re PR c++/68385 (ICE building libstdc++ on arm-none-eabi)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64
65 /* Tree code classes. */
66
67 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
68 #define END_OF_BASE_TREE_CODES tcc_exceptional,
69
70 const enum tree_code_class tree_code_type[] = {
71 #include "all-tree.def"
72 };
73
74 #undef DEFTREECODE
75 #undef END_OF_BASE_TREE_CODES
76
77 /* Table indexed by tree code giving number of expression
78 operands beyond the fixed part of the node structure.
79 Not used for types or decls. */
80
81 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
82 #define END_OF_BASE_TREE_CODES 0,
83
84 const unsigned char tree_code_length[] = {
85 #include "all-tree.def"
86 };
87
88 #undef DEFTREECODE
89 #undef END_OF_BASE_TREE_CODES
90
91 /* Names of tree components.
92 Used for printing out the tree and error messages. */
93 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
94 #define END_OF_BASE_TREE_CODES "@dummy",
95
96 static const char *const tree_code_name[] = {
97 #include "all-tree.def"
98 };
99
100 #undef DEFTREECODE
101 #undef END_OF_BASE_TREE_CODES
102
103 /* Each tree code class has an associated string representation.
104 These must correspond to the tree_code_class entries. */
105
106 const char *const tree_code_class_strings[] =
107 {
108 "exceptional",
109 "constant",
110 "type",
111 "declaration",
112 "reference",
113 "comparison",
114 "unary",
115 "binary",
116 "statement",
117 "vl_exp",
118 "expression"
119 };
120
121 /* obstack.[ch] explicitly declined to prototype this. */
122 extern int _obstack_allocated_p (struct obstack *h, void *obj);
123
124 /* Statistics-gathering stuff. */
125
126 static int tree_code_counts[MAX_TREE_CODES];
127 int tree_node_counts[(int) all_kinds];
128 int tree_node_sizes[(int) all_kinds];
129
130 /* Keep in sync with tree.h:enum tree_node_kind. */
131 static const char * const tree_node_kind_names[] = {
132 "decls",
133 "types",
134 "blocks",
135 "stmts",
136 "refs",
137 "exprs",
138 "constants",
139 "identifiers",
140 "vecs",
141 "binfos",
142 "ssa names",
143 "constructors",
144 "random kinds",
145 "lang_decl kinds",
146 "lang_type kinds",
147 "omp clauses",
148 };
149
150 /* Unique id for next decl created. */
151 static GTY(()) int next_decl_uid;
152 /* Unique id for next type created. */
153 static GTY(()) int next_type_uid = 1;
154 /* Unique id for next debug decl created. Use negative numbers,
155 to catch erroneous uses. */
156 static GTY(()) int next_debug_decl_uid;
157
158 /* Since we cannot rehash a type after it is in the table, we have to
159 keep the hash code. */
160
161 struct GTY((for_user)) type_hash {
162 unsigned long hash;
163 tree type;
164 };
165
166 /* Initial size of the hash table (rounded to next prime). */
167 #define TYPE_HASH_INITIAL_SIZE 1000
168
169 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
170 {
171 static hashval_t hash (type_hash *t) { return t->hash; }
172 static bool equal (type_hash *a, type_hash *b);
173
174 static int
175 keep_cache_entry (type_hash *&t)
176 {
177 return ggc_marked_p (t->type);
178 }
179 };
180
181 /* Now here is the hash table. When recording a type, it is added to
182 the slot whose index is the hash code. Note that the hash table is
183 used for several kinds of types (function types, array types and
184 array index range types, for now). While all these live in the
185 same table, they are completely independent, and the hash code is
186 computed differently for each of these. */
187
188 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
189
190 /* Hash table and temporary node for larger integer const values. */
191 static GTY (()) tree int_cst_node;
192
193 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
194 {
195 static hashval_t hash (tree t);
196 static bool equal (tree x, tree y);
197 };
198
199 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
200
201 /* Hash table for optimization flags and target option flags. Use the same
202 hash table for both sets of options. Nodes for building the current
203 optimization and target option nodes. The assumption is most of the time
204 the options created will already be in the hash table, so we avoid
205 allocating and freeing up a node repeatably. */
206 static GTY (()) tree cl_optimization_node;
207 static GTY (()) tree cl_target_option_node;
208
209 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211 static hashval_t hash (tree t);
212 static bool equal (tree x, tree y);
213 };
214
215 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
216
217 /* General tree->tree mapping structure for use in hash tables. */
218
219
220 static GTY ((cache))
221 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
222
223 static GTY ((cache))
224 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
225
226 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
227 {
228 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
229
230 static bool
231 equal (tree_vec_map *a, tree_vec_map *b)
232 {
233 return a->base.from == b->base.from;
234 }
235
236 static int
237 keep_cache_entry (tree_vec_map *&m)
238 {
239 return ggc_marked_p (m->base.from);
240 }
241 };
242
243 static GTY ((cache))
244 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
245
246 static void set_type_quals (tree, int);
247 static void print_type_hash_statistics (void);
248 static void print_debug_expr_statistics (void);
249 static void print_value_expr_statistics (void);
250 static void type_hash_list (const_tree, inchash::hash &);
251 static void attribute_hash_list (const_tree, inchash::hash &);
252
253 tree global_trees[TI_MAX];
254 tree integer_types[itk_none];
255
256 bool int_n_enabled_p[NUM_INT_N_ENTS];
257 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
258
259 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
260
261 /* Number of operands for each OpenMP clause. */
262 unsigned const char omp_clause_num_ops[] =
263 {
264 0, /* OMP_CLAUSE_ERROR */
265 1, /* OMP_CLAUSE_PRIVATE */
266 1, /* OMP_CLAUSE_SHARED */
267 1, /* OMP_CLAUSE_FIRSTPRIVATE */
268 2, /* OMP_CLAUSE_LASTPRIVATE */
269 5, /* OMP_CLAUSE_REDUCTION */
270 1, /* OMP_CLAUSE_COPYIN */
271 1, /* OMP_CLAUSE_COPYPRIVATE */
272 3, /* OMP_CLAUSE_LINEAR */
273 2, /* OMP_CLAUSE_ALIGNED */
274 1, /* OMP_CLAUSE_DEPEND */
275 1, /* OMP_CLAUSE_UNIFORM */
276 1, /* OMP_CLAUSE_TO_DECLARE */
277 1, /* OMP_CLAUSE_LINK */
278 2, /* OMP_CLAUSE_FROM */
279 2, /* OMP_CLAUSE_TO */
280 2, /* OMP_CLAUSE_MAP */
281 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
282 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
283 2, /* OMP_CLAUSE__CACHE_ */
284 1, /* OMP_CLAUSE_DEVICE_RESIDENT */
285 1, /* OMP_CLAUSE_USE_DEVICE */
286 2, /* OMP_CLAUSE_GANG */
287 1, /* OMP_CLAUSE_ASYNC */
288 1, /* OMP_CLAUSE_WAIT */
289 0, /* OMP_CLAUSE_AUTO */
290 0, /* OMP_CLAUSE_SEQ */
291 1, /* OMP_CLAUSE__LOOPTEMP_ */
292 1, /* OMP_CLAUSE_IF */
293 1, /* OMP_CLAUSE_NUM_THREADS */
294 1, /* OMP_CLAUSE_SCHEDULE */
295 0, /* OMP_CLAUSE_NOWAIT */
296 1, /* OMP_CLAUSE_ORDERED */
297 0, /* OMP_CLAUSE_DEFAULT */
298 3, /* OMP_CLAUSE_COLLAPSE */
299 0, /* OMP_CLAUSE_UNTIED */
300 1, /* OMP_CLAUSE_FINAL */
301 0, /* OMP_CLAUSE_MERGEABLE */
302 1, /* OMP_CLAUSE_DEVICE */
303 1, /* OMP_CLAUSE_DIST_SCHEDULE */
304 0, /* OMP_CLAUSE_INBRANCH */
305 0, /* OMP_CLAUSE_NOTINBRANCH */
306 1, /* OMP_CLAUSE_NUM_TEAMS */
307 1, /* OMP_CLAUSE_THREAD_LIMIT */
308 0, /* OMP_CLAUSE_PROC_BIND */
309 1, /* OMP_CLAUSE_SAFELEN */
310 1, /* OMP_CLAUSE_SIMDLEN */
311 0, /* OMP_CLAUSE_FOR */
312 0, /* OMP_CLAUSE_PARALLEL */
313 0, /* OMP_CLAUSE_SECTIONS */
314 0, /* OMP_CLAUSE_TASKGROUP */
315 1, /* OMP_CLAUSE_PRIORITY */
316 1, /* OMP_CLAUSE_GRAINSIZE */
317 1, /* OMP_CLAUSE_NUM_TASKS */
318 0, /* OMP_CLAUSE_NOGROUP */
319 0, /* OMP_CLAUSE_THREADS */
320 0, /* OMP_CLAUSE_SIMD */
321 1, /* OMP_CLAUSE_HINT */
322 0, /* OMP_CLAUSE_DEFALTMAP */
323 1, /* OMP_CLAUSE__SIMDUID_ */
324 1, /* OMP_CLAUSE__CILK_FOR_COUNT_ */
325 0, /* OMP_CLAUSE_INDEPENDENT */
326 1, /* OMP_CLAUSE_WORKER */
327 1, /* OMP_CLAUSE_VECTOR */
328 1, /* OMP_CLAUSE_NUM_GANGS */
329 1, /* OMP_CLAUSE_NUM_WORKERS */
330 1, /* OMP_CLAUSE_VECTOR_LENGTH */
331 1, /* OMP_CLAUSE_TILE */
332 };
333
334 const char * const omp_clause_code_name[] =
335 {
336 "error_clause",
337 "private",
338 "shared",
339 "firstprivate",
340 "lastprivate",
341 "reduction",
342 "copyin",
343 "copyprivate",
344 "linear",
345 "aligned",
346 "depend",
347 "uniform",
348 "to",
349 "link",
350 "from",
351 "to",
352 "map",
353 "use_device_ptr",
354 "is_device_ptr",
355 "_cache_",
356 "device_resident",
357 "use_device",
358 "gang",
359 "async",
360 "wait",
361 "auto",
362 "seq",
363 "_looptemp_",
364 "if",
365 "num_threads",
366 "schedule",
367 "nowait",
368 "ordered",
369 "default",
370 "collapse",
371 "untied",
372 "final",
373 "mergeable",
374 "device",
375 "dist_schedule",
376 "inbranch",
377 "notinbranch",
378 "num_teams",
379 "thread_limit",
380 "proc_bind",
381 "safelen",
382 "simdlen",
383 "for",
384 "parallel",
385 "sections",
386 "taskgroup",
387 "priority",
388 "grainsize",
389 "num_tasks",
390 "nogroup",
391 "threads",
392 "simd",
393 "hint",
394 "defaultmap",
395 "_simduid_",
396 "_Cilk_for_count_",
397 "independent",
398 "worker",
399 "vector",
400 "num_gangs",
401 "num_workers",
402 "vector_length",
403 "tile"
404 };
405
406
407 /* Return the tree node structure used by tree code CODE. */
408
409 static inline enum tree_node_structure_enum
410 tree_node_structure_for_code (enum tree_code code)
411 {
412 switch (TREE_CODE_CLASS (code))
413 {
414 case tcc_declaration:
415 {
416 switch (code)
417 {
418 case FIELD_DECL:
419 return TS_FIELD_DECL;
420 case PARM_DECL:
421 return TS_PARM_DECL;
422 case VAR_DECL:
423 return TS_VAR_DECL;
424 case LABEL_DECL:
425 return TS_LABEL_DECL;
426 case RESULT_DECL:
427 return TS_RESULT_DECL;
428 case DEBUG_EXPR_DECL:
429 return TS_DECL_WRTL;
430 case CONST_DECL:
431 return TS_CONST_DECL;
432 case TYPE_DECL:
433 return TS_TYPE_DECL;
434 case FUNCTION_DECL:
435 return TS_FUNCTION_DECL;
436 case TRANSLATION_UNIT_DECL:
437 return TS_TRANSLATION_UNIT_DECL;
438 default:
439 return TS_DECL_NON_COMMON;
440 }
441 }
442 case tcc_type:
443 return TS_TYPE_NON_COMMON;
444 case tcc_reference:
445 case tcc_comparison:
446 case tcc_unary:
447 case tcc_binary:
448 case tcc_expression:
449 case tcc_statement:
450 case tcc_vl_exp:
451 return TS_EXP;
452 default: /* tcc_constant and tcc_exceptional */
453 break;
454 }
455 switch (code)
456 {
457 /* tcc_constant cases. */
458 case VOID_CST: return TS_TYPED;
459 case INTEGER_CST: return TS_INT_CST;
460 case REAL_CST: return TS_REAL_CST;
461 case FIXED_CST: return TS_FIXED_CST;
462 case COMPLEX_CST: return TS_COMPLEX;
463 case VECTOR_CST: return TS_VECTOR;
464 case STRING_CST: return TS_STRING;
465 /* tcc_exceptional cases. */
466 case ERROR_MARK: return TS_COMMON;
467 case IDENTIFIER_NODE: return TS_IDENTIFIER;
468 case TREE_LIST: return TS_LIST;
469 case TREE_VEC: return TS_VEC;
470 case SSA_NAME: return TS_SSA_NAME;
471 case PLACEHOLDER_EXPR: return TS_COMMON;
472 case STATEMENT_LIST: return TS_STATEMENT_LIST;
473 case BLOCK: return TS_BLOCK;
474 case CONSTRUCTOR: return TS_CONSTRUCTOR;
475 case TREE_BINFO: return TS_BINFO;
476 case OMP_CLAUSE: return TS_OMP_CLAUSE;
477 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
478 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
479
480 default:
481 gcc_unreachable ();
482 }
483 }
484
485
486 /* Initialize tree_contains_struct to describe the hierarchy of tree
487 nodes. */
488
489 static void
490 initialize_tree_contains_struct (void)
491 {
492 unsigned i;
493
494 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
495 {
496 enum tree_code code;
497 enum tree_node_structure_enum ts_code;
498
499 code = (enum tree_code) i;
500 ts_code = tree_node_structure_for_code (code);
501
502 /* Mark the TS structure itself. */
503 tree_contains_struct[code][ts_code] = 1;
504
505 /* Mark all the structures that TS is derived from. */
506 switch (ts_code)
507 {
508 case TS_TYPED:
509 case TS_BLOCK:
510 MARK_TS_BASE (code);
511 break;
512
513 case TS_COMMON:
514 case TS_INT_CST:
515 case TS_REAL_CST:
516 case TS_FIXED_CST:
517 case TS_VECTOR:
518 case TS_STRING:
519 case TS_COMPLEX:
520 case TS_SSA_NAME:
521 case TS_CONSTRUCTOR:
522 case TS_EXP:
523 case TS_STATEMENT_LIST:
524 MARK_TS_TYPED (code);
525 break;
526
527 case TS_IDENTIFIER:
528 case TS_DECL_MINIMAL:
529 case TS_TYPE_COMMON:
530 case TS_LIST:
531 case TS_VEC:
532 case TS_BINFO:
533 case TS_OMP_CLAUSE:
534 case TS_OPTIMIZATION:
535 case TS_TARGET_OPTION:
536 MARK_TS_COMMON (code);
537 break;
538
539 case TS_TYPE_WITH_LANG_SPECIFIC:
540 MARK_TS_TYPE_COMMON (code);
541 break;
542
543 case TS_TYPE_NON_COMMON:
544 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
545 break;
546
547 case TS_DECL_COMMON:
548 MARK_TS_DECL_MINIMAL (code);
549 break;
550
551 case TS_DECL_WRTL:
552 case TS_CONST_DECL:
553 MARK_TS_DECL_COMMON (code);
554 break;
555
556 case TS_DECL_NON_COMMON:
557 MARK_TS_DECL_WITH_VIS (code);
558 break;
559
560 case TS_DECL_WITH_VIS:
561 case TS_PARM_DECL:
562 case TS_LABEL_DECL:
563 case TS_RESULT_DECL:
564 MARK_TS_DECL_WRTL (code);
565 break;
566
567 case TS_FIELD_DECL:
568 MARK_TS_DECL_COMMON (code);
569 break;
570
571 case TS_VAR_DECL:
572 MARK_TS_DECL_WITH_VIS (code);
573 break;
574
575 case TS_TYPE_DECL:
576 case TS_FUNCTION_DECL:
577 MARK_TS_DECL_NON_COMMON (code);
578 break;
579
580 case TS_TRANSLATION_UNIT_DECL:
581 MARK_TS_DECL_COMMON (code);
582 break;
583
584 default:
585 gcc_unreachable ();
586 }
587 }
588
589 /* Basic consistency checks for attributes used in fold. */
590 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
591 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
592 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
593 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
594 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
595 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
596 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
597 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
598 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
599 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
600 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
601 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
602 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
603 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
604 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
605 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
606 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
607 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
608 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
609 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
610 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
611 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
612 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
613 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
614 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
615 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
616 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
617 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
618 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
619 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
620 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
621 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
622 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
623 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
624 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
625 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
626 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
627 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
628 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
629 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
630 }
631
632
633 /* Init tree.c. */
634
635 void
636 init_ttree (void)
637 {
638 /* Initialize the hash table of types. */
639 type_hash_table
640 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
641
642 debug_expr_for_decl
643 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
644
645 value_expr_for_decl
646 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
647
648 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
649
650 int_cst_node = make_int_cst (1, 1);
651
652 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
653
654 cl_optimization_node = make_node (OPTIMIZATION_NODE);
655 cl_target_option_node = make_node (TARGET_OPTION_NODE);
656
657 /* Initialize the tree_contains_struct array. */
658 initialize_tree_contains_struct ();
659 lang_hooks.init_ts ();
660 }
661
662 \f
663 /* The name of the object as the assembler will see it (but before any
664 translations made by ASM_OUTPUT_LABELREF). Often this is the same
665 as DECL_NAME. It is an IDENTIFIER_NODE. */
666 tree
667 decl_assembler_name (tree decl)
668 {
669 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
670 lang_hooks.set_decl_assembler_name (decl);
671 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
672 }
673
674 /* When the target supports COMDAT groups, this indicates which group the
675 DECL is associated with. This can be either an IDENTIFIER_NODE or a
676 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
677 tree
678 decl_comdat_group (const_tree node)
679 {
680 struct symtab_node *snode = symtab_node::get (node);
681 if (!snode)
682 return NULL;
683 return snode->get_comdat_group ();
684 }
685
686 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
687 tree
688 decl_comdat_group_id (const_tree node)
689 {
690 struct symtab_node *snode = symtab_node::get (node);
691 if (!snode)
692 return NULL;
693 return snode->get_comdat_group_id ();
694 }
695
696 /* When the target supports named section, return its name as IDENTIFIER_NODE
697 or NULL if it is in no section. */
698 const char *
699 decl_section_name (const_tree node)
700 {
701 struct symtab_node *snode = symtab_node::get (node);
702 if (!snode)
703 return NULL;
704 return snode->get_section ();
705 }
706
707 /* Set section name of NODE to VALUE (that is expected to be
708 identifier node) */
709 void
710 set_decl_section_name (tree node, const char *value)
711 {
712 struct symtab_node *snode;
713
714 if (value == NULL)
715 {
716 snode = symtab_node::get (node);
717 if (!snode)
718 return;
719 }
720 else if (TREE_CODE (node) == VAR_DECL)
721 snode = varpool_node::get_create (node);
722 else
723 snode = cgraph_node::get_create (node);
724 snode->set_section (value);
725 }
726
727 /* Return TLS model of a variable NODE. */
728 enum tls_model
729 decl_tls_model (const_tree node)
730 {
731 struct varpool_node *snode = varpool_node::get (node);
732 if (!snode)
733 return TLS_MODEL_NONE;
734 return snode->tls_model;
735 }
736
737 /* Set TLS model of variable NODE to MODEL. */
738 void
739 set_decl_tls_model (tree node, enum tls_model model)
740 {
741 struct varpool_node *vnode;
742
743 if (model == TLS_MODEL_NONE)
744 {
745 vnode = varpool_node::get (node);
746 if (!vnode)
747 return;
748 }
749 else
750 vnode = varpool_node::get_create (node);
751 vnode->tls_model = model;
752 }
753
754 /* Compute the number of bytes occupied by a tree with code CODE.
755 This function cannot be used for nodes that have variable sizes,
756 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
757 size_t
758 tree_code_size (enum tree_code code)
759 {
760 switch (TREE_CODE_CLASS (code))
761 {
762 case tcc_declaration: /* A decl node */
763 {
764 switch (code)
765 {
766 case FIELD_DECL:
767 return sizeof (struct tree_field_decl);
768 case PARM_DECL:
769 return sizeof (struct tree_parm_decl);
770 case VAR_DECL:
771 return sizeof (struct tree_var_decl);
772 case LABEL_DECL:
773 return sizeof (struct tree_label_decl);
774 case RESULT_DECL:
775 return sizeof (struct tree_result_decl);
776 case CONST_DECL:
777 return sizeof (struct tree_const_decl);
778 case TYPE_DECL:
779 return sizeof (struct tree_type_decl);
780 case FUNCTION_DECL:
781 return sizeof (struct tree_function_decl);
782 case DEBUG_EXPR_DECL:
783 return sizeof (struct tree_decl_with_rtl);
784 case TRANSLATION_UNIT_DECL:
785 return sizeof (struct tree_translation_unit_decl);
786 case NAMESPACE_DECL:
787 case IMPORTED_DECL:
788 case NAMELIST_DECL:
789 return sizeof (struct tree_decl_non_common);
790 default:
791 return lang_hooks.tree_size (code);
792 }
793 }
794
795 case tcc_type: /* a type node */
796 return sizeof (struct tree_type_non_common);
797
798 case tcc_reference: /* a reference */
799 case tcc_expression: /* an expression */
800 case tcc_statement: /* an expression with side effects */
801 case tcc_comparison: /* a comparison expression */
802 case tcc_unary: /* a unary arithmetic expression */
803 case tcc_binary: /* a binary arithmetic expression */
804 return (sizeof (struct tree_exp)
805 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
806
807 case tcc_constant: /* a constant */
808 switch (code)
809 {
810 case VOID_CST: return sizeof (struct tree_typed);
811 case INTEGER_CST: gcc_unreachable ();
812 case REAL_CST: return sizeof (struct tree_real_cst);
813 case FIXED_CST: return sizeof (struct tree_fixed_cst);
814 case COMPLEX_CST: return sizeof (struct tree_complex);
815 case VECTOR_CST: return sizeof (struct tree_vector);
816 case STRING_CST: gcc_unreachable ();
817 default:
818 return lang_hooks.tree_size (code);
819 }
820
821 case tcc_exceptional: /* something random, like an identifier. */
822 switch (code)
823 {
824 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
825 case TREE_LIST: return sizeof (struct tree_list);
826
827 case ERROR_MARK:
828 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
829
830 case TREE_VEC:
831 case OMP_CLAUSE: gcc_unreachable ();
832
833 case SSA_NAME: return sizeof (struct tree_ssa_name);
834
835 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
836 case BLOCK: return sizeof (struct tree_block);
837 case CONSTRUCTOR: return sizeof (struct tree_constructor);
838 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
839 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
840
841 default:
842 return lang_hooks.tree_size (code);
843 }
844
845 default:
846 gcc_unreachable ();
847 }
848 }
849
850 /* Compute the number of bytes occupied by NODE. This routine only
851 looks at TREE_CODE, except for those nodes that have variable sizes. */
852 size_t
853 tree_size (const_tree node)
854 {
855 const enum tree_code code = TREE_CODE (node);
856 switch (code)
857 {
858 case INTEGER_CST:
859 return (sizeof (struct tree_int_cst)
860 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
861
862 case TREE_BINFO:
863 return (offsetof (struct tree_binfo, base_binfos)
864 + vec<tree, va_gc>
865 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
866
867 case TREE_VEC:
868 return (sizeof (struct tree_vec)
869 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
870
871 case VECTOR_CST:
872 return (sizeof (struct tree_vector)
873 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
874
875 case STRING_CST:
876 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
877
878 case OMP_CLAUSE:
879 return (sizeof (struct tree_omp_clause)
880 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
881 * sizeof (tree));
882
883 default:
884 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
885 return (sizeof (struct tree_exp)
886 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
887 else
888 return tree_code_size (code);
889 }
890 }
891
892 /* Record interesting allocation statistics for a tree node with CODE
893 and LENGTH. */
894
895 static void
896 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
897 size_t length ATTRIBUTE_UNUSED)
898 {
899 enum tree_code_class type = TREE_CODE_CLASS (code);
900 tree_node_kind kind;
901
902 if (!GATHER_STATISTICS)
903 return;
904
905 switch (type)
906 {
907 case tcc_declaration: /* A decl node */
908 kind = d_kind;
909 break;
910
911 case tcc_type: /* a type node */
912 kind = t_kind;
913 break;
914
915 case tcc_statement: /* an expression with side effects */
916 kind = s_kind;
917 break;
918
919 case tcc_reference: /* a reference */
920 kind = r_kind;
921 break;
922
923 case tcc_expression: /* an expression */
924 case tcc_comparison: /* a comparison expression */
925 case tcc_unary: /* a unary arithmetic expression */
926 case tcc_binary: /* a binary arithmetic expression */
927 kind = e_kind;
928 break;
929
930 case tcc_constant: /* a constant */
931 kind = c_kind;
932 break;
933
934 case tcc_exceptional: /* something random, like an identifier. */
935 switch (code)
936 {
937 case IDENTIFIER_NODE:
938 kind = id_kind;
939 break;
940
941 case TREE_VEC:
942 kind = vec_kind;
943 break;
944
945 case TREE_BINFO:
946 kind = binfo_kind;
947 break;
948
949 case SSA_NAME:
950 kind = ssa_name_kind;
951 break;
952
953 case BLOCK:
954 kind = b_kind;
955 break;
956
957 case CONSTRUCTOR:
958 kind = constr_kind;
959 break;
960
961 case OMP_CLAUSE:
962 kind = omp_clause_kind;
963 break;
964
965 default:
966 kind = x_kind;
967 break;
968 }
969 break;
970
971 case tcc_vl_exp:
972 kind = e_kind;
973 break;
974
975 default:
976 gcc_unreachable ();
977 }
978
979 tree_code_counts[(int) code]++;
980 tree_node_counts[(int) kind]++;
981 tree_node_sizes[(int) kind] += length;
982 }
983
984 /* Allocate and return a new UID from the DECL_UID namespace. */
985
986 int
987 allocate_decl_uid (void)
988 {
989 return next_decl_uid++;
990 }
991
992 /* Return a newly allocated node of code CODE. For decl and type
993 nodes, some other fields are initialized. The rest of the node is
994 initialized to zero. This function cannot be used for TREE_VEC,
995 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
996 tree_code_size.
997
998 Achoo! I got a code in the node. */
999
1000 tree
1001 make_node_stat (enum tree_code code MEM_STAT_DECL)
1002 {
1003 tree t;
1004 enum tree_code_class type = TREE_CODE_CLASS (code);
1005 size_t length = tree_code_size (code);
1006
1007 record_node_allocation_statistics (code, length);
1008
1009 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1010 TREE_SET_CODE (t, code);
1011
1012 switch (type)
1013 {
1014 case tcc_statement:
1015 TREE_SIDE_EFFECTS (t) = 1;
1016 break;
1017
1018 case tcc_declaration:
1019 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1020 {
1021 if (code == FUNCTION_DECL)
1022 {
1023 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
1024 DECL_MODE (t) = FUNCTION_MODE;
1025 }
1026 else
1027 DECL_ALIGN (t) = 1;
1028 }
1029 DECL_SOURCE_LOCATION (t) = input_location;
1030 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1031 DECL_UID (t) = --next_debug_decl_uid;
1032 else
1033 {
1034 DECL_UID (t) = allocate_decl_uid ();
1035 SET_DECL_PT_UID (t, -1);
1036 }
1037 if (TREE_CODE (t) == LABEL_DECL)
1038 LABEL_DECL_UID (t) = -1;
1039
1040 break;
1041
1042 case tcc_type:
1043 TYPE_UID (t) = next_type_uid++;
1044 TYPE_ALIGN (t) = BITS_PER_UNIT;
1045 TYPE_USER_ALIGN (t) = 0;
1046 TYPE_MAIN_VARIANT (t) = t;
1047 TYPE_CANONICAL (t) = t;
1048
1049 /* Default to no attributes for type, but let target change that. */
1050 TYPE_ATTRIBUTES (t) = NULL_TREE;
1051 targetm.set_default_type_attributes (t);
1052
1053 /* We have not yet computed the alias set for this type. */
1054 TYPE_ALIAS_SET (t) = -1;
1055 break;
1056
1057 case tcc_constant:
1058 TREE_CONSTANT (t) = 1;
1059 break;
1060
1061 case tcc_expression:
1062 switch (code)
1063 {
1064 case INIT_EXPR:
1065 case MODIFY_EXPR:
1066 case VA_ARG_EXPR:
1067 case PREDECREMENT_EXPR:
1068 case PREINCREMENT_EXPR:
1069 case POSTDECREMENT_EXPR:
1070 case POSTINCREMENT_EXPR:
1071 /* All of these have side-effects, no matter what their
1072 operands are. */
1073 TREE_SIDE_EFFECTS (t) = 1;
1074 break;
1075
1076 default:
1077 break;
1078 }
1079 break;
1080
1081 case tcc_exceptional:
1082 switch (code)
1083 {
1084 case TARGET_OPTION_NODE:
1085 TREE_TARGET_OPTION(t)
1086 = ggc_cleared_alloc<struct cl_target_option> ();
1087 break;
1088
1089 case OPTIMIZATION_NODE:
1090 TREE_OPTIMIZATION (t)
1091 = ggc_cleared_alloc<struct cl_optimization> ();
1092 break;
1093
1094 default:
1095 break;
1096 }
1097 break;
1098
1099 default:
1100 /* Other classes need no special treatment. */
1101 break;
1102 }
1103
1104 return t;
1105 }
1106
1107 /* Free tree node. */
1108
1109 void
1110 free_node (tree node)
1111 {
1112 enum tree_code code = TREE_CODE (node);
1113 if (GATHER_STATISTICS)
1114 {
1115 tree_code_counts[(int) TREE_CODE (node)]--;
1116 tree_node_counts[(int) t_kind]--;
1117 tree_node_sizes[(int) t_kind] -= tree_code_size (TREE_CODE (node));
1118 }
1119 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1120 vec_free (CONSTRUCTOR_ELTS (node));
1121 else if (code == BLOCK)
1122 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1123 else if (code == TREE_BINFO)
1124 vec_free (BINFO_BASE_ACCESSES (node));
1125 ggc_free (node);
1126 }
1127 \f
1128 /* Return a new node with the same contents as NODE except that its
1129 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1130
1131 tree
1132 copy_node_stat (tree node MEM_STAT_DECL)
1133 {
1134 tree t;
1135 enum tree_code code = TREE_CODE (node);
1136 size_t length;
1137
1138 gcc_assert (code != STATEMENT_LIST);
1139
1140 length = tree_size (node);
1141 record_node_allocation_statistics (code, length);
1142 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1143 memcpy (t, node, length);
1144
1145 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1146 TREE_CHAIN (t) = 0;
1147 TREE_ASM_WRITTEN (t) = 0;
1148 TREE_VISITED (t) = 0;
1149
1150 if (TREE_CODE_CLASS (code) == tcc_declaration)
1151 {
1152 if (code == DEBUG_EXPR_DECL)
1153 DECL_UID (t) = --next_debug_decl_uid;
1154 else
1155 {
1156 DECL_UID (t) = allocate_decl_uid ();
1157 if (DECL_PT_UID_SET_P (node))
1158 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1159 }
1160 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
1161 && DECL_HAS_VALUE_EXPR_P (node))
1162 {
1163 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1164 DECL_HAS_VALUE_EXPR_P (t) = 1;
1165 }
1166 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1167 if (TREE_CODE (node) == VAR_DECL)
1168 {
1169 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1170 t->decl_with_vis.symtab_node = NULL;
1171 }
1172 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
1173 {
1174 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1175 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1176 }
1177 if (TREE_CODE (node) == FUNCTION_DECL)
1178 {
1179 DECL_STRUCT_FUNCTION (t) = NULL;
1180 t->decl_with_vis.symtab_node = NULL;
1181 }
1182 }
1183 else if (TREE_CODE_CLASS (code) == tcc_type)
1184 {
1185 TYPE_UID (t) = next_type_uid++;
1186 /* The following is so that the debug code for
1187 the copy is different from the original type.
1188 The two statements usually duplicate each other
1189 (because they clear fields of the same union),
1190 but the optimizer should catch that. */
1191 TYPE_SYMTAB_POINTER (t) = 0;
1192 TYPE_SYMTAB_ADDRESS (t) = 0;
1193
1194 /* Do not copy the values cache. */
1195 if (TYPE_CACHED_VALUES_P (t))
1196 {
1197 TYPE_CACHED_VALUES_P (t) = 0;
1198 TYPE_CACHED_VALUES (t) = NULL_TREE;
1199 }
1200 }
1201 else if (code == TARGET_OPTION_NODE)
1202 {
1203 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1204 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1205 sizeof (struct cl_target_option));
1206 }
1207 else if (code == OPTIMIZATION_NODE)
1208 {
1209 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1210 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1211 sizeof (struct cl_optimization));
1212 }
1213
1214 return t;
1215 }
1216
1217 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1218 For example, this can copy a list made of TREE_LIST nodes. */
1219
1220 tree
1221 copy_list (tree list)
1222 {
1223 tree head;
1224 tree prev, next;
1225
1226 if (list == 0)
1227 return 0;
1228
1229 head = prev = copy_node (list);
1230 next = TREE_CHAIN (list);
1231 while (next)
1232 {
1233 TREE_CHAIN (prev) = copy_node (next);
1234 prev = TREE_CHAIN (prev);
1235 next = TREE_CHAIN (next);
1236 }
1237 return head;
1238 }
1239
1240 \f
1241 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1242 INTEGER_CST with value CST and type TYPE. */
1243
1244 static unsigned int
1245 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1246 {
1247 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1248 /* We need an extra zero HWI if CST is an unsigned integer with its
1249 upper bit set, and if CST occupies a whole number of HWIs. */
1250 if (TYPE_UNSIGNED (type)
1251 && wi::neg_p (cst)
1252 && (cst.get_precision () % HOST_BITS_PER_WIDE_INT) == 0)
1253 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1254 return cst.get_len ();
1255 }
1256
1257 /* Return a new INTEGER_CST with value CST and type TYPE. */
1258
1259 static tree
1260 build_new_int_cst (tree type, const wide_int &cst)
1261 {
1262 unsigned int len = cst.get_len ();
1263 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1264 tree nt = make_int_cst (len, ext_len);
1265
1266 if (len < ext_len)
1267 {
1268 --ext_len;
1269 TREE_INT_CST_ELT (nt, ext_len) = 0;
1270 for (unsigned int i = len; i < ext_len; ++i)
1271 TREE_INT_CST_ELT (nt, i) = -1;
1272 }
1273 else if (TYPE_UNSIGNED (type)
1274 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1275 {
1276 len--;
1277 TREE_INT_CST_ELT (nt, len)
1278 = zext_hwi (cst.elt (len),
1279 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1280 }
1281
1282 for (unsigned int i = 0; i < len; i++)
1283 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1284 TREE_TYPE (nt) = type;
1285 return nt;
1286 }
1287
1288 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1289
1290 tree
1291 build_int_cst (tree type, HOST_WIDE_INT low)
1292 {
1293 /* Support legacy code. */
1294 if (!type)
1295 type = integer_type_node;
1296
1297 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1298 }
1299
1300 tree
1301 build_int_cstu (tree type, unsigned HOST_WIDE_INT cst)
1302 {
1303 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1304 }
1305
1306 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1307
1308 tree
1309 build_int_cst_type (tree type, HOST_WIDE_INT low)
1310 {
1311 gcc_assert (type);
1312 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1313 }
1314
1315 /* Constructs tree in type TYPE from with value given by CST. Signedness
1316 of CST is assumed to be the same as the signedness of TYPE. */
1317
1318 tree
1319 double_int_to_tree (tree type, double_int cst)
1320 {
1321 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1322 }
1323
1324 /* We force the wide_int CST to the range of the type TYPE by sign or
1325 zero extending it. OVERFLOWABLE indicates if we are interested in
1326 overflow of the value, when >0 we are only interested in signed
1327 overflow, for <0 we are interested in any overflow. OVERFLOWED
1328 indicates whether overflow has already occurred. CONST_OVERFLOWED
1329 indicates whether constant overflow has already occurred. We force
1330 T's value to be within range of T's type (by setting to 0 or 1 all
1331 the bits outside the type's range). We set TREE_OVERFLOWED if,
1332 OVERFLOWED is nonzero,
1333 or OVERFLOWABLE is >0 and signed overflow occurs
1334 or OVERFLOWABLE is <0 and any overflow occurs
1335 We return a new tree node for the extended wide_int. The node
1336 is shared if no overflow flags are set. */
1337
1338
1339 tree
1340 force_fit_type (tree type, const wide_int_ref &cst,
1341 int overflowable, bool overflowed)
1342 {
1343 signop sign = TYPE_SIGN (type);
1344
1345 /* If we need to set overflow flags, return a new unshared node. */
1346 if (overflowed || !wi::fits_to_tree_p (cst, type))
1347 {
1348 if (overflowed
1349 || overflowable < 0
1350 || (overflowable > 0 && sign == SIGNED))
1351 {
1352 wide_int tmp = wide_int::from (cst, TYPE_PRECISION (type), sign);
1353 tree t = build_new_int_cst (type, tmp);
1354 TREE_OVERFLOW (t) = 1;
1355 return t;
1356 }
1357 }
1358
1359 /* Else build a shared node. */
1360 return wide_int_to_tree (type, cst);
1361 }
1362
1363 /* These are the hash table functions for the hash table of INTEGER_CST
1364 nodes of a sizetype. */
1365
1366 /* Return the hash code X, an INTEGER_CST. */
1367
1368 hashval_t
1369 int_cst_hasher::hash (tree x)
1370 {
1371 const_tree const t = x;
1372 hashval_t code = TYPE_UID (TREE_TYPE (t));
1373 int i;
1374
1375 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1376 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1377
1378 return code;
1379 }
1380
1381 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1382 is the same as that given by *Y, which is the same. */
1383
1384 bool
1385 int_cst_hasher::equal (tree x, tree y)
1386 {
1387 const_tree const xt = x;
1388 const_tree const yt = y;
1389
1390 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1391 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1392 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1393 return false;
1394
1395 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1396 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1397 return false;
1398
1399 return true;
1400 }
1401
1402 /* Create an INT_CST node of TYPE and value CST.
1403 The returned node is always shared. For small integers we use a
1404 per-type vector cache, for larger ones we use a single hash table.
1405 The value is extended from its precision according to the sign of
1406 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1407 the upper bits and ensures that hashing and value equality based
1408 upon the underlying HOST_WIDE_INTs works without masking. */
1409
1410 tree
1411 wide_int_to_tree (tree type, const wide_int_ref &pcst)
1412 {
1413 tree t;
1414 int ix = -1;
1415 int limit = 0;
1416
1417 gcc_assert (type);
1418 unsigned int prec = TYPE_PRECISION (type);
1419 signop sgn = TYPE_SIGN (type);
1420
1421 /* Verify that everything is canonical. */
1422 int l = pcst.get_len ();
1423 if (l > 1)
1424 {
1425 if (pcst.elt (l - 1) == 0)
1426 gcc_checking_assert (pcst.elt (l - 2) < 0);
1427 if (pcst.elt (l - 1) == (HOST_WIDE_INT) -1)
1428 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1429 }
1430
1431 wide_int cst = wide_int::from (pcst, prec, sgn);
1432 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1433
1434 if (ext_len == 1)
1435 {
1436 /* We just need to store a single HOST_WIDE_INT. */
1437 HOST_WIDE_INT hwi;
1438 if (TYPE_UNSIGNED (type))
1439 hwi = cst.to_uhwi ();
1440 else
1441 hwi = cst.to_shwi ();
1442
1443 switch (TREE_CODE (type))
1444 {
1445 case NULLPTR_TYPE:
1446 gcc_assert (hwi == 0);
1447 /* Fallthru. */
1448
1449 case POINTER_TYPE:
1450 case REFERENCE_TYPE:
1451 case POINTER_BOUNDS_TYPE:
1452 /* Cache NULL pointer and zero bounds. */
1453 if (hwi == 0)
1454 {
1455 limit = 1;
1456 ix = 0;
1457 }
1458 break;
1459
1460 case BOOLEAN_TYPE:
1461 /* Cache false or true. */
1462 limit = 2;
1463 if (IN_RANGE (hwi, 0, 1))
1464 ix = hwi;
1465 break;
1466
1467 case INTEGER_TYPE:
1468 case OFFSET_TYPE:
1469 if (TYPE_SIGN (type) == UNSIGNED)
1470 {
1471 /* Cache [0, N). */
1472 limit = INTEGER_SHARE_LIMIT;
1473 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1474 ix = hwi;
1475 }
1476 else
1477 {
1478 /* Cache [-1, N). */
1479 limit = INTEGER_SHARE_LIMIT + 1;
1480 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1481 ix = hwi + 1;
1482 }
1483 break;
1484
1485 case ENUMERAL_TYPE:
1486 break;
1487
1488 default:
1489 gcc_unreachable ();
1490 }
1491
1492 if (ix >= 0)
1493 {
1494 /* Look for it in the type's vector of small shared ints. */
1495 if (!TYPE_CACHED_VALUES_P (type))
1496 {
1497 TYPE_CACHED_VALUES_P (type) = 1;
1498 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1499 }
1500
1501 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1502 if (t)
1503 /* Make sure no one is clobbering the shared constant. */
1504 gcc_checking_assert (TREE_TYPE (t) == type
1505 && TREE_INT_CST_NUNITS (t) == 1
1506 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1507 && TREE_INT_CST_EXT_NUNITS (t) == 1
1508 && TREE_INT_CST_ELT (t, 0) == hwi);
1509 else
1510 {
1511 /* Create a new shared int. */
1512 t = build_new_int_cst (type, cst);
1513 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1514 }
1515 }
1516 else
1517 {
1518 /* Use the cache of larger shared ints, using int_cst_node as
1519 a temporary. */
1520
1521 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1522 TREE_TYPE (int_cst_node) = type;
1523
1524 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1525 t = *slot;
1526 if (!t)
1527 {
1528 /* Insert this one into the hash table. */
1529 t = int_cst_node;
1530 *slot = t;
1531 /* Make a new node for next time round. */
1532 int_cst_node = make_int_cst (1, 1);
1533 }
1534 }
1535 }
1536 else
1537 {
1538 /* The value either hashes properly or we drop it on the floor
1539 for the gc to take care of. There will not be enough of them
1540 to worry about. */
1541
1542 tree nt = build_new_int_cst (type, cst);
1543 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1544 t = *slot;
1545 if (!t)
1546 {
1547 /* Insert this one into the hash table. */
1548 t = nt;
1549 *slot = t;
1550 }
1551 }
1552
1553 return t;
1554 }
1555
1556 void
1557 cache_integer_cst (tree t)
1558 {
1559 tree type = TREE_TYPE (t);
1560 int ix = -1;
1561 int limit = 0;
1562 int prec = TYPE_PRECISION (type);
1563
1564 gcc_assert (!TREE_OVERFLOW (t));
1565
1566 switch (TREE_CODE (type))
1567 {
1568 case NULLPTR_TYPE:
1569 gcc_assert (integer_zerop (t));
1570 /* Fallthru. */
1571
1572 case POINTER_TYPE:
1573 case REFERENCE_TYPE:
1574 /* Cache NULL pointer. */
1575 if (integer_zerop (t))
1576 {
1577 limit = 1;
1578 ix = 0;
1579 }
1580 break;
1581
1582 case BOOLEAN_TYPE:
1583 /* Cache false or true. */
1584 limit = 2;
1585 if (wi::ltu_p (t, 2))
1586 ix = TREE_INT_CST_ELT (t, 0);
1587 break;
1588
1589 case INTEGER_TYPE:
1590 case OFFSET_TYPE:
1591 if (TYPE_UNSIGNED (type))
1592 {
1593 /* Cache 0..N */
1594 limit = INTEGER_SHARE_LIMIT;
1595
1596 /* This is a little hokie, but if the prec is smaller than
1597 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1598 obvious test will not get the correct answer. */
1599 if (prec < HOST_BITS_PER_WIDE_INT)
1600 {
1601 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1602 ix = tree_to_uhwi (t);
1603 }
1604 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1605 ix = tree_to_uhwi (t);
1606 }
1607 else
1608 {
1609 /* Cache -1..N */
1610 limit = INTEGER_SHARE_LIMIT + 1;
1611
1612 if (integer_minus_onep (t))
1613 ix = 0;
1614 else if (!wi::neg_p (t))
1615 {
1616 if (prec < HOST_BITS_PER_WIDE_INT)
1617 {
1618 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1619 ix = tree_to_shwi (t) + 1;
1620 }
1621 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1622 ix = tree_to_shwi (t) + 1;
1623 }
1624 }
1625 break;
1626
1627 case ENUMERAL_TYPE:
1628 break;
1629
1630 default:
1631 gcc_unreachable ();
1632 }
1633
1634 if (ix >= 0)
1635 {
1636 /* Look for it in the type's vector of small shared ints. */
1637 if (!TYPE_CACHED_VALUES_P (type))
1638 {
1639 TYPE_CACHED_VALUES_P (type) = 1;
1640 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1641 }
1642
1643 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1644 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1645 }
1646 else
1647 {
1648 /* Use the cache of larger shared ints. */
1649 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1650 /* If there is already an entry for the number verify it's the
1651 same. */
1652 if (*slot)
1653 gcc_assert (wi::eq_p (tree (*slot), t));
1654 else
1655 /* Otherwise insert this one into the hash table. */
1656 *slot = t;
1657 }
1658 }
1659
1660
1661 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1662 and the rest are zeros. */
1663
1664 tree
1665 build_low_bits_mask (tree type, unsigned bits)
1666 {
1667 gcc_assert (bits <= TYPE_PRECISION (type));
1668
1669 return wide_int_to_tree (type, wi::mask (bits, false,
1670 TYPE_PRECISION (type)));
1671 }
1672
1673 /* Checks that X is integer constant that can be expressed in (unsigned)
1674 HOST_WIDE_INT without loss of precision. */
1675
1676 bool
1677 cst_and_fits_in_hwi (const_tree x)
1678 {
1679 if (TREE_CODE (x) != INTEGER_CST)
1680 return false;
1681
1682 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1683 return false;
1684
1685 return TREE_INT_CST_NUNITS (x) == 1;
1686 }
1687
1688 /* Build a newly constructed VECTOR_CST node of length LEN. */
1689
1690 tree
1691 make_vector_stat (unsigned len MEM_STAT_DECL)
1692 {
1693 tree t;
1694 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1695
1696 record_node_allocation_statistics (VECTOR_CST, length);
1697
1698 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1699
1700 TREE_SET_CODE (t, VECTOR_CST);
1701 TREE_CONSTANT (t) = 1;
1702
1703 return t;
1704 }
1705
1706 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1707 are in a list pointed to by VALS. */
1708
1709 tree
1710 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1711 {
1712 int over = 0;
1713 unsigned cnt = 0;
1714 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1715 TREE_TYPE (v) = type;
1716
1717 /* Iterate through elements and check for overflow. */
1718 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1719 {
1720 tree value = vals[cnt];
1721
1722 VECTOR_CST_ELT (v, cnt) = value;
1723
1724 /* Don't crash if we get an address constant. */
1725 if (!CONSTANT_CLASS_P (value))
1726 continue;
1727
1728 over |= TREE_OVERFLOW (value);
1729 }
1730
1731 TREE_OVERFLOW (v) = over;
1732 return v;
1733 }
1734
1735 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1736 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1737
1738 tree
1739 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1740 {
1741 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1742 unsigned HOST_WIDE_INT idx, pos = 0;
1743 tree value;
1744
1745 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1746 {
1747 if (TREE_CODE (value) == VECTOR_CST)
1748 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
1749 vec[pos++] = VECTOR_CST_ELT (value, i);
1750 else
1751 vec[pos++] = value;
1752 }
1753 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1754 vec[pos++] = build_zero_cst (TREE_TYPE (type));
1755
1756 return build_vector (type, vec);
1757 }
1758
1759 /* Build a vector of type VECTYPE where all the elements are SCs. */
1760 tree
1761 build_vector_from_val (tree vectype, tree sc)
1762 {
1763 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1764
1765 if (sc == error_mark_node)
1766 return sc;
1767
1768 /* Verify that the vector type is suitable for SC. Note that there
1769 is some inconsistency in the type-system with respect to restrict
1770 qualifications of pointers. Vector types always have a main-variant
1771 element type and the qualification is applied to the vector-type.
1772 So TREE_TYPE (vector-type) does not return a properly qualified
1773 vector element-type. */
1774 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1775 TREE_TYPE (vectype)));
1776
1777 if (CONSTANT_CLASS_P (sc))
1778 {
1779 tree *v = XALLOCAVEC (tree, nunits);
1780 for (i = 0; i < nunits; ++i)
1781 v[i] = sc;
1782 return build_vector (vectype, v);
1783 }
1784 else
1785 {
1786 vec<constructor_elt, va_gc> *v;
1787 vec_alloc (v, nunits);
1788 for (i = 0; i < nunits; ++i)
1789 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1790 return build_constructor (vectype, v);
1791 }
1792 }
1793
1794 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1795 are in the vec pointed to by VALS. */
1796 tree
1797 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1798 {
1799 tree c = make_node (CONSTRUCTOR);
1800 unsigned int i;
1801 constructor_elt *elt;
1802 bool constant_p = true;
1803 bool side_effects_p = false;
1804
1805 TREE_TYPE (c) = type;
1806 CONSTRUCTOR_ELTS (c) = vals;
1807
1808 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1809 {
1810 /* Mostly ctors will have elts that don't have side-effects, so
1811 the usual case is to scan all the elements. Hence a single
1812 loop for both const and side effects, rather than one loop
1813 each (with early outs). */
1814 if (!TREE_CONSTANT (elt->value))
1815 constant_p = false;
1816 if (TREE_SIDE_EFFECTS (elt->value))
1817 side_effects_p = true;
1818 }
1819
1820 TREE_SIDE_EFFECTS (c) = side_effects_p;
1821 TREE_CONSTANT (c) = constant_p;
1822
1823 return c;
1824 }
1825
1826 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1827 INDEX and VALUE. */
1828 tree
1829 build_constructor_single (tree type, tree index, tree value)
1830 {
1831 vec<constructor_elt, va_gc> *v;
1832 constructor_elt elt = {index, value};
1833
1834 vec_alloc (v, 1);
1835 v->quick_push (elt);
1836
1837 return build_constructor (type, v);
1838 }
1839
1840
1841 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1842 are in a list pointed to by VALS. */
1843 tree
1844 build_constructor_from_list (tree type, tree vals)
1845 {
1846 tree t;
1847 vec<constructor_elt, va_gc> *v = NULL;
1848
1849 if (vals)
1850 {
1851 vec_alloc (v, list_length (vals));
1852 for (t = vals; t; t = TREE_CHAIN (t))
1853 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1854 }
1855
1856 return build_constructor (type, v);
1857 }
1858
1859 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1860 of elements, provided as index/value pairs. */
1861
1862 tree
1863 build_constructor_va (tree type, int nelts, ...)
