Warning fixes:
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 88, 92-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include "system.h"
38 #include <setjmp.h>
39 #include "flags.h"
40 #include "tree.h"
41 #include "except.h"
42 #include "function.h"
43 #include "obstack.h"
44 #include "toplev.h"
45
46 #define obstack_chunk_alloc xmalloc
47 #define obstack_chunk_free free
48 /* obstack.[ch] explicitly declined to prototype this. */
49 extern int _obstack_allocated_p PROTO ((struct obstack *h, GENERIC_PTR obj));
50
51 /* Tree nodes of permanent duration are allocated in this obstack.
52 They are the identifier nodes, and everything outside of
53 the bodies and parameters of function definitions. */
54
55 struct obstack permanent_obstack;
56
57 /* The initial RTL, and all ..._TYPE nodes, in a function
58 are allocated in this obstack. Usually they are freed at the
59 end of the function, but if the function is inline they are saved.
60 For top-level functions, this is maybepermanent_obstack.
61 Separate obstacks are made for nested functions. */
62
63 struct obstack *function_maybepermanent_obstack;
64
65 /* This is the function_maybepermanent_obstack for top-level functions. */
66
67 struct obstack maybepermanent_obstack;
68
69 /* This is a list of function_maybepermanent_obstacks for top-level inline
70 functions that are compiled in the middle of compiling other functions. */
71
72 struct simple_obstack_stack *toplev_inline_obstacks;
73
74 /* Former elements of toplev_inline_obstacks that have been recycled. */
75
76 struct simple_obstack_stack *extra_inline_obstacks;
77
78 /* This is a list of function_maybepermanent_obstacks for inline functions
79 nested in the current function that were compiled in the middle of
80 compiling other functions. */
81
82 struct simple_obstack_stack *inline_obstacks;
83
84 /* The contents of the current function definition are allocated
85 in this obstack, and all are freed at the end of the function.
86 For top-level functions, this is temporary_obstack.
87 Separate obstacks are made for nested functions. */
88
89 struct obstack *function_obstack;
90
91 /* This is used for reading initializers of global variables. */
92
93 struct obstack temporary_obstack;
94
95 /* The tree nodes of an expression are allocated
96 in this obstack, and all are freed at the end of the expression. */
97
98 struct obstack momentary_obstack;
99
100 /* The tree nodes of a declarator are allocated
101 in this obstack, and all are freed when the declarator
102 has been parsed. */
103
104 static struct obstack temp_decl_obstack;
105
106 /* This points at either permanent_obstack
107 or the current function_maybepermanent_obstack. */
108
109 struct obstack *saveable_obstack;
110
111 /* This is same as saveable_obstack during parse and expansion phase;
112 it points to the current function's obstack during optimization.
113 This is the obstack to be used for creating rtl objects. */
114
115 struct obstack *rtl_obstack;
116
117 /* This points at either permanent_obstack or the current function_obstack. */
118
119 struct obstack *current_obstack;
120
121 /* This points at either permanent_obstack or the current function_obstack
122 or momentary_obstack. */
123
124 struct obstack *expression_obstack;
125
126 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
127
128 struct obstack_stack
129 {
130 struct obstack_stack *next;
131 struct obstack *current;
132 struct obstack *saveable;
133 struct obstack *expression;
134 struct obstack *rtl;
135 };
136
137 struct obstack_stack *obstack_stack;
138
139 /* Obstack for allocating struct obstack_stack entries. */
140
141 static struct obstack obstack_stack_obstack;
142
143 /* Addresses of first objects in some obstacks.
144 This is for freeing their entire contents. */
145 char *maybepermanent_firstobj;
146 char *temporary_firstobj;
147 char *momentary_firstobj;
148 char *temp_decl_firstobj;
149
150 /* This is used to preserve objects (mainly array initializers) that need to
151 live until the end of the current function, but no further. */
152 char *momentary_function_firstobj;
153
154 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
155
156 int all_types_permanent;
157
158 /* Stack of places to restore the momentary obstack back to. */
159
160 struct momentary_level
161 {
162 /* Pointer back to previous such level. */
163 struct momentary_level *prev;
164 /* First object allocated within this level. */
165 char *base;
166 /* Value of expression_obstack saved at entry to this level. */
167 struct obstack *obstack;
168 };
169
170 struct momentary_level *momentary_stack;
171
172 /* Table indexed by tree code giving a string containing a character
173 classifying the tree code. Possibilities are
174 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
175
176 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
177
178 char tree_code_type[MAX_TREE_CODES] = {
179 #include "tree.def"
180 };
181 #undef DEFTREECODE
182
183 /* Table indexed by tree code giving number of expression
184 operands beyond the fixed part of the node structure.
185 Not used for types or decls. */
186
187 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
188
189 int tree_code_length[MAX_TREE_CODES] = {
190 #include "tree.def"
191 };
192 #undef DEFTREECODE
193
194 /* Names of tree components.
195 Used for printing out the tree and error messages. */
196 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
197
198 char *tree_code_name[MAX_TREE_CODES] = {
199 #include "tree.def"
200 };
201 #undef DEFTREECODE
202
203 /* Statistics-gathering stuff. */
204 typedef enum
205 {
206 d_kind,
207 t_kind,
208 b_kind,
209 s_kind,
210 r_kind,
211 e_kind,
212 c_kind,
213 id_kind,
214 op_id_kind,
215 perm_list_kind,
216 temp_list_kind,
217 vec_kind,
218 x_kind,
219 lang_decl,
220 lang_type,
221 all_kinds
222 } tree_node_kind;
223
224 int tree_node_counts[(int)all_kinds];
225 int tree_node_sizes[(int)all_kinds];
226 int id_string_size = 0;
227
228 char *tree_node_kind_names[] = {
229 "decls",
230 "types",
231 "blocks",
232 "stmts",
233 "refs",
234 "exprs",
235 "constants",
236 "identifiers",
237 "op_identifiers",
238 "perm_tree_lists",
239 "temp_tree_lists",
240 "vecs",
241 "random kinds",
242 "lang_decl kinds",
243 "lang_type kinds"
244 };
245
246 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
247
248 #define MAX_HASH_TABLE 1009
249 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
250
251 /* 0 while creating built-in identifiers. */
252 static int do_identifier_warnings;
253
254 /* Unique id for next decl created. */
255 static int next_decl_uid;
256 /* Unique id for next type created. */
257 static int next_type_uid = 1;
258
259 /* The language-specific function for alias analysis. If NULL, the
260 language does not do any special alias analysis. */
261 int (*lang_get_alias_set) PROTO((tree));
262
263 /* Here is how primitive or already-canonicalized types' hash
264 codes are made. */
265 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
266
267 static void set_type_quals PROTO((tree, int));
268 static void append_random_chars PROTO((char *));
269
270 extern char *mode_name[];
271
272 void gcc_obstack_init ();
273 \f
274 /* Init the principal obstacks. */
275
276 void
277 init_obstacks ()
278 {
279 gcc_obstack_init (&obstack_stack_obstack);
280 gcc_obstack_init (&permanent_obstack);
281
282 gcc_obstack_init (&temporary_obstack);
283 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
284 gcc_obstack_init (&momentary_obstack);
285 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
286 momentary_function_firstobj = momentary_firstobj;
287 gcc_obstack_init (&maybepermanent_obstack);
288 maybepermanent_firstobj
289 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
290 gcc_obstack_init (&temp_decl_obstack);
291 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
292
293 function_obstack = &temporary_obstack;
294 function_maybepermanent_obstack = &maybepermanent_obstack;
295 current_obstack = &permanent_obstack;
296 expression_obstack = &permanent_obstack;
297 rtl_obstack = saveable_obstack = &permanent_obstack;
298
299 /* Init the hash table of identifiers. */
300 bzero ((char *) hash_table, sizeof hash_table);
301 }
302
303 void
304 gcc_obstack_init (obstack)
305 struct obstack *obstack;
306 {
307 /* Let particular systems override the size of a chunk. */
308 #ifndef OBSTACK_CHUNK_SIZE
309 #define OBSTACK_CHUNK_SIZE 0
310 #endif
311 /* Let them override the alloc and free routines too. */
312 #ifndef OBSTACK_CHUNK_ALLOC
313 #define OBSTACK_CHUNK_ALLOC xmalloc
314 #endif
315 #ifndef OBSTACK_CHUNK_FREE
316 #define OBSTACK_CHUNK_FREE free
317 #endif
318 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
319 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
320 (void (*) ()) OBSTACK_CHUNK_FREE);
321 }
322
323 /* Save all variables describing the current status into the structure *P.
324 This is used before starting a nested function.
325
326 CONTEXT is the decl_function_context for the function we're about to
327 compile; if it isn't current_function_decl, we have to play some games. */
328
329 void
330 save_tree_status (p, context)
331 struct function *p;
332 tree context;
333 {
334 p->all_types_permanent = all_types_permanent;
335 p->momentary_stack = momentary_stack;
336 p->maybepermanent_firstobj = maybepermanent_firstobj;
337 p->temporary_firstobj = temporary_firstobj;
338 p->momentary_firstobj = momentary_firstobj;
339 p->momentary_function_firstobj = momentary_function_firstobj;
340 p->function_obstack = function_obstack;
341 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
342 p->current_obstack = current_obstack;
343 p->expression_obstack = expression_obstack;
344 p->saveable_obstack = saveable_obstack;
345 p->rtl_obstack = rtl_obstack;
346 p->inline_obstacks = inline_obstacks;
347
348 if (context == current_function_decl)
349 /* Objects that need to be saved in this function can be in the nonsaved
350 obstack of the enclosing function since they can't possibly be needed
351 once it has returned. */
352 function_maybepermanent_obstack = function_obstack;
353 else
354 {
355 /* We're compiling a function which isn't nested in the current
356 function. We need to create a new maybepermanent_obstack for this
357 function, since it can't go onto any of the existing obstacks. */
358 struct simple_obstack_stack **head;
359 struct simple_obstack_stack *current;
360
361 if (context == NULL_TREE)
362 head = &toplev_inline_obstacks;
363 else
364 {
365 struct function *f = find_function_data (context);
366 head = &f->inline_obstacks;
367 }
368
369 if (context == NULL_TREE && extra_inline_obstacks)
370 {
371 current = extra_inline_obstacks;
372 extra_inline_obstacks = current->next;
373 }
374 else
375 {
376 current = ((struct simple_obstack_stack *)
377 xmalloc (sizeof (struct simple_obstack_stack)));
378
379 current->obstack
380 = (struct obstack *) xmalloc (sizeof (struct obstack));
381 gcc_obstack_init (current->obstack);
382 }
383
384 function_maybepermanent_obstack = current->obstack;
385
386 current->next = *head;
387 *head = current;
388 }
389
390 maybepermanent_firstobj
391 = (char *) obstack_finish (function_maybepermanent_obstack);
392
393 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
394 gcc_obstack_init (function_obstack);
395
396 current_obstack = &permanent_obstack;
397 expression_obstack = &permanent_obstack;
398 rtl_obstack = saveable_obstack = &permanent_obstack;
399
400 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
401 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
402 momentary_function_firstobj = momentary_firstobj;
403 }
404
405 /* Restore all variables describing the current status from the structure *P.
406 This is used after a nested function. */
407
408 void
409 restore_tree_status (p, context)
410 struct function *p;
411 tree context;
412 {
413 all_types_permanent = p->all_types_permanent;
414 momentary_stack = p->momentary_stack;
415
416 obstack_free (&momentary_obstack, momentary_function_firstobj);
417
418 /* Free saveable storage used by the function just compiled and not
419 saved.
420
421 CAUTION: This is in function_obstack of the containing function.
422 So we must be sure that we never allocate from that obstack during
423 the compilation of a nested function if we expect it to survive
424 past the nested function's end. */
425 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
426
427 /* If we were compiling a toplevel function, we can free this space now. */
428 if (context == NULL_TREE)
429 {
430 obstack_free (&temporary_obstack, temporary_firstobj);
431 obstack_free (&momentary_obstack, momentary_function_firstobj);
432 }
433
434 /* If we were compiling a toplevel function that we don't actually want
435 to save anything from, return the obstack to the pool. */
436 if (context == NULL_TREE
437 && obstack_empty_p (function_maybepermanent_obstack))
438 {
439 struct simple_obstack_stack *current, **p = &toplev_inline_obstacks;
440
441 if ((*p) != NULL)
442 {
443 while ((*p)->obstack != function_maybepermanent_obstack)
444 p = &((*p)->next);
445 current = *p;
446 *p = current->next;
447
448 current->next = extra_inline_obstacks;
449 extra_inline_obstacks = current;
450 }
451 }
452
453 obstack_free (function_obstack, 0);
454 free (function_obstack);
455
456 temporary_firstobj = p->temporary_firstobj;
457 momentary_firstobj = p->momentary_firstobj;
458 momentary_function_firstobj = p->momentary_function_firstobj;
459 maybepermanent_firstobj = p->maybepermanent_firstobj;
460 function_obstack = p->function_obstack;
461 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
462 current_obstack = p->current_obstack;
463 expression_obstack = p->expression_obstack;
464 saveable_obstack = p->saveable_obstack;
465 rtl_obstack = p->rtl_obstack;
466 inline_obstacks = p->inline_obstacks;
467 }
468 \f
469 /* Start allocating on the temporary (per function) obstack.
470 This is done in start_function before parsing the function body,
471 and before each initialization at top level, and to go back
472 to temporary allocation after doing permanent_allocation. */
473
474 void
475 temporary_allocation ()
476 {
477 /* Note that function_obstack at top level points to temporary_obstack.
478 But within a nested function context, it is a separate obstack. */
479 current_obstack = function_obstack;
480 expression_obstack = function_obstack;
481 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
482 momentary_stack = 0;
483 inline_obstacks = 0;
484 }
485
486 /* Start allocating on the permanent obstack but don't
487 free the temporary data. After calling this, call
488 `permanent_allocation' to fully resume permanent allocation status. */
489
490 void
491 end_temporary_allocation ()
492 {
493 current_obstack = &permanent_obstack;
494 expression_obstack = &permanent_obstack;
495 rtl_obstack = saveable_obstack = &permanent_obstack;
496 }
497
498 /* Resume allocating on the temporary obstack, undoing
499 effects of `end_temporary_allocation'. */
500
501 void
502 resume_temporary_allocation ()
503 {
504 current_obstack = function_obstack;
505 expression_obstack = function_obstack;
506 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
507 }
508
509 /* While doing temporary allocation, switch to allocating in such a
510 way as to save all nodes if the function is inlined. Call
511 resume_temporary_allocation to go back to ordinary temporary
512 allocation. */
513
514 void
515 saveable_allocation ()
516 {
517 /* Note that function_obstack at top level points to temporary_obstack.
518 But within a nested function context, it is a separate obstack. */
519 expression_obstack = current_obstack = saveable_obstack;
520 }
521
522 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
523 recording the previously current obstacks on a stack.
524 This does not free any storage in any obstack. */
525
526 void
527 push_obstacks (current, saveable)
528 struct obstack *current, *saveable;
529 {
530 struct obstack_stack *p
531 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
532 (sizeof (struct obstack_stack)));
533
534 p->current = current_obstack;
535 p->saveable = saveable_obstack;
536 p->expression = expression_obstack;
537 p->rtl = rtl_obstack;
538 p->next = obstack_stack;
539 obstack_stack = p;
540
541 current_obstack = current;
542 expression_obstack = current;
543 rtl_obstack = saveable_obstack = saveable;
544 }
545
546 /* Save the current set of obstacks, but don't change them. */
547
548 void
549 push_obstacks_nochange ()
550 {
551 struct obstack_stack *p
552 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
553 (sizeof (struct obstack_stack)));
554
555 p->current = current_obstack;
556 p->saveable = saveable_obstack;
557 p->expression = expression_obstack;
558 p->rtl = rtl_obstack;
559 p->next = obstack_stack;
560 obstack_stack = p;
561 }
562
563 /* Pop the obstack selection stack. */
564
565 void
566 pop_obstacks ()
567 {
568 struct obstack_stack *p = obstack_stack;
569 obstack_stack = p->next;
570
571 current_obstack = p->current;
572 saveable_obstack = p->saveable;
573 expression_obstack = p->expression;
574 rtl_obstack = p->rtl;
575
576 obstack_free (&obstack_stack_obstack, p);
577 }
578
579 /* Nonzero if temporary allocation is currently in effect.
580 Zero if currently doing permanent allocation. */
581
582 int
583 allocation_temporary_p ()
584 {
585 return current_obstack != &permanent_obstack;
586 }
587
588 /* Go back to allocating on the permanent obstack
589 and free everything in the temporary obstack.
590
591 FUNCTION_END is true only if we have just finished compiling a function.
592 In that case, we also free preserved initial values on the momentary
593 obstack. */
594
595 void
596 permanent_allocation (function_end)
597 int function_end;
598 {
599 /* Free up previous temporary obstack data */
600 obstack_free (&temporary_obstack, temporary_firstobj);
601 if (function_end)
602 {
603 obstack_free (&momentary_obstack, momentary_function_firstobj);
604 momentary_firstobj = momentary_function_firstobj;
605 }
606 else
607 obstack_free (&momentary_obstack, momentary_firstobj);
608 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
609 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
610
611 /* Free up the maybepermanent_obstacks for any of our nested functions
612 which were compiled at a lower level. */
613 while (inline_obstacks)
614 {
615 struct simple_obstack_stack *current = inline_obstacks;
616 inline_obstacks = current->next;
617 obstack_free (current->obstack, 0);
618 free (current->obstack);
619 free (current);
620 }
621
622 current_obstack = &permanent_obstack;
623 expression_obstack = &permanent_obstack;
624 rtl_obstack = saveable_obstack = &permanent_obstack;
625 }
626
627 /* Save permanently everything on the maybepermanent_obstack. */
628
629 void
630 preserve_data ()
631 {
632 maybepermanent_firstobj
633 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
634 }
635
636 void
637 preserve_initializer ()
638 {
639 struct momentary_level *tem;
640 char *old_momentary;
641
642 temporary_firstobj
643 = (char *) obstack_alloc (&temporary_obstack, 0);
644 maybepermanent_firstobj
645 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
646
647 old_momentary = momentary_firstobj;
648 momentary_firstobj
649 = (char *) obstack_alloc (&momentary_obstack, 0);
650 if (momentary_firstobj != old_momentary)
651 for (tem = momentary_stack; tem; tem = tem->prev)
652 tem->base = momentary_firstobj;
653 }
654
655 /* Start allocating new rtl in current_obstack.
