+ * c/c-decl.c (write_global_declarations_1): Call global_decl() + with early=true.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent, but occasionally
28 calls language-dependent routines defined (for C) in typecheck.c. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "stor-layout.h"
37 #include "calls.h"
38 #include "attribs.h"
39 #include "varasm.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h" /* get_random_seed */
44 #include "hashtab.h"
45 #include "inchash.h"
46 #include "filenames.h"
47 #include "output.h"
48 #include "target.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "basic-block.h"
54 #include "bitmap.h"
55 #include "tree-ssa-alias.h"
56 #include "internal-fn.h"
57 #include "gimple-expr.h"
58 #include "is-a.h"
59 #include "gimple.h"
60 #include "gimple-iterator.h"
61 #include "gimplify.h"
62 #include "gimple-ssa.h"
63 #include "cgraph.h"
64 #include "tree-phinodes.h"
65 #include "stringpool.h"
66 #include "tree-ssanames.h"
67 #include "expr.h"
68 #include "tree-dfa.h"
69 #include "params.h"
70 #include "tree-pass.h"
71 #include "langhooks-def.h"
72 #include "diagnostic.h"
73 #include "tree-diagnostic.h"
74 #include "tree-pretty-print.h"
75 #include "except.h"
76 #include "debug.h"
77 #include "intl.h"
78 #include "wide-int.h"
79 #include "builtins.h"
80
81 /* Tree code classes. */
82
83 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
84 #define END_OF_BASE_TREE_CODES tcc_exceptional,
85
86 const enum tree_code_class tree_code_type[] = {
87 #include "all-tree.def"
88 };
89
90 #undef DEFTREECODE
91 #undef END_OF_BASE_TREE_CODES
92
93 /* Table indexed by tree code giving number of expression
94 operands beyond the fixed part of the node structure.
95 Not used for types or decls. */
96
97 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
98 #define END_OF_BASE_TREE_CODES 0,
99
100 const unsigned char tree_code_length[] = {
101 #include "all-tree.def"
102 };
103
104 #undef DEFTREECODE
105 #undef END_OF_BASE_TREE_CODES
106
107 /* Names of tree components.
108 Used for printing out the tree and error messages. */
109 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
110 #define END_OF_BASE_TREE_CODES "@dummy",
111
112 static const char *const tree_code_name[] = {
113 #include "all-tree.def"
114 };
115
116 #undef DEFTREECODE
117 #undef END_OF_BASE_TREE_CODES
118
119 /* Each tree code class has an associated string representation.
120 These must correspond to the tree_code_class entries. */
121
122 const char *const tree_code_class_strings[] =
123 {
124 "exceptional",
125 "constant",
126 "type",
127 "declaration",
128 "reference",
129 "comparison",
130 "unary",
131 "binary",
132 "statement",
133 "vl_exp",
134 "expression"
135 };
136
137 /* obstack.[ch] explicitly declined to prototype this. */
138 extern int _obstack_allocated_p (struct obstack *h, void *obj);
139
140 /* Statistics-gathering stuff. */
141
142 static int tree_code_counts[MAX_TREE_CODES];
143 int tree_node_counts[(int) all_kinds];
144 int tree_node_sizes[(int) all_kinds];
145
146 /* Keep in sync with tree.h:enum tree_node_kind. */
147 static const char * const tree_node_kind_names[] = {
148 "decls",
149 "types",
150 "blocks",
151 "stmts",
152 "refs",
153 "exprs",
154 "constants",
155 "identifiers",
156 "vecs",
157 "binfos",
158 "ssa names",
159 "constructors",
160 "random kinds",
161 "lang_decl kinds",
162 "lang_type kinds",
163 "omp clauses",
164 };
165
166 /* Unique id for next decl created. */
167 static GTY(()) int next_decl_uid;
168 /* Unique id for next type created. */
169 static GTY(()) int next_type_uid = 1;
170 /* Unique id for next debug decl created. Use negative numbers,
171 to catch erroneous uses. */
172 static GTY(()) int next_debug_decl_uid;
173
174 /* Since we cannot rehash a type after it is in the table, we have to
175 keep the hash code. */
176
177 struct GTY(()) type_hash {
178 unsigned long hash;
179 tree type;
180 };
181
182 /* Initial size of the hash table (rounded to next prime). */
183 #define TYPE_HASH_INITIAL_SIZE 1000
184
185 /* Now here is the hash table. When recording a type, it is added to
186 the slot whose index is the hash code. Note that the hash table is
187 used for several kinds of types (function types, array types and
188 array index range types, for now). While all these live in the
189 same table, they are completely independent, and the hash code is
190 computed differently for each of these. */
191
192 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
193 htab_t type_hash_table;
194
195 /* Hash table and temporary node for larger integer const values. */
196 static GTY (()) tree int_cst_node;
197 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
198 htab_t int_cst_hash_table;
199
200 /* Hash table for optimization flags and target option flags. Use the same
201 hash table for both sets of options. Nodes for building the current
202 optimization and target option nodes. The assumption is most of the time
203 the options created will already be in the hash table, so we avoid
204 allocating and freeing up a node repeatably. */
205 static GTY (()) tree cl_optimization_node;
206 static GTY (()) tree cl_target_option_node;
207 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
208 htab_t cl_option_hash_table;
209
210 /* General tree->tree mapping structure for use in hash tables. */
211
212
213 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
214 htab_t debug_expr_for_decl;
215
216 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
217 htab_t value_expr_for_decl;
218
219 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
220 htab_t debug_args_for_decl;
221
222 static void set_type_quals (tree, int);
223 static int type_hash_eq (const void *, const void *);
224 static hashval_t type_hash_hash (const void *);
225 static hashval_t int_cst_hash_hash (const void *);
226 static int int_cst_hash_eq (const void *, const void *);
227 static hashval_t cl_option_hash_hash (const void *);
228 static int cl_option_hash_eq (const void *, const void *);
229 static void print_type_hash_statistics (void);
230 static void print_debug_expr_statistics (void);
231 static void print_value_expr_statistics (void);
232 static int type_hash_marked_p (const void *);
233 static void type_hash_list (const_tree, inchash::hash &);
234 static void attribute_hash_list (const_tree, inchash::hash &);
235
236 tree global_trees[TI_MAX];
237 tree integer_types[itk_none];
238
239 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
240
241 /* Number of operands for each OpenMP clause. */
242 unsigned const char omp_clause_num_ops[] =
243 {
244 0, /* OMP_CLAUSE_ERROR */
245 1, /* OMP_CLAUSE_PRIVATE */
246 1, /* OMP_CLAUSE_SHARED */
247 1, /* OMP_CLAUSE_FIRSTPRIVATE */
248 2, /* OMP_CLAUSE_LASTPRIVATE */
249 4, /* OMP_CLAUSE_REDUCTION */
250 1, /* OMP_CLAUSE_COPYIN */
251 1, /* OMP_CLAUSE_COPYPRIVATE */
252 3, /* OMP_CLAUSE_LINEAR */
253 2, /* OMP_CLAUSE_ALIGNED */
254 1, /* OMP_CLAUSE_DEPEND */
255 1, /* OMP_CLAUSE_UNIFORM */
256 2, /* OMP_CLAUSE_FROM */
257 2, /* OMP_CLAUSE_TO */
258 2, /* OMP_CLAUSE_MAP */
259 1, /* OMP_CLAUSE__LOOPTEMP_ */
260 1, /* OMP_CLAUSE_IF */
261 1, /* OMP_CLAUSE_NUM_THREADS */
262 1, /* OMP_CLAUSE_SCHEDULE */
263 0, /* OMP_CLAUSE_NOWAIT */
264 0, /* OMP_CLAUSE_ORDERED */
265 0, /* OMP_CLAUSE_DEFAULT */
266 3, /* OMP_CLAUSE_COLLAPSE */
267 0, /* OMP_CLAUSE_UNTIED */
268 1, /* OMP_CLAUSE_FINAL */
269 0, /* OMP_CLAUSE_MERGEABLE */
270 1, /* OMP_CLAUSE_DEVICE */
271 1, /* OMP_CLAUSE_DIST_SCHEDULE */
272 0, /* OMP_CLAUSE_INBRANCH */
273 0, /* OMP_CLAUSE_NOTINBRANCH */
274 1, /* OMP_CLAUSE_NUM_TEAMS */
275 1, /* OMP_CLAUSE_THREAD_LIMIT */
276 0, /* OMP_CLAUSE_PROC_BIND */
277 1, /* OMP_CLAUSE_SAFELEN */
278 1, /* OMP_CLAUSE_SIMDLEN */
279 0, /* OMP_CLAUSE_FOR */
280 0, /* OMP_CLAUSE_PARALLEL */
281 0, /* OMP_CLAUSE_SECTIONS */
282 0, /* OMP_CLAUSE_TASKGROUP */
283 1, /* OMP_CLAUSE__SIMDUID_ */
284 1, /* OMP_CLAUSE__CILK_FOR_COUNT_ */
285 };
286
287 const char * const omp_clause_code_name[] =
288 {
289 "error_clause",
290 "private",
291 "shared",
292 "firstprivate",
293 "lastprivate",
294 "reduction",
295 "copyin",
296 "copyprivate",
297 "linear",
298 "aligned",
299 "depend",
300 "uniform",
301 "from",
302 "to",
303 "map",
304 "_looptemp_",
305 "if",
306 "num_threads",
307 "schedule",
308 "nowait",
309 "ordered",
310 "default",
311 "collapse",
312 "untied",
313 "final",
314 "mergeable",
315 "device",
316 "dist_schedule",
317 "inbranch",
318 "notinbranch",
319 "num_teams",
320 "thread_limit",
321 "proc_bind",
322 "safelen",
323 "simdlen",
324 "for",
325 "parallel",
326 "sections",
327 "taskgroup",
328 "_simduid_",
329 "_Cilk_for_count_"
330 };
331
332
333 /* Return the tree node structure used by tree code CODE. */
334
335 static inline enum tree_node_structure_enum
336 tree_node_structure_for_code (enum tree_code code)
337 {
338 switch (TREE_CODE_CLASS (code))
339 {
340 case tcc_declaration:
341 {
342 switch (code)
343 {
344 case FIELD_DECL:
345 return TS_FIELD_DECL;
346 case PARM_DECL:
347 return TS_PARM_DECL;
348 case VAR_DECL:
349 return TS_VAR_DECL;
350 case LABEL_DECL:
351 return TS_LABEL_DECL;
352 case RESULT_DECL:
353 return TS_RESULT_DECL;
354 case DEBUG_EXPR_DECL:
355 return TS_DECL_WRTL;
356 case CONST_DECL:
357 return TS_CONST_DECL;
358 case TYPE_DECL:
359 return TS_TYPE_DECL;
360 case FUNCTION_DECL:
361 return TS_FUNCTION_DECL;
362 case TRANSLATION_UNIT_DECL:
363 return TS_TRANSLATION_UNIT_DECL;
364 default:
365 return TS_DECL_NON_COMMON;
366 }
367 }
368 case tcc_type:
369 return TS_TYPE_NON_COMMON;
370 case tcc_reference:
371 case tcc_comparison:
372 case tcc_unary:
373 case tcc_binary:
374 case tcc_expression:
375 case tcc_statement:
376 case tcc_vl_exp:
377 return TS_EXP;
378 default: /* tcc_constant and tcc_exceptional */
379 break;
380 }
381 switch (code)
382 {
383 /* tcc_constant cases. */
384 case VOID_CST: return TS_TYPED;
385 case INTEGER_CST: return TS_INT_CST;
386 case REAL_CST: return TS_REAL_CST;
387 case FIXED_CST: return TS_FIXED_CST;
388 case COMPLEX_CST: return TS_COMPLEX;
389 case VECTOR_CST: return TS_VECTOR;
390 case STRING_CST: return TS_STRING;
391 /* tcc_exceptional cases. */
392 case ERROR_MARK: return TS_COMMON;
393 case IDENTIFIER_NODE: return TS_IDENTIFIER;
394 case TREE_LIST: return TS_LIST;
395 case TREE_VEC: return TS_VEC;
396 case SSA_NAME: return TS_SSA_NAME;
397 case PLACEHOLDER_EXPR: return TS_COMMON;
398 case STATEMENT_LIST: return TS_STATEMENT_LIST;
399 case BLOCK: return TS_BLOCK;
400 case CONSTRUCTOR: return TS_CONSTRUCTOR;
401 case TREE_BINFO: return TS_BINFO;
402 case OMP_CLAUSE: return TS_OMP_CLAUSE;
403 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
404 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
405
406 default:
407 gcc_unreachable ();
408 }
409 }
410
411
412 /* Initialize tree_contains_struct to describe the hierarchy of tree
413 nodes. */
414
415 static void
416 initialize_tree_contains_struct (void)
417 {
418 unsigned i;
419
420 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
421 {
422 enum tree_code code;
423 enum tree_node_structure_enum ts_code;
424
425 code = (enum tree_code) i;
426 ts_code = tree_node_structure_for_code (code);
427
428 /* Mark the TS structure itself. */
429 tree_contains_struct[code][ts_code] = 1;
430
431 /* Mark all the structures that TS is derived from. */
432 switch (ts_code)
433 {
434 case TS_TYPED:
435 case TS_BLOCK:
436 MARK_TS_BASE (code);
437 break;
438
439 case TS_COMMON:
440 case TS_INT_CST:
441 case TS_REAL_CST:
442 case TS_FIXED_CST:
443 case TS_VECTOR:
444 case TS_STRING:
445 case TS_COMPLEX:
446 case TS_SSA_NAME:
447 case TS_CONSTRUCTOR:
448 case TS_EXP:
449 case TS_STATEMENT_LIST:
450 MARK_TS_TYPED (code);
451 break;
452
453 case TS_IDENTIFIER:
454 case TS_DECL_MINIMAL:
455 case TS_TYPE_COMMON:
456 case TS_LIST:
457 case TS_VEC:
458 case TS_BINFO:
459 case TS_OMP_CLAUSE:
460 case TS_OPTIMIZATION:
461 case TS_TARGET_OPTION:
462 MARK_TS_COMMON (code);
463 break;
464
465 case TS_TYPE_WITH_LANG_SPECIFIC:
466 MARK_TS_TYPE_COMMON (code);
467 break;
468
469 case TS_TYPE_NON_COMMON:
470 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
471 break;
472
473 case TS_DECL_COMMON:
474 MARK_TS_DECL_MINIMAL (code);
475 break;
476
477 case TS_DECL_WRTL:
478 case TS_CONST_DECL:
479 MARK_TS_DECL_COMMON (code);
480 break;
481
482 case TS_DECL_NON_COMMON:
483 MARK_TS_DECL_WITH_VIS (code);
484 break;
485
486 case TS_DECL_WITH_VIS:
487 case TS_PARM_DECL:
488 case TS_LABEL_DECL:
489 case TS_RESULT_DECL:
490 MARK_TS_DECL_WRTL (code);
491 break;
492
493 case TS_FIELD_DECL:
494 MARK_TS_DECL_COMMON (code);
495 break;
496
497 case TS_VAR_DECL:
498 MARK_TS_DECL_WITH_VIS (code);
499 break;
500
501 case TS_TYPE_DECL:
502 case TS_FUNCTION_DECL:
503 MARK_TS_DECL_NON_COMMON (code);
504 break;
505
506 case TS_TRANSLATION_UNIT_DECL:
507 MARK_TS_DECL_COMMON (code);
508 break;
509
510 default:
511 gcc_unreachable ();
512 }
513 }
514
515 /* Basic consistency checks for attributes used in fold. */
516 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
517 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
518 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
519 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
520 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
521 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
522 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
523 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
524 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
525 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
526 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
527 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
528 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
529 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
530 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
531 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
532 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
533 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
534 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
535 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
536 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
537 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
538 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
539 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
540 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
541 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
542 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
543 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
544 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
545 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
546 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
547 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
548 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
549 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
550 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
551 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
552 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
553 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
554 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
555 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
556 }
557
558
559 /* Init tree.c. */
560
561 void
562 init_ttree (void)
563 {
564 /* Initialize the hash table of types. */
565 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
566 type_hash_eq, 0);
567
568 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
569 tree_decl_map_eq, 0);
570
571 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
572 tree_decl_map_eq, 0);
573
574 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
575 int_cst_hash_eq, NULL);
576
577 int_cst_node = make_int_cst (1, 1);
578
579 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
580 cl_option_hash_eq, NULL);
581
582 cl_optimization_node = make_node (OPTIMIZATION_NODE);
583 cl_target_option_node = make_node (TARGET_OPTION_NODE);
584
585 /* Initialize the tree_contains_struct array. */
586 initialize_tree_contains_struct ();
587 lang_hooks.init_ts ();
588 }
589
590 \f
591 /* The name of the object as the assembler will see it (but before any
592 translations made by ASM_OUTPUT_LABELREF). Often this is the same
593 as DECL_NAME. It is an IDENTIFIER_NODE. */
594 tree
595 decl_assembler_name (tree decl)
596 {
597 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
598 lang_hooks.set_decl_assembler_name (decl);
599 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
600 }
601
602 /* When the target supports COMDAT groups, this indicates which group the
603 DECL is associated with. This can be either an IDENTIFIER_NODE or a
604 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
605 tree
606 decl_comdat_group (const_tree node)
607 {
608 struct symtab_node *snode = symtab_node::get (node);
609 if (!snode)
610 return NULL;
611 return snode->get_comdat_group ();
612 }
613
614 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
615 tree
616 decl_comdat_group_id (const_tree node)
617 {
618 struct symtab_node *snode = symtab_node::get (node);
619 if (!snode)
620 return NULL;
621 return snode->get_comdat_group_id ();
622 }
623
624 /* When the target supports named section, return its name as IDENTIFIER_NODE
625 or NULL if it is in no section. */
626 const char *
627 decl_section_name (const_tree node)
628 {
629 struct symtab_node *snode = symtab_node::get (node);
630 if (!snode)
631 return NULL;
632 return snode->get_section ();
633 }
634
635 /* Set section section name of NODE to VALUE (that is expected to
636 be identifier node) */
637 void
638 set_decl_section_name (tree node, const char *value)
639 {
640 struct symtab_node *snode;
641
642 if (value == NULL)
643 {
644 snode = symtab_node::get (node);
645 if (!snode)
646 return;
647 }
648 else if (TREE_CODE (node) == VAR_DECL)
649 snode = varpool_node::get_create (node);
650 else
651 snode = cgraph_node::get_create (node);
652 snode->set_section (value);
653 }
654
655 /* Return TLS model of a variable NODE. */
656 enum tls_model
657 decl_tls_model (const_tree node)
658 {
659 struct varpool_node *snode = varpool_node::get (node);
660 if (!snode)
661 return TLS_MODEL_NONE;
662 return snode->tls_model;
663 }
664
665 /* Set TLS model of variable NODE to MODEL. */
666 void
667 set_decl_tls_model (tree node, enum tls_model model)
668 {
669 struct varpool_node *vnode;
670
671 if (model == TLS_MODEL_NONE)
672 {
673 vnode = varpool_node::get (node);
674 if (!vnode)
675 return;
676 }
677 else
678 vnode = varpool_node::get_create (node);
679 vnode->tls_model = model;
680 }
681
682 /* Compute the number of bytes occupied by a tree with code CODE.
683 This function cannot be used for nodes that have variable sizes,
684 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
685 size_t
686 tree_code_size (enum tree_code code)
687 {
688 switch (TREE_CODE_CLASS (code))
689 {
690 case tcc_declaration: /* A decl node */
691 {
692 switch (code)
693 {
694 case FIELD_DECL:
695 return sizeof (struct tree_field_decl);
696 case PARM_DECL:
697 return sizeof (struct tree_parm_decl);
698 case VAR_DECL:
699 return sizeof (struct tree_var_decl);
700 case LABEL_DECL:
701 return sizeof (struct tree_label_decl);
702 case RESULT_DECL:
703 return sizeof (struct tree_result_decl);
704 case CONST_DECL:
705 return sizeof (struct tree_const_decl);
706 case TYPE_DECL:
707 return sizeof (struct tree_type_decl);
708 case FUNCTION_DECL:
709 return sizeof (struct tree_function_decl);
710 case DEBUG_EXPR_DECL:
711 return sizeof (struct tree_decl_with_rtl);
712 case TRANSLATION_UNIT_DECL:
713 return sizeof (struct tree_translation_unit_decl);
714 case NAMESPACE_DECL:
715 case IMPORTED_DECL:
716 case NAMELIST_DECL:
717 return sizeof (struct tree_decl_non_common);
718 default:
719 return lang_hooks.tree_size (code);
720 }
721 }
722
723 case tcc_type: /* a type node */
724 return sizeof (struct tree_type_non_common);
725
726 case tcc_reference: /* a reference */
727 case tcc_expression: /* an expression */
728 case tcc_statement: /* an expression with side effects */
729 case tcc_comparison: /* a comparison expression */
730 case tcc_unary: /* a unary arithmetic expression */
731 case tcc_binary: /* a binary arithmetic expression */
732 return (sizeof (struct tree_exp)
733 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
734
735 case tcc_constant: /* a constant */
736 switch (code)
737 {
738 case VOID_CST: return sizeof (struct tree_typed);
739 case INTEGER_CST: gcc_unreachable ();
740 case REAL_CST: return sizeof (struct tree_real_cst);
741 case FIXED_CST: return sizeof (struct tree_fixed_cst);
742 case COMPLEX_CST: return sizeof (struct tree_complex);
743 case VECTOR_CST: return sizeof (struct tree_vector);
744 case STRING_CST: gcc_unreachable ();
745 default:
746 return lang_hooks.tree_size (code);
747 }
748
749 case tcc_exceptional: /* something random, like an identifier. */
750 switch (code)
751 {
752 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
753 case TREE_LIST: return sizeof (struct tree_list);
754
755 case ERROR_MARK:
756 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
757
758 case TREE_VEC:
759 case OMP_CLAUSE: gcc_unreachable ();
760
761 case SSA_NAME: return sizeof (struct tree_ssa_name);
762
763 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
764 case BLOCK: return sizeof (struct tree_block);
765 case CONSTRUCTOR: return sizeof (struct tree_constructor);
766 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
767 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
768
769 default:
770 return lang_hooks.tree_size (code);
771 }
772
773 default:
774 gcc_unreachable ();
775 }
776 }
777
778 /* Compute the number of bytes occupied by NODE. This routine only
779 looks at TREE_CODE, except for those nodes that have variable sizes. */
780 size_t
781 tree_size (const_tree node)
782 {
783 const enum tree_code code = TREE_CODE (node);
784 switch (code)
785 {
786 case INTEGER_CST:
787 return (sizeof (struct tree_int_cst)
788 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
789
790 case TREE_BINFO:
791 return (offsetof (struct tree_binfo, base_binfos)
792 + vec<tree, va_gc>
793 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
794
795 case TREE_VEC:
796 return (sizeof (struct tree_vec)
797 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
798
799 case VECTOR_CST:
800 return (sizeof (struct tree_vector)
801 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
802
803 case STRING_CST:
804 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
805
806 case OMP_CLAUSE:
807 return (sizeof (struct tree_omp_clause)
808 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
809 * sizeof (tree));
810
811 default:
812 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
813 return (sizeof (struct tree_exp)
814 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
815 else
816 return tree_code_size (code);
817 }
818 }
819
820 /* Record interesting allocation statistics for a tree node with CODE
821 and LENGTH. */
822
823 static void
824 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
825 size_t length ATTRIBUTE_UNUSED)
826 {
827 enum tree_code_class type = TREE_CODE_CLASS (code);
828 tree_node_kind kind;
829
830 if (!GATHER_STATISTICS)
831 return;
832
833 switch (type)
834 {
835 case tcc_declaration: /* A decl node */
836 kind = d_kind;
837 break;
838
839 case tcc_type: /* a type node */
840 kind = t_kind;
841 break;
842
843 case tcc_statement: /* an expression with side effects */
844 kind = s_kind;
845 break;
846
847 case tcc_reference: /* a reference */
848 kind = r_kind;
849 break;
850
851 case tcc_expression: /* an expression */
852 case tcc_comparison: /* a comparison expression */
853 case tcc_unary: /* a unary arithmetic expression */
854 case tcc_binary: /* a binary arithmetic expression */
855 kind = e_kind;
856 break;
857
858 case tcc_constant: /* a constant */
859 kind = c_kind;
860 break;
861
862 case tcc_exceptional: /* something random, like an identifier. */
863 switch (code)
864 {
865 case IDENTIFIER_NODE:
866 kind = id_kind;
867 break;
868
869 case TREE_VEC:
870 kind = vec_kind;
871 break;
872
873 case TREE_BINFO:
874 kind = binfo_kind;
875 break;
876
877 case SSA_NAME:
878 kind = ssa_name_kind;
879 break;
880
881 case BLOCK:
882 kind = b_kind;
883 break;
884
885 case CONSTRUCTOR:
886 kind = constr_kind;
887 break;
888
889 case OMP_CLAUSE:
890 kind = omp_clause_kind;
891 break;
892
893 default:
894 kind = x_kind;
895 break;
896 }
897 break;
898
899 case tcc_vl_exp:
900 kind = e_kind;
901 break;
902
903 default:
904 gcc_unreachable ();
905 }
906
907 tree_code_counts[(int) code]++;
908 tree_node_counts[(int) kind]++;
909 tree_node_sizes[(int) kind] += length;
910 }
911
912 /* Allocate and return a new UID from the DECL_UID namespace. */
913
914 int
915 allocate_decl_uid (void)
916 {
917 return next_decl_uid++;
918 }
919
920 /* Return a newly allocated node of code CODE. For decl and type
921 nodes, some other fields are initialized. The rest of the node is
922 initialized to zero. This function cannot be used for TREE_VEC,
923 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
924 tree_code_size.
925
926 Achoo! I got a code in the node. */
927
928 tree
929 make_node_stat (enum tree_code code MEM_STAT_DECL)
930 {
931 tree t;
932 enum tree_code_class type = TREE_CODE_CLASS (code);
933 size_t length = tree_code_size (code);
934
935 record_node_allocation_statistics (code, length);
936
937 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
938 TREE_SET_CODE (t, code);
939
940 switch (type)
941 {
942 case tcc_statement:
943 TREE_SIDE_EFFECTS (t) = 1;
944 break;
945
946 case tcc_declaration:
947 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
948 {
949 if (code == FUNCTION_DECL)
950 {
951 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
952 DECL_MODE (t) = FUNCTION_MODE;
953 }
954 else
955 DECL_ALIGN (t) = 1;
956 }
957 DECL_SOURCE_LOCATION (t) = input_location;
958 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
959 DECL_UID (t) = --next_debug_decl_uid;
960 else
961 {
962 DECL_UID (t) = allocate_decl_uid ();
963 SET_DECL_PT_UID (t, -1);
964 }
965 if (TREE_CODE (t) == LABEL_DECL)
966 LABEL_DECL_UID (t) = -1;
967
968 break;
969
970 case tcc_type:
971 TYPE_UID (t) = next_type_uid++;
972 TYPE_ALIGN (t) = BITS_PER_UNIT;
973 TYPE_USER_ALIGN (t) = 0;
974 TYPE_MAIN_VARIANT (t) = t;
975 TYPE_CANONICAL (t) = t;
976
977 /* Default to no attributes for type, but let target change that. */
978 TYPE_ATTRIBUTES (t) = NULL_TREE;
979 targetm.set_default_type_attributes (t);
980
981 /* We have not yet computed the alias set for this type. */
982 TYPE_ALIAS_SET (t) = -1;
983 break;
984
985 case tcc_constant:
986 TREE_CONSTANT (t) = 1;
987 break;
988
989 case tcc_expression:
990 switch (code)
991 {
992 case INIT_EXPR:
993 case MODIFY_EXPR:
994 case VA_ARG_EXPR:
995 case PREDECREMENT_EXPR:
996 case PREINCREMENT_EXPR:
997 case POSTDECREMENT_EXPR:
998 case POSTINCREMENT_EXPR:
999 /* All of these have side-effects, no matter what their
1000 operands are. */
1001 TREE_SIDE_EFFECTS (t) = 1;
1002 break;
1003
1004 default:
1005 break;
1006 }
1007 break;
1008
1009 default:
1010 /* Other classes need no special treatment. */
1011 break;
1012 }
1013
1014 return t;
1015 }
1016 \f
1017 /* Return a new node with the same contents as NODE except that its
1018 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1019
1020 tree
1021 copy_node_stat (tree node MEM_STAT_DECL)
1022 {
1023 tree t;
1024 enum tree_code code = TREE_CODE (node);
1025 size_t length;
1026
1027 gcc_assert (code != STATEMENT_LIST);
1028
1029 length = tree_size (node);
1030 record_node_allocation_statistics (code, length);
1031 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1032 memcpy (t, node, length);
1033
1034 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1035 TREE_CHAIN (t) = 0;
1036 TREE_ASM_WRITTEN (t) = 0;
1037 TREE_VISITED (t) = 0;
1038
1039 if (TREE_CODE_CLASS (code) == tcc_declaration)
1040 {
1041 if (code == DEBUG_EXPR_DECL)
1042 DECL_UID (t) = --next_debug_decl_uid;
1043 else
1044 {
1045 DECL_UID (t) = allocate_decl_uid ();
1046 if (DECL_PT_UID_SET_P (node))
1047 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1048 }
1049 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
1050 && DECL_HAS_VALUE_EXPR_P (node))
1051 {
1052 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1053 DECL_HAS_VALUE_EXPR_P (t) = 1;
1054 }
1055 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1056 if (TREE_CODE (node) == VAR_DECL)
1057 {
1058 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1059 t->decl_with_vis.symtab_node = NULL;
1060 }
1061 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
1062 {
1063 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1064 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1065 }
1066 if (TREE_CODE (node) == FUNCTION_DECL)
1067 {
1068 DECL_STRUCT_FUNCTION (t) = NULL;
1069 t->decl_with_vis.symtab_node = NULL;
1070 }
1071 }
1072 else if (TREE_CODE_CLASS (code) == tcc_type)
1073 {
1074 TYPE_UID (t) = next_type_uid++;
1075 /* The following is so that the debug code for
1076 the copy is different from the original type.
1077 The two statements usually duplicate each other
1078 (because they clear fields of the same union),
1079 but the optimizer should catch that. */
1080 TYPE_SYMTAB_POINTER (t) = 0;
1081 TYPE_SYMTAB_ADDRESS (t) = 0;
1082
1083 /* Do not copy the values cache. */
1084 if (TYPE_CACHED_VALUES_P (t))
1085 {
1086 TYPE_CACHED_VALUES_P (t) = 0;
1087 TYPE_CACHED_VALUES (t) = NULL_TREE;
1088 }
1089 }
1090
1091 return t;
1092 }
1093
1094 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1095 For example, this can copy a list made of TREE_LIST nodes. */
1096
1097 tree
1098 copy_list (tree list)
1099 {
1100 tree head;
1101 tree prev, next;
1102
1103 if (list == 0)
1104 return 0;
1105
1106 head = prev = copy_node (list);
1107 next = TREE_CHAIN (list);
1108 while (next)
1109 {
1110 TREE_CHAIN (prev) = copy_node (next);
1111 prev = TREE_CHAIN (prev);
1112 next = TREE_CHAIN (next);
1113 }
1114 return head;
1115 }
1116
1117 \f
1118 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1119 INTEGER_CST with value CST and type TYPE. */
1120
1121 static unsigned int
1122 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1123 {
1124 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1125 /* We need an extra zero HWI if CST is an unsigned integer with its
1126 upper bit set, and if CST occupies a whole number of HWIs. */
1127 if (TYPE_UNSIGNED (type)
1128 && wi::neg_p (cst)
1129 && (cst.get_precision () % HOST_BITS_PER_WIDE_INT) == 0)
1130 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1131 return cst.get_len ();
1132 }
1133
1134 /* Return a new INTEGER_CST with value CST and type TYPE. */
1135
1136 static tree
1137 build_new_int_cst (tree type, const wide_int &cst)
1138 {
1139 unsigned int len = cst.get_len ();
1140 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1141 tree nt = make_int_cst (len, ext_len);
1142
1143 if (len < ext_len)
1144 {
1145 --ext_len;
1146 TREE_INT_CST_ELT (nt, ext_len) = 0;
1147 for (unsigned int i = len; i < ext_len; ++i)
1148 TREE_INT_CST_ELT (nt, i) = -1;
1149 }
1150 else if (TYPE_UNSIGNED (type)
1151 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1152 {
1153 len--;
1154 TREE_INT_CST_ELT (nt, len)
1155 = zext_hwi (cst.elt (len),
1156 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1157 }
1158
1159 for (unsigned int i = 0; i < len; i++)
1160 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1161 TREE_TYPE (nt) = type;
1162 return nt;
1163 }
1164
1165 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1166
1167 tree
1168 build_int_cst (tree type, HOST_WIDE_INT low)
1169 {
1170 /* Support legacy code. */
1171 if (!type)
1172 type = integer_type_node;
1173
1174 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1175 }
1176
1177 tree
1178 build_int_cstu (tree type, unsigned HOST_WIDE_INT cst)
1179 {
1180 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1181 }
1182
1183 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1184
1185 tree
1186 build_int_cst_type (tree type, HOST_WIDE_INT low)
1187 {
1188 gcc_assert (type);
1189 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1190 }
1191
1192 /* Constructs tree in type TYPE from with value given by CST. Signedness
1193 of CST is assumed to be the same as the signedness of TYPE. */
1194
1195 tree
1196 double_int_to_tree (tree type, double_int cst)
1197 {
1198 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1199 }
1200
1201 /* We force the wide_int CST to the range of the type TYPE by sign or
1202 zero extending it. OVERFLOWABLE indicates if we are interested in
1203 overflow of the value, when >0 we are only interested in signed
1204 overflow, for <0 we are interested in any overflow. OVERFLOWED
1205 indicates whether overflow has already occurred. CONST_OVERFLOWED
1206 indicates whether constant overflow has already occurred. We force
1207 T's value to be within range of T's type (by setting to 0 or 1 all
1208 the bits outside the type's range). We set TREE_OVERFLOWED if,
1209 OVERFLOWED is nonzero,
1210 or OVERFLOWABLE is >0 and signed overflow occurs
1211 or OVERFLOWABLE is <0 and any overflow occurs
1212 We return a new tree node for the extended wide_int. The node
1213 is shared if no overflow flags are set. */
1214
1215
1216 tree
1217 force_fit_type (tree type, const wide_int_ref &cst,
1218 int overflowable, bool overflowed)
1219 {
1220 signop sign = TYPE_SIGN (type);
1221
1222 /* If we need to set overflow flags, return a new unshared node. */
1223 if (overflowed || !wi::fits_to_tree_p (cst, type))
1224 {
1225 if (overflowed
1226 || overflowable < 0
1227 || (overflowable > 0 && sign == SIGNED))
1228 {
1229 wide_int tmp = wide_int::from (cst, TYPE_PRECISION (type), sign);
1230 tree t = build_new_int_cst (type, tmp);
1231 TREE_OVERFLOW (t) = 1;
1232 return t;
1233 }
1234 }
1235
1236 /* Else build a shared node. */
1237 return wide_int_to_tree (type, cst);
1238 }
1239
1240 /* These are the hash table functions for the hash table of INTEGER_CST
1241 nodes of a sizetype. */
1242
1243 /* Return the hash code code X, an INTEGER_CST. */
1244
1245 static hashval_t
1246 int_cst_hash_hash (const void *x)
1247 {
1248 const_tree const t = (const_tree) x;
1249 hashval_t code = htab_hash_pointer (TREE_TYPE (t));
1250 int i;
1251
1252 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1253 code ^= TREE_INT_CST_ELT (t, i);
1254
1255 return code;
1256 }
1257
1258 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1259 is the same as that given by *Y, which is the same. */
1260
1261 static int
1262 int_cst_hash_eq (const void *x, const void *y)
1263 {
1264 const_tree const xt = (const_tree) x;
1265 const_tree const yt = (const_tree) y;
1266
1267 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1268 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1269 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1270 return false;
1271
1272 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1273 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1274 return false;
1275
1276 return true;
1277 }
1278
1279 /* Create an INT_CST node of TYPE and value CST.
1280 The returned node is always shared. For small integers we use a
1281 per-type vector cache, for larger ones we use a single hash table.
1282 The value is extended from its precision according to the sign of
1283 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1284 the upper bits and ensures that hashing and value equality based
1285 upon the underlying HOST_WIDE_INTs works without masking. */
1286
1287 tree
1288 wide_int_to_tree (tree type, const wide_int_ref &pcst)
1289 {
1290 tree t;
1291 int ix = -1;
1292 int limit = 0;
1293
1294 gcc_assert (type);
1295 unsigned int prec = TYPE_PRECISION (type);
1296 signop sgn = TYPE_SIGN (type);
1297
1298 /* Verify that everything is canonical. */
1299 int l = pcst.get_len ();
1300 if (l > 1)
1301 {
1302 if (pcst.elt (l - 1) == 0)
1303 gcc_checking_assert (pcst.elt (l - 2) < 0);
1304 if (pcst.elt (l - 1) == (HOST_WIDE_INT) -1)
1305 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1306 }
1307
1308 wide_int cst = wide_int::from (pcst, prec, sgn);
1309 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1310
1311 if (ext_len == 1)
1312 {
1313 /* We just need to store a single HOST_WIDE_INT. */
1314 HOST_WIDE_INT hwi;
1315 if (TYPE_UNSIGNED (type))
1316 hwi = cst.to_uhwi ();
1317 else
1318 hwi = cst.to_shwi ();
1319
1320 switch (TREE_CODE (type))
1321 {
1322 case NULLPTR_TYPE:
1323 gcc_assert (hwi == 0);
1324 /* Fallthru. */
1325
1326 case POINTER_TYPE:
1327 case REFERENCE_TYPE:
1328 /* Cache NULL pointer. */
1329 if (hwi == 0)
1330 {
1331 limit = 1;
1332 ix = 0;
1333 }
1334 break;
1335
1336 case BOOLEAN_TYPE:
1337 /* Cache false or true. */
1338 limit = 2;
1339 if (hwi < 2)
1340 ix = hwi;
1341 break;
1342
1343 case INTEGER_TYPE:
1344 case OFFSET_TYPE:
1345 if (TYPE_SIGN (type) == UNSIGNED)
1346 {
1347 /* Cache [0, N). */
1348 limit = INTEGER_SHARE_LIMIT;
1349 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1350 ix = hwi;
1351 }
1352 else
1353 {
1354 /* Cache [-1, N). */
1355 limit = INTEGER_SHARE_LIMIT + 1;
1356 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1357 ix = hwi + 1;
1358 }
1359 break;
1360
1361 case ENUMERAL_TYPE:
1362 break;
1363
1364 default:
1365 gcc_unreachable ();
1366 }
1367
1368 if (ix >= 0)
1369 {
1370 /* Look for it in the type's vector of small shared ints. */
1371 if (!TYPE_CACHED_VALUES_P (type))
1372 {
1373 TYPE_CACHED_VALUES_P (type) = 1;
1374 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1375 }
1376
1377 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1378 if (t)
1379 /* Make sure no one is clobbering the shared constant. */
1380 gcc_checking_assert (TREE_TYPE (t) == type
1381 && TREE_INT_CST_NUNITS (t) == 1
1382 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1383 && TREE_INT_CST_EXT_NUNITS (t) == 1
1384 && TREE_INT_CST_ELT (t, 0) == hwi);
1385 else
1386 {
1387 /* Create a new shared int. */
1388 t = build_new_int_cst (type, cst);
1389 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1390 }
1391 }
1392 else
1393 {
1394 /* Use the cache of larger shared ints, using int_cst_node as
1395 a temporary. */
1396 void **slot;
1397
1398 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1399 TREE_TYPE (int_cst_node) = type;
1400
1401 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1402 t = (tree) *slot;
1403 if (!t)
1404 {
1405 /* Insert this one into the hash table. */
1406 t = int_cst_node;
1407 *slot = t;
1408 /* Make a new node for next time round. */
1409 int_cst_node = make_int_cst (1, 1);
1410 }
1411 }
1412 }
1413 else
1414 {
1415 /* The value either hashes properly or we drop it on the floor
1416 for the gc to take care of. There will not be enough of them
1417 to worry about. */
1418 void **slot;
1419
1420 tree nt = build_new_int_cst (type, cst);
1421 slot = htab_find_slot (int_cst_hash_table, nt, INSERT);
1422 t = (tree) *slot;
1423 if (!t)
1424 {
1425 /* Insert this one into the hash table. */
1426 t = nt;
1427 *slot = t;
1428 }
1429 }
1430
1431 return t;
1432 }
1433
1434 void
1435 cache_integer_cst (tree t)
1436 {
1437 tree type = TREE_TYPE (t);
1438 int ix = -1;
1439 int limit = 0;
1440 int prec = TYPE_PRECISION (type);
1441
1442 gcc_assert (!TREE_OVERFLOW (t));
1443
1444 switch (TREE_CODE (type))
1445 {
1446 case NULLPTR_TYPE:
1447 gcc_assert (integer_zerop (t));
1448 /* Fallthru. */
1449
1450 case POINTER_TYPE:
1451 case REFERENCE_TYPE:
1452 /* Cache NULL pointer. */
1453 if (integer_zerop (t))
1454 {
1455 limit = 1;
1456 ix = 0;
1457 }
1458 break;
1459
1460 case BOOLEAN_TYPE:
1461 /* Cache false or true. */
1462 limit = 2;
1463 if (wi::ltu_p (t, 2))
1464 ix = TREE_INT_CST_ELT (t, 0);
1465 break;
1466
1467 case INTEGER_TYPE:
1468 case OFFSET_TYPE:
1469 if (TYPE_UNSIGNED (type))
1470 {
1471 /* Cache 0..N */
1472 limit = INTEGER_SHARE_LIMIT;
1473
1474 /* This is a little hokie, but if the prec is smaller than
1475 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1476 obvious test will not get the correct answer. */
1477 if (prec < HOST_BITS_PER_WIDE_INT)
1478 {
1479 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1480 ix = tree_to_uhwi (t);
1481 }
1482 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1483 ix = tree_to_uhwi (t);
1484 }
1485 else
1486 {
1487 /* Cache -1..N */
1488 limit = INTEGER_SHARE_LIMIT + 1;
1489
1490 if (integer_minus_onep (t))
1491 ix = 0;
1492 else if (!wi::neg_p (t))
1493 {
1494 if (prec < HOST_BITS_PER_WIDE_INT)
1495 {
1496 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1497 ix = tree_to_shwi (t) + 1;
1498 }
1499 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1500 ix = tree_to_shwi (t) + 1;
1501 }
1502 }
1503 break;
1504
1505 case ENUMERAL_TYPE:
1506 break;
1507
1508 default:
1509 gcc_unreachable ();
1510 }
1511
1512 if (ix >= 0)
1513 {
1514 /* Look for it in the type's vector of small shared ints. */
1515 if (!TYPE_CACHED_VALUES_P (type))
1516 {
1517 TYPE_CACHED_VALUES_P (type) = 1;
1518 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1519 }
1520
1521 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1522 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1523 }
1524 else
1525 {
1526 /* Use the cache of larger shared ints. */
1527 void **slot;
1528
1529 slot = htab_find_slot (int_cst_hash_table, t, INSERT);
1530 /* If there is already an entry for the number verify it's the
1531 same. */
1532 if (*slot)
1533 gcc_assert (wi::eq_p (tree (*slot), t));
1534 else
1535 /* Otherwise insert this one into the hash table. */
1536 *slot = t;
1537 }
1538 }
1539
1540
1541 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1542 and the rest are zeros. */
1543
1544 tree
1545 build_low_bits_mask (tree type, unsigned bits)
1546 {
1547 gcc_assert (bits <= TYPE_PRECISION (type));
1548
1549 return wide_int_to_tree (type, wi::mask (bits, false,
1550 TYPE_PRECISION (type)));
1551 }
1552
1553 /* Checks that X is integer constant that can be expressed in (unsigned)
1554 HOST_WIDE_INT without loss of precision. */
1555
1556 bool
1557 cst_and_fits_in_hwi (const_tree x)
1558 {
1559 if (TREE_CODE (x) != INTEGER_CST)
1560 return false;
1561
1562 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1563 return false;
1564
1565 return TREE_INT_CST_NUNITS (x) == 1;
1566 }
1567
1568 /* Build a newly constructed TREE_VEC node of length LEN. */
1569
1570 tree
1571 make_vector_stat (unsigned len MEM_STAT_DECL)
1572 {
1573 tree t;
1574 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1575
1576 record_node_allocation_statistics (VECTOR_CST, length);
1577
1578 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1579
1580 TREE_SET_CODE (t, VECTOR_CST);
1581 TREE_CONSTANT (t) = 1;
1582
1583 return t;
1584 }
1585
1586 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1587 are in a list pointed to by VALS. */
1588
1589 tree
1590 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1591 {
1592 int over = 0;
1593 unsigned cnt = 0;
1594 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1595 TREE_TYPE (v) = type;
1596
1597 /* Iterate through elements and check for overflow. */
1598 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1599 {
1600 tree value = vals[cnt];
1601
1602 VECTOR_CST_ELT (v, cnt) = value;
1603
1604 /* Don't crash if we get an address constant. */
1605 if (!CONSTANT_CLASS_P (value))
1606 continue;
1607
1608 over |= TREE_OVERFLOW (value);
1609 }
1610
1611 TREE_OVERFLOW (v) = over;
1612 return v;
1613 }
1614
1615 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1616 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1617
1618 tree
1619 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1620 {
1621 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1622 unsigned HOST_WIDE_INT idx;
1623 tree value;
1624
1625 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1626 vec[idx] = value;
1627 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1628 vec[idx] = build_zero_cst (TREE_TYPE (type));
1629
1630 return build_vector (type, vec);
1631 }
1632
1633 /* Build a vector of type VECTYPE where all the elements are SCs. */
1634 tree
1635 build_vector_from_val (tree vectype, tree sc)
1636 {
1637 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1638
1639 if (sc == error_mark_node)
1640 return sc;
1641
1642 /* Verify that the vector type is suitable for SC. Note that there
1643 is some inconsistency in the type-system with respect to restrict
1644 qualifications of pointers. Vector types always have a main-variant
1645 element type and the qualification is applied to the vector-type.
