tree.c (chain_index): New fn.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-inline.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54 #include "fixed-value.h"
55 #include "tree-pass.h"
56 #include "langhooks-def.h"
57 #include "diagnostic.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62
63 /* Tree code classes. */
64
65 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
66 #define END_OF_BASE_TREE_CODES tcc_exceptional,
67
68 const enum tree_code_class tree_code_type[] = {
69 #include "all-tree.def"
70 };
71
72 #undef DEFTREECODE
73 #undef END_OF_BASE_TREE_CODES
74
75 /* Table indexed by tree code giving number of expression
76 operands beyond the fixed part of the node structure.
77 Not used for types or decls. */
78
79 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
80 #define END_OF_BASE_TREE_CODES 0,
81
82 const unsigned char tree_code_length[] = {
83 #include "all-tree.def"
84 };
85
86 #undef DEFTREECODE
87 #undef END_OF_BASE_TREE_CODES
88
89 /* Names of tree components.
90 Used for printing out the tree and error messages. */
91 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
92 #define END_OF_BASE_TREE_CODES "@dummy",
93
94 const char *const tree_code_name[] = {
95 #include "all-tree.def"
96 };
97
98 #undef DEFTREECODE
99 #undef END_OF_BASE_TREE_CODES
100
101 /* Each tree code class has an associated string representation.
102 These must correspond to the tree_code_class entries. */
103
104 const char *const tree_code_class_strings[] =
105 {
106 "exceptional",
107 "constant",
108 "type",
109 "declaration",
110 "reference",
111 "comparison",
112 "unary",
113 "binary",
114 "statement",
115 "vl_exp",
116 "expression"
117 };
118
119 /* obstack.[ch] explicitly declined to prototype this. */
120 extern int _obstack_allocated_p (struct obstack *h, void *obj);
121
122 #ifdef GATHER_STATISTICS
123 /* Statistics-gathering stuff. */
124
125 int tree_node_counts[(int) all_kinds];
126 int tree_node_sizes[(int) all_kinds];
127
128 /* Keep in sync with tree.h:enum tree_node_kind. */
129 static const char * const tree_node_kind_names[] = {
130 "decls",
131 "types",
132 "blocks",
133 "stmts",
134 "refs",
135 "exprs",
136 "constants",
137 "identifiers",
138 "perm_tree_lists",
139 "temp_tree_lists",
140 "vecs",
141 "binfos",
142 "ssa names",
143 "constructors",
144 "random kinds",
145 "lang_decl kinds",
146 "lang_type kinds",
147 "omp clauses",
148 };
149 #endif /* GATHER_STATISTICS */
150
151 /* Unique id for next decl created. */
152 static GTY(()) int next_decl_uid;
153 /* Unique id for next type created. */
154 static GTY(()) int next_type_uid = 1;
155
156 /* Since we cannot rehash a type after it is in the table, we have to
157 keep the hash code. */
158
159 struct GTY(()) type_hash {
160 unsigned long hash;
161 tree type;
162 };
163
164 /* Initial size of the hash table (rounded to next prime). */
165 #define TYPE_HASH_INITIAL_SIZE 1000
166
167 /* Now here is the hash table. When recording a type, it is added to
168 the slot whose index is the hash code. Note that the hash table is
169 used for several kinds of types (function types, array types and
170 array index range types, for now). While all these live in the
171 same table, they are completely independent, and the hash code is
172 computed differently for each of these. */
173
174 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
175 htab_t type_hash_table;
176
177 /* Hash table and temporary node for larger integer const values. */
178 static GTY (()) tree int_cst_node;
179 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
180 htab_t int_cst_hash_table;
181
182 /* Hash table for optimization flags and target option flags. Use the same
183 hash table for both sets of options. Nodes for building the current
184 optimization and target option nodes. The assumption is most of the time
185 the options created will already be in the hash table, so we avoid
186 allocating and freeing up a node repeatably. */
187 static GTY (()) tree cl_optimization_node;
188 static GTY (()) tree cl_target_option_node;
189 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
190 htab_t cl_option_hash_table;
191
192 /* General tree->tree mapping structure for use in hash tables. */
193
194
195 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
196 htab_t debug_expr_for_decl;
197
198 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
199 htab_t value_expr_for_decl;
200
201 static GTY ((if_marked ("tree_priority_map_marked_p"),
202 param_is (struct tree_priority_map)))
203 htab_t init_priority_for_decl;
204
205 static void set_type_quals (tree, int);
206 static int type_hash_eq (const void *, const void *);
207 static hashval_t type_hash_hash (const void *);
208 static hashval_t int_cst_hash_hash (const void *);
209 static int int_cst_hash_eq (const void *, const void *);
210 static hashval_t cl_option_hash_hash (const void *);
211 static int cl_option_hash_eq (const void *, const void *);
212 static void print_type_hash_statistics (void);
213 static void print_debug_expr_statistics (void);
214 static void print_value_expr_statistics (void);
215 static int type_hash_marked_p (const void *);
216 static unsigned int type_hash_list (const_tree, hashval_t);
217 static unsigned int attribute_hash_list (const_tree, hashval_t);
218
219 tree global_trees[TI_MAX];
220 tree integer_types[itk_none];
221
222 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
223
224 /* Number of operands for each OpenMP clause. */
225 unsigned const char omp_clause_num_ops[] =
226 {
227 0, /* OMP_CLAUSE_ERROR */
228 1, /* OMP_CLAUSE_PRIVATE */
229 1, /* OMP_CLAUSE_SHARED */
230 1, /* OMP_CLAUSE_FIRSTPRIVATE */
231 2, /* OMP_CLAUSE_LASTPRIVATE */
232 4, /* OMP_CLAUSE_REDUCTION */
233 1, /* OMP_CLAUSE_COPYIN */
234 1, /* OMP_CLAUSE_COPYPRIVATE */
235 1, /* OMP_CLAUSE_IF */
236 1, /* OMP_CLAUSE_NUM_THREADS */
237 1, /* OMP_CLAUSE_SCHEDULE */
238 0, /* OMP_CLAUSE_NOWAIT */
239 0, /* OMP_CLAUSE_ORDERED */
240 0, /* OMP_CLAUSE_DEFAULT */
241 3, /* OMP_CLAUSE_COLLAPSE */
242 0 /* OMP_CLAUSE_UNTIED */
243 };
244
245 const char * const omp_clause_code_name[] =
246 {
247 "error_clause",
248 "private",
249 "shared",
250 "firstprivate",
251 "lastprivate",
252 "reduction",
253 "copyin",
254 "copyprivate",
255 "if",
256 "num_threads",
257 "schedule",
258 "nowait",
259 "ordered",
260 "default",
261 "collapse",
262 "untied"
263 };
264
265
266 /* Return the tree node structure used by tree code CODE. */
267
268 static inline enum tree_node_structure_enum
269 tree_node_structure_for_code (enum tree_code code)
270 {
271 switch (TREE_CODE_CLASS (code))
272 {
273 case tcc_declaration:
274 {
275 switch (code)
276 {
277 case FIELD_DECL:
278 return TS_FIELD_DECL;
279 case PARM_DECL:
280 return TS_PARM_DECL;
281 case VAR_DECL:
282 return TS_VAR_DECL;
283 case LABEL_DECL:
284 return TS_LABEL_DECL;
285 case RESULT_DECL:
286 return TS_RESULT_DECL;
287 case CONST_DECL:
288 return TS_CONST_DECL;
289 case TYPE_DECL:
290 return TS_TYPE_DECL;
291 case FUNCTION_DECL:
292 return TS_FUNCTION_DECL;
293 default:
294 return TS_DECL_NON_COMMON;
295 }
296 }
297 case tcc_type:
298 return TS_TYPE;
299 case tcc_reference:
300 case tcc_comparison:
301 case tcc_unary:
302 case tcc_binary:
303 case tcc_expression:
304 case tcc_statement:
305 case tcc_vl_exp:
306 return TS_EXP;
307 default: /* tcc_constant and tcc_exceptional */
308 break;
309 }
310 switch (code)
311 {
312 /* tcc_constant cases. */
313 case INTEGER_CST: return TS_INT_CST;
314 case REAL_CST: return TS_REAL_CST;
315 case FIXED_CST: return TS_FIXED_CST;
316 case COMPLEX_CST: return TS_COMPLEX;
317 case VECTOR_CST: return TS_VECTOR;
318 case STRING_CST: return TS_STRING;
319 /* tcc_exceptional cases. */
320 case ERROR_MARK: return TS_COMMON;
321 case IDENTIFIER_NODE: return TS_IDENTIFIER;
322 case TREE_LIST: return TS_LIST;
323 case TREE_VEC: return TS_VEC;
324 case SSA_NAME: return TS_SSA_NAME;
325 case PLACEHOLDER_EXPR: return TS_COMMON;
326 case STATEMENT_LIST: return TS_STATEMENT_LIST;
327 case BLOCK: return TS_BLOCK;
328 case CONSTRUCTOR: return TS_CONSTRUCTOR;
329 case TREE_BINFO: return TS_BINFO;
330 case OMP_CLAUSE: return TS_OMP_CLAUSE;
331 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
332 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
333
334 default:
335 gcc_unreachable ();
336 }
337 }
338
339
340 /* Initialize tree_contains_struct to describe the hierarchy of tree
341 nodes. */
342
343 static void
344 initialize_tree_contains_struct (void)
345 {
346 unsigned i;
347
348 #define MARK_TS_BASE(C) \
349 do { \
350 tree_contains_struct[C][TS_BASE] = 1; \
351 } while (0)
352
353 #define MARK_TS_COMMON(C) \
354 do { \
355 MARK_TS_BASE (C); \
356 tree_contains_struct[C][TS_COMMON] = 1; \
357 } while (0)
358
359 #define MARK_TS_DECL_MINIMAL(C) \
360 do { \
361 MARK_TS_COMMON (C); \
362 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_COMMON(C) \
366 do { \
367 MARK_TS_DECL_MINIMAL (C); \
368 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_WRTL(C) \
372 do { \
373 MARK_TS_DECL_COMMON (C); \
374 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WITH_VIS(C) \
378 do { \
379 MARK_TS_DECL_WRTL (C); \
380 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_NON_COMMON(C) \
384 do { \
385 MARK_TS_DECL_WITH_VIS (C); \
386 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
387 } while (0)
388
389 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
390 {
391 enum tree_code code;
392 enum tree_node_structure_enum ts_code;
393
394 code = (enum tree_code) i;
395 ts_code = tree_node_structure_for_code (code);
396
397 /* Mark the TS structure itself. */
398 tree_contains_struct[code][ts_code] = 1;
399
400 /* Mark all the structures that TS is derived from. */
401 switch (ts_code)
402 {
403 case TS_COMMON:
404 MARK_TS_BASE (code);
405 break;
406
407 case TS_INT_CST:
408 case TS_REAL_CST:
409 case TS_FIXED_CST:
410 case TS_VECTOR:
411 case TS_STRING:
412 case TS_COMPLEX:
413 case TS_IDENTIFIER:
414 case TS_DECL_MINIMAL:
415 case TS_TYPE:
416 case TS_LIST:
417 case TS_VEC:
418 case TS_EXP:
419 case TS_SSA_NAME:
420 case TS_BLOCK:
421 case TS_BINFO:
422 case TS_STATEMENT_LIST:
423 case TS_CONSTRUCTOR:
424 case TS_OMP_CLAUSE:
425 case TS_OPTIMIZATION:
426 case TS_TARGET_OPTION:
427 MARK_TS_COMMON (code);
428 break;
429
430 case TS_DECL_COMMON:
431 MARK_TS_DECL_MINIMAL (code);
432 break;
433
434 case TS_DECL_WRTL:
435 MARK_TS_DECL_COMMON (code);
436 break;
437
438 case TS_DECL_NON_COMMON:
439 MARK_TS_DECL_WITH_VIS (code);
440 break;
441
442 case TS_DECL_WITH_VIS:
443 case TS_PARM_DECL:
444 case TS_LABEL_DECL:
445 case TS_RESULT_DECL:
446 case TS_CONST_DECL:
447 MARK_TS_DECL_WRTL (code);
448 break;
449
450 case TS_FIELD_DECL:
451 MARK_TS_DECL_COMMON (code);
452 break;
453
454 case TS_VAR_DECL:
455 MARK_TS_DECL_WITH_VIS (code);
456 break;
457
458 case TS_TYPE_DECL:
459 case TS_FUNCTION_DECL:
460 MARK_TS_DECL_NON_COMMON (code);
461 break;
462
463 default:
464 gcc_unreachable ();
465 }
466 }
467
468 /* Basic consistency checks for attributes used in fold. */
469 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
470 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON]);
471 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
472 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
473 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
474 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
475 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
476 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
477 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
478 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
479 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
480 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
481 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
482 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
483 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
484 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
485 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
486 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
487 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
488 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
489 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
490 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
491 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
492 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
493 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
494 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
495 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
496 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
497 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
498 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
499 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS]);
500 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
501 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
502 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
503 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
504 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
505 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
506 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
507 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
508 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
509 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
510
511 #undef MARK_TS_BASE
512 #undef MARK_TS_COMMON
513 #undef MARK_TS_DECL_MINIMAL
514 #undef MARK_TS_DECL_COMMON
515 #undef MARK_TS_DECL_WRTL
516 #undef MARK_TS_DECL_WITH_VIS
517 #undef MARK_TS_DECL_NON_COMMON
518 }
519
520
521 /* Init tree.c. */
522
523 void
524 init_ttree (void)
525 {
526 /* Initialize the hash table of types. */
527 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
528 type_hash_eq, 0);
529
530 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
531 tree_map_eq, 0);
532
533 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
534 tree_map_eq, 0);
535 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
536 tree_priority_map_eq, 0);
537
538 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
539 int_cst_hash_eq, NULL);
540
541 int_cst_node = make_node (INTEGER_CST);
542
543 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
544 cl_option_hash_eq, NULL);
545
546 cl_optimization_node = make_node (OPTIMIZATION_NODE);
547 cl_target_option_node = make_node (TARGET_OPTION_NODE);
548
549 /* Initialize the tree_contains_struct array. */
550 initialize_tree_contains_struct ();
551 lang_hooks.init_ts ();
552 }
553
554 \f
555 /* The name of the object as the assembler will see it (but before any
556 translations made by ASM_OUTPUT_LABELREF). Often this is the same
557 as DECL_NAME. It is an IDENTIFIER_NODE. */
558 tree
559 decl_assembler_name (tree decl)
560 {
561 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
562 lang_hooks.set_decl_assembler_name (decl);
563 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
564 }
565
566 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
567
568 bool
569 decl_assembler_name_equal (tree decl, const_tree asmname)
570 {
571 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
572 const char *decl_str;
573 const char *asmname_str;
574 bool test = false;
575
576 if (decl_asmname == asmname)
577 return true;
578
579 decl_str = IDENTIFIER_POINTER (decl_asmname);
580 asmname_str = IDENTIFIER_POINTER (asmname);
581
582
583 /* If the target assembler name was set by the user, things are trickier.
584 We have a leading '*' to begin with. After that, it's arguable what
585 is the correct thing to do with -fleading-underscore. Arguably, we've
586 historically been doing the wrong thing in assemble_alias by always
587 printing the leading underscore. Since we're not changing that, make
588 sure user_label_prefix follows the '*' before matching. */
589 if (decl_str[0] == '*')
590 {
591 size_t ulp_len = strlen (user_label_prefix);
592
593 decl_str ++;
594
595 if (ulp_len == 0)
596 test = true;
597 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
598 decl_str += ulp_len, test=true;
599 else
600 decl_str --;
601 }
602 if (asmname_str[0] == '*')
603 {
604 size_t ulp_len = strlen (user_label_prefix);
605
606 asmname_str ++;
607
608 if (ulp_len == 0)
609 test = true;
610 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
611 asmname_str += ulp_len, test=true;
612 else
613 asmname_str --;
614 }
615
616 if (!test)
617 return false;
618 return strcmp (decl_str, asmname_str) == 0;
619 }
620
621 /* Hash asmnames ignoring the user specified marks. */
622
623 hashval_t
624 decl_assembler_name_hash (const_tree asmname)
625 {
626 if (IDENTIFIER_POINTER (asmname)[0] == '*')
627 {
628 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
629 size_t ulp_len = strlen (user_label_prefix);
630
631 if (ulp_len == 0)
632 ;
633 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
634 decl_str += ulp_len;
635
636 return htab_hash_string (decl_str);
637 }
638
639 return htab_hash_string (IDENTIFIER_POINTER (asmname));
640 }
641
642 /* Compute the number of bytes occupied by a tree with code CODE.
643 This function cannot be used for nodes that have variable sizes,
644 including TREE_VEC, STRING_CST, and CALL_EXPR. */
645 size_t
646 tree_code_size (enum tree_code code)
647 {
648 switch (TREE_CODE_CLASS (code))
649 {
650 case tcc_declaration: /* A decl node */
651 {
652 switch (code)
653 {
654 case FIELD_DECL:
655 return sizeof (struct tree_field_decl);
656 case PARM_DECL:
657 return sizeof (struct tree_parm_decl);
658 case VAR_DECL:
659 return sizeof (struct tree_var_decl);
660 case LABEL_DECL:
661 return sizeof (struct tree_label_decl);
662 case RESULT_DECL:
663 return sizeof (struct tree_result_decl);
664 case CONST_DECL:
665 return sizeof (struct tree_const_decl);
666 case TYPE_DECL:
667 return sizeof (struct tree_type_decl);
668 case FUNCTION_DECL:
669 return sizeof (struct tree_function_decl);
670 default:
671 return sizeof (struct tree_decl_non_common);
672 }
673 }
674
675 case tcc_type: /* a type node */
676 return sizeof (struct tree_type);
677
678 case tcc_reference: /* a reference */
679 case tcc_expression: /* an expression */
680 case tcc_statement: /* an expression with side effects */
681 case tcc_comparison: /* a comparison expression */
682 case tcc_unary: /* a unary arithmetic expression */
683 case tcc_binary: /* a binary arithmetic expression */
684 return (sizeof (struct tree_exp)
685 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
686
687 case tcc_constant: /* a constant */
688 switch (code)
689 {
690 case INTEGER_CST: return sizeof (struct tree_int_cst);
691 case REAL_CST: return sizeof (struct tree_real_cst);
692 case FIXED_CST: return sizeof (struct tree_fixed_cst);
693 case COMPLEX_CST: return sizeof (struct tree_complex);
694 case VECTOR_CST: return sizeof (struct tree_vector);
695 case STRING_CST: gcc_unreachable ();
696 default:
697 return lang_hooks.tree_size (code);
698 }
699
700 case tcc_exceptional: /* something random, like an identifier. */
701 switch (code)
702 {
703 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
704 case TREE_LIST: return sizeof (struct tree_list);
705
706 case ERROR_MARK:
707 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
708
709 case TREE_VEC:
710 case OMP_CLAUSE: gcc_unreachable ();
711
712 case SSA_NAME: return sizeof (struct tree_ssa_name);
713
714 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
715 case BLOCK: return sizeof (struct tree_block);
716 case CONSTRUCTOR: return sizeof (struct tree_constructor);
717 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
718 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
719
720 default:
721 return lang_hooks.tree_size (code);
722 }
723
724 default:
725 gcc_unreachable ();
726 }
727 }
728
729 /* Compute the number of bytes occupied by NODE. This routine only
730 looks at TREE_CODE, except for those nodes that have variable sizes. */
731 size_t
732 tree_size (const_tree node)
733 {
734 const enum tree_code code = TREE_CODE (node);
735 switch (code)
736 {
737 case TREE_BINFO:
738 return (offsetof (struct tree_binfo, base_binfos)
739 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
740
741 case TREE_VEC:
742 return (sizeof (struct tree_vec)
743 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
744
745 case STRING_CST:
746 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
747
748 case OMP_CLAUSE:
749 return (sizeof (struct tree_omp_clause)
750 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
751 * sizeof (tree));
752
753 default:
754 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
755 return (sizeof (struct tree_exp)
756 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
757 else
758 return tree_code_size (code);
759 }
760 }
761
762 /* Return a newly allocated node of code CODE. For decl and type
763 nodes, some other fields are initialized. The rest of the node is
764 initialized to zero. This function cannot be used for TREE_VEC or
765 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
766
767 Achoo! I got a code in the node. */
768
769 tree
770 make_node_stat (enum tree_code code MEM_STAT_DECL)
771 {
772 tree t;
773 enum tree_code_class type = TREE_CODE_CLASS (code);
774 size_t length = tree_code_size (code);
775 #ifdef GATHER_STATISTICS
776 tree_node_kind kind;
777
778 switch (type)
779 {
780 case tcc_declaration: /* A decl node */
781 kind = d_kind;
782 break;
783
784 case tcc_type: /* a type node */
785 kind = t_kind;
786 break;
787
788 case tcc_statement: /* an expression with side effects */
789 kind = s_kind;
790 break;
791
792 case tcc_reference: /* a reference */
793 kind = r_kind;
794 break;
795
796 case tcc_expression: /* an expression */
797 case tcc_comparison: /* a comparison expression */
798 case tcc_unary: /* a unary arithmetic expression */
799 case tcc_binary: /* a binary arithmetic expression */
800 kind = e_kind;
801 break;
802
803 case tcc_constant: /* a constant */
804 kind = c_kind;
805 break;
806
807 case tcc_exceptional: /* something random, like an identifier. */
808 switch (code)
809 {
810 case IDENTIFIER_NODE:
811 kind = id_kind;
812 break;
813
814 case TREE_VEC:
815 kind = vec_kind;
816 break;
817
818 case TREE_BINFO:
819 kind = binfo_kind;
820 break;
821
822 case SSA_NAME:
823 kind = ssa_name_kind;
824 break;
825
826 case BLOCK:
827 kind = b_kind;
828 break;
829
830 case CONSTRUCTOR:
831 kind = constr_kind;
832 break;
833
834 default:
835 kind = x_kind;
836 break;
837 }
838 break;
839
840 default:
841 gcc_unreachable ();
842 }
843
844 tree_node_counts[(int) kind]++;
845 tree_node_sizes[(int) kind] += length;
846 #endif
847
848 if (code == IDENTIFIER_NODE)
849 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_id_zone);
850 else
851 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
852
853 memset (t, 0, length);
854
855 TREE_SET_CODE (t, code);
856
857 switch (type)
858 {
859 case tcc_statement:
860 TREE_SIDE_EFFECTS (t) = 1;
861 break;
862
863 case tcc_declaration:
864 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
865 {
866 if (code == FUNCTION_DECL)
867 {
868 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
869 DECL_MODE (t) = FUNCTION_MODE;
870 }
871 else
872 DECL_ALIGN (t) = 1;
873 }
874 DECL_SOURCE_LOCATION (t) = input_location;
875 DECL_UID (t) = next_decl_uid++;
876 if (TREE_CODE (t) == LABEL_DECL)
877 LABEL_DECL_UID (t) = -1;
878
879 break;
880
881 case tcc_type:
882 TYPE_UID (t) = next_type_uid++;
883 TYPE_ALIGN (t) = BITS_PER_UNIT;
884 TYPE_USER_ALIGN (t) = 0;
885 TYPE_MAIN_VARIANT (t) = t;
886 TYPE_CANONICAL (t) = t;
887
888 /* Default to no attributes for type, but let target change that. */
889 TYPE_ATTRIBUTES (t) = NULL_TREE;
890 targetm.set_default_type_attributes (t);
891
892 /* We have not yet computed the alias set for this type. */
893 TYPE_ALIAS_SET (t) = -1;
894 break;
895
896 case tcc_constant:
897 TREE_CONSTANT (t) = 1;
898 break;
899
900 case tcc_expression:
901 switch (code)
902 {
903 case INIT_EXPR:
904 case MODIFY_EXPR:
905 case VA_ARG_EXPR:
906 case PREDECREMENT_EXPR:
907 case PREINCREMENT_EXPR:
908 case POSTDECREMENT_EXPR:
909 case POSTINCREMENT_EXPR:
910 /* All of these have side-effects, no matter what their
911 operands are. */
912 TREE_SIDE_EFFECTS (t) = 1;
913 break;
914
915 default:
916 break;
917 }
918 break;
919
920 default:
921 /* Other classes need no special treatment. */
922 break;
923 }
924
925 return t;
926 }
927 \f
928 /* Return a new node with the same contents as NODE except that its
929 TREE_CHAIN is zero and it has a fresh uid. */
930
931 tree
932 copy_node_stat (tree node MEM_STAT_DECL)
933 {
934 tree t;
935 enum tree_code code = TREE_CODE (node);
936 size_t length;
937
938 gcc_assert (code != STATEMENT_LIST);
939
940 length = tree_size (node);
941 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
942 memcpy (t, node, length);
943
944 TREE_CHAIN (t) = 0;
945 TREE_ASM_WRITTEN (t) = 0;
946 TREE_VISITED (t) = 0;
947 t->base.ann = 0;
948
949 if (TREE_CODE_CLASS (code) == tcc_declaration)
950 {
951 DECL_UID (t) = next_decl_uid++;
952 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
953 && DECL_HAS_VALUE_EXPR_P (node))
954 {
955 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
956 DECL_HAS_VALUE_EXPR_P (t) = 1;
957 }
958 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
959 {
960 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
961 DECL_HAS_INIT_PRIORITY_P (t) = 1;
962 }
963 }
964 else if (TREE_CODE_CLASS (code) == tcc_type)
965 {
966 TYPE_UID (t) = next_type_uid++;
967 /* The following is so that the debug code for
968 the copy is different from the original type.
969 The two statements usually duplicate each other
970 (because they clear fields of the same union),
971 but the optimizer should catch that. */
972 TYPE_SYMTAB_POINTER (t) = 0;
973 TYPE_SYMTAB_ADDRESS (t) = 0;
974
975 /* Do not copy the values cache. */
976 if (TYPE_CACHED_VALUES_P(t))
977 {
978 TYPE_CACHED_VALUES_P (t) = 0;
979 TYPE_CACHED_VALUES (t) = NULL_TREE;
980 }
981 }
982
983 return t;
984 }
985
986 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
987 For example, this can copy a list made of TREE_LIST nodes. */
988
989 tree
990 copy_list (tree list)
991 {
992 tree head;
993 tree prev, next;
994
995 if (list == 0)
996 return 0;
997
998 head = prev = copy_node (list);
999 next = TREE_CHAIN (list);
1000 while (next)
1001 {
1002 TREE_CHAIN (prev) = copy_node (next);
1003 prev = TREE_CHAIN (prev);
1004 next = TREE_CHAIN (next);
1005 }
1006 return head;
1007 }
1008
1009 \f
1010 /* Create an INT_CST node with a LOW value sign extended. */
1011
1012 tree
1013 build_int_cst (tree type, HOST_WIDE_INT low)
1014 {
1015 /* Support legacy code. */
1016 if (!type)
1017 type = integer_type_node;
1018
1019 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1020 }
1021
1022 /* Create an INT_CST node with a LOW value zero extended. */
1023
1024 tree
1025 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
1026 {
1027 return build_int_cst_wide (type, low, 0);
1028 }
1029
1030 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1031 if it is negative. This function is similar to build_int_cst, but
1032 the extra bits outside of the type precision are cleared. Constants
1033 with these extra bits may confuse the fold so that it detects overflows
1034 even in cases when they do not occur, and in general should be avoided.
1035 We cannot however make this a default behavior of build_int_cst without
1036 more intrusive changes, since there are parts of gcc that rely on the extra
1037 precision of the integer constants. */
1038
1039 tree
1040 build_int_cst_type (tree type, HOST_WIDE_INT low)
1041 {
1042 unsigned HOST_WIDE_INT low1;
1043 HOST_WIDE_INT hi;
1044
1045 gcc_assert (type);
1046
1047 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
1048
1049 return build_int_cst_wide (type, low1, hi);
1050 }
1051
1052 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
1053 and sign extended according to the value range of TYPE. */
1054
1055 tree
1056 build_int_cst_wide_type (tree type,
1057 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
1058 {
1059 fit_double_type (low, high, &low, &high, type);
1060 return build_int_cst_wide (type, low, high);
1061 }
1062
1063 /* These are the hash table functions for the hash table of INTEGER_CST
1064 nodes of a sizetype. */
1065
1066 /* Return the hash code code X, an INTEGER_CST. */
1067
1068 static hashval_t
1069 int_cst_hash_hash (const void *x)
1070 {
1071 const_tree const t = (const_tree) x;
1072
1073 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1074 ^ htab_hash_pointer (TREE_TYPE (t)));
1075 }
1076
1077 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1078 is the same as that given by *Y, which is the same. */
1079
1080 static int
1081 int_cst_hash_eq (const void *x, const void *y)
1082 {
1083 const_tree const xt = (const_tree) x;
1084 const_tree const yt = (const_tree) y;
1085
1086 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1087 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1088 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1089 }
1090
1091 /* Create an INT_CST node of TYPE and value HI:LOW.
1092 The returned node is always shared. For small integers we use a
1093 per-type vector cache, for larger ones we use a single hash table. */
1094
1095 tree
1096 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1097 {
1098 tree t;
1099 int ix = -1;
1100 int limit = 0;
1101
1102 gcc_assert (type);
1103
1104 switch (TREE_CODE (type))
1105 {
1106 case POINTER_TYPE:
1107 case REFERENCE_TYPE:
1108 /* Cache NULL pointer. */
1109 if (!hi && !low)
1110 {
1111 limit = 1;
1112 ix = 0;
1113 }
1114 break;
1115
1116 case BOOLEAN_TYPE:
1117 /* Cache false or true. */
1118 limit = 2;
1119 if (!hi && low < 2)
1120 ix = low;
1121 break;
1122
1123 case INTEGER_TYPE:
1124 case OFFSET_TYPE:
1125 if (TYPE_UNSIGNED (type))
1126 {
1127 /* Cache 0..N */
1128 limit = INTEGER_SHARE_LIMIT;
1129 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1130 ix = low;
1131 }
1132 else
1133 {
1134 /* Cache -1..N */
1135 limit = INTEGER_SHARE_LIMIT + 1;
1136 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1137 ix = low + 1;
1138 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1139 ix = 0;
1140 }
1141 break;
1142
1143 case ENUMERAL_TYPE:
1144 break;
1145
1146 default:
1147 gcc_unreachable ();
1148 }
1149
1150 if (ix >= 0)
1151 {
1152 /* Look for it in the type's vector of small shared ints. */
1153 if (!TYPE_CACHED_VALUES_P (type))
1154 {
1155 TYPE_CACHED_VALUES_P (type) = 1;
1156 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1157 }
1158
1159 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1160 if (t)
1161 {
1162 /* Make sure no one is clobbering the shared constant. */
1163 gcc_assert (TREE_TYPE (t) == type);
1164 gcc_assert (TREE_INT_CST_LOW (t) == low);
1165 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1166 }
1167 else
1168 {
1169 /* Create a new shared int. */
1170 t = make_node (INTEGER_CST);
1171
1172 TREE_INT_CST_LOW (t) = low;
1173 TREE_INT_CST_HIGH (t) = hi;
1174 TREE_TYPE (t) = type;
1175
1176 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1177 }
1178 }
1179 else
1180 {
1181 /* Use the cache of larger shared ints. */
1182 void **slot;
1183
1184 TREE_INT_CST_LOW (int_cst_node) = low;
1185 TREE_INT_CST_HIGH (int_cst_node) = hi;
1186 TREE_TYPE (int_cst_node) = type;
1187
1188 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1189 t = (tree) *slot;
1190 if (!t)
1191 {
1192 /* Insert this one into the hash table. */
1193 t = int_cst_node;
1194 *slot = t;
1195 /* Make a new node for next time round. */
1196 int_cst_node = make_node (INTEGER_CST);
1197 }
1198 }
1199
1200 return t;
1201 }
1202
1203 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1204 and the rest are zeros. */
1205
1206 tree
1207 build_low_bits_mask (tree type, unsigned bits)
1208 {
1209 unsigned HOST_WIDE_INT low;
1210 HOST_WIDE_INT high;
1211 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
1212
1213 gcc_assert (bits <= TYPE_PRECISION (type));
1214
1215 if (bits == TYPE_PRECISION (type)
1216 && !TYPE_UNSIGNED (type))
1217 {
1218 /* Sign extended all-ones mask. */
1219 low = all_ones;
1220 high = -1;
1221 }
1222 else if (bits <= HOST_BITS_PER_WIDE_INT)
1223 {
1224 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1225 high = 0;
1226 }
1227 else
1228 {
1229 bits -= HOST_BITS_PER_WIDE_INT;
1230 low = all_ones;
1231 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1232 }
1233
1234 return build_int_cst_wide (type, low, high);
1235 }
1236
1237 /* Checks that X is integer constant that can be expressed in (unsigned)
1238 HOST_WIDE_INT without loss of precision. */
1239
1240 bool
1241 cst_and_fits_in_hwi (const_tree x)
1242 {
1243 if (TREE_CODE (x) != INTEGER_CST)
1244 return false;
1245
1246 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1247 return false;
1248
1249 return (TREE_INT_CST_HIGH (x) == 0
1250 || TREE_INT_CST_HIGH (x) == -1);
1251 }
1252
1253 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1254 are in a list pointed to by VALS. */
1255
1256 tree
1257 build_vector (tree type, tree vals)
1258 {
1259 tree v = make_node (VECTOR_CST);
1260 int over = 0;
1261 tree link;
1262
1263 TREE_VECTOR_CST_ELTS (v) = vals;
1264 TREE_TYPE (v) = type;
1265
1266 /* Iterate through elements and check for overflow. */
1267 for (link = vals; link; link = TREE_CHAIN (link))
1268 {
1269 tree value = TREE_VALUE (link);
1270
1271 /* Don't crash if we get an address constant. */
1272 if (!CONSTANT_CLASS_P (value))
1273 continue;
1274
1275 over |= TREE_OVERFLOW (value);
1276 }
1277
1278 TREE_OVERFLOW (v) = over;
1279 return v;
1280 }
1281
1282 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1283 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1284
1285 tree
1286 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1287 {
1288 tree list = NULL_TREE;
1289 unsigned HOST_WIDE_INT idx;
1290 tree value;
1291
1292 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1293 list = tree_cons (NULL_TREE, value, list);
1294 return build_vector (type, nreverse (list));
1295 }
1296
1297 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1298 are in the VEC pointed to by VALS. */
1299 tree
1300 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1301 {
1302 tree c = make_node (CONSTRUCTOR);
1303 TREE_TYPE (c) = type;
1304 CONSTRUCTOR_ELTS (c) = vals;
1305 return c;
1306 }
1307
1308 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1309 INDEX and VALUE. */
1310 tree
1311 build_constructor_single (tree type, tree index, tree value)
1312 {
1313 VEC(constructor_elt,gc) *v;
1314 constructor_elt *elt;
1315 tree t;
1316
1317 v = VEC_alloc (constructor_elt, gc, 1);
1318 elt = VEC_quick_push (constructor_elt, v, NULL);
1319 elt->index = index;
1320 elt->value = value;
1321
1322 t = build_constructor (type, v);
1323 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1324 return t;
1325 }
1326
1327
1328 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1329 are in a list pointed to by VALS. */
1330 tree
1331 build_constructor_from_list (tree type, tree vals)
1332 {
1333 tree t, val;
1334 VEC(constructor_elt,gc) *v = NULL;
1335 bool constant_p = true;
1336
1337 if (vals)
1338 {
1339 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1340 for (t = vals; t; t = TREE_CHAIN (t))
1341 {
1342 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1343 val = TREE_VALUE (t);
1344 elt->index = TREE_PURPOSE (t);
1345 elt->value = val;
1346 if (!TREE_CONSTANT (val))
1347 constant_p = false;
1348 }
1349 }
1350
1351 t = build_constructor (type, v);
1352 TREE_CONSTANT (t) = constant_p;
1353 return t;
1354 }
1355
1356 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1357
1358 tree
1359 build_fixed (tree type, FIXED_VALUE_TYPE f)
1360 {
1361 tree v;
1362 FIXED_VALUE_TYPE *fp;
1363
1364 v = make_node (FIXED_CST);
1365 fp = GGC_NEW (FIXED_VALUE_TYPE);
1366 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1367
1368 TREE_TYPE (v) = type;
1369 TREE_FIXED_CST_PTR (v) = fp;
1370 return v;
1371 }
1372
1373 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1374
1375 tree
1376 build_real (tree type, REAL_VALUE_TYPE d)
1377 {
1378 tree v;
1379 REAL_VALUE_TYPE *dp;
1380 int overflow = 0;
1381
1382 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1383 Consider doing it via real_convert now. */
1384
1385 v = make_node (REAL_CST);
1386 dp = GGC_NEW (REAL_VALUE_TYPE);
1387 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1388
1389 TREE_TYPE (v) = type;
1390 TREE_REAL_CST_PTR (v) = dp;
1391 TREE_OVERFLOW (v) = overflow;
1392 return v;
1393 }
1394
1395 /* Return a new REAL_CST node whose type is TYPE
1396 and whose value is the integer value of the INTEGER_CST node I. */
1397
1398 REAL_VALUE_TYPE
1399 real_value_from_int_cst (const_tree type, const_tree i)
1400 {
1401 REAL_VALUE_TYPE d;
1402
1403 /* Clear all bits of the real value type so that we can later do
1404 bitwise comparisons to see if two values are the same. */
1405 memset (&d, 0, sizeof d);
1406
1407 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1408 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1409 TYPE_UNSIGNED (TREE_TYPE (i)));
1410 return d;
1411 }
1412
1413 /* Given a tree representing an integer constant I, return a tree
1414 representing the same value as a floating-point constant of type TYPE. */
1415
1416 tree
1417 build_real_from_int_cst (tree type, const_tree i)
1418 {
1419 tree v;
1420 int overflow = TREE_OVERFLOW (i);
1421
1422 v = build_real (type, real_value_from_int_cst (type, i));
1423
1424 TREE_OVERFLOW (v) |= overflow;
1425 return v;
1426 }
1427
1428 /* Return a newly constructed STRING_CST node whose value is
1429 the LEN characters at STR.
