tree.c (build_common_builtin_nodes): Do not initialize BUILT_IN_PROFILE_FUNC_ENTER...
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "vecs",
140 "binfos",
141 "ssa names",
142 "constructors",
143 "random kinds",
144 "lang_decl kinds",
145 "lang_type kinds",
146 "omp clauses",
147 };
148 #endif /* GATHER_STATISTICS */
149
150 /* Unique id for next decl created. */
151 static GTY(()) int next_decl_uid;
152 /* Unique id for next type created. */
153 static GTY(()) int next_type_uid = 1;
154 /* Unique id for next debug decl created. Use negative numbers,
155 to catch erroneous uses. */
156 static GTY(()) int next_debug_decl_uid;
157
158 /* Since we cannot rehash a type after it is in the table, we have to
159 keep the hash code. */
160
161 struct GTY(()) type_hash {
162 unsigned long hash;
163 tree type;
164 };
165
166 /* Initial size of the hash table (rounded to next prime). */
167 #define TYPE_HASH_INITIAL_SIZE 1000
168
169 /* Now here is the hash table. When recording a type, it is added to
170 the slot whose index is the hash code. Note that the hash table is
171 used for several kinds of types (function types, array types and
172 array index range types, for now). While all these live in the
173 same table, they are completely independent, and the hash code is
174 computed differently for each of these. */
175
176 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
177 htab_t type_hash_table;
178
179 /* Hash table and temporary node for larger integer const values. */
180 static GTY (()) tree int_cst_node;
181 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
182 htab_t int_cst_hash_table;
183
184 /* Hash table for optimization flags and target option flags. Use the same
185 hash table for both sets of options. Nodes for building the current
186 optimization and target option nodes. The assumption is most of the time
187 the options created will already be in the hash table, so we avoid
188 allocating and freeing up a node repeatably. */
189 static GTY (()) tree cl_optimization_node;
190 static GTY (()) tree cl_target_option_node;
191 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
192 htab_t cl_option_hash_table;
193
194 /* General tree->tree mapping structure for use in hash tables. */
195
196
197 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
198 htab_t debug_expr_for_decl;
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t value_expr_for_decl;
202
203 static GTY ((if_marked ("tree_priority_map_marked_p"),
204 param_is (struct tree_priority_map)))
205 htab_t init_priority_for_decl;
206
207 static void set_type_quals (tree, int);
208 static int type_hash_eq (const void *, const void *);
209 static hashval_t type_hash_hash (const void *);
210 static hashval_t int_cst_hash_hash (const void *);
211 static int int_cst_hash_eq (const void *, const void *);
212 static hashval_t cl_option_hash_hash (const void *);
213 static int cl_option_hash_eq (const void *, const void *);
214 static void print_type_hash_statistics (void);
215 static void print_debug_expr_statistics (void);
216 static void print_value_expr_statistics (void);
217 static int type_hash_marked_p (const void *);
218 static unsigned int type_hash_list (const_tree, hashval_t);
219 static unsigned int attribute_hash_list (const_tree, hashval_t);
220
221 tree global_trees[TI_MAX];
222 tree integer_types[itk_none];
223
224 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
225
226 /* Number of operands for each OpenMP clause. */
227 unsigned const char omp_clause_num_ops[] =
228 {
229 0, /* OMP_CLAUSE_ERROR */
230 1, /* OMP_CLAUSE_PRIVATE */
231 1, /* OMP_CLAUSE_SHARED */
232 1, /* OMP_CLAUSE_FIRSTPRIVATE */
233 2, /* OMP_CLAUSE_LASTPRIVATE */
234 4, /* OMP_CLAUSE_REDUCTION */
235 1, /* OMP_CLAUSE_COPYIN */
236 1, /* OMP_CLAUSE_COPYPRIVATE */
237 1, /* OMP_CLAUSE_IF */
238 1, /* OMP_CLAUSE_NUM_THREADS */
239 1, /* OMP_CLAUSE_SCHEDULE */
240 0, /* OMP_CLAUSE_NOWAIT */
241 0, /* OMP_CLAUSE_ORDERED */
242 0, /* OMP_CLAUSE_DEFAULT */
243 3, /* OMP_CLAUSE_COLLAPSE */
244 0 /* OMP_CLAUSE_UNTIED */
245 };
246
247 const char * const omp_clause_code_name[] =
248 {
249 "error_clause",
250 "private",
251 "shared",
252 "firstprivate",
253 "lastprivate",
254 "reduction",
255 "copyin",
256 "copyprivate",
257 "if",
258 "num_threads",
259 "schedule",
260 "nowait",
261 "ordered",
262 "default",
263 "collapse",
264 "untied"
265 };
266
267
268 /* Return the tree node structure used by tree code CODE. */
269
270 static inline enum tree_node_structure_enum
271 tree_node_structure_for_code (enum tree_code code)
272 {
273 switch (TREE_CODE_CLASS (code))
274 {
275 case tcc_declaration:
276 {
277 switch (code)
278 {
279 case FIELD_DECL:
280 return TS_FIELD_DECL;
281 case PARM_DECL:
282 return TS_PARM_DECL;
283 case VAR_DECL:
284 return TS_VAR_DECL;
285 case LABEL_DECL:
286 return TS_LABEL_DECL;
287 case RESULT_DECL:
288 return TS_RESULT_DECL;
289 case DEBUG_EXPR_DECL:
290 return TS_DECL_WRTL;
291 case CONST_DECL:
292 return TS_CONST_DECL;
293 case TYPE_DECL:
294 return TS_TYPE_DECL;
295 case FUNCTION_DECL:
296 return TS_FUNCTION_DECL;
297 case TRANSLATION_UNIT_DECL:
298 return TS_TRANSLATION_UNIT_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 case TS_TRANSLATION_UNIT_DECL:
470 MARK_TS_DECL_COMMON (code);
471 break;
472
473 default:
474 gcc_unreachable ();
475 }
476 }
477
478 /* Basic consistency checks for attributes used in fold. */
479 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
480 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
481 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
488 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
489 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
490 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
494 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
495 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
496 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
503 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
504 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
505 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
507 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
508 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
509 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
510 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
511 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
512 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
513 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
514 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
515 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
516 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
517 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
518
519 #undef MARK_TS_BASE
520 #undef MARK_TS_COMMON
521 #undef MARK_TS_DECL_MINIMAL
522 #undef MARK_TS_DECL_COMMON
523 #undef MARK_TS_DECL_WRTL
524 #undef MARK_TS_DECL_WITH_VIS
525 #undef MARK_TS_DECL_NON_COMMON
526 }
527
528
529 /* Init tree.c. */
530
531 void
532 init_ttree (void)
533 {
534 /* Initialize the hash table of types. */
535 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
536 type_hash_eq, 0);
537
538 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
539 tree_decl_map_eq, 0);
540
541 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
542 tree_decl_map_eq, 0);
543 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
544 tree_priority_map_eq, 0);
545
546 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
547 int_cst_hash_eq, NULL);
548
549 int_cst_node = make_node (INTEGER_CST);
550
551 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
552 cl_option_hash_eq, NULL);
553
554 cl_optimization_node = make_node (OPTIMIZATION_NODE);
555 cl_target_option_node = make_node (TARGET_OPTION_NODE);
556
557 /* Initialize the tree_contains_struct array. */
558 initialize_tree_contains_struct ();
559 lang_hooks.init_ts ();
560 }
561
562 \f
563 /* The name of the object as the assembler will see it (but before any
564 translations made by ASM_OUTPUT_LABELREF). Often this is the same
565 as DECL_NAME. It is an IDENTIFIER_NODE. */
566 tree
567 decl_assembler_name (tree decl)
568 {
569 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
570 lang_hooks.set_decl_assembler_name (decl);
571 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
572 }
573
574 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
575
576 bool
577 decl_assembler_name_equal (tree decl, const_tree asmname)
578 {
579 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
580 const char *decl_str;
581 const char *asmname_str;
582 bool test = false;
583
584 if (decl_asmname == asmname)
585 return true;
586
587 decl_str = IDENTIFIER_POINTER (decl_asmname);
588 asmname_str = IDENTIFIER_POINTER (asmname);
589
590
591 /* If the target assembler name was set by the user, things are trickier.
592 We have a leading '*' to begin with. After that, it's arguable what
593 is the correct thing to do with -fleading-underscore. Arguably, we've
594 historically been doing the wrong thing in assemble_alias by always
595 printing the leading underscore. Since we're not changing that, make
596 sure user_label_prefix follows the '*' before matching. */
597 if (decl_str[0] == '*')
598 {
599 size_t ulp_len = strlen (user_label_prefix);
600
601 decl_str ++;
602
603 if (ulp_len == 0)
604 test = true;
605 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
606 decl_str += ulp_len, test=true;
607 else
608 decl_str --;
609 }
610 if (asmname_str[0] == '*')
611 {
612 size_t ulp_len = strlen (user_label_prefix);
613
614 asmname_str ++;
615
616 if (ulp_len == 0)
617 test = true;
618 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
619 asmname_str += ulp_len, test=true;
620 else
621 asmname_str --;
622 }
623
624 if (!test)
625 return false;
626 return strcmp (decl_str, asmname_str) == 0;
627 }
628
629 /* Hash asmnames ignoring the user specified marks. */
630
631 hashval_t
632 decl_assembler_name_hash (const_tree asmname)
633 {
634 if (IDENTIFIER_POINTER (asmname)[0] == '*')
635 {
636 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
637 size_t ulp_len = strlen (user_label_prefix);
638
639 if (ulp_len == 0)
640 ;
641 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
642 decl_str += ulp_len;
643
644 return htab_hash_string (decl_str);
645 }
646
647 return htab_hash_string (IDENTIFIER_POINTER (asmname));
648 }
649
650 /* Compute the number of bytes occupied by a tree with code CODE.
651 This function cannot be used for nodes that have variable sizes,
652 including TREE_VEC, STRING_CST, and CALL_EXPR. */
653 size_t
654 tree_code_size (enum tree_code code)
655 {
656 switch (TREE_CODE_CLASS (code))
657 {
658 case tcc_declaration: /* A decl node */
659 {
660 switch (code)
661 {
662 case FIELD_DECL:
663 return sizeof (struct tree_field_decl);
664 case PARM_DECL:
665 return sizeof (struct tree_parm_decl);
666 case VAR_DECL:
667 return sizeof (struct tree_var_decl);
668 case LABEL_DECL:
669 return sizeof (struct tree_label_decl);
670 case RESULT_DECL:
671 return sizeof (struct tree_result_decl);
672 case CONST_DECL:
673 return sizeof (struct tree_const_decl);
674 case TYPE_DECL:
675 return sizeof (struct tree_type_decl);
676 case FUNCTION_DECL:
677 return sizeof (struct tree_function_decl);
678 case DEBUG_EXPR_DECL:
679 return sizeof (struct tree_decl_with_rtl);
680 default:
681 return sizeof (struct tree_decl_non_common);
682 }
683 }
684
685 case tcc_type: /* a type node */
686 return sizeof (struct tree_type);
687
688 case tcc_reference: /* a reference */
689 case tcc_expression: /* an expression */
690 case tcc_statement: /* an expression with side effects */
691 case tcc_comparison: /* a comparison expression */
692 case tcc_unary: /* a unary arithmetic expression */
693 case tcc_binary: /* a binary arithmetic expression */
694 return (sizeof (struct tree_exp)
695 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
696
697 case tcc_constant: /* a constant */
698 switch (code)
699 {
700 case INTEGER_CST: return sizeof (struct tree_int_cst);
701 case REAL_CST: return sizeof (struct tree_real_cst);
702 case FIXED_CST: return sizeof (struct tree_fixed_cst);
703 case COMPLEX_CST: return sizeof (struct tree_complex);
704 case VECTOR_CST: return sizeof (struct tree_vector);
705 case STRING_CST: gcc_unreachable ();
706 default:
707 return lang_hooks.tree_size (code);
708 }
709
710 case tcc_exceptional: /* something random, like an identifier. */
711 switch (code)
712 {
713 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
714 case TREE_LIST: return sizeof (struct tree_list);
715
716 case ERROR_MARK:
717 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
718
719 case TREE_VEC:
720 case OMP_CLAUSE: gcc_unreachable ();
721
722 case SSA_NAME: return sizeof (struct tree_ssa_name);
723
724 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
725 case BLOCK: return sizeof (struct tree_block);
726 case CONSTRUCTOR: return sizeof (struct tree_constructor);
727 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
728 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
729
730 default:
731 return lang_hooks.tree_size (code);
732 }
733
734 default:
735 gcc_unreachable ();
736 }
737 }
738
739 /* Compute the number of bytes occupied by NODE. This routine only
740 looks at TREE_CODE, except for those nodes that have variable sizes. */
741 size_t
742 tree_size (const_tree node)
743 {
744 const enum tree_code code = TREE_CODE (node);
745 switch (code)
746 {
747 case TREE_BINFO:
748 return (offsetof (struct tree_binfo, base_binfos)
749 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
750
751 case TREE_VEC:
752 return (sizeof (struct tree_vec)
753 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
754
755 case STRING_CST:
756 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
757
758 case OMP_CLAUSE:
759 return (sizeof (struct tree_omp_clause)
760 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
761 * sizeof (tree));
762
763 default:
764 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
765 return (sizeof (struct tree_exp)
766 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
767 else
768 return tree_code_size (code);
769 }
770 }
771
772 /* Return a newly allocated node of code CODE. For decl and type
773 nodes, some other fields are initialized. The rest of the node is
774 initialized to zero. This function cannot be used for TREE_VEC or
775 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
776
777 Achoo! I got a code in the node. */
778
779 tree
780 make_node_stat (enum tree_code code MEM_STAT_DECL)
781 {
782 tree t;
783 enum tree_code_class type = TREE_CODE_CLASS (code);
784 size_t length = tree_code_size (code);
785 #ifdef GATHER_STATISTICS
786 tree_node_kind kind;
787
788 switch (type)
789 {
790 case tcc_declaration: /* A decl node */
791 kind = d_kind;
792 break;
793
794 case tcc_type: /* a type node */
795 kind = t_kind;
796 break;
797
798 case tcc_statement: /* an expression with side effects */
799 kind = s_kind;
800 break;
801
802 case tcc_reference: /* a reference */
803 kind = r_kind;
804 break;
805
806 case tcc_expression: /* an expression */
807 case tcc_comparison: /* a comparison expression */
808 case tcc_unary: /* a unary arithmetic expression */
809 case tcc_binary: /* a binary arithmetic expression */
810 kind = e_kind;
811 break;
812
813 case tcc_constant: /* a constant */
814 kind = c_kind;
815 break;
816
817 case tcc_exceptional: /* something random, like an identifier. */
818 switch (code)
819 {
820 case IDENTIFIER_NODE:
821 kind = id_kind;
822 break;
823
824 case TREE_VEC:
825 kind = vec_kind;
826 break;
827
828 case TREE_BINFO:
829 kind = binfo_kind;
830 break;
831
832 case SSA_NAME:
833 kind = ssa_name_kind;
834 break;
835
836 case BLOCK:
837 kind = b_kind;
838 break;
839
840 case CONSTRUCTOR:
841 kind = constr_kind;
842 break;
843
844 default:
845 kind = x_kind;
846 break;
847 }
848 break;
849
850 default:
851 gcc_unreachable ();
852 }
853
854 tree_node_counts[(int) kind]++;
855 tree_node_sizes[(int) kind] += length;
856 #endif
857
858 t = ggc_alloc_zone_cleared_tree_node_stat (
859 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
860 length PASS_MEM_STAT);
861 TREE_SET_CODE (t, code);
862
863 switch (type)
864 {
865 case tcc_statement:
866 TREE_SIDE_EFFECTS (t) = 1;
867 break;
868
869 case tcc_declaration:
870 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
871 {
872 if (code == FUNCTION_DECL)
873 {
874 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
875 DECL_MODE (t) = FUNCTION_MODE;
876 }
877 else
878 DECL_ALIGN (t) = 1;
879 }
880 DECL_SOURCE_LOCATION (t) = input_location;
881 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
882 DECL_UID (t) = --next_debug_decl_uid;
883 else
884 {
885 DECL_UID (t) = next_decl_uid++;
886 SET_DECL_PT_UID (t, -1);
887 }
888 if (TREE_CODE (t) == LABEL_DECL)
889 LABEL_DECL_UID (t) = -1;
890
891 break;
892
893 case tcc_type:
894 TYPE_UID (t) = next_type_uid++;
895 TYPE_ALIGN (t) = BITS_PER_UNIT;
896 TYPE_USER_ALIGN (t) = 0;
897 TYPE_MAIN_VARIANT (t) = t;
898 TYPE_CANONICAL (t) = t;
899
900 /* Default to no attributes for type, but let target change that. */
901 TYPE_ATTRIBUTES (t) = NULL_TREE;
902 targetm.set_default_type_attributes (t);
903
904 /* We have not yet computed the alias set for this type. */
905 TYPE_ALIAS_SET (t) = -1;
906 break;
907
908 case tcc_constant:
909 TREE_CONSTANT (t) = 1;
910 break;
911
912 case tcc_expression:
913 switch (code)
914 {
915 case INIT_EXPR:
916 case MODIFY_EXPR:
917 case VA_ARG_EXPR:
918 case PREDECREMENT_EXPR:
919 case PREINCREMENT_EXPR:
920 case POSTDECREMENT_EXPR:
921 case POSTINCREMENT_EXPR:
922 /* All of these have side-effects, no matter what their
923 operands are. */
924 TREE_SIDE_EFFECTS (t) = 1;
925 break;
926
927 default:
928 break;
929 }
930 break;
931
932 default:
933 /* Other classes need no special treatment. */
934 break;
935 }
936
937 return t;
938 }
939 \f
940 /* Return a new node with the same contents as NODE except that its
941 TREE_CHAIN is zero and it has a fresh uid. */
942
943 tree
944 copy_node_stat (tree node MEM_STAT_DECL)
945 {
946 tree t;
947 enum tree_code code = TREE_CODE (node);
948 size_t length;
949
950 gcc_assert (code != STATEMENT_LIST);
951
952 length = tree_size (node);
953 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
954 memcpy (t, node, length);
955
956 TREE_CHAIN (t) = 0;
957 TREE_ASM_WRITTEN (t) = 0;
958 TREE_VISITED (t) = 0;
959 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
960 *DECL_VAR_ANN_PTR (t) = 0;
961
962 if (TREE_CODE_CLASS (code) == tcc_declaration)
963 {
964 if (code == DEBUG_EXPR_DECL)
965 DECL_UID (t) = --next_debug_decl_uid;
966 else
967 {
968 DECL_UID (t) = next_decl_uid++;
969 if (DECL_PT_UID_SET_P (node))
970 SET_DECL_PT_UID (t, DECL_PT_UID (node));
971 }
972 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
973 && DECL_HAS_VALUE_EXPR_P (node))
974 {
975 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
976 DECL_HAS_VALUE_EXPR_P (t) = 1;
977 }
978 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
979 {
980 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
981 DECL_HAS_INIT_PRIORITY_P (t) = 1;
982 }
983 }
984 else if (TREE_CODE_CLASS (code) == tcc_type)
985 {
986 TYPE_UID (t) = next_type_uid++;
987 /* The following is so that the debug code for
988 the copy is different from the original type.
989 The two statements usually duplicate each other
990 (because they clear fields of the same union),
991 but the optimizer should catch that. */
992 TYPE_SYMTAB_POINTER (t) = 0;
993 TYPE_SYMTAB_ADDRESS (t) = 0;
994
995 /* Do not copy the values cache. */
996 if (TYPE_CACHED_VALUES_P(t))
997 {
998 TYPE_CACHED_VALUES_P (t) = 0;
999 TYPE_CACHED_VALUES (t) = NULL_TREE;
1000 }
1001 }
1002
1003 return t;
1004 }
1005
1006 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1007 For example, this can copy a list made of TREE_LIST nodes. */
1008
1009 tree
1010 copy_list (tree list)
1011 {
1012 tree head;
1013 tree prev, next;
1014
1015 if (list == 0)
1016 return 0;
1017
1018 head = prev = copy_node (list);
1019 next = TREE_CHAIN (list);
1020 while (next)
1021 {
1022 TREE_CHAIN (prev) = copy_node (next);
1023 prev = TREE_CHAIN (prev);
1024 next = TREE_CHAIN (next);
1025 }
1026 return head;
1027 }
1028
1029 \f
1030 /* Create an INT_CST node with a LOW value sign extended. */
1031
1032 tree
1033 build_int_cst (tree type, HOST_WIDE_INT low)
1034 {
1035 /* Support legacy code. */
1036 if (!type)
1037 type = integer_type_node;
1038
1039 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1040 }
1041
1042 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1043 if it is negative. This function is similar to build_int_cst, but
1044 the extra bits outside of the type precision are cleared. Constants
1045 with these extra bits may confuse the fold so that it detects overflows
1046 even in cases when they do not occur, and in general should be avoided.
1047 We cannot however make this a default behavior of build_int_cst without
1048 more intrusive changes, since there are parts of gcc that rely on the extra
1049 precision of the integer constants. */
1050
1051 tree
1052 build_int_cst_type (tree type, HOST_WIDE_INT low)
1053 {
1054 gcc_assert (type);
1055
1056 return double_int_to_tree (type, shwi_to_double_int (low));
1057 }
1058
1059 /* Constructs tree in type TYPE from with value given by CST. Signedness
1060 of CST is assumed to be the same as the signedness of TYPE. */
1061
1062 tree
1063 double_int_to_tree (tree type, double_int cst)
1064 {
1065 /* Size types *are* sign extended. */
1066 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1067 || (TREE_CODE (type) == INTEGER_TYPE
1068 && TYPE_IS_SIZETYPE (type)));
1069
1070 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1071
1072 return build_int_cst_wide (type, cst.low, cst.high);
1073 }
1074
1075 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1076 to be the same as the signedness of TYPE. */
1077
1078 bool
1079 double_int_fits_to_tree_p (const_tree type, double_int cst)
1080 {
1081 /* Size types *are* sign extended. */
1082 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1083 || (TREE_CODE (type) == INTEGER_TYPE
1084 && TYPE_IS_SIZETYPE (type)));
1085
1086 double_int ext
1087 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1088
1089 return double_int_equal_p (cst, ext);
1090 }
1091
1092 /* We force the double_int CST to the range of the type TYPE by sign or
1093 zero extending it. OVERFLOWABLE indicates if we are interested in
1094 overflow of the value, when >0 we are only interested in signed
1095 overflow, for <0 we are interested in any overflow. OVERFLOWED
1096 indicates whether overflow has already occurred. CONST_OVERFLOWED
1097 indicates whether constant overflow has already occurred. We force
1098 T's value to be within range of T's type (by setting to 0 or 1 all
1099 the bits outside the type's range). We set TREE_OVERFLOWED if,
1100 OVERFLOWED is nonzero,
1101 or OVERFLOWABLE is >0 and signed overflow occurs
1102 or OVERFLOWABLE is <0 and any overflow occurs
1103 We return a new tree node for the extended double_int. The node
1104 is shared if no overflow flags are set. */
1105
1106
1107 tree
1108 force_fit_type_double (tree type, double_int cst, int overflowable,
1109 bool overflowed)
1110 {
1111 bool sign_extended_type;
1112
1113 /* Size types *are* sign extended. */
1114 sign_extended_type = (!TYPE_UNSIGNED (type)
1115 || (TREE_CODE (type) == INTEGER_TYPE
1116 && TYPE_IS_SIZETYPE (type)));
1117
1118 /* If we need to set overflow flags, return a new unshared node. */
1119 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1120 {
1121 if (overflowed
1122 || overflowable < 0
1123 || (overflowable > 0 && sign_extended_type))
1124 {
1125 tree t = make_node (INTEGER_CST);
1126 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1127 !sign_extended_type);
1128 TREE_TYPE (t) = type;
1129 TREE_OVERFLOW (t) = 1;
1130 return t;
1131 }
1132 }
1133
1134 /* Else build a shared node. */
1135 return double_int_to_tree (type, cst);
1136 }
1137
1138 /* These are the hash table functions for the hash table of INTEGER_CST
1139 nodes of a sizetype. */
1140
1141 /* Return the hash code code X, an INTEGER_CST. */
1142
1143 static hashval_t
1144 int_cst_hash_hash (const void *x)
1145 {
1146 const_tree const t = (const_tree) x;
1147
1148 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1149 ^ htab_hash_pointer (TREE_TYPE (t)));
1150 }
1151
1152 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1153 is the same as that given by *Y, which is the same. */
1154
1155 static int
1156 int_cst_hash_eq (const void *x, const void *y)
1157 {
1158 const_tree const xt = (const_tree) x;
1159 const_tree const yt = (const_tree) y;
1160
1161 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1162 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1163 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1164 }
1165
1166 /* Create an INT_CST node of TYPE and value HI:LOW.
1167 The returned node is always shared. For small integers we use a
1168 per-type vector cache, for larger ones we use a single hash table. */
1169
1170 tree
1171 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1172 {
1173 tree t;
1174 int ix = -1;
1175 int limit = 0;
1176
1177 gcc_assert (type);
1178
1179 switch (TREE_CODE (type))
1180 {
1181 case NULLPTR_TYPE:
1182 gcc_assert (hi == 0 && low == 0);
1183 /* Fallthru. */
1184
1185 case POINTER_TYPE:
1186 case REFERENCE_TYPE:
1187 /* Cache NULL pointer. */
1188 if (!hi && !low)
1189 {
1190 limit = 1;
1191 ix = 0;
1192 }
1193 break;
1194
1195 case BOOLEAN_TYPE:
1196 /* Cache false or true. */
1197 limit = 2;
1198 if (!hi && low < 2)
1199 ix = low;
1200 break;
1201
1202 case INTEGER_TYPE:
1203 case OFFSET_TYPE:
1204 if (TYPE_UNSIGNED (type))
1205 {
1206 /* Cache 0..N */
1207 limit = INTEGER_SHARE_LIMIT;
1208 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1209 ix = low;
1210 }
1211 else
1212 {
1213 /* Cache -1..N */
1214 limit = INTEGER_SHARE_LIMIT + 1;
1215 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1216 ix = low + 1;
1217 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1218 ix = 0;
1219 }
1220 break;
1221
1222 case ENUMERAL_TYPE:
1223 break;
1224
1225 default:
1226 gcc_unreachable ();
1227 }
1228
1229 if (ix >= 0)
1230 {
1231 /* Look for it in the type's vector of small shared ints. */
1232 if (!TYPE_CACHED_VALUES_P (type))
1233 {
1234 TYPE_CACHED_VALUES_P (type) = 1;
1235 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1236 }
1237
1238 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1239 if (t)
1240 {
1241 /* Make sure no one is clobbering the shared constant. */
1242 gcc_assert (TREE_TYPE (t) == type);
1243 gcc_assert (TREE_INT_CST_LOW (t) == low);
1244 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1245 }
1246 else
1247 {
1248 /* Create a new shared int. */
1249 t = make_node (INTEGER_CST);
1250
1251 TREE_INT_CST_LOW (t) = low;
1252 TREE_INT_CST_HIGH (t) = hi;
1253 TREE_TYPE (t) = type;
1254
1255 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1256 }
1257 }
1258 else
1259 {
1260 /* Use the cache of larger shared ints. */
1261 void **slot;
1262
1263 TREE_INT_CST_LOW (int_cst_node) = low;
1264 TREE_INT_CST_HIGH (int_cst_node) = hi;
1265 TREE_TYPE (int_cst_node) = type;
1266
1267 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1268 t = (tree) *slot;
1269 if (!t)
1270 {
1271 /* Insert this one into the hash table. */
1272 t = int_cst_node;
1273 *slot = t;
1274 /* Make a new node for next time round. */
1275 int_cst_node = make_node (INTEGER_CST);
1276 }
1277 }
1278
1279 return t;
1280 }
1281
1282 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1283 and the rest are zeros. */
1284
1285 tree
1286 build_low_bits_mask (tree type, unsigned bits)
1287 {
1288 double_int mask;
1289
1290 gcc_assert (bits <= TYPE_PRECISION (type));
1291
1292 if (bits == TYPE_PRECISION (type)
1293 && !TYPE_UNSIGNED (type))
1294 /* Sign extended all-ones mask. */
1295 mask = double_int_minus_one;
1296 else
1297 mask = double_int_mask (bits);
1298
1299 return build_int_cst_wide (type, mask.low, mask.high);
1300 }
1301
1302 /* Checks that X is integer constant that can be expressed in (unsigned)
1303 HOST_WIDE_INT without loss of precision. */
1304
1305 bool
1306 cst_and_fits_in_hwi (const_tree x)
1307 {
1308 if (TREE_CODE (x) != INTEGER_CST)
1309 return false;
1310
1311 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1312 return false;
1313
1314 return (TREE_INT_CST_HIGH (x) == 0
1315 || TREE_INT_CST_HIGH (x) == -1);
1316 }
1317
1318 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1319 are in a list pointed to by VALS. */
1320
1321 tree
1322 build_vector (tree type, tree vals)
1323 {
1324 tree v = make_node (VECTOR_CST);
1325 int over = 0;
1326 tree link;
1327 unsigned cnt = 0;
1328
1329 TREE_VECTOR_CST_ELTS (v) = vals;
1330 TREE_TYPE (v) = type;
1331
1332 /* Iterate through elements and check for overflow. */
1333 for (link = vals; link; link = TREE_CHAIN (link))
1334 {
1335 tree value = TREE_VALUE (link);
1336 cnt++;
1337
1338 /* Don't crash if we get an address constant. */
1339 if (!CONSTANT_CLASS_P (value))
1340 continue;
1341
1342 over |= TREE_OVERFLOW (value);
1343 }
1344
1345 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1346
1347 TREE_OVERFLOW (v) = over;
1348 return v;
1349 }
1350
1351 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1352 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1353
1354 tree
1355 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1356 {
1357 tree list = NULL_TREE;
1358 unsigned HOST_WIDE_INT idx;
1359 tree value;
1360
1361 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1362 list = tree_cons (NULL_TREE, value, list);
1363 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1364 list = tree_cons (NULL_TREE,
1365 build_zero_cst (TREE_TYPE (type)), list);
1366 return build_vector (type, nreverse (list));
1367 }
1368
1369 /* Build a vector of type VECTYPE where all the elements are SCs. */
1370 tree
1371 build_vector_from_val (tree vectype, tree sc)
1372 {
1373 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1374 VEC(constructor_elt, gc) *v = NULL;
1375
1376 if (sc == error_mark_node)
1377 return sc;
1378
1379 gcc_assert (useless_type_conversion_p (TREE_TYPE (sc),
1380 TREE_TYPE (vectype)));
1381
1382 v = VEC_alloc (constructor_elt, gc, nunits);
1383 for (i = 0; i < nunits; ++i)
1384 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1385
1386 if (CONSTANT_CLASS_P (sc))
1387 return build_vector_from_ctor (vectype, v);
1388 else
1389 return build_constructor (vectype, v);
1390 }
1391
1392 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1393 are in the VEC pointed to by VALS. */
1394 tree
1395 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1396 {
1397 tree c = make_node (CONSTRUCTOR);
1398 unsigned int i;
1399 constructor_elt *elt;
1400 bool constant_p = true;
1401
1402 TREE_TYPE (c) = type;
1403 CONSTRUCTOR_ELTS (c) = vals;
1404
1405 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1406 if (!TREE_CONSTANT (elt->value))
1407 {
1408 constant_p = false;
1409 break;
1410 }
1411
1412 TREE_CONSTANT (c) = constant_p;
1413
1414 return c;
1415 }
1416
1417 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1418 INDEX and VALUE. */
1419 tree
1420 build_constructor_single (tree type, tree index, tree value)
1421 {
1422 VEC(constructor_elt,gc) *v;
1423 constructor_elt *elt;
1424
1425 v = VEC_alloc (constructor_elt, gc, 1);
1426 elt = VEC_quick_push (constructor_elt, v, NULL);
1427 elt->index = index;
1428 elt->value = value;
1429
1430 return build_constructor (type, v);
1431 }
1432
1433
1434 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1435 are in a list pointed to by VALS. */
1436 tree
1437 build_constructor_from_list (tree type, tree vals)
1438 {
1439 tree t;
1440 VEC(constructor_elt,gc) *v = NULL;
1441
1442 if (vals)
1443 {
1444 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1445 for (t = vals; t; t = TREE_CHAIN (t))
1446 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1447 }
1448
1449 return build_constructor (type, v);
1450 }
1451
1452 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1453
1454 tree
1455 build_fixed (tree type, FIXED_VALUE_TYPE f)
1456 {
1457 tree v;
1458 FIXED_VALUE_TYPE *fp;
1459
1460 v = make_node (FIXED_CST);
1461 fp = ggc_alloc_fixed_value ();
1462 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1463
1464 TREE_TYPE (v) = type;
1465 TREE_FIXED_CST_PTR (v) = fp;
1466 return v;
1467 }
1468
1469 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1470
1471 tree
1472 build_real (tree type, REAL_VALUE_TYPE d)
1473 {
1474 tree v;
1475 REAL_VALUE_TYPE *dp;
1476 int overflow = 0;
1477
1478 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1479 Consider doing it via real_convert now. */
1480
1481 v = make_node (REAL_CST);
1482 dp = ggc_alloc_real_value ();
1483 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1484
1485 TREE_TYPE (v) = type;
1486 TREE_REAL_CST_PTR (v) = dp;
1487 TREE_OVERFLOW (v) = overflow;
1488 return v;
1489 }
1490
1491 /* Return a new REAL_CST node whose type is TYPE
1492 and whose value is the integer value of the INTEGER_CST node I. */
1493
1494 REAL_VALUE_TYPE
1495 real_value_from_int_cst (const_tree type, const_tree i)
1496 {
1497 REAL_VALUE_TYPE d;
1498
1499 /* Clear all bits of the real value type so that we can later do
1500 bitwise comparisons to see if two values are the same. */
1501 memset (&d, 0, sizeof d);
1502
1503 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1504 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1505 TYPE_UNSIGNED (TREE_TYPE (i)));
1506 return d;
1507 }
1508
1509 /* Given a tree representing an integer constant I, return a tree
1510 representing the same value as a floating-point constant of type TYPE. */
1511
1512 tree
1513 build_real_from_int_cst (tree type, const_tree i)
1514 {
1515 tree v;
1516 int overflow = TREE_OVERFLOW (i);
1517
1518 v = build_real (type, real_value_from_int_cst (type, i));
1519
1520 TREE_OVERFLOW (v) |= overflow;
1521 return v;
1522 }
1523
1524 /* Return a newly constructed STRING_CST node whose value is
1525 the LEN characters at STR.
1526 The TREE_TYPE is not initialized. */
1527
1528 tree
1529 build_string (int len, const char *str)
1530 {
1531 tree s;
1532 size_t length;
1533
1534 /* Do not waste bytes provided by padding of struct tree_string. */
1535 length = len + offsetof (struct tree_string, str) + 1;
1536
1537 #ifdef GATHER_STATISTICS
1538 tree_node_counts[(int) c_kind]++;
1539 tree_node_sizes[(int) c_kind] += length;
1540 #endif
1541
1542 s = ggc_alloc_tree_node (length);
1543
1544 memset (s, 0, sizeof (struct tree_common));
1545 TREE_SET_CODE (s, STRING_CST);
1546 TREE_CONSTANT (s) = 1;
1547 TREE_STRING_LENGTH (s) = len;
1548 memcpy (s->string.str, str, len);
1549 s->string.str[len] = '\0';
1550
1551 return s;
1552 }
1553
1554 /* Return a newly constructed COMPLEX_CST node whose value is
1555 specified by the real and imaginary parts REAL and IMAG.
