i386.c (ix86_init_mmx_sse_builtins): Use build_function_type_list instead of build_fu...
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "real.h"
41 #include "tm_p.h"
42 #include "function.h"
43 #include "obstack.h"
44 #include "toplev.h"
45 #include "ggc.h"
46 #include "hashtab.h"
47 #include "output.h"
48 #include "target.h"
49 #include "langhooks.h"
50
51 #define obstack_chunk_alloc xmalloc
52 #define obstack_chunk_free free
53 /* obstack.[ch] explicitly declined to prototype this. */
54 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
55
56 /* Objects allocated on this obstack last forever. */
57
58 struct obstack permanent_obstack;
59
60 #ifdef GATHER_STATISTICS
61 /* Statistics-gathering stuff. */
62 typedef enum
63 {
64 d_kind,
65 t_kind,
66 b_kind,
67 s_kind,
68 r_kind,
69 e_kind,
70 c_kind,
71 id_kind,
72 perm_list_kind,
73 temp_list_kind,
74 vec_kind,
75 x_kind,
76 lang_decl,
77 lang_type,
78 all_kinds
79 } tree_node_kind;
80
81 int tree_node_counts[(int) all_kinds];
82 int tree_node_sizes[(int) all_kinds];
83
84 static const char * const tree_node_kind_names[] = {
85 "decls",
86 "types",
87 "blocks",
88 "stmts",
89 "refs",
90 "exprs",
91 "constants",
92 "identifiers",
93 "perm_tree_lists",
94 "temp_tree_lists",
95 "vecs",
96 "random kinds",
97 "lang_decl kinds",
98 "lang_type kinds"
99 };
100 #endif /* GATHER_STATISTICS */
101
102 /* Unique id for next decl created. */
103 static int next_decl_uid;
104 /* Unique id for next type created. */
105 static int next_type_uid = 1;
106
107 /* Since we cannot rehash a type after it is in the table, we have to
108 keep the hash code. */
109
110 struct type_hash GTY(())
111 {
112 unsigned long hash;
113 tree type;
114 };
115
116 /* Initial size of the hash table (rounded to next prime). */
117 #define TYPE_HASH_INITIAL_SIZE 1000
118
119 /* Now here is the hash table. When recording a type, it is added to
120 the slot whose index is the hash code. Note that the hash table is
121 used for several kinds of types (function types, array types and
122 array index range types, for now). While all these live in the
123 same table, they are completely independent, and the hash code is
124 computed differently for each of these. */
125
126 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
127 htab_t type_hash_table;
128
129 static void set_type_quals PARAMS ((tree, int));
130 static void append_random_chars PARAMS ((char *));
131 static int type_hash_eq PARAMS ((const void *, const void *));
132 static unsigned int type_hash_hash PARAMS ((const void *));
133 static void print_type_hash_statistics PARAMS((void));
134 static void finish_vector_type PARAMS((tree));
135 static tree make_vector PARAMS ((enum machine_mode, tree, int));
136 static int type_hash_marked_p PARAMS ((const void *));
137
138 tree global_trees[TI_MAX];
139 tree integer_types[itk_none];
140 \f
141 /* Init the principal obstacks. */
142
143 void
144 init_obstacks ()
145 {
146 gcc_obstack_init (&permanent_obstack);
147
148 /* Initialize the hash table of types. */
149 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
150 type_hash_eq, 0);
151 }
152
153 \f
154 /* Allocate SIZE bytes in the permanent obstack
155 and return a pointer to them. */
156
157 char *
158 permalloc (size)
159 int size;
160 {
161 return (char *) obstack_alloc (&permanent_obstack, size);
162 }
163
164 /* Allocate NELEM items of SIZE bytes in the permanent obstack
165 and return a pointer to them. The storage is cleared before
166 returning the value. */
167
168 char *
169 perm_calloc (nelem, size)
170 int nelem;
171 long size;
172 {
173 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
174 memset (rval, 0, nelem * size);
175 return rval;
176 }
177
178 /* The name of the object as the assembler will see it (but before any
179 translations made by ASM_OUTPUT_LABELREF). Often this is the same
180 as DECL_NAME. It is an IDENTIFIER_NODE. */
181 tree
182 decl_assembler_name (decl)
183 tree decl;
184 {
185 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
186 (*lang_hooks.set_decl_assembler_name) (decl);
187 return DECL_CHECK (decl)->decl.assembler_name;
188 }
189
190 /* Compute the number of bytes occupied by 'node'. This routine only
191 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
192 size_t
193 tree_size (node)
194 tree node;
195 {
196 enum tree_code code = TREE_CODE (node);
197
198 switch (TREE_CODE_CLASS (code))
199 {
200 case 'd': /* A decl node */
201 return sizeof (struct tree_decl);
202
203 case 't': /* a type node */
204 return sizeof (struct tree_type);
205
206 case 'b': /* a lexical block node */
207 return sizeof (struct tree_block);
208
209 case 'r': /* a reference */
210 case 'e': /* an expression */
211 case 's': /* an expression with side effects */
212 case '<': /* a comparison expression */
213 case '1': /* a unary arithmetic expression */
214 case '2': /* a binary arithmetic expression */
215 return (sizeof (struct tree_exp)
216 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
217
218 case 'c': /* a constant */
219 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
220 words is machine-dependent due to varying length of HOST_WIDE_INT,
221 which might be wider than a pointer (e.g., long long). Similarly
222 for REAL_CST, since the number of words is machine-dependent due
223 to varying size and alignment of `double'. */
224 if (code == INTEGER_CST)
225 return sizeof (struct tree_int_cst);
226 else if (code == REAL_CST)
227 return sizeof (struct tree_real_cst);
228 else
229 return (sizeof (struct tree_common)
230 + TREE_CODE_LENGTH (code) * sizeof (char *));
231
232 case 'x': /* something random, like an identifier. */
233 {
234 size_t length;
235 length = (sizeof (struct tree_common)
236 + TREE_CODE_LENGTH (code) * sizeof (char *));
237 if (code == TREE_VEC)
238 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
239 return length;
240 }
241
242 default:
243 abort ();
244 }
245 }
246
247 /* Return a newly allocated node of code CODE.
248 For decl and type nodes, some other fields are initialized.
249 The rest of the node is initialized to zero.
250
251 Achoo! I got a code in the node. */
252
253 tree
254 make_node (code)
255 enum tree_code code;
256 {
257 tree t;
258 int type = TREE_CODE_CLASS (code);
259 size_t length;
260 #ifdef GATHER_STATISTICS
261 tree_node_kind kind;
262 #endif
263 struct tree_common ttmp;
264
265 /* We can't allocate a TREE_VEC without knowing how many elements
266 it will have. */
267 if (code == TREE_VEC)
268 abort ();
269
270 TREE_SET_CODE ((tree)&ttmp, code);
271 length = tree_size ((tree)&ttmp);
272
273 #ifdef GATHER_STATISTICS
274 switch (type)
275 {
276 case 'd': /* A decl node */
277 kind = d_kind;
278 break;
279
280 case 't': /* a type node */
281 kind = t_kind;
282 break;
283
284 case 'b': /* a lexical block */
285 kind = b_kind;
286 break;
287
288 case 's': /* an expression with side effects */
289 kind = s_kind;
290 break;
291
292 case 'r': /* a reference */
293 kind = r_kind;
294 break;
295
296 case 'e': /* an expression */
297 case '<': /* a comparison expression */
298 case '1': /* a unary arithmetic expression */
299 case '2': /* a binary arithmetic expression */
300 kind = e_kind;
301 break;
302
303 case 'c': /* a constant */
304 kind = c_kind;
305 break;
306
307 case 'x': /* something random, like an identifier. */
308 if (code == IDENTIFIER_NODE)
309 kind = id_kind;
310 else if (code == TREE_VEC)
311 kind = vec_kind;
312 else
313 kind = x_kind;
314 break;
315
316 default:
317 abort ();
318 }
319
320 tree_node_counts[(int) kind]++;
321 tree_node_sizes[(int) kind] += length;
322 #endif
323
324 t = ggc_alloc_tree (length);
325
326 memset ((PTR) t, 0, length);
327
328 TREE_SET_CODE (t, code);
329
330 switch (type)
331 {
332 case 's':
333 TREE_SIDE_EFFECTS (t) = 1;
334 TREE_TYPE (t) = void_type_node;
335 break;
336
337 case 'd':
338 if (code != FUNCTION_DECL)
339 DECL_ALIGN (t) = 1;
340 DECL_USER_ALIGN (t) = 0;
341 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
342 DECL_SOURCE_LINE (t) = lineno;
343 DECL_SOURCE_FILE (t) =
344 (input_filename) ? input_filename : "<built-in>";
345 DECL_UID (t) = next_decl_uid++;
346
347 /* We have not yet computed the alias set for this declaration. */
348 DECL_POINTER_ALIAS_SET (t) = -1;
349 break;
350
351 case 't':
352 TYPE_UID (t) = next_type_uid++;
353 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
354 TYPE_USER_ALIGN (t) = 0;
355 TYPE_MAIN_VARIANT (t) = t;
356
357 /* Default to no attributes for type, but let target change that. */
358 TYPE_ATTRIBUTES (t) = NULL_TREE;
359 (*targetm.set_default_type_attributes) (t);
360
361 /* We have not yet computed the alias set for this type. */
362 TYPE_ALIAS_SET (t) = -1;
363 break;
364
365 case 'c':
366 TREE_CONSTANT (t) = 1;
367 break;
368
369 case 'e':
370 switch (code)
371 {
372 case INIT_EXPR:
373 case MODIFY_EXPR:
374 case VA_ARG_EXPR:
375 case RTL_EXPR:
376 case PREDECREMENT_EXPR:
377 case PREINCREMENT_EXPR:
378 case POSTDECREMENT_EXPR:
379 case POSTINCREMENT_EXPR:
380 /* All of these have side-effects, no matter what their
381 operands are. */
382 TREE_SIDE_EFFECTS (t) = 1;
383 break;
384
385 default:
386 break;
387 }
388 break;
389 }
390
391 return t;
392 }
393 \f
394 /* Return a new node with the same contents as NODE except that its
395 TREE_CHAIN is zero and it has a fresh uid. */
396
397 tree
398 copy_node (node)
399 tree node;
400 {
401 tree t;
402 enum tree_code code = TREE_CODE (node);
403 size_t length;
404
405 length = tree_size (node);
406 t = ggc_alloc_tree (length);
407 memcpy (t, node, length);
408
409 TREE_CHAIN (t) = 0;
410 TREE_ASM_WRITTEN (t) = 0;
411
412 if (TREE_CODE_CLASS (code) == 'd')
413 DECL_UID (t) = next_decl_uid++;
414 else if (TREE_CODE_CLASS (code) == 't')
415 {
416 TYPE_UID (t) = next_type_uid++;
417 /* The following is so that the debug code for
418 the copy is different from the original type.
419 The two statements usually duplicate each other
420 (because they clear fields of the same union),
421 but the optimizer should catch that. */
422 TYPE_SYMTAB_POINTER (t) = 0;
423 TYPE_SYMTAB_ADDRESS (t) = 0;
424 }
425
426 return t;
427 }
428
429 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
430 For example, this can copy a list made of TREE_LIST nodes. */
431
432 tree
433 copy_list (list)
434 tree list;
435 {
436 tree head;
437 tree prev, next;
438
439 if (list == 0)
440 return 0;
441
442 head = prev = copy_node (list);
443 next = TREE_CHAIN (list);
444 while (next)
445 {
446 TREE_CHAIN (prev) = copy_node (next);
447 prev = TREE_CHAIN (prev);
448 next = TREE_CHAIN (next);
449 }
450 return head;
451 }
452
453 \f
454 /* Return a newly constructed INTEGER_CST node whose constant value
455 is specified by the two ints LOW and HI.
456 The TREE_TYPE is set to `int'.
457
458 This function should be used via the `build_int_2' macro. */
459
460 tree
461 build_int_2_wide (low, hi)
462 unsigned HOST_WIDE_INT low;
463 HOST_WIDE_INT hi;
464 {
465 tree t = make_node (INTEGER_CST);
466
467 TREE_INT_CST_LOW (t) = low;
468 TREE_INT_CST_HIGH (t) = hi;
469 TREE_TYPE (t) = integer_type_node;
470 return t;
471 }
472
473 /* Return a new VECTOR_CST node whose type is TYPE and whose values
474 are in a list pointed by VALS. */
475
476 tree
477 build_vector (type, vals)
478 tree type, vals;
479 {
480 tree v = make_node (VECTOR_CST);
481 int over1 = 0, over2 = 0;
482 tree link;
483
484 TREE_VECTOR_CST_ELTS (v) = vals;
485 TREE_TYPE (v) = type;
486
487 /* Iterate through elements and check for overflow. */
488 for (link = vals; link; link = TREE_CHAIN (link))
489 {
490 tree value = TREE_VALUE (link);
491
492 over1 |= TREE_OVERFLOW (value);
493 over2 |= TREE_CONSTANT_OVERFLOW (value);
494 }
495
496 TREE_OVERFLOW (v) = over1;
497 TREE_CONSTANT_OVERFLOW (v) = over2;
498
499 return v;
500 }
501
502 /* Return a new REAL_CST node whose type is TYPE and value is D. */
503
504 tree
505 build_real (type, d)
506 tree type;
507 REAL_VALUE_TYPE d;
508 {
509 tree v;
510 REAL_VALUE_TYPE *dp;
511 int overflow = 0;
512
513 /* Check for valid float value for this type on this target machine;
514 if not, can print error message and store a valid value in D. */
515 #ifdef CHECK_FLOAT_VALUE
516 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
517 #endif
518
519 v = make_node (REAL_CST);
520 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
521 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
522
523 TREE_TYPE (v) = type;
524 TREE_REAL_CST_PTR (v) = dp;
525 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
526 return v;
527 }
528
529 /* Return a new REAL_CST node whose type is TYPE
530 and whose value is the integer value of the INTEGER_CST node I. */
531
532 REAL_VALUE_TYPE
533 real_value_from_int_cst (type, i)
534 tree type ATTRIBUTE_UNUSED, i;
535 {
536 REAL_VALUE_TYPE d;
537
538 /* Clear all bits of the real value type so that we can later do
539 bitwise comparisons to see if two values are the same. */
540 memset ((char *) &d, 0, sizeof d);
541
542 if (! TREE_UNSIGNED (TREE_TYPE (i)))
543 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
544 TYPE_MODE (type));
545 else
546 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
547 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
548 return d;
549 }
550
551 /* Given a tree representing an integer constant I, return a tree
552 representing the same value as a floating-point constant of type TYPE. */
553
554 tree
555 build_real_from_int_cst (type, i)
556 tree type;
557 tree i;
558 {
559 tree v;
560 int overflow = TREE_OVERFLOW (i);
561
562 v = build_real (type, real_value_from_int_cst (type, i));
563
564 TREE_OVERFLOW (v) |= overflow;
565 TREE_CONSTANT_OVERFLOW (v) |= overflow;
566 return v;
567 }
568
569 /* Return a newly constructed STRING_CST node whose value is
570 the LEN characters at STR.
571 The TREE_TYPE is not initialized. */
572
573 tree
574 build_string (len, str)
575 int len;
576 const char *str;
577 {
578 tree s = make_node (STRING_CST);
579
580 TREE_STRING_LENGTH (s) = len;
581 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
582
583 return s;
584 }
585
586 /* Return a newly constructed COMPLEX_CST node whose value is
587 specified by the real and imaginary parts REAL and IMAG.