1864 {
1865 vec<constructor_elt, va_gc> *v = NULL;
1866 va_list p;
1867
1868 va_start (p, nelts);
1869 vec_alloc (v, nelts);
1870 while (nelts--)
1871 {
1872 tree index = va_arg (p, tree);
1873 tree value = va_arg (p, tree);
1874 CONSTRUCTOR_APPEND_ELT (v, index, value);
1875 }
1876 va_end (p);
1877 return build_constructor (type, v);
1878 }
1879
1880 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1881
1882 tree
1883 build_fixed (tree type, FIXED_VALUE_TYPE f)
1884 {
1885 tree v;
1886 FIXED_VALUE_TYPE *fp;
1887
1888 v = make_node (FIXED_CST);
1889 fp = ggc_alloc<fixed_value> ();
1890 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1891
1892 TREE_TYPE (v) = type;
1893 TREE_FIXED_CST_PTR (v) = fp;
1894 return v;
1895 }
1896
1897 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1898
1899 tree
1900 build_real (tree type, REAL_VALUE_TYPE d)
1901 {
1902 tree v;
1903 REAL_VALUE_TYPE *dp;
1904 int overflow = 0;
1905
1906 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1907 Consider doing it via real_convert now. */
1908
1909 v = make_node (REAL_CST);
1910 dp = ggc_alloc<real_value> ();
1911 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1912
1913 TREE_TYPE (v) = type;
1914 TREE_REAL_CST_PTR (v) = dp;
1915 TREE_OVERFLOW (v) = overflow;
1916 return v;
1917 }
1918
1919 /* Like build_real, but first truncate D to the type. */
1920
1921 tree
1922 build_real_truncate (tree type, REAL_VALUE_TYPE d)
1923 {
1924 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
1925 }
1926
1927 /* Return a new REAL_CST node whose type is TYPE
1928 and whose value is the integer value of the INTEGER_CST node I. */
1929
1930 REAL_VALUE_TYPE
1931 real_value_from_int_cst (const_tree type, const_tree i)
1932 {
1933 REAL_VALUE_TYPE d;
1934
1935 /* Clear all bits of the real value type so that we can later do
1936 bitwise comparisons to see if two values are the same. */
1937 memset (&d, 0, sizeof d);
1938
1939 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, i,
1940 TYPE_SIGN (TREE_TYPE (i)));
1941 return d;
1942 }
1943
1944 /* Given a tree representing an integer constant I, return a tree
1945 representing the same value as a floating-point constant of type TYPE. */
1946
1947 tree
1948 build_real_from_int_cst (tree type, const_tree i)
1949 {
1950 tree v;
1951 int overflow = TREE_OVERFLOW (i);
1952
1953 v = build_real (type, real_value_from_int_cst (type, i));
1954
1955 TREE_OVERFLOW (v) |= overflow;
1956 return v;
1957 }
1958
1959 /* Return a newly constructed STRING_CST node whose value is
1960 the LEN characters at STR.
1961 Note that for a C string literal, LEN should include the trailing NUL.
1962 The TREE_TYPE is not initialized. */
1963
1964 tree
1965 build_string (int len, const char *str)
1966 {
1967 tree s;
1968 size_t length;
1969
1970 /* Do not waste bytes provided by padding of struct tree_string. */
1971 length = len + offsetof (struct tree_string, str) + 1;
1972
1973 record_node_allocation_statistics (STRING_CST, length);
1974
1975 s = (tree) ggc_internal_alloc (length);
1976
1977 memset (s, 0, sizeof (struct tree_typed));
1978 TREE_SET_CODE (s, STRING_CST);
1979 TREE_CONSTANT (s) = 1;
1980 TREE_STRING_LENGTH (s) = len;
1981 memcpy (s->string.str, str, len);
1982 s->string.str[len] = '\0';
1983
1984 return s;
1985 }
1986
1987 /* Return a newly constructed COMPLEX_CST node whose value is
1988 specified by the real and imaginary parts REAL and IMAG.
1989 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1990 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1991
1992 tree
1993 build_complex (tree type, tree real, tree imag)
1994 {
1995 tree t = make_node (COMPLEX_CST);
1996
1997 TREE_REALPART (t) = real;
1998 TREE_IMAGPART (t) = imag;
1999 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2000 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2001 return t;
2002 }
2003
2004 /* Build a complex (inf +- 0i), such as for the result of cproj.
2005 TYPE is the complex tree type of the result. If NEG is true, the
2006 imaginary zero is negative. */
2007
2008 tree
2009 build_complex_inf (tree type, bool neg)
2010 {
2011 REAL_VALUE_TYPE rinf, rzero = dconst0;
2012
2013 real_inf (&rinf);
2014 rzero.sign = neg;
2015 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2016 build_real (TREE_TYPE (type), rzero));
2017 }
2018
2019 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2020 element is set to 1. In particular, this is 1 + i for complex types. */
2021
2022 tree
2023 build_each_one_cst (tree type)
2024 {
2025 if (TREE_CODE (type) == COMPLEX_TYPE)
2026 {
2027 tree scalar = build_one_cst (TREE_TYPE (type));
2028 return build_complex (type, scalar, scalar);
2029 }
2030 else
2031 return build_one_cst (type);
2032 }
2033
2034 /* Return a constant of arithmetic type TYPE which is the
2035 multiplicative identity of the set TYPE. */
2036
2037 tree
2038 build_one_cst (tree type)
2039 {
2040 switch (TREE_CODE (type))
2041 {
2042 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2043 case POINTER_TYPE: case REFERENCE_TYPE:
2044 case OFFSET_TYPE:
2045 return build_int_cst (type, 1);
2046
2047 case REAL_TYPE:
2048 return build_real (type, dconst1);
2049
2050 case FIXED_POINT_TYPE:
2051 /* We can only generate 1 for accum types. */
2052 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2053 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2054
2055 case VECTOR_TYPE:
2056 {
2057 tree scalar = build_one_cst (TREE_TYPE (type));
2058
2059 return build_vector_from_val (type, scalar);
2060 }
2061
2062 case COMPLEX_TYPE:
2063 return build_complex (type,
2064 build_one_cst (TREE_TYPE (type)),
2065 build_zero_cst (TREE_TYPE (type)));
2066
2067 default:
2068 gcc_unreachable ();
2069 }
2070 }
2071
2072 /* Return an integer of type TYPE containing all 1's in as much precision as
2073 it contains, or a complex or vector whose subparts are such integers. */
2074
2075 tree
2076 build_all_ones_cst (tree type)
2077 {
2078 if (TREE_CODE (type) == COMPLEX_TYPE)
2079 {
2080 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2081 return build_complex (type, scalar, scalar);
2082 }
2083 else
2084 return build_minus_one_cst (type);
2085 }
2086
2087 /* Return a constant of arithmetic type TYPE which is the
2088 opposite of the multiplicative identity of the set TYPE. */
2089
2090 tree
2091 build_minus_one_cst (tree type)
2092 {
2093 switch (TREE_CODE (type))
2094 {
2095 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2096 case POINTER_TYPE: case REFERENCE_TYPE:
2097 case OFFSET_TYPE:
2098 return build_int_cst (type, -1);
2099
2100 case REAL_TYPE:
2101 return build_real (type, dconstm1);
2102
2103 case FIXED_POINT_TYPE:
2104 /* We can only generate 1 for accum types. */
2105 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2106 return build_fixed (type, fixed_from_double_int (double_int_minus_one,
2107 TYPE_MODE (type)));
2108
2109 case VECTOR_TYPE:
2110 {
2111 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2112
2113 return build_vector_from_val (type, scalar);
2114 }
2115
2116 case COMPLEX_TYPE:
2117 return build_complex (type,
2118 build_minus_one_cst (TREE_TYPE (type)),
2119 build_zero_cst (TREE_TYPE (type)));
2120
2121 default:
2122 gcc_unreachable ();
2123 }
2124 }
2125
2126 /* Build 0 constant of type TYPE. This is used by constructor folding
2127 and thus the constant should be represented in memory by
2128 zero(es). */
2129
2130 tree
2131 build_zero_cst (tree type)
2132 {
2133 switch (TREE_CODE (type))
2134 {
2135 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2136 case POINTER_TYPE: case REFERENCE_TYPE:
2137 case OFFSET_TYPE: case NULLPTR_TYPE:
2138 return build_int_cst (type, 0);
2139
2140 case REAL_TYPE:
2141 return build_real (type, dconst0);
2142
2143 case FIXED_POINT_TYPE:
2144 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2145
2146 case VECTOR_TYPE:
2147 {
2148 tree scalar = build_zero_cst (TREE_TYPE (type));
2149
2150 return build_vector_from_val (type, scalar);
2151 }
2152
2153 case COMPLEX_TYPE:
2154 {
2155 tree zero = build_zero_cst (TREE_TYPE (type));
2156
2157 return build_complex (type, zero, zero);
2158 }
2159
2160 default:
2161 if (!AGGREGATE_TYPE_P (type))
2162 return fold_convert (type, integer_zero_node);
2163 return build_constructor (type, NULL);
2164 }
2165 }
2166
2167
2168 /* Build a BINFO with LEN language slots. */
2169
2170 tree
2171 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
2172 {
2173 tree t;
2174 size_t length = (offsetof (struct tree_binfo, base_binfos)
2175 + vec<tree, va_gc>::embedded_size (base_binfos));
2176
2177 record_node_allocation_statistics (TREE_BINFO, length);
2178
2179 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2180
2181 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2182
2183 TREE_SET_CODE (t, TREE_BINFO);
2184
2185 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2186
2187 return t;
2188 }
2189
2190 /* Create a CASE_LABEL_EXPR tree node and return it. */
2191
2192 tree
2193 build_case_label (tree low_value, tree high_value, tree label_decl)
2194 {
2195 tree t = make_node (CASE_LABEL_EXPR);
2196
2197 TREE_TYPE (t) = void_type_node;
2198 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2199
2200 CASE_LOW (t) = low_value;
2201 CASE_HIGH (t) = high_value;
2202 CASE_LABEL (t) = label_decl;
2203 CASE_CHAIN (t) = NULL_TREE;
2204
2205 return t;
2206 }
2207
2208 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2209 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2210 The latter determines the length of the HOST_WIDE_INT vector. */
2211
2212 tree
2213 make_int_cst_stat (int len, int ext_len MEM_STAT_DECL)
2214 {
2215 tree t;
2216 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2217 + sizeof (struct tree_int_cst));
2218
2219 gcc_assert (len);
2220 record_node_allocation_statistics (INTEGER_CST, length);
2221
2222 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2223
2224 TREE_SET_CODE (t, INTEGER_CST);
2225 TREE_INT_CST_NUNITS (t) = len;
2226 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2227 /* to_offset can only be applied to trees that are offset_int-sized
2228 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2229 must be exactly the precision of offset_int and so LEN is correct. */
2230 if (ext_len <= OFFSET_INT_ELTS)
2231 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2232 else
2233 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2234
2235 TREE_CONSTANT (t) = 1;
2236
2237 return t;
2238 }
2239
2240 /* Build a newly constructed TREE_VEC node of length LEN. */
2241
2242 tree
2243 make_tree_vec_stat (int len MEM_STAT_DECL)
2244 {
2245 tree t;
2246 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2247
2248 record_node_allocation_statistics (TREE_VEC, length);
2249
2250 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2251
2252 TREE_SET_CODE (t, TREE_VEC);
2253 TREE_VEC_LENGTH (t) = len;
2254
2255 return t;
2256 }
2257
2258 /* Grow a TREE_VEC node to new length LEN. */
2259
2260 tree
2261 grow_tree_vec_stat (tree v, int len MEM_STAT_DECL)
2262 {
2263 gcc_assert (TREE_CODE (v) == TREE_VEC);
2264
2265 int oldlen = TREE_VEC_LENGTH (v);
2266 gcc_assert (len > oldlen);
2267
2268 int oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2269 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2270
2271 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2272
2273 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2274
2275 TREE_VEC_LENGTH (v) = len;
2276
2277 return v;
2278 }
2279 \f
2280 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2281 fixed, and scalar, complex or vector. */
2282
2283 int
2284 zerop (const_tree expr)
2285 {
2286 return (integer_zerop (expr)
2287 || real_zerop (expr)
2288 || fixed_zerop (expr));
2289 }
2290
2291 /* Return 1 if EXPR is the integer constant zero or a complex constant
2292 of zero. */
2293
2294 int
2295 integer_zerop (const_tree expr)
2296 {
2297 switch (TREE_CODE (expr))
2298 {
2299 case INTEGER_CST:
2300 return wi::eq_p (expr, 0);
2301 case COMPLEX_CST:
2302 return (integer_zerop (TREE_REALPART (expr))
2303 && integer_zerop (TREE_IMAGPART (expr)));
2304 case VECTOR_CST:
2305 {
2306 unsigned i;
2307 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2308 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
2309 return false;
2310 return true;
2311 }
2312 default:
2313 return false;
2314 }
2315 }
2316
2317 /* Return 1 if EXPR is the integer constant one or the corresponding
2318 complex constant. */
2319
2320 int
2321 integer_onep (const_tree expr)
2322 {
2323 switch (TREE_CODE (expr))
2324 {
2325 case INTEGER_CST:
2326 return wi::eq_p (wi::to_widest (expr), 1);
2327 case COMPLEX_CST:
2328 return (integer_onep (TREE_REALPART (expr))
2329 && integer_zerop (TREE_IMAGPART (expr)));
2330 case VECTOR_CST:
2331 {
2332 unsigned i;
2333 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2334 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
2335 return false;
2336 return true;
2337 }
2338 default:
2339 return false;
2340 }
2341 }
2342
2343 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2344 return 1 if every piece is the integer constant one. */
2345
2346 int
2347 integer_each_onep (const_tree expr)
2348 {
2349 if (TREE_CODE (expr) == COMPLEX_CST)
2350 return (integer_onep (TREE_REALPART (expr))
2351 && integer_onep (TREE_IMAGPART (expr)));
2352 else
2353 return integer_onep (expr);
2354 }
2355
2356 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2357 it contains, or a complex or vector whose subparts are such integers. */
2358
2359 int
2360 integer_all_onesp (const_tree expr)
2361 {
2362 if (TREE_CODE (expr) == COMPLEX_CST
2363 && integer_all_onesp (TREE_REALPART (expr))
2364 && integer_all_onesp (TREE_IMAGPART (expr)))
2365 return 1;
2366
2367 else if (TREE_CODE (expr) == VECTOR_CST)
2368 {
2369 unsigned i;
2370 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2371 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
2372 return 0;
2373 return 1;
2374 }
2375
2376 else if (TREE_CODE (expr) != INTEGER_CST)
2377 return 0;
2378
2379 return wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED) == expr;
2380 }
2381
2382 /* Return 1 if EXPR is the integer constant minus one. */
2383
2384 int
2385 integer_minus_onep (const_tree expr)
2386 {
2387 if (TREE_CODE (expr) == COMPLEX_CST)
2388 return (integer_all_onesp (TREE_REALPART (expr))
2389 && integer_zerop (TREE_IMAGPART (expr)));
2390 else
2391 return integer_all_onesp (expr);
2392 }
2393
2394 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2395 one bit on). */
2396
2397 int
2398 integer_pow2p (const_tree expr)
2399 {
2400 if (TREE_CODE (expr) == COMPLEX_CST
2401 && integer_pow2p (TREE_REALPART (expr))
2402 && integer_zerop (TREE_IMAGPART (expr)))
2403 return 1;
2404
2405 if (TREE_CODE (expr) != INTEGER_CST)
2406 return 0;
2407
2408 return wi::popcount (expr) == 1;
2409 }
2410
2411 /* Return 1 if EXPR is an integer constant other than zero or a
2412 complex constant other than zero. */
2413
2414 int
2415 integer_nonzerop (const_tree expr)
2416 {
2417 return ((TREE_CODE (expr) == INTEGER_CST
2418 && !wi::eq_p (expr, 0))
2419 || (TREE_CODE (expr) == COMPLEX_CST
2420 && (integer_nonzerop (TREE_REALPART (expr))
2421 || integer_nonzerop (TREE_IMAGPART (expr)))));
2422 }
2423
2424 /* Return 1 if EXPR is the integer constant one. For vector,
2425 return 1 if every piece is the integer constant minus one
2426 (representing the value TRUE). */
2427
2428 int
2429 integer_truep (const_tree expr)
2430 {
2431 if (TREE_CODE (expr) == VECTOR_CST)
2432 return integer_all_onesp (expr);
2433 return integer_onep (expr);
2434 }
2435
2436 /* Return 1 if EXPR is the fixed-point constant zero. */
2437
2438 int
2439 fixed_zerop (const_tree expr)
2440 {
2441 return (TREE_CODE (expr) == FIXED_CST
2442 && TREE_FIXED_CST (expr).data.is_zero ());
2443 }
2444
2445 /* Return the power of two represented by a tree node known to be a
2446 power of two. */
2447
2448 int
2449 tree_log2 (const_tree expr)
2450 {
2451 if (TREE_CODE (expr) == COMPLEX_CST)
2452 return tree_log2 (TREE_REALPART (expr));
2453
2454 return wi::exact_log2 (expr);
2455 }
2456
2457 /* Similar, but return the largest integer Y such that 2 ** Y is less
2458 than or equal to EXPR. */
2459
2460 int
2461 tree_floor_log2 (const_tree expr)
2462 {
2463 if (TREE_CODE (expr) == COMPLEX_CST)
2464 return tree_log2 (TREE_REALPART (expr));
2465
2466 return wi::floor_log2 (expr);
2467 }
2468
2469 /* Return number of known trailing zero bits in EXPR, or, if the value of
2470 EXPR is known to be zero, the precision of it's type. */
2471
2472 unsigned int
2473 tree_ctz (const_tree expr)
2474 {
2475 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2476 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2477 return 0;
2478
2479 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2480 switch (TREE_CODE (expr))
2481 {
2482 case INTEGER_CST:
2483 ret1 = wi::ctz (expr);
2484 return MIN (ret1, prec);
2485 case SSA_NAME:
2486 ret1 = wi::ctz (get_nonzero_bits (expr));
2487 return MIN (ret1, prec);
2488 case PLUS_EXPR:
2489 case MINUS_EXPR:
2490 case BIT_IOR_EXPR:
2491 case BIT_XOR_EXPR:
2492 case MIN_EXPR:
2493 case MAX_EXPR:
2494 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2495 if (ret1 == 0)
2496 return ret1;
2497 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2498 return MIN (ret1, ret2);
2499 case POINTER_PLUS_EXPR:
2500 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2501 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2502 /* Second operand is sizetype, which could be in theory
2503 wider than pointer's precision. Make sure we never
2504 return more than prec. */
2505 ret2 = MIN (ret2, prec);
2506 return MIN (ret1, ret2);
2507 case BIT_AND_EXPR:
2508 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2509 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2510 return MAX (ret1, ret2);
2511 case MULT_EXPR:
2512 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2513 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2514 return MIN (ret1 + ret2, prec);
2515 case LSHIFT_EXPR:
2516 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2517 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2518 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2519 {
2520 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2521 return MIN (ret1 + ret2, prec);
2522 }
2523 return ret1;
2524 case RSHIFT_EXPR:
2525 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2526 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2527 {
2528 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2529 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2530 if (ret1 > ret2)
2531 return ret1 - ret2;
2532 }
2533 return 0;
2534 case TRUNC_DIV_EXPR:
2535 case CEIL_DIV_EXPR:
2536 case FLOOR_DIV_EXPR:
2537 case ROUND_DIV_EXPR:
2538 case EXACT_DIV_EXPR:
2539 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2540 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2541 {
2542 int l = tree_log2 (TREE_OPERAND (expr, 1));
2543 if (l >= 0)
2544 {
2545 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2546 ret2 = l;
2547 if (ret1 > ret2)
2548 return ret1 - ret2;
2549 }
2550 }
2551 return 0;
2552 CASE_CONVERT:
2553 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2554 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2555 ret1 = prec;
2556 return MIN (ret1, prec);
2557 case SAVE_EXPR:
2558 return tree_ctz (TREE_OPERAND (expr, 0));
2559 case COND_EXPR:
2560 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2561 if (ret1 == 0)
2562 return 0;
2563 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2564 return MIN (ret1, ret2);
2565 case COMPOUND_EXPR:
2566 return tree_ctz (TREE_OPERAND (expr, 1));
2567 case ADDR_EXPR:
2568 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2569 if (ret1 > BITS_PER_UNIT)
2570 {
2571 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2572 return MIN (ret1, prec);
2573 }
2574 return 0;
2575 default:
2576 return 0;
2577 }
2578 }
2579
2580 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2581 decimal float constants, so don't return 1 for them. */
2582
2583 int
2584 real_zerop (const_tree expr)
2585 {
2586 switch (TREE_CODE (expr))
2587 {
2588 case REAL_CST:
2589 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2590 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2591 case COMPLEX_CST:
2592 return real_zerop (TREE_REALPART (expr))
2593 && real_zerop (TREE_IMAGPART (expr));
2594 case VECTOR_CST:
2595 {
2596 unsigned i;
2597 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2598 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2599 return false;
2600 return true;
2601 }
2602 default:
2603 return false;
2604 }
2605 }
2606
2607 /* Return 1 if EXPR is the real constant one in real or complex form.
2608 Trailing zeroes matter for decimal float constants, so don't return
2609 1 for them. */
2610
2611 int
2612 real_onep (const_tree expr)
2613 {
2614 switch (TREE_CODE (expr))
2615 {
2616 case REAL_CST:
2617 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2618 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2619 case COMPLEX_CST:
2620 return real_onep (TREE_REALPART (expr))
2621 && real_zerop (TREE_IMAGPART (expr));
2622 case VECTOR_CST:
2623 {
2624 unsigned i;
2625 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2626 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2627 return false;
2628 return true;
2629 }
2630 default:
2631 return false;
2632 }
2633 }
2634
2635 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2636 matter for decimal float constants, so don't return 1 for them. */
2637
2638 int
2639 real_minus_onep (const_tree expr)
2640 {
2641 switch (TREE_CODE (expr))
2642 {
2643 case REAL_CST:
2644 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2645 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2646 case COMPLEX_CST:
2647 return real_minus_onep (TREE_REALPART (expr))
2648 && real_zerop (TREE_IMAGPART (expr));
2649 case VECTOR_CST:
2650 {
2651 unsigned i;
2652 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2653 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2654 return false;
2655 return true;
2656 }
2657 default:
2658 return false;
2659 }
2660 }
2661
2662 /* Nonzero if EXP is a constant or a cast of a constant. */
2663
2664 int
2665 really_constant_p (const_tree exp)
2666 {
2667 /* This is not quite the same as STRIP_NOPS. It does more. */
2668 while (CONVERT_EXPR_P (exp)
2669 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2670 exp = TREE_OPERAND (exp, 0);
2671 return TREE_CONSTANT (exp);
2672 }
2673 \f
2674 /* Return first list element whose TREE_VALUE is ELEM.
2675 Return 0 if ELEM is not in LIST. */
2676
2677 tree
2678 value_member (tree elem, tree list)
2679 {
2680 while (list)
2681 {
2682 if (elem == TREE_VALUE (list))
2683 return list;
2684 list = TREE_CHAIN (list);
2685 }
2686 return NULL_TREE;
2687 }
2688
2689 /* Return first list element whose TREE_PURPOSE is ELEM.
2690 Return 0 if ELEM is not in LIST. */
2691
2692 tree
2693 purpose_member (const_tree elem, tree list)
2694 {
2695 while (list)
2696 {
2697 if (elem == TREE_PURPOSE (list))
2698 return list;
2699 list = TREE_CHAIN (list);
2700 }
2701 return NULL_TREE;
2702 }
2703
2704 /* Return true if ELEM is in V. */
2705
2706 bool
2707 vec_member (const_tree elem, vec<tree, va_gc> *v)
2708 {
2709 unsigned ix;
2710 tree t;
2711 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2712 if (elem == t)
2713 return true;
2714 return false;
2715 }
2716
2717 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2718 NULL_TREE. */
2719
2720 tree
2721 chain_index (int idx, tree chain)
2722 {
2723 for (; chain && idx > 0; --idx)
2724 chain = TREE_CHAIN (chain);
2725 return chain;
2726 }
2727
2728 /* Return nonzero if ELEM is part of the chain CHAIN. */
2729
2730 int
2731 chain_member (const_tree elem, const_tree chain)
2732 {
2733 while (chain)
2734 {
2735 if (elem == chain)
2736 return 1;
2737 chain = DECL_CHAIN (chain);
2738 }
2739
2740 return 0;
2741 }
2742
2743 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2744 We expect a null pointer to mark the end of the chain.
2745 This is the Lisp primitive `length'. */
2746
2747 int
2748 list_length (const_tree t)
2749 {
2750 const_tree p = t;
2751 #ifdef ENABLE_TREE_CHECKING
2752 const_tree q = t;
2753 #endif
2754 int len = 0;
2755
2756 while (p)
2757 {
2758 p = TREE_CHAIN (p);
2759 #ifdef ENABLE_TREE_CHECKING
2760 if (len % 2)
2761 q = TREE_CHAIN (q);
2762 gcc_assert (p != q);
2763 #endif
2764 len++;
2765 }
2766
2767 return len;
2768 }
2769
2770 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2771 UNION_TYPE TYPE, or NULL_TREE if none. */
2772
2773 tree
2774 first_field (const_tree type)
2775 {
2776 tree t = TYPE_FIELDS (type);
2777 while (t && TREE_CODE (t) != FIELD_DECL)
2778 t = TREE_CHAIN (t);
2779 return t;
2780 }
2781
2782 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2783 by modifying the last node in chain 1 to point to chain 2.
2784 This is the Lisp primitive `nconc'. */
2785
2786 tree
2787 chainon (tree op1, tree op2)
2788 {
2789 tree t1;
2790
2791 if (!op1)
2792 return op2;
2793 if (!op2)
2794 return op1;
2795
2796 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2797 continue;
2798 TREE_CHAIN (t1) = op2;
2799
2800 #ifdef ENABLE_TREE_CHECKING
2801 {
2802 tree t2;
2803 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2804 gcc_assert (t2 != t1);
2805 }
2806 #endif
2807
2808 return op1;
2809 }
2810
2811 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2812
2813 tree
2814 tree_last (tree chain)
2815 {
2816 tree next;
2817 if (chain)
2818 while ((next = TREE_CHAIN (chain)))
2819 chain = next;
2820 return chain;
2821 }
2822
2823 /* Reverse the order of elements in the chain T,
2824 and return the new head of the chain (old last element). */
2825
2826 tree
2827 nreverse (tree t)
2828 {
2829 tree prev = 0, decl, next;
2830 for (decl = t; decl; decl = next)
2831 {
2832 /* We shouldn't be using this function to reverse BLOCK chains; we
2833 have blocks_nreverse for that. */
2834 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2835 next = TREE_CHAIN (decl);
2836 TREE_CHAIN (decl) = prev;
2837 prev = decl;
2838 }
2839 return prev;
2840 }
2841 \f
2842 /* Return a newly created TREE_LIST node whose
2843 purpose and value fields are PARM and VALUE. */
2844
2845 tree
2846 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2847 {
2848 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2849 TREE_PURPOSE (t) = parm;
2850 TREE_VALUE (t) = value;
2851 return t;
2852 }
2853
2854 /* Build a chain of TREE_LIST nodes from a vector. */
2855
2856 tree
2857 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2858 {
2859 tree ret = NULL_TREE;
2860 tree *pp = &ret;
2861 unsigned int i;
2862 tree t;
2863 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2864 {
2865 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2866 pp = &TREE_CHAIN (*pp);
2867 }
2868 return ret;
2869 }
2870
2871 /* Return a newly created TREE_LIST node whose
2872 purpose and value fields are PURPOSE and VALUE
2873 and whose TREE_CHAIN is CHAIN. */
2874
2875 tree
2876 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2877 {
2878 tree node;
2879
2880 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2881 memset (node, 0, sizeof (struct tree_common));
2882
2883 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2884
2885 TREE_SET_CODE (node, TREE_LIST);
2886 TREE_CHAIN (node) = chain;
2887 TREE_PURPOSE (node) = purpose;
2888 TREE_VALUE (node) = value;
2889 return node;
2890 }
2891
2892 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2893 trees. */
2894
2895 vec<tree, va_gc> *
2896 ctor_to_vec (tree ctor)
2897 {
2898 vec<tree, va_gc> *vec;
2899 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2900 unsigned int ix;
2901 tree val;
2902
2903 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2904 vec->quick_push (val);
2905
2906 return vec;
2907 }
2908 \f
2909 /* Return the size nominally occupied by an object of type TYPE
2910 when it resides in memory. The value is measured in units of bytes,
2911 and its data type is that normally used for type sizes
2912 (which is the first type created by make_signed_type or
2913 make_unsigned_type). */
2914
2915 tree
2916 size_in_bytes (const_tree type)
2917 {
2918 tree t;
2919
2920 if (type == error_mark_node)
2921 return integer_zero_node;
2922
2923 type = TYPE_MAIN_VARIANT (type);
2924 t = TYPE_SIZE_UNIT (type);
2925
2926 if (t == 0)
2927 {
2928 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2929 return size_zero_node;
2930 }
2931
2932 return t;
2933 }
2934
2935 /* Return the size of TYPE (in bytes) as a wide integer
2936 or return -1 if the size can vary or is larger than an integer. */
2937
2938 HOST_WIDE_INT
2939 int_size_in_bytes (const_tree type)
2940 {
2941 tree t;
2942
2943 if (type == error_mark_node)
2944 return 0;
2945
2946 type = TYPE_MAIN_VARIANT (type);
2947 t = TYPE_SIZE_UNIT (type);
2948
2949 if (t && tree_fits_uhwi_p (t))
2950 return TREE_INT_CST_LOW (t);
2951 else
2952 return -1;
2953 }
2954
2955 /* Return the maximum size of TYPE (in bytes) as a wide integer
2956 or return -1 if the size can vary or is larger than an integer. */
2957
2958 HOST_WIDE_INT
2959 max_int_size_in_bytes (const_tree type)
2960 {
2961 HOST_WIDE_INT size = -1;
2962 tree size_tree;
2963
2964 /* If this is an array type, check for a possible MAX_SIZE attached. */
2965
2966 if (TREE_CODE (type) == ARRAY_TYPE)
2967 {
2968 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2969
2970 if (size_tree && tree_fits_uhwi_p (size_tree))
2971 size = tree_to_uhwi (size_tree);
2972 }
2973
2974 /* If we still haven't been able to get a size, see if the language
2975 can compute a maximum size. */
2976
2977 if (size == -1)
2978 {
2979 size_tree = lang_hooks.types.max_size (type);
2980
2981 if (size_tree && tree_fits_uhwi_p (size_tree))
2982 size = tree_to_uhwi (size_tree);
2983 }
2984
2985 return size;
2986 }
2987 \f
2988 /* Return the bit position of FIELD, in bits from the start of the record.
2989 This is a tree of type bitsizetype. */
2990
2991 tree
2992 bit_position (const_tree field)
2993 {
2994 return bit_from_pos (DECL_FIELD_OFFSET (field),
2995 DECL_FIELD_BIT_OFFSET (field));
2996 }
2997 \f
2998 /* Return the byte position of FIELD, in bytes from the start of the record.
2999 This is a tree of type sizetype. */
3000
3001 tree
3002 byte_position (const_tree field)
3003 {
3004 return byte_from_pos (DECL_FIELD_OFFSET (field),
3005 DECL_FIELD_BIT_OFFSET (field));
3006 }
3007
3008 /* Likewise, but return as an integer. It must be representable in
3009 that way (since it could be a signed value, we don't have the
3010 option of returning -1 like int_size_in_byte can. */
3011
3012 HOST_WIDE_INT
3013 int_byte_position (const_tree field)
3014 {
3015 return tree_to_shwi (byte_position (field));
3016 }
3017 \f
3018 /* Return the strictest alignment, in bits, that T is known to have. */
3019
3020 unsigned int
3021 expr_align (const_tree t)
3022 {
3023 unsigned int align0, align1;
3024
3025 switch (TREE_CODE (t))
3026 {
3027 CASE_CONVERT: case NON_LVALUE_EXPR:
3028 /* If we have conversions, we know that the alignment of the
3029 object must meet each of the alignments of the types. */
3030 align0 = expr_align (TREE_OPERAND (t, 0));
3031 align1 = TYPE_ALIGN (TREE_TYPE (t));
3032 return MAX (align0, align1);
3033
3034 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3035 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3036 case CLEANUP_POINT_EXPR:
3037 /* These don't change the alignment of an object. */
3038 return expr_align (TREE_OPERAND (t, 0));
3039
3040 case COND_EXPR:
3041 /* The best we can do is say that the alignment is the least aligned
3042 of the two arms. */
3043 align0 = expr_align (TREE_OPERAND (t, 1));
3044 align1 = expr_align (TREE_OPERAND (t, 2));
3045 return MIN (align0, align1);
3046
3047 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3048 meaningfully, it's always 1. */
3049 case LABEL_DECL: case CONST_DECL:
3050 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3051 case FUNCTION_DECL:
3052 gcc_assert (DECL_ALIGN (t) != 0);
3053 return DECL_ALIGN (t);
3054
3055 default:
3056 break;
3057 }
3058
3059 /* Otherwise take the alignment from that of the type. */
3060 return TYPE_ALIGN (TREE_TYPE (t));
3061 }
3062 \f
3063 /* Return, as a tree node, the number of elements for TYPE (which is an
3064 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3065
3066 tree
3067 array_type_nelts (const_tree type)
3068 {
3069 tree index_type, min, max;
3070
3071 /* If they did it with unspecified bounds, then we should have already
3072 given an error about it before we got here. */
3073 if (! TYPE_DOMAIN (type))
3074 return error_mark_node;
3075
3076 index_type = TYPE_DOMAIN (type);
3077 min = TYPE_MIN_VALUE (index_type);
3078 max = TYPE_MAX_VALUE (index_type);
3079
3080 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3081 if (!max)
3082 return error_mark_node;
3083
3084 return (integer_zerop (min)
3085 ? max
3086 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3087 }
3088 \f
3089 /* If arg is static -- a reference to an object in static storage -- then
3090 return the object. This is not the same as the C meaning of `static'.
3091 If arg isn't static, return NULL. */
3092
3093 tree
3094 staticp (tree arg)
3095 {
3096 switch (TREE_CODE (arg))
3097 {
3098 case FUNCTION_DECL:
3099 /* Nested functions are static, even though taking their address will
3100 involve a trampoline as we unnest the nested function and create
3101 the trampoline on the tree level. */
3102 return arg;
3103
3104 case VAR_DECL:
3105 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3106 && ! DECL_THREAD_LOCAL_P (arg)
3107 && ! DECL_DLLIMPORT_P (arg)
3108 ? arg : NULL);
3109
3110 case CONST_DECL:
3111 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3112 ? arg : NULL);
3113
3114 case CONSTRUCTOR:
3115 return TREE_STATIC (arg) ? arg : NULL;
3116
3117 case LABEL_DECL:
3118 case STRING_CST:
3119 return arg;
3120
3121 case COMPONENT_REF:
3122 /* If the thing being referenced is not a field, then it is
3123 something language specific. */
3124 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3125
3126 /* If we are referencing a bitfield, we can't evaluate an
3127 ADDR_EXPR at compile time and so it isn't a constant. */
3128 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3129 return NULL;
3130
3131 return staticp (TREE_OPERAND (arg, 0));
3132
3133 case BIT_FIELD_REF:
3134 return NULL;
3135
3136 case INDIRECT_REF:
3137 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3138
3139 case ARRAY_REF:
3140 case ARRAY_RANGE_REF:
3141 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3142 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3143 return staticp (TREE_OPERAND (arg, 0));
3144 else
3145 return NULL;
3146
3147 case COMPOUND_LITERAL_EXPR:
3148 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3149
3150 default:
3151 return NULL;
3152 }
3153 }
3154
3155 \f
3156
3157
3158 /* Return whether OP is a DECL whose address is function-invariant. */
3159
3160 bool
3161 decl_address_invariant_p (const_tree op)
3162 {
3163 /* The conditions below are slightly less strict than the one in
3164 staticp. */
3165
3166 switch (TREE_CODE (op))
3167 {
3168 case PARM_DECL:
3169 case RESULT_DECL:
3170 case LABEL_DECL:
3171 case FUNCTION_DECL:
3172 return true;
3173
3174 case VAR_DECL:
3175 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3176 || DECL_THREAD_LOCAL_P (op)
3177 || DECL_CONTEXT (op) == current_function_decl
3178 || decl_function_context (op) == current_function_decl)
3179 return true;
3180 break;
3181
3182 case CONST_DECL:
3183 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3184 || decl_function_context (op) == current_function_decl)
3185 return true;
3186 break;
3187
3188 default:
3189 break;
3190 }
3191
3192 return false;
3193 }
3194
3195 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3196
3197 bool
3198 decl_address_ip_invariant_p (const_tree op)
3199 {
3200 /* The conditions below are slightly less strict than the one in
3201 staticp. */
3202
3203 switch (TREE_CODE (op))
3204 {
3205 case LABEL_DECL:
3206 case FUNCTION_DECL:
3207 case STRING_CST:
3208 return true;
3209
3210 case VAR_DECL:
3211 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3212 && !DECL_DLLIMPORT_P (op))
3213 || DECL_THREAD_LOCAL_P (op))
3214 return true;
3215 break;
3216
3217 case CONST_DECL:
3218 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3219 return true;
3220 break;
3221
3222 default:
3223 break;
3224 }
3225
3226 return false;
3227 }
3228
3229
3230 /* Return true if T is function-invariant (internal function, does
3231 not handle arithmetic; that's handled in skip_simple_arithmetic and
3232 tree_invariant_p). */
3233
3234 static bool tree_invariant_p (tree t);
3235
3236 static bool
3237 tree_invariant_p_1 (tree t)
3238 {
3239 tree op;
3240
3241 if (TREE_CONSTANT (t)
3242 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3243 return true;
3244
3245 switch (TREE_CODE (t))
3246 {
3247 case SAVE_EXPR:
3248 return true;
3249
3250 case ADDR_EXPR:
3251 op = TREE_OPERAND (t, 0);
3252 while (handled_component_p (op))
3253 {
3254 switch (TREE_CODE (op))
3255 {
3256 case ARRAY_REF:
3257 case ARRAY_RANGE_REF:
3258 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3259 || TREE_OPERAND (op, 2) != NULL_TREE
3260 || TREE_OPERAND (op, 3) != NULL_TREE)
3261 return false;
3262 break;
3263
3264 case COMPONENT_REF:
3265 if (TREE_OPERAND (op, 2) != NULL_TREE)
3266 return false;
3267 break;
3268
3269 default:;
3270 }
3271 op = TREE_OPERAND (op, 0);
3272 }
3273
3274 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3275
3276 default:
3277 break;
3278 }
3279
3280 return false;
3281 }
3282
3283 /* Return true if T is function-invariant. */
3284
3285 static bool
3286 tree_invariant_p (tree t)
3287 {
3288 tree inner = skip_simple_arithmetic (t);
3289 return tree_invariant_p_1 (inner);
3290 }
3291
3292 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3293 Do this to any expression which may be used in more than one place,
3294 but must be evaluated only once.
3295
3296 Normally, expand_expr would reevaluate the expression each time.
3297 Calling save_expr produces something that is evaluated and recorded
3298 the first time expand_expr is called on it. Subsequent calls to
3299 expand_expr just reuse the recorded value.
3300
3301 The call to expand_expr that generates code that actually computes
3302 the value is the first call *at compile time*. Subsequent calls
3303 *at compile time* generate code to use the saved value.
3304 This produces correct result provided that *at run time* control
3305 always flows through the insns made by the first expand_expr
3306 before reaching the other places where the save_expr was evaluated.
3307 You, the caller of save_expr, must make sure this is so.
3308
3309 Constants, and certain read-only nodes, are returned with no
3310 SAVE_EXPR because that is safe. Expressions containing placeholders
3311 are not touched; see tree.def for an explanation of what these
3312 are used for. */
3313
3314 tree
3315 save_expr (tree expr)
3316 {
3317 tree t = fold (expr);
3318 tree inner;
3319
3320 /* If the tree evaluates to a constant, then we don't want to hide that
3321 fact (i.e. this allows further folding, and direct checks for constants).
3322 However, a read-only object that has side effects cannot be bypassed.
3323 Since it is no problem to reevaluate literals, we just return the
3324 literal node. */
3325 inner = skip_simple_arithmetic (t);
3326 if (TREE_CODE (inner) == ERROR_MARK)
3327 return inner;
3328
3329 if (tree_invariant_p_1 (inner))
3330 return t;
3331
3332 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3333 it means that the size or offset of some field of an object depends on
3334 the value within another field.
3335
3336 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
3337 and some variable since it would then need to be both evaluated once and
3338 evaluated more than once. Front-ends must assure this case cannot
3339 happen by surrounding any such subexpressions in their own SAVE_EXPR
3340 and forcing evaluation at the proper time. */
3341 if (contains_placeholder_p (inner))
3342 return t;
3343
3344 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
3345 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
3346
3347 /* This expression might be placed ahead of a jump to ensure that the
3348 value was computed on both sides of the jump. So make sure it isn't
3349 eliminated as dead. */
3350 TREE_SIDE_EFFECTS (t) = 1;
3351 return t;
3352 }
3353
3354 /* Look inside EXPR into any simple arithmetic operations. Return the
3355 outermost non-arithmetic or non-invariant node. */
3356
3357 tree
3358 skip_simple_arithmetic (tree expr)
3359 {
3360 /* We don't care about whether this can be used as an lvalue in this
3361 context. */
3362 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3363 expr = TREE_OPERAND (expr, 0);
3364
3365 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3366 a constant, it will be more efficient to not make another SAVE_EXPR since
3367 it will allow better simplification and GCSE will be able to merge the
3368 computations if they actually occur. */
3369 while (true)
3370 {
3371 if (UNARY_CLASS_P (expr))
3372 expr = TREE_OPERAND (expr, 0);
3373 else if (BINARY_CLASS_P (expr))
3374 {
3375 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3376 expr = TREE_OPERAND (expr, 0);
3377 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3378 expr = TREE_OPERAND (expr, 1);
3379 else
3380 break;
3381 }
3382 else
3383 break;
3384 }
3385
3386 return expr;
3387 }
3388
3389 /* Look inside EXPR into simple arithmetic operations involving constants.
3390 Return the outermost non-arithmetic or non-constant node. */
3391
3392 tree
3393 skip_simple_constant_arithmetic (tree expr)
3394 {
3395 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3396 expr = TREE_OPERAND (expr, 0);
3397
3398 while (true)
3399 {
3400 if (UNARY_CLASS_P (expr))
3401 expr = TREE_OPERAND (expr, 0);
3402 else if (BINARY_CLASS_P (expr))
3403 {
3404 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3405 expr = TREE_OPERAND (expr, 0);
3406 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3407 expr = TREE_OPERAND (expr, 1);
3408 else
3409 break;
3410 }
3411 else
3412 break;
3413 }
3414
3415 return expr;
3416 }
3417
3418 /* Return which tree structure is used by T. */
3419
3420 enum tree_node_structure_enum
3421 tree_node_structure (const_tree t)
3422 {
3423 const enum tree_code code = TREE_CODE (t);
3424 return tree_node_structure_for_code (code);
3425 }
3426
3427 /* Set various status flags when building a CALL_EXPR object T. */
3428
3429 static void
3430 process_call_operands (tree t)
3431 {
3432 bool side_effects = TREE_SIDE_EFFECTS (t);
3433 bool read_only = false;
3434 int i = call_expr_flags (t);
3435
3436 /* Calls have side-effects, except those to const or pure functions. */
3437 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3438 side_effects = true;
3439 /* Propagate TREE_READONLY of arguments for const functions. */
3440 if (i & ECF_CONST)
3441 read_only = true;
3442
3443 if (!side_effects || read_only)
3444 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3445 {
3446 tree op = TREE_OPERAND (t, i);
3447 if (op && TREE_SIDE_EFFECTS (op))
3448 side_effects = true;
3449 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3450 read_only = false;
3451 }
3452
3453 TREE_SIDE_EFFECTS (t) = side_effects;
3454 TREE_READONLY (t) = read_only;
3455 }
3456 \f
3457 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3458 size or offset that depends on a field within a record. */
3459
3460 bool
3461 contains_placeholder_p (const_tree exp)
3462 {
3463 enum tree_code code;
3464
3465 if (!exp)
3466 return 0;
3467
3468 code = TREE_CODE (exp);
3469 if (code == PLACEHOLDER_EXPR)
3470 return 1;
3471
3472 switch (TREE_CODE_CLASS (code))
3473 {
3474 case tcc_reference:
3475 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3476 position computations since they will be converted into a
3477 WITH_RECORD_EXPR involving the reference, which will assume
3478 here will be valid. */
3479 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3480
3481 case tcc_exceptional:
3482 if (code == TREE_LIST)
3483 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3484 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3485 break;
3486
3487 case tcc_unary:
3488 case tcc_binary:
3489 case tcc_comparison:
3490 case tcc_expression:
3491 switch (code)
3492 {
3493 case COMPOUND_EXPR:
3494 /* Ignoring the first operand isn't quite right, but works best. */
3495 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3496
3497 case COND_EXPR:
3498 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3499 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3500 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3501
3502 case SAVE_EXPR:
3503 /* The save_expr function never wraps anything containing
3504 a PLACEHOLDER_EXPR. */
3505 return 0;
3506
3507 default:
3508 break;
3509 }
3510
3511 switch (TREE_CODE_LENGTH (code))
3512 {
3513 case 1:
3514 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3515 case 2:
3516 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3517 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3518 default:
3519 return 0;
3520 }
3521
3522 case tcc_vl_exp:
3523 switch (code)
3524 {
3525 case CALL_EXPR:
3526 {
3527 const_tree arg;
3528 const_call_expr_arg_iterator iter;
3529 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3530 if (CONTAINS_PLACEHOLDER_P (arg))
3531 return 1;
3532 return 0;
3533 }
3534 default:
3535 return 0;
3536 }
3537
3538 default:
3539 return 0;
3540 }
3541 return 0;
3542 }
3543
3544 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3545 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3546 field positions. */
3547
3548 static bool
3549 type_contains_placeholder_1 (const_tree type)
3550 {
3551 /* If the size contains a placeholder or the parent type (component type in
3552 the case of arrays) type involves a placeholder, this type does. */
3553 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3554 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3555 || (!POINTER_TYPE_P (type)
3556 && TREE_TYPE (type)
3557 && type_contains_placeholder_p (TREE_TYPE (type))))
3558 return true;
3559
3560 /* Now do type-specific checks. Note that the last part of the check above
3561 greatly limits what we have to do below. */
3562 switch (TREE_CODE (type))
3563 {
3564 case VOID_TYPE:
3565 case POINTER_BOUNDS_TYPE:
3566 case COMPLEX_TYPE:
3567 case ENUMERAL_TYPE:
3568 case BOOLEAN_TYPE:
3569 case POINTER_TYPE:
3570 case OFFSET_TYPE:
3571 case REFERENCE_TYPE:
3572 case METHOD_TYPE:
3573 case FUNCTION_TYPE:
3574 case VECTOR_TYPE:
3575 case NULLPTR_TYPE:
3576 return false;
3577
3578 case INTEGER_TYPE:
3579 case REAL_TYPE:
3580 case FIXED_POINT_TYPE:
3581 /* Here we just check the bounds. */
3582 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3583 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3584
3585 case ARRAY_TYPE:
3586 /* We have already checked the component type above, so just check the
3587 domain type. */
3588 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3589
3590 case RECORD_TYPE:
3591 case UNION_TYPE:
3592 case QUAL_UNION_TYPE:
3593 {
3594 tree field;
3595
3596 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3597 if (TREE_CODE (field) == FIELD_DECL
3598 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3599 || (TREE_CODE (type) == QUAL_UNION_TYPE
3600 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3601 || type_contains_placeholder_p (TREE_TYPE (field))))
3602 return true;
3603
3604 return false;
3605 }
3606
3607 default:
3608 gcc_unreachable ();
3609 }
3610 }
3611
3612 /* Wrapper around above function used to cache its result. */
3613
3614 bool
3615 type_contains_placeholder_p (tree type)
3616 {
3617 bool result;
3618
3619 /* If the contains_placeholder_bits field has been initialized,
3620 then we know the answer. */
3621 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3622 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3623
3624 /* Indicate that we've seen this type node, and the answer is false.