1556 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1557 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1558
1559 tree
1560 build_complex (tree type, tree real, tree imag)
1561 {
1562 tree t = make_node (COMPLEX_CST);
1563
1564 TREE_REALPART (t) = real;
1565 TREE_IMAGPART (t) = imag;
1566 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1567 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1568 return t;
1569 }
1570
1571 /* Return a constant of arithmetic type TYPE which is the
1572 multiplicative identity of the set TYPE. */
1573
1574 tree
1575 build_one_cst (tree type)
1576 {
1577 switch (TREE_CODE (type))
1578 {
1579 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1580 case POINTER_TYPE: case REFERENCE_TYPE:
1581 case OFFSET_TYPE:
1582 return build_int_cst (type, 1);
1583
1584 case REAL_TYPE:
1585 return build_real (type, dconst1);
1586
1587 case FIXED_POINT_TYPE:
1588 /* We can only generate 1 for accum types. */
1589 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1590 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1591
1592 case VECTOR_TYPE:
1593 {
1594 tree scalar = build_one_cst (TREE_TYPE (type));
1595
1596 return build_vector_from_val (type, scalar);
1597 }
1598
1599 case COMPLEX_TYPE:
1600 return build_complex (type,
1601 build_one_cst (TREE_TYPE (type)),
1602 build_zero_cst (TREE_TYPE (type)));
1603
1604 default:
1605 gcc_unreachable ();
1606 }
1607 }
1608
1609 /* Build 0 constant of type TYPE. This is used by constructor folding
1610 and thus the constant should be represented in memory by
1611 zero(es). */
1612
1613 tree
1614 build_zero_cst (tree type)
1615 {
1616 switch (TREE_CODE (type))
1617 {
1618 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1619 case POINTER_TYPE: case REFERENCE_TYPE:
1620 case OFFSET_TYPE:
1621 return build_int_cst (type, 0);
1622
1623 case REAL_TYPE:
1624 return build_real (type, dconst0);
1625
1626 case FIXED_POINT_TYPE:
1627 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1628
1629 case VECTOR_TYPE:
1630 {
1631 tree scalar = build_zero_cst (TREE_TYPE (type));
1632
1633 return build_vector_from_val (type, scalar);
1634 }
1635
1636 case COMPLEX_TYPE:
1637 {
1638 tree zero = build_zero_cst (TREE_TYPE (type));
1639
1640 return build_complex (type, zero, zero);
1641 }
1642
1643 default:
1644 if (!AGGREGATE_TYPE_P (type))
1645 return fold_convert (type, integer_zero_node);
1646 return build_constructor (type, NULL);
1647 }
1648 }
1649
1650
1651 /* Build a BINFO with LEN language slots. */
1652
1653 tree
1654 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1655 {
1656 tree t;
1657 size_t length = (offsetof (struct tree_binfo, base_binfos)
1658 + VEC_embedded_size (tree, base_binfos));
1659
1660 #ifdef GATHER_STATISTICS
1661 tree_node_counts[(int) binfo_kind]++;
1662 tree_node_sizes[(int) binfo_kind] += length;
1663 #endif
1664
1665 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1666
1667 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1668
1669 TREE_SET_CODE (t, TREE_BINFO);
1670
1671 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1672
1673 return t;
1674 }
1675
1676
1677 /* Build a newly constructed TREE_VEC node of length LEN. */
1678
1679 tree
1680 make_tree_vec_stat (int len MEM_STAT_DECL)
1681 {
1682 tree t;
1683 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1684
1685 #ifdef GATHER_STATISTICS
1686 tree_node_counts[(int) vec_kind]++;
1687 tree_node_sizes[(int) vec_kind] += length;
1688 #endif
1689
1690 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1691
1692 TREE_SET_CODE (t, TREE_VEC);
1693 TREE_VEC_LENGTH (t) = len;
1694
1695 return t;
1696 }
1697 \f
1698 /* Return 1 if EXPR is the integer constant zero or a complex constant
1699 of zero. */
1700
1701 int
1702 integer_zerop (const_tree expr)
1703 {
1704 STRIP_NOPS (expr);
1705
1706 return ((TREE_CODE (expr) == INTEGER_CST
1707 && TREE_INT_CST_LOW (expr) == 0
1708 && TREE_INT_CST_HIGH (expr) == 0)
1709 || (TREE_CODE (expr) == COMPLEX_CST
1710 && integer_zerop (TREE_REALPART (expr))
1711 && integer_zerop (TREE_IMAGPART (expr))));
1712 }
1713
1714 /* Return 1 if EXPR is the integer constant one or the corresponding
1715 complex constant. */
1716
1717 int
1718 integer_onep (const_tree expr)
1719 {
1720 STRIP_NOPS (expr);
1721
1722 return ((TREE_CODE (expr) == INTEGER_CST
1723 && TREE_INT_CST_LOW (expr) == 1
1724 && TREE_INT_CST_HIGH (expr) == 0)
1725 || (TREE_CODE (expr) == COMPLEX_CST
1726 && integer_onep (TREE_REALPART (expr))
1727 && integer_zerop (TREE_IMAGPART (expr))));
1728 }
1729
1730 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1731 it contains. Likewise for the corresponding complex constant. */
1732
1733 int
1734 integer_all_onesp (const_tree expr)
1735 {
1736 int prec;
1737 int uns;
1738
1739 STRIP_NOPS (expr);
1740
1741 if (TREE_CODE (expr) == COMPLEX_CST
1742 && integer_all_onesp (TREE_REALPART (expr))
1743 && integer_zerop (TREE_IMAGPART (expr)))
1744 return 1;
1745
1746 else if (TREE_CODE (expr) != INTEGER_CST)
1747 return 0;
1748
1749 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1750 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1751 && TREE_INT_CST_HIGH (expr) == -1)
1752 return 1;
1753 if (!uns)
1754 return 0;
1755
1756 /* Note that using TYPE_PRECISION here is wrong. We care about the
1757 actual bits, not the (arbitrary) range of the type. */
1758 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1759 if (prec >= HOST_BITS_PER_WIDE_INT)
1760 {
1761 HOST_WIDE_INT high_value;
1762 int shift_amount;
1763
1764 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1765
1766 /* Can not handle precisions greater than twice the host int size. */
1767 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1768 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1769 /* Shifting by the host word size is undefined according to the ANSI
1770 standard, so we must handle this as a special case. */
1771 high_value = -1;
1772 else
1773 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1774
1775 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1776 && TREE_INT_CST_HIGH (expr) == high_value);
1777 }
1778 else
1779 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1780 }
1781
1782 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1783 one bit on). */
1784
1785 int
1786 integer_pow2p (const_tree expr)
1787 {
1788 int prec;
1789 HOST_WIDE_INT high, low;
1790
1791 STRIP_NOPS (expr);
1792
1793 if (TREE_CODE (expr) == COMPLEX_CST
1794 && integer_pow2p (TREE_REALPART (expr))
1795 && integer_zerop (TREE_IMAGPART (expr)))
1796 return 1;
1797
1798 if (TREE_CODE (expr) != INTEGER_CST)
1799 return 0;
1800
1801 prec = TYPE_PRECISION (TREE_TYPE (expr));
1802 high = TREE_INT_CST_HIGH (expr);
1803 low = TREE_INT_CST_LOW (expr);
1804
1805 /* First clear all bits that are beyond the type's precision in case
1806 we've been sign extended. */
1807
1808 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1809 ;
1810 else if (prec > HOST_BITS_PER_WIDE_INT)
1811 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1812 else
1813 {
1814 high = 0;
1815 if (prec < HOST_BITS_PER_WIDE_INT)
1816 low &= ~((HOST_WIDE_INT) (-1) << prec);
1817 }
1818
1819 if (high == 0 && low == 0)
1820 return 0;
1821
1822 return ((high == 0 && (low & (low - 1)) == 0)
1823 || (low == 0 && (high & (high - 1)) == 0));
1824 }
1825
1826 /* Return 1 if EXPR is an integer constant other than zero or a
1827 complex constant other than zero. */
1828
1829 int
1830 integer_nonzerop (const_tree expr)
1831 {
1832 STRIP_NOPS (expr);
1833
1834 return ((TREE_CODE (expr) == INTEGER_CST
1835 && (TREE_INT_CST_LOW (expr) != 0
1836 || TREE_INT_CST_HIGH (expr) != 0))
1837 || (TREE_CODE (expr) == COMPLEX_CST
1838 && (integer_nonzerop (TREE_REALPART (expr))
1839 || integer_nonzerop (TREE_IMAGPART (expr)))));
1840 }
1841
1842 /* Return 1 if EXPR is the fixed-point constant zero. */
1843
1844 int
1845 fixed_zerop (const_tree expr)
1846 {
1847 return (TREE_CODE (expr) == FIXED_CST
1848 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1849 }
1850
1851 /* Return the power of two represented by a tree node known to be a
1852 power of two. */
1853
1854 int
1855 tree_log2 (const_tree expr)
1856 {
1857 int prec;
1858 HOST_WIDE_INT high, low;
1859
1860 STRIP_NOPS (expr);
1861
1862 if (TREE_CODE (expr) == COMPLEX_CST)
1863 return tree_log2 (TREE_REALPART (expr));
1864
1865 prec = TYPE_PRECISION (TREE_TYPE (expr));
1866 high = TREE_INT_CST_HIGH (expr);
1867 low = TREE_INT_CST_LOW (expr);
1868
1869 /* First clear all bits that are beyond the type's precision in case
1870 we've been sign extended. */
1871
1872 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1873 ;
1874 else if (prec > HOST_BITS_PER_WIDE_INT)
1875 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1876 else
1877 {
1878 high = 0;
1879 if (prec < HOST_BITS_PER_WIDE_INT)
1880 low &= ~((HOST_WIDE_INT) (-1) << prec);
1881 }
1882
1883 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1884 : exact_log2 (low));
1885 }
1886
1887 /* Similar, but return the largest integer Y such that 2 ** Y is less
1888 than or equal to EXPR. */
1889
1890 int
1891 tree_floor_log2 (const_tree expr)
1892 {
1893 int prec;
1894 HOST_WIDE_INT high, low;
1895
1896 STRIP_NOPS (expr);
1897
1898 if (TREE_CODE (expr) == COMPLEX_CST)
1899 return tree_log2 (TREE_REALPART (expr));
1900
1901 prec = TYPE_PRECISION (TREE_TYPE (expr));
1902 high = TREE_INT_CST_HIGH (expr);
1903 low = TREE_INT_CST_LOW (expr);
1904
1905 /* First clear all bits that are beyond the type's precision in case
1906 we've been sign extended. Ignore if type's precision hasn't been set
1907 since what we are doing is setting it. */
1908
1909 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1910 ;
1911 else if (prec > HOST_BITS_PER_WIDE_INT)
1912 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1913 else
1914 {
1915 high = 0;
1916 if (prec < HOST_BITS_PER_WIDE_INT)
1917 low &= ~((HOST_WIDE_INT) (-1) << prec);
1918 }
1919
1920 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1921 : floor_log2 (low));
1922 }
1923
1924 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1925 decimal float constants, so don't return 1 for them. */
1926
1927 int
1928 real_zerop (const_tree expr)
1929 {
1930 STRIP_NOPS (expr);
1931
1932 return ((TREE_CODE (expr) == REAL_CST
1933 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1934 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1935 || (TREE_CODE (expr) == COMPLEX_CST
1936 && real_zerop (TREE_REALPART (expr))
1937 && real_zerop (TREE_IMAGPART (expr))));
1938 }
1939
1940 /* Return 1 if EXPR is the real constant one in real or complex form.
1941 Trailing zeroes matter for decimal float constants, so don't return
1942 1 for them. */
1943
1944 int
1945 real_onep (const_tree expr)
1946 {
1947 STRIP_NOPS (expr);
1948
1949 return ((TREE_CODE (expr) == REAL_CST
1950 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1951 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1952 || (TREE_CODE (expr) == COMPLEX_CST
1953 && real_onep (TREE_REALPART (expr))
1954 && real_zerop (TREE_IMAGPART (expr))));
1955 }
1956
1957 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1958 for decimal float constants, so don't return 1 for them. */
1959
1960 int
1961 real_twop (const_tree expr)
1962 {
1963 STRIP_NOPS (expr);
1964
1965 return ((TREE_CODE (expr) == REAL_CST
1966 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1967 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1968 || (TREE_CODE (expr) == COMPLEX_CST
1969 && real_twop (TREE_REALPART (expr))
1970 && real_zerop (TREE_IMAGPART (expr))));
1971 }
1972
1973 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1974 matter for decimal float constants, so don't return 1 for them. */
1975
1976 int
1977 real_minus_onep (const_tree expr)
1978 {
1979 STRIP_NOPS (expr);
1980
1981 return ((TREE_CODE (expr) == REAL_CST
1982 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1983 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1984 || (TREE_CODE (expr) == COMPLEX_CST
1985 && real_minus_onep (TREE_REALPART (expr))
1986 && real_zerop (TREE_IMAGPART (expr))));
1987 }
1988
1989 /* Nonzero if EXP is a constant or a cast of a constant. */
1990
1991 int
1992 really_constant_p (const_tree exp)
1993 {
1994 /* This is not quite the same as STRIP_NOPS. It does more. */
1995 while (CONVERT_EXPR_P (exp)
1996 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1997 exp = TREE_OPERAND (exp, 0);
1998 return TREE_CONSTANT (exp);
1999 }
2000 \f
2001 /* Return first list element whose TREE_VALUE is ELEM.
2002 Return 0 if ELEM is not in LIST. */
2003
2004 tree
2005 value_member (tree elem, tree list)
2006 {
2007 while (list)
2008 {
2009 if (elem == TREE_VALUE (list))
2010 return list;
2011 list = TREE_CHAIN (list);
2012 }
2013 return NULL_TREE;
2014 }
2015
2016 /* Return first list element whose TREE_PURPOSE is ELEM.
2017 Return 0 if ELEM is not in LIST. */
2018
2019 tree
2020 purpose_member (const_tree elem, tree list)
2021 {
2022 while (list)
2023 {
2024 if (elem == TREE_PURPOSE (list))
2025 return list;
2026 list = TREE_CHAIN (list);
2027 }
2028 return NULL_TREE;
2029 }
2030
2031 /* Return true if ELEM is in V. */
2032
2033 bool
2034 vec_member (const_tree elem, VEC(tree,gc) *v)
2035 {
2036 unsigned ix;
2037 tree t;
2038 FOR_EACH_VEC_ELT (tree, v, ix, t)
2039 if (elem == t)
2040 return true;
2041 return false;
2042 }
2043
2044 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2045 NULL_TREE. */
2046
2047 tree
2048 chain_index (int idx, tree chain)
2049 {
2050 for (; chain && idx > 0; --idx)
2051 chain = TREE_CHAIN (chain);
2052 return chain;
2053 }
2054
2055 /* Return nonzero if ELEM is part of the chain CHAIN. */
2056
2057 int
2058 chain_member (const_tree elem, const_tree chain)
2059 {
2060 while (chain)
2061 {
2062 if (elem == chain)
2063 return 1;
2064 chain = DECL_CHAIN (chain);
2065 }
2066
2067 return 0;
2068 }
2069
2070 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2071 We expect a null pointer to mark the end of the chain.
2072 This is the Lisp primitive `length'. */
2073
2074 int
2075 list_length (const_tree t)
2076 {
2077 const_tree p = t;
2078 #ifdef ENABLE_TREE_CHECKING
2079 const_tree q = t;
2080 #endif
2081 int len = 0;
2082
2083 while (p)
2084 {
2085 p = TREE_CHAIN (p);
2086 #ifdef ENABLE_TREE_CHECKING
2087 if (len % 2)
2088 q = TREE_CHAIN (q);
2089 gcc_assert (p != q);
2090 #endif
2091 len++;
2092 }
2093
2094 return len;
2095 }
2096
2097 /* Returns the number of FIELD_DECLs in TYPE. */
2098
2099 int
2100 fields_length (const_tree type)
2101 {
2102 tree t = TYPE_FIELDS (type);
2103 int count = 0;
2104
2105 for (; t; t = DECL_CHAIN (t))
2106 if (TREE_CODE (t) == FIELD_DECL)
2107 ++count;
2108
2109 return count;
2110 }
2111
2112 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2113 UNION_TYPE TYPE, or NULL_TREE if none. */
2114
2115 tree
2116 first_field (const_tree type)
2117 {
2118 tree t = TYPE_FIELDS (type);
2119 while (t && TREE_CODE (t) != FIELD_DECL)
2120 t = TREE_CHAIN (t);
2121 return t;
2122 }
2123
2124 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2125 by modifying the last node in chain 1 to point to chain 2.
2126 This is the Lisp primitive `nconc'. */
2127
2128 tree
2129 chainon (tree op1, tree op2)
2130 {
2131 tree t1;
2132
2133 if (!op1)
2134 return op2;
2135 if (!op2)
2136 return op1;
2137
2138 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2139 continue;
2140 TREE_CHAIN (t1) = op2;
2141
2142 #ifdef ENABLE_TREE_CHECKING
2143 {
2144 tree t2;
2145 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2146 gcc_assert (t2 != t1);
2147 }
2148 #endif
2149
2150 return op1;
2151 }
2152
2153 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2154
2155 tree
2156 tree_last (tree chain)
2157 {
2158 tree next;
2159 if (chain)
2160 while ((next = TREE_CHAIN (chain)))
2161 chain = next;
2162 return chain;
2163 }
2164
2165 /* Reverse the order of elements in the chain T,
2166 and return the new head of the chain (old last element). */
2167
2168 tree
2169 nreverse (tree t)
2170 {
2171 tree prev = 0, decl, next;
2172 for (decl = t; decl; decl = next)
2173 {
2174 /* We shouldn't be using this function to reverse BLOCK chains; we
2175 have blocks_nreverse for that. */
2176 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2177 next = TREE_CHAIN (decl);
2178 TREE_CHAIN (decl) = prev;
2179 prev = decl;
2180 }
2181 return prev;
2182 }
2183 \f
2184 /* Return a newly created TREE_LIST node whose
2185 purpose and value fields are PARM and VALUE. */
2186
2187 tree
2188 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2189 {
2190 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2191 TREE_PURPOSE (t) = parm;
2192 TREE_VALUE (t) = value;
2193 return t;
2194 }
2195
2196 /* Build a chain of TREE_LIST nodes from a vector. */
2197
2198 tree
2199 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2200 {
2201 tree ret = NULL_TREE;
2202 tree *pp = &ret;
2203 unsigned int i;
2204 tree t;
2205 FOR_EACH_VEC_ELT (tree, vec, i, t)
2206 {
2207 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2208 pp = &TREE_CHAIN (*pp);
2209 }
2210 return ret;
2211 }
2212
2213 /* Return a newly created TREE_LIST node whose
2214 purpose and value fields are PURPOSE and VALUE
2215 and whose TREE_CHAIN is CHAIN. */
2216
2217 tree
2218 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2219 {
2220 tree node;
2221
2222 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2223 PASS_MEM_STAT);
2224 memset (node, 0, sizeof (struct tree_common));
2225
2226 #ifdef GATHER_STATISTICS
2227 tree_node_counts[(int) x_kind]++;
2228 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2229 #endif
2230
2231 TREE_SET_CODE (node, TREE_LIST);
2232 TREE_CHAIN (node) = chain;
2233 TREE_PURPOSE (node) = purpose;
2234 TREE_VALUE (node) = value;
2235 return node;
2236 }
2237
2238 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2239 trees. */
2240
2241 VEC(tree,gc) *
2242 ctor_to_vec (tree ctor)
2243 {
2244 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2245 unsigned int ix;
2246 tree val;
2247
2248 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2249 VEC_quick_push (tree, vec, val);
2250
2251 return vec;
2252 }
2253 \f
2254 /* Return the size nominally occupied by an object of type TYPE
2255 when it resides in memory. The value is measured in units of bytes,
2256 and its data type is that normally used for type sizes
2257 (which is the first type created by make_signed_type or
2258 make_unsigned_type). */
2259
2260 tree
2261 size_in_bytes (const_tree type)
2262 {
2263 tree t;
2264
2265 if (type == error_mark_node)
2266 return integer_zero_node;
2267
2268 type = TYPE_MAIN_VARIANT (type);
2269 t = TYPE_SIZE_UNIT (type);
2270
2271 if (t == 0)
2272 {
2273 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2274 return size_zero_node;
2275 }
2276
2277 return t;
2278 }
2279
2280 /* Return the size of TYPE (in bytes) as a wide integer
2281 or return -1 if the size can vary or is larger than an integer. */
2282
2283 HOST_WIDE_INT
2284 int_size_in_bytes (const_tree type)
2285 {
2286 tree t;
2287
2288 if (type == error_mark_node)
2289 return 0;
2290
2291 type = TYPE_MAIN_VARIANT (type);
2292 t = TYPE_SIZE_UNIT (type);
2293 if (t == 0
2294 || TREE_CODE (t) != INTEGER_CST
2295 || TREE_INT_CST_HIGH (t) != 0
2296 /* If the result would appear negative, it's too big to represent. */
2297 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2298 return -1;
2299
2300 return TREE_INT_CST_LOW (t);
2301 }
2302
2303 /* Return the maximum size of TYPE (in bytes) as a wide integer
2304 or return -1 if the size can vary or is larger than an integer. */
2305
2306 HOST_WIDE_INT
2307 max_int_size_in_bytes (const_tree type)
2308 {
2309 HOST_WIDE_INT size = -1;
2310 tree size_tree;
2311
2312 /* If this is an array type, check for a possible MAX_SIZE attached. */
2313
2314 if (TREE_CODE (type) == ARRAY_TYPE)
2315 {
2316 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2317
2318 if (size_tree && host_integerp (size_tree, 1))
2319 size = tree_low_cst (size_tree, 1);
2320 }
2321
2322 /* If we still haven't been able to get a size, see if the language
2323 can compute a maximum size. */
2324
2325 if (size == -1)
2326 {
2327 size_tree = lang_hooks.types.max_size (type);
2328
2329 if (size_tree && host_integerp (size_tree, 1))
2330 size = tree_low_cst (size_tree, 1);
2331 }
2332
2333 return size;
2334 }
2335
2336 /* Returns a tree for the size of EXP in bytes. */
2337
2338 tree
2339 tree_expr_size (const_tree exp)
2340 {
2341 if (DECL_P (exp)
2342 && DECL_SIZE_UNIT (exp) != 0)
2343 return DECL_SIZE_UNIT (exp);
2344 else
2345 return size_in_bytes (TREE_TYPE (exp));
2346 }
2347 \f
2348 /* Return the bit position of FIELD, in bits from the start of the record.
2349 This is a tree of type bitsizetype. */
2350
2351 tree
2352 bit_position (const_tree field)
2353 {
2354 return bit_from_pos (DECL_FIELD_OFFSET (field),
2355 DECL_FIELD_BIT_OFFSET (field));
2356 }
2357
2358 /* Likewise, but return as an integer. It must be representable in
2359 that way (since it could be a signed value, we don't have the
2360 option of returning -1 like int_size_in_byte can. */
2361
2362 HOST_WIDE_INT
2363 int_bit_position (const_tree field)
2364 {
2365 return tree_low_cst (bit_position (field), 0);
2366 }
2367 \f
2368 /* Return the byte position of FIELD, in bytes from the start of the record.
2369 This is a tree of type sizetype. */
2370
2371 tree
2372 byte_position (const_tree field)
2373 {
2374 return byte_from_pos (DECL_FIELD_OFFSET (field),
2375 DECL_FIELD_BIT_OFFSET (field));
2376 }
2377
2378 /* Likewise, but return as an integer. It must be representable in
2379 that way (since it could be a signed value, we don't have the
2380 option of returning -1 like int_size_in_byte can. */
2381
2382 HOST_WIDE_INT
2383 int_byte_position (const_tree field)
2384 {
2385 return tree_low_cst (byte_position (field), 0);
2386 }
2387 \f
2388 /* Return the strictest alignment, in bits, that T is known to have. */
2389
2390 unsigned int
2391 expr_align (const_tree t)
2392 {
2393 unsigned int align0, align1;
2394
2395 switch (TREE_CODE (t))
2396 {
2397 CASE_CONVERT: case NON_LVALUE_EXPR:
2398 /* If we have conversions, we know that the alignment of the
2399 object must meet each of the alignments of the types. */
2400 align0 = expr_align (TREE_OPERAND (t, 0));
2401 align1 = TYPE_ALIGN (TREE_TYPE (t));
2402 return MAX (align0, align1);
2403
2404 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2405 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2406 case CLEANUP_POINT_EXPR:
2407 /* These don't change the alignment of an object. */
2408 return expr_align (TREE_OPERAND (t, 0));
2409
2410 case COND_EXPR:
2411 /* The best we can do is say that the alignment is the least aligned
2412 of the two arms. */
2413 align0 = expr_align (TREE_OPERAND (t, 1));
2414 align1 = expr_align (TREE_OPERAND (t, 2));
2415 return MIN (align0, align1);
2416
2417 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2418 meaningfully, it's always 1. */
2419 case LABEL_DECL: case CONST_DECL:
2420 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2421 case FUNCTION_DECL:
2422 gcc_assert (DECL_ALIGN (t) != 0);
2423 return DECL_ALIGN (t);
2424
2425 default:
2426 break;
2427 }
2428
2429 /* Otherwise take the alignment from that of the type. */
2430 return TYPE_ALIGN (TREE_TYPE (t));
2431 }
2432 \f
2433 /* Return, as a tree node, the number of elements for TYPE (which is an
2434 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2435
2436 tree
2437 array_type_nelts (const_tree type)
2438 {
2439 tree index_type, min, max;
2440
2441 /* If they did it with unspecified bounds, then we should have already
2442 given an error about it before we got here. */
2443 if (! TYPE_DOMAIN (type))
2444 return error_mark_node;
2445
2446 index_type = TYPE_DOMAIN (type);
2447 min = TYPE_MIN_VALUE (index_type);
2448 max = TYPE_MAX_VALUE (index_type);
2449
2450 return (integer_zerop (min)
2451 ? max
2452 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2453 }
2454 \f
2455 /* If arg is static -- a reference to an object in static storage -- then
2456 return the object. This is not the same as the C meaning of `static'.
2457 If arg isn't static, return NULL. */
2458
2459 tree
2460 staticp (tree arg)
2461 {
2462 switch (TREE_CODE (arg))
2463 {
2464 case FUNCTION_DECL:
2465 /* Nested functions are static, even though taking their address will
2466 involve a trampoline as we unnest the nested function and create
2467 the trampoline on the tree level. */
2468 return arg;
2469
2470 case VAR_DECL:
2471 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2472 && ! DECL_THREAD_LOCAL_P (arg)
2473 && ! DECL_DLLIMPORT_P (arg)
2474 ? arg : NULL);
2475
2476 case CONST_DECL:
2477 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2478 ? arg : NULL);
2479
2480 case CONSTRUCTOR:
2481 return TREE_STATIC (arg) ? arg : NULL;
2482
2483 case LABEL_DECL:
2484 case STRING_CST:
2485 return arg;
2486
2487 case COMPONENT_REF:
2488 /* If the thing being referenced is not a field, then it is
2489 something language specific. */
2490 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2491
2492 /* If we are referencing a bitfield, we can't evaluate an
2493 ADDR_EXPR at compile time and so it isn't a constant. */
2494 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2495 return NULL;
2496
2497 return staticp (TREE_OPERAND (arg, 0));
2498
2499 case BIT_FIELD_REF:
2500 return NULL;
2501
2502 case INDIRECT_REF:
2503 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2504
2505 case ARRAY_REF:
2506 case ARRAY_RANGE_REF:
2507 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2508 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2509 return staticp (TREE_OPERAND (arg, 0));
2510 else
2511 return NULL;
2512
2513 case COMPOUND_LITERAL_EXPR:
2514 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2515
2516 default:
2517 return NULL;
2518 }
2519 }
2520
2521 \f
2522
2523
2524 /* Return whether OP is a DECL whose address is function-invariant. */
2525
2526 bool
2527 decl_address_invariant_p (const_tree op)
2528 {
2529 /* The conditions below are slightly less strict than the one in
2530 staticp. */
2531
2532 switch (TREE_CODE (op))
2533 {
2534 case PARM_DECL:
2535 case RESULT_DECL:
2536 case LABEL_DECL:
2537 case FUNCTION_DECL:
2538 return true;
2539
2540 case VAR_DECL:
2541 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2542 || DECL_THREAD_LOCAL_P (op)
2543 || DECL_CONTEXT (op) == current_function_decl
2544 || decl_function_context (op) == current_function_decl)
2545 return true;
2546 break;
2547
2548 case CONST_DECL:
2549 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2550 || decl_function_context (op) == current_function_decl)
2551 return true;
2552 break;
2553
2554 default:
2555 break;
2556 }
2557
2558 return false;
2559 }
2560
2561 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2562
2563 bool
2564 decl_address_ip_invariant_p (const_tree op)
2565 {
2566 /* The conditions below are slightly less strict than the one in
2567 staticp. */
2568
2569 switch (TREE_CODE (op))
2570 {
2571 case LABEL_DECL:
2572 case FUNCTION_DECL:
2573 case STRING_CST:
2574 return true;
2575
2576 case VAR_DECL:
2577 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2578 && !DECL_DLLIMPORT_P (op))
2579 || DECL_THREAD_LOCAL_P (op))
2580 return true;
2581 break;
2582
2583 case CONST_DECL:
2584 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2585 return true;
2586 break;
2587
2588 default:
2589 break;
2590 }
2591
2592 return false;
2593 }
2594
2595
2596 /* Return true if T is function-invariant (internal function, does
2597 not handle arithmetic; that's handled in skip_simple_arithmetic and
2598 tree_invariant_p). */
2599
2600 static bool tree_invariant_p (tree t);
2601
2602 static bool
2603 tree_invariant_p_1 (tree t)
2604 {
2605 tree op;
2606
2607 if (TREE_CONSTANT (t)
2608 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2609 return true;
2610
2611 switch (TREE_CODE (t))
2612 {
2613 case SAVE_EXPR:
2614 return true;
2615
2616 case ADDR_EXPR:
2617 op = TREE_OPERAND (t, 0);
2618 while (handled_component_p (op))
2619 {
2620 switch (TREE_CODE (op))
2621 {
2622 case ARRAY_REF:
2623 case ARRAY_RANGE_REF:
2624 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2625 || TREE_OPERAND (op, 2) != NULL_TREE
2626 || TREE_OPERAND (op, 3) != NULL_TREE)
2627 return false;
2628 break;
2629
2630 case COMPONENT_REF:
2631 if (TREE_OPERAND (op, 2) != NULL_TREE)
2632 return false;
2633 break;
2634
2635 default:;
2636 }
2637 op = TREE_OPERAND (op, 0);
2638 }
2639
2640 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2641
2642 default:
2643 break;
2644 }
2645
2646 return false;
2647 }
2648
2649 /* Return true if T is function-invariant. */
2650
2651 static bool
2652 tree_invariant_p (tree t)
2653 {
2654 tree inner = skip_simple_arithmetic (t);
2655 return tree_invariant_p_1 (inner);
2656 }
2657
2658 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2659 Do this to any expression which may be used in more than one place,
2660 but must be evaluated only once.
2661
2662 Normally, expand_expr would reevaluate the expression each time.
2663 Calling save_expr produces something that is evaluated and recorded
2664 the first time expand_expr is called on it. Subsequent calls to
2665 expand_expr just reuse the recorded value.
2666
2667 The call to expand_expr that generates code that actually computes
2668 the value is the first call *at compile time*. Subsequent calls
2669 *at compile time* generate code to use the saved value.
2670 This produces correct result provided that *at run time* control
2671 always flows through the insns made by the first expand_expr
2672 before reaching the other places where the save_expr was evaluated.
2673 You, the caller of save_expr, must make sure this is so.
2674
2675 Constants, and certain read-only nodes, are returned with no
2676 SAVE_EXPR because that is safe. Expressions containing placeholders
2677 are not touched; see tree.def for an explanation of what these
2678 are used for. */
2679
2680 tree
2681 save_expr (tree expr)
2682 {
2683 tree t = fold (expr);
2684 tree inner;
2685
2686 /* If the tree evaluates to a constant, then we don't want to hide that
2687 fact (i.e. this allows further folding, and direct checks for constants).
2688 However, a read-only object that has side effects cannot be bypassed.
2689 Since it is no problem to reevaluate literals, we just return the
2690 literal node. */
2691 inner = skip_simple_arithmetic (t);
2692 if (TREE_CODE (inner) == ERROR_MARK)
2693 return inner;
2694
2695 if (tree_invariant_p_1 (inner))
2696 return t;
2697
2698 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2699 it means that the size or offset of some field of an object depends on
2700 the value within another field.
2701
2702 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2703 and some variable since it would then need to be both evaluated once and
2704 evaluated more than once. Front-ends must assure this case cannot
2705 happen by surrounding any such subexpressions in their own SAVE_EXPR
2706 and forcing evaluation at the proper time. */
2707 if (contains_placeholder_p (inner))
2708 return t;
2709
2710 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2711 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2712
2713 /* This expression might be placed ahead of a jump to ensure that the
2714 value was computed on both sides of the jump. So make sure it isn't
2715 eliminated as dead. */
2716 TREE_SIDE_EFFECTS (t) = 1;
2717 return t;
2718 }
2719
2720 /* Look inside EXPR and into any simple arithmetic operations. Return
2721 the innermost non-arithmetic node. */
2722
2723 tree
2724 skip_simple_arithmetic (tree expr)
2725 {
2726 tree inner;
2727
2728 /* We don't care about whether this can be used as an lvalue in this
2729 context. */
2730 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2731 expr = TREE_OPERAND (expr, 0);
2732
2733 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2734 a constant, it will be more efficient to not make another SAVE_EXPR since
2735 it will allow better simplification and GCSE will be able to merge the
2736 computations if they actually occur. */
2737 inner = expr;
2738 while (1)
2739 {
2740 if (UNARY_CLASS_P (inner))
2741 inner = TREE_OPERAND (inner, 0);
2742 else if (BINARY_CLASS_P (inner))
2743 {
2744 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2745 inner = TREE_OPERAND (inner, 0);
2746 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2747 inner = TREE_OPERAND (inner, 1);
2748 else
2749 break;
2750 }
2751 else
2752 break;
2753 }
2754
2755 return inner;
2756 }
2757
2758
2759 /* Return which tree structure is used by T. */
2760
2761 enum tree_node_structure_enum
2762 tree_node_structure (const_tree t)
2763 {
2764 const enum tree_code code = TREE_CODE (t);
2765 return tree_node_structure_for_code (code);
2766 }
2767
2768 /* Set various status flags when building a CALL_EXPR object T. */
2769
2770 static void
2771 process_call_operands (tree t)
2772 {
2773 bool side_effects = TREE_SIDE_EFFECTS (t);
2774 bool read_only = false;
2775 int i = call_expr_flags (t);
2776
2777 /* Calls have side-effects, except those to const or pure functions. */
2778 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2779 side_effects = true;
2780 /* Propagate TREE_READONLY of arguments for const functions. */
2781 if (i & ECF_CONST)
2782 read_only = true;
2783
2784 if (!side_effects || read_only)
2785 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2786 {
2787 tree op = TREE_OPERAND (t, i);
2788 if (op && TREE_SIDE_EFFECTS (op))
2789 side_effects = true;
2790 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2791 read_only = false;
2792 }
2793
2794 TREE_SIDE_EFFECTS (t) = side_effects;
2795 TREE_READONLY (t) = read_only;
2796 }
2797 \f
2798 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2799 size or offset that depends on a field within a record. */
2800
2801 bool
2802 contains_placeholder_p (const_tree exp)
2803 {
2804 enum tree_code code;
2805
2806 if (!exp)
2807 return 0;
2808
2809 code = TREE_CODE (exp);
2810 if (code == PLACEHOLDER_EXPR)
2811 return 1;
2812
2813 switch (TREE_CODE_CLASS (code))
2814 {
2815 case tcc_reference:
2816 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2817 position computations since they will be converted into a
2818 WITH_RECORD_EXPR involving the reference, which will assume
2819 here will be valid. */
2820 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2821
2822 case tcc_exceptional:
2823 if (code == TREE_LIST)
2824 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2825 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2826 break;
2827
2828 case tcc_unary:
2829 case tcc_binary:
2830 case tcc_comparison:
2831 case tcc_expression:
2832 switch (code)
2833 {
2834 case COMPOUND_EXPR:
2835 /* Ignoring the first operand isn't quite right, but works best. */
2836 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2837
2838 case COND_EXPR:
2839 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2840 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2841 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2842
2843 case SAVE_EXPR:
2844 /* The save_expr function never wraps anything containing
2845 a PLACEHOLDER_EXPR. */
2846 return 0;
2847
2848 default:
2849 break;
2850 }
2851
2852 switch (TREE_CODE_LENGTH (code))
2853 {
2854 case 1:
2855 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2856 case 2:
2857 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2858 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2859 default:
2860 return 0;
2861 }
2862
2863 case tcc_vl_exp:
2864 switch (code)
2865 {
2866 case CALL_EXPR:
2867 {
2868 const_tree arg;
2869 const_call_expr_arg_iterator iter;
2870 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2871 if (CONTAINS_PLACEHOLDER_P (arg))
2872 return 1;
2873 return 0;
2874 }
2875 default:
2876 return 0;
2877 }
2878
2879 default:
2880 return 0;
2881 }
2882 return 0;
2883 }
2884
2885 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
2886 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
2887 field positions. */
2888
2889 static bool
2890 type_contains_placeholder_1 (const_tree type)
2891 {
2892 /* If the size contains a placeholder or the parent type (component type in
2893 the case of arrays) type involves a placeholder, this type does. */
2894 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2895 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2896 || (!POINTER_TYPE_P (type)
2897 && TREE_TYPE (type)
2898 && type_contains_placeholder_p (TREE_TYPE (type))))
2899 return true;
2900
2901 /* Now do type-specific checks. Note that the last part of the check above
2902 greatly limits what we have to do below. */
2903 switch (TREE_CODE (type))
2904 {
2905 case VOID_TYPE:
2906 case COMPLEX_TYPE:
2907 case ENUMERAL_TYPE:
2908 case BOOLEAN_TYPE:
2909 case POINTER_TYPE:
2910 case OFFSET_TYPE:
2911 case REFERENCE_TYPE:
2912 case METHOD_TYPE:
2913 case FUNCTION_TYPE:
2914 case VECTOR_TYPE:
2915 return false;
2916
2917 case INTEGER_TYPE:
2918 case REAL_TYPE:
2919 case FIXED_POINT_TYPE:
2920 /* Here we just check the bounds. */
2921 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2922 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2923
2924 case ARRAY_TYPE:
2925 /* We have already checked the component type above, so just check the
2926 domain type. */
2927 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2928
2929 case RECORD_TYPE:
2930 case UNION_TYPE:
2931 case QUAL_UNION_TYPE:
2932 {
2933 tree field;
2934
2935 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2936 if (TREE_CODE (field) == FIELD_DECL
2937 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2938 || (TREE_CODE (type) == QUAL_UNION_TYPE
2939 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2940 || type_contains_placeholder_p (TREE_TYPE (field))))
2941 return true;
2942
2943 return false;
2944 }
2945
2946 default:
2947 gcc_unreachable ();
2948 }
2949 }
2950
2951 /* Wrapper around above function used to cache its result. */
2952
2953 bool
2954 type_contains_placeholder_p (tree type)
2955 {
2956 bool result;
2957
2958 /* If the contains_placeholder_bits field has been initialized,
2959 then we know the answer. */
2960 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2961 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2962
2963 /* Indicate that we've seen this type node, and the answer is false.