588 Both REAL and IMAG should be constant nodes. TYPE, if specified,
589 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
590
591 tree
592 build_complex (type, real, imag)
593 tree type;
594 tree real, imag;
595 {
596 tree t = make_node (COMPLEX_CST);
597
598 TREE_REALPART (t) = real;
599 TREE_IMAGPART (t) = imag;
600 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
601 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
602 TREE_CONSTANT_OVERFLOW (t)
603 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
604 return t;
605 }
606
607 /* Build a newly constructed TREE_VEC node of length LEN. */
608
609 tree
610 make_tree_vec (len)
611 int len;
612 {
613 tree t;
614 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
615
616 #ifdef GATHER_STATISTICS
617 tree_node_counts[(int) vec_kind]++;
618 tree_node_sizes[(int) vec_kind] += length;
619 #endif
620
621 t = ggc_alloc_tree (length);
622
623 memset ((PTR) t, 0, length);
624 TREE_SET_CODE (t, TREE_VEC);
625 TREE_VEC_LENGTH (t) = len;
626
627 return t;
628 }
629 \f
630 /* Return 1 if EXPR is the integer constant zero or a complex constant
631 of zero. */
632
633 int
634 integer_zerop (expr)
635 tree expr;
636 {
637 STRIP_NOPS (expr);
638
639 return ((TREE_CODE (expr) == INTEGER_CST
640 && ! TREE_CONSTANT_OVERFLOW (expr)
641 && TREE_INT_CST_LOW (expr) == 0
642 && TREE_INT_CST_HIGH (expr) == 0)
643 || (TREE_CODE (expr) == COMPLEX_CST
644 && integer_zerop (TREE_REALPART (expr))
645 && integer_zerop (TREE_IMAGPART (expr))));
646 }
647
648 /* Return 1 if EXPR is the integer constant one or the corresponding
649 complex constant. */
650
651 int
652 integer_onep (expr)
653 tree expr;
654 {
655 STRIP_NOPS (expr);
656
657 return ((TREE_CODE (expr) == INTEGER_CST
658 && ! TREE_CONSTANT_OVERFLOW (expr)
659 && TREE_INT_CST_LOW (expr) == 1
660 && TREE_INT_CST_HIGH (expr) == 0)
661 || (TREE_CODE (expr) == COMPLEX_CST
662 && integer_onep (TREE_REALPART (expr))
663 && integer_zerop (TREE_IMAGPART (expr))));
664 }
665
666 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
667 it contains. Likewise for the corresponding complex constant. */
668
669 int
670 integer_all_onesp (expr)
671 tree expr;
672 {
673 int prec;
674 int uns;
675
676 STRIP_NOPS (expr);
677
678 if (TREE_CODE (expr) == COMPLEX_CST
679 && integer_all_onesp (TREE_REALPART (expr))
680 && integer_zerop (TREE_IMAGPART (expr)))
681 return 1;
682
683 else if (TREE_CODE (expr) != INTEGER_CST
684 || TREE_CONSTANT_OVERFLOW (expr))
685 return 0;
686
687 uns = TREE_UNSIGNED (TREE_TYPE (expr));
688 if (!uns)
689 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
690 && TREE_INT_CST_HIGH (expr) == -1);
691
692 /* Note that using TYPE_PRECISION here is wrong. We care about the
693 actual bits, not the (arbitrary) range of the type. */
694 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
695 if (prec >= HOST_BITS_PER_WIDE_INT)
696 {
697 HOST_WIDE_INT high_value;
698 int shift_amount;
699
700 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
701
702 if (shift_amount > HOST_BITS_PER_WIDE_INT)
703 /* Can not handle precisions greater than twice the host int size. */
704 abort ();
705 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
706 /* Shifting by the host word size is undefined according to the ANSI
707 standard, so we must handle this as a special case. */
708 high_value = -1;
709 else
710 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
711
712 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
713 && TREE_INT_CST_HIGH (expr) == high_value);
714 }
715 else
716 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
717 }
718
719 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
720 one bit on). */
721
722 int
723 integer_pow2p (expr)
724 tree expr;
725 {
726 int prec;
727 HOST_WIDE_INT high, low;
728
729 STRIP_NOPS (expr);
730
731 if (TREE_CODE (expr) == COMPLEX_CST
732 && integer_pow2p (TREE_REALPART (expr))
733 && integer_zerop (TREE_IMAGPART (expr)))
734 return 1;
735
736 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
737 return 0;
738
739 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
740 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
741 high = TREE_INT_CST_HIGH (expr);
742 low = TREE_INT_CST_LOW (expr);
743
744 /* First clear all bits that are beyond the type's precision in case
745 we've been sign extended. */
746
747 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
748 ;
749 else if (prec > HOST_BITS_PER_WIDE_INT)
750 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
751 else
752 {
753 high = 0;
754 if (prec < HOST_BITS_PER_WIDE_INT)
755 low &= ~((HOST_WIDE_INT) (-1) << prec);
756 }
757
758 if (high == 0 && low == 0)
759 return 0;
760
761 return ((high == 0 && (low & (low - 1)) == 0)
762 || (low == 0 && (high & (high - 1)) == 0));
763 }
764
765 /* Return the power of two represented by a tree node known to be a
766 power of two. */
767
768 int
769 tree_log2 (expr)
770 tree expr;
771 {
772 int prec;
773 HOST_WIDE_INT high, low;
774
775 STRIP_NOPS (expr);
776
777 if (TREE_CODE (expr) == COMPLEX_CST)
778 return tree_log2 (TREE_REALPART (expr));
779
780 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
781 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
782
783 high = TREE_INT_CST_HIGH (expr);
784 low = TREE_INT_CST_LOW (expr);
785
786 /* First clear all bits that are beyond the type's precision in case
787 we've been sign extended. */
788
789 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
790 ;
791 else if (prec > HOST_BITS_PER_WIDE_INT)
792 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
793 else
794 {
795 high = 0;
796 if (prec < HOST_BITS_PER_WIDE_INT)
797 low &= ~((HOST_WIDE_INT) (-1) << prec);
798 }
799
800 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
801 : exact_log2 (low));
802 }
803
804 /* Similar, but return the largest integer Y such that 2 ** Y is less
805 than or equal to EXPR. */
806
807 int
808 tree_floor_log2 (expr)
809 tree expr;
810 {
811 int prec;
812 HOST_WIDE_INT high, low;
813
814 STRIP_NOPS (expr);
815
816 if (TREE_CODE (expr) == COMPLEX_CST)
817 return tree_log2 (TREE_REALPART (expr));
818
819 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
820 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
821
822 high = TREE_INT_CST_HIGH (expr);
823 low = TREE_INT_CST_LOW (expr);
824
825 /* First clear all bits that are beyond the type's precision in case
826 we've been sign extended. Ignore if type's precision hasn't been set
827 since what we are doing is setting it. */
828
829 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
830 ;
831 else if (prec > HOST_BITS_PER_WIDE_INT)
832 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
833 else
834 {
835 high = 0;
836 if (prec < HOST_BITS_PER_WIDE_INT)
837 low &= ~((HOST_WIDE_INT) (-1) << prec);
838 }
839
840 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
841 : floor_log2 (low));
842 }
843
844 /* Return 1 if EXPR is the real constant zero. */
845
846 int
847 real_zerop (expr)
848 tree expr;
849 {
850 STRIP_NOPS (expr);
851
852 return ((TREE_CODE (expr) == REAL_CST
853 && ! TREE_CONSTANT_OVERFLOW (expr)
854 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
855 || (TREE_CODE (expr) == COMPLEX_CST
856 && real_zerop (TREE_REALPART (expr))
857 && real_zerop (TREE_IMAGPART (expr))));
858 }
859
860 /* Return 1 if EXPR is the real constant one in real or complex form. */
861
862 int
863 real_onep (expr)
864 tree expr;
865 {
866 STRIP_NOPS (expr);
867
868 return ((TREE_CODE (expr) == REAL_CST
869 && ! TREE_CONSTANT_OVERFLOW (expr)
870 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
871 || (TREE_CODE (expr) == COMPLEX_CST
872 && real_onep (TREE_REALPART (expr))
873 && real_zerop (TREE_IMAGPART (expr))));
874 }
875
876 /* Return 1 if EXPR is the real constant two. */
877
878 int
879 real_twop (expr)
880 tree expr;
881 {
882 STRIP_NOPS (expr);
883
884 return ((TREE_CODE (expr) == REAL_CST
885 && ! TREE_CONSTANT_OVERFLOW (expr)
886 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
887 || (TREE_CODE (expr) == COMPLEX_CST
888 && real_twop (TREE_REALPART (expr))
889 && real_zerop (TREE_IMAGPART (expr))));
890 }
891
892 /* Return 1 if EXPR is the real constant minus one. */
893
894 int
895 real_minus_onep (expr)
896 tree expr;
897 {
898 STRIP_NOPS (expr);
899
900 return ((TREE_CODE (expr) == REAL_CST
901 && ! TREE_CONSTANT_OVERFLOW (expr)
902 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
903 || (TREE_CODE (expr) == COMPLEX_CST
904 && real_minus_onep (TREE_REALPART (expr))
905 && real_zerop (TREE_IMAGPART (expr))));
906 }
907
908 /* Nonzero if EXP is a constant or a cast of a constant. */
909
910 int
911 really_constant_p (exp)
912 tree exp;
913 {
914 /* This is not quite the same as STRIP_NOPS. It does more. */
915 while (TREE_CODE (exp) == NOP_EXPR
916 || TREE_CODE (exp) == CONVERT_EXPR
917 || TREE_CODE (exp) == NON_LVALUE_EXPR)
918 exp = TREE_OPERAND (exp, 0);
919 return TREE_CONSTANT (exp);
920 }
921 \f
922 /* Return first list element whose TREE_VALUE is ELEM.
923 Return 0 if ELEM is not in LIST. */
924
925 tree
926 value_member (elem, list)
927 tree elem, list;
928 {
929 while (list)
930 {
931 if (elem == TREE_VALUE (list))
932 return list;
933 list = TREE_CHAIN (list);
934 }
935 return NULL_TREE;
936 }
937
938 /* Return first list element whose TREE_PURPOSE is ELEM.
939 Return 0 if ELEM is not in LIST. */
940
941 tree
942 purpose_member (elem, list)
943 tree elem, list;
944 {
945 while (list)
946 {
947 if (elem == TREE_PURPOSE (list))
948 return list;
949 list = TREE_CHAIN (list);
950 }
951 return NULL_TREE;
952 }
953
954 /* Return first list element whose BINFO_TYPE is ELEM.
955 Return 0 if ELEM is not in LIST. */
956
957 tree
958 binfo_member (elem, list)
959 tree elem, list;
960 {
961 while (list)
962 {
963 if (elem == BINFO_TYPE (list))
964 return list;
965 list = TREE_CHAIN (list);
966 }
967 return NULL_TREE;
968 }
969
970 /* Return nonzero if ELEM is part of the chain CHAIN. */
971
972 int
973 chain_member (elem, chain)
974 tree elem, chain;
975 {
976 while (chain)
977 {
978 if (elem == chain)
979 return 1;
980 chain = TREE_CHAIN (chain);
981 }
982
983 return 0;
984 }
985
986 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
987 chain CHAIN. This and the next function are currently unused, but
988 are retained for completeness. */
989
990 int
991 chain_member_value (elem, chain)
992 tree elem, chain;
993 {
994 while (chain)
995 {
996 if (elem == TREE_VALUE (chain))
997 return 1;
998 chain = TREE_CHAIN (chain);
999 }
1000
1001 return 0;
1002 }
1003
1004 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1005 for any piece of chain CHAIN. */
1006
1007 int
1008 chain_member_purpose (elem, chain)
1009 tree elem, chain;
1010 {
1011 while (chain)
1012 {
1013 if (elem == TREE_PURPOSE (chain))
1014 return 1;
1015 chain = TREE_CHAIN (chain);
1016 }
1017
1018 return 0;
1019 }
1020
1021 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1022 We expect a null pointer to mark the end of the chain.
1023 This is the Lisp primitive `length'. */
1024
1025 int
1026 list_length (t)
1027 tree t;
1028 {
1029 tree tail;
1030 int len = 0;
1031
1032 for (tail = t; tail; tail = TREE_CHAIN (tail))
1033 len++;
1034
1035 return len;
1036 }
1037
1038 /* Returns the number of FIELD_DECLs in TYPE. */
1039
1040 int
1041 fields_length (type)
1042 tree type;
1043 {
1044 tree t = TYPE_FIELDS (type);
1045 int count = 0;
1046
1047 for (; t; t = TREE_CHAIN (t))
1048 if (TREE_CODE (t) == FIELD_DECL)
1049 ++count;
1050
1051 return count;
1052 }
1053
1054 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1055 by modifying the last node in chain 1 to point to chain 2.
1056 This is the Lisp primitive `nconc'. */
1057
1058 tree
1059 chainon (op1, op2)
1060 tree op1, op2;
1061 {
1062
1063 if (op1)
1064 {
1065 tree t1;
1066 #ifdef ENABLE_TREE_CHECKING
1067 tree t2;
1068 #endif
1069
1070 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1071 ;
1072 TREE_CHAIN (t1) = op2;
1073 #ifdef ENABLE_TREE_CHECKING
1074 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1075 if (t2 == t1)
1076 abort (); /* Circularity created. */
1077 #endif
1078 return op1;
1079 }
1080 else
1081 return op2;
1082 }
1083
1084 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1085
1086 tree
1087 tree_last (chain)
1088 tree chain;
1089 {
1090 tree next;
1091 if (chain)
1092 while ((next = TREE_CHAIN (chain)))
1093 chain = next;
1094 return chain;
1095 }
1096
1097 /* Reverse the order of elements in the chain T,
1098 and return the new head of the chain (old last element). */
1099
1100 tree
1101 nreverse (t)
1102 tree t;
1103 {
1104 tree prev = 0, decl, next;
1105 for (decl = t; decl; decl = next)
1106 {
1107 next = TREE_CHAIN (decl);
1108 TREE_CHAIN (decl) = prev;
1109 prev = decl;
1110 }
1111 return prev;
1112 }
1113
1114 /* Given a chain CHAIN of tree nodes,
1115 construct and return a list of those nodes. */
1116
1117 tree
1118 listify (chain)
1119 tree chain;
1120 {
1121 tree result = NULL_TREE;
1122 tree in_tail = chain;
1123 tree out_tail = NULL_TREE;
1124
1125 while (in_tail)
1126 {
1127 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1128 if (out_tail)
1129 TREE_CHAIN (out_tail) = next;
1130 else
1131 result = next;
1132 out_tail = next;
1133 in_tail = TREE_CHAIN (in_tail);
1134 }
1135
1136 return result;
1137 }
1138 \f
1139 /* Return a newly created TREE_LIST node whose
1140 purpose and value fields are PARM and VALUE. */
1141
1142 tree
1143 build_tree_list (parm, value)
1144 tree parm, value;
1145 {
1146 tree t = make_node (TREE_LIST);
1147 TREE_PURPOSE (t) = parm;
1148 TREE_VALUE (t) = value;
1149 return t;
1150 }
1151
1152 /* Return a newly created TREE_LIST node whose
1153 purpose and value fields are PARM and VALUE
1154 and whose TREE_CHAIN is CHAIN. */
1155
1156 tree
1157 tree_cons (purpose, value, chain)
1158 tree purpose, value, chain;
1159 {
1160 tree node;
1161
1162 node = ggc_alloc_tree (sizeof (struct tree_list));
1163
1164 memset (node, 0, sizeof (struct tree_common));
1165
1166 #ifdef GATHER_STATISTICS
1167 tree_node_counts[(int) x_kind]++;
1168 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1169 #endif
1170
1171 TREE_SET_CODE (node, TREE_LIST);
1172 TREE_CHAIN (node) = chain;
1173 TREE_PURPOSE (node) = purpose;
1174 TREE_VALUE (node) = value;
1175 return node;
1176 }
1177
1178 \f
1179 /* Return the size nominally occupied by an object of type TYPE
1180 when it resides in memory. The value is measured in units of bytes,
1181 and its data type is that normally used for type sizes
1182 (which is the first type created by make_signed_type or
1183 make_unsigned_type). */
1184
1185 tree
1186 size_in_bytes (type)
1187 tree type;
1188 {
1189 tree t;
1190
1191 if (type == error_mark_node)
1192 return integer_zero_node;
1193
1194 type = TYPE_MAIN_VARIANT (type);
1195 t = TYPE_SIZE_UNIT (type);
1196
1197 if (t == 0)
1198 {
1199 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1200 return size_zero_node;
1201 }
1202
1203 if (TREE_CODE (t) == INTEGER_CST)
1204 force_fit_type (t, 0);
1205
1206 return t;
1207 }
1208
1209 /* Return the size of TYPE (in bytes) as a wide integer
1210 or return -1 if the size can vary or is larger than an integer. */
1211
1212 HOST_WIDE_INT
1213 int_size_in_bytes (type)
1214 tree type;
1215 {
1216 tree t;
1217
1218 if (type == error_mark_node)
1219 return 0;
1220
1221 type = TYPE_MAIN_VARIANT (type);
1222 t = TYPE_SIZE_UNIT (type);
1223 if (t == 0
1224 || TREE_CODE (t) != INTEGER_CST
1225 || TREE_OVERFLOW (t)
1226 || TREE_INT_CST_HIGH (t) != 0
1227 /* If the result would appear negative, it's too big to represent. */
1228 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1229 return -1;
1230
1231 return TREE_INT_CST_LOW (t);
1232 }
1233 \f
1234 /* Return the bit position of FIELD, in bits from the start of the record.
1235 This is a tree of type bitsizetype. */
1236
1237 tree
1238 bit_position (field)
1239 tree field;
1240 {
1241
1242 return bit_from_pos (DECL_FIELD_OFFSET (field),
1243 DECL_FIELD_BIT_OFFSET (field));
1244 }
1245
1246 /* Likewise, but return as an integer. Abort if it cannot be represented
1247 in that way (since it could be a signed value, we don't have the option
1248 of returning -1 like int_size_in_byte can. */
1249
1250 HOST_WIDE_INT
1251 int_bit_position (field)
1252 tree field;
1253 {
1254 return tree_low_cst (bit_position (field), 0);
1255 }
1256 \f
1257 /* Return the byte position of FIELD, in bytes from the start of the record.
