tree.c (build_vector): Assert that the vector constant has enough elements.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "perm_tree_lists",
140 "temp_tree_lists",
141 "vecs",
142 "binfos",
143 "ssa names",
144 "constructors",
145 "random kinds",
146 "lang_decl kinds",
147 "lang_type kinds",
148 "omp clauses",
149 };
150 #endif /* GATHER_STATISTICS */
151
152 /* Unique id for next decl created. */
153 static GTY(()) int next_decl_uid;
154 /* Unique id for next type created. */
155 static GTY(()) int next_type_uid = 1;
156 /* Unique id for next debug decl created. Use negative numbers,
157 to catch erroneous uses. */
158 static GTY(()) int next_debug_decl_uid;
159
160 /* Since we cannot rehash a type after it is in the table, we have to
161 keep the hash code. */
162
163 struct GTY(()) type_hash {
164 unsigned long hash;
165 tree type;
166 };
167
168 /* Initial size of the hash table (rounded to next prime). */
169 #define TYPE_HASH_INITIAL_SIZE 1000
170
171 /* Now here is the hash table. When recording a type, it is added to
172 the slot whose index is the hash code. Note that the hash table is
173 used for several kinds of types (function types, array types and
174 array index range types, for now). While all these live in the
175 same table, they are completely independent, and the hash code is
176 computed differently for each of these. */
177
178 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
179 htab_t type_hash_table;
180
181 /* Hash table and temporary node for larger integer const values. */
182 static GTY (()) tree int_cst_node;
183 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
184 htab_t int_cst_hash_table;
185
186 /* Hash table for optimization flags and target option flags. Use the same
187 hash table for both sets of options. Nodes for building the current
188 optimization and target option nodes. The assumption is most of the time
189 the options created will already be in the hash table, so we avoid
190 allocating and freeing up a node repeatably. */
191 static GTY (()) tree cl_optimization_node;
192 static GTY (()) tree cl_target_option_node;
193 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
194 htab_t cl_option_hash_table;
195
196 /* General tree->tree mapping structure for use in hash tables. */
197
198
199 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
200 htab_t debug_expr_for_decl;
201
202 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
203 htab_t value_expr_for_decl;
204
205 static GTY ((if_marked ("tree_priority_map_marked_p"),
206 param_is (struct tree_priority_map)))
207 htab_t init_priority_for_decl;
208
209 static void set_type_quals (tree, int);
210 static int type_hash_eq (const void *, const void *);
211 static hashval_t type_hash_hash (const void *);
212 static hashval_t int_cst_hash_hash (const void *);
213 static int int_cst_hash_eq (const void *, const void *);
214 static hashval_t cl_option_hash_hash (const void *);
215 static int cl_option_hash_eq (const void *, const void *);
216 static void print_type_hash_statistics (void);
217 static void print_debug_expr_statistics (void);
218 static void print_value_expr_statistics (void);
219 static int type_hash_marked_p (const void *);
220 static unsigned int type_hash_list (const_tree, hashval_t);
221 static unsigned int attribute_hash_list (const_tree, hashval_t);
222
223 tree global_trees[TI_MAX];
224 tree integer_types[itk_none];
225
226 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
227
228 /* Number of operands for each OpenMP clause. */
229 unsigned const char omp_clause_num_ops[] =
230 {
231 0, /* OMP_CLAUSE_ERROR */
232 1, /* OMP_CLAUSE_PRIVATE */
233 1, /* OMP_CLAUSE_SHARED */
234 1, /* OMP_CLAUSE_FIRSTPRIVATE */
235 2, /* OMP_CLAUSE_LASTPRIVATE */
236 4, /* OMP_CLAUSE_REDUCTION */
237 1, /* OMP_CLAUSE_COPYIN */
238 1, /* OMP_CLAUSE_COPYPRIVATE */
239 1, /* OMP_CLAUSE_IF */
240 1, /* OMP_CLAUSE_NUM_THREADS */
241 1, /* OMP_CLAUSE_SCHEDULE */
242 0, /* OMP_CLAUSE_NOWAIT */
243 0, /* OMP_CLAUSE_ORDERED */
244 0, /* OMP_CLAUSE_DEFAULT */
245 3, /* OMP_CLAUSE_COLLAPSE */
246 0 /* OMP_CLAUSE_UNTIED */
247 };
248
249 const char * const omp_clause_code_name[] =
250 {
251 "error_clause",
252 "private",
253 "shared",
254 "firstprivate",
255 "lastprivate",
256 "reduction",
257 "copyin",
258 "copyprivate",
259 "if",
260 "num_threads",
261 "schedule",
262 "nowait",
263 "ordered",
264 "default",
265 "collapse",
266 "untied"
267 };
268
269
270 /* Return the tree node structure used by tree code CODE. */
271
272 static inline enum tree_node_structure_enum
273 tree_node_structure_for_code (enum tree_code code)
274 {
275 switch (TREE_CODE_CLASS (code))
276 {
277 case tcc_declaration:
278 {
279 switch (code)
280 {
281 case FIELD_DECL:
282 return TS_FIELD_DECL;
283 case PARM_DECL:
284 return TS_PARM_DECL;
285 case VAR_DECL:
286 return TS_VAR_DECL;
287 case LABEL_DECL:
288 return TS_LABEL_DECL;
289 case RESULT_DECL:
290 return TS_RESULT_DECL;
291 case DEBUG_EXPR_DECL:
292 return TS_DECL_WRTL;
293 case CONST_DECL:
294 return TS_CONST_DECL;
295 case TYPE_DECL:
296 return TS_TYPE_DECL;
297 case FUNCTION_DECL:
298 return TS_FUNCTION_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 default:
470 gcc_unreachable ();
471 }
472 }
473
474 /* Basic consistency checks for attributes used in fold. */
475 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
476 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON]);
477 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
478 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
479 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
480 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
481 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
488 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
489 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
490 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
494 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
495 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
496 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
503 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
504 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
505 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
507 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
508 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
509 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
510 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
511 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
512 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
513 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
514 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
515 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
516
517 #undef MARK_TS_BASE
518 #undef MARK_TS_COMMON
519 #undef MARK_TS_DECL_MINIMAL
520 #undef MARK_TS_DECL_COMMON
521 #undef MARK_TS_DECL_WRTL
522 #undef MARK_TS_DECL_WITH_VIS
523 #undef MARK_TS_DECL_NON_COMMON
524 }
525
526
527 /* Init tree.c. */
528
529 void
530 init_ttree (void)
531 {
532 /* Initialize the hash table of types. */
533 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
534 type_hash_eq, 0);
535
536 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
537 tree_decl_map_eq, 0);
538
539 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
540 tree_decl_map_eq, 0);
541 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
542 tree_priority_map_eq, 0);
543
544 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
545 int_cst_hash_eq, NULL);
546
547 int_cst_node = make_node (INTEGER_CST);
548
549 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
550 cl_option_hash_eq, NULL);
551
552 cl_optimization_node = make_node (OPTIMIZATION_NODE);
553 cl_target_option_node = make_node (TARGET_OPTION_NODE);
554
555 /* Initialize the tree_contains_struct array. */
556 initialize_tree_contains_struct ();
557 lang_hooks.init_ts ();
558 }
559
560 \f
561 /* The name of the object as the assembler will see it (but before any
562 translations made by ASM_OUTPUT_LABELREF). Often this is the same
563 as DECL_NAME. It is an IDENTIFIER_NODE. */
564 tree
565 decl_assembler_name (tree decl)
566 {
567 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
568 lang_hooks.set_decl_assembler_name (decl);
569 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
570 }
571
572 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
573
574 bool
575 decl_assembler_name_equal (tree decl, const_tree asmname)
576 {
577 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
578 const char *decl_str;
579 const char *asmname_str;
580 bool test = false;
581
582 if (decl_asmname == asmname)
583 return true;
584
585 decl_str = IDENTIFIER_POINTER (decl_asmname);
586 asmname_str = IDENTIFIER_POINTER (asmname);
587
588
589 /* If the target assembler name was set by the user, things are trickier.
590 We have a leading '*' to begin with. After that, it's arguable what
591 is the correct thing to do with -fleading-underscore. Arguably, we've
592 historically been doing the wrong thing in assemble_alias by always
593 printing the leading underscore. Since we're not changing that, make
594 sure user_label_prefix follows the '*' before matching. */
595 if (decl_str[0] == '*')
596 {
597 size_t ulp_len = strlen (user_label_prefix);
598
599 decl_str ++;
600
601 if (ulp_len == 0)
602 test = true;
603 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
604 decl_str += ulp_len, test=true;
605 else
606 decl_str --;
607 }
608 if (asmname_str[0] == '*')
609 {
610 size_t ulp_len = strlen (user_label_prefix);
611
612 asmname_str ++;
613
614 if (ulp_len == 0)
615 test = true;
616 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
617 asmname_str += ulp_len, test=true;
618 else
619 asmname_str --;
620 }
621
622 if (!test)
623 return false;
624 return strcmp (decl_str, asmname_str) == 0;
625 }
626
627 /* Hash asmnames ignoring the user specified marks. */
628
629 hashval_t
630 decl_assembler_name_hash (const_tree asmname)
631 {
632 if (IDENTIFIER_POINTER (asmname)[0] == '*')
633 {
634 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
635 size_t ulp_len = strlen (user_label_prefix);
636
637 if (ulp_len == 0)
638 ;
639 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
640 decl_str += ulp_len;
641
642 return htab_hash_string (decl_str);
643 }
644
645 return htab_hash_string (IDENTIFIER_POINTER (asmname));
646 }
647
648 /* Compute the number of bytes occupied by a tree with code CODE.
649 This function cannot be used for nodes that have variable sizes,
650 including TREE_VEC, STRING_CST, and CALL_EXPR. */
651 size_t
652 tree_code_size (enum tree_code code)
653 {
654 switch (TREE_CODE_CLASS (code))
655 {
656 case tcc_declaration: /* A decl node */
657 {
658 switch (code)
659 {
660 case FIELD_DECL:
661 return sizeof (struct tree_field_decl);
662 case PARM_DECL:
663 return sizeof (struct tree_parm_decl);
664 case VAR_DECL:
665 return sizeof (struct tree_var_decl);
666 case LABEL_DECL:
667 return sizeof (struct tree_label_decl);
668 case RESULT_DECL:
669 return sizeof (struct tree_result_decl);
670 case CONST_DECL:
671 return sizeof (struct tree_const_decl);
672 case TYPE_DECL:
673 return sizeof (struct tree_type_decl);
674 case FUNCTION_DECL:
675 return sizeof (struct tree_function_decl);
676 case DEBUG_EXPR_DECL:
677 return sizeof (struct tree_decl_with_rtl);
678 default:
679 return sizeof (struct tree_decl_non_common);
680 }
681 }
682
683 case tcc_type: /* a type node */
684 return sizeof (struct tree_type);
685
686 case tcc_reference: /* a reference */
687 case tcc_expression: /* an expression */
688 case tcc_statement: /* an expression with side effects */
689 case tcc_comparison: /* a comparison expression */
690 case tcc_unary: /* a unary arithmetic expression */
691 case tcc_binary: /* a binary arithmetic expression */
692 return (sizeof (struct tree_exp)
693 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
694
695 case tcc_constant: /* a constant */
696 switch (code)
697 {
698 case INTEGER_CST: return sizeof (struct tree_int_cst);
699 case REAL_CST: return sizeof (struct tree_real_cst);
700 case FIXED_CST: return sizeof (struct tree_fixed_cst);
701 case COMPLEX_CST: return sizeof (struct tree_complex);
702 case VECTOR_CST: return sizeof (struct tree_vector);
703 case STRING_CST: gcc_unreachable ();
704 default:
705 return lang_hooks.tree_size (code);
706 }
707
708 case tcc_exceptional: /* something random, like an identifier. */
709 switch (code)
710 {
711 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
712 case TREE_LIST: return sizeof (struct tree_list);
713
714 case ERROR_MARK:
715 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
716
717 case TREE_VEC:
718 case OMP_CLAUSE: gcc_unreachable ();
719
720 case SSA_NAME: return sizeof (struct tree_ssa_name);
721
722 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
723 case BLOCK: return sizeof (struct tree_block);
724 case CONSTRUCTOR: return sizeof (struct tree_constructor);
725 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
726 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
727
728 default:
729 return lang_hooks.tree_size (code);
730 }
731
732 default:
733 gcc_unreachable ();
734 }
735 }
736
737 /* Compute the number of bytes occupied by NODE. This routine only
738 looks at TREE_CODE, except for those nodes that have variable sizes. */
739 size_t
740 tree_size (const_tree node)
741 {
742 const enum tree_code code = TREE_CODE (node);
743 switch (code)
744 {
745 case TREE_BINFO:
746 return (offsetof (struct tree_binfo, base_binfos)
747 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
748
749 case TREE_VEC:
750 return (sizeof (struct tree_vec)
751 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
752
753 case STRING_CST:
754 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
755
756 case OMP_CLAUSE:
757 return (sizeof (struct tree_omp_clause)
758 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
759 * sizeof (tree));
760
761 default:
762 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
763 return (sizeof (struct tree_exp)
764 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
765 else
766 return tree_code_size (code);
767 }
768 }
769
770 /* Return a newly allocated node of code CODE. For decl and type
771 nodes, some other fields are initialized. The rest of the node is
772 initialized to zero. This function cannot be used for TREE_VEC or
773 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
774
775 Achoo! I got a code in the node. */
776
777 tree
778 make_node_stat (enum tree_code code MEM_STAT_DECL)
779 {
780 tree t;
781 enum tree_code_class type = TREE_CODE_CLASS (code);
782 size_t length = tree_code_size (code);
783 #ifdef GATHER_STATISTICS
784 tree_node_kind kind;
785
786 switch (type)
787 {
788 case tcc_declaration: /* A decl node */
789 kind = d_kind;
790 break;
791
792 case tcc_type: /* a type node */
793 kind = t_kind;
794 break;
795
796 case tcc_statement: /* an expression with side effects */
797 kind = s_kind;
798 break;
799
800 case tcc_reference: /* a reference */
801 kind = r_kind;
802 break;
803
804 case tcc_expression: /* an expression */
805 case tcc_comparison: /* a comparison expression */
806 case tcc_unary: /* a unary arithmetic expression */
807 case tcc_binary: /* a binary arithmetic expression */
808 kind = e_kind;
809 break;
810
811 case tcc_constant: /* a constant */
812 kind = c_kind;
813 break;
814
815 case tcc_exceptional: /* something random, like an identifier. */
816 switch (code)
817 {
818 case IDENTIFIER_NODE:
819 kind = id_kind;
820 break;
821
822 case TREE_VEC:
823 kind = vec_kind;
824 break;
825
826 case TREE_BINFO:
827 kind = binfo_kind;
828 break;
829
830 case SSA_NAME:
831 kind = ssa_name_kind;
832 break;
833
834 case BLOCK:
835 kind = b_kind;
836 break;
837
838 case CONSTRUCTOR:
839 kind = constr_kind;
840 break;
841
842 default:
843 kind = x_kind;
844 break;
845 }
846 break;
847
848 default:
849 gcc_unreachable ();
850 }
851
852 tree_node_counts[(int) kind]++;
853 tree_node_sizes[(int) kind] += length;
854 #endif
855
856 t = ggc_alloc_zone_cleared_tree_node_stat (
857 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
858 length PASS_MEM_STAT);
859 TREE_SET_CODE (t, code);
860
861 switch (type)
862 {
863 case tcc_statement:
864 TREE_SIDE_EFFECTS (t) = 1;
865 break;
866
867 case tcc_declaration:
868 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
869 {
870 if (code == FUNCTION_DECL)
871 {
872 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
873 DECL_MODE (t) = FUNCTION_MODE;
874 }
875 else
876 DECL_ALIGN (t) = 1;
877 }
878 DECL_SOURCE_LOCATION (t) = input_location;
879 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
880 DECL_UID (t) = --next_debug_decl_uid;
881 else
882 {
883 DECL_UID (t) = next_decl_uid++;
884 SET_DECL_PT_UID (t, -1);
885 }
886 if (TREE_CODE (t) == LABEL_DECL)
887 LABEL_DECL_UID (t) = -1;
888
889 break;
890
891 case tcc_type:
892 TYPE_UID (t) = next_type_uid++;
893 TYPE_ALIGN (t) = BITS_PER_UNIT;
894 TYPE_USER_ALIGN (t) = 0;
895 TYPE_MAIN_VARIANT (t) = t;
896 TYPE_CANONICAL (t) = t;
897
898 /* Default to no attributes for type, but let target change that. */
899 TYPE_ATTRIBUTES (t) = NULL_TREE;
900 targetm.set_default_type_attributes (t);
901
902 /* We have not yet computed the alias set for this type. */
903 TYPE_ALIAS_SET (t) = -1;
904 break;
905
906 case tcc_constant:
907 TREE_CONSTANT (t) = 1;
908 break;
909
910 case tcc_expression:
911 switch (code)
912 {
913 case INIT_EXPR:
914 case MODIFY_EXPR:
915 case VA_ARG_EXPR:
916 case PREDECREMENT_EXPR:
917 case PREINCREMENT_EXPR:
918 case POSTDECREMENT_EXPR:
919 case POSTINCREMENT_EXPR:
920 /* All of these have side-effects, no matter what their
921 operands are. */
922 TREE_SIDE_EFFECTS (t) = 1;
923 break;
924
925 default:
926 break;
927 }
928 break;
929
930 default:
931 /* Other classes need no special treatment. */
932 break;
933 }
934
935 return t;
936 }
937 \f
938 /* Return a new node with the same contents as NODE except that its
939 TREE_CHAIN is zero and it has a fresh uid. */
940
941 tree
942 copy_node_stat (tree node MEM_STAT_DECL)
943 {
944 tree t;
945 enum tree_code code = TREE_CODE (node);
946 size_t length;
947
948 gcc_assert (code != STATEMENT_LIST);
949
950 length = tree_size (node);
951 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
952 memcpy (t, node, length);
953
954 TREE_CHAIN (t) = 0;
955 TREE_ASM_WRITTEN (t) = 0;
956 TREE_VISITED (t) = 0;
957 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
958 *DECL_VAR_ANN_PTR (t) = 0;
959
960 if (TREE_CODE_CLASS (code) == tcc_declaration)
961 {
962 if (code == DEBUG_EXPR_DECL)
963 DECL_UID (t) = --next_debug_decl_uid;
964 else
965 {
966 DECL_UID (t) = next_decl_uid++;
967 if (DECL_PT_UID_SET_P (node))
968 SET_DECL_PT_UID (t, DECL_PT_UID (node));
969 }
970 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
971 && DECL_HAS_VALUE_EXPR_P (node))
972 {
973 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
974 DECL_HAS_VALUE_EXPR_P (t) = 1;
975 }
976 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
977 {
978 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
979 DECL_HAS_INIT_PRIORITY_P (t) = 1;
980 }
981 }
982 else if (TREE_CODE_CLASS (code) == tcc_type)
983 {
984 TYPE_UID (t) = next_type_uid++;
985 /* The following is so that the debug code for
986 the copy is different from the original type.
987 The two statements usually duplicate each other
988 (because they clear fields of the same union),
989 but the optimizer should catch that. */
990 TYPE_SYMTAB_POINTER (t) = 0;
991 TYPE_SYMTAB_ADDRESS (t) = 0;
992
993 /* Do not copy the values cache. */
994 if (TYPE_CACHED_VALUES_P(t))
995 {
996 TYPE_CACHED_VALUES_P (t) = 0;
997 TYPE_CACHED_VALUES (t) = NULL_TREE;
998 }
999 }
1000
1001 return t;
1002 }
1003
1004 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1005 For example, this can copy a list made of TREE_LIST nodes. */
1006
1007 tree
1008 copy_list (tree list)
1009 {
1010 tree head;
1011 tree prev, next;
1012
1013 if (list == 0)
1014 return 0;
1015
1016 head = prev = copy_node (list);
1017 next = TREE_CHAIN (list);
1018 while (next)
1019 {
1020 TREE_CHAIN (prev) = copy_node (next);
1021 prev = TREE_CHAIN (prev);
1022 next = TREE_CHAIN (next);
1023 }
1024 return head;
1025 }
1026
1027 \f
1028 /* Create an INT_CST node with a LOW value sign extended. */
1029
1030 tree
1031 build_int_cst (tree type, HOST_WIDE_INT low)
1032 {
1033 /* Support legacy code. */
1034 if (!type)
1035 type = integer_type_node;
1036
1037 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1038 }
1039
1040 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1041 if it is negative. This function is similar to build_int_cst, but
1042 the extra bits outside of the type precision are cleared. Constants
1043 with these extra bits may confuse the fold so that it detects overflows
1044 even in cases when they do not occur, and in general should be avoided.
1045 We cannot however make this a default behavior of build_int_cst without
1046 more intrusive changes, since there are parts of gcc that rely on the extra
1047 precision of the integer constants. */
1048
1049 tree
1050 build_int_cst_type (tree type, HOST_WIDE_INT low)
1051 {
1052 gcc_assert (type);
1053
1054 return double_int_to_tree (type, shwi_to_double_int (low));
1055 }
1056
1057 /* Constructs tree in type TYPE from with value given by CST. Signedness
1058 of CST is assumed to be the same as the signedness of TYPE. */
1059
1060 tree
1061 double_int_to_tree (tree type, double_int cst)
1062 {
1063 /* Size types *are* sign extended. */
1064 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1065 || (TREE_CODE (type) == INTEGER_TYPE
1066 && TYPE_IS_SIZETYPE (type)));
1067
1068 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1069
1070 return build_int_cst_wide (type, cst.low, cst.high);
1071 }
1072
1073 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1074 to be the same as the signedness of TYPE. */
1075
1076 bool
1077 double_int_fits_to_tree_p (const_tree type, double_int cst)
1078 {
1079 /* Size types *are* sign extended. */
1080 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1081 || (TREE_CODE (type) == INTEGER_TYPE
1082 && TYPE_IS_SIZETYPE (type)));
1083
1084 double_int ext
1085 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1086
1087 return double_int_equal_p (cst, ext);
1088 }
1089
1090 /* We force the double_int CST to the range of the type TYPE by sign or
1091 zero extending it. OVERFLOWABLE indicates if we are interested in
1092 overflow of the value, when >0 we are only interested in signed
1093 overflow, for <0 we are interested in any overflow. OVERFLOWED
1094 indicates whether overflow has already occurred. CONST_OVERFLOWED
1095 indicates whether constant overflow has already occurred. We force
1096 T's value to be within range of T's type (by setting to 0 or 1 all
1097 the bits outside the type's range). We set TREE_OVERFLOWED if,
1098 OVERFLOWED is nonzero,
1099 or OVERFLOWABLE is >0 and signed overflow occurs
1100 or OVERFLOWABLE is <0 and any overflow occurs
1101 We return a new tree node for the extended double_int. The node
1102 is shared if no overflow flags are set. */
1103
1104
1105 tree
1106 force_fit_type_double (tree type, double_int cst, int overflowable,
1107 bool overflowed)
1108 {
1109 bool sign_extended_type;
1110
1111 /* Size types *are* sign extended. */
1112 sign_extended_type = (!TYPE_UNSIGNED (type)
1113 || (TREE_CODE (type) == INTEGER_TYPE
1114 && TYPE_IS_SIZETYPE (type)));
1115
1116 /* If we need to set overflow flags, return a new unshared node. */
1117 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1118 {
1119 if (overflowed
1120 || overflowable < 0
1121 || (overflowable > 0 && sign_extended_type))
1122 {
1123 tree t = make_node (INTEGER_CST);
1124 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1125 !sign_extended_type);
1126 TREE_TYPE (t) = type;
1127 TREE_OVERFLOW (t) = 1;
1128 return t;
1129 }
1130 }
1131
1132 /* Else build a shared node. */
1133 return double_int_to_tree (type, cst);
1134 }
1135
1136 /* These are the hash table functions for the hash table of INTEGER_CST
1137 nodes of a sizetype. */
1138
1139 /* Return the hash code code X, an INTEGER_CST. */
1140
1141 static hashval_t
1142 int_cst_hash_hash (const void *x)
1143 {
1144 const_tree const t = (const_tree) x;
1145
1146 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1147 ^ htab_hash_pointer (TREE_TYPE (t)));
1148 }
1149
1150 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1151 is the same as that given by *Y, which is the same. */
1152
1153 static int
1154 int_cst_hash_eq (const void *x, const void *y)
1155 {
1156 const_tree const xt = (const_tree) x;
1157 const_tree const yt = (const_tree) y;
1158
1159 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1160 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1161 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1162 }
1163
1164 /* Create an INT_CST node of TYPE and value HI:LOW.
1165 The returned node is always shared. For small integers we use a
1166 per-type vector cache, for larger ones we use a single hash table. */
1167
1168 tree
1169 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1170 {
1171 tree t;
1172 int ix = -1;
1173 int limit = 0;
1174
1175 gcc_assert (type);
1176
1177 switch (TREE_CODE (type))
1178 {
1179 case POINTER_TYPE:
1180 case REFERENCE_TYPE:
1181 /* Cache NULL pointer. */
1182 if (!hi && !low)
1183 {
1184 limit = 1;
1185 ix = 0;
1186 }
1187 break;
1188
1189 case BOOLEAN_TYPE:
1190 /* Cache false or true. */
1191 limit = 2;
1192 if (!hi && low < 2)
1193 ix = low;
1194 break;
1195
1196 case INTEGER_TYPE:
1197 case OFFSET_TYPE:
1198 if (TYPE_UNSIGNED (type))
1199 {
1200 /* Cache 0..N */
1201 limit = INTEGER_SHARE_LIMIT;
1202 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1203 ix = low;
1204 }
1205 else
1206 {
1207 /* Cache -1..N */
1208 limit = INTEGER_SHARE_LIMIT + 1;
1209 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1210 ix = low + 1;
1211 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1212 ix = 0;
1213 }
1214 break;
1215
1216 case ENUMERAL_TYPE:
1217 break;
1218
1219 default:
1220 gcc_unreachable ();
1221 }
1222
1223 if (ix >= 0)
1224 {
1225 /* Look for it in the type's vector of small shared ints. */
1226 if (!TYPE_CACHED_VALUES_P (type))
1227 {
1228 TYPE_CACHED_VALUES_P (type) = 1;
1229 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1230 }
1231
1232 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1233 if (t)
1234 {
1235 /* Make sure no one is clobbering the shared constant. */
1236 gcc_assert (TREE_TYPE (t) == type);
1237 gcc_assert (TREE_INT_CST_LOW (t) == low);
1238 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1239 }
1240 else
1241 {
1242 /* Create a new shared int. */
1243 t = make_node (INTEGER_CST);
1244
1245 TREE_INT_CST_LOW (t) = low;
1246 TREE_INT_CST_HIGH (t) = hi;
1247 TREE_TYPE (t) = type;
1248
1249 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1250 }
1251 }
1252 else
1253 {
1254 /* Use the cache of larger shared ints. */
1255 void **slot;
1256
1257 TREE_INT_CST_LOW (int_cst_node) = low;
1258 TREE_INT_CST_HIGH (int_cst_node) = hi;
1259 TREE_TYPE (int_cst_node) = type;
1260
1261 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1262 t = (tree) *slot;
1263 if (!t)
1264 {
1265 /* Insert this one into the hash table. */
1266 t = int_cst_node;
1267 *slot = t;
1268 /* Make a new node for next time round. */
1269 int_cst_node = make_node (INTEGER_CST);
1270 }
1271 }
1272
1273 return t;
1274 }
1275
1276 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1277 and the rest are zeros. */
1278
1279 tree
1280 build_low_bits_mask (tree type, unsigned bits)
1281 {
1282 double_int mask;
1283
1284 gcc_assert (bits <= TYPE_PRECISION (type));
1285
1286 if (bits == TYPE_PRECISION (type)
1287 && !TYPE_UNSIGNED (type))
1288 /* Sign extended all-ones mask. */
1289 mask = double_int_minus_one;
1290 else
1291 mask = double_int_mask (bits);
1292
1293 return build_int_cst_wide (type, mask.low, mask.high);
1294 }
1295
1296 /* Checks that X is integer constant that can be expressed in (unsigned)
1297 HOST_WIDE_INT without loss of precision. */
1298
1299 bool
1300 cst_and_fits_in_hwi (const_tree x)
1301 {
1302 if (TREE_CODE (x) != INTEGER_CST)
1303 return false;
1304
1305 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1306 return false;
1307
1308 return (TREE_INT_CST_HIGH (x) == 0
1309 || TREE_INT_CST_HIGH (x) == -1);
1310 }
1311
1312 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1313 are in a list pointed to by VALS. */
1314
1315 tree
1316 build_vector (tree type, tree vals)
1317 {
1318 tree v = make_node (VECTOR_CST);
1319 int over = 0;
1320 tree link;
1321 unsigned cnt = 0;
1322
1323 TREE_VECTOR_CST_ELTS (v) = vals;
1324 TREE_TYPE (v) = type;
1325
1326 /* Iterate through elements and check for overflow. */
1327 for (link = vals; link; link = TREE_CHAIN (link))
1328 {
1329 tree value = TREE_VALUE (link);
1330 cnt++;
1331
1332 /* Don't crash if we get an address constant. */
1333 if (!CONSTANT_CLASS_P (value))
1334 continue;
1335
1336 over |= TREE_OVERFLOW (value);
1337 }
1338
1339 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1340
1341 TREE_OVERFLOW (v) = over;
1342 return v;
1343 }
1344
1345 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1346 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1347
1348 tree
1349 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1350 {
1351 tree list = NULL_TREE;
1352 unsigned HOST_WIDE_INT idx;
1353 tree value;
1354
1355 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1356 list = tree_cons (NULL_TREE, value, list);
1357 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1358 list = tree_cons (NULL_TREE,
1359 fold_convert (TREE_TYPE (type), integer_zero_node), list);
1360 return build_vector (type, nreverse (list));
1361 }
1362
1363 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1364 are in the VEC pointed to by VALS. */
1365 tree
1366 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1367 {
1368 tree c = make_node (CONSTRUCTOR);
1369 unsigned int i;
1370 constructor_elt *elt;
1371 bool constant_p = true;
1372
1373 TREE_TYPE (c) = type;
1374 CONSTRUCTOR_ELTS (c) = vals;
1375
1376 for (i = 0; VEC_iterate (constructor_elt, vals, i, elt); i++)
1377 if (!TREE_CONSTANT (elt->value))
1378 {
1379 constant_p = false;
1380 break;
1381 }
1382
1383 TREE_CONSTANT (c) = constant_p;
1384
1385 return c;
1386 }
1387
1388 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1389 INDEX and VALUE. */
1390 tree
1391 build_constructor_single (tree type, tree index, tree value)
1392 {
1393 VEC(constructor_elt,gc) *v;
1394 constructor_elt *elt;
1395
1396 v = VEC_alloc (constructor_elt, gc, 1);
1397 elt = VEC_quick_push (constructor_elt, v, NULL);
1398 elt->index = index;
1399 elt->value = value;
1400
1401 return build_constructor (type, v);
1402 }
1403
1404
1405 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1406 are in a list pointed to by VALS. */
1407 tree
1408 build_constructor_from_list (tree type, tree vals)
1409 {
1410 tree t;
1411 VEC(constructor_elt,gc) *v = NULL;
1412
1413 if (vals)
1414 {
1415 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1416 for (t = vals; t; t = TREE_CHAIN (t))
1417 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1418 }
1419
1420 return build_constructor (type, v);
1421 }
1422
1423 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1424
1425 tree
1426 build_fixed (tree type, FIXED_VALUE_TYPE f)
1427 {
1428 tree v;
1429 FIXED_VALUE_TYPE *fp;
1430
1431 v = make_node (FIXED_CST);
1432 fp = ggc_alloc_fixed_value ();
1433 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1434
1435 TREE_TYPE (v) = type;
1436 TREE_FIXED_CST_PTR (v) = fp;
1437 return v;
1438 }
1439
1440 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1441
1442 tree
1443 build_real (tree type, REAL_VALUE_TYPE d)
1444 {
1445 tree v;
1446 REAL_VALUE_TYPE *dp;
1447 int overflow = 0;
1448
1449 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1450 Consider doing it via real_convert now. */
1451
1452 v = make_node (REAL_CST);
1453 dp = ggc_alloc_real_value ();
1454 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1455
1456 TREE_TYPE (v) = type;
1457 TREE_REAL_CST_PTR (v) = dp;
1458 TREE_OVERFLOW (v) = overflow;
1459 return v;
1460 }
1461
1462 /* Return a new REAL_CST node whose type is TYPE
1463 and whose value is the integer value of the INTEGER_CST node I. */
1464
1465 REAL_VALUE_TYPE
1466 real_value_from_int_cst (const_tree type, const_tree i)
1467 {
1468 REAL_VALUE_TYPE d;
1469
1470 /* Clear all bits of the real value type so that we can later do
1471 bitwise comparisons to see if two values are the same. */
1472 memset (&d, 0, sizeof d);
1473
1474 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1475 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1476 TYPE_UNSIGNED (TREE_TYPE (i)));
1477 return d;
1478 }
1479
1480 /* Given a tree representing an integer constant I, return a tree
1481 representing the same value as a floating-point constant of type TYPE. */
1482
1483 tree
1484 build_real_from_int_cst (tree type, const_tree i)
1485 {
1486 tree v;
1487 int overflow = TREE_OVERFLOW (i);
1488
1489 v = build_real (type, real_value_from_int_cst (type, i));
1490
1491 TREE_OVERFLOW (v) |= overflow;
1492 return v;
1493 }
1494
1495 /* Return a newly constructed STRING_CST node whose value is
1496 the LEN characters at STR.
1497 The TREE_TYPE is not initialized. */
1498
1499 tree
1500 build_string (int len, const char *str)
1501 {
1502 tree s;
1503 size_t length;
1504
1505 /* Do not waste bytes provided by padding of struct tree_string. */
1506 length = len + offsetof (struct tree_string, str) + 1;
1507
1508 #ifdef GATHER_STATISTICS
1509 tree_node_counts[(int) c_kind]++;
1510 tree_node_sizes[(int) c_kind] += length;
1511 #endif
1512
1513 s = ggc_alloc_tree_node (length);
1514
1515 memset (s, 0, sizeof (struct tree_common));
1516 TREE_SET_CODE (s, STRING_CST);
1517 TREE_CONSTANT (s) = 1;
1518 TREE_STRING_LENGTH (s) = len;
1519 memcpy (s->string.str, str, len);
1520 s->string.str[len] = '\0';
1521
1522 return s;
1523 }
1524
1525 /* Return a newly constructed COMPLEX_CST node whose value is
1526 specified by the real and imaginary parts REAL and IMAG.