656 Use resume_temporary_allocation
657 to go back to allocating rtl in saveable_obstack. */
658
659 void
660 rtl_in_current_obstack ()
661 {
662 rtl_obstack = current_obstack;
663 }
664
665 /* Start allocating rtl from saveable_obstack. Intended to be used after
666 a call to push_obstacks_nochange. */
667
668 void
669 rtl_in_saveable_obstack ()
670 {
671 rtl_obstack = saveable_obstack;
672 }
673 \f
674 /* Allocate SIZE bytes in the current obstack
675 and return a pointer to them.
676 In practice the current obstack is always the temporary one. */
677
678 char *
679 oballoc (size)
680 int size;
681 {
682 return (char *) obstack_alloc (current_obstack, size);
683 }
684
685 /* Free the object PTR in the current obstack
686 as well as everything allocated since PTR.
687 In practice the current obstack is always the temporary one. */
688
689 void
690 obfree (ptr)
691 char *ptr;
692 {
693 obstack_free (current_obstack, ptr);
694 }
695
696 /* Allocate SIZE bytes in the permanent obstack
697 and return a pointer to them. */
698
699 char *
700 permalloc (size)
701 int size;
702 {
703 return (char *) obstack_alloc (&permanent_obstack, size);
704 }
705
706 /* Allocate NELEM items of SIZE bytes in the permanent obstack
707 and return a pointer to them. The storage is cleared before
708 returning the value. */
709
710 char *
711 perm_calloc (nelem, size)
712 int nelem;
713 long size;
714 {
715 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
716 bzero (rval, nelem * size);
717 return rval;
718 }
719
720 /* Allocate SIZE bytes in the saveable obstack
721 and return a pointer to them. */
722
723 char *
724 savealloc (size)
725 int size;
726 {
727 return (char *) obstack_alloc (saveable_obstack, size);
728 }
729
730 /* Allocate SIZE bytes in the expression obstack
731 and return a pointer to them. */
732
733 char *
734 expralloc (size)
735 int size;
736 {
737 return (char *) obstack_alloc (expression_obstack, size);
738 }
739 \f
740 /* Print out which obstack an object is in. */
741
742 void
743 print_obstack_name (object, file, prefix)
744 char *object;
745 FILE *file;
746 char *prefix;
747 {
748 struct obstack *obstack = NULL;
749 char *obstack_name = NULL;
750 struct function *p;
751
752 for (p = outer_function_chain; p; p = p->next)
753 {
754 if (_obstack_allocated_p (p->function_obstack, object))
755 {
756 obstack = p->function_obstack;
757 obstack_name = "containing function obstack";
758 }
759 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
760 {
761 obstack = p->function_maybepermanent_obstack;
762 obstack_name = "containing function maybepermanent obstack";
763 }
764 }
765
766 if (_obstack_allocated_p (&obstack_stack_obstack, object))
767 {
768 obstack = &obstack_stack_obstack;
769 obstack_name = "obstack_stack_obstack";
770 }
771 else if (_obstack_allocated_p (function_obstack, object))
772 {
773 obstack = function_obstack;
774 obstack_name = "function obstack";
775 }
776 else if (_obstack_allocated_p (&permanent_obstack, object))
777 {
778 obstack = &permanent_obstack;
779 obstack_name = "permanent_obstack";
780 }
781 else if (_obstack_allocated_p (&momentary_obstack, object))
782 {
783 obstack = &momentary_obstack;
784 obstack_name = "momentary_obstack";
785 }
786 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
787 {
788 obstack = function_maybepermanent_obstack;
789 obstack_name = "function maybepermanent obstack";
790 }
791 else if (_obstack_allocated_p (&temp_decl_obstack, object))
792 {
793 obstack = &temp_decl_obstack;
794 obstack_name = "temp_decl_obstack";
795 }
796
797 /* Check to see if the object is in the free area of the obstack. */
798 if (obstack != NULL)
799 {
800 if (object >= obstack->next_free
801 && object < obstack->chunk_limit)
802 fprintf (file, "%s in free portion of obstack %s",
803 prefix, obstack_name);
804 else
805 fprintf (file, "%s allocated from %s", prefix, obstack_name);
806 }
807 else
808 fprintf (file, "%s not allocated from any obstack", prefix);
809 }
810
811 void
812 debug_obstack (object)
813 char *object;
814 {
815 print_obstack_name (object, stderr, "object");
816 fprintf (stderr, ".\n");
817 }
818
819 /* Return 1 if OBJ is in the permanent obstack.
820 This is slow, and should be used only for debugging.
821 Use TREE_PERMANENT for other purposes. */
822
823 int
824 object_permanent_p (obj)
825 tree obj;
826 {
827 return _obstack_allocated_p (&permanent_obstack, obj);
828 }
829 \f
830 /* Start a level of momentary allocation.
831 In C, each compound statement has its own level
832 and that level is freed at the end of each statement.
833 All expression nodes are allocated in the momentary allocation level. */
834
835 void
836 push_momentary ()
837 {
838 struct momentary_level *tem
839 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
840 sizeof (struct momentary_level));
841 tem->prev = momentary_stack;
842 tem->base = (char *) obstack_base (&momentary_obstack);
843 tem->obstack = expression_obstack;
844 momentary_stack = tem;
845 expression_obstack = &momentary_obstack;
846 }
847
848 /* Set things up so the next clear_momentary will only clear memory
849 past our present position in momentary_obstack. */
850
851 void
852 preserve_momentary ()
853 {
854 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
855 }
856
857 /* Free all the storage in the current momentary-allocation level.
858 In C, this happens at the end of each statement. */
859
860 void
861 clear_momentary ()
862 {
863 obstack_free (&momentary_obstack, momentary_stack->base);
864 }
865
866 /* Discard a level of momentary allocation.
867 In C, this happens at the end of each compound statement.
868 Restore the status of expression node allocation
869 that was in effect before this level was created. */
870
871 void
872 pop_momentary ()
873 {
874 struct momentary_level *tem = momentary_stack;
875 momentary_stack = tem->prev;
876 expression_obstack = tem->obstack;
877 /* We can't free TEM from the momentary_obstack, because there might
878 be objects above it which have been saved. We can free back to the
879 stack of the level we are popping off though. */
880 obstack_free (&momentary_obstack, tem->base);
881 }
882
883 /* Pop back to the previous level of momentary allocation,
884 but don't free any momentary data just yet. */
885
886 void
887 pop_momentary_nofree ()
888 {
889 struct momentary_level *tem = momentary_stack;
890 momentary_stack = tem->prev;
891 expression_obstack = tem->obstack;
892 }
893
894 /* Call when starting to parse a declaration:
895 make expressions in the declaration last the length of the function.
896 Returns an argument that should be passed to resume_momentary later. */
897
898 int
899 suspend_momentary ()
900 {
901 register int tem = expression_obstack == &momentary_obstack;
902 expression_obstack = saveable_obstack;
903 return tem;
904 }
905
906 /* Call when finished parsing a declaration:
907 restore the treatment of node-allocation that was
908 in effect before the suspension.
909 YES should be the value previously returned by suspend_momentary. */
910
911 void
912 resume_momentary (yes)
913 int yes;
914 {
915 if (yes)
916 expression_obstack = &momentary_obstack;
917 }
918 \f
919 /* Init the tables indexed by tree code.
920 Note that languages can add to these tables to define their own codes. */
921
922 void
923 init_tree_codes ()
924 {
925
926 }
927
928 /* Return a newly allocated node of code CODE.
929 Initialize the node's unique id and its TREE_PERMANENT flag.
930 For decl and type nodes, some other fields are initialized.
931 The rest of the node is initialized to zero.
932
933 Achoo! I got a code in the node. */
934
935 tree
936 make_node (code)
937 enum tree_code code;
938 {
939 register tree t;
940 register int type = TREE_CODE_CLASS (code);
941 register int length = 0;
942 register struct obstack *obstack = current_obstack;
943 register int i;
944 #ifdef GATHER_STATISTICS
945 register tree_node_kind kind;
946 #endif
947
948 switch (type)
949 {
950 case 'd': /* A decl node */
951 #ifdef GATHER_STATISTICS
952 kind = d_kind;
953 #endif
954 length = sizeof (struct tree_decl);
955 /* All decls in an inline function need to be saved. */
956 if (obstack != &permanent_obstack)
957 obstack = saveable_obstack;
958
959 /* PARM_DECLs go on the context of the parent. If this is a nested
960 function, then we must allocate the PARM_DECL on the parent's
961 obstack, so that they will live to the end of the parent's
962 closing brace. This is necessary in case we try to inline the
963 function into its parent.
964
965 PARM_DECLs of top-level functions do not have this problem. However,
966 we allocate them where we put the FUNCTION_DECL for languages such as
967 Ada that need to consult some flags in the PARM_DECLs of the function
968 when calling it.
969
970 See comment in restore_tree_status for why we can't put this
971 in function_obstack. */
972 if (code == PARM_DECL && obstack != &permanent_obstack)
973 {
974 tree context = 0;
975 if (current_function_decl)
976 context = decl_function_context (current_function_decl);
977
978 if (context)
979 obstack
980 = find_function_data (context)->function_maybepermanent_obstack;
981 }
982 break;
983
984 case 't': /* a type node */
985 #ifdef GATHER_STATISTICS
986 kind = t_kind;
987 #endif
988 length = sizeof (struct tree_type);
989 /* All data types are put where we can preserve them if nec. */
990 if (obstack != &permanent_obstack)
991 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
992 break;
993
994 case 'b': /* a lexical block */
995 #ifdef GATHER_STATISTICS
996 kind = b_kind;
997 #endif
998 length = sizeof (struct tree_block);
999 /* All BLOCK nodes are put where we can preserve them if nec. */
1000 if (obstack != &permanent_obstack)
1001 obstack = saveable_obstack;
1002 break;
1003
1004 case 's': /* an expression with side effects */
1005 #ifdef GATHER_STATISTICS
1006 kind = s_kind;
1007 goto usual_kind;
1008 #endif
1009 case 'r': /* a reference */
1010 #ifdef GATHER_STATISTICS
1011 kind = r_kind;
1012 goto usual_kind;
1013 #endif
1014 case 'e': /* an expression */
1015 case '<': /* a comparison expression */
1016 case '1': /* a unary arithmetic expression */
1017 case '2': /* a binary arithmetic expression */
1018 #ifdef GATHER_STATISTICS
1019 kind = e_kind;
1020 usual_kind:
1021 #endif
1022 obstack = expression_obstack;
1023 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
1024 if (code == BIND_EXPR && obstack != &permanent_obstack)
1025 obstack = saveable_obstack;
1026 length = sizeof (struct tree_exp)
1027 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1028 break;
1029
1030 case 'c': /* a constant */
1031 #ifdef GATHER_STATISTICS
1032 kind = c_kind;
1033 #endif
1034 obstack = expression_obstack;
1035
1036 /* We can't use tree_code_length for INTEGER_CST, since the number of
1037 words is machine-dependent due to varying length of HOST_WIDE_INT,
1038 which might be wider than a pointer (e.g., long long). Similarly
1039 for REAL_CST, since the number of words is machine-dependent due
1040 to varying size and alignment of `double'. */
1041
1042 if (code == INTEGER_CST)
1043 length = sizeof (struct tree_int_cst);
1044 else if (code == REAL_CST)
1045 length = sizeof (struct tree_real_cst);
1046 else
1047 length = sizeof (struct tree_common)
1048 + tree_code_length[(int) code] * sizeof (char *);
1049 break;
1050
1051 case 'x': /* something random, like an identifier. */
1052 #ifdef GATHER_STATISTICS
1053 if (code == IDENTIFIER_NODE)
1054 kind = id_kind;
1055 else if (code == OP_IDENTIFIER)
1056 kind = op_id_kind;
1057 else if (code == TREE_VEC)
1058 kind = vec_kind;
1059 else
1060 kind = x_kind;
1061 #endif
1062 length = sizeof (struct tree_common)
1063 + tree_code_length[(int) code] * sizeof (char *);
1064 /* Identifier nodes are always permanent since they are
1065 unique in a compiler run. */
1066 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1067 break;
1068
1069 default:
1070 abort ();
1071 }
1072
1073 t = (tree) obstack_alloc (obstack, length);
1074
1075 #ifdef GATHER_STATISTICS
1076 tree_node_counts[(int)kind]++;
1077 tree_node_sizes[(int)kind] += length;
1078 #endif
1079
1080 /* Clear a word at a time. */
1081 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1082 ((int *) t)[i] = 0;
1083 /* Clear any extra bytes. */
1084 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1085 ((char *) t)[i] = 0;
1086
1087 TREE_SET_CODE (t, code);
1088 if (obstack == &permanent_obstack)
1089 TREE_PERMANENT (t) = 1;
1090
1091 switch (type)
1092 {
1093 case 's':
1094 TREE_SIDE_EFFECTS (t) = 1;
1095 TREE_TYPE (t) = void_type_node;
1096 break;
1097
1098 case 'd':
1099 if (code != FUNCTION_DECL)
1100 DECL_ALIGN (t) = 1;
1101 DECL_IN_SYSTEM_HEADER (t)
1102 = in_system_header && (obstack == &permanent_obstack);
1103 DECL_SOURCE_LINE (t) = lineno;
1104 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
1105 DECL_UID (t) = next_decl_uid++;
1106 /* Note that we have not yet computed the alias set for this
1107 declaration. */
1108 DECL_POINTER_ALIAS_SET (t) = -1;
1109 break;
1110
1111 case 't':
1112 TYPE_UID (t) = next_type_uid++;
1113 TYPE_ALIGN (t) = 1;
1114 TYPE_MAIN_VARIANT (t) = t;
1115 TYPE_OBSTACK (t) = obstack;
1116 TYPE_ATTRIBUTES (t) = NULL_TREE;
1117 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1118 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1119 #endif
1120 /* Note that we have not yet computed the alias set for this
1121 type. */
1122 TYPE_ALIAS_SET (t) = -1;
1123 break;
1124
1125 case 'c':
1126 TREE_CONSTANT (t) = 1;
1127 break;
1128 }
1129
1130 return t;
1131 }
1132 \f
1133 /* Return a new node with the same contents as NODE
1134 except that its TREE_CHAIN is zero and it has a fresh uid. */
1135
1136 tree
1137 copy_node (node)
1138 tree node;
1139 {
1140 register tree t;
1141 register enum tree_code code = TREE_CODE (node);
1142 register int length = 0;
1143 register int i;
1144
1145 switch (TREE_CODE_CLASS (code))
1146 {
1147 case 'd': /* A decl node */
1148 length = sizeof (struct tree_decl);
1149 break;
1150
1151 case 't': /* a type node */
1152 length = sizeof (struct tree_type);
1153 break;
1154
1155 case 'b': /* a lexical block node */
1156 length = sizeof (struct tree_block);
1157 break;
1158
1159 case 'r': /* a reference */
1160 case 'e': /* an expression */
1161 case 's': /* an expression with side effects */
1162 case '<': /* a comparison expression */
1163 case '1': /* a unary arithmetic expression */
1164 case '2': /* a binary arithmetic expression */
1165 length = sizeof (struct tree_exp)
1166 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1167 break;
1168
1169 case 'c': /* a constant */
1170 /* We can't use tree_code_length for INTEGER_CST, since the number of
1171 words is machine-dependent due to varying length of HOST_WIDE_INT,
1172 which might be wider than a pointer (e.g., long long). Similarly
1173 for REAL_CST, since the number of words is machine-dependent due
1174 to varying size and alignment of `double'. */
1175 if (code == INTEGER_CST)
1176 length = sizeof (struct tree_int_cst);
1177 else if (code == REAL_CST)
1178 length = sizeof (struct tree_real_cst);
1179 else
1180 length = (sizeof (struct tree_common)
1181 + tree_code_length[(int) code] * sizeof (char *));
1182 break;
1183
1184 case 'x': /* something random, like an identifier. */
1185 length = sizeof (struct tree_common)
1186 + tree_code_length[(int) code] * sizeof (char *);
1187 if (code == TREE_VEC)
1188 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1189 }
1190
1191 t = (tree) obstack_alloc (current_obstack, length);
1192
1193 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1194 ((int *) t)[i] = ((int *) node)[i];
1195 /* Clear any extra bytes. */
1196 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1197 ((char *) t)[i] = ((char *) node)[i];
1198
1199 /* EXPR_WITH_FILE_LOCATION must keep filename info stored in TREE_CHAIN */
1200 if (TREE_CODE (node) != EXPR_WITH_FILE_LOCATION)
1201 TREE_CHAIN (t) = 0;
1202 TREE_ASM_WRITTEN (t) = 0;
1203
1204 if (TREE_CODE_CLASS (code) == 'd')
1205 DECL_UID (t) = next_decl_uid++;
1206 else if (TREE_CODE_CLASS (code) == 't')
1207 {
1208 TYPE_UID (t) = next_type_uid++;
1209 TYPE_OBSTACK (t) = current_obstack;
1210
1211 /* The following is so that the debug code for
1212 the copy is different from the original type.