1258 This is a tree of type sizetype. */
1259
1260 tree
1261 byte_position (field)
1262 tree field;
1263 {
1264 return byte_from_pos (DECL_FIELD_OFFSET (field),
1265 DECL_FIELD_BIT_OFFSET (field));
1266 }
1267
1268 /* Likewise, but return as an integer. Abort if it cannot be represented
1269 in that way (since it could be a signed value, we don't have the option
1270 of returning -1 like int_size_in_byte can. */
1271
1272 HOST_WIDE_INT
1273 int_byte_position (field)
1274 tree field;
1275 {
1276 return tree_low_cst (byte_position (field), 0);
1277 }
1278 \f
1279 /* Return the strictest alignment, in bits, that T is known to have. */
1280
1281 unsigned int
1282 expr_align (t)
1283 tree t;
1284 {
1285 unsigned int align0, align1;
1286
1287 switch (TREE_CODE (t))
1288 {
1289 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1290 /* If we have conversions, we know that the alignment of the
1291 object must meet each of the alignments of the types. */
1292 align0 = expr_align (TREE_OPERAND (t, 0));
1293 align1 = TYPE_ALIGN (TREE_TYPE (t));
1294 return MAX (align0, align1);
1295
1296 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1297 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1298 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1299 /* These don't change the alignment of an object. */
1300 return expr_align (TREE_OPERAND (t, 0));
1301
1302 case COND_EXPR:
1303 /* The best we can do is say that the alignment is the least aligned
1304 of the two arms. */
1305 align0 = expr_align (TREE_OPERAND (t, 1));
1306 align1 = expr_align (TREE_OPERAND (t, 2));
1307 return MIN (align0, align1);
1308
1309 case LABEL_DECL: case CONST_DECL:
1310 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1311 if (DECL_ALIGN (t) != 0)
1312 return DECL_ALIGN (t);
1313 break;
1314
1315 case FUNCTION_DECL:
1316 return FUNCTION_BOUNDARY;
1317
1318 default:
1319 break;
1320 }
1321
1322 /* Otherwise take the alignment from that of the type. */
1323 return TYPE_ALIGN (TREE_TYPE (t));
1324 }
1325 \f
1326 /* Return, as a tree node, the number of elements for TYPE (which is an
1327 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1328
1329 tree
1330 array_type_nelts (type)
1331 tree type;
1332 {
1333 tree index_type, min, max;
1334
1335 /* If they did it with unspecified bounds, then we should have already
1336 given an error about it before we got here. */
1337 if (! TYPE_DOMAIN (type))
1338 return error_mark_node;
1339
1340 index_type = TYPE_DOMAIN (type);
1341 min = TYPE_MIN_VALUE (index_type);
1342 max = TYPE_MAX_VALUE (index_type);
1343
1344 return (integer_zerop (min)
1345 ? max
1346 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1347 }
1348 \f
1349 /* Return nonzero if arg is static -- a reference to an object in
1350 static storage. This is not the same as the C meaning of `static'. */
1351
1352 int
1353 staticp (arg)
1354 tree arg;
1355 {
1356 switch (TREE_CODE (arg))
1357 {
1358 case FUNCTION_DECL:
1359 /* Nested functions aren't static, since taking their address
1360 involves a trampoline. */
1361 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1362 && ! DECL_NON_ADDR_CONST_P (arg));
1363
1364 case VAR_DECL:
1365 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1366 && ! DECL_THREAD_LOCAL (arg)
1367 && ! DECL_NON_ADDR_CONST_P (arg));
1368
1369 case CONSTRUCTOR:
1370 return TREE_STATIC (arg);
1371
1372 case LABEL_DECL:
1373 case STRING_CST:
1374 return 1;
1375
1376 /* If we are referencing a bitfield, we can't evaluate an
1377 ADDR_EXPR at compile time and so it isn't a constant. */
1378 case COMPONENT_REF:
1379 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1380 && staticp (TREE_OPERAND (arg, 0)));
1381
1382 case BIT_FIELD_REF:
1383 return 0;
1384
1385 #if 0
1386 /* This case is technically correct, but results in setting
1387 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1388 compile time. */
1389 case INDIRECT_REF:
1390 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1391 #endif
1392
1393 case ARRAY_REF:
1394 case ARRAY_RANGE_REF:
1395 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1396 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1397 return staticp (TREE_OPERAND (arg, 0));
1398
1399 default:
1400 if ((unsigned int) TREE_CODE (arg)
1401 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1402 return (*lang_hooks.staticp) (arg);
1403 else
1404 return 0;
1405 }
1406 }
1407 \f
1408 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1409 Do this to any expression which may be used in more than one place,
1410 but must be evaluated only once.
1411
1412 Normally, expand_expr would reevaluate the expression each time.
1413 Calling save_expr produces something that is evaluated and recorded
1414 the first time expand_expr is called on it. Subsequent calls to
1415 expand_expr just reuse the recorded value.
1416
1417 The call to expand_expr that generates code that actually computes
1418 the value is the first call *at compile time*. Subsequent calls
1419 *at compile time* generate code to use the saved value.
1420 This produces correct result provided that *at run time* control
1421 always flows through the insns made by the first expand_expr
1422 before reaching the other places where the save_expr was evaluated.
1423 You, the caller of save_expr, must make sure this is so.
1424
1425 Constants, and certain read-only nodes, are returned with no
1426 SAVE_EXPR because that is safe. Expressions containing placeholders
1427 are not touched; see tree.def for an explanation of what these
1428 are used for. */
1429
1430 tree
1431 save_expr (expr)
1432 tree expr;
1433 {
1434 tree t = fold (expr);
1435 tree inner;
1436
1437 /* We don't care about whether this can be used as an lvalue in this
1438 context. */
1439 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1440 t = TREE_OPERAND (t, 0);
1441
1442 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1443 a constant, it will be more efficient to not make another SAVE_EXPR since
1444 it will allow better simplification and GCSE will be able to merge the
1445 computations if they actualy occur. */
1446 for (inner = t;
1447 (TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
1448 || (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
1449 && TREE_CONSTANT (TREE_OPERAND (inner, 1))));
1450 inner = TREE_OPERAND (inner, 0))
1451 ;
1452
1453 /* If the tree evaluates to a constant, then we don't want to hide that
1454 fact (i.e. this allows further folding, and direct checks for constants).
1455 However, a read-only object that has side effects cannot be bypassed.
1456 Since it is no problem to reevaluate literals, we just return the
1457 literal node. */
1458 if (TREE_CONSTANT (inner)
1459 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1460 || TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
1461 return t;
1462
1463 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1464 it means that the size or offset of some field of an object depends on
1465 the value within another field.
1466
1467 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1468 and some variable since it would then need to be both evaluated once and
1469 evaluated more than once. Front-ends must assure this case cannot
1470 happen by surrounding any such subexpressions in their own SAVE_EXPR
1471 and forcing evaluation at the proper time. */
1472 if (contains_placeholder_p (t))
1473 return t;
1474
1475 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1476
1477 /* This expression might be placed ahead of a jump to ensure that the
1478 value was computed on both sides of the jump. So make sure it isn't
1479 eliminated as dead. */
1480 TREE_SIDE_EFFECTS (t) = 1;
1481 TREE_READONLY (t) = 1;
1482 return t;
1483 }
1484
1485 /* Arrange for an expression to be expanded multiple independent
1486 times. This is useful for cleanup actions, as the backend can
1487 expand them multiple times in different places. */
1488
1489 tree
1490 unsave_expr (expr)
1491 tree expr;
1492 {
1493 tree t;
1494
1495 /* If this is already protected, no sense in protecting it again. */
1496 if (TREE_CODE (expr) == UNSAVE_EXPR)
1497 return expr;
1498
1499 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1500 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1501 return t;
1502 }
1503
1504 /* Returns the index of the first non-tree operand for CODE, or the number
1505 of operands if all are trees. */
1506
1507 int
1508 first_rtl_op (code)
1509 enum tree_code code;
1510 {
1511 switch (code)
1512 {
1513 case SAVE_EXPR:
1514 return 2;
1515 case GOTO_SUBROUTINE_EXPR:
1516 case RTL_EXPR:
1517 return 0;
1518 case WITH_CLEANUP_EXPR:
1519 return 2;
1520 case METHOD_CALL_EXPR:
1521 return 3;
1522 default:
1523 return TREE_CODE_LENGTH (code);
1524 }
1525 }
1526
1527 /* Return which tree structure is used by T. */
1528
1529 enum tree_node_structure_enum
1530 tree_node_structure (t)
1531 tree t;
1532 {
1533 enum tree_code code = TREE_CODE (t);
1534
1535 switch (TREE_CODE_CLASS (code))
1536 {
1537 case 'd': return TS_DECL;
1538 case 't': return TS_TYPE;
1539 case 'b': return TS_BLOCK;
1540 case 'r': case '<': case '1': case '2': case 'e': case 's':
1541 return TS_EXP;
1542 default: /* 'c' and 'x' */
1543 break;
1544 }
1545 switch (code)
1546 {
1547 /* 'c' cases. */
1548 case INTEGER_CST: return TS_INT_CST;
1549 case REAL_CST: return TS_REAL_CST;
1550 case COMPLEX_CST: return TS_COMPLEX;
1551 case VECTOR_CST: return TS_VECTOR;
1552 case STRING_CST: return TS_STRING;
1553 /* 'x' cases. */
1554 case ERROR_MARK: return TS_COMMON;
1555 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1556 case TREE_LIST: return TS_LIST;
1557 case TREE_VEC: return TS_VEC;
1558 case PLACEHOLDER_EXPR: return TS_COMMON;
1559
1560 default:
1561 abort ();
1562 }
1563 }
1564
1565 /* Perform any modifications to EXPR required when it is unsaved. Does
1566 not recurse into EXPR's subtrees. */
1567
1568 void
1569 unsave_expr_1 (expr)
1570 tree expr;
1571 {
1572 switch (TREE_CODE (expr))
1573 {
1574 case SAVE_EXPR:
1575 if (! SAVE_EXPR_PERSISTENT_P (expr))
1576 SAVE_EXPR_RTL (expr) = 0;
1577 break;
1578
1579 case TARGET_EXPR:
1580 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1581 It's OK for this to happen if it was part of a subtree that
1582 isn't immediately expanded, such as operand 2 of another
1583 TARGET_EXPR. */
1584 if (TREE_OPERAND (expr, 1))
1585 break;
1586
1587 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1588 TREE_OPERAND (expr, 3) = NULL_TREE;
1589 break;
1590
1591 case RTL_EXPR:
1592 /* I don't yet know how to emit a sequence multiple times. */
1593 if (RTL_EXPR_SEQUENCE (expr) != 0)
1594 abort ();
1595 break;
1596
1597 default:
1598 break;
1599 }
1600 }
1601
1602 /* Default lang hook for "unsave_expr_now". */
1603
1604 tree
1605 lhd_unsave_expr_now (expr)
1606 tree expr;
1607 {
1608 enum tree_code code;
1609
1610 /* There's nothing to do for NULL_TREE. */
1611 if (expr == 0)
1612 return expr;
1613
1614 unsave_expr_1 (expr);
1615
1616 code = TREE_CODE (expr);
1617 switch (TREE_CODE_CLASS (code))
1618 {
1619 case 'c': /* a constant */
1620 case 't': /* a type node */
1621 case 'd': /* A decl node */
1622 case 'b': /* A block node */
1623 break;
1624
1625 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1626 if (code == TREE_LIST)
1627 {
1628 lhd_unsave_expr_now (TREE_VALUE (expr));
1629 lhd_unsave_expr_now (TREE_CHAIN (expr));
1630 }
1631 break;
1632
1633 case 'e': /* an expression */
1634 case 'r': /* a reference */
1635 case 's': /* an expression with side effects */
1636 case '<': /* a comparison expression */
1637 case '2': /* a binary arithmetic expression */
1638 case '1': /* a unary arithmetic expression */
1639 {
1640 int i;
1641
1642 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1643 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1644 }
1645 break;
1646
1647 default:
1648 abort ();
1649 }
1650
1651 return expr;
1652 }
1653
1654 /* Return 0 if it is safe to evaluate EXPR multiple times,
1655 return 1 if it is safe if EXPR is unsaved afterward, or
1656 return 2 if it is completely unsafe.
1657
1658 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1659 an expression tree, so that it safe to unsave them and the surrounding
1660 context will be correct.
1661
1662 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1663 occasionally across the whole of a function. It is therefore only
1664 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1665 below the UNSAVE_EXPR.
