolean_type_node) = 1;
5004 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5005 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5006 }
5007
5008 /* Unify char_type_node with its properly signed variant. */
5009 if (TYPE_UNSIGNED (char_type_node))
5010 unsigned_char_type_node = char_type_node;
5011 else
5012 signed_char_type_node = char_type_node;
5013
5014 /* Reset some langhooks. Do not reset types_compatible_p, it may
5015 still be used indirectly via the get_alias_set langhook. */
5016 lang_hooks.callgraph.analyze_expr = NULL;
5017 lang_hooks.dwarf_name = lhd_dwarf_name;
5018 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5019 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
5020
5021 /* Reset diagnostic machinery. */
5022 diagnostic_starter (global_dc) = default_diagnostic_starter;
5023 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5024 diagnostic_format_decoder (global_dc) = default_tree_printer;
5025
5026 return 0;
5027 }
5028
5029
5030 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5031 {
5032 {
5033 SIMPLE_IPA_PASS,
5034 "*free_lang_data", /* name */
5035 NULL, /* gate */
5036 free_lang_data, /* execute */
5037 NULL, /* sub */
5038 NULL, /* next */
5039 0, /* static_pass_number */
5040 TV_IPA_FREE_LANG_DATA, /* tv_id */
5041 0, /* properties_required */
5042 0, /* properties_provided */
5043 0, /* properties_destroyed */
5044 0, /* todo_flags_start */
5045 TODO_ggc_collect /* todo_flags_finish */
5046 }
5047 };
5048
5049 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5050 or zero if not.
5051
5052 We try both `text' and `__text__', ATTR may be either one. */
5053 /* ??? It might be a reasonable simplification to require ATTR to be only
5054 `text'. One might then also require attribute lists to be stored in
5055 their canonicalized form. */
5056
5057 static int
5058 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5059 {
5060 int ident_len;
5061 const char *p;
5062
5063 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5064 return 0;
5065
5066 p = IDENTIFIER_POINTER (ident);
5067 ident_len = IDENTIFIER_LENGTH (ident);
5068
5069 if (ident_len == attr_len
5070 && strcmp (attr, p) == 0)
5071 return 1;
5072
5073 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5074 if (attr[0] == '_')
5075 {
5076 gcc_assert (attr[1] == '_');
5077 gcc_assert (attr[attr_len - 2] == '_');
5078 gcc_assert (attr[attr_len - 1] == '_');
5079 if (ident_len == attr_len - 4
5080 && strncmp (attr + 2, p, attr_len - 4) == 0)
5081 return 1;
5082 }
5083 else
5084 {
5085 if (ident_len == attr_len + 4
5086 && p[0] == '_' && p[1] == '_'
5087 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5088 && strncmp (attr, p + 2, attr_len) == 0)
5089 return 1;
5090 }
5091
5092 return 0;
5093 }
5094
5095 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5096 or zero if not.
5097
5098 We try both `text' and `__text__', ATTR may be either one. */
5099
5100 int
5101 is_attribute_p (const char *attr, const_tree ident)
5102 {
5103 return is_attribute_with_length_p (attr, strlen (attr), ident);
5104 }
5105
5106 /* Given an attribute name and a list of attributes, return a pointer to the
5107 attribute's list element if the attribute is part of the list, or NULL_TREE
5108 if not found. If the attribute appears more than once, this only
5109 returns the first occurrence; the TREE_CHAIN of the return value should
5110 be passed back in if further occurrences are wanted. */
5111
5112 tree
5113 lookup_attribute (const char *attr_name, tree list)
5114 {
5115 tree l;
5116 size_t attr_len = strlen (attr_name);
5117
5118 for (l = list; l; l = TREE_CHAIN (l))
5119 {
5120 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5121 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5122 return l;
5123 }
5124 return NULL_TREE;
5125 }
5126
5127 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5128 modified list. */
5129
5130 tree
5131 remove_attribute (const char *attr_name, tree list)
5132 {
5133 tree *p;
5134 size_t attr_len = strlen (attr_name);
5135
5136 for (p = &list; *p; )
5137 {
5138 tree l = *p;
5139 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5140 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5141 *p = TREE_CHAIN (l);
5142 else
5143 p = &TREE_CHAIN (l);
5144 }
5145
5146 return list;
5147 }
5148
5149 /* Return an attribute list that is the union of a1 and a2. */
5150
5151 tree
5152 merge_attributes (tree a1, tree a2)
5153 {
5154 tree attributes;
5155
5156 /* Either one unset? Take the set one. */
5157
5158 if ((attributes = a1) == 0)
5159 attributes = a2;
5160
5161 /* One that completely contains the other? Take it. */
5162
5163 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5164 {
5165 if (attribute_list_contained (a2, a1))
5166 attributes = a2;
5167 else
5168 {
5169 /* Pick the longest list, and hang on the other list. */
5170
5171 if (list_length (a1) < list_length (a2))
5172 attributes = a2, a2 = a1;
5173
5174 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5175 {
5176 tree a;
5177 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5178 attributes);
5179 a != NULL_TREE;
5180 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5181 TREE_CHAIN (a)))
5182 {
5183 if (TREE_VALUE (a) != NULL
5184 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5185 && TREE_VALUE (a2) != NULL
5186 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5187 {
5188 if (simple_cst_list_equal (TREE_VALUE (a),
5189 TREE_VALUE (a2)) == 1)
5190 break;
5191 }
5192 else if (simple_cst_equal (TREE_VALUE (a),
5193 TREE_VALUE (a2)) == 1)
5194 break;
5195 }
5196 if (a == NULL_TREE)
5197 {
5198 a1 = copy_node (a2);
5199 TREE_CHAIN (a1) = attributes;
5200 attributes = a1;
5201 }
5202 }
5203 }
5204 }
5205 return attributes;
5206 }
5207
5208 /* Given types T1 and T2, merge their attributes and return
5209 the result. */
5210
5211 tree
5212 merge_type_attributes (tree t1, tree t2)
5213 {
5214 return merge_attributes (TYPE_ATTRIBUTES (t1),
5215 TYPE_ATTRIBUTES (t2));
5216 }
5217
5218 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5219 the result. */
5220
5221 tree
5222 merge_decl_attributes (tree olddecl, tree newdecl)
5223 {
5224 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5225 DECL_ATTRIBUTES (newdecl));
5226 }
5227
5228 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5229
5230 /* Specialization of merge_decl_attributes for various Windows targets.
5231
5232 This handles the following situation:
5233
5234 __declspec (dllimport) int foo;
5235 int foo;
5236
5237 The second instance of `foo' nullifies the dllimport. */
5238
5239 tree
5240 merge_dllimport_decl_attributes (tree old, tree new_tree)
5241 {
5242 tree a;
5243 int delete_dllimport_p = 1;
5244
5245 /* What we need to do here is remove from `old' dllimport if it doesn't
5246 appear in `new'. dllimport behaves like extern: if a declaration is
5247 marked dllimport and a definition appears later, then the object
5248 is not dllimport'd. We also remove a `new' dllimport if the old list
5249 contains dllexport: dllexport always overrides dllimport, regardless
5250 of the order of declaration. */
5251 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5252 delete_dllimport_p = 0;
5253 else if (DECL_DLLIMPORT_P (new_tree)
5254 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5255 {
5256 DECL_DLLIMPORT_P (new_tree) = 0;
5257 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5258 "dllimport ignored", new_tree);
5259 }
5260 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5261 {
5262 /* Warn about overriding a symbol that has already been used, e.g.:
5263 extern int __attribute__ ((dllimport)) foo;
5264 int* bar () {return &foo;}
5265 int foo;
5266 */
5267 if (TREE_USED (old))
5268 {
5269 warning (0, "%q+D redeclared without dllimport attribute "
5270 "after being referenced with dll linkage", new_tree);
5271 /* If we have used a variable's address with dllimport linkage,
5272 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5273 decl may already have had TREE_CONSTANT computed.
5274 We still remove the attribute so that assembler code refers
5275 to '&foo rather than '_imp__foo'. */
5276 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5277 DECL_DLLIMPORT_P (new_tree) = 1;
5278 }
5279
5280 /* Let an inline definition silently override the external reference,
5281 but otherwise warn about attribute inconsistency. */
5282 else if (TREE_CODE (new_tree) == VAR_DECL
5283 || !DECL_DECLARED_INLINE_P (new_tree))
5284 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5285 "previous dllimport ignored", new_tree);
5286 }
5287 else
5288 delete_dllimport_p = 0;
5289
5290 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5291
5292 if (delete_dllimport_p)
5293 {
5294 tree prev, t;
5295 const size_t attr_len = strlen ("dllimport");
5296
5297 /* Scan the list for dllimport and delete it. */
5298 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5299 {
5300 if (is_attribute_with_length_p ("dllimport", attr_len,
5301 TREE_PURPOSE (t)))
5302 {
5303 if (prev == NULL_TREE)
5304 a = TREE_CHAIN (a);
5305 else
5306 TREE_CHAIN (prev) = TREE_CHAIN (t);
5307 break;
5308 }
5309 }
5310 }
5311
5312 return a;
5313 }
5314
5315 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5316 struct attribute_spec.handler. */
5317
5318 tree
5319 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5320 bool *no_add_attrs)
5321 {
5322 tree node = *pnode;
5323 bool is_dllimport;
5324
5325 /* These attributes may apply to structure and union types being created,
5326 but otherwise should pass to the declaration involved. */
5327 if (!DECL_P (node))
5328 {
5329 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5330 | (int) ATTR_FLAG_ARRAY_NEXT))
5331 {
5332 *no_add_attrs = true;
5333 return tree_cons (name, args, NULL_TREE);
5334 }
5335 if (TREE_CODE (node) == RECORD_TYPE
5336 || TREE_CODE (node) == UNION_TYPE)
5337 {
5338 node = TYPE_NAME (node);
5339 if (!node)
5340 return NULL_TREE;
5341 }
5342 else
5343 {
5344 warning (OPT_Wattributes, "%qE attribute ignored",
5345 name);
5346 *no_add_attrs = true;
5347 return NULL_TREE;
5348 }
5349 }
5350
5351 if (TREE_CODE (node) != FUNCTION_DECL
5352 && TREE_CODE (node) != VAR_DECL
5353 && TREE_CODE (node) != TYPE_DECL)
5354 {
5355 *no_add_attrs = true;
5356 warning (OPT_Wattributes, "%qE attribute ignored",
5357 name);
5358 return NULL_TREE;
5359 }
5360
5361 if (TREE_CODE (node) == TYPE_DECL
5362 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5363 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5364 {
5365 *no_add_attrs = true;
5366 warning (OPT_Wattributes, "%qE attribute ignored",
5367 name);
5368 return NULL_TREE;
5369 }
5370
5371 is_dllimport = is_attribute_p ("dllimport", name);
5372
5373 /* Report error on dllimport ambiguities seen now before they cause
5374 any damage. */
5375 if (is_dllimport)
5376 {
5377 /* Honor any target-specific overrides. */
5378 if (!targetm.valid_dllimport_attribute_p (node))
5379 *no_add_attrs = true;
5380
5381 else if (TREE_CODE (node) == FUNCTION_DECL
5382 && DECL_DECLARED_INLINE_P (node))
5383 {
5384 warning (OPT_Wattributes, "inline function %q+D declared as "
5385 " dllimport: attribute ignored", node);
5386 *no_add_attrs = true;
5387 }
5388 /* Like MS, treat definition of dllimported variables and
5389 non-inlined functions on declaration as syntax errors. */
5390 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5391 {
5392 error ("function %q+D definition is marked dllimport", node);
5393 *no_add_attrs = true;
5394 }
5395
5396 else if (TREE_CODE (node) == VAR_DECL)
5397 {
5398 if (DECL_INITIAL (node))
5399 {
5400 error ("variable %q+D definition is marked dllimport",
5401 node);
5402 *no_add_attrs = true;
5403 }
5404
5405 /* `extern' needn't be specified with dllimport.
5406 Specify `extern' now and hope for the best. Sigh. */
5407 DECL_EXTERNAL (node) = 1;
5408 /* Also, implicitly give dllimport'd variables declared within
5409 a function global scope, unless declared static. */
5410 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5411 TREE_PUBLIC (node) = 1;
5412 }
5413
5414 if (*no_add_attrs == false)
5415 DECL_DLLIMPORT_P (node) = 1;
5416 }
5417 else if (TREE_CODE (node) == FUNCTION_DECL
5418 && DECL_DECLARED_INLINE_P (node))
5419 /* An exported function, even if inline, must be emitted. */
5420 DECL_EXTERNAL (node) = 0;
5421
5422 /* Report error if symbol is not accessible at global scope. */
5423 if (!TREE_PUBLIC (node)
5424 && (TREE_CODE (node) == VAR_DECL
5425 || TREE_CODE (node) == FUNCTION_DECL))
5426 {
5427 error ("external linkage required for symbol %q+D because of "
5428 "%qE attribute", node, name);
5429 *no_add_attrs = true;
5430 }
5431
5432 /* A dllexport'd entity must have default visibility so that other
5433 program units (shared libraries or the main executable) can see
5434 it. A dllimport'd entity must have default visibility so that
5435 the linker knows that undefined references within this program
5436 unit can be resolved by the dynamic linker. */
5437 if (!*no_add_attrs)
5438 {
5439 if (DECL_VISIBILITY_SPECIFIED (node)
5440 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5441 error ("%qE implies default visibility, but %qD has already "
5442 "been declared with a different visibility",
5443 name, node);
5444 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5445 DECL_VISIBILITY_SPECIFIED (node) = 1;
5446 }
5447
5448 return NULL_TREE;
5449 }
5450
5451 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5452 \f
5453 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5454 of the various TYPE_QUAL values. */
5455
5456 static void
5457 set_type_quals (tree type, int type_quals)
5458 {
5459 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5460 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5461 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5462 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5463 }
5464
5465 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5466
5467 bool
5468 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5469 {
5470 return (TYPE_QUALS (cand) == type_quals
5471 && TYPE_NAME (cand) == TYPE_NAME (base)
5472 /* Apparently this is needed for Objective-C. */
5473 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5474 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5475 TYPE_ATTRIBUTES (base)));
5476 }
5477
5478 /* Return a version of the TYPE, qualified as indicated by the
5479 TYPE_QUALS, if one exists. If no qualified version exists yet,
5480 return NULL_TREE. */
5481
5482 tree
5483 get_qualified_type (tree type, int type_quals)
5484 {
5485 tree t;
5486
5487 if (TYPE_QUALS (type) == type_quals)
5488 return type;
5489
5490 /* Search the chain of variants to see if there is already one there just
5491 like the one we need to have. If so, use that existing one. We must
5492 preserve the TYPE_NAME, since there is code that depends on this. */
5493 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5494 if (check_qualified_type (t, type, type_quals))
5495 return t;
5496
5497 return NULL_TREE;
5498 }
5499
5500 /* Like get_qualified_type, but creates the type if it does not
5501 exist. This function never returns NULL_TREE. */
5502
5503 tree
5504 build_qualified_type (tree type, int type_quals)
5505 {
5506 tree t;
5507
5508 /* See if we already have the appropriate qualified variant. */
5509 t = get_qualified_type (type, type_quals);
5510
5511 /* If not, build it. */
5512 if (!t)
5513 {
5514 t = build_variant_type_copy (type);
5515 set_type_quals (t, type_quals);
5516
5517 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5518 /* Propagate structural equality. */
5519 SET_TYPE_STRUCTURAL_EQUALITY (t);
5520 else if (TYPE_CANONICAL (type) != type)
5521 /* Build the underlying canonical type, since it is different
5522 from TYPE. */
5523 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5524 type_quals);
5525 else
5526 /* T is its own canonical type. */
5527 TYPE_CANONICAL (t) = t;
5528
5529 }
5530
5531 return t;
5532 }
5533
5534 /* Create a new distinct copy of TYPE. The new type is made its own
5535 MAIN_VARIANT. If TYPE requires structural equality checks, the
5536 resulting type requires structural equality checks; otherwise, its
5537 TYPE_CANONICAL points to itself. */
5538
5539 tree
5540 build_distinct_type_copy (tree type)
5541 {
5542 tree t = copy_node (type);
5543
5544 TYPE_POINTER_TO (t) = 0;
5545 TYPE_REFERENCE_TO (t) = 0;
5546
5547 /* Set the canonical type either to a new equivalence class, or
5548 propagate the need for structural equality checks. */
5549 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5550 SET_TYPE_STRUCTURAL_EQUALITY (t);
5551 else
5552 TYPE_CANONICAL (t) = t;
5553
5554 /* Make it its own variant. */
5555 TYPE_MAIN_VARIANT (t) = t;
5556 TYPE_NEXT_VARIANT (t) = 0;
5557
5558 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5559 whose TREE_TYPE is not t. This can also happen in the Ada
5560 frontend when using subtypes. */
5561
5562 return t;
5563 }
5564
5565 /* Create a new variant of TYPE, equivalent but distinct. This is so
5566 the caller can modify it. TYPE_CANONICAL for the return type will
5567 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5568 are considered equal by the language itself (or that both types
5569 require structural equality checks). */
5570
5571 tree
5572 build_variant_type_copy (tree type)
5573 {
5574 tree t, m = TYPE_MAIN_VARIANT (type);
5575
5576 t = build_distinct_type_copy (type);
5577
5578 /* Since we're building a variant, assume that it is a non-semantic
5579 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5580 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5581
5582 /* Add the new type to the chain of variants of TYPE. */
5583 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5584 TYPE_NEXT_VARIANT (m) = t;
5585 TYPE_MAIN_VARIANT (t) = m;
5586
5587 return t;
5588 }
5589 \f
5590 /* Return true if the from tree in both tree maps are equal. */
5591
5592 int
5593 tree_map_base_eq (const void *va, const void *vb)
5594 {
5595 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5596 *const b = (const struct tree_map_base *) vb;
5597 return (a->from == b->from);
5598 }
5599
5600 /* Hash a from tree in a tree_map. */
5601
5602 unsigned int
5603 tree_map_base_hash (const void *item)
5604 {
5605 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5606 }
5607
5608 /* Return true if this tree map structure is marked for garbage collection
5609 purposes. We simply return true if the from tree is marked, so that this
5610 structure goes away when the from tree goes away. */
5611
5612 int
5613 tree_map_base_marked_p (const void *p)
5614 {
5615 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5616 }
5617
5618 unsigned int
5619 tree_map_hash (const void *item)
5620 {
5621 return (((const struct tree_map *) item)->hash);
5622 }
5623
5624 /* Return the initialization priority for DECL. */
5625
5626 priority_type
5627 decl_init_priority_lookup (tree decl)
5628 {
5629 struct tree_priority_map *h;
5630 struct tree_map_base in;
5631
5632 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5633 in.from = decl;
5634 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5635 return h ? h->init : DEFAULT_INIT_PRIORITY;
5636 }
5637
5638 /* Return the finalization priority for DECL. */
5639
5640 priority_type
5641 decl_fini_priority_lookup (tree decl)
5642 {
5643 struct tree_priority_map *h;
5644 struct tree_map_base in;
5645
5646 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5647 in.from = decl;
5648 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5649 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5650 }
5651
5652 /* Return the initialization and finalization priority information for
5653 DECL. If there is no previous priority information, a freshly
5654 allocated structure is returned. */
5655
5656 static struct tree_priority_map *
5657 decl_priority_info (tree decl)
5658 {
5659 struct tree_priority_map in;
5660 struct tree_priority_map *h;
5661 void **loc;
5662
5663 in.base.from = decl;
5664 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5665 h = (struct tree_priority_map *) *loc;
5666 if (!h)
5667 {
5668 h = GGC_CNEW (struct tree_priority_map);
5669 *loc = h;
5670 h->base.from = decl;
5671 h->init = DEFAULT_INIT_PRIORITY;
5672 h->fini = DEFAULT_INIT_PRIORITY;
5673 }
5674
5675 return h;
5676 }
5677
5678 /* Set the initialization priority for DECL to PRIORITY. */
5679
5680 void
5681 decl_init_priority_insert (tree decl, priority_type priority)
5682 {
5683 struct tree_priority_map *h;
5684
5685 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5686 h = decl_priority_info (decl);
5687 h->init = priority;
5688 }
5689
5690 /* Set the finalization priority for DECL to PRIORITY. */
5691
5692 void
5693 decl_fini_priority_insert (tree decl, priority_type priority)
5694 {
5695 struct tree_priority_map *h;
5696
5697 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5698 h = decl_priority_info (decl);
5699 h->fini = priority;
5700 }
5701
5702 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5703
5704 static void
5705 print_debug_expr_statistics (void)
5706 {
5707 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5708 (long) htab_size (debug_expr_for_decl),
5709 (long) htab_elements (debug_expr_for_decl),
5710 htab_collisions (debug_expr_for_decl));
5711 }
5712
5713 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5714
5715 static void
5716 print_value_expr_statistics (void)
5717 {
5718 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5719 (long) htab_size (value_expr_for_decl),
5720 (long) htab_elements (value_expr_for_decl),
5721 htab_collisions (value_expr_for_decl));
5722 }
5723
5724 /* Lookup a debug expression for FROM, and return it if we find one. */
5725
5726 tree
5727 decl_debug_expr_lookup (tree from)
5728 {
5729 struct tree_map *h, in;
5730 in.base.from = from;
5731
5732 h = (struct tree_map *) htab_find_with_hash (debug_expr_for_decl, &in,
5733 htab_hash_pointer (from));
5734 if (h)
5735 return h->to;
5736 return NULL_TREE;
5737 }
5738
5739 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5740
5741 void
5742 decl_debug_expr_insert (tree from, tree to)
5743 {
5744 struct tree_map *h;
5745 void **loc;
5746
5747 h = GGC_NEW (struct tree_map);
5748 h->hash = htab_hash_pointer (from);
5749 h->base.from = from;
5750 h->to = to;
5751 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
5752 *(struct tree_map **) loc = h;
5753 }
5754
5755 /* Lookup a value expression for FROM, and return it if we find one. */
5756
5757 tree
5758 decl_value_expr_lookup (tree from)
5759 {
5760 struct tree_map *h, in;
5761 in.base.from = from;
5762
5763 h = (struct tree_map *) htab_find_with_hash (value_expr_for_decl, &in,
5764 htab_hash_pointer (from));
5765 if (h)
5766 return h->to;
5767 return NULL_TREE;
5768 }
5769
5770 /* Insert a mapping FROM->TO in the value expression hashtable. */
5771
5772 void
5773 decl_value_expr_insert (tree from, tree to)
5774 {
5775 struct tree_map *h;
5776 void **loc;
5777
5778 h = GGC_NEW (struct tree_map);
5779 h->hash = htab_hash_pointer (from);
5780 h->base.from = from;
5781 h->to = to;
5782 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
5783 *(struct tree_map **) loc = h;
5784 }
5785
5786 /* Hashing of types so that we don't make duplicates.
