builtin-types.def (BT_INT_PTR, [...]): New.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack *h, void *obj);
51
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
54
55 int tree_node_counts[(int) all_kinds];
56 int tree_node_sizes[(int) all_kinds];
57
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names[] = {
60 "decls",
61 "types",
62 "blocks",
63 "stmts",
64 "refs",
65 "exprs",
66 "constants",
67 "identifiers",
68 "perm_tree_lists",
69 "temp_tree_lists",
70 "vecs",
71 "random kinds",
72 "lang_decl kinds",
73 "lang_type kinds"
74 };
75 #endif /* GATHER_STATISTICS */
76
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid = 1;
81
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
84
85 struct type_hash GTY(())
86 {
87 unsigned long hash;
88 tree type;
89 };
90
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
93
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
100
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
102 htab_t type_hash_table;
103
104 static void set_type_quals (tree, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree);
109 static tree make_vector (enum machine_mode, tree, int);
110 static int type_hash_marked_p (const void *);
111
112 tree global_trees[TI_MAX];
113 tree integer_types[itk_none];
114 \f
115 /* Init tree.c. */
116
117 void
118 init_ttree (void)
119 {
120 /* Initialize the hash table of types. */
121 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
122 type_hash_eq, 0);
123 }
124
125 \f
126 /* The name of the object as the assembler will see it (but before any
127 translations made by ASM_OUTPUT_LABELREF). Often this is the same
128 as DECL_NAME. It is an IDENTIFIER_NODE. */
129 tree
130 decl_assembler_name (tree decl)
131 {
132 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
133 (*lang_hooks.set_decl_assembler_name) (decl);
134 return DECL_CHECK (decl)->decl.assembler_name;
135 }
136
137 /* Compute the number of bytes occupied by 'node'. This routine only
138 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
139 size_t
140 tree_size (tree node)
141 {
142 enum tree_code code = TREE_CODE (node);
143
144 switch (TREE_CODE_CLASS (code))
145 {
146 case 'd': /* A decl node */
147 return sizeof (struct tree_decl);
148
149 case 't': /* a type node */
150 return sizeof (struct tree_type);
151
152 case 'b': /* a lexical block node */
153 return sizeof (struct tree_block);
154
155 case 'r': /* a reference */
156 case 'e': /* an expression */
157 case 's': /* an expression with side effects */
158 case '<': /* a comparison expression */
159 case '1': /* a unary arithmetic expression */
160 case '2': /* a binary arithmetic expression */
161 return (sizeof (struct tree_exp)
162 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
163
164 case 'c': /* a constant */
165 switch (code)
166 {
167 case INTEGER_CST: return sizeof (struct tree_int_cst);
168 case REAL_CST: return sizeof (struct tree_real_cst);
169 case COMPLEX_CST: return sizeof (struct tree_complex);
170 case VECTOR_CST: return sizeof (struct tree_vector);
171 case STRING_CST: return sizeof (struct tree_string);
172 default:
173 return (*lang_hooks.tree_size) (code);
174 }
175
176 case 'x': /* something random, like an identifier. */
177 switch (code)
178 {
179 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
180 case TREE_LIST: return sizeof (struct tree_list);
181 case TREE_VEC: return (sizeof (struct tree_vec)
182 + TREE_VEC_LENGTH(node) * sizeof(char *)
183 - sizeof (char *));
184
185 case ERROR_MARK:
186 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
187
188 default:
189 return (*lang_hooks.tree_size) (code);
190 }
191
192 default:
193 abort ();
194 }
195 }
196
197 /* Return a newly allocated node of code CODE.
198 For decl and type nodes, some other fields are initialized.
199 The rest of the node is initialized to zero.
200
201 Achoo! I got a code in the node. */
202
203 tree
204 make_node (enum tree_code code)
205 {
206 tree t;
207 int type = TREE_CODE_CLASS (code);
208 size_t length;
209 #ifdef GATHER_STATISTICS
210 tree_node_kind kind;
211 #endif
212 struct tree_common ttmp;
213
214 /* We can't allocate a TREE_VEC without knowing how many elements
215 it will have. */
216 if (code == TREE_VEC)
217 abort ();
218
219 TREE_SET_CODE ((tree)&ttmp, code);
220 length = tree_size ((tree)&ttmp);
221
222 #ifdef GATHER_STATISTICS
223 switch (type)
224 {
225 case 'd': /* A decl node */
226 kind = d_kind;
227 break;
228
229 case 't': /* a type node */
230 kind = t_kind;
231 break;
232
233 case 'b': /* a lexical block */
234 kind = b_kind;
235 break;
236
237 case 's': /* an expression with side effects */
238 kind = s_kind;
239 break;
240
241 case 'r': /* a reference */
242 kind = r_kind;
243 break;
244
245 case 'e': /* an expression */
246 case '<': /* a comparison expression */
247 case '1': /* a unary arithmetic expression */
248 case '2': /* a binary arithmetic expression */
249 kind = e_kind;
250 break;
251
252 case 'c': /* a constant */
253 kind = c_kind;
254 break;
255
256 case 'x': /* something random, like an identifier. */
257 if (code == IDENTIFIER_NODE)
258 kind = id_kind;
259 else if (code == TREE_VEC)
260 kind = vec_kind;
261 else
262 kind = x_kind;
263 break;
264
265 default:
266 abort ();
267 }
268
269 tree_node_counts[(int) kind]++;
270 tree_node_sizes[(int) kind] += length;
271 #endif
272
273 t = ggc_alloc_tree (length);
274
275 memset (t, 0, length);
276
277 TREE_SET_CODE (t, code);
278
279 switch (type)
280 {
281 case 's':
282 TREE_SIDE_EFFECTS (t) = 1;
283 break;
284
285 case 'd':
286 if (code != FUNCTION_DECL)
287 DECL_ALIGN (t) = 1;
288 DECL_USER_ALIGN (t) = 0;
289 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
290 DECL_SOURCE_LOCATION (t) = input_location;
291 DECL_UID (t) = next_decl_uid++;
292
293 /* We have not yet computed the alias set for this declaration. */
294 DECL_POINTER_ALIAS_SET (t) = -1;
295 break;
296
297 case 't':
298 TYPE_UID (t) = next_type_uid++;
299 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
300 TYPE_USER_ALIGN (t) = 0;
301 TYPE_MAIN_VARIANT (t) = t;
302
303 /* Default to no attributes for type, but let target change that. */
304 TYPE_ATTRIBUTES (t) = NULL_TREE;
305 (*targetm.set_default_type_attributes) (t);
306
307 /* We have not yet computed the alias set for this type. */
308 TYPE_ALIAS_SET (t) = -1;
309 break;
310
311 case 'c':
312 TREE_CONSTANT (t) = 1;
313 break;
314
315 case 'e':
316 switch (code)
317 {
318 case INIT_EXPR:
319 case MODIFY_EXPR:
320 case VA_ARG_EXPR:
321 case RTL_EXPR:
322 case PREDECREMENT_EXPR:
323 case PREINCREMENT_EXPR:
324 case POSTDECREMENT_EXPR:
325 case POSTINCREMENT_EXPR:
326 /* All of these have side-effects, no matter what their
327 operands are. */
328 TREE_SIDE_EFFECTS (t) = 1;
329 break;
330
331 default:
332 break;
333 }
334 break;
335 }
336
337 return t;
338 }
339 \f
340 /* Return a new node with the same contents as NODE except that its
341 TREE_CHAIN is zero and it has a fresh uid. */
342
343 tree
344 copy_node (tree node)
345 {
346 tree t;
347 enum tree_code code = TREE_CODE (node);
348 size_t length;
349
350 length = tree_size (node);
351 t = ggc_alloc_tree (length);
352 memcpy (t, node, length);
353
354 TREE_CHAIN (t) = 0;
355 TREE_ASM_WRITTEN (t) = 0;
356
357 if (TREE_CODE_CLASS (code) == 'd')
358 DECL_UID (t) = next_decl_uid++;
359 else if (TREE_CODE_CLASS (code) == 't')
360 {
361 TYPE_UID (t) = next_type_uid++;
362 /* The following is so that the debug code for
363 the copy is different from the original type.
364 The two statements usually duplicate each other
365 (because they clear fields of the same union),
366 but the optimizer should catch that. */
367 TYPE_SYMTAB_POINTER (t) = 0;
368 TYPE_SYMTAB_ADDRESS (t) = 0;
369 }
370
371 return t;
372 }
373
374 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
375 For example, this can copy a list made of TREE_LIST nodes. */
376
377 tree
378 copy_list (tree list)
379 {
380 tree head;
381 tree prev, next;
382
383 if (list == 0)
384 return 0;
385
386 head = prev = copy_node (list);
387 next = TREE_CHAIN (list);
388 while (next)
389 {
390 TREE_CHAIN (prev) = copy_node (next);
391 prev = TREE_CHAIN (prev);
392 next = TREE_CHAIN (next);
393 }
394 return head;
395 }
396
397 \f
398 /* Return a newly constructed INTEGER_CST node whose constant value
399 is specified by the two ints LOW and HI.
400 The TREE_TYPE is set to `int'.
401
402 This function should be used via the `build_int_2' macro. */
403
404 tree
405 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
406 {
407 tree t = make_node (INTEGER_CST);
408
409 TREE_INT_CST_LOW (t) = low;
410 TREE_INT_CST_HIGH (t) = hi;
411 TREE_TYPE (t) = integer_type_node;
412 return t;
413 }
414
415 /* Return a new VECTOR_CST node whose type is TYPE and whose values
416 are in a list pointed by VALS. */
417
418 tree
419 build_vector (tree type, tree vals)
420 {
421 tree v = make_node (VECTOR_CST);
422 int over1 = 0, over2 = 0;
423 tree link;
424
425 TREE_VECTOR_CST_ELTS (v) = vals;
426 TREE_TYPE (v) = type;
427
428 /* Iterate through elements and check for overflow. */
429 for (link = vals; link; link = TREE_CHAIN (link))
430 {
431 tree value = TREE_VALUE (link);
432
433 over1 |= TREE_OVERFLOW (value);
434 over2 |= TREE_CONSTANT_OVERFLOW (value);
435 }
436
437 TREE_OVERFLOW (v) = over1;
438 TREE_CONSTANT_OVERFLOW (v) = over2;
439
440 return v;
441 }
442
443 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
444 are in a list pointed to by VALS. */
445 tree
446 build_constructor (tree type, tree vals)
447 {
448 tree c = make_node (CONSTRUCTOR);
449 TREE_TYPE (c) = type;
450 CONSTRUCTOR_ELTS (c) = vals;
451
452 /* ??? May not be necessary. Mirrors what build does. */
453 if (vals)
454 {
455 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
456 TREE_READONLY (c) = TREE_READONLY (vals);
457 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
458 }
459 else
460 TREE_CONSTANT (c) = 0; /* safe side */
461
462 return c;
463 }
464
465 /* Return a new REAL_CST node whose type is TYPE and value is D. */
466
467 tree
468 build_real (tree type, REAL_VALUE_TYPE d)
469 {
470 tree v;
471 REAL_VALUE_TYPE *dp;
472 int overflow = 0;
473
474 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
475 Consider doing it via real_convert now. */
476
477 v = make_node (REAL_CST);
478 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
479 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
480
481 TREE_TYPE (v) = type;
482 TREE_REAL_CST_PTR (v) = dp;
483 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
484 return v;
485 }
486
487 /* Return a new REAL_CST node whose type is TYPE
488 and whose value is the integer value of the INTEGER_CST node I. */
489
490 REAL_VALUE_TYPE
491 real_value_from_int_cst (tree type ATTRIBUTE_UNUSED, tree i)
492 {
493 REAL_VALUE_TYPE d;
494
495 /* Clear all bits of the real value type so that we can later do
496 bitwise comparisons to see if two values are the same. */
497 memset (&d, 0, sizeof d);
498
499 if (! TREE_UNSIGNED (TREE_TYPE (i)))
500 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
501 TYPE_MODE (type));
502 else
503 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
504 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
505 return d;
506 }
507
508 /* Given a tree representing an integer constant I, return a tree
509 representing the same value as a floating-point constant of type TYPE. */
510
511 tree
512 build_real_from_int_cst (tree type, tree i)
513 {
514 tree v;
515 int overflow = TREE_OVERFLOW (i);
516
517 v = build_real (type, real_value_from_int_cst (type, i));
518
519 TREE_OVERFLOW (v) |= overflow;
520 TREE_CONSTANT_OVERFLOW (v) |= overflow;
521 return v;
522 }
523
524 /* Return a newly constructed STRING_CST node whose value is
525 the LEN characters at STR.
526 The TREE_TYPE is not initialized. */
527
528 tree
529 build_string (int len, const char *str)
530 {
531 tree s = make_node (STRING_CST);
532
533 TREE_STRING_LENGTH (s) = len;
534 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
535
536 return s;
537 }
538
539 /* Return a newly constructed COMPLEX_CST node whose value is
540 specified by the real and imaginary parts REAL and IMAG.