1666
1667 RTL_EXPRs consume their rtl during evaluation. It is therefore
1668 never possible to unsave them. */
1669
1670 int
1671 unsafe_for_reeval (expr)
1672 tree expr;
1673 {
1674 int unsafeness = 0;
1675 enum tree_code code;
1676 int i, tmp;
1677 tree exp;
1678 int first_rtl;
1679
1680 if (expr == NULL_TREE)
1681 return 1;
1682
1683 code = TREE_CODE (expr);
1684 first_rtl = first_rtl_op (code);
1685
1686 switch (code)
1687 {
1688 case SAVE_EXPR:
1689 case RTL_EXPR:
1690 return 2;
1691
1692 case TREE_LIST:
1693 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1694 {
1695 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1696 unsafeness = MAX (tmp, unsafeness);
1697 }
1698
1699 return unsafeness;
1700
1701 case CALL_EXPR:
1702 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1703 return MAX (tmp, 1);
1704
1705 case TARGET_EXPR:
1706 unsafeness = 1;
1707 break;
1708
1709 default:
1710 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1711 if (tmp >= 0)
1712 return tmp;
1713 break;
1714 }
1715
1716 switch (TREE_CODE_CLASS (code))
1717 {
1718 case 'c': /* a constant */
1719 case 't': /* a type node */
1720 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1721 case 'd': /* A decl node */
1722 case 'b': /* A block node */
1723 return 0;
1724
1725 case 'e': /* an expression */
1726 case 'r': /* a reference */
1727 case 's': /* an expression with side effects */
1728 case '<': /* a comparison expression */
1729 case '2': /* a binary arithmetic expression */
1730 case '1': /* a unary arithmetic expression */
1731 for (i = first_rtl - 1; i >= 0; i--)
1732 {
1733 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1734 unsafeness = MAX (tmp, unsafeness);
1735 }
1736
1737 return unsafeness;
1738
1739 default:
1740 return 2;
1741 }
1742 }
1743 \f
1744 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1745 or offset that depends on a field within a record. */
1746
1747 int
1748 contains_placeholder_p (exp)
1749 tree exp;
1750 {
1751 enum tree_code code;
1752 int result;
1753
1754 if (!exp)
1755 return 0;
1756
1757 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1758 in it since it is supplying a value for it. */
1759 code = TREE_CODE (exp);
1760 if (code == WITH_RECORD_EXPR)
1761 return 0;
1762 else if (code == PLACEHOLDER_EXPR)
1763 return 1;
1764
1765 switch (TREE_CODE_CLASS (code))
1766 {
1767 case 'r':
1768 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1769 position computations since they will be converted into a
1770 WITH_RECORD_EXPR involving the reference, which will assume
1771 here will be valid. */
1772 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1773
1774 case 'x':
1775 if (code == TREE_LIST)
1776 return (contains_placeholder_p (TREE_VALUE (exp))
1777 || (TREE_CHAIN (exp) != 0
1778 && contains_placeholder_p (TREE_CHAIN (exp))));
1779 break;
1780
1781 case '1':
1782 case '2': case '<':
1783 case 'e':
1784 switch (code)
1785 {
1786 case COMPOUND_EXPR:
1787 /* Ignoring the first operand isn't quite right, but works best. */
1788 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1789
1790 case RTL_EXPR:
1791 case CONSTRUCTOR:
1792 return 0;
1793
1794 case COND_EXPR:
1795 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1796 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1797 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1798
1799 case SAVE_EXPR:
1800 /* If we already know this doesn't have a placeholder, don't
1801 check again. */
1802 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1803 return 0;
1804
1805 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1806 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1807 if (result)
1808 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1809
1810 return result;
1811
1812 case CALL_EXPR:
1813 return (TREE_OPERAND (exp, 1) != 0
1814 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1815
1816 default:
1817 break;
1818 }
1819
1820 switch (TREE_CODE_LENGTH (code))
1821 {
1822 case 1:
1823 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1824 case 2:
1825 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1826 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1827 default:
1828 return 0;
1829 }
1830
1831 default:
1832 return 0;
1833 }
1834 return 0;
1835 }
1836
1837 /* Return 1 if EXP contains any expressions that produce cleanups for an
1838 outer scope to deal with. Used by fold. */
1839
1840 int
1841 has_cleanups (exp)
1842 tree exp;
1843 {
1844 int i, nops, cmp;
1845
1846 if (! TREE_SIDE_EFFECTS (exp))
1847 return 0;
1848
1849 switch (TREE_CODE (exp))
1850 {
1851 case TARGET_EXPR:
1852 case GOTO_SUBROUTINE_EXPR:
1853 case WITH_CLEANUP_EXPR:
1854 return 1;
1855
1856 case CLEANUP_POINT_EXPR:
1857 return 0;
1858
1859 case CALL_EXPR:
1860 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1861 {
1862 cmp = has_cleanups (TREE_VALUE (exp));
1863 if (cmp)
1864 return cmp;
1865 }
1866 return 0;
1867
1868 default:
1869 break;
1870 }
1871
1872 /* This general rule works for most tree codes. All exceptions should be
1873 handled above. If this is a language-specific tree code, we can't
1874 trust what might be in the operand, so say we don't know
1875 the situation. */
1876 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1877 return -1;
1878
1879 nops = first_rtl_op (TREE_CODE (exp));
1880 for (i = 0; i < nops; i++)
1881 if (TREE_OPERAND (exp, i) != 0)
1882 {
1883 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1884 if (type == 'e' || type == '<' || type == '1' || type == '2'
1885 || type == 'r' || type == 's')
1886 {
1887 cmp = has_cleanups (TREE_OPERAND (exp, i));
1888 if (cmp)
1889 return cmp;
1890 }
1891 }
1892
1893 return 0;
1894 }
1895 \f
1896 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1897 return a tree with all occurrences of references to F in a
1898 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1899 contains only arithmetic expressions or a CALL_EXPR with a
1900 PLACEHOLDER_EXPR occurring only in its arglist. */
1901
1902 tree
1903 substitute_in_expr (exp, f, r)
1904 tree exp;
1905 tree f;
1906 tree r;
1907 {
1908 enum tree_code code = TREE_CODE (exp);
1909 tree op0, op1, op2;
1910 tree new;
1911 tree inner;
1912
1913 switch (TREE_CODE_CLASS (code))
1914 {
1915 case 'c':
1916 case 'd':
1917 return exp;
1918
1919 case 'x':
1920 if (code == PLACEHOLDER_EXPR)
1921 return exp;
1922 else if (code == TREE_LIST)
1923 {
1924 op0 = (TREE_CHAIN (exp) == 0
1925 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1926 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1927 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1928 return exp;
1929
1930 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1931 }
1932
1933 abort ();
1934
1935 case '1':
1936 case '2':
1937 case '<':
1938 case 'e':
1939 switch (TREE_CODE_LENGTH (code))
1940 {
1941 case 1:
1942 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1943 if (op0 == TREE_OPERAND (exp, 0))
1944 return exp;
1945
1946 if (code == NON_LVALUE_EXPR)
1947 return op0;
1948
1949 new = fold (build1 (code, TREE_TYPE (exp), op0));
1950 break;
1951
1952 case 2:
1953 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1954 could, but we don't support it. */
1955 if (code == RTL_EXPR)
1956 return exp;
1957 else if (code == CONSTRUCTOR)
1958 abort ();
1959
1960 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1961 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1962 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1963 return exp;
1964
1965 new = fold (build (code, TREE_TYPE (exp), op0, op1));
1966 break;
1967
1968 case 3:
1969 /* It cannot be that anything inside a SAVE_EXPR contains a
1970 PLACEHOLDER_EXPR. */
1971 if (code == SAVE_EXPR)
1972 return exp;
1973
1974 else if (code == CALL_EXPR)
1975 {
1976 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1977 if (op1 == TREE_OPERAND (exp, 1))
1978 return exp;
1979
1980 return build (code, TREE_TYPE (exp),
1981 TREE_OPERAND (exp, 0), op1, NULL_TREE);
1982 }
1983
1984 else if (code != COND_EXPR)
1985 abort ();
1986
1987 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1988 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1989 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1990 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1991 && op2 == TREE_OPERAND (exp, 2))
1992 return exp;
1993
1994 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1995 break;
1996
1997 default:
1998 abort ();
1999 }
2000
2001 break;
2002
2003 case 'r':
2004 switch (code)
2005 {
2006 case COMPONENT_REF:
2007 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2008 and it is the right field, replace it with R. */
2009 for (inner = TREE_OPERAND (exp, 0);
2010 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2011 inner = TREE_OPERAND (inner, 0))
2012 ;
2013 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2014 && TREE_OPERAND (exp, 1) == f)
2015 return r;
2016
2017 /* If this expression hasn't been completed let, leave it
2018 alone. */
2019 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2020 && TREE_TYPE (inner) == 0)
2021 return exp;
2022
2023 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2024 if (op0 == TREE_OPERAND (exp, 0))
2025 return exp;
2026
2027 new = fold (build (code, TREE_TYPE (exp), op0,
2028 TREE_OPERAND (exp, 1)));
2029 break;
2030
2031 case BIT_FIELD_REF:
2032 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2033 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2034 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2035 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2036 && op2 == TREE_OPERAND (exp, 2))
2037 return exp;
2038
2039 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2040 break;
2041
2042 case INDIRECT_REF:
2043 case BUFFER_REF:
2044 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2045 if (op0 == TREE_OPERAND (exp, 0))
2046 return exp;
2047
2048 new = fold (build1 (code, TREE_TYPE (exp), op0));
2049 break;
2050
2051 default:
2052 abort ();
2053 }
2054 break;
2055
2056 default:
2057 abort ();
2058 }
2059
2060 TREE_READONLY (new) = TREE_READONLY (exp);
2061 return new;
2062 }
2063 \f
2064 /* Stabilize a reference so that we can use it any number of times
2065 without causing its operands to be evaluated more than once.
2066 Returns the stabilized reference. This works by means of save_expr,
2067 so see the caveats in the comments about save_expr.
2068
2069 Also allows conversion expressions whose operands are references.
2070 Any other kind of expression is returned unchanged. */
2071
2072 tree
2073 stabilize_reference (ref)
2074 tree ref;
2075 {
2076 tree result;
2077 enum tree_code code = TREE_CODE (ref);
2078
2079 switch (code)
2080 {
2081 case VAR_DECL:
2082 case PARM_DECL:
2083 case RESULT_DECL:
2084 /* No action is needed in this case. */
2085 return ref;
2086
2087 case NOP_EXPR:
2088 case CONVERT_EXPR:
2089 case FLOAT_EXPR:
2090 case FIX_TRUNC_EXPR:
2091 case FIX_FLOOR_EXPR:
2092 case FIX_ROUND_EXPR:
2093 case FIX_CEIL_EXPR:
2094 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2095 break;
2096
2097 case INDIRECT_REF:
2098 result = build_nt (INDIRECT_REF,
2099 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2100 break;
2101
2102 case COMPONENT_REF:
2103 result = build_nt (COMPONENT_REF,
2104 stabilize_reference (TREE_OPERAND (ref, 0)),
2105 TREE_OPERAND (ref, 1));
2106 break;
2107
2108 case BIT_FIELD_REF:
2109 result = build_nt (BIT_FIELD_REF,
2110 stabilize_reference (TREE_OPERAND (ref, 0)),
2111 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2112 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2113 break;
2114
2115 case ARRAY_REF:
2116 result = build_nt (ARRAY_REF,
2117 stabilize_reference (TREE_OPERAND (ref, 0)),
2118 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2119 break;
2120
2121 case ARRAY_RANGE_REF:
2122 result = build_nt (ARRAY_RANGE_REF,
2123 stabilize_reference (TREE_OPERAND (ref, 0)),
2124 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2125 break;
2126
2127 case COMPOUND_EXPR:
2128 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2129 it wouldn't be ignored. This matters when dealing with
2130 volatiles. */
2131 return stabilize_reference_1 (ref);
2132
2133 case RTL_EXPR:
2134 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2135 save_expr (build1 (ADDR_EXPR,
2136 build_pointer_type (TREE_TYPE (ref)),
2137 ref)));
2138 break;
2139
2140 /* If arg isn't a kind of lvalue we recognize, make no change.
2141 Caller should recognize the error for an invalid lvalue. */
2142 default:
2143 return ref;
2144
2145 case ERROR_MARK:
2146 return error_mark_node;
2147 }
2148
2149 TREE_TYPE (result) = TREE_TYPE (ref);
2150 TREE_READONLY (result) = TREE_READONLY (ref);
2151 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2152 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2153
2154 return result;
2155 }
2156
2157 /* Subroutine of stabilize_reference; this is called for subtrees of
2158 references. Any expression with side-effects must be put in a SAVE_EXPR
2159 to ensure that it is only evaluated once.
2160
2161 We don't put SAVE_EXPR nodes around everything, because assigning very
2162 simple expressions to temporaries causes us to miss good opportunities
2163 for optimizations. Among other things, the opportunity to fold in the
2164 addition of a constant into an addressing mode often gets lost, e.g.
2165 "y[i+1] += x;". In general, we take the approach that we should not make
2166 an assignment unless we are forced into it - i.e., that any non-side effect
2167 operator should be allowed, and that cse should take care of coalescing
2168 multiple utterances of the same expression should that prove fruitful. */
2169
2170 tree
2171 stabilize_reference_1 (e)
2172 tree e;
2173 {
2174 tree result;
2175 enum tree_code code = TREE_CODE (e);
2176
2177 /* We cannot ignore const expressions because it might be a reference
2178 to a const array but whose index contains side-effects. But we can
2179 ignore things that are actual constant or that already have been
2180 handled by this function. */
2181
2182 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2183 return e;
2184
2185 switch (TREE_CODE_CLASS (code))
2186 {
2187 case 'x':
2188 case 't':
2189 case 'd':
2190 case 'b':
2191 case '<':
2192 case 's':
2193 case 'e':
2194 case 'r':
2195 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2196 so that it will only be evaluated once. */
2197 /* The reference (r) and comparison (<) classes could be handled as
2198 below, but it is generally faster to only evaluate them once. */
2199 if (TREE_SIDE_EFFECTS (e))
2200 return save_expr (e);
2201 return e;
2202
2203 case 'c':
2204 /* Constants need no processing. In fact, we should never reach
2205 here. */
2206 return e;
2207
2208 case '2':
2209 /* Division is slow and tends to be compiled with jumps,
2210 especially the division by powers of 2 that is often
2211 found inside of an array reference. So do it just once. */
2212 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2213 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2214 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2215 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2216 return save_expr (e);
2217 /* Recursively stabilize each operand. */
2218 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2219 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2220 break;
2221
2222 case '1':
2223 /* Recursively stabilize each operand. */
2224 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2225 break;
2226
2227 default:
2228 abort ();
2229 }
2230
2231 TREE_TYPE (result) = TREE_TYPE (e);
2232 TREE_READONLY (result) = TREE_READONLY (e);
2233 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2234 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2235
2236 return result;
2237 }
2238 \f
2239 /* Low-level constructors for expressions. */
2240
2241 /* Build an expression of code CODE, data type TYPE,
2242 and operands as specified by the arguments ARG1 and following arguments.
2243 Expressions and reference nodes can be created this way.
2244 Constants, decls, types and misc nodes cannot be. */
2245
2246 tree
2247 build VPARAMS ((enum tree_code code, tree tt, ...))
2248 {
2249 tree t;
2250 int length;
2251 int i;
2252 int fro;
2253 int constant;
2254
2255 VA_OPEN (p, tt);
2256 VA_FIXEDARG (p, enum tree_code, code);
2257 VA_FIXEDARG (p, tree, tt);
2258
2259 t = make_node (code);
2260 length = TREE_CODE_LENGTH (code);
2261 TREE_TYPE (t) = tt;
2262
2263 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2264 result based on those same flags for the arguments. But if the
2265 arguments aren't really even `tree' expressions, we shouldn't be trying
2266 to do this. */
2267 fro = first_rtl_op (code);
2268
2269 /* Expressions without side effects may be constant if their
2270 arguments are as well. */
2271 constant = (TREE_CODE_CLASS (code) == '<'
2272 || TREE_CODE_CLASS (code) == '1'
2273 || TREE_CODE_CLASS (code) == '2'
2274 || TREE_CODE_CLASS (code) == 'c');
2275
2276 if (length == 2)
2277 {
2278 /* This is equivalent to the loop below, but faster. */
2279 tree arg0 = va_arg (p, tree);
2280 tree arg1 = va_arg (p, tree);
2281
2282 TREE_OPERAND (t, 0) = arg0;
2283 TREE_OPERAND (t, 1) = arg1;
2284 TREE_READONLY (t) = 1;
2285 if (arg0 && fro > 0)
2286 {
2287 if (TREE_SIDE_EFFECTS (arg0))
2288 TREE_SIDE_EFFECTS (t) = 1;
2289 if (!TREE_READONLY (arg0))
2290 TREE_READONLY (t) = 0;
2291 if (!TREE_CONSTANT (arg0))
2292 constant = 0;
2293 }
2294
2295 if (arg1 && fro > 1)
2296 {
2297 if (TREE_SIDE_EFFECTS (arg1))
2298 TREE_SIDE_EFFECTS (t) = 1;
2299 if (!TREE_READONLY (arg1))
2300 TREE_READONLY (t) = 0;
2301 if (!TREE_CONSTANT (arg1))
2302 constant = 0;
2303 }
2304 }
2305 else if (length == 1)
2306 {
2307 tree arg0 = va_arg (p, tree);
2308
2309 /* The only one-operand cases we handle here are those with side-effects.
2310 Others are handled with build1. So don't bother checked if the
2311 arg has side-effects since we'll already have set it.
2312
2313 ??? This really should use build1 too. */
2314 if (TREE_CODE_CLASS (code) != 's')
2315 abort ();
2316 TREE_OPERAND (t, 0) = arg0;
2317 }
2318 else
2319 {
2320 for (i = 0; i < length; i++)
2321 {
2322 tree operand = va_arg (p, tree);
2323
2324 TREE_OPERAND (t, i) = operand;
2325 if (operand && fro > i)
2326 {
2327 if (TREE_SIDE_EFFECTS (operand))
2328 TREE_SIDE_EFFECTS (t) = 1;
2329 if (!TREE_CONSTANT (operand))
2330 constant = 0;
2331 }
2332 }
2333 }
2334 VA_CLOSE (p);
2335
2336 TREE_CONSTANT (t) = constant;
2337 return t;
2338 }
2339
2340 /* Same as above, but only builds for unary operators.
2341 Saves lions share of calls to `build'; cuts down use
2342 of varargs, which is expensive for RISC machines. */
2343
2344 tree
2345 build1 (code, type, node)
2346 enum tree_code code;
2347 tree type;
2348 tree node;
2349 {
2350 int length;
2351 #ifdef GATHER_STATISTICS
2352 tree_node_kind kind;
2353 #endif
2354 tree t;
2355
2356 #ifdef GATHER_STATISTICS
2357 if (TREE_CODE_CLASS (code) == 'r')
2358 kind = r_kind;
2359 else
2360 kind = e_kind;
2361 #endif
2362
2363 #ifdef ENABLE_CHECKING
2364 if (TREE_CODE_CLASS (code) == '2'
2365 || TREE_CODE_CLASS (code) == '<'
2366 || TREE_CODE_LENGTH (code) != 1)
2367 abort ();
2368 #endif /* ENABLE_CHECKING */
2369
2370 length = sizeof (struct tree_exp);
2371
2372 t = ggc_alloc_tree (length);
2373
2374 memset ((PTR) t, 0, sizeof (struct tree_common));
2375
2376 #ifdef GATHER_STATISTICS
2377 tree_node_counts[(int) kind]++;
2378 tree_node_sizes[(int) kind] += length;
2379 #endif
2380
2381 TREE_SET_CODE (t, code);
2382
2383 TREE_TYPE (t) = type;
2384 TREE_COMPLEXITY (t) = 0;
2385 TREE_OPERAND (t, 0) = node;
2386 if (node && first_rtl_op (code) != 0)
2387 {
2388 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2389 TREE_READONLY (t) = TREE_READONLY (node);
2390 }
2391
2392 switch (code)
2393 {
2394 case INIT_EXPR:
2395 case MODIFY_EXPR:
2396 case VA_ARG_EXPR:
2397 case RTL_EXPR:
2398 case PREDECREMENT_EXPR:
2399 case PREINCREMENT_EXPR:
2400 case POSTDECREMENT_EXPR:
2401 case POSTINCREMENT_EXPR:
2402 /* All of these have side-effects, no matter what their
2403 operands are. */
2404 TREE_SIDE_EFFECTS (t) = 1;
2405 TREE_READONLY (t) = 0;
2406 break;
2407
2408 case INDIRECT_REF:
2409 /* Whether a dereference is readonly has nothing to do with whether
2410 its operand is readonly. */
2411 TREE_READONLY (t) = 0;
2412 break;
2413
2414 default:
2415 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2416 TREE_CONSTANT (t) = 1;
2417 break;
2418 }
2419
2420 return t;
2421 }
2422
2423 /* Similar except don't specify the TREE_TYPE
2424 and leave the TREE_SIDE_EFFECTS as 0.
2425 It is permissible for arguments to be null,
2426 or even garbage if their values do not matter. */
2427
2428 tree
2429 build_nt VPARAMS ((enum tree_code code, ...))