1527 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1528 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1529
1530 tree
1531 build_complex (tree type, tree real, tree imag)
1532 {
1533 tree t = make_node (COMPLEX_CST);
1534
1535 TREE_REALPART (t) = real;
1536 TREE_IMAGPART (t) = imag;
1537 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1538 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1539 return t;
1540 }
1541
1542 /* Return a constant of arithmetic type TYPE which is the
1543 multiplicative identity of the set TYPE. */
1544
1545 tree
1546 build_one_cst (tree type)
1547 {
1548 switch (TREE_CODE (type))
1549 {
1550 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1551 case POINTER_TYPE: case REFERENCE_TYPE:
1552 case OFFSET_TYPE:
1553 return build_int_cst (type, 1);
1554
1555 case REAL_TYPE:
1556 return build_real (type, dconst1);
1557
1558 case FIXED_POINT_TYPE:
1559 /* We can only generate 1 for accum types. */
1560 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1561 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1562
1563 case VECTOR_TYPE:
1564 {
1565 tree scalar, cst;
1566 int i;
1567
1568 scalar = build_one_cst (TREE_TYPE (type));
1569
1570 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1571 cst = NULL_TREE;
1572 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1573 cst = tree_cons (NULL_TREE, scalar, cst);
1574
1575 return build_vector (type, cst);
1576 }
1577
1578 case COMPLEX_TYPE:
1579 return build_complex (type,
1580 build_one_cst (TREE_TYPE (type)),
1581 fold_convert (TREE_TYPE (type), integer_zero_node));
1582
1583 default:
1584 gcc_unreachable ();
1585 }
1586 }
1587
1588 /* Build a BINFO with LEN language slots. */
1589
1590 tree
1591 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1592 {
1593 tree t;
1594 size_t length = (offsetof (struct tree_binfo, base_binfos)
1595 + VEC_embedded_size (tree, base_binfos));
1596
1597 #ifdef GATHER_STATISTICS
1598 tree_node_counts[(int) binfo_kind]++;
1599 tree_node_sizes[(int) binfo_kind] += length;
1600 #endif
1601
1602 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1603
1604 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1605
1606 TREE_SET_CODE (t, TREE_BINFO);
1607
1608 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1609
1610 return t;
1611 }
1612
1613
1614 /* Build a newly constructed TREE_VEC node of length LEN. */
1615
1616 tree
1617 make_tree_vec_stat (int len MEM_STAT_DECL)
1618 {
1619 tree t;
1620 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1621
1622 #ifdef GATHER_STATISTICS
1623 tree_node_counts[(int) vec_kind]++;
1624 tree_node_sizes[(int) vec_kind] += length;
1625 #endif
1626
1627 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1628
1629 TREE_SET_CODE (t, TREE_VEC);
1630 TREE_VEC_LENGTH (t) = len;
1631
1632 return t;
1633 }
1634 \f
1635 /* Return 1 if EXPR is the integer constant zero or a complex constant
1636 of zero. */
1637
1638 int
1639 integer_zerop (const_tree expr)
1640 {
1641 STRIP_NOPS (expr);
1642
1643 return ((TREE_CODE (expr) == INTEGER_CST
1644 && TREE_INT_CST_LOW (expr) == 0
1645 && TREE_INT_CST_HIGH (expr) == 0)
1646 || (TREE_CODE (expr) == COMPLEX_CST
1647 && integer_zerop (TREE_REALPART (expr))
1648 && integer_zerop (TREE_IMAGPART (expr))));
1649 }
1650
1651 /* Return 1 if EXPR is the integer constant one or the corresponding
1652 complex constant. */
1653
1654 int
1655 integer_onep (const_tree expr)
1656 {
1657 STRIP_NOPS (expr);
1658
1659 return ((TREE_CODE (expr) == INTEGER_CST
1660 && TREE_INT_CST_LOW (expr) == 1
1661 && TREE_INT_CST_HIGH (expr) == 0)
1662 || (TREE_CODE (expr) == COMPLEX_CST
1663 && integer_onep (TREE_REALPART (expr))
1664 && integer_zerop (TREE_IMAGPART (expr))));
1665 }
1666
1667 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1668 it contains. Likewise for the corresponding complex constant. */
1669
1670 int
1671 integer_all_onesp (const_tree expr)
1672 {
1673 int prec;
1674 int uns;
1675
1676 STRIP_NOPS (expr);
1677
1678 if (TREE_CODE (expr) == COMPLEX_CST
1679 && integer_all_onesp (TREE_REALPART (expr))
1680 && integer_zerop (TREE_IMAGPART (expr)))
1681 return 1;
1682
1683 else if (TREE_CODE (expr) != INTEGER_CST)
1684 return 0;
1685
1686 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1687 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1688 && TREE_INT_CST_HIGH (expr) == -1)
1689 return 1;
1690 if (!uns)
1691 return 0;
1692
1693 /* Note that using TYPE_PRECISION here is wrong. We care about the
1694 actual bits, not the (arbitrary) range of the type. */
1695 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1696 if (prec >= HOST_BITS_PER_WIDE_INT)
1697 {
1698 HOST_WIDE_INT high_value;
1699 int shift_amount;
1700
1701 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1702
1703 /* Can not handle precisions greater than twice the host int size. */
1704 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1705 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1706 /* Shifting by the host word size is undefined according to the ANSI
1707 standard, so we must handle this as a special case. */
1708 high_value = -1;
1709 else
1710 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1711
1712 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1713 && TREE_INT_CST_HIGH (expr) == high_value);
1714 }
1715 else
1716 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1717 }
1718
1719 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1720 one bit on). */
1721
1722 int
1723 integer_pow2p (const_tree expr)
1724 {
1725 int prec;
1726 HOST_WIDE_INT high, low;
1727
1728 STRIP_NOPS (expr);
1729
1730 if (TREE_CODE (expr) == COMPLEX_CST
1731 && integer_pow2p (TREE_REALPART (expr))
1732 && integer_zerop (TREE_IMAGPART (expr)))
1733 return 1;
1734
1735 if (TREE_CODE (expr) != INTEGER_CST)
1736 return 0;
1737
1738 prec = TYPE_PRECISION (TREE_TYPE (expr));
1739 high = TREE_INT_CST_HIGH (expr);
1740 low = TREE_INT_CST_LOW (expr);
1741
1742 /* First clear all bits that are beyond the type's precision in case
1743 we've been sign extended. */
1744
1745 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1746 ;
1747 else if (prec > HOST_BITS_PER_WIDE_INT)
1748 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1749 else
1750 {
1751 high = 0;
1752 if (prec < HOST_BITS_PER_WIDE_INT)
1753 low &= ~((HOST_WIDE_INT) (-1) << prec);
1754 }
1755
1756 if (high == 0 && low == 0)
1757 return 0;
1758
1759 return ((high == 0 && (low & (low - 1)) == 0)
1760 || (low == 0 && (high & (high - 1)) == 0));
1761 }
1762
1763 /* Return 1 if EXPR is an integer constant other than zero or a
1764 complex constant other than zero. */
1765
1766 int
1767 integer_nonzerop (const_tree expr)
1768 {
1769 STRIP_NOPS (expr);
1770
1771 return ((TREE_CODE (expr) == INTEGER_CST
1772 && (TREE_INT_CST_LOW (expr) != 0
1773 || TREE_INT_CST_HIGH (expr) != 0))
1774 || (TREE_CODE (expr) == COMPLEX_CST
1775 && (integer_nonzerop (TREE_REALPART (expr))
1776 || integer_nonzerop (TREE_IMAGPART (expr)))));
1777 }
1778
1779 /* Return 1 if EXPR is the fixed-point constant zero. */
1780
1781 int
1782 fixed_zerop (const_tree expr)
1783 {
1784 return (TREE_CODE (expr) == FIXED_CST
1785 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1786 }
1787
1788 /* Return the power of two represented by a tree node known to be a
1789 power of two. */
1790
1791 int
1792 tree_log2 (const_tree expr)
1793 {
1794 int prec;
1795 HOST_WIDE_INT high, low;
1796
1797 STRIP_NOPS (expr);
1798
1799 if (TREE_CODE (expr) == COMPLEX_CST)
1800 return tree_log2 (TREE_REALPART (expr));
1801
1802 prec = TYPE_PRECISION (TREE_TYPE (expr));
1803 high = TREE_INT_CST_HIGH (expr);
1804 low = TREE_INT_CST_LOW (expr);
1805
1806 /* First clear all bits that are beyond the type's precision in case
1807 we've been sign extended. */
1808
1809 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1810 ;
1811 else if (prec > HOST_BITS_PER_WIDE_INT)
1812 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1813 else
1814 {
1815 high = 0;
1816 if (prec < HOST_BITS_PER_WIDE_INT)
1817 low &= ~((HOST_WIDE_INT) (-1) << prec);
1818 }
1819
1820 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1821 : exact_log2 (low));
1822 }
1823
1824 /* Similar, but return the largest integer Y such that 2 ** Y is less
1825 than or equal to EXPR. */
1826
1827 int
1828 tree_floor_log2 (const_tree expr)
1829 {
1830 int prec;
1831 HOST_WIDE_INT high, low;
1832
1833 STRIP_NOPS (expr);
1834
1835 if (TREE_CODE (expr) == COMPLEX_CST)
1836 return tree_log2 (TREE_REALPART (expr));
1837
1838 prec = TYPE_PRECISION (TREE_TYPE (expr));
1839 high = TREE_INT_CST_HIGH (expr);
1840 low = TREE_INT_CST_LOW (expr);
1841
1842 /* First clear all bits that are beyond the type's precision in case
1843 we've been sign extended. Ignore if type's precision hasn't been set
1844 since what we are doing is setting it. */
1845
1846 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1847 ;
1848 else if (prec > HOST_BITS_PER_WIDE_INT)
1849 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1850 else
1851 {
1852 high = 0;
1853 if (prec < HOST_BITS_PER_WIDE_INT)
1854 low &= ~((HOST_WIDE_INT) (-1) << prec);
1855 }
1856
1857 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1858 : floor_log2 (low));
1859 }
1860
1861 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1862 decimal float constants, so don't return 1 for them. */
1863
1864 int
1865 real_zerop (const_tree expr)
1866 {
1867 STRIP_NOPS (expr);
1868
1869 return ((TREE_CODE (expr) == REAL_CST
1870 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1871 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1872 || (TREE_CODE (expr) == COMPLEX_CST
1873 && real_zerop (TREE_REALPART (expr))
1874 && real_zerop (TREE_IMAGPART (expr))));
1875 }
1876
1877 /* Return 1 if EXPR is the real constant one in real or complex form.
1878 Trailing zeroes matter for decimal float constants, so don't return
1879 1 for them. */
1880
1881 int
1882 real_onep (const_tree expr)
1883 {
1884 STRIP_NOPS (expr);
1885
1886 return ((TREE_CODE (expr) == REAL_CST
1887 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1888 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1889 || (TREE_CODE (expr) == COMPLEX_CST
1890 && real_onep (TREE_REALPART (expr))
1891 && real_zerop (TREE_IMAGPART (expr))));
1892 }
1893
1894 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1895 for decimal float constants, so don't return 1 for them. */
1896
1897 int
1898 real_twop (const_tree expr)
1899 {
1900 STRIP_NOPS (expr);
1901
1902 return ((TREE_CODE (expr) == REAL_CST
1903 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1904 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1905 || (TREE_CODE (expr) == COMPLEX_CST
1906 && real_twop (TREE_REALPART (expr))
1907 && real_zerop (TREE_IMAGPART (expr))));
1908 }
1909
1910 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1911 matter for decimal float constants, so don't return 1 for them. */
1912
1913 int
1914 real_minus_onep (const_tree expr)
1915 {
1916 STRIP_NOPS (expr);
1917
1918 return ((TREE_CODE (expr) == REAL_CST
1919 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1920 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1921 || (TREE_CODE (expr) == COMPLEX_CST
1922 && real_minus_onep (TREE_REALPART (expr))
1923 && real_zerop (TREE_IMAGPART (expr))));
1924 }
1925
1926 /* Nonzero if EXP is a constant or a cast of a constant. */
1927
1928 int
1929 really_constant_p (const_tree exp)
1930 {
1931 /* This is not quite the same as STRIP_NOPS. It does more. */
1932 while (CONVERT_EXPR_P (exp)
1933 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1934 exp = TREE_OPERAND (exp, 0);
1935 return TREE_CONSTANT (exp);
1936 }
1937 \f
1938 /* Return first list element whose TREE_VALUE is ELEM.
1939 Return 0 if ELEM is not in LIST. */
1940
1941 tree
1942 value_member (tree elem, tree list)
1943 {
1944 while (list)
1945 {
1946 if (elem == TREE_VALUE (list))
1947 return list;
1948 list = TREE_CHAIN (list);
1949 }
1950 return NULL_TREE;
1951 }
1952
1953 /* Return first list element whose TREE_PURPOSE is ELEM.
1954 Return 0 if ELEM is not in LIST. */
1955
1956 tree
1957 purpose_member (const_tree elem, tree list)
1958 {
1959 while (list)
1960 {
1961 if (elem == TREE_PURPOSE (list))
1962 return list;
1963 list = TREE_CHAIN (list);
1964 }
1965 return NULL_TREE;
1966 }
1967
1968 /* Return true if ELEM is in V. */
1969
1970 bool
1971 vec_member (const_tree elem, VEC(tree,gc) *v)
1972 {
1973 unsigned ix;
1974 tree t;
1975 for (ix = 0; VEC_iterate (tree, v, ix, t); ix++)
1976 if (elem == t)
1977 return true;
1978 return false;
1979 }
1980
1981 /* Returns element number IDX (zero-origin) of chain CHAIN, or
1982 NULL_TREE. */
1983
1984 tree
1985 chain_index (int idx, tree chain)
1986 {
1987 for (; chain && idx > 0; --idx)
1988 chain = TREE_CHAIN (chain);
1989 return chain;
1990 }
1991
1992 /* Return nonzero if ELEM is part of the chain CHAIN. */
1993
1994 int
1995 chain_member (const_tree elem, const_tree chain)
1996 {
1997 while (chain)
1998 {
1999 if (elem == chain)
2000 return 1;
2001 chain = DECL_CHAIN (chain);
2002 }
2003
2004 return 0;
2005 }
2006
2007 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2008 We expect a null pointer to mark the end of the chain.
2009 This is the Lisp primitive `length'. */
2010
2011 int
2012 list_length (const_tree t)
2013 {
2014 const_tree p = t;
2015 #ifdef ENABLE_TREE_CHECKING
2016 const_tree q = t;
2017 #endif
2018 int len = 0;
2019
2020 while (p)
2021 {
2022 p = TREE_CHAIN (p);
2023 #ifdef ENABLE_TREE_CHECKING
2024 if (len % 2)
2025 q = TREE_CHAIN (q);
2026 gcc_assert (p != q);
2027 #endif
2028 len++;
2029 }
2030
2031 return len;
2032 }
2033
2034 /* Returns the number of FIELD_DECLs in TYPE. */
2035
2036 int
2037 fields_length (const_tree type)
2038 {
2039 tree t = TYPE_FIELDS (type);
2040 int count = 0;
2041
2042 for (; t; t = DECL_CHAIN (t))
2043 if (TREE_CODE (t) == FIELD_DECL)
2044 ++count;
2045
2046 return count;
2047 }
2048
2049 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2050 UNION_TYPE TYPE, or NULL_TREE if none. */
2051
2052 tree
2053 first_field (const_tree type)
2054 {
2055 tree t = TYPE_FIELDS (type);
2056 while (t && TREE_CODE (t) != FIELD_DECL)
2057 t = TREE_CHAIN (t);
2058 return t;
2059 }
2060
2061 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2062 by modifying the last node in chain 1 to point to chain 2.
2063 This is the Lisp primitive `nconc'. */
2064
2065 tree
2066 chainon (tree op1, tree op2)
2067 {
2068 tree t1;
2069
2070 if (!op1)
2071 return op2;
2072 if (!op2)
2073 return op1;
2074
2075 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2076 continue;
2077 TREE_CHAIN (t1) = op2;
2078
2079 #ifdef ENABLE_TREE_CHECKING
2080 {
2081 tree t2;
2082 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2083 gcc_assert (t2 != t1);
2084 }
2085 #endif
2086
2087 return op1;
2088 }
2089
2090 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2091
2092 tree
2093 tree_last (tree chain)
2094 {
2095 tree next;
2096 if (chain)
2097 while ((next = TREE_CHAIN (chain)))
2098 chain = next;
2099 return chain;
2100 }
2101
2102 /* Reverse the order of elements in the chain T,
2103 and return the new head of the chain (old last element). */
2104
2105 tree
2106 nreverse (tree t)
2107 {
2108 tree prev = 0, decl, next;
2109 for (decl = t; decl; decl = next)
2110 {
2111 next = TREE_CHAIN (decl);
2112 TREE_CHAIN (decl) = prev;
2113 prev = decl;
2114 }
2115 return prev;
2116 }
2117 \f
2118 /* Return a newly created TREE_LIST node whose
2119 purpose and value fields are PARM and VALUE. */
2120
2121 tree
2122 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2123 {
2124 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2125 TREE_PURPOSE (t) = parm;
2126 TREE_VALUE (t) = value;
2127 return t;
2128 }
2129
2130 /* Build a chain of TREE_LIST nodes from a vector. */
2131
2132 tree
2133 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2134 {
2135 tree ret = NULL_TREE;
2136 tree *pp = &ret;
2137 unsigned int i;
2138 tree t;
2139 for (i = 0; VEC_iterate (tree, vec, i, t); ++i)
2140 {
2141 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2142 pp = &TREE_CHAIN (*pp);
2143 }
2144 return ret;
2145 }
2146
2147 /* Return a newly created TREE_LIST node whose
2148 purpose and value fields are PURPOSE and VALUE
2149 and whose TREE_CHAIN is CHAIN. */
2150
2151 tree
2152 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2153 {
2154 tree node;
2155
2156 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2157 PASS_MEM_STAT);
2158 memset (node, 0, sizeof (struct tree_common));
2159
2160 #ifdef GATHER_STATISTICS
2161 tree_node_counts[(int) x_kind]++;
2162 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2163 #endif
2164
2165 TREE_SET_CODE (node, TREE_LIST);
2166 TREE_CHAIN (node) = chain;
2167 TREE_PURPOSE (node) = purpose;
2168 TREE_VALUE (node) = value;
2169 return node;
2170 }
2171
2172 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2173 trees. */
2174
2175 VEC(tree,gc) *
2176 ctor_to_vec (tree ctor)
2177 {
2178 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2179 unsigned int ix;
2180 tree val;
2181
2182 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2183 VEC_quick_push (tree, vec, val);
2184
2185 return vec;
2186 }
2187 \f
2188 /* Return the size nominally occupied by an object of type TYPE
2189 when it resides in memory. The value is measured in units of bytes,
2190 and its data type is that normally used for type sizes
2191 (which is the first type created by make_signed_type or
2192 make_unsigned_type). */
2193
2194 tree
2195 size_in_bytes (const_tree type)
2196 {
2197 tree t;
2198
2199 if (type == error_mark_node)
2200 return integer_zero_node;
2201
2202 type = TYPE_MAIN_VARIANT (type);
2203 t = TYPE_SIZE_UNIT (type);
2204
2205 if (t == 0)
2206 {
2207 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2208 return size_zero_node;
2209 }
2210
2211 return t;
2212 }
2213
2214 /* Return the size of TYPE (in bytes) as a wide integer
2215 or return -1 if the size can vary or is larger than an integer. */
2216
2217 HOST_WIDE_INT
2218 int_size_in_bytes (const_tree type)
2219 {
2220 tree t;
2221
2222 if (type == error_mark_node)
2223 return 0;
2224
2225 type = TYPE_MAIN_VARIANT (type);
2226 t = TYPE_SIZE_UNIT (type);
2227 if (t == 0
2228 || TREE_CODE (t) != INTEGER_CST
2229 || TREE_INT_CST_HIGH (t) != 0
2230 /* If the result would appear negative, it's too big to represent. */
2231 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2232 return -1;
2233
2234 return TREE_INT_CST_LOW (t);
2235 }
2236
2237 /* Return the maximum size of TYPE (in bytes) as a wide integer
2238 or return -1 if the size can vary or is larger than an integer. */
2239
2240 HOST_WIDE_INT
2241 max_int_size_in_bytes (const_tree type)
2242 {
2243 HOST_WIDE_INT size = -1;
2244 tree size_tree;
2245
2246 /* If this is an array type, check for a possible MAX_SIZE attached. */
2247
2248 if (TREE_CODE (type) == ARRAY_TYPE)
2249 {
2250 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2251
2252 if (size_tree && host_integerp (size_tree, 1))
2253 size = tree_low_cst (size_tree, 1);
2254 }
2255
2256 /* If we still haven't been able to get a size, see if the language
2257 can compute a maximum size. */
2258
2259 if (size == -1)
2260 {
2261 size_tree = lang_hooks.types.max_size (type);
2262
2263 if (size_tree && host_integerp (size_tree, 1))
2264 size = tree_low_cst (size_tree, 1);
2265 }
2266
2267 return size;
2268 }
2269
2270 /* Returns a tree for the size of EXP in bytes. */
2271
2272 tree
2273 tree_expr_size (const_tree exp)
2274 {
2275 if (DECL_P (exp)
2276 && DECL_SIZE_UNIT (exp) != 0)
2277 return DECL_SIZE_UNIT (exp);
2278 else
2279 return size_in_bytes (TREE_TYPE (exp));
2280 }
2281 \f
2282 /* Return the bit position of FIELD, in bits from the start of the record.
2283 This is a tree of type bitsizetype. */
2284
2285 tree
2286 bit_position (const_tree field)
2287 {
2288 return bit_from_pos (DECL_FIELD_OFFSET (field),
2289 DECL_FIELD_BIT_OFFSET (field));
2290 }
2291
2292 /* Likewise, but return as an integer. It must be representable in
2293 that way (since it could be a signed value, we don't have the
2294 option of returning -1 like int_size_in_byte can. */
2295
2296 HOST_WIDE_INT
2297 int_bit_position (const_tree field)
2298 {
2299 return tree_low_cst (bit_position (field), 0);
2300 }
2301 \f
2302 /* Return the byte position of FIELD, in bytes from the start of the record.
2303 This is a tree of type sizetype. */
2304
2305 tree
2306 byte_position (const_tree field)
2307 {
2308 return byte_from_pos (DECL_FIELD_OFFSET (field),
2309 DECL_FIELD_BIT_OFFSET (field));
2310 }
2311
2312 /* Likewise, but return as an integer. It must be representable in
2313 that way (since it could be a signed value, we don't have the
2314 option of returning -1 like int_size_in_byte can. */
2315
2316 HOST_WIDE_INT
2317 int_byte_position (const_tree field)
2318 {
2319 return tree_low_cst (byte_position (field), 0);
2320 }
2321 \f
2322 /* Return the strictest alignment, in bits, that T is known to have. */
2323
2324 unsigned int
2325 expr_align (const_tree t)
2326 {
2327 unsigned int align0, align1;
2328
2329 switch (TREE_CODE (t))
2330 {
2331 CASE_CONVERT: case NON_LVALUE_EXPR:
2332 /* If we have conversions, we know that the alignment of the
2333 object must meet each of the alignments of the types. */
2334 align0 = expr_align (TREE_OPERAND (t, 0));
2335 align1 = TYPE_ALIGN (TREE_TYPE (t));
2336 return MAX (align0, align1);
2337
2338 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2339 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2340 case CLEANUP_POINT_EXPR:
2341 /* These don't change the alignment of an object. */
2342 return expr_align (TREE_OPERAND (t, 0));
2343
2344 case COND_EXPR:
2345 /* The best we can do is say that the alignment is the least aligned
2346 of the two arms. */
2347 align0 = expr_align (TREE_OPERAND (t, 1));
2348 align1 = expr_align (TREE_OPERAND (t, 2));
2349 return MIN (align0, align1);
2350
2351 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2352 meaningfully, it's always 1. */
2353 case LABEL_DECL: case CONST_DECL:
2354 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2355 case FUNCTION_DECL:
2356 gcc_assert (DECL_ALIGN (t) != 0);
2357 return DECL_ALIGN (t);
2358
2359 default:
2360 break;
2361 }
2362
2363 /* Otherwise take the alignment from that of the type. */
2364 return TYPE_ALIGN (TREE_TYPE (t));
2365 }
2366 \f
2367 /* Return, as a tree node, the number of elements for TYPE (which is an
2368 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2369
2370 tree
2371 array_type_nelts (const_tree type)
2372 {
2373 tree index_type, min, max;
2374
2375 /* If they did it with unspecified bounds, then we should have already
2376 given an error about it before we got here. */
2377 if (! TYPE_DOMAIN (type))
2378 return error_mark_node;
2379
2380 index_type = TYPE_DOMAIN (type);
2381 min = TYPE_MIN_VALUE (index_type);
2382 max = TYPE_MAX_VALUE (index_type);
2383
2384 return (integer_zerop (min)
2385 ? max
2386 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2387 }
2388 \f
2389 /* If arg is static -- a reference to an object in static storage -- then
2390 return the object. This is not the same as the C meaning of `static'.
2391 If arg isn't static, return NULL. */
2392
2393 tree
2394 staticp (tree arg)
2395 {
2396 switch (TREE_CODE (arg))
2397 {
2398 case FUNCTION_DECL:
2399 /* Nested functions are static, even though taking their address will
2400 involve a trampoline as we unnest the nested function and create
2401 the trampoline on the tree level. */
2402 return arg;
2403
2404 case VAR_DECL:
2405 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2406 && ! DECL_THREAD_LOCAL_P (arg)
2407 && ! DECL_DLLIMPORT_P (arg)
2408 ? arg : NULL);
2409
2410 case CONST_DECL:
2411 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2412 ? arg : NULL);
2413
2414 case CONSTRUCTOR:
2415 return TREE_STATIC (arg) ? arg : NULL;
2416
2417 case LABEL_DECL:
2418 case STRING_CST:
2419 return arg;
2420
2421 case COMPONENT_REF:
2422 /* If the thing being referenced is not a field, then it is
2423 something language specific. */
2424 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2425
2426 /* If we are referencing a bitfield, we can't evaluate an
2427 ADDR_EXPR at compile time and so it isn't a constant. */
2428 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2429 return NULL;
2430
2431 return staticp (TREE_OPERAND (arg, 0));
2432
2433 case BIT_FIELD_REF:
2434 return NULL;
2435
2436 case MISALIGNED_INDIRECT_REF:
2437 case INDIRECT_REF:
2438 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2439
2440 case ARRAY_REF:
2441 case ARRAY_RANGE_REF:
2442 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2443 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2444 return staticp (TREE_OPERAND (arg, 0));
2445 else
2446 return NULL;
2447
2448 case COMPOUND_LITERAL_EXPR:
2449 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2450
2451 default:
2452 return NULL;
2453 }
2454 }
2455
2456 \f
2457
2458
2459 /* Return whether OP is a DECL whose address is function-invariant. */
2460
2461 bool
2462 decl_address_invariant_p (const_tree op)
2463 {
2464 /* The conditions below are slightly less strict than the one in
2465 staticp. */
2466
2467 switch (TREE_CODE (op))
2468 {
2469 case PARM_DECL:
2470 case RESULT_DECL:
2471 case LABEL_DECL:
2472 case FUNCTION_DECL:
2473 return true;
2474
2475 case VAR_DECL:
2476 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2477 && !DECL_DLLIMPORT_P (op))
2478 || DECL_THREAD_LOCAL_P (op)
2479 || DECL_CONTEXT (op) == current_function_decl
2480 || decl_function_context (op) == current_function_decl)
2481 return true;
2482 break;
2483
2484 case CONST_DECL:
2485 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2486 || decl_function_context (op) == current_function_decl)
2487 return true;
2488 break;
2489
2490 default:
2491 break;
2492 }
2493
2494 return false;
2495 }
2496
2497 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2498
2499 bool
2500 decl_address_ip_invariant_p (const_tree op)
2501 {
2502 /* The conditions below are slightly less strict than the one in
2503 staticp. */
2504
2505 switch (TREE_CODE (op))
2506 {
2507 case LABEL_DECL:
2508 case FUNCTION_DECL:
2509 case STRING_CST:
2510 return true;
2511
2512 case VAR_DECL:
2513 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2514 && !DECL_DLLIMPORT_P (op))
2515 || DECL_THREAD_LOCAL_P (op))
2516 return true;
2517 break;
2518
2519 case CONST_DECL:
2520 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2521 return true;
2522 break;
2523
2524 default:
2525 break;
2526 }
2527
2528 return false;
2529 }
2530
2531
2532 /* Return true if T is function-invariant (internal function, does
2533 not handle arithmetic; that's handled in skip_simple_arithmetic and
2534 tree_invariant_p). */
2535
2536 static bool tree_invariant_p (tree t);
2537
2538 static bool
2539 tree_invariant_p_1 (tree t)
2540 {
2541 tree op;
2542
2543 if (TREE_CONSTANT (t)
2544 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2545 return true;
2546
2547 switch (TREE_CODE (t))
2548 {
2549 case SAVE_EXPR:
2550 return true;
2551
2552 case ADDR_EXPR:
2553 op = TREE_OPERAND (t, 0);
2554 while (handled_component_p (op))
2555 {
2556 switch (TREE_CODE (op))
2557 {
2558 case ARRAY_REF:
2559 case ARRAY_RANGE_REF:
2560 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2561 || TREE_OPERAND (op, 2) != NULL_TREE
2562 || TREE_OPERAND (op, 3) != NULL_TREE)
2563 return false;
2564 break;
2565
2566 case COMPONENT_REF:
2567 if (TREE_OPERAND (op, 2) != NULL_TREE)
2568 return false;
2569 break;
2570
2571 default:;
2572 }
2573 op = TREE_OPERAND (op, 0);
2574 }
2575
2576 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2577
2578 default:
2579 break;
2580 }
2581
2582 return false;
2583 }
2584
2585 /* Return true if T is function-invariant. */
2586
2587 static bool
2588 tree_invariant_p (tree t)
2589 {
2590 tree inner = skip_simple_arithmetic (t);
2591 return tree_invariant_p_1 (inner);
2592 }
2593
2594 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2595 Do this to any expression which may be used in more than one place,
2596 but must be evaluated only once.
2597
2598 Normally, expand_expr would reevaluate the expression each time.
2599 Calling save_expr produces something that is evaluated and recorded
2600 the first time expand_expr is called on it. Subsequent calls to
2601 expand_expr just reuse the recorded value.
2602
2603 The call to expand_expr that generates code that actually computes
2604 the value is the first call *at compile time*. Subsequent calls
2605 *at compile time* generate code to use the saved value.
2606 This produces correct result provided that *at run time* control
2607 always flows through the insns made by the first expand_expr
2608 before reaching the other places where the save_expr was evaluated.
2609 You, the caller of save_expr, must make sure this is so.
2610
2611 Constants, and certain read-only nodes, are returned with no
2612 SAVE_EXPR because that is safe. Expressions containing placeholders
2613 are not touched; see tree.def for an explanation of what these
2614 are used for. */
2615
2616 tree
2617 save_expr (tree expr)
2618 {
2619 tree t = fold (expr);
2620 tree inner;
2621
2622 /* If the tree evaluates to a constant, then we don't want to hide that
2623 fact (i.e. this allows further folding, and direct checks for constants).
2624 However, a read-only object that has side effects cannot be bypassed.
2625 Since it is no problem to reevaluate literals, we just return the
2626 literal node. */
2627 inner = skip_simple_arithmetic (t);
2628 if (TREE_CODE (inner) == ERROR_MARK)
2629 return inner;
2630
2631 if (tree_invariant_p_1 (inner))
2632 return t;
2633
2634 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2635 it means that the size or offset of some field of an object depends on
2636 the value within another field.
2637
2638 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2639 and some variable since it would then need to be both evaluated once and
2640 evaluated more than once. Front-ends must assure this case cannot
2641 happen by surrounding any such subexpressions in their own SAVE_EXPR
2642 and forcing evaluation at the proper time. */
2643 if (contains_placeholder_p (inner))
2644 return t;
2645
2646 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2647 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2648
2649 /* This expression might be placed ahead of a jump to ensure that the
2650 value was computed on both sides of the jump. So make sure it isn't
2651 eliminated as dead. */
2652 TREE_SIDE_EFFECTS (t) = 1;
2653 return t;
2654 }
2655
2656 /* Look inside EXPR and into any simple arithmetic operations. Return
2657 the innermost non-arithmetic node. */
2658
2659 tree
2660 skip_simple_arithmetic (tree expr)
2661 {
2662 tree inner;
2663
2664 /* We don't care about whether this can be used as an lvalue in this
2665 context. */
2666 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2667 expr = TREE_OPERAND (expr, 0);
2668
2669 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2670 a constant, it will be more efficient to not make another SAVE_EXPR since
2671 it will allow better simplification and GCSE will be able to merge the
2672 computations if they actually occur. */
2673 inner = expr;
2674 while (1)
2675 {
2676 if (UNARY_CLASS_P (inner))
2677 inner = TREE_OPERAND (inner, 0);
2678 else if (BINARY_CLASS_P (inner))
2679 {
2680 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2681 inner = TREE_OPERAND (inner, 0);
2682 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2683 inner = TREE_OPERAND (inner, 1);
2684 else
2685 break;
2686 }
2687 else
2688 break;
2689 }
2690
2691 return inner;
2692 }
2693
2694
2695 /* Return which tree structure is used by T. */
2696
2697 enum tree_node_structure_enum
2698 tree_node_structure (const_tree t)
2699 {
2700 const enum tree_code code = TREE_CODE (t);
2701 return tree_node_structure_for_code (code);
2702 }
2703
2704 /* Set various status flags when building a CALL_EXPR object T. */
2705
2706 static void
2707 process_call_operands (tree t)
2708 {
2709 bool side_effects = TREE_SIDE_EFFECTS (t);
2710 bool read_only = false;
2711 int i = call_expr_flags (t);
2712
2713 /* Calls have side-effects, except those to const or pure functions. */
2714 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2715 side_effects = true;
2716 /* Propagate TREE_READONLY of arguments for const functions. */
2717 if (i & ECF_CONST)
2718 read_only = true;
2719
2720 if (!side_effects || read_only)
2721 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2722 {
2723 tree op = TREE_OPERAND (t, i);
2724 if (op && TREE_SIDE_EFFECTS (op))
2725 side_effects = true;
2726 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2727 read_only = false;
2728 }
2729
2730 TREE_SIDE_EFFECTS (t) = side_effects;
2731 TREE_READONLY (t) = read_only;
2732 }
2733 \f
2734 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2735 or offset that depends on a field within a record. */
2736
2737 bool
2738 contains_placeholder_p (const_tree exp)
2739 {
2740 enum tree_code code;
2741
2742 if (!exp)
2743 return 0;
2744
2745 code = TREE_CODE (exp);
2746 if (code == PLACEHOLDER_EXPR)
2747 return 1;
2748
2749 switch (TREE_CODE_CLASS (code))
2750 {
2751 case tcc_reference:
2752 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2753 position computations since they will be converted into a
2754 WITH_RECORD_EXPR involving the reference, which will assume
2755 here will be valid. */
2756 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2757
2758 case tcc_exceptional:
2759 if (code == TREE_LIST)
2760 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2761 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2762 break;
2763
2764 case tcc_unary:
2765 case tcc_binary:
2766 case tcc_comparison:
2767 case tcc_expression:
2768 switch (code)
2769 {
2770 case COMPOUND_EXPR:
2771 /* Ignoring the first operand isn't quite right, but works best. */
2772 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2773
2774 case COND_EXPR:
2775 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2776 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2777 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2778
2779 case SAVE_EXPR:
2780 /* The save_expr function never wraps anything containing
2781 a PLACEHOLDER_EXPR. */
2782 return 0;
2783
2784 default:
2785 break;
2786 }
2787
2788 switch (TREE_CODE_LENGTH (code))
2789 {
2790 case 1:
2791 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2792 case 2:
2793 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2794 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2795 default:
2796 return 0;
2797 }
2798
2799 case tcc_vl_exp:
2800 switch (code)
2801 {
2802 case CALL_EXPR:
2803 {
2804 const_tree arg;
2805 const_call_expr_arg_iterator iter;
2806 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2807 if (CONTAINS_PLACEHOLDER_P (arg))
2808 return 1;
2809 return 0;
2810 }
2811 default:
2812 return 0;
2813 }
2814
2815 default:
2816 return 0;
2817 }
2818 return 0;
2819 }
2820
2821 /* Return true if any part of the computation of TYPE involves a
2822 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2823 (for QUAL_UNION_TYPE) and field positions. */
2824
2825 static bool
2826 type_contains_placeholder_1 (const_tree type)
2827 {
2828 /* If the size contains a placeholder or the parent type (component type in
2829 the case of arrays) type involves a placeholder, this type does. */
2830 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2831 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2832 || (TREE_TYPE (type) != 0
2833 && type_contains_placeholder_p (TREE_TYPE (type))))
2834 return true;
2835
2836 /* Now do type-specific checks. Note that the last part of the check above
2837 greatly limits what we have to do below. */
2838 switch (TREE_CODE (type))
2839 {
2840 case VOID_TYPE:
2841 case COMPLEX_TYPE:
2842 case ENUMERAL_TYPE:
2843 case BOOLEAN_TYPE:
2844 case POINTER_TYPE:
2845 case OFFSET_TYPE:
2846 case REFERENCE_TYPE:
2847 case METHOD_TYPE:
2848 case FUNCTION_TYPE:
2849 case VECTOR_TYPE:
2850 return false;
2851
2852 case INTEGER_TYPE:
2853 case REAL_TYPE:
2854 case FIXED_POINT_TYPE:
2855 /* Here we just check the bounds. */
2856 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2857 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2858
2859 case ARRAY_TYPE:
2860 /* We're already checked the component type (TREE_TYPE), so just check
2861 the index type. */
2862 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2863
2864 case RECORD_TYPE:
2865 case UNION_TYPE:
2866 case QUAL_UNION_TYPE:
2867 {
2868 tree field;
2869
2870 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2871 if (TREE_CODE (field) == FIELD_DECL
2872 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2873 || (TREE_CODE (type) == QUAL_UNION_TYPE
2874 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2875 || type_contains_placeholder_p (TREE_TYPE (field))))
2876 return true;
2877
2878 return false;
2879 }
2880
2881 default:
2882 gcc_unreachable ();
2883 }
2884 }
2885
2886 bool
2887 type_contains_placeholder_p (tree type)
2888 {
2889 bool result;
2890
2891 /* If the contains_placeholder_bits field has been initialized,
2892 then we know the answer. */
2893 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2894 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2895
2896 /* Indicate that we've seen this type node, and the answer is false.