1430 The TREE_TYPE is not initialized. */
1431
1432 tree
1433 build_string (int len, const char *str)
1434 {
1435 tree s;
1436 size_t length;
1437
1438 /* Do not waste bytes provided by padding of struct tree_string. */
1439 length = len + offsetof (struct tree_string, str) + 1;
1440
1441 #ifdef GATHER_STATISTICS
1442 tree_node_counts[(int) c_kind]++;
1443 tree_node_sizes[(int) c_kind] += length;
1444 #endif
1445
1446 s = ggc_alloc_tree (length);
1447
1448 memset (s, 0, sizeof (struct tree_common));
1449 TREE_SET_CODE (s, STRING_CST);
1450 TREE_CONSTANT (s) = 1;
1451 TREE_STRING_LENGTH (s) = len;
1452 memcpy (s->string.str, str, len);
1453 s->string.str[len] = '\0';
1454
1455 return s;
1456 }
1457
1458 /* Return a newly constructed COMPLEX_CST node whose value is
1459 specified by the real and imaginary parts REAL and IMAG.
1460 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1461 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1462
1463 tree
1464 build_complex (tree type, tree real, tree imag)
1465 {
1466 tree t = make_node (COMPLEX_CST);
1467
1468 TREE_REALPART (t) = real;
1469 TREE_IMAGPART (t) = imag;
1470 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1471 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1472 return t;
1473 }
1474
1475 /* Return a constant of arithmetic type TYPE which is the
1476 multiplicative identity of the set TYPE. */
1477
1478 tree
1479 build_one_cst (tree type)
1480 {
1481 switch (TREE_CODE (type))
1482 {
1483 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1484 case POINTER_TYPE: case REFERENCE_TYPE:
1485 case OFFSET_TYPE:
1486 return build_int_cst (type, 1);
1487
1488 case REAL_TYPE:
1489 return build_real (type, dconst1);
1490
1491 case FIXED_POINT_TYPE:
1492 /* We can only generate 1 for accum types. */
1493 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1494 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1495
1496 case VECTOR_TYPE:
1497 {
1498 tree scalar, cst;
1499 int i;
1500
1501 scalar = build_one_cst (TREE_TYPE (type));
1502
1503 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1504 cst = NULL_TREE;
1505 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1506 cst = tree_cons (NULL_TREE, scalar, cst);
1507
1508 return build_vector (type, cst);
1509 }
1510
1511 case COMPLEX_TYPE:
1512 return build_complex (type,
1513 build_one_cst (TREE_TYPE (type)),
1514 fold_convert (TREE_TYPE (type), integer_zero_node));
1515
1516 default:
1517 gcc_unreachable ();
1518 }
1519 }
1520
1521 /* Build a BINFO with LEN language slots. */
1522
1523 tree
1524 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1525 {
1526 tree t;
1527 size_t length = (offsetof (struct tree_binfo, base_binfos)
1528 + VEC_embedded_size (tree, base_binfos));
1529
1530 #ifdef GATHER_STATISTICS
1531 tree_node_counts[(int) binfo_kind]++;
1532 tree_node_sizes[(int) binfo_kind] += length;
1533 #endif
1534
1535 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1536
1537 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1538
1539 TREE_SET_CODE (t, TREE_BINFO);
1540
1541 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1542
1543 return t;
1544 }
1545
1546
1547 /* Build a newly constructed TREE_VEC node of length LEN. */
1548
1549 tree
1550 make_tree_vec_stat (int len MEM_STAT_DECL)
1551 {
1552 tree t;
1553 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1554
1555 #ifdef GATHER_STATISTICS
1556 tree_node_counts[(int) vec_kind]++;
1557 tree_node_sizes[(int) vec_kind] += length;
1558 #endif
1559
1560 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1561
1562 memset (t, 0, length);
1563
1564 TREE_SET_CODE (t, TREE_VEC);
1565 TREE_VEC_LENGTH (t) = len;
1566
1567 return t;
1568 }
1569 \f
1570 /* Return 1 if EXPR is the integer constant zero or a complex constant
1571 of zero. */
1572
1573 int
1574 integer_zerop (const_tree expr)
1575 {
1576 STRIP_NOPS (expr);
1577
1578 return ((TREE_CODE (expr) == INTEGER_CST
1579 && TREE_INT_CST_LOW (expr) == 0
1580 && TREE_INT_CST_HIGH (expr) == 0)
1581 || (TREE_CODE (expr) == COMPLEX_CST
1582 && integer_zerop (TREE_REALPART (expr))
1583 && integer_zerop (TREE_IMAGPART (expr))));
1584 }
1585
1586 /* Return 1 if EXPR is the integer constant one or the corresponding
1587 complex constant. */
1588
1589 int
1590 integer_onep (const_tree expr)
1591 {
1592 STRIP_NOPS (expr);
1593
1594 return ((TREE_CODE (expr) == INTEGER_CST
1595 && TREE_INT_CST_LOW (expr) == 1
1596 && TREE_INT_CST_HIGH (expr) == 0)
1597 || (TREE_CODE (expr) == COMPLEX_CST
1598 && integer_onep (TREE_REALPART (expr))
1599 && integer_zerop (TREE_IMAGPART (expr))));
1600 }
1601
1602 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1603 it contains. Likewise for the corresponding complex constant. */
1604
1605 int
1606 integer_all_onesp (const_tree expr)
1607 {
1608 int prec;
1609 int uns;
1610
1611 STRIP_NOPS (expr);
1612
1613 if (TREE_CODE (expr) == COMPLEX_CST
1614 && integer_all_onesp (TREE_REALPART (expr))
1615 && integer_zerop (TREE_IMAGPART (expr)))
1616 return 1;
1617
1618 else if (TREE_CODE (expr) != INTEGER_CST)
1619 return 0;
1620
1621 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1622 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1623 && TREE_INT_CST_HIGH (expr) == -1)
1624 return 1;
1625 if (!uns)
1626 return 0;
1627
1628 /* Note that using TYPE_PRECISION here is wrong. We care about the
1629 actual bits, not the (arbitrary) range of the type. */
1630 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1631 if (prec >= HOST_BITS_PER_WIDE_INT)
1632 {
1633 HOST_WIDE_INT high_value;
1634 int shift_amount;
1635
1636 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1637
1638 /* Can not handle precisions greater than twice the host int size. */
1639 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1640 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1641 /* Shifting by the host word size is undefined according to the ANSI
1642 standard, so we must handle this as a special case. */
1643 high_value = -1;
1644 else
1645 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1646
1647 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1648 && TREE_INT_CST_HIGH (expr) == high_value);
1649 }
1650 else
1651 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1652 }
1653
1654 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1655 one bit on). */
1656
1657 int
1658 integer_pow2p (const_tree expr)
1659 {
1660 int prec;
1661 HOST_WIDE_INT high, low;
1662
1663 STRIP_NOPS (expr);
1664
1665 if (TREE_CODE (expr) == COMPLEX_CST
1666 && integer_pow2p (TREE_REALPART (expr))
1667 && integer_zerop (TREE_IMAGPART (expr)))
1668 return 1;
1669
1670 if (TREE_CODE (expr) != INTEGER_CST)
1671 return 0;
1672
1673 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1674 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1675 high = TREE_INT_CST_HIGH (expr);
1676 low = TREE_INT_CST_LOW (expr);
1677
1678 /* First clear all bits that are beyond the type's precision in case
1679 we've been sign extended. */
1680
1681 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1682 ;
1683 else if (prec > HOST_BITS_PER_WIDE_INT)
1684 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1685 else
1686 {
1687 high = 0;
1688 if (prec < HOST_BITS_PER_WIDE_INT)
1689 low &= ~((HOST_WIDE_INT) (-1) << prec);
1690 }
1691
1692 if (high == 0 && low == 0)
1693 return 0;
1694
1695 return ((high == 0 && (low & (low - 1)) == 0)
1696 || (low == 0 && (high & (high - 1)) == 0));
1697 }
1698
1699 /* Return 1 if EXPR is an integer constant other than zero or a
1700 complex constant other than zero. */
1701
1702 int
1703 integer_nonzerop (const_tree expr)
1704 {
1705 STRIP_NOPS (expr);
1706
1707 return ((TREE_CODE (expr) == INTEGER_CST
1708 && (TREE_INT_CST_LOW (expr) != 0
1709 || TREE_INT_CST_HIGH (expr) != 0))
1710 || (TREE_CODE (expr) == COMPLEX_CST
1711 && (integer_nonzerop (TREE_REALPART (expr))
1712 || integer_nonzerop (TREE_IMAGPART (expr)))));
1713 }
1714
1715 /* Return 1 if EXPR is the fixed-point constant zero. */
1716
1717 int
1718 fixed_zerop (const_tree expr)
1719 {
1720 return (TREE_CODE (expr) == FIXED_CST
1721 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1722 }
1723
1724 /* Return the power of two represented by a tree node known to be a
1725 power of two. */
1726
1727 int
1728 tree_log2 (const_tree expr)
1729 {
1730 int prec;
1731 HOST_WIDE_INT high, low;
1732
1733 STRIP_NOPS (expr);
1734
1735 if (TREE_CODE (expr) == COMPLEX_CST)
1736 return tree_log2 (TREE_REALPART (expr));
1737
1738 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1739 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1740
1741 high = TREE_INT_CST_HIGH (expr);
1742 low = TREE_INT_CST_LOW (expr);
1743
1744 /* First clear all bits that are beyond the type's precision in case
1745 we've been sign extended. */
1746
1747 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1748 ;
1749 else if (prec > HOST_BITS_PER_WIDE_INT)
1750 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1751 else
1752 {
1753 high = 0;
1754 if (prec < HOST_BITS_PER_WIDE_INT)
1755 low &= ~((HOST_WIDE_INT) (-1) << prec);
1756 }
1757
1758 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1759 : exact_log2 (low));
1760 }
1761
1762 /* Similar, but return the largest integer Y such that 2 ** Y is less
1763 than or equal to EXPR. */
1764
1765 int
1766 tree_floor_log2 (const_tree expr)
1767 {
1768 int prec;
1769 HOST_WIDE_INT high, low;
1770
1771 STRIP_NOPS (expr);
1772
1773 if (TREE_CODE (expr) == COMPLEX_CST)
1774 return tree_log2 (TREE_REALPART (expr));
1775
1776 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1777 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1778
1779 high = TREE_INT_CST_HIGH (expr);
1780 low = TREE_INT_CST_LOW (expr);
1781
1782 /* First clear all bits that are beyond the type's precision in case
1783 we've been sign extended. Ignore if type's precision hasn't been set
1784 since what we are doing is setting it. */
1785
1786 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1787 ;
1788 else if (prec > HOST_BITS_PER_WIDE_INT)
1789 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1790 else
1791 {
1792 high = 0;
1793 if (prec < HOST_BITS_PER_WIDE_INT)
1794 low &= ~((HOST_WIDE_INT) (-1) << prec);
1795 }
1796
1797 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1798 : floor_log2 (low));
1799 }
1800
1801 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1802 decimal float constants, so don't return 1 for them. */
1803
1804 int
1805 real_zerop (const_tree expr)
1806 {
1807 STRIP_NOPS (expr);
1808
1809 return ((TREE_CODE (expr) == REAL_CST
1810 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1811 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1812 || (TREE_CODE (expr) == COMPLEX_CST
1813 && real_zerop (TREE_REALPART (expr))
1814 && real_zerop (TREE_IMAGPART (expr))));
1815 }
1816
1817 /* Return 1 if EXPR is the real constant one in real or complex form.
1818 Trailing zeroes matter for decimal float constants, so don't return
1819 1 for them. */
1820
1821 int
1822 real_onep (const_tree expr)
1823 {
1824 STRIP_NOPS (expr);
1825
1826 return ((TREE_CODE (expr) == REAL_CST
1827 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1828 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1829 || (TREE_CODE (expr) == COMPLEX_CST
1830 && real_onep (TREE_REALPART (expr))
1831 && real_zerop (TREE_IMAGPART (expr))));
1832 }
1833
1834 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1835 for decimal float constants, so don't return 1 for them. */
1836
1837 int
1838 real_twop (const_tree expr)
1839 {
1840 STRIP_NOPS (expr);
1841
1842 return ((TREE_CODE (expr) == REAL_CST
1843 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1844 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1845 || (TREE_CODE (expr) == COMPLEX_CST
1846 && real_twop (TREE_REALPART (expr))
1847 && real_zerop (TREE_IMAGPART (expr))));
1848 }
1849
1850 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1851 matter for decimal float constants, so don't return 1 for them. */
1852
1853 int
1854 real_minus_onep (const_tree expr)
1855 {
1856 STRIP_NOPS (expr);
1857
1858 return ((TREE_CODE (expr) == REAL_CST
1859 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1860 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1861 || (TREE_CODE (expr) == COMPLEX_CST
1862 && real_minus_onep (TREE_REALPART (expr))
1863 && real_zerop (TREE_IMAGPART (expr))));
1864 }
1865
1866 /* Nonzero if EXP is a constant or a cast of a constant. */
1867
1868 int
1869 really_constant_p (const_tree exp)
1870 {
1871 /* This is not quite the same as STRIP_NOPS. It does more. */
1872 while (CONVERT_EXPR_P (exp)
1873 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1874 exp = TREE_OPERAND (exp, 0);
1875 return TREE_CONSTANT (exp);
1876 }
1877 \f
1878 /* Return first list element whose TREE_VALUE is ELEM.
1879 Return 0 if ELEM is not in LIST. */
1880
1881 tree
1882 value_member (tree elem, tree list)
1883 {
1884 while (list)
1885 {
1886 if (elem == TREE_VALUE (list))
1887 return list;
1888 list = TREE_CHAIN (list);
1889 }
1890 return NULL_TREE;
1891 }
1892
1893 /* Return first list element whose TREE_PURPOSE is ELEM.
1894 Return 0 if ELEM is not in LIST. */
1895
1896 tree
1897 purpose_member (const_tree elem, tree list)
1898 {
1899 while (list)
1900 {
1901 if (elem == TREE_PURPOSE (list))
1902 return list;
1903 list = TREE_CHAIN (list);
1904 }
1905 return NULL_TREE;
1906 }
1907
1908 /* Returns element number IDX (zero-origin) of chain CHAIN, or
1909 NULL_TREE. */
1910
1911 tree
1912 chain_index (int idx, tree chain)
1913 {
1914 for (; chain && idx > 0; --idx)
1915 chain = TREE_CHAIN (chain);
1916 return chain;
1917 }
1918
1919 /* Return nonzero if ELEM is part of the chain CHAIN. */
1920
1921 int
1922 chain_member (const_tree elem, const_tree chain)
1923 {
1924 while (chain)
1925 {
1926 if (elem == chain)
1927 return 1;
1928 chain = TREE_CHAIN (chain);
1929 }
1930
1931 return 0;
1932 }
1933
1934 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1935 We expect a null pointer to mark the end of the chain.
1936 This is the Lisp primitive `length'. */
1937
1938 int
1939 list_length (const_tree t)
1940 {
1941 const_tree p = t;
1942 #ifdef ENABLE_TREE_CHECKING
1943 const_tree q = t;
1944 #endif
1945 int len = 0;
1946
1947 while (p)
1948 {
1949 p = TREE_CHAIN (p);
1950 #ifdef ENABLE_TREE_CHECKING
1951 if (len % 2)
1952 q = TREE_CHAIN (q);
1953 gcc_assert (p != q);
1954 #endif
1955 len++;
1956 }
1957
1958 return len;
1959 }
1960
1961 /* Returns the number of FIELD_DECLs in TYPE. */
1962
1963 int
1964 fields_length (const_tree type)
1965 {
1966 tree t = TYPE_FIELDS (type);
1967 int count = 0;
1968
1969 for (; t; t = TREE_CHAIN (t))
1970 if (TREE_CODE (t) == FIELD_DECL)
1971 ++count;
1972
1973 return count;
1974 }
1975
1976 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1977 by modifying the last node in chain 1 to point to chain 2.
1978 This is the Lisp primitive `nconc'. */
1979
1980 tree
1981 chainon (tree op1, tree op2)
1982 {
1983 tree t1;
1984
1985 if (!op1)
1986 return op2;
1987 if (!op2)
1988 return op1;
1989
1990 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1991 continue;
1992 TREE_CHAIN (t1) = op2;
1993
1994 #ifdef ENABLE_TREE_CHECKING
1995 {
1996 tree t2;
1997 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1998 gcc_assert (t2 != t1);
1999 }
2000 #endif
2001
2002 return op1;
2003 }
2004
2005 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2006
2007 tree
2008 tree_last (tree chain)
2009 {
2010 tree next;
2011 if (chain)
2012 while ((next = TREE_CHAIN (chain)))
2013 chain = next;
2014 return chain;
2015 }
2016
2017 /* Reverse the order of elements in the chain T,
2018 and return the new head of the chain (old last element). */
2019
2020 tree
2021 nreverse (tree t)
2022 {
2023 tree prev = 0, decl, next;
2024 for (decl = t; decl; decl = next)
2025 {
2026 next = TREE_CHAIN (decl);
2027 TREE_CHAIN (decl) = prev;
2028 prev = decl;
2029 }
2030 return prev;
2031 }
2032 \f
2033 /* Return a newly created TREE_LIST node whose
2034 purpose and value fields are PARM and VALUE. */
2035
2036 tree
2037 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2038 {
2039 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2040 TREE_PURPOSE (t) = parm;
2041 TREE_VALUE (t) = value;
2042 return t;
2043 }
2044
2045 /* Build a chain of TREE_LIST nodes from a vector. */
2046
2047 tree
2048 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2049 {
2050 tree ret = NULL_TREE;
2051 tree *pp = &ret;
2052 unsigned int i;
2053 tree t;
2054 for (i = 0; VEC_iterate (tree, vec, i, t); ++i)
2055 {
2056 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2057 pp = &TREE_CHAIN (*pp);
2058 }
2059 return ret;
2060 }
2061
2062 /* Return a newly created TREE_LIST node whose
2063 purpose and value fields are PURPOSE and VALUE
2064 and whose TREE_CHAIN is CHAIN. */
2065
2066 tree
2067 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2068 {
2069 tree node;
2070
2071 node = (tree) ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
2072
2073 memset (node, 0, sizeof (struct tree_common));
2074
2075 #ifdef GATHER_STATISTICS
2076 tree_node_counts[(int) x_kind]++;
2077 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2078 #endif
2079
2080 TREE_SET_CODE (node, TREE_LIST);
2081 TREE_CHAIN (node) = chain;
2082 TREE_PURPOSE (node) = purpose;
2083 TREE_VALUE (node) = value;
2084 return node;
2085 }
2086
2087 /* Return the elements of a CONSTRUCTOR as a TREE_LIST. */
2088
2089 tree
2090 ctor_to_list (tree ctor)
2091 {
2092 tree list = NULL_TREE;
2093 tree *p = &list;
2094 unsigned ix;
2095 tree purpose, val;
2096
2097 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), ix, purpose, val)
2098 {
2099 *p = build_tree_list (purpose, val);
2100 p = &TREE_CHAIN (*p);
2101 }
2102
2103 return list;
2104 }
2105
2106 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2107 trees. */
2108
2109 VEC(tree,gc) *
2110 ctor_to_vec (tree ctor)
2111 {
2112 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2113 unsigned int ix;
2114 tree val;
2115
2116 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2117 VEC_quick_push (tree, vec, val);
2118
2119 return vec;
2120 }
2121 \f
2122 /* Return the size nominally occupied by an object of type TYPE
2123 when it resides in memory. The value is measured in units of bytes,
2124 and its data type is that normally used for type sizes
2125 (which is the first type created by make_signed_type or
2126 make_unsigned_type). */
2127
2128 tree
2129 size_in_bytes (const_tree type)
2130 {
2131 tree t;
2132
2133 if (type == error_mark_node)
2134 return integer_zero_node;
2135
2136 type = TYPE_MAIN_VARIANT (type);
2137 t = TYPE_SIZE_UNIT (type);
2138
2139 if (t == 0)
2140 {
2141 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2142 return size_zero_node;
2143 }
2144
2145 return t;
2146 }
2147
2148 /* Return the size of TYPE (in bytes) as a wide integer
2149 or return -1 if the size can vary or is larger than an integer. */
2150
2151 HOST_WIDE_INT
2152 int_size_in_bytes (const_tree type)
2153 {
2154 tree t;
2155
2156 if (type == error_mark_node)
2157 return 0;
2158
2159 type = TYPE_MAIN_VARIANT (type);
2160 t = TYPE_SIZE_UNIT (type);
2161 if (t == 0
2162 || TREE_CODE (t) != INTEGER_CST
2163 || TREE_INT_CST_HIGH (t) != 0
2164 /* If the result would appear negative, it's too big to represent. */
2165 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2166 return -1;
2167
2168 return TREE_INT_CST_LOW (t);
2169 }
2170
2171 /* Return the maximum size of TYPE (in bytes) as a wide integer
2172 or return -1 if the size can vary or is larger than an integer. */
2173
2174 HOST_WIDE_INT
2175 max_int_size_in_bytes (const_tree type)
2176 {
2177 HOST_WIDE_INT size = -1;
2178 tree size_tree;
2179
2180 /* If this is an array type, check for a possible MAX_SIZE attached. */
2181
2182 if (TREE_CODE (type) == ARRAY_TYPE)
2183 {
2184 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2185
2186 if (size_tree && host_integerp (size_tree, 1))
2187 size = tree_low_cst (size_tree, 1);
2188 }
2189
2190 /* If we still haven't been able to get a size, see if the language
2191 can compute a maximum size. */
2192
2193 if (size == -1)
2194 {
2195 size_tree = lang_hooks.types.max_size (type);
2196
2197 if (size_tree && host_integerp (size_tree, 1))
2198 size = tree_low_cst (size_tree, 1);
2199 }
2200
2201 return size;
2202 }
2203
2204 /* Returns a tree for the size of EXP in bytes. */
2205
2206 tree
2207 tree_expr_size (const_tree exp)
2208 {
2209 if (DECL_P (exp)
2210 && DECL_SIZE_UNIT (exp) != 0)
2211 return DECL_SIZE_UNIT (exp);
2212 else
2213 return size_in_bytes (TREE_TYPE (exp));
2214 }
2215 \f
2216 /* Return the bit position of FIELD, in bits from the start of the record.
2217 This is a tree of type bitsizetype. */
2218
2219 tree
2220 bit_position (const_tree field)
2221 {
2222 return bit_from_pos (DECL_FIELD_OFFSET (field),
2223 DECL_FIELD_BIT_OFFSET (field));
2224 }
2225
2226 /* Likewise, but return as an integer. It must be representable in
2227 that way (since it could be a signed value, we don't have the
2228 option of returning -1 like int_size_in_byte can. */
2229
2230 HOST_WIDE_INT
2231 int_bit_position (const_tree field)
2232 {
2233 return tree_low_cst (bit_position (field), 0);
2234 }
2235 \f
2236 /* Return the byte position of FIELD, in bytes from the start of the record.
2237 This is a tree of type sizetype. */
2238
2239 tree
2240 byte_position (const_tree field)
2241 {
2242 return byte_from_pos (DECL_FIELD_OFFSET (field),
2243 DECL_FIELD_BIT_OFFSET (field));
2244 }
2245
2246 /* Likewise, but return as an integer. It must be representable in
2247 that way (since it could be a signed value, we don't have the
2248 option of returning -1 like int_size_in_byte can. */
2249
2250 HOST_WIDE_INT
2251 int_byte_position (const_tree field)
2252 {
2253 return tree_low_cst (byte_position (field), 0);
2254 }
2255 \f
2256 /* Return the strictest alignment, in bits, that T is known to have. */
2257
2258 unsigned int
2259 expr_align (const_tree t)
2260 {
2261 unsigned int align0, align1;
2262
2263 switch (TREE_CODE (t))
2264 {
2265 CASE_CONVERT: case NON_LVALUE_EXPR:
2266 /* If we have conversions, we know that the alignment of the
2267 object must meet each of the alignments of the types. */
2268 align0 = expr_align (TREE_OPERAND (t, 0));
2269 align1 = TYPE_ALIGN (TREE_TYPE (t));
2270 return MAX (align0, align1);
2271
2272 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2273 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2274 case CLEANUP_POINT_EXPR:
2275 /* These don't change the alignment of an object. */
2276 return expr_align (TREE_OPERAND (t, 0));
2277
2278 case COND_EXPR:
2279 /* The best we can do is say that the alignment is the least aligned
2280 of the two arms. */
2281 align0 = expr_align (TREE_OPERAND (t, 1));
2282 align1 = expr_align (TREE_OPERAND (t, 2));
2283 return MIN (align0, align1);
2284
2285 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2286 meaningfully, it's always 1. */
2287 case LABEL_DECL: case CONST_DECL:
2288 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2289 case FUNCTION_DECL:
2290 gcc_assert (DECL_ALIGN (t) != 0);
2291 return DECL_ALIGN (t);
2292
2293 default:
2294 break;
2295 }
2296
2297 /* Otherwise take the alignment from that of the type. */
2298 return TYPE_ALIGN (TREE_TYPE (t));
2299 }
2300 \f
2301 /* Return, as a tree node, the number of elements for TYPE (which is an
2302 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2303
2304 tree
2305 array_type_nelts (const_tree type)
2306 {
2307 tree index_type, min, max;
2308
2309 /* If they did it with unspecified bounds, then we should have already
2310 given an error about it before we got here. */
2311 if (! TYPE_DOMAIN (type))
2312 return error_mark_node;
2313
2314 index_type = TYPE_DOMAIN (type);
2315 min = TYPE_MIN_VALUE (index_type);
2316 max = TYPE_MAX_VALUE (index_type);
2317
2318 return (integer_zerop (min)
2319 ? max
2320 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2321 }
2322 \f
2323 /* If arg is static -- a reference to an object in static storage -- then
2324 return the object. This is not the same as the C meaning of `static'.
2325 If arg isn't static, return NULL. */
2326
2327 tree
2328 staticp (tree arg)
2329 {
2330 switch (TREE_CODE (arg))
2331 {
2332 case FUNCTION_DECL:
2333 /* Nested functions are static, even though taking their address will
2334 involve a trampoline as we unnest the nested function and create
2335 the trampoline on the tree level. */
2336 return arg;
2337
2338 case VAR_DECL:
2339 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2340 && ! DECL_THREAD_LOCAL_P (arg)
2341 && ! DECL_DLLIMPORT_P (arg)
2342 ? arg : NULL);
2343
2344 case CONST_DECL:
2345 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2346 ? arg : NULL);
2347
2348 case CONSTRUCTOR:
2349 return TREE_STATIC (arg) ? arg : NULL;
2350
2351 case LABEL_DECL:
2352 case STRING_CST:
2353 return arg;
2354
2355 case COMPONENT_REF:
2356 /* If the thing being referenced is not a field, then it is
2357 something language specific. */
2358 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2359
2360 /* If we are referencing a bitfield, we can't evaluate an
2361 ADDR_EXPR at compile time and so it isn't a constant. */
2362 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2363 return NULL;
2364
2365 return staticp (TREE_OPERAND (arg, 0));
2366
2367 case BIT_FIELD_REF:
2368 return NULL;
2369
2370 case MISALIGNED_INDIRECT_REF:
2371 case ALIGN_INDIRECT_REF:
2372 case INDIRECT_REF:
2373 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2374
2375 case ARRAY_REF:
2376 case ARRAY_RANGE_REF:
2377 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2378 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2379 return staticp (TREE_OPERAND (arg, 0));
2380 else
2381 return NULL;
2382
2383 case COMPOUND_LITERAL_EXPR:
2384 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2385
2386 default:
2387 return NULL;
2388 }
2389 }
2390
2391 \f
2392
2393
2394 /* Return whether OP is a DECL whose address is function-invariant. */
2395
2396 bool
2397 decl_address_invariant_p (const_tree op)
2398 {
2399 /* The conditions below are slightly less strict than the one in
2400 staticp. */
2401
2402 switch (TREE_CODE (op))
2403 {
2404 case PARM_DECL:
2405 case RESULT_DECL:
2406 case LABEL_DECL:
2407 case FUNCTION_DECL:
2408 return true;
2409
2410 case VAR_DECL:
2411 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2412 && !DECL_DLLIMPORT_P (op))
2413 || DECL_THREAD_LOCAL_P (op)
2414 || DECL_CONTEXT (op) == current_function_decl
2415 || decl_function_context (op) == current_function_decl)
2416 return true;
2417 break;
2418
2419 case CONST_DECL:
2420 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2421 || decl_function_context (op) == current_function_decl)
2422 return true;
2423 break;
2424
2425 default:
2426 break;
2427 }
2428
2429 return false;
2430 }
2431
2432 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2433
2434 bool
2435 decl_address_ip_invariant_p (const_tree op)
2436 {
2437 /* The conditions below are slightly less strict than the one in
2438 staticp. */
2439
2440 switch (TREE_CODE (op))
2441 {
2442 case LABEL_DECL:
2443 case FUNCTION_DECL:
2444 case STRING_CST:
2445 return true;
2446
2447 case VAR_DECL:
2448 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2449 && !DECL_DLLIMPORT_P (op))
2450 || DECL_THREAD_LOCAL_P (op))
2451 return true;
2452 break;
2453
2454 case CONST_DECL:
2455 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2456 return true;
2457 break;
2458
2459 default:
2460 break;
2461 }
2462
2463 return false;
2464 }
2465
2466
2467 /* Return true if T is function-invariant (internal function, does
2468 not handle arithmetic; that's handled in skip_simple_arithmetic and
2469 tree_invariant_p). */
2470
2471 static bool tree_invariant_p (tree t);
2472
2473 static bool
2474 tree_invariant_p_1 (tree t)
2475 {
2476 tree op;
2477
2478 if (TREE_CONSTANT (t)
2479 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2480 return true;
2481
2482 switch (TREE_CODE (t))
2483 {
2484 case SAVE_EXPR:
2485 return true;
2486
2487 case ADDR_EXPR:
2488 op = TREE_OPERAND (t, 0);
2489 while (handled_component_p (op))
2490 {
2491 switch (TREE_CODE (op))
2492 {
2493 case ARRAY_REF:
2494 case ARRAY_RANGE_REF:
2495 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2496 || TREE_OPERAND (op, 2) != NULL_TREE
2497 || TREE_OPERAND (op, 3) != NULL_TREE)
2498 return false;
2499 break;
2500
2501 case COMPONENT_REF:
2502 if (TREE_OPERAND (op, 2) != NULL_TREE)
2503 return false;
2504 break;
2505
2506 default:;
2507 }
2508 op = TREE_OPERAND (op, 0);
2509 }
2510
2511 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2512
2513 default:
2514 break;
2515 }
2516
2517 return false;
2518 }
2519
2520 /* Return true if T is function-invariant. */
2521
2522 static bool
2523 tree_invariant_p (tree t)
2524 {
2525 tree inner = skip_simple_arithmetic (t);
2526 return tree_invariant_p_1 (inner);
2527 }
2528
2529 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2530 Do this to any expression which may be used in more than one place,
2531 but must be evaluated only once.
2532
2533 Normally, expand_expr would reevaluate the expression each time.
2534 Calling save_expr produces something that is evaluated and recorded
2535 the first time expand_expr is called on it. Subsequent calls to
2536 expand_expr just reuse the recorded value.
2537
2538 The call to expand_expr that generates code that actually computes
2539 the value is the first call *at compile time*. Subsequent calls
2540 *at compile time* generate code to use the saved value.
2541 This produces correct result provided that *at run time* control
2542 always flows through the insns made by the first expand_expr
2543 before reaching the other places where the save_expr was evaluated.
2544 You, the caller of save_expr, must make sure this is so.
2545
2546 Constants, and certain read-only nodes, are returned with no
2547 SAVE_EXPR because that is safe. Expressions containing placeholders
2548 are not touched; see tree.def for an explanation of what these
2549 are used for. */
2550
2551 tree
2552 save_expr (tree expr)
2553 {
2554 tree t = fold (expr);
2555 tree inner;
2556
2557 /* If the tree evaluates to a constant, then we don't want to hide that
2558 fact (i.e. this allows further folding, and direct checks for constants).
2559 However, a read-only object that has side effects cannot be bypassed.
2560 Since it is no problem to reevaluate literals, we just return the
2561 literal node. */
2562 inner = skip_simple_arithmetic (t);
2563 if (TREE_CODE (inner) == ERROR_MARK)
2564 return inner;
2565
2566 if (tree_invariant_p_1 (inner))
2567 return t;
2568
2569 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2570 it means that the size or offset of some field of an object depends on
2571 the value within another field.
2572
2573 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2574 and some variable since it would then need to be both evaluated once and
2575 evaluated more than once. Front-ends must assure this case cannot
2576 happen by surrounding any such subexpressions in their own SAVE_EXPR
2577 and forcing evaluation at the proper time. */
2578 if (contains_placeholder_p (inner))
2579 return t;
2580
2581 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2582 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2583
2584 /* This expression might be placed ahead of a jump to ensure that the
2585 value was computed on both sides of the jump. So make sure it isn't
2586 eliminated as dead. */
2587 TREE_SIDE_EFFECTS (t) = 1;
2588 return t;
2589 }
2590
2591 /* Look inside EXPR and into any simple arithmetic operations. Return
2592 the innermost non-arithmetic node. */
2593
2594 tree
2595 skip_simple_arithmetic (tree expr)
2596 {
2597 tree inner;
2598
2599 /* We don't care about whether this can be used as an lvalue in this
2600 context. */
2601 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2602 expr = TREE_OPERAND (expr, 0);
2603
2604 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2605 a constant, it will be more efficient to not make another SAVE_EXPR since
2606 it will allow better simplification and GCSE will be able to merge the
2607 computations if they actually occur. */
2608 inner = expr;
2609 while (1)
2610 {
2611 if (UNARY_CLASS_P (inner))
2612 inner = TREE_OPERAND (inner, 0);
2613 else if (BINARY_CLASS_P (inner))
2614 {
2615 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2616 inner = TREE_OPERAND (inner, 0);
2617 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2618 inner = TREE_OPERAND (inner, 1);
2619 else
2620 break;
2621 }
2622 else
2623 break;
2624 }
2625
2626 return inner;
2627 }
2628
2629
2630 /* Return which tree structure is used by T. */
2631
2632 enum tree_node_structure_enum
2633 tree_node_structure (const_tree t)
2634 {
2635 const enum tree_code code = TREE_CODE (t);
2636 return tree_node_structure_for_code (code);
2637 }
2638
2639 /* Set various status flags when building a CALL_EXPR object T. */
2640
2641 static void
2642 process_call_operands (tree t)
2643 {
2644 bool side_effects = TREE_SIDE_EFFECTS (t);
2645 bool read_only = false;
2646 int i = call_expr_flags (t);
2647
2648 /* Calls have side-effects, except those to const or pure functions. */
2649 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2650 side_effects = true;
2651 /* Propagate TREE_READONLY of arguments for const functions. */
2652 if (i & ECF_CONST)
2653 read_only = true;
2654
2655 if (!side_effects || read_only)
2656 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2657 {
2658 tree op = TREE_OPERAND (t, i);
2659 if (op && TREE_SIDE_EFFECTS (op))
2660 side_effects = true;
2661 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2662 read_only = false;
2663 }
2664
2665 TREE_SIDE_EFFECTS (t) = side_effects;
2666 TREE_READONLY (t) = read_only;
2667 }
2668 \f
2669 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2670 or offset that depends on a field within a record. */
2671
2672 bool
2673 contains_placeholder_p (const_tree exp)
2674 {
2675 enum tree_code code;
2676
2677 if (!exp)
2678 return 0;
2679
2680 code = TREE_CODE (exp);
2681 if (code == PLACEHOLDER_EXPR)
2682 return 1;
2683
2684 switch (TREE_CODE_CLASS (code))
2685 {
2686 case tcc_reference:
2687 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2688 position computations since they will be converted into a
2689 WITH_RECORD_EXPR involving the reference, which will assume
2690 here will be valid. */
2691 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2692
2693 case tcc_exceptional:
2694 if (code == TREE_LIST)
2695 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2696 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2697 break;
2698
2699 case tcc_unary:
2700 case tcc_binary:
2701 case tcc_comparison:
2702 case tcc_expression:
2703 switch (code)
2704 {
2705 case COMPOUND_EXPR:
2706 /* Ignoring the first operand isn't quite right, but works best. */
2707 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2708
2709 case COND_EXPR:
2710 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2711 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2712 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2713
2714 case SAVE_EXPR:
2715 /* The save_expr function never wraps anything containing
2716 a PLACEHOLDER_EXPR. */
2717 return 0;
2718
2719 default:
2720 break;
2721 }
2722
2723 switch (TREE_CODE_LENGTH (code))
2724 {
2725 case 1:
2726 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2727 case 2:
2728 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2729 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2730 default:
2731 return 0;
2732 }
2733
2734 case tcc_vl_exp:
2735 switch (code)
2736 {
2737 case CALL_EXPR:
2738 {
2739 const_tree arg;
2740 const_call_expr_arg_iterator iter;
2741 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2742 if (CONTAINS_PLACEHOLDER_P (arg))
2743 return 1;
2744 return 0;
2745 }
2746 default:
2747 return 0;
2748 }
2749
2750 default:
2751 return 0;
2752 }
2753 return 0;
2754 }
2755
2756 /* Return true if any part of the computation of TYPE involves a
2757 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2758 (for QUAL_UNION_TYPE) and field positions. */
2759
2760 static bool
2761 type_contains_placeholder_1 (const_tree type)
2762 {
2763 /* If the size contains a placeholder or the parent type (component type in
2764 the case of arrays) type involves a placeholder, this type does. */
2765 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2766 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2767 || (TREE_TYPE (type) != 0
2768 && type_contains_placeholder_p (TREE_TYPE (type))))
2769 return true;
2770
2771 /* Now do type-specific checks. Note that the last part of the check above
2772 greatly limits what we have to do below. */
2773 switch (TREE_CODE (type))
2774 {
2775 case VOID_TYPE:
2776 case COMPLEX_TYPE:
2777 case ENUMERAL_TYPE:
2778 case BOOLEAN_TYPE:
2779 case POINTER_TYPE:
2780 case OFFSET_TYPE:
2781 case REFERENCE_TYPE:
2782 case METHOD_TYPE:
2783 case FUNCTION_TYPE:
2784 case VECTOR_TYPE:
2785 return false;
2786
2787 case INTEGER_TYPE:
2788 case REAL_TYPE:
2789 case FIXED_POINT_TYPE:
2790 /* Here we just check the bounds. */
2791 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2792 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2793
2794 case ARRAY_TYPE:
2795 /* We're already checked the component type (TREE_TYPE), so just check
2796 the index type. */
2797 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2798
2799 case RECORD_TYPE:
2800 case UNION_TYPE:
2801 case QUAL_UNION_TYPE:
2802 {
2803 tree field;
2804
2805 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2806 if (TREE_CODE (field) == FIELD_DECL
2807 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2808 || (TREE_CODE (type) == QUAL_UNION_TYPE
2809 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2810 || type_contains_placeholder_p (TREE_TYPE (field))))
2811 return true;
2812
2813 return false;
2814 }
2815
2816 default:
2817 gcc_unreachable ();
2818 }
2819 }
2820
2821 bool
2822 type_contains_placeholder_p (tree type)
2823 {
2824 bool result;
2825
2826 /* If the contains_placeholder_bits field has been initialized,
2827 then we know the answer. */
2828 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2829 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2830
2831 /* Indicate that we've seen this type node, and the answer is false.
