Centralize knowledge of eh personality routines.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "vecs",
140 "binfos",
141 "ssa names",
142 "constructors",
143 "random kinds",
144 "lang_decl kinds",
145 "lang_type kinds",
146 "omp clauses",
147 };
148 #endif /* GATHER_STATISTICS */
149
150 /* Unique id for next decl created. */
151 static GTY(()) int next_decl_uid;
152 /* Unique id for next type created. */
153 static GTY(()) int next_type_uid = 1;
154 /* Unique id for next debug decl created. Use negative numbers,
155 to catch erroneous uses. */
156 static GTY(()) int next_debug_decl_uid;
157
158 /* Since we cannot rehash a type after it is in the table, we have to
159 keep the hash code. */
160
161 struct GTY(()) type_hash {
162 unsigned long hash;
163 tree type;
164 };
165
166 /* Initial size of the hash table (rounded to next prime). */
167 #define TYPE_HASH_INITIAL_SIZE 1000
168
169 /* Now here is the hash table. When recording a type, it is added to
170 the slot whose index is the hash code. Note that the hash table is
171 used for several kinds of types (function types, array types and
172 array index range types, for now). While all these live in the
173 same table, they are completely independent, and the hash code is
174 computed differently for each of these. */
175
176 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
177 htab_t type_hash_table;
178
179 /* Hash table and temporary node for larger integer const values. */
180 static GTY (()) tree int_cst_node;
181 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
182 htab_t int_cst_hash_table;
183
184 /* Hash table for optimization flags and target option flags. Use the same
185 hash table for both sets of options. Nodes for building the current
186 optimization and target option nodes. The assumption is most of the time
187 the options created will already be in the hash table, so we avoid
188 allocating and freeing up a node repeatably. */
189 static GTY (()) tree cl_optimization_node;
190 static GTY (()) tree cl_target_option_node;
191 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
192 htab_t cl_option_hash_table;
193
194 /* General tree->tree mapping structure for use in hash tables. */
195
196
197 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
198 htab_t debug_expr_for_decl;
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t value_expr_for_decl;
202
203 static GTY ((if_marked ("tree_priority_map_marked_p"),
204 param_is (struct tree_priority_map)))
205 htab_t init_priority_for_decl;
206
207 static void set_type_quals (tree, int);
208 static int type_hash_eq (const void *, const void *);
209 static hashval_t type_hash_hash (const void *);
210 static hashval_t int_cst_hash_hash (const void *);
211 static int int_cst_hash_eq (const void *, const void *);
212 static hashval_t cl_option_hash_hash (const void *);
213 static int cl_option_hash_eq (const void *, const void *);
214 static void print_type_hash_statistics (void);
215 static void print_debug_expr_statistics (void);
216 static void print_value_expr_statistics (void);
217 static int type_hash_marked_p (const void *);
218 static unsigned int type_hash_list (const_tree, hashval_t);
219 static unsigned int attribute_hash_list (const_tree, hashval_t);
220
221 tree global_trees[TI_MAX];
222 tree integer_types[itk_none];
223
224 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
225
226 /* Number of operands for each OpenMP clause. */
227 unsigned const char omp_clause_num_ops[] =
228 {
229 0, /* OMP_CLAUSE_ERROR */
230 1, /* OMP_CLAUSE_PRIVATE */
231 1, /* OMP_CLAUSE_SHARED */
232 1, /* OMP_CLAUSE_FIRSTPRIVATE */
233 2, /* OMP_CLAUSE_LASTPRIVATE */
234 4, /* OMP_CLAUSE_REDUCTION */
235 1, /* OMP_CLAUSE_COPYIN */
236 1, /* OMP_CLAUSE_COPYPRIVATE */
237 1, /* OMP_CLAUSE_IF */
238 1, /* OMP_CLAUSE_NUM_THREADS */
239 1, /* OMP_CLAUSE_SCHEDULE */
240 0, /* OMP_CLAUSE_NOWAIT */
241 0, /* OMP_CLAUSE_ORDERED */
242 0, /* OMP_CLAUSE_DEFAULT */
243 3, /* OMP_CLAUSE_COLLAPSE */
244 0 /* OMP_CLAUSE_UNTIED */
245 };
246
247 const char * const omp_clause_code_name[] =
248 {
249 "error_clause",
250 "private",
251 "shared",
252 "firstprivate",
253 "lastprivate",
254 "reduction",
255 "copyin",
256 "copyprivate",
257 "if",
258 "num_threads",
259 "schedule",
260 "nowait",
261 "ordered",
262 "default",
263 "collapse",
264 "untied"
265 };
266
267
268 /* Return the tree node structure used by tree code CODE. */
269
270 static inline enum tree_node_structure_enum
271 tree_node_structure_for_code (enum tree_code code)
272 {
273 switch (TREE_CODE_CLASS (code))
274 {
275 case tcc_declaration:
276 {
277 switch (code)
278 {
279 case FIELD_DECL:
280 return TS_FIELD_DECL;
281 case PARM_DECL:
282 return TS_PARM_DECL;
283 case VAR_DECL:
284 return TS_VAR_DECL;
285 case LABEL_DECL:
286 return TS_LABEL_DECL;
287 case RESULT_DECL:
288 return TS_RESULT_DECL;
289 case DEBUG_EXPR_DECL:
290 return TS_DECL_WRTL;
291 case CONST_DECL:
292 return TS_CONST_DECL;
293 case TYPE_DECL:
294 return TS_TYPE_DECL;
295 case FUNCTION_DECL:
296 return TS_FUNCTION_DECL;
297 case TRANSLATION_UNIT_DECL:
298 return TS_TRANSLATION_UNIT_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 case TS_TRANSLATION_UNIT_DECL:
470 MARK_TS_DECL_COMMON (code);
471 break;
472
473 default:
474 gcc_unreachable ();
475 }
476 }
477
478 /* Basic consistency checks for attributes used in fold. */
479 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
480 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
481 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
488 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
489 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
490 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
494 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
495 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
496 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
503 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
504 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
505 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
507 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
508 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
509 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
510 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
511 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
512 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
513 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
514 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
515 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
516 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
517 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
518
519 #undef MARK_TS_BASE
520 #undef MARK_TS_COMMON
521 #undef MARK_TS_DECL_MINIMAL
522 #undef MARK_TS_DECL_COMMON
523 #undef MARK_TS_DECL_WRTL
524 #undef MARK_TS_DECL_WITH_VIS
525 #undef MARK_TS_DECL_NON_COMMON
526 }
527
528
529 /* Init tree.c. */
530
531 void
532 init_ttree (void)
533 {
534 /* Initialize the hash table of types. */
535 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
536 type_hash_eq, 0);
537
538 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
539 tree_decl_map_eq, 0);
540
541 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
542 tree_decl_map_eq, 0);
543 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
544 tree_priority_map_eq, 0);
545
546 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
547 int_cst_hash_eq, NULL);
548
549 int_cst_node = make_node (INTEGER_CST);
550
551 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
552 cl_option_hash_eq, NULL);
553
554 cl_optimization_node = make_node (OPTIMIZATION_NODE);
555 cl_target_option_node = make_node (TARGET_OPTION_NODE);
556
557 /* Initialize the tree_contains_struct array. */
558 initialize_tree_contains_struct ();
559 lang_hooks.init_ts ();
560 }
561
562 \f
563 /* The name of the object as the assembler will see it (but before any
564 translations made by ASM_OUTPUT_LABELREF). Often this is the same
565 as DECL_NAME. It is an IDENTIFIER_NODE. */
566 tree
567 decl_assembler_name (tree decl)
568 {
569 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
570 lang_hooks.set_decl_assembler_name (decl);
571 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
572 }
573
574 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
575
576 bool
577 decl_assembler_name_equal (tree decl, const_tree asmname)
578 {
579 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
580 const char *decl_str;
581 const char *asmname_str;
582 bool test = false;
583
584 if (decl_asmname == asmname)
585 return true;
586
587 decl_str = IDENTIFIER_POINTER (decl_asmname);
588 asmname_str = IDENTIFIER_POINTER (asmname);
589
590
591 /* If the target assembler name was set by the user, things are trickier.
592 We have a leading '*' to begin with. After that, it's arguable what
593 is the correct thing to do with -fleading-underscore. Arguably, we've
594 historically been doing the wrong thing in assemble_alias by always
595 printing the leading underscore. Since we're not changing that, make
596 sure user_label_prefix follows the '*' before matching. */
597 if (decl_str[0] == '*')
598 {
599 size_t ulp_len = strlen (user_label_prefix);
600
601 decl_str ++;
602
603 if (ulp_len == 0)
604 test = true;
605 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
606 decl_str += ulp_len, test=true;
607 else
608 decl_str --;
609 }
610 if (asmname_str[0] == '*')
611 {
612 size_t ulp_len = strlen (user_label_prefix);
613
614 asmname_str ++;
615
616 if (ulp_len == 0)
617 test = true;
618 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
619 asmname_str += ulp_len, test=true;
620 else
621 asmname_str --;
622 }
623
624 if (!test)
625 return false;
626 return strcmp (decl_str, asmname_str) == 0;
627 }
628
629 /* Hash asmnames ignoring the user specified marks. */
630
631 hashval_t
632 decl_assembler_name_hash (const_tree asmname)
633 {
634 if (IDENTIFIER_POINTER (asmname)[0] == '*')
635 {
636 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
637 size_t ulp_len = strlen (user_label_prefix);
638
639 if (ulp_len == 0)
640 ;
641 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
642 decl_str += ulp_len;
643
644 return htab_hash_string (decl_str);
645 }
646
647 return htab_hash_string (IDENTIFIER_POINTER (asmname));
648 }
649
650 /* Compute the number of bytes occupied by a tree with code CODE.
651 This function cannot be used for nodes that have variable sizes,
652 including TREE_VEC, STRING_CST, and CALL_EXPR. */
653 size_t
654 tree_code_size (enum tree_code code)
655 {
656 switch (TREE_CODE_CLASS (code))
657 {
658 case tcc_declaration: /* A decl node */
659 {
660 switch (code)
661 {
662 case FIELD_DECL:
663 return sizeof (struct tree_field_decl);
664 case PARM_DECL:
665 return sizeof (struct tree_parm_decl);
666 case VAR_DECL:
667 return sizeof (struct tree_var_decl);
668 case LABEL_DECL:
669 return sizeof (struct tree_label_decl);
670 case RESULT_DECL:
671 return sizeof (struct tree_result_decl);
672 case CONST_DECL:
673 return sizeof (struct tree_const_decl);
674 case TYPE_DECL:
675 return sizeof (struct tree_type_decl);
676 case FUNCTION_DECL:
677 return sizeof (struct tree_function_decl);
678 case DEBUG_EXPR_DECL:
679 return sizeof (struct tree_decl_with_rtl);
680 default:
681 return sizeof (struct tree_decl_non_common);
682 }
683 }
684
685 case tcc_type: /* a type node */
686 return sizeof (struct tree_type);
687
688 case tcc_reference: /* a reference */
689 case tcc_expression: /* an expression */
690 case tcc_statement: /* an expression with side effects */
691 case tcc_comparison: /* a comparison expression */
692 case tcc_unary: /* a unary arithmetic expression */
693 case tcc_binary: /* a binary arithmetic expression */
694 return (sizeof (struct tree_exp)
695 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
696
697 case tcc_constant: /* a constant */
698 switch (code)
699 {
700 case INTEGER_CST: return sizeof (struct tree_int_cst);
701 case REAL_CST: return sizeof (struct tree_real_cst);
702 case FIXED_CST: return sizeof (struct tree_fixed_cst);
703 case COMPLEX_CST: return sizeof (struct tree_complex);
704 case VECTOR_CST: return sizeof (struct tree_vector);
705 case STRING_CST: gcc_unreachable ();
706 default:
707 return lang_hooks.tree_size (code);
708 }
709
710 case tcc_exceptional: /* something random, like an identifier. */
711 switch (code)
712 {
713 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
714 case TREE_LIST: return sizeof (struct tree_list);
715
716 case ERROR_MARK:
717 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
718
719 case TREE_VEC:
720 case OMP_CLAUSE: gcc_unreachable ();
721
722 case SSA_NAME: return sizeof (struct tree_ssa_name);
723
724 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
725 case BLOCK: return sizeof (struct tree_block);
726 case CONSTRUCTOR: return sizeof (struct tree_constructor);
727 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
728 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
729
730 default:
731 return lang_hooks.tree_size (code);
732 }
733
734 default:
735 gcc_unreachable ();
736 }
737 }
738
739 /* Compute the number of bytes occupied by NODE. This routine only
740 looks at TREE_CODE, except for those nodes that have variable sizes. */
741 size_t
742 tree_size (const_tree node)
743 {
744 const enum tree_code code = TREE_CODE (node);
745 switch (code)
746 {
747 case TREE_BINFO:
748 return (offsetof (struct tree_binfo, base_binfos)
749 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
750
751 case TREE_VEC:
752 return (sizeof (struct tree_vec)
753 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
754
755 case STRING_CST:
756 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
757
758 case OMP_CLAUSE:
759 return (sizeof (struct tree_omp_clause)
760 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
761 * sizeof (tree));
762
763 default:
764 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
765 return (sizeof (struct tree_exp)
766 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
767 else
768 return tree_code_size (code);
769 }
770 }
771
772 /* Return a newly allocated node of code CODE. For decl and type
773 nodes, some other fields are initialized. The rest of the node is
774 initialized to zero. This function cannot be used for TREE_VEC or
775 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
776
777 Achoo! I got a code in the node. */
778
779 tree
780 make_node_stat (enum tree_code code MEM_STAT_DECL)
781 {
782 tree t;
783 enum tree_code_class type = TREE_CODE_CLASS (code);
784 size_t length = tree_code_size (code);
785 #ifdef GATHER_STATISTICS
786 tree_node_kind kind;
787
788 switch (type)
789 {
790 case tcc_declaration: /* A decl node */
791 kind = d_kind;
792 break;
793
794 case tcc_type: /* a type node */
795 kind = t_kind;
796 break;
797
798 case tcc_statement: /* an expression with side effects */
799 kind = s_kind;
800 break;
801
802 case tcc_reference: /* a reference */
803 kind = r_kind;
804 break;
805
806 case tcc_expression: /* an expression */
807 case tcc_comparison: /* a comparison expression */
808 case tcc_unary: /* a unary arithmetic expression */
809 case tcc_binary: /* a binary arithmetic expression */
810 kind = e_kind;
811 break;
812
813 case tcc_constant: /* a constant */
814 kind = c_kind;
815 break;
816
817 case tcc_exceptional: /* something random, like an identifier. */
818 switch (code)
819 {
820 case IDENTIFIER_NODE:
821 kind = id_kind;
822 break;
823
824 case TREE_VEC:
825 kind = vec_kind;
826 break;
827
828 case TREE_BINFO:
829 kind = binfo_kind;
830 break;
831
832 case SSA_NAME:
833 kind = ssa_name_kind;
834 break;
835
836 case BLOCK:
837 kind = b_kind;
838 break;
839
840 case CONSTRUCTOR:
841 kind = constr_kind;
842 break;
843
844 default:
845 kind = x_kind;
846 break;
847 }
848 break;
849
850 default:
851 gcc_unreachable ();
852 }
853
854 tree_node_counts[(int) kind]++;
855 tree_node_sizes[(int) kind] += length;
856 #endif
857
858 t = ggc_alloc_zone_cleared_tree_node_stat (
859 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
860 length PASS_MEM_STAT);
861 TREE_SET_CODE (t, code);
862
863 switch (type)
864 {
865 case tcc_statement:
866 TREE_SIDE_EFFECTS (t) = 1;
867 break;
868
869 case tcc_declaration:
870 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
871 {
872 if (code == FUNCTION_DECL)
873 {
874 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
875 DECL_MODE (t) = FUNCTION_MODE;
876 }
877 else
878 DECL_ALIGN (t) = 1;
879 }
880 DECL_SOURCE_LOCATION (t) = input_location;
881 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
882 DECL_UID (t) = --next_debug_decl_uid;
883 else
884 {
885 DECL_UID (t) = next_decl_uid++;
886 SET_DECL_PT_UID (t, -1);
887 }
888 if (TREE_CODE (t) == LABEL_DECL)
889 LABEL_DECL_UID (t) = -1;
890
891 break;
892
893 case tcc_type:
894 TYPE_UID (t) = next_type_uid++;
895 TYPE_ALIGN (t) = BITS_PER_UNIT;
896 TYPE_USER_ALIGN (t) = 0;
897 TYPE_MAIN_VARIANT (t) = t;
898 TYPE_CANONICAL (t) = t;
899
900 /* Default to no attributes for type, but let target change that. */
901 TYPE_ATTRIBUTES (t) = NULL_TREE;
902 targetm.set_default_type_attributes (t);
903
904 /* We have not yet computed the alias set for this type. */
905 TYPE_ALIAS_SET (t) = -1;
906 break;
907
908 case tcc_constant:
909 TREE_CONSTANT (t) = 1;
910 break;
911
912 case tcc_expression:
913 switch (code)
914 {
915 case INIT_EXPR:
916 case MODIFY_EXPR:
917 case VA_ARG_EXPR:
918 case PREDECREMENT_EXPR:
919 case PREINCREMENT_EXPR:
920 case POSTDECREMENT_EXPR:
921 case POSTINCREMENT_EXPR:
922 /* All of these have side-effects, no matter what their
923 operands are. */
924 TREE_SIDE_EFFECTS (t) = 1;
925 break;
926
927 default:
928 break;
929 }
930 break;
931
932 default:
933 /* Other classes need no special treatment. */
934 break;
935 }
936
937 return t;
938 }
939 \f
940 /* Return a new node with the same contents as NODE except that its
941 TREE_CHAIN is zero and it has a fresh uid. */
942
943 tree
944 copy_node_stat (tree node MEM_STAT_DECL)
945 {
946 tree t;
947 enum tree_code code = TREE_CODE (node);
948 size_t length;
949
950 gcc_assert (code != STATEMENT_LIST);
951
952 length = tree_size (node);
953 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
954 memcpy (t, node, length);
955
956 TREE_CHAIN (t) = 0;
957 TREE_ASM_WRITTEN (t) = 0;
958 TREE_VISITED (t) = 0;
959 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
960 *DECL_VAR_ANN_PTR (t) = 0;
961
962 if (TREE_CODE_CLASS (code) == tcc_declaration)
963 {
964 if (code == DEBUG_EXPR_DECL)
965 DECL_UID (t) = --next_debug_decl_uid;
966 else
967 {
968 DECL_UID (t) = next_decl_uid++;
969 if (DECL_PT_UID_SET_P (node))
970 SET_DECL_PT_UID (t, DECL_PT_UID (node));
971 }
972 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
973 && DECL_HAS_VALUE_EXPR_P (node))
974 {
975 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
976 DECL_HAS_VALUE_EXPR_P (t) = 1;
977 }
978 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
979 {
980 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
981 DECL_HAS_INIT_PRIORITY_P (t) = 1;
982 }
983 }
984 else if (TREE_CODE_CLASS (code) == tcc_type)
985 {
986 TYPE_UID (t) = next_type_uid++;
987 /* The following is so that the debug code for
988 the copy is different from the original type.
989 The two statements usually duplicate each other
990 (because they clear fields of the same union),
991 but the optimizer should catch that. */
992 TYPE_SYMTAB_POINTER (t) = 0;
993 TYPE_SYMTAB_ADDRESS (t) = 0;
994
995 /* Do not copy the values cache. */
996 if (TYPE_CACHED_VALUES_P(t))
997 {
998 TYPE_CACHED_VALUES_P (t) = 0;
999 TYPE_CACHED_VALUES (t) = NULL_TREE;
1000 }
1001 }
1002
1003 return t;
1004 }
1005
1006 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1007 For example, this can copy a list made of TREE_LIST nodes. */
1008
1009 tree
1010 copy_list (tree list)
1011 {
1012 tree head;
1013 tree prev, next;
1014
1015 if (list == 0)
1016 return 0;
1017
1018 head = prev = copy_node (list);
1019 next = TREE_CHAIN (list);
1020 while (next)
1021 {
1022 TREE_CHAIN (prev) = copy_node (next);
1023 prev = TREE_CHAIN (prev);
1024 next = TREE_CHAIN (next);
1025 }
1026 return head;
1027 }
1028
1029 \f
1030 /* Create an INT_CST node with a LOW value sign extended. */
1031
1032 tree
1033 build_int_cst (tree type, HOST_WIDE_INT low)
1034 {
1035 /* Support legacy code. */
1036 if (!type)
1037 type = integer_type_node;
1038
1039 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1040 }
1041
1042 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1043 if it is negative. This function is similar to build_int_cst, but
1044 the extra bits outside of the type precision are cleared. Constants
1045 with these extra bits may confuse the fold so that it detects overflows
1046 even in cases when they do not occur, and in general should be avoided.
1047 We cannot however make this a default behavior of build_int_cst without
1048 more intrusive changes, since there are parts of gcc that rely on the extra
1049 precision of the integer constants. */
1050
1051 tree
1052 build_int_cst_type (tree type, HOST_WIDE_INT low)
1053 {
1054 gcc_assert (type);
1055
1056 return double_int_to_tree (type, shwi_to_double_int (low));
1057 }
1058
1059 /* Constructs tree in type TYPE from with value given by CST. Signedness
1060 of CST is assumed to be the same as the signedness of TYPE. */
1061
1062 tree
1063 double_int_to_tree (tree type, double_int cst)
1064 {
1065 /* Size types *are* sign extended. */
1066 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1067 || (TREE_CODE (type) == INTEGER_TYPE
1068 && TYPE_IS_SIZETYPE (type)));
1069
1070 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1071
1072 return build_int_cst_wide (type, cst.low, cst.high);
1073 }
1074
1075 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1076 to be the same as the signedness of TYPE. */
1077
1078 bool
1079 double_int_fits_to_tree_p (const_tree type, double_int cst)
1080 {
1081 /* Size types *are* sign extended. */
1082 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1083 || (TREE_CODE (type) == INTEGER_TYPE
1084 && TYPE_IS_SIZETYPE (type)));
1085
1086 double_int ext
1087 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1088
1089 return double_int_equal_p (cst, ext);
1090 }
1091
1092 /* We force the double_int CST to the range of the type TYPE by sign or
1093 zero extending it. OVERFLOWABLE indicates if we are interested in
1094 overflow of the value, when >0 we are only interested in signed
1095 overflow, for <0 we are interested in any overflow. OVERFLOWED
1096 indicates whether overflow has already occurred. CONST_OVERFLOWED
1097 indicates whether constant overflow has already occurred. We force
1098 T's value to be within range of T's type (by setting to 0 or 1 all
1099 the bits outside the type's range). We set TREE_OVERFLOWED if,
1100 OVERFLOWED is nonzero,
1101 or OVERFLOWABLE is >0 and signed overflow occurs
1102 or OVERFLOWABLE is <0 and any overflow occurs
1103 We return a new tree node for the extended double_int. The node
1104 is shared if no overflow flags are set. */
1105
1106
1107 tree
1108 force_fit_type_double (tree type, double_int cst, int overflowable,
1109 bool overflowed)
1110 {
1111 bool sign_extended_type;
1112
1113 /* Size types *are* sign extended. */
1114 sign_extended_type = (!TYPE_UNSIGNED (type)
1115 || (TREE_CODE (type) == INTEGER_TYPE
1116 && TYPE_IS_SIZETYPE (type)));
1117
1118 /* If we need to set overflow flags, return a new unshared node. */
1119 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1120 {
1121 if (overflowed
1122 || overflowable < 0
1123 || (overflowable > 0 && sign_extended_type))
1124 {
1125 tree t = make_node (INTEGER_CST);
1126 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1127 !sign_extended_type);
1128 TREE_TYPE (t) = type;
1129 TREE_OVERFLOW (t) = 1;
1130 return t;
1131 }
1132 }
1133
1134 /* Else build a shared node. */
1135 return double_int_to_tree (type, cst);
1136 }
1137
1138 /* These are the hash table functions for the hash table of INTEGER_CST
1139 nodes of a sizetype. */
1140
1141 /* Return the hash code code X, an INTEGER_CST. */
1142
1143 static hashval_t
1144 int_cst_hash_hash (const void *x)
1145 {
1146 const_tree const t = (const_tree) x;
1147
1148 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1149 ^ htab_hash_pointer (TREE_TYPE (t)));
1150 }
1151
1152 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1153 is the same as that given by *Y, which is the same. */
1154
1155 static int
1156 int_cst_hash_eq (const void *x, const void *y)
1157 {
1158 const_tree const xt = (const_tree) x;
1159 const_tree const yt = (const_tree) y;
1160
1161 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1162 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1163 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1164 }
1165
1166 /* Create an INT_CST node of TYPE and value HI:LOW.
1167 The returned node is always shared. For small integers we use a
1168 per-type vector cache, for larger ones we use a single hash table. */
1169
1170 tree
1171 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1172 {
1173 tree t;
1174 int ix = -1;
1175 int limit = 0;
1176
1177 gcc_assert (type);
1178
1179 switch (TREE_CODE (type))
1180 {
1181 case POINTER_TYPE:
1182 case REFERENCE_TYPE:
1183 /* Cache NULL pointer. */
1184 if (!hi && !low)
1185 {
1186 limit = 1;
1187 ix = 0;
1188 }
1189 break;
1190
1191 case BOOLEAN_TYPE:
1192 /* Cache false or true. */
1193 limit = 2;
1194 if (!hi && low < 2)
1195 ix = low;
1196 break;
1197
1198 case INTEGER_TYPE:
1199 case OFFSET_TYPE:
1200 if (TYPE_UNSIGNED (type))
1201 {
1202 /* Cache 0..N */
1203 limit = INTEGER_SHARE_LIMIT;
1204 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1205 ix = low;
1206 }
1207 else
1208 {
1209 /* Cache -1..N */
1210 limit = INTEGER_SHARE_LIMIT + 1;
1211 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1212 ix = low + 1;
1213 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1214 ix = 0;
1215 }
1216 break;
1217
1218 case ENUMERAL_TYPE:
1219 break;
1220
1221 default:
1222 gcc_unreachable ();
1223 }
1224
1225 if (ix >= 0)
1226 {
1227 /* Look for it in the type's vector of small shared ints. */
1228 if (!TYPE_CACHED_VALUES_P (type))
1229 {
1230 TYPE_CACHED_VALUES_P (type) = 1;
1231 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1232 }
1233
1234 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1235 if (t)
1236 {
1237 /* Make sure no one is clobbering the shared constant. */
1238 gcc_assert (TREE_TYPE (t) == type);
1239 gcc_assert (TREE_INT_CST_LOW (t) == low);
1240 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1241 }
1242 else
1243 {
1244 /* Create a new shared int. */
1245 t = make_node (INTEGER_CST);
1246
1247 TREE_INT_CST_LOW (t) = low;
1248 TREE_INT_CST_HIGH (t) = hi;
1249 TREE_TYPE (t) = type;
1250
1251 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1252 }
1253 }
1254 else
1255 {
1256 /* Use the cache of larger shared ints. */
1257 void **slot;
1258
1259 TREE_INT_CST_LOW (int_cst_node) = low;
1260 TREE_INT_CST_HIGH (int_cst_node) = hi;
1261 TREE_TYPE (int_cst_node) = type;
1262
1263 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1264 t = (tree) *slot;
1265 if (!t)
1266 {
1267 /* Insert this one into the hash table. */
1268 t = int_cst_node;
1269 *slot = t;
1270 /* Make a new node for next time round. */
1271 int_cst_node = make_node (INTEGER_CST);
1272 }
1273 }
1274
1275 return t;
1276 }
1277
1278 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1279 and the rest are zeros. */
1280
1281 tree
1282 build_low_bits_mask (tree type, unsigned bits)
1283 {
1284 double_int mask;
1285
1286 gcc_assert (bits <= TYPE_PRECISION (type));
1287
1288 if (bits == TYPE_PRECISION (type)
1289 && !TYPE_UNSIGNED (type))
1290 /* Sign extended all-ones mask. */
1291 mask = double_int_minus_one;
1292 else
1293 mask = double_int_mask (bits);
1294
1295 return build_int_cst_wide (type, mask.low, mask.high);
1296 }
1297
1298 /* Checks that X is integer constant that can be expressed in (unsigned)
1299 HOST_WIDE_INT without loss of precision. */
1300
1301 bool
1302 cst_and_fits_in_hwi (const_tree x)
1303 {
1304 if (TREE_CODE (x) != INTEGER_CST)
1305 return false;
1306
1307 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1308 return false;
1309
1310 return (TREE_INT_CST_HIGH (x) == 0
1311 || TREE_INT_CST_HIGH (x) == -1);
1312 }
1313
1314 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1315 are in a list pointed to by VALS. */
1316
1317 tree
1318 build_vector (tree type, tree vals)
1319 {
1320 tree v = make_node (VECTOR_CST);
1321 int over = 0;
1322 tree link;
1323 unsigned cnt = 0;
1324
1325 TREE_VECTOR_CST_ELTS (v) = vals;
1326 TREE_TYPE (v) = type;
1327
1328 /* Iterate through elements and check for overflow. */
1329 for (link = vals; link; link = TREE_CHAIN (link))
1330 {
1331 tree value = TREE_VALUE (link);
1332 cnt++;
1333
1334 /* Don't crash if we get an address constant. */
1335 if (!CONSTANT_CLASS_P (value))
1336 continue;
1337
1338 over |= TREE_OVERFLOW (value);
1339 }
1340
1341 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1342
1343 TREE_OVERFLOW (v) = over;
1344 return v;
1345 }
1346
1347 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1348 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1349
1350 tree
1351 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1352 {
1353 tree list = NULL_TREE;
1354 unsigned HOST_WIDE_INT idx;
1355 tree value;
1356
1357 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1358 list = tree_cons (NULL_TREE, value, list);
1359 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1360 list = tree_cons (NULL_TREE,
1361 fold_convert (TREE_TYPE (type), integer_zero_node), list);
1362 return build_vector (type, nreverse (list));
1363 }
1364
1365 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1366 are in the VEC pointed to by VALS. */
1367 tree
1368 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1369 {
1370 tree c = make_node (CONSTRUCTOR);
1371 unsigned int i;
1372 constructor_elt *elt;
1373 bool constant_p = true;
1374
1375 TREE_TYPE (c) = type;
1376 CONSTRUCTOR_ELTS (c) = vals;
1377
1378 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1379 if (!TREE_CONSTANT (elt->value))
1380 {
1381 constant_p = false;
1382 break;
1383 }
1384
1385 TREE_CONSTANT (c) = constant_p;
1386
1387 return c;
1388 }
1389
1390 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1391 INDEX and VALUE. */
1392 tree
1393 build_constructor_single (tree type, tree index, tree value)
1394 {
1395 VEC(constructor_elt,gc) *v;
1396 constructor_elt *elt;
1397
1398 v = VEC_alloc (constructor_elt, gc, 1);
1399 elt = VEC_quick_push (constructor_elt, v, NULL);
1400 elt->index = index;
1401 elt->value = value;
1402
1403 return build_constructor (type, v);
1404 }
1405
1406
1407 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1408 are in a list pointed to by VALS. */
1409 tree
1410 build_constructor_from_list (tree type, tree vals)
1411 {
1412 tree t;
1413 VEC(constructor_elt,gc) *v = NULL;
1414
1415 if (vals)
1416 {
1417 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1418 for (t = vals; t; t = TREE_CHAIN (t))
1419 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1420 }
1421
1422 return build_constructor (type, v);
1423 }
1424
1425 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1426
1427 tree
1428 build_fixed (tree type, FIXED_VALUE_TYPE f)
1429 {
1430 tree v;
1431 FIXED_VALUE_TYPE *fp;
1432
1433 v = make_node (FIXED_CST);
1434 fp = ggc_alloc_fixed_value ();
1435 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1436
1437 TREE_TYPE (v) = type;
1438 TREE_FIXED_CST_PTR (v) = fp;
1439 return v;
1440 }
1441
1442 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1443
1444 tree
1445 build_real (tree type, REAL_VALUE_TYPE d)
1446 {
1447 tree v;
1448 REAL_VALUE_TYPE *dp;
1449 int overflow = 0;
1450
1451 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1452 Consider doing it via real_convert now. */
1453
1454 v = make_node (REAL_CST);
1455 dp = ggc_alloc_real_value ();
1456 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1457
1458 TREE_TYPE (v) = type;
1459 TREE_REAL_CST_PTR (v) = dp;
1460 TREE_OVERFLOW (v) = overflow;
1461 return v;
1462 }
1463
1464 /* Return a new REAL_CST node whose type is TYPE
1465 and whose value is the integer value of the INTEGER_CST node I. */
1466
1467 REAL_VALUE_TYPE
1468 real_value_from_int_cst (const_tree type, const_tree i)
1469 {
1470 REAL_VALUE_TYPE d;
1471
1472 /* Clear all bits of the real value type so that we can later do
1473 bitwise comparisons to see if two values are the same. */
1474 memset (&d, 0, sizeof d);
1475
1476 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1477 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1478 TYPE_UNSIGNED (TREE_TYPE (i)));
1479 return d;
1480 }
1481
1482 /* Given a tree representing an integer constant I, return a tree
1483 representing the same value as a floating-point constant of type TYPE. */
1484
1485 tree
1486 build_real_from_int_cst (tree type, const_tree i)
1487 {
1488 tree v;
1489 int overflow = TREE_OVERFLOW (i);
1490
1491 v = build_real (type, real_value_from_int_cst (type, i));
1492
1493 TREE_OVERFLOW (v) |= overflow;
1494 return v;
1495 }
1496
1497 /* Return a newly constructed STRING_CST node whose value is
1498 the LEN characters at STR.
1499 The TREE_TYPE is not initialized. */
1500
1501 tree
1502 build_string (int len, const char *str)
1503 {
1504 tree s;
1505 size_t length;
1506
1507 /* Do not waste bytes provided by padding of struct tree_string. */
1508 length = len + offsetof (struct tree_string, str) + 1;
1509
1510 #ifdef GATHER_STATISTICS
1511 tree_node_counts[(int) c_kind]++;
1512 tree_node_sizes[(int) c_kind] += length;
1513 #endif
1514
1515 s = ggc_alloc_tree_node (length);
1516
1517 memset (s, 0, sizeof (struct tree_common));
1518 TREE_SET_CODE (s, STRING_CST);
1519 TREE_CONSTANT (s) = 1;
1520 TREE_STRING_LENGTH (s) = len;
1521 memcpy (s->string.str, str, len);
1522 s->string.str[len] = '\0';
1523
1524 return s;
1525 }
1526
1527 /* Return a newly constructed COMPLEX_CST node whose value is
1528 specified by the real and imaginary parts REAL and IMAG.