5787 The entry point is `type_hash_canon'. */
5788
5789 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5790 with types in the TREE_VALUE slots), by adding the hash codes
5791 of the individual types. */
5792
5793 static unsigned int
5794 type_hash_list (const_tree list, hashval_t hashcode)
5795 {
5796 const_tree tail;
5797
5798 for (tail = list; tail; tail = TREE_CHAIN (tail))
5799 if (TREE_VALUE (tail) != error_mark_node)
5800 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5801 hashcode);
5802
5803 return hashcode;
5804 }
5805
5806 /* These are the Hashtable callback functions. */
5807
5808 /* Returns true iff the types are equivalent. */
5809
5810 static int
5811 type_hash_eq (const void *va, const void *vb)
5812 {
5813 const struct type_hash *const a = (const struct type_hash *) va,
5814 *const b = (const struct type_hash *) vb;
5815
5816 /* First test the things that are the same for all types. */
5817 if (a->hash != b->hash
5818 || TREE_CODE (a->type) != TREE_CODE (b->type)
5819 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5820 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5821 TYPE_ATTRIBUTES (b->type))
5822 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5823 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5824 || (TREE_CODE (a->type) != COMPLEX_TYPE
5825 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5826 return 0;
5827
5828 switch (TREE_CODE (a->type))
5829 {
5830 case VOID_TYPE:
5831 case COMPLEX_TYPE:
5832 case POINTER_TYPE:
5833 case REFERENCE_TYPE:
5834 return 1;
5835
5836 case VECTOR_TYPE:
5837 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5838
5839 case ENUMERAL_TYPE:
5840 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5841 && !(TYPE_VALUES (a->type)
5842 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5843 && TYPE_VALUES (b->type)
5844 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5845 && type_list_equal (TYPE_VALUES (a->type),
5846 TYPE_VALUES (b->type))))
5847 return 0;
5848
5849 /* ... fall through ... */
5850
5851 case INTEGER_TYPE:
5852 case REAL_TYPE:
5853 case BOOLEAN_TYPE:
5854 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5855 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5856 TYPE_MAX_VALUE (b->type)))
5857 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5858 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5859 TYPE_MIN_VALUE (b->type))));
5860
5861 case FIXED_POINT_TYPE:
5862 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5863
5864 case OFFSET_TYPE:
5865 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5866
5867 case METHOD_TYPE:
5868 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5869 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5870 || (TYPE_ARG_TYPES (a->type)
5871 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5872 && TYPE_ARG_TYPES (b->type)
5873 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5874 && type_list_equal (TYPE_ARG_TYPES (a->type),
5875 TYPE_ARG_TYPES (b->type)))));
5876
5877 case ARRAY_TYPE:
5878 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5879
5880 case RECORD_TYPE:
5881 case UNION_TYPE:
5882 case QUAL_UNION_TYPE:
5883 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5884 || (TYPE_FIELDS (a->type)
5885 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5886 && TYPE_FIELDS (b->type)
5887 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5888 && type_list_equal (TYPE_FIELDS (a->type),
5889 TYPE_FIELDS (b->type))));
5890
5891 case FUNCTION_TYPE:
5892 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5893 || (TYPE_ARG_TYPES (a->type)
5894 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5895 && TYPE_ARG_TYPES (b->type)
5896 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5897 && type_list_equal (TYPE_ARG_TYPES (a->type),
5898 TYPE_ARG_TYPES (b->type))))
5899 break;
5900 return 0;
5901
5902 default:
5903 return 0;
5904 }
5905
5906 if (lang_hooks.types.type_hash_eq != NULL)
5907 return lang_hooks.types.type_hash_eq (a->type, b->type);
5908
5909 return 1;
5910 }
5911
5912 /* Return the cached hash value. */
5913
5914 static hashval_t
5915 type_hash_hash (const void *item)
5916 {
5917 return ((const struct type_hash *) item)->hash;
5918 }
5919
5920 /* Look in the type hash table for a type isomorphic to TYPE.
5921 If one is found, return it. Otherwise return 0. */
5922
5923 tree
5924 type_hash_lookup (hashval_t hashcode, tree type)
5925 {
5926 struct type_hash *h, in;
5927
5928 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
5929 must call that routine before comparing TYPE_ALIGNs. */
5930 layout_type (type);
5931
5932 in.hash = hashcode;
5933 in.type = type;
5934
5935 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
5936 hashcode);
5937 if (h)
5938 return h->type;
5939 return NULL_TREE;
5940 }
5941
5942 /* Add an entry to the type-hash-table
5943 for a type TYPE whose hash code is HASHCODE. */
5944
5945 void
5946 type_hash_add (hashval_t hashcode, tree type)
5947 {
5948 struct type_hash *h;
5949 void **loc;
5950
5951 h = GGC_NEW (struct type_hash);
5952 h->hash = hashcode;
5953 h->type = type;
5954 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
5955 *loc = (void *)h;
5956 }
5957
5958 /* Given TYPE, and HASHCODE its hash code, return the canonical
5959 object for an identical type if one already exists.
5960 Otherwise, return TYPE, and record it as the canonical object.
5961
5962 To use this function, first create a type of the sort you want.
5963 Then compute its hash code from the fields of the type that
5964 make it different from other similar types.
5965 Then call this function and use the value. */
5966
5967 tree
5968 type_hash_canon (unsigned int hashcode, tree type)
5969 {
5970 tree t1;
5971
5972 /* The hash table only contains main variants, so ensure that's what we're
5973 being passed. */
5974 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
5975
5976 if (!lang_hooks.types.hash_types)
5977 return type;
5978
5979 /* See if the type is in the hash table already. If so, return it.
5980 Otherwise, add the type. */
5981 t1 = type_hash_lookup (hashcode, type);
5982 if (t1 != 0)
5983 {
5984 #ifdef GATHER_STATISTICS
5985 tree_node_counts[(int) t_kind]--;
5986 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
5987 #endif
5988 return t1;
5989 }
5990 else
5991 {
5992 type_hash_add (hashcode, type);
5993 return type;
5994 }
5995 }
5996
5997 /* See if the data pointed to by the type hash table is marked. We consider
5998 it marked if the type is marked or if a debug type number or symbol
5999 table entry has been made for the type. This reduces the amount of
6000 debugging output and eliminates that dependency of the debug output on
6001 the number of garbage collections. */
6002
6003 static int
6004 type_hash_marked_p (const void *p)
6005 {
6006 const_tree const type = ((const struct type_hash *) p)->type;
6007
6008 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
6009 }
6010
6011 static void
6012 print_type_hash_statistics (void)
6013 {
6014 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6015 (long) htab_size (type_hash_table),
6016 (long) htab_elements (type_hash_table),
6017 htab_collisions (type_hash_table));
6018 }
6019
6020 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6021 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6022 by adding the hash codes of the individual attributes. */
6023
6024 static unsigned int
6025 attribute_hash_list (const_tree list, hashval_t hashcode)
6026 {
6027 const_tree tail;
6028
6029 for (tail = list; tail; tail = TREE_CHAIN (tail))
6030 /* ??? Do we want to add in TREE_VALUE too? */
6031 hashcode = iterative_hash_object
6032 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6033 return hashcode;
6034 }
6035
6036 /* Given two lists of attributes, return true if list l2 is
6037 equivalent to l1. */
6038
6039 int
6040 attribute_list_equal (const_tree l1, const_tree l2)
6041 {
6042 return attribute_list_contained (l1, l2)
6043 && attribute_list_contained (l2, l1);
6044 }
6045
6046 /* Given two lists of attributes, return true if list L2 is
6047 completely contained within L1. */
6048 /* ??? This would be faster if attribute names were stored in a canonicalized
6049 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6050 must be used to show these elements are equivalent (which they are). */
6051 /* ??? It's not clear that attributes with arguments will always be handled
6052 correctly. */
6053
6054 int
6055 attribute_list_contained (const_tree l1, const_tree l2)
6056 {
6057 const_tree t1, t2;
6058
6059 /* First check the obvious, maybe the lists are identical. */
6060 if (l1 == l2)
6061 return 1;
6062
6063 /* Maybe the lists are similar. */
6064 for (t1 = l1, t2 = l2;
6065 t1 != 0 && t2 != 0
6066 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6067 && TREE_VALUE (t1) == TREE_VALUE (t2);
6068 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6069
6070 /* Maybe the lists are equal. */
6071 if (t1 == 0 && t2 == 0)
6072 return 1;
6073
6074 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6075 {
6076 const_tree attr;
6077 /* This CONST_CAST is okay because lookup_attribute does not
6078 modify its argument and the return value is assigned to a
6079 const_tree. */
6080 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6081 CONST_CAST_TREE(l1));
6082 attr != NULL_TREE;
6083 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6084 TREE_CHAIN (attr)))
6085 {
6086 if (TREE_VALUE (t2) != NULL
6087 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6088 && TREE_VALUE (attr) != NULL
6089 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6090 {
6091 if (simple_cst_list_equal (TREE_VALUE (t2),
6092 TREE_VALUE (attr)) == 1)
6093 break;
6094 }
6095 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6096 break;
6097 }
6098
6099 if (attr == 0)
6100 return 0;
6101 }
6102
6103 return 1;
6104 }
6105
6106 /* Given two lists of types
6107 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6108 return 1 if the lists contain the same types in the same order.
6109 Also, the TREE_PURPOSEs must match. */
6110
6111 int
6112 type_list_equal (const_tree l1, const_tree l2)
6113 {
6114 const_tree t1, t2;
6115
6116 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6117 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6118 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6119 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6120 && (TREE_TYPE (TREE_PURPOSE (t1))
6121 == TREE_TYPE (TREE_PURPOSE (t2))))))
6122 return 0;
6123
6124 return t1 == t2;
6125 }
6126
6127 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6128 given by TYPE. If the argument list accepts variable arguments,
6129 then this function counts only the ordinary arguments. */
6130
6131 int
6132 type_num_arguments (const_tree type)
6133 {
6134 int i = 0;
6135 tree t;
6136
6137 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6138 /* If the function does not take a variable number of arguments,
6139 the last element in the list will have type `void'. */
6140 if (VOID_TYPE_P (TREE_VALUE (t)))
6141 break;
6142 else
6143 ++i;
6144
6145 return i;
6146 }
6147
6148 /* Nonzero if integer constants T1 and T2
6149 represent the same constant value. */
6150
6151 int
6152 tree_int_cst_equal (const_tree t1, const_tree t2)
6153 {
6154 if (t1 == t2)
6155 return 1;
6156
6157 if (t1 == 0 || t2 == 0)
6158 return 0;
6159
6160 if (TREE_CODE (t1) == INTEGER_CST
6161 && TREE_CODE (t2) == INTEGER_CST
6162 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6163 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6164 return 1;
6165
6166 return 0;
6167 }
6168
6169 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6170 The precise way of comparison depends on their data type. */
6171
6172 int
6173 tree_int_cst_lt (const_tree t1, const_tree t2)
6174 {
6175 if (t1 == t2)
6176 return 0;
6177
6178 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6179 {
6180 int t1_sgn = tree_int_cst_sgn (t1);
6181 int t2_sgn = tree_int_cst_sgn (t2);
6182
6183 if (t1_sgn < t2_sgn)
6184 return 1;
6185 else if (t1_sgn > t2_sgn)
6186 return 0;
6187 /* Otherwise, both are non-negative, so we compare them as
6188 unsigned just in case one of them would overflow a signed
6189 type. */
6190 }
6191 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6192 return INT_CST_LT (t1, t2);
6193
6194 return INT_CST_LT_UNSIGNED (t1, t2);
6195 }
6196
6197 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6198
6199 int
6200 tree_int_cst_compare (const_tree t1, const_tree t2)
6201 {
6202 if (tree_int_cst_lt (t1, t2))
6203 return -1;
6204 else if (tree_int_cst_lt (t2, t1))
6205 return 1;
6206 else
6207 return 0;
6208 }
6209
6210 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6211 the host. If POS is zero, the value can be represented in a single
6212 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6213 be represented in a single unsigned HOST_WIDE_INT. */
6214
6215 int
6216 host_integerp (const_tree t, int pos)
6217 {
6218 if (t == NULL_TREE)
6219 return 0;
6220
6221 return (TREE_CODE (t) == INTEGER_CST
6222 && ((TREE_INT_CST_HIGH (t) == 0
6223 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6224 || (! pos && TREE_INT_CST_HIGH (t) == -1
6225 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6226 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6227 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6228 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6229 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6230 }
6231
6232 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6233 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6234 be non-negative. We must be able to satisfy the above conditions. */
6235
6236 HOST_WIDE_INT
6237 tree_low_cst (const_tree t, int pos)
6238 {
6239 gcc_assert (host_integerp (t, pos));
6240 return TREE_INT_CST_LOW (t);
6241 }
6242
6243 /* Return the most significant bit of the integer constant T. */
6244
6245 int
6246 tree_int_cst_msb (const_tree t)
6247 {
6248 int prec;
6249 HOST_WIDE_INT h;
6250 unsigned HOST_WIDE_INT l;
6251
6252 /* Note that using TYPE_PRECISION here is wrong. We care about the
6253 actual bits, not the (arbitrary) range of the type. */
6254 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6255 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6256 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6257 return (l & 1) == 1;
6258 }
6259
6260 /* Return an indication of the sign of the integer constant T.
6261 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6262 Note that -1 will never be returned if T's type is unsigned. */
6263
6264 int
6265 tree_int_cst_sgn (const_tree t)
6266 {
6267 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6268 return 0;
6269 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6270 return 1;
6271 else if (TREE_INT_CST_HIGH (t) < 0)
6272 return -1;
6273 else
6274 return 1;
6275 }
6276
6277 /* Return the minimum number of bits needed to represent VALUE in a
6278 signed or unsigned type, UNSIGNEDP says which. */
6279
6280 unsigned int
6281 tree_int_cst_min_precision (tree value, bool unsignedp)
6282 {
6283 int log;
6284
6285 /* If the value is negative, compute its negative minus 1. The latter
6286 adjustment is because the absolute value of the largest negative value
6287 is one larger than the largest positive value. This is equivalent to
6288 a bit-wise negation, so use that operation instead. */
6289
6290 if (tree_int_cst_sgn (value) < 0)
6291 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6292
6293 /* Return the number of bits needed, taking into account the fact
6294 that we need one more bit for a signed than unsigned type. */
6295
6296 if (integer_zerop (value))
6297 log = 0;
6298 else
6299 log = tree_floor_log2 (value);
6300
6301 return log + 1 + !unsignedp;
6302 }
6303
6304 /* Compare two constructor-element-type constants. Return 1 if the lists
6305 are known to be equal; otherwise return 0. */
6306
6307 int
6308 simple_cst_list_equal (const_tree l1, const_tree l2)
6309 {
6310 while (l1 != NULL_TREE && l2 != NULL_TREE)
6311 {
6312 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6313 return 0;
6314
6315 l1 = TREE_CHAIN (l1);
6316 l2 = TREE_CHAIN (l2);
6317 }
6318
6319 return l1 == l2;
6320 }
6321
6322 /* Return truthvalue of whether T1 is the same tree structure as T2.
6323 Return 1 if they are the same.
6324 Return 0 if they are understandably different.
6325 Return -1 if either contains tree structure not understood by
6326 this function. */
6327
6328 int
6329 simple_cst_equal (const_tree t1, const_tree t2)
6330 {
6331 enum tree_code code1, code2;
6332 int cmp;
6333 int i;
6334
6335 if (t1 == t2)
6336 return 1;
6337 if (t1 == 0 || t2 == 0)
6338 return 0;
6339
6340 code1 = TREE_CODE (t1);
6341 code2 = TREE_CODE (t2);
6342
6343 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6344 {
6345 if (CONVERT_EXPR_CODE_P (code2)
6346 || code2 == NON_LVALUE_EXPR)
6347 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6348 else
6349 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6350 }
6351
6352 else if (CONVERT_EXPR_CODE_P (code2)
6353 || code2 == NON_LVALUE_EXPR)
6354 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6355
6356 if (code1 != code2)
6357 return 0;
6358
6359 switch (code1)
6360 {
6361 case INTEGER_CST:
6362 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6363 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6364
6365 case REAL_CST:
6366 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6367
6368 case FIXED_CST:
6369 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6370
6371 case STRING_CST:
6372 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6373 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6374 TREE_STRING_LENGTH (t1)));
6375
6376 case CONSTRUCTOR:
6377 {
6378 unsigned HOST_WIDE_INT idx;
6379 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6380 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6381
6382 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6383 return false;
6384
6385 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6386 /* ??? Should we handle also fields here? */
6387 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6388 VEC_index (constructor_elt, v2, idx)->value))
6389 return false;
6390 return true;
6391 }
6392
6393 case SAVE_EXPR:
6394 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6395
6396 case CALL_EXPR:
6397 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6398 if (cmp <= 0)
6399 return cmp;
6400 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6401 return 0;
6402 {
6403 const_tree arg1, arg2;
6404 const_call_expr_arg_iterator iter1, iter2;
6405 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6406 arg2 = first_const_call_expr_arg (t2, &iter2);
6407 arg1 && arg2;
6408 arg1 = next_const_call_expr_arg (&iter1),
6409 arg2 = next_const_call_expr_arg (&iter2))
6410 {
6411 cmp = simple_cst_equal (arg1, arg2);
6412 if (cmp <= 0)
6413 return cmp;
6414 }
6415 return arg1 == arg2;
6416 }
6417
6418 case TARGET_EXPR:
6419 /* Special case: if either target is an unallocated VAR_DECL,
6420 it means that it's going to be unified with whatever the
6421 TARGET_EXPR is really supposed to initialize, so treat it
6422 as being equivalent to anything. */
6423 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6424 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6425 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6426 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6427 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6428 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6429 cmp = 1;
6430 else
6431 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6432
6433 if (cmp <= 0)
6434 return cmp;
6435
6436 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6437
6438 case WITH_CLEANUP_EXPR:
6439 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6440 if (cmp <= 0)
6441 return cmp;
6442
6443 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6444
6445 case COMPONENT_REF:
6446 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6447 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6448
6449 return 0;
6450
6451 case VAR_DECL:
6452 case PARM_DECL:
6453 case CONST_DECL:
6454 case FUNCTION_DECL:
6455 return 0;
6456
6457 default:
6458 break;
6459 }
6460
6461 /* This general rule works for most tree codes. All exceptions should be
6462 handled above. If this is a language-specific tree code, we can't
6463 trust what might be in the operand, so say we don't know
6464 the situation. */
6465 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6466 return -1;
6467
6468 switch (TREE_CODE_CLASS (code1))
6469 {
6470 case tcc_unary:
6471 case tcc_binary:
6472 case tcc_comparison:
6473 case tcc_expression:
6474 case tcc_reference:
6475 case tcc_statement:
6476 cmp = 1;
6477 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6478 {
6479 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6480 if (cmp <= 0)
6481 return cmp;
6482 }
6483
6484 return cmp;
6485
6486 default:
6487 return -1;
6488 }
6489 }
6490
6491 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6492 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6493 than U, respectively. */
6494
6495 int
6496 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6497 {
6498 if (tree_int_cst_sgn (t) < 0)
6499 return -1;
6500 else if (TREE_INT_CST_HIGH (t) != 0)
6501 return 1;
6502 else if (TREE_INT_CST_LOW (t) == u)
6503 return 0;
6504 else if (TREE_INT_CST_LOW (t) < u)
6505 return -1;
6506 else
6507 return 1;
6508 }
6509
6510 /* Return true if CODE represents an associative tree code. Otherwise
6511 return false. */
6512 bool
6513 associative_tree_code (enum tree_code code)
6514 {
6515 switch (code)
6516 {
6517 case BIT_IOR_EXPR:
6518 case BIT_AND_EXPR:
6519 case BIT_XOR_EXPR:
6520 case PLUS_EXPR:
6521 case MULT_EXPR:
6522 case MIN_EXPR:
6523 case MAX_EXPR:
6524 return true;
6525
6526 default:
6527 break;
6528 }
6529 return false;
6530 }
6531
6532 /* Return true if CODE represents a commutative tree code. Otherwise
6533 return false. */
6534 bool
6535 commutative_tree_code (enum tree_code code)
6536 {
6537 switch (code)
6538 {
6539 case PLUS_EXPR:
6540 case MULT_EXPR:
6541 case MIN_EXPR:
6542 case MAX_EXPR:
6543 case BIT_IOR_EXPR:
6544 case BIT_XOR_EXPR:
6545 case BIT_AND_EXPR:
6546 case NE_EXPR:
6547 case EQ_EXPR:
6548 case UNORDERED_EXPR:
6549 case ORDERED_EXPR:
6550 case UNEQ_EXPR:
6551 case LTGT_EXPR:
6552 case TRUTH_AND_EXPR:
6553 case TRUTH_XOR_EXPR:
6554 case TRUTH_OR_EXPR:
6555 return true;
6556
6557 default:
6558 break;
6559 }
6560 return false;
6561 }
6562
6563 /* Generate a hash value for an expression. This can be used iteratively
6564 by passing a previous result as the VAL argument.