1213 The two statements usually duplicate each other
1214 (because they clear fields of the same union),
1215 but the optimizer should catch that. */
1216 TYPE_SYMTAB_POINTER (t) = 0;
1217 TYPE_SYMTAB_ADDRESS (t) = 0;
1218 }
1219
1220 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
1221
1222 return t;
1223 }
1224
1225 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1226 For example, this can copy a list made of TREE_LIST nodes. */
1227
1228 tree
1229 copy_list (list)
1230 tree list;
1231 {
1232 tree head;
1233 register tree prev, next;
1234
1235 if (list == 0)
1236 return 0;
1237
1238 head = prev = copy_node (list);
1239 next = TREE_CHAIN (list);
1240 while (next)
1241 {
1242 TREE_CHAIN (prev) = copy_node (next);
1243 prev = TREE_CHAIN (prev);
1244 next = TREE_CHAIN (next);
1245 }
1246 return head;
1247 }
1248 \f
1249 #define HASHBITS 30
1250
1251 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1252 If an identifier with that name has previously been referred to,
1253 the same node is returned this time. */
1254
1255 tree
1256 get_identifier (text)
1257 register char *text;
1258 {
1259 register int hi;
1260 register int i;
1261 register tree idp;
1262 register int len, hash_len;
1263
1264 /* Compute length of text in len. */
1265 for (len = 0; text[len]; len++);
1266
1267 /* Decide how much of that length to hash on */
1268 hash_len = len;
1269 if (warn_id_clash && (unsigned)len > id_clash_len)
1270 hash_len = id_clash_len;
1271
1272 /* Compute hash code */
1273 hi = hash_len * 613 + (unsigned) text[0];
1274 for (i = 1; i < hash_len; i += 2)
1275 hi = ((hi * 613) + (unsigned) (text[i]));
1276
1277 hi &= (1 << HASHBITS) - 1;
1278 hi %= MAX_HASH_TABLE;
1279
1280 /* Search table for identifier */
1281 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1282 if (IDENTIFIER_LENGTH (idp) == len
1283 && IDENTIFIER_POINTER (idp)[0] == text[0]
1284 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1285 return idp; /* <-- return if found */
1286
1287 /* Not found; optionally warn about a similar identifier */
1288 if (warn_id_clash && do_identifier_warnings && (unsigned)len >= id_clash_len)
1289 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1290 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1291 {
1292 warning ("`%s' and `%s' identical in first %d characters",
1293 IDENTIFIER_POINTER (idp), text, id_clash_len);
1294 break;
1295 }
1296
1297 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1298 abort (); /* set_identifier_size hasn't been called. */
1299
1300 /* Not found, create one, add to chain */
1301 idp = make_node (IDENTIFIER_NODE);
1302 IDENTIFIER_LENGTH (idp) = len;
1303 #ifdef GATHER_STATISTICS
1304 id_string_size += len;
1305 #endif
1306
1307 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1308
1309 TREE_CHAIN (idp) = hash_table[hi];
1310 hash_table[hi] = idp;
1311 return idp; /* <-- return if created */
1312 }
1313
1314 /* If an identifier with the name TEXT (a null-terminated string) has
1315 previously been referred to, return that node; otherwise return
1316 NULL_TREE. */
1317
1318 tree
1319 maybe_get_identifier (text)
1320 register char *text;
1321 {
1322 register int hi;
1323 register int i;
1324 register tree idp;
1325 register int len, hash_len;
1326
1327 /* Compute length of text in len. */
1328 for (len = 0; text[len]; len++);
1329
1330 /* Decide how much of that length to hash on */
1331 hash_len = len;
1332 if (warn_id_clash && (unsigned)len > id_clash_len)
1333 hash_len = id_clash_len;
1334
1335 /* Compute hash code */
1336 hi = hash_len * 613 + (unsigned) text[0];
1337 for (i = 1; i < hash_len; i += 2)
1338 hi = ((hi * 613) + (unsigned) (text[i]));
1339
1340 hi &= (1 << HASHBITS) - 1;
1341 hi %= MAX_HASH_TABLE;
1342
1343 /* Search table for identifier */
1344 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1345 if (IDENTIFIER_LENGTH (idp) == len
1346 && IDENTIFIER_POINTER (idp)[0] == text[0]
1347 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1348 return idp; /* <-- return if found */
1349
1350 return NULL_TREE;
1351 }
1352
1353 /* Enable warnings on similar identifiers (if requested).
1354 Done after the built-in identifiers are created. */
1355
1356 void
1357 start_identifier_warnings ()
1358 {
1359 do_identifier_warnings = 1;
1360 }
1361
1362 /* Record the size of an identifier node for the language in use.
1363 SIZE is the total size in bytes.
1364 This is called by the language-specific files. This must be
1365 called before allocating any identifiers. */
1366
1367 void
1368 set_identifier_size (size)
1369 int size;
1370 {
1371 tree_code_length[(int) IDENTIFIER_NODE]
1372 = (size - sizeof (struct tree_common)) / sizeof (tree);
1373 }
1374 \f
1375 /* Return a newly constructed INTEGER_CST node whose constant value
1376 is specified by the two ints LOW and HI.
1377 The TREE_TYPE is set to `int'.
1378
1379 This function should be used via the `build_int_2' macro. */
1380
1381 tree
1382 build_int_2_wide (low, hi)
1383 HOST_WIDE_INT low, hi;
1384 {
1385 register tree t = make_node (INTEGER_CST);
1386 TREE_INT_CST_LOW (t) = low;
1387 TREE_INT_CST_HIGH (t) = hi;
1388 TREE_TYPE (t) = integer_type_node;
1389 return t;
1390 }
1391
1392 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1393
1394 tree
1395 build_real (type, d)
1396 tree type;
1397 REAL_VALUE_TYPE d;
1398 {
1399 tree v;
1400 int overflow = 0;
1401
1402 /* Check for valid float value for this type on this target machine;
1403 if not, can print error message and store a valid value in D. */
1404 #ifdef CHECK_FLOAT_VALUE
1405 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1406 #endif
1407
1408 v = make_node (REAL_CST);
1409 TREE_TYPE (v) = type;
1410 TREE_REAL_CST (v) = d;
1411 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1412 return v;
1413 }
1414
1415 /* Return a new REAL_CST node whose type is TYPE
1416 and whose value is the integer value of the INTEGER_CST node I. */
1417
1418 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1419
1420 REAL_VALUE_TYPE
1421 real_value_from_int_cst (type, i)
1422 tree type, i;
1423 {
1424 REAL_VALUE_TYPE d;
1425
1426 #ifdef REAL_ARITHMETIC
1427 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1428 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1429 TYPE_MODE (type));
1430 else
1431 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
1432 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
1433 #else /* not REAL_ARITHMETIC */
1434 /* Some 386 compilers mishandle unsigned int to float conversions,
1435 so introduce a temporary variable E to avoid those bugs. */
1436 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1437 {
1438 REAL_VALUE_TYPE e;
1439
1440 d = (double) (~ TREE_INT_CST_HIGH (i));
1441 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1442 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1443 d *= e;
1444 e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1445 d += e;
1446 d = (- d - 1.0);
1447 }
1448 else
1449 {
1450 REAL_VALUE_TYPE e;
1451
1452 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1453 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1454 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1455 d *= e;
1456 e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1457 d += e;
1458 }
1459 #endif /* not REAL_ARITHMETIC */
1460 return d;
1461 }
1462
1463 /* This function can't be implemented if we can't do arithmetic
1464 on the float representation. */
1465
1466 tree
1467 build_real_from_int_cst (type, i)
1468 tree type;
1469 tree i;
1470 {
1471 tree v;
1472 int overflow = TREE_OVERFLOW (i);
1473 REAL_VALUE_TYPE d;
1474 jmp_buf float_error;
1475
1476 v = make_node (REAL_CST);
1477 TREE_TYPE (v) = type;
1478
1479 if (setjmp (float_error))
1480 {
1481 d = dconst0;
1482 overflow = 1;
1483 goto got_it;
1484 }
1485
1486 set_float_handler (float_error);
1487
1488 #ifdef REAL_ARITHMETIC
1489 d = real_value_from_int_cst (type, i);
1490 #else
1491 d = REAL_VALUE_TRUNCATE (TYPE_MODE (type),
1492 real_value_from_int_cst (type, i));
1493 #endif
1494
1495 /* Check for valid float value for this type on this target machine. */
1496
1497 got_it:
1498 set_float_handler (NULL_PTR);
1499
1500 #ifdef CHECK_FLOAT_VALUE
1501 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1502 #endif
1503
1504 TREE_REAL_CST (v) = d;
1505 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1506 return v;
1507 }
1508
1509 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1510
1511 /* Return a newly constructed STRING_CST node whose value is
1512 the LEN characters at STR.
1513 The TREE_TYPE is not initialized. */
1514
1515 tree
1516 build_string (len, str)
1517 int len;
1518 char *str;
1519 {
1520 /* Put the string in saveable_obstack since it will be placed in the RTL
1521 for an "asm" statement and will also be kept around a while if
1522 deferring constant output in varasm.c. */
1523
1524 register tree s = make_node (STRING_CST);
1525 TREE_STRING_LENGTH (s) = len;
1526 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1527 return s;
1528 }
1529
1530 /* Return a newly constructed COMPLEX_CST node whose value is
1531 specified by the real and imaginary parts REAL and IMAG.
1532 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1533 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1534
1535 tree
1536 build_complex (type, real, imag)
1537 tree type;
1538 tree real, imag;
1539 {
1540 register tree t = make_node (COMPLEX_CST);
1541
1542 TREE_REALPART (t) = real;
1543 TREE_IMAGPART (t) = imag;
1544 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1545 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1546 TREE_CONSTANT_OVERFLOW (t)
1547 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1548 return t;
1549 }
1550
1551 /* Build a newly constructed TREE_VEC node of length LEN. */
1552
1553 tree
1554 make_tree_vec (len)
1555 int len;
1556 {
1557 register tree t;
1558 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1559 register struct obstack *obstack = current_obstack;
1560 register int i;
1561
1562 #ifdef GATHER_STATISTICS
1563 tree_node_counts[(int)vec_kind]++;
1564 tree_node_sizes[(int)vec_kind] += length;
1565 #endif
1566
1567 t = (tree) obstack_alloc (obstack, length);
1568
1569 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1570 ((int *) t)[i] = 0;
1571
1572 TREE_SET_CODE (t, TREE_VEC);
1573 TREE_VEC_LENGTH (t) = len;
1574 if (obstack == &permanent_obstack)
1575 TREE_PERMANENT (t) = 1;
1576
1577 return t;
1578 }
1579 \f
1580 /* Return 1 if EXPR is the integer constant zero or a complex constant
1581 of zero. */
1582
1583 int
1584 integer_zerop (expr)
1585 tree expr;
1586 {
1587 STRIP_NOPS (expr);
1588
1589 return ((TREE_CODE (expr) == INTEGER_CST
1590 && ! TREE_CONSTANT_OVERFLOW (expr)
1591 && TREE_INT_CST_LOW (expr) == 0
1592 && TREE_INT_CST_HIGH (expr) == 0)
1593 || (TREE_CODE (expr) == COMPLEX_CST
1594 && integer_zerop (TREE_REALPART (expr))
1595 && integer_zerop (TREE_IMAGPART (expr))));
1596 }
1597
1598 /* Return 1 if EXPR is the integer constant one or the corresponding
1599 complex constant. */
1600
1601 int
1602 integer_onep (expr)
1603 tree expr;
1604 {
1605 STRIP_NOPS (expr);
1606
1607 return ((TREE_CODE (expr) == INTEGER_CST
1608 && ! TREE_CONSTANT_OVERFLOW (expr)
1609 && TREE_INT_CST_LOW (expr) == 1
1610 && TREE_INT_CST_HIGH (expr) == 0)
1611 || (TREE_CODE (expr) == COMPLEX_CST
1612 && integer_onep (TREE_REALPART (expr))
1613 && integer_zerop (TREE_IMAGPART (expr))));
1614 }
1615
1616 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1617 it contains. Likewise for the corresponding complex constant. */
1618
1619 int
1620 integer_all_onesp (expr)
1621 tree expr;
1622 {
1623 register int prec;
1624 register int uns;
1625
1626 STRIP_NOPS (expr);
1627
1628 if (TREE_CODE (expr) == COMPLEX_CST
1629 && integer_all_onesp (TREE_REALPART (expr))
1630 && integer_zerop (TREE_IMAGPART (expr)))
1631 return 1;
1632
1633 else if (TREE_CODE (expr) != INTEGER_CST
1634 || TREE_CONSTANT_OVERFLOW (expr))
1635 return 0;
1636
1637 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1638 if (!uns)
1639 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1640
1641 /* Note that using TYPE_PRECISION here is wrong. We care about the
1642 actual bits, not the (arbitrary) range of the type. */
1643 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1644 if (prec >= HOST_BITS_PER_WIDE_INT)
1645 {
1646 int high_value, shift_amount;
1647
1648 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1649
1650 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1651 /* Can not handle precisions greater than twice the host int size. */
1652 abort ();
1653 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1654 /* Shifting by the host word size is undefined according to the ANSI
1655 standard, so we must handle this as a special case. */
1656 high_value = -1;
1657 else
1658 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1659
1660 return TREE_INT_CST_LOW (expr) == -1
1661 && TREE_INT_CST_HIGH (expr) == high_value;
1662 }
1663 else
1664 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1665 }
1666
1667 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1668 one bit on). */
1669
1670 int
1671 integer_pow2p (expr)
1672 tree expr;
1673 {
1674 int prec;
1675 HOST_WIDE_INT high, low;
1676
1677 STRIP_NOPS (expr);
1678
1679 if (TREE_CODE (expr) == COMPLEX_CST
1680 && integer_pow2p (TREE_REALPART (expr))
1681 && integer_zerop (TREE_IMAGPART (expr)))
1682 return 1;
1683
1684 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1685 return 0;
1686
1687 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1688 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1689 high = TREE_INT_CST_HIGH (expr);
1690 low = TREE_INT_CST_LOW (expr);
1691
1692 /* First clear all bits that are beyond the type's precision in case
1693 we've been sign extended. */
1694
1695 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1696 ;
1697 else if (prec > HOST_BITS_PER_WIDE_INT)
1698 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1699 else
1700 {
1701 high = 0;
1702 if (prec < HOST_BITS_PER_WIDE_INT)
1703 low &= ~((HOST_WIDE_INT) (-1) << prec);
1704 }
1705
1706 if (high == 0 && low == 0)
1707 return 0;
1708
1709 return ((high == 0 && (low & (low - 1)) == 0)
1710 || (low == 0 && (high & (high - 1)) == 0));
1711 }
1712
1713 /* Return the power of two represented by a tree node known to be a
1714 power of two. */
1715
1716 int
1717 tree_log2 (expr)
1718 tree expr;
1719 {
1720 int prec;
1721 HOST_WIDE_INT high, low;
1722
1723 STRIP_NOPS (expr);
1724
1725 if (TREE_CODE (expr) == COMPLEX_CST)
1726 return tree_log2 (TREE_REALPART (expr));
1727
1728 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1729 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1730
1731 high = TREE_INT_CST_HIGH (expr);
1732 low = TREE_INT_CST_LOW (expr);
1733
1734 /* First clear all bits that are beyond the type's precision in case
1735 we've been sign extended. */
1736
1737 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1738 ;
1739 else if (prec > HOST_BITS_PER_WIDE_INT)
1740 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1741 else
1742 {
1743 high = 0;
1744 if (prec < HOST_BITS_PER_WIDE_INT)
1745 low &= ~((HOST_WIDE_INT) (-1) << prec);
1746 }
1747
1748 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1749 : exact_log2 (low));
1750 }
1751
1752 /* Return 1 if EXPR is the real constant zero. */
1753
1754 int
1755 real_zerop (expr)
1756 tree expr;
1757 {
1758 STRIP_NOPS (expr);
1759
1760 return ((TREE_CODE (expr) == REAL_CST
1761 && ! TREE_CONSTANT_OVERFLOW (expr)
1762 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1763 || (TREE_CODE (expr) == COMPLEX_CST
1764 && real_zerop (TREE_REALPART (expr))
1765 && real_zerop (TREE_IMAGPART (expr))));
1766 }
1767
1768 /* Return 1 if EXPR is the real constant one in real or complex form. */
1769
1770 int
1771 real_onep (expr)
1772 tree expr;
1773 {
1774 STRIP_NOPS (expr);
1775
1776 return ((TREE_CODE (expr) == REAL_CST
1777 && ! TREE_CONSTANT_OVERFLOW (expr)
1778 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1779 || (TREE_CODE (expr) == COMPLEX_CST
1780 && real_onep (TREE_REALPART (expr))
1781 && real_zerop (TREE_IMAGPART (expr))));
1782 }
1783
1784 /* Return 1 if EXPR is the real constant two. */
1785
1786 int
1787 real_twop (expr)
1788 tree expr;
1789 {
1790 STRIP_NOPS (expr);
1791
1792 return ((TREE_CODE (expr) == REAL_CST
1793 && ! TREE_CONSTANT_OVERFLOW (expr)
1794 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1795 || (TREE_CODE (expr) == COMPLEX_CST
1796 && real_twop (TREE_REALPART (expr))
1797 && real_zerop (TREE_IMAGPART (expr))));
1798 }
1799
1800 /* Nonzero if EXP is a constant or a cast of a constant. */
1801
1802 int
1803 really_constant_p (exp)
1804 tree exp;
1805 {
1806 /* This is not quite the same as STRIP_NOPS. It does more. */
1807 while (TREE_CODE (exp) == NOP_EXPR
1808 || TREE_CODE (exp) == CONVERT_EXPR
1809 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1810 exp = TREE_OPERAND (exp, 0);
1811 return TREE_CONSTANT (exp);
1812 }
1813 \f
1814 /* Return first list element whose TREE_VALUE is ELEM.
1815 Return 0 if ELEM is not in LIST. */
1816
1817 tree
1818 value_member (elem, list)
1819 tree elem, list;
1820 {
1821 while (list)
1822 {
1823 if (elem == TREE_VALUE (list))
1824 return list;
1825 list = TREE_CHAIN (list);
1826 }
1827 return NULL_TREE;
1828 }
1829
1830 /* Return first list element whose TREE_PURPOSE is ELEM.
1831 Return 0 if ELEM is not in LIST. */
1832
1833 tree
1834 purpose_member (elem, list)
1835 tree elem, list;
1836 {
1837 while (list)
1838 {
1839 if (elem == TREE_PURPOSE (list))
1840 return list;
1841 list = TREE_CHAIN (list);
1842 }
1843 return NULL_TREE;
1844 }
1845
1846 /* Return first list element whose BINFO_TYPE is ELEM.
1847 Return 0 if ELEM is not in LIST. */
1848
1849 tree
1850 binfo_member (elem, list)
1851 tree elem, list;
1852 {
1853 while (list)
1854 {
1855 if (elem == BINFO_TYPE (list))
1856 return list;
1857 list = TREE_CHAIN (list);
1858 }
1859 return NULL_TREE;
1860 }
1861
1862 /* Return nonzero if ELEM is part of the chain CHAIN. */
1863
1864 int
1865 chain_member (elem, chain)
1866 tree elem, chain;
1867 {
1868 while (chain)
1869 {
1870 if (elem == chain)
1871 return 1;
1872 chain = TREE_CHAIN (chain);
1873 }
1874
1875 return 0;
1876 }
1877
1878 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1879 chain CHAIN. */
1880 /* ??? This function was added for machine specific attributes but is no
1881 longer used. It could be deleted if we could confirm all front ends
1882 don't use it. */
1883
1884 int
1885 chain_member_value (elem, chain)
1886 tree elem, chain;
1887 {
1888 while (chain)
1889 {
1890 if (elem == TREE_VALUE (chain))
1891 return 1;
1892 chain = TREE_CHAIN (chain);
1893 }
1894
1895 return 0;
1896 }
1897
1898 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1899 for any piece of chain CHAIN. */
1900 /* ??? This function was added for machine specific attributes but is no
1901 longer used. It could be deleted if we could confirm all front ends
1902 don't use it. */
1903
1904 int
1905 chain_member_purpose (elem, chain)
1906 tree elem, chain;
1907 {
1908 while (chain)
1909 {
1910 if (elem == TREE_PURPOSE (chain))
1911 return 1;
1912 chain = TREE_CHAIN (chain);
1913 }
1914
1915 return 0;
1916 }
1917
1918 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1919 We expect a null pointer to mark the end of the chain.