1529 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1530 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1531
1532 tree
1533 build_complex (tree type, tree real, tree imag)
1534 {
1535 tree t = make_node (COMPLEX_CST);
1536
1537 TREE_REALPART (t) = real;
1538 TREE_IMAGPART (t) = imag;
1539 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1540 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1541 return t;
1542 }
1543
1544 /* Return a constant of arithmetic type TYPE which is the
1545 multiplicative identity of the set TYPE. */
1546
1547 tree
1548 build_one_cst (tree type)
1549 {
1550 switch (TREE_CODE (type))
1551 {
1552 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1553 case POINTER_TYPE: case REFERENCE_TYPE:
1554 case OFFSET_TYPE:
1555 return build_int_cst (type, 1);
1556
1557 case REAL_TYPE:
1558 return build_real (type, dconst1);
1559
1560 case FIXED_POINT_TYPE:
1561 /* We can only generate 1 for accum types. */
1562 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1563 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1564
1565 case VECTOR_TYPE:
1566 {
1567 tree scalar, cst;
1568 int i;
1569
1570 scalar = build_one_cst (TREE_TYPE (type));
1571
1572 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1573 cst = NULL_TREE;
1574 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1575 cst = tree_cons (NULL_TREE, scalar, cst);
1576
1577 return build_vector (type, cst);
1578 }
1579
1580 case COMPLEX_TYPE:
1581 return build_complex (type,
1582 build_one_cst (TREE_TYPE (type)),
1583 fold_convert (TREE_TYPE (type), integer_zero_node));
1584
1585 default:
1586 gcc_unreachable ();
1587 }
1588 }
1589
1590 /* Build 0 constant of type TYPE. This is used by constructor folding and thus
1591 the constant should correspond zero in memory representation. */
1592
1593 tree
1594 build_zero_cst (tree type)
1595 {
1596 if (!AGGREGATE_TYPE_P (type))
1597 return fold_convert (type, integer_zero_node);
1598 return build_constructor (type, NULL);
1599 }
1600
1601
1602 /* Build a BINFO with LEN language slots. */
1603
1604 tree
1605 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1606 {
1607 tree t;
1608 size_t length = (offsetof (struct tree_binfo, base_binfos)
1609 + VEC_embedded_size (tree, base_binfos));
1610
1611 #ifdef GATHER_STATISTICS
1612 tree_node_counts[(int) binfo_kind]++;
1613 tree_node_sizes[(int) binfo_kind] += length;
1614 #endif
1615
1616 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1617
1618 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1619
1620 TREE_SET_CODE (t, TREE_BINFO);
1621
1622 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1623
1624 return t;
1625 }
1626
1627
1628 /* Build a newly constructed TREE_VEC node of length LEN. */
1629
1630 tree
1631 make_tree_vec_stat (int len MEM_STAT_DECL)
1632 {
1633 tree t;
1634 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1635
1636 #ifdef GATHER_STATISTICS
1637 tree_node_counts[(int) vec_kind]++;
1638 tree_node_sizes[(int) vec_kind] += length;
1639 #endif
1640
1641 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1642
1643 TREE_SET_CODE (t, TREE_VEC);
1644 TREE_VEC_LENGTH (t) = len;
1645
1646 return t;
1647 }
1648 \f
1649 /* Return 1 if EXPR is the integer constant zero or a complex constant
1650 of zero. */
1651
1652 int
1653 integer_zerop (const_tree expr)
1654 {
1655 STRIP_NOPS (expr);
1656
1657 return ((TREE_CODE (expr) == INTEGER_CST
1658 && TREE_INT_CST_LOW (expr) == 0
1659 && TREE_INT_CST_HIGH (expr) == 0)
1660 || (TREE_CODE (expr) == COMPLEX_CST
1661 && integer_zerop (TREE_REALPART (expr))
1662 && integer_zerop (TREE_IMAGPART (expr))));
1663 }
1664
1665 /* Return 1 if EXPR is the integer constant one or the corresponding
1666 complex constant. */
1667
1668 int
1669 integer_onep (const_tree expr)
1670 {
1671 STRIP_NOPS (expr);
1672
1673 return ((TREE_CODE (expr) == INTEGER_CST
1674 && TREE_INT_CST_LOW (expr) == 1
1675 && TREE_INT_CST_HIGH (expr) == 0)
1676 || (TREE_CODE (expr) == COMPLEX_CST
1677 && integer_onep (TREE_REALPART (expr))
1678 && integer_zerop (TREE_IMAGPART (expr))));
1679 }
1680
1681 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1682 it contains. Likewise for the corresponding complex constant. */
1683
1684 int
1685 integer_all_onesp (const_tree expr)
1686 {
1687 int prec;
1688 int uns;
1689
1690 STRIP_NOPS (expr);
1691
1692 if (TREE_CODE (expr) == COMPLEX_CST
1693 && integer_all_onesp (TREE_REALPART (expr))
1694 && integer_zerop (TREE_IMAGPART (expr)))
1695 return 1;
1696
1697 else if (TREE_CODE (expr) != INTEGER_CST)
1698 return 0;
1699
1700 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1701 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1702 && TREE_INT_CST_HIGH (expr) == -1)
1703 return 1;
1704 if (!uns)
1705 return 0;
1706
1707 /* Note that using TYPE_PRECISION here is wrong. We care about the
1708 actual bits, not the (arbitrary) range of the type. */
1709 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1710 if (prec >= HOST_BITS_PER_WIDE_INT)
1711 {
1712 HOST_WIDE_INT high_value;
1713 int shift_amount;
1714
1715 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1716
1717 /* Can not handle precisions greater than twice the host int size. */
1718 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1719 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1720 /* Shifting by the host word size is undefined according to the ANSI
1721 standard, so we must handle this as a special case. */
1722 high_value = -1;
1723 else
1724 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1725
1726 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1727 && TREE_INT_CST_HIGH (expr) == high_value);
1728 }
1729 else
1730 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1731 }
1732
1733 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1734 one bit on). */
1735
1736 int
1737 integer_pow2p (const_tree expr)
1738 {
1739 int prec;
1740 HOST_WIDE_INT high, low;
1741
1742 STRIP_NOPS (expr);
1743
1744 if (TREE_CODE (expr) == COMPLEX_CST
1745 && integer_pow2p (TREE_REALPART (expr))
1746 && integer_zerop (TREE_IMAGPART (expr)))
1747 return 1;
1748
1749 if (TREE_CODE (expr) != INTEGER_CST)
1750 return 0;
1751
1752 prec = TYPE_PRECISION (TREE_TYPE (expr));
1753 high = TREE_INT_CST_HIGH (expr);
1754 low = TREE_INT_CST_LOW (expr);
1755
1756 /* First clear all bits that are beyond the type's precision in case
1757 we've been sign extended. */
1758
1759 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1760 ;
1761 else if (prec > HOST_BITS_PER_WIDE_INT)
1762 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1763 else
1764 {
1765 high = 0;
1766 if (prec < HOST_BITS_PER_WIDE_INT)
1767 low &= ~((HOST_WIDE_INT) (-1) << prec);
1768 }
1769
1770 if (high == 0 && low == 0)
1771 return 0;
1772
1773 return ((high == 0 && (low & (low - 1)) == 0)
1774 || (low == 0 && (high & (high - 1)) == 0));
1775 }
1776
1777 /* Return 1 if EXPR is an integer constant other than zero or a
1778 complex constant other than zero. */
1779
1780 int
1781 integer_nonzerop (const_tree expr)
1782 {
1783 STRIP_NOPS (expr);
1784
1785 return ((TREE_CODE (expr) == INTEGER_CST
1786 && (TREE_INT_CST_LOW (expr) != 0
1787 || TREE_INT_CST_HIGH (expr) != 0))
1788 || (TREE_CODE (expr) == COMPLEX_CST
1789 && (integer_nonzerop (TREE_REALPART (expr))
1790 || integer_nonzerop (TREE_IMAGPART (expr)))));
1791 }
1792
1793 /* Return 1 if EXPR is the fixed-point constant zero. */
1794
1795 int
1796 fixed_zerop (const_tree expr)
1797 {
1798 return (TREE_CODE (expr) == FIXED_CST
1799 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1800 }
1801
1802 /* Return the power of two represented by a tree node known to be a
1803 power of two. */
1804
1805 int
1806 tree_log2 (const_tree expr)
1807 {
1808 int prec;
1809 HOST_WIDE_INT high, low;
1810
1811 STRIP_NOPS (expr);
1812
1813 if (TREE_CODE (expr) == COMPLEX_CST)
1814 return tree_log2 (TREE_REALPART (expr));
1815
1816 prec = TYPE_PRECISION (TREE_TYPE (expr));
1817 high = TREE_INT_CST_HIGH (expr);
1818 low = TREE_INT_CST_LOW (expr);
1819
1820 /* First clear all bits that are beyond the type's precision in case
1821 we've been sign extended. */
1822
1823 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1824 ;
1825 else if (prec > HOST_BITS_PER_WIDE_INT)
1826 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1827 else
1828 {
1829 high = 0;
1830 if (prec < HOST_BITS_PER_WIDE_INT)
1831 low &= ~((HOST_WIDE_INT) (-1) << prec);
1832 }
1833
1834 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1835 : exact_log2 (low));
1836 }
1837
1838 /* Similar, but return the largest integer Y such that 2 ** Y is less
1839 than or equal to EXPR. */
1840
1841 int
1842 tree_floor_log2 (const_tree expr)
1843 {
1844 int prec;
1845 HOST_WIDE_INT high, low;
1846
1847 STRIP_NOPS (expr);
1848
1849 if (TREE_CODE (expr) == COMPLEX_CST)
1850 return tree_log2 (TREE_REALPART (expr));
1851
1852 prec = TYPE_PRECISION (TREE_TYPE (expr));
1853 high = TREE_INT_CST_HIGH (expr);
1854 low = TREE_INT_CST_LOW (expr);
1855
1856 /* First clear all bits that are beyond the type's precision in case
1857 we've been sign extended. Ignore if type's precision hasn't been set
1858 since what we are doing is setting it. */
1859
1860 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1861 ;
1862 else if (prec > HOST_BITS_PER_WIDE_INT)
1863 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1864 else
1865 {
1866 high = 0;
1867 if (prec < HOST_BITS_PER_WIDE_INT)
1868 low &= ~((HOST_WIDE_INT) (-1) << prec);
1869 }
1870
1871 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1872 : floor_log2 (low));
1873 }
1874
1875 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1876 decimal float constants, so don't return 1 for them. */
1877
1878 int
1879 real_zerop (const_tree expr)
1880 {
1881 STRIP_NOPS (expr);
1882
1883 return ((TREE_CODE (expr) == REAL_CST
1884 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1885 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1886 || (TREE_CODE (expr) == COMPLEX_CST
1887 && real_zerop (TREE_REALPART (expr))
1888 && real_zerop (TREE_IMAGPART (expr))));
1889 }
1890
1891 /* Return 1 if EXPR is the real constant one in real or complex form.
1892 Trailing zeroes matter for decimal float constants, so don't return
1893 1 for them. */
1894
1895 int
1896 real_onep (const_tree expr)
1897 {
1898 STRIP_NOPS (expr);
1899
1900 return ((TREE_CODE (expr) == REAL_CST
1901 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1902 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1903 || (TREE_CODE (expr) == COMPLEX_CST
1904 && real_onep (TREE_REALPART (expr))
1905 && real_zerop (TREE_IMAGPART (expr))));
1906 }
1907
1908 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1909 for decimal float constants, so don't return 1 for them. */
1910
1911 int
1912 real_twop (const_tree expr)
1913 {
1914 STRIP_NOPS (expr);
1915
1916 return ((TREE_CODE (expr) == REAL_CST
1917 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1918 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1919 || (TREE_CODE (expr) == COMPLEX_CST
1920 && real_twop (TREE_REALPART (expr))
1921 && real_zerop (TREE_IMAGPART (expr))));
1922 }
1923
1924 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1925 matter for decimal float constants, so don't return 1 for them. */
1926
1927 int
1928 real_minus_onep (const_tree expr)
1929 {
1930 STRIP_NOPS (expr);
1931
1932 return ((TREE_CODE (expr) == REAL_CST
1933 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1934 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1935 || (TREE_CODE (expr) == COMPLEX_CST
1936 && real_minus_onep (TREE_REALPART (expr))
1937 && real_zerop (TREE_IMAGPART (expr))));
1938 }
1939
1940 /* Nonzero if EXP is a constant or a cast of a constant. */
1941
1942 int
1943 really_constant_p (const_tree exp)
1944 {
1945 /* This is not quite the same as STRIP_NOPS. It does more. */
1946 while (CONVERT_EXPR_P (exp)
1947 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1948 exp = TREE_OPERAND (exp, 0);
1949 return TREE_CONSTANT (exp);
1950 }
1951 \f
1952 /* Return first list element whose TREE_VALUE is ELEM.
1953 Return 0 if ELEM is not in LIST. */
1954
1955 tree
1956 value_member (tree elem, tree list)
1957 {
1958 while (list)
1959 {
1960 if (elem == TREE_VALUE (list))
1961 return list;
1962 list = TREE_CHAIN (list);
1963 }
1964 return NULL_TREE;
1965 }
1966
1967 /* Return first list element whose TREE_PURPOSE is ELEM.
1968 Return 0 if ELEM is not in LIST. */
1969
1970 tree
1971 purpose_member (const_tree elem, tree list)
1972 {
1973 while (list)
1974 {
1975 if (elem == TREE_PURPOSE (list))
1976 return list;
1977 list = TREE_CHAIN (list);
1978 }
1979 return NULL_TREE;
1980 }
1981
1982 /* Return true if ELEM is in V. */
1983
1984 bool
1985 vec_member (const_tree elem, VEC(tree,gc) *v)
1986 {
1987 unsigned ix;
1988 tree t;
1989 FOR_EACH_VEC_ELT (tree, v, ix, t)
1990 if (elem == t)
1991 return true;
1992 return false;
1993 }
1994
1995 /* Returns element number IDX (zero-origin) of chain CHAIN, or
1996 NULL_TREE. */
1997
1998 tree
1999 chain_index (int idx, tree chain)
2000 {
2001 for (; chain && idx > 0; --idx)
2002 chain = TREE_CHAIN (chain);
2003 return chain;
2004 }
2005
2006 /* Return nonzero if ELEM is part of the chain CHAIN. */
2007
2008 int
2009 chain_member (const_tree elem, const_tree chain)
2010 {
2011 while (chain)
2012 {
2013 if (elem == chain)
2014 return 1;
2015 chain = DECL_CHAIN (chain);
2016 }
2017
2018 return 0;
2019 }
2020
2021 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2022 We expect a null pointer to mark the end of the chain.
2023 This is the Lisp primitive `length'. */
2024
2025 int
2026 list_length (const_tree t)
2027 {
2028 const_tree p = t;
2029 #ifdef ENABLE_TREE_CHECKING
2030 const_tree q = t;
2031 #endif
2032 int len = 0;
2033
2034 while (p)
2035 {
2036 p = TREE_CHAIN (p);
2037 #ifdef ENABLE_TREE_CHECKING
2038 if (len % 2)
2039 q = TREE_CHAIN (q);
2040 gcc_assert (p != q);
2041 #endif
2042 len++;
2043 }
2044
2045 return len;
2046 }
2047
2048 /* Returns the number of FIELD_DECLs in TYPE. */
2049
2050 int
2051 fields_length (const_tree type)
2052 {
2053 tree t = TYPE_FIELDS (type);
2054 int count = 0;
2055
2056 for (; t; t = DECL_CHAIN (t))
2057 if (TREE_CODE (t) == FIELD_DECL)
2058 ++count;
2059
2060 return count;
2061 }
2062
2063 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2064 UNION_TYPE TYPE, or NULL_TREE if none. */
2065
2066 tree
2067 first_field (const_tree type)
2068 {
2069 tree t = TYPE_FIELDS (type);
2070 while (t && TREE_CODE (t) != FIELD_DECL)
2071 t = TREE_CHAIN (t);
2072 return t;
2073 }
2074
2075 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2076 by modifying the last node in chain 1 to point to chain 2.
2077 This is the Lisp primitive `nconc'. */
2078
2079 tree
2080 chainon (tree op1, tree op2)
2081 {
2082 tree t1;
2083
2084 if (!op1)
2085 return op2;
2086 if (!op2)
2087 return op1;
2088
2089 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2090 continue;
2091 TREE_CHAIN (t1) = op2;
2092
2093 #ifdef ENABLE_TREE_CHECKING
2094 {
2095 tree t2;
2096 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2097 gcc_assert (t2 != t1);
2098 }
2099 #endif
2100
2101 return op1;
2102 }
2103
2104 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2105
2106 tree
2107 tree_last (tree chain)
2108 {
2109 tree next;
2110 if (chain)
2111 while ((next = TREE_CHAIN (chain)))
2112 chain = next;
2113 return chain;
2114 }
2115
2116 /* Reverse the order of elements in the chain T,
2117 and return the new head of the chain (old last element). */
2118
2119 tree
2120 nreverse (tree t)
2121 {
2122 tree prev = 0, decl, next;
2123 for (decl = t; decl; decl = next)
2124 {
2125 /* We shouldn't be using this function to reverse BLOCK chains; we
2126 have blocks_nreverse for that. */
2127 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2128 next = TREE_CHAIN (decl);
2129 TREE_CHAIN (decl) = prev;
2130 prev = decl;
2131 }
2132 return prev;
2133 }
2134 \f
2135 /* Return a newly created TREE_LIST node whose
2136 purpose and value fields are PARM and VALUE. */
2137
2138 tree
2139 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2140 {
2141 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2142 TREE_PURPOSE (t) = parm;
2143 TREE_VALUE (t) = value;
2144 return t;
2145 }
2146
2147 /* Build a chain of TREE_LIST nodes from a vector. */
2148
2149 tree
2150 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2151 {
2152 tree ret = NULL_TREE;
2153 tree *pp = &ret;
2154 unsigned int i;
2155 tree t;
2156 FOR_EACH_VEC_ELT (tree, vec, i, t)
2157 {
2158 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2159 pp = &TREE_CHAIN (*pp);
2160 }
2161 return ret;
2162 }
2163
2164 /* Return a newly created TREE_LIST node whose
2165 purpose and value fields are PURPOSE and VALUE
2166 and whose TREE_CHAIN is CHAIN. */
2167
2168 tree
2169 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2170 {
2171 tree node;
2172
2173 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2174 PASS_MEM_STAT);
2175 memset (node, 0, sizeof (struct tree_common));
2176
2177 #ifdef GATHER_STATISTICS
2178 tree_node_counts[(int) x_kind]++;
2179 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2180 #endif
2181
2182 TREE_SET_CODE (node, TREE_LIST);
2183 TREE_CHAIN (node) = chain;
2184 TREE_PURPOSE (node) = purpose;
2185 TREE_VALUE (node) = value;
2186 return node;
2187 }
2188
2189 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2190 trees. */
2191
2192 VEC(tree,gc) *
2193 ctor_to_vec (tree ctor)
2194 {
2195 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2196 unsigned int ix;
2197 tree val;
2198
2199 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2200 VEC_quick_push (tree, vec, val);
2201
2202 return vec;
2203 }
2204 \f
2205 /* Return the size nominally occupied by an object of type TYPE
2206 when it resides in memory. The value is measured in units of bytes,
2207 and its data type is that normally used for type sizes
2208 (which is the first type created by make_signed_type or
2209 make_unsigned_type). */
2210
2211 tree
2212 size_in_bytes (const_tree type)
2213 {
2214 tree t;
2215
2216 if (type == error_mark_node)
2217 return integer_zero_node;
2218
2219 type = TYPE_MAIN_VARIANT (type);
2220 t = TYPE_SIZE_UNIT (type);
2221
2222 if (t == 0)
2223 {
2224 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2225 return size_zero_node;
2226 }
2227
2228 return t;
2229 }
2230
2231 /* Return the size of TYPE (in bytes) as a wide integer
2232 or return -1 if the size can vary or is larger than an integer. */
2233
2234 HOST_WIDE_INT
2235 int_size_in_bytes (const_tree type)
2236 {
2237 tree t;
2238
2239 if (type == error_mark_node)
2240 return 0;
2241
2242 type = TYPE_MAIN_VARIANT (type);
2243 t = TYPE_SIZE_UNIT (type);
2244 if (t == 0
2245 || TREE_CODE (t) != INTEGER_CST
2246 || TREE_INT_CST_HIGH (t) != 0
2247 /* If the result would appear negative, it's too big to represent. */
2248 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2249 return -1;
2250
2251 return TREE_INT_CST_LOW (t);
2252 }
2253
2254 /* Return the maximum size of TYPE (in bytes) as a wide integer
2255 or return -1 if the size can vary or is larger than an integer. */
2256
2257 HOST_WIDE_INT
2258 max_int_size_in_bytes (const_tree type)
2259 {
2260 HOST_WIDE_INT size = -1;
2261 tree size_tree;
2262
2263 /* If this is an array type, check for a possible MAX_SIZE attached. */
2264
2265 if (TREE_CODE (type) == ARRAY_TYPE)
2266 {
2267 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2268
2269 if (size_tree && host_integerp (size_tree, 1))
2270 size = tree_low_cst (size_tree, 1);
2271 }
2272
2273 /* If we still haven't been able to get a size, see if the language
2274 can compute a maximum size. */
2275
2276 if (size == -1)
2277 {
2278 size_tree = lang_hooks.types.max_size (type);
2279
2280 if (size_tree && host_integerp (size_tree, 1))
2281 size = tree_low_cst (size_tree, 1);
2282 }
2283
2284 return size;
2285 }
2286
2287 /* Returns a tree for the size of EXP in bytes. */
2288
2289 tree
2290 tree_expr_size (const_tree exp)
2291 {
2292 if (DECL_P (exp)
2293 && DECL_SIZE_UNIT (exp) != 0)
2294 return DECL_SIZE_UNIT (exp);
2295 else
2296 return size_in_bytes (TREE_TYPE (exp));
2297 }
2298 \f
2299 /* Return the bit position of FIELD, in bits from the start of the record.
2300 This is a tree of type bitsizetype. */
2301
2302 tree
2303 bit_position (const_tree field)
2304 {
2305 return bit_from_pos (DECL_FIELD_OFFSET (field),
2306 DECL_FIELD_BIT_OFFSET (field));
2307 }
2308
2309 /* Likewise, but return as an integer. It must be representable in
2310 that way (since it could be a signed value, we don't have the
2311 option of returning -1 like int_size_in_byte can. */
2312
2313 HOST_WIDE_INT
2314 int_bit_position (const_tree field)
2315 {
2316 return tree_low_cst (bit_position (field), 0);
2317 }
2318 \f
2319 /* Return the byte position of FIELD, in bytes from the start of the record.
2320 This is a tree of type sizetype. */
2321
2322 tree
2323 byte_position (const_tree field)
2324 {
2325 return byte_from_pos (DECL_FIELD_OFFSET (field),
2326 DECL_FIELD_BIT_OFFSET (field));
2327 }
2328
2329 /* Likewise, but return as an integer. It must be representable in
2330 that way (since it could be a signed value, we don't have the
2331 option of returning -1 like int_size_in_byte can. */
2332
2333 HOST_WIDE_INT
2334 int_byte_position (const_tree field)
2335 {
2336 return tree_low_cst (byte_position (field), 0);
2337 }
2338 \f
2339 /* Return the strictest alignment, in bits, that T is known to have. */
2340
2341 unsigned int
2342 expr_align (const_tree t)
2343 {
2344 unsigned int align0, align1;
2345
2346 switch (TREE_CODE (t))
2347 {
2348 CASE_CONVERT: case NON_LVALUE_EXPR:
2349 /* If we have conversions, we know that the alignment of the
2350 object must meet each of the alignments of the types. */
2351 align0 = expr_align (TREE_OPERAND (t, 0));
2352 align1 = TYPE_ALIGN (TREE_TYPE (t));
2353 return MAX (align0, align1);
2354
2355 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2356 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2357 case CLEANUP_POINT_EXPR:
2358 /* These don't change the alignment of an object. */
2359 return expr_align (TREE_OPERAND (t, 0));
2360
2361 case COND_EXPR:
2362 /* The best we can do is say that the alignment is the least aligned
2363 of the two arms. */
2364 align0 = expr_align (TREE_OPERAND (t, 1));
2365 align1 = expr_align (TREE_OPERAND (t, 2));
2366 return MIN (align0, align1);
2367
2368 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2369 meaningfully, it's always 1. */
2370 case LABEL_DECL: case CONST_DECL:
2371 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2372 case FUNCTION_DECL:
2373 gcc_assert (DECL_ALIGN (t) != 0);
2374 return DECL_ALIGN (t);
2375
2376 default:
2377 break;
2378 }
2379
2380 /* Otherwise take the alignment from that of the type. */
2381 return TYPE_ALIGN (TREE_TYPE (t));
2382 }
2383 \f
2384 /* Return, as a tree node, the number of elements for TYPE (which is an
2385 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2386
2387 tree
2388 array_type_nelts (const_tree type)
2389 {
2390 tree index_type, min, max;
2391
2392 /* If they did it with unspecified bounds, then we should have already
2393 given an error about it before we got here. */
2394 if (! TYPE_DOMAIN (type))
2395 return error_mark_node;
2396
2397 index_type = TYPE_DOMAIN (type);
2398 min = TYPE_MIN_VALUE (index_type);
2399 max = TYPE_MAX_VALUE (index_type);
2400
2401 return (integer_zerop (min)
2402 ? max
2403 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2404 }
2405 \f
2406 /* If arg is static -- a reference to an object in static storage -- then
2407 return the object. This is not the same as the C meaning of `static'.
2408 If arg isn't static, return NULL. */
2409
2410 tree
2411 staticp (tree arg)
2412 {
2413 switch (TREE_CODE (arg))
2414 {
2415 case FUNCTION_DECL:
2416 /* Nested functions are static, even though taking their address will
2417 involve a trampoline as we unnest the nested function and create
2418 the trampoline on the tree level. */
2419 return arg;
2420
2421 case VAR_DECL:
2422 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2423 && ! DECL_THREAD_LOCAL_P (arg)
2424 && ! DECL_DLLIMPORT_P (arg)
2425 ? arg : NULL);
2426
2427 case CONST_DECL:
2428 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2429 ? arg : NULL);
2430
2431 case CONSTRUCTOR:
2432 return TREE_STATIC (arg) ? arg : NULL;
2433
2434 case LABEL_DECL:
2435 case STRING_CST:
2436 return arg;
2437
2438 case COMPONENT_REF:
2439 /* If the thing being referenced is not a field, then it is
2440 something language specific. */
2441 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2442
2443 /* If we are referencing a bitfield, we can't evaluate an
2444 ADDR_EXPR at compile time and so it isn't a constant. */
2445 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2446 return NULL;
2447
2448 return staticp (TREE_OPERAND (arg, 0));
2449
2450 case BIT_FIELD_REF:
2451 return NULL;
2452
2453 case INDIRECT_REF:
2454 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2455
2456 case ARRAY_REF:
2457 case ARRAY_RANGE_REF:
2458 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2459 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2460 return staticp (TREE_OPERAND (arg, 0));
2461 else
2462 return NULL;
2463
2464 case COMPOUND_LITERAL_EXPR:
2465 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2466
2467 default:
2468 return NULL;
2469 }
2470 }
2471
2472 \f
2473
2474
2475 /* Return whether OP is a DECL whose address is function-invariant. */
2476
2477 bool
2478 decl_address_invariant_p (const_tree op)
2479 {
2480 /* The conditions below are slightly less strict than the one in
2481 staticp. */
2482
2483 switch (TREE_CODE (op))
2484 {
2485 case PARM_DECL:
2486 case RESULT_DECL:
2487 case LABEL_DECL:
2488 case FUNCTION_DECL:
2489 return true;
2490
2491 case VAR_DECL:
2492 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2493 || DECL_THREAD_LOCAL_P (op)
2494 || DECL_CONTEXT (op) == current_function_decl
2495 || decl_function_context (op) == current_function_decl)
2496 return true;
2497 break;
2498
2499 case CONST_DECL:
2500 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2501 || decl_function_context (op) == current_function_decl)
2502 return true;
2503 break;
2504
2505 default:
2506 break;
2507 }
2508
2509 return false;
2510 }
2511
2512 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2513
2514 bool
2515 decl_address_ip_invariant_p (const_tree op)
2516 {
2517 /* The conditions below are slightly less strict than the one in
2518 staticp. */
2519
2520 switch (TREE_CODE (op))
2521 {
2522 case LABEL_DECL:
2523 case FUNCTION_DECL:
2524 case STRING_CST:
2525 return true;
2526
2527 case VAR_DECL:
2528 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2529 && !DECL_DLLIMPORT_P (op))
2530 || DECL_THREAD_LOCAL_P (op))
2531 return true;
2532 break;
2533
2534 case CONST_DECL:
2535 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2536 return true;
2537 break;
2538
2539 default:
2540 break;
2541 }
2542
2543 return false;
2544 }
2545
2546
2547 /* Return true if T is function-invariant (internal function, does
2548 not handle arithmetic; that's handled in skip_simple_arithmetic and
2549 tree_invariant_p). */
2550
2551 static bool tree_invariant_p (tree t);
2552
2553 static bool
2554 tree_invariant_p_1 (tree t)
2555 {
2556 tree op;
2557
2558 if (TREE_CONSTANT (t)
2559 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2560 return true;
2561
2562 switch (TREE_CODE (t))
2563 {
2564 case SAVE_EXPR:
2565 return true;
2566
2567 case ADDR_EXPR:
2568 op = TREE_OPERAND (t, 0);
2569 while (handled_component_p (op))
2570 {
2571 switch (TREE_CODE (op))
2572 {
2573 case ARRAY_REF:
2574 case ARRAY_RANGE_REF:
2575 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2576 || TREE_OPERAND (op, 2) != NULL_TREE
2577 || TREE_OPERAND (op, 3) != NULL_TREE)
2578 return false;
2579 break;
2580
2581 case COMPONENT_REF:
2582 if (TREE_OPERAND (op, 2) != NULL_TREE)
2583 return false;
2584 break;
2585
2586 default:;
2587 }
2588 op = TREE_OPERAND (op, 0);
2589 }
2590
2591 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2592
2593 default:
2594 break;
2595 }
2596
2597 return false;
2598 }
2599
2600 /* Return true if T is function-invariant. */
2601
2602 static bool
2603 tree_invariant_p (tree t)
2604 {
2605 tree inner = skip_simple_arithmetic (t);
2606 return tree_invariant_p_1 (inner);
2607 }
2608
2609 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2610 Do this to any expression which may be used in more than one place,
2611 but must be evaluated only once.
2612
2613 Normally, expand_expr would reevaluate the expression each time.
2614 Calling save_expr produces something that is evaluated and recorded
2615 the first time expand_expr is called on it. Subsequent calls to
2616 expand_expr just reuse the recorded value.
2617
2618 The call to expand_expr that generates code that actually computes
2619 the value is the first call *at compile time*. Subsequent calls
2620 *at compile time* generate code to use the saved value.
2621 This produces correct result provided that *at run time* control
2622 always flows through the insns made by the first expand_expr
2623 before reaching the other places where the save_expr was evaluated.
2624 You, the caller of save_expr, must make sure this is so.
2625
2626 Constants, and certain read-only nodes, are returned with no
2627 SAVE_EXPR because that is safe. Expressions containing placeholders
2628 are not touched; see tree.def for an explanation of what these
2629 are used for. */
2630
2631 tree
2632 save_expr (tree expr)
2633 {
2634 tree t = fold (expr);
2635 tree inner;
2636
2637 /* If the tree evaluates to a constant, then we don't want to hide that
2638 fact (i.e. this allows further folding, and direct checks for constants).
2639 However, a read-only object that has side effects cannot be bypassed.
2640 Since it is no problem to reevaluate literals, we just return the
2641 literal node. */
2642 inner = skip_simple_arithmetic (t);
2643 if (TREE_CODE (inner) == ERROR_MARK)
2644 return inner;
2645
2646 if (tree_invariant_p_1 (inner))
2647 return t;
2648
2649 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2650 it means that the size or offset of some field of an object depends on
2651 the value within another field.
2652
2653 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2654 and some variable since it would then need to be both evaluated once and
2655 evaluated more than once. Front-ends must assure this case cannot
2656 happen by surrounding any such subexpressions in their own SAVE_EXPR
2657 and forcing evaluation at the proper time. */
2658 if (contains_placeholder_p (inner))
2659 return t;
2660
2661 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2662 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2663
2664 /* This expression might be placed ahead of a jump to ensure that the
2665 value was computed on both sides of the jump. So make sure it isn't
2666 eliminated as dead. */
2667 TREE_SIDE_EFFECTS (t) = 1;
2668 return t;
2669 }
2670
2671 /* Look inside EXPR and into any simple arithmetic operations. Return
2672 the innermost non-arithmetic node. */
2673
2674 tree
2675 skip_simple_arithmetic (tree expr)
2676 {
2677 tree inner;
2678
2679 /* We don't care about whether this can be used as an lvalue in this
2680 context. */
2681 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2682 expr = TREE_OPERAND (expr, 0);
2683
2684 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2685 a constant, it will be more efficient to not make another SAVE_EXPR since
2686 it will allow better simplification and GCSE will be able to merge the
2687 computations if they actually occur. */
2688 inner = expr;
2689 while (1)
2690 {
2691 if (UNARY_CLASS_P (inner))
2692 inner = TREE_OPERAND (inner, 0);
2693 else if (BINARY_CLASS_P (inner))
2694 {
2695 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2696 inner = TREE_OPERAND (inner, 0);
2697 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2698 inner = TREE_OPERAND (inner, 1);
2699 else
2700 break;
2701 }
2702 else
2703 break;
2704 }
2705
2706 return inner;
2707 }
2708
2709
2710 /* Return which tree structure is used by T. */
2711
2712 enum tree_node_structure_enum
2713 tree_node_structure (const_tree t)
2714 {
2715 const enum tree_code code = TREE_CODE (t);
2716 return tree_node_structure_for_code (code);
2717 }
2718
2719 /* Set various status flags when building a CALL_EXPR object T. */
2720
2721 static void
2722 process_call_operands (tree t)
2723 {
2724 bool side_effects = TREE_SIDE_EFFECTS (t);
2725 bool read_only = false;
2726 int i = call_expr_flags (t);
2727
2728 /* Calls have side-effects, except those to const or pure functions. */
2729 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2730 side_effects = true;
2731 /* Propagate TREE_READONLY of arguments for const functions. */
2732 if (i & ECF_CONST)
2733 read_only = true;
2734
2735 if (!side_effects || read_only)
2736 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2737 {
2738 tree op = TREE_OPERAND (t, i);
2739 if (op && TREE_SIDE_EFFECTS (op))
2740 side_effects = true;
2741 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2742 read_only = false;
2743 }
2744
2745 TREE_SIDE_EFFECTS (t) = side_effects;
2746 TREE_READONLY (t) = read_only;
2747 }
2748 \f
2749 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2750 or offset that depends on a field within a record. */
2751
2752 bool
2753 contains_placeholder_p (const_tree exp)
2754 {
2755 enum tree_code code;
2756
2757 if (!exp)
2758 return 0;
2759
2760 code = TREE_CODE (exp);
2761 if (code == PLACEHOLDER_EXPR)
2762 return 1;
2763
2764 switch (TREE_CODE_CLASS (code))
2765 {
2766 case tcc_reference:
2767 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2768 position computations since they will be converted into a
2769 WITH_RECORD_EXPR involving the reference, which will assume
2770 here will be valid. */
2771 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2772
2773 case tcc_exceptional:
2774 if (code == TREE_LIST)
2775 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2776 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2777 break;
2778
2779 case tcc_unary:
2780 case tcc_binary:
2781 case tcc_comparison:
2782 case tcc_expression:
2783 switch (code)
2784 {
2785 case COMPOUND_EXPR:
2786 /* Ignoring the first operand isn't quite right, but works best. */
2787 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2788
2789 case COND_EXPR:
2790 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2791 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2792 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2793
2794 case SAVE_EXPR:
2795 /* The save_expr function never wraps anything containing
2796 a PLACEHOLDER_EXPR. */
2797 return 0;
2798
2799 default:
2800 break;
2801 }
2802
2803 switch (TREE_CODE_LENGTH (code))
2804 {
2805 case 1:
2806 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2807 case 2:
2808 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2809 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2810 default:
2811 return 0;
2812 }
2813
2814 case tcc_vl_exp:
2815 switch (code)
2816 {
2817 case CALL_EXPR:
2818 {
2819 const_tree arg;
2820 const_call_expr_arg_iterator iter;
2821 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2822 if (CONTAINS_PLACEHOLDER_P (arg))
2823 return 1;
2824 return 0;
2825 }
2826 default:
2827 return 0;
2828 }
2829
2830 default:
2831 return 0;
2832 }
2833 return 0;
2834 }
2835
2836 /* Return true if any part of the computation of TYPE involves a
2837 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2838 (for QUAL_UNION_TYPE) and field positions. */
2839
2840 static bool
2841 type_contains_placeholder_1 (const_tree type)
2842 {
2843 /* If the size contains a placeholder or the parent type (component type in
2844 the case of arrays) type involves a placeholder, this type does. */
2845 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2846 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2847 || (TREE_TYPE (type) != 0
2848 && type_contains_placeholder_p (TREE_TYPE (type))))
2849 return true;
2850
2851 /* Now do type-specific checks. Note that the last part of the check above
2852 greatly limits what we have to do below. */
2853 switch (TREE_CODE (type))
2854 {
2855 case VOID_TYPE:
2856 case COMPLEX_TYPE:
2857 case ENUMERAL_TYPE:
2858 case BOOLEAN_TYPE:
2859 case POINTER_TYPE:
2860 case OFFSET_TYPE:
2861 case REFERENCE_TYPE:
2862 case METHOD_TYPE:
2863 case FUNCTION_TYPE:
2864 case VECTOR_TYPE:
2865 return false;
2866
2867 case INTEGER_TYPE:
2868 case REAL_TYPE:
2869 case FIXED_POINT_TYPE:
2870 /* Here we just check the bounds. */
2871 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2872 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2873
2874 case ARRAY_TYPE:
2875 /* We're already checked the component type (TREE_TYPE), so just check
2876 the index type. */
2877 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2878
2879 case RECORD_TYPE:
2880 case UNION_TYPE:
2881 case QUAL_UNION_TYPE:
2882 {
2883 tree field;
2884
2885 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2886 if (TREE_CODE (field) == FIELD_DECL
2887 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2888 || (TREE_CODE (type) == QUAL_UNION_TYPE
2889 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2890 || type_contains_placeholder_p (TREE_TYPE (field))))
2891 return true;
2892
2893 return false;
2894 }
2895
2896 default:
2897 gcc_unreachable ();
2898 }
2899 }
2900
2901 bool
2902 type_contains_placeholder_p (tree type)
2903 {
2904 bool result;
2905
2906 /* If the contains_placeholder_bits field has been initialized,
2907 then we know the answer. */
2908 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2909 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2910
2911 /* Indicate that we've seen this type node, and the answer is false.