541 Both REAL and IMAG should be constant nodes. TYPE, if specified,
542 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
543
544 tree
545 build_complex (tree type, tree real, tree imag)
546 {
547 tree t = make_node (COMPLEX_CST);
548
549 TREE_REALPART (t) = real;
550 TREE_IMAGPART (t) = imag;
551 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
552 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
553 TREE_CONSTANT_OVERFLOW (t)
554 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
555 return t;
556 }
557
558 /* Build a newly constructed TREE_VEC node of length LEN. */
559
560 tree
561 make_tree_vec (int len)
562 {
563 tree t;
564 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
565
566 #ifdef GATHER_STATISTICS
567 tree_node_counts[(int) vec_kind]++;
568 tree_node_sizes[(int) vec_kind] += length;
569 #endif
570
571 t = ggc_alloc_tree (length);
572
573 memset (t, 0, length);
574 TREE_SET_CODE (t, TREE_VEC);
575 TREE_VEC_LENGTH (t) = len;
576
577 return t;
578 }
579 \f
580 /* Return 1 if EXPR is the integer constant zero or a complex constant
581 of zero. */
582
583 int
584 integer_zerop (tree expr)
585 {
586 STRIP_NOPS (expr);
587
588 return ((TREE_CODE (expr) == INTEGER_CST
589 && ! TREE_CONSTANT_OVERFLOW (expr)
590 && TREE_INT_CST_LOW (expr) == 0
591 && TREE_INT_CST_HIGH (expr) == 0)
592 || (TREE_CODE (expr) == COMPLEX_CST
593 && integer_zerop (TREE_REALPART (expr))
594 && integer_zerop (TREE_IMAGPART (expr))));
595 }
596
597 /* Return 1 if EXPR is the integer constant one or the corresponding
598 complex constant. */
599
600 int
601 integer_onep (tree expr)
602 {
603 STRIP_NOPS (expr);
604
605 return ((TREE_CODE (expr) == INTEGER_CST
606 && ! TREE_CONSTANT_OVERFLOW (expr)
607 && TREE_INT_CST_LOW (expr) == 1
608 && TREE_INT_CST_HIGH (expr) == 0)
609 || (TREE_CODE (expr) == COMPLEX_CST
610 && integer_onep (TREE_REALPART (expr))
611 && integer_zerop (TREE_IMAGPART (expr))));
612 }
613
614 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
615 it contains. Likewise for the corresponding complex constant. */
616
617 int
618 integer_all_onesp (tree expr)
619 {
620 int prec;
621 int uns;
622
623 STRIP_NOPS (expr);
624
625 if (TREE_CODE (expr) == COMPLEX_CST
626 && integer_all_onesp (TREE_REALPART (expr))
627 && integer_zerop (TREE_IMAGPART (expr)))
628 return 1;
629
630 else if (TREE_CODE (expr) != INTEGER_CST
631 || TREE_CONSTANT_OVERFLOW (expr))
632 return 0;
633
634 uns = TREE_UNSIGNED (TREE_TYPE (expr));
635 if (!uns)
636 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
637 && TREE_INT_CST_HIGH (expr) == -1);
638
639 /* Note that using TYPE_PRECISION here is wrong. We care about the
640 actual bits, not the (arbitrary) range of the type. */
641 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
642 if (prec >= HOST_BITS_PER_WIDE_INT)
643 {
644 HOST_WIDE_INT high_value;
645 int shift_amount;
646
647 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
648
649 if (shift_amount > HOST_BITS_PER_WIDE_INT)
650 /* Can not handle precisions greater than twice the host int size. */
651 abort ();
652 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
653 /* Shifting by the host word size is undefined according to the ANSI
654 standard, so we must handle this as a special case. */
655 high_value = -1;
656 else
657 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
658
659 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
660 && TREE_INT_CST_HIGH (expr) == high_value);
661 }
662 else
663 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
664 }
665
666 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
667 one bit on). */
668
669 int
670 integer_pow2p (tree expr)
671 {
672 int prec;
673 HOST_WIDE_INT high, low;
674
675 STRIP_NOPS (expr);
676
677 if (TREE_CODE (expr) == COMPLEX_CST
678 && integer_pow2p (TREE_REALPART (expr))
679 && integer_zerop (TREE_IMAGPART (expr)))
680 return 1;
681
682 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
683 return 0;
684
685 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
686 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
687 high = TREE_INT_CST_HIGH (expr);
688 low = TREE_INT_CST_LOW (expr);
689
690 /* First clear all bits that are beyond the type's precision in case
691 we've been sign extended. */
692
693 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
694 ;
695 else if (prec > HOST_BITS_PER_WIDE_INT)
696 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
697 else
698 {
699 high = 0;
700 if (prec < HOST_BITS_PER_WIDE_INT)
701 low &= ~((HOST_WIDE_INT) (-1) << prec);
702 }
703
704 if (high == 0 && low == 0)
705 return 0;
706
707 return ((high == 0 && (low & (low - 1)) == 0)
708 || (low == 0 && (high & (high - 1)) == 0));
709 }
710
711 /* Return 1 if EXPR is an integer constant other than zero or a
712 complex constant other than zero. */
713
714 int
715 integer_nonzerop (tree expr)
716 {
717 STRIP_NOPS (expr);
718
719 return ((TREE_CODE (expr) == INTEGER_CST
720 && ! TREE_CONSTANT_OVERFLOW (expr)
721 && (TREE_INT_CST_LOW (expr) != 0
722 || TREE_INT_CST_HIGH (expr) != 0))
723 || (TREE_CODE (expr) == COMPLEX_CST
724 && (integer_nonzerop (TREE_REALPART (expr))
725 || integer_nonzerop (TREE_IMAGPART (expr)))));
726 }
727
728 /* Return the power of two represented by a tree node known to be a
729 power of two. */
730
731 int
732 tree_log2 (tree expr)
733 {
734 int prec;
735 HOST_WIDE_INT high, low;
736
737 STRIP_NOPS (expr);
738
739 if (TREE_CODE (expr) == COMPLEX_CST)
740 return tree_log2 (TREE_REALPART (expr));
741
742 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
743 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
744
745 high = TREE_INT_CST_HIGH (expr);
746 low = TREE_INT_CST_LOW (expr);
747
748 /* First clear all bits that are beyond the type's precision in case
749 we've been sign extended. */
750
751 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
752 ;
753 else if (prec > HOST_BITS_PER_WIDE_INT)
754 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
755 else
756 {
757 high = 0;
758 if (prec < HOST_BITS_PER_WIDE_INT)
759 low &= ~((HOST_WIDE_INT) (-1) << prec);
760 }
761
762 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
763 : exact_log2 (low));
764 }
765
766 /* Similar, but return the largest integer Y such that 2 ** Y is less
767 than or equal to EXPR. */
768
769 int
770 tree_floor_log2 (tree expr)
771 {
772 int prec;
773 HOST_WIDE_INT high, low;
774
775 STRIP_NOPS (expr);
776
777 if (TREE_CODE (expr) == COMPLEX_CST)
778 return tree_log2 (TREE_REALPART (expr));
779
780 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
781 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
782
783 high = TREE_INT_CST_HIGH (expr);
784 low = TREE_INT_CST_LOW (expr);
785
786 /* First clear all bits that are beyond the type's precision in case
787 we've been sign extended. Ignore if type's precision hasn't been set
788 since what we are doing is setting it. */
789
790 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
791 ;
792 else if (prec > HOST_BITS_PER_WIDE_INT)
793 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
794 else
795 {
796 high = 0;
797 if (prec < HOST_BITS_PER_WIDE_INT)
798 low &= ~((HOST_WIDE_INT) (-1) << prec);
799 }
800
801 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
802 : floor_log2 (low));
803 }
804
805 /* Return 1 if EXPR is the real constant zero. */
806
807 int
808 real_zerop (tree expr)
809 {
810 STRIP_NOPS (expr);
811
812 return ((TREE_CODE (expr) == REAL_CST
813 && ! TREE_CONSTANT_OVERFLOW (expr)
814 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
815 || (TREE_CODE (expr) == COMPLEX_CST
816 && real_zerop (TREE_REALPART (expr))
817 && real_zerop (TREE_IMAGPART (expr))));
818 }
819
820 /* Return 1 if EXPR is the real constant one in real or complex form. */
821
822 int
823 real_onep (tree expr)
824 {
825 STRIP_NOPS (expr);
826
827 return ((TREE_CODE (expr) == REAL_CST
828 && ! TREE_CONSTANT_OVERFLOW (expr)
829 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
830 || (TREE_CODE (expr) == COMPLEX_CST
831 && real_onep (TREE_REALPART (expr))
832 && real_zerop (TREE_IMAGPART (expr))));
833 }
834
835 /* Return 1 if EXPR is the real constant two. */
836
837 int
838 real_twop (tree expr)
839 {
840 STRIP_NOPS (expr);
841
842 return ((TREE_CODE (expr) == REAL_CST
843 && ! TREE_CONSTANT_OVERFLOW (expr)
844 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
845 || (TREE_CODE (expr) == COMPLEX_CST
846 && real_twop (TREE_REALPART (expr))
847 && real_zerop (TREE_IMAGPART (expr))));
848 }
849
850 /* Return 1 if EXPR is the real constant minus one. */
851
852 int
853 real_minus_onep (tree expr)
854 {
855 STRIP_NOPS (expr);
856
857 return ((TREE_CODE (expr) == REAL_CST
858 && ! TREE_CONSTANT_OVERFLOW (expr)
859 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
860 || (TREE_CODE (expr) == COMPLEX_CST
861 && real_minus_onep (TREE_REALPART (expr))
862 && real_zerop (TREE_IMAGPART (expr))));
863 }
864
865 /* Nonzero if EXP is a constant or a cast of a constant. */
866
867 int
868 really_constant_p (tree exp)
869 {
870 /* This is not quite the same as STRIP_NOPS. It does more. */
871 while (TREE_CODE (exp) == NOP_EXPR
872 || TREE_CODE (exp) == CONVERT_EXPR
873 || TREE_CODE (exp) == NON_LVALUE_EXPR)
874 exp = TREE_OPERAND (exp, 0);
875 return TREE_CONSTANT (exp);
876 }
877 \f
878 /* Return first list element whose TREE_VALUE is ELEM.
879 Return 0 if ELEM is not in LIST. */
880
881 tree
882 value_member (tree elem, tree list)
883 {
884 while (list)
885 {
886 if (elem == TREE_VALUE (list))
887 return list;
888 list = TREE_CHAIN (list);
889 }
890 return NULL_TREE;
891 }
892
893 /* Return first list element whose TREE_PURPOSE is ELEM.
894 Return 0 if ELEM is not in LIST. */
895
896 tree
897 purpose_member (tree elem, tree list)
898 {
899 while (list)
900 {
901 if (elem == TREE_PURPOSE (list))
902 return list;
903 list = TREE_CHAIN (list);
904 }
905 return NULL_TREE;
906 }
907
908 /* Return first list element whose BINFO_TYPE is ELEM.
909 Return 0 if ELEM is not in LIST. */
910
911 tree
912 binfo_member (tree elem, tree list)
913 {
914 while (list)
915 {
916 if (elem == BINFO_TYPE (list))
917 return list;
918 list = TREE_CHAIN (list);
919 }
920 return NULL_TREE;
921 }
922
923 /* Return nonzero if ELEM is part of the chain CHAIN. */
924
925 int
926 chain_member (tree elem, tree chain)
927 {
928 while (chain)
929 {
930 if (elem == chain)
931 return 1;
932 chain = TREE_CHAIN (chain);
933 }
934
935 return 0;
936 }
937
938 /* Return the length of a chain of nodes chained through TREE_CHAIN.
939 We expect a null pointer to mark the end of the chain.
940 This is the Lisp primitive `length'. */
941
942 int
943 list_length (tree t)
944 {
945 tree tail;
946 int len = 0;
947
948 for (tail = t; tail; tail = TREE_CHAIN (tail))
949 len++;
950
951 return len;
952 }
953
954 /* Returns the number of FIELD_DECLs in TYPE. */
955
956 int
957 fields_length (tree type)
958 {
959 tree t = TYPE_FIELDS (type);
960 int count = 0;
961
962 for (; t; t = TREE_CHAIN (t))
963 if (TREE_CODE (t) == FIELD_DECL)
964 ++count;
965
966 return count;
967 }
968
969 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
970 by modifying the last node in chain 1 to point to chain 2.
971 This is the Lisp primitive `nconc'. */
972
973 tree
974 chainon (tree op1, tree op2)
975 {
976 tree t1;
977
978 if (!op1)
979 return op2;
980 if (!op2)
981 return op1;
982
983 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
984 continue;
985 TREE_CHAIN (t1) = op2;
986
987 #ifdef ENABLE_TREE_CHECKING
988 {
989 tree t2;
990 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
991 if (t2 == t1)
992 abort (); /* Circularity created. */
993 }
994 #endif
995
996 return op1;
997 }
998
999 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1000
1001 tree
1002 tree_last (tree chain)
1003 {
1004 tree next;
1005 if (chain)
1006 while ((next = TREE_CHAIN (chain)))
1007 chain = next;
1008 return chain;
1009 }
1010
1011 /* Reverse the order of elements in the chain T,
1012 and return the new head of the chain (old last element). */
1013
1014 tree
1015 nreverse (tree t)
1016 {
1017 tree prev = 0, decl, next;
1018 for (decl = t; decl; decl = next)
1019 {
1020 next = TREE_CHAIN (decl);
1021 TREE_CHAIN (decl) = prev;
1022 prev = decl;
1023 }
1024 return prev;
1025 }
1026 \f
1027 /* Return a newly created TREE_LIST node whose
1028 purpose and value fields are PARM and VALUE. */
1029
1030 tree
1031 build_tree_list (tree parm, tree value)
1032 {
1033 tree t = make_node (TREE_LIST);
1034 TREE_PURPOSE (t) = parm;
1035 TREE_VALUE (t) = value;
1036 return t;
1037 }
1038
1039 /* Return a newly created TREE_LIST node whose
1040 purpose and value fields are PURPOSE and VALUE
1041 and whose TREE_CHAIN is CHAIN. */
1042
1043 tree
1044 tree_cons (tree purpose, tree value, tree chain)
1045 {
1046 tree node;
1047
1048 node = ggc_alloc_tree (sizeof (struct tree_list));
1049
1050 memset (node, 0, sizeof (struct tree_common));
1051
1052 #ifdef GATHER_STATISTICS
1053 tree_node_counts[(int) x_kind]++;
1054 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1055 #endif
1056
1057 TREE_SET_CODE (node, TREE_LIST);
1058 TREE_CHAIN (node) = chain;
1059 TREE_PURPOSE (node) = purpose;
1060 TREE_VALUE (node) = value;
1061 return node;
1062 }
1063
1064 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1065
1066 tree
1067 expr_first (tree expr)
1068 {
1069 if (expr == NULL_TREE)
1070 return expr;
1071 while (TREE_CODE (expr) == COMPOUND_EXPR)
1072 expr = TREE_OPERAND (expr, 0);
1073 return expr;
1074 }
1075
1076 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1077
1078 tree
1079 expr_last (tree expr)
1080 {
1081 if (expr == NULL_TREE)
1082 return expr;
1083 while (TREE_CODE (expr) == COMPOUND_EXPR)
1084 expr = TREE_OPERAND (expr, 1);
1085 return expr;
1086 }
1087
1088 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1089
1090 int
1091 expr_length (tree expr)
1092 {
1093 int len = 0;
1094
1095 if (expr == NULL_TREE)
1096 return 0;
1097 for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
1098 len += expr_length (TREE_OPERAND (expr, 0));
1099 ++len;
1100 return len;
1101 }
1102 \f
1103 /* Return the size nominally occupied by an object of type TYPE
1104 when it resides in memory. The value is measured in units of bytes,
1105 and its data type is that normally used for type sizes
1106 (which is the first type created by make_signed_type or
1107 make_unsigned_type). */
1108
1109 tree
1110 size_in_bytes (tree type)
1111 {
1112 tree t;
1113
1114 if (type == error_mark_node)
1115 return integer_zero_node;
1116
1117 type = TYPE_MAIN_VARIANT (type);
1118 t = TYPE_SIZE_UNIT (type);
1119
1120 if (t == 0)
1121 {
1122 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1123 return size_zero_node;
1124 }
1125
1126 if (TREE_CODE (t) == INTEGER_CST)
1127 force_fit_type (t, 0);
1128
1129 return t;
1130 }
1131
1132 /* Return the size of TYPE (in bytes) as a wide integer
1133 or return -1 if the size can vary or is larger than an integer. */
1134
1135 HOST_WIDE_INT
1136 int_size_in_bytes (tree type)
1137 {
1138 tree t;
1139
1140 if (type == error_mark_node)
1141 return 0;
1142
1143 type = TYPE_MAIN_VARIANT (type);
1144 t = TYPE_SIZE_UNIT (type);
1145 if (t == 0
1146 || TREE_CODE (t) != INTEGER_CST
1147 || TREE_OVERFLOW (t)
1148 || TREE_INT_CST_HIGH (t) != 0
1149 /* If the result would appear negative, it's too big to represent. */
1150 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1151 return -1;
1152
1153 return TREE_INT_CST_LOW (t);
1154 }
1155 \f
1156 /* Return the bit position of FIELD, in bits from the start of the record.
1157 This is a tree of type bitsizetype. */
1158
1159 tree
1160 bit_position (tree field)
1161 {
1162 return bit_from_pos (DECL_FIELD_OFFSET (field),
1163 DECL_FIELD_BIT_OFFSET (field));
1164 }
1165
1166 /* Likewise, but return as an integer. Abort if it cannot be represented
1167 in that way (since it could be a signed value, we don't have the option
1168 of returning -1 like int_size_in_byte can. */
1169
1170 HOST_WIDE_INT
1171 int_bit_position (tree field)
1172 {
1173 return tree_low_cst (bit_position (field), 0);
1174 }
1175 \f
1176 /* Return the byte position of FIELD, in bytes from the start of the record.
1177 This is a tree of type sizetype. */
1178
1179 tree
1180 byte_position (tree field)
1181 {
1182 return byte_from_pos (DECL_FIELD_OFFSET (field),
1183 DECL_FIELD_BIT_OFFSET (field));
1184 }
1185
1186 /* Likewise, but return as an integer. Abort if it cannot be represented
1187 in that way (since it could be a signed value, we don't have the option
1188 of returning -1 like int_size_in_byte can. */
1189
1190 HOST_WIDE_INT
1191 int_byte_position (tree field)
1192 {
1193 return tree_low_cst (byte_position (field), 0);
1194 }
1195 \f
1196 /* Return the strictest alignment, in bits, that T is known to have. */
1197
1198 unsigned int
1199 expr_align (tree t)
1200 {
1201 unsigned int align0, align1;
1202
1203 switch (TREE_CODE (t))
1204 {
1205 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1206 /* If we have conversions, we know that the alignment of the
1207 object must meet each of the alignments of the types. */
1208 align0 = expr_align (TREE_OPERAND (t, 0));
1209 align1 = TYPE_ALIGN (TREE_TYPE (t));
1210 return MAX (align0, align1);
1211
1212 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1213 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1214 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1215 /* These don't change the alignment of an object. */
1216 return expr_align (TREE_OPERAND (t, 0));
1217
1218 case COND_EXPR:
1219 /* The best we can do is say that the alignment is the least aligned
1220 of the two arms. */
1221 align0 = expr_align (TREE_OPERAND (t, 1));
1222 align1 = expr_align (TREE_OPERAND (t, 2));
1223 return MIN (align0, align1);
1224
1225 case LABEL_DECL: case CONST_DECL:
1226 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1227 if (DECL_ALIGN (t) != 0)
1228 return DECL_ALIGN (t);
1229 break;
1230
1231 case FUNCTION_DECL:
1232 return FUNCTION_BOUNDARY;
1233
1234 default:
1235 break;
1236 }
1237
1238 /* Otherwise take the alignment from that of the type. */
1239 return TYPE_ALIGN (TREE_TYPE (t));
1240 }
1241 \f
1242 /* Return, as a tree node, the number of elements for TYPE (which is an
1243 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1244
1245 tree
1246 array_type_nelts (tree type)
1247 {
1248 tree index_type, min, max;
1249
1250 /* If they did it with unspecified bounds, then we should have already
1251 given an error about it before we got here. */
1252 if (! TYPE_DOMAIN (type))
1253 return error_mark_node;
1254
1255 index_type = TYPE_DOMAIN (type);
1256 min = TYPE_MIN_VALUE (index_type);
1257 max = TYPE_MAX_VALUE (index_type);
1258
1259 return (integer_zerop (min)
1260 ? max
1261 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1262 }
1263 \f
1264 /* Return nonzero if arg is static -- a reference to an object in
1265 static storage. This is not the same as the C meaning of `static'. */
1266
1267 int
1268 staticp (tree arg)
1269 {
1270 switch (TREE_CODE (arg))
1271 {
1272 case FUNCTION_DECL:
1273 /* Nested functions aren't static, since taking their address
1274 involves a trampoline. */
1275 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1276 && ! DECL_NON_ADDR_CONST_P (arg));
1277
1278 case VAR_DECL:
1279 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1280 && ! DECL_THREAD_LOCAL (arg)
1281 && ! DECL_NON_ADDR_CONST_P (arg));
1282
1283 case CONSTRUCTOR:
1284 return TREE_STATIC (arg);
1285
1286 case LABEL_DECL:
1287 case STRING_CST:
1288 return 1;
1289
1290 /* If we are referencing a bitfield, we can't evaluate an
1291 ADDR_EXPR at compile time and so it isn't a constant. */
1292 case COMPONENT_REF:
1293 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1294 && staticp (TREE_OPERAND (arg, 0)));
1295
1296 case BIT_FIELD_REF:
1297 return 0;
1298
1299 #if 0
1300 /* This case is technically correct, but results in setting
1301 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1302 compile time. */
1303 case INDIRECT_REF:
1304 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1305 #endif
1306
1307 case ARRAY_REF:
1308 case ARRAY_RANGE_REF:
1309 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1310 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1311 return staticp (TREE_OPERAND (arg, 0));
1312
1313 default:
1314 if ((unsigned int) TREE_CODE (arg)
1315 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1316 return (*lang_hooks.staticp) (arg);
1317 else
1318 return 0;
1319 }
1320 }
1321 \f
1322 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1323 Do this to any expression which may be used in more than one place,
1324 but must be evaluated only once.