2430 {
2431 tree t;
2432 int length;
2433 int i;
2434
2435 VA_OPEN (p, code);
2436 VA_FIXEDARG (p, enum tree_code, code);
2437
2438 t = make_node (code);
2439 length = TREE_CODE_LENGTH (code);
2440
2441 for (i = 0; i < length; i++)
2442 TREE_OPERAND (t, i) = va_arg (p, tree);
2443
2444 VA_CLOSE (p);
2445 return t;
2446 }
2447 \f
2448 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2449 We do NOT enter this node in any sort of symbol table.
2450
2451 layout_decl is used to set up the decl's storage layout.
2452 Other slots are initialized to 0 or null pointers. */
2453
2454 tree
2455 build_decl (code, name, type)
2456 enum tree_code code;
2457 tree name, type;
2458 {
2459 tree t;
2460
2461 t = make_node (code);
2462
2463 /* if (type == error_mark_node)
2464 type = integer_type_node; */
2465 /* That is not done, deliberately, so that having error_mark_node
2466 as the type can suppress useless errors in the use of this variable. */
2467
2468 DECL_NAME (t) = name;
2469 TREE_TYPE (t) = type;
2470
2471 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2472 layout_decl (t, 0);
2473 else if (code == FUNCTION_DECL)
2474 DECL_MODE (t) = FUNCTION_MODE;
2475
2476 return t;
2477 }
2478 \f
2479 /* BLOCK nodes are used to represent the structure of binding contours
2480 and declarations, once those contours have been exited and their contents
2481 compiled. This information is used for outputting debugging info. */
2482
2483 tree
2484 build_block (vars, tags, subblocks, supercontext, chain)
2485 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2486 {
2487 tree block = make_node (BLOCK);
2488
2489 BLOCK_VARS (block) = vars;
2490 BLOCK_SUBBLOCKS (block) = subblocks;
2491 BLOCK_SUPERCONTEXT (block) = supercontext;
2492 BLOCK_CHAIN (block) = chain;
2493 return block;
2494 }
2495
2496 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2497 location where an expression or an identifier were encountered. It
2498 is necessary for languages where the frontend parser will handle
2499 recursively more than one file (Java is one of them). */
2500
2501 tree
2502 build_expr_wfl (node, file, line, col)
2503 tree node;
2504 const char *file;
2505 int line, col;
2506 {
2507 static const char *last_file = 0;
2508 static tree last_filenode = NULL_TREE;
2509 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2510
2511 EXPR_WFL_NODE (wfl) = node;
2512 EXPR_WFL_SET_LINECOL (wfl, line, col);
2513 if (file != last_file)
2514 {
2515 last_file = file;
2516 last_filenode = file ? get_identifier (file) : NULL_TREE;
2517 }
2518
2519 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2520 if (node)
2521 {
2522 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2523 TREE_TYPE (wfl) = TREE_TYPE (node);
2524 }
2525
2526 return wfl;
2527 }
2528 \f
2529 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2530 is ATTRIBUTE. */
2531
2532 tree
2533 build_decl_attribute_variant (ddecl, attribute)
2534 tree ddecl, attribute;
2535 {
2536 DECL_ATTRIBUTES (ddecl) = attribute;
2537 return ddecl;
2538 }
2539
2540 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2541 is ATTRIBUTE.
2542
2543 Record such modified types already made so we don't make duplicates. */
2544
2545 tree
2546 build_type_attribute_variant (ttype, attribute)
2547 tree ttype, attribute;
2548 {
2549 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2550 {
2551 unsigned int hashcode;
2552 tree ntype;
2553
2554 ntype = copy_node (ttype);
2555
2556 TYPE_POINTER_TO (ntype) = 0;
2557 TYPE_REFERENCE_TO (ntype) = 0;
2558 TYPE_ATTRIBUTES (ntype) = attribute;
2559
2560 /* Create a new main variant of TYPE. */
2561 TYPE_MAIN_VARIANT (ntype) = ntype;
2562 TYPE_NEXT_VARIANT (ntype) = 0;
2563 set_type_quals (ntype, TYPE_UNQUALIFIED);
2564
2565 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2566 + TYPE_HASH (TREE_TYPE (ntype))
2567 + attribute_hash_list (attribute));
2568
2569 switch (TREE_CODE (ntype))
2570 {
2571 case FUNCTION_TYPE:
2572 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2573 break;
2574 case ARRAY_TYPE:
2575 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2576 break;
2577 case INTEGER_TYPE:
2578 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2579 break;
2580 case REAL_TYPE:
2581 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2582 break;
2583 default:
2584 break;
2585 }
2586
2587 ntype = type_hash_canon (hashcode, ntype);
2588 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2589 }
2590
2591 return ttype;
2592 }
2593
2594 /* Default value of targetm.comp_type_attributes that always returns 1. */
2595
2596 int
2597 default_comp_type_attributes (type1, type2)
2598 tree type1 ATTRIBUTE_UNUSED;
2599 tree type2 ATTRIBUTE_UNUSED;
2600 {
2601 return 1;
2602 }
2603
2604 /* Default version of targetm.set_default_type_attributes that always does
2605 nothing. */
2606
2607 void
2608 default_set_default_type_attributes (type)
2609 tree type ATTRIBUTE_UNUSED;
2610 {
2611 }
2612
2613 /* Default version of targetm.insert_attributes that always does nothing. */
2614 void
2615 default_insert_attributes (decl, attr_ptr)
2616 tree decl ATTRIBUTE_UNUSED;
2617 tree *attr_ptr ATTRIBUTE_UNUSED;
2618 {
2619 }
2620
2621 /* Default value of targetm.function_attribute_inlinable_p that always
2622 returns false. */
2623 bool
2624 default_function_attribute_inlinable_p (fndecl)
2625 tree fndecl ATTRIBUTE_UNUSED;
2626 {
2627 /* By default, functions with machine attributes cannot be inlined. */
2628 return false;
2629 }
2630
2631 /* Default value of targetm.ms_bitfield_layout_p that always returns
2632 false. */
2633 bool
2634 default_ms_bitfield_layout_p (record)
2635 tree record ATTRIBUTE_UNUSED;
2636 {
2637 /* By default, GCC does not use the MS VC++ bitfield layout rules. */
2638 return false;
2639 }
2640
2641 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2642 or zero if not.
2643
2644 We try both `text' and `__text__', ATTR may be either one. */
2645 /* ??? It might be a reasonable simplification to require ATTR to be only
2646 `text'. One might then also require attribute lists to be stored in
2647 their canonicalized form. */
2648
2649 int
2650 is_attribute_p (attr, ident)
2651 const char *attr;
2652 tree ident;
2653 {
2654 int ident_len, attr_len;
2655 const char *p;
2656
2657 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2658 return 0;
2659
2660 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2661 return 1;
2662
2663 p = IDENTIFIER_POINTER (ident);
2664 ident_len = strlen (p);
2665 attr_len = strlen (attr);
2666
2667 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2668 if (attr[0] == '_')
2669 {
2670 if (attr[1] != '_'
2671 || attr[attr_len - 2] != '_'
2672 || attr[attr_len - 1] != '_')
2673 abort ();
2674 if (ident_len == attr_len - 4
2675 && strncmp (attr + 2, p, attr_len - 4) == 0)
2676 return 1;
2677 }
2678 else
2679 {
2680 if (ident_len == attr_len + 4
2681 && p[0] == '_' && p[1] == '_'
2682 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2683 && strncmp (attr, p + 2, attr_len) == 0)
2684 return 1;
2685 }
2686
2687 return 0;
2688 }
2689
2690 /* Given an attribute name and a list of attributes, return a pointer to the
2691 attribute's list element if the attribute is part of the list, or NULL_TREE
2692 if not found. If the attribute appears more than once, this only
2693 returns the first occurrence; the TREE_CHAIN of the return value should
2694 be passed back in if further occurrences are wanted. */
2695
2696 tree
2697 lookup_attribute (attr_name, list)
2698 const char *attr_name;
2699 tree list;
2700 {
2701 tree l;
2702
2703 for (l = list; l; l = TREE_CHAIN (l))
2704 {
2705 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2706 abort ();
2707 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2708 return l;
2709 }
2710
2711 return NULL_TREE;
2712 }
2713
2714 /* Return an attribute list that is the union of a1 and a2. */
2715
2716 tree
2717 merge_attributes (a1, a2)
2718 tree a1, a2;
2719 {
2720 tree attributes;
2721
2722 /* Either one unset? Take the set one. */
2723
2724 if ((attributes = a1) == 0)
2725 attributes = a2;
2726
2727 /* One that completely contains the other? Take it. */
2728
2729 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2730 {
2731 if (attribute_list_contained (a2, a1))
2732 attributes = a2;
2733 else
2734 {
2735 /* Pick the longest list, and hang on the other list. */
2736
2737 if (list_length (a1) < list_length (a2))
2738 attributes = a2, a2 = a1;
2739
2740 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2741 {
2742 tree a;
2743 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2744 attributes);
2745 a != NULL_TREE;
2746 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2747 TREE_CHAIN (a)))
2748 {
2749 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2750 break;
2751 }
2752 if (a == NULL_TREE)
2753 {
2754 a1 = copy_node (a2);
2755 TREE_CHAIN (a1) = attributes;
2756 attributes = a1;
2757 }
2758 }
2759 }
2760 }
2761 return attributes;
2762 }
2763
2764 /* Given types T1 and T2, merge their attributes and return
2765 the result. */
2766
2767 tree
2768 merge_type_attributes (t1, t2)
2769 tree t1, t2;
2770 {
2771 return merge_attributes (TYPE_ATTRIBUTES (t1),
2772 TYPE_ATTRIBUTES (t2));
2773 }
2774
2775 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2776 the result. */
2777
2778 tree
2779 merge_decl_attributes (olddecl, newdecl)
2780 tree olddecl, newdecl;
2781 {
2782 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2783 DECL_ATTRIBUTES (newdecl));
2784 }
2785
2786 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2787
2788 /* Specialization of merge_decl_attributes for various Windows targets.
2789
2790 This handles the following situation:
2791
2792 __declspec (dllimport) int foo;
2793 int foo;
2794
2795 The second instance of `foo' nullifies the dllimport. */
2796
2797 tree
2798 merge_dllimport_decl_attributes (old, new)
2799 tree old;
2800 tree new;
2801 {
2802 tree a;
2803 int delete_dllimport_p;
2804
2805 old = DECL_ATTRIBUTES (old);
2806 new = DECL_ATTRIBUTES (new);
2807
2808 /* What we need to do here is remove from `old' dllimport if it doesn't
2809 appear in `new'. dllimport behaves like extern: if a declaration is
2810 marked dllimport and a definition appears later, then the object
2811 is not dllimport'd. */
2812 if (lookup_attribute ("dllimport", old) != NULL_TREE
2813 && lookup_attribute ("dllimport", new) == NULL_TREE)
2814 delete_dllimport_p = 1;
2815 else
2816 delete_dllimport_p = 0;
2817
2818 a = merge_attributes (old, new);
2819
2820 if (delete_dllimport_p)
2821 {
2822 tree prev, t;
2823
2824 /* Scan the list for dllimport and delete it. */
2825 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2826 {
2827 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2828 {
2829 if (prev == NULL_TREE)
2830 a = TREE_CHAIN (a);
2831 else
2832 TREE_CHAIN (prev) = TREE_CHAIN (t);
2833 break;
2834 }
2835 }
2836 }
2837
2838 return a;
2839 }
2840
2841 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2842 \f
2843 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2844 of the various TYPE_QUAL values. */
2845
2846 static void
2847 set_type_quals (type, type_quals)
2848 tree type;
2849 int type_quals;
2850 {
2851 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2852 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2853 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2854 }
2855
2856 /* Return a version of the TYPE, qualified as indicated by the
2857 TYPE_QUALS, if one exists. If no qualified version exists yet,
2858 return NULL_TREE. */
2859
2860 tree
2861 get_qualified_type (type, type_quals)
2862 tree type;
2863 int type_quals;
2864 {
2865 tree t;
2866
2867 /* Search the chain of variants to see if there is already one there just
2868 like the one we need to have. If so, use that existing one. We must
2869 preserve the TYPE_NAME, since there is code that depends on this. */
2870 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2871 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
2872 return t;
2873
2874 return NULL_TREE;
2875 }
2876
2877 /* Like get_qualified_type, but creates the type if it does not
2878 exist. This function never returns NULL_TREE. */
2879
2880 tree
2881 build_qualified_type (type, type_quals)
2882 tree type;
2883 int type_quals;
2884 {
2885 tree t;
2886
2887 /* See if we already have the appropriate qualified variant. */
2888 t = get_qualified_type (type, type_quals);
2889
2890 /* If not, build it. */
2891 if (!t)
2892 {
2893 t = build_type_copy (type);
2894 set_type_quals (t, type_quals);
2895 }
2896
2897 return t;
2898 }
2899
2900 /* Create a new variant of TYPE, equivalent but distinct.
2901 This is so the caller can modify it. */
2902
2903 tree
2904 build_type_copy (type)
2905 tree type;
2906 {
2907 tree t, m = TYPE_MAIN_VARIANT (type);
2908
2909 t = copy_node (type);
2910
2911 TYPE_POINTER_TO (t) = 0;
2912 TYPE_REFERENCE_TO (t) = 0;
2913
2914 /* Add this type to the chain of variants of TYPE. */
2915 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2916 TYPE_NEXT_VARIANT (m) = t;
2917
2918 return t;
2919 }
2920 \f
2921 /* Hashing of types so that we don't make duplicates.
2922 The entry point is `type_hash_canon'. */
2923
2924 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2925 with types in the TREE_VALUE slots), by adding the hash codes
2926 of the individual types. */
2927
2928 unsigned int
2929 type_hash_list (list)
2930 tree list;
2931 {
2932 unsigned int hashcode;
2933 tree tail;
2934
2935 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2936 hashcode += TYPE_HASH (TREE_VALUE (tail));
2937
2938 return hashcode;
2939 }
2940
2941 /* These are the Hashtable callback functions. */
2942
2943 /* Returns true if the types are equal. */
2944
2945 static int
2946 type_hash_eq (va, vb)
2947 const void *va;
2948 const void *vb;
2949 {
2950 const struct type_hash *a = va, *b = vb;
2951 if (a->hash == b->hash
2952 && TREE_CODE (a->type) == TREE_CODE (b->type)
2953 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2954 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2955 TYPE_ATTRIBUTES (b->type))
2956 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2957 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2958 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2959 TYPE_MAX_VALUE (b->type)))
2960 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2961 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2962 TYPE_MIN_VALUE (b->type)))
2963 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2964 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2965 || (TYPE_DOMAIN (a->type)
2966 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2967 && TYPE_DOMAIN (b->type)
2968 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2969 && type_list_equal (TYPE_DOMAIN (a->type),
2970 TYPE_DOMAIN (b->type)))))
2971 return 1;
2972 return 0;
2973 }
2974
2975 /* Return the cached hash value. */
2976
2977 static unsigned int
2978 type_hash_hash (item)
2979 const void *item;
2980 {
2981 return ((const struct type_hash *) item)->hash;
2982 }
2983
2984 /* Look in the type hash table for a type isomorphic to TYPE.
2985 If one is found, return it. Otherwise return 0. */
2986
2987 tree
2988 type_hash_lookup (hashcode, type)
2989 unsigned int hashcode;
2990 tree type;
2991 {
2992 struct type_hash *h, in;
2993
2994 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2995 must call that routine before comparing TYPE_ALIGNs. */
2996 layout_type (type);
2997
2998 in.hash = hashcode;
2999 in.type = type;
3000
3001 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3002 if (h)
3003 return h->type;
3004 return NULL_TREE;
3005 }
3006
3007 /* Add an entry to the type-hash-table
3008 for a type TYPE whose hash code is HASHCODE. */
3009
3010 void
3011 type_hash_add (hashcode, type)
3012 unsigned int hashcode;
3013 tree type;
3014 {
3015 struct type_hash *h;
3016 void **loc;
3017
3018 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
3019 h->hash = hashcode;
3020 h->type = type;
3021 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3022 *(struct type_hash **) loc = h;
3023 }
3024
3025 /* Given TYPE, and HASHCODE its hash code, return the canonical
3026 object for an identical type if one already exists.
3027 Otherwise, return TYPE, and record it as the canonical object
3028 if it is a permanent object.
3029
3030 To use this function, first create a type of the sort you want.
3031 Then compute its hash code from the fields of the type that
3032 make it different from other similar types.
3033 Then call this function and use the value.
3034 This function frees the type you pass in if it is a duplicate. */
3035
3036 /* Set to 1 to debug without canonicalization. Never set by program. */
3037 int debug_no_type_hash = 0;
3038
3039 tree
3040 type_hash_canon (hashcode, type)
3041 unsigned int hashcode;
3042 tree type;
3043 {
3044 tree t1;
3045
3046 if (debug_no_type_hash)
3047 return type;
3048
3049 /* See if the type is in the hash table already. If so, return it.