6565
6566 This function is intended to produce the same hash for expressions which
6567 would compare equal using operand_equal_p. */
6568
6569 hashval_t
6570 iterative_hash_expr (const_tree t, hashval_t val)
6571 {
6572 int i;
6573 enum tree_code code;
6574 char tclass;
6575
6576 if (t == NULL_TREE)
6577 return iterative_hash_hashval_t (0, val);
6578
6579 code = TREE_CODE (t);
6580
6581 switch (code)
6582 {
6583 /* Alas, constants aren't shared, so we can't rely on pointer
6584 identity. */
6585 case INTEGER_CST:
6586 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6587 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6588 case REAL_CST:
6589 {
6590 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6591
6592 return iterative_hash_hashval_t (val2, val);
6593 }
6594 case FIXED_CST:
6595 {
6596 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6597
6598 return iterative_hash_hashval_t (val2, val);
6599 }
6600 case STRING_CST:
6601 return iterative_hash (TREE_STRING_POINTER (t),
6602 TREE_STRING_LENGTH (t), val);
6603 case COMPLEX_CST:
6604 val = iterative_hash_expr (TREE_REALPART (t), val);
6605 return iterative_hash_expr (TREE_IMAGPART (t), val);
6606 case VECTOR_CST:
6607 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6608 case SSA_NAME:
6609 /* We can just compare by pointer. */
6610 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6611 case PLACEHOLDER_EXPR:
6612 /* The node itself doesn't matter. */
6613 return val;
6614 case TREE_LIST:
6615 /* A list of expressions, for a CALL_EXPR or as the elements of a
6616 VECTOR_CST. */
6617 for (; t; t = TREE_CHAIN (t))
6618 val = iterative_hash_expr (TREE_VALUE (t), val);
6619 return val;
6620 case CONSTRUCTOR:
6621 {
6622 unsigned HOST_WIDE_INT idx;
6623 tree field, value;
6624 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6625 {
6626 val = iterative_hash_expr (field, val);
6627 val = iterative_hash_expr (value, val);
6628 }
6629 return val;
6630 }
6631 case FUNCTION_DECL:
6632 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6633 Otherwise nodes that compare equal according to operand_equal_p might
6634 get different hash codes. However, don't do this for machine specific
6635 or front end builtins, since the function code is overloaded in those
6636 cases. */
6637 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6638 && built_in_decls[DECL_FUNCTION_CODE (t)])
6639 {
6640 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6641 code = TREE_CODE (t);
6642 }
6643 /* FALL THROUGH */
6644 default:
6645 tclass = TREE_CODE_CLASS (code);
6646
6647 if (tclass == tcc_declaration)
6648 {
6649 /* DECL's have a unique ID */
6650 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6651 }
6652 else
6653 {
6654 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6655
6656 val = iterative_hash_object (code, val);
6657
6658 /* Don't hash the type, that can lead to having nodes which
6659 compare equal according to operand_equal_p, but which
6660 have different hash codes. */
6661 if (CONVERT_EXPR_CODE_P (code)
6662 || code == NON_LVALUE_EXPR)
6663 {
6664 /* Make sure to include signness in the hash computation. */
6665 val += TYPE_UNSIGNED (TREE_TYPE (t));
6666 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6667 }
6668
6669 else if (commutative_tree_code (code))
6670 {
6671 /* It's a commutative expression. We want to hash it the same
6672 however it appears. We do this by first hashing both operands
6673 and then rehashing based on the order of their independent
6674 hashes. */
6675 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6676 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6677 hashval_t t;
6678
6679 if (one > two)
6680 t = one, one = two, two = t;
6681
6682 val = iterative_hash_hashval_t (one, val);
6683 val = iterative_hash_hashval_t (two, val);
6684 }
6685 else
6686 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6687 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6688 }
6689 return val;
6690 break;
6691 }
6692 }
6693
6694 /* Generate a hash value for a pair of expressions. This can be used
6695 iteratively by passing a previous result as the VAL argument.
6696
6697 The same hash value is always returned for a given pair of expressions,
6698 regardless of the order in which they are presented. This is useful in
6699 hashing the operands of commutative functions. */
6700
6701 hashval_t
6702 iterative_hash_exprs_commutative (const_tree t1,
6703 const_tree t2, hashval_t val)
6704 {
6705 hashval_t one = iterative_hash_expr (t1, 0);
6706 hashval_t two = iterative_hash_expr (t2, 0);
6707 hashval_t t;
6708
6709 if (one > two)
6710 t = one, one = two, two = t;
6711 val = iterative_hash_hashval_t (one, val);
6712 val = iterative_hash_hashval_t (two, val);
6713
6714 return val;
6715 }
6716 \f
6717 /* Constructors for pointer, array and function types.
6718 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6719 constructed by language-dependent code, not here.) */
6720
6721 /* Construct, lay out and return the type of pointers to TO_TYPE with
6722 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6723 reference all of memory. If such a type has already been
6724 constructed, reuse it. */
6725
6726 tree
6727 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6728 bool can_alias_all)
6729 {
6730 tree t;
6731
6732 if (to_type == error_mark_node)
6733 return error_mark_node;
6734
6735 /* If the pointed-to type has the may_alias attribute set, force
6736 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6737 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6738 can_alias_all = true;
6739
6740 /* In some cases, languages will have things that aren't a POINTER_TYPE
6741 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6742 In that case, return that type without regard to the rest of our
6743 operands.
6744
6745 ??? This is a kludge, but consistent with the way this function has
6746 always operated and there doesn't seem to be a good way to avoid this
6747 at the moment. */
6748 if (TYPE_POINTER_TO (to_type) != 0
6749 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6750 return TYPE_POINTER_TO (to_type);
6751
6752 /* First, if we already have a type for pointers to TO_TYPE and it's
6753 the proper mode, use it. */
6754 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6755 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6756 return t;
6757
6758 t = make_node (POINTER_TYPE);
6759
6760 TREE_TYPE (t) = to_type;
6761 SET_TYPE_MODE (t, mode);
6762 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6763 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6764 TYPE_POINTER_TO (to_type) = t;
6765
6766 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6767 SET_TYPE_STRUCTURAL_EQUALITY (t);
6768 else if (TYPE_CANONICAL (to_type) != to_type)
6769 TYPE_CANONICAL (t)
6770 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6771 mode, can_alias_all);
6772
6773 /* Lay out the type. This function has many callers that are concerned
6774 with expression-construction, and this simplifies them all. */
6775 layout_type (t);
6776
6777 return t;
6778 }
6779
6780 /* By default build pointers in ptr_mode. */
6781
6782 tree
6783 build_pointer_type (tree to_type)
6784 {
6785 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6786 : TYPE_ADDR_SPACE (to_type);
6787 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6788 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6789 }
6790
6791 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6792
6793 tree
6794 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6795 bool can_alias_all)
6796 {
6797 tree t;
6798
6799 if (to_type == error_mark_node)
6800 return error_mark_node;
6801
6802 /* If the pointed-to type has the may_alias attribute set, force
6803 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6804 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6805 can_alias_all = true;
6806
6807 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6808 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6809 In that case, return that type without regard to the rest of our
6810 operands.
6811
6812 ??? This is a kludge, but consistent with the way this function has
6813 always operated and there doesn't seem to be a good way to avoid this
6814 at the moment. */
6815 if (TYPE_REFERENCE_TO (to_type) != 0
6816 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6817 return TYPE_REFERENCE_TO (to_type);
6818
6819 /* First, if we already have a type for pointers to TO_TYPE and it's
6820 the proper mode, use it. */
6821 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6822 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6823 return t;
6824
6825 t = make_node (REFERENCE_TYPE);
6826
6827 TREE_TYPE (t) = to_type;
6828 SET_TYPE_MODE (t, mode);
6829 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6830 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6831 TYPE_REFERENCE_TO (to_type) = t;
6832
6833 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6834 SET_TYPE_STRUCTURAL_EQUALITY (t);
6835 else if (TYPE_CANONICAL (to_type) != to_type)
6836 TYPE_CANONICAL (t)
6837 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6838 mode, can_alias_all);
6839
6840 layout_type (t);
6841
6842 return t;
6843 }
6844
6845
6846 /* Build the node for the type of references-to-TO_TYPE by default
6847 in ptr_mode. */
6848
6849 tree
6850 build_reference_type (tree to_type)
6851 {
6852 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6853 : TYPE_ADDR_SPACE (to_type);
6854 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6855 return build_reference_type_for_mode (to_type, pointer_mode, false);
6856 }
6857
6858 /* Build a type that is compatible with t but has no cv quals anywhere
6859 in its type, thus
6860
6861 const char *const *const * -> char ***. */
6862
6863 tree
6864 build_type_no_quals (tree t)
6865 {
6866 switch (TREE_CODE (t))
6867 {
6868 case POINTER_TYPE:
6869 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6870 TYPE_MODE (t),
6871 TYPE_REF_CAN_ALIAS_ALL (t));
6872 case REFERENCE_TYPE:
6873 return
6874 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6875 TYPE_MODE (t),
6876 TYPE_REF_CAN_ALIAS_ALL (t));
6877 default:
6878 return TYPE_MAIN_VARIANT (t);
6879 }
6880 }
6881
6882 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
6883 MAXVAL should be the maximum value in the domain
6884 (one less than the length of the array).
6885
6886 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
6887 We don't enforce this limit, that is up to caller (e.g. language front end).
6888 The limit exists because the result is a signed type and we don't handle
6889 sizes that use more than one HOST_WIDE_INT. */
6890
6891 tree
6892 build_index_type (tree maxval)
6893 {
6894 tree itype = make_node (INTEGER_TYPE);
6895
6896 TREE_TYPE (itype) = sizetype;
6897 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
6898 TYPE_MIN_VALUE (itype) = size_zero_node;
6899 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
6900 SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
6901 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
6902 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
6903 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
6904 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
6905
6906 if (host_integerp (maxval, 1))
6907 return type_hash_canon (tree_low_cst (maxval, 1), itype);
6908 else
6909 {
6910 /* Since we cannot hash this type, we need to compare it using
6911 structural equality checks. */
6912 SET_TYPE_STRUCTURAL_EQUALITY (itype);
6913 return itype;
6914 }
6915 }
6916
6917 #define MAX_INT_CACHED_PREC \
6918 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
6919 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
6920
6921 /* Builds a signed or unsigned integer type of precision PRECISION.
6922 Used for C bitfields whose precision does not match that of
6923 built-in target types. */
6924 tree
6925 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
6926 int unsignedp)
6927 {
6928 tree itype, ret;
6929
6930 if (unsignedp)
6931 unsignedp = MAX_INT_CACHED_PREC + 1;
6932
6933 if (precision <= MAX_INT_CACHED_PREC)
6934 {
6935 itype = nonstandard_integer_type_cache[precision + unsignedp];
6936 if (itype)
6937 return itype;
6938 }
6939
6940 itype = make_node (INTEGER_TYPE);
6941 TYPE_PRECISION (itype) = precision;
6942
6943 if (unsignedp)
6944 fixup_unsigned_type (itype);
6945 else
6946 fixup_signed_type (itype);
6947
6948 ret = itype;
6949 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
6950 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
6951 if (precision <= MAX_INT_CACHED_PREC && lang_hooks.types.hash_types)
6952 nonstandard_integer_type_cache[precision + unsignedp] = ret;
6953
6954 return ret;
6955 }
6956
6957 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
6958 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
6959 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
6960
6961 tree
6962 build_range_type (tree type, tree lowval, tree highval)
6963 {
6964 tree itype = make_node (INTEGER_TYPE);
6965
6966 TREE_TYPE (itype) = type;
6967 if (type == NULL_TREE)
6968 type = sizetype;
6969
6970 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
6971 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
6972
6973 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
6974 SET_TYPE_MODE (itype, TYPE_MODE (type));
6975 TYPE_SIZE (itype) = TYPE_SIZE (type);
6976 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
6977 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
6978 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
6979
6980 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
6981 return type_hash_canon (tree_low_cst (highval, 0)
6982 - tree_low_cst (lowval, 0),
6983 itype);
6984 else
6985 return itype;
6986 }
6987
6988 /* Return true if the debug information for TYPE, a subtype, should be emitted
6989 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
6990 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
6991 debug info and doesn't reflect the source code. */
6992
6993 bool
6994 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
6995 {
6996 tree base_type = TREE_TYPE (type), low, high;
6997
6998 /* Subrange types have a base type which is an integral type. */
6999 if (!INTEGRAL_TYPE_P (base_type))
7000 return false;
7001
7002 /* Get the real bounds of the subtype. */
7003 if (lang_hooks.types.get_subrange_bounds)
7004 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7005 else
7006 {
7007 low = TYPE_MIN_VALUE (type);
7008 high = TYPE_MAX_VALUE (type);
7009 }
7010
7011 /* If the type and its base type have the same representation and the same
7012 name, then the type is not a subrange but a copy of the base type. */
7013 if ((TREE_CODE (base_type) == INTEGER_TYPE
7014 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7015 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7016 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7017 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7018 {
7019 tree type_name = TYPE_NAME (type);
7020 tree base_type_name = TYPE_NAME (base_type);
7021
7022 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7023 type_name = DECL_NAME (type_name);
7024
7025 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7026 base_type_name = DECL_NAME (base_type_name);
7027
7028 if (type_name == base_type_name)
7029 return false;
7030 }
7031
7032 if (lowval)
7033 *lowval = low;
7034 if (highval)
7035 *highval = high;
7036 return true;
7037 }
7038
7039 /* Just like build_index_type, but takes lowval and highval instead
7040 of just highval (maxval). */
7041
7042 tree
7043 build_index_2_type (tree lowval, tree highval)
7044 {
7045 return build_range_type (sizetype, lowval, highval);
7046 }
7047
7048 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7049 and number of elements specified by the range of values of INDEX_TYPE.
7050 If such a type has already been constructed, reuse it. */
7051
7052 tree
7053 build_array_type (tree elt_type, tree index_type)
7054 {
7055 tree t;
7056 hashval_t hashcode = 0;
7057
7058 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7059 {
7060 error ("arrays of functions are not meaningful");
7061 elt_type = integer_type_node;
7062 }
7063
7064 t = make_node (ARRAY_TYPE);
7065 TREE_TYPE (t) = elt_type;
7066 TYPE_DOMAIN (t) = index_type;
7067 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7068 layout_type (t);
7069
7070 /* If the element type is incomplete at this point we get marked for
7071 structural equality. Do not record these types in the canonical
7072 type hashtable. */
7073 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7074 return t;
7075
7076 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
7077 if (index_type)
7078 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7079 t = type_hash_canon (hashcode, t);
7080
7081 if (TYPE_CANONICAL (t) == t)
7082 {
7083 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7084 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7085 SET_TYPE_STRUCTURAL_EQUALITY (t);
7086 else if (TYPE_CANONICAL (elt_type) != elt_type
7087 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7088 TYPE_CANONICAL (t)
7089 = build_array_type (TYPE_CANONICAL (elt_type),
7090 index_type ? TYPE_CANONICAL (index_type) : NULL);
7091 }
7092
7093 return t;
7094 }
7095
7096 /* Recursively examines the array elements of TYPE, until a non-array
7097 element type is found. */
7098
7099 tree
7100 strip_array_types (tree type)
7101 {
7102 while (TREE_CODE (type) == ARRAY_TYPE)
7103 type = TREE_TYPE (type);
7104
7105 return type;
7106 }
7107
7108 /* Computes the canonical argument types from the argument type list
7109 ARGTYPES.
7110
7111 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7112 on entry to this function, or if any of the ARGTYPES are
7113 structural.
7114
7115 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7116 true on entry to this function, or if any of the ARGTYPES are
7117 non-canonical.
7118
7119 Returns a canonical argument list, which may be ARGTYPES when the
7120 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7121 true) or would not differ from ARGTYPES. */
7122
7123 static tree
7124 maybe_canonicalize_argtypes(tree argtypes,
7125 bool *any_structural_p,
7126 bool *any_noncanonical_p)
7127 {
7128 tree arg;
7129 bool any_noncanonical_argtypes_p = false;
7130
7131 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7132 {
7133 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7134 /* Fail gracefully by stating that the type is structural. */
7135 *any_structural_p = true;
7136 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7137 *any_structural_p = true;
7138 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7139 || TREE_PURPOSE (arg))
7140 /* If the argument has a default argument, we consider it
7141 non-canonical even though the type itself is canonical.
7142 That way, different variants of function and method types
7143 with default arguments will all point to the variant with
7144 no defaults as their canonical type. */
7145 any_noncanonical_argtypes_p = true;
7146 }
7147
7148 if (*any_structural_p)
7149 return argtypes;
7150
7151 if (any_noncanonical_argtypes_p)
7152 {
7153 /* Build the canonical list of argument types. */
7154 tree canon_argtypes = NULL_TREE;
7155 bool is_void = false;
7156
7157 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7158 {
7159 if (arg == void_list_node)
7160 is_void = true;
7161 else
7162 canon_argtypes = tree_cons (NULL_TREE,
7163 TYPE_CANONICAL (TREE_VALUE (arg)),
7164 canon_argtypes);
7165 }
7166
7167 canon_argtypes = nreverse (canon_argtypes);
7168 if (is_void)
7169 canon_argtypes = chainon (canon_argtypes, void_list_node);
7170
7171 /* There is a non-canonical type. */
7172 *any_noncanonical_p = true;
7173 return canon_argtypes;
7174 }
7175
7176 /* The canonical argument types are the same as ARGTYPES. */
7177 return argtypes;
7178 }
7179
7180 /* Construct, lay out and return
7181 the type of functions returning type VALUE_TYPE
7182 given arguments of types ARG_TYPES.
7183 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7184 are data type nodes for the arguments of the function.