2897 This is what we want to return if we run into recursion via fields. */
2898 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2899
2900 /* Compute the real value. */
2901 result = type_contains_placeholder_1 (type);
2902
2903 /* Store the real value. */
2904 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2905
2906 return result;
2907 }
2908 \f
2909 /* Push tree EXP onto vector QUEUE if it is not already present. */
2910
2911 static void
2912 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2913 {
2914 unsigned int i;
2915 tree iter;
2916
2917 for (i = 0; VEC_iterate (tree, *queue, i, iter); i++)
2918 if (simple_cst_equal (iter, exp) == 1)
2919 break;
2920
2921 if (!iter)
2922 VEC_safe_push (tree, heap, *queue, exp);
2923 }
2924
2925 /* Given a tree EXP, find all occurences of references to fields
2926 in a PLACEHOLDER_EXPR and place them in vector REFS without
2927 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2928 we assume here that EXP contains only arithmetic expressions
2929 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2930 argument list. */
2931
2932 void
2933 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2934 {
2935 enum tree_code code = TREE_CODE (exp);
2936 tree inner;
2937 int i;
2938
2939 /* We handle TREE_LIST and COMPONENT_REF separately. */
2940 if (code == TREE_LIST)
2941 {
2942 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2943 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2944 }
2945 else if (code == COMPONENT_REF)
2946 {
2947 for (inner = TREE_OPERAND (exp, 0);
2948 REFERENCE_CLASS_P (inner);
2949 inner = TREE_OPERAND (inner, 0))
2950 ;
2951
2952 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2953 push_without_duplicates (exp, refs);
2954 else
2955 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2956 }
2957 else
2958 switch (TREE_CODE_CLASS (code))
2959 {
2960 case tcc_constant:
2961 break;
2962
2963 case tcc_declaration:
2964 /* Variables allocated to static storage can stay. */
2965 if (!TREE_STATIC (exp))
2966 push_without_duplicates (exp, refs);
2967 break;
2968
2969 case tcc_expression:
2970 /* This is the pattern built in ada/make_aligning_type. */
2971 if (code == ADDR_EXPR
2972 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2973 {
2974 push_without_duplicates (exp, refs);
2975 break;
2976 }
2977
2978 /* Fall through... */
2979
2980 case tcc_exceptional:
2981 case tcc_unary:
2982 case tcc_binary:
2983 case tcc_comparison:
2984 case tcc_reference:
2985 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
2986 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2987 break;
2988
2989 case tcc_vl_exp:
2990 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2991 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2992 break;
2993
2994 default:
2995 gcc_unreachable ();
2996 }
2997 }
2998
2999 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3000 return a tree with all occurrences of references to F in a
3001 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3002 CONST_DECLs. Note that we assume here that EXP contains only
3003 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3004 occurring only in their argument list. */
3005
3006 tree
3007 substitute_in_expr (tree exp, tree f, tree r)
3008 {
3009 enum tree_code code = TREE_CODE (exp);
3010 tree op0, op1, op2, op3;
3011 tree new_tree;
3012
3013 /* We handle TREE_LIST and COMPONENT_REF separately. */
3014 if (code == TREE_LIST)
3015 {
3016 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3017 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3018 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3019 return exp;
3020
3021 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3022 }
3023 else if (code == COMPONENT_REF)
3024 {
3025 tree inner;
3026
3027 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3028 and it is the right field, replace it with R. */
3029 for (inner = TREE_OPERAND (exp, 0);
3030 REFERENCE_CLASS_P (inner);
3031 inner = TREE_OPERAND (inner, 0))
3032 ;
3033
3034 /* The field. */
3035 op1 = TREE_OPERAND (exp, 1);
3036
3037 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3038 return r;
3039
3040 /* If this expression hasn't been completed let, leave it alone. */
3041 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3042 return exp;
3043
3044 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3045 if (op0 == TREE_OPERAND (exp, 0))
3046 return exp;
3047
3048 new_tree
3049 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3050 }
3051 else
3052 switch (TREE_CODE_CLASS (code))
3053 {
3054 case tcc_constant:
3055 return exp;
3056
3057 case tcc_declaration:
3058 if (exp == f)
3059 return r;
3060 else
3061 return exp;
3062
3063 case tcc_expression:
3064 if (exp == f)
3065 return r;
3066
3067 /* Fall through... */
3068
3069 case tcc_exceptional:
3070 case tcc_unary:
3071 case tcc_binary:
3072 case tcc_comparison:
3073 case tcc_reference:
3074 switch (TREE_CODE_LENGTH (code))
3075 {
3076 case 0:
3077 return exp;
3078
3079 case 1:
3080 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3081 if (op0 == TREE_OPERAND (exp, 0))
3082 return exp;
3083
3084 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3085 break;
3086
3087 case 2:
3088 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3089 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3090
3091 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3092 return exp;
3093
3094 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3095 break;
3096
3097 case 3:
3098 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3099 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3100 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3101
3102 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3103 && op2 == TREE_OPERAND (exp, 2))
3104 return exp;
3105
3106 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3107 break;
3108
3109 case 4:
3110 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3111 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3112 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3113 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3114
3115 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3116 && op2 == TREE_OPERAND (exp, 2)
3117 && op3 == TREE_OPERAND (exp, 3))
3118 return exp;
3119
3120 new_tree
3121 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3122 break;
3123
3124 default:
3125 gcc_unreachable ();
3126 }
3127 break;
3128
3129 case tcc_vl_exp:
3130 {
3131 int i;
3132
3133 new_tree = NULL_TREE;
3134
3135 /* If we are trying to replace F with a constant, inline back
3136 functions which do nothing else than computing a value from
3137 the arguments they are passed. This makes it possible to
3138 fold partially or entirely the replacement expression. */
3139 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3140 {
3141 tree t = maybe_inline_call_in_expr (exp);
3142 if (t)
3143 return SUBSTITUTE_IN_EXPR (t, f, r);
3144 }
3145
3146 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3147 {
3148 tree op = TREE_OPERAND (exp, i);
3149 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3150 if (new_op != op)
3151 {
3152 if (!new_tree)
3153 new_tree = copy_node (exp);
3154 TREE_OPERAND (new_tree, i) = new_op;
3155 }
3156 }
3157
3158 if (new_tree)
3159 {
3160 new_tree = fold (new_tree);
3161 if (TREE_CODE (new_tree) == CALL_EXPR)
3162 process_call_operands (new_tree);
3163 }
3164 else
3165 return exp;
3166 }
3167 break;
3168
3169 default:
3170 gcc_unreachable ();
3171 }
3172
3173 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3174 return new_tree;
3175 }
3176
3177 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3178 for it within OBJ, a tree that is an object or a chain of references. */
3179
3180 tree
3181 substitute_placeholder_in_expr (tree exp, tree obj)
3182 {
3183 enum tree_code code = TREE_CODE (exp);
3184 tree op0, op1, op2, op3;
3185 tree new_tree;
3186
3187 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3188 in the chain of OBJ. */
3189 if (code == PLACEHOLDER_EXPR)
3190 {
3191 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3192 tree elt;
3193
3194 for (elt = obj; elt != 0;
3195 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3196 || TREE_CODE (elt) == COND_EXPR)
3197 ? TREE_OPERAND (elt, 1)
3198 : (REFERENCE_CLASS_P (elt)
3199 || UNARY_CLASS_P (elt)
3200 || BINARY_CLASS_P (elt)
3201 || VL_EXP_CLASS_P (elt)
3202 || EXPRESSION_CLASS_P (elt))
3203 ? TREE_OPERAND (elt, 0) : 0))
3204 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3205 return elt;
3206
3207 for (elt = obj; elt != 0;
3208 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3209 || TREE_CODE (elt) == COND_EXPR)
3210 ? TREE_OPERAND (elt, 1)
3211 : (REFERENCE_CLASS_P (elt)
3212 || UNARY_CLASS_P (elt)
3213 || BINARY_CLASS_P (elt)
3214 || VL_EXP_CLASS_P (elt)
3215 || EXPRESSION_CLASS_P (elt))
3216 ? TREE_OPERAND (elt, 0) : 0))
3217 if (POINTER_TYPE_P (TREE_TYPE (elt))
3218 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3219 == need_type))
3220 return fold_build1 (INDIRECT_REF, need_type, elt);
3221
3222 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3223 survives until RTL generation, there will be an error. */
3224 return exp;
3225 }
3226
3227 /* TREE_LIST is special because we need to look at TREE_VALUE
3228 and TREE_CHAIN, not TREE_OPERANDS. */
3229 else if (code == TREE_LIST)
3230 {
3231 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3232 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3233 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3234 return exp;
3235
3236 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3237 }
3238 else
3239 switch (TREE_CODE_CLASS (code))
3240 {
3241 case tcc_constant:
3242 case tcc_declaration:
3243 return exp;
3244
3245 case tcc_exceptional:
3246 case tcc_unary:
3247 case tcc_binary:
3248 case tcc_comparison:
3249 case tcc_expression:
3250 case tcc_reference:
3251 case tcc_statement:
3252 switch (TREE_CODE_LENGTH (code))
3253 {
3254 case 0:
3255 return exp;
3256
3257 case 1:
3258 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3259 if (op0 == TREE_OPERAND (exp, 0))
3260 return exp;
3261
3262 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3263 break;
3264
3265 case 2:
3266 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3267 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3268
3269 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3270 return exp;
3271
3272 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3273 break;
3274
3275 case 3:
3276 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3277 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3278 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3279
3280 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3281 && op2 == TREE_OPERAND (exp, 2))
3282 return exp;
3283
3284 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3285 break;
3286
3287 case 4:
3288 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3289 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3290 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3291 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3292
3293 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3294 && op2 == TREE_OPERAND (exp, 2)
3295 && op3 == TREE_OPERAND (exp, 3))
3296 return exp;
3297
3298 new_tree
3299 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3300 break;
3301
3302 default:
3303 gcc_unreachable ();
3304 }
3305 break;
3306
3307 case tcc_vl_exp:
3308 {
3309 int i;
3310
3311 new_tree = NULL_TREE;
3312
3313 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3314 {
3315 tree op = TREE_OPERAND (exp, i);
3316 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3317 if (new_op != op)
3318 {
3319 if (!new_tree)
3320 new_tree = copy_node (exp);
3321 TREE_OPERAND (new_tree, i) = new_op;
3322 }
3323 }
3324
3325 if (new_tree)
3326 {
3327 new_tree = fold (new_tree);
3328 if (TREE_CODE (new_tree) == CALL_EXPR)
3329 process_call_operands (new_tree);
3330 }
3331 else
3332 return exp;
3333 }
3334 break;
3335
3336 default:
3337 gcc_unreachable ();
3338 }
3339
3340 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3341 return new_tree;
3342 }
3343 \f
3344 /* Stabilize a reference so that we can use it any number of times
3345 without causing its operands to be evaluated more than once.
3346 Returns the stabilized reference. This works by means of save_expr,
3347 so see the caveats in the comments about save_expr.
3348
3349 Also allows conversion expressions whose operands are references.
3350 Any other kind of expression is returned unchanged. */
3351
3352 tree
3353 stabilize_reference (tree ref)
3354 {
3355 tree result;
3356 enum tree_code code = TREE_CODE (ref);
3357
3358 switch (code)
3359 {
3360 case VAR_DECL:
3361 case PARM_DECL:
3362 case RESULT_DECL:
3363 /* No action is needed in this case. */
3364 return ref;
3365
3366 CASE_CONVERT:
3367 case FLOAT_EXPR:
3368 case FIX_TRUNC_EXPR:
3369 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3370 break;
3371
3372 case INDIRECT_REF:
3373 result = build_nt (INDIRECT_REF,
3374 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3375 break;
3376
3377 case COMPONENT_REF:
3378 result = build_nt (COMPONENT_REF,
3379 stabilize_reference (TREE_OPERAND (ref, 0)),
3380 TREE_OPERAND (ref, 1), NULL_TREE);
3381 break;
3382
3383 case BIT_FIELD_REF:
3384 result = build_nt (BIT_FIELD_REF,
3385 stabilize_reference (TREE_OPERAND (ref, 0)),
3386 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3387 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3388 break;
3389
3390 case ARRAY_REF:
3391 result = build_nt (ARRAY_REF,
3392 stabilize_reference (TREE_OPERAND (ref, 0)),
3393 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3394 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3395 break;
3396
3397 case ARRAY_RANGE_REF:
3398 result = build_nt (ARRAY_RANGE_REF,
3399 stabilize_reference (TREE_OPERAND (ref, 0)),
3400 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3401 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3402 break;
3403
3404 case COMPOUND_EXPR:
3405 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3406 it wouldn't be ignored. This matters when dealing with
3407 volatiles. */
3408 return stabilize_reference_1 (ref);
3409
3410 /* If arg isn't a kind of lvalue we recognize, make no change.
3411 Caller should recognize the error for an invalid lvalue. */
3412 default:
3413 return ref;
3414
3415 case ERROR_MARK:
3416 return error_mark_node;
3417 }
3418
3419 TREE_TYPE (result) = TREE_TYPE (ref);
3420 TREE_READONLY (result) = TREE_READONLY (ref);
3421 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3422 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3423
3424 return result;
3425 }
3426
3427 /* Subroutine of stabilize_reference; this is called for subtrees of
3428 references. Any expression with side-effects must be put in a SAVE_EXPR
3429 to ensure that it is only evaluated once.
3430
3431 We don't put SAVE_EXPR nodes around everything, because assigning very
3432 simple expressions to temporaries causes us to miss good opportunities
3433 for optimizations. Among other things, the opportunity to fold in the
3434 addition of a constant into an addressing mode often gets lost, e.g.
3435 "y[i+1] += x;". In general, we take the approach that we should not make
3436 an assignment unless we are forced into it - i.e., that any non-side effect
3437 operator should be allowed, and that cse should take care of coalescing
3438 multiple utterances of the same expression should that prove fruitful. */
3439
3440 tree
3441 stabilize_reference_1 (tree e)
3442 {
3443 tree result;
3444 enum tree_code code = TREE_CODE (e);
3445
3446 /* We cannot ignore const expressions because it might be a reference
3447 to a const array but whose index contains side-effects. But we can
3448 ignore things that are actual constant or that already have been
3449 handled by this function. */
3450
3451 if (tree_invariant_p (e))
3452 return e;
3453
3454 switch (TREE_CODE_CLASS (code))
3455 {
3456 case tcc_exceptional:
3457 case tcc_type:
3458 case tcc_declaration:
3459 case tcc_comparison:
3460 case tcc_statement:
3461 case tcc_expression:
3462 case tcc_reference:
3463 case tcc_vl_exp:
3464 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3465 so that it will only be evaluated once. */
3466 /* The reference (r) and comparison (<) classes could be handled as
3467 below, but it is generally faster to only evaluate them once. */
3468 if (TREE_SIDE_EFFECTS (e))
3469 return save_expr (e);
3470 return e;
3471
3472 case tcc_constant:
3473 /* Constants need no processing. In fact, we should never reach
3474 here. */
3475 return e;
3476
3477 case tcc_binary:
3478 /* Division is slow and tends to be compiled with jumps,
3479 especially the division by powers of 2 that is often
3480 found inside of an array reference. So do it just once. */
3481 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3482 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3483 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3484 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3485 return save_expr (e);
3486 /* Recursively stabilize each operand. */
3487 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3488 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3489 break;
3490
3491 case tcc_unary:
3492 /* Recursively stabilize each operand. */
3493 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3494 break;
3495
3496 default:
3497 gcc_unreachable ();
3498 }
3499
3500 TREE_TYPE (result) = TREE_TYPE (e);
3501 TREE_READONLY (result) = TREE_READONLY (e);
3502 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3503 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3504
3505 return result;
3506 }
3507 \f
3508 /* Low-level constructors for expressions. */
3509
3510 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3511 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3512
3513 void
3514 recompute_tree_invariant_for_addr_expr (tree t)
3515 {
3516 tree node;
3517 bool tc = true, se = false;
3518
3519 /* We started out assuming this address is both invariant and constant, but
3520 does not have side effects. Now go down any handled components and see if
3521 any of them involve offsets that are either non-constant or non-invariant.
3522 Also check for side-effects.
3523
3524 ??? Note that this code makes no attempt to deal with the case where
3525 taking the address of something causes a copy due to misalignment. */
3526
3527 #define UPDATE_FLAGS(NODE) \
3528 do { tree _node = (NODE); \
3529 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3530 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3531
3532 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3533 node = TREE_OPERAND (node, 0))
3534 {
3535 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3536 array reference (probably made temporarily by the G++ front end),
3537 so ignore all the operands. */
3538 if ((TREE_CODE (node) == ARRAY_REF
3539 || TREE_CODE (node) == ARRAY_RANGE_REF)
3540 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3541 {
3542 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3543 if (TREE_OPERAND (node, 2))
3544 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3545 if (TREE_OPERAND (node, 3))
3546 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3547 }
3548 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3549 FIELD_DECL, apparently. The G++ front end can put something else
3550 there, at least temporarily. */
3551 else if (TREE_CODE (node) == COMPONENT_REF
3552 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3553 {
3554 if (TREE_OPERAND (node, 2))
3555 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3556 }
3557 else if (TREE_CODE (node) == BIT_FIELD_REF)
3558 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3559 }
3560
3561 node = lang_hooks.expr_to_decl (node, &tc, &se);
3562
3563 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3564 the address, since &(*a)->b is a form of addition. If it's a constant, the
3565 address is constant too. If it's a decl, its address is constant if the
3566 decl is static. Everything else is not constant and, furthermore,
3567 taking the address of a volatile variable is not volatile. */
3568 if (TREE_CODE (node) == INDIRECT_REF
3569 || TREE_CODE (node) == MEM_REF)
3570 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3571 else if (CONSTANT_CLASS_P (node))
3572 ;
3573 else if (DECL_P (node))
3574 tc &= (staticp (node) != NULL_TREE);
3575 else
3576 {
3577 tc = false;
3578 se |= TREE_SIDE_EFFECTS (node);
3579 }
3580
3581
3582 TREE_CONSTANT (t) = tc;
3583 TREE_SIDE_EFFECTS (t) = se;
3584 #undef UPDATE_FLAGS
3585 }
3586
3587 /* Build an expression of code CODE, data type TYPE, and operands as
3588 specified. Expressions and reference nodes can be created this way.
3589 Constants, decls, types and misc nodes cannot be.
3590
3591 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3592 enough for all extant tree codes. */
3593
3594 tree
3595 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3596 {
3597 tree t;
3598
3599 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3600
3601 t = make_node_stat (code PASS_MEM_STAT);
3602 TREE_TYPE (t) = tt;
3603
3604 return t;
3605 }
3606
3607 tree
3608 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3609 {
3610 int length = sizeof (struct tree_exp);
3611 #ifdef GATHER_STATISTICS
3612 tree_node_kind kind;
3613 #endif
3614 tree t;
3615
3616 #ifdef GATHER_STATISTICS
3617 switch (TREE_CODE_CLASS (code))
3618 {
3619 case tcc_statement: /* an expression with side effects */
3620 kind = s_kind;
3621 break;
3622 case tcc_reference: /* a reference */
3623 kind = r_kind;
3624 break;
3625 default:
3626 kind = e_kind;
3627 break;
3628 }
3629
3630 tree_node_counts[(int) kind]++;
3631 tree_node_sizes[(int) kind] += length;
3632 #endif
3633
3634 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3635
3636 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3637
3638 memset (t, 0, sizeof (struct tree_common));
3639
3640 TREE_SET_CODE (t, code);
3641
3642 TREE_TYPE (t) = type;
3643 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3644 TREE_OPERAND (t, 0) = node;
3645 TREE_BLOCK (t) = NULL_TREE;
3646 if (node && !TYPE_P (node))
3647 {
3648 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3649 TREE_READONLY (t) = TREE_READONLY (node);
3650 }
3651
3652 if (TREE_CODE_CLASS (code) == tcc_statement)
3653 TREE_SIDE_EFFECTS (t) = 1;
3654 else switch (code)
3655 {
3656 case VA_ARG_EXPR:
3657 /* All of these have side-effects, no matter what their
3658 operands are. */
3659 TREE_SIDE_EFFECTS (t) = 1;
3660 TREE_READONLY (t) = 0;
3661 break;
3662
3663 case MISALIGNED_INDIRECT_REF:
3664 case INDIRECT_REF:
3665 /* Whether a dereference is readonly has nothing to do with whether
3666 its operand is readonly. */
3667 TREE_READONLY (t) = 0;
3668 break;
3669
3670 case ADDR_EXPR:
3671 if (node)
3672 recompute_tree_invariant_for_addr_expr (t);
3673 break;
3674
3675 default:
3676 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3677 && node && !TYPE_P (node)
3678 && TREE_CONSTANT (node))
3679 TREE_CONSTANT (t) = 1;
3680 if (TREE_CODE_CLASS (code) == tcc_reference
3681 && node && TREE_THIS_VOLATILE (node))
3682 TREE_THIS_VOLATILE (t) = 1;
3683 break;
3684 }
3685
3686 return t;
3687 }
3688
3689 #define PROCESS_ARG(N) \
3690 do { \
3691 TREE_OPERAND (t, N) = arg##N; \
3692 if (arg##N &&!TYPE_P (arg##N)) \
3693 { \
3694 if (TREE_SIDE_EFFECTS (arg##N)) \
3695 side_effects = 1; \
3696 if (!TREE_READONLY (arg##N) \
3697 && !CONSTANT_CLASS_P (arg##N)) \
3698 (void) (read_only = 0); \
3699 if (!TREE_CONSTANT (arg##N)) \
3700 (void) (constant = 0); \
3701 } \
3702 } while (0)
3703
3704 tree
3705 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3706 {
3707 bool constant, read_only, side_effects;
3708 tree t;
3709
3710 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3711
3712 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3713 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3714 /* When sizetype precision doesn't match that of pointers
3715 we need to be able to build explicit extensions or truncations
3716 of the offset argument. */
3717 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3718 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3719 && TREE_CODE (arg1) == INTEGER_CST);
3720
3721 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3722 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3723 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3724 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3725
3726 t = make_node_stat (code PASS_MEM_STAT);
3727 TREE_TYPE (t) = tt;
3728
3729 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3730 result based on those same flags for the arguments. But if the
3731 arguments aren't really even `tree' expressions, we shouldn't be trying
3732 to do this. */
3733
3734 /* Expressions without side effects may be constant if their
3735 arguments are as well. */
3736 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3737 || TREE_CODE_CLASS (code) == tcc_binary);
3738 read_only = 1;
3739 side_effects = TREE_SIDE_EFFECTS (t);
3740
3741 PROCESS_ARG(0);
3742 PROCESS_ARG(1);
3743
3744 TREE_READONLY (t) = read_only;
3745 TREE_CONSTANT (t) = constant;
3746 TREE_SIDE_EFFECTS (t) = side_effects;
3747 TREE_THIS_VOLATILE (t)
3748 = (TREE_CODE_CLASS (code) == tcc_reference
3749 && arg0 && TREE_THIS_VOLATILE (arg0));
3750
3751 return t;
3752 }
3753
3754
3755 tree
3756 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3757 tree arg2 MEM_STAT_DECL)
3758 {
3759 bool constant, read_only, side_effects;
3760 tree t;
3761
3762 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3763 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3764
3765 t = make_node_stat (code PASS_MEM_STAT);
3766 TREE_TYPE (t) = tt;
3767
3768 read_only = 1;
3769
3770 /* As a special exception, if COND_EXPR has NULL branches, we
3771 assume that it is a gimple statement and always consider
3772 it to have side effects. */
3773 if (code == COND_EXPR
3774 && tt == void_type_node
3775 && arg1 == NULL_TREE
3776 && arg2 == NULL_TREE)
3777 side_effects = true;
3778 else
3779 side_effects = TREE_SIDE_EFFECTS (t);
3780
3781 PROCESS_ARG(0);
3782 PROCESS_ARG(1);
3783 PROCESS_ARG(2);
3784
3785 if (code == COND_EXPR)
3786 TREE_READONLY (t) = read_only;
3787
3788 TREE_SIDE_EFFECTS (t) = side_effects;
3789 TREE_THIS_VOLATILE (t)
3790 = (TREE_CODE_CLASS (code) == tcc_reference
3791 && arg0 && TREE_THIS_VOLATILE (arg0));
3792
3793 return t;
3794 }
3795
3796 tree
3797 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3798 tree arg2, tree arg3 MEM_STAT_DECL)
3799 {
3800 bool constant, read_only, side_effects;
3801 tree t;
3802
3803 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3804
3805 t = make_node_stat (code PASS_MEM_STAT);
3806 TREE_TYPE (t) = tt;
3807
3808 side_effects = TREE_SIDE_EFFECTS (t);
3809
3810 PROCESS_ARG(0);
3811 PROCESS_ARG(1);
3812 PROCESS_ARG(2);
3813 PROCESS_ARG(3);
3814
3815 TREE_SIDE_EFFECTS (t) = side_effects;
3816 TREE_THIS_VOLATILE (t)
3817 = (TREE_CODE_CLASS (code) == tcc_reference
3818 && arg0 && TREE_THIS_VOLATILE (arg0));
3819
3820 return t;
3821 }
3822
3823 tree
3824 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3825 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3826 {
3827 bool constant, read_only, side_effects;
3828 tree t;
3829
3830 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3831
3832 t = make_node_stat (code PASS_MEM_STAT);
3833 TREE_TYPE (t) = tt;
3834
3835 side_effects = TREE_SIDE_EFFECTS (t);
3836
3837 PROCESS_ARG(0);
3838 PROCESS_ARG(1);
3839 PROCESS_ARG(2);
3840 PROCESS_ARG(3);
3841 PROCESS_ARG(4);
3842
3843 TREE_SIDE_EFFECTS (t) = side_effects;
3844 TREE_THIS_VOLATILE (t)
3845 = (TREE_CODE_CLASS (code) == tcc_reference
3846 && arg0 && TREE_THIS_VOLATILE (arg0));
3847
3848 return t;
3849 }
3850
3851 tree
3852 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3853 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3854 {
3855 bool constant, read_only, side_effects;
3856 tree t;
3857
3858 gcc_assert (code == TARGET_MEM_REF);
3859
3860 t = make_node_stat (code PASS_MEM_STAT);
3861 TREE_TYPE (t) = tt;
3862
3863 side_effects = TREE_SIDE_EFFECTS (t);
3864
3865 PROCESS_ARG(0);
3866 PROCESS_ARG(1);
3867 PROCESS_ARG(2);
3868 PROCESS_ARG(3);
3869 PROCESS_ARG(4);
3870 if (code == TARGET_MEM_REF)
3871 side_effects = 0;
3872 PROCESS_ARG(5);
3873
3874 TREE_SIDE_EFFECTS (t) = side_effects;
3875 TREE_THIS_VOLATILE (t)
3876 = (code == TARGET_MEM_REF
3877 && arg5 && TREE_THIS_VOLATILE (arg5));
3878
3879 return t;
3880 }
3881
3882 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3883 on the pointer PTR. */
3884
3885 tree
3886 build_simple_mem_ref_loc (location_t loc, tree ptr)
3887 {
3888 HOST_WIDE_INT offset = 0;
3889 tree ptype = TREE_TYPE (ptr);
3890 tree tem;
3891 /* For convenience allow addresses that collapse to a simple base
3892 and offset. */
3893 if (TREE_CODE (ptr) == ADDR_EXPR
3894 && (handled_component_p (TREE_OPERAND (ptr, 0))
3895 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3896 {
3897 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3898 gcc_assert (ptr);
3899 ptr = build_fold_addr_expr (ptr);
3900 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3901 }
3902 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3903 ptr, build_int_cst (ptype, offset));
3904 SET_EXPR_LOCATION (tem, loc);
3905 return tem;
3906 }
3907
3908 /* Return the constant offset of a MEM_REF tree T. */
3909
3910 double_int
3911 mem_ref_offset (const_tree t)
3912 {
3913 tree toff = TREE_OPERAND (t, 1);
3914 return double_int_sext (tree_to_double_int (toff),
3915 TYPE_PRECISION (TREE_TYPE (toff)));
3916 }
3917
3918 /* Return the pointer-type relevant for TBAA purposes from the
3919 gimple memory reference tree T. This is the type to be used for
3920 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3921
3922 tree
3923 reference_alias_ptr_type (const_tree t)
3924 {
3925 const_tree base = t;
3926 while (handled_component_p (base))
3927 base = TREE_OPERAND (base, 0);
3928 if (TREE_CODE (base) == MEM_REF)
3929 return TREE_TYPE (TREE_OPERAND (base, 1));
3930 else if (TREE_CODE (base) == TARGET_MEM_REF
3931 || TREE_CODE (base) == MISALIGNED_INDIRECT_REF)
3932 return NULL_TREE;
3933 else
3934 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
3935 }
3936
3937 /* Similar except don't specify the TREE_TYPE
3938 and leave the TREE_SIDE_EFFECTS as 0.
3939 It is permissible for arguments to be null,
3940 or even garbage if their values do not matter. */
3941
3942 tree
3943 build_nt (enum tree_code code, ...)
3944 {
3945 tree t;
3946 int length;
3947 int i;
3948 va_list p;
3949
3950 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3951
3952 va_start (p, code);
3953
3954 t = make_node (code);
3955 length = TREE_CODE_LENGTH (code);
3956
3957 for (i = 0; i < length; i++)
3958 TREE_OPERAND (t, i) = va_arg (p, tree);
3959
3960 va_end (p);
3961 return t;
3962 }
3963
3964 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3965 tree VEC. */
3966
3967 tree
3968 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3969 {
3970 tree ret, t;
3971 unsigned int ix;
3972
3973 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3974 CALL_EXPR_FN (ret) = fn;
3975 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3976 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
3977 CALL_EXPR_ARG (ret, ix) = t;
3978 return ret;
3979 }
3980 \f
3981 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3982 We do NOT enter this node in any sort of symbol table.
3983
3984 LOC is the location of the decl.
3985
3986 layout_decl is used to set up the decl's storage layout.
3987 Other slots are initialized to 0 or null pointers. */
3988
3989 tree
3990 build_decl_stat (location_t loc, enum tree_code code, tree name,
3991 tree type MEM_STAT_DECL)
3992 {
3993 tree t;
3994
3995 t = make_node_stat (code PASS_MEM_STAT);
3996 DECL_SOURCE_LOCATION (t) = loc;
3997
3998 /* if (type == error_mark_node)
3999 type = integer_type_node; */
4000 /* That is not done, deliberately, so that having error_mark_node
4001 as the type can suppress useless errors in the use of this variable. */
4002
4003 DECL_NAME (t) = name;
4004 TREE_TYPE (t) = type;
4005
4006 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4007 layout_decl (t, 0);
4008
4009 return t;
4010 }
4011
4012 /* Builds and returns function declaration with NAME and TYPE. */
4013
4014 tree
4015 build_fn_decl (const char *name, tree type)
4016 {
4017 tree id = get_identifier (name);
4018 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4019
4020 DECL_EXTERNAL (decl) = 1;
4021 TREE_PUBLIC (decl) = 1;
4022 DECL_ARTIFICIAL (decl) = 1;
4023 TREE_NOTHROW (decl) = 1;
4024
4025 return decl;
4026 }
4027
4028 \f
4029 /* BLOCK nodes are used to represent the structure of binding contours
4030 and declarations, once those contours have been exited and their contents
4031 compiled. This information is used for outputting debugging info. */
4032
4033 tree
4034 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4035 {
4036 tree block = make_node (BLOCK);
4037
4038 BLOCK_VARS (block) = vars;
4039 BLOCK_SUBBLOCKS (block) = subblocks;
4040 BLOCK_SUPERCONTEXT (block) = supercontext;
4041 BLOCK_CHAIN (block) = chain;
4042 return block;
4043 }
4044
4045 \f
4046 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4047
4048 LOC is the location to use in tree T. */
4049
4050 void
4051 protected_set_expr_location (tree t, location_t loc)
4052 {
4053 if (t && CAN_HAVE_LOCATION_P (t))
4054 SET_EXPR_LOCATION (t, loc);
4055 }
4056 \f
4057 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4058 is ATTRIBUTE. */
4059
4060 tree
4061 build_decl_attribute_variant (tree ddecl, tree attribute)
4062 {
4063 DECL_ATTRIBUTES (ddecl) = attribute;
4064 return ddecl;
4065 }
4066
4067 /* Borrowed from hashtab.c iterative_hash implementation. */
4068 #define mix(a,b,c) \
4069 { \
4070 a -= b; a -= c; a ^= (c>>13); \
4071 b -= c; b -= a; b ^= (a<< 8); \
4072 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4073 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4074 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4075 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4076 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4077 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4078 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4079 }
4080
4081
4082 /* Produce good hash value combining VAL and VAL2. */
4083 hashval_t
4084 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4085 {
4086 /* the golden ratio; an arbitrary value. */
4087 hashval_t a = 0x9e3779b9;
4088
4089 mix (a, val, val2);
4090 return val2;
4091 }
4092
4093 /* Produce good hash value combining VAL and VAL2. */
4094 hashval_t
4095 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4096 {
4097 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4098 return iterative_hash_hashval_t (val, val2);
4099 else
4100 {
4101 hashval_t a = (hashval_t) val;
4102 /* Avoid warnings about shifting of more than the width of the type on
4103 hosts that won't execute this path. */
4104 int zero = 0;
4105 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4106 mix (a, b, val2);
4107 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4108 {
4109 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4110 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4111 mix (a, b, val2);
4112 }
4113 return val2;
4114 }
4115 }
4116
4117 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4118 is ATTRIBUTE and its qualifiers are QUALS.
4119
4120 Record such modified types already made so we don't make duplicates. */
4121
4122 tree
4123 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4124 {
4125 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4126 {
4127 hashval_t hashcode = 0;
4128 tree ntype;
4129 enum tree_code code = TREE_CODE (ttype);
4130
4131 /* Building a distinct copy of a tagged type is inappropriate; it
4132 causes breakage in code that expects there to be a one-to-one
4133 relationship between a struct and its fields.
4134 build_duplicate_type is another solution (as used in
4135 handle_transparent_union_attribute), but that doesn't play well
4136 with the stronger C++ type identity model. */
4137 if (TREE_CODE (ttype) == RECORD_TYPE
4138 || TREE_CODE (ttype) == UNION_TYPE
4139 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4140 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4141 {
4142 warning (OPT_Wattributes,
4143 "ignoring attributes applied to %qT after definition",
4144 TYPE_MAIN_VARIANT (ttype));
4145 return build_qualified_type (ttype, quals);
4146 }
4147
4148 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4149 ntype = build_distinct_type_copy (ttype);
4150
4151 TYPE_ATTRIBUTES (ntype) = attribute;
4152
4153 hashcode = iterative_hash_object (code, hashcode);
4154 if (TREE_TYPE (ntype))
4155 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4156 hashcode);
4157 hashcode = attribute_hash_list (attribute, hashcode);
4158
4159 switch (TREE_CODE (ntype))
4160 {
4161 case FUNCTION_TYPE:
4162 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4163 break;
4164 case ARRAY_TYPE:
4165 if (TYPE_DOMAIN (ntype))
4166 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4167 hashcode);
4168 break;
4169 case INTEGER_TYPE:
4170 hashcode = iterative_hash_object
4171 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4172 hashcode = iterative_hash_object
4173 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4174 break;
4175 case REAL_TYPE:
4176 case FIXED_POINT_TYPE:
4177 {
4178 unsigned int precision = TYPE_PRECISION (ntype);
4179 hashcode = iterative_hash_object (precision, hashcode);
4180 }
4181 break;
4182 default:
4183 break;
4184 }
4185
4186 ntype = type_hash_canon (hashcode, ntype);
4187
4188 /* If the target-dependent attributes make NTYPE different from
4189 its canonical type, we will need to use structural equality
4190 checks for this type. */
4191 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4192 || !targetm.comp_type_attributes (ntype, ttype))
4193 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4194 else if (TYPE_CANONICAL (ntype) == ntype)
4195 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4196
4197 ttype = build_qualified_type (ntype, quals);
4198 }
4199 else if (TYPE_QUALS (ttype) != quals)
4200 ttype = build_qualified_type (ttype, quals);
4201
4202 return ttype;
4203 }
4204
4205
4206 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4207 is ATTRIBUTE.
4208
4209 Record such modified types already made so we don't make duplicates. */
4210
4211 tree
4212 build_type_attribute_variant (tree ttype, tree attribute)
4213 {
4214 return build_type_attribute_qual_variant (ttype, attribute,
4215 TYPE_QUALS (ttype));
4216 }
4217
4218
4219 /* Reset the expression *EXPR_P, a size or position.
4220
4221 ??? We could reset all non-constant sizes or positions. But it's cheap
4222 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4223
4224 We need to reset self-referential sizes or positions because they cannot
4225 be gimplified and thus can contain a CALL_EXPR after the gimplification
4226 is finished, which will run afoul of LTO streaming. And they need to be
4227 reset to something essentially dummy but not constant, so as to preserve
4228 the properties of the object they are attached to. */
4229
4230 static inline void
4231 free_lang_data_in_one_sizepos (tree *expr_p)
4232 {
4233 tree expr = *expr_p;
4234 if (CONTAINS_PLACEHOLDER_P (expr))
4235 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4236 }
4237
4238
4239 /* Reset all the fields in a binfo node BINFO. We only keep
4240 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4241
4242 static void
4243 free_lang_data_in_binfo (tree binfo)
4244 {
4245 unsigned i;
4246 tree t;
4247
4248 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4249
4250 BINFO_VTABLE (binfo) = NULL_TREE;
4251 BINFO_BASE_ACCESSES (binfo) = NULL;
4252 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4253 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4254
4255 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (binfo), i, t); i++)
4256 free_lang_data_in_binfo (t);
4257 }
4258
4259
4260 /* Reset all language specific information still present in TYPE. */
4261
4262 static void
4263 free_lang_data_in_type (tree type)
4264 {
4265 gcc_assert (TYPE_P (type));
4266
4267 /* Give the FE a chance to remove its own data first. */
4268 lang_hooks.free_lang_data (type);
4269
4270 TREE_LANG_FLAG_0 (type) = 0;
4271 TREE_LANG_FLAG_1 (type) = 0;
4272 TREE_LANG_FLAG_2 (type) = 0;
4273 TREE_LANG_FLAG_3 (type) = 0;
4274 TREE_LANG_FLAG_4 (type) = 0;
4275 TREE_LANG_FLAG_5 (type) = 0;
4276 TREE_LANG_FLAG_6 (type) = 0;
4277
4278 if (TREE_CODE (type) == FUNCTION_TYPE)
4279 {
4280 /* Remove the const and volatile qualifiers from arguments. The
4281 C++ front end removes them, but the C front end does not,
4282 leading to false ODR violation errors when merging two
4283 instances of the same function signature compiled by
4284 different front ends. */
4285 tree p;
4286
4287 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4288 {
4289 tree arg_type = TREE_VALUE (p);
4290
4291 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4292 {
4293 int quals = TYPE_QUALS (arg_type)
4294 & ~TYPE_QUAL_CONST
4295 & ~TYPE_QUAL_VOLATILE;
4296 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4297 free_lang_data_in_type (TREE_VALUE (p));
4298 }
4299 }
4300 }
4301
4302 /* Remove members that are not actually FIELD_DECLs from the field
4303 list of an aggregate. These occur in C++. */
4304 if (RECORD_OR_UNION_TYPE_P (type))
4305 {
4306 tree prev, member;
4307
4308 /* Note that TYPE_FIELDS can be shared across distinct
4309 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4310 to be removed, we cannot set its TREE_CHAIN to NULL.
4311 Otherwise, we would not be able to find all the other fields
4312 in the other instances of this TREE_TYPE.