1646 So TREE_TYPE (vector-type) does not return a properly qualified
1647 vector element-type. */
1648 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1649 TREE_TYPE (vectype)));
1650
1651 if (CONSTANT_CLASS_P (sc))
1652 {
1653 tree *v = XALLOCAVEC (tree, nunits);
1654 for (i = 0; i < nunits; ++i)
1655 v[i] = sc;
1656 return build_vector (vectype, v);
1657 }
1658 else
1659 {
1660 vec<constructor_elt, va_gc> *v;
1661 vec_alloc (v, nunits);
1662 for (i = 0; i < nunits; ++i)
1663 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1664 return build_constructor (vectype, v);
1665 }
1666 }
1667
1668 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1669 are in the vec pointed to by VALS. */
1670 tree
1671 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1672 {
1673 tree c = make_node (CONSTRUCTOR);
1674 unsigned int i;
1675 constructor_elt *elt;
1676 bool constant_p = true;
1677 bool side_effects_p = false;
1678
1679 TREE_TYPE (c) = type;
1680 CONSTRUCTOR_ELTS (c) = vals;
1681
1682 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1683 {
1684 /* Mostly ctors will have elts that don't have side-effects, so
1685 the usual case is to scan all the elements. Hence a single
1686 loop for both const and side effects, rather than one loop
1687 each (with early outs). */
1688 if (!TREE_CONSTANT (elt->value))
1689 constant_p = false;
1690 if (TREE_SIDE_EFFECTS (elt->value))
1691 side_effects_p = true;
1692 }
1693
1694 TREE_SIDE_EFFECTS (c) = side_effects_p;
1695 TREE_CONSTANT (c) = constant_p;
1696
1697 return c;
1698 }
1699
1700 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1701 INDEX and VALUE. */
1702 tree
1703 build_constructor_single (tree type, tree index, tree value)
1704 {
1705 vec<constructor_elt, va_gc> *v;
1706 constructor_elt elt = {index, value};
1707
1708 vec_alloc (v, 1);
1709 v->quick_push (elt);
1710
1711 return build_constructor (type, v);
1712 }
1713
1714
1715 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1716 are in a list pointed to by VALS. */
1717 tree
1718 build_constructor_from_list (tree type, tree vals)
1719 {
1720 tree t;
1721 vec<constructor_elt, va_gc> *v = NULL;
1722
1723 if (vals)
1724 {
1725 vec_alloc (v, list_length (vals));
1726 for (t = vals; t; t = TREE_CHAIN (t))
1727 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1728 }
1729
1730 return build_constructor (type, v);
1731 }
1732
1733 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1734 of elements, provided as index/value pairs. */
1735
1736 tree
1737 build_constructor_va (tree type, int nelts, ...)
1738 {
1739 vec<constructor_elt, va_gc> *v = NULL;
1740 va_list p;
1741
1742 va_start (p, nelts);
1743 vec_alloc (v, nelts);
1744 while (nelts--)
1745 {
1746 tree index = va_arg (p, tree);
1747 tree value = va_arg (p, tree);
1748 CONSTRUCTOR_APPEND_ELT (v, index, value);
1749 }
1750 va_end (p);
1751 return build_constructor (type, v);
1752 }
1753
1754 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1755
1756 tree
1757 build_fixed (tree type, FIXED_VALUE_TYPE f)
1758 {
1759 tree v;
1760 FIXED_VALUE_TYPE *fp;
1761
1762 v = make_node (FIXED_CST);
1763 fp = ggc_alloc<fixed_value> ();
1764 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1765
1766 TREE_TYPE (v) = type;
1767 TREE_FIXED_CST_PTR (v) = fp;
1768 return v;
1769 }
1770
1771 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1772
1773 tree
1774 build_real (tree type, REAL_VALUE_TYPE d)
1775 {
1776 tree v;
1777 REAL_VALUE_TYPE *dp;
1778 int overflow = 0;
1779
1780 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1781 Consider doing it via real_convert now. */
1782
1783 v = make_node (REAL_CST);
1784 dp = ggc_alloc<real_value> ();
1785 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1786
1787 TREE_TYPE (v) = type;
1788 TREE_REAL_CST_PTR (v) = dp;
1789 TREE_OVERFLOW (v) = overflow;
1790 return v;
1791 }
1792
1793 /* Return a new REAL_CST node whose type is TYPE
1794 and whose value is the integer value of the INTEGER_CST node I. */
1795
1796 REAL_VALUE_TYPE
1797 real_value_from_int_cst (const_tree type, const_tree i)
1798 {
1799 REAL_VALUE_TYPE d;
1800
1801 /* Clear all bits of the real value type so that we can later do
1802 bitwise comparisons to see if two values are the same. */
1803 memset (&d, 0, sizeof d);
1804
1805 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, i,
1806 TYPE_SIGN (TREE_TYPE (i)));
1807 return d;
1808 }
1809
1810 /* Given a tree representing an integer constant I, return a tree
1811 representing the same value as a floating-point constant of type TYPE. */
1812
1813 tree
1814 build_real_from_int_cst (tree type, const_tree i)
1815 {
1816 tree v;
1817 int overflow = TREE_OVERFLOW (i);
1818
1819 v = build_real (type, real_value_from_int_cst (type, i));
1820
1821 TREE_OVERFLOW (v) |= overflow;
1822 return v;
1823 }
1824
1825 /* Return a newly constructed STRING_CST node whose value is
1826 the LEN characters at STR.
1827 Note that for a C string literal, LEN should include the trailing NUL.
1828 The TREE_TYPE is not initialized. */
1829
1830 tree
1831 build_string (int len, const char *str)
1832 {
1833 tree s;
1834 size_t length;
1835
1836 /* Do not waste bytes provided by padding of struct tree_string. */
1837 length = len + offsetof (struct tree_string, str) + 1;
1838
1839 record_node_allocation_statistics (STRING_CST, length);
1840
1841 s = (tree) ggc_internal_alloc (length);
1842
1843 memset (s, 0, sizeof (struct tree_typed));
1844 TREE_SET_CODE (s, STRING_CST);
1845 TREE_CONSTANT (s) = 1;
1846 TREE_STRING_LENGTH (s) = len;
1847 memcpy (s->string.str, str, len);
1848 s->string.str[len] = '\0';
1849
1850 return s;
1851 }
1852
1853 /* Return a newly constructed COMPLEX_CST node whose value is
1854 specified by the real and imaginary parts REAL and IMAG.
1855 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1856 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1857
1858 tree
1859 build_complex (tree type, tree real, tree imag)
1860 {
1861 tree t = make_node (COMPLEX_CST);
1862
1863 TREE_REALPART (t) = real;
1864 TREE_IMAGPART (t) = imag;
1865 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1866 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1867 return t;
1868 }
1869
1870 /* Return a constant of arithmetic type TYPE which is the
1871 multiplicative identity of the set TYPE. */
1872
1873 tree
1874 build_one_cst (tree type)
1875 {
1876 switch (TREE_CODE (type))
1877 {
1878 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1879 case POINTER_TYPE: case REFERENCE_TYPE:
1880 case OFFSET_TYPE:
1881 return build_int_cst (type, 1);
1882
1883 case REAL_TYPE:
1884 return build_real (type, dconst1);
1885
1886 case FIXED_POINT_TYPE:
1887 /* We can only generate 1 for accum types. */
1888 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1889 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
1890
1891 case VECTOR_TYPE:
1892 {
1893 tree scalar = build_one_cst (TREE_TYPE (type));
1894
1895 return build_vector_from_val (type, scalar);
1896 }
1897
1898 case COMPLEX_TYPE:
1899 return build_complex (type,
1900 build_one_cst (TREE_TYPE (type)),
1901 build_zero_cst (TREE_TYPE (type)));
1902
1903 default:
1904 gcc_unreachable ();
1905 }
1906 }
1907
1908 /* Return an integer of type TYPE containing all 1's in as much precision as
1909 it contains, or a complex or vector whose subparts are such integers. */
1910
1911 tree
1912 build_all_ones_cst (tree type)
1913 {
1914 if (TREE_CODE (type) == COMPLEX_TYPE)
1915 {
1916 tree scalar = build_all_ones_cst (TREE_TYPE (type));
1917 return build_complex (type, scalar, scalar);
1918 }
1919 else
1920 return build_minus_one_cst (type);
1921 }
1922
1923 /* Return a constant of arithmetic type TYPE which is the
1924 opposite of the multiplicative identity of the set TYPE. */
1925
1926 tree
1927 build_minus_one_cst (tree type)
1928 {
1929 switch (TREE_CODE (type))
1930 {
1931 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1932 case POINTER_TYPE: case REFERENCE_TYPE:
1933 case OFFSET_TYPE:
1934 return build_int_cst (type, -1);
1935
1936 case REAL_TYPE:
1937 return build_real (type, dconstm1);
1938
1939 case FIXED_POINT_TYPE:
1940 /* We can only generate 1 for accum types. */
1941 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1942 return build_fixed (type, fixed_from_double_int (double_int_minus_one,
1943 TYPE_MODE (type)));
1944
1945 case VECTOR_TYPE:
1946 {
1947 tree scalar = build_minus_one_cst (TREE_TYPE (type));
1948
1949 return build_vector_from_val (type, scalar);
1950 }
1951
1952 case COMPLEX_TYPE:
1953 return build_complex (type,
1954 build_minus_one_cst (TREE_TYPE (type)),
1955 build_zero_cst (TREE_TYPE (type)));
1956
1957 default:
1958 gcc_unreachable ();
1959 }
1960 }
1961
1962 /* Build 0 constant of type TYPE. This is used by constructor folding
1963 and thus the constant should be represented in memory by
1964 zero(es). */
1965
1966 tree
1967 build_zero_cst (tree type)
1968 {
1969 switch (TREE_CODE (type))
1970 {
1971 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1972 case POINTER_TYPE: case REFERENCE_TYPE:
1973 case OFFSET_TYPE: case NULLPTR_TYPE:
1974 return build_int_cst (type, 0);
1975
1976 case REAL_TYPE:
1977 return build_real (type, dconst0);
1978
1979 case FIXED_POINT_TYPE:
1980 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1981
1982 case VECTOR_TYPE:
1983 {
1984 tree scalar = build_zero_cst (TREE_TYPE (type));
1985
1986 return build_vector_from_val (type, scalar);
1987 }
1988
1989 case COMPLEX_TYPE:
1990 {
1991 tree zero = build_zero_cst (TREE_TYPE (type));
1992
1993 return build_complex (type, zero, zero);
1994 }
1995
1996 default:
1997 if (!AGGREGATE_TYPE_P (type))
1998 return fold_convert (type, integer_zero_node);
1999 return build_constructor (type, NULL);
2000 }
2001 }
2002
2003
2004 /* Build a BINFO with LEN language slots. */
2005
2006 tree
2007 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
2008 {
2009 tree t;
2010 size_t length = (offsetof (struct tree_binfo, base_binfos)
2011 + vec<tree, va_gc>::embedded_size (base_binfos));
2012
2013 record_node_allocation_statistics (TREE_BINFO, length);
2014
2015 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2016
2017 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2018
2019 TREE_SET_CODE (t, TREE_BINFO);
2020
2021 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2022
2023 return t;
2024 }
2025
2026 /* Create a CASE_LABEL_EXPR tree node and return it. */
2027
2028 tree
2029 build_case_label (tree low_value, tree high_value, tree label_decl)
2030 {
2031 tree t = make_node (CASE_LABEL_EXPR);
2032
2033 TREE_TYPE (t) = void_type_node;
2034 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2035
2036 CASE_LOW (t) = low_value;
2037 CASE_HIGH (t) = high_value;
2038 CASE_LABEL (t) = label_decl;
2039 CASE_CHAIN (t) = NULL_TREE;
2040
2041 return t;
2042 }
2043
2044 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2045 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2046 The latter determines the length of the HOST_WIDE_INT vector. */
2047
2048 tree
2049 make_int_cst_stat (int len, int ext_len MEM_STAT_DECL)
2050 {
2051 tree t;
2052 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2053 + sizeof (struct tree_int_cst));
2054
2055 gcc_assert (len);
2056 record_node_allocation_statistics (INTEGER_CST, length);
2057
2058 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2059
2060 TREE_SET_CODE (t, INTEGER_CST);
2061 TREE_INT_CST_NUNITS (t) = len;
2062 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2063 /* to_offset can only be applied to trees that are offset_int-sized
2064 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2065 must be exactly the precision of offset_int and so LEN is correct. */
2066 if (ext_len <= OFFSET_INT_ELTS)
2067 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2068 else
2069 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2070
2071 TREE_CONSTANT (t) = 1;
2072
2073 return t;
2074 }
2075
2076 /* Build a newly constructed TREE_VEC node of length LEN. */
2077
2078 tree
2079 make_tree_vec_stat (int len MEM_STAT_DECL)
2080 {
2081 tree t;
2082 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2083
2084 record_node_allocation_statistics (TREE_VEC, length);
2085
2086 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2087
2088 TREE_SET_CODE (t, TREE_VEC);
2089 TREE_VEC_LENGTH (t) = len;
2090
2091 return t;
2092 }
2093
2094 /* Grow a TREE_VEC node to new length LEN. */
2095
2096 tree
2097 grow_tree_vec_stat (tree v, int len MEM_STAT_DECL)
2098 {
2099 gcc_assert (TREE_CODE (v) == TREE_VEC);
2100
2101 int oldlen = TREE_VEC_LENGTH (v);
2102 gcc_assert (len > oldlen);
2103
2104 int oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2105 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2106
2107 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2108
2109 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2110
2111 TREE_VEC_LENGTH (v) = len;
2112
2113 return v;
2114 }
2115 \f
2116 /* Return 1 if EXPR is the integer constant zero or a complex constant
2117 of zero. */
2118
2119 int
2120 integer_zerop (const_tree expr)
2121 {
2122 STRIP_NOPS (expr);
2123
2124 switch (TREE_CODE (expr))
2125 {
2126 case INTEGER_CST:
2127 return wi::eq_p (expr, 0);
2128 case COMPLEX_CST:
2129 return (integer_zerop (TREE_REALPART (expr))
2130 && integer_zerop (TREE_IMAGPART (expr)));
2131 case VECTOR_CST:
2132 {
2133 unsigned i;
2134 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2135 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
2136 return false;
2137 return true;
2138 }
2139 default:
2140 return false;
2141 }
2142 }
2143
2144 /* Return 1 if EXPR is the integer constant one or the corresponding
2145 complex constant. */
2146
2147 int
2148 integer_onep (const_tree expr)
2149 {
2150 STRIP_NOPS (expr);
2151
2152 switch (TREE_CODE (expr))
2153 {
2154 case INTEGER_CST:
2155 return wi::eq_p (wi::to_widest (expr), 1);
2156 case COMPLEX_CST:
2157 return (integer_onep (TREE_REALPART (expr))
2158 && integer_zerop (TREE_IMAGPART (expr)));
2159 case VECTOR_CST:
2160 {
2161 unsigned i;
2162 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2163 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
2164 return false;
2165 return true;
2166 }
2167 default:
2168 return false;
2169 }
2170 }
2171
2172 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2173 it contains, or a complex or vector whose subparts are such integers. */
2174
2175 int
2176 integer_all_onesp (const_tree expr)
2177 {
2178 STRIP_NOPS (expr);
2179
2180 if (TREE_CODE (expr) == COMPLEX_CST
2181 && integer_all_onesp (TREE_REALPART (expr))
2182 && integer_all_onesp (TREE_IMAGPART (expr)))
2183 return 1;
2184
2185 else if (TREE_CODE (expr) == VECTOR_CST)
2186 {
2187 unsigned i;
2188 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2189 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
2190 return 0;
2191 return 1;
2192 }
2193
2194 else if (TREE_CODE (expr) != INTEGER_CST)
2195 return 0;
2196
2197 return wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED) == expr;
2198 }
2199
2200 /* Return 1 if EXPR is the integer constant minus one. */
2201
2202 int
2203 integer_minus_onep (const_tree expr)
2204 {
2205 STRIP_NOPS (expr);
2206
2207 if (TREE_CODE (expr) == COMPLEX_CST)
2208 return (integer_all_onesp (TREE_REALPART (expr))
2209 && integer_zerop (TREE_IMAGPART (expr)));
2210 else
2211 return integer_all_onesp (expr);
2212 }
2213
2214 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2215 one bit on). */
2216
2217 int
2218 integer_pow2p (const_tree expr)
2219 {
2220 STRIP_NOPS (expr);
2221
2222 if (TREE_CODE (expr) == COMPLEX_CST
2223 && integer_pow2p (TREE_REALPART (expr))
2224 && integer_zerop (TREE_IMAGPART (expr)))
2225 return 1;
2226
2227 if (TREE_CODE (expr) != INTEGER_CST)
2228 return 0;
2229
2230 return wi::popcount (expr) == 1;
2231 }
2232
2233 /* Return 1 if EXPR is an integer constant other than zero or a
2234 complex constant other than zero. */
2235
2236 int
2237 integer_nonzerop (const_tree expr)
2238 {
2239 STRIP_NOPS (expr);
2240
2241 return ((TREE_CODE (expr) == INTEGER_CST
2242 && !wi::eq_p (expr, 0))
2243 || (TREE_CODE (expr) == COMPLEX_CST
2244 && (integer_nonzerop (TREE_REALPART (expr))
2245 || integer_nonzerop (TREE_IMAGPART (expr)))));
2246 }
2247
2248 /* Return 1 if EXPR is the fixed-point constant zero. */
2249
2250 int
2251 fixed_zerop (const_tree expr)
2252 {
2253 return (TREE_CODE (expr) == FIXED_CST
2254 && TREE_FIXED_CST (expr).data.is_zero ());
2255 }
2256
2257 /* Return the power of two represented by a tree node known to be a
2258 power of two. */
2259
2260 int
2261 tree_log2 (const_tree expr)
2262 {
2263 STRIP_NOPS (expr);
2264
2265 if (TREE_CODE (expr) == COMPLEX_CST)
2266 return tree_log2 (TREE_REALPART (expr));
2267
2268 return wi::exact_log2 (expr);
2269 }
2270
2271 /* Similar, but return the largest integer Y such that 2 ** Y is less
2272 than or equal to EXPR. */
2273
2274 int
2275 tree_floor_log2 (const_tree expr)
2276 {
2277 STRIP_NOPS (expr);
2278
2279 if (TREE_CODE (expr) == COMPLEX_CST)
2280 return tree_log2 (TREE_REALPART (expr));
2281
2282 return wi::floor_log2 (expr);
2283 }
2284
2285 /* Return number of known trailing zero bits in EXPR, or, if the value of
2286 EXPR is known to be zero, the precision of it's type. */
2287
2288 unsigned int
2289 tree_ctz (const_tree expr)
2290 {
2291 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2292 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2293 return 0;
2294
2295 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2296 switch (TREE_CODE (expr))
2297 {
2298 case INTEGER_CST:
2299 ret1 = wi::ctz (expr);
2300 return MIN (ret1, prec);
2301 case SSA_NAME:
2302 ret1 = wi::ctz (get_nonzero_bits (expr));
2303 return MIN (ret1, prec);
2304 case PLUS_EXPR:
2305 case MINUS_EXPR:
2306 case BIT_IOR_EXPR:
2307 case BIT_XOR_EXPR:
2308 case MIN_EXPR:
2309 case MAX_EXPR:
2310 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2311 if (ret1 == 0)
2312 return ret1;
2313 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2314 return MIN (ret1, ret2);
2315 case POINTER_PLUS_EXPR:
2316 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2317 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2318 /* Second operand is sizetype, which could be in theory
2319 wider than pointer's precision. Make sure we never
2320 return more than prec. */
2321 ret2 = MIN (ret2, prec);
2322 return MIN (ret1, ret2);
2323 case BIT_AND_EXPR:
2324 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2325 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2326 return MAX (ret1, ret2);
2327 case MULT_EXPR:
2328 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2329 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2330 return MIN (ret1 + ret2, prec);
2331 case LSHIFT_EXPR:
2332 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2333 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2334 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2335 {
2336 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2337 return MIN (ret1 + ret2, prec);
2338 }
2339 return ret1;
2340 case RSHIFT_EXPR:
2341 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2342 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2343 {
2344 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2345 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2346 if (ret1 > ret2)
2347 return ret1 - ret2;
2348 }
2349 return 0;
2350 case TRUNC_DIV_EXPR:
2351 case CEIL_DIV_EXPR:
2352 case FLOOR_DIV_EXPR:
2353 case ROUND_DIV_EXPR:
2354 case EXACT_DIV_EXPR:
2355 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2356 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2357 {
2358 int l = tree_log2 (TREE_OPERAND (expr, 1));
2359 if (l >= 0)
2360 {
2361 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2362 ret2 = l;
2363 if (ret1 > ret2)
2364 return ret1 - ret2;
2365 }
2366 }
2367 return 0;
2368 CASE_CONVERT:
2369 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2370 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2371 ret1 = prec;
2372 return MIN (ret1, prec);
2373 case SAVE_EXPR:
2374 return tree_ctz (TREE_OPERAND (expr, 0));
2375 case COND_EXPR:
2376 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2377 if (ret1 == 0)
2378 return 0;
2379 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2380 return MIN (ret1, ret2);
2381 case COMPOUND_EXPR:
2382 return tree_ctz (TREE_OPERAND (expr, 1));
2383 case ADDR_EXPR:
2384 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2385 if (ret1 > BITS_PER_UNIT)
2386 {
2387 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2388 return MIN (ret1, prec);
2389 }
2390 return 0;
2391 default:
2392 return 0;
2393 }
2394 }
2395
2396 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2397 decimal float constants, so don't return 1 for them. */
2398
2399 int
2400 real_zerop (const_tree expr)
2401 {
2402 STRIP_NOPS (expr);
2403
2404 switch (TREE_CODE (expr))
2405 {
2406 case REAL_CST:
2407 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
2408 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2409 case COMPLEX_CST:
2410 return real_zerop (TREE_REALPART (expr))
2411 && real_zerop (TREE_IMAGPART (expr));
2412 case VECTOR_CST:
2413 {
2414 unsigned i;
2415 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2416 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2417 return false;
2418 return true;
2419 }
2420 default:
2421 return false;
2422 }
2423 }
2424
2425 /* Return 1 if EXPR is the real constant one in real or complex form.
2426 Trailing zeroes matter for decimal float constants, so don't return
2427 1 for them. */
2428
2429 int
2430 real_onep (const_tree expr)
2431 {
2432 STRIP_NOPS (expr);
2433
2434 switch (TREE_CODE (expr))
2435 {
2436 case REAL_CST:
2437 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2438 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2439 case COMPLEX_CST:
2440 return real_onep (TREE_REALPART (expr))
2441 && real_zerop (TREE_IMAGPART (expr));
2442 case VECTOR_CST:
2443 {
2444 unsigned i;
2445 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2446 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2447 return false;
2448 return true;
2449 }
2450 default:
2451 return false;
2452 }
2453 }
2454
2455 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2456 matter for decimal float constants, so don't return 1 for them. */
2457
2458 int
2459 real_minus_onep (const_tree expr)
2460 {
2461 STRIP_NOPS (expr);
2462
2463 switch (TREE_CODE (expr))
2464 {
2465 case REAL_CST:
2466 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2467 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2468 case COMPLEX_CST:
2469 return real_minus_onep (TREE_REALPART (expr))
2470 && real_zerop (TREE_IMAGPART (expr));
2471 case VECTOR_CST:
2472 {
2473 unsigned i;
2474 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2475 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2476 return false;
2477 return true;
2478 }
2479 default:
2480 return false;
2481 }
2482 }
2483
2484 /* Nonzero if EXP is a constant or a cast of a constant. */
2485
2486 int
2487 really_constant_p (const_tree exp)
2488 {
2489 /* This is not quite the same as STRIP_NOPS. It does more. */
2490 while (CONVERT_EXPR_P (exp)
2491 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2492 exp = TREE_OPERAND (exp, 0);
2493 return TREE_CONSTANT (exp);
2494 }
2495 \f
2496 /* Return first list element whose TREE_VALUE is ELEM.
2497 Return 0 if ELEM is not in LIST. */
2498
2499 tree
2500 value_member (tree elem, tree list)
2501 {
2502 while (list)
2503 {
2504 if (elem == TREE_VALUE (list))
2505 return list;
2506 list = TREE_CHAIN (list);
2507 }
2508 return NULL_TREE;
2509 }
2510
2511 /* Return first list element whose TREE_PURPOSE is ELEM.
2512 Return 0 if ELEM is not in LIST. */
2513
2514 tree
2515 purpose_member (const_tree elem, tree list)
2516 {
2517 while (list)
2518 {
2519 if (elem == TREE_PURPOSE (list))
2520 return list;
2521 list = TREE_CHAIN (list);
2522 }
2523 return NULL_TREE;
2524 }
2525
2526 /* Return true if ELEM is in V. */
2527
2528 bool
2529 vec_member (const_tree elem, vec<tree, va_gc> *v)
2530 {
2531 unsigned ix;
2532 tree t;
2533 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2534 if (elem == t)
2535 return true;
2536 return false;
2537 }
2538
2539 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2540 NULL_TREE. */
2541
2542 tree
2543 chain_index (int idx, tree chain)
2544 {
2545 for (; chain && idx > 0; --idx)
2546 chain = TREE_CHAIN (chain);
2547 return chain;
2548 }
2549
2550 /* Return nonzero if ELEM is part of the chain CHAIN. */
2551
2552 int
2553 chain_member (const_tree elem, const_tree chain)
2554 {
2555 while (chain)
2556 {
2557 if (elem == chain)
2558 return 1;
2559 chain = DECL_CHAIN (chain);
2560 }
2561
2562 return 0;
2563 }
2564
2565 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2566 We expect a null pointer to mark the end of the chain.
2567 This is the Lisp primitive `length'. */
2568
2569 int
2570 list_length (const_tree t)
2571 {
2572 const_tree p = t;
2573 #ifdef ENABLE_TREE_CHECKING
2574 const_tree q = t;
2575 #endif
2576 int len = 0;
2577
2578 while (p)
2579 {
2580 p = TREE_CHAIN (p);
2581 #ifdef ENABLE_TREE_CHECKING
2582 if (len % 2)
2583 q = TREE_CHAIN (q);
2584 gcc_assert (p != q);
2585 #endif
2586 len++;
2587 }
2588
2589 return len;
2590 }
2591
2592 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2593 UNION_TYPE TYPE, or NULL_TREE if none. */
2594
2595 tree
2596 first_field (const_tree type)
2597 {
2598 tree t = TYPE_FIELDS (type);
2599 while (t && TREE_CODE (t) != FIELD_DECL)
2600 t = TREE_CHAIN (t);
2601 return t;
2602 }
2603
2604 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2605 by modifying the last node in chain 1 to point to chain 2.
2606 This is the Lisp primitive `nconc'. */
2607
2608 tree
2609 chainon (tree op1, tree op2)
2610 {
2611 tree t1;
2612
2613 if (!op1)
2614 return op2;
2615 if (!op2)
2616 return op1;
2617
2618 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2619 continue;
2620 TREE_CHAIN (t1) = op2;
2621
2622 #ifdef ENABLE_TREE_CHECKING
2623 {
2624 tree t2;
2625 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2626 gcc_assert (t2 != t1);
2627 }
2628 #endif
2629
2630 return op1;
2631 }
2632
2633 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2634
2635 tree
2636 tree_last (tree chain)
2637 {
2638 tree next;
2639 if (chain)
2640 while ((next = TREE_CHAIN (chain)))
2641 chain = next;
2642 return chain;
2643 }
2644
2645 /* Reverse the order of elements in the chain T,
2646 and return the new head of the chain (old last element). */
2647
2648 tree
2649 nreverse (tree t)
2650 {
2651 tree prev = 0, decl, next;
2652 for (decl = t; decl; decl = next)
2653 {
2654 /* We shouldn't be using this function to reverse BLOCK chains; we
2655 have blocks_nreverse for that. */
2656 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2657 next = TREE_CHAIN (decl);
2658 TREE_CHAIN (decl) = prev;
2659 prev = decl;
2660 }
2661 return prev;
2662 }
2663 \f
2664 /* Return a newly created TREE_LIST node whose
2665 purpose and value fields are PARM and VALUE. */
2666
2667 tree
2668 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2669 {
2670 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2671 TREE_PURPOSE (t) = parm;
2672 TREE_VALUE (t) = value;
2673 return t;
2674 }
2675
2676 /* Build a chain of TREE_LIST nodes from a vector. */
2677
2678 tree
2679 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2680 {
2681 tree ret = NULL_TREE;
2682 tree *pp = &ret;
2683 unsigned int i;
2684 tree t;
2685 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2686 {
2687 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2688 pp = &TREE_CHAIN (*pp);
2689 }
2690 return ret;
2691 }
2692
2693 /* Return a newly created TREE_LIST node whose
2694 purpose and value fields are PURPOSE and VALUE
2695 and whose TREE_CHAIN is CHAIN. */
2696
2697 tree
2698 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2699 {
2700 tree node;
2701
2702 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2703 memset (node, 0, sizeof (struct tree_common));
2704
2705 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2706
2707 TREE_SET_CODE (node, TREE_LIST);
2708 TREE_CHAIN (node) = chain;
2709 TREE_PURPOSE (node) = purpose;
2710 TREE_VALUE (node) = value;
2711 return node;
2712 }
2713
2714 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2715 trees. */
2716
2717 vec<tree, va_gc> *
2718 ctor_to_vec (tree ctor)
2719 {
2720 vec<tree, va_gc> *vec;
2721 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2722 unsigned int ix;
2723 tree val;
2724
2725 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2726 vec->quick_push (val);
2727
2728 return vec;
2729 }
2730 \f
2731 /* Return the size nominally occupied by an object of type TYPE
2732 when it resides in memory. The value is measured in units of bytes,
2733 and its data type is that normally used for type sizes
2734 (which is the first type created by make_signed_type or
2735 make_unsigned_type). */
2736
2737 tree
2738 size_in_bytes (const_tree type)
2739 {
2740 tree t;
2741
2742 if (type == error_mark_node)
2743 return integer_zero_node;
2744
2745 type = TYPE_MAIN_VARIANT (type);
2746 t = TYPE_SIZE_UNIT (type);
2747
2748 if (t == 0)
2749 {
2750 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2751 return size_zero_node;
2752 }
2753
2754 return t;
2755 }
2756
2757 /* Return the size of TYPE (in bytes) as a wide integer
2758 or return -1 if the size can vary or is larger than an integer. */
2759
2760 HOST_WIDE_INT
2761 int_size_in_bytes (const_tree type)
2762 {
2763 tree t;
2764
2765 if (type == error_mark_node)
2766 return 0;
2767
2768 type = TYPE_MAIN_VARIANT (type);
2769 t = TYPE_SIZE_UNIT (type);
2770
2771 if (t && tree_fits_uhwi_p (t))
2772 return TREE_INT_CST_LOW (t);
2773 else
2774 return -1;
2775 }
2776
2777 /* Return the maximum size of TYPE (in bytes) as a wide integer
2778 or return -1 if the size can vary or is larger than an integer. */
2779
2780 HOST_WIDE_INT
2781 max_int_size_in_bytes (const_tree type)
2782 {
2783 HOST_WIDE_INT size = -1;
2784 tree size_tree;
2785
2786 /* If this is an array type, check for a possible MAX_SIZE attached. */
2787
2788 if (TREE_CODE (type) == ARRAY_TYPE)
2789 {
2790 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2791
2792 if (size_tree && tree_fits_uhwi_p (size_tree))
2793 size = tree_to_uhwi (size_tree);
2794 }
2795
2796 /* If we still haven't been able to get a size, see if the language
2797 can compute a maximum size. */
2798
2799 if (size == -1)
2800 {
2801 size_tree = lang_hooks.types.max_size (type);
2802
2803 if (size_tree && tree_fits_uhwi_p (size_tree))
2804 size = tree_to_uhwi (size_tree);
2805 }
2806
2807 return size;
2808 }
2809 \f
2810 /* Return the bit position of FIELD, in bits from the start of the record.
2811 This is a tree of type bitsizetype. */
2812
2813 tree
2814 bit_position (const_tree field)
2815 {
2816 return bit_from_pos (DECL_FIELD_OFFSET (field),
2817 DECL_FIELD_BIT_OFFSET (field));
2818 }
2819
2820 /* Likewise, but return as an integer. It must be representable in
2821 that way (since it could be a signed value, we don't have the
2822 option of returning -1 like int_size_in_byte can. */
2823
2824 HOST_WIDE_INT
2825 int_bit_position (const_tree field)
2826 {
2827 return tree_to_shwi (bit_position (field));
2828 }
2829 \f
2830 /* Return the byte position of FIELD, in bytes from the start of the record.
2831 This is a tree of type sizetype. */
2832
2833 tree
2834 byte_position (const_tree field)
2835 {
2836 return byte_from_pos (DECL_FIELD_OFFSET (field),
2837 DECL_FIELD_BIT_OFFSET (field));
2838 }
2839
2840 /* Likewise, but return as an integer. It must be representable in
2841 that way (since it could be a signed value, we don't have the
2842 option of returning -1 like int_size_in_byte can. */
2843
2844 HOST_WIDE_INT
2845 int_byte_position (const_tree field)
2846 {
2847 return tree_to_shwi (byte_position (field));
2848 }
2849 \f
2850 /* Return the strictest alignment, in bits, that T is known to have. */
2851
2852 unsigned int
2853 expr_align (const_tree t)
2854 {
2855 unsigned int align0, align1;
2856
2857 switch (TREE_CODE (t))
2858 {
2859 CASE_CONVERT: case NON_LVALUE_EXPR:
2860 /* If we have conversions, we know that the alignment of the
2861 object must meet each of the alignments of the types. */
2862 align0 = expr_align (TREE_OPERAND (t, 0));
2863 align1 = TYPE_ALIGN (TREE_TYPE (t));
2864 return MAX (align0, align1);
2865
2866 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2867 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2868 case CLEANUP_POINT_EXPR:
2869 /* These don't change the alignment of an object. */
2870 return expr_align (TREE_OPERAND (t, 0));
2871
2872 case COND_EXPR:
2873 /* The best we can do is say that the alignment is the least aligned
2874 of the two arms. */
2875 align0 = expr_align (TREE_OPERAND (t, 1));
2876 align1 = expr_align (TREE_OPERAND (t, 2));
2877 return MIN (align0, align1);
2878
2879 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2880 meaningfully, it's always 1. */
2881 case LABEL_DECL: case CONST_DECL:
2882 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2883 case FUNCTION_DECL:
2884 gcc_assert (DECL_ALIGN (t) != 0);
2885 return DECL_ALIGN (t);
2886
2887 default:
2888 break;
2889 }
2890
2891 /* Otherwise take the alignment from that of the type. */
2892 return TYPE_ALIGN (TREE_TYPE (t));
2893 }
2894 \f
2895 /* Return, as a tree node, the number of elements for TYPE (which is an
2896 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2897
2898 tree
2899 array_type_nelts (const_tree type)
2900 {
2901 tree index_type, min, max;
2902
2903 /* If they did it with unspecified bounds, then we should have already
2904 given an error about it before we got here. */
2905 if (! TYPE_DOMAIN (type))
2906 return error_mark_node;
2907
2908 index_type = TYPE_DOMAIN (type);
2909 min = TYPE_MIN_VALUE (index_type);
2910 max = TYPE_MAX_VALUE (index_type);
2911
2912 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2913 if (!max)
2914 return error_mark_node;
2915
2916 return (integer_zerop (min)
2917 ? max
2918 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2919 }
2920 \f
2921 /* If arg is static -- a reference to an object in static storage -- then
2922 return the object. This is not the same as the C meaning of `static'.
2923 If arg isn't static, return NULL. */
2924
2925 tree
2926 staticp (tree arg)
2927 {
2928 switch (TREE_CODE (arg))
2929 {
2930 case FUNCTION_DECL:
2931 /* Nested functions are static, even though taking their address will
2932 involve a trampoline as we unnest the nested function and create
2933 the trampoline on the tree level. */
2934 return arg;
2935
2936 case VAR_DECL:
2937 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2938 && ! DECL_THREAD_LOCAL_P (arg)
2939 && ! DECL_DLLIMPORT_P (arg)
2940 ? arg : NULL);
2941
2942 case CONST_DECL:
2943 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2944 ? arg : NULL);
2945
2946 case CONSTRUCTOR:
2947 return TREE_STATIC (arg) ? arg : NULL;
2948
2949 case LABEL_DECL:
2950 case STRING_CST:
2951 return arg;
2952
2953 case COMPONENT_REF:
2954 /* If the thing being referenced is not a field, then it is
2955 something language specific. */
2956 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2957
2958 /* If we are referencing a bitfield, we can't evaluate an
2959 ADDR_EXPR at compile time and so it isn't a constant. */
2960 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2961 return NULL;
2962
2963 return staticp (TREE_OPERAND (arg, 0));
2964
2965 case BIT_FIELD_REF:
2966 return NULL;
2967
2968 case INDIRECT_REF:
2969 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2970
2971 case ARRAY_REF:
2972 case ARRAY_RANGE_REF:
2973 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2974 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2975 return staticp (TREE_OPERAND (arg, 0));
2976 else
2977 return NULL;
2978
2979 case COMPOUND_LITERAL_EXPR:
2980 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2981
2982 default:
2983 return NULL;
2984 }
2985 }
2986
2987 \f
2988
2989
2990 /* Return whether OP is a DECL whose address is function-invariant. */
2991
2992 bool
2993 decl_address_invariant_p (const_tree op)
2994 {
2995 /* The conditions below are slightly less strict than the one in
2996 staticp. */
2997
2998 switch (TREE_CODE (op))
2999 {
3000 case PARM_DECL:
3001 case RESULT_DECL:
3002 case LABEL_DECL:
3003 case FUNCTION_DECL:
3004 return true;
3005
3006 case VAR_DECL:
3007 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3008 || DECL_THREAD_LOCAL_P (op)
3009 || DECL_CONTEXT (op) == current_function_decl
3010 || decl_function_context (op) == current_function_decl)
3011 return true;
3012 break;
3013
3014 case CONST_DECL:
3015 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3016 || decl_function_context (op) == current_function_decl)
3017 return true;
3018 break;
3019
3020 default:
3021 break;
3022 }
3023
3024 return false;
3025 }
3026
3027 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3028
3029 bool
3030 decl_address_ip_invariant_p (const_tree op)
3031 {
3032 /* The conditions below are slightly less strict than the one in
3033 staticp. */
3034
3035 switch (TREE_CODE (op))
3036 {
3037 case LABEL_DECL:
3038 case FUNCTION_DECL:
3039 case STRING_CST:
3040 return true;
3041
3042 case VAR_DECL:
3043 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3044 && !DECL_DLLIMPORT_P (op))
3045 || DECL_THREAD_LOCAL_P (op))
3046 return true;
3047 break;
3048
3049 case CONST_DECL:
3050 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3051 return true;
3052 break;
3053
3054 default:
3055 break;
3056 }
3057
3058 return false;
3059 }
3060
3061
3062 /* Return true if T is function-invariant (internal function, does
3063 not handle arithmetic; that's handled in skip_simple_arithmetic and
3064 tree_invariant_p). */
3065
3066 static bool tree_invariant_p (tree t);
3067
3068 static bool
3069 tree_invariant_p_1 (tree t)
3070 {
3071 tree op;
3072
3073 if (TREE_CONSTANT (t)
3074 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3075 return true;
3076
3077 switch (TREE_CODE (t))
3078 {
3079 case SAVE_EXPR:
3080 return true;
3081
3082 case ADDR_EXPR:
3083 op = TREE_OPERAND (t, 0);
3084 while (handled_component_p (op))
3085 {
3086 switch (TREE_CODE (op))
3087 {
3088 case ARRAY_REF:
3089 case ARRAY_RANGE_REF:
3090 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3091 || TREE_OPERAND (op, 2) != NULL_TREE
3092 || TREE_OPERAND (op, 3) != NULL_TREE)
3093 return false;
3094 break;
3095
3096 case COMPONENT_REF:
3097 if (TREE_OPERAND (op, 2) != NULL_TREE)
3098 return false;
3099 break;
3100
3101 default:;
3102 }
3103 op = TREE_OPERAND (op, 0);
3104 }
3105
3106 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3107
3108 default:
3109 break;
3110 }
3111
3112 return false;
3113 }
3114
3115 /* Return true if T is function-invariant. */
3116
3117 static bool
3118 tree_invariant_p (tree t)
3119 {
3120 tree inner = skip_simple_arithmetic (t);
3121 return tree_invariant_p_1 (inner);
3122 }
3123
3124 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3125 Do this to any expression which may be used in more than one place,
3126 but must be evaluated only once.
3127
3128 Normally, expand_expr would reevaluate the expression each time.
3129 Calling save_expr produces something that is evaluated and recorded
3130 the first time expand_expr is called on it. Subsequent calls to
3131 expand_expr just reuse the recorded value.
3132
3133 The call to expand_expr that generates code that actually computes
3134 the value is the first call *at compile time*. Subsequent calls
3135 *at compile time* generate code to use the saved value.
3136 This produces correct result provided that *at run time* control
3137 always flows through the insns made by the first expand_expr
3138 before reaching the other places where the save_expr was evaluated.