3625 This is what we want to return if we run into recursion via fields. */
3626 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3627
3628 /* Compute the real value. */
3629 result = type_contains_placeholder_1 (type);
3630
3631 /* Store the real value. */
3632 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3633
3634 return result;
3635 }
3636 \f
3637 /* Push tree EXP onto vector QUEUE if it is not already present. */
3638
3639 static void
3640 push_without_duplicates (tree exp, vec<tree> *queue)
3641 {
3642 unsigned int i;
3643 tree iter;
3644
3645 FOR_EACH_VEC_ELT (*queue, i, iter)
3646 if (simple_cst_equal (iter, exp) == 1)
3647 break;
3648
3649 if (!iter)
3650 queue->safe_push (exp);
3651 }
3652
3653 /* Given a tree EXP, find all occurrences of references to fields
3654 in a PLACEHOLDER_EXPR and place them in vector REFS without
3655 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3656 we assume here that EXP contains only arithmetic expressions
3657 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3658 argument list. */
3659
3660 void
3661 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3662 {
3663 enum tree_code code = TREE_CODE (exp);
3664 tree inner;
3665 int i;
3666
3667 /* We handle TREE_LIST and COMPONENT_REF separately. */
3668 if (code == TREE_LIST)
3669 {
3670 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3671 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3672 }
3673 else if (code == COMPONENT_REF)
3674 {
3675 for (inner = TREE_OPERAND (exp, 0);
3676 REFERENCE_CLASS_P (inner);
3677 inner = TREE_OPERAND (inner, 0))
3678 ;
3679
3680 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3681 push_without_duplicates (exp, refs);
3682 else
3683 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3684 }
3685 else
3686 switch (TREE_CODE_CLASS (code))
3687 {
3688 case tcc_constant:
3689 break;
3690
3691 case tcc_declaration:
3692 /* Variables allocated to static storage can stay. */
3693 if (!TREE_STATIC (exp))
3694 push_without_duplicates (exp, refs);
3695 break;
3696
3697 case tcc_expression:
3698 /* This is the pattern built in ada/make_aligning_type. */
3699 if (code == ADDR_EXPR
3700 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3701 {
3702 push_without_duplicates (exp, refs);
3703 break;
3704 }
3705
3706 /* Fall through... */
3707
3708 case tcc_exceptional:
3709 case tcc_unary:
3710 case tcc_binary:
3711 case tcc_comparison:
3712 case tcc_reference:
3713 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3714 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3715 break;
3716
3717 case tcc_vl_exp:
3718 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3719 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3720 break;
3721
3722 default:
3723 gcc_unreachable ();
3724 }
3725 }
3726
3727 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3728 return a tree with all occurrences of references to F in a
3729 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3730 CONST_DECLs. Note that we assume here that EXP contains only
3731 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3732 occurring only in their argument list. */
3733
3734 tree
3735 substitute_in_expr (tree exp, tree f, tree r)
3736 {
3737 enum tree_code code = TREE_CODE (exp);
3738 tree op0, op1, op2, op3;
3739 tree new_tree;
3740
3741 /* We handle TREE_LIST and COMPONENT_REF separately. */
3742 if (code == TREE_LIST)
3743 {
3744 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3745 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3746 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3747 return exp;
3748
3749 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3750 }
3751 else if (code == COMPONENT_REF)
3752 {
3753 tree inner;
3754
3755 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3756 and it is the right field, replace it with R. */
3757 for (inner = TREE_OPERAND (exp, 0);
3758 REFERENCE_CLASS_P (inner);
3759 inner = TREE_OPERAND (inner, 0))
3760 ;
3761
3762 /* The field. */
3763 op1 = TREE_OPERAND (exp, 1);
3764
3765 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3766 return r;
3767
3768 /* If this expression hasn't been completed let, leave it alone. */
3769 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3770 return exp;
3771
3772 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3773 if (op0 == TREE_OPERAND (exp, 0))
3774 return exp;
3775
3776 new_tree
3777 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3778 }
3779 else
3780 switch (TREE_CODE_CLASS (code))
3781 {
3782 case tcc_constant:
3783 return exp;
3784
3785 case tcc_declaration:
3786 if (exp == f)
3787 return r;
3788 else
3789 return exp;
3790
3791 case tcc_expression:
3792 if (exp == f)
3793 return r;
3794
3795 /* Fall through... */
3796
3797 case tcc_exceptional:
3798 case tcc_unary:
3799 case tcc_binary:
3800 case tcc_comparison:
3801 case tcc_reference:
3802 switch (TREE_CODE_LENGTH (code))
3803 {
3804 case 0:
3805 return exp;
3806
3807 case 1:
3808 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3809 if (op0 == TREE_OPERAND (exp, 0))
3810 return exp;
3811
3812 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3813 break;
3814
3815 case 2:
3816 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3817 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3818
3819 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3820 return exp;
3821
3822 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3823 break;
3824
3825 case 3:
3826 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3827 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3828 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3829
3830 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3831 && op2 == TREE_OPERAND (exp, 2))
3832 return exp;
3833
3834 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3835 break;
3836
3837 case 4:
3838 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3839 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3840 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3841 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3842
3843 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3844 && op2 == TREE_OPERAND (exp, 2)
3845 && op3 == TREE_OPERAND (exp, 3))
3846 return exp;
3847
3848 new_tree
3849 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3850 break;
3851
3852 default:
3853 gcc_unreachable ();
3854 }
3855 break;
3856
3857 case tcc_vl_exp:
3858 {
3859 int i;
3860
3861 new_tree = NULL_TREE;
3862
3863 /* If we are trying to replace F with a constant, inline back
3864 functions which do nothing else than computing a value from
3865 the arguments they are passed. This makes it possible to
3866 fold partially or entirely the replacement expression. */
3867 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3868 {
3869 tree t = maybe_inline_call_in_expr (exp);
3870 if (t)
3871 return SUBSTITUTE_IN_EXPR (t, f, r);
3872 }
3873
3874 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3875 {
3876 tree op = TREE_OPERAND (exp, i);
3877 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3878 if (new_op != op)
3879 {
3880 if (!new_tree)
3881 new_tree = copy_node (exp);
3882 TREE_OPERAND (new_tree, i) = new_op;
3883 }
3884 }
3885
3886 if (new_tree)
3887 {
3888 new_tree = fold (new_tree);
3889 if (TREE_CODE (new_tree) == CALL_EXPR)
3890 process_call_operands (new_tree);
3891 }
3892 else
3893 return exp;
3894 }
3895 break;
3896
3897 default:
3898 gcc_unreachable ();
3899 }
3900
3901 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3902
3903 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3904 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3905
3906 return new_tree;
3907 }
3908
3909 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3910 for it within OBJ, a tree that is an object or a chain of references. */
3911
3912 tree
3913 substitute_placeholder_in_expr (tree exp, tree obj)
3914 {
3915 enum tree_code code = TREE_CODE (exp);
3916 tree op0, op1, op2, op3;
3917 tree new_tree;
3918
3919 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3920 in the chain of OBJ. */
3921 if (code == PLACEHOLDER_EXPR)
3922 {
3923 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3924 tree elt;
3925
3926 for (elt = obj; elt != 0;
3927 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3928 || TREE_CODE (elt) == COND_EXPR)
3929 ? TREE_OPERAND (elt, 1)
3930 : (REFERENCE_CLASS_P (elt)
3931 || UNARY_CLASS_P (elt)
3932 || BINARY_CLASS_P (elt)
3933 || VL_EXP_CLASS_P (elt)
3934 || EXPRESSION_CLASS_P (elt))
3935 ? TREE_OPERAND (elt, 0) : 0))
3936 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3937 return elt;
3938
3939 for (elt = obj; elt != 0;
3940 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3941 || TREE_CODE (elt) == COND_EXPR)
3942 ? TREE_OPERAND (elt, 1)
3943 : (REFERENCE_CLASS_P (elt)
3944 || UNARY_CLASS_P (elt)
3945 || BINARY_CLASS_P (elt)
3946 || VL_EXP_CLASS_P (elt)
3947 || EXPRESSION_CLASS_P (elt))
3948 ? TREE_OPERAND (elt, 0) : 0))
3949 if (POINTER_TYPE_P (TREE_TYPE (elt))
3950 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3951 == need_type))
3952 return fold_build1 (INDIRECT_REF, need_type, elt);
3953
3954 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3955 survives until RTL generation, there will be an error. */
3956 return exp;
3957 }
3958
3959 /* TREE_LIST is special because we need to look at TREE_VALUE
3960 and TREE_CHAIN, not TREE_OPERANDS. */
3961 else if (code == TREE_LIST)
3962 {
3963 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3964 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3965 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3966 return exp;
3967
3968 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3969 }
3970 else
3971 switch (TREE_CODE_CLASS (code))
3972 {
3973 case tcc_constant:
3974 case tcc_declaration:
3975 return exp;
3976
3977 case tcc_exceptional:
3978 case tcc_unary:
3979 case tcc_binary:
3980 case tcc_comparison:
3981 case tcc_expression:
3982 case tcc_reference:
3983 case tcc_statement:
3984 switch (TREE_CODE_LENGTH (code))
3985 {
3986 case 0:
3987 return exp;
3988
3989 case 1:
3990 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3991 if (op0 == TREE_OPERAND (exp, 0))
3992 return exp;
3993
3994 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3995 break;
3996
3997 case 2:
3998 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3999 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4000
4001 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4002 return exp;
4003
4004 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4005 break;
4006
4007 case 3:
4008 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4009 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4010 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4011
4012 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4013 && op2 == TREE_OPERAND (exp, 2))
4014 return exp;
4015
4016 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4017 break;
4018
4019 case 4:
4020 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4021 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4022 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4023 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4024
4025 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4026 && op2 == TREE_OPERAND (exp, 2)
4027 && op3 == TREE_OPERAND (exp, 3))
4028 return exp;
4029
4030 new_tree
4031 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4032 break;
4033
4034 default:
4035 gcc_unreachable ();
4036 }
4037 break;
4038
4039 case tcc_vl_exp:
4040 {
4041 int i;
4042
4043 new_tree = NULL_TREE;
4044
4045 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4046 {
4047 tree op = TREE_OPERAND (exp, i);
4048 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4049 if (new_op != op)
4050 {
4051 if (!new_tree)
4052 new_tree = copy_node (exp);
4053 TREE_OPERAND (new_tree, i) = new_op;
4054 }
4055 }
4056
4057 if (new_tree)
4058 {
4059 new_tree = fold (new_tree);
4060 if (TREE_CODE (new_tree) == CALL_EXPR)
4061 process_call_operands (new_tree);
4062 }
4063 else
4064 return exp;
4065 }
4066 break;
4067
4068 default:
4069 gcc_unreachable ();
4070 }
4071
4072 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4073
4074 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4075 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4076
4077 return new_tree;
4078 }
4079 \f
4080
4081 /* Subroutine of stabilize_reference; this is called for subtrees of
4082 references. Any expression with side-effects must be put in a SAVE_EXPR
4083 to ensure that it is only evaluated once.
4084
4085 We don't put SAVE_EXPR nodes around everything, because assigning very
4086 simple expressions to temporaries causes us to miss good opportunities
4087 for optimizations. Among other things, the opportunity to fold in the
4088 addition of a constant into an addressing mode often gets lost, e.g.
4089 "y[i+1] += x;". In general, we take the approach that we should not make
4090 an assignment unless we are forced into it - i.e., that any non-side effect
4091 operator should be allowed, and that cse should take care of coalescing
4092 multiple utterances of the same expression should that prove fruitful. */
4093
4094 static tree
4095 stabilize_reference_1 (tree e)
4096 {
4097 tree result;
4098 enum tree_code code = TREE_CODE (e);
4099
4100 /* We cannot ignore const expressions because it might be a reference
4101 to a const array but whose index contains side-effects. But we can
4102 ignore things that are actual constant or that already have been
4103 handled by this function. */
4104
4105 if (tree_invariant_p (e))
4106 return e;
4107
4108 switch (TREE_CODE_CLASS (code))
4109 {
4110 case tcc_exceptional:
4111 case tcc_type:
4112 case tcc_declaration:
4113 case tcc_comparison:
4114 case tcc_statement:
4115 case tcc_expression:
4116 case tcc_reference:
4117 case tcc_vl_exp:
4118 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4119 so that it will only be evaluated once. */
4120 /* The reference (r) and comparison (<) classes could be handled as
4121 below, but it is generally faster to only evaluate them once. */
4122 if (TREE_SIDE_EFFECTS (e))
4123 return save_expr (e);
4124 return e;
4125
4126 case tcc_constant:
4127 /* Constants need no processing. In fact, we should never reach
4128 here. */
4129 return e;
4130
4131 case tcc_binary:
4132 /* Division is slow and tends to be compiled with jumps,
4133 especially the division by powers of 2 that is often
4134 found inside of an array reference. So do it just once. */
4135 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4136 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4137 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4138 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4139 return save_expr (e);
4140 /* Recursively stabilize each operand. */
4141 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4142 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4143 break;
4144
4145 case tcc_unary:
4146 /* Recursively stabilize each operand. */
4147 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4148 break;
4149
4150 default:
4151 gcc_unreachable ();
4152 }
4153
4154 TREE_TYPE (result) = TREE_TYPE (e);
4155 TREE_READONLY (result) = TREE_READONLY (e);
4156 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4157 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4158
4159 return result;
4160 }
4161
4162 /* Stabilize a reference so that we can use it any number of times
4163 without causing its operands to be evaluated more than once.
4164 Returns the stabilized reference. This works by means of save_expr,
4165 so see the caveats in the comments about save_expr.
4166
4167 Also allows conversion expressions whose operands are references.
4168 Any other kind of expression is returned unchanged. */
4169
4170 tree
4171 stabilize_reference (tree ref)
4172 {
4173 tree result;
4174 enum tree_code code = TREE_CODE (ref);
4175
4176 switch (code)
4177 {
4178 case VAR_DECL:
4179 case PARM_DECL:
4180 case RESULT_DECL:
4181 /* No action is needed in this case. */
4182 return ref;
4183
4184 CASE_CONVERT:
4185 case FLOAT_EXPR:
4186 case FIX_TRUNC_EXPR:
4187 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4188 break;
4189
4190 case INDIRECT_REF:
4191 result = build_nt (INDIRECT_REF,
4192 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4193 break;
4194
4195 case COMPONENT_REF:
4196 result = build_nt (COMPONENT_REF,
4197 stabilize_reference (TREE_OPERAND (ref, 0)),
4198 TREE_OPERAND (ref, 1), NULL_TREE);
4199 break;
4200
4201 case BIT_FIELD_REF:
4202 result = build_nt (BIT_FIELD_REF,
4203 stabilize_reference (TREE_OPERAND (ref, 0)),
4204 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4205 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4206 break;
4207
4208 case ARRAY_REF:
4209 result = build_nt (ARRAY_REF,
4210 stabilize_reference (TREE_OPERAND (ref, 0)),
4211 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4212 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4213 break;
4214
4215 case ARRAY_RANGE_REF:
4216 result = build_nt (ARRAY_RANGE_REF,
4217 stabilize_reference (TREE_OPERAND (ref, 0)),
4218 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4219 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4220 break;
4221
4222 case COMPOUND_EXPR:
4223 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4224 it wouldn't be ignored. This matters when dealing with
4225 volatiles. */
4226 return stabilize_reference_1 (ref);
4227
4228 /* If arg isn't a kind of lvalue we recognize, make no change.
4229 Caller should recognize the error for an invalid lvalue. */
4230 default:
4231 return ref;
4232
4233 case ERROR_MARK:
4234 return error_mark_node;
4235 }
4236
4237 TREE_TYPE (result) = TREE_TYPE (ref);
4238 TREE_READONLY (result) = TREE_READONLY (ref);
4239 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4240 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4241
4242 return result;
4243 }
4244 \f
4245 /* Low-level constructors for expressions. */
4246
4247 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4248 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4249
4250 void
4251 recompute_tree_invariant_for_addr_expr (tree t)
4252 {
4253 tree node;
4254 bool tc = true, se = false;
4255
4256 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4257
4258 /* We started out assuming this address is both invariant and constant, but
4259 does not have side effects. Now go down any handled components and see if
4260 any of them involve offsets that are either non-constant or non-invariant.
4261 Also check for side-effects.
4262
4263 ??? Note that this code makes no attempt to deal with the case where
4264 taking the address of something causes a copy due to misalignment. */
4265
4266 #define UPDATE_FLAGS(NODE) \
4267 do { tree _node = (NODE); \
4268 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4269 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4270
4271 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4272 node = TREE_OPERAND (node, 0))
4273 {
4274 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4275 array reference (probably made temporarily by the G++ front end),
4276 so ignore all the operands. */
4277 if ((TREE_CODE (node) == ARRAY_REF
4278 || TREE_CODE (node) == ARRAY_RANGE_REF)
4279 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4280 {
4281 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4282 if (TREE_OPERAND (node, 2))
4283 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4284 if (TREE_OPERAND (node, 3))
4285 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4286 }
4287 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4288 FIELD_DECL, apparently. The G++ front end can put something else
4289 there, at least temporarily. */
4290 else if (TREE_CODE (node) == COMPONENT_REF
4291 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4292 {
4293 if (TREE_OPERAND (node, 2))
4294 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4295 }
4296 }
4297
4298 node = lang_hooks.expr_to_decl (node, &tc, &se);
4299
4300 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4301 the address, since &(*a)->b is a form of addition. If it's a constant, the
4302 address is constant too. If it's a decl, its address is constant if the
4303 decl is static. Everything else is not constant and, furthermore,
4304 taking the address of a volatile variable is not volatile. */
4305 if (TREE_CODE (node) == INDIRECT_REF
4306 || TREE_CODE (node) == MEM_REF)
4307 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4308 else if (CONSTANT_CLASS_P (node))
4309 ;
4310 else if (DECL_P (node))
4311 tc &= (staticp (node) != NULL_TREE);
4312 else
4313 {
4314 tc = false;
4315 se |= TREE_SIDE_EFFECTS (node);
4316 }
4317
4318
4319 TREE_CONSTANT (t) = tc;
4320 TREE_SIDE_EFFECTS (t) = se;
4321 #undef UPDATE_FLAGS
4322 }
4323
4324 /* Build an expression of code CODE, data type TYPE, and operands as
4325 specified. Expressions and reference nodes can be created this way.
4326 Constants, decls, types and misc nodes cannot be.
4327
4328 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4329 enough for all extant tree codes. */
4330
4331 tree
4332 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
4333 {
4334 tree t;
4335
4336 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4337
4338 t = make_node_stat (code PASS_MEM_STAT);
4339 TREE_TYPE (t) = tt;
4340
4341 return t;
4342 }
4343
4344 tree
4345 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4346 {
4347 int length = sizeof (struct tree_exp);
4348 tree t;
4349
4350 record_node_allocation_statistics (code, length);
4351
4352 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4353
4354 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4355
4356 memset (t, 0, sizeof (struct tree_common));
4357
4358 TREE_SET_CODE (t, code);
4359
4360 TREE_TYPE (t) = type;
4361 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4362 TREE_OPERAND (t, 0) = node;
4363 if (node && !TYPE_P (node))
4364 {
4365 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4366 TREE_READONLY (t) = TREE_READONLY (node);
4367 }
4368
4369 if (TREE_CODE_CLASS (code) == tcc_statement)
4370 TREE_SIDE_EFFECTS (t) = 1;
4371 else switch (code)
4372 {
4373 case VA_ARG_EXPR:
4374 /* All of these have side-effects, no matter what their
4375 operands are. */
4376 TREE_SIDE_EFFECTS (t) = 1;
4377 TREE_READONLY (t) = 0;
4378 break;
4379
4380 case INDIRECT_REF:
4381 /* Whether a dereference is readonly has nothing to do with whether
4382 its operand is readonly. */
4383 TREE_READONLY (t) = 0;
4384 break;
4385
4386 case ADDR_EXPR:
4387 if (node)
4388 recompute_tree_invariant_for_addr_expr (t);
4389 break;
4390
4391 default:
4392 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4393 && node && !TYPE_P (node)
4394 && TREE_CONSTANT (node))
4395 TREE_CONSTANT (t) = 1;
4396 if (TREE_CODE_CLASS (code) == tcc_reference
4397 && node && TREE_THIS_VOLATILE (node))
4398 TREE_THIS_VOLATILE (t) = 1;
4399 break;
4400 }
4401
4402 return t;
4403 }
4404
4405 #define PROCESS_ARG(N) \
4406 do { \
4407 TREE_OPERAND (t, N) = arg##N; \
4408 if (arg##N &&!TYPE_P (arg##N)) \
4409 { \
4410 if (TREE_SIDE_EFFECTS (arg##N)) \
4411 side_effects = 1; \
4412 if (!TREE_READONLY (arg##N) \
4413 && !CONSTANT_CLASS_P (arg##N)) \
4414 (void) (read_only = 0); \
4415 if (!TREE_CONSTANT (arg##N)) \
4416 (void) (constant = 0); \
4417 } \
4418 } while (0)
4419
4420 tree
4421 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4422 {
4423 bool constant, read_only, side_effects;
4424 tree t;
4425
4426 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4427
4428 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4429 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4430 /* When sizetype precision doesn't match that of pointers
4431 we need to be able to build explicit extensions or truncations
4432 of the offset argument. */
4433 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4434 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4435 && TREE_CODE (arg1) == INTEGER_CST);
4436
4437 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4438 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4439 && ptrofftype_p (TREE_TYPE (arg1)));
4440
4441 t = make_node_stat (code PASS_MEM_STAT);
4442 TREE_TYPE (t) = tt;
4443
4444 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4445 result based on those same flags for the arguments. But if the
4446 arguments aren't really even `tree' expressions, we shouldn't be trying
4447 to do this. */
4448
4449 /* Expressions without side effects may be constant if their
4450 arguments are as well. */
4451 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4452 || TREE_CODE_CLASS (code) == tcc_binary);
4453 read_only = 1;
4454 side_effects = TREE_SIDE_EFFECTS (t);
4455
4456 PROCESS_ARG (0);
4457 PROCESS_ARG (1);
4458
4459 TREE_SIDE_EFFECTS (t) = side_effects;
4460 if (code == MEM_REF)
4461 {
4462 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4463 {
4464 tree o = TREE_OPERAND (arg0, 0);
4465 TREE_READONLY (t) = TREE_READONLY (o);
4466 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4467 }
4468 }
4469 else
4470 {
4471 TREE_READONLY (t) = read_only;
4472 TREE_CONSTANT (t) = constant;
4473 TREE_THIS_VOLATILE (t)
4474 = (TREE_CODE_CLASS (code) == tcc_reference
4475 && arg0 && TREE_THIS_VOLATILE (arg0));
4476 }
4477
4478 return t;
4479 }
4480
4481
4482 tree
4483 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4484 tree arg2 MEM_STAT_DECL)
4485 {
4486 bool constant, read_only, side_effects;
4487 tree t;
4488
4489 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4490 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4491
4492 t = make_node_stat (code PASS_MEM_STAT);
4493 TREE_TYPE (t) = tt;
4494
4495 read_only = 1;
4496
4497 /* As a special exception, if COND_EXPR has NULL branches, we
4498 assume that it is a gimple statement and always consider
4499 it to have side effects. */
4500 if (code == COND_EXPR
4501 && tt == void_type_node
4502 && arg1 == NULL_TREE
4503 && arg2 == NULL_TREE)
4504 side_effects = true;
4505 else
4506 side_effects = TREE_SIDE_EFFECTS (t);
4507
4508 PROCESS_ARG (0);
4509 PROCESS_ARG (1);
4510 PROCESS_ARG (2);
4511
4512 if (code == COND_EXPR)
4513 TREE_READONLY (t) = read_only;
4514
4515 TREE_SIDE_EFFECTS (t) = side_effects;
4516 TREE_THIS_VOLATILE (t)
4517 = (TREE_CODE_CLASS (code) == tcc_reference
4518 && arg0 && TREE_THIS_VOLATILE (arg0));
4519
4520 return t;
4521 }
4522
4523 tree
4524 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4525 tree arg2, tree arg3 MEM_STAT_DECL)
4526 {
4527 bool constant, read_only, side_effects;
4528 tree t;
4529
4530 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4531
4532 t = make_node_stat (code PASS_MEM_STAT);
4533 TREE_TYPE (t) = tt;
4534
4535 side_effects = TREE_SIDE_EFFECTS (t);
4536
4537 PROCESS_ARG (0);
4538 PROCESS_ARG (1);
4539 PROCESS_ARG (2);
4540 PROCESS_ARG (3);
4541
4542 TREE_SIDE_EFFECTS (t) = side_effects;
4543 TREE_THIS_VOLATILE (t)
4544 = (TREE_CODE_CLASS (code) == tcc_reference
4545 && arg0 && TREE_THIS_VOLATILE (arg0));
4546
4547 return t;
4548 }
4549
4550 tree
4551 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4552 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4553 {
4554 bool constant, read_only, side_effects;
4555 tree t;
4556
4557 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4558
4559 t = make_node_stat (code PASS_MEM_STAT);
4560 TREE_TYPE (t) = tt;
4561
4562 side_effects = TREE_SIDE_EFFECTS (t);
4563
4564 PROCESS_ARG (0);
4565 PROCESS_ARG (1);
4566 PROCESS_ARG (2);
4567 PROCESS_ARG (3);
4568 PROCESS_ARG (4);
4569
4570 TREE_SIDE_EFFECTS (t) = side_effects;
4571 if (code == TARGET_MEM_REF)
4572 {
4573 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4574 {
4575 tree o = TREE_OPERAND (arg0, 0);
4576 TREE_READONLY (t) = TREE_READONLY (o);
4577 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4578 }
4579 }
4580 else
4581 TREE_THIS_VOLATILE (t)
4582 = (TREE_CODE_CLASS (code) == tcc_reference
4583 && arg0 && TREE_THIS_VOLATILE (arg0));
4584
4585 return t;
4586 }
4587
4588 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4589 on the pointer PTR. */
4590
4591 tree
4592 build_simple_mem_ref_loc (location_t loc, tree ptr)
4593 {
4594 HOST_WIDE_INT offset = 0;
4595 tree ptype = TREE_TYPE (ptr);
4596 tree tem;
4597 /* For convenience allow addresses that collapse to a simple base
4598 and offset. */
4599 if (TREE_CODE (ptr) == ADDR_EXPR
4600 && (handled_component_p (TREE_OPERAND (ptr, 0))
4601 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4602 {
4603 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4604 gcc_assert (ptr);
4605 ptr = build_fold_addr_expr (ptr);
4606 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4607 }
4608 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4609 ptr, build_int_cst (ptype, offset));
4610 SET_EXPR_LOCATION (tem, loc);
4611 return tem;
4612 }
4613
4614 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4615
4616 offset_int
4617 mem_ref_offset (const_tree t)
4618 {
4619 return offset_int::from (TREE_OPERAND (t, 1), SIGNED);
4620 }
4621
4622 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4623 offsetted by OFFSET units. */
4624
4625 tree
4626 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4627 {
4628 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4629 build_fold_addr_expr (base),
4630 build_int_cst (ptr_type_node, offset));
4631 tree addr = build1 (ADDR_EXPR, type, ref);
4632 recompute_tree_invariant_for_addr_expr (addr);
4633 return addr;
4634 }
4635
4636 /* Similar except don't specify the TREE_TYPE
4637 and leave the TREE_SIDE_EFFECTS as 0.
4638 It is permissible for arguments to be null,
4639 or even garbage if their values do not matter. */
4640
4641 tree
4642 build_nt (enum tree_code code, ...)
4643 {
4644 tree t;
4645 int length;
4646 int i;
4647 va_list p;
4648
4649 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4650
4651 va_start (p, code);
4652
4653 t = make_node (code);
4654 length = TREE_CODE_LENGTH (code);
4655
4656 for (i = 0; i < length; i++)
4657 TREE_OPERAND (t, i) = va_arg (p, tree);
4658
4659 va_end (p);
4660 return t;
4661 }
4662
4663 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4664 tree vec. */
4665
4666 tree
4667 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4668 {
4669 tree ret, t;
4670 unsigned int ix;
4671
4672 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4673 CALL_EXPR_FN (ret) = fn;
4674 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4675 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4676 CALL_EXPR_ARG (ret, ix) = t;
4677 return ret;
4678 }
4679 \f
4680 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4681 We do NOT enter this node in any sort of symbol table.
4682
4683 LOC is the location of the decl.
4684
4685 layout_decl is used to set up the decl's storage layout.
4686 Other slots are initialized to 0 or null pointers. */
4687
4688 tree
4689 build_decl_stat (location_t loc, enum tree_code code, tree name,
4690 tree type MEM_STAT_DECL)
4691 {
4692 tree t;
4693
4694 t = make_node_stat (code PASS_MEM_STAT);
4695 DECL_SOURCE_LOCATION (t) = loc;
4696
4697 /* if (type == error_mark_node)
4698 type = integer_type_node; */
4699 /* That is not done, deliberately, so that having error_mark_node
4700 as the type can suppress useless errors in the use of this variable. */
4701
4702 DECL_NAME (t) = name;
4703 TREE_TYPE (t) = type;
4704
4705 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4706 layout_decl (t, 0);
4707
4708 return t;
4709 }
4710
4711 /* Builds and returns function declaration with NAME and TYPE. */
4712
4713 tree
4714 build_fn_decl (const char *name, tree type)
4715 {
4716 tree id = get_identifier (name);
4717 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4718
4719 DECL_EXTERNAL (decl) = 1;
4720 TREE_PUBLIC (decl) = 1;
4721 DECL_ARTIFICIAL (decl) = 1;
4722 TREE_NOTHROW (decl) = 1;
4723
4724 return decl;
4725 }
4726
4727 vec<tree, va_gc> *all_translation_units;
4728
4729 /* Builds a new translation-unit decl with name NAME, queues it in the
4730 global list of translation-unit decls and returns it. */
4731
4732 tree
4733 build_translation_unit_decl (tree name)
4734 {
4735 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4736 name, NULL_TREE);
4737 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4738 vec_safe_push (all_translation_units, tu);
4739 return tu;
4740 }
4741
4742 \f
4743 /* BLOCK nodes are used to represent the structure of binding contours
4744 and declarations, once those contours have been exited and their contents
4745 compiled. This information is used for outputting debugging info. */
4746
4747 tree
4748 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4749 {
4750 tree block = make_node (BLOCK);
4751
4752 BLOCK_VARS (block) = vars;
4753 BLOCK_SUBBLOCKS (block) = subblocks;
4754 BLOCK_SUPERCONTEXT (block) = supercontext;
4755 BLOCK_CHAIN (block) = chain;
4756 return block;
4757 }
4758
4759 \f
4760 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4761
4762 LOC is the location to use in tree T. */
4763
4764 void
4765 protected_set_expr_location (tree t, location_t loc)
4766 {
4767 if (CAN_HAVE_LOCATION_P (t))
4768 SET_EXPR_LOCATION (t, loc);
4769 }
4770 \f
4771 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4772 is ATTRIBUTE. */
4773
4774 tree
4775 build_decl_attribute_variant (tree ddecl, tree attribute)
4776 {
4777 DECL_ATTRIBUTES (ddecl) = attribute;
4778 return ddecl;
4779 }
4780
4781 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4782 is ATTRIBUTE and its qualifiers are QUALS.
4783
4784 Record such modified types already made so we don't make duplicates. */
4785
4786 tree
4787 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4788 {
4789 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4790 {
4791 inchash::hash hstate;
4792 tree ntype;
4793 int i;
4794 tree t;
4795 enum tree_code code = TREE_CODE (ttype);
4796
4797 /* Building a distinct copy of a tagged type is inappropriate; it
4798 causes breakage in code that expects there to be a one-to-one
4799 relationship between a struct and its fields.
4800 build_duplicate_type is another solution (as used in
4801 handle_transparent_union_attribute), but that doesn't play well
4802 with the stronger C++ type identity model. */
4803 if (TREE_CODE (ttype) == RECORD_TYPE
4804 || TREE_CODE (ttype) == UNION_TYPE
4805 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4806 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4807 {
4808 warning (OPT_Wattributes,
4809 "ignoring attributes applied to %qT after definition",
4810 TYPE_MAIN_VARIANT (ttype));
4811 return build_qualified_type (ttype, quals);
4812 }
4813
4814 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4815 ntype = build_distinct_type_copy (ttype);
4816
4817 TYPE_ATTRIBUTES (ntype) = attribute;
4818
4819 hstate.add_int (code);
4820 if (TREE_TYPE (ntype))
4821 hstate.add_object (TYPE_HASH (TREE_TYPE (ntype)));
4822 attribute_hash_list (attribute, hstate);
4823
4824 switch (TREE_CODE (ntype))
4825 {
4826 case FUNCTION_TYPE:
4827 type_hash_list (TYPE_ARG_TYPES (ntype), hstate);
4828 break;
4829 case ARRAY_TYPE:
4830 if (TYPE_DOMAIN (ntype))
4831 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (ntype)));
4832 break;
4833 case INTEGER_TYPE:
4834 t = TYPE_MAX_VALUE (ntype);
4835 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
4836 hstate.add_object (TREE_INT_CST_ELT (t, i));
4837 break;
4838 case REAL_TYPE:
4839 case FIXED_POINT_TYPE:
4840 {
4841 unsigned int precision = TYPE_PRECISION (ntype);
4842 hstate.add_object (precision);
4843 }
4844 break;
4845 default:
4846 break;
4847 }
4848
4849 ntype = type_hash_canon (hstate.end(), ntype);
4850
4851 /* If the target-dependent attributes make NTYPE different from
4852 its canonical type, we will need to use structural equality
4853 checks for this type. */
4854 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4855 || !comp_type_attributes (ntype, ttype))
4856 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4857 else if (TYPE_CANONICAL (ntype) == ntype)
4858 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4859
4860 ttype = build_qualified_type (ntype, quals);
4861 }
4862 else if (TYPE_QUALS (ttype) != quals)
4863 ttype = build_qualified_type (ttype, quals);
4864
4865 return ttype;
4866 }
4867
4868 /* Check if "omp declare simd" attribute arguments, CLAUSES1 and CLAUSES2, are
4869 the same. */
4870
4871 static bool
4872 omp_declare_simd_clauses_equal (tree clauses1, tree clauses2)
4873 {
4874 tree cl1, cl2;
4875 for (cl1 = clauses1, cl2 = clauses2;
4876 cl1 && cl2;
4877 cl1 = OMP_CLAUSE_CHAIN (cl1), cl2 = OMP_CLAUSE_CHAIN (cl2))
4878 {
4879 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_CODE (cl2))
4880 return false;
4881 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_SIMDLEN)
4882 {
4883 if (simple_cst_equal (OMP_CLAUSE_DECL (cl1),
4884 OMP_CLAUSE_DECL (cl2)) != 1)
4885 return false;
4886 }
4887 switch (OMP_CLAUSE_CODE (cl1))
4888 {
4889 case OMP_CLAUSE_ALIGNED:
4890 if (simple_cst_equal (OMP_CLAUSE_ALIGNED_ALIGNMENT (cl1),
4891 OMP_CLAUSE_ALIGNED_ALIGNMENT (cl2)) != 1)
4892 return false;
4893 break;
4894 case OMP_CLAUSE_LINEAR:
4895 if (simple_cst_equal (OMP_CLAUSE_LINEAR_STEP (cl1),
4896 OMP_CLAUSE_LINEAR_STEP (cl2)) != 1)
4897 return false;
4898 break;
4899 case OMP_CLAUSE_SIMDLEN:
4900 if (simple_cst_equal (OMP_CLAUSE_SIMDLEN_EXPR (cl1),
4901 OMP_CLAUSE_SIMDLEN_EXPR (cl2)) != 1)
4902 return false;
4903 default:
4904 break;
4905 }
4906 }
4907 return true;
4908 }
4909
4910 /* Compare two constructor-element-type constants. Return 1 if the lists
4911 are known to be equal; otherwise return 0. */
4912
4913 static bool
4914 simple_cst_list_equal (const_tree l1, const_tree l2)
4915 {
4916 while (l1 != NULL_TREE && l2 != NULL_TREE)
4917 {
4918 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4919 return false;
4920
4921 l1 = TREE_CHAIN (l1);
4922 l2 = TREE_CHAIN (l2);
4923 }
4924
4925 return l1 == l2;
4926 }
4927
4928 /* Compare two identifier nodes representing attributes. Either one may
4929 be in wrapped __ATTR__ form. Return true if they are the same, false
4930 otherwise. */
4931
4932 static bool
4933 cmp_attrib_identifiers (const_tree attr1, const_tree attr2)
4934 {
4935 /* Make sure we're dealing with IDENTIFIER_NODEs. */
4936 gcc_checking_assert (TREE_CODE (attr1) == IDENTIFIER_NODE
4937 && TREE_CODE (attr2) == IDENTIFIER_NODE);
4938
4939 /* Identifiers can be compared directly for equality. */
4940 if (attr1 == attr2)
4941 return true;
4942
4943 /* If they are not equal, they may still be one in the form
4944 'text' while the other one is in the form '__text__'. TODO:
4945 If we were storing attributes in normalized 'text' form, then
4946 this could all go away and we could take full advantage of
4947 the fact that we're comparing identifiers. :-) */
4948 const size_t attr1_len = IDENTIFIER_LENGTH (attr1);
4949 const size_t attr2_len = IDENTIFIER_LENGTH (attr2);
4950
4951 if (attr2_len == attr1_len + 4)
4952 {
4953 const char *p = IDENTIFIER_POINTER (attr2);
4954 const char *q = IDENTIFIER_POINTER (attr1);
4955 if (p[0] == '_' && p[1] == '_'
4956 && p[attr2_len - 2] == '_' && p[attr2_len - 1] == '_'
4957 && strncmp (q, p + 2, attr1_len) == 0)
4958 return true;;
4959 }
4960 else if (attr2_len + 4 == attr1_len)
4961 {
4962 const char *p = IDENTIFIER_POINTER (attr2);
4963 const char *q = IDENTIFIER_POINTER (attr1);
4964 if (q[0] == '_' && q[1] == '_'
4965 && q[attr1_len - 2] == '_' && q[attr1_len - 1] == '_'
4966 && strncmp (q + 2, p, attr2_len) == 0)
4967 return true;
4968 }
4969
4970 return false;
4971 }
4972
4973 /* Compare two attributes for their value identity. Return true if the
4974 attribute values are known to be equal; otherwise return false. */
4975
4976 bool
4977 attribute_value_equal (const_tree attr1, const_tree attr2)
4978 {
4979 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4980 return true;
4981
4982 if (TREE_VALUE (attr1) != NULL_TREE
4983 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4984 && TREE_VALUE (attr2) != NULL_TREE
4985 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4986 {
4987 /* Handle attribute format. */
4988 if (is_attribute_p ("format", TREE_PURPOSE (attr1)))
4989 {
4990 attr1 = TREE_VALUE (attr1);
4991 attr2 = TREE_VALUE (attr2);
4992 /* Compare the archetypes (printf/scanf/strftime/...). */
4993 if (!cmp_attrib_identifiers (TREE_VALUE (attr1),
4994 TREE_VALUE (attr2)))
4995 return false;
4996 /* Archetypes are the same. Compare the rest. */
4997 return (simple_cst_list_equal (TREE_CHAIN (attr1),
4998 TREE_CHAIN (attr2)) == 1);
4999 }
5000 return (simple_cst_list_equal (TREE_VALUE (attr1),
5001 TREE_VALUE (attr2)) == 1);
5002 }
5003
5004 if ((flag_openmp || flag_openmp_simd)
5005 && TREE_VALUE (attr1) && TREE_VALUE (attr2)
5006 && TREE_CODE (TREE_VALUE (attr1)) == OMP_CLAUSE
5007 && TREE_CODE (TREE_VALUE (attr2)) == OMP_CLAUSE)
5008 return omp_declare_simd_clauses_equal (TREE_VALUE (attr1),
5009 TREE_VALUE (attr2));
5010
5011 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
5012 }
5013
5014 /* Return 0 if the attributes for two types are incompatible, 1 if they
5015 are compatible, and 2 if they are nearly compatible (which causes a
5016 warning to be generated). */
5017 int
5018 comp_type_attributes (const_tree type1, const_tree type2)
5019 {
5020 const_tree a1 = TYPE_ATTRIBUTES (type1);
5021 const_tree a2 = TYPE_ATTRIBUTES (type2);
5022 const_tree a;
5023
5024 if (a1 == a2)
5025 return 1;
5026 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
5027 {
5028 const struct attribute_spec *as;
5029 const_tree attr;
5030
5031 as = lookup_attribute_spec (get_attribute_name (a));
5032 if (!as || as->affects_type_identity == false)
5033 continue;
5034
5035 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
5036 if (!attr || !attribute_value_equal (a, attr))
5037 break;
5038 }
5039 if (!a)
5040 {
5041 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
5042 {
5043 const struct attribute_spec *as;
5044
5045 as = lookup_attribute_spec (get_attribute_name (a));
5046 if (!as || as->affects_type_identity == false)
5047 continue;
5048
5049 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
5050 break;
5051 /* We don't need to compare trees again, as we did this
5052 already in first loop. */
5053 }
5054 /* All types - affecting identity - are equal, so
5055 there is no need to call target hook for comparison. */
5056 if (!a)
5057 return 1;
5058 }
5059 if (lookup_attribute ("transaction_safe", CONST_CAST_TREE (a)))
5060 return 0;
5061 /* As some type combinations - like default calling-convention - might
5062 be compatible, we have to call the target hook to get the final result. */
5063 return targetm.comp_type_attributes (type1, type2);
5064 }
5065
5066 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
5067 is ATTRIBUTE.
5068
5069 Record such modified types already made so we don't make duplicates. */
5070
5071 tree
5072 build_type_attribute_variant (tree ttype, tree attribute)
5073 {
5074 return build_type_attribute_qual_variant (ttype, attribute,
5075 TYPE_QUALS (ttype));
5076 }
5077
5078
5079 /* Reset the expression *EXPR_P, a size or position.
5080
5081 ??? We could reset all non-constant sizes or positions. But it's cheap
5082 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5083
5084 We need to reset self-referential sizes or positions because they cannot
5085 be gimplified and thus can contain a CALL_EXPR after the gimplification
5086 is finished, which will run afoul of LTO streaming. And they need to be
5087 reset to something essentially dummy but not constant, so as to preserve
5088 the properties of the object they are attached to. */
5089
5090 static inline void
5091 free_lang_data_in_one_sizepos (tree *expr_p)
5092 {
5093 tree expr = *expr_p;
5094 if (CONTAINS_PLACEHOLDER_P (expr))
5095 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5096 }
5097
5098
5099 /* Reset all the fields in a binfo node BINFO. We only keep
5100 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5101
5102 static void
5103 free_lang_data_in_binfo (tree binfo)
5104 {
5105 unsigned i;
5106 tree t;
5107
5108 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5109
5110 BINFO_VIRTUALS (binfo) = NULL_TREE;
5111 BINFO_BASE_ACCESSES (binfo) = NULL;
5112 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5113 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5114
5115 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5116 free_lang_data_in_binfo (t);
5117 }
5118
5119
5120 /* Reset all language specific information still present in TYPE. */
5121
5122 static void
5123 free_lang_data_in_type (tree type)
5124 {
5125 gcc_assert (TYPE_P (type));
5126
5127 /* Give the FE a chance to remove its own data first. */
5128 lang_hooks.free_lang_data (type);
5129
5130 TREE_LANG_FLAG_0 (type) = 0;
5131 TREE_LANG_FLAG_1 (type) = 0;
5132 TREE_LANG_FLAG_2 (type) = 0;
5133 TREE_LANG_FLAG_3 (type) = 0;
5134 TREE_LANG_FLAG_4 (type) = 0;
5135 TREE_LANG_FLAG_5 (type) = 0;
5136 TREE_LANG_FLAG_6 (type) = 0;
5137
5138 if (TREE_CODE (type) == FUNCTION_TYPE)
5139 {
5140 /* Remove the const and volatile qualifiers from arguments. The
5141 C++ front end removes them, but the C front end does not,
5142 leading to false ODR violation errors when merging two
5143 instances of the same function signature compiled by
5144 different front ends. */
5145 tree p;
5146
5147 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5148 {
5149 tree arg_type = TREE_VALUE (p);
5150
5151 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5152 {
5153 int quals = TYPE_QUALS (arg_type)
5154 & ~TYPE_QUAL_CONST
5155 & ~TYPE_QUAL_VOLATILE;
5156 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5157 free_lang_data_in_type (TREE_VALUE (p));
5158 }
5159 /* C++ FE uses TREE_PURPOSE to store initial values. */
5160 TREE_PURPOSE (p) = NULL;
5161 }
5162 /* Java uses TYPE_MINVAL for TYPE_ARGUMENT_SIGNATURE. */
5163 TYPE_MINVAL (type) = NULL;
5164 }
5165 if (TREE_CODE (type) == METHOD_TYPE)
5166 {
5167 tree p;
5168
5169 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5170 {
5171 /* C++ FE uses TREE_PURPOSE to store initial values. */
5172 TREE_PURPOSE (p) = NULL;
5173 }
5174 /* Java uses TYPE_MINVAL for TYPE_ARGUMENT_SIGNATURE. */
5175 TYPE_MINVAL (type) = NULL;
5176 }
5177
5178 /* Remove members that are not actually FIELD_DECLs from the field
5179 list of an aggregate. These occur in C++. */
5180 if (RECORD_OR_UNION_TYPE_P (type))
5181 {
5182 tree prev, member;
5183
5184 /* Note that TYPE_FIELDS can be shared across distinct
5185 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
5186 to be removed, we cannot set its TREE_CHAIN to NULL.
5187 Otherwise, we would not be able to find all the other fields
5188 in the other instances of this TREE_TYPE.
5189
5190 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
5191 prev = NULL_TREE;
5192 member = TYPE_FIELDS (type);
5193 while (member)
5194 {
5195 if (TREE_CODE (member) == FIELD_DECL
5196 || TREE_CODE (member) == TYPE_DECL)
5197 {
5198 if (prev)
5199 TREE_CHAIN (prev) = member;
5200 else
5201 TYPE_FIELDS (type) = member;
5202 prev = member;
5203 }
5204
5205 member = TREE_CHAIN (member);
5206 }
5207
5208 if (prev)
5209 TREE_CHAIN (prev) = NULL_TREE;
5210 else
5211 TYPE_FIELDS (type) = NULL_TREE;
5212
5213 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
5214 and danagle the pointer from time to time. */
5215 if (TYPE_VFIELD (type) && TREE_CODE (TYPE_VFIELD (type)) != FIELD_DECL)
5216 TYPE_VFIELD (type) = NULL_TREE;
5217
5218 /* Remove TYPE_METHODS list. While it would be nice to keep it
5219 to enable ODR warnings about different method lists, doing so
5220 seems to impractically increase size of LTO data streamed.
5221 Keep the infrmation if TYPE_METHODS was non-NULL. This is used
5222 by function.c and pretty printers. */
5223 if (TYPE_METHODS (type))
5224 TYPE_METHODS (type) = error_mark_node;
5225 if (TYPE_BINFO (type))
5226 {
5227 free_lang_data_in_binfo (TYPE_BINFO (type));
5228 /* We need to preserve link to bases and virtual table for all
5229 polymorphic types to make devirtualization machinery working.
5230 Debug output cares only about bases, but output also
5231 virtual table pointers so merging of -fdevirtualize and
5232 -fno-devirtualize units is easier. */
5233 if ((!BINFO_VTABLE (TYPE_BINFO (type))
5234 || !flag_devirtualize)
5235 && ((!BINFO_N_BASE_BINFOS (TYPE_BINFO (type))
5236 && !BINFO_VTABLE (TYPE_BINFO (type)))
5237 || debug_info_level != DINFO_LEVEL_NONE))
5238 TYPE_BINFO (type) = NULL;
5239 }
5240 }
5241 else
5242 {
5243 /* For non-aggregate types, clear out the language slot (which
5244 overloads TYPE_BINFO). */
5245 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5246
5247 if (INTEGRAL_TYPE_P (type)
5248 || SCALAR_FLOAT_TYPE_P (type)
5249 || FIXED_POINT_TYPE_P (type))
5250 {
5251 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5252 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5253 }
5254 }
5255
5256 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5257 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5258
5259 if (TYPE_CONTEXT (type)
5260 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5261 {
5262 tree ctx = TYPE_CONTEXT (type);
5263 do
5264 {
5265 ctx = BLOCK_SUPERCONTEXT (ctx);
5266 }
5267 while (ctx && TREE_CODE (ctx) == BLOCK);
5268 TYPE_CONTEXT (type) = ctx;
5269 }
5270 }
5271
5272
5273 /* Return true if DECL may need an assembler name to be set. */
5274
5275 static inline bool
5276 need_assembler_name_p (tree decl)
5277 {
5278 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5279 Rule merging. This makes type_odr_p to return true on those types during
5280 LTO and by comparing the mangled name, we can say what types are intended
5281 to be equivalent across compilation unit.
5282
5283 We do not store names of type_in_anonymous_namespace_p.
5284
5285 Record, union and enumeration type have linkage that allows use
5286 to check type_in_anonymous_namespace_p. We do not mangle compound types
5287 that always can be compared structurally.