1325
1326 Normally, expand_expr would reevaluate the expression each time.
1327 Calling save_expr produces something that is evaluated and recorded
1328 the first time expand_expr is called on it. Subsequent calls to
1329 expand_expr just reuse the recorded value.
1330
1331 The call to expand_expr that generates code that actually computes
1332 the value is the first call *at compile time*. Subsequent calls
1333 *at compile time* generate code to use the saved value.
1334 This produces correct result provided that *at run time* control
1335 always flows through the insns made by the first expand_expr
1336 before reaching the other places where the save_expr was evaluated.
1337 You, the caller of save_expr, must make sure this is so.
1338
1339 Constants, and certain read-only nodes, are returned with no
1340 SAVE_EXPR because that is safe. Expressions containing placeholders
1341 are not touched; see tree.def for an explanation of what these
1342 are used for. */
1343
1344 tree
1345 save_expr (tree expr)
1346 {
1347 tree t = fold (expr);
1348 tree inner;
1349
1350 /* If the tree evaluates to a constant, then we don't want to hide that
1351 fact (i.e. this allows further folding, and direct checks for constants).
1352 However, a read-only object that has side effects cannot be bypassed.
1353 Since it is no problem to reevaluate literals, we just return the
1354 literal node. */
1355 inner = skip_simple_arithmetic (t);
1356 if (TREE_CONSTANT (inner)
1357 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1358 || TREE_CODE (inner) == SAVE_EXPR
1359 || TREE_CODE (inner) == ERROR_MARK)
1360 return t;
1361
1362 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1363 it means that the size or offset of some field of an object depends on
1364 the value within another field.
1365
1366 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1367 and some variable since it would then need to be both evaluated once and
1368 evaluated more than once. Front-ends must assure this case cannot
1369 happen by surrounding any such subexpressions in their own SAVE_EXPR
1370 and forcing evaluation at the proper time. */
1371 if (contains_placeholder_p (inner))
1372 return t;
1373
1374 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1375
1376 /* This expression might be placed ahead of a jump to ensure that the
1377 value was computed on both sides of the jump. So make sure it isn't
1378 eliminated as dead. */
1379 TREE_SIDE_EFFECTS (t) = 1;
1380 TREE_READONLY (t) = 1;
1381 return t;
1382 }
1383
1384 /* Look inside EXPR and into any simple arithmetic operations. Return
1385 the innermost non-arithmetic node. */
1386
1387 tree
1388 skip_simple_arithmetic (tree expr)
1389 {
1390 tree inner;
1391
1392 /* We don't care about whether this can be used as an lvalue in this
1393 context. */
1394 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1395 expr = TREE_OPERAND (expr, 0);
1396
1397 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1398 a constant, it will be more efficient to not make another SAVE_EXPR since
1399 it will allow better simplification and GCSE will be able to merge the
1400 computations if they actually occur. */
1401 inner = expr;
1402 while (1)
1403 {
1404 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1405 inner = TREE_OPERAND (inner, 0);
1406 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1407 {
1408 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1409 inner = TREE_OPERAND (inner, 0);
1410 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1411 inner = TREE_OPERAND (inner, 1);
1412 else
1413 break;
1414 }
1415 else
1416 break;
1417 }
1418
1419 return inner;
1420 }
1421
1422 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1423 SAVE_EXPR. Return FALSE otherwise. */
1424
1425 bool
1426 saved_expr_p (tree expr)
1427 {
1428 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1429 }
1430
1431 /* Arrange for an expression to be expanded multiple independent
1432 times. This is useful for cleanup actions, as the backend can
1433 expand them multiple times in different places. */
1434
1435 tree
1436 unsave_expr (tree expr)
1437 {
1438 tree t;
1439
1440 /* If this is already protected, no sense in protecting it again. */
1441 if (TREE_CODE (expr) == UNSAVE_EXPR)
1442 return expr;
1443
1444 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1445 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1446 return t;
1447 }
1448
1449 /* Returns the index of the first non-tree operand for CODE, or the number
1450 of operands if all are trees. */
1451
1452 int
1453 first_rtl_op (enum tree_code code)
1454 {
1455 switch (code)
1456 {
1457 case SAVE_EXPR:
1458 return 2;
1459 case GOTO_SUBROUTINE_EXPR:
1460 case RTL_EXPR:
1461 return 0;
1462 case WITH_CLEANUP_EXPR:
1463 return 2;
1464 default:
1465 return TREE_CODE_LENGTH (code);
1466 }
1467 }
1468
1469 /* Return which tree structure is used by T. */
1470
1471 enum tree_node_structure_enum
1472 tree_node_structure (tree t)
1473 {
1474 enum tree_code code = TREE_CODE (t);
1475
1476 switch (TREE_CODE_CLASS (code))
1477 {
1478 case 'd': return TS_DECL;
1479 case 't': return TS_TYPE;
1480 case 'b': return TS_BLOCK;
1481 case 'r': case '<': case '1': case '2': case 'e': case 's':
1482 return TS_EXP;
1483 default: /* 'c' and 'x' */
1484 break;
1485 }
1486 switch (code)
1487 {
1488 /* 'c' cases. */
1489 case INTEGER_CST: return TS_INT_CST;
1490 case REAL_CST: return TS_REAL_CST;
1491 case COMPLEX_CST: return TS_COMPLEX;
1492 case VECTOR_CST: return TS_VECTOR;
1493 case STRING_CST: return TS_STRING;
1494 /* 'x' cases. */
1495 case ERROR_MARK: return TS_COMMON;
1496 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1497 case TREE_LIST: return TS_LIST;
1498 case TREE_VEC: return TS_VEC;
1499 case PLACEHOLDER_EXPR: return TS_COMMON;
1500
1501 default:
1502 abort ();
1503 }
1504 }
1505
1506 /* Perform any modifications to EXPR required when it is unsaved. Does
1507 not recurse into EXPR's subtrees. */
1508
1509 void
1510 unsave_expr_1 (tree expr)
1511 {
1512 switch (TREE_CODE (expr))
1513 {
1514 case SAVE_EXPR:
1515 if (! SAVE_EXPR_PERSISTENT_P (expr))
1516 SAVE_EXPR_RTL (expr) = 0;
1517 break;
1518
1519 case TARGET_EXPR:
1520 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1521 It's OK for this to happen if it was part of a subtree that
1522 isn't immediately expanded, such as operand 2 of another
1523 TARGET_EXPR. */
1524 if (TREE_OPERAND (expr, 1))
1525 break;
1526
1527 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1528 TREE_OPERAND (expr, 3) = NULL_TREE;
1529 break;
1530
1531 case RTL_EXPR:
1532 /* I don't yet know how to emit a sequence multiple times. */
1533 if (RTL_EXPR_SEQUENCE (expr) != 0)
1534 abort ();
1535 break;
1536
1537 default:
1538 break;
1539 }
1540 }
1541
1542 /* Default lang hook for "unsave_expr_now". */
1543
1544 tree
1545 lhd_unsave_expr_now (tree expr)
1546 {
1547 enum tree_code code;
1548
1549 /* There's nothing to do for NULL_TREE. */
1550 if (expr == 0)
1551 return expr;
1552
1553 unsave_expr_1 (expr);
1554
1555 code = TREE_CODE (expr);
1556 switch (TREE_CODE_CLASS (code))
1557 {
1558 case 'c': /* a constant */
1559 case 't': /* a type node */
1560 case 'd': /* A decl node */
1561 case 'b': /* A block node */
1562 break;
1563
1564 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1565 if (code == TREE_LIST)
1566 {
1567 lhd_unsave_expr_now (TREE_VALUE (expr));
1568 lhd_unsave_expr_now (TREE_CHAIN (expr));
1569 }
1570 break;
1571
1572 case 'e': /* an expression */
1573 case 'r': /* a reference */
1574 case 's': /* an expression with side effects */
1575 case '<': /* a comparison expression */
1576 case '2': /* a binary arithmetic expression */
1577 case '1': /* a unary arithmetic expression */
1578 {
1579 int i;
1580
1581 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1582 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1583 }
1584 break;
1585
1586 default:
1587 abort ();
1588 }
1589
1590 return expr;
1591 }
1592
1593 /* Return 0 if it is safe to evaluate EXPR multiple times,
1594 return 1 if it is safe if EXPR is unsaved afterward, or
1595 return 2 if it is completely unsafe.
1596
1597 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1598 an expression tree, so that it safe to unsave them and the surrounding
1599 context will be correct.
1600
1601 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1602 occasionally across the whole of a function. It is therefore only
1603 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1604 below the UNSAVE_EXPR.
1605
1606 RTL_EXPRs consume their rtl during evaluation. It is therefore
1607 never possible to unsave them. */
1608
1609 int
1610 unsafe_for_reeval (tree expr)
1611 {
1612 int unsafeness = 0;
1613 enum tree_code code;
1614 int i, tmp, tmp2;
1615 tree exp;
1616 int first_rtl;
1617
1618 if (expr == NULL_TREE)
1619 return 1;
1620
1621 code = TREE_CODE (expr);
1622 first_rtl = first_rtl_op (code);
1623
1624 switch (code)
1625 {
1626 case SAVE_EXPR:
1627 case RTL_EXPR:
1628 return 2;
1629
1630 case TREE_LIST:
1631 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1632 {
1633 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1634 unsafeness = MAX (tmp, unsafeness);
1635 }
1636
1637 return unsafeness;
1638
1639 case CALL_EXPR:
1640 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1641 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1642 return MAX (MAX (tmp, 1), tmp2);
1643
1644 case TARGET_EXPR:
1645 unsafeness = 1;
1646 break;
1647
1648 default:
1649 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1650 if (tmp >= 0)
1651 return tmp;
1652 break;
1653 }
1654
1655 switch (TREE_CODE_CLASS (code))
1656 {
1657 case 'c': /* a constant */
1658 case 't': /* a type node */
1659 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1660 case 'd': /* A decl node */
1661 case 'b': /* A block node */
1662 return 0;
1663
1664 case 'e': /* an expression */
1665 case 'r': /* a reference */
1666 case 's': /* an expression with side effects */
1667 case '<': /* a comparison expression */
1668 case '2': /* a binary arithmetic expression */
1669 case '1': /* a unary arithmetic expression */
1670 for (i = first_rtl - 1; i >= 0; i--)
1671 {
1672 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1673 unsafeness = MAX (tmp, unsafeness);
1674 }
1675
1676 return unsafeness;
1677
1678 default:
1679 return 2;
1680 }
1681 }
1682 \f
1683 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1684 or offset that depends on a field within a record. */
1685
1686 bool
1687 contains_placeholder_p (tree exp)
1688 {
1689 enum tree_code code;
1690 int result;
1691
1692 if (!exp)
1693 return 0;
1694
1695 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1696 in it since it is supplying a value for it. */
1697 code = TREE_CODE (exp);
1698 if (code == WITH_RECORD_EXPR)
1699 return 0;
1700 else if (code == PLACEHOLDER_EXPR)
1701 return 1;
1702
1703 switch (TREE_CODE_CLASS (code))
1704 {
1705 case 'r':
1706 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1707 position computations since they will be converted into a
1708 WITH_RECORD_EXPR involving the reference, which will assume
1709 here will be valid. */
1710 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1711
1712 case 'x':
1713 if (code == TREE_LIST)
1714 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1715 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1716 break;
1717
1718 case '1':
1719 case '2': case '<':
1720 case 'e':
1721 switch (code)
1722 {
1723 case COMPOUND_EXPR:
1724 /* Ignoring the first operand isn't quite right, but works best. */
1725 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1726
1727 case RTL_EXPR:
1728 case CONSTRUCTOR:
1729 return 0;
1730
1731 case COND_EXPR:
1732 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1733 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1734 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1735
1736 case SAVE_EXPR:
1737 /* If we already know this doesn't have a placeholder, don't
1738 check again. */
1739 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1740 return 0;
1741
1742 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1743 result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1744 if (result)
1745 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1746
1747 return result;
1748
1749 case CALL_EXPR:
1750 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1751
1752 default:
1753 break;
1754 }
1755
1756 switch (TREE_CODE_LENGTH (code))
1757 {
1758 case 1:
1759 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1760 case 2:
1761 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1762 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1763 default:
1764 return 0;
1765 }
1766
1767 default:
1768 return 0;
1769 }
1770 return 0;
1771 }
1772
1773 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1774 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1775 positions. */
1776
1777 bool
1778 type_contains_placeholder_p (tree type)
1779 {
1780 /* If the size contains a placeholder or the parent type (component type in
1781 the case of arrays) type involves a placeholder, this type does. */
1782 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1783 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1784 || (TREE_TYPE (type) != 0
1785 && type_contains_placeholder_p (TREE_TYPE (type))))
1786 return 1;
1787
1788 /* Now do type-specific checks. Note that the last part of the check above
1789 greatly limits what we have to do below. */
1790 switch (TREE_CODE (type))
1791 {
1792 case VOID_TYPE:
1793 case COMPLEX_TYPE:
1794 case VECTOR_TYPE:
1795 case ENUMERAL_TYPE:
1796 case BOOLEAN_TYPE:
1797 case CHAR_TYPE:
1798 case POINTER_TYPE:
1799 case OFFSET_TYPE:
1800 case REFERENCE_TYPE:
1801 case METHOD_TYPE:
1802 case FILE_TYPE:
1803 case FUNCTION_TYPE:
1804 return 0;
1805
1806 case INTEGER_TYPE:
1807 case REAL_TYPE:
1808 /* Here we just check the bounds. */
1809 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1810 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1811
1812 case ARRAY_TYPE:
1813 case SET_TYPE:
1814 /* We're already checked the component type (TREE_TYPE), so just check
1815 the index type. */
1816 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1817
1818 case RECORD_TYPE:
1819 case UNION_TYPE:
1820 case QUAL_UNION_TYPE:
1821 {
1822 static tree seen_types = 0;
1823 tree field;
1824 bool ret = 0;
1825
1826 /* We have to be careful here that we don't end up in infinite
1827 recursions due to a field of a type being a pointer to that type
1828 or to a mutually-recursive type. So we store a list of record
1829 types that we've seen and see if this type is in them. To save
1830 memory, we don't use a list for just one type. Here we check
1831 whether we've seen this type before and store it if not. */
1832 if (seen_types == 0)
1833 seen_types = type;
1834 else if (TREE_CODE (seen_types) != TREE_LIST)
1835 {
1836 if (seen_types == type)
1837 return 0;
1838
1839 seen_types = tree_cons (NULL_TREE, type,
1840 build_tree_list (NULL_TREE, seen_types));
1841 }
1842 else
1843 {
1844 if (value_member (type, seen_types) != 0)
1845 return 0;
1846
1847 seen_types = tree_cons (NULL_TREE, type, seen_types);
1848 }
1849
1850 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1851 if (TREE_CODE (field) == FIELD_DECL
1852 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1853 || (TREE_CODE (type) == QUAL_UNION_TYPE
1854 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1855 || type_contains_placeholder_p (TREE_TYPE (field))))
1856 {
1857 ret = true;
1858 break;
1859 }
1860
1861 /* Now remove us from seen_types and return the result. */
1862 if (seen_types == type)
1863 seen_types = 0;
1864 else
1865 seen_types = TREE_CHAIN (seen_types);
1866
1867 return ret;
1868 }
1869
1870 default:
1871 abort ();
1872 }
1873 }
1874
1875 /* Return 1 if EXP contains any expressions that produce cleanups for an
1876 outer scope to deal with. Used by fold. */
1877
1878 int
1879 has_cleanups (tree exp)
1880 {
1881 int i, nops, cmp;
1882
1883 if (! TREE_SIDE_EFFECTS (exp))
1884 return 0;
1885
1886 switch (TREE_CODE (exp))
1887 {
1888 case TARGET_EXPR:
1889 case GOTO_SUBROUTINE_EXPR:
1890 case WITH_CLEANUP_EXPR:
1891 return 1;
1892
1893 case CLEANUP_POINT_EXPR:
1894 return 0;
1895
1896 case CALL_EXPR:
1897 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1898 {
1899 cmp = has_cleanups (TREE_VALUE (exp));
1900 if (cmp)
1901 return cmp;
1902 }
1903 return 0;
1904
1905 default:
1906 break;
1907 }
1908
1909 /* This general rule works for most tree codes. All exceptions should be
1910 handled above. If this is a language-specific tree code, we can't
1911 trust what might be in the operand, so say we don't know
1912 the situation. */
1913 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1914 return -1;
1915
1916 nops = first_rtl_op (TREE_CODE (exp));
1917 for (i = 0; i < nops; i++)
1918 if (TREE_OPERAND (exp, i) != 0)
1919 {
1920 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1921 if (type == 'e' || type == '<' || type == '1' || type == '2'
1922 || type == 'r' || type == 's')
1923 {
1924 cmp = has_cleanups (TREE_OPERAND (exp, i));
1925 if (cmp)
1926 return cmp;
1927 }
1928 }
1929
1930 return 0;
1931 }
1932 \f
1933 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1934 return a tree with all occurrences of references to F in a
1935 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1936 contains only arithmetic expressions or a CALL_EXPR with a
1937 PLACEHOLDER_EXPR occurring only in its arglist. */
1938
1939 tree
1940 substitute_in_expr (tree exp, tree f, tree r)
1941 {
1942 enum tree_code code = TREE_CODE (exp);
1943 tree op0, op1, op2;
1944 tree new;
1945 tree inner;
1946
1947 switch (TREE_CODE_CLASS (code))
1948 {
1949 case 'c':
1950 case 'd':
1951 return exp;
1952
1953 case 'x':
1954 if (code == PLACEHOLDER_EXPR)
1955 return exp;
1956 else if (code == TREE_LIST)
1957 {
1958 op0 = (TREE_CHAIN (exp) == 0
1959 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1960 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1961 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1962 return exp;
1963
1964 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1965 }
1966
1967 abort ();
1968
1969 case '1':
1970 case '2':
1971 case '<':
1972 case 'e':
1973 switch (TREE_CODE_LENGTH (code))
1974 {
1975 case 1:
1976 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1977 if (op0 == TREE_OPERAND (exp, 0))
1978 return exp;
1979
1980 if (code == NON_LVALUE_EXPR)
1981 return op0;
1982
1983 new = fold (build1 (code, TREE_TYPE (exp), op0));
1984 break;
1985
1986 case 2:
1987 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1988 could, but we don't support it. */
1989 if (code == RTL_EXPR)
1990 return exp;
1991 else if (code == CONSTRUCTOR)
1992 abort ();
1993
1994 op0 = TREE_OPERAND (exp, 0);
1995 op1 = TREE_OPERAND (exp, 1);
1996 if (CONTAINS_PLACEHOLDER_P (op0))
1997 op0 = substitute_in_expr (op0, f, r);
1998 if (CONTAINS_PLACEHOLDER_P (op1))
1999 op1 = substitute_in_expr (op1, f, r);
2000
2001 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2002 return exp;
2003
2004 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2005 break;
2006
2007 case 3:
2008 /* It cannot be that anything inside a SAVE_EXPR contains a
2009 PLACEHOLDER_EXPR. */
2010 if (code == SAVE_EXPR)
2011 return exp;
2012
2013 else if (code == CALL_EXPR)
2014 {
2015 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2016 if (op1 == TREE_OPERAND (exp, 1))
2017 return exp;
2018
2019 return build (code, TREE_TYPE (exp),
2020 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2021 }
2022
2023 else if (code != COND_EXPR)
2024 abort ();
2025
2026 op0 = TREE_OPERAND (exp, 0);
2027 op1 = TREE_OPERAND (exp, 1);
2028 op2 = TREE_OPERAND (exp, 2);
2029
2030 if (CONTAINS_PLACEHOLDER_P (op0))
2031 op0 = substitute_in_expr (op0, f, r);
2032 if (CONTAINS_PLACEHOLDER_P (op1))
2033 op1 = substitute_in_expr (op1, f, r);
2034 if (CONTAINS_PLACEHOLDER_P (op2))
2035 op2 = substitute_in_expr (op2, f, r);
2036
2037 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2038 && op2 == TREE_OPERAND (exp, 2))
2039 return exp;
2040
2041 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2042 break;
2043
2044 default:
2045 abort ();
2046 }
2047
2048 break;
2049
2050 case 'r':
2051 switch (code)
2052 {
2053 case COMPONENT_REF:
2054 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2055 and it is the right field, replace it with R. */
2056 for (inner = TREE_OPERAND (exp, 0);
2057 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2058 inner = TREE_OPERAND (inner, 0))
2059 ;
2060 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2061 && TREE_OPERAND (exp, 1) == f)
2062 return r;
2063
2064 /* If this expression hasn't been completed let, leave it
2065 alone. */
2066 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2067 && TREE_TYPE (inner) == 0)
2068 return exp;
2069
2070 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2071 if (op0 == TREE_OPERAND (exp, 0))
2072 return exp;
2073
2074 new = fold (build (code, TREE_TYPE (exp), op0,
2075 TREE_OPERAND (exp, 1)));
2076 break;
2077
2078 case BIT_FIELD_REF:
2079 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2080 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2081 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2082 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2083 && op2 == TREE_OPERAND (exp, 2))
2084 return exp;
2085
2086 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2087 break;
2088
2089 case INDIRECT_REF:
2090 case BUFFER_REF:
2091 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2092 if (op0 == TREE_OPERAND (exp, 0))
2093 return exp;
2094
2095 new = fold (build1 (code, TREE_TYPE (exp), op0));
2096 break;
2097
2098 default:
2099 abort ();
2100 }
2101 break;
2102
2103 default:
2104 abort ();
2105 }
2106
2107 TREE_READONLY (new) = TREE_READONLY (exp);
2108 return new;
2109 }
2110 \f
2111 /* Stabilize a reference so that we can use it any number of times
2112 without causing its operands to be evaluated more than once.