2832 This is what we want to return if we run into recursion via fields. */
2833 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2834
2835 /* Compute the real value. */
2836 result = type_contains_placeholder_1 (type);
2837
2838 /* Store the real value. */
2839 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2840
2841 return result;
2842 }
2843 \f
2844 /* Push tree EXP onto vector QUEUE if it is not already present. */
2845
2846 static void
2847 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2848 {
2849 unsigned int i;
2850 tree iter;
2851
2852 for (i = 0; VEC_iterate (tree, *queue, i, iter); i++)
2853 if (simple_cst_equal (iter, exp) == 1)
2854 break;
2855
2856 if (!iter)
2857 VEC_safe_push (tree, heap, *queue, exp);
2858 }
2859
2860 /* Given a tree EXP, find all occurences of references to fields
2861 in a PLACEHOLDER_EXPR and place them in vector REFS without
2862 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2863 we assume here that EXP contains only arithmetic expressions
2864 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2865 argument list. */
2866
2867 void
2868 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2869 {
2870 enum tree_code code = TREE_CODE (exp);
2871 tree inner;
2872 int i;
2873
2874 /* We handle TREE_LIST and COMPONENT_REF separately. */
2875 if (code == TREE_LIST)
2876 {
2877 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2878 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2879 }
2880 else if (code == COMPONENT_REF)
2881 {
2882 for (inner = TREE_OPERAND (exp, 0);
2883 REFERENCE_CLASS_P (inner);
2884 inner = TREE_OPERAND (inner, 0))
2885 ;
2886
2887 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2888 push_without_duplicates (exp, refs);
2889 else
2890 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2891 }
2892 else
2893 switch (TREE_CODE_CLASS (code))
2894 {
2895 case tcc_constant:
2896 break;
2897
2898 case tcc_declaration:
2899 /* Variables allocated to static storage can stay. */
2900 if (!TREE_STATIC (exp))
2901 push_without_duplicates (exp, refs);
2902 break;
2903
2904 case tcc_expression:
2905 /* This is the pattern built in ada/make_aligning_type. */
2906 if (code == ADDR_EXPR
2907 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2908 {
2909 push_without_duplicates (exp, refs);
2910 break;
2911 }
2912
2913 /* Fall through... */
2914
2915 case tcc_exceptional:
2916 case tcc_unary:
2917 case tcc_binary:
2918 case tcc_comparison:
2919 case tcc_reference:
2920 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
2921 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2922 break;
2923
2924 case tcc_vl_exp:
2925 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2926 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2927 break;
2928
2929 default:
2930 gcc_unreachable ();
2931 }
2932 }
2933
2934 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2935 return a tree with all occurrences of references to F in a
2936 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
2937 CONST_DECLs. Note that we assume here that EXP contains only
2938 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
2939 occurring only in their argument list. */
2940
2941 tree
2942 substitute_in_expr (tree exp, tree f, tree r)
2943 {
2944 enum tree_code code = TREE_CODE (exp);
2945 tree op0, op1, op2, op3;
2946 tree new_tree;
2947
2948 /* We handle TREE_LIST and COMPONENT_REF separately. */
2949 if (code == TREE_LIST)
2950 {
2951 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2952 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2953 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2954 return exp;
2955
2956 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2957 }
2958 else if (code == COMPONENT_REF)
2959 {
2960 tree inner;
2961
2962 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2963 and it is the right field, replace it with R. */
2964 for (inner = TREE_OPERAND (exp, 0);
2965 REFERENCE_CLASS_P (inner);
2966 inner = TREE_OPERAND (inner, 0))
2967 ;
2968
2969 /* The field. */
2970 op1 = TREE_OPERAND (exp, 1);
2971
2972 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
2973 return r;
2974
2975 /* If this expression hasn't been completed let, leave it alone. */
2976 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
2977 return exp;
2978
2979 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2980 if (op0 == TREE_OPERAND (exp, 0))
2981 return exp;
2982
2983 new_tree
2984 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
2985 }
2986 else
2987 switch (TREE_CODE_CLASS (code))
2988 {
2989 case tcc_constant:
2990 return exp;
2991
2992 case tcc_declaration:
2993 if (exp == f)
2994 return r;
2995 else
2996 return exp;
2997
2998 case tcc_expression:
2999 if (exp == f)
3000 return r;
3001
3002 /* Fall through... */
3003
3004 case tcc_exceptional:
3005 case tcc_unary:
3006 case tcc_binary:
3007 case tcc_comparison:
3008 case tcc_reference:
3009 switch (TREE_CODE_LENGTH (code))
3010 {
3011 case 0:
3012 return exp;
3013
3014 case 1:
3015 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3016 if (op0 == TREE_OPERAND (exp, 0))
3017 return exp;
3018
3019 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3020 break;
3021
3022 case 2:
3023 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3024 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3025
3026 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3027 return exp;
3028
3029 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3030 break;
3031
3032 case 3:
3033 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3034 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3035 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3036
3037 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3038 && op2 == TREE_OPERAND (exp, 2))
3039 return exp;
3040
3041 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3042 break;
3043
3044 case 4:
3045 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3046 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3047 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3048 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3049
3050 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3051 && op2 == TREE_OPERAND (exp, 2)
3052 && op3 == TREE_OPERAND (exp, 3))
3053 return exp;
3054
3055 new_tree
3056 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3057 break;
3058
3059 default:
3060 gcc_unreachable ();
3061 }
3062 break;
3063
3064 case tcc_vl_exp:
3065 {
3066 int i;
3067
3068 new_tree = NULL_TREE;
3069
3070 /* If we are trying to replace F with a constant, inline back
3071 functions which do nothing else than computing a value from
3072 the arguments they are passed. This makes it possible to
3073 fold partially or entirely the replacement expression. */
3074 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3075 {
3076 tree t = maybe_inline_call_in_expr (exp);
3077 if (t)
3078 return SUBSTITUTE_IN_EXPR (t, f, r);
3079 }
3080
3081 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3082 {
3083 tree op = TREE_OPERAND (exp, i);
3084 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3085 if (new_op != op)
3086 {
3087 if (!new_tree)
3088 new_tree = copy_node (exp);
3089 TREE_OPERAND (new_tree, i) = new_op;
3090 }
3091 }
3092
3093 if (new_tree)
3094 {
3095 new_tree = fold (new_tree);
3096 if (TREE_CODE (new_tree) == CALL_EXPR)
3097 process_call_operands (new_tree);
3098 }
3099 else
3100 return exp;
3101 }
3102 break;
3103
3104 default:
3105 gcc_unreachable ();
3106 }
3107
3108 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3109 return new_tree;
3110 }
3111
3112 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3113 for it within OBJ, a tree that is an object or a chain of references. */
3114
3115 tree
3116 substitute_placeholder_in_expr (tree exp, tree obj)
3117 {
3118 enum tree_code code = TREE_CODE (exp);
3119 tree op0, op1, op2, op3;
3120 tree new_tree;
3121
3122 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3123 in the chain of OBJ. */
3124 if (code == PLACEHOLDER_EXPR)
3125 {
3126 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3127 tree elt;
3128
3129 for (elt = obj; elt != 0;
3130 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3131 || TREE_CODE (elt) == COND_EXPR)
3132 ? TREE_OPERAND (elt, 1)
3133 : (REFERENCE_CLASS_P (elt)
3134 || UNARY_CLASS_P (elt)
3135 || BINARY_CLASS_P (elt)
3136 || VL_EXP_CLASS_P (elt)
3137 || EXPRESSION_CLASS_P (elt))
3138 ? TREE_OPERAND (elt, 0) : 0))
3139 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3140 return elt;
3141
3142 for (elt = obj; elt != 0;
3143 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3144 || TREE_CODE (elt) == COND_EXPR)
3145 ? TREE_OPERAND (elt, 1)
3146 : (REFERENCE_CLASS_P (elt)
3147 || UNARY_CLASS_P (elt)
3148 || BINARY_CLASS_P (elt)
3149 || VL_EXP_CLASS_P (elt)
3150 || EXPRESSION_CLASS_P (elt))
3151 ? TREE_OPERAND (elt, 0) : 0))
3152 if (POINTER_TYPE_P (TREE_TYPE (elt))
3153 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3154 == need_type))
3155 return fold_build1 (INDIRECT_REF, need_type, elt);
3156
3157 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3158 survives until RTL generation, there will be an error. */
3159 return exp;
3160 }
3161
3162 /* TREE_LIST is special because we need to look at TREE_VALUE
3163 and TREE_CHAIN, not TREE_OPERANDS. */
3164 else if (code == TREE_LIST)
3165 {
3166 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3167 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3168 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3169 return exp;
3170
3171 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3172 }
3173 else
3174 switch (TREE_CODE_CLASS (code))
3175 {
3176 case tcc_constant:
3177 case tcc_declaration:
3178 return exp;
3179
3180 case tcc_exceptional:
3181 case tcc_unary:
3182 case tcc_binary:
3183 case tcc_comparison:
3184 case tcc_expression:
3185 case tcc_reference:
3186 case tcc_statement:
3187 switch (TREE_CODE_LENGTH (code))
3188 {
3189 case 0:
3190 return exp;
3191
3192 case 1:
3193 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3194 if (op0 == TREE_OPERAND (exp, 0))
3195 return exp;
3196
3197 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3198 break;
3199
3200 case 2:
3201 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3202 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3203
3204 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3205 return exp;
3206
3207 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3208 break;
3209
3210 case 3:
3211 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3212 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3213 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3214
3215 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3216 && op2 == TREE_OPERAND (exp, 2))
3217 return exp;
3218
3219 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3220 break;
3221
3222 case 4:
3223 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3224 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3225 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3226 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3227
3228 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3229 && op2 == TREE_OPERAND (exp, 2)
3230 && op3 == TREE_OPERAND (exp, 3))
3231 return exp;
3232
3233 new_tree
3234 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3235 break;
3236
3237 default:
3238 gcc_unreachable ();
3239 }
3240 break;
3241
3242 case tcc_vl_exp:
3243 {
3244 int i;
3245
3246 new_tree = NULL_TREE;
3247
3248 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3249 {
3250 tree op = TREE_OPERAND (exp, i);
3251 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3252 if (new_op != op)
3253 {
3254 if (!new_tree)
3255 new_tree = copy_node (exp);
3256 TREE_OPERAND (new_tree, i) = new_op;
3257 }
3258 }
3259
3260 if (new_tree)
3261 {
3262 new_tree = fold (new_tree);
3263 if (TREE_CODE (new_tree) == CALL_EXPR)
3264 process_call_operands (new_tree);
3265 }
3266 else
3267 return exp;
3268 }
3269 break;
3270
3271 default:
3272 gcc_unreachable ();
3273 }
3274
3275 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3276 return new_tree;
3277 }
3278 \f
3279 /* Stabilize a reference so that we can use it any number of times
3280 without causing its operands to be evaluated more than once.
3281 Returns the stabilized reference. This works by means of save_expr,
3282 so see the caveats in the comments about save_expr.
3283
3284 Also allows conversion expressions whose operands are references.
3285 Any other kind of expression is returned unchanged. */
3286
3287 tree
3288 stabilize_reference (tree ref)
3289 {
3290 tree result;
3291 enum tree_code code = TREE_CODE (ref);
3292
3293 switch (code)
3294 {
3295 case VAR_DECL:
3296 case PARM_DECL:
3297 case RESULT_DECL:
3298 /* No action is needed in this case. */
3299 return ref;
3300
3301 CASE_CONVERT:
3302 case FLOAT_EXPR:
3303 case FIX_TRUNC_EXPR:
3304 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3305 break;
3306
3307 case INDIRECT_REF:
3308 result = build_nt (INDIRECT_REF,
3309 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3310 break;
3311
3312 case COMPONENT_REF:
3313 result = build_nt (COMPONENT_REF,
3314 stabilize_reference (TREE_OPERAND (ref, 0)),
3315 TREE_OPERAND (ref, 1), NULL_TREE);
3316 break;
3317
3318 case BIT_FIELD_REF:
3319 result = build_nt (BIT_FIELD_REF,
3320 stabilize_reference (TREE_OPERAND (ref, 0)),
3321 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3322 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3323 break;
3324
3325 case ARRAY_REF:
3326 result = build_nt (ARRAY_REF,
3327 stabilize_reference (TREE_OPERAND (ref, 0)),
3328 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3329 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3330 break;
3331
3332 case ARRAY_RANGE_REF:
3333 result = build_nt (ARRAY_RANGE_REF,
3334 stabilize_reference (TREE_OPERAND (ref, 0)),
3335 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3336 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3337 break;
3338
3339 case COMPOUND_EXPR:
3340 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3341 it wouldn't be ignored. This matters when dealing with
3342 volatiles. */
3343 return stabilize_reference_1 (ref);
3344
3345 /* If arg isn't a kind of lvalue we recognize, make no change.
3346 Caller should recognize the error for an invalid lvalue. */
3347 default:
3348 return ref;
3349
3350 case ERROR_MARK:
3351 return error_mark_node;
3352 }
3353
3354 TREE_TYPE (result) = TREE_TYPE (ref);
3355 TREE_READONLY (result) = TREE_READONLY (ref);
3356 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3357 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3358
3359 return result;
3360 }
3361
3362 /* Subroutine of stabilize_reference; this is called for subtrees of
3363 references. Any expression with side-effects must be put in a SAVE_EXPR
3364 to ensure that it is only evaluated once.
3365
3366 We don't put SAVE_EXPR nodes around everything, because assigning very
3367 simple expressions to temporaries causes us to miss good opportunities
3368 for optimizations. Among other things, the opportunity to fold in the
3369 addition of a constant into an addressing mode often gets lost, e.g.
3370 "y[i+1] += x;". In general, we take the approach that we should not make
3371 an assignment unless we are forced into it - i.e., that any non-side effect
3372 operator should be allowed, and that cse should take care of coalescing
3373 multiple utterances of the same expression should that prove fruitful. */
3374
3375 tree
3376 stabilize_reference_1 (tree e)
3377 {
3378 tree result;
3379 enum tree_code code = TREE_CODE (e);
3380
3381 /* We cannot ignore const expressions because it might be a reference
3382 to a const array but whose index contains side-effects. But we can
3383 ignore things that are actual constant or that already have been
3384 handled by this function. */
3385
3386 if (tree_invariant_p (e))
3387 return e;
3388
3389 switch (TREE_CODE_CLASS (code))
3390 {
3391 case tcc_exceptional:
3392 case tcc_type:
3393 case tcc_declaration:
3394 case tcc_comparison:
3395 case tcc_statement:
3396 case tcc_expression:
3397 case tcc_reference:
3398 case tcc_vl_exp:
3399 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3400 so that it will only be evaluated once. */
3401 /* The reference (r) and comparison (<) classes could be handled as
3402 below, but it is generally faster to only evaluate them once. */
3403 if (TREE_SIDE_EFFECTS (e))
3404 return save_expr (e);
3405 return e;
3406
3407 case tcc_constant:
3408 /* Constants need no processing. In fact, we should never reach
3409 here. */
3410 return e;
3411
3412 case tcc_binary:
3413 /* Division is slow and tends to be compiled with jumps,
3414 especially the division by powers of 2 that is often
3415 found inside of an array reference. So do it just once. */
3416 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3417 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3418 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3419 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3420 return save_expr (e);
3421 /* Recursively stabilize each operand. */
3422 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3423 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3424 break;
3425
3426 case tcc_unary:
3427 /* Recursively stabilize each operand. */
3428 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3429 break;
3430
3431 default:
3432 gcc_unreachable ();
3433 }
3434
3435 TREE_TYPE (result) = TREE_TYPE (e);
3436 TREE_READONLY (result) = TREE_READONLY (e);
3437 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3438 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3439
3440 return result;
3441 }
3442 \f
3443 /* Low-level constructors for expressions. */
3444
3445 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3446 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3447
3448 void
3449 recompute_tree_invariant_for_addr_expr (tree t)
3450 {
3451 tree node;
3452 bool tc = true, se = false;
3453
3454 /* We started out assuming this address is both invariant and constant, but
3455 does not have side effects. Now go down any handled components and see if
3456 any of them involve offsets that are either non-constant or non-invariant.
3457 Also check for side-effects.
3458
3459 ??? Note that this code makes no attempt to deal with the case where
3460 taking the address of something causes a copy due to misalignment. */
3461
3462 #define UPDATE_FLAGS(NODE) \
3463 do { tree _node = (NODE); \
3464 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3465 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3466
3467 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3468 node = TREE_OPERAND (node, 0))
3469 {
3470 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3471 array reference (probably made temporarily by the G++ front end),
3472 so ignore all the operands. */
3473 if ((TREE_CODE (node) == ARRAY_REF
3474 || TREE_CODE (node) == ARRAY_RANGE_REF)
3475 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3476 {
3477 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3478 if (TREE_OPERAND (node, 2))
3479 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3480 if (TREE_OPERAND (node, 3))
3481 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3482 }
3483 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3484 FIELD_DECL, apparently. The G++ front end can put something else
3485 there, at least temporarily. */
3486 else if (TREE_CODE (node) == COMPONENT_REF
3487 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3488 {
3489 if (TREE_OPERAND (node, 2))
3490 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3491 }
3492 else if (TREE_CODE (node) == BIT_FIELD_REF)
3493 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3494 }
3495
3496 node = lang_hooks.expr_to_decl (node, &tc, &se);
3497
3498 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3499 the address, since &(*a)->b is a form of addition. If it's a constant, the
3500 address is constant too. If it's a decl, its address is constant if the
3501 decl is static. Everything else is not constant and, furthermore,
3502 taking the address of a volatile variable is not volatile. */
3503 if (TREE_CODE (node) == INDIRECT_REF)
3504 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3505 else if (CONSTANT_CLASS_P (node))
3506 ;
3507 else if (DECL_P (node))
3508 tc &= (staticp (node) != NULL_TREE);
3509 else
3510 {
3511 tc = false;
3512 se |= TREE_SIDE_EFFECTS (node);
3513 }
3514
3515
3516 TREE_CONSTANT (t) = tc;
3517 TREE_SIDE_EFFECTS (t) = se;
3518 #undef UPDATE_FLAGS
3519 }
3520
3521 /* Build an expression of code CODE, data type TYPE, and operands as
3522 specified. Expressions and reference nodes can be created this way.
3523 Constants, decls, types and misc nodes cannot be.
3524
3525 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3526 enough for all extant tree codes. */
3527
3528 tree
3529 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3530 {
3531 tree t;
3532
3533 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3534
3535 t = make_node_stat (code PASS_MEM_STAT);
3536 TREE_TYPE (t) = tt;
3537
3538 return t;
3539 }
3540
3541 tree
3542 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3543 {
3544 int length = sizeof (struct tree_exp);
3545 #ifdef GATHER_STATISTICS
3546 tree_node_kind kind;
3547 #endif
3548 tree t;
3549
3550 #ifdef GATHER_STATISTICS
3551 switch (TREE_CODE_CLASS (code))
3552 {
3553 case tcc_statement: /* an expression with side effects */
3554 kind = s_kind;
3555 break;
3556 case tcc_reference: /* a reference */
3557 kind = r_kind;
3558 break;
3559 default:
3560 kind = e_kind;
3561 break;
3562 }
3563
3564 tree_node_counts[(int) kind]++;
3565 tree_node_sizes[(int) kind] += length;
3566 #endif
3567
3568 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3569
3570 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
3571
3572 memset (t, 0, sizeof (struct tree_common));
3573
3574 TREE_SET_CODE (t, code);
3575
3576 TREE_TYPE (t) = type;
3577 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3578 TREE_OPERAND (t, 0) = node;
3579 TREE_BLOCK (t) = NULL_TREE;
3580 if (node && !TYPE_P (node))
3581 {
3582 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3583 TREE_READONLY (t) = TREE_READONLY (node);
3584 }
3585
3586 if (TREE_CODE_CLASS (code) == tcc_statement)
3587 TREE_SIDE_EFFECTS (t) = 1;
3588 else switch (code)
3589 {
3590 case VA_ARG_EXPR:
3591 /* All of these have side-effects, no matter what their
3592 operands are. */
3593 TREE_SIDE_EFFECTS (t) = 1;
3594 TREE_READONLY (t) = 0;
3595 break;
3596
3597 case MISALIGNED_INDIRECT_REF:
3598 case ALIGN_INDIRECT_REF:
3599 case INDIRECT_REF:
3600 /* Whether a dereference is readonly has nothing to do with whether
3601 its operand is readonly. */
3602 TREE_READONLY (t) = 0;
3603 break;
3604
3605 case ADDR_EXPR:
3606 if (node)
3607 recompute_tree_invariant_for_addr_expr (t);
3608 break;
3609
3610 default:
3611 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3612 && node && !TYPE_P (node)
3613 && TREE_CONSTANT (node))
3614 TREE_CONSTANT (t) = 1;
3615 if (TREE_CODE_CLASS (code) == tcc_reference
3616 && node && TREE_THIS_VOLATILE (node))
3617 TREE_THIS_VOLATILE (t) = 1;
3618 break;
3619 }
3620
3621 return t;
3622 }
3623
3624 #define PROCESS_ARG(N) \
3625 do { \
3626 TREE_OPERAND (t, N) = arg##N; \
3627 if (arg##N &&!TYPE_P (arg##N)) \
3628 { \
3629 if (TREE_SIDE_EFFECTS (arg##N)) \
3630 side_effects = 1; \
3631 if (!TREE_READONLY (arg##N) \
3632 && !CONSTANT_CLASS_P (arg##N)) \
3633 read_only = 0; \
3634 if (!TREE_CONSTANT (arg##N)) \
3635 constant = 0; \
3636 } \
3637 } while (0)
3638
3639 tree
3640 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3641 {
3642 bool constant, read_only, side_effects;
3643 tree t;
3644
3645 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3646
3647 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3648 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3649 /* When sizetype precision doesn't match that of pointers
3650 we need to be able to build explicit extensions or truncations
3651 of the offset argument. */
3652 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3653 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3654 && TREE_CODE (arg1) == INTEGER_CST);
3655
3656 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3657 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3658 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3659 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3660
3661 t = make_node_stat (code PASS_MEM_STAT);
3662 TREE_TYPE (t) = tt;
3663
3664 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3665 result based on those same flags for the arguments. But if the
3666 arguments aren't really even `tree' expressions, we shouldn't be trying
3667 to do this. */
3668
3669 /* Expressions without side effects may be constant if their
3670 arguments are as well. */
3671 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3672 || TREE_CODE_CLASS (code) == tcc_binary);
3673 read_only = 1;
3674 side_effects = TREE_SIDE_EFFECTS (t);
3675
3676 PROCESS_ARG(0);
3677 PROCESS_ARG(1);
3678
3679 TREE_READONLY (t) = read_only;
3680 TREE_CONSTANT (t) = constant;
3681 TREE_SIDE_EFFECTS (t) = side_effects;
3682 TREE_THIS_VOLATILE (t)
3683 = (TREE_CODE_CLASS (code) == tcc_reference
3684 && arg0 && TREE_THIS_VOLATILE (arg0));
3685
3686 return t;
3687 }
3688
3689
3690 tree
3691 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3692 tree arg2 MEM_STAT_DECL)
3693 {
3694 bool constant, read_only, side_effects;
3695 tree t;
3696
3697 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3698 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3699
3700 t = make_node_stat (code PASS_MEM_STAT);
3701 TREE_TYPE (t) = tt;
3702
3703 read_only = 1;
3704
3705 /* As a special exception, if COND_EXPR has NULL branches, we
3706 assume that it is a gimple statement and always consider
3707 it to have side effects. */
3708 if (code == COND_EXPR
3709 && tt == void_type_node
3710 && arg1 == NULL_TREE
3711 && arg2 == NULL_TREE)
3712 side_effects = true;
3713 else
3714 side_effects = TREE_SIDE_EFFECTS (t);
3715
3716 PROCESS_ARG(0);
3717 PROCESS_ARG(1);
3718 PROCESS_ARG(2);
3719
3720 if (code == COND_EXPR)
3721 TREE_READONLY (t) = read_only;
3722
3723 TREE_SIDE_EFFECTS (t) = side_effects;
3724 TREE_THIS_VOLATILE (t)
3725 = (TREE_CODE_CLASS (code) == tcc_reference
3726 && arg0 && TREE_THIS_VOLATILE (arg0));
3727
3728 return t;
3729 }
3730
3731 tree
3732 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3733 tree arg2, tree arg3 MEM_STAT_DECL)
3734 {
3735 bool constant, read_only, side_effects;
3736 tree t;
3737
3738 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3739
3740 t = make_node_stat (code PASS_MEM_STAT);
3741 TREE_TYPE (t) = tt;
3742
3743 side_effects = TREE_SIDE_EFFECTS (t);
3744
3745 PROCESS_ARG(0);
3746 PROCESS_ARG(1);
3747 PROCESS_ARG(2);
3748 PROCESS_ARG(3);
3749
3750 TREE_SIDE_EFFECTS (t) = side_effects;
3751 TREE_THIS_VOLATILE (t)
3752 = (TREE_CODE_CLASS (code) == tcc_reference
3753 && arg0 && TREE_THIS_VOLATILE (arg0));
3754
3755 return t;
3756 }
3757
3758 tree
3759 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3760 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3761 {
3762 bool constant, read_only, side_effects;
3763 tree t;
3764
3765 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3766
3767 t = make_node_stat (code PASS_MEM_STAT);
3768 TREE_TYPE (t) = tt;
3769
3770 side_effects = TREE_SIDE_EFFECTS (t);
3771
3772 PROCESS_ARG(0);
3773 PROCESS_ARG(1);
3774 PROCESS_ARG(2);
3775 PROCESS_ARG(3);
3776 PROCESS_ARG(4);
3777
3778 TREE_SIDE_EFFECTS (t) = side_effects;
3779 TREE_THIS_VOLATILE (t)
3780 = (TREE_CODE_CLASS (code) == tcc_reference
3781 && arg0 && TREE_THIS_VOLATILE (arg0));
3782
3783 return t;
3784 }
3785
3786 tree
3787 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3788 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3789 {
3790 bool constant, read_only, side_effects;
3791 tree t;
3792
3793 gcc_assert (code == TARGET_MEM_REF);
3794
3795 t = make_node_stat (code PASS_MEM_STAT);
3796 TREE_TYPE (t) = tt;
3797
3798 side_effects = TREE_SIDE_EFFECTS (t);
3799
3800 PROCESS_ARG(0);
3801 PROCESS_ARG(1);
3802 PROCESS_ARG(2);
3803 PROCESS_ARG(3);
3804 PROCESS_ARG(4);
3805 PROCESS_ARG(5);
3806
3807 TREE_SIDE_EFFECTS (t) = side_effects;
3808 TREE_THIS_VOLATILE (t) = 0;
3809
3810 return t;
3811 }
3812
3813 /* Similar except don't specify the TREE_TYPE
3814 and leave the TREE_SIDE_EFFECTS as 0.
3815 It is permissible for arguments to be null,
3816 or even garbage if their values do not matter. */
3817
3818 tree
3819 build_nt (enum tree_code code, ...)
3820 {
3821 tree t;
3822 int length;
3823 int i;
3824 va_list p;
3825
3826 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3827
3828 va_start (p, code);
3829
3830 t = make_node (code);
3831 length = TREE_CODE_LENGTH (code);
3832
3833 for (i = 0; i < length; i++)
3834 TREE_OPERAND (t, i) = va_arg (p, tree);
3835
3836 va_end (p);
3837 return t;
3838 }
3839
3840 /* Similar to build_nt, but for creating a CALL_EXPR object with
3841 ARGLIST passed as a list. */
3842
3843 tree
3844 build_nt_call_list (tree fn, tree arglist)
3845 {
3846 tree t;
3847 int i;
3848
3849 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3850 CALL_EXPR_FN (t) = fn;
3851 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3852 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3853 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3854 return t;
3855 }
3856
3857 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3858 tree VEC. */
3859
3860 tree
3861 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3862 {
3863 tree ret, t;
3864 unsigned int ix;
3865
3866 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3867 CALL_EXPR_FN (ret) = fn;
3868 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3869 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
3870 CALL_EXPR_ARG (ret, ix) = t;
3871 return ret;
3872 }
3873 \f
3874 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3875 We do NOT enter this node in any sort of symbol table.
3876
3877 LOC is the location of the decl.
3878
3879 layout_decl is used to set up the decl's storage layout.
3880 Other slots are initialized to 0 or null pointers. */
3881
3882 tree
3883 build_decl_stat (location_t loc, enum tree_code code, tree name,
3884 tree type MEM_STAT_DECL)
3885 {
3886 tree t;
3887
3888 t = make_node_stat (code PASS_MEM_STAT);
3889 DECL_SOURCE_LOCATION (t) = loc;
3890
3891 /* if (type == error_mark_node)
3892 type = integer_type_node; */
3893 /* That is not done, deliberately, so that having error_mark_node
3894 as the type can suppress useless errors in the use of this variable. */
3895
3896 DECL_NAME (t) = name;
3897 TREE_TYPE (t) = type;
3898
3899 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3900 layout_decl (t, 0);
3901
3902 return t;
3903 }
3904
3905 /* Builds and returns function declaration with NAME and TYPE. */
3906
3907 tree
3908 build_fn_decl (const char *name, tree type)
3909 {
3910 tree id = get_identifier (name);
3911 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
3912
3913 DECL_EXTERNAL (decl) = 1;
3914 TREE_PUBLIC (decl) = 1;
3915 DECL_ARTIFICIAL (decl) = 1;
3916 TREE_NOTHROW (decl) = 1;
3917
3918 return decl;
3919 }
3920
3921 \f
3922 /* BLOCK nodes are used to represent the structure of binding contours
3923 and declarations, once those contours have been exited and their contents
3924 compiled. This information is used for outputting debugging info. */
3925
3926 tree
3927 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3928 {
3929 tree block = make_node (BLOCK);
3930
3931 BLOCK_VARS (block) = vars;
3932 BLOCK_SUBBLOCKS (block) = subblocks;
3933 BLOCK_SUPERCONTEXT (block) = supercontext;
3934 BLOCK_CHAIN (block) = chain;
3935 return block;
3936 }
3937
3938 expanded_location
3939 expand_location (source_location loc)
3940 {
3941 expanded_location xloc;
3942 if (loc == 0)
3943 {
3944 xloc.file = NULL;
3945 xloc.line = 0;
3946 xloc.column = 0;
3947 xloc.sysp = 0;
3948 }
3949 else
3950 {
3951 const struct line_map *map = linemap_lookup (line_table, loc);
3952 xloc.file = map->to_file;
3953 xloc.line = SOURCE_LINE (map, loc);
3954 xloc.column = SOURCE_COLUMN (map, loc);
3955 xloc.sysp = map->sysp != 0;
3956 };
3957 return xloc;
3958 }
3959
3960 \f
3961 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
3962
3963 LOC is the location to use in tree T. */
3964
3965 void
3966 protected_set_expr_location (tree t, location_t loc)
3967 {
3968 if (t && CAN_HAVE_LOCATION_P (t))
3969 SET_EXPR_LOCATION (t, loc);
3970 }
3971 \f
3972 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3973 is ATTRIBUTE. */
3974
3975 tree
3976 build_decl_attribute_variant (tree ddecl, tree attribute)
3977 {
3978 DECL_ATTRIBUTES (ddecl) = attribute;
3979 return ddecl;
3980 }
3981
3982 /* Borrowed from hashtab.c iterative_hash implementation. */
3983 #define mix(a,b,c) \
3984 { \
3985 a -= b; a -= c; a ^= (c>>13); \
3986 b -= c; b -= a; b ^= (a<< 8); \
3987 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3988 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3989 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3990 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3991 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3992 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3993 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3994 }
3995
3996
3997 /* Produce good hash value combining VAL and VAL2. */
3998 hashval_t
3999 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4000 {
4001 /* the golden ratio; an arbitrary value. */
4002 hashval_t a = 0x9e3779b9;
4003
4004 mix (a, val, val2);
4005 return val2;
4006 }
4007
4008 /* Produce good hash value combining VAL and VAL2. */
4009 hashval_t
4010 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4011 {
4012 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4013 return iterative_hash_hashval_t (val, val2);
4014 else
4015 {
4016 hashval_t a = (hashval_t) val;
4017 /* Avoid warnings about shifting of more than the width of the type on
4018 hosts that won't execute this path. */
4019 int zero = 0;
4020 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4021 mix (a, b, val2);
4022 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4023 {
4024 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4025 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4026 mix (a, b, val2);
4027 }
4028 return val2;
4029 }
4030 }
4031
4032 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4033 is ATTRIBUTE and its qualifiers are QUALS.
4034
4035 Record such modified types already made so we don't make duplicates. */
4036
4037 static tree
4038 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4039 {
4040 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4041 {
4042 hashval_t hashcode = 0;
4043 tree ntype;
4044 enum tree_code code = TREE_CODE (ttype);
4045
4046 /* Building a distinct copy of a tagged type is inappropriate; it
4047 causes breakage in code that expects there to be a one-to-one
4048 relationship between a struct and its fields.
4049 build_duplicate_type is another solution (as used in
4050 handle_transparent_union_attribute), but that doesn't play well
4051 with the stronger C++ type identity model. */
4052 if (TREE_CODE (ttype) == RECORD_TYPE
4053 || TREE_CODE (ttype) == UNION_TYPE
4054 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4055 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4056 {
4057 warning (OPT_Wattributes,
4058 "ignoring attributes applied to %qT after definition",
4059 TYPE_MAIN_VARIANT (ttype));
4060 return build_qualified_type (ttype, quals);
4061 }
4062
4063 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4064 ntype = build_distinct_type_copy (ttype);
4065
4066 TYPE_ATTRIBUTES (ntype) = attribute;
4067
4068 hashcode = iterative_hash_object (code, hashcode);
4069 if (TREE_TYPE (ntype))
4070 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4071 hashcode);
4072 hashcode = attribute_hash_list (attribute, hashcode);
4073
4074 switch (TREE_CODE (ntype))
4075 {
4076 case FUNCTION_TYPE:
4077 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4078 break;
4079 case ARRAY_TYPE:
4080 if (TYPE_DOMAIN (ntype))
4081 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4082 hashcode);
4083 break;
4084 case INTEGER_TYPE:
4085 hashcode = iterative_hash_object
4086 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4087 hashcode = iterative_hash_object
4088 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4089 break;
4090 case REAL_TYPE:
4091 case FIXED_POINT_TYPE:
4092 {
4093 unsigned int precision = TYPE_PRECISION (ntype);
4094 hashcode = iterative_hash_object (precision, hashcode);
4095 }
4096 break;
4097 default:
4098 break;
4099 }
4100
4101 ntype = type_hash_canon (hashcode, ntype);
4102
4103 /* If the target-dependent attributes make NTYPE different from
4104 its canonical type, we will need to use structural equality
4105 checks for this type. */
4106 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4107 || !targetm.comp_type_attributes (ntype, ttype))
4108 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4109 else if (TYPE_CANONICAL (ntype) == ntype)
4110 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4111
4112 ttype = build_qualified_type (ntype, quals);
4113 }
4114 else if (TYPE_QUALS (ttype) != quals)
4115 ttype = build_qualified_type (ttype, quals);
4116
4117 return ttype;
4118 }
4119
4120
4121 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4122 is ATTRIBUTE.