5288
5289 Similarly for builtin types, we compare properties of their main variant.
5290 A special case are integer types where mangling do make differences
5291 between char/signed char/unsigned char etc. Storing name for these makes
5292 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5293 See cp/mangle.c:write_builtin_type for details. */
5294
5295 if (flag_lto_odr_type_mering
5296 && TREE_CODE (decl) == TYPE_DECL
5297 && DECL_NAME (decl)
5298 && decl == TYPE_NAME (TREE_TYPE (decl))
5299 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5300 && (type_with_linkage_p (TREE_TYPE (decl))
5301 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5302 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5303 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5304 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5305 if (TREE_CODE (decl) != FUNCTION_DECL
5306 && TREE_CODE (decl) != VAR_DECL)
5307 return false;
5308
5309 /* If DECL already has its assembler name set, it does not need a
5310 new one. */
5311 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5312 || DECL_ASSEMBLER_NAME_SET_P (decl))
5313 return false;
5314
5315 /* Abstract decls do not need an assembler name. */
5316 if (DECL_ABSTRACT_P (decl))
5317 return false;
5318
5319 /* For VAR_DECLs, only static, public and external symbols need an
5320 assembler name. */
5321 if (TREE_CODE (decl) == VAR_DECL
5322 && !TREE_STATIC (decl)
5323 && !TREE_PUBLIC (decl)
5324 && !DECL_EXTERNAL (decl))
5325 return false;
5326
5327 if (TREE_CODE (decl) == FUNCTION_DECL)
5328 {
5329 /* Do not set assembler name on builtins. Allow RTL expansion to
5330 decide whether to expand inline or via a regular call. */
5331 if (DECL_BUILT_IN (decl)
5332 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5333 return false;
5334
5335 /* Functions represented in the callgraph need an assembler name. */
5336 if (cgraph_node::get (decl) != NULL)
5337 return true;
5338
5339 /* Unused and not public functions don't need an assembler name. */
5340 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5341 return false;
5342 }
5343
5344 return true;
5345 }
5346
5347
5348 /* Reset all language specific information still present in symbol
5349 DECL. */
5350
5351 static void
5352 free_lang_data_in_decl (tree decl)
5353 {
5354 gcc_assert (DECL_P (decl));
5355
5356 /* Give the FE a chance to remove its own data first. */
5357 lang_hooks.free_lang_data (decl);
5358
5359 TREE_LANG_FLAG_0 (decl) = 0;
5360 TREE_LANG_FLAG_1 (decl) = 0;
5361 TREE_LANG_FLAG_2 (decl) = 0;
5362 TREE_LANG_FLAG_3 (decl) = 0;
5363 TREE_LANG_FLAG_4 (decl) = 0;
5364 TREE_LANG_FLAG_5 (decl) = 0;
5365 TREE_LANG_FLAG_6 (decl) = 0;
5366
5367 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5368 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5369 if (TREE_CODE (decl) == FIELD_DECL)
5370 {
5371 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5372 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5373 DECL_QUALIFIER (decl) = NULL_TREE;
5374 }
5375
5376 if (TREE_CODE (decl) == FUNCTION_DECL)
5377 {
5378 struct cgraph_node *node;
5379 if (!(node = cgraph_node::get (decl))
5380 || (!node->definition && !node->clones))
5381 {
5382 if (node)
5383 node->release_body ();
5384 else
5385 {
5386 release_function_body (decl);
5387 DECL_ARGUMENTS (decl) = NULL;
5388 DECL_RESULT (decl) = NULL;
5389 DECL_INITIAL (decl) = error_mark_node;
5390 }
5391 }
5392 if (gimple_has_body_p (decl))
5393 {
5394 tree t;
5395
5396 /* If DECL has a gimple body, then the context for its
5397 arguments must be DECL. Otherwise, it doesn't really
5398 matter, as we will not be emitting any code for DECL. In
5399 general, there may be other instances of DECL created by
5400 the front end and since PARM_DECLs are generally shared,
5401 their DECL_CONTEXT changes as the replicas of DECL are
5402 created. The only time where DECL_CONTEXT is important
5403 is for the FUNCTION_DECLs that have a gimple body (since
5404 the PARM_DECL will be used in the function's body). */
5405 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5406 DECL_CONTEXT (t) = decl;
5407 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5408 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5409 = target_option_default_node;
5410 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5411 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5412 = optimization_default_node;
5413 }
5414
5415 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5416 At this point, it is not needed anymore. */
5417 DECL_SAVED_TREE (decl) = NULL_TREE;
5418
5419 /* Clear the abstract origin if it refers to a method. Otherwise
5420 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
5421 origin will not be output correctly. */
5422 if (DECL_ABSTRACT_ORIGIN (decl)
5423 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5424 && RECORD_OR_UNION_TYPE_P
5425 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5426 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5427
5428 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5429 DECL_VINDEX referring to itself into a vtable slot number as it
5430 should. Happens with functions that are copied and then forgotten
5431 about. Just clear it, it won't matter anymore. */
5432 if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5433 DECL_VINDEX (decl) = NULL_TREE;
5434 }
5435 else if (TREE_CODE (decl) == VAR_DECL)
5436 {
5437 if ((DECL_EXTERNAL (decl)
5438 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5439 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5440 DECL_INITIAL (decl) = NULL_TREE;
5441 }
5442 else if (TREE_CODE (decl) == TYPE_DECL
5443 || TREE_CODE (decl) == FIELD_DECL)
5444 DECL_INITIAL (decl) = NULL_TREE;
5445 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5446 && DECL_INITIAL (decl)
5447 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5448 {
5449 /* Strip builtins from the translation-unit BLOCK. We still have targets
5450 without builtin_decl_explicit support and also builtins are shared
5451 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5452 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5453 while (*nextp)
5454 {
5455 tree var = *nextp;
5456 if (TREE_CODE (var) == FUNCTION_DECL
5457 && DECL_BUILT_IN (var))
5458 *nextp = TREE_CHAIN (var);
5459 else
5460 nextp = &TREE_CHAIN (var);
5461 }
5462 }
5463 }
5464
5465
5466 /* Data used when collecting DECLs and TYPEs for language data removal. */
5467
5468 struct free_lang_data_d
5469 {
5470 /* Worklist to avoid excessive recursion. */
5471 vec<tree> worklist;
5472
5473 /* Set of traversed objects. Used to avoid duplicate visits. */
5474 hash_set<tree> *pset;
5475
5476 /* Array of symbols to process with free_lang_data_in_decl. */
5477 vec<tree> decls;
5478
5479 /* Array of types to process with free_lang_data_in_type. */
5480 vec<tree> types;
5481 };
5482
5483
5484 /* Save all language fields needed to generate proper debug information
5485 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
5486
5487 static void
5488 save_debug_info_for_decl (tree t)
5489 {
5490 /*struct saved_debug_info_d *sdi;*/
5491
5492 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5493
5494 /* FIXME. Partial implementation for saving debug info removed. */
5495 }
5496
5497
5498 /* Save all language fields needed to generate proper debug information
5499 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5500
5501 static void
5502 save_debug_info_for_type (tree t)
5503 {
5504 /*struct saved_debug_info_d *sdi;*/
5505
5506 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5507
5508 /* FIXME. Partial implementation for saving debug info removed. */
5509 }
5510
5511
5512 /* Add type or decl T to one of the list of tree nodes that need their
5513 language data removed. The lists are held inside FLD. */
5514
5515 static void
5516 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5517 {
5518 if (DECL_P (t))
5519 {
5520 fld->decls.safe_push (t);
5521 if (debug_info_level > DINFO_LEVEL_TERSE)
5522 save_debug_info_for_decl (t);
5523 }
5524 else if (TYPE_P (t))
5525 {
5526 fld->types.safe_push (t);
5527 if (debug_info_level > DINFO_LEVEL_TERSE)
5528 save_debug_info_for_type (t);
5529 }
5530 else
5531 gcc_unreachable ();
5532 }
5533
5534 /* Push tree node T into FLD->WORKLIST. */
5535
5536 static inline void
5537 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5538 {
5539 if (t && !is_lang_specific (t) && !fld->pset->contains (t))
5540 fld->worklist.safe_push ((t));
5541 }
5542
5543
5544 /* Operand callback helper for free_lang_data_in_node. *TP is the
5545 subtree operand being considered. */
5546
5547 static tree
5548 find_decls_types_r (tree *tp, int *ws, void *data)
5549 {
5550 tree t = *tp;
5551 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5552
5553 if (TREE_CODE (t) == TREE_LIST)
5554 return NULL_TREE;
5555
5556 /* Language specific nodes will be removed, so there is no need
5557 to gather anything under them. */
5558 if (is_lang_specific (t))
5559 {
5560 *ws = 0;
5561 return NULL_TREE;
5562 }
5563
5564 if (DECL_P (t))
5565 {
5566 /* Note that walk_tree does not traverse every possible field in
5567 decls, so we have to do our own traversals here. */
5568 add_tree_to_fld_list (t, fld);
5569
5570 fld_worklist_push (DECL_NAME (t), fld);
5571 fld_worklist_push (DECL_CONTEXT (t), fld);
5572 fld_worklist_push (DECL_SIZE (t), fld);
5573 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5574
5575 /* We are going to remove everything under DECL_INITIAL for
5576 TYPE_DECLs. No point walking them. */
5577 if (TREE_CODE (t) != TYPE_DECL)
5578 fld_worklist_push (DECL_INITIAL (t), fld);
5579
5580 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5581 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5582
5583 if (TREE_CODE (t) == FUNCTION_DECL)
5584 {
5585 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5586 fld_worklist_push (DECL_RESULT (t), fld);
5587 }
5588 else if (TREE_CODE (t) == TYPE_DECL)
5589 {
5590 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5591 }
5592 else if (TREE_CODE (t) == FIELD_DECL)
5593 {
5594 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5595 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5596 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5597 fld_worklist_push (DECL_FCONTEXT (t), fld);
5598 }
5599
5600 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
5601 && DECL_HAS_VALUE_EXPR_P (t))
5602 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5603
5604 if (TREE_CODE (t) != FIELD_DECL
5605 && TREE_CODE (t) != TYPE_DECL)
5606 fld_worklist_push (TREE_CHAIN (t), fld);
5607 *ws = 0;
5608 }
5609 else if (TYPE_P (t))
5610 {
5611 /* Note that walk_tree does not traverse every possible field in
5612 types, so we have to do our own traversals here. */
5613 add_tree_to_fld_list (t, fld);
5614
5615 if (!RECORD_OR_UNION_TYPE_P (t))
5616 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5617 fld_worklist_push (TYPE_SIZE (t), fld);
5618 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5619 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5620 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5621 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5622 fld_worklist_push (TYPE_NAME (t), fld);
5623 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5624 them and thus do not and want not to reach unused pointer types
5625 this way. */
5626 if (!POINTER_TYPE_P (t))
5627 fld_worklist_push (TYPE_MINVAL (t), fld);
5628 if (!RECORD_OR_UNION_TYPE_P (t))
5629 fld_worklist_push (TYPE_MAXVAL (t), fld);
5630 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5631 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5632 do not and want not to reach unused variants this way. */
5633 if (TYPE_CONTEXT (t))
5634 {
5635 tree ctx = TYPE_CONTEXT (t);
5636 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5637 So push that instead. */
5638 while (ctx && TREE_CODE (ctx) == BLOCK)
5639 ctx = BLOCK_SUPERCONTEXT (ctx);
5640 fld_worklist_push (ctx, fld);
5641 }
5642 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5643 and want not to reach unused types this way. */
5644
5645 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5646 {
5647 unsigned i;
5648 tree tem;
5649 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5650 fld_worklist_push (TREE_TYPE (tem), fld);
5651 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
5652 if (tem
5653 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
5654 && TREE_CODE (tem) == TREE_LIST)
5655 do
5656 {
5657 fld_worklist_push (TREE_VALUE (tem), fld);
5658 tem = TREE_CHAIN (tem);
5659 }
5660 while (tem);
5661 }
5662 if (RECORD_OR_UNION_TYPE_P (t))
5663 {
5664 tree tem;
5665 /* Push all TYPE_FIELDS - there can be interleaving interesting
5666 and non-interesting things. */
5667 tem = TYPE_FIELDS (t);
5668 while (tem)
5669 {
5670 if (TREE_CODE (tem) == FIELD_DECL
5671 || TREE_CODE (tem) == TYPE_DECL)
5672 fld_worklist_push (tem, fld);
5673 tem = TREE_CHAIN (tem);
5674 }
5675 }
5676
5677 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5678 *ws = 0;
5679 }
5680 else if (TREE_CODE (t) == BLOCK)
5681 {
5682 tree tem;
5683 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5684 fld_worklist_push (tem, fld);
5685 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5686 fld_worklist_push (tem, fld);
5687 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5688 }
5689
5690 if (TREE_CODE (t) != IDENTIFIER_NODE
5691 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5692 fld_worklist_push (TREE_TYPE (t), fld);
5693
5694 return NULL_TREE;
5695 }
5696
5697
5698 /* Find decls and types in T. */
5699
5700 static void
5701 find_decls_types (tree t, struct free_lang_data_d *fld)
5702 {
5703 while (1)
5704 {
5705 if (!fld->pset->contains (t))
5706 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5707 if (fld->worklist.is_empty ())
5708 break;
5709 t = fld->worklist.pop ();
5710 }
5711 }
5712
5713 /* Translate all the types in LIST with the corresponding runtime
5714 types. */
5715
5716 static tree
5717 get_eh_types_for_runtime (tree list)
5718 {
5719 tree head, prev;
5720
5721 if (list == NULL_TREE)
5722 return NULL_TREE;
5723
5724 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5725 prev = head;
5726 list = TREE_CHAIN (list);
5727 while (list)
5728 {
5729 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5730 TREE_CHAIN (prev) = n;
5731 prev = TREE_CHAIN (prev);
5732 list = TREE_CHAIN (list);
5733 }
5734
5735 return head;
5736 }
5737
5738
5739 /* Find decls and types referenced in EH region R and store them in
5740 FLD->DECLS and FLD->TYPES. */
5741
5742 static void
5743 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5744 {
5745 switch (r->type)
5746 {
5747 case ERT_CLEANUP:
5748 break;
5749
5750 case ERT_TRY:
5751 {
5752 eh_catch c;
5753
5754 /* The types referenced in each catch must first be changed to the
5755 EH types used at runtime. This removes references to FE types
5756 in the region. */
5757 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5758 {
5759 c->type_list = get_eh_types_for_runtime (c->type_list);
5760 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5761 }
5762 }
5763 break;
5764
5765 case ERT_ALLOWED_EXCEPTIONS:
5766 r->u.allowed.type_list
5767 = get_eh_types_for_runtime (r->u.allowed.type_list);
5768 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5769 break;
5770
5771 case ERT_MUST_NOT_THROW:
5772 walk_tree (&r->u.must_not_throw.failure_decl,
5773 find_decls_types_r, fld, fld->pset);
5774 break;
5775 }
5776 }
5777
5778
5779 /* Find decls and types referenced in cgraph node N and store them in
5780 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5781 look for *every* kind of DECL and TYPE node reachable from N,
5782 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5783 NAMESPACE_DECLs, etc). */
5784
5785 static void
5786 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5787 {
5788 basic_block bb;
5789 struct function *fn;
5790 unsigned ix;
5791 tree t;
5792
5793 find_decls_types (n->decl, fld);
5794
5795 if (!gimple_has_body_p (n->decl))
5796 return;
5797
5798 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5799
5800 fn = DECL_STRUCT_FUNCTION (n->decl);
5801
5802 /* Traverse locals. */
5803 FOR_EACH_LOCAL_DECL (fn, ix, t)
5804 find_decls_types (t, fld);
5805
5806 /* Traverse EH regions in FN. */
5807 {
5808 eh_region r;
5809 FOR_ALL_EH_REGION_FN (r, fn)
5810 find_decls_types_in_eh_region (r, fld);
5811 }
5812
5813 /* Traverse every statement in FN. */
5814 FOR_EACH_BB_FN (bb, fn)
5815 {
5816 gphi_iterator psi;
5817 gimple_stmt_iterator si;
5818 unsigned i;
5819
5820 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
5821 {
5822 gphi *phi = psi.phi ();
5823
5824 for (i = 0; i < gimple_phi_num_args (phi); i++)
5825 {
5826 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5827 find_decls_types (*arg_p, fld);
5828 }
5829 }
5830
5831 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5832 {
5833 gimple *stmt = gsi_stmt (si);
5834
5835 if (is_gimple_call (stmt))
5836 find_decls_types (gimple_call_fntype (stmt), fld);
5837
5838 for (i = 0; i < gimple_num_ops (stmt); i++)
5839 {
5840 tree arg = gimple_op (stmt, i);
5841 find_decls_types (arg, fld);
5842 }
5843 }
5844 }
5845 }
5846
5847
5848 /* Find decls and types referenced in varpool node N and store them in
5849 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5850 look for *every* kind of DECL and TYPE node reachable from N,
5851 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5852 NAMESPACE_DECLs, etc). */
5853
5854 static void
5855 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5856 {
5857 find_decls_types (v->decl, fld);
5858 }
5859
5860 /* If T needs an assembler name, have one created for it. */
5861
5862 void
5863 assign_assembler_name_if_neeeded (tree t)
5864 {
5865 if (need_assembler_name_p (t))
5866 {
5867 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5868 diagnostics that use input_location to show locus
5869 information. The problem here is that, at this point,
5870 input_location is generally anchored to the end of the file
5871 (since the parser is long gone), so we don't have a good
5872 position to pin it to.
5873
5874 To alleviate this problem, this uses the location of T's
5875 declaration. Examples of this are
5876 testsuite/g++.dg/template/cond2.C and
5877 testsuite/g++.dg/template/pr35240.C. */
5878 location_t saved_location = input_location;
5879 input_location = DECL_SOURCE_LOCATION (t);
5880
5881 decl_assembler_name (t);
5882
5883 input_location = saved_location;
5884 }
5885 }
5886
5887
5888 /* Free language specific information for every operand and expression
5889 in every node of the call graph. This process operates in three stages:
5890
5891 1- Every callgraph node and varpool node is traversed looking for
5892 decls and types embedded in them. This is a more exhaustive
5893 search than that done by find_referenced_vars, because it will
5894 also collect individual fields, decls embedded in types, etc.
5895
5896 2- All the decls found are sent to free_lang_data_in_decl.
5897
5898 3- All the types found are sent to free_lang_data_in_type.
5899
5900 The ordering between decls and types is important because
5901 free_lang_data_in_decl sets assembler names, which includes
5902 mangling. So types cannot be freed up until assembler names have
5903 been set up. */
5904
5905 static void
5906 free_lang_data_in_cgraph (void)
5907 {
5908 struct cgraph_node *n;
5909 varpool_node *v;
5910 struct free_lang_data_d fld;
5911 tree t;
5912 unsigned i;
5913 alias_pair *p;
5914
5915 /* Initialize sets and arrays to store referenced decls and types. */
5916 fld.pset = new hash_set<tree>;
5917 fld.worklist.create (0);
5918 fld.decls.create (100);
5919 fld.types.create (100);
5920
5921 /* Find decls and types in the body of every function in the callgraph. */
5922 FOR_EACH_FUNCTION (n)
5923 find_decls_types_in_node (n, &fld);
5924
5925 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5926 find_decls_types (p->decl, &fld);
5927
5928 /* Find decls and types in every varpool symbol. */
5929 FOR_EACH_VARIABLE (v)
5930 find_decls_types_in_var (v, &fld);
5931
5932 /* Set the assembler name on every decl found. We need to do this
5933 now because free_lang_data_in_decl will invalidate data needed
5934 for mangling. This breaks mangling on interdependent decls. */
5935 FOR_EACH_VEC_ELT (fld.decls, i, t)
5936 assign_assembler_name_if_neeeded (t);
5937
5938 /* Traverse every decl found freeing its language data. */
5939 FOR_EACH_VEC_ELT (fld.decls, i, t)
5940 free_lang_data_in_decl (t);
5941
5942 /* Traverse every type found freeing its language data. */
5943 FOR_EACH_VEC_ELT (fld.types, i, t)
5944 free_lang_data_in_type (t);
5945 if (flag_checking)
5946 {
5947 FOR_EACH_VEC_ELT (fld.types, i, t)
5948 verify_type (t);
5949 }
5950
5951 delete fld.pset;
5952 fld.worklist.release ();
5953 fld.decls.release ();
5954 fld.types.release ();
5955 }
5956
5957
5958 /* Free resources that are used by FE but are not needed once they are done. */
5959
5960 static unsigned
5961 free_lang_data (void)
5962 {
5963 unsigned i;
5964
5965 /* If we are the LTO frontend we have freed lang-specific data already. */
5966 if (in_lto_p
5967 || (!flag_generate_lto && !flag_generate_offload))
5968 return 0;
5969
5970 /* Allocate and assign alias sets to the standard integer types
5971 while the slots are still in the way the frontends generated them. */
5972 for (i = 0; i < itk_none; ++i)
5973 if (integer_types[i])
5974 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5975
5976 /* Traverse the IL resetting language specific information for
5977 operands, expressions, etc. */
5978 free_lang_data_in_cgraph ();
5979
5980 /* Create gimple variants for common types. */
5981 ptrdiff_type_node = integer_type_node;
5982 fileptr_type_node = ptr_type_node;
5983
5984 /* Reset some langhooks. Do not reset types_compatible_p, it may
5985 still be used indirectly via the get_alias_set langhook. */
5986 lang_hooks.dwarf_name = lhd_dwarf_name;
5987 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5988 lang_hooks.gimplify_expr = lhd_gimplify_expr;
5989
5990 /* We do not want the default decl_assembler_name implementation,
5991 rather if we have fixed everything we want a wrapper around it
5992 asserting that all non-local symbols already got their assembler
5993 name and only produce assembler names for local symbols. Or rather
5994 make sure we never call decl_assembler_name on local symbols and
5995 devise a separate, middle-end private scheme for it. */
5996
5997 /* Reset diagnostic machinery. */
5998 tree_diagnostics_defaults (global_dc);
5999
6000 return 0;
6001 }
6002
6003
6004 namespace {
6005
6006 const pass_data pass_data_ipa_free_lang_data =
6007 {
6008 SIMPLE_IPA_PASS, /* type */
6009 "*free_lang_data", /* name */
6010 OPTGROUP_NONE, /* optinfo_flags */
6011 TV_IPA_FREE_LANG_DATA, /* tv_id */
6012 0, /* properties_required */
6013 0, /* properties_provided */
6014 0, /* properties_destroyed */
6015 0, /* todo_flags_start */
6016 0, /* todo_flags_finish */
6017 };
6018
6019 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6020 {
6021 public:
6022 pass_ipa_free_lang_data (gcc::context *ctxt)
6023 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6024 {}
6025
6026 /* opt_pass methods: */
6027 virtual unsigned int execute (function *) { return free_lang_data (); }
6028
6029 }; // class pass_ipa_free_lang_data
6030
6031 } // anon namespace
6032
6033 simple_ipa_opt_pass *
6034 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6035 {
6036 return new pass_ipa_free_lang_data (ctxt);
6037 }
6038
6039 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
6040 ATTR_NAME. Also used internally by remove_attribute(). */
6041 bool
6042 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
6043 {
6044 size_t ident_len = IDENTIFIER_LENGTH (ident);
6045
6046 if (ident_len == attr_len)
6047 {
6048 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
6049 return true;
6050 }
6051 else if (ident_len == attr_len + 4)
6052 {
6053 /* There is the possibility that ATTR is 'text' and IDENT is
6054 '__text__'. */
6055 const char *p = IDENTIFIER_POINTER (ident);
6056 if (p[0] == '_' && p[1] == '_'
6057 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
6058 && strncmp (attr_name, p + 2, attr_len) == 0)
6059 return true;
6060 }
6061
6062 return false;
6063 }
6064
6065 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
6066 of ATTR_NAME, and LIST is not NULL_TREE. */
6067 tree
6068 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
6069 {
6070 while (list)
6071 {
6072 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
6073
6074 if (ident_len == attr_len)
6075 {
6076 if (!strcmp (attr_name,
6077 IDENTIFIER_POINTER (get_attribute_name (list))))
6078 break;
6079 }
6080 /* TODO: If we made sure that attributes were stored in the
6081 canonical form without '__...__' (ie, as in 'text' as opposed
6082 to '__text__') then we could avoid the following case. */
6083 else if (ident_len == attr_len + 4)
6084 {
6085 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
6086 if (p[0] == '_' && p[1] == '_'
6087 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
6088 && strncmp (attr_name, p + 2, attr_len) == 0)
6089 break;
6090 }
6091 list = TREE_CHAIN (list);
6092 }
6093
6094 return list;
6095 }
6096
6097 /* Given an attribute name ATTR_NAME and a list of attributes LIST,
6098 return a pointer to the attribute's list first element if the attribute
6099 starts with ATTR_NAME. ATTR_NAME must be in the form 'text' (not
6100 '__text__'). */
6101
6102 tree
6103 private_lookup_attribute_by_prefix (const char *attr_name, size_t attr_len,
6104 tree list)
6105 {
6106 while (list)
6107 {
6108 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
6109
6110 if (attr_len > ident_len)
6111 {
6112 list = TREE_CHAIN (list);
6113 continue;
6114 }
6115
6116 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
6117
6118 if (strncmp (attr_name, p, attr_len) == 0)
6119 break;
6120
6121 /* TODO: If we made sure that attributes were stored in the
6122 canonical form without '__...__' (ie, as in 'text' as opposed
6123 to '__text__') then we could avoid the following case. */
6124 if (p[0] == '_' && p[1] == '_' &&
6125 strncmp (attr_name, p + 2, attr_len) == 0)
6126 break;
6127
6128 list = TREE_CHAIN (list);
6129 }
6130
6131 return list;
6132 }
6133
6134
6135 /* A variant of lookup_attribute() that can be used with an identifier
6136 as the first argument, and where the identifier can be either
6137 'text' or '__text__'.
6138
6139 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
6140 return a pointer to the attribute's list element if the attribute
6141 is part of the list, or NULL_TREE if not found. If the attribute
6142 appears more than once, this only returns the first occurrence; the
6143 TREE_CHAIN of the return value should be passed back in if further
6144 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
6145 can be in the form 'text' or '__text__'. */
6146 static tree
6147 lookup_ident_attribute (tree attr_identifier, tree list)
6148 {
6149 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
6150
6151 while (list)
6152 {
6153 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
6154 == IDENTIFIER_NODE);
6155
6156 if (cmp_attrib_identifiers (attr_identifier,
6157 get_attribute_name (list)))
6158 /* Found it. */
6159 break;
6160 list = TREE_CHAIN (list);
6161 }
6162
6163 return list;
6164 }
6165
6166 /* Remove any instances of attribute ATTR_NAME in LIST and return the
6167 modified list. */
6168
6169 tree
6170 remove_attribute (const char *attr_name, tree list)
6171 {
6172 tree *p;
6173 size_t attr_len = strlen (attr_name);
6174
6175 gcc_checking_assert (attr_name[0] != '_');
6176
6177 for (p = &list; *p; )
6178 {
6179 tree l = *p;
6180 /* TODO: If we were storing attributes in normalized form, here
6181 we could use a simple strcmp(). */
6182 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
6183 *p = TREE_CHAIN (l);
6184 else
6185 p = &TREE_CHAIN (l);
6186 }
6187
6188 return list;
6189 }
6190
6191 /* Return an attribute list that is the union of a1 and a2. */
6192
6193 tree
6194 merge_attributes (tree a1, tree a2)
6195 {
6196 tree attributes;
6197
6198 /* Either one unset? Take the set one. */
6199
6200 if ((attributes = a1) == 0)
6201 attributes = a2;
6202
6203 /* One that completely contains the other? Take it. */
6204
6205 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
6206 {
6207 if (attribute_list_contained (a2, a1))
6208 attributes = a2;
6209 else
6210 {
6211 /* Pick the longest list, and hang on the other list. */
6212
6213 if (list_length (a1) < list_length (a2))
6214 attributes = a2, a2 = a1;
6215
6216 for (; a2 != 0; a2 = TREE_CHAIN (a2))
6217 {
6218 tree a;
6219 for (a = lookup_ident_attribute (get_attribute_name (a2),
6220 attributes);
6221 a != NULL_TREE && !attribute_value_equal (a, a2);
6222 a = lookup_ident_attribute (get_attribute_name (a2),
6223 TREE_CHAIN (a)))
6224 ;
6225 if (a == NULL_TREE)
6226 {
6227 a1 = copy_node (a2);
6228 TREE_CHAIN (a1) = attributes;
6229 attributes = a1;
6230 }
6231 }
6232 }
6233 }
6234 return attributes;
6235 }
6236
6237 /* Given types T1 and T2, merge their attributes and return
6238 the result. */
6239
6240 tree
6241 merge_type_attributes (tree t1, tree t2)
6242 {
6243 return merge_attributes (TYPE_ATTRIBUTES (t1),
6244 TYPE_ATTRIBUTES (t2));
6245 }
6246
6247 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
6248 the result. */
6249
6250 tree
6251 merge_decl_attributes (tree olddecl, tree newdecl)
6252 {
6253 return merge_attributes (DECL_ATTRIBUTES (olddecl),
6254 DECL_ATTRIBUTES (newdecl));
6255 }
6256
6257 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
6258
6259 /* Specialization of merge_decl_attributes for various Windows targets.
6260
6261 This handles the following situation:
6262
6263 __declspec (dllimport) int foo;
6264 int foo;
6265
6266 The second instance of `foo' nullifies the dllimport. */
6267
6268 tree
6269 merge_dllimport_decl_attributes (tree old, tree new_tree)
6270 {
6271 tree a;
6272 int delete_dllimport_p = 1;
6273
6274 /* What we need to do here is remove from `old' dllimport if it doesn't
6275 appear in `new'. dllimport behaves like extern: if a declaration is
6276 marked dllimport and a definition appears later, then the object
6277 is not dllimport'd. We also remove a `new' dllimport if the old list
6278 contains dllexport: dllexport always overrides dllimport, regardless
6279 of the order of declaration. */
6280 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
6281 delete_dllimport_p = 0;
6282 else if (DECL_DLLIMPORT_P (new_tree)
6283 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
6284 {
6285 DECL_DLLIMPORT_P (new_tree) = 0;
6286 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
6287 "dllimport ignored", new_tree);
6288 }
6289 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
6290 {
6291 /* Warn about overriding a symbol that has already been used, e.g.:
6292 extern int __attribute__ ((dllimport)) foo;
6293 int* bar () {return &foo;}
6294 int foo;
6295 */
6296 if (TREE_USED (old))
6297 {
6298 warning (0, "%q+D redeclared without dllimport attribute "
6299 "after being referenced with dll linkage", new_tree);
6300 /* If we have used a variable's address with dllimport linkage,
6301 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
6302 decl may already have had TREE_CONSTANT computed.
6303 We still remove the attribute so that assembler code refers
6304 to '&foo rather than '_imp__foo'. */
6305 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
6306 DECL_DLLIMPORT_P (new_tree) = 1;
6307 }
6308
6309 /* Let an inline definition silently override the external reference,
6310 but otherwise warn about attribute inconsistency. */
6311 else if (TREE_CODE (new_tree) == VAR_DECL
6312 || !DECL_DECLARED_INLINE_P (new_tree))
6313 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
6314 "previous dllimport ignored", new_tree);
6315 }
6316 else
6317 delete_dllimport_p = 0;
6318
6319 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
6320
6321 if (delete_dllimport_p)
6322 a = remove_attribute ("dllimport", a);
6323
6324 return a;
6325 }
6326
6327 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
6328 struct attribute_spec.handler. */
6329
6330 tree
6331 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
6332 bool *no_add_attrs)
6333 {
6334 tree node = *pnode;
6335 bool is_dllimport;
6336
6337 /* These attributes may apply to structure and union types being created,
6338 but otherwise should pass to the declaration involved. */
6339 if (!DECL_P (node))
6340 {
6341 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
6342 | (int) ATTR_FLAG_ARRAY_NEXT))
6343 {
6344 *no_add_attrs = true;
6345 return tree_cons (name, args, NULL_TREE);
6346 }
6347 if (TREE_CODE (node) == RECORD_TYPE
6348 || TREE_CODE (node) == UNION_TYPE)
6349 {
6350 node = TYPE_NAME (node);
6351 if (!node)
6352 return NULL_TREE;
6353 }
6354 else
6355 {
6356 warning (OPT_Wattributes, "%qE attribute ignored",
6357 name);
6358 *no_add_attrs = true;
6359 return NULL_TREE;
6360 }
6361 }
6362
6363 if (TREE_CODE (node) != FUNCTION_DECL
6364 && TREE_CODE (node) != VAR_DECL
6365 && TREE_CODE (node) != TYPE_DECL)
6366 {
6367 *no_add_attrs = true;
6368 warning (OPT_Wattributes, "%qE attribute ignored",
6369 name);
6370 return NULL_TREE;
6371 }
6372
6373 if (TREE_CODE (node) == TYPE_DECL
6374 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
6375 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
6376 {
6377 *no_add_attrs = true;
6378 warning (OPT_Wattributes, "%qE attribute ignored",
6379 name);
6380 return NULL_TREE;
6381 }
6382
6383 is_dllimport = is_attribute_p ("dllimport", name);
6384
6385 /* Report error on dllimport ambiguities seen now before they cause
6386 any damage. */
6387 if (is_dllimport)
6388 {
6389 /* Honor any target-specific overrides. */
6390 if (!targetm.valid_dllimport_attribute_p (node))
6391 *no_add_attrs = true;
6392
6393 else if (TREE_CODE (node) == FUNCTION_DECL
6394 && DECL_DECLARED_INLINE_P (node))
6395 {
6396 warning (OPT_Wattributes, "inline function %q+D declared as "
6397 " dllimport: attribute ignored", node);
6398 *no_add_attrs = true;
6399 }
6400 /* Like MS, treat definition of dllimported variables and
6401 non-inlined functions on declaration as syntax errors. */
6402 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
6403 {
6404 error ("function %q+D definition is marked dllimport", node);
6405 *no_add_attrs = true;
6406 }
6407
6408 else if (TREE_CODE (node) == VAR_DECL)
6409 {
6410 if (DECL_INITIAL (node))
6411 {
6412 error ("variable %q+D definition is marked dllimport",
6413 node);
6414 *no_add_attrs = true;
6415 }
6416
6417 /* `extern' needn't be specified with dllimport.
6418 Specify `extern' now and hope for the best. Sigh. */
6419 DECL_EXTERNAL (node) = 1;
6420 /* Also, implicitly give dllimport'd variables declared within
6421 a function global scope, unless declared static. */
6422 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
6423 TREE_PUBLIC (node) = 1;
6424 }
6425
6426 if (*no_add_attrs == false)
6427 DECL_DLLIMPORT_P (node) = 1;
6428 }
6429 else if (TREE_CODE (node) == FUNCTION_DECL
6430 && DECL_DECLARED_INLINE_P (node)
6431 && flag_keep_inline_dllexport)
6432 /* An exported function, even if inline, must be emitted. */
6433 DECL_EXTERNAL (node) = 0;
6434
6435 /* Report error if symbol is not accessible at global scope. */
6436 if (!TREE_PUBLIC (node)
6437 && (TREE_CODE (node) == VAR_DECL
6438 || TREE_CODE (node) == FUNCTION_DECL))
6439 {
6440 error ("external linkage required for symbol %q+D because of "
6441 "%qE attribute", node, name);
6442 *no_add_attrs = true;
6443 }
6444
6445 /* A dllexport'd entity must have default visibility so that other
6446 program units (shared libraries or the main executable) can see
6447 it. A dllimport'd entity must have default visibility so that
6448 the linker knows that undefined references within this program
6449 unit can be resolved by the dynamic linker. */
6450 if (!*no_add_attrs)
6451 {
6452 if (DECL_VISIBILITY_SPECIFIED (node)
6453 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
6454 error ("%qE implies default visibility, but %qD has already "
6455 "been declared with a different visibility",
6456 name, node);
6457 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
6458 DECL_VISIBILITY_SPECIFIED (node) = 1;
6459 }
6460
6461 return NULL_TREE;
6462 }
6463
6464 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
6465 \f
6466 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6467 of the various TYPE_QUAL values. */
6468
6469 static void
6470 set_type_quals (tree type, int type_quals)
6471 {
6472 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6473 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6474 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6475 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6476 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6477 }
6478
6479 /* Returns true iff unqualified CAND and BASE are equivalent. */
6480
6481 bool
6482 check_base_type (const_tree cand, const_tree base)
6483 {
6484 return (TYPE_NAME (cand) == TYPE_NAME (base)
6485 /* Apparently this is needed for Objective-C. */
6486 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6487 /* Check alignment. */
6488 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6489 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6490 TYPE_ATTRIBUTES (base)));
6491 }
6492
6493 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6494
6495 bool
6496 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6497 {
6498 return (TYPE_QUALS (cand) == type_quals
6499 && check_base_type (cand, base));
6500 }
6501
6502 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6503
6504 static bool
6505 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6506 {
6507 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6508 && TYPE_NAME (cand) == TYPE_NAME (base)
6509 /* Apparently this is needed for Objective-C. */
6510 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6511 /* Check alignment. */
6512 && TYPE_ALIGN (cand) == align
6513 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6514 TYPE_ATTRIBUTES (base)));
6515 }
6516
6517 /* This function checks to see if TYPE matches the size one of the built-in
6518 atomic types, and returns that core atomic type. */
6519
6520 static tree
6521 find_atomic_core_type (tree type)
6522 {
6523 tree base_atomic_type;
6524
6525 /* Only handle complete types. */
6526 if (TYPE_SIZE (type) == NULL_TREE)
6527 return NULL_TREE;
6528
6529 HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
6530 switch (type_size)
6531 {
6532 case 8:
6533 base_atomic_type = atomicQI_type_node;
6534 break;
6535
6536 case 16:
6537 base_atomic_type = atomicHI_type_node;
6538 break;
6539
6540 case 32:
6541 base_atomic_type = atomicSI_type_node;
6542 break;
6543
6544 case 64:
6545 base_atomic_type = atomicDI_type_node;
6546 break;
6547
6548 case 128:
6549 base_atomic_type = atomicTI_type_node;
6550 break;
6551
6552 default:
6553 base_atomic_type = NULL_TREE;
6554 }
6555
6556 return base_atomic_type;
6557 }
6558
6559 /* Return a version of the TYPE, qualified as indicated by the
6560 TYPE_QUALS, if one exists. If no qualified version exists yet,
6561 return NULL_TREE. */
6562
6563 tree
6564 get_qualified_type (tree type, int type_quals)
6565 {
6566 tree t;
6567
6568 if (TYPE_QUALS (type) == type_quals)
6569 return type;
6570
6571 /* Search the chain of variants to see if there is already one there just
6572 like the one we need to have. If so, use that existing one. We must
6573 preserve the TYPE_NAME, since there is code that depends on this. */
6574 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6575 if (check_qualified_type (t, type, type_quals))
6576 return t;
6577
6578 return NULL_TREE;
6579 }
6580
6581 /* Like get_qualified_type, but creates the type if it does not
6582 exist. This function never returns NULL_TREE. */
6583
6584 tree
6585 build_qualified_type (tree type, int type_quals)
6586 {
6587 tree t;
6588
6589 /* See if we already have the appropriate qualified variant. */
6590 t = get_qualified_type (type, type_quals);
6591
6592 /* If not, build it. */
6593 if (!t)
6594 {
6595 t = build_variant_type_copy (type);
6596 set_type_quals (t, type_quals);
6597
6598 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6599 {
6600 /* See if this object can map to a basic atomic type. */
6601 tree atomic_type = find_atomic_core_type (type);
6602 if (atomic_type)
6603 {
6604 /* Ensure the alignment of this type is compatible with
6605 the required alignment of the atomic type. */
6606 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6607 TYPE_ALIGN (t) = TYPE_ALIGN (atomic_type);
6608 }
6609 }
6610
6611 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6612 /* Propagate structural equality. */
6613 SET_TYPE_STRUCTURAL_EQUALITY (t);
6614 else if (TYPE_CANONICAL (type) != type)
6615 /* Build the underlying canonical type, since it is different
6616 from TYPE. */
6617 {
6618 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6619 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6620 }
6621 else
6622 /* T is its own canonical type. */
6623 TYPE_CANONICAL (t) = t;
6624
6625 }
6626
6627 return t;
6628 }
6629
6630 /* Create a variant of type T with alignment ALIGN. */
6631
6632 tree
6633 build_aligned_type (tree type, unsigned int align)
6634 {
6635 tree t;
6636
6637 if (TYPE_PACKED (type)
6638 || TYPE_ALIGN (type) == align)
6639 return type;
6640
6641 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6642 if (check_aligned_type (t, type, align))
6643 return t;
6644
6645 t = build_variant_type_copy (type);
6646 TYPE_ALIGN (t) = align;
6647
6648 return t;
6649 }
6650
6651 /* Create a new distinct copy of TYPE. The new type is made its own
6652 MAIN_VARIANT. If TYPE requires structural equality checks, the
6653 resulting type requires structural equality checks; otherwise, its
6654 TYPE_CANONICAL points to itself. */
6655
6656 tree
6657 build_distinct_type_copy (tree type)
6658 {
6659 tree t = copy_node (type);
6660
6661 TYPE_POINTER_TO (t) = 0;
6662 TYPE_REFERENCE_TO (t) = 0;
6663
6664 /* Set the canonical type either to a new equivalence class, or
6665 propagate the need for structural equality checks. */
6666 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6667 SET_TYPE_STRUCTURAL_EQUALITY (t);
6668 else
6669 TYPE_CANONICAL (t) = t;
6670
6671 /* Make it its own variant. */
6672 TYPE_MAIN_VARIANT (t) = t;
6673 TYPE_NEXT_VARIANT (t) = 0;
6674
6675 /* We do not record methods in type copies nor variants
6676 so we do not need to keep them up to date when new method
6677 is inserted. */
6678 if (RECORD_OR_UNION_TYPE_P (t))
6679 TYPE_METHODS (t) = NULL_TREE;
6680
6681 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6682 whose TREE_TYPE is not t. This can also happen in the Ada
6683 frontend when using subtypes. */
6684
6685 return t;
6686 }
6687
6688 /* Create a new variant of TYPE, equivalent but distinct. This is so
6689 the caller can modify it. TYPE_CANONICAL for the return type will
6690 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6691 are considered equal by the language itself (or that both types
6692 require structural equality checks). */
6693
6694 tree
6695 build_variant_type_copy (tree type)
6696 {
6697 tree t, m = TYPE_MAIN_VARIANT (type);
6698
6699 t = build_distinct_type_copy (type);
6700
6701 /* Since we're building a variant, assume that it is a non-semantic
6702 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6703 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6704 /* Type variants have no alias set defined. */
6705 TYPE_ALIAS_SET (t) = -1;
6706
6707 /* Add the new type to the chain of variants of TYPE. */
6708 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6709 TYPE_NEXT_VARIANT (m) = t;
6710 TYPE_MAIN_VARIANT (t) = m;
6711
6712 return t;
6713 }
6714 \f
6715 /* Return true if the from tree in both tree maps are equal. */
6716
6717 int
6718 tree_map_base_eq (const void *va, const void *vb)
6719 {
6720 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6721 *const b = (const struct tree_map_base *) vb;
6722 return (a->from == b->from);
6723 }
6724
6725 /* Hash a from tree in a tree_base_map. */
6726
6727 unsigned int
6728 tree_map_base_hash (const void *item)
6729 {
6730 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6731 }
6732
6733 /* Return true if this tree map structure is marked for garbage collection
6734 purposes. We simply return true if the from tree is marked, so that this
6735 structure goes away when the from tree goes away. */
6736
6737 int
6738 tree_map_base_marked_p (const void *p)
6739 {
6740 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6741 }
6742
6743 /* Hash a from tree in a tree_map. */
6744
6745 unsigned int
6746 tree_map_hash (const void *item)
6747 {
6748 return (((const struct tree_map *) item)->hash);
6749 }
6750
6751 /* Hash a from tree in a tree_decl_map. */
6752
6753 unsigned int
6754 tree_decl_map_hash (const void *item)
6755 {
6756 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6757 }
6758
6759 /* Return the initialization priority for DECL. */
6760
6761 priority_type
6762 decl_init_priority_lookup (tree decl)
6763 {
6764 symtab_node *snode = symtab_node::get (decl);
6765
6766 if (!snode)
6767 return DEFAULT_INIT_PRIORITY;
6768 return
6769 snode->get_init_priority ();
6770 }
6771
6772 /* Return the finalization priority for DECL. */
6773
6774 priority_type
6775 decl_fini_priority_lookup (tree decl)
6776 {
6777 cgraph_node *node = cgraph_node::get (decl);
6778
6779 if (!node)
6780 return DEFAULT_INIT_PRIORITY;
6781 return
6782 node->get_fini_priority ();
6783 }
6784
6785 /* Set the initialization priority for DECL to PRIORITY. */
6786
6787 void
6788 decl_init_priority_insert (tree decl, priority_type priority)
6789 {
6790 struct symtab_node *snode;
6791
6792 if (priority == DEFAULT_INIT_PRIORITY)
6793 {
6794 snode = symtab_node::get (decl);
6795 if (!snode)
6796 return;
6797 }
6798 else if (TREE_CODE (decl) == VAR_DECL)
6799 snode = varpool_node::get_create (decl);
6800 else
6801 snode = cgraph_node::get_create (decl);
6802 snode->set_init_priority (priority);
6803 }
6804
6805 /* Set the finalization priority for DECL to PRIORITY. */
6806
6807 void
6808 decl_fini_priority_insert (tree decl, priority_type priority)
6809 {
6810 struct cgraph_node *node;
6811
6812 if (priority == DEFAULT_INIT_PRIORITY)
6813 {
6814 node = cgraph_node::get (decl);
6815 if (!node)
6816 return;
6817 }
6818 else
6819 node = cgraph_node::get_create (decl);
6820 node->set_fini_priority (priority);
6821 }
6822
6823 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6824
6825 static void
6826 print_debug_expr_statistics (void)
6827 {
6828 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6829 (long) debug_expr_for_decl->size (),
6830 (long) debug_expr_for_decl->elements (),
6831 debug_expr_for_decl->collisions ());
6832 }
6833
6834 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6835
6836 static void
6837 print_value_expr_statistics (void)
6838 {
6839 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6840 (long) value_expr_for_decl->size (),
6841 (long) value_expr_for_decl->elements (),
6842 value_expr_for_decl->collisions ());
6843 }
6844
6845 /* Lookup a debug expression for FROM, and return it if we find one. */
6846
6847 tree
6848 decl_debug_expr_lookup (tree from)
6849 {
6850 struct tree_decl_map *h, in;
6851 in.base.from = from;
6852
6853 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6854 if (h)
6855 return h->to;
6856 return NULL_TREE;
6857 }
6858
6859 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6860
6861 void
6862 decl_debug_expr_insert (tree from, tree to)
6863 {
6864 struct tree_decl_map *h;
6865
6866 h = ggc_alloc<tree_decl_map> ();
6867 h->base.from = from;
6868 h->to = to;
6869 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6870 }
6871
6872 /* Lookup a value expression for FROM, and return it if we find one. */
6873
6874 tree
6875 decl_value_expr_lookup (tree from)
6876 {
6877 struct tree_decl_map *h, in;
6878 in.base.from = from;
6879
6880 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6881 if (h)
6882 return h->to;
6883 return NULL_TREE;
6884 }
6885
6886 /* Insert a mapping FROM->TO in the value expression hashtable. */
6887
6888 void
6889 decl_value_expr_insert (tree from, tree to)
6890 {
6891 struct tree_decl_map *h;
6892
6893 h = ggc_alloc<tree_decl_map> ();
6894 h->base.from = from;
6895 h->to = to;
6896 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6897 }
6898
6899 /* Lookup a vector of debug arguments for FROM, and return it if we
6900 find one. */
6901
6902 vec<tree, va_gc> **
6903 decl_debug_args_lookup (tree from)
6904 {
6905 struct tree_vec_map *h, in;
6906
6907 if (!DECL_HAS_DEBUG_ARGS_P (from))
6908 return NULL;
6909 gcc_checking_assert (debug_args_for_decl != NULL);
6910 in.base.from = from;
6911 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6912 if (h)
6913 return &h->to;
6914 return NULL;
6915 }
6916
6917 /* Insert a mapping FROM->empty vector of debug arguments in the value
6918 expression hashtable. */
6919
6920 vec<tree, va_gc> **
6921 decl_debug_args_insert (tree from)
6922 {
6923 struct tree_vec_map *h;
6924 tree_vec_map **loc;
6925
6926 if (DECL_HAS_DEBUG_ARGS_P (from))
6927 return decl_debug_args_lookup (from);
6928 if (debug_args_for_decl == NULL)
6929 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6930 h = ggc_alloc<tree_vec_map> ();
6931 h->base.from = from;
6932 h->to = NULL;
6933 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6934 *loc = h;
6935 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6936 return &h->to;
6937 }
6938
6939 /* Hashing of types so that we don't make duplicates.
6940 The entry point is `type_hash_canon'. */
6941
6942 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6943 with types in the TREE_VALUE slots), by adding the hash codes
6944 of the individual types. */
6945
6946 static void
6947 type_hash_list (const_tree list, inchash::hash &hstate)
6948 {
6949 const_tree tail;
6950
6951 for (tail = list; tail; tail = TREE_CHAIN (tail))
6952 if (TREE_VALUE (tail) != error_mark_node)
6953 hstate.add_object (TYPE_HASH (TREE_VALUE (tail)));
6954 }
6955
6956 /* These are the Hashtable callback functions. */
6957
6958 /* Returns true iff the types are equivalent. */
6959
6960 bool
6961 type_cache_hasher::equal (type_hash *a, type_hash *b)
6962 {
6963 /* First test the things that are the same for all types. */
6964 if (a->hash != b->hash
6965 || TREE_CODE (a->type) != TREE_CODE (b->type)
6966 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6967 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6968 TYPE_ATTRIBUTES (b->type))
6969 || (TREE_CODE (a->type) != COMPLEX_TYPE
6970 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6971 return 0;
6972
6973 /* Be careful about comparing arrays before and after the element type
6974 has been completed; don't compare TYPE_ALIGN unless both types are
6975 complete. */
6976 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6977 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6978 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6979 return 0;
6980
6981 switch (TREE_CODE (a->type))
6982 {
6983 case VOID_TYPE:
6984 case COMPLEX_TYPE:
6985 case POINTER_TYPE:
6986 case REFERENCE_TYPE:
6987 case NULLPTR_TYPE:
6988 return 1;
6989
6990 case VECTOR_TYPE:
6991 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6992
6993 case ENUMERAL_TYPE:
6994 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6995 && !(TYPE_VALUES (a->type)
6996 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6997 && TYPE_VALUES (b->type)
6998 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6999 && type_list_equal (TYPE_VALUES (a->type),
7000 TYPE_VALUES (b->type))))
7001 return 0;
7002
7003 /* ... fall through ... */
7004
7005 case INTEGER_TYPE:
7006 case REAL_TYPE:
7007 case BOOLEAN_TYPE:
7008 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
7009 return false;
7010 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
7011 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
7012 TYPE_MAX_VALUE (b->type)))
7013 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
7014 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
7015 TYPE_MIN_VALUE (b->type))));
7016
7017 case FIXED_POINT_TYPE:
7018 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
7019
7020 case OFFSET_TYPE:
7021 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
7022
7023 case METHOD_TYPE:
7024 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
7025 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7026 || (TYPE_ARG_TYPES (a->type)
7027 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7028 && TYPE_ARG_TYPES (b->type)
7029 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7030 && type_list_equal (TYPE_ARG_TYPES (a->type),
7031 TYPE_ARG_TYPES (b->type)))))
7032 break;
7033 return 0;
7034 case ARRAY_TYPE:
7035 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
7036
7037 case RECORD_TYPE:
7038 case UNION_TYPE:
7039 case QUAL_UNION_TYPE:
7040 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
7041 || (TYPE_FIELDS (a->type)
7042 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
7043 && TYPE_FIELDS (b->type)
7044 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
7045 && type_list_equal (TYPE_FIELDS (a->type),
7046 TYPE_FIELDS (b->type))));
7047
7048 case FUNCTION_TYPE:
7049 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7050 || (TYPE_ARG_TYPES (a->type)
7051 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7052 && TYPE_ARG_TYPES (b->type)
7053 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7054 && type_list_equal (TYPE_ARG_TYPES (a->type),
7055 TYPE_ARG_TYPES (b->type))))
7056 break;
7057 return 0;
7058
7059 default:
7060 return 0;
7061 }
7062
7063 if (lang_hooks.types.type_hash_eq != NULL)
7064 return lang_hooks.types.type_hash_eq (a->type, b->type);
7065
7066 return 1;
7067 }
7068
7069 /* Given TYPE, and HASHCODE its hash code, return the canonical
7070 object for an identical type if one already exists.
7071 Otherwise, return TYPE, and record it as the canonical object.
7072
7073 To use this function, first create a type of the sort you want.
7074 Then compute its hash code from the fields of the type that
7075 make it different from other similar types.