2964 This is what we want to return if we run into recursion via fields. */
2965 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2966
2967 /* Compute the real value. */
2968 result = type_contains_placeholder_1 (type);
2969
2970 /* Store the real value. */
2971 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2972
2973 return result;
2974 }
2975 \f
2976 /* Push tree EXP onto vector QUEUE if it is not already present. */
2977
2978 static void
2979 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2980 {
2981 unsigned int i;
2982 tree iter;
2983
2984 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2985 if (simple_cst_equal (iter, exp) == 1)
2986 break;
2987
2988 if (!iter)
2989 VEC_safe_push (tree, heap, *queue, exp);
2990 }
2991
2992 /* Given a tree EXP, find all occurences of references to fields
2993 in a PLACEHOLDER_EXPR and place them in vector REFS without
2994 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2995 we assume here that EXP contains only arithmetic expressions
2996 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2997 argument list. */
2998
2999 void
3000 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
3001 {
3002 enum tree_code code = TREE_CODE (exp);
3003 tree inner;
3004 int i;
3005
3006 /* We handle TREE_LIST and COMPONENT_REF separately. */
3007 if (code == TREE_LIST)
3008 {
3009 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3010 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3011 }
3012 else if (code == COMPONENT_REF)
3013 {
3014 for (inner = TREE_OPERAND (exp, 0);
3015 REFERENCE_CLASS_P (inner);
3016 inner = TREE_OPERAND (inner, 0))
3017 ;
3018
3019 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3020 push_without_duplicates (exp, refs);
3021 else
3022 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3023 }
3024 else
3025 switch (TREE_CODE_CLASS (code))
3026 {
3027 case tcc_constant:
3028 break;
3029
3030 case tcc_declaration:
3031 /* Variables allocated to static storage can stay. */
3032 if (!TREE_STATIC (exp))
3033 push_without_duplicates (exp, refs);
3034 break;
3035
3036 case tcc_expression:
3037 /* This is the pattern built in ada/make_aligning_type. */
3038 if (code == ADDR_EXPR
3039 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3040 {
3041 push_without_duplicates (exp, refs);
3042 break;
3043 }
3044
3045 /* Fall through... */
3046
3047 case tcc_exceptional:
3048 case tcc_unary:
3049 case tcc_binary:
3050 case tcc_comparison:
3051 case tcc_reference:
3052 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3053 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3054 break;
3055
3056 case tcc_vl_exp:
3057 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3058 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3059 break;
3060
3061 default:
3062 gcc_unreachable ();
3063 }
3064 }
3065
3066 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3067 return a tree with all occurrences of references to F in a
3068 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3069 CONST_DECLs. Note that we assume here that EXP contains only
3070 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3071 occurring only in their argument list. */
3072
3073 tree
3074 substitute_in_expr (tree exp, tree f, tree r)
3075 {
3076 enum tree_code code = TREE_CODE (exp);
3077 tree op0, op1, op2, op3;
3078 tree new_tree;
3079
3080 /* We handle TREE_LIST and COMPONENT_REF separately. */
3081 if (code == TREE_LIST)
3082 {
3083 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3084 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3085 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3086 return exp;
3087
3088 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3089 }
3090 else if (code == COMPONENT_REF)
3091 {
3092 tree inner;
3093
3094 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3095 and it is the right field, replace it with R. */
3096 for (inner = TREE_OPERAND (exp, 0);
3097 REFERENCE_CLASS_P (inner);
3098 inner = TREE_OPERAND (inner, 0))
3099 ;
3100
3101 /* The field. */
3102 op1 = TREE_OPERAND (exp, 1);
3103
3104 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3105 return r;
3106
3107 /* If this expression hasn't been completed let, leave it alone. */
3108 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3109 return exp;
3110
3111 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3112 if (op0 == TREE_OPERAND (exp, 0))
3113 return exp;
3114
3115 new_tree
3116 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3117 }
3118 else
3119 switch (TREE_CODE_CLASS (code))
3120 {
3121 case tcc_constant:
3122 return exp;
3123
3124 case tcc_declaration:
3125 if (exp == f)
3126 return r;
3127 else
3128 return exp;
3129
3130 case tcc_expression:
3131 if (exp == f)
3132 return r;
3133
3134 /* Fall through... */
3135
3136 case tcc_exceptional:
3137 case tcc_unary:
3138 case tcc_binary:
3139 case tcc_comparison:
3140 case tcc_reference:
3141 switch (TREE_CODE_LENGTH (code))
3142 {
3143 case 0:
3144 return exp;
3145
3146 case 1:
3147 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3148 if (op0 == TREE_OPERAND (exp, 0))
3149 return exp;
3150
3151 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3152 break;
3153
3154 case 2:
3155 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3156 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3157
3158 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3159 return exp;
3160
3161 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3162 break;
3163
3164 case 3:
3165 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3166 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3167 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3168
3169 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3170 && op2 == TREE_OPERAND (exp, 2))
3171 return exp;
3172
3173 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3174 break;
3175
3176 case 4:
3177 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3178 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3179 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3180 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3181
3182 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3183 && op2 == TREE_OPERAND (exp, 2)
3184 && op3 == TREE_OPERAND (exp, 3))
3185 return exp;
3186
3187 new_tree
3188 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3189 break;
3190
3191 default:
3192 gcc_unreachable ();
3193 }
3194 break;
3195
3196 case tcc_vl_exp:
3197 {
3198 int i;
3199
3200 new_tree = NULL_TREE;
3201
3202 /* If we are trying to replace F with a constant, inline back
3203 functions which do nothing else than computing a value from
3204 the arguments they are passed. This makes it possible to
3205 fold partially or entirely the replacement expression. */
3206 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3207 {
3208 tree t = maybe_inline_call_in_expr (exp);
3209 if (t)
3210 return SUBSTITUTE_IN_EXPR (t, f, r);
3211 }
3212
3213 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3214 {
3215 tree op = TREE_OPERAND (exp, i);
3216 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3217 if (new_op != op)
3218 {
3219 if (!new_tree)
3220 new_tree = copy_node (exp);
3221 TREE_OPERAND (new_tree, i) = new_op;
3222 }
3223 }
3224
3225 if (new_tree)
3226 {
3227 new_tree = fold (new_tree);
3228 if (TREE_CODE (new_tree) == CALL_EXPR)
3229 process_call_operands (new_tree);
3230 }
3231 else
3232 return exp;
3233 }
3234 break;
3235
3236 default:
3237 gcc_unreachable ();
3238 }
3239
3240 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3241
3242 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3243 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3244
3245 return new_tree;
3246 }
3247
3248 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3249 for it within OBJ, a tree that is an object or a chain of references. */
3250
3251 tree
3252 substitute_placeholder_in_expr (tree exp, tree obj)
3253 {
3254 enum tree_code code = TREE_CODE (exp);
3255 tree op0, op1, op2, op3;
3256 tree new_tree;
3257
3258 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3259 in the chain of OBJ. */
3260 if (code == PLACEHOLDER_EXPR)
3261 {
3262 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3263 tree elt;
3264
3265 for (elt = obj; elt != 0;
3266 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3267 || TREE_CODE (elt) == COND_EXPR)
3268 ? TREE_OPERAND (elt, 1)
3269 : (REFERENCE_CLASS_P (elt)
3270 || UNARY_CLASS_P (elt)
3271 || BINARY_CLASS_P (elt)
3272 || VL_EXP_CLASS_P (elt)
3273 || EXPRESSION_CLASS_P (elt))
3274 ? TREE_OPERAND (elt, 0) : 0))
3275 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3276 return elt;
3277
3278 for (elt = obj; elt != 0;
3279 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3280 || TREE_CODE (elt) == COND_EXPR)
3281 ? TREE_OPERAND (elt, 1)
3282 : (REFERENCE_CLASS_P (elt)
3283 || UNARY_CLASS_P (elt)
3284 || BINARY_CLASS_P (elt)
3285 || VL_EXP_CLASS_P (elt)
3286 || EXPRESSION_CLASS_P (elt))
3287 ? TREE_OPERAND (elt, 0) : 0))
3288 if (POINTER_TYPE_P (TREE_TYPE (elt))
3289 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3290 == need_type))
3291 return fold_build1 (INDIRECT_REF, need_type, elt);
3292
3293 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3294 survives until RTL generation, there will be an error. */
3295 return exp;
3296 }
3297
3298 /* TREE_LIST is special because we need to look at TREE_VALUE
3299 and TREE_CHAIN, not TREE_OPERANDS. */
3300 else if (code == TREE_LIST)
3301 {
3302 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3303 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3304 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3305 return exp;
3306
3307 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3308 }
3309 else
3310 switch (TREE_CODE_CLASS (code))
3311 {
3312 case tcc_constant:
3313 case tcc_declaration:
3314 return exp;
3315
3316 case tcc_exceptional:
3317 case tcc_unary:
3318 case tcc_binary:
3319 case tcc_comparison:
3320 case tcc_expression:
3321 case tcc_reference:
3322 case tcc_statement:
3323 switch (TREE_CODE_LENGTH (code))
3324 {
3325 case 0:
3326 return exp;
3327
3328 case 1:
3329 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3330 if (op0 == TREE_OPERAND (exp, 0))
3331 return exp;
3332
3333 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3334 break;
3335
3336 case 2:
3337 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3338 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3339
3340 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3341 return exp;
3342
3343 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3344 break;
3345
3346 case 3:
3347 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3348 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3349 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3350
3351 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3352 && op2 == TREE_OPERAND (exp, 2))
3353 return exp;
3354
3355 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3356 break;
3357
3358 case 4:
3359 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3360 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3361 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3362 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3363
3364 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3365 && op2 == TREE_OPERAND (exp, 2)
3366 && op3 == TREE_OPERAND (exp, 3))
3367 return exp;
3368
3369 new_tree
3370 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3371 break;
3372
3373 default:
3374 gcc_unreachable ();
3375 }
3376 break;
3377
3378 case tcc_vl_exp:
3379 {
3380 int i;
3381
3382 new_tree = NULL_TREE;
3383
3384 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3385 {
3386 tree op = TREE_OPERAND (exp, i);
3387 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3388 if (new_op != op)
3389 {
3390 if (!new_tree)
3391 new_tree = copy_node (exp);
3392 TREE_OPERAND (new_tree, i) = new_op;
3393 }
3394 }
3395
3396 if (new_tree)
3397 {
3398 new_tree = fold (new_tree);
3399 if (TREE_CODE (new_tree) == CALL_EXPR)
3400 process_call_operands (new_tree);
3401 }
3402 else
3403 return exp;
3404 }
3405 break;
3406
3407 default:
3408 gcc_unreachable ();
3409 }
3410
3411 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3412
3413 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3414 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3415
3416 return new_tree;
3417 }
3418 \f
3419 /* Stabilize a reference so that we can use it any number of times
3420 without causing its operands to be evaluated more than once.
3421 Returns the stabilized reference. This works by means of save_expr,
3422 so see the caveats in the comments about save_expr.
3423
3424 Also allows conversion expressions whose operands are references.
3425 Any other kind of expression is returned unchanged. */
3426
3427 tree
3428 stabilize_reference (tree ref)
3429 {
3430 tree result;
3431 enum tree_code code = TREE_CODE (ref);
3432
3433 switch (code)
3434 {
3435 case VAR_DECL:
3436 case PARM_DECL:
3437 case RESULT_DECL:
3438 /* No action is needed in this case. */
3439 return ref;
3440
3441 CASE_CONVERT:
3442 case FLOAT_EXPR:
3443 case FIX_TRUNC_EXPR:
3444 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3445 break;
3446
3447 case INDIRECT_REF:
3448 result = build_nt (INDIRECT_REF,
3449 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3450 break;
3451
3452 case COMPONENT_REF:
3453 result = build_nt (COMPONENT_REF,
3454 stabilize_reference (TREE_OPERAND (ref, 0)),
3455 TREE_OPERAND (ref, 1), NULL_TREE);
3456 break;
3457
3458 case BIT_FIELD_REF:
3459 result = build_nt (BIT_FIELD_REF,
3460 stabilize_reference (TREE_OPERAND (ref, 0)),
3461 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3462 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3463 break;
3464
3465 case ARRAY_REF:
3466 result = build_nt (ARRAY_REF,
3467 stabilize_reference (TREE_OPERAND (ref, 0)),
3468 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3469 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3470 break;
3471
3472 case ARRAY_RANGE_REF:
3473 result = build_nt (ARRAY_RANGE_REF,
3474 stabilize_reference (TREE_OPERAND (ref, 0)),
3475 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3476 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3477 break;
3478
3479 case COMPOUND_EXPR:
3480 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3481 it wouldn't be ignored. This matters when dealing with
3482 volatiles. */
3483 return stabilize_reference_1 (ref);
3484
3485 /* If arg isn't a kind of lvalue we recognize, make no change.
3486 Caller should recognize the error for an invalid lvalue. */
3487 default:
3488 return ref;
3489
3490 case ERROR_MARK:
3491 return error_mark_node;
3492 }
3493
3494 TREE_TYPE (result) = TREE_TYPE (ref);
3495 TREE_READONLY (result) = TREE_READONLY (ref);
3496 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3497 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3498
3499 return result;
3500 }
3501
3502 /* Subroutine of stabilize_reference; this is called for subtrees of
3503 references. Any expression with side-effects must be put in a SAVE_EXPR
3504 to ensure that it is only evaluated once.
3505
3506 We don't put SAVE_EXPR nodes around everything, because assigning very
3507 simple expressions to temporaries causes us to miss good opportunities
3508 for optimizations. Among other things, the opportunity to fold in the
3509 addition of a constant into an addressing mode often gets lost, e.g.
3510 "y[i+1] += x;". In general, we take the approach that we should not make
3511 an assignment unless we are forced into it - i.e., that any non-side effect
3512 operator should be allowed, and that cse should take care of coalescing
3513 multiple utterances of the same expression should that prove fruitful. */
3514
3515 tree
3516 stabilize_reference_1 (tree e)
3517 {
3518 tree result;
3519 enum tree_code code = TREE_CODE (e);
3520
3521 /* We cannot ignore const expressions because it might be a reference
3522 to a const array but whose index contains side-effects. But we can
3523 ignore things that are actual constant or that already have been
3524 handled by this function. */
3525
3526 if (tree_invariant_p (e))
3527 return e;
3528
3529 switch (TREE_CODE_CLASS (code))
3530 {
3531 case tcc_exceptional:
3532 case tcc_type:
3533 case tcc_declaration:
3534 case tcc_comparison:
3535 case tcc_statement:
3536 case tcc_expression:
3537 case tcc_reference:
3538 case tcc_vl_exp:
3539 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3540 so that it will only be evaluated once. */
3541 /* The reference (r) and comparison (<) classes could be handled as
3542 below, but it is generally faster to only evaluate them once. */
3543 if (TREE_SIDE_EFFECTS (e))
3544 return save_expr (e);
3545 return e;
3546
3547 case tcc_constant:
3548 /* Constants need no processing. In fact, we should never reach
3549 here. */
3550 return e;
3551
3552 case tcc_binary:
3553 /* Division is slow and tends to be compiled with jumps,
3554 especially the division by powers of 2 that is often
3555 found inside of an array reference. So do it just once. */
3556 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3557 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3558 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3559 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3560 return save_expr (e);
3561 /* Recursively stabilize each operand. */
3562 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3563 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3564 break;
3565
3566 case tcc_unary:
3567 /* Recursively stabilize each operand. */
3568 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3569 break;
3570
3571 default:
3572 gcc_unreachable ();
3573 }
3574
3575 TREE_TYPE (result) = TREE_TYPE (e);
3576 TREE_READONLY (result) = TREE_READONLY (e);
3577 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3578 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3579
3580 return result;
3581 }
3582 \f
3583 /* Low-level constructors for expressions. */
3584
3585 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3586 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3587
3588 void
3589 recompute_tree_invariant_for_addr_expr (tree t)
3590 {
3591 tree node;
3592 bool tc = true, se = false;
3593
3594 /* We started out assuming this address is both invariant and constant, but
3595 does not have side effects. Now go down any handled components and see if
3596 any of them involve offsets that are either non-constant or non-invariant.
3597 Also check for side-effects.
3598
3599 ??? Note that this code makes no attempt to deal with the case where
3600 taking the address of something causes a copy due to misalignment. */
3601
3602 #define UPDATE_FLAGS(NODE) \
3603 do { tree _node = (NODE); \
3604 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3605 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3606
3607 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3608 node = TREE_OPERAND (node, 0))
3609 {
3610 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3611 array reference (probably made temporarily by the G++ front end),
3612 so ignore all the operands. */
3613 if ((TREE_CODE (node) == ARRAY_REF
3614 || TREE_CODE (node) == ARRAY_RANGE_REF)
3615 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3616 {
3617 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3618 if (TREE_OPERAND (node, 2))
3619 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3620 if (TREE_OPERAND (node, 3))
3621 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3622 }
3623 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3624 FIELD_DECL, apparently. The G++ front end can put something else
3625 there, at least temporarily. */
3626 else if (TREE_CODE (node) == COMPONENT_REF
3627 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3628 {
3629 if (TREE_OPERAND (node, 2))
3630 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3631 }
3632 else if (TREE_CODE (node) == BIT_FIELD_REF)
3633 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3634 }
3635
3636 node = lang_hooks.expr_to_decl (node, &tc, &se);
3637
3638 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3639 the address, since &(*a)->b is a form of addition. If it's a constant, the
3640 address is constant too. If it's a decl, its address is constant if the
3641 decl is static. Everything else is not constant and, furthermore,
3642 taking the address of a volatile variable is not volatile. */
3643 if (TREE_CODE (node) == INDIRECT_REF
3644 || TREE_CODE (node) == MEM_REF)
3645 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3646 else if (CONSTANT_CLASS_P (node))
3647 ;
3648 else if (DECL_P (node))
3649 tc &= (staticp (node) != NULL_TREE);
3650 else
3651 {
3652 tc = false;
3653 se |= TREE_SIDE_EFFECTS (node);
3654 }
3655
3656
3657 TREE_CONSTANT (t) = tc;
3658 TREE_SIDE_EFFECTS (t) = se;
3659 #undef UPDATE_FLAGS
3660 }
3661
3662 /* Build an expression of code CODE, data type TYPE, and operands as
3663 specified. Expressions and reference nodes can be created this way.
3664 Constants, decls, types and misc nodes cannot be.
3665
3666 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3667 enough for all extant tree codes. */
3668
3669 tree
3670 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3671 {
3672 tree t;
3673
3674 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3675
3676 t = make_node_stat (code PASS_MEM_STAT);
3677 TREE_TYPE (t) = tt;
3678
3679 return t;
3680 }
3681
3682 tree
3683 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3684 {
3685 int length = sizeof (struct tree_exp);
3686 #ifdef GATHER_STATISTICS
3687 tree_node_kind kind;
3688 #endif
3689 tree t;
3690
3691 #ifdef GATHER_STATISTICS
3692 switch (TREE_CODE_CLASS (code))
3693 {
3694 case tcc_statement: /* an expression with side effects */
3695 kind = s_kind;
3696 break;
3697 case tcc_reference: /* a reference */
3698 kind = r_kind;
3699 break;
3700 default:
3701 kind = e_kind;
3702 break;
3703 }
3704
3705 tree_node_counts[(int) kind]++;
3706 tree_node_sizes[(int) kind] += length;
3707 #endif
3708
3709 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3710
3711 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3712
3713 memset (t, 0, sizeof (struct tree_common));
3714
3715 TREE_SET_CODE (t, code);
3716
3717 TREE_TYPE (t) = type;
3718 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3719 TREE_OPERAND (t, 0) = node;
3720 TREE_BLOCK (t) = NULL_TREE;
3721 if (node && !TYPE_P (node))
3722 {
3723 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3724 TREE_READONLY (t) = TREE_READONLY (node);
3725 }
3726
3727 if (TREE_CODE_CLASS (code) == tcc_statement)
3728 TREE_SIDE_EFFECTS (t) = 1;
3729 else switch (code)
3730 {
3731 case VA_ARG_EXPR:
3732 /* All of these have side-effects, no matter what their
3733 operands are. */
3734 TREE_SIDE_EFFECTS (t) = 1;
3735 TREE_READONLY (t) = 0;
3736 break;
3737
3738 case INDIRECT_REF:
3739 /* Whether a dereference is readonly has nothing to do with whether
3740 its operand is readonly. */
3741 TREE_READONLY (t) = 0;
3742 break;
3743
3744 case ADDR_EXPR:
3745 if (node)
3746 recompute_tree_invariant_for_addr_expr (t);
3747 break;
3748
3749 default:
3750 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3751 && node && !TYPE_P (node)
3752 && TREE_CONSTANT (node))
3753 TREE_CONSTANT (t) = 1;
3754 if (TREE_CODE_CLASS (code) == tcc_reference
3755 && node && TREE_THIS_VOLATILE (node))
3756 TREE_THIS_VOLATILE (t) = 1;
3757 break;
3758 }
3759
3760 return t;
3761 }
3762
3763 #define PROCESS_ARG(N) \
3764 do { \
3765 TREE_OPERAND (t, N) = arg##N; \
3766 if (arg##N &&!TYPE_P (arg##N)) \
3767 { \
3768 if (TREE_SIDE_EFFECTS (arg##N)) \
3769 side_effects = 1; \
3770 if (!TREE_READONLY (arg##N) \
3771 && !CONSTANT_CLASS_P (arg##N)) \
3772 (void) (read_only = 0); \
3773 if (!TREE_CONSTANT (arg##N)) \
3774 (void) (constant = 0); \
3775 } \
3776 } while (0)
3777
3778 tree
3779 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3780 {
3781 bool constant, read_only, side_effects;
3782 tree t;
3783
3784 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3785
3786 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3787 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3788 /* When sizetype precision doesn't match that of pointers
3789 we need to be able to build explicit extensions or truncations
3790 of the offset argument. */
3791 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3792 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3793 && TREE_CODE (arg1) == INTEGER_CST);
3794
3795 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3796 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3797 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3798 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3799
3800 t = make_node_stat (code PASS_MEM_STAT);
3801 TREE_TYPE (t) = tt;
3802
3803 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3804 result based on those same flags for the arguments. But if the
3805 arguments aren't really even `tree' expressions, we shouldn't be trying
3806 to do this. */
3807
3808 /* Expressions without side effects may be constant if their
3809 arguments are as well. */
3810 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3811 || TREE_CODE_CLASS (code) == tcc_binary);
3812 read_only = 1;
3813 side_effects = TREE_SIDE_EFFECTS (t);
3814
3815 PROCESS_ARG(0);
3816 PROCESS_ARG(1);
3817
3818 TREE_READONLY (t) = read_only;
3819 TREE_CONSTANT (t) = constant;
3820 TREE_SIDE_EFFECTS (t) = side_effects;
3821 TREE_THIS_VOLATILE (t)
3822 = (TREE_CODE_CLASS (code) == tcc_reference
3823 && arg0 && TREE_THIS_VOLATILE (arg0));
3824
3825 return t;
3826 }
3827
3828
3829 tree
3830 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3831 tree arg2 MEM_STAT_DECL)
3832 {
3833 bool constant, read_only, side_effects;
3834 tree t;
3835
3836 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3837 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3838
3839 t = make_node_stat (code PASS_MEM_STAT);
3840 TREE_TYPE (t) = tt;
3841
3842 read_only = 1;
3843
3844 /* As a special exception, if COND_EXPR has NULL branches, we
3845 assume that it is a gimple statement and always consider
3846 it to have side effects. */
3847 if (code == COND_EXPR
3848 && tt == void_type_node
3849 && arg1 == NULL_TREE
3850 && arg2 == NULL_TREE)
3851 side_effects = true;
3852 else
3853 side_effects = TREE_SIDE_EFFECTS (t);
3854
3855 PROCESS_ARG(0);
3856 PROCESS_ARG(1);
3857 PROCESS_ARG(2);
3858
3859 if (code == COND_EXPR)
3860 TREE_READONLY (t) = read_only;
3861
3862 TREE_SIDE_EFFECTS (t) = side_effects;
3863 TREE_THIS_VOLATILE (t)
3864 = (TREE_CODE_CLASS (code) == tcc_reference
3865 && arg0 && TREE_THIS_VOLATILE (arg0));
3866
3867 return t;
3868 }
3869
3870 tree
3871 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3872 tree arg2, tree arg3 MEM_STAT_DECL)
3873 {
3874 bool constant, read_only, side_effects;
3875 tree t;
3876
3877 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3878
3879 t = make_node_stat (code PASS_MEM_STAT);
3880 TREE_TYPE (t) = tt;
3881
3882 side_effects = TREE_SIDE_EFFECTS (t);
3883
3884 PROCESS_ARG(0);
3885 PROCESS_ARG(1);
3886 PROCESS_ARG(2);
3887 PROCESS_ARG(3);
3888
3889 TREE_SIDE_EFFECTS (t) = side_effects;
3890 TREE_THIS_VOLATILE (t)
3891 = (TREE_CODE_CLASS (code) == tcc_reference
3892 && arg0 && TREE_THIS_VOLATILE (arg0));
3893
3894 return t;
3895 }
3896
3897 tree
3898 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3899 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3900 {
3901 bool constant, read_only, side_effects;
3902 tree t;
3903
3904 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3905
3906 t = make_node_stat (code PASS_MEM_STAT);
3907 TREE_TYPE (t) = tt;
3908
3909 side_effects = TREE_SIDE_EFFECTS (t);
3910
3911 PROCESS_ARG(0);
3912 PROCESS_ARG(1);
3913 PROCESS_ARG(2);
3914 PROCESS_ARG(3);
3915 PROCESS_ARG(4);
3916
3917 TREE_SIDE_EFFECTS (t) = side_effects;
3918 TREE_THIS_VOLATILE (t)
3919 = (TREE_CODE_CLASS (code) == tcc_reference
3920 && arg0 && TREE_THIS_VOLATILE (arg0));
3921
3922 return t;
3923 }
3924
3925 tree
3926 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3927 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3928 {
3929 bool constant, read_only, side_effects;
3930 tree t;
3931
3932 gcc_assert (code == TARGET_MEM_REF);
3933
3934 t = make_node_stat (code PASS_MEM_STAT);
3935 TREE_TYPE (t) = tt;
3936
3937 side_effects = TREE_SIDE_EFFECTS (t);
3938
3939 PROCESS_ARG(0);
3940 PROCESS_ARG(1);
3941 PROCESS_ARG(2);
3942 PROCESS_ARG(3);
3943 PROCESS_ARG(4);
3944 if (code == TARGET_MEM_REF)
3945 side_effects = 0;
3946 PROCESS_ARG(5);
3947
3948 TREE_SIDE_EFFECTS (t) = side_effects;
3949 TREE_THIS_VOLATILE (t)
3950 = (code == TARGET_MEM_REF
3951 && arg5 && TREE_THIS_VOLATILE (arg5));
3952
3953 return t;
3954 }
3955
3956 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3957 on the pointer PTR. */
3958
3959 tree
3960 build_simple_mem_ref_loc (location_t loc, tree ptr)
3961 {
3962 HOST_WIDE_INT offset = 0;
3963 tree ptype = TREE_TYPE (ptr);
3964 tree tem;
3965 /* For convenience allow addresses that collapse to a simple base
3966 and offset. */
3967 if (TREE_CODE (ptr) == ADDR_EXPR
3968 && (handled_component_p (TREE_OPERAND (ptr, 0))
3969 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3970 {
3971 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3972 gcc_assert (ptr);
3973 ptr = build_fold_addr_expr (ptr);
3974 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3975 }
3976 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3977 ptr, build_int_cst (ptype, offset));
3978 SET_EXPR_LOCATION (tem, loc);
3979 return tem;
3980 }
3981
3982 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3983
3984 double_int
3985 mem_ref_offset (const_tree t)
3986 {
3987 tree toff = TREE_OPERAND (t, 1);
3988 return double_int_sext (tree_to_double_int (toff),
3989 TYPE_PRECISION (TREE_TYPE (toff)));
3990 }
3991
3992 /* Return the pointer-type relevant for TBAA purposes from the
3993 gimple memory reference tree T. This is the type to be used for
3994 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3995
3996 tree
3997 reference_alias_ptr_type (const_tree t)
3998 {
3999 const_tree base = t;
4000 while (handled_component_p (base))
4001 base = TREE_OPERAND (base, 0);
4002 if (TREE_CODE (base) == MEM_REF)
4003 return TREE_TYPE (TREE_OPERAND (base, 1));
4004 else if (TREE_CODE (base) == TARGET_MEM_REF)
4005 return TREE_TYPE (TMR_OFFSET (base));
4006 else
4007 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
4008 }
4009
4010 /* Similar except don't specify the TREE_TYPE
4011 and leave the TREE_SIDE_EFFECTS as 0.
4012 It is permissible for arguments to be null,
4013 or even garbage if their values do not matter. */
4014
4015 tree
4016 build_nt (enum tree_code code, ...)
4017 {
4018 tree t;
4019 int length;
4020 int i;
4021 va_list p;
4022
4023 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4024
4025 va_start (p, code);
4026
4027 t = make_node (code);
4028 length = TREE_CODE_LENGTH (code);
4029
4030 for (i = 0; i < length; i++)
4031 TREE_OPERAND (t, i) = va_arg (p, tree);
4032
4033 va_end (p);
4034 return t;
4035 }
4036
4037 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4038 tree VEC. */
4039
4040 tree
4041 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
4042 {
4043 tree ret, t;
4044 unsigned int ix;
4045
4046 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
4047 CALL_EXPR_FN (ret) = fn;
4048 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4049 FOR_EACH_VEC_ELT (tree, args, ix, t)
4050 CALL_EXPR_ARG (ret, ix) = t;
4051 return ret;
4052 }
4053 \f
4054 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4055 We do NOT enter this node in any sort of symbol table.
4056
4057 LOC is the location of the decl.
4058
4059 layout_decl is used to set up the decl's storage layout.
4060 Other slots are initialized to 0 or null pointers. */
4061
4062 tree
4063 build_decl_stat (location_t loc, enum tree_code code, tree name,
4064 tree type MEM_STAT_DECL)
4065 {
4066 tree t;
4067
4068 t = make_node_stat (code PASS_MEM_STAT);
4069 DECL_SOURCE_LOCATION (t) = loc;
4070
4071 /* if (type == error_mark_node)
4072 type = integer_type_node; */
4073 /* That is not done, deliberately, so that having error_mark_node
4074 as the type can suppress useless errors in the use of this variable. */
4075
4076 DECL_NAME (t) = name;
4077 TREE_TYPE (t) = type;
4078
4079 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4080 layout_decl (t, 0);
4081
4082 return t;
4083 }
4084
4085 /* Builds and returns function declaration with NAME and TYPE. */
4086
4087 tree
4088 build_fn_decl (const char *name, tree type)
4089 {
4090 tree id = get_identifier (name);
4091 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4092
4093 DECL_EXTERNAL (decl) = 1;
4094 TREE_PUBLIC (decl) = 1;
4095 DECL_ARTIFICIAL (decl) = 1;
4096 TREE_NOTHROW (decl) = 1;
4097
4098 return decl;
4099 }
4100
4101 VEC(tree,gc) *all_translation_units;
4102
4103 /* Builds a new translation-unit decl with name NAME, queues it in the
4104 global list of translation-unit decls and returns it. */
4105
4106 tree
4107 build_translation_unit_decl (tree name)
4108 {
4109 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4110 name, NULL_TREE);
4111 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4112 VEC_safe_push (tree, gc, all_translation_units, tu);
4113 return tu;
4114 }
4115
4116 \f
4117 /* BLOCK nodes are used to represent the structure of binding contours
4118 and declarations, once those contours have been exited and their contents
4119 compiled. This information is used for outputting debugging info. */
4120
4121 tree
4122 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4123 {
4124 tree block = make_node (BLOCK);
4125
4126 BLOCK_VARS (block) = vars;
4127 BLOCK_SUBBLOCKS (block) = subblocks;
4128 BLOCK_SUPERCONTEXT (block) = supercontext;
4129 BLOCK_CHAIN (block) = chain;
4130 return block;
4131 }
4132
4133 \f
4134 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4135
4136 LOC is the location to use in tree T. */
4137
4138 void
4139 protected_set_expr_location (tree t, location_t loc)
4140 {
4141 if (t && CAN_HAVE_LOCATION_P (t))
4142 SET_EXPR_LOCATION (t, loc);
4143 }
4144 \f
4145 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4146 is ATTRIBUTE. */
4147
4148 tree
4149 build_decl_attribute_variant (tree ddecl, tree attribute)
4150 {
4151 DECL_ATTRIBUTES (ddecl) = attribute;
4152 return ddecl;
4153 }
4154
4155 /* Borrowed from hashtab.c iterative_hash implementation. */
4156 #define mix(a,b,c) \
4157 { \
4158 a -= b; a -= c; a ^= (c>>13); \
4159 b -= c; b -= a; b ^= (a<< 8); \
4160 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4161 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4162 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4163 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4164 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4165 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4166 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4167 }
4168
4169
4170 /* Produce good hash value combining VAL and VAL2. */
4171 hashval_t
4172 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4173 {
4174 /* the golden ratio; an arbitrary value. */
4175 hashval_t a = 0x9e3779b9;
4176
4177 mix (a, val, val2);
4178 return val2;
4179 }
4180
4181 /* Produce good hash value combining VAL and VAL2. */
4182 hashval_t
4183 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4184 {
4185 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4186 return iterative_hash_hashval_t (val, val2);
4187 else
4188 {
4189 hashval_t a = (hashval_t) val;
4190 /* Avoid warnings about shifting of more than the width of the type on
4191 hosts that won't execute this path. */
4192 int zero = 0;
4193 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4194 mix (a, b, val2);
4195 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4196 {
4197 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4198 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4199 mix (a, b, val2);
4200 }
4201 return val2;
4202 }
4203 }
4204
4205 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4206 is ATTRIBUTE and its qualifiers are QUALS.
4207
4208 Record such modified types already made so we don't make duplicates. */
4209
4210 tree
4211 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4212 {
4213 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4214 {
4215 hashval_t hashcode = 0;
4216 tree ntype;
4217 enum tree_code code = TREE_CODE (ttype);
4218
4219 /* Building a distinct copy of a tagged type is inappropriate; it
4220 causes breakage in code that expects there to be a one-to-one
4221 relationship between a struct and its fields.
4222 build_duplicate_type is another solution (as used in
4223 handle_transparent_union_attribute), but that doesn't play well
4224 with the stronger C++ type identity model. */
4225 if (TREE_CODE (ttype) == RECORD_TYPE
4226 || TREE_CODE (ttype) == UNION_TYPE
4227 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4228 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4229 {
4230 warning (OPT_Wattributes,
4231 "ignoring attributes applied to %qT after definition",
4232 TYPE_MAIN_VARIANT (ttype));
4233 return build_qualified_type (ttype, quals);
4234 }
4235
4236 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4237 ntype = build_distinct_type_copy (ttype);
4238
4239 TYPE_ATTRIBUTES (ntype) = attribute;
4240
4241 hashcode = iterative_hash_object (code, hashcode);
4242 if (TREE_TYPE (ntype))
4243 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4244 hashcode);
4245 hashcode = attribute_hash_list (attribute, hashcode);
4246
4247 switch (TREE_CODE (ntype))
4248 {
4249 case FUNCTION_TYPE:
4250 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4251 break;
4252 case ARRAY_TYPE:
4253 if (TYPE_DOMAIN (ntype))
4254 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4255 hashcode);
4256 break;
4257 case INTEGER_TYPE:
4258 hashcode = iterative_hash_object
4259 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4260 hashcode = iterative_hash_object
4261 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4262 break;
4263 case REAL_TYPE:
4264 case FIXED_POINT_TYPE:
4265 {
4266 unsigned int precision = TYPE_PRECISION (ntype);
4267 hashcode = iterative_hash_object (precision, hashcode);
4268 }
4269 break;
4270 default:
4271 break;
4272 }
4273
4274 ntype = type_hash_canon (hashcode, ntype);
4275
4276 /* If the target-dependent attributes make NTYPE different from
4277 its canonical type, we will need to use structural equality
4278 checks for this type. */
4279 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4280 || !targetm.comp_type_attributes (ntype, ttype))
4281 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4282 else if (TYPE_CANONICAL (ntype) == ntype)
4283 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4284
4285 ttype = build_qualified_type (ntype, quals);
4286 }
4287 else if (TYPE_QUALS (ttype) != quals)
4288 ttype = build_qualified_type (ttype, quals);
4289
4290 return ttype;
4291 }
4292
4293
4294 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4295 is ATTRIBUTE.
4296
4297 Record such modified types already made so we don't make duplicates. */
4298
4299 tree
4300 build_type_attribute_variant (tree ttype, tree attribute)
4301 {
4302 return build_type_attribute_qual_variant (ttype, attribute,
4303 TYPE_QUALS (ttype));
4304 }
4305
4306
4307 /* Reset the expression *EXPR_P, a size or position.
4308
4309 ??? We could reset all non-constant sizes or positions. But it's cheap
4310 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4311
4312 We need to reset self-referential sizes or positions because they cannot
4313 be gimplified and thus can contain a CALL_EXPR after the gimplification
4314 is finished, which will run afoul of LTO streaming. And they need to be
4315 reset to something essentially dummy but not constant, so as to preserve
4316 the properties of the object they are attached to. */
4317
4318 static inline void
4319 free_lang_data_in_one_sizepos (tree *expr_p)
4320 {
4321 tree expr = *expr_p;
4322 if (CONTAINS_PLACEHOLDER_P (expr))
4323 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4324 }
4325
4326
4327 /* Reset all the fields in a binfo node BINFO. We only keep
4328 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4329
4330 static void
4331 free_lang_data_in_binfo (tree binfo)
4332 {
4333 unsigned i;
4334 tree t;
4335
4336 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4337
4338 BINFO_VTABLE (binfo) = NULL_TREE;
4339 BINFO_BASE_ACCESSES (binfo) = NULL;
4340 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4341 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4342
4343 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4344 free_lang_data_in_binfo (t);
4345 }
4346
4347
4348 /* Reset all language specific information still present in TYPE. */
4349
4350 static void
4351 free_lang_data_in_type (tree type)
4352 {
4353 gcc_assert (TYPE_P (type));
4354
4355 /* Give the FE a chance to remove its own data first. */
4356 lang_hooks.free_lang_data (type);
4357
4358 TREE_LANG_FLAG_0 (type) = 0;
4359 TREE_LANG_FLAG_1 (type) = 0;
4360 TREE_LANG_FLAG_2 (type) = 0;
4361 TREE_LANG_FLAG_3 (type) = 0;
4362 TREE_LANG_FLAG_4 (type) = 0;
4363 TREE_LANG_FLAG_5 (type) = 0;
4364 TREE_LANG_FLAG_6 (type) = 0;
4365
4366 if (TREE_CODE (type) == FUNCTION_TYPE)
4367 {
4368 /* Remove the const and volatile qualifiers from arguments. The
4369 C++ front end removes them, but the C front end does not,
4370 leading to false ODR violation errors when merging two
4371 instances of the same function signature compiled by
4372 different front ends. */
4373 tree p;
4374
4375 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4376 {
4377 tree arg_type = TREE_VALUE (p);
4378
4379 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4380 {
4381 int quals = TYPE_QUALS (arg_type)
4382 & ~TYPE_QUAL_CONST
4383 & ~TYPE_QUAL_VOLATILE;
4384 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4385 free_lang_data_in_type (TREE_VALUE (p));
4386 }
4387 }
4388 }
4389
4390 /* Remove members that are not actually FIELD_DECLs from the field
4391 list of an aggregate. These occur in C++. */
4392 if (RECORD_OR_UNION_TYPE_P (type))
4393 {
4394 tree prev, member;
4395
4396 /* Note that TYPE_FIELDS can be shared across distinct
4397 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4398 to be removed, we cannot set its TREE_CHAIN to NULL.