3139 You, the caller of save_expr, must make sure this is so.
3140
3141 Constants, and certain read-only nodes, are returned with no
3142 SAVE_EXPR because that is safe. Expressions containing placeholders
3143 are not touched; see tree.def for an explanation of what these
3144 are used for. */
3145
3146 tree
3147 save_expr (tree expr)
3148 {
3149 tree t = fold (expr);
3150 tree inner;
3151
3152 /* If the tree evaluates to a constant, then we don't want to hide that
3153 fact (i.e. this allows further folding, and direct checks for constants).
3154 However, a read-only object that has side effects cannot be bypassed.
3155 Since it is no problem to reevaluate literals, we just return the
3156 literal node. */
3157 inner = skip_simple_arithmetic (t);
3158 if (TREE_CODE (inner) == ERROR_MARK)
3159 return inner;
3160
3161 if (tree_invariant_p_1 (inner))
3162 return t;
3163
3164 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3165 it means that the size or offset of some field of an object depends on
3166 the value within another field.
3167
3168 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
3169 and some variable since it would then need to be both evaluated once and
3170 evaluated more than once. Front-ends must assure this case cannot
3171 happen by surrounding any such subexpressions in their own SAVE_EXPR
3172 and forcing evaluation at the proper time. */
3173 if (contains_placeholder_p (inner))
3174 return t;
3175
3176 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
3177 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
3178
3179 /* This expression might be placed ahead of a jump to ensure that the
3180 value was computed on both sides of the jump. So make sure it isn't
3181 eliminated as dead. */
3182 TREE_SIDE_EFFECTS (t) = 1;
3183 return t;
3184 }
3185
3186 /* Look inside EXPR into any simple arithmetic operations. Return the
3187 outermost non-arithmetic or non-invariant node. */
3188
3189 tree
3190 skip_simple_arithmetic (tree expr)
3191 {
3192 /* We don't care about whether this can be used as an lvalue in this
3193 context. */
3194 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3195 expr = TREE_OPERAND (expr, 0);
3196
3197 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3198 a constant, it will be more efficient to not make another SAVE_EXPR since
3199 it will allow better simplification and GCSE will be able to merge the
3200 computations if they actually occur. */
3201 while (true)
3202 {
3203 if (UNARY_CLASS_P (expr))
3204 expr = TREE_OPERAND (expr, 0);
3205 else if (BINARY_CLASS_P (expr))
3206 {
3207 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3208 expr = TREE_OPERAND (expr, 0);
3209 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3210 expr = TREE_OPERAND (expr, 1);
3211 else
3212 break;
3213 }
3214 else
3215 break;
3216 }
3217
3218 return expr;
3219 }
3220
3221 /* Look inside EXPR into simple arithmetic operations involving constants.
3222 Return the outermost non-arithmetic or non-constant node. */
3223
3224 tree
3225 skip_simple_constant_arithmetic (tree expr)
3226 {
3227 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3228 expr = TREE_OPERAND (expr, 0);
3229
3230 while (true)
3231 {
3232 if (UNARY_CLASS_P (expr))
3233 expr = TREE_OPERAND (expr, 0);
3234 else if (BINARY_CLASS_P (expr))
3235 {
3236 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3237 expr = TREE_OPERAND (expr, 0);
3238 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3239 expr = TREE_OPERAND (expr, 1);
3240 else
3241 break;
3242 }
3243 else
3244 break;
3245 }
3246
3247 return expr;
3248 }
3249
3250 /* Return which tree structure is used by T. */
3251
3252 enum tree_node_structure_enum
3253 tree_node_structure (const_tree t)
3254 {
3255 const enum tree_code code = TREE_CODE (t);
3256 return tree_node_structure_for_code (code);
3257 }
3258
3259 /* Set various status flags when building a CALL_EXPR object T. */
3260
3261 static void
3262 process_call_operands (tree t)
3263 {
3264 bool side_effects = TREE_SIDE_EFFECTS (t);
3265 bool read_only = false;
3266 int i = call_expr_flags (t);
3267
3268 /* Calls have side-effects, except those to const or pure functions. */
3269 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3270 side_effects = true;
3271 /* Propagate TREE_READONLY of arguments for const functions. */
3272 if (i & ECF_CONST)
3273 read_only = true;
3274
3275 if (!side_effects || read_only)
3276 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3277 {
3278 tree op = TREE_OPERAND (t, i);
3279 if (op && TREE_SIDE_EFFECTS (op))
3280 side_effects = true;
3281 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3282 read_only = false;
3283 }
3284
3285 TREE_SIDE_EFFECTS (t) = side_effects;
3286 TREE_READONLY (t) = read_only;
3287 }
3288 \f
3289 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3290 size or offset that depends on a field within a record. */
3291
3292 bool
3293 contains_placeholder_p (const_tree exp)
3294 {
3295 enum tree_code code;
3296
3297 if (!exp)
3298 return 0;
3299
3300 code = TREE_CODE (exp);
3301 if (code == PLACEHOLDER_EXPR)
3302 return 1;
3303
3304 switch (TREE_CODE_CLASS (code))
3305 {
3306 case tcc_reference:
3307 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3308 position computations since they will be converted into a
3309 WITH_RECORD_EXPR involving the reference, which will assume
3310 here will be valid. */
3311 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3312
3313 case tcc_exceptional:
3314 if (code == TREE_LIST)
3315 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3316 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3317 break;
3318
3319 case tcc_unary:
3320 case tcc_binary:
3321 case tcc_comparison:
3322 case tcc_expression:
3323 switch (code)
3324 {
3325 case COMPOUND_EXPR:
3326 /* Ignoring the first operand isn't quite right, but works best. */
3327 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3328
3329 case COND_EXPR:
3330 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3331 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3332 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3333
3334 case SAVE_EXPR:
3335 /* The save_expr function never wraps anything containing
3336 a PLACEHOLDER_EXPR. */
3337 return 0;
3338
3339 default:
3340 break;
3341 }
3342
3343 switch (TREE_CODE_LENGTH (code))
3344 {
3345 case 1:
3346 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3347 case 2:
3348 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3349 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3350 default:
3351 return 0;
3352 }
3353
3354 case tcc_vl_exp:
3355 switch (code)
3356 {
3357 case CALL_EXPR:
3358 {
3359 const_tree arg;
3360 const_call_expr_arg_iterator iter;
3361 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3362 if (CONTAINS_PLACEHOLDER_P (arg))
3363 return 1;
3364 return 0;
3365 }
3366 default:
3367 return 0;
3368 }
3369
3370 default:
3371 return 0;
3372 }
3373 return 0;
3374 }
3375
3376 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3377 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3378 field positions. */
3379
3380 static bool
3381 type_contains_placeholder_1 (const_tree type)
3382 {
3383 /* If the size contains a placeholder or the parent type (component type in
3384 the case of arrays) type involves a placeholder, this type does. */
3385 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3386 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3387 || (!POINTER_TYPE_P (type)
3388 && TREE_TYPE (type)
3389 && type_contains_placeholder_p (TREE_TYPE (type))))
3390 return true;
3391
3392 /* Now do type-specific checks. Note that the last part of the check above
3393 greatly limits what we have to do below. */
3394 switch (TREE_CODE (type))
3395 {
3396 case VOID_TYPE:
3397 case COMPLEX_TYPE:
3398 case ENUMERAL_TYPE:
3399 case BOOLEAN_TYPE:
3400 case POINTER_TYPE:
3401 case OFFSET_TYPE:
3402 case REFERENCE_TYPE:
3403 case METHOD_TYPE:
3404 case FUNCTION_TYPE:
3405 case VECTOR_TYPE:
3406 case NULLPTR_TYPE:
3407 return false;
3408
3409 case INTEGER_TYPE:
3410 case REAL_TYPE:
3411 case FIXED_POINT_TYPE:
3412 /* Here we just check the bounds. */
3413 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3414 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3415
3416 case ARRAY_TYPE:
3417 /* We have already checked the component type above, so just check the
3418 domain type. */
3419 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3420
3421 case RECORD_TYPE:
3422 case UNION_TYPE:
3423 case QUAL_UNION_TYPE:
3424 {
3425 tree field;
3426
3427 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3428 if (TREE_CODE (field) == FIELD_DECL
3429 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3430 || (TREE_CODE (type) == QUAL_UNION_TYPE
3431 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3432 || type_contains_placeholder_p (TREE_TYPE (field))))
3433 return true;
3434
3435 return false;
3436 }
3437
3438 default:
3439 gcc_unreachable ();
3440 }
3441 }
3442
3443 /* Wrapper around above function used to cache its result. */
3444
3445 bool
3446 type_contains_placeholder_p (tree type)
3447 {
3448 bool result;
3449
3450 /* If the contains_placeholder_bits field has been initialized,
3451 then we know the answer. */
3452 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3453 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3454
3455 /* Indicate that we've seen this type node, and the answer is false.
3456 This is what we want to return if we run into recursion via fields. */
3457 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3458
3459 /* Compute the real value. */
3460 result = type_contains_placeholder_1 (type);
3461
3462 /* Store the real value. */
3463 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3464
3465 return result;
3466 }
3467 \f
3468 /* Push tree EXP onto vector QUEUE if it is not already present. */
3469
3470 static void
3471 push_without_duplicates (tree exp, vec<tree> *queue)
3472 {
3473 unsigned int i;
3474 tree iter;
3475
3476 FOR_EACH_VEC_ELT (*queue, i, iter)
3477 if (simple_cst_equal (iter, exp) == 1)
3478 break;
3479
3480 if (!iter)
3481 queue->safe_push (exp);
3482 }
3483
3484 /* Given a tree EXP, find all occurrences of references to fields
3485 in a PLACEHOLDER_EXPR and place them in vector REFS without
3486 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3487 we assume here that EXP contains only arithmetic expressions
3488 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3489 argument list. */
3490
3491 void
3492 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3493 {
3494 enum tree_code code = TREE_CODE (exp);
3495 tree inner;
3496 int i;
3497
3498 /* We handle TREE_LIST and COMPONENT_REF separately. */
3499 if (code == TREE_LIST)
3500 {
3501 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3502 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3503 }
3504 else if (code == COMPONENT_REF)
3505 {
3506 for (inner = TREE_OPERAND (exp, 0);
3507 REFERENCE_CLASS_P (inner);
3508 inner = TREE_OPERAND (inner, 0))
3509 ;
3510
3511 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3512 push_without_duplicates (exp, refs);
3513 else
3514 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3515 }
3516 else
3517 switch (TREE_CODE_CLASS (code))
3518 {
3519 case tcc_constant:
3520 break;
3521
3522 case tcc_declaration:
3523 /* Variables allocated to static storage can stay. */
3524 if (!TREE_STATIC (exp))
3525 push_without_duplicates (exp, refs);
3526 break;
3527
3528 case tcc_expression:
3529 /* This is the pattern built in ada/make_aligning_type. */
3530 if (code == ADDR_EXPR
3531 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3532 {
3533 push_without_duplicates (exp, refs);
3534 break;
3535 }
3536
3537 /* Fall through... */
3538
3539 case tcc_exceptional:
3540 case tcc_unary:
3541 case tcc_binary:
3542 case tcc_comparison:
3543 case tcc_reference:
3544 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3545 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3546 break;
3547
3548 case tcc_vl_exp:
3549 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3550 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3551 break;
3552
3553 default:
3554 gcc_unreachable ();
3555 }
3556 }
3557
3558 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3559 return a tree with all occurrences of references to F in a
3560 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3561 CONST_DECLs. Note that we assume here that EXP contains only
3562 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3563 occurring only in their argument list. */
3564
3565 tree
3566 substitute_in_expr (tree exp, tree f, tree r)
3567 {
3568 enum tree_code code = TREE_CODE (exp);
3569 tree op0, op1, op2, op3;
3570 tree new_tree;
3571
3572 /* We handle TREE_LIST and COMPONENT_REF separately. */
3573 if (code == TREE_LIST)
3574 {
3575 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3576 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3577 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3578 return exp;
3579
3580 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3581 }
3582 else if (code == COMPONENT_REF)
3583 {
3584 tree inner;
3585
3586 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3587 and it is the right field, replace it with R. */
3588 for (inner = TREE_OPERAND (exp, 0);
3589 REFERENCE_CLASS_P (inner);
3590 inner = TREE_OPERAND (inner, 0))
3591 ;
3592
3593 /* The field. */
3594 op1 = TREE_OPERAND (exp, 1);
3595
3596 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3597 return r;
3598
3599 /* If this expression hasn't been completed let, leave it alone. */
3600 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3601 return exp;
3602
3603 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3604 if (op0 == TREE_OPERAND (exp, 0))
3605 return exp;
3606
3607 new_tree
3608 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3609 }
3610 else
3611 switch (TREE_CODE_CLASS (code))
3612 {
3613 case tcc_constant:
3614 return exp;
3615
3616 case tcc_declaration:
3617 if (exp == f)
3618 return r;
3619 else
3620 return exp;
3621
3622 case tcc_expression:
3623 if (exp == f)
3624 return r;
3625
3626 /* Fall through... */
3627
3628 case tcc_exceptional:
3629 case tcc_unary:
3630 case tcc_binary:
3631 case tcc_comparison:
3632 case tcc_reference:
3633 switch (TREE_CODE_LENGTH (code))
3634 {
3635 case 0:
3636 return exp;
3637
3638 case 1:
3639 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3640 if (op0 == TREE_OPERAND (exp, 0))
3641 return exp;
3642
3643 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3644 break;
3645
3646 case 2:
3647 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3648 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3649
3650 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3651 return exp;
3652
3653 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3654 break;
3655
3656 case 3:
3657 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3658 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3659 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3660
3661 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3662 && op2 == TREE_OPERAND (exp, 2))
3663 return exp;
3664
3665 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3666 break;
3667
3668 case 4:
3669 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3670 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3671 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3672 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3673
3674 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3675 && op2 == TREE_OPERAND (exp, 2)
3676 && op3 == TREE_OPERAND (exp, 3))
3677 return exp;
3678
3679 new_tree
3680 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3681 break;
3682
3683 default:
3684 gcc_unreachable ();
3685 }
3686 break;
3687
3688 case tcc_vl_exp:
3689 {
3690 int i;
3691
3692 new_tree = NULL_TREE;
3693
3694 /* If we are trying to replace F with a constant, inline back
3695 functions which do nothing else than computing a value from
3696 the arguments they are passed. This makes it possible to
3697 fold partially or entirely the replacement expression. */
3698 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3699 {
3700 tree t = maybe_inline_call_in_expr (exp);
3701 if (t)
3702 return SUBSTITUTE_IN_EXPR (t, f, r);
3703 }
3704
3705 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3706 {
3707 tree op = TREE_OPERAND (exp, i);
3708 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3709 if (new_op != op)
3710 {
3711 if (!new_tree)
3712 new_tree = copy_node (exp);
3713 TREE_OPERAND (new_tree, i) = new_op;
3714 }
3715 }
3716
3717 if (new_tree)
3718 {
3719 new_tree = fold (new_tree);
3720 if (TREE_CODE (new_tree) == CALL_EXPR)
3721 process_call_operands (new_tree);
3722 }
3723 else
3724 return exp;
3725 }
3726 break;
3727
3728 default:
3729 gcc_unreachable ();
3730 }
3731
3732 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3733
3734 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3735 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3736
3737 return new_tree;
3738 }
3739
3740 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3741 for it within OBJ, a tree that is an object or a chain of references. */
3742
3743 tree
3744 substitute_placeholder_in_expr (tree exp, tree obj)
3745 {
3746 enum tree_code code = TREE_CODE (exp);
3747 tree op0, op1, op2, op3;
3748 tree new_tree;
3749
3750 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3751 in the chain of OBJ. */
3752 if (code == PLACEHOLDER_EXPR)
3753 {
3754 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3755 tree elt;
3756
3757 for (elt = obj; elt != 0;
3758 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3759 || TREE_CODE (elt) == COND_EXPR)
3760 ? TREE_OPERAND (elt, 1)
3761 : (REFERENCE_CLASS_P (elt)
3762 || UNARY_CLASS_P (elt)
3763 || BINARY_CLASS_P (elt)
3764 || VL_EXP_CLASS_P (elt)
3765 || EXPRESSION_CLASS_P (elt))
3766 ? TREE_OPERAND (elt, 0) : 0))
3767 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3768 return elt;
3769
3770 for (elt = obj; elt != 0;
3771 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3772 || TREE_CODE (elt) == COND_EXPR)
3773 ? TREE_OPERAND (elt, 1)
3774 : (REFERENCE_CLASS_P (elt)
3775 || UNARY_CLASS_P (elt)
3776 || BINARY_CLASS_P (elt)
3777 || VL_EXP_CLASS_P (elt)
3778 || EXPRESSION_CLASS_P (elt))
3779 ? TREE_OPERAND (elt, 0) : 0))
3780 if (POINTER_TYPE_P (TREE_TYPE (elt))
3781 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3782 == need_type))
3783 return fold_build1 (INDIRECT_REF, need_type, elt);
3784
3785 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3786 survives until RTL generation, there will be an error. */
3787 return exp;
3788 }
3789
3790 /* TREE_LIST is special because we need to look at TREE_VALUE
3791 and TREE_CHAIN, not TREE_OPERANDS. */
3792 else if (code == TREE_LIST)
3793 {
3794 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3795 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3796 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3797 return exp;
3798
3799 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3800 }
3801 else
3802 switch (TREE_CODE_CLASS (code))
3803 {
3804 case tcc_constant:
3805 case tcc_declaration:
3806 return exp;
3807
3808 case tcc_exceptional:
3809 case tcc_unary:
3810 case tcc_binary:
3811 case tcc_comparison:
3812 case tcc_expression:
3813 case tcc_reference:
3814 case tcc_statement:
3815 switch (TREE_CODE_LENGTH (code))
3816 {
3817 case 0:
3818 return exp;
3819
3820 case 1:
3821 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3822 if (op0 == TREE_OPERAND (exp, 0))
3823 return exp;
3824
3825 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3826 break;
3827
3828 case 2:
3829 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3830 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3831
3832 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3833 return exp;
3834
3835 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3836 break;
3837
3838 case 3:
3839 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3840 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3841 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3842
3843 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3844 && op2 == TREE_OPERAND (exp, 2))
3845 return exp;
3846
3847 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3848 break;
3849
3850 case 4:
3851 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3852 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3853 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3854 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3855
3856 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3857 && op2 == TREE_OPERAND (exp, 2)
3858 && op3 == TREE_OPERAND (exp, 3))
3859 return exp;
3860
3861 new_tree
3862 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3863 break;
3864
3865 default:
3866 gcc_unreachable ();
3867 }
3868 break;
3869
3870 case tcc_vl_exp:
3871 {
3872 int i;
3873
3874 new_tree = NULL_TREE;
3875
3876 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3877 {
3878 tree op = TREE_OPERAND (exp, i);
3879 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3880 if (new_op != op)
3881 {
3882 if (!new_tree)
3883 new_tree = copy_node (exp);
3884 TREE_OPERAND (new_tree, i) = new_op;
3885 }
3886 }
3887
3888 if (new_tree)
3889 {
3890 new_tree = fold (new_tree);
3891 if (TREE_CODE (new_tree) == CALL_EXPR)
3892 process_call_operands (new_tree);
3893 }
3894 else
3895 return exp;
3896 }
3897 break;
3898
3899 default:
3900 gcc_unreachable ();
3901 }
3902
3903 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3904
3905 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3906 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3907
3908 return new_tree;
3909 }
3910 \f
3911
3912 /* Subroutine of stabilize_reference; this is called for subtrees of
3913 references. Any expression with side-effects must be put in a SAVE_EXPR
3914 to ensure that it is only evaluated once.
3915
3916 We don't put SAVE_EXPR nodes around everything, because assigning very
3917 simple expressions to temporaries causes us to miss good opportunities
3918 for optimizations. Among other things, the opportunity to fold in the
3919 addition of a constant into an addressing mode often gets lost, e.g.
3920 "y[i+1] += x;". In general, we take the approach that we should not make
3921 an assignment unless we are forced into it - i.e., that any non-side effect
3922 operator should be allowed, and that cse should take care of coalescing
3923 multiple utterances of the same expression should that prove fruitful. */
3924
3925 static tree
3926 stabilize_reference_1 (tree e)
3927 {
3928 tree result;
3929 enum tree_code code = TREE_CODE (e);
3930
3931 /* We cannot ignore const expressions because it might be a reference
3932 to a const array but whose index contains side-effects. But we can
3933 ignore things that are actual constant or that already have been
3934 handled by this function. */
3935
3936 if (tree_invariant_p (e))
3937 return e;
3938
3939 switch (TREE_CODE_CLASS (code))
3940 {
3941 case tcc_exceptional:
3942 case tcc_type:
3943 case tcc_declaration:
3944 case tcc_comparison:
3945 case tcc_statement:
3946 case tcc_expression:
3947 case tcc_reference:
3948 case tcc_vl_exp:
3949 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3950 so that it will only be evaluated once. */
3951 /* The reference (r) and comparison (<) classes could be handled as
3952 below, but it is generally faster to only evaluate them once. */
3953 if (TREE_SIDE_EFFECTS (e))
3954 return save_expr (e);
3955 return e;
3956
3957 case tcc_constant:
3958 /* Constants need no processing. In fact, we should never reach
3959 here. */
3960 return e;
3961
3962 case tcc_binary:
3963 /* Division is slow and tends to be compiled with jumps,
3964 especially the division by powers of 2 that is often
3965 found inside of an array reference. So do it just once. */
3966 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3967 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3968 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3969 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3970 return save_expr (e);
3971 /* Recursively stabilize each operand. */
3972 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3973 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3974 break;
3975
3976 case tcc_unary:
3977 /* Recursively stabilize each operand. */
3978 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3979 break;
3980
3981 default:
3982 gcc_unreachable ();
3983 }
3984
3985 TREE_TYPE (result) = TREE_TYPE (e);
3986 TREE_READONLY (result) = TREE_READONLY (e);
3987 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3988 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3989
3990 return result;
3991 }
3992
3993 /* Stabilize a reference so that we can use it any number of times
3994 without causing its operands to be evaluated more than once.
3995 Returns the stabilized reference. This works by means of save_expr,
3996 so see the caveats in the comments about save_expr.
3997
3998 Also allows conversion expressions whose operands are references.
3999 Any other kind of expression is returned unchanged. */
4000
4001 tree
4002 stabilize_reference (tree ref)
4003 {
4004 tree result;
4005 enum tree_code code = TREE_CODE (ref);
4006
4007 switch (code)
4008 {
4009 case VAR_DECL:
4010 case PARM_DECL:
4011 case RESULT_DECL:
4012 /* No action is needed in this case. */
4013 return ref;
4014
4015 CASE_CONVERT:
4016 case FLOAT_EXPR:
4017 case FIX_TRUNC_EXPR:
4018 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4019 break;
4020
4021 case INDIRECT_REF:
4022 result = build_nt (INDIRECT_REF,
4023 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4024 break;
4025
4026 case COMPONENT_REF:
4027 result = build_nt (COMPONENT_REF,
4028 stabilize_reference (TREE_OPERAND (ref, 0)),
4029 TREE_OPERAND (ref, 1), NULL_TREE);
4030 break;
4031
4032 case BIT_FIELD_REF:
4033 result = build_nt (BIT_FIELD_REF,
4034 stabilize_reference (TREE_OPERAND (ref, 0)),
4035 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4036 break;
4037
4038 case ARRAY_REF:
4039 result = build_nt (ARRAY_REF,
4040 stabilize_reference (TREE_OPERAND (ref, 0)),
4041 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4042 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4043 break;
4044
4045 case ARRAY_RANGE_REF:
4046 result = build_nt (ARRAY_RANGE_REF,
4047 stabilize_reference (TREE_OPERAND (ref, 0)),
4048 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4049 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4050 break;
4051
4052 case COMPOUND_EXPR:
4053 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4054 it wouldn't be ignored. This matters when dealing with
4055 volatiles. */
4056 return stabilize_reference_1 (ref);
4057
4058 /* If arg isn't a kind of lvalue we recognize, make no change.
4059 Caller should recognize the error for an invalid lvalue. */
4060 default:
4061 return ref;
4062
4063 case ERROR_MARK:
4064 return error_mark_node;
4065 }
4066
4067 TREE_TYPE (result) = TREE_TYPE (ref);
4068 TREE_READONLY (result) = TREE_READONLY (ref);
4069 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4070 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4071
4072 return result;
4073 }
4074 \f
4075 /* Low-level constructors for expressions. */
4076
4077 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4078 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4079
4080 void
4081 recompute_tree_invariant_for_addr_expr (tree t)
4082 {
4083 tree node;
4084 bool tc = true, se = false;
4085
4086 /* We started out assuming this address is both invariant and constant, but
4087 does not have side effects. Now go down any handled components and see if
4088 any of them involve offsets that are either non-constant or non-invariant.
4089 Also check for side-effects.
4090
4091 ??? Note that this code makes no attempt to deal with the case where
4092 taking the address of something causes a copy due to misalignment. */
4093
4094 #define UPDATE_FLAGS(NODE) \
4095 do { tree _node = (NODE); \
4096 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4097 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4098
4099 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4100 node = TREE_OPERAND (node, 0))
4101 {
4102 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4103 array reference (probably made temporarily by the G++ front end),
4104 so ignore all the operands. */
4105 if ((TREE_CODE (node) == ARRAY_REF
4106 || TREE_CODE (node) == ARRAY_RANGE_REF)
4107 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4108 {
4109 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4110 if (TREE_OPERAND (node, 2))
4111 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4112 if (TREE_OPERAND (node, 3))
4113 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4114 }
4115 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4116 FIELD_DECL, apparently. The G++ front end can put something else
4117 there, at least temporarily. */
4118 else if (TREE_CODE (node) == COMPONENT_REF
4119 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4120 {
4121 if (TREE_OPERAND (node, 2))
4122 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4123 }
4124 }
4125
4126 node = lang_hooks.expr_to_decl (node, &tc, &se);
4127
4128 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4129 the address, since &(*a)->b is a form of addition. If it's a constant, the
4130 address is constant too. If it's a decl, its address is constant if the
4131 decl is static. Everything else is not constant and, furthermore,
4132 taking the address of a volatile variable is not volatile. */
4133 if (TREE_CODE (node) == INDIRECT_REF
4134 || TREE_CODE (node) == MEM_REF)
4135 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4136 else if (CONSTANT_CLASS_P (node))
4137 ;
4138 else if (DECL_P (node))
4139 tc &= (staticp (node) != NULL_TREE);
4140 else
4141 {
4142 tc = false;
4143 se |= TREE_SIDE_EFFECTS (node);
4144 }
4145
4146
4147 TREE_CONSTANT (t) = tc;
4148 TREE_SIDE_EFFECTS (t) = se;
4149 #undef UPDATE_FLAGS
4150 }
4151
4152 /* Build an expression of code CODE, data type TYPE, and operands as
4153 specified. Expressions and reference nodes can be created this way.
4154 Constants, decls, types and misc nodes cannot be.
4155
4156 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4157 enough for all extant tree codes. */
4158
4159 tree
4160 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
4161 {
4162 tree t;
4163
4164 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4165
4166 t = make_node_stat (code PASS_MEM_STAT);
4167 TREE_TYPE (t) = tt;
4168
4169 return t;
4170 }
4171
4172 tree
4173 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4174 {
4175 int length = sizeof (struct tree_exp);
4176 tree t;
4177
4178 record_node_allocation_statistics (code, length);
4179
4180 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4181
4182 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4183
4184 memset (t, 0, sizeof (struct tree_common));
4185
4186 TREE_SET_CODE (t, code);
4187
4188 TREE_TYPE (t) = type;
4189 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4190 TREE_OPERAND (t, 0) = node;
4191 if (node && !TYPE_P (node))
4192 {
4193 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4194 TREE_READONLY (t) = TREE_READONLY (node);
4195 }
4196
4197 if (TREE_CODE_CLASS (code) == tcc_statement)
4198 TREE_SIDE_EFFECTS (t) = 1;
4199 else switch (code)
4200 {
4201 case VA_ARG_EXPR:
4202 /* All of these have side-effects, no matter what their
4203 operands are. */
4204 TREE_SIDE_EFFECTS (t) = 1;
4205 TREE_READONLY (t) = 0;
4206 break;
4207
4208 case INDIRECT_REF:
4209 /* Whether a dereference is readonly has nothing to do with whether
4210 its operand is readonly. */
4211 TREE_READONLY (t) = 0;
4212 break;
4213
4214 case ADDR_EXPR:
4215 if (node)
4216 recompute_tree_invariant_for_addr_expr (t);
4217 break;
4218
4219 default:
4220 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4221 && node && !TYPE_P (node)
4222 && TREE_CONSTANT (node))
4223 TREE_CONSTANT (t) = 1;
4224 if (TREE_CODE_CLASS (code) == tcc_reference
4225 && node && TREE_THIS_VOLATILE (node))
4226 TREE_THIS_VOLATILE (t) = 1;
4227 break;
4228 }
4229
4230 return t;
4231 }
4232
4233 #define PROCESS_ARG(N) \
4234 do { \
4235 TREE_OPERAND (t, N) = arg##N; \
4236 if (arg##N &&!TYPE_P (arg##N)) \
4237 { \
4238 if (TREE_SIDE_EFFECTS (arg##N)) \
4239 side_effects = 1; \
4240 if (!TREE_READONLY (arg##N) \
4241 && !CONSTANT_CLASS_P (arg##N)) \
4242 (void) (read_only = 0); \
4243 if (!TREE_CONSTANT (arg##N)) \
4244 (void) (constant = 0); \
4245 } \
4246 } while (0)
4247
4248 tree
4249 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4250 {
4251 bool constant, read_only, side_effects;
4252 tree t;
4253
4254 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4255
4256 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4257 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4258 /* When sizetype precision doesn't match that of pointers
4259 we need to be able to build explicit extensions or truncations
4260 of the offset argument. */
4261 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4262 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4263 && TREE_CODE (arg1) == INTEGER_CST);
4264
4265 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4266 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4267 && ptrofftype_p (TREE_TYPE (arg1)));
4268
4269 t = make_node_stat (code PASS_MEM_STAT);
4270 TREE_TYPE (t) = tt;
4271
4272 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4273 result based on those same flags for the arguments. But if the
4274 arguments aren't really even `tree' expressions, we shouldn't be trying
4275 to do this. */
4276
4277 /* Expressions without side effects may be constant if their
4278 arguments are as well. */
4279 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4280 || TREE_CODE_CLASS (code) == tcc_binary);
4281 read_only = 1;
4282 side_effects = TREE_SIDE_EFFECTS (t);
4283
4284 PROCESS_ARG (0);
4285 PROCESS_ARG (1);
4286
4287 TREE_READONLY (t) = read_only;
4288 TREE_CONSTANT (t) = constant;
4289 TREE_SIDE_EFFECTS (t) = side_effects;
4290 TREE_THIS_VOLATILE (t)
4291 = (TREE_CODE_CLASS (code) == tcc_reference
4292 && arg0 && TREE_THIS_VOLATILE (arg0));
4293
4294 return t;
4295 }
4296
4297
4298 tree
4299 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4300 tree arg2 MEM_STAT_DECL)
4301 {
4302 bool constant, read_only, side_effects;
4303 tree t;
4304
4305 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4306 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4307
4308 t = make_node_stat (code PASS_MEM_STAT);
4309 TREE_TYPE (t) = tt;
4310
4311 read_only = 1;
4312
4313 /* As a special exception, if COND_EXPR has NULL branches, we
4314 assume that it is a gimple statement and always consider
4315 it to have side effects. */
4316 if (code == COND_EXPR
4317 && tt == void_type_node
4318 && arg1 == NULL_TREE
4319 && arg2 == NULL_TREE)
4320 side_effects = true;
4321 else
4322 side_effects = TREE_SIDE_EFFECTS (t);
4323
4324 PROCESS_ARG (0);
4325 PROCESS_ARG (1);
4326 PROCESS_ARG (2);
4327
4328 if (code == COND_EXPR)
4329 TREE_READONLY (t) = read_only;
4330
4331 TREE_SIDE_EFFECTS (t) = side_effects;
4332 TREE_THIS_VOLATILE (t)
4333 = (TREE_CODE_CLASS (code) == tcc_reference
4334 && arg0 && TREE_THIS_VOLATILE (arg0));
4335
4336 return t;
4337 }
4338
4339 tree
4340 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4341 tree arg2, tree arg3 MEM_STAT_DECL)
4342 {
4343 bool constant, read_only, side_effects;
4344 tree t;
4345
4346 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4347
4348 t = make_node_stat (code PASS_MEM_STAT);
4349 TREE_TYPE (t) = tt;
4350
4351 side_effects = TREE_SIDE_EFFECTS (t);
4352
4353 PROCESS_ARG (0);
4354 PROCESS_ARG (1);
4355 PROCESS_ARG (2);
4356 PROCESS_ARG (3);
4357
4358 TREE_SIDE_EFFECTS (t) = side_effects;
4359 TREE_THIS_VOLATILE (t)
4360 = (TREE_CODE_CLASS (code) == tcc_reference
4361 && arg0 && TREE_THIS_VOLATILE (arg0));
4362
4363 return t;
4364 }
4365
4366 tree
4367 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4368 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4369 {
4370 bool constant, read_only, side_effects;
4371 tree t;
4372
4373 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4374
4375 t = make_node_stat (code PASS_MEM_STAT);
4376 TREE_TYPE (t) = tt;
4377
4378 side_effects = TREE_SIDE_EFFECTS (t);
4379
4380 PROCESS_ARG (0);
4381 PROCESS_ARG (1);
4382 PROCESS_ARG (2);
4383 PROCESS_ARG (3);
4384 PROCESS_ARG (4);
4385
4386 TREE_SIDE_EFFECTS (t) = side_effects;
4387 TREE_THIS_VOLATILE (t)
4388 = (TREE_CODE_CLASS (code) == tcc_reference
4389 && arg0 && TREE_THIS_VOLATILE (arg0));
4390
4391 return t;
4392 }
4393
4394 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4395 on the pointer PTR. */
4396
4397 tree
4398 build_simple_mem_ref_loc (location_t loc, tree ptr)
4399 {
4400 HOST_WIDE_INT offset = 0;
4401 tree ptype = TREE_TYPE (ptr);
4402 tree tem;
4403 /* For convenience allow addresses that collapse to a simple base
4404 and offset. */
4405 if (TREE_CODE (ptr) == ADDR_EXPR
4406 && (handled_component_p (TREE_OPERAND (ptr, 0))
4407 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4408 {
4409 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4410 gcc_assert (ptr);
4411 ptr = build_fold_addr_expr (ptr);
4412 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4413 }
4414 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4415 ptr, build_int_cst (ptype, offset));
4416 SET_EXPR_LOCATION (tem, loc);
4417 return tem;
4418 }
4419
4420 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4421
4422 offset_int
4423 mem_ref_offset (const_tree t)
4424 {
4425 return offset_int::from (TREE_OPERAND (t, 1), SIGNED);
4426 }
4427
4428 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4429 offsetted by OFFSET units. */
4430
4431 tree
4432 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4433 {
4434 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4435 build_fold_addr_expr (base),
4436 build_int_cst (ptr_type_node, offset));
4437 tree addr = build1 (ADDR_EXPR, type, ref);
4438 recompute_tree_invariant_for_addr_expr (addr);
4439 return addr;
4440 }
4441
4442 /* Similar except don't specify the TREE_TYPE
4443 and leave the TREE_SIDE_EFFECTS as 0.
4444 It is permissible for arguments to be null,
4445 or even garbage if their values do not matter. */
4446
4447 tree
4448 build_nt (enum tree_code code, ...)
4449 {
4450 tree t;
4451 int length;
4452 int i;
4453 va_list p;
4454
4455 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4456
4457 va_start (p, code);
4458
4459 t = make_node (code);
4460 length = TREE_CODE_LENGTH (code);
4461
4462 for (i = 0; i < length; i++)
4463 TREE_OPERAND (t, i) = va_arg (p, tree);
4464
4465 va_end (p);
4466 return t;
4467 }
4468
4469 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4470 tree vec. */
4471
4472 tree
4473 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4474 {
4475 tree ret, t;
4476 unsigned int ix;
4477
4478 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4479 CALL_EXPR_FN (ret) = fn;
4480 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4481 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4482 CALL_EXPR_ARG (ret, ix) = t;
4483 return ret;
4484 }
4485 \f
4486 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4487 We do NOT enter this node in any sort of symbol table.
4488
4489 LOC is the location of the decl.
4490
4491 layout_decl is used to set up the decl's storage layout.
4492 Other slots are initialized to 0 or null pointers. */
4493
4494 tree
4495 build_decl_stat (location_t loc, enum tree_code code, tree name,
4496 tree type MEM_STAT_DECL)
4497 {
4498 tree t;
4499
4500 t = make_node_stat (code PASS_MEM_STAT);
4501 DECL_SOURCE_LOCATION (t) = loc;
4502
4503 /* if (type == error_mark_node)
4504 type = integer_type_node; */
4505 /* That is not done, deliberately, so that having error_mark_node
4506 as the type can suppress useless errors in the use of this variable. */
4507
4508 DECL_NAME (t) = name;
4509 TREE_TYPE (t) = type;
4510
4511 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4512 layout_decl (t, 0);
4513
4514 return t;
4515 }
4516
4517 /* Builds and returns function declaration with NAME and TYPE. */
4518
4519 tree
4520 build_fn_decl (const char *name, tree type)
4521 {
4522 tree id = get_identifier (name);
4523 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4524
4525 DECL_EXTERNAL (decl) = 1;
4526 TREE_PUBLIC (decl) = 1;
4527 DECL_ARTIFICIAL (decl) = 1;
4528 TREE_NOTHROW (decl) = 1;
4529
4530 return decl;
4531 }
4532
4533 vec<tree, va_gc> *all_translation_units;
4534
4535 /* Builds a new translation-unit decl with name NAME, queues it in the
4536 global list of translation-unit decls and returns it. */
4537
4538 tree
4539 build_translation_unit_decl (tree name)
4540 {
4541 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4542 name, NULL_TREE);
4543 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4544 vec_safe_push (all_translation_units, tu);
4545 return tu;
4546 }
4547
4548 \f
4549 /* BLOCK nodes are used to represent the structure of binding contours
4550 and declarations, once those contours have been exited and their contents
4551 compiled. This information is used for outputting debugging info. */
4552
4553 tree
4554 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4555 {
4556 tree block = make_node (BLOCK);
4557
4558 BLOCK_VARS (block) = vars;
4559 BLOCK_SUBBLOCKS (block) = subblocks;
4560 BLOCK_SUPERCONTEXT (block) = supercontext;
4561 BLOCK_CHAIN (block) = chain;
4562 return block;
4563 }
4564
4565 \f
4566 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4567
4568 LOC is the location to use in tree T. */
4569
4570 void
4571 protected_set_expr_location (tree t, location_t loc)
4572 {
4573 if (t && CAN_HAVE_LOCATION_P (t))
4574 SET_EXPR_LOCATION (t, loc);
4575 }
4576 \f
4577 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4578 is ATTRIBUTE. */
4579
4580 tree
4581 build_decl_attribute_variant (tree ddecl, tree attribute)
4582 {
4583 DECL_ATTRIBUTES (ddecl) = attribute;
4584 return ddecl;
4585 }
4586
4587 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4588 is ATTRIBUTE and its qualifiers are QUALS.
4589
4590 Record such modified types already made so we don't make duplicates. */
4591
4592 tree
4593 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4594 {
4595 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4596 {
4597 inchash::hash hstate;
4598 tree ntype;
4599 int i;
4600 tree t;
4601 enum tree_code code = TREE_CODE (ttype);
4602
4603 /* Building a distinct copy of a tagged type is inappropriate; it
4604 causes breakage in code that expects there to be a one-to-one
4605 relationship between a struct and its fields.
4606 build_duplicate_type is another solution (as used in
4607 handle_transparent_union_attribute), but that doesn't play well
4608 with the stronger C++ type identity model. */
4609 if (TREE_CODE (ttype) == RECORD_TYPE
4610 || TREE_CODE (ttype) == UNION_TYPE
4611 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4612 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4613 {
4614 warning (OPT_Wattributes,
4615 "ignoring attributes applied to %qT after definition",
4616 TYPE_MAIN_VARIANT (ttype));
4617 return build_qualified_type (ttype, quals);
4618 }
4619
4620 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4621 ntype = build_distinct_type_copy (ttype);
4622
4623 TYPE_ATTRIBUTES (ntype) = attribute;
4624
4625 hstate.add_int (code);
4626 if (TREE_TYPE (ntype))
4627 hstate.add_object (TYPE_HASH (TREE_TYPE (ntype)));
4628 attribute_hash_list (attribute, hstate);
4629
4630 switch (TREE_CODE (ntype))
4631 {
4632 case FUNCTION_TYPE:
4633 type_hash_list (TYPE_ARG_TYPES (ntype), hstate);
4634 break;
4635 case ARRAY_TYPE:
4636 if (TYPE_DOMAIN (ntype))
4637 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (ntype)));
4638 break;
4639 case INTEGER_TYPE:
4640 t = TYPE_MAX_VALUE (ntype);
4641 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
4642 hstate.add_object (TREE_INT_CST_ELT (t, i));
4643 break;
4644 case REAL_TYPE:
4645 case FIXED_POINT_TYPE:
4646 {
4647 unsigned int precision = TYPE_PRECISION (ntype);
4648 hstate.add_object (precision);
4649 }
4650 break;
4651 default:
4652 break;
4653 }
4654
4655 ntype = type_hash_canon (hstate.end(), ntype);
4656
4657 /* If the target-dependent attributes make NTYPE different from
4658 its canonical type, we will need to use structural equality
4659 checks for this type. */
4660 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4661 || !comp_type_attributes (ntype, ttype))
4662 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4663 else if (TYPE_CANONICAL (ntype) == ntype)
4664 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4665
4666 ttype = build_qualified_type (ntype, quals);
4667 }
4668 else if (TYPE_QUALS (ttype) != quals)
4669 ttype = build_qualified_type (ttype, quals);
4670
4671 return ttype;
4672 }
4673
4674 /* Check if "omp declare simd" attribute arguments, CLAUSES1 and CLAUSES2, are
4675 the same. */
4676
4677 static bool
4678 omp_declare_simd_clauses_equal (tree clauses1, tree clauses2)
4679 {
4680 tree cl1, cl2;
4681 for (cl1 = clauses1, cl2 = clauses2;
4682 cl1 && cl2;
4683 cl1 = OMP_CLAUSE_CHAIN (cl1), cl2 = OMP_CLAUSE_CHAIN (cl2))
4684 {
4685 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_CODE (cl2))
4686 return false;
4687 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_SIMDLEN)
4688 {
4689 if (simple_cst_equal (OMP_CLAUSE_DECL (cl1),
4690 OMP_CLAUSE_DECL (cl2)) != 1)
4691 return false;
4692 }
4693 switch (OMP_CLAUSE_CODE (cl1))
4694 {
4695 case OMP_CLAUSE_ALIGNED:
4696 if (simple_cst_equal (OMP_CLAUSE_ALIGNED_ALIGNMENT (cl1),
4697 OMP_CLAUSE_ALIGNED_ALIGNMENT (cl2)) != 1)
4698 return false;
4699 break;
4700 case OMP_CLAUSE_LINEAR:
4701 if (simple_cst_equal (OMP_CLAUSE_LINEAR_STEP (cl1),
4702 OMP_CLAUSE_LINEAR_STEP (cl2)) != 1)
4703 return false;
4704 break;
4705 case OMP_CLAUSE_SIMDLEN:
4706 if (simple_cst_equal (OMP_CLAUSE_SIMDLEN_EXPR (cl1),
4707 OMP_CLAUSE_SIMDLEN_EXPR (cl2)) != 1)
4708 return false;
4709 default:
4710 break;
4711 }
4712 }
4713 return true;
4714 }
4715
4716 /* Compare two constructor-element-type constants. Return 1 if the lists
4717 are known to be equal; otherwise return 0. */
4718
4719 static bool
4720 simple_cst_list_equal (const_tree l1, const_tree l2)
4721 {
4722 while (l1 != NULL_TREE && l2 != NULL_TREE)
4723 {
4724 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4725 return false;
4726
4727 l1 = TREE_CHAIN (l1);
4728 l2 = TREE_CHAIN (l2);
4729 }
4730
4731 return l1 == l2;
4732 }
4733
4734 /* Compare two attributes for their value identity. Return true if the
4735 attribute values are known to be equal; otherwise return false.