2113 Returns the stabilized reference. This works by means of save_expr,
2114 so see the caveats in the comments about save_expr.
2115
2116 Also allows conversion expressions whose operands are references.
2117 Any other kind of expression is returned unchanged. */
2118
2119 tree
2120 stabilize_reference (tree ref)
2121 {
2122 tree result;
2123 enum tree_code code = TREE_CODE (ref);
2124
2125 switch (code)
2126 {
2127 case VAR_DECL:
2128 case PARM_DECL:
2129 case RESULT_DECL:
2130 /* No action is needed in this case. */
2131 return ref;
2132
2133 case NOP_EXPR:
2134 case CONVERT_EXPR:
2135 case FLOAT_EXPR:
2136 case FIX_TRUNC_EXPR:
2137 case FIX_FLOOR_EXPR:
2138 case FIX_ROUND_EXPR:
2139 case FIX_CEIL_EXPR:
2140 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2141 break;
2142
2143 case INDIRECT_REF:
2144 result = build_nt (INDIRECT_REF,
2145 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2146 break;
2147
2148 case COMPONENT_REF:
2149 result = build_nt (COMPONENT_REF,
2150 stabilize_reference (TREE_OPERAND (ref, 0)),
2151 TREE_OPERAND (ref, 1));
2152 break;
2153
2154 case BIT_FIELD_REF:
2155 result = build_nt (BIT_FIELD_REF,
2156 stabilize_reference (TREE_OPERAND (ref, 0)),
2157 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2158 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2159 break;
2160
2161 case ARRAY_REF:
2162 result = build_nt (ARRAY_REF,
2163 stabilize_reference (TREE_OPERAND (ref, 0)),
2164 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2165 break;
2166
2167 case ARRAY_RANGE_REF:
2168 result = build_nt (ARRAY_RANGE_REF,
2169 stabilize_reference (TREE_OPERAND (ref, 0)),
2170 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2171 break;
2172
2173 case COMPOUND_EXPR:
2174 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2175 it wouldn't be ignored. This matters when dealing with
2176 volatiles. */
2177 return stabilize_reference_1 (ref);
2178
2179 case RTL_EXPR:
2180 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2181 save_expr (build1 (ADDR_EXPR,
2182 build_pointer_type (TREE_TYPE (ref)),
2183 ref)));
2184 break;
2185
2186 /* If arg isn't a kind of lvalue we recognize, make no change.
2187 Caller should recognize the error for an invalid lvalue. */
2188 default:
2189 return ref;
2190
2191 case ERROR_MARK:
2192 return error_mark_node;
2193 }
2194
2195 TREE_TYPE (result) = TREE_TYPE (ref);
2196 TREE_READONLY (result) = TREE_READONLY (ref);
2197 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2198 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2199
2200 return result;
2201 }
2202
2203 /* Subroutine of stabilize_reference; this is called for subtrees of
2204 references. Any expression with side-effects must be put in a SAVE_EXPR
2205 to ensure that it is only evaluated once.
2206
2207 We don't put SAVE_EXPR nodes around everything, because assigning very
2208 simple expressions to temporaries causes us to miss good opportunities
2209 for optimizations. Among other things, the opportunity to fold in the
2210 addition of a constant into an addressing mode often gets lost, e.g.
2211 "y[i+1] += x;". In general, we take the approach that we should not make
2212 an assignment unless we are forced into it - i.e., that any non-side effect
2213 operator should be allowed, and that cse should take care of coalescing
2214 multiple utterances of the same expression should that prove fruitful. */
2215
2216 tree
2217 stabilize_reference_1 (tree e)
2218 {
2219 tree result;
2220 enum tree_code code = TREE_CODE (e);
2221
2222 /* We cannot ignore const expressions because it might be a reference
2223 to a const array but whose index contains side-effects. But we can
2224 ignore things that are actual constant or that already have been
2225 handled by this function. */
2226
2227 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2228 return e;
2229
2230 switch (TREE_CODE_CLASS (code))
2231 {
2232 case 'x':
2233 case 't':
2234 case 'd':
2235 case 'b':
2236 case '<':
2237 case 's':
2238 case 'e':
2239 case 'r':
2240 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2241 so that it will only be evaluated once. */
2242 /* The reference (r) and comparison (<) classes could be handled as
2243 below, but it is generally faster to only evaluate them once. */
2244 if (TREE_SIDE_EFFECTS (e))
2245 return save_expr (e);
2246 return e;
2247
2248 case 'c':
2249 /* Constants need no processing. In fact, we should never reach
2250 here. */
2251 return e;
2252
2253 case '2':
2254 /* Division is slow and tends to be compiled with jumps,
2255 especially the division by powers of 2 that is often
2256 found inside of an array reference. So do it just once. */
2257 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2258 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2259 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2260 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2261 return save_expr (e);
2262 /* Recursively stabilize each operand. */
2263 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2264 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2265 break;
2266
2267 case '1':
2268 /* Recursively stabilize each operand. */
2269 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2270 break;
2271
2272 default:
2273 abort ();
2274 }
2275
2276 TREE_TYPE (result) = TREE_TYPE (e);
2277 TREE_READONLY (result) = TREE_READONLY (e);
2278 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2279 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2280
2281 return result;
2282 }
2283 \f
2284 /* Low-level constructors for expressions. */
2285
2286 /* Build an expression of code CODE, data type TYPE,
2287 and operands as specified by the arguments ARG1 and following arguments.
2288 Expressions and reference nodes can be created this way.
2289 Constants, decls, types and misc nodes cannot be. */
2290
2291 tree
2292 build (enum tree_code code, tree tt, ...)
2293 {
2294 tree t;
2295 int length;
2296 int i;
2297 int fro;
2298 int constant;
2299 va_list p;
2300
2301 va_start (p, tt);
2302
2303 t = make_node (code);
2304 length = TREE_CODE_LENGTH (code);
2305 TREE_TYPE (t) = tt;
2306
2307 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2308 result based on those same flags for the arguments. But if the
2309 arguments aren't really even `tree' expressions, we shouldn't be trying
2310 to do this. */
2311 fro = first_rtl_op (code);
2312
2313 /* Expressions without side effects may be constant if their
2314 arguments are as well. */
2315 constant = (TREE_CODE_CLASS (code) == '<'
2316 || TREE_CODE_CLASS (code) == '1'
2317 || TREE_CODE_CLASS (code) == '2'
2318 || TREE_CODE_CLASS (code) == 'c');
2319
2320 if (length == 2)
2321 {
2322 /* This is equivalent to the loop below, but faster. */
2323 tree arg0 = va_arg (p, tree);
2324 tree arg1 = va_arg (p, tree);
2325
2326 TREE_OPERAND (t, 0) = arg0;
2327 TREE_OPERAND (t, 1) = arg1;
2328 TREE_READONLY (t) = 1;
2329 if (arg0 && fro > 0)
2330 {
2331 if (TREE_SIDE_EFFECTS (arg0))
2332 TREE_SIDE_EFFECTS (t) = 1;
2333 if (!TREE_READONLY (arg0))
2334 TREE_READONLY (t) = 0;
2335 if (!TREE_CONSTANT (arg0))
2336 constant = 0;
2337 }
2338
2339 if (arg1 && fro > 1)
2340 {
2341 if (TREE_SIDE_EFFECTS (arg1))
2342 TREE_SIDE_EFFECTS (t) = 1;
2343 if (!TREE_READONLY (arg1))
2344 TREE_READONLY (t) = 0;
2345 if (!TREE_CONSTANT (arg1))
2346 constant = 0;
2347 }
2348 }
2349 else if (length == 1)
2350 {
2351 tree arg0 = va_arg (p, tree);
2352
2353 /* The only one-operand cases we handle here are those with side-effects.
2354 Others are handled with build1. So don't bother checked if the
2355 arg has side-effects since we'll already have set it.
2356
2357 ??? This really should use build1 too. */
2358 if (TREE_CODE_CLASS (code) != 's')
2359 abort ();
2360 TREE_OPERAND (t, 0) = arg0;
2361 }
2362 else
2363 {
2364 for (i = 0; i < length; i++)
2365 {
2366 tree operand = va_arg (p, tree);
2367
2368 TREE_OPERAND (t, i) = operand;
2369 if (operand && fro > i)
2370 {
2371 if (TREE_SIDE_EFFECTS (operand))
2372 TREE_SIDE_EFFECTS (t) = 1;
2373 if (!TREE_CONSTANT (operand))
2374 constant = 0;
2375 }
2376 }
2377 }
2378 va_end (p);
2379
2380 TREE_CONSTANT (t) = constant;
2381
2382 if (code == CALL_EXPR && !TREE_SIDE_EFFECTS (t))
2383 {
2384 /* Calls have side-effects, except those to const or
2385 pure functions. */
2386 tree fn = get_callee_fndecl (t);
2387
2388 if (!fn || (!DECL_IS_PURE (fn) && !TREE_READONLY (fn)))
2389 TREE_SIDE_EFFECTS (t) = 1;
2390 }
2391
2392 return t;
2393 }
2394
2395 /* Same as above, but only builds for unary operators.
2396 Saves lions share of calls to `build'; cuts down use
2397 of varargs, which is expensive for RISC machines. */
2398
2399 tree
2400 build1 (enum tree_code code, tree type, tree node)
2401 {
2402 int length = sizeof (struct tree_exp);
2403 #ifdef GATHER_STATISTICS
2404 tree_node_kind kind;
2405 #endif
2406 tree t;
2407
2408 #ifdef GATHER_STATISTICS
2409 switch (TREE_CODE_CLASS (code))
2410 {
2411 case 's': /* an expression with side effects */
2412 kind = s_kind;
2413 break;
2414 case 'r': /* a reference */
2415 kind = r_kind;
2416 break;
2417 default:
2418 kind = e_kind;
2419 break;
2420 }
2421
2422 tree_node_counts[(int) kind]++;
2423 tree_node_sizes[(int) kind] += length;
2424 #endif
2425
2426 #ifdef ENABLE_CHECKING
2427 if (TREE_CODE_CLASS (code) == '2'
2428 || TREE_CODE_CLASS (code) == '<'
2429 || TREE_CODE_LENGTH (code) != 1)
2430 abort ();
2431 #endif /* ENABLE_CHECKING */
2432
2433 t = ggc_alloc_tree (length);
2434
2435 memset (t, 0, sizeof (struct tree_common));
2436
2437 TREE_SET_CODE (t, code);
2438
2439 TREE_TYPE (t) = type;
2440 TREE_COMPLEXITY (t) = 0;
2441 TREE_OPERAND (t, 0) = node;
2442 if (node && first_rtl_op (code) != 0)
2443 {
2444 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2445 TREE_READONLY (t) = TREE_READONLY (node);
2446 }
2447
2448 if (TREE_CODE_CLASS (code) == 's')
2449 TREE_SIDE_EFFECTS (t) = 1;
2450 else switch (code)
2451 {
2452 case INIT_EXPR:
2453 case MODIFY_EXPR:
2454 case VA_ARG_EXPR:
2455 case RTL_EXPR:
2456 case PREDECREMENT_EXPR:
2457 case PREINCREMENT_EXPR:
2458 case POSTDECREMENT_EXPR:
2459 case POSTINCREMENT_EXPR:
2460 /* All of these have side-effects, no matter what their
2461 operands are. */
2462 TREE_SIDE_EFFECTS (t) = 1;
2463 TREE_READONLY (t) = 0;
2464 break;
2465
2466 case INDIRECT_REF:
2467 /* Whether a dereference is readonly has nothing to do with whether
2468 its operand is readonly. */
2469 TREE_READONLY (t) = 0;
2470 break;
2471
2472 default:
2473 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2474 TREE_CONSTANT (t) = 1;
2475 break;
2476 }
2477
2478 return t;
2479 }
2480
2481 /* Similar except don't specify the TREE_TYPE
2482 and leave the TREE_SIDE_EFFECTS as 0.
2483 It is permissible for arguments to be null,
2484 or even garbage if their values do not matter. */
2485
2486 tree
2487 build_nt (enum tree_code code, ...)
2488 {
2489 tree t;
2490 int length;
2491 int i;
2492 va_list p;
2493
2494 va_start (p, code);
2495
2496 t = make_node (code);
2497 length = TREE_CODE_LENGTH (code);
2498
2499 for (i = 0; i < length; i++)
2500 TREE_OPERAND (t, i) = va_arg (p, tree);
2501
2502 va_end (p);
2503 return t;
2504 }
2505 \f
2506 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2507 We do NOT enter this node in any sort of symbol table.