4399 Otherwise, we would not be able to find all the other fields
4400 in the other instances of this TREE_TYPE.
4401
4402 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4403 prev = NULL_TREE;
4404 member = TYPE_FIELDS (type);
4405 while (member)
4406 {
4407 if (TREE_CODE (member) == FIELD_DECL)
4408 {
4409 if (prev)
4410 TREE_CHAIN (prev) = member;
4411 else
4412 TYPE_FIELDS (type) = member;
4413 prev = member;
4414 }
4415
4416 member = TREE_CHAIN (member);
4417 }
4418
4419 if (prev)
4420 TREE_CHAIN (prev) = NULL_TREE;
4421 else
4422 TYPE_FIELDS (type) = NULL_TREE;
4423
4424 TYPE_METHODS (type) = NULL_TREE;
4425 if (TYPE_BINFO (type))
4426 free_lang_data_in_binfo (TYPE_BINFO (type));
4427 }
4428 else
4429 {
4430 /* For non-aggregate types, clear out the language slot (which
4431 overloads TYPE_BINFO). */
4432 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4433
4434 if (INTEGRAL_TYPE_P (type)
4435 || SCALAR_FLOAT_TYPE_P (type)
4436 || FIXED_POINT_TYPE_P (type))
4437 {
4438 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4439 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4440 }
4441 }
4442
4443 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4444 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4445
4446 if (debug_info_level < DINFO_LEVEL_TERSE
4447 || (TYPE_CONTEXT (type)
4448 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4449 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4450 TYPE_CONTEXT (type) = NULL_TREE;
4451
4452 if (debug_info_level < DINFO_LEVEL_TERSE)
4453 TYPE_STUB_DECL (type) = NULL_TREE;
4454 }
4455
4456
4457 /* Return true if DECL may need an assembler name to be set. */
4458
4459 static inline bool
4460 need_assembler_name_p (tree decl)
4461 {
4462 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4463 if (TREE_CODE (decl) != FUNCTION_DECL
4464 && TREE_CODE (decl) != VAR_DECL)
4465 return false;
4466
4467 /* If DECL already has its assembler name set, it does not need a
4468 new one. */
4469 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4470 || DECL_ASSEMBLER_NAME_SET_P (decl))
4471 return false;
4472
4473 /* Abstract decls do not need an assembler name. */
4474 if (DECL_ABSTRACT (decl))
4475 return false;
4476
4477 /* For VAR_DECLs, only static, public and external symbols need an
4478 assembler name. */
4479 if (TREE_CODE (decl) == VAR_DECL
4480 && !TREE_STATIC (decl)
4481 && !TREE_PUBLIC (decl)
4482 && !DECL_EXTERNAL (decl))
4483 return false;
4484
4485 if (TREE_CODE (decl) == FUNCTION_DECL)
4486 {
4487 /* Do not set assembler name on builtins. Allow RTL expansion to
4488 decide whether to expand inline or via a regular call. */
4489 if (DECL_BUILT_IN (decl)
4490 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4491 return false;
4492
4493 /* Functions represented in the callgraph need an assembler name. */
4494 if (cgraph_get_node (decl) != NULL)
4495 return true;
4496
4497 /* Unused and not public functions don't need an assembler name. */
4498 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4499 return false;
4500 }
4501
4502 return true;
4503 }
4504
4505
4506 /* Reset all language specific information still present in symbol
4507 DECL. */
4508
4509 static void
4510 free_lang_data_in_decl (tree decl)
4511 {
4512 gcc_assert (DECL_P (decl));
4513
4514 /* Give the FE a chance to remove its own data first. */
4515 lang_hooks.free_lang_data (decl);
4516
4517 TREE_LANG_FLAG_0 (decl) = 0;
4518 TREE_LANG_FLAG_1 (decl) = 0;
4519 TREE_LANG_FLAG_2 (decl) = 0;
4520 TREE_LANG_FLAG_3 (decl) = 0;
4521 TREE_LANG_FLAG_4 (decl) = 0;
4522 TREE_LANG_FLAG_5 (decl) = 0;
4523 TREE_LANG_FLAG_6 (decl) = 0;
4524
4525 /* Identifiers need not have a type. */
4526 if (DECL_NAME (decl))
4527 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4528
4529 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4530 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4531 if (TREE_CODE (decl) == FIELD_DECL)
4532 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4533
4534 /* DECL_FCONTEXT is only used for debug info generation. */
4535 if (TREE_CODE (decl) == FIELD_DECL
4536 && debug_info_level < DINFO_LEVEL_TERSE)
4537 DECL_FCONTEXT (decl) = NULL_TREE;
4538
4539 if (TREE_CODE (decl) == FUNCTION_DECL)
4540 {
4541 if (gimple_has_body_p (decl))
4542 {
4543 tree t;
4544
4545 /* If DECL has a gimple body, then the context for its
4546 arguments must be DECL. Otherwise, it doesn't really
4547 matter, as we will not be emitting any code for DECL. In
4548 general, there may be other instances of DECL created by
4549 the front end and since PARM_DECLs are generally shared,
4550 their DECL_CONTEXT changes as the replicas of DECL are
4551 created. The only time where DECL_CONTEXT is important
4552 is for the FUNCTION_DECLs that have a gimple body (since
4553 the PARM_DECL will be used in the function's body). */
4554 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4555 DECL_CONTEXT (t) = decl;
4556 }
4557
4558 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4559 At this point, it is not needed anymore. */
4560 DECL_SAVED_TREE (decl) = NULL_TREE;
4561
4562 /* Clear the abstract origin if it refers to a method. Otherwise
4563 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4564 origin will not be output correctly. */
4565 if (DECL_ABSTRACT_ORIGIN (decl)
4566 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4567 && RECORD_OR_UNION_TYPE_P
4568 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4569 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4570 }
4571 else if (TREE_CODE (decl) == VAR_DECL)
4572 {
4573 if ((DECL_EXTERNAL (decl)
4574 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4575 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4576 DECL_INITIAL (decl) = NULL_TREE;
4577 }
4578 else if (TREE_CODE (decl) == TYPE_DECL)
4579 DECL_INITIAL (decl) = NULL_TREE;
4580 }
4581
4582
4583 /* Data used when collecting DECLs and TYPEs for language data removal. */
4584
4585 struct free_lang_data_d
4586 {
4587 /* Worklist to avoid excessive recursion. */
4588 VEC(tree,heap) *worklist;
4589
4590 /* Set of traversed objects. Used to avoid duplicate visits. */
4591 struct pointer_set_t *pset;
4592
4593 /* Array of symbols to process with free_lang_data_in_decl. */
4594 VEC(tree,heap) *decls;
4595
4596 /* Array of types to process with free_lang_data_in_type. */
4597 VEC(tree,heap) *types;
4598 };
4599
4600
4601 /* Save all language fields needed to generate proper debug information
4602 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4603
4604 static void
4605 save_debug_info_for_decl (tree t)
4606 {
4607 /*struct saved_debug_info_d *sdi;*/
4608
4609 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4610
4611 /* FIXME. Partial implementation for saving debug info removed. */
4612 }
4613
4614
4615 /* Save all language fields needed to generate proper debug information
4616 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4617
4618 static void
4619 save_debug_info_for_type (tree t)
4620 {
4621 /*struct saved_debug_info_d *sdi;*/
4622
4623 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4624
4625 /* FIXME. Partial implementation for saving debug info removed. */
4626 }
4627
4628
4629 /* Add type or decl T to one of the list of tree nodes that need their
4630 language data removed. The lists are held inside FLD. */
4631
4632 static void
4633 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4634 {
4635 if (DECL_P (t))
4636 {
4637 VEC_safe_push (tree, heap, fld->decls, t);
4638 if (debug_info_level > DINFO_LEVEL_TERSE)
4639 save_debug_info_for_decl (t);
4640 }
4641 else if (TYPE_P (t))
4642 {
4643 VEC_safe_push (tree, heap, fld->types, t);
4644 if (debug_info_level > DINFO_LEVEL_TERSE)
4645 save_debug_info_for_type (t);
4646 }
4647 else
4648 gcc_unreachable ();
4649 }
4650
4651 /* Push tree node T into FLD->WORKLIST. */
4652
4653 static inline void
4654 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4655 {
4656 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4657 VEC_safe_push (tree, heap, fld->worklist, (t));
4658 }
4659
4660
4661 /* Operand callback helper for free_lang_data_in_node. *TP is the
4662 subtree operand being considered. */
4663
4664 static tree
4665 find_decls_types_r (tree *tp, int *ws, void *data)
4666 {
4667 tree t = *tp;
4668 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4669
4670 if (TREE_CODE (t) == TREE_LIST)
4671 return NULL_TREE;
4672
4673 /* Language specific nodes will be removed, so there is no need
4674 to gather anything under them. */
4675 if (is_lang_specific (t))
4676 {
4677 *ws = 0;
4678 return NULL_TREE;
4679 }
4680
4681 if (DECL_P (t))
4682 {
4683 /* Note that walk_tree does not traverse every possible field in
4684 decls, so we have to do our own traversals here. */
4685 add_tree_to_fld_list (t, fld);
4686
4687 fld_worklist_push (DECL_NAME (t), fld);
4688 fld_worklist_push (DECL_CONTEXT (t), fld);
4689 fld_worklist_push (DECL_SIZE (t), fld);
4690 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4691
4692 /* We are going to remove everything under DECL_INITIAL for
4693 TYPE_DECLs. No point walking them. */
4694 if (TREE_CODE (t) != TYPE_DECL)
4695 fld_worklist_push (DECL_INITIAL (t), fld);
4696
4697 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4698 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4699
4700 if (TREE_CODE (t) == FUNCTION_DECL)
4701 {
4702 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4703 fld_worklist_push (DECL_RESULT (t), fld);
4704 }
4705 else if (TREE_CODE (t) == TYPE_DECL)
4706 {
4707 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4708 fld_worklist_push (DECL_VINDEX (t), fld);
4709 }
4710 else if (TREE_CODE (t) == FIELD_DECL)
4711 {
4712 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4713 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4714 fld_worklist_push (DECL_QUALIFIER (t), fld);
4715 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4716 fld_worklist_push (DECL_FCONTEXT (t), fld);
4717 }
4718 else if (TREE_CODE (t) == VAR_DECL)
4719 {
4720 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4721 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4722 }
4723
4724 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4725 && DECL_HAS_VALUE_EXPR_P (t))
4726 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4727
4728 if (TREE_CODE (t) != FIELD_DECL
4729 && TREE_CODE (t) != TYPE_DECL)
4730 fld_worklist_push (TREE_CHAIN (t), fld);
4731 *ws = 0;
4732 }
4733 else if (TYPE_P (t))
4734 {
4735 /* Note that walk_tree does not traverse every possible field in
4736 types, so we have to do our own traversals here. */
4737 add_tree_to_fld_list (t, fld);
4738
4739 if (!RECORD_OR_UNION_TYPE_P (t))
4740 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4741 fld_worklist_push (TYPE_SIZE (t), fld);
4742 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4743 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4744 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4745 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4746 fld_worklist_push (TYPE_NAME (t), fld);
4747 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4748 them and thus do not and want not to reach unused pointer types
4749 this way. */
4750 if (!POINTER_TYPE_P (t))
4751 fld_worklist_push (TYPE_MINVAL (t), fld);
4752 if (!RECORD_OR_UNION_TYPE_P (t))
4753 fld_worklist_push (TYPE_MAXVAL (t), fld);
4754 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4755 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4756 do not and want not to reach unused variants this way. */
4757 fld_worklist_push (TYPE_CONTEXT (t), fld);
4758 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4759 and want not to reach unused types this way. */
4760
4761 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4762 {
4763 unsigned i;
4764 tree tem;
4765 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4766 i, tem); ++i)
4767 fld_worklist_push (TREE_TYPE (tem), fld);
4768 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4769 if (tem
4770 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4771 && TREE_CODE (tem) == TREE_LIST)
4772 do
4773 {
4774 fld_worklist_push (TREE_VALUE (tem), fld);
4775 tem = TREE_CHAIN (tem);
4776 }
4777 while (tem);
4778 }
4779 if (RECORD_OR_UNION_TYPE_P (t))
4780 {
4781 tree tem;
4782 /* Push all TYPE_FIELDS - there can be interleaving interesting
4783 and non-interesting things. */
4784 tem = TYPE_FIELDS (t);
4785 while (tem)
4786 {
4787 if (TREE_CODE (tem) == FIELD_DECL)
4788 fld_worklist_push (tem, fld);
4789 tem = TREE_CHAIN (tem);
4790 }
4791 }
4792
4793 fld_worklist_push (TREE_CHAIN (t), fld);
4794 *ws = 0;
4795 }
4796 else if (TREE_CODE (t) == BLOCK)
4797 {
4798 tree tem;
4799 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4800 fld_worklist_push (tem, fld);
4801 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4802 fld_worklist_push (tem, fld);
4803 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4804 }
4805
4806 fld_worklist_push (TREE_TYPE (t), fld);
4807
4808 return NULL_TREE;
4809 }
4810
4811
4812 /* Find decls and types in T. */
4813
4814 static void
4815 find_decls_types (tree t, struct free_lang_data_d *fld)
4816 {
4817 while (1)
4818 {
4819 if (!pointer_set_contains (fld->pset, t))
4820 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4821 if (VEC_empty (tree, fld->worklist))
4822 break;
4823 t = VEC_pop (tree, fld->worklist);
4824 }
4825 }
4826
4827 /* Translate all the types in LIST with the corresponding runtime
4828 types. */
4829
4830 static tree
4831 get_eh_types_for_runtime (tree list)
4832 {
4833 tree head, prev;
4834
4835 if (list == NULL_TREE)
4836 return NULL_TREE;
4837
4838 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4839 prev = head;
4840 list = TREE_CHAIN (list);
4841 while (list)
4842 {
4843 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4844 TREE_CHAIN (prev) = n;
4845 prev = TREE_CHAIN (prev);
4846 list = TREE_CHAIN (list);
4847 }
4848
4849 return head;
4850 }
4851
4852
4853 /* Find decls and types referenced in EH region R and store them in
4854 FLD->DECLS and FLD->TYPES. */
4855
4856 static void
4857 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4858 {
4859 switch (r->type)
4860 {
4861 case ERT_CLEANUP:
4862 break;
4863
4864 case ERT_TRY:
4865 {
4866 eh_catch c;
4867
4868 /* The types referenced in each catch must first be changed to the
4869 EH types used at runtime. This removes references to FE types
4870 in the region. */
4871 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4872 {
4873 c->type_list = get_eh_types_for_runtime (c->type_list);
4874 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4875 }
4876 }
4877 break;
4878
4879 case ERT_ALLOWED_EXCEPTIONS:
4880 r->u.allowed.type_list
4881 = get_eh_types_for_runtime (r->u.allowed.type_list);
4882 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4883 break;
4884
4885 case ERT_MUST_NOT_THROW:
4886 walk_tree (&r->u.must_not_throw.failure_decl,
4887 find_decls_types_r, fld, fld->pset);
4888 break;
4889 }
4890 }
4891
4892
4893 /* Find decls and types referenced in cgraph node N and store them in
4894 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4895 look for *every* kind of DECL and TYPE node reachable from N,
4896 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4897 NAMESPACE_DECLs, etc). */
4898
4899 static void
4900 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4901 {
4902 basic_block bb;
4903 struct function *fn;
4904 unsigned ix;
4905 tree t;
4906
4907 find_decls_types (n->decl, fld);
4908
4909 if (!gimple_has_body_p (n->decl))
4910 return;
4911
4912 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4913
4914 fn = DECL_STRUCT_FUNCTION (n->decl);
4915
4916 /* Traverse locals. */
4917 FOR_EACH_LOCAL_DECL (fn, ix, t)
4918 find_decls_types (t, fld);
4919
4920 /* Traverse EH regions in FN. */
4921 {
4922 eh_region r;
4923 FOR_ALL_EH_REGION_FN (r, fn)
4924 find_decls_types_in_eh_region (r, fld);
4925 }
4926
4927 /* Traverse every statement in FN. */
4928 FOR_EACH_BB_FN (bb, fn)
4929 {
4930 gimple_stmt_iterator si;
4931 unsigned i;
4932
4933 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4934 {
4935 gimple phi = gsi_stmt (si);
4936
4937 for (i = 0; i < gimple_phi_num_args (phi); i++)
4938 {
4939 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4940 find_decls_types (*arg_p, fld);
4941 }
4942 }
4943
4944 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4945 {
4946 gimple stmt = gsi_stmt (si);
4947
4948 for (i = 0; i < gimple_num_ops (stmt); i++)
4949 {
4950 tree arg = gimple_op (stmt, i);
4951 find_decls_types (arg, fld);
4952 }
4953 }
4954 }
4955 }
4956
4957
4958 /* Find decls and types referenced in varpool node N and store them in
4959 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4960 look for *every* kind of DECL and TYPE node reachable from N,
4961 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4962 NAMESPACE_DECLs, etc). */
4963
4964 static void
4965 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4966 {
4967 find_decls_types (v->decl, fld);
4968 }
4969
4970 /* If T needs an assembler name, have one created for it. */
4971
4972 void
4973 assign_assembler_name_if_neeeded (tree t)
4974 {
4975 if (need_assembler_name_p (t))
4976 {
4977 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4978 diagnostics that use input_location to show locus
4979 information. The problem here is that, at this point,
4980 input_location is generally anchored to the end of the file
4981 (since the parser is long gone), so we don't have a good
4982 position to pin it to.
4983
4984 To alleviate this problem, this uses the location of T's
4985 declaration. Examples of this are
4986 testsuite/g++.dg/template/cond2.C and
4987 testsuite/g++.dg/template/pr35240.C. */
4988 location_t saved_location = input_location;
4989 input_location = DECL_SOURCE_LOCATION (t);
4990
4991 decl_assembler_name (t);
4992
4993 input_location = saved_location;
4994 }
4995 }
4996
4997
4998 /* Free language specific information for every operand and expression
4999 in every node of the call graph. This process operates in three stages:
5000
5001 1- Every callgraph node and varpool node is traversed looking for
5002 decls and types embedded in them. This is a more exhaustive
5003 search than that done by find_referenced_vars, because it will
5004 also collect individual fields, decls embedded in types, etc.
5005
5006 2- All the decls found are sent to free_lang_data_in_decl.
5007
5008 3- All the types found are sent to free_lang_data_in_type.
5009
5010 The ordering between decls and types is important because
5011 free_lang_data_in_decl sets assembler names, which includes
5012 mangling. So types cannot be freed up until assembler names have
5013 been set up. */
5014
5015 static void
5016 free_lang_data_in_cgraph (void)
5017 {
5018 struct cgraph_node *n;
5019 struct varpool_node *v;
5020 struct free_lang_data_d fld;
5021 tree t;
5022 unsigned i;
5023 alias_pair *p;
5024
5025 /* Initialize sets and arrays to store referenced decls and types. */
5026 fld.pset = pointer_set_create ();
5027 fld.worklist = NULL;
5028 fld.decls = VEC_alloc (tree, heap, 100);
5029 fld.types = VEC_alloc (tree, heap, 100);
5030
5031 /* Find decls and types in the body of every function in the callgraph. */
5032 for (n = cgraph_nodes; n; n = n->next)
5033 find_decls_types_in_node (n, &fld);
5034
5035 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5036 find_decls_types (p->decl, &fld);
5037
5038 /* Find decls and types in every varpool symbol. */
5039 for (v = varpool_nodes; v; v = v->next)
5040 find_decls_types_in_var (v, &fld);
5041
5042 /* Set the assembler name on every decl found. We need to do this
5043 now because free_lang_data_in_decl will invalidate data needed
5044 for mangling. This breaks mangling on interdependent decls. */
5045 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5046 assign_assembler_name_if_neeeded (t);
5047
5048 /* Traverse every decl found freeing its language data. */
5049 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5050 free_lang_data_in_decl (t);
5051
5052 /* Traverse every type found freeing its language data. */
5053 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5054 free_lang_data_in_type (t);
5055
5056 pointer_set_destroy (fld.pset);
5057 VEC_free (tree, heap, fld.worklist);
5058 VEC_free (tree, heap, fld.decls);
5059 VEC_free (tree, heap, fld.types);
5060 }
5061
5062
5063 /* Free resources that are used by FE but are not needed once they are done. */
5064
5065 static unsigned
5066 free_lang_data (void)
5067 {
5068 unsigned i;
5069
5070 /* If we are the LTO frontend we have freed lang-specific data already. */
5071 if (in_lto_p
5072 || !flag_generate_lto)
5073 return 0;
5074
5075 /* Allocate and assign alias sets to the standard integer types
5076 while the slots are still in the way the frontends generated them. */
5077 for (i = 0; i < itk_none; ++i)
5078 if (integer_types[i])
5079 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5080
5081 /* Traverse the IL resetting language specific information for
5082 operands, expressions, etc. */
5083 free_lang_data_in_cgraph ();
5084
5085 /* Create gimple variants for common types. */
5086 ptrdiff_type_node = integer_type_node;
5087 fileptr_type_node = ptr_type_node;
5088 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
5089 || (TYPE_MODE (boolean_type_node)
5090 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
5091 || TYPE_PRECISION (boolean_type_node) != 1
5092 || !TYPE_UNSIGNED (boolean_type_node))
5093 {
5094 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5095 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5096 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5097 TYPE_PRECISION (boolean_type_node) = 1;
5098 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5099 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5100 }
5101
5102 /* Unify char_type_node with its properly signed variant. */
5103 if (TYPE_UNSIGNED (char_type_node))
5104 unsigned_char_type_node = char_type_node;
5105 else
5106 signed_char_type_node = char_type_node;
5107
5108 /* Reset some langhooks. Do not reset types_compatible_p, it may
5109 still be used indirectly via the get_alias_set langhook. */
5110 lang_hooks.callgraph.analyze_expr = NULL;
5111 lang_hooks.dwarf_name = lhd_dwarf_name;
5112 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5113 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
5114
5115 /* Reset diagnostic machinery. */
5116 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5117 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5118 diagnostic_format_decoder (global_dc) = default_tree_printer;
5119
5120 return 0;
5121 }
5122
5123
5124 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5125 {
5126 {
5127 SIMPLE_IPA_PASS,
5128 "*free_lang_data", /* name */
5129 NULL, /* gate */
5130 free_lang_data, /* execute */
5131 NULL, /* sub */
5132 NULL, /* next */
5133 0, /* static_pass_number */
5134 TV_IPA_FREE_LANG_DATA, /* tv_id */
5135 0, /* properties_required */
5136 0, /* properties_provided */
5137 0, /* properties_destroyed */
5138 0, /* todo_flags_start */
5139 TODO_ggc_collect /* todo_flags_finish */
5140 }
5141 };
5142
5143 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5144 or zero if not.
5145
5146 We try both `text' and `__text__', ATTR may be either one. */
5147 /* ??? It might be a reasonable simplification to require ATTR to be only
5148 `text'. One might then also require attribute lists to be stored in
5149 their canonicalized form. */
5150
5151 static int
5152 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5153 {
5154 int ident_len;
5155 const char *p;
5156
5157 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5158 return 0;
5159
5160 p = IDENTIFIER_POINTER (ident);
5161 ident_len = IDENTIFIER_LENGTH (ident);
5162
5163 if (ident_len == attr_len
5164 && strcmp (attr, p) == 0)
5165 return 1;
5166
5167 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5168 if (attr[0] == '_')
5169 {
5170 gcc_assert (attr[1] == '_');
5171 gcc_assert (attr[attr_len - 2] == '_');
5172 gcc_assert (attr[attr_len - 1] == '_');
5173 if (ident_len == attr_len - 4
5174 && strncmp (attr + 2, p, attr_len - 4) == 0)
5175 return 1;
5176 }
5177 else
5178 {
5179 if (ident_len == attr_len + 4
5180 && p[0] == '_' && p[1] == '_'
5181 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5182 && strncmp (attr, p + 2, attr_len) == 0)
5183 return 1;
5184 }
5185
5186 return 0;
5187 }
5188
5189 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5190 or zero if not.
5191
5192 We try both `text' and `__text__', ATTR may be either one. */
5193
5194 int
5195 is_attribute_p (const char *attr, const_tree ident)
5196 {
5197 return is_attribute_with_length_p (attr, strlen (attr), ident);
5198 }
5199
5200 /* Given an attribute name and a list of attributes, return a pointer to the
5201 attribute's list element if the attribute is part of the list, or NULL_TREE
5202 if not found. If the attribute appears more than once, this only
5203 returns the first occurrence; the TREE_CHAIN of the return value should
5204 be passed back in if further occurrences are wanted. */
5205
5206 tree
5207 lookup_attribute (const char *attr_name, tree list)
5208 {
5209 tree l;
5210 size_t attr_len = strlen (attr_name);
5211
5212 for (l = list; l; l = TREE_CHAIN (l))
5213 {
5214 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5215 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5216 return l;
5217 }
5218 return NULL_TREE;
5219 }
5220
5221 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5222 modified list. */
5223
5224 tree
5225 remove_attribute (const char *attr_name, tree list)
5226 {
5227 tree *p;
5228 size_t attr_len = strlen (attr_name);
5229
5230 for (p = &list; *p; )
5231 {
5232 tree l = *p;
5233 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5234 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5235 *p = TREE_CHAIN (l);
5236 else
5237 p = &TREE_CHAIN (l);
5238 }
5239
5240 return list;
5241 }
5242
5243 /* Return an attribute list that is the union of a1 and a2. */
5244
5245 tree
5246 merge_attributes (tree a1, tree a2)
5247 {
5248 tree attributes;
5249
5250 /* Either one unset? Take the set one. */
5251
5252 if ((attributes = a1) == 0)
5253 attributes = a2;
5254
5255 /* One that completely contains the other? Take it. */
5256
5257 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5258 {
5259 if (attribute_list_contained (a2, a1))
5260 attributes = a2;
5261 else
5262 {
5263 /* Pick the longest list, and hang on the other list. */
5264
5265 if (list_length (a1) < list_length (a2))
5266 attributes = a2, a2 = a1;
5267
5268 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5269 {
5270 tree a;
5271 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5272 attributes);
5273 a != NULL_TREE;
5274 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5275 TREE_CHAIN (a)))
5276 {
5277 if (TREE_VALUE (a) != NULL
5278 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5279 && TREE_VALUE (a2) != NULL
5280 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5281 {
5282 if (simple_cst_list_equal (TREE_VALUE (a),
5283 TREE_VALUE (a2)) == 1)
5284 break;
5285 }
5286 else if (simple_cst_equal (TREE_VALUE (a),
5287 TREE_VALUE (a2)) == 1)
5288 break;
5289 }
5290 if (a == NULL_TREE)
5291 {
5292 a1 = copy_node (a2);
5293 TREE_CHAIN (a1) = attributes;
5294 attributes = a1;
5295 }
5296 }
5297 }
5298 }
5299 return attributes;
5300 }
5301
5302 /* Given types T1 and T2, merge their attributes and return
5303 the result. */
5304
5305 tree
5306 merge_type_attributes (tree t1, tree t2)
5307 {
5308 return merge_attributes (TYPE_ATTRIBUTES (t1),
5309 TYPE_ATTRIBUTES (t2));
5310 }
5311
5312 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5313 the result. */
5314
5315 tree
5316 merge_decl_attributes (tree olddecl, tree newdecl)
5317 {
5318 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5319 DECL_ATTRIBUTES (newdecl));
5320 }
5321
5322 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5323
5324 /* Specialization of merge_decl_attributes for various Windows targets.
5325
5326 This handles the following situation:
5327
5328 __declspec (dllimport) int foo;
5329 int foo;
5330
5331 The second instance of `foo' nullifies the dllimport. */
5332
5333 tree
5334 merge_dllimport_decl_attributes (tree old, tree new_tree)
5335 {
5336 tree a;
5337 int delete_dllimport_p = 1;
5338
5339 /* What we need to do here is remove from `old' dllimport if it doesn't
5340 appear in `new'. dllimport behaves like extern: if a declaration is
5341 marked dllimport and a definition appears later, then the object
5342 is not dllimport'd. We also remove a `new' dllimport if the old list
5343 contains dllexport: dllexport always overrides dllimport, regardless
5344 of the order of declaration. */
5345 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5346 delete_dllimport_p = 0;
5347 else if (DECL_DLLIMPORT_P (new_tree)
5348 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5349 {
5350 DECL_DLLIMPORT_P (new_tree) = 0;
5351 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5352 "dllimport ignored", new_tree);
5353 }
5354 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5355 {
5356 /* Warn about overriding a symbol that has already been used, e.g.:
5357 extern int __attribute__ ((dllimport)) foo;
5358 int* bar () {return &foo;}
5359 int foo;
5360 */
5361 if (TREE_USED (old))
5362 {
5363 warning (0, "%q+D redeclared without dllimport attribute "
5364 "after being referenced with dll linkage", new_tree);
5365 /* If we have used a variable's address with dllimport linkage,
5366 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5367 decl may already have had TREE_CONSTANT computed.
5368 We still remove the attribute so that assembler code refers
5369 to '&foo rather than '_imp__foo'. */
5370 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5371 DECL_DLLIMPORT_P (new_tree) = 1;
5372 }
5373
5374 /* Let an inline definition silently override the external reference,
5375 but otherwise warn about attribute inconsistency. */
5376 else if (TREE_CODE (new_tree) == VAR_DECL
5377 || !DECL_DECLARED_INLINE_P (new_tree))
5378 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5379 "previous dllimport ignored", new_tree);
5380 }
5381 else
5382 delete_dllimport_p = 0;
5383
5384 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5385
5386 if (delete_dllimport_p)
5387 {
5388 tree prev, t;
5389 const size_t attr_len = strlen ("dllimport");
5390
5391 /* Scan the list for dllimport and delete it. */
5392 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5393 {
5394 if (is_attribute_with_length_p ("dllimport", attr_len,
5395 TREE_PURPOSE (t)))
5396 {
5397 if (prev == NULL_TREE)
5398 a = TREE_CHAIN (a);
5399 else
5400 TREE_CHAIN (prev) = TREE_CHAIN (t);
5401 break;
5402 }
5403 }
5404 }
5405
5406 return a;
5407 }
5408
5409 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5410 struct attribute_spec.handler. */
5411
5412 tree
5413 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5414 bool *no_add_attrs)
5415 {
5416 tree node = *pnode;
5417 bool is_dllimport;
5418
5419 /* These attributes may apply to structure and union types being created,
5420 but otherwise should pass to the declaration involved. */
5421 if (!DECL_P (node))
5422 {
5423 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5424 | (int) ATTR_FLAG_ARRAY_NEXT))
5425 {
5426 *no_add_attrs = true;
5427 return tree_cons (name, args, NULL_TREE);
5428 }
5429 if (TREE_CODE (node) == RECORD_TYPE
5430 || TREE_CODE (node) == UNION_TYPE)
5431 {
5432 node = TYPE_NAME (node);
5433 if (!node)
5434 return NULL_TREE;
5435 }
5436 else
5437 {
5438 warning (OPT_Wattributes, "%qE attribute ignored",
5439 name);
5440 *no_add_attrs = true;
5441 return NULL_TREE;
5442 }
5443 }
5444
5445 if (TREE_CODE (node) != FUNCTION_DECL
5446 && TREE_CODE (node) != VAR_DECL
5447 && TREE_CODE (node) != TYPE_DECL)
5448 {
5449 *no_add_attrs = true;
5450 warning (OPT_Wattributes, "%qE attribute ignored",
5451 name);
5452 return NULL_TREE;
5453 }
5454
5455 if (TREE_CODE (node) == TYPE_DECL
5456 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5457 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5458 {
5459 *no_add_attrs = true;
5460 warning (OPT_Wattributes, "%qE attribute ignored",
5461 name);
5462 return NULL_TREE;
5463 }
5464
5465 is_dllimport = is_attribute_p ("dllimport", name);
5466
5467 /* Report error on dllimport ambiguities seen now before they cause
5468 any damage. */
5469 if (is_dllimport)
5470 {
5471 /* Honor any target-specific overrides. */
5472 if (!targetm.valid_dllimport_attribute_p (node))
5473 *no_add_attrs = true;
5474
5475 else if (TREE_CODE (node) == FUNCTION_DECL
5476 && DECL_DECLARED_INLINE_P (node))
5477 {
5478 warning (OPT_Wattributes, "inline function %q+D declared as "
5479 " dllimport: attribute ignored", node);
5480 *no_add_attrs = true;
5481 }
5482 /* Like MS, treat definition of dllimported variables and
5483 non-inlined functions on declaration as syntax errors. */
5484 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5485 {
5486 error ("function %q+D definition is marked dllimport", node);
5487 *no_add_attrs = true;
5488 }
5489
5490 else if (TREE_CODE (node) == VAR_DECL)
5491 {
5492 if (DECL_INITIAL (node))
5493 {
5494 error ("variable %q+D definition is marked dllimport",
5495 node);
5496 *no_add_attrs = true;
5497 }
5498
5499 /* `extern' needn't be specified with dllimport.