4313
4314 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4315 prev = NULL_TREE;
4316 member = TYPE_FIELDS (type);
4317 while (member)
4318 {
4319 if (TREE_CODE (member) == FIELD_DECL)
4320 {
4321 if (prev)
4322 TREE_CHAIN (prev) = member;
4323 else
4324 TYPE_FIELDS (type) = member;
4325 prev = member;
4326 }
4327
4328 member = TREE_CHAIN (member);
4329 }
4330
4331 if (prev)
4332 TREE_CHAIN (prev) = NULL_TREE;
4333 else
4334 TYPE_FIELDS (type) = NULL_TREE;
4335
4336 TYPE_METHODS (type) = NULL_TREE;
4337 if (TYPE_BINFO (type))
4338 free_lang_data_in_binfo (TYPE_BINFO (type));
4339 }
4340 else
4341 {
4342 /* For non-aggregate types, clear out the language slot (which
4343 overloads TYPE_BINFO). */
4344 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4345
4346 if (INTEGRAL_TYPE_P (type)
4347 || SCALAR_FLOAT_TYPE_P (type)
4348 || FIXED_POINT_TYPE_P (type))
4349 {
4350 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4351 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4352 }
4353 }
4354
4355 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4356 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4357
4358 if (debug_info_level < DINFO_LEVEL_TERSE
4359 || (TYPE_CONTEXT (type)
4360 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4361 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4362 TYPE_CONTEXT (type) = NULL_TREE;
4363
4364 if (debug_info_level < DINFO_LEVEL_TERSE)
4365 TYPE_STUB_DECL (type) = NULL_TREE;
4366 }
4367
4368
4369 /* Return true if DECL may need an assembler name to be set. */
4370
4371 static inline bool
4372 need_assembler_name_p (tree decl)
4373 {
4374 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4375 if (TREE_CODE (decl) != FUNCTION_DECL
4376 && TREE_CODE (decl) != VAR_DECL)
4377 return false;
4378
4379 /* If DECL already has its assembler name set, it does not need a
4380 new one. */
4381 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4382 || DECL_ASSEMBLER_NAME_SET_P (decl))
4383 return false;
4384
4385 /* Abstract decls do not need an assembler name. */
4386 if (DECL_ABSTRACT (decl))
4387 return false;
4388
4389 /* For VAR_DECLs, only static, public and external symbols need an
4390 assembler name. */
4391 if (TREE_CODE (decl) == VAR_DECL
4392 && !TREE_STATIC (decl)
4393 && !TREE_PUBLIC (decl)
4394 && !DECL_EXTERNAL (decl))
4395 return false;
4396
4397 if (TREE_CODE (decl) == FUNCTION_DECL)
4398 {
4399 /* Do not set assembler name on builtins. Allow RTL expansion to
4400 decide whether to expand inline or via a regular call. */
4401 if (DECL_BUILT_IN (decl)
4402 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4403 return false;
4404
4405 /* Functions represented in the callgraph need an assembler name. */
4406 if (cgraph_get_node (decl) != NULL)
4407 return true;
4408
4409 /* Unused and not public functions don't need an assembler name. */
4410 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4411 return false;
4412 }
4413
4414 return true;
4415 }
4416
4417
4418 /* Remove all the non-variable decls from BLOCK. LOCALS is the set of
4419 variables in DECL_STRUCT_FUNCTION (FN)->local_decls. Every decl
4420 in BLOCK that is not in LOCALS is removed. */
4421
4422 static void
4423 free_lang_data_in_block (tree fn, tree block, struct pointer_set_t *locals)
4424 {
4425 tree *tp, t;
4426
4427 tp = &BLOCK_VARS (block);
4428 while (*tp)
4429 {
4430 if (!pointer_set_contains (locals, *tp))
4431 *tp = TREE_CHAIN (*tp);
4432 else
4433 tp = &TREE_CHAIN (*tp);
4434 }
4435
4436 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4437 free_lang_data_in_block (fn, t, locals);
4438 }
4439
4440
4441 /* Reset all language specific information still present in symbol
4442 DECL. */
4443
4444 static void
4445 free_lang_data_in_decl (tree decl)
4446 {
4447 gcc_assert (DECL_P (decl));
4448
4449 /* Give the FE a chance to remove its own data first. */
4450 lang_hooks.free_lang_data (decl);
4451
4452 TREE_LANG_FLAG_0 (decl) = 0;
4453 TREE_LANG_FLAG_1 (decl) = 0;
4454 TREE_LANG_FLAG_2 (decl) = 0;
4455 TREE_LANG_FLAG_3 (decl) = 0;
4456 TREE_LANG_FLAG_4 (decl) = 0;
4457 TREE_LANG_FLAG_5 (decl) = 0;
4458 TREE_LANG_FLAG_6 (decl) = 0;
4459
4460 /* Identifiers need not have a type. */
4461 if (DECL_NAME (decl))
4462 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4463
4464 /* Ignore any intervening types, because we are going to clear their
4465 TYPE_CONTEXT fields. */
4466 if (TREE_CODE (decl) != FIELD_DECL
4467 && TREE_CODE (decl) != FUNCTION_DECL)
4468 DECL_CONTEXT (decl) = decl_function_context (decl);
4469
4470 if (DECL_CONTEXT (decl)
4471 && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
4472 DECL_CONTEXT (decl) = NULL_TREE;
4473
4474 if (TREE_CODE (decl) == VAR_DECL)
4475 {
4476 tree context = DECL_CONTEXT (decl);
4477
4478 if (context)
4479 {
4480 enum tree_code code = TREE_CODE (context);
4481 if (code == FUNCTION_DECL && DECL_ABSTRACT (context))
4482 {
4483 /* Do not clear the decl context here, that will promote
4484 all vars to global ones. */
4485 DECL_INITIAL (decl) = NULL_TREE;
4486 }
4487
4488 if (TREE_STATIC (decl))
4489 DECL_CONTEXT (decl) = NULL_TREE;
4490 }
4491 }
4492
4493 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4494 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4495 if (TREE_CODE (decl) == FIELD_DECL)
4496 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4497
4498 /* DECL_FCONTEXT is only used for debug info generation. */
4499 if (TREE_CODE (decl) == FIELD_DECL
4500 && debug_info_level < DINFO_LEVEL_TERSE)
4501 DECL_FCONTEXT (decl) = NULL_TREE;
4502
4503 if (TREE_CODE (decl) == FUNCTION_DECL)
4504 {
4505 if (gimple_has_body_p (decl))
4506 {
4507 tree t;
4508 unsigned ix;
4509 struct pointer_set_t *locals;
4510
4511 /* If DECL has a gimple body, then the context for its
4512 arguments must be DECL. Otherwise, it doesn't really
4513 matter, as we will not be emitting any code for DECL. In
4514 general, there may be other instances of DECL created by
4515 the front end and since PARM_DECLs are generally shared,
4516 their DECL_CONTEXT changes as the replicas of DECL are
4517 created. The only time where DECL_CONTEXT is important
4518 is for the FUNCTION_DECLs that have a gimple body (since
4519 the PARM_DECL will be used in the function's body). */
4520 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4521 DECL_CONTEXT (t) = decl;
4522
4523 /* Collect all the symbols declared in DECL. */
4524 locals = pointer_set_create ();
4525 FOR_EACH_LOCAL_DECL (DECL_STRUCT_FUNCTION (decl), ix, t)
4526 {
4527 pointer_set_insert (locals, t);
4528
4529 /* All the local symbols should have DECL as their
4530 context. */
4531 DECL_CONTEXT (t) = decl;
4532 }
4533
4534 /* Get rid of any decl not in local_decls. */
4535 free_lang_data_in_block (decl, DECL_INITIAL (decl), locals);
4536
4537 pointer_set_destroy (locals);
4538 }
4539
4540 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4541 At this point, it is not needed anymore. */
4542 DECL_SAVED_TREE (decl) = NULL_TREE;
4543 }
4544 else if (TREE_CODE (decl) == VAR_DECL)
4545 {
4546 tree expr = DECL_DEBUG_EXPR (decl);
4547 if (expr
4548 && TREE_CODE (expr) == VAR_DECL
4549 && !TREE_STATIC (expr) && !DECL_EXTERNAL (expr))
4550 SET_DECL_DEBUG_EXPR (decl, NULL_TREE);
4551
4552 if (DECL_EXTERNAL (decl)
4553 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4554 DECL_INITIAL (decl) = NULL_TREE;
4555 }
4556 else if (TREE_CODE (decl) == TYPE_DECL)
4557 {
4558 DECL_INITIAL (decl) = NULL_TREE;
4559
4560 /* DECL_CONTEXT is overloaded as DECL_FIELD_CONTEXT for
4561 FIELD_DECLs, which should be preserved. Otherwise,
4562 we shouldn't be concerned with source-level lexical
4563 nesting beyond this point. */
4564 DECL_CONTEXT (decl) = NULL_TREE;
4565 }
4566 }
4567
4568
4569 /* Data used when collecting DECLs and TYPEs for language data removal. */
4570
4571 struct free_lang_data_d
4572 {
4573 /* Worklist to avoid excessive recursion. */
4574 VEC(tree,heap) *worklist;
4575
4576 /* Set of traversed objects. Used to avoid duplicate visits. */
4577 struct pointer_set_t *pset;
4578
4579 /* Array of symbols to process with free_lang_data_in_decl. */
4580 VEC(tree,heap) *decls;
4581
4582 /* Array of types to process with free_lang_data_in_type. */
4583 VEC(tree,heap) *types;
4584 };
4585
4586
4587 /* Save all language fields needed to generate proper debug information
4588 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4589
4590 static void
4591 save_debug_info_for_decl (tree t)
4592 {
4593 /*struct saved_debug_info_d *sdi;*/
4594
4595 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4596
4597 /* FIXME. Partial implementation for saving debug info removed. */
4598 }
4599
4600
4601 /* Save all language fields needed to generate proper debug information
4602 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4603
4604 static void
4605 save_debug_info_for_type (tree t)
4606 {
4607 /*struct saved_debug_info_d *sdi;*/
4608
4609 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4610
4611 /* FIXME. Partial implementation for saving debug info removed. */
4612 }
4613
4614
4615 /* Add type or decl T to one of the list of tree nodes that need their
4616 language data removed. The lists are held inside FLD. */
4617
4618 static void
4619 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4620 {
4621 if (DECL_P (t))
4622 {
4623 VEC_safe_push (tree, heap, fld->decls, t);
4624 if (debug_info_level > DINFO_LEVEL_TERSE)
4625 save_debug_info_for_decl (t);
4626 }
4627 else if (TYPE_P (t))
4628 {
4629 VEC_safe_push (tree, heap, fld->types, t);
4630 if (debug_info_level > DINFO_LEVEL_TERSE)
4631 save_debug_info_for_type (t);
4632 }
4633 else
4634 gcc_unreachable ();
4635 }
4636
4637 /* Push tree node T into FLD->WORKLIST. */
4638
4639 static inline void
4640 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4641 {
4642 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4643 VEC_safe_push (tree, heap, fld->worklist, (t));
4644 }
4645
4646
4647 /* Operand callback helper for free_lang_data_in_node. *TP is the
4648 subtree operand being considered. */
4649
4650 static tree
4651 find_decls_types_r (tree *tp, int *ws, void *data)
4652 {
4653 tree t = *tp;
4654 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4655
4656 if (TREE_CODE (t) == TREE_LIST)
4657 return NULL_TREE;
4658
4659 /* Language specific nodes will be removed, so there is no need
4660 to gather anything under them. */
4661 if (is_lang_specific (t))
4662 {
4663 *ws = 0;
4664 return NULL_TREE;
4665 }
4666
4667 if (DECL_P (t))
4668 {
4669 /* Note that walk_tree does not traverse every possible field in
4670 decls, so we have to do our own traversals here. */
4671 add_tree_to_fld_list (t, fld);
4672
4673 fld_worklist_push (DECL_NAME (t), fld);
4674 fld_worklist_push (DECL_CONTEXT (t), fld);
4675 fld_worklist_push (DECL_SIZE (t), fld);
4676 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4677
4678 /* We are going to remove everything under DECL_INITIAL for
4679 TYPE_DECLs. No point walking them. */
4680 if (TREE_CODE (t) != TYPE_DECL)
4681 fld_worklist_push (DECL_INITIAL (t), fld);
4682
4683 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4684 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4685
4686 if (TREE_CODE (t) == FUNCTION_DECL)
4687 {
4688 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4689 fld_worklist_push (DECL_RESULT (t), fld);
4690 }
4691 else if (TREE_CODE (t) == TYPE_DECL)
4692 {
4693 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4694 fld_worklist_push (DECL_VINDEX (t), fld);
4695 }
4696 else if (TREE_CODE (t) == FIELD_DECL)
4697 {
4698 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4699 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4700 fld_worklist_push (DECL_QUALIFIER (t), fld);
4701 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4702 fld_worklist_push (DECL_FCONTEXT (t), fld);
4703 }
4704 else if (TREE_CODE (t) == VAR_DECL)
4705 {
4706 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4707 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4708 }
4709
4710 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4711 && DECL_HAS_VALUE_EXPR_P (t))
4712 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4713
4714 if (TREE_CODE (t) != FIELD_DECL
4715 && TREE_CODE (t) != TYPE_DECL)
4716 fld_worklist_push (TREE_CHAIN (t), fld);
4717 *ws = 0;
4718 }
4719 else if (TYPE_P (t))
4720 {
4721 /* Note that walk_tree does not traverse every possible field in
4722 types, so we have to do our own traversals here. */
4723 add_tree_to_fld_list (t, fld);
4724
4725 if (!RECORD_OR_UNION_TYPE_P (t))
4726 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4727 fld_worklist_push (TYPE_SIZE (t), fld);
4728 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4729 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4730 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4731 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4732 fld_worklist_push (TYPE_NAME (t), fld);
4733 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4734 them and thus do not and want not to reach unused pointer types
4735 this way. */
4736 if (!POINTER_TYPE_P (t))
4737 fld_worklist_push (TYPE_MINVAL (t), fld);
4738 if (!RECORD_OR_UNION_TYPE_P (t))
4739 fld_worklist_push (TYPE_MAXVAL (t), fld);
4740 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4741 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4742 do not and want not to reach unused variants this way. */
4743 fld_worklist_push (TYPE_CONTEXT (t), fld);
4744 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4745 and want not to reach unused types this way. */
4746
4747 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4748 {
4749 unsigned i;
4750 tree tem;
4751 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4752 i, tem); ++i)
4753 fld_worklist_push (TREE_TYPE (tem), fld);
4754 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4755 if (tem
4756 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4757 && TREE_CODE (tem) == TREE_LIST)
4758 do
4759 {
4760 fld_worklist_push (TREE_VALUE (tem), fld);
4761 tem = TREE_CHAIN (tem);
4762 }
4763 while (tem);
4764 }
4765 if (RECORD_OR_UNION_TYPE_P (t))
4766 {
4767 tree tem;
4768 /* Push all TYPE_FIELDS - there can be interleaving interesting
4769 and non-interesting things. */
4770 tem = TYPE_FIELDS (t);
4771 while (tem)
4772 {
4773 if (TREE_CODE (tem) == FIELD_DECL)
4774 fld_worklist_push (tem, fld);
4775 tem = TREE_CHAIN (tem);
4776 }
4777 }
4778
4779 fld_worklist_push (TREE_CHAIN (t), fld);
4780 *ws = 0;
4781 }
4782 else if (TREE_CODE (t) == BLOCK)
4783 {
4784 tree tem;
4785 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4786 fld_worklist_push (tem, fld);
4787 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4788 fld_worklist_push (tem, fld);
4789 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4790 }
4791
4792 fld_worklist_push (TREE_TYPE (t), fld);
4793
4794 return NULL_TREE;
4795 }
4796
4797
4798 /* Find decls and types in T. */
4799
4800 static void
4801 find_decls_types (tree t, struct free_lang_data_d *fld)
4802 {
4803 while (1)
4804 {
4805 if (!pointer_set_contains (fld->pset, t))
4806 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4807 if (VEC_empty (tree, fld->worklist))
4808 break;
4809 t = VEC_pop (tree, fld->worklist);
4810 }
4811 }
4812
4813 /* Translate all the types in LIST with the corresponding runtime
4814 types. */
4815
4816 static tree
4817 get_eh_types_for_runtime (tree list)
4818 {
4819 tree head, prev;
4820
4821 if (list == NULL_TREE)
4822 return NULL_TREE;
4823
4824 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4825 prev = head;
4826 list = TREE_CHAIN (list);
4827 while (list)
4828 {
4829 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4830 TREE_CHAIN (prev) = n;
4831 prev = TREE_CHAIN (prev);
4832 list = TREE_CHAIN (list);
4833 }
4834
4835 return head;
4836 }
4837
4838
4839 /* Find decls and types referenced in EH region R and store them in
4840 FLD->DECLS and FLD->TYPES. */
4841
4842 static void
4843 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4844 {
4845 switch (r->type)
4846 {
4847 case ERT_CLEANUP:
4848 break;
4849
4850 case ERT_TRY:
4851 {
4852 eh_catch c;
4853
4854 /* The types referenced in each catch must first be changed to the
4855 EH types used at runtime. This removes references to FE types
4856 in the region. */
4857 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4858 {
4859 c->type_list = get_eh_types_for_runtime (c->type_list);
4860 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4861 }
4862 }
4863 break;
4864
4865 case ERT_ALLOWED_EXCEPTIONS:
4866 r->u.allowed.type_list
4867 = get_eh_types_for_runtime (r->u.allowed.type_list);
4868 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4869 break;
4870
4871 case ERT_MUST_NOT_THROW:
4872 walk_tree (&r->u.must_not_throw.failure_decl,
4873 find_decls_types_r, fld, fld->pset);
4874 break;
4875 }
4876 }
4877
4878
4879 /* Find decls and types referenced in cgraph node N and store them in
4880 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4881 look for *every* kind of DECL and TYPE node reachable from N,
4882 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4883 NAMESPACE_DECLs, etc). */
4884
4885 static void
4886 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4887 {
4888 basic_block bb;
4889 struct function *fn;
4890 unsigned ix;
4891 tree t;
4892
4893 find_decls_types (n->decl, fld);
4894
4895 if (!gimple_has_body_p (n->decl))
4896 return;
4897
4898 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4899
4900 fn = DECL_STRUCT_FUNCTION (n->decl);
4901
4902 /* Traverse locals. */
4903 FOR_EACH_LOCAL_DECL (fn, ix, t)
4904 find_decls_types (t, fld);
4905
4906 /* Traverse EH regions in FN. */
4907 {
4908 eh_region r;
4909 FOR_ALL_EH_REGION_FN (r, fn)
4910 find_decls_types_in_eh_region (r, fld);
4911 }
4912
4913 /* Traverse every statement in FN. */
4914 FOR_EACH_BB_FN (bb, fn)
4915 {
4916 gimple_stmt_iterator si;
4917 unsigned i;
4918
4919 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4920 {
4921 gimple phi = gsi_stmt (si);
4922
4923 for (i = 0; i < gimple_phi_num_args (phi); i++)
4924 {
4925 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4926 find_decls_types (*arg_p, fld);
4927 }
4928 }
4929
4930 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4931 {
4932 gimple stmt = gsi_stmt (si);
4933
4934 for (i = 0; i < gimple_num_ops (stmt); i++)
4935 {
4936 tree arg = gimple_op (stmt, i);
4937 find_decls_types (arg, fld);
4938 }
4939 }
4940 }
4941 }
4942
4943
4944 /* Find decls and types referenced in varpool node N and store them in
4945 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4946 look for *every* kind of DECL and TYPE node reachable from N,
4947 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4948 NAMESPACE_DECLs, etc). */
4949
4950 static void
4951 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4952 {
4953 find_decls_types (v->decl, fld);
4954 }
4955
4956 /* If T needs an assembler name, have one created for it. */
4957
4958 void
4959 assign_assembler_name_if_neeeded (tree t)
4960 {
4961 if (need_assembler_name_p (t))
4962 {
4963 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4964 diagnostics that use input_location to show locus
4965 information. The problem here is that, at this point,
4966 input_location is generally anchored to the end of the file
4967 (since the parser is long gone), so we don't have a good
4968 position to pin it to.
4969
4970 To alleviate this problem, this uses the location of T's
4971 declaration. Examples of this are
4972 testsuite/g++.dg/template/cond2.C and
4973 testsuite/g++.dg/template/pr35240.C. */
4974 location_t saved_location = input_location;
4975 input_location = DECL_SOURCE_LOCATION (t);
4976
4977 decl_assembler_name (t);
4978
4979 input_location = saved_location;
4980 }
4981 }
4982
4983
4984 /* Free language specific information for every operand and expression
4985 in every node of the call graph. This process operates in three stages:
4986
4987 1- Every callgraph node and varpool node is traversed looking for
4988 decls and types embedded in them. This is a more exhaustive
4989 search than that done by find_referenced_vars, because it will
4990 also collect individual fields, decls embedded in types, etc.
4991
4992 2- All the decls found are sent to free_lang_data_in_decl.
4993
4994 3- All the types found are sent to free_lang_data_in_type.
4995
4996 The ordering between decls and types is important because
4997 free_lang_data_in_decl sets assembler names, which includes
4998 mangling. So types cannot be freed up until assembler names have
4999 been set up. */
5000
5001 static void
5002 free_lang_data_in_cgraph (void)
5003 {
5004 struct cgraph_node *n;
5005 struct varpool_node *v;
5006 struct free_lang_data_d fld;
5007 tree t;
5008 unsigned i;
5009 alias_pair *p;
5010
5011 /* Initialize sets and arrays to store referenced decls and types. */
5012 fld.pset = pointer_set_create ();
5013 fld.worklist = NULL;
5014 fld.decls = VEC_alloc (tree, heap, 100);
5015 fld.types = VEC_alloc (tree, heap, 100);
5016
5017 /* Find decls and types in the body of every function in the callgraph. */
5018 for (n = cgraph_nodes; n; n = n->next)
5019 find_decls_types_in_node (n, &fld);
5020
5021 for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); i++)
5022 find_decls_types (p->decl, &fld);
5023
5024 /* Find decls and types in every varpool symbol. */
5025 for (v = varpool_nodes_queue; v; v = v->next_needed)
5026 find_decls_types_in_var (v, &fld);
5027
5028 /* Set the assembler name on every decl found. We need to do this
5029 now because free_lang_data_in_decl will invalidate data needed
5030 for mangling. This breaks mangling on interdependent decls. */
5031 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
5032 assign_assembler_name_if_neeeded (t);
5033
5034 /* Traverse every decl found freeing its language data. */
5035 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
5036 free_lang_data_in_decl (t);
5037
5038 /* Traverse every type found freeing its language data. */
5039 for (i = 0; VEC_iterate (tree, fld.types, i, t); i++)
5040 free_lang_data_in_type (t);
5041
5042 pointer_set_destroy (fld.pset);
5043 VEC_free (tree, heap, fld.worklist);
5044 VEC_free (tree, heap, fld.decls);
5045 VEC_free (tree, heap, fld.types);
5046 }
5047
5048
5049 /* Free resources that are used by FE but are not needed once they are done. */
5050
5051 static unsigned
5052 free_lang_data (void)
5053 {
5054 unsigned i;
5055
5056 /* If we are the LTO frontend we have freed lang-specific data already. */
5057 if (in_lto_p
5058 || !flag_generate_lto)
5059 return 0;
5060
5061 /* Allocate and assign alias sets to the standard integer types
5062 while the slots are still in the way the frontends generated them. */
5063 for (i = 0; i < itk_none; ++i)
5064 if (integer_types[i])
5065 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5066
5067 /* Traverse the IL resetting language specific information for
5068 operands, expressions, etc. */
5069 free_lang_data_in_cgraph ();
5070
5071 /* Create gimple variants for common types. */
5072 ptrdiff_type_node = integer_type_node;
5073 fileptr_type_node = ptr_type_node;
5074 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
5075 || (TYPE_MODE (boolean_type_node)
5076 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
5077 || TYPE_PRECISION (boolean_type_node) != 1
5078 || !TYPE_UNSIGNED (boolean_type_node))
5079 {
5080 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5081 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5082 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5083 TYPE_PRECISION (boolean_type_node) = 1;
5084 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5085 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5086 }
5087
5088 /* Unify char_type_node with its properly signed variant. */
5089 if (TYPE_UNSIGNED (char_type_node))
5090 unsigned_char_type_node = char_type_node;
5091 else
5092 signed_char_type_node = char_type_node;
5093
5094 /* Reset some langhooks. Do not reset types_compatible_p, it may
5095 still be used indirectly via the get_alias_set langhook. */
5096 lang_hooks.callgraph.analyze_expr = NULL;
5097 lang_hooks.dwarf_name = lhd_dwarf_name;
5098 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5099 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
5100
5101 /* Reset diagnostic machinery. */
5102 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5103 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5104 diagnostic_format_decoder (global_dc) = default_tree_printer;
5105
5106 return 0;
5107 }
5108
5109
5110 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5111 {
5112 {
5113 SIMPLE_IPA_PASS,
5114 "*free_lang_data", /* name */
5115 NULL, /* gate */
5116 free_lang_data, /* execute */
5117 NULL, /* sub */
5118 NULL, /* next */
5119 0, /* static_pass_number */
5120 TV_IPA_FREE_LANG_DATA, /* tv_id */
5121 0, /* properties_required */
5122 0, /* properties_provided */
5123 0, /* properties_destroyed */
5124 0, /* todo_flags_start */
5125 TODO_ggc_collect /* todo_flags_finish */
5126 }
5127 };
5128
5129 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5130 or zero if not.
5131
5132 We try both `text' and `__text__', ATTR may be either one. */
5133 /* ??? It might be a reasonable simplification to require ATTR to be only
5134 `text'. One might then also require attribute lists to be stored in
5135 their canonicalized form. */
5136
5137 static int
5138 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5139 {
5140 int ident_len;
5141 const char *p;
5142
5143 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5144 return 0;
5145
5146 p = IDENTIFIER_POINTER (ident);
5147 ident_len = IDENTIFIER_LENGTH (ident);
5148
5149 if (ident_len == attr_len
5150 && strcmp (attr, p) == 0)
5151 return 1;
5152
5153 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5154 if (attr[0] == '_')
5155 {
5156 gcc_assert (attr[1] == '_');
5157 gcc_assert (attr[attr_len - 2] == '_');
5158 gcc_assert (attr[attr_len - 1] == '_');
5159 if (ident_len == attr_len - 4
5160 && strncmp (attr + 2, p, attr_len - 4) == 0)
5161 return 1;
5162 }
5163 else
5164 {
5165 if (ident_len == attr_len + 4
5166 && p[0] == '_' && p[1] == '_'
5167 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5168 && strncmp (attr, p + 2, attr_len) == 0)
5169 return 1;
5170 }
5171
5172 return 0;
5173 }
5174
5175 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5176 or zero if not.
5177
5178 We try both `text' and `__text__', ATTR may be either one. */
5179
5180 int
5181 is_attribute_p (const char *attr, const_tree ident)
5182 {
5183 return is_attribute_with_length_p (attr, strlen (attr), ident);
5184 }
5185
5186 /* Given an attribute name and a list of attributes, return a pointer to the
5187 attribute's list element if the attribute is part of the list, or NULL_TREE
5188 if not found. If the attribute appears more than once, this only
5189 returns the first occurrence; the TREE_CHAIN of the return value should
5190 be passed back in if further occurrences are wanted. */
5191
5192 tree
5193 lookup_attribute (const char *attr_name, tree list)
5194 {
5195 tree l;
5196 size_t attr_len = strlen (attr_name);
5197
5198 for (l = list; l; l = TREE_CHAIN (l))
5199 {
5200 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5201 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5202 return l;
5203 }
5204 return NULL_TREE;
5205 }
5206
5207 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5208 modified list. */
5209
5210 tree
5211 remove_attribute (const char *attr_name, tree list)
5212 {
5213 tree *p;
5214 size_t attr_len = strlen (attr_name);
5215
5216 for (p = &list; *p; )
5217 {
5218 tree l = *p;
5219 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5220 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5221 *p = TREE_CHAIN (l);
5222 else
5223 p = &TREE_CHAIN (l);
5224 }
5225
5226 return list;
5227 }
5228
5229 /* Return an attribute list that is the union of a1 and a2. */
5230
5231 tree
5232 merge_attributes (tree a1, tree a2)
5233 {
5234 tree attributes;
5235
5236 /* Either one unset? Take the set one. */
5237
5238 if ((attributes = a1) == 0)
5239 attributes = a2;
5240
5241 /* One that completely contains the other? Take it. */
5242
5243 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5244 {
5245 if (attribute_list_contained (a2, a1))
5246 attributes = a2;
5247 else
5248 {
5249 /* Pick the longest list, and hang on the other list. */
5250
5251 if (list_length (a1) < list_length (a2))
5252 attributes = a2, a2 = a1;
5253
5254 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5255 {
5256 tree a;
5257 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5258 attributes);
5259 a != NULL_TREE;
5260 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5261 TREE_CHAIN (a)))
5262 {
5263 if (TREE_VALUE (a) != NULL
5264 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5265 && TREE_VALUE (a2) != NULL
5266 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5267 {
5268 if (simple_cst_list_equal (TREE_VALUE (a),
5269 TREE_VALUE (a2)) == 1)
5270 break;
5271 }
5272 else if (simple_cst_equal (TREE_VALUE (a),
5273 TREE_VALUE (a2)) == 1)
5274 break;
5275 }
5276 if (a == NULL_TREE)
5277 {
5278 a1 = copy_node (a2);
5279 TREE_CHAIN (a1) = attributes;
5280 attributes = a1;
5281 }
5282 }
5283 }
5284 }
5285 return attributes;
5286 }
5287
5288 /* Given types T1 and T2, merge their attributes and return
5289 the result. */
5290
5291 tree
5292 merge_type_attributes (tree t1, tree t2)
5293 {
5294 return merge_attributes (TYPE_ATTRIBUTES (t1),
5295 TYPE_ATTRIBUTES (t2));
5296 }
5297
5298 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5299 the result. */
5300
5301 tree
5302 merge_decl_attributes (tree olddecl, tree newdecl)
5303 {
5304 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5305 DECL_ATTRIBUTES (newdecl));
5306 }
5307
5308 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5309
5310 /* Specialization of merge_decl_attributes for various Windows targets.
5311
5312 This handles the following situation:
5313
5314 __declspec (dllimport) int foo;
5315 int foo;
5316
5317 The second instance of `foo' nullifies the dllimport. */
5318
5319 tree
5320 merge_dllimport_decl_attributes (tree old, tree new_tree)
5321 {
5322 tree a;
5323 int delete_dllimport_p = 1;
5324
5325 /* What we need to do here is remove from `old' dllimport if it doesn't
5326 appear in `new'. dllimport behaves like extern: if a declaration is
5327 marked dllimport and a definition appears later, then the object
5328 is not dllimport'd. We also remove a `new' dllimport if the old list
5329 contains dllexport: dllexport always overrides dllimport, regardless
5330 of the order of declaration. */
5331 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5332 delete_dllimport_p = 0;
5333 else if (DECL_DLLIMPORT_P (new_tree)
5334 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5335 {
5336 DECL_DLLIMPORT_P (new_tree) = 0;
5337 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5338 "dllimport ignored", new_tree);
5339 }
5340 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5341 {
5342 /* Warn about overriding a symbol that has already been used, e.g.:
5343 extern int __attribute__ ((dllimport)) foo;
5344 int* bar () {return &foo;}
5345 int foo;
5346 */
5347 if (TREE_USED (old))
5348 {
5349 warning (0, "%q+D redeclared without dllimport attribute "
5350 "after being referenced with dll linkage", new_tree);
5351 /* If we have used a variable's address with dllimport linkage,
5352 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5353 decl may already have had TREE_CONSTANT computed.
5354 We still remove the attribute so that assembler code refers
5355 to '&foo rather than '_imp__foo'. */
5356 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5357 DECL_DLLIMPORT_P (new_tree) = 1;
5358 }
5359
5360 /* Let an inline definition silently override the external reference,
5361 but otherwise warn about attribute inconsistency. */
5362 else if (TREE_CODE (new_tree) == VAR_DECL
5363 || !DECL_DECLARED_INLINE_P (new_tree))
5364 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5365 "previous dllimport ignored", new_tree);
5366 }
5367 else
5368 delete_dllimport_p = 0;
5369
5370 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5371
5372 if (delete_dllimport_p)
5373 {
5374 tree prev, t;
5375 const size_t attr_len = strlen ("dllimport");
5376
5377 /* Scan the list for dllimport and delete it. */
5378 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5379 {
5380 if (is_attribute_with_length_p ("dllimport", attr_len,
5381 TREE_PURPOSE (t)))
5382 {
5383 if (prev == NULL_TREE)
5384 a = TREE_CHAIN (a);
5385 else
5386 TREE_CHAIN (prev) = TREE_CHAIN (t);
5387 break;
5388 }
5389 }
5390 }
5391
5392 return a;
5393 }
5394
5395 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5396 struct attribute_spec.handler. */
5397
5398 tree
5399 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5400 bool *no_add_attrs)
5401 {
5402 tree node = *pnode;
5403 bool is_dllimport;
5404
5405 /* These attributes may apply to structure and union types being created,
5406 but otherwise should pass to the declaration involved. */
5407 if (!DECL_P (node))
5408 {
5409 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5410 | (int) ATTR_FLAG_ARRAY_NEXT))
5411 {
5412 *no_add_attrs = true;
5413 return tree_cons (name, args, NULL_TREE);
5414 }
5415 if (TREE_CODE (node) == RECORD_TYPE
5416 || TREE_CODE (node) == UNION_TYPE)
5417 {
5418 node = TYPE_NAME (node);
5419 if (!node)
5420 return NULL_TREE;
5421 }
5422 else
5423 {
5424 warning (OPT_Wattributes, "%qE attribute ignored",
5425 name);
5426 *no_add_attrs = true;
5427 return NULL_TREE;
5428 }
5429 }
5430
5431 if (TREE_CODE (node) != FUNCTION_DECL
5432 && TREE_CODE (node) != VAR_DECL
5433 && TREE_CODE (node) != TYPE_DECL)
5434 {
5435 *no_add_attrs = true;
5436 warning (OPT_Wattributes, "%qE attribute ignored",
5437 name);
5438 return NULL_TREE;
5439 }
5440
5441 if (TREE_CODE (node) == TYPE_DECL
5442 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5443 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5444 {
5445 *no_add_attrs = true;
5446 warning (OPT_Wattributes, "%qE attribute ignored",
5447 name);
5448 return NULL_TREE;
5449 }
5450
5451 is_dllimport = is_attribute_p ("dllimport", name);
5452
5453 /* Report error on dllimport ambiguities seen now before they cause
5454 any damage. */
5455 if (is_dllimport)
5456 {
5457 /* Honor any target-specific overrides. */
5458 if (!targetm.valid_dllimport_attribute_p (node))
5459 *no_add_attrs = true;
5460
5461 else if (TREE_CODE (node) == FUNCTION_DECL
5462 && DECL_DECLARED_INLINE_P (node))
5463 {
5464 warning (OPT_Wattributes, "inline function %q+D declared as "
5465 " dllimport: attribute ignored", node);
5466 *no_add_attrs = true;
5467 }
5468 /* Like MS, treat definition of dllimported variables and
5469 non-inlined functions on declaration as syntax errors. */
5470 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5471 {
5472 error ("function %q+D definition is marked dllimport", node);
5473 *no_add_attrs = true;
5474 }
5475
5476 else if (TREE_CODE (node) == VAR_DECL)
5477 {
5478 if (DECL_INITIAL (node))
5479 {
5480 error ("variable %q+D definition is marked dllimport",
5481 node);
5482 *no_add_attrs = true;
5483 }
5484
5485 /* `extern' needn't be specified with dllimport.