2508
2509 layout_decl is used to set up the decl's storage layout.
2510 Other slots are initialized to 0 or null pointers. */
2511
2512 tree
2513 build_decl (enum tree_code code, tree name, tree type)
2514 {
2515 tree t;
2516
2517 t = make_node (code);
2518
2519 /* if (type == error_mark_node)
2520 type = integer_type_node; */
2521 /* That is not done, deliberately, so that having error_mark_node
2522 as the type can suppress useless errors in the use of this variable. */
2523
2524 DECL_NAME (t) = name;
2525 TREE_TYPE (t) = type;
2526
2527 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2528 layout_decl (t, 0);
2529 else if (code == FUNCTION_DECL)
2530 DECL_MODE (t) = FUNCTION_MODE;
2531
2532 return t;
2533 }
2534 \f
2535 /* BLOCK nodes are used to represent the structure of binding contours
2536 and declarations, once those contours have been exited and their contents
2537 compiled. This information is used for outputting debugging info. */
2538
2539 tree
2540 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2541 tree supercontext, tree chain)
2542 {
2543 tree block = make_node (BLOCK);
2544
2545 BLOCK_VARS (block) = vars;
2546 BLOCK_SUBBLOCKS (block) = subblocks;
2547 BLOCK_SUPERCONTEXT (block) = supercontext;
2548 BLOCK_CHAIN (block) = chain;
2549 return block;
2550 }
2551
2552 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2553 location where an expression or an identifier were encountered. It
2554 is necessary for languages where the frontend parser will handle
2555 recursively more than one file (Java is one of them). */
2556
2557 tree
2558 build_expr_wfl (tree node, const char *file, int line, int col)
2559 {
2560 static const char *last_file = 0;
2561 static tree last_filenode = NULL_TREE;
2562 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2563
2564 EXPR_WFL_NODE (wfl) = node;
2565 EXPR_WFL_SET_LINECOL (wfl, line, col);
2566 if (file != last_file)
2567 {
2568 last_file = file;
2569 last_filenode = file ? get_identifier (file) : NULL_TREE;
2570 }
2571
2572 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2573 if (node)
2574 {
2575 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2576 TREE_TYPE (wfl) = TREE_TYPE (node);
2577 }
2578
2579 return wfl;
2580 }
2581 \f
2582 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2583 is ATTRIBUTE. */
2584
2585 tree
2586 build_decl_attribute_variant (tree ddecl, tree attribute)
2587 {
2588 DECL_ATTRIBUTES (ddecl) = attribute;
2589 return ddecl;
2590 }
2591
2592 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2593 is ATTRIBUTE.
2594
2595 Record such modified types already made so we don't make duplicates. */
2596
2597 tree
2598 build_type_attribute_variant (tree ttype, tree attribute)
2599 {
2600 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2601 {
2602 unsigned int hashcode;
2603 tree ntype;
2604
2605 ntype = copy_node (ttype);
2606
2607 TYPE_POINTER_TO (ntype) = 0;
2608 TYPE_REFERENCE_TO (ntype) = 0;
2609 TYPE_ATTRIBUTES (ntype) = attribute;
2610
2611 /* Create a new main variant of TYPE. */
2612 TYPE_MAIN_VARIANT (ntype) = ntype;
2613 TYPE_NEXT_VARIANT (ntype) = 0;
2614 set_type_quals (ntype, TYPE_UNQUALIFIED);
2615
2616 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2617 + TYPE_HASH (TREE_TYPE (ntype))
2618 + attribute_hash_list (attribute));
2619
2620 switch (TREE_CODE (ntype))
2621 {
2622 case FUNCTION_TYPE:
2623 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2624 break;
2625 case ARRAY_TYPE:
2626 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2627 break;
2628 case INTEGER_TYPE:
2629 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2630 break;
2631 case REAL_TYPE:
2632 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2633 break;
2634 default:
2635 break;
2636 }
2637
2638 ntype = type_hash_canon (hashcode, ntype);
2639 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2640 }
2641
2642 return ttype;
2643 }
2644
2645 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2646 or zero if not.
2647
2648 We try both `text' and `__text__', ATTR may be either one. */
2649 /* ??? It might be a reasonable simplification to require ATTR to be only
2650 `text'. One might then also require attribute lists to be stored in
2651 their canonicalized form. */
2652
2653 int
2654 is_attribute_p (const char *attr, tree ident)
2655 {
2656 int ident_len, attr_len;
2657 const char *p;
2658
2659 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2660 return 0;
2661
2662 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2663 return 1;
2664
2665 p = IDENTIFIER_POINTER (ident);
2666 ident_len = strlen (p);
2667 attr_len = strlen (attr);
2668
2669 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2670 if (attr[0] == '_')
2671 {
2672 if (attr[1] != '_'
2673 || attr[attr_len - 2] != '_'
2674 || attr[attr_len - 1] != '_')
2675 abort ();
2676 if (ident_len == attr_len - 4
2677 && strncmp (attr + 2, p, attr_len - 4) == 0)
2678 return 1;
2679 }
2680 else
2681 {
2682 if (ident_len == attr_len + 4
2683 && p[0] == '_' && p[1] == '_'
2684 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2685 && strncmp (attr, p + 2, attr_len) == 0)
2686 return 1;
2687 }
2688
2689 return 0;
2690 }
2691
2692 /* Given an attribute name and a list of attributes, return a pointer to the
2693 attribute's list element if the attribute is part of the list, or NULL_TREE
2694 if not found. If the attribute appears more than once, this only
2695 returns the first occurrence; the TREE_CHAIN of the return value should
2696 be passed back in if further occurrences are wanted. */
2697
2698 tree
2699 lookup_attribute (const char *attr_name, tree list)
2700 {
2701 tree l;
2702
2703 for (l = list; l; l = TREE_CHAIN (l))
2704 {
2705 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2706 abort ();
2707 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2708 return l;
2709 }
2710
2711 return NULL_TREE;
2712 }
2713
2714 /* Return an attribute list that is the union of a1 and a2. */
2715
2716 tree
2717 merge_attributes (tree a1, tree a2)
2718 {
2719 tree attributes;
2720
2721 /* Either one unset? Take the set one. */
2722
2723 if ((attributes = a1) == 0)
2724 attributes = a2;
2725
2726 /* One that completely contains the other? Take it. */
2727
2728 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2729 {
2730 if (attribute_list_contained (a2, a1))
2731 attributes = a2;
2732 else
2733 {
2734 /* Pick the longest list, and hang on the other list. */
2735
2736 if (list_length (a1) < list_length (a2))
2737 attributes = a2, a2 = a1;
2738
2739 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2740 {
2741 tree a;
2742 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2743 attributes);
2744 a != NULL_TREE;
2745 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2746 TREE_CHAIN (a)))
2747 {
2748 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2749 break;
2750 }
2751 if (a == NULL_TREE)
2752 {
2753 a1 = copy_node (a2);
2754 TREE_CHAIN (a1) = attributes;
2755 attributes = a1;
2756 }
2757 }
2758 }
2759 }
2760 return attributes;
2761 }
2762
2763 /* Given types T1 and T2, merge their attributes and return
2764 the result. */
2765
2766 tree
2767 merge_type_attributes (tree t1, tree t2)
2768 {
2769 return merge_attributes (TYPE_ATTRIBUTES (t1),
2770 TYPE_ATTRIBUTES (t2));
2771 }
2772
2773 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2774 the result. */
2775
2776 tree
2777 merge_decl_attributes (tree olddecl, tree newdecl)
2778 {
2779 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2780 DECL_ATTRIBUTES (newdecl));
2781 }
2782
2783 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2784
2785 /* Specialization of merge_decl_attributes for various Windows targets.
2786
2787 This handles the following situation:
2788
2789 __declspec (dllimport) int foo;
2790 int foo;
2791
2792 The second instance of `foo' nullifies the dllimport. */
2793
2794 tree
2795 merge_dllimport_decl_attributes (tree old, tree new)
2796 {
2797 tree a;
2798 int delete_dllimport_p;
2799
2800 old = DECL_ATTRIBUTES (old);
2801 new = DECL_ATTRIBUTES (new);
2802
2803 /* What we need to do here is remove from `old' dllimport if it doesn't
2804 appear in `new'. dllimport behaves like extern: if a declaration is
2805 marked dllimport and a definition appears later, then the object
2806 is not dllimport'd. */
2807 if (lookup_attribute ("dllimport", old) != NULL_TREE
2808 && lookup_attribute ("dllimport", new) == NULL_TREE)
2809 delete_dllimport_p = 1;
2810 else
2811 delete_dllimport_p = 0;
2812
2813 a = merge_attributes (old, new);
2814
2815 if (delete_dllimport_p)
2816 {
2817 tree prev, t;
2818
2819 /* Scan the list for dllimport and delete it. */
2820 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2821 {
2822 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2823 {
2824 if (prev == NULL_TREE)
2825 a = TREE_CHAIN (a);
2826 else
2827 TREE_CHAIN (prev) = TREE_CHAIN (t);
2828 break;
2829 }
2830 }
2831 }
2832
2833 return a;
2834 }
2835
2836 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2837 \f
2838 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2839 of the various TYPE_QUAL values. */
2840
2841 static void
2842 set_type_quals (tree type, int type_quals)
2843 {
2844 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2845 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2846 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2847 }
2848
2849 /* Return a version of the TYPE, qualified as indicated by the
2850 TYPE_QUALS, if one exists. If no qualified version exists yet,
2851 return NULL_TREE. */
2852
2853 tree
2854 get_qualified_type (tree type, int type_quals)
2855 {
2856 tree t;
2857
2858 /* Search the chain of variants to see if there is already one there just
2859 like the one we need to have. If so, use that existing one. We must
2860 preserve the TYPE_NAME, since there is code that depends on this. */
2861 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2862 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2863 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
2864 && attribute_list_equal (TYPE_ATTRIBUTES (t), TYPE_ATTRIBUTES (type)))
2865 return t;
2866
2867 return NULL_TREE;
2868 }
2869
2870 /* Like get_qualified_type, but creates the type if it does not
2871 exist. This function never returns NULL_TREE. */
2872
2873 tree
2874 build_qualified_type (tree type, int type_quals)
2875 {
2876 tree t;
2877
2878 /* See if we already have the appropriate qualified variant. */
2879 t = get_qualified_type (type, type_quals);
2880
2881 /* If not, build it. */
2882 if (!t)
2883 {
2884 t = build_type_copy (type);
2885 set_type_quals (t, type_quals);
2886 }
2887
2888 return t;
2889 }
2890
2891 /* Create a new variant of TYPE, equivalent but distinct.
2892 This is so the caller can modify it. */
2893
2894 tree
2895 build_type_copy (tree type)
2896 {
2897 tree t, m = TYPE_MAIN_VARIANT (type);
2898
2899 t = copy_node (type);
2900
2901 TYPE_POINTER_TO (t) = 0;
2902 TYPE_REFERENCE_TO (t) = 0;
2903
2904 /* Add this type to the chain of variants of TYPE. */
2905 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2906 TYPE_NEXT_VARIANT (m) = t;
2907
2908 return t;
2909 }
2910 \f
2911 /* Hashing of types so that we don't make duplicates.
2912 The entry point is `type_hash_canon'. */
2913
2914 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2915 with types in the TREE_VALUE slots), by adding the hash codes
2916 of the individual types. */
2917
2918 unsigned int
2919 type_hash_list (tree list)
2920 {
2921 unsigned int hashcode;
2922 tree tail;
2923
2924 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2925 hashcode += TYPE_HASH (TREE_VALUE (tail));
2926
2927 return hashcode;
2928 }
2929
2930 /* These are the Hashtable callback functions. */
2931
2932 /* Returns true if the types are equal. */
2933
2934 static int
2935 type_hash_eq (const void *va, const void *vb)
2936 {
2937 const struct type_hash *a = va, *b = vb;
2938 if (a->hash == b->hash
2939 && TREE_CODE (a->type) == TREE_CODE (b->type)
2940 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2941 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2942 TYPE_ATTRIBUTES (b->type))
2943 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2944 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2945 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2946 TYPE_MAX_VALUE (b->type)))
2947 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2948 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2949 TYPE_MIN_VALUE (b->type)))
2950 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2951 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2952 || (TYPE_DOMAIN (a->type)
2953 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2954 && TYPE_DOMAIN (b->type)
2955 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2956 && type_list_equal (TYPE_DOMAIN (a->type),
2957 TYPE_DOMAIN (b->type)))))
2958 return 1;
2959 return 0;
2960 }
2961
2962 /* Return the cached hash value. */
2963
2964 static hashval_t
2965 type_hash_hash (const void *item)
2966 {
2967 return ((const struct type_hash *) item)->hash;
2968 }
2969
2970 /* Look in the type hash table for a type isomorphic to TYPE.
2971 If one is found, return it. Otherwise return 0. */
2972
2973 tree
2974 type_hash_lookup (unsigned int hashcode, tree type)
2975 {
2976 struct type_hash *h, in;
2977
2978 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2979 must call that routine before comparing TYPE_ALIGNs. */
2980 layout_type (type);
2981
2982 in.hash = hashcode;
2983 in.type = type;
2984
2985 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2986 if (h)
2987 return h->type;
2988 return NULL_TREE;
2989 }
2990
2991 /* Add an entry to the type-hash-table
2992 for a type TYPE whose hash code is HASHCODE. */
2993
2994 void
2995 type_hash_add (unsigned int hashcode, tree type)
2996 {
2997 struct type_hash *h;
2998 void **loc;
2999
3000 h = ggc_alloc (sizeof (struct type_hash));
3001 h->hash = hashcode;
3002 h->type = type;
3003 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3004 *(struct type_hash **) loc = h;
3005 }
3006
3007 /* Given TYPE, and HASHCODE its hash code, return the canonical
3008 object for an identical type if one already exists.
3009 Otherwise, return TYPE, and record it as the canonical object
3010 if it is a permanent object.
3011
3012 To use this function, first create a type of the sort you want.
3013 Then compute its hash code from the fields of the type that
3014 make it different from other similar types.
3015 Then call this function and use the value.
3016 This function frees the type you pass in if it is a duplicate. */
3017
3018 /* Set to 1 to debug without canonicalization. Never set by program. */
3019 int debug_no_type_hash = 0;
3020
3021 tree
3022 type_hash_canon (unsigned int hashcode, tree type)
3023 {
3024 tree t1;
3025
3026 if (debug_no_type_hash)
3027 return type;
3028
3029 /* See if the type is in the hash table already. If so, return it.
3030 Otherwise, add the type. */
3031 t1 = type_hash_lookup (hashcode, type);
3032 if (t1 != 0)
3033 {
3034 #ifdef GATHER_STATISTICS
3035 tree_node_counts[(int) t_kind]--;
3036 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3037 #endif
3038 return t1;
3039 }
3040 else
3041 {
3042 type_hash_add (hashcode, type);
3043 return type;
3044 }
3045 }
3046
3047 /* See if the data pointed to by the type hash table is marked. We consider
3048 it marked if the type is marked or if a debug type number or symbol
3049 table entry has been made for the type. This reduces the amount of
3050 debugging output and eliminates that dependency of the debug output on
3051 the number of garbage collections. */
3052
3053 static int
3054 type_hash_marked_p (const void *p)
3055 {
3056 tree type = ((struct type_hash *) p)->type;
3057
3058 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3059 }
3060
3061 static void
3062 print_type_hash_statistics (void)
3063 {
3064 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3065 (long) htab_size (type_hash_table),
3066 (long) htab_elements (type_hash_table),
3067 htab_collisions (type_hash_table));
3068 }
3069
3070 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3071 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3072 by adding the hash codes of the individual attributes. */
3073
3074 unsigned int
3075 attribute_hash_list (tree list)
3076 {
3077 unsigned int hashcode;
3078 tree tail;
3079
3080 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3081 /* ??? Do we want to add in TREE_VALUE too? */
3082 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3083 return hashcode;
3084 }
3085
3086 /* Given two lists of attributes, return true if list l2 is
3087 equivalent to l1. */
3088
3089 int
3090 attribute_list_equal (tree l1, tree l2)
3091 {
3092 return attribute_list_contained (l1, l2)
3093 && attribute_list_contained (l2, l1);
3094 }
3095
3096 /* Given two lists of attributes, return true if list L2 is
3097 completely contained within L1. */
3098 /* ??? This would be faster if attribute names were stored in a canonicalized
3099 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3100 must be used to show these elements are equivalent (which they are). */
3101 /* ??? It's not clear that attributes with arguments will always be handled
3102 correctly. */
3103
3104 int
3105 attribute_list_contained (tree l1, tree l2)
3106 {
3107 tree t1, t2;
3108
3109 /* First check the obvious, maybe the lists are identical. */
3110 if (l1 == l2)
3111 return 1;
3112
3113 /* Maybe the lists are similar. */
3114 for (t1 = l1, t2 = l2;
3115 t1 != 0 && t2 != 0
3116 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3117 && TREE_VALUE (t1) == TREE_VALUE (t2);
3118 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3119
3120 /* Maybe the lists are equal. */
3121 if (t1 == 0 && t2 == 0)
3122 return 1;
3123
3124 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3125 {
3126 tree attr;
3127 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3128 attr != NULL_TREE;
3129 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3130 TREE_CHAIN (attr)))
3131 {
3132 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3133 break;
3134 }
3135
3136 if (attr == 0)
3137 return 0;
3138
3139 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3140 return 0;
3141 }
3142
3143 return 1;
3144 }
3145
3146 /* Given two lists of types
3147 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3148 return 1 if the lists contain the same types in the same order.