4736 */
4737
4738 static bool
4739 attribute_value_equal (const_tree attr1, const_tree attr2)
4740 {
4741 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4742 return true;
4743
4744 if (TREE_VALUE (attr1) != NULL_TREE
4745 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4746 && TREE_VALUE (attr2) != NULL
4747 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4748 return (simple_cst_list_equal (TREE_VALUE (attr1),
4749 TREE_VALUE (attr2)) == 1);
4750
4751 if ((flag_openmp || flag_openmp_simd)
4752 && TREE_VALUE (attr1) && TREE_VALUE (attr2)
4753 && TREE_CODE (TREE_VALUE (attr1)) == OMP_CLAUSE
4754 && TREE_CODE (TREE_VALUE (attr2)) == OMP_CLAUSE)
4755 return omp_declare_simd_clauses_equal (TREE_VALUE (attr1),
4756 TREE_VALUE (attr2));
4757
4758 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4759 }
4760
4761 /* Return 0 if the attributes for two types are incompatible, 1 if they
4762 are compatible, and 2 if they are nearly compatible (which causes a
4763 warning to be generated). */
4764 int
4765 comp_type_attributes (const_tree type1, const_tree type2)
4766 {
4767 const_tree a1 = TYPE_ATTRIBUTES (type1);
4768 const_tree a2 = TYPE_ATTRIBUTES (type2);
4769 const_tree a;
4770
4771 if (a1 == a2)
4772 return 1;
4773 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4774 {
4775 const struct attribute_spec *as;
4776 const_tree attr;
4777
4778 as = lookup_attribute_spec (get_attribute_name (a));
4779 if (!as || as->affects_type_identity == false)
4780 continue;
4781
4782 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4783 if (!attr || !attribute_value_equal (a, attr))
4784 break;
4785 }
4786 if (!a)
4787 {
4788 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4789 {
4790 const struct attribute_spec *as;
4791
4792 as = lookup_attribute_spec (get_attribute_name (a));
4793 if (!as || as->affects_type_identity == false)
4794 continue;
4795
4796 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4797 break;
4798 /* We don't need to compare trees again, as we did this
4799 already in first loop. */
4800 }
4801 /* All types - affecting identity - are equal, so
4802 there is no need to call target hook for comparison. */
4803 if (!a)
4804 return 1;
4805 }
4806 /* As some type combinations - like default calling-convention - might
4807 be compatible, we have to call the target hook to get the final result. */
4808 return targetm.comp_type_attributes (type1, type2);
4809 }
4810
4811 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4812 is ATTRIBUTE.
4813
4814 Record such modified types already made so we don't make duplicates. */
4815
4816 tree
4817 build_type_attribute_variant (tree ttype, tree attribute)
4818 {
4819 return build_type_attribute_qual_variant (ttype, attribute,
4820 TYPE_QUALS (ttype));
4821 }
4822
4823
4824 /* Reset the expression *EXPR_P, a size or position.
4825
4826 ??? We could reset all non-constant sizes or positions. But it's cheap
4827 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4828
4829 We need to reset self-referential sizes or positions because they cannot
4830 be gimplified and thus can contain a CALL_EXPR after the gimplification
4831 is finished, which will run afoul of LTO streaming. And they need to be
4832 reset to something essentially dummy but not constant, so as to preserve
4833 the properties of the object they are attached to. */
4834
4835 static inline void
4836 free_lang_data_in_one_sizepos (tree *expr_p)
4837 {
4838 tree expr = *expr_p;
4839 if (CONTAINS_PLACEHOLDER_P (expr))
4840 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4841 }
4842
4843
4844 /* Reset all the fields in a binfo node BINFO. We only keep
4845 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4846
4847 static void
4848 free_lang_data_in_binfo (tree binfo)
4849 {
4850 unsigned i;
4851 tree t;
4852
4853 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4854
4855 BINFO_VIRTUALS (binfo) = NULL_TREE;
4856 BINFO_BASE_ACCESSES (binfo) = NULL;
4857 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4858 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4859
4860 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4861 free_lang_data_in_binfo (t);
4862 }
4863
4864
4865 /* Reset all language specific information still present in TYPE. */
4866
4867 static void
4868 free_lang_data_in_type (tree type)
4869 {
4870 gcc_assert (TYPE_P (type));
4871
4872 /* Give the FE a chance to remove its own data first. */
4873 lang_hooks.free_lang_data (type);
4874
4875 TREE_LANG_FLAG_0 (type) = 0;
4876 TREE_LANG_FLAG_1 (type) = 0;
4877 TREE_LANG_FLAG_2 (type) = 0;
4878 TREE_LANG_FLAG_3 (type) = 0;
4879 TREE_LANG_FLAG_4 (type) = 0;
4880 TREE_LANG_FLAG_5 (type) = 0;
4881 TREE_LANG_FLAG_6 (type) = 0;
4882
4883 if (TREE_CODE (type) == FUNCTION_TYPE)
4884 {
4885 /* Remove the const and volatile qualifiers from arguments. The
4886 C++ front end removes them, but the C front end does not,
4887 leading to false ODR violation errors when merging two
4888 instances of the same function signature compiled by
4889 different front ends. */
4890 tree p;
4891
4892 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4893 {
4894 tree arg_type = TREE_VALUE (p);
4895
4896 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4897 {
4898 int quals = TYPE_QUALS (arg_type)
4899 & ~TYPE_QUAL_CONST
4900 & ~TYPE_QUAL_VOLATILE;
4901 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4902 free_lang_data_in_type (TREE_VALUE (p));
4903 }
4904 }
4905 }
4906
4907 /* Remove members that are not actually FIELD_DECLs from the field
4908 list of an aggregate. These occur in C++. */
4909 if (RECORD_OR_UNION_TYPE_P (type))
4910 {
4911 tree prev, member;
4912
4913 /* Note that TYPE_FIELDS can be shared across distinct
4914 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4915 to be removed, we cannot set its TREE_CHAIN to NULL.
4916 Otherwise, we would not be able to find all the other fields
4917 in the other instances of this TREE_TYPE.
4918
4919 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4920 prev = NULL_TREE;
4921 member = TYPE_FIELDS (type);
4922 while (member)
4923 {
4924 if (TREE_CODE (member) == FIELD_DECL
4925 || TREE_CODE (member) == TYPE_DECL)
4926 {
4927 if (prev)
4928 TREE_CHAIN (prev) = member;
4929 else
4930 TYPE_FIELDS (type) = member;
4931 prev = member;
4932 }
4933
4934 member = TREE_CHAIN (member);
4935 }
4936
4937 if (prev)
4938 TREE_CHAIN (prev) = NULL_TREE;
4939 else
4940 TYPE_FIELDS (type) = NULL_TREE;
4941
4942 TYPE_METHODS (type) = NULL_TREE;
4943 if (TYPE_BINFO (type))
4944 free_lang_data_in_binfo (TYPE_BINFO (type));
4945 }
4946 else
4947 {
4948 /* For non-aggregate types, clear out the language slot (which
4949 overloads TYPE_BINFO). */
4950 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4951
4952 if (INTEGRAL_TYPE_P (type)
4953 || SCALAR_FLOAT_TYPE_P (type)
4954 || FIXED_POINT_TYPE_P (type))
4955 {
4956 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4957 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4958 }
4959 }
4960
4961 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4962 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4963
4964 if (TYPE_CONTEXT (type)
4965 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4966 {
4967 tree ctx = TYPE_CONTEXT (type);
4968 do
4969 {
4970 ctx = BLOCK_SUPERCONTEXT (ctx);
4971 }
4972 while (ctx && TREE_CODE (ctx) == BLOCK);
4973 TYPE_CONTEXT (type) = ctx;
4974 }
4975 }
4976
4977
4978 /* Return true if DECL may need an assembler name to be set. */
4979
4980 static inline bool
4981 need_assembler_name_p (tree decl)
4982 {
4983 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4984 if (TREE_CODE (decl) != FUNCTION_DECL
4985 && TREE_CODE (decl) != VAR_DECL)
4986 return false;
4987
4988 /* If DECL already has its assembler name set, it does not need a
4989 new one. */
4990 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4991 || DECL_ASSEMBLER_NAME_SET_P (decl))
4992 return false;
4993
4994 /* Abstract decls do not need an assembler name. */
4995 if (DECL_ABSTRACT (decl))
4996 return false;
4997
4998 /* For VAR_DECLs, only static, public and external symbols need an
4999 assembler name. */
5000 if (TREE_CODE (decl) == VAR_DECL
5001 && !TREE_STATIC (decl)
5002 && !TREE_PUBLIC (decl)
5003 && !DECL_EXTERNAL (decl))
5004 return false;
5005
5006 if (TREE_CODE (decl) == FUNCTION_DECL)
5007 {
5008 /* Do not set assembler name on builtins. Allow RTL expansion to
5009 decide whether to expand inline or via a regular call. */
5010 if (DECL_BUILT_IN (decl)
5011 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5012 return false;
5013
5014 /* Functions represented in the callgraph need an assembler name. */
5015 if (cgraph_node::get (decl) != NULL)
5016 return true;
5017
5018 /* Unused and not public functions don't need an assembler name. */
5019 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5020 return false;
5021 }
5022
5023 return true;
5024 }
5025
5026
5027 /* Reset all language specific information still present in symbol
5028 DECL. */
5029
5030 static void
5031 free_lang_data_in_decl (tree decl)
5032 {
5033 gcc_assert (DECL_P (decl));
5034
5035 /* Give the FE a chance to remove its own data first. */
5036 lang_hooks.free_lang_data (decl);
5037
5038 TREE_LANG_FLAG_0 (decl) = 0;
5039 TREE_LANG_FLAG_1 (decl) = 0;
5040 TREE_LANG_FLAG_2 (decl) = 0;
5041 TREE_LANG_FLAG_3 (decl) = 0;
5042 TREE_LANG_FLAG_4 (decl) = 0;
5043 TREE_LANG_FLAG_5 (decl) = 0;
5044 TREE_LANG_FLAG_6 (decl) = 0;
5045
5046 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5047 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5048 if (TREE_CODE (decl) == FIELD_DECL)
5049 {
5050 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5051 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5052 DECL_QUALIFIER (decl) = NULL_TREE;
5053 }
5054
5055 if (TREE_CODE (decl) == FUNCTION_DECL)
5056 {
5057 struct cgraph_node *node;
5058 if (!(node = cgraph_node::get (decl))
5059 || (!node->definition && !node->clones))
5060 {
5061 if (node)
5062 node->release_body ();
5063 else
5064 {
5065 release_function_body (decl);
5066 DECL_ARGUMENTS (decl) = NULL;
5067 DECL_RESULT (decl) = NULL;
5068 DECL_INITIAL (decl) = error_mark_node;
5069 }
5070 }
5071 if (gimple_has_body_p (decl))
5072 {
5073 tree t;
5074
5075 /* If DECL has a gimple body, then the context for its
5076 arguments must be DECL. Otherwise, it doesn't really
5077 matter, as we will not be emitting any code for DECL. In
5078 general, there may be other instances of DECL created by
5079 the front end and since PARM_DECLs are generally shared,
5080 their DECL_CONTEXT changes as the replicas of DECL are
5081 created. The only time where DECL_CONTEXT is important
5082 is for the FUNCTION_DECLs that have a gimple body (since
5083 the PARM_DECL will be used in the function's body). */
5084 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5085 DECL_CONTEXT (t) = decl;
5086 }
5087
5088 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5089 At this point, it is not needed anymore. */
5090 DECL_SAVED_TREE (decl) = NULL_TREE;
5091
5092 /* Clear the abstract origin if it refers to a method. Otherwise
5093 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
5094 origin will not be output correctly. */
5095 if (DECL_ABSTRACT_ORIGIN (decl)
5096 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5097 && RECORD_OR_UNION_TYPE_P
5098 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5099 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5100
5101 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5102 DECL_VINDEX referring to itself into a vtable slot number as it
5103 should. Happens with functions that are copied and then forgotten
5104 about. Just clear it, it won't matter anymore. */
5105 if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5106 DECL_VINDEX (decl) = NULL_TREE;
5107 }
5108 else if (TREE_CODE (decl) == VAR_DECL)
5109 {
5110 if ((DECL_EXTERNAL (decl)
5111 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5112 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5113 DECL_INITIAL (decl) = NULL_TREE;
5114 }
5115 else if (TREE_CODE (decl) == TYPE_DECL
5116 || TREE_CODE (decl) == FIELD_DECL)
5117 DECL_INITIAL (decl) = NULL_TREE;
5118 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5119 && DECL_INITIAL (decl)
5120 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5121 {
5122 /* Strip builtins from the translation-unit BLOCK. We still have targets
5123 without builtin_decl_explicit support and also builtins are shared
5124 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5125 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5126 while (*nextp)
5127 {
5128 tree var = *nextp;
5129 if (TREE_CODE (var) == FUNCTION_DECL
5130 && DECL_BUILT_IN (var))
5131 *nextp = TREE_CHAIN (var);
5132 else
5133 nextp = &TREE_CHAIN (var);
5134 }
5135 }
5136 }
5137
5138
5139 /* Data used when collecting DECLs and TYPEs for language data removal. */
5140
5141 struct free_lang_data_d
5142 {
5143 /* Worklist to avoid excessive recursion. */
5144 vec<tree> worklist;
5145
5146 /* Set of traversed objects. Used to avoid duplicate visits. */
5147 hash_set<tree> *pset;
5148
5149 /* Array of symbols to process with free_lang_data_in_decl. */
5150 vec<tree> decls;
5151
5152 /* Array of types to process with free_lang_data_in_type. */
5153 vec<tree> types;
5154 };
5155
5156
5157 /* Save all language fields needed to generate proper debug information
5158 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
5159
5160 static void
5161 save_debug_info_for_decl (tree t)
5162 {
5163 /*struct saved_debug_info_d *sdi;*/
5164
5165 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5166
5167 /* FIXME. Partial implementation for saving debug info removed. */
5168 }
5169
5170
5171 /* Save all language fields needed to generate proper debug information
5172 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5173
5174 static void
5175 save_debug_info_for_type (tree t)
5176 {
5177 /*struct saved_debug_info_d *sdi;*/
5178
5179 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5180
5181 /* FIXME. Partial implementation for saving debug info removed. */
5182 }
5183
5184
5185 /* Add type or decl T to one of the list of tree nodes that need their
5186 language data removed. The lists are held inside FLD. */
5187
5188 static void
5189 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5190 {
5191 if (DECL_P (t))
5192 {
5193 fld->decls.safe_push (t);
5194 if (debug_info_level > DINFO_LEVEL_TERSE)
5195 save_debug_info_for_decl (t);
5196 }
5197 else if (TYPE_P (t))
5198 {
5199 fld->types.safe_push (t);
5200 if (debug_info_level > DINFO_LEVEL_TERSE)
5201 save_debug_info_for_type (t);
5202 }
5203 else
5204 gcc_unreachable ();
5205 }
5206
5207 /* Push tree node T into FLD->WORKLIST. */
5208
5209 static inline void
5210 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5211 {
5212 if (t && !is_lang_specific (t) && !fld->pset->contains (t))
5213 fld->worklist.safe_push ((t));
5214 }
5215
5216
5217 /* Operand callback helper for free_lang_data_in_node. *TP is the
5218 subtree operand being considered. */
5219
5220 static tree
5221 find_decls_types_r (tree *tp, int *ws, void *data)
5222 {
5223 tree t = *tp;
5224 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5225
5226 if (TREE_CODE (t) == TREE_LIST)
5227 return NULL_TREE;
5228
5229 /* Language specific nodes will be removed, so there is no need
5230 to gather anything under them. */
5231 if (is_lang_specific (t))
5232 {
5233 *ws = 0;
5234 return NULL_TREE;
5235 }
5236
5237 if (DECL_P (t))
5238 {
5239 /* Note that walk_tree does not traverse every possible field in
5240 decls, so we have to do our own traversals here. */
5241 add_tree_to_fld_list (t, fld);
5242
5243 fld_worklist_push (DECL_NAME (t), fld);
5244 fld_worklist_push (DECL_CONTEXT (t), fld);
5245 fld_worklist_push (DECL_SIZE (t), fld);
5246 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5247
5248 /* We are going to remove everything under DECL_INITIAL for
5249 TYPE_DECLs. No point walking them. */
5250 if (TREE_CODE (t) != TYPE_DECL)
5251 fld_worklist_push (DECL_INITIAL (t), fld);
5252
5253 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5254 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5255
5256 if (TREE_CODE (t) == FUNCTION_DECL)
5257 {
5258 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5259 fld_worklist_push (DECL_RESULT (t), fld);
5260 }
5261 else if (TREE_CODE (t) == TYPE_DECL)
5262 {
5263 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5264 }
5265 else if (TREE_CODE (t) == FIELD_DECL)
5266 {
5267 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5268 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5269 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5270 fld_worklist_push (DECL_FCONTEXT (t), fld);
5271 }
5272
5273 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
5274 && DECL_HAS_VALUE_EXPR_P (t))
5275 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5276
5277 if (TREE_CODE (t) != FIELD_DECL
5278 && TREE_CODE (t) != TYPE_DECL)
5279 fld_worklist_push (TREE_CHAIN (t), fld);
5280 *ws = 0;
5281 }
5282 else if (TYPE_P (t))
5283 {
5284 /* Note that walk_tree does not traverse every possible field in
5285 types, so we have to do our own traversals here. */
5286 add_tree_to_fld_list (t, fld);
5287
5288 if (!RECORD_OR_UNION_TYPE_P (t))
5289 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5290 fld_worklist_push (TYPE_SIZE (t), fld);
5291 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5292 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5293 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5294 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5295 fld_worklist_push (TYPE_NAME (t), fld);
5296 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5297 them and thus do not and want not to reach unused pointer types
5298 this way. */
5299 if (!POINTER_TYPE_P (t))
5300 fld_worklist_push (TYPE_MINVAL (t), fld);
5301 if (!RECORD_OR_UNION_TYPE_P (t))
5302 fld_worklist_push (TYPE_MAXVAL (t), fld);
5303 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5304 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5305 do not and want not to reach unused variants this way. */
5306 if (TYPE_CONTEXT (t))
5307 {
5308 tree ctx = TYPE_CONTEXT (t);
5309 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5310 So push that instead. */
5311 while (ctx && TREE_CODE (ctx) == BLOCK)
5312 ctx = BLOCK_SUPERCONTEXT (ctx);
5313 fld_worklist_push (ctx, fld);
5314 }
5315 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5316 and want not to reach unused types this way. */
5317
5318 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5319 {
5320 unsigned i;
5321 tree tem;
5322 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5323 fld_worklist_push (TREE_TYPE (tem), fld);
5324 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
5325 if (tem
5326 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
5327 && TREE_CODE (tem) == TREE_LIST)
5328 do
5329 {
5330 fld_worklist_push (TREE_VALUE (tem), fld);
5331 tem = TREE_CHAIN (tem);
5332 }
5333 while (tem);
5334 }
5335 if (RECORD_OR_UNION_TYPE_P (t))
5336 {
5337 tree tem;
5338 /* Push all TYPE_FIELDS - there can be interleaving interesting
5339 and non-interesting things. */
5340 tem = TYPE_FIELDS (t);
5341 while (tem)
5342 {
5343 if (TREE_CODE (tem) == FIELD_DECL
5344 || TREE_CODE (tem) == TYPE_DECL)
5345 fld_worklist_push (tem, fld);
5346 tem = TREE_CHAIN (tem);
5347 }
5348 }
5349
5350 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5351 *ws = 0;
5352 }
5353 else if (TREE_CODE (t) == BLOCK)
5354 {
5355 tree tem;
5356 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5357 fld_worklist_push (tem, fld);
5358 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5359 fld_worklist_push (tem, fld);
5360 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5361 }
5362
5363 if (TREE_CODE (t) != IDENTIFIER_NODE
5364 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5365 fld_worklist_push (TREE_TYPE (t), fld);
5366
5367 return NULL_TREE;
5368 }
5369
5370
5371 /* Find decls and types in T. */
5372
5373 static void
5374 find_decls_types (tree t, struct free_lang_data_d *fld)
5375 {
5376 while (1)
5377 {
5378 if (!fld->pset->contains (t))
5379 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5380 if (fld->worklist.is_empty ())
5381 break;
5382 t = fld->worklist.pop ();
5383 }
5384 }
5385
5386 /* Translate all the types in LIST with the corresponding runtime
5387 types. */
5388
5389 static tree
5390 get_eh_types_for_runtime (tree list)
5391 {
5392 tree head, prev;
5393
5394 if (list == NULL_TREE)
5395 return NULL_TREE;
5396
5397 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5398 prev = head;
5399 list = TREE_CHAIN (list);
5400 while (list)
5401 {
5402 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5403 TREE_CHAIN (prev) = n;
5404 prev = TREE_CHAIN (prev);
5405 list = TREE_CHAIN (list);
5406 }
5407
5408 return head;
5409 }
5410
5411
5412 /* Find decls and types referenced in EH region R and store them in
5413 FLD->DECLS and FLD->TYPES. */
5414
5415 static void
5416 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5417 {
5418 switch (r->type)
5419 {
5420 case ERT_CLEANUP:
5421 break;
5422
5423 case ERT_TRY:
5424 {
5425 eh_catch c;
5426
5427 /* The types referenced in each catch must first be changed to the
5428 EH types used at runtime. This removes references to FE types
5429 in the region. */
5430 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5431 {
5432 c->type_list = get_eh_types_for_runtime (c->type_list);
5433 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5434 }
5435 }
5436 break;
5437
5438 case ERT_ALLOWED_EXCEPTIONS:
5439 r->u.allowed.type_list
5440 = get_eh_types_for_runtime (r->u.allowed.type_list);
5441 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5442 break;
5443
5444 case ERT_MUST_NOT_THROW:
5445 walk_tree (&r->u.must_not_throw.failure_decl,
5446 find_decls_types_r, fld, fld->pset);
5447 break;
5448 }
5449 }
5450
5451
5452 /* Find decls and types referenced in cgraph node N and store them in
5453 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5454 look for *every* kind of DECL and TYPE node reachable from N,
5455 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5456 NAMESPACE_DECLs, etc). */
5457
5458 static void
5459 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5460 {
5461 basic_block bb;
5462 struct function *fn;
5463 unsigned ix;
5464 tree t;
5465
5466 find_decls_types (n->decl, fld);
5467
5468 if (!gimple_has_body_p (n->decl))
5469 return;
5470
5471 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5472
5473 fn = DECL_STRUCT_FUNCTION (n->decl);
5474
5475 /* Traverse locals. */
5476 FOR_EACH_LOCAL_DECL (fn, ix, t)
5477 find_decls_types (t, fld);
5478
5479 /* Traverse EH regions in FN. */
5480 {
5481 eh_region r;
5482 FOR_ALL_EH_REGION_FN (r, fn)
5483 find_decls_types_in_eh_region (r, fld);
5484 }
5485
5486 /* Traverse every statement in FN. */
5487 FOR_EACH_BB_FN (bb, fn)
5488 {
5489 gimple_stmt_iterator si;
5490 unsigned i;
5491
5492 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5493 {
5494 gimple phi = gsi_stmt (si);
5495
5496 for (i = 0; i < gimple_phi_num_args (phi); i++)
5497 {
5498 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5499 find_decls_types (*arg_p, fld);
5500 }
5501 }
5502
5503 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5504 {
5505 gimple stmt = gsi_stmt (si);
5506
5507 if (is_gimple_call (stmt))
5508 find_decls_types (gimple_call_fntype (stmt), fld);
5509
5510 for (i = 0; i < gimple_num_ops (stmt); i++)
5511 {
5512 tree arg = gimple_op (stmt, i);
5513 find_decls_types (arg, fld);
5514 }
5515 }
5516 }
5517 }
5518
5519
5520 /* Find decls and types referenced in varpool node N and store them in
5521 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5522 look for *every* kind of DECL and TYPE node reachable from N,
5523 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5524 NAMESPACE_DECLs, etc). */
5525
5526 static void
5527 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5528 {
5529 find_decls_types (v->decl, fld);
5530 }
5531
5532 /* If T needs an assembler name, have one created for it. */
5533
5534 void
5535 assign_assembler_name_if_neeeded (tree t)
5536 {
5537 if (need_assembler_name_p (t))
5538 {
5539 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5540 diagnostics that use input_location to show locus
5541 information. The problem here is that, at this point,
5542 input_location is generally anchored to the end of the file
5543 (since the parser is long gone), so we don't have a good
5544 position to pin it to.
5545
5546 To alleviate this problem, this uses the location of T's
5547 declaration. Examples of this are
5548 testsuite/g++.dg/template/cond2.C and
5549 testsuite/g++.dg/template/pr35240.C. */
5550 location_t saved_location = input_location;
5551 input_location = DECL_SOURCE_LOCATION (t);
5552
5553 decl_assembler_name (t);
5554
5555 input_location = saved_location;
5556 }
5557 }
5558
5559
5560 /* Free language specific information for every operand and expression
5561 in every node of the call graph. This process operates in three stages:
5562
5563 1- Every callgraph node and varpool node is traversed looking for
5564 decls and types embedded in them. This is a more exhaustive
5565 search than that done by find_referenced_vars, because it will
5566 also collect individual fields, decls embedded in types, etc.
5567
5568 2- All the decls found are sent to free_lang_data_in_decl.
5569
5570 3- All the types found are sent to free_lang_data_in_type.
5571
5572 The ordering between decls and types is important because
5573 free_lang_data_in_decl sets assembler names, which includes
5574 mangling. So types cannot be freed up until assembler names have
5575 been set up. */
5576
5577 static void
5578 free_lang_data_in_cgraph (void)
5579 {
5580 struct cgraph_node *n;
5581 varpool_node *v;
5582 struct free_lang_data_d fld;
5583 tree t;
5584 unsigned i;
5585 alias_pair *p;
5586
5587 /* Initialize sets and arrays to store referenced decls and types. */
5588 fld.pset = new hash_set<tree>;
5589 fld.worklist.create (0);
5590 fld.decls.create (100);
5591 fld.types.create (100);
5592
5593 /* Find decls and types in the body of every function in the callgraph. */
5594 FOR_EACH_FUNCTION (n)
5595 find_decls_types_in_node (n, &fld);
5596
5597 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5598 find_decls_types (p->decl, &fld);
5599
5600 /* Find decls and types in every varpool symbol. */
5601 FOR_EACH_VARIABLE (v)
5602 find_decls_types_in_var (v, &fld);
5603
5604 /* Set the assembler name on every decl found. We need to do this
5605 now because free_lang_data_in_decl will invalidate data needed
5606 for mangling. This breaks mangling on interdependent decls. */
5607 FOR_EACH_VEC_ELT (fld.decls, i, t)
5608 assign_assembler_name_if_neeeded (t);
5609
5610 /* Traverse every decl found freeing its language data. */
5611 FOR_EACH_VEC_ELT (fld.decls, i, t)
5612 free_lang_data_in_decl (t);
5613
5614 /* Traverse every type found freeing its language data. */
5615 FOR_EACH_VEC_ELT (fld.types, i, t)
5616 free_lang_data_in_type (t);
5617
5618 delete fld.pset;
5619 fld.worklist.release ();
5620 fld.decls.release ();
5621 fld.types.release ();
5622 }
5623
5624
5625 /* Free resources that are used by FE but are not needed once they are done. */
5626
5627 static unsigned
5628 free_lang_data (void)
5629 {
5630 unsigned i;
5631
5632 /* If we are the LTO frontend we have freed lang-specific data already. */
5633 if (in_lto_p)
5634 return 0;
5635
5636 /* Allocate and assign alias sets to the standard integer types
5637 while the slots are still in the way the frontends generated them. */
5638 for (i = 0; i < itk_none; ++i)
5639 if (integer_types[i])
5640 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5641
5642 /* Traverse the IL resetting language specific information for
5643 operands, expressions, etc. */
5644 free_lang_data_in_cgraph ();
5645
5646 /* Create gimple variants for common types. */
5647 ptrdiff_type_node = integer_type_node;
5648 fileptr_type_node = ptr_type_node;
5649
5650 /* Reset some langhooks. Do not reset types_compatible_p, it may
5651 still be used indirectly via the get_alias_set langhook. */
5652 lang_hooks.dwarf_name = lhd_dwarf_name;
5653 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5654 /* We do not want the default decl_assembler_name implementation,
5655 rather if we have fixed everything we want a wrapper around it
5656 asserting that all non-local symbols already got their assembler
5657 name and only produce assembler names for local symbols. Or rather
5658 make sure we never call decl_assembler_name on local symbols and
5659 devise a separate, middle-end private scheme for it. */
5660
5661 /* Reset diagnostic machinery. */
5662 tree_diagnostics_defaults (global_dc);
5663
5664 return 0;
5665 }
5666
5667
5668 namespace {
5669
5670 const pass_data pass_data_ipa_free_lang_data =
5671 {
5672 SIMPLE_IPA_PASS, /* type */
5673 "*free_lang_data", /* name */
5674 OPTGROUP_NONE, /* optinfo_flags */
5675 TV_IPA_FREE_LANG_DATA, /* tv_id */
5676 0, /* properties_required */
5677 0, /* properties_provided */
5678 0, /* properties_destroyed */
5679 0, /* todo_flags_start */
5680 0, /* todo_flags_finish */
5681 };
5682
5683 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5684 {
5685 public:
5686 pass_ipa_free_lang_data (gcc::context *ctxt)
5687 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5688 {}
5689
5690 /* opt_pass methods: */
5691 virtual unsigned int execute (function *) { return free_lang_data (); }
5692
5693 }; // class pass_ipa_free_lang_data
5694
5695 } // anon namespace
5696
5697 simple_ipa_opt_pass *
5698 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5699 {
5700 return new pass_ipa_free_lang_data (ctxt);
5701 }
5702
5703 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5704 ATTR_NAME. Also used internally by remove_attribute(). */
5705 bool
5706 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5707 {
5708 size_t ident_len = IDENTIFIER_LENGTH (ident);
5709
5710 if (ident_len == attr_len)
5711 {
5712 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5713 return true;
5714 }
5715 else if (ident_len == attr_len + 4)
5716 {
5717 /* There is the possibility that ATTR is 'text' and IDENT is
5718 '__text__'. */
5719 const char *p = IDENTIFIER_POINTER (ident);
5720 if (p[0] == '_' && p[1] == '_'
5721 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5722 && strncmp (attr_name, p + 2, attr_len) == 0)
5723 return true;
5724 }
5725
5726 return false;
5727 }
5728
5729 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5730 of ATTR_NAME, and LIST is not NULL_TREE. */
5731 tree
5732 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5733 {
5734 while (list)
5735 {
5736 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5737
5738 if (ident_len == attr_len)
5739 {
5740 if (!strcmp (attr_name,
5741 IDENTIFIER_POINTER (get_attribute_name (list))))
5742 break;
5743 }
5744 /* TODO: If we made sure that attributes were stored in the
5745 canonical form without '__...__' (ie, as in 'text' as opposed
5746 to '__text__') then we could avoid the following case. */
5747 else if (ident_len == attr_len + 4)
5748 {
5749 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5750 if (p[0] == '_' && p[1] == '_'
5751 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5752 && strncmp (attr_name, p + 2, attr_len) == 0)
5753 break;
5754 }
5755 list = TREE_CHAIN (list);
5756 }
5757
5758 return list;
5759 }
5760
5761 /* Given an attribute name ATTR_NAME and a list of attributes LIST,
5762 return a pointer to the attribute's list first element if the attribute
5763 starts with ATTR_NAME. ATTR_NAME must be in the form 'text' (not
5764 '__text__'). */
5765
5766 tree
5767 private_lookup_attribute_by_prefix (const char *attr_name, size_t attr_len,
5768 tree list)
5769 {
5770 while (list)
5771 {
5772 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5773
5774 if (attr_len > ident_len)
5775 {
5776 list = TREE_CHAIN (list);
5777 continue;
5778 }
5779
5780 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5781
5782 if (strncmp (attr_name, p, attr_len) == 0)
5783 break;
5784
5785 /* TODO: If we made sure that attributes were stored in the
5786 canonical form without '__...__' (ie, as in 'text' as opposed
5787 to '__text__') then we could avoid the following case. */
5788 if (p[0] == '_' && p[1] == '_' &&
5789 strncmp (attr_name, p + 2, attr_len) == 0)
5790 break;
5791
5792 list = TREE_CHAIN (list);
5793 }
5794
5795 return list;
5796 }
5797
5798
5799 /* A variant of lookup_attribute() that can be used with an identifier
5800 as the first argument, and where the identifier can be either
5801 'text' or '__text__'.
5802
5803 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5804 return a pointer to the attribute's list element if the attribute
5805 is part of the list, or NULL_TREE if not found. If the attribute
5806 appears more than once, this only returns the first occurrence; the
5807 TREE_CHAIN of the return value should be passed back in if further
5808 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5809 can be in the form 'text' or '__text__'. */
5810 static tree
5811 lookup_ident_attribute (tree attr_identifier, tree list)
5812 {
5813 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5814
5815 while (list)
5816 {
5817 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5818 == IDENTIFIER_NODE);
5819
5820 /* Identifiers can be compared directly for equality. */
5821 if (attr_identifier == get_attribute_name (list))
5822 break;
5823
5824 /* If they are not equal, they may still be one in the form
5825 'text' while the other one is in the form '__text__'. TODO:
5826 If we were storing attributes in normalized 'text' form, then
5827 this could all go away and we could take full advantage of
5828 the fact that we're comparing identifiers. :-) */
5829 {
5830 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5831 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5832
5833 if (ident_len == attr_len + 4)
5834 {
5835 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5836 const char *q = IDENTIFIER_POINTER (attr_identifier);
5837 if (p[0] == '_' && p[1] == '_'
5838 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5839 && strncmp (q, p + 2, attr_len) == 0)
5840 break;
5841 }
5842 else if (ident_len + 4 == attr_len)
5843 {
5844 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5845 const char *q = IDENTIFIER_POINTER (attr_identifier);
5846 if (q[0] == '_' && q[1] == '_'
5847 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5848 && strncmp (q + 2, p, ident_len) == 0)
5849 break;
5850 }
5851 }
5852 list = TREE_CHAIN (list);
5853 }
5854
5855 return list;
5856 }
5857
5858 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5859 modified list. */
5860
5861 tree
5862 remove_attribute (const char *attr_name, tree list)
5863 {
5864 tree *p;
5865 size_t attr_len = strlen (attr_name);
5866
5867 gcc_checking_assert (attr_name[0] != '_');
5868
5869 for (p = &list; *p; )
5870 {
5871 tree l = *p;
5872 /* TODO: If we were storing attributes in normalized form, here
5873 we could use a simple strcmp(). */
5874 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5875 *p = TREE_CHAIN (l);
5876 else
5877 p = &TREE_CHAIN (l);
5878 }
5879
5880 return list;
5881 }
5882
5883 /* Return an attribute list that is the union of a1 and a2. */
5884
5885 tree
5886 merge_attributes (tree a1, tree a2)
5887 {
5888 tree attributes;
5889
5890 /* Either one unset? Take the set one. */
5891
5892 if ((attributes = a1) == 0)
5893 attributes = a2;
5894
5895 /* One that completely contains the other? Take it. */
5896
5897 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5898 {
5899 if (attribute_list_contained (a2, a1))
5900 attributes = a2;
5901 else
5902 {
5903 /* Pick the longest list, and hang on the other list. */
5904
5905 if (list_length (a1) < list_length (a2))
5906 attributes = a2, a2 = a1;
5907
5908 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5909 {
5910 tree a;
5911 for (a = lookup_ident_attribute (get_attribute_name (a2),
5912 attributes);
5913 a != NULL_TREE && !attribute_value_equal (a, a2);
5914 a = lookup_ident_attribute (get_attribute_name (a2),
5915 TREE_CHAIN (a)))
5916 ;
5917 if (a == NULL_TREE)
5918 {
5919 a1 = copy_node (a2);
5920 TREE_CHAIN (a1) = attributes;
5921 attributes = a1;
5922 }
5923 }
5924 }
5925 }
5926 return attributes;
5927 }
5928
5929 /* Given types T1 and T2, merge their attributes and return
5930 the result. */
5931
5932 tree
5933 merge_type_attributes (tree t1, tree t2)
5934 {
5935 return merge_attributes (TYPE_ATTRIBUTES (t1),
5936 TYPE_ATTRIBUTES (t2));
5937 }
5938
5939 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5940 the result. */
5941
5942 tree
5943 merge_decl_attributes (tree olddecl, tree newdecl)
5944 {
5945 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5946 DECL_ATTRIBUTES (newdecl));
5947 }
5948
5949 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5950
5951 /* Specialization of merge_decl_attributes for various Windows targets.
5952
5953 This handles the following situation:
5954
5955 __declspec (dllimport) int foo;
5956 int foo;
5957
5958 The second instance of `foo' nullifies the dllimport. */
5959
5960 tree
5961 merge_dllimport_decl_attributes (tree old, tree new_tree)
5962 {
5963 tree a;
5964 int delete_dllimport_p = 1;
5965
5966 /* What we need to do here is remove from `old' dllimport if it doesn't
5967 appear in `new'. dllimport behaves like extern: if a declaration is
5968 marked dllimport and a definition appears later, then the object
5969 is not dllimport'd. We also remove a `new' dllimport if the old list
5970 contains dllexport: dllexport always overrides dllimport, regardless
5971 of the order of declaration. */
5972 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5973 delete_dllimport_p = 0;
5974 else if (DECL_DLLIMPORT_P (new_tree)
5975 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5976 {
5977 DECL_DLLIMPORT_P (new_tree) = 0;
5978 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5979 "dllimport ignored", new_tree);
5980 }
5981 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5982 {
5983 /* Warn about overriding a symbol that has already been used, e.g.:
5984 extern int __attribute__ ((dllimport)) foo;
5985 int* bar () {return &foo;}
5986 int foo;
5987 */
5988 if (TREE_USED (old))
5989 {
5990 warning (0, "%q+D redeclared without dllimport attribute "
5991 "after being referenced with dll linkage", new_tree);
5992 /* If we have used a variable's address with dllimport linkage,
5993 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5994 decl may already have had TREE_CONSTANT computed.
5995 We still remove the attribute so that assembler code refers
5996 to '&foo rather than '_imp__foo'. */
5997 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5998 DECL_DLLIMPORT_P (new_tree) = 1;
5999 }
6000
6001 /* Let an inline definition silently override the external reference,
6002 but otherwise warn about attribute inconsistency. */
6003 else if (TREE_CODE (new_tree) == VAR_DECL
6004 || !DECL_DECLARED_INLINE_P (new_tree))
6005 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
6006 "previous dllimport ignored", new_tree);
6007 }
6008 else
6009 delete_dllimport_p = 0;
6010
6011 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
6012
6013 if (delete_dllimport_p)
6014 a = remove_attribute ("dllimport", a);
6015
6016 return a;
6017 }
6018
6019 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
6020 struct attribute_spec.handler. */
6021
6022 tree
6023 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
6024 bool *no_add_attrs)
6025 {
6026 tree node = *pnode;
6027 bool is_dllimport;
6028
6029 /* These attributes may apply to structure and union types being created,
6030 but otherwise should pass to the declaration involved. */
6031 if (!DECL_P (node))
6032 {
6033 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
6034 | (int) ATTR_FLAG_ARRAY_NEXT))
6035 {
6036 *no_add_attrs = true;
6037 return tree_cons (name, args, NULL_TREE);
6038 }
6039 if (TREE_CODE (node) == RECORD_TYPE
6040 || TREE_CODE (node) == UNION_TYPE)
6041 {
6042 node = TYPE_NAME (node);
6043 if (!node)
6044 return NULL_TREE;
6045 }
6046 else
6047 {
6048 warning (OPT_Wattributes, "%qE attribute ignored",
6049 name);
6050 *no_add_attrs = true;
6051 return NULL_TREE;
6052 }
6053 }
6054
6055 if (TREE_CODE (node) != FUNCTION_DECL
6056 && TREE_CODE (node) != VAR_DECL
6057 && TREE_CODE (node) != TYPE_DECL)
6058 {
6059 *no_add_attrs = true;
6060 warning (OPT_Wattributes, "%qE attribute ignored",
6061 name);
6062 return NULL_TREE;
6063 }
6064
6065 if (TREE_CODE (node) == TYPE_DECL
6066 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
6067 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
6068 {
6069 *no_add_attrs = true;
6070 warning (OPT_Wattributes, "%qE attribute ignored",
6071 name);
6072 return NULL_TREE;
6073 }
6074
6075 is_dllimport = is_attribute_p ("dllimport", name);
6076
6077 /* Report error on dllimport ambiguities seen now before they cause
6078 any damage. */
6079 if (is_dllimport)
6080 {
6081 /* Honor any target-specific overrides. */
6082 if (!targetm.valid_dllimport_attribute_p (node))
6083 *no_add_attrs = true;
6084
6085 else if (TREE_CODE (node) == FUNCTION_DECL
6086 && DECL_DECLARED_INLINE_P (node))
6087 {
6088 warning (OPT_Wattributes, "inline function %q+D declared as "
6089 " dllimport: attribute ignored", node);
6090 *no_add_attrs = true;
6091 }
6092 /* Like MS, treat definition of dllimported variables and
6093 non-inlined functions on declaration as syntax errors. */
6094 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
6095 {
6096 error ("function %q+D definition is marked dllimport", node);
6097 *no_add_attrs = true;
6098 }
6099
6100 else if (TREE_CODE (node) == VAR_DECL)
6101 {
6102 if (DECL_INITIAL (node))
6103 {
6104 error ("variable %q+D definition is marked dllimport",
6105 node);
6106 *no_add_attrs = true;
6107 }
6108
6109 /* `extern' needn't be specified with dllimport.