5486 Specify `extern' now and hope for the best. Sigh. */
5487 DECL_EXTERNAL (node) = 1;
5488 /* Also, implicitly give dllimport'd variables declared within
5489 a function global scope, unless declared static. */
5490 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5491 TREE_PUBLIC (node) = 1;
5492 }
5493
5494 if (*no_add_attrs == false)
5495 DECL_DLLIMPORT_P (node) = 1;
5496 }
5497 else if (TREE_CODE (node) == FUNCTION_DECL
5498 && DECL_DECLARED_INLINE_P (node))
5499 /* An exported function, even if inline, must be emitted. */
5500 DECL_EXTERNAL (node) = 0;
5501
5502 /* Report error if symbol is not accessible at global scope. */
5503 if (!TREE_PUBLIC (node)
5504 && (TREE_CODE (node) == VAR_DECL
5505 || TREE_CODE (node) == FUNCTION_DECL))
5506 {
5507 error ("external linkage required for symbol %q+D because of "
5508 "%qE attribute", node, name);
5509 *no_add_attrs = true;
5510 }
5511
5512 /* A dllexport'd entity must have default visibility so that other
5513 program units (shared libraries or the main executable) can see
5514 it. A dllimport'd entity must have default visibility so that
5515 the linker knows that undefined references within this program
5516 unit can be resolved by the dynamic linker. */
5517 if (!*no_add_attrs)
5518 {
5519 if (DECL_VISIBILITY_SPECIFIED (node)
5520 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5521 error ("%qE implies default visibility, but %qD has already "
5522 "been declared with a different visibility",
5523 name, node);
5524 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5525 DECL_VISIBILITY_SPECIFIED (node) = 1;
5526 }
5527
5528 return NULL_TREE;
5529 }
5530
5531 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5532 \f
5533 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5534 of the various TYPE_QUAL values. */
5535
5536 static void
5537 set_type_quals (tree type, int type_quals)
5538 {
5539 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5540 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5541 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5542 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5543 }
5544
5545 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5546
5547 bool
5548 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5549 {
5550 return (TYPE_QUALS (cand) == type_quals
5551 && TYPE_NAME (cand) == TYPE_NAME (base)
5552 /* Apparently this is needed for Objective-C. */
5553 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5554 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5555 TYPE_ATTRIBUTES (base)));
5556 }
5557
5558 /* Return a version of the TYPE, qualified as indicated by the
5559 TYPE_QUALS, if one exists. If no qualified version exists yet,
5560 return NULL_TREE. */
5561
5562 tree
5563 get_qualified_type (tree type, int type_quals)
5564 {
5565 tree t;
5566
5567 if (TYPE_QUALS (type) == type_quals)
5568 return type;
5569
5570 /* Search the chain of variants to see if there is already one there just
5571 like the one we need to have. If so, use that existing one. We must
5572 preserve the TYPE_NAME, since there is code that depends on this. */
5573 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5574 if (check_qualified_type (t, type, type_quals))
5575 return t;
5576
5577 return NULL_TREE;
5578 }
5579
5580 /* Like get_qualified_type, but creates the type if it does not
5581 exist. This function never returns NULL_TREE. */
5582
5583 tree
5584 build_qualified_type (tree type, int type_quals)
5585 {
5586 tree t;
5587
5588 /* See if we already have the appropriate qualified variant. */
5589 t = get_qualified_type (type, type_quals);
5590
5591 /* If not, build it. */
5592 if (!t)
5593 {
5594 t = build_variant_type_copy (type);
5595 set_type_quals (t, type_quals);
5596
5597 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5598 /* Propagate structural equality. */
5599 SET_TYPE_STRUCTURAL_EQUALITY (t);
5600 else if (TYPE_CANONICAL (type) != type)
5601 /* Build the underlying canonical type, since it is different
5602 from TYPE. */
5603 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5604 type_quals);
5605 else
5606 /* T is its own canonical type. */
5607 TYPE_CANONICAL (t) = t;
5608
5609 }
5610
5611 return t;
5612 }
5613
5614 /* Create a new distinct copy of TYPE. The new type is made its own
5615 MAIN_VARIANT. If TYPE requires structural equality checks, the
5616 resulting type requires structural equality checks; otherwise, its
5617 TYPE_CANONICAL points to itself. */
5618
5619 tree
5620 build_distinct_type_copy (tree type)
5621 {
5622 tree t = copy_node (type);
5623
5624 TYPE_POINTER_TO (t) = 0;
5625 TYPE_REFERENCE_TO (t) = 0;
5626
5627 /* Set the canonical type either to a new equivalence class, or
5628 propagate the need for structural equality checks. */
5629 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5630 SET_TYPE_STRUCTURAL_EQUALITY (t);
5631 else
5632 TYPE_CANONICAL (t) = t;
5633
5634 /* Make it its own variant. */
5635 TYPE_MAIN_VARIANT (t) = t;
5636 TYPE_NEXT_VARIANT (t) = 0;
5637
5638 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5639 whose TREE_TYPE is not t. This can also happen in the Ada
5640 frontend when using subtypes. */
5641
5642 return t;
5643 }
5644
5645 /* Create a new variant of TYPE, equivalent but distinct. This is so
5646 the caller can modify it. TYPE_CANONICAL for the return type will
5647 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5648 are considered equal by the language itself (or that both types
5649 require structural equality checks). */
5650
5651 tree
5652 build_variant_type_copy (tree type)
5653 {
5654 tree t, m = TYPE_MAIN_VARIANT (type);
5655
5656 t = build_distinct_type_copy (type);
5657
5658 /* Since we're building a variant, assume that it is a non-semantic
5659 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5660 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5661
5662 /* Add the new type to the chain of variants of TYPE. */
5663 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5664 TYPE_NEXT_VARIANT (m) = t;
5665 TYPE_MAIN_VARIANT (t) = m;
5666
5667 return t;
5668 }
5669 \f
5670 /* Return true if the from tree in both tree maps are equal. */
5671
5672 int
5673 tree_map_base_eq (const void *va, const void *vb)
5674 {
5675 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5676 *const b = (const struct tree_map_base *) vb;
5677 return (a->from == b->from);
5678 }
5679
5680 /* Hash a from tree in a tree_base_map. */
5681
5682 unsigned int
5683 tree_map_base_hash (const void *item)
5684 {
5685 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5686 }
5687
5688 /* Return true if this tree map structure is marked for garbage collection
5689 purposes. We simply return true if the from tree is marked, so that this
5690 structure goes away when the from tree goes away. */
5691
5692 int
5693 tree_map_base_marked_p (const void *p)
5694 {
5695 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5696 }
5697
5698 /* Hash a from tree in a tree_map. */
5699
5700 unsigned int
5701 tree_map_hash (const void *item)
5702 {
5703 return (((const struct tree_map *) item)->hash);
5704 }
5705
5706 /* Hash a from tree in a tree_decl_map. */
5707
5708 unsigned int
5709 tree_decl_map_hash (const void *item)
5710 {
5711 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5712 }
5713
5714 /* Return the initialization priority for DECL. */
5715
5716 priority_type
5717 decl_init_priority_lookup (tree decl)
5718 {
5719 struct tree_priority_map *h;
5720 struct tree_map_base in;
5721
5722 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5723 in.from = decl;
5724 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5725 return h ? h->init : DEFAULT_INIT_PRIORITY;
5726 }
5727
5728 /* Return the finalization priority for DECL. */
5729
5730 priority_type
5731 decl_fini_priority_lookup (tree decl)
5732 {
5733 struct tree_priority_map *h;
5734 struct tree_map_base in;
5735
5736 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5737 in.from = decl;
5738 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5739 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5740 }
5741
5742 /* Return the initialization and finalization priority information for
5743 DECL. If there is no previous priority information, a freshly
5744 allocated structure is returned. */
5745
5746 static struct tree_priority_map *
5747 decl_priority_info (tree decl)
5748 {
5749 struct tree_priority_map in;
5750 struct tree_priority_map *h;
5751 void **loc;
5752
5753 in.base.from = decl;
5754 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5755 h = (struct tree_priority_map *) *loc;
5756 if (!h)
5757 {
5758 h = ggc_alloc_cleared_tree_priority_map ();
5759 *loc = h;
5760 h->base.from = decl;
5761 h->init = DEFAULT_INIT_PRIORITY;
5762 h->fini = DEFAULT_INIT_PRIORITY;
5763 }
5764
5765 return h;
5766 }
5767
5768 /* Set the initialization priority for DECL to PRIORITY. */
5769
5770 void
5771 decl_init_priority_insert (tree decl, priority_type priority)
5772 {
5773 struct tree_priority_map *h;
5774
5775 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5776 h = decl_priority_info (decl);
5777 h->init = priority;
5778 }
5779
5780 /* Set the finalization priority for DECL to PRIORITY. */
5781
5782 void
5783 decl_fini_priority_insert (tree decl, priority_type priority)
5784 {
5785 struct tree_priority_map *h;
5786
5787 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5788 h = decl_priority_info (decl);
5789 h->fini = priority;
5790 }
5791
5792 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5793
5794 static void
5795 print_debug_expr_statistics (void)
5796 {
5797 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5798 (long) htab_size (debug_expr_for_decl),
5799 (long) htab_elements (debug_expr_for_decl),
5800 htab_collisions (debug_expr_for_decl));
5801 }
5802
5803 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5804
5805 static void
5806 print_value_expr_statistics (void)
5807 {
5808 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5809 (long) htab_size (value_expr_for_decl),
5810 (long) htab_elements (value_expr_for_decl),
5811 htab_collisions (value_expr_for_decl));
5812 }
5813
5814 /* Lookup a debug expression for FROM, and return it if we find one. */
5815
5816 tree
5817 decl_debug_expr_lookup (tree from)
5818 {
5819 struct tree_decl_map *h, in;
5820 in.base.from = from;
5821
5822 h = (struct tree_decl_map *)
5823 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5824 if (h)
5825 return h->to;
5826 return NULL_TREE;
5827 }
5828
5829 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5830
5831 void
5832 decl_debug_expr_insert (tree from, tree to)
5833 {
5834 struct tree_decl_map *h;
5835 void **loc;
5836
5837 h = ggc_alloc_tree_decl_map ();
5838 h->base.from = from;
5839 h->to = to;
5840 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5841 INSERT);
5842 *(struct tree_decl_map **) loc = h;
5843 }
5844
5845 /* Lookup a value expression for FROM, and return it if we find one. */
5846
5847 tree
5848 decl_value_expr_lookup (tree from)
5849 {
5850 struct tree_decl_map *h, in;
5851 in.base.from = from;
5852
5853 h = (struct tree_decl_map *)
5854 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5855 if (h)
5856 return h->to;
5857 return NULL_TREE;
5858 }
5859
5860 /* Insert a mapping FROM->TO in the value expression hashtable. */
5861
5862 void
5863 decl_value_expr_insert (tree from, tree to)
5864 {
5865 struct tree_decl_map *h;
5866 void **loc;
5867
5868 h = ggc_alloc_tree_decl_map ();
5869 h->base.from = from;
5870 h->to = to;
5871 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
5872 INSERT);
5873 *(struct tree_decl_map **) loc = h;
5874 }
5875
5876 /* Hashing of types so that we don't make duplicates.
5877 The entry point is `type_hash_canon'. */
5878
5879 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5880 with types in the TREE_VALUE slots), by adding the hash codes
5881 of the individual types. */
5882
5883 static unsigned int
5884 type_hash_list (const_tree list, hashval_t hashcode)
5885 {
5886 const_tree tail;
5887
5888 for (tail = list; tail; tail = TREE_CHAIN (tail))
5889 if (TREE_VALUE (tail) != error_mark_node)
5890 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5891 hashcode);
5892
5893 return hashcode;
5894 }
5895
5896 /* These are the Hashtable callback functions. */
5897
5898 /* Returns true iff the types are equivalent. */
5899
5900 static int
5901 type_hash_eq (const void *va, const void *vb)
5902 {
5903 const struct type_hash *const a = (const struct type_hash *) va,
5904 *const b = (const struct type_hash *) vb;
5905
5906 /* First test the things that are the same for all types. */
5907 if (a->hash != b->hash
5908 || TREE_CODE (a->type) != TREE_CODE (b->type)
5909 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5910 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5911 TYPE_ATTRIBUTES (b->type))
5912 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5913 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5914 || (TREE_CODE (a->type) != COMPLEX_TYPE
5915 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5916 return 0;
5917
5918 switch (TREE_CODE (a->type))
5919 {
5920 case VOID_TYPE:
5921 case COMPLEX_TYPE:
5922 case POINTER_TYPE:
5923 case REFERENCE_TYPE:
5924 return 1;
5925
5926 case VECTOR_TYPE:
5927 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5928
5929 case ENUMERAL_TYPE:
5930 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5931 && !(TYPE_VALUES (a->type)
5932 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5933 && TYPE_VALUES (b->type)
5934 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5935 && type_list_equal (TYPE_VALUES (a->type),
5936 TYPE_VALUES (b->type))))
5937 return 0;
5938
5939 /* ... fall through ... */
5940
5941 case INTEGER_TYPE:
5942 case REAL_TYPE:
5943 case BOOLEAN_TYPE:
5944 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5945 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5946 TYPE_MAX_VALUE (b->type)))
5947 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5948 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5949 TYPE_MIN_VALUE (b->type))));
5950
5951 case FIXED_POINT_TYPE:
5952 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5953
5954 case OFFSET_TYPE:
5955 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5956
5957 case METHOD_TYPE:
5958 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5959 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5960 || (TYPE_ARG_TYPES (a->type)
5961 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5962 && TYPE_ARG_TYPES (b->type)
5963 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5964 && type_list_equal (TYPE_ARG_TYPES (a->type),
5965 TYPE_ARG_TYPES (b->type)))));
5966
5967 case ARRAY_TYPE:
5968 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5969
5970 case RECORD_TYPE:
5971 case UNION_TYPE:
5972 case QUAL_UNION_TYPE:
5973 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5974 || (TYPE_FIELDS (a->type)
5975 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5976 && TYPE_FIELDS (b->type)
5977 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5978 && type_list_equal (TYPE_FIELDS (a->type),
5979 TYPE_FIELDS (b->type))));
5980
5981 case FUNCTION_TYPE:
5982 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5983 || (TYPE_ARG_TYPES (a->type)
5984 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5985 && TYPE_ARG_TYPES (b->type)
5986 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5987 && type_list_equal (TYPE_ARG_TYPES (a->type),
5988 TYPE_ARG_TYPES (b->type))))
5989 break;
5990 return 0;
5991
5992 default:
5993 return 0;
5994 }
5995
5996 if (lang_hooks.types.type_hash_eq != NULL)
5997 return lang_hooks.types.type_hash_eq (a->type, b->type);
5998
5999 return 1;
6000 }
6001
6002 /* Return the cached hash value. */
6003
6004 static hashval_t
6005 type_hash_hash (const void *item)
6006 {
6007 return ((const struct type_hash *) item)->hash;
6008 }
6009
6010 /* Look in the type hash table for a type isomorphic to TYPE.
6011 If one is found, return it. Otherwise return 0. */
6012
6013 tree
6014 type_hash_lookup (hashval_t hashcode, tree type)
6015 {
6016 struct type_hash *h, in;
6017
6018 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6019 must call that routine before comparing TYPE_ALIGNs. */
6020 layout_type (type);
6021
6022 in.hash = hashcode;
6023 in.type = type;
6024
6025 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6026 hashcode);
6027 if (h)
6028 return h->type;
6029 return NULL_TREE;
6030 }
6031
6032 /* Add an entry to the type-hash-table
6033 for a type TYPE whose hash code is HASHCODE. */
6034
6035 void
6036 type_hash_add (hashval_t hashcode, tree type)
6037 {
6038 struct type_hash *h;
6039 void **loc;
6040
6041 h = ggc_alloc_type_hash ();
6042 h->hash = hashcode;
6043 h->type = type;
6044 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6045 *loc = (void *)h;
6046 }
6047
6048 /* Given TYPE, and HASHCODE its hash code, return the canonical
6049 object for an identical type if one already exists.
6050 Otherwise, return TYPE, and record it as the canonical object.
6051
6052 To use this function, first create a type of the sort you want.
6053 Then compute its hash code from the fields of the type that
6054 make it different from other similar types.
6055 Then call this function and use the value. */
6056
6057 tree
6058 type_hash_canon (unsigned int hashcode, tree type)
6059 {
6060 tree t1;
6061
6062 /* The hash table only contains main variants, so ensure that's what we're
6063 being passed. */
6064 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6065
6066 if (!lang_hooks.types.hash_types)
6067 return type;
6068
6069 /* See if the type is in the hash table already. If so, return it.
6070 Otherwise, add the type. */
6071 t1 = type_hash_lookup (hashcode, type);
6072 if (t1 != 0)
6073 {
6074 #ifdef GATHER_STATISTICS
6075 tree_node_counts[(int) t_kind]--;
6076 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
6077 #endif
6078 return t1;
6079 }
6080 else
6081 {
6082 type_hash_add (hashcode, type);
6083 return type;
6084 }
6085 }
6086
6087 /* See if the data pointed to by the type hash table is marked. We consider
6088 it marked if the type is marked or if a debug type number or symbol
6089 table entry has been made for the type. */
6090
6091 static int
6092 type_hash_marked_p (const void *p)
6093 {
6094 const_tree const type = ((const struct type_hash *) p)->type;
6095
6096 return ggc_marked_p (type);
6097 }
6098
6099 static void
6100 print_type_hash_statistics (void)
6101 {
6102 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6103 (long) htab_size (type_hash_table),
6104 (long) htab_elements (type_hash_table),
6105 htab_collisions (type_hash_table));
6106 }
6107
6108 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6109 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6110 by adding the hash codes of the individual attributes. */
6111
6112 static unsigned int
6113 attribute_hash_list (const_tree list, hashval_t hashcode)
6114 {
6115 const_tree tail;
6116
6117 for (tail = list; tail; tail = TREE_CHAIN (tail))
6118 /* ??? Do we want to add in TREE_VALUE too? */
6119 hashcode = iterative_hash_object
6120 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6121 return hashcode;
6122 }
6123
6124 /* Given two lists of attributes, return true if list l2 is
6125 equivalent to l1. */
6126
6127 int
6128 attribute_list_equal (const_tree l1, const_tree l2)
6129 {
6130 return attribute_list_contained (l1, l2)
6131 && attribute_list_contained (l2, l1);
6132 }
6133
6134 /* Given two lists of attributes, return true if list L2 is
6135 completely contained within L1. */
6136 /* ??? This would be faster if attribute names were stored in a canonicalized
6137 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6138 must be used to show these elements are equivalent (which they are). */
6139 /* ??? It's not clear that attributes with arguments will always be handled
6140 correctly. */
6141
6142 int
6143 attribute_list_contained (const_tree l1, const_tree l2)
6144 {
6145 const_tree t1, t2;
6146
6147 /* First check the obvious, maybe the lists are identical. */
6148 if (l1 == l2)
6149 return 1;
6150
6151 /* Maybe the lists are similar. */
6152 for (t1 = l1, t2 = l2;
6153 t1 != 0 && t2 != 0
6154 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6155 && TREE_VALUE (t1) == TREE_VALUE (t2);
6156 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6157
6158 /* Maybe the lists are equal. */
6159 if (t1 == 0 && t2 == 0)
6160 return 1;
6161
6162 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6163 {
6164 const_tree attr;
6165 /* This CONST_CAST is okay because lookup_attribute does not
6166 modify its argument and the return value is assigned to a
6167 const_tree. */
6168 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6169 CONST_CAST_TREE(l1));
6170 attr != NULL_TREE;
6171 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6172 TREE_CHAIN (attr)))
6173 {
6174 if (TREE_VALUE (t2) != NULL
6175 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6176 && TREE_VALUE (attr) != NULL
6177 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6178 {
6179 if (simple_cst_list_equal (TREE_VALUE (t2),
6180 TREE_VALUE (attr)) == 1)
6181 break;
6182 }
6183 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6184 break;
6185 }
6186
6187 if (attr == 0)
6188 return 0;
6189 }
6190
6191 return 1;
6192 }
6193
6194 /* Given two lists of types
6195 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6196 return 1 if the lists contain the same types in the same order.
6197 Also, the TREE_PURPOSEs must match. */
6198
6199 int
6200 type_list_equal (const_tree l1, const_tree l2)
6201 {
6202 const_tree t1, t2;
6203
6204 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6205 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6206 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6207 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6208 && (TREE_TYPE (TREE_PURPOSE (t1))
6209 == TREE_TYPE (TREE_PURPOSE (t2))))))
6210 return 0;
6211
6212 return t1 == t2;
6213 }
6214
6215 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6216 given by TYPE. If the argument list accepts variable arguments,
6217 then this function counts only the ordinary arguments. */
6218
6219 int
6220 type_num_arguments (const_tree type)
6221 {
6222 int i = 0;
6223 tree t;
6224
6225 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6226 /* If the function does not take a variable number of arguments,
6227 the last element in the list will have type `void'. */
6228 if (VOID_TYPE_P (TREE_VALUE (t)))
6229 break;
6230 else
6231 ++i;
6232
6233 return i;
6234 }
6235
6236 /* Nonzero if integer constants T1 and T2
6237 represent the same constant value. */
6238
6239 int
6240 tree_int_cst_equal (const_tree t1, const_tree t2)
6241 {
6242 if (t1 == t2)
6243 return 1;
6244
6245 if (t1 == 0 || t2 == 0)
6246 return 0;
6247
6248 if (TREE_CODE (t1) == INTEGER_CST
6249 && TREE_CODE (t2) == INTEGER_CST
6250 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6251 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6252 return 1;
6253
6254 return 0;
6255 }
6256
6257 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6258 The precise way of comparison depends on their data type. */
6259
6260 int
6261 tree_int_cst_lt (const_tree t1, const_tree t2)
6262 {
6263 if (t1 == t2)
6264 return 0;
6265
6266 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6267 {
6268 int t1_sgn = tree_int_cst_sgn (t1);
6269 int t2_sgn = tree_int_cst_sgn (t2);
6270
6271 if (t1_sgn < t2_sgn)
6272 return 1;
6273 else if (t1_sgn > t2_sgn)
6274 return 0;
6275 /* Otherwise, both are non-negative, so we compare them as
6276 unsigned just in case one of them would overflow a signed
6277 type. */
6278 }
6279 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6280 return INT_CST_LT (t1, t2);
6281
6282 return INT_CST_LT_UNSIGNED (t1, t2);
6283 }
6284
6285 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6286
6287 int
6288 tree_int_cst_compare (const_tree t1, const_tree t2)
6289 {
6290 if (tree_int_cst_lt (t1, t2))
6291 return -1;
6292 else if (tree_int_cst_lt (t2, t1))
6293 return 1;
6294 else
6295 return 0;
6296 }
6297
6298 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6299 the host. If POS is zero, the value can be represented in a single
6300 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6301 be represented in a single unsigned HOST_WIDE_INT. */
6302
6303 int
6304 host_integerp (const_tree t, int pos)
6305 {
6306 if (t == NULL_TREE)
6307 return 0;
6308
6309 return (TREE_CODE (t) == INTEGER_CST
6310 && ((TREE_INT_CST_HIGH (t) == 0
6311 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6312 || (! pos && TREE_INT_CST_HIGH (t) == -1
6313 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6314 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6315 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6316 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6317 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6318 }
6319
6320 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6321 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6322 be non-negative. We must be able to satisfy the above conditions. */
6323
6324 HOST_WIDE_INT
6325 tree_low_cst (const_tree t, int pos)
6326 {
6327 gcc_assert (host_integerp (t, pos));
6328 return TREE_INT_CST_LOW (t);
6329 }
6330
6331 /* Return the most significant bit of the integer constant T. */
6332
6333 int
6334 tree_int_cst_msb (const_tree t)
6335 {
6336 int prec;
6337 HOST_WIDE_INT h;
6338 unsigned HOST_WIDE_INT l;
6339
6340 /* Note that using TYPE_PRECISION here is wrong. We care about the
6341 actual bits, not the (arbitrary) range of the type. */
6342 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6343 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6344 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6345 return (l & 1) == 1;
6346 }
6347
6348 /* Return an indication of the sign of the integer constant T.
6349 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6350 Note that -1 will never be returned if T's type is unsigned. */
6351
6352 int
6353 tree_int_cst_sgn (const_tree t)
6354 {
6355 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6356 return 0;
6357 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6358 return 1;
6359 else if (TREE_INT_CST_HIGH (t) < 0)
6360 return -1;
6361 else
6362 return 1;
6363 }
6364
6365 /* Return the minimum number of bits needed to represent VALUE in a
6366 signed or unsigned type, UNSIGNEDP says which. */
6367
6368 unsigned int
6369 tree_int_cst_min_precision (tree value, bool unsignedp)
6370 {
6371 int log;
6372
6373 /* If the value is negative, compute its negative minus 1. The latter
6374 adjustment is because the absolute value of the largest negative value
6375 is one larger than the largest positive value. This is equivalent to
6376 a bit-wise negation, so use that operation instead. */
6377
6378 if (tree_int_cst_sgn (value) < 0)
6379 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6380
6381 /* Return the number of bits needed, taking into account the fact
6382 that we need one more bit for a signed than unsigned type. */
6383
6384 if (integer_zerop (value))
6385 log = 0;
6386 else
6387 log = tree_floor_log2 (value);
6388
6389 return log + 1 + !unsignedp;
6390 }
6391
6392 /* Compare two constructor-element-type constants. Return 1 if the lists
6393 are known to be equal; otherwise return 0. */
6394
6395 int
6396 simple_cst_list_equal (const_tree l1, const_tree l2)
6397 {
6398 while (l1 != NULL_TREE && l2 != NULL_TREE)
6399 {
6400 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6401 return 0;
6402
6403 l1 = TREE_CHAIN (l1);
6404 l2 = TREE_CHAIN (l2);
6405 }
6406
6407 return l1 == l2;
6408 }
6409
6410 /* Return truthvalue of whether T1 is the same tree structure as T2.
6411 Return 1 if they are the same.
6412 Return 0 if they are understandably different.
6413 Return -1 if either contains tree structure not understood by
6414 this function. */
6415
6416 int
6417 simple_cst_equal (const_tree t1, const_tree t2)
6418 {
6419 enum tree_code code1, code2;
6420 int cmp;
6421 int i;
6422
6423 if (t1 == t2)
6424 return 1;
6425 if (t1 == 0 || t2 == 0)
6426 return 0;
6427
6428 code1 = TREE_CODE (t1);
6429 code2 = TREE_CODE (t2);
6430
6431 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6432 {
6433 if (CONVERT_EXPR_CODE_P (code2)
6434 || code2 == NON_LVALUE_EXPR)
6435 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6436 else
6437 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6438 }
6439
6440 else if (CONVERT_EXPR_CODE_P (code2)
6441 || code2 == NON_LVALUE_EXPR)
6442 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6443
6444 if (code1 != code2)
6445 return 0;
6446
6447 switch (code1)
6448 {
6449 case INTEGER_CST:
6450 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6451 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6452
6453 case REAL_CST:
6454 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6455
6456 case FIXED_CST:
6457 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6458
6459 case STRING_CST:
6460 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6461 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6462 TREE_STRING_LENGTH (t1)));
6463
6464 case CONSTRUCTOR:
6465 {
6466 unsigned HOST_WIDE_INT idx;
6467 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6468 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6469
6470 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6471 return false;
6472
6473 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6474 /* ??? Should we handle also fields here? */
6475 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6476 VEC_index (constructor_elt, v2, idx)->value))
6477 return false;
6478 return true;
6479 }
6480
6481 case SAVE_EXPR:
6482 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6483
6484 case CALL_EXPR:
6485 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6486 if (cmp <= 0)
6487 return cmp;
6488 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6489 return 0;
6490 {
6491 const_tree arg1, arg2;
6492 const_call_expr_arg_iterator iter1, iter2;
6493 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6494 arg2 = first_const_call_expr_arg (t2, &iter2);
6495 arg1 && arg2;
6496 arg1 = next_const_call_expr_arg (&iter1),
6497 arg2 = next_const_call_expr_arg (&iter2))
6498 {
6499 cmp = simple_cst_equal (arg1, arg2);
6500 if (cmp <= 0)
6501 return cmp;
6502 }
6503 return arg1 == arg2;
6504 }
6505
6506 case TARGET_EXPR:
6507 /* Special case: if either target is an unallocated VAR_DECL,
6508 it means that it's going to be unified with whatever the
6509 TARGET_EXPR is really supposed to initialize, so treat it
6510 as being equivalent to anything. */
6511 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6512 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6513 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6514 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6515 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6516 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6517 cmp = 1;
6518 else
6519 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6520
6521 if (cmp <= 0)
6522 return cmp;
6523
6524 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6525
6526 case WITH_CLEANUP_EXPR:
6527 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6528 if (cmp <= 0)
6529 return cmp;
6530
6531 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6532
6533 case COMPONENT_REF:
6534 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6535 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6536
6537 return 0;
6538
6539 case VAR_DECL:
6540 case PARM_DECL:
6541 case CONST_DECL:
6542 case FUNCTION_DECL:
6543 return 0;
6544
6545 default:
6546 break;
6547 }
6548
6549 /* This general rule works for most tree codes. All exceptions should be
6550 handled above. If this is a language-specific tree code, we can't
6551 trust what might be in the operand, so say we don't know
6552 the situation. */
6553 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6554 return -1;
6555
6556 switch (TREE_CODE_CLASS (code1))
6557 {
6558 case tcc_unary:
6559 case tcc_binary:
6560 case tcc_comparison:
6561 case tcc_expression:
6562 case tcc_reference:
6563 case tcc_statement:
6564 cmp = 1;
6565 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6566 {
6567 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6568 if (cmp <= 0)
6569 return cmp;
6570 }
6571
6572 return cmp;
6573
6574 default:
6575 return -1;
6576 }
6577 }
6578
6579 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6580 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6581 than U, respectively. */
6582
6583 int
6584 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6585 {
6586 if (tree_int_cst_sgn (t) < 0)
6587 return -1;
6588 else if (TREE_INT_CST_HIGH (t) != 0)
6589 return 1;
6590 else if (TREE_INT_CST_LOW (t) == u)
6591 return 0;
6592 else if (TREE_INT_CST_LOW (t) < u)
6593 return -1;
6594 else
6595 return 1;
6596 }
6597
6598 /* Return true if CODE represents an associative tree code. Otherwise
6599 return false. */
6600 bool
6601 associative_tree_code (enum tree_code code)
6602 {
6603 switch (code)
6604 {
6605 case BIT_IOR_EXPR:
6606 case BIT_AND_EXPR:
6607 case BIT_XOR_EXPR:
6608 case PLUS_EXPR:
6609 case MULT_EXPR:
6610 case MIN_EXPR:
6611 case MAX_EXPR:
6612 return true;
6613
6614 default:
6615 break;
6616 }
6617 return false;
6618 }
6619
6620 /* Return true if CODE represents a commutative tree code. Otherwise
6621 return false. */
6622 bool
6623 commutative_tree_code (enum tree_code code)
6624 {
6625 switch (code)
6626 {
6627 case PLUS_EXPR:
6628 case MULT_EXPR:
6629 case MIN_EXPR:
6630 case MAX_EXPR:
6631 case BIT_IOR_EXPR:
6632 case BIT_XOR_EXPR:
6633 case BIT_AND_EXPR:
6634 case NE_EXPR:
6635 case EQ_EXPR:
6636 case UNORDERED_EXPR:
6637 case ORDERED_EXPR:
6638 case UNEQ_EXPR:
6639 case LTGT_EXPR:
6640 case TRUTH_AND_EXPR:
6641 case TRUTH_XOR_EXPR:
6642 case TRUTH_OR_EXPR:
6643 return true;
6644
6645 default:
6646 break;
6647 }
6648 return false;
6649 }
6650
6651 /* Return true if CODE represents a ternary tree code for which the
6652 first two operands are commutative. Otherwise return false. */
6653 bool
6654 commutative_ternary_tree_code (enum tree_code code)
6655 {
6656 switch (code)
6657 {
6658 case WIDEN_MULT_PLUS_EXPR:
6659 case WIDEN_MULT_MINUS_EXPR:
6660 return true;
6661
6662 default:
6663 break;
6664 }
6665 return false;
6666 }
6667
6668 /* Generate a hash value for an expression. This can be used iteratively
6669 by passing a previous result as the VAL argument.
6670
6671 This function is intended to produce the same hash for expressions which
6672 would compare equal using operand_equal_p. */
6673
6674 hashval_t
6675 iterative_hash_expr (const_tree t, hashval_t val)
6676 {
6677 int i;
6678 enum tree_code code;
6679 char tclass;
6680
6681 if (t == NULL_TREE)
6682 return iterative_hash_hashval_t (0, val);
6683
6684 code = TREE_CODE (t);
6685
6686 switch (code)
6687 {
6688 /* Alas, constants aren't shared, so we can't rely on pointer
6689 identity. */
6690 case INTEGER_CST:
6691 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6692 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6693 case REAL_CST:
6694 {
6695 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6696
6697 return iterative_hash_hashval_t (val2, val);
6698 }
6699 case FIXED_CST:
6700 {
6701 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6702
6703 return iterative_hash_hashval_t (val2, val);
6704 }
6705 case STRING_CST:
6706 return iterative_hash (TREE_STRING_POINTER (t),
6707 TREE_STRING_LENGTH (t), val);
6708 case COMPLEX_CST:
6709 val = iterative_hash_expr (TREE_REALPART (t), val);
6710 return iterative_hash_expr (TREE_IMAGPART (t), val);
6711 case VECTOR_CST:
6712 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6713 case SSA_NAME:
6714 /* We can just compare by pointer. */
6715 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6716 case PLACEHOLDER_EXPR:
6717 /* The node itself doesn't matter. */
6718 return val;
6719 case TREE_LIST:
6720 /* A list of expressions, for a CALL_EXPR or as the elements of a
6721 VECTOR_CST. */
6722 for (; t; t = TREE_CHAIN (t))
6723 val = iterative_hash_expr (TREE_VALUE (t), val);
6724 return val;
6725 case CONSTRUCTOR:
6726 {
6727 unsigned HOST_WIDE_INT idx;
6728 tree field, value;
6729 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6730 {
6731 val = iterative_hash_expr (field, val);
6732 val = iterative_hash_expr (value, val);
6733 }
6734 return val;
6735 }
6736 case FUNCTION_DECL:
6737 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6738 Otherwise nodes that compare equal according to operand_equal_p might
6739 get different hash codes. However, don't do this for machine specific
6740 or front end builtins, since the function code is overloaded in those
6741 cases. */
6742 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6743 && built_in_decls[DECL_FUNCTION_CODE (t)])
6744 {
6745 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6746 code = TREE_CODE (t);
6747 }
6748 /* FALL THROUGH */
6749 default:
6750 tclass = TREE_CODE_CLASS (code);
6751
6752 if (tclass == tcc_declaration)
6753 {
6754 /* DECL's have a unique ID */
6755 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6756 }
6757 else
6758 {
6759 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6760
6761 val = iterative_hash_object (code, val);
6762
6763 /* Don't hash the type, that can lead to having nodes which
6764 compare equal according to operand_equal_p, but which
6765 have different hash codes. */
6766 if (CONVERT_EXPR_CODE_P (code)
6767 || code == NON_LVALUE_EXPR)
6768 {
6769 /* Make sure to include signness in the hash computation. */
6770 val += TYPE_UNSIGNED (TREE_TYPE (t));
6771 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6772 }
6773
6774 else if (commutative_tree_code (code))
6775 {
6776 /* It's a commutative expression. We want to hash it the same
6777 however it appears. We do this by first hashing both operands
6778 and then rehashing based on the order of their independent
6779 hashes. */
6780 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6781 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6782 hashval_t t;
6783
6784 if (one > two)
6785 t = one, one = two, two = t;
6786
6787 val = iterative_hash_hashval_t (one, val);
6788 val = iterative_hash_hashval_t (two, val);
6789 }
6790 else
6791 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6792 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6793 }
6794 return val;
6795 break;
6796 }
6797 }
6798
6799 /* Generate a hash value for a pair of expressions. This can be used
6800 iteratively by passing a previous result as the VAL argument.
6801
6802 The same hash value is always returned for a given pair of expressions,
6803 regardless of the order in which they are presented. This is useful in
6804 hashing the operands of commutative functions. */
6805
6806 hashval_t
6807 iterative_hash_exprs_commutative (const_tree t1,
6808 const_tree t2, hashval_t val)
6809 {
6810 hashval_t one = iterative_hash_expr (t1, 0);
6811 hashval_t two = iterative_hash_expr (t2, 0);
6812 hashval_t t;
6813
6814 if (one > two)
6815 t = one, one = two, two = t;
6816 val = iterative_hash_hashval_t (one, val);
6817 val = iterative_hash_hashval_t (two, val);
6818
6819 return val;
6820 }
6821 \f
6822 /* Constructors for pointer, array and function types.
6823 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6824 constructed by language-dependent code, not here.) */
6825
6826 /* Construct, lay out and return the type of pointers to TO_TYPE with
6827 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6828 reference all of memory. If such a type has already been
6829 constructed, reuse it. */
6830
6831 tree
6832 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6833 bool can_alias_all)
6834 {
6835 tree t;
6836
6837 if (to_type == error_mark_node)
6838 return error_mark_node;
6839
6840 /* If the pointed-to type has the may_alias attribute set, force
6841 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6842 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6843 can_alias_all = true;
6844
6845 /* In some cases, languages will have things that aren't a POINTER_TYPE
6846 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6847 In that case, return that type without regard to the rest of our
6848 operands.
6849
6850 ??? This is a kludge, but consistent with the way this function has
6851 always operated and there doesn't seem to be a good way to avoid this
6852 at the moment. */
6853 if (TYPE_POINTER_TO (to_type) != 0
6854 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6855 return TYPE_POINTER_TO (to_type);
6856
6857 /* First, if we already have a type for pointers to TO_TYPE and it's
6858 the proper mode, use it. */
6859 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6860 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6861 return t;
6862
6863 t = make_node (POINTER_TYPE);
6864
6865 TREE_TYPE (t) = to_type;
6866 SET_TYPE_MODE (t, mode);
6867 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6868 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6869 TYPE_POINTER_TO (to_type) = t;
6870
6871 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6872 SET_TYPE_STRUCTURAL_EQUALITY (t);
6873 else if (TYPE_CANONICAL (to_type) != to_type)
6874 TYPE_CANONICAL (t)
6875 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6876 mode, can_alias_all);
6877
6878 /* Lay out the type. This function has many callers that are concerned
6879 with expression-construction, and this simplifies them all. */
6880 layout_type (t);
6881
6882 return t;
6883 }
6884
6885 /* By default build pointers in ptr_mode. */
6886
6887 tree
6888 build_pointer_type (tree to_type)
6889 {
6890 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6891 : TYPE_ADDR_SPACE (to_type);
6892 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6893 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6894 }
6895
6896 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6897
6898 tree
6899 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6900 bool can_alias_all)
6901 {
6902 tree t;
6903
6904 if (to_type == error_mark_node)
6905 return error_mark_node;
6906
6907 /* If the pointed-to type has the may_alias attribute set, force
6908 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6909 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6910 can_alias_all = true;
6911
6912 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6913 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6914 In that case, return that type without regard to the rest of our
6915 operands.
6916
6917 ??? This is a kludge, but consistent with the way this function has
6918 always operated and there doesn't seem to be a good way to avoid this
6919 at the moment. */
6920 if (TYPE_REFERENCE_TO (to_type) != 0
6921 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6922 return TYPE_REFERENCE_TO (to_type);
6923
6924 /* First, if we already have a type for pointers to TO_TYPE and it's
6925 the proper mode, use it. */
6926 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6927 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6928 return t;
6929
6930 t = make_node (REFERENCE_TYPE);
6931
6932 TREE_TYPE (t) = to_type;
6933 SET_TYPE_MODE (t, mode);
6934 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6935 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6936 TYPE_REFERENCE_TO (to_type) = t;
6937
6938 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6939 SET_TYPE_STRUCTURAL_EQUALITY (t);
6940 else if (TYPE_CANONICAL (to_type) != to_type)
6941 TYPE_CANONICAL (t)
6942 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6943 mode, can_alias_all);
6944
6945 layout_type (t);
6946
6947 return t;
6948 }
6949
6950
6951 /* Build the node for the type of references-to-TO_TYPE by default
6952 in ptr_mode. */
6953
6954 tree
6955 build_reference_type (tree to_type)
6956 {
6957 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6958 : TYPE_ADDR_SPACE (to_type);
6959 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6960 return build_reference_type_for_mode (to_type, pointer_mode, false);
6961 }
6962
6963 /* Build a type that is compatible with t but has no cv quals anywhere
6964 in its type, thus
6965
6966 const char *const *const * -> char ***. */
6967
6968 tree
6969 build_type_no_quals (tree t)
6970 {
6971 switch (TREE_CODE (t))
6972 {
6973 case POINTER_TYPE:
6974 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6975 TYPE_MODE (t),
6976 TYPE_REF_CAN_ALIAS_ALL (t));
6977 case REFERENCE_TYPE:
6978 return
6979 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6980 TYPE_MODE (t),
6981 TYPE_REF_CAN_ALIAS_ALL (t));
6982 default:
6983 return TYPE_MAIN_VARIANT (t);
6984 }
6985 }
6986
6987 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
6988 MAXVAL should be the maximum value in the domain
6989 (one less than the length of the array).