3149 Also, the TREE_PURPOSEs must match. */
3150
3151 int
3152 type_list_equal (tree l1, tree l2)
3153 {
3154 tree t1, t2;
3155
3156 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3157 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3158 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3159 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3160 && (TREE_TYPE (TREE_PURPOSE (t1))
3161 == TREE_TYPE (TREE_PURPOSE (t2))))))
3162 return 0;
3163
3164 return t1 == t2;
3165 }
3166
3167 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3168 given by TYPE. If the argument list accepts variable arguments,
3169 then this function counts only the ordinary arguments. */
3170
3171 int
3172 type_num_arguments (tree type)
3173 {
3174 int i = 0;
3175 tree t;
3176
3177 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3178 /* If the function does not take a variable number of arguments,
3179 the last element in the list will have type `void'. */
3180 if (VOID_TYPE_P (TREE_VALUE (t)))
3181 break;
3182 else
3183 ++i;
3184
3185 return i;
3186 }
3187
3188 /* Nonzero if integer constants T1 and T2
3189 represent the same constant value. */
3190
3191 int
3192 tree_int_cst_equal (tree t1, tree t2)
3193 {
3194 if (t1 == t2)
3195 return 1;
3196
3197 if (t1 == 0 || t2 == 0)
3198 return 0;
3199
3200 if (TREE_CODE (t1) == INTEGER_CST
3201 && TREE_CODE (t2) == INTEGER_CST
3202 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3203 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3204 return 1;
3205
3206 return 0;
3207 }
3208
3209 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3210 The precise way of comparison depends on their data type. */
3211
3212 int
3213 tree_int_cst_lt (tree t1, tree t2)
3214 {
3215 if (t1 == t2)
3216 return 0;
3217
3218 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3219 {
3220 int t1_sgn = tree_int_cst_sgn (t1);
3221 int t2_sgn = tree_int_cst_sgn (t2);
3222
3223 if (t1_sgn < t2_sgn)
3224 return 1;
3225 else if (t1_sgn > t2_sgn)
3226 return 0;
3227 /* Otherwise, both are non-negative, so we compare them as
3228 unsigned just in case one of them would overflow a signed
3229 type. */
3230 }
3231 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3232 return INT_CST_LT (t1, t2);
3233
3234 return INT_CST_LT_UNSIGNED (t1, t2);
3235 }
3236
3237 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3238
3239 int
3240 tree_int_cst_compare (tree t1, tree t2)
3241 {
3242 if (tree_int_cst_lt (t1, t2))
3243 return -1;
3244 else if (tree_int_cst_lt (t2, t1))
3245 return 1;
3246 else
3247 return 0;
3248 }
3249
3250 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3251 the host. If POS is zero, the value can be represented in a single
3252 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3253 be represented in a single unsigned HOST_WIDE_INT. */
3254
3255 int
3256 host_integerp (tree t, int pos)
3257 {
3258 return (TREE_CODE (t) == INTEGER_CST
3259 && ! TREE_OVERFLOW (t)
3260 && ((TREE_INT_CST_HIGH (t) == 0
3261 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3262 || (! pos && TREE_INT_CST_HIGH (t) == -1
3263 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3264 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3265 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3266 }
3267
3268 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3269 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3270 be positive. Abort if we cannot satisfy the above conditions. */
3271
3272 HOST_WIDE_INT
3273 tree_low_cst (tree t, int pos)
3274 {
3275 if (host_integerp (t, pos))
3276 return TREE_INT_CST_LOW (t);
3277 else
3278 abort ();
3279 }
3280
3281 /* Return the most significant bit of the integer constant T. */
3282
3283 int
3284 tree_int_cst_msb (tree t)
3285 {
3286 int prec;
3287 HOST_WIDE_INT h;
3288 unsigned HOST_WIDE_INT l;
3289
3290 /* Note that using TYPE_PRECISION here is wrong. We care about the
3291 actual bits, not the (arbitrary) range of the type. */
3292 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3293 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3294 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3295 return (l & 1) == 1;
3296 }
3297
3298 /* Return an indication of the sign of the integer constant T.
3299 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3300 Note that -1 will never be returned it T's type is unsigned. */
3301
3302 int
3303 tree_int_cst_sgn (tree t)
3304 {
3305 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3306 return 0;
3307 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3308 return 1;
3309 else if (TREE_INT_CST_HIGH (t) < 0)
3310 return -1;
3311 else
3312 return 1;
3313 }
3314
3315 /* Compare two constructor-element-type constants. Return 1 if the lists
3316 are known to be equal; otherwise return 0. */
3317
3318 int
3319 simple_cst_list_equal (tree l1, tree l2)
3320 {
3321 while (l1 != NULL_TREE && l2 != NULL_TREE)
3322 {
3323 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3324 return 0;
3325
3326 l1 = TREE_CHAIN (l1);
3327 l2 = TREE_CHAIN (l2);
3328 }
3329
3330 return l1 == l2;
3331 }
3332
3333 /* Return truthvalue of whether T1 is the same tree structure as T2.
3334 Return 1 if they are the same.
3335 Return 0 if they are understandably different.
3336 Return -1 if either contains tree structure not understood by
3337 this function. */
3338
3339 int
3340 simple_cst_equal (tree t1, tree t2)
3341 {
3342 enum tree_code code1, code2;
3343 int cmp;
3344 int i;
3345
3346 if (t1 == t2)
3347 return 1;
3348 if (t1 == 0 || t2 == 0)
3349 return 0;
3350
3351 code1 = TREE_CODE (t1);
3352 code2 = TREE_CODE (t2);
3353
3354 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3355 {
3356 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3357 || code2 == NON_LVALUE_EXPR)
3358 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3359 else
3360 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3361 }
3362
3363 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3364 || code2 == NON_LVALUE_EXPR)
3365 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3366
3367 if (code1 != code2)
3368 return 0;
3369
3370 switch (code1)
3371 {
3372 case INTEGER_CST:
3373 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3374 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3375
3376 case REAL_CST:
3377 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3378
3379 case STRING_CST:
3380 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3381 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3382 TREE_STRING_LENGTH (t1)));
3383
3384 case CONSTRUCTOR:
3385 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3386 return 1;
3387 else
3388 abort ();
3389
3390 case SAVE_EXPR:
3391 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3392
3393 case CALL_EXPR:
3394 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3395 if (cmp <= 0)
3396 return cmp;
3397 return
3398 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3399
3400 case TARGET_EXPR:
3401 /* Special case: if either target is an unallocated VAR_DECL,
3402 it means that it's going to be unified with whatever the
3403 TARGET_EXPR is really supposed to initialize, so treat it
3404 as being equivalent to anything. */
3405 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3406 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3407 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3408 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3409 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3410 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3411 cmp = 1;
3412 else
3413 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3414
3415 if (cmp <= 0)
3416 return cmp;
3417
3418 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3419
3420 case WITH_CLEANUP_EXPR:
3421 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3422 if (cmp <= 0)
3423 return cmp;
3424
3425 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3426
3427 case COMPONENT_REF:
3428 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3429 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3430
3431 return 0;
3432
3433 case VAR_DECL:
3434 case PARM_DECL:
3435 case CONST_DECL:
3436 case FUNCTION_DECL:
3437 return 0;
3438
3439 default:
3440 break;
3441 }
3442
3443 /* This general rule works for most tree codes. All exceptions should be
3444 handled above. If this is a language-specific tree code, we can't
3445 trust what might be in the operand, so say we don't know
3446 the situation. */
3447 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3448 return -1;
3449
3450 switch (TREE_CODE_CLASS (code1))
3451 {
3452 case '1':
3453 case '2':
3454 case '<':
3455 case 'e':
3456 case 'r':
3457 case 's':
3458 cmp = 1;
3459 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3460 {
3461 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3462 if (cmp <= 0)
3463 return cmp;
3464 }
3465
3466 return cmp;
3467
3468 default:
3469 return -1;
3470 }
3471 }
3472
3473 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3474 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3475 than U, respectively. */
3476
3477 int
3478 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3479 {
3480 if (tree_int_cst_sgn (t) < 0)
3481 return -1;
3482 else if (TREE_INT_CST_HIGH (t) != 0)
3483 return 1;
3484 else if (TREE_INT_CST_LOW (t) == u)
3485 return 0;
3486 else if (TREE_INT_CST_LOW (t) < u)
3487 return -1;
3488 else
3489 return 1;
3490 }
3491
3492 /* Generate a hash value for an expression. This can be used iteratively
3493 by passing a previous result as the "val" argument.
3494
3495 This function is intended to produce the same hash for expressions which
3496 would compare equal using operand_equal_p. */
3497
3498 hashval_t
3499 iterative_hash_expr (tree t, hashval_t val)
3500 {
3501 int i;
3502 enum tree_code code;
3503 char class;
3504
3505 if (t == NULL_TREE)
3506 return iterative_hash_object (t, val);
3507
3508 code = TREE_CODE (t);
3509 class = TREE_CODE_CLASS (code);
3510
3511 if (class == 'd')
3512 {
3513 /* Decls we can just compare by pointer. */
3514 val = iterative_hash_object (t, val);
3515 }
3516 else if (class == 'c')
3517 {
3518 /* Alas, constants aren't shared, so we can't rely on pointer
3519 identity. */
3520 if (code == INTEGER_CST)
3521 {
3522 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3523 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3524 }
3525 else if (code == REAL_CST)
3526 val = iterative_hash (TREE_REAL_CST_PTR (t),
3527 sizeof (REAL_VALUE_TYPE), val);
3528 else if (code == STRING_CST)
3529 val = iterative_hash (TREE_STRING_POINTER (t),
3530 TREE_STRING_LENGTH (t), val);
3531 else if (code == COMPLEX_CST)
3532 {
3533 val = iterative_hash_expr (TREE_REALPART (t), val);
3534 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3535 }
3536 else if (code == VECTOR_CST)
3537 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3538 else
3539 abort ();
3540 }
3541 else if (IS_EXPR_CODE_CLASS (class))
3542 {
3543 val = iterative_hash_object (code, val);
3544
3545 if (code == NOP_EXPR || code == CONVERT_EXPR
3546 || code == NON_LVALUE_EXPR)
3547 val = iterative_hash_object (TREE_TYPE (t), val);
3548
3549 if (code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
3550 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
3551 || code == BIT_AND_EXPR || code == NE_EXPR || code == EQ_EXPR)
3552 {
3553 /* It's a commutative expression. We want to hash it the same
3554 however it appears. We do this by first hashing both operands
3555 and then rehashing based on the order of their independent
3556 hashes. */
3557 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3558 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3559 hashval_t t;
3560
3561 if (one > two)
3562 t = one, one = two, two = t;
3563
3564 val = iterative_hash_object (one, val);
3565 val = iterative_hash_object (two, val);
3566 }
3567 else
3568 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3569 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3570 }
3571 else if (code == TREE_LIST)
3572 {
3573 /* A list of expressions, for a CALL_EXPR or as the elements of a
3574 VECTOR_CST. */
3575 for (; t; t = TREE_CHAIN (t))
3576 val = iterative_hash_expr (TREE_VALUE (t), val);
3577 }
3578 else
3579 abort ();
3580
3581 return val;
3582 }
3583 \f
3584 /* Constructors for pointer, array and function types.
3585 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3586 constructed by language-dependent code, not here.) */
3587
3588 /* Construct, lay out and return the type of pointers to TO_TYPE
3589 with mode MODE. If such a type has already been constructed,
3590 reuse it. */
3591
3592 tree
3593 build_pointer_type_for_mode (tree to_type, enum machine_mode mode)
3594 {
3595 tree t = TYPE_POINTER_TO (to_type);
3596
3597 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3598 if (t != 0 && mode == ptr_mode)
3599 return t;
3600
3601 t = make_node (POINTER_TYPE);
3602
3603 TREE_TYPE (t) = to_type;
3604 TYPE_MODE (t) = mode;
3605
3606 /* Record this type as the pointer to TO_TYPE. */
3607 if (mode == ptr_mode)
3608 TYPE_POINTER_TO (to_type) = t;
3609
3610 /* Lay out the type. This function has many callers that are concerned
3611 with expression-construction, and this simplifies them all.
3612 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3613 layout_type (t);
3614
3615 return t;
3616 }
3617
3618 /* By default build pointers in ptr_mode. */
3619
3620 tree
3621 build_pointer_type (tree to_type)
3622 {
3623 return build_pointer_type_for_mode (to_type, ptr_mode);
3624 }
3625
3626 /* Construct, lay out and return the type of references to TO_TYPE
3627 with mode MODE. If such a type has already been constructed,
3628 reuse it. */
3629
3630 tree
3631 build_reference_type_for_mode (tree to_type, enum machine_mode mode)
3632 {
3633 tree t = TYPE_REFERENCE_TO (to_type);
3634
3635 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3636 if (t != 0 && mode == ptr_mode)
3637 return t;
3638
3639 t = make_node (REFERENCE_TYPE);
3640
3641 TREE_TYPE (t) = to_type;
3642 TYPE_MODE (t) = mode;
3643
3644 /* Record this type as the pointer to TO_TYPE. */
3645 if (mode == ptr_mode)
3646 TYPE_REFERENCE_TO (to_type) = t;
3647
3648 layout_type (t);
3649
3650 return t;
3651 }
3652
3653
3654 /* Build the node for the type of references-to-TO_TYPE by default
3655 in ptr_mode. */
3656
3657 tree
3658 build_reference_type (tree to_type)
3659 {
3660 return build_reference_type_for_mode (to_type, ptr_mode);
3661 }
3662
3663 /* Build a type that is compatible with t but has no cv quals anywhere
3664 in its type, thus
3665
3666 const char *const *const * -> char ***. */
3667
3668 tree
3669 build_type_no_quals (tree t)
3670 {
3671 switch (TREE_CODE (t))
3672 {
3673 case POINTER_TYPE:
3674 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3675 case REFERENCE_TYPE:
3676 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3677 default:
3678 return TYPE_MAIN_VARIANT (t);
3679 }
3680 }
3681
3682 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3683 MAXVAL should be the maximum value in the domain
3684 (one less than the length of the array).
3685
3686 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3687 We don't enforce this limit, that is up to caller (e.g. language front end).
3688 The limit exists because the result is a signed type and we don't handle
3689 sizes that use more than one HOST_WIDE_INT. */
3690
3691 tree
3692 build_index_type (tree maxval)
3693 {
3694 tree itype = make_node (INTEGER_TYPE);
3695
3696 TREE_TYPE (itype) = sizetype;
3697 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3698 TYPE_MIN_VALUE (itype) = size_zero_node;
3699 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3700 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3701 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3702 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3703 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3704 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3705
3706 if (host_integerp (maxval, 1))
3707 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3708 else
3709 return itype;
3710 }
3711
3712 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3713 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3714 low bound LOWVAL and high bound HIGHVAL.
3715 if TYPE==NULL_TREE, sizetype is used. */
3716
3717 tree
3718 build_range_type (tree type, tree lowval, tree highval)
3719 {
3720 tree itype = make_node (INTEGER_TYPE);
3721
3722 TREE_TYPE (itype) = type;
3723 if (type == NULL_TREE)
3724 type = sizetype;
3725
3726 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3727 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3728
3729 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3730 TYPE_MODE (itype) = TYPE_MODE (type);
3731 TYPE_SIZE (itype) = TYPE_SIZE (type);
3732 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3733 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3734 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3735
3736 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3737 return type_hash_canon (tree_low_cst (highval, 0)
3738 - tree_low_cst (lowval, 0),
3739 itype);
3740 else
3741 return itype;
3742 }
3743
3744 /* Just like build_index_type, but takes lowval and highval instead
3745 of just highval (maxval). */
3746
3747 tree
3748 build_index_2_type (tree lowval, tree highval)
3749 {
3750 return build_range_type (sizetype, lowval, highval);
3751 }
3752
3753 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3754 and number of elements specified by the range of values of INDEX_TYPE.
3755 If such a type has already been constructed, reuse it. */
3756
3757 tree
3758 build_array_type (tree elt_type, tree index_type)
3759 {
3760 tree t;
3761 unsigned int hashcode;
3762
3763 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3764 {
3765 error ("arrays of functions are not meaningful");
3766 elt_type = integer_type_node;
3767 }
3768
3769 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3770 build_pointer_type (elt_type);
3771
3772 /* Allocate the array after the pointer type,
3773 in case we free it in type_hash_canon. */
3774 t = make_node (ARRAY_TYPE);
3775 TREE_TYPE (t) = elt_type;
3776 TYPE_DOMAIN (t) = index_type;
3777
3778 if (index_type == 0)
3779 {
3780 return t;
3781 }
3782
3783 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3784 t = type_hash_canon (hashcode, t);
3785
3786 if (!COMPLETE_TYPE_P (t))
3787 layout_type (t);
3788 return t;
3789 }
3790
3791 /* Return the TYPE of the elements comprising
3792 the innermost dimension of ARRAY. */
3793
3794 tree
3795 get_inner_array_type (tree array)
3796 {
3797 tree type = TREE_TYPE (array);
3798
3799 while (TREE_CODE (type) == ARRAY_TYPE)
3800 type = TREE_TYPE (type);
3801
3802 return type;
3803 }
3804
3805 /* Construct, lay out and return
3806 the type of functions returning type VALUE_TYPE
3807 given arguments of types ARG_TYPES.