3050 Otherwise, add the type. */
3051 t1 = type_hash_lookup (hashcode, type);
3052 if (t1 != 0)
3053 {
3054 #ifdef GATHER_STATISTICS
3055 tree_node_counts[(int) t_kind]--;
3056 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3057 #endif
3058 return t1;
3059 }
3060 else
3061 {
3062 type_hash_add (hashcode, type);
3063 return type;
3064 }
3065 }
3066
3067 /* See if the data pointed to by the type hash table is marked. We consider
3068 it marked if the type is marked or if a debug type number or symbol
3069 table entry has been made for the type. This reduces the amount of
3070 debugging output and eliminates that dependency of the debug output on
3071 the number of garbage collections. */
3072
3073 static int
3074 type_hash_marked_p (p)
3075 const void *p;
3076 {
3077 tree type = ((struct type_hash *) p)->type;
3078
3079 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3080 }
3081
3082 static void
3083 print_type_hash_statistics ()
3084 {
3085 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3086 (long) htab_size (type_hash_table),
3087 (long) htab_elements (type_hash_table),
3088 htab_collisions (type_hash_table));
3089 }
3090
3091 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3092 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3093 by adding the hash codes of the individual attributes. */
3094
3095 unsigned int
3096 attribute_hash_list (list)
3097 tree list;
3098 {
3099 unsigned int hashcode;
3100 tree tail;
3101
3102 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3103 /* ??? Do we want to add in TREE_VALUE too? */
3104 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3105 return hashcode;
3106 }
3107
3108 /* Given two lists of attributes, return true if list l2 is
3109 equivalent to l1. */
3110
3111 int
3112 attribute_list_equal (l1, l2)
3113 tree l1, l2;
3114 {
3115 return attribute_list_contained (l1, l2)
3116 && attribute_list_contained (l2, l1);
3117 }
3118
3119 /* Given two lists of attributes, return true if list L2 is
3120 completely contained within L1. */
3121 /* ??? This would be faster if attribute names were stored in a canonicalized
3122 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3123 must be used to show these elements are equivalent (which they are). */
3124 /* ??? It's not clear that attributes with arguments will always be handled
3125 correctly. */
3126
3127 int
3128 attribute_list_contained (l1, l2)
3129 tree l1, l2;
3130 {
3131 tree t1, t2;
3132
3133 /* First check the obvious, maybe the lists are identical. */
3134 if (l1 == l2)
3135 return 1;
3136
3137 /* Maybe the lists are similar. */
3138 for (t1 = l1, t2 = l2;
3139 t1 != 0 && t2 != 0
3140 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3141 && TREE_VALUE (t1) == TREE_VALUE (t2);
3142 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3143
3144 /* Maybe the lists are equal. */
3145 if (t1 == 0 && t2 == 0)
3146 return 1;
3147
3148 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3149 {
3150 tree attr;
3151 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3152 attr != NULL_TREE;
3153 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3154 TREE_CHAIN (attr)))
3155 {
3156 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3157 break;
3158 }
3159
3160 if (attr == 0)
3161 return 0;
3162
3163 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3164 return 0;
3165 }
3166
3167 return 1;
3168 }
3169
3170 /* Given two lists of types
3171 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3172 return 1 if the lists contain the same types in the same order.
3173 Also, the TREE_PURPOSEs must match. */
3174
3175 int
3176 type_list_equal (l1, l2)
3177 tree l1, l2;
3178 {
3179 tree t1, t2;
3180
3181 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3182 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3183 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3184 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3185 && (TREE_TYPE (TREE_PURPOSE (t1))
3186 == TREE_TYPE (TREE_PURPOSE (t2))))))
3187 return 0;
3188
3189 return t1 == t2;
3190 }
3191
3192 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3193 given by TYPE. If the argument list accepts variable arguments,
3194 then this function counts only the ordinary arguments. */
3195
3196 int
3197 type_num_arguments (type)
3198 tree type;
3199 {
3200 int i = 0;
3201 tree t;
3202
3203 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3204 /* If the function does not take a variable number of arguments,
3205 the last element in the list will have type `void'. */
3206 if (VOID_TYPE_P (TREE_VALUE (t)))
3207 break;
3208 else
3209 ++i;
3210
3211 return i;
3212 }
3213
3214 /* Nonzero if integer constants T1 and T2
3215 represent the same constant value. */
3216
3217 int
3218 tree_int_cst_equal (t1, t2)
3219 tree t1, t2;
3220 {
3221 if (t1 == t2)
3222 return 1;
3223
3224 if (t1 == 0 || t2 == 0)
3225 return 0;
3226
3227 if (TREE_CODE (t1) == INTEGER_CST
3228 && TREE_CODE (t2) == INTEGER_CST
3229 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3230 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3231 return 1;
3232
3233 return 0;
3234 }
3235
3236 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3237 The precise way of comparison depends on their data type. */
3238
3239 int
3240 tree_int_cst_lt (t1, t2)
3241 tree t1, t2;
3242 {
3243 if (t1 == t2)
3244 return 0;
3245
3246 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3247 {
3248 int t1_sgn = tree_int_cst_sgn (t1);
3249 int t2_sgn = tree_int_cst_sgn (t2);
3250
3251 if (t1_sgn < t2_sgn)
3252 return 1;
3253 else if (t1_sgn > t2_sgn)
3254 return 0;
3255 /* Otherwise, both are non-negative, so we compare them as
3256 unsigned just in case one of them would overflow a signed
3257 type. */
3258 }
3259 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3260 return INT_CST_LT (t1, t2);
3261
3262 return INT_CST_LT_UNSIGNED (t1, t2);
3263 }
3264
3265 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3266
3267 int
3268 tree_int_cst_compare (t1, t2)
3269 tree t1;
3270 tree t2;
3271 {
3272 if (tree_int_cst_lt (t1, t2))
3273 return -1;
3274 else if (tree_int_cst_lt (t2, t1))
3275 return 1;
3276 else
3277 return 0;
3278 }
3279
3280 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3281 the host. If POS is zero, the value can be represented in a single
3282 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3283 be represented in a single unsigned HOST_WIDE_INT. */
3284
3285 int
3286 host_integerp (t, pos)
3287 tree t;
3288 int pos;
3289 {
3290 return (TREE_CODE (t) == INTEGER_CST
3291 && ! TREE_OVERFLOW (t)
3292 && ((TREE_INT_CST_HIGH (t) == 0
3293 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3294 || (! pos && TREE_INT_CST_HIGH (t) == -1
3295 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3296 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3297 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3298 }
3299
3300 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3301 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3302 be positive. Abort if we cannot satisfy the above conditions. */
3303
3304 HOST_WIDE_INT
3305 tree_low_cst (t, pos)
3306 tree t;
3307 int pos;
3308 {
3309 if (host_integerp (t, pos))
3310 return TREE_INT_CST_LOW (t);
3311 else
3312 abort ();
3313 }
3314
3315 /* Return the most significant bit of the integer constant T. */
3316
3317 int
3318 tree_int_cst_msb (t)
3319 tree t;
3320 {
3321 int prec;
3322 HOST_WIDE_INT h;
3323 unsigned HOST_WIDE_INT l;
3324
3325 /* Note that using TYPE_PRECISION here is wrong. We care about the
3326 actual bits, not the (arbitrary) range of the type. */
3327 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3328 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3329 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3330 return (l & 1) == 1;
3331 }
3332
3333 /* Return an indication of the sign of the integer constant T.
3334 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3335 Note that -1 will never be returned it T's type is unsigned. */
3336
3337 int
3338 tree_int_cst_sgn (t)
3339 tree t;
3340 {
3341 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3342 return 0;
3343 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3344 return 1;
3345 else if (TREE_INT_CST_HIGH (t) < 0)
3346 return -1;
3347 else
3348 return 1;
3349 }
3350
3351 /* Compare two constructor-element-type constants. Return 1 if the lists
3352 are known to be equal; otherwise return 0. */
3353
3354 int
3355 simple_cst_list_equal (l1, l2)
3356 tree l1, l2;
3357 {
3358 while (l1 != NULL_TREE && l2 != NULL_TREE)
3359 {
3360 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3361 return 0;
3362
3363 l1 = TREE_CHAIN (l1);
3364 l2 = TREE_CHAIN (l2);
3365 }
3366
3367 return l1 == l2;
3368 }
3369
3370 /* Return truthvalue of whether T1 is the same tree structure as T2.
3371 Return 1 if they are the same.
3372 Return 0 if they are understandably different.
3373 Return -1 if either contains tree structure not understood by
3374 this function. */
3375
3376 int
3377 simple_cst_equal (t1, t2)
3378 tree t1, t2;
3379 {
3380 enum tree_code code1, code2;
3381 int cmp;
3382 int i;
3383
3384 if (t1 == t2)
3385 return 1;
3386 if (t1 == 0 || t2 == 0)
3387 return 0;
3388
3389 code1 = TREE_CODE (t1);
3390 code2 = TREE_CODE (t2);
3391
3392 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3393 {
3394 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3395 || code2 == NON_LVALUE_EXPR)
3396 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3397 else
3398 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3399 }
3400
3401 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3402 || code2 == NON_LVALUE_EXPR)
3403 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3404
3405 if (code1 != code2)
3406 return 0;
3407
3408 switch (code1)
3409 {
3410 case INTEGER_CST:
3411 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3412 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3413
3414 case REAL_CST:
3415 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3416
3417 case STRING_CST:
3418 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3419 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3420 TREE_STRING_LENGTH (t1)));
3421
3422 case CONSTRUCTOR:
3423 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3424 return 1;
3425 else
3426 abort ();
3427
3428 case SAVE_EXPR:
3429 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3430
3431 case CALL_EXPR:
3432 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3433 if (cmp <= 0)
3434 return cmp;
3435 return
3436 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3437
3438 case TARGET_EXPR:
3439 /* Special case: if either target is an unallocated VAR_DECL,
3440 it means that it's going to be unified with whatever the
3441 TARGET_EXPR is really supposed to initialize, so treat it
3442 as being equivalent to anything. */
3443 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3444 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3445 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3446 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3447 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3448 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3449 cmp = 1;
3450 else
3451 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3452
3453 if (cmp <= 0)
3454 return cmp;
3455
3456 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3457
3458 case WITH_CLEANUP_EXPR:
3459 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3460 if (cmp <= 0)
3461 return cmp;
3462
3463 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3464
3465 case COMPONENT_REF:
3466 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3467 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3468
3469 return 0;
3470
3471 case VAR_DECL:
3472 case PARM_DECL:
3473 case CONST_DECL:
3474 case FUNCTION_DECL:
3475 return 0;
3476
3477 default:
3478 break;
3479 }
3480
3481 /* This general rule works for most tree codes. All exceptions should be
3482 handled above. If this is a language-specific tree code, we can't
3483 trust what might be in the operand, so say we don't know
3484 the situation. */
3485 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3486 return -1;
3487
3488 switch (TREE_CODE_CLASS (code1))
3489 {
3490 case '1':
3491 case '2':
3492 case '<':
3493 case 'e':
3494 case 'r':
3495 case 's':
3496 cmp = 1;
3497 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3498 {
3499 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3500 if (cmp <= 0)
3501 return cmp;
3502 }
3503
3504 return cmp;
3505
3506 default:
3507 return -1;
3508 }
3509 }
3510
3511 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3512 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3513 than U, respectively. */
3514
3515 int
3516 compare_tree_int (t, u)
3517 tree t;
3518 unsigned HOST_WIDE_INT u;
3519 {
3520 if (tree_int_cst_sgn (t) < 0)
3521 return -1;
3522 else if (TREE_INT_CST_HIGH (t) != 0)
3523 return 1;
3524 else if (TREE_INT_CST_LOW (t) == u)
3525 return 0;
3526 else if (TREE_INT_CST_LOW (t) < u)
3527 return -1;
3528 else
3529 return 1;
3530 }
3531 \f
3532 /* Constructors for pointer, array and function types.
3533 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3534 constructed by language-dependent code, not here.) */
3535
3536 /* Construct, lay out and return the type of pointers to TO_TYPE.
3537 If such a type has already been constructed, reuse it. */
3538
3539 tree
3540 build_pointer_type (to_type)
3541 tree to_type;
3542 {
3543 tree t = TYPE_POINTER_TO (to_type);
3544
3545 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3546
3547 if (t != 0)
3548 return t;
3549
3550 /* We need a new one. */
3551 t = make_node (POINTER_TYPE);
3552
3553 TREE_TYPE (t) = to_type;
3554
3555 /* Record this type as the pointer to TO_TYPE. */
3556 TYPE_POINTER_TO (to_type) = t;
3557
3558 /* Lay out the type. This function has many callers that are concerned
3559 with expression-construction, and this simplifies them all.
3560 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3561 layout_type (t);
3562
3563 return t;
3564 }
3565
3566 /* Build the node for the type of references-to-TO_TYPE. */
3567
3568 tree
3569 build_reference_type (to_type)
3570 tree to_type;
3571 {
3572 tree t = TYPE_REFERENCE_TO (to_type);
3573
3574 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3575
3576 if (t)
3577 return t;
3578
3579 /* We need a new one. */
3580 t = make_node (REFERENCE_TYPE);
3581
3582 TREE_TYPE (t) = to_type;
3583
3584 /* Record this type as the pointer to TO_TYPE. */
3585 TYPE_REFERENCE_TO (to_type) = t;
3586
3587 layout_type (t);
3588
3589 return t;
3590 }
3591
3592 /* Build a type that is compatible with t but has no cv quals anywhere
3593 in its type, thus
3594
3595 const char *const *const * -> char ***. */
3596
3597 tree
3598 build_type_no_quals (t)
3599 tree t;
3600 {
3601 switch (TREE_CODE (t))
3602 {
3603 case POINTER_TYPE:
3604 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3605 case REFERENCE_TYPE:
3606 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3607 default:
3608 return TYPE_MAIN_VARIANT (t);
3609 }
3610 }
3611
3612 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3613 MAXVAL should be the maximum value in the domain
3614 (one less than the length of the array).
3615
3616 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3617 We don't enforce this limit, that is up to caller (e.g. language front end).
3618 The limit exists because the result is a signed type and we don't handle
3619 sizes that use more than one HOST_WIDE_INT. */
3620
3621 tree
3622 build_index_type (maxval)
3623 tree maxval;
3624 {
3625 tree itype = make_node (INTEGER_TYPE);
3626
3627 TREE_TYPE (itype) = sizetype;
3628 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3629 TYPE_MIN_VALUE (itype) = size_zero_node;
3630 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3631 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3632 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3633 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3634 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3635 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3636
3637 if (host_integerp (maxval, 1))
3638 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3639 else
3640 return itype;
3641 }
3642
3643 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3644 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3645 low bound LOWVAL and high bound HIGHVAL.
3646 if TYPE==NULL_TREE, sizetype is used. */
3647
3648 tree
3649 build_range_type (type, lowval, highval)
3650 tree type, lowval, highval;
3651 {
3652 tree itype = make_node (INTEGER_TYPE);
3653
3654 TREE_TYPE (itype) = type;
3655 if (type == NULL_TREE)
3656 type = sizetype;
3657
3658 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3659 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3660
3661 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3662 TYPE_MODE (itype) = TYPE_MODE (type);
3663 TYPE_SIZE (itype) = TYPE_SIZE (type);
3664 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3665 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3666 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3667
3668 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3669 return type_hash_canon (tree_low_cst (highval, 0)
3670 - tree_low_cst (lowval, 0),
3671 itype);
3672 else
3673 return itype;
3674 }
3675
3676 /* Just like build_index_type, but takes lowval and highval instead
3677 of just highval (maxval). */
3678
3679 tree
3680 build_index_2_type (lowval, highval)
3681 tree lowval, highval;
3682 {
3683 return build_range_type (sizetype, lowval, highval);
3684 }
3685
3686 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3687 Needed because when index types are not hashed, equal index types
3688 built at different times appear distinct, even though structurally,
3689 they are not. */
3690
3691 int
3692 index_type_equal (itype1, itype2)
3693 tree itype1, itype2;
3694 {
3695 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3696 return 0;
3697
3698 if (TREE_CODE (itype1) == INTEGER_TYPE)
3699 {
3700 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3701 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3702 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3703 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3704 return 0;
3705
3706 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3707 TYPE_MIN_VALUE (itype2))
3708 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3709 TYPE_MAX_VALUE (itype2)))
3710 return 1;
3711 }
3712
3713 return 0;
3714 }
3715
3716 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3717 and number of elements specified by the range of values of INDEX_TYPE.