6990
6991 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
6992 We don't enforce this limit, that is up to caller (e.g. language front end).
6993 The limit exists because the result is a signed type and we don't handle
6994 sizes that use more than one HOST_WIDE_INT. */
6995
6996 tree
6997 build_index_type (tree maxval)
6998 {
6999 tree itype = make_node (INTEGER_TYPE);
7000
7001 TREE_TYPE (itype) = sizetype;
7002 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
7003 TYPE_MIN_VALUE (itype) = size_zero_node;
7004 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
7005 SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
7006 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
7007 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
7008 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
7009 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
7010
7011 if (host_integerp (maxval, 1))
7012 return type_hash_canon (tree_low_cst (maxval, 1), itype);
7013 else
7014 {
7015 /* Since we cannot hash this type, we need to compare it using
7016 structural equality checks. */
7017 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7018 return itype;
7019 }
7020 }
7021
7022 #define MAX_INT_CACHED_PREC \
7023 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7024 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7025
7026 /* Builds a signed or unsigned integer type of precision PRECISION.
7027 Used for C bitfields whose precision does not match that of
7028 built-in target types. */
7029 tree
7030 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7031 int unsignedp)
7032 {
7033 tree itype, ret;
7034
7035 if (unsignedp)
7036 unsignedp = MAX_INT_CACHED_PREC + 1;
7037
7038 if (precision <= MAX_INT_CACHED_PREC)
7039 {
7040 itype = nonstandard_integer_type_cache[precision + unsignedp];
7041 if (itype)
7042 return itype;
7043 }
7044
7045 itype = make_node (INTEGER_TYPE);
7046 TYPE_PRECISION (itype) = precision;
7047
7048 if (unsignedp)
7049 fixup_unsigned_type (itype);
7050 else
7051 fixup_signed_type (itype);
7052
7053 ret = itype;
7054 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7055 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7056 if (precision <= MAX_INT_CACHED_PREC && lang_hooks.types.hash_types)
7057 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7058
7059 return ret;
7060 }
7061
7062 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
7063 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
7064 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
7065
7066 tree
7067 build_range_type (tree type, tree lowval, tree highval)
7068 {
7069 tree itype = make_node (INTEGER_TYPE);
7070
7071 TREE_TYPE (itype) = type;
7072 if (type == NULL_TREE)
7073 type = sizetype;
7074
7075 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7076 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7077
7078 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7079 SET_TYPE_MODE (itype, TYPE_MODE (type));
7080 TYPE_SIZE (itype) = TYPE_SIZE (type);
7081 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7082 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7083 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7084
7085 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
7086 return type_hash_canon (tree_low_cst (highval, 0)
7087 - tree_low_cst (lowval, 0),
7088 itype);
7089 else
7090 return itype;
7091 }
7092
7093 /* Return true if the debug information for TYPE, a subtype, should be emitted
7094 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7095 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7096 debug info and doesn't reflect the source code. */
7097
7098 bool
7099 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7100 {
7101 tree base_type = TREE_TYPE (type), low, high;
7102
7103 /* Subrange types have a base type which is an integral type. */
7104 if (!INTEGRAL_TYPE_P (base_type))
7105 return false;
7106
7107 /* Get the real bounds of the subtype. */
7108 if (lang_hooks.types.get_subrange_bounds)
7109 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7110 else
7111 {
7112 low = TYPE_MIN_VALUE (type);
7113 high = TYPE_MAX_VALUE (type);
7114 }
7115
7116 /* If the type and its base type have the same representation and the same
7117 name, then the type is not a subrange but a copy of the base type. */
7118 if ((TREE_CODE (base_type) == INTEGER_TYPE
7119 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7120 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7121 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7122 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7123 {
7124 tree type_name = TYPE_NAME (type);
7125 tree base_type_name = TYPE_NAME (base_type);
7126
7127 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7128 type_name = DECL_NAME (type_name);
7129
7130 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7131 base_type_name = DECL_NAME (base_type_name);
7132
7133 if (type_name == base_type_name)
7134 return false;
7135 }
7136
7137 if (lowval)
7138 *lowval = low;
7139 if (highval)
7140 *highval = high;
7141 return true;
7142 }
7143
7144 /* Just like build_index_type, but takes lowval and highval instead
7145 of just highval (maxval). */
7146
7147 tree
7148 build_index_2_type (tree lowval, tree highval)
7149 {
7150 return build_range_type (sizetype, lowval, highval);
7151 }
7152
7153 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7154 and number of elements specified by the range of values of INDEX_TYPE.
7155 If such a type has already been constructed, reuse it. */
7156
7157 tree
7158 build_array_type (tree elt_type, tree index_type)
7159 {
7160 tree t;
7161 hashval_t hashcode = 0;
7162
7163 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7164 {
7165 error ("arrays of functions are not meaningful");
7166 elt_type = integer_type_node;
7167 }
7168
7169 t = make_node (ARRAY_TYPE);
7170 TREE_TYPE (t) = elt_type;
7171 TYPE_DOMAIN (t) = index_type;
7172 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7173 layout_type (t);
7174
7175 /* If the element type is incomplete at this point we get marked for
7176 structural equality. Do not record these types in the canonical
7177 type hashtable. */
7178 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7179 return t;
7180
7181 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
7182 if (index_type)
7183 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7184 t = type_hash_canon (hashcode, t);
7185
7186 if (TYPE_CANONICAL (t) == t)
7187 {
7188 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7189 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7190 SET_TYPE_STRUCTURAL_EQUALITY (t);
7191 else if (TYPE_CANONICAL (elt_type) != elt_type
7192 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7193 TYPE_CANONICAL (t)
7194 = build_array_type (TYPE_CANONICAL (elt_type),
7195 index_type ? TYPE_CANONICAL (index_type) : NULL);
7196 }
7197
7198 return t;
7199 }
7200
7201 /* Recursively examines the array elements of TYPE, until a non-array
7202 element type is found. */
7203
7204 tree
7205 strip_array_types (tree type)
7206 {
7207 while (TREE_CODE (type) == ARRAY_TYPE)
7208 type = TREE_TYPE (type);
7209
7210 return type;
7211 }
7212
7213 /* Computes the canonical argument types from the argument type list
7214 ARGTYPES.
7215
7216 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7217 on entry to this function, or if any of the ARGTYPES are
7218 structural.
7219
7220 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7221 true on entry to this function, or if any of the ARGTYPES are
7222 non-canonical.
7223
7224 Returns a canonical argument list, which may be ARGTYPES when the
7225 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7226 true) or would not differ from ARGTYPES. */
7227
7228 static tree
7229 maybe_canonicalize_argtypes(tree argtypes,
7230 bool *any_structural_p,
7231 bool *any_noncanonical_p)
7232 {
7233 tree arg;
7234 bool any_noncanonical_argtypes_p = false;
7235
7236 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7237 {
7238 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7239 /* Fail gracefully by stating that the type is structural. */
7240 *any_structural_p = true;
7241 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7242 *any_structural_p = true;
7243 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7244 || TREE_PURPOSE (arg))
7245 /* If the argument has a default argument, we consider it
7246 non-canonical even though the type itself is canonical.
7247 That way, different variants of function and method types
7248 with default arguments will all point to the variant with
7249 no defaults as their canonical type. */
7250 any_noncanonical_argtypes_p = true;
7251 }
7252
7253 if (*any_structural_p)
7254 return argtypes;
7255
7256 if (any_noncanonical_argtypes_p)
7257 {
7258 /* Build the canonical list of argument types. */
7259 tree canon_argtypes = NULL_TREE;
7260 bool is_void = false;
7261
7262 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7263 {
7264 if (arg == void_list_node)
7265 is_void = true;
7266 else
7267 canon_argtypes = tree_cons (NULL_TREE,
7268 TYPE_CANONICAL (TREE_VALUE (arg)),
7269 canon_argtypes);
7270 }
7271
7272 canon_argtypes = nreverse (canon_argtypes);
7273 if (is_void)
7274 canon_argtypes = chainon (canon_argtypes, void_list_node);
7275
7276 /* There is a non-canonical type. */
7277 *any_noncanonical_p = true;
7278 return canon_argtypes;
7279 }
7280
7281 /* The canonical argument types are the same as ARGTYPES. */
7282 return argtypes;
7283 }
7284
7285 /* Construct, lay out and return
7286 the type of functions returning type VALUE_TYPE
7287 given arguments of types ARG_TYPES.
7288 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7289 are data type nodes for the arguments of the function.
7290 If such a type has already been constructed, reuse it. */
7291
7292 tree
7293 build_function_type (tree value_type, tree arg_types)
7294 {
7295 tree t;
7296 hashval_t hashcode = 0;
7297 bool any_structural_p, any_noncanonical_p;
7298 tree canon_argtypes;
7299
7300 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7301 {
7302 error ("function return type cannot be function");
7303 value_type = integer_type_node;
7304 }
7305
7306 /* Make a node of the sort we want. */
7307 t = make_node (FUNCTION_TYPE);
7308 TREE_TYPE (t) = value_type;
7309 TYPE_ARG_TYPES (t) = arg_types;
7310
7311 /* If we already have such a type, use the old one. */
7312 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7313 hashcode = type_hash_list (arg_types, hashcode);
7314 t = type_hash_canon (hashcode, t);
7315
7316 /* Set up the canonical type. */
7317 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7318 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7319 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7320 &any_structural_p,
7321 &any_noncanonical_p);
7322 if (any_structural_p)
7323 SET_TYPE_STRUCTURAL_EQUALITY (t);
7324 else if (any_noncanonical_p)
7325 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7326 canon_argtypes);
7327
7328 if (!COMPLETE_TYPE_P (t))
7329 layout_type (t);
7330 return t;
7331 }
7332
7333 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7334
7335 tree
7336 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7337 {
7338 tree new_type = NULL;
7339 tree args, new_args = NULL, t;
7340 tree new_reversed;
7341 int i = 0;
7342
7343 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7344 args = TREE_CHAIN (args), i++)
7345 if (!bitmap_bit_p (args_to_skip, i))
7346 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7347
7348 new_reversed = nreverse (new_args);
7349 if (args)
7350 {
7351 if (new_reversed)
7352 TREE_CHAIN (new_args) = void_list_node;
7353 else
7354 new_reversed = void_list_node;
7355 }
7356
7357 /* Use copy_node to preserve as much as possible from original type
7358 (debug info, attribute lists etc.)
7359 Exception is METHOD_TYPEs must have THIS argument.
7360 When we are asked to remove it, we need to build new FUNCTION_TYPE
7361 instead. */
7362 if (TREE_CODE (orig_type) != METHOD_TYPE
7363 || !bitmap_bit_p (args_to_skip, 0))
7364 {
7365 new_type = build_distinct_type_copy (orig_type);
7366 TYPE_ARG_TYPES (new_type) = new_reversed;
7367 }
7368 else
7369 {
7370 new_type
7371 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7372 new_reversed));
7373 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7374 }
7375
7376 /* This is a new type, not a copy of an old type. Need to reassociate
7377 variants. We can handle everything except the main variant lazily. */
7378 t = TYPE_MAIN_VARIANT (orig_type);
7379 if (orig_type != t)
7380 {
7381 TYPE_MAIN_VARIANT (new_type) = t;
7382 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7383 TYPE_NEXT_VARIANT (t) = new_type;
7384 }
7385 else
7386 {
7387 TYPE_MAIN_VARIANT (new_type) = new_type;
7388 TYPE_NEXT_VARIANT (new_type) = NULL;
7389 }
7390 return new_type;
7391 }
7392
7393 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7394
7395 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7396 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7397 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7398
7399 tree
7400 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7401 {
7402 tree new_decl = copy_node (orig_decl);
7403 tree new_type;
7404
7405 new_type = TREE_TYPE (orig_decl);
7406 if (prototype_p (new_type))
7407 new_type = build_function_type_skip_args (new_type, args_to_skip);
7408 TREE_TYPE (new_decl) = new_type;
7409
7410 /* For declarations setting DECL_VINDEX (i.e. methods)
7411 we expect first argument to be THIS pointer. */
7412 if (bitmap_bit_p (args_to_skip, 0))
7413 DECL_VINDEX (new_decl) = NULL_TREE;
7414
7415 /* When signature changes, we need to clear builtin info. */
7416 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7417 {
7418 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7419 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7420 }
7421 return new_decl;
7422 }
7423
7424 /* Build a function type. The RETURN_TYPE is the type returned by the
7425 function. If VAARGS is set, no void_type_node is appended to the
7426 the list. ARGP must be always be terminated be a NULL_TREE. */
7427
7428 static tree
7429 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7430 {
7431 tree t, args, last;
7432
7433 t = va_arg (argp, tree);
7434 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7435 args = tree_cons (NULL_TREE, t, args);
7436
7437 if (vaargs)
7438 {
7439 last = args;
7440 if (args != NULL_TREE)
7441 args = nreverse (args);
7442 gcc_assert (last != void_list_node);
7443 }
7444 else if (args == NULL_TREE)
7445 args = void_list_node;
7446 else
7447 {
7448 last = args;
7449 args = nreverse (args);
7450 TREE_CHAIN (last) = void_list_node;
7451 }
7452 args = build_function_type (return_type, args);
7453
7454 return args;
7455 }
7456
7457 /* Build a function type. The RETURN_TYPE is the type returned by the
7458 function. If additional arguments are provided, they are
7459 additional argument types. The list of argument types must always
7460 be terminated by NULL_TREE. */
7461
7462 tree
7463 build_function_type_list (tree return_type, ...)
7464 {
7465 tree args;
7466 va_list p;
7467
7468 va_start (p, return_type);
7469 args = build_function_type_list_1 (false, return_type, p);
7470 va_end (p);
7471 return args;
7472 }
7473
7474 /* Build a variable argument function type. The RETURN_TYPE is the
7475 type returned by the function. If additional arguments are provided,
7476 they are additional argument types. The list of argument types must
7477 always be terminated by NULL_TREE. */
7478
7479 tree
7480 build_varargs_function_type_list (tree return_type, ...)
7481 {
7482 tree args;
7483 va_list p;
7484
7485 va_start (p, return_type);
7486 args = build_function_type_list_1 (true, return_type, p);
7487 va_end (p);
7488
7489 return args;
7490 }
7491
7492 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7493 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7494 for the method. An implicit additional parameter (of type
7495 pointer-to-BASETYPE) is added to the ARGTYPES. */
7496
7497 tree
7498 build_method_type_directly (tree basetype,
7499 tree rettype,
7500 tree argtypes)
7501 {
7502 tree t;
7503 tree ptype;
7504 int hashcode = 0;
7505 bool any_structural_p, any_noncanonical_p;
7506 tree canon_argtypes;
7507
7508 /* Make a node of the sort we want. */
7509 t = make_node (METHOD_TYPE);
7510
7511 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7512 TREE_TYPE (t) = rettype;
7513 ptype = build_pointer_type (basetype);
7514
7515 /* The actual arglist for this function includes a "hidden" argument
7516 which is "this". Put it into the list of argument types. */
7517 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7518 TYPE_ARG_TYPES (t) = argtypes;
7519
7520 /* If we already have such a type, use the old one. */
7521 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7522 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7523 hashcode = type_hash_list (argtypes, hashcode);
7524 t = type_hash_canon (hashcode, t);
7525
7526 /* Set up the canonical type. */
7527 any_structural_p
7528 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7529 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7530 any_noncanonical_p
7531 = (TYPE_CANONICAL (basetype) != basetype
7532 || TYPE_CANONICAL (rettype) != rettype);
7533 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7534 &any_structural_p,
7535 &any_noncanonical_p);
7536 if (any_structural_p)
7537 SET_TYPE_STRUCTURAL_EQUALITY (t);
7538 else if (any_noncanonical_p)
7539 TYPE_CANONICAL (t)
7540 = build_method_type_directly (TYPE_CANONICAL (basetype),
7541 TYPE_CANONICAL (rettype),
7542 canon_argtypes);
7543 if (!COMPLETE_TYPE_P (t))
7544 layout_type (t);
7545
7546 return t;
7547 }
7548
7549 /* Construct, lay out and return the type of methods belonging to class
7550 BASETYPE and whose arguments and values are described by TYPE.
7551 If that type exists already, reuse it.
7552 TYPE must be a FUNCTION_TYPE node. */
7553
7554 tree
7555 build_method_type (tree basetype, tree type)
7556 {
7557 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7558
7559 return build_method_type_directly (basetype,
7560 TREE_TYPE (type),
7561 TYPE_ARG_TYPES (type));
7562 }
7563
7564 /* Construct, lay out and return the type of offsets to a value
7565 of type TYPE, within an object of type BASETYPE.
7566 If a suitable offset type exists already, reuse it. */
7567
7568 tree
7569 build_offset_type (tree basetype, tree type)
7570 {
7571 tree t;
7572 hashval_t hashcode = 0;
7573
7574 /* Make a node of the sort we want. */
7575 t = make_node (OFFSET_TYPE);
7576
7577 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7578 TREE_TYPE (t) = type;
7579
7580 /* If we already have such a type, use the old one. */
7581 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7582 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7583 t = type_hash_canon (hashcode, t);
7584
7585 if (!COMPLETE_TYPE_P (t))
7586 layout_type (t);
7587
7588 if (TYPE_CANONICAL (t) == t)
7589 {
7590 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7591 || TYPE_STRUCTURAL_EQUALITY_P (type))
7592 SET_TYPE_STRUCTURAL_EQUALITY (t);
7593 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7594 || TYPE_CANONICAL (type) != type)
7595 TYPE_CANONICAL (t)
7596 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7597 TYPE_CANONICAL (type));
7598 }
7599
7600 return t;
7601 }
7602
7603 /* Create a complex type whose components are COMPONENT_TYPE. */
7604
7605 tree
7606 build_complex_type (tree component_type)
7607 {
7608 tree t;
7609 hashval_t hashcode;
7610
7611 gcc_assert (INTEGRAL_TYPE_P (component_type)
7612 || SCALAR_FLOAT_TYPE_P (component_type)
7613 || FIXED_POINT_TYPE_P (component_type));
7614
7615 /* Make a node of the sort we want. */
7616 t = make_node (COMPLEX_TYPE);
7617
7618 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7619
7620 /* If we already have such a type, use the old one. */
7621 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7622 t = type_hash_canon (hashcode, t);
7623
7624 if (!COMPLETE_TYPE_P (t))
7625 layout_type (t);
7626
7627 if (TYPE_CANONICAL (t) == t)
7628 {
7629 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7630 SET_TYPE_STRUCTURAL_EQUALITY (t);
7631 else if (TYPE_CANONICAL (component_type) != component_type)
7632 TYPE_CANONICAL (t)
7633 = build_complex_type (TYPE_CANONICAL (component_type));
7634 }
7635
7636 /* We need to create a name, since complex is a fundamental type. */
7637 if (! TYPE_NAME (t))
7638 {
7639 const char *name;
7640 if (component_type == char_type_node)
7641 name = "complex char";
7642 else if (component_type == signed_char_type_node)
7643 name = "complex signed char";
7644 else if (component_type == unsigned_char_type_node)
7645 name = "complex unsigned char";
7646 else if (component_type == short_integer_type_node)
7647 name = "complex short int";
7648 else if (component_type == short_unsigned_type_node)
7649 name = "complex short unsigned int";
7650 else if (component_type == integer_type_node)
7651 name = "complex int";
7652 else if (component_type == unsigned_type_node)
7653 name = "complex unsigned int";
7654 else if (component_type == long_integer_type_node)
7655 name = "complex long int";
7656 else if (component_type == long_unsigned_type_node)
7657 name = "complex long unsigned int";
7658 else if (component_type == long_long_integer_type_node)
7659 name = "complex long long int";
7660 else if (component_type == long_long_unsigned_type_node)
7661 name = "complex long long unsigned int";
7662 else
7663 name = 0;
7664
7665 if (name != 0)
7666 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7667 get_identifier (name), t);
7668 }
7669
7670 return build_qualified_type (t, TYPE_QUALS (component_type));
7671 }
7672
7673 /* If TYPE is a real or complex floating-point type and the target
7674 does not directly support arithmetic on TYPE then return the wider
7675 type to be used for arithmetic on TYPE. Otherwise, return
7676 NULL_TREE. */
7677
7678 tree
7679 excess_precision_type (tree type)
7680 {
7681 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7682 {
7683 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7684 switch (TREE_CODE (type))
7685 {
7686 case REAL_TYPE:
7687 switch (flt_eval_method)
7688 {
7689 case 1:
7690 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7691 return double_type_node;
7692 break;
7693 case 2:
7694 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7695 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7696 return long_double_type_node;
7697 break;
7698 default:
7699 gcc_unreachable ();
7700 }
7701 break;
7702 case COMPLEX_TYPE:
7703 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7704 return NULL_TREE;
7705 switch (flt_eval_method)
7706 {
7707 case 1:
7708 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7709 return complex_double_type_node;
7710 break;
7711 case 2:
7712 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7713 || (TYPE_MODE (TREE_TYPE (type))
7714 == TYPE_MODE (double_type_node)))
7715 return complex_long_double_type_node;
7716 break;
7717 default:
7718 gcc_unreachable ();
7719 }
7720 break;
7721 default:
7722 break;
7723 }
7724 }
7725 return NULL_TREE;
7726 }
7727 \f
7728 /* Return OP, stripped of any conversions to wider types as much as is safe.
7729 Converting the value back to OP's type makes a value equivalent to OP.
7730
7731 If FOR_TYPE is nonzero, we return a value which, if converted to
7732 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7733
7734 OP must have integer, real or enumeral type. Pointers are not allowed!
7735
7736 There are some cases where the obvious value we could return
7737 would regenerate to OP if converted to OP's type,
7738 but would not extend like OP to wider types.
7739 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7740 For example, if OP is (unsigned short)(signed char)-1,
7741 we avoid returning (signed char)-1 if FOR_TYPE is int,
7742 even though extending that to an unsigned short would regenerate OP,
7743 since the result of extending (signed char)-1 to (int)
7744 is different from (int) OP. */
7745
7746 tree
7747 get_unwidened (tree op, tree for_type)
7748 {
7749 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7750 tree type = TREE_TYPE (op);
7751 unsigned final_prec
7752 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7753 int uns
7754 = (for_type != 0 && for_type != type
7755 && final_prec > TYPE_PRECISION (type)
7756 && TYPE_UNSIGNED (type));
7757 tree win = op;
7758
7759 while (CONVERT_EXPR_P (op))
7760 {
7761 int bitschange;
7762
7763 /* TYPE_PRECISION on vector types has different meaning
7764 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7765 so avoid them here. */
7766 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7767 break;
7768
7769 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7770 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7771
7772 /* Truncations are many-one so cannot be removed.
7773 Unless we are later going to truncate down even farther. */
7774 if (bitschange < 0
7775 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7776 break;
7777
7778 /* See what's inside this conversion. If we decide to strip it,
7779 we will set WIN. */
7780 op = TREE_OPERAND (op, 0);
7781
7782 /* If we have not stripped any zero-extensions (uns is 0),
7783 we can strip any kind of extension.
7784 If we have previously stripped a zero-extension,
7785 only zero-extensions can safely be stripped.
7786 Any extension can be stripped if the bits it would produce
7787 are all going to be discarded later by truncating to FOR_TYPE. */
7788
7789 if (bitschange > 0)
7790 {
7791 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7792 win = op;
7793 /* TYPE_UNSIGNED says whether this is a zero-extension.
7794 Let's avoid computing it if it does not affect WIN
7795 and if UNS will not be needed again. */
7796 if ((uns
7797 || CONVERT_EXPR_P (op))
7798 && TYPE_UNSIGNED (TREE_TYPE (op)))
7799 {
7800 uns = 1;
7801 win = op;
7802 }
7803 }
7804 }
7805
7806 /* If we finally reach a constant see if it fits in for_type and
7807 in that case convert it. */
7808 if (for_type
7809 && TREE_CODE (win) == INTEGER_CST
7810 && TREE_TYPE (win) != for_type
7811 && int_fits_type_p (win, for_type))
7812 win = fold_convert (for_type, win);
7813
7814 return win;
7815 }
7816 \f
7817 /* Return OP or a simpler expression for a narrower value
7818 which can be sign-extended or zero-extended to give back OP.
7819 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7820 or 0 if the value should be sign-extended. */
7821
7822 tree
7823 get_narrower (tree op, int *unsignedp_ptr)
7824 {
7825 int uns = 0;
7826 int first = 1;
7827 tree win = op;
7828 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7829
7830 while (TREE_CODE (op) == NOP_EXPR)
7831 {
7832 int bitschange
7833 = (TYPE_PRECISION (TREE_TYPE (op))
7834 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7835
7836 /* Truncations are many-one so cannot be removed. */
7837 if (bitschange < 0)
7838 break;
7839
7840 /* See what's inside this conversion. If we decide to strip it,
7841 we will set WIN. */
7842
7843 if (bitschange > 0)
7844 {
7845 op = TREE_OPERAND (op, 0);
7846 /* An extension: the outermost one can be stripped,
7847 but remember whether it is zero or sign extension. */
7848 if (first)
7849 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7850 /* Otherwise, if a sign extension has been stripped,
7851 only sign extensions can now be stripped;
7852 if a zero extension has been stripped, only zero-extensions. */
7853 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7854 break;
7855 first = 0;
7856 }
7857 else /* bitschange == 0 */
7858 {
7859 /* A change in nominal type can always be stripped, but we must
7860 preserve the unsignedness. */
7861 if (first)
7862 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7863 first = 0;
7864 op = TREE_OPERAND (op, 0);
7865 /* Keep trying to narrow, but don't assign op to win if it
7866 would turn an integral type into something else. */
7867 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7868 continue;
7869 }
7870
7871 win = op;
7872 }
7873
7874 if (TREE_CODE (op) == COMPONENT_REF
7875 /* Since type_for_size always gives an integer type. */
7876 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7877 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7878 /* Ensure field is laid out already. */
7879 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7880 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7881 {
7882 unsigned HOST_WIDE_INT innerprec
7883 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7884 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7885 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7886 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7887
7888 /* We can get this structure field in a narrower type that fits it,
7889 but the resulting extension to its nominal type (a fullword type)
7890 must satisfy the same conditions as for other extensions.
7891
7892 Do this only for fields that are aligned (not bit-fields),
7893 because when bit-field insns will be used there is no
7894 advantage in doing this. */
7895
7896 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7897 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7898 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7899 && type != 0)
7900 {
7901 if (first)
7902 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7903 win = fold_convert (type, op);
7904 }
7905 }
7906
7907 *unsignedp_ptr = uns;
7908 return win;
7909 }
7910 \f
7911 /* Returns true if integer constant C has a value that is permissible
7912 for type TYPE (an INTEGER_TYPE). */
7913
7914 bool
7915 int_fits_type_p (const_tree c, const_tree type)
7916 {
7917 tree type_low_bound, type_high_bound;
7918 bool ok_for_low_bound, ok_for_high_bound, unsc;
7919 double_int dc, dd;
7920
7921 dc = tree_to_double_int (c);
7922 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7923
7924 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7925 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7926 && unsc)
7927 /* So c is an unsigned integer whose type is sizetype and type is not.
7928 sizetype'd integers are sign extended even though they are
7929 unsigned. If the integer value fits in the lower end word of c,
7930 and if the higher end word has all its bits set to 1, that
7931 means the higher end bits are set to 1 only for sign extension.
7932 So let's convert c into an equivalent zero extended unsigned
7933 integer. */
7934 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7935
7936 retry:
7937 type_low_bound = TYPE_MIN_VALUE (type);
7938 type_high_bound = TYPE_MAX_VALUE (type);
7939
7940 /* If at least one bound of the type is a constant integer, we can check
7941 ourselves and maybe make a decision. If no such decision is possible, but
7942 this type is a subtype, try checking against that. Otherwise, use
7943 double_int_fits_to_tree_p, which checks against the precision.
7944
7945 Compute the status for each possibly constant bound, and return if we see
7946 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7947 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7948 for "constant known to fit". */
7949
7950 /* Check if c >= type_low_bound. */
7951 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7952 {
7953 dd = tree_to_double_int (type_low_bound);
7954 if (TREE_CODE (type) == INTEGER_TYPE
7955 && TYPE_IS_SIZETYPE (type)
7956 && TYPE_UNSIGNED (type))
7957 dd = double_int_zext (dd, TYPE_PRECISION (type));
7958 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7959 {
7960 int c_neg = (!unsc && double_int_negative_p (dc));
7961 int t_neg = (unsc && double_int_negative_p (dd));
7962
7963 if (c_neg && !t_neg)
7964 return false;
7965 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
7966 return false;
7967 }
7968 else if (double_int_cmp (dc, dd, unsc) < 0)
7969 return false;
7970 ok_for_low_bound = true;
7971 }
7972 else
7973 ok_for_low_bound = false;
7974
7975 /* Check if c <= type_high_bound. */
7976 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
7977 {
7978 dd = tree_to_double_int (type_high_bound);
7979 if (TREE_CODE (type) == INTEGER_TYPE
7980 && TYPE_IS_SIZETYPE (type)
7981 && TYPE_UNSIGNED (type))
7982 dd = double_int_zext (dd, TYPE_PRECISION (type));
7983 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
7984 {
7985 int c_neg = (!unsc && double_int_negative_p (dc));
7986 int t_neg = (unsc && double_int_negative_p (dd));
7987
7988 if (t_neg && !c_neg)
7989 return false;
7990 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
7991 return false;
7992 }
7993 else if (double_int_cmp (dc, dd, unsc) > 0)
7994 return false;
7995 ok_for_high_bound = true;
7996 }
7997 else
7998 ok_for_high_bound = false;
7999
8000 /* If the constant fits both bounds, the result is known. */
8001 if (ok_for_low_bound && ok_for_high_bound)
8002 return true;
8003
8004 /* Perform some generic filtering which may allow making a decision
8005 even if the bounds are not constant. First, negative integers
8006 never fit in unsigned types, */
8007 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8008 return false;
8009
8010 /* Second, narrower types always fit in wider ones. */
8011 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8012 return true;
8013
8014 /* Third, unsigned integers with top bit set never fit signed types. */
8015 if (! TYPE_UNSIGNED (type) && unsc)
8016 {
8017 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8018 if (prec < HOST_BITS_PER_WIDE_INT)
8019 {
8020 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8021 return false;
8022 }
8023 else if (((((unsigned HOST_WIDE_INT) 1)
8024 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8025 return false;
8026 }
8027
8028 /* If we haven't been able to decide at this point, there nothing more we
8029 can check ourselves here. Look at the base type if we have one and it
8030 has the same precision. */
8031 if (TREE_CODE (type) == INTEGER_TYPE
8032 && TREE_TYPE (type) != 0
8033 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8034 {
8035 type = TREE_TYPE (type);
8036 goto retry;
8037 }
8038
8039 /* Or to double_int_fits_to_tree_p, if nothing else. */
8040 return double_int_fits_to_tree_p (type, dc);
8041 }
8042
8043 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8044 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8045 represented (assuming two's-complement arithmetic) within the bit
8046 precision of the type are returned instead. */
8047
8048 void
8049 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8050 {
8051 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8052 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8053 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8054 TYPE_UNSIGNED (type));
8055 else
8056 {
8057 if (TYPE_UNSIGNED (type))
8058 mpz_set_ui (min, 0);
8059 else
8060 {
8061 double_int mn;
8062 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8063 mn = double_int_sext (double_int_add (mn, double_int_one),
8064 TYPE_PRECISION (type));
8065 mpz_set_double_int (min, mn, false);
8066 }
8067 }
8068
8069 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8070 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8071 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8072 TYPE_UNSIGNED (type));
8073 else
8074 {
8075 if (TYPE_UNSIGNED (type))
8076 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8077 true);
8078 else
8079 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8080 true);
8081 }
8082 }
8083
8084 /* Return true if VAR is an automatic variable defined in function FN. */
8085
8086 bool
8087 auto_var_in_fn_p (const_tree var, const_tree fn)
8088 {
8089 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8090 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8091 || TREE_CODE (var) == PARM_DECL)
8092 && ! TREE_STATIC (var))
8093 || TREE_CODE (var) == LABEL_DECL
8094 || TREE_CODE (var) == RESULT_DECL));
8095 }
8096
8097 /* Subprogram of following function. Called by walk_tree.
8098
8099 Return *TP if it is an automatic variable or parameter of the
8100 function passed in as DATA. */
8101
8102 static tree
8103 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8104 {
8105 tree fn = (tree) data;
8106
8107 if (TYPE_P (*tp))
8108 *walk_subtrees = 0;
8109
8110 else if (DECL_P (*tp)
8111 && auto_var_in_fn_p (*tp, fn))
8112 return *tp;
8113
8114 return NULL_TREE;
8115 }
8116
8117 /* Returns true if T is, contains, or refers to a type with variable
8118 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8119 arguments, but not the return type. If FN is nonzero, only return
8120 true if a modifier of the type or position of FN is a variable or
8121 parameter inside FN.
8122
8123 This concept is more general than that of C99 'variably modified types':
8124 in C99, a struct type is never variably modified because a VLA may not
8125 appear as a structure member. However, in GNU C code like:
8126
8127 struct S { int i[f()]; };
8128
8129 is valid, and other languages may define similar constructs. */
8130
8131 bool
8132 variably_modified_type_p (tree type, tree fn)
8133 {
8134 tree t;
8135
8136 /* Test if T is either variable (if FN is zero) or an expression containing
8137 a variable in FN. */
8138 #define RETURN_TRUE_IF_VAR(T) \
8139 do { tree _t = (T); \
8140 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8141 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8142 return true; } while (0)
8143
8144 if (type == error_mark_node)
8145 return false;
8146
8147 /* If TYPE itself has variable size, it is variably modified. */
8148 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8149 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8150
8151 switch (TREE_CODE (type))
8152 {
8153 case POINTER_TYPE:
8154 case REFERENCE_TYPE:
8155 case VECTOR_TYPE:
8156 if (variably_modified_type_p (TREE_TYPE (type), fn))
8157 return true;
8158 break;
8159
8160 case FUNCTION_TYPE:
8161 case METHOD_TYPE:
8162 /* If TYPE is a function type, it is variably modified if the
8163 return type is variably modified. */
8164 if (variably_modified_type_p (TREE_TYPE (type), fn))
8165 return true;
8166 break;
8167
8168 case INTEGER_TYPE:
8169 case REAL_TYPE:
8170 case FIXED_POINT_TYPE:
8171 case ENUMERAL_TYPE:
8172 case BOOLEAN_TYPE:
8173 /* Scalar types are variably modified if their end points
8174 aren't constant. */
8175 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8176 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8177 break;
8178
8179 case RECORD_TYPE:
8180 case UNION_TYPE:
8181 case QUAL_UNION_TYPE:
8182 /* We can't see if any of the fields are variably-modified by the
8183 definition we normally use, since that would produce infinite
8184 recursion via pointers. */
8185 /* This is variably modified if some field's type is. */
8186 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8187 if (TREE_CODE (t) == FIELD_DECL)
8188 {
8189 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8190 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8191 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8192
8193 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8194 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8195 }
8196 break;
8197
8198 case ARRAY_TYPE:
8199 /* Do not call ourselves to avoid infinite recursion. This is
8200 variably modified if the element type is. */
8201 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8202 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8203 break;
8204
8205 default:
8206 break;
8207 }
8208
8209 /* The current language may have other cases to check, but in general,
8210 all other types are not variably modified. */
8211 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8212
8213 #undef RETURN_TRUE_IF_VAR
8214 }
8215
8216 /* Given a DECL or TYPE, return the scope in which it was declared, or
8217 NULL_TREE if there is no containing scope. */
8218
8219 tree
8220 get_containing_scope (const_tree t)
8221 {
8222 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8223 }
8224
8225 /* Return the innermost context enclosing DECL that is
8226 a FUNCTION_DECL, or zero if none. */
8227
8228 tree
8229 decl_function_context (const_tree decl)
8230 {
8231 tree context;
8232
8233 if (TREE_CODE (decl) == ERROR_MARK)
8234 return 0;
8235
8236 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8237 where we look up the function at runtime. Such functions always take
8238 a first argument of type 'pointer to real context'.