3808 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3809 are data type nodes for the arguments of the function.
3810 If such a type has already been constructed, reuse it. */
3811
3812 tree
3813 build_function_type (tree value_type, tree arg_types)
3814 {
3815 tree t;
3816 unsigned int hashcode;
3817
3818 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3819 {
3820 error ("function return type cannot be function");
3821 value_type = integer_type_node;
3822 }
3823
3824 /* Make a node of the sort we want. */
3825 t = make_node (FUNCTION_TYPE);
3826 TREE_TYPE (t) = value_type;
3827 TYPE_ARG_TYPES (t) = arg_types;
3828
3829 /* If we already have such a type, use the old one and free this one. */
3830 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3831 t = type_hash_canon (hashcode, t);
3832
3833 if (!COMPLETE_TYPE_P (t))
3834 layout_type (t);
3835 return t;
3836 }
3837
3838 /* Build a function type. The RETURN_TYPE is the type returned by the
3839 function. If additional arguments are provided, they are
3840 additional argument types. The list of argument types must always
3841 be terminated by NULL_TREE. */
3842
3843 tree
3844 build_function_type_list (tree return_type, ...)
3845 {
3846 tree t, args, last;
3847 va_list p;
3848
3849 va_start (p, return_type);
3850
3851 t = va_arg (p, tree);
3852 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3853 args = tree_cons (NULL_TREE, t, args);
3854
3855 last = args;
3856 args = nreverse (args);
3857 TREE_CHAIN (last) = void_list_node;
3858 args = build_function_type (return_type, args);
3859
3860 va_end (p);
3861 return args;
3862 }
3863
3864 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
3865 and ARGTYPES (a TREE_LIST) are the return type and arguments types
3866 for the method. An implicit additional parameter (of type
3867 pointer-to-BASETYPE) is added to the ARGTYPES. */
3868
3869 tree
3870 build_method_type_directly (tree basetype,
3871 tree rettype,
3872 tree argtypes)
3873 {
3874 tree t;
3875 tree ptype;
3876 int hashcode;
3877
3878 /* Make a node of the sort we want. */
3879 t = make_node (METHOD_TYPE);
3880
3881 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3882 TREE_TYPE (t) = rettype;
3883 ptype = build_pointer_type (basetype);
3884
3885 /* The actual arglist for this function includes a "hidden" argument
3886 which is "this". Put it into the list of argument types. */
3887 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
3888 TYPE_ARG_TYPES (t) = argtypes;
3889
3890 /* If we already have such a type, use the old one and free this one.
3891 Note that it also frees up the above cons cell if found. */
3892 hashcode = TYPE_HASH (basetype) + TYPE_HASH (rettype) +
3893 type_hash_list (argtypes);
3894
3895 t = type_hash_canon (hashcode, t);
3896
3897 if (!COMPLETE_TYPE_P (t))
3898 layout_type (t);
3899
3900 return t;
3901 }
3902
3903 /* Construct, lay out and return the type of methods belonging to class
3904 BASETYPE and whose arguments and values are described by TYPE.
3905 If that type exists already, reuse it.
3906 TYPE must be a FUNCTION_TYPE node. */
3907
3908 tree
3909 build_method_type (tree basetype, tree type)
3910 {
3911 if (TREE_CODE (type) != FUNCTION_TYPE)
3912 abort ();
3913
3914 return build_method_type_directly (basetype,
3915 TREE_TYPE (type),
3916 TYPE_ARG_TYPES (type));
3917 }
3918
3919 /* Construct, lay out and return the type of offsets to a value
3920 of type TYPE, within an object of type BASETYPE.
3921 If a suitable offset type exists already, reuse it. */
3922
3923 tree
3924 build_offset_type (tree basetype, tree type)
3925 {
3926 tree t;
3927 unsigned int hashcode;
3928
3929 /* Make a node of the sort we want. */
3930 t = make_node (OFFSET_TYPE);
3931
3932 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3933 TREE_TYPE (t) = type;
3934
3935 /* If we already have such a type, use the old one and free this one. */
3936 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3937 t = type_hash_canon (hashcode, t);
3938
3939 if (!COMPLETE_TYPE_P (t))
3940 layout_type (t);
3941
3942 return t;
3943 }
3944
3945 /* Create a complex type whose components are COMPONENT_TYPE. */
3946
3947 tree
3948 build_complex_type (tree component_type)
3949 {
3950 tree t;
3951 unsigned int hashcode;
3952
3953 /* Make a node of the sort we want. */
3954 t = make_node (COMPLEX_TYPE);
3955
3956 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3957 set_type_quals (t, TYPE_QUALS (component_type));
3958
3959 /* If we already have such a type, use the old one and free this one. */
3960 hashcode = TYPE_HASH (component_type);
3961 t = type_hash_canon (hashcode, t);
3962
3963 if (!COMPLETE_TYPE_P (t))
3964 layout_type (t);
3965
3966 /* If we are writing Dwarf2 output we need to create a name,
3967 since complex is a fundamental type. */
3968 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3969 && ! TYPE_NAME (t))
3970 {
3971 const char *name;
3972 if (component_type == char_type_node)
3973 name = "complex char";
3974 else if (component_type == signed_char_type_node)
3975 name = "complex signed char";
3976 else if (component_type == unsigned_char_type_node)
3977 name = "complex unsigned char";
3978 else if (component_type == short_integer_type_node)
3979 name = "complex short int";
3980 else if (component_type == short_unsigned_type_node)
3981 name = "complex short unsigned int";
3982 else if (component_type == integer_type_node)
3983 name = "complex int";
3984 else if (component_type == unsigned_type_node)
3985 name = "complex unsigned int";
3986 else if (component_type == long_integer_type_node)
3987 name = "complex long int";
3988 else if (component_type == long_unsigned_type_node)
3989 name = "complex long unsigned int";
3990 else if (component_type == long_long_integer_type_node)
3991 name = "complex long long int";
3992 else if (component_type == long_long_unsigned_type_node)
3993 name = "complex long long unsigned int";
3994 else
3995 name = 0;
3996
3997 if (name != 0)
3998 TYPE_NAME (t) = get_identifier (name);
3999 }
4000
4001 return t;
4002 }
4003 \f
4004 /* Return OP, stripped of any conversions to wider types as much as is safe.
4005 Converting the value back to OP's type makes a value equivalent to OP.
4006
4007 If FOR_TYPE is nonzero, we return a value which, if converted to
4008 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4009
4010 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4011 narrowest type that can hold the value, even if they don't exactly fit.
4012 Otherwise, bit-field references are changed to a narrower type
4013 only if they can be fetched directly from memory in that type.
4014
4015 OP must have integer, real or enumeral type. Pointers are not allowed!
4016
4017 There are some cases where the obvious value we could return
4018 would regenerate to OP if converted to OP's type,
4019 but would not extend like OP to wider types.
4020 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4021 For example, if OP is (unsigned short)(signed char)-1,
4022 we avoid returning (signed char)-1 if FOR_TYPE is int,
4023 even though extending that to an unsigned short would regenerate OP,
4024 since the result of extending (signed char)-1 to (int)
4025 is different from (int) OP. */
4026
4027 tree
4028 get_unwidened (tree op, tree for_type)
4029 {
4030 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4031 tree type = TREE_TYPE (op);
4032 unsigned final_prec
4033 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4034 int uns
4035 = (for_type != 0 && for_type != type
4036 && final_prec > TYPE_PRECISION (type)
4037 && TREE_UNSIGNED (type));
4038 tree win = op;
4039
4040 while (TREE_CODE (op) == NOP_EXPR)
4041 {
4042 int bitschange
4043 = TYPE_PRECISION (TREE_TYPE (op))
4044 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4045
4046 /* Truncations are many-one so cannot be removed.
4047 Unless we are later going to truncate down even farther. */
4048 if (bitschange < 0
4049 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4050 break;
4051
4052 /* See what's inside this conversion. If we decide to strip it,
4053 we will set WIN. */
4054 op = TREE_OPERAND (op, 0);
4055
4056 /* If we have not stripped any zero-extensions (uns is 0),
4057 we can strip any kind of extension.
4058 If we have previously stripped a zero-extension,
4059 only zero-extensions can safely be stripped.
4060 Any extension can be stripped if the bits it would produce
4061 are all going to be discarded later by truncating to FOR_TYPE. */
4062
4063 if (bitschange > 0)
4064 {
4065 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4066 win = op;
4067 /* TREE_UNSIGNED says whether this is a zero-extension.
4068 Let's avoid computing it if it does not affect WIN
4069 and if UNS will not be needed again. */
4070 if ((uns || TREE_CODE (op) == NOP_EXPR)
4071 && TREE_UNSIGNED (TREE_TYPE (op)))
4072 {
4073 uns = 1;
4074 win = op;
4075 }
4076 }
4077 }
4078
4079 if (TREE_CODE (op) == COMPONENT_REF
4080 /* Since type_for_size always gives an integer type. */
4081 && TREE_CODE (type) != REAL_TYPE
4082 /* Don't crash if field not laid out yet. */
4083 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4084 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4085 {
4086 unsigned int innerprec
4087 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4088 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4089 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4090
4091 /* We can get this structure field in the narrowest type it fits in.
4092 If FOR_TYPE is 0, do this only for a field that matches the
4093 narrower type exactly and is aligned for it
4094 The resulting extension to its nominal type (a fullword type)
4095 must fit the same conditions as for other extensions. */
4096
4097 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4098 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4099 && (! uns || final_prec <= innerprec || unsignedp)
4100 && type != 0)
4101 {
4102 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4103 TREE_OPERAND (op, 1));
4104 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4105 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4106 }
4107 }
4108
4109 return win;
4110 }
4111 \f
4112 /* Return OP or a simpler expression for a narrower value
4113 which can be sign-extended or zero-extended to give back OP.
4114 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4115 or 0 if the value should be sign-extended. */
4116
4117 tree
4118 get_narrower (tree op, int *unsignedp_ptr)
4119 {
4120 int uns = 0;
4121 int first = 1;
4122 tree win = op;
4123
4124 while (TREE_CODE (op) == NOP_EXPR)
4125 {
4126 int bitschange
4127 = (TYPE_PRECISION (TREE_TYPE (op))
4128 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4129
4130 /* Truncations are many-one so cannot be removed. */
4131 if (bitschange < 0)
4132 break;
4133
4134 /* See what's inside this conversion. If we decide to strip it,
4135 we will set WIN. */
4136
4137 if (bitschange > 0)
4138 {
4139 op = TREE_OPERAND (op, 0);
4140 /* An extension: the outermost one can be stripped,
4141 but remember whether it is zero or sign extension. */
4142 if (first)
4143 uns = TREE_UNSIGNED (TREE_TYPE (op));
4144 /* Otherwise, if a sign extension has been stripped,
4145 only sign extensions can now be stripped;
4146 if a zero extension has been stripped, only zero-extensions. */
4147 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4148 break;
4149 first = 0;
4150 }
4151 else /* bitschange == 0 */
4152 {
4153 /* A change in nominal type can always be stripped, but we must
4154 preserve the unsignedness. */
4155 if (first)
4156 uns = TREE_UNSIGNED (TREE_TYPE (op));
4157 first = 0;
4158 op = TREE_OPERAND (op, 0);
4159 }
4160
4161 win = op;
4162 }
4163
4164 if (TREE_CODE (op) == COMPONENT_REF
4165 /* Since type_for_size always gives an integer type. */
4166 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4167 /* Ensure field is laid out already. */
4168 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4169 {
4170 unsigned HOST_WIDE_INT innerprec
4171 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4172 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4173 TREE_UNSIGNED (op));
4174
4175 /* We can get this structure field in a narrower type that fits it,
4176 but the resulting extension to its nominal type (a fullword type)
4177 must satisfy the same conditions as for other extensions.
4178
4179 Do this only for fields that are aligned (not bit-fields),
4180 because when bit-field insns will be used there is no
4181 advantage in doing this. */
4182
4183 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4184 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4185 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4186 && type != 0)
4187 {
4188 if (first)
4189 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4190 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4191 TREE_OPERAND (op, 1));
4192 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4193 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4194 }
4195 }
4196 *unsignedp_ptr = uns;
4197 return win;
4198 }
4199 \f
4200 /* Nonzero if integer constant C has a value that is permissible
4201 for type TYPE (an INTEGER_TYPE). */
4202
4203 int
4204 int_fits_type_p (tree c, tree type)
4205 {
4206 tree type_low_bound = TYPE_MIN_VALUE (type);
4207 tree type_high_bound = TYPE_MAX_VALUE (type);
4208 int ok_for_low_bound, ok_for_high_bound;
4209
4210 /* Perform some generic filtering first, which may allow making a decision
4211 even if the bounds are not constant. First, negative integers never fit
4212 in unsigned types, */
4213 if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4214 /* Also, unsigned integers with top bit set never fit signed types. */
4215 || (! TREE_UNSIGNED (type)
4216 && TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4217 return 0;
4218
4219 /* If at least one bound of the type is a constant integer, we can check
4220 ourselves and maybe make a decision. If no such decision is possible, but
4221 this type is a subtype, try checking against that. Otherwise, use
4222 force_fit_type, which checks against the precision.
4223
4224 Compute the status for each possibly constant bound, and return if we see
4225 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4226 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4227 for "constant known to fit". */
4228
4229 ok_for_low_bound = -1;
4230 ok_for_high_bound = -1;
4231
4232 /* Check if C >= type_low_bound. */
4233 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4234 {
4235 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4236 if (! ok_for_low_bound)
4237 return 0;
4238 }
4239
4240 /* Check if c <= type_high_bound. */
4241 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4242 {
4243 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4244 if (! ok_for_high_bound)
4245 return 0;
4246 }
4247
4248 /* If the constant fits both bounds, the result is known. */
4249 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4250 return 1;
4251
4252 /* If we haven't been able to decide at this point, there nothing more we
4253 can check ourselves here. Look at the base type if we have one. */
4254 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4255 return int_fits_type_p (c, TREE_TYPE (type));
4256
4257 /* Or to force_fit_type, if nothing else. */
4258 else
4259 {
4260 c = copy_node (c);
4261 TREE_TYPE (c) = type;
4262 return !force_fit_type (c, 0);
4263 }
4264 }
4265
4266 /* Returns true if T is, contains, or refers to a type with variable
4267 size. This concept is more general than that of C99 'variably
4268 modified types': in C99, a struct type is never variably modified
4269 because a VLA may not appear as a structure member. However, in
4270 GNU C code like:
4271
4272 struct S { int i[f()]; };
4273
4274 is valid, and other languages may define similar constructs. */
4275
4276 bool
4277 variably_modified_type_p (tree type)
4278 {
4279 if (type == error_mark_node)
4280 return false;
4281
4282 /* If TYPE itself has variable size, it is variably modified.
4283
4284 We do not yet have a representation of the C99 '[*]' syntax.
4285 When a representation is chosen, this function should be modified
4286 to test for that case as well. */
4287 if (TYPE_SIZE (type)
4288 && TYPE_SIZE (type) != error_mark_node
4289 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4290 return true;
4291
4292 /* If TYPE is a pointer or reference, it is variably modified if
4293 the type pointed to is variably modified. */
4294 if ((TREE_CODE (type) == POINTER_TYPE
4295 || TREE_CODE (type) == REFERENCE_TYPE)
4296 && variably_modified_type_p (TREE_TYPE (type)))
4297 return true;
4298
4299 /* If TYPE is an array, it is variably modified if the array
4300 elements are. (Note that the VLA case has already been checked
4301 above.) */
4302 if (TREE_CODE (type) == ARRAY_TYPE
4303 && variably_modified_type_p (TREE_TYPE (type)))
4304 return true;
4305
4306 /* If TYPE is a function type, it is variably modified if any of the
4307 parameters or the return type are variably modified. */
4308 if (TREE_CODE (type) == FUNCTION_TYPE
4309 || TREE_CODE (type) == METHOD_TYPE)
4310 {
4311 tree parm;
4312
4313 if (variably_modified_type_p (TREE_TYPE (type)))
4314 return true;
4315 for (parm = TYPE_ARG_TYPES (type);
4316 parm && parm != void_list_node;
4317 parm = TREE_CHAIN (parm))
4318 if (variably_modified_type_p (TREE_VALUE (parm)))
4319 return true;
4320 }
4321
4322 /* The current language may have other cases to check, but in general,
4323 all other types are not variably modified. */
4324 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4325 }
4326
4327 /* Given a DECL or TYPE, return the scope in which it was declared, or
4328 NULL_TREE if there is no containing scope. */
4329
4330 tree
4331 get_containing_scope (tree t)
4332 {
4333 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4334 }
4335
4336 /* Return the innermost context enclosing DECL that is
4337 a FUNCTION_DECL, or zero if none. */
4338
4339 tree
4340 decl_function_context (tree decl)
4341 {
4342 tree context;
4343
4344 if (TREE_CODE (decl) == ERROR_MARK)
4345 return 0;
4346
4347 if (TREE_CODE (decl) == SAVE_EXPR)
4348 context = SAVE_EXPR_CONTEXT (decl);
4349
4350 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4351 where we look up the function at runtime. Such functions always take
4352 a first argument of type 'pointer to real context'.