1920 This is the Lisp primitive `length'. */
1921
1922 int
1923 list_length (t)
1924 tree t;
1925 {
1926 register tree tail;
1927 register int len = 0;
1928
1929 for (tail = t; tail; tail = TREE_CHAIN (tail))
1930 len++;
1931
1932 return len;
1933 }
1934
1935 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1936 by modifying the last node in chain 1 to point to chain 2.
1937 This is the Lisp primitive `nconc'. */
1938
1939 tree
1940 chainon (op1, op2)
1941 tree op1, op2;
1942 {
1943
1944 if (op1)
1945 {
1946 register tree t1;
1947 register tree t2;
1948
1949 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1950 ;
1951 TREE_CHAIN (t1) = op2;
1952 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1953 if (t2 == t1)
1954 abort (); /* Circularity created. */
1955 return op1;
1956 }
1957 else return op2;
1958 }
1959
1960 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1961
1962 tree
1963 tree_last (chain)
1964 register tree chain;
1965 {
1966 register tree next;
1967 if (chain)
1968 while ((next = TREE_CHAIN (chain)))
1969 chain = next;
1970 return chain;
1971 }
1972
1973 /* Reverse the order of elements in the chain T,
1974 and return the new head of the chain (old last element). */
1975
1976 tree
1977 nreverse (t)
1978 tree t;
1979 {
1980 register tree prev = 0, decl, next;
1981 for (decl = t; decl; decl = next)
1982 {
1983 next = TREE_CHAIN (decl);
1984 TREE_CHAIN (decl) = prev;
1985 prev = decl;
1986 }
1987 return prev;
1988 }
1989
1990 /* Given a chain CHAIN of tree nodes,
1991 construct and return a list of those nodes. */
1992
1993 tree
1994 listify (chain)
1995 tree chain;
1996 {
1997 tree result = NULL_TREE;
1998 tree in_tail = chain;
1999 tree out_tail = NULL_TREE;
2000
2001 while (in_tail)
2002 {
2003 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
2004 if (out_tail)
2005 TREE_CHAIN (out_tail) = next;
2006 else
2007 result = next;
2008 out_tail = next;
2009 in_tail = TREE_CHAIN (in_tail);
2010 }
2011
2012 return result;
2013 }
2014 \f
2015 /* Return a newly created TREE_LIST node whose
2016 purpose and value fields are PARM and VALUE. */
2017
2018 tree
2019 build_tree_list (parm, value)
2020 tree parm, value;
2021 {
2022 register tree t = make_node (TREE_LIST);
2023 TREE_PURPOSE (t) = parm;
2024 TREE_VALUE (t) = value;
2025 return t;
2026 }
2027
2028 /* Similar, but build on the temp_decl_obstack. */
2029
2030 tree
2031 build_decl_list (parm, value)
2032 tree parm, value;
2033 {
2034 register tree node;
2035 register struct obstack *ambient_obstack = current_obstack;
2036 current_obstack = &temp_decl_obstack;
2037 node = build_tree_list (parm, value);
2038 current_obstack = ambient_obstack;
2039 return node;
2040 }
2041
2042 /* Similar, but build on the expression_obstack. */
2043
2044 tree
2045 build_expr_list (parm, value)
2046 tree parm, value;
2047 {
2048 register tree node;
2049 register struct obstack *ambient_obstack = current_obstack;
2050 current_obstack = expression_obstack;
2051 node = build_tree_list (parm, value);
2052 current_obstack = ambient_obstack;
2053 return node;
2054 }
2055
2056 /* Return a newly created TREE_LIST node whose
2057 purpose and value fields are PARM and VALUE
2058 and whose TREE_CHAIN is CHAIN. */
2059
2060 tree
2061 tree_cons (purpose, value, chain)
2062 tree purpose, value, chain;
2063 {
2064 #if 0
2065 register tree node = make_node (TREE_LIST);
2066 #else
2067 register int i;
2068 register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
2069 #ifdef GATHER_STATISTICS
2070 tree_node_counts[(int)x_kind]++;
2071 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
2072 #endif
2073
2074 for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
2075 ((int *) node)[i] = 0;
2076
2077 TREE_SET_CODE (node, TREE_LIST);
2078 if (current_obstack == &permanent_obstack)
2079 TREE_PERMANENT (node) = 1;
2080 #endif
2081
2082 TREE_CHAIN (node) = chain;
2083 TREE_PURPOSE (node) = purpose;
2084 TREE_VALUE (node) = value;
2085 return node;
2086 }
2087
2088 /* Similar, but build on the temp_decl_obstack. */
2089
2090 tree
2091 decl_tree_cons (purpose, value, chain)
2092 tree purpose, value, chain;
2093 {
2094 register tree node;
2095 register struct obstack *ambient_obstack = current_obstack;
2096 current_obstack = &temp_decl_obstack;
2097 node = tree_cons (purpose, value, chain);
2098 current_obstack = ambient_obstack;
2099 return node;
2100 }
2101
2102 /* Similar, but build on the expression_obstack. */
2103
2104 tree
2105 expr_tree_cons (purpose, value, chain)
2106 tree purpose, value, chain;
2107 {
2108 register tree node;
2109 register struct obstack *ambient_obstack = current_obstack;
2110 current_obstack = expression_obstack;
2111 node = tree_cons (purpose, value, chain);
2112 current_obstack = ambient_obstack;
2113 return node;
2114 }
2115
2116 /* Same as `tree_cons' but make a permanent object. */
2117
2118 tree
2119 perm_tree_cons (purpose, value, chain)
2120 tree purpose, value, chain;
2121 {
2122 register tree node;
2123 register struct obstack *ambient_obstack = current_obstack;
2124 current_obstack = &permanent_obstack;
2125
2126 node = tree_cons (purpose, value, chain);
2127 current_obstack = ambient_obstack;
2128 return node;
2129 }
2130
2131 /* Same as `tree_cons', but make this node temporary, regardless. */
2132
2133 tree
2134 temp_tree_cons (purpose, value, chain)
2135 tree purpose, value, chain;
2136 {
2137 register tree node;
2138 register struct obstack *ambient_obstack = current_obstack;
2139 current_obstack = &temporary_obstack;
2140
2141 node = tree_cons (purpose, value, chain);
2142 current_obstack = ambient_obstack;
2143 return node;
2144 }
2145
2146 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
2147
2148 tree
2149 saveable_tree_cons (purpose, value, chain)
2150 tree purpose, value, chain;
2151 {
2152 register tree node;
2153 register struct obstack *ambient_obstack = current_obstack;
2154 current_obstack = saveable_obstack;
2155
2156 node = tree_cons (purpose, value, chain);
2157 current_obstack = ambient_obstack;
2158 return node;
2159 }
2160 \f
2161 /* Return the size nominally occupied by an object of type TYPE
2162 when it resides in memory. The value is measured in units of bytes,
2163 and its data type is that normally used for type sizes
2164 (which is the first type created by make_signed_type or
2165 make_unsigned_type). */
2166
2167 tree
2168 size_in_bytes (type)
2169 tree type;
2170 {
2171 tree t;
2172
2173 if (type == error_mark_node)
2174 return integer_zero_node;
2175
2176 type = TYPE_MAIN_VARIANT (type);
2177 t = TYPE_SIZE_UNIT (type);
2178 if (t == 0)
2179 {
2180 incomplete_type_error (NULL_TREE, type);
2181 return integer_zero_node;
2182 }
2183 if (TREE_CODE (t) == INTEGER_CST)
2184 force_fit_type (t, 0);
2185
2186 return t;
2187 }
2188
2189 /* Return the size of TYPE (in bytes) as a wide integer
2190 or return -1 if the size can vary or is larger than an integer. */
2191
2192 HOST_WIDE_INT
2193 int_size_in_bytes (type)
2194 tree type;
2195 {
2196 tree t;
2197
2198 if (type == error_mark_node)
2199 return 0;
2200
2201 type = TYPE_MAIN_VARIANT (type);
2202 t = TYPE_SIZE_UNIT (type);
2203 if (t == 0
2204 || TREE_CODE (t) != INTEGER_CST
2205 || TREE_INT_CST_HIGH (t) != 0)
2206 return -1;
2207
2208 return TREE_INT_CST_LOW (t);
2209 }
2210 \f
2211 /* Return, as a tree node, the number of elements for TYPE (which is an
2212 ARRAY_TYPE) minus one. This counts only elements of the top array.
2213
2214 Don't let any SAVE_EXPRs escape; if we are called as part of a cleanup
2215 action, they would get unsaved. */
2216
2217 tree
2218 array_type_nelts (type)
2219 tree type;
2220 {
2221 tree index_type, min, max;
2222
2223 /* If they did it with unspecified bounds, then we should have already
2224 given an error about it before we got here. */
2225 if (! TYPE_DOMAIN (type))
2226 return error_mark_node;
2227
2228 index_type = TYPE_DOMAIN (type);
2229 min = TYPE_MIN_VALUE (index_type);
2230 max = TYPE_MAX_VALUE (index_type);
2231
2232 if (! TREE_CONSTANT (min))
2233 {
2234 STRIP_NOPS (min);
2235 if (TREE_CODE (min) == SAVE_EXPR)
2236 min = build (RTL_EXPR, TREE_TYPE (TYPE_MIN_VALUE (index_type)), 0,
2237 SAVE_EXPR_RTL (min));
2238 else
2239 min = TYPE_MIN_VALUE (index_type);
2240 }
2241
2242 if (! TREE_CONSTANT (max))
2243 {
2244 STRIP_NOPS (max);
2245 if (TREE_CODE (max) == SAVE_EXPR)
2246 max = build (RTL_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)), 0,
2247 SAVE_EXPR_RTL (max));
2248 else
2249 max = TYPE_MAX_VALUE (index_type);
2250 }
2251
2252 return (integer_zerop (min)
2253 ? max
2254 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
2255 }
2256 \f
2257 /* Return nonzero if arg is static -- a reference to an object in
2258 static storage. This is not the same as the C meaning of `static'. */
2259
2260 int
2261 staticp (arg)
2262 tree arg;
2263 {
2264 switch (TREE_CODE (arg))
2265 {
2266 case FUNCTION_DECL:
2267 /* Nested functions aren't static, since taking their address
2268 involves a trampoline. */
2269 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
2270 && ! DECL_NON_ADDR_CONST_P (arg);
2271
2272 case VAR_DECL:
2273 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2274 && ! DECL_NON_ADDR_CONST_P (arg);
2275
2276 case CONSTRUCTOR:
2277 return TREE_STATIC (arg);
2278
2279 case STRING_CST:
2280 return 1;
2281
2282 /* If we are referencing a bitfield, we can't evaluate an
2283 ADDR_EXPR at compile time and so it isn't a constant. */
2284 case COMPONENT_REF:
2285 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
2286 && staticp (TREE_OPERAND (arg, 0)));
2287
2288 case BIT_FIELD_REF:
2289 return 0;
2290
2291 #if 0
2292 /* This case is technically correct, but results in setting
2293 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
2294 compile time. */
2295 case INDIRECT_REF:
2296 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2297 #endif
2298
2299 case ARRAY_REF:
2300 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2301 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2302 return staticp (TREE_OPERAND (arg, 0));
2303
2304 default:
2305 return 0;
2306 }
2307 }
2308 \f
2309 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2310 Do this to any expression which may be used in more than one place,
2311 but must be evaluated only once.
2312
2313 Normally, expand_expr would reevaluate the expression each time.
2314 Calling save_expr produces something that is evaluated and recorded
2315 the first time expand_expr is called on it. Subsequent calls to
2316 expand_expr just reuse the recorded value.
2317
2318 The call to expand_expr that generates code that actually computes
2319 the value is the first call *at compile time*. Subsequent calls
2320 *at compile time* generate code to use the saved value.
2321 This produces correct result provided that *at run time* control
2322 always flows through the insns made by the first expand_expr
2323 before reaching the other places where the save_expr was evaluated.
2324 You, the caller of save_expr, must make sure this is so.
2325
2326 Constants, and certain read-only nodes, are returned with no
2327 SAVE_EXPR because that is safe. Expressions containing placeholders
2328 are not touched; see tree.def for an explanation of what these
2329 are used for. */
2330
2331 tree
2332 save_expr (expr)
2333 tree expr;
2334 {
2335 register tree t = fold (expr);
2336
2337 /* We don't care about whether this can be used as an lvalue in this
2338 context. */
2339 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2340 t = TREE_OPERAND (t, 0);
2341
2342 /* If the tree evaluates to a constant, then we don't want to hide that
2343 fact (i.e. this allows further folding, and direct checks for constants).
2344 However, a read-only object that has side effects cannot be bypassed.
2345 Since it is no problem to reevaluate literals, we just return the
2346 literal node. */
2347
2348 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2349 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
2350 return t;
2351
2352 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2353 it means that the size or offset of some field of an object depends on
2354 the value within another field.