2912 This is what we want to return if we run into recursion via fields. */
2913 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2914
2915 /* Compute the real value. */
2916 result = type_contains_placeholder_1 (type);
2917
2918 /* Store the real value. */
2919 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2920
2921 return result;
2922 }
2923 \f
2924 /* Push tree EXP onto vector QUEUE if it is not already present. */
2925
2926 static void
2927 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2928 {
2929 unsigned int i;
2930 tree iter;
2931
2932 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2933 if (simple_cst_equal (iter, exp) == 1)
2934 break;
2935
2936 if (!iter)
2937 VEC_safe_push (tree, heap, *queue, exp);
2938 }
2939
2940 /* Given a tree EXP, find all occurences of references to fields
2941 in a PLACEHOLDER_EXPR and place them in vector REFS without
2942 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2943 we assume here that EXP contains only arithmetic expressions
2944 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2945 argument list. */
2946
2947 void
2948 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2949 {
2950 enum tree_code code = TREE_CODE (exp);
2951 tree inner;
2952 int i;
2953
2954 /* We handle TREE_LIST and COMPONENT_REF separately. */
2955 if (code == TREE_LIST)
2956 {
2957 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2958 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2959 }
2960 else if (code == COMPONENT_REF)
2961 {
2962 for (inner = TREE_OPERAND (exp, 0);
2963 REFERENCE_CLASS_P (inner);
2964 inner = TREE_OPERAND (inner, 0))
2965 ;
2966
2967 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2968 push_without_duplicates (exp, refs);
2969 else
2970 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2971 }
2972 else
2973 switch (TREE_CODE_CLASS (code))
2974 {
2975 case tcc_constant:
2976 break;
2977
2978 case tcc_declaration:
2979 /* Variables allocated to static storage can stay. */
2980 if (!TREE_STATIC (exp))
2981 push_without_duplicates (exp, refs);
2982 break;
2983
2984 case tcc_expression:
2985 /* This is the pattern built in ada/make_aligning_type. */
2986 if (code == ADDR_EXPR
2987 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2988 {
2989 push_without_duplicates (exp, refs);
2990 break;
2991 }
2992
2993 /* Fall through... */
2994
2995 case tcc_exceptional:
2996 case tcc_unary:
2997 case tcc_binary:
2998 case tcc_comparison:
2999 case tcc_reference:
3000 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3001 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3002 break;
3003
3004 case tcc_vl_exp:
3005 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3006 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3007 break;
3008
3009 default:
3010 gcc_unreachable ();
3011 }
3012 }
3013
3014 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3015 return a tree with all occurrences of references to F in a
3016 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3017 CONST_DECLs. Note that we assume here that EXP contains only
3018 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3019 occurring only in their argument list. */
3020
3021 tree
3022 substitute_in_expr (tree exp, tree f, tree r)
3023 {
3024 enum tree_code code = TREE_CODE (exp);
3025 tree op0, op1, op2, op3;
3026 tree new_tree;
3027
3028 /* We handle TREE_LIST and COMPONENT_REF separately. */
3029 if (code == TREE_LIST)
3030 {
3031 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3032 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3033 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3034 return exp;
3035
3036 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3037 }
3038 else if (code == COMPONENT_REF)
3039 {
3040 tree inner;
3041
3042 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3043 and it is the right field, replace it with R. */
3044 for (inner = TREE_OPERAND (exp, 0);
3045 REFERENCE_CLASS_P (inner);
3046 inner = TREE_OPERAND (inner, 0))
3047 ;
3048
3049 /* The field. */
3050 op1 = TREE_OPERAND (exp, 1);
3051
3052 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3053 return r;
3054
3055 /* If this expression hasn't been completed let, leave it alone. */
3056 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3057 return exp;
3058
3059 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3060 if (op0 == TREE_OPERAND (exp, 0))
3061 return exp;
3062
3063 new_tree
3064 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3065 }
3066 else
3067 switch (TREE_CODE_CLASS (code))
3068 {
3069 case tcc_constant:
3070 return exp;
3071
3072 case tcc_declaration:
3073 if (exp == f)
3074 return r;
3075 else
3076 return exp;
3077
3078 case tcc_expression:
3079 if (exp == f)
3080 return r;
3081
3082 /* Fall through... */
3083
3084 case tcc_exceptional:
3085 case tcc_unary:
3086 case tcc_binary:
3087 case tcc_comparison:
3088 case tcc_reference:
3089 switch (TREE_CODE_LENGTH (code))
3090 {
3091 case 0:
3092 return exp;
3093
3094 case 1:
3095 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3096 if (op0 == TREE_OPERAND (exp, 0))
3097 return exp;
3098
3099 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3100 break;
3101
3102 case 2:
3103 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3104 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3105
3106 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3107 return exp;
3108
3109 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3110 break;
3111
3112 case 3:
3113 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3114 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3115 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3116
3117 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3118 && op2 == TREE_OPERAND (exp, 2))
3119 return exp;
3120
3121 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3122 break;
3123
3124 case 4:
3125 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3126 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3127 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3128 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3129
3130 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3131 && op2 == TREE_OPERAND (exp, 2)
3132 && op3 == TREE_OPERAND (exp, 3))
3133 return exp;
3134
3135 new_tree
3136 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3137 break;
3138
3139 default:
3140 gcc_unreachable ();
3141 }
3142 break;
3143
3144 case tcc_vl_exp:
3145 {
3146 int i;
3147
3148 new_tree = NULL_TREE;
3149
3150 /* If we are trying to replace F with a constant, inline back
3151 functions which do nothing else than computing a value from
3152 the arguments they are passed. This makes it possible to
3153 fold partially or entirely the replacement expression. */
3154 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3155 {
3156 tree t = maybe_inline_call_in_expr (exp);
3157 if (t)
3158 return SUBSTITUTE_IN_EXPR (t, f, r);
3159 }
3160
3161 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3162 {
3163 tree op = TREE_OPERAND (exp, i);
3164 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3165 if (new_op != op)
3166 {
3167 if (!new_tree)
3168 new_tree = copy_node (exp);
3169 TREE_OPERAND (new_tree, i) = new_op;
3170 }
3171 }
3172
3173 if (new_tree)
3174 {
3175 new_tree = fold (new_tree);
3176 if (TREE_CODE (new_tree) == CALL_EXPR)
3177 process_call_operands (new_tree);
3178 }
3179 else
3180 return exp;
3181 }
3182 break;
3183
3184 default:
3185 gcc_unreachable ();
3186 }
3187
3188 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3189 return new_tree;
3190 }
3191
3192 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3193 for it within OBJ, a tree that is an object or a chain of references. */
3194
3195 tree
3196 substitute_placeholder_in_expr (tree exp, tree obj)
3197 {
3198 enum tree_code code = TREE_CODE (exp);
3199 tree op0, op1, op2, op3;
3200 tree new_tree;
3201
3202 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3203 in the chain of OBJ. */
3204 if (code == PLACEHOLDER_EXPR)
3205 {
3206 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3207 tree elt;
3208
3209 for (elt = obj; elt != 0;
3210 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3211 || TREE_CODE (elt) == COND_EXPR)
3212 ? TREE_OPERAND (elt, 1)
3213 : (REFERENCE_CLASS_P (elt)
3214 || UNARY_CLASS_P (elt)
3215 || BINARY_CLASS_P (elt)
3216 || VL_EXP_CLASS_P (elt)
3217 || EXPRESSION_CLASS_P (elt))
3218 ? TREE_OPERAND (elt, 0) : 0))
3219 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3220 return elt;
3221
3222 for (elt = obj; elt != 0;
3223 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3224 || TREE_CODE (elt) == COND_EXPR)
3225 ? TREE_OPERAND (elt, 1)
3226 : (REFERENCE_CLASS_P (elt)
3227 || UNARY_CLASS_P (elt)
3228 || BINARY_CLASS_P (elt)
3229 || VL_EXP_CLASS_P (elt)
3230 || EXPRESSION_CLASS_P (elt))
3231 ? TREE_OPERAND (elt, 0) : 0))
3232 if (POINTER_TYPE_P (TREE_TYPE (elt))
3233 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3234 == need_type))
3235 return fold_build1 (INDIRECT_REF, need_type, elt);
3236
3237 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3238 survives until RTL generation, there will be an error. */
3239 return exp;
3240 }
3241
3242 /* TREE_LIST is special because we need to look at TREE_VALUE
3243 and TREE_CHAIN, not TREE_OPERANDS. */
3244 else if (code == TREE_LIST)
3245 {
3246 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3247 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3248 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3249 return exp;
3250
3251 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3252 }
3253 else
3254 switch (TREE_CODE_CLASS (code))
3255 {
3256 case tcc_constant:
3257 case tcc_declaration:
3258 return exp;
3259
3260 case tcc_exceptional:
3261 case tcc_unary:
3262 case tcc_binary:
3263 case tcc_comparison:
3264 case tcc_expression:
3265 case tcc_reference:
3266 case tcc_statement:
3267 switch (TREE_CODE_LENGTH (code))
3268 {
3269 case 0:
3270 return exp;
3271
3272 case 1:
3273 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3274 if (op0 == TREE_OPERAND (exp, 0))
3275 return exp;
3276
3277 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3278 break;
3279
3280 case 2:
3281 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3282 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3283
3284 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3285 return exp;
3286
3287 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3288 break;
3289
3290 case 3:
3291 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3292 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3293 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3294
3295 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3296 && op2 == TREE_OPERAND (exp, 2))
3297 return exp;
3298
3299 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3300 break;
3301
3302 case 4:
3303 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3304 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3305 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3306 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3307
3308 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3309 && op2 == TREE_OPERAND (exp, 2)
3310 && op3 == TREE_OPERAND (exp, 3))
3311 return exp;
3312
3313 new_tree
3314 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3315 break;
3316
3317 default:
3318 gcc_unreachable ();
3319 }
3320 break;
3321
3322 case tcc_vl_exp:
3323 {
3324 int i;
3325
3326 new_tree = NULL_TREE;
3327
3328 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3329 {
3330 tree op = TREE_OPERAND (exp, i);
3331 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3332 if (new_op != op)
3333 {
3334 if (!new_tree)
3335 new_tree = copy_node (exp);
3336 TREE_OPERAND (new_tree, i) = new_op;
3337 }
3338 }
3339
3340 if (new_tree)
3341 {
3342 new_tree = fold (new_tree);
3343 if (TREE_CODE (new_tree) == CALL_EXPR)
3344 process_call_operands (new_tree);
3345 }
3346 else
3347 return exp;
3348 }
3349 break;
3350
3351 default:
3352 gcc_unreachable ();
3353 }
3354
3355 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3356 return new_tree;
3357 }
3358 \f
3359 /* Stabilize a reference so that we can use it any number of times
3360 without causing its operands to be evaluated more than once.
3361 Returns the stabilized reference. This works by means of save_expr,
3362 so see the caveats in the comments about save_expr.
3363
3364 Also allows conversion expressions whose operands are references.
3365 Any other kind of expression is returned unchanged. */
3366
3367 tree
3368 stabilize_reference (tree ref)
3369 {
3370 tree result;
3371 enum tree_code code = TREE_CODE (ref);
3372
3373 switch (code)
3374 {
3375 case VAR_DECL:
3376 case PARM_DECL:
3377 case RESULT_DECL:
3378 /* No action is needed in this case. */
3379 return ref;
3380
3381 CASE_CONVERT:
3382 case FLOAT_EXPR:
3383 case FIX_TRUNC_EXPR:
3384 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3385 break;
3386
3387 case INDIRECT_REF:
3388 result = build_nt (INDIRECT_REF,
3389 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3390 break;
3391
3392 case COMPONENT_REF:
3393 result = build_nt (COMPONENT_REF,
3394 stabilize_reference (TREE_OPERAND (ref, 0)),
3395 TREE_OPERAND (ref, 1), NULL_TREE);
3396 break;
3397
3398 case BIT_FIELD_REF:
3399 result = build_nt (BIT_FIELD_REF,
3400 stabilize_reference (TREE_OPERAND (ref, 0)),
3401 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3402 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3403 break;
3404
3405 case ARRAY_REF:
3406 result = build_nt (ARRAY_REF,
3407 stabilize_reference (TREE_OPERAND (ref, 0)),
3408 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3409 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3410 break;
3411
3412 case ARRAY_RANGE_REF:
3413 result = build_nt (ARRAY_RANGE_REF,
3414 stabilize_reference (TREE_OPERAND (ref, 0)),
3415 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3416 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3417 break;
3418
3419 case COMPOUND_EXPR:
3420 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3421 it wouldn't be ignored. This matters when dealing with
3422 volatiles. */
3423 return stabilize_reference_1 (ref);
3424
3425 /* If arg isn't a kind of lvalue we recognize, make no change.
3426 Caller should recognize the error for an invalid lvalue. */
3427 default:
3428 return ref;
3429
3430 case ERROR_MARK:
3431 return error_mark_node;
3432 }
3433
3434 TREE_TYPE (result) = TREE_TYPE (ref);
3435 TREE_READONLY (result) = TREE_READONLY (ref);
3436 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3437 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3438
3439 return result;
3440 }
3441
3442 /* Subroutine of stabilize_reference; this is called for subtrees of
3443 references. Any expression with side-effects must be put in a SAVE_EXPR
3444 to ensure that it is only evaluated once.
3445
3446 We don't put SAVE_EXPR nodes around everything, because assigning very
3447 simple expressions to temporaries causes us to miss good opportunities
3448 for optimizations. Among other things, the opportunity to fold in the
3449 addition of a constant into an addressing mode often gets lost, e.g.
3450 "y[i+1] += x;". In general, we take the approach that we should not make
3451 an assignment unless we are forced into it - i.e., that any non-side effect
3452 operator should be allowed, and that cse should take care of coalescing
3453 multiple utterances of the same expression should that prove fruitful. */
3454
3455 tree
3456 stabilize_reference_1 (tree e)
3457 {
3458 tree result;
3459 enum tree_code code = TREE_CODE (e);
3460
3461 /* We cannot ignore const expressions because it might be a reference
3462 to a const array but whose index contains side-effects. But we can
3463 ignore things that are actual constant or that already have been
3464 handled by this function. */
3465
3466 if (tree_invariant_p (e))
3467 return e;
3468
3469 switch (TREE_CODE_CLASS (code))
3470 {
3471 case tcc_exceptional:
3472 case tcc_type:
3473 case tcc_declaration:
3474 case tcc_comparison:
3475 case tcc_statement:
3476 case tcc_expression:
3477 case tcc_reference:
3478 case tcc_vl_exp:
3479 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3480 so that it will only be evaluated once. */
3481 /* The reference (r) and comparison (<) classes could be handled as
3482 below, but it is generally faster to only evaluate them once. */
3483 if (TREE_SIDE_EFFECTS (e))
3484 return save_expr (e);
3485 return e;
3486
3487 case tcc_constant:
3488 /* Constants need no processing. In fact, we should never reach
3489 here. */
3490 return e;
3491
3492 case tcc_binary:
3493 /* Division is slow and tends to be compiled with jumps,
3494 especially the division by powers of 2 that is often
3495 found inside of an array reference. So do it just once. */
3496 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3497 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3498 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3499 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3500 return save_expr (e);
3501 /* Recursively stabilize each operand. */
3502 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3503 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3504 break;
3505
3506 case tcc_unary:
3507 /* Recursively stabilize each operand. */
3508 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3509 break;
3510
3511 default:
3512 gcc_unreachable ();
3513 }
3514
3515 TREE_TYPE (result) = TREE_TYPE (e);
3516 TREE_READONLY (result) = TREE_READONLY (e);
3517 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3518 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3519
3520 return result;
3521 }
3522 \f
3523 /* Low-level constructors for expressions. */
3524
3525 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3526 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3527
3528 void
3529 recompute_tree_invariant_for_addr_expr (tree t)
3530 {
3531 tree node;
3532 bool tc = true, se = false;
3533
3534 /* We started out assuming this address is both invariant and constant, but
3535 does not have side effects. Now go down any handled components and see if
3536 any of them involve offsets that are either non-constant or non-invariant.
3537 Also check for side-effects.
3538
3539 ??? Note that this code makes no attempt to deal with the case where
3540 taking the address of something causes a copy due to misalignment. */
3541
3542 #define UPDATE_FLAGS(NODE) \
3543 do { tree _node = (NODE); \
3544 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3545 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3546
3547 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3548 node = TREE_OPERAND (node, 0))
3549 {
3550 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3551 array reference (probably made temporarily by the G++ front end),
3552 so ignore all the operands. */
3553 if ((TREE_CODE (node) == ARRAY_REF
3554 || TREE_CODE (node) == ARRAY_RANGE_REF)
3555 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3556 {
3557 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3558 if (TREE_OPERAND (node, 2))
3559 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3560 if (TREE_OPERAND (node, 3))
3561 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3562 }
3563 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3564 FIELD_DECL, apparently. The G++ front end can put something else
3565 there, at least temporarily. */
3566 else if (TREE_CODE (node) == COMPONENT_REF
3567 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3568 {
3569 if (TREE_OPERAND (node, 2))
3570 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3571 }
3572 else if (TREE_CODE (node) == BIT_FIELD_REF)
3573 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3574 }
3575
3576 node = lang_hooks.expr_to_decl (node, &tc, &se);
3577
3578 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3579 the address, since &(*a)->b is a form of addition. If it's a constant, the
3580 address is constant too. If it's a decl, its address is constant if the
3581 decl is static. Everything else is not constant and, furthermore,
3582 taking the address of a volatile variable is not volatile. */
3583 if (TREE_CODE (node) == INDIRECT_REF
3584 || TREE_CODE (node) == MEM_REF)
3585 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3586 else if (CONSTANT_CLASS_P (node))
3587 ;
3588 else if (DECL_P (node))
3589 tc &= (staticp (node) != NULL_TREE);
3590 else
3591 {
3592 tc = false;
3593 se |= TREE_SIDE_EFFECTS (node);
3594 }
3595
3596
3597 TREE_CONSTANT (t) = tc;
3598 TREE_SIDE_EFFECTS (t) = se;
3599 #undef UPDATE_FLAGS
3600 }
3601
3602 /* Build an expression of code CODE, data type TYPE, and operands as
3603 specified. Expressions and reference nodes can be created this way.
3604 Constants, decls, types and misc nodes cannot be.
3605
3606 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3607 enough for all extant tree codes. */
3608
3609 tree
3610 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3611 {
3612 tree t;
3613
3614 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3615
3616 t = make_node_stat (code PASS_MEM_STAT);
3617 TREE_TYPE (t) = tt;
3618
3619 return t;
3620 }
3621
3622 tree
3623 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3624 {
3625 int length = sizeof (struct tree_exp);
3626 #ifdef GATHER_STATISTICS
3627 tree_node_kind kind;
3628 #endif
3629 tree t;
3630
3631 #ifdef GATHER_STATISTICS
3632 switch (TREE_CODE_CLASS (code))
3633 {
3634 case tcc_statement: /* an expression with side effects */
3635 kind = s_kind;
3636 break;
3637 case tcc_reference: /* a reference */
3638 kind = r_kind;
3639 break;
3640 default:
3641 kind = e_kind;
3642 break;
3643 }
3644
3645 tree_node_counts[(int) kind]++;
3646 tree_node_sizes[(int) kind] += length;
3647 #endif
3648
3649 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3650
3651 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3652
3653 memset (t, 0, sizeof (struct tree_common));
3654
3655 TREE_SET_CODE (t, code);
3656
3657 TREE_TYPE (t) = type;
3658 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3659 TREE_OPERAND (t, 0) = node;
3660 TREE_BLOCK (t) = NULL_TREE;
3661 if (node && !TYPE_P (node))
3662 {
3663 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3664 TREE_READONLY (t) = TREE_READONLY (node);
3665 }
3666
3667 if (TREE_CODE_CLASS (code) == tcc_statement)
3668 TREE_SIDE_EFFECTS (t) = 1;
3669 else switch (code)
3670 {
3671 case VA_ARG_EXPR:
3672 /* All of these have side-effects, no matter what their
3673 operands are. */
3674 TREE_SIDE_EFFECTS (t) = 1;
3675 TREE_READONLY (t) = 0;
3676 break;
3677
3678 case INDIRECT_REF:
3679 /* Whether a dereference is readonly has nothing to do with whether
3680 its operand is readonly. */
3681 TREE_READONLY (t) = 0;
3682 break;
3683
3684 case ADDR_EXPR:
3685 if (node)
3686 recompute_tree_invariant_for_addr_expr (t);
3687 break;
3688
3689 default:
3690 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3691 && node && !TYPE_P (node)
3692 && TREE_CONSTANT (node))
3693 TREE_CONSTANT (t) = 1;
3694 if (TREE_CODE_CLASS (code) == tcc_reference
3695 && node && TREE_THIS_VOLATILE (node))
3696 TREE_THIS_VOLATILE (t) = 1;
3697 break;
3698 }
3699
3700 return t;
3701 }
3702
3703 #define PROCESS_ARG(N) \
3704 do { \
3705 TREE_OPERAND (t, N) = arg##N; \
3706 if (arg##N &&!TYPE_P (arg##N)) \
3707 { \
3708 if (TREE_SIDE_EFFECTS (arg##N)) \
3709 side_effects = 1; \
3710 if (!TREE_READONLY (arg##N) \
3711 && !CONSTANT_CLASS_P (arg##N)) \
3712 (void) (read_only = 0); \
3713 if (!TREE_CONSTANT (arg##N)) \
3714 (void) (constant = 0); \
3715 } \
3716 } while (0)
3717
3718 tree
3719 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3720 {
3721 bool constant, read_only, side_effects;
3722 tree t;
3723
3724 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3725
3726 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3727 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3728 /* When sizetype precision doesn't match that of pointers
3729 we need to be able to build explicit extensions or truncations
3730 of the offset argument. */
3731 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3732 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3733 && TREE_CODE (arg1) == INTEGER_CST);
3734
3735 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3736 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3737 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3738 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3739
3740 t = make_node_stat (code PASS_MEM_STAT);
3741 TREE_TYPE (t) = tt;
3742
3743 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3744 result based on those same flags for the arguments. But if the
3745 arguments aren't really even `tree' expressions, we shouldn't be trying
3746 to do this. */
3747
3748 /* Expressions without side effects may be constant if their
3749 arguments are as well. */
3750 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3751 || TREE_CODE_CLASS (code) == tcc_binary);
3752 read_only = 1;
3753 side_effects = TREE_SIDE_EFFECTS (t);
3754
3755 PROCESS_ARG(0);
3756 PROCESS_ARG(1);
3757
3758 TREE_READONLY (t) = read_only;
3759 TREE_CONSTANT (t) = constant;
3760 TREE_SIDE_EFFECTS (t) = side_effects;
3761 TREE_THIS_VOLATILE (t)
3762 = (TREE_CODE_CLASS (code) == tcc_reference
3763 && arg0 && TREE_THIS_VOLATILE (arg0));
3764
3765 return t;
3766 }
3767
3768
3769 tree
3770 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3771 tree arg2 MEM_STAT_DECL)
3772 {
3773 bool constant, read_only, side_effects;
3774 tree t;
3775
3776 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3777 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3778
3779 t = make_node_stat (code PASS_MEM_STAT);
3780 TREE_TYPE (t) = tt;
3781
3782 read_only = 1;
3783
3784 /* As a special exception, if COND_EXPR has NULL branches, we
3785 assume that it is a gimple statement and always consider
3786 it to have side effects. */
3787 if (code == COND_EXPR
3788 && tt == void_type_node
3789 && arg1 == NULL_TREE
3790 && arg2 == NULL_TREE)
3791 side_effects = true;
3792 else
3793 side_effects = TREE_SIDE_EFFECTS (t);
3794
3795 PROCESS_ARG(0);
3796 PROCESS_ARG(1);
3797 PROCESS_ARG(2);
3798
3799 if (code == COND_EXPR)
3800 TREE_READONLY (t) = read_only;
3801
3802 TREE_SIDE_EFFECTS (t) = side_effects;
3803 TREE_THIS_VOLATILE (t)
3804 = (TREE_CODE_CLASS (code) == tcc_reference
3805 && arg0 && TREE_THIS_VOLATILE (arg0));
3806
3807 return t;
3808 }
3809
3810 tree
3811 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3812 tree arg2, tree arg3 MEM_STAT_DECL)
3813 {
3814 bool constant, read_only, side_effects;
3815 tree t;
3816
3817 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3818
3819 t = make_node_stat (code PASS_MEM_STAT);
3820 TREE_TYPE (t) = tt;
3821
3822 side_effects = TREE_SIDE_EFFECTS (t);
3823
3824 PROCESS_ARG(0);
3825 PROCESS_ARG(1);
3826 PROCESS_ARG(2);
3827 PROCESS_ARG(3);
3828
3829 TREE_SIDE_EFFECTS (t) = side_effects;
3830 TREE_THIS_VOLATILE (t)
3831 = (TREE_CODE_CLASS (code) == tcc_reference
3832 && arg0 && TREE_THIS_VOLATILE (arg0));
3833
3834 return t;
3835 }
3836
3837 tree
3838 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3839 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3840 {
3841 bool constant, read_only, side_effects;
3842 tree t;
3843
3844 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3845
3846 t = make_node_stat (code PASS_MEM_STAT);
3847 TREE_TYPE (t) = tt;
3848
3849 side_effects = TREE_SIDE_EFFECTS (t);
3850
3851 PROCESS_ARG(0);
3852 PROCESS_ARG(1);
3853 PROCESS_ARG(2);
3854 PROCESS_ARG(3);
3855 PROCESS_ARG(4);
3856
3857 TREE_SIDE_EFFECTS (t) = side_effects;
3858 TREE_THIS_VOLATILE (t)
3859 = (TREE_CODE_CLASS (code) == tcc_reference
3860 && arg0 && TREE_THIS_VOLATILE (arg0));
3861
3862 return t;
3863 }
3864
3865 tree
3866 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3867 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3868 {
3869 bool constant, read_only, side_effects;
3870 tree t;
3871
3872 gcc_assert (code == TARGET_MEM_REF);
3873
3874 t = make_node_stat (code PASS_MEM_STAT);
3875 TREE_TYPE (t) = tt;
3876
3877 side_effects = TREE_SIDE_EFFECTS (t);
3878
3879 PROCESS_ARG(0);
3880 PROCESS_ARG(1);
3881 PROCESS_ARG(2);
3882 PROCESS_ARG(3);
3883 PROCESS_ARG(4);
3884 if (code == TARGET_MEM_REF)
3885 side_effects = 0;
3886 PROCESS_ARG(5);
3887
3888 TREE_SIDE_EFFECTS (t) = side_effects;
3889 TREE_THIS_VOLATILE (t)
3890 = (code == TARGET_MEM_REF
3891 && arg5 && TREE_THIS_VOLATILE (arg5));
3892
3893 return t;
3894 }
3895
3896 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3897 on the pointer PTR. */
3898
3899 tree
3900 build_simple_mem_ref_loc (location_t loc, tree ptr)
3901 {
3902 HOST_WIDE_INT offset = 0;
3903 tree ptype = TREE_TYPE (ptr);
3904 tree tem;
3905 /* For convenience allow addresses that collapse to a simple base
3906 and offset. */
3907 if (TREE_CODE (ptr) == ADDR_EXPR
3908 && (handled_component_p (TREE_OPERAND (ptr, 0))
3909 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3910 {
3911 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3912 gcc_assert (ptr);
3913 ptr = build_fold_addr_expr (ptr);
3914 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3915 }
3916 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3917 ptr, build_int_cst (ptype, offset));
3918 SET_EXPR_LOCATION (tem, loc);
3919 return tem;
3920 }
3921
3922 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3923
3924 double_int
3925 mem_ref_offset (const_tree t)
3926 {
3927 tree toff = TREE_OPERAND (t, 1);
3928 return double_int_sext (tree_to_double_int (toff),
3929 TYPE_PRECISION (TREE_TYPE (toff)));
3930 }
3931
3932 /* Return the pointer-type relevant for TBAA purposes from the
3933 gimple memory reference tree T. This is the type to be used for
3934 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3935
3936 tree
3937 reference_alias_ptr_type (const_tree t)
3938 {
3939 const_tree base = t;
3940 while (handled_component_p (base))
3941 base = TREE_OPERAND (base, 0);
3942 if (TREE_CODE (base) == MEM_REF)
3943 return TREE_TYPE (TREE_OPERAND (base, 1));
3944 else if (TREE_CODE (base) == TARGET_MEM_REF)
3945 return TREE_TYPE (TMR_OFFSET (base));
3946 else
3947 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
3948 }
3949
3950 /* Similar except don't specify the TREE_TYPE
3951 and leave the TREE_SIDE_EFFECTS as 0.
3952 It is permissible for arguments to be null,
3953 or even garbage if their values do not matter. */
3954
3955 tree
3956 build_nt (enum tree_code code, ...)
3957 {
3958 tree t;
3959 int length;
3960 int i;
3961 va_list p;
3962
3963 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3964
3965 va_start (p, code);
3966
3967 t = make_node (code);
3968 length = TREE_CODE_LENGTH (code);
3969
3970 for (i = 0; i < length; i++)
3971 TREE_OPERAND (t, i) = va_arg (p, tree);
3972
3973 va_end (p);
3974 return t;
3975 }
3976
3977 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3978 tree VEC. */
3979
3980 tree
3981 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3982 {
3983 tree ret, t;
3984 unsigned int ix;
3985
3986 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3987 CALL_EXPR_FN (ret) = fn;
3988 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3989 FOR_EACH_VEC_ELT (tree, args, ix, t)
3990 CALL_EXPR_ARG (ret, ix) = t;
3991 return ret;
3992 }
3993 \f
3994 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3995 We do NOT enter this node in any sort of symbol table.
3996
3997 LOC is the location of the decl.
3998
3999 layout_decl is used to set up the decl's storage layout.
4000 Other slots are initialized to 0 or null pointers. */
4001
4002 tree
4003 build_decl_stat (location_t loc, enum tree_code code, tree name,
4004 tree type MEM_STAT_DECL)
4005 {
4006 tree t;
4007
4008 t = make_node_stat (code PASS_MEM_STAT);
4009 DECL_SOURCE_LOCATION (t) = loc;
4010
4011 /* if (type == error_mark_node)
4012 type = integer_type_node; */
4013 /* That is not done, deliberately, so that having error_mark_node
4014 as the type can suppress useless errors in the use of this variable. */
4015
4016 DECL_NAME (t) = name;
4017 TREE_TYPE (t) = type;
4018
4019 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4020 layout_decl (t, 0);
4021
4022 return t;
4023 }
4024
4025 /* Builds and returns function declaration with NAME and TYPE. */
4026
4027 tree
4028 build_fn_decl (const char *name, tree type)
4029 {
4030 tree id = get_identifier (name);
4031 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4032
4033 DECL_EXTERNAL (decl) = 1;
4034 TREE_PUBLIC (decl) = 1;
4035 DECL_ARTIFICIAL (decl) = 1;
4036 TREE_NOTHROW (decl) = 1;
4037
4038 return decl;
4039 }
4040
4041 VEC(tree,gc) *all_translation_units;
4042
4043 /* Builds a new translation-unit decl with name NAME, queues it in the
4044 global list of translation-unit decls and returns it. */
4045
4046 tree
4047 build_translation_unit_decl (tree name)
4048 {
4049 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4050 name, NULL_TREE);
4051 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4052 VEC_safe_push (tree, gc, all_translation_units, tu);
4053 return tu;
4054 }
4055
4056 \f
4057 /* BLOCK nodes are used to represent the structure of binding contours
4058 and declarations, once those contours have been exited and their contents
4059 compiled. This information is used for outputting debugging info. */
4060
4061 tree
4062 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4063 {
4064 tree block = make_node (BLOCK);
4065
4066 BLOCK_VARS (block) = vars;
4067 BLOCK_SUBBLOCKS (block) = subblocks;
4068 BLOCK_SUPERCONTEXT (block) = supercontext;
4069 BLOCK_CHAIN (block) = chain;
4070 return block;
4071 }
4072
4073 \f
4074 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4075
4076 LOC is the location to use in tree T. */
4077
4078 void
4079 protected_set_expr_location (tree t, location_t loc)
4080 {
4081 if (t && CAN_HAVE_LOCATION_P (t))
4082 SET_EXPR_LOCATION (t, loc);
4083 }
4084 \f
4085 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4086 is ATTRIBUTE. */
4087
4088 tree
4089 build_decl_attribute_variant (tree ddecl, tree attribute)
4090 {
4091 DECL_ATTRIBUTES (ddecl) = attribute;
4092 return ddecl;
4093 }
4094
4095 /* Borrowed from hashtab.c iterative_hash implementation. */
4096 #define mix(a,b,c) \
4097 { \
4098 a -= b; a -= c; a ^= (c>>13); \
4099 b -= c; b -= a; b ^= (a<< 8); \
4100 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4101 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4102 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4103 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4104 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4105 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4106 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4107 }
4108
4109
4110 /* Produce good hash value combining VAL and VAL2. */
4111 hashval_t
4112 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4113 {
4114 /* the golden ratio; an arbitrary value. */
4115 hashval_t a = 0x9e3779b9;
4116
4117 mix (a, val, val2);
4118 return val2;
4119 }
4120
4121 /* Produce good hash value combining VAL and VAL2. */
4122 hashval_t
4123 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4124 {
4125 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4126 return iterative_hash_hashval_t (val, val2);
4127 else
4128 {
4129 hashval_t a = (hashval_t) val;
4130 /* Avoid warnings about shifting of more than the width of the type on
4131 hosts that won't execute this path. */
4132 int zero = 0;
4133 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4134 mix (a, b, val2);
4135 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4136 {
4137 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4138 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4139 mix (a, b, val2);
4140 }
4141 return val2;
4142 }
4143 }
4144
4145 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4146 is ATTRIBUTE and its qualifiers are QUALS.
4147
4148 Record such modified types already made so we don't make duplicates. */
4149
4150 tree
4151 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4152 {
4153 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4154 {
4155 hashval_t hashcode = 0;
4156 tree ntype;
4157 enum tree_code code = TREE_CODE (ttype);
4158
4159 /* Building a distinct copy of a tagged type is inappropriate; it
4160 causes breakage in code that expects there to be a one-to-one
4161 relationship between a struct and its fields.
4162 build_duplicate_type is another solution (as used in
4163 handle_transparent_union_attribute), but that doesn't play well
4164 with the stronger C++ type identity model. */
4165 if (TREE_CODE (ttype) == RECORD_TYPE
4166 || TREE_CODE (ttype) == UNION_TYPE
4167 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4168 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4169 {
4170 warning (OPT_Wattributes,
4171 "ignoring attributes applied to %qT after definition",
4172 TYPE_MAIN_VARIANT (ttype));
4173 return build_qualified_type (ttype, quals);
4174 }
4175
4176 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4177 ntype = build_distinct_type_copy (ttype);
4178
4179 TYPE_ATTRIBUTES (ntype) = attribute;
4180
4181 hashcode = iterative_hash_object (code, hashcode);
4182 if (TREE_TYPE (ntype))
4183 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4184 hashcode);
4185 hashcode = attribute_hash_list (attribute, hashcode);
4186
4187 switch (TREE_CODE (ntype))
4188 {
4189 case FUNCTION_TYPE:
4190 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4191 break;
4192 case ARRAY_TYPE:
4193 if (TYPE_DOMAIN (ntype))
4194 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4195 hashcode);
4196 break;
4197 case INTEGER_TYPE:
4198 hashcode = iterative_hash_object
4199 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4200 hashcode = iterative_hash_object
4201 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4202 break;
4203 case REAL_TYPE:
4204 case FIXED_POINT_TYPE:
4205 {
4206 unsigned int precision = TYPE_PRECISION (ntype);
4207 hashcode = iterative_hash_object (precision, hashcode);
4208 }
4209 break;
4210 default:
4211 break;
4212 }
4213
4214 ntype = type_hash_canon (hashcode, ntype);
4215
4216 /* If the target-dependent attributes make NTYPE different from
4217 its canonical type, we will need to use structural equality
4218 checks for this type. */
4219 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4220 || !targetm.comp_type_attributes (ntype, ttype))
4221 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4222 else if (TYPE_CANONICAL (ntype) == ntype)
4223 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4224
4225 ttype = build_qualified_type (ntype, quals);
4226 }
4227 else if (TYPE_QUALS (ttype) != quals)
4228 ttype = build_qualified_type (ttype, quals);
4229
4230 return ttype;
4231 }
4232
4233
4234 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4235 is ATTRIBUTE.
4236
4237 Record such modified types already made so we don't make duplicates. */
4238
4239 tree
4240 build_type_attribute_variant (tree ttype, tree attribute)
4241 {
4242 return build_type_attribute_qual_variant (ttype, attribute,
4243 TYPE_QUALS (ttype));
4244 }
4245
4246
4247 /* Reset the expression *EXPR_P, a size or position.
4248
4249 ??? We could reset all non-constant sizes or positions. But it's cheap
4250 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4251
4252 We need to reset self-referential sizes or positions because they cannot
4253 be gimplified and thus can contain a CALL_EXPR after the gimplification
4254 is finished, which will run afoul of LTO streaming. And they need to be
4255 reset to something essentially dummy but not constant, so as to preserve
4256 the properties of the object they are attached to. */
4257
4258 static inline void
4259 free_lang_data_in_one_sizepos (tree *expr_p)
4260 {
4261 tree expr = *expr_p;
4262 if (CONTAINS_PLACEHOLDER_P (expr))
4263 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4264 }
4265
4266
4267 /* Reset all the fields in a binfo node BINFO. We only keep
4268 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4269
4270 static void
4271 free_lang_data_in_binfo (tree binfo)
4272 {
4273 unsigned i;
4274 tree t;
4275
4276 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4277
4278 BINFO_VTABLE (binfo) = NULL_TREE;
4279 BINFO_BASE_ACCESSES (binfo) = NULL;
4280 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4281 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4282
4283 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4284 free_lang_data_in_binfo (t);
4285 }
4286
4287
4288 /* Reset all language specific information still present in TYPE. */
4289
4290 static void
4291 free_lang_data_in_type (tree type)
4292 {
4293 gcc_assert (TYPE_P (type));
4294
4295 /* Give the FE a chance to remove its own data first. */
4296 lang_hooks.free_lang_data (type);
4297
4298 TREE_LANG_FLAG_0 (type) = 0;
4299 TREE_LANG_FLAG_1 (type) = 0;
4300 TREE_LANG_FLAG_2 (type) = 0;
4301 TREE_LANG_FLAG_3 (type) = 0;
4302 TREE_LANG_FLAG_4 (type) = 0;
4303 TREE_LANG_FLAG_5 (type) = 0;
4304 TREE_LANG_FLAG_6 (type) = 0;
4305
4306 if (TREE_CODE (type) == FUNCTION_TYPE)
4307 {
4308 /* Remove the const and volatile qualifiers from arguments. The
4309 C++ front end removes them, but the C front end does not,
4310 leading to false ODR violation errors when merging two
4311 instances of the same function signature compiled by
4312 different front ends. */
4313 tree p;
4314
4315 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4316 {
4317 tree arg_type = TREE_VALUE (p);
4318
4319 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4320 {
4321 int quals = TYPE_QUALS (arg_type)
4322 & ~TYPE_QUAL_CONST
4323 & ~TYPE_QUAL_VOLATILE;
4324 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4325 free_lang_data_in_type (TREE_VALUE (p));
4326 }
4327 }
4328 }
4329
4330 /* Remove members that are not actually FIELD_DECLs from the field
4331 list of an aggregate. These occur in C++. */
4332 if (RECORD_OR_UNION_TYPE_P (type))
4333 {
4334 tree prev, member;
4335
4336 /* Note that TYPE_FIELDS can be shared across distinct
4337 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4338 to be removed, we cannot set its TREE_CHAIN to NULL.