7185 If such a type has already been constructed, reuse it. */
7186
7187 tree
7188 build_function_type (tree value_type, tree arg_types)
7189 {
7190 tree t;
7191 hashval_t hashcode = 0;
7192 bool any_structural_p, any_noncanonical_p;
7193 tree canon_argtypes;
7194
7195 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7196 {
7197 error ("function return type cannot be function");
7198 value_type = integer_type_node;
7199 }
7200
7201 /* Make a node of the sort we want. */
7202 t = make_node (FUNCTION_TYPE);
7203 TREE_TYPE (t) = value_type;
7204 TYPE_ARG_TYPES (t) = arg_types;
7205
7206 /* If we already have such a type, use the old one. */
7207 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7208 hashcode = type_hash_list (arg_types, hashcode);
7209 t = type_hash_canon (hashcode, t);
7210
7211 /* Set up the canonical type. */
7212 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7213 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7214 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7215 &any_structural_p,
7216 &any_noncanonical_p);
7217 if (any_structural_p)
7218 SET_TYPE_STRUCTURAL_EQUALITY (t);
7219 else if (any_noncanonical_p)
7220 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7221 canon_argtypes);
7222
7223 if (!COMPLETE_TYPE_P (t))
7224 layout_type (t);
7225 return t;
7226 }
7227
7228 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7229
7230 tree
7231 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7232 {
7233 tree new_type = NULL;
7234 tree args, new_args = NULL, t;
7235 tree new_reversed;
7236 int i = 0;
7237
7238 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7239 args = TREE_CHAIN (args), i++)
7240 if (!bitmap_bit_p (args_to_skip, i))
7241 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7242
7243 new_reversed = nreverse (new_args);
7244 if (args)
7245 {
7246 if (new_reversed)
7247 TREE_CHAIN (new_args) = void_list_node;
7248 else
7249 new_reversed = void_list_node;
7250 }
7251
7252 /* Use copy_node to preserve as much as possible from original type
7253 (debug info, attribute lists etc.)
7254 Exception is METHOD_TYPEs must have THIS argument.
7255 When we are asked to remove it, we need to build new FUNCTION_TYPE
7256 instead. */
7257 if (TREE_CODE (orig_type) != METHOD_TYPE
7258 || !bitmap_bit_p (args_to_skip, 0))
7259 {
7260 new_type = copy_node (orig_type);
7261 TYPE_ARG_TYPES (new_type) = new_reversed;
7262 }
7263 else
7264 {
7265 new_type
7266 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7267 new_reversed));
7268 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7269 }
7270
7271 /* This is a new type, not a copy of an old type. Need to reassociate
7272 variants. We can handle everything except the main variant lazily. */
7273 t = TYPE_MAIN_VARIANT (orig_type);
7274 if (orig_type != t)
7275 {
7276 TYPE_MAIN_VARIANT (new_type) = t;
7277 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7278 TYPE_NEXT_VARIANT (t) = new_type;
7279 }
7280 else
7281 {
7282 TYPE_MAIN_VARIANT (new_type) = new_type;
7283 TYPE_NEXT_VARIANT (new_type) = NULL;
7284 }
7285 return new_type;
7286 }
7287
7288 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7289
7290 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7291 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7292 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7293
7294 tree
7295 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7296 {
7297 tree new_decl = copy_node (orig_decl);
7298 tree new_type;
7299
7300 new_type = TREE_TYPE (orig_decl);
7301 if (prototype_p (new_type))
7302 new_type = build_function_type_skip_args (new_type, args_to_skip);
7303 TREE_TYPE (new_decl) = new_type;
7304
7305 /* For declarations setting DECL_VINDEX (i.e. methods)
7306 we expect first argument to be THIS pointer. */
7307 if (bitmap_bit_p (args_to_skip, 0))
7308 DECL_VINDEX (new_decl) = NULL_TREE;
7309 return new_decl;
7310 }
7311
7312 /* Build a function type. The RETURN_TYPE is the type returned by the
7313 function. If VAARGS is set, no void_type_node is appended to the
7314 the list. ARGP must be always be terminated be a NULL_TREE. */
7315
7316 static tree
7317 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7318 {
7319 tree t, args, last;
7320
7321 t = va_arg (argp, tree);
7322 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7323 args = tree_cons (NULL_TREE, t, args);
7324
7325 if (vaargs)
7326 {
7327 last = args;
7328 if (args != NULL_TREE)
7329 args = nreverse (args);
7330 gcc_assert (last != void_list_node);
7331 }
7332 else if (args == NULL_TREE)
7333 args = void_list_node;
7334 else
7335 {
7336 last = args;
7337 args = nreverse (args);
7338 TREE_CHAIN (last) = void_list_node;
7339 }
7340 args = build_function_type (return_type, args);
7341
7342 return args;
7343 }
7344
7345 /* Build a function type. The RETURN_TYPE is the type returned by the
7346 function. If additional arguments are provided, they are
7347 additional argument types. The list of argument types must always
7348 be terminated by NULL_TREE. */
7349
7350 tree
7351 build_function_type_list (tree return_type, ...)
7352 {
7353 tree args;
7354 va_list p;
7355
7356 va_start (p, return_type);
7357 args = build_function_type_list_1 (false, return_type, p);
7358 va_end (p);
7359 return args;
7360 }
7361
7362 /* Build a variable argument function type. The RETURN_TYPE is the
7363 type returned by the function. If additional arguments are provided,
7364 they are additional argument types. The list of argument types must
7365 always be terminated by NULL_TREE. */
7366
7367 tree
7368 build_varargs_function_type_list (tree return_type, ...)
7369 {
7370 tree args;
7371 va_list p;
7372
7373 va_start (p, return_type);
7374 args = build_function_type_list_1 (true, return_type, p);
7375 va_end (p);
7376
7377 return args;
7378 }
7379
7380 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7381 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7382 for the method. An implicit additional parameter (of type
7383 pointer-to-BASETYPE) is added to the ARGTYPES. */
7384
7385 tree
7386 build_method_type_directly (tree basetype,
7387 tree rettype,
7388 tree argtypes)
7389 {
7390 tree t;
7391 tree ptype;
7392 int hashcode = 0;
7393 bool any_structural_p, any_noncanonical_p;
7394 tree canon_argtypes;
7395
7396 /* Make a node of the sort we want. */
7397 t = make_node (METHOD_TYPE);
7398
7399 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7400 TREE_TYPE (t) = rettype;
7401 ptype = build_pointer_type (basetype);
7402
7403 /* The actual arglist for this function includes a "hidden" argument
7404 which is "this". Put it into the list of argument types. */
7405 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7406 TYPE_ARG_TYPES (t) = argtypes;
7407
7408 /* If we already have such a type, use the old one. */
7409 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7410 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7411 hashcode = type_hash_list (argtypes, hashcode);
7412 t = type_hash_canon (hashcode, t);
7413
7414 /* Set up the canonical type. */
7415 any_structural_p
7416 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7417 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7418 any_noncanonical_p
7419 = (TYPE_CANONICAL (basetype) != basetype
7420 || TYPE_CANONICAL (rettype) != rettype);
7421 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7422 &any_structural_p,
7423 &any_noncanonical_p);
7424 if (any_structural_p)
7425 SET_TYPE_STRUCTURAL_EQUALITY (t);
7426 else if (any_noncanonical_p)
7427 TYPE_CANONICAL (t)
7428 = build_method_type_directly (TYPE_CANONICAL (basetype),
7429 TYPE_CANONICAL (rettype),
7430 canon_argtypes);
7431 if (!COMPLETE_TYPE_P (t))
7432 layout_type (t);
7433
7434 return t;
7435 }
7436
7437 /* Construct, lay out and return the type of methods belonging to class
7438 BASETYPE and whose arguments and values are described by TYPE.
7439 If that type exists already, reuse it.
7440 TYPE must be a FUNCTION_TYPE node. */
7441
7442 tree
7443 build_method_type (tree basetype, tree type)
7444 {
7445 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7446
7447 return build_method_type_directly (basetype,
7448 TREE_TYPE (type),
7449 TYPE_ARG_TYPES (type));
7450 }
7451
7452 /* Construct, lay out and return the type of offsets to a value
7453 of type TYPE, within an object of type BASETYPE.
7454 If a suitable offset type exists already, reuse it. */
7455
7456 tree
7457 build_offset_type (tree basetype, tree type)
7458 {
7459 tree t;
7460 hashval_t hashcode = 0;
7461
7462 /* Make a node of the sort we want. */
7463 t = make_node (OFFSET_TYPE);
7464
7465 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7466 TREE_TYPE (t) = type;
7467
7468 /* If we already have such a type, use the old one. */
7469 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7470 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7471 t = type_hash_canon (hashcode, t);
7472
7473 if (!COMPLETE_TYPE_P (t))
7474 layout_type (t);
7475
7476 if (TYPE_CANONICAL (t) == t)
7477 {
7478 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7479 || TYPE_STRUCTURAL_EQUALITY_P (type))
7480 SET_TYPE_STRUCTURAL_EQUALITY (t);
7481 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7482 || TYPE_CANONICAL (type) != type)
7483 TYPE_CANONICAL (t)
7484 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7485 TYPE_CANONICAL (type));
7486 }
7487
7488 return t;
7489 }
7490
7491 /* Create a complex type whose components are COMPONENT_TYPE. */
7492
7493 tree
7494 build_complex_type (tree component_type)
7495 {
7496 tree t;
7497 hashval_t hashcode;
7498
7499 gcc_assert (INTEGRAL_TYPE_P (component_type)
7500 || SCALAR_FLOAT_TYPE_P (component_type)
7501 || FIXED_POINT_TYPE_P (component_type));
7502
7503 /* Make a node of the sort we want. */
7504 t = make_node (COMPLEX_TYPE);
7505
7506 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7507
7508 /* If we already have such a type, use the old one. */
7509 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7510 t = type_hash_canon (hashcode, t);
7511
7512 if (!COMPLETE_TYPE_P (t))
7513 layout_type (t);
7514
7515 if (TYPE_CANONICAL (t) == t)
7516 {
7517 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7518 SET_TYPE_STRUCTURAL_EQUALITY (t);
7519 else if (TYPE_CANONICAL (component_type) != component_type)
7520 TYPE_CANONICAL (t)
7521 = build_complex_type (TYPE_CANONICAL (component_type));
7522 }
7523
7524 /* We need to create a name, since complex is a fundamental type. */
7525 if (! TYPE_NAME (t))
7526 {
7527 const char *name;
7528 if (component_type == char_type_node)
7529 name = "complex char";
7530 else if (component_type == signed_char_type_node)
7531 name = "complex signed char";
7532 else if (component_type == unsigned_char_type_node)
7533 name = "complex unsigned char";
7534 else if (component_type == short_integer_type_node)
7535 name = "complex short int";
7536 else if (component_type == short_unsigned_type_node)
7537 name = "complex short unsigned int";
7538 else if (component_type == integer_type_node)
7539 name = "complex int";
7540 else if (component_type == unsigned_type_node)
7541 name = "complex unsigned int";
7542 else if (component_type == long_integer_type_node)
7543 name = "complex long int";
7544 else if (component_type == long_unsigned_type_node)
7545 name = "complex long unsigned int";
7546 else if (component_type == long_long_integer_type_node)
7547 name = "complex long long int";
7548 else if (component_type == long_long_unsigned_type_node)
7549 name = "complex long long unsigned int";
7550 else
7551 name = 0;
7552
7553 if (name != 0)
7554 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7555 get_identifier (name), t);
7556 }
7557
7558 return build_qualified_type (t, TYPE_QUALS (component_type));
7559 }
7560
7561 /* If TYPE is a real or complex floating-point type and the target
7562 does not directly support arithmetic on TYPE then return the wider
7563 type to be used for arithmetic on TYPE. Otherwise, return
7564 NULL_TREE. */
7565
7566 tree
7567 excess_precision_type (tree type)
7568 {
7569 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7570 {
7571 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7572 switch (TREE_CODE (type))
7573 {
7574 case REAL_TYPE:
7575 switch (flt_eval_method)
7576 {
7577 case 1:
7578 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7579 return double_type_node;
7580 break;
7581 case 2:
7582 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7583 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7584 return long_double_type_node;
7585 break;
7586 default:
7587 gcc_unreachable ();
7588 }
7589 break;
7590 case COMPLEX_TYPE:
7591 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7592 return NULL_TREE;
7593 switch (flt_eval_method)
7594 {
7595 case 1:
7596 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7597 return complex_double_type_node;
7598 break;
7599 case 2:
7600 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7601 || (TYPE_MODE (TREE_TYPE (type))
7602 == TYPE_MODE (double_type_node)))
7603 return complex_long_double_type_node;
7604 break;
7605 default:
7606 gcc_unreachable ();
7607 }
7608 break;
7609 default:
7610 break;
7611 }
7612 }
7613 return NULL_TREE;
7614 }
7615 \f
7616 /* Return OP, stripped of any conversions to wider types as much as is safe.
7617 Converting the value back to OP's type makes a value equivalent to OP.
7618
7619 If FOR_TYPE is nonzero, we return a value which, if converted to
7620 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7621
7622 OP must have integer, real or enumeral type. Pointers are not allowed!
7623
7624 There are some cases where the obvious value we could return
7625 would regenerate to OP if converted to OP's type,
7626 but would not extend like OP to wider types.
7627 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7628 For example, if OP is (unsigned short)(signed char)-1,
7629 we avoid returning (signed char)-1 if FOR_TYPE is int,
7630 even though extending that to an unsigned short would regenerate OP,
7631 since the result of extending (signed char)-1 to (int)
7632 is different from (int) OP. */
7633
7634 tree
7635 get_unwidened (tree op, tree for_type)
7636 {
7637 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7638 tree type = TREE_TYPE (op);
7639 unsigned final_prec
7640 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7641 int uns
7642 = (for_type != 0 && for_type != type
7643 && final_prec > TYPE_PRECISION (type)
7644 && TYPE_UNSIGNED (type));
7645 tree win = op;
7646
7647 while (CONVERT_EXPR_P (op))
7648 {
7649 int bitschange;
7650
7651 /* TYPE_PRECISION on vector types has different meaning
7652 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7653 so avoid them here. */
7654 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7655 break;
7656
7657 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7658 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7659
7660 /* Truncations are many-one so cannot be removed.
7661 Unless we are later going to truncate down even farther. */
7662 if (bitschange < 0
7663 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7664 break;
7665
7666 /* See what's inside this conversion. If we decide to strip it,
7667 we will set WIN. */
7668 op = TREE_OPERAND (op, 0);
7669
7670 /* If we have not stripped any zero-extensions (uns is 0),
7671 we can strip any kind of extension.
7672 If we have previously stripped a zero-extension,
7673 only zero-extensions can safely be stripped.
7674 Any extension can be stripped if the bits it would produce
7675 are all going to be discarded later by truncating to FOR_TYPE. */
7676
7677 if (bitschange > 0)
7678 {
7679 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7680 win = op;
7681 /* TYPE_UNSIGNED says whether this is a zero-extension.
7682 Let's avoid computing it if it does not affect WIN
7683 and if UNS will not be needed again. */
7684 if ((uns
7685 || CONVERT_EXPR_P (op))
7686 && TYPE_UNSIGNED (TREE_TYPE (op)))
7687 {
7688 uns = 1;
7689 win = op;
7690 }
7691 }
7692 }
7693
7694 /* If we finally reach a constant see if it fits in for_type and
7695 in that case convert it. */
7696 if (for_type
7697 && TREE_CODE (win) == INTEGER_CST
7698 && TREE_TYPE (win) != for_type
7699 && int_fits_type_p (win, for_type))
7700 win = fold_convert (for_type, win);
7701
7702 return win;
7703 }
7704 \f
7705 /* Return OP or a simpler expression for a narrower value
7706 which can be sign-extended or zero-extended to give back OP.
7707 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7708 or 0 if the value should be sign-extended. */
7709
7710 tree
7711 get_narrower (tree op, int *unsignedp_ptr)
7712 {
7713 int uns = 0;
7714 int first = 1;
7715 tree win = op;
7716 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7717
7718 while (TREE_CODE (op) == NOP_EXPR)
7719 {
7720 int bitschange
7721 = (TYPE_PRECISION (TREE_TYPE (op))
7722 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7723
7724 /* Truncations are many-one so cannot be removed. */
7725 if (bitschange < 0)
7726 break;
7727
7728 /* See what's inside this conversion. If we decide to strip it,
7729 we will set WIN. */
7730
7731 if (bitschange > 0)
7732 {
7733 op = TREE_OPERAND (op, 0);
7734 /* An extension: the outermost one can be stripped,
7735 but remember whether it is zero or sign extension. */
7736 if (first)
7737 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7738 /* Otherwise, if a sign extension has been stripped,
7739 only sign extensions can now be stripped;
7740 if a zero extension has been stripped, only zero-extensions. */
7741 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7742 break;
7743 first = 0;
7744 }
7745 else /* bitschange == 0 */
7746 {
7747 /* A change in nominal type can always be stripped, but we must
7748 preserve the unsignedness. */
7749 if (first)
7750 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7751 first = 0;
7752 op = TREE_OPERAND (op, 0);
7753 /* Keep trying to narrow, but don't assign op to win if it
7754 would turn an integral type into something else. */
7755 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7756 continue;
7757 }
7758
7759 win = op;
7760 }
7761
7762 if (TREE_CODE (op) == COMPONENT_REF
7763 /* Since type_for_size always gives an integer type. */
7764 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7765 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7766 /* Ensure field is laid out already. */
7767 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7768 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7769 {
7770 unsigned HOST_WIDE_INT innerprec
7771 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7772 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7773 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7774 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7775
7776 /* We can get this structure field in a narrower type that fits it,
7777 but the resulting extension to its nominal type (a fullword type)
7778 must satisfy the same conditions as for other extensions.
7779
7780 Do this only for fields that are aligned (not bit-fields),
7781 because when bit-field insns will be used there is no
7782 advantage in doing this. */
7783
7784 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7785 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7786 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7787 && type != 0)
7788 {
7789 if (first)
7790 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7791 win = fold_convert (type, op);
7792 }
7793 }
7794
7795 *unsignedp_ptr = uns;
7796 return win;
7797 }
7798 \f
7799 /* Nonzero if integer constant C has a value that is permissible
7800 for type TYPE (an INTEGER_TYPE). */
7801
7802 int
7803 int_fits_type_p (const_tree c, const_tree type)
7804 {
7805 tree type_low_bound, type_high_bound;
7806 bool ok_for_low_bound, ok_for_high_bound, unsc;
7807 double_int dc, dd;
7808
7809 dc = tree_to_double_int (c);
7810 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7811
7812 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7813 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7814 && unsc)
7815 /* So c is an unsigned integer whose type is sizetype and type is not.
7816 sizetype'd integers are sign extended even though they are
7817 unsigned. If the integer value fits in the lower end word of c,
7818 and if the higher end word has all its bits set to 1, that
7819 means the higher end bits are set to 1 only for sign extension.
7820 So let's convert c into an equivalent zero extended unsigned
7821 integer. */
7822 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7823
7824 retry:
7825 type_low_bound = TYPE_MIN_VALUE (type);
7826 type_high_bound = TYPE_MAX_VALUE (type);
7827
7828 /* If at least one bound of the type is a constant integer, we can check
7829 ourselves and maybe make a decision. If no such decision is possible, but
7830 this type is a subtype, try checking against that. Otherwise, use
7831 fit_double_type, which checks against the precision.
7832
7833 Compute the status for each possibly constant bound, and return if we see
7834 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7835 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7836 for "constant known to fit". */
7837
7838 /* Check if c >= type_low_bound. */
7839 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7840 {
7841 dd = tree_to_double_int (type_low_bound);
7842 if (TREE_CODE (type) == INTEGER_TYPE
7843 && TYPE_IS_SIZETYPE (type)
7844 && TYPE_UNSIGNED (type))
7845 dd = double_int_zext (dd, TYPE_PRECISION (type));
7846 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7847 {
7848 int c_neg = (!unsc && double_int_negative_p (dc));
7849 int t_neg = (unsc && double_int_negative_p (dd));
7850
7851 if (c_neg && !t_neg)
7852 return 0;
7853 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
7854 return 0;
7855 }
7856 else if (double_int_cmp (dc, dd, unsc) < 0)
7857 return 0;
7858 ok_for_low_bound = true;
7859 }
7860 else
7861 ok_for_low_bound = false;
7862
7863 /* Check if c <= type_high_bound. */
7864 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
7865 {
7866 dd = tree_to_double_int (type_high_bound);
7867 if (TREE_CODE (type) == INTEGER_TYPE
7868 && TYPE_IS_SIZETYPE (type)
7869 && TYPE_UNSIGNED (type))
7870 dd = double_int_zext (dd, TYPE_PRECISION (type));
7871 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
7872 {
7873 int c_neg = (!unsc && double_int_negative_p (dc));
7874 int t_neg = (unsc && double_int_negative_p (dd));
7875
7876 if (t_neg && !c_neg)
7877 return 0;
7878 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
7879 return 0;
7880 }
7881 else if (double_int_cmp (dc, dd, unsc) > 0)
7882 return 0;
7883 ok_for_high_bound = true;
7884 }
7885 else
7886 ok_for_high_bound = false;
7887
7888 /* If the constant fits both bounds, the result is known. */
7889 if (ok_for_low_bound && ok_for_high_bound)
7890 return 1;
7891
7892 /* Perform some generic filtering which may allow making a decision
7893 even if the bounds are not constant. First, negative integers
7894 never fit in unsigned types, */
7895 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
7896 return 0;
7897
7898 /* Second, narrower types always fit in wider ones. */
7899 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
7900 return 1;
7901
7902 /* Third, unsigned integers with top bit set never fit signed types. */
7903 if (! TYPE_UNSIGNED (type) && unsc)
7904 {
7905 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
7906 if (prec < HOST_BITS_PER_WIDE_INT)
7907 {
7908 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
7909 return 0;
7910 }
7911 else if (((((unsigned HOST_WIDE_INT) 1)
7912 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
7913 return 0;
7914 }
7915
7916 /* If we haven't been able to decide at this point, there nothing more we
7917 can check ourselves here. Look at the base type if we have one and it
7918 has the same precision. */
7919 if (TREE_CODE (type) == INTEGER_TYPE
7920 && TREE_TYPE (type) != 0
7921 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
7922 {
7923 type = TREE_TYPE (type);
7924 goto retry;
7925 }
7926
7927 /* Or to fit_double_type, if nothing else. */
7928 return !fit_double_type (dc.low, dc.high, &dc.low, &dc.high, type);
7929 }
7930
7931 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
7932 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
7933 represented (assuming two's-complement arithmetic) within the bit
7934 precision of the type are returned instead. */
7935
7936 void
7937 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
7938 {
7939 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
7940 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
7941 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
7942 TYPE_UNSIGNED (type));
7943 else
7944 {
7945 if (TYPE_UNSIGNED (type))
7946 mpz_set_ui (min, 0);
7947 else
7948 {
7949 double_int mn;
7950 mn = double_int_mask (TYPE_PRECISION (type) - 1);
7951 mn = double_int_sext (double_int_add (mn, double_int_one),
7952 TYPE_PRECISION (type));
7953 mpz_set_double_int (min, mn, false);
7954 }
7955 }
7956
7957 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
7958 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
7959 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
7960 TYPE_UNSIGNED (type));
7961 else
7962 {
7963 if (TYPE_UNSIGNED (type))
7964 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
7965 true);
7966 else
7967 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
7968 true);
7969 }
7970 }
7971
7972 /* Return true if VAR is an automatic variable defined in function FN. */
7973
7974 bool
7975 auto_var_in_fn_p (const_tree var, const_tree fn)
7976 {
7977 return (DECL_P (var) && DECL_CONTEXT (var) == fn
7978 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
7979 || TREE_CODE (var) == PARM_DECL)
7980 && ! TREE_STATIC (var))
7981 || TREE_CODE (var) == LABEL_DECL
7982 || TREE_CODE (var) == RESULT_DECL));
7983 }
7984
7985 /* Subprogram of following function. Called by walk_tree.