4123
4124 Record such modified types already made so we don't make duplicates. */
4125
4126 tree
4127 build_type_attribute_variant (tree ttype, tree attribute)
4128 {
4129 return build_type_attribute_qual_variant (ttype, attribute,
4130 TYPE_QUALS (ttype));
4131 }
4132
4133 /* Reset all language specific information still present in TYPE. */
4134
4135 static void
4136 free_lang_data_in_type (tree type)
4137 {
4138 gcc_assert (TYPE_P (type));
4139
4140 /* Fill in the alias-set. We need to at least track zeroness here
4141 for correctness. */
4142 if (lang_hooks.get_alias_set (type) == 0)
4143 TYPE_ALIAS_SET (type) = 0;
4144
4145 /* Give the FE a chance to remove its own data first. */
4146 lang_hooks.free_lang_data (type);
4147
4148 TREE_LANG_FLAG_0 (type) = 0;
4149 TREE_LANG_FLAG_1 (type) = 0;
4150 TREE_LANG_FLAG_2 (type) = 0;
4151 TREE_LANG_FLAG_3 (type) = 0;
4152 TREE_LANG_FLAG_4 (type) = 0;
4153 TREE_LANG_FLAG_5 (type) = 0;
4154 TREE_LANG_FLAG_6 (type) = 0;
4155
4156 if (TREE_CODE (type) == FUNCTION_TYPE)
4157 {
4158 /* Remove the const and volatile qualifiers from arguments. The
4159 C++ front end removes them, but the C front end does not,
4160 leading to false ODR violation errors when merging two
4161 instances of the same function signature compiled by
4162 different front ends. */
4163 tree p;
4164
4165 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4166 {
4167 tree arg_type = TREE_VALUE (p);
4168
4169 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4170 {
4171 int quals = TYPE_QUALS (arg_type)
4172 & ~TYPE_QUAL_CONST
4173 & ~TYPE_QUAL_VOLATILE;
4174 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4175 free_lang_data_in_type (TREE_VALUE (p));
4176 }
4177 }
4178 }
4179
4180 /* Remove members that are not actually FIELD_DECLs from the field
4181 list of an aggregate. These occur in C++. */
4182 if (TREE_CODE (type) == RECORD_TYPE
4183 || TREE_CODE (type) == UNION_TYPE
4184 || TREE_CODE (type) == QUAL_UNION_TYPE)
4185 {
4186 tree prev, member;
4187
4188 /* Note that TYPE_FIELDS can be shared across distinct
4189 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4190 to be removed, we cannot set its TREE_CHAIN to NULL.
4191 Otherwise, we would not be able to find all the other fields
4192 in the other instances of this TREE_TYPE.
4193
4194 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4195 prev = NULL_TREE;
4196 member = TYPE_FIELDS (type);
4197 while (member)
4198 {
4199 if (TREE_CODE (member) == FIELD_DECL)
4200 {
4201 if (prev)
4202 TREE_CHAIN (prev) = member;
4203 else
4204 TYPE_FIELDS (type) = member;
4205 prev = member;
4206 }
4207
4208 member = TREE_CHAIN (member);
4209 }
4210
4211 if (prev)
4212 TREE_CHAIN (prev) = NULL_TREE;
4213 else
4214 TYPE_FIELDS (type) = NULL_TREE;
4215
4216 TYPE_METHODS (type) = NULL_TREE;
4217 if (TYPE_BINFO (type))
4218 {
4219 tree binfo = TYPE_BINFO (type);
4220
4221 if (BINFO_VIRTUALS (binfo))
4222 {
4223 /* If the virtual function table for BINFO contains
4224 entries, these may be useful for folding OBJ_TYPE_REF
4225 expressions (see gimple_fold_obj_type_ref). In that
4226 case, we only clear the unused fields in the BINFO
4227 structure. */
4228 BINFO_OFFSET (binfo) = NULL_TREE;
4229 BINFO_VTABLE (binfo) = NULL_TREE;
4230 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
4231 BINFO_BASE_ACCESSES (binfo) = NULL;
4232 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4233 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4234 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
4235 }
4236 else
4237 {
4238 /* Otherwise, get rid of the whole binfo data. */
4239 TYPE_BINFO (type) = NULL_TREE;
4240 }
4241 }
4242 }
4243 else
4244 {
4245 /* For non-aggregate types, clear out the language slot (which
4246 overloads TYPE_BINFO). */
4247 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4248 }
4249
4250 TYPE_CONTEXT (type) = NULL_TREE;
4251 TYPE_STUB_DECL (type) = NULL_TREE;
4252 }
4253
4254
4255 /* Return true if DECL may need an assembler name to be set. */
4256
4257 static inline bool
4258 need_assembler_name_p (tree decl)
4259 {
4260 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4261 if (TREE_CODE (decl) != FUNCTION_DECL
4262 && TREE_CODE (decl) != VAR_DECL)
4263 return false;
4264
4265 /* If DECL already has its assembler name set, it does not need a
4266 new one. */
4267 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4268 || DECL_ASSEMBLER_NAME_SET_P (decl))
4269 return false;
4270
4271 /* For VAR_DECLs, only static, public and external symbols need an
4272 assembler name. */
4273 if (TREE_CODE (decl) == VAR_DECL
4274 && !TREE_STATIC (decl)
4275 && !TREE_PUBLIC (decl)
4276 && !DECL_EXTERNAL (decl))
4277 return false;
4278
4279 /* Do not set assembler name on builtins. Allow RTL expansion to
4280 decide whether to expand inline or via a regular call. */
4281 if (TREE_CODE (decl) == FUNCTION_DECL
4282 && DECL_BUILT_IN (decl)
4283 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4284 return false;
4285
4286 /* For FUNCTION_DECLs, only used functions and functions
4287 represented in the callgraph need an assembler name. */
4288 if (TREE_CODE (decl) == FUNCTION_DECL
4289 && cgraph_node_for_decl (decl) == NULL
4290 && !TREE_USED (decl))
4291 return false;
4292
4293 return true;
4294 }
4295
4296
4297 /* Remove all the non-variable decls from BLOCK. LOCALS is the set of
4298 variables in DECL_STRUCT_FUNCTION (FN)->local_decls. Every decl
4299 in BLOCK that is not in LOCALS is removed. */
4300
4301 static void
4302 free_lang_data_in_block (tree fn, tree block, struct pointer_set_t *locals)
4303 {
4304 tree *tp, t;
4305
4306 tp = &BLOCK_VARS (block);
4307 while (*tp)
4308 {
4309 if (!pointer_set_contains (locals, *tp))
4310 *tp = TREE_CHAIN (*tp);
4311 else
4312 tp = &TREE_CHAIN (*tp);
4313 }
4314
4315 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4316 free_lang_data_in_block (fn, t, locals);
4317 }
4318
4319
4320 /* Reset all language specific information still present in symbol
4321 DECL. */
4322
4323 static void
4324 free_lang_data_in_decl (tree decl)
4325 {
4326 gcc_assert (DECL_P (decl));
4327
4328 /* Give the FE a chance to remove its own data first. */
4329 lang_hooks.free_lang_data (decl);
4330
4331 TREE_LANG_FLAG_0 (decl) = 0;
4332 TREE_LANG_FLAG_1 (decl) = 0;
4333 TREE_LANG_FLAG_2 (decl) = 0;
4334 TREE_LANG_FLAG_3 (decl) = 0;
4335 TREE_LANG_FLAG_4 (decl) = 0;
4336 TREE_LANG_FLAG_5 (decl) = 0;
4337 TREE_LANG_FLAG_6 (decl) = 0;
4338
4339 /* Identifiers need not have a type. */
4340 if (DECL_NAME (decl))
4341 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4342
4343 if (TREE_CODE (decl) == CONST_DECL)
4344 DECL_CONTEXT (decl) = NULL_TREE;
4345
4346 /* Ignore any intervening types, because we are going to clear their
4347 TYPE_CONTEXT fields. */
4348 if (TREE_CODE (decl) != FIELD_DECL)
4349 DECL_CONTEXT (decl) = decl_function_context (decl);
4350
4351 if (DECL_CONTEXT (decl)
4352 && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
4353 DECL_CONTEXT (decl) = NULL_TREE;
4354
4355 if (TREE_CODE (decl) == VAR_DECL)
4356 {
4357 tree context = DECL_CONTEXT (decl);
4358
4359 if (context)
4360 {
4361 enum tree_code code = TREE_CODE (context);
4362 if (code == FUNCTION_DECL && DECL_ABSTRACT (context))
4363 {
4364 /* Do not clear the decl context here, that will promote
4365 all vars to global ones. */
4366 DECL_INITIAL (decl) = NULL_TREE;
4367 }
4368
4369 if (TREE_STATIC (decl))
4370 DECL_CONTEXT (decl) = NULL_TREE;
4371 }
4372 }
4373
4374 if (TREE_CODE (decl) == PARM_DECL
4375 || TREE_CODE (decl) == FIELD_DECL
4376 || TREE_CODE (decl) == RESULT_DECL)
4377 {
4378 tree unit_size = DECL_SIZE_UNIT (decl);
4379 tree size = DECL_SIZE (decl);
4380 if ((unit_size && TREE_CODE (unit_size) != INTEGER_CST)
4381 || (size && TREE_CODE (size) != INTEGER_CST))
4382 {
4383 DECL_SIZE_UNIT (decl) = NULL_TREE;
4384 DECL_SIZE (decl) = NULL_TREE;
4385 }
4386
4387 if (TREE_CODE (decl) == FIELD_DECL
4388 && DECL_FIELD_OFFSET (decl)
4389 && TREE_CODE (DECL_FIELD_OFFSET (decl)) != INTEGER_CST)
4390 DECL_FIELD_OFFSET (decl) = NULL_TREE;
4391 }
4392 else if (TREE_CODE (decl) == FUNCTION_DECL)
4393 {
4394 if (gimple_has_body_p (decl))
4395 {
4396 tree t;
4397 struct pointer_set_t *locals;
4398
4399 /* If DECL has a gimple body, then the context for its
4400 arguments must be DECL. Otherwise, it doesn't really
4401 matter, as we will not be emitting any code for DECL. In
4402 general, there may be other instances of DECL created by
4403 the front end and since PARM_DECLs are generally shared,
4404 their DECL_CONTEXT changes as the replicas of DECL are
4405 created. The only time where DECL_CONTEXT is important
4406 is for the FUNCTION_DECLs that have a gimple body (since
4407 the PARM_DECL will be used in the function's body). */
4408 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4409 DECL_CONTEXT (t) = decl;
4410
4411 /* Collect all the symbols declared in DECL. */
4412 locals = pointer_set_create ();
4413 t = DECL_STRUCT_FUNCTION (decl)->local_decls;
4414 for (; t; t = TREE_CHAIN (t))
4415 {
4416 pointer_set_insert (locals, TREE_VALUE (t));
4417
4418 /* All the local symbols should have DECL as their
4419 context. */
4420 DECL_CONTEXT (TREE_VALUE (t)) = decl;
4421 }
4422
4423 /* Get rid of any decl not in local_decls. */
4424 free_lang_data_in_block (decl, DECL_INITIAL (decl), locals);
4425
4426 pointer_set_destroy (locals);
4427 }
4428
4429 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4430 At this point, it is not needed anymore. */
4431 DECL_SAVED_TREE (decl) = NULL_TREE;
4432 }
4433 else if (TREE_CODE (decl) == VAR_DECL)
4434 {
4435 tree expr = DECL_DEBUG_EXPR (decl);
4436 if (expr
4437 && TREE_CODE (expr) == VAR_DECL
4438 && !TREE_STATIC (expr) && !DECL_EXTERNAL (expr))
4439 SET_DECL_DEBUG_EXPR (decl, NULL_TREE);
4440
4441 if (DECL_EXTERNAL (decl))
4442 DECL_INITIAL (decl) = NULL_TREE;
4443 }
4444 else if (TREE_CODE (decl) == TYPE_DECL)
4445 {
4446 DECL_INITIAL (decl) = NULL_TREE;
4447
4448 /* DECL_CONTEXT is overloaded as DECL_FIELD_CONTEXT for
4449 FIELD_DECLs, which should be preserved. Otherwise,
4450 we shouldn't be concerned with source-level lexical
4451 nesting beyond this point. */
4452 DECL_CONTEXT (decl) = NULL_TREE;
4453 }
4454 }
4455
4456
4457 /* Data used when collecting DECLs and TYPEs for language data removal. */
4458
4459 struct free_lang_data_d
4460 {
4461 /* Worklist to avoid excessive recursion. */
4462 VEC(tree,heap) *worklist;
4463
4464 /* Set of traversed objects. Used to avoid duplicate visits. */
4465 struct pointer_set_t *pset;
4466
4467 /* Array of symbols to process with free_lang_data_in_decl. */
4468 VEC(tree,heap) *decls;
4469
4470 /* Array of types to process with free_lang_data_in_type. */
4471 VEC(tree,heap) *types;
4472 };
4473
4474
4475 /* Save all language fields needed to generate proper debug information
4476 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4477
4478 static void
4479 save_debug_info_for_decl (tree t)
4480 {
4481 /*struct saved_debug_info_d *sdi;*/
4482
4483 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4484
4485 /* FIXME. Partial implementation for saving debug info removed. */
4486 }
4487
4488
4489 /* Save all language fields needed to generate proper debug information
4490 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4491
4492 static void
4493 save_debug_info_for_type (tree t)
4494 {
4495 /*struct saved_debug_info_d *sdi;*/
4496
4497 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4498
4499 /* FIXME. Partial implementation for saving debug info removed. */
4500 }
4501
4502
4503 /* Add type or decl T to one of the list of tree nodes that need their
4504 language data removed. The lists are held inside FLD. */
4505
4506 static void
4507 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4508 {
4509 if (DECL_P (t))
4510 {
4511 VEC_safe_push (tree, heap, fld->decls, t);
4512 if (debug_info_level > DINFO_LEVEL_TERSE)
4513 save_debug_info_for_decl (t);
4514 }
4515 else if (TYPE_P (t))
4516 {
4517 VEC_safe_push (tree, heap, fld->types, t);
4518 if (debug_info_level > DINFO_LEVEL_TERSE)
4519 save_debug_info_for_type (t);
4520 }
4521 else
4522 gcc_unreachable ();
4523 }
4524
4525 #define PUSH(t) \
4526 if (t && !pointer_set_contains (fld->pset, t)) \
4527 VEC_safe_push (tree, heap, fld->worklist, (t))
4528
4529 /* Operand callback helper for free_lang_data_in_node. *TP is the
4530 subtree operand being considered. */
4531
4532 static tree
4533 find_decls_types_r (tree *tp, int *ws ATTRIBUTE_UNUSED, void *data)
4534 {
4535 tree t = *tp;
4536 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4537
4538 if (TREE_CODE (t) == TREE_LIST)
4539 return NULL_TREE;
4540
4541 if (DECL_P (t))
4542 {
4543 /* Note that walk_tree does not traverse every possible field in
4544 decls, so we have to do our own traversals here. */
4545 add_tree_to_fld_list (t, fld);
4546
4547 PUSH (DECL_NAME (t));
4548 PUSH (DECL_CONTEXT (t));
4549 PUSH (DECL_SIZE (t));
4550 PUSH (DECL_SIZE_UNIT (t));
4551 PUSH (DECL_INITIAL(t));
4552 PUSH (DECL_ATTRIBUTES (t));
4553 PUSH (DECL_ABSTRACT_ORIGIN (t));
4554
4555 if (TREE_CODE (t) == FUNCTION_DECL)
4556 {
4557 PUSH (DECL_ARGUMENTS (t));
4558 PUSH (DECL_RESULT (t));
4559 }
4560 else if (TREE_CODE (t) == TYPE_DECL)
4561 {
4562 PUSH (DECL_ARGUMENT_FLD (t));
4563 PUSH (DECL_VINDEX (t));
4564 }
4565 else if (TREE_CODE (t) == FIELD_DECL)
4566 {
4567 PUSH (DECL_FIELD_OFFSET (t));
4568 PUSH (DECL_BIT_FIELD_TYPE (t));
4569 PUSH (DECL_QUALIFIER (t));
4570 PUSH (DECL_FIELD_BIT_OFFSET (t));
4571 PUSH (DECL_FCONTEXT (t));
4572 }
4573 else if (TREE_CODE (t) == VAR_DECL)
4574 {
4575 PUSH (DECL_SECTION_NAME (t));
4576 PUSH (DECL_COMDAT_GROUP (t));
4577 }
4578
4579 PUSH (TREE_CHAIN (t));
4580 *ws = 0;
4581 }
4582 else if (TYPE_P (t))
4583 {
4584 /* Note that walk_tree does not traverse every possible field in
4585 types, so we have to do our own traversals here. */
4586 add_tree_to_fld_list (t, fld);
4587
4588 PUSH (TYPE_CACHED_VALUES (t));
4589 PUSH (TYPE_SIZE (t));
4590 PUSH (TYPE_SIZE_UNIT (t));
4591 PUSH (TYPE_ATTRIBUTES (t));
4592 PUSH (TYPE_POINTER_TO (t));
4593 PUSH (TYPE_REFERENCE_TO (t));
4594 PUSH (TYPE_NAME (t));
4595 PUSH (TYPE_MINVAL (t));
4596 PUSH (TYPE_MAXVAL (t));
4597 PUSH (TYPE_MAIN_VARIANT (t));
4598 PUSH (TYPE_NEXT_VARIANT (t));
4599 PUSH (TYPE_CONTEXT (t));
4600 PUSH (TYPE_CANONICAL (t));
4601
4602 if (RECORD_OR_UNION_TYPE_P (t)
4603 && TYPE_BINFO (t))
4604 {
4605 unsigned i;
4606 tree tem;
4607 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4608 i, tem); ++i)
4609 PUSH (TREE_TYPE (tem));
4610 }
4611
4612 PUSH (TREE_CHAIN (t));
4613 *ws = 0;
4614 }
4615
4616 PUSH (TREE_TYPE (t));
4617
4618 return NULL_TREE;
4619 }
4620
4621 #undef PUSH
4622
4623 /* Find decls and types in T. */
4624
4625 static void
4626 find_decls_types (tree t, struct free_lang_data_d *fld)
4627 {
4628 while (1)
4629 {
4630 if (!pointer_set_contains (fld->pset, t))
4631 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4632 if (VEC_empty (tree, fld->worklist))
4633 break;
4634 t = VEC_pop (tree, fld->worklist);
4635 }
4636 }
4637
4638 /* Translate all the types in LIST with the corresponding runtime
4639 types. */
4640
4641 static tree
4642 get_eh_types_for_runtime (tree list)
4643 {
4644 tree head, prev;
4645
4646 if (list == NULL_TREE)
4647 return NULL_TREE;
4648
4649 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4650 prev = head;
4651 list = TREE_CHAIN (list);
4652 while (list)
4653 {
4654 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4655 TREE_CHAIN (prev) = n;
4656 prev = TREE_CHAIN (prev);
4657 list = TREE_CHAIN (list);
4658 }
4659
4660 return head;
4661 }
4662
4663
4664 /* Find decls and types referenced in EH region R and store them in
4665 FLD->DECLS and FLD->TYPES. */
4666
4667 static void
4668 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4669 {
4670 if (r == NULL)
4671 return;
4672
4673 /* The types referenced in R must first be changed to the EH types
4674 used at runtime. This removes references to FE types in the
4675 region. */
4676 if (r->type == ERT_CATCH)
4677 {
4678 tree list = r->u.eh_catch.type_list;
4679 r->u.eh_catch.type_list = get_eh_types_for_runtime (list);
4680 find_decls_types (r->u.eh_catch.type_list, fld);
4681 }
4682 else if (r->type == ERT_ALLOWED_EXCEPTIONS)
4683 {
4684 tree list = r->u.allowed.type_list;
4685 r->u.allowed.type_list = get_eh_types_for_runtime (list);
4686 find_decls_types (r->u.allowed.type_list, fld);
4687 }
4688 }
4689
4690
4691 /* Find decls and types referenced in cgraph node N and store them in
4692 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4693 look for *every* kind of DECL and TYPE node reachable from N,
4694 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4695 NAMESPACE_DECLs, etc). */
4696
4697 static void
4698 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4699 {
4700 basic_block bb;
4701 struct function *fn;
4702 tree t;
4703
4704 find_decls_types (n->decl, fld);
4705
4706 if (!gimple_has_body_p (n->decl))
4707 return;
4708
4709 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4710
4711 fn = DECL_STRUCT_FUNCTION (n->decl);
4712
4713 /* Traverse locals. */
4714 for (t = fn->local_decls; t; t = TREE_CHAIN (t))
4715 find_decls_types (TREE_VALUE (t), fld);
4716
4717 /* Traverse EH regions in FN. */
4718 if (fn->eh->region_array)
4719 {
4720 unsigned i;
4721 eh_region r;
4722
4723 for (i = 0; VEC_iterate (eh_region, fn->eh->region_array, i, r); i++)
4724 find_decls_types_in_eh_region (r, fld);
4725 }
4726
4727 /* Traverse every statement in FN. */
4728 FOR_EACH_BB_FN (bb, fn)
4729 {
4730 gimple_stmt_iterator si;
4731 unsigned i;
4732
4733 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4734 {
4735 gimple phi = gsi_stmt (si);
4736
4737 for (i = 0; i < gimple_phi_num_args (phi); i++)
4738 {
4739 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4740 find_decls_types (*arg_p, fld);
4741 }
4742 }
4743
4744 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4745 {
4746 gimple stmt = gsi_stmt (si);
4747
4748 for (i = 0; i < gimple_num_ops (stmt); i++)
4749 {
4750 tree arg = gimple_op (stmt, i);
4751 find_decls_types (arg, fld);
4752 }
4753 }
4754 }
4755 }
4756
4757
4758 /* Find decls and types referenced in varpool node N and store them in
4759 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4760 look for *every* kind of DECL and TYPE node reachable from N,
4761 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4762 NAMESPACE_DECLs, etc). */
4763
4764 static void
4765 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4766 {
4767 find_decls_types (v->decl, fld);
4768 }
4769
4770
4771 /* Free language specific information for every operand and expression
4772 in every node of the call graph. This process operates in three stages:
4773
4774 1- Every callgraph node and varpool node is traversed looking for
4775 decls and types embedded in them. This is a more exhaustive
4776 search than that done by find_referenced_vars, because it will
4777 also collect individual fields, decls embedded in types, etc.
4778
4779 2- All the decls found are sent to free_lang_data_in_decl.
4780
4781 3- All the types found are sent to free_lang_data_in_type.
4782
4783 The ordering between decls and types is important because
4784 free_lang_data_in_decl sets assembler names, which includes
4785 mangling. So types cannot be freed up until assembler names have
4786 been set up. */
4787
4788 static void
4789 free_lang_data_in_cgraph (void)
4790 {
4791 struct cgraph_node *n;
4792 struct varpool_node *v;
4793 struct free_lang_data_d fld;
4794 tree t;
4795 unsigned i;
4796 alias_pair *p;
4797
4798 /* Initialize sets and arrays to store referenced decls and types. */
4799 fld.pset = pointer_set_create ();
4800 fld.worklist = NULL;
4801 fld.decls = VEC_alloc (tree, heap, 100);
4802 fld.types = VEC_alloc (tree, heap, 100);
4803
4804 /* Find decls and types in the body of every function in the callgraph. */
4805 for (n = cgraph_nodes; n; n = n->next)
4806 find_decls_types_in_node (n, &fld);
4807
4808 for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); i++)
4809 find_decls_types (p->decl, &fld);
4810
4811 /* Find decls and types in every varpool symbol. */
4812 for (v = varpool_nodes_queue; v; v = v->next_needed)
4813 find_decls_types_in_var (v, &fld);
4814
4815 /* Set the assembler name on every decl found. We need to do this
4816 now because free_lang_data_in_decl will invalidate data needed
4817 for mangling. This breaks mangling on interdependent decls. */
4818 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4819 if (need_assembler_name_p (t))
4820 {
4821 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4822 diagnostics that use input_location to show locus
4823 information. The problem here is that, at this point,
4824 input_location is generally anchored to the end of the file
4825 (since the parser is long gone), so we don't have a good
4826 position to pin it to.
4827
4828 To alleviate this problem, this uses the location of T's
4829 declaration. Examples of this are
4830 testsuite/g++.dg/template/cond2.C and
4831 testsuite/g++.dg/template/pr35240.C. */
4832 location_t saved_location = input_location;
4833 input_location = DECL_SOURCE_LOCATION (t);
4834
4835 decl_assembler_name (t);
4836
4837 input_location = saved_location;
4838 }
4839
4840 /* Traverse every decl found freeing its language data. */
4841 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4842 free_lang_data_in_decl (t);
4843
4844 /* Traverse every type found freeing its language data. */
4845 for (i = 0; VEC_iterate (tree, fld.types, i, t); i++)
4846 free_lang_data_in_type (t);
4847
4848 pointer_set_destroy (fld.pset);
4849 VEC_free (tree, heap, fld.worklist);
4850 VEC_free (tree, heap, fld.decls);
4851 VEC_free (tree, heap, fld.types);
4852 }
4853
4854
4855 /* Free resources that are used by FE but are not needed once they are done. */
4856
4857 static unsigned
4858 free_lang_data (void)
4859 {
4860 /* Traverse the IL resetting language specific information for
4861 operands, expressions, etc. */
4862 free_lang_data_in_cgraph ();
4863
4864 /* Create gimple variants for common types. */
4865 ptrdiff_type_node = integer_type_node;
4866 fileptr_type_node = ptr_type_node;
4867 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
4868 || (TYPE_MODE (boolean_type_node)
4869 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
4870 || TYPE_PRECISION (boolean_type_node) != 1
4871 || !TYPE_UNSIGNED (boolean_type_node))
4872 {
4873 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
4874 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
4875 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
4876 TYPE_PRECISION (boolean_type_node) = 1;
4877 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
4878 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
4879 }
4880
4881 /* Unify char_type_node with its properly signed variant. */
4882 if (TYPE_UNSIGNED (char_type_node))
4883 unsigned_char_type_node = char_type_node;
4884 else
4885 signed_char_type_node = char_type_node;
4886
4887 /* Reset some langhooks. */
4888 lang_hooks.callgraph.analyze_expr = NULL;
4889 lang_hooks.types_compatible_p = NULL;
4890 lang_hooks.dwarf_name = lhd_dwarf_name;
4891 lang_hooks.decl_printable_name = gimple_decl_printable_name;
4892 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
4893 lang_hooks.fold_obj_type_ref = gimple_fold_obj_type_ref;
4894
4895 /* Reset diagnostic machinery. */
4896 diagnostic_starter (global_dc) = default_diagnostic_starter;
4897 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
4898 diagnostic_format_decoder (global_dc) = default_tree_printer;
4899
4900 return 0;
4901 }
4902
4903
4904 /* Gate function for free_lang_data. */
4905
4906 static bool
4907 gate_free_lang_data (void)
4908 {
4909 /* FIXME. Remove after save_debug_info is working. */
4910 return !flag_gtoggle && debug_info_level <= DINFO_LEVEL_TERSE;
4911 }
4912
4913
4914 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
4915 {
4916 {
4917 SIMPLE_IPA_PASS,
4918 NULL, /* name */
4919 gate_free_lang_data, /* gate */
4920 free_lang_data, /* execute */
4921 NULL, /* sub */
4922 NULL, /* next */
4923 0, /* static_pass_number */
4924 TV_IPA_FREE_LANG_DATA, /* tv_id */
4925 0, /* properties_required */
4926 0, /* properties_provided */
4927 0, /* properties_destroyed */
4928 0, /* todo_flags_start */
4929 TODO_ggc_collect /* todo_flags_finish */
4930 }
4931 };
4932
4933 /* Return nonzero if IDENT is a valid name for attribute ATTR,
4934 or zero if not.
4935
4936 We try both `text' and `__text__', ATTR may be either one. */
4937 /* ??? It might be a reasonable simplification to require ATTR to be only
4938 `text'. One might then also require attribute lists to be stored in
4939 their canonicalized form. */
4940
4941 static int
4942 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
4943 {
4944 int ident_len;
4945 const char *p;
4946
4947 if (TREE_CODE (ident) != IDENTIFIER_NODE)
4948 return 0;
4949
4950 p = IDENTIFIER_POINTER (ident);
4951 ident_len = IDENTIFIER_LENGTH (ident);
4952
4953 if (ident_len == attr_len
4954 && strcmp (attr, p) == 0)
4955 return 1;
4956
4957 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
4958 if (attr[0] == '_')
4959 {
4960 gcc_assert (attr[1] == '_');
4961 gcc_assert (attr[attr_len - 2] == '_');
4962 gcc_assert (attr[attr_len - 1] == '_');
4963 if (ident_len == attr_len - 4
4964 && strncmp (attr + 2, p, attr_len - 4) == 0)
4965 return 1;
4966 }
4967 else
4968 {
4969 if (ident_len == attr_len + 4
4970 && p[0] == '_' && p[1] == '_'
4971 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
4972 && strncmp (attr, p + 2, attr_len) == 0)
4973 return 1;
4974 }
4975
4976 return 0;
4977 }
4978
4979 /* Return nonzero if IDENT is a valid name for attribute ATTR,
4980 or zero if not.
4981
4982 We try both `text' and `__text__', ATTR may be either one. */
4983
4984 int
4985 is_attribute_p (const char *attr, const_tree ident)
4986 {
4987 return is_attribute_with_length_p (attr, strlen (attr), ident);
4988 }
4989
4990 /* Given an attribute name and a list of attributes, return a pointer to the
4991 attribute's list element if the attribute is part of the list, or NULL_TREE
4992 if not found. If the attribute appears more than once, this only
4993 returns the first occurrence; the TREE_CHAIN of the return value should
4994 be passed back in if further occurrences are wanted. */
4995
4996 tree
4997 lookup_attribute (const char *attr_name, tree list)
4998 {
4999 tree l;
5000 size_t attr_len = strlen (attr_name);
5001
5002 for (l = list; l; l = TREE_CHAIN (l))
5003 {
5004 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5005 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5006 return l;
5007 }
5008 return NULL_TREE;
5009 }
5010
5011 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5012 modified list. */
5013
5014 tree
5015 remove_attribute (const char *attr_name, tree list)
5016 {
5017 tree *p;
5018 size_t attr_len = strlen (attr_name);
5019
5020 for (p = &list; *p; )
5021 {
5022 tree l = *p;
5023 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5024 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5025 *p = TREE_CHAIN (l);
5026 else
5027 p = &TREE_CHAIN (l);
5028 }
5029
5030 return list;
5031 }
5032
5033 /* Return an attribute list that is the union of a1 and a2. */
5034
5035 tree
5036 merge_attributes (tree a1, tree a2)
5037 {
5038 tree attributes;
5039
5040 /* Either one unset? Take the set one. */
5041
5042 if ((attributes = a1) == 0)
5043 attributes = a2;
5044
5045 /* One that completely contains the other? Take it. */
5046
5047 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5048 {
5049 if (attribute_list_contained (a2, a1))
5050 attributes = a2;
5051 else
5052 {
5053 /* Pick the longest list, and hang on the other list. */
5054
5055 if (list_length (a1) < list_length (a2))
5056 attributes = a2, a2 = a1;
5057
5058 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5059 {
5060 tree a;
5061 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5062 attributes);
5063 a != NULL_TREE;
5064 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5065 TREE_CHAIN (a)))
5066 {
5067 if (TREE_VALUE (a) != NULL
5068 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5069 && TREE_VALUE (a2) != NULL
5070 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5071 {
5072 if (simple_cst_list_equal (TREE_VALUE (a),
5073 TREE_VALUE (a2)) == 1)
5074 break;
5075 }
5076 else if (simple_cst_equal (TREE_VALUE (a),
5077 TREE_VALUE (a2)) == 1)
5078 break;
5079 }
5080 if (a == NULL_TREE)
5081 {
5082 a1 = copy_node (a2);
5083 TREE_CHAIN (a1) = attributes;
5084 attributes = a1;
5085 }
5086 }
5087 }
5088 }
5089 return attributes;
5090 }
5091
5092 /* Given types T1 and T2, merge their attributes and return
5093 the result. */
5094
5095 tree
5096 merge_type_attributes (tree t1, tree t2)
5097 {
5098 return merge_attributes (TYPE_ATTRIBUTES (t1),
5099 TYPE_ATTRIBUTES (t2));
5100 }
5101
5102 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5103 the result. */
5104
5105 tree
5106 merge_decl_attributes (tree olddecl, tree newdecl)
5107 {
5108 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5109 DECL_ATTRIBUTES (newdecl));
5110 }
5111
5112 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5113
5114 /* Specialization of merge_decl_attributes for various Windows targets.
5115
5116 This handles the following situation:
5117
5118 __declspec (dllimport) int foo;
5119 int foo;
5120
5121 The second instance of `foo' nullifies the dllimport. */
5122
5123 tree
5124 merge_dllimport_decl_attributes (tree old, tree new_tree)
5125 {
5126 tree a;
5127 int delete_dllimport_p = 1;
5128
5129 /* What we need to do here is remove from `old' dllimport if it doesn't
5130 appear in `new'. dllimport behaves like extern: if a declaration is
5131 marked dllimport and a definition appears later, then the object
5132 is not dllimport'd. We also remove a `new' dllimport if the old list
5133 contains dllexport: dllexport always overrides dllimport, regardless
5134 of the order of declaration. */
5135 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5136 delete_dllimport_p = 0;
5137 else if (DECL_DLLIMPORT_P (new_tree)
5138 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5139 {
5140 DECL_DLLIMPORT_P (new_tree) = 0;
5141 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5142 "dllimport ignored", new_tree);
5143 }
5144 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5145 {
5146 /* Warn about overriding a symbol that has already been used, e.g.:
5147 extern int __attribute__ ((dllimport)) foo;
5148 int* bar () {return &foo;}
5149 int foo;
5150 */
5151 if (TREE_USED (old))
5152 {
5153 warning (0, "%q+D redeclared without dllimport attribute "
5154 "after being referenced with dll linkage", new_tree);
5155 /* If we have used a variable's address with dllimport linkage,
5156 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5157 decl may already have had TREE_CONSTANT computed.
5158 We still remove the attribute so that assembler code refers
5159 to '&foo rather than '_imp__foo'. */
5160 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5161 DECL_DLLIMPORT_P (new_tree) = 1;
5162 }
5163
5164 /* Let an inline definition silently override the external reference,
5165 but otherwise warn about attribute inconsistency. */
5166 else if (TREE_CODE (new_tree) == VAR_DECL
5167 || !DECL_DECLARED_INLINE_P (new_tree))
5168 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5169 "previous dllimport ignored", new_tree);
5170 }
5171 else
5172 delete_dllimport_p = 0;
5173
5174 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5175
5176 if (delete_dllimport_p)
5177 {
5178 tree prev, t;
5179 const size_t attr_len = strlen ("dllimport");
5180
5181 /* Scan the list for dllimport and delete it. */
5182 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5183 {
5184 if (is_attribute_with_length_p ("dllimport", attr_len,
5185 TREE_PURPOSE (t)))
5186 {
5187 if (prev == NULL_TREE)
5188 a = TREE_CHAIN (a);
5189 else
5190 TREE_CHAIN (prev) = TREE_CHAIN (t);
5191 break;
5192 }
5193 }
5194 }
5195
5196 return a;
5197 }
5198
5199 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5200 struct attribute_spec.handler. */
5201
5202 tree
5203 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5204 bool *no_add_attrs)
5205 {
5206 tree node = *pnode;
5207 bool is_dllimport;
5208
5209 /* These attributes may apply to structure and union types being created,
5210 but otherwise should pass to the declaration involved. */
5211 if (!DECL_P (node))
5212 {
5213 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5214 | (int) ATTR_FLAG_ARRAY_NEXT))
5215 {
5216 *no_add_attrs = true;
5217 return tree_cons (name, args, NULL_TREE);
5218 }
5219 if (TREE_CODE (node) == RECORD_TYPE
5220 || TREE_CODE (node) == UNION_TYPE)
5221 {
5222 node = TYPE_NAME (node);
5223 if (!node)
5224 return NULL_TREE;
5225 }
5226 else
5227 {
5228 warning (OPT_Wattributes, "%qE attribute ignored",
5229 name);
5230 *no_add_attrs = true;
5231 return NULL_TREE;
5232 }
5233 }
5234
5235 if (TREE_CODE (node) != FUNCTION_DECL
5236 && TREE_CODE (node) != VAR_DECL
5237 && TREE_CODE (node) != TYPE_DECL)
5238 {
5239 *no_add_attrs = true;
5240 warning (OPT_Wattributes, "%qE attribute ignored",
5241 name);
5242 return NULL_TREE;
5243 }
5244
5245 if (TREE_CODE (node) == TYPE_DECL
5246 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5247 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5248 {
5249 *no_add_attrs = true;
5250 warning (OPT_Wattributes, "%qE attribute ignored",
5251 name);
5252 return NULL_TREE;
5253 }
5254
5255 is_dllimport = is_attribute_p ("dllimport", name);
5256
5257 /* Report error on dllimport ambiguities seen now before they cause
5258 any damage. */
5259 if (is_dllimport)
5260 {
5261 /* Honor any target-specific overrides. */
5262 if (!targetm.valid_dllimport_attribute_p (node))
5263 *no_add_attrs = true;
5264
5265 else if (TREE_CODE (node) == FUNCTION_DECL
5266 && DECL_DECLARED_INLINE_P (node))
5267 {
5268 warning (OPT_Wattributes, "inline function %q+D declared as "
5269 " dllimport: attribute ignored", node);
5270 *no_add_attrs = true;
5271 }
5272 /* Like MS, treat definition of dllimported variables and
5273 non-inlined functions on declaration as syntax errors. */
5274 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5275 {
5276 error ("function %q+D definition is marked dllimport", node);
5277 *no_add_attrs = true;
5278 }
5279
5280 else if (TREE_CODE (node) == VAR_DECL)
5281 {
5282 if (DECL_INITIAL (node))
5283 {
5284 error ("variable %q+D definition is marked dllimport",
5285 node);
5286 *no_add_attrs = true;
5287 }
5288
5289 /* `extern' needn't be specified with dllimport.