5500 Specify `extern' now and hope for the best. Sigh. */
5501 DECL_EXTERNAL (node) = 1;
5502 /* Also, implicitly give dllimport'd variables declared within
5503 a function global scope, unless declared static. */
5504 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5505 TREE_PUBLIC (node) = 1;
5506 }
5507
5508 if (*no_add_attrs == false)
5509 DECL_DLLIMPORT_P (node) = 1;
5510 }
5511 else if (TREE_CODE (node) == FUNCTION_DECL
5512 && DECL_DECLARED_INLINE_P (node))
5513 /* An exported function, even if inline, must be emitted. */
5514 DECL_EXTERNAL (node) = 0;
5515
5516 /* Report error if symbol is not accessible at global scope. */
5517 if (!TREE_PUBLIC (node)
5518 && (TREE_CODE (node) == VAR_DECL
5519 || TREE_CODE (node) == FUNCTION_DECL))
5520 {
5521 error ("external linkage required for symbol %q+D because of "
5522 "%qE attribute", node, name);
5523 *no_add_attrs = true;
5524 }
5525
5526 /* A dllexport'd entity must have default visibility so that other
5527 program units (shared libraries or the main executable) can see
5528 it. A dllimport'd entity must have default visibility so that
5529 the linker knows that undefined references within this program
5530 unit can be resolved by the dynamic linker. */
5531 if (!*no_add_attrs)
5532 {
5533 if (DECL_VISIBILITY_SPECIFIED (node)
5534 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5535 error ("%qE implies default visibility, but %qD has already "
5536 "been declared with a different visibility",
5537 name, node);
5538 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5539 DECL_VISIBILITY_SPECIFIED (node) = 1;
5540 }
5541
5542 return NULL_TREE;
5543 }
5544
5545 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5546 \f
5547 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5548 of the various TYPE_QUAL values. */
5549
5550 static void
5551 set_type_quals (tree type, int type_quals)
5552 {
5553 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5554 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5555 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5556 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5557 }
5558
5559 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5560
5561 bool
5562 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5563 {
5564 return (TYPE_QUALS (cand) == type_quals
5565 && TYPE_NAME (cand) == TYPE_NAME (base)
5566 /* Apparently this is needed for Objective-C. */
5567 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5568 /* Check alignment. */
5569 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5570 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5571 TYPE_ATTRIBUTES (base)));
5572 }
5573
5574 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5575
5576 static bool
5577 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5578 {
5579 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5580 && TYPE_NAME (cand) == TYPE_NAME (base)
5581 /* Apparently this is needed for Objective-C. */
5582 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5583 /* Check alignment. */
5584 && TYPE_ALIGN (cand) == align
5585 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5586 TYPE_ATTRIBUTES (base)));
5587 }
5588
5589 /* Return a version of the TYPE, qualified as indicated by the
5590 TYPE_QUALS, if one exists. If no qualified version exists yet,
5591 return NULL_TREE. */
5592
5593 tree
5594 get_qualified_type (tree type, int type_quals)
5595 {
5596 tree t;
5597
5598 if (TYPE_QUALS (type) == type_quals)
5599 return type;
5600
5601 /* Search the chain of variants to see if there is already one there just
5602 like the one we need to have. If so, use that existing one. We must
5603 preserve the TYPE_NAME, since there is code that depends on this. */
5604 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5605 if (check_qualified_type (t, type, type_quals))
5606 return t;
5607
5608 return NULL_TREE;
5609 }
5610
5611 /* Like get_qualified_type, but creates the type if it does not
5612 exist. This function never returns NULL_TREE. */
5613
5614 tree
5615 build_qualified_type (tree type, int type_quals)
5616 {
5617 tree t;
5618
5619 /* See if we already have the appropriate qualified variant. */
5620 t = get_qualified_type (type, type_quals);
5621
5622 /* If not, build it. */
5623 if (!t)
5624 {
5625 t = build_variant_type_copy (type);
5626 set_type_quals (t, type_quals);
5627
5628 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5629 /* Propagate structural equality. */
5630 SET_TYPE_STRUCTURAL_EQUALITY (t);
5631 else if (TYPE_CANONICAL (type) != type)
5632 /* Build the underlying canonical type, since it is different
5633 from TYPE. */
5634 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5635 type_quals);
5636 else
5637 /* T is its own canonical type. */
5638 TYPE_CANONICAL (t) = t;
5639
5640 }
5641
5642 return t;
5643 }
5644
5645 /* Create a variant of type T with alignment ALIGN. */
5646
5647 tree
5648 build_aligned_type (tree type, unsigned int align)
5649 {
5650 tree t;
5651
5652 if (TYPE_PACKED (type)
5653 || TYPE_ALIGN (type) == align)
5654 return type;
5655
5656 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5657 if (check_aligned_type (t, type, align))
5658 return t;
5659
5660 t = build_variant_type_copy (type);
5661 TYPE_ALIGN (t) = align;
5662
5663 return t;
5664 }
5665
5666 /* Create a new distinct copy of TYPE. The new type is made its own
5667 MAIN_VARIANT. If TYPE requires structural equality checks, the
5668 resulting type requires structural equality checks; otherwise, its
5669 TYPE_CANONICAL points to itself. */
5670
5671 tree
5672 build_distinct_type_copy (tree type)
5673 {
5674 tree t = copy_node (type);
5675
5676 TYPE_POINTER_TO (t) = 0;
5677 TYPE_REFERENCE_TO (t) = 0;
5678
5679 /* Set the canonical type either to a new equivalence class, or
5680 propagate the need for structural equality checks. */
5681 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5682 SET_TYPE_STRUCTURAL_EQUALITY (t);
5683 else
5684 TYPE_CANONICAL (t) = t;
5685
5686 /* Make it its own variant. */
5687 TYPE_MAIN_VARIANT (t) = t;
5688 TYPE_NEXT_VARIANT (t) = 0;
5689
5690 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5691 whose TREE_TYPE is not t. This can also happen in the Ada
5692 frontend when using subtypes. */
5693
5694 return t;
5695 }
5696
5697 /* Create a new variant of TYPE, equivalent but distinct. This is so
5698 the caller can modify it. TYPE_CANONICAL for the return type will
5699 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5700 are considered equal by the language itself (or that both types
5701 require structural equality checks). */
5702
5703 tree
5704 build_variant_type_copy (tree type)
5705 {
5706 tree t, m = TYPE_MAIN_VARIANT (type);
5707
5708 t = build_distinct_type_copy (type);
5709
5710 /* Since we're building a variant, assume that it is a non-semantic
5711 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5712 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5713
5714 /* Add the new type to the chain of variants of TYPE. */
5715 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5716 TYPE_NEXT_VARIANT (m) = t;
5717 TYPE_MAIN_VARIANT (t) = m;
5718
5719 return t;
5720 }
5721 \f
5722 /* Return true if the from tree in both tree maps are equal. */
5723
5724 int
5725 tree_map_base_eq (const void *va, const void *vb)
5726 {
5727 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5728 *const b = (const struct tree_map_base *) vb;
5729 return (a->from == b->from);
5730 }
5731
5732 /* Hash a from tree in a tree_base_map. */
5733
5734 unsigned int
5735 tree_map_base_hash (const void *item)
5736 {
5737 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5738 }
5739
5740 /* Return true if this tree map structure is marked for garbage collection
5741 purposes. We simply return true if the from tree is marked, so that this
5742 structure goes away when the from tree goes away. */
5743
5744 int
5745 tree_map_base_marked_p (const void *p)
5746 {
5747 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5748 }
5749
5750 /* Hash a from tree in a tree_map. */
5751
5752 unsigned int
5753 tree_map_hash (const void *item)
5754 {
5755 return (((const struct tree_map *) item)->hash);
5756 }
5757
5758 /* Hash a from tree in a tree_decl_map. */
5759
5760 unsigned int
5761 tree_decl_map_hash (const void *item)
5762 {
5763 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5764 }
5765
5766 /* Return the initialization priority for DECL. */
5767
5768 priority_type
5769 decl_init_priority_lookup (tree decl)
5770 {
5771 struct tree_priority_map *h;
5772 struct tree_map_base in;
5773
5774 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5775 in.from = decl;
5776 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5777 return h ? h->init : DEFAULT_INIT_PRIORITY;
5778 }
5779
5780 /* Return the finalization priority for DECL. */
5781
5782 priority_type
5783 decl_fini_priority_lookup (tree decl)
5784 {
5785 struct tree_priority_map *h;
5786 struct tree_map_base in;
5787
5788 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5789 in.from = decl;
5790 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5791 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5792 }
5793
5794 /* Return the initialization and finalization priority information for
5795 DECL. If there is no previous priority information, a freshly
5796 allocated structure is returned. */
5797
5798 static struct tree_priority_map *
5799 decl_priority_info (tree decl)
5800 {
5801 struct tree_priority_map in;
5802 struct tree_priority_map *h;
5803 void **loc;
5804
5805 in.base.from = decl;
5806 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5807 h = (struct tree_priority_map *) *loc;
5808 if (!h)
5809 {
5810 h = ggc_alloc_cleared_tree_priority_map ();
5811 *loc = h;
5812 h->base.from = decl;
5813 h->init = DEFAULT_INIT_PRIORITY;
5814 h->fini = DEFAULT_INIT_PRIORITY;
5815 }
5816
5817 return h;
5818 }
5819
5820 /* Set the initialization priority for DECL to PRIORITY. */
5821
5822 void
5823 decl_init_priority_insert (tree decl, priority_type priority)
5824 {
5825 struct tree_priority_map *h;
5826
5827 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5828 h = decl_priority_info (decl);
5829 h->init = priority;
5830 }
5831
5832 /* Set the finalization priority for DECL to PRIORITY. */
5833
5834 void
5835 decl_fini_priority_insert (tree decl, priority_type priority)
5836 {
5837 struct tree_priority_map *h;
5838
5839 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5840 h = decl_priority_info (decl);
5841 h->fini = priority;
5842 }
5843
5844 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5845
5846 static void
5847 print_debug_expr_statistics (void)
5848 {
5849 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5850 (long) htab_size (debug_expr_for_decl),
5851 (long) htab_elements (debug_expr_for_decl),
5852 htab_collisions (debug_expr_for_decl));
5853 }
5854
5855 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5856
5857 static void
5858 print_value_expr_statistics (void)
5859 {
5860 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5861 (long) htab_size (value_expr_for_decl),
5862 (long) htab_elements (value_expr_for_decl),
5863 htab_collisions (value_expr_for_decl));
5864 }
5865
5866 /* Lookup a debug expression for FROM, and return it if we find one. */
5867
5868 tree
5869 decl_debug_expr_lookup (tree from)
5870 {
5871 struct tree_decl_map *h, in;
5872 in.base.from = from;
5873
5874 h = (struct tree_decl_map *)
5875 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5876 if (h)
5877 return h->to;
5878 return NULL_TREE;
5879 }
5880
5881 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5882
5883 void
5884 decl_debug_expr_insert (tree from, tree to)
5885 {
5886 struct tree_decl_map *h;
5887 void **loc;
5888
5889 h = ggc_alloc_tree_decl_map ();
5890 h->base.from = from;
5891 h->to = to;
5892 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5893 INSERT);
5894 *(struct tree_decl_map **) loc = h;
5895 }
5896
5897 /* Lookup a value expression for FROM, and return it if we find one. */
5898
5899 tree
5900 decl_value_expr_lookup (tree from)
5901 {
5902 struct tree_decl_map *h, in;
5903 in.base.from = from;
5904
5905 h = (struct tree_decl_map *)
5906 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5907 if (h)
5908 return h->to;
5909 return NULL_TREE;
5910 }
5911
5912 /* Insert a mapping FROM->TO in the value expression hashtable. */
5913
5914 void
5915 decl_value_expr_insert (tree from, tree to)
5916 {
5917 struct tree_decl_map *h;
5918 void **loc;
5919
5920 h = ggc_alloc_tree_decl_map ();
5921 h->base.from = from;
5922 h->to = to;
5923 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
5924 INSERT);
5925 *(struct tree_decl_map **) loc = h;
5926 }
5927
5928 /* Hashing of types so that we don't make duplicates.
5929 The entry point is `type_hash_canon'. */
5930
5931 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5932 with types in the TREE_VALUE slots), by adding the hash codes
5933 of the individual types. */
5934
5935 static unsigned int
5936 type_hash_list (const_tree list, hashval_t hashcode)
5937 {
5938 const_tree tail;
5939
5940 for (tail = list; tail; tail = TREE_CHAIN (tail))
5941 if (TREE_VALUE (tail) != error_mark_node)
5942 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5943 hashcode);
5944
5945 return hashcode;
5946 }
5947
5948 /* These are the Hashtable callback functions. */
5949
5950 /* Returns true iff the types are equivalent. */
5951
5952 static int
5953 type_hash_eq (const void *va, const void *vb)
5954 {
5955 const struct type_hash *const a = (const struct type_hash *) va,
5956 *const b = (const struct type_hash *) vb;
5957
5958 /* First test the things that are the same for all types. */
5959 if (a->hash != b->hash
5960 || TREE_CODE (a->type) != TREE_CODE (b->type)
5961 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5962 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5963 TYPE_ATTRIBUTES (b->type))
5964 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5965 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5966 || (TREE_CODE (a->type) != COMPLEX_TYPE
5967 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5968 return 0;
5969
5970 switch (TREE_CODE (a->type))
5971 {
5972 case VOID_TYPE:
5973 case COMPLEX_TYPE:
5974 case POINTER_TYPE:
5975 case REFERENCE_TYPE:
5976 return 1;
5977
5978 case VECTOR_TYPE:
5979 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5980
5981 case ENUMERAL_TYPE:
5982 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5983 && !(TYPE_VALUES (a->type)
5984 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5985 && TYPE_VALUES (b->type)
5986 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5987 && type_list_equal (TYPE_VALUES (a->type),
5988 TYPE_VALUES (b->type))))
5989 return 0;
5990
5991 /* ... fall through ... */
5992
5993 case INTEGER_TYPE:
5994 case REAL_TYPE:
5995 case BOOLEAN_TYPE:
5996 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5997 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5998 TYPE_MAX_VALUE (b->type)))
5999 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6000 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6001 TYPE_MIN_VALUE (b->type))));
6002
6003 case FIXED_POINT_TYPE:
6004 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6005
6006 case OFFSET_TYPE:
6007 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6008
6009 case METHOD_TYPE:
6010 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6011 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6012 || (TYPE_ARG_TYPES (a->type)
6013 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6014 && TYPE_ARG_TYPES (b->type)
6015 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6016 && type_list_equal (TYPE_ARG_TYPES (a->type),
6017 TYPE_ARG_TYPES (b->type)))));
6018
6019 case ARRAY_TYPE:
6020 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6021
6022 case RECORD_TYPE:
6023 case UNION_TYPE:
6024 case QUAL_UNION_TYPE:
6025 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6026 || (TYPE_FIELDS (a->type)
6027 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6028 && TYPE_FIELDS (b->type)
6029 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6030 && type_list_equal (TYPE_FIELDS (a->type),
6031 TYPE_FIELDS (b->type))));
6032
6033 case FUNCTION_TYPE:
6034 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6035 || (TYPE_ARG_TYPES (a->type)
6036 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6037 && TYPE_ARG_TYPES (b->type)
6038 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6039 && type_list_equal (TYPE_ARG_TYPES (a->type),
6040 TYPE_ARG_TYPES (b->type))))
6041 break;
6042 return 0;
6043
6044 default:
6045 return 0;
6046 }
6047
6048 if (lang_hooks.types.type_hash_eq != NULL)
6049 return lang_hooks.types.type_hash_eq (a->type, b->type);
6050
6051 return 1;
6052 }
6053
6054 /* Return the cached hash value. */
6055
6056 static hashval_t
6057 type_hash_hash (const void *item)
6058 {
6059 return ((const struct type_hash *) item)->hash;
6060 }
6061
6062 /* Look in the type hash table for a type isomorphic to TYPE.
6063 If one is found, return it. Otherwise return 0. */
6064
6065 tree
6066 type_hash_lookup (hashval_t hashcode, tree type)
6067 {
6068 struct type_hash *h, in;
6069
6070 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6071 must call that routine before comparing TYPE_ALIGNs. */
6072 layout_type (type);
6073
6074 in.hash = hashcode;
6075 in.type = type;
6076
6077 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6078 hashcode);
6079 if (h)
6080 return h->type;
6081 return NULL_TREE;
6082 }
6083
6084 /* Add an entry to the type-hash-table
6085 for a type TYPE whose hash code is HASHCODE. */
6086
6087 void
6088 type_hash_add (hashval_t hashcode, tree type)
6089 {
6090 struct type_hash *h;
6091 void **loc;
6092
6093 h = ggc_alloc_type_hash ();
6094 h->hash = hashcode;
6095 h->type = type;
6096 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6097 *loc = (void *)h;
6098 }
6099
6100 /* Given TYPE, and HASHCODE its hash code, return the canonical
6101 object for an identical type if one already exists.
6102 Otherwise, return TYPE, and record it as the canonical object.
6103
6104 To use this function, first create a type of the sort you want.
6105 Then compute its hash code from the fields of the type that
6106 make it different from other similar types.
6107 Then call this function and use the value. */
6108
6109 tree
6110 type_hash_canon (unsigned int hashcode, tree type)
6111 {
6112 tree t1;
6113
6114 /* The hash table only contains main variants, so ensure that's what we're
6115 being passed. */
6116 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6117
6118 /* See if the type is in the hash table already. If so, return it.
6119 Otherwise, add the type. */
6120 t1 = type_hash_lookup (hashcode, type);
6121 if (t1 != 0)
6122 {
6123 #ifdef GATHER_STATISTICS
6124 tree_node_counts[(int) t_kind]--;
6125 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
6126 #endif
6127 return t1;
6128 }
6129 else
6130 {
6131 type_hash_add (hashcode, type);
6132 return type;
6133 }
6134 }
6135
6136 /* See if the data pointed to by the type hash table is marked. We consider
6137 it marked if the type is marked or if a debug type number or symbol
6138 table entry has been made for the type. */
6139
6140 static int
6141 type_hash_marked_p (const void *p)
6142 {
6143 const_tree const type = ((const struct type_hash *) p)->type;
6144
6145 return ggc_marked_p (type);
6146 }
6147
6148 static void
6149 print_type_hash_statistics (void)
6150 {
6151 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6152 (long) htab_size (type_hash_table),
6153 (long) htab_elements (type_hash_table),
6154 htab_collisions (type_hash_table));
6155 }
6156
6157 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6158 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6159 by adding the hash codes of the individual attributes. */
6160
6161 static unsigned int
6162 attribute_hash_list (const_tree list, hashval_t hashcode)
6163 {
6164 const_tree tail;
6165
6166 for (tail = list; tail; tail = TREE_CHAIN (tail))
6167 /* ??? Do we want to add in TREE_VALUE too? */
6168 hashcode = iterative_hash_object
6169 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6170 return hashcode;
6171 }
6172
6173 /* Given two lists of attributes, return true if list l2 is
6174 equivalent to l1. */
6175
6176 int
6177 attribute_list_equal (const_tree l1, const_tree l2)
6178 {
6179 return attribute_list_contained (l1, l2)
6180 && attribute_list_contained (l2, l1);
6181 }
6182
6183 /* Given two lists of attributes, return true if list L2 is
6184 completely contained within L1. */
6185 /* ??? This would be faster if attribute names were stored in a canonicalized
6186 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6187 must be used to show these elements are equivalent (which they are). */
6188 /* ??? It's not clear that attributes with arguments will always be handled
6189 correctly. */
6190
6191 int
6192 attribute_list_contained (const_tree l1, const_tree l2)
6193 {
6194 const_tree t1, t2;
6195
6196 /* First check the obvious, maybe the lists are identical. */
6197 if (l1 == l2)
6198 return 1;
6199
6200 /* Maybe the lists are similar. */
6201 for (t1 = l1, t2 = l2;
6202 t1 != 0 && t2 != 0
6203 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6204 && TREE_VALUE (t1) == TREE_VALUE (t2);
6205 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6206
6207 /* Maybe the lists are equal. */
6208 if (t1 == 0 && t2 == 0)
6209 return 1;
6210
6211 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6212 {
6213 const_tree attr;
6214 /* This CONST_CAST is okay because lookup_attribute does not
6215 modify its argument and the return value is assigned to a
6216 const_tree. */
6217 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6218 CONST_CAST_TREE(l1));
6219 attr != NULL_TREE;
6220 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6221 TREE_CHAIN (attr)))
6222 {
6223 if (TREE_VALUE (t2) != NULL
6224 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6225 && TREE_VALUE (attr) != NULL
6226 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6227 {
6228 if (simple_cst_list_equal (TREE_VALUE (t2),
6229 TREE_VALUE (attr)) == 1)
6230 break;
6231 }
6232 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6233 break;
6234 }
6235
6236 if (attr == 0)
6237 return 0;
6238 }
6239
6240 return 1;
6241 }
6242
6243 /* Given two lists of types
6244 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6245 return 1 if the lists contain the same types in the same order.
6246 Also, the TREE_PURPOSEs must match. */
6247
6248 int
6249 type_list_equal (const_tree l1, const_tree l2)
6250 {
6251 const_tree t1, t2;
6252
6253 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6254 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6255 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6256 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6257 && (TREE_TYPE (TREE_PURPOSE (t1))
6258 == TREE_TYPE (TREE_PURPOSE (t2))))))
6259 return 0;
6260
6261 return t1 == t2;
6262 }
6263
6264 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6265 given by TYPE. If the argument list accepts variable arguments,
6266 then this function counts only the ordinary arguments. */
6267
6268 int
6269 type_num_arguments (const_tree type)
6270 {
6271 int i = 0;
6272 tree t;
6273
6274 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6275 /* If the function does not take a variable number of arguments,
6276 the last element in the list will have type `void'. */
6277 if (VOID_TYPE_P (TREE_VALUE (t)))
6278 break;
6279 else
6280 ++i;
6281
6282 return i;
6283 }
6284
6285 /* Nonzero if integer constants T1 and T2
6286 represent the same constant value. */
6287
6288 int
6289 tree_int_cst_equal (const_tree t1, const_tree t2)
6290 {
6291 if (t1 == t2)
6292 return 1;
6293
6294 if (t1 == 0 || t2 == 0)
6295 return 0;
6296
6297 if (TREE_CODE (t1) == INTEGER_CST
6298 && TREE_CODE (t2) == INTEGER_CST
6299 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6300 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6301 return 1;
6302
6303 return 0;
6304 }
6305
6306 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6307 The precise way of comparison depends on their data type. */
6308
6309 int
6310 tree_int_cst_lt (const_tree t1, const_tree t2)
6311 {
6312 if (t1 == t2)
6313 return 0;
6314
6315 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6316 {
6317 int t1_sgn = tree_int_cst_sgn (t1);
6318 int t2_sgn = tree_int_cst_sgn (t2);
6319
6320 if (t1_sgn < t2_sgn)
6321 return 1;
6322 else if (t1_sgn > t2_sgn)
6323 return 0;
6324 /* Otherwise, both are non-negative, so we compare them as
6325 unsigned just in case one of them would overflow a signed
6326 type. */
6327 }
6328 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6329 return INT_CST_LT (t1, t2);
6330
6331 return INT_CST_LT_UNSIGNED (t1, t2);
6332 }
6333
6334 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6335
6336 int
6337 tree_int_cst_compare (const_tree t1, const_tree t2)
6338 {
6339 if (tree_int_cst_lt (t1, t2))
6340 return -1;
6341 else if (tree_int_cst_lt (t2, t1))
6342 return 1;
6343 else
6344 return 0;
6345 }
6346
6347 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6348 the host. If POS is zero, the value can be represented in a single
6349 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6350 be represented in a single unsigned HOST_WIDE_INT. */
6351
6352 int
6353 host_integerp (const_tree t, int pos)
6354 {
6355 if (t == NULL_TREE)
6356 return 0;
6357
6358 return (TREE_CODE (t) == INTEGER_CST
6359 && ((TREE_INT_CST_HIGH (t) == 0
6360 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6361 || (! pos && TREE_INT_CST_HIGH (t) == -1
6362 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6363 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6364 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6365 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6366 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6367 }
6368
6369 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6370 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6371 be non-negative. We must be able to satisfy the above conditions. */
6372
6373 HOST_WIDE_INT
6374 tree_low_cst (const_tree t, int pos)
6375 {
6376 gcc_assert (host_integerp (t, pos));
6377 return TREE_INT_CST_LOW (t);
6378 }
6379
6380 /* Return the most significant bit of the integer constant T. */
6381
6382 int
6383 tree_int_cst_msb (const_tree t)
6384 {
6385 int prec;
6386 HOST_WIDE_INT h;
6387 unsigned HOST_WIDE_INT l;
6388
6389 /* Note that using TYPE_PRECISION here is wrong. We care about the
6390 actual bits, not the (arbitrary) range of the type. */
6391 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6392 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6393 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6394 return (l & 1) == 1;
6395 }
6396
6397 /* Return an indication of the sign of the integer constant T.
6398 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6399 Note that -1 will never be returned if T's type is unsigned. */
6400
6401 int
6402 tree_int_cst_sgn (const_tree t)
6403 {
6404 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6405 return 0;
6406 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6407 return 1;
6408 else if (TREE_INT_CST_HIGH (t) < 0)
6409 return -1;
6410 else
6411 return 1;
6412 }
6413
6414 /* Return the minimum number of bits needed to represent VALUE in a
6415 signed or unsigned type, UNSIGNEDP says which. */
6416
6417 unsigned int
6418 tree_int_cst_min_precision (tree value, bool unsignedp)
6419 {
6420 int log;
6421
6422 /* If the value is negative, compute its negative minus 1. The latter
6423 adjustment is because the absolute value of the largest negative value
6424 is one larger than the largest positive value. This is equivalent to
6425 a bit-wise negation, so use that operation instead. */
6426
6427 if (tree_int_cst_sgn (value) < 0)
6428 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6429
6430 /* Return the number of bits needed, taking into account the fact
6431 that we need one more bit for a signed than unsigned type. */
6432
6433 if (integer_zerop (value))
6434 log = 0;
6435 else
6436 log = tree_floor_log2 (value);
6437
6438 return log + 1 + !unsignedp;
6439 }
6440
6441 /* Compare two constructor-element-type constants. Return 1 if the lists
6442 are known to be equal; otherwise return 0. */
6443
6444 int
6445 simple_cst_list_equal (const_tree l1, const_tree l2)
6446 {
6447 while (l1 != NULL_TREE && l2 != NULL_TREE)
6448 {
6449 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6450 return 0;
6451
6452 l1 = TREE_CHAIN (l1);
6453 l2 = TREE_CHAIN (l2);
6454 }
6455
6456 return l1 == l2;
6457 }
6458
6459 /* Return truthvalue of whether T1 is the same tree structure as T2.
6460 Return 1 if they are the same.
6461 Return 0 if they are understandably different.
6462 Return -1 if either contains tree structure not understood by
6463 this function. */
6464
6465 int
6466 simple_cst_equal (const_tree t1, const_tree t2)
6467 {
6468 enum tree_code code1, code2;
6469 int cmp;
6470 int i;
6471
6472 if (t1 == t2)
6473 return 1;
6474 if (t1 == 0 || t2 == 0)
6475 return 0;
6476
6477 code1 = TREE_CODE (t1);
6478 code2 = TREE_CODE (t2);
6479
6480 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6481 {
6482 if (CONVERT_EXPR_CODE_P (code2)
6483 || code2 == NON_LVALUE_EXPR)
6484 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6485 else
6486 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6487 }
6488
6489 else if (CONVERT_EXPR_CODE_P (code2)
6490 || code2 == NON_LVALUE_EXPR)
6491 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6492
6493 if (code1 != code2)
6494 return 0;
6495
6496 switch (code1)
6497 {
6498 case INTEGER_CST:
6499 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6500 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6501
6502 case REAL_CST:
6503 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6504
6505 case FIXED_CST:
6506 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6507
6508 case STRING_CST:
6509 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6510 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6511 TREE_STRING_LENGTH (t1)));
6512
6513 case CONSTRUCTOR:
6514 {
6515 unsigned HOST_WIDE_INT idx;
6516 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6517 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6518
6519 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6520 return false;
6521
6522 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6523 /* ??? Should we handle also fields here? */
6524 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6525 VEC_index (constructor_elt, v2, idx)->value))
6526 return false;
6527 return true;
6528 }
6529
6530 case SAVE_EXPR:
6531 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6532
6533 case CALL_EXPR:
6534 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6535 if (cmp <= 0)
6536 return cmp;
6537 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6538 return 0;
6539 {
6540 const_tree arg1, arg2;
6541 const_call_expr_arg_iterator iter1, iter2;
6542 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6543 arg2 = first_const_call_expr_arg (t2, &iter2);
6544 arg1 && arg2;
6545 arg1 = next_const_call_expr_arg (&iter1),
6546 arg2 = next_const_call_expr_arg (&iter2))
6547 {
6548 cmp = simple_cst_equal (arg1, arg2);
6549 if (cmp <= 0)
6550 return cmp;
6551 }
6552 return arg1 == arg2;
6553 }
6554
6555 case TARGET_EXPR:
6556 /* Special case: if either target is an unallocated VAR_DECL,
6557 it means that it's going to be unified with whatever the
6558 TARGET_EXPR is really supposed to initialize, so treat it
6559 as being equivalent to anything. */
6560 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6561 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6562 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6563 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6564 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6565 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6566 cmp = 1;
6567 else
6568 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6569
6570 if (cmp <= 0)
6571 return cmp;
6572
6573 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6574
6575 case WITH_CLEANUP_EXPR:
6576 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6577 if (cmp <= 0)
6578 return cmp;
6579
6580 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6581
6582 case COMPONENT_REF:
6583 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6584 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6585
6586 return 0;
6587
6588 case VAR_DECL:
6589 case PARM_DECL:
6590 case CONST_DECL:
6591 case FUNCTION_DECL:
6592 return 0;
6593
6594 default:
6595 break;
6596 }
6597
6598 /* This general rule works for most tree codes. All exceptions should be
6599 handled above. If this is a language-specific tree code, we can't
6600 trust what might be in the operand, so say we don't know
6601 the situation. */
6602 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6603 return -1;
6604
6605 switch (TREE_CODE_CLASS (code1))
6606 {
6607 case tcc_unary:
6608 case tcc_binary:
6609 case tcc_comparison:
6610 case tcc_expression:
6611 case tcc_reference:
6612 case tcc_statement:
6613 cmp = 1;
6614 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6615 {
6616 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6617 if (cmp <= 0)
6618 return cmp;
6619 }
6620
6621 return cmp;
6622
6623 default:
6624 return -1;
6625 }
6626 }
6627
6628 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6629 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6630 than U, respectively. */
6631
6632 int
6633 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6634 {
6635 if (tree_int_cst_sgn (t) < 0)
6636 return -1;
6637 else if (TREE_INT_CST_HIGH (t) != 0)
6638 return 1;
6639 else if (TREE_INT_CST_LOW (t) == u)
6640 return 0;
6641 else if (TREE_INT_CST_LOW (t) < u)
6642 return -1;
6643 else
6644 return 1;
6645 }
6646
6647 /* Return true if CODE represents an associative tree code. Otherwise
6648 return false. */
6649 bool
6650 associative_tree_code (enum tree_code code)
6651 {
6652 switch (code)
6653 {
6654 case BIT_IOR_EXPR:
6655 case BIT_AND_EXPR:
6656 case BIT_XOR_EXPR:
6657 case PLUS_EXPR:
6658 case MULT_EXPR:
6659 case MIN_EXPR:
6660 case MAX_EXPR:
6661 return true;
6662
6663 default:
6664 break;
6665 }
6666 return false;
6667 }
6668
6669 /* Return true if CODE represents a commutative tree code. Otherwise
6670 return false. */
6671 bool
6672 commutative_tree_code (enum tree_code code)
6673 {
6674 switch (code)
6675 {
6676 case PLUS_EXPR:
6677 case MULT_EXPR:
6678 case MIN_EXPR:
6679 case MAX_EXPR:
6680 case BIT_IOR_EXPR:
6681 case BIT_XOR_EXPR:
6682 case BIT_AND_EXPR:
6683 case NE_EXPR:
6684 case EQ_EXPR:
6685 case UNORDERED_EXPR:
6686 case ORDERED_EXPR:
6687 case UNEQ_EXPR:
6688 case LTGT_EXPR:
6689 case TRUTH_AND_EXPR:
6690 case TRUTH_XOR_EXPR:
6691 case TRUTH_OR_EXPR:
6692 return true;
6693
6694 default:
6695 break;
6696 }
6697 return false;
6698 }
6699
6700 /* Return true if CODE represents a ternary tree code for which the
6701 first two operands are commutative. Otherwise return false. */
6702 bool
6703 commutative_ternary_tree_code (enum tree_code code)
6704 {
6705 switch (code)
6706 {
6707 case WIDEN_MULT_PLUS_EXPR:
6708 case WIDEN_MULT_MINUS_EXPR:
6709 return true;
6710
6711 default:
6712 break;
6713 }
6714 return false;
6715 }
6716
6717 /* Generate a hash value for an expression. This can be used iteratively
6718 by passing a previous result as the VAL argument.
6719
6720 This function is intended to produce the same hash for expressions which
6721 would compare equal using operand_equal_p. */
6722
6723 hashval_t
6724 iterative_hash_expr (const_tree t, hashval_t val)
6725 {
6726 int i;
6727 enum tree_code code;
6728 char tclass;
6729
6730 if (t == NULL_TREE)
6731 return iterative_hash_hashval_t (0, val);
6732
6733 code = TREE_CODE (t);
6734
6735 switch (code)
6736 {
6737 /* Alas, constants aren't shared, so we can't rely on pointer
6738 identity. */
6739 case INTEGER_CST:
6740 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6741 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6742 case REAL_CST:
6743 {
6744 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6745
6746 return iterative_hash_hashval_t (val2, val);
6747 }
6748 case FIXED_CST:
6749 {
6750 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6751
6752 return iterative_hash_hashval_t (val2, val);
6753 }
6754 case STRING_CST:
6755 return iterative_hash (TREE_STRING_POINTER (t),
6756 TREE_STRING_LENGTH (t), val);
6757 case COMPLEX_CST:
6758 val = iterative_hash_expr (TREE_REALPART (t), val);
6759 return iterative_hash_expr (TREE_IMAGPART (t), val);
6760 case VECTOR_CST:
6761 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6762 case SSA_NAME:
6763 /* We can just compare by pointer. */
6764 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6765 case PLACEHOLDER_EXPR:
6766 /* The node itself doesn't matter. */
6767 return val;
6768 case TREE_LIST:
6769 /* A list of expressions, for a CALL_EXPR or as the elements of a
6770 VECTOR_CST. */
6771 for (; t; t = TREE_CHAIN (t))
6772 val = iterative_hash_expr (TREE_VALUE (t), val);
6773 return val;
6774 case CONSTRUCTOR:
6775 {
6776 unsigned HOST_WIDE_INT idx;
6777 tree field, value;
6778 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6779 {
6780 val = iterative_hash_expr (field, val);
6781 val = iterative_hash_expr (value, val);
6782 }
6783 return val;
6784 }
6785 case MEM_REF:
6786 {
6787 /* The type of the second operand is relevant, except for
6788 its top-level qualifiers. */
6789 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6790
6791 val = iterative_hash_object (TYPE_HASH (type), val);
6792
6793 /* We could use the standard hash computation from this point
6794 on. */
6795 val = iterative_hash_object (code, val);
6796 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6797 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6798 return val;
6799 }
6800 case FUNCTION_DECL:
6801 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6802 Otherwise nodes that compare equal according to operand_equal_p might
6803 get different hash codes. However, don't do this for machine specific
6804 or front end builtins, since the function code is overloaded in those
6805 cases. */
6806 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6807 && built_in_decls[DECL_FUNCTION_CODE (t)])
6808 {
6809 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6810 code = TREE_CODE (t);
6811 }
6812 /* FALL THROUGH */
6813 default:
6814 tclass = TREE_CODE_CLASS (code);
6815
6816 if (tclass == tcc_declaration)
6817 {
6818 /* DECL's have a unique ID */
6819 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6820 }
6821 else
6822 {
6823 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6824
6825 val = iterative_hash_object (code, val);
6826
6827 /* Don't hash the type, that can lead to having nodes which
6828 compare equal according to operand_equal_p, but which
6829 have different hash codes. */
6830 if (CONVERT_EXPR_CODE_P (code)
6831 || code == NON_LVALUE_EXPR)
6832 {
6833 /* Make sure to include signness in the hash computation. */
6834 val += TYPE_UNSIGNED (TREE_TYPE (t));
6835 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6836 }
6837
6838 else if (commutative_tree_code (code))
6839 {
6840 /* It's a commutative expression. We want to hash it the same
6841 however it appears. We do this by first hashing both operands
6842 and then rehashing based on the order of their independent
6843 hashes. */
6844 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6845 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6846 hashval_t t;
6847
6848 if (one > two)
6849 t = one, one = two, two = t;
6850
6851 val = iterative_hash_hashval_t (one, val);
6852 val = iterative_hash_hashval_t (two, val);
6853 }
6854 else
6855 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6856 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6857 }
6858 return val;
6859 break;
6860 }
6861 }
6862
6863 /* Generate a hash value for a pair of expressions. This can be used
6864 iteratively by passing a previous result as the VAL argument.
6865
6866 The same hash value is always returned for a given pair of expressions,
6867 regardless of the order in which they are presented. This is useful in
6868 hashing the operands of commutative functions. */
6869
6870 hashval_t
6871 iterative_hash_exprs_commutative (const_tree t1,
6872 const_tree t2, hashval_t val)
6873 {
6874 hashval_t one = iterative_hash_expr (t1, 0);
6875 hashval_t two = iterative_hash_expr (t2, 0);
6876 hashval_t t;
6877
6878 if (one > two)
6879 t = one, one = two, two = t;
6880 val = iterative_hash_hashval_t (one, val);
6881 val = iterative_hash_hashval_t (two, val);
6882
6883 return val;
6884 }
6885 \f
6886 /* Constructors for pointer, array and function types.
6887 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6888 constructed by language-dependent code, not here.) */
6889
6890 /* Construct, lay out and return the type of pointers to TO_TYPE with
6891 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6892 reference all of memory. If such a type has already been
6893 constructed, reuse it. */
6894
6895 tree
6896 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6897 bool can_alias_all)
6898 {
6899 tree t;
6900
6901 if (to_type == error_mark_node)
6902 return error_mark_node;
6903
6904 /* If the pointed-to type has the may_alias attribute set, force
6905 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6906 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6907 can_alias_all = true;
6908
6909 /* In some cases, languages will have things that aren't a POINTER_TYPE
6910 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6911 In that case, return that type without regard to the rest of our
6912 operands.
6913
6914 ??? This is a kludge, but consistent with the way this function has
6915 always operated and there doesn't seem to be a good way to avoid this
6916 at the moment. */
6917 if (TYPE_POINTER_TO (to_type) != 0
6918 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6919 return TYPE_POINTER_TO (to_type);
6920
6921 /* First, if we already have a type for pointers to TO_TYPE and it's
6922 the proper mode, use it. */
6923 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6924 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6925 return t;
6926
6927 t = make_node (POINTER_TYPE);
6928
6929 TREE_TYPE (t) = to_type;
6930 SET_TYPE_MODE (t, mode);
6931 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6932 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6933 TYPE_POINTER_TO (to_type) = t;
6934
6935 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6936 SET_TYPE_STRUCTURAL_EQUALITY (t);
6937 else if (TYPE_CANONICAL (to_type) != to_type)
6938 TYPE_CANONICAL (t)
6939 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6940 mode, can_alias_all);
6941
6942 /* Lay out the type. This function has many callers that are concerned
6943 with expression-construction, and this simplifies them all. */
6944 layout_type (t);
6945
6946 return t;
6947 }
6948
6949 /* By default build pointers in ptr_mode. */
6950
6951 tree
6952 build_pointer_type (tree to_type)
6953 {
6954 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6955 : TYPE_ADDR_SPACE (to_type);
6956 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6957 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6958 }
6959
6960 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6961
6962 tree
6963 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6964 bool can_alias_all)
6965 {
6966 tree t;
6967
6968 if (to_type == error_mark_node)
6969 return error_mark_node;
6970
6971 /* If the pointed-to type has the may_alias attribute set, force
6972 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6973 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6974 can_alias_all = true;
6975
6976 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6977 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6978 In that case, return that type without regard to the rest of our
6979 operands.
6980
6981 ??? This is a kludge, but consistent with the way this function has
6982 always operated and there doesn't seem to be a good way to avoid this
6983 at the moment. */
6984 if (TYPE_REFERENCE_TO (to_type) != 0
6985 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6986 return TYPE_REFERENCE_TO (to_type);
6987
6988 /* First, if we already have a type for pointers to TO_TYPE and it's
6989 the proper mode, use it. */
6990 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6991 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6992 return t;
6993
6994 t = make_node (REFERENCE_TYPE);
6995
6996 TREE_TYPE (t) = to_type;
6997 SET_TYPE_MODE (t, mode);
6998 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6999 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7000 TYPE_REFERENCE_TO (to_type) = t;
7001
7002 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7003 SET_TYPE_STRUCTURAL_EQUALITY (t);
7004 else if (TYPE_CANONICAL (to_type) != to_type)
7005 TYPE_CANONICAL (t)
7006 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7007 mode, can_alias_all);
7008
7009 layout_type (t);
7010
7011 return t;
7012 }
7013
7014
7015 /* Build the node for the type of references-to-TO_TYPE by default
7016 in ptr_mode. */
7017
7018 tree
7019 build_reference_type (tree to_type)
7020 {
7021 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7022 : TYPE_ADDR_SPACE (to_type);
7023 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7024 return build_reference_type_for_mode (to_type, pointer_mode, false);
7025 }
7026
7027 /* Build a type that is compatible with t but has no cv quals anywhere
7028 in its type, thus
7029
7030 const char *const *const * -> char ***. */
7031
7032 tree
7033 build_type_no_quals (tree t)
7034 {
7035 switch (TREE_CODE (t))
7036 {
7037 case POINTER_TYPE:
7038 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7039 TYPE_MODE (t),
7040 TYPE_REF_CAN_ALIAS_ALL (t));
7041 case REFERENCE_TYPE:
7042 return
7043 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7044 TYPE_MODE (t),
7045 TYPE_REF_CAN_ALIAS_ALL (t));
7046 default:
7047 return TYPE_MAIN_VARIANT (t);
7048 }
7049 }
7050
7051 #define MAX_INT_CACHED_PREC \
7052 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7053 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7054
7055 /* Builds a signed or unsigned integer type of precision PRECISION.