4339 Otherwise, we would not be able to find all the other fields
4340 in the other instances of this TREE_TYPE.
4341
4342 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4343 prev = NULL_TREE;
4344 member = TYPE_FIELDS (type);
4345 while (member)
4346 {
4347 if (TREE_CODE (member) == FIELD_DECL)
4348 {
4349 if (prev)
4350 TREE_CHAIN (prev) = member;
4351 else
4352 TYPE_FIELDS (type) = member;
4353 prev = member;
4354 }
4355
4356 member = TREE_CHAIN (member);
4357 }
4358
4359 if (prev)
4360 TREE_CHAIN (prev) = NULL_TREE;
4361 else
4362 TYPE_FIELDS (type) = NULL_TREE;
4363
4364 TYPE_METHODS (type) = NULL_TREE;
4365 if (TYPE_BINFO (type))
4366 free_lang_data_in_binfo (TYPE_BINFO (type));
4367 }
4368 else
4369 {
4370 /* For non-aggregate types, clear out the language slot (which
4371 overloads TYPE_BINFO). */
4372 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4373
4374 if (INTEGRAL_TYPE_P (type)
4375 || SCALAR_FLOAT_TYPE_P (type)
4376 || FIXED_POINT_TYPE_P (type))
4377 {
4378 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4379 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4380 }
4381 }
4382
4383 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4384 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4385
4386 if (debug_info_level < DINFO_LEVEL_TERSE
4387 || (TYPE_CONTEXT (type)
4388 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4389 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4390 TYPE_CONTEXT (type) = NULL_TREE;
4391
4392 if (debug_info_level < DINFO_LEVEL_TERSE)
4393 TYPE_STUB_DECL (type) = NULL_TREE;
4394 }
4395
4396
4397 /* Return true if DECL may need an assembler name to be set. */
4398
4399 static inline bool
4400 need_assembler_name_p (tree decl)
4401 {
4402 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4403 if (TREE_CODE (decl) != FUNCTION_DECL
4404 && TREE_CODE (decl) != VAR_DECL)
4405 return false;
4406
4407 /* If DECL already has its assembler name set, it does not need a
4408 new one. */
4409 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4410 || DECL_ASSEMBLER_NAME_SET_P (decl))
4411 return false;
4412
4413 /* Abstract decls do not need an assembler name. */
4414 if (DECL_ABSTRACT (decl))
4415 return false;
4416
4417 /* For VAR_DECLs, only static, public and external symbols need an
4418 assembler name. */
4419 if (TREE_CODE (decl) == VAR_DECL
4420 && !TREE_STATIC (decl)
4421 && !TREE_PUBLIC (decl)
4422 && !DECL_EXTERNAL (decl))
4423 return false;
4424
4425 if (TREE_CODE (decl) == FUNCTION_DECL)
4426 {
4427 /* Do not set assembler name on builtins. Allow RTL expansion to
4428 decide whether to expand inline or via a regular call. */
4429 if (DECL_BUILT_IN (decl)
4430 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4431 return false;
4432
4433 /* Functions represented in the callgraph need an assembler name. */
4434 if (cgraph_get_node (decl) != NULL)
4435 return true;
4436
4437 /* Unused and not public functions don't need an assembler name. */
4438 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4439 return false;
4440 }
4441
4442 return true;
4443 }
4444
4445
4446 /* Reset all language specific information still present in symbol
4447 DECL. */
4448
4449 static void
4450 free_lang_data_in_decl (tree decl)
4451 {
4452 gcc_assert (DECL_P (decl));
4453
4454 /* Give the FE a chance to remove its own data first. */
4455 lang_hooks.free_lang_data (decl);
4456
4457 TREE_LANG_FLAG_0 (decl) = 0;
4458 TREE_LANG_FLAG_1 (decl) = 0;
4459 TREE_LANG_FLAG_2 (decl) = 0;
4460 TREE_LANG_FLAG_3 (decl) = 0;
4461 TREE_LANG_FLAG_4 (decl) = 0;
4462 TREE_LANG_FLAG_5 (decl) = 0;
4463 TREE_LANG_FLAG_6 (decl) = 0;
4464
4465 /* Identifiers need not have a type. */
4466 if (DECL_NAME (decl))
4467 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4468
4469 if (TREE_CODE (decl) == VAR_DECL)
4470 {
4471 tree context = DECL_CONTEXT (decl);
4472
4473 if (context)
4474 {
4475 enum tree_code code = TREE_CODE (context);
4476 if (code == FUNCTION_DECL && DECL_ABSTRACT (context))
4477 {
4478 /* Do not clear the decl context here, that will promote
4479 all vars to global ones. */
4480 DECL_INITIAL (decl) = NULL_TREE;
4481 }
4482 }
4483 }
4484
4485 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4486 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4487 if (TREE_CODE (decl) == FIELD_DECL)
4488 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4489
4490 /* DECL_FCONTEXT is only used for debug info generation. */
4491 if (TREE_CODE (decl) == FIELD_DECL
4492 && debug_info_level < DINFO_LEVEL_TERSE)
4493 DECL_FCONTEXT (decl) = NULL_TREE;
4494
4495 if (TREE_CODE (decl) == FUNCTION_DECL)
4496 {
4497 if (gimple_has_body_p (decl))
4498 {
4499 tree t;
4500
4501 /* If DECL has a gimple body, then the context for its
4502 arguments must be DECL. Otherwise, it doesn't really
4503 matter, as we will not be emitting any code for DECL. In
4504 general, there may be other instances of DECL created by
4505 the front end and since PARM_DECLs are generally shared,
4506 their DECL_CONTEXT changes as the replicas of DECL are
4507 created. The only time where DECL_CONTEXT is important
4508 is for the FUNCTION_DECLs that have a gimple body (since
4509 the PARM_DECL will be used in the function's body). */
4510 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4511 DECL_CONTEXT (t) = decl;
4512 }
4513
4514 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4515 At this point, it is not needed anymore. */
4516 DECL_SAVED_TREE (decl) = NULL_TREE;
4517 }
4518 else if (TREE_CODE (decl) == VAR_DECL)
4519 {
4520 if (DECL_EXTERNAL (decl)
4521 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4522 DECL_INITIAL (decl) = NULL_TREE;
4523 }
4524 else if (TREE_CODE (decl) == TYPE_DECL)
4525 DECL_INITIAL (decl) = NULL_TREE;
4526 }
4527
4528
4529 /* Data used when collecting DECLs and TYPEs for language data removal. */
4530
4531 struct free_lang_data_d
4532 {
4533 /* Worklist to avoid excessive recursion. */
4534 VEC(tree,heap) *worklist;
4535
4536 /* Set of traversed objects. Used to avoid duplicate visits. */
4537 struct pointer_set_t *pset;
4538
4539 /* Array of symbols to process with free_lang_data_in_decl. */
4540 VEC(tree,heap) *decls;
4541
4542 /* Array of types to process with free_lang_data_in_type. */
4543 VEC(tree,heap) *types;
4544 };
4545
4546
4547 /* Save all language fields needed to generate proper debug information
4548 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4549
4550 static void
4551 save_debug_info_for_decl (tree t)
4552 {
4553 /*struct saved_debug_info_d *sdi;*/
4554
4555 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4556
4557 /* FIXME. Partial implementation for saving debug info removed. */
4558 }
4559
4560
4561 /* Save all language fields needed to generate proper debug information
4562 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4563
4564 static void
4565 save_debug_info_for_type (tree t)
4566 {
4567 /*struct saved_debug_info_d *sdi;*/
4568
4569 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4570
4571 /* FIXME. Partial implementation for saving debug info removed. */
4572 }
4573
4574
4575 /* Add type or decl T to one of the list of tree nodes that need their
4576 language data removed. The lists are held inside FLD. */
4577
4578 static void
4579 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4580 {
4581 if (DECL_P (t))
4582 {
4583 VEC_safe_push (tree, heap, fld->decls, t);
4584 if (debug_info_level > DINFO_LEVEL_TERSE)
4585 save_debug_info_for_decl (t);
4586 }
4587 else if (TYPE_P (t))
4588 {
4589 VEC_safe_push (tree, heap, fld->types, t);
4590 if (debug_info_level > DINFO_LEVEL_TERSE)
4591 save_debug_info_for_type (t);
4592 }
4593 else
4594 gcc_unreachable ();
4595 }
4596
4597 /* Push tree node T into FLD->WORKLIST. */
4598
4599 static inline void
4600 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4601 {
4602 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4603 VEC_safe_push (tree, heap, fld->worklist, (t));
4604 }
4605
4606
4607 /* Operand callback helper for free_lang_data_in_node. *TP is the
4608 subtree operand being considered. */
4609
4610 static tree
4611 find_decls_types_r (tree *tp, int *ws, void *data)
4612 {
4613 tree t = *tp;
4614 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4615
4616 if (TREE_CODE (t) == TREE_LIST)
4617 return NULL_TREE;
4618
4619 /* Language specific nodes will be removed, so there is no need
4620 to gather anything under them. */
4621 if (is_lang_specific (t))
4622 {
4623 *ws = 0;
4624 return NULL_TREE;
4625 }
4626
4627 if (DECL_P (t))
4628 {
4629 /* Note that walk_tree does not traverse every possible field in
4630 decls, so we have to do our own traversals here. */
4631 add_tree_to_fld_list (t, fld);
4632
4633 fld_worklist_push (DECL_NAME (t), fld);
4634 fld_worklist_push (DECL_CONTEXT (t), fld);
4635 fld_worklist_push (DECL_SIZE (t), fld);
4636 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4637
4638 /* We are going to remove everything under DECL_INITIAL for
4639 TYPE_DECLs. No point walking them. */
4640 if (TREE_CODE (t) != TYPE_DECL)
4641 fld_worklist_push (DECL_INITIAL (t), fld);
4642
4643 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4644 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4645
4646 if (TREE_CODE (t) == FUNCTION_DECL)
4647 {
4648 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4649 fld_worklist_push (DECL_RESULT (t), fld);
4650 }
4651 else if (TREE_CODE (t) == TYPE_DECL)
4652 {
4653 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4654 fld_worklist_push (DECL_VINDEX (t), fld);
4655 }
4656 else if (TREE_CODE (t) == FIELD_DECL)
4657 {
4658 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4659 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4660 fld_worklist_push (DECL_QUALIFIER (t), fld);
4661 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4662 fld_worklist_push (DECL_FCONTEXT (t), fld);
4663 }
4664 else if (TREE_CODE (t) == VAR_DECL)
4665 {
4666 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4667 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4668 }
4669
4670 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4671 && DECL_HAS_VALUE_EXPR_P (t))
4672 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4673
4674 if (TREE_CODE (t) != FIELD_DECL
4675 && TREE_CODE (t) != TYPE_DECL)
4676 fld_worklist_push (TREE_CHAIN (t), fld);
4677 *ws = 0;
4678 }
4679 else if (TYPE_P (t))
4680 {
4681 /* Note that walk_tree does not traverse every possible field in
4682 types, so we have to do our own traversals here. */
4683 add_tree_to_fld_list (t, fld);
4684
4685 if (!RECORD_OR_UNION_TYPE_P (t))
4686 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4687 fld_worklist_push (TYPE_SIZE (t), fld);
4688 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4689 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4690 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4691 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4692 fld_worklist_push (TYPE_NAME (t), fld);
4693 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4694 them and thus do not and want not to reach unused pointer types
4695 this way. */
4696 if (!POINTER_TYPE_P (t))
4697 fld_worklist_push (TYPE_MINVAL (t), fld);
4698 if (!RECORD_OR_UNION_TYPE_P (t))
4699 fld_worklist_push (TYPE_MAXVAL (t), fld);
4700 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4701 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4702 do not and want not to reach unused variants this way. */
4703 fld_worklist_push (TYPE_CONTEXT (t), fld);
4704 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4705 and want not to reach unused types this way. */
4706
4707 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4708 {
4709 unsigned i;
4710 tree tem;
4711 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4712 i, tem); ++i)
4713 fld_worklist_push (TREE_TYPE (tem), fld);
4714 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4715 if (tem
4716 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4717 && TREE_CODE (tem) == TREE_LIST)
4718 do
4719 {
4720 fld_worklist_push (TREE_VALUE (tem), fld);
4721 tem = TREE_CHAIN (tem);
4722 }
4723 while (tem);
4724 }
4725 if (RECORD_OR_UNION_TYPE_P (t))
4726 {
4727 tree tem;
4728 /* Push all TYPE_FIELDS - there can be interleaving interesting
4729 and non-interesting things. */
4730 tem = TYPE_FIELDS (t);
4731 while (tem)
4732 {
4733 if (TREE_CODE (tem) == FIELD_DECL)
4734 fld_worklist_push (tem, fld);
4735 tem = TREE_CHAIN (tem);
4736 }
4737 }
4738
4739 fld_worklist_push (TREE_CHAIN (t), fld);
4740 *ws = 0;
4741 }
4742 else if (TREE_CODE (t) == BLOCK)
4743 {
4744 tree tem;
4745 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4746 fld_worklist_push (tem, fld);
4747 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4748 fld_worklist_push (tem, fld);
4749 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4750 }
4751
4752 fld_worklist_push (TREE_TYPE (t), fld);
4753
4754 return NULL_TREE;
4755 }
4756
4757
4758 /* Find decls and types in T. */
4759
4760 static void
4761 find_decls_types (tree t, struct free_lang_data_d *fld)
4762 {
4763 while (1)
4764 {
4765 if (!pointer_set_contains (fld->pset, t))
4766 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4767 if (VEC_empty (tree, fld->worklist))
4768 break;
4769 t = VEC_pop (tree, fld->worklist);
4770 }
4771 }
4772
4773 /* Translate all the types in LIST with the corresponding runtime
4774 types. */
4775
4776 static tree
4777 get_eh_types_for_runtime (tree list)
4778 {
4779 tree head, prev;
4780
4781 if (list == NULL_TREE)
4782 return NULL_TREE;
4783
4784 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4785 prev = head;
4786 list = TREE_CHAIN (list);
4787 while (list)
4788 {
4789 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4790 TREE_CHAIN (prev) = n;
4791 prev = TREE_CHAIN (prev);
4792 list = TREE_CHAIN (list);
4793 }
4794
4795 return head;
4796 }
4797
4798
4799 /* Find decls and types referenced in EH region R and store them in
4800 FLD->DECLS and FLD->TYPES. */
4801
4802 static void
4803 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4804 {
4805 switch (r->type)
4806 {
4807 case ERT_CLEANUP:
4808 break;
4809
4810 case ERT_TRY:
4811 {
4812 eh_catch c;
4813
4814 /* The types referenced in each catch must first be changed to the
4815 EH types used at runtime. This removes references to FE types
4816 in the region. */
4817 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4818 {
4819 c->type_list = get_eh_types_for_runtime (c->type_list);
4820 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4821 }
4822 }
4823 break;
4824
4825 case ERT_ALLOWED_EXCEPTIONS:
4826 r->u.allowed.type_list
4827 = get_eh_types_for_runtime (r->u.allowed.type_list);
4828 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4829 break;
4830
4831 case ERT_MUST_NOT_THROW:
4832 walk_tree (&r->u.must_not_throw.failure_decl,
4833 find_decls_types_r, fld, fld->pset);
4834 break;
4835 }
4836 }
4837
4838
4839 /* Find decls and types referenced in cgraph node N and store them in
4840 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4841 look for *every* kind of DECL and TYPE node reachable from N,
4842 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4843 NAMESPACE_DECLs, etc). */
4844
4845 static void
4846 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4847 {
4848 basic_block bb;
4849 struct function *fn;
4850 unsigned ix;
4851 tree t;
4852
4853 find_decls_types (n->decl, fld);
4854
4855 if (!gimple_has_body_p (n->decl))
4856 return;
4857
4858 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4859
4860 fn = DECL_STRUCT_FUNCTION (n->decl);
4861
4862 /* Traverse locals. */
4863 FOR_EACH_LOCAL_DECL (fn, ix, t)
4864 find_decls_types (t, fld);
4865
4866 /* Traverse EH regions in FN. */
4867 {
4868 eh_region r;
4869 FOR_ALL_EH_REGION_FN (r, fn)
4870 find_decls_types_in_eh_region (r, fld);
4871 }
4872
4873 /* Traverse every statement in FN. */
4874 FOR_EACH_BB_FN (bb, fn)
4875 {
4876 gimple_stmt_iterator si;
4877 unsigned i;
4878
4879 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4880 {
4881 gimple phi = gsi_stmt (si);
4882
4883 for (i = 0; i < gimple_phi_num_args (phi); i++)
4884 {
4885 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4886 find_decls_types (*arg_p, fld);
4887 }
4888 }
4889
4890 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4891 {
4892 gimple stmt = gsi_stmt (si);
4893
4894 for (i = 0; i < gimple_num_ops (stmt); i++)
4895 {
4896 tree arg = gimple_op (stmt, i);
4897 find_decls_types (arg, fld);
4898 }
4899 }
4900 }
4901 }
4902
4903
4904 /* Find decls and types referenced in varpool node N and store them in
4905 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4906 look for *every* kind of DECL and TYPE node reachable from N,
4907 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4908 NAMESPACE_DECLs, etc). */
4909
4910 static void
4911 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4912 {
4913 find_decls_types (v->decl, fld);
4914 }
4915
4916 /* If T needs an assembler name, have one created for it. */
4917
4918 void
4919 assign_assembler_name_if_neeeded (tree t)
4920 {
4921 if (need_assembler_name_p (t))
4922 {
4923 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4924 diagnostics that use input_location to show locus
4925 information. The problem here is that, at this point,
4926 input_location is generally anchored to the end of the file
4927 (since the parser is long gone), so we don't have a good
4928 position to pin it to.
4929
4930 To alleviate this problem, this uses the location of T's
4931 declaration. Examples of this are
4932 testsuite/g++.dg/template/cond2.C and
4933 testsuite/g++.dg/template/pr35240.C. */
4934 location_t saved_location = input_location;
4935 input_location = DECL_SOURCE_LOCATION (t);
4936
4937 decl_assembler_name (t);
4938
4939 input_location = saved_location;
4940 }
4941 }
4942
4943
4944 /* Free language specific information for every operand and expression
4945 in every node of the call graph. This process operates in three stages:
4946
4947 1- Every callgraph node and varpool node is traversed looking for
4948 decls and types embedded in them. This is a more exhaustive
4949 search than that done by find_referenced_vars, because it will
4950 also collect individual fields, decls embedded in types, etc.
4951
4952 2- All the decls found are sent to free_lang_data_in_decl.
4953
4954 3- All the types found are sent to free_lang_data_in_type.
4955
4956 The ordering between decls and types is important because
4957 free_lang_data_in_decl sets assembler names, which includes
4958 mangling. So types cannot be freed up until assembler names have
4959 been set up. */
4960
4961 static void
4962 free_lang_data_in_cgraph (void)
4963 {
4964 struct cgraph_node *n;
4965 struct varpool_node *v;
4966 struct free_lang_data_d fld;
4967 tree t;
4968 unsigned i;
4969 alias_pair *p;
4970
4971 /* Initialize sets and arrays to store referenced decls and types. */
4972 fld.pset = pointer_set_create ();
4973 fld.worklist = NULL;
4974 fld.decls = VEC_alloc (tree, heap, 100);
4975 fld.types = VEC_alloc (tree, heap, 100);
4976
4977 /* Find decls and types in the body of every function in the callgraph. */
4978 for (n = cgraph_nodes; n; n = n->next)
4979 find_decls_types_in_node (n, &fld);
4980
4981 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
4982 find_decls_types (p->decl, &fld);
4983
4984 /* Find decls and types in every varpool symbol. */
4985 for (v = varpool_nodes; v; v = v->next)
4986 find_decls_types_in_var (v, &fld);
4987
4988 /* Set the assembler name on every decl found. We need to do this
4989 now because free_lang_data_in_decl will invalidate data needed
4990 for mangling. This breaks mangling on interdependent decls. */
4991 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
4992 assign_assembler_name_if_neeeded (t);
4993
4994 /* Traverse every decl found freeing its language data. */
4995 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
4996 free_lang_data_in_decl (t);
4997
4998 /* Traverse every type found freeing its language data. */
4999 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5000 free_lang_data_in_type (t);
5001
5002 pointer_set_destroy (fld.pset);
5003 VEC_free (tree, heap, fld.worklist);
5004 VEC_free (tree, heap, fld.decls);
5005 VEC_free (tree, heap, fld.types);
5006 }
5007
5008
5009 /* Free resources that are used by FE but are not needed once they are done. */
5010
5011 static unsigned
5012 free_lang_data (void)
5013 {
5014 unsigned i;
5015
5016 /* If we are the LTO frontend we have freed lang-specific data already. */
5017 if (in_lto_p
5018 || !flag_generate_lto)
5019 return 0;
5020
5021 /* Allocate and assign alias sets to the standard integer types
5022 while the slots are still in the way the frontends generated them. */
5023 for (i = 0; i < itk_none; ++i)
5024 if (integer_types[i])
5025 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5026
5027 /* Traverse the IL resetting language specific information for
5028 operands, expressions, etc. */
5029 free_lang_data_in_cgraph ();
5030
5031 /* Create gimple variants for common types. */
5032 ptrdiff_type_node = integer_type_node;
5033 fileptr_type_node = ptr_type_node;
5034 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
5035 || (TYPE_MODE (boolean_type_node)
5036 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
5037 || TYPE_PRECISION (boolean_type_node) != 1
5038 || !TYPE_UNSIGNED (boolean_type_node))
5039 {
5040 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5041 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5042 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5043 TYPE_PRECISION (boolean_type_node) = 1;
5044 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5045 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5046 }
5047
5048 /* Unify char_type_node with its properly signed variant. */
5049 if (TYPE_UNSIGNED (char_type_node))
5050 unsigned_char_type_node = char_type_node;
5051 else
5052 signed_char_type_node = char_type_node;
5053
5054 /* Reset some langhooks. Do not reset types_compatible_p, it may
5055 still be used indirectly via the get_alias_set langhook. */
5056 lang_hooks.callgraph.analyze_expr = NULL;
5057 lang_hooks.dwarf_name = lhd_dwarf_name;
5058 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5059 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
5060
5061 /* Reset diagnostic machinery. */
5062 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5063 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5064 diagnostic_format_decoder (global_dc) = default_tree_printer;
5065
5066 return 0;
5067 }
5068
5069
5070 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5071 {
5072 {
5073 SIMPLE_IPA_PASS,
5074 "*free_lang_data", /* name */
5075 NULL, /* gate */
5076 free_lang_data, /* execute */
5077 NULL, /* sub */
5078 NULL, /* next */
5079 0, /* static_pass_number */
5080 TV_IPA_FREE_LANG_DATA, /* tv_id */
5081 0, /* properties_required */
5082 0, /* properties_provided */
5083 0, /* properties_destroyed */
5084 0, /* todo_flags_start */
5085 TODO_ggc_collect /* todo_flags_finish */
5086 }
5087 };
5088
5089 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5090 or zero if not.
5091
5092 We try both `text' and `__text__', ATTR may be either one. */
5093 /* ??? It might be a reasonable simplification to require ATTR to be only
5094 `text'. One might then also require attribute lists to be stored in
5095 their canonicalized form. */
5096
5097 static int
5098 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5099 {
5100 int ident_len;
5101 const char *p;
5102
5103 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5104 return 0;
5105
5106 p = IDENTIFIER_POINTER (ident);
5107 ident_len = IDENTIFIER_LENGTH (ident);
5108
5109 if (ident_len == attr_len
5110 && strcmp (attr, p) == 0)
5111 return 1;
5112
5113 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5114 if (attr[0] == '_')
5115 {
5116 gcc_assert (attr[1] == '_');
5117 gcc_assert (attr[attr_len - 2] == '_');
5118 gcc_assert (attr[attr_len - 1] == '_');
5119 if (ident_len == attr_len - 4
5120 && strncmp (attr + 2, p, attr_len - 4) == 0)
5121 return 1;
5122 }
5123 else
5124 {
5125 if (ident_len == attr_len + 4
5126 && p[0] == '_' && p[1] == '_'
5127 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5128 && strncmp (attr, p + 2, attr_len) == 0)
5129 return 1;
5130 }
5131
5132 return 0;
5133 }
5134
5135 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5136 or zero if not.
5137
5138 We try both `text' and `__text__', ATTR may be either one. */
5139
5140 int
5141 is_attribute_p (const char *attr, const_tree ident)
5142 {
5143 return is_attribute_with_length_p (attr, strlen (attr), ident);
5144 }
5145
5146 /* Given an attribute name and a list of attributes, return a pointer to the
5147 attribute's list element if the attribute is part of the list, or NULL_TREE
5148 if not found. If the attribute appears more than once, this only
5149 returns the first occurrence; the TREE_CHAIN of the return value should
5150 be passed back in if further occurrences are wanted. */
5151
5152 tree
5153 lookup_attribute (const char *attr_name, tree list)
5154 {
5155 tree l;
5156 size_t attr_len = strlen (attr_name);
5157
5158 for (l = list; l; l = TREE_CHAIN (l))
5159 {
5160 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5161 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5162 return l;
5163 }
5164 return NULL_TREE;
5165 }
5166
5167 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5168 modified list. */
5169
5170 tree
5171 remove_attribute (const char *attr_name, tree list)
5172 {
5173 tree *p;
5174 size_t attr_len = strlen (attr_name);
5175
5176 for (p = &list; *p; )
5177 {
5178 tree l = *p;
5179 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5180 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5181 *p = TREE_CHAIN (l);
5182 else
5183 p = &TREE_CHAIN (l);
5184 }
5185
5186 return list;
5187 }
5188
5189 /* Return an attribute list that is the union of a1 and a2. */
5190
5191 tree
5192 merge_attributes (tree a1, tree a2)
5193 {
5194 tree attributes;
5195
5196 /* Either one unset? Take the set one. */
5197
5198 if ((attributes = a1) == 0)
5199 attributes = a2;
5200
5201 /* One that completely contains the other? Take it. */
5202
5203 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5204 {
5205 if (attribute_list_contained (a2, a1))
5206 attributes = a2;
5207 else
5208 {
5209 /* Pick the longest list, and hang on the other list. */
5210
5211 if (list_length (a1) < list_length (a2))
5212 attributes = a2, a2 = a1;
5213
5214 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5215 {
5216 tree a;
5217 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5218 attributes);
5219 a != NULL_TREE;
5220 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5221 TREE_CHAIN (a)))
5222 {
5223 if (TREE_VALUE (a) != NULL
5224 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5225 && TREE_VALUE (a2) != NULL
5226 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5227 {
5228 if (simple_cst_list_equal (TREE_VALUE (a),
5229 TREE_VALUE (a2)) == 1)
5230 break;
5231 }
5232 else if (simple_cst_equal (TREE_VALUE (a),
5233 TREE_VALUE (a2)) == 1)
5234 break;
5235 }
5236 if (a == NULL_TREE)
5237 {
5238 a1 = copy_node (a2);
5239 TREE_CHAIN (a1) = attributes;
5240 attributes = a1;
5241 }
5242 }
5243 }
5244 }
5245 return attributes;
5246 }
5247
5248 /* Given types T1 and T2, merge their attributes and return
5249 the result. */
5250
5251 tree
5252 merge_type_attributes (tree t1, tree t2)
5253 {
5254 return merge_attributes (TYPE_ATTRIBUTES (t1),
5255 TYPE_ATTRIBUTES (t2));
5256 }
5257
5258 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5259 the result. */
5260
5261 tree
5262 merge_decl_attributes (tree olddecl, tree newdecl)
5263 {
5264 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5265 DECL_ATTRIBUTES (newdecl));
5266 }
5267
5268 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5269
5270 /* Specialization of merge_decl_attributes for various Windows targets.
5271
5272 This handles the following situation:
5273
5274 __declspec (dllimport) int foo;
5275 int foo;
5276
5277 The second instance of `foo' nullifies the dllimport. */
5278
5279 tree
5280 merge_dllimport_decl_attributes (tree old, tree new_tree)
5281 {
5282 tree a;
5283 int delete_dllimport_p = 1;
5284
5285 /* What we need to do here is remove from `old' dllimport if it doesn't
5286 appear in `new'. dllimport behaves like extern: if a declaration is
5287 marked dllimport and a definition appears later, then the object
5288 is not dllimport'd. We also remove a `new' dllimport if the old list
5289 contains dllexport: dllexport always overrides dllimport, regardless
5290 of the order of declaration. */
5291 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5292 delete_dllimport_p = 0;
5293 else if (DECL_DLLIMPORT_P (new_tree)
5294 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5295 {
5296 DECL_DLLIMPORT_P (new_tree) = 0;
5297 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5298 "dllimport ignored", new_tree);
5299 }
5300 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5301 {
5302 /* Warn about overriding a symbol that has already been used, e.g.:
5303 extern int __attribute__ ((dllimport)) foo;
5304 int* bar () {return &foo;}
5305 int foo;
5306 */
5307 if (TREE_USED (old))
5308 {
5309 warning (0, "%q+D redeclared without dllimport attribute "
5310 "after being referenced with dll linkage", new_tree);
5311 /* If we have used a variable's address with dllimport linkage,
5312 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5313 decl may already have had TREE_CONSTANT computed.
5314 We still remove the attribute so that assembler code refers
5315 to '&foo rather than '_imp__foo'. */
5316 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5317 DECL_DLLIMPORT_P (new_tree) = 1;
5318 }
5319
5320 /* Let an inline definition silently override the external reference,
5321 but otherwise warn about attribute inconsistency. */
5322 else if (TREE_CODE (new_tree) == VAR_DECL
5323 || !DECL_DECLARED_INLINE_P (new_tree))
5324 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5325 "previous dllimport ignored", new_tree);
5326 }
5327 else
5328 delete_dllimport_p = 0;
5329
5330 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5331
5332 if (delete_dllimport_p)
5333 {
5334 tree prev, t;
5335 const size_t attr_len = strlen ("dllimport");
5336
5337 /* Scan the list for dllimport and delete it. */
5338 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5339 {
5340 if (is_attribute_with_length_p ("dllimport", attr_len,
5341 TREE_PURPOSE (t)))
5342 {
5343 if (prev == NULL_TREE)
5344 a = TREE_CHAIN (a);
5345 else
5346 TREE_CHAIN (prev) = TREE_CHAIN (t);
5347 break;
5348 }
5349 }
5350 }
5351
5352 return a;
5353 }
5354
5355 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5356 struct attribute_spec.handler. */
5357
5358 tree
5359 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5360 bool *no_add_attrs)
5361 {
5362 tree node = *pnode;
5363 bool is_dllimport;
5364
5365 /* These attributes may apply to structure and union types being created,
5366 but otherwise should pass to the declaration involved. */
5367 if (!DECL_P (node))
5368 {
5369 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5370 | (int) ATTR_FLAG_ARRAY_NEXT))
5371 {
5372 *no_add_attrs = true;
5373 return tree_cons (name, args, NULL_TREE);
5374 }
5375 if (TREE_CODE (node) == RECORD_TYPE
5376 || TREE_CODE (node) == UNION_TYPE)
5377 {
5378 node = TYPE_NAME (node);
5379 if (!node)
5380 return NULL_TREE;
5381 }
5382 else
5383 {
5384 warning (OPT_Wattributes, "%qE attribute ignored",
5385 name);
5386 *no_add_attrs = true;
5387 return NULL_TREE;
5388 }
5389 }
5390
5391 if (TREE_CODE (node) != FUNCTION_DECL
5392 && TREE_CODE (node) != VAR_DECL
5393 && TREE_CODE (node) != TYPE_DECL)
5394 {
5395 *no_add_attrs = true;
5396 warning (OPT_Wattributes, "%qE attribute ignored",
5397 name);
5398 return NULL_TREE;
5399 }
5400
5401 if (TREE_CODE (node) == TYPE_DECL
5402 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5403 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5404 {
5405 *no_add_attrs = true;
5406 warning (OPT_Wattributes, "%qE attribute ignored",
5407 name);
5408 return NULL_TREE;
5409 }
5410
5411 is_dllimport = is_attribute_p ("dllimport", name);
5412
5413 /* Report error on dllimport ambiguities seen now before they cause
5414 any damage. */
5415 if (is_dllimport)
5416 {
5417 /* Honor any target-specific overrides. */
5418 if (!targetm.valid_dllimport_attribute_p (node))
5419 *no_add_attrs = true;
5420
5421 else if (TREE_CODE (node) == FUNCTION_DECL
5422 && DECL_DECLARED_INLINE_P (node))
5423 {
5424 warning (OPT_Wattributes, "inline function %q+D declared as "
5425 " dllimport: attribute ignored", node);
5426 *no_add_attrs = true;
5427 }
5428 /* Like MS, treat definition of dllimported variables and
5429 non-inlined functions on declaration as syntax errors. */
5430 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5431 {
5432 error ("function %q+D definition is marked dllimport", node);
5433 *no_add_attrs = true;
5434 }
5435
5436 else if (TREE_CODE (node) == VAR_DECL)
5437 {
5438 if (DECL_INITIAL (node))
5439 {
5440 error ("variable %q+D definition is marked dllimport",
5441 node);
5442 *no_add_attrs = true;
5443 }
5444
5445 /* `extern' needn't be specified with dllimport.