5290 Specify `extern' now and hope for the best. Sigh. */
5291 DECL_EXTERNAL (node) = 1;
5292 /* Also, implicitly give dllimport'd variables declared within
5293 a function global scope, unless declared static. */
5294 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5295 TREE_PUBLIC (node) = 1;
5296 }
5297
5298 if (*no_add_attrs == false)
5299 DECL_DLLIMPORT_P (node) = 1;
5300 }
5301 else if (TREE_CODE (node) == FUNCTION_DECL
5302 && DECL_DECLARED_INLINE_P (node))
5303 /* An exported function, even if inline, must be emitted. */
5304 DECL_EXTERNAL (node) = 0;
5305
5306 /* Report error if symbol is not accessible at global scope. */
5307 if (!TREE_PUBLIC (node)
5308 && (TREE_CODE (node) == VAR_DECL
5309 || TREE_CODE (node) == FUNCTION_DECL))
5310 {
5311 error ("external linkage required for symbol %q+D because of "
5312 "%qE attribute", node, name);
5313 *no_add_attrs = true;
5314 }
5315
5316 /* A dllexport'd entity must have default visibility so that other
5317 program units (shared libraries or the main executable) can see
5318 it. A dllimport'd entity must have default visibility so that
5319 the linker knows that undefined references within this program
5320 unit can be resolved by the dynamic linker. */
5321 if (!*no_add_attrs)
5322 {
5323 if (DECL_VISIBILITY_SPECIFIED (node)
5324 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5325 error ("%qE implies default visibility, but %qD has already "
5326 "been declared with a different visibility",
5327 name, node);
5328 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5329 DECL_VISIBILITY_SPECIFIED (node) = 1;
5330 }
5331
5332 return NULL_TREE;
5333 }
5334
5335 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5336 \f
5337 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5338 of the various TYPE_QUAL values. */
5339
5340 static void
5341 set_type_quals (tree type, int type_quals)
5342 {
5343 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5344 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5345 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5346 }
5347
5348 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5349
5350 bool
5351 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5352 {
5353 return (TYPE_QUALS (cand) == type_quals
5354 && TYPE_NAME (cand) == TYPE_NAME (base)
5355 /* Apparently this is needed for Objective-C. */
5356 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5357 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5358 TYPE_ATTRIBUTES (base)));
5359 }
5360
5361 /* Return a version of the TYPE, qualified as indicated by the
5362 TYPE_QUALS, if one exists. If no qualified version exists yet,
5363 return NULL_TREE. */
5364
5365 tree
5366 get_qualified_type (tree type, int type_quals)
5367 {
5368 tree t;
5369
5370 if (TYPE_QUALS (type) == type_quals)
5371 return type;
5372
5373 /* Search the chain of variants to see if there is already one there just
5374 like the one we need to have. If so, use that existing one. We must
5375 preserve the TYPE_NAME, since there is code that depends on this. */
5376 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5377 if (check_qualified_type (t, type, type_quals))
5378 return t;
5379
5380 return NULL_TREE;
5381 }
5382
5383 /* Like get_qualified_type, but creates the type if it does not
5384 exist. This function never returns NULL_TREE. */
5385
5386 tree
5387 build_qualified_type (tree type, int type_quals)
5388 {
5389 tree t;
5390
5391 /* See if we already have the appropriate qualified variant. */
5392 t = get_qualified_type (type, type_quals);
5393
5394 /* If not, build it. */
5395 if (!t)
5396 {
5397 t = build_variant_type_copy (type);
5398 set_type_quals (t, type_quals);
5399
5400 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5401 /* Propagate structural equality. */
5402 SET_TYPE_STRUCTURAL_EQUALITY (t);
5403 else if (TYPE_CANONICAL (type) != type)
5404 /* Build the underlying canonical type, since it is different
5405 from TYPE. */
5406 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5407 type_quals);
5408 else
5409 /* T is its own canonical type. */
5410 TYPE_CANONICAL (t) = t;
5411
5412 }
5413
5414 return t;
5415 }
5416
5417 /* Create a new distinct copy of TYPE. The new type is made its own
5418 MAIN_VARIANT. If TYPE requires structural equality checks, the
5419 resulting type requires structural equality checks; otherwise, its
5420 TYPE_CANONICAL points to itself. */
5421
5422 tree
5423 build_distinct_type_copy (tree type)
5424 {
5425 tree t = copy_node (type);
5426
5427 TYPE_POINTER_TO (t) = 0;
5428 TYPE_REFERENCE_TO (t) = 0;
5429
5430 /* Set the canonical type either to a new equivalence class, or
5431 propagate the need for structural equality checks. */
5432 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5433 SET_TYPE_STRUCTURAL_EQUALITY (t);
5434 else
5435 TYPE_CANONICAL (t) = t;
5436
5437 /* Make it its own variant. */
5438 TYPE_MAIN_VARIANT (t) = t;
5439 TYPE_NEXT_VARIANT (t) = 0;
5440
5441 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5442 whose TREE_TYPE is not t. This can also happen in the Ada
5443 frontend when using subtypes. */
5444
5445 return t;
5446 }
5447
5448 /* Create a new variant of TYPE, equivalent but distinct. This is so
5449 the caller can modify it. TYPE_CANONICAL for the return type will
5450 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5451 are considered equal by the language itself (or that both types
5452 require structural equality checks). */
5453
5454 tree
5455 build_variant_type_copy (tree type)
5456 {
5457 tree t, m = TYPE_MAIN_VARIANT (type);
5458
5459 t = build_distinct_type_copy (type);
5460
5461 /* Since we're building a variant, assume that it is a non-semantic
5462 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5463 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5464
5465 /* Add the new type to the chain of variants of TYPE. */
5466 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5467 TYPE_NEXT_VARIANT (m) = t;
5468 TYPE_MAIN_VARIANT (t) = m;
5469
5470 return t;
5471 }
5472 \f
5473 /* Return true if the from tree in both tree maps are equal. */
5474
5475 int
5476 tree_map_base_eq (const void *va, const void *vb)
5477 {
5478 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5479 *const b = (const struct tree_map_base *) vb;
5480 return (a->from == b->from);
5481 }
5482
5483 /* Hash a from tree in a tree_map. */
5484
5485 unsigned int
5486 tree_map_base_hash (const void *item)
5487 {
5488 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5489 }
5490
5491 /* Return true if this tree map structure is marked for garbage collection
5492 purposes. We simply return true if the from tree is marked, so that this
5493 structure goes away when the from tree goes away. */
5494
5495 int
5496 tree_map_base_marked_p (const void *p)
5497 {
5498 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5499 }
5500
5501 unsigned int
5502 tree_map_hash (const void *item)
5503 {
5504 return (((const struct tree_map *) item)->hash);
5505 }
5506
5507 /* Return the initialization priority for DECL. */
5508
5509 priority_type
5510 decl_init_priority_lookup (tree decl)
5511 {
5512 struct tree_priority_map *h;
5513 struct tree_map_base in;
5514
5515 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5516 in.from = decl;
5517 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5518 return h ? h->init : DEFAULT_INIT_PRIORITY;
5519 }
5520
5521 /* Return the finalization priority for DECL. */
5522
5523 priority_type
5524 decl_fini_priority_lookup (tree decl)
5525 {
5526 struct tree_priority_map *h;
5527 struct tree_map_base in;
5528
5529 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5530 in.from = decl;
5531 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5532 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5533 }
5534
5535 /* Return the initialization and finalization priority information for
5536 DECL. If there is no previous priority information, a freshly
5537 allocated structure is returned. */
5538
5539 static struct tree_priority_map *
5540 decl_priority_info (tree decl)
5541 {
5542 struct tree_priority_map in;
5543 struct tree_priority_map *h;
5544 void **loc;
5545
5546 in.base.from = decl;
5547 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5548 h = (struct tree_priority_map *) *loc;
5549 if (!h)
5550 {
5551 h = GGC_CNEW (struct tree_priority_map);
5552 *loc = h;
5553 h->base.from = decl;
5554 h->init = DEFAULT_INIT_PRIORITY;
5555 h->fini = DEFAULT_INIT_PRIORITY;
5556 }
5557
5558 return h;
5559 }
5560
5561 /* Set the initialization priority for DECL to PRIORITY. */
5562
5563 void
5564 decl_init_priority_insert (tree decl, priority_type priority)
5565 {
5566 struct tree_priority_map *h;
5567
5568 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5569 h = decl_priority_info (decl);
5570 h->init = priority;
5571 }
5572
5573 /* Set the finalization priority for DECL to PRIORITY. */
5574
5575 void
5576 decl_fini_priority_insert (tree decl, priority_type priority)
5577 {
5578 struct tree_priority_map *h;
5579
5580 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5581 h = decl_priority_info (decl);
5582 h->fini = priority;
5583 }
5584
5585 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5586
5587 static void
5588 print_debug_expr_statistics (void)
5589 {
5590 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5591 (long) htab_size (debug_expr_for_decl),
5592 (long) htab_elements (debug_expr_for_decl),
5593 htab_collisions (debug_expr_for_decl));
5594 }
5595
5596 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5597
5598 static void
5599 print_value_expr_statistics (void)
5600 {
5601 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5602 (long) htab_size (value_expr_for_decl),
5603 (long) htab_elements (value_expr_for_decl),
5604 htab_collisions (value_expr_for_decl));
5605 }
5606
5607 /* Lookup a debug expression for FROM, and return it if we find one. */
5608
5609 tree
5610 decl_debug_expr_lookup (tree from)
5611 {
5612 struct tree_map *h, in;
5613 in.base.from = from;
5614
5615 h = (struct tree_map *) htab_find_with_hash (debug_expr_for_decl, &in,
5616 htab_hash_pointer (from));
5617 if (h)
5618 return h->to;
5619 return NULL_TREE;
5620 }
5621
5622 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5623
5624 void
5625 decl_debug_expr_insert (tree from, tree to)
5626 {
5627 struct tree_map *h;
5628 void **loc;
5629
5630 h = GGC_NEW (struct tree_map);
5631 h->hash = htab_hash_pointer (from);
5632 h->base.from = from;
5633 h->to = to;
5634 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
5635 *(struct tree_map **) loc = h;
5636 }
5637
5638 /* Lookup a value expression for FROM, and return it if we find one. */
5639
5640 tree
5641 decl_value_expr_lookup (tree from)
5642 {
5643 struct tree_map *h, in;
5644 in.base.from = from;
5645
5646 h = (struct tree_map *) htab_find_with_hash (value_expr_for_decl, &in,
5647 htab_hash_pointer (from));
5648 if (h)
5649 return h->to;
5650 return NULL_TREE;
5651 }
5652
5653 /* Insert a mapping FROM->TO in the value expression hashtable. */
5654
5655 void
5656 decl_value_expr_insert (tree from, tree to)
5657 {
5658 struct tree_map *h;
5659 void **loc;
5660
5661 h = GGC_NEW (struct tree_map);
5662 h->hash = htab_hash_pointer (from);
5663 h->base.from = from;
5664 h->to = to;
5665 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
5666 *(struct tree_map **) loc = h;
5667 }
5668
5669 /* Hashing of types so that we don't make duplicates.
5670 The entry point is `type_hash_canon'. */
5671
5672 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5673 with types in the TREE_VALUE slots), by adding the hash codes
5674 of the individual types. */
5675
5676 static unsigned int
5677 type_hash_list (const_tree list, hashval_t hashcode)
5678 {
5679 const_tree tail;
5680
5681 for (tail = list; tail; tail = TREE_CHAIN (tail))
5682 if (TREE_VALUE (tail) != error_mark_node)
5683 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5684 hashcode);
5685
5686 return hashcode;
5687 }
5688
5689 /* These are the Hashtable callback functions. */
5690
5691 /* Returns true iff the types are equivalent. */
5692
5693 static int
5694 type_hash_eq (const void *va, const void *vb)
5695 {
5696 const struct type_hash *const a = (const struct type_hash *) va,
5697 *const b = (const struct type_hash *) vb;
5698
5699 /* First test the things that are the same for all types. */
5700 if (a->hash != b->hash
5701 || TREE_CODE (a->type) != TREE_CODE (b->type)
5702 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5703 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5704 TYPE_ATTRIBUTES (b->type))
5705 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5706 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5707 || (TREE_CODE (a->type) != COMPLEX_TYPE
5708 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5709 return 0;
5710
5711 switch (TREE_CODE (a->type))
5712 {
5713 case VOID_TYPE:
5714 case COMPLEX_TYPE:
5715 case POINTER_TYPE:
5716 case REFERENCE_TYPE:
5717 return 1;
5718
5719 case VECTOR_TYPE:
5720 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5721
5722 case ENUMERAL_TYPE:
5723 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5724 && !(TYPE_VALUES (a->type)
5725 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5726 && TYPE_VALUES (b->type)
5727 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5728 && type_list_equal (TYPE_VALUES (a->type),
5729 TYPE_VALUES (b->type))))
5730 return 0;
5731
5732 /* ... fall through ... */
5733
5734 case INTEGER_TYPE:
5735 case REAL_TYPE:
5736 case BOOLEAN_TYPE:
5737 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5738 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5739 TYPE_MAX_VALUE (b->type)))
5740 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5741 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5742 TYPE_MIN_VALUE (b->type))));
5743
5744 case FIXED_POINT_TYPE:
5745 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5746
5747 case OFFSET_TYPE:
5748 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5749
5750 case METHOD_TYPE:
5751 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5752 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5753 || (TYPE_ARG_TYPES (a->type)
5754 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5755 && TYPE_ARG_TYPES (b->type)
5756 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5757 && type_list_equal (TYPE_ARG_TYPES (a->type),
5758 TYPE_ARG_TYPES (b->type)))));
5759
5760 case ARRAY_TYPE:
5761 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5762
5763 case RECORD_TYPE:
5764 case UNION_TYPE:
5765 case QUAL_UNION_TYPE:
5766 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5767 || (TYPE_FIELDS (a->type)
5768 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5769 && TYPE_FIELDS (b->type)
5770 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5771 && type_list_equal (TYPE_FIELDS (a->type),
5772 TYPE_FIELDS (b->type))));
5773
5774 case FUNCTION_TYPE:
5775 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5776 || (TYPE_ARG_TYPES (a->type)
5777 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5778 && TYPE_ARG_TYPES (b->type)
5779 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5780 && type_list_equal (TYPE_ARG_TYPES (a->type),
5781 TYPE_ARG_TYPES (b->type))))
5782 break;
5783 return 0;
5784
5785 default:
5786 return 0;
5787 }
5788
5789 if (lang_hooks.types.type_hash_eq != NULL)
5790 return lang_hooks.types.type_hash_eq (a->type, b->type);
5791
5792 return 1;
5793 }
5794
5795 /* Return the cached hash value. */
5796
5797 static hashval_t
5798 type_hash_hash (const void *item)
5799 {
5800 return ((const struct type_hash *) item)->hash;
5801 }
5802
5803 /* Look in the type hash table for a type isomorphic to TYPE.
5804 If one is found, return it. Otherwise return 0. */
5805
5806 tree
5807 type_hash_lookup (hashval_t hashcode, tree type)
5808 {
5809 struct type_hash *h, in;
5810
5811 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
5812 must call that routine before comparing TYPE_ALIGNs. */
5813 layout_type (type);
5814
5815 in.hash = hashcode;
5816 in.type = type;
5817
5818 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
5819 hashcode);
5820 if (h)
5821 return h->type;
5822 return NULL_TREE;
5823 }
5824
5825 /* Add an entry to the type-hash-table
5826 for a type TYPE whose hash code is HASHCODE. */
5827
5828 void
5829 type_hash_add (hashval_t hashcode, tree type)
5830 {
5831 struct type_hash *h;
5832 void **loc;
5833
5834 h = GGC_NEW (struct type_hash);
5835 h->hash = hashcode;
5836 h->type = type;
5837 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
5838 *loc = (void *)h;
5839 }
5840
5841 /* Given TYPE, and HASHCODE its hash code, return the canonical
5842 object for an identical type if one already exists.
5843 Otherwise, return TYPE, and record it as the canonical object.
5844
5845 To use this function, first create a type of the sort you want.
5846 Then compute its hash code from the fields of the type that
5847 make it different from other similar types.
5848 Then call this function and use the value. */
5849
5850 tree
5851 type_hash_canon (unsigned int hashcode, tree type)
5852 {
5853 tree t1;
5854
5855 /* The hash table only contains main variants, so ensure that's what we're
5856 being passed. */
5857 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
5858
5859 if (!lang_hooks.types.hash_types)
5860 return type;
5861
5862 /* See if the type is in the hash table already. If so, return it.
5863 Otherwise, add the type. */
5864 t1 = type_hash_lookup (hashcode, type);
5865 if (t1 != 0)
5866 {
5867 #ifdef GATHER_STATISTICS
5868 tree_node_counts[(int) t_kind]--;
5869 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
5870 #endif
5871 return t1;
5872 }
5873 else
5874 {
5875 type_hash_add (hashcode, type);
5876 return type;
5877 }
5878 }
5879
5880 /* See if the data pointed to by the type hash table is marked. We consider
5881 it marked if the type is marked or if a debug type number or symbol
5882 table entry has been made for the type. This reduces the amount of
5883 debugging output and eliminates that dependency of the debug output on
5884 the number of garbage collections. */
5885
5886 static int
5887 type_hash_marked_p (const void *p)
5888 {
5889 const_tree const type = ((const struct type_hash *) p)->type;
5890
5891 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
5892 }
5893
5894 static void
5895 print_type_hash_statistics (void)
5896 {
5897 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
5898 (long) htab_size (type_hash_table),
5899 (long) htab_elements (type_hash_table),
5900 htab_collisions (type_hash_table));
5901 }
5902
5903 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
5904 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
5905 by adding the hash codes of the individual attributes. */
5906
5907 static unsigned int
5908 attribute_hash_list (const_tree list, hashval_t hashcode)
5909 {
5910 const_tree tail;
5911
5912 for (tail = list; tail; tail = TREE_CHAIN (tail))
5913 /* ??? Do we want to add in TREE_VALUE too? */
5914 hashcode = iterative_hash_object
5915 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
5916 return hashcode;
5917 }
5918
5919 /* Given two lists of attributes, return true if list l2 is
5920 equivalent to l1. */
5921
5922 int
5923 attribute_list_equal (const_tree l1, const_tree l2)
5924 {
5925 return attribute_list_contained (l1, l2)
5926 && attribute_list_contained (l2, l1);
5927 }
5928
5929 /* Given two lists of attributes, return true if list L2 is
5930 completely contained within L1. */
5931 /* ??? This would be faster if attribute names were stored in a canonicalized
5932 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
5933 must be used to show these elements are equivalent (which they are). */
5934 /* ??? It's not clear that attributes with arguments will always be handled
5935 correctly. */
5936
5937 int
5938 attribute_list_contained (const_tree l1, const_tree l2)
5939 {
5940 const_tree t1, t2;
5941
5942 /* First check the obvious, maybe the lists are identical. */
5943 if (l1 == l2)
5944 return 1;
5945
5946 /* Maybe the lists are similar. */
5947 for (t1 = l1, t2 = l2;
5948 t1 != 0 && t2 != 0
5949 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
5950 && TREE_VALUE (t1) == TREE_VALUE (t2);
5951 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
5952
5953 /* Maybe the lists are equal. */
5954 if (t1 == 0 && t2 == 0)
5955 return 1;
5956
5957 for (; t2 != 0; t2 = TREE_CHAIN (t2))
5958 {
5959 const_tree attr;
5960 /* This CONST_CAST is okay because lookup_attribute does not
5961 modify its argument and the return value is assigned to a
5962 const_tree. */
5963 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
5964 CONST_CAST_TREE(l1));
5965 attr != NULL_TREE;
5966 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
5967 TREE_CHAIN (attr)))
5968 {
5969 if (TREE_VALUE (t2) != NULL
5970 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
5971 && TREE_VALUE (attr) != NULL
5972 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
5973 {
5974 if (simple_cst_list_equal (TREE_VALUE (t2),
5975 TREE_VALUE (attr)) == 1)
5976 break;
5977 }
5978 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
5979 break;
5980 }
5981
5982 if (attr == 0)
5983 return 0;
5984 }
5985
5986 return 1;
5987 }
5988
5989 /* Given two lists of types
5990 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
5991 return 1 if the lists contain the same types in the same order.
5992 Also, the TREE_PURPOSEs must match. */
5993
5994 int
5995 type_list_equal (const_tree l1, const_tree l2)
5996 {
5997 const_tree t1, t2;
5998
5999 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6000 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6001 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6002 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6003 && (TREE_TYPE (TREE_PURPOSE (t1))
6004 == TREE_TYPE (TREE_PURPOSE (t2))))))
6005 return 0;
6006
6007 return t1 == t2;
6008 }
6009
6010 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6011 given by TYPE. If the argument list accepts variable arguments,
6012 then this function counts only the ordinary arguments. */
6013
6014 int
6015 type_num_arguments (const_tree type)
6016 {
6017 int i = 0;
6018 tree t;
6019
6020 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6021 /* If the function does not take a variable number of arguments,
6022 the last element in the list will have type `void'. */
6023 if (VOID_TYPE_P (TREE_VALUE (t)))
6024 break;
6025 else
6026 ++i;
6027
6028 return i;
6029 }
6030
6031 /* Nonzero if integer constants T1 and T2
6032 represent the same constant value. */
6033
6034 int
6035 tree_int_cst_equal (const_tree t1, const_tree t2)
6036 {
6037 if (t1 == t2)
6038 return 1;
6039
6040 if (t1 == 0 || t2 == 0)
6041 return 0;
6042
6043 if (TREE_CODE (t1) == INTEGER_CST
6044 && TREE_CODE (t2) == INTEGER_CST
6045 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6046 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6047 return 1;
6048
6049 return 0;
6050 }
6051
6052 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6053 The precise way of comparison depends on their data type. */
6054
6055 int
6056 tree_int_cst_lt (const_tree t1, const_tree t2)
6057 {
6058 if (t1 == t2)
6059 return 0;
6060
6061 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6062 {
6063 int t1_sgn = tree_int_cst_sgn (t1);
6064 int t2_sgn = tree_int_cst_sgn (t2);
6065
6066 if (t1_sgn < t2_sgn)
6067 return 1;
6068 else if (t1_sgn > t2_sgn)
6069 return 0;
6070 /* Otherwise, both are non-negative, so we compare them as
6071 unsigned just in case one of them would overflow a signed
6072 type. */
6073 }
6074 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6075 return INT_CST_LT (t1, t2);
6076
6077 return INT_CST_LT_UNSIGNED (t1, t2);
6078 }
6079
6080 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6081
6082 int
6083 tree_int_cst_compare (const_tree t1, const_tree t2)
6084 {
6085 if (tree_int_cst_lt (t1, t2))
6086 return -1;
6087 else if (tree_int_cst_lt (t2, t1))
6088 return 1;
6089 else
6090 return 0;
6091 }
6092
6093 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6094 the host. If POS is zero, the value can be represented in a single
6095 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6096 be represented in a single unsigned HOST_WIDE_INT. */
6097
6098 int
6099 host_integerp (const_tree t, int pos)
6100 {
6101 if (t == NULL_TREE)
6102 return 0;
6103
6104 return (TREE_CODE (t) == INTEGER_CST
6105 && ((TREE_INT_CST_HIGH (t) == 0
6106 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6107 || (! pos && TREE_INT_CST_HIGH (t) == -1
6108 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6109 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6110 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6111 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6112 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6113 }
6114
6115 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6116 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6117 be non-negative. We must be able to satisfy the above conditions. */
6118
6119 HOST_WIDE_INT
6120 tree_low_cst (const_tree t, int pos)
6121 {
6122 gcc_assert (host_integerp (t, pos));
6123 return TREE_INT_CST_LOW (t);
6124 }
6125
6126 /* Return the most significant bit of the integer constant T. */
6127
6128 int
6129 tree_int_cst_msb (const_tree t)
6130 {
6131 int prec;
6132 HOST_WIDE_INT h;
6133 unsigned HOST_WIDE_INT l;
6134
6135 /* Note that using TYPE_PRECISION here is wrong. We care about the
6136 actual bits, not the (arbitrary) range of the type. */
6137 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6138 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6139 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6140 return (l & 1) == 1;
6141 }
6142
6143 /* Return an indication of the sign of the integer constant T.
6144 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6145 Note that -1 will never be returned if T's type is unsigned. */
6146
6147 int
6148 tree_int_cst_sgn (const_tree t)
6149 {
6150 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6151 return 0;
6152 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6153 return 1;
6154 else if (TREE_INT_CST_HIGH (t) < 0)
6155 return -1;
6156 else
6157 return 1;
6158 }
6159
6160 /* Return the minimum number of bits needed to represent VALUE in a
6161 signed or unsigned type, UNSIGNEDP says which. */
6162
6163 unsigned int
6164 tree_int_cst_min_precision (tree value, bool unsignedp)
6165 {
6166 int log;
6167
6168 /* If the value is negative, compute its negative minus 1. The latter
6169 adjustment is because the absolute value of the largest negative value
6170 is one larger than the largest positive value. This is equivalent to
6171 a bit-wise negation, so use that operation instead. */
6172
6173 if (tree_int_cst_sgn (value) < 0)
6174 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6175
6176 /* Return the number of bits needed, taking into account the fact
6177 that we need one more bit for a signed than unsigned type. */
6178
6179 if (integer_zerop (value))
6180 log = 0;
6181 else
6182 log = tree_floor_log2 (value);
6183
6184 return log + 1 + !unsignedp;
6185 }
6186
6187 /* Compare two constructor-element-type constants. Return 1 if the lists
6188 are known to be equal; otherwise return 0. */
6189
6190 int
6191 simple_cst_list_equal (const_tree l1, const_tree l2)
6192 {
6193 while (l1 != NULL_TREE && l2 != NULL_TREE)
6194 {
6195 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6196 return 0;
6197
6198 l1 = TREE_CHAIN (l1);
6199 l2 = TREE_CHAIN (l2);
6200 }
6201
6202 return l1 == l2;
6203 }
6204
6205 /* Return truthvalue of whether T1 is the same tree structure as T2.
6206 Return 1 if they are the same.
6207 Return 0 if they are understandably different.
6208 Return -1 if either contains tree structure not understood by
6209 this function. */
6210
6211 int
6212 simple_cst_equal (const_tree t1, const_tree t2)
6213 {
6214 enum tree_code code1, code2;
6215 int cmp;
6216 int i;
6217
6218 if (t1 == t2)
6219 return 1;
6220 if (t1 == 0 || t2 == 0)
6221 return 0;
6222
6223 code1 = TREE_CODE (t1);
6224 code2 = TREE_CODE (t2);
6225
6226 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6227 {
6228 if (CONVERT_EXPR_CODE_P (code2)
6229 || code2 == NON_LVALUE_EXPR)
6230 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6231 else
6232 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6233 }
6234
6235 else if (CONVERT_EXPR_CODE_P (code2)
6236 || code2 == NON_LVALUE_EXPR)
6237 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6238
6239 if (code1 != code2)
6240 return 0;
6241
6242 switch (code1)
6243 {
6244 case INTEGER_CST:
6245 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6246 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6247
6248 case REAL_CST:
6249 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6250
6251 case FIXED_CST:
6252 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6253
6254 case STRING_CST:
6255 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6256 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6257 TREE_STRING_LENGTH (t1)));
6258
6259 case CONSTRUCTOR:
6260 {
6261 unsigned HOST_WIDE_INT idx;
6262 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6263 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6264
6265 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6266 return false;
6267
6268 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6269 /* ??? Should we handle also fields here? */
6270 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6271 VEC_index (constructor_elt, v2, idx)->value))
6272 return false;
6273 return true;
6274 }
6275
6276 case SAVE_EXPR:
6277 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6278
6279 case CALL_EXPR:
6280 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6281 if (cmp <= 0)
6282 return cmp;
6283 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6284 return 0;
6285 {
6286 const_tree arg1, arg2;
6287 const_call_expr_arg_iterator iter1, iter2;
6288 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6289 arg2 = first_const_call_expr_arg (t2, &iter2);
6290 arg1 && arg2;
6291 arg1 = next_const_call_expr_arg (&iter1),
6292 arg2 = next_const_call_expr_arg (&iter2))
6293 {
6294 cmp = simple_cst_equal (arg1, arg2);
6295 if (cmp <= 0)
6296 return cmp;
6297 }
6298 return arg1 == arg2;
6299 }
6300
6301 case TARGET_EXPR:
6302 /* Special case: if either target is an unallocated VAR_DECL,
6303 it means that it's going to be unified with whatever the
6304 TARGET_EXPR is really supposed to initialize, so treat it
6305 as being equivalent to anything. */
6306 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6307 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6308 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6309 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6310 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6311 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6312 cmp = 1;
6313 else
6314 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6315
6316 if (cmp <= 0)
6317 return cmp;
6318
6319 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6320
6321 case WITH_CLEANUP_EXPR:
6322 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6323 if (cmp <= 0)
6324 return cmp;
6325
6326 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6327
6328 case COMPONENT_REF:
6329 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6330 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6331
6332 return 0;
6333
6334 case VAR_DECL:
6335 case PARM_DECL:
6336 case CONST_DECL:
6337 case FUNCTION_DECL:
6338 return 0;
6339
6340 default:
6341 break;
6342 }
6343
6344 /* This general rule works for most tree codes. All exceptions should be
6345 handled above. If this is a language-specific tree code, we can't
6346 trust what might be in the operand, so say we don't know
6347 the situation. */
6348 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6349 return -1;
6350
6351 switch (TREE_CODE_CLASS (code1))
6352 {
6353 case tcc_unary:
6354 case tcc_binary:
6355 case tcc_comparison:
6356 case tcc_expression:
6357 case tcc_reference:
6358 case tcc_statement:
6359 cmp = 1;
6360 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6361 {
6362 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6363 if (cmp <= 0)
6364 return cmp;
6365 }
6366
6367 return cmp;
6368
6369 default:
6370 return -1;
6371 }
6372 }
6373
6374 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6375 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6376 than U, respectively. */
6377
6378 int
6379 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6380 {
6381 if (tree_int_cst_sgn (t) < 0)
6382 return -1;
6383 else if (TREE_INT_CST_HIGH (t) != 0)
6384 return 1;
6385 else if (TREE_INT_CST_LOW (t) == u)
6386 return 0;
6387 else if (TREE_INT_CST_LOW (t) < u)
6388 return -1;
6389 else
6390 return 1;
6391 }
6392
6393 /* Return true if CODE represents an associative tree code. Otherwise
6394 return false. */
6395 bool
6396 associative_tree_code (enum tree_code code)
6397 {
6398 switch (code)
6399 {
6400 case BIT_IOR_EXPR:
6401 case BIT_AND_EXPR:
6402 case BIT_XOR_EXPR:
6403 case PLUS_EXPR:
6404 case MULT_EXPR:
6405 case MIN_EXPR:
6406 case MAX_EXPR:
6407 return true;
6408
6409 default:
6410 break;
6411 }
6412 return false;
6413 }
6414
6415 /* Return true if CODE represents a commutative tree code. Otherwise
6416 return false. */
6417 bool
6418 commutative_tree_code (enum tree_code code)
6419 {
6420 switch (code)
6421 {
6422 case PLUS_EXPR:
6423 case MULT_EXPR:
6424 case MIN_EXPR:
6425 case MAX_EXPR:
6426 case BIT_IOR_EXPR:
6427 case BIT_XOR_EXPR:
6428 case BIT_AND_EXPR:
6429 case NE_EXPR:
6430 case EQ_EXPR:
6431 case UNORDERED_EXPR:
6432 case ORDERED_EXPR:
6433 case UNEQ_EXPR:
6434 case LTGT_EXPR:
6435 case TRUTH_AND_EXPR:
6436 case TRUTH_XOR_EXPR:
6437 case TRUTH_OR_EXPR:
6438 return true;
6439
6440 default:
6441 break;
6442 }
6443 return false;
6444 }
6445
6446 /* Generate a hash value for an expression. This can be used iteratively
6447 by passing a previous result as the VAL argument.
6448
6449 This function is intended to produce the same hash for expressions which
6450 would compare equal using operand_equal_p. */
6451
6452 hashval_t
6453 iterative_hash_expr (const_tree t, hashval_t val)
6454 {
6455 int i;
6456 enum tree_code code;
6457 char tclass;
6458
6459 if (t == NULL_TREE)
6460 return iterative_hash_hashval_t (0, val);
6461
6462 code = TREE_CODE (t);
6463
6464 switch (code)
6465 {
6466 /* Alas, constants aren't shared, so we can't rely on pointer
6467 identity. */
6468 case INTEGER_CST:
6469 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6470 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6471 case REAL_CST:
6472 {
6473 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6474
6475 return iterative_hash_hashval_t (val2, val);
6476 }
6477 case FIXED_CST:
6478 {
6479 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6480
6481 return iterative_hash_hashval_t (val2, val);
6482 }
6483 case STRING_CST:
6484 return iterative_hash (TREE_STRING_POINTER (t),
6485 TREE_STRING_LENGTH (t), val);
6486 case COMPLEX_CST:
6487 val = iterative_hash_expr (TREE_REALPART (t), val);
6488 return iterative_hash_expr (TREE_IMAGPART (t), val);
6489 case VECTOR_CST:
6490 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6491
6492 case SSA_NAME:
6493 /* we can just compare by pointer. */
6494 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6495
6496 case TREE_LIST:
6497 /* A list of expressions, for a CALL_EXPR or as the elements of a
6498 VECTOR_CST. */
6499 for (; t; t = TREE_CHAIN (t))
6500 val = iterative_hash_expr (TREE_VALUE (t), val);
6501 return val;
6502 case CONSTRUCTOR:
6503 {
6504 unsigned HOST_WIDE_INT idx;
6505 tree field, value;
6506 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6507 {
6508 val = iterative_hash_expr (field, val);
6509 val = iterative_hash_expr (value, val);
6510 }
6511 return val;
6512 }
6513 case FUNCTION_DECL:
6514 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6515 Otherwise nodes that compare equal according to operand_equal_p might
6516 get different hash codes. However, don't do this for machine specific
6517 or front end builtins, since the function code is overloaded in those
6518 cases. */
6519 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6520 && built_in_decls[DECL_FUNCTION_CODE (t)])
6521 {
6522 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6523 code = TREE_CODE (t);
6524 }
6525 /* FALL THROUGH */
6526 default:
6527 tclass = TREE_CODE_CLASS (code);
6528
6529 if (tclass == tcc_declaration)
6530 {
6531 /* DECL's have a unique ID */
6532 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6533 }
6534 else
6535 {
6536 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6537
6538 val = iterative_hash_object (code, val);
6539
6540 /* Don't hash the type, that can lead to having nodes which
6541 compare equal according to operand_equal_p, but which
6542 have different hash codes. */
6543 if (CONVERT_EXPR_CODE_P (code)
6544 || code == NON_LVALUE_EXPR)
6545 {
6546 /* Make sure to include signness in the hash computation. */
6547 val += TYPE_UNSIGNED (TREE_TYPE (t));
6548 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6549 }
6550
6551 else if (commutative_tree_code (code))
6552 {
6553 /* It's a commutative expression. We want to hash it the same
6554 however it appears. We do this by first hashing both operands
6555 and then rehashing based on the order of their independent
6556 hashes. */
6557 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6558 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6559 hashval_t t;
6560
6561 if (one > two)
6562 t = one, one = two, two = t;
6563
6564 val = iterative_hash_hashval_t (one, val);
6565 val = iterative_hash_hashval_t (two, val);
6566 }
6567 else
6568 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6569 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6570 }
6571 return val;
6572 break;
6573 }
6574 }
6575
6576 /* Generate a hash value for a pair of expressions. This can be used
6577 iteratively by passing a previous result as the VAL argument.
6578
6579 The same hash value is always returned for a given pair of expressions,
6580 regardless of the order in which they are presented. This is useful in
6581 hashing the operands of commutative functions. */
6582
6583 hashval_t
6584 iterative_hash_exprs_commutative (const_tree t1,
6585 const_tree t2, hashval_t val)
6586 {
6587 hashval_t one = iterative_hash_expr (t1, 0);
6588 hashval_t two = iterative_hash_expr (t2, 0);
6589 hashval_t t;
6590
6591 if (one > two)
6592 t = one, one = two, two = t;
6593 val = iterative_hash_hashval_t (one, val);
6594 val = iterative_hash_hashval_t (two, val);
6595
6596 return val;
6597 }
6598 \f
6599 /* Constructors for pointer, array and function types.
6600 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6601 constructed by language-dependent code, not here.) */
6602
6603 /* Construct, lay out and return the type of pointers to TO_TYPE with
6604 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6605 reference all of memory. If such a type has already been
6606 constructed, reuse it. */
6607
6608 tree
6609 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6610 bool can_alias_all)
6611 {
6612 tree t;
6613
6614 if (to_type == error_mark_node)
6615 return error_mark_node;
6616
6617 /* If the pointed-to type has the may_alias attribute set, force
6618 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6619 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6620 can_alias_all = true;
6621
6622 /* In some cases, languages will have things that aren't a POINTER_TYPE
6623 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6624 In that case, return that type without regard to the rest of our
6625 operands.