8239
8240 C++ should really be fixed to use DECL_CONTEXT for the real context,
8241 and use something else for the "virtual context". */
8242 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8243 context
8244 = TYPE_MAIN_VARIANT
8245 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8246 else
8247 context = DECL_CONTEXT (decl);
8248
8249 while (context && TREE_CODE (context) != FUNCTION_DECL)
8250 {
8251 if (TREE_CODE (context) == BLOCK)
8252 context = BLOCK_SUPERCONTEXT (context);
8253 else
8254 context = get_containing_scope (context);
8255 }
8256
8257 return context;
8258 }
8259
8260 /* Return the innermost context enclosing DECL that is
8261 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8262 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8263
8264 tree
8265 decl_type_context (const_tree decl)
8266 {
8267 tree context = DECL_CONTEXT (decl);
8268
8269 while (context)
8270 switch (TREE_CODE (context))
8271 {
8272 case NAMESPACE_DECL:
8273 case TRANSLATION_UNIT_DECL:
8274 return NULL_TREE;
8275
8276 case RECORD_TYPE:
8277 case UNION_TYPE:
8278 case QUAL_UNION_TYPE:
8279 return context;
8280
8281 case TYPE_DECL:
8282 case FUNCTION_DECL:
8283 context = DECL_CONTEXT (context);
8284 break;
8285
8286 case BLOCK:
8287 context = BLOCK_SUPERCONTEXT (context);
8288 break;
8289
8290 default:
8291 gcc_unreachable ();
8292 }
8293
8294 return NULL_TREE;
8295 }
8296
8297 /* CALL is a CALL_EXPR. Return the declaration for the function
8298 called, or NULL_TREE if the called function cannot be
8299 determined. */
8300
8301 tree
8302 get_callee_fndecl (const_tree call)
8303 {
8304 tree addr;
8305
8306 if (call == error_mark_node)
8307 return error_mark_node;
8308
8309 /* It's invalid to call this function with anything but a
8310 CALL_EXPR. */
8311 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8312
8313 /* The first operand to the CALL is the address of the function
8314 called. */
8315 addr = CALL_EXPR_FN (call);
8316
8317 STRIP_NOPS (addr);
8318
8319 /* If this is a readonly function pointer, extract its initial value. */
8320 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8321 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8322 && DECL_INITIAL (addr))
8323 addr = DECL_INITIAL (addr);
8324
8325 /* If the address is just `&f' for some function `f', then we know
8326 that `f' is being called. */
8327 if (TREE_CODE (addr) == ADDR_EXPR
8328 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8329 return TREE_OPERAND (addr, 0);
8330
8331 /* We couldn't figure out what was being called. */
8332 return NULL_TREE;
8333 }
8334
8335 /* Print debugging information about tree nodes generated during the compile,
8336 and any language-specific information. */
8337
8338 void
8339 dump_tree_statistics (void)
8340 {
8341 #ifdef GATHER_STATISTICS
8342 int i;
8343 int total_nodes, total_bytes;
8344 #endif
8345
8346 fprintf (stderr, "\n??? tree nodes created\n\n");
8347 #ifdef GATHER_STATISTICS
8348 fprintf (stderr, "Kind Nodes Bytes\n");
8349 fprintf (stderr, "---------------------------------------\n");
8350 total_nodes = total_bytes = 0;
8351 for (i = 0; i < (int) all_kinds; i++)
8352 {
8353 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8354 tree_node_counts[i], tree_node_sizes[i]);
8355 total_nodes += tree_node_counts[i];
8356 total_bytes += tree_node_sizes[i];
8357 }
8358 fprintf (stderr, "---------------------------------------\n");
8359 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8360 fprintf (stderr, "---------------------------------------\n");
8361 ssanames_print_statistics ();
8362 phinodes_print_statistics ();
8363 #else
8364 fprintf (stderr, "(No per-node statistics)\n");
8365 #endif
8366 print_type_hash_statistics ();
8367 print_debug_expr_statistics ();
8368 print_value_expr_statistics ();
8369 lang_hooks.print_statistics ();
8370 }
8371 \f
8372 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8373
8374 /* Generate a crc32 of a string. */
8375
8376 unsigned
8377 crc32_string (unsigned chksum, const char *string)
8378 {
8379 do
8380 {
8381 unsigned value = *string << 24;
8382 unsigned ix;
8383
8384 for (ix = 8; ix--; value <<= 1)
8385 {
8386 unsigned feedback;
8387
8388 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8389 chksum <<= 1;
8390 chksum ^= feedback;
8391 }
8392 }
8393 while (*string++);
8394 return chksum;
8395 }
8396
8397 /* P is a string that will be used in a symbol. Mask out any characters
8398 that are not valid in that context. */
8399
8400 void
8401 clean_symbol_name (char *p)
8402 {
8403 for (; *p; p++)
8404 if (! (ISALNUM (*p)
8405 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8406 || *p == '$'
8407 #endif
8408 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8409 || *p == '.'
8410 #endif
8411 ))
8412 *p = '_';
8413 }
8414
8415 /* Generate a name for a special-purpose function function.
8416 The generated name may need to be unique across the whole link.
8417 TYPE is some string to identify the purpose of this function to the
8418 linker or collect2; it must start with an uppercase letter,
8419 one of:
8420 I - for constructors
8421 D - for destructors
8422 N - for C++ anonymous namespaces
8423 F - for DWARF unwind frame information. */
8424
8425 tree
8426 get_file_function_name (const char *type)
8427 {
8428 char *buf;
8429 const char *p;
8430 char *q;
8431
8432 /* If we already have a name we know to be unique, just use that. */
8433 if (first_global_object_name)
8434 p = q = ASTRDUP (first_global_object_name);
8435 /* If the target is handling the constructors/destructors, they
8436 will be local to this file and the name is only necessary for
8437 debugging purposes. */
8438 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8439 {
8440 const char *file = main_input_filename;
8441 if (! file)
8442 file = input_filename;
8443 /* Just use the file's basename, because the full pathname
8444 might be quite long. */
8445 p = strrchr (file, '/');
8446 if (p)
8447 p++;
8448 else
8449 p = file;
8450 p = q = ASTRDUP (p);
8451 }
8452 else
8453 {
8454 /* Otherwise, the name must be unique across the entire link.
8455 We don't have anything that we know to be unique to this translation
8456 unit, so use what we do have and throw in some randomness. */
8457 unsigned len;
8458 const char *name = weak_global_object_name;
8459 const char *file = main_input_filename;
8460
8461 if (! name)
8462 name = "";
8463 if (! file)
8464 file = input_filename;
8465
8466 len = strlen (file);
8467 q = (char *) alloca (9 * 2 + len + 1);
8468 memcpy (q, file, len + 1);
8469
8470 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8471 crc32_string (0, get_random_seed (false)));
8472
8473 p = q;
8474 }
8475
8476 clean_symbol_name (q);
8477 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8478 + strlen (type));
8479
8480 /* Set up the name of the file-level functions we may need.
8481 Use a global object (which is already required to be unique over
8482 the program) rather than the file name (which imposes extra
8483 constraints). */
8484 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8485
8486 return get_identifier (buf);
8487 }
8488 \f
8489 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8490
8491 /* Complain that the tree code of NODE does not match the expected 0
8492 terminated list of trailing codes. The trailing code list can be
8493 empty, for a more vague error message. FILE, LINE, and FUNCTION
8494 are of the caller. */
8495
8496 void
8497 tree_check_failed (const_tree node, const char *file,
8498 int line, const char *function, ...)
8499 {
8500 va_list args;
8501 const char *buffer;
8502 unsigned length = 0;
8503 int code;
8504
8505 va_start (args, function);
8506 while ((code = va_arg (args, int)))
8507 length += 4 + strlen (tree_code_name[code]);
8508 va_end (args);
8509 if (length)
8510 {
8511 char *tmp;
8512 va_start (args, function);
8513 length += strlen ("expected ");
8514 buffer = tmp = (char *) alloca (length);
8515 length = 0;
8516 while ((code = va_arg (args, int)))
8517 {
8518 const char *prefix = length ? " or " : "expected ";
8519
8520 strcpy (tmp + length, prefix);
8521 length += strlen (prefix);
8522 strcpy (tmp + length, tree_code_name[code]);
8523 length += strlen (tree_code_name[code]);
8524 }
8525 va_end (args);
8526 }
8527 else
8528 buffer = "unexpected node";
8529
8530 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8531 buffer, tree_code_name[TREE_CODE (node)],
8532 function, trim_filename (file), line);
8533 }
8534
8535 /* Complain that the tree code of NODE does match the expected 0
8536 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8537 the caller. */
8538
8539 void
8540 tree_not_check_failed (const_tree node, const char *file,
8541 int line, const char *function, ...)
8542 {
8543 va_list args;
8544 char *buffer;
8545 unsigned length = 0;
8546 int code;
8547
8548 va_start (args, function);
8549 while ((code = va_arg (args, int)))
8550 length += 4 + strlen (tree_code_name[code]);
8551 va_end (args);
8552 va_start (args, function);
8553 buffer = (char *) alloca (length);
8554 length = 0;
8555 while ((code = va_arg (args, int)))
8556 {
8557 if (length)
8558 {
8559 strcpy (buffer + length, " or ");
8560 length += 4;
8561 }
8562 strcpy (buffer + length, tree_code_name[code]);
8563 length += strlen (tree_code_name[code]);
8564 }
8565 va_end (args);
8566
8567 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8568 buffer, tree_code_name[TREE_CODE (node)],
8569 function, trim_filename (file), line);
8570 }
8571
8572 /* Similar to tree_check_failed, except that we check for a class of tree
8573 code, given in CL. */
8574
8575 void
8576 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8577 const char *file, int line, const char *function)
8578 {
8579 internal_error
8580 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8581 TREE_CODE_CLASS_STRING (cl),
8582 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8583 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8584 }
8585
8586 /* Similar to tree_check_failed, except that instead of specifying a
8587 dozen codes, use the knowledge that they're all sequential. */
8588
8589 void
8590 tree_range_check_failed (const_tree node, const char *file, int line,
8591 const char *function, enum tree_code c1,
8592 enum tree_code c2)
8593 {
8594 char *buffer;
8595 unsigned length = 0;
8596 unsigned int c;
8597
8598 for (c = c1; c <= c2; ++c)
8599 length += 4 + strlen (tree_code_name[c]);
8600
8601 length += strlen ("expected ");
8602 buffer = (char *) alloca (length);
8603 length = 0;
8604
8605 for (c = c1; c <= c2; ++c)
8606 {
8607 const char *prefix = length ? " or " : "expected ";
8608
8609 strcpy (buffer + length, prefix);
8610 length += strlen (prefix);
8611 strcpy (buffer + length, tree_code_name[c]);
8612 length += strlen (tree_code_name[c]);
8613 }
8614
8615 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8616 buffer, tree_code_name[TREE_CODE (node)],
8617 function, trim_filename (file), line);
8618 }
8619
8620
8621 /* Similar to tree_check_failed, except that we check that a tree does
8622 not have the specified code, given in CL. */
8623
8624 void
8625 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8626 const char *file, int line, const char *function)
8627 {
8628 internal_error
8629 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8630 TREE_CODE_CLASS_STRING (cl),
8631 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8632 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8633 }
8634
8635
8636 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8637
8638 void
8639 omp_clause_check_failed (const_tree node, const char *file, int line,
8640 const char *function, enum omp_clause_code code)
8641 {
8642 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8643 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8644 function, trim_filename (file), line);
8645 }
8646
8647
8648 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8649
8650 void
8651 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8652 const char *function, enum omp_clause_code c1,
8653 enum omp_clause_code c2)
8654 {
8655 char *buffer;
8656 unsigned length = 0;
8657 unsigned int c;
8658
8659 for (c = c1; c <= c2; ++c)
8660 length += 4 + strlen (omp_clause_code_name[c]);
8661
8662 length += strlen ("expected ");
8663 buffer = (char *) alloca (length);
8664 length = 0;
8665
8666 for (c = c1; c <= c2; ++c)
8667 {
8668 const char *prefix = length ? " or " : "expected ";
8669
8670 strcpy (buffer + length, prefix);
8671 length += strlen (prefix);
8672 strcpy (buffer + length, omp_clause_code_name[c]);
8673 length += strlen (omp_clause_code_name[c]);
8674 }
8675
8676 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8677 buffer, omp_clause_code_name[TREE_CODE (node)],
8678 function, trim_filename (file), line);
8679 }
8680
8681
8682 #undef DEFTREESTRUCT
8683 #define DEFTREESTRUCT(VAL, NAME) NAME,
8684
8685 static const char *ts_enum_names[] = {
8686 #include "treestruct.def"
8687 };
8688 #undef DEFTREESTRUCT
8689
8690 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8691
8692 /* Similar to tree_class_check_failed, except that we check for
8693 whether CODE contains the tree structure identified by EN. */
8694
8695 void
8696 tree_contains_struct_check_failed (const_tree node,
8697 const enum tree_node_structure_enum en,
8698 const char *file, int line,
8699 const char *function)
8700 {
8701 internal_error
8702 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8703 TS_ENUM_NAME(en),
8704 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8705 }
8706
8707
8708 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8709 (dynamically sized) vector. */
8710
8711 void
8712 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8713 const char *function)
8714 {
8715 internal_error
8716 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8717 idx + 1, len, function, trim_filename (file), line);
8718 }
8719
8720 /* Similar to above, except that the check is for the bounds of the operand
8721 vector of an expression node EXP. */
8722
8723 void
8724 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8725 int line, const char *function)
8726 {
8727 int code = TREE_CODE (exp);
8728 internal_error
8729 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8730 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8731 function, trim_filename (file), line);
8732 }
8733
8734 /* Similar to above, except that the check is for the number of
8735 operands of an OMP_CLAUSE node. */
8736
8737 void
8738 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8739 int line, const char *function)
8740 {
8741 internal_error
8742 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8743 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8744 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8745 trim_filename (file), line);
8746 }
8747 #endif /* ENABLE_TREE_CHECKING */
8748 \f
8749 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8750 and mapped to the machine mode MODE. Initialize its fields and build
8751 the information necessary for debugging output. */
8752
8753 static tree
8754 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8755 {
8756 tree t;
8757 hashval_t hashcode = 0;
8758
8759 t = make_node (VECTOR_TYPE);
8760 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8761 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8762 SET_TYPE_MODE (t, mode);
8763
8764 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8765 SET_TYPE_STRUCTURAL_EQUALITY (t);
8766 else if (TYPE_CANONICAL (innertype) != innertype
8767 || mode != VOIDmode)
8768 TYPE_CANONICAL (t)
8769 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8770
8771 layout_type (t);
8772
8773 {
8774 tree index = build_int_cst (NULL_TREE, nunits - 1);
8775 tree array = build_array_type (TYPE_MAIN_VARIANT (innertype),
8776 build_index_type (index));
8777 tree rt = make_node (RECORD_TYPE);
8778
8779 TYPE_FIELDS (rt) = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
8780 get_identifier ("f"), array);
8781 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
8782 layout_type (rt);
8783 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
8784 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
8785 the representation type, and we want to find that die when looking up
8786 the vector type. This is most easily achieved by making the TYPE_UID
8787 numbers equal. */
8788 TYPE_UID (rt) = TYPE_UID (t);
8789 }
8790
8791 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8792 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8793 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8794 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8795 t = type_hash_canon (hashcode, t);
8796
8797 /* We have built a main variant, based on the main variant of the
8798 inner type. Use it to build the variant we return. */
8799 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8800 && TREE_TYPE (t) != innertype)
8801 return build_type_attribute_qual_variant (t,
8802 TYPE_ATTRIBUTES (innertype),
8803 TYPE_QUALS (innertype));
8804
8805 return t;
8806 }
8807
8808 static tree
8809 make_or_reuse_type (unsigned size, int unsignedp)
8810 {
8811 if (size == INT_TYPE_SIZE)
8812 return unsignedp ? unsigned_type_node : integer_type_node;
8813 if (size == CHAR_TYPE_SIZE)
8814 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8815 if (size == SHORT_TYPE_SIZE)
8816 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8817 if (size == LONG_TYPE_SIZE)
8818 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8819 if (size == LONG_LONG_TYPE_SIZE)
8820 return (unsignedp ? long_long_unsigned_type_node
8821 : long_long_integer_type_node);
8822 if (size == 128 && int128_integer_type_node)
8823 return (unsignedp ? int128_unsigned_type_node
8824 : int128_integer_type_node);
8825
8826 if (unsignedp)
8827 return make_unsigned_type (size);
8828 else
8829 return make_signed_type (size);
8830 }
8831
8832 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8833
8834 static tree
8835 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8836 {
8837 if (satp)
8838 {
8839 if (size == SHORT_FRACT_TYPE_SIZE)
8840 return unsignedp ? sat_unsigned_short_fract_type_node
8841 : sat_short_fract_type_node;
8842 if (size == FRACT_TYPE_SIZE)
8843 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8844 if (size == LONG_FRACT_TYPE_SIZE)
8845 return unsignedp ? sat_unsigned_long_fract_type_node
8846 : sat_long_fract_type_node;
8847 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8848 return unsignedp ? sat_unsigned_long_long_fract_type_node
8849 : sat_long_long_fract_type_node;
8850 }
8851 else
8852 {
8853 if (size == SHORT_FRACT_TYPE_SIZE)
8854 return unsignedp ? unsigned_short_fract_type_node
8855 : short_fract_type_node;
8856 if (size == FRACT_TYPE_SIZE)
8857 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8858 if (size == LONG_FRACT_TYPE_SIZE)
8859 return unsignedp ? unsigned_long_fract_type_node
8860 : long_fract_type_node;
8861 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8862 return unsignedp ? unsigned_long_long_fract_type_node
8863 : long_long_fract_type_node;
8864 }
8865
8866 return make_fract_type (size, unsignedp, satp);
8867 }
8868
8869 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8870
8871 static tree
8872 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8873 {
8874 if (satp)
8875 {
8876 if (size == SHORT_ACCUM_TYPE_SIZE)
8877 return unsignedp ? sat_unsigned_short_accum_type_node
8878 : sat_short_accum_type_node;
8879 if (size == ACCUM_TYPE_SIZE)
8880 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8881 if (size == LONG_ACCUM_TYPE_SIZE)
8882 return unsignedp ? sat_unsigned_long_accum_type_node
8883 : sat_long_accum_type_node;
8884 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8885 return unsignedp ? sat_unsigned_long_long_accum_type_node
8886 : sat_long_long_accum_type_node;
8887 }
8888 else
8889 {
8890 if (size == SHORT_ACCUM_TYPE_SIZE)
8891 return unsignedp ? unsigned_short_accum_type_node
8892 : short_accum_type_node;
8893 if (size == ACCUM_TYPE_SIZE)
8894 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8895 if (size == LONG_ACCUM_TYPE_SIZE)
8896 return unsignedp ? unsigned_long_accum_type_node
8897 : long_accum_type_node;
8898 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8899 return unsignedp ? unsigned_long_long_accum_type_node
8900 : long_long_accum_type_node;
8901 }
8902
8903 return make_accum_type (size, unsignedp, satp);
8904 }
8905
8906 /* Create nodes for all integer types (and error_mark_node) using the sizes
8907 of C datatypes. The caller should call set_sizetype soon after calling
8908 this function to select one of the types as sizetype. */
8909
8910 void
8911 build_common_tree_nodes (bool signed_char)
8912 {
8913 error_mark_node = make_node (ERROR_MARK);
8914 TREE_TYPE (error_mark_node) = error_mark_node;
8915
8916 initialize_sizetypes ();
8917
8918 /* Define both `signed char' and `unsigned char'. */
8919 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8920 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8921 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8922 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8923
8924 /* Define `char', which is like either `signed char' or `unsigned char'
8925 but not the same as either. */
8926 char_type_node
8927 = (signed_char
8928 ? make_signed_type (CHAR_TYPE_SIZE)
8929 : make_unsigned_type (CHAR_TYPE_SIZE));
8930 TYPE_STRING_FLAG (char_type_node) = 1;
8931
8932 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8933 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8934 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8935 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8936 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8937 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8938 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8939 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8940 #if HOST_BITS_PER_WIDE_INT >= 64
8941 /* TODO: This isn't correct, but as logic depends at the moment on
8942 host's instead of target's wide-integer.
8943 If there is a target not supporting TImode, but has an 128-bit
8944 integer-scalar register, this target check needs to be adjusted. */
8945 if (targetm.scalar_mode_supported_p (TImode))
8946 {
8947 int128_integer_type_node = make_signed_type (128);
8948 int128_unsigned_type_node = make_unsigned_type (128);
8949 }
8950 #endif
8951 /* Define a boolean type. This type only represents boolean values but
8952 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8953 Front ends which want to override this size (i.e. Java) can redefine
8954 boolean_type_node before calling build_common_tree_nodes_2. */
8955 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8956 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8957 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8958 TYPE_PRECISION (boolean_type_node) = 1;
8959
8960 /* Fill in the rest of the sized types. Reuse existing type nodes
8961 when possible. */
8962 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8963 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8964 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8965 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8966 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8967
8968 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8969 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8970 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8971 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8972 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8973
8974 access_public_node = get_identifier ("public");
8975 access_protected_node = get_identifier ("protected");
8976 access_private_node = get_identifier ("private");
8977 }
8978
8979 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8980 It will create several other common tree nodes. */
8981
8982 void
8983 build_common_tree_nodes_2 (int short_double)
8984 {
8985 /* Define these next since types below may used them. */
8986 integer_zero_node = build_int_cst (integer_type_node, 0);
8987 integer_one_node = build_int_cst (integer_type_node, 1);
8988 integer_three_node = build_int_cst (integer_type_node, 3);
8989 integer_minus_one_node = build_int_cst (integer_type_node, -1);
8990
8991 size_zero_node = size_int (0);
8992 size_one_node = size_int (1);
8993 bitsize_zero_node = bitsize_int (0);
8994 bitsize_one_node = bitsize_int (1);
8995 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
8996
8997 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
8998 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
8999
9000 void_type_node = make_node (VOID_TYPE);
9001 layout_type (void_type_node);
9002
9003 /* We are not going to have real types in C with less than byte alignment,
9004 so we might as well not have any types that claim to have it. */
9005 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9006 TYPE_USER_ALIGN (void_type_node) = 0;
9007
9008 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9009 layout_type (TREE_TYPE (null_pointer_node));
9010
9011 ptr_type_node = build_pointer_type (void_type_node);
9012 const_ptr_type_node
9013 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9014 fileptr_type_node = ptr_type_node;
9015
9016 float_type_node = make_node (REAL_TYPE);
9017 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9018 layout_type (float_type_node);
9019
9020 double_type_node = make_node (REAL_TYPE);
9021 if (short_double)
9022 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9023 else
9024 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9025 layout_type (double_type_node);
9026
9027 long_double_type_node = make_node (REAL_TYPE);
9028 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9029 layout_type (long_double_type_node);
9030
9031 float_ptr_type_node = build_pointer_type (float_type_node);
9032 double_ptr_type_node = build_pointer_type (double_type_node);
9033 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9034 integer_ptr_type_node = build_pointer_type (integer_type_node);
9035
9036 /* Fixed size integer types. */
9037 uint32_type_node = build_nonstandard_integer_type (32, true);
9038 uint64_type_node = build_nonstandard_integer_type (64, true);
9039
9040 /* Decimal float types. */
9041 dfloat32_type_node = make_node (REAL_TYPE);
9042 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9043 layout_type (dfloat32_type_node);
9044 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9045 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9046
9047 dfloat64_type_node = make_node (REAL_TYPE);
9048 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9049 layout_type (dfloat64_type_node);
9050 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9051 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9052
9053 dfloat128_type_node = make_node (REAL_TYPE);
9054 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9055 layout_type (dfloat128_type_node);
9056 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9057 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9058
9059 complex_integer_type_node = build_complex_type (integer_type_node);
9060 complex_float_type_node = build_complex_type (float_type_node);
9061 complex_double_type_node = build_complex_type (double_type_node);
9062 complex_long_double_type_node = build_complex_type (long_double_type_node);
9063
9064 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9065 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9066 sat_ ## KIND ## _type_node = \
9067 make_sat_signed_ ## KIND ## _type (SIZE); \
9068 sat_unsigned_ ## KIND ## _type_node = \
9069 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9070 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9071 unsigned_ ## KIND ## _type_node = \
9072 make_unsigned_ ## KIND ## _type (SIZE);
9073
9074 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9075 sat_ ## WIDTH ## KIND ## _type_node = \
9076 make_sat_signed_ ## KIND ## _type (SIZE); \
9077 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9078 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9079 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9080 unsigned_ ## WIDTH ## KIND ## _type_node = \
9081 make_unsigned_ ## KIND ## _type (SIZE);
9082
9083 /* Make fixed-point type nodes based on four different widths. */
9084 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9085 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9086 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9087 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9088 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9089
9090 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9091 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9092 NAME ## _type_node = \
9093 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9094 u ## NAME ## _type_node = \
9095 make_or_reuse_unsigned_ ## KIND ## _type \
9096 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9097 sat_ ## NAME ## _type_node = \
9098 make_or_reuse_sat_signed_ ## KIND ## _type \
9099 (GET_MODE_BITSIZE (MODE ## mode)); \
9100 sat_u ## NAME ## _type_node = \
9101 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9102 (GET_MODE_BITSIZE (U ## MODE ## mode));
9103
9104 /* Fixed-point type and mode nodes. */
9105 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9106 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9107 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9108 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9109 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9110 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9111 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9112 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9113 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9114 MAKE_FIXED_MODE_NODE (accum, da, DA)
9115 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9116
9117 {
9118 tree t = targetm.build_builtin_va_list ();
9119
9120 /* Many back-ends define record types without setting TYPE_NAME.
9121 If we copied the record type here, we'd keep the original
9122 record type without a name. This breaks name mangling. So,
9123 don't copy record types and let c_common_nodes_and_builtins()
9124 declare the type to be __builtin_va_list. */
9125 if (TREE_CODE (t) != RECORD_TYPE)
9126 t = build_variant_type_copy (t);
9127
9128 va_list_type_node = t;
9129 }
9130 }
9131
9132 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9133
9134 static void
9135 local_define_builtin (const char *name, tree type, enum built_in_function code,
9136 const char *library_name, int ecf_flags)
9137 {
9138 tree decl;
9139
9140 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9141 library_name, NULL_TREE);
9142 if (ecf_flags & ECF_CONST)
9143 TREE_READONLY (decl) = 1;
9144 if (ecf_flags & ECF_PURE)
9145 DECL_PURE_P (decl) = 1;
9146 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9147 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9148 if (ecf_flags & ECF_NORETURN)
9149 TREE_THIS_VOLATILE (decl) = 1;
9150 if (ecf_flags & ECF_NOTHROW)
9151 TREE_NOTHROW (decl) = 1;
9152 if (ecf_flags & ECF_MALLOC)
9153 DECL_IS_MALLOC (decl) = 1;
9154
9155 built_in_decls[code] = decl;
9156 implicit_built_in_decls[code] = decl;
9157 }
9158
9159 /* Call this function after instantiating all builtins that the language
9160 front end cares about. This will build the rest of the builtins that
9161 are relied upon by the tree optimizers and the middle-end. */
9162
9163 void
9164 build_common_builtin_nodes (void)
9165 {
9166 tree tmp, ftype;
9167
9168 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9169 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9170 {
9171 ftype = build_function_type_list (ptr_type_node,
9172 ptr_type_node, const_ptr_type_node,
9173 size_type_node, NULL_TREE);
9174
9175 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9176 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9177 "memcpy", ECF_NOTHROW);
9178 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9179 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9180 "memmove", ECF_NOTHROW);
9181 }
9182
9183 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9184 {
9185 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9186 const_ptr_type_node, size_type_node,
9187 NULL_TREE);
9188 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9189 "memcmp", ECF_PURE | ECF_NOTHROW);
9190 }
9191
9192 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9193 {
9194 ftype = build_function_type_list (ptr_type_node,
9195 ptr_type_node, integer_type_node,
9196 size_type_node, NULL_TREE);
9197 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9198 "memset", ECF_NOTHROW);
9199 }
9200
9201 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9202 {
9203 ftype = build_function_type_list (ptr_type_node,
9204 size_type_node, NULL_TREE);
9205 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9206 "alloca", ECF_MALLOC | ECF_NOTHROW);
9207 }
9208
9209 /* If we're checking the stack, `alloca' can throw. */
9210 if (flag_stack_check)
9211 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9212
9213 ftype = build_function_type_list (void_type_node,
9214 ptr_type_node, ptr_type_node,
9215 ptr_type_node, NULL_TREE);
9216 local_define_builtin ("__builtin_init_trampoline", ftype,
9217 BUILT_IN_INIT_TRAMPOLINE,
9218 "__builtin_init_trampoline", ECF_NOTHROW);
9219
9220 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9221 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9222 BUILT_IN_ADJUST_TRAMPOLINE,
9223 "__builtin_adjust_trampoline",
9224 ECF_CONST | ECF_NOTHROW);
9225
9226 ftype = build_function_type_list (void_type_node,
9227 ptr_type_node, ptr_type_node, NULL_TREE);
9228 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9229 BUILT_IN_NONLOCAL_GOTO,
9230 "__builtin_nonlocal_goto",
9231 ECF_NORETURN | ECF_NOTHROW);
9232
9233 ftype = build_function_type_list (void_type_node,
9234 ptr_type_node, ptr_type_node, NULL_TREE);
9235 local_define_builtin ("__builtin_setjmp_setup", ftype,
9236 BUILT_IN_SETJMP_SETUP,
9237 "__builtin_setjmp_setup", ECF_NOTHROW);
9238
9239 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9240 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9241 BUILT_IN_SETJMP_DISPATCHER,
9242 "__builtin_setjmp_dispatcher",
9243 ECF_PURE | ECF_NOTHROW);
9244
9245 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9246 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9247 BUILT_IN_SETJMP_RECEIVER,
9248 "__builtin_setjmp_receiver", ECF_NOTHROW);
9249
9250 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9251 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9252 "__builtin_stack_save", ECF_NOTHROW);
9253
9254 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9255 local_define_builtin ("__builtin_stack_restore", ftype,
9256 BUILT_IN_STACK_RESTORE,
9257 "__builtin_stack_restore", ECF_NOTHROW);
9258
9259 ftype = build_function_type_list (void_type_node, NULL_TREE);
9260 local_define_builtin ("__builtin_profile_func_enter", ftype,
9261 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9262 local_define_builtin ("__builtin_profile_func_exit", ftype,
9263 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9264
9265 /* If there's a possibility that we might use the ARM EABI, build the
9266 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9267 if (targetm.arm_eabi_unwinder)
9268 {
9269 ftype = build_function_type_list (void_type_node, NULL_TREE);
9270 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9271 BUILT_IN_CXA_END_CLEANUP,
9272 "__cxa_end_cleanup", ECF_NORETURN);
9273 }
9274
9275 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9276 local_define_builtin ("__builtin_unwind_resume", ftype,
9277 BUILT_IN_UNWIND_RESUME,
9278 (USING_SJLJ_EXCEPTIONS
9279 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9280 ECF_NORETURN);
9281
9282 /* The exception object and filter values from the runtime. The argument
9283 must be zero before exception lowering, i.e. from the front end. After
9284 exception lowering, it will be the region number for the exception
9285 landing pad. These functions are PURE instead of CONST to prevent
9286 them from being hoisted past the exception edge that will initialize
9287 its value in the landing pad. */
9288 ftype = build_function_type_list (ptr_type_node,
9289 integer_type_node, NULL_TREE);
9290 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9291 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW);
9292
9293 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9294 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9295 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9296 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW);
9297
9298 ftype = build_function_type_list (void_type_node,
9299 integer_type_node, integer_type_node,
9300 NULL_TREE);
9301 local_define_builtin ("__builtin_eh_copy_values", ftype,
9302 BUILT_IN_EH_COPY_VALUES,
9303 "__builtin_eh_copy_values", ECF_NOTHROW);
9304
9305 /* Complex multiplication and division. These are handled as builtins
9306 rather than optabs because emit_library_call_value doesn't support
9307 complex. Further, we can do slightly better with folding these
9308 beasties if the real and complex parts of the arguments are separate. */
9309 {
9310 int mode;
9311
9312 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9313 {
9314 char mode_name_buf[4], *q;
9315 const char *p;
9316 enum built_in_function mcode, dcode;
9317 tree type, inner_type;
9318
9319 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9320 if (type == NULL)
9321 continue;
9322 inner_type = TREE_TYPE (type);
9323
9324 ftype = build_function_type_list (type, inner_type, inner_type,
9325 inner_type, inner_type, NULL_TREE);
9326
9327 mcode = ((enum built_in_function)
9328 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9329 dcode = ((enum built_in_function)
9330 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9331
9332 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9333 *q = TOLOWER (*p);
9334 *q = '\0';
9335
9336 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9337 local_define_builtin (built_in_names[mcode], ftype, mcode,
9338 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
9339
9340 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9341 local_define_builtin (built_in_names[dcode], ftype, dcode,
9342 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
9343 }
9344 }
9345 }
9346
9347 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9348 better way.
9349
9350 If we requested a pointer to a vector, build up the pointers that
9351 we stripped off while looking for the inner type. Similarly for
9352 return values from functions.
9353
9354 The argument TYPE is the top of the chain, and BOTTOM is the
9355 new type which we will point to. */
9356
9357 tree
9358 reconstruct_complex_type (tree type, tree bottom)
9359 {
9360 tree inner, outer;
9361
9362 if (TREE_CODE (type) == POINTER_TYPE)
9363 {
9364 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9365 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9366 TYPE_REF_CAN_ALIAS_ALL (type));
9367 }
9368 else if (TREE_CODE (type) == REFERENCE_TYPE)
9369 {
9370 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9371 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9372 TYPE_REF_CAN_ALIAS_ALL (type));
9373 }
9374 else if (TREE_CODE (type) == ARRAY_TYPE)
9375 {
9376 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9377 outer = build_array_type (inner, TYPE_DOMAIN (type));
9378 }
9379 else if (TREE_CODE (type) == FUNCTION_TYPE)
9380 {
9381 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9382 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9383 }
9384 else if (TREE_CODE (type) == METHOD_TYPE)
9385 {
9386 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9387 /* The build_method_type_directly() routine prepends 'this' to argument list,
9388 so we must compensate by getting rid of it. */
9389 outer
9390 = build_method_type_directly
9391 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9392 inner,
9393 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9394 }
9395 else if (TREE_CODE (type) == OFFSET_TYPE)
9396 {
9397 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9398 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9399 }
9400 else
9401 return bottom;
9402
9403 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9404 TYPE_QUALS (type));
9405 }
9406
9407 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9408 the inner type. */
9409 tree
9410 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9411 {
9412 int nunits;
9413
9414 switch (GET_MODE_CLASS (mode))
9415 {
9416 case MODE_VECTOR_INT:
9417 case MODE_VECTOR_FLOAT:
9418 case MODE_VECTOR_FRACT:
9419 case MODE_VECTOR_UFRACT:
9420 case MODE_VECTOR_ACCUM:
9421 case MODE_VECTOR_UACCUM:
9422 nunits = GET_MODE_NUNITS (mode);
9423 break;
9424
9425 case MODE_INT:
9426 /* Check that there are no leftover bits. */
9427 gcc_assert (GET_MODE_BITSIZE (mode)
9428 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9429
9430 nunits = GET_MODE_BITSIZE (mode)
9431 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9432 break;
9433
9434 default:
9435 gcc_unreachable ();
9436 }
9437
9438 return make_vector_type (innertype, nunits, mode);
9439 }
9440
9441 /* Similarly, but takes the inner type and number of units, which must be
9442 a power of two. */
9443
9444 tree
9445 build_vector_type (tree innertype, int nunits)
9446 {
9447 return make_vector_type (innertype, nunits, VOIDmode);
9448 }
9449
9450 /* Similarly, but takes the inner type and number of units, which must be
9451 a power of two. */
9452
9453 tree
9454 build_opaque_vector_type (tree innertype, int nunits)
9455 {
9456 tree t;
9457 innertype = build_distinct_type_copy (innertype);
9458 t = make_vector_type (innertype, nunits, VOIDmode);
9459 TYPE_VECTOR_OPAQUE (t) = true;
9460 return t;
9461 }
9462
9463
9464 /* Given an initializer INIT, return TRUE if INIT is zero or some
9465 aggregate of zeros. Otherwise return FALSE. */
9466 bool
9467 initializer_zerop (const_tree init)
9468 {
9469 tree elt;
9470
9471 STRIP_NOPS (init);
9472
9473 switch (TREE_CODE (init))
9474 {
9475 case INTEGER_CST:
9476 return integer_zerop (init);
9477
9478 case REAL_CST:
9479 /* ??? Note that this is not correct for C4X float formats. There,
9480 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9481 negative exponent. */
9482 return real_zerop (init)
9483 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9484
9485 case FIXED_CST:
9486 return fixed_zerop (init);
9487
9488 case COMPLEX_CST:
9489 return integer_zerop (init)
9490 || (real_zerop (init)
9491 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9492 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9493
9494 case VECTOR_CST:
9495 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9496 if (!initializer_zerop (TREE_VALUE (elt)))
9497 return false;
9498 return true;
9499
9500 case CONSTRUCTOR:
9501 {
9502 unsigned HOST_WIDE_INT idx;
9503
9504 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9505 if (!initializer_zerop (elt))
9506 return false;
9507 return true;
9508 }
9509
9510 case STRING_CST:
9511 {
9512 int i;
9513
9514 /* We need to loop through all elements to handle cases like
9515 "\0" and "\0foobar". */
9516 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9517 if (TREE_STRING_POINTER (init)[i] != '\0')
9518 return false;
9519
9520 return true;
9521 }
9522
9523 default:
9524 return false;
9525 }
9526 }
9527
9528 /* Build an empty statement at location LOC. */
9529
9530 tree
9531 build_empty_stmt (location_t loc)
9532 {
9533 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9534 SET_EXPR_LOCATION (t, loc);
9535 return t;
9536 }
9537
9538
9539 /* Build an OpenMP clause with code CODE. LOC is the location of the
9540 clause. */
9541
9542 tree
9543 build_omp_clause (location_t loc, enum omp_clause_code code)
9544 {
9545 tree t;
9546 int size, length;
9547
9548 length = omp_clause_num_ops[code];
9549 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9550
9551 t = ggc_alloc_tree_node (size);
9552 memset (t, 0, size);
9553 TREE_SET_CODE (t, OMP_CLAUSE);
9554 OMP_CLAUSE_SET_CODE (t, code);
9555 OMP_CLAUSE_LOCATION (t) = loc;
9556
9557 #ifdef GATHER_STATISTICS
9558 tree_node_counts[(int) omp_clause_kind]++;
9559 tree_node_sizes[(int) omp_clause_kind] += size;
9560 #endif
9561
9562 return t;
9563 }
9564
9565 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9566 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9567 Except for the CODE and operand count field, other storage for the
9568 object is initialized to zeros. */
9569
9570 tree
9571 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9572 {
9573 tree t;
9574 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9575
9576 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9577 gcc_assert (len >= 1);
9578
9579 #ifdef GATHER_STATISTICS
9580 tree_node_counts[(int) e_kind]++;
9581 tree_node_sizes[(int) e_kind] += length;
9582 #endif
9583
9584 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9585
9586 TREE_SET_CODE (t, code);
9587
9588 /* Can't use TREE_OPERAND to store the length because if checking is
9589 enabled, it will try to check the length before we store it. :-P */
9590 t->exp.operands[0] = build_int_cst (sizetype, len);
9591
9592 return t;
9593 }
9594
9595 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9596 FN and a null static chain slot. NARGS is the number of call arguments
9597 which are specified as "..." arguments. */
9598
9599 tree
9600 build_call_nary (tree return_type, tree fn, int nargs, ...)