4353
4354 C++ should really be fixed to use DECL_CONTEXT for the real context,
4355 and use something else for the "virtual context". */
4356 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4357 context
4358 = TYPE_MAIN_VARIANT
4359 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4360 else
4361 context = DECL_CONTEXT (decl);
4362
4363 while (context && TREE_CODE (context) != FUNCTION_DECL)
4364 {
4365 if (TREE_CODE (context) == BLOCK)
4366 context = BLOCK_SUPERCONTEXT (context);
4367 else
4368 context = get_containing_scope (context);
4369 }
4370
4371 return context;
4372 }
4373
4374 /* Return the innermost context enclosing DECL that is
4375 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4376 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4377
4378 tree
4379 decl_type_context (tree decl)
4380 {
4381 tree context = DECL_CONTEXT (decl);
4382
4383 while (context)
4384 switch (TREE_CODE (context))
4385 {
4386 case NAMESPACE_DECL:
4387 case TRANSLATION_UNIT_DECL:
4388 return NULL_TREE;
4389
4390 case RECORD_TYPE:
4391 case UNION_TYPE:
4392 case QUAL_UNION_TYPE:
4393 return context;
4394
4395 case TYPE_DECL:
4396 case FUNCTION_DECL:
4397 context = DECL_CONTEXT (context);
4398 break;
4399
4400 case BLOCK:
4401 context = BLOCK_SUPERCONTEXT (context);
4402 break;
4403
4404 default:
4405 abort ();
4406 }
4407
4408 return NULL_TREE;
4409 }
4410
4411 /* CALL is a CALL_EXPR. Return the declaration for the function
4412 called, or NULL_TREE if the called function cannot be
4413 determined. */
4414
4415 tree
4416 get_callee_fndecl (tree call)
4417 {
4418 tree addr;
4419
4420 /* It's invalid to call this function with anything but a
4421 CALL_EXPR. */
4422 if (TREE_CODE (call) != CALL_EXPR)
4423 abort ();
4424
4425 /* The first operand to the CALL is the address of the function
4426 called. */
4427 addr = TREE_OPERAND (call, 0);
4428
4429 STRIP_NOPS (addr);
4430
4431 /* If this is a readonly function pointer, extract its initial value. */
4432 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4433 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4434 && DECL_INITIAL (addr))
4435 addr = DECL_INITIAL (addr);
4436
4437 /* If the address is just `&f' for some function `f', then we know
4438 that `f' is being called. */
4439 if (TREE_CODE (addr) == ADDR_EXPR
4440 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4441 return TREE_OPERAND (addr, 0);
4442
4443 /* We couldn't figure out what was being called. */
4444 return NULL_TREE;
4445 }
4446
4447 /* Print debugging information about tree nodes generated during the compile,
4448 and any language-specific information. */
4449
4450 void
4451 dump_tree_statistics (void)
4452 {
4453 #ifdef GATHER_STATISTICS
4454 int i;
4455 int total_nodes, total_bytes;
4456 #endif
4457
4458 fprintf (stderr, "\n??? tree nodes created\n\n");
4459 #ifdef GATHER_STATISTICS
4460 fprintf (stderr, "Kind Nodes Bytes\n");
4461 fprintf (stderr, "---------------------------------------\n");
4462 total_nodes = total_bytes = 0;
4463 for (i = 0; i < (int) all_kinds; i++)
4464 {
4465 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
4466 tree_node_counts[i], tree_node_sizes[i]);
4467 total_nodes += tree_node_counts[i];
4468 total_bytes += tree_node_sizes[i];
4469 }
4470 fprintf (stderr, "---------------------------------------\n");
4471 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
4472 fprintf (stderr, "---------------------------------------\n");
4473 #else
4474 fprintf (stderr, "(No per-node statistics)\n");
4475 #endif
4476 print_type_hash_statistics ();
4477 (*lang_hooks.print_statistics) ();
4478 }
4479 \f
4480 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4481
4482 /* Generate a crc32 of a string. */
4483
4484 unsigned
4485 crc32_string (unsigned chksum, const char *string)
4486 {
4487 do
4488 {
4489 unsigned value = *string << 24;
4490 unsigned ix;
4491
4492 for (ix = 8; ix--; value <<= 1)
4493 {
4494 unsigned feedback;
4495
4496 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4497 chksum <<= 1;
4498 chksum ^= feedback;
4499 }
4500 }
4501 while (*string++);
4502 return chksum;
4503 }
4504
4505 /* P is a string that will be used in a symbol. Mask out any characters
4506 that are not valid in that context. */
4507
4508 void
4509 clean_symbol_name (char *p)
4510 {
4511 for (; *p; p++)
4512 if (! (ISALNUM (*p)
4513 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4514 || *p == '$'
4515 #endif
4516 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4517 || *p == '.'
4518 #endif
4519 ))
4520 *p = '_';
4521 }
4522
4523 /* Generate a name for a function unique to this translation unit.
4524 TYPE is some string to identify the purpose of this function to the
4525 linker or collect2. */
4526
4527 tree
4528 get_file_function_name_long (const char *type)
4529 {
4530 char *buf;
4531 const char *p;
4532 char *q;
4533
4534 if (first_global_object_name)
4535 p = first_global_object_name;
4536 else
4537 {
4538 /* We don't have anything that we know to be unique to this translation
4539 unit, so use what we do have and throw in some randomness. */
4540 unsigned len;
4541 const char *name = weak_global_object_name;
4542 const char *file = main_input_filename;
4543
4544 if (! name)
4545 name = "";
4546 if (! file)
4547 file = input_filename;
4548
4549 len = strlen (file);
4550 q = alloca (9 * 2 + len + 1);
4551 memcpy (q, file, len + 1);
4552 clean_symbol_name (q);
4553
4554 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
4555 crc32_string (0, flag_random_seed));
4556
4557 p = q;
4558 }
4559
4560 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
4561
4562 /* Set up the name of the file-level functions we may need.
4563 Use a global object (which is already required to be unique over
4564 the program) rather than the file name (which imposes extra
4565 constraints). */
4566 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4567
4568 return get_identifier (buf);
4569 }
4570
4571 /* If KIND=='I', return a suitable global initializer (constructor) name.
4572 If KIND=='D', return a suitable global clean-up (destructor) name. */
4573
4574 tree
4575 get_file_function_name (int kind)
4576 {
4577 char p[2];
4578
4579 p[0] = kind;
4580 p[1] = 0;
4581
4582 return get_file_function_name_long (p);
4583 }
4584 \f
4585 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4586 The result is placed in BUFFER (which has length BIT_SIZE),
4587 with one bit in each char ('\000' or '\001').
4588
4589 If the constructor is constant, NULL_TREE is returned.
4590 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4591
4592 tree
4593 get_set_constructor_bits (tree init, char *buffer, int bit_size)
4594 {
4595 int i;
4596 tree vals;
4597 HOST_WIDE_INT domain_min
4598 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4599 tree non_const_bits = NULL_TREE;
4600
4601 for (i = 0; i < bit_size; i++)
4602 buffer[i] = 0;
4603
4604 for (vals = TREE_OPERAND (init, 1);
4605 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4606 {
4607 if (!host_integerp (TREE_VALUE (vals), 0)
4608 || (TREE_PURPOSE (vals) != NULL_TREE
4609 && !host_integerp (TREE_PURPOSE (vals), 0)))
4610 non_const_bits
4611 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4612 else if (TREE_PURPOSE (vals) != NULL_TREE)
4613 {
4614 /* Set a range of bits to ones. */
4615 HOST_WIDE_INT lo_index
4616 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4617 HOST_WIDE_INT hi_index
4618 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4619
4620 if (lo_index < 0 || lo_index >= bit_size
4621 || hi_index < 0 || hi_index >= bit_size)
4622 abort ();
4623 for (; lo_index <= hi_index; lo_index++)
4624 buffer[lo_index] = 1;
4625 }
4626 else
4627 {
4628 /* Set a single bit to one. */
4629 HOST_WIDE_INT index
4630 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4631 if (index < 0 || index >= bit_size)
4632 {
4633 error ("invalid initializer for bit string");
4634 return NULL_TREE;
4635 }
4636 buffer[index] = 1;
4637 }
4638 }
4639 return non_const_bits;
4640 }
4641
4642 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4643 The result is placed in BUFFER (which is an array of bytes).
4644 If the constructor is constant, NULL_TREE is returned.
4645 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4646
4647 tree
4648 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
4649 {
4650 int i;
4651 int set_word_size = BITS_PER_UNIT;
4652 int bit_size = wd_size * set_word_size;
4653 int bit_pos = 0;
4654 unsigned char *bytep = buffer;
4655 char *bit_buffer = alloca (bit_size);
4656 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4657
4658 for (i = 0; i < wd_size; i++)
4659 buffer[i] = 0;
4660
4661 for (i = 0; i < bit_size; i++)
4662 {
4663 if (bit_buffer[i])
4664 {
4665 if (BYTES_BIG_ENDIAN)
4666 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4667 else
4668 *bytep |= 1 << bit_pos;
4669 }
4670 bit_pos++;
4671 if (bit_pos >= set_word_size)
4672 bit_pos = 0, bytep++;
4673 }
4674 return non_const_bits;
4675 }
4676 \f
4677 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4678 /* Complain that the tree code of NODE does not match the expected CODE.
4679 FILE, LINE, and FUNCTION are of the caller. */
4680
4681 void
4682 tree_check_failed (const tree node, enum tree_code code, const char *file,
4683 int line, const char *function)
4684 {
4685 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4686 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4687 function, trim_filename (file), line);
4688 }
4689
4690 /* Similar to above, except that we check for a class of tree
4691 code, given in CL. */
4692
4693 void
4694 tree_class_check_failed (const tree node, int cl, const char *file,
4695 int line, const char *function)
4696 {
4697 internal_error
4698 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4699 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4700 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4701 }
4702
4703 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4704 (dynamically sized) vector. */
4705
4706 void
4707 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
4708 const char *function)
4709 {
4710 internal_error
4711 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4712 idx + 1, len, function, trim_filename (file), line);
4713 }
4714
4715 /* Similar to above, except that the check is for the bounds of the operand
4716 vector of an expression node. */
4717
4718 void
4719 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
4720 int line, const char *function)
4721 {
4722 internal_error
4723 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4724 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
4725 function, trim_filename (file), line);
4726 }
4727 #endif /* ENABLE_TREE_CHECKING */
4728 \f
4729 /* For a new vector type node T, build the information necessary for
4730 debugging output. */
4731
4732 static void
4733 finish_vector_type (tree t)
4734 {
4735 layout_type (t);
4736
4737 {
4738 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4739 tree array = build_array_type (TREE_TYPE (t),
4740 build_index_type (index));
4741 tree rt = make_node (RECORD_TYPE);
4742
4743 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4744 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4745 layout_type (rt);
4746 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4747 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4748 the representation type, and we want to find that die when looking up
4749 the vector type. This is most easily achieved by making the TYPE_UID
4750 numbers equal. */
4751 TYPE_UID (rt) = TYPE_UID (t);
4752 }
4753 }
4754
4755 /* Create nodes for all integer types (and error_mark_node) using the sizes
4756 of C datatypes. The caller should call set_sizetype soon after calling
4757 this function to select one of the types as sizetype. */
4758
4759 void
4760 build_common_tree_nodes (int signed_char)
4761 {
4762 error_mark_node = make_node (ERROR_MARK);
4763 TREE_TYPE (error_mark_node) = error_mark_node;
4764
4765 initialize_sizetypes ();
4766
4767 /* Define both `signed char' and `unsigned char'. */
4768 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4769 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4770
4771 /* Define `char', which is like either `signed char' or `unsigned char'
4772 but not the same as either. */
4773 char_type_node
4774 = (signed_char
4775 ? make_signed_type (CHAR_TYPE_SIZE)
4776 : make_unsigned_type (CHAR_TYPE_SIZE));
4777
4778 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4779 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4780 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4781 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4782 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4783 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4784 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4785 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4786
4787 /* Define a boolean type. This type only represents boolean values but
4788 may be larger than char depending on the value of BOOL_TYPE_SIZE.
4789 Front ends which want to override this size (i.e. Java) can redefine
4790 boolean_type_node before calling build_common_tree_nodes_2. */
4791 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
4792 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
4793 TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
4794 TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
4795 TYPE_PRECISION (boolean_type_node) = 1;
4796
4797 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4798 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4799 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4800 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4801 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4802
4803 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4804 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4805 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4806 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4807 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4808 }
4809
4810 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4811 It will create several other common tree nodes. */
4812
4813 void
4814 build_common_tree_nodes_2 (int short_double)
4815 {
4816 /* Define these next since types below may used them. */
4817 integer_zero_node = build_int_2 (0, 0);
4818 integer_one_node = build_int_2 (1, 0);
4819 integer_minus_one_node = build_int_2 (-1, -1);
4820
4821 size_zero_node = size_int (0);
4822 size_one_node = size_int (1);
4823 bitsize_zero_node = bitsize_int (0);
4824 bitsize_one_node = bitsize_int (1);
4825 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4826
4827 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
4828 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
4829
4830 void_type_node = make_node (VOID_TYPE);
4831 layout_type (void_type_node);
4832
4833 /* We are not going to have real types in C with less than byte alignment,
4834 so we might as well not have any types that claim to have it. */
4835 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4836 TYPE_USER_ALIGN (void_type_node) = 0;
4837
4838 null_pointer_node = build_int_2 (0, 0);
4839 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4840 layout_type (TREE_TYPE (null_pointer_node));
4841
4842 ptr_type_node = build_pointer_type (void_type_node);
4843 const_ptr_type_node
4844 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4845
4846 float_type_node = make_node (REAL_TYPE);
4847 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4848 layout_type (float_type_node);
4849
4850 double_type_node = make_node (REAL_TYPE);
4851 if (short_double)
4852 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4853 else
4854 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4855 layout_type (double_type_node);
4856
4857 long_double_type_node = make_node (REAL_TYPE);
4858 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4859 layout_type (long_double_type_node);
4860
4861 float_ptr_type_node = build_pointer_type (float_type_node);
4862 double_ptr_type_node = build_pointer_type (double_type_node);
4863 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
4864 integer_ptr_type_node = build_pointer_type (integer_type_node);
4865
4866 complex_integer_type_node = make_node (COMPLEX_TYPE);
4867 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4868 layout_type (complex_integer_type_node);
4869
4870 complex_float_type_node = make_node (COMPLEX_TYPE);
4871 TREE_TYPE (complex_float_type_node) = float_type_node;
4872 layout_type (complex_float_type_node);
4873
4874 complex_double_type_node = make_node (COMPLEX_TYPE);
4875 TREE_TYPE (complex_double_type_node) = double_type_node;
4876 layout_type (complex_double_type_node);
4877
4878 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4879 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4880 layout_type (complex_long_double_type_node);
4881
4882 {
4883 tree t;
4884 BUILD_VA_LIST_TYPE (t);
4885
4886 /* Many back-ends define record types without setting TYPE_NAME.
4887 If we copied the record type here, we'd keep the original
4888 record type without a name. This breaks name mangling. So,
4889 don't copy record types and let c_common_nodes_and_builtins()
4890 declare the type to be __builtin_va_list. */
4891 if (TREE_CODE (t) != RECORD_TYPE)
4892 t = build_type_copy (t);
4893
4894 va_list_type_node = t;
4895 }
4896
4897 unsigned_V4SI_type_node
4898 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4899 unsigned_V2HI_type_node
4900 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
4901 unsigned_V2SI_type_node
4902 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4903 unsigned_V2DI_type_node
4904 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4905 unsigned_V4HI_type_node
4906 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4907 unsigned_V8QI_type_node
4908 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4909 unsigned_V8HI_type_node
4910 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4911 unsigned_V16QI_type_node
4912 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4913 unsigned_V1DI_type_node
4914 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4915
4916 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4917 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4918 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4919 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
4920 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4921 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4922 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4923 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4924 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4925 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4926 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4927 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4928 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4929 V4DF_type_node = make_vector (V4DFmode, double_type_node, 0);
4930 }
4931
4932 /* Returns a vector tree node given a vector mode, the inner type, and
4933 the signness. */
4934
4935 static tree
4936 make_vector (enum machine_mode mode, tree innertype, int unsignedp)
4937 {
4938 tree t;
4939
4940 t = make_node (VECTOR_TYPE);
4941 TREE_TYPE (t) = innertype;
4942 TYPE_MODE (t) = mode;
4943 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4944 finish_vector_type (t);
4945
4946 return t;
4947 }
4948
4949 /* Given an initializer INIT, return TRUE if INIT is zero or some
4950 aggregate of zeros. Otherwise return FALSE. */
4951
4952 bool
4953 initializer_zerop (tree init)
4954 {
4955 STRIP_NOPS (init);
4956
4957 switch (TREE_CODE (init))
4958 {
4959 case INTEGER_CST:
4960 return integer_zerop (init);
4961 case REAL_CST:
4962 return real_zerop (init)
4963 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4964 case COMPLEX_CST:
4965 return integer_zerop (init)
4966 || (real_zerop (init)
4967 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4968 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4969 case CONSTRUCTOR:
4970 {
4971 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4972 {
4973 tree aggr_init = CONSTRUCTOR_ELTS (init);
4974
4975 while (aggr_init)
4976 {
4977 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4978 return false;
4979 aggr_init = TREE_CHAIN (aggr_init);
4980 }
4981 return true;
4982 }
4983 return false;
4984 }
4985 default:
4986 return false;
4987 }
4988 }
4989
4990 #include "gt-tree.h"