6626
6627 ??? This is a kludge, but consistent with the way this function has
6628 always operated and there doesn't seem to be a good way to avoid this
6629 at the moment. */
6630 if (TYPE_POINTER_TO (to_type) != 0
6631 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6632 return TYPE_POINTER_TO (to_type);
6633
6634 /* First, if we already have a type for pointers to TO_TYPE and it's
6635 the proper mode, use it. */
6636 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6637 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6638 return t;
6639
6640 t = make_node (POINTER_TYPE);
6641
6642 TREE_TYPE (t) = to_type;
6643 SET_TYPE_MODE (t, mode);
6644 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6645 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6646 TYPE_POINTER_TO (to_type) = t;
6647
6648 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6649 SET_TYPE_STRUCTURAL_EQUALITY (t);
6650 else if (TYPE_CANONICAL (to_type) != to_type)
6651 TYPE_CANONICAL (t)
6652 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6653 mode, can_alias_all);
6654
6655 /* Lay out the type. This function has many callers that are concerned
6656 with expression-construction, and this simplifies them all. */
6657 layout_type (t);
6658
6659 return t;
6660 }
6661
6662 /* By default build pointers in ptr_mode. */
6663
6664 tree
6665 build_pointer_type (tree to_type)
6666 {
6667 return build_pointer_type_for_mode (to_type, ptr_mode, false);
6668 }
6669
6670 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6671
6672 tree
6673 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6674 bool can_alias_all)
6675 {
6676 tree t;
6677
6678 if (to_type == error_mark_node)
6679 return error_mark_node;
6680
6681 /* If the pointed-to type has the may_alias attribute set, force
6682 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6683 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6684 can_alias_all = true;
6685
6686 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6687 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6688 In that case, return that type without regard to the rest of our
6689 operands.
6690
6691 ??? This is a kludge, but consistent with the way this function has
6692 always operated and there doesn't seem to be a good way to avoid this
6693 at the moment. */
6694 if (TYPE_REFERENCE_TO (to_type) != 0
6695 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6696 return TYPE_REFERENCE_TO (to_type);
6697
6698 /* First, if we already have a type for pointers to TO_TYPE and it's
6699 the proper mode, use it. */
6700 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6701 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6702 return t;
6703
6704 t = make_node (REFERENCE_TYPE);
6705
6706 TREE_TYPE (t) = to_type;
6707 SET_TYPE_MODE (t, mode);
6708 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6709 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6710 TYPE_REFERENCE_TO (to_type) = t;
6711
6712 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6713 SET_TYPE_STRUCTURAL_EQUALITY (t);
6714 else if (TYPE_CANONICAL (to_type) != to_type)
6715 TYPE_CANONICAL (t)
6716 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6717 mode, can_alias_all);
6718
6719 layout_type (t);
6720
6721 return t;
6722 }
6723
6724
6725 /* Build the node for the type of references-to-TO_TYPE by default
6726 in ptr_mode. */
6727
6728 tree
6729 build_reference_type (tree to_type)
6730 {
6731 return build_reference_type_for_mode (to_type, ptr_mode, false);
6732 }
6733
6734 /* Build a type that is compatible with t but has no cv quals anywhere
6735 in its type, thus
6736
6737 const char *const *const * -> char ***. */
6738
6739 tree
6740 build_type_no_quals (tree t)
6741 {
6742 switch (TREE_CODE (t))
6743 {
6744 case POINTER_TYPE:
6745 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6746 TYPE_MODE (t),
6747 TYPE_REF_CAN_ALIAS_ALL (t));
6748 case REFERENCE_TYPE:
6749 return
6750 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6751 TYPE_MODE (t),
6752 TYPE_REF_CAN_ALIAS_ALL (t));
6753 default:
6754 return TYPE_MAIN_VARIANT (t);
6755 }
6756 }
6757
6758 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
6759 MAXVAL should be the maximum value in the domain
6760 (one less than the length of the array).
6761
6762 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
6763 We don't enforce this limit, that is up to caller (e.g. language front end).
6764 The limit exists because the result is a signed type and we don't handle
6765 sizes that use more than one HOST_WIDE_INT. */
6766
6767 tree
6768 build_index_type (tree maxval)
6769 {
6770 tree itype = make_node (INTEGER_TYPE);
6771
6772 TREE_TYPE (itype) = sizetype;
6773 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
6774 TYPE_MIN_VALUE (itype) = size_zero_node;
6775 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
6776 SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
6777 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
6778 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
6779 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
6780 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
6781
6782 if (host_integerp (maxval, 1))
6783 return type_hash_canon (tree_low_cst (maxval, 1), itype);
6784 else
6785 {
6786 /* Since we cannot hash this type, we need to compare it using
6787 structural equality checks. */
6788 SET_TYPE_STRUCTURAL_EQUALITY (itype);
6789 return itype;
6790 }
6791 }
6792
6793 /* Builds a signed or unsigned integer type of precision PRECISION.
6794 Used for C bitfields whose precision does not match that of
6795 built-in target types. */
6796 tree
6797 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
6798 int unsignedp)
6799 {
6800 tree itype = make_node (INTEGER_TYPE);
6801
6802 TYPE_PRECISION (itype) = precision;
6803
6804 if (unsignedp)
6805 fixup_unsigned_type (itype);
6806 else
6807 fixup_signed_type (itype);
6808
6809 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
6810 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
6811
6812 return itype;
6813 }
6814
6815 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
6816 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
6817 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
6818
6819 tree
6820 build_range_type (tree type, tree lowval, tree highval)
6821 {
6822 tree itype = make_node (INTEGER_TYPE);
6823
6824 TREE_TYPE (itype) = type;
6825 if (type == NULL_TREE)
6826 type = sizetype;
6827
6828 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
6829 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
6830
6831 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
6832 SET_TYPE_MODE (itype, TYPE_MODE (type));
6833 TYPE_SIZE (itype) = TYPE_SIZE (type);
6834 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
6835 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
6836 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
6837
6838 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
6839 return type_hash_canon (tree_low_cst (highval, 0)
6840 - tree_low_cst (lowval, 0),
6841 itype);
6842 else
6843 return itype;
6844 }
6845
6846 /* Return true if the debug information for TYPE, a subtype, should be emitted
6847 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
6848 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
6849 debug info and doesn't reflect the source code. */
6850
6851 bool
6852 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
6853 {
6854 tree base_type = TREE_TYPE (type), low, high;
6855
6856 /* Subrange types have a base type which is an integral type. */
6857 if (!INTEGRAL_TYPE_P (base_type))
6858 return false;
6859
6860 /* Get the real bounds of the subtype. */
6861 if (lang_hooks.types.get_subrange_bounds)
6862 lang_hooks.types.get_subrange_bounds (type, &low, &high);
6863 else
6864 {
6865 low = TYPE_MIN_VALUE (type);
6866 high = TYPE_MAX_VALUE (type);
6867 }
6868
6869 /* If the type and its base type have the same representation and the same
6870 name, then the type is not a subrange but a copy of the base type. */
6871 if ((TREE_CODE (base_type) == INTEGER_TYPE
6872 || TREE_CODE (base_type) == BOOLEAN_TYPE)
6873 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
6874 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
6875 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
6876 {
6877 tree type_name = TYPE_NAME (type);
6878 tree base_type_name = TYPE_NAME (base_type);
6879
6880 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
6881 type_name = DECL_NAME (type_name);
6882
6883 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
6884 base_type_name = DECL_NAME (base_type_name);
6885
6886 if (type_name == base_type_name)
6887 return false;
6888 }
6889
6890 if (lowval)
6891 *lowval = low;
6892 if (highval)
6893 *highval = high;
6894 return true;
6895 }
6896
6897 /* Just like build_index_type, but takes lowval and highval instead
6898 of just highval (maxval). */
6899
6900 tree
6901 build_index_2_type (tree lowval, tree highval)
6902 {
6903 return build_range_type (sizetype, lowval, highval);
6904 }
6905
6906 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
6907 and number of elements specified by the range of values of INDEX_TYPE.
6908 If such a type has already been constructed, reuse it. */
6909
6910 tree
6911 build_array_type (tree elt_type, tree index_type)
6912 {
6913 tree t;
6914 hashval_t hashcode = 0;
6915
6916 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
6917 {
6918 error ("arrays of functions are not meaningful");
6919 elt_type = integer_type_node;
6920 }
6921
6922 t = make_node (ARRAY_TYPE);
6923 TREE_TYPE (t) = elt_type;
6924 TYPE_DOMAIN (t) = index_type;
6925 layout_type (t);
6926
6927 /* If the element type is incomplete at this point we get marked for
6928 structural equality. Do not record these types in the canonical
6929 type hashtable. */
6930 if (TYPE_STRUCTURAL_EQUALITY_P (t))
6931 return t;
6932
6933 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
6934 if (index_type)
6935 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
6936 t = type_hash_canon (hashcode, t);
6937
6938 if (TYPE_CANONICAL (t) == t)
6939 {
6940 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
6941 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
6942 SET_TYPE_STRUCTURAL_EQUALITY (t);
6943 else if (TYPE_CANONICAL (elt_type) != elt_type
6944 || (index_type && TYPE_CANONICAL (index_type) != index_type))
6945 TYPE_CANONICAL (t)
6946 = build_array_type (TYPE_CANONICAL (elt_type),
6947 index_type ? TYPE_CANONICAL (index_type) : NULL);
6948 }
6949
6950 return t;
6951 }
6952
6953 /* Recursively examines the array elements of TYPE, until a non-array
6954 element type is found. */
6955
6956 tree
6957 strip_array_types (tree type)
6958 {
6959 while (TREE_CODE (type) == ARRAY_TYPE)
6960 type = TREE_TYPE (type);
6961
6962 return type;
6963 }
6964
6965 /* Computes the canonical argument types from the argument type list
6966 ARGTYPES.
6967
6968 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
6969 on entry to this function, or if any of the ARGTYPES are
6970 structural.
6971
6972 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
6973 true on entry to this function, or if any of the ARGTYPES are
6974 non-canonical.
6975
6976 Returns a canonical argument list, which may be ARGTYPES when the
6977 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
6978 true) or would not differ from ARGTYPES. */
6979
6980 static tree
6981 maybe_canonicalize_argtypes(tree argtypes,
6982 bool *any_structural_p,
6983 bool *any_noncanonical_p)
6984 {
6985 tree arg;
6986 bool any_noncanonical_argtypes_p = false;
6987
6988 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
6989 {
6990 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
6991 /* Fail gracefully by stating that the type is structural. */
6992 *any_structural_p = true;
6993 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
6994 *any_structural_p = true;
6995 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
6996 || TREE_PURPOSE (arg))
6997 /* If the argument has a default argument, we consider it
6998 non-canonical even though the type itself is canonical.
6999 That way, different variants of function and method types
7000 with default arguments will all point to the variant with
7001 no defaults as their canonical type. */
7002 any_noncanonical_argtypes_p = true;
7003 }
7004
7005 if (*any_structural_p)
7006 return argtypes;
7007
7008 if (any_noncanonical_argtypes_p)
7009 {
7010 /* Build the canonical list of argument types. */
7011 tree canon_argtypes = NULL_TREE;
7012 bool is_void = false;
7013
7014 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7015 {
7016 if (arg == void_list_node)
7017 is_void = true;
7018 else
7019 canon_argtypes = tree_cons (NULL_TREE,
7020 TYPE_CANONICAL (TREE_VALUE (arg)),
7021 canon_argtypes);
7022 }
7023
7024 canon_argtypes = nreverse (canon_argtypes);
7025 if (is_void)
7026 canon_argtypes = chainon (canon_argtypes, void_list_node);
7027
7028 /* There is a non-canonical type. */
7029 *any_noncanonical_p = true;
7030 return canon_argtypes;
7031 }
7032
7033 /* The canonical argument types are the same as ARGTYPES. */
7034 return argtypes;
7035 }
7036
7037 /* Construct, lay out and return
7038 the type of functions returning type VALUE_TYPE
7039 given arguments of types ARG_TYPES.
7040 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7041 are data type nodes for the arguments of the function.
7042 If such a type has already been constructed, reuse it. */
7043
7044 tree
7045 build_function_type (tree value_type, tree arg_types)
7046 {
7047 tree t;
7048 hashval_t hashcode = 0;
7049 bool any_structural_p, any_noncanonical_p;
7050 tree canon_argtypes;
7051
7052 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7053 {
7054 error ("function return type cannot be function");
7055 value_type = integer_type_node;
7056 }
7057
7058 /* Make a node of the sort we want. */
7059 t = make_node (FUNCTION_TYPE);
7060 TREE_TYPE (t) = value_type;
7061 TYPE_ARG_TYPES (t) = arg_types;
7062
7063 /* If we already have such a type, use the old one. */
7064 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7065 hashcode = type_hash_list (arg_types, hashcode);
7066 t = type_hash_canon (hashcode, t);
7067
7068 /* Set up the canonical type. */
7069 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7070 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7071 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7072 &any_structural_p,
7073 &any_noncanonical_p);
7074 if (any_structural_p)
7075 SET_TYPE_STRUCTURAL_EQUALITY (t);
7076 else if (any_noncanonical_p)
7077 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7078 canon_argtypes);
7079
7080 if (!COMPLETE_TYPE_P (t))
7081 layout_type (t);
7082 return t;
7083 }
7084
7085 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7086
7087 tree
7088 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7089 {
7090 tree new_type = NULL;
7091 tree args, new_args = NULL, t;
7092 tree new_reversed;
7093 int i = 0;
7094
7095 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7096 args = TREE_CHAIN (args), i++)
7097 if (!bitmap_bit_p (args_to_skip, i))
7098 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7099
7100 new_reversed = nreverse (new_args);
7101 if (args)
7102 {
7103 if (new_reversed)
7104 TREE_CHAIN (new_args) = void_list_node;
7105 else
7106 new_reversed = void_list_node;
7107 }
7108
7109 /* Use copy_node to preserve as much as possible from original type
7110 (debug info, attribute lists etc.)
7111 Exception is METHOD_TYPEs must have THIS argument.
7112 When we are asked to remove it, we need to build new FUNCTION_TYPE
7113 instead. */
7114 if (TREE_CODE (orig_type) != METHOD_TYPE
7115 || !bitmap_bit_p (args_to_skip, 0))
7116 {
7117 new_type = copy_node (orig_type);
7118 TYPE_ARG_TYPES (new_type) = new_reversed;
7119 }
7120 else
7121 {
7122 new_type
7123 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7124 new_reversed));
7125 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7126 }
7127
7128 /* This is a new type, not a copy of an old type. Need to reassociate
7129 variants. We can handle everything except the main variant lazily. */
7130 t = TYPE_MAIN_VARIANT (orig_type);
7131 if (orig_type != t)
7132 {
7133 TYPE_MAIN_VARIANT (new_type) = t;
7134 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7135 TYPE_NEXT_VARIANT (t) = new_type;
7136 }
7137 else
7138 {
7139 TYPE_MAIN_VARIANT (new_type) = new_type;
7140 TYPE_NEXT_VARIANT (new_type) = NULL;
7141 }
7142 return new_type;
7143 }
7144
7145 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7146
7147 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7148 linked by TREE_CHAIN directly. It is caller responsibility to eliminate
7149 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7150
7151 tree
7152 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7153 {
7154 tree new_decl = copy_node (orig_decl);
7155 tree new_type;
7156
7157 new_type = TREE_TYPE (orig_decl);
7158 if (prototype_p (new_type))
7159 new_type = build_function_type_skip_args (new_type, args_to_skip);
7160 TREE_TYPE (new_decl) = new_type;
7161
7162 /* For declarations setting DECL_VINDEX (i.e. methods)
7163 we expect first argument to be THIS pointer. */
7164 if (bitmap_bit_p (args_to_skip, 0))
7165 DECL_VINDEX (new_decl) = NULL_TREE;
7166 return new_decl;
7167 }
7168
7169 /* Build a function type. The RETURN_TYPE is the type returned by the
7170 function. If VAARGS is set, no void_type_node is appended to the
7171 the list. ARGP muse be alway be terminated be a NULL_TREE. */
7172
7173 static tree
7174 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7175 {
7176 tree t, args, last;
7177
7178 t = va_arg (argp, tree);
7179 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7180 args = tree_cons (NULL_TREE, t, args);
7181
7182 if (vaargs)
7183 {
7184 last = args;
7185 if (args != NULL_TREE)
7186 args = nreverse (args);
7187 gcc_assert (args != NULL_TREE && last != void_list_node);
7188 }
7189 else if (args == NULL_TREE)
7190 args = void_list_node;
7191 else
7192 {
7193 last = args;
7194 args = nreverse (args);
7195 TREE_CHAIN (last) = void_list_node;
7196 }
7197 args = build_function_type (return_type, args);
7198
7199 return args;
7200 }
7201
7202 /* Build a function type. The RETURN_TYPE is the type returned by the
7203 function. If additional arguments are provided, they are
7204 additional argument types. The list of argument types must always
7205 be terminated by NULL_TREE. */
7206
7207 tree
7208 build_function_type_list (tree return_type, ...)
7209 {
7210 tree args;
7211 va_list p;
7212
7213 va_start (p, return_type);
7214 args = build_function_type_list_1 (false, return_type, p);
7215 va_end (p);
7216 return args;
7217 }
7218
7219 /* Build a variable argument function type. The RETURN_TYPE is the
7220 type returned by the function. If additional arguments are provided,
7221 they are additional argument types. The list of argument types must
7222 always be terminated by NULL_TREE. */
7223
7224 tree
7225 build_varargs_function_type_list (tree return_type, ...)
7226 {
7227 tree args;
7228 va_list p;
7229
7230 va_start (p, return_type);
7231 args = build_function_type_list_1 (true, return_type, p);
7232 va_end (p);
7233
7234 return args;
7235 }
7236
7237 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7238 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7239 for the method. An implicit additional parameter (of type
7240 pointer-to-BASETYPE) is added to the ARGTYPES. */
7241
7242 tree
7243 build_method_type_directly (tree basetype,
7244 tree rettype,
7245 tree argtypes)
7246 {
7247 tree t;
7248 tree ptype;
7249 int hashcode = 0;
7250 bool any_structural_p, any_noncanonical_p;
7251 tree canon_argtypes;
7252
7253 /* Make a node of the sort we want. */
7254 t = make_node (METHOD_TYPE);
7255
7256 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7257 TREE_TYPE (t) = rettype;
7258 ptype = build_pointer_type (basetype);
7259
7260 /* The actual arglist for this function includes a "hidden" argument
7261 which is "this". Put it into the list of argument types. */
7262 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7263 TYPE_ARG_TYPES (t) = argtypes;
7264
7265 /* If we already have such a type, use the old one. */
7266 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7267 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7268 hashcode = type_hash_list (argtypes, hashcode);
7269 t = type_hash_canon (hashcode, t);
7270
7271 /* Set up the canonical type. */
7272 any_structural_p
7273 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7274 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7275 any_noncanonical_p
7276 = (TYPE_CANONICAL (basetype) != basetype
7277 || TYPE_CANONICAL (rettype) != rettype);
7278 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7279 &any_structural_p,
7280 &any_noncanonical_p);
7281 if (any_structural_p)
7282 SET_TYPE_STRUCTURAL_EQUALITY (t);
7283 else if (any_noncanonical_p)
7284 TYPE_CANONICAL (t)
7285 = build_method_type_directly (TYPE_CANONICAL (basetype),
7286 TYPE_CANONICAL (rettype),
7287 canon_argtypes);
7288 if (!COMPLETE_TYPE_P (t))
7289 layout_type (t);
7290
7291 return t;
7292 }
7293
7294 /* Construct, lay out and return the type of methods belonging to class
7295 BASETYPE and whose arguments and values are described by TYPE.
7296 If that type exists already, reuse it.
7297 TYPE must be a FUNCTION_TYPE node. */
7298
7299 tree
7300 build_method_type (tree basetype, tree type)
7301 {
7302 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7303
7304 return build_method_type_directly (basetype,
7305 TREE_TYPE (type),
7306 TYPE_ARG_TYPES (type));
7307 }
7308
7309 /* Construct, lay out and return the type of offsets to a value
7310 of type TYPE, within an object of type BASETYPE.
7311 If a suitable offset type exists already, reuse it. */
7312
7313 tree
7314 build_offset_type (tree basetype, tree type)
7315 {
7316 tree t;
7317 hashval_t hashcode = 0;
7318
7319 /* Make a node of the sort we want. */
7320 t = make_node (OFFSET_TYPE);
7321
7322 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7323 TREE_TYPE (t) = type;
7324
7325 /* If we already have such a type, use the old one. */
7326 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7327 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7328 t = type_hash_canon (hashcode, t);
7329
7330 if (!COMPLETE_TYPE_P (t))
7331 layout_type (t);
7332
7333 if (TYPE_CANONICAL (t) == t)
7334 {
7335 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7336 || TYPE_STRUCTURAL_EQUALITY_P (type))
7337 SET_TYPE_STRUCTURAL_EQUALITY (t);
7338 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7339 || TYPE_CANONICAL (type) != type)
7340 TYPE_CANONICAL (t)
7341 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7342 TYPE_CANONICAL (type));
7343 }
7344
7345 return t;
7346 }
7347
7348 /* Create a complex type whose components are COMPONENT_TYPE. */
7349
7350 tree
7351 build_complex_type (tree component_type)
7352 {
7353 tree t;
7354 hashval_t hashcode;
7355
7356 gcc_assert (INTEGRAL_TYPE_P (component_type)
7357 || SCALAR_FLOAT_TYPE_P (component_type)
7358 || FIXED_POINT_TYPE_P (component_type));
7359
7360 /* Make a node of the sort we want. */
7361 t = make_node (COMPLEX_TYPE);
7362
7363 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7364
7365 /* If we already have such a type, use the old one. */
7366 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7367 t = type_hash_canon (hashcode, t);
7368
7369 if (!COMPLETE_TYPE_P (t))
7370 layout_type (t);
7371
7372 if (TYPE_CANONICAL (t) == t)
7373 {
7374 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7375 SET_TYPE_STRUCTURAL_EQUALITY (t);
7376 else if (TYPE_CANONICAL (component_type) != component_type)
7377 TYPE_CANONICAL (t)
7378 = build_complex_type (TYPE_CANONICAL (component_type));
7379 }
7380
7381 /* We need to create a name, since complex is a fundamental type. */
7382 if (! TYPE_NAME (t))
7383 {
7384 const char *name;
7385 if (component_type == char_type_node)
7386 name = "complex char";
7387 else if (component_type == signed_char_type_node)
7388 name = "complex signed char";
7389 else if (component_type == unsigned_char_type_node)
7390 name = "complex unsigned char";
7391 else if (component_type == short_integer_type_node)
7392 name = "complex short int";
7393 else if (component_type == short_unsigned_type_node)
7394 name = "complex short unsigned int";
7395 else if (component_type == integer_type_node)
7396 name = "complex int";
7397 else if (component_type == unsigned_type_node)
7398 name = "complex unsigned int";
7399 else if (component_type == long_integer_type_node)
7400 name = "complex long int";
7401 else if (component_type == long_unsigned_type_node)
7402 name = "complex long unsigned int";
7403 else if (component_type == long_long_integer_type_node)
7404 name = "complex long long int";
7405 else if (component_type == long_long_unsigned_type_node)
7406 name = "complex long long unsigned int";
7407 else
7408 name = 0;
7409
7410 if (name != 0)
7411 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7412 get_identifier (name), t);
7413 }
7414
7415 return build_qualified_type (t, TYPE_QUALS (component_type));
7416 }
7417
7418 /* If TYPE is a real or complex floating-point type and the target
7419 does not directly support arithmetic on TYPE then return the wider
7420 type to be used for arithmetic on TYPE. Otherwise, return
7421 NULL_TREE. */
7422
7423 tree
7424 excess_precision_type (tree type)
7425 {
7426 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7427 {
7428 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7429 switch (TREE_CODE (type))
7430 {
7431 case REAL_TYPE:
7432 switch (flt_eval_method)
7433 {
7434 case 1:
7435 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7436 return double_type_node;
7437 break;
7438 case 2:
7439 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7440 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7441 return long_double_type_node;
7442 break;
7443 default:
7444 gcc_unreachable ();
7445 }
7446 break;
7447 case COMPLEX_TYPE:
7448 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7449 return NULL_TREE;
7450 switch (flt_eval_method)
7451 {
7452 case 1:
7453 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7454 return complex_double_type_node;
7455 break;
7456 case 2:
7457 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7458 || (TYPE_MODE (TREE_TYPE (type))
7459 == TYPE_MODE (double_type_node)))
7460 return complex_long_double_type_node;
7461 break;
7462 default:
7463 gcc_unreachable ();
7464 }
7465 break;
7466 default:
7467 break;
7468 }
7469 }
7470 return NULL_TREE;
7471 }
7472 \f
7473 /* Return OP, stripped of any conversions to wider types as much as is safe.
7474 Converting the value back to OP's type makes a value equivalent to OP.
7475
7476 If FOR_TYPE is nonzero, we return a value which, if converted to
7477 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7478
7479 OP must have integer, real or enumeral type. Pointers are not allowed!
7480
7481 There are some cases where the obvious value we could return
7482 would regenerate to OP if converted to OP's type,
7483 but would not extend like OP to wider types.
7484 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7485 For example, if OP is (unsigned short)(signed char)-1,
7486 we avoid returning (signed char)-1 if FOR_TYPE is int,
7487 even though extending that to an unsigned short would regenerate OP,
7488 since the result of extending (signed char)-1 to (int)
7489 is different from (int) OP. */
7490
7491 tree
7492 get_unwidened (tree op, tree for_type)
7493 {
7494 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7495 tree type = TREE_TYPE (op);
7496 unsigned final_prec
7497 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7498 int uns
7499 = (for_type != 0 && for_type != type
7500 && final_prec > TYPE_PRECISION (type)
7501 && TYPE_UNSIGNED (type));
7502 tree win = op;
7503
7504 while (CONVERT_EXPR_P (op))
7505 {
7506 int bitschange;
7507
7508 /* TYPE_PRECISION on vector types has different meaning
7509 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7510 so avoid them here. */
7511 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7512 break;
7513
7514 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7515 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7516
7517 /* Truncations are many-one so cannot be removed.
7518 Unless we are later going to truncate down even farther. */
7519 if (bitschange < 0
7520 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7521 break;
7522
7523 /* See what's inside this conversion. If we decide to strip it,
7524 we will set WIN. */
7525 op = TREE_OPERAND (op, 0);
7526
7527 /* If we have not stripped any zero-extensions (uns is 0),
7528 we can strip any kind of extension.
7529 If we have previously stripped a zero-extension,
7530 only zero-extensions can safely be stripped.
7531 Any extension can be stripped if the bits it would produce
7532 are all going to be discarded later by truncating to FOR_TYPE. */
7533
7534 if (bitschange > 0)
7535 {
7536 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7537 win = op;
7538 /* TYPE_UNSIGNED says whether this is a zero-extension.
7539 Let's avoid computing it if it does not affect WIN
7540 and if UNS will not be needed again. */
7541 if ((uns
7542 || CONVERT_EXPR_P (op))
7543 && TYPE_UNSIGNED (TREE_TYPE (op)))
7544 {
7545 uns = 1;
7546 win = op;
7547 }
7548 }
7549 }
7550
7551 return win;
7552 }
7553 \f
7554 /* Return OP or a simpler expression for a narrower value
7555 which can be sign-extended or zero-extended to give back OP.
7556 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7557 or 0 if the value should be sign-extended. */
7558
7559 tree
7560 get_narrower (tree op, int *unsignedp_ptr)
7561 {
7562 int uns = 0;
7563 int first = 1;
7564 tree win = op;
7565 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7566
7567 while (TREE_CODE (op) == NOP_EXPR)
7568 {
7569 int bitschange
7570 = (TYPE_PRECISION (TREE_TYPE (op))
7571 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7572
7573 /* Truncations are many-one so cannot be removed. */
7574 if (bitschange < 0)
7575 break;
7576
7577 /* See what's inside this conversion. If we decide to strip it,
7578 we will set WIN. */
7579
7580 if (bitschange > 0)
7581 {
7582 op = TREE_OPERAND (op, 0);
7583 /* An extension: the outermost one can be stripped,
7584 but remember whether it is zero or sign extension. */
7585 if (first)
7586 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7587 /* Otherwise, if a sign extension has been stripped,
7588 only sign extensions can now be stripped;
7589 if a zero extension has been stripped, only zero-extensions. */
7590 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7591 break;
7592 first = 0;
7593 }
7594 else /* bitschange == 0 */
7595 {
7596 /* A change in nominal type can always be stripped, but we must
7597 preserve the unsignedness. */
7598 if (first)
7599 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7600 first = 0;
7601 op = TREE_OPERAND (op, 0);
7602 /* Keep trying to narrow, but don't assign op to win if it
7603 would turn an integral type into something else. */
7604 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7605 continue;
7606 }
7607
7608 win = op;
7609 }
7610
7611 if (TREE_CODE (op) == COMPONENT_REF
7612 /* Since type_for_size always gives an integer type. */
7613 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7614 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7615 /* Ensure field is laid out already. */
7616 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7617 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7618 {
7619 unsigned HOST_WIDE_INT innerprec
7620 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7621 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7622 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7623 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7624
7625 /* We can get this structure field in a narrower type that fits it,
7626 but the resulting extension to its nominal type (a fullword type)
7627 must satisfy the same conditions as for other extensions.
7628
7629 Do this only for fields that are aligned (not bit-fields),
7630 because when bit-field insns will be used there is no
7631 advantage in doing this. */
7632
7633 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7634 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7635 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7636 && type != 0)
7637 {
7638 if (first)
7639 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7640 win = fold_convert (type, op);
7641 }
7642 }
7643
7644 *unsignedp_ptr = uns;
7645 return win;
7646 }
7647 \f
7648 /* Nonzero if integer constant C has a value that is permissible
7649 for type TYPE (an INTEGER_TYPE). */
7650
7651 int
7652 int_fits_type_p (const_tree c, const_tree type)
7653 {
7654 tree type_low_bound, type_high_bound;
7655 bool ok_for_low_bound, ok_for_high_bound, unsc;
7656 double_int dc, dd;
7657
7658 dc = tree_to_double_int (c);
7659 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7660
7661 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7662 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7663 && unsc)
7664 /* So c is an unsigned integer whose type is sizetype and type is not.
7665 sizetype'd integers are sign extended even though they are
7666 unsigned. If the integer value fits in the lower end word of c,
7667 and if the higher end word has all its bits set to 1, that
7668 means the higher end bits are set to 1 only for sign extension.
7669 So let's convert c into an equivalent zero extended unsigned
7670 integer. */
7671 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7672
7673 retry:
7674 type_low_bound = TYPE_MIN_VALUE (type);
7675 type_high_bound = TYPE_MAX_VALUE (type);
7676
7677 /* If at least one bound of the type is a constant integer, we can check
7678 ourselves and maybe make a decision. If no such decision is possible, but
7679 this type is a subtype, try checking against that. Otherwise, use
7680 fit_double_type, which checks against the precision.
7681
7682 Compute the status for each possibly constant bound, and return if we see
7683 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7684 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7685 for "constant known to fit". */
7686
7687 /* Check if c >= type_low_bound. */
7688 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7689 {
7690 dd = tree_to_double_int (type_low_bound);
7691 if (TREE_CODE (type) == INTEGER_TYPE
7692 && TYPE_IS_SIZETYPE (type)
7693 && TYPE_UNSIGNED (type))
7694 dd = double_int_zext (dd, TYPE_PRECISION (type));
7695 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7696 {
7697 int c_neg = (!unsc && double_int_negative_p (dc));
7698 int t_neg = (unsc && double_int_negative_p (dd));
7699
7700 if (c_neg && !t_neg)
7701 return 0;
7702 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
7703 return 0;
7704 }
7705 else if (double_int_cmp (dc, dd, unsc) < 0)
7706 return 0;
7707 ok_for_low_bound = true;
7708 }
7709 else
7710 ok_for_low_bound = false;
7711
7712 /* Check if c <= type_high_bound. */
7713 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
7714 {
7715 dd = tree_to_double_int (type_high_bound);
7716 if (TREE_CODE (type) == INTEGER_TYPE
7717 && TYPE_IS_SIZETYPE (type)
7718 && TYPE_UNSIGNED (type))
7719 dd = double_int_zext (dd, TYPE_PRECISION (type));
7720 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
7721 {
7722 int c_neg = (!unsc && double_int_negative_p (dc));
7723 int t_neg = (unsc && double_int_negative_p (dd));
7724
7725 if (t_neg && !c_neg)
7726 return 0;
7727 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
7728 return 0;
7729 }
7730 else if (double_int_cmp (dc, dd, unsc) > 0)
7731 return 0;
7732 ok_for_high_bound = true;
7733 }
7734 else
7735 ok_for_high_bound = false;
7736
7737 /* If the constant fits both bounds, the result is known. */
7738 if (ok_for_low_bound && ok_for_high_bound)
7739 return 1;
7740
7741 /* Perform some generic filtering which may allow making a decision
7742 even if the bounds are not constant. First, negative integers
7743 never fit in unsigned types, */
7744 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
7745 return 0;
7746
7747 /* Second, narrower types always fit in wider ones. */
7748 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
7749 return 1;
7750
7751 /* Third, unsigned integers with top bit set never fit signed types. */
7752 if (! TYPE_UNSIGNED (type) && unsc)
7753 {
7754 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
7755 if (prec < HOST_BITS_PER_WIDE_INT)
7756 {
7757 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
7758 return 0;
7759 }
7760 else if (((((unsigned HOST_WIDE_INT) 1)
7761 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
7762 return 0;
7763 }
7764
7765 /* If we haven't been able to decide at this point, there nothing more we
7766 can check ourselves here. Look at the base type if we have one and it
7767 has the same precision. */
7768 if (TREE_CODE (type) == INTEGER_TYPE
7769 && TREE_TYPE (type) != 0
7770 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
7771 {
7772 type = TREE_TYPE (type);
7773 goto retry;
7774 }
7775
7776 /* Or to fit_double_type, if nothing else. */
7777 return !fit_double_type (dc.low, dc.high, &dc.low, &dc.high, type);
7778 }
7779
7780 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
7781 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
7782 represented (assuming two's-complement arithmetic) within the bit
7783 precision of the type are returned instead. */
7784
7785 void
7786 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
7787 {
7788 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
7789 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
7790 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
7791 TYPE_UNSIGNED (type));
7792 else
7793 {
7794 if (TYPE_UNSIGNED (type))
7795 mpz_set_ui (min, 0);
7796 else
7797 {
7798 double_int mn;
7799 mn = double_int_mask (TYPE_PRECISION (type) - 1);
7800 mn = double_int_sext (double_int_add (mn, double_int_one),
7801 TYPE_PRECISION (type));
7802 mpz_set_double_int (min, mn, false);
7803 }
7804 }
7805
7806 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
7807 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
7808 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
7809 TYPE_UNSIGNED (type));
7810 else
7811 {
7812 if (TYPE_UNSIGNED (type))
7813 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
7814 true);
7815 else
7816 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
7817 true);
7818 }
7819 }
7820
7821 /* Return true if VAR is an automatic variable defined in function FN. */
7822
7823 bool
7824 auto_var_in_fn_p (const_tree var, const_tree fn)
7825 {
7826 return (DECL_P (var) && DECL_CONTEXT (var) == fn
7827 && (((TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
7828 && ! TREE_STATIC (var))
7829 || TREE_CODE (var) == LABEL_DECL
7830 || TREE_CODE (var) == RESULT_DECL));
7831 }
7832
7833 /* Subprogram of following function. Called by walk_tree.
7834
7835 Return *TP if it is an automatic variable or parameter of the
7836 function passed in as DATA. */
7837
7838 static tree
7839 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
7840 {
7841 tree fn = (tree) data;
7842
7843 if (TYPE_P (*tp))
7844 *walk_subtrees = 0;
7845
7846 else if (DECL_P (*tp)
7847 && auto_var_in_fn_p (*tp, fn))
7848 return *tp;
7849
7850 return NULL_TREE;
7851 }
7852
7853 /* Returns true if T is, contains, or refers to a type with variable
7854 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
7855 arguments, but not the return type. If FN is nonzero, only return
7856 true if a modifier of the type or position of FN is a variable or
7857 parameter inside FN.
7858
7859 This concept is more general than that of C99 'variably modified types':
7860 in C99, a struct type is never variably modified because a VLA may not
7861 appear as a structure member. However, in GNU C code like:
7862
7863 struct S { int i[f()]; };
7864
7865 is valid, and other languages may define similar constructs. */
7866
7867 bool
7868 variably_modified_type_p (tree type, tree fn)
7869 {
7870 tree t;
7871
7872 /* Test if T is either variable (if FN is zero) or an expression containing
7873 a variable in FN. */
7874 #define RETURN_TRUE_IF_VAR(T) \
7875 do { tree _t = (T); \
7876 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
7877 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
7878 return true; } while (0)
7879
7880 if (type == error_mark_node)
7881 return false;
7882
7883 /* If TYPE itself has variable size, it is variably modified. */
7884 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
7885 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
7886
7887 switch (TREE_CODE (type))
7888 {
7889 case POINTER_TYPE:
7890 case REFERENCE_TYPE:
7891 case VECTOR_TYPE:
7892 if (variably_modified_type_p (TREE_TYPE (type), fn))
7893 return true;
7894 break;
7895
7896 case FUNCTION_TYPE:
7897 case METHOD_TYPE:
7898 /* If TYPE is a function type, it is variably modified if the
7899 return type is variably modified. */
7900 if (variably_modified_type_p (TREE_TYPE (type), fn))
7901 return true;
7902 break;
7903
7904 case INTEGER_TYPE:
7905 case REAL_TYPE:
7906 case FIXED_POINT_TYPE:
7907 case ENUMERAL_TYPE:
7908 case BOOLEAN_TYPE:
7909 /* Scalar types are variably modified if their end points
7910 aren't constant. */
7911 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
7912 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
7913 break;
7914
7915 case RECORD_TYPE:
7916 case UNION_TYPE:
7917 case QUAL_UNION_TYPE:
7918 /* We can't see if any of the fields are variably-modified by the
7919 definition we normally use, since that would produce infinite
7920 recursion via pointers. */
7921 /* This is variably modified if some field's type is. */
7922 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
7923 if (TREE_CODE (t) == FIELD_DECL)
7924 {
7925 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
7926 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
7927 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
7928
7929 if (TREE_CODE (type) == QUAL_UNION_TYPE)
7930 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
7931 }
7932 break;
7933
7934 case ARRAY_TYPE:
7935 /* Do not call ourselves to avoid infinite recursion. This is
7936 variably modified if the element type is. */
7937 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
7938 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
7939 break;
7940
7941 default:
7942 break;
7943 }
7944
7945 /* The current language may have other cases to check, but in general,
7946 all other types are not variably modified. */
7947 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
7948
7949 #undef RETURN_TRUE_IF_VAR
7950 }
7951
7952 /* Given a DECL or TYPE, return the scope in which it was declared, or
7953 NULL_TREE if there is no containing scope. */
7954
7955 tree
7956 get_containing_scope (const_tree t)
7957 {
7958 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
7959 }
7960
7961 /* Return the innermost context enclosing DECL that is
7962 a FUNCTION_DECL, or zero if none. */
7963
7964 tree
7965 decl_function_context (const_tree decl)
7966 {
7967 tree context;
7968
7969 if (TREE_CODE (decl) == ERROR_MARK)
7970 return 0;
7971
7972 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
7973 where we look up the function at runtime. Such functions always take
7974 a first argument of type 'pointer to real context'.