6110 Specify `extern' now and hope for the best. Sigh. */
6111 DECL_EXTERNAL (node) = 1;
6112 /* Also, implicitly give dllimport'd variables declared within
6113 a function global scope, unless declared static. */
6114 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
6115 TREE_PUBLIC (node) = 1;
6116 }
6117
6118 if (*no_add_attrs == false)
6119 DECL_DLLIMPORT_P (node) = 1;
6120 }
6121 else if (TREE_CODE (node) == FUNCTION_DECL
6122 && DECL_DECLARED_INLINE_P (node)
6123 && flag_keep_inline_dllexport)
6124 /* An exported function, even if inline, must be emitted. */
6125 DECL_EXTERNAL (node) = 0;
6126
6127 /* Report error if symbol is not accessible at global scope. */
6128 if (!TREE_PUBLIC (node)
6129 && (TREE_CODE (node) == VAR_DECL
6130 || TREE_CODE (node) == FUNCTION_DECL))
6131 {
6132 error ("external linkage required for symbol %q+D because of "
6133 "%qE attribute", node, name);
6134 *no_add_attrs = true;
6135 }
6136
6137 /* A dllexport'd entity must have default visibility so that other
6138 program units (shared libraries or the main executable) can see
6139 it. A dllimport'd entity must have default visibility so that
6140 the linker knows that undefined references within this program
6141 unit can be resolved by the dynamic linker. */
6142 if (!*no_add_attrs)
6143 {
6144 if (DECL_VISIBILITY_SPECIFIED (node)
6145 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
6146 error ("%qE implies default visibility, but %qD has already "
6147 "been declared with a different visibility",
6148 name, node);
6149 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
6150 DECL_VISIBILITY_SPECIFIED (node) = 1;
6151 }
6152
6153 return NULL_TREE;
6154 }
6155
6156 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
6157 \f
6158 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6159 of the various TYPE_QUAL values. */
6160
6161 static void
6162 set_type_quals (tree type, int type_quals)
6163 {
6164 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6165 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6166 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6167 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6168 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6169 }
6170
6171 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6172
6173 bool
6174 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6175 {
6176 return (TYPE_QUALS (cand) == type_quals
6177 && TYPE_NAME (cand) == TYPE_NAME (base)
6178 /* Apparently this is needed for Objective-C. */
6179 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6180 /* Check alignment. */
6181 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6182 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6183 TYPE_ATTRIBUTES (base)));
6184 }
6185
6186 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6187
6188 static bool
6189 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6190 {
6191 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6192 && TYPE_NAME (cand) == TYPE_NAME (base)
6193 /* Apparently this is needed for Objective-C. */
6194 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6195 /* Check alignment. */
6196 && TYPE_ALIGN (cand) == align
6197 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6198 TYPE_ATTRIBUTES (base)));
6199 }
6200
6201 /* This function checks to see if TYPE matches the size one of the built-in
6202 atomic types, and returns that core atomic type. */
6203
6204 static tree
6205 find_atomic_core_type (tree type)
6206 {
6207 tree base_atomic_type;
6208
6209 /* Only handle complete types. */
6210 if (TYPE_SIZE (type) == NULL_TREE)
6211 return NULL_TREE;
6212
6213 HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
6214 switch (type_size)
6215 {
6216 case 8:
6217 base_atomic_type = atomicQI_type_node;
6218 break;
6219
6220 case 16:
6221 base_atomic_type = atomicHI_type_node;
6222 break;
6223
6224 case 32:
6225 base_atomic_type = atomicSI_type_node;
6226 break;
6227
6228 case 64:
6229 base_atomic_type = atomicDI_type_node;
6230 break;
6231
6232 case 128:
6233 base_atomic_type = atomicTI_type_node;
6234 break;
6235
6236 default:
6237 base_atomic_type = NULL_TREE;
6238 }
6239
6240 return base_atomic_type;
6241 }
6242
6243 /* Return a version of the TYPE, qualified as indicated by the
6244 TYPE_QUALS, if one exists. If no qualified version exists yet,
6245 return NULL_TREE. */
6246
6247 tree
6248 get_qualified_type (tree type, int type_quals)
6249 {
6250 tree t;
6251
6252 if (TYPE_QUALS (type) == type_quals)
6253 return type;
6254
6255 /* Search the chain of variants to see if there is already one there just
6256 like the one we need to have. If so, use that existing one. We must
6257 preserve the TYPE_NAME, since there is code that depends on this. */
6258 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6259 if (check_qualified_type (t, type, type_quals))
6260 return t;
6261
6262 return NULL_TREE;
6263 }
6264
6265 /* Like get_qualified_type, but creates the type if it does not
6266 exist. This function never returns NULL_TREE. */
6267
6268 tree
6269 build_qualified_type (tree type, int type_quals)
6270 {
6271 tree t;
6272
6273 /* See if we already have the appropriate qualified variant. */
6274 t = get_qualified_type (type, type_quals);
6275
6276 /* If not, build it. */
6277 if (!t)
6278 {
6279 t = build_variant_type_copy (type);
6280 set_type_quals (t, type_quals);
6281
6282 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6283 {
6284 /* See if this object can map to a basic atomic type. */
6285 tree atomic_type = find_atomic_core_type (type);
6286 if (atomic_type)
6287 {
6288 /* Ensure the alignment of this type is compatible with
6289 the required alignment of the atomic type. */
6290 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6291 TYPE_ALIGN (t) = TYPE_ALIGN (atomic_type);
6292 }
6293 }
6294
6295 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6296 /* Propagate structural equality. */
6297 SET_TYPE_STRUCTURAL_EQUALITY (t);
6298 else if (TYPE_CANONICAL (type) != type)
6299 /* Build the underlying canonical type, since it is different
6300 from TYPE. */
6301 {
6302 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6303 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6304 }
6305 else
6306 /* T is its own canonical type. */
6307 TYPE_CANONICAL (t) = t;
6308
6309 }
6310
6311 return t;
6312 }
6313
6314 /* Create a variant of type T with alignment ALIGN. */
6315
6316 tree
6317 build_aligned_type (tree type, unsigned int align)
6318 {
6319 tree t;
6320
6321 if (TYPE_PACKED (type)
6322 || TYPE_ALIGN (type) == align)
6323 return type;
6324
6325 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6326 if (check_aligned_type (t, type, align))
6327 return t;
6328
6329 t = build_variant_type_copy (type);
6330 TYPE_ALIGN (t) = align;
6331
6332 return t;
6333 }
6334
6335 /* Create a new distinct copy of TYPE. The new type is made its own
6336 MAIN_VARIANT. If TYPE requires structural equality checks, the
6337 resulting type requires structural equality checks; otherwise, its
6338 TYPE_CANONICAL points to itself. */
6339
6340 tree
6341 build_distinct_type_copy (tree type)
6342 {
6343 tree t = copy_node (type);
6344
6345 TYPE_POINTER_TO (t) = 0;
6346 TYPE_REFERENCE_TO (t) = 0;
6347
6348 /* Set the canonical type either to a new equivalence class, or
6349 propagate the need for structural equality checks. */
6350 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6351 SET_TYPE_STRUCTURAL_EQUALITY (t);
6352 else
6353 TYPE_CANONICAL (t) = t;
6354
6355 /* Make it its own variant. */
6356 TYPE_MAIN_VARIANT (t) = t;
6357 TYPE_NEXT_VARIANT (t) = 0;
6358
6359 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6360 whose TREE_TYPE is not t. This can also happen in the Ada
6361 frontend when using subtypes. */
6362
6363 return t;
6364 }
6365
6366 /* Create a new variant of TYPE, equivalent but distinct. This is so
6367 the caller can modify it. TYPE_CANONICAL for the return type will
6368 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6369 are considered equal by the language itself (or that both types
6370 require structural equality checks). */
6371
6372 tree
6373 build_variant_type_copy (tree type)
6374 {
6375 tree t, m = TYPE_MAIN_VARIANT (type);
6376
6377 t = build_distinct_type_copy (type);
6378
6379 /* Since we're building a variant, assume that it is a non-semantic
6380 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6381 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6382
6383 /* Add the new type to the chain of variants of TYPE. */
6384 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6385 TYPE_NEXT_VARIANT (m) = t;
6386 TYPE_MAIN_VARIANT (t) = m;
6387
6388 return t;
6389 }
6390 \f
6391 /* Return true if the from tree in both tree maps are equal. */
6392
6393 int
6394 tree_map_base_eq (const void *va, const void *vb)
6395 {
6396 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6397 *const b = (const struct tree_map_base *) vb;
6398 return (a->from == b->from);
6399 }
6400
6401 /* Hash a from tree in a tree_base_map. */
6402
6403 unsigned int
6404 tree_map_base_hash (const void *item)
6405 {
6406 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6407 }
6408
6409 /* Return true if this tree map structure is marked for garbage collection
6410 purposes. We simply return true if the from tree is marked, so that this
6411 structure goes away when the from tree goes away. */
6412
6413 int
6414 tree_map_base_marked_p (const void *p)
6415 {
6416 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6417 }
6418
6419 /* Hash a from tree in a tree_map. */
6420
6421 unsigned int
6422 tree_map_hash (const void *item)
6423 {
6424 return (((const struct tree_map *) item)->hash);
6425 }
6426
6427 /* Hash a from tree in a tree_decl_map. */
6428
6429 unsigned int
6430 tree_decl_map_hash (const void *item)
6431 {
6432 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6433 }
6434
6435 /* Return the initialization priority for DECL. */
6436
6437 priority_type
6438 decl_init_priority_lookup (tree decl)
6439 {
6440 symtab_node *snode = symtab_node::get (decl);
6441
6442 if (!snode)
6443 return DEFAULT_INIT_PRIORITY;
6444 return
6445 snode->get_init_priority ();
6446 }
6447
6448 /* Return the finalization priority for DECL. */
6449
6450 priority_type
6451 decl_fini_priority_lookup (tree decl)
6452 {
6453 cgraph_node *node = cgraph_node::get (decl);
6454
6455 if (!node)
6456 return DEFAULT_INIT_PRIORITY;
6457 return
6458 node->get_fini_priority ();
6459 }
6460
6461 /* Set the initialization priority for DECL to PRIORITY. */
6462
6463 void
6464 decl_init_priority_insert (tree decl, priority_type priority)
6465 {
6466 struct symtab_node *snode;
6467
6468 if (priority == DEFAULT_INIT_PRIORITY)
6469 {
6470 snode = symtab_node::get (decl);
6471 if (!snode)
6472 return;
6473 }
6474 else if (TREE_CODE (decl) == VAR_DECL)
6475 snode = varpool_node::get_create (decl);
6476 else
6477 snode = cgraph_node::get_create (decl);
6478 snode->set_init_priority (priority);
6479 }
6480
6481 /* Set the finalization priority for DECL to PRIORITY. */
6482
6483 void
6484 decl_fini_priority_insert (tree decl, priority_type priority)
6485 {
6486 struct cgraph_node *node;
6487
6488 if (priority == DEFAULT_INIT_PRIORITY)
6489 {
6490 node = cgraph_node::get (decl);
6491 if (!node)
6492 return;
6493 }
6494 else
6495 node = cgraph_node::get_create (decl);
6496 node->set_fini_priority (priority);
6497 }
6498
6499 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6500
6501 static void
6502 print_debug_expr_statistics (void)
6503 {
6504 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6505 (long) htab_size (debug_expr_for_decl),
6506 (long) htab_elements (debug_expr_for_decl),
6507 htab_collisions (debug_expr_for_decl));
6508 }
6509
6510 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6511
6512 static void
6513 print_value_expr_statistics (void)
6514 {
6515 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6516 (long) htab_size (value_expr_for_decl),
6517 (long) htab_elements (value_expr_for_decl),
6518 htab_collisions (value_expr_for_decl));
6519 }
6520
6521 /* Lookup a debug expression for FROM, and return it if we find one. */
6522
6523 tree
6524 decl_debug_expr_lookup (tree from)
6525 {
6526 struct tree_decl_map *h, in;
6527 in.base.from = from;
6528
6529 h = (struct tree_decl_map *)
6530 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6531 if (h)
6532 return h->to;
6533 return NULL_TREE;
6534 }
6535
6536 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6537
6538 void
6539 decl_debug_expr_insert (tree from, tree to)
6540 {
6541 struct tree_decl_map *h;
6542 void **loc;
6543
6544 h = ggc_alloc<tree_decl_map> ();
6545 h->base.from = from;
6546 h->to = to;
6547 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6548 INSERT);
6549 *(struct tree_decl_map **) loc = h;
6550 }
6551
6552 /* Lookup a value expression for FROM, and return it if we find one. */
6553
6554 tree
6555 decl_value_expr_lookup (tree from)
6556 {
6557 struct tree_decl_map *h, in;
6558 in.base.from = from;
6559
6560 h = (struct tree_decl_map *)
6561 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6562 if (h)
6563 return h->to;
6564 return NULL_TREE;
6565 }
6566
6567 /* Insert a mapping FROM->TO in the value expression hashtable. */
6568
6569 void
6570 decl_value_expr_insert (tree from, tree to)
6571 {
6572 struct tree_decl_map *h;
6573 void **loc;
6574
6575 h = ggc_alloc<tree_decl_map> ();
6576 h->base.from = from;
6577 h->to = to;
6578 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6579 INSERT);
6580 *(struct tree_decl_map **) loc = h;
6581 }
6582
6583 /* Lookup a vector of debug arguments for FROM, and return it if we
6584 find one. */
6585
6586 vec<tree, va_gc> **
6587 decl_debug_args_lookup (tree from)
6588 {
6589 struct tree_vec_map *h, in;
6590
6591 if (!DECL_HAS_DEBUG_ARGS_P (from))
6592 return NULL;
6593 gcc_checking_assert (debug_args_for_decl != NULL);
6594 in.base.from = from;
6595 h = (struct tree_vec_map *)
6596 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6597 if (h)
6598 return &h->to;
6599 return NULL;
6600 }
6601
6602 /* Insert a mapping FROM->empty vector of debug arguments in the value
6603 expression hashtable. */
6604
6605 vec<tree, va_gc> **
6606 decl_debug_args_insert (tree from)
6607 {
6608 struct tree_vec_map *h;
6609 void **loc;
6610
6611 if (DECL_HAS_DEBUG_ARGS_P (from))
6612 return decl_debug_args_lookup (from);
6613 if (debug_args_for_decl == NULL)
6614 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6615 tree_vec_map_eq, 0);
6616 h = ggc_alloc<tree_vec_map> ();
6617 h->base.from = from;
6618 h->to = NULL;
6619 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6620 INSERT);
6621 *(struct tree_vec_map **) loc = h;
6622 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6623 return &h->to;
6624 }
6625
6626 /* Hashing of types so that we don't make duplicates.
6627 The entry point is `type_hash_canon'. */
6628
6629 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6630 with types in the TREE_VALUE slots), by adding the hash codes
6631 of the individual types. */
6632
6633 static void
6634 type_hash_list (const_tree list, inchash::hash &hstate)
6635 {
6636 const_tree tail;
6637
6638 for (tail = list; tail; tail = TREE_CHAIN (tail))
6639 if (TREE_VALUE (tail) != error_mark_node)
6640 hstate.add_object (TYPE_HASH (TREE_VALUE (tail)));
6641 }
6642
6643 /* These are the Hashtable callback functions. */
6644
6645 /* Returns true iff the types are equivalent. */
6646
6647 static int
6648 type_hash_eq (const void *va, const void *vb)
6649 {
6650 const struct type_hash *const a = (const struct type_hash *) va,
6651 *const b = (const struct type_hash *) vb;
6652
6653 /* First test the things that are the same for all types. */
6654 if (a->hash != b->hash
6655 || TREE_CODE (a->type) != TREE_CODE (b->type)
6656 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6657 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6658 TYPE_ATTRIBUTES (b->type))
6659 || (TREE_CODE (a->type) != COMPLEX_TYPE
6660 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6661 return 0;
6662
6663 /* Be careful about comparing arrays before and after the element type
6664 has been completed; don't compare TYPE_ALIGN unless both types are
6665 complete. */
6666 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6667 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6668 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6669 return 0;
6670
6671 switch (TREE_CODE (a->type))
6672 {
6673 case VOID_TYPE:
6674 case COMPLEX_TYPE:
6675 case POINTER_TYPE:
6676 case REFERENCE_TYPE:
6677 case NULLPTR_TYPE:
6678 return 1;
6679
6680 case VECTOR_TYPE:
6681 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6682
6683 case ENUMERAL_TYPE:
6684 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6685 && !(TYPE_VALUES (a->type)
6686 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6687 && TYPE_VALUES (b->type)
6688 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6689 && type_list_equal (TYPE_VALUES (a->type),
6690 TYPE_VALUES (b->type))))
6691 return 0;
6692
6693 /* ... fall through ... */
6694
6695 case INTEGER_TYPE:
6696 case REAL_TYPE:
6697 case BOOLEAN_TYPE:
6698 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6699 return false;
6700 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6701 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6702 TYPE_MAX_VALUE (b->type)))
6703 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6704 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6705 TYPE_MIN_VALUE (b->type))));
6706
6707 case FIXED_POINT_TYPE:
6708 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6709
6710 case OFFSET_TYPE:
6711 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6712
6713 case METHOD_TYPE:
6714 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6715 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6716 || (TYPE_ARG_TYPES (a->type)
6717 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6718 && TYPE_ARG_TYPES (b->type)
6719 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6720 && type_list_equal (TYPE_ARG_TYPES (a->type),
6721 TYPE_ARG_TYPES (b->type)))))
6722 break;
6723 return 0;
6724 case ARRAY_TYPE:
6725 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6726
6727 case RECORD_TYPE:
6728 case UNION_TYPE:
6729 case QUAL_UNION_TYPE:
6730 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6731 || (TYPE_FIELDS (a->type)
6732 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6733 && TYPE_FIELDS (b->type)
6734 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6735 && type_list_equal (TYPE_FIELDS (a->type),
6736 TYPE_FIELDS (b->type))));
6737
6738 case FUNCTION_TYPE:
6739 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6740 || (TYPE_ARG_TYPES (a->type)
6741 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6742 && TYPE_ARG_TYPES (b->type)
6743 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6744 && type_list_equal (TYPE_ARG_TYPES (a->type),
6745 TYPE_ARG_TYPES (b->type))))
6746 break;
6747 return 0;
6748
6749 default:
6750 return 0;
6751 }
6752
6753 if (lang_hooks.types.type_hash_eq != NULL)
6754 return lang_hooks.types.type_hash_eq (a->type, b->type);
6755
6756 return 1;
6757 }
6758
6759 /* Return the cached hash value. */
6760
6761 static hashval_t
6762 type_hash_hash (const void *item)
6763 {
6764 return ((const struct type_hash *) item)->hash;
6765 }
6766
6767 /* Given TYPE, and HASHCODE its hash code, return the canonical
6768 object for an identical type if one already exists.
6769 Otherwise, return TYPE, and record it as the canonical object.
6770
6771 To use this function, first create a type of the sort you want.
6772 Then compute its hash code from the fields of the type that
6773 make it different from other similar types.
6774 Then call this function and use the value. */
6775
6776 tree
6777 type_hash_canon (unsigned int hashcode, tree type)
6778 {
6779 type_hash in;
6780 void **loc;
6781
6782 /* The hash table only contains main variants, so ensure that's what we're
6783 being passed. */
6784 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6785
6786 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6787 must call that routine before comparing TYPE_ALIGNs. */
6788 layout_type (type);
6789
6790 in.hash = hashcode;
6791 in.type = type;
6792
6793 loc = htab_find_slot_with_hash (type_hash_table, &in, hashcode, INSERT);
6794 if (*loc)
6795 {
6796 tree t1 = ((type_hash *) *loc)->type;
6797 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1);
6798 if (GATHER_STATISTICS)
6799 {
6800 tree_code_counts[(int) TREE_CODE (type)]--;
6801 tree_node_counts[(int) t_kind]--;
6802 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6803 }
6804 return t1;
6805 }
6806 else
6807 {
6808 struct type_hash *h;
6809
6810 h = ggc_alloc<type_hash> ();
6811 h->hash = hashcode;
6812 h->type = type;
6813 *loc = (void *)h;
6814
6815 return type;
6816 }
6817 }
6818
6819 /* See if the data pointed to by the type hash table is marked. We consider
6820 it marked if the type is marked or if a debug type number or symbol
6821 table entry has been made for the type. */
6822
6823 static int
6824 type_hash_marked_p (const void *p)
6825 {
6826 const_tree const type = ((const struct type_hash *) p)->type;
6827
6828 return ggc_marked_p (type);
6829 }
6830
6831 static void
6832 print_type_hash_statistics (void)
6833 {
6834 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6835 (long) htab_size (type_hash_table),
6836 (long) htab_elements (type_hash_table),
6837 htab_collisions (type_hash_table));
6838 }
6839
6840 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6841 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6842 by adding the hash codes of the individual attributes. */
6843
6844 static void
6845 attribute_hash_list (const_tree list, inchash::hash &hstate)
6846 {
6847 const_tree tail;
6848
6849 for (tail = list; tail; tail = TREE_CHAIN (tail))
6850 /* ??? Do we want to add in TREE_VALUE too? */
6851 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)));
6852 }
6853
6854 /* Given two lists of attributes, return true if list l2 is
6855 equivalent to l1. */
6856
6857 int
6858 attribute_list_equal (const_tree l1, const_tree l2)
6859 {
6860 if (l1 == l2)
6861 return 1;
6862
6863 return attribute_list_contained (l1, l2)
6864 && attribute_list_contained (l2, l1);
6865 }
6866
6867 /* Given two lists of attributes, return true if list L2 is
6868 completely contained within L1. */
6869 /* ??? This would be faster if attribute names were stored in a canonicalized
6870 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6871 must be used to show these elements are equivalent (which they are). */
6872 /* ??? It's not clear that attributes with arguments will always be handled
6873 correctly. */
6874
6875 int
6876 attribute_list_contained (const_tree l1, const_tree l2)
6877 {
6878 const_tree t1, t2;
6879
6880 /* First check the obvious, maybe the lists are identical. */
6881 if (l1 == l2)
6882 return 1;
6883
6884 /* Maybe the lists are similar. */
6885 for (t1 = l1, t2 = l2;
6886 t1 != 0 && t2 != 0
6887 && get_attribute_name (t1) == get_attribute_name (t2)
6888 && TREE_VALUE (t1) == TREE_VALUE (t2);
6889 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6890 ;
6891
6892 /* Maybe the lists are equal. */
6893 if (t1 == 0 && t2 == 0)
6894 return 1;
6895
6896 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6897 {
6898 const_tree attr;
6899 /* This CONST_CAST is okay because lookup_attribute does not
6900 modify its argument and the return value is assigned to a
6901 const_tree. */
6902 for (attr = lookup_ident_attribute (get_attribute_name (t2),
6903 CONST_CAST_TREE (l1));
6904 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6905 attr = lookup_ident_attribute (get_attribute_name (t2),
6906 TREE_CHAIN (attr)))
6907 ;
6908
6909 if (attr == NULL_TREE)
6910 return 0;
6911 }
6912
6913 return 1;
6914 }
6915
6916 /* Given two lists of types
6917 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6918 return 1 if the lists contain the same types in the same order.
6919 Also, the TREE_PURPOSEs must match. */
6920
6921 int
6922 type_list_equal (const_tree l1, const_tree l2)
6923 {
6924 const_tree t1, t2;
6925
6926 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6927 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6928 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6929 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6930 && (TREE_TYPE (TREE_PURPOSE (t1))
6931 == TREE_TYPE (TREE_PURPOSE (t2))))))
6932 return 0;
6933
6934 return t1 == t2;
6935 }
6936
6937 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6938 given by TYPE. If the argument list accepts variable arguments,
6939 then this function counts only the ordinary arguments. */
6940
6941 int
6942 type_num_arguments (const_tree type)
6943 {
6944 int i = 0;
6945 tree t;
6946
6947 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6948 /* If the function does not take a variable number of arguments,
6949 the last element in the list will have type `void'. */
6950 if (VOID_TYPE_P (TREE_VALUE (t)))
6951 break;
6952 else
6953 ++i;
6954
6955 return i;
6956 }
6957
6958 /* Nonzero if integer constants T1 and T2
6959 represent the same constant value. */
6960
6961 int
6962 tree_int_cst_equal (const_tree t1, const_tree t2)
6963 {
6964 if (t1 == t2)
6965 return 1;
6966
6967 if (t1 == 0 || t2 == 0)
6968 return 0;
6969
6970 if (TREE_CODE (t1) == INTEGER_CST
6971 && TREE_CODE (t2) == INTEGER_CST
6972 && wi::to_widest (t1) == wi::to_widest (t2))
6973 return 1;
6974
6975 return 0;
6976 }
6977
6978 /* Return true if T is an INTEGER_CST whose numerical value (extended
6979 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6980
6981 bool
6982 tree_fits_shwi_p (const_tree t)
6983 {
6984 return (t != NULL_TREE
6985 && TREE_CODE (t) == INTEGER_CST
6986 && wi::fits_shwi_p (wi::to_widest (t)));
6987 }
6988
6989 /* Return true if T is an INTEGER_CST whose numerical value (extended
6990 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6991
6992 bool
6993 tree_fits_uhwi_p (const_tree t)
6994 {
6995 return (t != NULL_TREE
6996 && TREE_CODE (t) == INTEGER_CST
6997 && wi::fits_uhwi_p (wi::to_widest (t)));
6998 }
6999
7000 /* T is an INTEGER_CST whose numerical value (extended according to
7001 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7002 HOST_WIDE_INT. */
7003
7004 HOST_WIDE_INT
7005 tree_to_shwi (const_tree t)
7006 {
7007 gcc_assert (tree_fits_shwi_p (t));
7008 return TREE_INT_CST_LOW (t);
7009 }
7010
7011 /* T is an INTEGER_CST whose numerical value (extended according to
7012 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7013 HOST_WIDE_INT. */
7014
7015 unsigned HOST_WIDE_INT
7016 tree_to_uhwi (const_tree t)
7017 {
7018 gcc_assert (tree_fits_uhwi_p (t));
7019 return TREE_INT_CST_LOW (t);
7020 }
7021
7022 /* Return the most significant (sign) bit of T. */
7023
7024 int
7025 tree_int_cst_sign_bit (const_tree t)
7026 {
7027 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7028
7029 return wi::extract_uhwi (t, bitno, 1);
7030 }
7031
7032 /* Return an indication of the sign of the integer constant T.
7033 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7034 Note that -1 will never be returned if T's type is unsigned. */
7035
7036 int
7037 tree_int_cst_sgn (const_tree t)
7038 {
7039 if (wi::eq_p (t, 0))
7040 return 0;
7041 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7042 return 1;
7043 else if (wi::neg_p (t))
7044 return -1;
7045 else
7046 return 1;
7047 }
7048
7049 /* Return the minimum number of bits needed to represent VALUE in a
7050 signed or unsigned type, UNSIGNEDP says which. */
7051
7052 unsigned int
7053 tree_int_cst_min_precision (tree value, signop sgn)
7054 {
7055 /* If the value is negative, compute its negative minus 1. The latter
7056 adjustment is because the absolute value of the largest negative value
7057 is one larger than the largest positive value. This is equivalent to
7058 a bit-wise negation, so use that operation instead. */
7059
7060 if (tree_int_cst_sgn (value) < 0)
7061 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7062
7063 /* Return the number of bits needed, taking into account the fact
7064 that we need one more bit for a signed than unsigned type.
7065 If value is 0 or -1, the minimum precision is 1 no matter
7066 whether unsignedp is true or false. */
7067
7068 if (integer_zerop (value))
7069 return 1;
7070 else
7071 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7072 }
7073
7074 /* Return truthvalue of whether T1 is the same tree structure as T2.
7075 Return 1 if they are the same.
7076 Return 0 if they are understandably different.
7077 Return -1 if either contains tree structure not understood by
7078 this function. */
7079
7080 int
7081 simple_cst_equal (const_tree t1, const_tree t2)
7082 {
7083 enum tree_code code1, code2;
7084 int cmp;
7085 int i;
7086
7087 if (t1 == t2)
7088 return 1;
7089 if (t1 == 0 || t2 == 0)
7090 return 0;
7091
7092 code1 = TREE_CODE (t1);
7093 code2 = TREE_CODE (t2);
7094
7095 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7096 {
7097 if (CONVERT_EXPR_CODE_P (code2)
7098 || code2 == NON_LVALUE_EXPR)
7099 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7100 else
7101 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7102 }
7103
7104 else if (CONVERT_EXPR_CODE_P (code2)
7105 || code2 == NON_LVALUE_EXPR)
7106 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7107
7108 if (code1 != code2)
7109 return 0;
7110
7111 switch (code1)
7112 {
7113 case INTEGER_CST:
7114 return wi::to_widest (t1) == wi::to_widest (t2);
7115
7116 case REAL_CST:
7117 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
7118
7119 case FIXED_CST:
7120 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7121
7122 case STRING_CST:
7123 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7124 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7125 TREE_STRING_LENGTH (t1)));
7126
7127 case CONSTRUCTOR:
7128 {
7129 unsigned HOST_WIDE_INT idx;
7130 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7131 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7132
7133 if (vec_safe_length (v1) != vec_safe_length (v2))
7134 return false;
7135
7136 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7137 /* ??? Should we handle also fields here? */
7138 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7139 return false;
7140 return true;
7141 }
7142
7143 case SAVE_EXPR:
7144 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7145
7146 case CALL_EXPR:
7147 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7148 if (cmp <= 0)
7149 return cmp;
7150 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7151 return 0;
7152 {
7153 const_tree arg1, arg2;
7154 const_call_expr_arg_iterator iter1, iter2;
7155 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7156 arg2 = first_const_call_expr_arg (t2, &iter2);
7157 arg1 && arg2;
7158 arg1 = next_const_call_expr_arg (&iter1),
7159 arg2 = next_const_call_expr_arg (&iter2))
7160 {
7161 cmp = simple_cst_equal (arg1, arg2);
7162 if (cmp <= 0)
7163 return cmp;
7164 }
7165 return arg1 == arg2;
7166 }
7167
7168 case TARGET_EXPR:
7169 /* Special case: if either target is an unallocated VAR_DECL,
7170 it means that it's going to be unified with whatever the
7171 TARGET_EXPR is really supposed to initialize, so treat it
7172 as being equivalent to anything. */
7173 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7174 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7175 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7176 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7177 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7178 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7179 cmp = 1;
7180 else
7181 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7182
7183 if (cmp <= 0)
7184 return cmp;
7185
7186 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7187
7188 case WITH_CLEANUP_EXPR:
7189 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7190 if (cmp <= 0)
7191 return cmp;
7192
7193 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7194
7195 case COMPONENT_REF:
7196 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7197 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7198
7199 return 0;
7200
7201 case VAR_DECL:
7202 case PARM_DECL:
7203 case CONST_DECL:
7204 case FUNCTION_DECL:
7205 return 0;
7206
7207 default:
7208 break;
7209 }
7210
7211 /* This general rule works for most tree codes. All exceptions should be
7212 handled above. If this is a language-specific tree code, we can't
7213 trust what might be in the operand, so say we don't know
7214 the situation. */
7215 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7216 return -1;
7217
7218 switch (TREE_CODE_CLASS (code1))
7219 {
7220 case tcc_unary:
7221 case tcc_binary:
7222 case tcc_comparison:
7223 case tcc_expression:
7224 case tcc_reference:
7225 case tcc_statement:
7226 cmp = 1;
7227 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7228 {
7229 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7230 if (cmp <= 0)
7231 return cmp;
7232 }
7233
7234 return cmp;
7235
7236 default:
7237 return -1;
7238 }
7239 }
7240
7241 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7242 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7243 than U, respectively. */
7244
7245 int
7246 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7247 {
7248 if (tree_int_cst_sgn (t) < 0)
7249 return -1;
7250 else if (!tree_fits_uhwi_p (t))
7251 return 1;
7252 else if (TREE_INT_CST_LOW (t) == u)
7253 return 0;
7254 else if (TREE_INT_CST_LOW (t) < u)
7255 return -1;
7256 else
7257 return 1;
7258 }
7259
7260 /* Return true if SIZE represents a constant size that is in bounds of
7261 what the middle-end and the backend accepts (covering not more than
7262 half of the address-space). */
7263
7264 bool
7265 valid_constant_size_p (const_tree size)
7266 {
7267 if (! tree_fits_uhwi_p (size)
7268 || TREE_OVERFLOW (size)
7269 || tree_int_cst_sign_bit (size) != 0)
7270 return false;
7271 return true;
7272 }
7273
7274 /* Return the precision of the type, or for a complex or vector type the
7275 precision of the type of its elements. */
7276
7277 unsigned int
7278 element_precision (const_tree type)
7279 {
7280 enum tree_code code = TREE_CODE (type);
7281 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7282 type = TREE_TYPE (type);
7283
7284 return TYPE_PRECISION (type);
7285 }
7286
7287 /* Return true if CODE represents an associative tree code. Otherwise
7288 return false. */
7289 bool
7290 associative_tree_code (enum tree_code code)
7291 {
7292 switch (code)
7293 {
7294 case BIT_IOR_EXPR:
7295 case BIT_AND_EXPR:
7296 case BIT_XOR_EXPR:
7297 case PLUS_EXPR:
7298 case MULT_EXPR:
7299 case MIN_EXPR:
7300 case MAX_EXPR:
7301 return true;
7302
7303 default:
7304 break;
7305 }
7306 return false;
7307 }
7308
7309 /* Return true if CODE represents a commutative tree code. Otherwise
7310 return false. */
7311 bool
7312 commutative_tree_code (enum tree_code code)
7313 {
7314 switch (code)
7315 {
7316 case PLUS_EXPR:
7317 case MULT_EXPR:
7318 case MULT_HIGHPART_EXPR:
7319 case MIN_EXPR:
7320 case MAX_EXPR:
7321 case BIT_IOR_EXPR:
7322 case BIT_XOR_EXPR:
7323 case BIT_AND_EXPR:
7324 case NE_EXPR:
7325 case EQ_EXPR:
7326 case UNORDERED_EXPR:
7327 case ORDERED_EXPR:
7328 case UNEQ_EXPR:
7329 case LTGT_EXPR:
7330 case TRUTH_AND_EXPR:
7331 case TRUTH_XOR_EXPR:
7332 case TRUTH_OR_EXPR:
7333 case WIDEN_MULT_EXPR:
7334 case VEC_WIDEN_MULT_HI_EXPR:
7335 case VEC_WIDEN_MULT_LO_EXPR:
7336 case VEC_WIDEN_MULT_EVEN_EXPR:
7337 case VEC_WIDEN_MULT_ODD_EXPR:
7338 return true;
7339
7340 default:
7341 break;
7342 }
7343 return false;
7344 }
7345
7346 /* Return true if CODE represents a ternary tree code for which the
7347 first two operands are commutative. Otherwise return false. */
7348 bool
7349 commutative_ternary_tree_code (enum tree_code code)
7350 {
7351 switch (code)
7352 {
7353 case WIDEN_MULT_PLUS_EXPR:
7354 case WIDEN_MULT_MINUS_EXPR:
7355 return true;
7356
7357 default:
7358 break;
7359 }
7360 return false;
7361 }
7362
7363 namespace inchash
7364 {
7365
7366 /* Generate a hash value for an expression. This can be used iteratively
7367 by passing a previous result as the HSTATE argument.
7368
7369 This function is intended to produce the same hash for expressions which
7370 would compare equal using operand_equal_p. */
7371 void
7372 add_expr (const_tree t, inchash::hash &hstate)
7373 {
7374 int i;
7375 enum tree_code code;
7376 enum tree_code_class tclass;
7377
7378 if (t == NULL_TREE)
7379 {
7380 hstate.merge_hash (0);
7381 return;
7382 }
7383
7384 code = TREE_CODE (t);
7385
7386 switch (code)
7387 {
7388 /* Alas, constants aren't shared, so we can't rely on pointer
7389 identity. */
7390 case VOID_CST:
7391 hstate.merge_hash (0);
7392 return;
7393 case INTEGER_CST:
7394 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
7395 hstate.add_wide_int (TREE_INT_CST_ELT (t, i));
7396 return;
7397 case REAL_CST:
7398 {
7399 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7400 hstate.merge_hash (val2);
7401 return;
7402 }
7403 case FIXED_CST:
7404 {
7405 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7406 hstate.merge_hash (val2);
7407 return;
7408 }
7409 case STRING_CST:
7410 hstate.add ((const void *) TREE_STRING_POINTER (t), TREE_STRING_LENGTH (t));
7411 return;
7412 case COMPLEX_CST:
7413 inchash::add_expr (TREE_REALPART (t), hstate);
7414 inchash::add_expr (TREE_IMAGPART (t), hstate);
7415 return;
7416 case VECTOR_CST:
7417 {
7418 unsigned i;
7419 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7420 inchash::add_expr (VECTOR_CST_ELT (t, i), hstate);
7421 return;
7422 }
7423 case SSA_NAME:
7424 /* We can just compare by pointer. */
7425 hstate.add_wide_int (SSA_NAME_VERSION (t));
7426 return;
7427 case PLACEHOLDER_EXPR:
7428 /* The node itself doesn't matter. */
7429 return;
7430 case TREE_LIST:
7431 /* A list of expressions, for a CALL_EXPR or as the elements of a
7432 VECTOR_CST. */
7433 for (; t; t = TREE_CHAIN (t))
7434 inchash::add_expr (TREE_VALUE (t), hstate);
7435 return;
7436 case CONSTRUCTOR:
7437 {
7438 unsigned HOST_WIDE_INT idx;
7439 tree field, value;
7440 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7441 {
7442 inchash::add_expr (field, hstate);
7443 inchash::add_expr (value, hstate);
7444 }
7445 return;
7446 }
7447 case FUNCTION_DECL:
7448 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7449 Otherwise nodes that compare equal according to operand_equal_p might
7450 get different hash codes. However, don't do this for machine specific
7451 or front end builtins, since the function code is overloaded in those
7452 cases. */
7453 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7454 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7455 {
7456 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7457 code = TREE_CODE (t);
7458 }
7459 /* FALL THROUGH */
7460 default:
7461 tclass = TREE_CODE_CLASS (code);
7462
7463 if (tclass == tcc_declaration)
7464 {
7465 /* DECL's have a unique ID */
7466 hstate.add_wide_int (DECL_UID (t));
7467 }
7468 else
7469 {
7470 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7471
7472 hstate.add_object (code);
7473
7474 /* Don't hash the type, that can lead to having nodes which
7475 compare equal according to operand_equal_p, but which
7476 have different hash codes. */
7477 if (CONVERT_EXPR_CODE_P (code)
7478 || code == NON_LVALUE_EXPR)
7479 {
7480 /* Make sure to include signness in the hash computation. */
7481 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7482 inchash::add_expr (TREE_OPERAND (t, 0), hstate);
7483 }
7484
7485 else if (commutative_tree_code (code))
7486 {
7487 /* It's a commutative expression. We want to hash it the same
7488 however it appears. We do this by first hashing both operands
7489 and then rehashing based on the order of their independent
7490 hashes. */
7491 inchash::hash one, two;
7492 inchash::add_expr (TREE_OPERAND (t, 0), one);
7493 inchash::add_expr (TREE_OPERAND (t, 1), two);
7494 hstate.add_commutative (one, two);
7495 }
7496 else
7497 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7498 inchash::add_expr (TREE_OPERAND (t, i), hstate);
7499 }
7500 return;
7501 }
7502 }
7503
7504 }
7505
7506 /* Constructors for pointer, array and function types.
7507 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7508 constructed by language-dependent code, not here.) */
7509
7510 /* Construct, lay out and return the type of pointers to TO_TYPE with
7511 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7512 reference all of memory. If such a type has already been
7513 constructed, reuse it. */
7514
7515 tree
7516 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7517 bool can_alias_all)
7518 {
7519 tree t;
7520
7521 if (to_type == error_mark_node)
7522 return error_mark_node;
7523
7524 /* If the pointed-to type has the may_alias attribute set, force
7525 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7526 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7527 can_alias_all = true;
7528
7529 /* In some cases, languages will have things that aren't a POINTER_TYPE
7530 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7531 In that case, return that type without regard to the rest of our
7532 operands.
7533
7534 ??? This is a kludge, but consistent with the way this function has
7535 always operated and there doesn't seem to be a good way to avoid this
7536 at the moment. */
7537 if (TYPE_POINTER_TO (to_type) != 0
7538 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7539 return TYPE_POINTER_TO (to_type);
7540
7541 /* First, if we already have a type for pointers to TO_TYPE and it's
7542 the proper mode, use it. */
7543 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7544 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7545 return t;
7546
7547 t = make_node (POINTER_TYPE);
7548
7549 TREE_TYPE (t) = to_type;
7550 SET_TYPE_MODE (t, mode);
7551 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7552 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7553 TYPE_POINTER_TO (to_type) = t;
7554
7555 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7556 SET_TYPE_STRUCTURAL_EQUALITY (t);
7557 else if (TYPE_CANONICAL (to_type) != to_type)
7558 TYPE_CANONICAL (t)
7559 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7560 mode, can_alias_all);
7561
7562 /* Lay out the type. This function has many callers that are concerned
7563 with expression-construction, and this simplifies them all. */
7564 layout_type (t);
7565
7566 return t;
7567 }
7568
7569 /* By default build pointers in ptr_mode. */
7570
7571 tree
7572 build_pointer_type (tree to_type)
7573 {
7574 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7575 : TYPE_ADDR_SPACE (to_type);
7576 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7577 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7578 }
7579
7580 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7581
7582 tree
7583 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7584 bool can_alias_all)
7585 {
7586 tree t;
7587
7588 if (to_type == error_mark_node)
7589 return error_mark_node;
7590
7591 /* If the pointed-to type has the may_alias attribute set, force
7592 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7593 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7594 can_alias_all = true;
7595
7596 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7597 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7598 In that case, return that type without regard to the rest of our
7599 operands.
7600
7601 ??? This is a kludge, but consistent with the way this function has
7602 always operated and there doesn't seem to be a good way to avoid this
7603 at the moment. */
7604 if (TYPE_REFERENCE_TO (to_type) != 0
7605 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7606 return TYPE_REFERENCE_TO (to_type);
7607
7608 /* First, if we already have a type for pointers to TO_TYPE and it's
7609 the proper mode, use it. */
7610 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7611 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7612 return t;
7613
7614 t = make_node (REFERENCE_TYPE);
7615
7616 TREE_TYPE (t) = to_type;
7617 SET_TYPE_MODE (t, mode);
7618 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7619 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7620 TYPE_REFERENCE_TO (to_type) = t;
7621
7622 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7623 SET_TYPE_STRUCTURAL_EQUALITY (t);
7624 else if (TYPE_CANONICAL (to_type) != to_type)
7625 TYPE_CANONICAL (t)
7626 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7627 mode, can_alias_all);
7628
7629 layout_type (t);
7630
7631 return t;
7632 }
7633
7634
7635 /* Build the node for the type of references-to-TO_TYPE by default
7636 in ptr_mode. */
7637
7638 tree
7639 build_reference_type (tree to_type)
7640 {
7641 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7642 : TYPE_ADDR_SPACE (to_type);
7643 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7644 return build_reference_type_for_mode (to_type, pointer_mode, false);
7645 }
7646
7647 #define MAX_INT_CACHED_PREC \
7648 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7649 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7650
7651 /* Builds a signed or unsigned integer type of precision PRECISION.
7652 Used for C bitfields whose precision does not match that of
7653 built-in target types. */
7654 tree
7655 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7656 int unsignedp)
7657 {
7658 tree itype, ret;
7659
7660 if (unsignedp)
7661 unsignedp = MAX_INT_CACHED_PREC + 1;
7662
7663 if (precision <= MAX_INT_CACHED_PREC)
7664 {
7665 itype = nonstandard_integer_type_cache[precision + unsignedp];
7666 if (itype)
7667 return itype;
7668 }
7669
7670 itype = make_node (INTEGER_TYPE);
7671 TYPE_PRECISION (itype) = precision;
7672
7673 if (unsignedp)
7674 fixup_unsigned_type (itype);
7675 else
7676 fixup_signed_type (itype);
7677
7678 ret = itype;
7679 if (tree_fits_uhwi_p (TYPE_MAX_VALUE (itype)))
7680 ret = type_hash_canon (tree_to_uhwi (TYPE_MAX_VALUE (itype)), itype);
7681 if (precision <= MAX_INT_CACHED_PREC)
7682 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7683
7684 return ret;
7685 }
7686
7687 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7688 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7689 is true, reuse such a type that has already been constructed. */
7690
7691 static tree
7692 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7693 {
7694 tree itype = make_node (INTEGER_TYPE);
7695 inchash::hash hstate;
7696
7697 TREE_TYPE (itype) = type;
7698
7699 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7700 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7701
7702 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7703 SET_TYPE_MODE (itype, TYPE_MODE (type));
7704 TYPE_SIZE (itype) = TYPE_SIZE (type);
7705 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7706 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7707 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7708
7709 if (!shared)
7710 return itype;
7711
7712 if ((TYPE_MIN_VALUE (itype)
7713 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7714 || (TYPE_MAX_VALUE (itype)
7715 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7716 {
7717 /* Since we cannot reliably merge this type, we need to compare it using
7718 structural equality checks. */
7719 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7720 return itype;
7721 }
7722
7723 inchash::add_expr (TYPE_MIN_VALUE (itype), hstate);
7724 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7725 hstate.merge_hash (TYPE_HASH (type));
7726 itype = type_hash_canon (hstate.end (), itype);
7727
7728 return itype;
7729 }
7730
7731 /* Wrapper around build_range_type_1 with SHARED set to true. */
7732
7733 tree
7734 build_range_type (tree type, tree lowval, tree highval)
7735 {
7736 return build_range_type_1 (type, lowval, highval, true);
7737 }
7738
7739 /* Wrapper around build_range_type_1 with SHARED set to false. */
7740
7741 tree
7742 build_nonshared_range_type (tree type, tree lowval, tree highval)
7743 {
7744 return build_range_type_1 (type, lowval, highval, false);
7745 }
7746
7747 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7748 MAXVAL should be the maximum value in the domain
7749 (one less than the length of the array).