7056 Used for C bitfields whose precision does not match that of
7057 built-in target types. */
7058 tree
7059 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7060 int unsignedp)
7061 {
7062 tree itype, ret;
7063
7064 if (unsignedp)
7065 unsignedp = MAX_INT_CACHED_PREC + 1;
7066
7067 if (precision <= MAX_INT_CACHED_PREC)
7068 {
7069 itype = nonstandard_integer_type_cache[precision + unsignedp];
7070 if (itype)
7071 return itype;
7072 }
7073
7074 itype = make_node (INTEGER_TYPE);
7075 TYPE_PRECISION (itype) = precision;
7076
7077 if (unsignedp)
7078 fixup_unsigned_type (itype);
7079 else
7080 fixup_signed_type (itype);
7081
7082 ret = itype;
7083 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7084 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7085 if (precision <= MAX_INT_CACHED_PREC)
7086 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7087
7088 return ret;
7089 }
7090
7091 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7092 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7093 is true, reuse such a type that has already been constructed. */
7094
7095 static tree
7096 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7097 {
7098 tree itype = make_node (INTEGER_TYPE);
7099
7100 TREE_TYPE (itype) = type;
7101
7102 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7103 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7104
7105 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7106 SET_TYPE_MODE (itype, TYPE_MODE (type));
7107 TYPE_SIZE (itype) = TYPE_SIZE (type);
7108 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7109 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7110 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7111
7112 if ((TYPE_MIN_VALUE (itype)
7113 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7114 || (TYPE_MAX_VALUE (itype)
7115 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7116 {
7117 /* Since we cannot reliably merge this type, we need to compare it using
7118 structural equality checks. */
7119 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7120 return itype;
7121 }
7122
7123 if (shared)
7124 {
7125 hashval_t hash = iterative_hash_expr (TYPE_MIN_VALUE (itype), 0);
7126 hash = iterative_hash_expr (TYPE_MAX_VALUE (itype), hash);
7127 hash = iterative_hash_hashval_t (TYPE_HASH (type), hash);
7128 itype = type_hash_canon (hash, itype);
7129 }
7130
7131 return itype;
7132 }
7133
7134 /* Wrapper around build_range_type_1 with SHARED set to true. */
7135
7136 tree
7137 build_range_type (tree type, tree lowval, tree highval)
7138 {
7139 return build_range_type_1 (type, lowval, highval, true);
7140 }
7141
7142 /* Wrapper around build_range_type_1 with SHARED set to false. */
7143
7144 tree
7145 build_nonshared_range_type (tree type, tree lowval, tree highval)
7146 {
7147 return build_range_type_1 (type, lowval, highval, false);
7148 }
7149
7150 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7151 MAXVAL should be the maximum value in the domain
7152 (one less than the length of the array).
7153
7154 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7155 We don't enforce this limit, that is up to caller (e.g. language front end).
7156 The limit exists because the result is a signed type and we don't handle
7157 sizes that use more than one HOST_WIDE_INT. */
7158
7159 tree
7160 build_index_type (tree maxval)
7161 {
7162 return build_range_type (sizetype, size_zero_node, maxval);
7163 }
7164
7165 /* Return true if the debug information for TYPE, a subtype, should be emitted
7166 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7167 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7168 debug info and doesn't reflect the source code. */
7169
7170 bool
7171 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7172 {
7173 tree base_type = TREE_TYPE (type), low, high;
7174
7175 /* Subrange types have a base type which is an integral type. */
7176 if (!INTEGRAL_TYPE_P (base_type))
7177 return false;
7178
7179 /* Get the real bounds of the subtype. */
7180 if (lang_hooks.types.get_subrange_bounds)
7181 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7182 else
7183 {
7184 low = TYPE_MIN_VALUE (type);
7185 high = TYPE_MAX_VALUE (type);
7186 }
7187
7188 /* If the type and its base type have the same representation and the same
7189 name, then the type is not a subrange but a copy of the base type. */
7190 if ((TREE_CODE (base_type) == INTEGER_TYPE
7191 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7192 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7193 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7194 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7195 {
7196 tree type_name = TYPE_NAME (type);
7197 tree base_type_name = TYPE_NAME (base_type);
7198
7199 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7200 type_name = DECL_NAME (type_name);
7201
7202 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7203 base_type_name = DECL_NAME (base_type_name);
7204
7205 if (type_name == base_type_name)
7206 return false;
7207 }
7208
7209 if (lowval)
7210 *lowval = low;
7211 if (highval)
7212 *highval = high;
7213 return true;
7214 }
7215
7216 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7217 and number of elements specified by the range of values of INDEX_TYPE.
7218 If SHARED is true, reuse such a type that has already been constructed. */
7219
7220 static tree
7221 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7222 {
7223 tree t;
7224
7225 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7226 {
7227 error ("arrays of functions are not meaningful");
7228 elt_type = integer_type_node;
7229 }
7230
7231 t = make_node (ARRAY_TYPE);
7232 TREE_TYPE (t) = elt_type;
7233 TYPE_DOMAIN (t) = index_type;
7234 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7235 layout_type (t);
7236
7237 /* If the element type is incomplete at this point we get marked for
7238 structural equality. Do not record these types in the canonical
7239 type hashtable. */
7240 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7241 return t;
7242
7243 if (shared)
7244 {
7245 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7246 if (index_type)
7247 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7248 t = type_hash_canon (hashcode, t);
7249 }
7250
7251 if (TYPE_CANONICAL (t) == t)
7252 {
7253 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7254 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7255 SET_TYPE_STRUCTURAL_EQUALITY (t);
7256 else if (TYPE_CANONICAL (elt_type) != elt_type
7257 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7258 TYPE_CANONICAL (t)
7259 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7260 index_type
7261 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7262 shared);
7263 }
7264
7265 return t;
7266 }
7267
7268 /* Wrapper around build_array_type_1 with SHARED set to true. */
7269
7270 tree
7271 build_array_type (tree elt_type, tree index_type)
7272 {
7273 return build_array_type_1 (elt_type, index_type, true);
7274 }
7275
7276 /* Wrapper around build_array_type_1 with SHARED set to false. */
7277
7278 tree
7279 build_nonshared_array_type (tree elt_type, tree index_type)
7280 {
7281 return build_array_type_1 (elt_type, index_type, false);
7282 }
7283
7284 /* Recursively examines the array elements of TYPE, until a non-array
7285 element type is found. */
7286
7287 tree
7288 strip_array_types (tree type)
7289 {
7290 while (TREE_CODE (type) == ARRAY_TYPE)
7291 type = TREE_TYPE (type);
7292
7293 return type;
7294 }
7295
7296 /* Computes the canonical argument types from the argument type list
7297 ARGTYPES.
7298
7299 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7300 on entry to this function, or if any of the ARGTYPES are
7301 structural.
7302
7303 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7304 true on entry to this function, or if any of the ARGTYPES are
7305 non-canonical.
7306
7307 Returns a canonical argument list, which may be ARGTYPES when the
7308 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7309 true) or would not differ from ARGTYPES. */
7310
7311 static tree
7312 maybe_canonicalize_argtypes(tree argtypes,
7313 bool *any_structural_p,
7314 bool *any_noncanonical_p)
7315 {
7316 tree arg;
7317 bool any_noncanonical_argtypes_p = false;
7318
7319 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7320 {
7321 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7322 /* Fail gracefully by stating that the type is structural. */
7323 *any_structural_p = true;
7324 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7325 *any_structural_p = true;
7326 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7327 || TREE_PURPOSE (arg))
7328 /* If the argument has a default argument, we consider it
7329 non-canonical even though the type itself is canonical.
7330 That way, different variants of function and method types
7331 with default arguments will all point to the variant with
7332 no defaults as their canonical type. */
7333 any_noncanonical_argtypes_p = true;
7334 }
7335
7336 if (*any_structural_p)
7337 return argtypes;
7338
7339 if (any_noncanonical_argtypes_p)
7340 {
7341 /* Build the canonical list of argument types. */
7342 tree canon_argtypes = NULL_TREE;
7343 bool is_void = false;
7344
7345 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7346 {
7347 if (arg == void_list_node)
7348 is_void = true;
7349 else
7350 canon_argtypes = tree_cons (NULL_TREE,
7351 TYPE_CANONICAL (TREE_VALUE (arg)),
7352 canon_argtypes);
7353 }
7354
7355 canon_argtypes = nreverse (canon_argtypes);
7356 if (is_void)
7357 canon_argtypes = chainon (canon_argtypes, void_list_node);
7358
7359 /* There is a non-canonical type. */
7360 *any_noncanonical_p = true;
7361 return canon_argtypes;
7362 }
7363
7364 /* The canonical argument types are the same as ARGTYPES. */
7365 return argtypes;
7366 }
7367
7368 /* Construct, lay out and return
7369 the type of functions returning type VALUE_TYPE
7370 given arguments of types ARG_TYPES.
7371 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7372 are data type nodes for the arguments of the function.
7373 If such a type has already been constructed, reuse it. */
7374
7375 tree
7376 build_function_type (tree value_type, tree arg_types)
7377 {
7378 tree t;
7379 hashval_t hashcode = 0;
7380 bool any_structural_p, any_noncanonical_p;
7381 tree canon_argtypes;
7382
7383 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7384 {
7385 error ("function return type cannot be function");
7386 value_type = integer_type_node;
7387 }
7388
7389 /* Make a node of the sort we want. */
7390 t = make_node (FUNCTION_TYPE);
7391 TREE_TYPE (t) = value_type;
7392 TYPE_ARG_TYPES (t) = arg_types;
7393
7394 /* If we already have such a type, use the old one. */
7395 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7396 hashcode = type_hash_list (arg_types, hashcode);
7397 t = type_hash_canon (hashcode, t);
7398
7399 /* Set up the canonical type. */
7400 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7401 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7402 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7403 &any_structural_p,
7404 &any_noncanonical_p);
7405 if (any_structural_p)
7406 SET_TYPE_STRUCTURAL_EQUALITY (t);
7407 else if (any_noncanonical_p)
7408 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7409 canon_argtypes);
7410
7411 if (!COMPLETE_TYPE_P (t))
7412 layout_type (t);
7413 return t;
7414 }
7415
7416 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7417
7418 tree
7419 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7420 {
7421 tree new_type = NULL;
7422 tree args, new_args = NULL, t;
7423 tree new_reversed;
7424 int i = 0;
7425
7426 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7427 args = TREE_CHAIN (args), i++)
7428 if (!bitmap_bit_p (args_to_skip, i))
7429 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7430
7431 new_reversed = nreverse (new_args);
7432 if (args)
7433 {
7434 if (new_reversed)
7435 TREE_CHAIN (new_args) = void_list_node;
7436 else
7437 new_reversed = void_list_node;
7438 }
7439
7440 /* Use copy_node to preserve as much as possible from original type
7441 (debug info, attribute lists etc.)
7442 Exception is METHOD_TYPEs must have THIS argument.
7443 When we are asked to remove it, we need to build new FUNCTION_TYPE
7444 instead. */
7445 if (TREE_CODE (orig_type) != METHOD_TYPE
7446 || !bitmap_bit_p (args_to_skip, 0))
7447 {
7448 new_type = build_distinct_type_copy (orig_type);
7449 TYPE_ARG_TYPES (new_type) = new_reversed;
7450 }
7451 else
7452 {
7453 new_type
7454 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7455 new_reversed));
7456 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7457 }
7458
7459 /* This is a new type, not a copy of an old type. Need to reassociate
7460 variants. We can handle everything except the main variant lazily. */
7461 t = TYPE_MAIN_VARIANT (orig_type);
7462 if (orig_type != t)
7463 {
7464 TYPE_MAIN_VARIANT (new_type) = t;
7465 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7466 TYPE_NEXT_VARIANT (t) = new_type;
7467 }
7468 else
7469 {
7470 TYPE_MAIN_VARIANT (new_type) = new_type;
7471 TYPE_NEXT_VARIANT (new_type) = NULL;
7472 }
7473 return new_type;
7474 }
7475
7476 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7477
7478 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7479 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7480 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7481
7482 tree
7483 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7484 {
7485 tree new_decl = copy_node (orig_decl);
7486 tree new_type;
7487
7488 new_type = TREE_TYPE (orig_decl);
7489 if (prototype_p (new_type))
7490 new_type = build_function_type_skip_args (new_type, args_to_skip);
7491 TREE_TYPE (new_decl) = new_type;
7492
7493 /* For declarations setting DECL_VINDEX (i.e. methods)
7494 we expect first argument to be THIS pointer. */
7495 if (bitmap_bit_p (args_to_skip, 0))
7496 DECL_VINDEX (new_decl) = NULL_TREE;
7497
7498 /* When signature changes, we need to clear builtin info. */
7499 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7500 {
7501 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7502 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7503 }
7504 return new_decl;
7505 }
7506
7507 /* Build a function type. The RETURN_TYPE is the type returned by the
7508 function. If VAARGS is set, no void_type_node is appended to the
7509 the list. ARGP must be always be terminated be a NULL_TREE. */
7510
7511 static tree
7512 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7513 {
7514 tree t, args, last;
7515
7516 t = va_arg (argp, tree);
7517 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7518 args = tree_cons (NULL_TREE, t, args);
7519
7520 if (vaargs)
7521 {
7522 last = args;
7523 if (args != NULL_TREE)
7524 args = nreverse (args);
7525 gcc_assert (last != void_list_node);
7526 }
7527 else if (args == NULL_TREE)
7528 args = void_list_node;
7529 else
7530 {
7531 last = args;
7532 args = nreverse (args);
7533 TREE_CHAIN (last) = void_list_node;
7534 }
7535 args = build_function_type (return_type, args);
7536
7537 return args;
7538 }
7539
7540 /* Build a function type. The RETURN_TYPE is the type returned by the
7541 function. If additional arguments are provided, they are
7542 additional argument types. The list of argument types must always
7543 be terminated by NULL_TREE. */
7544
7545 tree
7546 build_function_type_list (tree return_type, ...)
7547 {
7548 tree args;
7549 va_list p;
7550
7551 va_start (p, return_type);
7552 args = build_function_type_list_1 (false, return_type, p);
7553 va_end (p);
7554 return args;
7555 }
7556
7557 /* Build a variable argument function type. The RETURN_TYPE is the
7558 type returned by the function. If additional arguments are provided,
7559 they are additional argument types. The list of argument types must
7560 always be terminated by NULL_TREE. */
7561
7562 tree
7563 build_varargs_function_type_list (tree return_type, ...)
7564 {
7565 tree args;
7566 va_list p;
7567
7568 va_start (p, return_type);
7569 args = build_function_type_list_1 (true, return_type, p);
7570 va_end (p);
7571
7572 return args;
7573 }
7574
7575 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7576 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7577 for the method. An implicit additional parameter (of type
7578 pointer-to-BASETYPE) is added to the ARGTYPES. */
7579
7580 tree
7581 build_method_type_directly (tree basetype,
7582 tree rettype,
7583 tree argtypes)
7584 {
7585 tree t;
7586 tree ptype;
7587 int hashcode = 0;
7588 bool any_structural_p, any_noncanonical_p;
7589 tree canon_argtypes;
7590
7591 /* Make a node of the sort we want. */
7592 t = make_node (METHOD_TYPE);
7593
7594 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7595 TREE_TYPE (t) = rettype;
7596 ptype = build_pointer_type (basetype);
7597
7598 /* The actual arglist for this function includes a "hidden" argument
7599 which is "this". Put it into the list of argument types. */
7600 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7601 TYPE_ARG_TYPES (t) = argtypes;
7602
7603 /* If we already have such a type, use the old one. */
7604 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7605 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7606 hashcode = type_hash_list (argtypes, hashcode);
7607 t = type_hash_canon (hashcode, t);
7608
7609 /* Set up the canonical type. */
7610 any_structural_p
7611 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7612 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7613 any_noncanonical_p
7614 = (TYPE_CANONICAL (basetype) != basetype
7615 || TYPE_CANONICAL (rettype) != rettype);
7616 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7617 &any_structural_p,
7618 &any_noncanonical_p);
7619 if (any_structural_p)
7620 SET_TYPE_STRUCTURAL_EQUALITY (t);
7621 else if (any_noncanonical_p)
7622 TYPE_CANONICAL (t)
7623 = build_method_type_directly (TYPE_CANONICAL (basetype),
7624 TYPE_CANONICAL (rettype),
7625 canon_argtypes);
7626 if (!COMPLETE_TYPE_P (t))
7627 layout_type (t);
7628
7629 return t;
7630 }
7631
7632 /* Construct, lay out and return the type of methods belonging to class
7633 BASETYPE and whose arguments and values are described by TYPE.
7634 If that type exists already, reuse it.
7635 TYPE must be a FUNCTION_TYPE node. */
7636
7637 tree
7638 build_method_type (tree basetype, tree type)
7639 {
7640 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7641
7642 return build_method_type_directly (basetype,
7643 TREE_TYPE (type),
7644 TYPE_ARG_TYPES (type));
7645 }
7646
7647 /* Construct, lay out and return the type of offsets to a value
7648 of type TYPE, within an object of type BASETYPE.
7649 If a suitable offset type exists already, reuse it. */
7650
7651 tree
7652 build_offset_type (tree basetype, tree type)
7653 {
7654 tree t;
7655 hashval_t hashcode = 0;
7656
7657 /* Make a node of the sort we want. */
7658 t = make_node (OFFSET_TYPE);
7659
7660 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7661 TREE_TYPE (t) = type;
7662
7663 /* If we already have such a type, use the old one. */
7664 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7665 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7666 t = type_hash_canon (hashcode, t);
7667
7668 if (!COMPLETE_TYPE_P (t))
7669 layout_type (t);
7670
7671 if (TYPE_CANONICAL (t) == t)
7672 {
7673 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7674 || TYPE_STRUCTURAL_EQUALITY_P (type))
7675 SET_TYPE_STRUCTURAL_EQUALITY (t);
7676 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7677 || TYPE_CANONICAL (type) != type)
7678 TYPE_CANONICAL (t)
7679 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7680 TYPE_CANONICAL (type));
7681 }
7682
7683 return t;
7684 }
7685
7686 /* Create a complex type whose components are COMPONENT_TYPE. */
7687
7688 tree
7689 build_complex_type (tree component_type)
7690 {
7691 tree t;
7692 hashval_t hashcode;
7693
7694 gcc_assert (INTEGRAL_TYPE_P (component_type)
7695 || SCALAR_FLOAT_TYPE_P (component_type)
7696 || FIXED_POINT_TYPE_P (component_type));
7697
7698 /* Make a node of the sort we want. */
7699 t = make_node (COMPLEX_TYPE);
7700
7701 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7702
7703 /* If we already have such a type, use the old one. */
7704 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7705 t = type_hash_canon (hashcode, t);
7706
7707 if (!COMPLETE_TYPE_P (t))
7708 layout_type (t);
7709
7710 if (TYPE_CANONICAL (t) == t)
7711 {
7712 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7713 SET_TYPE_STRUCTURAL_EQUALITY (t);
7714 else if (TYPE_CANONICAL (component_type) != component_type)
7715 TYPE_CANONICAL (t)
7716 = build_complex_type (TYPE_CANONICAL (component_type));
7717 }
7718
7719 /* We need to create a name, since complex is a fundamental type. */
7720 if (! TYPE_NAME (t))
7721 {
7722 const char *name;
7723 if (component_type == char_type_node)
7724 name = "complex char";
7725 else if (component_type == signed_char_type_node)
7726 name = "complex signed char";
7727 else if (component_type == unsigned_char_type_node)
7728 name = "complex unsigned char";
7729 else if (component_type == short_integer_type_node)
7730 name = "complex short int";
7731 else if (component_type == short_unsigned_type_node)
7732 name = "complex short unsigned int";
7733 else if (component_type == integer_type_node)
7734 name = "complex int";
7735 else if (component_type == unsigned_type_node)
7736 name = "complex unsigned int";
7737 else if (component_type == long_integer_type_node)
7738 name = "complex long int";
7739 else if (component_type == long_unsigned_type_node)
7740 name = "complex long unsigned int";
7741 else if (component_type == long_long_integer_type_node)
7742 name = "complex long long int";
7743 else if (component_type == long_long_unsigned_type_node)
7744 name = "complex long long unsigned int";
7745 else
7746 name = 0;
7747
7748 if (name != 0)
7749 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7750 get_identifier (name), t);
7751 }
7752
7753 return build_qualified_type (t, TYPE_QUALS (component_type));
7754 }
7755
7756 /* If TYPE is a real or complex floating-point type and the target
7757 does not directly support arithmetic on TYPE then return the wider
7758 type to be used for arithmetic on TYPE. Otherwise, return
7759 NULL_TREE. */
7760
7761 tree
7762 excess_precision_type (tree type)
7763 {
7764 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7765 {
7766 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7767 switch (TREE_CODE (type))
7768 {
7769 case REAL_TYPE:
7770 switch (flt_eval_method)
7771 {
7772 case 1:
7773 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7774 return double_type_node;
7775 break;
7776 case 2:
7777 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7778 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7779 return long_double_type_node;
7780 break;
7781 default:
7782 gcc_unreachable ();
7783 }
7784 break;
7785 case COMPLEX_TYPE:
7786 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7787 return NULL_TREE;
7788 switch (flt_eval_method)
7789 {
7790 case 1:
7791 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7792 return complex_double_type_node;
7793 break;
7794 case 2:
7795 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7796 || (TYPE_MODE (TREE_TYPE (type))
7797 == TYPE_MODE (double_type_node)))
7798 return complex_long_double_type_node;
7799 break;
7800 default:
7801 gcc_unreachable ();
7802 }
7803 break;
7804 default:
7805 break;
7806 }
7807 }
7808 return NULL_TREE;
7809 }
7810 \f
7811 /* Return OP, stripped of any conversions to wider types as much as is safe.
7812 Converting the value back to OP's type makes a value equivalent to OP.
7813
7814 If FOR_TYPE is nonzero, we return a value which, if converted to
7815 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7816
7817 OP must have integer, real or enumeral type. Pointers are not allowed!
7818
7819 There are some cases where the obvious value we could return
7820 would regenerate to OP if converted to OP's type,
7821 but would not extend like OP to wider types.
7822 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7823 For example, if OP is (unsigned short)(signed char)-1,
7824 we avoid returning (signed char)-1 if FOR_TYPE is int,
7825 even though extending that to an unsigned short would regenerate OP,
7826 since the result of extending (signed char)-1 to (int)
7827 is different from (int) OP. */
7828
7829 tree
7830 get_unwidened (tree op, tree for_type)
7831 {
7832 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7833 tree type = TREE_TYPE (op);
7834 unsigned final_prec
7835 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7836 int uns
7837 = (for_type != 0 && for_type != type
7838 && final_prec > TYPE_PRECISION (type)
7839 && TYPE_UNSIGNED (type));
7840 tree win = op;
7841
7842 while (CONVERT_EXPR_P (op))
7843 {
7844 int bitschange;
7845
7846 /* TYPE_PRECISION on vector types has different meaning
7847 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7848 so avoid them here. */
7849 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7850 break;
7851
7852 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7853 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7854
7855 /* Truncations are many-one so cannot be removed.
7856 Unless we are later going to truncate down even farther. */
7857 if (bitschange < 0
7858 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7859 break;
7860
7861 /* See what's inside this conversion. If we decide to strip it,
7862 we will set WIN. */
7863 op = TREE_OPERAND (op, 0);
7864
7865 /* If we have not stripped any zero-extensions (uns is 0),
7866 we can strip any kind of extension.
7867 If we have previously stripped a zero-extension,
7868 only zero-extensions can safely be stripped.
7869 Any extension can be stripped if the bits it would produce
7870 are all going to be discarded later by truncating to FOR_TYPE. */
7871
7872 if (bitschange > 0)
7873 {
7874 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7875 win = op;
7876 /* TYPE_UNSIGNED says whether this is a zero-extension.
7877 Let's avoid computing it if it does not affect WIN
7878 and if UNS will not be needed again. */
7879 if ((uns
7880 || CONVERT_EXPR_P (op))
7881 && TYPE_UNSIGNED (TREE_TYPE (op)))
7882 {
7883 uns = 1;
7884 win = op;
7885 }
7886 }
7887 }
7888
7889 /* If we finally reach a constant see if it fits in for_type and
7890 in that case convert it. */
7891 if (for_type
7892 && TREE_CODE (win) == INTEGER_CST
7893 && TREE_TYPE (win) != for_type
7894 && int_fits_type_p (win, for_type))
7895 win = fold_convert (for_type, win);
7896
7897 return win;
7898 }
7899 \f
7900 /* Return OP or a simpler expression for a narrower value
7901 which can be sign-extended or zero-extended to give back OP.
7902 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7903 or 0 if the value should be sign-extended. */
7904
7905 tree
7906 get_narrower (tree op, int *unsignedp_ptr)
7907 {
7908 int uns = 0;
7909 int first = 1;
7910 tree win = op;
7911 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7912
7913 while (TREE_CODE (op) == NOP_EXPR)
7914 {
7915 int bitschange
7916 = (TYPE_PRECISION (TREE_TYPE (op))
7917 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7918
7919 /* Truncations are many-one so cannot be removed. */
7920 if (bitschange < 0)
7921 break;
7922
7923 /* See what's inside this conversion. If we decide to strip it,
7924 we will set WIN. */
7925
7926 if (bitschange > 0)
7927 {
7928 op = TREE_OPERAND (op, 0);
7929 /* An extension: the outermost one can be stripped,
7930 but remember whether it is zero or sign extension. */
7931 if (first)
7932 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7933 /* Otherwise, if a sign extension has been stripped,
7934 only sign extensions can now be stripped;
7935 if a zero extension has been stripped, only zero-extensions. */
7936 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7937 break;
7938 first = 0;
7939 }
7940 else /* bitschange == 0 */
7941 {
7942 /* A change in nominal type can always be stripped, but we must
7943 preserve the unsignedness. */
7944 if (first)
7945 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7946 first = 0;
7947 op = TREE_OPERAND (op, 0);
7948 /* Keep trying to narrow, but don't assign op to win if it
7949 would turn an integral type into something else. */
7950 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7951 continue;
7952 }
7953
7954 win = op;
7955 }
7956
7957 if (TREE_CODE (op) == COMPONENT_REF
7958 /* Since type_for_size always gives an integer type. */
7959 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7960 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7961 /* Ensure field is laid out already. */
7962 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7963 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7964 {
7965 unsigned HOST_WIDE_INT innerprec
7966 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7967 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7968 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7969 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7970
7971 /* We can get this structure field in a narrower type that fits it,
7972 but the resulting extension to its nominal type (a fullword type)
7973 must satisfy the same conditions as for other extensions.
7974
7975 Do this only for fields that are aligned (not bit-fields),
7976 because when bit-field insns will be used there is no
7977 advantage in doing this. */
7978
7979 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7980 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7981 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7982 && type != 0)
7983 {
7984 if (first)
7985 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7986 win = fold_convert (type, op);
7987 }
7988 }
7989
7990 *unsignedp_ptr = uns;
7991 return win;
7992 }
7993 \f
7994 /* Returns true if integer constant C has a value that is permissible
7995 for type TYPE (an INTEGER_TYPE). */
7996
7997 bool
7998 int_fits_type_p (const_tree c, const_tree type)
7999 {
8000 tree type_low_bound, type_high_bound;
8001 bool ok_for_low_bound, ok_for_high_bound, unsc;
8002 double_int dc, dd;
8003
8004 dc = tree_to_double_int (c);
8005 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8006
8007 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
8008 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
8009 && unsc)
8010 /* So c is an unsigned integer whose type is sizetype and type is not.
8011 sizetype'd integers are sign extended even though they are
8012 unsigned. If the integer value fits in the lower end word of c,
8013 and if the higher end word has all its bits set to 1, that
8014 means the higher end bits are set to 1 only for sign extension.
8015 So let's convert c into an equivalent zero extended unsigned
8016 integer. */
8017 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
8018
8019 retry:
8020 type_low_bound = TYPE_MIN_VALUE (type);
8021 type_high_bound = TYPE_MAX_VALUE (type);
8022
8023 /* If at least one bound of the type is a constant integer, we can check
8024 ourselves and maybe make a decision. If no such decision is possible, but
8025 this type is a subtype, try checking against that. Otherwise, use
8026 double_int_fits_to_tree_p, which checks against the precision.
8027
8028 Compute the status for each possibly constant bound, and return if we see
8029 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8030 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8031 for "constant known to fit". */
8032
8033 /* Check if c >= type_low_bound. */
8034 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8035 {
8036 dd = tree_to_double_int (type_low_bound);
8037 if (TREE_CODE (type) == INTEGER_TYPE
8038 && TYPE_IS_SIZETYPE (type)
8039 && TYPE_UNSIGNED (type))
8040 dd = double_int_zext (dd, TYPE_PRECISION (type));
8041 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8042 {
8043 int c_neg = (!unsc && double_int_negative_p (dc));
8044 int t_neg = (unsc && double_int_negative_p (dd));
8045
8046 if (c_neg && !t_neg)
8047 return false;
8048 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8049 return false;
8050 }
8051 else if (double_int_cmp (dc, dd, unsc) < 0)
8052 return false;
8053 ok_for_low_bound = true;
8054 }
8055 else
8056 ok_for_low_bound = false;
8057
8058 /* Check if c <= type_high_bound. */
8059 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8060 {
8061 dd = tree_to_double_int (type_high_bound);
8062 if (TREE_CODE (type) == INTEGER_TYPE
8063 && TYPE_IS_SIZETYPE (type)
8064 && TYPE_UNSIGNED (type))
8065 dd = double_int_zext (dd, TYPE_PRECISION (type));
8066 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8067 {
8068 int c_neg = (!unsc && double_int_negative_p (dc));
8069 int t_neg = (unsc && double_int_negative_p (dd));
8070
8071 if (t_neg && !c_neg)
8072 return false;
8073 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8074 return false;
8075 }
8076 else if (double_int_cmp (dc, dd, unsc) > 0)
8077 return false;
8078 ok_for_high_bound = true;
8079 }
8080 else
8081 ok_for_high_bound = false;
8082
8083 /* If the constant fits both bounds, the result is known. */
8084 if (ok_for_low_bound && ok_for_high_bound)
8085 return true;
8086
8087 /* Perform some generic filtering which may allow making a decision
8088 even if the bounds are not constant. First, negative integers
8089 never fit in unsigned types, */
8090 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8091 return false;
8092
8093 /* Second, narrower types always fit in wider ones. */
8094 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8095 return true;
8096
8097 /* Third, unsigned integers with top bit set never fit signed types. */
8098 if (! TYPE_UNSIGNED (type) && unsc)
8099 {
8100 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8101 if (prec < HOST_BITS_PER_WIDE_INT)
8102 {
8103 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8104 return false;
8105 }
8106 else if (((((unsigned HOST_WIDE_INT) 1)
8107 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8108 return false;
8109 }
8110
8111 /* If we haven't been able to decide at this point, there nothing more we
8112 can check ourselves here. Look at the base type if we have one and it
8113 has the same precision. */
8114 if (TREE_CODE (type) == INTEGER_TYPE
8115 && TREE_TYPE (type) != 0
8116 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8117 {
8118 type = TREE_TYPE (type);
8119 goto retry;
8120 }
8121
8122 /* Or to double_int_fits_to_tree_p, if nothing else. */
8123 return double_int_fits_to_tree_p (type, dc);
8124 }
8125
8126 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8127 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8128 represented (assuming two's-complement arithmetic) within the bit
8129 precision of the type are returned instead. */
8130
8131 void
8132 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8133 {
8134 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8135 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8136 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8137 TYPE_UNSIGNED (type));
8138 else
8139 {
8140 if (TYPE_UNSIGNED (type))
8141 mpz_set_ui (min, 0);
8142 else
8143 {
8144 double_int mn;
8145 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8146 mn = double_int_sext (double_int_add (mn, double_int_one),
8147 TYPE_PRECISION (type));
8148 mpz_set_double_int (min, mn, false);
8149 }
8150 }
8151
8152 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8153 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8154 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8155 TYPE_UNSIGNED (type));
8156 else
8157 {
8158 if (TYPE_UNSIGNED (type))
8159 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8160 true);
8161 else
8162 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8163 true);
8164 }
8165 }
8166
8167 /* Return true if VAR is an automatic variable defined in function FN. */
8168
8169 bool
8170 auto_var_in_fn_p (const_tree var, const_tree fn)
8171 {
8172 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8173 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8174 || TREE_CODE (var) == PARM_DECL)
8175 && ! TREE_STATIC (var))
8176 || TREE_CODE (var) == LABEL_DECL
8177 || TREE_CODE (var) == RESULT_DECL));
8178 }
8179
8180 /* Subprogram of following function. Called by walk_tree.
8181
8182 Return *TP if it is an automatic variable or parameter of the
8183 function passed in as DATA. */
8184
8185 static tree
8186 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8187 {
8188 tree fn = (tree) data;
8189
8190 if (TYPE_P (*tp))
8191 *walk_subtrees = 0;
8192
8193 else if (DECL_P (*tp)
8194 && auto_var_in_fn_p (*tp, fn))
8195 return *tp;
8196
8197 return NULL_TREE;
8198 }
8199
8200 /* Returns true if T is, contains, or refers to a type with variable
8201 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8202 arguments, but not the return type. If FN is nonzero, only return
8203 true if a modifier of the type or position of FN is a variable or
8204 parameter inside FN.
8205
8206 This concept is more general than that of C99 'variably modified types':
8207 in C99, a struct type is never variably modified because a VLA may not
8208 appear as a structure member. However, in GNU C code like:
8209
8210 struct S { int i[f()]; };
8211
8212 is valid, and other languages may define similar constructs. */
8213
8214 bool
8215 variably_modified_type_p (tree type, tree fn)
8216 {
8217 tree t;
8218
8219 /* Test if T is either variable (if FN is zero) or an expression containing
8220 a variable in FN. */
8221 #define RETURN_TRUE_IF_VAR(T) \
8222 do { tree _t = (T); \
8223 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8224 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8225 return true; } while (0)
8226
8227 if (type == error_mark_node)
8228 return false;
8229
8230 /* If TYPE itself has variable size, it is variably modified. */
8231 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8232 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8233
8234 switch (TREE_CODE (type))
8235 {
8236 case POINTER_TYPE:
8237 case REFERENCE_TYPE:
8238 case VECTOR_TYPE:
8239 if (variably_modified_type_p (TREE_TYPE (type), fn))
8240 return true;
8241 break;
8242
8243 case FUNCTION_TYPE:
8244 case METHOD_TYPE:
8245 /* If TYPE is a function type, it is variably modified if the
8246 return type is variably modified. */
8247 if (variably_modified_type_p (TREE_TYPE (type), fn))
8248 return true;
8249 break;
8250
8251 case INTEGER_TYPE:
8252 case REAL_TYPE:
8253 case FIXED_POINT_TYPE:
8254 case ENUMERAL_TYPE:
8255 case BOOLEAN_TYPE:
8256 /* Scalar types are variably modified if their end points
8257 aren't constant. */
8258 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8259 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8260 break;
8261
8262 case RECORD_TYPE:
8263 case UNION_TYPE:
8264 case QUAL_UNION_TYPE:
8265 /* We can't see if any of the fields are variably-modified by the
8266 definition we normally use, since that would produce infinite
8267 recursion via pointers. */
8268 /* This is variably modified if some field's type is. */
8269 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8270 if (TREE_CODE (t) == FIELD_DECL)
8271 {
8272 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8273 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8274 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8275
8276 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8277 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8278 }
8279 break;
8280
8281 case ARRAY_TYPE:
8282 /* Do not call ourselves to avoid infinite recursion. This is
8283 variably modified if the element type is. */
8284 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8285 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8286 break;
8287
8288 default:
8289 break;
8290 }
8291
8292 /* The current language may have other cases to check, but in general,
8293 all other types are not variably modified. */
8294 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8295
8296 #undef RETURN_TRUE_IF_VAR
8297 }
8298
8299 /* Given a DECL or TYPE, return the scope in which it was declared, or
8300 NULL_TREE if there is no containing scope. */
8301
8302 tree
8303 get_containing_scope (const_tree t)
8304 {
8305 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8306 }
8307
8308 /* Return the innermost context enclosing DECL that is
8309 a FUNCTION_DECL, or zero if none. */
8310
8311 tree
8312 decl_function_context (const_tree decl)
8313 {
8314 tree context;
8315
8316 if (TREE_CODE (decl) == ERROR_MARK)
8317 return 0;
8318
8319 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8320 where we look up the function at runtime. Such functions always take
8321 a first argument of type 'pointer to real context'.