7975
7976 C++ should really be fixed to use DECL_CONTEXT for the real context,
7977 and use something else for the "virtual context". */
7978 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
7979 context
7980 = TYPE_MAIN_VARIANT
7981 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
7982 else
7983 context = DECL_CONTEXT (decl);
7984
7985 while (context && TREE_CODE (context) != FUNCTION_DECL)
7986 {
7987 if (TREE_CODE (context) == BLOCK)
7988 context = BLOCK_SUPERCONTEXT (context);
7989 else
7990 context = get_containing_scope (context);
7991 }
7992
7993 return context;
7994 }
7995
7996 /* Return the innermost context enclosing DECL that is
7997 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
7998 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
7999
8000 tree
8001 decl_type_context (const_tree decl)
8002 {
8003 tree context = DECL_CONTEXT (decl);
8004
8005 while (context)
8006 switch (TREE_CODE (context))
8007 {
8008 case NAMESPACE_DECL:
8009 case TRANSLATION_UNIT_DECL:
8010 return NULL_TREE;
8011
8012 case RECORD_TYPE:
8013 case UNION_TYPE:
8014 case QUAL_UNION_TYPE:
8015 return context;
8016
8017 case TYPE_DECL:
8018 case FUNCTION_DECL:
8019 context = DECL_CONTEXT (context);
8020 break;
8021
8022 case BLOCK:
8023 context = BLOCK_SUPERCONTEXT (context);
8024 break;
8025
8026 default:
8027 gcc_unreachable ();
8028 }
8029
8030 return NULL_TREE;
8031 }
8032
8033 /* CALL is a CALL_EXPR. Return the declaration for the function
8034 called, or NULL_TREE if the called function cannot be
8035 determined. */
8036
8037 tree
8038 get_callee_fndecl (const_tree call)
8039 {
8040 tree addr;
8041
8042 if (call == error_mark_node)
8043 return error_mark_node;
8044
8045 /* It's invalid to call this function with anything but a
8046 CALL_EXPR. */
8047 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8048
8049 /* The first operand to the CALL is the address of the function
8050 called. */
8051 addr = CALL_EXPR_FN (call);
8052
8053 STRIP_NOPS (addr);
8054
8055 /* If this is a readonly function pointer, extract its initial value. */
8056 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8057 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8058 && DECL_INITIAL (addr))
8059 addr = DECL_INITIAL (addr);
8060
8061 /* If the address is just `&f' for some function `f', then we know
8062 that `f' is being called. */
8063 if (TREE_CODE (addr) == ADDR_EXPR
8064 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8065 return TREE_OPERAND (addr, 0);
8066
8067 /* We couldn't figure out what was being called. */
8068 return NULL_TREE;
8069 }
8070
8071 /* Print debugging information about tree nodes generated during the compile,
8072 and any language-specific information. */
8073
8074 void
8075 dump_tree_statistics (void)
8076 {
8077 #ifdef GATHER_STATISTICS
8078 int i;
8079 int total_nodes, total_bytes;
8080 #endif
8081
8082 fprintf (stderr, "\n??? tree nodes created\n\n");
8083 #ifdef GATHER_STATISTICS
8084 fprintf (stderr, "Kind Nodes Bytes\n");
8085 fprintf (stderr, "---------------------------------------\n");
8086 total_nodes = total_bytes = 0;
8087 for (i = 0; i < (int) all_kinds; i++)
8088 {
8089 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8090 tree_node_counts[i], tree_node_sizes[i]);
8091 total_nodes += tree_node_counts[i];
8092 total_bytes += tree_node_sizes[i];
8093 }
8094 fprintf (stderr, "---------------------------------------\n");
8095 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8096 fprintf (stderr, "---------------------------------------\n");
8097 ssanames_print_statistics ();
8098 phinodes_print_statistics ();
8099 #else
8100 fprintf (stderr, "(No per-node statistics)\n");
8101 #endif
8102 print_type_hash_statistics ();
8103 print_debug_expr_statistics ();
8104 print_value_expr_statistics ();
8105 lang_hooks.print_statistics ();
8106 }
8107 \f
8108 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8109
8110 /* Generate a crc32 of a string. */
8111
8112 unsigned
8113 crc32_string (unsigned chksum, const char *string)
8114 {
8115 do
8116 {
8117 unsigned value = *string << 24;
8118 unsigned ix;
8119
8120 for (ix = 8; ix--; value <<= 1)
8121 {
8122 unsigned feedback;
8123
8124 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8125 chksum <<= 1;
8126 chksum ^= feedback;
8127 }
8128 }
8129 while (*string++);
8130 return chksum;
8131 }
8132
8133 /* P is a string that will be used in a symbol. Mask out any characters
8134 that are not valid in that context. */
8135
8136 void
8137 clean_symbol_name (char *p)
8138 {
8139 for (; *p; p++)
8140 if (! (ISALNUM (*p)
8141 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8142 || *p == '$'
8143 #endif
8144 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8145 || *p == '.'
8146 #endif
8147 ))
8148 *p = '_';
8149 }
8150
8151 /* Generate a name for a special-purpose function function.
8152 The generated name may need to be unique across the whole link.
8153 TYPE is some string to identify the purpose of this function to the
8154 linker or collect2; it must start with an uppercase letter,
8155 one of:
8156 I - for constructors
8157 D - for destructors
8158 N - for C++ anonymous namespaces
8159 F - for DWARF unwind frame information. */
8160
8161 tree
8162 get_file_function_name (const char *type)
8163 {
8164 char *buf;
8165 const char *p;
8166 char *q;
8167
8168 /* If we already have a name we know to be unique, just use that. */
8169 if (first_global_object_name)
8170 p = q = ASTRDUP (first_global_object_name);
8171 /* If the target is handling the constructors/destructors, they
8172 will be local to this file and the name is only necessary for
8173 debugging purposes. */
8174 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8175 {
8176 const char *file = main_input_filename;
8177 if (! file)
8178 file = input_filename;
8179 /* Just use the file's basename, because the full pathname
8180 might be quite long. */
8181 p = strrchr (file, '/');
8182 if (p)
8183 p++;
8184 else
8185 p = file;
8186 p = q = ASTRDUP (p);
8187 }
8188 else
8189 {
8190 /* Otherwise, the name must be unique across the entire link.
8191 We don't have anything that we know to be unique to this translation
8192 unit, so use what we do have and throw in some randomness. */
8193 unsigned len;
8194 const char *name = weak_global_object_name;
8195 const char *file = main_input_filename;
8196
8197 if (! name)
8198 name = "";
8199 if (! file)
8200 file = input_filename;
8201
8202 len = strlen (file);
8203 q = (char *) alloca (9 * 2 + len + 1);
8204 memcpy (q, file, len + 1);
8205
8206 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8207 crc32_string (0, get_random_seed (false)));
8208
8209 p = q;
8210 }
8211
8212 clean_symbol_name (q);
8213 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8214 + strlen (type));
8215
8216 /* Set up the name of the file-level functions we may need.
8217 Use a global object (which is already required to be unique over
8218 the program) rather than the file name (which imposes extra
8219 constraints). */
8220 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8221
8222 return get_identifier (buf);
8223 }
8224 \f
8225 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8226
8227 /* Complain that the tree code of NODE does not match the expected 0
8228 terminated list of trailing codes. The trailing code list can be
8229 empty, for a more vague error message. FILE, LINE, and FUNCTION
8230 are of the caller. */
8231
8232 void
8233 tree_check_failed (const_tree node, const char *file,
8234 int line, const char *function, ...)
8235 {
8236 va_list args;
8237 const char *buffer;
8238 unsigned length = 0;
8239 int code;
8240
8241 va_start (args, function);
8242 while ((code = va_arg (args, int)))
8243 length += 4 + strlen (tree_code_name[code]);
8244 va_end (args);
8245 if (length)
8246 {
8247 char *tmp;
8248 va_start (args, function);
8249 length += strlen ("expected ");
8250 buffer = tmp = (char *) alloca (length);
8251 length = 0;
8252 while ((code = va_arg (args, int)))
8253 {
8254 const char *prefix = length ? " or " : "expected ";
8255
8256 strcpy (tmp + length, prefix);
8257 length += strlen (prefix);
8258 strcpy (tmp + length, tree_code_name[code]);
8259 length += strlen (tree_code_name[code]);
8260 }
8261 va_end (args);
8262 }
8263 else
8264 buffer = "unexpected node";
8265
8266 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8267 buffer, tree_code_name[TREE_CODE (node)],
8268 function, trim_filename (file), line);
8269 }
8270
8271 /* Complain that the tree code of NODE does match the expected 0
8272 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8273 the caller. */
8274
8275 void
8276 tree_not_check_failed (const_tree node, const char *file,
8277 int line, const char *function, ...)
8278 {
8279 va_list args;
8280 char *buffer;
8281 unsigned length = 0;
8282 int code;
8283
8284 va_start (args, function);
8285 while ((code = va_arg (args, int)))
8286 length += 4 + strlen (tree_code_name[code]);
8287 va_end (args);
8288 va_start (args, function);
8289 buffer = (char *) alloca (length);
8290 length = 0;
8291 while ((code = va_arg (args, int)))
8292 {
8293 if (length)
8294 {
8295 strcpy (buffer + length, " or ");
8296 length += 4;
8297 }
8298 strcpy (buffer + length, tree_code_name[code]);
8299 length += strlen (tree_code_name[code]);
8300 }
8301 va_end (args);
8302
8303 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8304 buffer, tree_code_name[TREE_CODE (node)],
8305 function, trim_filename (file), line);
8306 }
8307
8308 /* Similar to tree_check_failed, except that we check for a class of tree
8309 code, given in CL. */
8310
8311 void
8312 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8313 const char *file, int line, const char *function)
8314 {
8315 internal_error
8316 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8317 TREE_CODE_CLASS_STRING (cl),
8318 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8319 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8320 }
8321
8322 /* Similar to tree_check_failed, except that instead of specifying a
8323 dozen codes, use the knowledge that they're all sequential. */
8324
8325 void
8326 tree_range_check_failed (const_tree node, const char *file, int line,
8327 const char *function, enum tree_code c1,
8328 enum tree_code c2)
8329 {
8330 char *buffer;
8331 unsigned length = 0;
8332 unsigned int c;
8333
8334 for (c = c1; c <= c2; ++c)
8335 length += 4 + strlen (tree_code_name[c]);
8336
8337 length += strlen ("expected ");
8338 buffer = (char *) alloca (length);
8339 length = 0;
8340
8341 for (c = c1; c <= c2; ++c)
8342 {
8343 const char *prefix = length ? " or " : "expected ";
8344
8345 strcpy (buffer + length, prefix);
8346 length += strlen (prefix);
8347 strcpy (buffer + length, tree_code_name[c]);
8348 length += strlen (tree_code_name[c]);
8349 }
8350
8351 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8352 buffer, tree_code_name[TREE_CODE (node)],
8353 function, trim_filename (file), line);
8354 }
8355
8356
8357 /* Similar to tree_check_failed, except that we check that a tree does
8358 not have the specified code, given in CL. */
8359
8360 void
8361 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8362 const char *file, int line, const char *function)
8363 {
8364 internal_error
8365 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8366 TREE_CODE_CLASS_STRING (cl),
8367 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8368 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8369 }
8370
8371
8372 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8373
8374 void
8375 omp_clause_check_failed (const_tree node, const char *file, int line,
8376 const char *function, enum omp_clause_code code)
8377 {
8378 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8379 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8380 function, trim_filename (file), line);
8381 }
8382
8383
8384 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8385
8386 void
8387 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8388 const char *function, enum omp_clause_code c1,
8389 enum omp_clause_code c2)
8390 {
8391 char *buffer;
8392 unsigned length = 0;
8393 unsigned int c;
8394
8395 for (c = c1; c <= c2; ++c)
8396 length += 4 + strlen (omp_clause_code_name[c]);
8397
8398 length += strlen ("expected ");
8399 buffer = (char *) alloca (length);
8400 length = 0;
8401
8402 for (c = c1; c <= c2; ++c)
8403 {
8404 const char *prefix = length ? " or " : "expected ";
8405
8406 strcpy (buffer + length, prefix);
8407 length += strlen (prefix);
8408 strcpy (buffer + length, omp_clause_code_name[c]);
8409 length += strlen (omp_clause_code_name[c]);
8410 }
8411
8412 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8413 buffer, omp_clause_code_name[TREE_CODE (node)],
8414 function, trim_filename (file), line);
8415 }
8416
8417
8418 #undef DEFTREESTRUCT
8419 #define DEFTREESTRUCT(VAL, NAME) NAME,
8420
8421 static const char *ts_enum_names[] = {
8422 #include "treestruct.def"
8423 };
8424 #undef DEFTREESTRUCT
8425
8426 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8427
8428 /* Similar to tree_class_check_failed, except that we check for
8429 whether CODE contains the tree structure identified by EN. */
8430
8431 void
8432 tree_contains_struct_check_failed (const_tree node,
8433 const enum tree_node_structure_enum en,
8434 const char *file, int line,
8435 const char *function)
8436 {
8437 internal_error
8438 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8439 TS_ENUM_NAME(en),
8440 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8441 }
8442
8443
8444 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8445 (dynamically sized) vector. */
8446
8447 void
8448 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8449 const char *function)
8450 {
8451 internal_error
8452 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8453 idx + 1, len, function, trim_filename (file), line);
8454 }
8455
8456 /* Similar to above, except that the check is for the bounds of the operand
8457 vector of an expression node EXP. */
8458
8459 void
8460 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8461 int line, const char *function)
8462 {
8463 int code = TREE_CODE (exp);
8464 internal_error
8465 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8466 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8467 function, trim_filename (file), line);
8468 }
8469
8470 /* Similar to above, except that the check is for the number of
8471 operands of an OMP_CLAUSE node. */
8472
8473 void
8474 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8475 int line, const char *function)
8476 {
8477 internal_error
8478 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8479 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8480 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8481 trim_filename (file), line);
8482 }
8483 #endif /* ENABLE_TREE_CHECKING */
8484 \f
8485 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8486 and mapped to the machine mode MODE. Initialize its fields and build
8487 the information necessary for debugging output. */
8488
8489 static tree
8490 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8491 {
8492 tree t;
8493 hashval_t hashcode = 0;
8494
8495 t = make_node (VECTOR_TYPE);
8496 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8497 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8498 SET_TYPE_MODE (t, mode);
8499
8500 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8501 SET_TYPE_STRUCTURAL_EQUALITY (t);
8502 else if (TYPE_CANONICAL (innertype) != innertype
8503 || mode != VOIDmode)
8504 TYPE_CANONICAL (t)
8505 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8506
8507 layout_type (t);
8508
8509 {
8510 tree index = build_int_cst (NULL_TREE, nunits - 1);
8511 tree array = build_array_type (TYPE_MAIN_VARIANT (innertype),
8512 build_index_type (index));
8513 tree rt = make_node (RECORD_TYPE);
8514
8515 TYPE_FIELDS (rt) = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
8516 get_identifier ("f"), array);
8517 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
8518 layout_type (rt);
8519 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
8520 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
8521 the representation type, and we want to find that die when looking up
8522 the vector type. This is most easily achieved by making the TYPE_UID
8523 numbers equal. */
8524 TYPE_UID (rt) = TYPE_UID (t);
8525 }
8526
8527 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8528 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8529 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8530 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8531 t = type_hash_canon (hashcode, t);
8532
8533 /* We have built a main variant, based on the main variant of the
8534 inner type. Use it to build the variant we return. */
8535 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8536 && TREE_TYPE (t) != innertype)
8537 return build_type_attribute_qual_variant (t,
8538 TYPE_ATTRIBUTES (innertype),
8539 TYPE_QUALS (innertype));
8540
8541 return t;
8542 }
8543
8544 static tree
8545 make_or_reuse_type (unsigned size, int unsignedp)
8546 {
8547 if (size == INT_TYPE_SIZE)
8548 return unsignedp ? unsigned_type_node : integer_type_node;
8549 if (size == CHAR_TYPE_SIZE)
8550 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8551 if (size == SHORT_TYPE_SIZE)
8552 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8553 if (size == LONG_TYPE_SIZE)
8554 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8555 if (size == LONG_LONG_TYPE_SIZE)
8556 return (unsignedp ? long_long_unsigned_type_node
8557 : long_long_integer_type_node);
8558
8559 if (unsignedp)
8560 return make_unsigned_type (size);
8561 else
8562 return make_signed_type (size);
8563 }
8564
8565 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8566
8567 static tree
8568 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8569 {
8570 if (satp)
8571 {
8572 if (size == SHORT_FRACT_TYPE_SIZE)
8573 return unsignedp ? sat_unsigned_short_fract_type_node
8574 : sat_short_fract_type_node;
8575 if (size == FRACT_TYPE_SIZE)
8576 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8577 if (size == LONG_FRACT_TYPE_SIZE)
8578 return unsignedp ? sat_unsigned_long_fract_type_node
8579 : sat_long_fract_type_node;
8580 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8581 return unsignedp ? sat_unsigned_long_long_fract_type_node
8582 : sat_long_long_fract_type_node;
8583 }
8584 else
8585 {
8586 if (size == SHORT_FRACT_TYPE_SIZE)
8587 return unsignedp ? unsigned_short_fract_type_node
8588 : short_fract_type_node;
8589 if (size == FRACT_TYPE_SIZE)
8590 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8591 if (size == LONG_FRACT_TYPE_SIZE)
8592 return unsignedp ? unsigned_long_fract_type_node
8593 : long_fract_type_node;
8594 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8595 return unsignedp ? unsigned_long_long_fract_type_node
8596 : long_long_fract_type_node;
8597 }
8598
8599 return make_fract_type (size, unsignedp, satp);
8600 }
8601
8602 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8603
8604 static tree
8605 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8606 {
8607 if (satp)
8608 {
8609 if (size == SHORT_ACCUM_TYPE_SIZE)
8610 return unsignedp ? sat_unsigned_short_accum_type_node
8611 : sat_short_accum_type_node;
8612 if (size == ACCUM_TYPE_SIZE)
8613 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8614 if (size == LONG_ACCUM_TYPE_SIZE)
8615 return unsignedp ? sat_unsigned_long_accum_type_node
8616 : sat_long_accum_type_node;
8617 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8618 return unsignedp ? sat_unsigned_long_long_accum_type_node
8619 : sat_long_long_accum_type_node;
8620 }
8621 else
8622 {
8623 if (size == SHORT_ACCUM_TYPE_SIZE)
8624 return unsignedp ? unsigned_short_accum_type_node
8625 : short_accum_type_node;
8626 if (size == ACCUM_TYPE_SIZE)
8627 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8628 if (size == LONG_ACCUM_TYPE_SIZE)
8629 return unsignedp ? unsigned_long_accum_type_node
8630 : long_accum_type_node;
8631 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8632 return unsignedp ? unsigned_long_long_accum_type_node
8633 : long_long_accum_type_node;
8634 }
8635
8636 return make_accum_type (size, unsignedp, satp);
8637 }
8638
8639 /* Create nodes for all integer types (and error_mark_node) using the sizes
8640 of C datatypes. The caller should call set_sizetype soon after calling
8641 this function to select one of the types as sizetype. */
8642
8643 void
8644 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
8645 {
8646 error_mark_node = make_node (ERROR_MARK);
8647 TREE_TYPE (error_mark_node) = error_mark_node;
8648
8649 initialize_sizetypes (signed_sizetype);
8650
8651 /* Define both `signed char' and `unsigned char'. */
8652 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8653 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8654 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8655 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8656
8657 /* Define `char', which is like either `signed char' or `unsigned char'
8658 but not the same as either. */
8659 char_type_node
8660 = (signed_char
8661 ? make_signed_type (CHAR_TYPE_SIZE)
8662 : make_unsigned_type (CHAR_TYPE_SIZE));
8663 TYPE_STRING_FLAG (char_type_node) = 1;
8664
8665 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8666 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8667 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8668 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8669 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8670 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8671 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8672 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8673
8674 /* Define a boolean type. This type only represents boolean values but
8675 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8676 Front ends which want to override this size (i.e. Java) can redefine
8677 boolean_type_node before calling build_common_tree_nodes_2. */
8678 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8679 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8680 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8681 TYPE_PRECISION (boolean_type_node) = 1;
8682
8683 /* Fill in the rest of the sized types. Reuse existing type nodes
8684 when possible. */
8685 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8686 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8687 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8688 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8689 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8690
8691 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8692 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8693 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8694 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8695 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8696
8697 access_public_node = get_identifier ("public");
8698 access_protected_node = get_identifier ("protected");
8699 access_private_node = get_identifier ("private");
8700 }
8701
8702 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8703 It will create several other common tree nodes. */
8704
8705 void
8706 build_common_tree_nodes_2 (int short_double)
8707 {
8708 /* Define these next since types below may used them. */
8709 integer_zero_node = build_int_cst (NULL_TREE, 0);
8710 integer_one_node = build_int_cst (NULL_TREE, 1);
8711 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
8712
8713 size_zero_node = size_int (0);
8714 size_one_node = size_int (1);
8715 bitsize_zero_node = bitsize_int (0);
8716 bitsize_one_node = bitsize_int (1);
8717 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
8718
8719 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
8720 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
8721
8722 void_type_node = make_node (VOID_TYPE);
8723 layout_type (void_type_node);
8724
8725 /* We are not going to have real types in C with less than byte alignment,
8726 so we might as well not have any types that claim to have it. */
8727 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
8728 TYPE_USER_ALIGN (void_type_node) = 0;
8729
8730 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
8731 layout_type (TREE_TYPE (null_pointer_node));
8732
8733 ptr_type_node = build_pointer_type (void_type_node);
8734 const_ptr_type_node
8735 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
8736 fileptr_type_node = ptr_type_node;
8737
8738 float_type_node = make_node (REAL_TYPE);
8739 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
8740 layout_type (float_type_node);
8741
8742 double_type_node = make_node (REAL_TYPE);
8743 if (short_double)
8744 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
8745 else
8746 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
8747 layout_type (double_type_node);
8748
8749 long_double_type_node = make_node (REAL_TYPE);
8750 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
8751 layout_type (long_double_type_node);
8752
8753 float_ptr_type_node = build_pointer_type (float_type_node);
8754 double_ptr_type_node = build_pointer_type (double_type_node);
8755 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
8756 integer_ptr_type_node = build_pointer_type (integer_type_node);
8757
8758 /* Fixed size integer types. */
8759 uint32_type_node = build_nonstandard_integer_type (32, true);
8760 uint64_type_node = build_nonstandard_integer_type (64, true);
8761
8762 /* Decimal float types. */
8763 dfloat32_type_node = make_node (REAL_TYPE);
8764 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
8765 layout_type (dfloat32_type_node);
8766 SET_TYPE_MODE (dfloat32_type_node, SDmode);
8767 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
8768
8769 dfloat64_type_node = make_node (REAL_TYPE);
8770 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
8771 layout_type (dfloat64_type_node);
8772 SET_TYPE_MODE (dfloat64_type_node, DDmode);
8773 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
8774
8775 dfloat128_type_node = make_node (REAL_TYPE);
8776 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
8777 layout_type (dfloat128_type_node);
8778 SET_TYPE_MODE (dfloat128_type_node, TDmode);
8779 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
8780
8781 complex_integer_type_node = build_complex_type (integer_type_node);
8782 complex_float_type_node = build_complex_type (float_type_node);
8783 complex_double_type_node = build_complex_type (double_type_node);
8784 complex_long_double_type_node = build_complex_type (long_double_type_node);
8785
8786 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
8787 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
8788 sat_ ## KIND ## _type_node = \
8789 make_sat_signed_ ## KIND ## _type (SIZE); \
8790 sat_unsigned_ ## KIND ## _type_node = \
8791 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8792 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8793 unsigned_ ## KIND ## _type_node = \
8794 make_unsigned_ ## KIND ## _type (SIZE);
8795
8796 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
8797 sat_ ## WIDTH ## KIND ## _type_node = \
8798 make_sat_signed_ ## KIND ## _type (SIZE); \
8799 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
8800 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8801 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8802 unsigned_ ## WIDTH ## KIND ## _type_node = \
8803 make_unsigned_ ## KIND ## _type (SIZE);
8804
8805 /* Make fixed-point type nodes based on four different widths. */
8806 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
8807 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
8808 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
8809 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
8810 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
8811
8812 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
8813 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
8814 NAME ## _type_node = \
8815 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
8816 u ## NAME ## _type_node = \
8817 make_or_reuse_unsigned_ ## KIND ## _type \
8818 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
8819 sat_ ## NAME ## _type_node = \
8820 make_or_reuse_sat_signed_ ## KIND ## _type \
8821 (GET_MODE_BITSIZE (MODE ## mode)); \
8822 sat_u ## NAME ## _type_node = \
8823 make_or_reuse_sat_unsigned_ ## KIND ## _type \
8824 (GET_MODE_BITSIZE (U ## MODE ## mode));
8825
8826 /* Fixed-point type and mode nodes. */
8827 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
8828 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
8829 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
8830 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
8831 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
8832 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
8833 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
8834 MAKE_FIXED_MODE_NODE (accum, ha, HA)
8835 MAKE_FIXED_MODE_NODE (accum, sa, SA)
8836 MAKE_FIXED_MODE_NODE (accum, da, DA)
8837 MAKE_FIXED_MODE_NODE (accum, ta, TA)
8838
8839 {
8840 tree t = targetm.build_builtin_va_list ();
8841
8842 /* Many back-ends define record types without setting TYPE_NAME.
8843 If we copied the record type here, we'd keep the original
8844 record type without a name. This breaks name mangling. So,
8845 don't copy record types and let c_common_nodes_and_builtins()
8846 declare the type to be __builtin_va_list. */
8847 if (TREE_CODE (t) != RECORD_TYPE)
8848 t = build_variant_type_copy (t);
8849
8850 va_list_type_node = t;
8851 }
8852 }
8853
8854 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
8855
8856 static void
8857 local_define_builtin (const char *name, tree type, enum built_in_function code,
8858 const char *library_name, int ecf_flags)
8859 {
8860 tree decl;
8861
8862 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
8863 library_name, NULL_TREE);
8864 if (ecf_flags & ECF_CONST)
8865 TREE_READONLY (decl) = 1;
8866 if (ecf_flags & ECF_PURE)
8867 DECL_PURE_P (decl) = 1;
8868 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
8869 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
8870 if (ecf_flags & ECF_NORETURN)
8871 TREE_THIS_VOLATILE (decl) = 1;
8872 if (ecf_flags & ECF_NOTHROW)
8873 TREE_NOTHROW (decl) = 1;
8874 if (ecf_flags & ECF_MALLOC)
8875 DECL_IS_MALLOC (decl) = 1;
8876
8877 built_in_decls[code] = decl;
8878 implicit_built_in_decls[code] = decl;
8879 }
8880
8881 /* Call this function after instantiating all builtins that the language
8882 front end cares about. This will build the rest of the builtins that
8883 are relied upon by the tree optimizers and the middle-end. */
8884
8885 void
8886 build_common_builtin_nodes (void)
8887 {
8888 tree tmp, ftype;
8889
8890 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
8891 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
8892 {
8893 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8894 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8895 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8896 ftype = build_function_type (ptr_type_node, tmp);
8897
8898 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
8899 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
8900 "memcpy", ECF_NOTHROW);
8901 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
8902 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
8903 "memmove", ECF_NOTHROW);
8904 }
8905
8906 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
8907 {
8908 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8909 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8910 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8911 ftype = build_function_type (integer_type_node, tmp);
8912 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
8913 "memcmp", ECF_PURE | ECF_NOTHROW);
8914 }
8915
8916 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
8917 {
8918 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8919 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
8920 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8921 ftype = build_function_type (ptr_type_node, tmp);
8922 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
8923 "memset", ECF_NOTHROW);
8924 }
8925
8926 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
8927 {
8928 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8929 ftype = build_function_type (ptr_type_node, tmp);
8930 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
8931 "alloca", ECF_NOTHROW | ECF_MALLOC);
8932 }
8933
8934 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8935 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8936 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8937 ftype = build_function_type (void_type_node, tmp);
8938 local_define_builtin ("__builtin_init_trampoline", ftype,
8939 BUILT_IN_INIT_TRAMPOLINE,
8940 "__builtin_init_trampoline", ECF_NOTHROW);
8941
8942 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8943 ftype = build_function_type (ptr_type_node, tmp);
8944 local_define_builtin ("__builtin_adjust_trampoline", ftype,
8945 BUILT_IN_ADJUST_TRAMPOLINE,
8946 "__builtin_adjust_trampoline",
8947 ECF_CONST | ECF_NOTHROW);
8948
8949 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8950 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8951 ftype = build_function_type (void_type_node, tmp);
8952 local_define_builtin ("__builtin_nonlocal_goto", ftype,
8953 BUILT_IN_NONLOCAL_GOTO,
8954 "__builtin_nonlocal_goto",
8955 ECF_NORETURN | ECF_NOTHROW);
8956
8957 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8958 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8959 ftype = build_function_type (void_type_node, tmp);
8960 local_define_builtin ("__builtin_setjmp_setup", ftype,
8961 BUILT_IN_SETJMP_SETUP,
8962 "__builtin_setjmp_setup", ECF_NOTHROW);
8963
8964 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8965 ftype = build_function_type (ptr_type_node, tmp);
8966 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
8967 BUILT_IN_SETJMP_DISPATCHER,
8968 "__builtin_setjmp_dispatcher",
8969 ECF_PURE | ECF_NOTHROW);
8970
8971 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8972 ftype = build_function_type (void_type_node, tmp);
8973 local_define_builtin ("__builtin_setjmp_receiver", ftype,
8974 BUILT_IN_SETJMP_RECEIVER,
8975 "__builtin_setjmp_receiver", ECF_NOTHROW);
8976
8977 ftype = build_function_type (ptr_type_node, void_list_node);
8978 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
8979 "__builtin_stack_save", ECF_NOTHROW);
8980
8981 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8982 ftype = build_function_type (void_type_node, tmp);
8983 local_define_builtin ("__builtin_stack_restore", ftype,
8984 BUILT_IN_STACK_RESTORE,
8985 "__builtin_stack_restore", ECF_NOTHROW);
8986
8987 ftype = build_function_type (void_type_node, void_list_node);
8988 local_define_builtin ("__builtin_profile_func_enter", ftype,
8989 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
8990 local_define_builtin ("__builtin_profile_func_exit", ftype,
8991 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
8992
8993 /* Complex multiplication and division. These are handled as builtins
8994 rather than optabs because emit_library_call_value doesn't support
8995 complex. Further, we can do slightly better with folding these
8996 beasties if the real and complex parts of the arguments are separate. */
8997 {
8998 int mode;
8999
9000 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9001 {
9002 char mode_name_buf[4], *q;
9003 const char *p;
9004 enum built_in_function mcode, dcode;
9005 tree type, inner_type;
9006
9007 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9008 if (type == NULL)
9009 continue;
9010 inner_type = TREE_TYPE (type);
9011
9012 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
9013 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9014 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9015 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9016 ftype = build_function_type (type, tmp);
9017
9018 mcode = ((enum built_in_function)
9019 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9020 dcode = ((enum built_in_function)
9021 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9022
9023 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9024 *q = TOLOWER (*p);
9025 *q = '\0';
9026
9027 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9028 local_define_builtin (built_in_names[mcode], ftype, mcode,
9029 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
9030
9031 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9032 local_define_builtin (built_in_names[dcode], ftype, dcode,
9033 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
9034 }
9035 }
9036 }
9037
9038 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9039 better way.
9040
9041 If we requested a pointer to a vector, build up the pointers that
9042 we stripped off while looking for the inner type. Similarly for
9043 return values from functions.
9044
9045 The argument TYPE is the top of the chain, and BOTTOM is the
9046 new type which we will point to. */
9047
9048 tree
9049 reconstruct_complex_type (tree type, tree bottom)
9050 {
9051 tree inner, outer;
9052
9053 if (TREE_CODE (type) == POINTER_TYPE)
9054 {
9055 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9056 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9057 TYPE_REF_CAN_ALIAS_ALL (type));
9058 }
9059 else if (TREE_CODE (type) == REFERENCE_TYPE)
9060 {
9061 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9062 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9063 TYPE_REF_CAN_ALIAS_ALL (type));
9064 }
9065 else if (TREE_CODE (type) == ARRAY_TYPE)
9066 {
9067 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9068 outer = build_array_type (inner, TYPE_DOMAIN (type));
9069 }
9070 else if (TREE_CODE (type) == FUNCTION_TYPE)
9071 {
9072 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9073 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9074 }
9075 else if (TREE_CODE (type) == METHOD_TYPE)
9076 {
9077 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9078 /* The build_method_type_directly() routine prepends 'this' to argument list,
9079 so we must compensate by getting rid of it. */
9080 outer
9081 = build_method_type_directly
9082 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9083 inner,
9084 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9085 }
9086 else if (TREE_CODE (type) == OFFSET_TYPE)
9087 {
9088 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9089 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9090 }
9091 else
9092 return bottom;
9093
9094 return build_qualified_type (outer, TYPE_QUALS (type));
9095 }
9096
9097 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9098 the inner type. */
9099 tree
9100 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9101 {
9102 int nunits;
9103
9104 switch (GET_MODE_CLASS (mode))
9105 {
9106 case MODE_VECTOR_INT:
9107 case MODE_VECTOR_FLOAT:
9108 case MODE_VECTOR_FRACT:
9109 case MODE_VECTOR_UFRACT:
9110 case MODE_VECTOR_ACCUM:
9111 case MODE_VECTOR_UACCUM:
9112 nunits = GET_MODE_NUNITS (mode);
9113 break;
9114
9115 case MODE_INT:
9116 /* Check that there are no leftover bits. */
9117 gcc_assert (GET_MODE_BITSIZE (mode)
9118 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9119
9120 nunits = GET_MODE_BITSIZE (mode)
9121 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9122 break;
9123
9124 default:
9125 gcc_unreachable ();
9126 }
9127
9128 return make_vector_type (innertype, nunits, mode);
9129 }
9130
9131 /* Similarly, but takes the inner type and number of units, which must be
9132 a power of two. */
9133
9134 tree
9135 build_vector_type (tree innertype, int nunits)
9136 {
9137 return make_vector_type (innertype, nunits, VOIDmode);
9138 }
9139
9140 /* Similarly, but takes the inner type and number of units, which must be
9141 a power of two. */
9142
9143 tree
9144 build_opaque_vector_type (tree innertype, int nunits)
9145 {
9146 tree t;
9147 innertype = build_distinct_type_copy (innertype);
9148 t = make_vector_type (innertype, nunits, VOIDmode);
9149 TYPE_VECTOR_OPAQUE (t) = true;
9150 return t;
9151 }
9152
9153
9154 /* Build RESX_EXPR with given REGION_NUMBER. */
9155 tree
9156 build_resx (int region_number)
9157 {
9158 tree t;
9159 t = build1 (RESX_EXPR, void_type_node,
9160 build_int_cst (NULL_TREE, region_number));
9161 return t;
9162 }
9163
9164 /* Given an initializer INIT, return TRUE if INIT is zero or some
9165 aggregate of zeros. Otherwise return FALSE. */
9166 bool
9167 initializer_zerop (const_tree init)
9168 {
9169 tree elt;
9170
9171 STRIP_NOPS (init);
9172
9173 switch (TREE_CODE (init))
9174 {
9175 case INTEGER_CST:
9176 return integer_zerop (init);
9177
9178 case REAL_CST:
9179 /* ??? Note that this is not correct for C4X float formats. There,
9180 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9181 negative exponent. */
9182 return real_zerop (init)
9183 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9184
9185 case FIXED_CST:
9186 return fixed_zerop (init);
9187
9188 case COMPLEX_CST:
9189 return integer_zerop (init)
9190 || (real_zerop (init)
9191 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9192 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9193
9194 case VECTOR_CST:
9195 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9196 if (!initializer_zerop (TREE_VALUE (elt)))
9197 return false;
9198 return true;
9199
9200 case CONSTRUCTOR:
9201 {
9202 unsigned HOST_WIDE_INT idx;
9203
9204 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9205 if (!initializer_zerop (elt))
9206 return false;
9207 return true;
9208 }
9209
9210 default:
9211 return false;
9212 }
9213 }
9214
9215 /* Build an empty statement at location LOC. */
9216
9217 tree
9218 build_empty_stmt (location_t loc)
9219 {
9220 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9221 SET_EXPR_LOCATION (t, loc);
9222 return t;
9223 }
9224
9225
9226 /* Build an OpenMP clause with code CODE. LOC is the location of the
9227 clause. */
9228
9229 tree
9230 build_omp_clause (location_t loc, enum omp_clause_code code)
9231 {
9232 tree t;
9233 int size, length;
9234
9235 length = omp_clause_num_ops[code];
9236 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9237
9238 t = GGC_NEWVAR (union tree_node, size);
9239 memset (t, 0, size);
9240 TREE_SET_CODE (t, OMP_CLAUSE);
9241 OMP_CLAUSE_SET_CODE (t, code);
9242 OMP_CLAUSE_LOCATION (t) = loc;
9243
9244 #ifdef GATHER_STATISTICS
9245 tree_node_counts[(int) omp_clause_kind]++;
9246 tree_node_sizes[(int) omp_clause_kind] += size;
9247 #endif
9248
9249 return t;
9250 }
9251
9252 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9253 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9254 Except for the CODE and operand count field, other storage for the
9255 object is initialized to zeros. */
9256
9257 tree
9258 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9259 {
9260 tree t;
9261 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9262
9263 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9264 gcc_assert (len >= 1);
9265
9266 #ifdef GATHER_STATISTICS
9267 tree_node_counts[(int) e_kind]++;
9268 tree_node_sizes[(int) e_kind] += length;
9269 #endif
9270
9271 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
9272
9273 memset (t, 0, length);
9274
9275 TREE_SET_CODE (t, code);
9276
9277 /* Can't use TREE_OPERAND to store the length because if checking is
9278 enabled, it will try to check the length before we store it. :-P */
9279 t->exp.operands[0] = build_int_cst (sizetype, len);
9280
9281 return t;
9282 }
9283
9284
9285 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
9286 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
9287 arguments. */
9288
9289 tree
9290 build_call_list (tree return_type, tree fn, tree arglist)
9291 {
9292 tree t;
9293 int i;
9294
9295 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
9296 TREE_TYPE (t) = return_type;
9297 CALL_EXPR_FN (t) = fn;
9298 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9299 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
9300 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
9301 process_call_operands (t);
9302 return t;
9303 }
9304
9305 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9306 FN and a null static chain slot. NARGS is the number of call arguments
9307 which are specified as "..." arguments. */
9308
9309 tree
9310 build_call_nary (tree return_type, tree fn, int nargs, ...)