5446 Specify `extern' now and hope for the best. Sigh. */
5447 DECL_EXTERNAL (node) = 1;
5448 /* Also, implicitly give dllimport'd variables declared within
5449 a function global scope, unless declared static. */
5450 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5451 TREE_PUBLIC (node) = 1;
5452 }
5453
5454 if (*no_add_attrs == false)
5455 DECL_DLLIMPORT_P (node) = 1;
5456 }
5457 else if (TREE_CODE (node) == FUNCTION_DECL
5458 && DECL_DECLARED_INLINE_P (node))
5459 /* An exported function, even if inline, must be emitted. */
5460 DECL_EXTERNAL (node) = 0;
5461
5462 /* Report error if symbol is not accessible at global scope. */
5463 if (!TREE_PUBLIC (node)
5464 && (TREE_CODE (node) == VAR_DECL
5465 || TREE_CODE (node) == FUNCTION_DECL))
5466 {
5467 error ("external linkage required for symbol %q+D because of "
5468 "%qE attribute", node, name);
5469 *no_add_attrs = true;
5470 }
5471
5472 /* A dllexport'd entity must have default visibility so that other
5473 program units (shared libraries or the main executable) can see
5474 it. A dllimport'd entity must have default visibility so that
5475 the linker knows that undefined references within this program
5476 unit can be resolved by the dynamic linker. */
5477 if (!*no_add_attrs)
5478 {
5479 if (DECL_VISIBILITY_SPECIFIED (node)
5480 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5481 error ("%qE implies default visibility, but %qD has already "
5482 "been declared with a different visibility",
5483 name, node);
5484 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5485 DECL_VISIBILITY_SPECIFIED (node) = 1;
5486 }
5487
5488 return NULL_TREE;
5489 }
5490
5491 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5492 \f
5493 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5494 of the various TYPE_QUAL values. */
5495
5496 static void
5497 set_type_quals (tree type, int type_quals)
5498 {
5499 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5500 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5501 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5502 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5503 }
5504
5505 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5506
5507 bool
5508 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5509 {
5510 return (TYPE_QUALS (cand) == type_quals
5511 && TYPE_NAME (cand) == TYPE_NAME (base)
5512 /* Apparently this is needed for Objective-C. */
5513 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5514 /* Check alignment. */
5515 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5516 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5517 TYPE_ATTRIBUTES (base)));
5518 }
5519
5520 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5521
5522 static bool
5523 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5524 {
5525 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5526 && TYPE_NAME (cand) == TYPE_NAME (base)
5527 /* Apparently this is needed for Objective-C. */
5528 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5529 /* Check alignment. */
5530 && TYPE_ALIGN (cand) == align
5531 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5532 TYPE_ATTRIBUTES (base)));
5533 }
5534
5535 /* Return a version of the TYPE, qualified as indicated by the
5536 TYPE_QUALS, if one exists. If no qualified version exists yet,
5537 return NULL_TREE. */
5538
5539 tree
5540 get_qualified_type (tree type, int type_quals)
5541 {
5542 tree t;
5543
5544 if (TYPE_QUALS (type) == type_quals)
5545 return type;
5546
5547 /* Search the chain of variants to see if there is already one there just
5548 like the one we need to have. If so, use that existing one. We must
5549 preserve the TYPE_NAME, since there is code that depends on this. */
5550 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5551 if (check_qualified_type (t, type, type_quals))
5552 return t;
5553
5554 return NULL_TREE;
5555 }
5556
5557 /* Like get_qualified_type, but creates the type if it does not
5558 exist. This function never returns NULL_TREE. */
5559
5560 tree
5561 build_qualified_type (tree type, int type_quals)
5562 {
5563 tree t;
5564
5565 /* See if we already have the appropriate qualified variant. */
5566 t = get_qualified_type (type, type_quals);
5567
5568 /* If not, build it. */
5569 if (!t)
5570 {
5571 t = build_variant_type_copy (type);
5572 set_type_quals (t, type_quals);
5573
5574 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5575 /* Propagate structural equality. */
5576 SET_TYPE_STRUCTURAL_EQUALITY (t);
5577 else if (TYPE_CANONICAL (type) != type)
5578 /* Build the underlying canonical type, since it is different
5579 from TYPE. */
5580 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5581 type_quals);
5582 else
5583 /* T is its own canonical type. */
5584 TYPE_CANONICAL (t) = t;
5585
5586 }
5587
5588 return t;
5589 }
5590
5591 /* Create a variant of type T with alignment ALIGN. */
5592
5593 tree
5594 build_aligned_type (tree type, unsigned int align)
5595 {
5596 tree t;
5597
5598 if (TYPE_PACKED (type)
5599 || TYPE_ALIGN (type) == align)
5600 return type;
5601
5602 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5603 if (check_aligned_type (t, type, align))
5604 return t;
5605
5606 t = build_variant_type_copy (type);
5607 TYPE_ALIGN (t) = align;
5608
5609 return t;
5610 }
5611
5612 /* Create a new distinct copy of TYPE. The new type is made its own
5613 MAIN_VARIANT. If TYPE requires structural equality checks, the
5614 resulting type requires structural equality checks; otherwise, its
5615 TYPE_CANONICAL points to itself. */
5616
5617 tree
5618 build_distinct_type_copy (tree type)
5619 {
5620 tree t = copy_node (type);
5621
5622 TYPE_POINTER_TO (t) = 0;
5623 TYPE_REFERENCE_TO (t) = 0;
5624
5625 /* Set the canonical type either to a new equivalence class, or
5626 propagate the need for structural equality checks. */
5627 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5628 SET_TYPE_STRUCTURAL_EQUALITY (t);
5629 else
5630 TYPE_CANONICAL (t) = t;
5631
5632 /* Make it its own variant. */
5633 TYPE_MAIN_VARIANT (t) = t;
5634 TYPE_NEXT_VARIANT (t) = 0;
5635
5636 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5637 whose TREE_TYPE is not t. This can also happen in the Ada
5638 frontend when using subtypes. */
5639
5640 return t;
5641 }
5642
5643 /* Create a new variant of TYPE, equivalent but distinct. This is so
5644 the caller can modify it. TYPE_CANONICAL for the return type will
5645 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5646 are considered equal by the language itself (or that both types
5647 require structural equality checks). */
5648
5649 tree
5650 build_variant_type_copy (tree type)
5651 {
5652 tree t, m = TYPE_MAIN_VARIANT (type);
5653
5654 t = build_distinct_type_copy (type);
5655
5656 /* Since we're building a variant, assume that it is a non-semantic
5657 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5658 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5659
5660 /* Add the new type to the chain of variants of TYPE. */
5661 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5662 TYPE_NEXT_VARIANT (m) = t;
5663 TYPE_MAIN_VARIANT (t) = m;
5664
5665 return t;
5666 }
5667 \f
5668 /* Return true if the from tree in both tree maps are equal. */
5669
5670 int
5671 tree_map_base_eq (const void *va, const void *vb)
5672 {
5673 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5674 *const b = (const struct tree_map_base *) vb;
5675 return (a->from == b->from);
5676 }
5677
5678 /* Hash a from tree in a tree_base_map. */
5679
5680 unsigned int
5681 tree_map_base_hash (const void *item)
5682 {
5683 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5684 }
5685
5686 /* Return true if this tree map structure is marked for garbage collection
5687 purposes. We simply return true if the from tree is marked, so that this
5688 structure goes away when the from tree goes away. */
5689
5690 int
5691 tree_map_base_marked_p (const void *p)
5692 {
5693 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5694 }
5695
5696 /* Hash a from tree in a tree_map. */
5697
5698 unsigned int
5699 tree_map_hash (const void *item)
5700 {
5701 return (((const struct tree_map *) item)->hash);
5702 }
5703
5704 /* Hash a from tree in a tree_decl_map. */
5705
5706 unsigned int
5707 tree_decl_map_hash (const void *item)
5708 {
5709 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5710 }
5711
5712 /* Return the initialization priority for DECL. */
5713
5714 priority_type
5715 decl_init_priority_lookup (tree decl)
5716 {
5717 struct tree_priority_map *h;
5718 struct tree_map_base in;
5719
5720 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5721 in.from = decl;
5722 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5723 return h ? h->init : DEFAULT_INIT_PRIORITY;
5724 }
5725
5726 /* Return the finalization priority for DECL. */
5727
5728 priority_type
5729 decl_fini_priority_lookup (tree decl)
5730 {
5731 struct tree_priority_map *h;
5732 struct tree_map_base in;
5733
5734 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5735 in.from = decl;
5736 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5737 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5738 }
5739
5740 /* Return the initialization and finalization priority information for
5741 DECL. If there is no previous priority information, a freshly
5742 allocated structure is returned. */
5743
5744 static struct tree_priority_map *
5745 decl_priority_info (tree decl)
5746 {
5747 struct tree_priority_map in;
5748 struct tree_priority_map *h;
5749 void **loc;
5750
5751 in.base.from = decl;
5752 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5753 h = (struct tree_priority_map *) *loc;
5754 if (!h)
5755 {
5756 h = ggc_alloc_cleared_tree_priority_map ();
5757 *loc = h;
5758 h->base.from = decl;
5759 h->init = DEFAULT_INIT_PRIORITY;
5760 h->fini = DEFAULT_INIT_PRIORITY;
5761 }
5762
5763 return h;
5764 }
5765
5766 /* Set the initialization priority for DECL to PRIORITY. */
5767
5768 void
5769 decl_init_priority_insert (tree decl, priority_type priority)
5770 {
5771 struct tree_priority_map *h;
5772
5773 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5774 h = decl_priority_info (decl);
5775 h->init = priority;
5776 }
5777
5778 /* Set the finalization priority for DECL to PRIORITY. */
5779
5780 void
5781 decl_fini_priority_insert (tree decl, priority_type priority)
5782 {
5783 struct tree_priority_map *h;
5784
5785 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5786 h = decl_priority_info (decl);
5787 h->fini = priority;
5788 }
5789
5790 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5791
5792 static void
5793 print_debug_expr_statistics (void)
5794 {
5795 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5796 (long) htab_size (debug_expr_for_decl),
5797 (long) htab_elements (debug_expr_for_decl),
5798 htab_collisions (debug_expr_for_decl));
5799 }
5800
5801 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5802
5803 static void
5804 print_value_expr_statistics (void)
5805 {
5806 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5807 (long) htab_size (value_expr_for_decl),
5808 (long) htab_elements (value_expr_for_decl),
5809 htab_collisions (value_expr_for_decl));
5810 }
5811
5812 /* Lookup a debug expression for FROM, and return it if we find one. */
5813
5814 tree
5815 decl_debug_expr_lookup (tree from)
5816 {
5817 struct tree_decl_map *h, in;
5818 in.base.from = from;
5819
5820 h = (struct tree_decl_map *)
5821 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5822 if (h)
5823 return h->to;
5824 return NULL_TREE;
5825 }
5826
5827 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5828
5829 void
5830 decl_debug_expr_insert (tree from, tree to)
5831 {
5832 struct tree_decl_map *h;
5833 void **loc;
5834
5835 h = ggc_alloc_tree_decl_map ();
5836 h->base.from = from;
5837 h->to = to;
5838 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5839 INSERT);
5840 *(struct tree_decl_map **) loc = h;
5841 }
5842
5843 /* Lookup a value expression for FROM, and return it if we find one. */
5844
5845 tree
5846 decl_value_expr_lookup (tree from)
5847 {
5848 struct tree_decl_map *h, in;
5849 in.base.from = from;
5850
5851 h = (struct tree_decl_map *)
5852 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5853 if (h)
5854 return h->to;
5855 return NULL_TREE;
5856 }
5857
5858 /* Insert a mapping FROM->TO in the value expression hashtable. */
5859
5860 void
5861 decl_value_expr_insert (tree from, tree to)
5862 {
5863 struct tree_decl_map *h;
5864 void **loc;
5865
5866 h = ggc_alloc_tree_decl_map ();
5867 h->base.from = from;
5868 h->to = to;
5869 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
5870 INSERT);
5871 *(struct tree_decl_map **) loc = h;
5872 }
5873
5874 /* Hashing of types so that we don't make duplicates.
5875 The entry point is `type_hash_canon'. */
5876
5877 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5878 with types in the TREE_VALUE slots), by adding the hash codes
5879 of the individual types. */
5880
5881 static unsigned int
5882 type_hash_list (const_tree list, hashval_t hashcode)
5883 {
5884 const_tree tail;
5885
5886 for (tail = list; tail; tail = TREE_CHAIN (tail))
5887 if (TREE_VALUE (tail) != error_mark_node)
5888 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5889 hashcode);
5890
5891 return hashcode;
5892 }
5893
5894 /* These are the Hashtable callback functions. */
5895
5896 /* Returns true iff the types are equivalent. */
5897
5898 static int
5899 type_hash_eq (const void *va, const void *vb)
5900 {
5901 const struct type_hash *const a = (const struct type_hash *) va,
5902 *const b = (const struct type_hash *) vb;
5903
5904 /* First test the things that are the same for all types. */
5905 if (a->hash != b->hash
5906 || TREE_CODE (a->type) != TREE_CODE (b->type)
5907 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5908 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5909 TYPE_ATTRIBUTES (b->type))
5910 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5911 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5912 || (TREE_CODE (a->type) != COMPLEX_TYPE
5913 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5914 return 0;
5915
5916 switch (TREE_CODE (a->type))
5917 {
5918 case VOID_TYPE:
5919 case COMPLEX_TYPE:
5920 case POINTER_TYPE:
5921 case REFERENCE_TYPE:
5922 return 1;
5923
5924 case VECTOR_TYPE:
5925 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5926
5927 case ENUMERAL_TYPE:
5928 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5929 && !(TYPE_VALUES (a->type)
5930 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5931 && TYPE_VALUES (b->type)
5932 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5933 && type_list_equal (TYPE_VALUES (a->type),
5934 TYPE_VALUES (b->type))))
5935 return 0;
5936
5937 /* ... fall through ... */
5938
5939 case INTEGER_TYPE:
5940 case REAL_TYPE:
5941 case BOOLEAN_TYPE:
5942 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5943 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5944 TYPE_MAX_VALUE (b->type)))
5945 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5946 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5947 TYPE_MIN_VALUE (b->type))));
5948
5949 case FIXED_POINT_TYPE:
5950 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5951
5952 case OFFSET_TYPE:
5953 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5954
5955 case METHOD_TYPE:
5956 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5957 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5958 || (TYPE_ARG_TYPES (a->type)
5959 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5960 && TYPE_ARG_TYPES (b->type)
5961 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5962 && type_list_equal (TYPE_ARG_TYPES (a->type),
5963 TYPE_ARG_TYPES (b->type)))));
5964
5965 case ARRAY_TYPE:
5966 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5967
5968 case RECORD_TYPE:
5969 case UNION_TYPE:
5970 case QUAL_UNION_TYPE:
5971 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5972 || (TYPE_FIELDS (a->type)
5973 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5974 && TYPE_FIELDS (b->type)
5975 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5976 && type_list_equal (TYPE_FIELDS (a->type),
5977 TYPE_FIELDS (b->type))));
5978
5979 case FUNCTION_TYPE:
5980 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5981 || (TYPE_ARG_TYPES (a->type)
5982 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5983 && TYPE_ARG_TYPES (b->type)
5984 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5985 && type_list_equal (TYPE_ARG_TYPES (a->type),
5986 TYPE_ARG_TYPES (b->type))))
5987 break;
5988 return 0;
5989
5990 default:
5991 return 0;
5992 }
5993
5994 if (lang_hooks.types.type_hash_eq != NULL)
5995 return lang_hooks.types.type_hash_eq (a->type, b->type);
5996
5997 return 1;
5998 }
5999
6000 /* Return the cached hash value. */
6001
6002 static hashval_t
6003 type_hash_hash (const void *item)
6004 {
6005 return ((const struct type_hash *) item)->hash;
6006 }
6007
6008 /* Look in the type hash table for a type isomorphic to TYPE.
6009 If one is found, return it. Otherwise return 0. */
6010
6011 tree
6012 type_hash_lookup (hashval_t hashcode, tree type)
6013 {
6014 struct type_hash *h, in;
6015
6016 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6017 must call that routine before comparing TYPE_ALIGNs. */
6018 layout_type (type);
6019
6020 in.hash = hashcode;
6021 in.type = type;
6022
6023 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6024 hashcode);
6025 if (h)
6026 return h->type;
6027 return NULL_TREE;
6028 }
6029
6030 /* Add an entry to the type-hash-table
6031 for a type TYPE whose hash code is HASHCODE. */
6032
6033 void
6034 type_hash_add (hashval_t hashcode, tree type)
6035 {
6036 struct type_hash *h;
6037 void **loc;
6038
6039 h = ggc_alloc_type_hash ();
6040 h->hash = hashcode;
6041 h->type = type;
6042 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6043 *loc = (void *)h;
6044 }
6045
6046 /* Given TYPE, and HASHCODE its hash code, return the canonical
6047 object for an identical type if one already exists.
6048 Otherwise, return TYPE, and record it as the canonical object.
6049
6050 To use this function, first create a type of the sort you want.
6051 Then compute its hash code from the fields of the type that
6052 make it different from other similar types.
6053 Then call this function and use the value. */
6054
6055 tree
6056 type_hash_canon (unsigned int hashcode, tree type)
6057 {
6058 tree t1;
6059
6060 /* The hash table only contains main variants, so ensure that's what we're
6061 being passed. */
6062 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6063
6064 /* See if the type is in the hash table already. If so, return it.
6065 Otherwise, add the type. */
6066 t1 = type_hash_lookup (hashcode, type);
6067 if (t1 != 0)
6068 {
6069 #ifdef GATHER_STATISTICS
6070 tree_node_counts[(int) t_kind]--;
6071 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
6072 #endif
6073 return t1;
6074 }
6075 else
6076 {
6077 type_hash_add (hashcode, type);
6078 return type;
6079 }
6080 }
6081
6082 /* See if the data pointed to by the type hash table is marked. We consider
6083 it marked if the type is marked or if a debug type number or symbol
6084 table entry has been made for the type. */
6085
6086 static int
6087 type_hash_marked_p (const void *p)
6088 {
6089 const_tree const type = ((const struct type_hash *) p)->type;
6090
6091 return ggc_marked_p (type);
6092 }
6093
6094 static void
6095 print_type_hash_statistics (void)
6096 {
6097 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6098 (long) htab_size (type_hash_table),
6099 (long) htab_elements (type_hash_table),
6100 htab_collisions (type_hash_table));
6101 }
6102
6103 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6104 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6105 by adding the hash codes of the individual attributes. */
6106
6107 static unsigned int
6108 attribute_hash_list (const_tree list, hashval_t hashcode)
6109 {
6110 const_tree tail;
6111
6112 for (tail = list; tail; tail = TREE_CHAIN (tail))
6113 /* ??? Do we want to add in TREE_VALUE too? */
6114 hashcode = iterative_hash_object
6115 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6116 return hashcode;
6117 }
6118
6119 /* Given two lists of attributes, return true if list l2 is
6120 equivalent to l1. */
6121
6122 int
6123 attribute_list_equal (const_tree l1, const_tree l2)
6124 {
6125 return attribute_list_contained (l1, l2)
6126 && attribute_list_contained (l2, l1);
6127 }
6128
6129 /* Given two lists of attributes, return true if list L2 is
6130 completely contained within L1. */
6131 /* ??? This would be faster if attribute names were stored in a canonicalized
6132 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6133 must be used to show these elements are equivalent (which they are). */
6134 /* ??? It's not clear that attributes with arguments will always be handled
6135 correctly. */
6136
6137 int
6138 attribute_list_contained (const_tree l1, const_tree l2)
6139 {
6140 const_tree t1, t2;
6141
6142 /* First check the obvious, maybe the lists are identical. */
6143 if (l1 == l2)
6144 return 1;
6145
6146 /* Maybe the lists are similar. */
6147 for (t1 = l1, t2 = l2;
6148 t1 != 0 && t2 != 0
6149 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6150 && TREE_VALUE (t1) == TREE_VALUE (t2);
6151 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6152
6153 /* Maybe the lists are equal. */
6154 if (t1 == 0 && t2 == 0)
6155 return 1;
6156
6157 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6158 {
6159 const_tree attr;
6160 /* This CONST_CAST is okay because lookup_attribute does not
6161 modify its argument and the return value is assigned to a
6162 const_tree. */
6163 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6164 CONST_CAST_TREE(l1));
6165 attr != NULL_TREE;
6166 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6167 TREE_CHAIN (attr)))
6168 {
6169 if (TREE_VALUE (t2) != NULL
6170 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6171 && TREE_VALUE (attr) != NULL
6172 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6173 {
6174 if (simple_cst_list_equal (TREE_VALUE (t2),
6175 TREE_VALUE (attr)) == 1)
6176 break;
6177 }
6178 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6179 break;
6180 }
6181
6182 if (attr == 0)
6183 return 0;
6184 }
6185
6186 return 1;
6187 }
6188
6189 /* Given two lists of types
6190 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6191 return 1 if the lists contain the same types in the same order.
6192 Also, the TREE_PURPOSEs must match. */
6193
6194 int
6195 type_list_equal (const_tree l1, const_tree l2)
6196 {
6197 const_tree t1, t2;
6198
6199 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6200 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6201 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6202 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6203 && (TREE_TYPE (TREE_PURPOSE (t1))
6204 == TREE_TYPE (TREE_PURPOSE (t2))))))
6205 return 0;
6206
6207 return t1 == t2;
6208 }
6209
6210 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6211 given by TYPE. If the argument list accepts variable arguments,
6212 then this function counts only the ordinary arguments. */
6213
6214 int
6215 type_num_arguments (const_tree type)
6216 {
6217 int i = 0;
6218 tree t;
6219
6220 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6221 /* If the function does not take a variable number of arguments,
6222 the last element in the list will have type `void'. */
6223 if (VOID_TYPE_P (TREE_VALUE (t)))
6224 break;
6225 else
6226 ++i;
6227
6228 return i;
6229 }
6230
6231 /* Nonzero if integer constants T1 and T2
6232 represent the same constant value. */
6233
6234 int
6235 tree_int_cst_equal (const_tree t1, const_tree t2)
6236 {
6237 if (t1 == t2)
6238 return 1;
6239
6240 if (t1 == 0 || t2 == 0)
6241 return 0;
6242
6243 if (TREE_CODE (t1) == INTEGER_CST
6244 && TREE_CODE (t2) == INTEGER_CST
6245 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6246 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6247 return 1;
6248
6249 return 0;
6250 }
6251
6252 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6253 The precise way of comparison depends on their data type. */
6254
6255 int
6256 tree_int_cst_lt (const_tree t1, const_tree t2)
6257 {
6258 if (t1 == t2)
6259 return 0;
6260
6261 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6262 {
6263 int t1_sgn = tree_int_cst_sgn (t1);
6264 int t2_sgn = tree_int_cst_sgn (t2);
6265
6266 if (t1_sgn < t2_sgn)
6267 return 1;
6268 else if (t1_sgn > t2_sgn)
6269 return 0;
6270 /* Otherwise, both are non-negative, so we compare them as
6271 unsigned just in case one of them would overflow a signed
6272 type. */
6273 }
6274 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6275 return INT_CST_LT (t1, t2);
6276
6277 return INT_CST_LT_UNSIGNED (t1, t2);
6278 }
6279
6280 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6281
6282 int
6283 tree_int_cst_compare (const_tree t1, const_tree t2)
6284 {
6285 if (tree_int_cst_lt (t1, t2))
6286 return -1;
6287 else if (tree_int_cst_lt (t2, t1))
6288 return 1;
6289 else
6290 return 0;
6291 }
6292
6293 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6294 the host. If POS is zero, the value can be represented in a single
6295 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6296 be represented in a single unsigned HOST_WIDE_INT. */
6297
6298 int
6299 host_integerp (const_tree t, int pos)
6300 {
6301 if (t == NULL_TREE)
6302 return 0;
6303
6304 return (TREE_CODE (t) == INTEGER_CST
6305 && ((TREE_INT_CST_HIGH (t) == 0
6306 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6307 || (! pos && TREE_INT_CST_HIGH (t) == -1
6308 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6309 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6310 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6311 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6312 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6313 }
6314
6315 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6316 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6317 be non-negative. We must be able to satisfy the above conditions. */
6318
6319 HOST_WIDE_INT
6320 tree_low_cst (const_tree t, int pos)
6321 {
6322 gcc_assert (host_integerp (t, pos));
6323 return TREE_INT_CST_LOW (t);
6324 }
6325
6326 /* Return the most significant bit of the integer constant T. */
6327
6328 int
6329 tree_int_cst_msb (const_tree t)
6330 {
6331 int prec;
6332 HOST_WIDE_INT h;
6333 unsigned HOST_WIDE_INT l;
6334
6335 /* Note that using TYPE_PRECISION here is wrong. We care about the
6336 actual bits, not the (arbitrary) range of the type. */
6337 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6338 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6339 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6340 return (l & 1) == 1;
6341 }
6342
6343 /* Return an indication of the sign of the integer constant T.
6344 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6345 Note that -1 will never be returned if T's type is unsigned. */
6346
6347 int
6348 tree_int_cst_sgn (const_tree t)
6349 {
6350 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6351 return 0;
6352 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6353 return 1;
6354 else if (TREE_INT_CST_HIGH (t) < 0)
6355 return -1;
6356 else
6357 return 1;
6358 }
6359
6360 /* Return the minimum number of bits needed to represent VALUE in a
6361 signed or unsigned type, UNSIGNEDP says which. */
6362
6363 unsigned int
6364 tree_int_cst_min_precision (tree value, bool unsignedp)
6365 {
6366 int log;
6367
6368 /* If the value is negative, compute its negative minus 1. The latter
6369 adjustment is because the absolute value of the largest negative value
6370 is one larger than the largest positive value. This is equivalent to
6371 a bit-wise negation, so use that operation instead. */
6372
6373 if (tree_int_cst_sgn (value) < 0)
6374 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6375
6376 /* Return the number of bits needed, taking into account the fact
6377 that we need one more bit for a signed than unsigned type. */
6378
6379 if (integer_zerop (value))
6380 log = 0;
6381 else
6382 log = tree_floor_log2 (value);
6383
6384 return log + 1 + !unsignedp;
6385 }
6386
6387 /* Compare two constructor-element-type constants. Return 1 if the lists
6388 are known to be equal; otherwise return 0. */
6389
6390 int
6391 simple_cst_list_equal (const_tree l1, const_tree l2)
6392 {
6393 while (l1 != NULL_TREE && l2 != NULL_TREE)
6394 {
6395 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6396 return 0;
6397
6398 l1 = TREE_CHAIN (l1);
6399 l2 = TREE_CHAIN (l2);
6400 }
6401
6402 return l1 == l2;
6403 }
6404
6405 /* Return truthvalue of whether T1 is the same tree structure as T2.
6406 Return 1 if they are the same.
6407 Return 0 if they are understandably different.
6408 Return -1 if either contains tree structure not understood by
6409 this function. */
6410
6411 int
6412 simple_cst_equal (const_tree t1, const_tree t2)
6413 {
6414 enum tree_code code1, code2;
6415 int cmp;
6416 int i;
6417
6418 if (t1 == t2)
6419 return 1;
6420 if (t1 == 0 || t2 == 0)
6421 return 0;
6422
6423 code1 = TREE_CODE (t1);
6424 code2 = TREE_CODE (t2);
6425
6426 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6427 {
6428 if (CONVERT_EXPR_CODE_P (code2)
6429 || code2 == NON_LVALUE_EXPR)
6430 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6431 else
6432 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6433 }
6434
6435 else if (CONVERT_EXPR_CODE_P (code2)
6436 || code2 == NON_LVALUE_EXPR)
6437 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6438
6439 if (code1 != code2)
6440 return 0;
6441
6442 switch (code1)
6443 {
6444 case INTEGER_CST:
6445 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6446 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6447
6448 case REAL_CST:
6449 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6450
6451 case FIXED_CST:
6452 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6453
6454 case STRING_CST:
6455 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6456 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6457 TREE_STRING_LENGTH (t1)));
6458
6459 case CONSTRUCTOR:
6460 {
6461 unsigned HOST_WIDE_INT idx;
6462 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6463 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6464
6465 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6466 return false;
6467
6468 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6469 /* ??? Should we handle also fields here? */
6470 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6471 VEC_index (constructor_elt, v2, idx)->value))
6472 return false;
6473 return true;
6474 }
6475
6476 case SAVE_EXPR:
6477 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6478
6479 case CALL_EXPR:
6480 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6481 if (cmp <= 0)
6482 return cmp;
6483 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6484 return 0;
6485 {
6486 const_tree arg1, arg2;
6487 const_call_expr_arg_iterator iter1, iter2;
6488 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6489 arg2 = first_const_call_expr_arg (t2, &iter2);
6490 arg1 && arg2;
6491 arg1 = next_const_call_expr_arg (&iter1),
6492 arg2 = next_const_call_expr_arg (&iter2))
6493 {
6494 cmp = simple_cst_equal (arg1, arg2);
6495 if (cmp <= 0)
6496 return cmp;
6497 }
6498 return arg1 == arg2;
6499 }
6500
6501 case TARGET_EXPR:
6502 /* Special case: if either target is an unallocated VAR_DECL,
6503 it means that it's going to be unified with whatever the
6504 TARGET_EXPR is really supposed to initialize, so treat it
6505 as being equivalent to anything. */
6506 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6507 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6508 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6509 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6510 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6511 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6512 cmp = 1;
6513 else
6514 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6515
6516 if (cmp <= 0)
6517 return cmp;
6518
6519 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6520
6521 case WITH_CLEANUP_EXPR:
6522 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6523 if (cmp <= 0)
6524 return cmp;
6525
6526 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6527
6528 case COMPONENT_REF:
6529 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6530 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6531
6532 return 0;
6533
6534 case VAR_DECL:
6535 case PARM_DECL:
6536 case CONST_DECL:
6537 case FUNCTION_DECL:
6538 return 0;
6539
6540 default:
6541 break;
6542 }
6543
6544 /* This general rule works for most tree codes. All exceptions should be
6545 handled above. If this is a language-specific tree code, we can't
6546 trust what might be in the operand, so say we don't know
6547 the situation. */
6548 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6549 return -1;
6550
6551 switch (TREE_CODE_CLASS (code1))
6552 {
6553 case tcc_unary:
6554 case tcc_binary:
6555 case tcc_comparison:
6556 case tcc_expression:
6557 case tcc_reference:
6558 case tcc_statement:
6559 cmp = 1;
6560 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6561 {
6562 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6563 if (cmp <= 0)
6564 return cmp;
6565 }
6566
6567 return cmp;
6568
6569 default:
6570 return -1;
6571 }
6572 }
6573
6574 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6575 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6576 than U, respectively. */
6577
6578 int
6579 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6580 {
6581 if (tree_int_cst_sgn (t) < 0)
6582 return -1;
6583 else if (TREE_INT_CST_HIGH (t) != 0)
6584 return 1;
6585 else if (TREE_INT_CST_LOW (t) == u)
6586 return 0;
6587 else if (TREE_INT_CST_LOW (t) < u)
6588 return -1;
6589 else
6590 return 1;
6591 }
6592
6593 /* Return true if CODE represents an associative tree code. Otherwise
6594 return false. */
6595 bool
6596 associative_tree_code (enum tree_code code)
6597 {
6598 switch (code)
6599 {
6600 case BIT_IOR_EXPR:
6601 case BIT_AND_EXPR:
6602 case BIT_XOR_EXPR:
6603 case PLUS_EXPR:
6604 case MULT_EXPR:
6605 case MIN_EXPR:
6606 case MAX_EXPR:
6607 return true;
6608
6609 default:
6610 break;
6611 }
6612 return false;
6613 }
6614
6615 /* Return true if CODE represents a commutative tree code. Otherwise
6616 return false. */
6617 bool
6618 commutative_tree_code (enum tree_code code)
6619 {
6620 switch (code)
6621 {
6622 case PLUS_EXPR:
6623 case MULT_EXPR:
6624 case MIN_EXPR:
6625 case MAX_EXPR:
6626 case BIT_IOR_EXPR:
6627 case BIT_XOR_EXPR:
6628 case BIT_AND_EXPR:
6629 case NE_EXPR:
6630 case EQ_EXPR:
6631 case UNORDERED_EXPR:
6632 case ORDERED_EXPR:
6633 case UNEQ_EXPR:
6634 case LTGT_EXPR:
6635 case TRUTH_AND_EXPR:
6636 case TRUTH_XOR_EXPR:
6637 case TRUTH_OR_EXPR:
6638 return true;
6639
6640 default:
6641 break;
6642 }
6643 return false;
6644 }
6645
6646 /* Return true if CODE represents a ternary tree code for which the
6647 first two operands are commutative. Otherwise return false. */
6648 bool
6649 commutative_ternary_tree_code (enum tree_code code)
6650 {
6651 switch (code)
6652 {
6653 case WIDEN_MULT_PLUS_EXPR:
6654 case WIDEN_MULT_MINUS_EXPR:
6655 return true;
6656
6657 default:
6658 break;
6659 }
6660 return false;
6661 }
6662
6663 /* Generate a hash value for an expression. This can be used iteratively
6664 by passing a previous result as the VAL argument.
6665
6666 This function is intended to produce the same hash for expressions which
6667 would compare equal using operand_equal_p. */
6668
6669 hashval_t
6670 iterative_hash_expr (const_tree t, hashval_t val)
6671 {
6672 int i;
6673 enum tree_code code;
6674 char tclass;
6675
6676 if (t == NULL_TREE)
6677 return iterative_hash_hashval_t (0, val);
6678
6679 code = TREE_CODE (t);
6680
6681 switch (code)
6682 {
6683 /* Alas, constants aren't shared, so we can't rely on pointer
6684 identity. */
6685 case INTEGER_CST:
6686 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6687 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6688 case REAL_CST:
6689 {
6690 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6691
6692 return iterative_hash_hashval_t (val2, val);
6693 }
6694 case FIXED_CST:
6695 {
6696 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6697
6698 return iterative_hash_hashval_t (val2, val);
6699 }
6700 case STRING_CST:
6701 return iterative_hash (TREE_STRING_POINTER (t),
6702 TREE_STRING_LENGTH (t), val);
6703 case COMPLEX_CST:
6704 val = iterative_hash_expr (TREE_REALPART (t), val);
6705 return iterative_hash_expr (TREE_IMAGPART (t), val);
6706 case VECTOR_CST:
6707 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6708 case SSA_NAME:
6709 /* We can just compare by pointer. */
6710 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6711 case PLACEHOLDER_EXPR:
6712 /* The node itself doesn't matter. */
6713 return val;
6714 case TREE_LIST:
6715 /* A list of expressions, for a CALL_EXPR or as the elements of a
6716 VECTOR_CST. */
6717 for (; t; t = TREE_CHAIN (t))
6718 val = iterative_hash_expr (TREE_VALUE (t), val);
6719 return val;
6720 case CONSTRUCTOR:
6721 {
6722 unsigned HOST_WIDE_INT idx;
6723 tree field, value;
6724 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6725 {
6726 val = iterative_hash_expr (field, val);
6727 val = iterative_hash_expr (value, val);
6728 }
6729 return val;
6730 }
6731 case MEM_REF:
6732 {
6733 /* The type of the second operand is relevant, except for
6734 its top-level qualifiers. */
6735 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6736
6737 val = iterative_hash_object (TYPE_HASH (type), val);
6738
6739 /* We could use the standard hash computation from this point
6740 on. */
6741 val = iterative_hash_object (code, val);
6742 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6743 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6744 return val;
6745 }
6746 case FUNCTION_DECL:
6747 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6748 Otherwise nodes that compare equal according to operand_equal_p might
6749 get different hash codes. However, don't do this for machine specific
6750 or front end builtins, since the function code is overloaded in those
6751 cases. */
6752 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6753 && built_in_decls[DECL_FUNCTION_CODE (t)])
6754 {
6755 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6756 code = TREE_CODE (t);
6757 }
6758 /* FALL THROUGH */
6759 default:
6760 tclass = TREE_CODE_CLASS (code);
6761
6762 if (tclass == tcc_declaration)
6763 {
6764 /* DECL's have a unique ID */
6765 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6766 }
6767 else
6768 {
6769 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6770
6771 val = iterative_hash_object (code, val);
6772
6773 /* Don't hash the type, that can lead to having nodes which
6774 compare equal according to operand_equal_p, but which
6775 have different hash codes. */
6776 if (CONVERT_EXPR_CODE_P (code)
6777 || code == NON_LVALUE_EXPR)
6778 {
6779 /* Make sure to include signness in the hash computation. */
6780 val += TYPE_UNSIGNED (TREE_TYPE (t));
6781 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6782 }
6783
6784 else if (commutative_tree_code (code))
6785 {
6786 /* It's a commutative expression. We want to hash it the same
6787 however it appears. We do this by first hashing both operands
6788 and then rehashing based on the order of their independent
6789 hashes. */
6790 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6791 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6792 hashval_t t;
6793
6794 if (one > two)
6795 t = one, one = two, two = t;
6796
6797 val = iterative_hash_hashval_t (one, val);
6798 val = iterative_hash_hashval_t (two, val);
6799 }
6800 else
6801 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6802 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6803 }
6804 return val;
6805 break;
6806 }
6807 }
6808
6809 /* Generate a hash value for a pair of expressions. This can be used
6810 iteratively by passing a previous result as the VAL argument.
6811
6812 The same hash value is always returned for a given pair of expressions,
6813 regardless of the order in which they are presented. This is useful in
6814 hashing the operands of commutative functions. */
6815
6816 hashval_t
6817 iterative_hash_exprs_commutative (const_tree t1,
6818 const_tree t2, hashval_t val)
6819 {
6820 hashval_t one = iterative_hash_expr (t1, 0);
6821 hashval_t two = iterative_hash_expr (t2, 0);
6822 hashval_t t;
6823
6824 if (one > two)
6825 t = one, one = two, two = t;
6826 val = iterative_hash_hashval_t (one, val);
6827 val = iterative_hash_hashval_t (two, val);
6828
6829 return val;
6830 }
6831 \f
6832 /* Constructors for pointer, array and function types.
6833 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6834 constructed by language-dependent code, not here.) */
6835
6836 /* Construct, lay out and return the type of pointers to TO_TYPE with
6837 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6838 reference all of memory. If such a type has already been
6839 constructed, reuse it. */
6840
6841 tree
6842 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6843 bool can_alias_all)
6844 {
6845 tree t;
6846
6847 if (to_type == error_mark_node)
6848 return error_mark_node;
6849
6850 /* If the pointed-to type has the may_alias attribute set, force
6851 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6852 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6853 can_alias_all = true;
6854
6855 /* In some cases, languages will have things that aren't a POINTER_TYPE
6856 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6857 In that case, return that type without regard to the rest of our
6858 operands.
6859
6860 ??? This is a kludge, but consistent with the way this function has
6861 always operated and there doesn't seem to be a good way to avoid this
6862 at the moment. */
6863 if (TYPE_POINTER_TO (to_type) != 0
6864 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6865 return TYPE_POINTER_TO (to_type);
6866
6867 /* First, if we already have a type for pointers to TO_TYPE and it's
6868 the proper mode, use it. */
6869 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6870 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6871 return t;
6872
6873 t = make_node (POINTER_TYPE);
6874
6875 TREE_TYPE (t) = to_type;
6876 SET_TYPE_MODE (t, mode);
6877 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6878 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6879 TYPE_POINTER_TO (to_type) = t;
6880
6881 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6882 SET_TYPE_STRUCTURAL_EQUALITY (t);
6883 else if (TYPE_CANONICAL (to_type) != to_type)
6884 TYPE_CANONICAL (t)
6885 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6886 mode, can_alias_all);
6887
6888 /* Lay out the type. This function has many callers that are concerned
6889 with expression-construction, and this simplifies them all. */
6890 layout_type (t);
6891
6892 return t;
6893 }
6894
6895 /* By default build pointers in ptr_mode. */
6896
6897 tree
6898 build_pointer_type (tree to_type)
6899 {
6900 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6901 : TYPE_ADDR_SPACE (to_type);
6902 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6903 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6904 }
6905
6906 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6907
6908 tree
6909 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6910 bool can_alias_all)
6911 {
6912 tree t;
6913
6914 if (to_type == error_mark_node)
6915 return error_mark_node;
6916
6917 /* If the pointed-to type has the may_alias attribute set, force
6918 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6919 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6920 can_alias_all = true;
6921
6922 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6923 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6924 In that case, return that type without regard to the rest of our
6925 operands.
6926
6927 ??? This is a kludge, but consistent with the way this function has
6928 always operated and there doesn't seem to be a good way to avoid this
6929 at the moment. */
6930 if (TYPE_REFERENCE_TO (to_type) != 0
6931 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6932 return TYPE_REFERENCE_TO (to_type);
6933
6934 /* First, if we already have a type for pointers to TO_TYPE and it's
6935 the proper mode, use it. */
6936 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6937 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6938 return t;
6939
6940 t = make_node (REFERENCE_TYPE);
6941
6942 TREE_TYPE (t) = to_type;
6943 SET_TYPE_MODE (t, mode);
6944 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6945 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6946 TYPE_REFERENCE_TO (to_type) = t;
6947
6948 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6949 SET_TYPE_STRUCTURAL_EQUALITY (t);
6950 else if (TYPE_CANONICAL (to_type) != to_type)
6951 TYPE_CANONICAL (t)
6952 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6953 mode, can_alias_all);
6954
6955 layout_type (t);
6956
6957 return t;
6958 }
6959
6960
6961 /* Build the node for the type of references-to-TO_TYPE by default
6962 in ptr_mode. */
6963
6964 tree
6965 build_reference_type (tree to_type)
6966 {
6967 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6968 : TYPE_ADDR_SPACE (to_type);
6969 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6970 return build_reference_type_for_mode (to_type, pointer_mode, false);
6971 }
6972
6973 /* Build a type that is compatible with t but has no cv quals anywhere
6974 in its type, thus
6975
6976 const char *const *const * -> char ***. */
6977
6978 tree
6979 build_type_no_quals (tree t)
6980 {
6981 switch (TREE_CODE (t))
6982 {
6983 case POINTER_TYPE:
6984 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6985 TYPE_MODE (t),
6986 TYPE_REF_CAN_ALIAS_ALL (t));
6987 case REFERENCE_TYPE:
6988 return
6989 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6990 TYPE_MODE (t),
6991 TYPE_REF_CAN_ALIAS_ALL (t));
6992 default:
6993 return TYPE_MAIN_VARIANT (t);
6994 }
6995 }
6996
6997 #define MAX_INT_CACHED_PREC \
6998 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
6999 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7000
7001 /* Builds a signed or unsigned integer type of precision PRECISION.