2355
2356 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2357 and some variable since it would then need to be both evaluated once and
2358 evaluated more than once. Front-ends must assure this case cannot
2359 happen by surrounding any such subexpressions in their own SAVE_EXPR
2360 and forcing evaluation at the proper time. */
2361 if (contains_placeholder_p (t))
2362 return t;
2363
2364 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2365
2366 /* This expression might be placed ahead of a jump to ensure that the
2367 value was computed on both sides of the jump. So make sure it isn't
2368 eliminated as dead. */
2369 TREE_SIDE_EFFECTS (t) = 1;
2370 return t;
2371 }
2372
2373 /* Arrange for an expression to be expanded multiple independent
2374 times. This is useful for cleanup actions, as the backend can
2375 expand them multiple times in different places. */
2376
2377 tree
2378 unsave_expr (expr)
2379 tree expr;
2380 {
2381 tree t;
2382
2383 /* If this is already protected, no sense in protecting it again. */
2384 if (TREE_CODE (expr) == UNSAVE_EXPR)
2385 return expr;
2386
2387 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
2388 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
2389 return t;
2390 }
2391
2392 /* Returns the index of the first non-tree operand for CODE, or the number
2393 of operands if all are trees. */
2394
2395 int
2396 first_rtl_op (code)
2397 enum tree_code code;
2398 {
2399 switch (code)
2400 {
2401 case SAVE_EXPR:
2402 return 2;
2403 case RTL_EXPR:
2404 return 0;
2405 case CALL_EXPR:
2406 return 2;
2407 case WITH_CLEANUP_EXPR:
2408 /* Should be defined to be 2. */
2409 return 1;
2410 case METHOD_CALL_EXPR:
2411 return 3;
2412 default:
2413 return tree_code_length [(int) code];
2414 }
2415 }
2416
2417 /* Modify a tree in place so that all the evaluate only once things
2418 are cleared out. Return the EXPR given. */
2419
2420 tree
2421 unsave_expr_now (expr)
2422 tree expr;
2423 {
2424 enum tree_code code;
2425 register int i;
2426 int first_rtl;
2427
2428 if (expr == NULL_TREE)
2429 return expr;
2430
2431 code = TREE_CODE (expr);
2432 first_rtl = first_rtl_op (code);
2433 switch (code)
2434 {
2435 case SAVE_EXPR:
2436 SAVE_EXPR_RTL (expr) = 0;
2437 break;
2438
2439 case TARGET_EXPR:
2440 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
2441 TREE_OPERAND (expr, 3) = NULL_TREE;
2442 break;
2443
2444 case RTL_EXPR:
2445 /* I don't yet know how to emit a sequence multiple times. */
2446 if (RTL_EXPR_SEQUENCE (expr) != 0)
2447 abort ();
2448 break;
2449
2450 case CALL_EXPR:
2451 CALL_EXPR_RTL (expr) = 0;
2452 if (TREE_OPERAND (expr, 1)
2453 && TREE_CODE (TREE_OPERAND (expr, 1)) == TREE_LIST)
2454 {
2455 tree exp = TREE_OPERAND (expr, 1);
2456 while (exp)
2457 {
2458 unsave_expr_now (TREE_VALUE (exp));
2459 exp = TREE_CHAIN (exp);
2460 }
2461 }
2462 break;
2463
2464 default:
2465 break;
2466 }
2467
2468 switch (TREE_CODE_CLASS (code))
2469 {
2470 case 'c': /* a constant */
2471 case 't': /* a type node */
2472 case 'x': /* something random, like an identifier or an ERROR_MARK. */
2473 case 'd': /* A decl node */
2474 case 'b': /* A block node */
2475 return expr;
2476
2477 case 'e': /* an expression */
2478 case 'r': /* a reference */
2479 case 's': /* an expression with side effects */
2480 case '<': /* a comparison expression */
2481 case '2': /* a binary arithmetic expression */
2482 case '1': /* a unary arithmetic expression */
2483 for (i = first_rtl - 1; i >= 0; i--)
2484 unsave_expr_now (TREE_OPERAND (expr, i));
2485 return expr;
2486
2487 default:
2488 abort ();
2489 }
2490 }
2491 \f
2492 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2493 or offset that depends on a field within a record. */
2494
2495 int
2496 contains_placeholder_p (exp)
2497 tree exp;
2498 {
2499 register enum tree_code code = TREE_CODE (exp);
2500 int result;
2501
2502 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2503 in it since it is supplying a value for it. */
2504 if (code == WITH_RECORD_EXPR)
2505 return 0;
2506 else if (code == PLACEHOLDER_EXPR)
2507 return 1;
2508
2509 switch (TREE_CODE_CLASS (code))
2510 {
2511 case 'r':
2512 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2513 position computations since they will be converted into a
2514 WITH_RECORD_EXPR involving the reference, which will assume
2515 here will be valid. */
2516 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2517
2518 case 'x':
2519 if (code == TREE_LIST)
2520 return (contains_placeholder_p (TREE_VALUE (exp))
2521 || (TREE_CHAIN (exp) != 0
2522 && contains_placeholder_p (TREE_CHAIN (exp))));
2523 break;
2524
2525 case '1':
2526 case '2': case '<':
2527 case 'e':
2528 switch (code)
2529 {
2530 case COMPOUND_EXPR:
2531 /* Ignoring the first operand isn't quite right, but works best. */
2532 return contains_placeholder_p (TREE_OPERAND (exp, 1));
2533
2534 case RTL_EXPR:
2535 case CONSTRUCTOR:
2536 return 0;
2537
2538 case COND_EXPR:
2539 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2540 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2541 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
2542
2543 case SAVE_EXPR:
2544 /* If we already know this doesn't have a placeholder, don't
2545 check again. */
2546 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
2547 return 0;
2548
2549 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
2550 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
2551 if (result)
2552 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
2553
2554 return result;
2555
2556 case CALL_EXPR:
2557 return (TREE_OPERAND (exp, 1) != 0
2558 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
2559
2560 default:
2561 break;
2562 }
2563
2564 switch (tree_code_length[(int) code])
2565 {
2566 case 1:
2567 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2568 case 2:
2569 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2570 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
2571 default:
2572 return 0;
2573 }
2574
2575 default:
2576 return 0;
2577 }
2578 return 0;
2579 }
2580
2581 /* Return 1 if EXP contains any expressions that produce cleanups for an
2582 outer scope to deal with. Used by fold. */
2583
2584 int
2585 has_cleanups (exp)
2586 tree exp;
2587 {
2588 int i, nops, cmp;
2589
2590 if (! TREE_SIDE_EFFECTS (exp))
2591 return 0;
2592
2593 switch (TREE_CODE (exp))
2594 {
2595 case TARGET_EXPR:
2596 case WITH_CLEANUP_EXPR:
2597 return 1;
2598
2599 case CLEANUP_POINT_EXPR:
2600 return 0;
2601
2602 case CALL_EXPR:
2603 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
2604 {
2605 cmp = has_cleanups (TREE_VALUE (exp));
2606 if (cmp)
2607 return cmp;
2608 }
2609 return 0;
2610
2611 default:
2612 break;
2613 }
2614
2615 /* This general rule works for most tree codes. All exceptions should be
2616 handled above. If this is a language-specific tree code, we can't
2617 trust what might be in the operand, so say we don't know
2618 the situation. */
2619 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
2620 return -1;
2621
2622 nops = first_rtl_op (TREE_CODE (exp));
2623 for (i = 0; i < nops; i++)
2624 if (TREE_OPERAND (exp, i) != 0)
2625 {
2626 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
2627 if (type == 'e' || type == '<' || type == '1' || type == '2'
2628 || type == 'r' || type == 's')
2629 {
2630 cmp = has_cleanups (TREE_OPERAND (exp, i));
2631 if (cmp)
2632 return cmp;
2633 }
2634 }
2635
2636 return 0;
2637 }
2638 \f
2639 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2640 return a tree with all occurrences of references to F in a
2641 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2642 contains only arithmetic expressions or a CALL_EXPR with a
2643 PLACEHOLDER_EXPR occurring only in its arglist. */
2644
2645 tree
2646 substitute_in_expr (exp, f, r)
2647 tree exp;
2648 tree f;
2649 tree r;
2650 {
2651 enum tree_code code = TREE_CODE (exp);
2652 tree op0, op1, op2;
2653 tree new;
2654 tree inner;
2655
2656 switch (TREE_CODE_CLASS (code))
2657 {
2658 case 'c':
2659 case 'd':
2660 return exp;
2661
2662 case 'x':
2663 if (code == PLACEHOLDER_EXPR)
2664 return exp;
2665 else if (code == TREE_LIST)
2666 {
2667 op0 = (TREE_CHAIN (exp) == 0
2668 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2669 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2670 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2671 return exp;
2672
2673 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2674 }
2675
2676 abort ();
2677
2678 case '1':
2679 case '2':
2680 case '<':
2681 case 'e':
2682 switch (tree_code_length[(int) code])
2683 {
2684 case 1:
2685 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2686 if (op0 == TREE_OPERAND (exp, 0))
2687 return exp;
2688
2689 new = fold (build1 (code, TREE_TYPE (exp), op0));
2690 break;
2691
2692 case 2:
2693 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2694 could, but we don't support it. */
2695 if (code == RTL_EXPR)
2696 return exp;
2697 else if (code == CONSTRUCTOR)
2698 abort ();
2699
2700 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2701 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2702 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2703 return exp;
2704
2705 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2706 break;
2707
2708 case 3:
2709 /* It cannot be that anything inside a SAVE_EXPR contains a
2710 PLACEHOLDER_EXPR. */
2711 if (code == SAVE_EXPR)
2712 return exp;
2713
2714 else if (code == CALL_EXPR)
2715 {
2716 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2717 if (op1 == TREE_OPERAND (exp, 1))
2718 return exp;
2719
2720 return build (code, TREE_TYPE (exp),
2721 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2722 }
2723
2724 else if (code != COND_EXPR)
2725 abort ();
2726
2727 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2728 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2729 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2730 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2731 && op2 == TREE_OPERAND (exp, 2))
2732 return exp;
2733
2734 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2735 break;
2736
2737 default:
2738 abort ();
2739 }
2740
2741 break;
2742
2743 case 'r':
2744 switch (code)
2745 {
2746 case COMPONENT_REF:
2747 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2748 and it is the right field, replace it with R. */
2749 for (inner = TREE_OPERAND (exp, 0);
2750 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2751 inner = TREE_OPERAND (inner, 0))
2752 ;
2753 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2754 && TREE_OPERAND (exp, 1) == f)
2755 return r;
2756
2757 /* If this expression hasn't been completed let, leave it
2758 alone. */
2759 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2760 && TREE_TYPE (inner) == 0)
2761 return exp;
2762
2763 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2764 if (op0 == TREE_OPERAND (exp, 0))
2765 return exp;
2766
2767 new = fold (build (code, TREE_TYPE (exp), op0,
2768 TREE_OPERAND (exp, 1)));
2769 break;
2770
2771 case BIT_FIELD_REF:
2772 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2773 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2774 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2775 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2776 && op2 == TREE_OPERAND (exp, 2))
2777 return exp;
2778
2779 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2780 break;
2781
2782 case INDIRECT_REF:
2783 case BUFFER_REF:
2784 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2785 if (op0 == TREE_OPERAND (exp, 0))
2786 return exp;
2787
2788 new = fold (build1 (code, TREE_TYPE (exp), op0));
2789 break;
2790
2791 default:
2792 abort ();
2793 }
2794 break;
2795
2796 default:
2797 abort ();
2798 }
2799
2800 TREE_READONLY (new) = TREE_READONLY (exp);
2801 return new;
2802 }
2803 \f
2804 /* Stabilize a reference so that we can use it any number of times
2805 without causing its operands to be evaluated more than once.
2806 Returns the stabilized reference. This works by means of save_expr,
2807 so see the caveats in the comments about save_expr.
2808
2809 Also allows conversion expressions whose operands are references.
2810 Any other kind of expression is returned unchanged. */
2811
2812 tree
2813 stabilize_reference (ref)
2814 tree ref;
2815 {
2816 register tree result;
2817 register enum tree_code code = TREE_CODE (ref);
2818
2819 switch (code)
2820 {
2821 case VAR_DECL:
2822 case PARM_DECL:
2823 case RESULT_DECL:
2824 /* No action is needed in this case. */
2825 return ref;
2826
2827 case NOP_EXPR:
2828 case CONVERT_EXPR:
2829 case FLOAT_EXPR:
2830 case FIX_TRUNC_EXPR:
2831 case FIX_FLOOR_EXPR:
2832 case FIX_ROUND_EXPR:
2833 case FIX_CEIL_EXPR:
2834 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2835 break;
2836
2837 case INDIRECT_REF:
2838 result = build_nt (INDIRECT_REF,
2839 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2840 break;
2841
2842 case COMPONENT_REF:
2843 result = build_nt (COMPONENT_REF,
2844 stabilize_reference (TREE_OPERAND (ref, 0)),
2845 TREE_OPERAND (ref, 1));
2846 break;
2847
2848 case BIT_FIELD_REF:
2849 result = build_nt (BIT_FIELD_REF,
2850 stabilize_reference (TREE_OPERAND (ref, 0)),
2851 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2852 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2853 break;
2854
2855 case ARRAY_REF:
2856 result = build_nt (ARRAY_REF,
2857 stabilize_reference (TREE_OPERAND (ref, 0)),
2858 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2859 break;
2860
2861 case COMPOUND_EXPR:
2862 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2863 it wouldn't be ignored. This matters when dealing with
2864 volatiles. */
2865 return stabilize_reference_1 (ref);
2866
2867 case RTL_EXPR:
2868 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2869 save_expr (build1 (ADDR_EXPR,
2870 build_pointer_type (TREE_TYPE (ref)),
2871 ref)));
2872 break;
2873
2874
2875 /* If arg isn't a kind of lvalue we recognize, make no change.
2876 Caller should recognize the error for an invalid lvalue. */
2877 default:
2878 return ref;
2879
2880 case ERROR_MARK:
2881 return error_mark_node;
2882 }
2883
2884 TREE_TYPE (result) = TREE_TYPE (ref);
2885 TREE_READONLY (result) = TREE_READONLY (ref);
2886 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2887 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2888 TREE_RAISES (result) = TREE_RAISES (ref);
2889
2890 return result;
2891 }
2892
2893 /* Subroutine of stabilize_reference; this is called for subtrees of
2894 references. Any expression with side-effects must be put in a SAVE_EXPR
2895 to ensure that it is only evaluated once.
2896
2897 We don't put SAVE_EXPR nodes around everything, because assigning very
2898 simple expressions to temporaries causes us to miss good opportunities
2899 for optimizations. Among other things, the opportunity to fold in the
2900 addition of a constant into an addressing mode often gets lost, e.g.
2901 "y[i+1] += x;". In general, we take the approach that we should not make
2902 an assignment unless we are forced into it - i.e., that any non-side effect
2903 operator should be allowed, and that cse should take care of coalescing
2904 multiple utterances of the same expression should that prove fruitful. */
2905
2906 tree
2907 stabilize_reference_1 (e)
2908 tree e;
2909 {
2910 register tree result;
2911 register enum tree_code code = TREE_CODE (e);
2912
2913 /* We cannot ignore const expressions because it might be a reference
2914 to a const array but whose index contains side-effects. But we can
2915 ignore things that are actual constant or that already have been
2916 handled by this function. */
2917
2918 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2919 return e;
2920
2921 switch (TREE_CODE_CLASS (code))
2922 {
2923 case 'x':
2924 case 't':
2925 case 'd':
2926 case 'b':
2927 case '<':
2928 case 's':
2929 case 'e':
2930 case 'r':
2931 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2932 so that it will only be evaluated once. */
2933 /* The reference (r) and comparison (<) classes could be handled as
2934 below, but it is generally faster to only evaluate them once. */
2935 if (TREE_SIDE_EFFECTS (e))
2936 return save_expr (e);
2937 return e;
2938
2939 case 'c':
2940 /* Constants need no processing. In fact, we should never reach
2941 here. */
2942 return e;
2943
2944 case '2':
2945 /* Division is slow and tends to be compiled with jumps,
2946 especially the division by powers of 2 that is often
2947 found inside of an array reference. So do it just once. */
2948 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2949 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2950 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2951 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2952 return save_expr (e);
2953 /* Recursively stabilize each operand. */
2954 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2955 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2956 break;
2957
2958 case '1':
2959 /* Recursively stabilize each operand. */
2960 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2961 break;
2962
2963 default:
2964 abort ();
2965 }
2966
2967 TREE_TYPE (result) = TREE_TYPE (e);
2968 TREE_READONLY (result) = TREE_READONLY (e);
2969 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2970 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2971 TREE_RAISES (result) = TREE_RAISES (e);
2972
2973 return result;
2974 }
2975 \f
2976 /* Low-level constructors for expressions. */
2977
2978 /* Build an expression of code CODE, data type TYPE,
2979 and operands as specified by the arguments ARG1 and following arguments.
2980 Expressions and reference nodes can be created this way.
2981 Constants, decls, types and misc nodes cannot be. */
2982
2983 tree
2984 build VPROTO((enum tree_code code, tree tt, ...))
2985 {
2986 #ifndef ANSI_PROTOTYPES
2987 enum tree_code code;
2988 tree tt;
2989 #endif
2990 va_list p;
2991 register tree t;
2992 register int length;
2993 register int i;
2994
2995 VA_START (p, tt);
2996
2997 #ifndef ANSI_PROTOTYPES
2998 code = va_arg (p, enum tree_code);
2999 tt = va_arg (p, tree);
3000 #endif
3001
3002 t = make_node (code);
3003 length = tree_code_length[(int) code];
3004 TREE_TYPE (t) = tt;
3005
3006 if (length == 2)
3007 {
3008 /* This is equivalent to the loop below, but faster. */
3009 register tree arg0 = va_arg (p, tree);
3010 register tree arg1 = va_arg (p, tree);
3011 TREE_OPERAND (t, 0) = arg0;
3012 TREE_OPERAND (t, 1) = arg1;
3013 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
3014 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
3015 TREE_SIDE_EFFECTS (t) = 1;
3016 TREE_RAISES (t)
3017 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
3018 }
3019 else if (length == 1)
3020 {
3021 register tree arg0 = va_arg (p, tree);
3022
3023 /* Call build1 for this! */
3024 if (TREE_CODE_CLASS (code) != 's')
3025 abort ();
3026 TREE_OPERAND (t, 0) = arg0;
3027 if (arg0 && TREE_SIDE_EFFECTS (arg0))
3028 TREE_SIDE_EFFECTS (t) = 1;
3029 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
3030 }
3031 else
3032 {
3033 for (i = 0; i < length; i++)
3034 {
3035 register tree operand = va_arg (p, tree);
3036 TREE_OPERAND (t, i) = operand;
3037 if (operand)
3038 {
3039 if (TREE_SIDE_EFFECTS (operand))
3040 TREE_SIDE_EFFECTS (t) = 1;
3041 if (TREE_RAISES (operand))
3042 TREE_RAISES (t) = 1;
3043 }
3044 }
3045 }
3046 va_end (p);
3047 return t;
3048 }
3049
3050 /* Same as above, but only builds for unary operators.
3051 Saves lions share of calls to `build'; cuts down use
3052 of varargs, which is expensive for RISC machines. */
3053
3054 tree
3055 build1 (code, type, node)
3056 enum tree_code code;
3057 tree type;
3058 tree node;
3059 {
3060 register struct obstack *obstack = expression_obstack;
3061 register int i, length;
3062 #ifdef GATHER_STATISTICS
3063 register tree_node_kind kind;
3064 #endif
3065 register tree t;
3066
3067 #ifdef GATHER_STATISTICS
3068 if (TREE_CODE_CLASS (code) == 'r')
3069 kind = r_kind;
3070 else
3071 kind = e_kind;
3072 #endif
3073
3074 length = sizeof (struct tree_exp);
3075
3076 t = (tree) obstack_alloc (obstack, length);
3077
3078 #ifdef GATHER_STATISTICS
3079 tree_node_counts[(int)kind]++;
3080 tree_node_sizes[(int)kind] += length;
3081 #endif
3082
3083 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
3084 ((int *) t)[i] = 0;
3085
3086 TREE_TYPE (t) = type;
3087 TREE_SET_CODE (t, code);
3088
3089 if (obstack == &permanent_obstack)
3090 TREE_PERMANENT (t) = 1;
3091
3092 TREE_OPERAND (t, 0) = node;
3093 if (node)
3094 {
3095 if (TREE_SIDE_EFFECTS (node))
3096 TREE_SIDE_EFFECTS (t) = 1;
3097 if (TREE_RAISES (node))
3098 TREE_RAISES (t) = 1;
3099 }
3100
3101 return t;
3102 }
3103
3104 /* Similar except don't specify the TREE_TYPE
3105 and leave the TREE_SIDE_EFFECTS as 0.
3106 It is permissible for arguments to be null,
3107 or even garbage if their values do not matter. */
3108
3109 tree
3110 build_nt VPROTO((enum tree_code code, ...))
3111 {
3112 #ifndef ANSI_PROTOTYPES
3113 enum tree_code code;
3114 #endif
3115 va_list p;
3116 register tree t;
3117 register int length;
3118 register int i;
3119
3120 VA_START (p, code);
3121
3122 #ifndef ANSI_PROTOTYPES
3123 code = va_arg (p, enum tree_code);
3124 #endif
3125
3126 t = make_node (code);
3127 length = tree_code_length[(int) code];
3128
3129 for (i = 0; i < length; i++)
3130 TREE_OPERAND (t, i) = va_arg (p, tree);
3131
3132 va_end (p);
3133 return t;
3134 }
3135
3136 /* Similar to `build_nt', except we build
3137 on the temp_decl_obstack, regardless. */
3138
3139 tree
3140 build_parse_node VPROTO((enum tree_code code, ...))
3141 {
3142 #ifndef ANSI_PROTOTYPES
3143 enum tree_code code;
3144 #endif
3145 register struct obstack *ambient_obstack = expression_obstack;
3146 va_list p;
3147 register tree t;
3148 register int length;
3149 register int i;
3150
3151 VA_START (p, code);
3152
3153 #ifndef ANSI_PROTOTYPES
3154 code = va_arg (p, enum tree_code);
3155 #endif
3156
3157 expression_obstack = &temp_decl_obstack;
3158
3159 t = make_node (code);
3160 length = tree_code_length[(int) code];
3161
3162 for (i = 0; i < length; i++)
3163 TREE_OPERAND (t, i) = va_arg (p, tree);
3164
3165 va_end (p);
3166 expression_obstack = ambient_obstack;
3167 return t;
3168 }
3169
3170 #if 0
3171 /* Commented out because this wants to be done very
3172 differently. See cp-lex.c. */
3173 tree
3174 build_op_identifier (op1, op2)
3175 tree op1, op2;
3176 {
3177 register tree t = make_node (OP_IDENTIFIER);
3178 TREE_PURPOSE (t) = op1;
3179 TREE_VALUE (t) = op2;
3180 return t;
3181 }
3182 #endif
3183 \f
3184 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3185 We do NOT enter this node in any sort of symbol table.
3186
3187 layout_decl is used to set up the decl's storage layout.