8322
8323 C++ should really be fixed to use DECL_CONTEXT for the real context,
8324 and use something else for the "virtual context". */
8325 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8326 context
8327 = TYPE_MAIN_VARIANT
8328 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8329 else
8330 context = DECL_CONTEXT (decl);
8331
8332 while (context && TREE_CODE (context) != FUNCTION_DECL)
8333 {
8334 if (TREE_CODE (context) == BLOCK)
8335 context = BLOCK_SUPERCONTEXT (context);
8336 else
8337 context = get_containing_scope (context);
8338 }
8339
8340 return context;
8341 }
8342
8343 /* Return the innermost context enclosing DECL that is
8344 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8345 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8346
8347 tree
8348 decl_type_context (const_tree decl)
8349 {
8350 tree context = DECL_CONTEXT (decl);
8351
8352 while (context)
8353 switch (TREE_CODE (context))
8354 {
8355 case NAMESPACE_DECL:
8356 case TRANSLATION_UNIT_DECL:
8357 return NULL_TREE;
8358
8359 case RECORD_TYPE:
8360 case UNION_TYPE:
8361 case QUAL_UNION_TYPE:
8362 return context;
8363
8364 case TYPE_DECL:
8365 case FUNCTION_DECL:
8366 context = DECL_CONTEXT (context);
8367 break;
8368
8369 case BLOCK:
8370 context = BLOCK_SUPERCONTEXT (context);
8371 break;
8372
8373 default:
8374 gcc_unreachable ();
8375 }
8376
8377 return NULL_TREE;
8378 }
8379
8380 /* CALL is a CALL_EXPR. Return the declaration for the function
8381 called, or NULL_TREE if the called function cannot be
8382 determined. */
8383
8384 tree
8385 get_callee_fndecl (const_tree call)
8386 {
8387 tree addr;
8388
8389 if (call == error_mark_node)
8390 return error_mark_node;
8391
8392 /* It's invalid to call this function with anything but a
8393 CALL_EXPR. */
8394 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8395
8396 /* The first operand to the CALL is the address of the function
8397 called. */
8398 addr = CALL_EXPR_FN (call);
8399
8400 STRIP_NOPS (addr);
8401
8402 /* If this is a readonly function pointer, extract its initial value. */
8403 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8404 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8405 && DECL_INITIAL (addr))
8406 addr = DECL_INITIAL (addr);
8407
8408 /* If the address is just `&f' for some function `f', then we know
8409 that `f' is being called. */
8410 if (TREE_CODE (addr) == ADDR_EXPR
8411 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8412 return TREE_OPERAND (addr, 0);
8413
8414 /* We couldn't figure out what was being called. */
8415 return NULL_TREE;
8416 }
8417
8418 /* Print debugging information about tree nodes generated during the compile,
8419 and any language-specific information. */
8420
8421 void
8422 dump_tree_statistics (void)
8423 {
8424 #ifdef GATHER_STATISTICS
8425 int i;
8426 int total_nodes, total_bytes;
8427 #endif
8428
8429 fprintf (stderr, "\n??? tree nodes created\n\n");
8430 #ifdef GATHER_STATISTICS
8431 fprintf (stderr, "Kind Nodes Bytes\n");
8432 fprintf (stderr, "---------------------------------------\n");
8433 total_nodes = total_bytes = 0;
8434 for (i = 0; i < (int) all_kinds; i++)
8435 {
8436 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8437 tree_node_counts[i], tree_node_sizes[i]);
8438 total_nodes += tree_node_counts[i];
8439 total_bytes += tree_node_sizes[i];
8440 }
8441 fprintf (stderr, "---------------------------------------\n");
8442 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8443 fprintf (stderr, "---------------------------------------\n");
8444 ssanames_print_statistics ();
8445 phinodes_print_statistics ();
8446 #else
8447 fprintf (stderr, "(No per-node statistics)\n");
8448 #endif
8449 print_type_hash_statistics ();
8450 print_debug_expr_statistics ();
8451 print_value_expr_statistics ();
8452 lang_hooks.print_statistics ();
8453 }
8454 \f
8455 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8456
8457 /* Generate a crc32 of a string. */
8458
8459 unsigned
8460 crc32_string (unsigned chksum, const char *string)
8461 {
8462 do
8463 {
8464 unsigned value = *string << 24;
8465 unsigned ix;
8466
8467 for (ix = 8; ix--; value <<= 1)
8468 {
8469 unsigned feedback;
8470
8471 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8472 chksum <<= 1;
8473 chksum ^= feedback;
8474 }
8475 }
8476 while (*string++);
8477 return chksum;
8478 }
8479
8480 /* P is a string that will be used in a symbol. Mask out any characters
8481 that are not valid in that context. */
8482
8483 void
8484 clean_symbol_name (char *p)
8485 {
8486 for (; *p; p++)
8487 if (! (ISALNUM (*p)
8488 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8489 || *p == '$'
8490 #endif
8491 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8492 || *p == '.'
8493 #endif
8494 ))
8495 *p = '_';
8496 }
8497
8498 /* Generate a name for a special-purpose function function.
8499 The generated name may need to be unique across the whole link.
8500 TYPE is some string to identify the purpose of this function to the
8501 linker or collect2; it must start with an uppercase letter,
8502 one of:
8503 I - for constructors
8504 D - for destructors
8505 N - for C++ anonymous namespaces
8506 F - for DWARF unwind frame information. */
8507
8508 tree
8509 get_file_function_name (const char *type)
8510 {
8511 char *buf;
8512 const char *p;
8513 char *q;
8514
8515 /* If we already have a name we know to be unique, just use that. */
8516 if (first_global_object_name)
8517 p = q = ASTRDUP (first_global_object_name);
8518 /* If the target is handling the constructors/destructors, they
8519 will be local to this file and the name is only necessary for
8520 debugging purposes. */
8521 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8522 {
8523 const char *file = main_input_filename;
8524 if (! file)
8525 file = input_filename;
8526 /* Just use the file's basename, because the full pathname
8527 might be quite long. */
8528 p = strrchr (file, '/');
8529 if (p)
8530 p++;
8531 else
8532 p = file;
8533 p = q = ASTRDUP (p);
8534 }
8535 else
8536 {
8537 /* Otherwise, the name must be unique across the entire link.
8538 We don't have anything that we know to be unique to this translation
8539 unit, so use what we do have and throw in some randomness. */
8540 unsigned len;
8541 const char *name = weak_global_object_name;
8542 const char *file = main_input_filename;
8543
8544 if (! name)
8545 name = "";
8546 if (! file)
8547 file = input_filename;
8548
8549 len = strlen (file);
8550 q = (char *) alloca (9 * 2 + len + 1);
8551 memcpy (q, file, len + 1);
8552
8553 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8554 crc32_string (0, get_random_seed (false)));
8555
8556 p = q;
8557 }
8558
8559 clean_symbol_name (q);
8560 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8561 + strlen (type));
8562
8563 /* Set up the name of the file-level functions we may need.
8564 Use a global object (which is already required to be unique over
8565 the program) rather than the file name (which imposes extra
8566 constraints). */
8567 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8568
8569 return get_identifier (buf);
8570 }
8571 \f
8572 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8573
8574 /* Complain that the tree code of NODE does not match the expected 0
8575 terminated list of trailing codes. The trailing code list can be
8576 empty, for a more vague error message. FILE, LINE, and FUNCTION
8577 are of the caller. */
8578
8579 void
8580 tree_check_failed (const_tree node, const char *file,
8581 int line, const char *function, ...)
8582 {
8583 va_list args;
8584 const char *buffer;
8585 unsigned length = 0;
8586 int code;
8587
8588 va_start (args, function);
8589 while ((code = va_arg (args, int)))
8590 length += 4 + strlen (tree_code_name[code]);
8591 va_end (args);
8592 if (length)
8593 {
8594 char *tmp;
8595 va_start (args, function);
8596 length += strlen ("expected ");
8597 buffer = tmp = (char *) alloca (length);
8598 length = 0;
8599 while ((code = va_arg (args, int)))
8600 {
8601 const char *prefix = length ? " or " : "expected ";
8602
8603 strcpy (tmp + length, prefix);
8604 length += strlen (prefix);
8605 strcpy (tmp + length, tree_code_name[code]);
8606 length += strlen (tree_code_name[code]);
8607 }
8608 va_end (args);
8609 }
8610 else
8611 buffer = "unexpected node";
8612
8613 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8614 buffer, tree_code_name[TREE_CODE (node)],
8615 function, trim_filename (file), line);
8616 }
8617
8618 /* Complain that the tree code of NODE does match the expected 0
8619 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8620 the caller. */
8621
8622 void
8623 tree_not_check_failed (const_tree node, const char *file,
8624 int line, const char *function, ...)
8625 {
8626 va_list args;
8627 char *buffer;
8628 unsigned length = 0;
8629 int code;
8630
8631 va_start (args, function);
8632 while ((code = va_arg (args, int)))
8633 length += 4 + strlen (tree_code_name[code]);
8634 va_end (args);
8635 va_start (args, function);
8636 buffer = (char *) alloca (length);
8637 length = 0;
8638 while ((code = va_arg (args, int)))
8639 {
8640 if (length)
8641 {
8642 strcpy (buffer + length, " or ");
8643 length += 4;
8644 }
8645 strcpy (buffer + length, tree_code_name[code]);
8646 length += strlen (tree_code_name[code]);
8647 }
8648 va_end (args);
8649
8650 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8651 buffer, tree_code_name[TREE_CODE (node)],
8652 function, trim_filename (file), line);
8653 }
8654
8655 /* Similar to tree_check_failed, except that we check for a class of tree
8656 code, given in CL. */
8657
8658 void
8659 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8660 const char *file, int line, const char *function)
8661 {
8662 internal_error
8663 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8664 TREE_CODE_CLASS_STRING (cl),
8665 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8666 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8667 }
8668
8669 /* Similar to tree_check_failed, except that instead of specifying a
8670 dozen codes, use the knowledge that they're all sequential. */
8671
8672 void
8673 tree_range_check_failed (const_tree node, const char *file, int line,
8674 const char *function, enum tree_code c1,
8675 enum tree_code c2)
8676 {
8677 char *buffer;
8678 unsigned length = 0;
8679 unsigned int c;
8680
8681 for (c = c1; c <= c2; ++c)
8682 length += 4 + strlen (tree_code_name[c]);
8683
8684 length += strlen ("expected ");
8685 buffer = (char *) alloca (length);
8686 length = 0;
8687
8688 for (c = c1; c <= c2; ++c)
8689 {
8690 const char *prefix = length ? " or " : "expected ";
8691
8692 strcpy (buffer + length, prefix);
8693 length += strlen (prefix);
8694 strcpy (buffer + length, tree_code_name[c]);
8695 length += strlen (tree_code_name[c]);
8696 }
8697
8698 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8699 buffer, tree_code_name[TREE_CODE (node)],
8700 function, trim_filename (file), line);
8701 }
8702
8703
8704 /* Similar to tree_check_failed, except that we check that a tree does
8705 not have the specified code, given in CL. */
8706
8707 void
8708 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8709 const char *file, int line, const char *function)
8710 {
8711 internal_error
8712 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8713 TREE_CODE_CLASS_STRING (cl),
8714 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8715 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8716 }
8717
8718
8719 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8720
8721 void
8722 omp_clause_check_failed (const_tree node, const char *file, int line,
8723 const char *function, enum omp_clause_code code)
8724 {
8725 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8726 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8727 function, trim_filename (file), line);
8728 }
8729
8730
8731 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8732
8733 void
8734 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8735 const char *function, enum omp_clause_code c1,
8736 enum omp_clause_code c2)
8737 {
8738 char *buffer;
8739 unsigned length = 0;
8740 unsigned int c;
8741
8742 for (c = c1; c <= c2; ++c)
8743 length += 4 + strlen (omp_clause_code_name[c]);
8744
8745 length += strlen ("expected ");
8746 buffer = (char *) alloca (length);
8747 length = 0;
8748
8749 for (c = c1; c <= c2; ++c)
8750 {
8751 const char *prefix = length ? " or " : "expected ";
8752
8753 strcpy (buffer + length, prefix);
8754 length += strlen (prefix);
8755 strcpy (buffer + length, omp_clause_code_name[c]);
8756 length += strlen (omp_clause_code_name[c]);
8757 }
8758
8759 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8760 buffer, omp_clause_code_name[TREE_CODE (node)],
8761 function, trim_filename (file), line);
8762 }
8763
8764
8765 #undef DEFTREESTRUCT
8766 #define DEFTREESTRUCT(VAL, NAME) NAME,
8767
8768 static const char *ts_enum_names[] = {
8769 #include "treestruct.def"
8770 };
8771 #undef DEFTREESTRUCT
8772
8773 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8774
8775 /* Similar to tree_class_check_failed, except that we check for
8776 whether CODE contains the tree structure identified by EN. */
8777
8778 void
8779 tree_contains_struct_check_failed (const_tree node,
8780 const enum tree_node_structure_enum en,
8781 const char *file, int line,
8782 const char *function)
8783 {
8784 internal_error
8785 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8786 TS_ENUM_NAME(en),
8787 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8788 }
8789
8790
8791 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8792 (dynamically sized) vector. */
8793
8794 void
8795 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8796 const char *function)
8797 {
8798 internal_error
8799 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8800 idx + 1, len, function, trim_filename (file), line);
8801 }
8802
8803 /* Similar to above, except that the check is for the bounds of the operand
8804 vector of an expression node EXP. */
8805
8806 void
8807 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8808 int line, const char *function)
8809 {
8810 int code = TREE_CODE (exp);
8811 internal_error
8812 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8813 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8814 function, trim_filename (file), line);
8815 }
8816
8817 /* Similar to above, except that the check is for the number of
8818 operands of an OMP_CLAUSE node. */
8819
8820 void
8821 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8822 int line, const char *function)
8823 {
8824 internal_error
8825 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8826 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8827 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8828 trim_filename (file), line);
8829 }
8830 #endif /* ENABLE_TREE_CHECKING */
8831 \f
8832 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8833 and mapped to the machine mode MODE. Initialize its fields and build
8834 the information necessary for debugging output. */
8835
8836 static tree
8837 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8838 {
8839 tree t;
8840 hashval_t hashcode = 0;
8841
8842 t = make_node (VECTOR_TYPE);
8843 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8844 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8845 SET_TYPE_MODE (t, mode);
8846
8847 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8848 SET_TYPE_STRUCTURAL_EQUALITY (t);
8849 else if (TYPE_CANONICAL (innertype) != innertype
8850 || mode != VOIDmode)
8851 TYPE_CANONICAL (t)
8852 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8853
8854 layout_type (t);
8855
8856 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8857 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8858 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8859 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8860 t = type_hash_canon (hashcode, t);
8861
8862 /* We have built a main variant, based on the main variant of the
8863 inner type. Use it to build the variant we return. */
8864 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8865 && TREE_TYPE (t) != innertype)
8866 return build_type_attribute_qual_variant (t,
8867 TYPE_ATTRIBUTES (innertype),
8868 TYPE_QUALS (innertype));
8869
8870 return t;
8871 }
8872
8873 static tree
8874 make_or_reuse_type (unsigned size, int unsignedp)
8875 {
8876 if (size == INT_TYPE_SIZE)
8877 return unsignedp ? unsigned_type_node : integer_type_node;
8878 if (size == CHAR_TYPE_SIZE)
8879 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8880 if (size == SHORT_TYPE_SIZE)
8881 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8882 if (size == LONG_TYPE_SIZE)
8883 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8884 if (size == LONG_LONG_TYPE_SIZE)
8885 return (unsignedp ? long_long_unsigned_type_node
8886 : long_long_integer_type_node);
8887 if (size == 128 && int128_integer_type_node)
8888 return (unsignedp ? int128_unsigned_type_node
8889 : int128_integer_type_node);
8890
8891 if (unsignedp)
8892 return make_unsigned_type (size);
8893 else
8894 return make_signed_type (size);
8895 }
8896
8897 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8898
8899 static tree
8900 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8901 {
8902 if (satp)
8903 {
8904 if (size == SHORT_FRACT_TYPE_SIZE)
8905 return unsignedp ? sat_unsigned_short_fract_type_node
8906 : sat_short_fract_type_node;
8907 if (size == FRACT_TYPE_SIZE)
8908 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8909 if (size == LONG_FRACT_TYPE_SIZE)
8910 return unsignedp ? sat_unsigned_long_fract_type_node
8911 : sat_long_fract_type_node;
8912 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8913 return unsignedp ? sat_unsigned_long_long_fract_type_node
8914 : sat_long_long_fract_type_node;
8915 }
8916 else
8917 {
8918 if (size == SHORT_FRACT_TYPE_SIZE)
8919 return unsignedp ? unsigned_short_fract_type_node
8920 : short_fract_type_node;
8921 if (size == FRACT_TYPE_SIZE)
8922 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8923 if (size == LONG_FRACT_TYPE_SIZE)
8924 return unsignedp ? unsigned_long_fract_type_node
8925 : long_fract_type_node;
8926 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8927 return unsignedp ? unsigned_long_long_fract_type_node
8928 : long_long_fract_type_node;
8929 }
8930
8931 return make_fract_type (size, unsignedp, satp);
8932 }
8933
8934 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8935
8936 static tree
8937 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8938 {
8939 if (satp)
8940 {
8941 if (size == SHORT_ACCUM_TYPE_SIZE)
8942 return unsignedp ? sat_unsigned_short_accum_type_node
8943 : sat_short_accum_type_node;
8944 if (size == ACCUM_TYPE_SIZE)
8945 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8946 if (size == LONG_ACCUM_TYPE_SIZE)
8947 return unsignedp ? sat_unsigned_long_accum_type_node
8948 : sat_long_accum_type_node;
8949 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8950 return unsignedp ? sat_unsigned_long_long_accum_type_node
8951 : sat_long_long_accum_type_node;
8952 }
8953 else
8954 {
8955 if (size == SHORT_ACCUM_TYPE_SIZE)
8956 return unsignedp ? unsigned_short_accum_type_node
8957 : short_accum_type_node;
8958 if (size == ACCUM_TYPE_SIZE)
8959 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8960 if (size == LONG_ACCUM_TYPE_SIZE)
8961 return unsignedp ? unsigned_long_accum_type_node
8962 : long_accum_type_node;
8963 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8964 return unsignedp ? unsigned_long_long_accum_type_node
8965 : long_long_accum_type_node;
8966 }
8967
8968 return make_accum_type (size, unsignedp, satp);
8969 }
8970
8971 /* Create nodes for all integer types (and error_mark_node) using the sizes
8972 of C datatypes. The caller should call set_sizetype soon after calling
8973 this function to select one of the types as sizetype. */
8974
8975 void
8976 build_common_tree_nodes (bool signed_char)
8977 {
8978 error_mark_node = make_node (ERROR_MARK);
8979 TREE_TYPE (error_mark_node) = error_mark_node;
8980
8981 initialize_sizetypes ();
8982
8983 /* Define both `signed char' and `unsigned char'. */
8984 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8985 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8986 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8987 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8988
8989 /* Define `char', which is like either `signed char' or `unsigned char'
8990 but not the same as either. */
8991 char_type_node
8992 = (signed_char
8993 ? make_signed_type (CHAR_TYPE_SIZE)
8994 : make_unsigned_type (CHAR_TYPE_SIZE));
8995 TYPE_STRING_FLAG (char_type_node) = 1;
8996
8997 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8998 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8999 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9000 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9001 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9002 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9003 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9004 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9005 #if HOST_BITS_PER_WIDE_INT >= 64
9006 /* TODO: This isn't correct, but as logic depends at the moment on
9007 host's instead of target's wide-integer.
9008 If there is a target not supporting TImode, but has an 128-bit
9009 integer-scalar register, this target check needs to be adjusted. */
9010 if (targetm.scalar_mode_supported_p (TImode))
9011 {
9012 int128_integer_type_node = make_signed_type (128);
9013 int128_unsigned_type_node = make_unsigned_type (128);
9014 }
9015 #endif
9016 /* Define a boolean type. This type only represents boolean values but
9017 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9018 Front ends which want to override this size (i.e. Java) can redefine
9019 boolean_type_node before calling build_common_tree_nodes_2. */
9020 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9021 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9022 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9023 TYPE_PRECISION (boolean_type_node) = 1;
9024
9025 /* Fill in the rest of the sized types. Reuse existing type nodes
9026 when possible. */
9027 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9028 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9029 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9030 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9031 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9032
9033 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9034 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9035 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9036 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9037 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9038
9039 access_public_node = get_identifier ("public");
9040 access_protected_node = get_identifier ("protected");
9041 access_private_node = get_identifier ("private");
9042 }
9043
9044 /* Call this function after calling build_common_tree_nodes and set_sizetype.
9045 It will create several other common tree nodes. */
9046
9047 void
9048 build_common_tree_nodes_2 (int short_double)
9049 {
9050 /* Define these next since types below may used them. */
9051 integer_zero_node = build_int_cst (integer_type_node, 0);
9052 integer_one_node = build_int_cst (integer_type_node, 1);
9053 integer_three_node = build_int_cst (integer_type_node, 3);
9054 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9055
9056 size_zero_node = size_int (0);
9057 size_one_node = size_int (1);
9058 bitsize_zero_node = bitsize_int (0);
9059 bitsize_one_node = bitsize_int (1);
9060 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9061
9062 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9063 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9064
9065 void_type_node = make_node (VOID_TYPE);
9066 layout_type (void_type_node);
9067
9068 /* We are not going to have real types in C with less than byte alignment,
9069 so we might as well not have any types that claim to have it. */
9070 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9071 TYPE_USER_ALIGN (void_type_node) = 0;
9072
9073 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9074 layout_type (TREE_TYPE (null_pointer_node));
9075
9076 ptr_type_node = build_pointer_type (void_type_node);
9077 const_ptr_type_node
9078 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9079 fileptr_type_node = ptr_type_node;
9080
9081 float_type_node = make_node (REAL_TYPE);
9082 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9083 layout_type (float_type_node);
9084
9085 double_type_node = make_node (REAL_TYPE);
9086 if (short_double)
9087 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9088 else
9089 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9090 layout_type (double_type_node);
9091
9092 long_double_type_node = make_node (REAL_TYPE);
9093 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9094 layout_type (long_double_type_node);
9095
9096 float_ptr_type_node = build_pointer_type (float_type_node);
9097 double_ptr_type_node = build_pointer_type (double_type_node);
9098 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9099 integer_ptr_type_node = build_pointer_type (integer_type_node);
9100
9101 /* Fixed size integer types. */
9102 uint32_type_node = build_nonstandard_integer_type (32, true);
9103 uint64_type_node = build_nonstandard_integer_type (64, true);
9104
9105 /* Decimal float types. */
9106 dfloat32_type_node = make_node (REAL_TYPE);
9107 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9108 layout_type (dfloat32_type_node);
9109 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9110 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9111
9112 dfloat64_type_node = make_node (REAL_TYPE);
9113 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9114 layout_type (dfloat64_type_node);
9115 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9116 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9117
9118 dfloat128_type_node = make_node (REAL_TYPE);
9119 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9120 layout_type (dfloat128_type_node);
9121 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9122 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9123
9124 complex_integer_type_node = build_complex_type (integer_type_node);
9125 complex_float_type_node = build_complex_type (float_type_node);
9126 complex_double_type_node = build_complex_type (double_type_node);
9127 complex_long_double_type_node = build_complex_type (long_double_type_node);
9128
9129 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9130 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9131 sat_ ## KIND ## _type_node = \
9132 make_sat_signed_ ## KIND ## _type (SIZE); \
9133 sat_unsigned_ ## KIND ## _type_node = \
9134 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9135 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9136 unsigned_ ## KIND ## _type_node = \
9137 make_unsigned_ ## KIND ## _type (SIZE);
9138
9139 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9140 sat_ ## WIDTH ## KIND ## _type_node = \
9141 make_sat_signed_ ## KIND ## _type (SIZE); \
9142 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9143 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9144 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9145 unsigned_ ## WIDTH ## KIND ## _type_node = \
9146 make_unsigned_ ## KIND ## _type (SIZE);
9147
9148 /* Make fixed-point type nodes based on four different widths. */
9149 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9150 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9151 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9152 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9153 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9154
9155 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9156 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9157 NAME ## _type_node = \
9158 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9159 u ## NAME ## _type_node = \
9160 make_or_reuse_unsigned_ ## KIND ## _type \
9161 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9162 sat_ ## NAME ## _type_node = \
9163 make_or_reuse_sat_signed_ ## KIND ## _type \
9164 (GET_MODE_BITSIZE (MODE ## mode)); \
9165 sat_u ## NAME ## _type_node = \
9166 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9167 (GET_MODE_BITSIZE (U ## MODE ## mode));
9168
9169 /* Fixed-point type and mode nodes. */
9170 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9171 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9172 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9173 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9174 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9175 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9176 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9177 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9178 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9179 MAKE_FIXED_MODE_NODE (accum, da, DA)
9180 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9181
9182 {
9183 tree t = targetm.build_builtin_va_list ();
9184
9185 /* Many back-ends define record types without setting TYPE_NAME.
9186 If we copied the record type here, we'd keep the original
9187 record type without a name. This breaks name mangling. So,
9188 don't copy record types and let c_common_nodes_and_builtins()
9189 declare the type to be __builtin_va_list. */
9190 if (TREE_CODE (t) != RECORD_TYPE)
9191 t = build_variant_type_copy (t);
9192
9193 va_list_type_node = t;
9194 }
9195 }
9196
9197 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9198
9199 static void
9200 local_define_builtin (const char *name, tree type, enum built_in_function code,
9201 const char *library_name, int ecf_flags)
9202 {
9203 tree decl;
9204
9205 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9206 library_name, NULL_TREE);
9207 if (ecf_flags & ECF_CONST)
9208 TREE_READONLY (decl) = 1;
9209 if (ecf_flags & ECF_PURE)
9210 DECL_PURE_P (decl) = 1;
9211 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9212 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9213 if (ecf_flags & ECF_NORETURN)
9214 TREE_THIS_VOLATILE (decl) = 1;
9215 if (ecf_flags & ECF_NOTHROW)
9216 TREE_NOTHROW (decl) = 1;
9217 if (ecf_flags & ECF_MALLOC)
9218 DECL_IS_MALLOC (decl) = 1;
9219 if (ecf_flags & ECF_LEAF)
9220 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9221 NULL, DECL_ATTRIBUTES (decl));
9222
9223 built_in_decls[code] = decl;
9224 implicit_built_in_decls[code] = decl;
9225 }
9226
9227 /* Call this function after instantiating all builtins that the language
9228 front end cares about. This will build the rest of the builtins that
9229 are relied upon by the tree optimizers and the middle-end. */
9230
9231 void
9232 build_common_builtin_nodes (void)
9233 {
9234 tree tmp, ftype;
9235
9236 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9237 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9238 {
9239 ftype = build_function_type_list (ptr_type_node,
9240 ptr_type_node, const_ptr_type_node,
9241 size_type_node, NULL_TREE);
9242
9243 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9244 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9245 "memcpy", ECF_NOTHROW | ECF_LEAF);
9246 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9247 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9248 "memmove", ECF_NOTHROW | ECF_LEAF);
9249 }
9250
9251 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9252 {
9253 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9254 const_ptr_type_node, size_type_node,
9255 NULL_TREE);
9256 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9257 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9258 }
9259
9260 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9261 {
9262 ftype = build_function_type_list (ptr_type_node,
9263 ptr_type_node, integer_type_node,
9264 size_type_node, NULL_TREE);
9265 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9266 "memset", ECF_NOTHROW | ECF_LEAF);
9267 }
9268
9269 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9270 {
9271 ftype = build_function_type_list (ptr_type_node,
9272 size_type_node, NULL_TREE);
9273 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9274 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9275 }
9276
9277 /* If we're checking the stack, `alloca' can throw. */
9278 if (flag_stack_check)
9279 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9280
9281 ftype = build_function_type_list (void_type_node,
9282 ptr_type_node, ptr_type_node,
9283 ptr_type_node, NULL_TREE);
9284 local_define_builtin ("__builtin_init_trampoline", ftype,
9285 BUILT_IN_INIT_TRAMPOLINE,
9286 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9287
9288 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9289 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9290 BUILT_IN_ADJUST_TRAMPOLINE,
9291 "__builtin_adjust_trampoline",
9292 ECF_CONST | ECF_NOTHROW);
9293
9294 ftype = build_function_type_list (void_type_node,
9295 ptr_type_node, ptr_type_node, NULL_TREE);
9296 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9297 BUILT_IN_NONLOCAL_GOTO,
9298 "__builtin_nonlocal_goto",
9299 ECF_NORETURN | ECF_NOTHROW);
9300
9301 ftype = build_function_type_list (void_type_node,
9302 ptr_type_node, ptr_type_node, NULL_TREE);
9303 local_define_builtin ("__builtin_setjmp_setup", ftype,
9304 BUILT_IN_SETJMP_SETUP,
9305 "__builtin_setjmp_setup", ECF_NOTHROW);
9306
9307 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9308 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9309 BUILT_IN_SETJMP_DISPATCHER,
9310 "__builtin_setjmp_dispatcher",
9311 ECF_PURE | ECF_NOTHROW);
9312
9313 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9314 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9315 BUILT_IN_SETJMP_RECEIVER,
9316 "__builtin_setjmp_receiver", ECF_NOTHROW);
9317
9318 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9319 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9320 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9321
9322 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9323 local_define_builtin ("__builtin_stack_restore", ftype,
9324 BUILT_IN_STACK_RESTORE,
9325 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9326
9327 /* If there's a possibility that we might use the ARM EABI, build the
9328 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9329 if (targetm.arm_eabi_unwinder)
9330 {
9331 ftype = build_function_type_list (void_type_node, NULL_TREE);
9332 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9333 BUILT_IN_CXA_END_CLEANUP,
9334 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9335 }
9336
9337 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9338 local_define_builtin ("__builtin_unwind_resume", ftype,
9339 BUILT_IN_UNWIND_RESUME,
9340 ((targetm.except_unwind_info (&global_options)
9341 == UI_SJLJ)
9342 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9343 ECF_NORETURN);
9344
9345 /* The exception object and filter values from the runtime. The argument
9346 must be zero before exception lowering, i.e. from the front end. After
9347 exception lowering, it will be the region number for the exception
9348 landing pad. These functions are PURE instead of CONST to prevent
9349 them from being hoisted past the exception edge that will initialize
9350 its value in the landing pad. */
9351 ftype = build_function_type_list (ptr_type_node,
9352 integer_type_node, NULL_TREE);
9353 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9354 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9355
9356 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9357 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9358 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9359 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9360
9361 ftype = build_function_type_list (void_type_node,
9362 integer_type_node, integer_type_node,
9363 NULL_TREE);
9364 local_define_builtin ("__builtin_eh_copy_values", ftype,
9365 BUILT_IN_EH_COPY_VALUES,
9366 "__builtin_eh_copy_values", ECF_NOTHROW);
9367
9368 /* Complex multiplication and division. These are handled as builtins
9369 rather than optabs because emit_library_call_value doesn't support
9370 complex. Further, we can do slightly better with folding these
9371 beasties if the real and complex parts of the arguments are separate. */
9372 {
9373 int mode;
9374
9375 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9376 {
9377 char mode_name_buf[4], *q;
9378 const char *p;
9379 enum built_in_function mcode, dcode;
9380 tree type, inner_type;
9381
9382 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9383 if (type == NULL)
9384 continue;
9385 inner_type = TREE_TYPE (type);
9386
9387 ftype = build_function_type_list (type, inner_type, inner_type,
9388 inner_type, inner_type, NULL_TREE);
9389
9390 mcode = ((enum built_in_function)
9391 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9392 dcode = ((enum built_in_function)
9393 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9394
9395 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9396 *q = TOLOWER (*p);
9397 *q = '\0';
9398
9399 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9400 local_define_builtin (built_in_names[mcode], ftype, mcode,
9401 built_in_names[mcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9402
9403 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9404 local_define_builtin (built_in_names[dcode], ftype, dcode,
9405 built_in_names[dcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9406 }
9407 }
9408 }
9409
9410 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9411 better way.
9412
9413 If we requested a pointer to a vector, build up the pointers that
9414 we stripped off while looking for the inner type. Similarly for
9415 return values from functions.
9416
9417 The argument TYPE is the top of the chain, and BOTTOM is the
9418 new type which we will point to. */
9419
9420 tree
9421 reconstruct_complex_type (tree type, tree bottom)
9422 {
9423 tree inner, outer;
9424
9425 if (TREE_CODE (type) == POINTER_TYPE)
9426 {
9427 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9428 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9429 TYPE_REF_CAN_ALIAS_ALL (type));
9430 }
9431 else if (TREE_CODE (type) == REFERENCE_TYPE)
9432 {
9433 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9434 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9435 TYPE_REF_CAN_ALIAS_ALL (type));
9436 }
9437 else if (TREE_CODE (type) == ARRAY_TYPE)
9438 {
9439 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9440 outer = build_array_type (inner, TYPE_DOMAIN (type));
9441 }
9442 else if (TREE_CODE (type) == FUNCTION_TYPE)
9443 {
9444 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9445 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9446 }
9447 else if (TREE_CODE (type) == METHOD_TYPE)
9448 {
9449 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9450 /* The build_method_type_directly() routine prepends 'this' to argument list,
9451 so we must compensate by getting rid of it. */
9452 outer
9453 = build_method_type_directly
9454 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9455 inner,
9456 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9457 }
9458 else if (TREE_CODE (type) == OFFSET_TYPE)
9459 {
9460 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9461 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9462 }
9463 else
9464 return bottom;
9465
9466 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9467 TYPE_QUALS (type));
9468 }
9469
9470 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9471 the inner type. */
9472 tree
9473 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9474 {
9475 int nunits;
9476
9477 switch (GET_MODE_CLASS (mode))
9478 {
9479 case MODE_VECTOR_INT:
9480 case MODE_VECTOR_FLOAT:
9481 case MODE_VECTOR_FRACT:
9482 case MODE_VECTOR_UFRACT:
9483 case MODE_VECTOR_ACCUM:
9484 case MODE_VECTOR_UACCUM:
9485 nunits = GET_MODE_NUNITS (mode);
9486 break;
9487
9488 case MODE_INT:
9489 /* Check that there are no leftover bits. */
9490 gcc_assert (GET_MODE_BITSIZE (mode)
9491 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9492
9493 nunits = GET_MODE_BITSIZE (mode)
9494 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9495 break;
9496
9497 default:
9498 gcc_unreachable ();
9499 }
9500
9501 return make_vector_type (innertype, nunits, mode);
9502 }
9503
9504 /* Similarly, but takes the inner type and number of units, which must be
9505 a power of two. */
9506
9507 tree
9508 build_vector_type (tree innertype, int nunits)
9509 {
9510 return make_vector_type (innertype, nunits, VOIDmode);
9511 }
9512
9513 /* Similarly, but takes the inner type and number of units, which must be
9514 a power of two. */
9515
9516 tree
9517 build_opaque_vector_type (tree innertype, int nunits)
9518 {
9519 tree t;
9520 innertype = build_distinct_type_copy (innertype);
9521 t = make_vector_type (innertype, nunits, VOIDmode);
9522 TYPE_VECTOR_OPAQUE (t) = true;
9523 return t;
9524 }
9525
9526
9527 /* Given an initializer INIT, return TRUE if INIT is zero or some
9528 aggregate of zeros. Otherwise return FALSE. */
9529 bool
9530 initializer_zerop (const_tree init)
9531 {
9532 tree elt;
9533
9534 STRIP_NOPS (init);
9535
9536 switch (TREE_CODE (init))
9537 {
9538 case INTEGER_CST:
9539 return integer_zerop (init);
9540
9541 case REAL_CST:
9542 /* ??? Note that this is not correct for C4X float formats. There,
9543 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9544 negative exponent. */
9545 return real_zerop (init)
9546 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9547
9548 case FIXED_CST:
9549 return fixed_zerop (init);
9550
9551 case COMPLEX_CST:
9552 return integer_zerop (init)
9553 || (real_zerop (init)
9554 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9555 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9556
9557 case VECTOR_CST:
9558 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9559 if (!initializer_zerop (TREE_VALUE (elt)))
9560 return false;
9561 return true;
9562
9563 case CONSTRUCTOR:
9564 {
9565 unsigned HOST_WIDE_INT idx;
9566
9567 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9568 if (!initializer_zerop (elt))
9569 return false;
9570 return true;
9571 }
9572
9573 case STRING_CST:
9574 {
9575 int i;
9576
9577 /* We need to loop through all elements to handle cases like
9578 "\0" and "\0foobar". */
9579 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9580 if (TREE_STRING_POINTER (init)[i] != '\0')
9581 return false;
9582
9583 return true;
9584 }
9585
9586 default:
9587 return false;
9588 }
9589 }
9590
9591 /* Build an empty statement at location LOC. */
9592
9593 tree
9594 build_empty_stmt (location_t loc)
9595 {
9596 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9597 SET_EXPR_LOCATION (t, loc);
9598 return t;
9599 }
9600
9601
9602 /* Build an OpenMP clause with code CODE. LOC is the location of the
9603 clause. */
9604
9605 tree
9606 build_omp_clause (location_t loc, enum omp_clause_code code)
9607 {
9608 tree t;
9609 int size, length;
9610
9611 length = omp_clause_num_ops[code];
9612 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9613
9614 t = ggc_alloc_tree_node (size);
9615 memset (t, 0, size);
9616 TREE_SET_CODE (t, OMP_CLAUSE);
9617 OMP_CLAUSE_SET_CODE (t, code);
9618 OMP_CLAUSE_LOCATION (t) = loc;
9619
9620 #ifdef GATHER_STATISTICS
9621 tree_node_counts[(int) omp_clause_kind]++;
9622 tree_node_sizes[(int) omp_clause_kind] += size;
9623 #endif
9624
9625 return t;
9626 }
9627
9628 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9629 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9630 Except for the CODE and operand count field, other storage for the
9631 object is initialized to zeros. */
9632
9633 tree
9634 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9635 {
9636 tree t;
9637 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9638
9639 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9640 gcc_assert (len >= 1);
9641
9642 #ifdef GATHER_STATISTICS
9643 tree_node_counts[(int) e_kind]++;
9644 tree_node_sizes[(int) e_kind] += length;
9645 #endif
9646
9647 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9648
9649 TREE_SET_CODE (t, code);
9650
9651 /* Can't use TREE_OPERAND to store the length because if checking is
9652 enabled, it will try to check the length before we store it. :-P */
9653 t->exp.operands[0] = build_int_cst (sizetype, len);
9654
9655 return t;
9656 }
9657
9658 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9659 FN and a null static chain slot. NARGS is the number of call arguments
9660 which are specified as "..." arguments. */
9661
9662 tree
9663 build_call_nary (tree return_type, tree fn, int nargs, ...)