7986
7987 Return *TP if it is an automatic variable or parameter of the
7988 function passed in as DATA. */
7989
7990 static tree
7991 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
7992 {
7993 tree fn = (tree) data;
7994
7995 if (TYPE_P (*tp))
7996 *walk_subtrees = 0;
7997
7998 else if (DECL_P (*tp)
7999 && auto_var_in_fn_p (*tp, fn))
8000 return *tp;
8001
8002 return NULL_TREE;
8003 }
8004
8005 /* Returns true if T is, contains, or refers to a type with variable
8006 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8007 arguments, but not the return type. If FN is nonzero, only return
8008 true if a modifier of the type or position of FN is a variable or
8009 parameter inside FN.
8010
8011 This concept is more general than that of C99 'variably modified types':
8012 in C99, a struct type is never variably modified because a VLA may not
8013 appear as a structure member. However, in GNU C code like:
8014
8015 struct S { int i[f()]; };
8016
8017 is valid, and other languages may define similar constructs. */
8018
8019 bool
8020 variably_modified_type_p (tree type, tree fn)
8021 {
8022 tree t;
8023
8024 /* Test if T is either variable (if FN is zero) or an expression containing
8025 a variable in FN. */
8026 #define RETURN_TRUE_IF_VAR(T) \
8027 do { tree _t = (T); \
8028 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8029 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8030 return true; } while (0)
8031
8032 if (type == error_mark_node)
8033 return false;
8034
8035 /* If TYPE itself has variable size, it is variably modified. */
8036 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8037 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8038
8039 switch (TREE_CODE (type))
8040 {
8041 case POINTER_TYPE:
8042 case REFERENCE_TYPE:
8043 case VECTOR_TYPE:
8044 if (variably_modified_type_p (TREE_TYPE (type), fn))
8045 return true;
8046 break;
8047
8048 case FUNCTION_TYPE:
8049 case METHOD_TYPE:
8050 /* If TYPE is a function type, it is variably modified if the
8051 return type is variably modified. */
8052 if (variably_modified_type_p (TREE_TYPE (type), fn))
8053 return true;
8054 break;
8055
8056 case INTEGER_TYPE:
8057 case REAL_TYPE:
8058 case FIXED_POINT_TYPE:
8059 case ENUMERAL_TYPE:
8060 case BOOLEAN_TYPE:
8061 /* Scalar types are variably modified if their end points
8062 aren't constant. */
8063 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8064 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8065 break;
8066
8067 case RECORD_TYPE:
8068 case UNION_TYPE:
8069 case QUAL_UNION_TYPE:
8070 /* We can't see if any of the fields are variably-modified by the
8071 definition we normally use, since that would produce infinite
8072 recursion via pointers. */
8073 /* This is variably modified if some field's type is. */
8074 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
8075 if (TREE_CODE (t) == FIELD_DECL)
8076 {
8077 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8078 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8079 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8080
8081 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8082 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8083 }
8084 break;
8085
8086 case ARRAY_TYPE:
8087 /* Do not call ourselves to avoid infinite recursion. This is
8088 variably modified if the element type is. */
8089 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8090 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8091 break;
8092
8093 default:
8094 break;
8095 }
8096
8097 /* The current language may have other cases to check, but in general,
8098 all other types are not variably modified. */
8099 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8100
8101 #undef RETURN_TRUE_IF_VAR
8102 }
8103
8104 /* Given a DECL or TYPE, return the scope in which it was declared, or
8105 NULL_TREE if there is no containing scope. */
8106
8107 tree
8108 get_containing_scope (const_tree t)
8109 {
8110 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8111 }
8112
8113 /* Return the innermost context enclosing DECL that is
8114 a FUNCTION_DECL, or zero if none. */
8115
8116 tree
8117 decl_function_context (const_tree decl)
8118 {
8119 tree context;
8120
8121 if (TREE_CODE (decl) == ERROR_MARK)
8122 return 0;
8123
8124 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8125 where we look up the function at runtime. Such functions always take
8126 a first argument of type 'pointer to real context'.
8127
8128 C++ should really be fixed to use DECL_CONTEXT for the real context,
8129 and use something else for the "virtual context". */
8130 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8131 context
8132 = TYPE_MAIN_VARIANT
8133 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8134 else
8135 context = DECL_CONTEXT (decl);
8136
8137 while (context && TREE_CODE (context) != FUNCTION_DECL)
8138 {
8139 if (TREE_CODE (context) == BLOCK)
8140 context = BLOCK_SUPERCONTEXT (context);
8141 else
8142 context = get_containing_scope (context);
8143 }
8144
8145 return context;
8146 }
8147
8148 /* Return the innermost context enclosing DECL that is
8149 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8150 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8151
8152 tree
8153 decl_type_context (const_tree decl)
8154 {
8155 tree context = DECL_CONTEXT (decl);
8156
8157 while (context)
8158 switch (TREE_CODE (context))
8159 {
8160 case NAMESPACE_DECL:
8161 case TRANSLATION_UNIT_DECL:
8162 return NULL_TREE;
8163
8164 case RECORD_TYPE:
8165 case UNION_TYPE:
8166 case QUAL_UNION_TYPE:
8167 return context;
8168
8169 case TYPE_DECL:
8170 case FUNCTION_DECL:
8171 context = DECL_CONTEXT (context);
8172 break;
8173
8174 case BLOCK:
8175 context = BLOCK_SUPERCONTEXT (context);
8176 break;
8177
8178 default:
8179 gcc_unreachable ();
8180 }
8181
8182 return NULL_TREE;
8183 }
8184
8185 /* CALL is a CALL_EXPR. Return the declaration for the function
8186 called, or NULL_TREE if the called function cannot be
8187 determined. */
8188
8189 tree
8190 get_callee_fndecl (const_tree call)
8191 {
8192 tree addr;
8193
8194 if (call == error_mark_node)
8195 return error_mark_node;
8196
8197 /* It's invalid to call this function with anything but a
8198 CALL_EXPR. */
8199 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8200
8201 /* The first operand to the CALL is the address of the function
8202 called. */
8203 addr = CALL_EXPR_FN (call);
8204
8205 STRIP_NOPS (addr);
8206
8207 /* If this is a readonly function pointer, extract its initial value. */
8208 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8209 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8210 && DECL_INITIAL (addr))
8211 addr = DECL_INITIAL (addr);
8212
8213 /* If the address is just `&f' for some function `f', then we know
8214 that `f' is being called. */
8215 if (TREE_CODE (addr) == ADDR_EXPR
8216 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8217 return TREE_OPERAND (addr, 0);
8218
8219 /* We couldn't figure out what was being called. */
8220 return NULL_TREE;
8221 }
8222
8223 /* Print debugging information about tree nodes generated during the compile,
8224 and any language-specific information. */
8225
8226 void
8227 dump_tree_statistics (void)
8228 {
8229 #ifdef GATHER_STATISTICS
8230 int i;
8231 int total_nodes, total_bytes;
8232 #endif
8233
8234 fprintf (stderr, "\n??? tree nodes created\n\n");
8235 #ifdef GATHER_STATISTICS
8236 fprintf (stderr, "Kind Nodes Bytes\n");
8237 fprintf (stderr, "---------------------------------------\n");
8238 total_nodes = total_bytes = 0;
8239 for (i = 0; i < (int) all_kinds; i++)
8240 {
8241 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8242 tree_node_counts[i], tree_node_sizes[i]);
8243 total_nodes += tree_node_counts[i];
8244 total_bytes += tree_node_sizes[i];
8245 }
8246 fprintf (stderr, "---------------------------------------\n");
8247 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8248 fprintf (stderr, "---------------------------------------\n");
8249 ssanames_print_statistics ();
8250 phinodes_print_statistics ();
8251 #else
8252 fprintf (stderr, "(No per-node statistics)\n");
8253 #endif
8254 print_type_hash_statistics ();
8255 print_debug_expr_statistics ();
8256 print_value_expr_statistics ();
8257 lang_hooks.print_statistics ();
8258 }
8259 \f
8260 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8261
8262 /* Generate a crc32 of a string. */
8263
8264 unsigned
8265 crc32_string (unsigned chksum, const char *string)
8266 {
8267 do
8268 {
8269 unsigned value = *string << 24;
8270 unsigned ix;
8271
8272 for (ix = 8; ix--; value <<= 1)
8273 {
8274 unsigned feedback;
8275
8276 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8277 chksum <<= 1;
8278 chksum ^= feedback;
8279 }
8280 }
8281 while (*string++);
8282 return chksum;
8283 }
8284
8285 /* P is a string that will be used in a symbol. Mask out any characters
8286 that are not valid in that context. */
8287
8288 void
8289 clean_symbol_name (char *p)
8290 {
8291 for (; *p; p++)
8292 if (! (ISALNUM (*p)
8293 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8294 || *p == '$'
8295 #endif
8296 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8297 || *p == '.'
8298 #endif
8299 ))
8300 *p = '_';
8301 }
8302
8303 /* Generate a name for a special-purpose function function.
8304 The generated name may need to be unique across the whole link.
8305 TYPE is some string to identify the purpose of this function to the
8306 linker or collect2; it must start with an uppercase letter,
8307 one of:
8308 I - for constructors
8309 D - for destructors
8310 N - for C++ anonymous namespaces
8311 F - for DWARF unwind frame information. */
8312
8313 tree
8314 get_file_function_name (const char *type)
8315 {
8316 char *buf;
8317 const char *p;
8318 char *q;
8319
8320 /* If we already have a name we know to be unique, just use that. */
8321 if (first_global_object_name)
8322 p = q = ASTRDUP (first_global_object_name);
8323 /* If the target is handling the constructors/destructors, they
8324 will be local to this file and the name is only necessary for
8325 debugging purposes. */
8326 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8327 {
8328 const char *file = main_input_filename;
8329 if (! file)
8330 file = input_filename;
8331 /* Just use the file's basename, because the full pathname
8332 might be quite long. */
8333 p = strrchr (file, '/');
8334 if (p)
8335 p++;
8336 else
8337 p = file;
8338 p = q = ASTRDUP (p);
8339 }
8340 else
8341 {
8342 /* Otherwise, the name must be unique across the entire link.
8343 We don't have anything that we know to be unique to this translation
8344 unit, so use what we do have and throw in some randomness. */
8345 unsigned len;
8346 const char *name = weak_global_object_name;
8347 const char *file = main_input_filename;
8348
8349 if (! name)
8350 name = "";
8351 if (! file)
8352 file = input_filename;
8353
8354 len = strlen (file);
8355 q = (char *) alloca (9 * 2 + len + 1);
8356 memcpy (q, file, len + 1);
8357
8358 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8359 crc32_string (0, get_random_seed (false)));
8360
8361 p = q;
8362 }
8363
8364 clean_symbol_name (q);
8365 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8366 + strlen (type));
8367
8368 /* Set up the name of the file-level functions we may need.
8369 Use a global object (which is already required to be unique over
8370 the program) rather than the file name (which imposes extra
8371 constraints). */
8372 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8373
8374 return get_identifier (buf);
8375 }
8376 \f
8377 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8378
8379 /* Complain that the tree code of NODE does not match the expected 0
8380 terminated list of trailing codes. The trailing code list can be
8381 empty, for a more vague error message. FILE, LINE, and FUNCTION
8382 are of the caller. */
8383
8384 void
8385 tree_check_failed (const_tree node, const char *file,
8386 int line, const char *function, ...)
8387 {
8388 va_list args;
8389 const char *buffer;
8390 unsigned length = 0;
8391 int code;
8392
8393 va_start (args, function);
8394 while ((code = va_arg (args, int)))
8395 length += 4 + strlen (tree_code_name[code]);
8396 va_end (args);
8397 if (length)
8398 {
8399 char *tmp;
8400 va_start (args, function);
8401 length += strlen ("expected ");
8402 buffer = tmp = (char *) alloca (length);
8403 length = 0;
8404 while ((code = va_arg (args, int)))
8405 {
8406 const char *prefix = length ? " or " : "expected ";
8407
8408 strcpy (tmp + length, prefix);
8409 length += strlen (prefix);
8410 strcpy (tmp + length, tree_code_name[code]);
8411 length += strlen (tree_code_name[code]);
8412 }
8413 va_end (args);
8414 }
8415 else
8416 buffer = "unexpected node";
8417
8418 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8419 buffer, tree_code_name[TREE_CODE (node)],
8420 function, trim_filename (file), line);
8421 }
8422
8423 /* Complain that the tree code of NODE does match the expected 0
8424 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8425 the caller. */
8426
8427 void
8428 tree_not_check_failed (const_tree node, const char *file,
8429 int line, const char *function, ...)