7750
7751 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7752 We don't enforce this limit, that is up to caller (e.g. language front end).
7753 The limit exists because the result is a signed type and we don't handle
7754 sizes that use more than one HOST_WIDE_INT. */
7755
7756 tree
7757 build_index_type (tree maxval)
7758 {
7759 return build_range_type (sizetype, size_zero_node, maxval);
7760 }
7761
7762 /* Return true if the debug information for TYPE, a subtype, should be emitted
7763 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7764 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7765 debug info and doesn't reflect the source code. */
7766
7767 bool
7768 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7769 {
7770 tree base_type = TREE_TYPE (type), low, high;
7771
7772 /* Subrange types have a base type which is an integral type. */
7773 if (!INTEGRAL_TYPE_P (base_type))
7774 return false;
7775
7776 /* Get the real bounds of the subtype. */
7777 if (lang_hooks.types.get_subrange_bounds)
7778 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7779 else
7780 {
7781 low = TYPE_MIN_VALUE (type);
7782 high = TYPE_MAX_VALUE (type);
7783 }
7784
7785 /* If the type and its base type have the same representation and the same
7786 name, then the type is not a subrange but a copy of the base type. */
7787 if ((TREE_CODE (base_type) == INTEGER_TYPE
7788 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7789 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7790 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7791 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7792 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7793 return false;
7794
7795 if (lowval)
7796 *lowval = low;
7797 if (highval)
7798 *highval = high;
7799 return true;
7800 }
7801
7802 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7803 and number of elements specified by the range of values of INDEX_TYPE.
7804 If SHARED is true, reuse such a type that has already been constructed. */
7805
7806 static tree
7807 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7808 {
7809 tree t;
7810
7811 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7812 {
7813 error ("arrays of functions are not meaningful");
7814 elt_type = integer_type_node;
7815 }
7816
7817 t = make_node (ARRAY_TYPE);
7818 TREE_TYPE (t) = elt_type;
7819 TYPE_DOMAIN (t) = index_type;
7820 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7821 layout_type (t);
7822
7823 /* If the element type is incomplete at this point we get marked for
7824 structural equality. Do not record these types in the canonical
7825 type hashtable. */
7826 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7827 return t;
7828
7829 if (shared)
7830 {
7831 inchash::hash hstate;
7832 hstate.add_object (TYPE_HASH (elt_type));
7833 if (index_type)
7834 hstate.add_object (TYPE_HASH (index_type));
7835 t = type_hash_canon (hstate.end (), t);
7836 }
7837
7838 if (TYPE_CANONICAL (t) == t)
7839 {
7840 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7841 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7842 SET_TYPE_STRUCTURAL_EQUALITY (t);
7843 else if (TYPE_CANONICAL (elt_type) != elt_type
7844 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7845 TYPE_CANONICAL (t)
7846 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7847 index_type
7848 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7849 shared);
7850 }
7851
7852 return t;
7853 }
7854
7855 /* Wrapper around build_array_type_1 with SHARED set to true. */
7856
7857 tree
7858 build_array_type (tree elt_type, tree index_type)
7859 {
7860 return build_array_type_1 (elt_type, index_type, true);
7861 }
7862
7863 /* Wrapper around build_array_type_1 with SHARED set to false. */
7864
7865 tree
7866 build_nonshared_array_type (tree elt_type, tree index_type)
7867 {
7868 return build_array_type_1 (elt_type, index_type, false);
7869 }
7870
7871 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7872 sizetype. */
7873
7874 tree
7875 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7876 {
7877 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7878 }
7879
7880 /* Recursively examines the array elements of TYPE, until a non-array
7881 element type is found. */
7882
7883 tree
7884 strip_array_types (tree type)
7885 {
7886 while (TREE_CODE (type) == ARRAY_TYPE)
7887 type = TREE_TYPE (type);
7888
7889 return type;
7890 }
7891
7892 /* Computes the canonical argument types from the argument type list
7893 ARGTYPES.
7894
7895 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7896 on entry to this function, or if any of the ARGTYPES are
7897 structural.
7898
7899 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7900 true on entry to this function, or if any of the ARGTYPES are
7901 non-canonical.
7902
7903 Returns a canonical argument list, which may be ARGTYPES when the
7904 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7905 true) or would not differ from ARGTYPES. */
7906
7907 static tree
7908 maybe_canonicalize_argtypes (tree argtypes,
7909 bool *any_structural_p,
7910 bool *any_noncanonical_p)
7911 {
7912 tree arg;
7913 bool any_noncanonical_argtypes_p = false;
7914
7915 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7916 {
7917 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7918 /* Fail gracefully by stating that the type is structural. */
7919 *any_structural_p = true;
7920 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7921 *any_structural_p = true;
7922 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7923 || TREE_PURPOSE (arg))
7924 /* If the argument has a default argument, we consider it
7925 non-canonical even though the type itself is canonical.
7926 That way, different variants of function and method types
7927 with default arguments will all point to the variant with
7928 no defaults as their canonical type. */
7929 any_noncanonical_argtypes_p = true;
7930 }
7931
7932 if (*any_structural_p)
7933 return argtypes;
7934
7935 if (any_noncanonical_argtypes_p)
7936 {
7937 /* Build the canonical list of argument types. */
7938 tree canon_argtypes = NULL_TREE;
7939 bool is_void = false;
7940
7941 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7942 {
7943 if (arg == void_list_node)
7944 is_void = true;
7945 else
7946 canon_argtypes = tree_cons (NULL_TREE,
7947 TYPE_CANONICAL (TREE_VALUE (arg)),
7948 canon_argtypes);
7949 }
7950
7951 canon_argtypes = nreverse (canon_argtypes);
7952 if (is_void)
7953 canon_argtypes = chainon (canon_argtypes, void_list_node);
7954
7955 /* There is a non-canonical type. */
7956 *any_noncanonical_p = true;
7957 return canon_argtypes;
7958 }
7959
7960 /* The canonical argument types are the same as ARGTYPES. */
7961 return argtypes;
7962 }
7963
7964 /* Construct, lay out and return
7965 the type of functions returning type VALUE_TYPE
7966 given arguments of types ARG_TYPES.
7967 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7968 are data type nodes for the arguments of the function.
7969 If such a type has already been constructed, reuse it. */
7970
7971 tree
7972 build_function_type (tree value_type, tree arg_types)
7973 {
7974 tree t;
7975 inchash::hash hstate;
7976 bool any_structural_p, any_noncanonical_p;
7977 tree canon_argtypes;
7978
7979 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7980 {
7981 error ("function return type cannot be function");
7982 value_type = integer_type_node;
7983 }
7984
7985 /* Make a node of the sort we want. */
7986 t = make_node (FUNCTION_TYPE);
7987 TREE_TYPE (t) = value_type;
7988 TYPE_ARG_TYPES (t) = arg_types;
7989
7990 /* If we already have such a type, use the old one. */
7991 hstate.add_object (TYPE_HASH (value_type));
7992 type_hash_list (arg_types, hstate);
7993 t = type_hash_canon (hstate.end (), t);
7994
7995 /* Set up the canonical type. */
7996 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7997 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7998 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7999 &any_structural_p,
8000 &any_noncanonical_p);
8001 if (any_structural_p)
8002 SET_TYPE_STRUCTURAL_EQUALITY (t);
8003 else if (any_noncanonical_p)
8004 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8005 canon_argtypes);
8006
8007 if (!COMPLETE_TYPE_P (t))
8008 layout_type (t);
8009 return t;
8010 }
8011
8012 /* Build a function type. The RETURN_TYPE is the type returned by the
8013 function. If VAARGS is set, no void_type_node is appended to the
8014 the list. ARGP must be always be terminated be a NULL_TREE. */
8015
8016 static tree
8017 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8018 {
8019 tree t, args, last;
8020
8021 t = va_arg (argp, tree);
8022 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8023 args = tree_cons (NULL_TREE, t, args);
8024
8025 if (vaargs)
8026 {
8027 last = args;
8028 if (args != NULL_TREE)
8029 args = nreverse (args);
8030 gcc_assert (last != void_list_node);
8031 }
8032 else if (args == NULL_TREE)
8033 args = void_list_node;
8034 else
8035 {
8036 last = args;
8037 args = nreverse (args);
8038 TREE_CHAIN (last) = void_list_node;
8039 }
8040 args = build_function_type (return_type, args);
8041
8042 return args;
8043 }
8044
8045 /* Build a function type. The RETURN_TYPE is the type returned by the
8046 function. If additional arguments are provided, they are
8047 additional argument types. The list of argument types must always
8048 be terminated by NULL_TREE. */
8049
8050 tree
8051 build_function_type_list (tree return_type, ...)
8052 {
8053 tree args;
8054 va_list p;
8055
8056 va_start (p, return_type);
8057 args = build_function_type_list_1 (false, return_type, p);
8058 va_end (p);
8059 return args;
8060 }
8061
8062 /* Build a variable argument function type. The RETURN_TYPE is the
8063 type returned by the function. If additional arguments are provided,
8064 they are additional argument types. The list of argument types must
8065 always be terminated by NULL_TREE. */
8066
8067 tree
8068 build_varargs_function_type_list (tree return_type, ...)
8069 {
8070 tree args;
8071 va_list p;
8072
8073 va_start (p, return_type);
8074 args = build_function_type_list_1 (true, return_type, p);
8075 va_end (p);
8076
8077 return args;
8078 }
8079
8080 /* Build a function type. RETURN_TYPE is the type returned by the
8081 function; VAARGS indicates whether the function takes varargs. The
8082 function takes N named arguments, the types of which are provided in
8083 ARG_TYPES. */
8084
8085 static tree
8086 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8087 tree *arg_types)
8088 {
8089 int i;
8090 tree t = vaargs ? NULL_TREE : void_list_node;
8091
8092 for (i = n - 1; i >= 0; i--)
8093 t = tree_cons (NULL_TREE, arg_types[i], t);
8094
8095 return build_function_type (return_type, t);
8096 }
8097
8098 /* Build a function type. RETURN_TYPE is the type returned by the
8099 function. The function takes N named arguments, the types of which
8100 are provided in ARG_TYPES. */
8101
8102 tree
8103 build_function_type_array (tree return_type, int n, tree *arg_types)
8104 {
8105 return build_function_type_array_1 (false, return_type, n, arg_types);
8106 }
8107
8108 /* Build a variable argument function type. RETURN_TYPE is the type
8109 returned by the function. The function takes N named arguments, the
8110 types of which are provided in ARG_TYPES. */
8111
8112 tree
8113 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8114 {
8115 return build_function_type_array_1 (true, return_type, n, arg_types);
8116 }
8117
8118 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8119 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8120 for the method. An implicit additional parameter (of type
8121 pointer-to-BASETYPE) is added to the ARGTYPES. */
8122
8123 tree
8124 build_method_type_directly (tree basetype,
8125 tree rettype,
8126 tree argtypes)
8127 {
8128 tree t;
8129 tree ptype;
8130 inchash::hash hstate;
8131 bool any_structural_p, any_noncanonical_p;
8132 tree canon_argtypes;
8133
8134 /* Make a node of the sort we want. */
8135 t = make_node (METHOD_TYPE);
8136
8137 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8138 TREE_TYPE (t) = rettype;
8139 ptype = build_pointer_type (basetype);
8140
8141 /* The actual arglist for this function includes a "hidden" argument
8142 which is "this". Put it into the list of argument types. */
8143 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8144 TYPE_ARG_TYPES (t) = argtypes;
8145
8146 /* If we already have such a type, use the old one. */
8147 hstate.add_object (TYPE_HASH (basetype));
8148 hstate.add_object (TYPE_HASH (rettype));
8149 type_hash_list (argtypes, hstate);
8150 t = type_hash_canon (hstate.end (), t);
8151
8152 /* Set up the canonical type. */
8153 any_structural_p
8154 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8155 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8156 any_noncanonical_p
8157 = (TYPE_CANONICAL (basetype) != basetype
8158 || TYPE_CANONICAL (rettype) != rettype);
8159 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8160 &any_structural_p,
8161 &any_noncanonical_p);
8162 if (any_structural_p)
8163 SET_TYPE_STRUCTURAL_EQUALITY (t);
8164 else if (any_noncanonical_p)
8165 TYPE_CANONICAL (t)
8166 = build_method_type_directly (TYPE_CANONICAL (basetype),
8167 TYPE_CANONICAL (rettype),
8168 canon_argtypes);
8169 if (!COMPLETE_TYPE_P (t))
8170 layout_type (t);
8171
8172 return t;
8173 }
8174
8175 /* Construct, lay out and return the type of methods belonging to class
8176 BASETYPE and whose arguments and values are described by TYPE.
8177 If that type exists already, reuse it.
8178 TYPE must be a FUNCTION_TYPE node. */
8179
8180 tree
8181 build_method_type (tree basetype, tree type)
8182 {
8183 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8184
8185 return build_method_type_directly (basetype,
8186 TREE_TYPE (type),
8187 TYPE_ARG_TYPES (type));
8188 }
8189
8190 /* Construct, lay out and return the type of offsets to a value
8191 of type TYPE, within an object of type BASETYPE.
8192 If a suitable offset type exists already, reuse it. */
8193
8194 tree
8195 build_offset_type (tree basetype, tree type)
8196 {
8197 tree t;
8198 inchash::hash hstate;
8199
8200 /* Make a node of the sort we want. */
8201 t = make_node (OFFSET_TYPE);
8202
8203 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8204 TREE_TYPE (t) = type;
8205
8206 /* If we already have such a type, use the old one. */
8207 hstate.add_object (TYPE_HASH (basetype));
8208 hstate.add_object (TYPE_HASH (type));
8209 t = type_hash_canon (hstate.end (), t);
8210
8211 if (!COMPLETE_TYPE_P (t))
8212 layout_type (t);
8213
8214 if (TYPE_CANONICAL (t) == t)
8215 {
8216 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8217 || TYPE_STRUCTURAL_EQUALITY_P (type))
8218 SET_TYPE_STRUCTURAL_EQUALITY (t);
8219 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8220 || TYPE_CANONICAL (type) != type)
8221 TYPE_CANONICAL (t)
8222 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8223 TYPE_CANONICAL (type));
8224 }
8225
8226 return t;
8227 }
8228
8229 /* Create a complex type whose components are COMPONENT_TYPE. */
8230
8231 tree
8232 build_complex_type (tree component_type)
8233 {
8234 tree t;
8235 inchash::hash hstate;
8236
8237 gcc_assert (INTEGRAL_TYPE_P (component_type)
8238 || SCALAR_FLOAT_TYPE_P (component_type)
8239 || FIXED_POINT_TYPE_P (component_type));
8240
8241 /* Make a node of the sort we want. */
8242 t = make_node (COMPLEX_TYPE);
8243
8244 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8245
8246 /* If we already have such a type, use the old one. */
8247 hstate.add_object (TYPE_HASH (component_type));
8248 t = type_hash_canon (hstate.end (), t);
8249
8250 if (!COMPLETE_TYPE_P (t))
8251 layout_type (t);
8252
8253 if (TYPE_CANONICAL (t) == t)
8254 {
8255 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8256 SET_TYPE_STRUCTURAL_EQUALITY (t);
8257 else if (TYPE_CANONICAL (component_type) != component_type)
8258 TYPE_CANONICAL (t)
8259 = build_complex_type (TYPE_CANONICAL (component_type));
8260 }
8261
8262 /* We need to create a name, since complex is a fundamental type. */
8263 if (! TYPE_NAME (t))
8264 {
8265 const char *name;
8266 if (component_type == char_type_node)
8267 name = "complex char";
8268 else if (component_type == signed_char_type_node)
8269 name = "complex signed char";
8270 else if (component_type == unsigned_char_type_node)
8271 name = "complex unsigned char";
8272 else if (component_type == short_integer_type_node)
8273 name = "complex short int";
8274 else if (component_type == short_unsigned_type_node)
8275 name = "complex short unsigned int";
8276 else if (component_type == integer_type_node)
8277 name = "complex int";
8278 else if (component_type == unsigned_type_node)
8279 name = "complex unsigned int";
8280 else if (component_type == long_integer_type_node)
8281 name = "complex long int";
8282 else if (component_type == long_unsigned_type_node)
8283 name = "complex long unsigned int";
8284 else if (component_type == long_long_integer_type_node)
8285 name = "complex long long int";
8286 else if (component_type == long_long_unsigned_type_node)
8287 name = "complex long long unsigned int";
8288 else
8289 name = 0;
8290
8291 if (name != 0)
8292 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8293 get_identifier (name), t);
8294 }
8295
8296 return build_qualified_type (t, TYPE_QUALS (component_type));
8297 }
8298
8299 /* If TYPE is a real or complex floating-point type and the target
8300 does not directly support arithmetic on TYPE then return the wider
8301 type to be used for arithmetic on TYPE. Otherwise, return
8302 NULL_TREE. */
8303
8304 tree
8305 excess_precision_type (tree type)
8306 {
8307 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8308 {
8309 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8310 switch (TREE_CODE (type))
8311 {
8312 case REAL_TYPE:
8313 switch (flt_eval_method)
8314 {
8315 case 1:
8316 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8317 return double_type_node;
8318 break;
8319 case 2:
8320 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8321 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8322 return long_double_type_node;
8323 break;
8324 default:
8325 gcc_unreachable ();
8326 }
8327 break;
8328 case COMPLEX_TYPE:
8329 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8330 return NULL_TREE;
8331 switch (flt_eval_method)
8332 {
8333 case 1:
8334 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8335 return complex_double_type_node;
8336 break;
8337 case 2:
8338 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8339 || (TYPE_MODE (TREE_TYPE (type))
8340 == TYPE_MODE (double_type_node)))
8341 return complex_long_double_type_node;
8342 break;
8343 default:
8344 gcc_unreachable ();
8345 }
8346 break;
8347 default:
8348 break;
8349 }
8350 }
8351 return NULL_TREE;
8352 }
8353 \f
8354 /* Return OP, stripped of any conversions to wider types as much as is safe.
8355 Converting the value back to OP's type makes a value equivalent to OP.
8356
8357 If FOR_TYPE is nonzero, we return a value which, if converted to
8358 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8359
8360 OP must have integer, real or enumeral type. Pointers are not allowed!
8361
8362 There are some cases where the obvious value we could return
8363 would regenerate to OP if converted to OP's type,
8364 but would not extend like OP to wider types.
8365 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8366 For example, if OP is (unsigned short)(signed char)-1,
8367 we avoid returning (signed char)-1 if FOR_TYPE is int,
8368 even though extending that to an unsigned short would regenerate OP,
8369 since the result of extending (signed char)-1 to (int)
8370 is different from (int) OP. */
8371
8372 tree
8373 get_unwidened (tree op, tree for_type)
8374 {
8375 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8376 tree type = TREE_TYPE (op);
8377 unsigned final_prec
8378 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8379 int uns
8380 = (for_type != 0 && for_type != type
8381 && final_prec > TYPE_PRECISION (type)
8382 && TYPE_UNSIGNED (type));
8383 tree win = op;
8384
8385 while (CONVERT_EXPR_P (op))
8386 {
8387 int bitschange;
8388
8389 /* TYPE_PRECISION on vector types has different meaning
8390 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8391 so avoid them here. */
8392 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8393 break;
8394
8395 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8396 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8397
8398 /* Truncations are many-one so cannot be removed.
8399 Unless we are later going to truncate down even farther. */
8400 if (bitschange < 0
8401 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8402 break;
8403
8404 /* See what's inside this conversion. If we decide to strip it,
8405 we will set WIN. */
8406 op = TREE_OPERAND (op, 0);
8407
8408 /* If we have not stripped any zero-extensions (uns is 0),
8409 we can strip any kind of extension.
8410 If we have previously stripped a zero-extension,
8411 only zero-extensions can safely be stripped.
8412 Any extension can be stripped if the bits it would produce
8413 are all going to be discarded later by truncating to FOR_TYPE. */
8414
8415 if (bitschange > 0)
8416 {
8417 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8418 win = op;
8419 /* TYPE_UNSIGNED says whether this is a zero-extension.
8420 Let's avoid computing it if it does not affect WIN
8421 and if UNS will not be needed again. */
8422 if ((uns
8423 || CONVERT_EXPR_P (op))
8424 && TYPE_UNSIGNED (TREE_TYPE (op)))
8425 {
8426 uns = 1;
8427 win = op;
8428 }
8429 }
8430 }
8431
8432 /* If we finally reach a constant see if it fits in for_type and
8433 in that case convert it. */
8434 if (for_type
8435 && TREE_CODE (win) == INTEGER_CST
8436 && TREE_TYPE (win) != for_type
8437 && int_fits_type_p (win, for_type))
8438 win = fold_convert (for_type, win);
8439
8440 return win;
8441 }
8442 \f
8443 /* Return OP or a simpler expression for a narrower value
8444 which can be sign-extended or zero-extended to give back OP.
8445 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8446 or 0 if the value should be sign-extended. */
8447
8448 tree
8449 get_narrower (tree op, int *unsignedp_ptr)
8450 {
8451 int uns = 0;
8452 int first = 1;
8453 tree win = op;
8454 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8455
8456 while (TREE_CODE (op) == NOP_EXPR)
8457 {
8458 int bitschange
8459 = (TYPE_PRECISION (TREE_TYPE (op))
8460 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8461
8462 /* Truncations are many-one so cannot be removed. */
8463 if (bitschange < 0)
8464 break;
8465
8466 /* See what's inside this conversion. If we decide to strip it,
8467 we will set WIN. */
8468
8469 if (bitschange > 0)
8470 {
8471 op = TREE_OPERAND (op, 0);
8472 /* An extension: the outermost one can be stripped,
8473 but remember whether it is zero or sign extension. */
8474 if (first)
8475 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8476 /* Otherwise, if a sign extension has been stripped,
8477 only sign extensions can now be stripped;
8478 if a zero extension has been stripped, only zero-extensions. */
8479 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8480 break;
8481 first = 0;
8482 }
8483 else /* bitschange == 0 */
8484 {
8485 /* A change in nominal type can always be stripped, but we must
8486 preserve the unsignedness. */
8487 if (first)
8488 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8489 first = 0;
8490 op = TREE_OPERAND (op, 0);
8491 /* Keep trying to narrow, but don't assign op to win if it
8492 would turn an integral type into something else. */
8493 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8494 continue;
8495 }
8496
8497 win = op;
8498 }
8499
8500 if (TREE_CODE (op) == COMPONENT_REF
8501 /* Since type_for_size always gives an integer type. */
8502 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8503 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8504 /* Ensure field is laid out already. */
8505 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8506 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8507 {
8508 unsigned HOST_WIDE_INT innerprec
8509 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8510 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8511 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8512 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8513
8514 /* We can get this structure field in a narrower type that fits it,
8515 but the resulting extension to its nominal type (a fullword type)
8516 must satisfy the same conditions as for other extensions.
8517
8518 Do this only for fields that are aligned (not bit-fields),
8519 because when bit-field insns will be used there is no
8520 advantage in doing this. */
8521
8522 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8523 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8524 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8525 && type != 0)
8526 {
8527 if (first)
8528 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8529 win = fold_convert (type, op);
8530 }
8531 }
8532
8533 *unsignedp_ptr = uns;
8534 return win;
8535 }
8536 \f
8537 /* Returns true if integer constant C has a value that is permissible
8538 for type TYPE (an INTEGER_TYPE). */
8539
8540 bool
8541 int_fits_type_p (const_tree c, const_tree type)
8542 {
8543 tree type_low_bound, type_high_bound;
8544 bool ok_for_low_bound, ok_for_high_bound;
8545 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8546
8547 retry:
8548 type_low_bound = TYPE_MIN_VALUE (type);
8549 type_high_bound = TYPE_MAX_VALUE (type);
8550
8551 /* If at least one bound of the type is a constant integer, we can check
8552 ourselves and maybe make a decision. If no such decision is possible, but
8553 this type is a subtype, try checking against that. Otherwise, use
8554 fits_to_tree_p, which checks against the precision.
8555
8556 Compute the status for each possibly constant bound, and return if we see
8557 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8558 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8559 for "constant known to fit". */
8560
8561 /* Check if c >= type_low_bound. */
8562 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8563 {
8564 if (tree_int_cst_lt (c, type_low_bound))
8565 return false;
8566 ok_for_low_bound = true;
8567 }
8568 else
8569 ok_for_low_bound = false;
8570
8571 /* Check if c <= type_high_bound. */
8572 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8573 {
8574 if (tree_int_cst_lt (type_high_bound, c))
8575 return false;
8576 ok_for_high_bound = true;
8577 }
8578 else
8579 ok_for_high_bound = false;
8580
8581 /* If the constant fits both bounds, the result is known. */
8582 if (ok_for_low_bound && ok_for_high_bound)
8583 return true;
8584
8585 /* Perform some generic filtering which may allow making a decision
8586 even if the bounds are not constant. First, negative integers
8587 never fit in unsigned types, */
8588 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (c))
8589 return false;
8590
8591 /* Second, narrower types always fit in wider ones. */
8592 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8593 return true;
8594
8595 /* Third, unsigned integers with top bit set never fit signed types. */
8596 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8597 {
8598 int prec = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (c))) - 1;
8599 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8600 {
8601 /* When a tree_cst is converted to a wide-int, the precision
8602 is taken from the type. However, if the precision of the
8603 mode underneath the type is smaller than that, it is
8604 possible that the value will not fit. The test below
8605 fails if any bit is set between the sign bit of the
8606 underlying mode and the top bit of the type. */
8607 if (wi::ne_p (wi::zext (c, prec - 1), c))
8608 return false;
8609 }
8610 else if (wi::neg_p (c))
8611 return false;
8612 }
8613
8614 /* If we haven't been able to decide at this point, there nothing more we
8615 can check ourselves here. Look at the base type if we have one and it
8616 has the same precision. */
8617 if (TREE_CODE (type) == INTEGER_TYPE
8618 && TREE_TYPE (type) != 0
8619 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8620 {
8621 type = TREE_TYPE (type);
8622 goto retry;
8623 }
8624
8625 /* Or to fits_to_tree_p, if nothing else. */
8626 return wi::fits_to_tree_p (c, type);
8627 }
8628
8629 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8630 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8631 represented (assuming two's-complement arithmetic) within the bit
8632 precision of the type are returned instead. */
8633
8634 void
8635 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8636 {
8637 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8638 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8639 wi::to_mpz (TYPE_MIN_VALUE (type), min, TYPE_SIGN (type));
8640 else
8641 {
8642 if (TYPE_UNSIGNED (type))
8643 mpz_set_ui (min, 0);
8644 else
8645 {
8646 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8647 wi::to_mpz (mn, min, SIGNED);
8648 }
8649 }
8650
8651 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8652 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8653 wi::to_mpz (TYPE_MAX_VALUE (type), max, TYPE_SIGN (type));
8654 else
8655 {
8656 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8657 wi::to_mpz (mn, max, TYPE_SIGN (type));
8658 }
8659 }
8660
8661 /* Return true if VAR is an automatic variable defined in function FN. */
8662
8663 bool
8664 auto_var_in_fn_p (const_tree var, const_tree fn)
8665 {
8666 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8667 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8668 || TREE_CODE (var) == PARM_DECL)
8669 && ! TREE_STATIC (var))
8670 || TREE_CODE (var) == LABEL_DECL
8671 || TREE_CODE (var) == RESULT_DECL));
8672 }
8673
8674 /* Subprogram of following function. Called by walk_tree.
8675
8676 Return *TP if it is an automatic variable or parameter of the
8677 function passed in as DATA. */
8678
8679 static tree
8680 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8681 {
8682 tree fn = (tree) data;
8683
8684 if (TYPE_P (*tp))
8685 *walk_subtrees = 0;
8686
8687 else if (DECL_P (*tp)
8688 && auto_var_in_fn_p (*tp, fn))
8689 return *tp;
8690
8691 return NULL_TREE;
8692 }
8693
8694 /* Returns true if T is, contains, or refers to a type with variable
8695 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8696 arguments, but not the return type. If FN is nonzero, only return
8697 true if a modifier of the type or position of FN is a variable or
8698 parameter inside FN.
8699
8700 This concept is more general than that of C99 'variably modified types':
8701 in C99, a struct type is never variably modified because a VLA may not
8702 appear as a structure member. However, in GNU C code like:
8703
8704 struct S { int i[f()]; };
8705
8706 is valid, and other languages may define similar constructs. */
8707
8708 bool
8709 variably_modified_type_p (tree type, tree fn)
8710 {
8711 tree t;
8712
8713 /* Test if T is either variable (if FN is zero) or an expression containing
8714 a variable in FN. If TYPE isn't gimplified, return true also if
8715 gimplify_one_sizepos would gimplify the expression into a local
8716 variable. */
8717 #define RETURN_TRUE_IF_VAR(T) \
8718 do { tree _t = (T); \
8719 if (_t != NULL_TREE \
8720 && _t != error_mark_node \
8721 && TREE_CODE (_t) != INTEGER_CST \
8722 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8723 && (!fn \
8724 || (!TYPE_SIZES_GIMPLIFIED (type) \
8725 && !is_gimple_sizepos (_t)) \
8726 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8727 return true; } while (0)
8728
8729 if (type == error_mark_node)
8730 return false;
8731
8732 /* If TYPE itself has variable size, it is variably modified. */
8733 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8734 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8735
8736 switch (TREE_CODE (type))
8737 {
8738 case POINTER_TYPE:
8739 case REFERENCE_TYPE:
8740 case VECTOR_TYPE:
8741 if (variably_modified_type_p (TREE_TYPE (type), fn))
8742 return true;
8743 break;
8744
8745 case FUNCTION_TYPE:
8746 case METHOD_TYPE:
8747 /* If TYPE is a function type, it is variably modified if the
8748 return type is variably modified. */
8749 if (variably_modified_type_p (TREE_TYPE (type), fn))
8750 return true;
8751 break;
8752
8753 case INTEGER_TYPE:
8754 case REAL_TYPE:
8755 case FIXED_POINT_TYPE:
8756 case ENUMERAL_TYPE:
8757 case BOOLEAN_TYPE:
8758 /* Scalar types are variably modified if their end points
8759 aren't constant. */
8760 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8761 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8762 break;
8763
8764 case RECORD_TYPE:
8765 case UNION_TYPE:
8766 case QUAL_UNION_TYPE:
8767 /* We can't see if any of the fields are variably-modified by the
8768 definition we normally use, since that would produce infinite
8769 recursion via pointers. */
8770 /* This is variably modified if some field's type is. */
8771 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8772 if (TREE_CODE (t) == FIELD_DECL)
8773 {
8774 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8775 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8776 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8777
8778 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8779 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8780 }
8781 break;
8782
8783 case ARRAY_TYPE:
8784 /* Do not call ourselves to avoid infinite recursion. This is
8785 variably modified if the element type is. */
8786 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8787 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8788 break;
8789
8790 default:
8791 break;
8792 }
8793
8794 /* The current language may have other cases to check, but in general,
8795 all other types are not variably modified. */
8796 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8797
8798 #undef RETURN_TRUE_IF_VAR
8799 }
8800
8801 /* Given a DECL or TYPE, return the scope in which it was declared, or
8802 NULL_TREE if there is no containing scope. */
8803
8804 tree
8805 get_containing_scope (const_tree t)
8806 {
8807 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8808 }
8809
8810 /* Return the innermost context enclosing DECL that is
8811 a FUNCTION_DECL, or zero if none. */
8812
8813 tree
8814 decl_function_context (const_tree decl)
8815 {
8816 tree context;
8817
8818 if (TREE_CODE (decl) == ERROR_MARK)
8819 return 0;
8820
8821 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8822 where we look up the function at runtime. Such functions always take
8823 a first argument of type 'pointer to real context'.
8824
8825 C++ should really be fixed to use DECL_CONTEXT for the real context,
8826 and use something else for the "virtual context". */
8827 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8828 context
8829 = TYPE_MAIN_VARIANT
8830 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8831 else
8832 context = DECL_CONTEXT (decl);
8833
8834 while (context && TREE_CODE (context) != FUNCTION_DECL)
8835 {
8836 if (TREE_CODE (context) == BLOCK)
8837 context = BLOCK_SUPERCONTEXT (context);
8838 else
8839 context = get_containing_scope (context);
8840 }
8841
8842 return context;
8843 }
8844
8845 /* Return the innermost context enclosing DECL that is
8846 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8847 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8848
8849 tree
8850 decl_type_context (const_tree decl)
8851 {
8852 tree context = DECL_CONTEXT (decl);
8853
8854 while (context)
8855 switch (TREE_CODE (context))
8856 {
8857 case NAMESPACE_DECL:
8858 case TRANSLATION_UNIT_DECL:
8859 return NULL_TREE;
8860
8861 case RECORD_TYPE:
8862 case UNION_TYPE:
8863 case QUAL_UNION_TYPE:
8864 return context;
8865
8866 case TYPE_DECL:
8867 case FUNCTION_DECL:
8868 context = DECL_CONTEXT (context);
8869 break;
8870
8871 case BLOCK:
8872 context = BLOCK_SUPERCONTEXT (context);
8873 break;
8874
8875 default:
8876 gcc_unreachable ();
8877 }
8878
8879 return NULL_TREE;
8880 }
8881
8882 /* CALL is a CALL_EXPR. Return the declaration for the function
8883 called, or NULL_TREE if the called function cannot be
8884 determined. */
8885
8886 tree
8887 get_callee_fndecl (const_tree call)
8888 {
8889 tree addr;
8890
8891 if (call == error_mark_node)
8892 return error_mark_node;
8893
8894 /* It's invalid to call this function with anything but a
8895 CALL_EXPR. */
8896 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8897
8898 /* The first operand to the CALL is the address of the function
8899 called. */
8900 addr = CALL_EXPR_FN (call);
8901
8902 /* If there is no function, return early. */
8903 if (addr == NULL_TREE)
8904 return NULL_TREE;
8905
8906 STRIP_NOPS (addr);
8907
8908 /* If this is a readonly function pointer, extract its initial value. */
8909 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8910 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8911 && DECL_INITIAL (addr))
8912 addr = DECL_INITIAL (addr);
8913
8914 /* If the address is just `&f' for some function `f', then we know
8915 that `f' is being called. */
8916 if (TREE_CODE (addr) == ADDR_EXPR
8917 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8918 return TREE_OPERAND (addr, 0);
8919
8920 /* We couldn't figure out what was being called. */
8921 return NULL_TREE;
8922 }
8923
8924 /* Print debugging information about tree nodes generated during the compile,
8925 and any language-specific information. */
8926
8927 void
8928 dump_tree_statistics (void)
8929 {
8930 if (GATHER_STATISTICS)
8931 {
8932 int i;
8933 int total_nodes, total_bytes;
8934 fprintf (stderr, "Kind Nodes Bytes\n");
8935 fprintf (stderr, "---------------------------------------\n");
8936 total_nodes = total_bytes = 0;
8937 for (i = 0; i < (int) all_kinds; i++)
8938 {
8939 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8940 tree_node_counts[i], tree_node_sizes[i]);
8941 total_nodes += tree_node_counts[i];
8942 total_bytes += tree_node_sizes[i];
8943 }
8944 fprintf (stderr, "---------------------------------------\n");
8945 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8946 fprintf (stderr, "---------------------------------------\n");
8947 fprintf (stderr, "Code Nodes\n");
8948 fprintf (stderr, "----------------------------\n");
8949 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8950 fprintf (stderr, "%-20s %7d\n", get_tree_code_name ((enum tree_code) i),
8951 tree_code_counts[i]);
8952 fprintf (stderr, "----------------------------\n");
8953 ssanames_print_statistics ();
8954 phinodes_print_statistics ();
8955 }
8956 else
8957 fprintf (stderr, "(No per-node statistics)\n");
8958
8959 print_type_hash_statistics ();
8960 print_debug_expr_statistics ();
8961 print_value_expr_statistics ();
8962 lang_hooks.print_statistics ();
8963 }
8964 \f
8965 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8966
8967 /* Generate a crc32 of a byte. */
8968
8969 static unsigned
8970 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
8971 {
8972 unsigned ix;
8973
8974 for (ix = bits; ix--; value <<= 1)
8975 {
8976 unsigned feedback;
8977
8978 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8979 chksum <<= 1;
8980 chksum ^= feedback;
8981 }
8982 return chksum;
8983 }
8984
8985 /* Generate a crc32 of a 32-bit unsigned. */
8986
8987 unsigned
8988 crc32_unsigned (unsigned chksum, unsigned value)
8989 {
8990 return crc32_unsigned_bits (chksum, value, 32);
8991 }
8992
8993 /* Generate a crc32 of a byte. */
8994
8995 unsigned
8996 crc32_byte (unsigned chksum, char byte)
8997 {
8998 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
8999 }
9000
9001 /* Generate a crc32 of a string. */
9002
9003 unsigned
9004 crc32_string (unsigned chksum, const char *string)
9005 {
9006 do
9007 {
9008 chksum = crc32_byte (chksum, *string);
9009 }
9010 while (*string++);
9011 return chksum;
9012 }
9013
9014 /* P is a string that will be used in a symbol. Mask out any characters
9015 that are not valid in that context. */
9016
9017 void
9018 clean_symbol_name (char *p)
9019 {
9020 for (; *p; p++)
9021 if (! (ISALNUM (*p)
9022 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9023 || *p == '$'
9024 #endif
9025 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9026 || *p == '.'
9027 #endif
9028 ))
9029 *p = '_';
9030 }
9031
9032 /* Generate a name for a special-purpose function.
9033 The generated name may need to be unique across the whole link.
9034 Changes to this function may also require corresponding changes to
9035 xstrdup_mask_random.
9036 TYPE is some string to identify the purpose of this function to the
9037 linker or collect2; it must start with an uppercase letter,
9038 one of:
9039 I - for constructors
9040 D - for destructors
9041 N - for C++ anonymous namespaces
9042 F - for DWARF unwind frame information. */
9043
9044 tree
9045 get_file_function_name (const char *type)
9046 {
9047 char *buf;
9048 const char *p;
9049 char *q;
9050
9051 /* If we already have a name we know to be unique, just use that. */
9052 if (first_global_object_name)
9053 p = q = ASTRDUP (first_global_object_name);
9054 /* If the target is handling the constructors/destructors, they
9055 will be local to this file and the name is only necessary for
9056 debugging purposes.
9057 We also assign sub_I and sub_D sufixes to constructors called from
9058 the global static constructors. These are always local. */
9059 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9060 || (strncmp (type, "sub_", 4) == 0
9061 && (type[4] == 'I' || type[4] == 'D')))
9062 {
9063 const char *file = main_input_filename;
9064 if (! file)
9065 file = LOCATION_FILE (input_location);
9066 /* Just use the file's basename, because the full pathname
9067 might be quite long. */
9068 p = q = ASTRDUP (lbasename (file));
9069 }
9070 else
9071 {
9072 /* Otherwise, the name must be unique across the entire link.
9073 We don't have anything that we know to be unique to this translation
9074 unit, so use what we do have and throw in some randomness. */
9075 unsigned len;
9076 const char *name = weak_global_object_name;
9077 const char *file = main_input_filename;
9078
9079 if (! name)
9080 name = "";
9081 if (! file)
9082 file = LOCATION_FILE (input_location);
9083
9084 len = strlen (file);
9085 q = (char *) alloca (9 + 17 + len + 1);
9086 memcpy (q, file, len + 1);
9087
9088 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9089 crc32_string (0, name), get_random_seed (false));
9090
9091 p = q;
9092 }
9093
9094 clean_symbol_name (q);
9095 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9096 + strlen (type));
9097
9098 /* Set up the name of the file-level functions we may need.
9099 Use a global object (which is already required to be unique over
9100 the program) rather than the file name (which imposes extra
9101 constraints). */
9102 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9103
9104 return get_identifier (buf);
9105 }
9106 \f
9107 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9108
9109 /* Complain that the tree code of NODE does not match the expected 0
9110 terminated list of trailing codes. The trailing code list can be
9111 empty, for a more vague error message. FILE, LINE, and FUNCTION
9112 are of the caller. */
9113
9114 void
9115 tree_check_failed (const_tree node, const char *file,
9116 int line, const char *function, ...)
9117 {
9118 va_list args;
9119 const char *buffer;
9120 unsigned length = 0;
9121 enum tree_code code;
9122
9123 va_start (args, function);
9124 while ((code = (enum tree_code) va_arg (args, int)))
9125 length += 4 + strlen (get_tree_code_name (code));
9126 va_end (args);
9127 if (length)
9128 {
9129 char *tmp;
9130 va_start (args, function);
9131 length += strlen ("expected ");
9132 buffer = tmp = (char *) alloca (length);
9133 length = 0;
9134 while ((code = (enum tree_code) va_arg (args, int)))
9135 {
9136 const char *prefix = length ? " or " : "expected ";
9137
9138 strcpy (tmp + length, prefix);
9139 length += strlen (prefix);
9140 strcpy (tmp + length, get_tree_code_name (code));
9141 length += strlen (get_tree_code_name (code));
9142 }
9143 va_end (args);
9144 }
9145 else
9146 buffer = "unexpected node";
9147
9148 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9149 buffer, get_tree_code_name (TREE_CODE (node)),
9150 function, trim_filename (file), line);
9151 }
9152
9153 /* Complain that the tree code of NODE does match the expected 0
9154 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9155 the caller. */
9156
9157 void
9158 tree_not_check_failed (const_tree node, const char *file,
9159 int line, const char *function, ...)