7002 Used for C bitfields whose precision does not match that of
7003 built-in target types. */
7004 tree
7005 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7006 int unsignedp)
7007 {
7008 tree itype, ret;
7009
7010 if (unsignedp)
7011 unsignedp = MAX_INT_CACHED_PREC + 1;
7012
7013 if (precision <= MAX_INT_CACHED_PREC)
7014 {
7015 itype = nonstandard_integer_type_cache[precision + unsignedp];
7016 if (itype)
7017 return itype;
7018 }
7019
7020 itype = make_node (INTEGER_TYPE);
7021 TYPE_PRECISION (itype) = precision;
7022
7023 if (unsignedp)
7024 fixup_unsigned_type (itype);
7025 else
7026 fixup_signed_type (itype);
7027
7028 ret = itype;
7029 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7030 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7031 if (precision <= MAX_INT_CACHED_PREC)
7032 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7033
7034 return ret;
7035 }
7036
7037 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7038 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7039 is true, reuse such a type that has already been constructed. */
7040
7041 static tree
7042 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7043 {
7044 tree itype = make_node (INTEGER_TYPE);
7045
7046 TREE_TYPE (itype) = type;
7047
7048 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7049 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7050
7051 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7052 SET_TYPE_MODE (itype, TYPE_MODE (type));
7053 TYPE_SIZE (itype) = TYPE_SIZE (type);
7054 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7055 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7056 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7057
7058 if ((TYPE_MIN_VALUE (itype)
7059 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7060 || (TYPE_MAX_VALUE (itype)
7061 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7062 {
7063 /* Since we cannot reliably merge this type, we need to compare it using
7064 structural equality checks. */
7065 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7066 return itype;
7067 }
7068
7069 if (shared)
7070 {
7071 hashval_t hash = iterative_hash_expr (TYPE_MIN_VALUE (itype), 0);
7072 hash = iterative_hash_expr (TYPE_MAX_VALUE (itype), hash);
7073 hash = iterative_hash_hashval_t (TYPE_HASH (type), hash);
7074 itype = type_hash_canon (hash, itype);
7075 }
7076
7077 return itype;
7078 }
7079
7080 /* Wrapper around build_range_type_1 with SHARED set to true. */
7081
7082 tree
7083 build_range_type (tree type, tree lowval, tree highval)
7084 {
7085 return build_range_type_1 (type, lowval, highval, true);
7086 }
7087
7088 /* Wrapper around build_range_type_1 with SHARED set to false. */
7089
7090 tree
7091 build_nonshared_range_type (tree type, tree lowval, tree highval)
7092 {
7093 return build_range_type_1 (type, lowval, highval, false);
7094 }
7095
7096 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7097 MAXVAL should be the maximum value in the domain
7098 (one less than the length of the array).
7099
7100 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7101 We don't enforce this limit, that is up to caller (e.g. language front end).
7102 The limit exists because the result is a signed type and we don't handle
7103 sizes that use more than one HOST_WIDE_INT. */
7104
7105 tree
7106 build_index_type (tree maxval)
7107 {
7108 return build_range_type (sizetype, size_zero_node, maxval);
7109 }
7110
7111 /* Return true if the debug information for TYPE, a subtype, should be emitted
7112 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7113 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7114 debug info and doesn't reflect the source code. */
7115
7116 bool
7117 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7118 {
7119 tree base_type = TREE_TYPE (type), low, high;
7120
7121 /* Subrange types have a base type which is an integral type. */
7122 if (!INTEGRAL_TYPE_P (base_type))
7123 return false;
7124
7125 /* Get the real bounds of the subtype. */
7126 if (lang_hooks.types.get_subrange_bounds)
7127 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7128 else
7129 {
7130 low = TYPE_MIN_VALUE (type);
7131 high = TYPE_MAX_VALUE (type);
7132 }
7133
7134 /* If the type and its base type have the same representation and the same
7135 name, then the type is not a subrange but a copy of the base type. */
7136 if ((TREE_CODE (base_type) == INTEGER_TYPE
7137 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7138 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7139 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7140 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7141 {
7142 tree type_name = TYPE_NAME (type);
7143 tree base_type_name = TYPE_NAME (base_type);
7144
7145 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7146 type_name = DECL_NAME (type_name);
7147
7148 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7149 base_type_name = DECL_NAME (base_type_name);
7150
7151 if (type_name == base_type_name)
7152 return false;
7153 }
7154
7155 if (lowval)
7156 *lowval = low;
7157 if (highval)
7158 *highval = high;
7159 return true;
7160 }
7161
7162 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7163 and number of elements specified by the range of values of INDEX_TYPE.
7164 If SHARED is true, reuse such a type that has already been constructed. */
7165
7166 static tree
7167 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7168 {
7169 tree t;
7170
7171 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7172 {
7173 error ("arrays of functions are not meaningful");
7174 elt_type = integer_type_node;
7175 }
7176
7177 t = make_node (ARRAY_TYPE);
7178 TREE_TYPE (t) = elt_type;
7179 TYPE_DOMAIN (t) = index_type;
7180 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7181 layout_type (t);
7182
7183 /* If the element type is incomplete at this point we get marked for
7184 structural equality. Do not record these types in the canonical
7185 type hashtable. */
7186 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7187 return t;
7188
7189 if (shared)
7190 {
7191 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7192 if (index_type)
7193 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7194 t = type_hash_canon (hashcode, t);
7195 }
7196
7197 if (TYPE_CANONICAL (t) == t)
7198 {
7199 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7200 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7201 SET_TYPE_STRUCTURAL_EQUALITY (t);
7202 else if (TYPE_CANONICAL (elt_type) != elt_type
7203 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7204 TYPE_CANONICAL (t)
7205 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7206 index_type
7207 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7208 shared);
7209 }
7210
7211 return t;
7212 }
7213
7214 /* Wrapper around build_array_type_1 with SHARED set to true. */
7215
7216 tree
7217 build_array_type (tree elt_type, tree index_type)
7218 {
7219 return build_array_type_1 (elt_type, index_type, true);
7220 }
7221
7222 /* Wrapper around build_array_type_1 with SHARED set to false. */
7223
7224 tree
7225 build_nonshared_array_type (tree elt_type, tree index_type)
7226 {
7227 return build_array_type_1 (elt_type, index_type, false);
7228 }
7229
7230 /* Recursively examines the array elements of TYPE, until a non-array
7231 element type is found. */
7232
7233 tree
7234 strip_array_types (tree type)
7235 {
7236 while (TREE_CODE (type) == ARRAY_TYPE)
7237 type = TREE_TYPE (type);
7238
7239 return type;
7240 }
7241
7242 /* Computes the canonical argument types from the argument type list
7243 ARGTYPES.
7244
7245 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7246 on entry to this function, or if any of the ARGTYPES are
7247 structural.
7248
7249 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7250 true on entry to this function, or if any of the ARGTYPES are
7251 non-canonical.
7252
7253 Returns a canonical argument list, which may be ARGTYPES when the
7254 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7255 true) or would not differ from ARGTYPES. */
7256
7257 static tree
7258 maybe_canonicalize_argtypes(tree argtypes,
7259 bool *any_structural_p,
7260 bool *any_noncanonical_p)
7261 {
7262 tree arg;
7263 bool any_noncanonical_argtypes_p = false;
7264
7265 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7266 {
7267 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7268 /* Fail gracefully by stating that the type is structural. */
7269 *any_structural_p = true;
7270 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7271 *any_structural_p = true;
7272 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7273 || TREE_PURPOSE (arg))
7274 /* If the argument has a default argument, we consider it
7275 non-canonical even though the type itself is canonical.
7276 That way, different variants of function and method types
7277 with default arguments will all point to the variant with
7278 no defaults as their canonical type. */
7279 any_noncanonical_argtypes_p = true;
7280 }
7281
7282 if (*any_structural_p)
7283 return argtypes;
7284
7285 if (any_noncanonical_argtypes_p)
7286 {
7287 /* Build the canonical list of argument types. */
7288 tree canon_argtypes = NULL_TREE;
7289 bool is_void = false;
7290
7291 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7292 {
7293 if (arg == void_list_node)
7294 is_void = true;
7295 else
7296 canon_argtypes = tree_cons (NULL_TREE,
7297 TYPE_CANONICAL (TREE_VALUE (arg)),
7298 canon_argtypes);
7299 }
7300
7301 canon_argtypes = nreverse (canon_argtypes);
7302 if (is_void)
7303 canon_argtypes = chainon (canon_argtypes, void_list_node);
7304
7305 /* There is a non-canonical type. */
7306 *any_noncanonical_p = true;
7307 return canon_argtypes;
7308 }
7309
7310 /* The canonical argument types are the same as ARGTYPES. */
7311 return argtypes;
7312 }
7313
7314 /* Construct, lay out and return
7315 the type of functions returning type VALUE_TYPE
7316 given arguments of types ARG_TYPES.
7317 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7318 are data type nodes for the arguments of the function.
7319 If such a type has already been constructed, reuse it. */
7320
7321 tree
7322 build_function_type (tree value_type, tree arg_types)
7323 {
7324 tree t;
7325 hashval_t hashcode = 0;
7326 bool any_structural_p, any_noncanonical_p;
7327 tree canon_argtypes;
7328
7329 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7330 {
7331 error ("function return type cannot be function");
7332 value_type = integer_type_node;
7333 }
7334
7335 /* Make a node of the sort we want. */
7336 t = make_node (FUNCTION_TYPE);
7337 TREE_TYPE (t) = value_type;
7338 TYPE_ARG_TYPES (t) = arg_types;
7339
7340 /* If we already have such a type, use the old one. */
7341 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7342 hashcode = type_hash_list (arg_types, hashcode);
7343 t = type_hash_canon (hashcode, t);
7344
7345 /* Set up the canonical type. */
7346 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7347 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7348 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7349 &any_structural_p,
7350 &any_noncanonical_p);
7351 if (any_structural_p)
7352 SET_TYPE_STRUCTURAL_EQUALITY (t);
7353 else if (any_noncanonical_p)
7354 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7355 canon_argtypes);
7356
7357 if (!COMPLETE_TYPE_P (t))
7358 layout_type (t);
7359 return t;
7360 }
7361
7362 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7363
7364 tree
7365 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7366 {
7367 tree new_type = NULL;
7368 tree args, new_args = NULL, t;
7369 tree new_reversed;
7370 int i = 0;
7371
7372 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7373 args = TREE_CHAIN (args), i++)
7374 if (!bitmap_bit_p (args_to_skip, i))
7375 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7376
7377 new_reversed = nreverse (new_args);
7378 if (args)
7379 {
7380 if (new_reversed)
7381 TREE_CHAIN (new_args) = void_list_node;
7382 else
7383 new_reversed = void_list_node;
7384 }
7385
7386 /* Use copy_node to preserve as much as possible from original type
7387 (debug info, attribute lists etc.)
7388 Exception is METHOD_TYPEs must have THIS argument.
7389 When we are asked to remove it, we need to build new FUNCTION_TYPE
7390 instead. */
7391 if (TREE_CODE (orig_type) != METHOD_TYPE
7392 || !bitmap_bit_p (args_to_skip, 0))
7393 {
7394 new_type = build_distinct_type_copy (orig_type);
7395 TYPE_ARG_TYPES (new_type) = new_reversed;
7396 }
7397 else
7398 {
7399 new_type
7400 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7401 new_reversed));
7402 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7403 }
7404
7405 /* This is a new type, not a copy of an old type. Need to reassociate
7406 variants. We can handle everything except the main variant lazily. */
7407 t = TYPE_MAIN_VARIANT (orig_type);
7408 if (orig_type != t)
7409 {
7410 TYPE_MAIN_VARIANT (new_type) = t;
7411 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7412 TYPE_NEXT_VARIANT (t) = new_type;
7413 }
7414 else
7415 {
7416 TYPE_MAIN_VARIANT (new_type) = new_type;
7417 TYPE_NEXT_VARIANT (new_type) = NULL;
7418 }
7419 return new_type;
7420 }
7421
7422 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7423
7424 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7425 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7426 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7427
7428 tree
7429 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7430 {
7431 tree new_decl = copy_node (orig_decl);
7432 tree new_type;
7433
7434 new_type = TREE_TYPE (orig_decl);
7435 if (prototype_p (new_type))
7436 new_type = build_function_type_skip_args (new_type, args_to_skip);
7437 TREE_TYPE (new_decl) = new_type;
7438
7439 /* For declarations setting DECL_VINDEX (i.e. methods)
7440 we expect first argument to be THIS pointer. */
7441 if (bitmap_bit_p (args_to_skip, 0))
7442 DECL_VINDEX (new_decl) = NULL_TREE;
7443
7444 /* When signature changes, we need to clear builtin info. */
7445 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7446 {
7447 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7448 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7449 }
7450 return new_decl;
7451 }
7452
7453 /* Build a function type. The RETURN_TYPE is the type returned by the
7454 function. If VAARGS is set, no void_type_node is appended to the
7455 the list. ARGP must be always be terminated be a NULL_TREE. */
7456
7457 static tree
7458 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7459 {
7460 tree t, args, last;
7461
7462 t = va_arg (argp, tree);
7463 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7464 args = tree_cons (NULL_TREE, t, args);
7465
7466 if (vaargs)
7467 {
7468 last = args;
7469 if (args != NULL_TREE)
7470 args = nreverse (args);
7471 gcc_assert (last != void_list_node);
7472 }
7473 else if (args == NULL_TREE)
7474 args = void_list_node;
7475 else
7476 {
7477 last = args;
7478 args = nreverse (args);
7479 TREE_CHAIN (last) = void_list_node;
7480 }
7481 args = build_function_type (return_type, args);
7482
7483 return args;
7484 }
7485
7486 /* Build a function type. The RETURN_TYPE is the type returned by the
7487 function. If additional arguments are provided, they are
7488 additional argument types. The list of argument types must always
7489 be terminated by NULL_TREE. */
7490
7491 tree
7492 build_function_type_list (tree return_type, ...)
7493 {
7494 tree args;
7495 va_list p;
7496
7497 va_start (p, return_type);
7498 args = build_function_type_list_1 (false, return_type, p);
7499 va_end (p);
7500 return args;
7501 }
7502
7503 /* Build a variable argument function type. The RETURN_TYPE is the
7504 type returned by the function. If additional arguments are provided,
7505 they are additional argument types. The list of argument types must
7506 always be terminated by NULL_TREE. */
7507
7508 tree
7509 build_varargs_function_type_list (tree return_type, ...)
7510 {
7511 tree args;
7512 va_list p;
7513
7514 va_start (p, return_type);
7515 args = build_function_type_list_1 (true, return_type, p);
7516 va_end (p);
7517
7518 return args;
7519 }
7520
7521 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7522 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7523 for the method. An implicit additional parameter (of type
7524 pointer-to-BASETYPE) is added to the ARGTYPES. */
7525
7526 tree
7527 build_method_type_directly (tree basetype,
7528 tree rettype,
7529 tree argtypes)
7530 {
7531 tree t;
7532 tree ptype;
7533 int hashcode = 0;
7534 bool any_structural_p, any_noncanonical_p;
7535 tree canon_argtypes;
7536
7537 /* Make a node of the sort we want. */
7538 t = make_node (METHOD_TYPE);
7539
7540 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7541 TREE_TYPE (t) = rettype;
7542 ptype = build_pointer_type (basetype);
7543
7544 /* The actual arglist for this function includes a "hidden" argument
7545 which is "this". Put it into the list of argument types. */
7546 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7547 TYPE_ARG_TYPES (t) = argtypes;
7548
7549 /* If we already have such a type, use the old one. */
7550 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7551 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7552 hashcode = type_hash_list (argtypes, hashcode);
7553 t = type_hash_canon (hashcode, t);
7554
7555 /* Set up the canonical type. */
7556 any_structural_p
7557 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7558 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7559 any_noncanonical_p
7560 = (TYPE_CANONICAL (basetype) != basetype
7561 || TYPE_CANONICAL (rettype) != rettype);
7562 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7563 &any_structural_p,
7564 &any_noncanonical_p);
7565 if (any_structural_p)
7566 SET_TYPE_STRUCTURAL_EQUALITY (t);
7567 else if (any_noncanonical_p)
7568 TYPE_CANONICAL (t)
7569 = build_method_type_directly (TYPE_CANONICAL (basetype),
7570 TYPE_CANONICAL (rettype),
7571 canon_argtypes);
7572 if (!COMPLETE_TYPE_P (t))
7573 layout_type (t);
7574
7575 return t;
7576 }
7577
7578 /* Construct, lay out and return the type of methods belonging to class
7579 BASETYPE and whose arguments and values are described by TYPE.
7580 If that type exists already, reuse it.
7581 TYPE must be a FUNCTION_TYPE node. */
7582
7583 tree
7584 build_method_type (tree basetype, tree type)
7585 {
7586 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7587
7588 return build_method_type_directly (basetype,
7589 TREE_TYPE (type),
7590 TYPE_ARG_TYPES (type));
7591 }
7592
7593 /* Construct, lay out and return the type of offsets to a value
7594 of type TYPE, within an object of type BASETYPE.
7595 If a suitable offset type exists already, reuse it. */
7596
7597 tree
7598 build_offset_type (tree basetype, tree type)
7599 {
7600 tree t;
7601 hashval_t hashcode = 0;
7602
7603 /* Make a node of the sort we want. */
7604 t = make_node (OFFSET_TYPE);
7605
7606 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7607 TREE_TYPE (t) = type;
7608
7609 /* If we already have such a type, use the old one. */
7610 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7611 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7612 t = type_hash_canon (hashcode, t);
7613
7614 if (!COMPLETE_TYPE_P (t))
7615 layout_type (t);
7616
7617 if (TYPE_CANONICAL (t) == t)
7618 {
7619 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7620 || TYPE_STRUCTURAL_EQUALITY_P (type))
7621 SET_TYPE_STRUCTURAL_EQUALITY (t);
7622 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7623 || TYPE_CANONICAL (type) != type)
7624 TYPE_CANONICAL (t)
7625 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7626 TYPE_CANONICAL (type));
7627 }
7628
7629 return t;
7630 }
7631
7632 /* Create a complex type whose components are COMPONENT_TYPE. */
7633
7634 tree
7635 build_complex_type (tree component_type)
7636 {
7637 tree t;
7638 hashval_t hashcode;
7639
7640 gcc_assert (INTEGRAL_TYPE_P (component_type)
7641 || SCALAR_FLOAT_TYPE_P (component_type)
7642 || FIXED_POINT_TYPE_P (component_type));
7643
7644 /* Make a node of the sort we want. */
7645 t = make_node (COMPLEX_TYPE);
7646
7647 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7648
7649 /* If we already have such a type, use the old one. */
7650 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7651 t = type_hash_canon (hashcode, t);
7652
7653 if (!COMPLETE_TYPE_P (t))
7654 layout_type (t);
7655
7656 if (TYPE_CANONICAL (t) == t)
7657 {
7658 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7659 SET_TYPE_STRUCTURAL_EQUALITY (t);
7660 else if (TYPE_CANONICAL (component_type) != component_type)
7661 TYPE_CANONICAL (t)
7662 = build_complex_type (TYPE_CANONICAL (component_type));
7663 }
7664
7665 /* We need to create a name, since complex is a fundamental type. */
7666 if (! TYPE_NAME (t))
7667 {
7668 const char *name;
7669 if (component_type == char_type_node)
7670 name = "complex char";
7671 else if (component_type == signed_char_type_node)
7672 name = "complex signed char";
7673 else if (component_type == unsigned_char_type_node)
7674 name = "complex unsigned char";
7675 else if (component_type == short_integer_type_node)
7676 name = "complex short int";
7677 else if (component_type == short_unsigned_type_node)
7678 name = "complex short unsigned int";
7679 else if (component_type == integer_type_node)
7680 name = "complex int";
7681 else if (component_type == unsigned_type_node)
7682 name = "complex unsigned int";
7683 else if (component_type == long_integer_type_node)
7684 name = "complex long int";
7685 else if (component_type == long_unsigned_type_node)
7686 name = "complex long unsigned int";
7687 else if (component_type == long_long_integer_type_node)
7688 name = "complex long long int";
7689 else if (component_type == long_long_unsigned_type_node)
7690 name = "complex long long unsigned int";
7691 else
7692 name = 0;
7693
7694 if (name != 0)
7695 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7696 get_identifier (name), t);
7697 }
7698
7699 return build_qualified_type (t, TYPE_QUALS (component_type));
7700 }
7701
7702 /* If TYPE is a real or complex floating-point type and the target
7703 does not directly support arithmetic on TYPE then return the wider
7704 type to be used for arithmetic on TYPE. Otherwise, return
7705 NULL_TREE. */
7706
7707 tree
7708 excess_precision_type (tree type)
7709 {
7710 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7711 {
7712 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7713 switch (TREE_CODE (type))
7714 {
7715 case REAL_TYPE:
7716 switch (flt_eval_method)
7717 {
7718 case 1:
7719 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7720 return double_type_node;
7721 break;
7722 case 2:
7723 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7724 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7725 return long_double_type_node;
7726 break;
7727 default:
7728 gcc_unreachable ();
7729 }
7730 break;
7731 case COMPLEX_TYPE:
7732 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7733 return NULL_TREE;
7734 switch (flt_eval_method)
7735 {
7736 case 1:
7737 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7738 return complex_double_type_node;
7739 break;
7740 case 2:
7741 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7742 || (TYPE_MODE (TREE_TYPE (type))
7743 == TYPE_MODE (double_type_node)))
7744 return complex_long_double_type_node;
7745 break;
7746 default:
7747 gcc_unreachable ();
7748 }
7749 break;
7750 default:
7751 break;
7752 }
7753 }
7754 return NULL_TREE;
7755 }
7756 \f
7757 /* Return OP, stripped of any conversions to wider types as much as is safe.
7758 Converting the value back to OP's type makes a value equivalent to OP.
7759
7760 If FOR_TYPE is nonzero, we return a value which, if converted to
7761 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7762
7763 OP must have integer, real or enumeral type. Pointers are not allowed!
7764
7765 There are some cases where the obvious value we could return
7766 would regenerate to OP if converted to OP's type,
7767 but would not extend like OP to wider types.
7768 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7769 For example, if OP is (unsigned short)(signed char)-1,
7770 we avoid returning (signed char)-1 if FOR_TYPE is int,
7771 even though extending that to an unsigned short would regenerate OP,
7772 since the result of extending (signed char)-1 to (int)
7773 is different from (int) OP. */
7774
7775 tree
7776 get_unwidened (tree op, tree for_type)
7777 {
7778 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7779 tree type = TREE_TYPE (op);
7780 unsigned final_prec
7781 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7782 int uns
7783 = (for_type != 0 && for_type != type
7784 && final_prec > TYPE_PRECISION (type)
7785 && TYPE_UNSIGNED (type));
7786 tree win = op;
7787
7788 while (CONVERT_EXPR_P (op))
7789 {
7790 int bitschange;
7791
7792 /* TYPE_PRECISION on vector types has different meaning
7793 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7794 so avoid them here. */
7795 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7796 break;
7797
7798 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7799 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7800
7801 /* Truncations are many-one so cannot be removed.
7802 Unless we are later going to truncate down even farther. */
7803 if (bitschange < 0
7804 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7805 break;
7806
7807 /* See what's inside this conversion. If we decide to strip it,
7808 we will set WIN. */
7809 op = TREE_OPERAND (op, 0);
7810
7811 /* If we have not stripped any zero-extensions (uns is 0),
7812 we can strip any kind of extension.
7813 If we have previously stripped a zero-extension,
7814 only zero-extensions can safely be stripped.
7815 Any extension can be stripped if the bits it would produce
7816 are all going to be discarded later by truncating to FOR_TYPE. */
7817
7818 if (bitschange > 0)
7819 {
7820 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7821 win = op;
7822 /* TYPE_UNSIGNED says whether this is a zero-extension.
7823 Let's avoid computing it if it does not affect WIN
7824 and if UNS will not be needed again. */
7825 if ((uns
7826 || CONVERT_EXPR_P (op))
7827 && TYPE_UNSIGNED (TREE_TYPE (op)))
7828 {
7829 uns = 1;
7830 win = op;
7831 }
7832 }
7833 }
7834
7835 /* If we finally reach a constant see if it fits in for_type and
7836 in that case convert it. */
7837 if (for_type
7838 && TREE_CODE (win) == INTEGER_CST
7839 && TREE_TYPE (win) != for_type
7840 && int_fits_type_p (win, for_type))
7841 win = fold_convert (for_type, win);
7842
7843 return win;
7844 }
7845 \f
7846 /* Return OP or a simpler expression for a narrower value
7847 which can be sign-extended or zero-extended to give back OP.
7848 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7849 or 0 if the value should be sign-extended. */
7850
7851 tree
7852 get_narrower (tree op, int *unsignedp_ptr)
7853 {
7854 int uns = 0;
7855 int first = 1;
7856 tree win = op;
7857 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7858
7859 while (TREE_CODE (op) == NOP_EXPR)
7860 {
7861 int bitschange
7862 = (TYPE_PRECISION (TREE_TYPE (op))
7863 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7864
7865 /* Truncations are many-one so cannot be removed. */
7866 if (bitschange < 0)
7867 break;
7868
7869 /* See what's inside this conversion. If we decide to strip it,
7870 we will set WIN. */
7871
7872 if (bitschange > 0)
7873 {
7874 op = TREE_OPERAND (op, 0);
7875 /* An extension: the outermost one can be stripped,
7876 but remember whether it is zero or sign extension. */
7877 if (first)
7878 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7879 /* Otherwise, if a sign extension has been stripped,
7880 only sign extensions can now be stripped;
7881 if a zero extension has been stripped, only zero-extensions. */
7882 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7883 break;
7884 first = 0;
7885 }
7886 else /* bitschange == 0 */
7887 {
7888 /* A change in nominal type can always be stripped, but we must
7889 preserve the unsignedness. */
7890 if (first)
7891 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7892 first = 0;
7893 op = TREE_OPERAND (op, 0);
7894 /* Keep trying to narrow, but don't assign op to win if it
7895 would turn an integral type into something else. */
7896 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7897 continue;
7898 }
7899
7900 win = op;
7901 }
7902
7903 if (TREE_CODE (op) == COMPONENT_REF
7904 /* Since type_for_size always gives an integer type. */
7905 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7906 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7907 /* Ensure field is laid out already. */
7908 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7909 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7910 {
7911 unsigned HOST_WIDE_INT innerprec
7912 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7913 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7914 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7915 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7916
7917 /* We can get this structure field in a narrower type that fits it,
7918 but the resulting extension to its nominal type (a fullword type)
7919 must satisfy the same conditions as for other extensions.
7920
7921 Do this only for fields that are aligned (not bit-fields),
7922 because when bit-field insns will be used there is no
7923 advantage in doing this. */
7924
7925 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7926 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7927 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7928 && type != 0)
7929 {
7930 if (first)
7931 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7932 win = fold_convert (type, op);
7933 }
7934 }
7935
7936 *unsignedp_ptr = uns;
7937 return win;
7938 }
7939 \f
7940 /* Returns true if integer constant C has a value that is permissible
7941 for type TYPE (an INTEGER_TYPE). */
7942
7943 bool
7944 int_fits_type_p (const_tree c, const_tree type)
7945 {
7946 tree type_low_bound, type_high_bound;
7947 bool ok_for_low_bound, ok_for_high_bound, unsc;
7948 double_int dc, dd;
7949
7950 dc = tree_to_double_int (c);
7951 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7952
7953 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7954 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7955 && unsc)
7956 /* So c is an unsigned integer whose type is sizetype and type is not.
7957 sizetype'd integers are sign extended even though they are
7958 unsigned. If the integer value fits in the lower end word of c,
7959 and if the higher end word has all its bits set to 1, that
7960 means the higher end bits are set to 1 only for sign extension.
7961 So let's convert c into an equivalent zero extended unsigned
7962 integer. */
7963 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7964
7965 retry:
7966 type_low_bound = TYPE_MIN_VALUE (type);
7967 type_high_bound = TYPE_MAX_VALUE (type);
7968
7969 /* If at least one bound of the type is a constant integer, we can check
7970 ourselves and maybe make a decision. If no such decision is possible, but
7971 this type is a subtype, try checking against that. Otherwise, use
7972 double_int_fits_to_tree_p, which checks against the precision.
7973
7974 Compute the status for each possibly constant bound, and return if we see
7975 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7976 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7977 for "constant known to fit". */
7978
7979 /* Check if c >= type_low_bound. */
7980 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7981 {
7982 dd = tree_to_double_int (type_low_bound);
7983 if (TREE_CODE (type) == INTEGER_TYPE
7984 && TYPE_IS_SIZETYPE (type)
7985 && TYPE_UNSIGNED (type))
7986 dd = double_int_zext (dd, TYPE_PRECISION (type));
7987 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7988 {
7989 int c_neg = (!unsc && double_int_negative_p (dc));
7990 int t_neg = (unsc && double_int_negative_p (dd));
7991
7992 if (c_neg && !t_neg)
7993 return false;
7994 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
7995 return false;
7996 }
7997 else if (double_int_cmp (dc, dd, unsc) < 0)
7998 return false;
7999 ok_for_low_bound = true;
8000 }
8001 else
8002 ok_for_low_bound = false;
8003
8004 /* Check if c <= type_high_bound. */
8005 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8006 {
8007 dd = tree_to_double_int (type_high_bound);
8008 if (TREE_CODE (type) == INTEGER_TYPE
8009 && TYPE_IS_SIZETYPE (type)
8010 && TYPE_UNSIGNED (type))
8011 dd = double_int_zext (dd, TYPE_PRECISION (type));
8012 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8013 {
8014 int c_neg = (!unsc && double_int_negative_p (dc));
8015 int t_neg = (unsc && double_int_negative_p (dd));
8016
8017 if (t_neg && !c_neg)
8018 return false;
8019 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8020 return false;
8021 }
8022 else if (double_int_cmp (dc, dd, unsc) > 0)
8023 return false;
8024 ok_for_high_bound = true;
8025 }
8026 else
8027 ok_for_high_bound = false;
8028
8029 /* If the constant fits both bounds, the result is known. */
8030 if (ok_for_low_bound && ok_for_high_bound)
8031 return true;
8032
8033 /* Perform some generic filtering which may allow making a decision
8034 even if the bounds are not constant. First, negative integers
8035 never fit in unsigned types, */
8036 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8037 return false;
8038
8039 /* Second, narrower types always fit in wider ones. */
8040 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8041 return true;
8042
8043 /* Third, unsigned integers with top bit set never fit signed types. */
8044 if (! TYPE_UNSIGNED (type) && unsc)
8045 {
8046 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8047 if (prec < HOST_BITS_PER_WIDE_INT)
8048 {
8049 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8050 return false;
8051 }
8052 else if (((((unsigned HOST_WIDE_INT) 1)
8053 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8054 return false;
8055 }
8056
8057 /* If we haven't been able to decide at this point, there nothing more we
8058 can check ourselves here. Look at the base type if we have one and it
8059 has the same precision. */
8060 if (TREE_CODE (type) == INTEGER_TYPE
8061 && TREE_TYPE (type) != 0
8062 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8063 {
8064 type = TREE_TYPE (type);
8065 goto retry;
8066 }
8067
8068 /* Or to double_int_fits_to_tree_p, if nothing else. */
8069 return double_int_fits_to_tree_p (type, dc);
8070 }
8071
8072 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8073 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8074 represented (assuming two's-complement arithmetic) within the bit
8075 precision of the type are returned instead. */
8076
8077 void
8078 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8079 {
8080 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8081 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8082 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8083 TYPE_UNSIGNED (type));
8084 else
8085 {
8086 if (TYPE_UNSIGNED (type))
8087 mpz_set_ui (min, 0);
8088 else
8089 {
8090 double_int mn;
8091 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8092 mn = double_int_sext (double_int_add (mn, double_int_one),
8093 TYPE_PRECISION (type));
8094 mpz_set_double_int (min, mn, false);
8095 }
8096 }
8097
8098 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8099 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8100 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8101 TYPE_UNSIGNED (type));
8102 else
8103 {
8104 if (TYPE_UNSIGNED (type))
8105 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8106 true);
8107 else
8108 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8109 true);
8110 }
8111 }
8112
8113 /* Return true if VAR is an automatic variable defined in function FN. */
8114
8115 bool
8116 auto_var_in_fn_p (const_tree var, const_tree fn)
8117 {
8118 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8119 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8120 || TREE_CODE (var) == PARM_DECL)
8121 && ! TREE_STATIC (var))
8122 || TREE_CODE (var) == LABEL_DECL
8123 || TREE_CODE (var) == RESULT_DECL));
8124 }
8125
8126 /* Subprogram of following function. Called by walk_tree.
8127
8128 Return *TP if it is an automatic variable or parameter of the
8129 function passed in as DATA. */
8130
8131 static tree
8132 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8133 {
8134 tree fn = (tree) data;
8135
8136 if (TYPE_P (*tp))
8137 *walk_subtrees = 0;
8138
8139 else if (DECL_P (*tp)
8140 && auto_var_in_fn_p (*tp, fn))
8141 return *tp;
8142
8143 return NULL_TREE;
8144 }
8145
8146 /* Returns true if T is, contains, or refers to a type with variable
8147 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8148 arguments, but not the return type. If FN is nonzero, only return
8149 true if a modifier of the type or position of FN is a variable or
8150 parameter inside FN.
8151
8152 This concept is more general than that of C99 'variably modified types':
8153 in C99, a struct type is never variably modified because a VLA may not
8154 appear as a structure member. However, in GNU C code like:
8155
8156 struct S { int i[f()]; };
8157
8158 is valid, and other languages may define similar constructs. */
8159
8160 bool
8161 variably_modified_type_p (tree type, tree fn)
8162 {
8163 tree t;
8164
8165 /* Test if T is either variable (if FN is zero) or an expression containing
8166 a variable in FN. */
8167 #define RETURN_TRUE_IF_VAR(T) \
8168 do { tree _t = (T); \
8169 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8170 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8171 return true; } while (0)
8172
8173 if (type == error_mark_node)
8174 return false;
8175
8176 /* If TYPE itself has variable size, it is variably modified. */
8177 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8178 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8179
8180 switch (TREE_CODE (type))
8181 {
8182 case POINTER_TYPE:
8183 case REFERENCE_TYPE:
8184 case VECTOR_TYPE:
8185 if (variably_modified_type_p (TREE_TYPE (type), fn))
8186 return true;
8187 break;
8188
8189 case FUNCTION_TYPE:
8190 case METHOD_TYPE:
8191 /* If TYPE is a function type, it is variably modified if the
8192 return type is variably modified. */
8193 if (variably_modified_type_p (TREE_TYPE (type), fn))
8194 return true;
8195 break;
8196
8197 case INTEGER_TYPE:
8198 case REAL_TYPE:
8199 case FIXED_POINT_TYPE:
8200 case ENUMERAL_TYPE:
8201 case BOOLEAN_TYPE:
8202 /* Scalar types are variably modified if their end points
8203 aren't constant. */
8204 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8205 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8206 break;
8207
8208 case RECORD_TYPE:
8209 case UNION_TYPE:
8210 case QUAL_UNION_TYPE:
8211 /* We can't see if any of the fields are variably-modified by the
8212 definition we normally use, since that would produce infinite
8213 recursion via pointers. */
8214 /* This is variably modified if some field's type is. */
8215 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8216 if (TREE_CODE (t) == FIELD_DECL)
8217 {
8218 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8219 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8220 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8221
8222 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8223 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8224 }
8225 break;
8226
8227 case ARRAY_TYPE:
8228 /* Do not call ourselves to avoid infinite recursion. This is
8229 variably modified if the element type is. */
8230 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8231 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8232 break;
8233
8234 default:
8235 break;
8236 }
8237
8238 /* The current language may have other cases to check, but in general,
8239 all other types are not variably modified. */
8240 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8241
8242 #undef RETURN_TRUE_IF_VAR
8243 }
8244
8245 /* Given a DECL or TYPE, return the scope in which it was declared, or
8246 NULL_TREE if there is no containing scope. */
8247
8248 tree
8249 get_containing_scope (const_tree t)
8250 {
8251 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8252 }
8253
8254 /* Return the innermost context enclosing DECL that is
8255 a FUNCTION_DECL, or zero if none. */
8256
8257 tree
8258 decl_function_context (const_tree decl)
8259 {
8260 tree context;
8261
8262 if (TREE_CODE (decl) == ERROR_MARK)
8263 return 0;
8264
8265 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8266 where we look up the function at runtime. Such functions always take
8267 a first argument of type 'pointer to real context'.