8430 {
8431 va_list args;
8432 char *buffer;
8433 unsigned length = 0;
8434 int code;
8435
8436 va_start (args, function);
8437 while ((code = va_arg (args, int)))
8438 length += 4 + strlen (tree_code_name[code]);
8439 va_end (args);
8440 va_start (args, function);
8441 buffer = (char *) alloca (length);
8442 length = 0;
8443 while ((code = va_arg (args, int)))
8444 {
8445 if (length)
8446 {
8447 strcpy (buffer + length, " or ");
8448 length += 4;
8449 }
8450 strcpy (buffer + length, tree_code_name[code]);
8451 length += strlen (tree_code_name[code]);
8452 }
8453 va_end (args);
8454
8455 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8456 buffer, tree_code_name[TREE_CODE (node)],
8457 function, trim_filename (file), line);
8458 }
8459
8460 /* Similar to tree_check_failed, except that we check for a class of tree
8461 code, given in CL. */
8462
8463 void
8464 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8465 const char *file, int line, const char *function)
8466 {
8467 internal_error
8468 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8469 TREE_CODE_CLASS_STRING (cl),
8470 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8471 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8472 }
8473
8474 /* Similar to tree_check_failed, except that instead of specifying a
8475 dozen codes, use the knowledge that they're all sequential. */
8476
8477 void
8478 tree_range_check_failed (const_tree node, const char *file, int line,
8479 const char *function, enum tree_code c1,
8480 enum tree_code c2)
8481 {
8482 char *buffer;
8483 unsigned length = 0;
8484 unsigned int c;
8485
8486 for (c = c1; c <= c2; ++c)
8487 length += 4 + strlen (tree_code_name[c]);
8488
8489 length += strlen ("expected ");
8490 buffer = (char *) alloca (length);
8491 length = 0;
8492
8493 for (c = c1; c <= c2; ++c)
8494 {
8495 const char *prefix = length ? " or " : "expected ";
8496
8497 strcpy (buffer + length, prefix);
8498 length += strlen (prefix);
8499 strcpy (buffer + length, tree_code_name[c]);
8500 length += strlen (tree_code_name[c]);
8501 }
8502
8503 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8504 buffer, tree_code_name[TREE_CODE (node)],
8505 function, trim_filename (file), line);
8506 }
8507
8508
8509 /* Similar to tree_check_failed, except that we check that a tree does
8510 not have the specified code, given in CL. */
8511
8512 void
8513 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8514 const char *file, int line, const char *function)
8515 {
8516 internal_error
8517 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8518 TREE_CODE_CLASS_STRING (cl),
8519 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8520 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8521 }
8522
8523
8524 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8525
8526 void
8527 omp_clause_check_failed (const_tree node, const char *file, int line,
8528 const char *function, enum omp_clause_code code)
8529 {
8530 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8531 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8532 function, trim_filename (file), line);
8533 }
8534
8535
8536 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8537
8538 void
8539 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8540 const char *function, enum omp_clause_code c1,
8541 enum omp_clause_code c2)
8542 {
8543 char *buffer;
8544 unsigned length = 0;
8545 unsigned int c;
8546
8547 for (c = c1; c <= c2; ++c)
8548 length += 4 + strlen (omp_clause_code_name[c]);
8549
8550 length += strlen ("expected ");
8551 buffer = (char *) alloca (length);
8552 length = 0;
8553
8554 for (c = c1; c <= c2; ++c)
8555 {
8556 const char *prefix = length ? " or " : "expected ";
8557
8558 strcpy (buffer + length, prefix);
8559 length += strlen (prefix);
8560 strcpy (buffer + length, omp_clause_code_name[c]);
8561 length += strlen (omp_clause_code_name[c]);
8562 }
8563
8564 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8565 buffer, omp_clause_code_name[TREE_CODE (node)],
8566 function, trim_filename (file), line);
8567 }
8568
8569
8570 #undef DEFTREESTRUCT
8571 #define DEFTREESTRUCT(VAL, NAME) NAME,
8572
8573 static const char *ts_enum_names[] = {
8574 #include "treestruct.def"
8575 };
8576 #undef DEFTREESTRUCT
8577
8578 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8579
8580 /* Similar to tree_class_check_failed, except that we check for
8581 whether CODE contains the tree structure identified by EN. */
8582
8583 void
8584 tree_contains_struct_check_failed (const_tree node,
8585 const enum tree_node_structure_enum en,
8586 const char *file, int line,
8587 const char *function)
8588 {
8589 internal_error
8590 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8591 TS_ENUM_NAME(en),
8592 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8593 }
8594
8595
8596 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8597 (dynamically sized) vector. */
8598
8599 void
8600 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8601 const char *function)
8602 {
8603 internal_error
8604 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8605 idx + 1, len, function, trim_filename (file), line);
8606 }
8607
8608 /* Similar to above, except that the check is for the bounds of the operand
8609 vector of an expression node EXP. */
8610
8611 void
8612 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8613 int line, const char *function)
8614 {
8615 int code = TREE_CODE (exp);
8616 internal_error
8617 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8618 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8619 function, trim_filename (file), line);
8620 }
8621
8622 /* Similar to above, except that the check is for the number of
8623 operands of an OMP_CLAUSE node. */
8624
8625 void
8626 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8627 int line, const char *function)
8628 {
8629 internal_error
8630 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8631 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8632 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8633 trim_filename (file), line);
8634 }
8635 #endif /* ENABLE_TREE_CHECKING */
8636 \f
8637 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8638 and mapped to the machine mode MODE. Initialize its fields and build
8639 the information necessary for debugging output. */
8640
8641 static tree
8642 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8643 {
8644 tree t;
8645 hashval_t hashcode = 0;
8646
8647 t = make_node (VECTOR_TYPE);
8648 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8649 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8650 SET_TYPE_MODE (t, mode);
8651
8652 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8653 SET_TYPE_STRUCTURAL_EQUALITY (t);
8654 else if (TYPE_CANONICAL (innertype) != innertype
8655 || mode != VOIDmode)
8656 TYPE_CANONICAL (t)
8657 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8658
8659 layout_type (t);
8660
8661 {
8662 tree index = build_int_cst (NULL_TREE, nunits - 1);
8663 tree array = build_array_type (TYPE_MAIN_VARIANT (innertype),
8664 build_index_type (index));
8665 tree rt = make_node (RECORD_TYPE);
8666
8667 TYPE_FIELDS (rt) = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
8668 get_identifier ("f"), array);
8669 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
8670 layout_type (rt);
8671 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
8672 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
8673 the representation type, and we want to find that die when looking up
8674 the vector type. This is most easily achieved by making the TYPE_UID
8675 numbers equal. */
8676 TYPE_UID (rt) = TYPE_UID (t);
8677 }
8678
8679 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8680 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8681 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8682 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8683 t = type_hash_canon (hashcode, t);
8684
8685 /* We have built a main variant, based on the main variant of the
8686 inner type. Use it to build the variant we return. */
8687 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8688 && TREE_TYPE (t) != innertype)
8689 return build_type_attribute_qual_variant (t,
8690 TYPE_ATTRIBUTES (innertype),
8691 TYPE_QUALS (innertype));
8692
8693 return t;
8694 }
8695
8696 static tree
8697 make_or_reuse_type (unsigned size, int unsignedp)
8698 {
8699 if (size == INT_TYPE_SIZE)
8700 return unsignedp ? unsigned_type_node : integer_type_node;
8701 if (size == CHAR_TYPE_SIZE)
8702 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8703 if (size == SHORT_TYPE_SIZE)
8704 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8705 if (size == LONG_TYPE_SIZE)
8706 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8707 if (size == LONG_LONG_TYPE_SIZE)
8708 return (unsignedp ? long_long_unsigned_type_node
8709 : long_long_integer_type_node);
8710
8711 if (unsignedp)
8712 return make_unsigned_type (size);
8713 else
8714 return make_signed_type (size);
8715 }
8716
8717 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8718
8719 static tree
8720 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8721 {
8722 if (satp)
8723 {
8724 if (size == SHORT_FRACT_TYPE_SIZE)
8725 return unsignedp ? sat_unsigned_short_fract_type_node
8726 : sat_short_fract_type_node;
8727 if (size == FRACT_TYPE_SIZE)
8728 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8729 if (size == LONG_FRACT_TYPE_SIZE)
8730 return unsignedp ? sat_unsigned_long_fract_type_node
8731 : sat_long_fract_type_node;
8732 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8733 return unsignedp ? sat_unsigned_long_long_fract_type_node
8734 : sat_long_long_fract_type_node;
8735 }
8736 else
8737 {
8738 if (size == SHORT_FRACT_TYPE_SIZE)
8739 return unsignedp ? unsigned_short_fract_type_node
8740 : short_fract_type_node;
8741 if (size == FRACT_TYPE_SIZE)
8742 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8743 if (size == LONG_FRACT_TYPE_SIZE)
8744 return unsignedp ? unsigned_long_fract_type_node
8745 : long_fract_type_node;
8746 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8747 return unsignedp ? unsigned_long_long_fract_type_node
8748 : long_long_fract_type_node;
8749 }
8750
8751 return make_fract_type (size, unsignedp, satp);
8752 }
8753
8754 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8755
8756 static tree
8757 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8758 {
8759 if (satp)
8760 {
8761 if (size == SHORT_ACCUM_TYPE_SIZE)
8762 return unsignedp ? sat_unsigned_short_accum_type_node
8763 : sat_short_accum_type_node;
8764 if (size == ACCUM_TYPE_SIZE)
8765 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8766 if (size == LONG_ACCUM_TYPE_SIZE)
8767 return unsignedp ? sat_unsigned_long_accum_type_node
8768 : sat_long_accum_type_node;
8769 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8770 return unsignedp ? sat_unsigned_long_long_accum_type_node
8771 : sat_long_long_accum_type_node;
8772 }
8773 else
8774 {
8775 if (size == SHORT_ACCUM_TYPE_SIZE)
8776 return unsignedp ? unsigned_short_accum_type_node
8777 : short_accum_type_node;
8778 if (size == ACCUM_TYPE_SIZE)
8779 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8780 if (size == LONG_ACCUM_TYPE_SIZE)
8781 return unsignedp ? unsigned_long_accum_type_node
8782 : long_accum_type_node;
8783 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8784 return unsignedp ? unsigned_long_long_accum_type_node
8785 : long_long_accum_type_node;
8786 }
8787
8788 return make_accum_type (size, unsignedp, satp);
8789 }
8790
8791 /* Create nodes for all integer types (and error_mark_node) using the sizes
8792 of C datatypes. The caller should call set_sizetype soon after calling
8793 this function to select one of the types as sizetype. */
8794
8795 void
8796 build_common_tree_nodes (bool signed_char)
8797 {
8798 error_mark_node = make_node (ERROR_MARK);
8799 TREE_TYPE (error_mark_node) = error_mark_node;
8800
8801 initialize_sizetypes ();
8802
8803 /* Define both `signed char' and `unsigned char'. */
8804 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8805 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8806 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8807 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8808
8809 /* Define `char', which is like either `signed char' or `unsigned char'
8810 but not the same as either. */
8811 char_type_node
8812 = (signed_char
8813 ? make_signed_type (CHAR_TYPE_SIZE)
8814 : make_unsigned_type (CHAR_TYPE_SIZE));
8815 TYPE_STRING_FLAG (char_type_node) = 1;
8816
8817 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8818 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8819 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8820 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8821 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8822 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8823 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8824 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8825
8826 /* Define a boolean type. This type only represents boolean values but
8827 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8828 Front ends which want to override this size (i.e. Java) can redefine
8829 boolean_type_node before calling build_common_tree_nodes_2. */
8830 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8831 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8832 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8833 TYPE_PRECISION (boolean_type_node) = 1;
8834
8835 /* Fill in the rest of the sized types. Reuse existing type nodes
8836 when possible. */
8837 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8838 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8839 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8840 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8841 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8842
8843 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8844 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8845 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8846 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8847 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8848
8849 access_public_node = get_identifier ("public");
8850 access_protected_node = get_identifier ("protected");
8851 access_private_node = get_identifier ("private");
8852 }
8853
8854 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8855 It will create several other common tree nodes. */
8856
8857 void
8858 build_common_tree_nodes_2 (int short_double)
8859 {
8860 /* Define these next since types below may used them. */
8861 integer_zero_node = build_int_cst (NULL_TREE, 0);
8862 integer_one_node = build_int_cst (NULL_TREE, 1);
8863 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
8864
8865 size_zero_node = size_int (0);
8866 size_one_node = size_int (1);
8867 bitsize_zero_node = bitsize_int (0);
8868 bitsize_one_node = bitsize_int (1);
8869 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
8870
8871 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
8872 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
8873
8874 void_type_node = make_node (VOID_TYPE);
8875 layout_type (void_type_node);
8876
8877 /* We are not going to have real types in C with less than byte alignment,
8878 so we might as well not have any types that claim to have it. */
8879 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
8880 TYPE_USER_ALIGN (void_type_node) = 0;
8881
8882 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
8883 layout_type (TREE_TYPE (null_pointer_node));
8884
8885 ptr_type_node = build_pointer_type (void_type_node);
8886 const_ptr_type_node
8887 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
8888 fileptr_type_node = ptr_type_node;
8889
8890 float_type_node = make_node (REAL_TYPE);
8891 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
8892 layout_type (float_type_node);
8893
8894 double_type_node = make_node (REAL_TYPE);
8895 if (short_double)
8896 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
8897 else
8898 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
8899 layout_type (double_type_node);
8900
8901 long_double_type_node = make_node (REAL_TYPE);
8902 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
8903 layout_type (long_double_type_node);
8904
8905 float_ptr_type_node = build_pointer_type (float_type_node);
8906 double_ptr_type_node = build_pointer_type (double_type_node);
8907 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
8908 integer_ptr_type_node = build_pointer_type (integer_type_node);
8909
8910 /* Fixed size integer types. */
8911 uint32_type_node = build_nonstandard_integer_type (32, true);
8912 uint64_type_node = build_nonstandard_integer_type (64, true);
8913
8914 /* Decimal float types. */
8915 dfloat32_type_node = make_node (REAL_TYPE);
8916 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
8917 layout_type (dfloat32_type_node);
8918 SET_TYPE_MODE (dfloat32_type_node, SDmode);
8919 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
8920
8921 dfloat64_type_node = make_node (REAL_TYPE);
8922 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
8923 layout_type (dfloat64_type_node);
8924 SET_TYPE_MODE (dfloat64_type_node, DDmode);
8925 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
8926
8927 dfloat128_type_node = make_node (REAL_TYPE);
8928 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
8929 layout_type (dfloat128_type_node);
8930 SET_TYPE_MODE (dfloat128_type_node, TDmode);
8931 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
8932
8933 complex_integer_type_node = build_complex_type (integer_type_node);
8934 complex_float_type_node = build_complex_type (float_type_node);
8935 complex_double_type_node = build_complex_type (double_type_node);
8936 complex_long_double_type_node = build_complex_type (long_double_type_node);
8937
8938 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
8939 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
8940 sat_ ## KIND ## _type_node = \
8941 make_sat_signed_ ## KIND ## _type (SIZE); \
8942 sat_unsigned_ ## KIND ## _type_node = \
8943 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8944 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8945 unsigned_ ## KIND ## _type_node = \
8946 make_unsigned_ ## KIND ## _type (SIZE);
8947
8948 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
8949 sat_ ## WIDTH ## KIND ## _type_node = \
8950 make_sat_signed_ ## KIND ## _type (SIZE); \
8951 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
8952 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8953 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8954 unsigned_ ## WIDTH ## KIND ## _type_node = \
8955 make_unsigned_ ## KIND ## _type (SIZE);
8956
8957 /* Make fixed-point type nodes based on four different widths. */
8958 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
8959 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
8960 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
8961 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
8962 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
8963
8964 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
8965 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
8966 NAME ## _type_node = \
8967 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
8968 u ## NAME ## _type_node = \
8969 make_or_reuse_unsigned_ ## KIND ## _type \
8970 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
8971 sat_ ## NAME ## _type_node = \
8972 make_or_reuse_sat_signed_ ## KIND ## _type \
8973 (GET_MODE_BITSIZE (MODE ## mode)); \
8974 sat_u ## NAME ## _type_node = \
8975 make_or_reuse_sat_unsigned_ ## KIND ## _type \
8976 (GET_MODE_BITSIZE (U ## MODE ## mode));
8977
8978 /* Fixed-point type and mode nodes. */
8979 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
8980 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
8981 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
8982 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
8983 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
8984 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
8985 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
8986 MAKE_FIXED_MODE_NODE (accum, ha, HA)
8987 MAKE_FIXED_MODE_NODE (accum, sa, SA)
8988 MAKE_FIXED_MODE_NODE (accum, da, DA)
8989 MAKE_FIXED_MODE_NODE (accum, ta, TA)
8990
8991 {
8992 tree t = targetm.build_builtin_va_list ();
8993
8994 /* Many back-ends define record types without setting TYPE_NAME.
8995 If we copied the record type here, we'd keep the original
8996 record type without a name. This breaks name mangling. So,
8997 don't copy record types and let c_common_nodes_and_builtins()
8998 declare the type to be __builtin_va_list. */
8999 if (TREE_CODE (t) != RECORD_TYPE)
9000 t = build_variant_type_copy (t);
9001
9002 va_list_type_node = t;
9003 }
9004 }
9005
9006 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9007
9008 static void
9009 local_define_builtin (const char *name, tree type, enum built_in_function code,
9010 const char *library_name, int ecf_flags)
9011 {
9012 tree decl;
9013
9014 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9015 library_name, NULL_TREE);
9016 if (ecf_flags & ECF_CONST)
9017 TREE_READONLY (decl) = 1;
9018 if (ecf_flags & ECF_PURE)
9019 DECL_PURE_P (decl) = 1;
9020 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9021 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9022 if (ecf_flags & ECF_NORETURN)
9023 TREE_THIS_VOLATILE (decl) = 1;
9024 if (ecf_flags & ECF_NOTHROW)
9025 TREE_NOTHROW (decl) = 1;
9026 if (ecf_flags & ECF_MALLOC)
9027 DECL_IS_MALLOC (decl) = 1;
9028
9029 built_in_decls[code] = decl;
9030 implicit_built_in_decls[code] = decl;
9031 }
9032
9033 /* Call this function after instantiating all builtins that the language
9034 front end cares about. This will build the rest of the builtins that
9035 are relied upon by the tree optimizers and the middle-end. */
9036
9037 void
9038 build_common_builtin_nodes (void)
9039 {
9040 tree tmp, tmp2, ftype;
9041
9042 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9043 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9044 {
9045 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9046 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9047 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9048 ftype = build_function_type (ptr_type_node, tmp);
9049
9050 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9051 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9052 "memcpy", ECF_NOTHROW);
9053 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9054 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9055 "memmove", ECF_NOTHROW);
9056 }
9057
9058 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9059 {
9060 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9061 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9062 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9063 ftype = build_function_type (integer_type_node, tmp);
9064 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9065 "memcmp", ECF_PURE | ECF_NOTHROW);
9066 }
9067
9068 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9069 {
9070 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9071 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9072 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9073 ftype = build_function_type (ptr_type_node, tmp);
9074 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9075 "memset", ECF_NOTHROW);
9076 }
9077
9078 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9079 {
9080 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9081 ftype = build_function_type (ptr_type_node, tmp);
9082 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9083 "alloca", ECF_MALLOC | ECF_NOTHROW);
9084 }
9085
9086 /* If we're checking the stack, `alloca' can throw. */
9087 if (flag_stack_check)
9088 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9089
9090 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9091 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9092 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9093 ftype = build_function_type (void_type_node, tmp);
9094 local_define_builtin ("__builtin_init_trampoline", ftype,
9095 BUILT_IN_INIT_TRAMPOLINE,
9096 "__builtin_init_trampoline", ECF_NOTHROW);
9097
9098 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9099 ftype = build_function_type (ptr_type_node, tmp);
9100 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9101 BUILT_IN_ADJUST_TRAMPOLINE,
9102 "__builtin_adjust_trampoline",
9103 ECF_CONST | ECF_NOTHROW);
9104
9105 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9106 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9107 ftype = build_function_type (void_type_node, tmp);
9108 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9109 BUILT_IN_NONLOCAL_GOTO,
9110 "__builtin_nonlocal_goto",
9111 ECF_NORETURN | ECF_NOTHROW);
9112
9113 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9114 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9115 ftype = build_function_type (void_type_node, tmp);
9116 local_define_builtin ("__builtin_setjmp_setup", ftype,
9117 BUILT_IN_SETJMP_SETUP,
9118 "__builtin_setjmp_setup", ECF_NOTHROW);
9119
9120 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9121 ftype = build_function_type (ptr_type_node, tmp);
9122 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9123 BUILT_IN_SETJMP_DISPATCHER,
9124 "__builtin_setjmp_dispatcher",
9125 ECF_PURE | ECF_NOTHROW);
9126
9127 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9128 ftype = build_function_type (void_type_node, tmp);
9129 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9130 BUILT_IN_SETJMP_RECEIVER,
9131 "__builtin_setjmp_receiver", ECF_NOTHROW);
9132
9133 ftype = build_function_type (ptr_type_node, void_list_node);
9134 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9135 "__builtin_stack_save", ECF_NOTHROW);
9136
9137 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9138 ftype = build_function_type (void_type_node, tmp);
9139 local_define_builtin ("__builtin_stack_restore", ftype,
9140 BUILT_IN_STACK_RESTORE,
9141 "__builtin_stack_restore", ECF_NOTHROW);
9142
9143 ftype = build_function_type (void_type_node, void_list_node);
9144 local_define_builtin ("__builtin_profile_func_enter", ftype,
9145 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9146 local_define_builtin ("__builtin_profile_func_exit", ftype,
9147 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9148
9149 /* If there's a possibility that we might use the ARM EABI, build the
9150 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9151 if (targetm.arm_eabi_unwinder)
9152 {
9153 ftype = build_function_type (void_type_node, void_list_node);
9154 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9155 BUILT_IN_CXA_END_CLEANUP,
9156 "__cxa_end_cleanup", ECF_NORETURN);
9157 }
9158
9159 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9160 ftype = build_function_type (void_type_node, tmp);
9161 local_define_builtin ("__builtin_unwind_resume", ftype,
9162 BUILT_IN_UNWIND_RESUME,
9163 (USING_SJLJ_EXCEPTIONS
9164 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9165 ECF_NORETURN);
9166
9167 /* The exception object and filter values from the runtime. The argument
9168 must be zero before exception lowering, i.e. from the front end. After
9169 exception lowering, it will be the region number for the exception
9170 landing pad. These functions are PURE instead of CONST to prevent
9171 them from being hoisted past the exception edge that will initialize
9172 its value in the landing pad. */
9173 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9174 ftype = build_function_type (ptr_type_node, tmp);
9175 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9176 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW);
9177
9178 tmp2 = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9179 ftype = build_function_type (tmp2, tmp);
9180 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9181 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW);
9182
9183 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9184 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9185 ftype = build_function_type (void_type_node, tmp);
9186 local_define_builtin ("__builtin_eh_copy_values", ftype,
9187 BUILT_IN_EH_COPY_VALUES,
9188 "__builtin_eh_copy_values", ECF_NOTHROW);
9189
9190 /* Complex multiplication and division. These are handled as builtins
9191 rather than optabs because emit_library_call_value doesn't support
9192 complex. Further, we can do slightly better with folding these
9193 beasties if the real and complex parts of the arguments are separate. */
9194 {
9195 int mode;
9196
9197 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9198 {
9199 char mode_name_buf[4], *q;
9200 const char *p;
9201 enum built_in_function mcode, dcode;
9202 tree type, inner_type;
9203
9204 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9205 if (type == NULL)
9206 continue;
9207 inner_type = TREE_TYPE (type);
9208
9209 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
9210 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9211 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9212 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9213 ftype = build_function_type (type, tmp);
9214
9215 mcode = ((enum built_in_function)
9216 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9217 dcode = ((enum built_in_function)
9218 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9219
9220 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9221 *q = TOLOWER (*p);
9222 *q = '\0';
9223
9224 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9225 local_define_builtin (built_in_names[mcode], ftype, mcode,
9226 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
9227
9228 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9229 local_define_builtin (built_in_names[dcode], ftype, dcode,
9230 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
9231 }
9232 }
9233 }
9234
9235 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9236 better way.
9237
9238 If we requested a pointer to a vector, build up the pointers that
9239 we stripped off while looking for the inner type. Similarly for
9240 return values from functions.