3188 Other slots are initialized to 0 or null pointers. */
3189
3190 tree
3191 build_decl (code, name, type)
3192 enum tree_code code;
3193 tree name, type;
3194 {
3195 register tree t;
3196
3197 t = make_node (code);
3198
3199 /* if (type == error_mark_node)
3200 type = integer_type_node; */
3201 /* That is not done, deliberately, so that having error_mark_node
3202 as the type can suppress useless errors in the use of this variable. */
3203
3204 DECL_NAME (t) = name;
3205 DECL_ASSEMBLER_NAME (t) = name;
3206 TREE_TYPE (t) = type;
3207
3208 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3209 layout_decl (t, 0);
3210 else if (code == FUNCTION_DECL)
3211 DECL_MODE (t) = FUNCTION_MODE;
3212
3213 return t;
3214 }
3215 \f
3216 /* BLOCK nodes are used to represent the structure of binding contours
3217 and declarations, once those contours have been exited and their contents
3218 compiled. This information is used for outputting debugging info. */
3219
3220 tree
3221 build_block (vars, tags, subblocks, supercontext, chain)
3222 tree vars, tags, subblocks, supercontext, chain;
3223 {
3224 register tree block = make_node (BLOCK);
3225 BLOCK_VARS (block) = vars;
3226 BLOCK_TYPE_TAGS (block) = tags;
3227 BLOCK_SUBBLOCKS (block) = subblocks;
3228 BLOCK_SUPERCONTEXT (block) = supercontext;
3229 BLOCK_CHAIN (block) = chain;
3230 return block;
3231 }
3232
3233 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
3234 location where an expression or an identifier were encountered. It
3235 is necessary for languages where the frontend parser will handle
3236 recursively more than one file (Java is one of them). */
3237
3238 tree
3239 build_expr_wfl (node, file, line, col)
3240 tree node;
3241 char *file;
3242 int line, col;
3243 {
3244 static char *last_file = 0;
3245 static tree last_filenode = NULL_TREE;
3246 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
3247
3248 EXPR_WFL_NODE (wfl) = node;
3249 EXPR_WFL_SET_LINECOL (wfl, line, col);
3250 if (file != last_file)
3251 {
3252 last_file = file;
3253 last_filenode = file ? get_identifier (file) : NULL_TREE;
3254 }
3255 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
3256 if (node)
3257 {
3258 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
3259 TREE_TYPE (wfl) = TREE_TYPE (node);
3260 }
3261 return wfl;
3262 }
3263 \f
3264 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
3265 is ATTRIBUTE. */
3266
3267 tree
3268 build_decl_attribute_variant (ddecl, attribute)
3269 tree ddecl, attribute;
3270 {
3271 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
3272 return ddecl;
3273 }
3274
3275 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3276 is ATTRIBUTE.
3277
3278 Record such modified types already made so we don't make duplicates. */
3279
3280 tree
3281 build_type_attribute_variant (ttype, attribute)
3282 tree ttype, attribute;
3283 {
3284 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3285 {
3286 register int hashcode;
3287 register struct obstack *ambient_obstack = current_obstack;
3288 tree ntype;
3289
3290 if (ambient_obstack != &permanent_obstack)
3291 current_obstack = TYPE_OBSTACK (ttype);
3292
3293 ntype = copy_node (ttype);
3294 current_obstack = ambient_obstack;
3295
3296 TYPE_POINTER_TO (ntype) = 0;
3297 TYPE_REFERENCE_TO (ntype) = 0;
3298 TYPE_ATTRIBUTES (ntype) = attribute;
3299
3300 /* Create a new main variant of TYPE. */
3301 TYPE_MAIN_VARIANT (ntype) = ntype;
3302 TYPE_NEXT_VARIANT (ntype) = 0;
3303 set_type_quals (ntype, TYPE_UNQUALIFIED);
3304
3305 hashcode = TYPE_HASH (TREE_CODE (ntype))
3306 + TYPE_HASH (TREE_TYPE (ntype))
3307 + attribute_hash_list (attribute);
3308
3309 switch (TREE_CODE (ntype))
3310 {
3311 case FUNCTION_TYPE:
3312 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
3313 break;
3314 case ARRAY_TYPE:
3315 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
3316 break;
3317 case INTEGER_TYPE:
3318 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
3319 break;
3320 case REAL_TYPE:
3321 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
3322 break;
3323 default:
3324 break;
3325 }
3326
3327 ntype = type_hash_canon (hashcode, ntype);
3328 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3329 }
3330
3331 return ttype;
3332 }
3333
3334 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
3335 or type TYPE and 0 otherwise. Validity is determined the configuration
3336 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
3337
3338 int
3339 valid_machine_attribute (attr_name, attr_args, decl, type)
3340 tree attr_name;
3341 tree attr_args ATTRIBUTE_UNUSED;
3342 tree decl ATTRIBUTE_UNUSED;
3343 tree type ATTRIBUTE_UNUSED;
3344 {
3345 int valid = 0;
3346 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3347 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
3348 #endif
3349 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3350 tree type_attr_list = TYPE_ATTRIBUTES (type);
3351 #endif
3352
3353 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
3354 abort ();
3355
3356 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3357 if (decl != 0
3358 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
3359 {
3360 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3361 decl_attr_list);
3362
3363 if (attr != NULL_TREE)
3364 {
3365 /* Override existing arguments. Declarations are unique so we can
3366 modify this in place. */
3367 TREE_VALUE (attr) = attr_args;
3368 }
3369 else
3370 {
3371 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
3372 decl = build_decl_attribute_variant (decl, decl_attr_list);
3373 }
3374
3375 valid = 1;
3376 }
3377 #endif
3378
3379 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3380 if (valid)
3381 /* Don't apply the attribute to both the decl and the type. */;
3382 else if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name,
3383 attr_args))
3384 {
3385 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3386 type_attr_list);
3387
3388 if (attr != NULL_TREE)
3389 {
3390 /* Override existing arguments.
3391 ??? This currently works since attribute arguments are not
3392 included in `attribute_hash_list'. Something more complicated
3393 may be needed in the future. */
3394 TREE_VALUE (attr) = attr_args;
3395 }
3396 else
3397 {
3398 /* If this is part of a declaration, create a type variant,
3399 otherwise, this is part of a type definition, so add it
3400 to the base type. */
3401 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3402 if (decl != 0)
3403 type = build_type_attribute_variant (type, type_attr_list);
3404 else
3405 TYPE_ATTRIBUTES (type) = type_attr_list;
3406 }
3407 if (decl != 0)
3408 TREE_TYPE (decl) = type;
3409 valid = 1;
3410 }
3411
3412 /* Handle putting a type attribute on pointer-to-function-type by putting
3413 the attribute on the function type. */
3414 else if (POINTER_TYPE_P (type)
3415 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3416 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3417 attr_name, attr_args))
3418 {
3419 tree inner_type = TREE_TYPE (type);
3420 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3421 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3422 type_attr_list);
3423
3424 if (attr != NULL_TREE)
3425 TREE_VALUE (attr) = attr_args;
3426 else
3427 {
3428 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3429 inner_type = build_type_attribute_variant (inner_type,
3430 inner_attr_list);
3431 }
3432
3433 if (decl != 0)
3434 TREE_TYPE (decl) = build_pointer_type (inner_type);
3435
3436 valid = 1;
3437 }
3438 #endif
3439
3440 return valid;
3441 }
3442
3443 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3444 or zero if not.
3445
3446 We try both `text' and `__text__', ATTR may be either one. */
3447 /* ??? It might be a reasonable simplification to require ATTR to be only
3448 `text'. One might then also require attribute lists to be stored in
3449 their canonicalized form. */
3450
3451 int
3452 is_attribute_p (attr, ident)
3453 char *attr;
3454 tree ident;
3455 {
3456 int ident_len, attr_len;
3457 char *p;
3458
3459 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3460 return 0;
3461
3462 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3463 return 1;
3464
3465 p = IDENTIFIER_POINTER (ident);
3466 ident_len = strlen (p);
3467 attr_len = strlen (attr);
3468
3469 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3470 if (attr[0] == '_')
3471 {
3472 if (attr[1] != '_'
3473 || attr[attr_len - 2] != '_'
3474 || attr[attr_len - 1] != '_')
3475 abort ();
3476 if (ident_len == attr_len - 4
3477 && strncmp (attr + 2, p, attr_len - 4) == 0)
3478 return 1;
3479 }
3480 else
3481 {
3482 if (ident_len == attr_len + 4
3483 && p[0] == '_' && p[1] == '_'
3484 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3485 && strncmp (attr, p + 2, attr_len) == 0)
3486 return 1;
3487 }
3488
3489 return 0;
3490 }
3491
3492 /* Given an attribute name and a list of attributes, return a pointer to the
3493 attribute's list element if the attribute is part of the list, or NULL_TREE
3494 if not found. */
3495
3496 tree
3497 lookup_attribute (attr_name, list)
3498 char *attr_name;
3499 tree list;
3500 {
3501 tree l;
3502
3503 for (l = list; l; l = TREE_CHAIN (l))
3504 {
3505 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3506 abort ();
3507 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3508 return l;
3509 }
3510
3511 return NULL_TREE;
3512 }
3513
3514 /* Return an attribute list that is the union of a1 and a2. */
3515
3516 tree
3517 merge_attributes (a1, a2)
3518 register tree a1, a2;
3519 {
3520 tree attributes;
3521
3522 /* Either one unset? Take the set one. */
3523
3524 if (! (attributes = a1))
3525 attributes = a2;
3526
3527 /* One that completely contains the other? Take it. */
3528
3529 else if (a2 && ! attribute_list_contained (a1, a2))
3530 {
3531 if (attribute_list_contained (a2, a1))
3532 attributes = a2;
3533 else
3534 {
3535 /* Pick the longest list, and hang on the other list. */
3536 /* ??? For the moment we punt on the issue of attrs with args. */
3537
3538 if (list_length (a1) < list_length (a2))
3539 attributes = a2, a2 = a1;
3540
3541 for (; a2; a2 = TREE_CHAIN (a2))
3542 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3543 attributes) == NULL_TREE)
3544 {
3545 a1 = copy_node (a2);
3546 TREE_CHAIN (a1) = attributes;
3547 attributes = a1;
3548 }
3549 }
3550 }
3551 return attributes;
3552 }
3553
3554 /* Given types T1 and T2, merge their attributes and return
3555 the result. */
3556
3557 tree
3558 merge_machine_type_attributes (t1, t2)
3559 tree t1, t2;
3560 {
3561 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
3562 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
3563 #else
3564 return merge_attributes (TYPE_ATTRIBUTES (t1),
3565 TYPE_ATTRIBUTES (t2));
3566 #endif
3567 }
3568
3569 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3570 the result. */
3571
3572 tree
3573 merge_machine_decl_attributes (olddecl, newdecl)
3574 tree olddecl, newdecl;
3575 {
3576 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
3577 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
3578 #else
3579 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
3580 DECL_MACHINE_ATTRIBUTES (newdecl));
3581 #endif
3582 }
3583 \f
3584 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3585 of the various TYPE_QUAL values. */
3586
3587 static void
3588 set_type_quals (type, type_quals)
3589 tree type;
3590 int type_quals;
3591 {
3592 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3593 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3594 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3595 }
3596
3597 /* Given a type node TYPE and a TYPE_QUALIFIER_SET, return a type for
3598 the same kind of data as TYPE describes. Variants point to the
3599 "main variant" (which has no qualifiers set) via TYPE_MAIN_VARIANT,
3600 and it points to a chain of other variants so that duplicate
3601 variants are never made. Only main variants should ever appear as
3602 types of expressions. */
3603
3604 tree
3605 build_qualified_type (type, type_quals)
3606 tree type;
3607 int type_quals;
3608 {
3609 register tree t;
3610
3611 /* Search the chain of variants to see if there is already one there just
3612 like the one we need to have. If so, use that existing one. We must
3613 preserve the TYPE_NAME, since there is code that depends on this. */
3614
3615 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3616 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
3617 return t;
3618
3619 /* We need a new one. */
3620 t = build_type_copy (type);
3621 set_type_quals (t, type_quals);
3622 return t;
3623 }
3624
3625 /* Create a new variant of TYPE, equivalent but distinct.
3626 This is so the caller can modify it. */
3627
3628 tree
3629 build_type_copy (type)
3630 tree type;
3631 {
3632 register tree t, m = TYPE_MAIN_VARIANT (type);
3633 register struct obstack *ambient_obstack = current_obstack;
3634
3635 current_obstack = TYPE_OBSTACK (type);
3636 t = copy_node (type);
3637 current_obstack = ambient_obstack;
3638
3639 TYPE_POINTER_TO (t) = 0;
3640 TYPE_REFERENCE_TO (t) = 0;
3641
3642 /* Add this type to the chain of variants of TYPE. */
3643 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3644 TYPE_NEXT_VARIANT (m) = t;
3645
3646 return t;
3647 }
3648 \f
3649 /* Hashing of types so that we don't make duplicates.
3650 The entry point is `type_hash_canon'. */
3651
3652 /* Each hash table slot is a bucket containing a chain
3653 of these structures. */
3654
3655 struct type_hash
3656 {
3657 struct type_hash *next; /* Next structure in the bucket. */
3658 int hashcode; /* Hash code of this type. */
3659 tree type; /* The type recorded here. */
3660 };
3661
3662 /* Now here is the hash table. When recording a type, it is added
3663 to the slot whose index is the hash code mod the table size.
3664 Note that the hash table is used for several kinds of types
3665 (function types, array types and array index range types, for now).
3666 While all these live in the same table, they are completely independent,
3667 and the hash code is computed differently for each of these. */
3668
3669 #define TYPE_HASH_SIZE 59
3670 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
3671
3672 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3673 with types in the TREE_VALUE slots), by adding the hash codes
3674 of the individual types. */
3675
3676 int
3677 type_hash_list (list)
3678 tree list;
3679 {
3680 register int hashcode;
3681 register tree tail;
3682 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3683 hashcode += TYPE_HASH (TREE_VALUE (tail));
3684 return hashcode;
3685 }
3686
3687 /* Look in the type hash table for a type isomorphic to TYPE.
3688 If one is found, return it. Otherwise return 0. */
3689
3690 tree
3691 type_hash_lookup (hashcode, type)
3692 int hashcode;
3693 tree type;
3694 {
3695 register struct type_hash *h;
3696 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3697 if (h->hashcode == hashcode
3698 && TREE_CODE (h->type) == TREE_CODE (type)
3699 && TREE_TYPE (h->type) == TREE_TYPE (type)
3700 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3701 TYPE_ATTRIBUTES (type))
3702 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3703 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3704 TYPE_MAX_VALUE (type)))
3705 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3706 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3707 TYPE_MIN_VALUE (type)))
3708 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3709 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3710 || (TYPE_DOMAIN (h->type)
3711 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3712 && TYPE_DOMAIN (type)
3713 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3714 && type_list_equal (TYPE_DOMAIN (h->type),
3715 TYPE_DOMAIN (type)))))
3716 return h->type;
3717 return 0;
3718 }
3719
3720 /* Add an entry to the type-hash-table
3721 for a type TYPE whose hash code is HASHCODE. */
3722
3723 void
3724 type_hash_add (hashcode, type)
3725 int hashcode;
3726 tree type;
3727 {
3728 register struct type_hash *h;
3729
3730 h = (struct type_hash *) oballoc (sizeof (struct type_hash));
3731 h->hashcode = hashcode;
3732 h->type = type;
3733 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3734 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3735 }
3736
3737 /* Given TYPE, and HASHCODE its hash code, return the canonical
3738 object for an identical type if one already exists.
3739 Otherwise, return TYPE, and record it as the canonical object
3740 if it is a permanent object.
3741
3742 To use this function, first create a type of the sort you want.
3743 Then compute its hash code from the fields of the type that
3744 make it different from other similar types.
3745 Then call this function and use the value.
3746 This function frees the type you pass in if it is a duplicate. */
3747
3748 /* Set to 1 to debug without canonicalization. Never set by program. */
3749 int debug_no_type_hash = 0;
3750
3751 tree
3752 type_hash_canon (hashcode, type)
3753 int hashcode;
3754 tree type;
3755 {
3756 tree t1;
3757
3758 if (debug_no_type_hash)
3759 return type;
3760
3761 t1 = type_hash_lookup (hashcode, type);
3762 if (t1 != 0)
3763 {
3764 obstack_free (TYPE_OBSTACK (type), type);
3765 #ifdef GATHER_STATISTICS
3766 tree_node_counts[(int)t_kind]--;
3767 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3768 #endif
3769 return t1;
3770 }
3771
3772 /* If this is a permanent type, record it for later reuse. */
3773 if (TREE_PERMANENT (type))
3774 type_hash_add (hashcode, type);
3775
3776 return type;
3777 }
3778
3779 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3780 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3781 by adding the hash codes of the individual attributes. */
3782
3783 int
3784 attribute_hash_list (list)
3785 tree list;
3786 {
3787 register int hashcode;
3788 register tree tail;
3789 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3790 /* ??? Do we want to add in TREE_VALUE too? */
3791 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3792 return hashcode;
3793 }
3794
3795 /* Given two lists of attributes, return true if list l2 is
3796 equivalent to l1. */
3797
3798 int
3799 attribute_list_equal (l1, l2)
3800 tree l1, l2;
3801 {
3802 return attribute_list_contained (l1, l2)
3803 && attribute_list_contained (l2, l1);
3804 }
3805
3806 /* Given two lists of attributes, return true if list L2 is
3807 completely contained within L1. */
3808 /* ??? This would be faster if attribute names were stored in a canonicalized
3809 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3810 must be used to show these elements are equivalent (which they are). */
3811 /* ??? It's not clear that attributes with arguments will always be handled
3812 correctly. */
3813
3814 int
3815 attribute_list_contained (l1, l2)
3816 tree l1, l2;
3817 {
3818 register tree t1, t2;
3819
3820 /* First check the obvious, maybe the lists are identical. */
3821 if (l1 == l2)
3822 return 1;
3823
3824 /* Maybe the lists are similar. */
3825 for (t1 = l1, t2 = l2;
3826 t1 && t2
3827 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3828 && TREE_VALUE (t1) == TREE_VALUE (t2);
3829 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3830
3831 /* Maybe the lists are equal. */
3832 if (t1 == 0 && t2 == 0)
3833 return 1;
3834
3835 for (; t2; t2 = TREE_CHAIN (t2))
3836 {
3837 tree attr
3838 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3839
3840 if (attr == NULL_TREE)
3841 return 0;
3842 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3843 return 0;
3844 }
3845
3846 return 1;
3847 }
3848
3849 /* Given two lists of types
3850 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3851 return 1 if the lists contain the same types in the same order.