8268
8269 C++ should really be fixed to use DECL_CONTEXT for the real context,
8270 and use something else for the "virtual context". */
8271 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8272 context
8273 = TYPE_MAIN_VARIANT
8274 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8275 else
8276 context = DECL_CONTEXT (decl);
8277
8278 while (context && TREE_CODE (context) != FUNCTION_DECL)
8279 {
8280 if (TREE_CODE (context) == BLOCK)
8281 context = BLOCK_SUPERCONTEXT (context);
8282 else
8283 context = get_containing_scope (context);
8284 }
8285
8286 return context;
8287 }
8288
8289 /* Return the innermost context enclosing DECL that is
8290 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8291 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8292
8293 tree
8294 decl_type_context (const_tree decl)
8295 {
8296 tree context = DECL_CONTEXT (decl);
8297
8298 while (context)
8299 switch (TREE_CODE (context))
8300 {
8301 case NAMESPACE_DECL:
8302 case TRANSLATION_UNIT_DECL:
8303 return NULL_TREE;
8304
8305 case RECORD_TYPE:
8306 case UNION_TYPE:
8307 case QUAL_UNION_TYPE:
8308 return context;
8309
8310 case TYPE_DECL:
8311 case FUNCTION_DECL:
8312 context = DECL_CONTEXT (context);
8313 break;
8314
8315 case BLOCK:
8316 context = BLOCK_SUPERCONTEXT (context);
8317 break;
8318
8319 default:
8320 gcc_unreachable ();
8321 }
8322
8323 return NULL_TREE;
8324 }
8325
8326 /* CALL is a CALL_EXPR. Return the declaration for the function
8327 called, or NULL_TREE if the called function cannot be
8328 determined. */
8329
8330 tree
8331 get_callee_fndecl (const_tree call)
8332 {
8333 tree addr;
8334
8335 if (call == error_mark_node)
8336 return error_mark_node;
8337
8338 /* It's invalid to call this function with anything but a
8339 CALL_EXPR. */
8340 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8341
8342 /* The first operand to the CALL is the address of the function
8343 called. */
8344 addr = CALL_EXPR_FN (call);
8345
8346 STRIP_NOPS (addr);
8347
8348 /* If this is a readonly function pointer, extract its initial value. */
8349 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8350 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8351 && DECL_INITIAL (addr))
8352 addr = DECL_INITIAL (addr);
8353
8354 /* If the address is just `&f' for some function `f', then we know
8355 that `f' is being called. */
8356 if (TREE_CODE (addr) == ADDR_EXPR
8357 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8358 return TREE_OPERAND (addr, 0);
8359
8360 /* We couldn't figure out what was being called. */
8361 return NULL_TREE;
8362 }
8363
8364 /* Print debugging information about tree nodes generated during the compile,
8365 and any language-specific information. */
8366
8367 void
8368 dump_tree_statistics (void)
8369 {
8370 #ifdef GATHER_STATISTICS
8371 int i;
8372 int total_nodes, total_bytes;
8373 #endif
8374
8375 fprintf (stderr, "\n??? tree nodes created\n\n");
8376 #ifdef GATHER_STATISTICS
8377 fprintf (stderr, "Kind Nodes Bytes\n");
8378 fprintf (stderr, "---------------------------------------\n");
8379 total_nodes = total_bytes = 0;
8380 for (i = 0; i < (int) all_kinds; i++)
8381 {
8382 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8383 tree_node_counts[i], tree_node_sizes[i]);
8384 total_nodes += tree_node_counts[i];
8385 total_bytes += tree_node_sizes[i];
8386 }
8387 fprintf (stderr, "---------------------------------------\n");
8388 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8389 fprintf (stderr, "---------------------------------------\n");
8390 ssanames_print_statistics ();
8391 phinodes_print_statistics ();
8392 #else
8393 fprintf (stderr, "(No per-node statistics)\n");
8394 #endif
8395 print_type_hash_statistics ();
8396 print_debug_expr_statistics ();
8397 print_value_expr_statistics ();
8398 lang_hooks.print_statistics ();
8399 }
8400 \f
8401 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8402
8403 /* Generate a crc32 of a string. */
8404
8405 unsigned
8406 crc32_string (unsigned chksum, const char *string)
8407 {
8408 do
8409 {
8410 unsigned value = *string << 24;
8411 unsigned ix;
8412
8413 for (ix = 8; ix--; value <<= 1)
8414 {
8415 unsigned feedback;
8416
8417 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8418 chksum <<= 1;
8419 chksum ^= feedback;
8420 }
8421 }
8422 while (*string++);
8423 return chksum;
8424 }
8425
8426 /* P is a string that will be used in a symbol. Mask out any characters
8427 that are not valid in that context. */
8428
8429 void
8430 clean_symbol_name (char *p)
8431 {
8432 for (; *p; p++)
8433 if (! (ISALNUM (*p)
8434 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8435 || *p == '$'
8436 #endif
8437 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8438 || *p == '.'
8439 #endif
8440 ))
8441 *p = '_';
8442 }
8443
8444 /* Generate a name for a special-purpose function function.
8445 The generated name may need to be unique across the whole link.
8446 TYPE is some string to identify the purpose of this function to the
8447 linker or collect2; it must start with an uppercase letter,
8448 one of:
8449 I - for constructors
8450 D - for destructors
8451 N - for C++ anonymous namespaces
8452 F - for DWARF unwind frame information. */
8453
8454 tree
8455 get_file_function_name (const char *type)
8456 {
8457 char *buf;
8458 const char *p;
8459 char *q;
8460
8461 /* If we already have a name we know to be unique, just use that. */
8462 if (first_global_object_name)
8463 p = q = ASTRDUP (first_global_object_name);
8464 /* If the target is handling the constructors/destructors, they
8465 will be local to this file and the name is only necessary for
8466 debugging purposes. */
8467 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8468 {
8469 const char *file = main_input_filename;
8470 if (! file)
8471 file = input_filename;
8472 /* Just use the file's basename, because the full pathname
8473 might be quite long. */
8474 p = strrchr (file, '/');
8475 if (p)
8476 p++;
8477 else
8478 p = file;
8479 p = q = ASTRDUP (p);
8480 }
8481 else
8482 {
8483 /* Otherwise, the name must be unique across the entire link.
8484 We don't have anything that we know to be unique to this translation
8485 unit, so use what we do have and throw in some randomness. */
8486 unsigned len;
8487 const char *name = weak_global_object_name;
8488 const char *file = main_input_filename;
8489
8490 if (! name)
8491 name = "";
8492 if (! file)
8493 file = input_filename;
8494
8495 len = strlen (file);
8496 q = (char *) alloca (9 * 2 + len + 1);
8497 memcpy (q, file, len + 1);
8498
8499 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8500 crc32_string (0, get_random_seed (false)));
8501
8502 p = q;
8503 }
8504
8505 clean_symbol_name (q);
8506 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8507 + strlen (type));
8508
8509 /* Set up the name of the file-level functions we may need.
8510 Use a global object (which is already required to be unique over
8511 the program) rather than the file name (which imposes extra
8512 constraints). */
8513 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8514
8515 return get_identifier (buf);
8516 }
8517 \f
8518 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8519
8520 /* Complain that the tree code of NODE does not match the expected 0
8521 terminated list of trailing codes. The trailing code list can be
8522 empty, for a more vague error message. FILE, LINE, and FUNCTION
8523 are of the caller. */
8524
8525 void
8526 tree_check_failed (const_tree node, const char *file,
8527 int line, const char *function, ...)
8528 {
8529 va_list args;
8530 const char *buffer;
8531 unsigned length = 0;
8532 int code;
8533
8534 va_start (args, function);
8535 while ((code = va_arg (args, int)))
8536 length += 4 + strlen (tree_code_name[code]);
8537 va_end (args);
8538 if (length)
8539 {
8540 char *tmp;
8541 va_start (args, function);
8542 length += strlen ("expected ");
8543 buffer = tmp = (char *) alloca (length);
8544 length = 0;
8545 while ((code = va_arg (args, int)))
8546 {
8547 const char *prefix = length ? " or " : "expected ";
8548
8549 strcpy (tmp + length, prefix);
8550 length += strlen (prefix);
8551 strcpy (tmp + length, tree_code_name[code]);
8552 length += strlen (tree_code_name[code]);
8553 }
8554 va_end (args);
8555 }
8556 else
8557 buffer = "unexpected node";
8558
8559 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8560 buffer, tree_code_name[TREE_CODE (node)],
8561 function, trim_filename (file), line);
8562 }
8563
8564 /* Complain that the tree code of NODE does match the expected 0
8565 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8566 the caller. */
8567
8568 void
8569 tree_not_check_failed (const_tree node, const char *file,
8570 int line, const char *function, ...)
8571 {
8572 va_list args;
8573 char *buffer;
8574 unsigned length = 0;
8575 int code;
8576
8577 va_start (args, function);
8578 while ((code = va_arg (args, int)))
8579 length += 4 + strlen (tree_code_name[code]);
8580 va_end (args);
8581 va_start (args, function);
8582 buffer = (char *) alloca (length);
8583 length = 0;
8584 while ((code = va_arg (args, int)))
8585 {
8586 if (length)
8587 {
8588 strcpy (buffer + length, " or ");
8589 length += 4;
8590 }
8591 strcpy (buffer + length, tree_code_name[code]);
8592 length += strlen (tree_code_name[code]);
8593 }
8594 va_end (args);
8595
8596 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8597 buffer, tree_code_name[TREE_CODE (node)],
8598 function, trim_filename (file), line);
8599 }
8600
8601 /* Similar to tree_check_failed, except that we check for a class of tree
8602 code, given in CL. */
8603
8604 void
8605 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8606 const char *file, int line, const char *function)
8607 {
8608 internal_error
8609 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8610 TREE_CODE_CLASS_STRING (cl),
8611 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8612 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8613 }
8614
8615 /* Similar to tree_check_failed, except that instead of specifying a
8616 dozen codes, use the knowledge that they're all sequential. */
8617
8618 void
8619 tree_range_check_failed (const_tree node, const char *file, int line,
8620 const char *function, enum tree_code c1,
8621 enum tree_code c2)
8622 {
8623 char *buffer;
8624 unsigned length = 0;
8625 unsigned int c;
8626
8627 for (c = c1; c <= c2; ++c)
8628 length += 4 + strlen (tree_code_name[c]);
8629
8630 length += strlen ("expected ");
8631 buffer = (char *) alloca (length);
8632 length = 0;
8633
8634 for (c = c1; c <= c2; ++c)
8635 {
8636 const char *prefix = length ? " or " : "expected ";
8637
8638 strcpy (buffer + length, prefix);
8639 length += strlen (prefix);
8640 strcpy (buffer + length, tree_code_name[c]);
8641 length += strlen (tree_code_name[c]);
8642 }
8643
8644 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8645 buffer, tree_code_name[TREE_CODE (node)],
8646 function, trim_filename (file), line);
8647 }
8648
8649
8650 /* Similar to tree_check_failed, except that we check that a tree does
8651 not have the specified code, given in CL. */
8652
8653 void
8654 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8655 const char *file, int line, const char *function)
8656 {
8657 internal_error
8658 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8659 TREE_CODE_CLASS_STRING (cl),
8660 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8661 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8662 }
8663
8664
8665 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8666
8667 void
8668 omp_clause_check_failed (const_tree node, const char *file, int line,
8669 const char *function, enum omp_clause_code code)
8670 {
8671 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8672 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8673 function, trim_filename (file), line);
8674 }
8675
8676
8677 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8678
8679 void
8680 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8681 const char *function, enum omp_clause_code c1,
8682 enum omp_clause_code c2)
8683 {
8684 char *buffer;
8685 unsigned length = 0;
8686 unsigned int c;
8687
8688 for (c = c1; c <= c2; ++c)
8689 length += 4 + strlen (omp_clause_code_name[c]);
8690
8691 length += strlen ("expected ");
8692 buffer = (char *) alloca (length);
8693 length = 0;
8694
8695 for (c = c1; c <= c2; ++c)
8696 {
8697 const char *prefix = length ? " or " : "expected ";
8698
8699 strcpy (buffer + length, prefix);
8700 length += strlen (prefix);
8701 strcpy (buffer + length, omp_clause_code_name[c]);
8702 length += strlen (omp_clause_code_name[c]);
8703 }
8704
8705 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8706 buffer, omp_clause_code_name[TREE_CODE (node)],
8707 function, trim_filename (file), line);
8708 }
8709
8710
8711 #undef DEFTREESTRUCT
8712 #define DEFTREESTRUCT(VAL, NAME) NAME,
8713
8714 static const char *ts_enum_names[] = {
8715 #include "treestruct.def"
8716 };
8717 #undef DEFTREESTRUCT
8718
8719 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8720
8721 /* Similar to tree_class_check_failed, except that we check for
8722 whether CODE contains the tree structure identified by EN. */
8723
8724 void
8725 tree_contains_struct_check_failed (const_tree node,
8726 const enum tree_node_structure_enum en,
8727 const char *file, int line,
8728 const char *function)
8729 {
8730 internal_error
8731 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8732 TS_ENUM_NAME(en),
8733 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8734 }
8735
8736
8737 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8738 (dynamically sized) vector. */
8739
8740 void
8741 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8742 const char *function)
8743 {
8744 internal_error
8745 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8746 idx + 1, len, function, trim_filename (file), line);
8747 }
8748
8749 /* Similar to above, except that the check is for the bounds of the operand
8750 vector of an expression node EXP. */
8751
8752 void
8753 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8754 int line, const char *function)
8755 {
8756 int code = TREE_CODE (exp);
8757 internal_error
8758 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8759 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8760 function, trim_filename (file), line);
8761 }
8762
8763 /* Similar to above, except that the check is for the number of
8764 operands of an OMP_CLAUSE node. */
8765
8766 void
8767 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8768 int line, const char *function)
8769 {
8770 internal_error
8771 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8772 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8773 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8774 trim_filename (file), line);
8775 }
8776 #endif /* ENABLE_TREE_CHECKING */
8777 \f
8778 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8779 and mapped to the machine mode MODE. Initialize its fields and build
8780 the information necessary for debugging output. */
8781
8782 static tree
8783 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8784 {
8785 tree t;
8786 hashval_t hashcode = 0;
8787
8788 t = make_node (VECTOR_TYPE);
8789 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8790 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8791 SET_TYPE_MODE (t, mode);
8792
8793 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8794 SET_TYPE_STRUCTURAL_EQUALITY (t);
8795 else if (TYPE_CANONICAL (innertype) != innertype
8796 || mode != VOIDmode)
8797 TYPE_CANONICAL (t)
8798 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8799
8800 layout_type (t);
8801
8802 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8803 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8804 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8805 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8806 t = type_hash_canon (hashcode, t);
8807
8808 /* We have built a main variant, based on the main variant of the
8809 inner type. Use it to build the variant we return. */
8810 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8811 && TREE_TYPE (t) != innertype)
8812 return build_type_attribute_qual_variant (t,
8813 TYPE_ATTRIBUTES (innertype),
8814 TYPE_QUALS (innertype));
8815
8816 return t;
8817 }
8818
8819 static tree
8820 make_or_reuse_type (unsigned size, int unsignedp)
8821 {
8822 if (size == INT_TYPE_SIZE)
8823 return unsignedp ? unsigned_type_node : integer_type_node;
8824 if (size == CHAR_TYPE_SIZE)
8825 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8826 if (size == SHORT_TYPE_SIZE)
8827 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8828 if (size == LONG_TYPE_SIZE)
8829 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8830 if (size == LONG_LONG_TYPE_SIZE)
8831 return (unsignedp ? long_long_unsigned_type_node
8832 : long_long_integer_type_node);
8833 if (size == 128 && int128_integer_type_node)
8834 return (unsignedp ? int128_unsigned_type_node
8835 : int128_integer_type_node);
8836
8837 if (unsignedp)
8838 return make_unsigned_type (size);
8839 else
8840 return make_signed_type (size);
8841 }
8842
8843 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8844
8845 static tree
8846 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8847 {
8848 if (satp)
8849 {
8850 if (size == SHORT_FRACT_TYPE_SIZE)
8851 return unsignedp ? sat_unsigned_short_fract_type_node
8852 : sat_short_fract_type_node;
8853 if (size == FRACT_TYPE_SIZE)
8854 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8855 if (size == LONG_FRACT_TYPE_SIZE)
8856 return unsignedp ? sat_unsigned_long_fract_type_node
8857 : sat_long_fract_type_node;
8858 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8859 return unsignedp ? sat_unsigned_long_long_fract_type_node
8860 : sat_long_long_fract_type_node;
8861 }
8862 else
8863 {
8864 if (size == SHORT_FRACT_TYPE_SIZE)
8865 return unsignedp ? unsigned_short_fract_type_node
8866 : short_fract_type_node;
8867 if (size == FRACT_TYPE_SIZE)
8868 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8869 if (size == LONG_FRACT_TYPE_SIZE)
8870 return unsignedp ? unsigned_long_fract_type_node
8871 : long_fract_type_node;
8872 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8873 return unsignedp ? unsigned_long_long_fract_type_node
8874 : long_long_fract_type_node;
8875 }
8876
8877 return make_fract_type (size, unsignedp, satp);
8878 }
8879
8880 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8881
8882 static tree
8883 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8884 {
8885 if (satp)
8886 {
8887 if (size == SHORT_ACCUM_TYPE_SIZE)
8888 return unsignedp ? sat_unsigned_short_accum_type_node
8889 : sat_short_accum_type_node;
8890 if (size == ACCUM_TYPE_SIZE)
8891 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8892 if (size == LONG_ACCUM_TYPE_SIZE)
8893 return unsignedp ? sat_unsigned_long_accum_type_node
8894 : sat_long_accum_type_node;
8895 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8896 return unsignedp ? sat_unsigned_long_long_accum_type_node
8897 : sat_long_long_accum_type_node;
8898 }
8899 else
8900 {
8901 if (size == SHORT_ACCUM_TYPE_SIZE)
8902 return unsignedp ? unsigned_short_accum_type_node
8903 : short_accum_type_node;
8904 if (size == ACCUM_TYPE_SIZE)
8905 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8906 if (size == LONG_ACCUM_TYPE_SIZE)
8907 return unsignedp ? unsigned_long_accum_type_node
8908 : long_accum_type_node;
8909 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8910 return unsignedp ? unsigned_long_long_accum_type_node
8911 : long_long_accum_type_node;
8912 }
8913
8914 return make_accum_type (size, unsignedp, satp);
8915 }
8916
8917 /* Create nodes for all integer types (and error_mark_node) using the sizes
8918 of C datatypes. The caller should call set_sizetype soon after calling
8919 this function to select one of the types as sizetype. */
8920
8921 void
8922 build_common_tree_nodes (bool signed_char)
8923 {
8924 error_mark_node = make_node (ERROR_MARK);
8925 TREE_TYPE (error_mark_node) = error_mark_node;
8926
8927 initialize_sizetypes ();
8928
8929 /* Define both `signed char' and `unsigned char'. */
8930 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8931 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8932 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8933 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8934
8935 /* Define `char', which is like either `signed char' or `unsigned char'
8936 but not the same as either. */
8937 char_type_node
8938 = (signed_char
8939 ? make_signed_type (CHAR_TYPE_SIZE)
8940 : make_unsigned_type (CHAR_TYPE_SIZE));
8941 TYPE_STRING_FLAG (char_type_node) = 1;
8942
8943 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8944 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8945 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8946 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8947 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8948 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8949 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8950 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8951 #if HOST_BITS_PER_WIDE_INT >= 64
8952 /* TODO: This isn't correct, but as logic depends at the moment on
8953 host's instead of target's wide-integer.
8954 If there is a target not supporting TImode, but has an 128-bit
8955 integer-scalar register, this target check needs to be adjusted. */
8956 if (targetm.scalar_mode_supported_p (TImode))
8957 {
8958 int128_integer_type_node = make_signed_type (128);
8959 int128_unsigned_type_node = make_unsigned_type (128);
8960 }
8961 #endif
8962 /* Define a boolean type. This type only represents boolean values but
8963 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8964 Front ends which want to override this size (i.e. Java) can redefine
8965 boolean_type_node before calling build_common_tree_nodes_2. */
8966 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8967 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8968 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8969 TYPE_PRECISION (boolean_type_node) = 1;
8970
8971 /* Fill in the rest of the sized types. Reuse existing type nodes
8972 when possible. */
8973 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8974 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8975 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8976 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8977 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8978
8979 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8980 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8981 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8982 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8983 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8984
8985 access_public_node = get_identifier ("public");
8986 access_protected_node = get_identifier ("protected");
8987 access_private_node = get_identifier ("private");
8988 }
8989
8990 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8991 It will create several other common tree nodes. */
8992
8993 void
8994 build_common_tree_nodes_2 (int short_double)
8995 {
8996 /* Define these next since types below may used them. */
8997 integer_zero_node = build_int_cst (integer_type_node, 0);
8998 integer_one_node = build_int_cst (integer_type_node, 1);
8999 integer_three_node = build_int_cst (integer_type_node, 3);
9000 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9001
9002 size_zero_node = size_int (0);
9003 size_one_node = size_int (1);
9004 bitsize_zero_node = bitsize_int (0);
9005 bitsize_one_node = bitsize_int (1);
9006 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9007
9008 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9009 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9010
9011 void_type_node = make_node (VOID_TYPE);
9012 layout_type (void_type_node);
9013
9014 /* We are not going to have real types in C with less than byte alignment,
9015 so we might as well not have any types that claim to have it. */
9016 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9017 TYPE_USER_ALIGN (void_type_node) = 0;
9018
9019 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9020 layout_type (TREE_TYPE (null_pointer_node));
9021
9022 ptr_type_node = build_pointer_type (void_type_node);
9023 const_ptr_type_node
9024 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9025 fileptr_type_node = ptr_type_node;
9026
9027 float_type_node = make_node (REAL_TYPE);
9028 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9029 layout_type (float_type_node);
9030
9031 double_type_node = make_node (REAL_TYPE);
9032 if (short_double)
9033 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9034 else
9035 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9036 layout_type (double_type_node);
9037
9038 long_double_type_node = make_node (REAL_TYPE);
9039 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9040 layout_type (long_double_type_node);
9041
9042 float_ptr_type_node = build_pointer_type (float_type_node);
9043 double_ptr_type_node = build_pointer_type (double_type_node);
9044 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9045 integer_ptr_type_node = build_pointer_type (integer_type_node);
9046
9047 /* Fixed size integer types. */
9048 uint32_type_node = build_nonstandard_integer_type (32, true);
9049 uint64_type_node = build_nonstandard_integer_type (64, true);
9050
9051 /* Decimal float types. */
9052 dfloat32_type_node = make_node (REAL_TYPE);
9053 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9054 layout_type (dfloat32_type_node);
9055 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9056 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9057
9058 dfloat64_type_node = make_node (REAL_TYPE);
9059 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9060 layout_type (dfloat64_type_node);
9061 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9062 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9063
9064 dfloat128_type_node = make_node (REAL_TYPE);
9065 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9066 layout_type (dfloat128_type_node);
9067 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9068 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9069
9070 complex_integer_type_node = build_complex_type (integer_type_node);
9071 complex_float_type_node = build_complex_type (float_type_node);
9072 complex_double_type_node = build_complex_type (double_type_node);
9073 complex_long_double_type_node = build_complex_type (long_double_type_node);
9074
9075 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9076 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9077 sat_ ## KIND ## _type_node = \
9078 make_sat_signed_ ## KIND ## _type (SIZE); \
9079 sat_unsigned_ ## KIND ## _type_node = \
9080 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9081 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9082 unsigned_ ## KIND ## _type_node = \
9083 make_unsigned_ ## KIND ## _type (SIZE);
9084
9085 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9086 sat_ ## WIDTH ## KIND ## _type_node = \
9087 make_sat_signed_ ## KIND ## _type (SIZE); \
9088 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9089 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9090 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9091 unsigned_ ## WIDTH ## KIND ## _type_node = \
9092 make_unsigned_ ## KIND ## _type (SIZE);
9093
9094 /* Make fixed-point type nodes based on four different widths. */
9095 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9096 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9097 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9098 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9099 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9100
9101 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9102 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9103 NAME ## _type_node = \
9104 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9105 u ## NAME ## _type_node = \
9106 make_or_reuse_unsigned_ ## KIND ## _type \
9107 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9108 sat_ ## NAME ## _type_node = \
9109 make_or_reuse_sat_signed_ ## KIND ## _type \
9110 (GET_MODE_BITSIZE (MODE ## mode)); \
9111 sat_u ## NAME ## _type_node = \
9112 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9113 (GET_MODE_BITSIZE (U ## MODE ## mode));
9114
9115 /* Fixed-point type and mode nodes. */
9116 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9117 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9118 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9119 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9120 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9121 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9122 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9123 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9124 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9125 MAKE_FIXED_MODE_NODE (accum, da, DA)
9126 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9127
9128 {
9129 tree t = targetm.build_builtin_va_list ();
9130
9131 /* Many back-ends define record types without setting TYPE_NAME.
9132 If we copied the record type here, we'd keep the original
9133 record type without a name. This breaks name mangling. So,
9134 don't copy record types and let c_common_nodes_and_builtins()
9135 declare the type to be __builtin_va_list. */
9136 if (TREE_CODE (t) != RECORD_TYPE)
9137 t = build_variant_type_copy (t);
9138
9139 va_list_type_node = t;
9140 }
9141 }
9142
9143 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9144
9145 static void
9146 local_define_builtin (const char *name, tree type, enum built_in_function code,
9147 const char *library_name, int ecf_flags)
9148 {
9149 tree decl;
9150
9151 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9152 library_name, NULL_TREE);
9153 if (ecf_flags & ECF_CONST)
9154 TREE_READONLY (decl) = 1;
9155 if (ecf_flags & ECF_PURE)
9156 DECL_PURE_P (decl) = 1;
9157 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9158 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9159 if (ecf_flags & ECF_NORETURN)
9160 TREE_THIS_VOLATILE (decl) = 1;
9161 if (ecf_flags & ECF_NOTHROW)
9162 TREE_NOTHROW (decl) = 1;
9163 if (ecf_flags & ECF_MALLOC)
9164 DECL_IS_MALLOC (decl) = 1;
9165 if (ecf_flags & ECF_LEAF)
9166 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9167 NULL, DECL_ATTRIBUTES (decl));
9168
9169 built_in_decls[code] = decl;
9170 implicit_built_in_decls[code] = decl;
9171 }
9172
9173 /* Call this function after instantiating all builtins that the language
9174 front end cares about. This will build the rest of the builtins that
9175 are relied upon by the tree optimizers and the middle-end. */
9176
9177 void
9178 build_common_builtin_nodes (void)
9179 {
9180 tree tmp, ftype;
9181
9182 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9183 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9184 {
9185 ftype = build_function_type_list (ptr_type_node,
9186 ptr_type_node, const_ptr_type_node,
9187 size_type_node, NULL_TREE);
9188
9189 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9190 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9191 "memcpy", ECF_NOTHROW | ECF_LEAF);
9192 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9193 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9194 "memmove", ECF_NOTHROW | ECF_LEAF);
9195 }
9196
9197 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9198 {
9199 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9200 const_ptr_type_node, size_type_node,
9201 NULL_TREE);
9202 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9203 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9204 }
9205
9206 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9207 {
9208 ftype = build_function_type_list (ptr_type_node,
9209 ptr_type_node, integer_type_node,
9210 size_type_node, NULL_TREE);
9211 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9212 "memset", ECF_NOTHROW | ECF_LEAF);
9213 }
9214
9215 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9216 {
9217 ftype = build_function_type_list (ptr_type_node,
9218 size_type_node, NULL_TREE);
9219 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9220 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9221 }
9222
9223 /* If we're checking the stack, `alloca' can throw. */
9224 if (flag_stack_check)
9225 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9226
9227 ftype = build_function_type_list (void_type_node,
9228 ptr_type_node, ptr_type_node,
9229 ptr_type_node, NULL_TREE);
9230 local_define_builtin ("__builtin_init_trampoline", ftype,
9231 BUILT_IN_INIT_TRAMPOLINE,
9232 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9233
9234 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9235 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9236 BUILT_IN_ADJUST_TRAMPOLINE,
9237 "__builtin_adjust_trampoline",
9238 ECF_CONST | ECF_NOTHROW);
9239
9240 ftype = build_function_type_list (void_type_node,
9241 ptr_type_node, ptr_type_node, NULL_TREE);
9242 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9243 BUILT_IN_NONLOCAL_GOTO,
9244 "__builtin_nonlocal_goto",
9245 ECF_NORETURN | ECF_NOTHROW);
9246
9247 ftype = build_function_type_list (void_type_node,
9248 ptr_type_node, ptr_type_node, NULL_TREE);
9249 local_define_builtin ("__builtin_setjmp_setup", ftype,
9250 BUILT_IN_SETJMP_SETUP,
9251 "__builtin_setjmp_setup", ECF_NOTHROW);
9252
9253 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9254 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9255 BUILT_IN_SETJMP_DISPATCHER,
9256 "__builtin_setjmp_dispatcher",
9257 ECF_PURE | ECF_NOTHROW);
9258
9259 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9260 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9261 BUILT_IN_SETJMP_RECEIVER,
9262 "__builtin_setjmp_receiver", ECF_NOTHROW);
9263
9264 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9265 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9266 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9267
9268 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9269 local_define_builtin ("__builtin_stack_restore", ftype,
9270 BUILT_IN_STACK_RESTORE,
9271 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9272
9273 ftype = build_function_type_list (void_type_node, NULL_TREE);
9274 local_define_builtin ("__builtin_profile_func_enter", ftype,
9275 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9276 local_define_builtin ("__builtin_profile_func_exit", ftype,
9277 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9278
9279 /* If there's a possibility that we might use the ARM EABI, build the
9280 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9281 if (targetm.arm_eabi_unwinder)
9282 {
9283 ftype = build_function_type_list (void_type_node, NULL_TREE);
9284 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9285 BUILT_IN_CXA_END_CLEANUP,
9286 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9287 }
9288
9289 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9290 local_define_builtin ("__builtin_unwind_resume", ftype,
9291 BUILT_IN_UNWIND_RESUME,
9292 (targetm.except_unwind_info () == UI_SJLJ
9293 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9294 ECF_NORETURN);
9295
9296 /* The exception object and filter values from the runtime. The argument
9297 must be zero before exception lowering, i.e. from the front end. After
9298 exception lowering, it will be the region number for the exception
9299 landing pad. These functions are PURE instead of CONST to prevent
9300 them from being hoisted past the exception edge that will initialize
9301 its value in the landing pad. */
9302 ftype = build_function_type_list (ptr_type_node,
9303 integer_type_node, NULL_TREE);
9304 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9305 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9306
9307 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9308 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9309 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9310 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9311
9312 ftype = build_function_type_list (void_type_node,
9313 integer_type_node, integer_type_node,
9314 NULL_TREE);
9315 local_define_builtin ("__builtin_eh_copy_values", ftype,
9316 BUILT_IN_EH_COPY_VALUES,
9317 "__builtin_eh_copy_values", ECF_NOTHROW);
9318
9319 /* Complex multiplication and division. These are handled as builtins
9320 rather than optabs because emit_library_call_value doesn't support
9321 complex. Further, we can do slightly better with folding these
9322 beasties if the real and complex parts of the arguments are separate. */
9323 {
9324 int mode;
9325
9326 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9327 {
9328 char mode_name_buf[4], *q;
9329 const char *p;
9330 enum built_in_function mcode, dcode;
9331 tree type, inner_type;
9332
9333 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9334 if (type == NULL)
9335 continue;
9336 inner_type = TREE_TYPE (type);
9337
9338 ftype = build_function_type_list (type, inner_type, inner_type,
9339 inner_type, inner_type, NULL_TREE);
9340
9341 mcode = ((enum built_in_function)
9342 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9343 dcode = ((enum built_in_function)
9344 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9345
9346 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9347 *q = TOLOWER (*p);
9348 *q = '\0';
9349
9350 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9351 local_define_builtin (built_in_names[mcode], ftype, mcode,
9352 built_in_names[mcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9353
9354 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9355 local_define_builtin (built_in_names[dcode], ftype, dcode,
9356 built_in_names[dcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9357 }
9358 }
9359 }
9360
9361 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9362 better way.
9363
9364 If we requested a pointer to a vector, build up the pointers that
9365 we stripped off while looking for the inner type. Similarly for
9366 return values from functions.
9367
9368 The argument TYPE is the top of the chain, and BOTTOM is the
9369 new type which we will point to. */
9370
9371 tree
9372 reconstruct_complex_type (tree type, tree bottom)
9373 {
9374 tree inner, outer;
9375
9376 if (TREE_CODE (type) == POINTER_TYPE)
9377 {
9378 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9379 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9380 TYPE_REF_CAN_ALIAS_ALL (type));
9381 }
9382 else if (TREE_CODE (type) == REFERENCE_TYPE)
9383 {
9384 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9385 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9386 TYPE_REF_CAN_ALIAS_ALL (type));
9387 }
9388 else if (TREE_CODE (type) == ARRAY_TYPE)
9389 {
9390 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9391 outer = build_array_type (inner, TYPE_DOMAIN (type));
9392 }
9393 else if (TREE_CODE (type) == FUNCTION_TYPE)
9394 {
9395 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9396 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9397 }
9398 else if (TREE_CODE (type) == METHOD_TYPE)
9399 {
9400 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9401 /* The build_method_type_directly() routine prepends 'this' to argument list,
9402 so we must compensate by getting rid of it. */
9403 outer
9404 = build_method_type_directly
9405 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9406 inner,
9407 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9408 }
9409 else if (TREE_CODE (type) == OFFSET_TYPE)
9410 {
9411 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9412 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9413 }
9414 else
9415 return bottom;
9416
9417 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9418 TYPE_QUALS (type));
9419 }
9420
9421 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9422 the inner type. */
9423 tree
9424 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9425 {
9426 int nunits;
9427
9428 switch (GET_MODE_CLASS (mode))
9429 {
9430 case MODE_VECTOR_INT:
9431 case MODE_VECTOR_FLOAT:
9432 case MODE_VECTOR_FRACT:
9433 case MODE_VECTOR_UFRACT:
9434 case MODE_VECTOR_ACCUM:
9435 case MODE_VECTOR_UACCUM:
9436 nunits = GET_MODE_NUNITS (mode);
9437 break;
9438
9439 case MODE_INT:
9440 /* Check that there are no leftover bits. */
9441 gcc_assert (GET_MODE_BITSIZE (mode)
9442 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9443
9444 nunits = GET_MODE_BITSIZE (mode)
9445 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9446 break;
9447
9448 default:
9449 gcc_unreachable ();
9450 }
9451
9452 return make_vector_type (innertype, nunits, mode);
9453 }
9454
9455 /* Similarly, but takes the inner type and number of units, which must be
9456 a power of two. */
9457
9458 tree
9459 build_vector_type (tree innertype, int nunits)
9460 {
9461 return make_vector_type (innertype, nunits, VOIDmode);
9462 }
9463
9464 /* Similarly, but takes the inner type and number of units, which must be
9465 a power of two. */
9466
9467 tree
9468 build_opaque_vector_type (tree innertype, int nunits)
9469 {
9470 tree t;
9471 innertype = build_distinct_type_copy (innertype);
9472 t = make_vector_type (innertype, nunits, VOIDmode);
9473 TYPE_VECTOR_OPAQUE (t) = true;
9474 return t;
9475 }
9476
9477
9478 /* Given an initializer INIT, return TRUE if INIT is zero or some
9479 aggregate of zeros. Otherwise return FALSE. */
9480 bool
9481 initializer_zerop (const_tree init)
9482 {
9483 tree elt;
9484
9485 STRIP_NOPS (init);
9486
9487 switch (TREE_CODE (init))
9488 {
9489 case INTEGER_CST:
9490 return integer_zerop (init);
9491
9492 case REAL_CST:
9493 /* ??? Note that this is not correct for C4X float formats. There,
9494 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9495 negative exponent. */
9496 return real_zerop (init)
9497 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9498
9499 case FIXED_CST:
9500 return fixed_zerop (init);
9501
9502 case COMPLEX_CST:
9503 return integer_zerop (init)
9504 || (real_zerop (init)
9505 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9506 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9507
9508 case VECTOR_CST:
9509 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9510 if (!initializer_zerop (TREE_VALUE (elt)))
9511 return false;
9512 return true;
9513
9514 case CONSTRUCTOR:
9515 {
9516 unsigned HOST_WIDE_INT idx;
9517
9518 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9519 if (!initializer_zerop (elt))
9520 return false;
9521 return true;
9522 }
9523
9524 case STRING_CST:
9525 {
9526 int i;
9527
9528 /* We need to loop through all elements to handle cases like
9529 "\0" and "\0foobar". */
9530 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9531 if (TREE_STRING_POINTER (init)[i] != '\0')
9532 return false;
9533
9534 return true;
9535 }
9536
9537 default:
9538 return false;
9539 }
9540 }
9541
9542 /* Build an empty statement at location LOC. */
9543
9544 tree
9545 build_empty_stmt (location_t loc)
9546 {
9547 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9548 SET_EXPR_LOCATION (t, loc);
9549 return t;
9550 }
9551
9552
9553 /* Build an OpenMP clause with code CODE. LOC is the location of the
9554 clause. */
9555
9556 tree
9557 build_omp_clause (location_t loc, enum omp_clause_code code)
9558 {
9559 tree t;
9560 int size, length;
9561
9562 length = omp_clause_num_ops[code];
9563 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9564
9565 t = ggc_alloc_tree_node (size);
9566 memset (t, 0, size);
9567 TREE_SET_CODE (t, OMP_CLAUSE);
9568 OMP_CLAUSE_SET_CODE (t, code);
9569 OMP_CLAUSE_LOCATION (t) = loc;
9570
9571 #ifdef GATHER_STATISTICS
9572 tree_node_counts[(int) omp_clause_kind]++;
9573 tree_node_sizes[(int) omp_clause_kind] += size;
9574 #endif
9575
9576 return t;
9577 }
9578
9579 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9580 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9581 Except for the CODE and operand count field, other storage for the
9582 object is initialized to zeros. */
9583
9584 tree
9585 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9586 {
9587 tree t;
9588 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9589
9590 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9591 gcc_assert (len >= 1);
9592
9593 #ifdef GATHER_STATISTICS
9594 tree_node_counts[(int) e_kind]++;
9595 tree_node_sizes[(int) e_kind] += length;
9596 #endif
9597
9598 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9599
9600 TREE_SET_CODE (t, code);
9601
9602 /* Can't use TREE_OPERAND to store the length because if checking is
9603 enabled, it will try to check the length before we store it. :-P */
9604 t->exp.operands[0] = build_int_cst (sizetype, len);
9605
9606 return t;
9607 }
9608
9609 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9610 FN and a null static chain slot. NARGS is the number of call arguments
9611 which are specified as "..." arguments. */
9612
9613 tree
9614 build_call_nary (tree return_type, tree fn, int nargs, ...)