7076 Then call this function and use the value. */
7077
7078 tree
7079 type_hash_canon (unsigned int hashcode, tree type)
7080 {
7081 type_hash in;
7082 type_hash **loc;
7083
7084 /* The hash table only contains main variants, so ensure that's what we're
7085 being passed. */
7086 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
7087
7088 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
7089 must call that routine before comparing TYPE_ALIGNs. */
7090 layout_type (type);
7091
7092 in.hash = hashcode;
7093 in.type = type;
7094
7095 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
7096 if (*loc)
7097 {
7098 tree t1 = ((type_hash *) *loc)->type;
7099 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1);
7100 free_node (type);
7101 return t1;
7102 }
7103 else
7104 {
7105 struct type_hash *h;
7106
7107 h = ggc_alloc<type_hash> ();
7108 h->hash = hashcode;
7109 h->type = type;
7110 *loc = h;
7111
7112 return type;
7113 }
7114 }
7115
7116 static void
7117 print_type_hash_statistics (void)
7118 {
7119 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
7120 (long) type_hash_table->size (),
7121 (long) type_hash_table->elements (),
7122 type_hash_table->collisions ());
7123 }
7124
7125 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
7126 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
7127 by adding the hash codes of the individual attributes. */
7128
7129 static void
7130 attribute_hash_list (const_tree list, inchash::hash &hstate)
7131 {
7132 const_tree tail;
7133
7134 for (tail = list; tail; tail = TREE_CHAIN (tail))
7135 /* ??? Do we want to add in TREE_VALUE too? */
7136 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)));
7137 }
7138
7139 /* Given two lists of attributes, return true if list l2 is
7140 equivalent to l1. */
7141
7142 int
7143 attribute_list_equal (const_tree l1, const_tree l2)
7144 {
7145 if (l1 == l2)
7146 return 1;
7147
7148 return attribute_list_contained (l1, l2)
7149 && attribute_list_contained (l2, l1);
7150 }
7151
7152 /* Given two lists of attributes, return true if list L2 is
7153 completely contained within L1. */
7154 /* ??? This would be faster if attribute names were stored in a canonicalized
7155 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
7156 must be used to show these elements are equivalent (which they are). */
7157 /* ??? It's not clear that attributes with arguments will always be handled
7158 correctly. */
7159
7160 int
7161 attribute_list_contained (const_tree l1, const_tree l2)
7162 {
7163 const_tree t1, t2;
7164
7165 /* First check the obvious, maybe the lists are identical. */
7166 if (l1 == l2)
7167 return 1;
7168
7169 /* Maybe the lists are similar. */
7170 for (t1 = l1, t2 = l2;
7171 t1 != 0 && t2 != 0
7172 && get_attribute_name (t1) == get_attribute_name (t2)
7173 && TREE_VALUE (t1) == TREE_VALUE (t2);
7174 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
7175 ;
7176
7177 /* Maybe the lists are equal. */
7178 if (t1 == 0 && t2 == 0)
7179 return 1;
7180
7181 for (; t2 != 0; t2 = TREE_CHAIN (t2))
7182 {
7183 const_tree attr;
7184 /* This CONST_CAST is okay because lookup_attribute does not
7185 modify its argument and the return value is assigned to a
7186 const_tree. */
7187 for (attr = lookup_ident_attribute (get_attribute_name (t2),
7188 CONST_CAST_TREE (l1));
7189 attr != NULL_TREE && !attribute_value_equal (t2, attr);
7190 attr = lookup_ident_attribute (get_attribute_name (t2),
7191 TREE_CHAIN (attr)))
7192 ;
7193
7194 if (attr == NULL_TREE)
7195 return 0;
7196 }
7197
7198 return 1;
7199 }
7200
7201 /* Given two lists of types
7202 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
7203 return 1 if the lists contain the same types in the same order.
7204 Also, the TREE_PURPOSEs must match. */
7205
7206 int
7207 type_list_equal (const_tree l1, const_tree l2)
7208 {
7209 const_tree t1, t2;
7210
7211 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
7212 if (TREE_VALUE (t1) != TREE_VALUE (t2)
7213 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
7214 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
7215 && (TREE_TYPE (TREE_PURPOSE (t1))
7216 == TREE_TYPE (TREE_PURPOSE (t2))))))
7217 return 0;
7218
7219 return t1 == t2;
7220 }
7221
7222 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
7223 given by TYPE. If the argument list accepts variable arguments,
7224 then this function counts only the ordinary arguments. */
7225
7226 int
7227 type_num_arguments (const_tree type)
7228 {
7229 int i = 0;
7230 tree t;
7231
7232 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
7233 /* If the function does not take a variable number of arguments,
7234 the last element in the list will have type `void'. */
7235 if (VOID_TYPE_P (TREE_VALUE (t)))
7236 break;
7237 else
7238 ++i;
7239
7240 return i;
7241 }
7242
7243 /* Nonzero if integer constants T1 and T2
7244 represent the same constant value. */
7245
7246 int
7247 tree_int_cst_equal (const_tree t1, const_tree t2)
7248 {
7249 if (t1 == t2)
7250 return 1;
7251
7252 if (t1 == 0 || t2 == 0)
7253 return 0;
7254
7255 if (TREE_CODE (t1) == INTEGER_CST
7256 && TREE_CODE (t2) == INTEGER_CST
7257 && wi::to_widest (t1) == wi::to_widest (t2))
7258 return 1;
7259
7260 return 0;
7261 }
7262
7263 /* Return true if T is an INTEGER_CST whose numerical value (extended
7264 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7265
7266 bool
7267 tree_fits_shwi_p (const_tree t)
7268 {
7269 return (t != NULL_TREE
7270 && TREE_CODE (t) == INTEGER_CST
7271 && wi::fits_shwi_p (wi::to_widest (t)));
7272 }
7273
7274 /* Return true if T is an INTEGER_CST whose numerical value (extended
7275 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7276
7277 bool
7278 tree_fits_uhwi_p (const_tree t)
7279 {
7280 return (t != NULL_TREE
7281 && TREE_CODE (t) == INTEGER_CST
7282 && wi::fits_uhwi_p (wi::to_widest (t)));
7283 }
7284
7285 /* T is an INTEGER_CST whose numerical value (extended according to
7286 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7287 HOST_WIDE_INT. */
7288
7289 HOST_WIDE_INT
7290 tree_to_shwi (const_tree t)
7291 {
7292 gcc_assert (tree_fits_shwi_p (t));
7293 return TREE_INT_CST_LOW (t);
7294 }
7295
7296 /* T is an INTEGER_CST whose numerical value (extended according to
7297 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7298 HOST_WIDE_INT. */
7299
7300 unsigned HOST_WIDE_INT
7301 tree_to_uhwi (const_tree t)
7302 {
7303 gcc_assert (tree_fits_uhwi_p (t));
7304 return TREE_INT_CST_LOW (t);
7305 }
7306
7307 /* Return the most significant (sign) bit of T. */
7308
7309 int
7310 tree_int_cst_sign_bit (const_tree t)
7311 {
7312 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7313
7314 return wi::extract_uhwi (t, bitno, 1);
7315 }
7316
7317 /* Return an indication of the sign of the integer constant T.
7318 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7319 Note that -1 will never be returned if T's type is unsigned. */
7320
7321 int
7322 tree_int_cst_sgn (const_tree t)
7323 {
7324 if (wi::eq_p (t, 0))
7325 return 0;
7326 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7327 return 1;
7328 else if (wi::neg_p (t))
7329 return -1;
7330 else
7331 return 1;
7332 }
7333
7334 /* Return the minimum number of bits needed to represent VALUE in a
7335 signed or unsigned type, UNSIGNEDP says which. */
7336
7337 unsigned int
7338 tree_int_cst_min_precision (tree value, signop sgn)
7339 {
7340 /* If the value is negative, compute its negative minus 1. The latter
7341 adjustment is because the absolute value of the largest negative value
7342 is one larger than the largest positive value. This is equivalent to
7343 a bit-wise negation, so use that operation instead. */
7344
7345 if (tree_int_cst_sgn (value) < 0)
7346 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7347
7348 /* Return the number of bits needed, taking into account the fact
7349 that we need one more bit for a signed than unsigned type.
7350 If value is 0 or -1, the minimum precision is 1 no matter
7351 whether unsignedp is true or false. */
7352
7353 if (integer_zerop (value))
7354 return 1;
7355 else
7356 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7357 }
7358
7359 /* Return truthvalue of whether T1 is the same tree structure as T2.
7360 Return 1 if they are the same.
7361 Return 0 if they are understandably different.
7362 Return -1 if either contains tree structure not understood by
7363 this function. */
7364
7365 int
7366 simple_cst_equal (const_tree t1, const_tree t2)
7367 {
7368 enum tree_code code1, code2;
7369 int cmp;
7370 int i;
7371
7372 if (t1 == t2)
7373 return 1;
7374 if (t1 == 0 || t2 == 0)
7375 return 0;
7376
7377 code1 = TREE_CODE (t1);
7378 code2 = TREE_CODE (t2);
7379
7380 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7381 {
7382 if (CONVERT_EXPR_CODE_P (code2)
7383 || code2 == NON_LVALUE_EXPR)
7384 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7385 else
7386 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7387 }
7388
7389 else if (CONVERT_EXPR_CODE_P (code2)
7390 || code2 == NON_LVALUE_EXPR)
7391 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7392
7393 if (code1 != code2)
7394 return 0;
7395
7396 switch (code1)
7397 {
7398 case INTEGER_CST:
7399 return wi::to_widest (t1) == wi::to_widest (t2);
7400
7401 case REAL_CST:
7402 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7403
7404 case FIXED_CST:
7405 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7406
7407 case STRING_CST:
7408 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7409 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7410 TREE_STRING_LENGTH (t1)));
7411
7412 case CONSTRUCTOR:
7413 {
7414 unsigned HOST_WIDE_INT idx;
7415 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7416 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7417
7418 if (vec_safe_length (v1) != vec_safe_length (v2))
7419 return false;
7420
7421 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7422 /* ??? Should we handle also fields here? */
7423 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7424 return false;
7425 return true;
7426 }
7427
7428 case SAVE_EXPR:
7429 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7430
7431 case CALL_EXPR:
7432 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7433 if (cmp <= 0)
7434 return cmp;
7435 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7436 return 0;
7437 {
7438 const_tree arg1, arg2;
7439 const_call_expr_arg_iterator iter1, iter2;
7440 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7441 arg2 = first_const_call_expr_arg (t2, &iter2);
7442 arg1 && arg2;
7443 arg1 = next_const_call_expr_arg (&iter1),
7444 arg2 = next_const_call_expr_arg (&iter2))
7445 {
7446 cmp = simple_cst_equal (arg1, arg2);
7447 if (cmp <= 0)
7448 return cmp;
7449 }
7450 return arg1 == arg2;
7451 }
7452
7453 case TARGET_EXPR:
7454 /* Special case: if either target is an unallocated VAR_DECL,
7455 it means that it's going to be unified with whatever the
7456 TARGET_EXPR is really supposed to initialize, so treat it
7457 as being equivalent to anything. */
7458 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7459 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7460 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7461 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7462 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7463 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7464 cmp = 1;
7465 else
7466 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7467
7468 if (cmp <= 0)
7469 return cmp;
7470
7471 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7472
7473 case WITH_CLEANUP_EXPR:
7474 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7475 if (cmp <= 0)
7476 return cmp;
7477
7478 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7479
7480 case COMPONENT_REF:
7481 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7482 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7483
7484 return 0;
7485
7486 case VAR_DECL:
7487 case PARM_DECL:
7488 case CONST_DECL:
7489 case FUNCTION_DECL:
7490 return 0;
7491
7492 default:
7493 break;
7494 }
7495
7496 /* This general rule works for most tree codes. All exceptions should be
7497 handled above. If this is a language-specific tree code, we can't
7498 trust what might be in the operand, so say we don't know
7499 the situation. */
7500 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7501 return -1;
7502
7503 switch (TREE_CODE_CLASS (code1))
7504 {
7505 case tcc_unary:
7506 case tcc_binary:
7507 case tcc_comparison:
7508 case tcc_expression:
7509 case tcc_reference:
7510 case tcc_statement:
7511 cmp = 1;
7512 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7513 {
7514 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7515 if (cmp <= 0)
7516 return cmp;
7517 }
7518
7519 return cmp;
7520
7521 default:
7522 return -1;
7523 }
7524 }
7525
7526 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7527 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7528 than U, respectively. */
7529
7530 int
7531 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7532 {
7533 if (tree_int_cst_sgn (t) < 0)
7534 return -1;
7535 else if (!tree_fits_uhwi_p (t))
7536 return 1;
7537 else if (TREE_INT_CST_LOW (t) == u)
7538 return 0;
7539 else if (TREE_INT_CST_LOW (t) < u)
7540 return -1;
7541 else
7542 return 1;
7543 }
7544
7545 /* Return true if SIZE represents a constant size that is in bounds of
7546 what the middle-end and the backend accepts (covering not more than
7547 half of the address-space). */
7548
7549 bool
7550 valid_constant_size_p (const_tree size)
7551 {
7552 if (! tree_fits_uhwi_p (size)
7553 || TREE_OVERFLOW (size)
7554 || tree_int_cst_sign_bit (size) != 0)
7555 return false;
7556 return true;
7557 }
7558
7559 /* Return the precision of the type, or for a complex or vector type the
7560 precision of the type of its elements. */
7561
7562 unsigned int
7563 element_precision (const_tree type)
7564 {
7565 if (!TYPE_P (type))
7566 type = TREE_TYPE (type);
7567 enum tree_code code = TREE_CODE (type);
7568 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7569 type = TREE_TYPE (type);
7570
7571 return TYPE_PRECISION (type);
7572 }
7573
7574 /* Return true if CODE represents an associative tree code. Otherwise
7575 return false. */
7576 bool
7577 associative_tree_code (enum tree_code code)
7578 {
7579 switch (code)
7580 {
7581 case BIT_IOR_EXPR:
7582 case BIT_AND_EXPR:
7583 case BIT_XOR_EXPR:
7584 case PLUS_EXPR:
7585 case MULT_EXPR:
7586 case MIN_EXPR:
7587 case MAX_EXPR:
7588 return true;
7589
7590 default:
7591 break;
7592 }
7593 return false;
7594 }
7595
7596 /* Return true if CODE represents a commutative tree code. Otherwise
7597 return false. */
7598 bool
7599 commutative_tree_code (enum tree_code code)
7600 {
7601 switch (code)
7602 {
7603 case PLUS_EXPR:
7604 case MULT_EXPR:
7605 case MULT_HIGHPART_EXPR:
7606 case MIN_EXPR:
7607 case MAX_EXPR:
7608 case BIT_IOR_EXPR:
7609 case BIT_XOR_EXPR:
7610 case BIT_AND_EXPR:
7611 case NE_EXPR:
7612 case EQ_EXPR:
7613 case UNORDERED_EXPR:
7614 case ORDERED_EXPR:
7615 case UNEQ_EXPR:
7616 case LTGT_EXPR:
7617 case TRUTH_AND_EXPR:
7618 case TRUTH_XOR_EXPR:
7619 case TRUTH_OR_EXPR:
7620 case WIDEN_MULT_EXPR:
7621 case VEC_WIDEN_MULT_HI_EXPR:
7622 case VEC_WIDEN_MULT_LO_EXPR:
7623 case VEC_WIDEN_MULT_EVEN_EXPR:
7624 case VEC_WIDEN_MULT_ODD_EXPR:
7625 return true;
7626
7627 default:
7628 break;
7629 }
7630 return false;
7631 }
7632
7633 /* Return true if CODE represents a ternary tree code for which the
7634 first two operands are commutative. Otherwise return false. */
7635 bool
7636 commutative_ternary_tree_code (enum tree_code code)
7637 {
7638 switch (code)
7639 {
7640 case WIDEN_MULT_PLUS_EXPR:
7641 case WIDEN_MULT_MINUS_EXPR:
7642 case DOT_PROD_EXPR:
7643 case FMA_EXPR:
7644 return true;
7645
7646 default:
7647 break;
7648 }
7649 return false;
7650 }
7651
7652 /* Returns true if CODE can overflow. */
7653
7654 bool
7655 operation_can_overflow (enum tree_code code)
7656 {
7657 switch (code)
7658 {
7659 case PLUS_EXPR:
7660 case MINUS_EXPR:
7661 case MULT_EXPR:
7662 case LSHIFT_EXPR:
7663 /* Can overflow in various ways. */
7664 return true;
7665 case TRUNC_DIV_EXPR:
7666 case EXACT_DIV_EXPR:
7667 case FLOOR_DIV_EXPR:
7668 case CEIL_DIV_EXPR:
7669 /* For INT_MIN / -1. */
7670 return true;
7671 case NEGATE_EXPR:
7672 case ABS_EXPR:
7673 /* For -INT_MIN. */
7674 return true;
7675 default:
7676 /* These operators cannot overflow. */
7677 return false;
7678 }
7679 }
7680
7681 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7682 ftrapv doesn't generate trapping insns for CODE. */
7683
7684 bool
7685 operation_no_trapping_overflow (tree type, enum tree_code code)
7686 {
7687 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7688
7689 /* We don't generate instructions that trap on overflow for complex or vector
7690 types. */
7691 if (!INTEGRAL_TYPE_P (type))
7692 return true;
7693
7694 if (!TYPE_OVERFLOW_TRAPS (type))
7695 return true;
7696
7697 switch (code)
7698 {
7699 case PLUS_EXPR:
7700 case MINUS_EXPR:
7701 case MULT_EXPR:
7702 case NEGATE_EXPR:
7703 case ABS_EXPR:
7704 /* These operators can overflow, and -ftrapv generates trapping code for
7705 these. */
7706 return false;
7707 case TRUNC_DIV_EXPR:
7708 case EXACT_DIV_EXPR:
7709 case FLOOR_DIV_EXPR:
7710 case CEIL_DIV_EXPR:
7711 case LSHIFT_EXPR:
7712 /* These operators can overflow, but -ftrapv does not generate trapping
7713 code for these. */
7714 return true;
7715 default:
7716 /* These operators cannot overflow. */
7717 return true;
7718 }
7719 }
7720
7721 namespace inchash
7722 {
7723
7724 /* Generate a hash value for an expression. This can be used iteratively
7725 by passing a previous result as the HSTATE argument.
7726
7727 This function is intended to produce the same hash for expressions which
7728 would compare equal using operand_equal_p. */
7729 void
7730 add_expr (const_tree t, inchash::hash &hstate)
7731 {
7732 int i;
7733 enum tree_code code;
7734 enum tree_code_class tclass;
7735
7736 if (t == NULL_TREE)
7737 {
7738 hstate.merge_hash (0);
7739 return;
7740 }
7741
7742 code = TREE_CODE (t);
7743
7744 switch (code)
7745 {
7746 /* Alas, constants aren't shared, so we can't rely on pointer
7747 identity. */
7748 case VOID_CST:
7749 hstate.merge_hash (0);
7750 return;
7751 case INTEGER_CST:
7752 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
7753 hstate.add_wide_int (TREE_INT_CST_ELT (t, i));
7754 return;
7755 case REAL_CST:
7756 {
7757 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7758 hstate.merge_hash (val2);
7759 return;
7760 }
7761 case FIXED_CST:
7762 {
7763 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7764 hstate.merge_hash (val2);
7765 return;
7766 }
7767 case STRING_CST:
7768 hstate.add ((const void *) TREE_STRING_POINTER (t), TREE_STRING_LENGTH (t));
7769 return;
7770 case COMPLEX_CST:
7771 inchash::add_expr (TREE_REALPART (t), hstate);
7772 inchash::add_expr (TREE_IMAGPART (t), hstate);
7773 return;
7774 case VECTOR_CST:
7775 {
7776 unsigned i;
7777 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7778 inchash::add_expr (VECTOR_CST_ELT (t, i), hstate);
7779 return;
7780 }
7781 case SSA_NAME:
7782 /* We can just compare by pointer. */
7783 hstate.add_wide_int (SSA_NAME_VERSION (t));
7784 return;
7785 case PLACEHOLDER_EXPR:
7786 /* The node itself doesn't matter. */
7787 return;
7788 case TREE_LIST:
7789 /* A list of expressions, for a CALL_EXPR or as the elements of a
7790 VECTOR_CST. */
7791 for (; t; t = TREE_CHAIN (t))
7792 inchash::add_expr (TREE_VALUE (t), hstate);
7793 return;
7794 case CONSTRUCTOR:
7795 {
7796 unsigned HOST_WIDE_INT idx;
7797 tree field, value;
7798 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7799 {
7800 inchash::add_expr (field, hstate);
7801 inchash::add_expr (value, hstate);
7802 }
7803 return;
7804 }
7805 case FUNCTION_DECL:
7806 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7807 Otherwise nodes that compare equal according to operand_equal_p might
7808 get different hash codes. However, don't do this for machine specific
7809 or front end builtins, since the function code is overloaded in those
7810 cases. */
7811 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7812 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7813 {
7814 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7815 code = TREE_CODE (t);
7816 }
7817 /* FALL THROUGH */
7818 default:
7819 tclass = TREE_CODE_CLASS (code);
7820
7821 if (tclass == tcc_declaration)
7822 {
7823 /* DECL's have a unique ID */
7824 hstate.add_wide_int (DECL_UID (t));
7825 }
7826 else
7827 {
7828 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7829
7830 hstate.add_object (code);
7831
7832 /* Don't hash the type, that can lead to having nodes which
7833 compare equal according to operand_equal_p, but which
7834 have different hash codes. */
7835 if (CONVERT_EXPR_CODE_P (code)
7836 || code == NON_LVALUE_EXPR)
7837 {
7838 /* Make sure to include signness in the hash computation. */
7839 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7840 inchash::add_expr (TREE_OPERAND (t, 0), hstate);
7841 }
7842
7843 else if (commutative_tree_code (code))
7844 {
7845 /* It's a commutative expression. We want to hash it the same
7846 however it appears. We do this by first hashing both operands
7847 and then rehashing based on the order of their independent
7848 hashes. */
7849 inchash::hash one, two;
7850 inchash::add_expr (TREE_OPERAND (t, 0), one);
7851 inchash::add_expr (TREE_OPERAND (t, 1), two);
7852 hstate.add_commutative (one, two);
7853 }
7854 else
7855 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7856 inchash::add_expr (TREE_OPERAND (t, i), hstate);
7857 }
7858 return;
7859 }
7860 }
7861
7862 }
7863
7864 /* Constructors for pointer, array and function types.
7865 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7866 constructed by language-dependent code, not here.) */
7867
7868 /* Construct, lay out and return the type of pointers to TO_TYPE with
7869 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7870 reference all of memory. If such a type has already been
7871 constructed, reuse it. */
7872
7873 tree
7874 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7875 bool can_alias_all)
7876 {
7877 tree t;
7878 bool could_alias = can_alias_all;
7879
7880 if (to_type == error_mark_node)
7881 return error_mark_node;
7882
7883 /* If the pointed-to type has the may_alias attribute set, force
7884 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7885 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7886 can_alias_all = true;
7887
7888 /* In some cases, languages will have things that aren't a POINTER_TYPE
7889 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7890 In that case, return that type without regard to the rest of our
7891 operands.
7892
7893 ??? This is a kludge, but consistent with the way this function has
7894 always operated and there doesn't seem to be a good way to avoid this
7895 at the moment. */
7896 if (TYPE_POINTER_TO (to_type) != 0
7897 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7898 return TYPE_POINTER_TO (to_type);
7899
7900 /* First, if we already have a type for pointers to TO_TYPE and it's
7901 the proper mode, use it. */
7902 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7903 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7904 return t;
7905
7906 t = make_node (POINTER_TYPE);
7907
7908 TREE_TYPE (t) = to_type;
7909 SET_TYPE_MODE (t, mode);
7910 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7911 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7912 TYPE_POINTER_TO (to_type) = t;
7913
7914 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7915 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7916 SET_TYPE_STRUCTURAL_EQUALITY (t);
7917 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7918 TYPE_CANONICAL (t)
7919 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7920 mode, false);
7921
7922 /* Lay out the type. This function has many callers that are concerned
7923 with expression-construction, and this simplifies them all. */
7924 layout_type (t);
7925
7926 return t;
7927 }
7928
7929 /* By default build pointers in ptr_mode. */
7930
7931 tree
7932 build_pointer_type (tree to_type)
7933 {
7934 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7935 : TYPE_ADDR_SPACE (to_type);
7936 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7937 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7938 }
7939
7940 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7941
7942 tree
7943 build_reference_type_for_mode (tree to_type, machine_mode mode,
7944 bool can_alias_all)
7945 {
7946 tree t;
7947 bool could_alias = can_alias_all;
7948
7949 if (to_type == error_mark_node)
7950 return error_mark_node;
7951
7952 /* If the pointed-to type has the may_alias attribute set, force
7953 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7954 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7955 can_alias_all = true;
7956
7957 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7958 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7959 In that case, return that type without regard to the rest of our
7960 operands.
7961
7962 ??? This is a kludge, but consistent with the way this function has
7963 always operated and there doesn't seem to be a good way to avoid this
7964 at the moment. */
7965 if (TYPE_REFERENCE_TO (to_type) != 0
7966 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7967 return TYPE_REFERENCE_TO (to_type);
7968
7969 /* First, if we already have a type for pointers to TO_TYPE and it's
7970 the proper mode, use it. */
7971 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7972 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7973 return t;
7974
7975 t = make_node (REFERENCE_TYPE);
7976
7977 TREE_TYPE (t) = to_type;
7978 SET_TYPE_MODE (t, mode);
7979 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7980 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7981 TYPE_REFERENCE_TO (to_type) = t;
7982
7983 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7984 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7985 SET_TYPE_STRUCTURAL_EQUALITY (t);
7986 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7987 TYPE_CANONICAL (t)
7988 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7989 mode, false);
7990
7991 layout_type (t);
7992
7993 return t;
7994 }
7995
7996
7997 /* Build the node for the type of references-to-TO_TYPE by default
7998 in ptr_mode. */
7999
8000 tree
8001 build_reference_type (tree to_type)
8002 {
8003 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
8004 : TYPE_ADDR_SPACE (to_type);
8005 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
8006 return build_reference_type_for_mode (to_type, pointer_mode, false);
8007 }
8008
8009 #define MAX_INT_CACHED_PREC \
8010 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8011 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
8012
8013 /* Builds a signed or unsigned integer type of precision PRECISION.
8014 Used for C bitfields whose precision does not match that of
8015 built-in target types. */
8016 tree
8017 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
8018 int unsignedp)
8019 {
8020 tree itype, ret;
8021
8022 if (unsignedp)
8023 unsignedp = MAX_INT_CACHED_PREC + 1;
8024
8025 if (precision <= MAX_INT_CACHED_PREC)
8026 {
8027 itype = nonstandard_integer_type_cache[precision + unsignedp];
8028 if (itype)
8029 return itype;
8030 }
8031
8032 itype = make_node (INTEGER_TYPE);
8033 TYPE_PRECISION (itype) = precision;
8034
8035 if (unsignedp)
8036 fixup_unsigned_type (itype);
8037 else
8038 fixup_signed_type (itype);
8039
8040 ret = itype;
8041 if (tree_fits_uhwi_p (TYPE_MAX_VALUE (itype)))
8042 ret = type_hash_canon (tree_to_uhwi (TYPE_MAX_VALUE (itype)), itype);
8043 if (precision <= MAX_INT_CACHED_PREC)
8044 nonstandard_integer_type_cache[precision + unsignedp] = ret;
8045
8046 return ret;
8047 }
8048
8049 #define MAX_BOOL_CACHED_PREC \
8050 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8051 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
8052
8053 /* Builds a boolean type of precision PRECISION.
8054 Used for boolean vectors to choose proper vector element size. */
8055 tree
8056 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
8057 {
8058 tree type;
8059
8060 if (precision <= MAX_BOOL_CACHED_PREC)
8061 {
8062 type = nonstandard_boolean_type_cache[precision];
8063 if (type)
8064 return type;
8065 }
8066
8067 type = make_node (BOOLEAN_TYPE);
8068 TYPE_PRECISION (type) = precision;
8069 fixup_signed_type (type);
8070
8071 if (precision <= MAX_INT_CACHED_PREC)
8072 nonstandard_boolean_type_cache[precision] = type;
8073
8074 return type;
8075 }
8076
8077 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
8078 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
8079 is true, reuse such a type that has already been constructed. */
8080
8081 static tree
8082 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
8083 {
8084 tree itype = make_node (INTEGER_TYPE);
8085 inchash::hash hstate;
8086
8087 TREE_TYPE (itype) = type;
8088
8089 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
8090 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
8091
8092 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
8093 SET_TYPE_MODE (itype, TYPE_MODE (type));
8094 TYPE_SIZE (itype) = TYPE_SIZE (type);
8095 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
8096 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
8097 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
8098
8099 if (!shared)
8100 return itype;
8101
8102 if ((TYPE_MIN_VALUE (itype)
8103 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
8104 || (TYPE_MAX_VALUE (itype)
8105 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
8106 {
8107 /* Since we cannot reliably merge this type, we need to compare it using
8108 structural equality checks. */
8109 SET_TYPE_STRUCTURAL_EQUALITY (itype);
8110 return itype;
8111 }
8112
8113 inchash::add_expr (TYPE_MIN_VALUE (itype), hstate);
8114 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
8115 hstate.merge_hash (TYPE_HASH (type));
8116 itype = type_hash_canon (hstate.end (), itype);
8117
8118 return itype;
8119 }
8120
8121 /* Wrapper around build_range_type_1 with SHARED set to true. */
8122
8123 tree
8124 build_range_type (tree type, tree lowval, tree highval)
8125 {
8126 return build_range_type_1 (type, lowval, highval, true);
8127 }
8128
8129 /* Wrapper around build_range_type_1 with SHARED set to false. */
8130
8131 tree
8132 build_nonshared_range_type (tree type, tree lowval, tree highval)
8133 {
8134 return build_range_type_1 (type, lowval, highval, false);
8135 }
8136
8137 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
8138 MAXVAL should be the maximum value in the domain
8139 (one less than the length of the array).
8140
8141 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
8142 We don't enforce this limit, that is up to caller (e.g. language front end).
8143 The limit exists because the result is a signed type and we don't handle
8144 sizes that use more than one HOST_WIDE_INT. */
8145
8146 tree
8147 build_index_type (tree maxval)
8148 {
8149 return build_range_type (sizetype, size_zero_node, maxval);
8150 }
8151
8152 /* Return true if the debug information for TYPE, a subtype, should be emitted
8153 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
8154 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
8155 debug info and doesn't reflect the source code. */
8156
8157 bool
8158 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
8159 {
8160 tree base_type = TREE_TYPE (type), low, high;
8161
8162 /* Subrange types have a base type which is an integral type. */
8163 if (!INTEGRAL_TYPE_P (base_type))
8164 return false;
8165
8166 /* Get the real bounds of the subtype. */
8167 if (lang_hooks.types.get_subrange_bounds)
8168 lang_hooks.types.get_subrange_bounds (type, &low, &high);
8169 else
8170 {
8171 low = TYPE_MIN_VALUE (type);
8172 high = TYPE_MAX_VALUE (type);
8173 }
8174
8175 /* If the type and its base type have the same representation and the same
8176 name, then the type is not a subrange but a copy of the base type. */
8177 if ((TREE_CODE (base_type) == INTEGER_TYPE
8178 || TREE_CODE (base_type) == BOOLEAN_TYPE)
8179 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
8180 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
8181 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
8182 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
8183 return false;
8184
8185 if (lowval)
8186 *lowval = low;
8187 if (highval)
8188 *highval = high;
8189 return true;
8190 }
8191
8192 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8193 and number of elements specified by the range of values of INDEX_TYPE.
8194 If SHARED is true, reuse such a type that has already been constructed. */
8195
8196 static tree
8197 build_array_type_1 (tree elt_type, tree index_type, bool shared)
8198 {
8199 tree t;
8200
8201 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8202 {
8203 error ("arrays of functions are not meaningful");
8204 elt_type = integer_type_node;
8205 }
8206
8207 t = make_node (ARRAY_TYPE);
8208 TREE_TYPE (t) = elt_type;
8209 TYPE_DOMAIN (t) = index_type;
8210 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8211 layout_type (t);
8212
8213 /* If the element type is incomplete at this point we get marked for
8214 structural equality. Do not record these types in the canonical
8215 type hashtable. */
8216 if (TYPE_STRUCTURAL_EQUALITY_P (t))
8217 return t;
8218
8219 if (shared)
8220 {
8221 inchash::hash hstate;
8222 hstate.add_object (TYPE_HASH (elt_type));
8223 if (index_type)
8224 hstate.add_object (TYPE_HASH (index_type));
8225 t = type_hash_canon (hstate.end (), t);
8226 }
8227
8228 if (TYPE_CANONICAL (t) == t)
8229 {
8230 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8231 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8232 || in_lto_p)
8233 SET_TYPE_STRUCTURAL_EQUALITY (t);
8234 else if (TYPE_CANONICAL (elt_type) != elt_type
8235 || (index_type && TYPE_CANONICAL (index_type) != index_type))
8236 TYPE_CANONICAL (t)
8237 = build_array_type_1 (TYPE_CANONICAL (elt_type),
8238 index_type
8239 ? TYPE_CANONICAL (index_type) : NULL_TREE,
8240 shared);
8241 }
8242
8243 return t;
8244 }
8245
8246 /* Wrapper around build_array_type_1 with SHARED set to true. */
8247
8248 tree
8249 build_array_type (tree elt_type, tree index_type)
8250 {
8251 return build_array_type_1 (elt_type, index_type, true);
8252 }
8253
8254 /* Wrapper around build_array_type_1 with SHARED set to false. */
8255
8256 tree
8257 build_nonshared_array_type (tree elt_type, tree index_type)
8258 {
8259 return build_array_type_1 (elt_type, index_type, false);
8260 }
8261
8262 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8263 sizetype. */
8264
8265 tree
8266 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
8267 {
8268 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8269 }
8270
8271 /* Recursively examines the array elements of TYPE, until a non-array
8272 element type is found. */
8273
8274 tree
8275 strip_array_types (tree type)
8276 {
8277 while (TREE_CODE (type) == ARRAY_TYPE)
8278 type = TREE_TYPE (type);
8279
8280 return type;
8281 }
8282
8283 /* Computes the canonical argument types from the argument type list
8284 ARGTYPES.
8285
8286 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8287 on entry to this function, or if any of the ARGTYPES are
8288 structural.
8289
8290 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8291 true on entry to this function, or if any of the ARGTYPES are
8292 non-canonical.
8293
8294 Returns a canonical argument list, which may be ARGTYPES when the
8295 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8296 true) or would not differ from ARGTYPES. */
8297
8298 static tree
8299 maybe_canonicalize_argtypes (tree argtypes,
8300 bool *any_structural_p,
8301 bool *any_noncanonical_p)
8302 {
8303 tree arg;
8304 bool any_noncanonical_argtypes_p = false;
8305
8306 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8307 {
8308 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8309 /* Fail gracefully by stating that the type is structural. */
8310 *any_structural_p = true;
8311 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8312 *any_structural_p = true;
8313 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8314 || TREE_PURPOSE (arg))
8315 /* If the argument has a default argument, we consider it
8316 non-canonical even though the type itself is canonical.
8317 That way, different variants of function and method types
8318 with default arguments will all point to the variant with
8319 no defaults as their canonical type. */
8320 any_noncanonical_argtypes_p = true;
8321 }
8322
8323 if (*any_structural_p)
8324 return argtypes;
8325
8326 if (any_noncanonical_argtypes_p)
8327 {
8328 /* Build the canonical list of argument types. */
8329 tree canon_argtypes = NULL_TREE;
8330 bool is_void = false;
8331
8332 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8333 {
8334 if (arg == void_list_node)
8335 is_void = true;
8336 else
8337 canon_argtypes = tree_cons (NULL_TREE,
8338 TYPE_CANONICAL (TREE_VALUE (arg)),
8339 canon_argtypes);
8340 }
8341
8342 canon_argtypes = nreverse (canon_argtypes);
8343 if (is_void)
8344 canon_argtypes = chainon (canon_argtypes, void_list_node);
8345
8346 /* There is a non-canonical type. */
8347 *any_noncanonical_p = true;
8348 return canon_argtypes;
8349 }
8350
8351 /* The canonical argument types are the same as ARGTYPES. */
8352 return argtypes;
8353 }
8354
8355 /* Construct, lay out and return
8356 the type of functions returning type VALUE_TYPE
8357 given arguments of types ARG_TYPES.
8358 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8359 are data type nodes for the arguments of the function.
8360 If such a type has already been constructed, reuse it. */
8361
8362 tree
8363 build_function_type (tree value_type, tree arg_types)
8364 {
8365 tree t;
8366 inchash::hash hstate;
8367 bool any_structural_p, any_noncanonical_p;
8368 tree canon_argtypes;
8369
8370 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8371 {
8372 error ("function return type cannot be function");
8373 value_type = integer_type_node;
8374 }
8375
8376 /* Make a node of the sort we want. */
8377 t = make_node (FUNCTION_TYPE);
8378 TREE_TYPE (t) = value_type;
8379 TYPE_ARG_TYPES (t) = arg_types;
8380
8381 /* If we already have such a type, use the old one. */
8382 hstate.add_object (TYPE_HASH (value_type));
8383 type_hash_list (arg_types, hstate);
8384 t = type_hash_canon (hstate.end (), t);
8385
8386 /* Set up the canonical type. */
8387 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8388 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8389 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8390 &any_structural_p,
8391 &any_noncanonical_p);
8392 if (any_structural_p)
8393 SET_TYPE_STRUCTURAL_EQUALITY (t);
8394 else if (any_noncanonical_p)
8395 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8396 canon_argtypes);
8397
8398 if (!COMPLETE_TYPE_P (t))
8399 layout_type (t);
8400 return t;
8401 }
8402
8403 /* Build a function type. The RETURN_TYPE is the type returned by the
8404 function. If VAARGS is set, no void_type_node is appended to the
8405 the list. ARGP must be always be terminated be a NULL_TREE. */
8406
8407 static tree
8408 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8409 {
8410 tree t, args, last;
8411
8412 t = va_arg (argp, tree);
8413 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8414 args = tree_cons (NULL_TREE, t, args);
8415
8416 if (vaargs)
8417 {
8418 last = args;
8419 if (args != NULL_TREE)
8420 args = nreverse (args);
8421 gcc_assert (last != void_list_node);
8422 }
8423 else if (args == NULL_TREE)
8424 args = void_list_node;
8425 else
8426 {
8427 last = args;
8428 args = nreverse (args);
8429 TREE_CHAIN (last) = void_list_node;
8430 }
8431 args = build_function_type (return_type, args);
8432
8433 return args;
8434 }
8435
8436 /* Build a function type. The RETURN_TYPE is the type returned by the
8437 function. If additional arguments are provided, they are
8438 additional argument types. The list of argument types must always
8439 be terminated by NULL_TREE. */
8440
8441 tree
8442 build_function_type_list (tree return_type, ...)
8443 {
8444 tree args;
8445 va_list p;
8446
8447 va_start (p, return_type);
8448 args = build_function_type_list_1 (false, return_type, p);
8449 va_end (p);
8450 return args;
8451 }
8452
8453 /* Build a variable argument function type. The RETURN_TYPE is the
8454 type returned by the function. If additional arguments are provided,
8455 they are additional argument types. The list of argument types must
8456 always be terminated by NULL_TREE. */
8457
8458 tree
8459 build_varargs_function_type_list (tree return_type, ...)
8460 {
8461 tree args;
8462 va_list p;
8463
8464 va_start (p, return_type);
8465 args = build_function_type_list_1 (true, return_type, p);
8466 va_end (p);
8467
8468 return args;
8469 }
8470
8471 /* Build a function type. RETURN_TYPE is the type returned by the
8472 function; VAARGS indicates whether the function takes varargs. The
8473 function takes N named arguments, the types of which are provided in
8474 ARG_TYPES. */
8475
8476 static tree
8477 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8478 tree *arg_types)
8479 {
8480 int i;
8481 tree t = vaargs ? NULL_TREE : void_list_node;
8482
8483 for (i = n - 1; i >= 0; i--)
8484 t = tree_cons (NULL_TREE, arg_types[i], t);
8485
8486 return build_function_type (return_type, t);
8487 }
8488
8489 /* Build a function type. RETURN_TYPE is the type returned by the
8490 function. The function takes N named arguments, the types of which
8491 are provided in ARG_TYPES. */
8492
8493 tree
8494 build_function_type_array (tree return_type, int n, tree *arg_types)
8495 {
8496 return build_function_type_array_1 (false, return_type, n, arg_types);
8497 }
8498
8499 /* Build a variable argument function type. RETURN_TYPE is the type
8500 returned by the function. The function takes N named arguments, the
8501 types of which are provided in ARG_TYPES. */
8502
8503 tree
8504 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8505 {
8506 return build_function_type_array_1 (true, return_type, n, arg_types);
8507 }
8508
8509 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8510 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8511 for the method. An implicit additional parameter (of type
8512 pointer-to-BASETYPE) is added to the ARGTYPES. */
8513
8514 tree
8515 build_method_type_directly (tree basetype,
8516 tree rettype,
8517 tree argtypes)
8518 {
8519 tree t;
8520 tree ptype;
8521 inchash::hash hstate;
8522 bool any_structural_p, any_noncanonical_p;
8523 tree canon_argtypes;
8524
8525 /* Make a node of the sort we want. */
8526 t = make_node (METHOD_TYPE);
8527
8528 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8529 TREE_TYPE (t) = rettype;
8530 ptype = build_pointer_type (basetype);
8531
8532 /* The actual arglist for this function includes a "hidden" argument
8533 which is "this". Put it into the list of argument types. */
8534 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8535 TYPE_ARG_TYPES (t) = argtypes;
8536
8537 /* If we already have such a type, use the old one. */
8538 hstate.add_object (TYPE_HASH (basetype));
8539 hstate.add_object (TYPE_HASH (rettype));
8540 type_hash_list (argtypes, hstate);
8541 t = type_hash_canon (hstate.end (), t);
8542
8543 /* Set up the canonical type. */
8544 any_structural_p
8545 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8546 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8547 any_noncanonical_p
8548 = (TYPE_CANONICAL (basetype) != basetype
8549 || TYPE_CANONICAL (rettype) != rettype);
8550 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8551 &any_structural_p,
8552 &any_noncanonical_p);
8553 if (any_structural_p)
8554 SET_TYPE_STRUCTURAL_EQUALITY (t);
8555 else if (any_noncanonical_p)
8556 TYPE_CANONICAL (t)
8557 = build_method_type_directly (TYPE_CANONICAL (basetype),
8558 TYPE_CANONICAL (rettype),
8559 canon_argtypes);
8560 if (!COMPLETE_TYPE_P (t))
8561 layout_type (t);
8562
8563 return t;
8564 }
8565
8566 /* Construct, lay out and return the type of methods belonging to class
8567 BASETYPE and whose arguments and values are described by TYPE.
8568 If that type exists already, reuse it.
8569 TYPE must be a FUNCTION_TYPE node. */
8570
8571 tree
8572 build_method_type (tree basetype, tree type)
8573 {
8574 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8575
8576 return build_method_type_directly (basetype,
8577 TREE_TYPE (type),
8578 TYPE_ARG_TYPES (type));
8579 }
8580
8581 /* Construct, lay out and return the type of offsets to a value
8582 of type TYPE, within an object of type BASETYPE.
8583 If a suitable offset type exists already, reuse it. */
8584
8585 tree
8586 build_offset_type (tree basetype, tree type)
8587 {
8588 tree t;
8589 inchash::hash hstate;
8590
8591 /* Make a node of the sort we want. */
8592 t = make_node (OFFSET_TYPE);
8593
8594 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8595 TREE_TYPE (t) = type;
8596
8597 /* If we already have such a type, use the old one. */
8598 hstate.add_object (TYPE_HASH (basetype));
8599 hstate.add_object (TYPE_HASH (type));
8600 t = type_hash_canon (hstate.end (), t);
8601
8602 if (!COMPLETE_TYPE_P (t))
8603 layout_type (t);
8604
8605 if (TYPE_CANONICAL (t) == t)
8606 {
8607 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8608 || TYPE_STRUCTURAL_EQUALITY_P (type))
8609 SET_TYPE_STRUCTURAL_EQUALITY (t);
8610 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8611 || TYPE_CANONICAL (type) != type)
8612 TYPE_CANONICAL (t)
8613 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8614 TYPE_CANONICAL (type));
8615 }
8616
8617 return t;
8618 }
8619
8620 /* Create a complex type whose components are COMPONENT_TYPE. */
8621
8622 tree
8623 build_complex_type (tree component_type)
8624 {
8625 tree t;
8626 inchash::hash hstate;
8627
8628 gcc_assert (INTEGRAL_TYPE_P (component_type)
8629 || SCALAR_FLOAT_TYPE_P (component_type)
8630 || FIXED_POINT_TYPE_P (component_type));
8631
8632 /* Make a node of the sort we want. */
8633 t = make_node (COMPLEX_TYPE);
8634
8635 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8636
8637 /* If we already have such a type, use the old one. */
8638 hstate.add_object (TYPE_HASH (component_type));
8639 t = type_hash_canon (hstate.end (), t);
8640
8641 if (!COMPLETE_TYPE_P (t))
8642 layout_type (t);
8643
8644 if (TYPE_CANONICAL (t) == t)
8645 {
8646 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8647 SET_TYPE_STRUCTURAL_EQUALITY (t);
8648 else if (TYPE_CANONICAL (component_type) != component_type)
8649 TYPE_CANONICAL (t)
8650 = build_complex_type (TYPE_CANONICAL (component_type));
8651 }
8652
8653 /* We need to create a name, since complex is a fundamental type. */
8654 if (! TYPE_NAME (t))
8655 {
8656 const char *name;
8657 if (component_type == char_type_node)
8658 name = "complex char";
8659 else if (component_type == signed_char_type_node)
8660 name = "complex signed char";
8661 else if (component_type == unsigned_char_type_node)
8662 name = "complex unsigned char";
8663 else if (component_type == short_integer_type_node)
8664 name = "complex short int";
8665 else if (component_type == short_unsigned_type_node)
8666 name = "complex short unsigned int";
8667 else if (component_type == integer_type_node)
8668 name = "complex int";
8669 else if (component_type == unsigned_type_node)
8670 name = "complex unsigned int";
8671 else if (component_type == long_integer_type_node)
8672 name = "complex long int";
8673 else if (component_type == long_unsigned_type_node)
8674 name = "complex long unsigned int";
8675 else if (component_type == long_long_integer_type_node)
8676 name = "complex long long int";
8677 else if (component_type == long_long_unsigned_type_node)
8678 name = "complex long long unsigned int";
8679 else
8680 name = 0;
8681
8682 if (name != 0)
8683 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8684 get_identifier (name), t);
8685 }
8686
8687 return build_qualified_type (t, TYPE_QUALS (component_type));
8688 }
8689
8690 /* If TYPE is a real or complex floating-point type and the target
8691 does not directly support arithmetic on TYPE then return the wider
8692 type to be used for arithmetic on TYPE. Otherwise, return
8693 NULL_TREE. */
8694
8695 tree
8696 excess_precision_type (tree type)
8697 {
8698 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8699 {
8700 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8701 switch (TREE_CODE (type))
8702 {
8703 case REAL_TYPE:
8704 switch (flt_eval_method)
8705 {
8706 case 1:
8707 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8708 return double_type_node;
8709 break;
8710 case 2:
8711 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8712 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8713 return long_double_type_node;
8714 break;
8715 default:
8716 gcc_unreachable ();
8717 }
8718 break;
8719 case COMPLEX_TYPE:
8720 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8721 return NULL_TREE;
8722 switch (flt_eval_method)
8723 {
8724 case 1:
8725 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8726 return complex_double_type_node;
8727 break;
8728 case 2:
8729 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8730 || (TYPE_MODE (TREE_TYPE (type))
8731 == TYPE_MODE (double_type_node)))
8732 return complex_long_double_type_node;
8733 break;
8734 default:
8735 gcc_unreachable ();
8736 }
8737 break;
8738 default:
8739 break;
8740 }
8741 }
8742 return NULL_TREE;
8743 }
8744 \f
8745 /* Return OP, stripped of any conversions to wider types as much as is safe.
8746 Converting the value back to OP's type makes a value equivalent to OP.
8747
8748 If FOR_TYPE is nonzero, we return a value which, if converted to
8749 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8750
8751 OP must have integer, real or enumeral type. Pointers are not allowed!
8752
8753 There are some cases where the obvious value we could return
8754 would regenerate to OP if converted to OP's type,
8755 but would not extend like OP to wider types.
8756 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8757 For example, if OP is (unsigned short)(signed char)-1,
8758 we avoid returning (signed char)-1 if FOR_TYPE is int,
8759 even though extending that to an unsigned short would regenerate OP,
8760 since the result of extending (signed char)-1 to (int)
8761 is different from (int) OP. */
8762
8763 tree
8764 get_unwidened (tree op, tree for_type)
8765 {
8766 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8767 tree type = TREE_TYPE (op);
8768 unsigned final_prec
8769 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8770 int uns
8771 = (for_type != 0 && for_type != type
8772 && final_prec > TYPE_PRECISION (type)
8773 && TYPE_UNSIGNED (type));
8774 tree win = op;
8775
8776 while (CONVERT_EXPR_P (op))
8777 {
8778 int bitschange;
8779
8780 /* TYPE_PRECISION on vector types has different meaning
8781 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8782 so avoid them here. */
8783 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8784 break;
8785
8786 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8787 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8788
8789 /* Truncations are many-one so cannot be removed.
8790 Unless we are later going to truncate down even farther. */
8791 if (bitschange < 0
8792 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8793 break;
8794
8795 /* See what's inside this conversion. If we decide to strip it,
8796 we will set WIN. */
8797 op = TREE_OPERAND (op, 0);
8798
8799 /* If we have not stripped any zero-extensions (uns is 0),
8800 we can strip any kind of extension.
8801 If we have previously stripped a zero-extension,
8802 only zero-extensions can safely be stripped.
8803 Any extension can be stripped if the bits it would produce
8804 are all going to be discarded later by truncating to FOR_TYPE. */
8805
8806 if (bitschange > 0)
8807 {
8808 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8809 win = op;
8810 /* TYPE_UNSIGNED says whether this is a zero-extension.
8811 Let's avoid computing it if it does not affect WIN
8812 and if UNS will not be needed again. */
8813 if ((uns
8814 || CONVERT_EXPR_P (op))
8815 && TYPE_UNSIGNED (TREE_TYPE (op)))
8816 {
8817 uns = 1;
8818 win = op;
8819 }
8820 }
8821 }
8822
8823 /* If we finally reach a constant see if it fits in for_type and
8824 in that case convert it. */
8825 if (for_type
8826 && TREE_CODE (win) == INTEGER_CST
8827 && TREE_TYPE (win) != for_type
8828 && int_fits_type_p (win, for_type))
8829 win = fold_convert (for_type, win);
8830
8831 return win;
8832 }
8833 \f
8834 /* Return OP or a simpler expression for a narrower value
8835 which can be sign-extended or zero-extended to give back OP.