9160 {
9161 va_list args;
9162 char *buffer;
9163 unsigned length = 0;
9164 enum tree_code code;
9165
9166 va_start (args, function);
9167 while ((code = (enum tree_code) va_arg (args, int)))
9168 length += 4 + strlen (get_tree_code_name (code));
9169 va_end (args);
9170 va_start (args, function);
9171 buffer = (char *) alloca (length);
9172 length = 0;
9173 while ((code = (enum tree_code) va_arg (args, int)))
9174 {
9175 if (length)
9176 {
9177 strcpy (buffer + length, " or ");
9178 length += 4;
9179 }
9180 strcpy (buffer + length, get_tree_code_name (code));
9181 length += strlen (get_tree_code_name (code));
9182 }
9183 va_end (args);
9184
9185 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9186 buffer, get_tree_code_name (TREE_CODE (node)),
9187 function, trim_filename (file), line);
9188 }
9189
9190 /* Similar to tree_check_failed, except that we check for a class of tree
9191 code, given in CL. */
9192
9193 void
9194 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9195 const char *file, int line, const char *function)
9196 {
9197 internal_error
9198 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9199 TREE_CODE_CLASS_STRING (cl),
9200 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9201 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9202 }
9203
9204 /* Similar to tree_check_failed, except that instead of specifying a
9205 dozen codes, use the knowledge that they're all sequential. */
9206
9207 void
9208 tree_range_check_failed (const_tree node, const char *file, int line,
9209 const char *function, enum tree_code c1,
9210 enum tree_code c2)
9211 {
9212 char *buffer;
9213 unsigned length = 0;
9214 unsigned int c;
9215
9216 for (c = c1; c <= c2; ++c)
9217 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9218
9219 length += strlen ("expected ");
9220 buffer = (char *) alloca (length);
9221 length = 0;
9222
9223 for (c = c1; c <= c2; ++c)
9224 {
9225 const char *prefix = length ? " or " : "expected ";
9226
9227 strcpy (buffer + length, prefix);
9228 length += strlen (prefix);
9229 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9230 length += strlen (get_tree_code_name ((enum tree_code) c));
9231 }
9232
9233 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9234 buffer, get_tree_code_name (TREE_CODE (node)),
9235 function, trim_filename (file), line);
9236 }
9237
9238
9239 /* Similar to tree_check_failed, except that we check that a tree does
9240 not have the specified code, given in CL. */
9241
9242 void
9243 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9244 const char *file, int line, const char *function)
9245 {
9246 internal_error
9247 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9248 TREE_CODE_CLASS_STRING (cl),
9249 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9250 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9251 }
9252
9253
9254 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9255
9256 void
9257 omp_clause_check_failed (const_tree node, const char *file, int line,
9258 const char *function, enum omp_clause_code code)
9259 {
9260 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9261 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9262 function, trim_filename (file), line);
9263 }
9264
9265
9266 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9267
9268 void
9269 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9270 const char *function, enum omp_clause_code c1,
9271 enum omp_clause_code c2)
9272 {
9273 char *buffer;
9274 unsigned length = 0;
9275 unsigned int c;
9276
9277 for (c = c1; c <= c2; ++c)
9278 length += 4 + strlen (omp_clause_code_name[c]);
9279
9280 length += strlen ("expected ");
9281 buffer = (char *) alloca (length);
9282 length = 0;
9283
9284 for (c = c1; c <= c2; ++c)
9285 {
9286 const char *prefix = length ? " or " : "expected ";
9287
9288 strcpy (buffer + length, prefix);
9289 length += strlen (prefix);
9290 strcpy (buffer + length, omp_clause_code_name[c]);
9291 length += strlen (omp_clause_code_name[c]);
9292 }
9293
9294 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9295 buffer, omp_clause_code_name[TREE_CODE (node)],
9296 function, trim_filename (file), line);
9297 }
9298
9299
9300 #undef DEFTREESTRUCT
9301 #define DEFTREESTRUCT(VAL, NAME) NAME,
9302
9303 static const char *ts_enum_names[] = {
9304 #include "treestruct.def"
9305 };
9306 #undef DEFTREESTRUCT
9307
9308 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9309
9310 /* Similar to tree_class_check_failed, except that we check for
9311 whether CODE contains the tree structure identified by EN. */
9312
9313 void
9314 tree_contains_struct_check_failed (const_tree node,
9315 const enum tree_node_structure_enum en,
9316 const char *file, int line,
9317 const char *function)
9318 {
9319 internal_error
9320 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9321 TS_ENUM_NAME (en),
9322 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9323 }
9324
9325
9326 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9327 (dynamically sized) vector. */
9328
9329 void
9330 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9331 const char *function)
9332 {
9333 internal_error
9334 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9335 idx + 1, len, function, trim_filename (file), line);
9336 }
9337
9338 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9339 (dynamically sized) vector. */
9340
9341 void
9342 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9343 const char *function)
9344 {
9345 internal_error
9346 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9347 idx + 1, len, function, trim_filename (file), line);
9348 }
9349
9350 /* Similar to above, except that the check is for the bounds of the operand
9351 vector of an expression node EXP. */
9352
9353 void
9354 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9355 int line, const char *function)
9356 {
9357 enum tree_code code = TREE_CODE (exp);
9358 internal_error
9359 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9360 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9361 function, trim_filename (file), line);
9362 }
9363
9364 /* Similar to above, except that the check is for the number of
9365 operands of an OMP_CLAUSE node. */
9366
9367 void
9368 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9369 int line, const char *function)
9370 {
9371 internal_error
9372 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9373 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9374 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9375 trim_filename (file), line);
9376 }
9377 #endif /* ENABLE_TREE_CHECKING */
9378 \f
9379 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9380 and mapped to the machine mode MODE. Initialize its fields and build
9381 the information necessary for debugging output. */
9382
9383 static tree
9384 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9385 {
9386 tree t;
9387 inchash::hash hstate;
9388
9389 t = make_node (VECTOR_TYPE);
9390 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9391 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9392 SET_TYPE_MODE (t, mode);
9393
9394 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9395 SET_TYPE_STRUCTURAL_EQUALITY (t);
9396 else if (TYPE_CANONICAL (innertype) != innertype
9397 || mode != VOIDmode)
9398 TYPE_CANONICAL (t)
9399 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9400
9401 layout_type (t);
9402
9403 hstate.add_wide_int (VECTOR_TYPE);
9404 hstate.add_wide_int (nunits);
9405 hstate.add_wide_int (mode);
9406 hstate.add_object (TYPE_HASH (TREE_TYPE (t)));
9407 t = type_hash_canon (hstate.end (), t);
9408
9409 /* We have built a main variant, based on the main variant of the
9410 inner type. Use it to build the variant we return. */
9411 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9412 && TREE_TYPE (t) != innertype)
9413 return build_type_attribute_qual_variant (t,
9414 TYPE_ATTRIBUTES (innertype),
9415 TYPE_QUALS (innertype));
9416
9417 return t;
9418 }
9419
9420 static tree
9421 make_or_reuse_type (unsigned size, int unsignedp)
9422 {
9423 if (size == INT_TYPE_SIZE)
9424 return unsignedp ? unsigned_type_node : integer_type_node;
9425 if (size == CHAR_TYPE_SIZE)
9426 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9427 if (size == SHORT_TYPE_SIZE)
9428 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9429 if (size == LONG_TYPE_SIZE)
9430 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9431 if (size == LONG_LONG_TYPE_SIZE)
9432 return (unsignedp ? long_long_unsigned_type_node
9433 : long_long_integer_type_node);
9434 if (size == 128 && int128_integer_type_node)
9435 return (unsignedp ? int128_unsigned_type_node
9436 : int128_integer_type_node);
9437
9438 if (unsignedp)
9439 return make_unsigned_type (size);
9440 else
9441 return make_signed_type (size);
9442 }
9443
9444 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9445
9446 static tree
9447 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9448 {
9449 if (satp)
9450 {
9451 if (size == SHORT_FRACT_TYPE_SIZE)
9452 return unsignedp ? sat_unsigned_short_fract_type_node
9453 : sat_short_fract_type_node;
9454 if (size == FRACT_TYPE_SIZE)
9455 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9456 if (size == LONG_FRACT_TYPE_SIZE)
9457 return unsignedp ? sat_unsigned_long_fract_type_node
9458 : sat_long_fract_type_node;
9459 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9460 return unsignedp ? sat_unsigned_long_long_fract_type_node
9461 : sat_long_long_fract_type_node;
9462 }
9463 else
9464 {
9465 if (size == SHORT_FRACT_TYPE_SIZE)
9466 return unsignedp ? unsigned_short_fract_type_node
9467 : short_fract_type_node;
9468 if (size == FRACT_TYPE_SIZE)
9469 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9470 if (size == LONG_FRACT_TYPE_SIZE)
9471 return unsignedp ? unsigned_long_fract_type_node
9472 : long_fract_type_node;
9473 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9474 return unsignedp ? unsigned_long_long_fract_type_node
9475 : long_long_fract_type_node;
9476 }
9477
9478 return make_fract_type (size, unsignedp, satp);
9479 }
9480
9481 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9482
9483 static tree
9484 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9485 {
9486 if (satp)
9487 {
9488 if (size == SHORT_ACCUM_TYPE_SIZE)
9489 return unsignedp ? sat_unsigned_short_accum_type_node
9490 : sat_short_accum_type_node;
9491 if (size == ACCUM_TYPE_SIZE)
9492 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9493 if (size == LONG_ACCUM_TYPE_SIZE)
9494 return unsignedp ? sat_unsigned_long_accum_type_node
9495 : sat_long_accum_type_node;
9496 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9497 return unsignedp ? sat_unsigned_long_long_accum_type_node
9498 : sat_long_long_accum_type_node;
9499 }
9500 else
9501 {
9502 if (size == SHORT_ACCUM_TYPE_SIZE)
9503 return unsignedp ? unsigned_short_accum_type_node
9504 : short_accum_type_node;
9505 if (size == ACCUM_TYPE_SIZE)
9506 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9507 if (size == LONG_ACCUM_TYPE_SIZE)
9508 return unsignedp ? unsigned_long_accum_type_node
9509 : long_accum_type_node;
9510 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9511 return unsignedp ? unsigned_long_long_accum_type_node
9512 : long_long_accum_type_node;
9513 }
9514
9515 return make_accum_type (size, unsignedp, satp);
9516 }
9517
9518
9519 /* Create an atomic variant node for TYPE. This routine is called
9520 during initialization of data types to create the 5 basic atomic
9521 types. The generic build_variant_type function requires these to
9522 already be set up in order to function properly, so cannot be
9523 called from there. If ALIGN is non-zero, then ensure alignment is
9524 overridden to this value. */
9525
9526 static tree
9527 build_atomic_base (tree type, unsigned int align)
9528 {
9529 tree t;
9530
9531 /* Make sure its not already registered. */
9532 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9533 return t;
9534
9535 t = build_variant_type_copy (type);
9536 set_type_quals (t, TYPE_QUAL_ATOMIC);
9537
9538 if (align)
9539 TYPE_ALIGN (t) = align;
9540
9541 return t;
9542 }
9543
9544 /* Create nodes for all integer types (and error_mark_node) using the sizes
9545 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9546 SHORT_DOUBLE specifies whether double should be of the same precision
9547 as float. */
9548
9549 void
9550 build_common_tree_nodes (bool signed_char, bool short_double)
9551 {
9552 error_mark_node = make_node (ERROR_MARK);
9553 TREE_TYPE (error_mark_node) = error_mark_node;
9554
9555 initialize_sizetypes ();
9556
9557 /* Define both `signed char' and `unsigned char'. */
9558 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9559 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9560 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9561 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9562
9563 /* Define `char', which is like either `signed char' or `unsigned char'
9564 but not the same as either. */
9565 char_type_node
9566 = (signed_char
9567 ? make_signed_type (CHAR_TYPE_SIZE)
9568 : make_unsigned_type (CHAR_TYPE_SIZE));
9569 TYPE_STRING_FLAG (char_type_node) = 1;
9570
9571 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9572 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9573 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9574 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9575 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9576 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9577 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9578 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9579 #if HOST_BITS_PER_WIDE_INT >= 64
9580 /* TODO: This isn't correct, but as logic depends at the moment on
9581 host's instead of target's wide-integer.
9582 If there is a target not supporting TImode, but has an 128-bit
9583 integer-scalar register, this target check needs to be adjusted. */
9584 if (targetm.scalar_mode_supported_p (TImode))
9585 {
9586 int128_integer_type_node = make_signed_type (128);
9587 int128_unsigned_type_node = make_unsigned_type (128);
9588 }
9589 #endif
9590
9591 /* Define a boolean type. This type only represents boolean values but
9592 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9593 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9594 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9595 TYPE_PRECISION (boolean_type_node) = 1;
9596 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9597
9598 /* Define what type to use for size_t. */
9599 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9600 size_type_node = unsigned_type_node;
9601 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9602 size_type_node = long_unsigned_type_node;
9603 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9604 size_type_node = long_long_unsigned_type_node;
9605 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9606 size_type_node = short_unsigned_type_node;
9607 else
9608 gcc_unreachable ();
9609
9610 /* Fill in the rest of the sized types. Reuse existing type nodes
9611 when possible. */
9612 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9613 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9614 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9615 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9616 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9617
9618 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9619 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9620 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9621 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9622 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9623
9624 /* Don't call build_qualified type for atomics. That routine does
9625 special processing for atomics, and until they are initialized
9626 it's better not to make that call.
9627
9628 Check to see if there is a target override for atomic types. */
9629
9630 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9631 targetm.atomic_align_for_mode (QImode));
9632 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9633 targetm.atomic_align_for_mode (HImode));
9634 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9635 targetm.atomic_align_for_mode (SImode));
9636 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9637 targetm.atomic_align_for_mode (DImode));
9638 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9639 targetm.atomic_align_for_mode (TImode));
9640
9641 access_public_node = get_identifier ("public");
9642 access_protected_node = get_identifier ("protected");
9643 access_private_node = get_identifier ("private");
9644
9645 /* Define these next since types below may used them. */
9646 integer_zero_node = build_int_cst (integer_type_node, 0);
9647 integer_one_node = build_int_cst (integer_type_node, 1);
9648 integer_three_node = build_int_cst (integer_type_node, 3);
9649 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9650
9651 size_zero_node = size_int (0);
9652 size_one_node = size_int (1);
9653 bitsize_zero_node = bitsize_int (0);
9654 bitsize_one_node = bitsize_int (1);
9655 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9656
9657 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9658 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9659
9660 void_type_node = make_node (VOID_TYPE);
9661 layout_type (void_type_node);
9662
9663 /* We are not going to have real types in C with less than byte alignment,
9664 so we might as well not have any types that claim to have it. */
9665 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9666 TYPE_USER_ALIGN (void_type_node) = 0;
9667
9668 void_node = make_node (VOID_CST);
9669 TREE_TYPE (void_node) = void_type_node;
9670
9671 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9672 layout_type (TREE_TYPE (null_pointer_node));
9673
9674 ptr_type_node = build_pointer_type (void_type_node);
9675 const_ptr_type_node
9676 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9677 fileptr_type_node = ptr_type_node;
9678
9679 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9680
9681 float_type_node = make_node (REAL_TYPE);
9682 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9683 layout_type (float_type_node);
9684
9685 double_type_node = make_node (REAL_TYPE);
9686 if (short_double)
9687 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9688 else
9689 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9690 layout_type (double_type_node);
9691
9692 long_double_type_node = make_node (REAL_TYPE);
9693 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9694 layout_type (long_double_type_node);
9695
9696 float_ptr_type_node = build_pointer_type (float_type_node);
9697 double_ptr_type_node = build_pointer_type (double_type_node);
9698 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9699 integer_ptr_type_node = build_pointer_type (integer_type_node);
9700
9701 /* Fixed size integer types. */
9702 uint16_type_node = make_or_reuse_type (16, 1);
9703 uint32_type_node = make_or_reuse_type (32, 1);
9704 uint64_type_node = make_or_reuse_type (64, 1);
9705
9706 /* Decimal float types. */
9707 dfloat32_type_node = make_node (REAL_TYPE);
9708 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9709 layout_type (dfloat32_type_node);
9710 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9711 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9712
9713 dfloat64_type_node = make_node (REAL_TYPE);
9714 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9715 layout_type (dfloat64_type_node);
9716 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9717 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9718
9719 dfloat128_type_node = make_node (REAL_TYPE);
9720 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9721 layout_type (dfloat128_type_node);
9722 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9723 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9724
9725 complex_integer_type_node = build_complex_type (integer_type_node);
9726 complex_float_type_node = build_complex_type (float_type_node);
9727 complex_double_type_node = build_complex_type (double_type_node);
9728 complex_long_double_type_node = build_complex_type (long_double_type_node);
9729
9730 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9731 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9732 sat_ ## KIND ## _type_node = \
9733 make_sat_signed_ ## KIND ## _type (SIZE); \
9734 sat_unsigned_ ## KIND ## _type_node = \
9735 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9736 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9737 unsigned_ ## KIND ## _type_node = \
9738 make_unsigned_ ## KIND ## _type (SIZE);
9739
9740 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9741 sat_ ## WIDTH ## KIND ## _type_node = \
9742 make_sat_signed_ ## KIND ## _type (SIZE); \
9743 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9744 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9745 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9746 unsigned_ ## WIDTH ## KIND ## _type_node = \
9747 make_unsigned_ ## KIND ## _type (SIZE);
9748
9749 /* Make fixed-point type nodes based on four different widths. */
9750 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9751 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9752 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9753 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9754 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9755
9756 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9757 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9758 NAME ## _type_node = \
9759 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9760 u ## NAME ## _type_node = \
9761 make_or_reuse_unsigned_ ## KIND ## _type \
9762 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9763 sat_ ## NAME ## _type_node = \
9764 make_or_reuse_sat_signed_ ## KIND ## _type \
9765 (GET_MODE_BITSIZE (MODE ## mode)); \
9766 sat_u ## NAME ## _type_node = \
9767 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9768 (GET_MODE_BITSIZE (U ## MODE ## mode));
9769
9770 /* Fixed-point type and mode nodes. */
9771 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9772 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9773 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9774 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9775 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9776 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9777 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9778 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9779 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9780 MAKE_FIXED_MODE_NODE (accum, da, DA)
9781 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9782
9783 {
9784 tree t = targetm.build_builtin_va_list ();
9785
9786 /* Many back-ends define record types without setting TYPE_NAME.
9787 If we copied the record type here, we'd keep the original
9788 record type without a name. This breaks name mangling. So,
9789 don't copy record types and let c_common_nodes_and_builtins()
9790 declare the type to be __builtin_va_list. */
9791 if (TREE_CODE (t) != RECORD_TYPE)
9792 t = build_variant_type_copy (t);
9793
9794 va_list_type_node = t;
9795 }
9796 }
9797
9798 /* Modify DECL for given flags.
9799 TM_PURE attribute is set only on types, so the function will modify
9800 DECL's type when ECF_TM_PURE is used. */
9801
9802 void
9803 set_call_expr_flags (tree decl, int flags)
9804 {
9805 if (flags & ECF_NOTHROW)
9806 TREE_NOTHROW (decl) = 1;
9807 if (flags & ECF_CONST)
9808 TREE_READONLY (decl) = 1;
9809 if (flags & ECF_PURE)
9810 DECL_PURE_P (decl) = 1;
9811 if (flags & ECF_LOOPING_CONST_OR_PURE)
9812 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9813 if (flags & ECF_NOVOPS)
9814 DECL_IS_NOVOPS (decl) = 1;
9815 if (flags & ECF_NORETURN)
9816 TREE_THIS_VOLATILE (decl) = 1;
9817 if (flags & ECF_MALLOC)
9818 DECL_IS_MALLOC (decl) = 1;
9819 if (flags & ECF_RETURNS_TWICE)
9820 DECL_IS_RETURNS_TWICE (decl) = 1;
9821 if (flags & ECF_LEAF)
9822 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9823 NULL, DECL_ATTRIBUTES (decl));
9824 if ((flags & ECF_TM_PURE) && flag_tm)
9825 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9826 /* Looping const or pure is implied by noreturn.
9827 There is currently no way to declare looping const or looping pure alone. */
9828 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9829 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9830 }
9831
9832
9833 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9834
9835 static void
9836 local_define_builtin (const char *name, tree type, enum built_in_function code,
9837 const char *library_name, int ecf_flags)
9838 {
9839 tree decl;
9840
9841 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9842 library_name, NULL_TREE);
9843 set_call_expr_flags (decl, ecf_flags);
9844
9845 set_builtin_decl (code, decl, true);
9846 }
9847
9848 /* Call this function after instantiating all builtins that the language
9849 front end cares about. This will build the rest of the builtins
9850 and internal functions that are relied upon by the tree optimizers and
9851 the middle-end. */
9852
9853 void
9854 build_common_builtin_nodes (void)
9855 {
9856 tree tmp, ftype;
9857 int ecf_flags;
9858
9859 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9860 {
9861 ftype = build_function_type (void_type_node, void_list_node);
9862 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
9863 "__builtin_unreachable",
9864 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9865 | ECF_CONST | ECF_LEAF);
9866 }
9867
9868 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9869 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9870 {
9871 ftype = build_function_type_list (ptr_type_node,
9872 ptr_type_node, const_ptr_type_node,
9873 size_type_node, NULL_TREE);
9874
9875 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9876 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9877 "memcpy", ECF_NOTHROW | ECF_LEAF);
9878 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9879 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9880 "memmove", ECF_NOTHROW | ECF_LEAF);
9881 }
9882
9883 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9884 {
9885 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9886 const_ptr_type_node, size_type_node,
9887 NULL_TREE);
9888 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9889 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9890 }
9891
9892 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9893 {
9894 ftype = build_function_type_list (ptr_type_node,
9895 ptr_type_node, integer_type_node,
9896 size_type_node, NULL_TREE);
9897 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9898 "memset", ECF_NOTHROW | ECF_LEAF);
9899 }
9900
9901 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9902 {
9903 ftype = build_function_type_list (ptr_type_node,
9904 size_type_node, NULL_TREE);
9905 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9906 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9907 }
9908
9909 ftype = build_function_type_list (ptr_type_node, size_type_node,
9910 size_type_node, NULL_TREE);
9911 local_define_builtin ("__builtin_alloca_with_align", ftype,
9912 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9913 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9914
9915 /* If we're checking the stack, `alloca' can throw. */
9916 if (flag_stack_check)
9917 {
9918 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9919 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9920 }
9921
9922 ftype = build_function_type_list (void_type_node,
9923 ptr_type_node, ptr_type_node,
9924 ptr_type_node, NULL_TREE);
9925 local_define_builtin ("__builtin_init_trampoline", ftype,
9926 BUILT_IN_INIT_TRAMPOLINE,
9927 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9928 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9929 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9930 "__builtin_init_heap_trampoline",
9931 ECF_NOTHROW | ECF_LEAF);
9932
9933 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9934 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9935 BUILT_IN_ADJUST_TRAMPOLINE,
9936 "__builtin_adjust_trampoline",
9937 ECF_CONST | ECF_NOTHROW);
9938
9939 ftype = build_function_type_list (void_type_node,
9940 ptr_type_node, ptr_type_node, NULL_TREE);
9941 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9942 BUILT_IN_NONLOCAL_GOTO,
9943 "__builtin_nonlocal_goto",
9944 ECF_NORETURN | ECF_NOTHROW);
9945
9946 ftype = build_function_type_list (void_type_node,
9947 ptr_type_node, ptr_type_node, NULL_TREE);
9948 local_define_builtin ("__builtin_setjmp_setup", ftype,
9949 BUILT_IN_SETJMP_SETUP,
9950 "__builtin_setjmp_setup", ECF_NOTHROW);
9951
9952 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9953 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9954 BUILT_IN_SETJMP_RECEIVER,
9955 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
9956
9957 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9958 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9959 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9960
9961 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9962 local_define_builtin ("__builtin_stack_restore", ftype,
9963 BUILT_IN_STACK_RESTORE,
9964 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9965
9966 /* If there's a possibility that we might use the ARM EABI, build the
9967 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9968 if (targetm.arm_eabi_unwinder)
9969 {
9970 ftype = build_function_type_list (void_type_node, NULL_TREE);
9971 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9972 BUILT_IN_CXA_END_CLEANUP,
9973 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9974 }
9975
9976 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9977 local_define_builtin ("__builtin_unwind_resume", ftype,
9978 BUILT_IN_UNWIND_RESUME,
9979 ((targetm_common.except_unwind_info (&global_options)
9980 == UI_SJLJ)
9981 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9982 ECF_NORETURN);
9983
9984 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
9985 {
9986 ftype = build_function_type_list (ptr_type_node, integer_type_node,
9987 NULL_TREE);
9988 local_define_builtin ("__builtin_return_address", ftype,
9989 BUILT_IN_RETURN_ADDRESS,
9990 "__builtin_return_address",
9991 ECF_NOTHROW);
9992 }
9993
9994 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
9995 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9996 {
9997 ftype = build_function_type_list (void_type_node, ptr_type_node,
9998 ptr_type_node, NULL_TREE);
9999 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10000 local_define_builtin ("__cyg_profile_func_enter", ftype,
10001 BUILT_IN_PROFILE_FUNC_ENTER,
10002 "__cyg_profile_func_enter", 0);
10003 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10004 local_define_builtin ("__cyg_profile_func_exit", ftype,
10005 BUILT_IN_PROFILE_FUNC_EXIT,
10006 "__cyg_profile_func_exit", 0);
10007 }
10008
10009 /* The exception object and filter values from the runtime. The argument
10010 must be zero before exception lowering, i.e. from the front end. After
10011 exception lowering, it will be the region number for the exception
10012 landing pad. These functions are PURE instead of CONST to prevent
10013 them from being hoisted past the exception edge that will initialize
10014 its value in the landing pad. */
10015 ftype = build_function_type_list (ptr_type_node,
10016 integer_type_node, NULL_TREE);
10017 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10018 /* Only use TM_PURE if we we have TM language support. */
10019 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10020 ecf_flags |= ECF_TM_PURE;
10021 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10022 "__builtin_eh_pointer", ecf_flags);
10023
10024 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10025 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10026 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10027 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10028
10029 ftype = build_function_type_list (void_type_node,
10030 integer_type_node, integer_type_node,
10031 NULL_TREE);
10032 local_define_builtin ("__builtin_eh_copy_values", ftype,
10033 BUILT_IN_EH_COPY_VALUES,
10034 "__builtin_eh_copy_values", ECF_NOTHROW);
10035
10036 /* Complex multiplication and division. These are handled as builtins
10037 rather than optabs because emit_library_call_value doesn't support
10038 complex. Further, we can do slightly better with folding these
10039 beasties if the real and complex parts of the arguments are separate. */
10040 {
10041 int mode;
10042
10043 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10044 {
10045 char mode_name_buf[4], *q;
10046 const char *p;
10047 enum built_in_function mcode, dcode;
10048 tree type, inner_type;
10049 const char *prefix = "__";
10050
10051 if (targetm.libfunc_gnu_prefix)
10052 prefix = "__gnu_";
10053
10054 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
10055 if (type == NULL)
10056 continue;
10057 inner_type = TREE_TYPE (type);
10058
10059 ftype = build_function_type_list (type, inner_type, inner_type,
10060 inner_type, inner_type, NULL_TREE);
10061
10062 mcode = ((enum built_in_function)
10063 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10064 dcode = ((enum built_in_function)
10065 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10066
10067 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10068 *q = TOLOWER (*p);
10069 *q = '\0';
10070
10071 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10072 NULL);
10073 local_define_builtin (built_in_names[mcode], ftype, mcode,
10074 built_in_names[mcode],
10075 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10076
10077 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10078 NULL);
10079 local_define_builtin (built_in_names[dcode], ftype, dcode,
10080 built_in_names[dcode],
10081 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10082 }
10083 }
10084
10085 init_internal_fns ();
10086 }
10087
10088 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10089 better way.
10090
10091 If we requested a pointer to a vector, build up the pointers that
10092 we stripped off while looking for the inner type. Similarly for
10093 return values from functions.
10094
10095 The argument TYPE is the top of the chain, and BOTTOM is the
10096 new type which we will point to. */
10097
10098 tree
10099 reconstruct_complex_type (tree type, tree bottom)
10100 {
10101 tree inner, outer;
10102
10103 if (TREE_CODE (type) == POINTER_TYPE)
10104 {
10105 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10106 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10107 TYPE_REF_CAN_ALIAS_ALL (type));
10108 }
10109 else if (TREE_CODE (type) == REFERENCE_TYPE)
10110 {
10111 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10112 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10113 TYPE_REF_CAN_ALIAS_ALL (type));
10114 }
10115 else if (TREE_CODE (type) == ARRAY_TYPE)
10116 {
10117 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10118 outer = build_array_type (inner, TYPE_DOMAIN (type));
10119 }
10120 else if (TREE_CODE (type) == FUNCTION_TYPE)
10121 {
10122 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10123 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10124 }
10125 else if (TREE_CODE (type) == METHOD_TYPE)
10126 {
10127 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10128 /* The build_method_type_directly() routine prepends 'this' to argument list,
10129 so we must compensate by getting rid of it. */
10130 outer
10131 = build_method_type_directly
10132 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10133 inner,
10134 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10135 }
10136 else if (TREE_CODE (type) == OFFSET_TYPE)
10137 {
10138 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10139 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10140 }
10141 else
10142 return bottom;
10143
10144 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10145 TYPE_QUALS (type));
10146 }
10147
10148 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10149 the inner type. */
10150 tree
10151 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
10152 {
10153 int nunits;
10154
10155 switch (GET_MODE_CLASS (mode))
10156 {
10157 case MODE_VECTOR_INT:
10158 case MODE_VECTOR_FLOAT:
10159 case MODE_VECTOR_FRACT:
10160 case MODE_VECTOR_UFRACT:
10161 case MODE_VECTOR_ACCUM:
10162 case MODE_VECTOR_UACCUM:
10163 nunits = GET_MODE_NUNITS (mode);
10164 break;
10165
10166 case MODE_INT:
10167 /* Check that there are no leftover bits. */
10168 gcc_assert (GET_MODE_BITSIZE (mode)
10169 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10170
10171 nunits = GET_MODE_BITSIZE (mode)
10172 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10173 break;
10174
10175 default:
10176 gcc_unreachable ();
10177 }
10178
10179 return make_vector_type (innertype, nunits, mode);
10180 }
10181
10182 /* Similarly, but takes the inner type and number of units, which must be
10183 a power of two. */
10184
10185 tree
10186 build_vector_type (tree innertype, int nunits)
10187 {
10188 return make_vector_type (innertype, nunits, VOIDmode);
10189 }
10190
10191 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10192
10193 tree
10194 build_opaque_vector_type (tree innertype, int nunits)
10195 {
10196 tree t = make_vector_type (innertype, nunits, VOIDmode);
10197 tree cand;
10198 /* We always build the non-opaque variant before the opaque one,
10199 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10200 cand = TYPE_NEXT_VARIANT (t);
10201 if (cand
10202 && TYPE_VECTOR_OPAQUE (cand)
10203 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10204 return cand;
10205 /* Othewise build a variant type and make sure to queue it after
10206 the non-opaque type. */
10207 cand = build_distinct_type_copy (t);
10208 TYPE_VECTOR_OPAQUE (cand) = true;
10209 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10210 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10211 TYPE_NEXT_VARIANT (t) = cand;
10212 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10213 return cand;
10214 }
10215
10216
10217 /* Given an initializer INIT, return TRUE if INIT is zero or some
10218 aggregate of zeros. Otherwise return FALSE. */
10219 bool
10220 initializer_zerop (const_tree init)
10221 {
10222 tree elt;
10223
10224 STRIP_NOPS (init);
10225
10226 switch (TREE_CODE (init))
10227 {
10228 case INTEGER_CST:
10229 return integer_zerop (init);
10230
10231 case REAL_CST:
10232 /* ??? Note that this is not correct for C4X float formats. There,
10233 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10234 negative exponent. */
10235 return real_zerop (init)
10236 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10237
10238 case FIXED_CST:
10239 return fixed_zerop (init);
10240
10241 case COMPLEX_CST:
10242 return integer_zerop (init)
10243 || (real_zerop (init)
10244 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10245 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10246
10247 case VECTOR_CST:
10248 {
10249 unsigned i;
10250 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10251 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10252 return false;
10253 return true;
10254 }
10255
10256 case CONSTRUCTOR:
10257 {
10258 unsigned HOST_WIDE_INT idx;
10259
10260 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10261 if (!initializer_zerop (elt))
10262 return false;
10263 return true;
10264 }
10265
10266 case STRING_CST:
10267 {
10268 int i;
10269
10270 /* We need to loop through all elements to handle cases like
10271 "\0" and "\0foobar". */
10272 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10273 if (TREE_STRING_POINTER (init)[i] != '\0')
10274 return false;
10275
10276 return true;
10277 }
10278
10279 default:
10280 return false;
10281 }
10282 }
10283
10284 /* Check if vector VEC consists of all the equal elements and
10285 that the number of elements corresponds to the type of VEC.
10286 The function returns first element of the vector
10287 or NULL_TREE if the vector is not uniform. */
10288 tree
10289 uniform_vector_p (const_tree vec)
10290 {
10291 tree first, t;
10292 unsigned i;
10293
10294 if (vec == NULL_TREE)
10295 return NULL_TREE;
10296
10297 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10298
10299 if (TREE_CODE (vec) == VECTOR_CST)
10300 {
10301 first = VECTOR_CST_ELT (vec, 0);
10302 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10303 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10304 return NULL_TREE;
10305
10306 return first;
10307 }
10308
10309 else if (TREE_CODE (vec) == CONSTRUCTOR)
10310 {
10311 first = error_mark_node;
10312
10313 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10314 {
10315 if (i == 0)
10316 {
10317 first = t;
10318 continue;
10319 }
10320 if (!operand_equal_p (first, t, 0))
10321 return NULL_TREE;
10322 }
10323 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10324 return NULL_TREE;
10325
10326 return first;
10327 }
10328
10329 return NULL_TREE;
10330 }
10331
10332 /* Build an empty statement at location LOC. */
10333
10334 tree
10335 build_empty_stmt (location_t loc)
10336 {
10337 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10338 SET_EXPR_LOCATION (t, loc);
10339 return t;
10340 }
10341
10342
10343 /* Build an OpenMP clause with code CODE. LOC is the location of the
10344 clause. */
10345
10346 tree
10347 build_omp_clause (location_t loc, enum omp_clause_code code)
10348 {
10349 tree t;
10350 int size, length;
10351
10352 length = omp_clause_num_ops[code];
10353 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10354
10355 record_node_allocation_statistics (OMP_CLAUSE, size);
10356
10357 t = (tree) ggc_internal_alloc (size);
10358 memset (t, 0, size);
10359 TREE_SET_CODE (t, OMP_CLAUSE);
10360 OMP_CLAUSE_SET_CODE (t, code);
10361 OMP_CLAUSE_LOCATION (t) = loc;
10362
10363 return t;
10364 }
10365
10366 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10367 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10368 Except for the CODE and operand count field, other storage for the
10369 object is initialized to zeros. */
10370
10371 tree
10372 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10373 {
10374 tree t;
10375 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10376
10377 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10378 gcc_assert (len >= 1);
10379
10380 record_node_allocation_statistics (code, length);
10381
10382 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10383
10384 TREE_SET_CODE (t, code);
10385
10386 /* Can't use TREE_OPERAND to store the length because if checking is
10387 enabled, it will try to check the length before we store it. :-P */
10388 t->exp.operands[0] = build_int_cst (sizetype, len);
10389
10390 return t;
10391 }
10392
10393 /* Helper function for build_call_* functions; build a CALL_EXPR with
10394 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10395 the argument slots. */
10396
10397 static tree
10398 build_call_1 (tree return_type, tree fn, int nargs)
10399 {
10400 tree t;
10401
10402 t = build_vl_exp (CALL_EXPR, nargs + 3);
10403 TREE_TYPE (t) = return_type;
10404 CALL_EXPR_FN (t) = fn;
10405 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10406
10407 return t;
10408 }
10409
10410 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10411 FN and a null static chain slot. NARGS is the number of call arguments
10412 which are specified as "..." arguments. */
10413
10414 tree
10415 build_call_nary (tree return_type, tree fn, int nargs, ...)
10416 {
10417 tree ret;
10418 va_list args;
10419 va_start (args, nargs);
10420 ret = build_call_valist (return_type, fn, nargs, args);
10421 va_end (args);
10422 return ret;
10423 }
10424
10425 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10426 FN and a null static chain slot. NARGS is the number of call arguments
10427 which are specified as a va_list ARGS. */
10428
10429 tree
10430 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10431 {
10432 tree t;
10433 int i;
10434
10435 t = build_call_1 (return_type, fn, nargs);
10436 for (i = 0; i < nargs; i++)
10437 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10438 process_call_operands (t);
10439 return t;
10440 }
10441
10442 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10443 FN and a null static chain slot. NARGS is the number of call arguments
10444 which are specified as a tree array ARGS. */
10445
10446 tree
10447 build_call_array_loc (location_t loc, tree return_type, tree fn,
10448 int nargs, const tree *args)
10449 {
10450 tree t;
10451 int i;
10452
10453 t = build_call_1 (return_type, fn, nargs);
10454 for (i = 0; i < nargs; i++)
10455 CALL_EXPR_ARG (t, i) = args[i];
10456 process_call_operands (t);
10457 SET_EXPR_LOCATION (t, loc);
10458 return t;
10459 }
10460
10461 /* Like build_call_array, but takes a vec. */
10462
10463 tree
10464 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10465 {
10466 tree ret, t;
10467 unsigned int ix;
10468
10469 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10470 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10471 CALL_EXPR_ARG (ret, ix) = t;
10472 process_call_operands (ret);
10473 return ret;
10474 }
10475
10476 /* Conveniently construct a function call expression. FNDECL names the
10477 function to be called and N arguments are passed in the array
10478 ARGARRAY. */
10479
10480 tree
10481 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10482 {
10483 tree fntype = TREE_TYPE (fndecl);
10484 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10485
10486 return fold_builtin_call_array (loc, TREE_TYPE (fntype), fn, n, argarray);
10487 }
10488
10489 /* Conveniently construct a function call expression. FNDECL names the
10490 function to be called and the arguments are passed in the vector
10491 VEC. */
10492
10493 tree
10494 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10495 {
10496 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10497 vec_safe_address (vec));
10498 }
10499
10500
10501 /* Conveniently construct a function call expression. FNDECL names the
10502 function to be called, N is the number of arguments, and the "..."
10503 parameters are the argument expressions. */
10504
10505 tree
10506 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10507 {
10508 va_list ap;
10509 tree *argarray = XALLOCAVEC (tree, n);
10510 int i;
10511
10512 va_start (ap, n);
10513 for (i = 0; i < n; i++)
10514 argarray[i] = va_arg (ap, tree);
10515 va_end (ap);
10516 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10517 }
10518
10519 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10520 varargs macros aren't supported by all bootstrap compilers. */
10521
10522 tree
10523 build_call_expr (tree fndecl, int n, ...)
10524 {
10525 va_list ap;
10526 tree *argarray = XALLOCAVEC (tree, n);
10527 int i;
10528
10529 va_start (ap, n);
10530 for (i = 0; i < n; i++)
10531 argarray[i] = va_arg (ap, tree);
10532 va_end (ap);
10533 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10534 }
10535
10536 /* Build internal call expression. This is just like CALL_EXPR, except
10537 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10538 internal function. */
10539
10540 tree
10541 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10542 tree type, int n, ...)
10543 {
10544 va_list ap;
10545 int i;
10546
10547 tree fn = build_call_1 (type, NULL_TREE, n);
10548 va_start (ap, n);
10549 for (i = 0; i < n; i++)
10550 CALL_EXPR_ARG (fn, i) = va_arg (ap, tree);
10551 va_end (ap);
10552 SET_EXPR_LOCATION (fn, loc);
10553 CALL_EXPR_IFN (fn) = ifn;
10554 return fn;
10555 }
10556
10557 /* Create a new constant string literal and return a char* pointer to it.
10558 The STRING_CST value is the LEN characters at STR. */
10559 tree
10560 build_string_literal (int len, const char *str)
10561 {
10562 tree t, elem, index, type;
10563
10564 t = build_string (len, str);
10565 elem = build_type_variant (char_type_node, 1, 0);
10566 index = build_index_type (size_int (len - 1));
10567 type = build_array_type (elem, index);
10568 TREE_TYPE (t) = type;
10569 TREE_CONSTANT (t) = 1;
10570 TREE_READONLY (t) = 1;
10571 TREE_STATIC (t) = 1;
10572
10573 type = build_pointer_type (elem);
10574 t = build1 (ADDR_EXPR, type,
10575 build4 (ARRAY_REF, elem,
10576 t, integer_zero_node, NULL_TREE, NULL_TREE));
10577 return t;
10578 }
10579
10580
10581
10582 /* Return true if T (assumed to be a DECL) must be assigned a memory
10583 location. */
10584
10585 bool
10586 needs_to_live_in_memory (const_tree t)
10587 {
10588 return (TREE_ADDRESSABLE (t)
10589 || is_global_var (t)
10590 || (TREE_CODE (t) == RESULT_DECL
10591 && !DECL_BY_REFERENCE (t)
10592 && aggregate_value_p (t, current_function_decl)));
10593 }
10594
10595 /* Return value of a constant X and sign-extend it. */
10596
10597 HOST_WIDE_INT
10598 int_cst_value (const_tree x)
10599 {
10600 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10601 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10602
10603 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10604 gcc_assert (cst_and_fits_in_hwi (x));
10605
10606 if (bits < HOST_BITS_PER_WIDE_INT)
10607 {
10608 bool negative = ((val >> (bits - 1)) & 1) != 0;
10609 if (negative)
10610 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10611 else
10612 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10613 }
10614
10615 return val;
10616 }
10617
10618 /* If TYPE is an integral or pointer type, return an integer type with
10619 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10620 if TYPE is already an integer type of signedness UNSIGNEDP. */
10621
10622 tree
10623 signed_or_unsigned_type_for (int unsignedp, tree type)
10624 {
10625 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10626 return type;
10627
10628 if (TREE_CODE (type) == VECTOR_TYPE)
10629 {
10630 tree inner = TREE_TYPE (type);
10631 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10632 if (!inner2)
10633 return NULL_TREE;
10634 if (inner == inner2)
10635 return type;
10636 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10637 }
10638
10639 if (!INTEGRAL_TYPE_P (type)
10640 && !POINTER_TYPE_P (type)
10641 && TREE_CODE (type) != OFFSET_TYPE)
10642 return NULL_TREE;
10643
10644 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10645 }
10646
10647 /* If TYPE is an integral or pointer type, return an integer type with
10648 the same precision which is unsigned, or itself if TYPE is already an
10649 unsigned integer type. */
10650
10651 tree
10652 unsigned_type_for (tree type)
10653 {
10654 return signed_or_unsigned_type_for (1, type);
10655 }
10656
10657 /* If TYPE is an integral or pointer type, return an integer type with
10658 the same precision which is signed, or itself if TYPE is already a
10659 signed integer type. */
10660
10661 tree
10662 signed_type_for (tree type)
10663 {
10664 return signed_or_unsigned_type_for (0, type);
10665 }
10666
10667 /* If TYPE is a vector type, return a signed integer vector type with the
10668 same width and number of subparts. Otherwise return boolean_type_node. */
10669
10670 tree
10671 truth_type_for (tree type)
10672 {
10673 if (TREE_CODE (type) == VECTOR_TYPE)
10674 {
10675 tree elem = lang_hooks.types.type_for_size
10676 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10677 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10678 }
10679 else
10680 return boolean_type_node;
10681 }
10682
10683 /* Returns the largest value obtainable by casting something in INNER type to
10684 OUTER type. */
10685
10686 tree
10687 upper_bound_in_type (tree outer, tree inner)
10688 {
10689 unsigned int det = 0;
10690 unsigned oprec = TYPE_PRECISION (outer);
10691 unsigned iprec = TYPE_PRECISION (inner);
10692 unsigned prec;
10693
10694 /* Compute a unique number for every combination. */
10695 det |= (oprec > iprec) ? 4 : 0;
10696 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10697 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10698
10699 /* Determine the exponent to use. */
10700 switch (det)
10701 {
10702 case 0:
10703 case 1:
10704 /* oprec <= iprec, outer: signed, inner: don't care. */
10705 prec = oprec - 1;
10706 break;
10707 case 2:
10708 case 3:
10709 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10710 prec = oprec;
10711 break;
10712 case 4:
10713 /* oprec > iprec, outer: signed, inner: signed. */
10714 prec = iprec - 1;
10715 break;
10716 case 5:
10717 /* oprec > iprec, outer: signed, inner: unsigned. */
10718 prec = iprec;
10719 break;
10720 case 6:
10721 /* oprec > iprec, outer: unsigned, inner: signed. */
10722 prec = oprec;
10723 break;
10724 case 7:
10725 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10726 prec = iprec;
10727 break;
10728 default:
10729 gcc_unreachable ();
10730 }
10731
10732 return wide_int_to_tree (outer,
10733 wi::mask (prec, false, TYPE_PRECISION (outer)));
10734 }
10735
10736 /* Returns the smallest value obtainable by casting something in INNER type to
10737 OUTER type. */
10738
10739 tree
10740 lower_bound_in_type (tree outer, tree inner)
10741 {
10742 unsigned oprec = TYPE_PRECISION (outer);
10743 unsigned iprec = TYPE_PRECISION (inner);
10744
10745 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10746 and obtain 0. */
10747 if (TYPE_UNSIGNED (outer)
10748 /* If we are widening something of an unsigned type, OUTER type
10749 contains all values of INNER type. In particular, both INNER
10750 and OUTER types have zero in common. */
10751 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10752 return build_int_cst (outer, 0);
10753 else
10754 {
10755 /* If we are widening a signed type to another signed type, we
10756 want to obtain -2^^(iprec-1). If we are keeping the
10757 precision or narrowing to a signed type, we want to obtain
10758 -2^(oprec-1). */
10759 unsigned prec = oprec > iprec ? iprec : oprec;
10760 return wide_int_to_tree (outer,
10761 wi::mask (prec - 1, true,
10762 TYPE_PRECISION (outer)));
10763 }
10764 }
10765
10766 /* Return nonzero if two operands that are suitable for PHI nodes are
10767 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10768 SSA_NAME or invariant. Note that this is strictly an optimization.