3718 If such a type has already been constructed, reuse it. */
3719
3720 tree
3721 build_array_type (elt_type, index_type)
3722 tree elt_type, index_type;
3723 {
3724 tree t;
3725 unsigned int hashcode;
3726
3727 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3728 {
3729 error ("arrays of functions are not meaningful");
3730 elt_type = integer_type_node;
3731 }
3732
3733 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3734 build_pointer_type (elt_type);
3735
3736 /* Allocate the array after the pointer type,
3737 in case we free it in type_hash_canon. */
3738 t = make_node (ARRAY_TYPE);
3739 TREE_TYPE (t) = elt_type;
3740 TYPE_DOMAIN (t) = index_type;
3741
3742 if (index_type == 0)
3743 {
3744 return t;
3745 }
3746
3747 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3748 t = type_hash_canon (hashcode, t);
3749
3750 if (!COMPLETE_TYPE_P (t))
3751 layout_type (t);
3752 return t;
3753 }
3754
3755 /* Return the TYPE of the elements comprising
3756 the innermost dimension of ARRAY. */
3757
3758 tree
3759 get_inner_array_type (array)
3760 tree array;
3761 {
3762 tree type = TREE_TYPE (array);
3763
3764 while (TREE_CODE (type) == ARRAY_TYPE)
3765 type = TREE_TYPE (type);
3766
3767 return type;
3768 }
3769
3770 /* Construct, lay out and return
3771 the type of functions returning type VALUE_TYPE
3772 given arguments of types ARG_TYPES.
3773 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3774 are data type nodes for the arguments of the function.
3775 If such a type has already been constructed, reuse it. */
3776
3777 tree
3778 build_function_type (value_type, arg_types)
3779 tree value_type, arg_types;
3780 {
3781 tree t;
3782 unsigned int hashcode;
3783
3784 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3785 {
3786 error ("function return type cannot be function");
3787 value_type = integer_type_node;
3788 }
3789
3790 /* Make a node of the sort we want. */
3791 t = make_node (FUNCTION_TYPE);
3792 TREE_TYPE (t) = value_type;
3793 TYPE_ARG_TYPES (t) = arg_types;
3794
3795 /* If we already have such a type, use the old one and free this one. */
3796 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3797 t = type_hash_canon (hashcode, t);
3798
3799 if (!COMPLETE_TYPE_P (t))
3800 layout_type (t);
3801 return t;
3802 }
3803
3804 /* Like build_function_type, but take a vararg list of nodes. The
3805 list of nodes should end with a NULL_TREE. This is typically used
3806 for creating function types for builtins. */
3807
3808 tree
3809 build_function_type_list VPARAMS ((tree first, ...))
3810 {
3811 tree t, args, last;
3812
3813 VA_OPEN (p, first);
3814 VA_FIXEDARG (p, tree, first);
3815
3816 t = va_arg (p, tree);
3817 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3818 args = tree_cons (NULL_TREE, t, args);
3819
3820 last = args;
3821 args = nreverse (args);
3822 TREE_CHAIN (last) = void_list_node;
3823 args = build_function_type (first, args);
3824
3825 VA_CLOSE (p);
3826 return args;
3827 }
3828
3829 /* Construct, lay out and return the type of methods belonging to class
3830 BASETYPE and whose arguments and values are described by TYPE.
3831 If that type exists already, reuse it.
3832 TYPE must be a FUNCTION_TYPE node. */
3833
3834 tree
3835 build_method_type (basetype, type)
3836 tree basetype, type;
3837 {
3838 tree t;
3839 unsigned int hashcode;
3840
3841 /* Make a node of the sort we want. */
3842 t = make_node (METHOD_TYPE);
3843
3844 if (TREE_CODE (type) != FUNCTION_TYPE)
3845 abort ();
3846
3847 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3848 TREE_TYPE (t) = TREE_TYPE (type);
3849
3850 /* The actual arglist for this function includes a "hidden" argument
3851 which is "this". Put it into the list of argument types. */
3852
3853 TYPE_ARG_TYPES (t)
3854 = tree_cons (NULL_TREE,
3855 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3856
3857 /* If we already have such a type, use the old one and free this one. */
3858 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3859 t = type_hash_canon (hashcode, t);
3860
3861 if (!COMPLETE_TYPE_P (t))
3862 layout_type (t);
3863
3864 return t;
3865 }
3866
3867 /* Construct, lay out and return the type of offsets to a value
3868 of type TYPE, within an object of type BASETYPE.
3869 If a suitable offset type exists already, reuse it. */
3870
3871 tree
3872 build_offset_type (basetype, type)
3873 tree basetype, type;
3874 {
3875 tree t;
3876 unsigned int hashcode;
3877
3878 /* Make a node of the sort we want. */
3879 t = make_node (OFFSET_TYPE);
3880
3881 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3882 TREE_TYPE (t) = type;
3883
3884 /* If we already have such a type, use the old one and free this one. */
3885 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3886 t = type_hash_canon (hashcode, t);
3887
3888 if (!COMPLETE_TYPE_P (t))
3889 layout_type (t);
3890
3891 return t;
3892 }
3893
3894 /* Create a complex type whose components are COMPONENT_TYPE. */
3895
3896 tree
3897 build_complex_type (component_type)
3898 tree component_type;
3899 {
3900 tree t;
3901 unsigned int hashcode;
3902
3903 /* Make a node of the sort we want. */
3904 t = make_node (COMPLEX_TYPE);
3905
3906 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3907 set_type_quals (t, TYPE_QUALS (component_type));
3908
3909 /* If we already have such a type, use the old one and free this one. */
3910 hashcode = TYPE_HASH (component_type);
3911 t = type_hash_canon (hashcode, t);
3912
3913 if (!COMPLETE_TYPE_P (t))
3914 layout_type (t);
3915
3916 /* If we are writing Dwarf2 output we need to create a name,
3917 since complex is a fundamental type. */
3918 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3919 && ! TYPE_NAME (t))
3920 {
3921 const char *name;
3922 if (component_type == char_type_node)
3923 name = "complex char";
3924 else if (component_type == signed_char_type_node)
3925 name = "complex signed char";
3926 else if (component_type == unsigned_char_type_node)
3927 name = "complex unsigned char";
3928 else if (component_type == short_integer_type_node)
3929 name = "complex short int";
3930 else if (component_type == short_unsigned_type_node)
3931 name = "complex short unsigned int";
3932 else if (component_type == integer_type_node)
3933 name = "complex int";
3934 else if (component_type == unsigned_type_node)
3935 name = "complex unsigned int";
3936 else if (component_type == long_integer_type_node)
3937 name = "complex long int";
3938 else if (component_type == long_unsigned_type_node)
3939 name = "complex long unsigned int";
3940 else if (component_type == long_long_integer_type_node)
3941 name = "complex long long int";
3942 else if (component_type == long_long_unsigned_type_node)
3943 name = "complex long long unsigned int";
3944 else
3945 name = 0;
3946
3947 if (name != 0)
3948 TYPE_NAME (t) = get_identifier (name);
3949 }
3950
3951 return t;
3952 }
3953 \f
3954 /* Return OP, stripped of any conversions to wider types as much as is safe.
3955 Converting the value back to OP's type makes a value equivalent to OP.
3956
3957 If FOR_TYPE is nonzero, we return a value which, if converted to
3958 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3959
3960 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3961 narrowest type that can hold the value, even if they don't exactly fit.
3962 Otherwise, bit-field references are changed to a narrower type
3963 only if they can be fetched directly from memory in that type.
3964
3965 OP must have integer, real or enumeral type. Pointers are not allowed!
3966
3967 There are some cases where the obvious value we could return
3968 would regenerate to OP if converted to OP's type,
3969 but would not extend like OP to wider types.
3970 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3971 For example, if OP is (unsigned short)(signed char)-1,
3972 we avoid returning (signed char)-1 if FOR_TYPE is int,
3973 even though extending that to an unsigned short would regenerate OP,
3974 since the result of extending (signed char)-1 to (int)
3975 is different from (int) OP. */
3976
3977 tree
3978 get_unwidened (op, for_type)
3979 tree op;
3980 tree for_type;
3981 {
3982 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3983 tree type = TREE_TYPE (op);
3984 unsigned final_prec
3985 = TYPE_PRECISION (for_type != 0 ? for_type : type);
3986 int uns
3987 = (for_type != 0 && for_type != type
3988 && final_prec > TYPE_PRECISION (type)
3989 && TREE_UNSIGNED (type));
3990 tree win = op;
3991
3992 while (TREE_CODE (op) == NOP_EXPR)
3993 {
3994 int bitschange
3995 = TYPE_PRECISION (TREE_TYPE (op))
3996 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3997
3998 /* Truncations are many-one so cannot be removed.
3999 Unless we are later going to truncate down even farther. */
4000 if (bitschange < 0
4001 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4002 break;
4003
4004 /* See what's inside this conversion. If we decide to strip it,
4005 we will set WIN. */
4006 op = TREE_OPERAND (op, 0);
4007
4008 /* If we have not stripped any zero-extensions (uns is 0),
4009 we can strip any kind of extension.
4010 If we have previously stripped a zero-extension,
4011 only zero-extensions can safely be stripped.
4012 Any extension can be stripped if the bits it would produce
4013 are all going to be discarded later by truncating to FOR_TYPE. */
4014
4015 if (bitschange > 0)
4016 {
4017 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4018 win = op;
4019 /* TREE_UNSIGNED says whether this is a zero-extension.
4020 Let's avoid computing it if it does not affect WIN
4021 and if UNS will not be needed again. */
4022 if ((uns || TREE_CODE (op) == NOP_EXPR)
4023 && TREE_UNSIGNED (TREE_TYPE (op)))
4024 {
4025 uns = 1;
4026 win = op;
4027 }
4028 }
4029 }
4030
4031 if (TREE_CODE (op) == COMPONENT_REF
4032 /* Since type_for_size always gives an integer type. */
4033 && TREE_CODE (type) != REAL_TYPE
4034 /* Don't crash if field not laid out yet. */
4035 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4036 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4037 {
4038 unsigned int innerprec
4039 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4040 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4041 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4042
4043 /* We can get this structure field in the narrowest type it fits in.
4044 If FOR_TYPE is 0, do this only for a field that matches the
4045 narrower type exactly and is aligned for it
4046 The resulting extension to its nominal type (a fullword type)
4047 must fit the same conditions as for other extensions. */
4048
4049 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4050 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4051 && (! uns || final_prec <= innerprec || unsignedp)
4052 && type != 0)
4053 {
4054 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4055 TREE_OPERAND (op, 1));
4056 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4057 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4058 }
4059 }
4060
4061 return win;
4062 }
4063 \f
4064 /* Return OP or a simpler expression for a narrower value
4065 which can be sign-extended or zero-extended to give back OP.
4066 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4067 or 0 if the value should be sign-extended. */
4068
4069 tree
4070 get_narrower (op, unsignedp_ptr)
4071 tree op;
4072 int *unsignedp_ptr;
4073 {
4074 int uns = 0;
4075 int first = 1;
4076 tree win = op;
4077
4078 while (TREE_CODE (op) == NOP_EXPR)
4079 {
4080 int bitschange
4081 = (TYPE_PRECISION (TREE_TYPE (op))
4082 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4083
4084 /* Truncations are many-one so cannot be removed. */
4085 if (bitschange < 0)
4086 break;
4087
4088 /* See what's inside this conversion. If we decide to strip it,
4089 we will set WIN. */
4090 op = TREE_OPERAND (op, 0);
4091
4092 if (bitschange > 0)
4093 {
4094 /* An extension: the outermost one can be stripped,
4095 but remember whether it is zero or sign extension. */
4096 if (first)
4097 uns = TREE_UNSIGNED (TREE_TYPE (op));
4098 /* Otherwise, if a sign extension has been stripped,
4099 only sign extensions can now be stripped;
4100 if a zero extension has been stripped, only zero-extensions. */
4101 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4102 break;
4103 first = 0;
4104 }
4105 else /* bitschange == 0 */
4106 {
4107 /* A change in nominal type can always be stripped, but we must
4108 preserve the unsignedness. */
4109 if (first)
4110 uns = TREE_UNSIGNED (TREE_TYPE (op));
4111 first = 0;
4112 }
4113
4114 win = op;
4115 }
4116
4117 if (TREE_CODE (op) == COMPONENT_REF
4118 /* Since type_for_size always gives an integer type. */
4119 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4120 /* Ensure field is laid out already. */
4121 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4122 {
4123 unsigned HOST_WIDE_INT innerprec
4124 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4125 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4126 TREE_UNSIGNED (op));
4127
4128 /* We can get this structure field in a narrower type that fits it,
4129 but the resulting extension to its nominal type (a fullword type)
4130 must satisfy the same conditions as for other extensions.
4131
4132 Do this only for fields that are aligned (not bit-fields),
4133 because when bit-field insns will be used there is no
4134 advantage in doing this. */
4135
4136 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4137 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4138 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4139 && type != 0)
4140 {
4141 if (first)
4142 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4143 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4144 TREE_OPERAND (op, 1));
4145 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4146 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4147 }
4148 }
4149 *unsignedp_ptr = uns;
4150 return win;
4151 }
4152 \f
4153 /* Nonzero if integer constant C has a value that is permissible
4154 for type TYPE (an INTEGER_TYPE). */
4155
4156 int
4157 int_fits_type_p (c, type)
4158 tree c, type;
4159 {
4160 /* If the bounds of the type are integers, we can check ourselves.
4161 If not, but this type is a subtype, try checking against that.
4162 Otherwise, use force_fit_type, which checks against the precision. */
4163 if (TYPE_MAX_VALUE (type) != NULL_TREE
4164 && TYPE_MIN_VALUE (type) != NULL_TREE
4165 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4166 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4167 {
4168 if (TREE_UNSIGNED (type))
4169 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4170 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4171 /* Negative ints never fit unsigned types. */
4172 && ! (TREE_INT_CST_HIGH (c) < 0
4173 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4174 else
4175 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4176 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4177 /* Unsigned ints with top bit set never fit signed types. */
4178 && ! (TREE_INT_CST_HIGH (c) < 0
4179 && TREE_UNSIGNED (TREE_TYPE (c))));
4180 }
4181 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4182 return int_fits_type_p (c, TREE_TYPE (type));
4183 else
4184 {
4185 c = copy_node (c);
4186 TREE_TYPE (c) = type;
4187 return !force_fit_type (c, 0);
4188 }
4189 }
4190
4191 /* Given a DECL or TYPE, return the scope in which it was declared, or
4192 NULL_TREE if there is no containing scope. */
4193
4194 tree
4195 get_containing_scope (t)
4196 tree t;
4197 {
4198 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4199 }
4200
4201 /* Return the innermost context enclosing DECL that is
4202 a FUNCTION_DECL, or zero if none. */
4203
4204 tree
4205 decl_function_context (decl)
4206 tree decl;
4207 {
4208 tree context;
4209
4210 if (TREE_CODE (decl) == ERROR_MARK)
4211 return 0;
4212
4213 if (TREE_CODE (decl) == SAVE_EXPR)
4214 context = SAVE_EXPR_CONTEXT (decl);
4215
4216 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4217 where we look up the function at runtime. Such functions always take
4218 a first argument of type 'pointer to real context'.