9311 {
9312 tree ret;
9313 va_list args;
9314 va_start (args, nargs);
9315 ret = build_call_valist (return_type, fn, nargs, args);
9316 va_end (args);
9317 return ret;
9318 }
9319
9320 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9321 FN and a null static chain slot. NARGS is the number of call arguments
9322 which are specified as a va_list ARGS. */
9323
9324 tree
9325 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9326 {
9327 tree t;
9328 int i;
9329
9330 t = build_vl_exp (CALL_EXPR, nargs + 3);
9331 TREE_TYPE (t) = return_type;
9332 CALL_EXPR_FN (t) = fn;
9333 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9334 for (i = 0; i < nargs; i++)
9335 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9336 process_call_operands (t);
9337 return t;
9338 }
9339
9340 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9341 FN and a null static chain slot. NARGS is the number of call arguments
9342 which are specified as a tree array ARGS. */
9343
9344 tree
9345 build_call_array_loc (location_t loc, tree return_type, tree fn,
9346 int nargs, const tree *args)
9347 {
9348 tree t;
9349 int i;
9350
9351 t = build_vl_exp (CALL_EXPR, nargs + 3);
9352 TREE_TYPE (t) = return_type;
9353 CALL_EXPR_FN (t) = fn;
9354 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9355 for (i = 0; i < nargs; i++)
9356 CALL_EXPR_ARG (t, i) = args[i];
9357 process_call_operands (t);
9358 SET_EXPR_LOCATION (t, loc);
9359 return t;
9360 }
9361
9362 /* Like build_call_array, but takes a VEC. */
9363
9364 tree
9365 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9366 {
9367 tree ret, t;
9368 unsigned int ix;
9369
9370 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9371 TREE_TYPE (ret) = return_type;
9372 CALL_EXPR_FN (ret) = fn;
9373 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9374 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
9375 CALL_EXPR_ARG (ret, ix) = t;
9376 process_call_operands (ret);
9377 return ret;
9378 }
9379
9380
9381 /* Returns true if it is possible to prove that the index of
9382 an array access REF (an ARRAY_REF expression) falls into the
9383 array bounds. */
9384
9385 bool
9386 in_array_bounds_p (tree ref)
9387 {
9388 tree idx = TREE_OPERAND (ref, 1);
9389 tree min, max;
9390
9391 if (TREE_CODE (idx) != INTEGER_CST)
9392 return false;
9393
9394 min = array_ref_low_bound (ref);
9395 max = array_ref_up_bound (ref);
9396 if (!min
9397 || !max
9398 || TREE_CODE (min) != INTEGER_CST
9399 || TREE_CODE (max) != INTEGER_CST)
9400 return false;
9401
9402 if (tree_int_cst_lt (idx, min)
9403 || tree_int_cst_lt (max, idx))
9404 return false;
9405
9406 return true;
9407 }
9408
9409 /* Returns true if it is possible to prove that the range of
9410 an array access REF (an ARRAY_RANGE_REF expression) falls
9411 into the array bounds. */
9412
9413 bool
9414 range_in_array_bounds_p (tree ref)
9415 {
9416 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9417 tree range_min, range_max, min, max;
9418
9419 range_min = TYPE_MIN_VALUE (domain_type);
9420 range_max = TYPE_MAX_VALUE (domain_type);
9421 if (!range_min
9422 || !range_max
9423 || TREE_CODE (range_min) != INTEGER_CST
9424 || TREE_CODE (range_max) != INTEGER_CST)
9425 return false;
9426
9427 min = array_ref_low_bound (ref);
9428 max = array_ref_up_bound (ref);
9429 if (!min
9430 || !max
9431 || TREE_CODE (min) != INTEGER_CST
9432 || TREE_CODE (max) != INTEGER_CST)
9433 return false;
9434
9435 if (tree_int_cst_lt (range_min, min)
9436 || tree_int_cst_lt (max, range_max))
9437 return false;
9438
9439 return true;
9440 }
9441
9442 /* Return true if T (assumed to be a DECL) must be assigned a memory
9443 location. */
9444
9445 bool
9446 needs_to_live_in_memory (const_tree t)
9447 {
9448 if (TREE_CODE (t) == SSA_NAME)
9449 t = SSA_NAME_VAR (t);
9450
9451 return (TREE_ADDRESSABLE (t)
9452 || is_global_var (t)
9453 || (TREE_CODE (t) == RESULT_DECL
9454 && aggregate_value_p (t, current_function_decl)));
9455 }
9456
9457 /* There are situations in which a language considers record types
9458 compatible which have different field lists. Decide if two fields
9459 are compatible. It is assumed that the parent records are compatible. */
9460
9461 bool
9462 fields_compatible_p (const_tree f1, const_tree f2)
9463 {
9464 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9465 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9466 return false;
9467
9468 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9469 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9470 return false;
9471
9472 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9473 return false;
9474
9475 return true;
9476 }
9477
9478 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9479
9480 tree
9481 find_compatible_field (tree record, tree orig_field)
9482 {
9483 tree f;
9484
9485 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9486 if (TREE_CODE (f) == FIELD_DECL
9487 && fields_compatible_p (f, orig_field))
9488 return f;
9489
9490 /* ??? Why isn't this on the main fields list? */
9491 f = TYPE_VFIELD (record);
9492 if (f && TREE_CODE (f) == FIELD_DECL
9493 && fields_compatible_p (f, orig_field))
9494 return f;
9495
9496 /* ??? We should abort here, but Java appears to do Bad Things
9497 with inherited fields. */
9498 return orig_field;
9499 }
9500
9501 /* Return value of a constant X and sign-extend it. */
9502
9503 HOST_WIDE_INT
9504 int_cst_value (const_tree x)
9505 {
9506 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9507 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9508
9509 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9510 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9511 || TREE_INT_CST_HIGH (x) == -1);
9512
9513 if (bits < HOST_BITS_PER_WIDE_INT)
9514 {
9515 bool negative = ((val >> (bits - 1)) & 1) != 0;
9516 if (negative)
9517 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9518 else
9519 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9520 }
9521
9522 return val;
9523 }
9524
9525 /* Return value of a constant X and sign-extend it. */
9526
9527 HOST_WIDEST_INT
9528 widest_int_cst_value (const_tree x)
9529 {
9530 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9531 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9532
9533 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9534 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9535 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9536 << HOST_BITS_PER_WIDE_INT);
9537 #else
9538 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9539 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9540 || TREE_INT_CST_HIGH (x) == -1);
9541 #endif
9542
9543 if (bits < HOST_BITS_PER_WIDEST_INT)
9544 {
9545 bool negative = ((val >> (bits - 1)) & 1) != 0;
9546 if (negative)
9547 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9548 else
9549 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9550 }
9551
9552 return val;
9553 }
9554
9555 /* If TYPE is an integral type, return an equivalent type which is
9556 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9557 return TYPE itself. */
9558
9559 tree
9560 signed_or_unsigned_type_for (int unsignedp, tree type)
9561 {
9562 tree t = type;
9563 if (POINTER_TYPE_P (type))
9564 t = size_type_node;
9565
9566 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9567 return t;
9568
9569 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9570 }
9571
9572 /* Returns unsigned variant of TYPE. */
9573
9574 tree
9575 unsigned_type_for (tree type)
9576 {
9577 return signed_or_unsigned_type_for (1, type);
9578 }
9579
9580 /* Returns signed variant of TYPE. */
9581
9582 tree
9583 signed_type_for (tree type)
9584 {
9585 return signed_or_unsigned_type_for (0, type);
9586 }
9587
9588 /* Returns the largest value obtainable by casting something in INNER type to
9589 OUTER type. */
9590
9591 tree
9592 upper_bound_in_type (tree outer, tree inner)
9593 {
9594 unsigned HOST_WIDE_INT lo, hi;
9595 unsigned int det = 0;
9596 unsigned oprec = TYPE_PRECISION (outer);
9597 unsigned iprec = TYPE_PRECISION (inner);
9598 unsigned prec;
9599
9600 /* Compute a unique number for every combination. */
9601 det |= (oprec > iprec) ? 4 : 0;
9602 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9603 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9604
9605 /* Determine the exponent to use. */
9606 switch (det)
9607 {
9608 case 0:
9609 case 1:
9610 /* oprec <= iprec, outer: signed, inner: don't care. */
9611 prec = oprec - 1;
9612 break;
9613 case 2:
9614 case 3:
9615 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9616 prec = oprec;
9617 break;
9618 case 4:
9619 /* oprec > iprec, outer: signed, inner: signed. */
9620 prec = iprec - 1;
9621 break;
9622 case 5:
9623 /* oprec > iprec, outer: signed, inner: unsigned. */
9624 prec = iprec;
9625 break;
9626 case 6:
9627 /* oprec > iprec, outer: unsigned, inner: signed. */
9628 prec = oprec;
9629 break;
9630 case 7:
9631 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9632 prec = iprec;
9633 break;
9634 default:
9635 gcc_unreachable ();
9636 }
9637
9638 /* Compute 2^^prec - 1. */
9639 if (prec <= HOST_BITS_PER_WIDE_INT)
9640 {
9641 hi = 0;
9642 lo = ((~(unsigned HOST_WIDE_INT) 0)
9643 >> (HOST_BITS_PER_WIDE_INT - prec));
9644 }
9645 else
9646 {
9647 hi = ((~(unsigned HOST_WIDE_INT) 0)
9648 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9649 lo = ~(unsigned HOST_WIDE_INT) 0;
9650 }
9651
9652 return build_int_cst_wide (outer, lo, hi);
9653 }
9654
9655 /* Returns the smallest value obtainable by casting something in INNER type to
9656 OUTER type. */
9657
9658 tree
9659 lower_bound_in_type (tree outer, tree inner)
9660 {
9661 unsigned HOST_WIDE_INT lo, hi;
9662 unsigned oprec = TYPE_PRECISION (outer);
9663 unsigned iprec = TYPE_PRECISION (inner);
9664
9665 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9666 and obtain 0. */
9667 if (TYPE_UNSIGNED (outer)
9668 /* If we are widening something of an unsigned type, OUTER type
9669 contains all values of INNER type. In particular, both INNER
9670 and OUTER types have zero in common. */
9671 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9672 lo = hi = 0;
9673 else
9674 {
9675 /* If we are widening a signed type to another signed type, we
9676 want to obtain -2^^(iprec-1). If we are keeping the
9677 precision or narrowing to a signed type, we want to obtain
9678 -2^(oprec-1). */
9679 unsigned prec = oprec > iprec ? iprec : oprec;
9680
9681 if (prec <= HOST_BITS_PER_WIDE_INT)
9682 {
9683 hi = ~(unsigned HOST_WIDE_INT) 0;
9684 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
9685 }
9686 else
9687 {
9688 hi = ((~(unsigned HOST_WIDE_INT) 0)
9689 << (prec - HOST_BITS_PER_WIDE_INT - 1));
9690 lo = 0;
9691 }
9692 }
9693
9694 return build_int_cst_wide (outer, lo, hi);
9695 }
9696
9697 /* Return nonzero if two operands that are suitable for PHI nodes are
9698 necessarily equal. Specifically, both ARG0 and ARG1 must be either
9699 SSA_NAME or invariant. Note that this is strictly an optimization.
9700 That is, callers of this function can directly call operand_equal_p
9701 and get the same result, only slower. */
9702
9703 int
9704 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
9705 {
9706 if (arg0 == arg1)
9707 return 1;
9708 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
9709 return 0;
9710 return operand_equal_p (arg0, arg1, 0);
9711 }
9712
9713 /* Returns number of zeros at the end of binary representation of X.
9714
9715 ??? Use ffs if available? */
9716
9717 tree
9718 num_ending_zeros (const_tree x)
9719 {
9720 unsigned HOST_WIDE_INT fr, nfr;
9721 unsigned num, abits;
9722 tree type = TREE_TYPE (x);
9723
9724 if (TREE_INT_CST_LOW (x) == 0)
9725 {
9726 num = HOST_BITS_PER_WIDE_INT;
9727 fr = TREE_INT_CST_HIGH (x);
9728 }
9729 else
9730 {
9731 num = 0;
9732 fr = TREE_INT_CST_LOW (x);
9733 }
9734
9735 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
9736 {
9737 nfr = fr >> abits;
9738 if (nfr << abits == fr)
9739 {
9740 num += abits;
9741 fr = nfr;
9742 }
9743 }
9744
9745 if (num > TYPE_PRECISION (type))
9746 num = TYPE_PRECISION (type);
9747
9748 return build_int_cst_type (type, num);
9749 }
9750
9751
9752 #define WALK_SUBTREE(NODE) \
9753 do \
9754 { \
9755 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
9756 if (result) \
9757 return result; \
9758 } \
9759 while (0)
9760
9761 /* This is a subroutine of walk_tree that walks field of TYPE that are to
9762 be walked whenever a type is seen in the tree. Rest of operands and return
9763 value are as for walk_tree. */
9764
9765 static tree
9766 walk_type_fields (tree type, walk_tree_fn func, void *data,
9767 struct pointer_set_t *pset, walk_tree_lh lh)
9768 {
9769 tree result = NULL_TREE;
9770
9771 switch (TREE_CODE (type))
9772 {
9773 case POINTER_TYPE:
9774 case REFERENCE_TYPE:
9775 /* We have to worry about mutually recursive pointers. These can't
9776 be written in C. They can in Ada. It's pathological, but
9777 there's an ACATS test (c38102a) that checks it. Deal with this
9778 by checking if we're pointing to another pointer, that one
9779 points to another pointer, that one does too, and we have no htab.
9780 If so, get a hash table. We check three levels deep to avoid
9781 the cost of the hash table if we don't need one. */
9782 if (POINTER_TYPE_P (TREE_TYPE (type))
9783 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
9784 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
9785 && !pset)
9786 {
9787 result = walk_tree_without_duplicates (&TREE_TYPE (type),
9788 func, data);
9789 if (result)
9790 return result;
9791
9792 break;
9793 }
9794
9795 /* ... fall through ... */
9796
9797 case COMPLEX_TYPE:
9798 WALK_SUBTREE (TREE_TYPE (type));
9799 break;
9800
9801 case METHOD_TYPE:
9802 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
9803
9804 /* Fall through. */
9805
9806 case FUNCTION_TYPE:
9807 WALK_SUBTREE (TREE_TYPE (type));
9808 {
9809 tree arg;
9810
9811 /* We never want to walk into default arguments. */
9812 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
9813 WALK_SUBTREE (TREE_VALUE (arg));
9814 }
9815 break;
9816
9817 case ARRAY_TYPE:
9818 /* Don't follow this nodes's type if a pointer for fear that
9819 we'll have infinite recursion. If we have a PSET, then we
9820 need not fear. */
9821 if (pset
9822 || (!POINTER_TYPE_P (TREE_TYPE (type))
9823 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
9824 WALK_SUBTREE (TREE_TYPE (type));
9825 WALK_SUBTREE (TYPE_DOMAIN (type));
9826 break;
9827
9828 case OFFSET_TYPE:
9829 WALK_SUBTREE (TREE_TYPE (type));
9830 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
9831 break;
9832
9833 default:
9834 break;
9835 }
9836
9837 return NULL_TREE;
9838 }
9839
9840 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
9841 called with the DATA and the address of each sub-tree. If FUNC returns a
9842 non-NULL value, the traversal is stopped, and the value returned by FUNC
9843 is returned. If PSET is non-NULL it is used to record the nodes visited,
9844 and to avoid visiting a node more than once. */
9845
9846 tree
9847 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
9848 struct pointer_set_t *pset, walk_tree_lh lh)
9849 {
9850 enum tree_code code;
9851 int walk_subtrees;
9852 tree result;
9853
9854 #define WALK_SUBTREE_TAIL(NODE) \
9855 do \
9856 { \
9857 tp = & (NODE); \
9858 goto tail_recurse; \
9859 } \
9860 while (0)
9861
9862 tail_recurse:
9863 /* Skip empty subtrees. */
9864 if (!*tp)
9865 return NULL_TREE;
9866
9867 /* Don't walk the same tree twice, if the user has requested
9868 that we avoid doing so. */
9869 if (pset && pointer_set_insert (pset, *tp))
9870 return NULL_TREE;
9871
9872 /* Call the function. */
9873 walk_subtrees = 1;
9874 result = (*func) (tp, &walk_subtrees, data);
9875
9876 /* If we found something, return it. */
9877 if (result)
9878 return result;
9879
9880 code = TREE_CODE (*tp);
9881
9882 /* Even if we didn't, FUNC may have decided that there was nothing
9883 interesting below this point in the tree. */
9884 if (!walk_subtrees)
9885 {
9886 /* But we still need to check our siblings. */
9887 if (code == TREE_LIST)
9888 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
9889 else if (code == OMP_CLAUSE)
9890 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
9891 else
9892 return NULL_TREE;
9893 }
9894
9895 if (lh)
9896 {
9897 result = (*lh) (tp, &walk_subtrees, func, data, pset);
9898 if (result || !walk_subtrees)
9899 return result;
9900 }
9901
9902 switch (code)
9903 {
9904 case ERROR_MARK:
9905 case IDENTIFIER_NODE:
9906 case INTEGER_CST:
9907 case REAL_CST:
9908 case FIXED_CST:
9909 case VECTOR_CST:
9910 case STRING_CST:
9911 case BLOCK:
9912 case PLACEHOLDER_EXPR:
9913 case SSA_NAME:
9914 case FIELD_DECL:
9915 case RESULT_DECL:
9916 /* None of these have subtrees other than those already walked
9917 above. */
9918 break;
9919
9920 case TREE_LIST:
9921 WALK_SUBTREE (TREE_VALUE (*tp));
9922 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
9923 break;
9924
9925 case TREE_VEC:
9926 {
9927 int len = TREE_VEC_LENGTH (*tp);
9928
9929 if (len == 0)
9930 break;
9931
9932 /* Walk all elements but the first. */
9933 while (--len)
9934 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
9935
9936 /* Now walk the first one as a tail call. */
9937 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
9938 }
9939
9940 case COMPLEX_CST:
9941 WALK_SUBTREE (TREE_REALPART (*tp));
9942 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
9943
9944 case CONSTRUCTOR:
9945 {
9946 unsigned HOST_WIDE_INT idx;
9947 constructor_elt *ce;
9948
9949 for (idx = 0;
9950 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
9951 idx++)
9952 WALK_SUBTREE (ce->value);
9953 }
9954 break;
9955
9956 case SAVE_EXPR:
9957 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
9958
9959 case BIND_EXPR:
9960 {
9961 tree decl;
9962 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
9963 {
9964 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
9965 into declarations that are just mentioned, rather than
9966 declared; they don't really belong to this part of the tree.
9967 And, we can see cycles: the initializer for a declaration
9968 can refer to the declaration itself. */
9969 WALK_SUBTREE (DECL_INITIAL (decl));
9970 WALK_SUBTREE (DECL_SIZE (decl));
9971 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
9972 }
9973 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
9974 }
9975
9976 case STATEMENT_LIST:
9977 {
9978 tree_stmt_iterator i;
9979 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
9980 WALK_SUBTREE (*tsi_stmt_ptr (i));
9981 }
9982 break;
9983
9984 case OMP_CLAUSE:
9985 switch (OMP_CLAUSE_CODE (*tp))
9986 {
9987 case OMP_CLAUSE_PRIVATE:
9988 case OMP_CLAUSE_SHARED:
9989 case OMP_CLAUSE_FIRSTPRIVATE:
9990 case OMP_CLAUSE_COPYIN:
9991 case OMP_CLAUSE_COPYPRIVATE:
9992 case OMP_CLAUSE_IF:
9993 case OMP_CLAUSE_NUM_THREADS:
9994 case OMP_CLAUSE_SCHEDULE:
9995 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
9996 /* FALLTHRU */
9997
9998 case OMP_CLAUSE_NOWAIT:
9999 case OMP_CLAUSE_ORDERED:
10000 case OMP_CLAUSE_DEFAULT:
10001 case OMP_CLAUSE_UNTIED:
10002 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10003
10004 case OMP_CLAUSE_LASTPRIVATE:
10005 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10006 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10007 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10008
10009 case OMP_CLAUSE_COLLAPSE:
10010 {
10011 int i;
10012 for (i = 0; i < 3; i++)
10013 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10014 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10015 }
10016
10017 case OMP_CLAUSE_REDUCTION:
10018 {
10019 int i;
10020 for (i = 0; i < 4; i++)
10021 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10022 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10023 }
10024
10025 default:
10026 gcc_unreachable ();
10027 }
10028 break;
10029
10030 case TARGET_EXPR:
10031 {
10032 int i, len;
10033
10034 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10035 But, we only want to walk once. */
10036 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10037 for (i = 0; i < len; ++i)
10038 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10039 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10040 }
10041
10042 case DECL_EXPR:
10043 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10044 defining. We only want to walk into these fields of a type in this
10045 case and not in the general case of a mere reference to the type.
10046
10047 The criterion is as follows: if the field can be an expression, it
10048 must be walked only here. This should be in keeping with the fields
10049 that are directly gimplified in gimplify_type_sizes in order for the
10050 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10051 variable-sized types.
10052
10053 Note that DECLs get walked as part of processing the BIND_EXPR. */
10054 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10055 {
10056 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10057 if (TREE_CODE (*type_p) == ERROR_MARK)
10058 return NULL_TREE;
10059
10060 /* Call the function for the type. See if it returns anything or
10061 doesn't want us to continue. If we are to continue, walk both
10062 the normal fields and those for the declaration case. */
10063 result = (*func) (type_p, &walk_subtrees, data);
10064 if (result || !walk_subtrees)
10065 return result;
10066
10067 result = walk_type_fields (*type_p, func, data, pset, lh);
10068 if (result)
10069 return result;
10070
10071 /* If this is a record type, also walk the fields. */
10072 if (TREE_CODE (*type_p) == RECORD_TYPE
10073 || TREE_CODE (*type_p) == UNION_TYPE
10074 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10075 {
10076 tree field;
10077
10078 for (field = TYPE_FIELDS (*type_p); field;
10079 field = TREE_CHAIN (field))
10080 {
10081 /* We'd like to look at the type of the field, but we can
10082 easily get infinite recursion. So assume it's pointed
10083 to elsewhere in the tree. Also, ignore things that
10084 aren't fields. */
10085 if (TREE_CODE (field) != FIELD_DECL)
10086 continue;
10087
10088 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10089 WALK_SUBTREE (DECL_SIZE (field));
10090 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10091 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10092 WALK_SUBTREE (DECL_QUALIFIER (field));
10093 }
10094 }
10095
10096 /* Same for scalar types. */
10097 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10098 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10099 || TREE_CODE (*type_p) == INTEGER_TYPE
10100 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10101 || TREE_CODE (*type_p) == REAL_TYPE)
10102 {
10103 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10104 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10105 }
10106
10107 WALK_SUBTREE (TYPE_SIZE (*type_p));
10108 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10109 }
10110 /* FALLTHRU */
10111
10112 default:
10113 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10114 {
10115 int i, len;
10116
10117 /* Walk over all the sub-trees of this operand. */
10118 len = TREE_OPERAND_LENGTH (*tp);
10119
10120 /* Go through the subtrees. We need to do this in forward order so
10121 that the scope of a FOR_EXPR is handled properly. */
10122 if (len)
10123 {
10124 for (i = 0; i < len - 1; ++i)
10125 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10126 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10127 }
10128 }
10129 /* If this is a type, walk the needed fields in the type. */
10130 else if (TYPE_P (*tp))
10131 return walk_type_fields (*tp, func, data, pset, lh);
10132 break;
10133 }
10134
10135 /* We didn't find what we were looking for. */
10136 return NULL_TREE;
10137
10138 #undef WALK_SUBTREE_TAIL
10139 }
10140 #undef WALK_SUBTREE
10141
10142 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10143
10144 tree
10145 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10146 walk_tree_lh lh)
10147 {
10148 tree result;
10149 struct pointer_set_t *pset;
10150
10151 pset = pointer_set_create ();
10152 result = walk_tree_1 (tp, func, data, pset, lh);
10153 pointer_set_destroy (pset);
10154 return result;
10155 }
10156
10157
10158 tree *
10159 tree_block (tree t)
10160 {
10161 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10162
10163 if (IS_EXPR_CODE_CLASS (c))
10164 return &t->exp.block;
10165 gcc_unreachable ();
10166 return NULL;
10167 }
10168
10169 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
10170 FIXME: don't use this function. It exists for compatibility with
10171 the old representation of CALL_EXPRs where a list was used to hold the
10172 arguments. Places that currently extract the arglist from a CALL_EXPR
10173 ought to be rewritten to use the CALL_EXPR itself. */
10174 tree
10175 call_expr_arglist (tree exp)
10176 {
10177 tree arglist = NULL_TREE;
10178 int i;
10179 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
10180 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
10181 return arglist;
10182 }
10183
10184
10185 /* Create a nameless artificial label and put it in the current
10186 function context. The label has a location of LOC. Returns the
10187 newly created label. */
10188
10189 tree
10190 create_artificial_label (location_t loc)
10191 {
10192 tree lab = build_decl (loc,
10193 LABEL_DECL, NULL_TREE, void_type_node);
10194
10195 DECL_ARTIFICIAL (lab) = 1;
10196 DECL_IGNORED_P (lab) = 1;
10197 DECL_CONTEXT (lab) = current_function_decl;
10198 return lab;
10199 }
10200
10201 /* Given a tree, try to return a useful variable name that we can use
10202 to prefix a temporary that is being assigned the value of the tree.
10203 I.E. given <temp> = &A, return A. */
10204
10205 const char *
10206 get_name (tree t)
10207 {
10208 tree stripped_decl;
10209
10210 stripped_decl = t;
10211 STRIP_NOPS (stripped_decl);
10212 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10213 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10214 else
10215 {
10216 switch (TREE_CODE (stripped_decl))
10217 {
10218 case ADDR_EXPR:
10219 return get_name (TREE_OPERAND (stripped_decl, 0));
10220 default:
10221 return NULL;
10222 }
10223 }
10224 }
10225
10226 /* Return true if TYPE has a variable argument list. */
10227
10228 bool
10229 stdarg_p (tree fntype)
10230 {
10231 function_args_iterator args_iter;
10232 tree n = NULL_TREE, t;
10233
10234 if (!fntype)
10235 return false;
10236
10237 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10238 {
10239 n = t;
10240 }
10241
10242 return n != NULL_TREE && n != void_type_node;
10243 }
10244
10245 /* Return true if TYPE has a prototype. */
10246
10247 bool
10248 prototype_p (tree fntype)
10249 {
10250 tree t;
10251
10252 gcc_assert (fntype != NULL_TREE);
10253
10254 t = TYPE_ARG_TYPES (fntype);
10255 return (t != NULL_TREE);
10256 }
10257
10258 /* If BLOCK is inlined from an __attribute__((__artificial__))
10259 routine, return pointer to location from where it has been
10260 called. */
10261 location_t *
10262 block_nonartificial_location (tree block)
10263 {
10264 location_t *ret = NULL;
10265
10266 while (block && TREE_CODE (block) == BLOCK
10267 && BLOCK_ABSTRACT_ORIGIN (block))
10268 {
10269 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10270
10271 while (TREE_CODE (ao) == BLOCK
10272 && BLOCK_ABSTRACT_ORIGIN (ao)
10273 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10274 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10275
10276 if (TREE_CODE (ao) == FUNCTION_DECL)
10277 {
10278 /* If AO is an artificial inline, point RET to the
10279 call site locus at which it has been inlined and continue
10280 the loop, in case AO's caller is also an artificial
10281 inline. */
10282 if (DECL_DECLARED_INLINE_P (ao)
10283 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10284 ret = &BLOCK_SOURCE_LOCATION (block);
10285 else
10286 break;
10287 }
10288 else if (TREE_CODE (ao) != BLOCK)
10289 break;
10290
10291 block = BLOCK_SUPERCONTEXT (block);
10292 }
10293 return ret;
10294 }
10295
10296
10297 /* If EXP is inlined from an __attribute__((__artificial__))
10298 function, return the location of the original call expression. */
10299
10300 location_t
10301 tree_nonartificial_location (tree exp)
10302 {
10303 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10304
10305 if (loc)
10306 return *loc;
10307 else
10308 return EXPR_LOCATION (exp);
10309 }
10310
10311
10312 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10313 nodes. */
10314
10315 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10316
10317 static hashval_t
10318 cl_option_hash_hash (const void *x)
10319 {
10320 const_tree const t = (const_tree) x;
10321 const char *p;
10322 size_t i;
10323 size_t len = 0;
10324 hashval_t hash = 0;
10325
10326 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10327 {
10328 p = (const char *)TREE_OPTIMIZATION (t);
10329 len = sizeof (struct cl_optimization);
10330 }
10331
10332 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10333 {
10334 p = (const char *)TREE_TARGET_OPTION (t);
10335 len = sizeof (struct cl_target_option);
10336 }
10337
10338 else
10339 gcc_unreachable ();
10340
10341 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10342 something else. */
10343 for (i = 0; i < len; i++)
10344 if (p[i])
10345 hash = (hash << 4) ^ ((i << 2) | p[i]);
10346
10347 return hash;
10348 }
10349
10350 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10351 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10352 same. */
10353
10354 static int
10355 cl_option_hash_eq (const void *x, const void *y)
10356 {
10357 const_tree const xt = (const_tree) x;
10358 const_tree const yt = (const_tree) y;
10359 const char *xp;
10360 const char *yp;
10361 size_t len;
10362
10363 if (TREE_CODE (xt) != TREE_CODE (yt))
10364 return 0;
10365
10366 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10367 {
10368 xp = (const char *)TREE_OPTIMIZATION (xt);
10369 yp = (const char *)TREE_OPTIMIZATION (yt);
10370 len = sizeof (struct cl_optimization);
10371 }
10372
10373 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10374 {
10375 xp = (const char *)TREE_TARGET_OPTION (xt);
10376 yp = (const char *)TREE_TARGET_OPTION (yt);
10377 len = sizeof (struct cl_target_option);
10378 }
10379
10380 else
10381 gcc_unreachable ();
10382
10383 return (memcmp (xp, yp, len) == 0);
10384 }
10385
10386 /* Build an OPTIMIZATION_NODE based on the current options. */
10387
10388 tree
10389 build_optimization_node (void)
10390 {
10391 tree t;
10392 void **slot;
10393
10394 /* Use the cache of optimization nodes. */
10395
10396 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
10397
10398 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10399 t = (tree) *slot;
10400 if (!t)
10401 {
10402 /* Insert this one into the hash table. */
10403 t = cl_optimization_node;
10404 *slot = t;
10405
10406 /* Make a new node for next time round. */
10407 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10408 }
10409
10410 return t;
10411 }
10412
10413 /* Build a TARGET_OPTION_NODE based on the current options. */
10414
10415 tree
10416 build_target_option_node (void)
10417 {
10418 tree t;
10419 void **slot;
10420
10421 /* Use the cache of optimization nodes. */
10422
10423 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
10424
10425 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10426 t = (tree) *slot;
10427 if (!t)
10428 {
10429 /* Insert this one into the hash table. */
10430 t = cl_target_option_node;
10431 *slot = t;
10432
10433 /* Make a new node for next time round. */
10434 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10435 }
10436
10437 return t;
10438 }
10439
10440 /* Determine the "ultimate origin" of a block. The block may be an inlined
10441 instance of an inlined instance of a block which is local to an inline
10442 function, so we have to trace all of the way back through the origin chain
10443 to find out what sort of node actually served as the original seed for the
10444 given block. */
10445
10446 tree
10447 block_ultimate_origin (const_tree block)
10448 {
10449 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10450
10451 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10452 nodes in the function to point to themselves; ignore that if
10453 we're trying to output the abstract instance of this function. */
10454 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10455 return NULL_TREE;
10456
10457 if (immediate_origin == NULL_TREE)
10458 return NULL_TREE;
10459 else
10460 {
10461 tree ret_val;
10462 tree lookahead = immediate_origin;
10463
10464 do
10465 {
10466 ret_val = lookahead;
10467 lookahead = (TREE_CODE (ret_val) == BLOCK
10468 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10469 }
10470 while (lookahead != NULL && lookahead != ret_val);
10471
10472 /* The block's abstract origin chain may not be the *ultimate* origin of
10473 the block. It could lead to a DECL that has an abstract origin set.
10474 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10475 will give us if it has one). Note that DECL's abstract origins are
10476 supposed to be the most distant ancestor (or so decl_ultimate_origin
10477 claims), so we don't need to loop following the DECL origins. */
10478 if (DECL_P (ret_val))
10479 return DECL_ORIGIN (ret_val);
10480
10481 return ret_val;
10482 }
10483 }
10484
10485 /* Return true if T1 and T2 are equivalent lists. */
10486
10487 bool
10488 list_equal_p (const_tree t1, const_tree t2)
10489 {
10490 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10491 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10492 return false;
10493 return !t1 && !t2;
10494 }
10495
10496 /* Return true iff conversion in EXP generates no instruction. Mark
10497 it inline so that we fully inline into the stripping functions even
10498 though we have two uses of this function. */
10499
10500 static inline bool
10501 tree_nop_conversion (const_tree exp)
10502 {
10503 tree outer_type, inner_type;
10504
10505 if (!CONVERT_EXPR_P (exp)
10506 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10507 return false;
10508 if (TREE_OPERAND (exp, 0) == error_mark_node)
10509 return false;
10510
10511 outer_type = TREE_TYPE (exp);
10512 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10513
10514 /* Use precision rather then machine mode when we can, which gives
10515 the correct answer even for submode (bit-field) types. */
10516 if ((INTEGRAL_TYPE_P (outer_type)
10517 || POINTER_TYPE_P (outer_type)
10518 || TREE_CODE (outer_type) == OFFSET_TYPE)
10519 && (INTEGRAL_TYPE_P (inner_type)
10520 || POINTER_TYPE_P (inner_type)
10521 || TREE_CODE (inner_type) == OFFSET_TYPE))
10522 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10523
10524 /* Otherwise fall back on comparing machine modes (e.g. for
10525 aggregate types, floats). */
10526 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10527 }
10528
10529 /* Return true iff conversion in EXP generates no instruction. Don't
10530 consider conversions changing the signedness. */
10531
10532 static bool
10533 tree_sign_nop_conversion (const_tree exp)
10534 {
10535 tree outer_type, inner_type;
10536
10537 if (!tree_nop_conversion (exp))
10538 return false;
10539
10540 outer_type = TREE_TYPE (exp);
10541 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10542
10543 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10544 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10545 }
10546
10547 /* Strip conversions from EXP according to tree_nop_conversion and
10548 return the resulting expression. */
10549
10550 tree
10551 tree_strip_nop_conversions (tree exp)
10552 {
10553 while (tree_nop_conversion (exp))
10554 exp = TREE_OPERAND (exp, 0);
10555 return exp;
10556 }
10557
10558 /* Strip conversions from EXP according to tree_sign_nop_conversion
10559 and return the resulting expression. */
10560
10561 tree
10562 tree_strip_sign_nop_conversions (tree exp)
10563 {
10564 while (tree_sign_nop_conversion (exp))
10565 exp = TREE_OPERAND (exp, 0);
10566 return exp;
10567 }
10568
10569
10570 #include "gt-tree.h"