8836 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8837 or 0 if the value should be sign-extended. */
8838
8839 tree
8840 get_narrower (tree op, int *unsignedp_ptr)
8841 {
8842 int uns = 0;
8843 int first = 1;
8844 tree win = op;
8845 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8846
8847 while (TREE_CODE (op) == NOP_EXPR)
8848 {
8849 int bitschange
8850 = (TYPE_PRECISION (TREE_TYPE (op))
8851 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8852
8853 /* Truncations are many-one so cannot be removed. */
8854 if (bitschange < 0)
8855 break;
8856
8857 /* See what's inside this conversion. If we decide to strip it,
8858 we will set WIN. */
8859
8860 if (bitschange > 0)
8861 {
8862 op = TREE_OPERAND (op, 0);
8863 /* An extension: the outermost one can be stripped,
8864 but remember whether it is zero or sign extension. */
8865 if (first)
8866 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8867 /* Otherwise, if a sign extension has been stripped,
8868 only sign extensions can now be stripped;
8869 if a zero extension has been stripped, only zero-extensions. */
8870 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8871 break;
8872 first = 0;
8873 }
8874 else /* bitschange == 0 */
8875 {
8876 /* A change in nominal type can always be stripped, but we must
8877 preserve the unsignedness. */
8878 if (first)
8879 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8880 first = 0;
8881 op = TREE_OPERAND (op, 0);
8882 /* Keep trying to narrow, but don't assign op to win if it
8883 would turn an integral type into something else. */
8884 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8885 continue;
8886 }
8887
8888 win = op;
8889 }
8890
8891 if (TREE_CODE (op) == COMPONENT_REF
8892 /* Since type_for_size always gives an integer type. */
8893 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8894 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8895 /* Ensure field is laid out already. */
8896 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8897 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8898 {
8899 unsigned HOST_WIDE_INT innerprec
8900 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8901 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8902 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8903 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8904
8905 /* We can get this structure field in a narrower type that fits it,
8906 but the resulting extension to its nominal type (a fullword type)
8907 must satisfy the same conditions as for other extensions.
8908
8909 Do this only for fields that are aligned (not bit-fields),
8910 because when bit-field insns will be used there is no
8911 advantage in doing this. */
8912
8913 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8914 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8915 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8916 && type != 0)
8917 {
8918 if (first)
8919 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8920 win = fold_convert (type, op);
8921 }
8922 }
8923
8924 *unsignedp_ptr = uns;
8925 return win;
8926 }
8927 \f
8928 /* Returns true if integer constant C has a value that is permissible
8929 for type TYPE (an INTEGER_TYPE). */
8930
8931 bool
8932 int_fits_type_p (const_tree c, const_tree type)
8933 {
8934 tree type_low_bound, type_high_bound;
8935 bool ok_for_low_bound, ok_for_high_bound;
8936 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8937
8938 retry:
8939 type_low_bound = TYPE_MIN_VALUE (type);
8940 type_high_bound = TYPE_MAX_VALUE (type);
8941
8942 /* If at least one bound of the type is a constant integer, we can check
8943 ourselves and maybe make a decision. If no such decision is possible, but
8944 this type is a subtype, try checking against that. Otherwise, use
8945 fits_to_tree_p, which checks against the precision.
8946
8947 Compute the status for each possibly constant bound, and return if we see
8948 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8949 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8950 for "constant known to fit". */
8951
8952 /* Check if c >= type_low_bound. */
8953 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8954 {
8955 if (tree_int_cst_lt (c, type_low_bound))
8956 return false;
8957 ok_for_low_bound = true;
8958 }
8959 else
8960 ok_for_low_bound = false;
8961
8962 /* Check if c <= type_high_bound. */
8963 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8964 {
8965 if (tree_int_cst_lt (type_high_bound, c))
8966 return false;
8967 ok_for_high_bound = true;
8968 }
8969 else
8970 ok_for_high_bound = false;
8971
8972 /* If the constant fits both bounds, the result is known. */
8973 if (ok_for_low_bound && ok_for_high_bound)
8974 return true;
8975
8976 /* Perform some generic filtering which may allow making a decision
8977 even if the bounds are not constant. First, negative integers
8978 never fit in unsigned types, */
8979 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (c))
8980 return false;
8981
8982 /* Second, narrower types always fit in wider ones. */
8983 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8984 return true;
8985
8986 /* Third, unsigned integers with top bit set never fit signed types. */
8987 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8988 {
8989 int prec = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (c))) - 1;
8990 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8991 {
8992 /* When a tree_cst is converted to a wide-int, the precision
8993 is taken from the type. However, if the precision of the
8994 mode underneath the type is smaller than that, it is
8995 possible that the value will not fit. The test below
8996 fails if any bit is set between the sign bit of the
8997 underlying mode and the top bit of the type. */
8998 if (wi::ne_p (wi::zext (c, prec - 1), c))
8999 return false;
9000 }
9001 else if (wi::neg_p (c))
9002 return false;
9003 }
9004
9005 /* If we haven't been able to decide at this point, there nothing more we
9006 can check ourselves here. Look at the base type if we have one and it
9007 has the same precision. */
9008 if (TREE_CODE (type) == INTEGER_TYPE
9009 && TREE_TYPE (type) != 0
9010 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
9011 {
9012 type = TREE_TYPE (type);
9013 goto retry;
9014 }
9015
9016 /* Or to fits_to_tree_p, if nothing else. */
9017 return wi::fits_to_tree_p (c, type);
9018 }
9019
9020 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
9021 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
9022 represented (assuming two's-complement arithmetic) within the bit
9023 precision of the type are returned instead. */
9024
9025 void
9026 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
9027 {
9028 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
9029 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
9030 wi::to_mpz (TYPE_MIN_VALUE (type), min, TYPE_SIGN (type));
9031 else
9032 {
9033 if (TYPE_UNSIGNED (type))
9034 mpz_set_ui (min, 0);
9035 else
9036 {
9037 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
9038 wi::to_mpz (mn, min, SIGNED);
9039 }
9040 }
9041
9042 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
9043 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
9044 wi::to_mpz (TYPE_MAX_VALUE (type), max, TYPE_SIGN (type));
9045 else
9046 {
9047 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
9048 wi::to_mpz (mn, max, TYPE_SIGN (type));
9049 }
9050 }
9051
9052 /* Return true if VAR is an automatic variable defined in function FN. */
9053
9054 bool
9055 auto_var_in_fn_p (const_tree var, const_tree fn)
9056 {
9057 return (DECL_P (var) && DECL_CONTEXT (var) == fn
9058 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
9059 || TREE_CODE (var) == PARM_DECL)
9060 && ! TREE_STATIC (var))
9061 || TREE_CODE (var) == LABEL_DECL
9062 || TREE_CODE (var) == RESULT_DECL));
9063 }
9064
9065 /* Subprogram of following function. Called by walk_tree.
9066
9067 Return *TP if it is an automatic variable or parameter of the
9068 function passed in as DATA. */
9069
9070 static tree
9071 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
9072 {
9073 tree fn = (tree) data;
9074
9075 if (TYPE_P (*tp))
9076 *walk_subtrees = 0;
9077
9078 else if (DECL_P (*tp)
9079 && auto_var_in_fn_p (*tp, fn))
9080 return *tp;
9081
9082 return NULL_TREE;
9083 }
9084
9085 /* Returns true if T is, contains, or refers to a type with variable
9086 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
9087 arguments, but not the return type. If FN is nonzero, only return
9088 true if a modifier of the type or position of FN is a variable or
9089 parameter inside FN.
9090
9091 This concept is more general than that of C99 'variably modified types':
9092 in C99, a struct type is never variably modified because a VLA may not
9093 appear as a structure member. However, in GNU C code like:
9094
9095 struct S { int i[f()]; };
9096
9097 is valid, and other languages may define similar constructs. */
9098
9099 bool
9100 variably_modified_type_p (tree type, tree fn)
9101 {
9102 tree t;
9103
9104 /* Test if T is either variable (if FN is zero) or an expression containing
9105 a variable in FN. If TYPE isn't gimplified, return true also if
9106 gimplify_one_sizepos would gimplify the expression into a local
9107 variable. */
9108 #define RETURN_TRUE_IF_VAR(T) \
9109 do { tree _t = (T); \
9110 if (_t != NULL_TREE \
9111 && _t != error_mark_node \
9112 && TREE_CODE (_t) != INTEGER_CST \
9113 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
9114 && (!fn \
9115 || (!TYPE_SIZES_GIMPLIFIED (type) \
9116 && !is_gimple_sizepos (_t)) \
9117 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
9118 return true; } while (0)
9119
9120 if (type == error_mark_node)
9121 return false;
9122
9123 /* If TYPE itself has variable size, it is variably modified. */
9124 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9125 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9126
9127 switch (TREE_CODE (type))
9128 {
9129 case POINTER_TYPE:
9130 case REFERENCE_TYPE:
9131 case VECTOR_TYPE:
9132 if (variably_modified_type_p (TREE_TYPE (type), fn))
9133 return true;
9134 break;
9135
9136 case FUNCTION_TYPE:
9137 case METHOD_TYPE:
9138 /* If TYPE is a function type, it is variably modified if the
9139 return type is variably modified. */
9140 if (variably_modified_type_p (TREE_TYPE (type), fn))
9141 return true;
9142 break;
9143
9144 case INTEGER_TYPE:
9145 case REAL_TYPE:
9146 case FIXED_POINT_TYPE:
9147 case ENUMERAL_TYPE:
9148 case BOOLEAN_TYPE:
9149 /* Scalar types are variably modified if their end points
9150 aren't constant. */
9151 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9152 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9153 break;
9154
9155 case RECORD_TYPE:
9156 case UNION_TYPE:
9157 case QUAL_UNION_TYPE:
9158 /* We can't see if any of the fields are variably-modified by the
9159 definition we normally use, since that would produce infinite
9160 recursion via pointers. */
9161 /* This is variably modified if some field's type is. */
9162 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9163 if (TREE_CODE (t) == FIELD_DECL)
9164 {
9165 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9166 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9167 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9168
9169 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9170 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9171 }
9172 break;
9173
9174 case ARRAY_TYPE:
9175 /* Do not call ourselves to avoid infinite recursion. This is
9176 variably modified if the element type is. */
9177 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9178 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9179 break;
9180
9181 default:
9182 break;
9183 }
9184
9185 /* The current language may have other cases to check, but in general,
9186 all other types are not variably modified. */
9187 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9188
9189 #undef RETURN_TRUE_IF_VAR
9190 }
9191
9192 /* Given a DECL or TYPE, return the scope in which it was declared, or
9193 NULL_TREE if there is no containing scope. */
9194
9195 tree
9196 get_containing_scope (const_tree t)
9197 {
9198 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9199 }
9200
9201 /* Return the innermost context enclosing DECL that is
9202 a FUNCTION_DECL, or zero if none. */
9203
9204 tree
9205 decl_function_context (const_tree decl)
9206 {
9207 tree context;
9208
9209 if (TREE_CODE (decl) == ERROR_MARK)
9210 return 0;
9211
9212 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9213 where we look up the function at runtime. Such functions always take
9214 a first argument of type 'pointer to real context'.
9215
9216 C++ should really be fixed to use DECL_CONTEXT for the real context,
9217 and use something else for the "virtual context". */
9218 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
9219 context
9220 = TYPE_MAIN_VARIANT
9221 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9222 else
9223 context = DECL_CONTEXT (decl);
9224
9225 while (context && TREE_CODE (context) != FUNCTION_DECL)
9226 {
9227 if (TREE_CODE (context) == BLOCK)
9228 context = BLOCK_SUPERCONTEXT (context);
9229 else
9230 context = get_containing_scope (context);
9231 }
9232
9233 return context;
9234 }
9235
9236 /* Return the innermost context enclosing DECL that is
9237 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9238 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9239
9240 tree
9241 decl_type_context (const_tree decl)
9242 {
9243 tree context = DECL_CONTEXT (decl);
9244
9245 while (context)
9246 switch (TREE_CODE (context))
9247 {
9248 case NAMESPACE_DECL:
9249 case TRANSLATION_UNIT_DECL:
9250 return NULL_TREE;
9251
9252 case RECORD_TYPE:
9253 case UNION_TYPE:
9254 case QUAL_UNION_TYPE:
9255 return context;
9256
9257 case TYPE_DECL:
9258 case FUNCTION_DECL:
9259 context = DECL_CONTEXT (context);
9260 break;
9261
9262 case BLOCK:
9263 context = BLOCK_SUPERCONTEXT (context);
9264 break;
9265
9266 default:
9267 gcc_unreachable ();
9268 }
9269
9270 return NULL_TREE;
9271 }
9272
9273 /* CALL is a CALL_EXPR. Return the declaration for the function
9274 called, or NULL_TREE if the called function cannot be
9275 determined. */
9276
9277 tree
9278 get_callee_fndecl (const_tree call)
9279 {
9280 tree addr;
9281
9282 if (call == error_mark_node)
9283 return error_mark_node;
9284
9285 /* It's invalid to call this function with anything but a
9286 CALL_EXPR. */
9287 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9288
9289 /* The first operand to the CALL is the address of the function
9290 called. */
9291 addr = CALL_EXPR_FN (call);
9292
9293 /* If there is no function, return early. */
9294 if (addr == NULL_TREE)
9295 return NULL_TREE;
9296
9297 STRIP_NOPS (addr);
9298
9299 /* If this is a readonly function pointer, extract its initial value. */
9300 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9301 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9302 && DECL_INITIAL (addr))
9303 addr = DECL_INITIAL (addr);
9304
9305 /* If the address is just `&f' for some function `f', then we know
9306 that `f' is being called. */
9307 if (TREE_CODE (addr) == ADDR_EXPR
9308 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9309 return TREE_OPERAND (addr, 0);
9310
9311 /* We couldn't figure out what was being called. */
9312 return NULL_TREE;
9313 }
9314
9315 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9316 return the associated function code, otherwise return CFN_LAST. */
9317
9318 combined_fn
9319 get_call_combined_fn (const_tree call)
9320 {
9321 /* It's invalid to call this function with anything but a CALL_EXPR. */
9322 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9323
9324 if (!CALL_EXPR_FN (call))
9325 return as_combined_fn (CALL_EXPR_IFN (call));
9326
9327 tree fndecl = get_callee_fndecl (call);
9328 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
9329 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9330
9331 return CFN_LAST;
9332 }
9333
9334 #define TREE_MEM_USAGE_SPACES 40
9335
9336 /* Print debugging information about tree nodes generated during the compile,
9337 and any language-specific information. */
9338
9339 void
9340 dump_tree_statistics (void)
9341 {
9342 if (GATHER_STATISTICS)
9343 {
9344 int i;
9345 int total_nodes, total_bytes;
9346 fprintf (stderr, "\nKind Nodes Bytes\n");
9347 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9348 total_nodes = total_bytes = 0;
9349 for (i = 0; i < (int) all_kinds; i++)
9350 {
9351 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
9352 tree_node_counts[i], tree_node_sizes[i]);
9353 total_nodes += tree_node_counts[i];
9354 total_bytes += tree_node_sizes[i];
9355 }
9356 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9357 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
9358 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9359 fprintf (stderr, "Code Nodes\n");
9360 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9361 for (i = 0; i < (int) MAX_TREE_CODES; i++)
9362 fprintf (stderr, "%-32s %7d\n", get_tree_code_name ((enum tree_code) i),
9363 tree_code_counts[i]);
9364 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9365 fprintf (stderr, "\n");
9366 ssanames_print_statistics ();
9367 fprintf (stderr, "\n");
9368 phinodes_print_statistics ();
9369 fprintf (stderr, "\n");
9370 }
9371 else
9372 fprintf (stderr, "(No per-node statistics)\n");
9373
9374 print_type_hash_statistics ();
9375 print_debug_expr_statistics ();
9376 print_value_expr_statistics ();
9377 lang_hooks.print_statistics ();
9378 }
9379 \f
9380 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9381
9382 /* Generate a crc32 of a byte. */
9383
9384 static unsigned
9385 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
9386 {
9387 unsigned ix;
9388
9389 for (ix = bits; ix--; value <<= 1)
9390 {
9391 unsigned feedback;
9392
9393 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
9394 chksum <<= 1;
9395 chksum ^= feedback;
9396 }
9397 return chksum;
9398 }
9399
9400 /* Generate a crc32 of a 32-bit unsigned. */
9401
9402 unsigned
9403 crc32_unsigned (unsigned chksum, unsigned value)
9404 {
9405 return crc32_unsigned_bits (chksum, value, 32);
9406 }
9407
9408 /* Generate a crc32 of a byte. */
9409
9410 unsigned
9411 crc32_byte (unsigned chksum, char byte)
9412 {
9413 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
9414 }
9415
9416 /* Generate a crc32 of a string. */
9417
9418 unsigned
9419 crc32_string (unsigned chksum, const char *string)
9420 {
9421 do
9422 {
9423 chksum = crc32_byte (chksum, *string);
9424 }
9425 while (*string++);
9426 return chksum;
9427 }
9428
9429 /* P is a string that will be used in a symbol. Mask out any characters
9430 that are not valid in that context. */
9431
9432 void
9433 clean_symbol_name (char *p)
9434 {
9435 for (; *p; p++)
9436 if (! (ISALNUM (*p)
9437 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9438 || *p == '$'
9439 #endif
9440 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9441 || *p == '.'
9442 #endif
9443 ))
9444 *p = '_';
9445 }
9446
9447 /* For anonymous aggregate types, we need some sort of name to
9448 hold on to. In practice, this should not appear, but it should
9449 not be harmful if it does. */
9450 bool
9451 anon_aggrname_p(const_tree id_node)
9452 {
9453 #ifndef NO_DOT_IN_LABEL
9454 return (IDENTIFIER_POINTER (id_node)[0] == '.'
9455 && IDENTIFIER_POINTER (id_node)[1] == '_');
9456 #else /* NO_DOT_IN_LABEL */
9457 #ifndef NO_DOLLAR_IN_LABEL
9458 return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9459 && IDENTIFIER_POINTER (id_node)[1] == '_');
9460 #else /* NO_DOLLAR_IN_LABEL */
9461 #define ANON_AGGRNAME_PREFIX "__anon_"
9462 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9463 sizeof (ANON_AGGRNAME_PREFIX) - 1));
9464 #endif /* NO_DOLLAR_IN_LABEL */
9465 #endif /* NO_DOT_IN_LABEL */
9466 }
9467
9468 /* Return a format for an anonymous aggregate name. */
9469 const char *
9470 anon_aggrname_format()
9471 {
9472 #ifndef NO_DOT_IN_LABEL
9473 return "._%d";
9474 #else /* NO_DOT_IN_LABEL */
9475 #ifndef NO_DOLLAR_IN_LABEL
9476 return "$_%d";
9477 #else /* NO_DOLLAR_IN_LABEL */
9478 return "__anon_%d";
9479 #endif /* NO_DOLLAR_IN_LABEL */
9480 #endif /* NO_DOT_IN_LABEL */
9481 }
9482
9483 /* Generate a name for a special-purpose function.
9484 The generated name may need to be unique across the whole link.
9485 Changes to this function may also require corresponding changes to
9486 xstrdup_mask_random.
9487 TYPE is some string to identify the purpose of this function to the
9488 linker or collect2; it must start with an uppercase letter,
9489 one of:
9490 I - for constructors
9491 D - for destructors
9492 N - for C++ anonymous namespaces
9493 F - for DWARF unwind frame information. */
9494
9495 tree
9496 get_file_function_name (const char *type)
9497 {
9498 char *buf;
9499 const char *p;
9500 char *q;
9501
9502 /* If we already have a name we know to be unique, just use that. */
9503 if (first_global_object_name)
9504 p = q = ASTRDUP (first_global_object_name);
9505 /* If the target is handling the constructors/destructors, they
9506 will be local to this file and the name is only necessary for
9507 debugging purposes.
9508 We also assign sub_I and sub_D sufixes to constructors called from
9509 the global static constructors. These are always local. */
9510 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9511 || (strncmp (type, "sub_", 4) == 0
9512 && (type[4] == 'I' || type[4] == 'D')))
9513 {
9514 const char *file = main_input_filename;
9515 if (! file)
9516 file = LOCATION_FILE (input_location);
9517 /* Just use the file's basename, because the full pathname
9518 might be quite long. */
9519 p = q = ASTRDUP (lbasename (file));
9520 }
9521 else
9522 {
9523 /* Otherwise, the name must be unique across the entire link.
9524 We don't have anything that we know to be unique to this translation
9525 unit, so use what we do have and throw in some randomness. */
9526 unsigned len;
9527 const char *name = weak_global_object_name;
9528 const char *file = main_input_filename;
9529
9530 if (! name)
9531 name = "";
9532 if (! file)
9533 file = LOCATION_FILE (input_location);
9534
9535 len = strlen (file);
9536 q = (char *) alloca (9 + 17 + len + 1);
9537 memcpy (q, file, len + 1);
9538
9539 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9540 crc32_string (0, name), get_random_seed (false));
9541
9542 p = q;
9543 }
9544
9545 clean_symbol_name (q);
9546 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9547 + strlen (type));
9548
9549 /* Set up the name of the file-level functions we may need.
9550 Use a global object (which is already required to be unique over
9551 the program) rather than the file name (which imposes extra
9552 constraints). */
9553 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9554
9555 return get_identifier (buf);
9556 }
9557 \f
9558 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9559
9560 /* Complain that the tree code of NODE does not match the expected 0
9561 terminated list of trailing codes. The trailing code list can be
9562 empty, for a more vague error message. FILE, LINE, and FUNCTION
9563 are of the caller. */
9564
9565 void
9566 tree_check_failed (const_tree node, const char *file,
9567 int line, const char *function, ...)
9568 {
9569 va_list args;
9570 const char *buffer;
9571 unsigned length = 0;
9572 enum tree_code code;
9573
9574 va_start (args, function);
9575 while ((code = (enum tree_code) va_arg (args, int)))
9576 length += 4 + strlen (get_tree_code_name (code));
9577 va_end (args);
9578 if (length)
9579 {
9580 char *tmp;
9581 va_start (args, function);
9582 length += strlen ("expected ");
9583 buffer = tmp = (char *) alloca (length);
9584 length = 0;
9585 while ((code = (enum tree_code) va_arg (args, int)))
9586 {
9587 const char *prefix = length ? " or " : "expected ";
9588
9589 strcpy (tmp + length, prefix);
9590 length += strlen (prefix);
9591 strcpy (tmp + length, get_tree_code_name (code));
9592 length += strlen (get_tree_code_name (code));
9593 }
9594 va_end (args);
9595 }
9596 else
9597 buffer = "unexpected node";
9598
9599 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9600 buffer, get_tree_code_name (TREE_CODE (node)),
9601 function, trim_filename (file), line);
9602 }
9603
9604 /* Complain that the tree code of NODE does match the expected 0
9605 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9606 the caller. */
9607
9608 void
9609 tree_not_check_failed (const_tree node, const char *file,
9610 int line, const char *function, ...)
9611 {
9612 va_list args;
9613 char *buffer;
9614 unsigned length = 0;
9615 enum tree_code code;
9616
9617 va_start (args, function);
9618 while ((code = (enum tree_code) va_arg (args, int)))
9619 length += 4 + strlen (get_tree_code_name (code));
9620 va_end (args);
9621 va_start (args, function);
9622 buffer = (char *) alloca (length);
9623 length = 0;
9624 while ((code = (enum tree_code) va_arg (args, int)))
9625 {
9626 if (length)
9627 {
9628 strcpy (buffer + length, " or ");
9629 length += 4;
9630 }
9631 strcpy (buffer + length, get_tree_code_name (code));
9632 length += strlen (get_tree_code_name (code));
9633 }
9634 va_end (args);
9635
9636 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9637 buffer, get_tree_code_name (TREE_CODE (node)),
9638 function, trim_filename (file), line);
9639 }
9640
9641 /* Similar to tree_check_failed, except that we check for a class of tree
9642 code, given in CL. */
9643
9644 void
9645 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9646 const char *file, int line, const char *function)
9647 {
9648 internal_error
9649 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9650 TREE_CODE_CLASS_STRING (cl),
9651 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9652 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9653 }
9654
9655 /* Similar to tree_check_failed, except that instead of specifying a
9656 dozen codes, use the knowledge that they're all sequential. */
9657
9658 void
9659 tree_range_check_failed (const_tree node, const char *file, int line,
9660 const char *function, enum tree_code c1,
9661 enum tree_code c2)
9662 {
9663 char *buffer;
9664 unsigned length = 0;
9665 unsigned int c;
9666
9667 for (c = c1; c <= c2; ++c)
9668 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9669
9670 length += strlen ("expected ");
9671 buffer = (char *) alloca (length);
9672 length = 0;
9673
9674 for (c = c1; c <= c2; ++c)
9675 {
9676 const char *prefix = length ? " or " : "expected ";
9677
9678 strcpy (buffer + length, prefix);
9679 length += strlen (prefix);
9680 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9681 length += strlen (get_tree_code_name ((enum tree_code) c));
9682 }
9683
9684 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9685 buffer, get_tree_code_name (TREE_CODE (node)),
9686 function, trim_filename (file), line);
9687 }
9688
9689
9690 /* Similar to tree_check_failed, except that we check that a tree does
9691 not have the specified code, given in CL. */
9692
9693 void
9694 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9695 const char *file, int line, const char *function)
9696 {
9697 internal_error
9698 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9699 TREE_CODE_CLASS_STRING (cl),
9700 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9701 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9702 }
9703
9704
9705 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9706
9707 void
9708 omp_clause_check_failed (const_tree node, const char *file, int line,
9709 const char *function, enum omp_clause_code code)
9710 {
9711 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9712 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9713 function, trim_filename (file), line);
9714 }
9715
9716
9717 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9718
9719 void
9720 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9721 const char *function, enum omp_clause_code c1,
9722 enum omp_clause_code c2)
9723 {
9724 char *buffer;
9725 unsigned length = 0;
9726 unsigned int c;
9727
9728 for (c = c1; c <= c2; ++c)
9729 length += 4 + strlen (omp_clause_code_name[c]);
9730
9731 length += strlen ("expected ");
9732 buffer = (char *) alloca (length);
9733 length = 0;
9734
9735 for (c = c1; c <= c2; ++c)
9736 {
9737 const char *prefix = length ? " or " : "expected ";
9738
9739 strcpy (buffer + length, prefix);
9740 length += strlen (prefix);
9741 strcpy (buffer + length, omp_clause_code_name[c]);
9742 length += strlen (omp_clause_code_name[c]);
9743 }
9744
9745 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9746 buffer, omp_clause_code_name[TREE_CODE (node)],
9747 function, trim_filename (file), line);
9748 }
9749
9750
9751 #undef DEFTREESTRUCT
9752 #define DEFTREESTRUCT(VAL, NAME) NAME,
9753
9754 static const char *ts_enum_names[] = {
9755 #include "treestruct.def"
9756 };
9757 #undef DEFTREESTRUCT
9758
9759 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9760
9761 /* Similar to tree_class_check_failed, except that we check for
9762 whether CODE contains the tree structure identified by EN. */
9763
9764 void
9765 tree_contains_struct_check_failed (const_tree node,
9766 const enum tree_node_structure_enum en,
9767 const char *file, int line,
9768 const char *function)
9769 {
9770 internal_error
9771 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9772 TS_ENUM_NAME (en),
9773 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9774 }
9775
9776
9777 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9778 (dynamically sized) vector. */
9779
9780 void
9781 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9782 const char *function)
9783 {
9784 internal_error
9785 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9786 idx + 1, len, function, trim_filename (file), line);
9787 }
9788
9789 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9790 (dynamically sized) vector. */
9791
9792 void
9793 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9794 const char *function)
9795 {
9796 internal_error
9797 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9798 idx + 1, len, function, trim_filename (file), line);
9799 }
9800
9801 /* Similar to above, except that the check is for the bounds of the operand
9802 vector of an expression node EXP. */
9803
9804 void
9805 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9806 int line, const char *function)
9807 {
9808 enum tree_code code = TREE_CODE (exp);
9809 internal_error
9810 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9811 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9812 function, trim_filename (file), line);
9813 }
9814
9815 /* Similar to above, except that the check is for the number of
9816 operands of an OMP_CLAUSE node. */
9817
9818 void
9819 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9820 int line, const char *function)
9821 {
9822 internal_error
9823 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9824 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9825 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9826 trim_filename (file), line);
9827 }
9828 #endif /* ENABLE_TREE_CHECKING */
9829 \f
9830 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9831 and mapped to the machine mode MODE. Initialize its fields and build
9832 the information necessary for debugging output. */
9833
9834 static tree
9835 make_vector_type (tree innertype, int nunits, machine_mode mode)
9836 {
9837 tree t;
9838 inchash::hash hstate;
9839 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9840
9841 t = make_node (VECTOR_TYPE);
9842 TREE_TYPE (t) = mv_innertype;
9843 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9844 SET_TYPE_MODE (t, mode);
9845
9846 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9847 SET_TYPE_STRUCTURAL_EQUALITY (t);
9848 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9849 || mode != VOIDmode)
9850 && !VECTOR_BOOLEAN_TYPE_P (t))
9851 TYPE_CANONICAL (t)
9852 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9853
9854 layout_type (t);
9855
9856 hstate.add_wide_int (VECTOR_TYPE);
9857 hstate.add_wide_int (nunits);
9858 hstate.add_wide_int (mode);
9859 hstate.add_object (TYPE_HASH (TREE_TYPE (t)));
9860 t = type_hash_canon (hstate.end (), t);
9861
9862 /* We have built a main variant, based on the main variant of the
9863 inner type. Use it to build the variant we return. */
9864 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9865 && TREE_TYPE (t) != innertype)
9866 return build_type_attribute_qual_variant (t,
9867 TYPE_ATTRIBUTES (innertype),
9868 TYPE_QUALS (innertype));
9869
9870 return t;
9871 }
9872
9873 static tree
9874 make_or_reuse_type (unsigned size, int unsignedp)
9875 {
9876 int i;
9877
9878 if (size == INT_TYPE_SIZE)
9879 return unsignedp ? unsigned_type_node : integer_type_node;
9880 if (size == CHAR_TYPE_SIZE)
9881 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9882 if (size == SHORT_TYPE_SIZE)
9883 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9884 if (size == LONG_TYPE_SIZE)
9885 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9886 if (size == LONG_LONG_TYPE_SIZE)
9887 return (unsignedp ? long_long_unsigned_type_node
9888 : long_long_integer_type_node);
9889
9890 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9891 if (size == int_n_data[i].bitsize
9892 && int_n_enabled_p[i])
9893 return (unsignedp ? int_n_trees[i].unsigned_type
9894 : int_n_trees[i].signed_type);
9895
9896 if (unsignedp)
9897 return make_unsigned_type (size);
9898 else
9899 return make_signed_type (size);
9900 }
9901
9902 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9903
9904 static tree
9905 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9906 {
9907 if (satp)
9908 {
9909 if (size == SHORT_FRACT_TYPE_SIZE)
9910 return unsignedp ? sat_unsigned_short_fract_type_node
9911 : sat_short_fract_type_node;
9912 if (size == FRACT_TYPE_SIZE)
9913 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9914 if (size == LONG_FRACT_TYPE_SIZE)
9915 return unsignedp ? sat_unsigned_long_fract_type_node
9916 : sat_long_fract_type_node;
9917 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9918 return unsignedp ? sat_unsigned_long_long_fract_type_node
9919 : sat_long_long_fract_type_node;
9920 }
9921 else
9922 {
9923 if (size == SHORT_FRACT_TYPE_SIZE)
9924 return unsignedp ? unsigned_short_fract_type_node
9925 : short_fract_type_node;
9926 if (size == FRACT_TYPE_SIZE)
9927 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9928 if (size == LONG_FRACT_TYPE_SIZE)
9929 return unsignedp ? unsigned_long_fract_type_node
9930 : long_fract_type_node;
9931 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9932 return unsignedp ? unsigned_long_long_fract_type_node
9933 : long_long_fract_type_node;
9934 }
9935
9936 return make_fract_type (size, unsignedp, satp);
9937 }
9938
9939 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9940
9941 static tree
9942 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9943 {
9944 if (satp)
9945 {
9946 if (size == SHORT_ACCUM_TYPE_SIZE)
9947 return unsignedp ? sat_unsigned_short_accum_type_node
9948 : sat_short_accum_type_node;
9949 if (size == ACCUM_TYPE_SIZE)
9950 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9951 if (size == LONG_ACCUM_TYPE_SIZE)
9952 return unsignedp ? sat_unsigned_long_accum_type_node
9953 : sat_long_accum_type_node;
9954 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9955 return unsignedp ? sat_unsigned_long_long_accum_type_node
9956 : sat_long_long_accum_type_node;
9957 }
9958 else
9959 {
9960 if (size == SHORT_ACCUM_TYPE_SIZE)
9961 return unsignedp ? unsigned_short_accum_type_node
9962 : short_accum_type_node;
9963 if (size == ACCUM_TYPE_SIZE)
9964 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9965 if (size == LONG_ACCUM_TYPE_SIZE)
9966 return unsignedp ? unsigned_long_accum_type_node
9967 : long_accum_type_node;
9968 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9969 return unsignedp ? unsigned_long_long_accum_type_node
9970 : long_long_accum_type_node;
9971 }
9972
9973 return make_accum_type (size, unsignedp, satp);
9974 }
9975
9976
9977 /* Create an atomic variant node for TYPE. This routine is called
9978 during initialization of data types to create the 5 basic atomic
9979 types. The generic build_variant_type function requires these to
9980 already be set up in order to function properly, so cannot be
9981 called from there. If ALIGN is non-zero, then ensure alignment is
9982 overridden to this value. */
9983
9984 static tree
9985 build_atomic_base (tree type, unsigned int align)
9986 {
9987 tree t;
9988
9989 /* Make sure its not already registered. */
9990 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9991 return t;
9992
9993 t = build_variant_type_copy (type);
9994 set_type_quals (t, TYPE_QUAL_ATOMIC);
9995
9996 if (align)
9997 TYPE_ALIGN (t) = align;
9998
9999 return t;
10000 }
10001
10002 /* Create nodes for all integer types (and error_mark_node) using the sizes
10003 of C datatypes. SIGNED_CHAR specifies whether char is signed,
10004 SHORT_DOUBLE specifies whether double should be of the same precision
10005 as float. */
10006
10007 void
10008 build_common_tree_nodes (bool signed_char, bool short_double)
10009 {
10010 int i;
10011
10012 error_mark_node = make_node (ERROR_MARK);
10013 TREE_TYPE (error_mark_node) = error_mark_node;
10014
10015 initialize_sizetypes ();
10016
10017 /* Define both `signed char' and `unsigned char'. */
10018 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
10019 TYPE_STRING_FLAG (signed_char_type_node) = 1;
10020 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
10021 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
10022
10023 /* Define `char', which is like either `signed char' or `unsigned char'
10024 but not the same as either. */
10025 char_type_node
10026 = (signed_char
10027 ? make_signed_type (CHAR_TYPE_SIZE)
10028 : make_unsigned_type (CHAR_TYPE_SIZE));
10029 TYPE_STRING_FLAG (char_type_node) = 1;
10030
10031 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
10032 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
10033 integer_type_node = make_signed_type (INT_TYPE_SIZE);
10034 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
10035 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
10036 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
10037 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
10038 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
10039
10040 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10041 {
10042 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
10043 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
10044 TYPE_SIZE (int_n_trees[i].signed_type) = bitsize_int (int_n_data[i].bitsize);
10045 TYPE_SIZE (int_n_trees[i].unsigned_type) = bitsize_int (int_n_data[i].bitsize);
10046
10047 if (int_n_data[i].bitsize > LONG_LONG_TYPE_SIZE
10048 && int_n_enabled_p[i])
10049 {
10050 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
10051 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
10052 }
10053 }
10054
10055 /* Define a boolean type. This type only represents boolean values but
10056 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
10057 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
10058 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
10059 TYPE_PRECISION (boolean_type_node) = 1;
10060 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
10061
10062 /* Define what type to use for size_t. */
10063 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
10064 size_type_node = unsigned_type_node;
10065 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
10066 size_type_node = long_unsigned_type_node;
10067 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
10068 size_type_node = long_long_unsigned_type_node;
10069 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
10070 size_type_node = short_unsigned_type_node;
10071 else
10072 {
10073 int i;
10074
10075 size_type_node = NULL_TREE;
10076 for (i = 0; i < NUM_INT_N_ENTS; i++)
10077 if (int_n_enabled_p[i])
10078 {
10079 char name[50];
10080 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
10081
10082 if (strcmp (name, SIZE_TYPE) == 0)
10083 {
10084 size_type_node = int_n_trees[i].unsigned_type;
10085 }
10086 }
10087 if (size_type_node == NULL_TREE)
10088 gcc_unreachable ();
10089 }
10090
10091 /* Fill in the rest of the sized types. Reuse existing type nodes
10092 when possible. */
10093 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10094 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10095 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10096 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10097 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10098
10099 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10100 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10101 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10102 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10103 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10104
10105 /* Don't call build_qualified type for atomics. That routine does
10106 special processing for atomics, and until they are initialized
10107 it's better not to make that call.
10108
10109 Check to see if there is a target override for atomic types. */
10110
10111 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10112 targetm.atomic_align_for_mode (QImode));
10113 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10114 targetm.atomic_align_for_mode (HImode));
10115 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10116 targetm.atomic_align_for_mode (SImode));
10117 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10118 targetm.atomic_align_for_mode (DImode));
10119 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10120 targetm.atomic_align_for_mode (TImode));
10121
10122 access_public_node = get_identifier ("public");
10123 access_protected_node = get_identifier ("protected");
10124 access_private_node = get_identifier ("private");
10125
10126 /* Define these next since types below may used them. */
10127 integer_zero_node = build_int_cst (integer_type_node, 0);
10128 integer_one_node = build_int_cst (integer_type_node, 1);
10129 integer_three_node = build_int_cst (integer_type_node, 3);
10130 integer_minus_one_node = build_int_cst (integer_type_node, -1);
10131
10132 size_zero_node = size_int (0);
10133 size_one_node = size_int (1);
10134 bitsize_zero_node = bitsize_int (0);
10135 bitsize_one_node = bitsize_int (1);
10136 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10137
10138 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10139 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10140
10141 void_type_node = make_node (VOID_TYPE);
10142 layout_type (void_type_node);
10143
10144 pointer_bounds_type_node = targetm.chkp_bound_type ();
10145
10146 /* We are not going to have real types in C with less than byte alignment,
10147 so we might as well not have any types that claim to have it. */
10148 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
10149 TYPE_USER_ALIGN (void_type_node) = 0;
10150
10151 void_node = make_node (VOID_CST);
10152 TREE_TYPE (void_node) = void_type_node;
10153
10154 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10155 layout_type (TREE_TYPE (null_pointer_node));
10156
10157 ptr_type_node = build_pointer_type (void_type_node);
10158 const_ptr_type_node
10159 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10160 fileptr_type_node = ptr_type_node;
10161
10162 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10163
10164 float_type_node = make_node (REAL_TYPE);
10165 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10166 layout_type (float_type_node);
10167
10168 double_type_node = make_node (REAL_TYPE);
10169 if (short_double)
10170 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
10171 else
10172 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10173 layout_type (double_type_node);
10174
10175 long_double_type_node = make_node (REAL_TYPE);
10176 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10177 layout_type (long_double_type_node);
10178
10179 float_ptr_type_node = build_pointer_type (float_type_node);
10180 double_ptr_type_node = build_pointer_type (double_type_node);
10181 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10182 integer_ptr_type_node = build_pointer_type (integer_type_node);
10183
10184 /* Fixed size integer types. */
10185 uint16_type_node = make_or_reuse_type (16, 1);
10186 uint32_type_node = make_or_reuse_type (32, 1);
10187 uint64_type_node = make_or_reuse_type (64, 1);
10188
10189 /* Decimal float types. */
10190 dfloat32_type_node = make_node (REAL_TYPE);
10191 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10192 layout_type (dfloat32_type_node);
10193 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10194 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
10195
10196 dfloat64_type_node = make_node (REAL_TYPE);
10197 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10198 layout_type (dfloat64_type_node);
10199 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10200 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
10201
10202 dfloat128_type_node = make_node (REAL_TYPE);
10203 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10204 layout_type (dfloat128_type_node);
10205 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10206 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
10207
10208 complex_integer_type_node = build_complex_type (integer_type_node);
10209 complex_float_type_node = build_complex_type (float_type_node);
10210 complex_double_type_node = build_complex_type (double_type_node);
10211 complex_long_double_type_node = build_complex_type (long_double_type_node);
10212
10213 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10214 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10215 sat_ ## KIND ## _type_node = \
10216 make_sat_signed_ ## KIND ## _type (SIZE); \
10217 sat_unsigned_ ## KIND ## _type_node = \
10218 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10219 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10220 unsigned_ ## KIND ## _type_node = \
10221 make_unsigned_ ## KIND ## _type (SIZE);
10222
10223 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10224 sat_ ## WIDTH ## KIND ## _type_node = \
10225 make_sat_signed_ ## KIND ## _type (SIZE); \
10226 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10227 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10228 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10229 unsigned_ ## WIDTH ## KIND ## _type_node = \
10230 make_unsigned_ ## KIND ## _type (SIZE);
10231
10232 /* Make fixed-point type nodes based on four different widths. */
10233 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10234 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10235 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10236 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10237 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10238
10239 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10240 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10241 NAME ## _type_node = \
10242 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10243 u ## NAME ## _type_node = \
10244 make_or_reuse_unsigned_ ## KIND ## _type \
10245 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10246 sat_ ## NAME ## _type_node = \
10247 make_or_reuse_sat_signed_ ## KIND ## _type \
10248 (GET_MODE_BITSIZE (MODE ## mode)); \
10249 sat_u ## NAME ## _type_node = \
10250 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10251 (GET_MODE_BITSIZE (U ## MODE ## mode));
10252
10253 /* Fixed-point type and mode nodes. */
10254 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10255 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10256 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10257 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10258 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10259 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10260 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10261 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10262 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10263 MAKE_FIXED_MODE_NODE (accum, da, DA)
10264 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10265
10266 {
10267 tree t = targetm.build_builtin_va_list ();
10268
10269 /* Many back-ends define record types without setting TYPE_NAME.
10270 If we copied the record type here, we'd keep the original
10271 record type without a name. This breaks name mangling. So,
10272 don't copy record types and let c_common_nodes_and_builtins()
10273 declare the type to be __builtin_va_list. */
10274 if (TREE_CODE (t) != RECORD_TYPE)
10275 t = build_variant_type_copy (t);
10276
10277 va_list_type_node = t;
10278 }
10279 }
10280
10281 /* Modify DECL for given flags.
10282 TM_PURE attribute is set only on types, so the function will modify
10283 DECL's type when ECF_TM_PURE is used. */
10284
10285 void
10286 set_call_expr_flags (tree decl, int flags)
10287 {
10288 if (flags & ECF_NOTHROW)
10289 TREE_NOTHROW (decl) = 1;
10290 if (flags & ECF_CONST)
10291 TREE_READONLY (decl) = 1;
10292 if (flags & ECF_PURE)
10293 DECL_PURE_P (decl) = 1;
10294 if (flags & ECF_LOOPING_CONST_OR_PURE)
10295 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10296 if (flags & ECF_NOVOPS)
10297 DECL_IS_NOVOPS (decl) = 1;
10298 if (flags & ECF_NORETURN)
10299 TREE_THIS_VOLATILE (decl) = 1;
10300 if (flags & ECF_MALLOC)
10301 DECL_IS_MALLOC (decl) = 1;
10302 if (flags & ECF_RETURNS_TWICE)
10303 DECL_IS_RETURNS_TWICE (decl) = 1;
10304 if (flags & ECF_LEAF)
10305 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10306 NULL, DECL_ATTRIBUTES (decl));
10307 if ((flags & ECF_TM_PURE) && flag_tm)
10308 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10309 /* Looping const or pure is implied by noreturn.
10310 There is currently no way to declare looping const or looping pure alone. */
10311 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10312 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10313 }
10314
10315
10316 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10317
10318 static void
10319 local_define_builtin (const char *name, tree type, enum built_in_function code,
10320 const char *library_name, int ecf_flags)
10321 {
10322 tree decl;
10323
10324 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10325 library_name, NULL_TREE);
10326 set_call_expr_flags (decl, ecf_flags);
10327
10328 set_builtin_decl (code, decl, true);
10329 }
10330
10331 /* Call this function after instantiating all builtins that the language
10332 front end cares about. This will build the rest of the builtins
10333 and internal functions that are relied upon by the tree optimizers and
10334 the middle-end. */
10335
10336 void
10337 build_common_builtin_nodes (void)
10338 {
10339 tree tmp, ftype;
10340 int ecf_flags;
10341
10342 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10343 {
10344 ftype = build_function_type (void_type_node, void_list_node);
10345 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
10346 "__builtin_unreachable",
10347 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10348 | ECF_CONST);
10349 }
10350
10351 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10352 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10353 {
10354 ftype = build_function_type_list (ptr_type_node,
10355 ptr_type_node, const_ptr_type_node,
10356 size_type_node, NULL_TREE);
10357
10358 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10359 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10360 "memcpy", ECF_NOTHROW | ECF_LEAF);
10361 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10362 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10363 "memmove", ECF_NOTHROW | ECF_LEAF);
10364 }
10365
10366 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10367 {
10368 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10369 const_ptr_type_node, size_type_node,
10370 NULL_TREE);
10371 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10372 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10373 }
10374
10375 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10376 {
10377 ftype = build_function_type_list (ptr_type_node,
10378 ptr_type_node, integer_type_node,
10379 size_type_node, NULL_TREE);
10380 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10381 "memset", ECF_NOTHROW | ECF_LEAF);
10382 }
10383
10384 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10385 {
10386 ftype = build_function_type_list (ptr_type_node,
10387 size_type_node, NULL_TREE);
10388 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10389 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
10390 }
10391
10392 ftype = build_function_type_list (ptr_type_node, size_type_node,
10393 size_type_node, NULL_TREE);
10394 local_define_builtin ("__builtin_alloca_with_align", ftype,
10395 BUILT_IN_ALLOCA_WITH_ALIGN,
10396 "__builtin_alloca_with_align",
10397 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
10398
10399 /* If we're checking the stack, `alloca' can throw. */
10400 if (flag_stack_check)
10401 {
10402 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
10403 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
10404 }
10405
10406 ftype = build_function_type_list (void_type_node,
10407 ptr_type_node, ptr_type_node,
10408 ptr_type_node, NULL_TREE);
10409 local_define_builtin ("__builtin_init_trampoline", ftype,
10410 BUILT_IN_INIT_TRAMPOLINE,
10411 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10412 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10413 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10414 "__builtin_init_heap_trampoline",
10415 ECF_NOTHROW | ECF_LEAF);
10416
10417 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10418 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10419 BUILT_IN_ADJUST_TRAMPOLINE,
10420 "__builtin_adjust_trampoline",
10421 ECF_CONST | ECF_NOTHROW);
10422
10423 ftype = build_function_type_list (void_type_node,
10424 ptr_type_node, ptr_type_node, NULL_TREE);
10425 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10426 BUILT_IN_NONLOCAL_GOTO,
10427 "__builtin_nonlocal_goto",
10428 ECF_NORETURN | ECF_NOTHROW);
10429
10430 ftype = build_function_type_list (void_type_node,
10431 ptr_type_node, ptr_type_node, NULL_TREE);
10432 local_define_builtin ("__builtin_setjmp_setup", ftype,
10433 BUILT_IN_SETJMP_SETUP,
10434 "__builtin_setjmp_setup", ECF_NOTHROW);
10435
10436 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10437 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10438 BUILT_IN_SETJMP_RECEIVER,
10439 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10440
10441 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10442 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10443 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10444
10445 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10446 local_define_builtin ("__builtin_stack_restore", ftype,
10447 BUILT_IN_STACK_RESTORE,
10448 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10449
10450 /* If there's a possibility that we might use the ARM EABI, build the
10451 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
10452 if (targetm.arm_eabi_unwinder)
10453 {
10454 ftype = build_function_type_list (void_type_node, NULL_TREE);
10455 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10456 BUILT_IN_CXA_END_CLEANUP,
10457 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10458 }
10459
10460 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10461 local_define_builtin ("__builtin_unwind_resume", ftype,
10462 BUILT_IN_UNWIND_RESUME,
10463 ((targetm_common.except_unwind_info (&global_options)
10464 == UI_SJLJ)
10465 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10466 ECF_NORETURN);
10467
10468 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10469 {
10470 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10471 NULL_TREE);
10472 local_define_builtin ("__builtin_return_address", ftype,
10473 BUILT_IN_RETURN_ADDRESS,
10474 "__builtin_return_address",
10475 ECF_NOTHROW);
10476 }
10477
10478 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10479 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10480 {
10481 ftype = build_function_type_list (void_type_node, ptr_type_node,
10482 ptr_type_node, NULL_TREE);
10483 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10484 local_define_builtin ("__cyg_profile_func_enter", ftype,
10485 BUILT_IN_PROFILE_FUNC_ENTER,
10486 "__cyg_profile_func_enter", 0);
10487 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10488 local_define_builtin ("__cyg_profile_func_exit", ftype,
10489 BUILT_IN_PROFILE_FUNC_EXIT,
10490 "__cyg_profile_func_exit", 0);
10491 }
10492
10493 /* The exception object and filter values from the runtime. The argument
10494 must be zero before exception lowering, i.e. from the front end. After
10495 exception lowering, it will be the region number for the exception
10496 landing pad. These functions are PURE instead of CONST to prevent
10497 them from being hoisted past the exception edge that will initialize
10498 its value in the landing pad. */
10499 ftype = build_function_type_list (ptr_type_node,
10500 integer_type_node, NULL_TREE);
10501 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10502 /* Only use TM_PURE if we have TM language support. */
10503 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10504 ecf_flags |= ECF_TM_PURE;
10505 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10506 "__builtin_eh_pointer", ecf_flags);
10507
10508 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10509 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10510 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10511 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10512
10513 ftype = build_function_type_list (void_type_node,
10514 integer_type_node, integer_type_node,
10515 NULL_TREE);
10516 local_define_builtin ("__builtin_eh_copy_values", ftype,
10517 BUILT_IN_EH_COPY_VALUES,
10518 "__builtin_eh_copy_values", ECF_NOTHROW);
10519
10520 /* Complex multiplication and division. These are handled as builtins
10521 rather than optabs because emit_library_call_value doesn't support
10522 complex. Further, we can do slightly better with folding these
10523 beasties if the real and complex parts of the arguments are separate. */
10524 {
10525 int mode;
10526
10527 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10528 {
10529 char mode_name_buf[4], *q;
10530 const char *p;
10531 enum built_in_function mcode, dcode;
10532 tree type, inner_type;
10533 const char *prefix = "__";
10534
10535 if (targetm.libfunc_gnu_prefix)
10536 prefix = "__gnu_";
10537
10538 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10539 if (type == NULL)
10540 continue;
10541 inner_type = TREE_TYPE (type);
10542
10543 ftype = build_function_type_list (type, inner_type, inner_type,
10544 inner_type, inner_type, NULL_TREE);
10545
10546 mcode = ((enum built_in_function)
10547 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10548 dcode = ((enum built_in_function)
10549 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10550
10551 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10552 *q = TOLOWER (*p);
10553 *q = '\0';
10554
10555 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10556 NULL);
10557 local_define_builtin (built_in_names[mcode], ftype, mcode,
10558 built_in_names[mcode],
10559 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10560
10561 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10562 NULL);
10563 local_define_builtin (built_in_names[dcode], ftype, dcode,
10564 built_in_names[dcode],
10565 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10566 }
10567 }
10568
10569 init_internal_fns ();
10570 }
10571
10572 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10573 better way.