3852 Also, the TREE_PURPOSEs must match. */
3853
3854 int
3855 type_list_equal (l1, l2)
3856 tree l1, l2;
3857 {
3858 register tree t1, t2;
3859
3860 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3861 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3862 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3863 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3864 && (TREE_TYPE (TREE_PURPOSE (t1))
3865 == TREE_TYPE (TREE_PURPOSE (t2))))))
3866 return 0;
3867
3868 return t1 == t2;
3869 }
3870
3871 /* Nonzero if integer constants T1 and T2
3872 represent the same constant value. */
3873
3874 int
3875 tree_int_cst_equal (t1, t2)
3876 tree t1, t2;
3877 {
3878 if (t1 == t2)
3879 return 1;
3880 if (t1 == 0 || t2 == 0)
3881 return 0;
3882 if (TREE_CODE (t1) == INTEGER_CST
3883 && TREE_CODE (t2) == INTEGER_CST
3884 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3885 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3886 return 1;
3887 return 0;
3888 }
3889
3890 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3891 The precise way of comparison depends on their data type. */
3892
3893 int
3894 tree_int_cst_lt (t1, t2)
3895 tree t1, t2;
3896 {
3897 if (t1 == t2)
3898 return 0;
3899
3900 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
3901 return INT_CST_LT (t1, t2);
3902 return INT_CST_LT_UNSIGNED (t1, t2);
3903 }
3904
3905 /* Return an indication of the sign of the integer constant T.
3906 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3907 Note that -1 will never be returned it T's type is unsigned. */
3908
3909 int
3910 tree_int_cst_sgn (t)
3911 tree t;
3912 {
3913 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3914 return 0;
3915 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3916 return 1;
3917 else if (TREE_INT_CST_HIGH (t) < 0)
3918 return -1;
3919 else
3920 return 1;
3921 }
3922
3923 /* Compare two constructor-element-type constants. Return 1 if the lists
3924 are known to be equal; otherwise return 0. */
3925
3926 int
3927 simple_cst_list_equal (l1, l2)
3928 tree l1, l2;
3929 {
3930 while (l1 != NULL_TREE && l2 != NULL_TREE)
3931 {
3932 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3933 return 0;
3934
3935 l1 = TREE_CHAIN (l1);
3936 l2 = TREE_CHAIN (l2);
3937 }
3938
3939 return (l1 == l2);
3940 }
3941
3942 /* Return truthvalue of whether T1 is the same tree structure as T2.
3943 Return 1 if they are the same.
3944 Return 0 if they are understandably different.
3945 Return -1 if either contains tree structure not understood by
3946 this function. */
3947
3948 int
3949 simple_cst_equal (t1, t2)
3950 tree t1, t2;
3951 {
3952 register enum tree_code code1, code2;
3953 int cmp;
3954
3955 if (t1 == t2)
3956 return 1;
3957 if (t1 == 0 || t2 == 0)
3958 return 0;
3959
3960 code1 = TREE_CODE (t1);
3961 code2 = TREE_CODE (t2);
3962
3963 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3964 {
3965 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3966 || code2 == NON_LVALUE_EXPR)
3967 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3968 else
3969 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3970 }
3971 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3972 || code2 == NON_LVALUE_EXPR)
3973 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3974
3975 if (code1 != code2)
3976 return 0;
3977
3978 switch (code1)
3979 {
3980 case INTEGER_CST:
3981 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3982 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
3983
3984 case REAL_CST:
3985 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3986
3987 case STRING_CST:
3988 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3989 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3990 TREE_STRING_LENGTH (t1));
3991
3992 case CONSTRUCTOR:
3993 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3994 return 1;
3995 else
3996 abort ();
3997
3998 case SAVE_EXPR:
3999 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4000
4001 case CALL_EXPR:
4002 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4003 if (cmp <= 0)
4004 return cmp;
4005 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4006
4007 case TARGET_EXPR:
4008 /* Special case: if either target is an unallocated VAR_DECL,
4009 it means that it's going to be unified with whatever the
4010 TARGET_EXPR is really supposed to initialize, so treat it
4011 as being equivalent to anything. */
4012 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4013 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4014 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
4015 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4016 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4017 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
4018 cmp = 1;
4019 else
4020 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4021 if (cmp <= 0)
4022 return cmp;
4023 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4024
4025 case WITH_CLEANUP_EXPR:
4026 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4027 if (cmp <= 0)
4028 return cmp;
4029 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
4030
4031 case COMPONENT_REF:
4032 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4033 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4034 return 0;
4035
4036 case VAR_DECL:
4037 case PARM_DECL:
4038 case CONST_DECL:
4039 case FUNCTION_DECL:
4040 return 0;
4041
4042 default:
4043 break;
4044 }
4045
4046 /* This general rule works for most tree codes. All exceptions should be
4047 handled above. If this is a language-specific tree code, we can't
4048 trust what might be in the operand, so say we don't know
4049 the situation. */
4050 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4051 return -1;
4052
4053 switch (TREE_CODE_CLASS (code1))
4054 {
4055 int i;
4056 case '1':
4057 case '2':
4058 case '<':
4059 case 'e':
4060 case 'r':
4061 case 's':
4062 cmp = 1;
4063 for (i=0; i<tree_code_length[(int) code1]; ++i)
4064 {
4065 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4066 if (cmp <= 0)
4067 return cmp;
4068 }
4069 return cmp;
4070
4071 default:
4072 return -1;
4073 }
4074 }
4075 \f
4076 /* Constructors for pointer, array and function types.
4077 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4078 constructed by language-dependent code, not here.) */
4079
4080 /* Construct, lay out and return the type of pointers to TO_TYPE.
4081 If such a type has already been constructed, reuse it. */
4082
4083 tree
4084 build_pointer_type (to_type)
4085 tree to_type;
4086 {
4087 register tree t = TYPE_POINTER_TO (to_type);
4088
4089 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4090
4091 if (t)
4092 return t;
4093
4094 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4095 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4096 t = make_node (POINTER_TYPE);
4097 pop_obstacks ();
4098
4099 TREE_TYPE (t) = to_type;
4100
4101 /* Record this type as the pointer to TO_TYPE. */
4102 TYPE_POINTER_TO (to_type) = t;
4103
4104 /* Lay out the type. This function has many callers that are concerned
4105 with expression-construction, and this simplifies them all.
4106 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
4107 layout_type (t);
4108
4109 return t;
4110 }
4111
4112 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4113 MAXVAL should be the maximum value in the domain
4114 (one less than the length of the array).
4115
4116 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4117 We don't enforce this limit, that is up to caller (e.g. language front end).
4118 The limit exists because the result is a signed type and we don't handle
4119 sizes that use more than one HOST_WIDE_INT. */
4120
4121 tree
4122 build_index_type (maxval)
4123 tree maxval;
4124 {
4125 register tree itype = make_node (INTEGER_TYPE);
4126
4127 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4128 TYPE_MIN_VALUE (itype) = size_zero_node;
4129
4130 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4131 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4132 pop_obstacks ();
4133
4134 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4135 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4136 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4137 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4138 if (TREE_CODE (maxval) == INTEGER_CST)
4139 {
4140 int maxint = (int) TREE_INT_CST_LOW (maxval);
4141 /* If the domain should be empty, make sure the maxval
4142 remains -1 and is not spoiled by truncation. */
4143 if (INT_CST_LT (maxval, integer_zero_node))
4144 {
4145 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
4146 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
4147 }
4148 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4149 }
4150 else
4151 return itype;
4152 }
4153
4154 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4155 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4156 low bound LOWVAL and high bound HIGHVAL.
4157 if TYPE==NULL_TREE, sizetype is used. */
4158
4159 tree
4160 build_range_type (type, lowval, highval)
4161 tree type, lowval, highval;
4162 {
4163 register tree itype = make_node (INTEGER_TYPE);
4164
4165 TREE_TYPE (itype) = type;
4166 if (type == NULL_TREE)
4167 type = sizetype;
4168
4169 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4170 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4171 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4172 pop_obstacks ();
4173
4174 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4175 TYPE_MODE (itype) = TYPE_MODE (type);
4176 TYPE_SIZE (itype) = TYPE_SIZE (type);
4177 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4178 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4179 if (TREE_CODE (lowval) == INTEGER_CST)
4180 {
4181 HOST_WIDE_INT lowint, highint;
4182 int maxint;
4183
4184 lowint = TREE_INT_CST_LOW (lowval);
4185 if (highval && TREE_CODE (highval) == INTEGER_CST)
4186 highint = TREE_INT_CST_LOW (highval);
4187 else
4188 highint = (~(unsigned HOST_WIDE_INT)0) >> 1;
4189
4190 maxint = (int) (highint - lowint);
4191 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4192 }
4193 else
4194 return itype;
4195 }
4196
4197 /* Just like build_index_type, but takes lowval and highval instead
4198 of just highval (maxval). */
4199
4200 tree
4201 build_index_2_type (lowval,highval)
4202 tree lowval, highval;
4203 {
4204 return build_range_type (NULL_TREE, lowval, highval);
4205 }
4206
4207 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
4208 Needed because when index types are not hashed, equal index types
4209 built at different times appear distinct, even though structurally,
4210 they are not. */
4211
4212 int
4213 index_type_equal (itype1, itype2)
4214 tree itype1, itype2;
4215 {
4216 if (TREE_CODE (itype1) != TREE_CODE (itype2))
4217 return 0;
4218 if (TREE_CODE (itype1) == INTEGER_TYPE)
4219 {
4220 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
4221 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
4222 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
4223 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
4224 return 0;
4225 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
4226 TYPE_MIN_VALUE (itype2))
4227 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
4228 TYPE_MAX_VALUE (itype2)))
4229 return 1;
4230 }
4231
4232 return 0;
4233 }
4234
4235 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4236 and number of elements specified by the range of values of INDEX_TYPE.
4237 If such a type has already been constructed, reuse it. */
4238
4239 tree
4240 build_array_type (elt_type, index_type)
4241 tree elt_type, index_type;
4242 {
4243 register tree t;
4244 int hashcode;
4245
4246 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4247 {
4248 error ("arrays of functions are not meaningful");
4249 elt_type = integer_type_node;
4250 }
4251
4252 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
4253 build_pointer_type (elt_type);
4254
4255 /* Allocate the array after the pointer type,
4256 in case we free it in type_hash_canon. */
4257 t = make_node (ARRAY_TYPE);
4258 TREE_TYPE (t) = elt_type;
4259 TYPE_DOMAIN (t) = index_type;
4260
4261 if (index_type == 0)
4262 {
4263 return t;
4264 }
4265
4266 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
4267 t = type_hash_canon (hashcode, t);
4268
4269 if (TYPE_SIZE (t) == 0)
4270 layout_type (t);
4271 return t;
4272 }
4273
4274 /* Return the TYPE of the elements comprising
4275 the innermost dimension of ARRAY. */
4276
4277 tree
4278 get_inner_array_type (array)
4279 tree array;
4280 {
4281 tree type = TREE_TYPE (array);
4282
4283 while (TREE_CODE (type) == ARRAY_TYPE)
4284 type = TREE_TYPE (type);
4285
4286 return type;
4287 }
4288
4289 /* Construct, lay out and return
4290 the type of functions returning type VALUE_TYPE
4291 given arguments of types ARG_TYPES.
4292 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4293 are data type nodes for the arguments of the function.
4294 If such a type has already been constructed, reuse it. */
4295
4296 tree
4297 build_function_type (value_type, arg_types)
4298 tree value_type, arg_types;
4299 {
4300 register tree t;
4301 int hashcode;
4302
4303 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4304 {
4305 error ("function return type cannot be function");
4306 value_type = integer_type_node;
4307 }
4308
4309 /* Make a node of the sort we want. */
4310 t = make_node (FUNCTION_TYPE);
4311 TREE_TYPE (t) = value_type;
4312 TYPE_ARG_TYPES (t) = arg_types;
4313
4314 /* If we already have such a type, use the old one and free this one. */
4315 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
4316 t = type_hash_canon (hashcode, t);
4317
4318 if (TYPE_SIZE (t) == 0)
4319 layout_type (t);
4320 return t;
4321 }
4322
4323 /* Build the node for the type of references-to-TO_TYPE. */
4324
4325 tree
4326 build_reference_type (to_type)
4327 tree to_type;
4328 {
4329 register tree t = TYPE_REFERENCE_TO (to_type);
4330
4331 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4332
4333 if (t)
4334 return t;
4335
4336 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4337 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4338 t = make_node (REFERENCE_TYPE);
4339 pop_obstacks ();
4340
4341 TREE_TYPE (t) = to_type;
4342
4343 /* Record this type as the pointer to TO_TYPE. */
4344 TYPE_REFERENCE_TO (to_type) = t;
4345
4346 layout_type (t);
4347
4348 return t;
4349 }
4350
4351 /* Construct, lay out and return the type of methods belonging to class
4352 BASETYPE and whose arguments and values are described by TYPE.
4353 If that type exists already, reuse it.
4354 TYPE must be a FUNCTION_TYPE node. */
4355
4356 tree
4357 build_method_type (basetype, type)
4358 tree basetype, type;
4359 {
4360 register tree t;
4361 int hashcode;
4362
4363 /* Make a node of the sort we want. */
4364 t = make_node (METHOD_TYPE);
4365
4366 if (TREE_CODE (type) != FUNCTION_TYPE)
4367 abort ();
4368
4369 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4370 TREE_TYPE (t) = TREE_TYPE (type);
4371
4372 /* The actual arglist for this function includes a "hidden" argument
4373 which is "this". Put it into the list of argument types. */
4374
4375 TYPE_ARG_TYPES (t)
4376 = tree_cons (NULL_TREE,
4377 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4378
4379 /* If we already have such a type, use the old one and free this one. */
4380 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4381 t = type_hash_canon (hashcode, t);
4382
4383 if (TYPE_SIZE (t) == 0)
4384 layout_type (t);
4385
4386 return t;
4387 }
4388
4389 /* Construct, lay out and return the type of offsets to a value
4390 of type TYPE, within an object of type BASETYPE.
4391 If a suitable offset type exists already, reuse it. */
4392
4393 tree
4394 build_offset_type (basetype, type)
4395 tree basetype, type;
4396 {
4397 register tree t;
4398 int hashcode;
4399
4400 /* Make a node of the sort we want. */
4401 t = make_node (OFFSET_TYPE);
4402
4403 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4404 TREE_TYPE (t) = type;
4405
4406 /* If we already have such a type, use the old one and free this one. */
4407 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4408 t = type_hash_canon (hashcode, t);
4409
4410 if (TYPE_SIZE (t) == 0)
4411 layout_type (t);
4412
4413 return t;
4414 }
4415
4416 /* Create a complex type whose components are COMPONENT_TYPE. */
4417
4418 tree
4419 build_complex_type (component_type)
4420 tree component_type;
4421 {
4422 register tree t;
4423 int hashcode;
4424
4425 /* Make a node of the sort we want. */
4426 t = make_node (COMPLEX_TYPE);
4427
4428 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4429 set_type_quals (t, TYPE_QUALS (component_type));
4430
4431 /* If we already have such a type, use the old one and free this one. */
4432 hashcode = TYPE_HASH (component_type);
4433 t = type_hash_canon (hashcode, t);
4434
4435 if (TYPE_SIZE (t) == 0)
4436 layout_type (t);
4437
4438 return t;
4439 }
4440 \f
4441 /* Return OP, stripped of any conversions to wider types as much as is safe.
4442 Converting the value back to OP's type makes a value equivalent to OP.
4443
4444 If FOR_TYPE is nonzero, we return a value which, if converted to
4445 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4446
4447 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4448 narrowest type that can hold the value, even if they don't exactly fit.
4449 Otherwise, bit-field references are changed to a narrower type
4450 only if they can be fetched directly from memory in that type.
4451
4452 OP must have integer, real or enumeral type. Pointers are not allowed!
4453
4454 There are some cases where the obvious value we could return
4455 would regenerate to OP if converted to OP's type,
4456 but would not extend like OP to wider types.
4457 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4458 For example, if OP is (unsigned short)(signed char)-1,
4459 we avoid returning (signed char)-1 if FOR_TYPE is int,
4460 even though extending that to an unsigned short would regenerate OP,
4461 since the result of extending (signed char)-1 to (int)
4462 is different from (int) OP. */
4463
4464 tree
4465 get_unwidened (op, for_type)
4466 register tree op;
4467 tree for_type;
4468 {
4469 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4470 register tree type = TREE_TYPE (op);
4471 register unsigned final_prec
4472 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4473 register int uns
4474 = (for_type != 0 && for_type != type
4475 && final_prec > TYPE_PRECISION (type)
4476 && TREE_UNSIGNED (type));
4477 register tree win = op;
4478
4479 while (TREE_CODE (op) == NOP_EXPR)
4480 {
4481 register int bitschange
4482 = TYPE_PRECISION (TREE_TYPE (op))
4483 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4484
4485 /* Truncations are many-one so cannot be removed.
4486 Unless we are later going to truncate down even farther. */
4487 if (bitschange < 0
4488 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4489 break;
4490
4491 /* See what's inside this conversion. If we decide to strip it,
4492 we will set WIN. */
4493 op = TREE_OPERAND (op, 0);
4494
4495 /* If we have not stripped any zero-extensions (uns is 0),
4496 we can strip any kind of extension.
4497 If we have previously stripped a zero-extension,
4498 only zero-extensions can safely be stripped.
4499 Any extension can be stripped if the bits it would produce
4500 are all going to be discarded later by truncating to FOR_TYPE. */
4501
4502 if (bitschange > 0)
4503 {
4504 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4505 win = op;
4506 /* TREE_UNSIGNED says whether this is a zero-extension.
4507 Let's avoid computing it if it does not affect WIN
4508 and if UNS will not be needed again. */
4509 if ((uns || TREE_CODE (op) == NOP_EXPR)
4510 && TREE_UNSIGNED (TREE_TYPE (op)))
4511 {
4512 uns = 1;
4513 win = op;
4514 }
4515 }
4516 }
4517
4518 if (TREE_CODE (op) == COMPONENT_REF
4519 /* Since type_for_size always gives an integer type. */
4520 && TREE_CODE (type) != REAL_TYPE
4521 /* Don't crash if field not laid out yet. */
4522 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4523 {
4524 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4525 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4526
4527 /* We can get this structure field in the narrowest type it fits in.
4528 If FOR_TYPE is 0, do this only for a field that matches the
4529 narrower type exactly and is aligned for it
4530 The resulting extension to its nominal type (a fullword type)
4531 must fit the same conditions as for other extensions. */
4532
4533 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4534 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4535 && (! uns || final_prec <= innerprec
4536 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4537 && type != 0)
4538 {
4539 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4540 TREE_OPERAND (op, 1));
4541 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4542 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4543 TREE_RAISES (win) = TREE_RAISES (op);
4544 }
4545 }
4546 return win;
4547 }
4548 \f
4549 /* Return OP or a simpler expression for a narrower value
4550 which can be sign-extended or zero-extended to give back OP.