4219
4220 C++ should really be fixed to use DECL_CONTEXT for the real context,
4221 and use something else for the "virtual context". */
4222 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4223 context
4224 = TYPE_MAIN_VARIANT
4225 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4226 else
4227 context = DECL_CONTEXT (decl);
4228
4229 while (context && TREE_CODE (context) != FUNCTION_DECL)
4230 {
4231 if (TREE_CODE (context) == BLOCK)
4232 context = BLOCK_SUPERCONTEXT (context);
4233 else
4234 context = get_containing_scope (context);
4235 }
4236
4237 return context;
4238 }
4239
4240 /* Return the innermost context enclosing DECL that is
4241 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4242 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4243
4244 tree
4245 decl_type_context (decl)
4246 tree decl;
4247 {
4248 tree context = DECL_CONTEXT (decl);
4249
4250 while (context)
4251 {
4252 if (TREE_CODE (context) == NAMESPACE_DECL)
4253 return NULL_TREE;
4254
4255 if (TREE_CODE (context) == RECORD_TYPE
4256 || TREE_CODE (context) == UNION_TYPE
4257 || TREE_CODE (context) == QUAL_UNION_TYPE)
4258 return context;
4259
4260 if (TREE_CODE (context) == TYPE_DECL
4261 || TREE_CODE (context) == FUNCTION_DECL)
4262 context = DECL_CONTEXT (context);
4263
4264 else if (TREE_CODE (context) == BLOCK)
4265 context = BLOCK_SUPERCONTEXT (context);
4266
4267 else
4268 /* Unhandled CONTEXT!? */
4269 abort ();
4270 }
4271 return NULL_TREE;
4272 }
4273
4274 /* CALL is a CALL_EXPR. Return the declaration for the function
4275 called, or NULL_TREE if the called function cannot be
4276 determined. */
4277
4278 tree
4279 get_callee_fndecl (call)
4280 tree call;
4281 {
4282 tree addr;
4283
4284 /* It's invalid to call this function with anything but a
4285 CALL_EXPR. */
4286 if (TREE_CODE (call) != CALL_EXPR)
4287 abort ();
4288
4289 /* The first operand to the CALL is the address of the function
4290 called. */
4291 addr = TREE_OPERAND (call, 0);
4292
4293 STRIP_NOPS (addr);
4294
4295 /* If this is a readonly function pointer, extract its initial value. */
4296 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4297 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4298 && DECL_INITIAL (addr))
4299 addr = DECL_INITIAL (addr);
4300
4301 /* If the address is just `&f' for some function `f', then we know
4302 that `f' is being called. */
4303 if (TREE_CODE (addr) == ADDR_EXPR
4304 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4305 return TREE_OPERAND (addr, 0);
4306
4307 /* We couldn't figure out what was being called. */
4308 return NULL_TREE;
4309 }
4310
4311 /* Print debugging information about the obstack O, named STR. */
4312
4313 void
4314 print_obstack_statistics (str, o)
4315 const char *str;
4316 struct obstack *o;
4317 {
4318 struct _obstack_chunk *chunk = o->chunk;
4319 int n_chunks = 1;
4320 int n_alloc = 0;
4321
4322 n_alloc += o->next_free - chunk->contents;
4323 chunk = chunk->prev;
4324 while (chunk)
4325 {
4326 n_chunks += 1;
4327 n_alloc += chunk->limit - &chunk->contents[0];
4328 chunk = chunk->prev;
4329 }
4330 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4331 str, n_alloc, n_chunks);
4332 }
4333
4334 /* Print debugging information about tree nodes generated during the compile,
4335 and any language-specific information. */
4336
4337 void
4338 dump_tree_statistics ()
4339 {
4340 #ifdef GATHER_STATISTICS
4341 int i;
4342 int total_nodes, total_bytes;
4343 #endif
4344
4345 fprintf (stderr, "\n??? tree nodes created\n\n");
4346 #ifdef GATHER_STATISTICS
4347 fprintf (stderr, "Kind Nodes Bytes\n");
4348 fprintf (stderr, "-------------------------------------\n");
4349 total_nodes = total_bytes = 0;
4350 for (i = 0; i < (int) all_kinds; i++)
4351 {
4352 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4353 tree_node_counts[i], tree_node_sizes[i]);
4354 total_nodes += tree_node_counts[i];
4355 total_bytes += tree_node_sizes[i];
4356 }
4357 fprintf (stderr, "-------------------------------------\n");
4358 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4359 fprintf (stderr, "-------------------------------------\n");
4360 #else
4361 fprintf (stderr, "(No per-node statistics)\n");
4362 #endif
4363 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4364 print_type_hash_statistics ();
4365 (*lang_hooks.print_statistics) ();
4366 }
4367 \f
4368 #define FILE_FUNCTION_PREFIX_LEN 9
4369
4370 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4371
4372 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4373 clashes in cases where we can't reliably choose a unique name.
4374
4375 Derived from mkstemp.c in libiberty. */
4376
4377 static void
4378 append_random_chars (template)
4379 char *template;
4380 {
4381 static const char letters[]
4382 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4383 static unsigned HOST_WIDE_INT value;
4384 unsigned HOST_WIDE_INT v;
4385
4386 if (! value)
4387 {
4388 struct stat st;
4389
4390 /* VALUE should be unique for each file and must not change between
4391 compiles since this can cause bootstrap comparison errors. */
4392
4393 if (stat (main_input_filename, &st) < 0)
4394 {
4395 /* This can happen when preprocessed text is shipped between
4396 machines, e.g. with bug reports. Assume that uniqueness
4397 isn't actually an issue. */
4398 value = 1;
4399 }
4400 else
4401 {
4402 /* In VMS, ino is an array, so we have to use both values. We
4403 conditionalize that. */
4404 #ifdef VMS
4405 #define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
4406 #else
4407 #define INO_TO_INT(INO) INO
4408 #endif
4409 value = st.st_dev ^ INO_TO_INT (st.st_ino) ^ st.st_mtime;
4410 }
4411 }
4412
4413 template += strlen (template);
4414
4415 v = value;
4416
4417 /* Fill in the random bits. */
4418 template[0] = letters[v % 62];
4419 v /= 62;
4420 template[1] = letters[v % 62];
4421 v /= 62;
4422 template[2] = letters[v % 62];
4423 v /= 62;
4424 template[3] = letters[v % 62];
4425 v /= 62;
4426 template[4] = letters[v % 62];
4427 v /= 62;
4428 template[5] = letters[v % 62];
4429
4430 template[6] = '\0';
4431 }
4432
4433 /* P is a string that will be used in a symbol. Mask out any characters
4434 that are not valid in that context. */
4435
4436 void
4437 clean_symbol_name (p)
4438 char *p;
4439 {
4440 for (; *p; p++)
4441 if (! (ISALNUM (*p)
4442 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4443 || *p == '$'
4444 #endif
4445 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4446 || *p == '.'
4447 #endif
4448 ))
4449 *p = '_';
4450 }
4451
4452 /* Generate a name for a function unique to this translation unit.
4453 TYPE is some string to identify the purpose of this function to the
4454 linker or collect2. */
4455
4456 tree
4457 get_file_function_name_long (type)
4458 const char *type;
4459 {
4460 char *buf;
4461 const char *p;
4462 char *q;
4463
4464 if (first_global_object_name)
4465 p = first_global_object_name;
4466 else
4467 {
4468 /* We don't have anything that we know to be unique to this translation
4469 unit, so use what we do have and throw in some randomness. */
4470
4471 const char *name = weak_global_object_name;
4472 const char *file = main_input_filename;
4473
4474 if (! name)
4475 name = "";
4476 if (! file)
4477 file = input_filename;
4478
4479 q = (char *) alloca (7 + strlen (name) + strlen (file));
4480
4481 sprintf (q, "%s%s", name, file);
4482 append_random_chars (q);
4483 p = q;
4484 }
4485
4486 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4487 + strlen (type));
4488
4489 /* Set up the name of the file-level functions we may need.
4490 Use a global object (which is already required to be unique over
4491 the program) rather than the file name (which imposes extra
4492 constraints). */
4493 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4494
4495 /* Don't need to pull weird characters out of global names. */
4496 if (p != first_global_object_name)
4497 clean_symbol_name (buf + 11);
4498
4499 return get_identifier (buf);
4500 }
4501
4502 /* If KIND=='I', return a suitable global initializer (constructor) name.
4503 If KIND=='D', return a suitable global clean-up (destructor) name. */
4504
4505 tree
4506 get_file_function_name (kind)
4507 int kind;
4508 {
4509 char p[2];
4510
4511 p[0] = kind;
4512 p[1] = 0;
4513
4514 return get_file_function_name_long (p);
4515 }
4516 \f
4517 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4518 The result is placed in BUFFER (which has length BIT_SIZE),
4519 with one bit in each char ('\000' or '\001').
4520
4521 If the constructor is constant, NULL_TREE is returned.
4522 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4523
4524 tree
4525 get_set_constructor_bits (init, buffer, bit_size)
4526 tree init;
4527 char *buffer;
4528 int bit_size;
4529 {
4530 int i;
4531 tree vals;
4532 HOST_WIDE_INT domain_min
4533 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4534 tree non_const_bits = NULL_TREE;
4535
4536 for (i = 0; i < bit_size; i++)
4537 buffer[i] = 0;
4538
4539 for (vals = TREE_OPERAND (init, 1);
4540 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4541 {
4542 if (!host_integerp (TREE_VALUE (vals), 0)
4543 || (TREE_PURPOSE (vals) != NULL_TREE
4544 && !host_integerp (TREE_PURPOSE (vals), 0)))
4545 non_const_bits
4546 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4547 else if (TREE_PURPOSE (vals) != NULL_TREE)
4548 {
4549 /* Set a range of bits to ones. */
4550 HOST_WIDE_INT lo_index
4551 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4552 HOST_WIDE_INT hi_index
4553 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4554
4555 if (lo_index < 0 || lo_index >= bit_size
4556 || hi_index < 0 || hi_index >= bit_size)
4557 abort ();
4558 for (; lo_index <= hi_index; lo_index++)
4559 buffer[lo_index] = 1;
4560 }
4561 else
4562 {
4563 /* Set a single bit to one. */
4564 HOST_WIDE_INT index
4565 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4566 if (index < 0 || index >= bit_size)
4567 {
4568 error ("invalid initializer for bit string");
4569 return NULL_TREE;
4570 }
4571 buffer[index] = 1;
4572 }
4573 }
4574 return non_const_bits;
4575 }
4576
4577 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4578 The result is placed in BUFFER (which is an array of bytes).
4579 If the constructor is constant, NULL_TREE is returned.
4580 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4581
4582 tree
4583 get_set_constructor_bytes (init, buffer, wd_size)
4584 tree init;
4585 unsigned char *buffer;
4586 int wd_size;
4587 {
4588 int i;
4589 int set_word_size = BITS_PER_UNIT;
4590 int bit_size = wd_size * set_word_size;
4591 int bit_pos = 0;
4592 unsigned char *bytep = buffer;
4593 char *bit_buffer = (char *) alloca (bit_size);
4594 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4595
4596 for (i = 0; i < wd_size; i++)
4597 buffer[i] = 0;
4598
4599 for (i = 0; i < bit_size; i++)
4600 {
4601 if (bit_buffer[i])
4602 {
4603 if (BYTES_BIG_ENDIAN)
4604 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4605 else
4606 *bytep |= 1 << bit_pos;
4607 }
4608 bit_pos++;
4609 if (bit_pos >= set_word_size)
4610 bit_pos = 0, bytep++;
4611 }
4612 return non_const_bits;
4613 }
4614 \f
4615 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4616 /* Complain that the tree code of NODE does not match the expected CODE.
4617 FILE, LINE, and FUNCTION are of the caller. */
4618
4619 void
4620 tree_check_failed (node, code, file, line, function)
4621 const tree node;
4622 enum tree_code code;
4623 const char *file;
4624 int line;
4625 const char *function;
4626 {
4627 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4628 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4629 function, trim_filename (file), line);
4630 }
4631
4632 /* Similar to above, except that we check for a class of tree
4633 code, given in CL. */
4634
4635 void
4636 tree_class_check_failed (node, cl, file, line, function)
4637 const tree node;
4638 int cl;
4639 const char *file;
4640 int line;
4641 const char *function;
4642 {
4643 internal_error
4644 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4645 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4646 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4647 }
4648
4649 #endif /* ENABLE_TREE_CHECKING */
4650 \f
4651 /* For a new vector type node T, build the information necessary for
4652 debuggint output. */
4653
4654 static void
4655 finish_vector_type (t)
4656 tree t;
4657 {
4658 layout_type (t);
4659
4660 {
4661 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4662 tree array = build_array_type (TREE_TYPE (t),
4663 build_index_type (index));
4664 tree rt = make_node (RECORD_TYPE);
4665
4666 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4667 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4668 layout_type (rt);
4669 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4670 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4671 the representation type, and we want to find that die when looking up
4672 the vector type. This is most easily achieved by making the TYPE_UID
4673 numbers equal. */
4674 TYPE_UID (rt) = TYPE_UID (t);
4675 }
4676 }
4677
4678 /* Create nodes for all integer types (and error_mark_node) using the sizes
4679 of C datatypes. The caller should call set_sizetype soon after calling
4680 this function to select one of the types as sizetype. */
4681
4682 void
4683 build_common_tree_nodes (signed_char)
4684 int signed_char;
4685 {
4686 error_mark_node = make_node (ERROR_MARK);
4687 TREE_TYPE (error_mark_node) = error_mark_node;
4688
4689 initialize_sizetypes ();
4690
4691 /* Define both `signed char' and `unsigned char'. */
4692 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4693 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4694
4695 /* Define `char', which is like either `signed char' or `unsigned char'
4696 but not the same as either. */
4697 char_type_node
4698 = (signed_char
4699 ? make_signed_type (CHAR_TYPE_SIZE)
4700 : make_unsigned_type (CHAR_TYPE_SIZE));
4701
4702 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4703 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4704 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4705 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4706 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4707 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4708 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4709 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4710
4711 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4712 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4713 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4714 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4715 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4716
4717 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4718 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4719 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4720 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4721 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4722 }
4723
4724 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4725 It will create several other common tree nodes. */
4726
4727 void
4728 build_common_tree_nodes_2 (short_double)
4729 int short_double;
4730 {
4731 /* Define these next since types below may used them. */
4732 integer_zero_node = build_int_2 (0, 0);
4733 integer_one_node = build_int_2 (1, 0);
4734 integer_minus_one_node = build_int_2 (-1, -1);
4735
4736 size_zero_node = size_int (0);
4737 size_one_node = size_int (1);
4738 bitsize_zero_node = bitsize_int (0);
4739 bitsize_one_node = bitsize_int (1);
4740 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4741
4742 void_type_node = make_node (VOID_TYPE);
4743 layout_type (void_type_node);
4744
4745 /* We are not going to have real types in C with less than byte alignment,
4746 so we might as well not have any types that claim to have it. */
4747 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4748 TYPE_USER_ALIGN (void_type_node) = 0;
4749
4750 null_pointer_node = build_int_2 (0, 0);
4751 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4752 layout_type (TREE_TYPE (null_pointer_node));
4753
4754 ptr_type_node = build_pointer_type (void_type_node);
4755 const_ptr_type_node
4756 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4757
4758 float_type_node = make_node (REAL_TYPE);
4759 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4760 layout_type (float_type_node);
4761
4762 double_type_node = make_node (REAL_TYPE);
4763 if (short_double)
4764 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4765 else
4766 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4767 layout_type (double_type_node);
4768
4769 long_double_type_node = make_node (REAL_TYPE);
4770 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4771 layout_type (long_double_type_node);
4772
4773 complex_integer_type_node = make_node (COMPLEX_TYPE);
4774 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4775 layout_type (complex_integer_type_node);
4776
4777 complex_float_type_node = make_node (COMPLEX_TYPE);
4778 TREE_TYPE (complex_float_type_node) = float_type_node;
4779 layout_type (complex_float_type_node);
4780
4781 complex_double_type_node = make_node (COMPLEX_TYPE);
4782 TREE_TYPE (complex_double_type_node) = double_type_node;
4783 layout_type (complex_double_type_node);
4784
4785 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4786 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4787 layout_type (complex_long_double_type_node);
4788
4789 {
4790 tree t;
4791 BUILD_VA_LIST_TYPE (t);
4792
4793 /* Many back-ends define record types without seting TYPE_NAME.
4794 If we copied the record type here, we'd keep the original
4795 record type without a name. This breaks name mangling. So,
4796 don't copy record types and let c_common_nodes_and_builtins()
4797 declare the type to be __builtin_va_list. */
4798 if (TREE_CODE (t) != RECORD_TYPE)
4799 t = build_type_copy (t);
4800
4801 va_list_type_node = t;
4802 }
4803
4804 unsigned_V4SI_type_node
4805 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4806 unsigned_V2SI_type_node
4807 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4808 unsigned_V2DI_type_node
4809 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4810 unsigned_V4HI_type_node
4811 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4812 unsigned_V8QI_type_node
4813 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4814 unsigned_V8HI_type_node
4815 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4816 unsigned_V16QI_type_node
4817 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4818
4819 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4820 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4821 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4822 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4823 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4824 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4825 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4826 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4827 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4828 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4829 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4830 }
4831
4832 /* Returns a vector tree node given a vector mode, the inner type, and
4833 the signness. */
4834
4835 static tree
4836 make_vector (mode, innertype, unsignedp)
4837 enum machine_mode mode;
4838 tree innertype;
4839 int unsignedp;
4840 {
4841 tree t;
4842
4843 t = make_node (VECTOR_TYPE);
4844 TREE_TYPE (t) = innertype;
4845 TYPE_MODE (t) = mode;
4846 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4847 finish_vector_type (t);
4848
4849 return t;
4850 }
4851
4852 /* Given an initializer INIT, return TRUE if INIT is zero or some
4853 aggregate of zeros. Otherwise return FALSE. */
4854
4855 bool
4856 initializer_zerop (init)
4857 tree init;
4858 {
4859 STRIP_NOPS (init);
4860
4861 switch (TREE_CODE (init))
4862 {
4863 case INTEGER_CST:
4864 return integer_zerop (init);
4865 case REAL_CST:
4866 return real_zerop (init)
4867 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4868 case COMPLEX_CST:
4869 return integer_zerop (init)
4870 || (real_zerop (init)
4871 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4872 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4873 case CONSTRUCTOR:
4874 {
4875 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4876 {
4877 tree aggr_init = TREE_OPERAND (init, 1);
4878
4879 while (aggr_init)
4880 {
4881 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4882 return false;
4883 aggr_init = TREE_CHAIN (aggr_init);
4884 }
4885 return true;
4886 }
4887 return false;
4888 }
4889 default:
4890 return false;
4891 }
4892 }
4893
4894 #include "gt-tree.h"