9241
9242 The argument TYPE is the top of the chain, and BOTTOM is the
9243 new type which we will point to. */
9244
9245 tree
9246 reconstruct_complex_type (tree type, tree bottom)
9247 {
9248 tree inner, outer;
9249
9250 if (TREE_CODE (type) == POINTER_TYPE)
9251 {
9252 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9253 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9254 TYPE_REF_CAN_ALIAS_ALL (type));
9255 }
9256 else if (TREE_CODE (type) == REFERENCE_TYPE)
9257 {
9258 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9259 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9260 TYPE_REF_CAN_ALIAS_ALL (type));
9261 }
9262 else if (TREE_CODE (type) == ARRAY_TYPE)
9263 {
9264 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9265 outer = build_array_type (inner, TYPE_DOMAIN (type));
9266 }
9267 else if (TREE_CODE (type) == FUNCTION_TYPE)
9268 {
9269 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9270 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9271 }
9272 else if (TREE_CODE (type) == METHOD_TYPE)
9273 {
9274 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9275 /* The build_method_type_directly() routine prepends 'this' to argument list,
9276 so we must compensate by getting rid of it. */
9277 outer
9278 = build_method_type_directly
9279 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9280 inner,
9281 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9282 }
9283 else if (TREE_CODE (type) == OFFSET_TYPE)
9284 {
9285 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9286 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9287 }
9288 else
9289 return bottom;
9290
9291 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9292 TYPE_QUALS (type));
9293 }
9294
9295 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9296 the inner type. */
9297 tree
9298 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9299 {
9300 int nunits;
9301
9302 switch (GET_MODE_CLASS (mode))
9303 {
9304 case MODE_VECTOR_INT:
9305 case MODE_VECTOR_FLOAT:
9306 case MODE_VECTOR_FRACT:
9307 case MODE_VECTOR_UFRACT:
9308 case MODE_VECTOR_ACCUM:
9309 case MODE_VECTOR_UACCUM:
9310 nunits = GET_MODE_NUNITS (mode);
9311 break;
9312
9313 case MODE_INT:
9314 /* Check that there are no leftover bits. */
9315 gcc_assert (GET_MODE_BITSIZE (mode)
9316 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9317
9318 nunits = GET_MODE_BITSIZE (mode)
9319 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9320 break;
9321
9322 default:
9323 gcc_unreachable ();
9324 }
9325
9326 return make_vector_type (innertype, nunits, mode);
9327 }
9328
9329 /* Similarly, but takes the inner type and number of units, which must be
9330 a power of two. */
9331
9332 tree
9333 build_vector_type (tree innertype, int nunits)
9334 {
9335 return make_vector_type (innertype, nunits, VOIDmode);
9336 }
9337
9338 /* Similarly, but takes the inner type and number of units, which must be
9339 a power of two. */
9340
9341 tree
9342 build_opaque_vector_type (tree innertype, int nunits)
9343 {
9344 tree t;
9345 innertype = build_distinct_type_copy (innertype);
9346 t = make_vector_type (innertype, nunits, VOIDmode);
9347 TYPE_VECTOR_OPAQUE (t) = true;
9348 return t;
9349 }
9350
9351
9352 /* Given an initializer INIT, return TRUE if INIT is zero or some
9353 aggregate of zeros. Otherwise return FALSE. */
9354 bool
9355 initializer_zerop (const_tree init)
9356 {
9357 tree elt;
9358
9359 STRIP_NOPS (init);
9360
9361 switch (TREE_CODE (init))
9362 {
9363 case INTEGER_CST:
9364 return integer_zerop (init);
9365
9366 case REAL_CST:
9367 /* ??? Note that this is not correct for C4X float formats. There,
9368 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9369 negative exponent. */
9370 return real_zerop (init)
9371 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9372
9373 case FIXED_CST:
9374 return fixed_zerop (init);
9375
9376 case COMPLEX_CST:
9377 return integer_zerop (init)
9378 || (real_zerop (init)
9379 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9380 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9381
9382 case VECTOR_CST:
9383 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9384 if (!initializer_zerop (TREE_VALUE (elt)))
9385 return false;
9386 return true;
9387
9388 case CONSTRUCTOR:
9389 {
9390 unsigned HOST_WIDE_INT idx;
9391
9392 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9393 if (!initializer_zerop (elt))
9394 return false;
9395 return true;
9396 }
9397
9398 case STRING_CST:
9399 {
9400 int i;
9401
9402 /* We need to loop through all elements to handle cases like
9403 "\0" and "\0foobar". */
9404 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9405 if (TREE_STRING_POINTER (init)[i] != '\0')
9406 return false;
9407
9408 return true;
9409 }
9410
9411 default:
9412 return false;
9413 }
9414 }
9415
9416 /* Build an empty statement at location LOC. */
9417
9418 tree
9419 build_empty_stmt (location_t loc)
9420 {
9421 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9422 SET_EXPR_LOCATION (t, loc);
9423 return t;
9424 }
9425
9426
9427 /* Build an OpenMP clause with code CODE. LOC is the location of the
9428 clause. */
9429
9430 tree
9431 build_omp_clause (location_t loc, enum omp_clause_code code)
9432 {
9433 tree t;
9434 int size, length;
9435
9436 length = omp_clause_num_ops[code];
9437 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9438
9439 t = GGC_NEWVAR (union tree_node, size);
9440 memset (t, 0, size);
9441 TREE_SET_CODE (t, OMP_CLAUSE);
9442 OMP_CLAUSE_SET_CODE (t, code);
9443 OMP_CLAUSE_LOCATION (t) = loc;
9444
9445 #ifdef GATHER_STATISTICS
9446 tree_node_counts[(int) omp_clause_kind]++;
9447 tree_node_sizes[(int) omp_clause_kind] += size;
9448 #endif
9449
9450 return t;
9451 }
9452
9453 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9454 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9455 Except for the CODE and operand count field, other storage for the
9456 object is initialized to zeros. */
9457
9458 tree
9459 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9460 {
9461 tree t;
9462 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9463
9464 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9465 gcc_assert (len >= 1);
9466
9467 #ifdef GATHER_STATISTICS
9468 tree_node_counts[(int) e_kind]++;
9469 tree_node_sizes[(int) e_kind] += length;
9470 #endif
9471
9472 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
9473
9474 memset (t, 0, length);
9475
9476 TREE_SET_CODE (t, code);
9477
9478 /* Can't use TREE_OPERAND to store the length because if checking is
9479 enabled, it will try to check the length before we store it. :-P */
9480 t->exp.operands[0] = build_int_cst (sizetype, len);
9481
9482 return t;
9483 }
9484
9485
9486 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
9487 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
9488 arguments. */
9489
9490 tree
9491 build_call_list (tree return_type, tree fn, tree arglist)
9492 {
9493 tree t;
9494 int i;
9495
9496 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
9497 TREE_TYPE (t) = return_type;
9498 CALL_EXPR_FN (t) = fn;
9499 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9500 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
9501 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
9502 process_call_operands (t);
9503 return t;
9504 }
9505
9506 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9507 FN and a null static chain slot. NARGS is the number of call arguments
9508 which are specified as "..." arguments. */
9509
9510 tree
9511 build_call_nary (tree return_type, tree fn, int nargs, ...)
9512 {
9513 tree ret;
9514 va_list args;
9515 va_start (args, nargs);
9516 ret = build_call_valist (return_type, fn, nargs, args);
9517 va_end (args);
9518 return ret;
9519 }
9520
9521 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9522 FN and a null static chain slot. NARGS is the number of call arguments
9523 which are specified as a va_list ARGS. */
9524
9525 tree
9526 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9527 {
9528 tree t;
9529 int i;
9530
9531 t = build_vl_exp (CALL_EXPR, nargs + 3);
9532 TREE_TYPE (t) = return_type;
9533 CALL_EXPR_FN (t) = fn;
9534 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9535 for (i = 0; i < nargs; i++)
9536 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9537 process_call_operands (t);
9538 return t;
9539 }
9540
9541 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9542 FN and a null static chain slot. NARGS is the number of call arguments
9543 which are specified as a tree array ARGS. */
9544
9545 tree
9546 build_call_array_loc (location_t loc, tree return_type, tree fn,
9547 int nargs, const tree *args)
9548 {
9549 tree t;
9550 int i;
9551
9552 t = build_vl_exp (CALL_EXPR, nargs + 3);
9553 TREE_TYPE (t) = return_type;
9554 CALL_EXPR_FN (t) = fn;
9555 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9556 for (i = 0; i < nargs; i++)
9557 CALL_EXPR_ARG (t, i) = args[i];
9558 process_call_operands (t);
9559 SET_EXPR_LOCATION (t, loc);
9560 return t;
9561 }
9562
9563 /* Like build_call_array, but takes a VEC. */
9564
9565 tree
9566 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9567 {
9568 tree ret, t;
9569 unsigned int ix;
9570
9571 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9572 TREE_TYPE (ret) = return_type;
9573 CALL_EXPR_FN (ret) = fn;
9574 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9575 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
9576 CALL_EXPR_ARG (ret, ix) = t;
9577 process_call_operands (ret);
9578 return ret;
9579 }
9580
9581
9582 /* Returns true if it is possible to prove that the index of
9583 an array access REF (an ARRAY_REF expression) falls into the
9584 array bounds. */
9585
9586 bool
9587 in_array_bounds_p (tree ref)
9588 {
9589 tree idx = TREE_OPERAND (ref, 1);
9590 tree min, max;
9591
9592 if (TREE_CODE (idx) != INTEGER_CST)
9593 return false;
9594
9595 min = array_ref_low_bound (ref);
9596 max = array_ref_up_bound (ref);
9597 if (!min
9598 || !max
9599 || TREE_CODE (min) != INTEGER_CST
9600 || TREE_CODE (max) != INTEGER_CST)
9601 return false;
9602
9603 if (tree_int_cst_lt (idx, min)
9604 || tree_int_cst_lt (max, idx))
9605 return false;
9606
9607 return true;
9608 }
9609
9610 /* Returns true if it is possible to prove that the range of
9611 an array access REF (an ARRAY_RANGE_REF expression) falls
9612 into the array bounds. */
9613
9614 bool
9615 range_in_array_bounds_p (tree ref)
9616 {
9617 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9618 tree range_min, range_max, min, max;
9619
9620 range_min = TYPE_MIN_VALUE (domain_type);
9621 range_max = TYPE_MAX_VALUE (domain_type);
9622 if (!range_min
9623 || !range_max
9624 || TREE_CODE (range_min) != INTEGER_CST
9625 || TREE_CODE (range_max) != INTEGER_CST)
9626 return false;
9627
9628 min = array_ref_low_bound (ref);
9629 max = array_ref_up_bound (ref);
9630 if (!min
9631 || !max
9632 || TREE_CODE (min) != INTEGER_CST
9633 || TREE_CODE (max) != INTEGER_CST)
9634 return false;
9635
9636 if (tree_int_cst_lt (range_min, min)
9637 || tree_int_cst_lt (max, range_max))
9638 return false;
9639
9640 return true;
9641 }
9642
9643 /* Return true if T (assumed to be a DECL) must be assigned a memory
9644 location. */
9645
9646 bool
9647 needs_to_live_in_memory (const_tree t)
9648 {
9649 if (TREE_CODE (t) == SSA_NAME)
9650 t = SSA_NAME_VAR (t);
9651
9652 return (TREE_ADDRESSABLE (t)
9653 || is_global_var (t)
9654 || (TREE_CODE (t) == RESULT_DECL
9655 && aggregate_value_p (t, current_function_decl)));
9656 }
9657
9658 /* There are situations in which a language considers record types
9659 compatible which have different field lists. Decide if two fields
9660 are compatible. It is assumed that the parent records are compatible. */
9661
9662 bool
9663 fields_compatible_p (const_tree f1, const_tree f2)
9664 {
9665 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9666 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9667 return false;
9668
9669 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9670 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9671 return false;
9672
9673 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9674 return false;
9675
9676 return true;
9677 }
9678
9679 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9680
9681 tree
9682 find_compatible_field (tree record, tree orig_field)
9683 {
9684 tree f;
9685
9686 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9687 if (TREE_CODE (f) == FIELD_DECL
9688 && fields_compatible_p (f, orig_field))
9689 return f;
9690
9691 /* ??? Why isn't this on the main fields list? */
9692 f = TYPE_VFIELD (record);
9693 if (f && TREE_CODE (f) == FIELD_DECL
9694 && fields_compatible_p (f, orig_field))
9695 return f;
9696
9697 /* ??? We should abort here, but Java appears to do Bad Things
9698 with inherited fields. */
9699 return orig_field;
9700 }
9701
9702 /* Return value of a constant X and sign-extend it. */
9703
9704 HOST_WIDE_INT
9705 int_cst_value (const_tree x)
9706 {
9707 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9708 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9709
9710 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9711 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9712 || TREE_INT_CST_HIGH (x) == -1);
9713
9714 if (bits < HOST_BITS_PER_WIDE_INT)
9715 {
9716 bool negative = ((val >> (bits - 1)) & 1) != 0;
9717 if (negative)
9718 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9719 else
9720 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9721 }
9722
9723 return val;
9724 }
9725
9726 /* Return value of a constant X and sign-extend it. */
9727
9728 HOST_WIDEST_INT
9729 widest_int_cst_value (const_tree x)
9730 {
9731 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9732 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9733
9734 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9735 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9736 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9737 << HOST_BITS_PER_WIDE_INT);
9738 #else
9739 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9740 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9741 || TREE_INT_CST_HIGH (x) == -1);
9742 #endif
9743
9744 if (bits < HOST_BITS_PER_WIDEST_INT)
9745 {
9746 bool negative = ((val >> (bits - 1)) & 1) != 0;
9747 if (negative)
9748 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9749 else
9750 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9751 }
9752
9753 return val;
9754 }
9755
9756 /* If TYPE is an integral type, return an equivalent type which is
9757 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9758 return TYPE itself. */
9759
9760 tree
9761 signed_or_unsigned_type_for (int unsignedp, tree type)
9762 {
9763 tree t = type;
9764 if (POINTER_TYPE_P (type))
9765 {
9766 /* If the pointer points to the normal address space, use the
9767 size_type_node. Otherwise use an appropriate size for the pointer
9768 based on the named address space it points to. */
9769 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9770 t = size_type_node;
9771 else
9772 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9773 }
9774
9775 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9776 return t;
9777
9778 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9779 }
9780
9781 /* Returns unsigned variant of TYPE. */
9782
9783 tree
9784 unsigned_type_for (tree type)
9785 {
9786 return signed_or_unsigned_type_for (1, type);
9787 }
9788
9789 /* Returns signed variant of TYPE. */
9790
9791 tree
9792 signed_type_for (tree type)
9793 {
9794 return signed_or_unsigned_type_for (0, type);
9795 }
9796
9797 /* Returns the largest value obtainable by casting something in INNER type to
9798 OUTER type. */
9799
9800 tree
9801 upper_bound_in_type (tree outer, tree inner)
9802 {
9803 unsigned HOST_WIDE_INT lo, hi;
9804 unsigned int det = 0;
9805 unsigned oprec = TYPE_PRECISION (outer);
9806 unsigned iprec = TYPE_PRECISION (inner);
9807 unsigned prec;
9808
9809 /* Compute a unique number for every combination. */
9810 det |= (oprec > iprec) ? 4 : 0;
9811 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9812 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9813
9814 /* Determine the exponent to use. */
9815 switch (det)
9816 {
9817 case 0:
9818 case 1:
9819 /* oprec <= iprec, outer: signed, inner: don't care. */
9820 prec = oprec - 1;
9821 break;
9822 case 2:
9823 case 3:
9824 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9825 prec = oprec;
9826 break;
9827 case 4:
9828 /* oprec > iprec, outer: signed, inner: signed. */
9829 prec = iprec - 1;
9830 break;
9831 case 5:
9832 /* oprec > iprec, outer: signed, inner: unsigned. */
9833 prec = iprec;
9834 break;
9835 case 6:
9836 /* oprec > iprec, outer: unsigned, inner: signed. */
9837 prec = oprec;
9838 break;
9839 case 7:
9840 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9841 prec = iprec;
9842 break;
9843 default:
9844 gcc_unreachable ();
9845 }
9846
9847 /* Compute 2^^prec - 1. */
9848 if (prec <= HOST_BITS_PER_WIDE_INT)
9849 {
9850 hi = 0;
9851 lo = ((~(unsigned HOST_WIDE_INT) 0)
9852 >> (HOST_BITS_PER_WIDE_INT - prec));
9853 }
9854 else
9855 {
9856 hi = ((~(unsigned HOST_WIDE_INT) 0)
9857 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9858 lo = ~(unsigned HOST_WIDE_INT) 0;
9859 }
9860
9861 return build_int_cst_wide (outer, lo, hi);
9862 }
9863
9864 /* Returns the smallest value obtainable by casting something in INNER type to
9865 OUTER type. */
9866
9867 tree
9868 lower_bound_in_type (tree outer, tree inner)
9869 {
9870 unsigned HOST_WIDE_INT lo, hi;
9871 unsigned oprec = TYPE_PRECISION (outer);
9872 unsigned iprec = TYPE_PRECISION (inner);
9873
9874 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9875 and obtain 0. */
9876 if (TYPE_UNSIGNED (outer)
9877 /* If we are widening something of an unsigned type, OUTER type
9878 contains all values of INNER type. In particular, both INNER
9879 and OUTER types have zero in common. */
9880 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9881 lo = hi = 0;
9882 else
9883 {
9884 /* If we are widening a signed type to another signed type, we
9885 want to obtain -2^^(iprec-1). If we are keeping the
9886 precision or narrowing to a signed type, we want to obtain
9887 -2^(oprec-1). */
9888 unsigned prec = oprec > iprec ? iprec : oprec;
9889
9890 if (prec <= HOST_BITS_PER_WIDE_INT)
9891 {
9892 hi = ~(unsigned HOST_WIDE_INT) 0;
9893 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
9894 }
9895 else
9896 {
9897 hi = ((~(unsigned HOST_WIDE_INT) 0)
9898 << (prec - HOST_BITS_PER_WIDE_INT - 1));
9899 lo = 0;
9900 }
9901 }
9902
9903 return build_int_cst_wide (outer, lo, hi);
9904 }
9905
9906 /* Return nonzero if two operands that are suitable for PHI nodes are
9907 necessarily equal. Specifically, both ARG0 and ARG1 must be either
9908 SSA_NAME or invariant. Note that this is strictly an optimization.
9909 That is, callers of this function can directly call operand_equal_p
9910 and get the same result, only slower. */
9911
9912 int
9913 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
9914 {
9915 if (arg0 == arg1)
9916 return 1;
9917 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
9918 return 0;
9919 return operand_equal_p (arg0, arg1, 0);
9920 }
9921
9922 /* Returns number of zeros at the end of binary representation of X.
9923
9924 ??? Use ffs if available? */
9925
9926 tree
9927 num_ending_zeros (const_tree x)
9928 {
9929 unsigned HOST_WIDE_INT fr, nfr;
9930 unsigned num, abits;
9931 tree type = TREE_TYPE (x);
9932
9933 if (TREE_INT_CST_LOW (x) == 0)
9934 {
9935 num = HOST_BITS_PER_WIDE_INT;
9936 fr = TREE_INT_CST_HIGH (x);
9937 }
9938 else
9939 {
9940 num = 0;
9941 fr = TREE_INT_CST_LOW (x);
9942 }
9943
9944 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
9945 {
9946 nfr = fr >> abits;
9947 if (nfr << abits == fr)
9948 {
9949 num += abits;
9950 fr = nfr;
9951 }
9952 }
9953
9954 if (num > TYPE_PRECISION (type))
9955 num = TYPE_PRECISION (type);
9956
9957 return build_int_cst_type (type, num);
9958 }
9959
9960
9961 #define WALK_SUBTREE(NODE) \
9962 do \
9963 { \
9964 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
9965 if (result) \
9966 return result; \
9967 } \
9968 while (0)
9969
9970 /* This is a subroutine of walk_tree that walks field of TYPE that are to
9971 be walked whenever a type is seen in the tree. Rest of operands and return
9972 value are as for walk_tree. */
9973
9974 static tree
9975 walk_type_fields (tree type, walk_tree_fn func, void *data,
9976 struct pointer_set_t *pset, walk_tree_lh lh)
9977 {
9978 tree result = NULL_TREE;
9979
9980 switch (TREE_CODE (type))
9981 {
9982 case POINTER_TYPE:
9983 case REFERENCE_TYPE:
9984 /* We have to worry about mutually recursive pointers. These can't
9985 be written in C. They can in Ada. It's pathological, but
9986 there's an ACATS test (c38102a) that checks it. Deal with this
9987 by checking if we're pointing to another pointer, that one
9988 points to another pointer, that one does too, and we have no htab.