9615 {
9616 tree ret;
9617 va_list args;
9618 va_start (args, nargs);
9619 ret = build_call_valist (return_type, fn, nargs, args);
9620 va_end (args);
9621 return ret;
9622 }
9623
9624 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9625 FN and a null static chain slot. NARGS is the number of call arguments
9626 which are specified as a va_list ARGS. */
9627
9628 tree
9629 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9630 {
9631 tree t;
9632 int i;
9633
9634 t = build_vl_exp (CALL_EXPR, nargs + 3);
9635 TREE_TYPE (t) = return_type;
9636 CALL_EXPR_FN (t) = fn;
9637 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9638 for (i = 0; i < nargs; i++)
9639 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9640 process_call_operands (t);
9641 return t;
9642 }
9643
9644 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9645 FN and a null static chain slot. NARGS is the number of call arguments
9646 which are specified as a tree array ARGS. */
9647
9648 tree
9649 build_call_array_loc (location_t loc, tree return_type, tree fn,
9650 int nargs, const tree *args)
9651 {
9652 tree t;
9653 int i;
9654
9655 t = build_vl_exp (CALL_EXPR, nargs + 3);
9656 TREE_TYPE (t) = return_type;
9657 CALL_EXPR_FN (t) = fn;
9658 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9659 for (i = 0; i < nargs; i++)
9660 CALL_EXPR_ARG (t, i) = args[i];
9661 process_call_operands (t);
9662 SET_EXPR_LOCATION (t, loc);
9663 return t;
9664 }
9665
9666 /* Like build_call_array, but takes a VEC. */
9667
9668 tree
9669 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9670 {
9671 tree ret, t;
9672 unsigned int ix;
9673
9674 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9675 TREE_TYPE (ret) = return_type;
9676 CALL_EXPR_FN (ret) = fn;
9677 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9678 FOR_EACH_VEC_ELT (tree, args, ix, t)
9679 CALL_EXPR_ARG (ret, ix) = t;
9680 process_call_operands (ret);
9681 return ret;
9682 }
9683
9684
9685 /* Returns true if it is possible to prove that the index of
9686 an array access REF (an ARRAY_REF expression) falls into the
9687 array bounds. */
9688
9689 bool
9690 in_array_bounds_p (tree ref)
9691 {
9692 tree idx = TREE_OPERAND (ref, 1);
9693 tree min, max;
9694
9695 if (TREE_CODE (idx) != INTEGER_CST)
9696 return false;
9697
9698 min = array_ref_low_bound (ref);
9699 max = array_ref_up_bound (ref);
9700 if (!min
9701 || !max
9702 || TREE_CODE (min) != INTEGER_CST
9703 || TREE_CODE (max) != INTEGER_CST)
9704 return false;
9705
9706 if (tree_int_cst_lt (idx, min)
9707 || tree_int_cst_lt (max, idx))
9708 return false;
9709
9710 return true;
9711 }
9712
9713 /* Returns true if it is possible to prove that the range of
9714 an array access REF (an ARRAY_RANGE_REF expression) falls
9715 into the array bounds. */
9716
9717 bool
9718 range_in_array_bounds_p (tree ref)
9719 {
9720 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9721 tree range_min, range_max, min, max;
9722
9723 range_min = TYPE_MIN_VALUE (domain_type);
9724 range_max = TYPE_MAX_VALUE (domain_type);
9725 if (!range_min
9726 || !range_max
9727 || TREE_CODE (range_min) != INTEGER_CST
9728 || TREE_CODE (range_max) != INTEGER_CST)
9729 return false;
9730
9731 min = array_ref_low_bound (ref);
9732 max = array_ref_up_bound (ref);
9733 if (!min
9734 || !max
9735 || TREE_CODE (min) != INTEGER_CST
9736 || TREE_CODE (max) != INTEGER_CST)
9737 return false;
9738
9739 if (tree_int_cst_lt (range_min, min)
9740 || tree_int_cst_lt (max, range_max))
9741 return false;
9742
9743 return true;
9744 }
9745
9746 /* Return true if T (assumed to be a DECL) must be assigned a memory
9747 location. */
9748
9749 bool
9750 needs_to_live_in_memory (const_tree t)
9751 {
9752 if (TREE_CODE (t) == SSA_NAME)
9753 t = SSA_NAME_VAR (t);
9754
9755 return (TREE_ADDRESSABLE (t)
9756 || is_global_var (t)
9757 || (TREE_CODE (t) == RESULT_DECL
9758 && !DECL_BY_REFERENCE (t)
9759 && aggregate_value_p (t, current_function_decl)));
9760 }
9761
9762 /* There are situations in which a language considers record types
9763 compatible which have different field lists. Decide if two fields
9764 are compatible. It is assumed that the parent records are compatible. */
9765
9766 bool
9767 fields_compatible_p (const_tree f1, const_tree f2)
9768 {
9769 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9770 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9771 return false;
9772
9773 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9774 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9775 return false;
9776
9777 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9778 return false;
9779
9780 return true;
9781 }
9782
9783 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9784
9785 tree
9786 find_compatible_field (tree record, tree orig_field)
9787 {
9788 tree f;
9789
9790 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9791 if (TREE_CODE (f) == FIELD_DECL
9792 && fields_compatible_p (f, orig_field))
9793 return f;
9794
9795 /* ??? Why isn't this on the main fields list? */
9796 f = TYPE_VFIELD (record);
9797 if (f && TREE_CODE (f) == FIELD_DECL
9798 && fields_compatible_p (f, orig_field))
9799 return f;
9800
9801 /* ??? We should abort here, but Java appears to do Bad Things
9802 with inherited fields. */
9803 return orig_field;
9804 }
9805
9806 /* Return value of a constant X and sign-extend it. */
9807
9808 HOST_WIDE_INT
9809 int_cst_value (const_tree x)
9810 {
9811 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9812 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9813
9814 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9815 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9816 || TREE_INT_CST_HIGH (x) == -1);
9817
9818 if (bits < HOST_BITS_PER_WIDE_INT)
9819 {
9820 bool negative = ((val >> (bits - 1)) & 1) != 0;
9821 if (negative)
9822 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9823 else
9824 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9825 }
9826
9827 return val;
9828 }
9829
9830 /* Return value of a constant X and sign-extend it. */
9831
9832 HOST_WIDEST_INT
9833 widest_int_cst_value (const_tree x)
9834 {
9835 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9836 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9837
9838 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9839 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9840 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9841 << HOST_BITS_PER_WIDE_INT);
9842 #else
9843 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9844 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9845 || TREE_INT_CST_HIGH (x) == -1);
9846 #endif
9847
9848 if (bits < HOST_BITS_PER_WIDEST_INT)
9849 {
9850 bool negative = ((val >> (bits - 1)) & 1) != 0;
9851 if (negative)
9852 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9853 else
9854 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9855 }
9856
9857 return val;
9858 }
9859
9860 /* If TYPE is an integral type, return an equivalent type which is
9861 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9862 return TYPE itself. */
9863
9864 tree
9865 signed_or_unsigned_type_for (int unsignedp, tree type)
9866 {
9867 tree t = type;
9868 if (POINTER_TYPE_P (type))
9869 {
9870 /* If the pointer points to the normal address space, use the
9871 size_type_node. Otherwise use an appropriate size for the pointer
9872 based on the named address space it points to. */
9873 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9874 t = size_type_node;
9875 else
9876 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9877 }
9878
9879 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9880 return t;
9881
9882 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9883 }
9884
9885 /* Returns unsigned variant of TYPE. */
9886
9887 tree
9888 unsigned_type_for (tree type)
9889 {
9890 return signed_or_unsigned_type_for (1, type);
9891 }
9892
9893 /* Returns signed variant of TYPE. */
9894
9895 tree
9896 signed_type_for (tree type)
9897 {
9898 return signed_or_unsigned_type_for (0, type);
9899 }
9900
9901 /* Returns the largest value obtainable by casting something in INNER type to
9902 OUTER type. */
9903
9904 tree
9905 upper_bound_in_type (tree outer, tree inner)
9906 {
9907 unsigned HOST_WIDE_INT lo, hi;
9908 unsigned int det = 0;
9909 unsigned oprec = TYPE_PRECISION (outer);
9910 unsigned iprec = TYPE_PRECISION (inner);
9911 unsigned prec;
9912
9913 /* Compute a unique number for every combination. */
9914 det |= (oprec > iprec) ? 4 : 0;
9915 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9916 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9917
9918 /* Determine the exponent to use. */
9919 switch (det)
9920 {
9921 case 0:
9922 case 1:
9923 /* oprec <= iprec, outer: signed, inner: don't care. */
9924 prec = oprec - 1;
9925 break;
9926 case 2:
9927 case 3:
9928 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9929 prec = oprec;
9930 break;
9931 case 4:
9932 /* oprec > iprec, outer: signed, inner: signed. */
9933 prec = iprec - 1;
9934 break;
9935 case 5:
9936 /* oprec > iprec, outer: signed, inner: unsigned. */
9937 prec = iprec;
9938 break;
9939 case 6:
9940 /* oprec > iprec, outer: unsigned, inner: signed. */
9941 prec = oprec;
9942 break;
9943 case 7:
9944 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9945 prec = iprec;
9946 break;
9947 default:
9948 gcc_unreachable ();
9949 }
9950
9951 /* Compute 2^^prec - 1. */
9952 if (prec <= HOST_BITS_PER_WIDE_INT)
9953 {
9954 hi = 0;
9955 lo = ((~(unsigned HOST_WIDE_INT) 0)
9956 >> (HOST_BITS_PER_WIDE_INT - prec));
9957 }
9958 else
9959 {
9960 hi = ((~(unsigned HOST_WIDE_INT) 0)
9961 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9962 lo = ~(unsigned HOST_WIDE_INT) 0;
9963 }
9964
9965 return build_int_cst_wide (outer, lo, hi);
9966 }
9967
9968 /* Returns the smallest value obtainable by casting something in INNER type to
9969 OUTER type. */
9970
9971 tree
9972 lower_bound_in_type (tree outer, tree inner)
9973 {
9974 unsigned HOST_WIDE_INT lo, hi;
9975 unsigned oprec = TYPE_PRECISION (outer);
9976 unsigned iprec = TYPE_PRECISION (inner);
9977
9978 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9979 and obtain 0. */
9980 if (TYPE_UNSIGNED (outer)
9981 /* If we are widening something of an unsigned type, OUTER type
9982 contains all values of INNER type. In particular, both INNER
9983 and OUTER types have zero in common. */
9984 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9985 lo = hi = 0;
9986 else
9987 {
9988 /* If we are widening a signed type to another signed type, we
9989 want to obtain -2^^(iprec-1). If we are keeping the
9990 precision or narrowing to a signed type, we want to obtain
9991 -2^(oprec-1). */
9992 unsigned prec = oprec > iprec ? iprec : oprec;
9993
9994 if (prec <= HOST_BITS_PER_WIDE_INT)
9995 {
9996 hi = ~(unsigned HOST_WIDE_INT) 0;
9997 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
9998 }
9999 else
10000 {
10001 hi = ((~(unsigned HOST_WIDE_INT) 0)
10002 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10003 lo = 0;
10004 }
10005 }
10006
10007 return build_int_cst_wide (outer, lo, hi);
10008 }
10009
10010 /* Return nonzero if two operands that are suitable for PHI nodes are
10011 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10012 SSA_NAME or invariant. Note that this is strictly an optimization.
10013 That is, callers of this function can directly call operand_equal_p
10014 and get the same result, only slower. */
10015
10016 int
10017 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10018 {
10019 if (arg0 == arg1)
10020 return 1;
10021 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10022 return 0;
10023 return operand_equal_p (arg0, arg1, 0);
10024 }
10025
10026 /* Returns number of zeros at the end of binary representation of X.
10027
10028 ??? Use ffs if available? */
10029
10030 tree
10031 num_ending_zeros (const_tree x)
10032 {
10033 unsigned HOST_WIDE_INT fr, nfr;
10034 unsigned num, abits;
10035 tree type = TREE_TYPE (x);
10036
10037 if (TREE_INT_CST_LOW (x) == 0)
10038 {
10039 num = HOST_BITS_PER_WIDE_INT;
10040 fr = TREE_INT_CST_HIGH (x);
10041 }
10042 else
10043 {
10044 num = 0;
10045 fr = TREE_INT_CST_LOW (x);
10046 }
10047
10048 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10049 {
10050 nfr = fr >> abits;
10051 if (nfr << abits == fr)
10052 {
10053 num += abits;
10054 fr = nfr;
10055 }
10056 }
10057
10058 if (num > TYPE_PRECISION (type))
10059 num = TYPE_PRECISION (type);
10060
10061 return build_int_cst_type (type, num);
10062 }
10063
10064
10065 #define WALK_SUBTREE(NODE) \
10066 do \
10067 { \
10068 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10069 if (result) \
10070 return result; \
10071 } \
10072 while (0)
10073
10074 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10075 be walked whenever a type is seen in the tree. Rest of operands and return
10076 value are as for walk_tree. */
10077
10078 static tree
10079 walk_type_fields (tree type, walk_tree_fn func, void *data,
10080 struct pointer_set_t *pset, walk_tree_lh lh)
10081 {
10082 tree result = NULL_TREE;
10083
10084 switch (TREE_CODE (type))
10085 {
10086 case POINTER_TYPE:
10087 case REFERENCE_TYPE:
10088 /* We have to worry about mutually recursive pointers. These can't
10089 be written in C. They can in Ada. It's pathological, but
10090 there's an ACATS test (c38102a) that checks it. Deal with this
10091 by checking if we're pointing to another pointer, that one
10092 points to another pointer, that one does too, and we have no htab.
10093 If so, get a hash table. We check three levels deep to avoid
10094 the cost of the hash table if we don't need one. */
10095 if (POINTER_TYPE_P (TREE_TYPE (type))
10096 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10097 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10098 && !pset)
10099 {
10100 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10101 func, data);
10102 if (result)
10103 return result;
10104
10105 break;
10106 }
10107
10108 /* ... fall through ... */
10109
10110 case COMPLEX_TYPE:
10111 WALK_SUBTREE (TREE_TYPE (type));
10112 break;
10113
10114 case METHOD_TYPE:
10115 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10116
10117 /* Fall through. */
10118
10119 case FUNCTION_TYPE:
10120 WALK_SUBTREE (TREE_TYPE (type));
10121 {
10122 tree arg;
10123
10124 /* We never want to walk into default arguments. */
10125 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10126 WALK_SUBTREE (TREE_VALUE (arg));
10127 }
10128 break;
10129
10130 case ARRAY_TYPE:
10131 /* Don't follow this nodes's type if a pointer for fear that
10132 we'll have infinite recursion. If we have a PSET, then we
10133 need not fear. */
10134 if (pset
10135 || (!POINTER_TYPE_P (TREE_TYPE (type))
10136 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10137 WALK_SUBTREE (TREE_TYPE (type));
10138 WALK_SUBTREE (TYPE_DOMAIN (type));
10139 break;
10140
10141 case OFFSET_TYPE:
10142 WALK_SUBTREE (TREE_TYPE (type));
10143 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10144 break;
10145
10146 default:
10147 break;
10148 }
10149
10150 return NULL_TREE;
10151 }
10152
10153 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10154 called with the DATA and the address of each sub-tree. If FUNC returns a
10155 non-NULL value, the traversal is stopped, and the value returned by FUNC
10156 is returned. If PSET is non-NULL it is used to record the nodes visited,
10157 and to avoid visiting a node more than once. */
10158
10159 tree
10160 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10161 struct pointer_set_t *pset, walk_tree_lh lh)
10162 {
10163 enum tree_code code;
10164 int walk_subtrees;
10165 tree result;
10166
10167 #define WALK_SUBTREE_TAIL(NODE) \
10168 do \
10169 { \
10170 tp = & (NODE); \
10171 goto tail_recurse; \
10172 } \
10173 while (0)
10174
10175 tail_recurse:
10176 /* Skip empty subtrees. */
10177 if (!*tp)
10178 return NULL_TREE;
10179
10180 /* Don't walk the same tree twice, if the user has requested
10181 that we avoid doing so. */
10182 if (pset && pointer_set_insert (pset, *tp))
10183 return NULL_TREE;
10184
10185 /* Call the function. */
10186 walk_subtrees = 1;
10187 result = (*func) (tp, &walk_subtrees, data);
10188
10189 /* If we found something, return it. */
10190 if (result)
10191 return result;
10192
10193 code = TREE_CODE (*tp);
10194
10195 /* Even if we didn't, FUNC may have decided that there was nothing
10196 interesting below this point in the tree. */
10197 if (!walk_subtrees)
10198 {
10199 /* But we still need to check our siblings. */
10200 if (code == TREE_LIST)
10201 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10202 else if (code == OMP_CLAUSE)
10203 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10204 else
10205 return NULL_TREE;
10206 }
10207
10208 if (lh)
10209 {
10210 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10211 if (result || !walk_subtrees)
10212 return result;
10213 }
10214
10215 switch (code)
10216 {
10217 case ERROR_MARK:
10218 case IDENTIFIER_NODE:
10219 case INTEGER_CST:
10220 case REAL_CST:
10221 case FIXED_CST:
10222 case VECTOR_CST:
10223 case STRING_CST:
10224 case BLOCK:
10225 case PLACEHOLDER_EXPR:
10226 case SSA_NAME:
10227 case FIELD_DECL:
10228 case RESULT_DECL:
10229 /* None of these have subtrees other than those already walked
10230 above. */
10231 break;
10232
10233 case TREE_LIST:
10234 WALK_SUBTREE (TREE_VALUE (*tp));
10235 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10236 break;
10237
10238 case TREE_VEC:
10239 {
10240 int len = TREE_VEC_LENGTH (*tp);
10241
10242 if (len == 0)
10243 break;
10244
10245 /* Walk all elements but the first. */
10246 while (--len)
10247 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10248
10249 /* Now walk the first one as a tail call. */
10250 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10251 }
10252
10253 case COMPLEX_CST:
10254 WALK_SUBTREE (TREE_REALPART (*tp));
10255 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10256
10257 case CONSTRUCTOR:
10258 {
10259 unsigned HOST_WIDE_INT idx;
10260 constructor_elt *ce;
10261
10262 for (idx = 0;
10263 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10264 idx++)
10265 WALK_SUBTREE (ce->value);
10266 }
10267 break;
10268
10269 case SAVE_EXPR:
10270 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10271
10272 case BIND_EXPR:
10273 {
10274 tree decl;
10275 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10276 {
10277 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10278 into declarations that are just mentioned, rather than
10279 declared; they don't really belong to this part of the tree.
10280 And, we can see cycles: the initializer for a declaration
10281 can refer to the declaration itself. */
10282 WALK_SUBTREE (DECL_INITIAL (decl));
10283 WALK_SUBTREE (DECL_SIZE (decl));
10284 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10285 }
10286 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10287 }
10288
10289 case STATEMENT_LIST:
10290 {
10291 tree_stmt_iterator i;
10292 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10293 WALK_SUBTREE (*tsi_stmt_ptr (i));
10294 }
10295 break;
10296
10297 case OMP_CLAUSE:
10298 switch (OMP_CLAUSE_CODE (*tp))
10299 {
10300 case OMP_CLAUSE_PRIVATE:
10301 case OMP_CLAUSE_SHARED:
10302 case OMP_CLAUSE_FIRSTPRIVATE:
10303 case OMP_CLAUSE_COPYIN:
10304 case OMP_CLAUSE_COPYPRIVATE:
10305 case OMP_CLAUSE_IF:
10306 case OMP_CLAUSE_NUM_THREADS:
10307 case OMP_CLAUSE_SCHEDULE:
10308 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10309 /* FALLTHRU */
10310
10311 case OMP_CLAUSE_NOWAIT:
10312 case OMP_CLAUSE_ORDERED:
10313 case OMP_CLAUSE_DEFAULT:
10314 case OMP_CLAUSE_UNTIED:
10315 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10316
10317 case OMP_CLAUSE_LASTPRIVATE:
10318 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10319 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10320 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10321
10322 case OMP_CLAUSE_COLLAPSE:
10323 {
10324 int i;
10325 for (i = 0; i < 3; i++)
10326 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10327 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10328 }
10329
10330 case OMP_CLAUSE_REDUCTION:
10331 {
10332 int i;
10333 for (i = 0; i < 4; i++)
10334 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10335 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10336 }
10337
10338 default:
10339 gcc_unreachable ();
10340 }
10341 break;
10342
10343 case TARGET_EXPR:
10344 {
10345 int i, len;
10346
10347 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10348 But, we only want to walk once. */
10349 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10350 for (i = 0; i < len; ++i)
10351 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10352 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10353 }
10354
10355 case DECL_EXPR:
10356 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10357 defining. We only want to walk into these fields of a type in this
10358 case and not in the general case of a mere reference to the type.
10359
10360 The criterion is as follows: if the field can be an expression, it
10361 must be walked only here. This should be in keeping with the fields
10362 that are directly gimplified in gimplify_type_sizes in order for the
10363 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10364 variable-sized types.
10365
10366 Note that DECLs get walked as part of processing the BIND_EXPR. */
10367 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10368 {
10369 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10370 if (TREE_CODE (*type_p) == ERROR_MARK)
10371 return NULL_TREE;
10372
10373 /* Call the function for the type. See if it returns anything or
10374 doesn't want us to continue. If we are to continue, walk both
10375 the normal fields and those for the declaration case. */
10376 result = (*func) (type_p, &walk_subtrees, data);
10377 if (result || !walk_subtrees)
10378 return result;
10379
10380 result = walk_type_fields (*type_p, func, data, pset, lh);
10381 if (result)
10382 return result;
10383
10384 /* If this is a record type, also walk the fields. */
10385 if (RECORD_OR_UNION_TYPE_P (*type_p))
10386 {
10387 tree field;
10388
10389 for (field = TYPE_FIELDS (*type_p); field;
10390 field = DECL_CHAIN (field))
10391 {
10392 /* We'd like to look at the type of the field, but we can
10393 easily get infinite recursion. So assume it's pointed
10394 to elsewhere in the tree. Also, ignore things that
10395 aren't fields. */
10396 if (TREE_CODE (field) != FIELD_DECL)
10397 continue;
10398
10399 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10400 WALK_SUBTREE (DECL_SIZE (field));
10401 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10402 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10403 WALK_SUBTREE (DECL_QUALIFIER (field));
10404 }
10405 }
10406
10407 /* Same for scalar types. */
10408 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10409 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10410 || TREE_CODE (*type_p) == INTEGER_TYPE
10411 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10412 || TREE_CODE (*type_p) == REAL_TYPE)
10413 {
10414 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10415 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10416 }
10417
10418 WALK_SUBTREE (TYPE_SIZE (*type_p));
10419 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10420 }
10421 /* FALLTHRU */
10422
10423 default:
10424 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10425 {
10426 int i, len;
10427
10428 /* Walk over all the sub-trees of this operand. */
10429 len = TREE_OPERAND_LENGTH (*tp);
10430
10431 /* Go through the subtrees. We need to do this in forward order so
10432 that the scope of a FOR_EXPR is handled properly. */
10433 if (len)
10434 {
10435 for (i = 0; i < len - 1; ++i)
10436 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10437 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10438 }
10439 }
10440 /* If this is a type, walk the needed fields in the type. */
10441 else if (TYPE_P (*tp))
10442 return walk_type_fields (*tp, func, data, pset, lh);
10443 break;
10444 }
10445
10446 /* We didn't find what we were looking for. */
10447 return NULL_TREE;
10448
10449 #undef WALK_SUBTREE_TAIL
10450 }
10451 #undef WALK_SUBTREE
10452
10453 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10454
10455 tree
10456 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10457 walk_tree_lh lh)
10458 {
10459 tree result;
10460 struct pointer_set_t *pset;
10461
10462 pset = pointer_set_create ();
10463 result = walk_tree_1 (tp, func, data, pset, lh);
10464 pointer_set_destroy (pset);
10465 return result;
10466 }
10467
10468
10469 tree *
10470 tree_block (tree t)
10471 {
10472 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10473
10474 if (IS_EXPR_CODE_CLASS (c))
10475 return &t->exp.block;
10476 gcc_unreachable ();
10477 return NULL;
10478 }
10479
10480 /* Create a nameless artificial label and put it in the current
10481 function context. The label has a location of LOC. Returns the
10482 newly created label. */
10483
10484 tree
10485 create_artificial_label (location_t loc)
10486 {
10487 tree lab = build_decl (loc,
10488 LABEL_DECL, NULL_TREE, void_type_node);
10489
10490 DECL_ARTIFICIAL (lab) = 1;
10491 DECL_IGNORED_P (lab) = 1;
10492 DECL_CONTEXT (lab) = current_function_decl;
10493 return lab;
10494 }
10495
10496 /* Given a tree, try to return a useful variable name that we can use
10497 to prefix a temporary that is being assigned the value of the tree.
10498 I.E. given <temp> = &A, return A. */
10499
10500 const char *
10501 get_name (tree t)
10502 {
10503 tree stripped_decl;
10504
10505 stripped_decl = t;
10506 STRIP_NOPS (stripped_decl);
10507 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10508 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10509 else
10510 {
10511 switch (TREE_CODE (stripped_decl))
10512 {
10513 case ADDR_EXPR:
10514 return get_name (TREE_OPERAND (stripped_decl, 0));
10515 default:
10516 return NULL;
10517 }
10518 }
10519 }
10520
10521 /* Return true if TYPE has a variable argument list. */
10522
10523 bool
10524 stdarg_p (const_tree fntype)
10525 {
10526 function_args_iterator args_iter;
10527 tree n = NULL_TREE, t;
10528
10529 if (!fntype)
10530 return false;
10531
10532 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10533 {
10534 n = t;
10535 }
10536
10537 return n != NULL_TREE && n != void_type_node;
10538 }
10539
10540 /* Return true if TYPE has a prototype. */
10541
10542 bool
10543 prototype_p (tree fntype)
10544 {
10545 tree t;
10546
10547 gcc_assert (fntype != NULL_TREE);
10548
10549 t = TYPE_ARG_TYPES (fntype);
10550 return (t != NULL_TREE);
10551 }
10552
10553 /* If BLOCK is inlined from an __attribute__((__artificial__))
10554 routine, return pointer to location from where it has been
10555 called. */
10556 location_t *
10557 block_nonartificial_location (tree block)
10558 {
10559 location_t *ret = NULL;
10560
10561 while (block && TREE_CODE (block) == BLOCK
10562 && BLOCK_ABSTRACT_ORIGIN (block))
10563 {
10564 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10565
10566 while (TREE_CODE (ao) == BLOCK
10567 && BLOCK_ABSTRACT_ORIGIN (ao)
10568 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10569 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10570
10571 if (TREE_CODE (ao) == FUNCTION_DECL)
10572 {
10573 /* If AO is an artificial inline, point RET to the
10574 call site locus at which it has been inlined and continue
10575 the loop, in case AO's caller is also an artificial
10576 inline. */
10577 if (DECL_DECLARED_INLINE_P (ao)
10578 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10579 ret = &BLOCK_SOURCE_LOCATION (block);
10580 else
10581 break;
10582 }
10583 else if (TREE_CODE (ao) != BLOCK)
10584 break;
10585
10586 block = BLOCK_SUPERCONTEXT (block);
10587 }
10588 return ret;
10589 }
10590
10591
10592 /* If EXP is inlined from an __attribute__((__artificial__))
10593 function, return the location of the original call expression. */
10594
10595 location_t
10596 tree_nonartificial_location (tree exp)
10597 {
10598 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10599
10600 if (loc)
10601 return *loc;
10602 else
10603 return EXPR_LOCATION (exp);
10604 }
10605
10606
10607 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10608 nodes. */
10609
10610 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10611
10612 static hashval_t
10613 cl_option_hash_hash (const void *x)
10614 {
10615 const_tree const t = (const_tree) x;
10616 const char *p;
10617 size_t i;
10618 size_t len = 0;
10619 hashval_t hash = 0;
10620
10621 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10622 {
10623 p = (const char *)TREE_OPTIMIZATION (t);
10624 len = sizeof (struct cl_optimization);
10625 }
10626
10627 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10628 {
10629 p = (const char *)TREE_TARGET_OPTION (t);
10630 len = sizeof (struct cl_target_option);
10631 }
10632
10633 else
10634 gcc_unreachable ();
10635
10636 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10637 something else. */
10638 for (i = 0; i < len; i++)
10639 if (p[i])
10640 hash = (hash << 4) ^ ((i << 2) | p[i]);
10641
10642 return hash;
10643 }
10644
10645 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10646 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10647 same. */
10648
10649 static int
10650 cl_option_hash_eq (const void *x, const void *y)
10651 {
10652 const_tree const xt = (const_tree) x;
10653 const_tree const yt = (const_tree) y;
10654 const char *xp;
10655 const char *yp;
10656 size_t len;
10657
10658 if (TREE_CODE (xt) != TREE_CODE (yt))
10659 return 0;
10660
10661 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10662 {
10663 xp = (const char *)TREE_OPTIMIZATION (xt);
10664 yp = (const char *)TREE_OPTIMIZATION (yt);
10665 len = sizeof (struct cl_optimization);
10666 }
10667
10668 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10669 {
10670 xp = (const char *)TREE_TARGET_OPTION (xt);
10671 yp = (const char *)TREE_TARGET_OPTION (yt);
10672 len = sizeof (struct cl_target_option);
10673 }
10674
10675 else
10676 gcc_unreachable ();
10677
10678 return (memcmp (xp, yp, len) == 0);
10679 }
10680
10681 /* Build an OPTIMIZATION_NODE based on the current options. */
10682
10683 tree
10684 build_optimization_node (void)
10685 {
10686 tree t;
10687 void **slot;
10688
10689 /* Use the cache of optimization nodes. */
10690
10691 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
10692 &global_options);
10693
10694 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10695 t = (tree) *slot;
10696 if (!t)
10697 {
10698 /* Insert this one into the hash table. */
10699 t = cl_optimization_node;
10700 *slot = t;
10701
10702 /* Make a new node for next time round. */
10703 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10704 }
10705
10706 return t;
10707 }
10708
10709 /* Build a TARGET_OPTION_NODE based on the current options. */
10710
10711 tree
10712 build_target_option_node (void)
10713 {
10714 tree t;
10715 void **slot;
10716
10717 /* Use the cache of optimization nodes. */
10718
10719 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
10720 &global_options);
10721
10722 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10723 t = (tree) *slot;
10724 if (!t)
10725 {
10726 /* Insert this one into the hash table. */
10727 t = cl_target_option_node;
10728 *slot = t;
10729
10730 /* Make a new node for next time round. */
10731 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10732 }
10733
10734 return t;
10735 }
10736
10737 /* Determine the "ultimate origin" of a block. The block may be an inlined
10738 instance of an inlined instance of a block which is local to an inline
10739 function, so we have to trace all of the way back through the origin chain
10740 to find out what sort of node actually served as the original seed for the
10741 given block. */
10742
10743 tree
10744 block_ultimate_origin (const_tree block)
10745 {
10746 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10747
10748 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10749 nodes in the function to point to themselves; ignore that if
10750 we're trying to output the abstract instance of this function. */
10751 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10752 return NULL_TREE;
10753
10754 if (immediate_origin == NULL_TREE)
10755 return NULL_TREE;
10756 else
10757 {
10758 tree ret_val;
10759 tree lookahead = immediate_origin;
10760
10761 do
10762 {
10763 ret_val = lookahead;
10764 lookahead = (TREE_CODE (ret_val) == BLOCK
10765 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10766 }
10767 while (lookahead != NULL && lookahead != ret_val);
10768
10769 /* The block's abstract origin chain may not be the *ultimate* origin of
10770 the block. It could lead to a DECL that has an abstract origin set.
10771 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10772 will give us if it has one). Note that DECL's abstract origins are
10773 supposed to be the most distant ancestor (or so decl_ultimate_origin
10774 claims), so we don't need to loop following the DECL origins. */
10775 if (DECL_P (ret_val))
10776 return DECL_ORIGIN (ret_val);
10777
10778 return ret_val;
10779 }
10780 }
10781
10782 /* Return true if T1 and T2 are equivalent lists. */
10783
10784 bool
10785 list_equal_p (const_tree t1, const_tree t2)
10786 {
10787 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10788 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10789 return false;
10790 return !t1 && !t2;
10791 }
10792
10793 /* Return true iff conversion in EXP generates no instruction. Mark
10794 it inline so that we fully inline into the stripping functions even
10795 though we have two uses of this function. */
10796
10797 static inline bool
10798 tree_nop_conversion (const_tree exp)
10799 {
10800 tree outer_type, inner_type;
10801
10802 if (!CONVERT_EXPR_P (exp)
10803 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10804 return false;
10805 if (TREE_OPERAND (exp, 0) == error_mark_node)
10806 return false;
10807
10808 outer_type = TREE_TYPE (exp);
10809 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10810
10811 if (!inner_type)
10812 return false;
10813
10814 /* Use precision rather then machine mode when we can, which gives
10815 the correct answer even for submode (bit-field) types. */
10816 if ((INTEGRAL_TYPE_P (outer_type)
10817 || POINTER_TYPE_P (outer_type)
10818 || TREE_CODE (outer_type) == OFFSET_TYPE)
10819 && (INTEGRAL_TYPE_P (inner_type)
10820 || POINTER_TYPE_P (inner_type)
10821 || TREE_CODE (inner_type) == OFFSET_TYPE))
10822 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10823
10824 /* Otherwise fall back on comparing machine modes (e.g. for
10825 aggregate types, floats). */
10826 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10827 }
10828
10829 /* Return true iff conversion in EXP generates no instruction. Don't
10830 consider conversions changing the signedness. */
10831
10832 static bool
10833 tree_sign_nop_conversion (const_tree exp)
10834 {
10835 tree outer_type, inner_type;
10836
10837 if (!tree_nop_conversion (exp))
10838 return false;
10839
10840 outer_type = TREE_TYPE (exp);
10841 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10842
10843 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10844 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10845 }
10846
10847 /* Strip conversions from EXP according to tree_nop_conversion and
10848 return the resulting expression. */
10849
10850 tree
10851 tree_strip_nop_conversions (tree exp)
10852 {
10853 while (tree_nop_conversion (exp))
10854 exp = TREE_OPERAND (exp, 0);
10855 return exp;
10856 }
10857
10858 /* Strip conversions from EXP according to tree_sign_nop_conversion
10859 and return the resulting expression. */
10860
10861 tree
10862 tree_strip_sign_nop_conversions (tree exp)
10863 {
10864 while (tree_sign_nop_conversion (exp))
10865 exp = TREE_OPERAND (exp, 0);
10866 return exp;
10867 }
10868
10869 static GTY(()) tree gcc_eh_personality_decl;
10870
10871 /* Return the GCC personality function decl. */
10872
10873 tree
10874 lhd_gcc_personality (void)
10875 {
10876 if (!gcc_eh_personality_decl)
10877 gcc_eh_personality_decl = build_personality_function ("gcc");
10878 return gcc_eh_personality_decl;
10879 }
10880
10881 /* Try to find a base info of BINFO that would have its field decl at offset
10882 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10883 found, return, otherwise return NULL_TREE. */
10884
10885 tree
10886 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10887 {
10888 tree type;
10889
10890 if (offset == 0)
10891 return binfo;
10892
10893 type = TREE_TYPE (binfo);
10894 while (offset > 0)
10895 {
10896 tree base_binfo, found_binfo;
10897 HOST_WIDE_INT pos, size;
10898 tree fld;
10899 int i;
10900
10901 if (TREE_CODE (type) != RECORD_TYPE)
10902 return NULL_TREE;
10903
10904 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
10905 {
10906 if (TREE_CODE (fld) != FIELD_DECL)
10907 continue;
10908
10909 pos = int_bit_position (fld);
10910 size = tree_low_cst (DECL_SIZE (fld), 1);
10911 if (pos <= offset && (pos + size) > offset)
10912 break;
10913 }
10914 if (!fld)
10915 return NULL_TREE;
10916
10917 found_binfo = NULL_TREE;
10918 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
10919 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
10920 {
10921 found_binfo = base_binfo;
10922 break;
10923 }
10924
10925 if (!found_binfo)
10926 return NULL_TREE;
10927
10928 type = TREE_TYPE (fld);
10929 binfo = found_binfo;
10930 offset -= pos;
10931 }
10932 if (type != expected_type)
10933 return NULL_TREE;
10934 return binfo;
10935 }
10936
10937 /* Returns true if X is a typedef decl. */
10938
10939 bool
10940 is_typedef_decl (tree x)
10941 {
10942 return (x && TREE_CODE (x) == TYPE_DECL
10943 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
10944 }
10945
10946 /* Returns true iff TYPE is a type variant created for a typedef. */
10947
10948 bool
10949 typedef_variant_p (tree type)
10950 {
10951 return is_typedef_decl (TYPE_NAME (type));
10952 }
10953
10954 #include "gt-tree.h"