9601 {
9602 tree ret;
9603 va_list args;
9604 va_start (args, nargs);
9605 ret = build_call_valist (return_type, fn, nargs, args);
9606 va_end (args);
9607 return ret;
9608 }
9609
9610 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9611 FN and a null static chain slot. NARGS is the number of call arguments
9612 which are specified as a va_list ARGS. */
9613
9614 tree
9615 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9616 {
9617 tree t;
9618 int i;
9619
9620 t = build_vl_exp (CALL_EXPR, nargs + 3);
9621 TREE_TYPE (t) = return_type;
9622 CALL_EXPR_FN (t) = fn;
9623 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9624 for (i = 0; i < nargs; i++)
9625 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9626 process_call_operands (t);
9627 return t;
9628 }
9629
9630 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9631 FN and a null static chain slot. NARGS is the number of call arguments
9632 which are specified as a tree array ARGS. */
9633
9634 tree
9635 build_call_array_loc (location_t loc, tree return_type, tree fn,
9636 int nargs, const tree *args)
9637 {
9638 tree t;
9639 int i;
9640
9641 t = build_vl_exp (CALL_EXPR, nargs + 3);
9642 TREE_TYPE (t) = return_type;
9643 CALL_EXPR_FN (t) = fn;
9644 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9645 for (i = 0; i < nargs; i++)
9646 CALL_EXPR_ARG (t, i) = args[i];
9647 process_call_operands (t);
9648 SET_EXPR_LOCATION (t, loc);
9649 return t;
9650 }
9651
9652 /* Like build_call_array, but takes a VEC. */
9653
9654 tree
9655 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9656 {
9657 tree ret, t;
9658 unsigned int ix;
9659
9660 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9661 TREE_TYPE (ret) = return_type;
9662 CALL_EXPR_FN (ret) = fn;
9663 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9664 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
9665 CALL_EXPR_ARG (ret, ix) = t;
9666 process_call_operands (ret);
9667 return ret;
9668 }
9669
9670
9671 /* Returns true if it is possible to prove that the index of
9672 an array access REF (an ARRAY_REF expression) falls into the
9673 array bounds. */
9674
9675 bool
9676 in_array_bounds_p (tree ref)
9677 {
9678 tree idx = TREE_OPERAND (ref, 1);
9679 tree min, max;
9680
9681 if (TREE_CODE (idx) != INTEGER_CST)
9682 return false;
9683
9684 min = array_ref_low_bound (ref);
9685 max = array_ref_up_bound (ref);
9686 if (!min
9687 || !max
9688 || TREE_CODE (min) != INTEGER_CST
9689 || TREE_CODE (max) != INTEGER_CST)
9690 return false;
9691
9692 if (tree_int_cst_lt (idx, min)
9693 || tree_int_cst_lt (max, idx))
9694 return false;
9695
9696 return true;
9697 }
9698
9699 /* Returns true if it is possible to prove that the range of
9700 an array access REF (an ARRAY_RANGE_REF expression) falls
9701 into the array bounds. */
9702
9703 bool
9704 range_in_array_bounds_p (tree ref)
9705 {
9706 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9707 tree range_min, range_max, min, max;
9708
9709 range_min = TYPE_MIN_VALUE (domain_type);
9710 range_max = TYPE_MAX_VALUE (domain_type);
9711 if (!range_min
9712 || !range_max
9713 || TREE_CODE (range_min) != INTEGER_CST
9714 || TREE_CODE (range_max) != INTEGER_CST)
9715 return false;
9716
9717 min = array_ref_low_bound (ref);
9718 max = array_ref_up_bound (ref);
9719 if (!min
9720 || !max
9721 || TREE_CODE (min) != INTEGER_CST
9722 || TREE_CODE (max) != INTEGER_CST)
9723 return false;
9724
9725 if (tree_int_cst_lt (range_min, min)
9726 || tree_int_cst_lt (max, range_max))
9727 return false;
9728
9729 return true;
9730 }
9731
9732 /* Return true if T (assumed to be a DECL) must be assigned a memory
9733 location. */
9734
9735 bool
9736 needs_to_live_in_memory (const_tree t)
9737 {
9738 if (TREE_CODE (t) == SSA_NAME)
9739 t = SSA_NAME_VAR (t);
9740
9741 return (TREE_ADDRESSABLE (t)
9742 || is_global_var (t)
9743 || (TREE_CODE (t) == RESULT_DECL
9744 && !DECL_BY_REFERENCE (t)
9745 && aggregate_value_p (t, current_function_decl)));
9746 }
9747
9748 /* There are situations in which a language considers record types
9749 compatible which have different field lists. Decide if two fields
9750 are compatible. It is assumed that the parent records are compatible. */
9751
9752 bool
9753 fields_compatible_p (const_tree f1, const_tree f2)
9754 {
9755 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9756 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9757 return false;
9758
9759 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9760 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9761 return false;
9762
9763 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9764 return false;
9765
9766 return true;
9767 }
9768
9769 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9770
9771 tree
9772 find_compatible_field (tree record, tree orig_field)
9773 {
9774 tree f;
9775
9776 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9777 if (TREE_CODE (f) == FIELD_DECL
9778 && fields_compatible_p (f, orig_field))
9779 return f;
9780
9781 /* ??? Why isn't this on the main fields list? */
9782 f = TYPE_VFIELD (record);
9783 if (f && TREE_CODE (f) == FIELD_DECL
9784 && fields_compatible_p (f, orig_field))
9785 return f;
9786
9787 /* ??? We should abort here, but Java appears to do Bad Things
9788 with inherited fields. */
9789 return orig_field;
9790 }
9791
9792 /* Return value of a constant X and sign-extend it. */
9793
9794 HOST_WIDE_INT
9795 int_cst_value (const_tree x)
9796 {
9797 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9798 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9799
9800 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9801 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9802 || TREE_INT_CST_HIGH (x) == -1);
9803
9804 if (bits < HOST_BITS_PER_WIDE_INT)
9805 {
9806 bool negative = ((val >> (bits - 1)) & 1) != 0;
9807 if (negative)
9808 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9809 else
9810 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9811 }
9812
9813 return val;
9814 }
9815
9816 /* Return value of a constant X and sign-extend it. */
9817
9818 HOST_WIDEST_INT
9819 widest_int_cst_value (const_tree x)
9820 {
9821 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9822 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9823
9824 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9825 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9826 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9827 << HOST_BITS_PER_WIDE_INT);
9828 #else
9829 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9830 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9831 || TREE_INT_CST_HIGH (x) == -1);
9832 #endif
9833
9834 if (bits < HOST_BITS_PER_WIDEST_INT)
9835 {
9836 bool negative = ((val >> (bits - 1)) & 1) != 0;
9837 if (negative)
9838 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9839 else
9840 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9841 }
9842
9843 return val;
9844 }
9845
9846 /* If TYPE is an integral type, return an equivalent type which is
9847 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9848 return TYPE itself. */
9849
9850 tree
9851 signed_or_unsigned_type_for (int unsignedp, tree type)
9852 {
9853 tree t = type;
9854 if (POINTER_TYPE_P (type))
9855 {
9856 /* If the pointer points to the normal address space, use the
9857 size_type_node. Otherwise use an appropriate size for the pointer
9858 based on the named address space it points to. */
9859 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9860 t = size_type_node;
9861 else
9862 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9863 }
9864
9865 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9866 return t;
9867
9868 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9869 }
9870
9871 /* Returns unsigned variant of TYPE. */
9872
9873 tree
9874 unsigned_type_for (tree type)
9875 {
9876 return signed_or_unsigned_type_for (1, type);
9877 }
9878
9879 /* Returns signed variant of TYPE. */
9880
9881 tree
9882 signed_type_for (tree type)
9883 {
9884 return signed_or_unsigned_type_for (0, type);
9885 }
9886
9887 /* Returns the largest value obtainable by casting something in INNER type to
9888 OUTER type. */
9889
9890 tree
9891 upper_bound_in_type (tree outer, tree inner)
9892 {
9893 unsigned HOST_WIDE_INT lo, hi;
9894 unsigned int det = 0;
9895 unsigned oprec = TYPE_PRECISION (outer);
9896 unsigned iprec = TYPE_PRECISION (inner);
9897 unsigned prec;
9898
9899 /* Compute a unique number for every combination. */
9900 det |= (oprec > iprec) ? 4 : 0;
9901 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9902 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9903
9904 /* Determine the exponent to use. */
9905 switch (det)
9906 {
9907 case 0:
9908 case 1:
9909 /* oprec <= iprec, outer: signed, inner: don't care. */
9910 prec = oprec - 1;
9911 break;
9912 case 2:
9913 case 3:
9914 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9915 prec = oprec;
9916 break;
9917 case 4:
9918 /* oprec > iprec, outer: signed, inner: signed. */
9919 prec = iprec - 1;
9920 break;
9921 case 5:
9922 /* oprec > iprec, outer: signed, inner: unsigned. */
9923 prec = iprec;
9924 break;
9925 case 6:
9926 /* oprec > iprec, outer: unsigned, inner: signed. */
9927 prec = oprec;
9928 break;
9929 case 7:
9930 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9931 prec = iprec;
9932 break;
9933 default:
9934 gcc_unreachable ();
9935 }
9936
9937 /* Compute 2^^prec - 1. */
9938 if (prec <= HOST_BITS_PER_WIDE_INT)
9939 {
9940 hi = 0;
9941 lo = ((~(unsigned HOST_WIDE_INT) 0)
9942 >> (HOST_BITS_PER_WIDE_INT - prec));
9943 }
9944 else
9945 {
9946 hi = ((~(unsigned HOST_WIDE_INT) 0)
9947 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9948 lo = ~(unsigned HOST_WIDE_INT) 0;
9949 }
9950
9951 return build_int_cst_wide (outer, lo, hi);
9952 }
9953
9954 /* Returns the smallest value obtainable by casting something in INNER type to
9955 OUTER type. */
9956
9957 tree
9958 lower_bound_in_type (tree outer, tree inner)
9959 {
9960 unsigned HOST_WIDE_INT lo, hi;
9961 unsigned oprec = TYPE_PRECISION (outer);
9962 unsigned iprec = TYPE_PRECISION (inner);
9963
9964 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9965 and obtain 0. */
9966 if (TYPE_UNSIGNED (outer)
9967 /* If we are widening something of an unsigned type, OUTER type
9968 contains all values of INNER type. In particular, both INNER
9969 and OUTER types have zero in common. */
9970 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9971 lo = hi = 0;
9972 else
9973 {
9974 /* If we are widening a signed type to another signed type, we
9975 want to obtain -2^^(iprec-1). If we are keeping the
9976 precision or narrowing to a signed type, we want to obtain
9977 -2^(oprec-1). */
9978 unsigned prec = oprec > iprec ? iprec : oprec;
9979
9980 if (prec <= HOST_BITS_PER_WIDE_INT)
9981 {
9982 hi = ~(unsigned HOST_WIDE_INT) 0;
9983 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
9984 }
9985 else
9986 {
9987 hi = ((~(unsigned HOST_WIDE_INT) 0)
9988 << (prec - HOST_BITS_PER_WIDE_INT - 1));
9989 lo = 0;
9990 }
9991 }
9992
9993 return build_int_cst_wide (outer, lo, hi);
9994 }
9995
9996 /* Return nonzero if two operands that are suitable for PHI nodes are
9997 necessarily equal. Specifically, both ARG0 and ARG1 must be either
9998 SSA_NAME or invariant. Note that this is strictly an optimization.
9999 That is, callers of this function can directly call operand_equal_p
10000 and get the same result, only slower. */
10001
10002 int
10003 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10004 {
10005 if (arg0 == arg1)
10006 return 1;
10007 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10008 return 0;
10009 return operand_equal_p (arg0, arg1, 0);
10010 }
10011
10012 /* Returns number of zeros at the end of binary representation of X.
10013
10014 ??? Use ffs if available? */
10015
10016 tree
10017 num_ending_zeros (const_tree x)
10018 {
10019 unsigned HOST_WIDE_INT fr, nfr;
10020 unsigned num, abits;
10021 tree type = TREE_TYPE (x);
10022
10023 if (TREE_INT_CST_LOW (x) == 0)
10024 {
10025 num = HOST_BITS_PER_WIDE_INT;
10026 fr = TREE_INT_CST_HIGH (x);
10027 }
10028 else
10029 {
10030 num = 0;
10031 fr = TREE_INT_CST_LOW (x);
10032 }
10033
10034 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10035 {
10036 nfr = fr >> abits;
10037 if (nfr << abits == fr)
10038 {
10039 num += abits;
10040 fr = nfr;
10041 }
10042 }
10043
10044 if (num > TYPE_PRECISION (type))
10045 num = TYPE_PRECISION (type);
10046
10047 return build_int_cst_type (type, num);
10048 }
10049
10050
10051 #define WALK_SUBTREE(NODE) \
10052 do \
10053 { \
10054 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10055 if (result) \
10056 return result; \
10057 } \
10058 while (0)
10059
10060 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10061 be walked whenever a type is seen in the tree. Rest of operands and return
10062 value are as for walk_tree. */
10063
10064 static tree
10065 walk_type_fields (tree type, walk_tree_fn func, void *data,
10066 struct pointer_set_t *pset, walk_tree_lh lh)
10067 {
10068 tree result = NULL_TREE;
10069
10070 switch (TREE_CODE (type))
10071 {
10072 case POINTER_TYPE:
10073 case REFERENCE_TYPE:
10074 /* We have to worry about mutually recursive pointers. These can't
10075 be written in C. They can in Ada. It's pathological, but
10076 there's an ACATS test (c38102a) that checks it. Deal with this
10077 by checking if we're pointing to another pointer, that one
10078 points to another pointer, that one does too, and we have no htab.
10079 If so, get a hash table. We check three levels deep to avoid
10080 the cost of the hash table if we don't need one. */
10081 if (POINTER_TYPE_P (TREE_TYPE (type))
10082 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10083 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10084 && !pset)
10085 {
10086 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10087 func, data);
10088 if (result)
10089 return result;
10090
10091 break;
10092 }
10093
10094 /* ... fall through ... */
10095
10096 case COMPLEX_TYPE:
10097 WALK_SUBTREE (TREE_TYPE (type));
10098 break;
10099
10100 case METHOD_TYPE:
10101 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10102
10103 /* Fall through. */
10104
10105 case FUNCTION_TYPE:
10106 WALK_SUBTREE (TREE_TYPE (type));
10107 {
10108 tree arg;
10109
10110 /* We never want to walk into default arguments. */
10111 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10112 WALK_SUBTREE (TREE_VALUE (arg));
10113 }
10114 break;
10115
10116 case ARRAY_TYPE:
10117 /* Don't follow this nodes's type if a pointer for fear that
10118 we'll have infinite recursion. If we have a PSET, then we
10119 need not fear. */
10120 if (pset
10121 || (!POINTER_TYPE_P (TREE_TYPE (type))
10122 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10123 WALK_SUBTREE (TREE_TYPE (type));
10124 WALK_SUBTREE (TYPE_DOMAIN (type));
10125 break;
10126
10127 case OFFSET_TYPE:
10128 WALK_SUBTREE (TREE_TYPE (type));
10129 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10130 break;
10131
10132 default:
10133 break;
10134 }
10135
10136 return NULL_TREE;
10137 }
10138
10139 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10140 called with the DATA and the address of each sub-tree. If FUNC returns a
10141 non-NULL value, the traversal is stopped, and the value returned by FUNC
10142 is returned. If PSET is non-NULL it is used to record the nodes visited,
10143 and to avoid visiting a node more than once. */
10144
10145 tree
10146 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10147 struct pointer_set_t *pset, walk_tree_lh lh)
10148 {
10149 enum tree_code code;
10150 int walk_subtrees;
10151 tree result;
10152
10153 #define WALK_SUBTREE_TAIL(NODE) \
10154 do \
10155 { \
10156 tp = & (NODE); \
10157 goto tail_recurse; \
10158 } \
10159 while (0)
10160
10161 tail_recurse:
10162 /* Skip empty subtrees. */
10163 if (!*tp)
10164 return NULL_TREE;
10165
10166 /* Don't walk the same tree twice, if the user has requested
10167 that we avoid doing so. */
10168 if (pset && pointer_set_insert (pset, *tp))
10169 return NULL_TREE;
10170
10171 /* Call the function. */
10172 walk_subtrees = 1;
10173 result = (*func) (tp, &walk_subtrees, data);
10174
10175 /* If we found something, return it. */
10176 if (result)
10177 return result;
10178
10179 code = TREE_CODE (*tp);
10180
10181 /* Even if we didn't, FUNC may have decided that there was nothing
10182 interesting below this point in the tree. */
10183 if (!walk_subtrees)
10184 {
10185 /* But we still need to check our siblings. */
10186 if (code == TREE_LIST)
10187 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10188 else if (code == OMP_CLAUSE)
10189 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10190 else
10191 return NULL_TREE;
10192 }
10193
10194 if (lh)
10195 {
10196 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10197 if (result || !walk_subtrees)
10198 return result;
10199 }
10200
10201 switch (code)
10202 {
10203 case ERROR_MARK:
10204 case IDENTIFIER_NODE:
10205 case INTEGER_CST:
10206 case REAL_CST:
10207 case FIXED_CST:
10208 case VECTOR_CST:
10209 case STRING_CST:
10210 case BLOCK:
10211 case PLACEHOLDER_EXPR:
10212 case SSA_NAME:
10213 case FIELD_DECL:
10214 case RESULT_DECL:
10215 /* None of these have subtrees other than those already walked
10216 above. */
10217 break;
10218
10219 case TREE_LIST:
10220 WALK_SUBTREE (TREE_VALUE (*tp));
10221 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10222 break;
10223
10224 case TREE_VEC:
10225 {
10226 int len = TREE_VEC_LENGTH (*tp);
10227
10228 if (len == 0)
10229 break;
10230
10231 /* Walk all elements but the first. */
10232 while (--len)
10233 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10234
10235 /* Now walk the first one as a tail call. */
10236 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10237 }
10238
10239 case COMPLEX_CST:
10240 WALK_SUBTREE (TREE_REALPART (*tp));
10241 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10242
10243 case CONSTRUCTOR:
10244 {
10245 unsigned HOST_WIDE_INT idx;
10246 constructor_elt *ce;
10247
10248 for (idx = 0;
10249 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10250 idx++)
10251 WALK_SUBTREE (ce->value);
10252 }
10253 break;
10254
10255 case SAVE_EXPR:
10256 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10257
10258 case BIND_EXPR:
10259 {
10260 tree decl;
10261 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10262 {
10263 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10264 into declarations that are just mentioned, rather than
10265 declared; they don't really belong to this part of the tree.
10266 And, we can see cycles: the initializer for a declaration
10267 can refer to the declaration itself. */
10268 WALK_SUBTREE (DECL_INITIAL (decl));
10269 WALK_SUBTREE (DECL_SIZE (decl));
10270 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10271 }
10272 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10273 }
10274
10275 case STATEMENT_LIST:
10276 {
10277 tree_stmt_iterator i;
10278 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10279 WALK_SUBTREE (*tsi_stmt_ptr (i));
10280 }
10281 break;
10282
10283 case OMP_CLAUSE:
10284 switch (OMP_CLAUSE_CODE (*tp))
10285 {
10286 case OMP_CLAUSE_PRIVATE:
10287 case OMP_CLAUSE_SHARED:
10288 case OMP_CLAUSE_FIRSTPRIVATE:
10289 case OMP_CLAUSE_COPYIN:
10290 case OMP_CLAUSE_COPYPRIVATE:
10291 case OMP_CLAUSE_IF:
10292 case OMP_CLAUSE_NUM_THREADS:
10293 case OMP_CLAUSE_SCHEDULE:
10294 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10295 /* FALLTHRU */
10296
10297 case OMP_CLAUSE_NOWAIT:
10298 case OMP_CLAUSE_ORDERED:
10299 case OMP_CLAUSE_DEFAULT:
10300 case OMP_CLAUSE_UNTIED:
10301 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10302
10303 case OMP_CLAUSE_LASTPRIVATE:
10304 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10305 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10306 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10307
10308 case OMP_CLAUSE_COLLAPSE:
10309 {
10310 int i;
10311 for (i = 0; i < 3; i++)
10312 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10313 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10314 }
10315
10316 case OMP_CLAUSE_REDUCTION:
10317 {
10318 int i;
10319 for (i = 0; i < 4; i++)
10320 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10321 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10322 }
10323
10324 default:
10325 gcc_unreachable ();
10326 }
10327 break;
10328
10329 case TARGET_EXPR:
10330 {
10331 int i, len;
10332
10333 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10334 But, we only want to walk once. */
10335 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10336 for (i = 0; i < len; ++i)
10337 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10338 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10339 }
10340
10341 case DECL_EXPR:
10342 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10343 defining. We only want to walk into these fields of a type in this
10344 case and not in the general case of a mere reference to the type.
10345
10346 The criterion is as follows: if the field can be an expression, it
10347 must be walked only here. This should be in keeping with the fields
10348 that are directly gimplified in gimplify_type_sizes in order for the
10349 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10350 variable-sized types.
10351
10352 Note that DECLs get walked as part of processing the BIND_EXPR. */
10353 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10354 {
10355 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10356 if (TREE_CODE (*type_p) == ERROR_MARK)
10357 return NULL_TREE;
10358
10359 /* Call the function for the type. See if it returns anything or
10360 doesn't want us to continue. If we are to continue, walk both
10361 the normal fields and those for the declaration case. */
10362 result = (*func) (type_p, &walk_subtrees, data);
10363 if (result || !walk_subtrees)
10364 return result;
10365
10366 result = walk_type_fields (*type_p, func, data, pset, lh);
10367 if (result)
10368 return result;
10369
10370 /* If this is a record type, also walk the fields. */
10371 if (RECORD_OR_UNION_TYPE_P (*type_p))
10372 {
10373 tree field;
10374
10375 for (field = TYPE_FIELDS (*type_p); field;
10376 field = DECL_CHAIN (field))
10377 {
10378 /* We'd like to look at the type of the field, but we can
10379 easily get infinite recursion. So assume it's pointed
10380 to elsewhere in the tree. Also, ignore things that
10381 aren't fields. */
10382 if (TREE_CODE (field) != FIELD_DECL)
10383 continue;
10384
10385 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10386 WALK_SUBTREE (DECL_SIZE (field));
10387 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10388 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10389 WALK_SUBTREE (DECL_QUALIFIER (field));
10390 }
10391 }
10392
10393 /* Same for scalar types. */
10394 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10395 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10396 || TREE_CODE (*type_p) == INTEGER_TYPE
10397 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10398 || TREE_CODE (*type_p) == REAL_TYPE)
10399 {
10400 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10401 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10402 }
10403
10404 WALK_SUBTREE (TYPE_SIZE (*type_p));
10405 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10406 }
10407 /* FALLTHRU */
10408
10409 default:
10410 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10411 {
10412 int i, len;
10413
10414 /* Walk over all the sub-trees of this operand. */
10415 len = TREE_OPERAND_LENGTH (*tp);
10416
10417 /* Go through the subtrees. We need to do this in forward order so
10418 that the scope of a FOR_EXPR is handled properly. */
10419 if (len)
10420 {
10421 for (i = 0; i < len - 1; ++i)
10422 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10423 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10424 }
10425 }
10426 /* If this is a type, walk the needed fields in the type. */
10427 else if (TYPE_P (*tp))
10428 return walk_type_fields (*tp, func, data, pset, lh);
10429 break;
10430 }
10431
10432 /* We didn't find what we were looking for. */
10433 return NULL_TREE;
10434
10435 #undef WALK_SUBTREE_TAIL
10436 }
10437 #undef WALK_SUBTREE
10438
10439 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10440
10441 tree
10442 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10443 walk_tree_lh lh)
10444 {
10445 tree result;
10446 struct pointer_set_t *pset;
10447
10448 pset = pointer_set_create ();
10449 result = walk_tree_1 (tp, func, data, pset, lh);
10450 pointer_set_destroy (pset);
10451 return result;
10452 }
10453
10454
10455 tree *
10456 tree_block (tree t)
10457 {
10458 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10459
10460 if (IS_EXPR_CODE_CLASS (c))
10461 return &t->exp.block;
10462 gcc_unreachable ();
10463 return NULL;
10464 }
10465
10466 /* Create a nameless artificial label and put it in the current
10467 function context. The label has a location of LOC. Returns the
10468 newly created label. */
10469
10470 tree
10471 create_artificial_label (location_t loc)
10472 {
10473 tree lab = build_decl (loc,
10474 LABEL_DECL, NULL_TREE, void_type_node);
10475
10476 DECL_ARTIFICIAL (lab) = 1;
10477 DECL_IGNORED_P (lab) = 1;
10478 DECL_CONTEXT (lab) = current_function_decl;
10479 return lab;
10480 }
10481
10482 /* Given a tree, try to return a useful variable name that we can use
10483 to prefix a temporary that is being assigned the value of the tree.
10484 I.E. given <temp> = &A, return A. */
10485
10486 const char *
10487 get_name (tree t)
10488 {
10489 tree stripped_decl;
10490
10491 stripped_decl = t;
10492 STRIP_NOPS (stripped_decl);
10493 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10494 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10495 else
10496 {
10497 switch (TREE_CODE (stripped_decl))
10498 {
10499 case ADDR_EXPR:
10500 return get_name (TREE_OPERAND (stripped_decl, 0));
10501 default:
10502 return NULL;
10503 }
10504 }
10505 }
10506
10507 /* Return true if TYPE has a variable argument list. */
10508
10509 bool
10510 stdarg_p (tree fntype)
10511 {
10512 function_args_iterator args_iter;
10513 tree n = NULL_TREE, t;
10514
10515 if (!fntype)
10516 return false;
10517
10518 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10519 {
10520 n = t;
10521 }
10522
10523 return n != NULL_TREE && n != void_type_node;
10524 }
10525
10526 /* Return true if TYPE has a prototype. */
10527
10528 bool
10529 prototype_p (tree fntype)
10530 {
10531 tree t;
10532
10533 gcc_assert (fntype != NULL_TREE);
10534
10535 t = TYPE_ARG_TYPES (fntype);
10536 return (t != NULL_TREE);
10537 }
10538
10539 /* If BLOCK is inlined from an __attribute__((__artificial__))
10540 routine, return pointer to location from where it has been
10541 called. */
10542 location_t *
10543 block_nonartificial_location (tree block)
10544 {
10545 location_t *ret = NULL;
10546
10547 while (block && TREE_CODE (block) == BLOCK
10548 && BLOCK_ABSTRACT_ORIGIN (block))
10549 {
10550 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10551
10552 while (TREE_CODE (ao) == BLOCK
10553 && BLOCK_ABSTRACT_ORIGIN (ao)
10554 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10555 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10556
10557 if (TREE_CODE (ao) == FUNCTION_DECL)
10558 {
10559 /* If AO is an artificial inline, point RET to the
10560 call site locus at which it has been inlined and continue
10561 the loop, in case AO's caller is also an artificial
10562 inline. */
10563 if (DECL_DECLARED_INLINE_P (ao)
10564 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10565 ret = &BLOCK_SOURCE_LOCATION (block);
10566 else
10567 break;
10568 }
10569 else if (TREE_CODE (ao) != BLOCK)
10570 break;
10571
10572 block = BLOCK_SUPERCONTEXT (block);
10573 }
10574 return ret;
10575 }
10576
10577
10578 /* If EXP is inlined from an __attribute__((__artificial__))
10579 function, return the location of the original call expression. */
10580
10581 location_t
10582 tree_nonartificial_location (tree exp)
10583 {
10584 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10585
10586 if (loc)
10587 return *loc;
10588 else
10589 return EXPR_LOCATION (exp);
10590 }
10591
10592
10593 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10594 nodes. */
10595
10596 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10597
10598 static hashval_t
10599 cl_option_hash_hash (const void *x)
10600 {
10601 const_tree const t = (const_tree) x;
10602 const char *p;
10603 size_t i;
10604 size_t len = 0;
10605 hashval_t hash = 0;
10606
10607 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10608 {
10609 p = (const char *)TREE_OPTIMIZATION (t);
10610 len = sizeof (struct cl_optimization);
10611 }
10612
10613 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10614 {
10615 p = (const char *)TREE_TARGET_OPTION (t);
10616 len = sizeof (struct cl_target_option);
10617 }
10618
10619 else
10620 gcc_unreachable ();
10621
10622 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10623 something else. */
10624 for (i = 0; i < len; i++)
10625 if (p[i])
10626 hash = (hash << 4) ^ ((i << 2) | p[i]);
10627
10628 return hash;
10629 }
10630
10631 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10632 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10633 same. */
10634
10635 static int
10636 cl_option_hash_eq (const void *x, const void *y)
10637 {
10638 const_tree const xt = (const_tree) x;
10639 const_tree const yt = (const_tree) y;
10640 const char *xp;
10641 const char *yp;
10642 size_t len;
10643
10644 if (TREE_CODE (xt) != TREE_CODE (yt))
10645 return 0;
10646
10647 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10648 {
10649 xp = (const char *)TREE_OPTIMIZATION (xt);
10650 yp = (const char *)TREE_OPTIMIZATION (yt);
10651 len = sizeof (struct cl_optimization);
10652 }
10653
10654 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10655 {
10656 xp = (const char *)TREE_TARGET_OPTION (xt);
10657 yp = (const char *)TREE_TARGET_OPTION (yt);
10658 len = sizeof (struct cl_target_option);
10659 }
10660
10661 else
10662 gcc_unreachable ();
10663
10664 return (memcmp (xp, yp, len) == 0);
10665 }
10666
10667 /* Build an OPTIMIZATION_NODE based on the current options. */
10668
10669 tree
10670 build_optimization_node (void)
10671 {
10672 tree t;
10673 void **slot;
10674
10675 /* Use the cache of optimization nodes. */
10676
10677 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
10678
10679 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10680 t = (tree) *slot;
10681 if (!t)
10682 {
10683 /* Insert this one into the hash table. */
10684 t = cl_optimization_node;
10685 *slot = t;
10686
10687 /* Make a new node for next time round. */
10688 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10689 }
10690
10691 return t;
10692 }
10693
10694 /* Build a TARGET_OPTION_NODE based on the current options. */
10695
10696 tree
10697 build_target_option_node (void)
10698 {
10699 tree t;
10700 void **slot;
10701
10702 /* Use the cache of optimization nodes. */
10703
10704 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
10705
10706 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10707 t = (tree) *slot;
10708 if (!t)
10709 {
10710 /* Insert this one into the hash table. */
10711 t = cl_target_option_node;
10712 *slot = t;
10713
10714 /* Make a new node for next time round. */
10715 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10716 }
10717
10718 return t;
10719 }
10720
10721 /* Determine the "ultimate origin" of a block. The block may be an inlined
10722 instance of an inlined instance of a block which is local to an inline
10723 function, so we have to trace all of the way back through the origin chain
10724 to find out what sort of node actually served as the original seed for the
10725 given block. */
10726
10727 tree
10728 block_ultimate_origin (const_tree block)
10729 {
10730 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10731
10732 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10733 nodes in the function to point to themselves; ignore that if
10734 we're trying to output the abstract instance of this function. */
10735 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10736 return NULL_TREE;
10737
10738 if (immediate_origin == NULL_TREE)
10739 return NULL_TREE;
10740 else
10741 {
10742 tree ret_val;
10743 tree lookahead = immediate_origin;
10744
10745 do
10746 {
10747 ret_val = lookahead;
10748 lookahead = (TREE_CODE (ret_val) == BLOCK
10749 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10750 }
10751 while (lookahead != NULL && lookahead != ret_val);
10752
10753 /* The block's abstract origin chain may not be the *ultimate* origin of
10754 the block. It could lead to a DECL that has an abstract origin set.
10755 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10756 will give us if it has one). Note that DECL's abstract origins are
10757 supposed to be the most distant ancestor (or so decl_ultimate_origin
10758 claims), so we don't need to loop following the DECL origins. */
10759 if (DECL_P (ret_val))
10760 return DECL_ORIGIN (ret_val);
10761
10762 return ret_val;
10763 }
10764 }
10765
10766 /* Return true if T1 and T2 are equivalent lists. */
10767
10768 bool
10769 list_equal_p (const_tree t1, const_tree t2)
10770 {
10771 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10772 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10773 return false;
10774 return !t1 && !t2;
10775 }
10776
10777 /* Return true iff conversion in EXP generates no instruction. Mark
10778 it inline so that we fully inline into the stripping functions even
10779 though we have two uses of this function. */
10780
10781 static inline bool
10782 tree_nop_conversion (const_tree exp)
10783 {
10784 tree outer_type, inner_type;
10785
10786 if (!CONVERT_EXPR_P (exp)
10787 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10788 return false;
10789 if (TREE_OPERAND (exp, 0) == error_mark_node)
10790 return false;
10791
10792 outer_type = TREE_TYPE (exp);
10793 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10794
10795 if (!inner_type)
10796 return false;
10797
10798 /* Use precision rather then machine mode when we can, which gives
10799 the correct answer even for submode (bit-field) types. */
10800 if ((INTEGRAL_TYPE_P (outer_type)
10801 || POINTER_TYPE_P (outer_type)
10802 || TREE_CODE (outer_type) == OFFSET_TYPE)
10803 && (INTEGRAL_TYPE_P (inner_type)
10804 || POINTER_TYPE_P (inner_type)
10805 || TREE_CODE (inner_type) == OFFSET_TYPE))
10806 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10807
10808 /* Otherwise fall back on comparing machine modes (e.g. for
10809 aggregate types, floats). */
10810 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10811 }
10812
10813 /* Return true iff conversion in EXP generates no instruction. Don't
10814 consider conversions changing the signedness. */
10815
10816 static bool
10817 tree_sign_nop_conversion (const_tree exp)
10818 {
10819 tree outer_type, inner_type;
10820
10821 if (!tree_nop_conversion (exp))
10822 return false;
10823
10824 outer_type = TREE_TYPE (exp);
10825 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10826
10827 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10828 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10829 }
10830
10831 /* Strip conversions from EXP according to tree_nop_conversion and
10832 return the resulting expression. */
10833
10834 tree
10835 tree_strip_nop_conversions (tree exp)
10836 {
10837 while (tree_nop_conversion (exp))
10838 exp = TREE_OPERAND (exp, 0);
10839 return exp;
10840 }
10841
10842 /* Strip conversions from EXP according to tree_sign_nop_conversion
10843 and return the resulting expression. */
10844
10845 tree
10846 tree_strip_sign_nop_conversions (tree exp)
10847 {
10848 while (tree_sign_nop_conversion (exp))
10849 exp = TREE_OPERAND (exp, 0);
10850 return exp;
10851 }
10852
10853 static GTY(()) tree gcc_eh_personality_decl;
10854
10855 /* Return the GCC personality function decl. */
10856
10857 tree
10858 lhd_gcc_personality (void)
10859 {
10860 if (!gcc_eh_personality_decl)
10861 gcc_eh_personality_decl
10862 = build_personality_function (USING_SJLJ_EXCEPTIONS
10863 ? "__gcc_personality_sj0"
10864 : "__gcc_personality_v0");
10865
10866 return gcc_eh_personality_decl;
10867 }
10868
10869 /* Try to find a base info of BINFO that would have its field decl at offset
10870 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10871 found, return, otherwise return NULL_TREE. */
10872
10873 tree
10874 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10875 {
10876 tree type;
10877
10878 if (offset == 0)
10879 return binfo;
10880
10881 type = TREE_TYPE (binfo);
10882 while (offset > 0)
10883 {
10884 tree base_binfo, found_binfo;
10885 HOST_WIDE_INT pos, size;
10886 tree fld;
10887 int i;
10888
10889 if (TREE_CODE (type) != RECORD_TYPE)
10890 return NULL_TREE;
10891
10892 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
10893 {
10894 if (TREE_CODE (fld) != FIELD_DECL)
10895 continue;
10896
10897 pos = int_bit_position (fld);
10898 size = tree_low_cst (DECL_SIZE (fld), 1);
10899 if (pos <= offset && (pos + size) > offset)
10900 break;
10901 }
10902 if (!fld)
10903 return NULL_TREE;
10904
10905 found_binfo = NULL_TREE;
10906 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
10907 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
10908 {
10909 found_binfo = base_binfo;
10910 break;
10911 }
10912
10913 if (!found_binfo)
10914 return NULL_TREE;
10915
10916 type = TREE_TYPE (fld);
10917 binfo = found_binfo;
10918 offset -= pos;
10919 }
10920 if (type != expected_type)
10921 return NULL_TREE;
10922 return binfo;
10923 }
10924
10925 /* Returns true if X is a typedef decl. */
10926
10927 bool
10928 is_typedef_decl (tree x)
10929 {
10930 return (x && TREE_CODE (x) == TYPE_DECL
10931 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
10932 }
10933
10934 /* Returns true iff TYPE is a type variant created for a typedef. */
10935
10936 bool
10937 typedef_variant_p (tree type)
10938 {
10939 return is_typedef_decl (TYPE_NAME (type));
10940 }
10941
10942 #include "gt-tree.h"