10574
10575 If we requested a pointer to a vector, build up the pointers that
10576 we stripped off while looking for the inner type. Similarly for
10577 return values from functions.
10578
10579 The argument TYPE is the top of the chain, and BOTTOM is the
10580 new type which we will point to. */
10581
10582 tree
10583 reconstruct_complex_type (tree type, tree bottom)
10584 {
10585 tree inner, outer;
10586
10587 if (TREE_CODE (type) == POINTER_TYPE)
10588 {
10589 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10590 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10591 TYPE_REF_CAN_ALIAS_ALL (type));
10592 }
10593 else if (TREE_CODE (type) == REFERENCE_TYPE)
10594 {
10595 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10596 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10597 TYPE_REF_CAN_ALIAS_ALL (type));
10598 }
10599 else if (TREE_CODE (type) == ARRAY_TYPE)
10600 {
10601 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10602 outer = build_array_type (inner, TYPE_DOMAIN (type));
10603 }
10604 else if (TREE_CODE (type) == FUNCTION_TYPE)
10605 {
10606 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10607 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10608 }
10609 else if (TREE_CODE (type) == METHOD_TYPE)
10610 {
10611 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10612 /* The build_method_type_directly() routine prepends 'this' to argument list,
10613 so we must compensate by getting rid of it. */
10614 outer
10615 = build_method_type_directly
10616 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10617 inner,
10618 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10619 }
10620 else if (TREE_CODE (type) == OFFSET_TYPE)
10621 {
10622 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10623 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10624 }
10625 else
10626 return bottom;
10627
10628 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10629 TYPE_QUALS (type));
10630 }
10631
10632 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10633 the inner type. */
10634 tree
10635 build_vector_type_for_mode (tree innertype, machine_mode mode)
10636 {
10637 int nunits;
10638
10639 switch (GET_MODE_CLASS (mode))
10640 {
10641 case MODE_VECTOR_INT:
10642 case MODE_VECTOR_FLOAT:
10643 case MODE_VECTOR_FRACT:
10644 case MODE_VECTOR_UFRACT:
10645 case MODE_VECTOR_ACCUM:
10646 case MODE_VECTOR_UACCUM:
10647 nunits = GET_MODE_NUNITS (mode);
10648 break;
10649
10650 case MODE_INT:
10651 /* Check that there are no leftover bits. */
10652 gcc_assert (GET_MODE_BITSIZE (mode)
10653 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10654
10655 nunits = GET_MODE_BITSIZE (mode)
10656 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10657 break;
10658
10659 default:
10660 gcc_unreachable ();
10661 }
10662
10663 return make_vector_type (innertype, nunits, mode);
10664 }
10665
10666 /* Similarly, but takes the inner type and number of units, which must be
10667 a power of two. */
10668
10669 tree
10670 build_vector_type (tree innertype, int nunits)
10671 {
10672 return make_vector_type (innertype, nunits, VOIDmode);
10673 }
10674
10675 /* Build truth vector with specified length and number of units. */
10676
10677 tree
10678 build_truth_vector_type (unsigned nunits, unsigned vector_size)
10679 {
10680 machine_mode mask_mode = targetm.vectorize.get_mask_mode (nunits,
10681 vector_size);
10682
10683 gcc_assert (mask_mode != VOIDmode);
10684
10685 unsigned HOST_WIDE_INT vsize;
10686 if (mask_mode == BLKmode)
10687 vsize = vector_size * BITS_PER_UNIT;
10688 else
10689 vsize = GET_MODE_BITSIZE (mask_mode);
10690
10691 unsigned HOST_WIDE_INT esize = vsize / nunits;
10692 gcc_assert (esize * nunits == vsize);
10693
10694 tree bool_type = build_nonstandard_boolean_type (esize);
10695
10696 return make_vector_type (bool_type, nunits, mask_mode);
10697 }
10698
10699 /* Returns a vector type corresponding to a comparison of VECTYPE. */
10700
10701 tree
10702 build_same_sized_truth_vector_type (tree vectype)
10703 {
10704 if (VECTOR_BOOLEAN_TYPE_P (vectype))
10705 return vectype;
10706
10707 unsigned HOST_WIDE_INT size = GET_MODE_SIZE (TYPE_MODE (vectype));
10708
10709 if (!size)
10710 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
10711
10712 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
10713 }
10714
10715 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10716
10717 tree
10718 build_opaque_vector_type (tree innertype, int nunits)
10719 {
10720 tree t = make_vector_type (innertype, nunits, VOIDmode);
10721 tree cand;
10722 /* We always build the non-opaque variant before the opaque one,
10723 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10724 cand = TYPE_NEXT_VARIANT (t);
10725 if (cand
10726 && TYPE_VECTOR_OPAQUE (cand)
10727 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10728 return cand;
10729 /* Othewise build a variant type and make sure to queue it after
10730 the non-opaque type. */
10731 cand = build_distinct_type_copy (t);
10732 TYPE_VECTOR_OPAQUE (cand) = true;
10733 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10734 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10735 TYPE_NEXT_VARIANT (t) = cand;
10736 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10737 return cand;
10738 }
10739
10740
10741 /* Given an initializer INIT, return TRUE if INIT is zero or some
10742 aggregate of zeros. Otherwise return FALSE. */
10743 bool
10744 initializer_zerop (const_tree init)
10745 {
10746 tree elt;
10747
10748 STRIP_NOPS (init);
10749
10750 switch (TREE_CODE (init))
10751 {
10752 case INTEGER_CST:
10753 return integer_zerop (init);
10754
10755 case REAL_CST:
10756 /* ??? Note that this is not correct for C4X float formats. There,
10757 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10758 negative exponent. */
10759 return real_zerop (init)
10760 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10761
10762 case FIXED_CST:
10763 return fixed_zerop (init);
10764
10765 case COMPLEX_CST:
10766 return integer_zerop (init)
10767 || (real_zerop (init)
10768 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10769 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10770
10771 case VECTOR_CST:
10772 {
10773 unsigned i;
10774 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10775 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10776 return false;
10777 return true;
10778 }
10779
10780 case CONSTRUCTOR:
10781 {
10782 unsigned HOST_WIDE_INT idx;
10783
10784 if (TREE_CLOBBER_P (init))
10785 return false;
10786 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10787 if (!initializer_zerop (elt))
10788 return false;
10789 return true;
10790 }
10791
10792 case STRING_CST:
10793 {
10794 int i;
10795
10796 /* We need to loop through all elements to handle cases like
10797 "\0" and "\0foobar". */
10798 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10799 if (TREE_STRING_POINTER (init)[i] != '\0')
10800 return false;
10801
10802 return true;
10803 }
10804
10805 default:
10806 return false;
10807 }
10808 }
10809
10810 /* Check if vector VEC consists of all the equal elements and
10811 that the number of elements corresponds to the type of VEC.
10812 The function returns first element of the vector
10813 or NULL_TREE if the vector is not uniform. */
10814 tree
10815 uniform_vector_p (const_tree vec)
10816 {
10817 tree first, t;
10818 unsigned i;
10819
10820 if (vec == NULL_TREE)
10821 return NULL_TREE;
10822
10823 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10824
10825 if (TREE_CODE (vec) == VECTOR_CST)
10826 {
10827 first = VECTOR_CST_ELT (vec, 0);
10828 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10829 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10830 return NULL_TREE;
10831
10832 return first;
10833 }
10834
10835 else if (TREE_CODE (vec) == CONSTRUCTOR)
10836 {
10837 first = error_mark_node;
10838
10839 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10840 {
10841 if (i == 0)
10842 {
10843 first = t;
10844 continue;
10845 }
10846 if (!operand_equal_p (first, t, 0))
10847 return NULL_TREE;
10848 }
10849 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10850 return NULL_TREE;
10851
10852 return first;
10853 }
10854
10855 return NULL_TREE;
10856 }
10857
10858 /* Build an empty statement at location LOC. */
10859
10860 tree
10861 build_empty_stmt (location_t loc)
10862 {
10863 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10864 SET_EXPR_LOCATION (t, loc);
10865 return t;
10866 }
10867
10868
10869 /* Build an OpenMP clause with code CODE. LOC is the location of the
10870 clause. */
10871
10872 tree
10873 build_omp_clause (location_t loc, enum omp_clause_code code)
10874 {
10875 tree t;
10876 int size, length;
10877
10878 length = omp_clause_num_ops[code];
10879 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10880
10881 record_node_allocation_statistics (OMP_CLAUSE, size);
10882
10883 t = (tree) ggc_internal_alloc (size);
10884 memset (t, 0, size);
10885 TREE_SET_CODE (t, OMP_CLAUSE);
10886 OMP_CLAUSE_SET_CODE (t, code);
10887 OMP_CLAUSE_LOCATION (t) = loc;
10888
10889 return t;
10890 }
10891
10892 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10893 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10894 Except for the CODE and operand count field, other storage for the
10895 object is initialized to zeros. */
10896
10897 tree
10898 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10899 {
10900 tree t;
10901 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10902
10903 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10904 gcc_assert (len >= 1);
10905
10906 record_node_allocation_statistics (code, length);
10907
10908 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10909
10910 TREE_SET_CODE (t, code);
10911
10912 /* Can't use TREE_OPERAND to store the length because if checking is
10913 enabled, it will try to check the length before we store it. :-P */
10914 t->exp.operands[0] = build_int_cst (sizetype, len);
10915
10916 return t;
10917 }
10918
10919 /* Helper function for build_call_* functions; build a CALL_EXPR with
10920 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10921 the argument slots. */
10922
10923 static tree
10924 build_call_1 (tree return_type, tree fn, int nargs)
10925 {
10926 tree t;
10927
10928 t = build_vl_exp (CALL_EXPR, nargs + 3);
10929 TREE_TYPE (t) = return_type;
10930 CALL_EXPR_FN (t) = fn;
10931 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10932
10933 return t;
10934 }
10935
10936 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10937 FN and a null static chain slot. NARGS is the number of call arguments
10938 which are specified as "..." arguments. */
10939
10940 tree
10941 build_call_nary (tree return_type, tree fn, int nargs, ...)
10942 {
10943 tree ret;
10944 va_list args;
10945 va_start (args, nargs);
10946 ret = build_call_valist (return_type, fn, nargs, args);
10947 va_end (args);
10948 return ret;
10949 }
10950
10951 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10952 FN and a null static chain slot. NARGS is the number of call arguments
10953 which are specified as a va_list ARGS. */
10954
10955 tree
10956 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10957 {
10958 tree t;
10959 int i;
10960
10961 t = build_call_1 (return_type, fn, nargs);
10962 for (i = 0; i < nargs; i++)
10963 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10964 process_call_operands (t);
10965 return t;
10966 }
10967
10968 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10969 FN and a null static chain slot. NARGS is the number of call arguments
10970 which are specified as a tree array ARGS. */
10971
10972 tree
10973 build_call_array_loc (location_t loc, tree return_type, tree fn,
10974 int nargs, const tree *args)
10975 {
10976 tree t;
10977 int i;
10978
10979 t = build_call_1 (return_type, fn, nargs);
10980 for (i = 0; i < nargs; i++)
10981 CALL_EXPR_ARG (t, i) = args[i];
10982 process_call_operands (t);
10983 SET_EXPR_LOCATION (t, loc);
10984 return t;
10985 }
10986
10987 /* Like build_call_array, but takes a vec. */
10988
10989 tree
10990 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10991 {
10992 tree ret, t;
10993 unsigned int ix;
10994
10995 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10996 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10997 CALL_EXPR_ARG (ret, ix) = t;
10998 process_call_operands (ret);
10999 return ret;
11000 }
11001
11002 /* Conveniently construct a function call expression. FNDECL names the
11003 function to be called and N arguments are passed in the array
11004 ARGARRAY. */
11005
11006 tree
11007 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11008 {
11009 tree fntype = TREE_TYPE (fndecl);
11010 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11011
11012 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11013 }
11014
11015 /* Conveniently construct a function call expression. FNDECL names the
11016 function to be called and the arguments are passed in the vector
11017 VEC. */
11018
11019 tree
11020 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11021 {
11022 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11023 vec_safe_address (vec));
11024 }
11025
11026
11027 /* Conveniently construct a function call expression. FNDECL names the
11028 function to be called, N is the number of arguments, and the "..."
11029 parameters are the argument expressions. */
11030
11031 tree
11032 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11033 {
11034 va_list ap;
11035 tree *argarray = XALLOCAVEC (tree, n);
11036 int i;
11037
11038 va_start (ap, n);
11039 for (i = 0; i < n; i++)
11040 argarray[i] = va_arg (ap, tree);
11041 va_end (ap);
11042 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11043 }
11044
11045 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11046 varargs macros aren't supported by all bootstrap compilers. */
11047
11048 tree
11049 build_call_expr (tree fndecl, int n, ...)
11050 {
11051 va_list ap;
11052 tree *argarray = XALLOCAVEC (tree, n);
11053 int i;
11054
11055 va_start (ap, n);
11056 for (i = 0; i < n; i++)
11057 argarray[i] = va_arg (ap, tree);
11058 va_end (ap);
11059 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11060 }
11061
11062 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11063 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11064 It will get gimplified later into an ordinary internal function. */
11065
11066 tree
11067 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11068 tree type, int n, const tree *args)
11069 {
11070 tree t = build_call_1 (type, NULL_TREE, n);
11071 for (int i = 0; i < n; ++i)
11072 CALL_EXPR_ARG (t, i) = args[i];
11073 SET_EXPR_LOCATION (t, loc);
11074 CALL_EXPR_IFN (t) = ifn;
11075 return t;
11076 }
11077
11078 /* Build internal call expression. This is just like CALL_EXPR, except
11079 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11080 internal function. */
11081
11082 tree
11083 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11084 tree type, int n, ...)
11085 {
11086 va_list ap;
11087 tree *argarray = XALLOCAVEC (tree, n);
11088 int i;
11089
11090 va_start (ap, n);
11091 for (i = 0; i < n; i++)
11092 argarray[i] = va_arg (ap, tree);
11093 va_end (ap);
11094 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11095 }
11096
11097 /* Return a function call to FN, if the target is guaranteed to support it,
11098 or null otherwise.
11099
11100 N is the number of arguments, passed in the "...", and TYPE is the
11101 type of the return value. */
11102
11103 tree
11104 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11105 int n, ...)
11106 {
11107 va_list ap;
11108 tree *argarray = XALLOCAVEC (tree, n);
11109 int i;
11110
11111 va_start (ap, n);
11112 for (i = 0; i < n; i++)
11113 argarray[i] = va_arg (ap, tree);
11114 va_end (ap);
11115 if (internal_fn_p (fn))
11116 {
11117 internal_fn ifn = as_internal_fn (fn);
11118 if (direct_internal_fn_p (ifn))
11119 {
11120 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11121 if (!direct_internal_fn_supported_p (ifn, types))
11122 return NULL_TREE;
11123 }
11124 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11125 }
11126 else
11127 {
11128 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11129 if (!fndecl)
11130 return NULL_TREE;
11131 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11132 }
11133 }
11134
11135 /* Create a new constant string literal and return a char* pointer to it.
11136 The STRING_CST value is the LEN characters at STR. */
11137 tree
11138 build_string_literal (int len, const char *str)
11139 {
11140 tree t, elem, index, type;
11141
11142 t = build_string (len, str);
11143 elem = build_type_variant (char_type_node, 1, 0);
11144 index = build_index_type (size_int (len - 1));
11145 type = build_array_type (elem, index);
11146 TREE_TYPE (t) = type;
11147 TREE_CONSTANT (t) = 1;
11148 TREE_READONLY (t) = 1;
11149 TREE_STATIC (t) = 1;
11150
11151 type = build_pointer_type (elem);
11152 t = build1 (ADDR_EXPR, type,
11153 build4 (ARRAY_REF, elem,
11154 t, integer_zero_node, NULL_TREE, NULL_TREE));
11155 return t;
11156 }
11157
11158
11159
11160 /* Return true if T (assumed to be a DECL) must be assigned a memory
11161 location. */
11162
11163 bool
11164 needs_to_live_in_memory (const_tree t)
11165 {
11166 return (TREE_ADDRESSABLE (t)
11167 || is_global_var (t)
11168 || (TREE_CODE (t) == RESULT_DECL
11169 && !DECL_BY_REFERENCE (t)
11170 && aggregate_value_p (t, current_function_decl)));
11171 }
11172
11173 /* Return value of a constant X and sign-extend it. */
11174
11175 HOST_WIDE_INT
11176 int_cst_value (const_tree x)
11177 {
11178 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11179 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11180
11181 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11182 gcc_assert (cst_and_fits_in_hwi (x));
11183
11184 if (bits < HOST_BITS_PER_WIDE_INT)
11185 {
11186 bool negative = ((val >> (bits - 1)) & 1) != 0;
11187 if (negative)
11188 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
11189 else
11190 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
11191 }
11192
11193 return val;
11194 }
11195
11196 /* If TYPE is an integral or pointer type, return an integer type with
11197 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11198 if TYPE is already an integer type of signedness UNSIGNEDP. */
11199
11200 tree
11201 signed_or_unsigned_type_for (int unsignedp, tree type)
11202 {
11203 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
11204 return type;
11205
11206 if (TREE_CODE (type) == VECTOR_TYPE)
11207 {
11208 tree inner = TREE_TYPE (type);
11209 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11210 if (!inner2)
11211 return NULL_TREE;
11212 if (inner == inner2)
11213 return type;
11214 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11215 }
11216
11217 if (!INTEGRAL_TYPE_P (type)
11218 && !POINTER_TYPE_P (type)
11219 && TREE_CODE (type) != OFFSET_TYPE)
11220 return NULL_TREE;
11221
11222 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
11223 }
11224
11225 /* If TYPE is an integral or pointer type, return an integer type with
11226 the same precision which is unsigned, or itself if TYPE is already an
11227 unsigned integer type. */
11228
11229 tree
11230 unsigned_type_for (tree type)
11231 {
11232 return signed_or_unsigned_type_for (1, type);
11233 }
11234
11235 /* If TYPE is an integral or pointer type, return an integer type with
11236 the same precision which is signed, or itself if TYPE is already a
11237 signed integer type. */
11238
11239 tree
11240 signed_type_for (tree type)
11241 {
11242 return signed_or_unsigned_type_for (0, type);
11243 }
11244
11245 /* If TYPE is a vector type, return a signed integer vector type with the
11246 same width and number of subparts. Otherwise return boolean_type_node. */
11247
11248 tree
11249 truth_type_for (tree type)
11250 {
11251 if (TREE_CODE (type) == VECTOR_TYPE)
11252 {
11253 if (VECTOR_BOOLEAN_TYPE_P (type))
11254 return type;
11255 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11256 GET_MODE_SIZE (TYPE_MODE (type)));
11257 }
11258 else
11259 return boolean_type_node;
11260 }
11261
11262 /* Returns the largest value obtainable by casting something in INNER type to
11263 OUTER type. */
11264
11265 tree
11266 upper_bound_in_type (tree outer, tree inner)
11267 {
11268 unsigned int det = 0;
11269 unsigned oprec = TYPE_PRECISION (outer);
11270 unsigned iprec = TYPE_PRECISION (inner);
11271 unsigned prec;
11272
11273 /* Compute a unique number for every combination. */
11274 det |= (oprec > iprec) ? 4 : 0;
11275 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11276 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11277
11278 /* Determine the exponent to use. */
11279 switch (det)
11280 {
11281 case 0:
11282 case 1:
11283 /* oprec <= iprec, outer: signed, inner: don't care. */
11284 prec = oprec - 1;
11285 break;
11286 case 2:
11287 case 3:
11288 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11289 prec = oprec;
11290 break;
11291 case 4:
11292 /* oprec > iprec, outer: signed, inner: signed. */
11293 prec = iprec - 1;
11294 break;
11295 case 5:
11296 /* oprec > iprec, outer: signed, inner: unsigned. */
11297 prec = iprec;
11298 break;
11299 case 6:
11300 /* oprec > iprec, outer: unsigned, inner: signed. */
11301 prec = oprec;
11302 break;
11303 case 7:
11304 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11305 prec = iprec;
11306 break;
11307 default:
11308 gcc_unreachable ();
11309 }
11310
11311 return wide_int_to_tree (outer,
11312 wi::mask (prec, false, TYPE_PRECISION (outer)));
11313 }
11314
11315 /* Returns the smallest value obtainable by casting something in INNER type to
11316 OUTER type. */
11317
11318 tree
11319 lower_bound_in_type (tree outer, tree inner)
11320 {
11321 unsigned oprec = TYPE_PRECISION (outer);
11322 unsigned iprec = TYPE_PRECISION (inner);
11323
11324 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11325 and obtain 0. */
11326 if (TYPE_UNSIGNED (outer)
11327 /* If we are widening something of an unsigned type, OUTER type
11328 contains all values of INNER type. In particular, both INNER
11329 and OUTER types have zero in common. */
11330 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11331 return build_int_cst (outer, 0);
11332 else
11333 {
11334 /* If we are widening a signed type to another signed type, we
11335 want to obtain -2^^(iprec-1). If we are keeping the
11336 precision or narrowing to a signed type, we want to obtain
11337 -2^(oprec-1). */
11338 unsigned prec = oprec > iprec ? iprec : oprec;
11339 return wide_int_to_tree (outer,
11340 wi::mask (prec - 1, true,
11341 TYPE_PRECISION (outer)));
11342 }
11343 }
11344
11345 /* Return nonzero if two operands that are suitable for PHI nodes are
11346 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11347 SSA_NAME or invariant. Note that this is strictly an optimization.
11348 That is, callers of this function can directly call operand_equal_p
11349 and get the same result, only slower. */
11350
11351 int
11352 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11353 {
11354 if (arg0 == arg1)
11355 return 1;
11356 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11357 return 0;
11358 return operand_equal_p (arg0, arg1, 0);
11359 }
11360
11361 /* Returns number of zeros at the end of binary representation of X. */
11362
11363 tree
11364 num_ending_zeros (const_tree x)
11365 {
11366 return build_int_cst (TREE_TYPE (x), wi::ctz (x));
11367 }
11368
11369
11370 #define WALK_SUBTREE(NODE) \
11371 do \
11372 { \
11373 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11374 if (result) \
11375 return result; \
11376 } \
11377 while (0)
11378
11379 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11380 be walked whenever a type is seen in the tree. Rest of operands and return
11381 value are as for walk_tree. */
11382
11383 static tree
11384 walk_type_fields (tree type, walk_tree_fn func, void *data,
11385 hash_set<tree> *pset, walk_tree_lh lh)
11386 {
11387 tree result = NULL_TREE;
11388
11389 switch (TREE_CODE (type))
11390 {
11391 case POINTER_TYPE:
11392 case REFERENCE_TYPE:
11393 case VECTOR_TYPE:
11394 /* We have to worry about mutually recursive pointers. These can't
11395 be written in C. They can in Ada. It's pathological, but
11396 there's an ACATS test (c38102a) that checks it. Deal with this
11397 by checking if we're pointing to another pointer, that one
11398 points to another pointer, that one does too, and we have no htab.
11399 If so, get a hash table. We check three levels deep to avoid
11400 the cost of the hash table if we don't need one. */
11401 if (POINTER_TYPE_P (TREE_TYPE (type))
11402 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11403 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11404 && !pset)
11405 {
11406 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11407 func, data);
11408 if (result)
11409 return result;
11410
11411 break;
11412 }
11413
11414 /* ... fall through ... */
11415
11416 case COMPLEX_TYPE:
11417 WALK_SUBTREE (TREE_TYPE (type));
11418 break;
11419
11420 case METHOD_TYPE:
11421 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11422
11423 /* Fall through. */
11424
11425 case FUNCTION_TYPE:
11426 WALK_SUBTREE (TREE_TYPE (type));
11427 {
11428 tree arg;
11429
11430 /* We never want to walk into default arguments. */
11431 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11432 WALK_SUBTREE (TREE_VALUE (arg));
11433 }
11434 break;
11435
11436 case ARRAY_TYPE:
11437 /* Don't follow this nodes's type if a pointer for fear that
11438 we'll have infinite recursion. If we have a PSET, then we
11439 need not fear. */
11440 if (pset
11441 || (!POINTER_TYPE_P (TREE_TYPE (type))
11442 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11443 WALK_SUBTREE (TREE_TYPE (type));
11444 WALK_SUBTREE (TYPE_DOMAIN (type));
11445 break;
11446
11447 case OFFSET_TYPE:
11448 WALK_SUBTREE (TREE_TYPE (type));
11449 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11450 break;
11451
11452 default:
11453 break;
11454 }
11455
11456 return NULL_TREE;
11457 }
11458
11459 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11460 called with the DATA and the address of each sub-tree. If FUNC returns a
11461 non-NULL value, the traversal is stopped, and the value returned by FUNC
11462 is returned. If PSET is non-NULL it is used to record the nodes visited,
11463 and to avoid visiting a node more than once. */
11464
11465 tree
11466 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11467 hash_set<tree> *pset, walk_tree_lh lh)
11468 {
11469 enum tree_code code;
11470 int walk_subtrees;
11471 tree result;
11472
11473 #define WALK_SUBTREE_TAIL(NODE) \
11474 do \
11475 { \
11476 tp = & (NODE); \
11477 goto tail_recurse; \
11478 } \
11479 while (0)
11480
11481 tail_recurse:
11482 /* Skip empty subtrees. */
11483 if (!*tp)
11484 return NULL_TREE;
11485
11486 /* Don't walk the same tree twice, if the user has requested
11487 that we avoid doing so. */
11488 if (pset && pset->add (*tp))
11489 return NULL_TREE;
11490
11491 /* Call the function. */
11492 walk_subtrees = 1;
11493 result = (*func) (tp, &walk_subtrees, data);
11494
11495 /* If we found something, return it. */
11496 if (result)
11497 return result;
11498
11499 code = TREE_CODE (*tp);
11500
11501 /* Even if we didn't, FUNC may have decided that there was nothing
11502 interesting below this point in the tree. */
11503 if (!walk_subtrees)
11504 {
11505 /* But we still need to check our siblings. */
11506 if (code == TREE_LIST)
11507 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11508 else if (code == OMP_CLAUSE)
11509 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11510 else
11511 return NULL_TREE;
11512 }
11513
11514 if (lh)
11515 {
11516 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11517 if (result || !walk_subtrees)
11518 return result;
11519 }
11520
11521 switch (code)
11522 {
11523 case ERROR_MARK:
11524 case IDENTIFIER_NODE:
11525 case INTEGER_CST:
11526 case REAL_CST:
11527 case FIXED_CST:
11528 case VECTOR_CST:
11529 case STRING_CST:
11530 case BLOCK:
11531 case PLACEHOLDER_EXPR:
11532 case SSA_NAME:
11533 case FIELD_DECL:
11534 case RESULT_DECL:
11535 /* None of these have subtrees other than those already walked
11536 above. */
11537 break;
11538
11539 case TREE_LIST:
11540 WALK_SUBTREE (TREE_VALUE (*tp));
11541 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11542 break;
11543
11544 case TREE_VEC:
11545 {
11546 int len = TREE_VEC_LENGTH (*tp);
11547
11548 if (len == 0)
11549 break;
11550
11551 /* Walk all elements but the first. */
11552 while (--len)
11553 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11554
11555 /* Now walk the first one as a tail call. */
11556 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11557 }
11558
11559 case COMPLEX_CST:
11560 WALK_SUBTREE (TREE_REALPART (*tp));
11561 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11562
11563 case CONSTRUCTOR:
11564 {
11565 unsigned HOST_WIDE_INT idx;
11566 constructor_elt *ce;
11567
11568 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11569 idx++)
11570 WALK_SUBTREE (ce->value);
11571 }
11572 break;
11573
11574 case SAVE_EXPR:
11575 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11576
11577 case BIND_EXPR:
11578 {
11579 tree decl;
11580 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11581 {
11582 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11583 into declarations that are just mentioned, rather than
11584 declared; they don't really belong to this part of the tree.
11585 And, we can see cycles: the initializer for a declaration
11586 can refer to the declaration itself. */
11587 WALK_SUBTREE (DECL_INITIAL (decl));
11588 WALK_SUBTREE (DECL_SIZE (decl));
11589 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11590 }
11591 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11592 }
11593
11594 case STATEMENT_LIST:
11595 {
11596 tree_stmt_iterator i;
11597 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11598 WALK_SUBTREE (*tsi_stmt_ptr (i));
11599 }
11600 break;
11601
11602 case OMP_CLAUSE:
11603 switch (OMP_CLAUSE_CODE (*tp))
11604 {
11605 case OMP_CLAUSE_GANG:
11606 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11607 /* FALLTHRU */
11608
11609 case OMP_CLAUSE_DEVICE_RESIDENT:
11610 case OMP_CLAUSE_USE_DEVICE:
11611 case OMP_CLAUSE_ASYNC:
11612 case OMP_CLAUSE_WAIT:
11613 case OMP_CLAUSE_WORKER:
11614 case OMP_CLAUSE_VECTOR:
11615 case OMP_CLAUSE_NUM_GANGS:
11616 case OMP_CLAUSE_NUM_WORKERS:
11617 case OMP_CLAUSE_VECTOR_LENGTH:
11618 case OMP_CLAUSE_PRIVATE:
11619 case OMP_CLAUSE_SHARED:
11620 case OMP_CLAUSE_FIRSTPRIVATE:
11621 case OMP_CLAUSE_COPYIN:
11622 case OMP_CLAUSE_COPYPRIVATE:
11623 case OMP_CLAUSE_FINAL:
11624 case OMP_CLAUSE_IF:
11625 case OMP_CLAUSE_NUM_THREADS:
11626 case OMP_CLAUSE_SCHEDULE:
11627 case OMP_CLAUSE_UNIFORM:
11628 case OMP_CLAUSE_DEPEND:
11629 case OMP_CLAUSE_NUM_TEAMS:
11630 case OMP_CLAUSE_THREAD_LIMIT:
11631 case OMP_CLAUSE_DEVICE:
11632 case OMP_CLAUSE_DIST_SCHEDULE:
11633 case OMP_CLAUSE_SAFELEN:
11634 case OMP_CLAUSE_SIMDLEN:
11635 case OMP_CLAUSE_ORDERED:
11636 case OMP_CLAUSE_PRIORITY:
11637 case OMP_CLAUSE_GRAINSIZE:
11638 case OMP_CLAUSE_NUM_TASKS:
11639 case OMP_CLAUSE_HINT:
11640 case OMP_CLAUSE_TO_DECLARE:
11641 case OMP_CLAUSE_LINK:
11642 case OMP_CLAUSE_USE_DEVICE_PTR:
11643 case OMP_CLAUSE_IS_DEVICE_PTR:
11644 case OMP_CLAUSE__LOOPTEMP_:
11645 case OMP_CLAUSE__SIMDUID_:
11646 case OMP_CLAUSE__CILK_FOR_COUNT_:
11647 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11648 /* FALLTHRU */
11649
11650 case OMP_CLAUSE_INDEPENDENT:
11651 case OMP_CLAUSE_NOWAIT:
11652 case OMP_CLAUSE_DEFAULT:
11653 case OMP_CLAUSE_UNTIED:
11654 case OMP_CLAUSE_MERGEABLE:
11655 case OMP_CLAUSE_PROC_BIND:
11656 case OMP_CLAUSE_INBRANCH:
11657 case OMP_CLAUSE_NOTINBRANCH:
11658 case OMP_CLAUSE_FOR:
11659 case OMP_CLAUSE_PARALLEL:
11660 case OMP_CLAUSE_SECTIONS:
11661 case OMP_CLAUSE_TASKGROUP:
11662 case OMP_CLAUSE_NOGROUP:
11663 case OMP_CLAUSE_THREADS:
11664 case OMP_CLAUSE_SIMD:
11665 case OMP_CLAUSE_DEFAULTMAP:
11666 case OMP_CLAUSE_AUTO:
11667 case OMP_CLAUSE_SEQ:
11668 case OMP_CLAUSE_TILE:
11669 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11670
11671 case OMP_CLAUSE_LASTPRIVATE:
11672 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11673 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11674 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11675
11676 case OMP_CLAUSE_COLLAPSE:
11677 {
11678 int i;
11679 for (i = 0; i < 3; i++)
11680 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11681 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11682 }
11683
11684 case OMP_CLAUSE_LINEAR:
11685 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11686 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11687 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11688 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11689
11690 case OMP_CLAUSE_ALIGNED:
11691 case OMP_CLAUSE_FROM:
11692 case OMP_CLAUSE_TO:
11693 case OMP_CLAUSE_MAP:
11694 case OMP_CLAUSE__CACHE_:
11695 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11696 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11697 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11698
11699 case OMP_CLAUSE_REDUCTION:
11700 {
11701 int i;
11702 for (i = 0; i < 5; i++)
11703 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11704 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11705 }
11706
11707 default:
11708 gcc_unreachable ();
11709 }
11710 break;
11711
11712 case TARGET_EXPR:
11713 {
11714 int i, len;
11715
11716 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11717 But, we only want to walk once. */
11718 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11719 for (i = 0; i < len; ++i)
11720 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11721 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11722 }
11723
11724 case DECL_EXPR:
11725 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11726 defining. We only want to walk into these fields of a type in this
11727 case and not in the general case of a mere reference to the type.
11728
11729 The criterion is as follows: if the field can be an expression, it
11730 must be walked only here. This should be in keeping with the fields
11731 that are directly gimplified in gimplify_type_sizes in order for the
11732 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11733 variable-sized types.
11734
11735 Note that DECLs get walked as part of processing the BIND_EXPR. */
11736 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11737 {
11738 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11739 if (TREE_CODE (*type_p) == ERROR_MARK)
11740 return NULL_TREE;
11741
11742 /* Call the function for the type. See if it returns anything or
11743 doesn't want us to continue. If we are to continue, walk both
11744 the normal fields and those for the declaration case. */
11745 result = (*func) (type_p, &walk_subtrees, data);
11746 if (result || !walk_subtrees)
11747 return result;
11748
11749 /* But do not walk a pointed-to type since it may itself need to
11750 be walked in the declaration case if it isn't anonymous. */
11751 if (!POINTER_TYPE_P (*type_p))
11752 {
11753 result = walk_type_fields (*type_p, func, data, pset, lh);
11754 if (result)
11755 return result;
11756 }
11757
11758 /* If this is a record type, also walk the fields. */
11759 if (RECORD_OR_UNION_TYPE_P (*type_p))
11760 {
11761 tree field;
11762
11763 for (field = TYPE_FIELDS (*type_p); field;
11764 field = DECL_CHAIN (field))
11765 {
11766 /* We'd like to look at the type of the field, but we can
11767 easily get infinite recursion. So assume it's pointed
11768 to elsewhere in the tree. Also, ignore things that
11769 aren't fields. */
11770 if (TREE_CODE (field) != FIELD_DECL)
11771 continue;
11772
11773 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11774 WALK_SUBTREE (DECL_SIZE (field));
11775 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11776 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11777 WALK_SUBTREE (DECL_QUALIFIER (field));
11778 }
11779 }
11780
11781 /* Same for scalar types. */
11782 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11783 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11784 || TREE_CODE (*type_p) == INTEGER_TYPE
11785 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11786 || TREE_CODE (*type_p) == REAL_TYPE)
11787 {
11788 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11789 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11790 }
11791
11792 WALK_SUBTREE (TYPE_SIZE (*type_p));
11793 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11794 }
11795 /* FALLTHRU */
11796
11797 default:
11798 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11799 {
11800 int i, len;
11801
11802 /* Walk over all the sub-trees of this operand. */
11803 len = TREE_OPERAND_LENGTH (*tp);
11804
11805 /* Go through the subtrees. We need to do this in forward order so
11806 that the scope of a FOR_EXPR is handled properly. */
11807 if (len)
11808 {
11809 for (i = 0; i < len - 1; ++i)
11810 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11811 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11812 }
11813 }
11814 /* If this is a type, walk the needed fields in the type. */
11815 else if (TYPE_P (*tp))
11816 return walk_type_fields (*tp, func, data, pset, lh);
11817 break;
11818 }
11819
11820 /* We didn't find what we were looking for. */
11821 return NULL_TREE;
11822
11823 #undef WALK_SUBTREE_TAIL
11824 }
11825 #undef WALK_SUBTREE
11826
11827 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11828
11829 tree
11830 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11831 walk_tree_lh lh)
11832 {
11833 tree result;
11834
11835 hash_set<tree> pset;
11836 result = walk_tree_1 (tp, func, data, &pset, lh);
11837 return result;
11838 }
11839
11840
11841 tree
11842 tree_block (tree t)
11843 {
11844 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11845
11846 if (IS_EXPR_CODE_CLASS (c))
11847 return LOCATION_BLOCK (t->exp.locus);
11848 gcc_unreachable ();
11849 return NULL;
11850 }
11851
11852 void
11853 tree_set_block (tree t, tree b)
11854 {
11855 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11856
11857 if (IS_EXPR_CODE_CLASS (c))
11858 {
11859 t->exp.locus = set_block (t->exp.locus, b);
11860 }
11861 else
11862 gcc_unreachable ();
11863 }
11864
11865 /* Create a nameless artificial label and put it in the current
11866 function context. The label has a location of LOC. Returns the
11867 newly created label. */
11868
11869 tree
11870 create_artificial_label (location_t loc)
11871 {
11872 tree lab = build_decl (loc,
11873 LABEL_DECL, NULL_TREE, void_type_node);
11874
11875 DECL_ARTIFICIAL (lab) = 1;
11876 DECL_IGNORED_P (lab) = 1;
11877 DECL_CONTEXT (lab) = current_function_decl;
11878 return lab;
11879 }
11880
11881 /* Given a tree, try to return a useful variable name that we can use
11882 to prefix a temporary that is being assigned the value of the tree.
11883 I.E. given <temp> = &A, return A. */
11884
11885 const char *
11886 get_name (tree t)
11887 {
11888 tree stripped_decl;
11889
11890 stripped_decl = t;
11891 STRIP_NOPS (stripped_decl);
11892 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11893 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11894 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11895 {
11896 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11897 if (!name)
11898 return NULL;
11899 return IDENTIFIER_POINTER (name);
11900 }
11901 else
11902 {
11903 switch (TREE_CODE (stripped_decl))
11904 {
11905 case ADDR_EXPR:
11906 return get_name (TREE_OPERAND (stripped_decl, 0));
11907 default:
11908 return NULL;
11909 }
11910 }
11911 }
11912
11913 /* Return true if TYPE has a variable argument list. */
11914
11915 bool
11916 stdarg_p (const_tree fntype)
11917 {
11918 function_args_iterator args_iter;
11919 tree n = NULL_TREE, t;
11920
11921 if (!fntype)
11922 return false;
11923
11924 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11925 {
11926 n = t;
11927 }
11928
11929 return n != NULL_TREE && n != void_type_node;
11930 }
11931
11932 /* Return true if TYPE has a prototype. */
11933
11934 bool
11935 prototype_p (const_tree fntype)
11936 {
11937 tree t;
11938
11939 gcc_assert (fntype != NULL_TREE);
11940
11941 t = TYPE_ARG_TYPES (fntype);
11942 return (t != NULL_TREE);
11943 }
11944
11945 /* If BLOCK is inlined from an __attribute__((__artificial__))
11946 routine, return pointer to location from where it has been
11947 called. */
11948 location_t *
11949 block_nonartificial_location (tree block)
11950 {
11951 location_t *ret = NULL;
11952
11953 while (block && TREE_CODE (block) == BLOCK
11954 && BLOCK_ABSTRACT_ORIGIN (block))
11955 {
11956 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11957
11958 while (TREE_CODE (ao) == BLOCK
11959 && BLOCK_ABSTRACT_ORIGIN (ao)
11960 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11961 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11962
11963 if (TREE_CODE (ao) == FUNCTION_DECL)
11964 {
11965 /* If AO is an artificial inline, point RET to the
11966 call site locus at which it has been inlined and continue
11967 the loop, in case AO's caller is also an artificial
11968 inline. */
11969 if (DECL_DECLARED_INLINE_P (ao)
11970 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11971 ret = &BLOCK_SOURCE_LOCATION (block);
11972 else
11973 break;
11974 }
11975 else if (TREE_CODE (ao) != BLOCK)
11976 break;
11977
11978 block = BLOCK_SUPERCONTEXT (block);
11979 }
11980 return ret;
11981 }
11982
11983
11984 /* If EXP is inlined from an __attribute__((__artificial__))
11985 function, return the location of the original call expression. */
11986
11987 location_t
11988 tree_nonartificial_location (tree exp)
11989 {
11990 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11991
11992 if (loc)
11993 return *loc;
11994 else
11995 return EXPR_LOCATION (exp);
11996 }
11997
11998
11999 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12000 nodes. */
12001
12002 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12003
12004 hashval_t
12005 cl_option_hasher::hash (tree x)
12006 {
12007 const_tree const t = x;
12008 const char *p;
12009 size_t i;
12010 size_t len = 0;
12011 hashval_t hash = 0;
12012
12013 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12014 {
12015 p = (const char *)TREE_OPTIMIZATION (t);
12016 len = sizeof (struct cl_optimization);
12017 }
12018
12019 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12020 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12021
12022 else
12023 gcc_unreachable ();
12024
12025 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12026 something else. */
12027 for (i = 0; i < len; i++)
12028 if (p[i])
12029 hash = (hash << 4) ^ ((i << 2) | p[i]);
12030
12031 return hash;
12032 }
12033
12034 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12035 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12036 same. */
12037
12038 bool
12039 cl_option_hasher::equal (tree x, tree y)
12040 {
12041 const_tree const xt = x;
12042 const_tree const yt = y;
12043 const char *xp;
12044 const char *yp;
12045 size_t len;
12046
12047 if (TREE_CODE (xt) != TREE_CODE (yt))
12048 return 0;
12049
12050 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12051 {
12052 xp = (const char *)TREE_OPTIMIZATION (xt);
12053 yp = (const char *)TREE_OPTIMIZATION (yt);
12054 len = sizeof (struct cl_optimization);
12055 }
12056
12057 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12058 {
12059 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12060 TREE_TARGET_OPTION (yt));
12061 }
12062
12063 else
12064 gcc_unreachable ();
12065
12066 return (memcmp (xp, yp, len) == 0);
12067 }
12068
12069 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
12070
12071 tree
12072 build_optimization_node (struct gcc_options *opts)
12073 {
12074 tree t;
12075
12076 /* Use the cache of optimization nodes. */
12077
12078 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12079 opts);
12080
12081 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12082 t = *slot;
12083 if (!t)
12084 {
12085 /* Insert this one into the hash table. */
12086 t = cl_optimization_node;
12087 *slot = t;
12088
12089 /* Make a new node for next time round. */
12090 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12091 }
12092
12093 return t;
12094 }
12095
12096 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12097
12098 tree
12099 build_target_option_node (struct gcc_options *opts)
12100 {
12101 tree t;
12102
12103 /* Use the cache of optimization nodes. */
12104
12105 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12106 opts);
12107
12108 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12109 t = *slot;
12110 if (!t)
12111 {
12112 /* Insert this one into the hash table. */
12113 t = cl_target_option_node;
12114 *slot = t;
12115
12116 /* Make a new node for next time round. */
12117 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12118 }
12119
12120 return t;
12121 }
12122
12123 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12124 so that they aren't saved during PCH writing. */
12125
12126 void
12127 prepare_target_option_nodes_for_pch (void)
12128 {
12129 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12130 for (; iter != cl_option_hash_table->end (); ++iter)
12131 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12132 TREE_TARGET_GLOBALS (*iter) = NULL;
12133 }
12134
12135 /* Determine the "ultimate origin" of a block. The block may be an inlined
12136 instance of an inlined instance of a block which is local to an inline
12137 function, so we have to trace all of the way back through the origin chain
12138 to find out what sort of node actually served as the original seed for the
12139 given block. */
12140
12141 tree
12142 block_ultimate_origin (const_tree block)
12143 {
12144 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
12145
12146 /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
12147 we're trying to output the abstract instance of this function. */
12148 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
12149 return NULL_TREE;
12150
12151 if (immediate_origin == NULL_TREE)
12152 return NULL_TREE;
12153 else
12154 {
12155 tree ret_val;
12156 tree lookahead = immediate_origin;
12157
12158 do
12159 {
12160 ret_val = lookahead;
12161 lookahead = (TREE_CODE (ret_val) == BLOCK
12162 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
12163 }
12164 while (lookahead != NULL && lookahead != ret_val);
12165
12166 /* The block's abstract origin chain may not be the *ultimate* origin of
12167 the block. It could lead to a DECL that has an abstract origin set.
12168 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
12169 will give us if it has one). Note that DECL's abstract origins are
12170 supposed to be the most distant ancestor (or so decl_ultimate_origin
12171 claims), so we don't need to loop following the DECL origins. */
12172 if (DECL_P (ret_val))
12173 return DECL_ORIGIN (ret_val);
12174
12175 return ret_val;
12176 }
12177 }
12178
12179 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12180 no instruction. */
12181
12182 bool
12183 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12184 {
12185 /* Use precision rather then machine mode when we can, which gives
12186 the correct answer even for submode (bit-field) types. */
12187 if ((INTEGRAL_TYPE_P (outer_type)
12188 || POINTER_TYPE_P (outer_type)
12189 || TREE_CODE (outer_type) == OFFSET_TYPE)
12190 && (INTEGRAL_TYPE_P (inner_type)
12191 || POINTER_TYPE_P (inner_type)
12192 || TREE_CODE (inner_type) == OFFSET_TYPE))
12193 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12194
12195 /* Otherwise fall back on comparing machine modes (e.g. for
12196 aggregate types, floats). */
12197 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12198 }
12199
12200 /* Return true iff conversion in EXP generates no instruction. Mark
12201 it inline so that we fully inline into the stripping functions even
12202 though we have two uses of this function. */
12203
12204 static inline bool
12205 tree_nop_conversion (const_tree exp)
12206 {
12207 tree outer_type, inner_type;
12208
12209 if (!CONVERT_EXPR_P (exp)
12210 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12211 return false;
12212 if (TREE_OPERAND (exp, 0) == error_mark_node)
12213 return false;
12214
12215 outer_type = TREE_TYPE (exp);
12216 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12217
12218 if (!inner_type)
12219 return false;
12220
12221 return tree_nop_conversion_p (outer_type, inner_type);
12222 }
12223
12224 /* Return true iff conversion in EXP generates no instruction. Don't
12225 consider conversions changing the signedness. */
12226
12227 static bool
12228 tree_sign_nop_conversion (const_tree exp)
12229 {
12230 tree outer_type, inner_type;
12231
12232 if (!tree_nop_conversion (exp))
12233 return false;
12234
12235 outer_type = TREE_TYPE (exp);
12236 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12237
12238 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12239 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12240 }
12241
12242 /* Strip conversions from EXP according to tree_nop_conversion and
12243 return the resulting expression. */
12244
12245 tree
12246 tree_strip_nop_conversions (tree exp)
12247 {
12248 while (tree_nop_conversion (exp))
12249 exp = TREE_OPERAND (exp, 0);
12250 return exp;
12251 }
12252
12253 /* Strip conversions from EXP according to tree_sign_nop_conversion
12254 and return the resulting expression. */
12255
12256 tree
12257 tree_strip_sign_nop_conversions (tree exp)
12258 {
12259 while (tree_sign_nop_conversion (exp))
12260 exp = TREE_OPERAND (exp, 0);
12261 return exp;
12262 }
12263
12264 /* Avoid any floating point extensions from EXP. */
12265 tree
12266 strip_float_extensions (tree exp)
12267 {
12268 tree sub, expt, subt;
12269
12270 /* For floating point constant look up the narrowest type that can hold
12271 it properly and handle it like (type)(narrowest_type)constant.