4551 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4552 or 0 if the value should be sign-extended. */
4553
4554 tree
4555 get_narrower (op, unsignedp_ptr)
4556 register tree op;
4557 int *unsignedp_ptr;
4558 {
4559 register int uns = 0;
4560 int first = 1;
4561 register tree win = op;
4562
4563 while (TREE_CODE (op) == NOP_EXPR)
4564 {
4565 register int bitschange
4566 = TYPE_PRECISION (TREE_TYPE (op))
4567 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4568
4569 /* Truncations are many-one so cannot be removed. */
4570 if (bitschange < 0)
4571 break;
4572
4573 /* See what's inside this conversion. If we decide to strip it,
4574 we will set WIN. */
4575 op = TREE_OPERAND (op, 0);
4576
4577 if (bitschange > 0)
4578 {
4579 /* An extension: the outermost one can be stripped,
4580 but remember whether it is zero or sign extension. */
4581 if (first)
4582 uns = TREE_UNSIGNED (TREE_TYPE (op));
4583 /* Otherwise, if a sign extension has been stripped,
4584 only sign extensions can now be stripped;
4585 if a zero extension has been stripped, only zero-extensions. */
4586 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4587 break;
4588 first = 0;
4589 }
4590 else /* bitschange == 0 */
4591 {
4592 /* A change in nominal type can always be stripped, but we must
4593 preserve the unsignedness. */
4594 if (first)
4595 uns = TREE_UNSIGNED (TREE_TYPE (op));
4596 first = 0;
4597 }
4598
4599 win = op;
4600 }
4601
4602 if (TREE_CODE (op) == COMPONENT_REF
4603 /* Since type_for_size always gives an integer type. */
4604 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4605 {
4606 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4607 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4608
4609 /* We can get this structure field in a narrower type that fits it,
4610 but the resulting extension to its nominal type (a fullword type)
4611 must satisfy the same conditions as for other extensions.
4612
4613 Do this only for fields that are aligned (not bit-fields),
4614 because when bit-field insns will be used there is no
4615 advantage in doing this. */
4616
4617 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4618 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4619 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4620 && type != 0)
4621 {
4622 if (first)
4623 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4624 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4625 TREE_OPERAND (op, 1));
4626 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4627 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4628 TREE_RAISES (win) = TREE_RAISES (op);
4629 }
4630 }
4631 *unsignedp_ptr = uns;
4632 return win;
4633 }
4634 \f
4635 /* Nonzero if integer constant C has a value that is permissible
4636 for type TYPE (an INTEGER_TYPE). */
4637
4638 int
4639 int_fits_type_p (c, type)
4640 tree c, type;
4641 {
4642 if (TREE_UNSIGNED (type))
4643 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4644 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4645 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4646 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)))
4647 /* Negative ints never fit unsigned types. */
4648 && ! (TREE_INT_CST_HIGH (c) < 0
4649 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4650 else
4651 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4652 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4653 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4654 && INT_CST_LT (c, TYPE_MIN_VALUE (type)))
4655 /* Unsigned ints with top bit set never fit signed types. */
4656 && ! (TREE_INT_CST_HIGH (c) < 0
4657 && TREE_UNSIGNED (TREE_TYPE (c))));
4658 }
4659
4660 /* Return the innermost context enclosing DECL that is
4661 a FUNCTION_DECL, or zero if none. */
4662
4663 tree
4664 decl_function_context (decl)
4665 tree decl;
4666 {
4667 tree context;
4668
4669 if (TREE_CODE (decl) == ERROR_MARK)
4670 return 0;
4671
4672 if (TREE_CODE (decl) == SAVE_EXPR)
4673 context = SAVE_EXPR_CONTEXT (decl);
4674 else
4675 context = DECL_CONTEXT (decl);
4676
4677 while (context && TREE_CODE (context) != FUNCTION_DECL)
4678 {
4679 if (TREE_CODE_CLASS (TREE_CODE (context)) == 't')
4680 context = TYPE_CONTEXT (context);
4681 else if (TREE_CODE_CLASS (TREE_CODE (context)) == 'd')
4682 context = DECL_CONTEXT (context);
4683 else if (TREE_CODE (context) == BLOCK)
4684 context = BLOCK_SUPERCONTEXT (context);
4685 else
4686 /* Unhandled CONTEXT !? */
4687 abort ();
4688 }
4689
4690 return context;
4691 }
4692
4693 /* Return the innermost context enclosing DECL that is
4694 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4695 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4696
4697 tree
4698 decl_type_context (decl)
4699 tree decl;
4700 {
4701 tree context = DECL_CONTEXT (decl);
4702
4703 while (context)
4704 {
4705 if (TREE_CODE (context) == RECORD_TYPE
4706 || TREE_CODE (context) == UNION_TYPE
4707 || TREE_CODE (context) == QUAL_UNION_TYPE)
4708 return context;
4709 if (TREE_CODE (context) == TYPE_DECL
4710 || TREE_CODE (context) == FUNCTION_DECL)
4711 context = DECL_CONTEXT (context);
4712 else if (TREE_CODE (context) == BLOCK)
4713 context = BLOCK_SUPERCONTEXT (context);
4714 else
4715 /* Unhandled CONTEXT!? */
4716 abort ();
4717 }
4718 return NULL_TREE;
4719 }
4720
4721 /* Print debugging information about the size of the
4722 toplev_inline_obstacks. */
4723
4724 void
4725 print_inline_obstack_statistics ()
4726 {
4727 struct simple_obstack_stack *current = toplev_inline_obstacks;
4728 int n_obstacks = 0;
4729 int n_alloc = 0;
4730 int n_chunks = 0;
4731
4732 for (; current; current = current->next, ++n_obstacks)
4733 {
4734 struct obstack *o = current->obstack;
4735 struct _obstack_chunk *chunk = o->chunk;
4736
4737 n_alloc += o->next_free - chunk->contents;
4738 chunk = chunk->prev;
4739 ++n_chunks;
4740 for (; chunk; chunk = chunk->prev, ++n_chunks)
4741 n_alloc += chunk->limit - &chunk->contents[0];
4742 }
4743 fprintf (stderr, "inline obstacks: %d obstacks, %d bytes, %d chunks\n",
4744 n_obstacks, n_alloc, n_chunks);
4745 }
4746
4747 /* Print debugging information about the obstack O, named STR. */
4748
4749 void
4750 print_obstack_statistics (str, o)
4751 char *str;
4752 struct obstack *o;
4753 {
4754 struct _obstack_chunk *chunk = o->chunk;
4755 int n_chunks = 1;
4756 int n_alloc = 0;
4757
4758 n_alloc += o->next_free - chunk->contents;
4759 chunk = chunk->prev;
4760 while (chunk)
4761 {
4762 n_chunks += 1;
4763 n_alloc += chunk->limit - &chunk->contents[0];
4764 chunk = chunk->prev;
4765 }
4766 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4767 str, n_alloc, n_chunks);
4768 }
4769
4770 /* Print debugging information about tree nodes generated during the compile,
4771 and any language-specific information. */
4772
4773 void
4774 dump_tree_statistics ()
4775 {
4776 #ifdef GATHER_STATISTICS
4777 int i;
4778 int total_nodes, total_bytes;
4779 #endif
4780
4781 fprintf (stderr, "\n??? tree nodes created\n\n");
4782 #ifdef GATHER_STATISTICS
4783 fprintf (stderr, "Kind Nodes Bytes\n");
4784 fprintf (stderr, "-------------------------------------\n");
4785 total_nodes = total_bytes = 0;
4786 for (i = 0; i < (int) all_kinds; i++)
4787 {
4788 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4789 tree_node_counts[i], tree_node_sizes[i]);
4790 total_nodes += tree_node_counts[i];
4791 total_bytes += tree_node_sizes[i];
4792 }
4793 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4794 fprintf (stderr, "-------------------------------------\n");
4795 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4796 fprintf (stderr, "-------------------------------------\n");
4797 #else
4798 fprintf (stderr, "(No per-node statistics)\n");
4799 #endif
4800 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4801 print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
4802 print_obstack_statistics ("temporary_obstack", &temporary_obstack);
4803 print_obstack_statistics ("momentary_obstack", &momentary_obstack);
4804 print_obstack_statistics ("temp_decl_obstack", &temp_decl_obstack);
4805 print_inline_obstack_statistics ();
4806 print_lang_statistics ();
4807 }
4808 \f
4809 #define FILE_FUNCTION_PREFIX_LEN 9
4810
4811 #ifndef NO_DOLLAR_IN_LABEL
4812 #define FILE_FUNCTION_FORMAT "_GLOBAL_$%s$%s"
4813 #else /* NO_DOLLAR_IN_LABEL */
4814 #ifndef NO_DOT_IN_LABEL
4815 #define FILE_FUNCTION_FORMAT "_GLOBAL_.%s.%s"
4816 #else /* NO_DOT_IN_LABEL */
4817 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4818 #endif /* NO_DOT_IN_LABEL */
4819 #endif /* NO_DOLLAR_IN_LABEL */
4820
4821 extern char * first_global_object_name;
4822 extern char * weak_global_object_name;
4823
4824 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4825 clashes in cases where we can't reliably choose a unique name.
4826
4827 Derived from mkstemp.c in libiberty. */
4828
4829 static void
4830 append_random_chars (template)
4831 char *template;
4832 {
4833 static const char letters[]
4834 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4835 static unsigned HOST_WIDE_INT value;
4836 unsigned HOST_WIDE_INT v;
4837
4838 #ifdef HAVE_GETTIMEOFDAY
4839 struct timeval tv;
4840 #endif
4841
4842 template += strlen (template);
4843
4844 #ifdef HAVE_GETTIMEOFDAY
4845 /* Get some more or less random data. */
4846 gettimeofday (&tv, NULL);
4847 value += ((unsigned HOST_WIDE_INT) tv.tv_usec << 16) ^ tv.tv_sec ^ getpid ();
4848 #else
4849 value += getpid ();
4850 #endif
4851
4852 v = value;
4853
4854 /* Fill in the random bits. */
4855 template[0] = letters[v % 62];
4856 v /= 62;
4857 template[1] = letters[v % 62];
4858 v /= 62;
4859 template[2] = letters[v % 62];
4860 v /= 62;
4861 template[3] = letters[v % 62];
4862 v /= 62;
4863 template[4] = letters[v % 62];
4864 v /= 62;
4865 template[5] = letters[v % 62];
4866
4867 template[6] = '\0';
4868 }
4869
4870 /* Generate a name for a function unique to this translation unit.
4871 TYPE is some string to identify the purpose of this function to the
4872 linker or collect2. */
4873
4874 tree
4875 get_file_function_name_long (type)
4876 char *type;
4877 {
4878 char *buf;
4879 register char *p;
4880
4881 if (first_global_object_name)
4882 p = first_global_object_name;
4883 else
4884 {
4885 /* We don't have anything that we know to be unique to this translation
4886 unit, so use what we do have and throw in some randomness. */
4887
4888 char *name = weak_global_object_name;
4889 char *file = main_input_filename;
4890
4891 if (! name)
4892 name = "";
4893 if (! file)
4894 file = input_filename;
4895
4896 p = (char *) alloca (7 + strlen (name) + strlen (file));
4897
4898 sprintf (p, "%s%s", name, file);
4899 append_random_chars (p);
4900 }
4901
4902 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4903 + strlen (type));
4904
4905 /* Set up the name of the file-level functions we may need. */
4906 /* Use a global object (which is already required to be unique over
4907 the program) rather than the file name (which imposes extra
4908 constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
4909 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4910
4911 /* Don't need to pull weird characters out of global names. */
4912 if (p != first_global_object_name)
4913 {
4914 for (p = buf+11; *p; p++)
4915 if (! ((*p >= '0' && *p <= '9')
4916 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
4917 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
4918 || *p == '.'
4919 #endif
4920 #endif
4921 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4922 || *p == '$'
4923 #endif
4924 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4925 || *p == '.'
4926 #endif
4927 || (*p >= 'A' && *p <= 'Z')
4928 || (*p >= 'a' && *p <= 'z')))
4929 *p = '_';
4930 }
4931
4932 return get_identifier (buf);
4933 }
4934
4935 /* If KIND=='I', return a suitable global initializer (constructor) name.
4936 If KIND=='D', return a suitable global clean-up (destructor) name. */
4937
4938 tree
4939 get_file_function_name (kind)
4940 int kind;
4941 {
4942 char p[2];
4943 p[0] = kind;
4944 p[1] = 0;
4945
4946 return get_file_function_name_long (p);
4947 }
4948
4949 \f
4950 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4951 The result is placed in BUFFER (which has length BIT_SIZE),
4952 with one bit in each char ('\000' or '\001').
4953
4954 If the constructor is constant, NULL_TREE is returned.
4955 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4956
4957 tree
4958 get_set_constructor_bits (init, buffer, bit_size)
4959 tree init;
4960 char *buffer;
4961 int bit_size;
4962 {
4963 int i;
4964 tree vals;
4965 HOST_WIDE_INT domain_min
4966 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
4967 tree non_const_bits = NULL_TREE;
4968 for (i = 0; i < bit_size; i++)
4969 buffer[i] = 0;
4970
4971 for (vals = TREE_OPERAND (init, 1);
4972 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4973 {
4974 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
4975 || (TREE_PURPOSE (vals) != NULL_TREE
4976 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
4977 non_const_bits
4978 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4979 else if (TREE_PURPOSE (vals) != NULL_TREE)
4980 {
4981 /* Set a range of bits to ones. */
4982 HOST_WIDE_INT lo_index
4983 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
4984 HOST_WIDE_INT hi_index
4985 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4986 if (lo_index < 0 || lo_index >= bit_size
4987 || hi_index < 0 || hi_index >= bit_size)
4988 abort ();
4989 for ( ; lo_index <= hi_index; lo_index++)
4990 buffer[lo_index] = 1;
4991 }
4992 else
4993 {
4994 /* Set a single bit to one. */
4995 HOST_WIDE_INT index
4996 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4997 if (index < 0 || index >= bit_size)
4998 {
4999 error ("invalid initializer for bit string");
5000 return NULL_TREE;
5001 }
5002 buffer[index] = 1;
5003 }
5004 }
5005 return non_const_bits;
5006 }
5007
5008 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5009 The result is placed in BUFFER (which is an array of bytes).
5010 If the constructor is constant, NULL_TREE is returned.
5011 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5012
5013 tree
5014 get_set_constructor_bytes (init, buffer, wd_size)
5015 tree init;
5016 unsigned char *buffer;
5017 int wd_size;
5018 {
5019 int i;
5020 int set_word_size = BITS_PER_UNIT;
5021 int bit_size = wd_size * set_word_size;
5022 int bit_pos = 0;
5023 unsigned char *bytep = buffer;
5024 char *bit_buffer = (char *) alloca(bit_size);
5025 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5026
5027 for (i = 0; i < wd_size; i++)
5028 buffer[i] = 0;
5029
5030 for (i = 0; i < bit_size; i++)
5031 {
5032 if (bit_buffer[i])
5033 {
5034 if (BYTES_BIG_ENDIAN)
5035 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5036 else
5037 *bytep |= 1 << bit_pos;
5038 }
5039 bit_pos++;
5040 if (bit_pos >= set_word_size)
5041 bit_pos = 0, bytep++;
5042 }
5043 return non_const_bits;
5044 }
5045 \f
5046 #ifdef ENABLE_CHECKING
5047
5048 /* Complain if the tree code does not match the expected one.
5049 NODE is the tree node in question, CODE is the expected tree code,
5050 and FILE and LINE are the filename and line number, respectively,
5051 of the line on which the check was done. If NONFATAL is nonzero,
5052 don't abort if the reference is invalid; instead, return 0.
5053 If the reference is valid, return NODE. */
5054
5055 tree
5056 tree_check (node, code, file, line, nofatal)
5057 tree node;
5058 enum tree_code code;
5059 char *file;
5060 int line;
5061 int nofatal;
5062 {
5063 if (TREE_CODE (node) == code)
5064 return node;
5065 else if (nofatal)
5066 return 0;
5067 else
5068 fatal ("%s:%d: Expect %s, have %s\n", file, line,
5069 tree_code_name[code], tree_code_name[TREE_CODE (node)]);
5070 }
5071
5072 /* Similar to above, except that we check for a class of tree
5073 code, given in CL. */
5074
5075 tree
5076 tree_class_check (node, cl, file, line, nofatal)
5077 tree node;
5078 char cl;
5079 char *file;
5080 int line;
5081 int nofatal;
5082 {
5083 if (TREE_CODE_CLASS (TREE_CODE (node)) == cl)
5084 return node;
5085 else if (nofatal)
5086 return 0;
5087 else
5088 fatal ("%s:%d: Expect '%c', have '%s'\n", file, line,
5089 cl, tree_code_name[TREE_CODE (node)]);
5090 }
5091
5092 /* Likewise, but complain if the tree node is not an expression. */
5093
5094 tree
5095 expr_check (node, ignored, file, line, nofatal)
5096 tree node;
5097 int ignored;
5098 char *file;
5099 int line;
5100 int nofatal;
5101 {
5102 switch (TREE_CODE_CLASS (TREE_CODE (node)))
5103 {
5104 case 'r':
5105 case 's':
5106 case 'e':
5107 case '<':
5108 case '1':
5109 case '2':
5110 break;
5111
5112 default:
5113 if (nofatal)
5114 return 0;
5115 else
5116 fatal ("%s:%d: Expect expression, have '%s'\n", file, line,
5117 tree_code_name[TREE_CODE (node)]);
5118 }
5119
5120 return node;
5121 }
5122 #endif
5123
5124 /* Return the alias set for T, which may be either a type or an
5125 expression. */
5126
5127 int
5128 get_alias_set (t)
5129 tree t;
5130 {
5131 if (!flag_strict_aliasing || !lang_get_alias_set)
5132 /* If we're not doing any lanaguage-specific alias analysis, just
5133 assume everything aliases everything else. */
5134 return 0;
5135 else
5136 return (*lang_get_alias_set) (t);
5137 }
5138
5139 /* Return a brand-new alias set. */
5140
5141 int
5142 new_alias_set ()
5143 {
5144 static int last_alias_set;
5145 return ++last_alias_set;
5146 }