10769 That is, callers of this function can directly call operand_equal_p
10770 and get the same result, only slower. */
10771
10772 int
10773 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10774 {
10775 if (arg0 == arg1)
10776 return 1;
10777 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10778 return 0;
10779 return operand_equal_p (arg0, arg1, 0);
10780 }
10781
10782 /* Returns number of zeros at the end of binary representation of X. */
10783
10784 tree
10785 num_ending_zeros (const_tree x)
10786 {
10787 return build_int_cst (TREE_TYPE (x), wi::ctz (x));
10788 }
10789
10790
10791 #define WALK_SUBTREE(NODE) \
10792 do \
10793 { \
10794 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10795 if (result) \
10796 return result; \
10797 } \
10798 while (0)
10799
10800 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10801 be walked whenever a type is seen in the tree. Rest of operands and return
10802 value are as for walk_tree. */
10803
10804 static tree
10805 walk_type_fields (tree type, walk_tree_fn func, void *data,
10806 hash_set<tree> *pset, walk_tree_lh lh)
10807 {
10808 tree result = NULL_TREE;
10809
10810 switch (TREE_CODE (type))
10811 {
10812 case POINTER_TYPE:
10813 case REFERENCE_TYPE:
10814 case VECTOR_TYPE:
10815 /* We have to worry about mutually recursive pointers. These can't
10816 be written in C. They can in Ada. It's pathological, but
10817 there's an ACATS test (c38102a) that checks it. Deal with this
10818 by checking if we're pointing to another pointer, that one
10819 points to another pointer, that one does too, and we have no htab.
10820 If so, get a hash table. We check three levels deep to avoid
10821 the cost of the hash table if we don't need one. */
10822 if (POINTER_TYPE_P (TREE_TYPE (type))
10823 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10824 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10825 && !pset)
10826 {
10827 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10828 func, data);
10829 if (result)
10830 return result;
10831
10832 break;
10833 }
10834
10835 /* ... fall through ... */
10836
10837 case COMPLEX_TYPE:
10838 WALK_SUBTREE (TREE_TYPE (type));
10839 break;
10840
10841 case METHOD_TYPE:
10842 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10843
10844 /* Fall through. */
10845
10846 case FUNCTION_TYPE:
10847 WALK_SUBTREE (TREE_TYPE (type));
10848 {
10849 tree arg;
10850
10851 /* We never want to walk into default arguments. */
10852 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10853 WALK_SUBTREE (TREE_VALUE (arg));
10854 }
10855 break;
10856
10857 case ARRAY_TYPE:
10858 /* Don't follow this nodes's type if a pointer for fear that
10859 we'll have infinite recursion. If we have a PSET, then we
10860 need not fear. */
10861 if (pset
10862 || (!POINTER_TYPE_P (TREE_TYPE (type))
10863 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10864 WALK_SUBTREE (TREE_TYPE (type));
10865 WALK_SUBTREE (TYPE_DOMAIN (type));
10866 break;
10867
10868 case OFFSET_TYPE:
10869 WALK_SUBTREE (TREE_TYPE (type));
10870 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10871 break;
10872
10873 default:
10874 break;
10875 }
10876
10877 return NULL_TREE;
10878 }
10879
10880 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10881 called with the DATA and the address of each sub-tree. If FUNC returns a
10882 non-NULL value, the traversal is stopped, and the value returned by FUNC
10883 is returned. If PSET is non-NULL it is used to record the nodes visited,
10884 and to avoid visiting a node more than once. */
10885
10886 tree
10887 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10888 hash_set<tree> *pset, walk_tree_lh lh)
10889 {
10890 enum tree_code code;
10891 int walk_subtrees;
10892 tree result;
10893
10894 #define WALK_SUBTREE_TAIL(NODE) \
10895 do \
10896 { \
10897 tp = & (NODE); \
10898 goto tail_recurse; \
10899 } \
10900 while (0)
10901
10902 tail_recurse:
10903 /* Skip empty subtrees. */
10904 if (!*tp)
10905 return NULL_TREE;
10906
10907 /* Don't walk the same tree twice, if the user has requested
10908 that we avoid doing so. */
10909 if (pset && pset->add (*tp))
10910 return NULL_TREE;
10911
10912 /* Call the function. */
10913 walk_subtrees = 1;
10914 result = (*func) (tp, &walk_subtrees, data);
10915
10916 /* If we found something, return it. */
10917 if (result)
10918 return result;
10919
10920 code = TREE_CODE (*tp);
10921
10922 /* Even if we didn't, FUNC may have decided that there was nothing
10923 interesting below this point in the tree. */
10924 if (!walk_subtrees)
10925 {
10926 /* But we still need to check our siblings. */
10927 if (code == TREE_LIST)
10928 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10929 else if (code == OMP_CLAUSE)
10930 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10931 else
10932 return NULL_TREE;
10933 }
10934
10935 if (lh)
10936 {
10937 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10938 if (result || !walk_subtrees)
10939 return result;
10940 }
10941
10942 switch (code)
10943 {
10944 case ERROR_MARK:
10945 case IDENTIFIER_NODE:
10946 case INTEGER_CST:
10947 case REAL_CST:
10948 case FIXED_CST:
10949 case VECTOR_CST:
10950 case STRING_CST:
10951 case BLOCK:
10952 case PLACEHOLDER_EXPR:
10953 case SSA_NAME:
10954 case FIELD_DECL:
10955 case RESULT_DECL:
10956 /* None of these have subtrees other than those already walked
10957 above. */
10958 break;
10959
10960 case TREE_LIST:
10961 WALK_SUBTREE (TREE_VALUE (*tp));
10962 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10963 break;
10964
10965 case TREE_VEC:
10966 {
10967 int len = TREE_VEC_LENGTH (*tp);
10968
10969 if (len == 0)
10970 break;
10971
10972 /* Walk all elements but the first. */
10973 while (--len)
10974 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10975
10976 /* Now walk the first one as a tail call. */
10977 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10978 }
10979
10980 case COMPLEX_CST:
10981 WALK_SUBTREE (TREE_REALPART (*tp));
10982 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10983
10984 case CONSTRUCTOR:
10985 {
10986 unsigned HOST_WIDE_INT idx;
10987 constructor_elt *ce;
10988
10989 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
10990 idx++)
10991 WALK_SUBTREE (ce->value);
10992 }
10993 break;
10994
10995 case SAVE_EXPR:
10996 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10997
10998 case BIND_EXPR:
10999 {
11000 tree decl;
11001 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11002 {
11003 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11004 into declarations that are just mentioned, rather than
11005 declared; they don't really belong to this part of the tree.
11006 And, we can see cycles: the initializer for a declaration
11007 can refer to the declaration itself. */
11008 WALK_SUBTREE (DECL_INITIAL (decl));
11009 WALK_SUBTREE (DECL_SIZE (decl));
11010 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11011 }
11012 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11013 }
11014
11015 case STATEMENT_LIST:
11016 {
11017 tree_stmt_iterator i;
11018 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11019 WALK_SUBTREE (*tsi_stmt_ptr (i));
11020 }
11021 break;
11022
11023 case OMP_CLAUSE:
11024 switch (OMP_CLAUSE_CODE (*tp))
11025 {
11026 case OMP_CLAUSE_PRIVATE:
11027 case OMP_CLAUSE_SHARED:
11028 case OMP_CLAUSE_FIRSTPRIVATE:
11029 case OMP_CLAUSE_COPYIN:
11030 case OMP_CLAUSE_COPYPRIVATE:
11031 case OMP_CLAUSE_FINAL:
11032 case OMP_CLAUSE_IF:
11033 case OMP_CLAUSE_NUM_THREADS:
11034 case OMP_CLAUSE_SCHEDULE:
11035 case OMP_CLAUSE_UNIFORM:
11036 case OMP_CLAUSE_DEPEND:
11037 case OMP_CLAUSE_NUM_TEAMS:
11038 case OMP_CLAUSE_THREAD_LIMIT:
11039 case OMP_CLAUSE_DEVICE:
11040 case OMP_CLAUSE_DIST_SCHEDULE:
11041 case OMP_CLAUSE_SAFELEN:
11042 case OMP_CLAUSE_SIMDLEN:
11043 case OMP_CLAUSE__LOOPTEMP_:
11044 case OMP_CLAUSE__SIMDUID_:
11045 case OMP_CLAUSE__CILK_FOR_COUNT_:
11046 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11047 /* FALLTHRU */
11048
11049 case OMP_CLAUSE_NOWAIT:
11050 case OMP_CLAUSE_ORDERED:
11051 case OMP_CLAUSE_DEFAULT:
11052 case OMP_CLAUSE_UNTIED:
11053 case OMP_CLAUSE_MERGEABLE:
11054 case OMP_CLAUSE_PROC_BIND:
11055 case OMP_CLAUSE_INBRANCH:
11056 case OMP_CLAUSE_NOTINBRANCH:
11057 case OMP_CLAUSE_FOR:
11058 case OMP_CLAUSE_PARALLEL:
11059 case OMP_CLAUSE_SECTIONS:
11060 case OMP_CLAUSE_TASKGROUP:
11061 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11062
11063 case OMP_CLAUSE_LASTPRIVATE:
11064 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11065 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11066 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11067
11068 case OMP_CLAUSE_COLLAPSE:
11069 {
11070 int i;
11071 for (i = 0; i < 3; i++)
11072 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11073 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11074 }
11075
11076 case OMP_CLAUSE_LINEAR:
11077 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11078 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11079 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11080 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11081
11082 case OMP_CLAUSE_ALIGNED:
11083 case OMP_CLAUSE_FROM:
11084 case OMP_CLAUSE_TO:
11085 case OMP_CLAUSE_MAP:
11086 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11087 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11088 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11089
11090 case OMP_CLAUSE_REDUCTION:
11091 {
11092 int i;
11093 for (i = 0; i < 4; i++)
11094 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11095 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11096 }
11097
11098 default:
11099 gcc_unreachable ();
11100 }
11101 break;
11102
11103 case TARGET_EXPR:
11104 {
11105 int i, len;
11106
11107 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11108 But, we only want to walk once. */
11109 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11110 for (i = 0; i < len; ++i)
11111 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11112 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11113 }
11114
11115 case DECL_EXPR:
11116 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11117 defining. We only want to walk into these fields of a type in this
11118 case and not in the general case of a mere reference to the type.
11119
11120 The criterion is as follows: if the field can be an expression, it
11121 must be walked only here. This should be in keeping with the fields
11122 that are directly gimplified in gimplify_type_sizes in order for the
11123 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11124 variable-sized types.
11125
11126 Note that DECLs get walked as part of processing the BIND_EXPR. */
11127 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11128 {
11129 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11130 if (TREE_CODE (*type_p) == ERROR_MARK)
11131 return NULL_TREE;
11132
11133 /* Call the function for the type. See if it returns anything or
11134 doesn't want us to continue. If we are to continue, walk both
11135 the normal fields and those for the declaration case. */
11136 result = (*func) (type_p, &walk_subtrees, data);
11137 if (result || !walk_subtrees)
11138 return result;
11139
11140 /* But do not walk a pointed-to type since it may itself need to
11141 be walked in the declaration case if it isn't anonymous. */
11142 if (!POINTER_TYPE_P (*type_p))
11143 {
11144 result = walk_type_fields (*type_p, func, data, pset, lh);
11145 if (result)
11146 return result;
11147 }
11148
11149 /* If this is a record type, also walk the fields. */
11150 if (RECORD_OR_UNION_TYPE_P (*type_p))
11151 {
11152 tree field;
11153
11154 for (field = TYPE_FIELDS (*type_p); field;
11155 field = DECL_CHAIN (field))
11156 {
11157 /* We'd like to look at the type of the field, but we can
11158 easily get infinite recursion. So assume it's pointed
11159 to elsewhere in the tree. Also, ignore things that
11160 aren't fields. */
11161 if (TREE_CODE (field) != FIELD_DECL)
11162 continue;
11163
11164 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11165 WALK_SUBTREE (DECL_SIZE (field));
11166 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11167 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11168 WALK_SUBTREE (DECL_QUALIFIER (field));
11169 }
11170 }
11171
11172 /* Same for scalar types. */
11173 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11174 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11175 || TREE_CODE (*type_p) == INTEGER_TYPE
11176 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11177 || TREE_CODE (*type_p) == REAL_TYPE)
11178 {
11179 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11180 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11181 }
11182
11183 WALK_SUBTREE (TYPE_SIZE (*type_p));
11184 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11185 }
11186 /* FALLTHRU */
11187
11188 default:
11189 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11190 {
11191 int i, len;
11192
11193 /* Walk over all the sub-trees of this operand. */
11194 len = TREE_OPERAND_LENGTH (*tp);
11195
11196 /* Go through the subtrees. We need to do this in forward order so
11197 that the scope of a FOR_EXPR is handled properly. */
11198 if (len)
11199 {
11200 for (i = 0; i < len - 1; ++i)
11201 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11202 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11203 }
11204 }
11205 /* If this is a type, walk the needed fields in the type. */
11206 else if (TYPE_P (*tp))
11207 return walk_type_fields (*tp, func, data, pset, lh);
11208 break;
11209 }
11210
11211 /* We didn't find what we were looking for. */
11212 return NULL_TREE;
11213
11214 #undef WALK_SUBTREE_TAIL
11215 }
11216 #undef WALK_SUBTREE
11217
11218 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11219
11220 tree
11221 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11222 walk_tree_lh lh)
11223 {
11224 tree result;
11225
11226 hash_set<tree> pset;
11227 result = walk_tree_1 (tp, func, data, &pset, lh);
11228 return result;
11229 }
11230
11231
11232 tree
11233 tree_block (tree t)
11234 {
11235 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11236
11237 if (IS_EXPR_CODE_CLASS (c))
11238 return LOCATION_BLOCK (t->exp.locus);
11239 gcc_unreachable ();
11240 return NULL;
11241 }
11242
11243 void
11244 tree_set_block (tree t, tree b)
11245 {
11246 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11247
11248 if (IS_EXPR_CODE_CLASS (c))
11249 {
11250 if (b)
11251 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
11252 else
11253 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
11254 }
11255 else
11256 gcc_unreachable ();
11257 }
11258
11259 /* Create a nameless artificial label and put it in the current
11260 function context. The label has a location of LOC. Returns the
11261 newly created label. */
11262
11263 tree
11264 create_artificial_label (location_t loc)
11265 {
11266 tree lab = build_decl (loc,
11267 LABEL_DECL, NULL_TREE, void_type_node);
11268
11269 DECL_ARTIFICIAL (lab) = 1;
11270 DECL_IGNORED_P (lab) = 1;
11271 DECL_CONTEXT (lab) = current_function_decl;
11272 return lab;
11273 }
11274
11275 /* Given a tree, try to return a useful variable name that we can use
11276 to prefix a temporary that is being assigned the value of the tree.
11277 I.E. given <temp> = &A, return A. */
11278
11279 const char *
11280 get_name (tree t)
11281 {
11282 tree stripped_decl;
11283
11284 stripped_decl = t;
11285 STRIP_NOPS (stripped_decl);
11286 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11287 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11288 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11289 {
11290 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11291 if (!name)
11292 return NULL;
11293 return IDENTIFIER_POINTER (name);
11294 }
11295 else
11296 {
11297 switch (TREE_CODE (stripped_decl))
11298 {
11299 case ADDR_EXPR:
11300 return get_name (TREE_OPERAND (stripped_decl, 0));
11301 default:
11302 return NULL;
11303 }
11304 }
11305 }
11306
11307 /* Return true if TYPE has a variable argument list. */
11308
11309 bool
11310 stdarg_p (const_tree fntype)
11311 {
11312 function_args_iterator args_iter;
11313 tree n = NULL_TREE, t;
11314
11315 if (!fntype)
11316 return false;
11317
11318 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11319 {
11320 n = t;
11321 }
11322
11323 return n != NULL_TREE && n != void_type_node;
11324 }
11325
11326 /* Return true if TYPE has a prototype. */
11327
11328 bool
11329 prototype_p (tree fntype)
11330 {
11331 tree t;
11332
11333 gcc_assert (fntype != NULL_TREE);
11334
11335 t = TYPE_ARG_TYPES (fntype);
11336 return (t != NULL_TREE);
11337 }
11338
11339 /* If BLOCK is inlined from an __attribute__((__artificial__))
11340 routine, return pointer to location from where it has been
11341 called. */
11342 location_t *
11343 block_nonartificial_location (tree block)
11344 {
11345 location_t *ret = NULL;
11346
11347 while (block && TREE_CODE (block) == BLOCK
11348 && BLOCK_ABSTRACT_ORIGIN (block))
11349 {
11350 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11351
11352 while (TREE_CODE (ao) == BLOCK
11353 && BLOCK_ABSTRACT_ORIGIN (ao)
11354 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11355 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11356
11357 if (TREE_CODE (ao) == FUNCTION_DECL)
11358 {
11359 /* If AO is an artificial inline, point RET to the
11360 call site locus at which it has been inlined and continue
11361 the loop, in case AO's caller is also an artificial
11362 inline. */
11363 if (DECL_DECLARED_INLINE_P (ao)
11364 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11365 ret = &BLOCK_SOURCE_LOCATION (block);
11366 else
11367 break;
11368 }
11369 else if (TREE_CODE (ao) != BLOCK)
11370 break;
11371
11372 block = BLOCK_SUPERCONTEXT (block);
11373 }
11374 return ret;
11375 }
11376
11377
11378 /* If EXP is inlined from an __attribute__((__artificial__))
11379 function, return the location of the original call expression. */
11380
11381 location_t
11382 tree_nonartificial_location (tree exp)
11383 {
11384 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11385
11386 if (loc)
11387 return *loc;
11388 else
11389 return EXPR_LOCATION (exp);
11390 }
11391
11392
11393 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11394 nodes. */
11395
11396 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11397
11398 static hashval_t
11399 cl_option_hash_hash (const void *x)
11400 {
11401 const_tree const t = (const_tree) x;
11402 const char *p;
11403 size_t i;
11404 size_t len = 0;
11405 hashval_t hash = 0;
11406
11407 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11408 {
11409 p = (const char *)TREE_OPTIMIZATION (t);
11410 len = sizeof (struct cl_optimization);
11411 }
11412
11413 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11414 {
11415 p = (const char *)TREE_TARGET_OPTION (t);
11416 len = sizeof (struct cl_target_option);
11417 }
11418
11419 else
11420 gcc_unreachable ();
11421
11422 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11423 something else. */
11424 for (i = 0; i < len; i++)
11425 if (p[i])
11426 hash = (hash << 4) ^ ((i << 2) | p[i]);
11427
11428 return hash;
11429 }
11430
11431 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11432 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11433 same. */
11434
11435 static int
11436 cl_option_hash_eq (const void *x, const void *y)
11437 {
11438 const_tree const xt = (const_tree) x;
11439 const_tree const yt = (const_tree) y;
11440 const char *xp;
11441 const char *yp;
11442 size_t len;
11443
11444 if (TREE_CODE (xt) != TREE_CODE (yt))
11445 return 0;
11446
11447 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11448 {
11449 xp = (const char *)TREE_OPTIMIZATION (xt);
11450 yp = (const char *)TREE_OPTIMIZATION (yt);
11451 len = sizeof (struct cl_optimization);
11452 }
11453
11454 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11455 {
11456 xp = (const char *)TREE_TARGET_OPTION (xt);
11457 yp = (const char *)TREE_TARGET_OPTION (yt);
11458 len = sizeof (struct cl_target_option);
11459 }
11460
11461 else
11462 gcc_unreachable ();
11463
11464 return (memcmp (xp, yp, len) == 0);
11465 }
11466
11467 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11468
11469 tree
11470 build_optimization_node (struct gcc_options *opts)
11471 {
11472 tree t;
11473 void **slot;
11474
11475 /* Use the cache of optimization nodes. */
11476
11477 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11478 opts);
11479
11480 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11481 t = (tree) *slot;
11482 if (!t)
11483 {
11484 /* Insert this one into the hash table. */
11485 t = cl_optimization_node;
11486 *slot = t;
11487
11488 /* Make a new node for next time round. */
11489 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11490 }
11491
11492 return t;
11493 }
11494
11495 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
11496
11497 tree
11498 build_target_option_node (struct gcc_options *opts)
11499 {
11500 tree t;
11501 void **slot;
11502
11503 /* Use the cache of optimization nodes. */
11504
11505 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11506 opts);
11507
11508 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11509 t = (tree) *slot;
11510 if (!t)
11511 {
11512 /* Insert this one into the hash table. */
11513 t = cl_target_option_node;
11514 *slot = t;
11515
11516 /* Make a new node for next time round. */
11517 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11518 }
11519
11520 return t;
11521 }
11522
11523 /* Reset TREE_TARGET_GLOBALS cache for TARGET_OPTION_NODE.
11524 Called through htab_traverse. */
11525
11526 static int
11527 prepare_target_option_node_for_pch (void **slot, void *)
11528 {
11529 tree node = (tree) *slot;
11530 if (TREE_CODE (node) == TARGET_OPTION_NODE)
11531 TREE_TARGET_GLOBALS (node) = NULL;
11532 return 1;
11533 }
11534
11535 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
11536 so that they aren't saved during PCH writing. */
11537
11538 void
11539 prepare_target_option_nodes_for_pch (void)
11540 {
11541 htab_traverse (cl_option_hash_table, prepare_target_option_node_for_pch,
11542 NULL);
11543 }
11544
11545 /* Determine the "ultimate origin" of a block. The block may be an inlined
11546 instance of an inlined instance of a block which is local to an inline
11547 function, so we have to trace all of the way back through the origin chain
11548 to find out what sort of node actually served as the original seed for the
11549 given block. */
11550
11551 tree
11552 block_ultimate_origin (const_tree block)
11553 {
11554 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11555
11556 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11557 nodes in the function to point to themselves; ignore that if
11558 we're trying to output the abstract instance of this function. */
11559 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11560 return NULL_TREE;
11561
11562 if (immediate_origin == NULL_TREE)
11563 return NULL_TREE;
11564 else
11565 {
11566 tree ret_val;
11567 tree lookahead = immediate_origin;
11568
11569 do
11570 {
11571 ret_val = lookahead;
11572 lookahead = (TREE_CODE (ret_val) == BLOCK
11573 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11574 }
11575 while (lookahead != NULL && lookahead != ret_val);
11576
11577 /* The block's abstract origin chain may not be the *ultimate* origin of
11578 the block. It could lead to a DECL that has an abstract origin set.
11579 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11580 will give us if it has one). Note that DECL's abstract origins are
11581 supposed to be the most distant ancestor (or so decl_ultimate_origin
11582 claims), so we don't need to loop following the DECL origins. */
11583 if (DECL_P (ret_val))
11584 return DECL_ORIGIN (ret_val);
11585
11586 return ret_val;
11587 }
11588 }
11589
11590 /* Return true iff conversion in EXP generates no instruction. Mark
11591 it inline so that we fully inline into the stripping functions even
11592 though we have two uses of this function. */
11593
11594 static inline bool
11595 tree_nop_conversion (const_tree exp)
11596 {
11597 tree outer_type, inner_type;
11598
11599 if (!CONVERT_EXPR_P (exp)
11600 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11601 return false;
11602 if (TREE_OPERAND (exp, 0) == error_mark_node)
11603 return false;
11604
11605 outer_type = TREE_TYPE (exp);
11606 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11607
11608 if (!inner_type)
11609 return false;
11610
11611 /* Use precision rather then machine mode when we can, which gives
11612 the correct answer even for submode (bit-field) types. */
11613 if ((INTEGRAL_TYPE_P (outer_type)
11614 || POINTER_TYPE_P (outer_type)
11615 || TREE_CODE (outer_type) == OFFSET_TYPE)
11616 && (INTEGRAL_TYPE_P (inner_type)
11617 || POINTER_TYPE_P (inner_type)
11618 || TREE_CODE (inner_type) == OFFSET_TYPE))
11619 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11620
11621 /* Otherwise fall back on comparing machine modes (e.g. for
11622 aggregate types, floats). */
11623 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11624 }
11625
11626 /* Return true iff conversion in EXP generates no instruction. Don't
11627 consider conversions changing the signedness. */
11628
11629 static bool
11630 tree_sign_nop_conversion (const_tree exp)
11631 {
11632 tree outer_type, inner_type;
11633
11634 if (!tree_nop_conversion (exp))
11635 return false;
11636
11637 outer_type = TREE_TYPE (exp);
11638 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11639
11640 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11641 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11642 }
11643
11644 /* Strip conversions from EXP according to tree_nop_conversion and
11645 return the resulting expression. */
11646
11647 tree
11648 tree_strip_nop_conversions (tree exp)
11649 {
11650 while (tree_nop_conversion (exp))
11651 exp = TREE_OPERAND (exp, 0);
11652 return exp;
11653 }
11654
11655 /* Strip conversions from EXP according to tree_sign_nop_conversion
11656 and return the resulting expression. */
11657
11658 tree
11659 tree_strip_sign_nop_conversions (tree exp)
11660 {
11661 while (tree_sign_nop_conversion (exp))
11662 exp = TREE_OPERAND (exp, 0);
11663 return exp;
11664 }
11665
11666 /* Avoid any floating point extensions from EXP. */
11667 tree
11668 strip_float_extensions (tree exp)
11669 {
11670 tree sub, expt, subt;
11671
11672 /* For floating point constant look up the narrowest type that can hold
11673 it properly and handle it like (type)(narrowest_type)constant.
11674 This way we can optimize for instance a=a*2.0 where "a" is float
11675 but 2.0 is double constant. */
11676 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11677 {
11678 REAL_VALUE_TYPE orig;
11679 tree type = NULL;
11680
11681 orig = TREE_REAL_CST (exp);
11682 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11683 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11684 type = float_type_node;
11685 else if (TYPE_PRECISION (TREE_TYPE (exp))
11686 > TYPE_PRECISION (double_type_node)
11687 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11688 type = double_type_node;
11689 if (type)
11690 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11691 }
11692
11693 if (!CONVERT_EXPR_P (exp))
11694 return exp;
11695
11696 sub = TREE_OPERAND (exp, 0);
11697 subt = TREE_TYPE (sub);
11698 expt = TREE_TYPE (exp);
11699
11700 if (!FLOAT_TYPE_P (subt))
11701 return exp;
11702
11703 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11704 return exp;
11705
11706 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11707 return exp;
11708
11709 return strip_float_extensions (sub);
11710 }
11711
11712 /* Strip out all handled components that produce invariant
11713 offsets. */
11714
11715 const_tree
11716 strip_invariant_refs (const_tree op)
11717 {
11718 while (handled_component_p (op))
11719 {
11720 switch (TREE_CODE (op))
11721 {
11722 case ARRAY_REF:
11723 case ARRAY_RANGE_REF:
11724 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11725 || TREE_OPERAND (op, 2) != NULL_TREE
11726 || TREE_OPERAND (op, 3) != NULL_TREE)
11727 return NULL;
11728 break;
11729
11730 case COMPONENT_REF:
11731 if (TREE_OPERAND (op, 2) != NULL_TREE)
11732 return NULL;
11733 break;
11734
11735 default:;
11736 }
11737 op = TREE_OPERAND (op, 0);
11738 }
11739
11740 return op;
11741 }
11742
11743 static GTY(()) tree gcc_eh_personality_decl;
11744
11745 /* Return the GCC personality function decl. */
11746
11747 tree
11748 lhd_gcc_personality (void)
11749 {
11750 if (!gcc_eh_personality_decl)
11751 gcc_eh_personality_decl = build_personality_function ("gcc");
11752 return gcc_eh_personality_decl;
11753 }
11754
11755 /* TARGET is a call target of GIMPLE call statement
11756 (obtained by gimple_call_fn). Return true if it is
11757 OBJ_TYPE_REF representing an virtual call of C++ method.
11758 (As opposed to OBJ_TYPE_REF representing objc calls
11759 through a cast where middle-end devirtualization machinery
11760 can't apply.) */
11761
11762 bool
11763 virtual_method_call_p (tree target)
11764 {
11765 if (TREE_CODE (target) != OBJ_TYPE_REF)
11766 return false;
11767 target = TREE_TYPE (target);
11768 gcc_checking_assert (TREE_CODE (target) == POINTER_TYPE);
11769 target = TREE_TYPE (target);
11770 if (TREE_CODE (target) == FUNCTION_TYPE)
11771 return false;
11772 gcc_checking_assert (TREE_CODE (target) == METHOD_TYPE);
11773 return true;
11774 }
11775
11776 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
11777
11778 tree
11779 obj_type_ref_class (tree ref)
11780 {
11781 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
11782 ref = TREE_TYPE (ref);
11783 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11784 ref = TREE_TYPE (ref);
11785 /* We look for type THIS points to. ObjC also builds
11786 OBJ_TYPE_REF with non-method calls, Their first parameter
11787 ID however also corresponds to class type. */
11788 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
11789 || TREE_CODE (ref) == FUNCTION_TYPE);
11790 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
11791 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11792 return TREE_TYPE (ref);
11793 }
11794
11795 /* Return true if T is in anonymous namespace. */
11796
11797 bool
11798 type_in_anonymous_namespace_p (const_tree t)
11799 {
11800 /* TREE_PUBLIC of TYPE_STUB_DECL may not be properly set for
11801 bulitin types; those have CONTEXT NULL. */
11802 if (!TYPE_CONTEXT (t))
11803 return false;
11804 return (TYPE_STUB_DECL (t) && !TREE_PUBLIC (TYPE_STUB_DECL (t)));
11805 }
11806
11807 /* Try to find a base info of BINFO that would have its field decl at offset
11808 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11809 found, return, otherwise return NULL_TREE. */
11810
11811 tree
11812 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11813 {
11814 tree type = BINFO_TYPE (binfo);
11815
11816 while (true)
11817 {
11818 HOST_WIDE_INT pos, size;
11819 tree fld;
11820 int i;
11821
11822 if (types_same_for_odr (type, expected_type))
11823 return binfo;
11824 if (offset < 0)
11825 return NULL_TREE;
11826
11827 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11828 {
11829 if (TREE_CODE (fld) != FIELD_DECL)
11830 continue;
11831
11832 pos = int_bit_position (fld);
11833 size = tree_to_uhwi (DECL_SIZE (fld));
11834 if (pos <= offset && (pos + size) > offset)
11835 break;
11836 }
11837 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11838 return NULL_TREE;
11839
11840 if (!DECL_ARTIFICIAL (fld))
11841 {
11842 binfo = TYPE_BINFO (TREE_TYPE (fld));
11843 if (!binfo)
11844 return NULL_TREE;
11845 }
11846 /* Offset 0 indicates the primary base, whose vtable contents are
11847 represented in the binfo for the derived class. */
11848 else if (offset != 0)
11849 {
11850 tree base_binfo, binfo2 = binfo;
11851
11852 /* Find BINFO corresponding to FLD. This is bit harder
11853 by a fact that in virtual inheritance we may need to walk down
11854 the non-virtual inheritance chain. */
11855 while (true)
11856 {
11857 tree containing_binfo = NULL, found_binfo = NULL;
11858 for (i = 0; BINFO_BASE_ITERATE (binfo2, i, base_binfo); i++)
11859 if (types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
11860 {
11861 found_binfo = base_binfo;
11862 break;
11863 }
11864 else
11865 if ((tree_to_shwi (BINFO_OFFSET (base_binfo))
11866 - tree_to_shwi (BINFO_OFFSET (binfo)))
11867 * BITS_PER_UNIT < pos
11868 /* Rule out types with no virtual methods or we can get confused
11869 here by zero sized bases. */
11870 && BINFO_VTABLE (TYPE_BINFO (BINFO_TYPE (base_binfo)))
11871 && (!containing_binfo
11872 || (tree_to_shwi (BINFO_OFFSET (containing_binfo))
11873 < tree_to_shwi (BINFO_OFFSET (base_binfo)))))
11874 containing_binfo = base_binfo;
11875 if (found_binfo)
11876 {
11877 binfo = found_binfo;
11878 break;
11879 }
11880 if (!containing_binfo)
11881 return NULL_TREE;
11882 binfo2 = containing_binfo;
11883 }
11884 }
11885
11886 type = TREE_TYPE (fld);
11887 offset -= pos;
11888 }
11889 }
11890
11891 /* Returns true if X is a typedef decl. */
11892
11893 bool
11894 is_typedef_decl (tree x)
11895 {
11896 return (x && TREE_CODE (x) == TYPE_DECL
11897 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11898 }
11899
11900 /* Returns true iff TYPE is a type variant created for a typedef. */
11901
11902 bool
11903 typedef_variant_p (tree type)
11904 {
11905 return is_typedef_decl (TYPE_NAME (type));
11906 }
11907
11908 /* Warn about a use of an identifier which was marked deprecated. */
11909 void
11910 warn_deprecated_use (tree node, tree attr)
11911 {
11912 const char *msg;
11913
11914 if (node == 0 || !warn_deprecated_decl)
11915 return;
11916
11917 if (!attr)
11918 {
11919 if (DECL_P (node))
11920 attr = DECL_ATTRIBUTES (node);
11921 else if (TYPE_P (node))
11922 {
11923 tree decl = TYPE_STUB_DECL (node);
11924 if (decl)
11925 attr = lookup_attribute ("deprecated",
11926 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11927 }
11928 }
11929
11930 if (attr)
11931 attr = lookup_attribute ("deprecated", attr);
11932
11933 if (attr)
11934 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11935 else
11936 msg = NULL;
11937
11938 if (DECL_P (node))
11939 {
11940 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11941 if (msg)
11942 warning (OPT_Wdeprecated_declarations,
11943 "%qD is deprecated (declared at %r%s:%d%R): %s",
11944 node, "locus", xloc.file, xloc.line, msg);
11945 else
11946 warning (OPT_Wdeprecated_declarations,
11947 "%qD is deprecated (declared at %r%s:%d%R)",
11948 node, "locus", xloc.file, xloc.line);
11949 }
11950 else if (TYPE_P (node))
11951 {
11952 tree what = NULL_TREE;
11953 tree decl = TYPE_STUB_DECL (node);
11954
11955 if (TYPE_NAME (node))
11956 {
11957 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11958 what = TYPE_NAME (node);
11959 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11960 && DECL_NAME (TYPE_NAME (node)))
11961 what = DECL_NAME (TYPE_NAME (node));
11962 }
11963
11964 if (decl)
11965 {
11966 expanded_location xloc
11967 = expand_location (DECL_SOURCE_LOCATION (decl));
11968 if (what)
11969 {
11970 if (msg)
11971 warning (OPT_Wdeprecated_declarations,
11972 "%qE is deprecated (declared at %r%s:%d%R): %s",
11973 what, "locus", xloc.file, xloc.line, msg);
11974 else
11975 warning (OPT_Wdeprecated_declarations,
11976 "%qE is deprecated (declared at %r%s:%d%R)",
11977 what, "locus", xloc.file, xloc.line);
11978 }
11979 else
11980 {
11981 if (msg)
11982 warning (OPT_Wdeprecated_declarations,
11983 "type is deprecated (declared at %r%s:%d%R): %s",
11984 "locus", xloc.file, xloc.line, msg);
11985 else
11986 warning (OPT_Wdeprecated_declarations,
11987 "type is deprecated (declared at %r%s:%d%R)",
11988 "locus", xloc.file, xloc.line);
11989 }
11990 }
11991 else
11992 {
11993 if (what)
11994 {
11995 if (msg)
11996 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11997 what, msg);
11998 else
11999 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12000 }
12001 else
12002 {
12003 if (msg)
12004 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12005 msg);
12006 else
12007 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12008 }
12009 }
12010 }
12011 }
12012
12013 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12014 somewhere in it. */
12015
12016 bool
12017 contains_bitfld_component_ref_p (const_tree ref)
12018 {
12019 while (handled_component_p (ref))
12020 {
12021 if (TREE_CODE (ref) == COMPONENT_REF
12022 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12023 return true;
12024 ref = TREE_OPERAND (ref, 0);
12025 }
12026
12027 return false;
12028 }
12029
12030 /* Try to determine whether a TRY_CATCH expression can fall through.
12031 This is a subroutine of block_may_fallthru. */
12032
12033 static bool
12034 try_catch_may_fallthru (const_tree stmt)
12035 {
12036 tree_stmt_iterator i;
12037
12038 /* If the TRY block can fall through, the whole TRY_CATCH can
12039 fall through. */
12040 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12041 return true;
12042
12043 i = tsi_start (TREE_OPERAND (stmt, 1));
12044 switch (TREE_CODE (tsi_stmt (i)))
12045 {
12046 case CATCH_EXPR:
12047 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12048 catch expression and a body. The whole TRY_CATCH may fall
12049 through iff any of the catch bodies falls through. */
12050 for (; !tsi_end_p (i); tsi_next (&i))
12051 {
12052 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12053 return true;
12054 }
12055 return false;
12056
12057 case EH_FILTER_EXPR:
12058 /* The exception filter expression only matters if there is an
12059 exception. If the exception does not match EH_FILTER_TYPES,
12060 we will execute EH_FILTER_FAILURE, and we will fall through
12061 if that falls through. If the exception does match
12062 EH_FILTER_TYPES, the stack unwinder will continue up the
12063 stack, so we will not fall through. We don't know whether we
12064 will throw an exception which matches EH_FILTER_TYPES or not,
12065 so we just ignore EH_FILTER_TYPES and assume that we might
12066 throw an exception which doesn't match. */
12067 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12068
12069 default:
12070 /* This case represents statements to be executed when an
12071 exception occurs. Those statements are implicitly followed
12072 by a RESX statement to resume execution after the exception.
12073 So in this case the TRY_CATCH never falls through. */
12074 return false;
12075 }
12076 }
12077
12078 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12079 need not be 100% accurate; simply be conservative and return true if we
12080 don't know. This is used only to avoid stupidly generating extra code.
12081 If we're wrong, we'll just delete the extra code later. */
12082
12083 bool
12084 block_may_fallthru (const_tree block)
12085 {
12086 /* This CONST_CAST is okay because expr_last returns its argument
12087 unmodified and we assign it to a const_tree. */
12088 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12089
12090 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12091 {
12092 case GOTO_EXPR:
12093 case RETURN_EXPR:
12094 /* Easy cases. If the last statement of the block implies
12095 control transfer, then we can't fall through. */
12096 return false;
12097
12098 case SWITCH_EXPR:
12099 /* If SWITCH_LABELS is set, this is lowered, and represents a
12100 branch to a selected label and hence can not fall through.
12101 Otherwise SWITCH_BODY is set, and the switch can fall
12102 through. */
12103 return SWITCH_LABELS (stmt) == NULL_TREE;
12104
12105 case COND_EXPR:
12106 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12107 return true;
12108 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12109
12110 case BIND_EXPR:
12111 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12112
12113 case TRY_CATCH_EXPR:
12114 return try_catch_may_fallthru (stmt);
12115
12116 case TRY_FINALLY_EXPR:
12117 /* The finally clause is always executed after the try clause,
12118 so if it does not fall through, then the try-finally will not
12119 fall through. Otherwise, if the try clause does not fall
12120 through, then when the finally clause falls through it will
12121 resume execution wherever the try clause was going. So the
12122 whole try-finally will only fall through if both the try
12123 clause and the finally clause fall through. */
12124 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12125 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12126
12127 case MODIFY_EXPR:
12128 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12129 stmt = TREE_OPERAND (stmt, 1);
12130 else
12131 return true;
12132 /* FALLTHRU */
12133
12134 case CALL_EXPR:
12135 /* Functions that do not return do not fall through. */
12136 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12137
12138 case CLEANUP_POINT_EXPR:
12139 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12140
12141 case TARGET_EXPR:
12142 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12143
12144 case ERROR_MARK:
12145 return true;
12146
12147 default:
12148 return lang_hooks.block_may_fallthru (stmt);
12149 }
12150 }
12151
12152 /* True if we are using EH to handle cleanups. */
12153 static bool using_eh_for_cleanups_flag = false;
12154
12155 /* This routine is called from front ends to indicate eh should be used for
12156 cleanups. */
12157 void
12158 using_eh_for_cleanups (void)
12159 {
12160 using_eh_for_cleanups_flag = true;
12161 }
12162
12163 /* Query whether EH is used for cleanups. */
12164 bool
12165 using_eh_for_cleanups_p (void)
12166 {
12167 return using_eh_for_cleanups_flag;
12168 }
12169
12170 /* Wrapper for tree_code_name to ensure that tree code is valid */
12171 const char *
12172 get_tree_code_name (enum tree_code code)
12173 {
12174 const char *invalid = "<invalid tree code>";
12175
12176 if (code >= MAX_TREE_CODES)
12177 return invalid;
12178
12179 return tree_code_name[code];
12180 }
12181
12182 /* Drops the TREE_OVERFLOW flag from T. */
12183
12184 tree
12185 drop_tree_overflow (tree t)
12186 {
12187 gcc_checking_assert (TREE_OVERFLOW (t));
12188
12189 /* For tree codes with a sharing machinery re-build the result. */
12190 if (TREE_CODE (t) == INTEGER_CST)
12191 return wide_int_to_tree (TREE_TYPE (t), t);
12192
12193 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12194 and drop the flag. */
12195 t = copy_node (t);
12196 TREE_OVERFLOW (t) = 0;
12197 return t;
12198 }
12199
12200 /* Given a memory reference expression T, return its base address.
12201 The base address of a memory reference expression is the main
12202 object being referenced. For instance, the base address for
12203 'array[i].fld[j]' is 'array'. You can think of this as stripping
12204 away the offset part from a memory address.
12205
12206 This function calls handled_component_p to strip away all the inner
12207 parts of the memory reference until it reaches the base object. */
12208
12209 tree
12210 get_base_address (tree t)
12211 {
12212 while (handled_component_p (t))
12213 t = TREE_OPERAND (t, 0);
12214
12215 if ((TREE_CODE (t) == MEM_REF
12216 || TREE_CODE (t) == TARGET_MEM_REF)
12217 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12218 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12219
12220 /* ??? Either the alias oracle or all callers need to properly deal
12221 with WITH_SIZE_EXPRs before we can look through those. */
12222 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12223 return NULL_TREE;
12224
12225 return t;
12226 }
12227
12228 #include "gt-tree.h"