9664 {
9665 tree ret;
9666 va_list args;
9667 va_start (args, nargs);
9668 ret = build_call_valist (return_type, fn, nargs, args);
9669 va_end (args);
9670 return ret;
9671 }
9672
9673 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9674 FN and a null static chain slot. NARGS is the number of call arguments
9675 which are specified as a va_list ARGS. */
9676
9677 tree
9678 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9679 {
9680 tree t;
9681 int i;
9682
9683 t = build_vl_exp (CALL_EXPR, nargs + 3);
9684 TREE_TYPE (t) = return_type;
9685 CALL_EXPR_FN (t) = fn;
9686 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9687 for (i = 0; i < nargs; i++)
9688 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9689 process_call_operands (t);
9690 return t;
9691 }
9692
9693 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9694 FN and a null static chain slot. NARGS is the number of call arguments
9695 which are specified as a tree array ARGS. */
9696
9697 tree
9698 build_call_array_loc (location_t loc, tree return_type, tree fn,
9699 int nargs, const tree *args)
9700 {
9701 tree t;
9702 int i;
9703
9704 t = build_vl_exp (CALL_EXPR, nargs + 3);
9705 TREE_TYPE (t) = return_type;
9706 CALL_EXPR_FN (t) = fn;
9707 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9708 for (i = 0; i < nargs; i++)
9709 CALL_EXPR_ARG (t, i) = args[i];
9710 process_call_operands (t);
9711 SET_EXPR_LOCATION (t, loc);
9712 return t;
9713 }
9714
9715 /* Like build_call_array, but takes a VEC. */
9716
9717 tree
9718 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9719 {
9720 tree ret, t;
9721 unsigned int ix;
9722
9723 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9724 TREE_TYPE (ret) = return_type;
9725 CALL_EXPR_FN (ret) = fn;
9726 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9727 FOR_EACH_VEC_ELT (tree, args, ix, t)
9728 CALL_EXPR_ARG (ret, ix) = t;
9729 process_call_operands (ret);
9730 return ret;
9731 }
9732
9733
9734 /* Returns true if it is possible to prove that the index of
9735 an array access REF (an ARRAY_REF expression) falls into the
9736 array bounds. */
9737
9738 bool
9739 in_array_bounds_p (tree ref)
9740 {
9741 tree idx = TREE_OPERAND (ref, 1);
9742 tree min, max;
9743
9744 if (TREE_CODE (idx) != INTEGER_CST)
9745 return false;
9746
9747 min = array_ref_low_bound (ref);
9748 max = array_ref_up_bound (ref);
9749 if (!min
9750 || !max
9751 || TREE_CODE (min) != INTEGER_CST
9752 || TREE_CODE (max) != INTEGER_CST)
9753 return false;
9754
9755 if (tree_int_cst_lt (idx, min)
9756 || tree_int_cst_lt (max, idx))
9757 return false;
9758
9759 return true;
9760 }
9761
9762 /* Returns true if it is possible to prove that the range of
9763 an array access REF (an ARRAY_RANGE_REF expression) falls
9764 into the array bounds. */
9765
9766 bool
9767 range_in_array_bounds_p (tree ref)
9768 {
9769 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9770 tree range_min, range_max, min, max;
9771
9772 range_min = TYPE_MIN_VALUE (domain_type);
9773 range_max = TYPE_MAX_VALUE (domain_type);
9774 if (!range_min
9775 || !range_max
9776 || TREE_CODE (range_min) != INTEGER_CST
9777 || TREE_CODE (range_max) != INTEGER_CST)
9778 return false;
9779
9780 min = array_ref_low_bound (ref);
9781 max = array_ref_up_bound (ref);
9782 if (!min
9783 || !max
9784 || TREE_CODE (min) != INTEGER_CST
9785 || TREE_CODE (max) != INTEGER_CST)
9786 return false;
9787
9788 if (tree_int_cst_lt (range_min, min)
9789 || tree_int_cst_lt (max, range_max))
9790 return false;
9791
9792 return true;
9793 }
9794
9795 /* Return true if T (assumed to be a DECL) must be assigned a memory
9796 location. */
9797
9798 bool
9799 needs_to_live_in_memory (const_tree t)
9800 {
9801 if (TREE_CODE (t) == SSA_NAME)
9802 t = SSA_NAME_VAR (t);
9803
9804 return (TREE_ADDRESSABLE (t)
9805 || is_global_var (t)
9806 || (TREE_CODE (t) == RESULT_DECL
9807 && !DECL_BY_REFERENCE (t)
9808 && aggregate_value_p (t, current_function_decl)));
9809 }
9810
9811 /* There are situations in which a language considers record types
9812 compatible which have different field lists. Decide if two fields
9813 are compatible. It is assumed that the parent records are compatible. */
9814
9815 bool
9816 fields_compatible_p (const_tree f1, const_tree f2)
9817 {
9818 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9819 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9820 return false;
9821
9822 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9823 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9824 return false;
9825
9826 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9827 return false;
9828
9829 return true;
9830 }
9831
9832 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9833
9834 tree
9835 find_compatible_field (tree record, tree orig_field)
9836 {
9837 tree f;
9838
9839 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9840 if (TREE_CODE (f) == FIELD_DECL
9841 && fields_compatible_p (f, orig_field))
9842 return f;
9843
9844 /* ??? Why isn't this on the main fields list? */
9845 f = TYPE_VFIELD (record);
9846 if (f && TREE_CODE (f) == FIELD_DECL
9847 && fields_compatible_p (f, orig_field))
9848 return f;
9849
9850 /* ??? We should abort here, but Java appears to do Bad Things
9851 with inherited fields. */
9852 return orig_field;
9853 }
9854
9855 /* Return value of a constant X and sign-extend it. */
9856
9857 HOST_WIDE_INT
9858 int_cst_value (const_tree x)
9859 {
9860 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9861 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9862
9863 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9864 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9865 || TREE_INT_CST_HIGH (x) == -1);
9866
9867 if (bits < HOST_BITS_PER_WIDE_INT)
9868 {
9869 bool negative = ((val >> (bits - 1)) & 1) != 0;
9870 if (negative)
9871 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9872 else
9873 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9874 }
9875
9876 return val;
9877 }
9878
9879 /* Return value of a constant X and sign-extend it. */
9880
9881 HOST_WIDEST_INT
9882 widest_int_cst_value (const_tree x)
9883 {
9884 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9885 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9886
9887 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9888 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9889 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9890 << HOST_BITS_PER_WIDE_INT);
9891 #else
9892 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9893 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9894 || TREE_INT_CST_HIGH (x) == -1);
9895 #endif
9896
9897 if (bits < HOST_BITS_PER_WIDEST_INT)
9898 {
9899 bool negative = ((val >> (bits - 1)) & 1) != 0;
9900 if (negative)
9901 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9902 else
9903 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9904 }
9905
9906 return val;
9907 }
9908
9909 /* If TYPE is an integral type, return an equivalent type which is
9910 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9911 return TYPE itself. */
9912
9913 tree
9914 signed_or_unsigned_type_for (int unsignedp, tree type)
9915 {
9916 tree t = type;
9917 if (POINTER_TYPE_P (type))
9918 {
9919 /* If the pointer points to the normal address space, use the
9920 size_type_node. Otherwise use an appropriate size for the pointer
9921 based on the named address space it points to. */
9922 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9923 t = size_type_node;
9924 else
9925 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9926 }
9927
9928 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9929 return t;
9930
9931 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9932 }
9933
9934 /* Returns unsigned variant of TYPE. */
9935
9936 tree
9937 unsigned_type_for (tree type)
9938 {
9939 return signed_or_unsigned_type_for (1, type);
9940 }
9941
9942 /* Returns signed variant of TYPE. */
9943
9944 tree
9945 signed_type_for (tree type)
9946 {
9947 return signed_or_unsigned_type_for (0, type);
9948 }
9949
9950 /* Returns the largest value obtainable by casting something in INNER type to
9951 OUTER type. */
9952
9953 tree
9954 upper_bound_in_type (tree outer, tree inner)
9955 {
9956 unsigned HOST_WIDE_INT lo, hi;
9957 unsigned int det = 0;
9958 unsigned oprec = TYPE_PRECISION (outer);
9959 unsigned iprec = TYPE_PRECISION (inner);
9960 unsigned prec;
9961
9962 /* Compute a unique number for every combination. */
9963 det |= (oprec > iprec) ? 4 : 0;
9964 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9965 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9966
9967 /* Determine the exponent to use. */
9968 switch (det)
9969 {
9970 case 0:
9971 case 1:
9972 /* oprec <= iprec, outer: signed, inner: don't care. */
9973 prec = oprec - 1;
9974 break;
9975 case 2:
9976 case 3:
9977 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9978 prec = oprec;
9979 break;
9980 case 4:
9981 /* oprec > iprec, outer: signed, inner: signed. */
9982 prec = iprec - 1;
9983 break;
9984 case 5:
9985 /* oprec > iprec, outer: signed, inner: unsigned. */
9986 prec = iprec;
9987 break;
9988 case 6:
9989 /* oprec > iprec, outer: unsigned, inner: signed. */
9990 prec = oprec;
9991 break;
9992 case 7:
9993 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9994 prec = iprec;
9995 break;
9996 default:
9997 gcc_unreachable ();
9998 }
9999
10000 /* Compute 2^^prec - 1. */
10001 if (prec <= HOST_BITS_PER_WIDE_INT)
10002 {
10003 hi = 0;
10004 lo = ((~(unsigned HOST_WIDE_INT) 0)
10005 >> (HOST_BITS_PER_WIDE_INT - prec));
10006 }
10007 else
10008 {
10009 hi = ((~(unsigned HOST_WIDE_INT) 0)
10010 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
10011 lo = ~(unsigned HOST_WIDE_INT) 0;
10012 }
10013
10014 return build_int_cst_wide (outer, lo, hi);
10015 }
10016
10017 /* Returns the smallest value obtainable by casting something in INNER type to
10018 OUTER type. */
10019
10020 tree
10021 lower_bound_in_type (tree outer, tree inner)
10022 {
10023 unsigned HOST_WIDE_INT lo, hi;
10024 unsigned oprec = TYPE_PRECISION (outer);
10025 unsigned iprec = TYPE_PRECISION (inner);
10026
10027 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10028 and obtain 0. */
10029 if (TYPE_UNSIGNED (outer)
10030 /* If we are widening something of an unsigned type, OUTER type
10031 contains all values of INNER type. In particular, both INNER
10032 and OUTER types have zero in common. */
10033 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10034 lo = hi = 0;
10035 else
10036 {
10037 /* If we are widening a signed type to another signed type, we
10038 want to obtain -2^^(iprec-1). If we are keeping the
10039 precision or narrowing to a signed type, we want to obtain
10040 -2^(oprec-1). */
10041 unsigned prec = oprec > iprec ? iprec : oprec;
10042
10043 if (prec <= HOST_BITS_PER_WIDE_INT)
10044 {
10045 hi = ~(unsigned HOST_WIDE_INT) 0;
10046 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10047 }
10048 else
10049 {
10050 hi = ((~(unsigned HOST_WIDE_INT) 0)
10051 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10052 lo = 0;
10053 }
10054 }
10055
10056 return build_int_cst_wide (outer, lo, hi);
10057 }
10058
10059 /* Return nonzero if two operands that are suitable for PHI nodes are
10060 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10061 SSA_NAME or invariant. Note that this is strictly an optimization.
10062 That is, callers of this function can directly call operand_equal_p
10063 and get the same result, only slower. */
10064
10065 int
10066 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10067 {
10068 if (arg0 == arg1)
10069 return 1;
10070 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10071 return 0;
10072 return operand_equal_p (arg0, arg1, 0);
10073 }
10074
10075 /* Returns number of zeros at the end of binary representation of X.
10076
10077 ??? Use ffs if available? */
10078
10079 tree
10080 num_ending_zeros (const_tree x)
10081 {
10082 unsigned HOST_WIDE_INT fr, nfr;
10083 unsigned num, abits;
10084 tree type = TREE_TYPE (x);
10085
10086 if (TREE_INT_CST_LOW (x) == 0)
10087 {
10088 num = HOST_BITS_PER_WIDE_INT;
10089 fr = TREE_INT_CST_HIGH (x);
10090 }
10091 else
10092 {
10093 num = 0;
10094 fr = TREE_INT_CST_LOW (x);
10095 }
10096
10097 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10098 {
10099 nfr = fr >> abits;
10100 if (nfr << abits == fr)
10101 {
10102 num += abits;
10103 fr = nfr;
10104 }
10105 }
10106
10107 if (num > TYPE_PRECISION (type))
10108 num = TYPE_PRECISION (type);
10109
10110 return build_int_cst_type (type, num);
10111 }
10112
10113
10114 #define WALK_SUBTREE(NODE) \
10115 do \
10116 { \
10117 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10118 if (result) \
10119 return result; \
10120 } \
10121 while (0)
10122
10123 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10124 be walked whenever a type is seen in the tree. Rest of operands and return
10125 value are as for walk_tree. */
10126
10127 static tree
10128 walk_type_fields (tree type, walk_tree_fn func, void *data,
10129 struct pointer_set_t *pset, walk_tree_lh lh)
10130 {
10131 tree result = NULL_TREE;
10132
10133 switch (TREE_CODE (type))
10134 {
10135 case POINTER_TYPE:
10136 case REFERENCE_TYPE:
10137 /* We have to worry about mutually recursive pointers. These can't
10138 be written in C. They can in Ada. It's pathological, but
10139 there's an ACATS test (c38102a) that checks it. Deal with this
10140 by checking if we're pointing to another pointer, that one
10141 points to another pointer, that one does too, and we have no htab.
10142 If so, get a hash table. We check three levels deep to avoid
10143 the cost of the hash table if we don't need one. */
10144 if (POINTER_TYPE_P (TREE_TYPE (type))
10145 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10146 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10147 && !pset)
10148 {
10149 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10150 func, data);
10151 if (result)
10152 return result;
10153
10154 break;
10155 }
10156
10157 /* ... fall through ... */
10158
10159 case COMPLEX_TYPE:
10160 WALK_SUBTREE (TREE_TYPE (type));
10161 break;
10162
10163 case METHOD_TYPE:
10164 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10165
10166 /* Fall through. */
10167
10168 case FUNCTION_TYPE:
10169 WALK_SUBTREE (TREE_TYPE (type));
10170 {
10171 tree arg;
10172
10173 /* We never want to walk into default arguments. */
10174 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10175 WALK_SUBTREE (TREE_VALUE (arg));
10176 }
10177 break;
10178
10179 case ARRAY_TYPE:
10180 /* Don't follow this nodes's type if a pointer for fear that
10181 we'll have infinite recursion. If we have a PSET, then we
10182 need not fear. */
10183 if (pset
10184 || (!POINTER_TYPE_P (TREE_TYPE (type))
10185 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10186 WALK_SUBTREE (TREE_TYPE (type));
10187 WALK_SUBTREE (TYPE_DOMAIN (type));
10188 break;
10189
10190 case OFFSET_TYPE:
10191 WALK_SUBTREE (TREE_TYPE (type));
10192 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10193 break;
10194
10195 default:
10196 break;
10197 }
10198
10199 return NULL_TREE;
10200 }
10201
10202 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10203 called with the DATA and the address of each sub-tree. If FUNC returns a
10204 non-NULL value, the traversal is stopped, and the value returned by FUNC
10205 is returned. If PSET is non-NULL it is used to record the nodes visited,
10206 and to avoid visiting a node more than once. */
10207
10208 tree
10209 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10210 struct pointer_set_t *pset, walk_tree_lh lh)
10211 {
10212 enum tree_code code;
10213 int walk_subtrees;
10214 tree result;
10215
10216 #define WALK_SUBTREE_TAIL(NODE) \
10217 do \
10218 { \
10219 tp = & (NODE); \
10220 goto tail_recurse; \
10221 } \
10222 while (0)
10223
10224 tail_recurse:
10225 /* Skip empty subtrees. */
10226 if (!*tp)
10227 return NULL_TREE;
10228
10229 /* Don't walk the same tree twice, if the user has requested
10230 that we avoid doing so. */
10231 if (pset && pointer_set_insert (pset, *tp))
10232 return NULL_TREE;
10233
10234 /* Call the function. */
10235 walk_subtrees = 1;
10236 result = (*func) (tp, &walk_subtrees, data);
10237
10238 /* If we found something, return it. */
10239 if (result)
10240 return result;
10241
10242 code = TREE_CODE (*tp);
10243
10244 /* Even if we didn't, FUNC may have decided that there was nothing
10245 interesting below this point in the tree. */
10246 if (!walk_subtrees)
10247 {
10248 /* But we still need to check our siblings. */
10249 if (code == TREE_LIST)
10250 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10251 else if (code == OMP_CLAUSE)
10252 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10253 else
10254 return NULL_TREE;
10255 }
10256
10257 if (lh)
10258 {
10259 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10260 if (result || !walk_subtrees)
10261 return result;
10262 }
10263
10264 switch (code)
10265 {
10266 case ERROR_MARK:
10267 case IDENTIFIER_NODE:
10268 case INTEGER_CST:
10269 case REAL_CST:
10270 case FIXED_CST:
10271 case VECTOR_CST:
10272 case STRING_CST:
10273 case BLOCK:
10274 case PLACEHOLDER_EXPR:
10275 case SSA_NAME:
10276 case FIELD_DECL:
10277 case RESULT_DECL:
10278 /* None of these have subtrees other than those already walked
10279 above. */
10280 break;
10281
10282 case TREE_LIST:
10283 WALK_SUBTREE (TREE_VALUE (*tp));
10284 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10285 break;
10286
10287 case TREE_VEC:
10288 {
10289 int len = TREE_VEC_LENGTH (*tp);
10290
10291 if (len == 0)
10292 break;
10293
10294 /* Walk all elements but the first. */
10295 while (--len)
10296 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10297
10298 /* Now walk the first one as a tail call. */
10299 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10300 }
10301
10302 case COMPLEX_CST:
10303 WALK_SUBTREE (TREE_REALPART (*tp));
10304 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10305
10306 case CONSTRUCTOR:
10307 {
10308 unsigned HOST_WIDE_INT idx;
10309 constructor_elt *ce;
10310
10311 for (idx = 0;
10312 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10313 idx++)
10314 WALK_SUBTREE (ce->value);
10315 }
10316 break;
10317
10318 case SAVE_EXPR:
10319 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10320
10321 case BIND_EXPR:
10322 {
10323 tree decl;
10324 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10325 {
10326 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10327 into declarations that are just mentioned, rather than
10328 declared; they don't really belong to this part of the tree.
10329 And, we can see cycles: the initializer for a declaration
10330 can refer to the declaration itself. */
10331 WALK_SUBTREE (DECL_INITIAL (decl));
10332 WALK_SUBTREE (DECL_SIZE (decl));
10333 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10334 }
10335 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10336 }
10337
10338 case STATEMENT_LIST:
10339 {
10340 tree_stmt_iterator i;
10341 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10342 WALK_SUBTREE (*tsi_stmt_ptr (i));
10343 }
10344 break;
10345
10346 case OMP_CLAUSE:
10347 switch (OMP_CLAUSE_CODE (*tp))
10348 {
10349 case OMP_CLAUSE_PRIVATE:
10350 case OMP_CLAUSE_SHARED:
10351 case OMP_CLAUSE_FIRSTPRIVATE:
10352 case OMP_CLAUSE_COPYIN:
10353 case OMP_CLAUSE_COPYPRIVATE:
10354 case OMP_CLAUSE_IF:
10355 case OMP_CLAUSE_NUM_THREADS:
10356 case OMP_CLAUSE_SCHEDULE:
10357 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10358 /* FALLTHRU */
10359
10360 case OMP_CLAUSE_NOWAIT:
10361 case OMP_CLAUSE_ORDERED:
10362 case OMP_CLAUSE_DEFAULT:
10363 case OMP_CLAUSE_UNTIED:
10364 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10365
10366 case OMP_CLAUSE_LASTPRIVATE:
10367 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10368 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10369 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10370
10371 case OMP_CLAUSE_COLLAPSE:
10372 {
10373 int i;
10374 for (i = 0; i < 3; i++)
10375 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10376 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10377 }
10378
10379 case OMP_CLAUSE_REDUCTION:
10380 {
10381 int i;
10382 for (i = 0; i < 4; i++)
10383 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10384 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10385 }
10386
10387 default:
10388 gcc_unreachable ();
10389 }
10390 break;
10391
10392 case TARGET_EXPR:
10393 {
10394 int i, len;
10395
10396 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10397 But, we only want to walk once. */
10398 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10399 for (i = 0; i < len; ++i)
10400 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10401 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10402 }
10403
10404 case DECL_EXPR:
10405 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10406 defining. We only want to walk into these fields of a type in this
10407 case and not in the general case of a mere reference to the type.
10408
10409 The criterion is as follows: if the field can be an expression, it
10410 must be walked only here. This should be in keeping with the fields
10411 that are directly gimplified in gimplify_type_sizes in order for the
10412 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10413 variable-sized types.
10414
10415 Note that DECLs get walked as part of processing the BIND_EXPR. */
10416 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10417 {
10418 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10419 if (TREE_CODE (*type_p) == ERROR_MARK)
10420 return NULL_TREE;
10421
10422 /* Call the function for the type. See if it returns anything or
10423 doesn't want us to continue. If we are to continue, walk both
10424 the normal fields and those for the declaration case. */
10425 result = (*func) (type_p, &walk_subtrees, data);
10426 if (result || !walk_subtrees)
10427 return result;
10428
10429 result = walk_type_fields (*type_p, func, data, pset, lh);
10430 if (result)
10431 return result;
10432
10433 /* If this is a record type, also walk the fields. */
10434 if (RECORD_OR_UNION_TYPE_P (*type_p))
10435 {
10436 tree field;
10437
10438 for (field = TYPE_FIELDS (*type_p); field;
10439 field = DECL_CHAIN (field))
10440 {
10441 /* We'd like to look at the type of the field, but we can
10442 easily get infinite recursion. So assume it's pointed
10443 to elsewhere in the tree. Also, ignore things that
10444 aren't fields. */
10445 if (TREE_CODE (field) != FIELD_DECL)
10446 continue;
10447
10448 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10449 WALK_SUBTREE (DECL_SIZE (field));
10450 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10451 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10452 WALK_SUBTREE (DECL_QUALIFIER (field));
10453 }
10454 }
10455
10456 /* Same for scalar types. */
10457 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10458 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10459 || TREE_CODE (*type_p) == INTEGER_TYPE
10460 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10461 || TREE_CODE (*type_p) == REAL_TYPE)
10462 {
10463 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10464 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10465 }
10466
10467 WALK_SUBTREE (TYPE_SIZE (*type_p));
10468 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10469 }
10470 /* FALLTHRU */
10471
10472 default:
10473 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10474 {
10475 int i, len;
10476
10477 /* Walk over all the sub-trees of this operand. */
10478 len = TREE_OPERAND_LENGTH (*tp);
10479
10480 /* Go through the subtrees. We need to do this in forward order so
10481 that the scope of a FOR_EXPR is handled properly. */
10482 if (len)
10483 {
10484 for (i = 0; i < len - 1; ++i)
10485 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10486 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10487 }
10488 }
10489 /* If this is a type, walk the needed fields in the type. */
10490 else if (TYPE_P (*tp))
10491 return walk_type_fields (*tp, func, data, pset, lh);
10492 break;
10493 }
10494
10495 /* We didn't find what we were looking for. */
10496 return NULL_TREE;
10497
10498 #undef WALK_SUBTREE_TAIL
10499 }
10500 #undef WALK_SUBTREE
10501
10502 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10503
10504 tree
10505 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10506 walk_tree_lh lh)
10507 {
10508 tree result;
10509 struct pointer_set_t *pset;
10510
10511 pset = pointer_set_create ();
10512 result = walk_tree_1 (tp, func, data, pset, lh);
10513 pointer_set_destroy (pset);
10514 return result;
10515 }
10516
10517
10518 tree *
10519 tree_block (tree t)
10520 {
10521 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10522
10523 if (IS_EXPR_CODE_CLASS (c))
10524 return &t->exp.block;
10525 gcc_unreachable ();
10526 return NULL;
10527 }
10528
10529 /* Create a nameless artificial label and put it in the current
10530 function context. The label has a location of LOC. Returns the
10531 newly created label. */
10532
10533 tree
10534 create_artificial_label (location_t loc)
10535 {
10536 tree lab = build_decl (loc,
10537 LABEL_DECL, NULL_TREE, void_type_node);
10538
10539 DECL_ARTIFICIAL (lab) = 1;
10540 DECL_IGNORED_P (lab) = 1;
10541 DECL_CONTEXT (lab) = current_function_decl;
10542 return lab;
10543 }
10544
10545 /* Given a tree, try to return a useful variable name that we can use
10546 to prefix a temporary that is being assigned the value of the tree.
10547 I.E. given <temp> = &A, return A. */
10548
10549 const char *
10550 get_name (tree t)
10551 {
10552 tree stripped_decl;
10553
10554 stripped_decl = t;
10555 STRIP_NOPS (stripped_decl);
10556 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10557 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10558 else
10559 {
10560 switch (TREE_CODE (stripped_decl))
10561 {
10562 case ADDR_EXPR:
10563 return get_name (TREE_OPERAND (stripped_decl, 0));
10564 default:
10565 return NULL;
10566 }
10567 }
10568 }
10569
10570 /* Return true if TYPE has a variable argument list. */
10571
10572 bool
10573 stdarg_p (const_tree fntype)
10574 {
10575 function_args_iterator args_iter;
10576 tree n = NULL_TREE, t;
10577
10578 if (!fntype)
10579 return false;
10580
10581 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10582 {
10583 n = t;
10584 }
10585
10586 return n != NULL_TREE && n != void_type_node;
10587 }
10588
10589 /* Return true if TYPE has a prototype. */
10590
10591 bool
10592 prototype_p (tree fntype)
10593 {
10594 tree t;
10595
10596 gcc_assert (fntype != NULL_TREE);
10597
10598 t = TYPE_ARG_TYPES (fntype);
10599 return (t != NULL_TREE);
10600 }
10601
10602 /* If BLOCK is inlined from an __attribute__((__artificial__))
10603 routine, return pointer to location from where it has been
10604 called. */
10605 location_t *
10606 block_nonartificial_location (tree block)
10607 {
10608 location_t *ret = NULL;
10609
10610 while (block && TREE_CODE (block) == BLOCK
10611 && BLOCK_ABSTRACT_ORIGIN (block))
10612 {
10613 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10614
10615 while (TREE_CODE (ao) == BLOCK
10616 && BLOCK_ABSTRACT_ORIGIN (ao)
10617 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10618 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10619
10620 if (TREE_CODE (ao) == FUNCTION_DECL)
10621 {
10622 /* If AO is an artificial inline, point RET to the
10623 call site locus at which it has been inlined and continue
10624 the loop, in case AO's caller is also an artificial
10625 inline. */
10626 if (DECL_DECLARED_INLINE_P (ao)
10627 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10628 ret = &BLOCK_SOURCE_LOCATION (block);
10629 else
10630 break;
10631 }
10632 else if (TREE_CODE (ao) != BLOCK)
10633 break;
10634
10635 block = BLOCK_SUPERCONTEXT (block);
10636 }
10637 return ret;
10638 }
10639
10640
10641 /* If EXP is inlined from an __attribute__((__artificial__))
10642 function, return the location of the original call expression. */
10643
10644 location_t
10645 tree_nonartificial_location (tree exp)
10646 {
10647 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10648
10649 if (loc)
10650 return *loc;
10651 else
10652 return EXPR_LOCATION (exp);
10653 }
10654
10655
10656 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10657 nodes. */
10658
10659 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10660
10661 static hashval_t
10662 cl_option_hash_hash (const void *x)
10663 {
10664 const_tree const t = (const_tree) x;
10665 const char *p;
10666 size_t i;
10667 size_t len = 0;
10668 hashval_t hash = 0;
10669
10670 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10671 {
10672 p = (const char *)TREE_OPTIMIZATION (t);
10673 len = sizeof (struct cl_optimization);
10674 }
10675
10676 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10677 {
10678 p = (const char *)TREE_TARGET_OPTION (t);
10679 len = sizeof (struct cl_target_option);
10680 }
10681
10682 else
10683 gcc_unreachable ();
10684
10685 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10686 something else. */
10687 for (i = 0; i < len; i++)
10688 if (p[i])
10689 hash = (hash << 4) ^ ((i << 2) | p[i]);
10690
10691 return hash;
10692 }
10693
10694 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10695 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10696 same. */
10697
10698 static int
10699 cl_option_hash_eq (const void *x, const void *y)
10700 {
10701 const_tree const xt = (const_tree) x;
10702 const_tree const yt = (const_tree) y;
10703 const char *xp;
10704 const char *yp;
10705 size_t len;
10706
10707 if (TREE_CODE (xt) != TREE_CODE (yt))
10708 return 0;
10709
10710 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10711 {
10712 xp = (const char *)TREE_OPTIMIZATION (xt);
10713 yp = (const char *)TREE_OPTIMIZATION (yt);
10714 len = sizeof (struct cl_optimization);
10715 }
10716
10717 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10718 {
10719 xp = (const char *)TREE_TARGET_OPTION (xt);
10720 yp = (const char *)TREE_TARGET_OPTION (yt);
10721 len = sizeof (struct cl_target_option);
10722 }
10723
10724 else
10725 gcc_unreachable ();
10726
10727 return (memcmp (xp, yp, len) == 0);
10728 }
10729
10730 /* Build an OPTIMIZATION_NODE based on the current options. */
10731
10732 tree
10733 build_optimization_node (void)
10734 {
10735 tree t;
10736 void **slot;
10737
10738 /* Use the cache of optimization nodes. */
10739
10740 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
10741 &global_options);
10742
10743 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10744 t = (tree) *slot;
10745 if (!t)
10746 {
10747 /* Insert this one into the hash table. */
10748 t = cl_optimization_node;
10749 *slot = t;
10750
10751 /* Make a new node for next time round. */
10752 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10753 }
10754
10755 return t;
10756 }
10757
10758 /* Build a TARGET_OPTION_NODE based on the current options. */
10759
10760 tree
10761 build_target_option_node (void)
10762 {
10763 tree t;
10764 void **slot;
10765
10766 /* Use the cache of optimization nodes. */
10767
10768 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
10769 &global_options);
10770
10771 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10772 t = (tree) *slot;
10773 if (!t)
10774 {
10775 /* Insert this one into the hash table. */
10776 t = cl_target_option_node;
10777 *slot = t;
10778
10779 /* Make a new node for next time round. */
10780 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10781 }
10782
10783 return t;
10784 }
10785
10786 /* Determine the "ultimate origin" of a block. The block may be an inlined
10787 instance of an inlined instance of a block which is local to an inline
10788 function, so we have to trace all of the way back through the origin chain
10789 to find out what sort of node actually served as the original seed for the
10790 given block. */
10791
10792 tree
10793 block_ultimate_origin (const_tree block)
10794 {
10795 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10796
10797 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10798 nodes in the function to point to themselves; ignore that if
10799 we're trying to output the abstract instance of this function. */
10800 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10801 return NULL_TREE;
10802
10803 if (immediate_origin == NULL_TREE)
10804 return NULL_TREE;
10805 else
10806 {
10807 tree ret_val;
10808 tree lookahead = immediate_origin;
10809
10810 do
10811 {
10812 ret_val = lookahead;
10813 lookahead = (TREE_CODE (ret_val) == BLOCK
10814 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10815 }
10816 while (lookahead != NULL && lookahead != ret_val);
10817
10818 /* The block's abstract origin chain may not be the *ultimate* origin of
10819 the block. It could lead to a DECL that has an abstract origin set.
10820 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10821 will give us if it has one). Note that DECL's abstract origins are
10822 supposed to be the most distant ancestor (or so decl_ultimate_origin
10823 claims), so we don't need to loop following the DECL origins. */
10824 if (DECL_P (ret_val))
10825 return DECL_ORIGIN (ret_val);
10826
10827 return ret_val;
10828 }
10829 }
10830
10831 /* Return true if T1 and T2 are equivalent lists. */
10832
10833 bool
10834 list_equal_p (const_tree t1, const_tree t2)
10835 {
10836 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10837 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10838 return false;
10839 return !t1 && !t2;
10840 }
10841
10842 /* Return true iff conversion in EXP generates no instruction. Mark
10843 it inline so that we fully inline into the stripping functions even
10844 though we have two uses of this function. */
10845
10846 static inline bool
10847 tree_nop_conversion (const_tree exp)
10848 {
10849 tree outer_type, inner_type;
10850
10851 if (!CONVERT_EXPR_P (exp)
10852 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10853 return false;
10854 if (TREE_OPERAND (exp, 0) == error_mark_node)
10855 return false;
10856
10857 outer_type = TREE_TYPE (exp);
10858 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10859
10860 if (!inner_type)
10861 return false;
10862
10863 /* Use precision rather then machine mode when we can, which gives
10864 the correct answer even for submode (bit-field) types. */
10865 if ((INTEGRAL_TYPE_P (outer_type)
10866 || POINTER_TYPE_P (outer_type)
10867 || TREE_CODE (outer_type) == OFFSET_TYPE)
10868 && (INTEGRAL_TYPE_P (inner_type)
10869 || POINTER_TYPE_P (inner_type)
10870 || TREE_CODE (inner_type) == OFFSET_TYPE))
10871 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10872
10873 /* Otherwise fall back on comparing machine modes (e.g. for
10874 aggregate types, floats). */
10875 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10876 }
10877
10878 /* Return true iff conversion in EXP generates no instruction. Don't
10879 consider conversions changing the signedness. */
10880
10881 static bool
10882 tree_sign_nop_conversion (const_tree exp)
10883 {
10884 tree outer_type, inner_type;
10885
10886 if (!tree_nop_conversion (exp))
10887 return false;
10888
10889 outer_type = TREE_TYPE (exp);
10890 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10891
10892 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10893 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10894 }
10895
10896 /* Strip conversions from EXP according to tree_nop_conversion and
10897 return the resulting expression. */
10898
10899 tree
10900 tree_strip_nop_conversions (tree exp)
10901 {
10902 while (tree_nop_conversion (exp))
10903 exp = TREE_OPERAND (exp, 0);
10904 return exp;
10905 }
10906
10907 /* Strip conversions from EXP according to tree_sign_nop_conversion
10908 and return the resulting expression. */
10909
10910 tree
10911 tree_strip_sign_nop_conversions (tree exp)
10912 {
10913 while (tree_sign_nop_conversion (exp))
10914 exp = TREE_OPERAND (exp, 0);
10915 return exp;
10916 }
10917
10918 static GTY(()) tree gcc_eh_personality_decl;
10919
10920 /* Return the GCC personality function decl. */
10921
10922 tree
10923 lhd_gcc_personality (void)
10924 {
10925 if (!gcc_eh_personality_decl)
10926 gcc_eh_personality_decl = build_personality_function ("gcc");
10927 return gcc_eh_personality_decl;
10928 }
10929
10930 /* Try to find a base info of BINFO that would have its field decl at offset
10931 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10932 found, return, otherwise return NULL_TREE. */
10933
10934 tree
10935 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10936 {
10937 tree type = TREE_TYPE (binfo);
10938
10939 while (true)
10940 {
10941 HOST_WIDE_INT pos, size;
10942 tree fld;
10943 int i;
10944
10945 if (type == expected_type)
10946 return binfo;
10947 if (TREE_CODE (type) != RECORD_TYPE
10948 || offset < 0)
10949 return NULL_TREE;
10950
10951 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
10952 {
10953 if (TREE_CODE (fld) != FIELD_DECL)
10954 continue;
10955
10956 pos = int_bit_position (fld);
10957 size = tree_low_cst (DECL_SIZE (fld), 1);
10958 if (pos <= offset && (pos + size) > offset)
10959 break;
10960 }
10961 if (!fld || !DECL_ARTIFICIAL (fld))
10962 return NULL_TREE;
10963
10964 /* Offset 0 indicates the primary base, whose vtable contents are
10965 represented in the binfo for the derived class. */
10966 if (offset != 0)
10967 {
10968 tree base_binfo, found_binfo = NULL_TREE;
10969 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
10970 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
10971 {
10972 found_binfo = base_binfo;
10973 break;
10974 }
10975 if (!found_binfo)
10976 return NULL_TREE;
10977 binfo = found_binfo;
10978 }
10979
10980 type = TREE_TYPE (fld);
10981 offset -= pos;
10982 }
10983 }
10984
10985 /* Returns true if X is a typedef decl. */
10986
10987 bool
10988 is_typedef_decl (tree x)
10989 {
10990 return (x && TREE_CODE (x) == TYPE_DECL
10991 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
10992 }
10993
10994 /* Returns true iff TYPE is a type variant created for a typedef. */
10995
10996 bool
10997 typedef_variant_p (tree type)
10998 {
10999 return is_typedef_decl (TYPE_NAME (type));
11000 }
11001
11002 /* Warn about a use of an identifier which was marked deprecated. */
11003 void
11004 warn_deprecated_use (tree node, tree attr)
11005 {
11006 const char *msg;
11007
11008 if (node == 0 || !warn_deprecated_decl)
11009 return;
11010
11011 if (!attr)
11012 {
11013 if (DECL_P (node))
11014 attr = DECL_ATTRIBUTES (node);
11015 else if (TYPE_P (node))
11016 {
11017 tree decl = TYPE_STUB_DECL (node);
11018 if (decl)
11019 attr = lookup_attribute ("deprecated",
11020 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11021 }
11022 }
11023
11024 if (attr)
11025 attr = lookup_attribute ("deprecated", attr);
11026
11027 if (attr)
11028 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11029 else
11030 msg = NULL;
11031
11032 if (DECL_P (node))
11033 {
11034 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11035 if (msg)
11036 warning (OPT_Wdeprecated_declarations,
11037 "%qD is deprecated (declared at %s:%d): %s",
11038 node, xloc.file, xloc.line, msg);
11039 else
11040 warning (OPT_Wdeprecated_declarations,
11041 "%qD is deprecated (declared at %s:%d)",
11042 node, xloc.file, xloc.line);
11043 }
11044 else if (TYPE_P (node))
11045 {
11046 tree what = NULL_TREE;
11047 tree decl = TYPE_STUB_DECL (node);
11048
11049 if (TYPE_NAME (node))
11050 {
11051 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11052 what = TYPE_NAME (node);
11053 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11054 && DECL_NAME (TYPE_NAME (node)))
11055 what = DECL_NAME (TYPE_NAME (node));
11056 }
11057
11058 if (decl)
11059 {
11060 expanded_location xloc
11061 = expand_location (DECL_SOURCE_LOCATION (decl));
11062 if (what)
11063 {
11064 if (msg)
11065 warning (OPT_Wdeprecated_declarations,
11066 "%qE is deprecated (declared at %s:%d): %s",
11067 what, xloc.file, xloc.line, msg);
11068 else
11069 warning (OPT_Wdeprecated_declarations,
11070 "%qE is deprecated (declared at %s:%d)", what,
11071 xloc.file, xloc.line);
11072 }
11073 else
11074 {
11075 if (msg)
11076 warning (OPT_Wdeprecated_declarations,
11077 "type is deprecated (declared at %s:%d): %s",
11078 xloc.file, xloc.line, msg);
11079 else
11080 warning (OPT_Wdeprecated_declarations,
11081 "type is deprecated (declared at %s:%d)",
11082 xloc.file, xloc.line);
11083 }
11084 }
11085 else
11086 {
11087 if (what)
11088 {
11089 if (msg)
11090 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11091 what, msg);
11092 else
11093 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11094 }
11095 else
11096 {
11097 if (msg)
11098 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11099 msg);
11100 else
11101 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11102 }
11103 }
11104 }
11105 }
11106
11107 #include "gt-tree.h"