9989 If so, get a hash table. We check three levels deep to avoid
9990 the cost of the hash table if we don't need one. */
9991 if (POINTER_TYPE_P (TREE_TYPE (type))
9992 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
9993 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
9994 && !pset)
9995 {
9996 result = walk_tree_without_duplicates (&TREE_TYPE (type),
9997 func, data);
9998 if (result)
9999 return result;
10000
10001 break;
10002 }
10003
10004 /* ... fall through ... */
10005
10006 case COMPLEX_TYPE:
10007 WALK_SUBTREE (TREE_TYPE (type));
10008 break;
10009
10010 case METHOD_TYPE:
10011 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10012
10013 /* Fall through. */
10014
10015 case FUNCTION_TYPE:
10016 WALK_SUBTREE (TREE_TYPE (type));
10017 {
10018 tree arg;
10019
10020 /* We never want to walk into default arguments. */
10021 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10022 WALK_SUBTREE (TREE_VALUE (arg));
10023 }
10024 break;
10025
10026 case ARRAY_TYPE:
10027 /* Don't follow this nodes's type if a pointer for fear that
10028 we'll have infinite recursion. If we have a PSET, then we
10029 need not fear. */
10030 if (pset
10031 || (!POINTER_TYPE_P (TREE_TYPE (type))
10032 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10033 WALK_SUBTREE (TREE_TYPE (type));
10034 WALK_SUBTREE (TYPE_DOMAIN (type));
10035 break;
10036
10037 case OFFSET_TYPE:
10038 WALK_SUBTREE (TREE_TYPE (type));
10039 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10040 break;
10041
10042 default:
10043 break;
10044 }
10045
10046 return NULL_TREE;
10047 }
10048
10049 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10050 called with the DATA and the address of each sub-tree. If FUNC returns a
10051 non-NULL value, the traversal is stopped, and the value returned by FUNC
10052 is returned. If PSET is non-NULL it is used to record the nodes visited,
10053 and to avoid visiting a node more than once. */
10054
10055 tree
10056 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10057 struct pointer_set_t *pset, walk_tree_lh lh)
10058 {
10059 enum tree_code code;
10060 int walk_subtrees;
10061 tree result;
10062
10063 #define WALK_SUBTREE_TAIL(NODE) \
10064 do \
10065 { \
10066 tp = & (NODE); \
10067 goto tail_recurse; \
10068 } \
10069 while (0)
10070
10071 tail_recurse:
10072 /* Skip empty subtrees. */
10073 if (!*tp)
10074 return NULL_TREE;
10075
10076 /* Don't walk the same tree twice, if the user has requested
10077 that we avoid doing so. */
10078 if (pset && pointer_set_insert (pset, *tp))
10079 return NULL_TREE;
10080
10081 /* Call the function. */
10082 walk_subtrees = 1;
10083 result = (*func) (tp, &walk_subtrees, data);
10084
10085 /* If we found something, return it. */
10086 if (result)
10087 return result;
10088
10089 code = TREE_CODE (*tp);
10090
10091 /* Even if we didn't, FUNC may have decided that there was nothing
10092 interesting below this point in the tree. */
10093 if (!walk_subtrees)
10094 {
10095 /* But we still need to check our siblings. */
10096 if (code == TREE_LIST)
10097 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10098 else if (code == OMP_CLAUSE)
10099 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10100 else
10101 return NULL_TREE;
10102 }
10103
10104 if (lh)
10105 {
10106 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10107 if (result || !walk_subtrees)
10108 return result;
10109 }
10110
10111 switch (code)
10112 {
10113 case ERROR_MARK:
10114 case IDENTIFIER_NODE:
10115 case INTEGER_CST:
10116 case REAL_CST:
10117 case FIXED_CST:
10118 case VECTOR_CST:
10119 case STRING_CST:
10120 case BLOCK:
10121 case PLACEHOLDER_EXPR:
10122 case SSA_NAME:
10123 case FIELD_DECL:
10124 case RESULT_DECL:
10125 /* None of these have subtrees other than those already walked
10126 above. */
10127 break;
10128
10129 case TREE_LIST:
10130 WALK_SUBTREE (TREE_VALUE (*tp));
10131 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10132 break;
10133
10134 case TREE_VEC:
10135 {
10136 int len = TREE_VEC_LENGTH (*tp);
10137
10138 if (len == 0)
10139 break;
10140
10141 /* Walk all elements but the first. */
10142 while (--len)
10143 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10144
10145 /* Now walk the first one as a tail call. */
10146 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10147 }
10148
10149 case COMPLEX_CST:
10150 WALK_SUBTREE (TREE_REALPART (*tp));
10151 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10152
10153 case CONSTRUCTOR:
10154 {
10155 unsigned HOST_WIDE_INT idx;
10156 constructor_elt *ce;
10157
10158 for (idx = 0;
10159 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10160 idx++)
10161 WALK_SUBTREE (ce->value);
10162 }
10163 break;
10164
10165 case SAVE_EXPR:
10166 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10167
10168 case BIND_EXPR:
10169 {
10170 tree decl;
10171 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
10172 {
10173 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10174 into declarations that are just mentioned, rather than
10175 declared; they don't really belong to this part of the tree.
10176 And, we can see cycles: the initializer for a declaration
10177 can refer to the declaration itself. */
10178 WALK_SUBTREE (DECL_INITIAL (decl));
10179 WALK_SUBTREE (DECL_SIZE (decl));
10180 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10181 }
10182 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10183 }
10184
10185 case STATEMENT_LIST:
10186 {
10187 tree_stmt_iterator i;
10188 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10189 WALK_SUBTREE (*tsi_stmt_ptr (i));
10190 }
10191 break;
10192
10193 case OMP_CLAUSE:
10194 switch (OMP_CLAUSE_CODE (*tp))
10195 {
10196 case OMP_CLAUSE_PRIVATE:
10197 case OMP_CLAUSE_SHARED:
10198 case OMP_CLAUSE_FIRSTPRIVATE:
10199 case OMP_CLAUSE_COPYIN:
10200 case OMP_CLAUSE_COPYPRIVATE:
10201 case OMP_CLAUSE_IF:
10202 case OMP_CLAUSE_NUM_THREADS:
10203 case OMP_CLAUSE_SCHEDULE:
10204 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10205 /* FALLTHRU */
10206
10207 case OMP_CLAUSE_NOWAIT:
10208 case OMP_CLAUSE_ORDERED:
10209 case OMP_CLAUSE_DEFAULT:
10210 case OMP_CLAUSE_UNTIED:
10211 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10212
10213 case OMP_CLAUSE_LASTPRIVATE:
10214 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10215 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10216 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10217
10218 case OMP_CLAUSE_COLLAPSE:
10219 {
10220 int i;
10221 for (i = 0; i < 3; i++)
10222 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10223 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10224 }
10225
10226 case OMP_CLAUSE_REDUCTION:
10227 {
10228 int i;
10229 for (i = 0; i < 4; i++)
10230 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10231 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10232 }
10233
10234 default:
10235 gcc_unreachable ();
10236 }
10237 break;
10238
10239 case TARGET_EXPR:
10240 {
10241 int i, len;
10242
10243 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10244 But, we only want to walk once. */
10245 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10246 for (i = 0; i < len; ++i)
10247 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10248 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10249 }
10250
10251 case DECL_EXPR:
10252 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10253 defining. We only want to walk into these fields of a type in this
10254 case and not in the general case of a mere reference to the type.
10255
10256 The criterion is as follows: if the field can be an expression, it
10257 must be walked only here. This should be in keeping with the fields
10258 that are directly gimplified in gimplify_type_sizes in order for the
10259 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10260 variable-sized types.
10261
10262 Note that DECLs get walked as part of processing the BIND_EXPR. */
10263 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10264 {
10265 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10266 if (TREE_CODE (*type_p) == ERROR_MARK)
10267 return NULL_TREE;
10268
10269 /* Call the function for the type. See if it returns anything or
10270 doesn't want us to continue. If we are to continue, walk both
10271 the normal fields and those for the declaration case. */
10272 result = (*func) (type_p, &walk_subtrees, data);
10273 if (result || !walk_subtrees)
10274 return result;
10275
10276 result = walk_type_fields (*type_p, func, data, pset, lh);
10277 if (result)
10278 return result;
10279
10280 /* If this is a record type, also walk the fields. */
10281 if (RECORD_OR_UNION_TYPE_P (*type_p))
10282 {
10283 tree field;
10284
10285 for (field = TYPE_FIELDS (*type_p); field;
10286 field = TREE_CHAIN (field))
10287 {
10288 /* We'd like to look at the type of the field, but we can
10289 easily get infinite recursion. So assume it's pointed
10290 to elsewhere in the tree. Also, ignore things that
10291 aren't fields. */
10292 if (TREE_CODE (field) != FIELD_DECL)
10293 continue;
10294
10295 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10296 WALK_SUBTREE (DECL_SIZE (field));
10297 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10298 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10299 WALK_SUBTREE (DECL_QUALIFIER (field));
10300 }
10301 }
10302
10303 /* Same for scalar types. */
10304 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10305 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10306 || TREE_CODE (*type_p) == INTEGER_TYPE
10307 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10308 || TREE_CODE (*type_p) == REAL_TYPE)
10309 {
10310 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10311 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10312 }
10313
10314 WALK_SUBTREE (TYPE_SIZE (*type_p));
10315 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10316 }
10317 /* FALLTHRU */
10318
10319 default:
10320 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10321 {
10322 int i, len;
10323
10324 /* Walk over all the sub-trees of this operand. */
10325 len = TREE_OPERAND_LENGTH (*tp);
10326
10327 /* Go through the subtrees. We need to do this in forward order so
10328 that the scope of a FOR_EXPR is handled properly. */
10329 if (len)
10330 {
10331 for (i = 0; i < len - 1; ++i)
10332 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10333 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10334 }
10335 }
10336 /* If this is a type, walk the needed fields in the type. */
10337 else if (TYPE_P (*tp))
10338 return walk_type_fields (*tp, func, data, pset, lh);
10339 break;
10340 }
10341
10342 /* We didn't find what we were looking for. */
10343 return NULL_TREE;
10344
10345 #undef WALK_SUBTREE_TAIL
10346 }
10347 #undef WALK_SUBTREE
10348
10349 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10350
10351 tree
10352 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10353 walk_tree_lh lh)
10354 {
10355 tree result;
10356 struct pointer_set_t *pset;
10357
10358 pset = pointer_set_create ();
10359 result = walk_tree_1 (tp, func, data, pset, lh);
10360 pointer_set_destroy (pset);
10361 return result;
10362 }
10363
10364
10365 tree *
10366 tree_block (tree t)
10367 {
10368 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10369
10370 if (IS_EXPR_CODE_CLASS (c))
10371 return &t->exp.block;
10372 gcc_unreachable ();
10373 return NULL;
10374 }
10375
10376 /* Create a nameless artificial label and put it in the current
10377 function context. The label has a location of LOC. Returns the
10378 newly created label. */
10379
10380 tree
10381 create_artificial_label (location_t loc)
10382 {
10383 tree lab = build_decl (loc,
10384 LABEL_DECL, NULL_TREE, void_type_node);
10385
10386 DECL_ARTIFICIAL (lab) = 1;
10387 DECL_IGNORED_P (lab) = 1;
10388 DECL_CONTEXT (lab) = current_function_decl;
10389 return lab;
10390 }
10391
10392 /* Given a tree, try to return a useful variable name that we can use
10393 to prefix a temporary that is being assigned the value of the tree.
10394 I.E. given <temp> = &A, return A. */
10395
10396 const char *
10397 get_name (tree t)
10398 {
10399 tree stripped_decl;
10400
10401 stripped_decl = t;
10402 STRIP_NOPS (stripped_decl);
10403 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10404 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10405 else
10406 {
10407 switch (TREE_CODE (stripped_decl))
10408 {
10409 case ADDR_EXPR:
10410 return get_name (TREE_OPERAND (stripped_decl, 0));
10411 default:
10412 return NULL;
10413 }
10414 }
10415 }
10416
10417 /* Return true if TYPE has a variable argument list. */
10418
10419 bool
10420 stdarg_p (tree fntype)
10421 {
10422 function_args_iterator args_iter;
10423 tree n = NULL_TREE, t;
10424
10425 if (!fntype)
10426 return false;
10427
10428 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10429 {
10430 n = t;
10431 }
10432
10433 return n != NULL_TREE && n != void_type_node;
10434 }
10435
10436 /* Return true if TYPE has a prototype. */
10437
10438 bool
10439 prototype_p (tree fntype)
10440 {
10441 tree t;
10442
10443 gcc_assert (fntype != NULL_TREE);
10444
10445 t = TYPE_ARG_TYPES (fntype);
10446 return (t != NULL_TREE);
10447 }
10448
10449 /* If BLOCK is inlined from an __attribute__((__artificial__))
10450 routine, return pointer to location from where it has been
10451 called. */
10452 location_t *
10453 block_nonartificial_location (tree block)
10454 {
10455 location_t *ret = NULL;
10456
10457 while (block && TREE_CODE (block) == BLOCK
10458 && BLOCK_ABSTRACT_ORIGIN (block))
10459 {
10460 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10461
10462 while (TREE_CODE (ao) == BLOCK
10463 && BLOCK_ABSTRACT_ORIGIN (ao)
10464 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10465 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10466
10467 if (TREE_CODE (ao) == FUNCTION_DECL)
10468 {
10469 /* If AO is an artificial inline, point RET to the
10470 call site locus at which it has been inlined and continue
10471 the loop, in case AO's caller is also an artificial
10472 inline. */
10473 if (DECL_DECLARED_INLINE_P (ao)
10474 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10475 ret = &BLOCK_SOURCE_LOCATION (block);
10476 else
10477 break;
10478 }
10479 else if (TREE_CODE (ao) != BLOCK)
10480 break;
10481
10482 block = BLOCK_SUPERCONTEXT (block);
10483 }
10484 return ret;
10485 }
10486
10487
10488 /* If EXP is inlined from an __attribute__((__artificial__))
10489 function, return the location of the original call expression. */
10490
10491 location_t
10492 tree_nonartificial_location (tree exp)
10493 {
10494 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10495
10496 if (loc)
10497 return *loc;
10498 else
10499 return EXPR_LOCATION (exp);
10500 }
10501
10502
10503 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10504 nodes. */
10505
10506 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10507
10508 static hashval_t
10509 cl_option_hash_hash (const void *x)
10510 {
10511 const_tree const t = (const_tree) x;
10512 const char *p;
10513 size_t i;
10514 size_t len = 0;
10515 hashval_t hash = 0;
10516
10517 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10518 {
10519 p = (const char *)TREE_OPTIMIZATION (t);
10520 len = sizeof (struct cl_optimization);
10521 }
10522
10523 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10524 {
10525 p = (const char *)TREE_TARGET_OPTION (t);
10526 len = sizeof (struct cl_target_option);
10527 }
10528
10529 else
10530 gcc_unreachable ();
10531
10532 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10533 something else. */
10534 for (i = 0; i < len; i++)
10535 if (p[i])
10536 hash = (hash << 4) ^ ((i << 2) | p[i]);
10537
10538 return hash;
10539 }
10540
10541 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10542 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10543 same. */
10544
10545 static int
10546 cl_option_hash_eq (const void *x, const void *y)
10547 {
10548 const_tree const xt = (const_tree) x;
10549 const_tree const yt = (const_tree) y;
10550 const char *xp;
10551 const char *yp;
10552 size_t len;
10553
10554 if (TREE_CODE (xt) != TREE_CODE (yt))
10555 return 0;
10556
10557 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10558 {
10559 xp = (const char *)TREE_OPTIMIZATION (xt);
10560 yp = (const char *)TREE_OPTIMIZATION (yt);
10561 len = sizeof (struct cl_optimization);
10562 }
10563
10564 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10565 {
10566 xp = (const char *)TREE_TARGET_OPTION (xt);
10567 yp = (const char *)TREE_TARGET_OPTION (yt);
10568 len = sizeof (struct cl_target_option);
10569 }
10570
10571 else
10572 gcc_unreachable ();
10573
10574 return (memcmp (xp, yp, len) == 0);
10575 }
10576
10577 /* Build an OPTIMIZATION_NODE based on the current options. */
10578
10579 tree
10580 build_optimization_node (void)
10581 {
10582 tree t;
10583 void **slot;
10584
10585 /* Use the cache of optimization nodes. */
10586
10587 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
10588
10589 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10590 t = (tree) *slot;
10591 if (!t)
10592 {
10593 /* Insert this one into the hash table. */
10594 t = cl_optimization_node;
10595 *slot = t;
10596
10597 /* Make a new node for next time round. */
10598 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10599 }
10600
10601 return t;
10602 }
10603
10604 /* Build a TARGET_OPTION_NODE based on the current options. */
10605
10606 tree
10607 build_target_option_node (void)
10608 {
10609 tree t;
10610 void **slot;
10611
10612 /* Use the cache of optimization nodes. */
10613
10614 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
10615
10616 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10617 t = (tree) *slot;
10618 if (!t)
10619 {
10620 /* Insert this one into the hash table. */
10621 t = cl_target_option_node;
10622 *slot = t;
10623
10624 /* Make a new node for next time round. */
10625 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10626 }
10627
10628 return t;
10629 }
10630
10631 /* Determine the "ultimate origin" of a block. The block may be an inlined
10632 instance of an inlined instance of a block which is local to an inline
10633 function, so we have to trace all of the way back through the origin chain
10634 to find out what sort of node actually served as the original seed for the
10635 given block. */
10636
10637 tree
10638 block_ultimate_origin (const_tree block)
10639 {
10640 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10641
10642 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10643 nodes in the function to point to themselves; ignore that if
10644 we're trying to output the abstract instance of this function. */
10645 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10646 return NULL_TREE;
10647
10648 if (immediate_origin == NULL_TREE)
10649 return NULL_TREE;
10650 else
10651 {
10652 tree ret_val;
10653 tree lookahead = immediate_origin;
10654
10655 do
10656 {
10657 ret_val = lookahead;
10658 lookahead = (TREE_CODE (ret_val) == BLOCK
10659 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10660 }
10661 while (lookahead != NULL && lookahead != ret_val);
10662
10663 /* The block's abstract origin chain may not be the *ultimate* origin of
10664 the block. It could lead to a DECL that has an abstract origin set.
10665 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10666 will give us if it has one). Note that DECL's abstract origins are
10667 supposed to be the most distant ancestor (or so decl_ultimate_origin
10668 claims), so we don't need to loop following the DECL origins. */
10669 if (DECL_P (ret_val))
10670 return DECL_ORIGIN (ret_val);
10671
10672 return ret_val;
10673 }
10674 }
10675
10676 /* Return true if T1 and T2 are equivalent lists. */
10677
10678 bool
10679 list_equal_p (const_tree t1, const_tree t2)
10680 {
10681 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10682 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10683 return false;
10684 return !t1 && !t2;
10685 }
10686
10687 /* Return true iff conversion in EXP generates no instruction. Mark
10688 it inline so that we fully inline into the stripping functions even
10689 though we have two uses of this function. */
10690
10691 static inline bool
10692 tree_nop_conversion (const_tree exp)
10693 {
10694 tree outer_type, inner_type;
10695
10696 if (!CONVERT_EXPR_P (exp)
10697 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10698 return false;
10699 if (TREE_OPERAND (exp, 0) == error_mark_node)
10700 return false;
10701
10702 outer_type = TREE_TYPE (exp);
10703 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10704
10705 if (!inner_type)
10706 return false;
10707
10708 /* Use precision rather then machine mode when we can, which gives
10709 the correct answer even for submode (bit-field) types. */
10710 if ((INTEGRAL_TYPE_P (outer_type)
10711 || POINTER_TYPE_P (outer_type)
10712 || TREE_CODE (outer_type) == OFFSET_TYPE)
10713 && (INTEGRAL_TYPE_P (inner_type)
10714 || POINTER_TYPE_P (inner_type)
10715 || TREE_CODE (inner_type) == OFFSET_TYPE))
10716 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10717
10718 /* Otherwise fall back on comparing machine modes (e.g. for
10719 aggregate types, floats). */
10720 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10721 }
10722
10723 /* Return true iff conversion in EXP generates no instruction. Don't
10724 consider conversions changing the signedness. */
10725
10726 static bool
10727 tree_sign_nop_conversion (const_tree exp)
10728 {
10729 tree outer_type, inner_type;
10730
10731 if (!tree_nop_conversion (exp))
10732 return false;
10733
10734 outer_type = TREE_TYPE (exp);
10735 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10736
10737 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10738 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10739 }
10740
10741 /* Strip conversions from EXP according to tree_nop_conversion and
10742 return the resulting expression. */
10743
10744 tree
10745 tree_strip_nop_conversions (tree exp)
10746 {
10747 while (tree_nop_conversion (exp))
10748 exp = TREE_OPERAND (exp, 0);
10749 return exp;
10750 }
10751
10752 /* Strip conversions from EXP according to tree_sign_nop_conversion
10753 and return the resulting expression. */
10754
10755 tree
10756 tree_strip_sign_nop_conversions (tree exp)
10757 {
10758 while (tree_sign_nop_conversion (exp))
10759 exp = TREE_OPERAND (exp, 0);
10760 return exp;
10761 }
10762
10763 static GTY(()) tree gcc_eh_personality_decl;
10764
10765 /* Return the GCC personality function decl. */
10766
10767 tree
10768 lhd_gcc_personality (void)
10769 {
10770 if (!gcc_eh_personality_decl)
10771 gcc_eh_personality_decl
10772 = build_personality_function (USING_SJLJ_EXCEPTIONS
10773 ? "__gcc_personality_sj0"
10774 : "__gcc_personality_v0");
10775
10776 return gcc_eh_personality_decl;
10777 }
10778
10779 /* Try to find a base info of BINFO that would have its field decl at offset
10780 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10781 found, return, otherwise return NULL_TREE. */
10782
10783 tree
10784 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10785 {
10786 tree type;
10787
10788 if (offset == 0)
10789 return binfo;
10790
10791 type = TREE_TYPE (binfo);
10792 while (offset > 0)
10793 {
10794 tree base_binfo, found_binfo;
10795 HOST_WIDE_INT pos, size;
10796 tree fld;
10797 int i;
10798
10799 if (TREE_CODE (type) != RECORD_TYPE)
10800 return NULL_TREE;
10801
10802 for (fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
10803 {
10804 if (TREE_CODE (fld) != FIELD_DECL)
10805 continue;
10806
10807 pos = int_bit_position (fld);
10808 size = tree_low_cst (DECL_SIZE (fld), 1);
10809 if (pos <= offset && (pos + size) > offset)
10810 break;
10811 }
10812 if (!fld)
10813 return NULL_TREE;
10814
10815 found_binfo = NULL_TREE;
10816 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
10817 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
10818 {
10819 found_binfo = base_binfo;
10820 break;
10821 }
10822
10823 if (!found_binfo)
10824 return NULL_TREE;
10825
10826 type = TREE_TYPE (fld);
10827 binfo = found_binfo;
10828 offset -= pos;
10829 }
10830 if (type != expected_type)
10831 return NULL_TREE;
10832 return binfo;
10833 }
10834
10835 #include "gt-tree.h"