12272 This way we can optimize for instance a=a*2.0 where "a" is float
12273 but 2.0 is double constant. */
12274 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12275 {
12276 REAL_VALUE_TYPE orig;
12277 tree type = NULL;
12278
12279 orig = TREE_REAL_CST (exp);
12280 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12281 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12282 type = float_type_node;
12283 else if (TYPE_PRECISION (TREE_TYPE (exp))
12284 > TYPE_PRECISION (double_type_node)
12285 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12286 type = double_type_node;
12287 if (type)
12288 return build_real_truncate (type, orig);
12289 }
12290
12291 if (!CONVERT_EXPR_P (exp))
12292 return exp;
12293
12294 sub = TREE_OPERAND (exp, 0);
12295 subt = TREE_TYPE (sub);
12296 expt = TREE_TYPE (exp);
12297
12298 if (!FLOAT_TYPE_P (subt))
12299 return exp;
12300
12301 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12302 return exp;
12303
12304 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12305 return exp;
12306
12307 return strip_float_extensions (sub);
12308 }
12309
12310 /* Strip out all handled components that produce invariant
12311 offsets. */
12312
12313 const_tree
12314 strip_invariant_refs (const_tree op)
12315 {
12316 while (handled_component_p (op))
12317 {
12318 switch (TREE_CODE (op))
12319 {
12320 case ARRAY_REF:
12321 case ARRAY_RANGE_REF:
12322 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12323 || TREE_OPERAND (op, 2) != NULL_TREE
12324 || TREE_OPERAND (op, 3) != NULL_TREE)
12325 return NULL;
12326 break;
12327
12328 case COMPONENT_REF:
12329 if (TREE_OPERAND (op, 2) != NULL_TREE)
12330 return NULL;
12331 break;
12332
12333 default:;
12334 }
12335 op = TREE_OPERAND (op, 0);
12336 }
12337
12338 return op;
12339 }
12340
12341 static GTY(()) tree gcc_eh_personality_decl;
12342
12343 /* Return the GCC personality function decl. */
12344
12345 tree
12346 lhd_gcc_personality (void)
12347 {
12348 if (!gcc_eh_personality_decl)
12349 gcc_eh_personality_decl = build_personality_function ("gcc");
12350 return gcc_eh_personality_decl;
12351 }
12352
12353 /* TARGET is a call target of GIMPLE call statement
12354 (obtained by gimple_call_fn). Return true if it is
12355 OBJ_TYPE_REF representing an virtual call of C++ method.
12356 (As opposed to OBJ_TYPE_REF representing objc calls
12357 through a cast where middle-end devirtualization machinery
12358 can't apply.) */
12359
12360 bool
12361 virtual_method_call_p (const_tree target)
12362 {
12363 if (TREE_CODE (target) != OBJ_TYPE_REF)
12364 return false;
12365 tree t = TREE_TYPE (target);
12366 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12367 t = TREE_TYPE (t);
12368 if (TREE_CODE (t) == FUNCTION_TYPE)
12369 return false;
12370 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12371 /* If we do not have BINFO associated, it means that type was built
12372 without devirtualization enabled. Do not consider this a virtual
12373 call. */
12374 if (!TYPE_BINFO (obj_type_ref_class (target)))
12375 return false;
12376 return true;
12377 }
12378
12379 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
12380
12381 tree
12382 obj_type_ref_class (const_tree ref)
12383 {
12384 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
12385 ref = TREE_TYPE (ref);
12386 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12387 ref = TREE_TYPE (ref);
12388 /* We look for type THIS points to. ObjC also builds
12389 OBJ_TYPE_REF with non-method calls, Their first parameter
12390 ID however also corresponds to class type. */
12391 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
12392 || TREE_CODE (ref) == FUNCTION_TYPE);
12393 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
12394 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12395 return TREE_TYPE (ref);
12396 }
12397
12398 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12399
12400 static tree
12401 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12402 {
12403 unsigned int i;
12404 tree base_binfo, b;
12405
12406 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12407 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12408 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12409 return base_binfo;
12410 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12411 return b;
12412 return NULL;
12413 }
12414
12415 /* Try to find a base info of BINFO that would have its field decl at offset
12416 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12417 found, return, otherwise return NULL_TREE. */
12418
12419 tree
12420 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
12421 {
12422 tree type = BINFO_TYPE (binfo);
12423
12424 while (true)
12425 {
12426 HOST_WIDE_INT pos, size;
12427 tree fld;
12428 int i;
12429
12430 if (types_same_for_odr (type, expected_type))
12431 return binfo;
12432 if (offset < 0)
12433 return NULL_TREE;
12434
12435 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12436 {
12437 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12438 continue;
12439
12440 pos = int_bit_position (fld);
12441 size = tree_to_uhwi (DECL_SIZE (fld));
12442 if (pos <= offset && (pos + size) > offset)
12443 break;
12444 }
12445 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12446 return NULL_TREE;
12447
12448 /* Offset 0 indicates the primary base, whose vtable contents are
12449 represented in the binfo for the derived class. */
12450 else if (offset != 0)
12451 {
12452 tree found_binfo = NULL, base_binfo;
12453 /* Offsets in BINFO are in bytes relative to the whole structure
12454 while POS is in bits relative to the containing field. */
12455 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12456 / BITS_PER_UNIT);
12457
12458 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12459 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12460 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12461 {
12462 found_binfo = base_binfo;
12463 break;
12464 }
12465 if (found_binfo)
12466 binfo = found_binfo;
12467 else
12468 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12469 binfo_offset);
12470 }
12471
12472 type = TREE_TYPE (fld);
12473 offset -= pos;
12474 }
12475 }
12476
12477 /* Returns true if X is a typedef decl. */
12478
12479 bool
12480 is_typedef_decl (const_tree x)
12481 {
12482 return (x && TREE_CODE (x) == TYPE_DECL
12483 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12484 }
12485
12486 /* Returns true iff TYPE is a type variant created for a typedef. */
12487
12488 bool
12489 typedef_variant_p (const_tree type)
12490 {
12491 return is_typedef_decl (TYPE_NAME (type));
12492 }
12493
12494 /* Warn about a use of an identifier which was marked deprecated. */
12495 void
12496 warn_deprecated_use (tree node, tree attr)
12497 {
12498 const char *msg;
12499
12500 if (node == 0 || !warn_deprecated_decl)
12501 return;
12502
12503 if (!attr)
12504 {
12505 if (DECL_P (node))
12506 attr = DECL_ATTRIBUTES (node);
12507 else if (TYPE_P (node))
12508 {
12509 tree decl = TYPE_STUB_DECL (node);
12510 if (decl)
12511 attr = lookup_attribute ("deprecated",
12512 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12513 }
12514 }
12515
12516 if (attr)
12517 attr = lookup_attribute ("deprecated", attr);
12518
12519 if (attr)
12520 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
12521 else
12522 msg = NULL;
12523
12524 bool w;
12525 if (DECL_P (node))
12526 {
12527 if (msg)
12528 w = warning (OPT_Wdeprecated_declarations,
12529 "%qD is deprecated: %s", node, msg);
12530 else
12531 w = warning (OPT_Wdeprecated_declarations,
12532 "%qD is deprecated", node);
12533 if (w)
12534 inform (DECL_SOURCE_LOCATION (node), "declared here");
12535 }
12536 else if (TYPE_P (node))
12537 {
12538 tree what = NULL_TREE;
12539 tree decl = TYPE_STUB_DECL (node);
12540
12541 if (TYPE_NAME (node))
12542 {
12543 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12544 what = TYPE_NAME (node);
12545 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12546 && DECL_NAME (TYPE_NAME (node)))
12547 what = DECL_NAME (TYPE_NAME (node));
12548 }
12549
12550 if (decl)
12551 {
12552 if (what)
12553 {
12554 if (msg)
12555 w = warning (OPT_Wdeprecated_declarations,
12556 "%qE is deprecated: %s", what, msg);
12557 else
12558 w = warning (OPT_Wdeprecated_declarations,
12559 "%qE is deprecated", what);
12560 }
12561 else
12562 {
12563 if (msg)
12564 w = warning (OPT_Wdeprecated_declarations,
12565 "type is deprecated: %s", msg);
12566 else
12567 w = warning (OPT_Wdeprecated_declarations,
12568 "type is deprecated");
12569 }
12570 if (w)
12571 inform (DECL_SOURCE_LOCATION (decl), "declared here");
12572 }
12573 else
12574 {
12575 if (what)
12576 {
12577 if (msg)
12578 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12579 what, msg);
12580 else
12581 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12582 }
12583 else
12584 {
12585 if (msg)
12586 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12587 msg);
12588 else
12589 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12590 }
12591 }
12592 }
12593 }
12594
12595 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12596 somewhere in it. */
12597
12598 bool
12599 contains_bitfld_component_ref_p (const_tree ref)
12600 {
12601 while (handled_component_p (ref))
12602 {
12603 if (TREE_CODE (ref) == COMPONENT_REF
12604 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12605 return true;
12606 ref = TREE_OPERAND (ref, 0);
12607 }
12608
12609 return false;
12610 }
12611
12612 /* Try to determine whether a TRY_CATCH expression can fall through.
12613 This is a subroutine of block_may_fallthru. */
12614
12615 static bool
12616 try_catch_may_fallthru (const_tree stmt)
12617 {
12618 tree_stmt_iterator i;
12619
12620 /* If the TRY block can fall through, the whole TRY_CATCH can
12621 fall through. */
12622 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12623 return true;
12624
12625 i = tsi_start (TREE_OPERAND (stmt, 1));
12626 switch (TREE_CODE (tsi_stmt (i)))
12627 {
12628 case CATCH_EXPR:
12629 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12630 catch expression and a body. The whole TRY_CATCH may fall
12631 through iff any of the catch bodies falls through. */
12632 for (; !tsi_end_p (i); tsi_next (&i))
12633 {
12634 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12635 return true;
12636 }
12637 return false;
12638
12639 case EH_FILTER_EXPR:
12640 /* The exception filter expression only matters if there is an
12641 exception. If the exception does not match EH_FILTER_TYPES,
12642 we will execute EH_FILTER_FAILURE, and we will fall through
12643 if that falls through. If the exception does match
12644 EH_FILTER_TYPES, the stack unwinder will continue up the
12645 stack, so we will not fall through. We don't know whether we
12646 will throw an exception which matches EH_FILTER_TYPES or not,
12647 so we just ignore EH_FILTER_TYPES and assume that we might
12648 throw an exception which doesn't match. */
12649 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12650
12651 default:
12652 /* This case represents statements to be executed when an
12653 exception occurs. Those statements are implicitly followed
12654 by a RESX statement to resume execution after the exception.
12655 So in this case the TRY_CATCH never falls through. */
12656 return false;
12657 }
12658 }
12659
12660 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12661 need not be 100% accurate; simply be conservative and return true if we
12662 don't know. This is used only to avoid stupidly generating extra code.
12663 If we're wrong, we'll just delete the extra code later. */
12664
12665 bool
12666 block_may_fallthru (const_tree block)
12667 {
12668 /* This CONST_CAST is okay because expr_last returns its argument
12669 unmodified and we assign it to a const_tree. */
12670 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12671
12672 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12673 {
12674 case GOTO_EXPR:
12675 case RETURN_EXPR:
12676 /* Easy cases. If the last statement of the block implies
12677 control transfer, then we can't fall through. */
12678 return false;
12679
12680 case SWITCH_EXPR:
12681 /* If SWITCH_LABELS is set, this is lowered, and represents a
12682 branch to a selected label and hence can not fall through.
12683 Otherwise SWITCH_BODY is set, and the switch can fall
12684 through. */
12685 return SWITCH_LABELS (stmt) == NULL_TREE;
12686
12687 case COND_EXPR:
12688 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12689 return true;
12690 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12691
12692 case BIND_EXPR:
12693 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12694
12695 case TRY_CATCH_EXPR:
12696 return try_catch_may_fallthru (stmt);
12697
12698 case TRY_FINALLY_EXPR:
12699 /* The finally clause is always executed after the try clause,
12700 so if it does not fall through, then the try-finally will not
12701 fall through. Otherwise, if the try clause does not fall
12702 through, then when the finally clause falls through it will
12703 resume execution wherever the try clause was going. So the
12704 whole try-finally will only fall through if both the try
12705 clause and the finally clause fall through. */
12706 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12707 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12708
12709 case MODIFY_EXPR:
12710 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12711 stmt = TREE_OPERAND (stmt, 1);
12712 else
12713 return true;
12714 /* FALLTHRU */
12715
12716 case CALL_EXPR:
12717 /* Functions that do not return do not fall through. */
12718 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12719
12720 case CLEANUP_POINT_EXPR:
12721 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12722
12723 case TARGET_EXPR:
12724 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12725
12726 case ERROR_MARK:
12727 return true;
12728
12729 default:
12730 return lang_hooks.block_may_fallthru (stmt);
12731 }
12732 }
12733
12734 /* True if we are using EH to handle cleanups. */
12735 static bool using_eh_for_cleanups_flag = false;
12736
12737 /* This routine is called from front ends to indicate eh should be used for
12738 cleanups. */
12739 void
12740 using_eh_for_cleanups (void)
12741 {
12742 using_eh_for_cleanups_flag = true;
12743 }
12744
12745 /* Query whether EH is used for cleanups. */
12746 bool
12747 using_eh_for_cleanups_p (void)
12748 {
12749 return using_eh_for_cleanups_flag;
12750 }
12751
12752 /* Wrapper for tree_code_name to ensure that tree code is valid */
12753 const char *
12754 get_tree_code_name (enum tree_code code)
12755 {
12756 const char *invalid = "<invalid tree code>";
12757
12758 if (code >= MAX_TREE_CODES)
12759 return invalid;
12760
12761 return tree_code_name[code];
12762 }
12763
12764 /* Drops the TREE_OVERFLOW flag from T. */
12765
12766 tree
12767 drop_tree_overflow (tree t)
12768 {
12769 gcc_checking_assert (TREE_OVERFLOW (t));
12770
12771 /* For tree codes with a sharing machinery re-build the result. */
12772 if (TREE_CODE (t) == INTEGER_CST)
12773 return wide_int_to_tree (TREE_TYPE (t), t);
12774
12775 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12776 and drop the flag. */
12777 t = copy_node (t);
12778 TREE_OVERFLOW (t) = 0;
12779 return t;
12780 }
12781
12782 /* Given a memory reference expression T, return its base address.
12783 The base address of a memory reference expression is the main
12784 object being referenced. For instance, the base address for
12785 'array[i].fld[j]' is 'array'. You can think of this as stripping
12786 away the offset part from a memory address.
12787
12788 This function calls handled_component_p to strip away all the inner
12789 parts of the memory reference until it reaches the base object. */
12790
12791 tree
12792 get_base_address (tree t)
12793 {
12794 while (handled_component_p (t))
12795 t = TREE_OPERAND (t, 0);
12796
12797 if ((TREE_CODE (t) == MEM_REF
12798 || TREE_CODE (t) == TARGET_MEM_REF)
12799 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12800 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12801
12802 /* ??? Either the alias oracle or all callers need to properly deal
12803 with WITH_SIZE_EXPRs before we can look through those. */
12804 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12805 return NULL_TREE;
12806
12807 return t;
12808 }
12809
12810 /* Return a tree of sizetype representing the size, in bytes, of the element
12811 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12812
12813 tree
12814 array_ref_element_size (tree exp)
12815 {
12816 tree aligned_size = TREE_OPERAND (exp, 3);
12817 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
12818 location_t loc = EXPR_LOCATION (exp);
12819
12820 /* If a size was specified in the ARRAY_REF, it's the size measured
12821 in alignment units of the element type. So multiply by that value. */
12822 if (aligned_size)
12823 {
12824 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12825 sizetype from another type of the same width and signedness. */
12826 if (TREE_TYPE (aligned_size) != sizetype)
12827 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
12828 return size_binop_loc (loc, MULT_EXPR, aligned_size,
12829 size_int (TYPE_ALIGN_UNIT (elmt_type)));
12830 }
12831
12832 /* Otherwise, take the size from that of the element type. Substitute
12833 any PLACEHOLDER_EXPR that we have. */
12834 else
12835 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
12836 }
12837
12838 /* Return a tree representing the lower bound of the array mentioned in
12839 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12840
12841 tree
12842 array_ref_low_bound (tree exp)
12843 {
12844 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12845
12846 /* If a lower bound is specified in EXP, use it. */
12847 if (TREE_OPERAND (exp, 2))
12848 return TREE_OPERAND (exp, 2);
12849
12850 /* Otherwise, if there is a domain type and it has a lower bound, use it,
12851 substituting for a PLACEHOLDER_EXPR as needed. */
12852 if (domain_type && TYPE_MIN_VALUE (domain_type))
12853 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
12854
12855 /* Otherwise, return a zero of the appropriate type. */
12856 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
12857 }
12858
12859 /* Return a tree representing the upper bound of the array mentioned in
12860 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12861
12862 tree
12863 array_ref_up_bound (tree exp)
12864 {
12865 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12866
12867 /* If there is a domain type and it has an upper bound, use it, substituting
12868 for a PLACEHOLDER_EXPR as needed. */
12869 if (domain_type && TYPE_MAX_VALUE (domain_type))
12870 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
12871
12872 /* Otherwise fail. */
12873 return NULL_TREE;
12874 }
12875
12876 /* Returns true if REF is an array reference to an array at the end of
12877 a structure. If this is the case, the array may be allocated larger
12878 than its upper bound implies. */
12879
12880 bool
12881 array_at_struct_end_p (tree ref)
12882 {
12883 if (TREE_CODE (ref) != ARRAY_REF
12884 && TREE_CODE (ref) != ARRAY_RANGE_REF)
12885 return false;
12886
12887 while (handled_component_p (ref))
12888 {
12889 /* If the reference chain contains a component reference to a
12890 non-union type and there follows another field the reference
12891 is not at the end of a structure. */
12892 if (TREE_CODE (ref) == COMPONENT_REF
12893 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
12894 {
12895 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
12896 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
12897 nextf = DECL_CHAIN (nextf);
12898 if (nextf)
12899 return false;
12900 }
12901
12902 ref = TREE_OPERAND (ref, 0);
12903 }
12904
12905 /* If the reference is based on a declared entity, the size of the array
12906 is constrained by its given domain. */
12907 if (DECL_P (ref))
12908 return false;
12909
12910 return true;
12911 }
12912
12913 /* Return a tree representing the offset, in bytes, of the field referenced
12914 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
12915
12916 tree
12917 component_ref_field_offset (tree exp)
12918 {
12919 tree aligned_offset = TREE_OPERAND (exp, 2);
12920 tree field = TREE_OPERAND (exp, 1);
12921 location_t loc = EXPR_LOCATION (exp);
12922
12923 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
12924 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
12925 value. */
12926 if (aligned_offset)
12927 {
12928 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12929 sizetype from another type of the same width and signedness. */
12930 if (TREE_TYPE (aligned_offset) != sizetype)
12931 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
12932 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
12933 size_int (DECL_OFFSET_ALIGN (field)
12934 / BITS_PER_UNIT));
12935 }
12936
12937 /* Otherwise, take the offset from that of the field. Substitute
12938 any PLACEHOLDER_EXPR that we have. */
12939 else
12940 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
12941 }
12942
12943 /* Return the machine mode of T. For vectors, returns the mode of the
12944 inner type. The main use case is to feed the result to HONOR_NANS,
12945 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
12946
12947 machine_mode
12948 element_mode (const_tree t)
12949 {
12950 if (!TYPE_P (t))
12951 t = TREE_TYPE (t);
12952 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
12953 t = TREE_TYPE (t);
12954 return TYPE_MODE (t);
12955 }
12956
12957
12958 /* Veirfy that basic properties of T match TV and thus T can be a variant of
12959 TV. TV should be the more specified variant (i.e. the main variant). */
12960
12961 static bool
12962 verify_type_variant (const_tree t, tree tv)
12963 {
12964 /* Type variant can differ by:
12965
12966 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
12967 ENCODE_QUAL_ADDR_SPACE.
12968 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
12969 in this case some values may not be set in the variant types
12970 (see TYPE_COMPLETE_P checks).
12971 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
12972 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
12973 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
12974 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
12975 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
12976 this is necessary to make it possible to merge types form different TUs
12977 - arrays, pointers and references may have TREE_TYPE that is a variant
12978 of TREE_TYPE of their main variants.
12979 - aggregates may have new TYPE_FIELDS list that list variants of
12980 the main variant TYPE_FIELDS.
12981 - vector types may differ by TYPE_VECTOR_OPAQUE
12982 - TYPE_METHODS is always NULL for vairant types and maintained for
12983 main variant only.
12984 */
12985
12986 /* Convenience macro for matching individual fields. */
12987 #define verify_variant_match(flag) \
12988 do { \
12989 if (flag (tv) != flag (t)) \
12990 { \
12991 error ("type variant differs by " #flag "."); \
12992 debug_tree (tv); \
12993 return false; \
12994 } \
12995 } while (false)
12996
12997 /* tree_base checks. */
12998
12999 verify_variant_match (TREE_CODE);
13000 /* FIXME: Ada builds non-artificial variants of artificial types. */
13001 if (TYPE_ARTIFICIAL (tv) && 0)
13002 verify_variant_match (TYPE_ARTIFICIAL);
13003 if (POINTER_TYPE_P (tv))
13004 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13005 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13006 verify_variant_match (TYPE_UNSIGNED);
13007 verify_variant_match (TYPE_ALIGN_OK);
13008 verify_variant_match (TYPE_PACKED);
13009 if (TREE_CODE (t) == REFERENCE_TYPE)
13010 verify_variant_match (TYPE_REF_IS_RVALUE);
13011 if (AGGREGATE_TYPE_P (t))
13012 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13013 else
13014 verify_variant_match (TYPE_SATURATING);
13015 /* FIXME: This check trigger during libstdc++ build. */
13016 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13017 verify_variant_match (TYPE_FINAL_P);
13018
13019 /* tree_type_common checks. */
13020
13021 if (COMPLETE_TYPE_P (t))
13022 {
13023 verify_variant_match (TYPE_SIZE);
13024 verify_variant_match (TYPE_MODE);
13025 if (TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv)
13026 /* FIXME: ideally we should compare pointer equality, but java FE
13027 produce variants where size is INTEGER_CST of different type (int
13028 wrt size_type) during libjava biuld. */
13029 && !operand_equal_p (TYPE_SIZE_UNIT (t), TYPE_SIZE_UNIT (tv), 0))
13030 {
13031 error ("type variant has different TYPE_SIZE_UNIT");
13032 debug_tree (tv);
13033 error ("type variant's TYPE_SIZE_UNIT");
13034 debug_tree (TYPE_SIZE_UNIT (tv));
13035 error ("type's TYPE_SIZE_UNIT");
13036 debug_tree (TYPE_SIZE_UNIT (t));
13037 return false;
13038 }
13039 }
13040 verify_variant_match (TYPE_PRECISION);
13041 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13042 if (RECORD_OR_UNION_TYPE_P (t))
13043 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13044 else if (TREE_CODE (t) == ARRAY_TYPE)
13045 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13046 /* During LTO we merge variant lists from diferent translation units
13047 that may differ BY TYPE_CONTEXT that in turn may point
13048 to TRANSLATION_UNIT_DECL.
13049 Ada also builds variants of types with different TYPE_CONTEXT. */
13050 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13051 verify_variant_match (TYPE_CONTEXT);
13052 verify_variant_match (TYPE_STRING_FLAG);
13053 if (TYPE_ALIAS_SET_KNOWN_P (t))
13054 {
13055 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13056 debug_tree (tv);
13057 return false;
13058 }
13059
13060 /* tree_type_non_common checks. */
13061
13062 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13063 and dangle the pointer from time to time. */
13064 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13065 && (in_lto_p || !TYPE_VFIELD (tv)
13066 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13067 {
13068 error ("type variant has different TYPE_VFIELD");
13069 debug_tree (tv);
13070 return false;
13071 }
13072 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13073 || TREE_CODE (t) == INTEGER_TYPE
13074 || TREE_CODE (t) == BOOLEAN_TYPE
13075 || TREE_CODE (t) == REAL_TYPE
13076 || TREE_CODE (t) == FIXED_POINT_TYPE)
13077 {
13078 verify_variant_match (TYPE_MAX_VALUE);
13079 verify_variant_match (TYPE_MIN_VALUE);
13080 }
13081 if (TREE_CODE (t) == METHOD_TYPE)
13082 verify_variant_match (TYPE_METHOD_BASETYPE);
13083 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_METHODS (t))
13084 {
13085 error ("type variant has TYPE_METHODS");
13086 debug_tree (tv);
13087 return false;
13088 }
13089 if (TREE_CODE (t) == OFFSET_TYPE)
13090 verify_variant_match (TYPE_OFFSET_BASETYPE);
13091 if (TREE_CODE (t) == ARRAY_TYPE)
13092 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13093 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13094 or even type's main variant. This is needed to make bootstrap pass
13095 and the bug seems new in GCC 5.
13096 C++ FE should be updated to make this consistent and we should check
13097 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13098 is a match with main variant.
13099
13100 Also disable the check for Java for now because of parser hack that builds
13101 first an dummy BINFO and then sometimes replace it by real BINFO in some
13102 of the copies. */
13103 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13104 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13105 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13106 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13107 at LTO time only. */
13108 && (in_lto_p && odr_type_p (t)))
13109 {
13110 error ("type variant has different TYPE_BINFO");
13111 debug_tree (tv);
13112 error ("type variant's TYPE_BINFO");
13113 debug_tree (TYPE_BINFO (tv));
13114 error ("type's TYPE_BINFO");
13115 debug_tree (TYPE_BINFO (t));
13116 return false;
13117 }
13118
13119 /* Check various uses of TYPE_VALUES_RAW. */
13120 if (TREE_CODE (t) == ENUMERAL_TYPE)
13121 verify_variant_match (TYPE_VALUES);
13122 else if (TREE_CODE (t) == ARRAY_TYPE)
13123 verify_variant_match (TYPE_DOMAIN);
13124 /* Permit incomplete variants of complete type. While FEs may complete
13125 all variants, this does not happen for C++ templates in all cases. */
13126 else if (RECORD_OR_UNION_TYPE_P (t)
13127 && COMPLETE_TYPE_P (t)
13128 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13129 {
13130 tree f1, f2;
13131
13132 /* Fortran builds qualified variants as new records with items of
13133 qualified type. Verify that they looks same. */
13134 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13135 f1 && f2;
13136 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13137 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13138 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13139 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13140 /* FIXME: gfc_nonrestricted_type builds all types as variants
13141 with exception of pointer types. It deeply copies the type
13142 which means that we may end up with a variant type
13143 referring non-variant pointer. We may change it to
13144 produce types as variants, too, like
13145 objc_get_protocol_qualified_type does. */
13146 && !POINTER_TYPE_P (TREE_TYPE (f1)))
13147 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13148 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13149 break;
13150 if (f1 || f2)
13151 {
13152 error ("type variant has different TYPE_FIELDS");
13153 debug_tree (tv);
13154 error ("first mismatch is field");
13155 debug_tree (f1);
13156 error ("and field");
13157 debug_tree (f2);
13158 return false;
13159 }
13160 }
13161 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13162 verify_variant_match (TYPE_ARG_TYPES);
13163 /* For C++ the qualified variant of array type is really an array type
13164 of qualified TREE_TYPE.
13165 objc builds variants of pointer where pointer to type is a variant, too
13166 in objc_get_protocol_qualified_type. */
13167 if (TREE_TYPE (t) != TREE_TYPE (tv)
13168 && ((TREE_CODE (t) != ARRAY_TYPE
13169 && !POINTER_TYPE_P (t))
13170 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13171 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13172 {
13173 error ("type variant has different TREE_TYPE");
13174 debug_tree (tv);
13175 error ("type variant's TREE_TYPE");
13176 debug_tree (TREE_TYPE (tv));
13177 error ("type's TREE_TYPE");
13178 debug_tree (TREE_TYPE (t));
13179 return false;
13180 }
13181 if (type_with_alias_set_p (t)
13182 && !gimple_canonical_types_compatible_p (t, tv, false))
13183 {
13184 error ("type is not compatible with its vairant");
13185 debug_tree (tv);
13186 error ("type variant's TREE_TYPE");
13187 debug_tree (TREE_TYPE (tv));
13188 error ("type's TREE_TYPE");
13189 debug_tree (TREE_TYPE (t));
13190 return false;
13191 }
13192 return true;
13193 #undef verify_variant_match
13194 }
13195
13196
13197 /* The TYPE_CANONICAL merging machinery. It should closely resemble
13198 the middle-end types_compatible_p function. It needs to avoid
13199 claiming types are different for types that should be treated
13200 the same with respect to TBAA. Canonical types are also used
13201 for IL consistency checks via the useless_type_conversion_p
13202 predicate which does not handle all type kinds itself but falls
13203 back to pointer-comparison of TYPE_CANONICAL for aggregates
13204 for example. */
13205
13206 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13207 type calculation because we need to allow inter-operability between signed
13208 and unsigned variants. */
13209
13210 bool
13211 type_with_interoperable_signedness (const_tree type)
13212 {
13213 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13214 signed char and unsigned char. Similarly fortran FE builds
13215 C_SIZE_T as signed type, while C defines it unsigned. */
13216
13217 return tree_code_for_canonical_type_merging (TREE_CODE (type))
13218 == INTEGER_TYPE
13219 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13220 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13221 }
13222
13223 /* Return true iff T1 and T2 are structurally identical for what
13224 TBAA is concerned.
13225 This function is used both by lto.c canonical type merging and by the
13226 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
13227 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
13228 only for LTO because only in these cases TYPE_CANONICAL equivalence
13229 correspond to one defined by gimple_canonical_types_compatible_p. */
13230
13231 bool
13232 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
13233 bool trust_type_canonical)
13234 {
13235 /* Type variants should be same as the main variant. When not doing sanity
13236 checking to verify this fact, go to main variants and save some work. */
13237 if (trust_type_canonical)
13238 {
13239 t1 = TYPE_MAIN_VARIANT (t1);
13240 t2 = TYPE_MAIN_VARIANT (t2);
13241 }
13242
13243 /* Check first for the obvious case of pointer identity. */
13244 if (t1 == t2)
13245 return true;
13246
13247 /* Check that we have two types to compare. */
13248 if (t1 == NULL_TREE || t2 == NULL_TREE)
13249 return false;
13250
13251 /* We consider complete types always compatible with incomplete type.
13252 This does not make sense for canonical type calculation and thus we
13253 need to ensure that we are never called on it.
13254
13255 FIXME: For more correctness the function probably should have three modes
13256 1) mode assuming that types are complete mathcing their structure
13257 2) mode allowing incomplete types but producing equivalence classes
13258 and thus ignoring all info from complete types
13259 3) mode allowing incomplete types to match complete but checking
13260 compatibility between complete types.
13261
13262 1 and 2 can be used for canonical type calculation. 3 is the real
13263 definition of type compatibility that can be used i.e. for warnings during
13264 declaration merging. */
13265
13266 gcc_assert (!trust_type_canonical
13267 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
13268 /* If the types have been previously registered and found equal
13269 they still are. */
13270
13271 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
13272 && trust_type_canonical)
13273 {
13274 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
13275 they are always NULL, but they are set to non-NULL for types
13276 constructed by build_pointer_type and variants. In this case the
13277 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13278 all pointers are considered equal. Be sure to not return false
13279 negatives. */
13280 gcc_checking_assert (canonical_type_used_p (t1)
13281 && canonical_type_used_p (t2));
13282 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
13283 }
13284
13285 /* Can't be the same type if the types don't have the same code. */
13286 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
13287 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
13288 return false;
13289
13290 /* Qualifiers do not matter for canonical type comparison purposes. */
13291
13292 /* Void types and nullptr types are always the same. */
13293 if (TREE_CODE (t1) == VOID_TYPE
13294 || TREE_CODE (t1) == NULLPTR_TYPE)
13295 return true;
13296
13297 /* Can't be the same type if they have different mode. */
13298 if (TYPE_MODE (t1) != TYPE_MODE (t2))
13299 return false;
13300
13301 /* Non-aggregate types can be handled cheaply. */
13302 if (INTEGRAL_TYPE_P (t1)
13303 || SCALAR_FLOAT_TYPE_P (t1)
13304 || FIXED_POINT_TYPE_P (t1)
13305 || TREE_CODE (t1) == VECTOR_TYPE
13306 || TREE_CODE (t1) == COMPLEX_TYPE
13307 || TREE_CODE (t1) == OFFSET_TYPE
13308 || POINTER_TYPE_P (t1))
13309 {
13310 /* Can't be the same type if they have different recision. */
13311 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
13312 return false;
13313
13314 /* In some cases the signed and unsigned types are required to be
13315 inter-operable. */
13316 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13317 && !type_with_interoperable_signedness (t1))
13318 return false;
13319
13320 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13321 interoperable with "signed char". Unless all frontends are revisited
13322 to agree on these types, we must ignore the flag completely. */
13323
13324 /* Fortran standard define C_PTR type that is compatible with every
13325 C pointer. For this reason we need to glob all pointers into one.
13326 Still pointers in different address spaces are not compatible. */
13327 if (POINTER_TYPE_P (t1))
13328 {
13329 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13330 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13331 return false;
13332 }
13333
13334 /* Tail-recurse to components. */
13335 if (TREE_CODE (t1) == VECTOR_TYPE
13336 || TREE_CODE (t1) == COMPLEX_TYPE)
13337 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13338 TREE_TYPE (t2),
13339 trust_type_canonical);
13340
13341 return true;
13342 }
13343
13344 /* Do type-specific comparisons. */
13345 switch (TREE_CODE (t1))
13346 {
13347 case ARRAY_TYPE:
13348 /* Array types are the same if the element types are the same and
13349 the number of elements are the same. */
13350 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13351 trust_type_canonical)
13352 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13353 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13354 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13355 return false;
13356 else
13357 {
13358 tree i1 = TYPE_DOMAIN (t1);
13359 tree i2 = TYPE_DOMAIN (t2);
13360
13361 /* For an incomplete external array, the type domain can be
13362 NULL_TREE. Check this condition also. */
13363 if (i1 == NULL_TREE && i2 == NULL_TREE)
13364 return true;
13365 else if (i1 == NULL_TREE || i2 == NULL_TREE)
13366 return false;
13367 else
13368 {
13369 tree min1 = TYPE_MIN_VALUE (i1);
13370 tree min2 = TYPE_MIN_VALUE (i2);
13371 tree max1 = TYPE_MAX_VALUE (i1);
13372 tree max2 = TYPE_MAX_VALUE (i2);
13373
13374 /* The minimum/maximum values have to be the same. */
13375 if ((min1 == min2
13376 || (min1 && min2
13377 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13378 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13379 || operand_equal_p (min1, min2, 0))))
13380 && (max1 == max2
13381 || (max1 && max2
13382 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13383 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13384 || operand_equal_p (max1, max2, 0)))))
13385 return true;
13386 else
13387 return false;
13388 }
13389 }
13390
13391 case METHOD_TYPE:
13392 case FUNCTION_TYPE:
13393 /* Function types are the same if the return type and arguments types
13394 are the same. */
13395 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13396 trust_type_canonical))
13397 return false;
13398
13399 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
13400 return true;
13401 else
13402 {
13403 tree parms1, parms2;
13404
13405 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13406 parms1 && parms2;
13407 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13408 {
13409 if (!gimple_canonical_types_compatible_p
13410 (TREE_VALUE (parms1), TREE_VALUE (parms2),
13411 trust_type_canonical))
13412 return false;
13413 }
13414
13415 if (parms1 || parms2)
13416 return false;
13417
13418 return true;
13419 }
13420
13421 case RECORD_TYPE:
13422 case UNION_TYPE:
13423 case QUAL_UNION_TYPE:
13424 {
13425 tree f1, f2;
13426
13427 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13428 return false;
13429
13430 /* For aggregate types, all the fields must be the same. */
13431 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13432 f1 || f2;
13433 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13434 {
13435 /* Skip non-fields. */
13436 while (f1 && TREE_CODE (f1) != FIELD_DECL)
13437 f1 = TREE_CHAIN (f1);
13438 while (f2 && TREE_CODE (f2) != FIELD_DECL)
13439 f2 = TREE_CHAIN (f2);
13440 if (!f1 || !f2)
13441 break;
13442 /* The fields must have the same name, offset and type. */
13443 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13444 || !gimple_compare_field_offset (f1, f2)
13445 || !gimple_canonical_types_compatible_p
13446 (TREE_TYPE (f1), TREE_TYPE (f2),
13447 trust_type_canonical))
13448 return false;
13449 }
13450
13451 /* If one aggregate has more fields than the other, they
13452 are not the same. */
13453 if (f1 || f2)
13454 return false;
13455
13456 return true;
13457 }
13458
13459 default:
13460 /* Consider all types with language specific trees in them mutually
13461 compatible. This is executed only from verify_type and false
13462 positives can be tolerated. */
13463 gcc_assert (!in_lto_p);
13464 return true;
13465 }
13466 }
13467
13468 /* Verify type T. */
13469
13470 void
13471 verify_type (const_tree t)
13472 {
13473 bool error_found = false;
13474 tree mv = TYPE_MAIN_VARIANT (t);
13475 if (!mv)
13476 {
13477 error ("Main variant is not defined");
13478 error_found = true;
13479 }
13480 else if (mv != TYPE_MAIN_VARIANT (mv))
13481 {
13482 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13483 debug_tree (mv);
13484 error_found = true;
13485 }
13486 else if (t != mv && !verify_type_variant (t, mv))
13487 error_found = true;
13488
13489 tree ct = TYPE_CANONICAL (t);
13490 if (!ct)
13491 ;
13492 else if (TYPE_CANONICAL (t) != ct)
13493 {
13494 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13495 debug_tree (ct);
13496 error_found = true;
13497 }
13498 /* Method and function types can not be used to address memory and thus
13499 TYPE_CANONICAL really matters only for determining useless conversions.
13500
13501 FIXME: C++ FE produce declarations of builtin functions that are not
13502 compatible with main variants. */
13503 else if (TREE_CODE (t) == FUNCTION_TYPE)
13504 ;
13505 else if (t != ct
13506 /* FIXME: gimple_canonical_types_compatible_p can not compare types
13507 with variably sized arrays because their sizes possibly
13508 gimplified to different variables. */
13509 && !variably_modified_type_p (ct, NULL)
13510 && !gimple_canonical_types_compatible_p (t, ct, false))
13511 {
13512 error ("TYPE_CANONICAL is not compatible");
13513 debug_tree (ct);
13514 error_found = true;
13515 }
13516
13517 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
13518 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
13519 {
13520 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13521 debug_tree (ct);
13522 error_found = true;
13523 }
13524 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
13525 {
13526 error ("TYPE_CANONICAL of main variant is not main variant");
13527 debug_tree (ct);
13528 debug_tree (TYPE_MAIN_VARIANT (ct));
13529 error_found = true;
13530 }
13531
13532
13533 /* Check various uses of TYPE_MINVAL. */
13534 if (RECORD_OR_UNION_TYPE_P (t))
13535 {
13536 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13537 and danagle the pointer from time to time. */
13538 if (TYPE_VFIELD (t)
13539 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
13540 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
13541 {
13542 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13543 debug_tree (TYPE_VFIELD (t));
13544 error_found = true;
13545 }
13546 }
13547 else if (TREE_CODE (t) == POINTER_TYPE)
13548 {
13549 if (TYPE_NEXT_PTR_TO (t)
13550 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
13551 {
13552 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13553 debug_tree (TYPE_NEXT_PTR_TO (t));
13554 error_found = true;
13555 }
13556 }
13557 else if (TREE_CODE (t) == REFERENCE_TYPE)
13558 {
13559 if (TYPE_NEXT_REF_TO (t)
13560 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
13561 {
13562 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13563 debug_tree (TYPE_NEXT_REF_TO (t));
13564 error_found = true;
13565 }
13566 }
13567 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13568 || TREE_CODE (t) == FIXED_POINT_TYPE)
13569 {
13570 /* FIXME: The following check should pass:
13571 useless_type_conversion_p (const_cast <tree> (t),
13572 TREE_TYPE (TYPE_MIN_VALUE (t))
13573 but does not for C sizetypes in LTO. */
13574 }
13575 /* Java uses TYPE_MINVAL for TYPE_ARGUMENT_SIGNATURE. */
13576 else if (TYPE_MINVAL (t)
13577 && ((TREE_CODE (t) != METHOD_TYPE && TREE_CODE (t) != FUNCTION_TYPE)
13578 || in_lto_p))
13579 {
13580 error ("TYPE_MINVAL non-NULL");
13581 debug_tree (TYPE_MINVAL (t));
13582 error_found = true;
13583 }
13584
13585 /* Check various uses of TYPE_MAXVAL. */
13586 if (RECORD_OR_UNION_TYPE_P (t))
13587 {
13588 if (TYPE_METHODS (t) && TREE_CODE (TYPE_METHODS (t)) != FUNCTION_DECL
13589 && TREE_CODE (TYPE_METHODS (t)) != TEMPLATE_DECL
13590 && TYPE_METHODS (t) != error_mark_node)
13591 {
13592 error ("TYPE_METHODS is not FUNCTION_DECL, TEMPLATE_DECL nor error_mark_node");
13593 debug_tree (TYPE_METHODS (t));
13594 error_found = true;
13595 }
13596 }
13597 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13598 {
13599 if (TYPE_METHOD_BASETYPE (t)
13600 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
13601 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
13602 {
13603 error ("TYPE_METHOD_BASETYPE is not record nor union");
13604 debug_tree (TYPE_METHOD_BASETYPE (t));
13605 error_found = true;
13606 }
13607 }
13608 else if (TREE_CODE (t) == OFFSET_TYPE)
13609 {
13610 if (TYPE_OFFSET_BASETYPE (t)
13611 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
13612 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
13613 {
13614 error ("TYPE_OFFSET_BASETYPE is not record nor union");
13615 debug_tree (TYPE_OFFSET_BASETYPE (t));
13616 error_found = true;
13617 }
13618 }
13619 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13620 || TREE_CODE (t) == FIXED_POINT_TYPE)
13621 {
13622 /* FIXME: The following check should pass:
13623 useless_type_conversion_p (const_cast <tree> (t),
13624 TREE_TYPE (TYPE_MAX_VALUE (t))
13625 but does not for C sizetypes in LTO. */
13626 }
13627 else if (TREE_CODE (t) == ARRAY_TYPE)
13628 {
13629 if (TYPE_ARRAY_MAX_SIZE (t)
13630 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
13631 {
13632 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13633 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
13634 error_found = true;
13635 }
13636 }
13637 else if (TYPE_MAXVAL (t))
13638 {
13639 error ("TYPE_MAXVAL non-NULL");
13640 debug_tree (TYPE_MAXVAL (t));
13641 error_found = true;
13642 }
13643
13644 /* Check various uses of TYPE_BINFO. */
13645 if (RECORD_OR_UNION_TYPE_P (t))
13646 {
13647 if (!TYPE_BINFO (t))
13648 ;
13649 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
13650 {
13651 error ("TYPE_BINFO is not TREE_BINFO");
13652 debug_tree (TYPE_BINFO (t));
13653 error_found = true;
13654 }
13655 /* FIXME: Java builds invalid empty binfos that do not have
13656 TREE_TYPE set. */
13657 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t) && 0)
13658 {
13659 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13660 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
13661 error_found = true;
13662 }
13663 }
13664 else if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
13665 {
13666 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13667 debug_tree (TYPE_LANG_SLOT_1 (t));
13668 error_found = true;
13669 }
13670
13671 /* Check various uses of TYPE_VALUES_RAW. */
13672 if (TREE_CODE (t) == ENUMERAL_TYPE)
13673 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
13674 {
13675 tree value = TREE_VALUE (l);
13676 tree name = TREE_PURPOSE (l);
13677
13678 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13679 CONST_DECL of ENUMERAL TYPE. */
13680 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
13681 {
13682 error ("Enum value is not CONST_DECL or INTEGER_CST");
13683 debug_tree (value);
13684 debug_tree (name);
13685 error_found = true;
13686 }
13687 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
13688 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
13689 {
13690 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13691 debug_tree (value);
13692 debug_tree (name);
13693 error_found = true;
13694 }
13695 if (TREE_CODE (name) != IDENTIFIER_NODE)
13696 {
13697 error ("Enum value name is not IDENTIFIER_NODE");
13698 debug_tree (value);
13699 debug_tree (name);
13700 error_found = true;
13701 }
13702 }
13703 else if (TREE_CODE (t) == ARRAY_TYPE)
13704 {
13705 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
13706 {
13707 error ("Array TYPE_DOMAIN is not integer type");
13708 debug_tree (TYPE_DOMAIN (t));
13709 error_found = true;
13710 }
13711 }
13712 else if (RECORD_OR_UNION_TYPE_P (t))
13713 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
13714 {
13715 /* TODO: verify properties of decls. */
13716 if (TREE_CODE (fld) == FIELD_DECL)
13717 ;
13718 else if (TREE_CODE (fld) == TYPE_DECL)
13719 ;
13720 else if (TREE_CODE (fld) == CONST_DECL)
13721 ;
13722 else if (TREE_CODE (fld) == VAR_DECL)
13723 ;
13724 else if (TREE_CODE (fld) == TEMPLATE_DECL)
13725 ;
13726 else if (TREE_CODE (fld) == USING_DECL)
13727 ;
13728 else
13729 {
13730 error ("Wrong tree in TYPE_FIELDS list");
13731 debug_tree (fld);
13732 error_found = true;
13733 }
13734 }
13735 else if (TREE_CODE (t) == INTEGER_TYPE
13736 || TREE_CODE (t) == BOOLEAN_TYPE
13737 || TREE_CODE (t) == OFFSET_TYPE
13738 || TREE_CODE (t) == REFERENCE_TYPE
13739 || TREE_CODE (t) == NULLPTR_TYPE
13740 || TREE_CODE (t) == POINTER_TYPE)
13741 {
13742 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
13743 {
13744 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
13745 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
13746 error_found = true;
13747 }
13748 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
13749 {
13750 error ("TYPE_CACHED_VALUES is not TREE_VEC");
13751 debug_tree (TYPE_CACHED_VALUES (t));
13752 error_found = true;
13753 }
13754 /* Verify just enough of cache to ensure that no one copied it to new type.
13755 All copying should go by copy_node that should clear it. */
13756 else if (TYPE_CACHED_VALUES_P (t))
13757 {
13758 int i;
13759 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
13760 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
13761 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
13762 {
13763 error ("wrong TYPE_CACHED_VALUES entry");
13764 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
13765 error_found = true;
13766 break;
13767 }
13768 }
13769 }
13770 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13771 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
13772 {
13773 /* C++ FE uses TREE_PURPOSE to store initial values. */
13774 if (TREE_PURPOSE (l) && in_lto_p)
13775 {
13776 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
13777 debug_tree (l);
13778 error_found = true;
13779 }
13780 if (!TYPE_P (TREE_VALUE (l)))
13781 {
13782 error ("Wrong entry in TYPE_ARG_TYPES list");
13783 debug_tree (l);
13784 error_found = true;
13785 }
13786 }
13787 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
13788 {
13789 error ("TYPE_VALUES_RAW field is non-NULL");
13790 debug_tree (TYPE_VALUES_RAW (t));
13791 error_found = true;
13792 }
13793 if (TREE_CODE (t) != INTEGER_TYPE
13794 && TREE_CODE (t) != BOOLEAN_TYPE
13795 && TREE_CODE (t) != OFFSET_TYPE
13796 && TREE_CODE (t) != REFERENCE_TYPE
13797 && TREE_CODE (t) != NULLPTR_TYPE
13798 && TREE_CODE (t) != POINTER_TYPE
13799 && TYPE_CACHED_VALUES_P (t))
13800 {
13801 error ("TYPE_CACHED_VALUES_P is set while it should not");
13802 error_found = true;
13803 }
13804 if (TYPE_STRING_FLAG (t)
13805 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
13806 {
13807 error ("TYPE_STRING_FLAG is set on wrong type code");
13808 error_found = true;
13809 }
13810 else if (TYPE_STRING_FLAG (t))
13811 {
13812 const_tree b = t;
13813 if (TREE_CODE (b) == ARRAY_TYPE)
13814 b = TREE_TYPE (t);
13815 /* Java builds arrays with TYPE_STRING_FLAG of promoted_char_type
13816 that is 32bits. */
13817 if (TREE_CODE (b) != INTEGER_TYPE)
13818 {
13819 error ("TYPE_STRING_FLAG is set on type that does not look like "
13820 "char nor array of chars");
13821 error_found = true;
13822 }
13823 }
13824
13825 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
13826 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
13827 of a type. */
13828 if (TREE_CODE (t) == METHOD_TYPE
13829 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
13830 {
13831 error ("TYPE_METHOD_BASETYPE is not main variant");
13832 error_found = true;
13833 }
13834
13835 if (error_found)
13836 {
13837 debug_tree (const_cast <tree> (t));
13838 internal_error ("verify_type failed");
13839 }
13840 }
13841
13842
13843 /* Return true if ARG is marked with the nonnull attribute in the
13844 current function signature. */
13845
13846 bool
13847 nonnull_arg_p (const_tree arg)
13848 {
13849 tree t, attrs, fntype;
13850 unsigned HOST_WIDE_INT arg_num;
13851
13852 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
13853
13854 /* The static chain decl is always non null. */
13855 if (arg == cfun->static_chain_decl)
13856 return true;
13857
13858 /* THIS argument of method is always non-NULL. */
13859 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
13860 && arg == DECL_ARGUMENTS (cfun->decl)
13861 && flag_delete_null_pointer_checks)
13862 return true;
13863
13864 /* Values passed by reference are always non-NULL. */
13865 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
13866 && flag_delete_null_pointer_checks)
13867 return true;
13868
13869 fntype = TREE_TYPE (cfun->decl);
13870 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
13871 {
13872 attrs = lookup_attribute ("nonnull", attrs);
13873
13874 /* If "nonnull" wasn't specified, we know nothing about the argument. */
13875 if (attrs == NULL_TREE)
13876 return false;
13877
13878 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
13879 if (TREE_VALUE (attrs) == NULL_TREE)
13880 return true;
13881
13882 /* Get the position number for ARG in the function signature. */
13883 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
13884 t;
13885 t = DECL_CHAIN (t), arg_num++)
13886 {
13887 if (t == arg)
13888 break;
13889 }
13890
13891 gcc_assert (t == arg);
13892
13893 /* Now see if ARG_NUM is mentioned in the nonnull list. */
13894 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
13895 {
13896 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
13897 return true;
13898 }
13899 }
13900
13901 return false;
13902 }
13903
13904 /* Given location LOC, strip away any packed range information
13905 or ad-hoc information. */
13906
13907 static location_t
13908 get_pure_location (location_t loc)
13909 {
13910 if (IS_ADHOC_LOC (loc))
13911 loc
13912 = line_table->location_adhoc_data_map.data[loc & MAX_SOURCE_LOCATION].locus;
13913
13914 if (loc >= LINEMAPS_MACRO_LOWEST_LOCATION (line_table))
13915 return loc;
13916
13917 if (loc < RESERVED_LOCATION_COUNT)
13918 return loc;
13919
13920 const line_map *map = linemap_lookup (line_table, loc);
13921 const line_map_ordinary *ordmap = linemap_check_ordinary (map);
13922
13923 return loc & ~((1 << ordmap->m_range_bits) - 1);
13924 }
13925
13926 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
13927 information. */
13928
13929 location_t
13930 set_block (location_t loc, tree block)
13931 {
13932 location_t pure_loc = get_pure_location (loc);
13933 source_range src_range = get_range_from_loc (line_table, loc);
13934 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
13935 }
13936
13937 void
13938 set_source_range (tree expr, location_t start, location_t finish)
13939 {
13940 source_range src_range;
13941 src_range.m_start = start;
13942 src_range.m_finish = finish;
13943 set_source_range (expr, src_range);
13944 }
13945
13946 void
13947 set_source_range (tree expr, source_range src_range)
13948 {
13949 if (!EXPR_P (expr))
13950 return;
13951
13952 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
13953 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
13954 pure_loc,
13955 src_range,
13956 NULL);
13957 SET_EXPR_LOCATION (expr, adhoc);
13958 }
13959
13960 /* Return the name of combined function FN, for debugging purposes. */
13961
13962 const char *
13963 combined_fn_name (combined_fn fn)
13964 {
13965 if (builtin_fn_p (fn))
13966 {
13967 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
13968 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
13969 }
13970 else
13971 return internal_fn_name (as_internal_fn (fn));
13972 }
13973
13974 #include "gt-tree.h"